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This experimental research is part of a larger project whose broad goal is to

improve our understanding of the dynamics of breaking bow waves including the

entrainment of air bubbles into the flow and the generation of turbulence and vor-

ticity. The bow waves studied in this project are generated with a technique known

as 2D+T. In this technique, a two-dimensional wave maker moves horizontally and

deforms in a manner that approximates the time varying intersection of one side

of the hull of the three-dimensional ship and a fixed vertical plane oriented normal

to the ships path. Under many conditions, the wave generated by the wave maker

breaks by the formation of a plunging jet and creates a turbulent two-phase flow.

The specific objectives for this thesis were to construct the wave tank; assemble,

test and improve the 2D+T wave maker; develop a technique for measuring the

wave profiles; develop a holographic PIV technique for measurement of bubble size

distributions and motions; and to measure and analyze the surface profile histories

of the wave system as a function of the equivalent forward speed of the ship model.



Measurements were performed for ship model profiles simulating a realistic ship.

The histories of the surface profiles of the breakers were measured with a photo-

graphic technique that employs a laser light sheet, fluorescent dye and a high-speed

digital movie camera. The images record the wave profile at the center plane of

the tank where the light sheet intersects the water surface. The results of the mea-

surements include observations of the main features of the wave patterns, plots of

the entire wave pattern around the equivalent ship model, and the time histories of

various geometric parameters including the contact point of the water surface on the

hull, the wave crest, the plunging jet and the splash created by the jet impact. A

scaling study was made to examine the effects of the ship speed on these geometric

parameters.
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Chapter 1

Introduction

1.1 Definition and properties of breaking waves

The study of breaking water waves is of great practical and scientific interest.

Wave breaking plays a number of important roles in air-sea interaction including

limiting the height of the surface waves; generating ocean currents; enhancing mass,

momentum, and energy transfer between the air and water; dissipating surface wave

energy; generating vorticity and turbulence in the upper ocean; entraining air; and

generating spray. Likewise, breaking waves have a significant influence on the re-

sponse of remote sensing systems that attempt to monitor ocean conditions from

satellites and aircraft. Large breaking waves constitute a tremendous threat to ships

and engineering structures in the deep-ocean and coastal regions.

There are two major types of breakers: plunging and spilling. The most dra-

matic breakers are plunging breakers. In these waves, the breaking commences when

a forward moving sheet of water (jet) plunges down from the crest onto the front

face of the wave causing splashing, air entrainment, and turbulence. In spilling

breakers, turbulence appears spontaneously at the crest due to poorly understood

mechanisms. This turbulent fluid then spills down the front face of the wave, en-
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training air and creating water drops as it spills. In waves with small wavelengths,

surface tension tends to prevent drop and bubble formation.

Waves can break in deep water due to a variety of effects including inherent

instabilities of deep water waves, wave-wave interaction, wave-current interaction,

wind-wave interaction, or steepening due to external bodies such as ships. These

latter breakers are somewhat simpler than wind waves since, in a calm sea, the

forcing motion is well defined and there is no vorticity in the water except for that

found in the breaking zone itself.

1.2 Importance of ship generated breaking waves

Strong breaking waves occur near the bow and stern of naval combatant ships

moving in calm water. The character of the breakers depends on many factors

including the speed of the ship, the shape of the hull, and the distribution of weight

in the ship. Photographs of breaking wave fields around two naval combatant ships

moving at high speed are shown in Figure 1.1 and 1.2. In both photographs, the

breaking initiates in the form of a large plunging jet that originates as a sheet of

water, climbing up the hull just aft of the stem. Breaking waves have a number

of important consequences for combatant ships. First, the breakers convert energy

from the mean flow into energy in the turbulent flow in the wakes left behind the

breakers. This energy is supplied by the engine of the ship. Second, the breakers

create underwater sound due to the bubbles that are entrained. Finally, the breakers

create wakes that might be detectable by various above and below surface sensors,
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thus making the ship vulnerable to attack.

Figure 1.1: A photograph of a US Navy Frigate showing a strong plunging breaker

formed in either side of the bow.

1.3 The 2D+T concept

In the 2D+T technique, a two-dimensional wave board is deformed to mimic

the time-varying intersection of a fixed vertical plane and one side of the ship hull as

it moves at constant speed in a direction perpendicular to the plane. Wave maker

profiles at various times (t) represent the hull profiles at various streamwise locations

(x = Ut). The 2D+T approximation is useful for slender hulls, where streamwise

gradients of relevant flow quantities are small compared with vertical and transverse

gradients.

In this study, we used the 2D+T concept to simulate a 5415 ship model. Fig-

ure 1.3(a) shows a drawing of the 5415 ship model and 1.3(b) shows a photograph of
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Figure 1.2: A photograph of a US Navy Frigate showing a plunging breaker forming

from the bow.

the model. A series of profiles of one side of the model hull at different streamwise

stations from stem to mid-ship are plotted in Figure 1.4. In the 2D+T technique,

these profiles would represent the shape of the wave maker surface at various times.

It should be mentioned that for this study the bulb of the model (see Figure 1.3(b)

and 1.4) was not simulated since it is not well represented by slender ship approxi-

mation.

1.4 Objectives

This thesis is part of a larger project funded by the Office of Naval Research.

The broad goal of this larger project is to improve our understanding of the dynamics

of breaking bow waves including the relationship between the breaker and the hull

shape and Froude number, the entrainment of air bubbles into the flow, and the
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(a)

(b)

Figure 1.3: Ship model 5414: (a) drawing and (b) photograph.
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Figure 1.4: Profiles of the 5415 ship model at various stations from stem to mid-ship.

generation of turbulence and vorticity. For reasons discussed later, the bow waves

studied in this project are generated with the 2D+T technique discussed above. The

specific objectives for this thesis are to construct the wave tank, construct and test

the 2D+T wave maker, adapt a laser induced fluorescence technique for measuring

the wave profiles, develop a holographic technique for measurement of bubble size

distributions and motions, and to measure and analyze the surface profile histories

of the wave system as a function of equivalent forward speed of the ship model.
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1.5 The dissertation outline

This dissertation is divided into six chapters. In Chapter 2, the literature

on aspects of breaking waves relevant to the present work is reviewed. Five major

areas are covered including three-dimensional steady breaking ship bow waves, two-

dimensional steady and unsteady breaking waves, 2D+T approximations of breaking

ship bow waves, and finally air entrainment due to the wave breaking. In Chapter

3, the test facilities, measurement techniques and procedures for the research are

described. The development of a holographic particle image velocimetry (HPIV)

system is presented in Chapter 4. This technique will be used in future work to

measure the size distributions and motions of bubbles entrained in the flow. The

results of the surface profile history measurements are presented and discussed in

Chapter 5. Finally, the conclusions of the research are given in Chapter 6 along

with a description of future plans for the 2D+T project.
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Chapter 2

Related studies on breaking waves

2.1 Three-dimensional steady breaking ship bow waves

The wave pattern around the bow of a ship mainly depends on the shape of

the ship, the distribution of weight inside it, and the Froude number, Fr = U/
√

gL

where U is the ship speed, g is the acceleration of gravity and L is the ship length

along the calm water line. For blunt shapes, breaking occurs ahead of the bow,

whereas for fine ships with a sharp stem, the free surface flow moves upward on

each side of the hull and this water motion contributes to the formation of bow

waves which break for high ship speeds.

Scientific observations of bow waves were first reported by Froude, who called

them divergent waves (see Figure 2.1). Subsequently, Lord Kelvin, who knew about

Froude’s observations, calculated the wave pattern behind an infinitesimal distur-

bance. This wave pattern consists of sets of nested divergent and transverse waves,

see Figure 2.2. After this publication, divergent waves have mostly been linked with

the Kelvin wave pattern.

A great deal of research, mostly by Japanese scientists, has been done on bow

waves. In their comprehensive article summarizing many years of their research,
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Figure 2.1: Divergent bow waves observed and drawn by Froude

Figure 2.2: Kelvin divergent bow wave pattern.
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Figure 2.3: Wave patterns around a fine ship model with a draft of 0.105 advancing

at Fn = 0.267. The aluminum powder film, which covers the free surface, is split on

the sides and behind the model.

Miyata & Inui (1984) reported an extensive experimental and numerical study on

the free-surface flow structure and wave pattern around several ship models. As part

of this work, they spread aluminum powder on the water surface for visualization

purposes and observed wave patterns around the models. A typical wave pattern

of a fine ship model being towed in their tank is shown in Figure 2.3. The camera

view emphasizes the divergent waves which have crests lines with nearly parabolic

shape. Behind the first wave crest downstream of the stem, the powder is disrupted

(seen as black regions in the photograph) indicating a turbulent free-surface flow.

Directly behind the ship model, the aluminum powder is displaced laterally and bare

(black) water surface is revealed. This black region seems to be due to boundary

layer separation.
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Miyata & Inui (1984) observed that the near-surface water velocity field and

wave pattern at the bow strongly depend on the Froude number. Pictures of wave

patterns around a model with a draft of 0.10 m and three different Froude numbers

created with three different forward speeds are shown in Figure 2.4. As can be

seen from the photographs, the angle between the wave crest lines and the model

centerline decreases with speed.

Miyata & Inui (1984) also found that the near-surface flow becomes turbulent

downstream of the first (breaking) wave crest. To study the structure of the flow

beneath the free surface, they used multi-holed Pitot tubes to obtain mean veloc-

ity fields. Distributions of measured disturbance velocities (equal to the measured

velocity minus the free stream velocity) are shown in Figures 2.5 and 2.6. The dis-

turbance velocities behind the wave crest are large, and their direction is almost

normal to the wave crest. Changes in velocities happen within a thin layer near

the free surface just ahead of the wave crest. This layer is the turbulent breaking

region that rides on the forward face of the wave. The velocity component normal

to the wave crest decreases significantly across the leading edge of this breaking re-

gion, whereas the parallel component remains almost unchanged. From this study,

Miyata & Inui noted an apparent analogy between bow waves and oblique shocks

in compressible flow; however, there is some controversy over the analogy.

A detailed study of the structure of the flow field within the breaking waves

generated by a ship model was done by Dong et al. (1997). The ship model (Naval

Surface Warfare Center Model 4817) is 3.05 m long and has a draft of 10.4 cm. In

these tests, the Reynolds number (Re = UL/ν where ν is the kinematic viscosity
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Figure 2.4: Wave patterns around a fine ship model with the draft of 0.10 advancing

at three speeds: Fn = 0.22, 0.26, and 0.30 from top to bottom, respectively.
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Figure 2.5: Distribution of disturbance velocity vectors on a horizontal plane, 10 mm

below the disturbed free surface

Figure 2.6: Distribution of disturbance velocity vectors on a vertical plane.
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of water) ranges from 2.8 × 106 to 7.4 × 106 and results were presented for Froude

numbers of 0.28 and 0.45, representing the characteristic structure of weak and

strong breaking bow waves, respectively. In these experiments, a particle image

velocimetry technique (PIV) was employed to obtain velocity distributions in the

near field of a ship model. Dong et al. also distributed fine aluminum powder on

the water surface to observe the wave pattern. They focused on the flow and wave

structures near the bow of the ship model including the liquid sheet attached to the

bow, the flow structure within the bow wave at different distances from the ship

model, and the mechanisms of vorticity production.

Dong et al. noticed that the bow waves for all conditions had some common

characteristics that became more pronounced and easier to identify with increasing

Froude number. Photographic examinations of the flow revealed the formation of a

thin liquid sheet on the hull upstream of the point where the bow wave separates

from the model. This liquid sheet is very thin, unsteady, and fluctuating in elevation

and thickness. Their results also show that the formation of a bow wave involves

considerable production of vorticity originating from the toe of the breaker. Most

of this vorticity remains close to the forward face of the wave and a small part of

that extends into the liquid. The vorticiy generated at the wave crest is fed into the

flow behind the crest in a series of distinct filaments that create a series of elongated

bumps on the free surface.

In agreement with Miyata & Inui’s (1984) results, Dong et al. show a consid-

erable amount of energy loss in the forward face of the wave near the toe. Also,

both studies indicate an abrupt change in the flow direction away from the ship on
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the forward face of the wave.

Roth et al. (1999) also made an experimental investigation of the flow field

around a ship model. Their measurements expanded upon the work by Dong et al.

by examining the bow wave flow at a higher Reynolds number (1.6 × 107) and a

Froude number of 0.30. They used a larger model with length, beam, and draft of

7.01, 0.89, and 0.31 m, respectively.

In the experiments of Roth et al. (1999) particle image velocimetry (PIV) was

also used to obtain velocity distributions in the near field of the models. The PIV

measurement planes were oriented normal to the wave crest line and tilted from the

vertical in order to view the light sheet very close to the free surface in the three-

dimensional surface wave field. Measurements were performed at successive stations

along the crest line. It was found that the breaking wave behaves like an unsteady

two-dimensional spilling breaker under surface-tension-dominated conditions. A toe

develops and a vortical region appears downstream of the toe. This region spreads

downstream close to the free surface as the distance from the hull increases.

The measurements in the experiments of Roth et al. (1999) were repeated

92 times at one measurement station and mean properties of the flow field were

obtained. A plot of the vorticity of the mean flow from these measurements is

given in Figure 2.7. As can be seen from the plot, there is a large main region

of clockwise vorticity and smaller region of weak opposite sign vorticity near the

free surface above the main vorticity region. Measurements of several terms in the

energy equation that contribute to the turbulence production were also measured.

According to the measurements, turbulence production is concentrated in the region

15



Figure 2.7: Contours of average vorticity in a tilted plane through the breaking bow

wave of a ship model. Negative vorticity is directed into the page. Fr = U/
√

gL =

0.3, where U = 2.51 m/s is the model speed and L = 7.01 m is the model length.

From Roth et al. (1999).

of highest shear downstream of the toe.

In both of the above described studies, breaking occurs without overturning

(plunging) of the free surface or substantial air entrainment where as at full scale

massive air entrainment and plunging breakers are found. These differences in the

flow at the two scales are due to the effect of surface tension as determined by the

Weber number, We = ρU2D/σ, where σ is the surface tension of water, ρ is the

density of water, and D is a characteristic dimension, say the model draft. Since σ

and ρ have the same values at both model and full scales and since the model speed
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must be chosen to keep the Froude number the same at both scales (U
√

D), the

Weber number is proportional to D2 and is much larger at full scale than at model

scale. Thus, the kinetic energy of the flow is higher relative to the surface energy

at full scale and the free surface deforms more readily resulting in the formation of

jets, drops and bubbles.
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2.2 Two-dimensional steady breaking waves

A number of investigators have concentrated on steady two-dimensional break-

ing waves. Quantitative investigation of the flow field in the breaker region of these

waves has been helpful in improving our understanding of the dynamics of the flow

in ship bow waves.

The mechanics of the steady breaking wave generated by a submerged hydro-

foil moving at constant depth and speed was first experimentally studied by Dun-

can (1981,1983), who made systematic measurements of the breaker. A schematic

of the experimental setup is shown in Figure 2.8. Duncan ran his experiments over a

range of speeds, depths, and angles of attack. Wavelengths, used in his experiments,

range from 0.22 m to 0.6 m. He observed the inception of breaking, and measured

the wave crest shape, the lengths and amplitudes of the breaking and following

waves, and the mean velocity distribution in the wake. Duncan found that waves

with steepness close to 0.102 can exist in either a breaking or a nonbreaking state.

When one of these steep waves is in the nonbreaking state, a surface drift current

in the direction of the wave travel can induce the breaking state. At this incipient

breaking state, the wave-induced drag on the hydrofoil reached approximately the

maximum drag associated with the a limiting-amplitude Stokes wave.

Duncan also studied the turbulent wake behind the breaking region and then

determined the resistance associated with the breaker. He performed horizontal and

vertical momentum balances for the breaking region. From this analysis, he noticed

that the weight of the water in the breaking region is supported by friction acting on
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Figure 2.8: Sketch of the experimental setup. From Duncan (1981).

the dividing mean streamline between the turbulent breaking region and the laminar

underlying flow. Therefore, he was able to relate the breaker weight to the wake

momentum deficit, and thus estimate the density of aerated fluid in the breaker. The

results show that upon the inception of breaking, a fully formed breaker appears and

a strong repression of the following wave train occurs. According to his experiments,

a large part of the pressure drag on the hydrofoil, due to the presence of the free

surface, appears as a momentum loss in the turbulent surface wake.

Battjes & Sakai (1981) experimentally investigated the turbulence induced by

a breaking wave generated by a submerged hydrofoil (see Figure 2.9) and compared

their results to a model developed by Peregrine & Svendsen (1978). Peregrine &

Svendsen (1978) observed that the turbulent flow following the breaking resembles

a turbulent mixing layer. In their model, at some distance downstream, the upper

region of the flow becomes affected by gravity, and for waves in shallow water, the

lower region is affected by the bottom. Further downstream, there is a wake or

decay region. Battjes & Sakai used laser Doppler velocimety to confirm the validity

of the model. The wake trailing the breaker was the main focus of their experiments.

They verified the model through the measurement and analysis of the mean flow, the
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turbulent intensities, the turbulent shear layer stresses, and their decay with distance

downstream. Two waves with wavelengths of 0.28 m and 0.75 m were investigated

and all measurements were performed with a mean water depth of 0.58 m and a

uniform flow upstream of the hydrofoil.

Figure 2.9: Sketch of the flow condition and definition of reference frame. From

Battjes & Sakai (1981).

Plots from Battjes & Sakai’s measurements of the mean velocity distributions

at different distances downstream are shown in Figure 2.10. As can be seen from the

plots, there is a strong velocity defect near the free surface. This defect penetrates

into deeper regions of the flow and shows a reduction in magnitude with increasing

distance downstream. At the most upstream positions, a slight velocity defect can

be discerned at a height of about 0.3 m below the free surface. This defect is an

indication of the wake generated behind the hydrofoil itself.

