
ABSTRACT

Title of dissertation: IMPROVING GENOME ASSEMBLY

Cevat Ustun, Doctor of Philosophy, 2005

Dissertation directed by: Professor Jim Yorke and Brian Hunt
Department of Physics and Math

We present a reliable, easy to implement algorithm to generate a set of highly

reliable overlaps based on identifying repeat k-mers. Our method is coverage in-

dependent. Whereas traditionally reads have been trimmed to have expected error

rates of 2%, we find our error correction allows extending usable sequence in reads to

16% trimming. We use a version of the Phrap assembly program that uses only over-

laps computed by the UMD overlapper, called PhrapUMD. We integrate the UMD

algorithms with Baylor’s ATLAS assembler applied to Rattus norvegicus. Starting

with the same data as the Nov. 2002 ATLAS assembly, we compare our results to

4.5 Mbp of rat sequence in 21 BACs that have been finished. We find that after

extension and error correction, (i) the reads are 30% longer than reads trimmed to

2%; (ii) the average error rate across the extended reads is about 3 in 10,000 bases,

with 88% of the extended reads matching finished sequence exactly across their en-

tire length; and (iii) PhrapUMD with these reads and our reliable overlaps produces

a draft assembly of the rat which has no misassemblies and increases the coverage

of finished sequence from 92.2% to 95.7%, while simultaneously reducing the base

error rate for quality 20 or higher bases from 1.50 to 0.87 errors per 10,000.

IMPROVING GENOME ASSEMBLY

by

Cevat Ustun

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Commmittee:

Professor Jim Yorke, Advisor
Professor Brian Hunt, Chair/Co-Advisor
Professor Edward Ott
Professor Stephen Altschul
Professor Wolfgang Losert

c© Copyright by

Cevat Ustun

2005

FOREWORD

The discovery of the structure of deoxyribonucleic acid (DNA) in 1953 by

Watson and Crick promised a revolution in our understanding of the mechanics of

living organisms. What they found was that this structure consisted of four types of

molecules (or bases), referred simply by their initials A, C, G, and T, and that these

bases were arranged in two long strands held together by weak molecular bonds.

This results in what is commonly referred to as the double-helix. Furthermore, it

was found that the progression of bases along a single strand is arbitrary but the

corresponding base on the complementary strand at a given point along the double

helix are constrained; an A can only match up with a T, and a C only with a G (in

what follows, we will consider only a single such strand).

The determination of the sequence of bases for a particular organism would

then (in theory) only involve reading off the consecutive bases from a given strand

of DNA. Simple as it sounds, it would be some years before the determination of

actual genomes of even the simplest of organisms were attempted.

The current technology for the determination of bases in a sample of DNA,

due to Sanger, involves doing a rather involved experiment in which the accuracy of

what is read drops sharply after roughly 1000 bases (which we will write as 1000 b)

from either end of a DNA fragment. The parts of DNA which have been sequenced

this way are known as “reads” and reads originating from the opposite ends of

ii

the same fragment are referred to as “mate pairs”. By itself, this method solves

little since genome sizes of organisms are many times the read size: at the lower

end, mitochondrial DNA is on the order of 10,000 base pairs (i.e., 10 kb) whereas

towards the high end, for organisms including humans, the figure is around 3 billion

base pairs.

The standard way around this problem is called shotgun sequencing and it

starts off by shattering multiple copies of the entire DNA in question and then

sequencing the ends of the resulting small fragments without knowing where the

fragments came from in the genome. The goal then is to identify overlapping reads

on the basis of their sequence and merge them to obtain the full genomic sequence.

In practice this approach yields a “draft” of the genome that is incomplete and

riddled with errors because of a number of complicating factors. Among the most

prominent are:

i) The coverage of the genome by reads in the shotgun sequencing approach is

not uniform; in fact, the coverage is well described through most of the genome in

terms of a Poisson statistic. This means for example that for any given coverage,

there is an appreciable probability of finding gaps in the genome not represented by

any read and also for finding an unusually high number of reads covering a particular

area.

ii) The sequence of most organisms contain “repeats”. These are sections of

the genome usually up to about 10 kb long that have exact or approximate copies

of themselves elsewhere in the genome. The number of copies can run up into the

hundreds. Repeats will typically cause an assembly software to place reads originat-

iii

ing from different parts of the genome at a single spot because of the similarity in

the sequence. Such mis-assemblies may not be easy to detect because of (i) above.

Differences between copies of repeats (due to mutations) can at times be used to

distinguish them from one another.

iii) Sequencing errors occur when resolving the bases in a read. Such errors

also make the job of separating slightly different copies of repeats harder as in (ii)

above.

It is the interaction of the above difficulties that make this a non-trivial task.

Despite the years of refinements in sequencing techniques and assembly methods,

the above factors can still confound assemblers, adding significantly to the already

enormous costs of sequencing genomes. It is an ongoing effort to develop methods for

getting more information, that is more accurate, more complete drafts of genomes.

iv

ACKNOWLEDGMENTS

A work such as a dissertation is not possible without the guidance, support

and insight of many people. I owe a tremendous amount of gratitude, first and

foremost, to my advisers Jim Yorke and Brian Hunt. It is their voice that resonates

within me whenever I’m at a loss of what to.

Thanks are also due to my co-workers, Aleksey Zimin and Mike Roberts. Mike

deserves special thanks for all the suffering he has had to endure in providing me

most of the data that has been crucial for this work.

Lastly, I would like to thank my loving family, from whom I received nothing

but encouragement and support in my years of graduate study.

Thank you all!

v

TABLE OF CONTENTS

List of Figures vii

1 Improving Sequence Assembly of the Rat Genome Using Reliable Overlaps
and Extended Reads 1
1.1 Introduction . 1
1.2 Methods . 5

1.2.1 Reliable overlaps . 5
1.2.2 Read Extension and error correction 7

1.3 Results . 13

2 Constructing a physical map from whole genome shotgun data 21
2.1 Introduction and motivation . 21
2.2 Overview of our approach . 22
2.3 Requirements for data and the generation of faux reads 23

2.3.1 Requirements . 23
2.3.2 Overlap experiments with C. elegans using faux reads 24

2.4 Validation and the chain assembly technique 25
2.4.1 Validation of mated pairs . 25
2.4.2 Practical considerations . 27
2.4.3 Chain assembly . 30
2.4.4 Chain assembly results . 34

A Minimizers 38

B UMD Assembly Pipeline 40
B.1 UMD Unitigger . 40
B.2 Binning of reads . 42
B.3 Contig merging . 43

C Comparing scaffolded assemblies 45
C.1 Scaffolds and Xcontigs . 45
C.2 Using Blastz to match Xcontigs to finished sequence 46
C.3 Defining errors . 48

D PhrapUMD 49

Bibliography 52

vi

LIST OF FIGURES

1.1 Reliable minimizers are represented as solid lines and unreliable ones
are represented as dashed lines. (a) identifying reliable minimizers;
(b) reliable overlap test. 7

1.2 Demonstration of Case 2. We are trying to decide whether or not to change

the base ‘G’ in the bottom read. Places marked with a ‘-’ agree in all reads.

On the left, we have unanimous - 1 consent and so we change the ‘G’ to

an ‘A’. On the right, the second ‘G’ corroborates the first, and so we do

not make the change, according to Case 2b. 9

1.3 The worst case assembly is for BAC GXFC. The individual reads
are depicted as dots with their place in the scaffold as their vertical
coordinate and their place in the finished sequence as horizontal co-
ordinate. Reads within contigs are connected with a line. We used
the best match according to Blastz to place the reads. 20

2.1 A progression of inserts making up a chain using plausible overlaps.
Reads are denoted by the arrows indicating the direction in which
the read has been read, and the dashed line connecting them is the
unsequenced part of an insert. We indicate that two reads overlap by
placing one above the other. 26

2.2 Four inserts constituting a chain that spans a larger insert; The col-
lection (P1, P2, P3, P4) of small inserts is such a chain, which we call
P . The left reads of P1 and the big insert, J , overlap and have the
same orientation. Similarly the right reads of J and P4 overlap and
have the same orientation. Under these conditions, we say the chain
P spans the insert J . 27

2.3 A small insert can be a part of chains spanning several large inserts,
shown here as BAC 1, BAC 2 , and BAC 3 (of all the inserts making
up the chains across the BACs, only one that is common to all three
is shown). We say that the small insert has “neighborhood” of BAC
1, BAC 2 , and BAC 3. 32

vii

2.4 The probability of encountering a spurious reverse overlap between
reads belonging to 2kb inserts after they have been validated using
10kb inserts. The horizontal axis denotes the number of common
validating 10kb inserts the 2kb inserts have. The peak to the left of
the figure is due to two effects: i) Most (reverse) spurious overlaps
between 2kb inserts do not have common validating 10kb inserts,
and ii) a significant number of small inserts near the ends of the big
inserts are not validated. In other words, during validation, it takes
some steps before a “wavefront” of small inserts starting from one
end of a large insert to “decohere” due to insert size uncertainties.
We note that the ratio of false (spurious) overlaps to true overlaps in
this dataset is about 1 %. 36

