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For more than two decades, the standard quantum limit (SQL) has served

as a benchmark for researchers involved in ultra-sensitive force and displacement

detection. In this thesis, I discuss a novel displacement detection technique which

we have implemented that has allowed us to come within a factor of 4.3 from the

limit, closer than any previous effort. Additionally, I show that we were able to use

this nearly quantum-limited scheme to observe the thermal motion of a 19.7 MHz

in-plane mode of a nanomechanical resonator down to a temperature of 56 mK. At

this temperature, the corresponding thermal occupation number of the mode was

〈nth〉 ≈ 60. This is the lowest thermal occupation number ever demonstrated for

a nanomechanical (or larger) device. We believe that the combination of these two

results has important and promising implications for the future study of nanoelec-

tromechanical systems (NEMS) at the quantum limit.

The detection scheme that we used was based upon the single-electron tran-

sistor (SET). The SET has been demonstrated to be the world’s most sensitive

electrometer and is considered to be a near-ideal linear amplifier. We used stan-



dard lithographic techniques for the on-chip integration of the SET with both a

microwave-matching network and nanomechanical resonator. The SET served as a

transducer of the resonator’s motion: fluctuations in the resonator’s position mod-

ulated the SET impedance. The microwave-matching circuit allowed us to read-out

the modulation of the SET’s impedance with ∼ 75 MHz bandwidth. The com-

bination of microwave-matching circuit and SET is known as the radio-frequency

single-electron transistor (RFSET). Including the nanomechanical resonator, the

configuration is called the radio-frequency single-electron transistor displacement

detector.

In this thesis, I discuss the basics of quantum-limited measurement and some

of the subtleties of observing mechanical quantum phenomena. I then discuss the

basics of the RFSET displacement detector, its ultimate limits, its engineering and

operation, the first generation results, and finally what improvements could be made

to future generation devices.
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Chapter 1

Overview

1.1 Context and Motivation

The Heisenberg uncertainty principle [1] places a limit on the precision with

which one can measure an object’s position [2]. For the case of two successive

measurements of a mass M undergoing simple harmonic motion, this limit, known

as the “standard quantum limit”, is neatly expressed as [2]

∆ySQL =

√
h̄

2Mω
, (1.1)

where ω/2π is the frequency with which the mass oscillates, and h̄ is Planck’s con-

stant.

Since the 1970’s, researchers have been engaged in both theoretical and experi-

mental efforts to understand and implement mechanical detectors and measurement

strategies for displacement detection at (or even below) the standard quantum limit

[2-17].

Inititally, the impetus for quantum-limited displacement detection arose out

of the hunt for gravitational waves [2]. Through nearly three decades of effort,

the gravitational-wave community has moved quantum-limited detectors from mere

thought-experiments to nearly practicable measurement devices. For example, the

4 km L1 interferometer of the LIGO I project has demonstrated a sensitivity, at

200 Hz, of ∆y ∼ 150∆ySQL [11] for the displacement detection of its 10 kg test-
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masses. Researchers at Laboratoire Kastler Brossel, employing a tabletop Fabry-

Perot interferometer, recently achieved a displacement sensitivity of ∆y ∼ 25 ∆ySQL

for the read-out of the 2 MHz surface modes of a silica mirror [7]. The SQUID-based

amplifiers developed for the Auriga project have demonstrated noise temperatures

of ∼ 10’s µK, corresponding to sensitivities of ∆y ∼ 100 - 200 ∆ySQL for the read-

out of the vibrational modes of ∼ 2000 kg acoustic bar resonators [9]. As well,

researchers in the Supeconductivity Center at the University of Maryland used a

scheme based on a Paik-style transducer [19] to achieve a noise temperature of ∼ 1

mK at 900 Hz, yielding ∆y ∼ 200 ∆ySQL [8].

In the last decade, the development of nanoelectromechanical systems (NEMS)

has generated a second wave of interest in the standard quantum limit. Driven

by potential applications to ultra-sensitive imaging [20] [21], mass detection [22],

and quantum computing [23] [24], as well as, ultimately, the possibility to study

mechanical quantum systems in the macroscopic limit [23-33], the NEMS community

has rapidly pushed mechanical transduction to the quantum frontier. In the last

year alone, several important results have been generated. For example, researchers

at IBM used magnetic resonance force microscopy (MRFM) [20] to detect the spin

of a single electron [21]. Using a magnetomotive technique [22], researchers at

the California Institute of Technology demonstrated mass sensivity on the order of

zeptograms, sufficient for the detection of a single molecule [34]. Finally, our group

in the Laboratory for Physical Sciences at the University of Maryland used the radio-

frequency single-electron transistor displacement detector [12] [13] to demonstrate

both displacement sensitivity approaching closer to the standard quantum limit
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than any previous measurement scheme (∆y ∼ 5.8 ∆ySQL
1) [15] and an approach

to low thermal occupation numbers (〈nth〉 ∼ 60) for a 20 MHz nanomechanical

resonator[15].

It is important to note that the achievement of low thermal occupation num-

bers is a general and significant point of distinction between NEMS devices and

the resonators used in gravitational-wave detection. We can see why this is by first

looking at the definition of the thermal occupation number. For a resonant mode

with frequency ω in thermal equilibrium with a bath of temperature T , the mode’s

thermal occupation number is given by [35]

〈nth〉 =
1

2
+ (eh̄ω/kBT − 1)−1, (1.2)

where kB is Boltzman’s constant and “1
2
” accounts for the mode’s zero-point fluc-

tuations. This quantity provides a simple “rule-of-thumb” for gauging whether one

should be able to observe a mode’s quantum properties:

kBT

h̄ω
≤ 1, (1.3)

If Eq. 1.3 is satisfied, the mode is said to be “frozen out”. That is, the mode is in it’s

ground state and the contribution of the thermal energy to the mode’s total energy

is comparable to or less than the zero-point contribution. As kBT/h̄ω grows, so too

does the contribution from thermal fluctuations, making it more difficult to observe

the mode’s quantum attributes. There is no general prescription for how small the

ratio kBT/h̄ω must be before quantum behavior becomes observable (see Chapter

1In Chapter 2, I make the distinction between ∆ySQL and ∆yQL. In terms of ∆yQL, a more

appropriate gauge for continuous position detection, we achieved ∆y ∼ 4.3∆yQL
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2). For the purpose of observing the resonator in a pure quantum state such as

a Fock state or superposition state, or for detection of the resonator’s zero-point

fluctuations, the smaller the ratio the better (see Chapter 2).

For the above-mentioned gravitational-wave detectors, the operating temper-

atures were sufficiently high (> 1 K) and resonators’ frequencies were sufficiently

low (< 5MHz), that, at a minimum, 〈nth〉 ∼ 3 x 106 (the Auriga project at 1.5

K and the Fabry-Perot scheme at 300 K). In contrast, because NEMS devices have

demonstrated resonant frequencies as high as ∼ 1 GHz [36] [23] and are routinely

installed on cryogenic probes for measurement at mK temperatures, it should be

possible for researchers to observe 〈nth〉 ≤ 1.

The demonstration of nearly quantum-limited position detection and low ther-

mal occupation numbers promises NEMS researchers the opportunity to push the

study of quantum mechanics to a significantly larger realm. For example, one recent

proposal to prepare and measure a nanomechanical resonator mode in a superposi-

tion of position states could be implemented if one could cool the mode to 〈nth〉 ∼ 50

[25] (please see Refs. [23-33] for other recent proposals). This is signficant because,

while NEMS devices are, by definition, nanoscopic, they are typically composed of

∼ 1010 atoms. With a few exceptions, such as the measurement of the quantum

of thermal conductance [37], previous demonstrations of mechanical quantum phe-

nomena have been limited to the scale of molecules and atoms (for exmaple Refs.

[38] [39] [40]).

In this thesis, I discuss the details of the first generation of radio-frequency

single-electron transistor (RFSET) displacement detectors. The technique was first
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proposed by Miles Blencowe and Martin Wybourne [12] and utilizes the RFSET’s

large bandwidth (demonstrated to be > 100 MHz) [41] and near-ideal noise char-

acteristics [42] to perform displacement detection near the quantum limit. Figure

2.3(a) shows an SEM image of an RFSET displacement detector, and Fig. 2.3(b)

shows a generic circuit schematic for the transduction process. Here, a metallized

SiN nanoresonator is positioned within 1 µm of an SET island, resulting in a cou-

pling capacitance CNR on the order of 10’s aF. Displacement of the nanoresonator

from its equilibrium position linearly modulates the coupling capacitance through

∆CNR ≈ CNR

dNR

∆y, (1.4)

where dNR is the separation between the nanoresonator and the SET island, and ∆y

� dNR is the displacement of the resonator from equilibrium. Establishing a voltage

VNR between the resonator and the SET converts the capacitance fluctuations into

charge fluctuations:

∆QNR ≈ CNRVNR

dNR

∆y. (1.5)

The charge fluctuations modulate the SET impedance which is then monitored by

performing microwave reflectometry [41]. The use of an on-chip tank circuit (LT and

CT in Fig. 2.3(b)) allows for matching between the large SET impedance (typically

10’s kΩ) and 50 Ω transmission line.

Ultimately, the sensitivity of the RFSET displacement detector is limited by

the intrinsic noise of the SET [12] [13]. This is composed of two sources [43] (1)

the SET shot noise and (2) the potential fluctuations of the SET island. The SET

shot noise is forward coupling. That is, it simply adds to the signal, resulting in
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(a)

(b)

Figure 1.1: (a) SEM image of the RFSET displacement detector and (b) Circuit

schematic
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a contribution to the total displacement noise that is inversely proportional to the

coupling CNRVNR/dNR. The island-potential noise is back-acting. That is, the

island-potential fluctuations couple to the resonator through CNR and drive it, re-

sulting in a contribution to the total displacement noise that is linearly proportional

to the coupling. A minimum in the total displacement noise is found at a coupling

strength where the two sources contribute equally. For such optimal coupling, and

typcial device parameters (see Chapter 2), the total displacement noise has been

predicted to be ∆y ∼ 2∆yQL [13].

In the measurement of the first generation of RFSET displacement detectors

(LPS), we were not limited by the intrinsic noise of the SET. Instead, we were lim-

ited by the 80 pV/
√

Hz noise (referred to the input) of our cryogenic pre-amplifier

(see Chapter 4 and Chapter 7), which set our charge sensitivity at approximately a

factor of 4 - 6 from the SET’s intrinsic shot noise limit. Consequently, the lowest dis-

placement sensitivity which we observed was on the on the order of a factor of 4 from

the quantum limit [15]. Nevertheless, this is the closest approach to the quantum

limit of displacement detection that anyone before or since has demonstrated, and

marks a factor of 30 improvement over the SET-mixer technique previously demon-

strated by Robert Knobel and Andrew Cleland at the University of California, Santa

Barbara [14].

An additional improvement of the LPS detectors over the Santa Barbara SET-

mixer technique was the ∼ 75 MHz bandwidth provided by the rf-matching network.

In contrast, at best, the maximum bandwidth of the Santa Barbara technique would

have been on the order of kHz, either limited by the DCSET or the dc electronics
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at room temperature. Either way, as the quality factor and resonant frequency of

the resonator were ∼ 1.5 x 103 and 116 MHz respectively [14], the half-width of the

resonator’s spectral response was ∼ 105 and thus much larger than the detection

bandwidth.

The large bandwidth of the RFSET technique allowed us to observe the res-

onator’s full spectral response, facilitating the detection of the resonator’s thermal

motion. In the end, we were able observe the thermal motion of the nanoresonator

down to a temperature as low as ∼ 56 mK, corresponding to a thermal occupation

number of 〈nth〉 ≈ 60, and demonstrating, that, indeed, NEMS is on the verge of

the quantum regime.

1.2 Structure of the Thesis

The structure of this thesis is as follows.

Chapter 2 provides the basic definitions and theoretical concepts upon which

the rest of the text is based. First, the quantum limits of a mechanical resonator are

defined, and the criteria for reaching these limits are presented. This is followed by

the introduction of the RFSET displacement detector and a discussion of its basic

operating principles. In the final section, the intrinsic noise properties of the SET

are reviewed and used to demonstrate that, in principle, the RFSET is capable of

performing as a nearly quantum-limited displacement detector.

Chapter 3 presents a detailed account of the fabrication steps we developed

and followed to produce our first generation of RFSET displacement detectors.
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Chapter 4 discusses the details of the apparatus which we constructed for the

measurement of our samples.

Chapter 5 presents and explains the RFSET reflectometry technique, the back-

bone of the detection scheme.

Chapter 6 describes the implementation of the RFSET displacement detection

technique and presents our main research results. Relying heavily on the results of

Chapter 5, it begins with a treatment of the basic methodology. This is followed by

a discussion of the RFSET detection of capacitively driven nanoresonators. Next,

the topic of nanomechanical noise thermometry is introduced. It is in this section

that the central results of the thesis are put forth. Finally, the chapter finishes by

addressing the issue of SET back action.

Chapter 7 concludes the main body of the thesis with a discussion of the

technical improvements and future prospects.

The remaining chapters I label as Appendix A and Appendix B. They contain

information that I think is either essential for understanding the basic concepts

and limitations of the RFSET displacement detector or is useful for the actual

implementation. Included in these chapters are tables of the various parameters for

the devices around which this thesis is built.

Two of the devices, Device 3 and Device 4, are included even though they are

not discussed in the main body of the dissertation. Initially, my intent was to pro-

duce a work that fully addresses the noise characteristics of the RFSET displacement

detector, including the SET back action. Devices 1 and 2 were to be used for treat-

ing the forward-coupling limit. Devices 3 and 4 were to be used for discussing the

9



back action limit. However, the physics involved with SET back action, particularly

the superconducting SET, are more complicated and interesting than I originally

imagined, and their investigation would constitute an entire thesis. Furthermore,

we do not understand all the observations that we have made of Devices 3 and 4.

I have left Devices 3 and 4 in the thesis mainly for illustrative purposes and for

technical explanations of useful information (ie. RFSET gain calibration and RF

tank-circuit characterization). Additionally, I would like to have the parameters and

characteristics of all four devices and accompanying measurement circuits cataloged

in one place.

