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In this work we introduce a new mathematical tool for optimization of

routes, topology design, and energy efficiency in wireless sensor networks. We

introduce a vector field formulation that models communication in the net-

work, and routing is performed in the direction of this vector field at every

location of the network. The magnitude of the vector field at every location

represents the density of amount of data that is being transited through that

location. We define the total communication cost in the network as the inte-

gral of a quadratic form of the vector field over the network area.

With the above formulation, we introduce a mathematical machinery

based on partial differential equations very similar to the Maxwell’s equations

in electrostatic theory. We show that in order to minimize the cost, the routes

should be found based on the solution of these partial differential equations.
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In our formulation, the sensors are sources of information, and they are similar

to the positive charges in electrostatics, the destinations are sinks of informa-

tion and they are similar to negative charges, and the network is similar to

a non-homogeneous dielectric media with variable dielectric constant (or per-

mittivity coefficient).

In one of the applications of our mathematical model based on the vec-

tor fields, we offer a scheme for energy efficient routing. Our routing scheme is

based on changing the permittivity coefficient to a higher value in the places

of the network where nodes have high residual energy, and setting it to a low

value in the places of the network where the nodes do not have much energy

left. Our simulations show that our method gives a significant increase in

the network life compared to the shortest path and weighted shortest path

schemes.

Our initial focus is on the case where there is only one destination in

the network, and later we extend our approach to the case where there are

multiple destinations in the network. In the case of having multiple destina-

tions, we need to partition the network into several areas known as regions of

attraction of the destinations. Each destination is responsible for collecting

all messages being generated in its region of attraction. The complexity of the

optimization problem in this case is how to define regions of attraction for the

destinations and how much communication load to assign to each destination

to optimize the performance of the network. We use our vector field model to

solve the optimization problem for this case. We define a vector field, which is

conservative, and hence it can be written as the gradient of a scalar field (also



known as a potential field). Then we show that in the optimal assignment of

the communication load of the network to the destinations, the value of that

potential field should be equal at the locations of all the destinations.

Another application of our vector field model is to find the optimal

locations of the destinations in the network. We show that the vector field

gives the gradient of the cost function with respect to the locations of the

destinations. Based on this fact, we suggest an algorithm to be applied during

the design phase of a network to relocate the destinations for reducing the

communication cost function. The performance of our proposed schemes is

confirmed by several examples and simulation experiments.

In another part of this work we focus on the notions of responsiveness

and conformance of TCP traffic in communication networks. We introduce

the notion of responsiveness for TCP aggregates and define it as the degree

to which a TCP aggregate reduces its sending rate to the network as a re-

sponse to packet drops. We define metrics that describe the responsiveness of

TCP aggregates, and suggest two methods for determining the values of these

quantities. The first method is based on a test in which we drop a few pack-

ets from the aggregate intentionally and measure the resulting rate decrease

of that aggregate. This kind of test is not robust to multiple simultaneous

tests performed at different routers. We make the test robust to multiple si-

multaneous tests by using ideas from the CDMA approach to multiple access

channels in communication theory. Based on this approach, we introduce tests

of responsiveness for aggregates, and call it CDMA based Aggregate Pertur-

bation Method (CAPM). We use CAPM to perform congestion control. A



distinguishing feature of our congestion control scheme is that it maintains a

degree of fairness among different aggregates.

In the next step we modify CAPM to offer methods for estimating the

proportion of an aggregate of TCP traffic that does not conform to protocol

specifications, and hence may belong to a DDoS attack. Our methods work

by intentionally perturbing the aggregate by dropping a very small number

of packets from it and observing the response of the aggregate. We offer two

methods for conformance testing. In the first method, we apply the perturba-

tion tests to SYN packets being sent at the start of the TCP 3-way handshake,

and we use the fact that the rate of ACK packets being exchanged in the hand-

shake should follow the rate of perturbations. In the second method, we apply

the perturbation tests to the TCP data packets and use the fact that the rate

of retransmitted data packets should follow the rate of perturbations. In both

methods, we use signature based perturbations, which means packet drops are

performed with a rate given by a function of time. We use analogy of our prob-

lem with multiple access communication to find signatures. Specifically, we

assign orthogonal CDMA based signatures to different routers in a distributed

implementation of our methods. As a result of orthogonality, the performance

does not degrade because of cross interference made by simultaneously testing

routers. We have shown efficacy of our methods through mathematical analy-

sis and extensive simulation experiments.
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Chapter 1

Introduction on Sensor

Networks

Wireless sensor networks have been studied extensively in recent years. Such

networks are made of several hundred to several thousand sensors distributed

in a geographical area. There are many different applications for such net-

works including military, environment monitoring, agriculture and home ap-

plications. Sensors are very simple identical electronic devices equipped with a

processor and small memory, a transmitter, and a receiver. Generally, sensors

use radio frequency channels for the purpose of communication.

In many applications the sensors perform measurements of specific met-

rics such as temperature, pressure, movement or other physical values in a

periodic or non-periodic way. Most of the time it is desired to send the data

of all sensors to a specific destination for processing, archiving and other pur-

poses. This station is a data sink, and it has enough processing power, storage

1



space, and capability of communicating with the sensors. For the purpose of

communication to this destination, the sensors relay the packets of each other

in a multi-hop way.

In this work, we introduce a novel approach to solve the routing prob-

lem in a wireless network by formulating it as an optimization problem. We

make use of the concept of vector fields to define the communication load at

every place of the network and show that this vector field is conservative under

certain assumptions. By using this conservative vector field we define a pow-

erful tool for routing by writing the conservative vector field as the gradient of

a scalar potential function. The routing of packets to each destination is done

based on the value of this potential function on each node and its value on the

neighboring nodes. Our primary focus is on the many-to-one scenario in which

many sources want to send their data toward a single destination. Later, we

generalize our approach to the case in which we have several destinations.

We introduce a mathematical machinery based on partial differential

equations very similar to the Maxwell’s equations in electrostatic theory. The

routes are found based on the solution of these partial differential equations.

In our formulation, sources of information are similar to the positive charges

in electrostatics, the destinations are similar to negative charges, and the net-

work is similar to a non-homogeneous dielectric media with variable dielectric

constant (or permittivity coefficient).

As the first application of our methodology, we offer an energy efficient

routing scheme for the sensor networks. Our energy efficiency is based on
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matching the routes to energy constraints in order to increase the network

life. When the energy of the sensors in some area of the network is low due

to heavy communication activity in the past, we increase the cost of routing

through this area to protect the sensors from early energy depletion. Our

routing scheme is based on changing the permittivity factor to a higher value

in the places in the network where we have a high residual energy of the nodes,

and set it to a low value in the places of the network where the nodes do not

have much energy left. Our simulations show that our method gives a signifi-

cant increase in the network life compared to the shortest path and weighted

shortest path schemes.

The second application of our methodology is to provide an optimal

network clustering algorithm into several regions. Each region has a destina-

tion inside it, which the wireless nodes inside that region communicate with.

Given the geographic information of the communication demand in an area of

the network, we give an optimal method for assigning the load of the network

to the different destinations. We mathematically prove that in order to min-

imize a quadratic cost function of communication load, the value of potential

function should be equal in the locations of all destinations.

The third application of our framework is finding optimal locations for

different destinations. We prove that relocating a destination in the opposite

direction of the gradient of potential function improves a quadratic cost func-

tion related to the communication load in the network.

In addition to the mathematical proof of our results, we have verified

3



effectiveness of our methods through several simulation experiments.

1.1 Related Work

The routing problem in sensor networks has been studied by many researchers.

Sequential Assignment Routing (SAR) is proposed in [39], and it takes into

account the energy constraints by making a tree rooted in the destination.

The tree starts to grow toward the sensors on the paths with enough resid-

ual energy. The routing from each sensor to the destination is based on the

structure of the tree. Minimum Cost Forwarding Algorithm for Large Sensor

Networks is proposed in [38]. In this approach, each sensor maintains the least

cost from it to the destination. For transmission of a packet, it is broadcast,

and after receiving a packet, a sensor checks if it is on the least cost path of

the source sensor to the destination. If so, it retransmits that packet. Similar

routing schemes can be found in [36] and [37].

Link state and distance vector are the conventional methods for the

purpose of routing in the data networks [7]. Several problems like mobility

and high link failure rate causes these approaches not to be proper for routing

in ad hoc networks if we do not make any modification in them. The main

problem of distance vector is its slow convergence [5], and in ad hoc networks

with high link failure rate it is not proper to be used in its original form.

Link state on the other hand shows a good performance in terms of keeping

track of network changes, but it imposes a huge communication overhead by

flooding the information of link failure and creation, which happens very fre-

4



quently in ad hoc networks. Modifications to these methods have been done

to make them proper for the wireless ad hoc networks [8][9][10][27]. Fisheye

State Routing [8][9] and Ad Hoc On Demand Distance Vector [10] are among

the most popular proposed protocols. Fisheye State Routing is a modified

version of the link state protocol, and the nodes that are far from a wireless

link receive fewer updates about that link. The frequency of update decays

exponentially as the the number of hops from the link increases. This causes

the very far nodes from a link to only receive update about that link if the

link is stable enough.

AODV is a modified version of distance vector and it remedies the prob-

lem of increased routing overhead by making it on demand so that a node sends

a routing request only if it needs to send data packets. This algorithm has a

route discovery phase in which query packets are flooded in the network by the

source in order to find a path. Dynamic Source Routing [20] is another alterna-

tive for on demand routing. In DSR the source specifies the complete path to

the destination in the header of data packets. Optimized Link State Routing

Protocol (OLSR) is modified link state protocol and it uses multi-point relay

(MPR) sets to reduce the number of routing packets needed to be sent [33][32].

Many protocols have been developed that take into account the loca-

tion information for the purpose of routing in both wired and wireless networks

[28][30][16][24][22][25][26][29][11]. The most popular geometric routing scheme

in the wireless networks is greedy routing [21][23][35]. In this scheme every

intermediate node tries to forward a packet to a neighbor node that make it

closer to the destination. When the number of nodes in the network is large

5



enough, the paths generated by greedy routing are close to the line of sight

of the source and the destination. In [26] the authors have given a robustness

analysis for the location based routing and its sensitivity to the errors of the

location of the destination. GRID routing protocol is proposed in [29]; in this

protocol the network is partitioned into geographical grids and each grid is a

square. At each grid a grid leader is elected and the routing is done among

the grid leaders from the source to the destination.

Intuitively, the greedy routing scheme gives very good results if for every

intermediate node there exist a neighbor node that is closer to the destination

of a packet. But this is not necessarily the case in general. It may happen

that a packet faces a deadend (i.e., a local optimum). The general approach to

overcome this problem is face routing [16]. Face routing tries to send a packet

not necessarily along the shortest geographical path toward the destination,

but it tries to get around the areas of the network that there is no nodes

in them that are closer to the destination. Such areas are called faces. The

solution is based on extracting a connected planar sub-graph of the original

network graph in which every vertex represents a network node and every pair

of neighboring nodes have an edge in between in the corresponding graph. The

approach in [16] guarantees delivery of the packets to the destination under

certain assumptions. In [31], the Grid’s Location Service (GLS) is proposed.

In GLS each node keeps a set of its neighboring nodes up-to-date about its

location information. By using the location information, it tries to do efficient

geographical routing.

In Location Aided Routing [11] the routes are established on demand

6



from the source node. The location information is used to limit the nodes that

perform the flooding mechanism for route discovery. Distance Routing Effect

Algorithm for Mobility [12] also uses the location information for routing. In

this approach each node keeps a location table that stores and updates the

location of all nodes in the network. Each node periodically sends a message

to the other nodes and advertises its location information. The frequency of

updating depends on the distance of the nodes and the rate of mobility. The

location information is used to relay packets through the nodes that are in the

direction of the destination.

GOAFR+ is proposed in [30] and it is the combination of greedy and

face routing. In this approach the packet from the source is sent to the desti-

nation in a greedy routing scheme. Whenever it reaches a deadend in which

there is no neighboring node that makes the packet closer to the destination,

it switches to the face routing mode, and it continues in the face routing mode

until it escapes from the local minimum.

Some approaches have been offered in which partial information about

the node location is assumed to be known [25],[19],[34]. In [19], the concept

of location proxy is introduced. A location proxy is a node that has complete

information about its location. The routing approach proposed in [19] assumes

some of the nodes in the network can serve as location proxies, and these nodes

collect and forward the packets of their neighboring nodes that do not have

their location information.

Authors of [34] have made a similar set of assumption on the informa-
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tion about the location of the node. In [34], there are a set of nodes with a

special placement in the network (e.g., perimeter nodes) that know the exact

information about their location. The nodes that do not have their actual

location information try to estimate their location based on the information

that they get from the nodes that have the actual or estimate of their location.

The structure of sensor networks may vary considerably depending on

the application [40]. The sensor nodes might be deployed either in prescribed

locations or in an ad hoc way. Although nodes might be stationary or move-

able, most of the time their mobility is very limited. Communication in sensor

networks is usually multipoint-to-point, as the sensory data flows from the

sensors to the sink nodes. However, multicasting and peer-to-peer commu-

nication are also necessary in some specific applications, such as in security

networks and parking lot networks [42].

In the traditional flat network architecture, all sensor nodes are homo-

geneous in terms of their communication and processing capability. However,

it has been shown that the flat wireless ad hoc network architecture without

an infrastructure support is not scalable as the number of nodes per unit area

becomes large [43] [44]. Consequently, hierarchical wireless ad hoc network

models with additional backbone nodes have been proposed to increase the

network connectivity and capacity [45] [46] [47]. The scalability issue is even

more crucial for a sensor network, since in general, the number of nodes in a

sensor network can be several orders of magnitude higher than in an ad hoc

network.

The throughput capacity of wireless networks has been analyzed by

8



several researchers [45][48][49]. In [48], it is shown that the number of base

stations must scale by at least Θ(
√

n), n being the number of wireless nodes, to

achieve better scaling of capacity than the flat network architecture. In [49],

it is shown that for networks where the ratio of wireless nodes to base sta-

tions is bounded above by some constant, the throughput capacity is found as

Θ( 1
logn

) if all nodes choose a common transmission power. In [45], this result

is improved by employing power control in the network. We need to empha-

size that all these capacity results are obtained under the assumption that

backbone nodes (i.e., base stations) are assumed to be connected by a wired

network with unlimited capacity which act as relays for wireless nodes.

In a different line of work, the possibility of having a wireless back-

bone support is considered. As opposed to the wired case, the analysis is

mostly focused on routing and topology control mechanisms to enhance the

connectivity, fault tolerance, and lifetime of the entire network. In general,

a hierarchical wireless sensor network consists of a limited number of special

nodes (i.e., backbone nodes) in addition to ordinary wireless sensor nodes, to

support the data aggregation and data routing. However, in several problems,

sensor nodes can be dynamically grouped into clusters by choosing cluster-

heads to aggregate data and communicate with the sink [50] [51] [52] In this

case, the clusterheads form the so-called virtual backbone as these nodes are

chosen from among the regular sensor nodes. Alternatively, they can also be

selected from a given set of backbone capable nodes.

The idea of using a routing methodology in sensor networks inspired

by the way the electrostatic field propagates in a dielectric medium was first

9



introduced in our works [53], and [54]. Our work was followed by related work

by Toumpis and Tassiulas [55], where they have shown that the approach

minimizes the number of sensors required to handle the total communication

burden of the network. A different approach that uses multipath routing based

on electrostatic force is described in [56].

Surveys on the routing schemes of wireless ad hoc networks can be found

in [6] and [17]. Similar surveys of the sensor networks have been given in [41]

and [40]
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Chapter 2

Formulation of Communication

Load as A Vector Field

In this chapter, we introduce the main framework of routing problem in sensor

networks as an optimization problem. We will use the concept of vector fields

for routing in wireless network, and we will show that routing constraints can

be written in the form of partial differential equations with specific boundary

conditions. Also, we introduce a quadratic cost function to optimize routes in

the network, and we will prove that for minimizing that cost function, we need

to solve a set of partial differential equations that are analogous to the set of

partial differential equations known as Maxwell’s equations in the theory of

Electrostatics.
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2.1 Basic Assumptions and Definitions

Consider a network of N wireless sensors that can communicate with each

other through radio links. The nodes are densely located in a region A in the

plane, and they are intended to collect information about the events in the

area of the network. Each sensor is responsible for events happening in its

neighborhood. All messages are desired to be collected in a destination node

(access point), and for now, we assume there is only one node of this type

in the network. Later, we generalize our approach to the case in which we

have multiple destinations. When an event is generated at some place in the

network, the closest sensor to location of the event generates a message. All

messages should be sent to the destination, which is assumed to have enough

storage, energy and processing power. Furthermore, we make the following

assumptions:

A1: The messages in the geographical area of the network happen with a

known spatial density rate denoted by r(x, y) ≥ 0 for the place (x, y). r(x, y)

states how many messages are generated per unit of area per unit of time. We

call this quantity the load density, which means that for the area a ⊆ A the

rate of messages generated inside a is:

w(a) =

∫

a

r(x, y) dxdy (2.1)

in which integration is over area a. It is important to note that r(x, y)

does not include messages passing through a on their path to the destination.

The units of r(x, y) are messages per square meter per second.

A2: For the purpose of routing, a single-valued direction is kept for every point
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Figure 2.1: The illustration of Upstream Area of a given set S. The Shaded
area in this figure shows the upstream area of the rectangle shown as S
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(x, y) of the network. At place (x, y), this quantity represents the direction in

which a message travels along the forwarding sensors from its source sensor

to the destination; the message may be generated at place (x, y), or received

from an upstream place of the network. For place (x, y) of the network, we

denote this direction by the unit vector θ̂(x, y). The value of θ̂(x, y) is not

defined for the location of the destination.

The above assumption implies that for every location of the network

there exists a single path between that location and the destination. Math-

ematically, we define a path as a directed curved line starting at (x, y) and

ending at the destination. Let p(x, y) denotes the the set of points in A that

belong to this path. Note that based on assumption A2 the paths have the

suffix property, which means if the path of a point (x, y) passes through a

point (x′, y′), then the path of (x′, y′) coincides with the reminder (suffix) of

the path from (x, y).

It should be noted that the chosen paths are not constrained by the loca-

tion of intermediate sensors. Instead, the paths are abstract paths in the plane

that represent desired paths for the transmission of messages. For communi-

cation to occur, we need to define the routes in terms of the paths. Another

important note is connection between the paths and routes. We define a route

as a sequence of sensor nodes starting at a sensor and ending at the destina-

tion In order to find a route from a sensor to the destination, we approximate

the path starting at the location of the sensor by a piecewise linear path with

sensors in its vertices. This approximation is justified if we assume sensors are

distributed dense enough in the area of the network. However, if sensors are
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not dense enough in certain areas, such areas will be considered as places with

limited resources and we can adapt the framework by penalizing the traversal

of such areas. (The weighting function K(x, y) introduced later would take

large values for these areas.)

Given a set of abstract paths for each location (x, y), for a connected

set L in A, we define the notion of Upstream Area, α(L) as:

α(L) = {(x, y) ∈ A s.t. ∃ (x′, y′) ∈ L and (x′, y′) ∈ p(x, y)} (2.2)

The above notion is simply the network area whose generated traffic passes

through L in its way to the destination. This concept has been clarified in

figure 2.1. The shaded area in this figure shows the upstream area of L. As

can be seen in this figure, the path of every point (x, y) in the shaded area

passes through L.

Next, we define a vector field on A which we refer to as the load density

vector field and denote by ~D. This vector field represents the flux density of

the paths to the destination. Given a point (x1, y1) ∈ A, we choose a small line

segment L containing (x1, y1), and perpendicular to θ̂(x1, y1). The magnitude

of the load density vector field is the density of messages passing through L,

which can be written as the ratio of all load generated in the upstream area

of L divided by the length of L:

~D(x1, y1) = lim
|L|→0

θ̂(x1, y1)

|L|
∫

α(L)

r(x, y) dxdy (2.3)
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It is important to note that | ~D(x1, y1)| is the sum of the communication

load of all the paths that pass through L. So | ~D(x1, y1)| represents the actual

amount of communication activity at point (x1, y1). The direction of ~D(x1, y1)

is θ̂(x1, y1), which is the single valued direction on which the traffic at point

(x1, y1) is forwarded according to assumption A2.