2.5 The chains through the entire genome of the C. elegans . The in-
dividual mate pairs are shown as dots. We number the mate pairs
consecutively according to their position on the chain. For each mate
pair the vertical coordinate is its number in the chain and the hori-
zontal coordinate is its actual position in the genome in units of bases. 37

B.1 The 21 Baylor BACs studied, 7 covered by sequence independently finished

at NHGRI, and 14 finished by Baylor. 42

C.1 Schematic diagram of two Xcontigs that match finished sequence. Xcon-

tig1 has a long match and short tails on both ends that do not match the

finished sequence. Xcontig2 has no tail, because on the left it matches

finished sequence all the way to its end, and on the right it runs off the

end of finished sequence and is thus unverifiable. The latter “non-tail”

sequence is not counted anywhere in our analysis. 47

viii

Chapter 1

Improving Sequence Assembly of the Rat Genome Using Reliable

Overlaps and Extended Reads

1.1 Introduction

Improving WGS. Whole genome shotgun (WGS) assembly has created draft

versions of several large genomes, including the rat Rattus norvegicus. However, to

our knowledge, no one claims that these methods have been refined to the point

where they are the best possible. While it is not known how much room there is

for improvement of existing assemblers, it is clear that the majority of the cost of

assembly is the creation of read data. The Baylor College of Medicine (Baylor)

assembler ATLAS already used innovative techniques to assemble the rat genome.

The University of Maryland authors (UMD) are collaborating with Baylor to identify

possible ways of getting even better draft assemblies from the data. As a test case,

the rat genome is being reassembled using UMD modules within ATLAS. For this

assembly we are using the same read and mate-pair data (called “Freeze 04”) that

was used to produce the most recently published draft assembly [reference paper

and sequence].

Evaluation and results. To evaluate our techniques, we compare our as-

semblies of 21 BACs that lie in the small fraction of rat sequence that is of finished

1

quality. The finished sequence has been upgraded through intensive additional se-

quencing efforts so that evaluation is possible. However, in order to make their final

assembly of high enough quality to be useful for biologists, Baylor used all available

data to produce Freeze 04 assembly including the reads used to finish that sequence.

Therefore, to evaluate the addition of UMD techniques to ATLAS, we return to the

so-called “Freeze 02” assembly, which did not include reads from finishing efforts.

Based on a comparison with the assemblies of 21 finished BACs, for 12% extended

and retrimmed data, we recover 3.5% additional sequence matching to the finished

sequence at almost half the overall error rate for bases with quality 20 or higher.

ATLAS. To give the flavor of the ATLAS strategy for rat assembly, we sum-

marize its procedures as follows. See [] for more details. Baylor first broke the

genome into about 20,000 carefully selected, overlapping BACs. The Rat Genome

Sequencing Consortium (RGSC) produced whole genome shotgun (WGS) reads and

also lightly sequenced each of these BACs. ATLAS estimated which WGS reads

overlapped the BAC reads of a given BAC and added those WGS reads and their

mates to the BAC’s reads to create a “bin” of reads for the BAC. ATLAS then

applied Phrap [ref] to the binned reads to produce an assembly of the BAC. Then

ATLAS created a rat assembly by piecing these BAC assemblies together, using

mate pair information to correct many of the errors that Phrap makes.

UMD+ATLAS. The UMD+ATLAS results were obtained by incorporating

three UMD sets of techniques into ATLAS.

• The UMD overlapper [published paper] corrects errors in reads and produces

2

overlaps with a goal of missing at most one true overlap in 108 (with overlap

length of at least 40 bases).

• We used the power of (1) to trim the reads much less aggressively here, thereby

allowing longer reads. Traditionally reads are trimmed when the quality of the

bases indicates an error rate of about 2%. We trimmed only when expected

error rate reached 8% to 16%.

• We developed algorithms to find a subset of the above overlaps that we call

“reliable” for use in generating an assembly. Using only reliable overlaps in

creating assemblies produces more sequence with fewer errors. An occasional

contig will broken in two if only reliable overlaps are used in the assembly, so

we sometimes use other overlaps from the UMD overlapper list to join contigs

that ATLAS says are adjacent.

PhrapUMD. En route to creating a rat assembly, we developed additional

techniques to help ATLAS benefit from extended reads and reliable overlaps, in-

cluding alterations of Phrap to force it to use only overlaps from a list it is given.

We call the modified program PhrapUMD. ATLAS’s use of Phrap allowed the use

of UMD high-quality overlap information only for the binning process. PhrapUMD

now assures that assemblies use only the overlaps we choose.

Baylor’s overlap seeds. The criterion in (3) for creating reliable overlaps

was motivated in part by Baylor’s approach. ATLAS was already using innovative

and effective overlap identification technique that is quite different from those used

by other assemblers. WGS assemblers begin by examining small read fragments,

3

called k-mers, usually consisting of 20 to 32 bases (20 bases for this paper). These

are also referred to as “seeds”. When reads are found to have a seed in common,

it is possible to see if the match can be extended to yield a plausible overlap. We

say the seed “generates” the overlap. While Celera’s version of the seed-and-extend

step strongly emphasized finding all plausible overlaps, ATLAS took the opposite

route. It only used a seed that occurred sufficiently rarely in the database of reads

(12 times or less) that it appeared likely to come from a unique place in the genome.

Many spurious overlaps are thereby avoided. A seed coming from multiple places in

the genome will generally occur more than 12 times in the read database.

Reliable overlaps. We classify overlaps as reliable by using a more direct

approach to identifying seeds from repeat regions. The UMD overlapper [ref] creates

a lean list of overlaps while missing extremely few correct overlaps. Of necessity

some overlaps of questionable quality are left in the list and some of these in fact are

spurious, but if two reads overlap by at least 40 bases, they are virtually certain to be

in the list. If two reads that belong together, but are not reported as overlapping,

then any seeds they have in common almost certainly lie in repeat regions. We

create a list all seeds that belong to repeat regions. An UMD overlap that has no

discrepancies is called “reliable” if the two reads have at least one seed in common

that is not in the list of repetitive seeds.

This paper is organized as follows. Section 2 provides the description of the

algorithm that produces a subset of reliable UMD overlaps. Section 3 describes the

process of read extension and error correction and section 4 presents the assembly

results. We provide the technical details and the detailed description of the assembly

4

pipeline, as well as assembly evaluation process and PhrapUMD design in appendices

A-D.

1.2 Methods

1.2.1 Reliable overlaps

To identify the plausible overlaps we first look at all k-mers (k = 20 in out

methods) in the reads and pick up the subset of them that we call “minimizers”.

The concept of minimizers is described in detail in Appendix A. This method allows

us to choose about 10% of the possible k-mers in a given read as minimizers, so that

they have the following properties:

• (i) The collection of minimizers cover the entire read, except possibly for a few

bases at the ends of the read; and

• (ii) If two reads have significant exact overlap, then many of the minimizers

chosen from one will also have been chosen for the other.

On average, one out of 10 consecutive 20-mers along the read sequence is a

minimizer, in other words, we encounter a new minimizer on average every 10 bases.

If two reads overlap by at least 40 bases, they are guaranteed to have at least one

minimizer in common.

We obtained results reported in this paper by using an extremely simple

method of identifying repeat minimizers, that is minimizers that are likely to belong

5

to repeat regions. Of course, we could have looked at the frequencies of the occur-

rence of all minimizers to distinguish repeat from non-repeat ones, but this would

require imposing a cutoff, which would depend on the coverage and it would not work

if coverage varies greatly along the genome sequence, as it is the case for Rat data.

Our goal was to design a method that is easy to implement, that has no tunable

parameters, and that could be applied to any data set without modifications.

Our method is the following. We first examine all overlapping read triples.

Let us pick three reads, A, B and C and assume that read A has reported overlap

with read B, and read B has reported overlap with read C, and based on the offset

information, reads A and C should overlap, but they are not reported overlapping.

This situation is very common: it occurs where part or whole read B is in a repeat

region and reads A and C represent two possible exits from the repeat. In this

case we look at reads A and C and add all common minimizers in reads A and C

to the list of repeat minimizers. See Fig. a for illustration. Then we examine all

overlaps and for each overlap find the number of the common reliable (non-repeat)

minimizers. We declare an overlap to be reliable if the number of common reliable

minimizers is greater than the number of differences in the overlap region multiplied

by two (case with no differences is shown on Fig. b. The latter requirement is

imposed to avoid declaring reliable repeat-induced overlaps that have errors in the

read sequences. We multiply the number of differences by two because on average

each base is covered with two minimizers, so each error will usually influence the

values of two minimizers. This is a very simple and easy to implement method, and

it produces excellent results described in Section 4.

6

(b)

PASS

FAIL

B
A

C

(a)

Figure 1.1: Reliable minimizers are represented as solid lines and unreliable ones are

represented as dashed lines. (a) identifying reliable minimizers; (b) reliable overlap

test.

1.2.2 Read Extension and error correction

Traditionally, excessive sequencing errors have tended to confound assembly.

