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Vision-based object detection and tracking, especially for video surveillance

applications, is studied from algorithms to performance evaluation. This disser-

tation is composed of four topics: (1) Background Modeling and Detection, (2)

Performance Evaluation of Sensitive Target Detection, (3) Multi-view Multi-target

Multi-Hypothesis Segmentation and Tracking of People, and (4) A Fine-Structure

Image/Video Quality Measure.

First, we present a real-time algorithm for foreground-background segmenta-

tion. It allows us to capture structural background variation due to periodic-like

motion over a long period of time under limited memory. Our codebook-based rep-

resentation is efficient in memory and speed compared with other background mod-

eling techniques. Our method can handle scenes containing moving backgrounds

or illumination variations, and it achieves robust detection for different types of

videos. In addition to the basic algorithm, three features improving the algorithm

are presented - Automatic Parameter Estimation, Layered Modeling/Detection and

Adaptive Codebook Updating.



Second, we introduce a performance evaluation methodology called Pertur-

bation Detection Rate (PDR) analysis for measuring performance of foreground-

background segmentation. It does not require foreground targets or knowledge of

foreground distributions. It measures the sensitivity of a background subtraction

algorithm in detecting possible low contrast targets against the background as a

function of contrast. We compare four background subtraction algorithms using the

methodology.

Third, a multi-view multi-hypothesis approach to segmenting and tracking

multiple persons on a ground plane is proposed. The tracking state space is the set

of ground points of the people being tracked. During tracking, several iterations

of segmentation are performed using information from human appearance models

and ground plane homography. Two innovations are made in this chapter - (1) To

more precisely locate the ground location of a person, all center vertical axes of

the person across views are mapped to the top-view plane to find the intersection

point. (2) To tackle the explosive state space due to multiple targets and views,

iterative segmentation-searching is incorporated into a particle filtering framework.

By searching for people’s ground point locations from segmentations, a set of a few

good particles can be identified, resulting in low computational cost. In addition,

even if all the particles are away from the true ground point, some of them move

towards the true one through the iterated process as long as they are located nearby.

Finally, an objective no-reference measure is presented to assess fine-structure

image/video quality. The proposed measure using local statistics reflects image

degradation well in terms of noise and blur.
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Chapter 1

Introduction

1.1 Motivations and Related Work

1.1.1 Background Modeling and Detection

The capability of extracting moving objects from a video sequence captured us-

ing a static camera is a typical first step in visual surveillance. A common approach

for discriminating moving objects from the background is detection by background

subtraction (BGS). The idea of background subtraction is to subtract or difference

the current image from a reference background model. The subtraction leaves only

non-stationary or new objects.

The simplest background model assumes that the intensity values of a pixel

can be modeled by a Gaussian distribution N(µ, σ2). This basic model is used in

[1, 2]. However, a single Gaussian model cannot handle multiple backgrounds, like

waving trees. The generalized mixture of Gaussians (MOG) has been used to model

complex, non-static backgrounds [3, 5].

The MOG has some disadvantages. Backgrounds having fast variations cannot

be modeled with just a few Gaussians accurately, so fail to provide sensitive detection

[9]. In addition, depending on the learning rate to adapt to background changes,

MOG faces trade-off problems. For a low learning rate, it produces a wide model not
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able to detect a sudden change to the background. If the model adapts too quickly,

slowly moving foregrounds will be absorbed into the background model, resulting

in a high false negative rate. This is the foreground aperture problem described

in [10]. To overcome these problems, a non-parametric technique estimating the

probability density function at each pixel from many samples using Kernel density

estimation technique was developed. It is able to adapt very quickly to changes in

the background process and to detect targets with high sensitivity [9].

These pixel-based techniques assume that the time series of observation is inde-

pendent at each pixel. In contrast, some researchers employ a region- or frame-based

approach by segmenting an image into regions or by refining low-level classification

obtained at the pixel level [10, 5, 8].

To deal with global and local illumination changes such as shadows and high-

lights, algorithms generally employ normalized colors. These techniques typically

work poorly in dark areas of the image. This problem is addressed in [17]. This

uncertainty makes the detection in dark regions unstable. We present color metrics

to reduce the uncertainty and handle shadows and highlights effectively.

MOG and the non-parametric technique in [9] cannot be used when long-time

periods are needed to sufficiently sample the background - for example when there

is significant wind load on vegetation - due mostly to memory constraints. We

construct a highly compressed background model that addresses that problem.

Existing algorithms usually require uncompressed, high-resolution video. With

the rapid growth of Internet and multimedia communications, the demand for robust

algorithms that can analyze compressed data transmitted over lossy channels has
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been increasing. We desire an algorithm that is independent of the image sources

or encoders. In other words, the algorithm should work well on both uncompressed

and compressed videos regardless of the compression standards. Most existing back-

ground subtraction algorithms fail to work with low-bandwidth compressed videos

mainly due to spatial block compression that causes block artifacts (see Fig. 2.4(b)),

and temporal block compression that causes abnormal distribution of encoding (ran-

dom spikes). Our new method is robust with respect to image quality.

Our codebook (CB) background subtraction algorithm was intended to sample

values over long times, without making parametric assumptions. It might be ap-

plicable to compressed video, which often has unusual, discontinuous distributions,

as well as to uncompressed video. Mixed backgrounds can be modeled by multiple

codewords, while brightness and color are separated.

1.1.2 Performance Evaluation of Sensitive Target Detection

When comparing BGS algorithms [41] or evaluating computer vision systems

[43, 44], ROC analysis is often employed when there are known background and

foreground (target) distributions. ROC curves display the detection sensitivity for

detecting a particular foreground against a particular background, but the method-

ology has some disadvantages for evaluating BGS algorithms. There are as many

ROC curves as there are possible different foreground targets. In addition, it re-

quires considerable experimentation and ground-truth evaluation to obtain accurate

false alarm rates (FA) and the miss detection rates (MD). Most important, in typical

video surveillance applications, we usually are given a background scene for a fixed
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camera, but we do not or can not know what might possibly move in the scene as

foreground objects.

The perturbation method presented here, called perturbation detection rate

(PDR) analysis, measures the sensitivity of a BGS algorithm without assuming

knowledge of the actual foreground distribution. Rather, it measures the detection

of a variable, small (“just-noticeable”) difference from the background, obtaining a

foreground distribution by assuming that the foreground might have a distribution

locally similar in form to the background, but shifted or perturbed. The detection

is measured as a function of contrast, the magnitude of the shift or perturbation in

uniform random directions in RGB.

1.1.3 Multi-view Multi-target Multi-Hypothesis Segmentation and Tracking of Peo-

ple

Tracking and segmenting people in cluttered or complex situations is a chal-

lenging visual surveillance problem since the high density of objects results in occlu-

sion and lack of visibility. Elgammal and Davis [64] presented a general framework

which uses maximum likelihood estimation and occlusion reasoning to obtain the

best arrangement for people that yields an observed segmentation for the foreground

region. However, when the number of people are increased, the complexity of pos-

sible arrangement hypotheses increases dramatically and only a heuristic method

to limit the hypothesis space is suggested. To handle more people in a crowded

scene, Zhao and Nevatia [53] described a model-based segmentation approach to

segment individual humans in a high-density scene using a Markov chain Monte

Carlo method.
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When a single camera is not sufficient to detect and track objects due to lim-

ited visibility or occlusion, multiple cameras can be employed. There are a number

of papers which address detection and tracking using overlapping or non-overlapping

multiple views. In [49], approaches for continuous detection and tracking by multi-

ple, stationary or moving cameras are described based on Tensor Voting for contin-

uous trajectories and a joint probability model for integrating all the information

across cameras. Tracking across multiple cameras with non-overlapping views is also

addressed in [50]. Without the requirement of inter-camera calibration, object cor-

respondence across cameras is established by a Bayesian framework incorporating

multiple cues such as location of exit/entrances.

On the other hand, M2Tracker [63], which is similar to our work, used a

region-based stereo algorithm to find 3D points inside an object, and Bayesian pixel

classification with occlusion analysis to segment people occluded in different levels of

crowd density. Unlike M2Tracker’s requirement of having calibrated stereo pairs of

cameras, we do not require strong calibration, but only a ground plane homography.

For outdoor cameras, it is practically very difficult to accurately calibrate them, so

that 3D points at a large distance from the camera cannot be measured accurately.

Our goal is to ‘segment’ and ‘track’ people on a ground plane viewed from mul-

tiple overlapping cameras. Although the condition of overlap is not necessary, when

the density of targets is high, i.e., crowded, it is much better to have different views

of the targets to resolve the occlusion problem. The application of our work would be

monitoring crowed spaces like building entrances, stores, casinos, subway stations

etc. Human appearance models are used to segment foreground pixels obtained
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from background subtraction. Given the estimated ground points of the people, the

occlusion order in each view is determined and used for segmentation. Then each

segmented blob of a person across views is related by a ground plane homography

to locate a final ground point of the person. The ground point is estimated on the

top-view reconstruction so that our tracking framework does not need to compare

every pair of views. We designed a method of view integration which robustly works

on imperfectly segmented blobs. This is quite useful because background subtrac-

tion and segmentation are not always reliable due to noise, illumination changes,

etc.

To make the tracker robust, multiple hypothesis trackers, such as particle filter

[56], are widely used since they provide a robust framework with simplicity, gener-

ality and success in a wide range of challenging applications [61, 60]. However, our

work is about segmenting and tracking multiple targets from multiple views. As

the number of targets and views increase, the state space of combination of targets’

states also increase exponentially. Additionally the observation processes for visual

tracking are typically computationally expensive. Previous research has tried to

solve this state space explosion issue. For example, annealed particle filtering [57]

has been used to perform articulated body motion tracking, which involves a large

number of degrees of freedom, by searching high dimensional configuration spaces ef-

fectively using a continuation principle. [45] presents a computational method called

data-driven Markov chain Monte Carlo for image segmentation in the Bayesian sta-

tistical framework. It utilizes data-driven (bottom-up) techniques, such as clustering

and edge detection, to compute importance proposal probabilities, which drive the
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Markov chain dynamics and achieve large speedup in comparison to the traditional

diffusion methods. Sullivan and Rittscher [58] proposed an algorithm to incorpo-

rate the strength of both particle filtering (a random search guided by a stochastic

model) and variational approaches (a deterministic and data-driven search minimiz-

ing a cost function [51]). Similarly, a hand tracking algorithm that combines particle

filtering and mean-shift was presented in [59] to realize more efficient sampling by

shifting samples to their neighboring modes to overcome the degeneracy problem

and require fewer particles to maintain multiple hypotheses.

We designed our tracker using the same philosophy. Nevertheless, in our multi-

camera multi-target tracking framework, it is hard to obtain analytic or direct solu-

tions for searching the state space. We extend the framework to a multi-hypothesis

version using particle filtering. Each hypothesis is efficiently refined by the multi-

view segmentation results to maintain only optimal samples, resulting in low com-

putational costs.

1.1.4 A Fine-Structure Image/Video Quality Measure

Distortion is introduced in images and video through various processes such

as acquisition, transmission and compression. There are many ways to measure

image/video quality by objective or subjective assessment. Subjective evaluations

[65] are expensive and time-consuming. It is impossible to implement them into

automatic real-time systems. Subjective measurements can be used to validate the

usefulness of objective measurements by showing strong correlations.

Many objective image quality measures have been proposed from simple mean
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squared error (MSE) metrics to some measures incorporating elements of human

visual perception. It is well-known that MSE is suitable to describe the subjective

degradation perceived by a viewer. To overcome the limitations of MSE, other

measures mimick the human visual system. For example, video quality metrics

based on the Standard Spatial Observer were presented in [66]. A power spectrum

approach which does not require imaging a specific pattern or a constant scene was

reported in [67]. Recently, assuming that human visual perception is highly adapted

to extract structural information from scenes, a framework for quality assessment

based on the degradation of structural information was proposed in [68]. The video

quality expert group (VQEG) [69] is working on validating and standardizing video

quality metrics for television and multimedia applications. A number of objective

quality measures are evaluated and categorized in [70, 71].

Some measures [67, 72, 73] estimate the quality of coded video or images

without a reference quality standard such as an original perfect image. In many

situations, we cannot guarantee that original sources of imaging or degradation

processes are available. No-reference metrics are not relative to the original but are

absolute values for a test image or video.