Finally, Device X and Device Y, devices which are not in any of tables, I have

also used for illustrative purposes in Chapter 5. The nanoresonator in Device X met

an early demise, however, the data taken for the gain-feedback circuit and sideband

amplitude versus Vg is the best data I have to illustrate these techniques. Device

Y is actually from the latest generation of devices (courtesy of Akshay Naik). I

used this data to illustrate the equivalence of the reflection map and the numerical

derivative of the IV map. In the earlier devices, either this data is incomplete

(for Devices 1 and 2 I have no simultaneous measurements of reflection map and

numerical derivative) or the IV maps were less “photogenic” (for Devices 3 and 4

the DJQP and JQP resonances are either smeared or faint). I also used data from

Device Y to help illustrate the principle of amplitude modulation.
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Chapter 2

Introduction

At first glance, it might not be obvious why one can treat a nanomechanical

device, such as a doubly-clamped resonator, as a simple harmonic oscillator. After

all, a typical structure might have dimensions ranging from nanometers to microns,

and be comprised of tens of billions of atoms and three times as many normal

vibrational modes.

The situation is simplified, though, if one is only interested in the lowest-

frequency transverse modes. In this case, the ratio of the wavelength-to-lattice

spacing is sufficiently large, ∼ 104, that deformation of the lattice occurs slowly over

the length of the device, allowing for the use of continuum elasticity theory to model

the mode’s behavior [44] [45]. For deformations smaller than a critical amplitude

[46], non-linear effects are negligible. Below the critical amplitude, the system can be

reduced to a simple harmonic oscillator with an effective mass and spring constant

determined by the mode shape and the portion of the oscillating structure that one

considers (see Appendix A). The critical amplitude for the resonators measured in

this research can be calculated to be ∼ nm’s [46]. The typical displacements we

measure are ∼ pm’s.

Peering at such a structure, for example, through an optical microscope, if

our eyes and brains had the temporal resolution, we would expect to see it jumping
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about, its motion driven by thermal fluctuations and other classical interactions.

We might not expect to observe any deviations from the classical behavior we are so

familiar with from our daily experiences. However, the question arises: what would

it take to observe one of these structures exhibiting quantum behavior?

In this chapter, I present some basic criteria which, when met, could allow for

the observation of quantum phenomena in macroscopic mechanical resonators [4].

The first criteria, which I call Quantum Limit I, establishes an approximate level

to which classical interactions must be reduced in order to observe the resonator’s

quantum dynamics. It is implicit in my discussion that thermal fluctuations are the

biggest problem and that all other classical forces are negligible. The second criteria,

which I call Quantum Limit II, establishes the characteristics that a linear amplifier

must possess in order that it minimally disturb the resonator during the process

of measurement. It is seen that quantum mechanics requires such an amplifier to

add a minimum of one-half quanta of noise power in the bandwidth of the signal.

In the final section, I present and discuss the basics of the radio-frequency single-

electron transistor (RFSET) displacement detector, a detection scheme which we

have implemented and which has allowed us to come closer than any previous scheme

to satisfying both criteria.

2.1 The Quantum Limit I: Thermal Noise

The question of how cold a mechanical mode must be before thermal fluctua-

tions are reduced to a level that does not obscure the mode’s quantum dynamics is
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rather subtle. To thoroughly treat the topic is beyond the scope of this section and

thesis. However, here, I present some basic, case-specific constraints on temperature

with which I can later guage our experimental results (Chapter 5 and Chapter 6).

I first discuss the freeze-out of a mechanical mode to its ground state. This is the

simplest case to treat and provides a back-of-the-envelope estimate of how “quan-

tum” a particular mode at a given temperature is (ie. whether or not the mode’s

dynamics can be described by classical equations of motion). Second, I briefly ex-

amine the issue of decoherence. In particular, I discuss the decoherence of a pure

harmonic oscillator state due to linear coupling to a thermal bath, and present an

expression for the decoherence rate of a superposition of position states in terms of

the mode’s temperature. Finally, I consider the detection of a mechanical mode’s

zero-point motion in the presence of thermal noise. I show that, even if kBTb 	 h̄ω1,

depending on the duration of the measurement and the coupling of the resonator to

the thermal bath Tb, it is possible to reduce the change in amplitude due to thermal

fluctuations below that due to zero-point fluctuations.

Freeze-Out

The simplest constraint to consider is a resonator’s “freeze-out” to the ground

state. This is equivalent to determining the temperature at which a mode’s thermal

occupation number is reduced signifcantly below 1. The average thermal occupation

of an oscillator mode with frequency ω1/2π is given by [35]

〈nth〉 = (eh̄ω1/kBTb − 1)−1, (2.1)

13



Figure 2.1: Thermal occupation number 〈nth〉 plotted as a function of temperature

for a range of nanomechanical resonant frequencies. The dashed lines represent the

large-Tb limit given of Eq. 2.1. Note that the zero-point contribution of 1
2

has not

been included.

14



where h̄ is Planck’s constant, kB is the Boltzman constant, Tb is the temperature of

the mode, and the criteria for freeze-out is just

kBTb

h̄ω1
≤ 1. (2.2)

Note that I have neglected the zero-point contribution of 1
2
.

Figure 2.1 shows the thermal occupation number for mode frequencies ranging

from 100 KHz to 1 GHz. This range roughly represents the realm of demonstrated

doubly-clamped, nanomechanical mode frequencies. Examination of the plot re-

veals that achieving freeze-out with passive refrigeration techniques (eg. dilution

refrigeration) requires working with resonant frequencies in excess of 100 MHz. Of

course with adiabatic demagnetization, the limit could be pulled down toward 10

MHz. Note, though, that I have not taken into account the issue of thermalization

of the mechanical mode of interest. Whether a mechanical mode at 100 MHz can

be tightly coupled to, say, the mixing chamber of a dilution refrigerator is a compli-

cated problem that depends on both the experimental apparatus (eg. connections,

“heat leaks”, etc.) as well as the resonator’s geometry and material (essentially the

parameters that determine the resonator’s quality factor), and one that I address in

Section 7.2.

Decoherence of a Mechanical Superposition

The temperature constraint for the observation of a mechanical superposition

state depends on the quality factor of the resonator under measurement and the

desired duration of the superposition. A theoretical treatment of the harmonic
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Figure 2.2: Decay time of a superposition of coherent states versus temperature for

a range of nanomechanical resonant frequencies and quality factors. It is assumed

that Gaussian peaks of the coherent states are separated by 2∆yzp.
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oscillator states suggests that a mechanical superposition of two coherent states

with spatial separation ∆y between the Gaussian peaks will preferentially decay to

a single coherent state at a rate given by [47]

Γ =
4kBTb

h̄Qb

(
∆y

∆yzp

)2

, (2.3)

where Qb = ω1τ is the resonator’s quality factor, assumed to be determined strictly

from coupling to the thermal bath, ∆yzp =
√

h̄/2Mmω1 is the resonator’s zero-point

deviation, and Mm is the resonator’s effective mass.

Figure 2.2 displays a plot of the inverse of the decay rate versus temperature

for resonators with quality factors in the range of 102 to 105. Here I assume that

the superposition has been prepared so that ∆y = 2∆yzp for each case. Thus the

resonant frequency does not factor into Eq. 2.3. However, the quality factor for each

of the resonators has been chosen to roughly reflect what has been demonstrated

experimentally with real nanomechanical resonators. Ideally, one would want to

engineer a nanoresonator with both large Qb and high frequency, say Qb ∼ 105 and

f1 ∼ 1 GHz, so that the decay would occur over many cycles at 50 - 100 mK. From

Fig. 2.2, for such a device at 50 mK, the decay time would be on the order of 103

cycles. In practice, achieving such a large quality factor and high resonant frequency

might prove difficult. To date, the only published, doubly-clamped 1 GHz resonator

demonstrated a quality factor of approximately 102 [36], which would yield one cycle

over the decay time at 50 mK. On the other hand, a 10 MHz resonator with quality

factor in excess of 105 has recently been demonstrated [48], which would yield ∼ 10

coherent cycles at 50 mK.
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Thermal Amplitude Flutuations

In this subsection I estimate the temperature below which thermal fluctuations

in a resonator’s amplitude become negligible with respect to the resonator’s zero-

point motion.

The amplitude of a resonator in contact with a thermal bath Tb is seen to

undergo a “random-walk” with a variance approximated by [49]

〈y2
m〉 ≈ kBTb

Mmω2
1

(
1 − e−t/τ

)
, (2.4)

where τ=Qb/ω1 is the resonator’s thermal-relaxation time and I have assumed that

at time t = 0 that the amplitude is known precisely, ie. that 〈y2
m〉 = 0. I note that

the subscript ‘m’ is used for consistency with later portions of the thesis. It denotes

the mean displacement of the neutral surface over the segment of the nanoresonator

that couples to the SET detector, essentially the length of the SET island.

For times t 	 τ , Eq. 2.4 reduces to the standard equipartition relationship.

In this case, I expect thermal fluctuations of the amplitude to become small with

respect to the resonator’s zero-point fluctuations when [4]

kBTb

Mmω1
2
≤ (∆yzp)

2 (2.5)

or

kBTb ≤ h̄ω1

2
. (2.6)

This is a rather strict condition, and nearly identical to the criteria for freeze-out.

On the other hand, for t � τ , the fluctuations in the resonator’s amplitude
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are seen to increase linearly with t:

〈y2
m〉 ≈

kBTb

Mmω1
2

t

τ
. (2.7)

The condition for thermal fluctuations to be small with respect to ground-state

uncertainty in position is then [4]

kBTb

Mmω2
1

t

τ
≤ h̄

2Mmω1

(2.8)

or

Tb ≤ h̄Qb

2kB

1

t
. (2.9)

Clearly this is a less stringent requirement; and it implies that, if one could

prepare an high-Q resonator in a well known position at time t = 0 and then make a

measurement in a time t � 1/τ , the exchange of energy between the resonator and

the thermal bath would be a fraction t/τ smaller than kBTb. Strictly speaking, then,

the temperature to which one would have to cool a particular resonator for thermal

fluctuations to become negligible would be inversely proportional to how quickly

one could make a measurement of the resonator’s position and linearly proportional

to the quality factor.

This is just an order-of-magnitude analysis, and it begs a couple of questions:

can one specify the position of the resonator with 〈ym
2〉 = 0? And, what is the

effect of the detector on the resonator during the measurement process? These are

questions that I address in the following section.
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2.2 The Quantum Limit II: Ideal Detection

In this section I consider a second aspect of the quantum limit dealing with

optimizing measurement precision. Ultimately, quantum mechanics places a limit

on the precision with which certain information (ie. conjugate coordinates) can be

extracted from the measurement of an object1 ignore here, and throughout the

thesis. This fundamental measurement limit is a direct result of the Heisenberg

uncertainty relations for both the measured object’s coordinates of interest (eg. ŷ and

p̂y of an oscillator) and the measurement device’s detection coordinates (eg. Î and

V̂ of transistor). The purpose of this section, then, is to develop an understanding

of such constraints in the context of the measurement of the displacement of a

mechanical mode, and determine the conditions necessary to perform detection at

this fundamental limit.

Initially, I consider the simple case of “quick”, repeated measurements of an

harmonic oscillator’s position coordinate ŷ, and derive the so-called Standard Quan-

tum Limit for position detection. I then discuss the case of continuous linear de-

tection of a generic narrow band signal, and derive the corresponding quantum

constraints on amplifier noise temperature. Finally, I use linear response theory

to phrase the quantum constraints on position detection in terms of an amplifier’s

intrinsic noise characteristics. The result is thus a prescription which an amplifier

must fulfill in order to operate as a quantum-limited position detector; and fur-

1Techniques (eg. squeezed states, QND measurement, and contractive states) have been pro-

posed for beating the quantum limit (for example, see Refs. [2] [4] [5] [6] [17]). However, these

advanced measurement strategies are beyond the scope of the research presented here.
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thermore, a guage by which I can assess our experimental results (Chapter 6 and

Chapter 7).

The Standard Quantum Limit

Following reference [2], I start with a crude derivation of the Standard Quan-

tum Limit. Consider a mechanical mode undergoing simple harmonic motion with

frequency ω1. The hamiltonian for such a system is given by

H =
p2

y

2Mm

+
1

2
Mmω2

1y
2
m, (2.10)

where py and ym are the conjugate momentum and displacement of the resonator

and Mm is the effective mass for the motion of interest (See Appendix A). I note

that, as in the previous section, ym is used for consistency with later sections in

which it denotes the average displacement of the neutral surface over the length of

the SET detector.

The task at hand is to determine how precisely one can measure ym by mak-

ing two measurements such that the measurement time τ � 1/ω1. For a classical

resonator, in principle, there is no limit on how precisely one can measure ym or py.

However, for a quantum resonator, the resonator’s position and momentum are de-

scribed by the operators ŷm and p̂y , which are constrained through the commutation

relation [50]

[ŷm, p̂y] = ih̄
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to obey the Heisenberg uncertainty principle

∆ym∆py ≥ h̄

2
. (2.11)

Simply put, the more precisely one specifies 〈ŷm〉, the less precisely one can

know 〈p̂y〉. This is not really a concern for one quick measurement of 〈ŷm〉; in

principle, it can be done with arbitrary precision. However, if one intends to make

two or more measurements of 〈ŷm〉 with the highest precision possible, the effect of

the measurement on p̂y, or the quantum mechanical back action, must be taken into

account.

From Eq. 2.10, in the Heisenberg representation, the equations of motion for

ŷm and p̂y are given by [51]

ŷm(t) = ŷm(0) cos ω1t +
p̂y(0)

Mmω1

sinω1t (2.12)

and

p̂y(t) = −Mmω1ŷm(0) sin ω1t + p̂y(0) cos ω1t. (2.13)

If the resonator is not in an energy eigenstate, then the expectation values

〈ŷm(t)〉 and 〈p̂y(t)〉 will be oscillatory functions of time with the respective variances

given by [2]

(∆ym(t))2 = (∆ym(0))2 cos2 ω1t +

(
∆py(0)

Mmω1

)2

sin2 ω1t (2.14)

and

(∆py(t))
2 = (∆ym(0)Mmω1)

2 sin2 ω1t + ∆py(0)
2 cos2 ω1t. (2.15)

I see that if, at time t = 0, I make an initial measurement 〈ŷm(0)〉 with precision

∆ym(0), the uncertainty in the resonator’s position due to the initial measurement
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at a time t later is

(∆ym(t))
2 ≥ (∆ym(0))

2
cos2 ω1t +

(
h̄

2Mmω1

)2

sin2 ω1t, (2.16)

where I have assumed that there is no correlation between the uncertainties in 〈ŷm〉

and 〈p̂y〉, only that the rms amplitudes are related through the uncertainty principle,

Equation 2.11.