Turbulence intensity distributions at different distances from the hydrofoil

were measured. Turbulence intensities have their maximum near the toe of the

breaking region, from where they decay. The Reynolds stresses indicate significant
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Figure 2.10: Vertical profiles of streamwise mean velocity in sections at distances

downstream of the hydrofoil. The dashed lines in the upper part indicate linear

extrapolations. The profile in the lower right hand corner is the flow in absence of

the hydrofoil. ×, full scale experiment; ◦, half scale experiment. From Battjes &

Sakai (1981).
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non zero values only in the upper layer downstream of the toe of the breaker. From

the experimental results, it was concluded that downstream of the initiation of

breaking, the flow evolves as a free self-preserving turbulent wake. This fact was

also confirmed by Duncan (1981) based on photographs of the evolution of dye

placed in the wake of the breaker.

Cointe & Tulin (1994) presented a theory of steady breakers based on the

experimental results of Duncan (1981,1983). They considered the breaking condition

in terms of the total drag on the flow as found downstream as the sum of the

momentum deficit in the turbulent wake of the breaker and the momentum in the

residual non breaking wave train. It was shown that, for low drags, the system can

only exist in a non breaking state. As the drag on the hydrofoil increases, there is

a finite range of drags for which three possible flow states exist: (1) a nonbreaking

state (2) a strong breaker and a small-amplitude residual wave train and (3) a state

with a weak breaker and a large-amplitude residual wave train, which is unstable.

The first two states are in good agreement with the results of Duncan (1983). Thus,

experimental and theoretical results show that the incipient breaking steepness for

steady waves is the lowest steepness for which a finite-size stable breaking region

can exist in a steady state on the wave face.

In agreement with the analysis of Duncan (1981 and 1983), Cointe & Tulin

modeled the breaking zone as a weak eddy held in place on the wave face by a balance

of upslope shear stresses from the underlying flow and the down-slope component

of gravity. They also used a mixing layer model, first suggested qualitatively by

Peregrine & Svendsen (1978). In accord with Peregrine & Svendsen’s model, the
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dividing mean streamline between the eddy and the underlying flow undergoes an

abrupt increase in flow speed at the toe (the leading edge of the breaking region) and

after this point it maintains a constant head and eventually reaches a stagnation

point at the wave crest. The pressure due to the weight of the breaking region

generates a wave that cancels out part of the following wave train.

Lin & Rockwell (1994) studied the structure of stationary two-dimensional

breakers generated by a stationary submerged hydrofoil in a recirculating water

channel. They measured the free surface profiles and flow fields using particle image

velocimetry (PIV) techniques for breaking wavelengths ranging from 7 cm to 15 cm.

It was found that the discontinuous slope of the free surface at the toe of the breaking

region and the presence of flow separation under it, serves as a source of vorticity

and forms the leading edge of a mixing layer between the breaking region and the

underlying flow. The level of vorticity above and below the mixing layer drops

rapidly.

Later, Lin & Rockwell (1995)used PIV to study the evolution of a quasi-

steady breaker as the flow speed is increased while keeping the hydrofoil depth and

angle of attack fixed. Flow states from the onset of a capillary pattern to a fully

developed breaking wave were examined. Just above the capillary wave onset, they

found a flow state in which the forward face of the crest was covered by a train

of large-amplitude capillary waves; for higher flow speeds the wave crest becomes

turbulent. A flow field in the toe region for a turbulent case (wavelength of 0.15 m)

is shown in Figure 2.11. In the figure, one can see that the toe of the breaking

region is located near the minimum surface height in the trough, indicating that
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this is a strong breaker for the given flow speed. Surface tension is dominant at

this small scale and, as a result, the surface fluctuations are mild. As seen in the

figure, the fluctuating flow in the breaking region is pushing its way down into the

oncoming flow and causes a very large horizontal gradient in the streamwise flow.

An intense instantaneous shear layer extending downstream from the toe can be

seen in the figure. The adjacent vectors on opposite sides of the layer have different

directions and magnitudes. Therefore, the thickness of the shear layer is much

smaller than the vector spacing, which is 0.55 mm. Assuming a steady flow, Lin &

Rockwell applied the vorticity flux equation to the measurements near the toe and

consequently determined that the main contributor to the vorticity flux through the

free surface is convective deceleration upstream of the toe.

Figure 2.11: Toe region velocity field. The free stream velocity is shown by the

black arrow below the image. From Lin & Rockwell (1995).

Dabiri & Gharib (1997) studied the structure of a weak hydraulic jump gener-

ated using a honey comb section with a screen, which was placed at the beginning

of a test section in a closed-loop water tunnel facility. They used particle image ve-

locimetry (PIV) to study the sources of vorticity flux in the spilling breaker zone of
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the jump. In one case (Reynolds and Froude numbers 7370 and 2.04, respectively)

they observed that the breaker was preceded by a train of capillary waves with wave-

lengths of 1 mm and a maximum amplitude-to-wavelength ratio of 0.18. In this flow,

there was a thin high-velocity free-surface fluid layer that decelerated just prior to

the toe of the breaking region, causing an injection of a large amount of vorticity

into the fluid bulk. The vorticity injection due to the free-surface deceleration was

seen to dominate over gravity-generated vorticity flux.
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2.3 Two-dimensional unsteady breaking waves

2.3.1 Approach to breaking

The earliest theoretical consideration of water wave breaking was given by

Stokes (1880) who showed that the there is a maximum amplitude for a steady, uni-

form, infinitely long, monochromatic wave train. At this limiting amplitude, there

is a stagnation point at the crest and the crest profile is a sharp corner which is

symmetric about a vertical plane and has an internal angle of 120◦. This theory does

not describe the development of the flow as the surface overturns, which involves a

time dependent flow with asymmetric crest shapes. There are no analytical theo-

ries available for this breaking process and researchers have resorted to numerical

methods to predict the flow.

A start in this direction was made by Chan & Street (1970), who employed

the so-called marker-and-cell technique. In this method, the flow is assumed two

dimensional and time dependent. A rectangular grid is employed and the velocity

components are computed at fixed points within each cell. The development of the

flow is followed in small time-steps, using difference equations to represent the con-

servation of mass and momentum, assuming the flow is incompressible and inviscid.

For waves in water of finite uniform depth, this method achieved some success. The

authors demonstrated the steeping of the forward face of the wave almost up to the

instant when the free surface becomes vertical. A description of the overturning was

not achieved and in spite of the inviscid character of the method some vorticity was

generated during the calculation.
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All types of finite difference calculations require a grid through out the com-

putational domain with sufficient spatial resolution to capture the local scale of

the flow or the radius of curvature of the free surface. Thus, in two-dimensional

flows, the number of grid points increases as the inverse square of the smallest flow

scale. Consequently, memory storage increases rapidly and eventually the CPU

time, which is a criteria of cost, becomes prohibitive. Longuet-Higgins (1960) has

showed that for oscillatory waves, diffusion of vorticity into the interior region of the

flow is very slow compared to a typical wave period. Therefore, up to the breaking

point, it should be a good approximation to neglect viscosity and assume the motion

is irrotational.

Longuet-Higgins and Cokelet (1976) developed a boundary-element method to

compute the unsteady breaker. A periodic wave train was examained and pressure

forcing on the free surface was used to make the waves break. With this method,

it was possible to continue the calculation through jet formation, overturning and

plunging towards the forward face of the wave. The numerical method, which is

described below, has been adopted by many researchers to study a variety of un-

steady free surface flow. These incompressible irrotatitional flows are governed by

Laplace’s equation for the velocity potential, φ. Inside a simply connected domain,

φ is uniquely determined by the values of φ or ∂φ/∂n on the boundary of the domain

(here n is the coordinate normal to the boundary). In the numerical technique, given

the position of the free surface and the fluid velocity on the surface at one point

in time, the kinematic boundary condition is integrated over a time step to yield

the new position of the free surface and Bernoulli’s equation is integrated assuming
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constant pressure to get the values of φ on this surface. With the known values of

φ, a boundary integral equation is solved to obtain ∂φ/∂n on the free surface. At

this point, the velocity on the free surface is known and the calculation proceeds to

the next time step.

The advantage of the above method is that the independent variables are cal-

culated only at the free surface. Therefore, the number of independent variables in

the computation is of the order of the number of grid points only on the surface

and for a given storage and machine time, greater accuracy can be obtained. This

method works both for free waves and waves with any smooth distribution of pres-

sure at the free surface. In the work of Longuet-Higgins and Cokelet, surface tension

was neglected; however, it has been included in subsequent studies with boundary

element calculations by a number of researchers.

A geometrical investigation of the jet shape for a variety of breakers was made

by New et al. (1985). They used a potential flow boundary-element method to

examine a set of plunging breakers in shallow and deep water. Periodic waves were

induced to break by a sudden reduction in depth in shallow water and pressure

forcing in deep water. They scaled the jets with the length of the jet at a point in

the profile when the under side of the jet first becomes horizontal. They found that

the scaled shape of the jets are very similar, although the size of the jet relative to

the length of the wave varies widely. Therefore, they concluded that the spilling

breaker might be initiated by a tiny jet at the wave crest.

Dommermuth et al. (1988) used boundary element calculations to study break-

ing waves generated mechanically in a wave tank. They simulated the entire wave
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tank and wave maker. The results show excellent agreement with experimental mea-

surements. Similar calculations were done by Grilli et al. (1989) and Cointe (1990).

Computational limitations confined them to cases where the wave breaks close to the

wave maker. To achieve this short breaking distance, a method know as dispersive

focusing was used to generate the breakers. In this method, a packet of about ten

waves is generated in a manner such that the wave frequency decreases in time. The

speed of water waves increases with decreasing wave frequency. Thus, the waves in

the back of the packet catch up to the waves in the front and the packet converges

as it travels along the tank. Because of this spatial focusing of the wave packet

energy, the wave amplitude grows and the waves break.

Wang et al. (1994) developed a boundary element method to overcome the

limitation that the waves must break close to the wave maker. They divided the

length of the wave tank into many sub-domains. Based on their method, it is

possible to generate an unstable wavetrain consisting of a central frequency with

small-amplitude sidebands and follow the wave train modulation to breaking events

occurring further downstream. The method includes the effect of surface tension

and the results show that a range of spilling and plunging breakers can be observed.

Part of their results were directed at determining the incipient breaking criterion.

It was found that if the fluid particle speed in the crest of any wave reaches the

linear group velocity of the dominant wave component, then that wave crest evolves

to breaking within a time of a quarter of a wave period. The criterion was verified

for both deep and shallow-water waves.

Schultz et al. (1994) used boundary element method to investigate the breaking
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process of periodic wave trains. In some cases, waves were induced to break by

modifying the free surface dynamic boundary condition such that it simulates the

effect of converging tank walls. They found that the wave evolution leads to plunging

jets of different sizes relative to the wavelength. The plunging jet becomes smaller

as the input energy rate is decreased.

The surface tension effect becomes crucial when the wavelength is short. Dun-

can et al. (1994,1999) performed an experimental study of spilling breakers that

were mechanically generated by the dispersive focusing technique. The wavelengths

range from 0.77 to 1.15 m. In their experiments only weak breakers were inves-

tigated. A high-speed camera with a framing rate of 500 Hz was mounted on a

carriage that moved with the wave to record the breaking events. The water was

mixed with a small amount of fluorescent dye and illuminated with a laser light

sheet. The intersection of the free surface and the laser light sheet was extracted

from each photograph in the movie to obtain the wave crest profile. In their ex-

periments, a bulge-capillary wave system is formed on the forward face of the crest

as it steepens even though the gravity wavelengths are fairly long. The profiles

for the focused wave are qualitatively similar to the numerical predictions found in

Longuet-Higgins (1992,1996,1997) and Tulin (1996). In the latter study, the breaker,

generated by the sideband instability method, develops a bulge capillary wave sys-

tem, but the details are different than in the focused wave, probably due to 3D effects

in the experiments. Duncan et al. also showed that the crest profiles just before the

onset of turbulent flow are independent of the wave frequency. This is similar to the

crest flow when gravity and surface tension are dominant. These results are in good
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agreement with the numerical simulations reported in Longuet-Higgins (1996).

2.3.2 The turbulent flow

Turbulence generation occurs through very different mechanisms in spilling

and plunging breakers. In plunging breakers, turbulence is generated quickly when

the jet impacts with the wave face and the cavity thus created collapses. In spilling

breakers, a small zone of separated flow is formed on the forward face of the wave

crest. Turbulence first appears at the leading edge (toe) of this separated region

and quickly spreads horizontally through the top of the wave as the separated flow

region falls down the front face of the wave. A strong shear is found between this

downslope flow and the underlying upslope flow.

Theoretical analysis of the turbulent flow left after wave breaking is very dif-

ficult. Even Reynolds averaging is not easy since any given point in space and time

might be in the water at one time and in the air at another. Theoretical mod-

els of breakers are rare and perhaps the theory proposed by Longuet-Higgins &

Turner (1974) is the only one applicable to unsteady breakers. The spilling zone, in

this model, is idealized as a steady plume extending from the crest with a circulating

region at the advancing leading edge. The combined system entrains air from above

and water from below. Gravity forces the air-water mixture in the plume in the

downslope direction while entrainment of water from below produces a Reynolds

stress that counteracts the gravitational force. The entrainment of fluid from below

is taken to be proportional to the local velocity difference between the plume and
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the underlying flow. The theory predicts that fluid particles in the plume and the

leading edge of the wave move downslope with a constant acceleration. The thick-

ness of the layer increases linearly with distance from the crest. The theory also

predicts that the density of the mixture decreases with increasing slope of the wave

face.

Chen et al. (1999) used two-dimensional direct numerical simulation of the

Navier-Stokes equations to explore plunging breakers with short wavelengths. In

their investigation, the surface tension and viscosity values are not consistent with

water: the wavelength of the breaker based on the Bond number and the surface

tension of water is 27 cm while the wavelength based on the Reynolds number

and the viscosity of water is 9.8 × 10−4. The results indicate that as the wave

breaks, a large jet plunges onto the forward face of the wave and traps a cavity of

air. As a result of the impact, a splash is generated which, in turn, generates a

secondary forward moving jet, entrapping a second packet of air. The wave profiles

are qualitatively similar to the experimental results of Bonmarin (1989) and Rapp

& Melville (1990), even though the wavelength in the experiments were fairly large.

The similarity of these two results indicates that surface tension is overcome by

giving a very strong initial impulse to the wave in the numerical calculation. The

circulation structure around the entrapped air cavities is qualitatively similar to

that observed by Miller (1976), who tracked small bubbles created around the main

air cavities in a plunging breaker event to estimate the water motion.

Rapp & Melville (1990) investigated details of the dynamics of turbulent break-

ers mechanically generated in deep water. They measured several effects of breaking
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events such as the loss of excess momentum flux and the production of surface cur-

rents for wavelengths ranging from 0.95 to 2.02 m. The results show a loss of

momentum flux of 10% for spilling breakers and 25% for plunging breakers.

Duncan et al. (1994,1999) studied the details of the crest shape and flow field

during the turbulent phase of the flow in gentle spilling breakers, for wavelengths

ranging from 0.77 to 1.18 m. They found that the turbulent phase of the breaking

process starts when the toe begins to move down the wave face. The toe accelerates

to a constant velocity whose vertical component is 0.135 times wave phase speed.

This is not in agreement with the constant acceleration predicted by Longuet-Higgins

& Turner (1974). This discrepancy might be due to the dominance of surface tension

in the experimental studies which was not accounted for in the theoretical model.

It may also arise from the fact that, in the experiments, the slope of the wave face

changes with time while a constant slope is assumed in the theoretical model. In

the experiments, the circulation shows a rapid increase as a vortical region spreads

along the surface starting at the toe and extending back to the crest before the

measurements cease.
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2.4 2D+T ship breaking bow waves

2.4.1 Similarity of 2D+T to 3D ship bow waves: Calculations

The 2D+T approximation was first introduced in aerodynamics by M. Munk

for the prediction of loads on slender bodies with low-aspect-ratio wings at small

angles of attack. It has been extended to compressible flow and is known to be very

useful for bodies of beam/length ratio of 0.1 or smaller. The flow around slender

ships at high Froude numbers can also be approximated by the 2D+T method based

on the idea that longitudinal gradients of relevant flow quantities are small compared

with vertical and transverse gradients (Tulin & Wu 1996).

In the 2D+T ship wave approximation, the flow is two-dimensional and the

streamwise distance (x) along the hull is converted to time via t = x/U , where

U is the equivalent ship speed. Because the method is two-dimensional, only the

divergent waves are computed; the transverse waves would travel in the direction

out of the plane of motion and are therefore ignored (see 2.1 for the definitions

of divergent and transverse waves). This is the principal deficiency of the 2D+T

method. However, the transverse waves may be adequately described by other

methods.

The 2D+T method exhibits the advantage of high resolution that is sufficient

to capture breaking, and even to trace the breaker’s overturning jets. At the same

time, it neglects certain three dimensional effects which become increasingly impor-

tant for low aspect ratio ships with blunt bows. For example 2D+T does not allow

upstream influence, so it can not predict breaking before the bow.
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Tulin & Wu (1996) used the 2D+T technique for calculations of a Wigley hull.

They found that the waves produced with this method are quite similar to those

calculated with a three-dimensional model. They compared the calculation with the

3D fully nonlinear calculation made at the MARIN model basin in Norway by Hoyte

Daven using a computer code named RAPID. Figure 2.12 shows a comparison of

the wave pattern computed by the 2D+T code and the three-dimensional code. In

the three-dimensional code, the spatial resolution is insufficient to capture breaking

events. The same individual divergent waves at the bow and stern can be seen in

both calculations, and the origin and extent of these waves match well. A prominent

rooster tail behind the stern and the resulting diverging waves are also found in both

calculations. There are also differences between the two patterns. For instance, in

the 2D+T results the transverse waves are absent and the crests are much sharper.

The 2D+T calculations for the Wigley hull show that the forward wave is

always the steepest and most prominent and it seems to originate from the region

of the bow where water first rises up the hull. Its crest is very sharp over extensive

regions for Fr (Fr = U/
√

gL) up to 0.46, but it does not quite break. The wave

becomes higher and moves toward the equivalent of the aft of the real ship with

increasing speed. In all cases, the crest lines are much straighter than in the Kelvin

pattern, and their angle to the flow decreases with increasing speed as noted by

Miyata (1980) for their 3D model tests.

Tulan & Wu also studied the effect of draft and beam on the wave pattern.