Finally, we define a scalar function ρ(x, y) on the network. This function

represents the spatial density of rate at which the messages are generated in

the network. This quantity is a function of location, and obviously ρ(x, y) =

r(x, y) for (x, y) 6= (x0, y0), in which (x0, y0) is the location of the destination.

However, since all messages end at the destination, the density of the rate has

a Dirac delta form at the location of the destination. Hence:

ρ(x, y) = r(x, y)− w0δ(x− x0)δ(y − y0) (2.4)

in which w0, the weight of delta function, is the integral of r(x, y) in the

network area:

w0 =

∫

A

r(x, y)dxdy (2.5)

The above definition of ρ(x, y) implies that

∫

A

ρ(x, y)dxdy = 0 (2.6)

The definition of ~D(x, y) given by equation (3.5) satisfies:

∮

C

~D · ~dn =

∫

S(C)

ρ(x, y)dxdy (2.7)
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in which the integral is over a closed contour C, ~dn is a differential vector

normal to that contour at each point of its boundary and pointing to outside

of the counter, dot represents the inner product of vectors in two-dimensional

space, and S(C) is the area surrounded by the closed contour C. Equation

(2.7) is analogous to Gauss’ law in the electrostatic theory, and it has a very

simple explanation: the rate at which the messages exit a contour is the net

amount of the sources inside that contour.

With the above definition of ρ(x, y) and ~D(x, y) equation (2.7) can be

expressed in partial differential equation form:

~∇ · ~D(x, y) = ρ(x, y) (2.8)

where ~∇ is defined as:

~∇ =
∂

∂x
î +

∂

∂y
ĵ (2.9)

in which x and y represent the variables in the Cartesian coordinate frame,

and î and ĵ represent the unit vectors along x and y axes respectively.

Depending on how we select the set of paths, the value of ~D(x, y) is

different, but independent of path selection method, ~D(x, y) satisfies the fol-

lowing equations:





~∇ · ~D(x, y) = ρ(x, y)

Dn(x, y) = 0 for (x, y) ∈ Boundary of A
(2.10)

in which A denotes the geographical set that contains the network and Dn(x, y)
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denotes the normal component of ~D(x, y) on the boundary of A. The first equa-

tion in (2.10) is the natural limitation imposed by the fact that all the traffic

generated at the network should be delivered to the destination. The second

equation comes from the fact that no load is desired to exit the geographical

area of the network or enter into it through the boundary. It is important to

notice that equations (2.10) do not give ~D(x, y) uniquely.

Conversely, if we have a ~D(x, y) that satisfies equations (2.10), we can

find the path that can be used to send the traffic of each point (x, y) to the

destination. In order to define the routes based on the values of ~D(x, y), we

need to define the concept of load flow lines. These lines are similar to the

electric flux lines in electrostatic theory [1] [2][4]. The load flow lines are a

family of curved lines that are always tangent to the direction of ~D(x, y) and

their orientation is the same as the orientation of ~D(x, y). The load flow lines

cannot intersect except at the destination; if they intersect, at the point of

intersection the direction of the field would not be single-valued. The other

property of the load flow lines is that these lines always end at the destination;

this fact is because the value of divergence in equations (2.10) is nonnegative

at every place of the network, except it is negative at the destination.

Based on the definition of the load flow lines, the path corresponding

to each point (x, y) can be easily found as the flux lines of the load density

vector field, and finally θ̂(x, y), can be written as:

θ̂(x, y) = ~D(x, y)/| ~D(x, y)|. (2.11)
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The singularities introduced by the above equation do not make any

problem since if ~D(x, y) = 0, then place (x, y) has not been used for routing

and no communication is made through it. It is straightforward to see that if

we plug the paths generated by load flux lines in equation (3.5), we get the

original value of ~D(x, y).

2.2 Optimizing Routes

In the previous section we established the basic concept of load vector density

field, and described its connection to routing. Thus, given ~D(x, y), we obtain

the paths and based on the paths we find the routes to the destination. How-

ever, equations (2.10) do not specify ~D(x, y) uniquely. The remaining issue

is to decide what additional condition(s) to place on ~D(x, y) so the resulting

vector field generates a desirable set of routes. The intuition we follow is that

by making ~D as uniform as possible, we obtain routes that cause the traffic

to be highly dispersed throughout the network. In turn, this decreases both

node congestion and collisions and lead to high throughput.

Spreading the communication load in the network can be formulated as

minimizing the following quadratic cost function:

J( ~D) =

∫

A

| ~D(x, y)|2dxdy (2.12)

The quadratic form of the cost function in equation (2.12) causes the load to be

distributed as uniformly as possible. It prevents having high loads somewhere
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in the network while the resources are underutilized somewhere else. One

interesting fact about this cost function is that it is similar to the definition

of energy in electrostatic theory. The above optimization problem can be

summarized as:

Minimize J( ~D) =
∫

A
| ~D(x, y)|2dxdy

Subject to:

~∇ · ~D(x, y) = ρ(x, y)

Dn(x, y) = 0, ∀(x, y) ∈ Boundary of A

The following theorem provides the key to finding the solution of the opti-

mization problem defined by (2.13).

Theorem 1: If ~D∗(x, y) denotes the optimal solution of equation (2.13),

then it satisfies:

~∇× ~D∗(x, y) = 0 (2.13)

In the above equation ~∇× is the two dimensional curl operator, and it is

defined in the following way for a vector field ~F = [Fx Fy]:

~∇× ~F (x, y) = (−∂Fx(x, y)

∂y
+

∂Fy(x, y)

∂x
)k̂ (2.14)

in which k̂ is a unit vector perpendicular to î and ĵ. More precisely, k̂ = î× ĵ.

Proof: In order to prove the theorem, it suffices to prove that for every
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closed contour C we have:

∮

C

~D(x, y) · ~dl = 0 (2.15)

in which ~dl is a differential vector tangent to C. First we prove the above fact

for a contour C that is a rectangle similar to that in Figure 2.2. In this figure

we define two other equally spaced rectangles inside and outside C, and call

those Cin and Cout respectively. The distance between the edges of Cin and

Cout is assumed to be equal for the four pair of corresponding edges, and we

denote it by β. Assume T is the area surrounded between Cin and Cout . We

divide T into four parts: T1, T2, T3, and T4 as illustrated in Figure 2.2.

Now we define the following vector field:

~δ(x, y) =





ε̂i if (x, y) ∈ T1

εĵ if (x, y) ∈ T2

−ε̂i if (x, y) ∈ T3

−εĵ if (x, y) ∈ T4

0 otherwise.

(2.16)

in which ε is a small positive constant. Equation (2.16) defines a vector field

that makes a lossless counterclockwise rotation in T . It can easily be verified

that:

~∇ · ~δ(x, y) = 0 (2.17)

Now we observe the fact that if we define ~D1(x, y) = ~D∗(x, y)+~δ(x, y), then ~∇·
~D1(x, y) = ρ(x, y), and hence, ~D1(x, y) is in the feasible set of the optimization
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problem defined by equation (2.13). The variation of the cost function defined

by equation (2.13) after adding ~δ(x, y) to ~D∗(x, y) can be written as:

∆J = J( ~D1(x, y))− J( ~D∗(x, y)) =
∫

A
| ~D∗(x, y) + ~δ(x, y)|2dxdy

− ∫
A
| ~D∗(x, y)|2dxdy

(2.18)

Since ~δ(x, y) = 0 for (x, y) /∈ T , we have

∆J =
∫

T
(| ~D∗(x, y) + ~δ(x, y)|2 − | ~D∗(x, y)|2)dxdy

= 2
∫

T
~D∗(x, y) · ~δ(x, y)dxdy +

∫
T
|~δ(x, y)|2dxdy

If we assume ε is small enough, we can ignore the term that has ε2. Then:

∆J = 2

∫

T

~D∗(x, y) · ~δ(x, y)dxdy (2.19)

On the other hand, for small enough β and ε we have:

∫

T

~D∗(x, y) · ~δ(x, y)dxdy = εβ

∮

C

~D∗(x, y) · ~dl (2.20)

From the theory of calculus of variations the value of ∆J should be zero since

~D∗(x, y) minimizes the cost function defined by equation (2.13). Hence:

∮

C

~D∗(x, y) · ~dl = 0 (2.21)

So far we have proved the validity of equation (2.13) for a rectangular contour.

To complete the proof it suffices to observe the fact that the area surrounded

by an arbitrary contour C1 can be divided into many rectangular elements,

and the integral over the boundary of C1 defined by equation (2.13) is the sum
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Figure 2.2: Illustration of the notations for the proof of Theorem 1.

of integrals over the boundaries of the small rectangles.QED.

Based on the result of Theorem 1, we can write a set of partial differ-

ential equations for the optimal ~D∗(x, y):

~∇ · ~D∗(x, y) = ρ(x, y)

~∇× ~D∗(x, y) = 0
(2.22)

Mathematically, a vector field for which ~∇ × ~D(x, y) = 0 is called a

conservative vector field. It is proved that such a vector field can be expressed

as the gradient of a scalar field. In other words:

~D(x, y) = ~∇V (x, y) (2.23)

in which V (x, y) is a scalar function known as the potential function. Then

the set of equations defined by (2.22) reduces to:

∇2V (x, y) = ρ(x, y) (2.24)
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in which the operator ∇2 is defined as:

∇2 =
∂2

∂x2
+

∂2

∂y2
(2.25)

The boundary conditions for ~D(x, y) imply that the gradient of V (x, y) is zero

on the boundary along the direction that is normal to the boundary. In other

words:

~∇V (x, y) · n̂(x, y) = 0, ∀(x, y) ∈ Boundary of A (2.26)

in which n̂(x, y) is a unit vector normal to the boundary.

The partial differential equation defined by (2.25) is known as the Pois-

son equation. The potential function found as the solution of this equation has

many interesting interpretations. Firstly, the potential function gives a rough

idea of how much effort by the network is needed to send data from a source

to the destination. This effort is proportional to the potential difference of the

source and the destination. Secondly, the potential function gives insight into

the routing. Based on equation (2.23), the routing is done in the direction

of the gradient of the potential function. Some concerns like the possibility

of forming routing loops are naturally avoided since the potential function

changes strictly monotonic in the nodes that form a path from the source to

the destination.
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2.3 Energy Efficiency

In this section, we try to find the paths that give energy efficiency. In order to

do so, we need to define the notion of residual energy density in the network.

For this purpose, we divide the network through evenly spaced vertical and

horizontal grids, such that the network area is partitioned into small rectan-

gles. The number of grids is chosen such that the sensors inside neighboring

rectangles are within the single hop transmission range of each other (roughly,

the edge of each rectangle is about half of the transmission range of a sen-

sor). Then for all points (x, y) belonging to the ith rectangle Si, we define the

following residual energy density:

Ω(x, y, t) =
1

|Si|
∑

sensor j ∈Si

ej(t) (2.27)

in which ej(t) denotes the residual energy of sensor j at time t, and |Si| is the

area of Si . Note that Ω(x, y, t) is a piecewise constant function on (x, y), and

it takes a constant value for all points (x, y) in the same rectangle.

In order to find the routes that give energy efficiency, we use the fact

that the amount of communication activity at place (x, y) of the network is

proportional to | ~D(x, y)|. In other words, at place (x, y), the average amount of

| ~D(x, y)| of date is transmitted per unit of time. This means that the depletion

rate of energy at (x, y) is proportional to | ~D(x, y)|. No transmissions are

possible through the places with zero energy. In order to get energy efficiency,

the intuition we follow is trying to match the value of | ~D(x, y)| to the density of

residual energy at place (x, y) of the network. In other words, we try to make
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more routing through the places with high residual energy, while penalizing

use of low residual energy places for routing. This goal can be achieved by

minimizing the following cost function:

J( ~D) =

∫

A

K(x, y)| ~D(x, y)|2dxdy (2.28)

in which K(x, y) is a positive scalar weight function on A, and it takes a high

value in the places of the network that have low residual energy to penalize

routing through them, and it takes a small value in the places with enough en-

ergy. K(x, y) is a non-increasing function of Ω(x, y, t), and we will explain their

relationship later in this section. It should be noted that the problem of min-

imizing J( ~D(x, y)) is subject to the constraints given by equation (2.13), and

indeed the optimization problem of (2.13) is the special case of optimization

problem of (2.28) where the weight function K(x, y) is uniform in the network

(i.e., K(x, y) = c). The above optimization problem can be summarized in the

following way:

Minimize J( ~D) =
∫

A
K(x, y)| ~D(x, y)|2 ds

Subject to:

~∇ · ~D(x, y) = ρ

Dn(x, y) = 0 (x, y) ∈ Boundary of A

The following theorem provides the key to finding the solution of the

optimization problem defined by (2.29).
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Theorem 2: If ~D∗(x, y) denotes the optimal solution of equation (2.29),

then it satisfies:

~∇× ~E∗(x, y) = 0 (2.29)

in which

~E∗(x, y) = K(x, y) ~D∗(x, y) (2.30)

Proof: In order to prove the theorem, it suffices to prove that for every

closed contour C we have: ∮

C

~E∗ · ~dl = 0 (2.31)

in which ~dl is a differential vector element tangent to the contour. The rest of

proof of this theorem is similar to that of Theorem 1.

Based on the result of Theorem 2, we can write a set of partial differ-

ential equations for the optimal ~D∗(x, y) and ~E∗(x, y):

~∇ · ~D∗(x, y) = ρ(x, y)

~∇× ~E∗(x, y) = 0
(2.32)

The set of equations given by (2.32) is analogous to Maxwell’s equations

in the electrostatic theory. In this analogy, ~E∗(x, y) is analogous to the electric

field density, ~D∗(x, y), is analogous to the electric displacement, and K(x, y)

is analogous to the inverse of permittivity factor in a non-homogeneous me-

dia. In the theory of partial differential equations it is proved that the above

equations along with the boundary condition given by (2.10) give ~D∗(x, y) and

~E∗(x, y) uniquely.
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Since ~∇× ~E∗(x, y) = 0 then ~E∗(x, y) is a conservative vector field, and

it can be expressed as the gradient of a scalar field:

~E∗ = ~∇U (2.33)

Then the set of equations defined by (2.32) reduces to:

~∇2U(x, y)−
~∇K(x, y).~∇U(x, y)

K(x, y)
= K(x, y)ρ(x, y) (2.34)

Similar to before, the boundary conditions for ~D(x, y) imply that the

gradient of U(x, y) is zero on the boundary along the direction that is normal

to the boundary:

~∇U(x, y) · n̂(x, y) = 0, ∀(x, y) ∈ Boundary of A (2.35)

in which n̂(x, y) is a unit vector normal to the boundary. For the case in

which K(x, y) is constant, Equation (2.34) reduces to the well known Poisson

equation:

∇2U(x, y) = K(x, y)ρ(x, y) (2.36)

There is one final issue about the way we should choose K(x, y). This

scalar field should be assigned in a way that it has a high value at the places

with low residual energy. There might be different ways of doing so, but one

easy assignment of K(x, y) can be done in the following way:

K(x, y, t) =
1

Ω(x, y, t)
. (2.37)
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As equation (2.37) shows, K(x, y) depends on t. In practice, we do not need

to change the value of K(x, y) very frequently, which would cause frequent

change of the paths and routes. The update of K(x, y) can be done with a

low frequency, only after a considerable change in the residual energy of the

network happens.
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Chapter 3

Generalization To Multiple

Destinations

3.1 Multiple Destinations with Fixed Locations

of Destinations

So far we have introduced the vector field based routing method for the case

where there is only one destination access point in the network and all the traf-

fic generated by the network nodes is sent to a single destination. While this

is the case in many applications both in wireless ad hoc and sensor networks,

a more general case is where we have more than one destination in the network.
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The summary of the case with one destination can be written as:

~∇ · ~D∗(x, y) = ρ(x, y)

~∇× ~E∗(x, y) = 0

Dn(x, y) = 0, ∀(x, y) ∈ Boundary of A

Recall that

ρ(x, y) = r(x, y)− w0δ(x− x0)δ(y − y0)

where

w0 =

∫

A

r(x, y)dxdy

The fact that we have only one destination is applied in the above mathemat-

ical formulation by defining a Dirac delta function for the value of ρ(x, y) at

(x0, y0), where the destination is located. As can be seen in the above formu-

lation, the weight of this delta function is equal to the total amount of traffic

generated in the network with the opposite sign. The above formulation forces

all the routing paths of the network to end at the destination.

One complexity of the case where we have several destinations is how

we distribute the load of the network among them. In the case of multiple

destinations, we write the optimization problem as:

Minimize J( ~D) =
∫

A
K(x, y)| ~D(x, y)|2dxdy

Subject to:

~∇ · ~D(x, y) = ρ(x, y)

ρ(x, y) = r(x, y)−∑M
i=1 wiδ(x− xi)δ(y − yi)

Dn(x, y) = 0 ,∀(x, y) ∈ Boundary of A

31



in which M is the number of destinations, (xi, yi) is the location of ith desti-

nation and wi is a nonnegative weight of the ith destination. Since in this case

the load of the network is received by the M destinations, we have:

M∑
i=1

wi =

∫

A

r(x, y)dxdy = w0

This implies: ∫

A

ρ(x, y)dxdy = 0

It is important to note that in the multiple destination case the opti-

mization is both on ~D(x, y) and the values of wi. In this case, the paths starting

from each point of the network end at one of the destinations. Based on the

paths, we partition the area of the network into M disjoint sets corresponding

the M destinations. Let Ti denote the set for the ith destination. Then a point

(x, y) belongs to Ti if the path corresponding to (x, y) ends at the destination i.

We call Ti the region of attraction of destination i. It is straightforward

to verify that the region of attraction for each destination is a connected set.

This is because (xi, yi) ∈ Ti, and (xi, yi) belongs to every path that ends at the

destination i. Then if two point such as (x, y) and (x′, y′) both belong to Ti,

and if p and p′ are their corresponding paths to the ith destination respectively,

then based on the suffix property of paths the union of p and p′ is a connected

subset of Ti containing both (x, y) and (x′, y′).

Based on the above definition of Ti, we can write the weight of ith
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destination as:

wi =

∫

Ti

r(x, y)dxdy (3.1)

The complexity of problem in the multiple destination case is based on

the fact that optimization is both on ~D(x, y), and the weight values w1, w2, · · · , wM .

If the weight values are fixed, the following lemma can be stated:

Lemma 1: In the case of multiple destinations, if w1, w2, · · · , wM , are

fixed, the necessary and sufficient condition for optimality of the cost function

in (3.1) is:

~∇× ~E∗(x, y) = 0 (3.2)

in which

~E∗(x, y) = K(x, y) ~D∗(x, y) (3.3)

The proof of this Lemma is similar similar to the proof of Theorem 1

and Theorem 2. If the weights are given, the value of ρ(x, y) is known, and

the optimal solution of the problem is found by solving the following PDE:

~∇2U(x, y)− ~∇K(x,y).~∇U(x,y)
K(x,y)

= K(x, y)ρ(x, y)

~∇U(x, y) · n̂(x, y) = 0, ∀(x, y) ∈ Boundary of A
(3.4)

and ultimately ~E(x, y) is from ~E(x, y) = ∇U(x, y), and ~D(x, y) if found from

~E(x, y).

If the weight values of the destinations are added to the optimization

variables of (3.1), the condition ~∇× ~E∗(x, y) = 0 is not a sufficient condition

for optimality of the cost function. To illustrate this case, we consider study

a simple example.
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Example 1: Consider a network in the area of a rectangle with length

1 and width 0.01 in which the total load of 1 unit is uniformly distributed; this

results in r(x, y) = 100 for every (x, y) in the network. Furthermore, assume

K(x, y) = 1 for all points in the network. We consider two destinations in the

network, destination 1 located at point (0.15, 0.005), and destination 2 located

at (0.5, 0.005). This network and the cartesian coordinate frame are shown in

the top plot of Figure 3.1.

