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We study the transition between laminar and turbulent states in a Galerkin representation

of a parallel shear flow, where a stable laminar flow and a transient turbulent flow state coexist.

We find trajectories on the chaotic saddle in a model of plane Couette flow, and then use those

trajectories to calculate the spectrum of Lyapunov exponents and the dimension of the system.

We are able to estimate the fractal dimension of the both the saddle set and its stable manifolds.

At moderate values of Reynolds number, these dimension estimates indicate that the stable set is

nearly dense in many regions of phase. We find that the regions of initial conditions where the

transient lifetimes show strong heterogeneity and appear sensitively dependendent on the initial

conditions are separated from the regions with a smooth variation of lifetimes by an previously

undescribed invariant structure, which we call the edge of chaos. We describe a technique to

identify and follow the edge of chaos and provide evidence that it is a smooth manifold. For some

values of Reynolds numbers we find that the edge of chaos coincides with the stable manifold of

a periodic orbit, whereas in other ranges of the parameter, the edge is the stable set of a higher-

dimensional chaotic object. We provide evidence that this invariant edge structure may be a typical

attribute of high dimensional transient chaos.
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Chapter 1

Introduction

Philosophy is written in this grand book — the universe — which stands continuously

open to our gaze. But the book cannot be understood unless one first learns to compre-

hend the language and interpret the characters in which it is written. It is written in

the language of mathematics, and its characters are triangles, circles, and other geo-

metrical figures, without which it is humanly impossible to understand a single word of

it; without these one is wandering about in a dark labyrinth.

(Galileo Galilei, as quoted by Machamer in The Cambridge Companion to Galileo.

1.1 Background.

Osborne Reynolds, a British mathematician and scientist, was the first to identify that flow could

be categorized into two broad regimes [1], which are now called “laminar” and “turbulent.” His

experiments in pipe-flow are considered to be seminal achievements. In addition to the purely

laminar flow regime (for small fluid velocities) and fully developed turbulence (at high fluid veloc-

ities), Reynolds identified that there was an intermediate regime of non-dimensionalized velocities

where the system exhibits both behaviors, with laminar flow interrupted by intermittent regions

of transient turbulence. The transition from laminar flow to turbulence in parallel shear flows is

still not completely understood, and characterizing this transition remains one of the significant

problems in fluid dynamics [2].

Plane Couette flow describes the motion of a viscous fluid between two parallel plates (see

Fig 1.1), with the plates moving relative to one another at constant velocity. It is named in honor

of Maurice Frédéric Alfred Couette, a French physicist of the late 19th century, who made the first

successful measurements of viscosity.

In the laminar flow condition, the fluid will have a linear velocity profile across the width
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Figure 1.1: Plane Couette channel. Fluid is constrained by two parallel walls which move in

opposite directions at constant velocity (U ).

of the channel. Plane Couette flow has a transition to turbulence that is similar in character to

that of pipe flow in that the transition is dominated by transient behavior. Mathematically, the

two flows share a common characteristic in that the laminar flow condition remains linearly stable

for all Reynolds numbers [3]. Experiments and numerics show that near onset, the turbulence is

transient, sometimes persisting for a very long time and then suddenly decaying to the laminar

profile [4, 5, 6, 7, 3, 8, 9]. The transients are sensitively dependent upon initial conditions, which, in

experiment, may imply that the specific response to a perturbation may be “unpredictable.” Some

researchers have proposed that the sensitive dependence, as well as an exponential distribution of

transient lifetimes, indicate the presence of a chaotic saddle (non-attracting chaotic invariant set)

in the dynamics [3, 4]. The primary goal of this thesis is to apply dynamical systems analysis

techniques to improve the understanding of the transition to turbulence in plane Couette flow by

studying the chaotic saddle.

Because characterization of the transition boundary requires extensive numerical simula-

tions, we chose to develop our ideas using the 9-d Galerkin projection of [10], which was derived

from the 19-variable model studied in [5] by restricting the dynamics to an invariant symmetry

subspace. The general structure of this and other models is that of ordinary differential equations

with linear damping, quadratic coupling and a constant forcing,

ẋi = − di

Re
xi +

∑

j,k

ai;j,kxjxk + fi. (1.1)

Besides the Reynolds number, which controls the damping, there are two geometric parameters
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determining the widths and length of the flow domain. Following [5], we take the periodic cell

length to be 2π and a cell height of π, where unit length is defined as the width of the flow

channel. While (1.1) provides then general structure of these models, the choice of modes and

additional symmetry assumptions will generate a specific model. The equations of motions used

in this study are provides as Appendix A. Although this model is too small to be considered a

simulation of plane Couette flow, it is sufficient to capture certain qualitative aspects of the actual

flow. By using this small model, we are able to perform a more detailed analysis of some of the

underlying dynamical systems issues that we hope will provide insight and direction to further

studies and experiments on these problems in fluid dynamics.

1.2 Structure of this Thesis — Chapters Two through Seven.

• Chapter 2 provides an overview of our primary results regarding the chaotic saddle in our

model, to include measurements of the spectrum of Lyapunov exponents and the fractal

dimension of the chaotic saddle. To our knowledge, these results reflect the first time such

quantities have been calculated for chaotic saddles in high dimensional dynamical systems.

• Chapter 3 introduces a system characteristic that we call the edge of chaos, an invariant

structure that separates the laminar flow region from the transient turbulence. Although a

similar structure has been observed in some two dimensional systems, these structures have

not previously been identified in higher dimensional systems.

• Chapter 4 provides a more thorough study of the chaotic saddle, as well as more detailed

results concerning the characteristic decay time associated with the transient behavior.

• Chapter 5 provides an in depth study of the edge, to include a description of techniques for

analysis of the edge. Additionally, the chapter provides supplementary material to illuminate

some of the fundamental dynamical principles that lead to development of an edge in a system

with transient chaos.

• Chapter 6 develops a new analysis tool for chaotic transients that computes the lifetime of a
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chaotic transient by directly measuring that portion of the transient that is chaotic. We apply

this technique to a system where the standard approach to measuring transient lifetime are

simply not tractable. Additionally, we highlight how this tool may be employed to provide

additional insight into systems of transient chaos.

• Chapter 7 provides a short roadmap to additional areas of related study.

• The appendix provides supplementary material, primarily proofs and longer derivations.

The chapters two through six of this thesis were written as stand-alone articles, intended

for eventual publication in peer-reviewed journals. Each can be read as an independent work.

Consequently, there is some repetition, especially of introductory material. We hope that a reader

who digests this work cover to cover is not distracted by this necessary repetition.

1.3 The Lifetime function.

A standard technique in the study of transient behavior is to consider the duration of a transient.

For an autonomous system, this duration can be treated as a scalar function of points in phase

space. For each point y, we consider its trajectory under the flow of the dynamical system, φt(y).

If some characteristic of the trajectory is transient, then we can find the first time, t = t∗ for which

φt∗(y) no longer has that characteristic, and assign L(y) = t∗ as the lifetime of y. We then use

the lifetime function as a tool to explore the transient characteristics of the system.

In this dissertation, we will use two very different approaches to defining the lifetime func-

tion:

1. For our model of plane Couette flow, the laminar state is the only attractor that we are

able to identify in the system, and every numerical trajectory asymptotically approaches the

origin. One method for defining lifetime would be to place a small ball around the origin,

and define the lifetime as the time it takes a trajectory to reach that ball. That method is

used in both Chapters 3 and 5. In addition to being simple to describe and understand, it

provides the most computationally efficient method for computing accurate lifetimes.
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2. As an alternative, in Chapters 2 and 4, we elect to determine the transient lifetime based on

the idea that while a trajectory is near the chaotic saddle, it shows sensitive dependence on

initial conditions, and two nearby trajectories will diverge at an exponential rate. However,

eventually, the trajectory will approach the stable origin. In some neighborhood of the

origin, all nearby trajectories must converge. The lifetime of the chaotic transient is based on

detecting this change in character. Chapter 6 contains a detailed explanation of this method.

This second approach is somewhat non-standard and is slightly less efficient that the more

simple approach described in item 1. However, Chapter 6 describes why this new approach

is necessary for some problems. Additionally, although the technique requires slightly more

computation, it can provide additional insight into the behavior of the system. In Chapters

2 and 4, we use this insight to provide a clearer description of how long transients depart the

vicinity of the saddle.

Most of the results using the analysis of transient lifetime does not depend upon which of

these definitions is used, and it is likely that other definitions could prove useful for other analysis

approaches or other problems involving transient chaos. Section E.2 (Appendix) provides a specific

list of characteristics that we believe are required qualities of a suitable lifetime function.

1.4 A Note on Numerical Accuracy

Much of the work in this thesis is based on numerical integration of ordinary differential equations.

The systems under study in this thesis satisfy all the conditions necessary to infer that unique

solutions exist for all forward time. Because we focus on chaotic trajectories over very long time

spans, it is computationally intractable to try to establish an integration scheme that maintains a

specified error tolerance over the entire integration. However, the basis of most of the work is not

dependent upon highly accurate approximations to a trajectory. Rather, the qualitative behavior

of the system is of primary concern. Consequently, we assume that numerical trajectories can

capture the qualitative behavior of the system even if they do not reflect true trajectories.

All integration is performed using a fixed step Runge-Kutta fourth order method. In essence,
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we are approximating the continuous time system (the flow of a differential equation) by a “nearby”

approximation as a discrete time system. Since our finite dimensional model (a system of ODE’s)

is already a gross approximation to an infinite dimensional system (a PDE representation via the

Navier-Stokes equation), the additional error associated with our numerical integration method is

not significant when we limit our study to the qualitative behavior of the finite dimensional model.
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Chapter 2

The chaotic saddle in a model of plane Couette flow

In plane Couette flow (PCF) of a viscous fluid, the laminar flow is linearly stable for all Reynolds

numbers. However, when the laminar flow is perturbed, the flow may become turbulent for some

transient period. Experiments indicate that the system response to these perturbations in sensi-

tively dependent upon both the perturbation and the Reynolds number [8]. These experimental

results, as well as direct numerical simulations, have led some researchers to propose that the

transient turbulence is connected to a low dimensional chaotic saddle [3, 4]. Galerkin method has

been used to provide low dimensional models of PCF to more efficiently explore parameter space

[5, 11, 6, 12, 10]. In particular, Eckhardt and Mersmann [5] developed a 19-variable model to

explore the fractal structure of what they believed to be a chaotic saddle. Schmiegel [10] assumed

additional symmetries in that model to reduce to a 9-variable system that continued to show

chaotic transients that depend sensitively on perturbation and Reynolds number.

In general, the investigation of these Galerkin models has focused on finding periodic orbits,

bifurcation structures, and statistical analysis of system characteristics based on sampling. In order

to refine the statistical results and develop a greater understanding of the chaotic structures, one

would like to find long numerical trajectories along the chaotic saddle. Such trajectories cannot

typically be discovered by sampling phase space because the saddle is too unstable. Even the

longest sample trajectories are not suitable for calculating asymptotic values such as Lyapunov

exponents. The Stagger-and-Step method [13] provides a robust tool for resolving the chaotic

saddle in higher dimensional systems. Applying a slightly modified version of that algorithm to the

Eckhardt/Schmiegel 9-variable model of PCF, we generate arbitrarily long numerical trajectories

along the chaotic saddle of the system and resolve satisfactory approximations of the Lyapunov

exponents. Applying the techniques of [14], we compute dimension values for the saddle and its

stable set as a function of Reynolds number. Additionally, by using a lifetime function based on
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finite time Lyapunov exponents, we are able to provide a more refined description of the escape

path from the chaotic saddle.

In this chapter:

1. We promulgate results obtained from this 9-variable model of PCF which we believe to be

the first quantifiable measures of the chaotic saddle which underlies the transient turbulence

in the system [3]. We find that while the saddle itself is ≈ 5-dimensional, its stable set is

nearly full dimension.

2. We describe the typical path through which chaotic transients depart the vicinity of the

chaotic saddle. We believe this technique to have broader applicability to problems that

require increased resolution of the terminal phase of chaotic transients.

We represent the Schmiegel model of PCF by

ẋ = Q(x; Re). (2.1)

where the function Q is a quadratic function of x ∈ R9. The model assumes periodic boundary

conditions; following [5], we take the periodic cell length to be 2π and a cell height of π, where

unit length is defined as the width of the flow channel. The origin of the system is associated

with the laminar flow condition, and is stable for all Reynolds numbers 1. Moreover, all numerical

trajectories that we have computed eventually relax to the attracting laminar flow condition.

Parameter space was explored by varying the Reynolds number, Re.

To each point in phase space we assign a lifetime L(x), based on estimating when the

trajectory leaves the neighborhood of the saddle and begins its approach to the attractor. Robust

sampling of 9-dimensional space is not practical, but we are able to illustrate the fractal structure

of the lifetime landscape by selecting points on a two dimensional subset of phase space. Fig 2.1

shows the lifetime function for Re = 600, plotted on three different scales. We note: (1) there is no

increase in smoothness as the resolution is increased; and (2) although there are macroscopic areas

1The specific equations of motion are provided in Appendix A, though the appendix expresses the system using

the variable y instead of the variable x.
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Figure 2.1: Lifetime plots for a typical region. Each figure shows a sampling on a x1 − x2

plane. The grids are shaded according to the lifetime of the center of each grid square, with black

representing points that rapidly decay to the origin (rapid return to laminar flow). Coordinates

are provided for picture 1, and show that the sample is not near the origin. The arrow indicates

the center-point for the sample in Picture 2, which provides a finer resolution by considering a size

10−6 box. The third picture is a size 10−8 resampling of the lower left corner of picture 2. The

three pictures all show macroscopic areas of short lifetime. The “speckled” regions, where short

and long lifetimes are intermingled, indicate an intersection of the 2-dimensional sampling plane

with the stable set of the chaotic saddle.

of short lifetime, the “speckled” regions indicate that there are areas of phase for which trajectories

of long lifetime appear to be nearly dense.

To generate long numerical trajectories, we follow the basic approach as in [13], with minor

modifications. As a brief description: a trajectory x(t) is numerically integrated as long as L(x(t))

remains above some threshold value T ∗. This threshold is chosen such that x(t) remains near the

invariant set. When necessary, the trajectory is perturbed by some small amount δ to increase

the lifetime. By requiring ‖δ‖ to be small, the error introduced by the perturbation can be kept

smaller than the error associated with the numerical integration. The resultant pseudo-trajectory

can be continued in this fashion to arbitrary length. A more detailed description of our precise

technique is provided in Appendix B.
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We focus on the range of Reynolds numbers 350 ≤ Re ≤ 800. Lyapunov exponents were

calculated from pseudo-trajectories of roughly 106 time units; the results are illustrated in Fig

2.2. For this range of Reynolds number, we note that the saddle has two unstable directions (two

positive Lyapunov exponents). The third largest Lyapunov exponent is 0, which results from the

system being an autonomous differential equation.

400 500 600 700 800
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

Figure 2.2: The nine Lyapunov exponents for 350 ≤ Re ≤ 800. The saddle has two positive

exponents for this entire parameter range, with one 0 exponent because the system is autonomous.

Decay time and fractal dimension. In [14], the authors extend the Kaplan-Yorke

dimension (DKY ) from chaotic attractors to chaotic saddles. As in the case of attractors, the

formulation is conjectured to give the information dimension of the natural measure on a typical

chaotic set as a function of the Lyapunov exponents. However, for a chaotic saddle, the computation

must by modified to account for the instability of the saddle. Specifically, a portion of the entropy

created for trajectories near the saddle is due to instability that is transverse to the chaotic invariant

set. This transverse instability is described by the decay time τ, defined as follows: From a large

ensemble of {xi}n
1 of initial conditions, let n(t) be the number of points whose lifetime exceeds t;

then let

1
τ

= lim
t→∞

lim
n(0)→∞

− ln (n(t)/n(0))
t

. (2.2)

Like Lyapunov exponents, this exponential decay time is considered a global characteristic of the
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chaotic saddle.

The stable set of the chaotic saddle consists of those points in phase space that approach

the saddle in forward time. For ease of language and notation, we call this set simply the stable

set, and we let Ds be the fractal dimension of that set. The stable set is the physical observable,

since any trajectory that starts near the stable set will have a long transient lifetime, even though

it might initally be far from the actual saddle. The decay time is closely related to Ds, through the

largest Lyapunov exponent, λ1. As identified in [15], in an N dimensional system, if τ is sufficiently

large, then

d := N − Ds = (τλ1)−1. (2.3)

We call d the defect of the stable set, which varies with Reynolds number, as shown in Fig 2.3.

The formulation in [15] assumes that generically, a line through phase space will have a non-empty

intersection with the stable set, or equivalently, that Ds > N − 1. Therefore, requiring d < 1

implies that (2.3) should apply whenever λ1 > 1/τ, which (for our model) is satisfied throughout

the parameter range studied.

400 500 600 700 800
0

1

2

3

4

5
x 10

−3

1/τ

Re

0

0.05

0.1

 d

Figure 2.3: 1/τ (circles) and defect d := 9 − Ds (asterisks) plotted as a function of

Reynolds number (Re). Since λ1 is approximately constant over this parameter range, the

shape of the defect curve closely matches the shape of 1/τ.
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Applying the formulae of [14], we are able to estimate the information dimension of not only

the stable set, but also the dimension of the saddle itself 2. Fig 2.4 shows the computed dimension

values as a function of Reynolds number. We note that although the saddle is “small” in relation

300 400 500 600 700 800
3

4

5

6

7

8

9
8.988.87 8.99

5.1

Figure 2.4: The information dimension for the chaotic saddle (asterisks) and its stable

set (stars). The stable set becomes nearly dense as Reynolds number increases, making it “easy”

to find a point near the stable set, which would result in a chaotic transient.

to 9-dimensional phase space, the stable set of the saddle becomes nearly dense as the Reynolds

number grows large.

Resolving saddle escape. An important goal of our research was to develop a better

understanding of how the transient turbulence dies away. For our model, the analogous goal was

to describe the path through which chaotic transients departed the neighborhood of the saddle.

Although all transient chaos trajectories eventually decay to the origin, we define a transition from

chaotic to decaying in the following way: On the saddle, sensitive dependence implies that nearby

trajectories are diverging, but near the asymptotically stable origin, phase space is contracting in
2Following [14], the dimension formulae require the full spectrum of Lyapunov exponents. For the saddle itself,

the full spectrum is required. However, for the stable set, the formula from [14] can be algebraically reduced to

(2.3).
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all directions. Therefore, a transient trajectory would show divergence for some period of time

(while near the saddle) and then convergence (as it approaches the attractor). We determine this

point of transition by comparing the base trajectory with a perturbed trajectory, rescaling the

perturbation as required to keep the two trajectories sufficiently close that the difference provides

a good linear approximation of the local expansion. As the base trajectory leaves the neighborhood

of the chaotic saddle, the perturbed trajectory will begin to converge to the base trajectory. For

any initial condition, we define its lifetime as how long it takes for the trajectory to reach that

point in phase space where the perturbed trajectory begins to converge to the base trajectory. The

details for this technique are provided in Chapter 6.

Using this new approach to determine lifetime, we can define a set S to be all the points with

positive lifetimes. More simply, outside of S, nearby trajectories are converging and decaying to the

origin together. We denote the boundary of S by ∂S, and remark that ∂S will not necessarily have

a simple geometric structure. Our interest was in understanding where typical chaotic transients

intersect this boundary. We create an ensemble of initial conditions, {xi}, xi ∈ R9, which we take

from a pseudo-trajectory on the saddle, so that the ensemble will reflect the natural measure on the

invariant set. For each point in the ensemble, we define the point yi to be the point in phase space

where the trajectory of xi intersects ∂S. The resultant ensemble H = {yi}, allows us to visualize

what we call the “hole in the saddle.” By definition, H ⊂ ∂S, but we have sampled only a portion

of that boundary that naturally reflects the path through which typical long transients depart the

neighborhood of the saddle. Fig 2.5 illustrates the presence of structure in H by plotting x8 vs.

x7 for data computed with Re = 390.

Our analysis of H reveals that although there are multiple paths that support return of

transients to the laminar flow condition, most trajectories follow one of just a small number of

typical approaches before quickly collapsing to the origin. Although our sampling of phase space is

quite sparse, it appears that trajectories leaving the neighborhood of the saddle seem to separate

into disjoint sets as they relax to the stable origin. Additional study will be required to better

understand the implications of this behavior. However, we expect that the technique of using this
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Figure 2.5: The “hole of the saddle” for Re = 390. We take an ensemble of points near the

saddle, and integrate each point forward in time. While a trajectory is near the saddle, nearby

trajectories diverge. However, since all transient trajectories converge to the origin, there is some

“point” at which the trajectory characterization changes from diverging to converging. We collect

these “points” into an ensemble H, which samples the “hole of the saddle.” The figure shows a

projection of H onto the x7 − x8 plane for an ensemble of about 11, 000 points. The reflection

symmetry in x8 is a global characteristic of the system

new lifetime function and analyzing the 0-lifetime set from ensembles of long-lived transients will

have a broader application to other systems as we try to understand the terminal path of chaotic

transients.
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Chapter 3

The Edge of Chaos in a model of plane Couette flow

We study the transition between laminar and turbulent states in a Galerkin representation of

a parallel shear flow, where a stable laminar flow and a transient turbulent flow state coexist.

