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Maximal oxygen consumption (Vo2max) is inversely associated with 

cardiovascular and all-cause mortality and is responsive to aerobic exercise training.  

A portion of the increase in Vo2max with aerobic exercise training can be attributed to 

an increase in skeletal muscle capillarity (i.e., angiogenesis), which contributes to 

increased blood flow and oxygen extraction in working skeletal muscle.  One 

contributing factor to exercise-induced angiogenesis is vascular endothelial growth 

factor (VEGF), as it is an endothelial cell proliferation and migration factor that is 

upregulated by acute aerobic exercise.  Significant variability has been observed in 

VEGF protein levels, VEGF gene expression, skeletal muscle capillarity, and Vo2max 

before and after aerobic exercise training.  Additionally, variability is found in the 

DNA sequence of the gene encoding VEGF.  Variation in the VEGF gene has the 

ability to impact VEGF gene expression and VEGF protein level and because of the 

relationship between VEGF, angiogenesis, and Vo2max, we hypothesized that variation 



  

in the VEGF gene is related to VEGF gene expression in human myoblasts, plasma 

VEGF level, and Vo2max before and after aerobic exercise training.  

The present report shows that VEGF promoter region haplotype impacts 

VEGF gene expression in human myoblasts in vitro.  It was also found that VEGF 

promoter region haplotype was associated with Vo2max in older men and women 

before and after exercise training in a manner that is consistent with the results of the 

VEGF gene expression experiments.  Additionally, we found that plasma VEGF level 

was not associated with VEGF promoter region haplotype, nor did plasma VEGF 

level correlate with baseline Vo2max or ∆Vo2max with aerobic exercise training.  To 

date, we are the first to report that VEGF promoter region haplotype impacts VEGF 

gene expression in human myoblasts and is associated with Vo2max.   These results 

have potential implications for aerobic exercise training and may also contribute to 

the understanding of the function of the VEGF promoter region in different cell types.  

Furthermore, these results may prove relevant in the study of pathological conditions 

which can be affected by angiogenesis, namely obesity, cancer, coronary artery 

disease, and peripheral artery disease. 
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INTRODUCTION 

Maximal oxygen consumption (Vo2max) is inversely associated with 

cardiovascular and all-cause mortality28,42,75,84,98,151, a relationship that has been well 

documented in a variety of populations.  It is also well established that Vo2max is 

responsive to aerobic exercise training, such that Vo2max typically increases 15-30% 

after 3-9 months of training55,79,122,138,139.  Concordantly, improvement in 

cardiorespiratory fitness has been shown to result in decreased risk of cardiovascular 

disease mortality and all-cause mortality11,38. 

The vasculature of human tissues plays an integral role in survival and 

function.  This role becomes even more prominent in certain pathological conditions 

(e.g., coronary artery disease112, peripheral artery disease6,39,47, cancer70,87,143, and 

obesity30,137) and physiological conditions (e.g., aerobic exercise21,50) as blood flow to 

tissues is often limited.  Vo2max can be affected by the vasculature as limitations in 

blood flow can limit oxygen transport (particularly under conditions of physiological 

stress), negatively affecting metabolic processes in these tissues109.  This limitation is 

especially relevant in human skeletal muscle where blood flow, and thus oxygen 

supply, have been determined to be limiting factors in exercise capacity116,146.  As the 

genesis of new vasculature has the ability to mediate physiological responses by 

increasing local circulation and oxygen supply89,109, investigation of the mechanisms 

underlying this process is of significant clinical interest. 
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Angiogenesis  

Angiogenesis is the formation of blood vessels from pre-existing vessels and 

vascular endothelial cells119,123.  The formation of new vasculature is a critical 

phenomenon in the adaptation to aerobic exercise training because a contributing 

mechanism to the increase in Vo2max with aerobic exercise training is an increase in 

skeletal muscle capillarity achieved by angiogenesis21.  This is especially relevant 

since a substantial proportion of the increase in Vo2max with training is attributed to 

increased oxygen extraction by the working muscle122,125.  Increased oxygen 

extraction by trained skeletal muscle has been demonstrated in humans115 and in other 

animals58,153.  Angiogenesis can contribute to this increase in oxygen extraction by 

increasing the capillary surface area for diffusion, decreasing the average O2 diffusion 

path length in skeletal muscle, and increasing red blood cell transit time through 

skeletal muscle109.   

Aerobic exercise training has been identified as a powerful angiogenic 

stimulus as several studies over the last 3 decades have shown increases in skeletal 

muscle capillarity after aerobic exercise training, with increases of up to ~30% in as 

little as 1-3 months of training1,21,71,101,134.  Aerobic exercise training has been shown 

to stimulate angiogenesis through a few key mechanisms: hemodynamic 

stimuli36,49,61,72,94, muscle contraction65,119,123,154, and metabolic stimuli23,52,67,95,135.  

Metabolic stimuli such as low oxygen tension have significant effects on 

angiogenesis through the regulation of growth factor expression, as well as the 

expression of other factors and receptors23,52,67,95,108,135. 
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Vascular endothelial growth factor 

Angiogenesis is a complex process involving a number of molecules acting to 

stimulate growth, direct migration, and stabilize new vessels; the coordination of 

these molecules is critical to achieve functional increases in vascular supply108.  

Vascular endothelial growth factor (VEGF) has been identified as one of the key 

regulators of angiogenesis44,86,140 because it plays a role in endothelial cell  

proliferation85,119,123,128, mobilization5,73,97, and migration 65,119,123. 

VEGF protein is encoded by the VEGF gene (chromosome 6p12) which 

contains 8 exons separated by 7 introns.  VEGF is expressed in numerous human 

tissues including skeletal muscle, and recent research indicates that VEGF is involved 

in the angiogenic response to aerobic exercise20,53,89,101,118.  Several studies in 

humans48,53,117,118 and in other animals9,20,89,101 have confirmed that aerobic exercise 

induces a 2-fold to 6-fold increase in VEGF mRNA.  To date, hypoxia has been the 

best studied regulator of VEGF gene expression in relation to aerobic exercise.  

Aerobic exercise has been shown to result in an oxygen tension low enough (~2-4 

Torr116,147) to cause hypoxic induction of VEGF gene expression and mRNA 

stabilization45,88,127,145.  Several studies have provided evidence that hypoxic induction 

of VEGF gene and protein expression is mediated through hypoxia inducible factor-1 

(HIF-1) and its oxygen-sensing subunit HIF-1α23,52,67,95,135 by upregulating VEGF 

gene transcription67,140 and increasing the half-life of VEGF mRNA67,86,88,140.  

Considering these studies and the role of VEGF, there is a considerable body of 

evidence suggesting that VEGF plays an integral role in the angiogenic response to 

aerobic exercise training. 
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Variability and heritability of Vo2max, skeletal muscle capillarity and VEGF 

expression 

Significant variability is observed in Vo2max
19 and the response of Vo2max to 

aerobic exercise training130, even among humans of the same age, sex, and race.  

Variability is also observed in overall skeletal muscle capillarity, where capillary to 

fiber ratio has been shown to range from 0.81-1.97 cap/fiber among similar groups of 

individuals21,105,107,134.  Furthermore, variability among individuals in VEGF gene 

expression exists as Schultz et al.126 have demonstrated a range of ~1-fold to 7-fold 

induction of VEGF mRNA expression in monocytes derived from 51 individuals with 

coronary artery disease.  Interestingly, this group found that individuals exhibiting the 

greatest hypoxic induction of VEGF mRNA expression had greater myocardial 

collateral circulation development than those with lower hypoxic induction, 

indicating functional implications of variable VEGF gene expression126. 

While some proportion of the variability in the aforementioned traits can 

doubtlessly be attributed to non-genetic factors, there appears to be a significant 

contribution of genetic factors.  Twin studies have revealed significant correlations of 

Vo2max between sibling pairs18,77,78 and additional research has provided heritability 

estimates for Vo2max and the response of Vo2max to aerobic exercise training as high as 

59%17,41 and 47%17, respectively; though it is recognized that non-genetic familial 

influences also contribute to these heritability estimates17.  While the genetic 

contribution to skeletal muscle capillarity has yet to be defined, investigators have 

argued that differences in capillarity among individuals can be attributed to both 

environmental factors (e.g. aerobic exercise training), and genetic factors21,114.  The 
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heritability of VEGF gene expression has not been well studied, but at least two 

recent reports have demonstrated that polymorphisms within the VEGF gene affect 

VEGF gene expression in specific cell types in vitro82,141, indicating a genetic 

contribution to VEGF gene expression. 

DNA sequence variation in the VEGF gene 

The investigation of genetic factors underlying physical traits has progressed 

through the study of so-called ‘candidate genes’ that are likely to play a role in a 

given physiological process based on their known function.  VEGF is an important 

candidate gene for Vo2max because of its role in aerobic exercise-induced angiogenesis 

and because the DNA sequence of the VEGF gene is polymorphic.  The DNA 

sequence in the promoter region of human genes is known to bind enhancers and 

other regulators of DNA transcription and the 5’ untranslated region (5’UTR) is 

known to regulate VEGF expression at the posttranscriptional level63.  Likewise, the 

3’ untranslated region (3’UTR) of the VEGF gene has the ability to regulate 

translation as factors bind the 3’UTR to stabilize VEGF mRNA88,102.  Therefore, 

variation in these regions of the VEGF gene may regulate VEGF gene transcription 

and VEGF mRNA translation, with potential effects on VEGF protein expression and 

Vo2max.   

Several polymorphisms have been identified in the VEGF gene and in the 3kb 

of its upstream (5’) promoter region22,114,141,149.  Six of these polymorphisms have 

been investigated and four polymorphisms have been associated with measures of 

VEGF gene or protein expression in select human tissues.  The C936T single 

nucleotide polymorphism (SNP) in the 3’untranslated region (UTR) has been 
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associated with plasma VEGF levels, and the G-634C, G-1154A, and C-2578A 

(which is linked to an 18bp insertion/deletion polymorphism at position -254922) 

polymorphisms in the promoter region have been associated with VEGF gene or 

protein expression in C6 glioma cells82, GI-1 glioma cells82, and peripheral blood 

mononuclear cells (PBMCs)129,149. 

Furthermore, the AGG, AAG, and CGC VEGF promoter region haplotypes 

(combinations of alleles at the -2578/-1154/-634 SNPs, respectively) have been 

associated with in vitro VEGF gene expression in MCF7 breast cancer cells141 and 

GI-1 glioma cells82 using reporter gene constructs.  Lambrechts et al.82 also found that 

the same VEGF promoter region haplotypes were associated with plasma VEGF 

levels in a sample of European patients with amyotrophic lateral sclerosis (ALS; also 

known as Lou Gehrig’s disease). 

 While the effects of these VEGF genotypes and haplotypes have been 

demonstrated in specific cell types, they have not been investigated in skeletal 

muscle.  It is currently unclear whether the findings in glioma cells, PBMCs, and 

breast cancer cells will translate to tissue with greater relevance for Vo2max such as 

skeletal muscle, where different factors may regulate VEGF gene expression.  

Furthermore, the effects of the VEGF promoter region haplotypes have not been 

investigated in the context of the continuous promoter region sequence (i.e., the entire 

region encompassing the -2578, -1154, and -634 SNPs) without the presence of 

additional genetic variation.  In one experiment, the region from 5’ position -2468 to 

-1177 (containing the HRE: hypoxia response element) was absent in the 

experimental construct82; in another experiment, additional genetic variation was 
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present in the experimental construct141.  It is not known whether the same results 

would have been observed if these experiments were performed with the continuous 

promoter region sequence and without additional genetic variation.   

Purpose 

The current knowledge of the aforementioned VEGF polymorphisms is 

insufficient to draw conclusions about the effects of VEGF genotypes and haplotypes 

on VEGF gene expression in skeletal muscle, plasma VEGF levels, and Vo2max before 

and after aerobic exercise training.  The purpose of this project was to investigate 

individual polymorphisms in the VEGF gene for association with Vo2max before and 

after aerobic exercise training, as well as to investigate the -2578/-1154/-634 VEGF 

promoter region haplotype (chosen based on previous reports of effects on VEGF 

gene expression in different cell types) for effects on VEGF gene expression in 

cultured human myoblasts, and for association with Vo2max before and after aerobic 

exercise training. 

In addition, the utility of measuring circulating VEGF protein levels is 

currently unknown.  Plasma VEGF level appears to correlate well with the efficacy of 

treatments directed at angiogenic targets in clinical trials136 and plasma VEGF levels 

are viewed by some to be markers of angiogenic activity76.  Two reports have 

indicated that plasma VEGF level is increased after acute exercise59,81, indicating that 

skeletal muscle does secrete VEGF protein into the circulation, but the relevance, 

abundance, and localization of that protein is still unresolved.  As little is known 

about how indicative plasma VEGF levels are of skeletal muscle VEGF gene or 

protein expression, or about the usefulness of plasma VEGF level as a predictor of 
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Vo2max and ∆Vo2max with aerobic exercise training, we investigated whether a 

correlation exists between plasma VEGF level and Vo2max as well as whether an 

association exists between plasma VEGF level and VEGF promoter region haplotype. 
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HYPOTHESES 

Hypothesis 1:  Vo2max before and after exercise training differs among subjects with 

different genotypes at the -2578, -1154, -634, -7 and 936 VEGF gene polymorphisms. 

 

Hypothesis 2a:  VEGF gene expression (as quantified by luciferase activity) under 

normoxic conditions will differ among the 4 common VEGF promoter region 

haplotypes: AGG, AAG, CGG, and CGC (-2578, -1154, and -634 polymorphisms, 

respectively). 

 

Hypothesis 2b:  VEGF gene expression (as quantified by luciferase activity) under 

hypoxic conditions will differ among the 4 common VEGF promoter region 

haplotypes: AGG, AAG, CGG, and CGC (-2578, -1154, and -634 polymorphisms, 

respectively). 

 

Hypothesis 3:  Based on the VEGF gene expression results under hypoxic conditions, 

Vo2max before and after aerobic exercise training and ∆Vo2max with training will be 

lower in subjects with the AGG and/or CGG VEGF promoter region haplotypes than 

in subjects with the AAG and/or CGC haplotypes. 

 

Hypothesis 4:  Based on the VEGF gene expression results under normoxic 

conditions, plasma VEGF level before aerobic exercise training will be higher in 

subjects with only the CGG VEGF promoter region haplotype than in subjects with 

the AAG, AGG and/or CGC haplotypes. 
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METHODS 

Subjects & Screening 

Subjects for the study of Vo2max and plasma VEGF protein levels were 

recruited to participate in a study investigating the effects of aerobic exercise training 

on lipoprotein-lipid levels and blood pressure.  Direct-mail recruiting and media 

advertisements were used to recruit subjects.  Respondents were then contacted by 

telephone to determine their initial eligibility for participation in the study.  Written 

informed consent was obtained from all subjects at their first laboratory visit, after the 

entire study and its risks had been discussed and all of the subjects’ questions were 

answered.  Consent was obtained by the Principal Investigator, the Study 

Coordinator, or a qualified Research Assistant.  The Institutional Review Board at the 

University of Maryland, College Park has approved the study protocol and consent 

form (IRB #00494 and #00736, P.I.: James M. Hagberg, Ph.D.). 