To continue, we consider two different distributions of load between the

two destinations:

Case 1: In this case, we assume w1 = w2 = 0.5. With this assign-

ment of the load, the network is partitioned into two sets which represent the

regions of attraction of the two destinations. T1, the region of attraction of

destination 1, is every point in the network with x < 0.5, and T2 is every

point in the network with x > 0.5. Because the network is so narrow in the

y direction, all paths from every point in the network to the destinations are

approximately parallel to the x axis, and therefore ~D(x, y) is approximately

horizontal (parallel to the x axis) at every point of the network. The only

exception is where we are very close to one of the destinations where the flux

lines of ~D(x, y) need to change their direction to end at the destinations. By

ignoring this small deviation of ~D(x, y) from horizontal lines, we ignore the

component of ~D(x, y) in the y direction.

With the above approximation of paths, we can easily find the value of

~D(x, y) based on the definitions of upstream area and ~D(x, y). For example,

at point x = (0.12, y1), we define a line segment L1 as all points with x = 0.12.
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Obviously, L1 is a vertical line segment with length 0.01. Since all the paths

are approximately parallel to the x axis, α(L1) (the upstream area of L1) is

all the points in the network with x < 0.12. Therefore from equation (3.5) we

have:
~D(0.12, y1) = lim|L|→0

θ̂(0.12,y1)
|L|

∫
α(L)

r(x, y) dxdy

≈ θ̂(0.12,y1)
|L1|

∫
α(L1)

r(x, y) dxdy

= î
0.01

∫ 0.12

x=0

∫ 0.01

y=0
100dxdy

= 12̂i

(3.5)

Note that in writing the above equation we have used |L1| = 0.01 and

θ̂(0.1, y1) = î, in which î is the unit vector along the x axis. Similarly we can

find value of ~D(x, y) for all points:

~D(x, y) =





100xî if x < 0.15

(100x− 50)̂i if 0.15 < x < 0.5

(100x− 100)̂i if 0.5 < x < 1

(3.6)

As can be seen in the above equation, ~D(x, y) does not depend on y, and it is

a function of x. The value of ~D(x, y) versus x and corresponding U(x, y) are

shown in Figure 3.1. The value of cost function
∫

A
| ~D(x, y)|2dxdy in this case

is 588.5.

Case 2: In this case, we assume w1 = 0.31 and w2 = 0.69. This

distribution gives the following for ~D(x, y):

~D(x, y) =





100xî if x < 0.15

(100x− 31)̂i if 0.15 < x < 0.5

(100x− 100)̂i if 0.5 < x < 1

(3.7)
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Figure 3.1: Top: The network with circles showing the location of destina-
tions. Middle: the value of ~D(x, y) versus x for w1 = w2 = 0.5, Bottom: the
corresponding potential function U(x, y) as a function of x.

The value of ~D(x, y) versus x and corresponding U(x, y) are shown in

Figure 3.2. The value of cost function
∫

A
| ~D(x, y)|2dxdy in this case is 475.4.

Comparison of the two cases in the above example shows that the distri-

bution of the load plays an important role in the optimization problem. While

in both cases we have ~∇× ~E∗(x, y) = 0, in the second case we have a smaller

value for the cost function.

The following theorem gives the basic idea to solve the optimization

problem of (3.1), where we have multiple destinations:

Theorem 3 If the value of potential function at the locations of M

destinations is U1, U2, ..., UM , then the necessary and sufficient conditions for

36



0 0.2 0.4 0.6 0.8 1 1.2
−50

0

50

0 0.2 0.4 0.6 0.8 1 1.2
−2000

−1000

0

1000

0 0.2 0.4 0.6 0.8 1 1.2
−0.02

−0.01

0

0.01

0.02

Figure 3.2: Top: the network with circles showing the location of destinations.
Middle: the value of ~D(x, y) versus x for w1 = 0.31 and w2 = 0.69, Bottom:
the corresponding potential function U(x, y) as a function of x.

the optimality of cost function in (3.1) are:

~∇× ~E(x, y) = 0

Ui = Uj, for ∀ 1 ≤ i, j ≤ M

Proof: The first condition in the theorem is ~∇× ~E(x, y) = 0. The proof

for this condition is similar to case of having a single destination. We assume

this condition holds and we show that the second condition is necessary and

sufficient for optimality.

In the forward proof, we show that for optimality of (3.1) the value of

the potential function should be the same at all destinations. For this purpose,

we use contradiction. Assume for some i and j, we have Ui < Uj. Then we

prove that the load distribution can be changed in the way of decreasing the
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cost function. We need the following two identities throughout the proof:

Identity 1: If c is a scalar field and ~F is a vector field, then:

~∇ · (c ~F ) = c~∇ · ~F + ~F · ~∇c (3.8)

Identity 2: If A is a region in the plane with boundary ∂A, and F is a

vector field defined on A, then

∫

A

~∇ · ~Fdxdy =

∮

∂A

~F · ~dn (3.9)

in which ~dn is the differential vector normal to the boundary of A pointing

outward. The second identity is also known as the Divergence Theorem in the

vector calculus literature.

To continue the proof, we make a small positive change in the weights

of the ith and the jth destinations in the following way:

w′
i = wi + ε

w′
j = wj − ε

(3.10)

In other words, we increase the weight of the ith destination by ε and decrease

the weight of the jth destination by the same amount. Assume ~D(x, y), ~E(x, y),

U(x, y) and ρ(x, y) represent the values of vector fields, the potential function

and and the density of sources before applying the above change and ~D′(x, y),

~E ′(x, y), U ′(x, y), and ρ′(x, y) represent the same quantities after applying the
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change. After this change, the density of sources is:

ρ′(x, y) = ρ(x, y)− εδ(x− xi)δ(y − yi) + εδ(x− xj)δ(y − yj) (3.11)

in which (xi, yi) is the location of the ith destination and (xj, yj) is the location

of the jth destination. Now we make the following definitions:

~D′(x, y) = ~D(x, y) + ~δ(x, y)

~E ′(x, y) = ~E(x, y) + ~e(x, y)

U ′(x, y) = U(x, y) + u(x, y)

(3.12)

It is easy to verify that:

~∇ · ~δ(x, y) = −εδ(x− xi)δ(y − yi) + εδ(x− xj)δ(y − yj)

~∇× ~e(x, y) = 0

~e(x, y) = ~∇u(x, y)

(3.13)

The change in the value of cost function after applying the change is:

δJ = J( ~D′(x, y))− J( ~D(x, y)) =
∫

A
K(x, y)| ~D′(x, y)|2dxdy − ∫

A
K(x, y)| ~D(x, y)|2dxdy

(3.14)

By substituting the value of ~D′(x, y) we have

δJ = 2

∫

A

K(x, y)~δ(x, y) · ~D(x, y)dxdy +

∫

A

K(x, y)|~δ(x, y)|2dxdy (3.15)

Since we assume ε is a very small value, we can ignore the second term in the
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above equations, and we have:

δJ = 2
∫

A
K(x, y)~δ(x, y) · ~D(x, y)dxdy =

2
∫

A
δ(x, y) · ~E(x, y)dxdy =

2
∫

A
e(x, y) · ~D(x, y)dxdy

(3.16)

Note that in writing the second and third equalities in the above we have used

the fact that K(x, y)~δ(x, y) = ~e(x, y) and K(x, y) ~D(x, y) = ~E(x, y). Now we

use Identity 1 for c = U(x, y) and F = δ(x, y):

~∇ · (U(x, y)~δ(x, y)) = U(x, y)~∇ · ~δ(x, y) + ~δ(x, y) · ~∇U(x, y) (3.17)

By using the fact that ~E(x, y) = ~∇U(x, y), the above equation can be written

as:

~δ(x, y) · ~E(x, y) = ~∇ · (U(x, y)~δ(x, y))− U(x, y)~∇ · ~δ(x, y) (3.18)

By substituting this value for ~δ(x, y) · ~E(x, y) in equation (3.16) we have:

δJ = 2

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy − 2

∫

A

U(x, y)~∇ · ~δ(x, y)dxdy (3.19)

Now we use the Divergence Theorem given in Identity 2 for ~F = U(x, y)~δ(x, y).

We have:

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy =

∮

∂A

U(x, y)~δ(x, y) · ~dn (3.20)

in which ~dn is a differential vector normal to ∂A and pointing outward. Recall

that the boundary conditions in the optimization problem of (3.1) implies
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both ~D(x, y) and ~D′(x, y) have zero components in the direction normal to

the boundary of A. So ~δ(x, y) = ~D′(x, y) − ~D(x, y) also has zero normal

component at every point of the boundary of A. This causes the inner product

in the integrand of equation (3.20) to be 0. Therefore

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy = 0 (3.21)

On the other hand from equation (3.13) we have ~∇·~δ(x, y) = −εδ(x−xi)δ(y−
yi) + εδ(x− xj)δ(y − yj). Therefore:

∫
A

U(x, y)~∇ · ~δ(x, y)dxdy =

−ε
∫

A
U(x, y)δ(x− xi)δ(y − yi)dxdy + ε

∫
A

U(x, y)δ(x− xj)δ(y − yj)dxdy =

−εU(xi, yi) + εU(xj, yj) = −ε(Ui − Uj)

(3.22)

By substituting (3.22) and (3.21) in (3.19) we get:

δJ = 2ε(Ui − Uj) < 0 (3.23)

and this ends the forward part of the proof. The above equation states that if

the potential at the destination i is smaller than that in the destination j, then

we can reduce the cost function by decreasing the weight of the destination j

by some small ε value and adding that amount to the weight of the destination

i.

Now we continue the proof of Theorem 3 in the backward part. From

the forward part of the proof we know if ~D(x, y) is the optimal solution of (3.1),

then its corresponding potential function takes the same value in the location
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of all destinations. Also for this load vector field we have ~∇× ~E(x, y) = 0.

Assume in addition to the optimal ~D(x, y), there exists a ~D′(x, y) that

satisfies ~∇× ~E ′(x, y) = 0 as well as the conditions of the optimization problem

given in (3.1). Also assume the corresponding potential function of ~D′(x, y)

takes the same value in the location of all destinations. Then we prove that

~D′(x, y) = ~D(x, y).

Let U(x, y), w1, w2, ..., wM , and ρ(x, y) represent the quantities of the

optimal solution, and U ′(x, y), w′
1, w

′
2, ..., w

′
M and ρ′(x, y) represent the similar

quantities corresponding to ~D′(x, y). We define the difference of quantities for

the two solutions in the following way:

~e(x, y) = ~E(x, y)− ~E ′(x, y)

~δ(x, y) = ~D(x, y)− ~D′(x, y)

u(x, y) = U(x, y)− U ′(x, y)

σ(x, y) = ρ(x, y)− ρ′(x, y)

(3.24)

It is easy to verify that

~∇ · ~δ(x, y) = σ(x, y)

~∇× ~e(x, y) = 0

~e(x, y) = ~∇u(x, y)

(3.25)

Recall that

ρ(x, y) = r(x, y)−∑M
i=1 wiδ(x− xi)δ(y − yi)

ρ′(x, y) = r(x, y)−∑M
i=1 w′

iδ(x− xi)δ(y − yi)
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Hence:

σ(x, y) = −
M∑
i=1

(wi − w′
i)δ(x− xi)δ(x− yi) (3.26)

which implies that σ(x, y) is zero everywhere in the network that is not a des-

tination.

We use contradiction to prove ~D(x, y) = ~D′(x, y). If ~D(x, y) 6= ~D′(x, y),

then there exist some destinations for which wi 6= w′
i. This is because of the

fact that if for all destinations we have wi = w′
i, we have ρ(x, y) = ρ′(x, y), and

therefore ~D(x, y) = ~D′(x, y). If we assume there exist some destinations for

which wi 6= w′
i, then we select the destination j for which the corresponding

value of wj − w′
j is minimum. Since

∑M
i=1(wi − w′

i) = 0, then wj − w′
j < 0.

Hence the flux lines of ~δ(x, y) exit this destination; this is because the value

of divergence of ~δ(x, y) is positive at the location of destination j:

~∇ · ~δ(xj, yj) = σ(xj, yj) = −(wj − w′
j)δ(x− xj)δ(y − yj) > 0 (3.27)

The flux lines exiting the destination j can end only at the destinations for

which the value of σ(x, y) is negative. This is because the value of divergence

of ~δ(x, y) should be negative at a location that flux lines end. Since σ(x, y)

can take nonzero values only at the locations of the destinations, every flux

line exiting destinations j ends at a destination k for which wk −w′
k > 0, and

hence σ(xk, yk) < 0. Let L be one of such flux lines. Based on the definition

of flux lines, L is tangent to both of ~δ(x, y) and ~e(x, y) at every point of it.

Next we consider the following value of the potential difference of destinations
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j and k:

u(xj, yj)− u(xk, yk) =

∫

L

~e(x, y) · ~dl (3.28)

in which the integration is in the direction of the flux line L (e.g., from the

location of destination j to the location of destination k). In equation (3.28)

~dl is a differential vector along L, and hence it has the same direction as ~e(x, y)

at every point of L. Therefore, we have:

~e(x, y) · ~dl = |~e(x, y)||~dl| (3.29)

The definition of flux lines implies that ~e(x, y) is nonzero at every point of L.

Hence:

~e(x, y) · ~dl = |~e(x, y)||~dl| > 0 (3.30)

By comparing (3.30) and (3.28) we have:

u(xj, yj)− u(xk, yk) > 0 (3.31)

Recall the fact that U(x, y) takes the same value in the locations of all destina-

tions and the same fact is true for U ′(x, y). Hence u(x, y) = U(x, y)−U ′(x, y)

takes the same value in the locations of all destinations. The statement of

equation (3.31) contradicts this fact. Therefore we have wi = w′
i for all desti-

nations and hence ~D(x, y) = ~D′(x, y). QED.

The following is an intermediate result of Theorem 3:

Corollary 1: If we increase the weight of destination i by a small

amount ε, and subtract that amount from the weight of destination j, then
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the first order increment in the cost function in (3.1) is:

δJ = 2ε(Ui − Uj) (3.32)

We use Theorem 3 and Corollary 1 to introduce an iterative algorithm that

gives the optimal assignment of load among the destinations.

Assume we start with an arbitrary assignment of the weights to the

destinations. Weight assignment is subject to the constraints that the sum of

the weights should be the total amount of the load in the network:

M∑
i=1

wi =

∫

A

r(x, y)dxdy = w0 (3.33)

Given the initial assignment of the weights, we solve the following equations

to find the corresponding values for the resulting U(x, y). Then if the value

of U(x, y) is the same at the location of all destinations, we have found the

optimal solution, otherwise we continue the iteration by reassigning the weight

values.

We use Corollary 1 to reassign the weights. We know that in order

to improve the cost function we have to decrease the weight of destinations

with a high value of the potential function and increase the weight of the

destinations with small value of potential. To do so, we use the average value

of the potential function at all destinations as a reference:

Ū =
1

M

M∑
i=1

Ui (3.34)
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If a destination has a smaller potential value than the above average, its weight

is increased, otherwise, its weight is decreased. We use the amount of deviation

from the average to specify the exact amount of change for the weight of each

destination.

∆wi = γ(Ū − Ui)

w′
i = wi + ∆wi

(3.35)

in which γ is a small positive step size, and w′
i represents the weight of the

ith destination after applying the change. Note that the above change of the

weights preserves the property that
∑M

i=1 w′
i = w0. We may stop the iterations

when the maximum of absolute value of Ū−Ui among all destinations is below

a certain threshold:

max
i
|Ū − Ui| < ξ (3.36)

in which ξ is a small positive value. The following lemma shows that iterations

of (3.35) improve the cost function:

Lemma 2: If the value of γ small enough, then updating the weight of

destination by iteration ∆wi = γ(Ū − Ui) decreases the cost function in the

optimization problem of (3.1).

Proof: To prove we make use of Corollary 1, and show that the iteration

of weights given by (3.35) can be written as a sequence of steps, and at each

step we only change the weight of a pair of destinations by decreasing the

weight of one of them and increasing the weight of the other one.

Without loss of generality, we assume for i = 1, 2, ..., j we have Ui > Ū
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and for i = j+1, j+2, ..., M we have Ui < Ū . Then we define j×(M−j) steps

of changing weights, and at each step, we decrease the weight of one of the

first j destinations and increase one of the M − j other destinations. Assume

1 ≤ k ≤ j and j + 1 ≤ l ≤ M . Then in the step kl we make the following

change:

εkl =
γ∑j

i=1(Ui − Ū)
(Uk − Ū)(Ū − Ul) (3.37)

in which εkl is the amount we decrease the weight of destination k and increase

the weight of destination l. It is easy to verify εkl > 0. This is because all the

terms in (3.37) are positive. Based on Corollary 1, by applying this change we

get the following increment in the cost function:

δJkl = −2
γ∑j

i=1(Ui − Ū)
(Uk − Ū)(Ū − Ul)(Uk − Ul) < 0 (3.38)

To complete the proof, it suffices to verify that the total change in the weight

of each destination is equal to the amount specified in (3.35). The total change

in the weight of destination k can be written as:

∆wk = −∑M
l=j+1 εkl =

− γPj
i=1(Ui−Ū)

∑M
l=j+1(Uk − Ū)(Ū − Ul) =

− γ(Uk−Ū)Pj
i=1(Ui−Ū)

∑M
l=j+1(Ū − Ul) =

γ(Ū − Uk)

(3.39)

Note that for writing the last equality in (3.39) we used the fact that
∑j

i=1(Ui−
Ū) =

∑M
l=j+1(Ū − Ul).
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Similarly the total change in the weight of the lth destination is:

∆wl =
∑j

k=1 εkl =

γPj
i=1(Ui−Ū)

∑j
k=1(Uk − Ū)(Ū − Ul) =

− γ(Ul−Ū)Pj
i=1(Ui−Ū)

∑j
k=1(Ūk − Ū) =

γ(Ū − Ul)

(3.40)

QED

The significance of Lemma 2 is the fact that it reduces the number of

iterations needed to find the optimal solution. Corollary 1 gives the basic idea

of finding the optimal solution; however, it recommends changing the weight

of only one pair of destinations at every iteration. Lemma 2 gives a way to

update the weight of all M destinations at every iteration to reduce the cost

function.

3.2 Relocating The Destinations

Another interesting problem in the case of multiple destinations is relocating

the destinations in a way that the cost function is further minimized. So far

we have assumed that the destinations are fixed at their locations. In order

to relocate the destinations, we need to find a direction for each destination

that moving the destination along that direction has the steepest decrease in

the value of cost function. This is the equivalent to moving the destinations in

the direction of the gradient of the cost function with respect to the location

of each the destinations. In this section, we give the mathematical basis of
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finding the gradient of the cost function with respect to the locations of the

destinations.

The following Theorem gives the basis for a method to move destina-

tions:

Theorem 4: Assume the location of destination i is (xi, yi). If a small

incremental change is made to the location of this destination, and it is moved

to (xi + δx, yi + δy), the amount of change in the optimal value of the cost

function given in (3.1) is:

δJ = 2wi
~E(xi, yi) · ~δz (3.41)

in which ~δz = (δxî + δxĵ), where î, and ĵ are the unit vectors along x and y

axes respectively.

Proof: The proof for this theorem is very similar to that of Theorem 3.

However, in the case of Theorem 3 we made a small change in the weight of a

destination, but here the weights are fixed and we change the location of the

destination.