Our quality measure is no-reference objective metric employing local statistics

to assess image/video quality. While most techniques measure degradation of com-

pressed images or video, ours takes any input image without reference and assesses

a quality measure related to performance of video surveillance tasks. Our measure-

ment may not have a strong correlation with subjective evaluation provided by a

human observer.
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1.2 Contributions

1.2.1 Background Modeling and Detection

The key contributions of our background subtraction algorithm described in

this dissertation are in

• resistance to artifacts of acquisition, digitization and compression.

• capability of coping with local and global illumination changes.

• adaptive and compressed background model that can capture structural back-

ground motion over a long period of time under limited memory. This allows

us to encode moving backgrounds or multiple changing backgrounds.

• unconstrained training that allows moving foreground objects in the scene

during the initial training period.

• automatic parameter estimation

• layered modeling and detection allowing us to have multiple layers of back-

ground representing different depths

1.2.2 Performance Evaluation of Sensitive Target Detection

PDR analysis has two advantages over the commonly used ROC analysis: (1)

It does not depend on knowing foreground distributions, (2) It does not need the

presence of foreground targets in the video in order to perform the analysis, while

this is required in the ROC analysis. Because of these considerations, PDR analysis

provides practical general information about the sensitivity of algorithms applied to

a given video scene over a range of parameters and FA-rates. In ROC curves, we

obtain one detection rate for a particular FA-rate for a particular foreground and

contrast.
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1.2.3 Multi-view Multi-target Multi-Hypothesis Segmentation and Tracking of Peo-

ple

Our framework for segmenting and tracking people on a ground plane makes

important contributions:

1. To more precisely locate the ground location of a person, all center vertical

axes of the person across views are mapped to the top-view plane (rather than

compared within a pair of views) to find the intersection point.

2. To tackle the explosive state space due to multiple targets and views, an itera-

tive segmentation-searching is incorporated into a particle filtering framework.

By searching for a person’s ground point from segmentation, a set of a few

good particles can be identified, resulting in low computational costs. In ad-

dition, even if all the particles are away from the true ground point, some of

them move towards the true one as long as they are located nearby.

1.2.4 A Fine-Structure Image/Video Quality Measure

Our quality measure is no-reference objective metric employing local statistics

to assess image/video quality. While most techniques measure degradation of com-

pressed images or video, ours takes any input image without reference and assesses

a quality measure. The proposed measure reflects image degradation well in terms

of noise and blur.
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1.3 Thesis Organization

This thesis is organized in three major topics as briefly described in the pre-

vious section.

In Chapter 2, we describe the codebook construction algorithm and the color

and brightness metric, used for detection. We show that the method is suit-

able for both stationary and moving backgrounds in different types of scenes, and

applicable to compressed videos such as MPEG. Important improvements to the

above algorithm are presented - Automatic Parameter Estimation, Layered Model-

ing/Detection and Adaptive Codebook Updating. Finally, conclusion and discussion

are presented in the last section.

In Chapter 3, we describe the performance evaluation technique, PDR anal-

ysis. It measures the sensitivity of a BGS algorithm without assuming knowledge

of the actual foreground distribution. Then the experimental results for the four

background subtraction algorithms are presented along with some discussions. Con-

clusions and future work are given in the last section.

In Chapter 4, a multi-view multi-target multi-hypothesis tracker is proposed.

It segments and tracks people on a ground plane. Human appearance models are

used to segment foreground pixels obtained from background subtraction. We devel-

oped a method to effectively integrate segmented blobs across views on a top-view

reconstruction, with a help of ground plane homography. The multi-view tracker

is extended efficiently to a multi-hypothesis framework (M3Tracker) using particle

filtering.
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In Chapter 5, we describe four video properties to be considered for video

surveillance applications. Then, our fine-structure image/video quality measure

is detailed. Experimental results are presented along with the performance of a

background subtraction algorithm.

In the last chapter, we summarize the work that has been done in the disser-

tation and discuss possible future directions of research.
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Chapter 2

Background Modeling and Detection

2.1 Overview

Our codebook (CB) background subtraction algorithm was intended to sample

values over long times, without making parametric assumptions. Mixed backgrounds

can be modeled by multiple codewords. The key features of the algorithm are

• an adaptive and compact background model that can capture structural back-

ground motion over a long period of time under limited memory. This allows

us to encode moving backgrounds or multiple changing backgrounds.

• the capability of coping with local and global illumination changes.

• unconstrained training that allows moving foreground objects in the scene

during the initial training period.

• layered modeling and detection allowing us to have multiple layers of back-

ground representing different background layers

In Section 2.2, we describe the codebook construction algorithm and the color

and brightness metric, used for detection. We show, in Section 2.3, that the method

is suitable for both stationary and moving backgrounds in different types of scenes,

and applicable to compressed videos such as MPEG. Important improvements to

the above algorithm are presented in Section 2.42.5, and 2.6 - Automatic Param-

eter Estimation, Layered Modeling/Detection and Adaptive Codebook Updating.
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Finally, conclusion and discussion are presented in the last section.

2.2 Background modeling and detection

The CB algorithm adopts a quantization/clustering technique, inspired by

Kohonen [18, 19], to construct a background model from long observation sequences.

For each pixel, it builds a codebook consisting of one or more codewords. Samples

at each pixel are clustered into the set of codewords based on a color distortion

metric together with brightness bounds. Not all pixels have the same number of

codewords. The clusters represented by codewords do not necessarily correspond

to single Gaussian or other parametric distributions. Even if the distribution at a

pixel were a single normal, there could be several codewords for that pixel. The

background is encoded on a pixel by pixel basis.

Detection involves testing the difference of the current image from the back-

ground model with respect to color and brightness differences. If an incoming pixel

meets two conditions, it is classified as background - (1) The color distortion to some

codeword is less than the detection threshold, and (2) its brightness lies within the

brightness range of that codeword. Otherwise, it is classified as foreground.

2.2.1 Construction of the initial codebook

The algorithm is described for color imagery, but it can also be used for gray-

scale imagery with minor modifications. Let X be a training sequence for a single

pixel consisting of N RGB-vectors: X = {x1,x2, ...,xN}. Let C = {c1, c2, ..., cL}

represent the codebook for the pixel consisting of L codewords. Each pixel has a
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different codebook size based on its sample variation.

Each codeword ci, i = 1 . . . L, consists of an RGB vector vi = (R̄i, Ḡi, B̄i) and

a 6-tuple auxi = 〈Ǐi, Îi, fi, λi, pi, qi〉. The tuple auxi contains intensity (brightness)

values and temporal variables described below.

Ǐ , Î : the min and max brightness, respectively,

of all pixels assigned to this codeword;

f : the frequency with which the codeword has occurred;

λ : the maximum negative run-length (MNRL)

defined as the longest interval during the

training period that the codeword has NOT recurred;

p, q : the first and last access times, respectively,

that the codeword has occurred.

In the training period, each value, xt, sampled at time t is compared to the

current codebook to determine which codeword cm (if any) it matches (m is the

matching codeword’s index). We use the matched codeword as the sample’s encoding

approximation. To determine which codeword will be the best match, we employ

a color distortion measure and brightness bounds. The detailed algorithm is given

below.
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Algorithm for Codebook Construction

I. L ← 01, C ← ∅ (empty set)

II. for t=1 to N do

i. xt = (R, G,B), I ← √
R2 + G2 + B2

ii. Find the codeword cm in C = {ci|1 ≤ i ≤ L} matching to xt based on two
conditions (a) and (b).

(a) colordist(xt,vm) ≤ ε1

(b) brightness(I, 〈Ǐm, Îm〉) = true

iii. If C = ∅ or there is no match, then L ← L + 1. Create a new codeword cL

by setting

• vL ← (R, G,B)

• auxL ← 〈I, I, 1, t− 1, t, t〉.
iv. Otherwise, update the matched codeword cm, consisting of vm = (R̄m, Ḡm, B̄m)

and auxm = 〈Ǐm, Îm, fm, λm, pm, qm〉, by setting

• vm ← (fmR̄m+R
fm+1 , fmḠm+G

fm+1 , fmB̄m+B
fm+1 )

• auxm ← 〈 min{I, Ǐm}, max{I, Îm}, fm + 1, max{λm, t− qm}, pm, t 〉.

end for

III. For each codeword ci, i = 1 . . . L, wrap around λi by setting λi ← max{λi, (N−
qi + pi − 1)}.

The two conditions (a) and (b) in the Step II-ii, detailed in Eq.2.2,2.3 later,

are satisfied when the pure colors of xt and cm are close enough and the brightness

of xt lies between the acceptable brightness bounds of cm. Instead of finding the

nearest neighbor, we just find the first codeword to satisfy these two conditions.

ε1 is the sampling threshold (bandwidth). One way to improve the speed of the

algorithm is to relocate the most recently updated codeword to the front of the

1← means assignment
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Figure 2.1: Example showing how MNRL is used.

codebook list. Most of the time, the matched codeword was the first codeword thus

relocated, making the matching step efficient.

Note that reordering the training set almost always results in codebooks with

the same detection capacity. Reordering the training set would require maintaining

all or a large part of it in memory. Experiments show that one-pass training is

sufficient. Retraining or other simple “batch” processing methods do not affect

detection significantly.

2.2.2 Maximum Negative Run-Length

We refer to the codebook obtained from the previous step as the fat codebook.

It contains all the codewords that represent the training image sequence, and may

include some moving foreground objects and noise.

In the temporal filtering step, we refine the fat codebook by separating the

codewords that might contain moving foreground objects from the true background

codewords, thus allowing moving foreground objects during the initial training pe-

riod. The true background, which includes both static pixels and moving background

pixels, usually is quasi-periodic (values recur in a bounded period). This motivates
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the temporal criterion of MNRL (λ), which is defined as the maximum interval of

time that the codeword has not recurred during the training period. For example,

as shown in Fig.2.1, a pixel on the tip of the tree was sampled to plot its intensity

variation over time. The codeword of sky-color has a very small λ, around 15, and

that of tree-color has 100. However, the codeword of the person’s body has a very

large λ, 280.

Let M and TM denote the background model (which is a refined codebook

after temporal filtering) and the threshold value respectively. Usually, TM is set

equal to half the number of training frames, N
2
.

M = {cm| cm ∈ C ∧ λm ≤ TM} (2.1)

Codewords having a large λ will be eliminated from the codebook by Eq.2.1.

Even though one has a large frequency ‘f ’, its large λ means that it is mostly a

foreground event which was stationary only for that period f . On the other hand,

one having a small f and a small λ could be a rare background event occurring

quasi-periodically. We can use λ as a feature to discriminate the actual background

codewords from the moving foreground codewords. If TM = N
2
, all the codewords

should recur at least every N
2

frames. We note that we also experimented with the

combination of the frequency f and λ, but that λ alone performs almost the same

as that combination.

Experiments on many videos reveal that only 6.5 codewords per pixel (on

average) are required for the background acquisition in order to model 5 minutes

of outdoor video captured at 30 frames per second. By contrast, indoor videos are
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simpler, having one or two background values nearly everywhere. This reasonable

number of codewords means that our method achieves a high compression of the

background model. This allows us to capture variable moving backgrounds over a

very long period of training time with limited memory.

2.2.3 Color and Brightness

To deal with global and local illumination changes such as shadows and high-

lights, algorithms generally employ normalized colors (color ratios). These tech-

niques typically work poorly in dark areas of the image. The dark pixels have

higher uncertainty2 than the bright pixels, since the color ratio uncertainty is re-

lated to brightness. Brightness should be used as a factor in comparing color ratios.

This uncertainty makes the detection in dark regions unstable. The false detections

tend to be clustered around the dark regions. This problem is discussed in [17].

Hence, we observed how pixel values change over time under lighting variation.

Fig.2.2(b) shows the pixel value distributions in the RGB space where 4 represen-

tative pixels are sampled from the image sequence of the color-chart in Fig.2.2(a).

In the sequence captured in a lab environment, the illumination changes over time

by decreasing or increasing the light strength to make the pixel values darker or

brighter. The pixel values are mostly distributed in elongated shape along the axis

going toward the origin point (0, 0, 0).