According to their results, for the largest draft (L/d = 1), the crest lines are con-

tinuously concave, as in the Kelvin pattern. On the other hand, for the shallowest
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(a)

(b)

Figure 2.12: A comparison between (a) 2D+T: L/B = L/d = 10; FL = 0.30, and (b)

exact nonlinear (RAPID) wave prediction for a wigley hull. The RAPID calculation

is by Hoyte Raven of MARIN. From Tulin & Wu (1996).
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draft (L/d = 20), the wave crests are straight and very steep, i.e., close to breaking.

As the beam increases, plunging breaking of the bow waves occurs. Thus, these

calculations show that the hull shape is a dominant factor in determining the wave

pattern and wave steepness. The 2D+T method seems to be a highly useful tool.

Although it fails to produce transverse waves, it offers the high resolution necessary

to study very steep and breaking waves.

2.4.2 Similarity of 2D+T to 3D ship bow waves: Experiments

Bow waves generated by the 2D+T technique are similar, in many ways, to

the 3D ship bow waves. As mentioned above, Dong et al. (1997) made an experi-

mental investigation of free surface flow around a ship model using a PIV technique.

The model was 3.05 m long and model speed ranged from 0.914 m/s to 2.44 m/s.

They spread fine aluminium powder on the water surface for visualization purposes

and photographed the surface flow patterns using a camera that was mounted on

the towing carriage. The photographic results show that the main features of the

flow around the ship model such as the wave shape, the wave pattern and the lo-

cation of breaking zones. The location of the breaking zones was steady, but in

and downstream of the breaking crests the surface shape has a significant unsteady

component. Figure 2.13 shows an extended exposure photograph of the bow wave

system around the ship model with a Froude number of 0.334. Since the wavelength

of the breaking bow wave is short, it is strongly affected by surface tension.

Duncan et al. (1999) studied short wavelength unsteady two-dimensional break-
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Figure 2.13: Bow wave pattern around a ship model with a length of 3.05 m. From

Dong et al. (1997)

ers experimentally. The breaker was generated mechanically by a plunging wave

maker that was set to produce a packet of ten waves. The phase and frequency dis-

tribution of the waves was such that the packet converged via the dispersive focusing

method mentioned in the previous subsection to a single weak spilling breaker in the

center of the wave tank. The wave profile images were recorded with a high-speed

camera which was mounted on a carriage that followed the wave crest as it broke.

The data was obtained from 330 successive images of a single wave as it broke. The

total time for the 330 images is about equal to the wave profile period, 1/f0 where

f0 = 1.42 Hz. The crest profile history of this surface-tension-dominated breaking

event is shown in Figure 2.14 in a 2D+T format. To obtain the plot equivalent of

a 2D+T simulation of this breaker, each successive wave profile was shifted upward

and to the left by fixed distances. The wave pattern thus obtained shows the wave
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pattern on the starboard side of the ship as it moves vertically down on the figure.

In spite of the fact that this wave was not created with any hull displacement in the

vicinity of the breaker (as it would have been in a 2D+T simulation), many features

in the surface pattern are qualitatively similar to those found in the photograph by

Dong et al.(1997). In particular, the leading edge of the breaking zones have the

same shape and the trajectories and number of the ripples in and downstream of the

breaking zones are quite similar in the two cases. While not proving the accuracy

of a 2D+T simulation, this comparison does support the idea that the two flows are

similar.
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Figure 2.14: 2D+T representation of wave profiles of a two-dimensional spilling

breaker generated by dispersive focusing. From Duncan et al. (1999)

40



2.5 Air entrainment and bubble production

Air entrainment by breaking waves has been an active area of research for many

years due to its important roles in the enhancement of gas transport between the

atmosphere and the ocean, the generation of underwater sound, and the absorption

and scattering of ambient sound waves. These phenomena depend on the void

fraction and size distribution of the bubbles which in turn depend on breaking

characteristics and the local chemical and physical properties of the water, e.g.,

salinity and temperature.

Air entrainment by bow waves is important in the field of naval hydrodynamics.

Air bubbles, particularly the small ones (on the order of micrometers in diameter),

are remarkably stable and can persist in the wake for long distances behind the

ship. Bubble clouds are detectable by various sonar sensors and thus may make the

ship vulnerable to attack. Due to the significance of the bubble presence around the

ship, mechanisms of bubble formation need to be fully understood.

There are no reports in the literature of void fraction and bubble size distri-

bution measurements beneath breaking bow waves, perhaps because this type of

experiment is extremely difficult and costly. However, some investigators have fo-

cused on the basic processes of air bubble entrainment by other types of breaking

waves.

A number of investigations have explored the effect of water properties on

bubble distributions. There is little difference between the bulk physical properties

of fresh water and seawater. The density, viscosity and surface tension in seawa-

41



ter are only 2.5%, 7%, and 2% higher, respectively, than in freshwater. However,

bubbles rising to the surface in seawater tend to produce more foam than in fresh

water and this effect accounts for the longer residence time of whitecaps in the ocean

compared to those in lakes. Laboratory studies show that an order of magnitude

greater number of bubbles are produced by breaking waves in seawater than in fresh

water.

An early study in this subject is the one by Monahan & Zietlow (1969) in

a set of simple pouring experiments. Their results show relatively more bubbles

with radii below 500 µm for sea water than for fresh water. In recent experiments,

Monahan (1994) and Wang & Monahan (1995) observed tipping bucket simulations

of breaking waves in seawater, brackish water and fresh water. They used a video

camera that was capable of measuring bubbles with diameters down to 5 mm. They

found that the mean bubble radii in similar pouring events were 2480 µm, 1132 µm,

and 320 µm for fresh water, water of salinity of 6%, and water of salinity of 20%,

respectively.

Some investigators have tried to determine the reason for the differences in

bubble distributions in seawater and freshwater based on the different physical and

chemical properties of the two media. One idea is that breakers in seawater and

freshwater initially produce the same distribution of bubbles but bubble coales-

cence is inhibited in seawater, resulting in a smaller average bubble size. Lessard

& Zieminski (1971) found a critical concentration of salt, below which coalescence

occurs easily and above which coalescence is significantly reduced. They concluded

that inhibition of coalescence increases with ionic strength. They suggested that
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the primary mechanisms controlling coalescence are enhanced structuring of water

as is evident by the increased surface tension and viscosity of salt solutions.

Another idea for the cause of the differences in bubble populations produced

in seawater and freshwater was advanced by Slauenwhite & Johnson (1999). They

hypothesized that the initial bubble populations (before coalescence) are different

in seawater and fresh water. They conducted a series of experiments in which

bubbles with a volume of 5 µL were forced through a 43 µm orifice in a test cell.

The rapid expansion of the bubble as it passes through the orifice causes it to

shatter into smaller bubbles. They reported that the number and size distribution of

resulting bubble populations depend on the physical and chemical characteristics of

the water sample. Bubbles were found to break into 4− 5 times more small bubbles

in seawater than in fresh water. The number of bubbles produced in shattering

was found to be a function of salt concentration but was especially sensitive to

the types of ions present. In addition, seawater samples with the marine diatom

Phaeodactylum tricornutum were found to further double production numbers, and

a decrease in temperature from 20◦C to 3◦C was found to increase bubble production

in seawater by nearly 50%. The authors concluded that these effects are separate

from coalescence inhibition.

Lamarre & Melville (1991,1992,1994) have made bubble measurements be-

neath two-dimensional plunging breakers, whitecaps and three-dimensional plung-

ing breakers using an impedance-based void fraction meter. They observed that

immediately after the breaking event a bubble cloud is created that can reach a

void fraction of as high as 30− 40%. This cloud initially is comprised of large bub-

43



bles on the order of milimeters in diameter. This cloud rises and degasses rapidly,

leaving behind a plume of microbubbles. Lamarre & Melville (1991) also found that

40% of the total pre-breaking wave energy can be lost in the breaking process, and

up to 50% of this energy loss is expended in the air entrainment process.

The air entrainment process and the oscillations of both the individual bub-

bles and the clouds of bubbles created by breaking waves are a source of underwater

sound and also affect the propagation of underwater sound waves. A good sum-

mary of much of early work on underwater sound wave propagation was given by

Kerman (1988).
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Chapter 3

Test facilities and experiments

In this chapter, test facilities, measurement techniques and procedures for the

research are described. This description includes the wave tank, the wave maker,

the instrument carriage, water treatment methods, and measurement approaches.

In all cases, the apparatus, experimental procedure, and data processing techniques

are described.

3.1 The wave tank

In order to carry out the 2D+T wave measurements, a wave tank which is

14.80 m long, 1.15 m wide, and 2.20 m deep (water depth 1.83 m) was built. The steel

structure of the wave tank was built by personnel from the University of Maryland’s

Physics Machine Shop. The installation of the wall panels, the floor panels, the

2D+T wave maker and the instrument carriage (see the following two subsections

for descriptions of these latter two devices) was then completed by students in the

Hydrodynamics Laboratory. A schematic of the wave tank is shown in Figure 3.1.

The steel frame of the tank includes a network of steel tubes on the floor and a

double row of steel columns with H-shaped cross sections along each of the long side

walls. The columns have a 1.2 m spacing along the side walls. Steel beams oriented
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Figure 3.1: A schematic showing the tank and the wave maker.

horizontally are welded to adjacent columns at the top and bottom of the tank and

at several heights in between. This steel frame supports the floor and wall panels

that hold the water inside the tank. The floor panels and the wall panels at the two

ends of the tank are made of 0.635-cm-thick stainless steel plates while the panels on

the long side walls of the tank are made of 3.5-cm-thick clear acrylic. The vertical

edges of each acrylic plate are supported by the steel columns. During installation

of the panels, a special silicone adhesive that adheres to both acrylic and stainless

steel was applied to prevent water leaks. Figure 3.2 and 3.3 contain photographs of

the wave tank at various stages in the construction.
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(a)

(b)

Figure 3.2: Heavy structure of the tank (a) before placing the floor plates (b) after

placing the floor plates loaded with weights
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(a)

(b)

Figure 3.3: Different phases of wave tank construction (a) piping system (b) a view

of the tank
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The 2D+T wave maker occupies about 2.8 m of the tank length at one end.

This leaves about 12 m from the retracted position of the wave board (the midplane

of the equivalent ship) to the far end of the tank. The travel time for waves generated

by the wave maker to reach the far end of the tank and return to the measurement

site limits the length of time for which uncontaminated measurements can be made.

In the following, this wave reflection time is calculated and compared to the time of

the passage of the stern of the equivalent ship model.

The equivalent time of the passage of the stern of the ship model (∆Tm) is

given by

∆Tm =
Lm

um

=
1

Fr

√
Lm

g
(3.1)

where g is gravity, Lm is the equivalent 3D ship model length, um is the equiv-

alent 3D ship model forward speed, and Fr = um/
√

gLm is the Froude number.

Using the above equation at an equivalent full-scale speed of us = 27 knots (the

fastest equivalent ship speed for the tests described herein, Fr = 0.3720 ), we find

∆Tm = 3.936 s. Also with us = 16.5 knots(the slowest ship speed for the experi-

ments described herein, Fr = 0.2273) we find ∆Tm = 6.442 s. The dominant wave

component generated by the 2D+T wave maker is about 2 m long. Using the linear

dispersion relationship for deep water gravity waves, the energy (group) velocity of

these waves is

c =
1

2

√
g

k
=

1

2

√
gλ

2π
= 0.88m/s. (3.2)

At this speed, a wave can traverse the 12-m-long distance from the wave maker

to the end of the tank and the 12-m-long return in a time of ∆Tw = 27 s. This
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is about four times the model time scale, Tm, even at the slowest equivalent ship

speed studied herein. Thus, these reflected waves are not expected to affect the

measurements before the equivalent time of the passage of the stern.

The highest possible surface wave speed in a tank of water of depth H is
√

gH

or 4.24 m/s for the present case with H = 1.83 m. This is both the energy and

phase speed of a wave whose length is many times greater than the water depth. At

this speed, a wave can traverse the 12-m-long distance from the wave maker to the

end of the tank and the 12-m-long return in a time of ∆Tw = 5.66 s. This is a little

less than ∆Tm for the slowest equivalent ship speed. However, observations of the

waves generated by the wave maker indicate that these long waves are of very small

amplitude and are not expected to influence the experimental results. Thus, for the

range of Froude numbers used for the experiments described herein, waves reflected

from the far end of the tank are not expected to influence the measurements before

the equivalent time of passage of the stern of the ship.

3.2 The 2D+T wave generation system

3.2.1 Description of the wave maker

A schematic drawing of the wave maker is shown in Figure 3.4. The wave

maker is powered by four servomotors (Figure 3.5), which through gear reducers,

drive four vertically oriented shafts. Each shaft drives a toothed pulley, which drives

a piston through a rack and pinion system. The pistons, in turn, drive horizontally

oriented drive plates that are as wide as the tank (1.14 m) and are guided along
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the tank walls by tracks. Position sensors and motor-shaft optical encoders are

used in a computer-based feed back control system to achieve the desired motion

of each piston. The frame of the device is bolted to the bottom and sidewalls of

the tank. Most of the device is submerged and is made of appropriate materials to

resist corrosion.

Figure 3.4: A schematic drawing of the wave maker designed and manufactured by

MTS system corporation

The main component of the 2D+T wave maker is the flexible wave board

which is attached to the four drive plates via hinges. The wave board, which spans
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Figure 3.5: A view of the wave maker and the tank, showing the four servomotors

used to drive the wave maker

the width of the wave tank, is constructed from interleaved 1/16”-thick stainless

steel plates of various lengths, see Figure 3.6 and 3.7. The plates are slotted and

riveted together in such a way that does not allow any flow of water through the

wave board via a straight path. The stainless steel plates are thin enough to bend

elastically under the differential action of the pistons. Each piston is attached to a

different layer of stainless steel so that as the pistons move out at different speeds,

the changing distance between the hinge points is accommodated by the stainless

steel plates sliding relative to each other. Figures 3.8 shows four photographs of the

wave maker in operation in the wave tank.

As mentioned before, in this series of experiments, we simulate half of a ship

model (say the starboard side) from stem to mid-ship. The keel depths of the 2D+T

wave maker and the imaginary 3D ship model that it simulates are 0.91 m. The
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Figure 3.6: A side view of the wave board in operation, showing the interleaved

stainless plates

keel depth of the 2D+T wave maker is created by bending the wave board over a

fixed horizontal surface, called the keel bar, that spans the width of the tank at

0.91 m above the floor of the tank, see Figure 3.4. The mean water depth is fixed

at 0.91 m above the top surface of the keel bar thus creating the desired keel depth

for the wave maker. The keel bar is supported by a steel structure which is bolted

to the floor of the tank. A delrine block forms the top surface of the keel bar where

it comes in contact with the wave board. This block is used to prevent the wave

board from being scratched or otherwise damaged as it slides over the keel bar.

As mentioned above, the 2D+T wave maker is used to simulate the 5415 ship

model built at the Naval Surface Warfare Center, Carderock. The beam to draft

ratio of the 5415 model is 3.11 and the length to draft ratio is 23.11. Thus, with a

draft of 0.91 m, the half-beam of the 2D+T model and the equivalent 3D model is
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Figure 3.7: An exploded schematic of the wave board
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(a) (b)

(c) (d)

Figure 3.8: The 2D+T wave maker in operation frozen at four different times for

equivalent ship speed of 16.5 knots. Time is (a) 0, (b) 0.59, (c) 1.17, (d) 1.76 s.
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1.41 m and the equivalent 3D model length is 21.03 m.

3.2.2 Wave maker installation

The 2D+T wave maker was designed and manufactured by MTS Systems

Corporation. The wave maker mass is about 2000 kg and it occupies a volume of

about 1.2 × 2.4 × 3.0 m3. The wave maker was assembled at the factory, tested in

air and then shipped to the University nearly fully assembled. Figure 3.9 shows a

photograph of the wave maker without the wave board as received from MTS.

Figure 3.9: The 2D+T wave maker without the wave board

Before installation, the wave maker was disassembled for two reasons. First,

the fully assembled wave maker was heavy and there was no crane system in the

Hydrodynamics Laboratory to move it around. Second, it would not be possible

to take such a huge device into the tank through one of the narrow openings in
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the steel tank structure. During the disassembly each part of the wave maker was

labeled. All pieces were then moved into the tank separately and the wave maker

was reassembled. The wave maker was bolted to the floor and sides of the wave

tank. Joints to the floor were sealed with silicon adhesive to prevent any water

leakage from the tank. The last step in the assembly was to attach the wave board

to the four drive plates. The wave board was then adjusted to have a uniform gap

of approximately 1/8 inch between its edges and the tank walls. Figure 3.10 shows

two views of the wave maker after installation. Figure 3.11 also shows the wave

maker in operation.

3.2.3 Modifications to the wave maker structure

The first tests of the 2D+T wave maker in water revealed several problems.

These problems are explained in the following sections. In each case, the causes of

the problem and the solution to overcome the problem are described.

System to control leakage under the keel

As the wave maker is run in water, the mean water height drops behind the

wave board (the wave maker side of the board) and rises slightly in front of the wave

board. This difference in water height creates a pressure difference between the two

sides of the board. During the initial testing of the wave maker it was found that the

part of the wave board between the bottom drive channel and the keel bar lifted off

the surface of the keel bar as result of this pressure difference. The gap between the
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(a)

(b)

Figure 3.10: Two views of the wave maker after installation: (a) A front view before

attaching the wave board and (b) a side view
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Figure 3.11: The 2D+T wave maker in a stationary fully extended state

keel bar and the wave board allowed water to leak into the wave maker, effectively

crossing the vertical midplane of the equivalent ship.