Assume ~D(x, y), ~E(x, y), U(x, y) and ρ(x, y) represent the values of

vector fields, the potential function and the density of sources for the case

in which destination i is at location (xi, yi), and assume ~D′(x, y), ~E ′(x, y),

U ′(x, y), and ρ′(x, y) represent the same quantities after we move destination i

to the new location (xi + δx, yi + δy). After this change, the density of sources
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is:

ρ′(x, y) = ρ(x, y)+wiδ(x−xi)δ(y−yi)−wiδ(x−xj−δx)δ(y−yj−δy) (3.42)

Now we make the following definitions:

~D′(x, y) = ~D(x, y) + ~δ(x, y)

~E ′(x, y) = ~E(x, y) + ~e(x, y)

~U ′(x, y) = U(x, y) + u(x, y)

(3.43)

It is easy to verify that:

~∇ · ~δ(x, y) = wiδ(x− xi)δ(y − yi)− wiδ(x− xj − δx)δ(y − yj − δy)

~∇× ~e(x, y) = 0

~e(x, y) = ~∇u(x, y)

(3.44)

The change in the value of the cost function after moving the ith desti-

nation is:

δJ = J( ~D′(x, y))−J( ~D(x, y)) =

∫

A

K(x, y)| ~D′(x, y)|2dxdy−
∫

A

K(x, y)| ~D(x, y)|2dxdy

(3.45)

By substituting the value of ~D′(x, y) we have

δJ = 2

∫

A

K(x, y)~δ(x, y) · ~D(x, y)dxdy +

∫

A

K(x, y)|~δ(x, y)|2dxdy (3.46)

Since we assume (δx, δy) is a very small in both components, we can ignore
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the second term in the above equation. Hence:

δJ = 2
∫

A
K(x, y)~δ(x, y) · ~D(x, y)dxdy =

2
∫

A
~δ(x, y) · ~E(x, y)dxdy =

2
∫

A
~e(x, y) · ~D(x, y)dxdy

(3.47)

Note that in writing the second and third equalities in the above we have used

the fact that K(x, y)~δ(x, y) = ~e(x, y) and K(x, y) ~D(x, y) = ~E(x, y). Now we

use Identity 1 for c = U(x, y) and F = δ(x, y):

~∇ · (U(x, y)~δ(x, y)) = U(x, y)~∇ · ~δ(x, y) + ~δ(x, y) · ~∇U(x, y) (3.48)

By using the fact that ~E(x, y) = ~∇U(x, y), the above equation can be written

as:

~δ(x, y) · ~E(x, y) = ~∇ · (U(x, y)~δ(x, y))− U(x, y)~∇ · ~δ(x, y) (3.49)

By substituting this value for ~δ(x, y) · ~E(x, y) in equation (3.47), we have:

δJ = 2

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy − 2

∫

A

U(x, y)~∇ · ~δ(x, y)dxdy (3.50)

Now we use the divergence theorem given in Identity 2 for ~F = U(x, y)~δ(x, y)

We have:

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy =

∮

∂A

U(x, y)~δ(x, y) · ~dn (3.51)

in which ~dn is a differential vector normal to ∂A and pointing outward. Recall

that the boundary conditions in the optimization problem of (3.1) state both
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~D(x, y) and ~D′(x, y) have zero components in the direction normal to the

boundary of A. So ~δ(x, y) = ~D′(x, y)− ~D(x, y) also has zero normal component

at every point of the boundary of A. This causes the inner product in the

integrand of equation (3.51) to be 0. Therefore

∫

A

~∇ · (U(x, y)~δ(x, y))dxdy = 0 (3.52)

On the other hand from equation (3.42) we have ~∇·~δ(x, y) = wiδ(x−xi)δ(y−
yi)− wiδ(x− xj − δx)δ(y − yj − δy). Therefore:

∫
A

U(x, y)~∇ · ~δ(x, y)dxdy =

wi

∫
A

U(x, y)δ(x− xi)δ(y − yi)dxdy − wi

∫
A

U(x, y)δ(x− xj − δx)δ(y − yj − δy)dxdy

= wi(U(xi, yi)− U(xi + δx, yi + δy))

(3.53)

By substituting (3.53) and (3.52) in (3.50) we get:

δJ = 2wi(U(xi + δx, yi + δy)− U(xi, yi)) (3.54)

Now we use the fact that ~E(x, y) = ~∇U(x, y), hence if δx and δy are

small values, then we can write:

U(xi + δx, yi + δy)− U(xi, yi) = ~E(xi, yi) · (δxî + δyĵ) = ~E(xi, yi) · ~δz (3.55)

By substituting (3.55) in (3.54) we get:

δJ = 2wi
~E(xi, yi) · ~δz (3.56)

QED.
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Corollary 2: The necessary condition for optimality of the cost func-

tion with respect to the location of destinations is that:

~E(xi, yi) = 0, ∀i, 1 ≤ i ≤ M (3.57)

We offer a relocation method based on Theorem 4 and move each des-

tination in the opposite direction of ~E(x, y). From Theorem 4 we know that

this improves the cost.

Generally, because of the density of sources ρ(x, y) has a Dirac delta

form in the location of destinations; the equation ~D(x, y) = ρ(x, y) implies

that the flux lines converge to the destinations from all directions, and for this

reason, ~E(x, y) shows a very high sensitivity to (x, y) when we are close to a

destination. This may degrade performance of the algorithm that relocates

the destinations based on the value of ~E(x, y), especially when we numerically

solve the PDE equations that give ~E(x, y). To avoid this situation, we use

an average of ~E(x, y) in the neighborhood of each destination to find the best

direction to relocate it. This average can be defined as:

~Ei =
1

|Si|
∫

Si

~E(x, y)dxdy (3.58)

in which Si is a small area in the plane containing destination i, and |Si|
represents the area of Si.

To relocate destinations, we use iterations to move them, and at each

iteration we move each destination in the opposite direction of the average
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value of ~E(x, y) in its neighborhood. Such iterations can be defined as:

(xi, yi)
j+1 = (xi, yi)

j − θ ~Ej
i (3.59)

in which (xi, yi)
j is the location of destination i at the iteration j, and θ is a

small step size. We may stop the iterations when the maximum of absolute

value of ~̄Ei among all destinations is below a certain threshold:

max
i
| ~Ej

i | < ε (3.60)

in which ε is a small positive number.

Equation (3.35) of the previous section gives iterations that change

weight of destinations to decrease the cost when the locations of the destina-

tions are fixed. In this section we introduced iteration of (3.59) that relocate

destinations to decrease the cost when the weights of the destinations are fixed.

Depending on the application, one or both set of the iterations may be used

to achieve the best solution. For example, if in a network the location of the

destinations cannot be changed, we do not use iterations of (3.59). An im-

portant note is that in the applications that we have freedom to both relocate

and change the weights of the destinations, we can use iterations of (3.59),

and (3.35) in any order, and the problem converges to a joint solution for both

iterations. For example, we can use the iteration of (3.35) until they converge

to a solution, and for that solution we use (3.59). Since (3.59) change the

locations of the destinations we may need to use (3.35) again after completing

(3.59), and we continue this procedure until both iterations converge to a joint
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equilibrium. An important fact is that regardless of the order, at each iteration

of (3.35) and (3.59), the cost function decreases, and since the cost function

is nonnegative, the sequence of the values of the cost is a non-increasing lower

bounded sequence, and hence, with proper selection of step sizes γ and θ, the

iterations always converge to joint equilibrium point.

Example 2: We again use the network we introduced in Example 1.

This network is defined in the area of a rectangle with length 1 and width 0.01

and r(x, y) = 100 and K(x, y) = 1 for every (x, y). There are two destinations

in the network, Destination 1 is initially located at point (0.15, 0.005), and

destination 2 is initially located at (0.5, 0.005). We assume w1 = w2 = 0.5.

This network and the used cartesian coordinate frame are shown in the top

plot of Figure 3.3. The asterisk in this figure shows the initial location of

Destination 1, and the circle shows the initial location of Destination 2.

As we saw before in Example 1, the value of ~D(x, y) for the initial

locations of destinations is:

~D(x, y) =





100xî if x < 0.15

(100x− 50)̂i if 0.15 < x < 0.5

(100x− 100)̂i if 0.5 < x < 1

(3.61)

which results in the value of cost function to be 589.5. Since ~D(x, y) does not

depend on y, we use the value of 0.5(Dx(x
−
i ) + Dx(x

+
i )) for calculating the

value of the average ~E(x, y) at the two destinations. Note that K(x, y) = 1,

55



0 0.2 0.4 0.6 0.8 1 1.2
−50

0

50

0 0.2 0.4 0.6 0.8 1 1.2
−2000

−1000

0

1000

0 0.2 0.4 0.6 0.8 1 1.2
−0.02

−0.01

0

0.01

0.02

Figure 3.3: Top: the network with the asterisk showing the initial location of
Destination 1 and the circle showing the locations of Destination 2. Middle:
the value of ~D(x, y) versus x for initial placement of the destinations, Bottom:
the corresponding potential function U(x, y) as a function of x

which implies ~E(x, y) = ~D(x, y). This implies:

~E1 = 0.5(Dx(0.15−) + Dx(0.15+) = 0.5× (15− 35) = −10

~E2 = 0.5(Dx(0.5
−) + Dx(0.5

+) = 0.5× (0− 50) = −25
(3.62)

Since we move each destinations in the opposite direction of Ēi, the above

means that both destinations should be relocated to a new location on their

right. In order to update the locations of destinations we choose θ = 0.0004

and use the following iterations:

xj+1
i = xj

i − θ ~Ej
i (3.63)

in which xj
i represents the value of the location of destination i in the iteration

j; similarly Ēi
j
represents Ēi in iteration j. It is straightforward to verify that
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2 in different iterations. Middle: the value of ~D(x, y) versus x for the final
solution, Bottom: the corresponding potential function U(x, y) as a function
of x for the final solution.

after 5 iterations the algorithm places Destination 1 at point (0.25, 0.005), and

Destination 2 at (0.75, 0.005). Simple calculations show that this placement

of destinations is optimal, and for both locations of the destinations we have

Ēi = 0. The values of ~D(x, y), U(x, y), and the locations of the destinations

during the iterations are shown in Figure 3.4.

Another interesting observation about Example 2 is the way the cost

function decreases during the iterations. The values for the 5 iterations are:

588.5, 314.5, 242.4, 221.5, 212.5, and finally, 210.5 for the optimal solutions.

As the numbers show, the cost function monotonically decreases during the

iterations. Furthermore, comparison of the initial value of the cost function

with its value after the last iteration shows that using the iterations can have

a significant improvement in the cost.
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Chapter 4

Simulation Experiments for

Sensor Networks

In this chapter we show the results of the simulations for the proposed methods

in the previous chapters. The results are presented in different categories of

single and multiple destinations.

4.1 Single Destination Experiments

In this simulation scenario sensors of the network are distributed in a 1000m×
1000m square. The network area has been partitioned into 21×21 = 441 equal

squares by equally spaced horizontal and vertical grids. The number of sensors

N = 441. In each small square a sensor is placed randomly. The destination

is placed in the center of the network area. The generation of the events

inside each small square is done according to a Poisson process with a rate

0 < λi < 1. λi can be considered as the integral of r(x, y) on the area on

which the ith sensor collects messages. The sensor inside each small square is

58



0

200

400

600

800

1000

0

200

400

600

800

1000
0

5

10

15

x 10
4

x(m)y(m)

Figure 4.1: The value of the potential function U

responsible for all events that happen inside that square.

To start the network, we distribute the initial energy of 20000 units

among the sensors. Since nodes closer to the destination need more energy

because they have to do more switching, the initial energy assignment is done

such that the initial energy of the sensors is inversely proportional to their

distance from the destination. It should be emphasized that if the sensors

are identical in terms of their energy, such assignment of initial residual en-

ergy can be done by changing the density of the sensors in the network design

phase; in other words, sensors are distributed with a higher density for the

places in the network that we need a higher energy for communication and

forwarding activity. In our experiments each transmission or switching needs

one unit of energy, and the transmission range of each sensor is 85m. We de-

fine three scenarios for the experiments. In the first scenario, we illustrate the

electrostatic routing and compare the routes generated by it with the shortest

path routes. The second scenario compares the electrostatic routes with the
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Figure 4.2: The direction of ~D∗(x, y): the line segments show the direction of
~D∗(x, y).

weighted shortest paths. In this case, the cost of the links that have a low en-

ergy sensor are increased. The third scenario illustrates how the electrostatic

routes react in response to the change of residual energy of sensors, and how

they avoid passing through low energy sensors and tend to the high energy

sensors.

4.1.1 Scenario 1: General Evaluation

In this scenario we show the general performance of the electrostatic routing

and illustrate its advantage over shortest path routes. In order to find the po-

tential function U(x, y), we have solved the partial differential equation given

by (2.34) numerically, with the boundary conditions given by equation (2.35)

on the 21 × 21 grid. Furthermore, we have made use of equation (2.37) for

defining the value of K(x, y) in terms of the residual energy. The resulting
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U(x, y) is shown in the Figure 4.1. The value of ~E(x, y) is found by taking

the gradient of U(x, y), and finally ~D(x, y) is calculated from ~E(x, y) by divid-

ing ~E(x, y) by K(x, y). Figure 4.2 shows the direction of ~D(x, y) at different

places of the network. The line segments in this figure show the direction of

the optimal load density vector field ~D(x, y). The paths from the sensors to

the destination are found by following these line segments, and the routes are

calculated by approximating the paths by the sequence of relaying sensors.

The resulting routes from all sensors to the destination have been plotted in

Figure 4.3. In this figure each star shows the place of a sensor in the network.

The relatively high number of sensors allows us to find routes by approximat-

ing paths with the relaying sensors.

To have a basis of comparison we have also calculated the routes that

use the shortest path to the destination. Figure 4.4 shows the routes calcu-

lated by this method. By comparing this figure with Figure 4.3, it can be seen

that in the case of using optimal ~D(x, y) the routes are more evenly spaced in

the network.

To evaluate the difference of using ~D(x, y) for routing to the case in

which we use the shortest path routes, we turn the network on at t = 0, and

let it run until the nodes run out of energy and no more communication is

possible to the destination. In the case of using the routes based on ~D(x, y),

the routes were updated periodically according to the updated values of the

residual energy of the sensors. Also, during the shortest path experiment, if

a sensor contributing to a path of another sensor to the destination ran out

of energy, a new shortest path was calculated if there was at least one path
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Figure 4.3: The routes from all sensors to the destination. These routes are
found by using ~D(x, y).
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Figure 4.4: Shortest path routes to the destination.

62



Table 4.1: The performance comparison of routes based on ~D(x, y) with short-
est path and weighted shortest path routes.

Exp. ~D(x, y) routes SP Imp.(%) WSP Imp.(%)
1 2112 1734 22% 1925 10%
2 1901 1465 30% 1632 16%
3 1928 1681 15% 1685 14%
4 1744 1278 36% 1412 24%
5 1839 1233 49% 1346 37%
6 1761 1592 10% 1610 9%
7 1749 1414 24% 1520 15%
8 1774 1193 49% 1311 33%

through the live sensors.

The simulation showed that for the case of using ~D(x, y), the total

number of 2112 messages were delivered to the destination, and for the case

of shortest path routing the total number of delivered messages was 1734.

Several other experiments were done with the same conditions as in

the above experiment but with different randomly generated locations of the

nodes and the traffic sources. The results are shown in Table 6.1. The second

column of this table shows the total number of delivered messages for the case

in which we use the routes generated by ~D(x, y), and its third column shows

the same quantity for the shortest path case. It can be seen that in all cases

the number of delivered messages was increased considerably, and the average

increase was 29%.
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4.1.2 Scenario 2: Comparison with Weighted Shortest

Path

In this set of simulation experiments the performance of electrostatic routes

was compared with the performance of the weighted shortest path routing

method. In the weighted shortest path method, the weight (cost) of a wireless

link is defined as a decreasing function of the residual energy of its source

sensor. For link l, with the source sensor i, we define the cost cl as:

cl =
1

ei

. (4.1)

Recall that ei is the residual energy of the sensor i. Since the residual energy

of the sensors changes over time, ei is a function of time, and the weighted

shortest path to the destination changes as energy of some sensors deplete.

This fact was taken into account in the simulation experiments, and the sen-

sors maintained periodical updates about the value of the link costs.

It is important to note that the definition of the link weights in equa-

tion (4.4) is consistent with the way the value of K(x, y) is defined in equation

(2.37); in the former case the weight of the links are inversely proportional

to the residual energy of their source sensors, and in the later case the per-

mittivity factor is inversely proportional to the residual energy. Therefore,

the similar definitions give a fair basis for the performance comparison of the

electrostatic routes with the weighed shortest path routes.

The 5th and 6th columns of Table 6.1 show the performance of the
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Figure 4.5: The placement of sensors and shortest path routes for the base
experiment. Only sensors on the left and right generate messages.

weighted shortest path. The 5th column of this table shows the total number

of delivered messages by using weighted shortest path routes. The 6th col-

umn of this table shows the percentage of performance improvement by using

electrostatic routing instead of weighted shortest path. The same 8 different

experiments of the previous scenario were repeated, and as can be seen in

the table, the average performance improvement of electrostatic paths over

weighted shortest paths was 19.8%.

4.1.3 Scenario 3: Illustrating Dependence of Electro-

static Routes on Residual Energy

The purpose of this set of experiments is to illustrate how changing the value

of residual energy can change routes. For this experiment a network similar

to that explained in the previous experiment was used, but in this network,
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Figure 4.6: The placement of sensors and electrostatic routes for the base
experiment.

the messages were generated only by the sensors on the very right or very left

of the network, and the sensors in between were only used for relaying the

messages of the sensors of the two sides to the destination. Mathematically,

this means that ρ(x, y) is non-zero for the areas of the network that are close

to the right and left boundaries. Again 441 nodes were placed in the network

randomly and in the way described before, and residual energy was initialized

in the same way as in the previous experiments. Figure 4.5 shows the place-

ment of the sensors and the shortest path routes to the destination, and Figure

4.6 shows the same sensors with routes generated according to ~D(x, y). Com-

parison of the two figures shows that the electrostatic routes are more evenly

distributed in the network resulting in a better use of energy. In a simulation

run for this case, the shortest path routes gave delivery of 405 messages to the

destination, while this value increases to 692 for the case where we used routes

based on ~D(x, y). We refer to this experiment as the base experiment.
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In the next experiment the value of residual energy of a few sensors was

changed to observe how it affects routes. For this purpose the residual energy

of the sensors shown by the circles in Figure 4.7 were reduced to 1/3 of their

value in the base experiment. As can be seen in this figure, the routes avoid

passing through the circle nodes. This can be seen by comparing the routes in

the left and the right of the network. While routes in the right of the network

are evenly distributed in the network, the routes in the left are tending to the

top left and bottom left in order to avoid passing through the low residual

energy area. In this case the traffic of two sensors in the left passes through

the low energy area, while in the base case, the routes of 7 sensors in the left

pass through this area (by inspecting Figures 4.7 and 4.6). In the simulation,

the shortest path routes resulted in delivery of 269 messages, while the elec-

trostatic routes delivered 632 messages to the center, which is more than a 100

percent improvement.

The last experiment is the opposite of the previous experiment. In

this experiment the initial residual energy of the sensors shown by circles

was initialized to twice their value in the base experiment. Figure 4.8 shows

the resulting routes. It can be seen that the many routes are attracted by

the high energy area. This can be observed by comparing the routes in the

left half to those in the right half of the figure. In this case, the cumulative

traffic of 14 sensors on the left pass through the high energy area. In the

simulation, the shortest path routes deliver 495 messages for this case, and

by using electrostatic routes this number increases to 816. It is interesting to

note that the behavior of routes in the neighborhood of high or low residual

energy places of the network is a reminder of the behavior of electric field in
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Figure 4.7: The effect of decreasing energy on routes. The routes avoid passing
through the low energy sensors shown by circles.

the neighborhood of high or low permittivity environments. The flux lines of

electric field tends to pass through the higher permittivity places, which is

very similar to the way the routes behave here.

4.2 Multiple Destination Experiments

In this section we present the simulation experiments with multiple destina-

tions. The network is a 1 × 1 area and we assumed the total load to be 100,

which was uniformly distributed in the network (i.e., r(x, y) = 100). With this

basic setting, we did several experiments that we present in different scenarios.
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Figure 4.8: The effect of increasing energy on routes. The routes tend to pass
through the high energy sensors shown by circles.