Thus traditionally reads are trimmed such that over any local region the error rate

does not exceed 2%. This results in using about half of the sequence available

in the untrimmed read. Since sequence is expensive to produce, we would like to

use more of the available sequence. Our approach to this problem is to use our

extremely high-quality overlaps [32] to create multi-alignments, which allow us to

correct a large number of low-quality bases well beyond the 2% trimming mark. We

also detect and mark questionable bases that we are unable to correct. This very

reliable yet conservative error correction allows us to extend reads out to trimmings

of up to 16%, while making very few erroneous corrections.

After trimming a read to X%, we correct a base if it satisfies either of the

following two cases (unless it satisfies one of the exceptions listed afterwards):

7

Case 1: There are at least two overlapping reads at the base’s position, and

there is unanimous consent among them that the base is wrong, or

Case 2: “Unanimous−1” consent, in which we require the following criteria

to be met:

(a) at least 4 overlaps cover the base (i.e., 5 reads including the one being

corrected) with all but one agreeing to the change, and

(b) there is at least one minimizer covering the base, and all the minimizer

counts for minimizers covering the base are 1.

This criterion is designed to ensure that the base we want to correct

has absolutely no corroborating evidence to support its current value.

Furthermore, statistical tests have shown that this corrects significantly

more bases than it destroys.

Case 2 is designed to avoid changing regions with “low” (but more than 1X)

coverage. For example, assume the questionable base occurs in a repeat region

that occurs twice; one of them with 3X coverage and the other with 2X cover-

age, and our base is in the 2X coverage region. This example satisfies Case 2,

where we would observe a 5X region where the base “vote” is 3-2; Case 2b is

invoked, refusing to make any change to the 2X coverage region. See Figure

1.2.

Unfortunately, even within these cases, we can potentially make incorrect changes

to 1X coverage bases. In an attempt to avoid this, we add a “catch-all” rule based

8

Case 2 is:

Satisfied Not Satisfied

----A---- ----A----

----A---- ----A----

----A---- ----A----

----T---- ----G----

----G---- ----G----

Figure 1.2: Demonstration of Case 2. We are trying to decide whether or not to change

the base ‘G’ in the bottom read. Places marked with a ‘-’ agree in all reads. On the left,

we have unanimous - 1 consent and so we change the ‘G’ to an ‘A’. On the right, the

second ‘G’ corroborates the first, and so we do not make the change, according to Case

2b.

9

on the rationale that it would be rash to correct several high-quality bases. Thus,

before we actually make the changes for either case, we look at the quality values

of all the bases over the suggested changes, and sum together each quality that is

greater than 30. If the resulting sum is 70 or greater, we make no changes to the

read. This is to avoid using spurious overlaps with repeat regions to change high-

quality bases in a 1X coverage region. Quality 30 is simply the observed quality of

an average, reasonable base. The 70 is ad-hoc, but based on the idea that if we are

trying to change more than 2 high-quality bases, then the read may come from a

high-quality 1X coverage region. This rule could possibly be eliminated or weakened

if we wanted to correct more errors at the expense of introducing more incorrect

changes.

Since minimizers do not always cover the ends of a read, we can miss error

corrections there due to Case 2. However, the same base may be corrected in Case

1 on later iterations because the consent may become unanimous due to corrections

to the one non-unanimous read.

Obviously, we do not want to use spurious overlaps to compute corrections.

We use a Poisson test to “pass” each overlap so that a true overlap has a probability

of being rejected of only 10−8. This allows a significant number of spurious overlaps

to be passed, which is acceptable for assembly purposes (because other criteria

will be used to weed out spurious overlaps later), but is unacceptable for error

correction purposes at such an early stage in assembly. We have found that if we

reject at the 10−2 level rather than at 10−8, then the number of spurious overlaps

is negligible, and so we reject the bottom 1% of our overlaps for error correction

10

purposes. Furthermore, at the 10−8 level, there would be situations where it would

be difficult to get the (nearly) unanimous consent we need to correct bases, due to

the presence of spurious overlaps. We consider this to be an extremely conservative

method of error correction.

Retrimming excessive errors off the ends of extended reads

To recap, we start with reads that are trimmed (before correction) to a rate

of 2%, and then run our overlapper and error-correction routines, as described in

[32], yielding substantially longer reads. Now, these corrected reads have base error

rates which are substantially improved from the original reads. However, the error

rate in the original reads increases rapidly near the back end of the read, and at

some point the errors are so frequent that we are unable to reliably correct them.

The task now is to detect the end of our reliably corrected region.

Recall that to correct a base in read R0 at position p requires an almost unan-

imous consent between overlapping reads at p. Error detection, however, requires

less information than error correction; in particular, R0 may still disagree with a mi-

nority of overlapping reads at several positions. We now have two competing goals:

(1) to detect and trim excessive errors from the inside end of R0, and (2) avoid

excessively trimming good sequence in R0 based on disagreements with spurious

overlaps – which are rare in our overlap sets but do occur. To reconcile these two

goals, we compare R0 to each overlapping read in turn, and then trim R0 based on

the overlapping read which agrees best with R0, based on the assumption that this

11

is the read that is most likely to truly overlap with R0 and thus disagreements with

it are most likely to indicate actual errors in R0. Let Ri be any overlapping read

with R0. We record each disagreement between reads R0 and Ri. We then choose

the largest trim position (numbering from the beginning of the read) so that there

are no more than 5% of the bases are in disagreement for any window starting from

a potential trim point extending towards the beginning of the read. (We aim for a

maximum error rate of 5% after correction because this is the error rate assumed

by Phrap during Baylor’s rat assembly.) If the resulting overlap between R0 and Ri

is less than 60 bases, then we do not consider this overlap for the trimming calcu-

lation. Finally, after performing the above procedure individually for each read Ri

that overlaps R0, we choose the trim position that gives the longest read R0. Note

that if all the resulting trimmed overlap lengths are less than 60 bases, then the

resulting read is eliminated from the assembly.

Table 1.1 presents the average read lengths obtained as a function of trimming,

with and without retrimming, across the 21 BACs listed in Figure B.1. As expected,

the extended and retrimmed reads get longer as we extend to higher trimming values.

We measured total (insertion/deletion+substitution) errors across all of the

12% trimmed, corrected, and re-trimmed BAC reads in the bins of our 21 BACs

by finding the best match for each BAC read in its appropriate BAC and counting

base differences. (We did this only for BAC reads because we did not want to

contaminate the results with incorrectly binned WGS reads.) Figure 1.2 lists the

number of reads with a given total number of individual base errors. Almost 13,000

out of 14,700 BAC reads, or 88.1% of them, have no errors, and match the finished

12

% trimming avg. length avg. retrimmed length

2 564.9

8 624.0 613.5

10 643.8 631.0

12 665.3 648.1

16 734.2 712.7

Table 1.1: Average read lengths as a function of trimming percentage, before and

after retrimming.

sequence exactly; 96.1% have at most one base error; and 98.1% have at most 2

base errors; and the total number of base errors is 2,971. The total number of bases

in these 14,720 reads is 9,877,120, and 2,971/9,877,120 evaluates to roughly 3 errors

per 10,000 bases.

1.3 Results

All results reported in this section are for the set of 33 million Rattus norvegicus

reads available in November 2002. The average read coverage of our 21 BACs is

about 7.0 for our 2% trimmed and corrected reads (31469211 bases in reads across

4504811 bases of finished sequence) For the entire 33 million reads average coverage

is about 7.3.

ATLAS uses mate-pair information to order and orient the Phrap-built con-

tigs, as well as using this information to detect and re-assemble contigs that Phrap

appears to have misassembled. ATLAS then assigns each such scaffold an internally

13

#errs #reads cum#reads cum%reads cum#errs

0 12974 12974 88.1% 0

1 1173 14147 96.1% 1173

2 298 14445 98.1% 1769

3 98 14543 98.8% 2063

4 62 14605 99.2% 2311

5 49 14654 99.6% 2556

6 47 14701 99.9% 2838

7 19 14720 100% 2971

total 14720 14720 2971

Table 1.2: Histogram of individual base errors (indels+substitions) compared to

finished sequence, for reads trimmed to 12%, then error corrected, and retrimmed

to delete excessive errors.

14

computed quality value. Those with too low a quality are discarded by ATLAS. In

this analysis, we will consider only the high-quality, non-discarded scaffolds.

We perform the analysis on the binned BAC reads and then use PhrapUMD

and ATLAS to create an assembly based on the set of reliable overlaps. We match

the resulting assembly to the finished sequence. The exact criteria and methods for

matching the assemblies are presented in the Appendix C. We measure the following

quantities for each assembly:

• Non-Matching Contig Tails: the total number of bases in tails of Xcontigs that

match finished sequence.

• Non-Matching Contigs: the total number of bases in Xcontigs larger than 1k

that do not match finished sequence in their appropriate BAC.

• Finished Sequence Matched Uniquely: the number of bases of finished se-

quence that are covered by at least one matching base in a matching Xcontig.

• Total Sequence Matched: the number of bases in Xcontigs that match finished

sequence. This number is greater than or equal to the Unique Sequenced

Matched, and is greater only when Xcontigs overlap.