To fix this problem, a passive mechanical system that was attached to the

bottom drive plate was used. This system was composed of three stainless steel

cantilevered bars (20” × 4” × 3/4”) that were attached to the drive plate at one

end and to 1.5-inch-diameter wheels in stainless steel frames at the other end. The

length of the bars and the height of the wheels were chosen so that wheels pressed

the waveboard against the keel bar at the end of the wave maker motion, thus

preventing the above described leaking mechanism. A picture of the system is given

in Figure 3.12.
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Figure 3.12: A picture of the system for controlling the leakage under the keel

System to control wave board motion above the top channel

When the wave maker was received from MTS Systems, Inc. the top part of

the wave board (above the top drive plate) was unconstrained. As a result, it moved

back and forth in an uncontrolled manner during the wave maker motion. The top

channel of the wave maker is located 6 inches above the undisturbed water free

surface. High-speed movies revealed that during the wave maker motion the water

surface typically rose above the first channel height onto the free part of the wave

board. The oscillatory motion of the top of the wave board created additional water

waves that could be seen in movies of the wave generation process. The maximum

water height on the wave board rises with the equivalent ship speed so the problem

was more severe in the higher speed cases. The above findings indicated that it was

necessary to make the part of the wave board above the top drive channel mimic
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the ship hull surface as well.

Two possible solutions were proposed to fix the above-described problem. In

the first solution, an active control channel would added on above four existing ones

while in the second solution, a passive control mechanism would be constructed.

The first solution would require a major modification to the wave maker including

the addition of some major mechanical parts, a fifth servo motor, and computer

software. This solution was deemed too expensive and time consuming. Thus, the

second solution was implemented in the form of a passive control channel powered

by the top two existing channels of the wave maker. A schematic of the system

built for controlling the wave board motion above the top drive channel as well as

a photograph of the system are shown in Figure 3.13 and Figure 3.14, respectively.

The only drawback of this solution is that the wave board motion is not as accurate

as it would have been with the active system. However, analysis showed that the

error was small over the parts of the wave board that are submerged at any instant

in time. These submerged portions are the only contributors to the wave pattern.

The mechanism chosen to create the passive control channel was a four-bar

linkage. A four-bar linkage consists of one fixed (link a) and three movable links

(links b,c,and d). Figure 3.15 shows a schematic of a simplified version of the linkage

used in the wave maker. In this system, one of the links (link b) drives the system.

Knowing the geometry of the system and the driving motion profile, the position of

any point on the linkage can be calculated. In this particular example, the position

of point (x2, y2) can be obtained using the following set of geometric equations:
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Figure 3.13: A schematic of the system for controlling wave board motion above the

top channel and the system for controlling the leakage under the keel
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Figure 3.14: The system for controlling wave board motion above the top channel

(x2 − x1)
2 + (y2 − y1)

2 = c2, (3.3)

(x2 − a)2 + y2
2 = d2. (3.4)

Eliminating x2 from the above equations yields a quadratic equation for y2.

Solving for y2 and substituting in one of the above equations, x2 can be calculated

for any given θ. In this manner, x2 and y2 can be calculated for a wide range of θ.

The four-bar linkage system used in the 2D+T wave maker is shown schemati-

cally in Figure 3.13 and the bars are labeled with letters corresponding to the generic

four-bar link system in Figure 3.15. Two parallel four-bar linkages were used, each

one located about 6 inches from one of the long sidewalls of the tank. In the 2D+T

wave maker, the top two drive channels were used to drive the four-bar linkages.
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Figure 3.15: A schematic of a simple four-bar linkage

Each linkage uses a square stainless steel tube that was cut to length and bolted to

a hinge that was, in turn, bolted to the drive plate of the top channel. The bottom

part of the tubes were attached to the second drive plate through sliders. As the

wave board extends out, the top channel moves further than the one below and

this differential motion creates a moment about the hinge points connecting the top

channel to the stainless steel tubes. The tubes are equivalent to link b in Figure 3.15

with the hinge point corresponding to (x, y) = (0, 0) in the figure. This link moves

links c and d while the fixed link, a, is the top drive plate. The connecting point

of links c and d (point 2) spans a travel of about 6 inches along the wave board

as the wave board expands. The two linkages are connected to a single stainless

steel angle located at the free end of link c as shown in Figure 3.13. The motion

of this angle is then translated to the wave board via four hinges that are attached

to runners which in turn move along four tracks that are bolted to the back of the

wave board, see Figure 3.13. The four sets of runners and rails were used to get a
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more uniform wave board surface and thus a better representation of the ship model

hull. The motion of the runners and thus the top of the wave board can be adjusted

by moving the pin points marked as 1 and 2 in the schematic in Figure 3.13. A

computer code was developed to provide information about the trajectory of the

runners. The desired positions of the runners if they were to remain on the 5415

ship model were also extracted from the model coordinates. The difference between

the desired and actual positions is the error at each instant in time. Figure 3.16

shows the error as a function of the instantaneous position of the top drive channel

of the wave maker. This error plot was created with pins 1 and 2 located in the

positions that resulted in the minimum error.
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Figure 3.16: Distribution of the difference between the desired and real positions of

the wave board. δmodel: desired position of the wave board; δbearing: actual position

of the wave board; y: position of the top channel

As seen in Figure 3.16, at the beginning of the motion, the position of the wave
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board at the location of the runner is further back than desired (negative error). As

time goes on, the error decreases. At some point it becomes zero and then starts to

increase. The largest errors are about -4 inches and occur at the end of the wave

maker motion. From the movies, of the wave board during runs at various speeds,

it was found that the water surface only reached the higher parts of the wave board

during the positions with the smallest error in Figure 3.16, between y = 5 and 25

inches.

3.2.4 Wave maker control system

Figure 3.17 shows a schematic of the system used to control the wave maker

motion. As a mechanical system, the wave maker has its own mechanical properties

including mass, damping coefficient, and spring constant. Depending on the effective

values of these properties, the system reacts differently to a given external force. As

a result, when a move command is given to the motors, the resulting wave maker

motion may be different than the input motion. In an effort to minimize these

errors, the wave maker was built with a feedback control system. This control

system includes both an inner and an outer loop. The inner loop is within the

factory-installed control system that comes with the servo-motor and power amplifier

system for each drive channel. Feed back is supplied by an optical encoder on the

shaft of each motor and the power amplifiers contain computers and software that

runs the control algorithms. This control system was not modified during the present

investigation. Feedback for the outer control loop is supplied by four linear position
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sensors that measure the horizontal position of each of the four drive channels at

each instant in time. The output of these sensors is used in a PC-based closed-loop

control system with Proportional, Integral, Derivative, and Feedforward (PIDF)

components as shown in Figure 3.17.

The basic idea of the PIDF controller is to measure the errors between the

desired and measured characteristics of the motion of each channel and to used

these errors to compute a correction to the command signal to the motors such that

the errors are reduced at subsequent points in time. The four main parameters that

control the feedback calculation in the PIDF controller are the proportional gain, the

integral coefficient, the differential coefficient and the feed-forward coefficient. The

numerical values of these parameters are chosen through a trial and error process.

The effect of each parameter on the wave maker motion is explained in the following

four subsections.

Figure 3.17: The wave maker servo control process
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Proportional gain

The proportional gain coefficient multiplies the difference between the desired

and actual position of the drive channel. As proportional gain is increased, the

error decreases. Figure 3.18 shows the desired and feedback signals with a small

proportional gain. In the case shown, the response time and position errors are

relatively large. As the proportional gain is increased, the response time decreases.

Figure 3.18: The desired and feedback signals with a small proportional gain

However, if the proportional gain is too high, overshooting occurs, and an oscillation

(ringing) appears, see Figure 3.19. A high value of proportional gain can result

in an unstable system operation. This instability may damage the wave board.

Considering the above effects, proportional gain is usually set as high as possible

while maintaining stable system operation. If the proportional gain is well chosen,

the time the system takes to reach a new position will be as short as possible

with the minimum overshoot (or undershoot) and oscillation. Unfortunately, the

proportional gain does not reduce the errors to zero in all control applications.
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Figure 3.19: The effect of an increase in the proportional gain on the feedback

Derivative coefficient

Once the gain has been set to a value that minimizes the error but avoids over-

shoot and instability, the derivative coefficient is typically adjusted. The derivative

coefficient, as its name implies, is multiplied times the difference in the rate of change

(or change in value from the previous sample) of the desired and actual position of

the drive channel. The result of this calculation is then added to the drive signal

along with the proportional gain correction. In practice, proportional-derivative

(PD) controllers work well. The net effect is a slower response time but with far

less overshoot and ripple than a proportional controller alone. Figure 3.20 shows

the effect of adding derivative to a feedback signal that has already been adjusted

for proportional gain.

Figure 3.20: The effect of adding derivative to a feedback signal for a previously

adjusted proportional gain
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Integral coefficient

The problem with a PD control is that it may not settle exactly to the desired

position. In fact, depending on the proportional gain, it is possible that a PD

controller ultimately settles to an output value that is far from that desired. The

problem manifests itself when each individual error remains below the threshold for

action by the proportional term. The integral term can help to drive the system

toward the exact position. This term represents the sum of all the past errors

between the desired and actual positions of the drive channel. Even though the

integral gain factor is typically small, a persistent error can eventually cause the

sum to grow and the integral term to force a change in the drive signal. Increasing

the integral coefficient reduces this error. Figure 3.21 shows the effect of the integral

coefficient on the drive signal.

Figure 3.21: The effect of the integral coefficient on the signals

Feedforward coefficient

The feedforward correction to the drive signal is obtained by multiplying the

feedforward coefficient times the derivative of the input signal (desired motion); this

correction to the drive signal is not based on a measurement of the drive channel

position. The main effect of the feedforward correction is the reduction of following
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errors, i.e., it essentially changes the phase of the response. It is especially useful,

since it does not affect the stability of the control loop. As shown in Figure 3.22,

an increase in the feedforward coefficient reduces the following error during a ramp

command. Further increase produces a leading error.

Figure 3.22: The effect of feedforward coefficient addition to the control system

Overall accuracy

After setting up the control parameters for each channel of the 2D+T wave

maker, experimental runs were carried out to evaluate the accuracy of the system.

The wave maker controlling software can record both the desired and the actual

position of each channel. Plotting the actual and desired positions of each wave

maker channel shows the error inherent in each motion. In order to have a quanti-

tative value for the error, the average values of the RMS of the errors are calculated

for each channel and for each ship equivalent speeds. Figure 3.23 shows a sample

plot of actual and desired positions of four channels of the wave maker versus time

for the equivalent ship speed of 20 knots. Likewise, RMS values of the errors are

plotted in Figure 3.24 for all equivalent ship speeds and all channels. The RMS

results show that the errors increase with the equivalent ship speed and that the

highest errors occur for the bottom drive channel (4). The RMS errors for the top
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two channels, those most important for the wave generation process are on the order

of only 0.1 inches.
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Figure 3.23: Actual and desired positions of the channels of the wave maker versus

time for the equivalent ship speed of 20 knots

3.2.5 Modifications to the wave maker motion

Figure 3.25 shows profiles of the intersection of the starboard side of the 3D

model hull with horizontal planes located at 6, −6, −18, and −30 inches relative

to the mean water level, the same heights as the four drive channels. Note that

distances along the y-axis have been scaled up by a factor of five relative to the

x-axis to better show the profiles. The top part of the bulb (sonar dome) can be

seen in the profile at z = −30 inches near the bow. For the 2D+T experiments, the

bulb of the ship model is not simulated so this feature is removed from the bottom

drive channel motion input profile. All four profiles have a finite slope where they
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Figure 3.24: RMS values of the error of the wave maker actual motion relative to

the desired motion

intersect the y = 0 axis, the beginning of each profile. For the 2D+T wave maker,

this finite initial slope implies an instantaneous jump in speed from zero to a finite

value. It is, of course, impossible to supply sufficient force for a mechanical device

to undergo an instantaneous jump in speed so it was necessary to modify the input

motion for the four drive channels.

In order to solve this problem, the wave maker motion profiles were modified

by extending the stem of the ship forward slightly and reducing the initial profile

slopes. This modification increased the length of the ship model by a factor of

190/180. The shape of the added initial part of the profile was chosen as a second

order polynomial with zero initial slope and the same value and slope as the ship

profile at the intersection of the two curves. Figure 3.26 shows the modified profile

of the ship model as well as the real 5415 ship model; closeups of the bow region are
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Figure 3.25: Top view of the 5415 ship model hull cut at four levels: 6, −6, −18,

and −30 inches from the ship water line.

shown in Figure 3.27. The process of smoothing removed all mechanical problems

associated with the initial wave maker motion by reducing the abrupt change in the

slope of the input profile.

3.2.6 Wave board shape error analysis

After setting up the control parameters, profiles of the wave board at various

times during an experiment were measured and compared to the corresponding

5415 model profiles. To obtain these measurements, a high-speed camera was set

to view the wave board from the side, through the clear plastic wall of the tank.

Then, the wave maker was made to run. The camera was stationary and temporally

synchronized to the wave maker top drive channel. Several images of the wave

board were taken from each movie for analysis. Each selected image was displayed
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Figure 3.26: Modified profiles of the ship model as well as the real 5415 ship model.

Red: actual profiles; Blue: modified profiles to be simulated by 2D+T wave maker.

◦: cut-off points.
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Figure 3.27: A close-up of the profiles to show the slope of the profiles at the very

beginning section. ◦: intersections of the polynomial representing the modified bow

and the actual ship profiles.
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on a computer screen and the profile was extracted manually by clicking with the

mouse on points on the edge of the wave board. Spatial calibration of the images

was accomplished by photographing a large grid with one-inch spacing that was

placed on the wall of the tank before the runs with the wave maker. Figure 3.28

shows a picture of the grid used for calibration of the camera. For details on camera

calibration the reader is referred to § 3.6.2

Figure 3.28: An image of the grid

Finally, the wave board profiles and the corresponding profiles of the ship

model hull (model 5415) were plotted for comparison. Figures 3.29, 3.30, 3.31, and

3.32 show wave board profiles at different times at equivalent ship speeds of 16.5,

20, 25, and 27 knots.
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Figure 3.29: Actual and desired profiles of the wave board along with the error

distribution for ship speed of 16.5 knots. Red points: measured profiles of the

2D+T wave board at selected times; Solid green lines: profiles of the 5415 model

hull; Blue points: errors. Time is (a) 0.278 s, (b) 0.728 s, (c) 1.124 s, (d) 1.541 s,

(e) 2.355 s, (f) 3.393 s.
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Figure 3.30: Actual and desired profiles of the wave board along with the error

distribution for ship speed of 20 knots. Red points: measured profiles of the 2D+T

wave board at selected times; Solid green lines: profiles of the 5415 model hull; Blue

points: errors. Time is (a) 0.224 s, (b) 0.562 s, (c) 0.884 s, (d) 1.294 s, (e) 1.949 s,

(f) 2.800 s.
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Figure 3.31: Actual and desired profiles of the wave board along with the error

distribution for ship speed of 25 knots. Red points: measured profiles of the 2D+T

wave board at selected times; Solid green lines: profiles of the 5415 model hull; Blue

points: errors. Time is (a) 0.175 s, (b) 0.406 s, (c) 0.642 s, (d) 0.886 s, (e) 1.541 s,

(f) 2.240 s.
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Figure 3.32: Actual and desired profiles of the wave board along with the error

distribution for ship speed of 27 knots. Red points: measured profiles of the 2D+T

wave board at selected times; Solid green lines: profiles of the 5415 model hull; Blue

points: errors. Time is (a) 0.166 s, (b) 0.356 s, (c) 0.513 s, (d) 0.756 s, (e) 1.411 s,

(f) 2.030 s.
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3.3 Instrument carriage and its towing system

In order to be able to make measurements in a reference frame moving with

the top drive channel of the wave maker, an instrument carriage and towing system

was designed and constructed. Figure 3.1 shows a schematic of the carriage as well

as the wave tank. Figure 3.33 and 3.34 show different views of the towing system.

This system consists of the drive assembly, cables, tracks, instrument carriage, and

position sensor. The carriage is controlled by the same computer and software that

controls the wave maker.

The carriage is powered by a servomotor (3.3 Hp with maximum rpm of 4200

manufactured by MTS Systems Corporation) which through a speed reducer (helical

true planetary gear system with a 10 : 1 speed reduction manufactured by Thompson

Micron Redimount) drives a horizontally oriented shaft. The motor and drive shaft

are mounted on top of the tank about 8 m from the retracted position of the wave

board. Two Aluminum drums (6 inches in diameter and 6 inches long) are mounted

with a key system on the drive shaft; one drum is positioned near each of the long

side walls of the tank. Each drum has a helical groove machined into its surface

and has two stainless steel wire ropes (1/8-inch diameter) wound around it; one

end of each rope is attached to the drum at opposite ends of the drum. The other

end of one of the cables on each drum is attached to a turn buckle which is in turn

attached to the front of the carriage (the side farthest from the wave maker). The

other end of the second cable on each drum goes through a pulley mounted on top

of the tank behind the wave maker and is then attached to a turnbuckle which is
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(a)

(b)

Figure 3.33: Different sections of the instrument carriage and towing system, (a)

the carriage (b) the towing system 82



(a)

(b)

Figure 3.34: Different sections of the instrument carriage and towing system, (a)

guiding bar (b) track 83



in turn attached to the back of the carriage. The turn buckles are used for fine

adjustment of the tension of the cable. As the drum turns, one of the cables on each

drum is wound onto the drum while the other is unwound. Thus, the drive system

can supply force to the carriage in both forward and backward directions.

The carriage is supported by four hydrostatic oil bearings that ride on precision

rails, one on either side of the tank. When high-pressure oil is supplied to the

bearings, a thin film of oil is forced between the bearings and the tracks. This

oil layer dramatically reduces vibration and friction levels when the carriage is in

motion. Precise motion profiles for the carriage are obtained by the same means

used for the drive channels of the wave maker. Position feedback is provided by a

precision position sensor that is attached to the tank and extends over the length of

travel of the carriage. The position sensor readings are used by the PIDF software

to obtain precise repeatable carriage motions. In most cases, the carriage motion

was set to follow the top channel of the wave maker; however, for a few experimental

runs, the motion was adjusted to follow the wave crests. The maximum speed and

acceleration of the carriage towing system are 3.1 m/s and 6 m/s2, respectively.

The variation of the height of the carriage above the undisturbed water surface

in the measurement area was recorded since this variation will create an error in any

optical measurements of the water surface height done using instruments attached

to the carriage. To perform this measurement, a height gauge consisting of long rod

with a sharp conically shaped end and mounted on a vertically oriented traverser

was attached to the carriage. The sharp tip of the rod was brought down to touch

the water surface. The carriage was then moved slowly and the relationship of the
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tip of the rod and the water surface was observed. It was found that the variation

in height of the carriage was about 2 mm over the measurement region.