To be admitted into the study, subjects were required to: 1) be sedentary 

(regular aerobic exercise less than 2 times per week and less than 20 minutes per 

session), 2) be 50-75 years of age, 3) not be taking lipid- or glucose-lowering 

medication, 4) be normotensive (systolic blood pressure less than 120mmHg and 

diastolic blood pressure less than 80mmHg) or hypertensive (systolic blood pressure 

between 121-160mmHg and/or diastolic blood pressure 81-99mmHg) controlled by 

medications, 5) have no recent history of smoking tobacco, 6) not have diabetes 

mellitus, 7) have no history of cardiovascular disease, 8) have a body mass index less 

than 37kg/m2, and 8) not have any other medical condition that would preclude 

vigorous aerobic exercise.  Additionally, all female participants were at least 2 years 
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past menopause and agreed to maintain their hormone replacement therapy (HRT) 

status (currently taking or not taking HRT) for the duration of the study. 

The subjects underwent two screening visits to confirm study eligibility.  At 

the first screening visit, subjects had fasting blood samples drawn and underwent an 

oral glucose tolerance test (OGTT).  Study eligibility requirements dictated that 

fasting plasma glucose levels were less than 126mg/dL and that 2-hour plasma 

glucose levels were less than 200mg/dL.  Additionally, subjects had 20mL of blood 

drawn at this visit for DNA isolation and subsequent genotyping.  At the second 

screening visit, subjects underwent a physical examination by a physician to detect 

conditions that would preclude aerobic exercise training3 and a Bruce maximal 

treadmill exercise test to ensure that they had no evidence of cardiovascular disease25.  

Study eligibility requirements dictated that subjects exhibited less than 2mm of ST-

segment depression and no signs or symptoms of cardiovascular disease during the 

treadmill test. 

Baseline Vo2max data were available for 196 subjects: 46 black men and 

women (n=13 and n=33, respectively) and 150 white men and women (n=66 and 

n=84, respectively).  After 24 weeks of aerobic exercise training, Vo2max data were 

available for 150 subjects: 30 black men and women (n=10 and n=20, respectively) 

and 120 white men and women (n=53 and n=67, respectively).  Baseline plasma 

VEGF level was measured in 92 subjects: 35 black men and women (n=10 and n=25, 

respectively) and 57 white men and women (n=30 and n=27, respectively). 
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Exercise training intervention 

Subjects underwent 24 weeks of standardized aerobic exercise training.  The 

initial training volume was set to 3 sessions of 20 minutes at 50% of heart rate reserve 

(HRreserve) per week.  HRreserve was defined as the difference between resting and 

maximal HR from the baseline maximal exercise test.  During the first 10 weeks of 

the intervention, training volume was gradually increased to 3 sessions of 40 minutes 

at 70% of HRreserve per week, and was then maintained for the final 14 weeks of the 

intervention.  Subjects also added a lower-intensity, 45-60 minute exercise session 

during weeks 12-24.  The aerobic exercise took place on a variety of exercise 

equipment including treadmills, as well as cycle, rowing, elliptical, and cross-country 

ski ergometers.  Subjects were permitted to self-select the mode of exercise based on 

personal preference.  For inclusion in the final analyses, subjects were required to 

have completed at least 75% of the scheduled exercise sessions. 

Plasma VEGF protein levels 

During baseline testing, subjects underwent an OGTT for evaluation of 

glucose metabolism.  Prior to the onset of this test, fasting blood samples were 

collected in 10mL Vaccutainer® vials with 15% EDTA for the measurement of 

plasma VEGF levels.  The samples were centrifuged at 3000 x g for 20 minutes and 

plasma was aliquotted into 2.0mL cryotubes and stored at -80ºC until measurement of 

plasma VEGF levels.  The Human VEGF Quantikine ELISA Kit (R&D Systems, 

Minneapolis, MN) was used to measure plasma VEGF levels, following the 

manufacturer’s instructions.  After completion of the assay procedures, the optical 

density of each sample was measured using an Emax Microplate Reader (Molecular 
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Devices Corporation, Sunnyvale, CA).  VEGF standards provided by the 

manufacturer were used, standard curves were generated according to the 

manufacturer’s instructions, and data were fit using SOFTmax PRO v3.1 (Molecular 

Devices Corporation, Sunnyvale, CA).   Each plasma sample was measured in 

duplicate and the average of those two measurements was used for statistical 

analyses. 

 As high plasma levels of soluble VEGF receptor-1 (sVEGFR-1, also known as 

sFlt-1) can interfere with plasma VEGF level measurement69, the Human sVEGF R1 

(Flt-1) Quantikine ELISA Kit (R&D Systems) was used to quantify sVEGFR-1 to 

determine if sVEGFR-1 interference exists.  No sVEGFR-1 interference was 

detected, so all samples were included in the analysis of plasma VEGF levels.  

Vo2max 

Before and after the exercise training intervention, subjects underwent a fixed-

speed maximal treadmill exercise test to assess Vo2max.  After a brief warm-up, the 

test began at a workload corresponding to approximately 70% of the peak heart rate 

achieved on each subject’s screening exercise test.  Every 2 minutes the treadmill 

grade was increased by 2%.  Vo2 was measured continuously using a customized 

metabolic system (Rayfield Mixing Chamber, VMM Ventilatory Turbine, and 

Marquette Respiratory Mass Spectrometer).  The test was terminated when a subject 

could no longer continue and standard physiological criteria were used to determine 

whether a true Vo2max was achieved: respiratory exchange ratio greater than 1.15 or 

no further increase in Vo2 (less than 150ml/min) with an increase in workload.  
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Electrocardiographic monitoring was continuous throughout the test and blood 

pressure monitoring was performed every 2 minutes throughout the test. 

Body composition 

Before and after the exercise intervention, percent body fat was measured 

using dual-energy X-ray absorptiometry (DPX-L; Lunar Corporation, Madison, WI) 

as previously described99. 

VEGF genotype and haplotype determination 

Genomic DNA was extracted from peripheral lymphocytes of whole blood 

samples using the PureGene® DNA extraction kit (Gentra Systems, Inc.). 

The VEGF C936T SNP was genotyped by restriction fragment length 

polymorphism (RFLP) analysis7.  A 208bp region surrounding the C936T SNP was 

amplified by polymerase chain reaction (PCR) with the forward primer 5’-ACA CCA 

TCA CCA TCG ACA GA-3’ and reverse primer 5’-GCT CGG TGA TTT AGC AGC 

A-3’.  The amplified DNA fragments were incubated with the restriction 

endonuclease HpyCH4 III overnight at 37°C and genotypes were visualized on a 2% 

agarose gel. 

The VEGF C-7T SNP was genotyped by RFLP analysis7.  A 420bp region 

surrounding the C-7T SNP was amplified by PCR with the forward primer 5’-GGC 

GTC GCA CTG AAA CTT TTC G-3’ and reverse primer 5’-CCC AAG ACA GCA 

GAA AGT TCA TGG TTC C-3’.  The amplified DNA fragments were incubated 

with the restriction endonuclease BspE I overnight at 37°C and genotypes were 

visualized on a 2% agarose gel. 
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The VEGF G-634C SNP was genotyped by RFLP analysis7.  A 345bp region 

surrounding the G-634C SNP was amplified by PCR with the forward primer 5’-GTA 

GCA AGA GCT CCA GAG AGA AGT-3’ and reverse primer 5’-TGG ACG AAA 

AGT TTC AGT GCG ACG-3’.  The amplified DNA fragments were incubated with 

the restriction endonuclease BsmF I overnight at 65°C and genotypes were visualized 

on a 2% agarose gel. 

The VEGF G-1154A SNP was genotyped by pyrosequencing121.  A 193bp 

region surrounding the G-1154A SNP was amplified by PCR with the forward primer 

5’-GTC GAG CTT CCC CTT CAT T-3’ and reverse primer 5’-CCG CTA CCA GCC 

GAC TTT-3’ with 5’-biotinylation.  The internal pyrosequencing primer 5’-AGC 

CGC GTG TGG A-3’ was used in the detection of the G-1154A genotype on a 

Pyrosequencing PSQ HS 96 light detection system (Pyrosequencing AB, Uppsala, 

Sweden) following instructions provided by the manufacturer. 

The VEGF C-2578A SNP was genotyped by RFLP analysis7.  A 317bp region 

(or 299bp region when the C-allele is present) surrounding the C-2578A SNP was 

amplified by PCR with the forward primer 5’-CTG ACT AGG TAA GCT CCC TGG 

A-3’ and reverse primer 5’-AGC CCC CTT TTC CTC CAA CT-3’.  The amplified 

DNA fragments were incubated with the restriction endonuclease Bgl II overnight at 

37°C and genotypes were visualized on a 2% agarose gel. 

VEGF promoter region haplotype (-2578/-1154/-634 SNPs, respectively) was 

determined from genotyping results where possible (i.e., when an individual was 

heterozygous for ≤1 of the 3 SNPs).  For individuals heterozygous at ≥2 SNPs, VEGF 

promoter region haplotype was determined using a combination of allele-specific 
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PCR and RFLP.  For example, haplotype determination for an individual 

heterozygous for the C-2578A and G-634C SNPs required: 1) Two PCR 

amplifications of the VEGF promoter region encompassing both SNPs, each with a 

reverse primer specific to either the -634 C-allele or G-allele and 2) digestion with the 

restriction endonuclease Bgl II to determine the -2578 allele that is on the same 

chromosome as either the -634 C-allele or G-allele.  VEGF promoter region 

haplotypes and genotypes were confirmed by sequencing allele-specific PCR 

amplimers in a sample of 96 subjects.  

DNA amplification for VEGF gene expression assays 

VEGF promoter region haplotype was determined in DNA samples from 

human subjects participating in the Studies of Human Genetic Sequence Variation 

project (IRB# 01198).  These subjects are a racially diverse group recruited to donate 

DNA samples for the purposes of screening for DNA sequence variation and for in 

vitro experimentation.  DNA samples with AGG, AAG, CGG, and CGC haplotypes 

were selected and the VEGF promoter region from 5’ position -3538 to -369 was 

amplified by PCR with the forward primer 5’-CCA GGT CAC AGC CAG GTT 

AT-3’ and the reverse primer (with a mismatch incorporating the Hind III restriction 

sequence underlined): 5’-CCC AAG CTT TGG ACG AAA AGT TTC AGT GCG 

ACG-3’ (Figure 1).  The FastStart High Fidelity PCR System (Roche Applied 

Sciences, Indianapolis, IN) with a DNA polymerase with 3’-5’ exonuclease 

(‘proofreading’) function was used to minimize amplification errors. 
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Vector preparation and cloning 

The pGL3-Basic Reporter Vector (Promega, Madison, WI) was used for this 

study.  This vector contains the firefly luciferase gene with an upstream multiple 

cloning site, but lacks eukaryotic enhancer and promoter sequences.  This vector also 

contains the β-lactamase gene which confers ampicillin resistance to allow for 

selection of transformed bacteria. 

The amplified VEGF promoter region DNA fragments containing the AGG 

and CGG haplotypes were purified by gel electrophoresis using the QIAquick Gel 

Extraction Kit (Qiagen, Inc., Valencia, CA), then both the reporter vector and the 

promoter region fragment were separately incubated with the Hind III and Kpn I 

restriction endonucleases in preparation for ligation.  This took advantage of the Hind 

III and Kpn I recognition sequences in the pGL3-Basic multiple cloning site as well 

as the naturally occurring Kpn I recognition sequence upstream (5’) of the -2578 SNP 

and the Hind III recognition sequence created by a mismatched amplification primer 

(see Figure 1).  The promoter region fragment was then ligated into the pGL3-Basic 

Reporter Vector using T4 DNA Ligase (Invitrogen Corporation, Carlsbad, CA), 

following the manufacturer’s instructions. 

Recombinant plasmid vectors containing the AGG, CGG, CGC, and AAG 

haplotypes were constructed for this experiment (Figure 2).  The AAG and CGC 

recombinant plasmid vectors were created from the AGG and CGG vectors, 

respectively, using the QuikChange XL Site-Directed Mutagenesis Kit (Stratagene, 

La Jolla, CA).  This system utilizes two mutagenic primers and a DNA polymerase 
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ATCCAGAGTTAACCCCTCCAGGTCACAGCCAGGTTATATCTCCACAATGAAGGGGGGAGGTGGGCCATACTTTCTCGCCCTAATGA 