The regions of initial conditions where the lifetimes show strong heterogeneity and a sensitive

dependence on initial conditions are separated from the ones with a smooth variation of lifetimes

by the edge of chaos. We describe a technique to identify and follow the edge of chaos and provide

evidence that it is a smooth manifold. For low Reynolds numbers we find that the edge of chaos

coincides with the stable manifold of a periodic orbit, whereas at higher Reynolds numbers it is

the stable set of a higher-dimensional chaotic object 1 .

In planar shear flows like plane Couette flow or pipe flow, turbulent dynamics may appear

despite the linear stability of the laminar flow [1]. Experiments and numerics show that near onset,

the turbulence is transient, sometimes persisting for a very long time and then suddenly decaying

to the laminar profile [4, 5, 6, 7, 3, 8, 9]. The median lifetime of the transient increases rapidly with

Reynolds number (Re) and may become longer than typical observation times, even at moderate

Re. Both experimental and numerical evidence support an interpretation that the transients are

due to a chaotic saddle [3, 4]. Several low-dimensional models, based on Galerkin method, have

been used to better understand this chaotic saddle [5, 11, 6, 12, 10]. Recently, using the 9-variable

model of [10], we were able to compute Lyapunov exponents and to confirm a link between lifetimes

and dimension of the chaotic saddle [16, 14, 15]. In this letter, we explore the structure in phase

space that separates the laminar state and the transient chaos. Previous work [5, 6, 7, 4] suggests

that there is a well defined envelope to the chaos in phase space. We call this structure the edge
1This chapter has been submitted for publication in Physical Review Letters with this opening paragraph as the

abstract, and may appear in that journal before publication of this thesis.
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of chaos, so named because chaotic trajectories come arbitrarily close to it. Figure 3.1 provides a

visualization of the edge using model data for Reynolds number (Re) of 420.
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Figure 3.1: Edge of chaos. A 2-dimensional sample of phase space, with the laminar state at

the origin. Each grid square is colored to show the transient lifetime for the trajectory with initial

condition at the center of the square. The speckled region shows wildly varying transient behavior

of the system and indicates that the sampled points are near the chaotic saddle. The smooth

region appears to be clearly separated from the speckled, and we call that separating boundary

the edge. Axis coordinates are magnitudes of the two randomly selected orthogonal vectors that

generate the sample space.

The purpose of this letter is two-fold: (1) to outline a new technique to calculate the

edge, and (2) to present evidence that the edge is a surface, with interesting invariant structures

embedded within. For Re < 402, the surface coincides with the stable manifold of a symmetric

pair of periodic orbits. A similar phenomena has been identified in planar maps (such as the forced

damped pendulum [17]), where the “edge” 2 between basins of attraction is formed by the stable

manifold of a periodic orbit. To our knowledge, such structures have not previously been identified

in higher dimensional systems or systems with a single basin of attraction. Additionally, we find

that as Reynolds number is increased beyond Re ≈ 402, although the edge structure continues

to exist as a saddle surface in phase space, trajectories on the edge are no longer asymptotically

periodic, but chaotic. The resultant limit set of these edge trajectories is a high dimensional,
2These points are also known as accessible points or accessible boundary points.
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fractal object embedded in the edge surface.

Because characterization of the transition boundary requires extensive numerical simula-

tions, we chose to develop our ideas using the 9-d Galerkin projection of [10], which was derived

from the 19-variable model studied in [5] by restricting the dynamics to an invariant symmetry

subspace. The general structure of this class of n dimensional models is that of ordinary differential

equations with linear damping, quadratic coupling and a constant forcing:

ẋi = − di

Re
xi +

∑

j,k

ai;j,kxjxk + fi, i = 1., . . . , n. (3.1)

Besides the Reynolds number, which controls the damping, there are two geometric parameters

determining the widths and length of the flow domain. Following [5], we take the periodic cell

length to be 2π and a cell height of π, where unit length is defined as the width of the flow

channel. The laminar profile is a fixed point of the system. By linear change of coordinates, we

translate the system to place the attracting laminar state at the origin. We denote this new system

ẏ = Q(y; Re), indicating that the right hand side is quadratic in y and studied over the parameter

Re. The equations of motion for this system are provided in Appendix A.

The lifetime of an initial condition, denoted L(y0), is defined as the time it takes the

trajectory to come within a small distance ε of the laminar profile 3. By theorems on uniqueness

of solutions to differential equations, each initial condition has a unique lifetime. Points of finite

lifetime are in the laminar basin. A point whose trajectory never approaches the laminar profile

has an infinite lifetime and is said to be in the saddle set.

In simulations of low-dimensional models [6, 5] as well as fully resolved simulations [4, 7],

the lifetime function has a consistent characteristic: As we increase the distance from the laminar

profile, the lifetime function typically increases, first slowly and then very rapidly. Beyond a certain

point (the edge), lifetime fluctuates wildly, with smaller intervals of smooth lifetimes interspersed

(see Fig 3.2). This behavior can be considered as a typical “lifetime landscape” [18, 5, 6] for a
3Note that this definition of lifetime differs from the one that was used in chapter 2. We use this more simple

and standard definition in this chapter because the advantages of the other lifetime function are not required for

this analysis.
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chaotic saddle. As illustrated in Fig 3.3, the saddle set is bounded away from the attracting origin

by the edge structure.

Li
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Figure 3.2: Lifetime indicates the edge. Lifetime L(y), sampled along a line. In the laminar

basin, L(y) is smooth, while in the saddle region, it appears fractal. The point of separation

between those behaviors is an edge point. The gray curve (extended in Fig 3.3) is drawn to

illustrate that the behavior on the sampling line is related to larger structures in phase space.
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Figure 3.3: The edge of chaos. This cartoon schematically illustrates the edge of chaos,

which separates the laminar basin from the strange saddle. The picture is representative of small

Reynolds number, where we find that edge points lie on the 8-dimensional stable manifold of a

periodic saddle orbit.

Sampling of the lifetime function is a standard approach and reveals some of the character-

istic of both the saddle and the edge. From the results of [16, 15] on the dimension of the stable

set of the saddle, we know that a typical line through phase space will intersect the saddle on

a measure-0 Cantor set, with the lifetime diverging at each of those points. Edge points can be

associated with the end-points of the “removed intervals” of the usual Cantor set construction.
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Each of these “removed intervals” is a segment of points that lie in the laminar basin, yet in any

neighborhood of the ends of these intervals is an uncountable infinity of points in the saddle set.

For the range of Reynolds numbers considered, the Cantor set is significantly more dense than the

middle-thirds construction, and the “small” 4 laminar intervals will be difficult to resolve.

The primary weaknesses of sampling are: (1) sampling will not be sufficiently dense in a

high dimensional space; and (2) there are no dynamics associated with the sampled set. Whereas

sampling looks at a fixed region of phase space, we can gain additional insight by considering the

behavior of the edge under the flow of the differential equation. A simple continuity argument

shows that the trajectory of an edge point must remain on the edge (an edge trajectory). By

analyzing edge trajectories, we are able to observe the dynamical structure that creates the edge.

Approximation of edge trajectories. Because the edge trajectory is unstable, stan-

dard numerical integration cannot provide satisfactory approximations. Our approach provides

a tractable solution to overcome this difficulty. We are confident that the technique has wider

application to a broader class of problems. We outline our technique below.

If we trace along a simple path from the origin to the chaotic saddle, there must be a

first intersection of the edge. A point on the path before we reach that edge point will have a

trajectory whose amplitude remains “small” as it relaxes to the origin. However, a point on the

path after we cross the edge will generate a chaotic transient, and these transients typically contain

at least one large amplitude excursion before decaying. We classify an initial condition y as being

either on the high-side or the low-side based on whether the maximum amplitude of its forward

trajectory is above or below an appropriately chosen threshold value. To apply these ideas, we

start with a low-side point (near the origin) and a high-side point (a chaotic transient). Any path

that connects them must intersect the edge. By repeated bisection, we can reduce the distance

between the high-low pair to accurately approximate the edge point that lies between them. This

technique is significantly more efficient than trying to find the point of transition from smooth

to fractal lifetimes, and it has proven very robust in numerical implementation. Figure 3.4 shows
4Quantitatively, the saddle set is nearly full dimension, approximately equivalent to removing only 1/10 of the

remaining intervals instead of the usual 1/3.
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how the bisection technique leads to increasingly accurate approximations of an edge trajectory.

Because of the positive Lyapunov exponent associated with the unstable edge, a numerical initial

condition will not generate the long trajectory which we require. As illustrated in Fig 3.5, we

apply techniques similar to those used in the PIM-triple method [19] to generate arbitrarily long

numerical approximations to the edge trajectory by successive refinement at suitable time intervals.

Structure from edge trajectories. In simple dynamical systems, such as the two or 4

coupled ODES of [20] and [12], the boundary of the laminar basin is defined by the stable manifold

of a stationary point that appears in a saddle node bifurcation, and the structure in phase space

is relatively simple. In higher dimensions, these flow models typically have a rich bifurcation

behavior, and the boundary orbits (equivalent to the entire saddle set) are less clearly structured.

However, embedded in the saddle, the invariant subset defined by the edge provides an identifiable

structure, which can be resolved by examining edge trajectories.

For Re . 402, we find that a numerical edge trajectory converges to a periodic orbit,

which we denote as p+. Because of a reflection symmetry of the system, periodic orbits occur

in pairs, and we denote the symmetry orbit as p−. An example pair is shown in Fig 3.6. These

edge periodic orbits are unstable in only one direction, creating 8-dimensional stable manifolds

W s
p+ and W s

p− , which are surfaces in 9-dimensional space. As the Reynolds number is increased,

the edge orbit undergoes period doubling and period halving bifurcations. At these bifurcations,

the “old” periodic orbit becomes unstable in two directions, and the “new” edge orbit emerges

with an 8-dimensional stable manifold. Based on computational experimentation, we conjecture

that for each value of Reynolds number in this range, there is a unique periodic orbit pair with

8-dimensional stable manifold such that numerical edge trajectories converge to one or the other

member of that pair, and therefore, the edge is prescribed by the union of W s
p+ and W s

p− .

Above Re ≈ 402, edge trajectories no longer converge to a periodic orbit. At the bifurcation,

when the “old” edge orbit becomes unstable in two directions, there appears to be no emergence

of a “new” periodic orbit with an 8-dimensional stable manifold. We note that throughout the

parameter range considered, the edge set (as viewed by sampling) appears to vary continuously in
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Figure 3.4: High-side and low-side pairs. Trajectory amplitude as a function of time plotted

for three pairs of nearby initial conditions. Trajectories labeled “-” are on the low-side, and those

with “+” on the high-side. The initial conditions for the “a” pair were separated by ≈ 10−7. The

pairs “b” and “c” result from refining the “a” pair (using bisection) to separations of ≈ 10−10

and ≈ 10−13, respectively. The limit of the bisection algorithm (in infinite precision) would yield

a trajectory that would remain bounded away from the origin, but would never achieve a large

amplitude typical of chaotic transients. The data shown are for Re = 390.
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Figure 3.5: Numerical edge trajectory. At time 0, we start with two nearby initial conditions,

one on each side of the edge. As the trajectories evolve, they are repelled from the edge, and

we begin to lose precision in our approximation. At time T, before the error grows large, we

use bisection to find a new pair of nearby initial conditions that are closer to the edge. By

controlling refinement precision and interval T, we ensure the approximation maintains desired

accuracy throughout the trajectory.
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Figure 3.6: Periodic orbit pair for Re = 390, graphed by plotting the y7 and y8 components

over one period. Edge trajectories will asymptotically approach either the black or the gray orbit.

phase space with changes in the parameter, despite any bifurcations. The invariant saddle object

that persists appears to be the union of surfaces that are smooth deformations of the manifolds

W s
p+ and W s

p− which existed before the bifurcation. In this parameter range, edge trajectories

are numerically chaotic, with two positive Lyapunov exponents. We conjecture that the leading

Lyapunov exponent is transverse to the edge, while the second positive exponent can be associated

with the observed chaos on the edge. Edge trajectories converge to a more complicated invariant

set which we call a relative chaotic attractor because it attracts nearby edge trajectories, while the

edge itself remains unstable. Figure 3.7 illustrates that edge trajectories approach some higher

dimensional object instead of being asymptotically periodic.

Between the folds of the envelope. For all Reynolds numbers considered, the edge

appears to be an 8-dimensional surface. Because this surface could separate phase space, a rea-

sonable question, then, is: “How do chaotic transient return to the origin?” In answer, we provide

the following observations: The edge is composed of two symmetric parts which are intertwined in

a complex fashion, repeatedly folded throughout phase-space. A chaotic transient has finite life-

time, and is therefore inside the laminar basin. An appropriate way to envision this edge dividing

phase-space is that a point in the basin is contained in an open region that set lies between the

two symmetric parts of the edge, where this region can be extended to the origin without crossing
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Figure 3.7: The relative attractor. From a long edge trajectory at Re = 420, we use the zero

crossing of y4 to construct a Poincare section. The graph shows only the y7 vs. y8 components.

The data appears to have the fractal structure characteristic of chaotic attractors.

either edge.

Concluding remarks: the edge of chaos described here is significant for issues such as control

of turbulence, since it separates the laminar from the turbulent. Transitions from the laminar to

the turbulent state and vice versa will have to pass close to the edge of chaos described here. It

is remarkable that even though the turbulent state and its almost space filling basin of attraction

are high-dimensional, the edge orbits seem to be of much lower dimension.
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Chapter 4

Details of the saddle in the model of plane Couette flow

Chapter 2 provided a short description of some of the principle results regarding the chaotic

saddle in the 9-variable model of plane Couette flow. In this chapter, we provide a more detailed

description of the techniques employed, with special focus on explaining those techniques which

differ from previous research. Additionally, this chapter provides a more complete set of the

numerical results on this chaotic saddle. Finally, this chapter will highlight some items for future

research.

4.1 Background.

Osborne Reynolds, a British mathematician and scientist, was the first to identify that flow could

be categorized into two broad regimes [1], which are now called “laminar” and “turbulent.” His

experiments in pipe-flow are considered to be seminal achievements. In addition to the purely

laminar flow regime (for small fluid velocities) and turbulent (at high fluid velocities), Reynolds

identified that there was an intermediate regime of non-dimensionalized velocities where the sys-

tem exhibits both behaviors, with laminar flow interrupted by intermittent regions of transient

turbulence. Characterizing this transition to turbulence remains one of the significant problems in

fluid dynamics[2].

Plane Couette flow has a transition to turbulence that is similar in character to that of

pipe flow in that the transition is dominated by transient behavior. Mathematically, the two

flows share a common characteristic in that the laminar flow condition remains linearly stable

for all Reynolds numbers [3]. Experiments and numerics show that near onset, the turbulence is

transient, sometimes persisting for a very long time and then suddenly decaying to the laminar

profile [4, 5, 6, 7, 3, 8, 9]. The transients are sensitively dependent upon initial condition, which,

in experiment, may imply that the specific response to a perturbation may be “unpredictable.”
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This behavior can be contrasted with other shear flow problems, such as Rayleigh Bérnard and

Taylor-Couette flow (viscous flow between two concentric, rotating cylinders), where rich spatio-

temporal behavior can be reliably predicted over a wide parameter range. Figure 4.1, reproduced

from [21], illustrates the structure of parameter space for Taylor-Couette flow. Some researchers

Figure 4.1: Behavior of Taylor-Couette flow over parameter space. The horizontal and vertical

axes are the Reynolds number of the inner and outer cylinders in experiments by Andereck, Lui,

and Swinney [21]. The experiments show highly repeatable behavior that was accurately predicted

by the mathematical models.

have proposed that the sensitive dependence, as well as an exponential distribution of transient

lifetimes, indicate the presence of a chaotic saddle in the dynamics [3, 4]. Our goal in this chapter

is to characterize the chaotic saddle in a 9-variable model of plane Couette flow. Although similar

analysis techniques have been applied to low dimensional systems, application of these tools to

realistic physical problems of higher dimension have not been previously attempted.
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4.2 The model

Because direct numerical simulation (DNS) is computationally expensive, several researchers [5,

11, 6, 12, 10] have developed low-dimensional representations based on Galerkin method, which

allow parameter space to be more fully explored. Generically, this approach leads to a system of

ordinary differential equations with quadratic coupling, linear damping, and constant forcing, with

state space variable prescribing the time-varying amplitude for the selected modes. Taking x ∈ Rn

as the variable of state, the general form for these systems is given by

ẋi = − di

Re
xi + xT Aix, i = 1., . . . , n, (4.1)

with Ai an n× n (typically sparse) matrix, and di a scalar constant. The values for the di, as well

as the elements of the Ai depend upon two geometric parameters which determine the length and

height of the periodic flow domain. The transient turbulence of the physical system is associated

with transient chaos in these finite dimensional representations.

Eckhardt and Mersmann used this approach to develop a 19-variable model of plane Couette

flow [5], and they identified additional symmetries which could be specified to further reduce this

system. Schmiegel [10] showed that a 9-variable reduction had sufficiently rich behavior that it

could be used to study the transient behavior of the system. The study of plane Couette flow in

this work is based entirely on that model. As in [5], we take the periodic cell length to be 2π

and a cell height of π, where unit length is defined as the width of the flow channel. The laminar

flow condition is an asymptotically stable fixed point of the system. Therefore, by application of a

linear change of coordinates, the laminar flow state can be placed at the origin of the coordinate

system, with a transformed equation of motion given by

ẏ = Q(y; Re), (4.2)

denoting that the new system is quadratic in y and studied over the parameter Re. To view an

explicit listing of the equations of motion, please refer to Appendix A.
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4.3 The Lifetime function and pseudo-trajectories.

A standard technique in the study of transient behavior is to consider the duration of a transient.

For an autonomous system, this duration can be treated as a scalar function of points in phase

space. For each point y, we consider its trajectory under the flow of the dynamical system, φt(y).

If some characteristic of the trajectory is transient, then we can find the first time, t = t∗ for which

φt∗(y) no longer has that characteristic, and assign L(y) = t∗ as the lifetime of y. We then use

the lifetime function as a tool to explore the transient characteristics of the system.

A typical lifetime definition for studying non-attracting chaotic sets (chaotic saddles) is to

find a compact set in phase space that has no attractors, and define the lifetime to be the amount

of time it takes the trajectory to leave that set. For our model of plane Couette flow, the laminar

state is the only attractor that we are able to identify in the system, and every numerical trajectory

asymptotically approaches the origin. One method for defining lifetime would be to place a small

ball around the origin, and define the lifetime as the time it takes a trajectory to reach that ball.

That method is used in both Chapters 3 and 5. As an alternative, in this chapter we choose

to determine the transient lifetime based on the idea that while a trajectory is near the chaotic

saddle, it shows sensitive dependence on initial conditions, and two nearby trajectories will diverge

at an exponential rate. However, eventually, the trajectory will approach the stable origin. In

some neighborhood of the origin, all nearby trajectories must converge. The lifetime of the chaotic

transient is based on detecting this change in character. We determine this point of transition by

comparing the base trajectory with a perturbed trajectory, rescaling the perturbation as required to

keep the two trajectories sufficiently close that the difference provides a good linear approximation

of the local expansion. As the base trajectory leaves the neighborhood of the chaotic saddle, the

perturbed trajectory will begin to converge to the base trajectory. For any initial condition, we

define its lifetime as how long it takes for the trajectory to reach that point in phase space where

the perturbed trajectory begins to converge to the base trajectory. Chapter 6 contains a detailed

explanation of this method. However, for the purposes of this chapter, it is sufficient to understand

that the lifetime assigned to an initial condition reflects the duration of the chaotic portion of its
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trajectory.

A chaotic saddle, C, is a non-attracting chaotic set, repelling all but a measure-0 set of

initial conditions. Initial conditions whose trajectories approach C as time goes to ∞ lie on a

stable manifold of one of the unstable periodic orbits in C. We call the collection of all such initial

conditions the stable set of the saddle, Cs. Similarly, the set of initial conditions whose trajectories

approach the saddle in backward time are called the unstable set of the saddle, Cu. We note that

C = Cs ∩ Cu.

Almost every initial condition in phase space approaches the laminar flow condition and

has a finite lifetime. We say that these points lie in the laminar basin. Our lifetime definition is

based on a forward trajectory, so every y ∈ Cs will have an infinite lifetime 1. In Appendix D, we

prove that a dissipative system (such as our 9-variable model) must have an unbounded stable set.

However, based on realistic physical assumptions, we can focus on a compact set of initial conditons

that represent reasonable energies in the flow. We assume that if an initial condition has a long

lifetime, then it is close to the stable set. Therefore, the lifetime function can be used to probe

phase space to approximate the location of Cs. Figure 4.2 provides a graphical representation of

the lifetime landscape, sampled on a two dimensional subspace for model data at Re = 600.

Data for 4.2 is from a two-dimensional sampling of 9-dimensional phase space, but the

results are “typical” of such samples and we highlight some of the key characteristics:

• The black regions indicate that there are macroscopic regions of phase-space that do not

intersect the stable set. Within these regions, the lifetime function is smooth.