• Total Sequence Matched Multiple: the number of bases in Xcontigs that over-

lap each other when matched to finished sequence; these are Xcontigs that

probably could have been merged, but which failed to be merged in the as-

sembly.

• % of Finished Sequence Matched: the percentage of the span of finished se-

15

quence of a BAC that is matched by Xcontigs longer than 1k. Erroneous bases

are counted in this number. If a finished base is matched by more than one

Xcontig, the base is counted only once.

• Errors per 10000 Bases: the number of bases with Quality 20 or more per

10,000 in matching Xcontigs that do not match finished sequence (substitu-

tions, insertions, and deletions). If a finished base is covered by more than

one Xcontig, then every incorrect Xcontig base is counted.

• Number of Contigs: total number of contigs in the 21 BACs.

The results for 21 BACs and for various read extension/retrimming tolerances

are presented in Table 1.3. We used only reliable overlaps defined in Section 2 for

this assembly. Note that the number of contigs is still large compared with Baylor

assembly. Another problem is that the amount of sequence matching multiple is

relatively high – this indicates that the ends of the contigs may overlap in many

cases. The sequence that we obtain using the overlaps rated by this method is close

to finished sequence quality.

To reduce the number of contigs and improve the multiply-matching sequence

numbers, we used a method of contig merging, described in the Appendix C. Table

1.3 presents the results after the contig merging. In this method we merged the

contigs when their ends overlapped according to the list of all UMD overlaps. If the

ends overlapped, we added the overlaps between the end reads to the list of CON-

TIG overlaps, and then we reassembled the data using the set of reliable overlaps

appended with the set of CONTIG overlaps. Note that as the number of contigs

16

decreased, the amount of sequence matching multiple decreased as well, and overall

sequence quality improved. After contig merging we have exactly one scaffold per

BAC for all 21 BACs.

As we increase the read extension from 2% to 12% we notice an improvement in

the number of contigs and total span of finished sequence matched with simultaneous

decrease in the number of non-matching contig tails. At 16% the numbers turn not

in favor, so based on this data set we conclude from Table 1.3 that using 12%

extension is optimal for assembly purposes. We are now using the latest data in

Freeze 04 data set with to produce complete draft Rat genome assembly with 12%

extended reads. We will post the assembly on NCBI website as soon as it is finished.

Another way to evaluate the quality of the assembly is to match the reads in

contigs in the assembly to the finished sequence. Figure 4 shows the worst case for

a particular BAC. In our assembly one notices that there are no misassemblies, the

order of contigs is correct and there are no major gaps. There are two reads on the

ends of two contigs that are misplaced, possibly due to repeat regions. Finishing

our assembly may require much less effort and money, and the additional cost of

creating our assembly is negligible.

17

%ext Non- Non- Finished Total Total % of Errors Number

Matching Matching Sequence Sequence Sequence Finished per of

Contig Contigs Matched Matched Matched Sequence 10000 contigs

Tails Uniquely Multiple Matched bases

02 4020 7037 4227957 4306934 45924 95.368 0.903 587

08 3608 4960* 4231915 4304515 38399 95.457 0.685* 497

10 3214 5224 4239881 4323275 48983 95.637 0.907 501

12 2360* 7201 4245447* 4338265* 56993 95.762* 0.904 504

16 2460 25212 4203623 4296214 59697 94.819 1.194 548

ATLAS 2823 18029 4088137 4122173 8239* 92.214 1.499 377*

Table 1.3: Assembly results obtained using only reliable overlaps. Numbers that are the best in a

column are marked with a *.

18

%ext Non- Non- Finished Total Total % of Errors Number

Matching Matching Sequence Sequence Sequence Finished per of

Contig Contigs Matched Matched Matched Sequence 10000 contigs

Tails Uniquely Multiple Matched bases

02 7644 7037 4231017 4276779 12788 95.437 0.823 482

08 7537 4960 4224675 4269951 11139 95.294 0.656* 409

10 5007 3947* 4238768 4289247 16126 95.612 0.816 402

12 4143 9271 4242047* 4294429* 15815 95.686* 0.871 398

16 2317* 16204 4212975 4268374 21907 95.030 0.993 446

ATLAS 2823 18029 4088137 4122173 8239* 92.214 1.499 377*

Table 1.4: UMD+ATLAS assembly results obtained using reliable overlaps and contig-merging

overlaps compared with finished sequence. Numbers that are the best in a column are marked with

a *.

19

0.0 50.0 k 100.0 k 150.0 k 200.0 k
Position of reads along finished sequence

0.0

50.0 k

100.0 k

150.0 k

200.0 k

Po
si

tio
n

of
 r

ea
ds

 a
lo

ng
 th

e
sc

af
fo

ld

Figure 1.3: The worst case assembly is for BAC GXFC. The individual reads are

depicted as dots with their place in the scaffold as their vertical coordinate and their

place in the finished sequence as horizontal coordinate. Reads within contigs are

connected with a line. We used the best match according to Blastz to place the

reads.

20

Chapter 2

Constructing a physical map from whole genome shotgun data

2.1 Introduction and motivation

In 1995, Olson described a new or modified method of finding and report-

ing markers throughout a genome. When this procedure works well, it enables

researchers to find a so-called tiling set of BACs, that is, a collection of BACs

which together cover all or almost all of the genome and whose relative positions

are known in the genome. Two consecutive BACs in this collection should overlap

and the overlap should be quite small.

This paper will show that such a tiling set of BACs can be constructed using

only WGS data without the need for expensive laboratory procedures if a combi-

nation of BAC sized and smaller sized (for example 10kbp) insert libraries (with

sequenced ends) are available. We have chosen to develop our software with a

simulated set of reads derived from the genome of Celegans, chosen because of its

challenging repeat structure.

We first present an overview of our approach. This is followed by the char-

acteristics of the simulated genome we have developed our software with and a

discussion of the basic requirements for genomes for the methods in this paper to

be applicable. A section describing the technical aspects of the algorithms used is

then followed by results obtained for the simulated Celegans genome.

21

2.2 Overview of our approach

Two Point Boundary Problems and the Shooting Method. No pun

on “shotgun” is intended. The concept of a “shooting method” is standard in

differential equations and dynamical systems. Constraint information is provided at

two different points, a starting point and a target point. There the goal is to find

a path (or trajectory) running between the points. Here a “chain” is a collection of

inserts, P1, P2, ..., Pn such that each Pi has a read that overlaps a read of Pi+1 for

1 ≤ i < n, and the orientations of the overlapping reads are opposite, as shown in

Figure 1. The chain is said to span the insert J . Our initial goal is to find chains of

small inserts spanning each large insert. The chain goes from the read at one end of

the large insert, the starting point, to the other end. Of course we use estimates of

the length of the short and long inserts to set a maximum and minimum allowable

chain length.

Building a neighborhood structure. The shooting method allows us to

find out which 10K inserts belong to chains spanning which BACs. We do not

actually create all these chains to determine this. There will still be spurious overlaps

so we must use this information carefully. We now invert the process. Any chain acts

like a local coordinate patch. The problem of building a global map is one of putting

together these local coordinate patches to create the global map, a standard concept

in dynamical systems on surfaces. In this case, the surface is one dimensional.

22

2.3 Requirements for data and the generation of faux reads

We have developed the techniques in this paper using faux data of the Celegans

genome.

2.3.1 Requirements

For our assembly technique to be applicable, we have to impose three require-

ments on the shotgun data. The requirements are as follows.

• Insert size requirement. We require that at least two libraries of mate

pairs with insert sizes that differ by a factor of 4 to 20 are provided. They

may be, for example, BACs (120-200Kbp long) and 10Kbp mate pairs. Ideally,

we prefer 3 or more libraries.

• Coverage requirement. We require at least 10 times insert coverage by the

biggest mate pairs (BACs) and at least 2.5 times end sequence coverage by

smaller mate pairs from all other libraries.

• Read length requirement. We require that for each insert in the libraries

mentioned above we are given both end sequences (reads) with average read

length of at least 400 bases.

These requirements have been determined after extensive experiments with

real-quality faux reads from C. elegans genome. At the present time most sequencing

projects produce or intend to produce data that easily meets our requirements.

23

Rat assembly at Baylor For example, for rat genome the following libraries

are available: a library of BACs with average insert size of 186Kbp, a library of

10Kbp mate pairs, a library of 2.5-5Kbp mate pairs and some 50Kbp mate pairs.

BAC insert coverage is 11.9 times (database CHORI-230). The intended coverage

by 10Kbp mate pair ends is 2.9 times and coverage by 2.5-5Kbp mate pair ends is

10.7. We expect this dataset to be close to ideal for our assembler. The proprietary

Celera read library for Drosophila also satisfies our requirements as well as the public

read library for the mouse. The rat data has the additional advantage that many

BACs have been lightly shotgun sequenced (1x to 1.5x coverage).

2.3.2 Overlap experiments with C. elegans using faux reads

The C. elegans genome is known to be particularly hard to assemble, due to its

rich repeat structure. It was originally put together by the method of BAC-by-BAC

sequencing [6, 7, 8]. We used the most up-to-date sequence available.