AGGTAGCTCAAAAACCCCTAGGCCAGGTTGTAATCCTAGCCTTATATAAAAGGAATTCTGTGCCCTCACTCCCCTGGATCCCTGGG 

CAAAGCCCCAGAGGGAAACACAAACAGGTTGTTGTAACACACCTTGCTGGGTACCACCATGGAGGACAGTTGGCTTATGGGGGTGG 

                                                 Kpn I 
GGGGTGCCTGGGGCCACGGAGTGACTGGTGATGGCTATCCCTCCTTGGAACCCCTCCAGCCTCCTCTTAGCTTCAGATTTGTTTAT 
TTGTTTTTTACTAAGACCTGCTCTTTCAGGTCTGTTGGCTCTTTTAGGGGCTGAAGAAGGCCGAGTTGAGAAGGGATGCAAGGGAG 
GGGGCCAGAATGAGCCCTTAGGGCTCAGAGCCTCCATCCTGCCCCAAGATGTCTACAGCTTGTGCTCCTGGGGTGCTAGAGGCGCA 
CAAGGAGGAAAGTTAGTGGCTTCCCTTCCATATCCCGTTCATCAGCCTAGAGCATGGAGCCCAGGTGAGGAGGCCTGCCTGGGAGG 
GGGCCCTGAGCCAGGAAATAAACATTTACTAACTGTACAAAGACCTTGTCCCTGCTGCTGGGGAGCCTGCCAAGTGGTGGAGACAG 
GACTAGTGCACGAATGATGGAAAGGGAGGGTTGGGGTGGGTGGGAGCCAGCCCTTTTCCTCATAAGGGCCTTAGGACACCATACCG 
ATGGAACTGGGGGTACTGGGGAGGTAACCTAGCACCTCCACCAAACCACAGCAACATGTGCTGAGGATGGGGCTGACTAGGTAAGC 
TCCCTGGAGCGTTTTGGTTAAATTGAGGGAAATTGCTGCATTCCCATTCTCAGTCCATGCCTCCACAGAGGCTATGCCAGCTGTAG 
              A                            TCCCACTCTTCCCACAGG 
GCCAGACCCTGGCACGATCTGGGTGGATAATCAGACTGACTGG------------------CCTCAGAGCCCCAACTTTGTTCCCT 
            -2578                             -2549 I/D 
GGGGCAGCCTGGAAATAGCCAGGTCAGAAACCAGCTAGGAATTTTTCCAAGCTGCTTCCTATATGCAAGAATGGGATGGGGCCTTT 
GGGAGCACTTAGGGAAGATGTGGAGAGTTGGAGGAAAAGGGGGCTTGGAGGTAAGGGAGGGGACTGGGGGAAGGATAGGGGAGAAG 
CTGTGAGCCTGGAGAAGTAGCCAAGGGATCCTGAGGGAATGGGGGAGCTGAGACGAAACCCCCATTTCTATTCAGAAGATGAGCTA 
TGAGTCTGGGCTTGGGCTGATAGAAGCCTTGGCCCCTGGCCTGGTGGGAGCTCTGGGCAGCTGGCCTACAGACGTTCCTTAGTGCT 
GGCGGGTAGGTTTGAATCATCACGCAGGCCCTGGCCTCCACCCGCCCCCACCAGCCCCCTGGCCTCAGTTCCCTGGCAACATCTGG 
GGTTGGGGGGGCAGCAGGAACAAGGGCCTCTGTCTGCCCAGCTGCCTCCCCCTTTGGGTTTTGCCAGACTCCACAGTGCATACGTG 
GGCTCCAACAGGTCCTCTTCCCTCCCAGTCACTGACTAACCCCGGAACCACACAGCTTCCCGTTCTCAGCTCCACAAACTTGGTGC 
CAAATTCTTCTCCCCTGGGAAGCATCCCTGGACACTTCCCAAAGGACCCCAGTCACTCCAGCCTGTTGGCTGCCGCTCACTTTGAT 
GTCTGCAGGCCAGATGAGGGCTCCAGATGGCACATTGTCAGAGGGACACACTGTGGCCCCTGTGCCCAGCCCTGGGCTCTCTGTAC 
ATGAAGCAACTCCAGTCCCAAATATGTAGCTGTTTGGGAGGTCAGAAATAGGGGGTCCAGGAGCAAACTCCCCCCACCCCCTTTCC 
AAAGCCCATTCCCTCTTTAGCCAGAGCCGGGGTGTGCAGACGGCAGTCACTAGGGGGCGCTCGGCCACCACAGGGAAGCTGGGTGA 
ATGGAGCGAGCAGCGTCTTCGAGAGTGAGGACGTGTGTGTCTGTGTGGGTGAGTGAGTGTGTGCGTGTGGGGTTGAGGGCGTTGGA 
GCGGGGAGAAGGCCAGGGGTCACTCCAGGATTCCAATAGATCTGTGTGTCCCTCTCCCCACCCGTCCCTGTCCGGCTCTCCGCCTT 
CCCCTGCCCCCTTCAATATTCCTAGCAAAGAGGGAACGGCTCTCAGGCCCTGTCCGCACGTAACCTCACTTTCCTGCTCCCTCCTC 
GCCAATGCCCCGCGGGCGCGTGTCTCTGGACAGAGTTTCCGGGGGCGGATGGGTAATTTTCAGGCTGTGAACCTTGGTGGGGGTCG 
                                                                               A 
AGCTTCCCCTTCATTGCGGCGGGCTGCGGGCCAGGCTTCACTGAGCGTCCGCAGAGCCCGGGCCCGAGCCGCGTGTGGAGGGGCTG 
                                                                             -1154 
AGGCTCGCCTGTCCCCGCCCCCCGGGGCGGGCCGGGGGCGGGGTCCCGGCGGGGCGGAGCCATGCGCCCCCCCCTTTTTTTTTTAA 
AAGTCGGCTGGTAGCGGGGAGGATCGCGGAGGCTTGGGGCAGCCGGGTAGCTCGGAGGTCGTGGCGCTGGGGGCTAGCACCAGCGC 
TCTGTCGGGAGGCGCAGCGGTTAGGTGGACCGGTCAGCGGACTCACCGGCCAGGGCGCTCGGTGCTGGAATTTGATATTCATTGAT 
CCGGGTTTTATCCCTCTTCTTTTTTCTTAAACATTTTTTTTTAAAACTGTATTGTTTCTCGTTTTAATTTATTTTTGCTTGCCATT 
CCCCACTTGAATCGGGCCGACGGCTTGGGGAGATTGCTCTACTTCCCCAAATCACTGTGGATTTTGGAAACCAGCAGAAAGAGGAA 
                                                                                   C 
AGAGGTAGCAAGAGCTCCAGAGAGAAGTCGAGGAAGAGAGAGACGGGGTCAGAGAGAGCGCGCGGGCGTGCGAGCAGCGAAAGGGA 
                                                                                 -634 
CAGGGGCAAAGTGAGTGACCTGCTTTTGGGGGTGACCGCCGGAGCGCGGCGTGAGCCCTCCCCCTTGGGATCCCGCAGCTGACCAG 
TCGCGCTGACGGACAGACAGACAGACACCGCCCCCAGCCCCAGCTACCACCTCCTCCCCGGCCGGCGGCGGACAGTGGACGCGGCG 
GCGAGCCGCGGGCAGGGGCCGGAGCCCGCGCCCGGAGGCGGGGTGGAGGGGGTCGGGGCTCGCGGCGTCGCACTGAAACTTTTCGT 
 
CCAACTTCTGGGCTGTTCTCGCTTCGGAGGAGCCGTGTCCGCGCGGGGGAAGCCGAGCCGAGCGGAGCCGCGAGAAGTGCTAGCTC 

    Hind III               
GGGCCGGGAGGAGCCGCAGCCGGAGGAGGGGGAGGAGGAAGAAGAGAAGGAAGAGGAGAGGGGGCCGCAGTGGCGACTCGGCGCTC 
GGAAGCCGGGCTCATGGACGGGTGAGGCGGCGGTGTGCGCAGACAGTGCTCCAGCCGCGCGCGCTCCCCAGGCCCTGGCCCGGGCC 
TCGGGCCGGGGAGGAAGAGTAGCTCGCCGAGGCGCCGAGGAGAGCGGGCCGCCCCACAGCCCGAGCCGGAGAGGGAGCGCGAGCCG 
CGCCGGCCCCGGTCGGGCCTCCGAAACCATGAACTTTCT… 
                          -1 
 

 
Figure 1.  A diagram of the promoter region of the VEGF gene.  The 5’UTR is shown in 
italicized font; translated nucleotides are shown in bold font.  The binding sites of the PCR 
primers for the gene expression assays are designated by arrows (the dashed portion of one 
arrow designates the mismatch creating a Hind III recognition sequence).  The Kpn I 
recognition site is underlined.  Polymorphisms are designated by their position relative to the 
translation initiation codon (ATG).   
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with proofreading function to create the desired ‘mutant’ plasmid vectors while 

minimizing amplification errors.  The recombinant plasmid vectors created by this 

method were screened and sequenced to confirm that no amplification errors or 

additional mutations were present in the DNA sequence. 

The identified and sequence-confirmed recombinant plasmid vectors were 

subsequently transformed into chemically competent E. coli cells (Subcloning 

Efficiency DH5α, Invitrogen Corporation, Carlsbad, CA).  After growth, the 

recombinant plasmid vectors were isolated from the E. coli cells using the 

ChargeSwitch® Plasmid ER Mini Kit (Invitrogen Corporation, Carlsbad, CA) to yield 

endotoxin-free recombinant plasmid vectors to be used for myoblast transfection. 

 

 
 
                                                      C                              G         G 
 
 
                                                      C                              G         C 
 
 
                                                      A                              G         G 
 
 
                                                      A                              A         G 
 
 
  
 

Figure 2. Diagram of experimental recombinant plasmid vectors indicating VEGF promoter 
region haplotype (-2578, -1154, and -634 alleles, respectively).  The 18-bp insertion linked to 
the -2578 A-allele is indicated by a black box.  Abbreviations: ampr (ampicillin resistance 
gene), f1 (f1 bacterial origin of replication), and luc+ (firefly luciferase gene).  Note: figure 
not drawn to scale. 

 

luc+  f1  ampr 

luc+  f1  ampr 

luc+  f1  ampr 

luc+  f1  ampr 
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Cell culture and transfection 

Percutaneous biopsies of the vastus lateralis muscle were obtained from 

healthy, older (50-65 years of age) white women as part of the IRB-approved project 

Race, Menopause, and Metabolism After Exercise and Diet (University of Maryland 

at Baltimore IRB# M1174, P.I.: Alice S. Ryan, Ph.D.) and primary cultures of human 

myoblasts were generated in the laboratory of Dr. John McLenithan using a method 

similar to that described by Thompson et al.144  Primary myoblast cultures were 

subcultured and thawed cell samples were split into no more than a 1:5 ratio.  

Myoblasts used for this experiment were no greater than passage 4.  The myoblasts 

were cultured in Skeletal Muscle Basal Medium (Cambrex Corporation, East 

Rutherford, NJ) supplemented with 10% fetal bovine serum and incubated at 37°C 

with 5% CO2.  Cultured myoblasts were plated onto 24-well BioCoat Collagen I-

coated culture plates (BD Biosciences Discovery Labware, Bedford, MA) and the cell 

culture medium was changed every other day to achieve 50-70% confluence on the 

day of transfection.  For each experimental construct (i.e., for each different VEGF 

haplotype) 6 samples were transfected: 2 samples from each of 3 different primary 

cultures from different individuals.  

Transfection of myoblasts was conducted with the Lipofectamine Plus 

Reagent (Invitrogen Corporation, Carlsbad, CA) following the manufacturer’s 

instructions.  In each well of the 24-well plates, transfection was performed with 2µl 

Lipofectamine, 4µl Plus reagent, 0.4µg of recombinant pGL3-Basic vector containing 

one VEGF promoter region haplotype, and 0.02µg of pRL-CMV vector (a vector with 

a cytomegalovirus (CMV) promoter-driven expression of Renilla luciferase used to 
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normalize for transfection efficiency).  As an external control, transfection with 0.4µg 

of the pGL3-Basic vector (negative control without promoter or enhancer sequences) 

and 0.02µg of the pRL-CMV vector was also performed. 

Cell culture incubation conditions 

Two incubation conditions were used after transfection: normoxia (~20% 

ambient O2) and hypoxia (~1% ambient O2).  All cells were initially incubated for 32 

hours at 37°C with ~20% O2 and 5% CO2.  For the normoxic condition, transfected 

cells were maintained in these conditions for an additional 16 hours.  For the hypoxic 

condition, cell culture plates were placed in a 5310 Dessicator (Nalgene Labware, 

Rochester, NY).  The dessicator was flushed with a low-oxygen gas mix (1% O2, 5% 

CO2, 94% N2) for 20 minutes, then sealed and incubated at 37°C in a method similar 

to that described by Forsythe et al.45  After 1 hour, the dessicator was again flushed 

with low-oxygen gas for 10 minutes to account for residual air that may have 

remained in the culture plates after the first flush.  The dessicator was then sealed and 

incubated at 37°C for 15 hours.   

Luciferase assays 

The Dual-Luciferase Reporter Assay System (Promega, Madison, WI) was 

used to quantitate luciferase activity from transfected myoblasts.  Growth medium 

was removed from transfected myoblasts 48 hours after transfection and the 

myoblasts were rinsed with phosphate buffer solution.  The cells were then lysed and 

harvested using the lysis buffer provided by the manufacturer.  The cell lysate (20µl) 

was mixed with Luciferase Assay Reagent II (100µl) and firefly luciferase signal 
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(from the experimental pGL3 vectors) was measured with a TD-20/20 Luminometer 

(Turner Designs, Sunnyvale, CA) programmed for a 2-second delay followed by a 

10-second signal integration period.  After measurement of the firefly luciferase 

signal, Stop & Glo Reagent (100µl) was mixed with samples and Renilla luciferase 

(pRL-CMV control) signal was measured in the same manner as above as an internal 

control for transfection efficiency.  Each transfected sample was measured in 

duplicate to determine relative firefly luciferase activity corrected by Renilla 

luciferase activity, with the average of the two readings used for analyses.  Relative 

luciferase activity is reported as arbitrary units using the luciferase activity from the 

AAG haplotype under normoxic conditions as the referent value. 

Statistical procedures 

Analysis of covariance (ANCOVA) and Student’s t-tests were used to test for 

differences in plasma VEGF levels and Vo2max among VEGF genotypes and 

haplotype groups, as well as for differences in ∆Vo2max among VEGF haplotype 

groups.  Age, sex, and race were used as covariates in all Vo2max analyses.  Race and 

percent body fat were used as covariates in all analyses of plasma VEGF levels.  As 

no race*genotype or race*haplotype interactions were observed, it was not necessary 

to compare means by race.  For all individual genotype analyses, a type I error rate of 

α=0.05 was selected and two-tailed probabilities are given.  Additionally, for the 

individual genotype analyses, Student’s t-tests were only performed when the overall 

genotype effect in the ANCOVA met the criteria for statistical significance (P≤0.05).  

For all haplotype analyses, a type I error rate of α=0.05 was selected and one-tailed 

probabilities are given because directional hypotheses for these analyses were 
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developed based on the results of the VEGF gene expression analysis.  Pearson’s 

correlation was used to test for correlation between plasma VEGF level and Vo2max.  

Chi-square analysis (1 degree of freedom) was used to assess potential deviations of 

genotype distribution from Hardy Weinberg equilibrium.  Linkage disequilibrium (r2) 

among genotypes was estimated using Linkage Disequilibrium Analyzer v1.035.   

The gene expression data were analyzed using a two-factor (2 x 4: %O2 x 

haplotype) factorial analysis of variance (ANOVA).  The random portion of the 

mixed model was written to account for variation among individual myoblast donors 

and among individual myoblast donors within incubation chambers.  Hypoxic 

induction of luciferase activity was analyzed separately using ANCOVA with 

individual myoblast donor as a covariate.  Protected Student’s t-tests were then used 

to test for differences among the 4 common VEGF promoter region haplotypes 

(AAG, AGG, CGG, and CGC).  Data are reported as adjusted LS means ± SEM.  A 

type I error rate of α=0.05 was selected for this analysis and two-tailed probabilities 

are reported. 
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RESULTS 

Five individual VEGF polymorphisms were studied for association with 

Vo2max before and after aerobic exercise training, and the VEGF -2578/-1154/-634 

promoter region haplotype was studied for effects on VEGF gene expression and for 

association with Vo2max before and after aerobic exercise training. All genotype and 

haplotype groups (except women with TT genotype at the C936T SNP) that 

underwent aerobic exercise training exhibited significant increases in Vo2max 

(P<0.01).  In general, subjects experienced modest, but statistically significant weight 

loss (~1.4kg, P<0.05), but no significant differences in weight loss were observed 

among genotype or haplotype groups.  Although 46 subjects did not complete the 

exercise training regimen and were not included in the analyses of final Vo2max or 

∆Vo2max, this did not appear to influence our analyses of baseline Vo2max, as no 

significant differences were observed in baseline Vo2max between subjects who 

completed the exercise regimen and all subjects that completed baseline testing 

(Table 4a-e). 