• The speckled regions indicate that the lifetime function is varying rapidly in these regions,

indicating the presence of many singularities in the lifetime function, where those singularities

are points on the stable set.
1As a practical matter, the lifetime function is generally defined over some compact set S such that C ⊂ S and

S contains the portions of phase space that are of interest in some particular problem. However, it is often the case

that Cs is unbounded. Consequently, those points in Cs that lie outside of S would not be assigned a lifetime value.
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Figure 4.2: Lifetime plots for a typical region. Each figure shows a sampling on a y1 − y2

plane. The grids are shaded according to the lifetime of the center of each grid square, with black

representing points that rapidly decay to the origin (rapid return to laminar flow). Coordinates

are provided for picture 1, and show that the sample is not near the origin. Picture 2 provides

a finer resolution by considering a size 10−6 box centered at (−0.65, 0.05). The third picture is a

size 10−8 resampling of the lower left corner of picture 2. The three pictures all show macroscopic

areas of short lifetime. The “speckled” regions, where short and long lifetimes are intermingled,

indicate that the sampled points are “near” the stable set of the saddle.

• The dense speckling (at all scales) indicate that the stable set is nearly full measure. (As

described later in this chapter, the fractal dimension of this set is ≈ 8.98. for the Re = 600.)

• The broader pattern of macroscopic black regions intermingled within speckled regions is

detectable on all three scales, indicating a fractal structure.

Although sampling of phase-space can reveal some of the structure, it is an impractical

approach in higher dimensional systems as it is quickly becomes computationally intractable to

obtain a sufficiently dense sample. Additionally, in a typical sampling approach (such as the

“sprinkle method” of [22] the dynamics do not play a direct role in the chosen sample set, making

it difficult to recover natural measures. Much of the theory of dynamical systems is based upon

asymptotic results using these natural measures associated with the invariant objects in phase

space. Under typical assumptions, long trajectories of the system are used to gather the necessary
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statistics. For chaotic attractors, simple numerical integration is sufficient to yield arbitrarily

long trajectories, and shadowing theorems [23] and principles of ergodicity are used to assert that

computations based on these long trajectories are representative of system behavior. Eckmann and

Ruelle [24] provides an appropriate review of application of ergodic theory to chaotic attractors.

In order to apply these measure based principals to understand a system with a chaotic

saddle, it is useful to compute long trajectories of the system. However, because the saddle is

an unstable invariant set (non-attracting), simple numerical integration is not sufficient. The

techniques of [19, 18, 25] provide some options for approaching this type of problem, though [19] is

limited to saddles with a single expanding direction. We chose to use a modified Step-and-Stagger

technique [13] to study the saddle in this model of Couette flow. In [13], the authors demonstrate

the technique on low dimensional systems, and assert that it can be applied in higher dimensional

systems with an arbitrary number of positive Lyapunov exponents. To our knowledge, this research

reflects the first application of this approach to a high dimensional system of physical relevance.

The basic Step-and-Stagger attempts to construct an arbitrarily long pseudo-trajectory as a

numerical approximation to an actual trajectory along the stable set of the saddle. The basic idea

is that one can establish a threshold value T ∗ for lifetime such that if L(y) > T ∗ then x is assumed

to be sufficiently close to the stable set. Starting from some y0 with a long life, the pseudo-

trajectory evolves in accordance with system dynamics, except that when necessary, the trajectory

is perturbed by some small amount δ to increase the lifetime such that all points on the pseudo-

trajectory have lifetimes higher than the threshold T ∗. By requiring ‖δ‖ to be small, the generated

numerical trajectory can be expected to approximate an actual system trajectory on the saddle

with sufficient accuracy to estimate Lyapunov exponents. The cartoon of Fig 4.3 illustrates the

strategy. The small perturbations are called “staggers,” and each stagger is found by conducting a

random search. Our technique, which we call Multistagger, is essentially the same approach, with

minor modifications to the search technique as well as the threshold criteria. We require that a

successful stagger raise the lifetime by some minimum amount ∆L. While searching for a suitable

perturbation, we accept any improvement in lifetime, and take subsequent perturbations from
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that new basepoint. Figure 4.4 illustrates this modified approach. Appendix B contains a more

detailed description of the multistagger technique as well as additional discussion of our methods

for choosing algorithm parameters.

Follow a trajectory while
lifetime remains long.

Use random perturbations of ≈ 10−8 to
find a nearby point with longer lifetime.

Continue the
trajectory from the
perturbed condition.

Repeat the perturbation procedure
as needed to maintain a long life.

Figure 4.3: Schematic of a pseudo-trajectory. A pseudo-trajectory is created by following

system dynamics while the lifetime is above threshold. To keep a long lifetime, occasional pertur-

bation are used to find nearby points with long life. An acceptable perturbation (green) is found

by random search, rejecting perturbations that do not increase the lifetime (red).

Figure 4.4: Multistagger technique. Perturbation that raise lifetime (green) are accepted, while

we reject points of lower lifetime. When lifetime has been raised by ∆L compared to the initial

point, we continue the pseudo-trajectory by integrating the system (black) Appendix B provides

a detailed explanation.

4.4 Numerical results for Lyapunov spectrum

Lyapunov exponents provide a key characterization of a chaotic set. In particular, the desire is

to compute Lyapunov exponents that are representative of the natural measure on the chaotic

saddle. The criteria for construction of long-pseudo trajectories was based on a long “forward”
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lifetime, which should ensure that the trajectory remains near the stable set of the saddle, and

not necessarily the saddle itself. However, if we assume that a pseudo-trajectory approximates

a system trajectory, then after some transient period, the flow of the system should cause that

trajectory to converge toward the saddle. Consequently, except for the initial transient phase,

we assume that the pseudo-trajectory provides statistical information that is characteristic of a

trajectory on the saddle.

To compute the Lyapunov spectrum, we generate a pseudo-trajectory of O(106) time units,

and then discard the first 20% of that trajectory as transient. We then compute the full spectrum

of exponents by integration of the tangent bundle. The primary parameter range of interest was

350 ≤ Re ≤ 800. For this parameter range, the saddle is expanding in two directions (two positive

Lyapunov exponents) 2 . The multiple expanding directions in this low dimensional model is

consistent with the observations of the full numerical simulation of [4]. Figure 4.5 illustrates the

results for Lyapunov spectrum as calculated from the pseudo-trajectories.
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Figure 4.5: The nine Lyapunov exponents for 350 ≤ Re ≤ 800. The saddle has two positive

exponents for this entire parameter range, with one 0 exponent because the system is autonomous.
2Because the system has two expanding directions, the PIM-triple method would be expected to fail, making

this problem a good candidate for Step-and-Stagger
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It is typical of many physical models in higher dimensions that the system is non-hyperbolic.

The effect of the non-hyperbolicity can be examined using finite time Lyapunov exponents. The

time-T Lyapunov exponents, {λT
i }9

i=1, describe the growth rate of small perturbations along a

trajectory of length T. For our Couette flow model, the system had two positive exponents, but

the second was close to 0. Consequently, we focus on λT
2 , and consider its distribution. In [26],

it is shown that systems with fluctuating number of positive Lyapunov exponents will fail to

have an arbitrarily long shadow trajectory. Figure 4.6 shows a plot of distributions for λT
2 for

200 ≤ T ≤ 1000. A significant portion of each distribution falls to the left of 0, and we can conclude

from the arguments of [26, 27] that shadowing distance will be finite. The numerical trajectory

will shadow a true trajectory for some finite period, and then it will experience a “glitch.” After

the glitch, the numerical trajectory will be shadowing a different system trajectory (until the next

glitch). However, as is typical in the literature, we assume that a long pseudo-trajectory provides

adequate accuracy in estimating Lyapunov exponents for the system.
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Figure 4.6: Distribution for finite time Lyapunov exponent λT
2 , the second largest Lyapunov

exponent, plotted for 200 ≤ T ≤ 1000. Although the distribution mean is positive, a significant

portion of the distribution lies to the left of 0, indicating that shadowing time will likely be finite.

4.5 Decay time

Trajectories near the chaotic saddle are repelled from the invariant set. If one assumes that the

natural measure on the saddle is ergodic, then trajectories that start very close to the saddle
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would be close to some saddle trajectory, and would therefore visit near every point on the saddle.

Consequently, the rate at which trajectories are repelled from the saddle can be treated as a global

characteristic. Suppose we start with a large ensemble of N (0) initial conditions taken uniformly

from some set W which intersects the saddle. Let N (t) be the number of those initial conditions

whose lifetime exceeds t. Because of the saddle structure of the invariant set, we can expect that

for some constant c > 0,

N (t) ∼ e−ct. (4.3)

Following the terminology of [14] we define decay time,3 τ by

1
τ

= lim
t→∞

lim
N0→∞

− ln (n(t)/n(0))
t

. (4.4)

In Appendix D, we prove that the decay time, as an asymptotic value, is essentially independent

of the specific random sampling strategy.

We note that as τ increases, the transient behavior becomes more persistent, with the

limiting situation of τ = ∞ indicating a chaotic attractor. As a global characteristic, it is reasonable

to study the behavior of τ as we vary the controllable parameter Re. To determine τ, we take a large

sample of initial conditions and plot the cumulative distribution of the sample, F (t) = N (t)/N (0),

as a function of t, plotting on a logarithmic scale (where exponential decay should plot as a line).

For small t, the shape of the distribution is somewhat determined by the sample region of phase

space. However, for t large, the trajectories of long lifetime must remain near the saddle for a long

time, so the exponential decay characteristic of the saddle begins to dominate. The graph should

show a range t1 ≤ t ≤ t2 where the graph is nearly linear (which determines t1) yet the sample

size is still large enough that statistical errors are small (which determines the choice of t2). Then

curve fitting to that linear portion yields a value for the slope of the linear portion, which should

approximate −1/τ. In some sense, it is the existence of the linear regime on these semilog plots
3In some of the literature, τ as defined by (4.4) is called the average lifetime, which is somewhat of a misnomer.

If lifetimes were distributed precisely in accordance with an exponential distribution, generating the cumulative

distribution for lifetime P(L > t) = e−t/τ , then τ would be the expected value of that distribution. However, in

general (4.3) is accurate only for t sufficiently large. The average lifetime over a general set W will depend upon

both W and the specific definition of the lifetime function.
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that indicates that the transient behavior is due to a chaotic saddle. Figure 4.7 show a partial

data set collected for a range of Re.
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Figure 4.7: Cumulative distribution of lifetimes. F (t) = N (t)/N (0),is plotted as a function

of time on a semilog plot. A linear shape on this graph indicates the presence of the saddle, and

the slope of the linear portion is −1/τ. Each curve is labeled with its Reynolds number. The data

clearly shows that τ is increasing with Re.

Some experimental results indicate that over some range of Re, the gross relationship be-

tween the Re and the decay time is given by

τ =
α

Rc − Re
, (4.5)

where α is constant, and Rc would be a critical Reynolds number. If this scaling law were to hold,

at Re = Rc, a chaotic attractor would emerge. Figure 4.8(L) shows the data collected over the

parameter range of interest, with 1/τ plotted against Reynolds number, where (4.5) would plot as

a straight line on this graph. The graphic indicates linear ranges of the parameter, but also an

apparent bifurcation at Re ≈ 400 and again at Re ≈ 600. Although the data in these ranges can be

used to fit the ansatz to yield a value Rc, there appears to be no emergence of a chaotic attractor

in our 9-variable model in the parameter range that we studied. To be more precise, throughout

35



our extensive simulations, all numerical trajectories decayed to the origin. However, it is possible

that a chaotic attractor with a small basin of attraction might remain undetected in this high

dimensional space. [We note that in [28], using a 9-variable model with the same form of (4.1)

but with slightly different modes than in our model, the authors did observe a chaotic attractor

for some ranges of Re.] Other experimental and numerical results indicate transient lifetime might

scale exponentially with Reynolds number in these shear flows, with ansatz

τ ∼ eβRe. (4.6)

Figure 4.8(R) shows how the numerical data from this model might be fit to that form.
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Figure 4.8: τ vs. Re. (L) 1/τ is plotted against Re. The linear slope indicates agreement with

(4.5) over various ranges of the parameter. However, since 1/τ > 0, no attractor emerges in our

model. (R) The same data set, with τ plotted vs. Re on a semilog scale. A linear relationship on

this graph would indicate that lifetime grows exponentially with Reynolds number, in agreement

with (4.6)

4.6 The dimension of the saddle

In trying to quantify the “size” of the chaotic saddle, we focus on two key invariant sets – the stable

set of the saddle (or simply the stable set) and the saddle itself. The importance of the stable set
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is that it is a primary physical observable. The general approach to a transient system (whether

model or experiment) is to take an initial condition, and test its lifetime. Such experiments, based

only on lifetime, will reveal whether an initial condition is close to the stable set (but might reveal

little about the actual saddle). The probability of finding a long-lived transient, therefore, is related

to the fractal dimension of the stable set, which we denote Ds. For systems with a robust transient

character, the decay time is closely related to Ds, through the largest Lyapunov exponent, λ1. As

identified in [15], in an N dimensional system, if τ is sufficiently large, then

d := N − Ds = (τλ1)−1. (4.7)

We call d the defect of the stable set. The formulation in [15] assumes that generically, a line

through phase space will have a non-empty intersection with the stable set, or equivalently, that

Ds > N − 1. Therefore, d < 1, implies that (4.7) should apply whenever λ1 > 1/τ, which, for our

model, is satisfied throughout the parameter range studied. Fig 4.9 illustrates the close relationship

between τ and d for this system.
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Figure 4.9: 1/τ (circles) and defect d := 9 − Ds (asterisks) plotted as a function of Reynolds

number (Re). Since λ1 is approximately constant over this parameter range, the shape of the

defect curve closely matches the shape of 1/τ.

For large Reynolds number, the defect is very small, and the stable set becomes nearly dense
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(Ds ≈ 8.98 at Re = 600.). Consequently, long-lived transients become “easy” to find in most

regions of phase space. Additionally, since τ is getting large, the typical lifetime of these transients

is getting longer. In a physical experiment, where the duration of the experimental run would be

some fixed, finite maximum, the very dense long-lived transients might be indistinguishable from

sustained turbulence, even if a chaotic attractor has not formed.

Although the stable set is the invariant set of interest to understand the trajectory of a

sampled initial condition, the chaotic saddle itself describes the region of phase space where long

trajectories are located during most of the transient phase. A typical transient (near the stable

set) will start near some point on the stable manifold, moving along that invariant set toward the

saddle. The trajectory will then remain near the saddle for a long time before decaying to the

laminar state by exiting the saddle region along an unstable manifold. Therefore, the saddle set is

an important invariant object because the transient spends much of its time near this set. To find

the dimension of the saddle, we apply the formulation of [14], which generalizes the Kaplan-Yorke

dimension to chaotic saddles 4. In addition to τ, these computations require the full spectrum of

Lyapunov exponents, but they permit the determination of the dimension of the stable set, the

unstable set (points that approach the saddle in backward time) and the saddle itself. For Ds, the

results are algebraically equivalent to (4.7)5. Figure 4.10 plots dimension versus Reynolds number

for both the saddle and the stable and unstable sets.

4.7 The “hole” in the saddle.

In the previous section, we discussed the importance of two of the three invariant sets: (1) the

stable set, detected by sampling, which is nearly full dimension, and (2) the saddle, where transient

trajectories spend most of their transient life. The third key invariant set is the unstable set. Using

the notation that D is the dimension of the saddle, and Du for the dimension of the unstable set, if

we assume that the intersection of the stable and unstable sets is generic, then D = Du+Ds−N. We

previously noted that the stable set is nearly full dimension and denoted the defect as d = N −Ds,

4 [22] contains a similar result to [14], but uses a very different formulation to derive the result.
5Appendix C provides a short explanation of the relationship between the two formulations.
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Figure 4.10: Dimension of the invariant sets. The information dimension for the chaotic saddle

(blue) and its stable set (red) and the unstable set (black) are plotted as a function of Reynolds

number. The stable set becomes nearly dense as Reynolds number increases, making it “easy” to

find a point near the stable set, which would result in a chaotic transient.

so that

Du = D + d.

Consequently, when the defect is small, the unstable set is only slightly larger than the saddle itself.

For the most part, the chaotic saddle lies on the unstable manifolds that compose Du. However

some small portion of these unstable manifolds tend to drive orbits away from the saddle. As a

transient trajectory begins its final stages of decay, it will depart the neighborhood of the saddle

along the expanding direction of portions of these unstable manifolds, and we desire to better

understand this decaying behavior.

We first revisit the lifetime function. The standard approach is to enclose the unstable

structure with a compact set S that contains no attractors. Then the lifetime of a point in S

is the time it takes for a trajectory of that point to leave S. Generally, S is chosen to have

an easy geometric description. However, in this chapter, the lifetime function that is used is

based on detecting the change from exponential sensitivity to initial conditions (near the saddle)

to convergence of nearby trajectories (as they approach the attractor). To further exploit this
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lifetime function, we note that we may still associate the lifetime of a point with its time of first

exit from some set S, where S contains all points with positive lifetime. In general, S no longer

has a simple geometric description and is not compact. However, the set contains boundary points

(where lifetime approaches 0), and we denote the set of boundary points as ∂S. Then ∂S describes

a surface in phase space such that once a trajectory passes through this surface (under forward

time flow), all nearby trajectories will begin to converge.

Recalling that Cu denotes the unstable set of the saddle, we can now define the hole in the

saddle to be the set

H := ∂S ∩ Cu.

We can think of the hole as a cross section of the unstable set, with the section taken such that

trajectories on the section are leaving the saddle set. If we assume that the intersections are

generic, then we expect

dimH = Du − 1 = D + d− 1. (4.8)

Although much of Cu may coincide with the saddle C, the hole describes trajectories that are

decaying to the origin, and consequently, H ∩ C = ∅.

To approximate the hole, we consider an ensemble of initial conditions {yi}, yi ∈ R9, that

are chosen from a pseudo-trajectory such that all the points have long life and approximate a

natural measure on the saddle. For each of these points, we may compute its lifetime, li := L(yi).

Then we identify the point y′
i := φliyi, which describes where the trajectory of yi intersects ∂S.

The resultant ensemble H̃ = {y′
i}, allows us to visualize the typical path through which transient

trajectories decay to laminar flow.

Our simplified description is that because the saddle has a stable set that is nearly full

dimension, it is “almost” an attractor, but that it permits a little bit of leakage. More precisely, a

chaotic saddle typically contains an infinity of unstable periodic orbits, and the saddle is the closure

of the unstable manifold of all but a small (possilbly finite) number of these periodic orbits. Those

periodic orbits whose unstable manifold are not part of the chaotic saddle are the ones that create

the leakage from the saddle. If the saddle set is transitive, then trajectories near the saddle would
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eventually visit sufficiently close to one of those periodic orbits, allowing the trajectory to escape

the neighborhood of the saddle and decay to laminar flow. In Fig 4.11, we provide a visualization

of the hole for an ensemble at Re = 390.
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Figure 4.11: Comparing the saddle with the hole (Re = 390.) An ensemble of ≈ 11000 points

is generated as described above. All points are in R9, but we plot the projection of those points

into a two-dimensional subspace. The top row plots the ensemble at the hole, viewed from the

y′1 − y′7, y
′
1 − y′8, and y′7 − y′8 planes, where the “prime” notation on the axes does not represent a

change of phase space, but simply emphasizes that these are points from the ensemble H̃. The lower

row of plots is the same projections, but plotting the ensemble of initial conditions on the saddle.

The apparent lack of structure in the saddle is a result of projecting a high (≈ 4) dimensional

object into two dimensions.

The data in Fig 4.11 is typical for the parameter range studied. We make the following

observations from our analysis of those plots:
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• The estimated correlation dimension for the data set is D2 ≈ 2.9 (at 10−4 scale) for the hole,

while for the saddle ensemble, D2 ≈ 3.8 (at 10−3 scale). These measurements are consistent

with (4.8), providing some verification that are procedure for approximating the hole is valid.

• Even in the 2-dimensional projection, we are able to detect that the hole has significant

structure.

• About 2/3 of the hole points are in the cluster with y′1 > −0.5, indicating points that

continue to have transient chaotic behavior even as they reach relatively low energy levels.

The other components of these points are also very small in magnitude, such that the points

are confined to a narrow region along the y1 axis. In relation to the physical system, points

near the y1 axis would be associated with flows that may have significant deviation from the

mean laminar profile in the streamwise direction, but with little or no streaks and eddy’s.

• From the y1 − y7 plane views, we note that for higher energy points (where y1 < −0.5), the

hole is more heavily weighted to positive values, while the saddle is weighted to negative

values.

• From the y1 − y8 views we can see significant clusters at large amplitude y′8 for the hole,

while these are relatively low density regions for the saddle. Additionally, we see that the

hole retains structure, even at the low energies.

• In the y′7 − y′8 view, we note the winglike clusters that indicate an apparent high energy

leakage path.