The C. elegans results in this paper were obtained using a library of faux

reads we created giving 6 times coverage of the genome. Starting with the genome

we generated the faux reads with errors in the bases using a method very similar to

the rather realistic approach of the Whitehead Institute group, as reported in [4].

We have generated 2.8x coverage by the ends of 10Kbp-long mate pairs, 2.8x

coverage by the ends of 2Kbp-long mated pairs, 0.06x coverage by the ends of 50

Kbp-long mate pairs and 0.06x coverage by the BAC ends. We introduced a variation

into the insert sizes so that the standard deviation of length was 10%. The resulting

24

database contained 1,065,846 reads with an average length of 537 bases. The overall

error rate for bases was 0.86%. We use faux reads because with actual reads it

is impossible to be certain where the errors are and which reads actually overlap.

(Faux reads also have some problems, which are described in some detail in [4].)

As mentioned earlier, the reads have errors in their sequences. We did not

mention but it is true that when the reads are created, each letter in each sequence

is automatically assigned a “quality” value which estimates the probability that an

error occurred in determining that letter. We use this “quality” data in our overlap

procedures.

We can (sometimes) evaluate a list of plausible overlaps using two numbers:

Tratio = fraction of all true overlaps that are in the list

F/T = false/true = the ratio of spurious overlaps in the list to true overlaps

We determine which pairs of reads overlap with very few spurious overlaps.

We are able to use roughly 50% more sequence data, since we can deal with higher

error rates, obtaining F/T = 7.6% and Tratio = 99.5% with our C. elegans read

library. See the right-hand column of Table 3. We do this in several stages using

sequence and quality data.

2.4 Validation and the chain assembly technique

2.4.1 Validation of mated pairs

Let us begin with more precisely defining terminology used in this section. A

chain is a sequence of mate pairs of reads, Pi = (Li, Ri), for i = 1, ..., k, where read

25

Plausible overlap

L1

L2

L3

L4

L5R1

R2

R3

R4

R5

Figure 2.1: A progression of inserts making up a chain using plausible overlaps.

Reads are denoted by the arrows indicating the direction in which the read has been

read, and the dashed line connecting them is the unsequenced part of an insert. We

indicate that two reads overlap by placing one above the other.

Ri plausibly overlaps read Li+1. Recall that a mate pair consists of two reads from

the ends of an insert of approximately known length (2Kbp, 10Kbp, etc.) If a chain

spans a BAC, that is, L1 plausibly overlaps with a BAC end and there exist a chain

of length k for which Rk plausibly overlaps with the other end of the same BAC,

such chain is said to span the BAC. If the calculated length of the chain is within

the combined uncertainty of the mate pair and BAC length, we call such chain a

valid chain. Each mate pair in the chain becomes validated by this BAC.

Since an overlap may be spurious, chains can link parts of the genome that are

far apart. Starting from one read, the number of chains increases exponentially fast

due to multiple coverage and repeat regions. Specifying a target (the other end of

a large insert) greatly reduces that problem. This process to some extent validates

the overlaps in the chain. It also validates the long mate pair, since some fraction of

the inserts yield chimeric mate pairs. It is unlikely that a chain of the appropriate

26

Small insert

Large insert

Figure 2.2: Four inserts constituting a chain that spans a larger insert; The col-

lection (P1, P2, P3, P4) of small inserts is such a chain, which we call P . The left

reads of P1 and the big insert, J , overlap and have the same orientation. Similarly

the right reads of J and P4 overlap and have the same orientation. Under these

conditions, we say the chain P spans the insert J .

length would span a chimeric pair.

2.4.2 Practical considerations

IZZn practice, we do not actually store all possible chains since there are too

many of them. Instead, we start from one end of a BAC and follow the “wavefront”

of all the mate pairs (from a given library) that extend in the direction of the other

BAC end. Every mate pair that is used in this construction is assigned a distance

from the originating BAC end based on the nominal insert sizes (2k, 10k etc) of

the previous mate pairs that have been used to get to it. A similar “wavefront” is

started from the opposite end of the same BAC and the mate pairs that are used

27

in both directions are then considered for validation. Provided that the wavefronts

are extended far enough (see below), the result is a collection of mate pairs that are

equivalent to those obtained by considering all chains spanning a BAC.

As mentioned above, the presence of repeat regions and consequently spurious

overlaps in the vicinity of a BAC complicates efforts to correctly associate the rela-

tive position of a candidate mate pair with respect to the BAC. We therefore impose

several constraints on a candidate mate pair if it is to be validated by a BAC. They

are as follows:

• Chain length constraints. We require that the calculated distances of mate

pairs from the BAC ends are consistent with the estimated BAC lengths.

Such a constraint is necessary in dealing with regions that are (exactly or

approximately) repeated within the span of a given BAC; these kinds of repeats

can cause discontinuous jumps over sections of the genome, leading to chains

that arrive at the other end of the BAC prematurely. Unfortunately, even a

chain composed of only non-spurious overlaps will have some uncertainty in its

length due to the variation of insert sizes within a library. This, coupled with

the uncertainty in the length of the BAC insert makes it necessary to accept

mate pairs whose distances from the BAC ends falls within a certain range.

We note that paths that encounter short repeats (relative to the insert sizes

making up a chain) that are repeated outside of the span of a BAC will not

in general, cause a problem since it is unlikely that they will contribute mate

pairs that will be encountered by the wavefronts originating from both ends

28

of the BAC. In our experiments on the faux Celegans data, we have accepted

chains that have calculated lengths that are within 30% of the mean BAC

length. Simulations have shown that a larger range is preferable to a narrow

one.

• Directional constraints. A further requirement we have imposed is that an

insert should be used from both of its ends (reads). This constraint has been

necessary to counter the effects of ”reverse” repeat regions where a section of

DNA is repeated (exactly or approximately) in reverse order somewhere else

in the genome. These types of repeats cause paths to reverse direction and

fold onto themselves.

• Recording of distances. As we follow the mate pairs that are used in

extending a wavefront from a BAC end, we allow for the possibility of an insert

being used multiple times. This is especially necessary when the variation of

the insert sizes within a library is large or when a combination of libraries is

used in forming chains as in a chain of alternating 10k’s and 2k’s. However,

only the first calculated distance is used.

The procedure discussed above is not limited to any particular set of insert

libraries. For specificity, we might assume we had three libraries of inserts of mean

length 2 Kbp, 10 Kbp, and 150 Kbp. We refer to the individual inserts as a 2K,

10K, or a BAC, respectively. Of course only the sequences of the end reads of these

are available. For the results mentioned in this paper, we have spanned (i) BAC’s

with 10K’s, (ii) BAC’s with 10K’s but where alternating 2K’s are allowed and (iii)

29

10K’s with 2K’s.

2.4.3 Chain assembly

The next step is to start assembling the genome for the neighborhood-based

chains. The important point is as follows. Since we have a bit of a global structure,

we can now create an assembly in which we only use an end of an insert if we can

also use the other end in a position appropriate for the length of the insert. We will

describe this procedure in more detail after describing our overlap procedure. Our

overlap procedure is important because it produces relatively few spurious overlaps.

For the shooting method to work, we cannot have the chains starting from one read

quickly reaching everywhere in the genome, as would be the case if each read had

on the average 10 spurious overlaps for each true overlap.

The goal of this method is to build a chain through the entire sequence of a

chromosome using only the validated mate pairs. Once the chain is obtained, the

sequence of BACs is found as the BACs that validate the mate pairs along the chain

and this sequence is our first guess for virtual physical map. We proceed as follows.

Step 1. For each BAC B all mate pairs that belong to all possible valid chains

through B are found and marked as validated by B.

Step 2. Starting from a random mate pair P0 that is validated by at least a

number of BACs equal to a half of BAC coverage, a chain is built according to the

following scheme. We record the BACs that validate P0 and call it the current

neighborhood {B}. Then we pick the set of validated mate pairs {P}1, that

30

overlap one end of P0 in the relative reverse direction. Next, we assign a score to

the members of {P}1 as the ratio of the weighted number of validating BACs, that

are also in {B}, to the total number of validating BACs for each mate pair in {P}1.

For each BAC we record how long it has been in current neighborhood (erroneously

placed BACs can be found later using the information about how long the BACs

were present in the current neighborhood, and this is how we refine our first guess

for virtual physical map). In calculating the scores for candidate mated pairs one

of which will become the next link on the chain, the BACs that have been on the

current neighborhood longer are considered more reliable, and they are accordingly

given a larger weight. This way we ensure the slowest rate of neighborhood change.

We pick the mate pair P1 with the highest score and add its validating BACs into

the current neighborhood {B}, noting their relative starting position with respect

to the BAC list that we have started with. In general BACs are added to the current

neighborhood and removed from it as they are no longer validating recent mate pair

additions to the chain. The process of building the chain is carried on until there is

no way to continue with a validated mate pair or if all mate pairs in the current set

{P}k have a score of zero. If one of these situations occurs, then we use a standard

tree search algorithm that allows us to step back for a certain number of steps and

attempt to find an alternate chain. If it proves impossible to extend the chain any

further, we stop and go back to P0 and use the same technique to extend the chain

in the opposite direction.