4.2.1 Scenario 1: Four Destinations without Relocation

of Destinations

In this experiment, we placed 4 destinations in the network. The destinations

are located at:

(x1, y1) = (0.45, 0.45)

(x2, y2) = (0.75, 0.75)

(x3, y3) = (0.65, 0.25)

(x4, y4) = (0.25, 0.75)

(4.2)

Next we divided the total load of 100 units evenly among the destinations and

assumed K(x, y) = 1. This means that w1 = w2 = w3 = w4 = 25. Then we

solved the PDE equation for the potential function U(x, y), and from it we

found ~D(x, y). The resulting potential values are shown in Figure 4.9. The

equipotential lines of the the potential function are shown in Figure 4.10. The

value of ~D(x, y) is shown in Figure 4.11 and the regions of attraction for the
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Figure 4.9: The value of the potential function U(x, y) for the case with four
destinations

four destinations are shown in Figure 4.12. The value of potential function at

the destinations is: U1 = 0.0723, U2 = 0.0601, U3 = 0.0607, and U4 = 0.0571.

The total value of the cost function in this case is 4.88. Since the value of

potential function is not the same at the location of destinations, we know

that we can update the weight of destinations to reduce the cost function.

In the next experiment of this scenario, we use the iterations of equation

(3.35) to update the weights of destinations in order to reduce the cost function.

The calculations show that the algorithm converges to the weight values within

1 percent of the optimal weights in 3 iterations. The values of optimal weights

are:

w1 = 22.07

w2 = 25.50

w3 = 25.94

w4 = 26.48

(4.3)

With the above values of weights, the cost function reduces to 4.07. We have
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Figure 4.10: The equipotential lines for the case with four destinations

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 4.11: The value of ~D(x, y) at different places of the network for the
case with four destinations
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Figure 4.12: The regions of attraction for different destinations in the case of
four destinations. Destinations are shown by circles.

used the gradient step size γ = 200, and for the stop criterion of iterations, we

used ξ = 0.001. Also, the value of potential function at the destinations was

calculated to be U1 = U2 = U3 = U4 = 0.062.

4.2.2 Scenario 2: Four Destinations with Relocation of

Destinations

In this scenario we use the value of ~̄
iE to relocate the destinations. We start

with the example of four destinations in the previous case, with equal as-

signment of the weights. Our simulation shows that after 6 iterations, the
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destinations are relocated to the final positions of:

(x1, y1) = (0.251, 0.257)

(x2, y2) = (0.750, 0.748)

(x3, y3) = (0.748, 0.249)

(x4, y4) = (0.251, 0.759)

(4.4)

As can be seen, the algorithm has successfully placed the four destina-

tions evenly in the centers of the four quarters of the network. This scenario

shows the effectiveness of our method for relocating the destinations. Figure

4.13 shows the location of destinations during the iterations. Squares in this

figure show the initial placement of the destinations, and circles show the final

placement after the iterations. As can be seen in this figure, the algorithm

has a fast convergence to the optimal locations. The other interesting result

of this experiment is how the cost function changes as we relocate the destina-

tions. This information is shown in Figure 4.14. This figure shows the value

of cost function during the iterations. As can be seen in this figure, the cost

function monotonically decreases during iterations. The value of cost in the

final solution is 3.167, which is significantly improved compared to the initial

value of 4.88.
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Figure 4.13: The location of destinations during the relocating iterations.
Squares show the initial placement of the destinations, and circles show the
final placement after the iterations. The algorithm shows a fast convergence
to the optimal positions.
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Figure 4.14: The cost function during the iterations of relocating destinations.
The value of cost monotonically decreases during the iterations.
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Chapter 5

TCP Conformance Tests

5.1 Introduction of TCP Responsiveness and

Conformance

A key characteristic of TCP traffic is its response to packet drops. This forms

the basis for congestion control. The degree to which a TCP aggregate reduces

its rate in response to packet drops depends on packet size, round trip time and

the distribution of window sizes among the constituent flows. A TCP aggre-

gate may also include noncooperative or malicious flows that do not participate

in the TCP congestion control algorithm. Such flows are called nonconforming.

In this chapter we introduce a technique for quantifying the responsive-

ness of a TCP aggregate to packet drops and for estimating the fraction of

traffic that is nonconforming to TCP protocol specifications. Such techniques

are useful for congestion control based on random early drop [57]. With quan-

titative information about the responsiveness of TCP traffic, when a router
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gets close to congestion it will know how many drops are needed to keep the

rate of the traffic within the capacity of its outgoing links.

Another application of conformance tests is detection of distributed de-

nial of service (DDoS) attacks. As perpetrators become more sophisticated, it

can be anticipated that DDoS attacks will become increasingly stealthy with

attack traffic designed to closely resemble ordinary Internet traffic. Studies

show that more than 90 percent of the Internet traffic is generated by TCP

traffic sources [58]. Furthermore, http traffic accounts for more than 42 per-

cent of current traffic, while the average amount of packets exchanged per

http flow is on the order of 10 packets. Consequently, a stealthy attacker

might well choose to clog access links by generating large numbers of short-

lived TCP flows. Such flows would be difficult to distinguish from ordinary

traffic; they would also be difficult to trace back. Even if an attack source

generated packets over a significant duration of time, by changing the spoofed

source address or the source port number it could make the traffic appear to

be composed of many small flows.

An important feature of this work is that we apply the conformance

tests at aggregate level, not at flow granularity. Performing the conformance

test on aggregates has several advantages. First, our approach scales with the

number of flows, and many flows can be bundled together to form an aggre-

gate and the conformance test is done for the resulting aggregate. The second

advantage of aggregate based testing is the fact that the majority of current

traffic of the Internet is composed of short-lived flows known as the Internet

mice [58]. It is extremely hard to perform tests on such traffic at flow level be-
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cause many flows have a small number of packets and are active only for a few

round trip times, and often they end before a router can keep track of them.

However, if we consider many such flows together, we get an aggregate that is

composed of many flows that appear, survive for a few round trip times, and

disappear; the aggregate composed of these flows has some statistical proper-

ties that can help us to define a conformance measure for it.

Our first approach to measure the conformance of an aggregate is to

perturb the arrival rate of that aggregate by intentionally dropping a very

small number of packets, and observing the way the rate of the aggregate re-

sponds. A normal TCP aggregate shows a predictable response as a result

of instantaneous packet drops, and we estimate this response and use it as

a conformance measure or the conformance coefficient of the aggregate. By

doing this periodically, the conformance of the aggregate can be determined.

We call this the Aggregate Perturbation Method (APM).

One complication of APM in a distributed implementation is the possi-

ble interference due to simultaneous tests being performed by different routers.

Flows in an aggregate may experience perturbations at multiple routers. In a

distributed implementation, in order to perform its test, a router should not

need to be aware of the perturbations applied by other routers. One approach

to solve this problem is inspired by the direct sequence spread spectrum CDMA

approach in multiple access communication channels. Each router is assigned

a dropping signature that specifies its packet dropping rate as a function of

time. Different routers are assigned signatures that are orthogonal in a certain

sense. It can be shown that under certain assumptions, this approach enables
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each individual router to find the conformance coefficient of the aggregates

passing through it without requiring any information to be shared with the

other routers. We have named this method CDMA based Aggregate Pertur-

bation Method (CAPM).

A technical limitation of the original CAPM is the fact that the nominal

conformance coefficients depend on the traffic characteristics such as the aver-

age lifetime of the flows, the round trip times, and the statistical distribution

of the congestion window size. In other words, when we drop a single packet

from an aggregate, we do not know how much rate reduction to expect unless

we have some statistical measurements of the aggregate during a long enough

interval in the past.

In order to make the nominal conformance coefficients of the aggregates

independent of the traffic characteristics we offer two alternative CAPM al-

gorithms for detecting and mitigating a DDoS attack. The new algorithms

work based on testing conformance of legitimate TCP connections in retrans-

mitting the lost packets or not advancing to the next state of the TCP finite

state machine when specific packets are dropped during the 3-way handshake

at the start of a connection. Both algorithms are based on the observation

that at the time of a DDoS attack the conformance coefficients of aggregates

with a high proportion of DDoS packets show a significant deviation from their

nominal values.

In one of the extensions of the CAPM algorithm, we apply the method

to TCP SYN packets, which are generated at the start of a TCP connec-
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tion. Our test is based on perturbing the traffic by drooping the initial SYN

packets of TCP connections with a very small probability. If no attack is

present, we expect such perturbations show a predictable response in the rate

of ACK packets that are generated as a part of the 3-way TCP handshake.

Note that a TCP connection is started by a SYN packet from a client to a

server that initiates the request, and it is responded by a SYN/ACK packet

from the server to client, and finally by an ACK from the client to the server

to complete establishment of the connection. Our proposed perturbation test

on SYN packets is designed to detect a TCP SYN flood attack, when many

DDoS sources repeatedly request a connection by sending SYNs to a server

and not completing the connection. Our proposed approach has the capability

of detecting blind transmission of ACK packets without needing to assume

that paths between the DDoS source and the victim are symmetric. By a

blind transmission of the ACK, we mean an ACK generated by a DDoS source

before receiving a SYN/ACK packet from the TCP server. Such ACKs may be

generated by the DDoS sources so that the aggregates containing DDoS attack

SYNs contain an equal number of ACK packets, which camouflage the attack

by making the traffic similar to the normal traffic if no perturbation is applied.

In another form of CAPM algorithm, we apply the test to the aggre-

gates of TCP data packets being observed at a router, and we introduce a

simple method to detect packet retransmission rate at the router. Similar to

the previous test, if no attack is present, we expect the detected packet re-

transmission rate of an aggregate to follow the shape of the function that was

used to perturb that aggregate by dropping packets from it. Our simulation

experiments show that both of the above introduced tests give excellent per-
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formance in detecting nonconforming traffic and determining the proportion

of DDoS packets in an aggregate.

In contrast to the original CAPM, the extensions of CAPM algorithm

that we offer make the nominal conformance coefficients of aggregates indepen-

dent of their statistical characteristics. Such modifications make the approach

more suitable for DDoS detection and defense. Significance of this extension

is the fact that the modified tests do not need the history and state of the test

results in the past in order to detect a DDoS attack. Furthermore, the new

tests can be applied to the finer granularity sub-aggregates of an aggregate

with a positive primary test to precisely locate the parts of the aggregate with

higher concentration of DDoS traffic. The basic CAPM tests do not work well

when an aggregate is divided into sub-aggregates. This is because after divid-

ing an aggregate into sub-aggregates the nominal values of the conformance

coefficients of the sub-aggregates (which depend on the past history of the

statistical information of sub-aggregates) are not known.

5.2 Related Work

There is a large literature on techniques for combatting DDoS attacks. Several

approaches have been proposed including pushback, traceback, and ingress fil-

tering. Pushback [59][60][61], includes detection of attack, identification of

an attack signature, and advertisement of a filter to the upstream routers to

rate limit the attack traffic. Traceback techniques [62][63][64][65][66][67][68]

[69][70][71][72][73][74] are designed to determine the path, and ultimately the
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source, of the attack. There are two main classes of traceback methods: the

first uses explicit ICMP messages [63][64][68], while the second marks the pack-

ets by writing partial information regarding the paths in unused fields of IP

headers [65][72][73][74].

Authors of [64] propose that routers store hashed information on re-

cently received packets to recover the paths to the packet sources in the event

that traceback is needed. In ingress filtering [75], edge routers check the valid-

ity of the source IP addresses of the packets. A packet with a source IP address

that does not belong to any of the valid sources in the network is filtered by

the edge router of that network when attempting to exit. D-WARD [76] mon-

itors the traffic at the egress router of a stub domain in order to determine

whether the ratio of outgoing to incoming traffic for a set of remote addresses

is abnormally high. A high ratio is taken as a signal that an attack is being

mounted from within the stub domain.

Many researchers have conducted studies to do identification and mod-

eling of TCP traffic in the granularity of flow under steady state conditions

[77][78][79][80]. In [77] the authors propose a method of testing a flow by

comparing the steady state throughput of a TCP flow with the theoretical

predicted value for conforming (responsive) flows. The objective of that study

is to identify and penalize nonconforming flows for congestion control pur-

poses. The TCP Friendly congestion control schemes are generalizations of

flow based TCP congestion control mechanisms to the general flows [78]. Sto-

chastic Fair Blue [81] offers a per flow test for responsiveness by mapping

different flows to parallel bins. The approach is based on the fact that the

bins containing a nonconforming flow are likely to be overloaded. However,

81



if there are many nonconforming flows in a traffic aggregate, it is likely that

many bins are overloaded. In LRU-RED [82] a router tries to drop less from

responsive high bandwidth flows at the time of congestion.

Our approach is distinguished from this body of existing work in several

respects: (1) It applies the concept of conformance to aggregates rather than to

individual flows. (2) It determines conformance by actively dropping packets,

rather than relying on congestion-induced drops. (3) It can be applied in a

distributed manner without requiring communication among routers in order

to detect a DDoS attack.

5.3 Aggregate Perturbation Method

In this section, we introduce the Aggregate Perturbation Method (APM) for

quantifying the responsiveness of TCP aggregates to packet drops by reducing

the sending rate to the network. APM works based on instantaneously drop-

ping a number of packets from an aggregate at some point and observing the

resulting transient decrease in the rate of the aggregate.

We assume the TCP aggregates are composed of TCP flows that con-

form to TCP-Reno congestion control mechanism. TCP-Reno has two different

phases known as slow start and congestion avoidance. Slow start begins after

making a connection, and upon successful transmission of every packet and

receiving acknowledgement from the receiver the window size is increased by

one. Congestion avoidance starts after the window size exceeds a threshold

value, and in this phase the window size is increased one per round trip time,
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and upon experiencing a drop it is decreased to half its current value.

Assume at some router we have an aggregate of TCP flows with arrival

rate of λ(t). In order to test the aggregate for responsiveness, at time t = 0,

we drop D packets from it. It is expected that the aggregate responds to the

packet drops by decreasing its rate for a while after time t = 0. We define

the following responsiveness measure for the aggregate as a response to packet

drops:

η(D) =

∫ tr

0

(λ(0−)− λ(t)) dt (5.1)

in which λ(0−) is the instantaneous rate at the moment before dropping the

first packet, and tr is a nonnegative finite time, and it can be chosen to be the

minimum time for the recovery of all flows that received drops (in the order of

a few times the longest round trip in the aggregate). To achieve better results,

λ(0−) may be replaced by a short-term average of the rate of the aggregate

in a time interval earlier than t = 0. η(D) is simply a measure of how many

more packets could have been sent by the aggregate if we had not dropped D

packets. This measure is illustrated in Figure 5.1.

Our approach for quantifying responsiveness of a TCP aggregate is

based on the responsiveness η(D) as a response to packet drops; under the

same value of D for different aggregates, those with a higher η(D) are more

responsive. In other words, η(D)/D can give a quantitative value of the re-

sponsiveness of an aggregate.
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Figure 5.1: The shaded area shows η(D), the responsiveness measure of ag-
gregate defined by equation (5.1). D packet are dropped from the aggregate
at t = 0.

5.4 CDMA Based Aggregate Perturbation Method

(CAPM)

One of the problems of distributed implementation for APM is the potential

of simultaneous perturbations; the measurements of a perturbing router on

an aggregate can be falsified by the simultaneous perturbations being done on

the same aggregate in a downstream or upstream router. This phenomenon

is illustrated in the Figure 5.2. As it can be seen in this figure, the response

of the APM test of a router at t = t1 is overlapped by the response of the

aggregate to another router’s test at time t = t2, which causes interference.

This interference happens when t1 and t2 are close enough to each other (more

precisely |t2 − t1| < tr). In this case the measure given by equation (5.1) does

not give accurate information about responsiveness of the aggregate, and in-

terference causes the results of both tests to be falsified.

In this section we introduce CAPM to overcome the above problem.

In CAPM every perturbing router uses a unique perturbing pattern. We will

show that under proper assignment of the perturbing patterns and proper de-
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finition of aggregate responsiveness measure for each perturbing router, the

test and measurement of each router will be robust to the interference caused

by the other simultaneous perturbing routers.

CAPM is different from APM in two ways. The first difference is that

we spread the packet drops over time. In other words, instead of dropping

D packets from the aggregate instantaneously at time t = 0, we spread the

packet drops over a time interval [0, T ]. In this scheme perturbation is done

according to the packet drop rate function ri(t) : [0, T ] → R for the ith router.

The responsiveness test is done during the interval [0, T ], and at time t ≤ T ,

the ith router drops ri(t) packets per second from the aggregate. Since many

TCP flows send packet bursts, the CAPM spreads the packet drops over inter-

val [0,T], so that the probability of having more than one packet drop of the

same connection is reduced. We refer to ri(t) function as the drop signature

of the ith router.

The second difference between CAPM and APM is the way we define

the responsiveness measure for the ith router as the response to dropping with

rate ri(t). In this case instead of the simple integral given by equation (5.1),

we use a weighted integral to measure responsiveness of the aggregate under

perturbation:

ηh(ri) =

∫ T

0

h(t)∆λ(t)dt (5.2)

in which ∆λ(t) = λ(0−) − λ(t), and h(t) is a weighting function that states

at what time instants the results are more important to us, and at what time

instants we are less interested in the rate decrease of aggregate.
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Figure 5.2: The interference effect of simultaneous APM tests done by different
routers. Before the aggregate recovers from a router’s perturbation at t = t1,
another router performs a test at t2 < t1 + tr. The results of both tests are
falsified.

In the next step we try to use an approach similar to Direct Sequence

Spread Spectrum CDMA in multiple access communication to solve interfer-

ing problems of multiple simultaneous perturbing routers. In this approach,

each router perturbs the traffic according to its unique drop signature based

on a CDMA code assigned to it. The idea is that if we define the drop signa-

ture of different routers so that they are orthogonal to each other in a certain

sense, then by proper definition of the weight function h(t) the measure of

responsiveness in a router defined in equation (5.2) will be independent of the

perturbations done by the other routers.

Similar to the CDMA systems, we define the drop signature of the ith

perturbing router in the following way:

ri(t) = Ai

N∑
j=1

cjpTc(t− (j − 1)Tc) = Aisi(t) (5.3)

in which Ai is a known perturbation amplitude of the ith router, N is a positive

integer called the spreading factor, Tc = T/N , (c1, c2, . . . , cN) is a binary
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sequence assigned to the particular router known as the code of the router. In

(5.3), si(t) denotes the normalized drop signature, and pTc(t) is a real-valued

function known as the chip waveform and it satisfies the following property:

∫ ∞

−∞
pTc(t)pTc(t− nTc) dt = 0, n = 1, 2, . . . . (5.4)

The measurement of the ith router about the responsiveness of the aggregate

is made based on the Matched Filter output. The matched filter output is the

value of ηh(ri) evaluated at h(t) = si(t):

yi =

∫ T

0

si(t)∆λ(t) dt. (5.5)

Since in our problem ri(t) is a drop rate, it should be nonnegative, and hence

pTc(t) should be nonnegative. For this purpose we suggest the popular simple

rectangular chip waveform:

pTc(t) =





1 if 0 < t < Tc

0 otherwise.
(5.6)

Usually, in the CDMA systems assignment of the codes is very important.

Users with a potential of high interference (e.g., neighbor routers in our prob-

lem) are assigned codes that cause their drop signatures to be orthogonal (or

close to orthogonal)

∫ T

0

si(t)sj(t)dt = 0, for i 6= j. (5.7)

Unfortunately, the statement of (5.7) cannot be satisfied with the current de-
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finition of drop signatures defined in (5.3). That is because both si(t) and

sj(t) are nonnegative rate functions, and hence the integral defined in (5.7)

can never be zero. We can solve this problem by making a minor change of

the orthogonality requirement and the structure of the matched filter. First,

we replace the orthogonality condition by a similar condition in which the nor-

malized drop signatures are orthogonal after removing their DC components:

∫ T

0

sa
i (t)s

a
j (t) dt = 0, for i 6= j (5.8)

in which xa(t) is x(t) after eliminating its DC component over [0, T ]:

xa(t) = x(t)− 1

T

∫ T

0

x(t) dt (5.9)

Furthermore, we change the matched filter output for the ith router in the

following way:

yi = ηsa
i
(r) =

∫ T

0

sa
i (t)∆λ(t) dt (5.10)

yi is the value of ηh in (5.2) evaluated for h(t) = sa
i (t). One important fact

about notation ηh(r) in (5.10) is that in this equation r is the total perturbing

function, since the rate decrease λ(0−) − λ(t) is affected by this total drop

rate (i.e., r(t) =
∑

k rk(t), where k is an index that covers the set of all router

perturbations that the aggregate experiences). It can be shown that if the to-

tal drop rate r(t) is small enough compared to the rate of aggregate, then the

system with input r(t) and output E[∆λ(t)] can be approximated by a linear

system. In other words, the system can be linearized around its operating

point.
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Now we state the following theorem; for the purpose of this theorem we

assume rk(t) are piecewise constant functions as it was defined in (5.3).