Our observations regarding the hole indicate that the leakage paths have structure, which

are possibly related to the slow manifold of a small number of periodic orbits whose unstable

manifolds are not part of the chaotic saddle. This structure is potentially exploitable. We imagine

that it might be possible to design a control strategy that would target regions of the saddle that

have a propensity for leakage, with a goal of reducing the average length of a transient. However,

the analysis of the these leakage paths remains an area where further work is required.
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4.8 Conclusions

Understanding transient turbulence remains an important problem in fluid dynamics. In full

numerical simulations and experiments, it appears that the turbulent landscape is sensitively de-

pendent upon initial conditions. In a finite dimensional models, this behavior is best characterized

by a chaotic saddle. In this paper, we chose to study a small dynamical systems that appears

to capture much of the relevant characteristics of such flows. Our primary conclusions are that

(1) robust transient behavior can be associated with a stable set of the saddle which is nearly

full dimension, (2) the Step-and-Stagger algorithm can perform robustly, even in higher dimen-

sional systems, and (3) the increased analysis of the leakage paths from the saddle may lead to

development of additional techniques with direct application to minimizing transient turbulence.
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Chapter 5

Describing the Edge of Chaos in a model of parallel shear flow

We study a parallel shear flow model, where a stable laminar flow and transient turbulence coexist.

Using a Galerkin representation, we study the boundary between these two characteristic behaviors.

In the model, some regions of phase space show strong sensitive dependence on initial conditions,

with transient lifetimes that fluctuate wildly, while in other regions of phase space, the transient

lifetimes behave smoothly. We identify an invariant saddle structure that lies between these regions,

which we call the edge of chaos. We describe a technique for computing trajectories on this

invariant object. We find that for some ranges of Reynolds number, the edge coincides with the

stable manifold of a periodic orbit, while in other ranges, trajectories on the invariant set have a

higher dimensional chaotic object as their limit set.

The edge of chaos was introduced in Chapter 3. This chapter provides a more detailed

description of edge and the techniques employed to study the edge.

5.1 Introduction

Parallel shear flows, such as plane Couette flow or pipe flows, have the ability to produce turbulent

dynamics even while the laminar flow condition remains linearly stable [1]. The experimental evi-

dence, supported by numerical studies, shows that as the Reynolds number (Re) increases above

some threshold value, the system may exhibit transient turbulent behavior. These transients may

persist for a very long time before rapidly decaying and allowing the system to return to the lami-

nar profile [4, 5, 6, 7, 3, 8, 9]. The average lifetime of the transients increases rapidly with Reynolds

number, often becoming longer than the typical observation time of physical experiments or de-

tailed numerical simulations, even at moderate flow rates. A significant body of evidence, from

both physical and numerical experimentation, has led some researches to interpret the transients as

indications of a chaotic saddle [3, 4]. Because full numerical simulations are computationally com-

44



plex, exploring phase space structures using those models is generally not practical. Consequently,

several researches developed low dimensional Galerkin models of these flow to facilitate study of

these chaotic saddles [5, 11, 6, 12, 10]. Chapters 2 and 4 provide a description of the chaotic saddle

using a 9-variable model that was proposed in [5] and studied more extensively in [10]. Those

chapters focus on the statistical quantifiers, such as Lyapunov exponents and fractal dimensions,

and emphasize the overall structure and transient behavior, linking it to previous general results

on chaotic saddles [14, 15]. In this chapter, we focus our analysis on the boundary between the

laminar state and the transient turbulence. Previous work suggests that as one moves away from

the laminar state in phase space, there seems to be a well defined envelope to the chaotic transients

[5, 6, 7, 4]. We call this structure the edge of chaos because chaotic trajectories come arbitrarily

close. In Fig 5.1, we provide a visualization of this structure.
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Figure 5.1: Lifetime on a 2-d subspace. Transient lifetime from the 9-variable model is com-

puted for initial conditions on a randomly chosen 2-d subspace, with the laminar state at the lower

left corner of the plot. Each block is colored based on the lifetime of its center coordinate. The

field of blue appears to be separated from the speckled regions. We call that separating structure

the edge of chaos. (Parameter Re = 420)

In this paper, we describe the following key findings regarding the edge in this model of

shear flow:

1. The edge is composed of an unstable invariant set that moves smoothly with changes in the
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Reynolds number, and we present evidence that the edge is a surface in phase space.

2. For some ranges of Reynolds number, the edge coincides with the stable manifold of a sym-

metric pair of periodic orbits. A similar phenomena has been identified in planar maps with

multiple basins of attraction, such as the forced damped pendulum [17], but to our knowledge,

these structures have not previously been identified in higher dimensional systems.

3. For other ranges of the Reynolds number, trajectories on the edge are no longer asymptot-

ically periodic, but chaotic. When we consider the restriction of dynamics to the invariant

set, we discover a high dimensional and fractal chaotic set that attracts the edge trajectories.

Additionally, we developed techniques that allowed efficient computation of edge trajectories. We

explain those techniques in hopes that they may have application to other systems that show

transient chaos.

This chapter is organized as follows: In §5.2 we introduce our model of shear flow. In §5.3

we define the edge and describe how it relates to the transient lifetime structure of the system. §5.4

provides a detailed description of our efficient computational methods for following trajectories on

the edge. §5.5 describes the nature of the invariant edge structure. In §5.6, we provide some initial

results from our studies at low Reynolds number. §5.7 illustrates how the edge relates to the decay

of transients. In §5.8, we prove that a horseshoe generates an edge and prove that the edge in the

horseshoe is a manifold. §5.9 discusses the smoothness properties of the edge. §5.10 provides some

concluding remarks, with direction for further research.

5.2 The model

Because extensive numerical simulations are required to study structures in phase space, we devel-

oped our ideas using a simplified 9-d model of shear flow, based on a Galerkin method approxima-

tion. In [5], the authors developed a 19-variable model of plane Couette flow and proposed some

additional lower dimensional models that could be derived by applying additional symmetries to

the problem. The general structure of this broad class of approximations to shear flow is a finite
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dimensional ordinary differential equation with quadratic coupling, linear damping, and a constant

forcing, with periodic boundary conditions in the streamwise and spanwise directions:

ẋi = −
di

Re
xi +

∑

j,k

ai;j,kxjxk + fi, i = 1., . . . , n. (5.1)

In addition to specific choice of modes, there are three essential parameters in these models: the

Reynolds number, which dictates the damping, and the geometric parameters that determine the

size of periodic flow cell. In [10], the author studied one of the 9-dimensional reduced models

from [5] and showed that it captured some of the main qualitative features of both the 19-variable

model as well full numerical simulations. We study that 9-dimensional model, with the additional

constraint of fixed geometry, where we take the periodic cell length to be 2π and a cell height of

π, where unit length is defined as the width of the flow channel. The laminar state is a fixed point

of that system, so we translate that system so that the laminar state is at the origin. We denote

this new system ẏ = Q(y; Re) to emphasize that the right hand side is quadratic in y and will

be studied over the parameter Re. Throughout this paper, we denote the flow of that differential

equation by φt.

5.3 The “lifetime landscape” and edge points.

To facilitate study of transient behavior, we define a lifetime function, L(y), defined as the time it

takes for the trajectory of y to approach within some fixed distance ε of the origin. By standard

theorems from ordinary differential equations, each point in phase space is assigned a unique

lifetime (possibly infinite). Because the origin (the laminar state) is attracting and linearly stable,

we can choose ε such that dynamics inside the ball are described by simple exponential decay,

ensuring that we are discarding no interesting dynamics. Points of finite lifetime are said to be in

the laminar basin. However, based on the results of Chapter 4, we know this system contains a

chaotic saddle — a measure 0 set of points which do not approach the laminar state. These points

in phase space will have an infinite lifetime, and we say that these points belong to the saddle set.

By these definitions, we may conclude that the laminar basin boundary is the entire saddle set.

Chapter 4 provided detailed statistics about the behavior of the saddle set as a function of
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Re. Of particular note was that the saddle set was shown to be a nearly dense fractal. However,

our interest here is to focus upon the boundary of that fractal structure. A common characteristic,

detected not only in low-dimensional models of shear flow [6, 5, 10], but also in fully resolved

simulations [4, 7], is that the lifetime function follows a typical pattern. As distance from the

laminar state is increased, the lifetime function initially increases, but at a slow rate. However, as

the perturbation size approaches some threshold value, the lifetime increases rapidly. Beyond that

threshold (the edge), the lifetime function fluctuates wildly, reflecting the fractal structure of the

saddle set, with lifetimes that depend sensitively upon the initial condition. Figure 5.2 illustrates

this very general characteristic.
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Figure 5.2: Lifetime indicates the edge. Lifetime L(y), sampled along a line. In the laminar

basin, L(y) is smooth, while in the saddle region, it appears fractal. The boundary between those

behaviors is an edge point. The gray curve (extended in Fig 3.3) is drawn to illustrate that the

behavior on the sampling line is related to larger structures in phase space.

That the lifetime function has smooth regions interspersed with wildly fluctuating regions

is typical of chaotic saddles, and has been termed the typical “lifetime landscape” [18, 5, 6] of a

chaotic saddle. Similar structures will be observed whenever the saddle set has fractal dimension

D, with n − 1 < D < n for a system in Rn, because a typical line through phase space will have a

non-empty intersection with the saddle set. Consequently, for systems with robust transient chaos,

this behavior is typical.

From the results of Chapter 4, the saddle set (equivalent to the stable set of the saddle) 1 has

1In Chapter 4 we described the saddle as the invariant object (under both forward and backward flows) and the
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dimension just slightly less than 9 for our parameter range of study. A line through phase space

intersects the saddle set on a measure-0 Cantor set. At each of those intersections, the lifetime

function diverges to infinity. An edge point is defined by the characteristic that along a sampling

line, the edge point is a point in the saddle set that is also the endpoint of some interval of points

in the laminar basin. In terms of the typical Cantor set construction, the edge points would be the

endpoints of each of the removed intervals, and the edge is defined as the set of all edge points. To

one side of the edge is an open set of points that lie in the laminar basin, while to the other side is

an accumulation of points in the saddle set. We note that for moderately large Reynolds number,

the saddle set is significantly more dense than the usual middle-thirds Cantor set. Consequently,

the small intervals of smooth lifetime are difficult to discern. Figure 5.3 uses fine scale sampling to

reveal small intervals of smooth lifetime, along with the associated edge points. Under this typical

Cantor set geometry, we note that edge points along a sampling line will be countable, while the

Cantor set itself is uncountable. Consequently, the edge is only a small part of the entire saddle.
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Figure 5.3: Fine scale sampling of lifetime. Lifetime L(y), on a 10−6 × 10−6 subset of a 2-d

sample space. At fine scales, small intervals of smooth lifetimes are detectable, with edge points

defining the ends of those intervals. (Re = 420.)

stable set was the set of all points that approached the saddle as t → ∞. In this chapter, we focus only on the

forward flow problem and have restricted our discussion to a forward chaotic invariant set — the stable set of the

saddle. We simplify our terminology, and call this the saddle set.
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Although we have used a sampling line to define the edge (and sampling can provide some

insight and visualizations), a sampling approach will not be sufficient to discover underlying struc-

ture. There are two main drawbacks to sampling: (1) there are no dynamics associated with the

sampled set, and (2) sampling will not be sufficiently dense (even in this moderate 9-dimensional

model) to capture those dynamics. Bringing the dynamics back to the description of the set will

be critical to understanding the structure. An important observation is that the edge is invariant

under the dynamics, which we argue as follows: Consider a neighborhood of an edge point e. e

lies on the boundary of an open set of points in the laminar basin. Under evolution of the flow,

the trajectory of e will remain on the boundary of that open set of laminar basin points. Also in

that neighborhood of the edge points is an uncountable infinity of points in the saddle set, which

accumulate on e. Under evolution of the flow, for some fixed time, they must remain arbitrarily

close. Consequently, any point on the trajectory of e must be an edge point, generating an edge

trajectory. Our strategy is to analyze edge trajectories to reveal the structure of the invariant edge.

5.4 Approximation of edge trajectories

Because the edge is part of the saddle set, edge trajectories are unstable. Consequently, even if we

resolve an edge point to machine precision, the numerical trajectory generated by standard ODE

solvers can approximate the edge for only a short period of time. Therefore, we needed to develop

specialized techniques that would allow us to generate arbitrarily long edge trajectories that would

remain accurate, while maintaining computational efficiency. In this section, we describe those

techniques in some detail because we believe they have wider application to a broad class of

systems that exhibit transient chaos.

Resolving an edge point. Because the origin (laminar flow) is linearly stable and attract-

ing, a region surrounding the origin is in the laminar basin. If we move outward from the origin

along a radial direction until we intersect the saddle, there must be a “first” point along that line

that has infinite lifetime, which will necessarily be an edge point. The issue is how do we efficiently

find a numerical approximation to that point. By definition, the edge point separates smooth
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lifetimes from discontinuous lifetimes, but identifying the precise edge of a fractal requires very

fine sampling. Refinement to high numerical precision is computational expensive, and we find

that it is difficult to implement a robust algorithm based on lifetime. The PIM-Triple method [19]

is useful when phase space has only one expanding direction. However, for the moderate Reynolds

numbers under consideration, the results of Chapter 4 indicate that the saddle has two expanding

directions, and the algorithm is likely to fail.

If a system has two basins of attraction (call them A and B), a robust technique for finding

points on the boundary is to find a point in basin A, and another point in basin B. By repeated

bisection, always keeping an (A, B) pair, one can resolve a boundary point to required precision.

In our model, there is a single attractor. To be able to apply bisection, we must identify some

characteristic that allows us to assign a binary classification to each initial condition, where that

binary classification is sufficient to determine that the edge lies between points of opposite clas-

sification. For the portion of the edge that is not too far from the origin, we apply the following

logic to construct this classification: Points perturbed only slightly from the origin decay rapidly

in energy, collapsing back to the laminar state. Consequently, those trajectories stay small in

amplitude. However, if the perturbation is large enough to cross the edge, then that trajectory

will exhibit a chaotic transient. The chaotic saddle (turbulence) is far from the laminar state.

Consequently, a chaotic transient is characterized by having at least one high amplitude (O(1))

excursion. We define a maximum amplitude function, Amax : R9 7→ R by

Amax(y) := max
t≥0

‖φt(y)‖. (5.2)

We classify an initial condition y as being either on the high-side or the low-side based on whether

Amax(y) is above or below an appropriately chosen threshold value. Figure 5.4 compares the visu-

alization of the edge using maximum amplitude and lifetime. Because the difference in amplitude

from high-side to low-side is so large, it is not necessary to compute Amax very precisely. There-

fore, we can compute a trajectory using our normal numerical integration techniques, then find

an approximate maximum from the discrete time step output. Consequently, in implementation,

finding Amax(y) adds almost no computation time to simply computing the trajectory.
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Figure 5.4: Maximum Amplitude compared with Lifetime. (Top) Amax(y) and (bottom)

L(y) are computed over the same 2-d subspace of sample points. Each block is colored based on

the computed value for the center coordinate. At this scale, both characteristics provide adequate

information to describe the edge, though maximum amplitude provides a sharper visual distinction.

(Parameter Re = 420)

From Fig 5.4, one might conjecture that the maximum amplitude construct is not required,

and that lifetime could be used to provide the binary classification. However, Amax provides the

following significant advantages:

• Since lifetime approaches infinity as we approach the edge from either side, a precise edge

classification using L(y) requires that we determine if the neighborhood of y has fractal

lifetime structure. However, Amax(y) can be classified as “high” or “low” without computing

any other trajectories.

• The discontinuity in Amax at the edge is sharp and unambiguous, and therefore, it is easy to
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implement code that detects the edge using amplitude.

• Although at the rough scale, it appears that a lifetime threshold would provide similar

classification as is done with amplitude, at fine resolution, the threshold criteria may fail to

give a correct classification, because points on the low-side of the edge may have arbitrarily

large lifetimes, while those on the high-side may have exhibit relatively short transients.

Figure 5.5 compares the effectiveness of L and Amax at distinguishing the edge, illustrating

the superiority of maximum amplitude.
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Figure 5.5: Comparison of L and Amax for edge detection. The upper pair of graphs plot

lifetime L, and the bottom pair of graphs show Amax as a function of distance from the edge. The

x-axis is on a log scale, with high-side perturbations to the right, low-side to the left, with the

edge in the middle. (top-pair) If one tries to classify based on a threshold value for lifetime, any

threshold value that properly classifies the low-side will improperly classify some nearby points

on the high-side. (bottom) Amax provides a clear discontinuity at the edge, with no ambiguous

amplitudes on the high-side. A threshold amplitude of 0.4, for example, would properly classify

all the points. Moreover, this discontinuity in amplitude is preserved to arbitrary precision.

Using this classification of high and low, we can apply a bisection routine and determine
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an edge point to an accuracy limited only by numerical precision. Starting from an arbitrary pair

of initial conditions, if one is a “high-side” point and the other is “low-side,” we can use that

pair to find an edge point. This technique has proven to be both robust and efficient in numerical

implementation. We note that the sequence of approximations of the edge also provides a sequence

of trajectories that converges uniformly on a finite time interval to an edge trajectory. Figure 5.6

illustrates how the bisection algorithm leads to an increasingly accurate representation of an edge

trajectory.
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Figure 5.6: High-side and low-side pairs. Trajectory amplitude as a function of time plotted

for three pairs of nearby initial conditions. Trajectories labeled “-” are on the low-side, and those

with “+” on the high-side. The initial conditions for the “a” pair were separated by ≈ 10−7. The

pairs “b” and “c” result from refining the “a” pair (using bisection) to separations of ≈ 10−10

and ≈ 10−13, respectively. The limit of the bisection algorithm (in infinite precision) would yield

a trajectory which would remain bounded away from the origin, but would never achieve a large

amplitude typical of chaotic transients. The data shown is for Re = 390.

Because the edge is unstable, even when the edge point is refined to machine precision, its

trajectory will move far from the edge, with the approximation typically being accurate for only

a few hundred time steps. To approximate a long strategy, we apply a techniques similar to those

employed in [19]. Starting with an initial high-side/low-side pair (denoted y+
0 and y−

0 ) that are

very close (to some tolerance εi � 1), we evolve the trajectory of both points for some fixed period
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T, and approximate the edge trajectory as the pointwise average on the time interval [0, T ]. The

resultant points φT (y+
0 ) and φT (y−

0 ) must also be a high-side/low-side pair. T can be selected

sufficiently small such that for tolerance εf with 1 >> εf > εi the pair remain within a distance

εf throughout the interval [0, T ]. This pair is then refined using bisection to yield a high/low pair

denoted y+
1 and y−

1 , with ‖y+
1 − y−

1 ‖ ≤ εi. This process can be continued indefinitely, producing

a numeral approximation to an edge trajectory. Because the edge is always between the pair of

high/low trajectories, the approximation of the edge remains accurate to within εf . Figure 5.7

gives a graphical illustration of this procedure.
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Figure 5.7: Numerical edge trajectory. At time 0, we start with two nearby initial conditions,

one on each side of the edge. As the trajectories evolve, they are repelled from the edge, and

we begin to lose precision in our approximation. At time T, before the error grows large, we

use bisection to find a new pair of nearby initial conditions that are closer to the edge. By

controlling refinement precision and interval T, we ensure the approximation maintains desired

accuracy throughout the trajectory.

The focus of this section has been to provide a thorough explanation of our technique for

computing edge trajectories. Because the method relies on an amplitude threshold, its utility is

restricted to that portion of the edge that is not too far removed from the origin. In application to

our model of plane Couette flow, we find that even this limited range of applicability is sufficient to

resolve the structure of the edge. We have successfully applied these techniques to other dynamical

systems with chaotic saddles, and they have proven to be a robust tool for identifying invariant

structures that lie on the edge. Consequently, we feel that the technique itself is a valuable
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contribution to the study of transient chaos. However, we also recognize that the method is a

tool. In the following sections, we focus on applying that tool to improve our understanding of the

edge in our model of plane Couette flow.

5.5 Structure from edge trajectories

In the very simplest of dynamical systems used to study shear flows, such as the two and four

dimensional systems of [20] and [12], the boundary of the laminar basin is the stable manifold

of a stationary point. As the model is enhanced by adding additional modes, the dynamics are

enhanced by a rich bifurcation structure [10]. The boundary of the laminar basin evolves into a

chaotic saddle with fractal dimension and is no longer a simple manifold. Although the entire

boundary is a fractal set, we have identified the edge as an invariant subset of that saddle, with the

special property that those points are precisely where an interval of laminar basin points touches

the saddle. In order to resolve the structure of the edge, we will study the dynamical properties of

that invariant set by studying edge trajectories. In this section, we focus on a relatively narrow

region of parameter space, restricting ourselves primarily to the range 380 ≤ Re ≤ 420, where we

have performed the bulk of the numerical experimentation.

[Note: although the edge is invariant, it is repelling. Consequently, the tools described in

the previous section are essential to the numerical calculation of edge trajectory. However, the

specifics of how we find the trajectories are not relevant to the observations about the dynamics.

Therefore, in this section, we make an a priori assumption that the trajectories reflect actual

trajectories on the invariant set, with no need to discuss the approximating algorithms.]