Once a chain is found, we verify it for consistency by starting at each end

and using our software to build alternate chains. Our algorithm is stable enough to

31

BAC 1

BAC 2 BAC 3

Mated Pair

Figure 2.3: A small insert can be a part of chains spanning several large inserts,

shown here as BAC 1, BAC 2 , and BAC 3 (of all the inserts making up the chains

across the BACs, only one that is common to all three is shown). We say that the

small insert has “neighborhood” of BAC 1, BAC 2 , and BAC 3.

construct a chain that is almost identical when going in the opposite direction. We

then compare the physical maps belonging to these alternate chains and if inconsis-

tencies are found, we split the chain into pieces. If the resulting chain is consistent

in both directions, we call it a reliable chain. Once we have a set of reliable chains

covering the genome multiple times, we then use the virtual physical map informa-

tion to piece them together into one reliable chain spanning the entire contiguous

sequence.

The advantages of our technique are: (i) it allows one to build a physical map

and identify the relative positions of the mate pairs and BACs in the genome at

low coverage levels, and thus at relatively low cost; (ii) it saves money on doing the

fingerprinting, providing the same results in the end; (iii) it is easy to implement

and fast to execute.

32

In Stage 2 of our assembler we use only the mate pair data to find the relative

positions of BACs, or, in other words, build a virtual physical map of the genome.

We also produce a reliable chain of mate pairs spanning the entire sequence of the

chromosome. We are able to create a physical map and a chain path continuously

spanning over 99% of the C. elegans genome in our experiments.

If we are provided with enough BACs so that their end reads cover the genome

0.05 times on the average, then as one moves along the genome, the left end of a BAC

will be encountered on the average every 20,000 bases. Since BACs are typically

150Kbp long, it follows that the average 10K will lie in about 7 BACs. A 10K will

typically belong to chain spanning many of these. We say that the BAC validates

the 10K. The neighborhood of a 10K is the set of all the BACs which validate the

10K. The next step is to create a completely new chain of 10Ks. (Some 2Ks may be

used sparingly). In topological terminology, a neighborhood N of a set P contains

points that close to P but is also permitted to contain some points that are far away.

Due to repeats, the neighborhood of a 10K may indeed contain BACs that are far

from the 10K. The goal is to create a chain as long as possible, perhaps running

the length of a chromosome, such that the neighborhoods change slowly along the

chain. We create a chain of validated 10Ks with the property that as one moves

along the chain, the neighborhoods changes as slowly as possible. The following

small-scale example may help. Assume that P1, P2, P3, P4, P ′

4 are validated 10K’s

and that the following table lists their neighborhoods (reduced in number here for

simplicity). The BACs are labeled B1, B2, etc.

33

P1 is validated by B1

P2 is validated by B1 and B2

P3 is validated by B1, B2, B3, B4

P4 is validated by B1, B2, B5

P ′

4 is validated by B3 and B4

Assume further that P1, P2, P3, P4 is a chain as is P1, P2, P3, P ′

4. The idea here is

that P3 is in a repeat region and that while B1 is close to B2 and B3 to B4, the first

pair may be far from the second pair. Should we choose the chain ending in P4 or

P ′

4? The answer is P4, since its BACs have been in the chain longer than those of

P ′

4. Choosing P4 results in a chain in which the neighborhoods change more slowly.

BACs that have been in the chain for fewer neighborhood 10Ks are weighted less in

this consideration.

Such a neighborhood-based chain, allows us to see the overall structure of

a large piece of the genome. The BACs like B3 and B4 that are in neighborhoods of

the chain only briefly, that is for say one or two 10Ks are ignored. Then we have the

beginnings of a global map for this region with the chain running from B1 into B2

and then possibly into B5. Of course this global map can and will be significantly

refined.

2.4.4 Chain assembly results

To test our methods, we used the C. elegans faux reads described in Section

3.4. We validated 2K’s and 10K’s against BACs and 50K’s. We have also validated

34

the 2K’s against 10K’s. After validating the 2K’s and 10K’s, we end up with 98%

of them being validated by at least one BAC, 50K or 10K. Then we built chains

with 2K’s and 10K’s. Fig. 2 shows chains obtained, that span the chromosomes 3

and 4. The individual mate pairs are shown as dots. The vertical coordinates of the

dots show the relative locations of the mate pairs within chains, and the horizontal

coordinates the their actual locations in the genome, so the correct chain should

look like a continuous upward – sloping line. The chain through Chromosome 3

contains two misplaced mate pairs. We have examined this case and came to the

conclusion that in terms of consensus sequence it would not constitute a problem,

because these mate pairs are completely inside identical copies of repeat regions and

the algorithm just picked up the copies of mate pair belonging to different copy of

the repeat region.

35

0 5 10 15 20 25 30
Number of common validating large inserts (10 kb)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Pr
ob

ab
ili

ty
 (

%
)

Figure 2.4: The probability of encountering a spurious reverse overlap between

reads belonging to 2kb inserts after they have been validated using 10kb inserts.

The horizontal axis denotes the number of common validating 10kb inserts the 2kb

inserts have. The peak to the left of the figure is due to two effects: i) Most (reverse)

spurious overlaps between 2kb inserts do not have common validating 10kb inserts,

and ii) a significant number of small inserts near the ends of the big inserts are not

validated. In other words, during validation, it takes some steps before a “wavefront”

of small inserts starting from one end of a large insert to “decohere” due to insert

size uncertainties. We note that the ratio of false (spurious) overlaps to true overlaps

in this dataset is about 1 %.

36

0 1 2 3 4 5 6 7 8 9 10

x 10
7

0

2000

4000

6000

8000

10000

12000

Figure 2.5: The chains through the entire genome of the C. elegans . The individual

mate pairs are shown as dots. We number the mate pairs consecutively according to

their position on the chain. For each mate pair the vertical coordinate is its number

in the chain and the horizontal coordinate is its actual position in the genome in

units of bases.

37

Appendix A

Minimizers

Here we describe a method that we use to greatly reduce the amount of time

and storage needed for overlap pairing. We select an ordering for the set of all k-mers

of fixed length k. To facilitate this ordering, we assign a different digit (0, 1, 2, 3) to

each of the 4 bases A, C, G, T and then, thinking of k-mers as k-digit numbers, use

the numerical ordering.

To find a “minimizer”, we examine m consecutive k-mers and select the small-

est, in the sense of our chosen ordering. More precisely, if S is a string of m + k − 1

bases, then it contains exactly m consecutive k-mers, where “consecutive” means

each k-mer is shifted by one base from the previous one. (The “first” k-mer of S

begins with the first base, and the jth k-mer begins with the jth base.) If M is the

smallest k-mer in S, then we say M is the simple minimizer for S. (“Simple”

denotes the fact that we do not examine the k-mers of the reverse complement of

S.)

For a string S or a read X, we denote its reverse complement by −S or −X.

An (absolute) minimizer for S is a k-mer that is the smallest of all the k-mers in

both S and −S. By definition, S and −S have the same minimizer.

Finally, we define the m-minimizers of a read X to be those k-mers in X

that are absolute minimizers for some substring S of X with length m + k − 1. In

38

nontechnical discussion we will often call a/ m-minimizers simply a minimizer.

Fact: If two reads have an error-free overlap of at least m + k − 1 bases, then

they must have a common m-minimizer.

Fact: A read has the same m-minimizers as its reverse complement.

We say the offset of a k-mer M in a read is n if the first base of M is the

n-th base of the read.

Fact: Two consecutive m-minimizers in a read have offsets differing by at

most m.

Hence if m ≤ k, then Property M1 above holds. That is, the collection of

m-minimizers cover the entire read, except for at most m − 1 bases at each end.

Property M2 above also holds, in that two reads with error-free overlap of many

more than m + k − 1 bases will have several common m-minimizers.

Example. Let k = 20 and m = 20, and let X be a read of length 400. Then

it must have at least 19 minimizers. The first minimizer has offset at most 20, the

second at most 40, etc. Similarly, if two reads overlap by 400 bases then they must

have at least 19 common minimizers.

There are a number of orderings that can be used for defining the minimizers

of a read; below is one example. What is important is that the same ordering should

be used for all of the reads.

Example. For the results reported in this paper, we assign the values 0, 1, 2, 3

to C, A, T, G respectively for the odd numbered bases of m-mers and assign 0, 1, 2, 3

to G, T, A, C respectively for the even numbered bases. The purpose is to avoid

having minimizers that start with relatively error-prone strings like AAAAAAAA

39

or CCCCCCCC.

Appendix B

UMD Assembly Pipeline

In this section we present the UMD assembly pipeline. We start with a set of

error-corrected and retrimmed WGS reads and BAC reads along with their overlaps

obtained from UMD overlapper[32]. The general strategy is to pick a reliable subset

of the total set of all overlaps such that the resulting assembly had the most sequence

that matches the finished sequence with the least error rate. We provide details on

how we compare the assembly to the finished sequence in the Appendix. We use

a version of Phrap [17] contig assembly software that we have modified to ignore

overlaps that are not contained in a list that we provide. While Phrap computes its

own overlaps, our modified version excludes overlaps that are not on our list, forcing

Phrap to use overlaps from the intersection of two sets: the overlaps it computes,

and those that we provide. We call this modified version of Phrap, “PhrapUMD”.