Theorem 5: Assume that the overall drop rate r(t) =
∑

k rk(t) is

small enough such that the system with input r and output E[∆λ] can be

approximated by a linear system. Furthermore assume the holding time of the

piecewise constant functions rk(t) on each constant interval is large enough

compared to the response time of the aggregate. Then under the orthogonality

assumption of (5.8) we have:

E[yi] = E[ηsa
i
(r)] = E[ηsa

i
(ri)] (5.11)

Note that the middle term of equation (5.11) is the measure of responsiveness

with the weight function h(t) = sa
i (t) when all routers perturb the aggregate;

however, the right term is the measure of responsiveness with the same weight

function when only the ith router perturbs the aggregate. The significance

of Theorem 5 is that it states under orthogonality condition of equation (5.8)

that the expected responsiveness measure at router i, E[ηsa
i
(r)], is independent

of perturbations being done at the other routers.

Proof: Let ∆λx(t) to be the rate change of aggregate when it is per-

turbed with drop rate x(t). By definition we have:

E[ηsa
i
(r)] =

∫ T

0

sa
i (t)E[∆λr(t)] dt. (5.12)
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From the assumption that E[∆λr] is linear in r we can conclude:

E[∆λr(t)] = E[∆λri(t)] +
∑

j 6=i

E[∆λrj(t)]. (5.13)

Substituting (5.13) in (5.12) yields:

E[ηsa
i
(r)] = E[ηsa

i
(ri)] +

∑

j 6=i

E[ηsa
i
(rj)]. (5.14)

To complete the proof, it suffices to prove E[ηsa
i
(rj)] = 0 for j 6= i. We have

rj(t) = Ajsj(t). Now we use the assumption that rj(t) changes slower than

the aggregate response time. Hence rj(t) can be approximated by using a

piecewise constant function. For an interval on which rj(t) is constant, the

traffic aggregate responds and settles down to a value. In the next interval

rj(t) jumps to a new value, and so ∆λrj(t) responds accordingly, and after

experiencing a small transient time settles down to a new steady state value.

According to the linearity assumption ∆λrj(t) on each interval is proportional

to the constant value of rj(t) on that interval. This means that E[∆λrj(t)]

tracks the piecewise constant shape of rj(t). So by ignoring the short transients

of E[∆λrj(t)] at the beginning of each interval we will have:

E[∆λrj(t)]≈Cjrj(t) = CjAj(s
d
j + sa

j (t)) (5.15)

in which sd
j is the DC component of sj(t) over interval [0, T ]. Recall

E[ηsa
i
(rj)] =

∫ T

0

sa
i (t)E[∆λrj(t)] dt. (5.16)
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Substituting (5.15) in (5.16) and using orthogonality assumption of (5.8) yields:

E[ηsa
i
(rj)] = 0. QED

In Theorem 5 we have assumed that the holding time of rk(t) on the

intervals on which it is constant is large enough compared to the aggregate

response time. Generally, the response time of an aggregate is characterized by

the round trip time of the flows contributing to it. Therefore for the piecewise

constant function rk(t), the length of each constant interval should be signif-

icantly larger than the typical round trip time of the flows in the aggregate.

This condition can be satisfied by making Tc long enough (e.g., 10 to 20 times

the typical round trip time).

One useful observation about (5.10) is:

∫ T

0

sa
i (t)λ(0−) dt = 0 (5.17)

And so we have the following simple equation for the output of the matched

filter for the ith router:

yi = −
∫ T

0

sa
i (t)λ(t) dt (5.18)

From (5.2) and (5.11), we have the following expression for the average

output of the matched filter of the ith perturbing router:

E[yi] = E[ηsa
i (ri)]
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This equation gives the basis for quantifying the responsiveness of TCP ag-

gregates. Denote:

Ki = E[yi]/Ai (5.19)

Notice that Ki is a coefficient that describes how much the aggregate responds

to packet drops. We call this quantity the response coefficient of the aggre-

gate. Note that yi is fully observable and can easily be measured by using

(5.18). The amplitude of perturbing function Ai is known to the router that

does the perturbation. Finding Ki is the only problem of the estimator. This

coefficient can be estimated during the times that there is no congestion in

the network. Or it can be estimated by a long term average of yi/Ai based

on multiple tests. Based on the result of Theorem 5, the estimation value of

Ki is not affected by the perturbations done by the other routers, under the

orthogonality assumption.

There are some key issues about how to choose the value of Tc. As

stated before, Tc should be long enough such that the rate decrease of the

aggregate as a result of packet drops in one chip duration can show up, and

the aggregate rate settles down. On the other hand, too large Tc does not

improve the performance in estimating the response coefficients, and it only

causes longer test and more packet drops, which causes the test to be more

expensive.
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5.5 Fair Congestion Control by Using CAPM

In this section we suggest a method to use CAPM to do congestion control in

a fair way. Random Early Drop [?] is one of the popular approaches to proac-

tively prevent congestion in a router. By utilizing CAPM a router collects

information about how responsive different aggregates are -i.e., Ki coefficients

defined in the previous section. Knowing these coefficients helps a router to

determine how much it should drop from each aggregate to reduce its band-

width to a certain value.

Assume traffic at a router which is composed of many aggregates is

intended to be forwarded through an outgoing link that has bandwidth short-

age. So it is desired to keep the traffic bandwidth within the outgoing link

capacity. If the router applies equal drop probability governed by a conges-

tion controller such as a RED controller for all aggregates, the aggregates with

higher response coefficients will back off more aggressively compared to the ag-

gregates with smaller response coefficients. A certain degree of fairness among

aggregates can be achieved by taking into account their response coefficients.

Assume the traffic is a combination of M aggregates, and let λi(t), and Ki

denote the estimated instantaneous arrival rate and the response coefficient

of the ith aggregate respectively. Assume that we want to rate limit the total

traffic, and let the output of congestion controller at time t be p(t). With the

information of response coefficients of aggregates the router can estimate how

this total drop probability should be assigned among the aggregates to get a

specific amount of rate decrease for each one.
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To illustrate the above approach assume it is desired to have the same

amount of rate decrease for all aggregates. Then we can assign the packet

drops among different aggregates in a way that the product of the response

coefficient and the drop rate is equal for all of them. In other words:

Kiθi(t) = Kjθj(t) 1 ≤ i, j ≤ M (5.20)

in which θi(t) and θj(t) denote the average drop rate of the ith and jth aggre-

gate respectively. In the above equation subscripts are index of aggregates in

the same routers. Heuristically equation (5.20) means that the rate decrease

of the aggregates should be equal. It is important to note that equation (5.19)

suggests using (5.20) as a heuristic to equalize the rate decreases of the aggre-

gates; however, (5.20) is not a mathematical consequence of (5.19).

If pi(t) is the drop probability of the ith aggregate, we have θi(t) =

λi(t)pi(t). Therefore, equation (5.20) can be written in the following way:

Kiλi(t)pi(t) = Kjλj(t)pj(t) 1 ≤ i, j ≤ M (5.21)

which gives M − 1 linear equations. To find the numerical values of the drop

probabilities we need one other equation. We use the fact that the total drop

probability of the traffic should be p(t). In other words:

M∑
i=1

pi(t)λi(t)

λ(t)
= p(t) (5.22)

in which λ(t) = λ1(t) + λ2(t) = · · ·+ λM(t) is the total rate of the traffic.
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In the above approach we have tried to get the same rate decrease

for different aggregates, however, one can apply the response coefficients in

different ways to achieve an arbitrary value of rate decrease for each aggregate.

For example, it may be desired to have the same percentage of rate decrease

for different aggregates; in this case it is very easy to write equations similar

to equation (5.21) to find drop probabilities.
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Chapter 6

Estimating Nonconforming

Proportion of TCP SYN

Packets and Data Packets in An

Aggregate

In the previous section we explained the CAPM and its application in con-

gestion control. In this section we modify CAPM to make it suitable for

estimating the portion of nonconforming TCP SYN packets in an aggregate.

This modification is for the purpose of using CAPM in detecting DDoS at-

tacks. Our test is based on the correspondence of SYN and ACK pairs. A

normal TCP connection goes through a 3-way handshake at the start of a ses-

sion. A client sends a SYN packet to the server, and the server sends back a

SYN/ACK packet to the client. The client sends an ACK packet to the server

to complete the connection.
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Our key idea to estimate the proportion of nonconforming SYNs in an

aggregate is based on the observation that in a normal TCP aggregate, the av-

erage rate of SYN packets should be equal to the average rate of ACK packets

that complete the handshake. Note that in addition to the ACK packets being

sent as part of the 3-way handshake, there are other ACK packets being sent

as acknowledgement of data packets, but we assume that we can make use of

TCP sequence numbers in the TCP headers to distinguish the ACK packets

being sent in response to SYN/ACK packets from the other ACK packets.

Unless we state otherwise, by ACK packets we mean those ACK packets being

sent as a part of the 3-way TCP handshake.

For the purpose of estimating the nonconforming portion of TCP SYNs

in an aggregate, we use a signature waveform to perturb the aggregate by

dropping a small portion of SYN packets, and observe the response of the

aggregate to the dropped SYNs. For a SYN that is not dropped, we expect

to observe an ACK in a short period afterward (about the round trip time of

the connection), and for a dropped SYN we expect not to observe the ACK

at least for the retransmission time of the SYN, which is usually in the order

of 3 seconds, and much longer than the typical round trip time of connections

which is in the order of 100 milliseconds.

Perturbations to the SYN packets are done by dropping them with a

small rate r(t) = As(t), in which A is the amplitude of test and s(t) is the

signature of perturbations. s(t) is generated by a binary sequence of length

N denoted by {c1, c2, ..., cN}. Each binary number in this sequence represents
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a time interval of length Tc, known as the chip interval. If ci is 1, we drop

packets with rate A in the corresponding interval of length Tc, otherwise we do

not drop any SYN packet. This scheme is equivalent to the following definition

of the signature waveform:

s(t) =
N∑

j=1

cjpTc(t− (j − 1)Tc) (6.1)

in which pTc(t) is known as the chip function in the literature of CDMA Spread

Spectrum Communication; it is 1 in interval [0, Tc], and 0 otherwise.

Dropping SYN packets with rate r(t) causes the arrival rate of SYN

packets and ACK packets to become unbalanced during the intervals that we

drop the packets. It other words, dropping SYNs will cause the number of

arriving ACKs to reduce during perturbation intervals, and the average dif-

ference of the rate of arrival of SYNs and the rate of arrival of ACKs at the

router will be r(t). We use this observation as a key idea to distinguish the

conforming SYNs from the nonconforming SYNs.

Assume λS(t) represents the arrival rate of the SYNs at a router, and

λA(t) represents the arrival rate of ACKs. Then we define a matched filter

output in the following way:

α =

∫ NTc

0

(λS(t)− λA(t))sa(t)dt (6.2)

in which sa(t) is the AC component of s(t). We define α/A as the conformance

coefficient of the aggregate. Under normal conditions of the traffic, we expect
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that λS(t) − λA(t) ' r(t), and this leads us to the following value for the

matched filter output:

α = A

∫ NTc

0

sa(t)2dt (6.3)

We choose the binary sequence {c1, c2, ..., cN} such that it has an even number

of ones and zeros, and this means that its DC component is 1/2, so sa(t) =

s(t) − 1/2. Therefore, sa(t) only takes the two values −1/2 and 1/2. So

sa(t)2 = 1/4, and ∫ NTc

0

sa(t)2dt =
1

4
NTc (6.4)

By substituting (6.4) in (6.3) we get the following value for the output of

matched filter under normal conditions of the network:

α =
1

4
ANTc (6.5)

Assume m represents the total number of packet drops made by the test. So

α =
m

2
. (6.6)

We use the matched filter output and its deviation from the above nominal

value to estimate the portion of nonconforming SYNs in the aggregate. We use

the idea that SYNs belonging to a TCP SYN flood attack or nonconforming

SYNs do not respond in a proper way to drops and cause deviation of matched

filter output from its nominal value.
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6.1 An Estimator Based on the Matched Fil-

ter Output

In this section, we study the properties of matched filter output defined in

the previous section, and we define an estimator that uses the matched filter

output to estimate the nonconforming component of SYN packets in an ag-

gregate. We define a nonconforming SYN as a SYN that is not followed by an

ACK, or it is followed by a blind ACK, which means an ACK is sent without

waiting for the SYN/ACK from the server. Furthermore, we assume a SYN

packet is nonconforming with probability p.

Assume we classify the nonconforming SYNs into two groups. The first

group is the group that sends no ACK and the second group sends blind ACKs.

We assume the rate of the first group is λc and the rate of the second group is

λb. Furthermore we assume that the rate of legitimate SYNs is λl. Obviously

λS = λl + λb + λc (6.7)

and

p = pb + pc (6.8)

where pb is the probability of a blind SYN and pc is probability of a SYN with

no ACK. Note that pb = λb/λS and pc = λc/λS.

For analyzing the performance of the test, we define two sets of random

variables: the first set corresponds to the SYN packets we drop. If the the

total number of packet drops by the test is m, we define a sequence of Bernoulli
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random variables X1, X2, ..., Xm corresponding to the m SYN packet drops.

Xi is defined to be 1 if an ACK packet corresponding to the ith dropped SYN

is observed in the same chip interval that the packet is dropped, and it is 0

otherwise. Thus,

Xi =





1 with probability pb

0 with probability 1− pb

(6.9)

The second set of random variables corresponds to the SYN packets

that we observe and do not drop during the test. Assume we observe n such

packets. We define a sequence of random variables Y1, Y2, ..., Yn. The value of

Yi corresponds to the ith non-dropped SYN, and it is 1 if we do not observe

the corresponding ACK during the same chip interval in which we observe the

SYN packet. Then

Yi =





1 with probability pc

0 with probability 1− pc

(6.10)

Lemma 3: The value of the matched filter output defined by equation

(6.2) can be written as:

α =
1

2
(m−

m∑
i=1

Xi +

n1∑
i=1

Yi −
n∑

i=n1+1

Yi) (6.11)

in which n1 is the number of SYN packets observed and not dropped when the

perturbation signature has value 1.

Proof: We order the corresponding random variables of SYNs that we
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Table 6.1: The summary of all possible cases for a SYN packet for proof of
Result 1

contribution
SYN ACK S(t) Xi Yi to matched

filter output
Passed Observed 1 n/a 0 0 = Yi/2
Passed Not Observed 1 n/a 1 +1/2 = Yi/2

Dropped Observed 1 1 n/a 0 = (1−Xi)/2
Dropped Not Observed 1 0 n/a +1/2 = (1−Xi)/2
Passed Observed 0 n/a 0 0 = −Yi/2
Passed Not Observed 0 n/a 1 −1/2 = −Yi/2

observe and do not drop when s(t) = 1 by Y1, Y2, ..., Yn1 and let Yn1+1, Yn1+2, ..., Yn

represent the rest of the Y random variables. Note that during the normal

conditions of the network X and Y random variables are 0, so α = m/2, which

is consistent with equation (6.6).

To prove the lemma we group SYNs into six categories. Grouping is

based on three properties. First: whether the SYN was followed by an ACK,

second: the value of s(t), and third: whether we dropped the SYN packet for

test. The summary of cases is shown in Table 6.1. Note that each SYN packet

arriving during the test corresponds to exactly one row entry of this table. To

complete the proof, we add the values in the last column of the table for all

m + n SYNs that arrive during the test.

Theorem 6: If the number of zeros and ones in the binary signature

sequence {c1, c2, ..., cN} are equal, and the average of SYN arrival process λS(t)

is stationary during the test interval, then the following forms an unbiased
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estimator of p = pb + pc:

p̂ =
1

m
(

m∑
i=1

Xi −
n1∑
i=1

Yi +
n∑

i=n1+1

Yi) = 1− 2α/m (6.12)

Proof: To prove the above result, it suffices to verify E[p̂] = pb + pc. By

using the fact that X1, X2, ..., Xm is an iid sequence and the same fact holds

for Y1, ..., Yn, we can write:

E[p̂] =
1

m
(mpb − E[n1]pc + E[(n− n1)]pc) (6.13)

Note that in writing the above equation, we have considered the fact that m

is a deterministic number, but n and n1 are random variables whose charac-

teristics depend on the SYN arrival process λS(t). Now recall the fact that

the average of λS(t) is stationary during the test interval [0, NTc]. Assume λS

represents the stationary average of λS(t). Therefore, we expect to observe

an average total number of NTcλS SYN packets during the test interval, from

which m are dropped. Hence:

E[n] = NTcλS −m (6.14)

E[n1] =
1

2
NTcλS −m (6.15)

The last equation is a result of the fact that we have assumed the number of

zeros and ones in the binary sequence {c1, c2, ..., cN} are equal, and the fact

that packet drops for the test are only performed during the intervals where

s(t) = 1. (To make this fact more clear, note that the expected total number
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of SYNs arriving when s(t) = 1 is NTcλS/2). By substituting values of n and

n1 in equation (6.13) we have:

E[p̂] =
1

m
(mpb − (

1

2
NTcλS −m)pc +

1

2
NTcλSpc)

= pb + pc = p (6.16)

QED.

The preceding theorem shows that the simple function 1− α/m of the

matched filter output can be used to estimate the nonconforming proportion

of an aggregate of SYN packets.

Another important property of the estimator (6.12) is the fact that such

an estimator is robust to the possible interference made by any other router

that performs simultaneous perturbation. This fact is true as long as the

perturbation signatures of the routers are orthogonal. In general, if an aggre-

gate experiences perturbations of M different routers each dropping with rate

rk(t) = Aksk(t), and the average rates of λl(t), λb(t) and λc(t) are stationary

over the test interval, then we can state the following theorem:

Theorem 7: Assume the overall perturbations applied to an aggregate

by K routers, r(t) =
∑K

k=1 Aksk(t), are small enough so that the probabil-

ity of dropping both a SYN and its retransmitted SYN after the timeout is

negligible. Also assume every pair of perturbing routers have orthogonal sig-

natures. Then the matched filter output defined by equation (6.2) at each of

the routers is independent of the perturbations performed by the other routers.
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Proof: To avoid complexity of notation, we prove the claim of theorem

for two routers (K = 2) and call them Router 1 and Router 2. Furthermore,

we assume the aggregate passes through Router 1 and then through Router 2.

Assume λi
S and λi

A denote the observed arrival rate of SYNs and ACKs at the

ith router, respectively.

λ1
S(t) = λl(t) + λb(t) + λc(t) + (1− pb − pc)(r1(t− τ) + r2(t− τ)) (6.17)

in which the last term of the above equation is due to retransmission of the

SYN packets dropped by Routers 1 and 2, and we have assumed that the re-

transmission of a SYN happens in about τ seconds after it is dropped, which

is 3 seconds in average if we neglect the probability of multiple drops of re-

transmissions of the same SYN. Similarly, we can write the following for the

rate of ACKs in Router 1:

λ1
A(t) = λl(t) + λb(t)− (1− pb − pc)(r1(t) + r2(t))

+(1− pb − pc)(r1(t− τ) + r2(t− τ)) (6.18)

Note that dropping SYNs with rate r1(t) makes only the conforming SYNs

stop sending ACKs, and blind ACKs are not affected by perturbations. Also,

from r1(t) + r2(t) SYN drops per second made by the two routers, the rate

of drops received by conforming SYNs is (1− pc − pb)(r1(t) + r2(t)), and this

generates the third term of the above equation. The difference of the rates of
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SYNs and ACKs at the first router can be written as:

λ1
S(t)− λ1

A(t) = (1− pc − pb)(r1(t) + r2(t)) + λc(t) (6.19)

This leads us the the following value for the matched filter output of Router

1:

E[α1] = (1− pc − pb)

∫ NTc

0

(r1(t) + r2(t))s
a
1(t)dt

+

∫ NTc

0

E[λc(t)]s
a
1(t)dt (6.20)

To continue, note that
∫ nTc

0
r1(t)s

a
1(t) = NA1Tc/4, and

∫ nTc

0
r2(t)s

a
1(t) = 0.