Based on this observation, we developed a color model depicted in Fig.2.3 to

2Consider two pairs of two color values at the same Euclidean distance in RGB space
- 〈10, 10, 10〉 and 〈9, 10, 11〉 for dark pixels, 〈200, 200, 200〉 and 〈199, 200, 201〉 for bright pix-
els. Their distortions in normalized colors are 2

30 = |10−9|+|10−10|+|10−11|
30 and 2

200 =
|200−199|+|200−200|+|200−201|

200 respectively.
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(a) original color-chart image (b) 3D plot of pixel distributions

Figure 2.2: The distributions of 4 pixel values of the color-chart image sequence

having illumination changes over time

perform a separate evaluation of color distortion and brightness distortion. The

motivation of this model is that background pixel values lie along the principal axis

of the codeword along with the low and high bound of brightness, since the variation

is mainly due to brightness. When we have an input pixel xt = (R, G,B) and a

codeword ci where vi = (R̄i, Ḡi, B̄i),

‖xt‖2 = R2 + G2 + B2,

‖vi‖2 = R̄2
i + Ḡ2

i + B̄2
i ,

〈xt,vi〉2 = (R̄iR + ḠiG + B̄iB)2.

The color distortion δ can be calculated by

p2 = ‖xt‖2 cos2 θ = 〈xt,vi〉2
‖vi‖2

colordist(xt,vi) = δ =
√
‖xt‖2 − p2.

(2.2)

Our color distortion measure can be interpreted as a brightness-weighted ver-

sion in the normalized color space. This is equivalent to geometrically rescaling
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Figure 2.3: The proposed color model - a separate evaluation of color distortion and

brightness distortion.

(normalizing) a codeword vector to the brightness of an input pixel. This way, the

brightness is taken into consideration for measuring the color distortion, and we

avoid the instability of normalized colors.

To allow for brightness changes in detection, we store Ǐ and Î statistics, which

are the min and max brightness of all pixels assigned to a codeword, in the 6-tuple

defined in Section 2.2.1. We allow the brightness change to vary in a certain range

that limits the shadow level and highlight level. The range is [Ilow, Ihi], for each

codeword, defined as

Ilow = αÎ, Ihi = min{βÎ,
Ǐ

α
}.

where α < 1 and β > 1. Typically, α is between 0.4 – 0.73, and β is between 1.1 –

1.54. This range [Ilow, Ihi] becomes a stable range during codebook updating. The

3These typical values are obtained from experiments. 0.4 allows large brightness bounds, but
0.7 gives tight bounds

4β is additionally used for limiting Ihi since shadows (rather than highlights) are observed in
most cases
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logical brightness function in Section 2.2.1 is defined as

brightness(I, 〈Ǐ , Î〉) =





true if Ilow ≤ ‖xt‖ ≤ Ihi

false otherwise.

(2.3)

2.2.4 Foreground Detection

Subtracting the current image from the background model is straightforward.

Unlike MOG or [9] which compute probabilities using costly floating point opera-

tions, our method does not involve probability calculation. Indeed, the probability

estimate in [9] is dominated by the nearby training samples. We simply compute the

distance of the sample from the nearest cluster mean. This is very fast and shows lit-

tle difference in detection compared with the probability estimate. The subtraction

operation BGS(x) for an incoming pixel value x in the test set is defined as:

Algorithm for Background Subtraction

I. x = (R,G, B), I ← √
R2 + G2 + B2

II. For all codewords in M in Eq.2.1, find the codeword cm matching to x based
on two conditions:

• colordist(x, cm) ≤ ε2

• brightness(I, 〈Ǐm, Îm〉) = true

Update the matched codeword as in Step II-iv in the algorithm of codebook
construction.

III. BGS(x) =





foreground if there is no match

background otherwise.

ε2 is the detection threshold. The pixel is detected as foreground if no accept-

able matching codeword exists. Otherwise it is classified as background.
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MOG [3] Kernel [9] CB (proposed)

model mixture of kernel codebook
representation Gaussians density

model probability density probability density distance
evaluation estimation estimation

parametric Yes No No
modeling

color RGB only normalized color r, g rescaled RGB
metric and s(brightness) and brightness

background as much as short-term (N samples) almost practically
memorization K Gaussians hold long-term (N samples) infinite memory

capacity

memory small large compact
usage

processing slow slow fast
speed

model online updating short- and layered modeling
maintenance with K Gaussians long-term models and detection

using cache

Table 2.1: Characteristics of background modeling algorithms

2.2.5 Review of multimode modeling techniques

Here, we compare our method with other multimode background modeling

techniques - MOG [3] and Kernel [9]. The characteristics of each algorithm are

listed in Table.2.1.

• Unlike MOG, we do not assume that backgrounds are multimode Gaussians.

If this assumption, by chance, were correct, then MOG would get accurate

parameters, and would be very accurate. But this is not always true. The

background distribution could be very different from normal, as we see in

compressed videos such as MPEG.
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• Also, in contrast to Kernel, we do not store raw samples to maintain the

background model. These samples are huge, but do not cover a long period of

time. The codebook models are so compact that we can maintain them with

very limited memory.

• Ours handles multi-backgrounds well. There is no restriction of the number of

backgrounds. It can model trees which move longer than the raw sample size

of Kernel. Even the rare background events, which meet the quasi-periodicity

condition, survive as backgrounds.

• Unconstrained training using MNRL filtering allows moving foreground ob-

jects in the training sequence.

• Our codebook method does not evaluate probabilities, which is very compu-

tationally expensive. We just calculate the distance from the cluster means.

That makes the operations fast.

• MOG uses the original RGB variables and doesn’t separately model brightness

and color. MOG currently does not model covariances, which are often large

and caused by variation in brightness. It is probably best to explicitly model

brightness. Kernel uses normalized colors and brightness; the normalized color

has uncertainty related to brightness. To cope with the problem of illumination

changes such as shading and highlights, we calculates a brightness difference

as well as a color difference of rescaled RGB values.
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(a) original image (b) standard deviations (c) unimodal model in [2]

(d) MOG (e) Kernel (f) CB (proposed)

Figure 2.4: Detection results on a compressed video

2.3 Detection Results and Comparison

Most existing background subtraction algorithms fail to work with low-bandwidth

compressed videos mainly due to spatial block compression that causes block arti-

facts, and temporal block compression that causes abnormal distribution of encoding

(random spikes). Fig.2.4(a) is an image extracted from an MPEG video encoded

at 70 kbits/sec. Fig.2.4(b) depicts 20-times scaled image of the standard deviations

of blue(G)-channel values in the training set. It is easy to see that the distribution

of pixel values has been affected by the blocking effects of MPEG. The unimodal

model in Fig.2.4(c) suffers from these effects. For the compressed video, CB elimi-

nates most compression artifacts - see Fig.2.4(c)-(f).

In a compressed video, pixel intensities are usually quantized into a few dis-

continuous values based on an encoding scheme. Their histograms show several
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(a) original image (b) MOG

(c) Kernel (d) CB (proposed)

Figure 2.5: Detection results on multiple moving backgrounds

spike distributions in contrast to continuous bell-shaped distributions for an un-

compressed video. MOG has low sensitivity around its Gaussian tails and less

frequent events produce low probability with high variance. Kernel’s background

model, which contains a recent N -frame history of pixel values, may not cover some

background events which were quantized before the N frames. If Gaussian kernels

are used, the same problems occur as in the MOG case. CB is based on a vector

quantization technique. It can handle these discrete quantized samples, once they

survive temporal filtering (λ-filtering).

Fig.2.5 illustrates the ability of the codebooks to model multiple moving back-

grounds - The trees behind the person moving significantly in the video. For the
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(a) original image (b) MOG

(c) Kernel (d) CB (proposed)

Figure 2.6: Detections results on training of non-clean backgrounds

test sequence5 used in Fig.2.5(a), further comparison of our method was done with

10 different algorithms, and the results are described in [10].

In areas such as building gates, highways, or pathways where people walk, it

is difficult to obtain good background models without filtering out the effects of

foreground objects. We applied the algorithms to a test video in which people are

always moving in and out a building (see Fig.2.6). By λ-filtering, our method was

able to obtain the most complete background model.

Multiple backgrounds moving over a long period of time cannot be well trained

with techniques having limited memory constraints. A sequence of 1000 frames

5We would like to thank K. Toyama and J. Krumm at Microsoft Research, for providing us
with this image sequence
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(a) original image (b) MOG

(c) Kernel (d) CB (proposed)

Figure 2.7: Detections results on very long-time backgrounds
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MOG Kernel CB

background training 8.3 40.8 39.2

background subtraction 12.1 11.1 30.7

Table 2.2: Processing speed in frames per second

recorded at 30 frames per second (fps) was trained. It contains trees moving ir-

regularly over that period. The number of Gaussians allowed for MOG was 10. A

sample of size 300 was used to represent the background. Fig.2.7 shows that CB

captures most multiple background events; here we show typical false alarms for

a frame containing no foreground objects. This is due to a compact background

model represented by quantized codewords.

The implementation of the approach is quite straightforward and is faster than

MOG and Kernel. Table 2.2 shows the speeds to process the results in Fig.2.7(b)-(d)

on a 2 GHz Dual Pentium system. Note that the training time of Kernel is mostly

used for reading and storing samples.

Regarding memory usage for the results in Fig.2.7(b)-(d), MOG requires 5

floating point numbers6 RGB means, a variance, a weight for each distribution

- 10 Gaussians correspond to 200 bytes. Kernel needs 3 bytes for each sample

- 300 samples amount to 900 bytes. In CB, we have 5 floating point numbers

(R̄, Ḡ, B̄, Ǐ, Î) and 4 integers (f, λ, p, q) - the average7 number of codewords in each

pixel, 4 codewords, can be stored in 112 bytes.

6floating point: 4 bytes, integer: 2 bytes
7The number of codewords depends on the variation of pixel values
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2.4 Automatic Parameter Estimation - ε1 and ε2

Automatic parameter selection is an important goal for visual surveillance

systems as addressed in [40]. Two of our parameters, ε1 and ε2, are automatically

determined. Their values depend on variation within a single background distribu-

tion, and are closely related to false alarm rates. First, we find a robust measure of

background variation computed over a sequence of frames (of at least 90 consecutive

frames, about 3 seconds of video data). In order to obtain this robust measure, we

calculate the median color consecutive-frame difference over pixels. Then we calcu-

late Θ (median color frame difference) which is the median over time of these median

differences over space. For example, suppose we have a sequence of N images. We

consider the first pair of frames, and calculate the color difference at each pixel, and

take the median over space. We do this for all N−1 consecutive pairs, until we have

N − 1 medians. Then, Θ is the median of the N − 1 values. In fact, an over-space

median of medians over time is almost the same as Θ, while Θ is much easier to

calculate with limited memory. Θ will be proportional to the within class variance

of a single background. In addition, it will be a robust estimate, which is insensitive

to the presence of relatively small areas of moving foreground objects. The color

difference used here is defined in Eq.2.2.

Finally, we multiply a constant k by this measure to obtain ε1(= kΘ). The

default value of k is 4.5 which corresponds approximately to a false alarm rate of

detection between .0001 - .002. ε2 can be set to k′Θ, where (k − 1) < k′ < (k + 1)

but usually k′ = k. Experiments on many videos show that these automatically
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chosen threshold parameters ε1 and ε2 are sufficient. However, they are not always

acceptable, especially for highly compressed videos where we cannot always measure

the robust median accurately.

2.5 Layered modeling and detection - Model maintenance

2.5.1 Overview

Many background modeling and target detection literatures have focused on

how well they model the underlying distributions of backgrounds or target fore-

grounds. They used the techniques such as a mixture of Gaussians [3], kernel den-

sity estimation [9, 11], high(region)-level analysis [10], color and gradient cues [6],

depth measurements [5], Kalman filter [14], hidden markov model [21], markov

random field [12], multiple views [22], combination with tracking [7], and so on.

Many techniques tried to solve the challenging surveillance problems, for example,

dynamic scenes [20, 14], crowded scene [24, 12], rain [23], underwater [27], illumi-

nation changes [28], beyond-visible-spectrum [29], non-stationary camera [25, 26],

etc.

However, most background modeling techniques do not explicitly handle dy-

namic changes of backgrounds during detection, e.g., parked cars, left packages, dis-

placed chairs. Even though they adapt to the changes in one way or another, they

only forget the old backgrounds gradually and absorb the new background changes

into the background model. Here, the meaning or importance of those background

changes is ignored. Moreover, those changes are accommodated only within the

capacity of the background model, i.e., the number of Gaussians in a mixture or
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the number of past samples in kernel density estimation. Hence, it is desirable,

in the sense of intelligent visual surveillance, to have those background changes as

short-term background layers, not just a binary output of forground/background.