To minimize the uncertainty in position due to the initial measurement, it is

clear that I must have

∆ym(0) =
h̄

∆ym(0)2Mmω1
(2.17)

or

∆ym(0) =

√
h̄

2Mmω1
. (2.18)

This is known as the Standard Quantum Limit (SQL) for position detection

[4] [2]. From Equation 2.16, for such a measurement, ∆ym(t) is constant in time,

implying a resonator state with phase-insensitive noise. One set of phase-insensitive

states, with the additional stipulation that the equality in Eq. 2.16 be satisfied, is

the set of coherent states [52]. Thus I can conclude this section by stating that,

to minimize the error in each of two consectutive quick measurements of 〈ŷm(t)〉,

it is necessary that the first measurement projects the resonator into a minimum

uncertainty state.

The Ideal Linear Amplifier

While the analysis of the preceding section provides us with an idea of the

role of the Heisenberg uncertainty principle in measurement, it is unsatisfactory
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for at least two reasons. First, one is not always interested in simply making two

consecutive quick measurements of a system. For example, the results presented

in this thesis were obtained in the continuous measurement limit (ie. the limit in

which the time interval between measurements becomes small with respect to the

time scale of the dynamics of the measured system). Second, the analysis makes no

reference to a measuring device, relying only upon the uncertainty relation for the

measured oscillator, or, essentially, its wave nature. Which begs the question: what

is the role of the detector?

In this section, I paraphrase a work of Carleton Caves [3] and derive the quan-

tum measurement limit for the case of a quantum signal continuously measured by a

linear quantum amplifier. It is seen that such a detection scheme necessarily adds a

minimum of one-half of a quanta of noise to the measured signal. As this minimum

is imposed only by the assumptions of linearity and the appropriate commutation

relations invoked by unitarity, the limit is known as the ideal linear amplifier limit,

and such an amplifier is referred to as an ideal linear amplifier.

In Cave’s model [3], the input signal and the amplifier are represented by

Bosonic modes with noise power per unit bandwidth per mode given in terms of

the number quanta N̂a=âβ â†
β and Nb=b̂αb̂†α respectively. Here âβ, â†

β and b̂α,b̂†α are

annihilation and creation operators for the respective modes of the oscillator and

detector, and obey the commuation relations

[
âα, â†

β

]
= δβ

α,
[
b̂α, b̂†β

]
= δβ

α (2.19)
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and

[âα, âβ] = 0,
[
b̂α, b̂β

]
= 0. (2.20)

The analysis proceeds in the Heisenberg representation where it is assumed

that the evolution of the output (detector) operators can be expressed as a linear

superposition of the input (oscillator) modes [3]:

b̂α =
∑
β

(
Mαβâβ + Lαβâ

†
β

)
+ F̂α (2.21)

and

b̂†α =
∑
β

(
â†

βM
†
αβ + âβL

†
αβ

)
+ F̂ †

α, (2.22)

where Mαβ and Lαβ are matrices related to the amplifier’s gain and F̂α is an operator

representing the amplifier’s noise contribution, which is assumed to be random in

time with a Gaussian distribution.

It is further assumed that F̂ depends only on the internal modes, or the internal

state, of the amplifier and thus commutes with the input mode operators. It turns

out that this assumption has rather important consequences, which I will discuss in

the end. For a less ideal amplifier Mαβ and Lαβ would be replaced by operators to

account for any time dependence in the gain (ie. gain fluctuations).

Next several assumptions are made. First, the analysis is restricted to the case

of single mode detection2 so that Eqs. 2.21 and 2.22 simplify to

b̂ =
(
Mâ + Lâ†)+ F̂ (2.23)

2I note that Caves also treats the more general multi-mode case. The purpose of this section,

however, is to give a brief demonstration of how the quantum limit arises in the context of continous

measurement. For this purpose, presentation of the single-mode analysis is sufficient.
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and

b̂† =
(
â†M † + âL†)+ F̂ †. (2.24)

Second, it is assumed that the amplifier is phase-conjugating, ie. that a phase-

shift in the input signal generates the opposite sign phase-shift in the output signal.

That is, if

â′ = âe−iφ,

then

b̂′ − F̂ = b̂eiφ − F̂ ,

This requires that M = 0. Thus I am left with

b̂ = â†L + F̂ (2.25)

and

b̂† = L†â + F̂ †. (2.26)

This assumption is made arbitrarily. I could have just as easily assumed phase-

preseving. In the end, Caves demonstrates that for large gain amplifiers, the ultimate

limit is the same.

Finally, it is assumed that the amplifier noise is phase-sensitive. That is,

the amplifier’s rms noise contribution is split unequally between the input signal’s

quadratures. Thus one must break up the input and output signals into their re-

spective quadratures:

â = X̂1 + iX̂2 (2.27)
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and

b̂ = b̂1 + ib̂2, (2.28)

where

b̂1 = LX̂1 + F̂1 b̂2 = LX̂2 + F̂2, (2.29)

where F̂=F̂1+iF̂2. To recover the phase-insensitive amplifier, simply set F1 = F2.

With these assumptions, one can now express the total output noise for each

quadrature as [3]

(∆b1)
2 = |L|2(∆X1)

2 + (∆F1)
2, (2.30)

(∆b2)
2 = |L|2(∆X2)

2 + (∆F2)
2, (2.31)

where ∆X1 (∆X2) and ∆F1 (∆F2) are the signal and detector rms noise contribu-

tions to the quadratures respectively.

The amplifier contribution referred to the input for each quadrature is thus [3]

A1 =
(∆F1)

2

|L|2 , (2.32)

A2 =
(∆F2)

2

|L|2 , (2.33)

where |L|2 plays the role of the amplifier’s power gain in number of quanta.
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Using the Schwartz inequality [3],

∆F1∆F2 ≥ 1

2
|〈
[
F̂1, F̂2

]
〉|, (2.34)

and the relation

[
F̂ , F̂ †] = −2i

[
F̂1, F̂2

]
, (2.35)

one arrives at the uncertainty relation for a phase-sensitive linear amplifier [3]

A1A2 ≥ 1

16
|〈[F̂ , F̂ †]〉|2, (2.36)

and the total amplifier noise contribution

A = A1 + A2 ≥ 1

2
|〈[F̂ , F̂ †]〉|. (2.37)

As they stand, Eqs. 2.36 and 2.37 are not very illuminating. However, from

the commutation relation for b̂, Eq. 2.20, one finds [3]

[F̂ , F̂ †] = 1 + |L|2. (2.38)

Thus

√
A1A2 ≥ 1

4
(1 + |L|−2), (2.39)

and

A ≥ 1

2
(1 + |L|−2). (2.40)

For large gain, |L|2 	 1, Eqs. 2.39 and 2.40 tell us two things: noise in

one quadrature can only be reduced at the expense of signal-to-noise degradation

in the other quadrature [3]; and the absolute minimum total noise power per unit

bandwidth that an amplifier can add to a narrow band signal is one-half quanta [3].
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Using Eqs. 2.30, 2.31, 2.32, 2.33, and 2.37, one can re-express the total output

noise as

∆b2 = |L|2
(
∆X2 + A

)
. (2.41)

If the signal contributes one-half quanta of noise, ie. ∆X2 = 1
2
, then

∆b2 = |L|2
(

1

2
+ A

)
. (2.42)

From Eq. 2.40, this then yields

|∆b|2 ≥ 1

2
|L|2 +

1

2
(1 + |L|2) = |L|2 +

1

2
, (2.43)

which simply states that, for large gain, the minimum total noise at the output of an

ideal amplifier is composed of two parts: one-half quanta contributed by the internal

amplifier modes, and one-half quanta contributed by the input mode; both of which

are amplified by |L|2 [3]. The fact that the two noise sources add in quadrature

is a consequence of the assumption that the internal states of the amplifier and

the initial input signal state are independent. As a result, their fluctuations are

uncorrelated.

Finally, Caves defines the noise temperature, TQL, of the ideal linear amplifier

by assuming that the total input noise is given by the Planck distribution (plus the

zero-point energy),

|∆a|2 =
1

2
coth

(
h̄ω1

2kBTb

)
, (2.44)

and asking: by how much would one have to increase Tb to observe |∆b|2 at the

output of the amplifier? In the limit of large gain, after working through the algebra,
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Caves finds:

TQL =
h̄ω1

kB ln(3)
, (2.45)

if Tb =0; and

TQL =
h̄ω1

2kB
, (2.46)

if kBTb 	 h̄ω1.

This minimum is imposed only by the assumptions of linearity and the appro-

priate commutation relations invoked by unitarity, and is known as the ideal linear

amplifier limit. An amplifier that meets this condition is referred to as an ideal

linear amplifier.

In the low-Tb limit, then, the resulting minimum position sensitivity is

∆yQL =

√
TQLkB

Km
=

√
h̄

ln(3)Mmω1
, (2.47)

which is greater than the standard quantum limit, Equation 2.18:

∆yQL =

√
2

ln(3)
∆ySQL. (2.48)

Quantum-Limited Position Detection

In the previous sections it was demonstrated that quantum mechanics places

a limit on the minimum rms uncertainty in the knowledge of a resonator’s position;

it was also shown that quantum mechanics requires that there be an additional

minimum noise contribution from the amplifier itself.3 However, the discussion

up until this point has been rather abstract; it is not obvious how to extend the

formalism or the results to a solid-state position amplifier such as the SET.

3I implicitly mean an amplifier with linear, time-indepedent coupling to the resonator’s position.
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In this section, I present and discuss the results of Aashish Clerk’s linear

response approach to quantum-limited position detection [16]. This approach ar-

rives at the same conclusion as Cave’s Bosonic-mode model, with the advantage of

phrasing the quantum constraints on continuous linear amplification in terms of an

amplifier’s intrinsic noise properties.

Clerk considers a resonator with conjugate momentum, p̂y, and displacement,

ŷm, and an amplifier with input and output characterized by the hermitian operators

F̂ and Î respectively.

He further assumes that the resonator is coupled to both an equilibrium bath

with temperature Tb and to the amplifier via the interaction

Hint = −AF̂ · ŷm, (2.49)

where A sets the strength of the interaction and F̂ can be thought of as the inter-

action force or equivalently the back action of the amplifier on the resonator.

The analysis is restricted to the case of weak coupling (Hint → 0) the relevant

parameter regime for our experiments (see Section 2.3). There are two consequences

of this. First, the response of the output of the amplifier 〈Î〉 to a small change 〈ŷm〉

can be determined using linear response theory [53]. From Liouville’s theorem, to

first-order in Hint, Clerk finds that the amplifier’s output response is given by

〈∆Î(t)〉 = Tr(Î∆ρ(t)) = A
∫ ∞

−∞
dt′λ(t − t′)〈ŷm(t)〉, (2.50)

where ∆ρ(t) is the first-order density matrix term in the iterative solution of the

Liouville equation.
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The admittance or amplifier gain, λ, is given by [16]

λ(t − t′) =
1

ih̄
Θ(t − t′)〈

[
Î(t), F̂ (t′)

]
〉; (2.51)

and the expansion is done about the amplifier’s zero-coupling configuration.

The second consequence of the weak-coupling assumption is that the equation

of motion for 〈ŷm(t)〉 reduces to a ”Langevin-like” expression. Specifically, Clerk

finds that

Mm
∂2〈ŷm(t)〉

∂t2
= −Mmω1

2〈ŷm(t)〉 − γb
∂〈ŷm(t)〉

∂t
− (2.52)

− A2
∫

dt′γ(t − t′)
∂〈ŷm(t′)〉

∂t′
+ Fb(t) + A · F (t), (2.53)

where γb and Fb describe the damping and fluctuating forces provided by the bath

respectively and are related through the fluctuation-dissipation theorem:

S̄Fb
= γbathh̄ω coth (

h̄ω

kbTb
). (2.54)

The detector’s influence is manifest in the damping term γ(t − t′) and the

back action force F (t). In the limit where the resonator’s frequency is small with

respect to the intrinsic time-scale of the amplifier, Clerk demonstrates that the

detector-induced damping and back action force are related in a manner simliar to

the fluctuation-dissipation theorem:

2kBTd =
S̄F

γ
. (2.55)
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Here,

S̄F = lim
ω→0

SF (ω) + SF (−ω)

2
(2.56)

and

γ = lim
ω→0

SF (ω) − SF (−ω)

2h̄ω
, (2.57)

where,

SF (±ω) =
∫ ∞

−∞
dt〈F̂ (t)F̂ (0)〉e±iωt (2.58)

are the positive and negative frequency components of the amplifier’s back action

noise spectral density, with (+) referring to energy transfer from the resonator to the

amplifier, and (-) referring to energy transfer from the amplifier to the resonator. See

reference [54] for a nice explanation of positive and negative frequencies in quantum

noise.

Classically, 〈F (t)F (0)〉 =〈F (0)F (t)〉, so that SF (ω)= SF (−ω). However, this

is not generally true for a quantum mechanical system, ie.
[
F̂ (t), F̂ (0)

]
�= 0 [54] . It

is convenient then to use the relation

F̂ (t)F̂ (0) =
1

2

({
F̂ (t), F̂(0)

}
+
[
F̂ (t), F̂ (0)

])

to break-up Eq. 2.58 into two components: a real component representing the total

force spectral density experienced by the resonator due to the amplifier’s back action

noise (Eq. 2.56); and an imaginary component representing the energy-loss rate of

the resonator due to the interaction with the amplifier, or detector-induced damping

(Eq. 2.57). With these definitions, the effective amplifier temperature Td is thus

interpreted as gauging the asymmetry between the amplifier’s positive and negative

frequency back action noise.
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For the case of normal-state SET’s and tunnel-junctions, it has been found

that Td is positive and propotional to the average energy lost by an electron as

it traverses the device’s junctions [55] [56] [57]. On the other hand, due to the

myriad tunnelling processes, the case of the superconducting SET (SSET) is much

more complicated [58] [59] [60]. For example, both positive and negative effective

temperature and dissipation are possible when the SSET is biased near the single and

double Cooper-pair resonances (see Appendix B for brief discussion of the SSET);

the “direction” of the exchange of energy depending on whether energy needs to be

removed or added for the resonant tunneling of Cooper-pairs to occur .

Regardless of whether Td is positive or negative, the total effective tempera-

ture, Te, of the resonator is given by the sum of Td and Tb, weighted by the respective

coupling to each reservoir [16] [55]:

Te =
1

γe
(γbTb + γdTd) , (2.59)

where

γe = γb + γd =
Mmω1

Qe

, (2.60)

γd = A2γ, (2.61)

and Qe is the effective quality factor of the resonator due to damping induced from

both the detector and the environment.