3.4 Water treatment

Water treatment is crucial in these experiments because surfactants can strongly

affect the wave breaking process. The following procedures were followed to keep

the water clean.

At the beginning of each measurement series, the tank is filled with tap water

through two cartridge filters and a diatomaceous earth filter. Hypochlorite is then

added to the water (10 ppm) to neutralize organic materials. A recirculating skim-

mer/filtration system is used. In this system, the surface water is removed through

a surface skimmer, see Figures 3.1 and 3.35. The skimmer has a cylindrical shape

and is mounted horizontally on the side wall of the tank at the same height as the

undisturbed water surface at the far end of the tank from the wave maker. Water

enters the skimmer through a 2 cm high by 1.2 m long slot with a smooth lower

edge. The flow circulation rate is controlled such that a very thin layer of water

near the surface enters the skimmer. Water from the round tank is pumped through

a diatomaceous earth filter and sent back into the wave tank at a point near the

wave maker. The water is treated in this manner for two days before measurements

are made. Just before a measurement, the chlorine level is reduced to about 2 ppm

by addition of hydrogen peroxide. Low chlorine level is required to maintain the

fluorescent dye that is added to the water for the surface profile measurements.
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Figure 3.35: A picture of the skimmer system

3.5 Wave measurements

The histories of the surface profiles of 2D+T wave system are measured with

a photographic technique as described below.

3.5.1 Measurement equipment and setup

A schematic layout of the setup for the wave profile measurements is shown

in Figure 3.36. The purpose of the system is to record the surface profile at the

center of plane of the tank in a moving reference frame. The measurement system

has three main components: a light source, optics, and a high-speed digital camera.

Each component is discussed below.

The light source for the imaging system is an Argon Ion laser (Coherent)

operating in all lines mode at a continuous power level of 3.7 Watts. The laser is

positioned about 1 m off the floor on a table next to the wave tank at the end

with the wave maker. As it exits the laser, the beam is pointing horizontally in a

direction toward the far end of the tank and roughly parallel to the long side wall.
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Figure 3.36: A schematic of the imaging setup

Figure 3.37: A picture of the light source: a 5 Watts Coherent laser.
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A number of optical components are used to manipulate the laser beam be-

tween the light source and the water surface. These optical components serve to

redirect the beam, focus the beam on the water surface and spread the beam into a

sheet. The redirection of the beam is necessary to take it from the exit of the laser

to a position over top of the wave maker and give it a direction that is parallel to

the motion of the instrument carriage so that it hits the same spot on the optics

mounted on the instrument carriage as it moves along the tank. A system of three

mirrors is used for this purpose. The adjustment to make the laser beam hit the

optics on the carriage in the same spot regardless of the carriage position is done

with the last two of these mirrors along the optical path. In this adjustment, a

target is placed in front of the optics on the carriage and the carriage is placed in

its starting position. At this time, the position of the laser beam on the target is

marked. Then, the carriage is moved to the other end of the tank. If the laser

beam is properly aligned, it will still hit the same spot on the target. If not, one

of the mirrors is used to move the beam toward the spot. This process is repeated

several times until the beam does not move on the target at which point the beam

is properly aligned to the motion of the carriage.

The beam is focused onto the water surface with two spherical lenses that

are placed along the light path between two of the mirrors. Figure 3.38 shows the

configuration of the two lenses mounted on a rail attached to a vertical Aluminum

bar. These two lenses have an equivalent focal length which is dependent on the

focal length of each individual lens as well as the distance between the two of them.

Since the focal lengths of the two spherical lenses are already fixed, the distance
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between the two of them is used to adjust the focal distance to occur at the water

surface. According to paraxial ray approximation analysis, the minimum thickness

of the laser beam at the water surface, is 2 mm, which is quite acceptable. It should

be noted that as the carriage moves, the distance between the laser and water surface

changes and so does the thickness of the beam at the water surface. Thus, the focal

point of the system was set to be about half way between where the carriage starts

and ends its motion.

In order to convert the circular laser beam into a laser sheet, a rotating 12-

sided polygon with mirrored surfaces was used. Figure 3.39 shows a photograph

of the mirror mounted on the carriage. At the point where the laser beam reaches

the carriage, it is reflected toward the rotating mirror by a single fixed mirror. As

the polygonal mirror rotates, the reflected beam translates over an angle of 30◦

(360/12). The mirror rotates at about 25,000 rpm so during a typical exposure of

4 ms for each image of the high-speed camera (see discussion below), the laser scans

the field of view about 20 times and appears to the camera as a light sheet. There

are two parameters that let us control the width of the laser sheet at the water

surface and the angle at which it hits the water surface. The width of the laser

sheet at the water surface is controlled by the height of the mirror from the water

surface. It should be noted that the power of the light at the edges of the laser sheet

diminishes as the laser beam rolls over from one facet of the rotating mirror to the

other. Therefore, we make sure that the laser sheet is sufficiently bigger than the

camera view at the water surface to eliminate these low intensity regions from the

images. The angle of incidence of the laser sheet is controlled by the angle of the
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Figure 3.38: Configuration of the two lenses used for focal length and laser thickness

adjustment
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beam input to the rotating mirror. In this series of experiments, we set the laser

sheet to hit the water surface at an angle of about 45◦ from vertical directed back

toward the wave maker from in front of the wave so that the front face of the wave

was properly illuminated.

Figure 3.39: The two mirrors for steering the laser beam as well as the rotating

mirror used for converting the laser beam to a laser sheet.

The intersection of the light sheet and the water surface is photographed with

two high-speed digital cameras (Phantom IV, Photographic Analysis Company)

which are mounted on the instrument carriage. The water is mixed with Fluorescein

dye and a long-wavelength-pass color filter is placed in front of the lens of each

camera. These filters block any specular reflections of laser light, which can create

large white blobs in the images, from reaching the cameras. The cameras record
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512-by-512-pixel images with 8-bit gray levels at a frame rate of 256 Hz. The

image capture sequences are synchronized between the two cameras. The cameras

view the water surface through a long flat mirror which is also mounted on the

carriage. This mirror is used to provide greater adjustment to the viewing angle of

the cameras relative to the water surface. Figure 3.40 shows a top view schematic

of the cameras and the flat mirror mounted on the carriage. The viewing direction

of the two cameras is arranged to create side-by-side images of the water surface

with an overlap zone of about 20% of the image width. The total width of the

two camera view is about 30 inches. Since the wave pattern created by the wave

maker can reach a width of about 110 inches at the time of passage of the stern of

the equivalent 3D ship, multiple runs with the carriage motion starting a different

distances from the wave maker are required to measure the entire wave pattern for

a single equivalent ship speed.

Figure 3.40: A top view schematic of the cameras configuration
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3.6 Digital image processing

3.6.1 Wave profile extraction

Movies taken by the high-speed camera are transferred to a desk top computer

for processing. The data is later written on DVDs for storage and future use. Each

movie carries about 4 s of the wave generation process, containing 1017 images.

The images are extracted from the movies and stored in the form of ’bmp’ files for

further manipulations.

The images record the wave profiles at the center plane of the tank where the

light sheet intersects the water surface. Gradient-based image processing techniques

are used to extract the profile of the wave from each image.

3.6.2 Camera calibration

The wave profiles movies are taken by two cameras that view the intersection

of the light sheet and the water surface from the side. They are oriented at oblique

angles to the plane of the light sheet. As a result of this oblique viewing direction the

images show a distorted view of the wave profiles and must be transformed before any

further processing. In order to transform a point in the image plane into the physical

plane (plane of the light sheet), parameters associated with the transformation must

be obtained. There are three reference frames used in the transformation process (see

Figure 3.41): the grid reference frame ((xg, yg, zg) centered at Og), which represents

coordinates on the physical plane, the camera frame ((xc, yc, zc) centered at Oc),

which defines coordinates of points on the space relative to the focal center of the
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camera, and the image reference frame ((xi, yi, zi) centered at Oi), that defines the

coordinates of points on the image plane. In this last frame, the third coordinate is

always zero.

Figure 3.41: A schematic of the coordinates in the camera model

In order to go from grid frame coordinates to camera coordinates, extrinsic

parameters are used. Extrinsic parameters account for the relative position and ori-

entation of the camera reference frame to the grid reference frame. Having known

the extrinsic parameters, a point given in physical domain coordinates can be trans-

formed to the camera coordinates. As shown in Figure 3.41, let Pg be a point

(xg, yg, zg) in the grid reference frame and (xc, yc, zc) be the coordinate vector of this

point in the camera reference frame(designated by Pc). These two points are related

through the following rigid motion equation:
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xc

yc

zc




= R




xg

yg

zg




+ T (3.5)

where T is the coordinate vector of the origin of the grid pattern in the camera

reference frame and R is the rotation matrix in going from the grid reference frame

to the camera reference frame. T and R are defined as follows:

T =




Tx

Ty

Tz




(3.6)

and

R =




r11 r12 r13

r21 r22 r23

r31 r32 r33




(3.7)

where,

r11 = cos β cos γ

r12 = cos γ sin α sin β − cos α sin γ

r13 = sin α sin γ + cos α cos γ sin β

r21 = cos β sin γ

r22 = sin α sin β sin γ + cos α cos γ

r23 = cos α sin β sin γ − cos γ sin α

r31 = − sin β

r32 = cos β sin α

r33 = cos α cos β
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where α, β, and γ are the angles of the rotation around the x, y, and z axes,

respectively.

Once the coordinates of a point are expressed in the camera reference frame, it

can be projected on the image plane using the intrinsic camera parameters. In going

from the camera coordinates to the image plane coordinates, a camera model is used.

In the present work, a pin-hole camera model modified to include lens distortion was

used. The simple, undistorted, pinhole camera model uses the idea of perspective

projection, see Figure 3.42. Perspective projection is the process of mapping three

dimensions onto two. In perspective projection, light rays are constrained to pass

through a small hole before they reach the image plane (film plane). This way, each

ray connects a point on the physical domain to a single point on the image plane.

To simplify the mathematics, the camera is usually modeled by placing the image

plane between the focal point of the camera and the object so that the image is not

inverted. In Figure 3.41, let Pc be a point in space of coordinate vector (xc, yc, zc) in

Figure 3.42: A schematic of the camera pinhole model

the camera reference frame and (xu, yu) be the projection of the point on the image

plane (called Pu). These two points are related through the following geometrical

equation:
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xu

yu


 =




xc/zc

yc/zc


 (3.8)

In the above equation, (xu, yu) was obtained for a unit length of the camera

focal distance. The effective focal distance of the camera will be added later in the

derivation.

Due to lens distortion, the point on the image plane is actually at xd which is

defined as follows:



xd

yd


 =

(
1 + k1r

2 + k2r
4 + k5r

6
)



xu

yu


 +




dx

dy


 (3.9)

where r2 = x2 + y2 and (dx, dy) is the tangential distortion vector.




dx

dy


 =




2k3xy + k4 (r2 + 2x2)

k3 (r2 + 2y2) + 2k4xy


 (3.10)

The above distortion model was first introduced by Brown (1966) and called

”Plumb Bob” model. The tangential distortion is due to decentering or imperfect

centering of the lens components and manufacturing defects in a compound lens.

Once distortion is applied, the final pixel coordinates (xp, yp) of the projection of Pp

on the image plane can be obtained.

xp = f1 (xd + αyd) + cx

yp = f2 yd + cy

(3.11)

Therefore, the pixel coordinate vector is related to the distorted coordinate

vector through the following equation:
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xp

yp

1




= K




xd

yd

1




(3.12)

where K is the camera matrix and is defined as:

K =




f1 αf1 cx

0 f2 cy

0 0 1




(3.13)

The focal distance f1 and f2 are very similar. The ratio f2/f1 is called ”aspect

ratio”. If the CCD arrays have unequal vertical and horizontal spacing, this ratio is

a number other than 1. According to this model (0,0) is the center of the upper left

pixel of the image. As a result, (nx-1,0) is the center of the upper right corner pixel,

(0,ny-1) is the center of the lower left corner pixel, and (nx-1,ny-1) is the center of

the lower right corner pixel, where nx and ny are the width and height of the image.

For camera calibration an inverse mapping needs to be done. There exists a

toolbox in MATLAB that does camera calibration (Bouguet(2004)). In order to cal-

ibrate a camera, a print of a checker board is needed. Several pictures of the checker

board are taken to be used to recover the camera intrinsic parameters. Figure 3.43

shows an example of the image of the checker board with its reference frame used

in the present work. Using the calibration toolbox, camera intrinsic parameters as

well as the extrinsic parameters associated with each image are extracted. Now

that the camera parameters are obtained, we use the grid image, taken during our

experiments, to get its extrinsic parameters.
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Figure 3.43: A picture of the grid showing the grid reference frame

3.6.3 Camera-wavemaker synchronization

After obtaining the camera parameters and using an inverse mapping, every

point on the image is transformed to its corresponding point on the physical plane.

As mentioned before, the camera sits on the carriage which moves with the wave

maker top channel. In order to get the relative position of each profile with respect

to the wave board, the displacement of the carriage and consequently the camera

needs to be added to the horizontal coordinates of each wave profile.

The computer that controls the wave maker and the carriage was programmed

to send a trigger signal to the camera to start recording at the same time it sends

a signal to the carriage to start moving. However, it was found that there is a

repeatable time lag of 0.43 s (110 frames in the movies) between the time the camera

starts taking pictures and the time that the carriage starts moving. This time lag is

likely to be due to the springiness of the long steel carriage drive cables. In order to

99



relate the frame number in the high-speed movies to the wave maker and carriage

position readings recorded by the computer, this time lag was used.

3.6.4 Test procedure

The series of tests to measure the water surface profiles for one equivalent

ship speed takes about one day of laboratory time. The steps taken each day to

obtain these measurements are given below. It is important to keep the water level

fixed during the entire experiment to ensure that the depth-based Froude number

is the same and, therefore, the wave generation conditions are constant. This is

particularly important since, for a single ship speed the surface profile is patched

together from images taken in separate experimental runs. Therefore, the water level

is checked and, if needed, adjusted by adding fresh water or draining the existing

water in the tank before each individual test. In addition, the dye concentration in

the water is frequently examined. Having the optimum amount of dye ensures that

the wave images are sharp and bright enough for the subsequent image processing.

Also, the water surface in the tank needs to be clean over the entire course of

the measurements as dirt and surfactants can alter the dynamics properties of the

free surface and also degrade the images of the wave. Therefore, the water surface

skimming system is run for about one hour in the morning, one hour at midday,

and whenever there is a break during the experiments.

The optical system consisting of the laser, cameras, and the laser sheet is

checked before any set of measurements. First, the laser needs to be run for about
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30 minutes at the beginning of the day. Then laser sheet is checked to be in the

center plane of the tank over the travel distance of the instrument carriage. Finally,

the camera orientations are adjusted so that the field of view of each camera overlaps

the other and the combined field of view covers the location where the the laser sheet

intersects the water.

Before any set of experiments, the calibration grid is placed at the same plane

as the laser sheet and an image is taken which is used later to determine the external

parameters for each camera, see above. In order to make sure that the measurements

are made correctly, a new picture of the calibration grid is also taken at the end of

each day of experiments. Finally, a movie is taken with the wave maker stationary

and the carriage undergoing its normal motion. These movies of the flat water

surface are required to determine z = 0 and the horizontal plane at each location in

the tank during the image processing.

Once the above steps are completed, the wave maker is set to run along with

the instrument carriage and the series of wave profile measurements begins. Each

run takes about 30 minutes, which includes the time needed to retract the wave

maker and allow the water to come to rest. During this waiting period, the data

files and the movies are saved to be used later for image processing. Movies for each

carriage position (zones 1, 2, 3, and 4) are repeated three times in order to make

statistical studies of fluctuating free surface features caused by turbulence.
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Chapter 4

Development of a Holographic PIV system for velocity and bubble

measurements

4.1 Introduction

The basic ideas of holography was originated by Dennis Gabor (1948). With

the advent of the laser, it caught the excitement and imagination of the scientific

community and has become an active field of applied research around the world.

The most striking feature of any hologram is the three-dimensional image

that it forms. The light arriving from the hologram into the eyes of the viewer

is physically the same as light emitted from the original object. Thus, the viewer

can see the object in the hologram from many viewing directions. This means that

if a hologram is broken into small pieces, the entire image can be seen through

any small piece, that is the image is not clipped. Depending upon the location

of the piece viewed, the perspective is different. This resembles precisely the act

of looking through a hole in a covered window. Depending on the location of the

hole, the outside scene is perceived in its entirely, but from a different perspective.

Holograms offer both real and virtual images. An image is said to be real if it can

be projected and focused onto a screen. Otherwise, it is called a virtual image.
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In general, the definitions are parallel to those used for classical optics concerning

lenses and mirrors.

There are two types of holograms: transmission holograms, and reflection

holograms. Transmission holograms are always viewed by having the illumination

behind the hologram on the side opposite from the viewer. The light transmits

through the film to form the image that the viewer sees. On the other hand, a

reflection hologram is a type in which the illuminating source is on the same side as

the viewer. Light is reflected off the hologram to form the image observed.

Holographic particle image velocimetry (HPIV) has been recently employed

to measure the velocity field of a 3D flow. Advances in laser technology provide

the possibility of using the holographic recording technique in large volumetric flow

field measurements. Moreover, improved digital image acquisition and processing

hardware along with complex software tools make evaluation of 3D data sets feasible

within useful time scales. Conceptually, holographic PIV is an extension of planar

particle image velocimetry (PIV). This technique is based on recording double ex-

posure holograms of a flow field with microscopic interrogation objects such as small

particles or bubbles. Reconstruction makes it possible to scan a 3D frozen image

of a sample volume. By measuring the displacement of the particle traces, using

correlation technique, and knowing the time separation between the two exposures,

local velocities are determined (Adrian 1991). The apparent advantage of HPIV

over PIV is that it measures the instantaneous 3D velocity field over a deep sample

volume, while maintaining high measurement accuracy.