 
 
Table 1.  Characteristics of a) all subjects used for the study of baseline Vo2max 
and plasma VEGF levels, and b) subjects used for the study of final Vo2max and 
∆Vo2max. 
 
a) 
 Men Women 
Age (yrs) 58.6 ± 0.7  (n=79) 57.4 ± 0.5  (n=117) 
Height (cm) 177.5 ± 0.8  (n=79) 162.9 ± 0.6  (n=117) 
BMI (kg/m2) 28.9 ± 0.5 (n=79) 29.0 ± 0.4 (n=117) 
Baseline Weight (kg) 91.3 ± 1.6  (n=79) 76.9 ± 1.2  (n=117) 
Baseline Vo2max (ml·kg-1·min-1) 28.0 ± 0.5  (n=79) 22.0 ± 0.3  (n=117) 
Plasma VEGF level (pg·ml-1) 18.8 ± 1.3 (n=40) 19.0 ± 1.4 (n=52) 
Data presented as means ± SEM. 
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b) 
 Men Women 
Age (yrs) 59.0 ± 0.8  (n=63) 57.7 ± 0.5  (n=87) 
Height (cm) 177.9 ± 0.8  (n=63) 163.7 ± 0.7  (n=87) 
BMI (kg/m2) 28.5 ± 0.5 (n=63) 28.2 ± 0.5 (n=87) 
Baseline Weight (kg) 90.3 ± 1.8  (n=63) 75.6 ± 1.4  (n=87) 
Change in Weight (kg) -1.8 ± 0.3  (n=63) -1.1 ± 0.3  (n=87) 
Baseline Vo2max (ml·kg-1·min-1) 28.2 ± 0.6  (n=63) 22.4 ± 0.4 (n=87) 
Final Vo2max (ml·kg-1·min-1) 32.6 ± 0.7  (n=63) 25.4 ± 0.4 (n=87) 
Data presented as means ± SEM. 
 

Allele and haplotype frequencies 

 Allele frequencies for individual polymorphisms were calculated from 196 

individuals with the exception of the -2578 and -1154 SNPs, which were calculated 

from 195 individuals as genotypes could not be determined for 1 subject (Table 2a).  

As haplotypes could not be determined for 5 subjects, haplotype frequencies were 

calculated from 191 individuals (Table 2b).  Four common haplotypes (CGG, CGC, 

AGG, and AAG) comprised ~99% of all observed haplotypes, while four rare 

haplotypes (AAC, CAC, CAG, and AGC) comprised the remaining ~1%.  With the 

exception of the G-634C polymorphism (P=0.04), no significant deviation from 

Hardy-Weinberg equilibrium expectations was observed (P=0.23-0.85).  Differences 

in allele frequencies between race groups were observed with blacks having lower 

frequency of the rare allele than whites in all cases.  Moderate, but statistically 

significant linkage disequilibrium (LD) was detected among the 4 variants upstream 

(5’) of the VEGF translation initiation codon, as well as between the -1154 and 936 

SNPs (Table 3).      

 



 

 26 
 

 

Table 2.  Allele frequencies for:  a) individual VEGF polymorphisms and b) 
VEGF -2578/-1154/-634 haplotypes. 
 
 
a) 
 Whites 

(n=150*) 
 Blacks  

(n=46) 
 p q  p q 

C-2578A 0.52 
(C) 

0.48 
(A)  0.78 

(C) 
0.22 
(A) 

G-1154A 0.70 
(G) 

0.30 
(A)  0.91 

(G) 
0.09 
(A) 

G-634C 0.72 
(G) 

0.28 
(C)  0.81 

(G) 
0.19 
(C) 

C-7T 0.77 
(C) 

0.23 
(T)  0.89 

(C) 
0.11 
(T) 

C936T 0.82 
(C) 

0.18 
(T)  0.87 

(C) 
0.13 
(T) 

*n=149 for C-2578A and G-1154A SNPs. 
 
 
b) 
 -2578/-1154/-634 Haplotype 
 CGG CGC AAG AGG Others 
Whites (n=145) 0.22 0.27 0.29 0.19 0.03 
Blacks (n=46) 0.60 0.19 0.12 0.09 0.00 
 
 
 
 
 
Table 3.  Linkage disequilibrium values (r2) for VEGF polymorphisms. 
 
 -2578 -1154 -634 -7 
-1154 0.37*    
-634 0.21* 0.10*   
-7 0.21* 0.02 0.03*  
936 0.02 0.05* <0.01 <0.01 
*Statistically significant LD, P<0.01. (n=195) 
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Vo2max and individual VEGF polymorphisms 

At baseline, the C-2578A SNP was not associated with Vo2max; however, after 

aerobic exercise training, subjects with CC genotype exhibited lower Vo2max  

(adjusted for baseline Vo2max) compared to CA and AA genotypes (Table 4a).  

Similarly, the G-1154A SNP was not associated with baseline Vo2max, but subjects of 

GG genotype exhibited lower Vo2max (adjusted for baseline Vo2max) after training 

compared to GA and AA genotypes (Table 4b).  No significant differences in Vo2max 

before or after training were observed among G-634C or C-7T genotypes (Tables 4c 

and 4d, respectively).  The C936T SNP was not associated with baseline Vo2max, but 

after aerobic exercise training, a sex*genotype interaction was detected (P=0.017) and 

data were analyzed by sex.  In women, no differences in Vo2max after aerobic exercise 

training (adjusted for baseline Vo2max) were observed among genotype groups, but in 

men, the CC genotype at the C936T SNP was associated with a lower Vo2max after 

aerobic exercise training (adjusted for baseline Vo2max) compared to CT and TT 

genotypes (Table 4e). 
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Table 4. Vo2max values for subjects by a) VEGF C-2578A genotype, b) VEGF 
G-1154A genotype, c) VEGF G-634C genotype, d) VEGF C-7T genotype, and e) 
VEGF C936T genotype. 
 
a) 
 C-2578A Genotype 
 AA CA CC 
Baseline Vo2max   
all subjects 
(ml·kg-1·min-1) 

24.5 ± 0.69 
n=33 

25.0 ± 0.46 
n=96 

24.1 ± 0.45 
n=66 

Baseline Vo2max    
final subjects 
(ml·kg-1·min-1) 

24.9 ± 0.81 
n=26 

25.1 ± 0.52 
n=79 

24.5 ± 0.53 
n=44 

Final Vo2max 
(ml·kg-1·min-1) 

29.5 ± 0.67† 
n=26 

29.0 ± 0.43‡ 
n=79 

27.7 ± 0.44†‡ 
n=44 

∆Vo2max  
(ml·kg-1·min-1) 

4.67 ± 0.67 
n=26 

4.13 ± 0.43 
n=79 

2.87 ± 0.44 
n=44 

Data are adjusted LS means ± SEM.  All means are adjusted for age, sex, and race; final means are also 
adjusted for baseline Vo2max.  Overall genotype effect probabilities for baseline and final Vo2max were 
P=0.36  and P=0.05, respectively.  No significant differences in baseline Vo2max were observed when 
all subjects and subjects completing exercise training (final subjects) were compared.  Differences in 
∆Vo2max among genotype groups were not tested.  †‡Significant difference between genotype groups 
with like symbols: †P=0.039, ‡P=0.025. 
 
 
b) 
 G-1154A Genotype 
 AA GA GG 
Baseline Vo2max   
all subjects 
(ml·kg-1·min-1) 

26.3 ± 1.1 
n=11 

25.4 ± 0.43 
n=78 

24.5 ± 0.36 
n=106 

Baseline Vo2max    
final subjects 
(ml·kg-1·min-1) 

26.0 ± 1.2 
n=9 

25.5 ± 0.46 
n=64 

25.1 ± 0.42 
n=76 

Final Vo2max 
(ml·kg-1·min-1) 

30.1 ± 0.99† 
n=9 

29.0 ± 0.38‡ 
n=64 

28.0 ± 0.35†‡ 
n=76 

∆Vo2max  
(ml·kg-1·min-1) 

5.28 ± 0.98 
n=9 

4.20 ± 0.38 
n=64 

3.15 ± 0.35 
n=76 

Data are adjusted LS means ± SEM.  All means are adjusted for age, sex, and race; final means are also 
adjusted for baseline Vo2max.  Overall genotype effect probabilities for baseline and final Vo2max were 
P=0.15  and P=0.04, respectively.  No significant differences in baseline Vo2max were observed when 
all subjects and subjects completing exercise training (final subjects) were compared.  Differences in 
∆Vo2max among genotype groups were not tested.  †‡Significant difference between genotype groups 
with like symbols: †P=0.044, ‡P=0.046. 
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c) 
 G-634C Genotype 
 CC GC GG 
Baseline Vo2max   
all subjects 
(ml·kg-1·min-1) 

25.5 ± 0.87 
n=18 

24.6 ± 0.51 
n=63 

24.3 ± 0.37 
n=115 

Baseline Vo2max    
final subjects 
(ml·kg-1·min-1) 

25.3 ± 0.95 
n=15 

25.3 ± 0.57 
n=47 

24.5 ± 0.43 
n=88 

Final Vo2max 
(ml·kg-1·min-1) 

28.7 ± 1.2 
n=15 

28.9 ± 0.74 
n=47 

28.2 ± 0.56 
n=88 

∆Vo2max  
(ml·kg-1·min-1) 

3.39 ± 0.80 
n=15 

3.59 ± 0.48 
n=47 

3.68 ± 0.36 
n=88 

Data are adjusted LS means ± SEM.  All means are adjusted for age, sex, and race; final means are also 
adjusted for baseline Vo2max.  Overall genotype effect probabilities for baseline and final Vo2max were 
P=0.41  and P=0.66, respectively.  No significant differences in baseline Vo2max were observed when 
all subjects and subjects completing exercise training (final subjects) were compared.  Differences in 
∆Vo2max among genotype groups were not tested. 
 
 
d) 
 C-7T Genotype 
 TT CT CC 
Baseline Vo2max   
all subjects 
(ml·kg-1·min-1) 

22.6 ± 1.2 
n=10 

24.9 ± 0.53 
n=56 

24.5 ± 0.35 
n=130 

Baseline Vo2max    
final subjects 
(ml·kg-1·min-1) 

24.6 ± 1.6 
n=5 

24.7 ± 0.58 
n=50 

24.8 ± 0.41 
n=95 

Final Vo2max 
(ml·kg-1·min-1) 

28.2 ± 1.4 
n=5 

28.9 ± 0.49 
n=50 

28.3 ± 0.34 
n=95 

∆Vo2max  
(ml·kg-1·min-1) 

3.38 ± 1.4 
n=5 

4.07 ± 0.49 
n=50 

3.45 ± 0.34 
n=95 

Data are adjusted LS means ± SEM.  All means are adjusted for age, sex, and race; final means are also 
adjusted for baseline Vo2max.  Overall genotype effect probabilities for baseline and final Vo2max were 
P=0.20  and P=0.50, respectively.  No significant differences in baseline Vo2max were observed when 
all subjects and subjects completing exercise training (final subjects) were compared.  Differences in 
∆Vo2max among genotype groups were not tested.  
 
 
 
 
 
 



 

 30 
 

e) 
 C936T Genotype 
 TT CT CC 
Men’s Baseline Vo2max 
all subjects 
(ml·kg-1·min-1) 

29.4 ± 2.1 
n=4 

26.9± 0.96 
n=22 

26.8 ± 0.71 
n=54 

Women’s Baseline Vo2max 
all subjects 
(ml·kg-1·min-1) 

23.8 ± 2.2 
n=2 

21.9 ± 0.62 
n=31 

21.6 ± 0.38 
n=83 

Men’s Baseline Vo2max 
final subjects 
(ml·kg-1·min-1) 

29.8 ± 2.5 
n=3 

27.5 ± 1.1 
n=20 

27.3 ± 0.84 
n=40 

Women’s Baseline Vo2max 
final subjects 
(ml·kg-1·min-1) 

23.8 ± 2.2 
n=2 

21.8 ± 0.71 
n=23 

22.0 ± 0.43 
n=62 

Men’s Final Vo2max 
(ml·kg-1·min-1) 

36.2 ± 1.9 
n=3 

34.6 ± 0.83† 
n=20 

32.7 ± 0.66† 
n=40 

Women’s Final Vo2max 
(ml·kg-1·min-1) 

23.2 ± 1.7 
n=2 

24.5 ± 0.54 
n=23 

25.0 ± 0.34 
n=62 

Men’s ∆Vo2max  
(ml·kg-1·min-1) 

7.98 ± 1.9 
n=3 

6.40 ± 0.82 
n=20 

4.51 ± 0.65 
n=40 

Women’s ∆Vo2max  
(ml·kg-1·min-1) 

0.86 ± 1.7 
n=2 

2.16 ± 0.54 
n=23 

2.69 ± 0.33 
n=62 

Data are adjusted LS means ± SEM. All means are adjusted for age and race; final means are also 
adjusted for baseline Vo2max; ∆Vo2max means are adjusted for age and race.  Overall genotype effect 
probabilities for baseline Vo2max were P=0.50 and P=0.51 in men and women, respectively.  No 
significant differences in baseline Vo2max were observed when all subjects and subjects completing 
exercise training (final subjects) were compared.  Overall genotype effect probabilities for final Vo2max 
were P=0.05 and P=0.42 in men and women, respectively.  Differences in ∆Vo2max among genotype 
groups were not tested.  †Significant difference between genotype groups with like symbols: †P=0.038.  
In men, there was a tendency for final Vo2max to be different among TT and CC genotype groups 
(P=0.0932). 
 

VEGF gene expression 

 Considering the associations of VEGF polymorphisms (particularly the -2578 

and -1154 SNPs) with Vo2max and the LD patterns among the VEGF promoter region 

polymorphisms, we conducted an experiment with the 4 common VEGF 

-2578/-1154/-634 haplotypes to assess potential effects on VEGF gene expression in 
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human myoblasts (characteristics of myoblast donors shown in Table 5).  Under 

normoxic (~20% O2) conditions, the AAG haplotype resulted in significantly lower 

luciferase activity than the CGG haplotype (P=0.02), and there was a tendency for the 

AGG and CGC haplotypes to result in lower luciferase activity than the CGG 

haplotype (Figure 3; P=0.0649 and P=0.0799, respectively).  Under hypoxic (~1% 

O2) conditions, the CGG haplotype resulted in significantly lower luciferase activity 

than the CGC haplotype (Figure 3; P=0.006) and the AGG haplotype resulted in 

significantly lower luciferase activity than the AAG and CGC haplotypes (Figure 3; 

P=0.013 and P=0.002, respectively).  Likewise, the CGG haplotype resulted in lower 

hypoxic induction of luciferase activity (hypoxic luciferase activity relative to 

normoxic luciferase activity) than the CGC and AAG haplotypes (1.6-fold vs. 

3.4-fold and 3.5-fold, P=0.0009 and P=0.0006, respectively; SEM=0.29), and the 

AGG haplotype resulted in significantly lower hypoxic induction of luciferase 

activity than the CGC and AAG haplotypes (2.1-fold vs. 3.4-fold and 3.5-fold; 

P=0.0094 and P=0.0065, respectively; SEM=0.29).     

 

Table 5.  Characteristics of subjects used for the study of VEGF gene expression.  
 (n=3) 
Age 58.3 ± 4.4 
BMI (kg·m2-1) 28.9 ± 3.4 
Vo2max  (ml·kg-1·min-1) 27.6 ± 7.4 
Data presented as means ± SEM. 
 