The technical details are presented in the Appendix C. Finally, we use ATLAS to

build scaffolds from reads and contigs built by our version of Phrap.

B.1 UMD Unitigger

Our first take on creating a reliable set of overlaps was to design a unitigger

and declare all overlaps used in the unitigs to be reliable. On the scale that trades

erroneous connections for unitig length, our experience is that existing unitiggers do

40

a reasonable job of avoiding erroneous connections, but sometimes extend unitigs

at the expense of an occasional erroneous connection. The current version of the

UMD unitigger, in contrast, is designed to lie far towards the conservative end of

this scale, with the goal of making absolutely no incorrect connections. Here, “no

incorrect connections” means:

(a) If we are in a non-repetitive part of the genome, the unitig will contain all

reads that come from this part of the genome (unless they are very short or

have excessive errors) and no others.

(b) If a unitig represents more than one part of the genome, all reads that come

from these parts of the genome are in the unitig and no others.

For example, if a unitig of length 5,000 bases represents portions of the genome

beginning at bases 0, 100,000, and 200,000, and no others, then the unitig will have

all reads that lie between bases 0–5,000, 100,000–105,000, and 200,000–205,000, and

not contain any others, with the same caveat about length as in case (a) above.

The approach to the prior parts of our assembler (overlapper and error correc-

tor) has been to avoid making mistakes, at the cost of missing some opportunities to

improve various statistics. The goal of this unitigger is the same. The UMD unitig-

ger typically yields shorter unitigs than other unitiggers, but our experience is that

the probability of a misassembly in our unitigs is smaller than in currently avail-

able unitiggers. We tested the UMD unitigger on faux shotgun data from both the

1.64 megabase genome of the bacteria Campylobacter jejuni, and the 100 megabase

genome of the nematode C. elegans. No misassemblies were found, where a misas-

41

NHGRI gdoj gefh gmez gsgv gxwb gymn gzle

Baylor gbyz gdwn gexm ggkp gixt gqqd grmx

gsfk gsta gtgf gxfc gzjc kbqm kdfe

Figure B.1: The 21 Baylor BACs studied, 7 covered by sequence independently finished

at NHGRI, and 14 finished by Baylor.

sembly is defined as in (a) and (b) above. The bacteria had 15X coverage, while C.

elegans had 6X coverage. Our hope in taking such a conservative approach is that if

a mistake is made later in assembly, one can eliminate the places one needs to look

for errors since they don’t occur in the unitigs.

B.2 Binning of reads

We start with about 33 million WGS rat reads, along with some BAC reads

(reads that are known to belong to the interior of certain BACs). The first step

of our procedure on the rat is to run the UMD overlapper [32] on the entire set

of rat reads (both BAC and WGS reads taken together as one homogeneous set),

which have been trimmed to the traditional 2% error rate. This gives us about

200× 106 overlap pairs, with the reads having been error-corrected out to their 2%

trimmed length. Then we use our unitigger to build unitigs (uniquely assemble-able

sequences). We found that overlaps of reads in a unitig are extremely reliable. The

following reads are associated with a BAC B: the set B0, which is the set of BAC

reads for B; the set A1, which includes any read that directly overlaps a read in B0

(including BAC reads from other BACs); the mates of those reads in A1; and reads

42

sharing a unitig with a read from B0, as long as the read is within 2000 bases of the

nearest B0 read in the unitig. This last condition is designed to exclude reads that

may lie beyond the end of the BAC, since even with 1X coverage by BAC reads it

would be very unlikely to see 2000 bases inside a BAC without seeing a BAC read.

We tested the efficacy of this approach by looking to see how often both mates of

a 2kbp-long WGS insert were correctly binned in this fashion. In a typical BAC

with about 2,000 WGS reads, only 5–10 binned reads had mates that were interior

to the BAC (according to comparisons with finished sequence) but not binned. The

remaining mates were exterior to the BAC, and so it was correct not to include them

in the bin. A WGS read is allowed to be binned into more than one BAC, for two

reasons: first, BACs overlap and so a WGS read may lie in the area of intersection

and legitimately lie in both BACs; and second, because we don’t want to allow an

incorrect binning of a WGS read to exclude that WGS read from its correct bin.

Reads that globally appear (illegally) in multiple places in the assembly are resolved

later.

B.3 Contig merging

The results of assembly using reliable overlaps have shown that by imposing a

restricted set of overlaps onto PhrapUMD, we are able to build a set of high-quality

contigs. However, our conservative approach of handling repeats can result in some

ambiguous repeat overlaps not being resolved by overlap information alone.

One way around this problem, which we have adopted, is to consider adjacent

43

contigs in the scaffold and determine which of these can be merged without the

introduction of additional reads. In this procedure, PhrapUMD is run once on the

full set of BAC reads with the conservative set of overlaps as a constraint. The

resulting contigs are then processed using ATLAS-scaffolder. We then consider the

reads flanking the gaps in the scaffold and see whether they overlap according to

the less stringent set of overlaps. If this is the case, the overlap between these two

reads is added to the original set of conservative overlaps. We find that a second

pass of PhrapUMD using this extended set results in many fewer contigs without

sacrificing the error rate of the resulting sequence or the fraction of finished sequence

spanned. These contigs are then re-scaffolded to get the final result. We call this

procedure ”contig merging”. In this way, we effectively force Phrap to use mate pair

information in building contigs.

In practice, it is found that adding only the overlap between reads on either

side of a gap is usually not enough; for consistency in the contig layout, other

overlaps may need to be added. It is also possible that adjacent contigs will not

merge because either or both of the contig ends are spurious. This case is checked

by alternately removing the last reads from the adjacent contig ends and trying a

merge on the resulting stripped contigs. Furthermore, an inspection of the scaffolds

produced by ATLAS has shown that small contigs can be erroneously placed behind

others. We have successfully corrected may of these cases by considering the merging

of small contigs not only with their given neighbors but also with their neighbors

44

one contig away.

Appendix C

Comparing scaffolded assemblies

C.1 Scaffolds and Xcontigs

A scaffold consists of ordered and oriented contigs. The unknown sequence

between a pair of contigs is represented by a string of ‘N’s whose length is approx-

imated from mate pair information. Since these bases are unknown, it is unclear

how we should evaluate them in an alignment. We believe that they should count

neither as errors, nor as contributing to “total sequence”, and we prefer to avoid

their evaluation altogether. To that end, we introduce the idea of an “Xcontig”,

which is a maximal contiguous sequence of non-‘N’ bases in a scaffold — that is, a

maximal length sequence in a scaffold containing only the letters A, C, G, and T.

Some Xcontigs can be very short. In the following, we consider only Xcontigs that

are 1kbp or longer. We then match these Xcontigs against finished sequence.

For a given BAC, we count the number of bases of finished sequence matched

by Xcontigs longer than 1kbp. (That is, if more than one Xcontig covers a certain

finished base, the base is only counted once.) The aggregate results stated below are

simple sums over all BACS, as if all BACs were independent (despite their sometimes

overlapping).

45

C.2 Using Blastz to match Xcontigs to finished sequence

We use Blastz (citation) to do the matching. Experience has shown that if an

Xcontig has more than one Blastz match to finished sequence, the longer match is

not necessarily the more desirable one. Often, another match with a slightly shorter

length but many fewer errors will be present, and better alignments can be found

by defining a score S that severely penalizes errors. If K is the factor by which we

penalize each base error, we define the score of an alignment to be

S = alignment length − K ∗ (number of discrepancies).

for each alignment. If an Xcontig has an alignment of at least 1kb with a positive

score then the highest-scoring such alignment is called the successful match. We

have chosen K = 125, which means that a successful match can have at most a

0.8% error rate, compared to finished sequence. The “tails” of an Xcontig are the

parts at either or both ends that are outside the successful match. See Figure C.1.

Tails delimit a match but are not involved in its scoring. Xcontig sequence that

runs off the end of finished sequence is not considered a tail and is not counted

anywhere. This is justified because the precise endpoint of finished sequence in a

BAC is arbitrary, and although a correct scaffold can extend beyond the boundary

of this finished sequence, we restrict our analysis to Xcontig sequence that matches

finished sequence.

We have seen a number of cases where Blastz fails to identify ends of alignments

as tails. These ends can involve large numbers of indels or substitutions (eg. up

to 50% of the bases) within a very short span (typically tens of bases) in what

46

<-------- Xcontig1 -------> Xcontig2

tail\ /tail / not tail

________________________/ _______/

<--------match---------> <match>

<-------------- finished sequence ------------>

Figure C.1: Schematic diagram of two Xcontigs that match finished sequence. Xcontig1

has a long match and short tails on both ends that do not match the finished sequence.

Xcontig2 has no tail, because on the left it matches finished sequence all the way to its

end, and on the right it runs off the end of finished sequence and is thus unverifiable. The

latter “non-tail” sequence is not counted anywhere in our analysis.

is otherwise a very solid match. Such cases should be part of a tail, but are not

currently counted as such, so we call them “tail errors”. We do not currently account

for them, and so they artificially inflate the error rate.