Research on layers for motion segmentation, object tracking, or occlusion anal-

ysis can be found in [30, 31, 32, 33, 34, 35, 36]. [30] worked on motion and appearance

in layers, [31] on subspace approach, [32] on Bayesian approach, [33] on depth or-

dering by tracking edges, [34] on transparency manifolds, [35] on depth layers from

occlusions, [36] on a background layer model. [36] is most similar to ours in that the

‘background’ layers are handled. However, we are interested in static layers rather

than motion layers which most previous methods have considered.

The motivation of layered modeling and detection is to still be able to de-

tect foreground objects against new backgrounds which were obtained during the

detection phase. If we do not have those short-term background layers, interesting

foreground objects (e.g., people) will be detected mixed with other stationary ob-

jects (e.g., cars). The short-term backgrounds can be labelled with the time when

they first appeared static so that they can be represented in temporal order.

The background layers are embedded into the existing technique using a code-

book model. Please note that it is a pixel-based approach which makes layers defined

initially on a per-pixel basis.

An overview of the layered modeling algorithm is given in Sec.2.5.2. Sec.2.5.3

discusses several important questions which need to be considered when constructing

layered models. Experimental results showing surveillance examples are shown in

Sec.2.5.4.
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2.5.2 Model updating for background changes

As noted in Sec.2.5.1, the scene can change after initial training, for example,

by parked cars, displaced books, etc. These changes should be used to update the

background model. We achieve this by defining an additional model H called a

cache and three parameters described below:

• TH: the threshold for MNRL of the codewords in H;

• Tadd: the minimum time period required for addition, during which the codeword
must reappear;

• Tdelete: a codeword is deleted if it has not been accessed for a period of this long.

The periodicity of an incoming pixel value is filtered by TH, as we did in the

background modeling (Sec.2.2.2). The values re-appearing for a certain amount of

time (Tadd) are added to the background model as short-term background. Some

parts of a scene may remain in the foreground unnecessarily long if adaptation is

slow, but other parts will disappear too rapidly into the background if adaptation

if fast. Neither approach is inherently better than the other. The choice of this

adaptation speed is problem dependent.

We assume that the background obtained during the initial background model-

ing is long-term. This assumption is not necessarily true, e.g., a chair can be moved

after the initial training, but, in general, most long-term backgrounds are obtainable

during training. Background values not accessed for a long time (Tdelete) are deleted

from the background model. Optimally, the long-term codewords are augmented

with permanent flags indicating they are not to be deleted∗. The permanent flags

can be applied otherwise depending on specific application needs.
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Figure 2.8: The overview of our approach with short-term background layers: the

foreground and the short-term backgrounds can be interpreted in a different tempo-

ral order. The diagram items in dotted line, such as Tracking, are added to complete

a video surveillance system.

Thus, a pixel can be classified into four subclasses - (1) background found in the

long-term background model, (2) background found in the short-term background

model, (3) foreground found in the cache, and (4) foreground not found in any

of them. The overview of the approach is illustrated in Fig.2.8. This adaptive

modeling capability allows us to capture changes to the background scene. The

detailed procedure is given below.

Algorithm for Background Update

I. After training, the background model M is obtained as in Eq.2.1. Create a new
model H as a cache.

II. For an incoming pixel x, find a matching codeword in M. If found, update the
codeword.
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III. Otherwise, try to find a matching codeword in H and update it. For no match,
create a new codeword h and add it to H.

IV. Filter out the cache codewords which do not occur quasi-periodically (That is, their
λ’s are larger than the threshold TH).

H ← H− {hi|hi ∈ H, λ(hi) > TH}

V. Among the cache codewords which survive from the filtering in Step IV, move the
ones, staying enough time in H to be determined as short-term backgrounds, to M
(Their first access times are larger than Tadd).

M←M∪ {hi|hi ∈ H, p(hi) > Tadd}

VI. Delete the codewords not accessed for a long time from M (Their last access times
are larger than Tdelete). But do not delete a codeword augmented with a permanent
flag.

M←M− {ci|ci ∈M, q(ci) > Tdelete, permanent(ci) = no∗}

VII. Repeat the process from the Step II.

Many short-term background layers can be formed as changes to the back-

ground occur. The parameters TH, Tadd and Tdelete need to be controlled based on

the specific application needs or the semantics of foreground objects.

The first-access-time of a codeword, p, can be used to label its background

layer. Based on this temporal information, layers can be ordered in time-depth and

temporal segmentation can also be performed.

2.5.3 Issues for Background Updating

There are several related background-updating issues that need to be con-

sidered for practical visual surveillance applications. In this section, those issues

are discussed along with related references and possible solutions. As noted in

[10], larger systems seeking a high-level understanding of image sequences use back-

ground subtraction as a component. A background maintenance module handles
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the default model for everything in a scene that is not modeled explicitly by other

processing modules. Thus, the module performing background maintenance should

not attempt to extract the semantics of foreground object on its own.

Spatial integration : Time-stamps of ‘first-access-time’ are assigned to back-

ground layers on each pixel as mentioned in the last paragraph in Sec.2.5.2. It

is possible to segment the object by grouping pixels with similar time-stamps

at close distance, without or with the help of ‘spatial segmentation’ (See [39]

for segmentation techniques). However, note that a region of temporal seg-

mentation may not correspond to a physical object, and vice versa.

Move in or out : There are two cases of background model updating - (1) A new

object (blob) comes in to the scene or displaces, and then stops to be a short-

term background, (2) An existing object modeled as background leaves the

original place. The hole left behind would be labelled as short-term back-

ground.

The object is a connected component in a binary foreground map. Here, the

object is assumed to be rigid. Over the boundary pixels, we can apply a color

similarity test (or a symmetric neighbor filter [37]) to classify a move-in or

move-out case as shown in Fig.2.9.

Human VS. stationary object : How to deal with a person who becomes almost

stationary? There would be ‘foreground aperture’ or ‘sleeping person’ prob-

lems as addressed in [10]. Depending on the semantics of foreground objects,

we may not want to let stationary people become background layers.
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zoomed 
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Figure 2.9: Two cases of changed backgrounds. The case (2) shows almost homoge-

neous neighborhoods over the boundary while different colors are observed on the

opposite sides along the boundary direction in the case (1).

A higher-level module needs to provide feedback to background maintenance

about what pixels should not be adapted into the background. We could

determine that the tracked object is a person or a group of people beforehand

by keeping a foreground model. Sometimes, the human object boundary may

not be perfectly motionless. Several heuristics to identify human objects by

head detection, boundary analysis or vertical histograms were proposed in

[24, 38]

Pre-labelled environments : Some fixtures like doors or gates need to be la-

belled before performing visual surveillance tasks since those are always in

one of the pre-defined states - widely open, ajar, or closed. Many surveillance

scenes involve doors or gates where interesting human activity events can oc-

cur. Moreover, in most cases, opening or closing a door causes illumination

changes on the surrounding areas and, as a result, detection algorithms give
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absorbed into
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detected against 
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Figure 2.10: Layered modeling and detection - A woman placed a box on the desk

and then the box has been absorbed into the background model as short-term.

Notice that the paper on the desk was displaced by the box and then also became

a short-term background layer. Then a purse is put in front of the box. The purse

is detected against both the box and the desk.

false alarms.

One could manually store representative states of those areas as short-term

backgrounds on the background model before performing actual detection. If

that kind of pre-processing is not available or the environment is not control-

lable, the area needs to be specially labelled as a door or a gate, and then

handled differently, i.e., detecting moving objects not by subtracting from a

background model but by matching with foreground models only.

2.5.4 Experimental results - examples

Fig.2.10 shows detection of an object against both long-term backgrounds and

a short-term background layer.
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Figure 2.11: The leftmost column: original images, the middle column: color-

labelled short-term backgrounds, the rightmost column: detected foreground. The

video shows that a man parks his car on the lot and takes out two boxes. He walks

away to deliver them.
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(a) (b)

Figure 2.12: The sample frames are shown in the order of time along with short-term

background layers in the second column. (a): A bag is placed by somebody and

left unattended. A short-term background layer is formed. It is still memorized as

a layer after the door was closed and then opened. (b): While several people walk

in and out the office, a bag has been left without any attention. Even with severe

occlusion by walking people, the bag stands out as a layer.
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Fig.2.11 is a more interesting example which can be used for the further anal-

ysis of scene change detection. After parking a car, a man unloads two boxes one

after another. The car and the two boxes are labelled with different coloring based

on their ‘first-access-times’ as short-term backgrounds while the man is still detected

as an active foreground. A car becomes a far-most background layer and then two

boxes create two different layers against the car layer.

As shown in Fig.2.12(a),2.12(b), a package left unattended for a long time

would be one of most demanding surveillance targets. Two such scenarios are pre-

sented here. To be precise on detection of unattended objects, a high-level analysis

to identify ‘unattendedness’ is required along with this low-level detection.

2.6 Adaptive codebook updating - detection under global illumina-

tion changes

Global illumination changes (for example, due to moving clouds) make it

difficult to conduct background subtraction in outdoor scenes. They cause over-

detection, false alarms, or low sensitivity to true targets. Good detection requires

equivalent false alarm rates over time and space. We discovered from experiments

that variations of pixel values are different (1) at different surfaces (shiny or muddy),

and (2) under different levels of illumination (dark or bright). Codewords should be

adaptively updated during illumination changes. Exponential smoothing of code-

word vector and variance with suitable learning rates is efficient in dealing with

illumination changes. It can be done by replacing the updating formula of vm with

vm ← γxt + (1− γ)vm
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and appending

σ2
m ← ρδ2 + (1− ρ)σ2

m

to Step II-iv of the algorithm for codebook construction. γ and ρ are learning

rates. Here, σ2
m is the overall variance of color distortion in our color model, not the

variance of RGB. σm is initialized when the algorithm starts. Finally the function

colordist() in Eq.2.2 is modified to

colordist(xt,vi) =
δ

σi

.

We tested a PETS’20018 sequence which is challenging in terms of multiple tar-

gets and significant lighting variation. Fig.2.13(a) shows two sample points (labelled

1 and 2) which are significantly affected by illumination changes and Fig.2.13(b)

shows the brightness changes of those two points. As shown in Fig.2.13(d), adap-

tive codebook updating eliminates the false detection which occurs on the roof and

road in Fig.2.13(c).

2.7 Conclusion and Discussion

Our new adaptive background subtraction algorithm, which is able to model

a background from a long training sequence with limited memory, works well on

moving backgrounds, illumination changes (using our color distortion measures),

and compressed videos having irregular intensity distributions. It has other desirable

features - unconstrained training and layered modeling/detection. Comparison with

8IEEE International Workshop on Performance Evaluation of Tracking and Surveillance 2001
at http://www.visualsurveillance.org/PETS2001
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Figure 2.13: Results of adaptive codebook updating for detection under global illu-

mination changes. Detected foregrounds on the frame 1105 are labelled with green

color.
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other multimode modeling algorithms shows that the codebook algorithm has good

properties on several background modeling problems.

In summary, our major contributions are as follows:

1. We propose a background modeling technique efficient in both memory and

speed. Experiments show that nearest neighbor ‘classification’, which is com-

putationally very efficient, is as effective as probabilistic classification (both

kernel and MOG) for our application. Practically, even when computing prob-

abilities of pixel measurements coming from the background, these probabili-

ties are dominated by the nearest component of the background mixture.

2. The most important lesson, based on our experience, for analyzing color videos

is that using an appropriate color model is critical for obtaining accurate de-

tection, especially in low light conditions such as in shadows. Using RGB

directly lowers detection sensitivity because most of the variance at a pixel

is due to brightness, and absorbing that variability into the individual RGB

components results in a lower true detection rate for any desired false alarm

rate. In other words, an algorithm would have to allow greater color variability

than the data actually requires in order to accommodate the intrinsic variabil-

ity in brightness. Using normalized colors, on the other hand, is undesirable

because of their high variance at low brightness levels; in order to maintain

sufficiently low detection error rates at low brightness, one necessarily sacri-

fices sensitivity at high brightness. This is due to using an angular measure

between normalized color coordinates for detection. The color model proposed
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here, on the other hand, maintains a constant false alarm rate across, essen-

tially, the entire range of brightness levels. One would expect that modifying

other background subtraction algorithms, such as the MOG algorithm, to use

this more appropriate color model would bring their performance much closer

to that of the codebook algorithm.