Periodic structure on the edge — 380 ≤ Re / 402. For this range of the parameter,

we find that a typical edge trajectory is asymptotically periodic. Our primary tool for classifying

these trajectories is a Poincare surface of section applied to an edge trajectory, which reveals that

edge trajectories converge rapidly to a periodic orbit. We denote this periodic orbit of the flow

as p+. Due to a symmetry in the system, periodic orbits must occur in pairs, and we denote the

symmetry orbit as p−. Figure 5.8 illustrates the complexity of these periodic orbits. Analysis of
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these periodic orbits indicate that they are unstable in only one direction, with an 8-dimensional

stable manifold, which we denote W s
p+ and W s

p− . In a 9-dimensional phase space, these manifold

are surfaces. We associate the single unstable direction with the repelling action of the edge. Since

we are focusing on the restriction of the dynamics to the edge, we use the term relatively stable to

indicate that these periodic orbits are stable with respect to flow on the invariant set. We remark
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Figure 5.8: Periodic orbit pair for Re = 390, graphed by plotting the y7 and y8 components

over one period. Edge trajectories will asymptotically approach either the red or the green orbit.

that the characteristic exponents of this periodic orbit are very different from those calculated for

the entire saddle set. For example, at Re = 390, the three largest Lyapunov exponents for the

periodic orbit are 0.048, 0,−0.005, while for the chaotic saddle (using the techniques of Chapter

4), the leading exponents are 0.021, 0.003,0.

We say that these orbits p+ and p− are relative attractors to indicate that although they are

unstable in the direction transverse to the edge, they attract nearby edge trajectories. While it is

impossible to perform an exhaustive search of phase space, we note that in this parameter range

where the edge periodic orbit has an 8-dimensional stable manifold, all numerical edge trajectories

asymptotically approach either p+ or p−. Similar results for planar maps are discussed in [17].

However, the high dimensionality of these models permits other behavior.

As the Reynolds number is increased toward Re = 402, the Poincare maps indicate that

the edge periodic orbits undergo period-doubling and period-halving bifurcations of the relative
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attractor. When a period-one orbit bifurcates to a period-two orbit, the period-one orbit remains

an edge trajectory, but the dimension of its stable manifold is reduced by one. However, the newly

emerging orbits have an 8-dimensional stable manifold and becomes the relative attractor. In our

terminology, the emerging period-2 orbit would be designated the p+ orbit and is relatively stable.

Using continuation methods, we are able to follow the period-1 orbit as we vary Re through

the bifurcation as it becomes unstable in two directions. We find that despite the additional

instability, the orbit remains on the edge. We say that the period-1 is now relatively unstable to

indicate that it repels nearby edge trajectories, and remark that while this orbit has two unstable

directions, one is transverse to the edge, while the other is tangent to the edge. We conjecture that

while the essential part of the edge is formed by the union of the 8-dimensional surfaces W s
p+ and

W s
p− , the edge is also embedded with the stable manifold of some number of relatively unstable

periodic orbits. A partial bifurcation diagram of observed orbits is provided in Fig 5.9. We note

that other periodic orbits may exist on the edge, but they are not detected because they never

achieve an 8-dimensional stable manifold.

Figure 5.9: Partial bifurcations diagram. The y3 component at the crossing of the Poincare

surface of section is plotted vs Re for the observed periodic orbits. Period-1 is plotted in black,

period-2 in blue, and period-4 in green. The dotted portions are show were those orbits are

relatively unstable. The discontinuity in the period-2 is indicates our inability to resolve specific

behavior.
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Chaos on the edge — Re ' 402. At Re ≈ 402, the relatively stable periodic orbit

loses stability in a saddle-node bifurcation. Consequently, it is not replaced by a periodic relative

attractor. We denote this critical value of the parameter as Rec. For Re > Rec (to the top of the

parameter range studied, Re = 420), although there are relatively unstable periodic orbits on the

edge, there are no periodic orbits with 8-dimensional stable manifold to form the edge. However,

we note that as an invariant set in phase-space, the edge continues to persist as a structure and it

appears to vary continuously as we move through both the periodic parameter range (Re < Rec)

and the new regime (Re > Rec). Figure 5.10 illustrates this structural robustness as viewed by

2-dimensional sampling.
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Figure 5.10: The edge structure is robust. The lifetime function, plotted on the same sample

set, for Re = 390, 400, 410,420. Despite the bifurcations of the relative attractor, the edge appears

to vary smoothly with changing Reynolds numbers.

Our numerical experimentation indicates that after the bifurcation at Rec, the invariant

saddle object appears to be a union of surfaces that are smooth deformations of W s
p+ and W s

p+ , the

stable manifold of the relatively attracting periodic orbits that existed just prior to the bifurcation.

Analysis of edge trajectories indicate that they are chaotic, with two positive Lyapunov exponents.

We conjecture that the leading Lyapunov exponent can be associated with the repelling action

away from the edge, while the second Lyapunov exponent is responsible for the chaotic motion of

trajectories on the edge. Table 5.1 provides some comparative data of leading Lyapunov exponents
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of various invariant sets at Re = 420.

Invariant set λ1 λ2 λ3 λ4

Period-1 orbit 0.094 0.008 0 −0.008

Edge orbit 0.045 0.012 0 −0.007

System saddle 0.021 0.004 0 −0.011

Table 5.1: Comparison of Lyapunov exponents for invariant sets at Re = 420. The period-

1 orbit is one of the low period orbits embedded in the relative attractor on the edge, and the

exponents of the relative attractor are very close to those of the periodic orbit. However, the

exponents of the relative attractor are vastly different from those of the system saddle because

typical chaotic transients visit near that attractor very infrequently.

Edge trajectories now converge to a more complicated, chaotic set, which we call a relative

chaotic attractor. Figure 5.11 provides a visualization of this more complex, higher dimensional

structure, by plotting coordinates of the Poincare return map. We note that a periodic edge orbit

would generate a finite set of discrete points, and quasiperiodic motion would generate a 1-d line of

points on the plot of the return map. Although the graph shows high density regions that appear

to be a nearly simple curve, their are many regions of the plot that show significant thickening.

We find that the thin portions of the plot of Fig 5.11 can be associated with relatively unstable

periodic edge orbits. Those orbits are only weakly repelling, so trajectories tend to shadow those

periodic orbits for long periods of time before being pushed to another part of the relative attractor.

The symmetry in the graph of Fig 5.11 seems to indicate that if periodic orbit Γ+ is embedded

in the relative attractor, then its symmetry pair, Γ− is also embedded, implying a heteroclinic

intersection of stable and unstable manifolds of at least one of these symmetry pairs.

If we assume that the leading Lyapunov exponent of the chaotic edge trajectory (denoted

λ1) is a direct indication of the repelling action of the edge, then we can determine the dimension of

the relative attractor using the formulation of [14], because the decay time for the chaotic invariant

set (the rate at which measure leaves the neighborhood of the edge) would be given by τ = 1/λ1.
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Figure 5.11: Relative chaotic attractor at Re = 420. Using points from a Poincare surface of

section, to the left we plot (y7, y8, y5) colored by y5. On the right is the same data, plotted in the

x7 − x8 plane, which better illustrates the symmetry. The relatively thin line of points that cross

from one side of the symmetry to the other indicate the path along the unstable manifold that

creates the heteroclinic intersection.

Under these assumptions, D1 ≈ 3.8 at Re = 420.

5.6 Initial studies at low Reynolds numbers

The majority of our numerical experimentation has focused on a range of moderately large Reynolds

number, where the model indicates a robust transient turbulence behavior. Additionally, we have

begun initial studies with small Reynolds numbers to see how edge analysis techniques might

provide insight into the conditions which support the onset of the transient turbulence behavior.

Our experimental approach is to choose a random unit vector v, and then study the behavior of

trajectories of y = γv over two parameters — Reynolds number Re and perturbation amplitude

γ — for a fixed v. Figure 5.12 shows maximum amplitude data, for a typical data set.

We use the maximum amplitude of a trajectory to determine if the initial condition is on

the “high-side” or the “low-side” of the edge, where we expect a discontinuity at the edge. Below

Re ≈ 130, there appears to be no discontinuity as we increase the amplitude of the perturbation.

We note that [10] reported that the first periodic orbits formed at approximately this value of
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Figure 5.12: The edge at low Reynolds number — Maximum Amplitude. Using a fixed

unit vector v we plot maximum amplitude for 1000 discrete perturbation γv for 70 ≤ Re ≤ 350.

The first crossing of the edge (moving from the laminar origin) is indicated by a discontinuity in

the Maximum amplitude function. The discontinuity appears to persist down to about Re ≈ 130.

Reynolds number. We conjecture that the first appearance of chaotic transients occurs when this

periodic orbit is formed. Using data from the same set of initial conditions as the Maximum

amplitude plot of Fig. 5.12 , we see that for Re < 130, the lifetime function appears to be a

smooth, without evidence of long transients or fractal structure (Fig. 5.13).

As we reduce the Reynolds number, we find that the edge moves continuously with the

change in parameter. However, the regions of smooth lifetime begin to grow dramatically. The

regions of phase space that contain the saddle set become very thin, making it increasingly difficult

to “find” a chaotic transient under an arbitrary perturbation. Figure 5.14 illustrates this thinning

of the saddle set. Although only partial analysis is complete, we note that while the relative

attractor at Re = 150 is a periodic orbit, a chaotic relative attractor is detected at Re = 250.

Additional work will be required to understand the precise route to chaos in those windows of the

parameter value that yield a chaotic relative attractor.

5.7 How are transients able to decay

Folds in the envelope. For all Reynolds numbers considered, the edge appears (at least locally)
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Figure 5.13: The edge at low Reynolds number — Lifetimes. In this plot, the horizontal

axes is Re, while the vertical is perturbation amplitude γ. (The initial conditions y are identical

to those of Fig 5.12.) We color this plot according to L(y)/Re. (Normalizing by Reynolds number

removes the linear affects that the parameter Re has on lifetime.) The dark blue region is the

low side of the edge. Below Re ≈ 130., lifetimes vary smoothly, with no long lived transients, and

therefore, there is no longer an edge.
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Figure 5.14: Thinning of the saddle at small Re. Lifetimes (normalized for Re) are plotted

over a two-dimensional sample set at four values of Re. The saddle set is detectable in a large

fraction of the phase space at Re = 280. As Re decreases, the area containing the saddle set gets

increasingly smaller. At Re = 180, the majority of phase space beyond the edge lies in a region of

smooth lifetimes (the light blue field). At Re = 120, there is no indication of an edge.
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to be a smooth, 8-dimensional surface, which could, therefore, separate phase space. Additionally,

we find that any line through the origin will cross the edge, with the exception of lines that

fall in the invariant 4-dimensional symmetry subspace of the system. Therefore, no matter what

direction we move from the laminar state, we find the edge. A reasonable question, then, is: “How

do chaotic transient (high-side trajectories) return to the origin (the low side)?” As a restatement

of the question, we can ask: “If we start from the origin, and move outward until we cross the edge,

how can we have a transient return to the origin (re-crossing the edge) if the edge is invariant?”

Part of the reason that this question is difficult to resolve intuitively is that we tend to focus on

the idea that the edge bounds a region of smooth lifetime. Our edge detection scheme (based

on amplitude) detects only the first crossing of the edge. However, on the other side of the edge

point lies a fractal structure of infinite lifetime points. Consequently, within any arbitrarily small

distance after first crossing the edge, there is an infinity of edge crossings. Although it is reasonable

to view the edge as locally providing a separation, this intuitive view cannot be extended globally.

The edge does create a separation of phase space — it separates the almost everywhere laminar

basin from the Lebesgue measure-0 saddle set.

Despite our intuitive difficulties, it is still reasonable to address the questions posed in the

above paragraph. For ease of explanation, we focus on the case where the relative attractor is

periodic. Then the edge is composed of two symmetric parts, but they are folded and intertwined

in a complex fashion, and there is space between the folds that provide a path to the origin. We

conjecture that for every basin point, we can find a line segments lying entirely in the laminar

basin such that one endpoint of the segment lies on W s
p+ and the other lies on W s

p− . Fig 5.15

illustrates how a “dying” transient weaves around the edge as it returns to the laminar state. In

essence, a transient trajectory does not need to “cross” the edge because it lies in a region that

is between the two “parts” of the edge. Although the trajectory may follow a circuitous path, its

neighborhood will always remain “between” the edge parts until it eventually reaches the origin.

As an alternative view, we may focus on the basin itself, instead of transient trajectories.

Consider the small ball of initial conditions Bε around the origin that defines states whose lifetime
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Figure 5.15: Terminal stages of a chaotic transient. The dotted line shows the trajectory

of a chaotic transient from the time it begins its final relaxation to the origin. At several points

along the trajectory we have computed the lifetime function along the direction in phase space

that points to the trajectory. The bolded portions of those lines show regions where the lifetime

function is fractal, while the unbolded portions lie entirely in the laminar basin. The “dying”

transient weaves around the folds, always remaining in a region that lies in the laminar basin. The

projection coordinate (vertical) for this figure is defined by A2 =
√∑9

i=2 y2
i . Data shown is for

Re = 390.

is 0. If we “grow” that ball by evolving that volume backward in time, we remain in the laminar

basin, but the evolved set will include points of increasing lifetime. (Figure 5.16 provides a cartoon

drawing of this process.) Initially, near the origin, phase space expands in all directions as we

evolve backward in time. However, as the boundary of the evolved ball approaches the edge, the

one positive Lyapunov exponent of the edge means that phase space will contract in one direction

under time reversal. We note that the system is dissipative, so although there is contraction in

one direction, the local phase space volume is expanding. As we continue to push backward in

time, the boundary of the ball becomes squeezed between the two manifolds that create the edge,

growing exponentially thin in that contracting direction.
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Figure 5.16: Cartoon: Laminar basin expands between the edges. If we evolve an ε ball

of the origin backward in time, it expands to the edge (as t → ∞.) This region of the laminar

basin lies between the two symmetric parts of the edge. As drawn, it shows that under evolution,

the boundary of the ball begins to shrink in at least one direction, and the distance between W s
p+

and W s
p− gets smaller. However, the volume of the evolved ball will continue to grow and will fill

almost all of phase space.
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5.8 The edge in the Horseshoe Map.

In our model of plane Couette flow, the edge plays a significant physical role in that (near the

origin) it separates the nearly laminar states from the transient turbulence. Our expectation is that

a similar behavior will persist in higher dimensional models, including full numerical simulations.

That expectation is based (in part) on the role that the horseshoe plays in chaotic dynamics. In

this section, we discuss the edge in a horseshoe map and prove that its edge is the stable manifold

of a fixed point.

To simplify the explanation, we consider a construct which Smale called the reduced horse-

shoe [30]. We start with the standard Horseshoe map M (x) (Fig 5.17a), acting on the rectangular

region B. To generate the reduced horseshoe, we proceed as follows: If we were to shrink box B

from the left, then M (B) gets thinner, but it also gets close to the left edge of B. Consequently,

we can shrink from the left until we find box B′ such that the left side of M (B′) exactly coincides

with the left edge of B′. Similarly, we can shrink from the right, top, and bottom to create box B′′

whose image M (B′′) reaches exactly to the bottom and right edges of B′′. By rescaling, we can

define the reduced horseshoe to be the map on the unit square. For ease of notation, we assume

that we simply redefine M to be the reduced horseshoe. The map is shown graphically in Fig

5.17b, with inverse in Fig 5.17c.

As is typical, we define the lifetime of a point x ∈ B to be the time that the trajectory of x

first leaves B. Almost every initial condition has a finite lifetime. The points of infinite lifetime lie

on a Cantor set of horizontal lines, which form the saddle set for this map. We note that the origin

is a fixed point, which immediately implies that it has infinite lifetime. Its local stable manifold

falls along the horizontal axis. To construct the global stable manifold, we take inverse images of

the local stable manifold, as illustrated in Fig 5.18a.

Let M (x) be the reduced horseshoe map on the unit square B. The set B ∩ M−1(B) is

composed of two horizontal rectangles. Denote the lower rectangle as H0 and the upper as H1

(See Fig 5.18b). We denote by λ the vertical expansion rate of M, which implies that the vertical

height of these rectangles is 1/λ.
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Figure 5.17: The reduced horseshoe map. (a) The standard horseshoe map, with saddle fixed

point in the lower left portion; (b) the reduced horseshoe map; (c) the inverse of the reduced

horseshoe.

Figure 5.18: Stable manifold and symbol dynamics for the horseshoe map. (a) The local

stable manifold (blue) is imaged under M−1 to produce the global stable manifold. The first three

iterates (red, black, and green) are shown in this figure. (b) Rectangles H0 and H1, used to assign

symbol dynamics, are bounded by the stable manifold.

As preliminary material, we define a symbol dynamics in the usual way: For each x ∈ H0 ∪

H1, we consider the possibly bi-infinite sequence Sx := {. . . , M−2(x), M−1(x), x, M (x), M2(x), . . .},

where Mk is the k times composition of M for k > 0, and the k times composition of the inverse

function for k < 0. The sequence is terminated to the right at the smallest integer k ≥ 0 such

that Mk+1 /∈ H0 ∪ H1, and terminates to the left at the largest j ≤ 0 such that M j−1 /∈ H0 ∪H1.

Then to Sx we can associate a symbol sequence σx := . . . a−2a−1.a0a1a2 . . . , where ai := 0 if

M i(x) ∈ H0, and ai := 1 if M i(x) ∈ H1. We call .a0a1a2 . . . the forward sequence.
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We make the following observations about symbol sequences of the horseshoe map:

• The symbol dynamics associated with the horseshoe is a full shift on two symbols.

• A bi-infinite sequence would indicate that x is a point on the forward and reverse time

invariant set — the chaotic saddle. Since the edge is defined from forward lifetimes, we focus

on points in the stable set of the saddle, which requires that they remain in B for all forward

iterates. These sequences are of the form X.Y, where X is a symbol sequence of arbitrary

length, and Y is of infinite length. We call .Y the forward sequence.

• Because M is contracting in the horizontal direction, all points on a horizontal line in B will

have the same forward sequence, and our terminology is to denote that horizontal line by its

forward sequence.

• The fixed point at the origin generates the symbol sequence . . .00.00 . . . .

• Any point on the horizontal axis in B will have a sequence forward sequence .00 . . . .

• Any point on the stable manifold of this fixed point will have a forward sequence of the form

.Y 00 . . . , with Y a finite arbitrary sequence.

• The horizontal line at the top of H0 is composed of points with forward sequences .01 00 . . . .

• The bottom and top of H1 contains points whose forward sequences are of the form .11 00 . . .

and .10 00 . . . respectively.

• Two horizontal lines of the form .Y Z1 and .Y Z2 are separated vertically by no more than

1/λr, where r is the length of sequence Y.

Theorem 5.1. The edge of the reduced horseshoe map is the stable manifold of the fixed point at

origin, W s
0 .

Proof. We break this proof into two parts. First, we show that the stable manifold of the origin

must lie on the edge. Secondly, we show that no other points in the stable set can be edge points.
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Part 1: Denote by BH the set of all points in B that are not in H0∪H1. BH is the rectangle

that lies between H0 and H1. All the points in BH leave B in one iterate, so BH contains no

points of the saddle set. Moving vertically from a point in BH , the first discontinuity occurs as we

cross the boundary of H0 or H1, which are part of W s
0 . Therefore, every point on the horizontal

line sequence .01 00 . . . lies on the edge. Because the edge is invariant, all forward and backward

images of those points will lie on the edge, which will construct the entire stable manifold of the

origin.

Part 2: Let w := X.a0a1a2 . . . be a right infinite sequence such that w /∈ W s
0 . Then for

each k, the horizontal lines .a0 . . .ak 0 0 . . . and .a0 . . .ak 1 0 . . . bound w from both above and

below. As k → ∞, these horizontal lines come arbitrarily close to each other and to w. Therefore,

any non-horizontal line segment with w as an endpoint must intersect infinitely many of these

horizontal lines. Therefore, w cannot be the endpoint of an interval of points with smooth lifetime.

Consequently, w is not an edge point.

We note that the argument above extends directly to the standard horseshoe map, where

the edge is defined by the stable manifold of the fixed point with symbol sequence . . .0.0 . . . .

5.9 Smoothness of the edge

Our numerical studies throughout the parameter range seem to indicate that the edge is smooth.

For those values of Re where the edge coincides with the stable manifold of a periodic orbit, the

theory of ordinary differential equations ensures that the surface is smooth. As we slowly vary

Re to a region where the relative attractor is chaotic, sampling suggests that the edge varies

continuously with the change in the parameter, so we conjecture that it remains a smooth surface.

Figure 5.10 illustrates this suggested continuous dependence on the parameter.

We conjecture that for this system, the edge is a smooth object. Although we cannot provide

a rigorous argument, we have three lines of thought that provide some justification that this is

a reasonable conjecture. These ideas also provide some insight into the more general question of

what characteristics of a system might lead to a smooth edge, since we know that some systems
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generate a fractal edge structure [31]. We emphasize that these ideas are not meant to prove that

the edge in our system is smooth, but merely provide some idea of possible approaches that might

lead to some rigorous conclusions.

• A Hausdorff dimension based argument. Suppose we have a chaotic saddle in some

n-dimensional system. Furthermore, let us suppose that the saddle set S (the stable set of

the saddle), with dimension Ds, is such that n − 1 < Ds < n, implying that a general line l

through phase space intersects S the saddle in a Cantor set. Let E be the set of edge points,

and denote by El the edge points in S ∩ l, the endpoints of the removed intervals of that

Cantor set. As a countable set, El will have Hausdorff dimension 0. If we assume the El is

representative of a general intersection of E with a line through phase space, then dim El = 0

implies dimE ≤ n − 1. On the other hand, since a general line through phase space has a

non-empty intersection with the edge, we know dimE ≥ n − 1. Consequently, we conclude

that if these general intersections apply, then

dimE = n − 1.