The default gap penalty for Blastz is set too low for our taste. A common

case involves the deletion of a number of consecutive bases followed immediately

by the insertion of a roughly equal number of bases (“gap-penalty errors”). Such

an alignment can be expressed more concisely in terms of approximately half the

above number errors as substitutions. This results in an error rate which can be

as much as twice as high as it should be. The parameters we have used for Blastz

comparisons are C=2 W=16 T=0 K=25000, where K is a threshold that helps eliminate

spurious matches (the default value for which is K=2500), W is the word length used in

47

initiating a match, and C=2 ensures that blastz uses a “chain and extend” approach

in matching sequences (the default is to not chain).

C.3 Defining errors

We define the total error rate across a set of BACs to be

∑
[insertions, deletions, and substitutions inside a match]

∑
[matching length of Xcontig]

,

where the sums are carried out over all matching Xcontigs in all BACs. (Note that

the denominator here is the sum of the matching lengths of Xcontigs rather than the

number of finished bases covered, and that all errors in the Xcontigs are counted.

For example, if two Xcontigs cover a given finished base, and both get the base

wrong, then both errors are counted.)

This error rate will include “base errors” which are isolated errors scattered

throughout the assembly, “tail errors” as defined above, and “internal errors” which

show up as contiguous blocks of insertions and deletions far from the edges of the

matching region (if these occur near the ends of the match, we would like to count

them as tails, but tail errors frequently confound this). Ideally, internal errors should

be distinguished from base errors but we do not do this here.

The largest internal error we have observed is a discrepancy concerning the

number of occurrences of a 19-base tandem repeat in the BAC “GSTA”. In this

case, nine reads overlap the region. Retrieving the uncorrected version of these 9

reads, visual inspection indicates that all 9 reads agree with our assembly and none

agree with the finished sequence. This suggests that the finished sequence contained

48

3 extra copies of this 19-base repeat element, for a total of 57 insertion errors in

the finished sequence. It is possible that the difference arises from a polymorphism

between the individuals donating the finished vs. the unfinished sequence, but in

any case we have modified our version of GSTA’s finished sequence to conform to

our version of the assembly since it is clear our assembly is correct given the reads

we use.

We also note that discrepancies between an assembly and its finished sequence

can arise at bases where the finished sequence (and possibly also the corresponding

base in the Xcontig) itself is of low quality, that is, with quality value 20 or less. We

refer to this situation as “sequence ambiguity”.

In our calculations of error rates, we make no distinction between the above

kinds of errors. While those such as internal errors may be legitimate sources of

discrepancies, others such as tail errors, sequence ambiguities and gap-penalty er-

rors will artificially drive up error rates reported in calculations. As the quality of

assembled sequence improves and we reach discrepancy rates between assembly and

finished sequence of less than 1 in 10,000 (as we do below) we can expect this issue

to become more relevant.

Appendix D

PhrapUMD

The aim of this section is to give a bief overview of the workings of Phrap for

the purpose of identifying the location and context of the UMD changes. Phrap

49

is a program that will take read sequences (and, optionally, quality values) and

output contig sequences and associated files. It follows a set of stages that can

be summarized as ”overlap”, ”layout”, and ”consensus”. The ”overlap” stage is

responsible for establishing a database of read pairs that plausibly overlap. A “seed-

and-extend” procedure is used here, where the read sequences are first scanned and

a list is made of all the possible k-mers that occur in all reads. Pairs of reads that

have common k-mers are identified as “candidate” overlaps and a plausible subset

of overlaps are then subjected to a Smith-Waterman analysis.

The crucial UMD modification involves intercepting function calls

to make new cand pair() and creating such a pair only if this overlap exists in the

approved overlaps database. We reproduce below the relevant part of the Phrap code

(for context) with our single-line modification. For brevity, we present only changes

to the code that alter the logic of Phrap; any additional supporting subroutines are

not shown.

void make_new_cand_pair(entry1, entry2, start1, start2, reverse)

int entry1, entry2, start1, start2;

int reverse;

/* offset currently not used -- but should be! */

{

Cand_pair *pair;

Cand_pair *get_cand_pairs();

int off, off_min, off_max, temp;

50

Segment *insert_segment();

Seq_entry *get_seq_entry();

/* ------------- THIS LINE INSERTED BY UMD --------------- */

if(!exists_in_approved_db(entry1, entry2)) return;

...

}

51

BIBLIOGRAPHY

[1] F. R. Blattner et al. “The Complete Genome Sequence of E. Coli”, Science 277,

1453–1474 (1997).

[2] H. W. Mewes et al., “Overview of the yeast genome”, Nature 387, 737 (1997).

[3] The Genome Sequencing Consortium, “Genome Sequence of the Nematode

C. elegans : A Platform for Investigating Biology”, Science 282, 2012–2021

(1998).

[4] S. Batzoglou et al. “ARACHNE: A Whole Genome Shotgun Assembler”

Genome Research 12, 177-189 (2002).

[5] E. W. Myers et al., “A Whole-Genome Assembly of Drosophila”, Science 287,

2196–2204 (2000).

[6] A. Coulson et al., “Genome linking with yeast artificial chromosomes”, Nature

335, 184 (1988).

[7] J. Sulston et al., “The C. elegans genome sequencing project: A beginning”

Nature 356, 37 (1992).

[8] R. Wilson et al., “2.2 Mb of contiguous nucleotide sequence from chromosome

III of C. elegans” Nature 368, 32 (1994).

[9] J. C. Venter et al., “The Sequence of the Human Genome”, Science 291, 1304–

1351 (2001).

52

[10] J. Kececioglu and J. Yu, “Separating repeats in DNA sequence assembly”, in

Proceedings of the 5th ACM Conference on Computational Molecular Biology,

ACM Press, 176–183 (2001).

[11] M. T. Tammi, “Software Tools and Algorithms for Shotgun Sequence Assem-

bly”, Ph.D. Dissertation 2002, Acta Universitatis Upsaliensis, Uppsala (2002).

[12] P. Green, http://phrap.org/phrap.docs/phrap.html

[13] M. Waterman, An Introduction to Computational Biology , Chapman and Hall

(1995).

[14] P. A. Pevzner, H. Tang, M. S. Waterman, “A new approach to fragment assem-

bly in DNA sequencing” in Proceedings of the 5th ACM Conference on Com-

putational Molecular Biology, ACM Press, 256–267 (2001); “An Eulerian path

approach to DNA fragment assembly”, Proc. Nat. Acad. Sci. 98, 9748–9753

(2001).

[15] J. K. Bonfield, K. Smith, R. Staden “A new DNA sequence assembly program”,

Nucl. Acid Res. 24, 4992–4999 (1995).

[16] R. D. Fleischman et al., “Whole-Genome Random Sequencing and Assembly

of Haemophilus influenzae Rd.”, Science 269, 496–512 (1995).

[17] Green, P., PHRAP documentation (1996).

[18] P. Green, “Against a whole-genome shotgun”, Genome Res. 7, 410–417 (1997).

53

[19] X. Huang, “A Contig Assembly Program Based on Sensitive Detection of Frag-

ment Overlaps”, Genomics 14, 18–25 (1992).

[20] X. Huang, “An Improved Sequence Assembly Program”, Genomics 33, 21–31

(1996)

[21] R. M. Idury and M. S. Waterman, “A New Algorithm for DNA Sequence As-

sembly”, J. of Comp. Bio. 2(2), 291–306 (1995).

[22] J. D. Kececioglu and E. W. Myers, “Combinatorial Algorithms for DNA Se-

quence Assembly”, Algorithmica 13, 7–51 (1995).

[23] S. Kim and A. M. Segre, “AMASS: A Structured Pattern Matching Approach

to Shotgun Sequence Assembly” J. Comput. Biol. 6(2), 163–186 (1999).

[24] J. Mullikin et al., ftp://ftp.ensembl.org/traces/human/qual/Chr 20/.

[25] E. W. Myers, “Toward Simplifying and Accurately Formulating Fragment As-

sembly”, J. Comput. Biol. 2, 275–290 (1995).

[26] F. Sanger, S. Nicklen, A. R. Coulson, “DNA sequencing with chain-terminating

inhibitors”, Proc. Natl. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

[27] G. G. Sutton et al., “TIGR Assembler: A New Tool for Assembling Large

Shotgun Sequencing Projects”, Genome Sci. and Technology 1, 9–19 (1995).

[28] J. C. Venter et al., “Shotgun Sequencing of the Human Genome”, Science 280,

1540-1542 (1998).

54

[29] G. Vogel, “Sanger Will Sequence Zebrafish Genome”, Science 290, 1671 (2000).

[30] J. L. Weber and E. W. Myers, “Human Whole-Genome Shotgun Sequencing”,

Genome Res. 7, 401–409 (1997).

[31] Dan Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science

and Computational Biology , Cambridge Press (1998).

[32] M. Roberts et al., “Reducing storage requirements for biological sequence com-

parison”, Bioinformatics 20, 18 (2004).

55