Automatic parameter selection is an important goal for visual surveillance

systems as addressed in [40]. Two of our parameters, ε1 in Section 2.2.1 and ε2 in

Section 2.2.4, can be automatically determined. Their values depend on variation

within a single background distribution, and are closely related to false alarm rates.

Preliminary experiments on many videos show that automatically chosen threshold

parameters ε1 and ε2 are sufficient. However, they are not always acceptable, es-

pecially for highly compressed videos where we cannot always measure the robust

parameter accurately. In this regards, further investigation could be done to obtain

robust parameters.
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Chapter 3

Performance Evaluation of Sensitive Target Detection

3.1 PDR - A performance evaluation method

3.1.1 Concept

The purpose of PDR analysis is to measure the detection sensitivity of a BGS

algorithm without assuming knowledge of the actual foreground distribution. The

basic idea is to measure how far apart the two distributions must be in order to

achieve a certain detection rate, or stated otherwise, given a false alarm rate (FA-

rate), to determine detection rate as a function of the difference of the foreground

from the background. It is similar to the Just Noticeable Difference (JND) typically

used in comparing psychophysical magnitudes.

In general, detection accuracy depends on the algorithm and its parameters,

shapes of the foreground and background distributions, and how far apart they are.

In ROC, we assume we are given both foreground and background data of particular

distribution shape and separation. We may vary the algorithm’s parameters to

obtain a certain combined false alarm rate and miss detection rate (or detection

rate). Whereas, in PDR, we do not need to know exactly what the distributions are.

The basic assumption made is that the shape of the foreground distribution is locally

similar to that of the background distribution; however, the foreground distribution
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of small (“just-noticeable”) contrast will be a shifted or perturbed version of the

background distribution. This assumption is fairly reasonable because, in modeling

video, any object with its color could be either background or foreground, e.g., a

parked car could be considered as a background in some cases; in other cases, it could

be considered a foreground target. Furthermore, by varying algorithm parameters

we determine not a pair of error rates but a relation among the false alarm and

detection rates and the distance between the distributions.

Given the parameters to achieve a certain fixed FA-rate, the analysis is per-

formed by shifting or perturbing the entire BG distributions by vectors in uniformly

random directions of RGB space with fixed magnitude ∆, computing an average

detection rate as a function of contrast ∆. It amounts to simulating possible fore-

grounds at certain color distances. In the PDR curve, we plot the detection rate as

a function of the perturbation magnitude ∆ given a particular FA-rate.

3.1.2 PDR algorithm

The PDR algorithm is presented step-by-step as:

PDR Algorithm

1. First, we train the BGS algorithm on N training background frames, adjusting
parameters as best we can to achieve a target FA-rate1 2. It is averaged over the
training frames. The FA-rate would be practical in processing the video. Typically
this will range from .01% to 1% depending on video image quality.

1Note that there are more than one combination of parameter settings that might produce the
target FA-rate. In our experiments, we varied one or two major parameters directly affecting the
detection performance with other minor parameters fixed. The best combination of parameters of
the target FA-rate was chosen by visual inspection of real-object detection.

2Obtaining the FA-rate could be done by “leave all in” or “cross validation” test protocols [42]
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2. To obtain a test foreground at color contrast ∆, we pass through the N background
frames again. For each frame, we perturb a random sample of M pixel values
(Ri, Gi, Bi) by a magnitude ∆ in uniformly random directions. The perturbed,
foreground color vectors (R′, G′, B′) are obtained by generating points randomly
distributed on the color sphere with radius ∆.

3. Then we test the BGS algorithms on these perturbed, foreground pixels and compute
the detection rate for the ∆.

4. By varying the foreground contrast ∆, we obtain a monotone increasing PDR graph
of detection rates.

In some cases, one algorithm will have a graph which dominates that of another

algorithm for all ∆. In other cases, one algorithm may be more sensitive only in

some ranges of ∆. Most algorithms perform very well for a large contrast ∆, so we

are often concerned with small contrasts (∆ < 40) where differences in detection

rates may be large.

3.2 Results

3.2.1 Tested algorithms and experiment setups

In this study, we compare four algorithms shown in Table 3.1. Since the

algorithm in [9] accepts normalized colors (KER) or RGB colors (KER.RGB) as

inputs, it has two separate graphs. Figure 3.1 shows representative empty images

from four test videos. Note that the MOG implementation here is based on the

original algorithm in [3], which uses RGB colors directly.

To generate PDR curves, we collected 100 empty consecutive frames from

each video. 1000 points are randomly selected at each frame. That is, for each

∆, (100)×(1000) perturbations and detection tests were performed. Those 100
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Name Background subtraction algorithm

CB codebook-based method described in [62]

MOG mixture of Gaussians described in [3]

KER and KER.RGB non-parametric method using kernels described in [9]

UNI unimodal background modeling described in [2]

Table 3.1: Four algorithms used in performance evaluation

(a) indoor office (b) outdoor woods

(c) red-brick wall

moving
background

(d) parking lot

Figure 3.1: The sample empty-frames of four videos used in the experiments
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empty frames are also used for training background models. During testing, no

updating of the background model is allowed. For the non-parametric model in

KER and KER.RGB, a sample size 50 was used to represent the background. The

maximum number of Gaussians allowed in MOG is 4 for the video having stationary

backgrounds and 10 for moving backgrounds. We do not use a single FA-rate for

all four videos. The FA-rate for each video is determined by three factors - video

quality, whether it is indoor or outdoor, and good real foreground detection results

for most algorithms. The FA-rate chosen this way is practically useful for each

video. The threshold value for each algorithm has been set to produce a given FA-

rate. In the case of MOG, the learning rate, α, was fixed to 0.01 and the minimum

portion of the data for the background, T , was adjusted to give the desired FA-rate.

Also, the cluster match test statistic was set to 2 standard deviations. Unless noted

otherwise, the above settings are used for the PDR analysis.

3.2.2 Indoor and outdoor videos

Figures 3.2 and 3.3 show the PDR graphs for the indoor and outdoor videos

in Figures 3.1(a) and 3.1(b) respectively.

For the indoor office video, consisting almost entirely of stationary back-

grounds, CB and UNI perform better than the others. UNI, designed for unimodal

backgrounds, has good sensitivity as expected. KER performs intermediately. MOG

and KER.RGB do not perform as well for small contrast foreground ∆, probably

because, unlike the other algorithms, they use original RGB variables and don’t

separately model brightness and color. MOG currently does not model covariances
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Figure 3.2: PDR for ‘indoor office’ video in Figure 3.1(a)
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Figure 3.3: PDR for ‘outdoor woods’ video in Figure 3.1(b)
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(a) a ‘red-brick wall’ frame
including a person in a red
sweater

(b) detection using MOG (c) detection using CB

Figure 3.4: Sensitive detection at small delta

which are often large and caused by variation in brightness. It is probably best

to explicitly model brightness. MOG’s sensitivity is consistently poor in all our

test videos, probably for this reason, and not due to the density representation as

Gaussian mixtures.

For the outdoor video, all algorithms perform somewhat worse even though

the FA-rate has been increased to 1% from .01%. CB and KER, both of which

model mixed backgrounds and separate color/brightness, are most sensitive, while,

as expected, UNI does not perform well as in the indoor case. KER.RGB and MOG

are also less sensitive outdoors, as before indoors.

3.2.3 Detection sensitivity - a real example

Figure 3.4 depicts an example of foreground detection, showing real differences

in detection sensitivity for two algorithms. These differences reflect the performance

predicted by the PDR graph in Figure 3.5. The video image in Figure 3.4(a) shows

someone with a red sweater standing in front of a brick wall of somewhat different

reddish color. There are detection holes through the sweater (and face) in the MOG
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Figure 3.5: PDR for ‘red-brick wall’ video in Figure 3.1(c)

result (Figure 3.4(b)) . The CB result in Figure 3.4(c) is much better at this small

contrast. After inspection of the image, the magnitude of contrast ∆ was determined

to be about 16 in missing spots. This was due to difference in color balance and not

overall brightness. Figure 3.5 shows a large difference in detection for this contrast,

as indicated by the vertical line.

3.2.4 Multiple moving backgrounds

Figures 3.6 shows how sensitively the algorithms detect foregrounds against a

scene containing moving backgrounds (trees). In order to sample enough moving

background events, 300 frames are allowed for training. A window is placed to rep-

resent ‘moving backgrounds’ as shown in Figure 3.1(d). PDR analysis is performed

on the window with the FA-rate obtained only within the window - a ‘window’ false
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Figure 3.6: PDR for window on moving background (Figure 3.1(d))

alarm rate (instead of ‘frame’ false alarm rate).

The PDR graph (Figure 3.6) for the moving background window is generally

shifted right, indicating reduced sensitivity of all algorithms for moving backgrounds.

Also, it shows differences in performance among algorithms, with CB and KER

performing best. These results are qualitatively similar to those for the earlier

example of outdoor video shown in Figure 3.3. We can offer the same explanation

as before: CB and KER were designed to handle mixed backgrounds, and they

separately model brightness and color. In this video experiment, we had to increase

the background sample size of KER (also that of KER.RGB) to 270 frames from 50

in order to achieve the target FA-rate in the case of the moving background window.

It should be noted that CB, like MOG, usually models background events over a
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Figure 3.7: PDR of different color models for the video in Figure 3.1(a)

longer period than KER.

3.2.5 Different color models

The color model being used could affect the detection performance. We

tweaked the original CB method into two new CB versions having the color models

of ‘RGB’ and ‘normalized RGB’. The RGB version just takes the absolute RGB

difference between a pixel and a background model for its color distortion measure.

Likewise, the Norm.RGB version uses the normalized color difference. Figure 3.7

shows that the performance of the tweaked CB versions on the video in Figure 3.1(a)

are degraded, and for the RGB color model are almost indistinguishable from MOG

as expected. The graph of MOG has been added for reference.

This leads us to conclude that an important lesson for analyzing color videos
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is that using an appropriate color model is more critical for obtaining accurate

detection, especially in low light conditions such as in shadows than the density rep-

resentation employed. Using RGB directly lowers detection sensitivity because most

of the variance at a pixel is due to brightness, and absorbing that variability into the

individual RGB components results in a lower true detection rate for any desired

false alarm rate. In other words, an algorithm would have to allow greater color

variability than the data actually requires in order to accommodate the intrinsic

variability in brightness. As noted in [17, 62], using normalized colors, on the other

hand, is undesirable because of their high variance at low brightness levels; in order

to maintain sufficiently low detection error rates at low brightness, one necessarily

sacrifices sensitivity at high brightness. This is due to using an angular measure

between normalized color coordinates for detection. The color model proposed in

the original CB algorithm, on the other hand, maintains a constant false alarm rate

across, essentially, the entire range of brightness levels. The CB method calculates

a brightness difference (a ratio of RGB absolute values) and a color difference which

rescales codeword RGB values to the brightness of the current, tested pixel.

3.3 Conclusions and future work

3.3.1 Conclusions

We presented a perturbation method for measuring sensitivity of BGS algo-

rithms. The PDR method does not require foreground targets in videos or knowl-

edge of actual foreground distributions. PDR analysis does not consider all possible

background or foreground distributions; it considers only those relevant to one video,
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scene and camera. It assumes that the foreground, when it has small contrast to

the background locally, has a distribution similar in form to the background, but

shifted or perturbed.

PDR analysis has two advantages over the commonly used ROC analysis: (1)

It does not depend on knowing foreground distributions, (2) It does not need the

presence of foreground targets in the video in order to perform the analysis, while

this is required in the ROC analysis. Because of these considerations, PDR analysis

provides practical general information about the sensitivity of algorithms applied to

a given video scene over a range of parameters and FA-rates. In ROC curves, we

obtain one detection rate for a particular FA-rate for a particular foreground and

contrast.

We have applied the PDR analysis to four various BGS algorithms and four

videos of different types of scenes. The results seem to be understandable, reflect-

ing obvious differences among the algorithms as applied to the particular type of

background scenes. We also provided a real video example of differences among the

algorithms with respect to sensitive foreground detection which appears consistent

with the PDR simulation.

There are limitations. The method doesn’t model motion blur of moving fore-

ground objects. Also in the case of mixed (moving) backgrounds, the simulated

foreground distributions will be mixed (as plants or flags moving in the foreground);

usually, though, foreground targets are from unimodal distributions. It should be

noted, however, that the overall detection rates will be nearly the same if the clusters

of the mixed distributions are well separated (compared to the usual small contrast
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delta). An important limitation is that foreground objects often will have shading

and reflection effects on backgrounds, and these are ignored although they are im-

portant for choosing a proper, practical false alarm rate for real video analysis. (We

have chosen practical false alarm rates for the videos used in this study.)