From the above definitions, and Eqs. 2.54 and 2.55, Clerk expresses the spec-

tral density of the resonator’s motion as
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S̄y(ω) =
S̄Fb

(ω) + A2S̄F (ω)

|Mm (ω2 − ω1
2 + iωω1/Qe)|2

=

= |g(ω)|2
(
S̄Fb

(ω) + A2S̄F (ω)
)
. (2.62)

Using Eqs. 2.51 and 2.62, the total noise-power density at the output of the detector

is thus

S̄I,tot(ω) = S̄I(ω) + A2|λ(ω)|2S̄y(ω) − 2A2Re
[
λ(ω)∗g∗(ω)S̄IF

]
, (2.63)

where S̄I(ω) is the symmetrized spectral density of the amplifier’s forward coupling

noise, S̄IF (ω) is the symmetrized spectral density of the cross-correlations between

forward and back-acting noise sources.

Finally, Clerk shows that Eq. 2.63 can be converted into an equivalent dis-

placement noise density, referred to the input of the amplifier:

Sy,tot(ω) =
S̄I(ω)

|λ(ω)|2A2
+ A2|g(ω)|2S̄F (ω) − 2Re

[
λ∗(ω)g∗(ω)S̄IF (ω)

]
|λ(ω)|2 +

+|g(ω)|2S̄F,b(ω). (2.64)

The first three terms represent the amplifier’s contribution to the total dis-

placement noise; whereas the last term represents resonator fluctuations due strictly

to the equilibrium bath.

Minimization of Eq. 2.64 is a rather involved process, requiring the optimiza-

tion of the noise sources S̄I(ω), S̄F (ω), and S̄IF (ω) and the coupling A. However,
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Clerk imposes two important constraints that allow for the determination of a min-

inum on resonance, ω=ω1.

First, S̄I(ω) and S̄F (ω) are constrained by the amplifier uncertainty principle:

S̄I(ω)S̄F (ω) ≥ h̄2

4
(Re [λ(ω)])2 +

(
Re

[
S̄IF (ω)

])2
(2.65)

with the equality fulfilled for the case of a quantum-limited amplifier.

Strictly speaking, Eq. 2.65 states that in the presence of gain, even an ideal or

quantum-limited amplifier must add a minimal amount of back-acting and forward-

coupling gain. An alternative interpretation of the equality in Equation 2.65 is that

no signal information is lost in the process of measurement [61]. One can see this

by recognizing that the rate at which information is attained from the output of the

detector, Γmeas, is inversely proportional to S̄I(ω) (ie. the smaller S̄I(ω), the better

the signal-to-noise, and the less time for which one needs to integrate); whereas, the

rate at which information “enters” the detector, Γφ, is proportional to the interaction

SF . At the quantum-limit, Clerk et al. demonstrated that Γmeas = Γφ, implying

a tight coupling between the amplifier input and output degrees of freedom. In a

sub-ideal amplifier, Γφ > Γmeas, implying that some information about the input

signal is lost to internal degrees of freedom which do not influence the amplifier’s

output.

Second, Clerk demands that the total power available at the output of the

amplifier be much greater than the total power delivered from the amplifier to the

resonator. He shows that, for a quantum-limited amplifier, this is equivalent to
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requiring that

kBTd

h̄ω1
	 1. (2.66)

With these two constraints, the requisite conditions for minimization can be

stated. First, it is necessary that the amplifier noise terms satisfy the equality in

Equation 2.65. That is, the amplifier must be quantum-limited.

Second, the symmetrized cross-correlation term S̄IF (ω) must vanish, minimiz-

ing the product S̄I(ω)S̄F (ω).

Third, the back action and forward-coupling must contribute equally to the

total displacement noise. This requirement falls out of the optimization of the

coupling A,

Aopt =

√√√√ S̄I(ω)

|λ(ω)g(ω)|2S̄F (ω)
, (2.67)

and can be thought of as being analagous to noise impedance matching for opti-

mization of signal-to-noise.

A consequence of this third condition is that the detector-induced damping, γd,

must be small with respect to γbath to ensure that the resonator is more tightly cou-

pled to Tb than Td (a consequence of the second constraint and Eq. 2.59). Explicitly,

Clerk shows that the third condition implies

Aopt
2γ

γb + Aopt
2γ

=
h̄ω1

4kBTd
, (2.68)

which is necessarily much less than one due to the assumptions I have made.

If all three conditions are satisfied, Clerk shows, then, that an amplifier must

contribute at least the equivalent of the resonator’s zero-point contribution to the

measured signal. From Eqs. 2.68 and 2.59, it is evident that half of the contribution
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is in the form of back action or heating of the resonator:

Te =
Aopt

2γTd + γbTb

Aopt
2γ + γb

=
h̄ω1

4kB
+ Tb, (2.69)

as one would expect, having optimized with respect to the coupling A. The other

half of the amplifier contribution is necessarily forward-coupling noise. Thus, the

noise temperature of a such an optimized detector is

TQL =
h̄ω1

2kB
. (2.70)

Essentially, this is the same result derived in the previous section: an amplifier

must add at least one-half quanta of noise power per unit bandwidth to the mea-

sured signal. However, the advantage of the present approach is that it provides a

prescription (ie. the three conditions listed above) which an amplifier must fulfill in

order for quantum-limited displacement detection to be possible. Additionally, the

effect of the amplifier’s back action on the resonator is explicitly manifest as heating

of the resonator by one-half its zero-point energy.

2.3 Nanomechanical RFSET Displacement Detection

With the development of the RFSET [41] [62] [63], came the suggestion that,

it could be implemented as a nearly quantum-limited nanomechanical displacement

transducer [12] [13]. The realization was spurred by a combination of factors. For

one, theoretical treatments of the SET suggested that the electrometer could achieve

near-ideal noise characteristics required for quantum measurement schemes [43] [42]

[64]. Secondly, the RFSET had been demonstrated to be capable of operating with

38



over 100 MHz bandwidth [41], a pre-requisite for the read-out of the high frequency

nanoresonators thought to be necessary to demonstrate freeze-out. And third, the

similarities in size-scale and fabrication between SETs and nanoresonators suggested

that sub-micron positioning of the devices and, hence, tight coupling should be

possible.

In this section I first review the basic idea behind nanomechanical RFSET

displacement detection. I then review the theoretical work on the noise characteris-

tics of the SET and apply the results of the previous section to discuss the ultimate

limits of the detection scheme.

The RFSET Displacement Detector

In essence, the RFSET displacement detector is a capacitive microphone: me-

chanical fluctuations are converted into an electrical signal via the capacitive mod-

ulation of an SET’s differential resistance; the differential resistance of the SET is

then read-out using microwave reflectometry. A generic circuit schematic for the

transduction process and an SEM micrograph of an RFSET displacement detector

are displayed in Fig. 2.3.

By application of a large DC bias, VNR, between the nanoresonator and the

SET island, mechanical displacement of the resonator, ym, results in modulation of

the polarization charge on the SET island through the relation

∆QNR =
∂CNR

∂ym

VNRym ≈ b
CNRVNR

dNR

ym, (2.71)

where CNR and dNR are the capacitive-coupling and spatial separation between the
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(a)

(b)

Figure 2.3: (a) Circuit schematic and (b) SEM image of the RFSET displacement

detector
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resonator and the SET island respectively. In principle, CNR can be found to high

precision from measurements of the SET conductance versus VNR (see Appendix B).

However, the derivative of CNR with respect to ym must be calculated numerically.

Thus, in the last step in Eq. 2.71, I have used a capacitance extraction program [65]

and found, for typical device parameters, that ∂CNR/∂ym ≈ bCNR/dNR where b is

of order unity.

In Fig. 2.3(a), y is the in-plane displacement of the mid-point of the neutral

surface (solid line) from the equilibrium position (dashed line). The quantity ym is

defined as the average displacement of the neutral surface over the region a to b,

the length of the SET island (the relationship between ym and y is calculated in

Appendix A). It is straight-forward to show that the resonator’s fundamental mode

couples most strongly to the SET island (ie. both yn,m and ∂CNR/∂yn,m decrease

with increasing number, n, of resonator nodes). For the remainder of the thesis, I

will assume that ym represents the average displacement of resonator’s fundamental

in-plane mode over the length of the SET island.

It should also be noted that, in Fig. 2.3(b), the resonator’s displacement,

the lengths of the SET island and the resonator, and the separation between the

resonator and SET are not drawn to scale. For our samples the resonator’s displace-

ment is about 10−6 × dNR, the length of the SET island is about 0.33 - 0.5 times

the length of the resonator, and dNR is typically about 0.02 - 0.05 times the length

of the resonator.

The modulation of the SET-island charge by ∆QNR results in the modula-

tion of the SET’s differential resistance, RS . For a normal-state SET, biased at
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the edge of the Coulomb blockade, the relationship between QNR and RS can be

approximated by (see Chapter 5 and Appendix B)4

RS ≈ VSD

ISD
≈ 2RΣ

sin(πQNR/e) + 1
, (2.72)

where VSD and ISD are the source-drain voltage bias and current respectively.

For small displacement and, hence, small charge modulation, ∆QNR � e, the

maximum modulation of RS is given by

∆RS ≈ −2πRΣ
∆QNR

e
≈ −b

2πRΣCNRVNR

edNR
ym, (2.73)

where RΣ is the SET’s differential resistance at large source-drain bias VSD and e is

the magnitude of the electron charge.

The modulated differential resistance ∆RS is measured by applying a mi-

crowave signal vc(t) to the SET drain and measuring the modulation in the reflected-

signal (sideband microwave reflectometry is discussed in Chapter 5). Because RS 	

Zo, where Zo is the characteristic transmission line impedance of 50 Ω, an LC circuit

is inserted in series with the SET for impedance matching. Ideally, the values of LT

and CT are chosen so that, at the carrier frequency ωT = 1/
√

LTCT , the impedance

of the LTCT RS circuit is

ZLCR =
LT

RSCT
= Zo. (2.74)

4As is discussed in Chapter 5 for both normal-state and superconducting-state SET’s no analytic

expression for the differential resistance for an arbitray bias point is known. One must either solve

the SET master equation numerically or use a measured IV curve and take the numerical derivative

to find the relationship between ∆QNR and ∆RS .
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Equivalently, this can be seen as transforming the transmission line impedance

so that Q2
TZo = RS where QT = ωT LT /Zo is the external quality factor.

The resulting modulation of the reflected-signal ∆vr(t) is well approximated

by linearizing it with respect to ∆RS(t) [66], so that, on resonance ωT ,

∆vr(t) ≈ vc(t)∆Γ(t), (2.75)

where

∆Γ(t) ≈ −b
Q2

TZoCNRVNR

RΣ

π√
2edNR

ym(t) (2.76)

at a bias-point of maximum QNR-response (see Chapter 5 for details).

As stated, in Eq. 2.76, I have assumed that the reflected-signal frequency is at

the tank-circuit resonance, ωT , so that the ZLRC = LT /RSCT . Typically, the carrier

frequency is tuned to ωT . However, ym(t) might be modulated at, say, 5 MHz. The

reflected signal will then have sidebands at ωT ±(2π∗5MHz). The magnitude of the

sidebands will depend on the half-width of the LT CT resonance. This is determined

by loading from both Zo and RS :

∆f =
ωT

4πQ
(2.77)

where

1

Q
=

1

QT
+

1

QS
=

Zo

ωTLT
+

ωT LT

RS
. (2.78)

∆f is essentially the bandwidth of the RFSET. For optimal matching, it reduces to

∆f =
ωT

2πQT
. (2.79)

In practice, the desired bandwidth, along with the matching-condition, sets the

choice of the tank-circuit inductor and capacitor values.
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The role of the tank circuit is clear from Eq. 2.76: near resonance, it effectively

serves to amplify the modulation of the reflected-signal by Q2
T . Without the tank-

circuit ∆Γ ∝ Zo/RS ∼ 10−3, and thus

∆vr ≈ −10−3 bπ√
2

CNRVNR

e

ym

dNR

vc. (2.80)

On the otherhand, with the tank circuit, and for optimal matching, Q2
T Zo = RS , I

have

∆vr ≈ − bπ√
2

CNRVNR

e

ym

dNR
vc. (2.81)

Finally, I close this subsection with some remarks about optimizing the reflected-

signal modulation response. First, it is obvious that maximizing the reflected-signal

response requires optimizing the impedance matching. However, it also requires op-

timizing vc and the coupling CNRVNR/dNR. The optimal carrier amplitude depends

on the bias-point, tank-circuit quality-factor Q [66] [67], as well as whether the SET

is superconducting or normal. In practice, it is simplest to determine the optimal

value by tuning the amplitude manually and looking for the maximum response.

The optimization of the coupling is more subtle. This is because I am not simply

interested in maximizing the SET reponse to fluctuations in position of a nearby

resonator. I am primarily interested in optimizing the SET displacement sensitivity,

which, because of the SET back action, is a separate issue. In the following sec-

tion, then, I consider the intrinsic SET noise, address the issue of optimal coupling

CNRVNR/dNR, and present the predictions for the ultimate limit to RFSET position

sensitivity.
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The Ultimate Limit

For simplicity, I develop the ultimate limit of RFSET displacement detection

by considering the intrinsic noise of a normal-state DCSET. At the end of the section,

I briefly address the much more complex intrinsic noise limits of the superconducting

SET (SSET). Also, I assume that the difference in position sensitivity between the dc

and rf modes of operation can be accounted for by applying the predicted reduction

factor of 1.4 - 1.9 for the RFSET’s optimal intrinsic sensitivity [67]. The authors

in Reference [67] state that the degradation of ultimate sensitivity in the rf mode

compared to the dc mode is simply a result of the increased bandwidth of the rf

mode.

I assume that the orthodox theory (see Reference [68] and Appendix B) is

applicable, and thus neglect the effects of co-tunneling [69]. Additionally, I assume

that kBTb � Ec, and neglect any thermal contributions to SET tunneling. Finally,

I assume that the frequency range of interest is above the 1/f noise tail, ∼ 10 kHz,

and below the intrinsic SET tunneling rate, (RΣCΣ)−1 ∼ 1 - 100 GHz.

In the relevant limits, the intrinsic noise of the SET is due to two white sources

[43] [42]: the shot noise in the source-drain current ISD; and fluctuations in the SET-

island potential, φ. The origins of both sources arise from the stochastic nature of

electron tunneling events, of which ISD is composed (see Appendix B).