We would infer from this dimension argument that the edge is not a fractal object. Researches

have found that in typical dynamical systems, it is usually the case that the box counting

dimension and the Hausdorff dimension are equivalent [32].

• A D1 dimension argument. In our model of plane Couette flow, we found that when the

relative attractor changes from a periodic orbit to a chaotic object, the leading Lyapunov

exponent does not change very much and that the edge appears to move continuously through

phase space. In the periodic situation, that leading exponent is the only one that is positive

and represents the repelling action from the unstable edge object. If we assume that in the

parameter range where the system is chaotic, the leading exponent remains associated with

the repelling action away from the edge, then we can use the formulations of [14, 15, 22]

to find the D1 dimension of the edge, proceeding as follows: We treat the chaotic relative

attractor as the chaotic saddle, and its stable set is the edge, E. Then the decay time, τ,
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for this analysis would describe the rate at which nearby trajectories leave the neighborhood

of the edge. If we assume that the leading Lyapunov exponent, λ1, is associated with the

repelling action that is transverse to the edge, then

1/τ = λ1.

As the most direct calculation, we apply the formulation of [15], and conclude that

dimE = n − 1
τλ1

= n − 1.

Again, this argument provides some evidence that the edge is a surface, but does not directly

address the issue of smoothness.

• Smoothness of the edge is a result of the strong repelling action. It has been shown

that in some dynamical systems, the edge is a fractal object [31, 33]. The authors consider

the map

xn+1 = λxxn mod 1

yn+1 = λyyn + cos(2πxn),

with λx > 1 and λy > 1. For almost every initial condition, the trajectory diverges to either

∞ or −∞ in the y component. However, there is an invariant set that remains bounded,

and this separating curve can be described analytically as a function of x. The authors show

that if λy > λx, the curve is smooth, while if λx > λy, the curve is continuous, but nowhere

differentiable.

We conjecture that a similar condition should hold in higher dimensions. Specifically, if phase

space is expanding away from the edge at a rate that is bounded below by some value λ⊥,

and the expansion rate of phase space tangent to the edge is bounded above by λt, then the

edge will be smooth as long as

λ⊥ > λt.
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5.10 Concluding remarks.

The edge of chaos described here is significant for issues such as control of turbulence. In particular,

if the goal is to prevent a turbulent transient, then the ability to describe the portion of the edge

that it nearest the origin is of crucial physical importance. The fact that almost every point is in

the laminar basin is of little practical utility. Once the system is perturbed beyond the edge, it will

undergo a large amplitude transient. From an engineering perspective, knowing the location of the

edge allows the system designer to design a control system that will prevent the large excursions. If

it is possible to prevent the approach to the edge, the laminar profile can be kept stable. Similarly,

if one wants to re-laminarize a turbulent flow using small perturbations, understanding the edge

structure might allow for efficient targeting of a portion of phase space that allows rapid decay

to the origin. We expect that the edge structure will be detectable in high-dimensional models,

including full scale simulation. Additionally, we believe that in other systems with robust transient

chaos, one should be able to find the edge in these systems, and the edge will have similar physical

significance in efforts to control these systems.
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Chapter 6

Many fixed points

6.1 Introduction

Chaotic transients have become an important part of the field of dynamical systems because they

often arise in higher dimensional models of physical phenomena. Such transient behavior indicates

the presence of a chaotic saddle. Because these saddle invariant sets are unstable, they are dif-

ficult to study without specialized algorithms [19, 25, 13, 18] that allow the computation of long

trajectories near the saddle. These long trajectories can then be analyzed with techniques that are

similar to the ones that are routinely used to study chaotic attractors. In application and demon-

stration of these algorithms, most of the work has focused on low dimensional systems. In concept,

the techniques may be applied to higher dimensional systems, but we find little demonstration of

that application in the literature, particular in the case where the saddle is hyperchaotic (multiple

positive Lyapunov exponents).

Our goal was to find a system with a chaotic saddle with a large number of positive Lyapunov

exponents to truly challenge these algorithms. The system selected was a slight modification to

the Lorenz 40-variable model of the weather [34], where we replace an affine term with a cubic

f(xi), which we associate with the forcing of the system:

ẋi = xi−1xi+1 − xi−1xi−2 − xi(xi − a)(xi − b)︸ ︷︷ ︸
f(xi)

, i = 1, . . . , n, (6.1)

By controlling parameter values a and b, we have been able to study chaotic saddles whose number

of positive Lyapunov exponents can be as large as about n/4.

A very interesting structure arises in this system because there are a large number of fixed

points that are associated with 0’s of f(xi). The number of fixed points grows exponentially with

the size of the system (for n = 40, there are more than 5 × 1010 fixed points, and about 5 × 107

of those are stable). Consequently the attractor for the system, though not a strange attractor, is
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still a very complex set.

The complexity of the attractor causes a computational difficulty for the standard ap-

proaches to analyzing chaotic saddles. Those techniques rely upon finding a set A which contains

the saddle but excludes the attractor. The lifetime of a trajectory is computable for each point in

A by determining how long before the trajectory leaves the set. However, for the large number of

stable fixed points for this system, the algorithmic step of identifying this stopping point would be

computationally impractical. Therefore, we develop an alternate technique for assigning a lifetime

value to each point that is based on finite time Lyapunov exponents. The technique appears to be

broadly applicable to problems where the attractor cannot be easily described.

The primary advantages of the lifetime function defined in this chapter are:

• Lifetime is based on behavior near the chaotic saddle. Consequently, it can provide an

accurate representation of the location of the saddle in phase space directly from the lifetime

computation.

• Multiple attractors, including periodic orbits, have no effect on the computational effort

required to compute lifetimes.

• It requires no knowledge of the number or type of attractors of the system, as long as the

attractors are not chaotic.

• It requires no knowledge of the basins of attraction for the attractors in the system.

We believe that as the study of chaotic saddles is pushed to analyze higher dimensional systems,

it may become too difficult to perform the necessary analysis to define a lifetime function in the

standard way. The method described in this chapter provides a means to study these more complex,

high dimensional saddle structures.

This chapter is organized as follows: in Section 2, we formally describe the system and

provide some basic analysis to describe the general behavior of the system. In Section 3, we

provide detailed analysis of the attractor structure of the system. Sections 4 develops the theory

of our new lifetime function, and in Section 5 we develop an algorithm that provides a computable
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implementation. In Section 6, we provide some numerical results regarding the system.

6.2 System description.

The original 40-variable system of [34] is given by

ẋi = xi−1xi+1 − xi−1xi−2 − xi + F, i = 1, . . . , n, (6.2)

where we define x−1 = xj−1, x0 = xj, and xj+1 = x1. One of the motivations for this choice is that

we note that
∑

i

xi(xi−1xi+1 − xi−1xi−2) = 0.

Therefore, using the natural energy function

E =
1
2

∑

i

x2
i ,

we compute

Ė =
∑

i

xi(−xi + F ),

where the derivative is taken along trajectories of the system. In the original system, this was used

to conclude that for fixed F, trajectories would be bounded and the origin would be unstable.

Motivated by this system, we define the cubic system by

ẋi = xi−1xi+1 − xi−1xi−2 − xi(xi − a)(xi − b)︸ ︷︷ ︸
f(xi)

=: gi(x), i = 1, . . . , n, (6.3)

with 0 < a < b, and g(x) is defined simply for ease of notation. Our goal in choosing this description

was to take advantage of the basic structure of the system while providing two control parameters.

Consequently, we are able to increase the number of positive Lyapunov exponents of the saddle

while preventing the system from developing a chaotic attractor.

Applying the natural energy function, we find that

Ė =
∑

i

−xif(xi) =
∑

i

−x2
i (xi − a)(xi − b). (6.4)

We can immediately conclude that the origin is now stable. Additionally, if xi > b for all i,

then the energy is decreasing, so trajectories remain bounded. Energy is added to the system
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by each component satisfying a < xi < b. Although we cannot prove that no chaotic attractor

exists, experimentally, we find that the system asymptotically approaches either a fixed point or a

periodic orbit.

6.3 Fixed points

Let xf be a fixed point of the system, and therefore satisfying

gi(xf ) = 0, ∀i. (6.5)

Although we see no general technique that identifies all solutions to (6.5), we are able to locate a

large subset of the solutions by noting the following: If we restrict to the finite domain xj ∈ S =

{0, a, b} for all j, then the cubic term in gi is 0, and we can solve the simpler system,

g̃i(x) = xi−1(xi+1 − xi−2) = 0, i = 1, . . . , n, (6.6)

by considering solutions represented by length n sequences on the three symbols {0, a, b}. Although

there are 3n such sequences, not all such sequences are solutions to (6.6). Our goal is to both

enumerate and understand this solution subset, which we call special fixed points and denote by

the symbol S.

6.3.1 Allowable sequences and solutions.

Since we desire to generate sequences that are solutions to (6.6), we define a process on the symbols

of set S that will satisfy g̃i(x) = 0 for arbitrary i :

if xi−1 6= 0 then xi+1 = xi−2

if xi−1 = 0 then xi+1 ∈ S

(6.7)

We can express this process via a digraph G as follows: Since the possible future states of the

system are determined by the triple (xi−2, xi−1, xi), we let vertices of the graph be represented

by a three symbol sequence. There is an edge from vertex tuv to vertex uvw if setting xi−2 =

t, xi−1 = u, xi+1 = w satisfies (6.7). The complete digraph, G, is shown in Fig 6.1.
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Figure 6.1: Digraph G.

As we move from one vertex to the next along an edge of G, we are, in essence, adding only

the symbol w to our generated sequence. Therefore, a walk of length n in the graph can be placed

in 1-1 correspondence with a symbol sequence of length n. Since a solution to (6.6) must satisfy

(6.7) for all i, and our indices are taken mod n, the resultant condition in terms of the graph is

that the walk of length n must be closed — it must begin and end at the same vertex. To count

the number of special solutions, we apply some additional results from graph theory. Let A = [aij]

be the adjacency matrix of G, defined by labeling the 27 vertices of G as e1, . . . , e27 and let aij = 1

if there is an edge from ei to ej , and 0 otherwise. Let C = An. Then a well known result from

graph theory tells us that cij is the number of length n walks from ei to ej [35]. Since solutions

must be closed walks on G, we can compute the cardinality of S by summing the main diagonal of

C :

‖S‖ = N (n) =
27∑

i=1

cii = tr An. (6.8)

Fig 6.2 shows a plot of logN as a function of n and indicates that the number of solutions grows

exponentially with n, with N (n) ≈ (1.8516)n, (whereas a full shift on three symbols would grow

as 3n).

Although the symbol dynamics defined by graph G could be studied as a discrete dynamical

system, our primary focus remains understanding the character of the special fixed points. As
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Figure 6.2: A plot of logN (n) indicates that the number of fixed points grows exponentially with

the dimension of the system.

such, we address only a few of the consequences of those dynamics which apply whenever n ≥ 4.:

1. Three adjacent non-zero entries force the entire sequence to be a repetition of those three

symbols. Example: (a, a, a, . . .), (b, b, b, . . .), (a, a, b, a, a, b, . . .), (a, b, b, a, b, b, . . .).

2. As a corrolary to item (1), if a sequence contains a 0, then at most two non-zero compo-

nents may be sequential. Therefore, at least 1/3 of the components must be 0. Example:

(. . . , 0, u, v, 0, u, u, 0, u, . . .).

3. When at least two zeroes separate portions of the sequence, the sequence is separated into

two independent parts. Example: (‘word 1’ , 0, 0, ‘word 2’, 0, 0), where word 1 and word 2

are any allowable subsequences that contain a 0.
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6.3.2 Stability analysis of special fixed points.

Linear stability analysis is based upon finding the eigenvalues of the Jacobian matrix, J, at each

of the fixed points. The required partial derivatives to compute J are

∂gi

∂xi−2
= −xi−1, (6.9)

∂gi

∂xi−1
= xi+1 − xi−2, (6.10)

∂gi

∂xi
=





−ab if xi = 0 ,

a(b − a) =: ad > 0 if xi = a ,

−b(b − a) =: −bd < 0 if xi = b ,

(6.11)

∂gi

∂xi+1
= xi−1, (6.12)

where d := b − a, defined for ease of notation, will become a key parameter in determining the

stability of the fixed points. All other partial derivatives are 0, resulting in a Jacobian matrix

with entries concentrated near the main diagonal. For the general element of S, the constraint of

(6.7) forces further sparseness along the sub-diagonals. However, the circular indexing convention

allows the possibility that the upper right and lower left corners of the Jacobian may be non-zero.

The fixed points at b = (b, b, b, . . .) and a = (a, a, a, . . .). The Jacobian for these points

are circulant matrices, where each row is a circular shift to the right of a previous row:

Jb = b




−d 1 0 . . . 0 −1 0

0
.. . . . . . . . . . . −1

−1
.. . 0

0
.. .

...

...

. . . 0

0
.. . . . . . . . 1

1 0 −1 0 −d




, Ja = a




d 1 0 . . . 0 −1 0

0
.. . . . . . . . . . . −1

−1
.. . 0

0
.. .

...

...

. . . 0

0
.. . . . . . . . 1

1 0 −1 0 d




.
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The circulant structure allows easy closed form computation of the eigenvalues. Using standard

results from linear algebra, one finds that the eigenvalues of Jb are given by

pb(z) = b
(
−d + z − z−2

)

evaluated at each of the nth roots of unity in the complex plane. To make a general conclusion

(for arbitrary n), we proceed as follows: Consider the image of the unit circle |z| = 1 under the

transformation

p1(z) = z − z−2,

which is given graphically by Fig 6.3. pb(z) is a shift (by −d) and a scaling of that image, and

−2 0 2
−2

−1

0

1

2

Image of  z=1 under  p
1
(z) p

b
, a = .1, b = .8

−2 −1 0
−2

−1

0

1

2

Figure 6.3: (L) The image of |z| = 1 under the map p1(z) = z − z−2. The maximum real part of

the image is 9/8. (R) pb(|z| = 1) for a = .1, b = .8. The asterisk values indicate the eigenvalues for

the case n = 20, showing the fixed point to be a saddle with a six dimensional unstable subspace.

all eigenvalues of Jb must fall on that curve. It is a simple exercise in complex arithmetic to show

that the maximum real part of Λ = {p1(z)||z| = 1} is 9/8. Therefore, whenever d = b − a > 9/8,

all of the eigenvalues will have negative real part, and b is stable, and otherwise, the point is a

saddle. A similar analysis of Ja shows that its eigenvalues must fall on the scaled image of Λ after

it has been shifted to the right by d (and then scaled by a). So a is a saddle for d < 2, and an

unstable node or focus otherwise. The saddle behavior as a function of d is illustrated in Fig 6.4,

which plots the number of unstable directions as a function of d = b − a.

Analysis of other special fixed points. To determine the stability of the other fixed

points requires a detailed case by case analysis of each of possible subsequence and we are not able
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Figure 6.4: A plot of the number of unstable directions at a (upper curve) and b (lower curve) for

n = 20.

to provide complete results. We note that if (0, 0, 0, 0) appears in the fixed point, we can arrange

the Jacobian to force a block lower triangular structure and determine the spectrum explicitly.

Additionally, many other patterns allow the reduction to block lower triangular form. Analysis of

those special cases, as well as numerical experimentation leads to the following observations and

conjectures:

Observations:

• The origin is always stable, with all eigenvalues −ab, with Jacobian diag{−ab, . . . ,−ab}.

• The fixed point b = (b, b, b, . . .) may be either attracting or a saddle, with its character

depending only on the difference b − a.

• The fixed point a = (a, a, a, . . .) is always unstable, but may be either a source or saddle,

again dependent upon the difference b − a.

• Fixed points where all components are either 0 or b are stable as long as there is at least one

component that is 0.

Conjectures:

• If any component is a, the fixed point will have some eigenvalues with positive real part and

some with negative real part.
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• Let na be the number of a components in the fixed point. Then the dimension of the unstable

subspace is either na or na − 1 or na + 1.

To count stable fixed points, we simply need to identify all possible sequences that use only

the components 0 and b. Using the same graph approach as for counting all fixed points, we develop

graph Gb, which is a subgraph of G, and is illustrated in Fig 6.5.

000

bb000b

0bbbbb

b b0b00

0 0b

Figure 6.5: Digraph Gb, generates allowable sequences using only the symbols 0 and b.

From Gb, we identify the associated adjacency matrix B. We apply the same counting ap-

proach as in §6.3.1, but now defining D = [dij] = Bn, to find the number of stable fixed points

Nb(n) =
8∑

i=1

dii = tr Bn, (6.13)

which can be estimated by Nb(n) ≈ (1.559)n. We note that inclusion of the vertex (b, b, b) generates

the fixed point b which may not be a stable fixed point, but is included for completeness. Fig 6.6

illustrates the exponential growth of (6.13).
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10
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10
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Number of stable fixed points

Figure 6.6: A plot of log Nb(n) indicates that the number of stable fixed points grows exponentially

with the dimension of the system.
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6.3.3 Brief comments on other attractors in the system.

The identification of other attractors in the system has been primarily through numerical simula-

tion. We find that in the parameter range where we focused our attention (b ≤ 0.5), most of phase

space is attracted to one of the stable special fixed points. Occasionally, a random initial condition

would approach some other stable fixed point, but this occurred in only a small percentage of the

cases, and only when n/4 was an integer. The resultant fixed point was a circular repetition of

four values, (x1, x2, x3, x4, x1, . . .), where at least one of those components must be negative. This

solution was the fixed point of the system when n = 4, repeated via the circular symmetry of the

problem. For b ≈ 2, the asymptotic solution was sometimes a periodic solution, which further

complicates the overall attractor structure.

6.4 Defining a Lifetime Function

Background. The general language which facilities description of chaotic transients is the lifetime

function. We assume that the chaotic saddle S is contained in some compact set B, where B∩A = ∅

for any attractor A for the system. Therefore, a.e. trajectory that starts in B will eventually leave

that set. If we define x(t) to be the trajectory of the initial condition x0 under the dynamics of

the system, then we define the lifetime L of a point x0 ∈ B as the time that the trajectory first

leaves B :

L(x0) = min
t
{t|x(t) /∈ B}.

Since the chaotic saddle is invariant, if x0 ∈ S, then L(x0) = ∞. As a corrolary, it is assumed that

we can define a “long” lifetime Lt, such that if L(x0) > Lt, then x0 is “close” to S.

The above approach has been used successfully to implement various algorithms that seek

to explore the set S [19, 25, 13, 18]. However, we note that some systems do not lend themselves

to easy implementation of the typical lifetime function described above. In particular, we note

three specific difficulties that may arise.

1. In general, all attractors must be known to define an appropriate set B. For many systems,
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especially with n > 2, it may be very difficult to ensure that all fixed points and stable

periodic orbits have been identified.

2. If the attractor is not a single point, but rather a collection of fixed points, stable periodic

orbits, and unbounded trajectories, the set B becomes significantly more complicated, with

potentially less confidence that the choice satisfies the conditions that S ⊂ B and B ∩A = ∅.

Moreover, the computational difficulty in determining the first time T such that x(T ) /∈ B

may be excessive.

3. If one cannot determine an a priori estimate of the basin of attraction of A, then to provide the

greatest assurance that S ⊂ B one would choose B to be as close as possible to the attractor

A. Consequently, a trajectory may spend significant time far from the saddle before it exits

B. The lifetime, then, may be dominated by slow dynamics away from the saddle, making it

difficult to determine a reliable threshold, Lt.

A new lifetime function: Theory. As indicated by §6.3, the system we are considering

in this paper certainly creates the difficulties generated by a complicated attractor. To attempt to

overcome these obstacles, we develop a lifetime function that relies on the fact that the invariant

set has at least one positive Lyapunov exponent. We assume that near the invariant set, the system

will show sensitive dependence on initial conditions for almost every initial condition. at least for

some finite time interval. Moreover, we assume that for most trajectories, exponential divergence

of nearby trajectories will be detectable after a fixed, finite integration time.

The basic idea is that a trajectory near the chaotic saddle will behave like a chaotic tra-

jectory, and nearby initial conditions would diverge over time, which implies that phase space is

locally expanding in at least one direction. Since the saddle is unstable, the trajectory will even-

tually move away from the invariant set and toward the attractor, where phase space on average

is contracting in all directions. We will define a lifetime function that is based on identifying this

change in expansion properties. In the neighborhood of attracting fixed points , nearby trajectories

converge over time, which is relatively easy to detect. However, attracting periodic orbits in an

autonomous system present an additional difficulty in that ω-limit set for nearby trajectories is
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the periodic orbit itself. Points on the periodic orbit do not converge in the direction along that

periodic orbit. Therefore we will define lifetime by requiring only that nearby trajectories are

converging in the directions transverse to the flow.