There are two basic optical schemes in holographic particle image velocimetry:
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in-line holography and off-axis holography. In in-line holography, a collimated laser

beam illuminates the sample interrogation volume located along its optical axis. A

holographic film is placed normal to the optical axis and records the interference

pattern created by the forward scattered light from the objects and the undisturbed

part of the light beam. Despite its simple implementation, it suffers from two main

disadvantages. First, the reconstructed images are subject to substantial amount

of speckle noise, mostly due to the overlap of the reference beam, real and virtual

images (Collier 1971). Second, the objects must have a fairly low population in

the sample volume, since the reference beam, whose coherence must be preserved,

passes through the sample volume. The quality of the reference beam deteriorates,

due to large particle population. On the other hand, the second basic HPIV tech-

nique, off-axis holography, employs a separate reference beam. In this technique,

the overlapping problem is easily eliminated and, as a result, the speckle noise in

the reconstructed images is substantially removed. It also allows for higher spatial

resolution. A typical off-axis holographic scheme utilizes side scattered light from

the objects, which is 2 or 3 orders of magnitude lower in intensity than forward

scattering, depending on the particle size and the scattering angle. Low scattering

efficiency requires use of more powerful lasers and larger seeding objects, which is

problematic for velocity measurements.

A variety of optical configurations have been proposed and implemented to

overcome the drawbacks of these two basic schemes, which usually require more

sophisticated optical setup. Many successful attempts have been made to measure

instantaneous, 3D velocity fields within a sample volume with high spatial reso-
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lutions. Barnhart et al. (1994) developed a phase-conjugate, off-axis holographic

system to measure the air flow in a turbulent pipe. In their studies, a stereoscopic,

dual subject and reference beam, near-forward scattering setup was used. Meng

& Hussain (1995) used an in-line recording, off-axis viewing system to study the

instantaneous flow field in a vortex ring. By off-axis viewing, the image overlap in

the view field of the camera is successfully removed. However, particle population

must be low to maintain the coherence of the beam. Gray & Greated (1993) devel-

oped a forward scattering, off-axis system to map the 3D velocity field of a particle

suspension sample volume with limited spatial resolution. Zhang & Katz (1994)

proposed a hybrid setup. Later, Zhang et al. (1997) developed a dual hybrid scheme

for measuring 3D velocity fields in a moderately high Reynolds number turbulent

duct flow.

4.2 The holographic PIV approach developed in the present study

Figure 4.1 shows a schematic of the optical setup which was developed in the

present study and will be used in future work on the measurement of the bubbles

generated by breaking waves. This setup is similar to that used by Zhang & Katz

(1994). In this approach, the subject beam illuminates the sample volume along the

optical axis. The current optical setup is very similar to in-line holography, except

that the undisturbed part of the subject beam is blocked out. Instead, a separate

beam is used as the reference, resembling an off-axis scheme. A holographic plate

records the interference pattern created by forward scattered light from the objects
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Figure 4.1: A schematic of the HPIV setup used in this study.

and the reference beam.

In order to remove the undisturbed part of the subject beam, two identical

achromatic lenses are used between the sample volume and the recording plate.

These relay lenses are separated by a distance of twice their focal length and a

spatial, high-pass filter (a pin) is inserted between the two lenses. This pin is

installed at the focus of the first lens. The undisturbed part of the subject beam,

which is parallel to the optical axis, is focused by the first relay lens to its focal

point and blocked out by the pin. However, the light scattered from bubbles, except

the zero-degree forward scattering, reaches the film with minimum obstruction. It

should be noted that the finite diameter of the relay lenses imposes an upper limit

on the spatial frequencies and serves as an aperture (field) stop. As a result, larger

relay lenses are preferred to collect as much light as possible and to improve the

efficiency of the optical system.

The depth of focus of the image (elongation of the objects in depth in the
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image) is an important consideration in these holograms. The depth of focus can be

defined in the present images as the range of depth within which the intensity level

of a spherical image is distinctively higher than its background. The present setup

is expected to have less elongation in the depth direction than in a typical in-line

system where the undisturbed subject beam is used for the reference beam. The

reason for this smaller elongation is the removal of the zero-degree, forward scattered

light by the high-pass filter. In a typical in-line holographic system, this zero-degree,

forward scattering light is dominant, which may result in greater elongation.

In the present setup, both the wavelength and the angle of the reconstruction

beam are different from the recording reference beam. When different wavelengths

and reference angles are used during the recording and reconstruction processes,

spatial distortions in the reconstructed images occur, which include both lateral

(in-plane) and axial (in-depth) distortions. These distortions are a function of the

recording and reconstruction reference angles, as well as the reconstruction to record-

ing wavelength ratio. The lateral distortion can be removed by choosing proper

reconstruction and recording reference angles. However, since the reconstruction

and recording wavelengths are different in this case, the axial distortion can not be

eliminated, but be compensated during the data analysis. Fortunately, the axial

distortion is just a linear shrinkage (Collier 1971). In the present case, there is a

shrinkage of 37%.

In addition to measuring the bubble diameters using this approach, it is pos-

sible to determine the two velocity components perpendicular to the optical axis.

The reconstructed bubbles have elongated shape in the depth direction. This phe-
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nomenon is known as the depth of focus effect (Barnhart et al. 1999, Blackshire et

al. 1994). Since this elongation reduces the spatial resolution in the depth direction,

the velocity along the optical axis can not be determined with the same accuracy

as the two other in-plane components.

4.3 Optical setup for hologram recording

Like any optical system, the present setup (see Figure 4.1) consists of three

main components: a light source, optics, and an optical detector. Figure 4.2 and 4.3

show photographs of the optical configuration for hologram recording. In order to

provide velocity measurements, the system should be capable of double exposure.

As in regular PIV, the double exposure separation will be adjusted in accord with

the estimated flow speed.

The light source is an injection seeded dual Nd:YAG laser (Spectra Physics)

with a wavelength and pulse energy of 532 nm and 170 mJ, respectively. It gives

temporally separated pairs of laser pulses, each of 8 ns duration, at a repetition rate

of 15 Hz. The laser should be fired at its maximum power in order to maintain

the beam divergence at the minimum level. The laser system consists of two laser

cavities, which are fired using a multi-channel digital pulse generator (Stanford

Research Systems), see Figure 4.1. The interval between two pulses from the laser

can be adjusted from 1 ns to 66 ms. The laser is equipped with an injection seeder

to guarantee sufficient coherence length. The increased coherence length provides

high quality holographic recording of a large volume, while allowing mismatched
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(a)

(b)

Figure 4.2: Two views of the holographic PIV setup showing the hologram recording

line and the water tank. 109



(a)

(b)

Figure 4.3: Two views of the holographic PIV setup showing (a) part of the recon-

struction line and (b) the laser used for hologram recording.
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optical path length between object and reference beams. Each laser head emits a

beam, which is vertically polarized.

A number of optical components are used to manipulate the laser beam be-

tween the light source and optical detector. To ensure the stable injection seeding

operation, the pulsed laser system has to fire constantly during the recording pro-

cess. Therefore, a high-energy shutter, operated through a synchronizer, is employed

to generate a single pair of laser pulses at the desired instant in time, see Figure 4.1.

The synchronizer assures that the shutter will pass only one pair of pulses. The

the laser pulse that pass through the shutter, are then split into two parts by a

partial reflecting mirror that works as a beam splitter. The majority of the light

is transmitted to illuminate the control volume. The reflected part is used as the

reference beam.

The subject and reference beams are further manipulated before they reach

the holographic plate. The subject beam is expanded to 70 mm in diameter with

a convex lens, then collimated with a concave lens, and then directed through the

tank cross section. After leaving the tank, it goes through the above-mentioned

relay lens system to remove the light that is not disturbed by the bubbles. This lens

system consists of two achromatic lenses with focal lengths of 300 mm positioned

at a distance of 600 mm apart on an optical rail. The spatial filter is placed at the

midpoint between the two lenses.

In order to adjust the intensity of the reference beam and, consequently, control

the reference to object beam intensity ratio, a variable beam splitter is used. The

variable beam splitter consists of a pair of half wave plates and a polarizing beam
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splitter. The path length of the subject beam is matched with the reference beam to

preserve the coherence length of the beams. The reference beam is then expanded,

and collimated. The reference beam should be a high quality plane wave for easy

reproduction during the reconstruction. Plane waves are preferred for producing a

conjugate beam. The scattered light from bubbles/particles and the reference beam

are then projected on a holographic plate.

Holographic plates serve as the optical detector in this system. The holo-

graphic plate, which has its emulsion side facing the flow field, records the resultant

interference pattern of the subject and reference beams. The hologram is a 63 mm

Slavish VRP (green sensitive) plate. For this type of emulsion, the proper exposure

for optimal fringe contrast requires 150-400 µJ/cm2. During each firing of the laser,

one frame of the holographic plate is exposed for the duration of the two short laser

pulses. To ensure the proper hologram exposure level, a variable beam splitter is

used at the exit of the laser to reduce the output energy of the beam. Using this

setup, a frozen scene of the sample volume is recorded simultaneously on a double

exposure hologram.

4.4 Image reconstruction and data acquisition

A schematic of the image reconstruction setup is shown in Figure 4.4. Af-

ter the exposed hologram is developed, it is put back into the plate holder in the

reconstruction system. The light source is a 5 mW, continuous wave He-Ne laser

with a wavelength of 632.8 nm. The beam is spatially filtered, expanded and then
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collimated to 70 mm in diameter. To keep optical abberations at the minimum

level, the relay lenses and the plate holder in the recording system are integrated

into the reconstruction system as a single unit. The hologram is illuminated from its

substrate side at an angle. The reconstructed wave front propagates back through

the relay lenses and forms a 3D image.

Figure 4.4: Reconstruction set up.

The 3D image is then digitized and saved in a computer using the follow system

and procedure. The basic method is to record standard digital images with small

depths of field over a 3D grid in the holographic image space. The camera used here

was a Nikon D1x which has a sensor array of 3000 × 2000 pixels. The camera is

equipped with a microscopic objective lens (Infinity Photo-Optical Company, Model

K2) that has a small field of view and depth of field. The images are saved on the

hard disc of a computer for image processing. With the microscopic objective lens

setting used herein, each frame corresponds to a field of view of 9 × 6 mm2 within

the sample volume. This scale translates to a digitization resolution of 3 µm/pixel.
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A 3-axis, precision translation stage is employed to move the camera in three-

dimensions through the holographic space, see Figure 4.5. This stage is driven by a

computer-controlled servo motor. The camera-traverser system is set to scan entire

planes normal to the optical axis sequentially until the entire holographic volume

has been recorded. In this way, each reconstructed 3D image is broken into a series

of slices normal to the optical axis. Having a sample volume with a cross section of

54× 54 mm2, requires 54 images in each plane.

Figure 4.5: Digitization system of the hologram.

4.5 Preliminary testing

Since the wave tank was not ready to perform bubble and flow measurements

of breaking bow waves, a small tank was built and used for preliminary tests of

the holographic system. This tank is 11 × 8 × 9 in3 and made of the same plastic

114



material as the walls of the wave tank. During the experiments, the tank was

filled with water, representing the wave tank. The rotating blade of a mixer was

positioned very close to the water surface to draw air into the water and create a

two-phase flow. The size and population of the bubbles could not be controlled in

these experiments, but it was enough for preliminary tests of the optical system.

Figure 4.9 shows a sample hologram taken in these experiments.

Figure 4.6: A sample hologram.

Figure 4.7 and 4.8 show a sample series of digitized images from the resulting

hologram. In this particular case, the traverser/camera system was commanded to

move along the depth of the hologram and take images at a spacing of 1 mm. Four

images of the control volume taken at depth positions 0, 18, 42, and 60 mm are

shown. These images show bubbles that are within the depth of focus of the camera

lens. As the camera moves along the optical axis, these bubbles go out of focus and

disappear while new bubbles come into the focus.
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(a)

(b)

Figure 4.7: A sample reconstructed image at relative depths of (a) 0 and (b) 18 mm.
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(a)

(b)

Figure 4.8: A sample reconstructed image at relative depths of (a) 42 mm and (b)

60 mm.
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4.6 Proposed setup for experiments in the large wave tank

As mentioned above, this holographic technique was developed to study break-

ing bow waves. A schematic layout of the optical configuration for hologram record-

ing in the large tank is shown in Figure 4.9. This system is planned to be used in

the near future.

Figure 4.9: A schematic of the current holography (HPIV) configuration.
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Chapter 5

Results and discussions

The wave shape data was taken and processed to determine the detailed be-

havior of the breaking bow wave. In the following, the 2D+T bow wave observations

are presented first to show the main features of the bow wave. This is followed by

descriptions of the wave patterns around the ship simulator; tests of repeatability of

the experiments; motions of the water contact line including trajectories, maximum

height, and velocities; wave crest properties such as trajectories, maximum height,

and velocities; and jet properties including impact point location, angle of incidence,

and jet tip velocities. Data on the maximum splash height is then presented. Fi-

nally, a scaling study is presented to examine the effects of the ship speed on some

of the above properties.

5.1 The 2D+T bow wave observations

The waves were generated with the 2D+T wave maker at four different equiv-

alent ship speeds: 16.5, 20, 25, and 27 knots. Flow visualization studies using either

white light or the above-described surface profile measurement technique (LIF) were

first performed to define the main features of the 2D+T bow wave. Since the wave

pattern of interest was much wider than the combined field of view of the two cam-
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eras, the measurement area was divided into four zones each covering a view of

about 30 inches (the combined view of the two cameras). The movies are labeled by

the zone number (zone 1 is closest to the wave maker) and the camera designation

(A or B with the field of view of camera A closest to the wave maker). The mea-

surements in each zone were, of course, performed in separate experimental runs.

Several sets of images from the high-speed LIF movies are presented here to high-

light various aspects of the wave generation and breaking process. First, sets of four

images taken in zone 1 by camera A at equivalent ship speeds of 16.5, 20.0, 25.0

and 27.0 knots are shown in Figures 5.1, 5.2, 5.3, and 5.4, respectively1. For all

speeds, the selected photographs were taken at 0.0, 0.371, 0.586, and 0.738 s after

the start of the wave maker motion. These photographs were selected to show the

breaker formation up to the point of impact of the plunging jet in the higher speed

cases. The jet impact and the splash formation are shown in Figure 5.5 which is for

an equivalent ship speed of 27 knots. In this figure, the photographs are all from

camera B: photographs (a) and (b) are from zone 1; (c), (d), (e) from zone 2; and

(f) from zone 3. Finally, Figures 5.6, 5.7, 5.8, and 5.9 show sample images of the

wave formation process frozen at the same dimensionless times (0.0t0, 0.16t0 , 0.23t0

and 0.31t0, where t0 is the total time of the wave maker motion) in the wave maker

1A light intensity pattern is seen in the foreground of each image. This light pattern originates

from the glowing dye within the light sheet. In the high-speed movies, this intensity pattern is

viewed from above the water surface with a look-down angle (about 30◦); from this view point,

any light reaching the foreground of the images from the glowing dye is refracted by the water

surface between the light sheet and the camera (see 3.36).
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motions at the four equivalent ship speeds. The values of t0 are 3.393 s, 2.8 s, 2.24 s,

and 2.074 s at equivalent ship speed of 16.5, 20, 25, and 27, respectively.

The four equivalent ship speeds were chosen to create a wide range of breaking

behavior. At the 16.5-knot speed, the wave becomes quite steep and forms a very

weak spilling breaker. A strong spilling breaker is formed at 20 knots. This equiv-

alent ship speed was also used at the Naval Surface Warfare Center, Carderock for

tests with the 5415 ship model. Experiments at this speed seemed to be useful as we

could compare our findings with the real 3D model (which unfortunately includes

a large sonar dome that is not simulated in our laboratory). At the two highest

equivalent ship speeds, plunging breakers are found with the size of the plunging jet

larger in the 27-knot case.

The photographs in Figures 5.1 to 5.9 can be used to show various aspects

of the wave generation process. When the wave maker starts to move, it transmits

energy to the fluid. The velocities of water particles that are in contact with the

wave board are the same as the velocities of the adjacent material particles that

make up the wave board itself. As a result of the horizontal acceleration of the

wave board, a high-pressure region forms just under the water free surface. This

high-pressure region accelerates the water particles near the free surface into a sheet

that climbs up the wave board. This sheet soon forms a wave crest which moves

ahead of the wave board. In this phase of the wave formation, the crest takes a

smooth flat shape. Once the wave has reached its maximum height, gravity causes

the wave to plunge back into the wave front face in the two highest speed cases and

form spilling breakers for the two lower speed cases.
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(a) (b)

(c) (d)

Figure 5.1: Wave formation process at four different times for equivalent ship speed

of 16.5 knots. Time is (a) 0 s, (b) 0.371 s, (c) 0.586 s, (d) 0.738 s.
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(a) (b)

(c) (d)

Figure 5.2: Wave formation process at four different times for equivalent ship speed

of 20 knots. Time is (a) 0 s, (b) 0.371 s, (c) 0.586 s, (d) 0.738 s.
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(a) (b)

(c) (d)

Figure 5.3: Wave formation process at four different times for equivalent ship speed

of 25 knots. Time is (a) 0 s, (b) 0.371 s, (c) 0.586 s, (d) 0.738 s.
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(a) (b)

(c) (d)

Figure 5.4: Wave formation process at four different times for equivalent ship speed

of 27 knots. Time is (a) 0 s, (b) 0.371 s, (c) 0.586 s, (d) 0.738 s.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: Splash formation process for equivalent ship speed of 27 knots. Time is

(a) 0.816 s, (b) 0.926 s, (c) 1.020 s, (d) 1.160 s, (e) 1.430 s, (f) 1.445 s.
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(a) (b)

(c) (d)

Figure 5.6: Wave formation process at four different times for equivalent ship speed

of 16.5 knots. Time is (a) 0, (b) 0.16t0, (c) 0.23t0,(d) 0.31t0. t0 is 3.393 s.
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(a) (b)

(c) (d)

Figure 5.7: Wave formation process at four different times for equivalent ship speed

of 20 knots. Time is (a) 0, (b) 0.16t0, (c) 0.23t0,(d) 0.31t0. t0 is 2.8 s.
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(a) (b)

(c) (d)

Figure 5.8: Wave formation process at four different times for equivalent ship speed

of 25 knots. Time is (a) 0, (b) 0.16t0, (c) 0.23t0,(d) 0.31t0. t0 is 2.24 s.
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(a) (b)

(c) (d)

Figure 5.9: Wave formation process at four different times for equivalent ship speed

of 27 knots. Time is (a) 0, (b) 0.16t0, (c) 0.23t0,(d) 0.31t0. t0 is 2.074 s.
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Detailed examination of the two higher speed cases indicates that there are two

jet plunging events in each case–a small jet that forms and plunges early in the wave

formation and a larger main jet that produces the main part of the air entrainment.