PDR does not predict the overall performance of a background subtraction

algorithm, but shows detection rates for possible foreground targets given the back-

ground scene. ROC analysis is also very useful if a specific real target is known and

crucial to the application. We would not generally claim that one algorithm is bet-

ter than another just from PDR analysis. There are other important performance

criteria which are not compared, such as processing speed, memory capacity, online

model update, etc..

3.3.2 Future Work

The present method would seem to be useful for qualitative comparison of

sensitivity of different algorithms, as well as comparison of choice of parameters

for a particular algorithm with respect to sensitivity. In the future, the present

method could be extended to measure local detection rates throughout the frame of

the scene or varying over time. This might have application to localized parameter

estimation, e.g. of detection/adaptation parameters in different parts of the frame

of the scene.

In the parameter space3, every combination of parameters determines its FA-

3The dimension of this space is determined by the number of parameters. A small number of
major parameters directly affecting the detection performance (with other minor parameters fixed)
reduces the size of the parameter space to be explored
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rate. One could select those combinations that produce the target FA-rate, then plot

a family of PDR graphs for them. One could then choose the algorithm parameters

that provide best detection sensitivity with respect to the PDR analysis.
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Chapter 4

Multi-view Multi-target Multi-Hypothesis Segmentation

and Tracking of People

This chapter is organized as follows. Sec.4.1 presents a human appearance

model. A framework for segmenting and tracking occluded people moving on a

ground plane is presented in Sec.4.2. This is based on a method to integrate practical

information from segmented blobs across views on a top-view reconstruction, based

on knowledge of each camera’s ground plane homography. In Sec.4.3, the multi-

view tracker is extended to a multi-hypothesis framework (M3Tracker) using particle

filtering. We demonstrate the experimental results of the proposed approach on

video sequences in Sec.. Finally, conclusions are presented in the last section.

4.1 Human appearance model

Haritaoglu et al.[38] and Senior[47] modeled human appearance as a 2D tem-

poral template with a probability map which records the likelihood that the pixel lo-

cation (x, y) belongs to a person and some time-averaged version of color/brightness

for that pixel. The model is used to find a match in an image or to support tracking

after occlusion. However, this type of appearance model is not suitable for multi-

camera tracking since the appearance models can be very different between camera

views.
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We describe an appearance color model as a function of height that assumes

that people are standing upright and are dressed, generally, so that consistently

colored or textured color regions are aligned vertically. Our color appearance model

is a combination of [64] and [63], where pixels belonging to a particular person

at a particular height are described by their color models, and the human body

is partitioned into three major parts: head, torso, and bottom; the model is thus

a cylindrical model having three height slices. Each body part has its own color

model represented by a color distribution. To allow multimodal densities inside

each part, we use kernel density estimation. Therefore, a body part does not need

to be homogeneously colored as long as we obtain kernels belonging to all the colors

for the body part model.

Let M = {ci}i=1...NM
be a set of pixels from a body part when ci = (ci,1, ..., ci,d)

is a d-dimensional vector of color representation. Using Gaussian kernels and an

independence assumption between color channels, the probability that an input

pixel c = {c1, ..., cd} is from the model M can be estimated as

pM(c) =
1

NM

NM∑
i=1

d∏
j=1

1√
2πσj

e
− 1

2

�
cj−ci,j

σj

�2

(4.1)

In order to handle illumination changes, we use normalized color (r = R
R+G+B

, g =

G
R+G+B

, s = R+G+B
3

) or Hue-Saturation-Value (HSV) color space with a wider kernel

for ‘s (brightness)’ and ‘Value’ to cope with the higher variability of these lightness

variables. On the other hand, chromaticity variables are more invariant to lighting

conditions and so a kernel with a small variance (σj) can be used for more dis-

crimination power. The lightness variable is still used to discriminate gray colored
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objects. We used both the normalized color and HSV spaces in our experiments and

observed similar performances.

Viewpoint-independent models can be obtained by viewing people from differ-

ent perspectives using multiple cameras. A related calibration issue was addressed in

[46, 48] since each camera output of the same scene point taken at the same time or

different time may be slightly different depending on camera types and parameters.

In order to handle the change in observed colors of an object a brightness transfer

function from one camera to another is learned in the training phase in [46]. The

correlation of visual information between different cameras is learned using Support

Vector Regression and Hierarchical Principle Component Analysis to estimate the

subject appearance across cameras in [48].

We used the same type of cameras and observed there is almost no difference

between camera outputs except for different illumination levels (due to shadow and

orientation effects) depending on the side of person’s body; This level of variability

is covered by our color model.

4.2 Multi-camera Multi-person Segmentation and Tracking

A framework for segmenting and tracking occluded people on a ground plane

is presented in this section.

4.2.1 Foreground segmentation

Given image sequences from multiple overlapping views including people to

track, we start by performing detection using BGS to obtain the foreground maps
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in each view. The codebook-based background subtraction algorithm [62] is used. Its

shadow removal capability increases the performance of segmentation and tracking.

Each foreground pixel in each view is labelled as the best matching person

(i.e., the most likely class) by Bayesian pixel classification as in [63]. The posterior

probability that an observed pixel x (containing both color c and image position

(x, y) information) comes from person k is given by

P (k|x) =
P (k)P (x|k)

P (x)
(4.2)

We use the color model in Eq.4.1 for the conditional probability P (x|k). The

color model of the person’s body part to be examined is determined by the informa-

tion of x’s position as well as the person’s ground point and full-body height in the

camera view (See Fig.4.1). The ground point and height are determined initially by

the method defined subsequently in Sec.4.2.2.

The prior reflects the probability that person k occupies pixel x. Given the

ground point and full-body height of the person, we can measure x’s height from

the ground and its distance to the person’s center vertical axis. The occupancy

probability is then defined by

Ok(hk(x), wk(x)) = P [wk(x) < W (hk(x))] (4.3)

= 1− cdfW (hk(x))(wk(x))

where hk(x) and wk(x) are the height and width of x relative to the person k.

W (hk(x)) is the person’s height-dependent width and cdfW (.) is the cumulative

density function for W . If x is located at distance W (hk(x)) from the person’s
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person k

torso

bottom

hk

wk

head

Wtorso
(with medium variance)

Whead (with low variance)

Wbottom
(with high variance)

pixel to be 
evaluated

ground point

Figure 4.1: Illustration of appearance model for each body part. hk and wk are

measured relative to the full height of the person.

center at a distance W , the occupancy probability is designed so that it will be

exactly 0.5 (while it increases or decreases as x move towards or move away from

the center).

The prior must also incorporate possible occlusion. Suppose that some person

l has a lower ground point than a person k in some view. Then the probability that

l occludes k depends on their relative positions and l’s (probabilistic) width. Hence,

the prior probability P (k) that a pixel x is the image of person k, based on this

occlusion model, is

P (k) = Ok(hk, wk)
∏

gy(k)<gy(l)

(1−Ol(hl, wl)) (4.4)

where gy(k) is the y-location of the ground point of k and x is omitted for simplicity

(i.e., hk = hk(x) and wk = wk(x)).

The best class k∗ is determined by maximum a posteriori (MAP) estimation:

k∗ = arg max
k

P (k)P (x|k) (4.5)
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Figure 4.2: Detection of persons for initialization of the appearance model. The

bounding boxes in the figures were created when the blobs are isolated before.

Finally, the foreground maps are segmented into the best matching persons based

on their appearance models and occlusion information.

4.2.2 Model initialization and update

Full automatic tracking is enabled by initializing the human appearance model

when a person is detected in a view by searching for isolated foreground blobs (See

Fig.4.2). A heuristic method of human detection is used, which detects a head

first by searching for significant peaks on the vertical projection histogram of the

silhouettes and their corner vertices on the silhouette boundary.

The appearance color model in Eq.4.1 is updated by adding the classified pixel

values into the sample list of the kernel estimator. Old samples will be forgotten

gradually as new samples are added. The full-body height of a person is initialized

upon model creation and is updated during segmentation. In some cases, fixing the

average height scaled by the y-location of the ground point provides a robust height

measurement when the segmentation is unreliable.
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When the unclassified pixels (those having a probability in Eq.4.1 lower than

a given threshold) constitute a connected component of non-negligible size, a new

appearance model is created.

4.2.3 Multi-view integration

2 Ground plane homography

The segmented blobs across views are integrated to obtain the ground plane

locations of people. The correspondence of a human across multiple cameras is

established by the geometric constraints of planar homographies. A homography is

a projective transformation represented as a nonsingular 3 × 3 matrix H defined

only up to a scale, which is widely used for image warping or mosaicing.

Given a set of corresponding image points p and q, belonging to a ground

plane, from two camera views, the homography H satisfying q ≡ Hp is recovered

(Note that ≡ denotes that the equality is in homogeneous coordinates, meaning that

the left and right hand side are proportional).

Each pair of corresponding points gives two independent linear equations in

the form of q×Hp = 0. Since H has 8 unknowns, at least 4 point correspondences

determine H. We manually obtained those corresponding points, but there are

several ways to do this automatically, such as [54]. When H is rewritten as

h = (h11, h12, h13,h21, h22, h23,h31, h32, h33)
T ,

Ncorres point correspondence give 2Ncorres linear equations, which result in a system

of the form Ah = 0. With the additional constraint that ‖h‖2 = 1, the least

squares solution of h is then given by the eigenvector corresponding to the smallest
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detected ground point

Figure 4.3: Wrong ground points were detected due to the broken segmentation and

the shadow under the feet.

eigenvalue of the matrix ATA.

For NV camera views, NV (NV − 1) homography matrices can possibly be

calculated for correspondence; but in order to reduce the computational complexity

we instead reconstruct the top-view of the ground plane on which the hypotheses of

peoples’ locations are generated. So, for each image view, we need to obtain only

two homographies relating the top-view with the image view.

2 Integration by vertical axes

Given the pixel classification results from Sec.4.2.1, a ground point of a person

could be simply obtained by detecting the lowest point of the person’s blob. Those

image ground points of the person from all views can be mapped to the top-view

plane using the homographies, and then could be averaged into a single ground point

for tracking people’s positions. However those ground points are not reliable due to

the errors from background subtraction and segmentation, as shown in Fig.4.3.

We instead develop a localization algorithm that employs the center vertical

axis of a human body, which can be estimated more robustly even with poor back-
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ground subtraction [55]. Ideally, a person’s body pixels are arranged more of less

symmetrically about a person’s central vertical axis. An estimate of this axis can

be obtained by Least Mean Squares of the perpendicular distance between the body

pixel and the axis. Alternatively, the Least Median Squares would also be more

robust to outliers.

An interesting fact is that the homographic images of all the vertical axes of

a person across different views intersect at (or are very close to) a single point (the

location of that person on the ground) when mapped to the top-view (See [55]). In

fact, even when the ground point of a person from some view is occluded, the top-

view ground point integrated from all the views is obtainable only if the vertical axis

is estimated correctly. This intersection point can be calculated by minimizing the

perpendicular distances to the axes. Fig.4.4 depicts an example of reliable detection

of the ground point from the segmented blobs of a person. The two vertical axes

are mapped to the top-view and transferred back to each image view.

Let each axis Li be parameterized by two points {(xi,1, yi,1), (xi,2, yi,2)}i=1...NV
.

When mapped to the top-view by homography, we obtain {(x̂i,1, ŷi,1), (x̂i,2, ŷi,2)}i=1...NV
.

The distance of a ground point (x, y) to the axis is written as

d ((x, y), Li) =
|aix + biy + ci|√

a2
i + b2

i

(4.6)

where ai = ŷi,1 − ŷi,2, bi = x̂i,2 − x̂i,1, and ci = x̂i,1ŷi,2 − x̂i,2ŷi,1. The solution is the

point that minimizes a weighted sum of square distances:

(x∗, y∗) = arg min
(x,y)

NV∑
i=1

w2
i d

2((x, y), Li) (4.7)

The weight wi is determined by the segmentation quality of the body blob of Li
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Figure 4.4: All vertical axes of a person across views intersect at (or are very close

to) a single point when mapped to the top-view.

(We used the pixel classification score in Eq.4.2). The solution is easily calculated

by solving the following linear system:



NV∑
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If a person is occluded severely by others in a view (i.e., the axis information

is unreliable), the corresponding body axis from that view will not contribute to the

calculation in Eq.4.7. When only one axis is found reliably, then the lowest body

point along the axis is chosen.