 

To confirm our results, this experiment was repeated with a smaller number of 

samples (n=4 for each haplotype).  In the second experiment (data not shown), there 
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was a tendency for an effect of VEGF promoter region haplotype, with the same 

relationships observed between VEGF promoter region haplotypes and luciferase 

activity under both normoxic and hypoxic conditions that were observed in the first 

round of experiments (P=0.09 for haplotype main effect). 
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Figure 3.  Relative luciferase activity values for VEGF -2578/-1154/-634 haplotypes.  Data 
are presented as LS means with error bars representing the SEM.  The main effect of haplotype 
was statistically significant (P=0.03) and significant increases in luciferase activity with 
hypoxia were observed in CGC and AAG haplotypes (P=0.006 and P=0.011, respectively).  
*◊†‡Significant difference between haplotypes with like symbols: *P=0.013, ◊P=0.02, †P=0.006, 
‡P=0.002.  

 
 
 

VEGF promoter region haplotype, Vo2max, and plasma VEGF levels 

Based on the results of the VEGF gene expression experiments under hypoxic 

conditions, subjects were grouped by VEGF -2578/-1154/-634 haplotype to test for 
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associations with Vo2max.  Subjects with only the AGG and/or CGG haplotypes 

comprised group 1, subjects with one copy of the AGG or CGG haplotype and one 

copy of the AAG or CGC haplotype comprised group 2, and subjects with only the 

AAG and/or CGC haplotypes comprised group 3 (Table 6).  We hypothesized that 

Group 1 would exhibit lower Vo2max before and after exercise training compared to 

Groups 2 and 3, and that Group 2 would exhibit lower Vo2max before and after 

exercise training compared to Group 3.  The results supported the hypothesis that 

Group 1 had lower Vo2max before (P=0.013 and P=0.006) and after (P=0.006 and 

P=0.011) exercise training (not adjusted for baseline Vo2max) than Groups 2 and 3, 

respectively, but there was only a tendency for Group 1 to have a lower ∆Vo2max with 

training compared to Groups 2 and 3 (P=0.073 and P=0.075, respectively).  No 

significant differences were observed between Groups 2 and 3.  All results are shown 

in Table 6. 

Based on the results of the VEGF gene expression experiments under 

normoxic and hypoxic conditions, we next investigated whether plasma VEGF level 

was associated with VEGF -2578/-1154/-634 haplotype, as well as whether plasma 

VEGF level correlated with baseline Vo2max or ∆Vo2max with aerobic exercise 

training.  When subjects were grouped by VEGF promoter region haplotype 

according to the VEGF gene expression results under normoxic conditions (CGG vs. 

AGG, AAG, and CGC haplotypes), no association was observed between plasma 

VEGF level and VEGF -2578/-1154/-634 haplotype (Table 7a).  Likewise, when 

subjects were grouped according to the VEGF gene expression results under hypoxic 

conditions, no association was observed between plasma VEGF level and VEGF 
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-2578/-1154/-634 haplotype (Table 7b).  The results of the correlation analysis 

showed that there was no significant correlation between plasma VEGF level and 

baseline Vo2max or ∆Vo2max with aerobic exercise training (r = -0.09, P=0.39 and         

r = 0.12, P=0.37, respectively). 

 

Table 6. Vo2max values for subjects grouped by VEGF -2578/-1154/-634 promoter 
region haplotype. 
 
 VEGF -2578/-1154/-634 haplotype group 
 1 2 3 
Baseline Vo2max   
all subjects 
(ml·kg-1·min-1) 

23.5 ± 0.50◊† 
n=53 

25.0 ± 0.46◊ 
n=86 

25.5 ± 0.57† 
n=52 

Baseline Vo2max    
final subjects 
(ml·kg-1·min-1) 

23.8 ± 0.58 
n=37 

25.4 ± 0.53 
n=65 

25.3 ± 0.62 
n=45 

Final Vo2max 
(ml·kg-1·min-1) 

26.9 ± 0.74†‡ 
n=37 

29.4 ± 0.68† 
n=65 

29.4 ± 0.80‡ 
n=45 

∆Vo2max  
(ml·kg-1·min-1) 

3.01 ± 0.49 
n=37 

3.97 ± 0.45 
n=65 

4.04 ± 0.53 
n=45 

Haplotypes included 
AGG/AGG 
AGG/CGG 
CGG/CGG 

AGG/AAG 
CGG/AAG 
AGG/CGC 
CGG/CGC 

AAG/AAG 
AAG/CGC 
CGC/CGC 

Data are adjusted LS means ± SEM.  All means are adjusted for age, sex, and race.  ◊†‡Significant 
difference between genotype groups with like symbols: ◊P=0.013, †P=0.006, ‡P=0.011.  There was a 
tendency for ∆Vo2max to be lower in group 1 compared to groups 2 and 3 (P=0.073 and P=0.075, 
respectively). 
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Table 7.  Plasma VEGF levels for subjects grouped by VEGF -2578/-1154/-634 
promoter region haplotype indicated by:  a) gene expression results in normoxia, 
and b) gene expression results in hypoxia and Vo2max haplotype analysis. 
 
 
a) 
 VEGF -2578/-1154/-634 haplotype 
 A B 
Plasma VEGF 
level (pg·ml-1) 

18.5 ± 2.1 
n=22 

17.8 ± 1.3 
n=70 

Haplotypes included CGG/CGG All others 
Data are adjusted LS means ± SEM.  All means are adjusted for race and percent body fat.  (P=0.40 for 
haplotype group effect.) 
 
 
b) 
 VEGF -2578/-1154/-634 haplotype 
 1 2 3 
Plasma VEGF 
level (pg·ml-1) 

17.3 ± 1.7 
n=30 

19.3 ± 1.5 
n=47 

15.9 ± 2.5 
n=15 

Haplotypes included 
AGG/AGG 
AGG/CGG 
CGG/CGG 

AGG/AAG 
CGG/AAG 
AGG/CGC 
CGG/CGC 

AAG/AAG 
AAG/CGC 
CGC/CGC 

Data are adjusted LS means ± SEM.  All means are adjusted for race and percent body fat. (P=0.21 for 
haplotype group effect.) 
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DISCUSSION 

 The principal findings of the present study are that: a) variation in the 

promoter region of the VEGF gene (i.e., VEGF -2578/-1154/-634 haplotype) 

impacted VEGF gene expression in human myoblasts under hypoxic conditions in 

vitro, b) the VEGF promoter region haplotypes impacting VEGF gene expression in 

human myoblasts had a concordant association with Vo2max in older individuals 

before and after a standardized program of aerobic exercise training, and c) plasma 

VEGF level was not associated with VEGF promoter region haplotype, nor did 

plasma VEGF level correlate with baseline Vo2max or ∆Vo2max with aerobic exercise 

training in older individuals.  To our knowledge this is the first report that VEGF 

promoter region haplotype impacts VEGF gene expression in cultured human 

myoblasts and is associated with Vo2max. 

VEGF gene expression 

The present study investigated DNA sequence variation in the promoter 

region of the VEGF gene for effects on gene expression in cultured human myoblasts.  

Human myoblasts were chosen for investigation because they are the precursor to 

human myotubes and because the human myoblasts exhibited a relatively high level 

of VEGF mRNA expression in culture (unpublished data: S.J. Prior and J.C. 

McLenithan). The results of this investigation indicate that differences in VEGF gene 

expression exist as a function of VEGF promoter region haplotype in cultured human 

myoblasts. 
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In normoxic (~20% O2) conditions, the CGG haplotype appeared to result in 

~40% higher VEGF gene expression in cultured human myoblasts when compared to 

the CGC, AGG, and AAG haplotypes.  However, the condition of ~20% O2 in the 

tissue culture incubator may not be reflective of typical O2 levels in skeletal muscle, 

and is considered by some to be supranormal40.  This 20% O2 level has been shown to 

elevate the Po2 in cultured mouse skeletal muscle cells to ~40 Torr (approximately 

twice the normal level in mice and other mammals)40.  Such an elevation of Po2 in our 

cultured human myoblasts may have impacted the normal VEGF gene expression in 

these cells.  Without assessing endogenous VEGF mRNA expression in individuals 

homozygous for these haplotypes, it cannot be known whether the results from 

human myoblasts in vitro actually reflect basal VEGF gene expression in skeletal 

muscle in vivo.  Such an investigation was beyond the scope of the present study, but 

this question should be addressed in the future. 

In hypoxic (~1% O2) conditions, the AAG and CGC haplotypes resulted in 

~43% higher VEGF gene expression in human myoblasts than did the CGG and AGG 

haplotypes.  Eu et al.40 have found that incubation in 1-2% O2 results in a Po2 of ~3.5 

Torr in mouse skeletal muscle cells.  As this O2 level is likely to be representative of 

Po2 in exercising skeletal muscle (2-4 Torr116,147) and is low enough to induce 

hypoxic activation of VEGF gene transcription45,88,127,145, we think that this condition 

is a realistic simulation of Po2 in exercising skeletal muscle. 

  In our experiments, the CGG and AGG haplotypes exhibited the lowest 

hypoxic induction (1.6-fold and 2.1-fold, respectively), and the CGC and AAG 

haplotypes exhibited the highest hypoxic induction of VEGF gene expression 
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(3.4-fold and 3.5-fold, respectively).  Generally, this induction (1.6-fold to 3.5-fold) 

was lower than the increases in VEGF mRNA (2-fold to 6-fold48,53,117,118) after acute 

exercise in vivo, but this can likely be explained by 3 main factors.  First, the 3’UTR 

sequence of the VEGF gene was not incorporated into the experimental reporter 

vector.  So, while the hypoxic induction of VEGF gene transcription observed in vivo 

appears to have occurred in these reporter vectors, the 3’UTR-dependent hypoxic 

stabilization of endogenous VEGF mRNA45,88,127,145 could not have occurred with 

these reporter vectors in vitro, likely resulting in less accumulation of reporter 

protein.  Such stabilization of VEGF mRNA in vivo could partially explain the greater 

increases observed after acute exercise.  Second, the regulation of VEGF gene 

transcription is a complex process involving numerous transcription factors and 

regulation pathways.  Other exercise-related factors not included in the present 

experiments such as nitric oxide36,49,72,94, tumor necrosis factor-α36,104, and AMP-

activated protein kinase103 may directly or indirectly contribute to the larger VEGF 

mRNA increase observed in vivo.  Third, it has been recently demonstrated that 

exercise-induced VEGF mRNA expression is lower in older women relative to their 

younger counterparts31. Although the mechanism for the effect of age on VEGF 

mRNA expression remains unclear, because our myoblasts were obtained from older 

subjects, age may have impacted the level of expression we observed.  

Our results indicate a potential functional influence of the -1154 and -634 

SNPs, such that the combination of G-alleles at these polymorphisms (i.e., AGG and 

CGG haplotypes) appears to result in lower VEGF gene expression in cultured human 

myoblasts relative to the other 2 haplotypes (AAG and CGC); the presence of the A- 
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or C-allele at the -2578 SNP (the first position in the haplotype) did not appear to 

affect the observed VEGF gene expression.  At this time, however, a definitive 

statement cannot be made as none of these three polymorphisms occur within any 

specific transcription factor binding site identified to date104 and the precise 

mechanism for VEGF promoter region haplotype effects on VEGF gene expression is 

still not known.  As the hypoxia response element (HRE) in the VEGF promoter 

region (5’ position -2012 to -2005) is upstream of these polymorphisms (but within 

the tested promoter region sequence) and requires interaction with an upstream 

activator protein-1 (AP-1: 5’ position -2166 to -2160) and downstream activator 

protein-2α (AP-2: 5’ position -1117 to -1110)104, we speculate that the -1154 and/or 

-634 SNPs may affect these interactions in some manner.  Also, as with any 

experiment performed in vitro using a reporter vector to quantitate gene expression, it 

is not clear whether the same results would have been observed if endogenous VEGF 

gene expression were measured in individuals with these haplotypes. 

To our knowledge, this is the first investigation of VEGF promoter region 

haplotypes in human myoblasts, so direct comparisons to other reports are difficult or 

speculative; however, experiments with these VEGF promoter region haplotypes have 

been performed in other cell lines.  Stevens et al.141 investigated 3 VEGF promoter 

region haplotypes (AGG, AAG, and CGC) in MCF7 breast cancer cells using a 

similar luciferase reporter assay, finding that the AGG haplotype resulted in higher 

VEGF gene expression than the AAG or CGC haplotypes; however, it is important to 

note that this study intended to investigate additional polymorphisms within the 

VEGF promoter region, so these constructs differed at additional polymorphisms 
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(from that used in the present study), which makes comparing the present and former 

reports difficult.  Lambrechts et al.82 studied the same 3 VEGF promoter region 

haplotypes (AGG, AAG, and CGC) in GI-1 glioma cells, demonstrating that that the 

AAG and AGG haplotypes resulted in lower VEGF gene expression relative to the 

CGC haplotype in both normoxic and hypoxic (2% O2) conditions.  It should be 

stated, however, that the region from 5’ position -2468 to -1177 (which contains the 

HRE) was absent in their reporter construct.  While the results of the former and 

present studies are discordant, it is unclear whether this is due to differential 

regulation of VEGF gene transcription in different cell types (e.g., different 

transcription factors and/or signaling pathways), or due to differences in the 

experimental reporter constructs (i.e., different amounts of DNA sequence, the 

presence of additional DNA sequence variation, or the structure of the constructs 

themselves). 

Vo2max 

 The results of this investigation also demonstrate an association between 

VEGF gene sequence variation and Vo2max in older individuals.  When individual 

VEGF polymorphisms were analyzed, the -2578, -1154, and 936 SNPs were 

associated with Vo2max, although the 936 SNP association was only observed in men.  

The mechanisms behind the association between the 936 SNP and Vo2max are still 

unclear as the present study was not designed to evaluate them.  Instead, we chose to 

focus our experiments on the VEGF promoter region polymorphisms previously 

shown to effect VEGF gene expression in different cell types.  In order to better 

understand the associations of these individual VEGF promoter region 
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polymorphisms with Vo2max, the VEGF gene expression experiments were designed 

and showed that VEGF promoter region haplotype has effects on VEGF gene 

expression in cultured human myoblasts.  Based on the functional studies of these 

haplotypes under hypoxic conditions, subjects were grouped for analysis of 

association between VEGF promoter region haplotype and Vo2max.  We have chosen 

to group subjects based on the hypoxic gene expression results for two reasons:  First, 

because the normoxic condition (~20% O2) in the tissue culture incubator is not likely 

to reflect the O2 tension in resting skeletal muscle; and second, we speculate that 

differences in Vo2max as a function of VEGF promoter region haplotype would be the 

result of exercise- or hypoxia-induced VEGF gene and protein expression as opposed 

to basal VEGF gene and protein expression. 

 The results of the analyses of Vo2max with these VEGF promoter region 

haplotype groups indicate that subjects with only CGG and/or AGG haplotypes 

(Group 1) exhibited significantly lower Vo2max before and after exercise training than 

did subjects with at least one copy of the AAG or CGC haplotype (Groups 2 and 3), 

with a tendency for the same relationship in ∆Vo2max.  These relationships are 

concordant with the results of the VEGF gene expression experiments, suggesting a 

functional effect of these polymorphisms in older individuals.   