First, consider the shot noise. From the Orthodox Model, if one could in-

sert an ammeter at each of the SET junctions, the tunneling-events would appear

as delta-function peaks, separated in time according to a correlated-Poisson distri-
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bution. The correlations arise from the fact that the probabilities for successive

tunneling events are not independent but related through the accompanying change

in the SET’s free-energy. To calculate the spectral density of the current fluctua-

tions, one must solve the SET master equation and calculate the auto-correlation

function, taking into account all the relevant tunneling processes. However, near

the Coulomb-blockade threshold (the sequential tunneling regime), an approximate

analytic expression for the shot noise spectral density exists5, and is given by [43]

SII(ω) = ηI2eISD, (2.82)

where

ηI =
Γ2

1 + Γ2
2

(Γ1 + Γ2)
2 . (2.83)

Here ηI accounts for the correlations between tunneling events, and Γ1 and Γ2 are the

tunneling rates through junctions 1 and 2 respectively. It is SII(ω) that ultimately

sets the limit of the SET charge sensitivity,

SQNR
(ω) = SII(ω)

(
∂ISD

∂QNR

)−2

. (2.84)

In terms of the SET parameters, for symmetric junctions, this is expressed as

[42]

SQNR
(ω) � (1 − α2)(1 + α2)

8α2
eVSDRΣC2

Σ, (2.85)

where

α =
(2CNRVNR − e)

CΣVSD

. (2.86)

5From the initial assumptions, this is a classical analysis of the amplifier’s noise sources, and,

thus, it follows that there is no need to symmetrize the sources as in Section 2.2.

46



Here, the parameter α specifies ISD and the set of (VNR, VSD) bias points which

yield that particular value of current. The expresion above is valid provided that

one restrict the bias-points to non-degeneracy points, 0 < α < 1 - RQ/πRΣ, where

RQ is the quantum of resistance. The expression requires that VSD < e/CΣ so that

only two charge states are involved in the tunneling process.

Next, I consider the SET-island potential fluctuations. If one could connect a

voltmeter to the SET island, the potential, φ, would be seen to decrease (increase)

by e/CΣ for each electron tunneling-event onto (off of) the island. Calculation of the

spectral density of the potential fluctuations requires solving the master equation

for all contributing tunneling events. But, in the sequential tunneling regime, the

potential noise spectral density takes the simple form [43]:

Sφφ(ω) � ηφ
e2

CΣ

, (2.87)

where

ηφ =
4Γ1Γ2

(Γ1 + Γ2)
3 . (2.88)

Similiar to ηI , ηφ accounts for the correlations between successive steps in the island

potential. Essentially, these steps cause the SET back action. In terms of the SET

parameters, the back action can be expressed as [42]

Sφφ(ω) � (1 − α2)

4

e3RΣ

C2
ΣVSD

, (2.89)

where α has the same definition and restrictions as above.

From these results for the SET shot noise and back action, I can now gauge the

overall noise performance of the SET, and determine if it meets the three conditions
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necessary for quantum-limited linear position detection. It is straightforward to

show that [42]

√
ω2SQNR

(ω)Sφφ(ω) ≈ 2.2h̄ω (2.90)

for an “optimized” SET, where ω is the frequency of the mesured signal. Thus,

while it is apparent that the “optimized” SET fails to meet condition (1) (Eq. 2.65),

this result demonstrates that the SET, in principle, is a nearly quantum-limited

detector. Note also that Eq. 2.90 does not include correlations between the shot

noise and back action.

The correlations between the shot noise and back action are given by [42]

|SIφ(ω)|√
Sφφ(ω)SII(ω)

≈
√

2

1 + α2

α

2
. (2.91)

For the range of α allowed in this approximation, the relative magnitude of SIφ(ω)

can range from ∼ 0.0 to ∼ 0.5. Depending on the bias-point and on the source

impedance, the correlations could add to or reduce the total noise power added by

the SET amplifier [16] [43] [42]. Regardless, it appears that, at least in some cases,

the SET also fails to meet condition (2).

Lastly, I address the condition (3) (optimal coupling). I first assume that

the SET is biased such that the correlation term is negligible. Next, I convert the

SET’s intrinsic noise sources into a total effective position sensitivity by assuming

that the SET is coupled to a nanomechanical resonator as described in the previous

subsection. The shot noise contribution is simply:

Sy
I (ω) ≈ SQ(ω)

(
dNR

bCNRVNR

)2

. (2.92)
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Equation 2.92 simply states that as I increase the coupling, bCNRVNR/dNR,

between the resonator and the SET island, the mechanically-induced charge signal

increases linearly above the SET’s shot noise background.

The contribution due to the back action is approximated by considering the

force of the SET-island potential fluctuations on the resonator:

F (t) ≈ b
CNRVNR

dNR
δφ(t), (2.93)

where δφ(t) represents the step-wise potential fluctuations.

On resonance, the response of the resonator is given by the standard relation:

ym(ω) =
Qef

Km
, (2.94)

where f is the normalized force, accounting for the mode shape as discussed in

Appendix A. Here, the quality factor Qe (Eq. 2.60) is used to account for the detector

induced damping6 [16] [55]. For the case of the normal state SET, the effective

quality factor is given by [16] [55]

1

Qe

=
1

Qb

+
1

Qd

=

=
1

Qb
+

(
bCNRVNR

CΣVSD

)2
e2RΣ

2Mmω1d2
NR

, (2.95)

where I have assumed symmetric junctions, and Qb is the quality factor relating to

damping due the equilibrium bath.

6The detector also induces a shift in the resonator’s spring constant. I neglect this affect as the

resulting frequency shift is small with respect to the shift induced by the electrostatic softening of

the mode due to the coupling voltage VNR.
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From Eqs. 2.93 and 2.94, the resulting back action contribution to the dis-

placement noise is thus

Sy
F (ω) ≈

(
Qe

Km

)2
(

bCNRVNR

dNR

)2

Sφφ(ω). (2.96)

The total effective mean square displacement noise for the SET displacement

detector is now written simply as

(δym)2 = (Sy
I (ω) + Sy

F (ω)) ∆f, (2.97)

where ∆f = ω1/4Qe is the noise equivalent bandwidth of the resonator.

It is clear from Eqs. 2.96 and 2.92 that Eq. 2.97 can be minimized with respect

to the coupling. Thus condition (3) is satisfied. For a given sample, the only

parameter in the coupling which can be tuned is VNR. In the simple case where

damping from the equilibrium bath dominates, the weak-coupling limit, I find the

optimal coupling voltage to be

V 2
NR,opt =

(
dNR

bCNR

)2
Km

Qb

√√√√ SQ(ω)

Sφφ(ω)
. (2.98)

Figure 2.4 displays the total rms displacement noise of the SET displacement

detector. The parameter values are chosen to roughly represent Device 2. The

back action and shot noise are seen to contribute equally at a voltage of VNR,opt

≈ 13 Volts. This so-called “sweet-spot” yields an ultimate intrinsic displacement

sensitivity ∼ 1.5∆yQL, where,

∆yQL =

√
h̄

ln(3)Mmω1
, (2.99)

as determined from the definition of TQL, Eq. 2.45.7

7Choosing the low-temperature limit of TQL rather than the high-temperature limit is simply
a matter of convention.
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Figure 2.4: Log-log plot of displacement noise of the SET displacement detector in

the weak coupling limit. Parameter values: Qb = 5.0 × 10 4, CΣ = 450 aF, CNR =

26 aF, f1 = 19.7 MHz, dNR= 600 nm, and Km ≈ 15 N/m. The line representing

the measurement circuit limit is for SQ = 15 µe/
√

Hz.
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For comparison, also included in Fig. 2.4 is the additive measurement circuit

noise (labeled ‘measurement circuit limit’). As discussed in Appendix B and in

Chapter 5, this noise is due to the input voltage noise of the pre-amplifer. It is

uncorrelated with the intrinsic sources, and simply adds to the forward coupling

noise SQ(ω) in Eq. 2.92.

Figure 2.5 demonstrates the limit where the damping crosses over from bath-

limited to detector-limited. Optimal coupling is achieved at ∼ .5 Volts. The cross-

over from the bath-limited regime to the detector-limited regime occurs at ∼ 15

Volts. In this regime, the effective resonator temperature Te, Eq. 2.59, is determined

primarily by the effective detector bath temperature Td, Eq. 2.55. For the case of

the normal-state SET [55],

Td ∝ eVSD

kB
(2.100)

where the proportionality constant is of order .5, and depends on the specific bias

SET bias point. For typical parameters, this should be on the order of .5 - 1 K.

Before concluding, it is necessary to comment on how the preceding dicussion

would have differed if I considered the case of a superconducting single-electron tran-

sistor (SSET). As discussed in Appendix B, the combination of Coulomb blockade

and Josephson phenomena leads to a large variety of potential tunneling processes.

Consequently, a general statement about the the differences between the noise char-

acteristics and response of the SSET and the SET cannot be made; it depends on

the particular bias point and the dominant tunneling processes at that point.

For example, at the onset of single quasiparticle tunneling (at 4 ∆), the re-
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Figure 2.5: Log-log plot of displacement noise of the SET displacement detector,

demonstrating the cross-over from bath-limited damping to detector-limited damp-

ing. Parameter values: Qb = 2.0 × 10 5, CΣ = 550 aF, CNR = 65 aF, f1 = 9.5 MHz,

dNR= 300 nm, and Km ≈ 2 N/m. The line representing the measurement circuit

limit is for SQ = 90 µe/
√

Hz.
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sponse or ISDQNR transfer function of the SSET has been found to be greater than

the SET response at the onset of tunneling by a factor of ∼ 1.6∆/EC [70]. Predic-

tions for the optimized ultimate charge sensitivity of the SSET for this particular

bias regime also show improvement over the normal-state [71].

As well, around the JQP resonance, it is expected that, because of the sup-

pression of the shot noise from resonant tunneling, the charge sensitivity should

improve over what is achievable in the normal-state [72].

Finally, recent theoretical investigations of the measurement effects of the noise

characterisics near the DJQP and JQP resonances have shown that, just as in the

normal-state, the SSET back action should appear as an effective thermal bath,

driving, damping and shifting the frequency of the measured resonator [59] [60]. It

is still seen that

Q−1
d ∝ V 2

NR (2.101)

and

Td/ ∝ VSD. (2.102)

However, unlike in the normal state, assymmetry in the quantum noise can

yield both negative and positive Td and Qd [59] [60]. Additionally, it has been pre-

dicted that the SSET biased near the DJQP should be able to approach more closely

to the quantum measurement limit than a normal-state device [58]. Preliminary ex-

perimental results appear to verify the predictions of negative and positive Td and

Qd near both the JQP and DJQP resonances [73].

I conclude the section and the chapter by noting that, while the normal-state
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SET is not an ideal linear detector, it comes within a factor of 2. It is expected

that the SSET should perform even better. Configured as a displacement detector,

the SET or SSET can be optimally coupled to a nanomechanical resonator, and

perform detection near the quantum limit of position detection (Quantum Limit

II). Furthermore, implementation of the RFSET, which will result in the loss of

at most a factor ∼ 2 in detection sensitivity, should be capable of providing the

bandwidth necessary for the read-out of the high frequency nanoresonators required

to observe freeze-out (Quantum Limit I).
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Chapter 3

Design and Fabrication

The following sections describe the design considerations and the sequence of

steps involved in the fabrication of our RF-SET displacement detectors.

3.1 The Wafers

Each sample was fabricated from 500 µm thick, (100)-oriented, silicon wafers

(doped p-type with resistivity quoted to be 1 - 10 Ω-cm at room temperature). The

wafers were purchased from The MEMS Exchange [74], and provided to us with a

100 nm low-stress, amorphous silicon nitride (SiN) coating on each side (Fig. 3.1(a)).

The SiN was deposited using low pressure chemical vapor deposition (LPCVD). Each

side of each wafer was polished.

3.2 Silicon Nitride Membrane Fabrication

The first step in the process was to fabricate the SiN membrane from which

the nanomechanical resonators would eventually be cut. Using silicon nitride mem-

branes provided two advantages: (1) a relatively large Young’s modulus (200 - 300

GPa) [75] [76], yielding, for a given geometry, larger nanoresonator frequencies than

any alternative processing material other than diamond; and (2) convenience in the

processing of the nanoresonator (see the final section in the chapter on etching the
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Figure 3.1: (a) SiN-coated Si wafer. (b) After RIE etch. (c) After KOH etch.
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nanoresonator).

Initially, a protective layer of photoresist was spun on the top of each wafer:

1. Spin protective layer of photoresist on top side of wafer at 2000 rpm.

2. Let dry in air at room temperature.

Next, square openings in each wafer’s bottom SiN layer were defined by means

of contact optical lithography and reactive ion etching (RIE). The etch was timed so

that all the SiN was etched away, leaving the underlying silicon substrate exposed

(Fig. 3.1(b)):

1. Spin negative photoresist NR7-1500py [77] on bottom of wafer at 3000 rpm

for 1 minute; bake at 150◦C for 1 minute on vacuum hot-plate.

2. Expose with ∼ 400 nm wavelength light, for 20 seconds with an intensity of

12 mW/cm2

3. Post-bake at 120◦C for 1 minute on vacuum hot-plate

4. Develop in RD6 [77] for 15 seconds, and a rinse in deionized (DI) water.

5. RIE etch for 10 minutes in SF6 with SF6 flow rate and chamber pressure 20

sccm and 20 mTorr respectively; and RF power of 170 Watts.

Finally, an anisotropic wet etch was used to etch the Si substrate. Aqueous

potassium hydroxide was used, providing an etch rate of ∼ 70 µm/hr on the [100]

Si-planes:
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1. Place wafer in aqueous potassium hydroxide (KOH) solution of concentration

425 grams of K [78] per liter of DI H2O, at 80◦C, stirred at 120 rpm, for ∼ 8

hours

2. Remove from the KOH bath, rinse wafer with DI water, clean with acetone,

methanol, and isopropanol (IPA), and then blow dry with compressed N2.

After ∼ 8 hours in the KOH solution, the result was a v-groove through the

silicon, stopping at the SiN top layer, and yielding a square SiN membrane on the

top of the wafer (Fig. 3.1(c)). The size of the membrane depended on the size of

the opening on the bottom of the wafer through the relationship

Lm = Lo − 2t

tan θ
, (3.1)

where Lm was the length of each side of the membrane, Lo was the length of each side

of the opening on the wafer’s bottom, t = 500 µm was the silicon wafer thickness,

and θ = 54.7◦ was the angle between the (100) and (111) silicon planes. Typically,

we chose Lo � 765 µm so that Lm � 55 µm. This size was large enough to allow for

two complete resonator/SET devices on each membrane.

After this step, the wafers were diced into units containing four membranes

each.

3.3 Fabrication of the Bond Pads and Tank Circuit

The main design considerations for the fabrication of the bond pads and tank

circuits were as follows: (1) safegaurd the SET junctions and nanoresonator from
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electrostatic discharge by implementing on-chip room-temperature electrical shorts;

(2) reduce dissipation in the rf circuit by constructing the entire circuit out of

superconducting materials; and (3) choose the appropriate values of tank circuit

capacitance and inductance in order to achieve both large bandwidth (50 - 100

MHz) and matching between 50 Ω and the SET dynamic resistance RS .