To obtain a better ground point and segmentation result, we can iterate the

segmentation and ground-point integration process until the ground point converges

to a fixed location within a certain bound ε. That is, given a set of initial ground-

point hypotheses of people, segmentation in Sec.4.2.1 is performed, and then newly

moved ground points are obtained based on multi-view integration. These new
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ground points are an input to the next iteration. 2-3 iterations gave satisfactory

results for our data sets.

4.3 Extension to Multi-hypothesis Tracker

In this section, we extend our single-hypothesis tracker to one with multiple

hypotheses. A single hypothesis tracker, while computationally efficient, can be

easily distracted by occlusion or nearby similarly colored objects.

However, we need to deal with the challenge that as the number of targets and

views increase, the state space of combination of targets’ states increases exponen-

tially. Additionally, the observation processes for visual tracking are typically very

expensive.

The iterative segmentation-searching presented in Sec.4.2 can be naturally

incorporated with a particle filtering framework. There are two advantages - (1)

By searching for a person’s ground point from a segmentation, a set of a few good

particles can be identified, resulting in low computational costs, (2) Even if all the

particles are away from the true ground point, some of them will move towards the

true one as long as they are initially located nearby. This does not happen generally

with particle filters, which need to wait until the target “comes to” the particles.

4.3.1 Overview of particle filter

In visual tracking, particle filtering is a Sequential Monte Carlo technique to

apply a recursive Bayesian filter based on propagation of a sample set over time.

Multiple hypotheses are kept to predict the position of the tracked object(s). In
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recent years, particle filters have become popular for probabilistic tracking for non-

linear/non-Gaussian models since they provide a robust framework with simplicity,

generality and success in a wide range of challenging applications [61, 60].

In the sequential Bayesian filtering framework, the conditional density of the

state variable given the measurements (observations) is propagated through the two

step recursion:

prediction :p(xt|z1:t−1) =
∫

D(xt|xt−1)p(xt−1|z1:t−1)dxt−1

update :p(xt|z1:t) = M(zt|xt)p(xt|z1:t−1)R
M(zt|xt)p(xt|z1:t−1)dxt

where xt
1 denotes the state of the tracked object and its probability density func-

tion is estimated from the sequence of measurement zt. The recursion requires the

specification of a dynamic model D(xt|xt−1) that governs the state evolution, and

a model M(zt|xt) that reflects the likelihood of any state in terms of the current

measurement.

While analytic methods for the recursion are not generally available due to the

likelihood’s non-linearity and multi-modality, particle filtering can nevertheless be

used. The key idea of particle filtering is to approximate the probability distribution

by a weighted sample set S = {(s(n), π(n))|n = 1...N}. Each sample, s, represents one

hypothetical state of the object, with a corresponding discrete sampling probability

π, where
∑N

n=1 π(n) = 1. Each element of the set is then weighted in terms of the

observations and N samples are drawn with replacement, by choosing a particular

sample with probability π
(n)
t = M(zt|xt = s

(n)
t ).

1xt here is different from xt in Sec.4.2.1 which denotes a pixel to be evaluated.
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4.3.2 State space and dynamics

In our particle filtering framework, each sample of the distribution is simply

given as

s = (x, y)

where x, y specify the ground location of the object in the top-view. For multi-person

tracking, a state st = (s1,t, ..., sNp,t) is defined as a combination of Np single-person

states. Our state transition dynamic model is a random walk where a new predicted

single-person state is acquired by adding a zero mean Gaussian with a covariance

Σ to the previous state. Of course, the velocity ẋ, ẏ or the size variable height and

width can be added to the state space and then a more complex dynamic model can

be applied if relevant.

4.3.3 Observation

Each person is associated with a reference color model q? which is obtained by

histogram techniques [60]. The histograms are produced with the function b(ci) ∈

{1, ..., Nb} that assigns the color vector ci to the corresponding bin. We used the

color model defined in Sec.4.1 to construct the histogram of the reference model in

the normalized color or HSV space using Nb (e.g., 10 × 10 × 5) bins to make the

observation less sensitive to lighting conditions.

The histogram q(C) = {q(u; C)}u=1...Nb
of the color distribution of the sample

set C is given by

q(u; C) = η

NC∑
i=1

δ[b(ci)− u] (4.8)

where u is the bin index, δ is the Kronecker delta function, and η is a normalizing
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constant ensuring
∑Nb

u=1 q(u; C) = 1. This model associates a probability to each of

the Nb color bins.

If we denote q? as the reference color model and q as a candidate color model,

q? is obtained from the stored samples of person k’s appearance model as mentioned

before while q is specified by a particle sk,t = (x, y). The sample set C in Eq.4.8

is replaced with the sample set specified by sk,t. The top-view point (x, y) is trans-

formed to an image ground point for a certain camera view v, Hv(sk,t), where Hv

is a homography mapping the top-view to the view v. Based on the ground point,

a region to be compared with the reference model is determined. The pixel values

inside the region are drawn to construct q. Note that the region can be constrained

from the prior probability in Eq.4.4 including the occupancy and occlusion informa-

tion (i.e., by picking pixels such that P (k) > Threshold, typically 0.5). In addition,

as done in pixel classification, the color histograms are separately defined for each

body part to incorporate the spatial layout of the color distribution. Therefore, we

apply the likelihood as the sum of the histograms associated with each body part.

Then, we need to measure the data likelihood between q? and q. The Bhat-

tacharyya similarity coefficient is used to define a distance d on color histograms:

d[q?,q(s)] =

[
1−

Nb∑
u=1

√
q ? (u)q(u; s)

] 1
2

(4.9)

This distance between probability distributions is bounded within [0,1], and is an

appropriate choice of measuring similarity of color histograms [52]. Thus, the like-

lihood of person k at view v is given by:

πv,k,t ∝ e
PNr

r=1−λd2[q?
r ,qr(Hv(sk,t))] (4.10)
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Note that since we get NV likelihoods for a person across views, the actual likelihood

of sk,t is given by:

πk,t = ΠNV
v=1πv,k,t (4.11)

Finally, the weight of the particle of a concatenation of Np person states is

πk = Π
Np

k=1πk,t

4.3.4 The final algorithm

The algorithm below combines the particle filtering framework described before

and the iterated segmentation-and-search into a final multi-view multi-target multi-

hypothesis tracking (called M3 Tracker).
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Algorithm for M3Tracker

I. From the “old” sample set St−1 = {s(n)
t−1, π

(n)
t−1}n=1,...,N at time t− 1, construct the

new samples as follows:

II. Prediction: for n = 1, ..., N , draw s̃(n)
t from the dynamics. Iterate Step III to

IV for each particle s̃(n)
t .

III. Segmentation & Search
s̃t = {s̃k,t}k=1...Np contains all persons’ states. The superscript (n) is omitted
through the Observation step.

i. for v ← 1 to NV do

(a) For each person k, (k = 1...Np), transform the top-view point s̃k,t into
the ground point in view v by homography, Hv (̃sk,t)

(b) perform segmentation on the foreground map in view v with the occlu-
sion information according to Sec4.2.

end for

ii. For each person k, obtain the center vertical axes of the person across views,
then integrate them on the top-view to obtain a newly moved point s̃∗k,t as in
Sec4.2.

iii. For all persons, if ‖s̃k,t − s̃∗k,t‖ < ε, then go to the next step. Otherwise, set
s̃k,t ← s̃∗k,t and go to Step III-i.

IV. Observation

i. for v ← 1 to NV do

For each person k, estimate the likelihood πv,k,t in view v4 according to
Eq.4.10. s̃k,t needs to be transferred to view v by mapping through Hv

for evaluation. Note that qr(Hv (̃sk,t)) is constructed only from the non-
occluded body region.

end for

ii. For each person k, obtain the person likelihood πk,t by Eq.4.11.

iii. Set πt ← ΠNp

k=1πk,t as the final weight for the multi-person state s̃t.

V. Selection: Normalize {π(n)
t }i so that

∑N
n=1 π

(n)
t = 1.

For i = n...N , sample index a(n) from discrete probability {π(n)
t }i over {1...N},

and set s(n)
t ← s̃a(n)

t .

VI. Estimation: the mean top-view position of person k is
∑N

n=1 π
(n)
t s(n)

k,t .
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4.4 Experiments

We now presents experimental results obtained on outdoor multi-view se-

quences to illustrate the performance of our algorithm.

The sequences were captured at 15 frames/sec using three outdoor cameras

placed on the side of a building at angular separation of 120 and 45 degrees approx-

imately. Four human subjects walk together through the overlapping fields of view

and moving around freely. The sequence is challenging in that three people are wear-

ing similarly-colored clothes on their tops or bottoms and they sometimes approach

close, making segmentation difficult. The number of particles (a combination of 4

single-person states) is 15, unless specified otherwise.

When angular separation is close to 180 degrees (visibility is maximized though),

the intersection point of two vertical axes transformed to top-view may not be re-

liable because a small amount of angular perturbation make the intersected point

move a lot. In our case, since camera 1 and 3 are placed at about 165 degrees,

the problem was observed when the detection information from camera 2 is not

available. This indicates that sensor placement can be an important factor for our

tracker.

Fig.4.5 depicts the tracking results of all three views along with the particles

on the top-view plane. The last row shows how the persons’ vertical axes are inter-

secting on the top-view to obtain their ground points. When occlusion happens, the

ground points being tracked are distracted a little but are recovered to the correct

positions soon.
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Figure 4.5: The proposed system tracks the ground positions of people over nearly

1000 frames. A small ball marker are overlaid on the resultant images of the frame

292 for easy finding of the camera orientations. Four representative frames are

selected, which show the difficulty of tracking due to severe occlusion. Additionally,

persons 2 and 3 are similar in their appearance colors. Note that, in the figures of

‘vertical axes’, the axis of a severely occluded person does not account for localization

of the ground point.
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Figure 4.6: Comparison on three methods: While the deterministic search with a

single hypothesis (persons 2 and 4 are good) and the general particle filter (only

person 3 is good) fail in tracking all the persons correctly, our proposed method

succeeds with a minor error. The view 2 was only shown here.

In order to demonstrate the advantage of our approach, single hypothesis (de-

terministic search only) tracker, general particle filter, and particle filter with de-

terministic search by segmentation (our proposed method) are compared in Fig.4.6.

While the deterministic-search-only tracker keeps tracking for persons 2 and 4 cor-

rectly, it cannot recover the lost tracks, but the ground points (of persons 1 and

3) move away from the true positions. In the general particle filter, the particles

cannot follow the true ground points well due to the insufficient observations by

occlusion.

Another important feature of our framework is the ability to segment targets

even though they are under severe occlusion. Some segmentation results are pre-

sented in Fig.4.7. Note that any blob-level image segmentation techniques are not

employed but only pixel-level classification is performed in two or three iterations.
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Figure 4.7: Segmentation results: Our method provides generally accurate blobs.

The segmentation results which reflect occlusion can be obtained through the

Bayesian pixel classification (Eq.4.2) based on the geometric constraints (Eq.4.4)

determined by the locations of the ground points.
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4.5 Conclusions

A framework to segment and track people on a ground plane is presented. Hu-

man appearance models are used to segment foreground pixels obtained from back-

ground subtraction. We developed a method to effectively integrate segmented blobs

across views on a top-view reconstruction, with a help of ground plane homogra-

phy. The multi-view tracker is extended efficiently to a multi-hypothesis framework

(M3Tracker) using particle filtering.

There are two important contributions:

1. To more precisely locate the ground location of a person, all center vertical

axes of the person across views are mapped to the top-view plane (rather than

compared within a pair of views) to find the intersection point.

2. To tackle the explosive state space due to multiple targets and views, an itera-

tive segmentation-searching is incorporated into a particle filtering framework.

By searching for a person’s ground point from segmentation, a set of a few

good particles can be identified, resulting in low computational costs. In ad-

dition, even if all the particles are away from the true ground point, some of

them move towards the true one as long as they are located nearby.

We have illustrated results on challenging videos to show the usefulness of the

proposed approach.
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Chapter 5

A Fine-Structure Image/Video Quality Measure using Local

Statistics

This chapter is organized as follows. Section 5.1 describes four video properties

to be considered for video surveillance applications. Our quality measure is detailed

in Section 5.2. Experimental results are presented along with the performance of

a background subtraction algorithm in Section5.3. Section 5.4 provides conclusions

and future work directions.