Interestingly, when analyzed by VEGF promoter region haplotype, our results 

indicate that the -1154 and -634 SNPs appear to be causing the observed associations, 

while the individual genotype analysis indicated that the -2578 and -1154 SNPs were 

associated with Vo2max after aerobic exercise training, but the -634 SNP was not.  We 

recognize that the genotype frequencies for the -634 SNP in our subjects differed 
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from Hardy Weinberg equilibrium expectations, but our genotype frequencies are 

similar to those from previous reports82, so we do not believe that this significantly 

impacted our results.  The association with the -2578 SNP and lack of association 

with the -634 SNP in the individual analyses may be attributable to LD patterns in the 

VEGF promoter region and to the frequency of haplotypes in those genotype groups.  

For example, in the individual genotype analysis of final Vo2max, within the AA 

genotype group at the -2578 SNP, the higher frequency of the AAG haplotype 

relative to the AGG haplotype may have resulted in a higher Vo2max estimate, while 

within the CC genotype group the higher frequency of the CGG haplotype relative to 

the CGC haplotype may have resulted in a lower Vo2max estimate.  We share the view 

of others33 that, when possible, polymorphisms should be studied not in isolation, but 

by haplotype (combinations of linked polymorphisms) to better reflect their function 

in their genetic context.  Therefore, we feel that our VEGF promoter region haplotype 

results are a better reflection of the impacts of these polymorphisms than the results 

of the individual SNP analyses.   

 The most likely mechanism to explain the association between VEGF 

promoter region haplotype, VEGF gene expression, and Vo2max is that differences in 

VEGF gene expression due to VEGF promoter region haplotype translate into 

differences in VEGF protein expression and localized secretion by exercising skeletal 

muscle, with downstream effects on skeletal muscle capillarity, and oxygen extraction 

by exercising skeletal muscle.  However, as the current study did not assess VEGF 

protein expression in skeletal muscle in vivo, nor were skeletal muscle capillarity data 

available for these subjects, these issues remain to be addressed. 
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Plasma VEGF level 

 Analyses of plasma VEGF level as a function of VEGF promoter region 

haplotype and in relation to Vo2max were conducted to determine whether plasma 

VEGF level can be used as an indicator of VEGF gene expression in skeletal muscle 

or as a predictor of baseline Vo2max or ∆Vo2max with aerobic exercise training.  Our 

results indicate neither an association between VEGF haplotype and plasma VEGF 

level, nor a correlation between plasma VEGF level and Vo2max. 

 Our results are in partial disagreement with those of Lambrechts et al.82  Their 

group found that VEGF promoter region haplotype was associated with plasma 

VEGF levels in a sample of European patients with ALS.  The ALS patients with 

AAG and/or AGG haplotypes exhibited lower plasma VEGF levels than all other 

haplotypes combined, but plasma VEGF levels were markedly lower in the group of 

ALS patients than in their spouses, and the haplotype associations observed in ALS 

patients were not statistically significant in the group of healthy spouses82.  As the 

goal of this project was to assess plasma VEGF level in relation to VEGF gene 

expression in skeletal muscle, subjects were not grouped according to the results of 

Lambrechts et al.82 in any analysis.  Additionally, Renner et al.114 identified an 

association between plasma VEGF level and the C936T SNP, such that carriers of the 

T-allele (TT genotype) exhibited lower plasma VEGF levels compared to subjects of 

CC genotype in a group of healthy young men.  Again, as it was not the goal of the 

current project to associate individual VEGF polymorphisms with plasma VEGF 

levels and the effects of the C936T SNP on VEGF gene expression in skeletal muscle 

are unknown, no analysis was performed to confirm the results of Renner et al.114 
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Hiscock et al.59 and Kraus et al.81 have reported increases in plasma VEGF 

after an acute bout of aerobic exercise, indicating that skeletal muscle does secrete 

VEGF protein into the circulation, but the relevance of that protein is still unresolved.  

While our results indicate that plasma VEGF level under resting conditions is not 

reflective of VEGF gene expression in human myoblasts, whether or not plasma 

VEGF level after acute exercise is reflective of VEGF gene expression in skeletal 

muscle or predictive of Vo2max remains to be seen.  The measures of plasma VEGF 

level and skeletal muscle VEGF protein level after acute exercise needed to address 

this question were not available for study in this project. 

Summary 

 The present report shows significant associations between VEGF promoter 

region haplotype and Vo2max before and after exercise training that are consistent with 

VEGF gene expression differences found for those VEGF promoter region haplotypes 

in cultured human myoblasts.  While factors other than hypoxia and VEGF certainly 

contribute to Vo2max before and after aerobic exercise training, these VEGF haplotype 

groups were associated with ~8-10% differences in Vo2max both before and after 24 

weeks of aerobic exercise training.  While these results have potential implications 

for aerobic exercise training and the risk of morbidity/mortality that is associated with 

cardiorespiratory fitness (i.e., Vo2max), our findings may also provide direction in 

understanding the function of the VEGF promoter region in different tissues under 

conditions of hypoxia, as well as prove relevant in the study of conditions such as 

obesity, cancer, coronary artery disease, and peripheral artery disease.  
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CONCLUSIONS 
 

Hypothesis 1:  Vo2max before and after exercise training differs among subjects with 

different genotypes at the -2578, -1154, -634, -7 and 936 VEGF gene polymorphisms. 

 No association was observed between individual VEGF polymorphisms and 

Vo2max before aerobic exercise training.  The -2578, -1154, and 936 VEGF gene 

polymorphisms were associated with Vo2max after aerobic exercise training, although 

the association with the 936 polymorphism was only observed in men. 

 

Hypothesis 2:  VEGF gene expression (as quantified by luciferase activity) under a) 

normoxic and b) hypoxic conditions will differ among the 4 common VEGF promoter 

region haplotypes: AGG, AAG, CGG, and CGC (-2578, -1154, and -634 

polymorphisms, respectively). 

 VEGF gene expression differed among VEGF promoter region haplotypes in 

cultured human myoblasts under normoxic (~20% O2) conditions, such that the CGG 

haplotype resulted in higher VEGF gene expression than the other 3 common 

haplotypes. 

 VEGF gene expression also differed among VEGF promoter region 

haplotypes in cultured human myoblasts under hypoxic (~1% O2) conditions, with the 

AGG and CGG haplotypes having lower VEGF gene expression than the AAG and 

CGC haplotypes. 
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Hypothesis 3:  Based on the VEGF gene expression results under hypoxic conditions, 

Vo2max before and after aerobic exercise training and ∆Vo2max with training will be 

lower in subjects with the AGG and/or CGG VEGF promoter region haplotypes than 

in subjects with the AAG and/or CGC haplotypes. 

 In healthy older individuals, Vo2max before and after aerobic exercise training 

was lower in subjects with only the AGG and/or CGG haplotypes compared to all 

other common haplotype groups.  Likewise, there was a tendency for ∆Vo2max with 

aerobic exercise training to be lower in subjects with only the AGG and/or CGG 

haplotypes compared to all other common haplotype groups. 

 

Hypothesis 4:  Based on the VEGF gene expression results under normoxic 

conditions, plasma VEGF level before aerobic exercise training will be higher in 

subjects with only the CGG VEGF promoter region haplotype than in subjects with 

the AAG, AGG and/or CGC haplotypes. 

 Contrary to our hypothesis, subjects with the CGG haplotype did not have 

higher plasma VEGF levels than subjects with AAG, AGG, or CGC haplotype.  In an 

additional analysis based on the VEGF gene expression results under hypoxic 

conditions, subjects with the AGG and/or CGG haplotypes did not have lower plasma 

VEGF levels than subjects with AAG and/or CGC haplotypes. 
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REVIEW OF LITERATURE 

 

Maximal oxygen consumption 

 Morbidity, mortality, and Vo2max:  Maximal oxygen consumption (Vo2max) is 

inversely associated with cardiovascular and all-cause mortality28,42,75,84,98,151.  This 

relationship has been well demonstrated in men12,28,75,84,151 and women12,42,51, as well 

as in individuals who exhibit hypertension10,28, hyperlipidemia10, metabolic 

syndrome75, obesity151, and those who smoke10.  Additionally, changes in 

cardiorespiratory fitness over time result in lower risk of mortality, whereas 

individuals who improve physical fitness are less likely to die from cardiovascular 

disease mortality and all-cause mortality11,38. 

Sex, race, and age differences in Vo2max:  Vo2max has been shown to differ among 

groups of sedentary men and women, with women typically exhibiting lower 

Vo2max
79,138,139 that may be attributed to smaller heart size66, lower stroke volume139, 

and lower hemoglobin levels32.  However, the relative response of Vo2max to aerobic 

exercise training  (% increase in Vo2max), appears to be similar among men and 

women79,138.  Differences in Vo2max have also been observed among different racial 

groups, particularly when comparing blacks and whites.  In sedentary individuals, 

black subjects typically exhibit lower Vo2max than their white counterparts4,37,64,138 

which may be attributable to differences in hemoglobin levels4, differences in fat 

mass138, and/or the degree of sedentary lifestyle4.  The relative response of Vo2max to 

aerobic exercise training appears similar among races138.  Additionally, an inverse 

relationship exists between age and Vo2max in the sedentary state, such that in 
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sedentary individuals, Vo2max typically declines ~5-10% per decade26,54,120,138,139.  As 

with sex and race, no significant differences appear to exist in the relative response of 

Vo2max to aerobic exercise training among subjects of different age54,55,79,138.  

Vo2max and aerobic exercise training:  Vo2max is responsive to aerobic exercise 

training, such that Vo2max typically increases 15-30% in humans after 3-9 months of 

training21,55,122.  Part of this increase in Vo2max is attributed to central cardiovascular 

adaptations (i.e., increased cardiac output), with the remainder being attributed to 

increased oxygen extraction by the working muscle122,125.  Such an increase in oxygen 

extraction may be achieved through increases in the capillarity of skeletal muscle 

(i.e., angiogenesis). 

 

Angiogenesis 

 The process of angiogenesis:  Angiogenesis is the formation of blood vessels 

from pre-existing vessels and vascular endothelial cells119,123.  The formation of new 

capillaries is a critical phenomenon during pathological (e.g., cancer) and 

physiological conditions (e.g., aerobic exercise) to enhance the blood:tissue exchange 

capacity for oxygen delivery, metabolite removal, etc.  Angiogenesis is a complex 

process involving a number of molecules acting to stimulate growth, direct migration, 

and stabilize new vessels.  Angiogenesis typically occurs in two manners: 

intussusception (the splitting of one vessel into two) and sprouting of new 

vessels24,119. 

A key step in the angiogenic process is the activation of endothelial cells.  The 

most potent activator of endothelial cells appears to be vascular endothelial growth 
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factor (VEGF).  VEGF is an endothelial cell-specific mitogen that activates 

endothelial cells by binding to one of two different receptors on the surface of 

endothelial cells:  VEGF receptor 1 (VEGFR1 or Flt-1) and VEGF receptor 2 

(VEGFR2 or Flk-1)44.  As activated endothelial cells begin to proliferate, the capillary 

basement membrane and extracellular matrix (ECM) begin to degrade.  Degradation 

occurs in part due to the action of matrix metalloproteinases (MMPs) as VEGF can 

stimulate endothelial cells to produce pro-MMPs83,148 which are converted to 

functional MMPs by the urokinase56 and tissue plasminogen activators uPA and tPA 

(both upregulated by VEGF signaling)68,92,93.  Furthermore, angiopoietin 2 (Ang2) is 

upregulated, resulting in the destabilization of local vasculature109.  This degradation 

and destabilization allows new endothelial cells to migrate into the area and begin to 

form a new capillary.   

The initiation and progression of capillary formation is guided by molecules 

that adhere to the surface of endothelial cells.  Examples of these surface adhesion 

molecules include integrins (e.g., alphav-beta3) and ECM-bound VEGF isoforms108.  

These molecules act to attract endothelial cells in an effort to regulate proper tube 

growth while minimizing unnecessary growth.  As the newly formed capillary must 

rejoin another existing capillary at its terminus, the coordination of tube formation by 

these molecules is critical to achieve functional increases in vasculature108. 

 Angiogenesis in response to exercise training:  Aerobic exercise has been 

identified as a powerful angiogenic stimulus as several studies in the last 3 decades 

have shown increases in skeletal muscle capillarity after aerobic exercise 

training1,21,101, with increases of ~34% in as little as 3 months of training1.  There are 
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at least three potential mechanisms/stimuli for the increase in skeletal muscle 

capillarity with aerobic exercise training: hemodynamic stimuli, muscle contraction, 

and metabolic stimuli. 

Hemodynamic stimuli such as changes in vessel wall tension, shear stress, 

pressure and flow may mediate angiogenesis by activating molecules such as nitric 

oxide or through direct effects on endothelial cells36,49,61,72,94.   Muscle contraction 

may mediate the angiogenic process by promoting degradation of the ECM or by 

physically aiding the migration of endothelial cells and coordination of capillary 

formation65,108,119,123,154.  Lastly, metabolic stimuli such as low oxygen 

tension23,52,67,95,135 have significant effects on angiogenesis through the regulation of 

expression of growth factors as well as the expression of other factors and 

receptors108. 

 Angiogenesis and Vo2max:  An important determinant of Vo2max is skeletal 

muscle capillarity as these variables directly correlate50 and one contributing 

mechanism to the increase in Vo2max with aerobic exercise training is an increased 

skeletal muscle capillary network achieved by angiogenesis21.  Increases in oxygen 

extraction by trained skeletal muscle have been demonstrated in both humans115 and 

in other animals58,153.  Increases in skeletal muscle capillarity (and thus capillary 

volume in a given volume of skeletal muscle) observed with exercise training can 

contribute to this increase in oxygen extraction by increasing the capillary surface 

area for diffusion, decreasing the average O2 diffusion path length of skeletal muscle, 

and increasing red blood cell transit time through skeletal muscle109. 
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Angiogenesis and disease:  Angiogenesis not only plays a role in physiological 

processes in healthy individuals, but can play a role in adverse and pathological 

conditions.  This role is prominent in occlusive arterial diseases (i.e., coronary artery 

disease (CAD) and peripheral artery disease (PAD)) where blood flow to localized 

tissues is impaired.  Remodeling of existing vasculature and genesis of new 

vasculature have the ability to mediate physiological responses to CAD and PAD by 

increasing collateral circulation and oxygen supply89.  Previous experiments have 

shown that administration of exogenous VEGF or adenovirus-mediated VEGF gene 

transfer can increase skeletal muscle capillarization and blood flow in a rat model133.  

Also, Couffinhal, et al. have demonstrated that an increase in endogenous VEGF 

protein expression induced by hindlimb ischemia in a mouse model was sufficient to 

increase capillary density and blood flow in skeletal muscle compared to controls29.  

Furthermore, aerobic exercise training has been shown to result in increased 

capillarization in the myocardium62,152 and has been demonstrated as a valuable 

treatment for PAD39. 