It was equally important to choose the tank-circuit parameters so that the res-

onant frequency would be large enough to employ an rf amplifier, but small enough

to “look” like a lumped element to the incident radiation. Thus, for the first genera-

tion of devices, we chose an rf amplifier with a band-pass between approximately 1.2

and 1.7 GHz (see Chapter 4), and we engineered the tank circuits to be resonant at

approximately 1.5 GHz. For a silicon substrate, the wavelength of 1.5 GHz radiation

is on the order of centimeters and is much larger than any of the components in the

microwave circuit (see the subsections below).

Through the relation

fT =
1

2π

1√
LT CT

, (3.2)

the choice of 1.5 GHz operating frequency set the product of the tank circuit in-

ductance and capacitance to be LT CT ≈ 1 x 10−20. The individual inductance and

capacitance values would then have been set by the bandwidth condition ∆f = 50 -

100 MHz and the optimal matching condition (Eq. 2.79). The optimal inductance

would have been given by

LT =
Zo

∆fπ
. (3.3)

However, mistakes were made in the design phase, and the inductor value
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we chose (50 nH) was approximately a factor of 3.2 less than the optimal value.

Through Eq. 3.2, this increased the value of capacitance by approximately a factor

of 3.2 (300 fF). As a result, the SET/tank-circuit impedance on resonance (ZLCR,

see Eq. 2.74) was approximately a factor of 10.3 smaller than 50 Ω for RS = 50 kΩ.

Additionally, for Devices 1 - 3, RS was closer to 100 kΩ (see Section 3.4), making

the impedance mismatch nearly a factor of 2 worse. Finally, the tank-circuit quality

factor (Eq. 2.78) was dominated by loading from the 50 Ω transmission line, resulting

in measurement bandwidth of approximately 70 MHz.

Fabrication of the Bonds Pads and Tank Circuit Capacitor

The first step in the process was to define the bond pads and the tank circuit

capacitor. This was done using optical lithography and metal lift-off on the top-side

of the wafer:

1. Spin negative photoresist NR7-1500 at 4000 rpm for 1 minute; baked at 150◦C

for 1 minute on vacuum hot-plate.

2. Expose with ∼ 400 nm wavelength light, for 20 seconds with an intensity of

12 mW/cm2.

3. Bake at 120◦C for 1 minute.

4. Develop in RD6 for 20 seconds.

5. Rinse in deionized (DI) water.
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Before the deposition of the metal layers, the SiN within the regions defined

by the optical lithography step was removed by an RIE etch:

1. RIE etch with CHF3 and O2 at respective flow rates of 18 sccm and 2 sccm

and a pressure and RF power of 40 mTorr and 175W.

2. O2 plasma etch for 30 seconds at 1.75 Torr and 100 W.

This step served to provide electrical contact between the bond pads and

the silicon substrate, and was implemented in order to reduce electrostatic buildup

across the SET junctions and resonator before the device was installed on the dilu-

tion refrigerator. At room-temperature, the “short” between leads was measured to

be on the order of kΩ,

Next, a tri-layer of metals [80] was deposited using electron-beam evaporation.

The evaporation was done in a vacuum chamber at a pressure of less than 1 µTorr.

The following layers were evaporated sequentially, without breaking vacuum:

1. Evaporate 190-200 nm of Al.

2. Evaporate 20 nm of Ti.

3. Evaporate 200 nm of Au.

4. Lift-off in RR2 [77] at 80◦C for 10 minutes.

5. Rinse in IPA and blow dry with compressed N2.

The purpose of the tri-layer was to reduce dissipation in the circuit components

and at the same time ensure oxide-free overlaps between the components. We found

that the tri-layer superconducted below 700 mK.
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Fabrication of the Tank Circuit Inductor

The planar-coil inductors for the LC resonator were defined by electron-beam

lithography and electron-beam evaporation. Resist exposure was performed with a

Jeol 6500 scanning electron-beam field emission microscope (SEM) [81]. The pattern

for the exposure was generated using Design Cad LT 2000 [82]. The exposure was

controlled using the Nanometer Pattern Generation System version 8.001.77 [83].

1. Spin electron-beam resist PMMA 495K [84] on top of wafer at 5000 rpm for

60 sec; baked at 180◦C for 5 minutes on vacuum hot-plate.

2. Spin electron-beam resist PMMA 950K [84] on top of wafer at 5000 rpm for

60 sec; baked at 180◦C for 5 minutes on vacuum hot-plate.

3. Expose resist at an acceleration voltage of 30 KV, with beam current of 2 nA,

and magnification of 150x.

4. Develop for 25 seconds in MIBK [84], diluted in IPA to one-part-in-three by

volume.

5. Rinse in IPA for 25 seconds and blow dry with with compressed N2.

6. O2 plasma etch for 15 seconds to remove any residual resist in defined regions.

The metal deposition was performed using an electron-beam evaporator at a

pressure of less than 1 µTorr.

1. Deposit 100 nm Al at .5 nm/s.
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2. Lift-off in acetone at 80◦C for 10 minutes.

3. Rinse with IPA and blow dry with compressed N2.

Contact between the inner coil of the inductor and the appropriate bond pad

was achieved using an Al cross-over bridge (Fig. 3.3). The cross-over and the inner

coil made contact via a tri-layer connector1 (Fig. 3.3). The cross-over was insulated

from the coils of the inductor by a layer of SiO2. The bridges were defined in two

steps: (1) electron-beam exposure followed by deposition of SiO2; (2) electron-beam

exposure followed by deposition of Al.

Deposition of SiO2 layer:

1. Spin electron-beam resist MMA EL 11 [84] diluted in anisole to one-part-in-one

by volume at 2500-3000 rpm for 60 seconds; bake at 200◦C for 5 minutes.

2. Spin PMMA 950k at 4000 rpm for 60 seconds; and bake at 180◦C for 5 minutes.

3. Expose at accelerating voltage of 30 kV with 1 nA current and magnification

of 150x.

4. Develop for 30 seconds in MIBK/IPA (1:3).

5. Rinse for 30 seconds in IPA.

6. O2 plasma etch for 15 seconds.

1The tri-layer connector was deposited in the same step as the bond pads, leads, and tank-circuit

capacitor.
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7. Evaporate 220 nm of SiO2 at a rate of 0.5 nm/s using electron-beam evapora-

tor.

8. Lift-off in acetone at 80◦C for 10 minutes.

9. Rinse in IPA and blow dry with compressed N2.

Deposition of Al layer:

1. Spin electron-beam resist MMA EL 11 [84] diluted in anisole to one-part-in-one

by volume at 2500-3000 rpm for 60 seconds; bake at 200 ◦C for 5 minutes.

2. Spin PMMA 950k at 4000 rpm for 60 seconds; and bake at 180◦C for 5 minutes.

3. Expose at accelerating voltage of 30 kV with 1 nA current and magnification

of 150x.

4. Develop for 30 seconds in MIBK/IPA (1:3).

5. Rinse for 30 seconds in IPA.

6. O2 plasma etch for 15 seconds.

7. Evaporate 330 nm of SiO2 at a rate of 0.5 nm/s using electron-beam evapora-

tor.

8. Lift-off in acetone at 80◦C for 10 minutes.

9. Rinse in IPA and blow dry with compressed N2.
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Figures 3.2 and 3.3 are scanning electron micrographs of Device 2, displaying

the completed bond pads and tank circuits. For Devices 1 - 4 , the inductor coils

consisted of 13 - 14 turns and were 130 x 130 µm2 at their outer edge. Each turn of a

coil was 1 µm wide, and the separation between turns was 1 µm. The corresponding

inductance was found to be approximately 50 nH. The capacitor was made up of

7 inter-digitated fingers, each 300 µm long and 25 wide. The resulting capacitance

was found to be approximately 300 fF.

Table 3.1 lists the values of inductance LT , capacitance CT , the resonant fre-

quency fT , bandwidth ∆F, the tank circuit characteristic impedance ZLC , and the

impedance of the SET and tank circuit on resonance ZLCR. In Appendix B, I discuss

how these parameters were determined.

For Devices 3 and 4, we found that the values of Lt agree to within 5% of

values calculated using microwave circuit simulation software. For Device 2, the

quality of the tank resonance was very poor due to additional “sub-resonances” in

the peak. Hence it was difficult to fit with precision better than ∼ 20%, and thus

the Q fell somewhere between 8 and 10, putting bounds on LT of 46 nH and 58 nH

respectively.

The capacitance values CT for Devices 3 and 4 were greater than the simula-

tions by 25 - 40%. This was probably a result of not including in the simulation the

contribution to CT from the lead connecting CT to LT and the parasitic capacitance

of LT .
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Figure 3.2: Scanning electron micrograph of the tank circuit and bond pads, Device

2. The SiN membrane is seen as the black square at the center of the sample.
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Figure 3.3: Scanning electron micrograph of tank circuit inductor, Device 2.
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Table 3.1: Tank circuit parameters Devices 1 - 4.

Device turns LT (nH) CT (fF) fT (GHz) ∆F(MHz) ZLC(Ω) ZLCR(Ω)

1 13 - - 1.43 - - -

2 13 46 290 1.37 68 357 2.2

3 14 52 287 1.30 76 425 2.5

4 14 51 320 1.23 79 400 5.6

The tank capacitance for Device 2, depending on Q, could have ranged from

230 - 290 fF. As the capacitor design and fabrication were identical for all three

samples, it is more likely that Ct ∼ 290 fF. This would imply, then, that LT ∼ 46 nH.

For the Devices 2 - 4, ZLCR ≈ 0.04 - 0.12Zo. As a result, the reflection coeffi-

cients at maximum conductance Γmax ranged from ∼ 0.8 - 0.92, yielding maximum

depths of modulation, M = 20log(Γmax) of ∼ 0.7 - 2.0 dB. Additionally, the SETs

were ”over-coupled” to the transmission line, and, hence, the Q’s were dominated

by Zo, setting the measurement bandwidth to ∆F ∼ 70 - 80 MHz.
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3.4 Fabrication of the Nanomechanical Resonator and SET

The main design considerations for the fabrication of the nanoresonators and

the SETs were as follows: (1) produce resonators with in-plane fundamental-mode

resonant frequencies large enough to approach low thermal occupation numbers

on the dilution refrigerator, yet small enough so that the response could be easily

detected using both magnetomotive (Appendix A) and SET techniques; (2) produce

SETs with as large of a charging energy as possible to minimize the intrinsic SET

charge sensitivity (Eq. 2.85); and (3) engineer as small a separation as possible

between the nanoresonator and the SET to maximize the coupling CNR and the

displacement-induced charge modulation (Eq. 2.71).

Fabrication of Nanoresonator and SET Gate

The nanomechanical resonators and the central coupling gate were defined on

the SiN membrane using electron-beam lithography and Au deposition. Defining

the nanoresonator from gold served two purposes: (1) the gold layer acted as a gate

electrode with which we could establish a voltage bias between the resonator and

SET island (ie. couple the resonator’s motion to the SET’s conductance); and (2)

the gold layer acted as an etch mask for the freeing of the nanomechanical resonator

from the SiN membrane in the final step (see Fig. 3.5).

The geometry of the nanoresonators was determined by the desired nanores-

onator frequency. We assumed that the in-plane fundamental-mode frequency of
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each of the nanoresonators was described by

f1 =
k2

nw

2πL2

√
EAutAu + ESiN tSiN

12(ρAutAu + ρSiN tSiN)
, (3.4)

where k1 = 4.73 from the clamped-clamped boundary conditions, EAu and ESiN were

the Young’s moduli of Au and SiN respectively, tAu and tSiN were the thickness of

the Au and SiN layers respectively, ρAu and ρSiN were the densities of the respective

layers, w was the width of the nanoresonator, and L was the nanoresonator’s length.

In Appendix A, I list the values of the Young’s moduli and density for each layer;

as well, there, I discuss the calculation of the resonator’s effective mass and spring

constant km for SET detection.

The sequence of steps used to define the nanoresonators and gates were as

follows:

1. Spin electron-beam resist PMMA 495K [84] on top of wafer at 5000 rpm for

60sec; baked at 180◦C for 5 minutes on vacuum hot-plate.

2. Spin electron-beam resist PMMA 950K [84] on top of wafer at 5000 rpm for

60sec; baked at 180◦C for 5 minutes on vacuum hot-plate.

3. Expose resist at accelerating voltage of 30 kV, with 50 pA beam current, and

a charge dose of 400 µC/cm2 at a magnification of 500x.

4. Develop in MIBK/IPA (1:3) for 40 seconds.

5. Rinse in IPA for 40 seconds.

6. O2 plasma etch for 15 seconds.
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7. Electron-beam evaporate 10 nm of Ti at a pressure of less than 1 µTorr.

8. Electron-beam evaporate 700 nm of Au at a pressure of less than 1 µTorr.

9. Lift-off in acetone at 80◦ C for 10 minutes.

For Devices 1 - 4, Table 3.2 lists the geometrical parameters and raw mass,

mr. Table 3.3 lists the corresponding calculated and measured resonant frequencies

and effective spring constants.

Fabrication of the SET

Each SET was fabricated on the SiN membrane, with the SET island parallel

to a nearby nanoresonator (see Fig. 3.7). The separation between the SET and

the nanoresonator dNR, as well as the length of the SET island Li, were chosen

to maximize the capacitive coupling CNR. Due to limitations in the alignment of

successive layers of electron-beam lithography, the minimum separation dNR that

we were able to achieve was on the order of 300 nm.2 Because we wanted to ensure

that the SET island self-capacitance did not become comparable to the SET junction

capacitances [85], we chose Li = 5 µm.

The widths of the SET island and leads varied between 50 - 100 nm. Ideally,

to minimize junction capacitances Ci and, hence, the charge sensitivity of the SETs

(see Eq. 2.85), we would have liked to have made these narrower. However, we were

not able to develop a consistent recipe for such on the SiN membrane.

2More recently other members of our group have been able to engineer the nanoresonator and

SET in the same lithography step and decrease dNR to less than 100 nm.
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Table 3.2: Geometry and raw mass, mr, of Devices 1-4. The error in the length and

width of the resonator comes from 10% quoted error in the SEM calibration. The

error of 30% in the thickness of the Au layer on the resonator comes from the spread

in etch rates over time, and is a very rough estimate.