Furthermore, by using the assumption that the average of λc(t) is constant

over the test interval [0, NTc], it follows that the second term of the above

equation is zero since
∫ NTc

0
sa
1(t)dt = 0. This gives the following value for the

output of the matched filter at Router 1:

E[α1] = (1− pc − pb)NA1Tc/4 = (1− pc − pb)m1/2 (6.21)

in which m1 represents the total number of packet drops made by Router 1

during the test. The above value of the matched filter output is the same as

the value of the matched filter output in the case Router 2 had not perturbed

the traffic.

To complete the proof, we need to show that the matched filter output at

Router 2 is not affected by the test at Router 1. Similar to before, we can
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write the following for the rate of SYN packets at Router 2:

λ2
S(t) = λl(t) + λb(t) + λc(t)− r1(t)

+(1− pc − pb)(r1(t− τ) + r2(t− τ)) (6.22)

An important observation about the blind ACKs that Router 2 observes is

that if Router 1 drops a SYN which is followed by a blind ACK, then Router

2 does not count the blind ACK of that SYN, and as a result, the ACK does

not contribute to the rate of ACKs measured by Router 2. Therefore, we have

the following rate of ACKs at Router 2:

λ2
A(t) = λl(t)− (1− pc − pb)r2(t) + λb(t)− pbr1(t)

+(1− pc − pb)(r1(t− τ) + r2(t− τ)) (6.23)

Hence, the total difference of SYNs and ACKs at Router 2 will be:

λ2
S(t)− λ2

A(t) = (1− pc − pb)r2(t) + λc(t) + (pb − 1)r1(t) (6.24)

By using the orthogonality assumption of the signatures and the fact that the

average of λc(t) is constant, we get the following expected value for the output

of the matched filter at Router 2:

E[α2] = (1− pc − pb)m2/2 (6.25)

in which, m2 = NA2Tc/2 is the total number of packet drops made during

the test by Router 2. Equation (6.25) shows perturbation of Router 1 has not

affected the matched filter output of Router 2. QED.
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The significance of Theorem 7 is that the perturbation tests can be per-

formed in a distributed manner by different routers without being affected by

the possible interference resulting from different simultaneous tests.

We need to make an important note about the orthogonality assumption

of the signatures. For this property to hold, the routers need to synchronize

the starting times of their tests, which may be impractical. The same problem

holds in the spread spectrum CDMA communication. Our suggestion to solve

this problem is to make use of the offered solution in communication theory.

There are codes (such as pseudo random binary codes), that are close to or-

thogonal to each other if the length of code is chosen to be long enough; codes

generated by this scheme are approximately orthogonal even with variable

offsets.

6.2 Extension of Approach to Data Packets

In this section, we extend the conformance test of TCP SYN packets for all

packets that use retransmission schemes in response to packet losses. Note

that this includes the TCP data packets as well as certain non-TCP packets

such as DNS queries. We make the following assumption about the packets

for which we apply the test:

A1: Dropped packets are retransmitted within a finite timeout period.

A2: There is an identifier field that can be utilized to identify the retransmis-

sion of a given packet.

Note that Assumption A2 is true for many protocols. For TCP packets, we
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make use of sequence numbers, which are 32-bit randomly generated numbers

at the start of each connection and incremented based on progress in trans-

mission of data octets for subsequent packets; for DNS queries we can use the

32-bit field known as transaction ID for the purpose of our tests.

To continue the generalization of this scheme, we introduce a method

for detection of packet retransmissions on a link during the test interval.

6.2.1 Detecting Packet Retransmissions

To detect packet retransmissions we make use of a short term memory in which

we can set a flag for every packet we observe. For every incoming packet on a

link, we extract the packet ID, and the packet ID is used as the index to mem-

ory. The location in the memory that the ID is pointing is set upon receiving

each packet, and that location is reset when we observe retransmission of that

packet.

The above book-keeping scheme may need a huge memory if we want

to consider a location for every packet ID. For example, if the packet ID is the

32-bit sequence number of TCP packets, we need 232 = 4Gbits = 500MB of

memory which may be impractical or expensive in many applications. Instead

we suggest using a shorter hash of packet IDs to solve this problem. However

making the hash too small increases the probability of false hits (collisions) by

mapping too many sequence numbers to the same location in the memory.

In general, the worst case probability of a false hit for each packet can
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be written as:

pfh = 1− (1− 1

L
)

TW
B (6.26)

in which, pfh denotes the probability of a false hit, which is the probability

that a new packet is wrongly identified as a retransmission of a previously seen

packet during the test interval. L is the memory size in bits, T is the total

duration of the test, W is the link speed in bits/sec, and B is the average

packet size in bits. In order to have a small false hit rate, we need 1
L

<< TW
B

,

and if this happens, we have:

pfh ≈ TW

LB
(6.27)

The above equation gives the minimum required memory size for a low false

hit probability. For example, if T = 4Sec, W = 1Gbps, B = 1KB, and

L=32MB, then the probability of a false hit is about 0.002.

6.2.2 Using Retransmissions for Detecting Nonconform-

ing Component of Traffic

In this subsection we present a method that gives the nonconforming propor-

tion of data packets in an aggregate. We assume that the rate of transmitted

packets is λD(t), of which λR(t) are retransmitted packets. If we drop the

arriving packets with perturbing function:

r(t) = A

N∑
j=1

cjpTc(t− (j − 1)Tc) = As(t) (6.28)
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then we expect that λR(t) to show the shape of function r(t). Similar to be-

fore, we use the deviation of r(t) from the above nominal response to estimate

proportion of nonconforming packets, that includes packets with no retrans-

mission upon drops, or those that blindly retransmit without drop. Now if we

apply the following transformation:

λS(t) = λD(t)

λA(t) = λD(t)− λR(t)

(6.29)

then this case becomes mathematically equivalent to the case of SYN and ACK

packets, and the results we obtained for the TCP SYN packets automatically

extend to this case. Similar to before we define the following value as the

matched filter output:

α =

∫ NTc

0

λR(t)sa(t)dt (6.30)

It is straightforward to verify that the nominal value for the matched filter

output in this case is:

α =
m

2
(6.31)

in which m is the total number of packets dropped during the test interval.

Deviation of the observed matched filter output from the above value gives an

estimator for finding the fraction of nonconforming packets:

p̂ = 1− 2α/m (6.32)
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In the same way as before, it can be shown that the above estimator is unbi-

ased.

6.3 Notes on Practical Issues

In this section we discuss the practical issues of the proposed methods offered

in the previous sections.

6.3.1 Independence from Routing

The first advantage of modified CAPM that we offered in the previous sections

is the fact that it does not depend on the assumption that the paths between

a DDoS source and the victim are symmetric. Note that both the TCP SYN

packets and the ACK packets being sent from a TCP client to a server travel

on the same path. This is also true for the TCP data packets and their

retransmissions.

6.3.2 Blind Transmissions of ACKs

The other issue that needs some further discussion is the fact that CAPM

can easily take into consideration the effect of blind transmissions of ACKs.

In other words, if a DDoS attack is launched against a server or a network,

the sources can send an ACK packet corresponding to every SYN packet they

send to the victim to mislead the intermediate routers that perform the CAPM

test. However, using signature based tests avoids possible false negatives gen-

erated by such blind ACKs. As our mathematical results show, the modified
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CAPM detects both SYN packets which are blindly followed by ACKs and

those that are not followed by ACK packets. The mathematical explanation

of this property of modified CAPM is that sending blind ACKs causes a DC

shift in λS(t) − λA(t), and it does not make any change in the component of

the signature appearing on this signal in response to perturbations.

We use a simple example to illustrate the above fact. Assume a router

receives 10000 SYN packets per second, and it uses a perturbation signature

generated by {1, 0, 0, 1}, N = 4, A = 100, and Tc = 1 second to screen them.

The router drops 1 percent of arriving SYN packets when s(t) = 1. We con-

sider the following three cases:

Case 1: In the first case there is no nonconforming SYN in the above

aggregate, and both the SYN rate and the ACK rate are almost 10000 packets

per second when there is no perturbation; however, when we apply the pertur-

bation, the ACK rate decreases to λA(t) = 9900 packets per second. In this

case the nominal value of the matched filter output is α = 100.

Case 2: In this case assume that 40 percent of generated SYNs are not

followed up by an ACK. This causes the rate of ACK packets to be 6000 when

we do not perturb the traffic, and the rate reduces to 5940 packets per second

when we randomly drop 100 packets per second. This is because from the 100

per second dropped SYN packets for perturbation, only 60 packets per second

belong to the conforming SYNs, and the other 40 packets per second are not

followed by ACK packets. It can be seen that the matched filter output in this

case reduces to 60, which shows 40 percent decrease compared to the normal
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case.

Case 3: In the last case assume that 40 percent of SYNs are followed

up by blindly retransmitted ACKs. The other 60 percent is composed of legit-

imate SYNs. In this case if we do not drop any SYN, we have 10000 ACKs per

second, and in the intervals that we drop SYNs, we have 9940 ACKs per sec-

ond. This is because from 100 per second packet drops made for the test, 40 of

them belong to the group that send an ACK regardless of the server response.

In this case, the output of matched filter is 60 again, and similar to the previ-

ous case, the matched filter output estimates 40 percent nonconforming traffic.

The above examples show that blind transmissions of ACKs cannot

mislead the modified CAPM in detecting nonconforming SYN packets. The

summary of cases is shown in Figure 6.1. As can be seen in this figure, in cases

(b) and (c) the shape of the signature appears on the signal λS(t)−λA(t) with

strength 60, whereas in the normal condition it appears with strength 100.
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Figure 6.1: Difference of rate of SYNs and ACKs, λS(t) − λA(t), for three
cases: (a) Normal Conditions, (b) 40 percent of SYNs do not send ACK, and
(c): 40 percent of SYNs send blind ACKs.
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Chapter 7

Simulation Experiments for

CAPM

In this chapter we present results of simulations that confirm the efficacy of

the methods introduced in previous chapters. We present the results in three

sets of experiments. In the first set, we evaluate the fair congestion control

scheme that uses CAPM. In the second set, we explore performance of tests

that perturb the rate of SYN packets and examine the rate of ACK packets

for the purpose of conformance test. In the third set we study performance

of the method that perturbs data packets and observes their retransmissions

for conformance purposes. We have used ns2 [83] network simulator for the

experiments.
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Figure 7.1: The network topology used for simulation

7.1 Using CAPM for Fair Congestion Control

For this set of simulations we have used a network with fixed topology as in

Figure 7.1. The nodes S1, S2, . . . , Sn are n distributed sources of TCP traffic.

The traffic of the sources pass through Router 1 (R1) and Router 2 (R2) to

the destination. The propagation delay of the link between each source and

Router 1 in Figure 7.1 is different from a source to another source, and it has

been chosen such that the round trip time of packets is uniformly distributed

between 50 and 100 milliseconds under low congestion conditions. The flows

at the sources are generated according to an on-off process. Each source starts

a TCP flow, and that flow ends after a random time uniformly distributed be-

tween 0 and 0.15 seconds. That source starts a new flow after waiting another

random time uniformly distributed between 0 and 0.3 seconds. The packet size

is constant equal to 1 Kbyte for all flows. In this topology, the link between

Router 1 and Router 2, and also the link between Router 2 and destination

are bottleneck links. The capacity of these bottleneck links is 100 Mbps, that

translates to 12500 packets per second.

The Basic Experiment: In the first experiment we show how an ag-

gregate responds to the signature based perturbations. For this experiment we

run the simulation for two cases. In the first case the aggregate does not experi-
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ence any perturbation; in the second case only Router 1 perturbs the aggregate

by using drop rate r1(t) = A1s1(t), in which s1(t) is the normalized drop signa-

ture generated by substituting the code (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1) in

equation (5.3), and A1 = 160 packet drops/sec. In the simulation, the number

of sources is 50, T = 32 seconds, N = 16, Tc = 2 seconds. Figure 7.2-(a)

shows the rate of the aggregate when no perturbation is performed. In Figure

7.2-(b) the rate of aggregate is shown when Router 1 perturbs the aggregate

by using r1(t), and Figure 7.2-(c) shows two periods of the normalized drop

signature s1(t). By inspecting Figure 7.2-(b) we can see that the shape of the

drop signature of Router 1 has appeared in the rate of the aggregate – with 180

degrees of phase shift. In other words, when s1(t) = 1 (e.g., around t = 14),

the rate of aggregate decreases, and when s1(t) = 0 (e.g., around t=10), the

rate increases.

Experiment with Simultaneous CAPM Test of Two Routers:

In the second experiment we explore the typical response of aggregate when

two routers perturb it simultaneously. In this experiment Router 1 and Router

2 perturb the aggregate by using different CDMA drop signatures. In the

simulation, the number of sources is 50, T = 32 seconds, N = 16, Tc = 2

seconds. The code of Router 1 is (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1), and

that for Router 2 is

(0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1). Under this assignment sa
1(t) and sa

2(t)

are orthogonal. Two periods of the resulting normalized drop signatures for

Router 1 and Router 2 are shown in Figure 7.3-(b) and 7.3-(c) respectively.

The amplitude of drop signatures for the two routers, A1 and A2, are the same

and equal to 120 drops per second. Figure 7.3-(a) shows the rate of aggregate
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Figure 7.2: a: The aggregate rate without any perturbation, b: The aggregate
rate with perturbation of Router 1, and c: the normalized drop signature of
Router 1.

when Router 1 and Router 2 perturb the aggregate simultaneously. It can

be seen that the additive shape of the two drop signatures appears on top of

the aggregate rate– with 180 degree phase shift again. In other words, the

two drop signatures modulate the aggregate rate additively. For example, at

around time t = 40, the amplitude of both drop signatures is zero, and this

shows up as an increase in the rate of aggregate as can be seen in 7.3-(a) at

t = 40. On the other hand, at time t = 15 or t = 31, the amplitude of both

drop signatures is nonzero, and this shows up as a decrease in the rate at these

two times.

Robustness To Interference: The purpose of the next experiment is

to verify that under orthogonality definition of (5.8), the matched filter output

of a router defined by (5.18) is not affected by perturbations done by the other

routers. We proved this fact in Theorem 5. In this case we use the same

CDMA drop signatures as in the previous experiment, but we change A1 and
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Figure 7.3: a: The aggregate rate under two simultaneous perturbations, b:
the normalized drop signature of R1, and c: the normalized drop signature of
R2.

A2, the amplitude of the drop signatures of the two routers. Figure 7.4-(a)

shows y1, the output of matched filter for Router 1 as it is defined by equation

(5.18), when A1 changes from 0 to 160 drops per second. In this figure, each +

represents a test in which Router 1 perturbs the aggregate with drop signature

r1(t) = A1s1(t) and at the same time Router 2 is also perturbing traffic with

drop signature r2 = A2s2(t), and A1 = A2. For each value of A1 several tests

have been done, and the average over multiple tests has been plotted by the

solid line. It can be seen that the deviation of y1 for each individual test from

the average value shown by solid line is relatively small; this means that the

matched filter output shows a small variance. The other observation about

7.4-(a) is linearity in amplitude of drop signature A1.

In the other part of this experiment we turn off the perturbations done

by Router 2 by setting A2 = 0, and do the same multiple test and measure-

ment of y1 for each value of A1. The dashed line in Figure 7.4-(a) shows the
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average of multiple tests for each value of A1 for this case. It can be seen that

the dashed line is very close to the solid line showing that perturbations of

Router 2 do not affect the output of matched filter of Router 1. Figure 7.4-(b)

is the same as Figure 7.4-(a) for the second router.

Using Response Coefficients for Congestion Control: In the next

experiment we show how the response coefficients can be used to do congestion

control in a fair way. So we define two aggregates that pass through Router

1. In this experiment the sources in the simulation network are divided into

two groups. The on time of a flow generated by a source in group 1 is uni-

formly distributed in [0.15, 0.3] seconds, and after ending a flow, the source

starts another flow after being idle for a random time uniformly distributed in

[0, 0.3]. There are 50 sources in group 1. Sources in group 2 generate larger

flows. The on time of a flow in group 2 is uniformly distributed in [0.45, 0.9]

seconds, and the idle time between flows is uniformly distributed in [0, 0.5]

seconds. There are 20 sources in group 2. We define the traffic generated by

group 1 as aggregate 1 and traffic generated by group 2 as aggregate 2.

First we find the response coefficient of each of the two aggregates by

using equation (5.19). The experiment shows that K1 = 77.3, and K2 = 588.1.

The value of response coefficients have been found by several tests and aver-

aging the results. The higher value of the response coefficient of aggregate

2 is easy to explain by considering the fact that the flows belonging to this

aggregate are larger, so they show a higher rate decrease when they experience

packet drops. The experiment shows that λ1, the average rate of aggregate 1,

is 5234 pkt/sec, and λ2, the average rate of aggregate 2 is 4547 pkt/sec. The
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total rate of the traffic is 9781 pkt/sec.

In the next step of this experiment, we doubled the number of sources

in each group, so aggregate 1 is about 2× 5234 = 10468 pkt/sec; aggregate 2

is 9094 pkt/sec, and the total demand is 19562 pkt/sec. This total demand is

more than the link capacity which is 12500 packet/sec. The simulation results

show that under drop tail condition in the forwarding queue of Router 1, about

4% of incoming packets are dropped, and as a result of it the arrival rate of

the traffic is reduced to about 12570 packets/sec. Under this drop policy the

rate of aggregate 1 reduces to 8012 pkt/sec and the rate of aggregate 2 reduces

to 4558 pkt/sec. The above data means that the rate reduction of aggregate

1 is 2456 pkt/sec or 25% of its demand, while the rate decrease of aggregate

2 is 4536 pkt/sec that is 52% of its demand. Aggregate 2 shows much higher

rate decrease as a result of having a higher response coefficient.

To keep the fairness in rate reduction between the two aggregates, we

use the fairness scheme explained in Section ?? to assign drop probabilities.

By using equations (5.21) and (5.22) we find the drop probability p1 = 0.067

for aggregate 1, and p2 = 0.010 for aggregate 2, so the total drop rate of the

traffic is still 4%. With these drop probabilities, the rate of aggregate 1 reduces

to 6522 pkt/s, and rate of aggregate 2 reduces to 5523 pkt/sec. In this case

the rate reduction of aggregate 1 is 3946 pkt/sec or 39% of its demand, and

the rate reduction of aggregate 2 is 3571 pkt/sec or 42% of its demand. It is

seen that the rate reductions are much closer to each other than the previous

experiment, and we were able to do a fair congestion control.
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Figure 7.4: Matched filter output versus the amplitude of drop signature.
Solid lines show the results of Router 1 when Router 2 performs the test
simultaneously, and dashed line shows the results when Router 2 does not
perform the test. b: The corresponding data for Router 2

Effect of Congestion on Tests: In the last experiment we study how

congestion can affect the measurement of response coefficients. For this pur-

pose we used an aggregate like aggregate 1 with the same conditions that were

stated in the previous experiment. The response coefficient of this aggregate

was measured in independent simulation runs with different link utilizations of

the bottleneck links. To increase the link utilization we increased the number

of sending sources in group 1. The results have been shown in Figure 7.5. In

this figure each + shows the response coefficient versus the link utilization.

The response coefficient shows an almost flat behavior with reasonable vari-

ance up to the point where the link utilization is about 90%. After that the

measurement of the response coefficient is not accurate, however, the measure-

ments are still good approximations up to the point where the link utilization

is about 95%. In this figure the solid line shows the average of the response
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Figure 7.5: The value of response coefficient of aggregate 1 measured at dif-
ferent link utilizations

coefficient over the experiments for which the link utilization is less than 90%;

this average is about 75.