Not only can angiogenesis play a role in muscle, but the effects of 

angiogenesis are of great relevance to conditions such as cancer and obesity.  It has 

been demonstrated that tumor growth is promoted by angiogenesis111 and several 

studies have demonstrated that the inhibition of angiogenesis prevents tumor 

growth15,70,87,143.  Likewise, as adipose tissue is highly vascularized and has 

angiogenic properties30,137, it has been hypothesized that adipose tissue mass can be 

regulated through the vasculature.  At least two reports have demonstrated that that 

adipose tissue mass in obese (ob/ob) mice can be decreased significantly by the 
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inhibition of angiogenesis80,124.   Taking these results into consideration, it is plausible 

that inter-individual variation in angiogenesis due to genetic factors could play a role 

in obesity and tumor development. 

 

Vascular Endothelial Growth Factor 

The VEGF gene and protein:  VEGF protein is encoded by the VEGF gene 

(located on chromosome 6p12) which contains 8 exons separated by 7 introns.  As a 

result of alternative splicing and an alternate translation initiation codon (539bp 

upstream of the canonical ATG codon), the VEGF gene is capable of generating 6 

polypeptides, 3 of which are preferentially expressed in non-placental tissues 

(VEGF121, VEGF165, VEGF189)16. VEGF121 is non-heparin-binding and is freely 

diffusible; VEGF189 is highly sequestered in the ECM60, and VEGF165 has 

intermediate properties that allow it to be bound to the ECM and diffusible106.  The 

ECM-bound isoforms can be cleaved to produce an additional diffusible isoform 

(VEGF110) to yield three diffusible VEGF isoforms (VEGF110, VEGF121, and 

VEGF165)60.  Although VEGF165 is considered to be the most potent isoform because 

its affinity for the neuropilin receptor (NRP1) enhances its binding to the VEGFR2 

receptor44, these isoforms are otherwise considered to be similar in action16. 

VEGF and angiogenesis:  Several studies have revealed a major regulator of 

angiogenesis to be vascular endothelial growth factor (VEGF)43,131,132.  VEGF is an 

endothelial cell  proliferation85,119,123,128, mobilization5,73,97, and migration 

factor65,119,123 that is a potent stimulator of angiogenesis44,86,140.  The diffusible 

isoforms of VEGF all bind to receptors on the abluminal surface of endothelial cells 
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promoting proliferation44,132 and Hutchings et al.65 have shown that endothelial cells 

can directly adhere to and migrate on ECM-bound VEGF. 

 VEGF gene and protein expression:  VEGF is expressed in numerous human 

tissues including skeletal muscle.  Numerous physiological stimuli have been shown 

to affect VEGF expression in skeletal muscle including metabolic processes, blood 

flow, and muscle contraction108.  These stimuli appear to affect VEGF mRNA and 

protein expression through several factors and signaling pathways including: 

estrogen104, nitric oxide36,49,72,94, tumor necrosis factor-α36,104, glucose concentration36 

AMP-activated protein kinase103, forkhead transcription factor foxo146, 

cyclooxygenase72, and hypoxia-inducible factor-1 (HIF1)23,52,67,95,104,135.  

VEGF, aerobic exercise and angiogenesis:  Recent research has indicated that 

VEGF is indeed involved in the angiogenic response to aerobic exercise20,53,89,101,118.  

Several studies have confirmed that aerobic exercise increases VEGF mRNA, citing 

2-fold to 6-fold increases in both animal9,20,89,101 and human studies48,53,117,118. 

In the context of aerobic exercise, hypoxia is the best studied regulator of 

VEGF expression to date.  Aerobic exercise has been shown to result in a local 

hypoxic condition in exercising skeletal muscle as Po2 can reach levels as low as 2-4 

Torr116,147, a level low enough to induce hypoxic upregulation of VEGF gene 

expression and mRNA stabilization45,88,127,145.  Hypoxic regulation is mediated 

through HIF-1 and its oxygen-sensing subunit HIF-1α, evidenced by several studies 

demonstrating that hypoxic or ischemic conditions result in increased VEGF mRNA 

and/or protein levels in biological tissues 23,52,67,95,135.   
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 Studies performed in vitro using adenoviral vector encoding HIF-1α88 and 

dibenzoylmethane (a compound that stabilizes HIF-1α )90 have demonstrated a 

substantial increase in VEGF mRNA and protein, as the stable HIF-1α allowed for 

increased formation of functional HIF-1 protein.  Stein et al.140 and Ikeda et al.67 have 

shown that hypoxia also increases VEGF mRNA half-life from ~40min in normoxia 

to ~2 hours in hypoxic conditions.  To confirm the effects of hypoxia on endothelial 

cells, Gu et al.52 used a DNA synthesis assay to demonstrate that human umbilical 

vein endothelial cells (HUVECs) treated with hypoxia-conditioned media 

experienced DNA synthesis at a rate two-fold greater than HUVECs in normal media, 

signaling greater mitogenic activity.  When these same assays were run in the 

presence of anti-human VEGF antibody, the rate of DNA synthesis decreased in a 

dose-dependent fashion, indicating that hypoxia-mediated endothelial cell 

proliferation is primarily due to the action of VEGF protein52.  Considering these 

studies and the role of VEGF, there is a considerable body of evidence suggesting 

that VEGF plays an integral role in the angiogenic response to aerobic exercise 

training. 

Circulating VEGF protein level:  As measured by ELISA, plasma VEGF level 

reportedly ranges from <9-150pg/ml69.  Serum levels of VEGF are typically ~6-fold 

greater than plasma levels as VEGF is released from platelets and other blood cells 

during clotting69.  Although serum and plasma VEGF levels correlate moderately 

well81, serum measures are considered to be more reflective of blood platelet counts 

than of synthesis by peripheral tissues69. 
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Although the prognostic value of circulating VEGF protein levels is not well 

established, there have been several reports that circulating VEGF protein levels are 

elevated in PAD14, CAD14, hypertension8, hyperlipidemia13, congestive heart 

failure27, and obesity96.  The report on obesity from Miyazawa-Hoshimoto et al.96 

further identified visceral fat area as significant determinant of serum VEGF level.      

To date, few reports of the relationship between plasma VEGF level and 

exercise-related traits exist.  Hiscock et al.59 found that VEGF protein was increased 

after 3 hours of knee-extension ergometry in venous plasma, but not in arterial 

plasma.  Kraus et al.81 found that VEGF protein in venous plasma is increased from 

0-2 hours after acute, systemic aerobic exercise, but only in endurance-trained 

individuals. These reports provide evidence that skeletal muscle does secrete VEGF 

protein into the circulation, but the relevance, abundance, and localization of that 

protein is still unresolved.   

Lastly, although plasma VEGF level correlates well with the efficacy of 

treatments directed at angiogenic targets in clinical trials136 and plasma VEGF levels 

are viewed as markers of angiogenic activity76, the usefulness of plasma VEGF levels 

as predictors of skeletal muscle capillarity, Vo2max, and the response of those 

variables to exercise training is still unknown. 

 

Variability and heritability of Vo2max, vasculature, and VEGF 

Vo2max: Significant variability is observed in Vo2max, even among humans of 

the same age, sex, and race19.  Furthermore, substantial inter-individual variability 

exists in the response of Vo2max to aerobic exercise training130.  While some 
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proportion of this variability can be attributed to non-genetic factors (e.g., habitual 

physical activity), there appears to be a significant contribution of genetic or familial 

factors.  Twin studies have revealed correlations of Vo2max between siblings ranging 

from 0.71-0.95 in monozygotic twins and 0.36-0.51 in dizygotic twins18,77,78.  

Additional research has estimated the heritability of Vo2max to be as high as 59%17,41 

and the heritability of the response of Vo2max to aerobic exercise training (∆Vo2max) to 

be as high as 47%, though it is recognized that non-genetic familial influences 

contribute to these estimates17.  

Skeletal muscle capillarity:  In humans, significant variability is also observed in 

the skeletal muscle capillary network, where capillary to fiber ratio in overall skeletal 

muscle has been shown to range from 0.81-1.97 cap/fiber among groups of similar 

individuals21,105,107,134.  Additional variability in the capillarity of type I and type II 

skeletal muscle has also been observed107, but this varies depending on the metric 

used (i.e., capillary density, capillary contacts per fiber, or fiber area per capillary) 

and may be dependent on differences in muscle fiber size34.   

The variability observed in overall skeletal muscle capillarity may contribute 

to Vo2max through differences in local oxygen availability.  While the genetic 

contribution to skeletal muscle capillarity has yet to be defined, investigators have 

argued that differences in the vasculature can be attributed to both environmental 

factors (e.g. aerobic exercise training), and genetic factors21,114.  In fact, preliminary 

data from our laboratory indicates association between skeletal muscle capillarity and 

SNPs in the VEGF gene, suggesting a genetic component to skeletal muscle 

capillarity110. 
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Plasma VEGF levels:  Variability has also been observed in plasma VEGF 

levels among healthy subjects91,114,150.  To date, the heritability of plasma VEGF 

levels has not been well studied; nonetheless, at least four reports have demonstrated 

associations between polymorphisms in the VEGF gene and plasma VEGF levels82,114 

or VEGF production in vitro129,149, providing evidence of a genetic contribution. 

VEGF gene expression:  Variability in VEGF gene expression among 

individuals has been noted in several studies of human skeletal muscle, particularly 

after an acute aerobic exercise stimulus, where 2-fold to 6-fold increases in VEGF 

mRNA have been reported48,53,117,118.  Additional evidence of variability in VEGF 

gene expression comes from a study of hypoxic induction of VEGF mRNA where 

Schultz et al.126 demonstrated a range of ~1-fold to 7-fold induction of VEGF mRNA 

expression in monocytes derived from 51 individuals with CAD.  Interestingly, 

monocytes derived from patients deemed to have no collateral circulation formation 

exhibited the lowest hypoxic induction of VEGF mRNA (1.9-fold), while monocytes 

derived from patients with 1+ or 2+ collateral circulation development exhibited 

higher VEGF mRNA induction (2.8-fold and 3.4-fold, respectively)126.  This serves to 

demonstrate the variability of VEGF gene expression and the potential functional 

implications of that variability on the vasculature.  The genetic contribution to VEGF 

gene expression has not been well studied, but at least two recent reports have 

demonstrated that polymorphisms within the VEGF gene affect VEGF gene 

expression in specific cell types in vitro82,141, indicating a genetic contribution to 

VEGF gene expression. 
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VEGF as candidate gene for Vo2max 

The investigation of genetic factors underlying physical traits has progressed 

through the study of so-called ‘candidate genes’ that are likely to play a role in a 

given physiological process based on their known function.  VEGF is an important 

candidate gene for angiogenesis because the DNA sequence of the gene is 

polymorphic and VEGF has been identified as a potent angiogenic factor under both 

physiological and pathological conditions86,140.   

The DNA sequence in the promoter region of human genes is well known to 

bind enhancers and other regulators of DNA transcription and the 5’ untranslated 

region (5’UTR) is known to regulate VEGF expression at the posttranscriptional 

level63.  Likewise, the 3’ untranslated region (3’UTR) of the VEGF gene has the 

ability to regulate translation as factors bind the 3’UTR to stabilize VEGF 

mRNA88,102.  Therefore, variation in these regions of the VEGF gene may regulate 

VEGF gene transcription and translation, with potential effects on VEGF protein 

expression and ‘downstream’ traits such as Vo2max.   

Identified polymorphisms in the VEGF gene:  Numerous polymorphisms have 

been identified in the VEGF gene and 3kb of its upstream (5’) promoter 

region22,114,141,149.  The majority of these polymorphisms occur at frequencies too low 

for study in this project (rare allele frequencies < 0.02)141,149 and therefore, have little 

likely clinical significance.  Of the remaining 7 common polymorphisms (rare allele 

frequency >0.13)22,141,149, 6 have been previously investigated for association with 

and/or effects on VEGF gene and/or protein expression in select human tissues. 
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Investigations of common VEGF gene polymorphisms:  Among the VEGF gene 

polymorphisms that have been investigated, the C-1498T (located in the promoter 

region, 1498 bp upstream of the translation initiation codon)141,149 and G1612A 

(located in the 3’UTR, 913bp downstream of the translation termination codon)114 

single nucleotide polymorphisms (SNPs) have been studied in relation to VEGF gene 

and/or protein expression with no significant associations reported. 

 The C936T SNP is located in the 3’UTR, 37bp downstream of the coding 

region in exon 8114.  Renner et al.114 reported that carriers of the T-allele (CT and TT 

genotypes) at position 936 exhibited significantly lower plasma VEGF levels than did 

CC homozygotes in a group of 23 healthy young men.   

The G-634C SNP is located 634bp upstream (5’) of the canonical translation 

initiation codon, within the 5’UTR.  Lambrechts et al.82 have shown that L-VEGF 

(the precursor to VEGF206) protein expression in C6 glioma cells is 20% lower with 

the -634 G-allele compared to the -634 C-allele.  Conversely, Watson et al.149 have 

reported that the -634 C-allele results in lower VEGF production (~25% lower in 

heterozygotes; ~65% lower in CC homozygotes) in peripheral blood mononuclear 

cells (PBMCs) than the G-allele. 

The G-1154A SNP is located in the promoter region of the VEGF gene, 

1154bp upstream (5’) of the canonical translation initiation codon22.  Research has 

demonstrated that the A-allele at position -1154 results in ~25% lower VEGF gene 

expression in GI-1 glioma cells82 and lower VEGF protein expression (~50% lower in 

AA homozygotes) in PBMCs129 relative to the -1154 G-allele.   
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The C-2578A SNP is also located in the promoter region of the VEGF gene, 

2578bp upstream (5’) of the canonical translation initiation codon.  The A-allele at 

position -2578 occurs with an 18-bp insertion at position -2549; when the C-allele is 

present at position -2578, no insertion is found22.  Shahbazi et al. have shown that the 

-2578 A-allele results in significantly lower VEGF protein expression (~20% lower in 

heterozygotes; ~60% lower in AA homozygotes) in PBMCs when compared to the 

-2578 C-allele129. 

 Investigations of VEGF gene haplotypes:  While investigation of the effects of 

individual polymorphisms has been valuable, analysis of haplotypes (combinations of 

alleles at different, adjacent polymorphisms) is necessary to understand the overall 

function of the promoter region, as interaction among these individual 

polymorphisms likely plays a role in VEGF gene expression.  There are 8 VEGF 

promoter region haplotypes incorporating the -2578, -1154, -634 SNPs, respectively:  

4 common haplotypes (CGG, CGC, AGG, AAG; each with a frequency > 0.12) and 4 

rare haplotypes (AAC, AGC, CAG, CAC; each with a frequency < 0.02). 