Formal definition of the lifetime function for bounded trajectories. Consider the

dynamical system in Rn given by

ẋ = F (x) (6.14)

We define the lifetime of the point x0, denoted L(x0), as follows: Let x(t) be the trajectory

satisfying (6.14) with x(0) = x0. Linearizing about that trajectory leads to a variational equation

of the form

ξ̇ = J(t)ξ, (6.15)

where J(t) is the Jacobian of F (x) evaluated at x(t). The linear system (6.15) yields a fundamental

solution matrix, Φ(t) such that ξ(t) = Φ(t)ξ0, ξ0 = ξ(0). Since we are interested in the behavior

of trajectories perturbed perpendicular to the flow, we define set

A(x0) = {ξ0 s.t. ‖ξ0‖ = 1 and ξT
0 F (x0) = 0},

the intersection of the unit ball with the perpendicular hyperplane. We define a scalar amplitude

function

A(t) = max
ξ0∈A(x0)

‖Φ(t)ξ0‖. (6.16)

If phase space is expanding, then A(t) will increase (on average). When the trajectories enter

a contracting area of phase space, A(t) will decrease. As the trajectory approaches an attractor,

A(t) → 0. Our lifetime function marks the transition from expanding to contracting phase space,

which we take to be when A(t) reaches its maximum value. Since it is possible for A(t) to achieve

its maximum at two different times, we ensure that L(x0) is well defined by choosing the first time

at which A(t) achieves a global maximum:

L(x0) := min
t
{t : A(t) = max

t
A(t)}. (6.17)
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6.5 Implementation of the lifetime calculation.

Numerical implement of the lifetime function defined above presents three computationally diffi-

culties:

1. For an n dimensional system, calculation of the tangent bundle (to calculate Φ(t)) requires

solving an n(n+1) dimensional ODE. For large n, that calculation may become impractical.

2. To determine A(t) for each fixed t, we must perform a maximization which is computationally

comparable to an induced matrix norm operation, which will be very time consuming.

3. The definition also requires us to find a global maximum of A(t). In general, a numerical

calculation of a global extrema has some risk that the extrema is not within the (finite)

search domain.

Our algorithm is specifically designed to reduced the computational issues of items (1) and (2)

using a reasonable approximation technique. We are unable to avoid the third computational

issue. However, our search technique guarantees that the actual lifetime is at least as large as the

computed lifetime. We discuss the implication of this error near the end of this section.

To reduce the size of the system to be integrated, Our simplified numerical approach is

based on the fact that under the evolution of a flow, almost every perturbed initial condition tends

to align to the most unstable direction of the system. Therefore, instead of computing A(t), we

estimate its behavior by monitoring the difference between the nominal trajectory and a nearby

trajectory. We call this difference δ(t), and define Aδ := |δ| as our approximation to the amplitude

function A(t).

To ease the notation required to describe the computational algorithm, we define the fol-

lowing operators:

1. Flow operator φt, which is the flow of the original system , such that x(t) = φtx0 is a solution

to (6.14) for all x0.
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2. Projection operator Px, defined as

Px(v) := v − F (x)
vT F (x)
|F (x)|

,

which projects v onto the hyperplane perpendicular to the trajectory of (6.14) at x = x(t).

3. Normalizing operator N , where

N (x) :=
x

|x| .

Algorithm Description. Our goal is to compare the nominal trajectory of x0 with a

perturbed trajectory. We desire to approximate the dynamics of the linearization, so we select a

small positive scalar ε, and let

δ0 = εN
(
Px0((1, . . . , 1)T )

)
,

which yields an ε sized perturbation in a direction perpendicular to the flow. The evolution of the

perturbation is given by

δ(t) = φt(x0 + δ0) − φt(x0).

If Aδ grows too large, our computation is not providing a good approximation of the lin-

earized equation, so we rescale back to the linear regime as follows: Let M > ε be a small positive

number such that if Aδ < M, then the linear approximation is reasonable. If Aδ(t̂) = M then we

rescale by letting

x̂ = φt̂(x0), (6.18)

δ̂ = εN
(
Px̂

(
δ(t̂)

))
, (6.19)

and redefining δ(t) on the interval t ≥ t̂ as

δ(t) = φt(x̂ + δ̂) − φt(x̂). (6.20)

In addition to rescaling, (6.19) projects the perturbation back to the tranverse hyperplane, which

eliminates any tangential component which may have been generated by the non-linear evolution

of the flow. Fig 6.7 illustrates this rescaling and projection.

88



The above discussion describes how we will compute Aδ(t). In principle, we seek the global

maxima of that function which would require an infinite search. Instead, we will search only

some finite period beyond the time of a possible global maximum. Specifically, we let T ∗ > 0 be

a sufficiently large increment of time such that if Aδ(t) ≥ Aδ(t + s) ∀s ∈ [0, T ∗] then we will

assume Aδ(t) ≥ Aδ(t + s) ∀s ≥ 0. We note that as T ∗ → ∞, this search technique yields the

global maximum. Choosing T ∗ large increases our probability of correctly identifying the global

maximum, but it also increases the time to perform the optimization. The algorithm to calculate

L(x0) is given in Table 6.1.
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|δ| = ε

|δ̂| = ε

Aδ(t̂) = Mφt(x0)

φt(x0 + δ0)

φt(x̂ + δ̂)

Figure 6.7: When the difference between the nominal trajectory, φt(x0) and the perturbed trajec-

tory φt(x0 +δ0) gets too large, the perturbation is projected to the plane perpendicular to the flow

and rescaled to size ε.
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Remarks

1 Input x0

2 Set ε, M, T ∗ Algorithm parameters as described above.

3 L = 0, A = ε,

δ0 = εN
(
Px0((1, . . . , 1)T )

)

tr = 0

L = L(x0) will be computed. A holds the maxi-

mum amplitude value. δ0 is as discussed above. tr

tracks the time of the last rescaling and projection

operation and is used in determining a stopping

criteria.

4 While Aδ ≤ M and t ≤ L + T ∗ :

Compute δ(t) forward in time.

Let A = maxtr≤s≤t Aδ(s)

Let L = mintr≤s≤t{s : Aδ(s) = A}

end while

Calculation of δ is via some numerical integrator.

The stopping criterion for the “while loop” are:

(1) the perturbation grows too large (which re-

quires rescaling), or (2) we have evaluated T ∗ units

beyond the time of the last maxima. A and L are

updated to track the time of the last maxima.

5 If A = M then:

A = ε, tr = t,

rescale δ(t) to size ε.

goto step 4

end if.

Rescaling of δ is as indicated by (6.19). Since

this step was reached by pausing the integration

at the point where Aδ was increasing through M,

the global max could not have yet been reached.

Therefore, reseting A and |δ(t)| to size ε does not

invalidate the forward time search for the maxi-

mum.

6 Output L To reach step 6, the current time t is T ∗ units be-

yond the time of the maximum (L), which satisfies

our stopping criteria for the search for the global

maxima.

Table 6.1: Algorithm for computing lifetime.
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Implications of finite search for global maximum — choosing T ∗. The theoretical

algorithm requires determining the time of global maximum for the amplitude function. However,

our search is on a finite domain. The immediate implication is that the actual lifetime of a point

must at least as great as the computed lifetime. Therefore, the algorithm may “miss” some points

that are near the saddle, and assign them a “short” lifetime. Since our search extends beyond L

by T ∗ time units, our approximating algorithm yields

Lactual ≈ Lcomputed or Lactual ≥ Lcomputed + T ∗.

By appropriate choice of T ∗, we significantly improve the likelihood of correctly approximating

the lifetime. Our technique for choosing T ∗ is as follows: Let Lτ (x0) be the calculated lifetime

of x0 under the parameter choice T ∗ = τ. As τ → ∞, Lτ (x0) will monotonically approach the

time of the global maximum for Aδ. From graphical inspection of a few plots of Aδ(t) for typical

trajectories, we choose a time τ such that τ is longer than the time between local maxima of Aδ.

Our basic approach is to compute Lkτ for increasing values of k until we no longer see an increase

in computed lifetime. When we find k large enough so that Lkτ = L2kτ for a test ensemble of

initial conditions, we set T ∗ = kτ.

6.6 Some numerical results on the chaotic saddle.

The fundamental goals of our numerical experimentation were:

1. Assess the general behavior of the chaotic transient.

2. Determine the effectiveness of the our lifetime algorithm in providing accurate classification

of points near the chaotic saddle.

3. To employ the lifetime function as part of a Step-and-Stagger approach to identifying the

chaotic saddle. Using this approach, determine the number of positive Lyapunov exponents

of the saddle.

General behavior. For a large subset of initial conditions, the trajectory has a chaotic

transient period before decaying to one of the special fixed points (when n is a multiple of 4, a
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nontrivial fixed point was often located). As a typical example: Using a = 0.2, b = 1.2, n = 20,

(so that (b) was unstable) we initiate 5193 random initial conditions with b < xi < b + 1. Of

those 5193, there were 1113 that were attracted to a circular permutation of a fixed point of the

R4 system, (0.9891, 0.1928,−0.3198,−0.3212, . . .). The rest of the trajectories all approached one

of the special fixed points, with 1495 different special fixed points identified. Fig 6.8 shows a

graphical representation of the special fixed points reached. Fig 6.9 displays the distribution of

lifetimes of those initial conditions, plotting f(L), the fraction of points whose lifetime is at least L.

The exponential distribution of lifetimes is typical of chaotic saddles. The mean lifetime is ≈ 144.
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Figure 6.8: For the 4080 trajectories that ended at a special fixed point, the fixed point with

components 0 and b are represented by white and black spaces respectively. The rows are shown

in sorted order to illustrate the distribution of various fixed points.

Figure 6.9: A plot of f(L), the fraction of sampled points whose lifetime exceeds L. The linear

graph on the semilog plot indicates an exponential distribution of lifetimes.

Effectiveness of the lifetime computation. We repeated the above experiment with the

same parameter value and method of selecting initial conditions, but using n = 30. The calculated

mean lifetime increase to ≈ 290. Of the 1908 points included in the data run, all but 93 had

converged to one of the special fixed points at the termination of the lifetime calculation (when

using a search interval value of T ∗ = 1000. Further analysis of those 93 points indicated that the

trajectories had entered a portion of phase space that appeared to be near the stable manifold of
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an unstable periodic orbit. When recomputed using T ∗ = 2000, all had a longer lifetime, and at

the termination of that lifetime calculation, all were converging to one of the special fixed points.

The fact that we found no non-special attracting fixed points reflects our observation that we found

such attractors only when n was divisible by 4.

As an example of the algorithms ability to detect periodic attractors, we provide the fol-

lowing example for a = 0.1, b = 1.9, n = 30. With randomly chosen initial conditions satisfying

a < xi < a + 1, we find that about 10 percent of the trajectories are attracted to periodic motion.

Figure 6.10 shows a portion of the trajectory for such an initial condition z. L(z) was computed to

be 322.8, (the vertical bar on the plot) which appears to match where the trajectory passes from

chaotic to periodic motion.
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Periodic attractor, a=0.1, b=1.9, n=30 

Figure 6.10: With a = .1, b = 1.9, n = 30, about 10 percent of the trajectories approach a

periodic attractor. The computed lifetime for this trajectory was 322.8, which appears to mark

the transition from chaotic to periodic motion.

Hyperchaotic saddle behavior. When b − a < 1.125, the fixed point b, is unstable.

Therefore, if the system is to settle into one of the special fixed points, at least 1/3 of the com-

ponents must fall into its potential well near xi = 0. Since a provides an upper bound for the

size of that potential well, when a is small, the system spends significant time in the transient

chaos region. We find that the increase in lifetime (with decreasing a) is matched by a gradual
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growth in the number of positive Lyapunov exponents. Additionally, when b − a is reduced, the

potential well at b is reduced, which may further increases the hyperchaos of the saddle. We used

the Step-and-stagger technique to find long numerical trajectories that were sufficient to approxi-

mate the Lyapunov spectrum. The smallest value for a that we examined was a = .01. We believe

that additional increases in the number of positive Lyapunov exponents may be achieved by fur-

ther decreases in a, but we did not examine those cases due to the additional computational time

required to maintain accuracy of the algorithms. Despite the high dimensional problem and the

hyperchaotic structure of the saddle, Step-and-Stagger efficiently computed long trajectories. We

note, however, that the algorithm could not have been implemented on this problem without the

new lifetime function defined above. Some select results are provided in Table 6.2.

Dimension parameters Leading Lyapunov exponents

n = 20 a = .01, b = .3 .07 .05 .04 .025 .02 .008 .0015 − .0013

n = 20 a = .01, b = .5 .12 .11 .07 .05 .03 .013 − .001 − .01

n = 20 a = .01, b = .8 .20 .16 .11 .07 .01 − .002− .03

n = 10 a = .01, b = .8 .16 .07 .003 − .03

n = 30 a = .01, b = .8 .21 .19 .14 .12 .08 .06 .03 .001 .0001 − .02

n = 40 a = .01, b = .8 .20 .19 .17 .14 .11 .10 .08 .06 .03 .026 − .0045

Table 6.2: Leading exponents calculated for the chaotic saddle.
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Chapter 7

Future Work

The results of this thesis lay the groundwork for some fruitful areas of further research. The

following paragraphs outline some of the research questions that would provide useful follow-on to

the academic work of this thesis.

The edge in other flow models. We conjecture that the edge is not simply an artifact

of the particular model studied in this problem, and should therefore be present in other models

of these parallel shear flows, including full numerical simulations of both plane Couette flow and

Pipe flow. The edge should play a significant role in controlling these transient turbulence sys-

tems. However, additional studies (on other models and in experiments) will be required to better

understand this structure.

The edge in other systems. We conjecture that the edge should be a typical behavior

observed in systems where transient chaos is developed by an underlying horseshoe structure. It

is likely that the edge will have physical relevance in these systems. The techniques developed in

this thesis need to be applied to other transient systems to test these ideas.

Smoothness of the edge. We conjectured that the edge should be smooth if the expansion

rate away from the edge was greater than the expansion rate tangent to the edge. We expect that

a rigorous proof can be developed for hyperbolic systems.

Can we target decay of turbulence? In Chapter 4, we illustrated some techniques to

identify the hole in the saddle, typical paths followed by transient trajectories as they depart the

vicinity of the saddle. Whereas the edge (Chapters 3 and 5) help to define regions of phase space

that initiate long transients, the hole describes regions of phase space that tend to allow those

transients to die. In a practical application, it might be possilbe to “target” these regions, hoping

to make the system return to the laminar flow condition more quickly. Because the turbulent

system is undergoing a chaotic transient, one should be able to implement this targeting control
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with small perturbations. In the model setting, it is clear that given some state of the system,

one can search for nearby points with short lifetime. However, the underlying concept is that one

would want to be able to implement a real-time control strategy, which means that there is not

time to test the lifetimes of the nearby points. As an alternative approach, we might look for

a “nearby” perturbed system whose chaotic saddle has a natural measure that is more heavily

weighted to the hole of the unperturbed system.

Lyapunov exponents of the edge and the saddle. In this system studied, when the

edge was the manifold of a periodic orbit, it had only one positive Lyapunov exponent, while the

saddle itself had two positivie exponents. Yet the edge is dense in the saddle. Understanding the

relationship between these behaviors should lead to better understanding of transient chaos.

Improving Step-and-Stagger. The multistagger technique was a first attempt at improv-

ing the standard Step-and-Stagger algorithm. For the systems studies in this thesis, the algorithm

was sufficiently robust to track the chaotic saddle. However, in systems where the dimension of

the stable set of the saddle is small, the random search techniques may prove intractable. How-

ever, based on the improved understanding of how the edge creates structure to the basin of the

attractor, it may be possible to develop better techniques to more appropriately choose a step size

and search direction that will more efficiently yield psuedo-trajectories.

Step-and-Stagger in high dimensional systems We conjecture that the efficiency of

Step-and-Stagger does not depend on the dimensionality of the system, but only upon the defect —

the difference between the dimension of the system and the dimension of the stable set. It should

be possible to establish rigourous results to that affect by following the implications of Appendix

E.
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Appendix A

Equations of motion for 9-variable model of plane Couette flow.

The general structure of the n dimensional Galerkin models of plane Couette flow is that of ordinary

differential equations with linear damping, quadratic coupling and a constant forcing:

ẋi = − di

Re
xi +

∑

j,k

ai;j,kxjxk + fi, i = 1., . . . , n. (A.1)

Besides the Reynolds number, which controls the damping, there are two geometric parameters

determining the widths and length of the flow domain. The laminar profile is a fixed point of the

system. By linear change of coordinates, we translate the system to place the attracting laminar

state at the origin. We denote this new system

ẏ = Q(y; Re), (A.2)

indicating that the right hand side is quadratic in y and studied over the parameter Re. For a

more detailed description of the derivation of the 9-variable model, the reader should refer to [10].

To simplify the expressions for the component equations (shown on the next page), we define

L =
√

a2 + b2 with viscosity ν = π/Re, where parameters a and b prescribing the streamwise and

spanwise periodicity. The equations of motion as given retain the geometric parameters. However,

the specific geometric parameters studied in this thesis used a = 2/π and b = 1/π. One may verify

from the equations of motion that the flow of (A.2) has a symmetry, given by the transformation

(y1, y2, y3, y4, y5, y6, y7, y8, y9) → (y1, y2,−y3, y4,−y5,−y6, y7,−y8,−y9).
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ẏ1 = −νy1 +
4a√

L2 + 1
y3y5 −

2a√
1 + a2

y4y7 −
12b√

L2 + 1
√

L2 + 4
y5y8

− 4a√
L2 + 1

y5y9 −
4a√

L2 + 4
y6y8

ẏ2 = −9νy2 − 6a√
1 + a2

y4y7 −
12b√

L2 + 1
√

L2 + 4
y5y8 +

12a√
L2 + 1

y5y9 −
12a√
L2 + 4

y6y8

ẏ3 = −νL2y3 − 16a

π2
√

L2 + 1
y5 −

16b

π2
y6 −

2a√
L2 + 1

y1y5 − 2by1y6 +
6b2a − 2a3

L2
√

L2 + 1
y4y5

+
6ba2 − 2b3

L2
y4y6 +

4b3 − 12a2b

L2
√

1 + a2
√

L2 + 4
y7y8 +

6b2a − 2a3

L2
√

1 + a2
y7y9

ẏ4 = −ν(4a2 + 1)y4 +
8a

π2
√

1 + a2
y7 +

a√
1 + a2

y1y7 +
3a√

1 + a2
y2y7 +

2a√
L2 + 1

y3y5

+
6b√

L2 + 1
√

L2 + 4
y5y8 +

6a√
L2 + 1

y5y9 −
6a√

L2 + 4
y6y8

ẏ5 = −ν(L2 + 1)y5 +
24b + 8bL2

π2
√

L2 + 1
√

L2 + 4
y8 +

3b + bL2

√
L2 + 1

√
L2 + 4

y1y8 +
5b − bL2

√
L2 + 1

√
L2 + 4

y2y8

− 4ab2

L2
√

L2 + 1
y3y4 +

5a2b − 3b3 − bL4

L2
√

L2 + 1
√

L2 + 4
y4y8 −

4ab2

L2
√

L2 + 1
y4y9

− 2ab2

L2
√

1 + a2
y5y7 −

2ab2
√

L2 + 1
L2

√
1 + a2

y6y7

ẏ6 = −ν(L2 + 1)y6 +
8b

π2
y3 +

8a

π2
√

L2 + 4
y8 +

8b

π2
y9 + by1y3 +

a√
L2 + 4

y1y8 + by1y9

+
3a√

L2 + 4
y2y8 + by2y9 +

b3 − 3a2b

L2
y3y4 +

3a3 − 5ab2

L2
√

L2 + 4
y4y8 +

b3 − 3a2b

L2
y4y9

+
2b3

L2
√

L2 + 1
√

1 + a2
y5y7 +

2ab2

L2
√

1 + a2
y6y7

ẏ7 = −4ν(1 + a2)y7 +
4a2bL2 − 4bL2 + 16a2b

L2
√

1 + a2
√

L2 + 4
y3y8 −

8ab2

L2
√

1 + a2
y3y9 +

4ab2

L2
√

1 + a2
y2
5

+
4a2bL2 − 4bL2 + 8a2b

L2
√

1 + a2
√

L2 + 1
y5y6 −

4ab2

L2
√

1 + a2
y2
6

ẏ8 = −ν(L2 + 4)y8 − 8bL2

π2
√

L2 + 1
√

L2 + 4
y5 −

bL2

√
L2 + 1

√
L2 + 4

y1y5 +
bL2 − 8b√

L2 + 1
√

L2 + 4
y2y5

− 2a2b√
1 + a2

√
L2 + 4

y3y7 +
bL4 − 8a2b

L2
√

L2 + 1
√

L2 + 4
y4y5 +

8ab2

L2
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L2 + 4
y4y6

ẏ9 = −ν(L2 + 4)y9 +
8a

π2
√

L2 + 1
y5 −

8b

π2
y6 +

a√
L2 + 1

y1y5 − by1y6 − 3a√
L2 + 1

y2y5

− by2y6 +
−3a3 + ab2

L2
√

L2 + 1
y4y5 +

3a2b − b3

L2
y4y6 +

a√
1 + a2

y3y7.
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Appendix B

Multi-stagger approach to pseudo-trajectories

As a brief description, the Step-and-stagger [13] algorithm operates as follows: a trajectory x(t) is

numerically integrated as long as L(x(t)) remains above some threshold value T ∗. This threshold is

chosen such that x(t) remains near the invariant set. When necessary, the trajectory is perturbed

by some small amount δ to increase the lifetime. By requiring ‖δ‖ to be small, the error introduced

by the perturbation can be kept smaller than the error associated with the numerical integration.