The degradation in performance of CAPM in the presence of severe

congestion is easy to explain; heavy congestion causes the aggregates to ex-

perience high rate of drops and as a result of that the aggregates shrink their

rates. This causes them to become less responsive to the packet drops made

by APM or CAPM. Although long term congestion is one factor that may de-

grade the performance of APM or CAPM, the APM and CAPM show a good

performance in a wide range of link utilization before very heavy congestion

happens. This can be one of the strong points about APM and CAPM since

these methods can be applied proactively to prevent congestion.
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7.2 Experiments with SYN and ACK Rates

In this section, we evaluate the approach we offered to estimate the propor-

tion of nonconforming SYNs in an aggregate. In this approach we perturb

the traffic by dropping SYN packets with a small probability and examine the

reaction of rate of incoming ACK packets.

The Base Experiment: In the first simulation scenario, we gener-

ated different TCP connections to a server from 2500 distributed sources.

Each source generated one TCP connection per second and the average num-

ber of data packets exchanged per connection was 10. Additionally, the

round trip time of flows was randomly distributed in [0, 100] milliseconds.

We used a perturbation signature that corresponds to the binary sequence

{1, 0, 0, 0, 1, 1, 0, 1}; N = 8, Tc = 1 second, and SYN packets were dropped

with probability 0.01 at the intervals where the signature value was 1. Since

the signature is 1 only 50 percent of the time, this introduces 0.5 percent drop

probability in average. Although the drop probability may be chosen to be

smaller in practice, we have deliberately chosen a larger value for it to illus-

trate the response of the traffic.

Figure 7.6 shows the SYN rate λS(t) and the ACK rate λA(t) in the

experiment, and Figure 7.7 shows their difference under perturbations. It can

be seen in the top plot of Figure 7.7, the difference follows the pattern of the

perturbation function, and during the intervals where the SYN packets were

dropped, the difference of the two arrival rates tends to be a higher value.

For visualization of the data, the number of arrived SYNs and ACKs were
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Figure 7.6: SYN rate (top plot) and ACK rate (bottom plot) in the base
experiment
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Figure 7.7: Top: difference of rate of SYNs and ACKs, λS(t) − λA(t), under
perturbation. Bottom: Normalized perturbation signature.
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counted over intervals of length 0.02, and the measured quantities and their

difference over each interval were divided by 0.02 to show instantaneous rate

corresponding to that interval. For this reason, plots in Figure 7.6 and Figure

7.7 have quantization of 50.

Adding Nonconforming Traffic: In the next experiment we add

nonconforming SYN packets to the aggregate and use the estimator given

by equation (6.12) to estimate the proportion of nonconforming SYNs. In

this scenario, the SYN packets were generated by the sources at the average

rate of 2500 per second, and the rate of nonconforming SYN packets was

0, 1000, and 2000 packets per second respectively. The results are shown

in Table 7.1. Each row of this table shows a single experiment. The first

column of this table shows rate of legitimate SYNs, the second column shows

rate of nonconforming SYNs; breakdown of the nonconforming SYNs is shown

in the next two columns. The third column shows the rate of SYNs that

send no ACK, and the fourth column of the table shows the rate of SYNs

that send ACKs blindly. Fifth column of Table 7.1 shows the actual ratio

of nonconforming SYNs to total SYNs, and the last column shows the result

obtained by calculating the matched filter output and using estimator given by

equation (6.12). As can be seen, the estimator shows good performance, and

its deviation from the actual value in most of the cases is less than 2 percent.

7.3 Experiments with Data Packets

In this section we show the effectiveness of the method in which we drop

packets from an aggregate and examine the signal that represents the rate of
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Table 7.1: Evaluation of estimator of nonconforming SYN packets for different
types and proportions of nonconforming SYN packets

Legitimate Nonconforming No-ACK Blind ACK Actual Estimate
SYN Rate SYN Rate SYN Rate SYN Rate (%) (%)

2500 0 0 0 0 -0.26
2500 1000 1000 0 28.6 27.3
2500 1000 500 500 28.6 28.9
2500 1000 0 1000 28.6 27.6
2500 2000 2000 0 44.4 43.8
2500 2000 1000 1000 44.4 45.8
2500 2000 0 2000 44.4 44.9

retransmitted packets in order to estimate the proportion of nonconforming

traffic.

The Base Experiment: Similar to the previous set of experiments,

different TCP connections were established from 2500 distributed sources to a

server. Each source generated one TCP connection per second and the aver-

age number of packets generated per connection was set to be 20. Round trip

times of connections in the experiments were picked randomly in the interval

of [0, 100] milliseconds. Generated traffic was passed through two different

routers, and each router performed its tests independently on the aggregate.

For generating drop signatures, the binary sequence of 1, 1, 0, 0, 1, 1, 0, 0 was

assigned to the first router and the sequence 0, 0, 1, 0, 1, 1, 1, 0 was assigned to

the second router. It can be verified that the signatures generated by these

two codes are orthogonal. Similar to before, N = 8, and Tc = 1.

The top plot of Figure 7.8 shows the total packet rate, and the bottom

plot of this figure shows the normalized drop signature of Router 1. During

the test period, 1 percent of packets were dropped at the time intervals when

the drop signature was 1. The middle plot of Figure 7.8 shows the detected re-
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transmissions of data packets, and as can be seen, this signal obviously shows

the shape of the drop signature on it.

Performing Simultaneous Tests by Two Routers: In the next

experiment we let the second router perform the test at the same time as the

first router. The typical value of the retransmissions at the first router when

the second router performs the test is shown in Figure 7.9. The perturbation

signatures of the two routers are shown in the middle and the bottom plots

of this figure, and the overall retransmissions detected by the first router is

shown in the top plot. As can be seen in this case, the detected retransmission

rate shows additive form of the two signatures. For example in intervals such

as [3, 4] when none of the routers perturb, the detected rate of retransmissions

is about zero. However, in intervals such as [1, 2] when only one of the routers

perturbs the traffic, the rate of retransmissions is about 500 per second. Fi-

nally, in intervals such as [5, 6] when both routers perturb, the retransmission

rate increases to about 1000 per second.

Adding Nonconforming Traffic: In the next experiment, we add

nonconforming data packets to the aggregate and use the estimator given by

equation (6.32) to estimate the proportion of nonconforming data packets.

Nonconforming data was added from 0 to 60 percent in 10 percent steps, and

on each step five different experiments were performed and the proportion of

nonconforming traffic was estimated in each case. Figure 7.10 shows the results

obtained by Router 1 when Router 2 is not performing any test. Each asterisk

in this figure shows the result obtained by one experiment and the solid line

shows the actual proportion of nonconforming data packets. The experiment
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Figure 7.8: Top: Total packet rate λ(t). Middle: The detected retransmission
rate when perturbing the aggregate. Bottom: the drop signature.
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Figure 7.10: The estimate of nonconforming traffic by Router 1 when Router
2 does not perform the test. Solid line: actual percentage of nonconforming
data packets. (*) Estimated percentage of nonconforming data packets.

shows that the variance of estimator in this case is 1.56 percent. The small

value of variance has resulted in small deviation of estimated values from the

actual values.

Results for Two Perturbing Routers: In the next experiment we

examine performance of the estimator when the two routers perform tests si-

multaneously. The results of the tests for different proportions of nonconform-

ing packets are shown in Figure 7.11. Similar to before, the nonconforming

data was added from 0 percent to 60 percent in 10 percent steps; at each

step five different experiments were performed, and for each experiment the

proportion of nonconforming traffic was estimated by each of the routers in-

dependently. The top plot of Figure 7.11 shows the estimates of Router 1 and

the bottom plot shows the corresponding values obtained by Router 2. The

experiment shows that the variance of estimator in this case is 1.96 percent for
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Figure 7.11: Top: estimate of nonconforming traffic by Router 1 when Router
2 performs the test simultaneously. Solid line: the actual percentage of non-
conforming data packets. Each (*) shows the estimated percentage of non-
conforming data packets performed by Router 1. Bottom: The corresponding
plot for Router 2.

Router 1 and 2.05 percent for Router 2. Again, the small value of variances has

resulted in small deviation of estimated values from the actual values for both

router. Another important result of this experiment is that the simultaneous

tests of the two routers has not affected the quality of the estimators of either

of them.

Experiments with More than Two Routers In this experiment,

we study performance of the estimator when more than two routers perform

tests and estimations simultaneously. The traffic is similar to the scenario ex-

plained in the previous experiments, but the number of perturbing routers in

the path between the sources and the server is varied to be 1, 2, 4 and 8. We

increased the code length to 32 in order to have enough orthogonal codes to be

assigned to the different perturbing routers. Tc = 1 second, and each router

drops packets with probability 0.005 during the intervals where its signature
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value is equal to 1.

The results of these experiments are shown in Table 7.2. Each row of

this table shows one experiment. The first column of this table shows number

of simultaneously perturbing routers, and its second column shows the pro-

portion of nonconforming traffic in the aggregate. The third column shows

the average of estimated values of nonconforming traffic for all routers, the

fourth column shows the worst error of the estimator among all the perturb-

ing routers. As the data in the table shows, increasing the number of simul-

taneously perturbing routers does not affect the quality of estimator, and the

largest error of the estimator when 8 routers were simultaneously running the

tests was 4.52 percent, which is a reasonable performance. It is important to

note that the interference conditions of this experiment are worst case since

in practical situations it is unlikely that 8 routers perform a test on the same

aggregate simultaneously.

Another interesting result of this experiment is the average increase in

data transfer time of connections. We define the data transfer time as the

elapsed time between the moment that the SYN packet of the connection is

generated and the moment that the last data packet of the connection is re-

ceived. We measured the average amount of this value among all connections

during the test when there was no perturbation and this value was about 265

milliseconds. The last column of Table 7.2 shows the amount of increase in

data transfer time in milliseconds compared to the case with no perturbation.

It can be seen that in all cases the increase is in order of a few milliseconds,

and it is negligible compared to the average normal data transfer time of the
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Table 7.2: Results for different numbers of simultaneously perturbing routers.
Number of Proportion of Average of Worst Case Avg. Inc. in
Perturbing Nonconforming Estimates of Error Among Data Transfer
Routers Traffic (%) Routers (%) All Routers (%) Time (msec)

1 0 0.82 0.82 1.9
1 30 30.98 1.42 1.7
1 60 58.81 -1.57 0.9
2 0 1.15 1.65 2.6
2 30 31.86 2.38 2.1
2 60 58.88 -1.83 1.7
4 0 2.31 3.48 3.7
4 30 28.47 -3.92 3.0
4 60 58.87 -2.89 2.6
8 0 1.37 4.52 6.1
8 30 30.55 3.82 4.8
8 60 59.80 4.02 3.9

connections.

Effect of Congestion In the last experiment we study the effect of

congestion on the performance of the estimator. Similar to before we gener-

ated conforming TCP connections from 2500 distributed sources to the server.

Each source generated one TCP connection per second and the average num-

ber of packets generated per connection was set to 20. The Maximum Seg-

ment Size (MSS) of each packet was set to 1500 Bytes, and round trip times

of connections were picked randomly in the interval of [0, 100] milliseconds.

The capacity of the link between the the victim and its first hop router was

limited to be 1.0 Gbps (duplex link). Simulations show that under the above

conditions, slightly less than 70 percent of the link capacity is used for the con-

forming traffic. We added nonconforming traffic to the aggregate in 10Mbps

steps during different simulation runs. The size of forwarding buffer of the

router next to victim was set to 1 MB which makes it suitable for storing up

to 667 packets with the size of MSS. The results are shown in Fig. 7.12. The

solid line in this figure shows the actual proportion of nonconforming traffic
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Figure 7.12: Evaluating performance of the estimator in presence of conges-
tion. Link utilization changed from 70 percent to close to 100 percent by
adding nonconforming traffic. Solid line shows the actual proportions of non-
conforming traffic, and asterisks show the estimated proportions.

and each asterisk shows the estimates of the router next to the server. As can

be seen in this figure, the estimator show a very reasonable error up to the

point where link utilization is more than 95%, and when the link utilization is

close to 100% the error of estimator is about 5%.

Another experiment of this case included increasing the number of per-

turbing routers in presence of congestion. We repeated this experiment when

the number of perturbing routers were 2, and 4 routers. The results of the

experiments were similar to the above case when we have only one perturbing

router: the estimator shows an accurate performance over a wide range of

link utilizations up to the point where we have 95 percent link utilization, and

when the link utilization was more than 95 percent, the error was smaller than

5 percent in all cases.
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Chapter 8

Conclusion

8.1 Summary

In this work we introduced a the framework of a new mathematical tool for op-

timization of routing, topology design and energy utilization in wireless sensor

networks. We introduced a vector field formulation that models communica-

tion in the network, and routing is performed in the direction of this vector

field at every location of the network. The magnitude of the vector field at

every location represents the density of amount of data that is being transited

through that location. We define the total communication cost in the network

as the integral of a quadratic form of the vector field over the network area.

We introduced a mathematical machinery based on partial differential

equations very similar to the Maxwell’s equations in electrostatic theory. We

showed that in order to minimize the cost, the routes should be found based

on the solution of these partial differential equations. In our formulation, the
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sensors are sources of information, and they are similar to the positive charges

in electrostatics, the destinations are sinks of information and they are similar

to negative charges, and the network is similar to a non-homogeneous dielec-

tric media with variable dielectric constant (or permittivity coefficient).

In one of the application of our mathematical model based on the vector

fields, we offered a scheme for energy efficient routing. Our routing scheme is

based on changing the permittivity coefficient to a higher value in the places in

the network where we have a high residual energy of the nodes, and setting it

to a low value in the places of the network where the nodes do not have much

energy left. Our simulations show that our method gives a significant increase

in the network life compared to the shortest path and weighted shortest path

schemes.

First, we focused on the case where there is only one destination in

the network. Then we extended our approach to the case where there are

multiple destinations in the network. In the case of multiple destinations, we

partition the network into several areas known as regions of attraction of the

destinations. Each destination is responsible for collecting all messages be-

ing generated in its region of attraction. The complexity of the optimization

problem in this case is how to define regions of attraction for the destinations

and how much communication load to assign to each destination to optimize

the performance of the network. We used our vector field model to solve the

optimization problem for this case. We define a vector field that is conserva-

tive and hence it can be written as the gradient of a scalar field (also known

as a potential field). Then we showed that in the optimal assignment of the
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communication load of the network among the destinations, the value of that

potential field should be equal at the locations of all the destinations.

We introduced another application of our vector field model, which was

to find the optimal locations of the destinations in the network. We showed

that the vector field gives the gradient of the cost function with respect to

the locations of the destinations, and hence during the design phase of a net-

work, iterations can be performed to relocate the destinations to reduce the

cost function. Performance of our proposed schemes was confirmed by several

examples and simulation experiments.

In another part of this work we focused on the notions of responsiveness

and conformance of TCP traffic in communication networks. We introduced

the notion of responsiveness for TCP aggregates and defined it as the degree

to which a TCP aggregate reduces its sending rate to the network as a re-

sponse to packet drops. We defined metrics that describe the responsiveness

of TCP aggregates, and then we offered two methods for determining the val-

ues of these quantities. The first method is based on a test in which we drop

a few packets from the aggregate intentionally and measure the resulting rate

decrease of that aggregate. This kind of test is not robust to multiple simul-

taneous tests performed at different routers. In the second method, we made

the test robust to multiple simultaneous tests by using ideas from the CDMA

approach to multiple access channels in communication theory. Based on this

approach, we introduced tests of responsiveness for aggregates, and called it

CDMA based Aggregate Perturbation Method (CAPM). We used CAPM to

perform congestion control. A distinguishing feature of our congestion con-
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trol scheme is that it maintains a degree of fairness among different aggregates.

In the next step we modified CAPM to offer methods for estimating

the proportion of an aggregate of TCP traffic that does not conform to pro-

tocol specifications, and hence may belong to a DDoS attack. We introduced

methods that intentionally perturb the aggregate by dropping a very small

number of packets from it and observing the response of the aggregate. We

offered two methods for conformance testing. In the first method, we applied

the perturbation tests to SYN packets being sent at the start of the TCP

3-way handshake, and we used the fact that the rate of ACK packets being

exchanged in the handshake should follow the rate of perturbations. In the

second method, we applied the perturbation tests to the TCP data packets

and used the fact that the rate of retransmitted data packets should follow

the rate of perturbations. In both methods, we use signature based perturba-

tions, which means packet drops are performed with a rate given by a specific

function of time. We used analogy of our problem with multiple access commu-

nication to find proper signatures. Specifically, we assign orthogonal CDMA

based signatures to different routers in a distributed implementation of our

methods. As a result of orthogonality, the performance of such an implemen-

tation does not degrade because of cross interference made by simultaneously

testing routers. We showed the efficacy of our methods through mathematical

analysis and extensive simulation experiments.

139



8.2 Future Work

Our routing method based on the vector fields in its current state is a cen-

tralized approach. In other words, a central node needs to know the value of

r(x, y) for all locations of the network, and based on this information, it solves

the set of partial differential equations and advertises the resulting routes in

the network. While this centralized approach may be applicable in some sit-

uations, the electrostatic framework will be a more practical approach if we

can find a way to decentralize it.

One way to introduce a decentralized approach is to make use of the su-

perposition property. All the partial differential equations that give the paths

and routes are linear, and especially, this linearity holds with respect to the

value of r(x, y). So if a sensor node knows its location with respect to the des-

tinations, it can solve the set of PDEs by itself and find the incremental value

of ~D corresponding only to the values of the function r(x, y) in its vicinity.

After that, it can broadcast that ~D to the other nodes in the network. The

other nodes, add the received incremental ~D from that sensor node to update

their total ~D value, and accordingly, compute the routes. This decentralized

and incremental procedure could also be used to update ~D (and hence the

routes) when the load density function r(x, y) changes in some part of the

network.

Another direction of extending our framework based on vector field is to

extend it to the case where we have dynamics in the system. The current setup

of our approach assumes the load density function r(x, y) and the positions of
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the access points are static. If the load density function changes, then another

frozen time snapshot of the function is used to compute new routes. However,

if environmental conditions are changing rapidly as in a forest fire, it may be

the case that the load density function changes rapidly with time. In this case,

it should be viewed as a time-varying function r(x, y, t), and the framework

should be extended to explicitly take the load dynamics into account.

In the framework based on vector fields, r(x, y) is analogous to charge

density in electrostatics, so r(x, y, t) should correspond to time-varying charge

density. This suggests that we pursue an analogy with electrodynamics. Elec-

trodynamics deals with moving electric charges or time-varying electric fields

due to time-varying charges. Special rules govern electrodynamics, and every

charged particle propagates waves in space that carry information about its

charge. Such waves are modelled by time-dependent partial differential equa-

tions. Usually, the propagation depends on some factors such as the permit-

tivity of the media.

In the part of conformance and responsiveness test of TCP aggregates,

we assumed that the codes of different routers are orthogonal to each other.

One issue of future research will be the effect and analysis of non-zero cross-

correlation of the codes at the different routers. While it is possible to assign

orthogonal codes to different routers, orthogonality will be maintained only

if the drop signatures at all routers are implemented synchronously–i.e., all

routers initiate their perturbations at the same time. Since it is not practical

to synchronize perturbations, we need to use codes that are nearly orthogonal

even when time-shifted.
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A promising approach to solve the above problem is based on the use of

Pseudo Random Sequences. Such sequences show a very low cross-correlation

if the length of the signature sequence is long enough, and perturbations do

not need to be synchronized to achieve the low correlation. However, making

the length very long would cause the test to be expensive and slow. Conse-

quently, investigating the trade off of speed and performance of the pseudo

random codes is an interesting research problem.

An important problem is how to define the aggregates for the CAPM

tests. While we suggest hash-based definition of aggregates, an important issue

is proper definition of the hashes that helps best localization of polluted aggre-

gates in the case of a DDoS attacks. Different IP and TCP header fields can be

used for defining aggregates, and there is a trade off between the granularity

of aggregates and the number of tests needed to achieve enough information

on each of them.
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