The small and large jet can be seen near the plunge point in Figure 5.9(c)and (d),

respectively. Both jets form and plunge during the evolution of the same wave crest.

The cause of this multiple jet phenomenon is not known, but it is obviously related

to intended or unintended details of the wave maker motion. The size and apparent

strength of the main jet increases with the equivalent ship model speed.

Though the motion of the wave maker is highly two-dimensional, three dimen-

sionality begins to appear in the free surface after the jet formation process is well

underway. This three-dimensionality appears first as ripples on the underside of the

jet and the jet tip. Later, after jet impact, the flow becomes fully turbulent and

three dimensional drops and bubbles form, see Figure 5.3(c)and (d).

After the main jet impacts the front face of the wave, a splash region is formed

ahead of the jet impact site, see Figure 5.5. Its likely that a portion of the water

in the splash comes from the jet which bounces off the front face of the wave. No

specific measurement has yet been made to quantify the source of the water in the

splash. As will be shown in the later sections, the splash goes as high as the wave

crest and becomes highly violent as the equivalent ship speed increases.

It is interesting to compare the sets of photographs taken at the same dimen-

sional times (Figures 5.1 to 5.4) to those taken at the same dimensionless times

(Figures 5.6 to 5.9) for the four equivalent ship speeds. From Figures 5.1 to 5.4 it

can be seen that the phase of the wave development, for instance the point of jet
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impact in the two higher speed cases or the initial spilling phase in the slower speed

cases, occurs at roughly the same absolute time during the wave maker motion. This

corresponds to different x locations on the equivalent 3D model hull. Equivalently,

from Figures 5.6 to 5.9, it can be seen that at the same dimensionless times, which

correspond to the same values of x in the 3D model hull, the wave is further evolved

as the equivalent speed increases.

In order to make qualitative observations of the air entrainment process,

movies were taken with the high speed camera looking under the free surface through

the clear side walls of the tank. White light illumination was used for these movies.

Figure 5.10 shows a sequence of four photographs extracted from the movie taken

during the experiment with an equivalent ship speed of 25 knots. The most impor-

tant features seen in the air-entrainment process are two clouds of bubbles under

the free surface after the jet impacts the forward face of the wave and the splash

forms. The cloud closest to the wave maker is due to air entrapped by the plunging

jet and the other cloud results from the impact of the splash. The cloud from the

splash moves away from the wave maker at a higher speed than the cloud due to the

plunging jet; therefore, the separation between the clouds increases as time goes on.

Also, the clouds appear to rotate in the clockwise direction. The width of the cloud

from the jet impact and that from the splash are approximately 8.5 and 10.5 inches,

respectively. The depths of the bottom edges of both clouds are approximately

11 inches. Note that these numbers are approximate; no exact measurements of the

air entrainment process were made.
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(a) (b)

(c) (d)

Figure 5.10: Air entrainment process at four different times for equivalent ship speed

of 25 knots.
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5.2 Measurements of the overall wave pattern around the ship sim-

ulator

As is explained in detail in the previous chapter, the water surface profile his-

tories were measured with two high-speed digital movie cameras that were mounted

on the instrument carriage. The cameras viewed the intersection of the laser light

sheet (also fixed to the carriage) and the water surface at the center plane of the

tank. Measurements were made over the entire domain of the wave motion up to

the time of passage of the stern of the equivalent 3D ship model. This covers a

distance out to approximately 1.5 beam widths from the centerline of the equivalent

3D model. Interestingly, this width compares well to the width of the breaking zones

of full scale ships as seen in Figure 5.11.

The wave patterns for the four equivalent ship speeds are shown in Figures 5.12,

5.13, 5.14, and 5.15. In these figures, the horizontal axis is the distance (y) from the

midplane of the equivalent ship model normalized by the beam (b = 2.82 m) and the

vertical axis is the height (z) of each point on the water surface normalized by the

draft (d = 0.9144 m). The plots cover a distance of about 1.4 beams horizontally.

In these plots, there are black and red lines. Black lines represent the data from

images taken by camera A, while red lines are from the images taken by camera B,

see Figure 3.40. There are four sets of black and red lines representing four different

measurement zones on each plot. The data from both cameras from all zones were

patched together to give the wave pattern around the ship model. In all cases, the

time between consecutive profiles is 0.078 s, representing every 20th frame of the
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Figure 5.11: A typical wave pattern around a real ship.
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images taken by each camera, which recorded 256 frames per second.

Figure 5.12 shows the wave pattern around the wave maker at the equivalent

ship speed of 16.5 knots. At the early stages of the wave maker motion, most of

the water surface is horizontal. The first motion of the water surface is a rapid rise

next to the wave board. At this stage, the water surface away from the wave board

does not move. As time goes on, the water moves away from the equivalent ship

model centerline and the water surface far away from the wave board starts rising.

As seen in Figure 5.12, a secondary wave forms between the first wave crest and the

wave board at a point about 0.25b away from the ship centerline. This wave is much

smaller than the main wave, which grows as high as 0.2d from the undisturbed water

surface. At this ship model speed, the amplitude of the secondary wave reaches only

about 0.02d. This wave never grows large enough to break.

At the ship model speed of 20 knots, the wave breaking becomes more violent,

see Figure 5.13. The wave is steep with a crest height as high as 0.25d. A small

jet forms of the forward face of the crest and its impact initiates a spilling breaking

process. Figure 5.14 shows the wave pattern around the simulated ship model at

an equivalent ship speed of 25 knots. At this speed, the wave becomes steeper and

gets as high as 0.36d. Figure 5.15 shows the wave pattern around the simulated ship

model at the equivalent ship speed of 27 knots. At this speed the breaking appears

more violent and the crest height reaches 0.38d, the highest value of this test series.

Each set of experiments was conducted three times to confirm the repeatability

of the measurement technique from run to run. These three profiles are plotted in

Figure 5.16 and 5.17 for the cases with equivalent ship speeds of 20 knots and
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Figure 5.12: Profile histories of the bow wave generated by 2D+T wave maker at

equivalent ship speed of 16.5 knots; Time interval between the profiles is 0.078 s;

beam(b)=2.82 m and draft(d)=.914 m.
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Figure 5.13: Profile histories of the bow wave generated by 2D+T wave maker at

equivalent ship speed of 20.0 knots; Time interval between the profiles is 0.078 s;

beam(b)=2.82 m and draft(d)=.914 m.
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Figure 5.14: Profile histories of the bow wave generated by 2D+T wave maker at

equivalent ship speed of 25.0 knots; Time interval between the profiles is 0.078 s;

beam(b)=2.82 m and draft(d)=.914 m.
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Figure 5.15: Profile histories of the bow wave generated by 2D+T wave maker at

equivalent ship speed of 27.0 knots; Time interval between the profiles is 0.078 s;

beam(b)=2.82 m and draft(d)=.914 m.
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27 knots, respectively. These profiles are from zones 1 and 2 only. In addition to

the curves from individual runs, curves obtained by averaging the data from the

three runs are also presented. These average curves were obtained with a nearest

neighbor method. In this averaging method, the coordinates of a point on one of the

three curves is selected and averaged with the coordinates of the closest points on

the other two curves. As can be seen in the figures, in regions before the plunging

jet impact or away from the ensuing turbulent impact site and splash, the three

realizations of the wave profile are nearly identical and nearly equal to the average

profile. This shows that the wave maker produces highly repeatable motions from

run to run. In the impact and splash regions turbulence is created and this adds

randomness to the surface profile shapes. Thus, there is a larger run to run variation

in these regions.

The run to run RMS values about the mean curve were also plotted to show

a quantitative measure of the variation of the wave profiles from run to run, see

Figures 5.18 and 5.19 for the two equivalent ship speeds of 20 knots and 27 knots,

respectively. Smaller RMS values are seen over the non-turbulent part of the wave

profiles while larger RMS values are seen in the jet impact and splash regions.

5.3 Comparison of the 2D+T with the 5415 ship model results

The 2D+T wave maker simulates the bow wave generation of the 5415 model

built at the Naval Surface Warfare Center, Carderock. In this section, some features

of the wave systems of the two models are compared and contrasted. However, the
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Figure 5.16: Profile histories of the bow wave generated by the 2D+T wave maker

at equivalent ship speed of 27.0 knots from three different runs along with the

averaged profile from (a) zone 1 (b) zone 2; Time interval between the profiles is

0.078 s; beam(b)=2.82 m and draft(d)=.914 m.
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Figure 5.17: Profile histories of the bow wave generated by 2D+T wave maker at

equivalent ship speed of 27.0 knots from three different runs along with the averaged

profile from (a) zone 1 (b) zone 2; Time interval between the profiles is 0.078 s;

beam(b)=2.82 m and draft(d)=.914 m.
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Figure 5.18: Curves of RMS surface fluctuations about the mean wave profiles

from three different runs under the same conditions at different times of the wave

formation and breaking process for an equivalent ship speed of 20 knots. Horizontal

axis represents the data point along each wave profile. Each curve was elevated by

10 mm on the vertical axis for clarity. Curves are from (a) zone 1, camera A, (b)

zone 1, camera B, (c) zone 2, camera A, and (a) zone 2, camera B.
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Figure 5.19: Curves of RMS surface fluctuations about the mean wave profiles

from three different runs under the same conditions at different times of the wave

formation and breaking process for an equivalent ship speed of 27 knots. Horizontal

axis represents the data point along each wave profile. Each curve was elevated by

10 mm on the vertical axis for clarity. Curves are from (a) zone 1, camera A, (b)

zone 1, camera B, (c) zone 2, camera A, and (a) zone 2, camera B.
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reader is reminded that the 5415 model has a large sonar dome in the bow region

and this feature of the hull is not simulated by the 2D+T wave maker. Since it is

well known that large submerged structures at the bows of ships modify the wave

systems, one should not expect excellent quantitative agreement between the two

wave patterns.

Figure 5.20 shows sample photographs of the waves around the bow of the

5415 model at equivalent full scale ship speeds of 20 and 30 knots. At each model

speed, one photograph taken at different times is included to show the temporal

variation of the wave pattern due to turbulence. Key features of the wave pattern

are labeled to facilitate the following discussion. In the low speed (20 knots) case,

a fairly strong spilling breaker is found at the bow. A little further downstream,

a secondary non breaking wave crest can be seen. Both the spilling breaking bow

wave and the secondary wave also are found in the 2D+T wave field at the 20-knot

speed, see Figure 5.2. The 30-knot case for the 5415 model can be compared to the

27-knot case for the 2D+T wave maker. In both the 5415 and 2D+T wave systems

(see Figure 5.4 for the 2D+T waves), a strong plunging breaker is found along with

a violent splash up after the jet impact. In both cases, clouds of air bubbles are

entrained under the free surface at the crest and the splash region. These bubbles

can be seen as they come to the surface in the photographs in in Figure 5.20 and the

from the above surface view in Figure 5.4. The entrainment region under the crest

is seen to be smaller than that under the splash in both studies. Also of interest are

the bubble pictures for the 25-knot case for the 2D+T wave maker in Figure 5.10.

These photographs show that the region of bubbles under the crest separates from
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(a)

(b)

Figure 5.20: Wave formation process in the 3D model 5415 at full-scale speeds of

(a) 20 knots and (b) 30 knots.
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the region under the splash as time proceeds (see above discussion). This behavior

is also obvious from the bubble trails in the free surface photographs of the 5415

wave pattern at the 30-knot speed.

Plots of the contact line height versus streamwise position for the 5415 model

were found on the Naval Surface Warfare Center’s web site. The contact line data

for the 2D+T wave maker was obtained as described in the following subsection. A

comparison of these two data sets (full scale ship speeds of 20 and 30 knots for the

5415 model and the four values mentioned perviously for the 2D+T wave maker)

is given in Figure 5.21. Both sets of data were normalized by the appropriate ship

model length for streamwise positions and draft for the water surface height. As

mentioned previously the equivalent length of the 2D+T model is L = 21.03 m.

The data for the 5415 and 2D+T models have the same trend; however, non-

dimensional surface heights for the 5415 model are considerably higher for the 20-

knot and 30-knot speeds when compared to the data for the 20-knot and 27-knot

speeds for the 2D+T model. These differences may be caused by the removal of

the bulb in the 2D+T model, the changes in the 2D+T model shape at the stem as

discussed in the previous chapter, or the 2D+T approximation itself.

5.4 Geometric properties of 2D+T bow waves

5.4.1 Water contact line with the wave board

The water contact lines were obtained for four different equivalent ship speeds

in the 2D+T experiments. In these experiments, the contact points are first ob-
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Figure 5.21: The height of the water contact line of the 2D+T measurements at vari-

ous equivalent ship speeds along with the data of the 5415 model; length(L)=21.03 m

and draft(d)=.914 m for 2D+T; length(L)=5.72 m and draft(d)=.305 m for 5415

model.
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tained at different times and then the time coordinate is transferred into a spatial

into streamwise distance using the 2D+T conversion x = Ut. The variables are

normalized, unless otherwise noted. The streamwise distance is normalized by the

length of the ship model (L = 21.03 m), transverse direction distance by the beam

of the ship (b = 2.82 m), and the water surface height by the the draft of the

model (d = .9144 m). Also, the height of the contact point is measured from the

undisturbed water surface in all cases.

The projection of the contact lines on to the mid-plane of the equivalent ship

model (along the steamwise direction) is shown in Figure 5.22. As seen in the figure,

the water surface rises up to 15, 22, 33, and 36 percent of the draft for equivalent

ship speeds of 16.5, 20, 25, 27 knots, respectively. Further downstream from the

peak in the contact height, the water surface falls as the bow wave detaches from the

ship hull. The main part of the wave maker energy is probably discharged by this

point. However, the contact line rises again as the wave board expansion continues

(equivalent to the growth in ship model cross sectional area). This second rise in

the contact line height is seen in all four equivalent ship speed cases, see Figure 5.22.

The reason the rise is very small, could be related to the slow change in ship model

cross-section area as it approaches mid-ship.

The three-dimensional locations of the maximum height of the contact point

(peak of the contact line) in equivalent ship model coordinates (x-streamwise, y-

transverse and z-vertical, see Chapter 1) are plotted against the Froude number in

Figure 5.23. As seen in the figure, the location of the peak of the contact line in

the streamwise direction is a strong function of the Froude number. At the same
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Figure 5.22: The height of the water contact line of the bow wave generated by 2D+T

wave maker at various equivalent ship speeds in xz-plane; length(L)=21.03 m and

draft(d)=.914 m.

time, the height and transverse location of the peak is less effected by the Froude

number. The results show that, at the lowest ship speed, the y and z values of the

position of the maximum contact point height are about equal.

Figure 5.24 shows the horizontal velocity of the contact point versus time at

various equivalent ship speeds. In this figure, the horizontal axis is time (equivalent

to streamwise location from the stem of a ship model) normalized by the time at

which the wave maker completes motion, t0, and the vertical axis is the horizontal

velocity of the contact point normalized by the maximum speed of the wave maker’s

top drive channel. The values of t0 are 3.393, 2.8, 2.24, and 2.074 s and the maximum

top channel speeds are 0.82, 0.996, 1.24, and 1.34 m/s for equivalent ship speeds

of 16.5, 20, 25, and 27 knots. Also shown in the figure are curves of the horizontal
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Figure 5.23: Three-dimensional location of the peak of the contact line at various

Froude numbers (Fr = um/
√

gLm, where g is gravity, um and Lm are the speed and

length of the equivalent 3D ship model).

velocity of the top drive channel for each equivalent ship speed.

As can be seen in Figure 5.24, the contact-point velocity distribution is quite

noisy in spite of the fact that the curves of y and z positions versus time are very

smooth. The main cause of this noise is the high spatial frequency of our data.

Therefore, we decided to remove the high-frequency information contained in the

position data before taking the derivative.

In order to smooth the data, for each point in the data set a second order

polynomial was fitted to a set of points clustered around the point of interest using

a least squares algorithm. The slope of the polynomial at that center point was

taken as the velocity. This calculation was repeated for each point in the data set.

This curve fitting process removed most of the high-frequency noise. The remaining
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Figure 5.24: Horizontal (y-component) velocity of the contact point at various equiv-

alent ship speeds as a function of time; t0 = 3.393, 2.8, 2.24, and 2.074 s and

umax = 0.82, 0.996, 1.24, and 1.34 m/s for equivalent ship speeds of 16.5, 20, 25,

and 27 knots.
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noise level in the data will be discussed in the next section where the wave crest

results are discussed.

When the wave maker is at rest, the undisturbed water surface is 6 inches

below the wave maker top drive channel. During the wave maker motion, the water

surface rises and soon passes the height of the top drive channel. At this point, the

y-component of the velocity of the contact point is equal the velocity of the top drive

channel. This point is seen in Figure 5.24 as an intersection of the contact-point and

top-drive-channel curves for each equivalent ship speed. This intersection occurs at

times less than 0.1t0 for all cases.

5.4.2 Wave crest properties

Wave crest properties are important because they lead to the formation of

the plunging jet and the subsequent air entrainment process. Figure 5.25 shows the

trajectories (z/d versus y/b, see Figure 1.3) of the highest point on the water surface

profile for the four equivalent ship speeds. In all cases, the trajectories rise rapidly

at small y/b and then level off or at least rise more slowly. The data shows that the

maximum height of the crest increases with increasing equivalent ship speed. The

physical meaning of these curves requires some explanation. Initially, the highest

point on the water surface is the contact point while later in the wave maker motion

the wave crest propagates away from the wave board and the highest point moves to

the wave crest. These transitions in the location of the highest point on the water

surface can be seen in the figure as obvious discontinuities in the curves at positions
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ranging from 0.1ycrest/b for the lowest equivalent ship speed to 0.2ycrest/b for the

highest equivalent ship speed. The reason for this gap is that as the highest point

goes from the contact point to the wave crest, the water surface in that region is flat

and the y-coordinate of the highest point is difficult to locate. The curves end when

the splash forms; the splash eventually becomes the highest point on the profile but

this data is not shown in the figure.
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Figure 5.25: Trajectories in the yz-plane of the highest point on the wave profile at

various equivalent ship speeds; beam(b)=2.82 m and draft(d)=.914 m.