Device w(nm) L(µm) tAu(nm) tSiN (nm) mr (pg)

1 300 ±30 10 ±1 30 ±20 100 ±2 2.6 ±1.2

2 200 ±20 8 ±.8 30 ±20 100 ±2 1.4 ±.7

3 200 ±20 15 ±1.5 30 ±20 100 ±2 2.6 ±1.2

4 225 ±23 18 ±1.8 30 ±20 100 ±2 3.2 ±1.5

Table 3.3: Effective masses, Mm, and spring constants of Devices 1-4. “a” corre-

sponds to frequency calculated using either Eqs. A.15 and A.16 or Eq. A.17. “b”

corresponds to the frequency measured using SET detection at a temperature of

100mK and coupling voltage VNR.

Device Mm(pg) ω1/2π(MHz)a Ka
m(N/m) ω1/2π

b Kb
m

1 1.5 ±.7 17 ±5 17 ±8 17.976648(3) 19 ±9

2 .96 ±.45 18 ±6 12 ±6 19.654505(7) 15 ±7

3 1.2 ±.54 6 ±1.8 1.5 ±.7 9.37163340(2) 4 ±2

4 1.4 ±.66 4 ±1 .9 ±.4 4.8976624(2) 1.4 ±.6
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The oxidation time and pressure for the fabrication of oxide junctions was

determined by trial and error. We sought to make the total SET resistance RΣ

= R1 + R2 = 50 kΩ. For this value of resistance, tank-circuit matching could be

performed with on-chip components; at the same time, co-tunneling processes would

not be a dominant effect (see Appendix B).

We fabricated the SETs using electron-beam lithography and the bi-layer/double-

angle evaporation technique [86] (Fig. 3.4):

1. Spin MMA EL (8.5) 11 at 5000 rpm for 60 seconds; bake at 140◦C in an oven.

2. Expose membrane to 60 µC/cm2 electron-beam dose (30 pA beam current,

30 kV accelerating voltage, and magnification of 500x)to insure quick devel-

opment of the MMA layer.

3. Spin PMMA 950K A4 at 5000 rpm for 60 seconds; bake for 30 minutes at

140◦C in an oven.

4. Evaporate 100 nm layer of Al in thermal evaporator to serve as both an anti-

charging layer and a focusing standard for the electron-beam exposure.

5. Expose SET leads and island each with an area charge dose and line charge

dose of 50 µC/cm2 and 1.0 nC/cm respectively; 30 kV accelerating voltage,

beam current of 30 pA, and magnification 1000x.

6. Remove Al layer with OPD4262 [87], 40 seconds.

7. Rinse in DI water and blow dry with compressed N2 gas.
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8. Develop in MIBK/IPA (1:3) for 1 minute.

9. Rinse in IPA for 1 minute.

10. O2 plasma etch for 10 seconds to remove residuals.

Figure 3.4(a) displays a schematic of the result of the exposure and develop-

ment process.

The double-angle depositions were done in a thermal evaporator. The system

was connected to building ground through a copper-braided strap to prevent sam-

ple damage due to electrostatic discharge. Both evaporations were performed at

a chamber pressure less than 1 µTorr. Three-nines Al [88] was evaporated from a

tungsten boat [89] at a rate of .2 - .4 nm/s:

1. Evaporate 30 nm Al at φ1 = 12 - 15◦ with respect to the sample surface normal

(Fig. 3.4(b)).

2. Oxidize Al by introducing oxygen into chamber for 2-3 minutes. For Device

1 and 2, the pressure in the chamber during oxidation was 10 mTorr. For

Devices 3 and 4, a different chamber was used and the requisite pressure was

90-100 mTorr (Fig. 3.4(c)).

3. Evaporate 60 nm Al at φ2 = 12 - 15◦ (Fig. 3.4(d)).

4. Lift-off in acetone for 30 minutes at 90◦C .

Tables 3.4 and 3.5 lists the values of Ci, Ri, Cg, CNR, dNR, and the charg-

ing energy for Devices 1 - 4. In Appendix B, I discuss how we determined these

parameters.
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(a) (b)

(c) (d)

Figure 3.4: Cross-section schematic of the double-angle evaporation of an SET junc-

tion. (a) Developed bi-layer of resist. (b) First deposition of Al. (c) Oxidation of

Al. (d) Second deposition of Al.
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Table 3.4: Junction capacitances and resistances of Devices 1-4.

Device C1(aF ) R1(kΩ) C2(aF ) R2(kΩ) Cg(aF ) CNR(aF ) dNR(nm)

1 81 61 84 59 14 61 600

2 250 21 100 53 10 26 600

3 173 47 341 24 14 64 300

4 ∼ 600 ∼ 15 ∼ 600 ∼ 15 19 63 300

Table 3.5: Total capacitance, charging energy, gap energy and Josephson energies

Devices 1 - 4. (a) Total capacitance found by summing Ci, Cg , CNR. (b) Total

capacitance found from position of JQP peak. (c) Total capacitance found from

position of DJQP peak.

Device Ca
Σ(aF ) Cb

Σ(aF ) Cc
Σ(aF ) Ec

e
(µV ) ∆

e
(µV )

Ej,i

e
(µV )

1 241 - 279 287 220 12, 12

2 386 410 435 184 220 37, 14

3 592 577 540 148 200 15, 21

4 - 1310 - 61 180 ∼ 40, 40
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Etching the Nanoresonator

The last step in the fabrication of the samples was the etching of the nanome-

chanical resonator from the silicon nitride membrane (Fig. 3.5):

1. Spin PMMA 950K A4 [84] at 4000 rpm for 60 seconds; bake for 5 minutes at

180◦C on a hot-plate, no vacuum.

2. Spin PMMA 950K A4 [84] at 4000 rpm for 60 seconds; bake for 5 minutes at

180◦C on a hot-plate, no vacuum (Fig. 3.5(a)).

3. Expose resist with charge dose of 350 - 400 µC/cm2 (30 pA beam current,

accelerating voltage of 30 kV, and magnification of 1000x).

4. Develop resist in MIBK/IPA (1:3) for 1 minute and rinse in IPA for 1 minute.

This defined a 400 nm wide window along the length of the beam (Fig. 3.5(b)).

The remaining resist served to mask the SET and accompanying circuit while the

resonator was etched (Fig. 3.5(c)):

1. RIE etch in CHF3/O2 (18 sccm/2 sccm, 40 mTorr, and 175 Watts) for 6

minutes to etch through SiN membrane (Fig. 3.5(c)).

2. O2 plasma etch for 1 minute to remove remaining resist (Fig. 3.5(d)).

The selectivity of the etch between SiN and the PMMA was approximately

1:1 at about 20 nm/min. The etch rate on gold was about 10 nm/min.

The final result (Device 2) is displayed in Fig. 3.6 and Fig. 3.7.
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(a) (b)

(c) (d)

Figure 3.5: Etching of the nanomechanical resonator. (a) Sample coated with resist

(PMMA). (b)Etch mask defined. (c) Resonator suspended after RIE etch. (d) Resist

removed with O2 etch.
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Figure 3.6: Two detectors were fabricated on each sample.
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Figure 3.7: SEM image of an RFSET displacement detector: Device 2.
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Chapter 4

Apparatus

In the following sections I discuss the measurement equipment which we used

for the implementation of our RF-SET displacement detectors. The chapter is di-

vided into three main sections. The first section is a brief description of the packages

in which the samples were mounted for measurement. The second section describes

the dilution refrigerator and shielded room. In the final section, I discuss the refrig-

erator wiring, including the dc and microwave circuitry and thermometry.

4.1 The Sample Package

Each sample was placed in a homemade, gold-plated silver sample package

and held in place atop a gold-plated circuit board with copper clips (Fig. 4.1). Con-

nections from the sample to the circuit boards were made using 0.025 mm diameter

Au wire and a commerical wedge bonder. The circuit boards [90] were designed to

provide four 50 Ω microstrip transmission lines; each microstrip was soldered to an

SMA connector for external connections.

Gold-plating of the circuit boards and sample packages was done in a fume

hood with a standard electroplating technique: 20 grams of KAu(Cn)2 [91] and 50

grams of (NH4)2HC6H5O7 [92] per liter of DI H2O, at 65◦C, constantly stirred, with

a current density of 2-10 mA per square-cm of the surface area to be coated.
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Figure 4.1: Homemade sample package (without the cover). Scale in inches.
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4.2 The Dilution Refrigerator and Shielded Room

The sample packages were thermally anchored to the mixing chamber stage of

an Oxford Kelvinox 400 dilution refrigerator (Figs. 4.2 and 4.3). The base temper-

ature of the refrigerator was measured to be 9 mK. For operation, the refrigerator

was inserted into an Oxford 175 liter helium storage dewar, equipped with a 9 T

superconducting magnet. The entire cryostat was suspended from a 750 Kg optical

table supported by air dampers on four pillars, each of which was loaded with 750

Kg of lead and sand (Fig. 4.4).

The set-up was enclosed in a shielded room with its own ground connection

(Fig. 4.4), providing 100 dB isolation between 10 KHz and 5GHz. All control and

measurement electronics was located outside the shielded room, except for home-

made battery-powered voltage sources. Low-frequency signals were applied from

outside the shielded room through opto-isolators [94]; microwave signals were trans-

mitted into the shielded room through DC blocks [95].

At the input to the cryostat, low-frequency signals and DC biases were di-

vided by a factor of 100 to 1000 and filtered (Fig. 4.5). Commercial RF filters

[96] with cut-off frequency in the MHz range were used in conjunction with two

home-made powder filters [97] connected in series. Each filter consisted of a box

containing a π-filter [98], which connected two RF-tight compartments (Fig. 4.6(a)).

The compartments were filled with a mix of epoxy resin [99] and 10 µm grain copper

powder [78] in equal weight proportions. The π-powder filters provided more than

90 dB attenuation above 1 GHz (Fig. 4.6(b)). Commercial high-pass filters [100]
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Figure 4.2: Image of dilution refrigerator: 4 K flange to mixing chamber.
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(a)

(b)

Figure 4.3: Dilution refrigerator. (a) Mixing chamber. (b) Sample stage.
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Figure 4.4: Picture of shielded room and optical table. The 4He dewar is visible

behind the front pillar. A winch is used to raise the dewar over the refrigerator.
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Figure 4.5: Picture of the top of the optical table. DC connections at the top of the

fridge are made through π-powder filters. Battery-powered pre-amps and voltage

sources as well as break-out boxes are shelved on the electronics rack.
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(a)

(b)

Figure 4.6: (a) Homemade π-powder filter (scale in inches). (b) The 3 dB point is

2.5 - 3.0 MHz for one filter (solid curve) and 1.0 - 1.5 MHz for two filters in series

(dashed curve).
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and attenuators [101] were used on the input microwave lines.

4.3 Refrigerator Wiring

A generalized schematic of the wiring inside the refrigerator is shown in Fig.

4.7.

Low-Frequency Circuitry

Between room temperature and the 1K pot stage, low-frequency signals were

transmitted through 1 meter of lossy, flexible, stainless steel, coaxial cables [102].

These lines were heat sunk at 4K and connected to a bank of microwave filters at

the 1K pot flange (Figs. 4.2 and 4.3). The filters were built in banks of four and

were based on the same principle as the room temperature microwave pi-powder

filters, but they did not include any pi-filters. The room temperature transfer char-

acteristics of one microwave powder filter bank are displayed in Fig. 4.8(a). I do not

have the transfer characteristics for the filters at low temperature.

Below the 1K pot flange, the lines consisted of 1 meter of lossy CuNi coaxial

cables [103], and another bank of microwave filters at the mixing chamber flange.

The transfer characteristics of the lossy coax are displayed in Fig. 4.8(b). For Devices

1 and 2, from the filters to the sample package, the connections were made via semi-

rigid Cu coaxial cables. The total attenuation through each of these lines was ∼ 90

dB above 800 MHz (Fig. 4.9). At 1 MHz and 10 MHz, the loss through the gate

line, including the pi-powder filters at the top of the fridge, was ∼ 2 dB and ∼ 11
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Figure 4.7: General schematic of circuitry inside the shielded room and the refrig-

erator.

91



(a)

(b)

Figure 4.8: (a) S21 measurement of powder filters. (b) S21 measurement of 1 meter

of lossy CuNi coax. Measurements made at room temperature.
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Figure 4.9: S21 measurement of gate line, including CuNi coax and two banks of

powder filters. Measurement made at room temperature.
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dB respectively.

Additionally, a dc heat sink was added at the mixing chamber after the powder

filters (Fig. 4.3). The heat sink consisted of a center conductor of alternating Au

and Al sections (see the microstrip heat sinks below) on top of a .4 mm thick quartz

substrate inside a Au-plated RF-tight Cu package. We found 5 - 6 dB attenuation

from 1 MHz to 1 GHz. For Devices 3 and 4, the total loss through the gate line at

1 MHz was found to be ∼ 7 dB.

Microwave Circuitry

For clarity, the discussion of the microwave circuit below is broken up into

three regions defined by the ports of the directional coupler: “rf in”, “coupled”,

and “rf out”. Please refer to the general schematic in Fig. 4.7. However, note

that the configuration of the refrigerator microwave circuit in Fig. 4.7 is for the

measurement of Devices 2, 3 and 4. The configuration of the microwave circuit for

the measurement of Device 1 is not shown but can be recovered by changing the

position of the bias tee and heat sink as explained below.

At the input to the microwave circuit, at room temperature, the signal was

attenuated through a 20 dB attenuator. From the room temperature attenuator to

4.2 K, the input microwave signal was transmitted through a semi-rigid stainless

steel coaxial cable. The attenuation through the stainless steel coax was measured

at room temperature to be ∼ 6 dB. The signal was attenuated by 20 dB in the

cryostat before being fed into a directional coupler [104] at the 1K pot flange (Fig.
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4.2). Between the input port of the directional coupler and the coupled port, the

signal was attenuated by an additional 20 dB at 1.5 GHz at a temperature of 1 K.

The coupled region of the circuit was modified several times during the course

of the measurements of Devices 1 - 4. For Device 1, the coupled port of the direc-

tional coupler was directed to a bias tee [105] at 1.7 K where the input rf signal

was added to the dc bias VSD. The output of the bias tee was directed to the mix-

ing chamber plate via a niobium semi-rigid coaxial cable [106], clamped at various

stages of the refrigerator for thermalization purposes. At the mixing chamber, the

Nb coaxial cable was clapmed and connected to a Cu semi-rigid coaxial cable, which

ran to the sample holder at the sample stage.

For the measurement of Devices 2, 3 and 4, the coupled port of the directional

coupler was connected to a microstrip heat sink through a Nb semi-rigid coaxial

cable. The heat sink was clamped at the 1K pot on the dilution refrigerator. The

output of the heat sink was connected to the bias tee via a section of Nb semi-rigid

coaxial cable. The bias tee was clamped at the mixing chamber. The output of the

bias tee was connected to the sample package through a Cu semi-rigid coaxial cable.