5.1 Video properties: Q1 - Q4

The following four properties should be considered for the performance of

background modeling and foreground detection.

• Q1 - noise: are errors in the image acquisition process that result in pixel

values that do not reflect the true intensities of the real scene. It could be

introduced due to sensor sensitivity, electronic transmission, illumination fluc-

tuation, camera vibration, etc. For modeling backgrounds, noise caused by

pixel fluctuations should be properly modelled.

• Q2 - contrast (blur vs. sharpness): could be affected by camera optics,

resolution, etc. Targets having low contrasts or blur effects are not easy to
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detect or to obtain accurate boundaries for further analysis.

• Q3 - color information: represents how well color values are distributed over

the intensity range.

• Q4 - clipping: Due to the range limitation of pixel value representation such

as [0-255], pixels which are actually brighter or darker than these bounds are

clipped. For clipped pixels, it is difficult to model backgrounds and detect

foreground objects.

In this work, we focus on Q1 and Q2 which are directly related to performance of

video surveillance systems.

5.2 Fine-structure image/video quality measure

In this section, A statistical local measure, CSAC (a Color version of SAC

described in the next paragraph), is presented. Then, it is extended to FIQ (Fine-

structure Image/video Quality) for image/video quality measurement. They incor-

porate both Q1 and Q2 described in Section 5.1. A median of FIQ’s in a video can

be used for a qualitative image/video quality measure.

SAC (center-Symmetric Auto-Correlation measure) for gray-scale images is

defined by Eq.5.2 [74]. It is computed for center-symmetric pairs of pixels in a 3×3

neighborhood as in Fig.5.1-(left). µ and σ2 denote the local mean and variance of the

center-symmetric pairs. SCOV (center-symmetric covariance measure) is a measure

of the pattern correlation as well as the local pattern contrast. Since SCOV is

unnormalized, it is more sensitive to local sample variation. SAC is a “normalized”
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Figure 5.1: (left) 3×3 neighborhood with 4 center-symmetric pairs of pixels, (right)

original space station image

gray-scale invariant version of the covariance measure SCOV. The invariance makes

SAC robust in the presence of local gray-scale variability or noise. The values of SAC

are bounded between -1 and 1. For zero σ, SAC is defined as zero. For multi-band

RGB-color imagery, CSAC can be defined by Eq.5.3.

SCOV =
1

4

4∑
i

(pi − µ)(p′i − µ) (5.1)

SAC =
SCOV

σ2
(5.2)

CSAC =
1

3

∑

c∈{R,G,B}

SCOVc

σ2
c

(5.3)

By inspecting CSAC histograms in Fig.5.2, one can observe the effects of

noise and blur. Each histogram shows the CSAC distribution of all the pixels in

each image. Gaussian noise and blur filters (of size 5 × 5) have been applied to

the original image in Fig.5.1-(right) to obtain noisy and blurry versions used for

generating the CSAC histograms in Fig.5.2.

Most CSAC’s of the original image are negative-symmetric, which corresponds

to edge-like patterns. CSAC’s close to zero reflect noisy patterns. Positive-symmetric

patterns correspond to details in an image. The distribution of the GaussianNoise
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Figure 5.2: CSAC histograms of original, noise, and blur images
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Figure 5.3: two 3×3 boxes and their average.

image is shifted toward zero. The GaussianBlur image reduces noise as seen from

its histogram around zero compared with the original one. Note that both decrease

high details (positive-symmetric) in the original image.

However, we have two issues about a CSAC measure - (1) It cannot be used

for a quantitative image quality measure, (2) It represents the quality of a single

image, not a video or an image sequence.

In this regard, as an alternative of CSAC, a variance ratio (VR) for gray-scale

images can be defined by Eq.5.4 where WVAR is the within variance over space

and BVAR is the between variance over time. For two consecutive frames of frame
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number t and t + 1, WVAR and BVAR for each pixel are defined by Eq.5.5 where

N is 8-neighbors of an interesting center pixel c. m(x,y) is an average of two pixels

p(x,y,t) and p(x,y,t+1) (See Fig.5.3).

VR =
WVAR

BVAR
(5.4)

WVAR = 1
8

∑
(x,y)∈N

(m(x,y) −mc)
2

BVAR = 1
9

∑
(x,y)∈N∪{c}

(p(x,y,t) − p(x,y,t+1))
2

(5.5)

VR can be viewed as signal-to-noise ratio since WVAR is a measure of local

pattern contrast and BVAR is measure of noise over time. WVAR can also be

defined in terms of a second derivative-like measure or a laplacian to measure fine

structure quality better. A laplacian version is presented in Eq.5.6. Let’s call the

square root version using Eq.5.6 as FIQ (fine-structure image/video quality) as in

Eq.5.7. A FIQ measure is a normalized laplacian and a ratio of within and between

frame variation. Note that FIQ is not ranged from 0 to 1 since WVAR and BVAR

have different scaling factors. For color imagery, FIQ can be defined as an average

of FIQ’s of all color channels.

WVAR =
[∇2

]2
=


1

8

∑

(x,y)∈N

(m(x,y) − 8mc)




2

(5.6)

FIQ =
∇2

√
BVAR

(5.7)

While adding noise makes both WVAR and BVAR increase, BVAR is increased

relatively more than WVAR. In blurred images, WVAR and BVAR are decreased.
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Figure 5.4: Cumulative FIQ histograms - GaussianNoise

But WVAR is decreased relatively more than BVAR since blur filters are spatial low-

pass filters. All these facts make FIQ measures of ‘noise’ and ‘blur’ images smaller

than that of an original image. Fig.5.4,5.5 shows the cumulative FIQ histograms

for the image tested in Fig.5.2. Once all FIQ’s over space (all pixels) and time

(all frames) are obtained, a median of those FIQ’s can be used for a quantitative

image/video quality measure since medians are robust statistics not affected by

outliers. We use the FIQ median as our image/video quality measure. The medians

for the original, GaussianNoise (std=3.0), and GaussianBlur (5×5, std=3.0) images

are 1.680, 1.037, and 1.053 respectively. These values are pretty distinctive for

quality measurement. More noise and blur make these FIQ medians smaller.
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Figure 5.5: Cumulative FIQ histograms - GaussianBlur

5.3 Experimental Results

Our image/video quality measurement program produces FIQ histograms in

Fig.5.4,5.5 as well as a text output which contains a FIQ median (related to Q1

and Q2), color entropy (Q3), and clipping information (Q4), which are shown below

(For color images, an average value over all the color-bands is reported.).

==============================================

Image/Video Quality Statistics

==============================================

-image.height = 240

-image.width = 360

-number of frames = 50

-clipping low_bound and high_bound = [20, 235]

[ Original ]

clipped_low = 0.16%

clipped_high = 1.46%

non-clipped = 98.38%

entropy = 7.423942

FIQ median = 1.680336

[ GaussianNoise: mean=0.0, std=3.0 ]
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clipped_low = 0.17%

clipped_high = 1.47%

non-clipped = 98.36%

entropy = 7.444018

FIQ median = 1.036869

[ GaussianBlur: 5x5, std=3.0 ]

clipped_low = 0.00%

clipped_high = 0.59%

non-clipped = 99.41%

entropy = 7.357112

FIQ median = 1.053170

========================================

Pixel values lower or higher than the given clipping bounds are classified as

‘clipped’. The reason why we have a range smaller than [0,255] is that actual

clipping effects occur before a pixel’s brightness reaches the min or max limit, 0

and 255. An entropy and a FIQ median are measured only for non-clipped pixels.

To measure color information, for each color band, an entropy H is obtained by

H = −
high bound∑

i=low bound

pi log pi where pi is the probability of the gray-level i.

The capability of detecting moving foreground objects from a video sequence

captured using a static camera is a typical first step in visual surveillance. It is called

‘background subtraction’. We tested a codebook-based background subtraction al-

gorithm in [75] on the image sequences used in Section 5.2. The original image

sequence is filtered by GaussianNoise or GaussianBlur. Detection performance is

centralized around errors of false positive (FP) and false negative (FN).

As presented in Table.5.1, adding noise increases FP’s while FN’s are relatively

stable. In the GaussianBlur case in Table.5.2, blurring increases FN’s dramatically

which means that there are a lot of miss detection. Note that it reduces FP’s,

but it does not affect its detection performance since the background area is much

larger than the foreground area. Even, some spot FP’s in the original image can
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FIQ median FP FN

original 1.680 3069 2945

std = 2.0 1.226 3325 2844

std = 3.0 1.037 3659 2864

std = 4.0 0.908 4169 2754

std = 5.0 0.818 5266 2746

Table 5.1: Errors for GaussianNoise images

FIQ median FP FN

original 1.680 3069 2945

3×3, std = 2.0 1.329 889 3332

5×5, std = 3.0 1.053 710 3553

7×7, std = 4.0 0.900 638 3870

9×9, std = 5.0 0.789 572 4109

Table 5.2: Errors for GaussianBlur images

be eliminated by simple post-processing. In overall, it is shown that images (or a

video) having lower FIQ’s achieve poor performance.

5.4 Conclusions and Future Work

A fine-structure image/video quality measure has been presented. It has been

shown that the proposed metric reflect image degradation well in terms of noise and

blur. For video surveillance tasks such as background subtraction, FIQ can be used

to measure the quality of video. Testing on a background subtraction algorithm

supports its usefulness.

Future research directions include the followings:

• Quality measurement for different system settings such as different cameras,

illuminations, focuses, or exposures. An operator can tune a surveillance sys-

tem to get better performance.
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• Applying our techniques to other video surveillance tasks like tracking and

recognition.

• Testing high-shutter videos. We observed that an image sequence taken at a

high shutter speed gives very accurate foreground silhouettes.

• Automatic parameter estimation for background subtraction algorithms. We

already used BVAR to estimate a sampling bandwidth of background model-

ing. This is very important for practical use of video surveillance systems.
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Chapter 6

Conclusions

In Chapter 2, our new adaptive background subtraction algorithm, which is

able to model a background from a long training sequence with limited memory,

works well on moving backgrounds, illumination changes (using our color distortion

measures), and compressed videos having irregular intensity distributions. It has

other desirable features - unconstrained training and layered modeling/detection.

Comparison with other multimode modeling algorithms shows that the codebook

algorithm has good properties on several background modeling problems.

In Chapter 3, we presented a perturbation method for measuring sensitivity

of BGS algorithms. The PDR method does not require foreground targets in videos

or knowledge of actual foreground distributions. PDR analysis does not consider all

possible background or foreground distributions; it considers only those relevant to

one video, scene and camera. It assumes that the foreground, when it has small con-

trast to the background locally, has a distribution similar in form to the background,

but shifted or perturbed. PDR analysis has two advantages over the commonly used

ROC analysis: (1) It does not depend on knowing foreground distributions, (2) It

does not need the presence of foreground targets in the video in order to perform

the analysis, while this is required in the ROC analysis. Because of these consider-
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ations, PDR analysis provides practical general information about the sensitivity of

algorithms applied to a given video scene over a range of parameters and FA-rates.

In ROC curves, we obtain one detection rate for a particular FA-rate for a particular

foreground and contrast.

In Chapter 4, a framework to segment and track people on a ground plane

is presented. Human appearance models are used to segment foreground pixels

obtained from background subtraction. We developed a method to effectively in-

tegrate segmented blobs across views on a top-view reconstruction, with a help of

ground plane homography. The multi-view tracker is extended efficiently to a multi-

hypothesis framework (M3 Tracker) using particle filtering. To locate more precise

ground location of a person, all center vertical axes of the person across views are

mapped to the top-view plane (rather than compared within a pair of views) to

find the intersection point. This is quite useful because background subtraction and

segmentation are not always reliable due to noise, illumination changes, etc. To

tackle with the explosive state space due to multiple targets and views, the itera-

tive segmentation-searching is incorporated with a particle filtering framework. By

searching the ground point from segmentation, a set of a few good particles can be

identified, resulting in low computational costs. In addition, even if all the particles

are away from the true ground point, some of them are to move towards to the

true one as long as they are located nearby. This good feature does not happen to

general particle filters. They need to wait until the target comes to the particles.

In Chapter 5, a fine-structure image/video quality measure has been presented.

It has been shown that the proposed metric reflect image degradation well in terms
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of noise and blur. For video surveillance tasks such as background subtraction, FIQ

can be used to measure the quality of video. Testing on a background subtraction

algorithm supports its usefulness.
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