Figure 5.26 shows trajectories of the wave crest at various equivalent ship

speeds in the xy-plane. This is actually the plan view of the waves about the

equivalent 3D ship model (x = Ut and y = 0 is the midplane of the ship). The

horizontal axis (y/b) shows the distance of the wave crest from the keel (equivalent

to the ship center line) and the vertical axis represents the streamwise distance

along the equivalent ship model (x/L). The 2D+T calculations of Tulin and Wu
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(1996) indicate that for normal ship slenderness ratios (beam/length) of 0.1-0.2, the

divergent bow wave crests tend to be straight. In our experiments the slenderness of

the equivalent ship is 0.13 (2.82/21.03). The crest trajectories shown in Figure 5.26

are straight lines in agreement with the earlier calculations.
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Figure 5.26: Trajectories in xy-plane of the crest of the bow wave generated

by 2D+T wave maker at various equivalent ship speeds; length(L)=21.03 m and

beam(d)=2.82 m.

The location of the maximum height of the wave crest in the streamwise and

transverse directions along with the maximum wave crest height were plotted against

the Froude number in Figure 5.27. For clarity in the plot, the vertical axis has

dimensions of meters. As can be seen in the figure, the maximum height of the bow

wave increases monotonically with Froude number. The location of the maximum

height of the wave increases in x (the streamwise direction) and y (the transverse

direction) as the Froude number increases up to 0.34 but then at the highest Froude
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number the x and y values decrease. These decreases seem logical since the x and

y locations of the maximum height are not expected to increase indefinitely as the

Froude (ship speed) tends to infinity. As the ship speed increases, the energy put

into the wave formation process increases and the wave becomes strongly nonlinear

and breaks. Therefore, not getting a monotonically increasing function for the

streamwise and transverse location of the maximum height is not surprising. Later

in this chapter, in the subsection on scaling, we will discuss the effects of the Froude

number on the maximum height of the wave crest as well as on the location of the

plunging jet impact point.
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Figure 5.27: Three-dimensional location of the maximum height of the wave crest

at various Froude numbers (Fr = um/
√

gLm, where g is gravity, um and Lm are the

speed and length of the equivalent 3D ship model).

Figure 5.28 and 5.29 show the horizontal and vertical velocities of the highest

point on the wave profile for the four equivalent ship speeds as a function of time.
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Also shown in Figure 5.28 is the speed of the top drive channel of the wave maker.

All velocities are normalized by the maximum velocity of the top drive channel

(umax = 0.82, 0.996, 1.24, and 1.34 m/s for equivalent ship speeds of 16.5, 20, 25,

and 27 knots, respectively) and time is normalized by the wave maker run time

(t0 = 3.393, 2.8, 2.24, and 2.074 s for equivalent ship speeds of 16.5, 20, 25, and

27 knots, respectively). As discussed in the previous subsection, because of the

low level of noise in the large number of position data points, the curves of the

computed velocities of wave profile features are highly noisy. Thus, in order to

get the velocities shown in the figure, the smoothing technique discussed in the

above subsection on the contact point motion was used. In the figure, the last

point before the wave crest detaches from the wave board (for subsequent times the

highest point of the profile moves from the contact point to the wave crest) occurs

in the range u/umax = 1± 0.1. Note that the curves for the horizontal velocities of

the points of maximum height in Figure 5.28 closely follow the curves for the top

drive channel until the drive channel reaches its maximum speed. Thereafter, the

highest point moves to the crest and its horizontal velocity continues to increase

to a maximum of about 1.8umax. The maximum value depends on the equivalent

ship speed but there is no clear trend in the data. While these curves seem to

be a good representation of the horizontal velocity of the contact point, the crest

velocity is probably more accurately calculated by fitting a straight line to the data

(see the curves of transverse position of the crest versus x (t = x/U) in Figure 5.26)

than using the above-described local derivative calculation method. Horizontal crest

velocities obtained with this linear fit are discussed in the section on scaling at the
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end of this chapter.

The curves of the dimensionless vertical velocity all increase to a maximum

early in the motion and then fall to near zero at t/t0 = 0.2. The maximum of the

curves increases monotonically from about 0.5umax at 16.5 knots to 0.75umax at 27.0

knots and the time of the maximum increases monotonically from about 0.4t0 to

0.75t0 as well.
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Figure 5.28: Horizontal (y-component) velocity of the highest point on the wave

profile at various equivalent ship speeds as a function of time; t0 = 3.393, 2.8, 2.24,

and 2.074 s and umax = 0.82, 0.996, 1.24, and 1.34 m/s for equivalent ship speeds

of 16.5, 20, 25, and 27 knots.
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Figure 5.29: Vertical (z-component) velocity of the highest point on the wave profile

at various equivalent ship speeds as a function of time; t0 = 3.393, 2.8, 2.24, and

2.074 s and umax = 0.82, 0.996, 1.24, and 1.34 m/s for equivalent ship speeds of

16.5, 20, 25, and 27 knots.
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5.4.3 Jet properties

Some characteristics of the plunging jet were also obtained from the wave pro-

files. Understanding this feature of the bow wave breaker is important for under-

standing the air entrainment process. Many researchers have identified jet thickness,

velocity and impact angle as key features for modeling air entrainment by plunging

jets. In the present experiments, the trajectory of jet tip including the jet impact

point on the front face of the wave and the magnitude and direction of the jet tip

velocity were measured. The jet thickness could not be measured as we were unable

to see inside the cavity under the jet with the present equipment in the Hydro-

dynamics Laboratory. This measurement is planned using a bore scope in future

experiments.

Figure 5.30 shows the trajectories of the jet tip at equivalent ship speeds of

25 and 27 knots. The horizontal axis is the position of the jet tip in the transverse

direction normalized by the beam and the vertical axis is the height of the jet tip

normalized by the draft. (In this series of experiments, out of four equivalent ship

speed cases that we tested, only two of them had plunging jets. Thus, only two

curves are shown in the figure.) As seen in the figure, the jet begins to fall as soon

as it forms and its y position continuously increases. Analysis shows that the jet tip

travels a parabolic path until it impinges the front face of the wave. The vertical

acceleration of the tip is found to be 8.5 and 7.6 m/s2 for the 25 and 27 knot cases,

respectively. It is not surprising that the vertical acceleration is different from the

acceleration of gravity, since the jet tip is a geometrical feature of the surface rather
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than the center of mass of a material body. Inspection of the jet tip trajectory

reveals that the jet impacts the free surface at a point which is higher than the

undisturbed water surface.
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Figure 5.30: Trajectories of the jet tip of the bow wave generated by 2D+T

wave maker at various equivalent ship speeds in yz-plane; beam(b)=2.82 m and

draft(d)=.914 m.

Figure 5.31 shows the three-dimensional location of the jet impact point in the

reference frame of the equivalent ship as a function of Froude number. As seen in

the figure, as the equivalent ship speed increases, the jet impacts the front face of

the wave further away from the ship centerline in the transverse direction and closer

to the ship stem in the streamwise direction.

Since the horizontal (y) and vertical (z) positions of the jet tip are available

at all times, the horizontal (u) and vertical (v) components of the velocity of the jet

tip can be calculated by differentiating the curves y(t) and z(t), respectively. The
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Figure 5.31: Three-dimensional location of the jet impact point as a function of

various Froude numbers (Fr = um/
√

gLm, where g is gravity, um and Lm are the

speed and length of the equivalent 3D ship model).

jet impact speed can be calculated through

vj =
√

u2
i + v2

i (5.1)

where ui and vi are the horizontal and vertical components of the jet tip velocity at

the time of impact on the free surface. Figure 5.32 shows the jet impact speed as a

function of Froude number. The jet speeds were normalized by their corresponding

equivalent ship model speeds, um. As can be seen in the figure, there is little change

in the normalized speed between the two Froude numbers. In future experiments,

we plan to use a wider range of equivalent ship speeds that produce plunging jets

in order to further explore this result.

Using the horizontal and vertical components of the velocities of the jet tip at
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Figure 5.32: Jet impact speed (vj/um, where um is the speed of the equivalent 3D

ship model) versus Froude number (Fr = um/
√

gLm, where g is gravity, um and Lm

are the speed and length of the equivalent 3D ship model).

the time of impact, the angle of incidence of the jet can be obtained,

α = tan−1(vi/ui). (5.2)

This angle is measured relative to the undisturbed free surface and is plotted as a

function of Froude number in Figure 5.33. As seen in the figure, the incidence angle

is about 25◦ and increases slightly increases as the Froude increases.

5.4.4 Splash properties

Understanding the plunging jet and resulting splash behaviors are important

in the sense that they are crucial in the generation of vorticity and circulation and

the entrainment of air. Once the plunging jet hits the front face of the wave, a

splash appears in front of the impact point. The water in the splash is probably
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Figure 5.33: Jet incidence angle relative to undisturbed water surface for various

Froude numbers (Fr = um/
√

gLm, where g is gravity, um and Lm are the speed and

length of the equivalent 3D ship model).

composed of water from the jet and water from below the impact point. The closure

of the cavity resulting from the jet formation and impact creates a clockwise rotating

vortex as seen from a point of view with the wave moving from left to right. The

main splash projects forward in the form of two-phase flow. The impact of this

air-water mixture on the undisturbed free surface occurs over a large area, entraps

a great deal of air and creates another clockwise vortex.

Obtaining the profile of the splash is exceedingly difficult because of the poorly

defined free surface of this air-water mixture. The only reliable quantity that could

be measured was the height of the splash peak. Figure 5.34 shows the trajectories of

the splash peak at equivalent ship speeds of 25 and 27 knots. The maximum height

of the splash is almost the same (≈ 0.45d) for these two ship speeds. Note that the
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maximum height of the splash in both cases goes even higher than the corresponding

maximum height of the wave crest (≈ 0.36d and 0.38d for equivalent ship speeds of

25 and 27 knots, respectively), see Figure 5.25.
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Figure 5.34: Trajectories of the splash peak at various equivalent ship speeds in

yz-plane; beam(b)=2.82 m and draft(d)=.914 m.

5.5 The effects of Froude number on the bow wave characteristics

5.5.1 The effects of the Froude number on the contact point height

The effects of changes in the equivalent ship model speed on the maximum

height of the contact point are studied. The maximum height of the contact point

is plotted against the Froude number in Figure 5.35. As the speed of the ship model

and consequently the Froude number increases, the maximum height of the contact

point increases monotonically. A curve was fitted onto the four points in order to
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obtain a mathematical form for this data. A functional form of zmax/d = AF n
r ,

where A and n are unknown constants, was used. This function has the advantage

of automatically going through the assumed data point at the origin of the plot.

(The maximum contact line height should be zero for zero Froude number, i.e. zero

forward speed.) The constants of the function were obtained using the least squares

method applied to a straight line in log-log coordinates. Our results indicate that

the maximum height of the contact point scales with the Froude number to the

power of 1.67.
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Figure 5.35: Maximum height of the contact line at various Froude numbers (Fr =

um/
√

gLm, where g is gravity and um and Lm are the speed and length of the

equivalent 3D ship model); asterisk: data points; solid line: zmax/d = 1.9F 1.67
r .
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5.5.2 The effects of the Froude number on the wave crest character-

istics

The maximum height of the bow wave is plotted against Froude number in

Figure 5.36. This figure shows a monotonically increasing bow wave height with

increasing Froude number. As in the contact point maximum-height plot discussed

in the previous section, the functional form zmax/d = AF n
r , where A and n are

unknown constants, was used to obtain a mathematical form for the data. The

least squares method resulted in n = 1.15 in this case.
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Figure 5.36: Maximum height of the wave crest at various Froude numbers (Fr =

um/
√

gLm, where g is gravity and um and Lm are the speed and length of the

equivalent 3D ship model); asterisk: data points; solid line: zmax/d = 1.1F 1.15
r .

The effects of the equivalent ship speed on the bow wave crest angle and the

y-component of the wave crest speed were also studied. Figure 5.37 shows how the

bow wave angle changes with Froude number. As mentioned earlier in this chapter,
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the bow wave angle is the angle between the crest line and the ship center line as

seen from above in the equivalent 3D ship model system. Our data shows that as the

Froude number increases, the wave angle remains nearly constant with an average

value of about 24◦ and an RMS variation of ±1.2◦.
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Figure 5.37: Divergent wave angle with the ship model centerline at various Froude

numbers (Fr = um/
√

gLm, where g is gravity, um and Lm are the speed and length

of the equivalent 3D ship model); asterisk: data points; solid line: average value.

Figure 5.38 shows how the y-component of the bow wave phase velocity changes

with Froude number. The phase velocity is normalized with the corresponding ship

model speed. There is little deviation of the data points about their average value

of about 0.45um, where um is the speed of the equivalent 3D ship model. The RMS

value is only 0.02um. This average value also translates to 1.8umax, where umax is

the maximum speed of the top 2D+T wave maker drive channel.
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Figure 5.38: The y-component of the bow wave phase velocity (c/um, where um is

the speed of the equivalent 3D ship model) versus Froude number (Fr = um/
√
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where g is gravity and Lm is the length of the equivalent 3D ship model); asterisk:

data points, solid line: average value.
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Chapter 6

Conclusions and future work

This dissertation is part of a larger investigation of the dynamics of breaking

bow waves. The full research program is aimed at understanding the relationships

between the breaking waves, the hull shape, and the Froude number; the entrain-

ment of air bubbles into the flow; and the generation of turbulence and vorticity.

In order to produce waves that are large enough to correctly model the effects of

surface tension and therefore produce realistic air entrainment, a technique known

as 2D+T that is used in numerical analysis was adapted to the laboratory. In the

2D+T technique, a two-dimensional wave maker moves horizontally and deforms in

a manner that mimics the profile of the three-dimensional ship hull as it passes a

fixed vertical plane oriented perpendicular to the ships path. The wave profile at

each instant in time (t) corresponds to the wave profile in the 3D ship at a cross

stream plane located at x = Ut, where U is the speed of the equivalent ship model.

In this thesis, the 2D+T experimental facility was developed and tested, an

extensive series of measurements of the time history of the water surface profiles for

four equivalent ship speeds was performed, and a holographic system for measuring

bubble size distributions and motions was developed and tested in a bench top

experiment. Detailed accomplishments and conclusions of this work are given below.
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• The first 2D+T wave maker was installed, perfected and tested. Ship models

simulated by this wave maker can have drafts as large as 0.914 m and the

waves produced typically are on the order of 2 m in length. These waves are

very energetic and produces large clouds of air bubbles during breaking.

• Cinematic and photographic evidence indicates that the spilling and plunging

breaking bow waves, the splashing during plunging jet impact and the location

and behavior of the regions of bubbly flow are qualitatively the same in the

3D ship flow and the 2D+T flow.

• The water surface/hull contact line trajectories for the 2D+T wave maker

and the corresponding 3D ship model are quite similar even though the large

sonar dome in the 3D model can not be simulated by the 2D+T wave maker

(or 2D+T calculations).

• The main wave crest produced by the 2D+T wave maker moves at a speed

of 0.45um, where um is the the speed of the equivalent 3D ship model, for all

equivalent ship speeds tested herein. Note that 0.45um = 1.8umax, where umax

is the maximum speed of the top wave maker drive channel in each case.

• The trajectories of the the maximum height of the wave converted into an

equivalent 3D ship model system are straight lines. The bow wave angle,

which is the angle between the wave crest line and the ship center line, remains

remains almost constant with an average value of about 24◦ and an RMS

variation of ±1.2◦.
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• The maximum height (zmax) of the main wave crest produced by the 2D+T

wave maker increases monotonically with equivalent 3D ship model speed ac-

cording to zmax/d = 1.1F 1.15
r , where d is the draft, and Fr = um/

√
gL, where

L is the length of the equivalent 3D ship model.

• The maximum height (zcmax) of the free surface contact line produced by the

2D+T wave maker increases monotonically with equivalent 3D ship model

speed according to zmax/d = 1.9F 1.67
r .

• The jet created by the breaking wave impacts the front face of the wave at

a speed of about 0.5um, where um is the the speed of the equivalent 3D ship

model, for equivalent ship speeds of 25 and 27 knots. Also, the jet incidence

angle relative to undisturbed water surface was found to be about 25◦ for

equivalent ship speed of 25 knots and slightly increases as the Froude number

increases.

• It was found that the maximum height of the splash is almost the same (≈

0.45d) for equivalent ship speeds of 25 and 27 knots and the maximum height

of the splash in both cases goes even higher than the corresponding maximum

height of the wave crest (≈ 0.34d and 0.37d for equivalent ship speeds of 25

and 27 knots, respectively).

• Modified in-line holography is an effective method for measuring bubble pop-

ulations in the 2D+T experiments.

As mentioned before, this thesis is part of a larger project, which is still going
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on. A few ideas for future work are listed as below:

• Exploration of the wave pattern and flow field around a second ship model

should be pursued to compare with the present results.

• A detailed investigation of scaling with geometric hull shape parameters for

ships with flat side walls at various angles of inclination to the undisturbed

water surface using the current wave maker.

• Flow field measurements in the breaking waves using particle image velocime-

try.

• Exploration of the splash characteristics resulting from the plunging jet impact

to characterize its content.

• Employment of a bore scope system to see inside the cavity under the plung-

ing jet in order to obtain information about the jet thickness and the air

entrainment process.

• Employment of the holographic PIV system for bubble size and motion mea-

surements.

• Development of a shadowgraph technique for bubble measurements in the later

stages of breaking when moderate size bubbles are in the flow.

• Development of an impedance-based probe for bubble measurements in the

early stages of breaking when large bubbles exist in the flow.
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