The resultant pseudo-trajectory can be continued in this fashion to arbitrary length (as illustrated in

Fig B.1). The Multi-stagger technique provides some minor modification to the original algorithm

of [13]. In this appendix, we explain how to execute the method, remark upon any differences from

the standard Step-and- Stagger, and provide some justification for these modifications.

Follow a trajectory while
lifetime remains long.

Use random perturbations of ≈ 10−8 to
find a nearby point with longer lifetime.

Continue the
trajectory from the
perturbed condition.

Repeat the perturbation procedure
as needed to maintain a long life.

Figure B.1: Schematic of a pseudo-trajectory. A pseudo-trajectory is created by following

system dynamics while the lifetime is above threshold. To keep a long lifetime, occasional pertur-

bations are used to find nearby points with long life. An acceptable perturbation (green) is found

by random search, rejecting perturbations that do not increase the lifetime (red).
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B.1 Multi-stagger (with comparison to Step-and-Stagger)

Assume that we desire to generate a long trajectory near the chaotic saddle C of the system

ẋ = F (x), (B.1)

with x ∈ Rn. Let SC denote the stable set of the saddle, and assume that there is a suitable

lifetime function L such that L(x) = ∞ for all x ∈ SC . Let T ∗ be a lifetime threshold, such that

if L(x) ≥ T ∗ then x is assumed to be within some small distance ε of SC .

A pseudo-trajectory Ψ(t) ∈ will be defined on some time interval [α, β] such that on specified

intervals (called steps), the pseudo-trajectory evolves in accordance with the flow of the system.

Small adjustments (called staggers) are made between intervals as required to ensure that all points

on the trajectory have a lifetime above threshold. Consequently, to store a pseudo-trajectory, it is

sufficient to keep track of the initial condition and the time at the start of each step. Therefore,

we associate Ψ(t) with sequences X = {xi} and T = {ti}, composed of those initial conditions and

times.

Assume that through some search technique we find an initial condition x∗ with a lifetime

greater than threshold. Since we want to use this point as the start of the step, we require

L(x∗) ≥ T s := T ∗ + ∆T, (B.2)

where ∆T will prescribe a minimal length for the step.

Choosing ∆T. If we assume that a stagger will be of maximum size δ, then we can think

of a stagger as creating a numerical error of bounded size. However, this error will be inserted at

intervals not shorter than ∆T. If we assume that our numerical integration is accomplished with

step size h, then the stagger error es is can be treated as an additional source of local truncation

error, with

es ≤ hδ

∆T
.

By choosing ∆T sufficiently large, we can ensure that es is not unacceptably large in comparison

to the local truncation error from the numerical integration. [Note: [13] was written in the setting
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of discrete time maps, and assumed h = 1. The algorithm did not address the concept of ∆T, but

simply required that L(x∗) > T ∗ which is equivalent to assuming ∆T = 1. For flows, there is no

such natural assumption, and ∆T must be specifically chosen. ]

Initiate the pseudo-trajectory. Assign i = 1; xi := x∗, t1 = a, creating the first entries

in our sequences X and T.

Compute the step. Define φt to be the flow of the differential equation, and denote

L(xi) =: Li. We compute the step by evolving the trajectory of xi., assigning

ti+1 = ti + (Li − T s),

and

Ψ(t) := φtxi, ti ≤ t < ti+1.

Finding a stagger. At time ti+1, we want to start the next step from a point that is near

where the last step ended, but with a lifetime that exceeds T s. To find this initial condition, we

conduct a random search as follows:

1. Assign xb := limt→ti+1 Ψ(t), the base point, and Lb := T∗, the lifetime at the basepoint.

2. Choose a random unit vector v that lies in the n − 1 dimensional hyperplane perpendicular

to the flow of (B.1) at xb. [Note: Because [13] dealt with maps, it place no restriction on the

direction. However, perturbing the system along the direction of flow does not usefully extend

the lifetime of the trajectory, since such a perturbation would be equivalent to integrating

backward in time.]

3. Choose a perturbation magnitude µ from the exponential stagger distribution, described in

[13] as follows: for 0 < δm � δ, where δ was the previously defined maximum stagger size.

Let a be such that 10−a = δm, and choose random number s from a uniform distribution on

the interval [a, 15], (where 15 is chosen under the assumption that we are computing with

15-digit precision). Then assign µ := 10s as the perturbation magnitude.

4. Compute L(xb + µv) = Ls.
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5. If Ls ≥ T s, then we have found a successful stagger; increment i, assign xi := xb + µv, Li =

Ls, and compute the next step.

6. If Ls ≤ Lb, then the perturbation showed no improvement in lifetime, so it is rejected. We

search for new perturbation be returning to step 2.

7. If Ls > Lb, then lifetime has improved, but does not meet the threshold. However, we have

moved in a direction of increasing lifetime, so we take advantage of that improvement by

revising the basepoint for our search: xb + µv 7→ xb, and Lb := Ls. Continue the search by

returning to step 2.

Figure B.2 illustrates the search technique

100
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97

118

xb

xi

Figure B.2: Multi-stagger. From the initial basepoint (blue) with Ls = 100, we perturb the

system to search for a point whose lifetime exceeds 110. Each perturbation is labeled with its

lifetime. The black perturbations are accepted, while the red are rejected. The dashed arrow

represents the resultant stagger.

The above algorithm captures the key new feature of multistagger. Step-and-Stagger follows

a slightly different algorithm in that the perturbation is either accepted or rejected. In multistagger,

by updating the basepoint whenever the lifetime is improved, we achieve some improvements on

the performance. In application to the 9-variable model of plane Couette flow, the average stagger

size was an order of magnitude smaller than when using Step-and-Stagger, while the number of test

perturbations required was essentially unchanged. The smaller step size is the result of choosing
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δ1 = .01 ∗ δ. If a stagger must be achieved in a single step, then δ must be chosen large enough

to ensure that SC can be reached. However, the exponential stagger distribution is specifically

designed to favor small stagger sizes, because SC is likely very close. Because Multistagger allows

the search to take more than one step to reach SC , we may place a smaller bound on the individual

step size distribution. We note that the cumulative length of the step grows like
√

p, where p is

the number of perturbations that increase lifetime but do not achieve the threshold value T s.

Consequently, although the total stagger size can grow arbitrarily large, it is not likely, in practice,

to exceed δ until the area of small perturbations has been thoroughly searched.

In [18], a gradient ascent technique was used to determine an appropriate search direction.

However, for higher dimensional systems with robust transient behavior, the computational cost of

computing the gradient might easily exceed the cost associated with unsuccessful staggers. Addi-

tionally, the highly fractal structure that may exist even at machine precision scales may preclude

an accurate estimate of a gradient. In application to the 9-variable model, we generally required

approximately ten perturbation before achieving a successful stagger, whereas the gradient would

require 18 lifetime evaluations before any searches are conducted. We note (to the disadvantage

of both techniques) that a gradient ascent and the random search of Mutlistagger may become

trapped in local maxima of lifetime function.

Appendix C

Relationship between methods for computing the dimension of the stable set

In [15], the authors consider an N -dimensional system with a chaotic saddle. If the transient

behavior is sufficiently robust that a general line through phase space intersects the saddle set,

then Ds, the dimension of the stable set, can be computed from the relationship

N − Ds = (τλ1)−1, (C.1)

where τ is the decay time and λ1 is the largest Lyapunov exponent. This formulation is numerically

very easy to implement, because the leading Lyapunov exponent is easily estimated by comput-

ing the divergence rate of two nearby, transient trajectories. In [14], the authors use a different
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approach to develop a procedure for determining the dimension of the saddle and its stable and

unstable sets using a formulation that is similar to the Kaplan-Yorke dimension for chaotic at-

tractors. The technique requires the full spectrum of Lyapunov exponents (and is therefore, more

difficult) but it provides the additional information of the dimension of the saddle and its unstable

set. In this appendix, we show the algebraic equivalence of the two methods in computing Ds,

under the condition that a line generically intersects the stable set.

First, we start with a brief overview of how the Ds is computed from the spectrum of

Lyapunov exponents, which we will refer to as the KY method. Because this equivalence of the

formulations is algebraic, it is not dependent upon an explanation of the derivations. Therefore,

the steps below outline only the required computations to apply the KY method.

• Assume the a saddle trajectory has U Lyapunov exponents that are positive, and S = N −U

exponents that are non-negative. Then order and label the positive exponents as

hU ≥ hU−1 ≥ · · · ≥ h1 > 0.

• Compute a metric entropy on the invariant set,

H := −1/τ +
U∑

i

hi,

where τ is the decay time for the saddle.

• Compute the index J such that

h1 + · · ·+ hJ+1 ≥ H ≥ h1 + · · ·+ hJ . (C.2)

• Then compute Ds by

Ds = S + J +
H − h1 + · · ·+ hJ

hJ+1
. (C.3)

Demonstrating equivalence. The formulation of (C.1) is based on the assumption that

a line through phase space intersects the saddle set, from which we infer that N > Ds > N − 1.

Consequently, N − Ds < 1, which implies from (C.1) that

1/τ < λ1, (C.4)
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where λ1 ≡ hU is the largest Lyapunov exponent. From (C.4), we infer that J = U − 1 as follows:

To satisfy (C.2), we see trivially that H <
∑U

i hi, but we also require

H ≥ h1 + · · ·+ hJ ,

or equivalently,

H − h1 − · · · − hJ ≥ 0.

If J = U − 1, then

H − h1 − · · · − hU−1 = −1/τ + hU > 0,

where the right side inequality is given by (C.4). Applying J = U − 1 to (C.3) yields

Ds = S + U − 1 +
−1/τ + hU

hU
.

Recalling that S + U = N and applying simple algebraic rearrangement, we see that

N − Ds =
1

τhU
≡ (τλ1)−1. 2

Appendix D

Proof that the stable set is unbounded.

Theorem D.1. Given a dynamical system ẋ = F (x), with a chaotic saddle C. If the system is

dissipative then Cs, the stable set of C is unbounded.

Proof: Let L be a suitable lifetime function for C. For any t > 0, define a one parameter

family of sets Ct defined by

Ct := {x|L(x) ≥ t}.

Ct is the set of points whose lifetime exceeds t. As we increase t, there will be fewer points that

meet that threshold value of lifetime, so the set should get smaller:

Take t1 > t2 > 0. Then Ct1 ⊂ Ct2, and

m(Ct1) ≤ m(Ct2), (D.1)
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where m(A) is the Lebesgue measure of set A.

Let φt describe the flow of the dynamical system, parameterized over t. If we take the set

of points whose lifetime exceeds t1, and evolve if forward in time by some amount ∆T, we reduce

the lifetime of all those points, and we will end up with a set of points, all of which have a lifetime

that exceeds t1 − ∆T. Therefore

φt1−t2 [Ct1] = Ct2.

Because the system is dissipative, as we evolve a set forward in time, its volume is decreasing, so

m(Ct2) ≤ m(Ct1), (D.2)

with equality only if both sets are measure 0 or both sets have infinite measure. From (D.1) and

(D.2), we conclude that

m(Ct2) = m(Ct1).

By continuity of the lifetime function, we know that Ct must have positive measure, so the only

way to satisfy the above equality is if m(Ct2) = m(Ct1) = ∞. But t2 is arbitrary, so Ct must have

infinite measure for all t, and is therefore unbounded. Since limt→∞ Ct = Cs, we see that Cs must

also be unbounded. 2

Appendix E

Proof that the decay constant τ is independent of the random sampling

distribution.

For systems with a chaotic transients (and chaotic saddles), the transient lifetime of initial condi-

tions typically have an exponential distribution [32]. The usual description of this behavior is that

if initial conditions are sampled uniformly on some set, then lifetimes will be exponentially dis-

tributed. We show that the sample measure need not be uniform, but can be relaxed to absolutely

continuous. Consequently, almost any random sampling routine will yield the same asymptotic

value for decay rate.
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E.1 Background

In the literature, the standard description for the exponential decay of lifetimes in a chaotic saddle

proceeds as follows:

Sprinkle N (0) initial conditions uniformly on a compact region W of phase space, where

W contains the non-attracting set. Let N (t) be the number of initial conditions whose

lifetime exceeds t. Then N (t) ∼ exp(−t/τ ) for large t.

τ is sometimes called the “average lifetime.” However, one would expect τ to be the average

lifetime only when the distribution of lifetimes is a true exponential, which generally is not the

case. A more appropriate term, such as is used in [14], is that τ is the “decay time,” which more

closely fits the more formal definition of τ :

1
τ

= lim
t→∞

lim
N(0)→∞

− ln(N (t)/N (0))
t

, (E.1)

with the definition clearly indicating that the exponential decay is an asymptotic behavior. We will

show that with some mild constraints, (E.1) does not depend upon either the particular distribution

used to sample or upon the sampled set.

E.2 The lifetime function

Throughout this Appendix, assume that we are using a lifetime function L(x) that is suitable for

measuring the chaotic transients. By “suitable,” we mean that the lifetime function should satisfy:

1. L : X → R, where the dynamical system is defined on X.

2. L(x) = ∞ iff x is on the stable set of the saddle, denoted C.

3. For every y ∈ C, limx→y L(x) = ∞.

4. Let φt be the flow operator of the system, then L(φtx) = max(L(x) − t, 0).

5. L(x) should be semi-continuous at each x for which L(x) is finite. [Note: This particular

proof requires only the L be measurable. However, it seems reasonable to require that nearby
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points should have approximately the same lifetime. Although it might be nice if L were

continuous, much of the literature does not yield a continuous lifetime function. Consider

the following simple example: Place an epsilon ball as the lifetime boundary around an

asymptotically stable fixed point. Assume that the system is such that V (x) = ‖x‖2 is not a

Lyapunov function. Then there will be a trajectory that is tangent to the epsilon ball at time

t∗, but lies outside the ball for some time t1 < t∗ and for some t2 > t ∗ . Call this a grazing

trajectory. Then in any neighborhood N (t) of the grazing trajectory, there will be a finite

separation between the lifetime of nearby points that enter the epsilon ball at approximately

time t∗, and those that enter the ball at some time later in the trajectory’s decay. Because

the ε-ball definition of lifetime is so often used in the literature, we desire not to exclude it

from our definition.]

6. L(x) ≥ 0.

7. L(x) = 0 on any attractor of the system.

E.3 Definitions

This list of definitions is to provide some common terminology and symbology for the discussion.

Saddle set: The set of all points whose trajectories asymptotically approach the chaotic saddle,

denoted by C.

Test Set: W is a test set if (a) it is compact set amd (b) for some point x ∈ C, there is a neigh-

borhood N (x) of positive Lebesgue measure with N (x) ⊂ W.

Lifetime function: Denoted by L. Assume that it is suitable.

t notation: For a test set W, define W t = {x ∈ W |L(x) ≥ t}. We remark that (a) W t is also a

test set, and (b) W t must contain an open neighborhood of each point in C ∩W. Figure E.1

provides an illustration of this family of sets.
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Exponential distribution of lifetimes (EDLµ) : Let Mµ(t) :=
∫
Bt µ(x)dx, where µ is a measure

that is absolutely continuous with respect to Lebesgue measure. Given a test set W, if there

is a positive constant τ such that

lim
t→∞

d
dt (Mµ(t))

Mµ(t)
= −1/τ, (E.2)

for all test sets B ⊂ W, then we say that the saddle set is EDLµ on W.

m notation: m(A) =
∫

A
dx denotes the normal Lebesgue measure in Rn.

Diameter of set A: The diameter of a set A [notation d(A)] is defined by

d(A) := max
x∈A
y∈A

‖x − y‖.

Figure E.1: Illustration of W t. The measure 0 set C is colored in red. The light gray indicates

a test set W. The graduated gray colorings indicate W t for increasing t. W t converges to the stable

set of the saddle as t → ∞.

E.4 The proof

Claim: If saddle set C is EDLµ on W when µ(x) ≡ 1, then it is EDLµ on W for µ(x) satisfying:

• µ(x) absolutely continuous,

• 0 < b ≤ µ(x) ≤ M ∀x ∈ W.
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Moreover, τ defined by (E.2) does not depend on µ. We call the invariant constant τ the decay

time.

Outline of Proof:

1. (Lemma 1) Show that the claim holds for any sufficiently small test set B ⊂ W.

2. (Lemma 2) Show that for arbitrary test set A, there is a T such that the set AT can be

partitioned into a finite union of test sets that are sufficiently small to satisfy step 1 above.

3. Show that Lemma 1 and 2 imply the claim.

Lemma 1: There exists ε > 0 such that if test set B satisfies d(B) ≤ ε, then C is EDLµ on

B, and τ does not depend on µ.

Proof of Lemma 1. Denote set B∆ := Bt − Bt+∆t. Then we can rewrite the definition of

EDL as

lim
t→∞

lim
∆t→0

∫
B∆

µ(x)dx

∆t
∫
Bt µ(x)dx

= 1/τ, (E.3)

which by the main hypothesis, holds for µ(x) ≡ 1. So given any γ > 0, there exist tB , ∆tB, such

that

1/τ − γ ≤ m(B∆)
∆tm(Bt)

≤ 1/τ + γ ∀t > tB, ∆t < ∆tB. (E.4)

Now consider some arbitrary measure µ (satisfying the main hypothesis). Denote

µmax = max
x∈B

µ(x); µmin = min
x∈B

µ(x).

Then

µminm(B∆) ≤
∫

B∆

µ(x)dx ≤ µmaxm(B∆),

and

µminm(Bt) ≤
∫

Bt

µ(x)dx ≤ µmaxm(Bt).

By using extreme values for the numerator and denominator of the left hand side of (E.3)

and the inequality of (E.4), we have

µmin

µmax
(1/τ − γ) ≤ µmin

µmax

m(B∆)
∆tm(Bt)

≤
∫
B∆

µ(x)dx

∆t
∫
Bt µ(x)dx

≤ µmax

µmin

m(B∆)
∆tm(Bt)

≤ µmax

µmin
(1/τ + γ). (E.5)
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WLOG, if we assume µ(x) > µ(y), we note that

µ(x)
µ(y)

=
µ(y) + µ(x) − µ(y)

µ(y)
= 1 +

µ(x) − µ(y)
µ(y)

≤ 1 +
µ(x) − µ(y)

b

Because absolute continuity implies uniform continuity of µ, we can choose an ε such that µ(x) −

µ(y) is arbitrarily small whenever |x− y| ≤ ε for all x and y in W. So we can choose an ε that does

not depend on B such that the ratio µmax

µmin
is arbitrarily close to 1 : in other words, for arbitrarily

small r, we can find an ε such that

1 − r ≤ µ(y)
µ(x)

≤ µ(x)
µ(y)

< 1 + r.

Then

(1 − r)(1/τ − γ) ≤
∫

B∆
µ(x)dx

∆t
∫
Bt µ(x)dx

≤ (1 + r)(1/τ + γ). (E.6)

Since γ and r can be chosen arbitrarily small, the above inequality proves lemma 1.2

Lemma 2: For any test set A, there exists T such that AT can be partitioned into sets αi,

where

AT =
n⋃

i=1

αi,

and for each i, αi is a test set with d(αi) ≤ ε.

Proof of Lemma 2. Consider the set CA := C∩A; place an open ball of diameter ε/2 around

each point in CA. Denote the union of these balls by Cε/2. Then the set A − Cε/2 is compact and

contains no points from the saddle set. Therefore the lifetime is bounded on that set, with a least

upper bound which we denote T. The closure of AT must lie in the closure of Cε/2, If we place an

open ball of diameter ε around each point of CA, we have an open covering of AT . (See Fig E.2.)

Because AT is compact, we can extract a finite subcover, which we denote by {B(bi)}n
i=1. We now

partition

AT =
n⋃

i=1

αi,

by requiring (a) each αi contain a positive measure neighborhood of bi, and (b) αi can contain

only those points in AT that are in B(bi). By construction, d(αi) ≤ ε and is also a test set, which

completes the proof of Lemma 2. 2
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(a)

(b) (c)

Figure E.2: Lemma 2: constructing a partition (a) The test set A (gray) is colored with

increasing lifetime. By covering C (red) with balls of diameter ε/2, (b) we can determine a value

T such that AT is inside the closure of the union of balls. (c) We use a finite covering of open balls

of diameter ε to construct a partition of AT .

Step 3 — Completing the main proof. From Lemma 1, we know that there is an ε such

that any test set in W with diameter less than ε has decay time τ independent of the choice of µ.

Consequently, each αi has an exponential decay rate 1/τ which is independent of µ :

lim
t→∞

d
dt

∫
αt

i
µ(x)dx

∫
αt

i
µ(x)dx

= −1/τ ∀i.

Then given and small β > 0, there is a N such that for all i and all t > N > T,

(−1/τ − β)
∫

αt
i

µ(x)dx ≤
d
dt

∫

αt
i

µ(x)dx ≤ (−1/τ + β)
∫

αt
i

µ(x)dx.

Taking the finite sum over i (passing through the derivative in the middle term) gives

(−1/τ − β)
∫

(AT )t

µ(x)dx ≤ d
dt

∫

(AT )t

µ(x)dx ≤ (−1/τ + β)
∫

(AT )t

µ(x)dx.

Dividing through by
∫
(AT )t µ(x)dx, we can conclude that

lim
t→∞

d
dt

∫
(AT )t µ(x)dx

∫
(AT )t µ(x)dx

= −1/τ.

We note that for t > T, At ≡ (AT )t, which completes the proof. 2
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