One study of VEGF promoter region haplotypes used luciferase reporter 

vectors to assess VEGF haplotype influence on VEGF gene expression in the MCF7 

(breast cancer) cell line141.  Stevens et al.141 investigated 3 different VEGF promoter 

region haplotypes, finding that the reporter with the AGG (-2578, -1154, and -634 

alleles, respectively) haplotype resulted in higher VEGF gene expression than the 

AAG or CGC haplotypes.  However, it is important to note these constructs differed 

from each other at one additional rare polymorphism that may have affected the 

results. 
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Another study has been performed in GI-1 glioma cells (human neural glial 

tumor cells)82.  Two segments of VEGF DNA sequence from 5’ position -2714 to 

-2469 and 5’ position -1176 to -405 were ligated and inserted into a luciferase 

reporter vector.  Subsequent luciferase assays revealed that the AAG and AGG 

haplotypes (-2578, -1154, and -634 alleles, respectively) resulted in lower VEGF gene 

expression relative to the CGC haplotype in both normoxia and hypoxia82.  

Additionally, Lambrechts et al.82, assessed plasma VEGF levels among VEGF 

promoter region haplotypes in a sample of European patients with amyotrophic lateral 

sclerosis (ALS; also known as Lou Gehrig disease) and their spouses.  The ALS 

patients of AAG/AAG, AGG/AGG, and AAG/AGG haplotypes exhibited lower 

plasma VEGF levels than all other haplotypes combined, but plasma VEGF levels 

were markedly lower in the group of ALS patients than in their spouses, and the 

haplotype associations observed in ALS patients were not statistically significant in 

the group of healthy spouses82.     

 While the effects of these VEGF haplotypes have been demonstrated in 

specific cell types, they have not been investigated in skeletal muscle.  It is currently 

unclear whether the aforementioned findings in glioma cells82 or breast cancer cells141 

translate to tissue with greater relevance for Vo2max such as skeletal muscle, where 

different transcription factors may regulate the VEGF gene.  Likewise, it is not known 

whether the relationship between VEGF haplotypes and plasma VEGF levels would 

be observed in a more diverse sample of healthy individuals.   

Furthermore, the effects of the VEGF promoter region haplotypes have not 

been investigated in the context of the continuous promoter region sequence without 
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the presence of additional genetic variation.  In one experiment the AAG, AGG, and 

CGC haplotypes were studied, but the region from 5’ position -2468 to -1177 (which 

contains the HRE) was absent in the reporter construct82.  It is not known whether the 

same results would be observed if the region from 5’ position -2468 to -1177 were 

present in the this experiment82.  In another experiment, the same 3 haplotypes were 

studied in the continuous promoter region sequence, but additional genetic variation 

was present141.  While the remaining haplotypes have been studied in relation to 

plasma VEGF levels in ALS patients, they have not been studied in healthy subjects 

and the effects of these haplotypes on VEGF gene expression are yet to be 

determined.   
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APPENDIX A – Limitations of the Study 
 

Delimitations 

Vo2max and plasma VEGF protein levels: 

1.  Subjects recruited from the area surrounding the University of Maryland, College 

Park were evaluated for plasma VEGF protein levels and Vo2max. 

2.  Subjects were black and white men and women, 50-75 years of age, sedentary, not 

diabetic, and free from cardiovascular disease.  Therefore, the results are expected to 

apply to populations with similar characteristics. 

3.  Variables such as body composition96, HRT2,142, and sex74 may have affects on 

VEGF protein expression, while body composition100, HRT113, sex79,100, and 

age54,57,100, may have affects on Vo2max and ∆Vo2max.  Therefore, statistical control for 

these variables was applied where appropriate. 

4.  Genotypes for polymorphisms other than the VEGF C-2578A, G-1154A, G-634C, 

C-7T, and C936T SNPs were not investigated for this study.  Thus, it is possible that 

any haplotype effect on plasma VEGF levels, Vo2max, or ∆Vo2max is due to linkage 

disequilibrium between these and other polymorphisms.  Likewise, it is possible that 

the effects of these haplotypes are manifested only in the presence of an unknown 

combination of genetic factors. 

5. Plasma VEGF levels were measured using a commercially available ELISA kit.  

Plasma samples were taken from fasting blood samples drawn during baseline testing.   

6.  Vo2max was measured at baseline and after 24 weeks of aerobic exercise training 

using a customized metabolic system. 
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VEGF gene expression: 

1. The effects of VEGF promoter region haplotype on VEGF gene expression were 

evaluated using cultured human myoblasts.  Therefore, the results of this study are 

only expected to apply to human myoblasts grown in culture. 

2.  Recombinant plasmid vectors (pGL3-Basic luciferase reporter vectors with 

inserted VEGF promoter region) were transfected into cultured myoblasts using the 

Lipofectamine Plus Reagent (Invitrogen Corporation, Carlsbad, CA). 

3.  The Dual-Luciferase Reporter Assay System (Promega, Madison, WI) was used to 

quantify luciferase gene expression as a function of VEGF promoter region 

haplotype. 
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Limitations 

Vo2max and plasma VEGF protein levels: 

1.  Subjects self-reported many factors related to their health and lifestyle such as 

physical activity habits, medication regimens, and medical histories.  It is possible 

that inaccurate self-reports have confounded the study results. 

2.  While each subject served as his own control for the analysis of ∆Vo2max, there 

was no non-exercising control group in this study.  Thus it is possible that unknown 

effects of time have influenced the results of the analysis of ∆Vo2max. 

3.  The measurement of plasma VEGF levels was conducted on a single plasma 

sample.  Therefore, it is possible that unknown daily variation in plasma VEGF level 

has influenced the study results. 

4.  Although skeletal muscle capillarity directly correlates with Vo2max
50, the present 

study did not measure skeletal muscle capillarity before or after exercise training.  

Therefore, it is not possible to determine if the effects of the VEGF haplotypes on 

Vo2max and ∆Vo2max are directly mediated through changes in skeletal muscle 

capillarity. 

5.  The present study did not measure plasma VEGF protein levels after acute or 

chronic aerobic exercise.  Therefore, the effects of VEGF promoter region haplotypes 

on exercise-induced changes in VEGF protein expression were not assessed. 
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VEGF gene expression: 

1.  While VEGF is expressed in numerous human tissues, the present study has only 

assessed the effects of VEGF promoter region haplotypes in human myoblasts.   

2.  The human myoblasts used in this study were not obtained from the same subjects 

studied for Vo2max and plasma VEGF levels, but from an independent sample of 

subjects.  Due to sample availability, VEGF gene expression in vitro was only studied 

in myoblasts obtained from older white women. 

3.  VEGF gene expression as a function of VEGF promoter region haplotype was 

evaluated using a luciferase reporter vector transiently transfected into cultured 

human myoblasts.  These cells were not stably transfected, nor was actual VEGF 

production among cells of different VEGF promoter region haplotypes determined.  
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APPENDIX B – Definition of Terms 
 

3’ untranslated region (3’UTR):  the sequence of DNA that is transcribed and 

comprises the 3’ end of mRNA, but is not translated into protein 

5’ untranslated region (5’UTR):  the sequence of DNA that is transcribed and 

comprises the 5’ end of mRNA, but is not translated into protein 

Angiogenesis:  the formation of blood vessels from pre-existing vessels 

Capillary density:  the number of capillaries in a given tissue cross section 

Capillary to fiber ratio:  the ratio of the number of capillaries to the number of 

skeletal muscle fibers in an area of tissue 

Extracellular matrix (ECM):  a complex array of proteins and polysaccharides that 

are secreted locally and form an organized meshwork in close association the cell 

surfaces that produced them 

Haplotype:  the arrangement of polymorphisms within a single chromosome: also 

considered to be the combination of alleles at polymorphisms in linkage 

disequilibrium with each other 

Linkage Disequilibrium:  the condition in which the haplotype frequencies in a 

population deviate from the values they would have if the alleles at each 

polymorphism were combined at random 

Promoter Region:  the region of DNA upstream (5’) of the translation initiation 

codon where promoters and other transcription factors bind to regulate DNA 

transcription 
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Single nucleotide polymorphism (SNP):  a DNA sequence variation involving the 

substitution of one nucleotide with a single, different nucleotide 

Skeletal muscle capillarity:  the number of capillaries present in an area of skeletal 

muscle; often expressed as capillary density or capillary to fiber ratio.  
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APPENDIX C – Human Subjects & Recombinant DNA 
Experiment Approval 

 

This project has been approved by the Institutional Review Board at the 

University of Maryland, College Park as follows: 1) the project entitled: VEGF gene 

sequence variation: Impacts on VEGF level and maximal oxygen consumption (IRB# 

05-0022, P.I. James M. Hagberg, Ph.D., Student Investigator Steven J. Prior, M.A.) 

and 2) the project entitled VEGF gene sequence variation: Impacts on VEGF gene 

expression (IRB# 05-0010, P.I. Stephen M. Roth, Ph.D., Student Investigator Steven 

J. Prior, M.A.).  The corresponding IRB applications are reproduced in this Appendix. 

Recombinant DNA experiments within the project entitled VEGF gene 

sequence variation: Impacts on VEGF gene expression have been approved by the 

Department of Environmental Safety at the University of Maryland, College Park 

(DES# 05-02). 
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VEGF gene sequence variation:  Impacts on VEGF levels 
and maximal oxygen consumption 

 
 

1. Abstract:  The goal of this project will be to investigate the effects of variation in 

the DNA sequence of the vascular endothelial growth factor (VEGF) gene on 

maximal oxygen consumption (Vo2max) and plasma VEGF protein levels.  This 

project will involve: 1) genotyping current DNA holdings for VEGF polymorphisms, 

2) biochemically analyzing levels of plasma VEGF protein in currently held plasma 

specimens, 3) obtaining previously existing Vo2max data, and 4) conducting the 

appropriate statistical analysis.  Each portion of the proposed project will utilize data 

and specimens previously collected from projects approved by the Institutional 

Review Board at the University of Maryland, College Park.  

 

2. Subject Selection:  The subjects for this project are those that have taken part in 

the ongoing and previously approved projects: APO E Genotype and HDL Changes 

With Exercise Training (IRB#00494, P.I. James M. Hagberg, Ph.D.) and ACE 

Genotype, Blood Pressure, and Exercise Training in Hypertensives (IRB#00736, P.I. 

James M. Hagberg, Ph.D.) from 1998 to the present time.  No additional subjects will 

be recruited or tested for this project. 

 

3. Procedures:   

 Genotyping:  Standard genotyping methods will be used to genotype VEGF 

gene  polymorphisms.  All genomic DNA samples have been previously collected in 
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accordance with the IRB-approved projects above and stored in refrigeration in 2309 

HHP Building. 

 Vo2max:  The investigators will obtain and analyze previously existing Vo2max 

data, collected in the IRB-approved projects listed above. 

 Plasma VEGF Levels:  The investigators will use previously existing plasma 

specimens banked as indicated in the projects noted above.  Standard biochemical 

procedures will be used to determine VEGF protein levels in these specimens. 

 

4. Risks and Benefits:  There are no anticipated additional risks or benefits 

associated with the analysis of Vo2max data beyond those which are outlined in the 

initial project applications.  There are no additional risks or benefits associated with 

the determination of plasma VEGF levels as the samples have been previously 

obtained and no information regarding VEGF levels will be given to the subjects.  

There are no foreseen risks associated with genetic testing because the participants 

are not provided any information regarding their genetic testing results. This is 

necessary because the laboratories that perform these tests are not clinically certified 

and the information they provide can not be used for clinical or diagnostic purposes.    

 

5. Confidentiality:  No reference will be made to subject names in any presentations 

of the study results, including manuscripts.  All data will be reported in the aggregate. 

The study data files are maintained in the office of the Study Coordinator for the 

aforementioned projects and access is provided only to qualified study personnel. 
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6. Information and Consent Forms:  All subjects have provided written, informed 

consent as outlined in the project applications for the previously noted projects. 

7. Conflict of Interest: Not applicable. 

 

8. HIPAA Compliance:  No information from the student health center is collected 

or used.  No protected health information is collected or used beyond that which is 

collected for the original projects. 
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VEGF gene sequence variation: Impacts on VEGF gene expression 
 
 

1. Abstract:  The goal of this project will be to investigate the effects of variation in 

the DNA sequence of the vascular endothelial growth factor (VEGF) gene on VEGF 

gene expression in cultured tissue.  This project will involve: 1) genotyping current 

DNA holdings for VEGF polymorphisms, 2) culturing previously obtained human 

skeletal muscle samples, 3) carrying out DNA transfection in the cultured skeletal 

muscle samples, 4) assessing expression of a reporter vector in the transfected cells, 

and 5) conducting the appropriate statistical analysis.  Each portion of the proposed 

project will utilize specimens previously collected from projects approved by the 

Institutional Review Board at the University of Maryland, College Park (Studies of 

Human Genetic Variation, IRB#01198, P.I.: Stephen M. Roth, Ph.D.), or by the 

Institutional Review Board at the University of Maryland School of Medicine (Race, 

Menopause, and Metabolism After Exercise and Diet, IRB#M1174, P.I.: Alice S. 

Ryan, Ph.D.). 

 

2. Subject Selection:  The DNA samples to be used in this project were originally 

obtained as part of the project, Studies of Human Genetic Variation.  Samples will be 

selected for use based on the specific combination of alleles in and surrounding the 

VEGF gene.  This sample selection will require no further contact with, or 

information from, human subjects. 

 The human muscle samples to be used in this project have been collected as 

described in the project, Race, Menopause, and Metabolism After Exercise and Diet.  
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Beyond that, samples will be selected for use based on the success of their growth and 

transfection in vitro.  No new subjects will be recruited or tested; the proposed project 

involves only an analysis of existing biological specimens. 

 

3. Procedures:  The collection of DNA samples was conducted as described in the 

project, Studies of Human Genetic Variation.  For the current project, samples will be 

genotyped for several polymorphisms in the VEGF gene.  Small fragments (less than 

4000 nucleotides) of isolated DNA will be amplified from selected samples using 

standard polymerase chain reaction techniques.  This fragment will then be inserted 

into a reporter vector and passed into cells cultured in vitro using standard 

recombinant DNA techniques.  Cells cultured in vitro will be of human nature and 

have been obtained as part of the project, Race, Menopause, and Metabolism After 

Exercise and Diet.  These cells will be immediately destroyed following the 

experiment. 

 

4. Risks and Benefits:  There are no anticipated additional risks or benefits 

associated with this project beyond those which are outlined in the initial project 

applications.  All samples have been previously obtained and no information 

regarding study results will be given to the subjects.  There are no foreseen risks 

associated with genetic testing because the participants are not provided any 

information regarding their genetic testing results.  This is necessary because the 

laboratories that perform these tests are not clinically certified and the information 

they provide can not be used for clinical or diagnostic purposes. 
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5. Confidentiality:  For samples collected in the project, Studies of Human Genetic 

Variation, no identifying information has been obtained from any volunteer, ensuring 

confidentiality.  The data files for the project, Race, Menopause, and Metabolism 

After Exercise and Diet are maintained in the study office and access is provided only 

to qualified study personnel.  No reference will be made to subject names in any 

presentations of the study results, including manuscripts. 

 

6. Information and Consent Forms:  All subjects have provided written, informed 

consent as outlined in the project applications for the previously noted projects. 

 

7. Conflict of Interest: Not applicable. 

 

8. HIPAA Compliance:  No information from the student health center is collected 

or used.  No protected health information is collected or used beyond that which is 

collected for the original projects. 
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