The purpose of the microstrip heat sink was to thermalized the inner conductor

of the coax while providing 50 Ω transmission. For the measurement of Device 2,

the heat sink consisted of a 1.5 inch long, Au, 50 Ω microstip transmission line on

a 0.4 mm thick quartz wafer housed in an RF-tight, Au-plated Cu package (similiar

to the microstrip shown in Fig. 4.10(a)). At 1.5 GHz and a temperature of 77 k,

the attenuation through the microstrip was less than 1 dB. For Devices 3 and 4 the

center conductor of the microstrip was made of alternating sections of Au and Al
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(a)

(b)

Figure 4.10: (a) Au/Al RF microstrip. Scale is in inches. (b) S21 measurement of

Au/Al RF microstrip. Measurement made at 77 K.
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(Fig. 4.10(a)). At 1.5 GHz and a temperature of 77 k, the attenuation through the

Au/Al microstrip was also less than 1 dB (Fig. 4.10(b)).

The transfer characteristics from the input of the fridge, through the direc-

tional coupler, to the bias tee, for the wiring of Devices 3 and 4 are displayed in

Fig. 4.11. At 1.5 GHz, including the losses in the attenuator (20 dB), the direc-

tional coupler (20 dB) and the SS semi-rigid coax (6 dB), 4 dB of attenuation is

unaccounted for in this section of the circuit.

On the return path from the directional coupler (rf out) the signal was sent

through another section of niobium semi-rigid coaxial cable to an ultra-low noise

cryogenic HEMT-amplifier [107], sitting in the helium bath at 4.2 K. The HEMT-

amplifier had a gain of 39 dB between 1 and 1.8 GHz (Fig. 4.12(a)), and noise

temperature of 2 K. A semi-rigid stainless steel coaxial cable connected the HEMT-

amplifier output to a Mini-Circuits room-temperature amplifier [108] with a gain

of 36 dB. The attenuation in the stainless steel coax was found to be 6 dB at 1.5

GHz at room temperature. The transfer characteristics of the room-temperature

amplifier are shown in Fig. 4.12(b).

From Fig. 4.12, at 1.5 GHz, we see that the total gain of the amplifiers plus

the stainless steel coaxial cable was approximately 72 dB. From Fig. 4.11, we see

that approximately 4 dB was lost in the coupled portion of the microwave circuit

for the measurement of Devices 3 and 4. There was an additional loss of ∼ 4 dB in

the coax leading out of the shielded room. We would thus expect a measurement

circuit gain of ∼ 64 dB. For Devices 3 and 4, this agrees to within 3 dB of the gain

determined using the shot noise calibration (see Appendix B). Unfortunately, we
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Figure 4.11: S21 measurements of the microwave circuit from the input of the fridge

to the bias tee, for the measurement of devices 3 and 4. Measurements done at

room-temperature. Including the 20 dB lost through the attenuator at the input of

the directional coupler, the 6 dB lost through the stainless steel semi-rigid coaxial

cable, and the 20 dB lost between the input port and coupled port of the directional

coupler, ∼ 4 dB attenuation was unaccounted for at 1.5 GHz. This was probably

due to connections, the bias tee, and the RF microstrip.
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(a)

(b)

Figure 4.12: Gain of microwave amplifiers. (a) S21 measurement of cryogenic HEMT

amplifier plus 4 ft of stainless steel semi-rigid coaxial cable. Measurement made at

4 K. (b) S21 measurement of Mini-Circuits room-temperature amplifier.
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Table 4.1: Measurement circuit gain and noise temperature Devices 1 - 4.

Device Tdet
n (K) G (dB)

1 - -

2 20 64

3 12.6 67

4 13.4 66.5

do not have the data for the transfer characteristics of the coupled portion of the

microwave circuit for the measurement of Devices 1 and 2. Table 4.1 lists the noise

temperature and gain of the measurement circuit for Devices 1 - 4.

Thermometry

The temperature of the sample package was monitored using a RuO chip

resistor [109]. The chip resistor was glued to the sample package using GE varnish

[93]. The resistance of the chip was monitored using four-terminal measurements

and a battery-powered resistance bridge [110]. Twisted pairs connected the bridge

to the resistor. From room temperature to 1 K, the pairs were made of Constanan.

From 1 K to the mixing chamber, CuNi-clad NbTi pairs were used.

The calibration of the RuO resistance was checked below 20 mK using nuclear

orientation thermometry [111] [112]. At a mixing chamber temperature of 10 mk,

the uncertainty in the calibration was approximately ± 1.5 % for 300 seconds of
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counting. Above 20 mK, the calibration of the RuO resistance was checked with dc

SQUID thermometry [113]. The dc SQUID [114] was installed on the 1 K stage,

with the input connected to a 10 mΩ Cu film resistor at the mixing chamber via

homemade NbTi twisted pair. The SQUID, twisted pairs, and film resistor were

all shielded using various diameter Nb tubing. At 100 mK, the uncertainty in the

sample-stage temperature was dominated by the uncertainty in the measurement of

the RuO resistance and was approximately ± 1.0 mK.
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Chapter 5

The RFSET

In this chapter I discuss our RFSET reflectometry measurement scheme. The

chapter is broken into two sections. In the first section I discuss the basics of

the reflectometry measurement and circuitry. In the second section I discuss the

feedback technique with which we used to stabilize the RF-SET gain in the presence

of low-frequency charge noise.

5.1 RFSET Reflectometry

RF-SET reflectrometry was performed using the measurement circuit shown

in Fig. 5.1. The basic process was first described by Schoelkopf et al. [41] and can be

summarized in three steps: a microwave carrier resonant with the microfabricated

LT CT circuit is applied to the port “rf in” and directed to the sample via the

directional coupler; a fraction of the incident signal is reflected from the LT CT RSET

circuit and directed back through the directional coupler and the two amplifier stages

to the port “rf out”; from rf out, the signal is fed into a microwave mixer [115] for

homodyne detection.

In essence, the measurement of the reflected signal provides a measurement of

the SET impedance RS via RS = ∂ISD(VSD,Qg)/∂VSD. This is to be distinguished

from the quantity RΣ defined in Appendix B which is RS in the limit of large SET
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Figure 5.1: Circuit schematic for RFSET reflectometry. Components left unlabeled

here are labeled in Figure 4.7.
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source-drain bias, VSD. As ISD is a sensitive function of the gate charge Qg (see

Appendix B), both RS and the reflected signal are as well. As a result, modulation

of Qg is detected as modulation of the amplitude of the reflected microwave signal,

and can be recovered by mixing the reflected signal with the original carrier signal

(homodyne detection). It is the sensitive dependence of the reflected signal on Qg

which we exploit to perform our displacement detection. The remainder of the

section is dedicated to developing a quantitative understanding of this dependence

and discussing how, experimentally, we maximize it.

The Relationship Between Γ and Qg

The dependence of the reflected signal on Qg can be made explicit by first

writing the reflected voltage signal as

vr = Γvc cos ωT t (5.1)

and the reflection coefficient as

Γ =
ZLCR − Zo

ZLCR + Zo
, (5.2)

where vc is the amplitude of the incident microwave carrier, ωT =
√

1/LT CT is

the tank circuit resonant frequency, ZLCR = LT /RSCT is the transformed SET

impedance at the tank-circuit resonance, and Zo = 50 Ω is the characteristic trans-

mission line impedance.

For the measurement of Devices 1 - 4, ZLCR � Zo (see Appendix B), so I can

expand Eq. 5.2 as
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Γ ≈ 1 − 2Q2
TZo

RS
(5.3)

where QT ≈
√

LT /CT 1Zo. Using Eq. 5.1 I find then that

vr ≈
(

1 − 2Q2
T Zo

RSET

)
vc cos ωT t. (5.4)

In general, there is no closed-form expression for RS in terms of Qg. However,

from the considerations of Appendix B, I know we can approximate ISD near the

onset of tunneling as a sinusoidal function of Qg with period-e:

ISD ≈ e

2RΣCΣ

(sin(πQg/e) + 1) . (5.5)

I can write RS as

RS =
∂VSD

∂ISD
� VSD

ISD
≈ 2RΣ

sin(πQg/e) + 1
, (5.6)

where I have assumed that VSD ≈ e/CΣ.

From Eq. 5.4, I expect vr also to be sinusoidal in Qg but with a phase shift of

π-radians from ISD:

vr =

(
1 − Q2

T Zo

RΣ

(sin(πQg/e) + 1)

)
vc cos ωT t. (5.7)

Figure 5.2 shows a plot of vr vs. Qg for Device X. While not exactly sinusoidal,

the reflection coefficient is seen to be e-periodic in Qg, with maxima occuring at

minima in ISD. For this particular sample RΣ ∼ 50 kΩ and QT ∼ 10. Plugging

these values into Eq. 5.7, I see that the depth of modulation, M = 20log(Γmax/Γmin),

is on the order of 2 dB, consistent with the ∼ 2.5 dB seen in the plot, and of the

same order of magnitude as the values calculated for the Devices 1 - 4.

105



(a)

(b)

Figure 5.2: (a) Plot of ISD vs. Qg at VSD ≈ e
CΣ

and (b) the corresponding reflection

coefficient Γ. Due to an offset in Qg, the maxima in ISD do not occur exactly at Qg

= .5 e. Device X.
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Charge Sensitivity

The utility of the transfer function Γ-Qg in Fig. 5.2 is that it specifies, for a

given VSD bias, the Qg bias points at which one can expect Γ and hence vr to be

maximally responsive to small changes in the SET-gate charge. Because the noise

floor of our charge-detection scheme is dominated by measurement circuit noise (see

Appendix B), the bias points which yield maximum charge responsivity also yield

the maximum charge sensitivity [66].

For the small-signal analysis, I set Qg = Qg,o+Qg(t), where Qg,o is the bias

point set by the external source Vg , and Qg(t) � Qg,o is the time-dependent charge

signal we wish to measure. From Fig. 5.2, I see that the maximum response occurs

for Qg ≈ n+e/4. Plugging Qg into Eq. 5.7 and expanding about Qg,o =e/4, I find

vr ≈ (Γo + ∆Γ) vc cos ωT t, (5.8)

where

Γo =

(
1 − Q2

TZo

RΣ

√
2

(
1 +

√
2
))

(5.9)

and

∆Γ = −Q2
TZo

RΣ

π√
2e

Qg(t). (5.10)

From Eq. 5.8, I see that this measurement technique is equivalent to amplitude-

modulation: the signal, a time-dependent charge on the SET gate, modulates the

amplitude of an externally applied carrier. In most of our measurements, Qg(t) was

a sinusoidal signal. So I set Qg(t) = Q1cos(ω1t), where Q1 and ω1 are the charge
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modulation amplitude and frequency respectively. Thus Eq. 5.8 becomes

vr ≈ vc

[
Γo cos ωT t +

− Q2
TZoπ

2
√

2RΣe
Q1

(
cos (ωT − ω1) t + cos (ωT + ω1) t

)]
(5.11)

After homodyne mixing, the reflected signal takes the form:

vr ≈ −vc
Q2

TZo

RΣ

π

2
√

2e
Q1 cos ω1t, (5.12)

where I have just retained the terms with frequency ω1, which, in practice, can be

achieved with simple filtering.

It is perhaps helpful to stop here and comment briefly on the importance

of the tank circuit in the RFSET measurement. Without the tank circuit and

the impedance matching between the transmission-line impedance Zo and SET

impedance RS, vr would be reduced by a factor of Q2
T ∼ 100. If you consider

the RFSET electrometer to be a charge amplifier, then this can be thought of as

losing a factor of 100 or 40 dB in the amplifier gain.

Eq. 5.12 specifies what signal to expect for a given gate charge modulation.

I can estimate the signal-to-noise ratio of the charge-detection scheme using the

measurement circuit noise temperature Tdet
n , discussed in Appendix B. The rms

voltage noise per frequency band referred to the input of the detector is given by

[116]

√
SV =

√
kBTdet

n Zo

2
. (5.13)

Using Eq. 5.13 and the rms amplitude of Eq. 5.12, the signal-to-noise ratio
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can be defined roughly as

S

N
≈
∣∣∣∣
√

Zo

4kBT det
n ∆B

Q2
T

RΣ

πQ1vcarrier√
2e

∣∣∣∣
2

, (5.14)

where ∆B is the measurement bandwidth.

The charge sensitivity, in units of erms/
√

Hz, is then defined by calculating

the charge modulation that yields S
N

=1:

√
SQ =

∆Q

e
√

∆B
≈
√

8kBT det
n

Zo

RΣ

πQ2
Tvcarrier

. (5.15)

This result can be compared with what we have found experimentally. For

example, Fig. 5.3 shows the sinusoidal modulation of vr of Device X. Here, a carrier

signal with frequency ωT /2π = 1.17 GHz and power

Pcarrier = 10log(
v2

carrier,rms

50Ω ∗ mW
) ≈ −29 dBm

is applied to rf in. Additionally, a modulation signal of ω1= 1 MHz and Q1 = 0.13

erms is applied through rf mod (Fig. 5.1) to the SET gate.

Fig. 5.3(a) displays Pr = 10log(v2
r,rms/50Ω ∗ mW ) before homodyne detection.

Evident are the sidebands at ± 1 MHz from the carrier signal. Fig. 5.3(b) shows

the reflected signal, Pr after mixing, and demonstrates the recovery of the 1 MHz

modulation. From the ratio of the power in the 1 MHz band P1MHz to the power

level of the background Po, I can find the charge sensitivity at 1 MHz:

√
SQ =

Q1√
∆B

10−
SNR
10 , (5.16)

where SNR(dBm) = P1MHz−Po is the signal-to-noise ratio, and ∆B is the resolution

bandwidth of the spectrum analyzer. For the values in Fig. 5.3, I find
√

SQ ≈ 65
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(a)

(b)

Figure 5.3: (a) Power spectrum of rf out, before mixing. (b) Power spectrum of rf

out after mixing, demonstrating the recovery of the 1 MHz gate modulation. The

difference in background level between (a) and (b) is due to mixing (-8 dB), an

extra amplification stage before mixing (+16 dB), insertion loss in power-splitters

(-8 dB), and a change in resolution bandwidth from 1 kHz to 100 Hz. Device Y.
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µerms/
√

Hz. In comparison, using Eq. 5.15 and the parameters for this device (vc ∼

3 µVpeak after ∼ 72 dB attenuation, RΣ=80 k Ω, Tdet
n ∼ 22 K, QT∼ 8), I calculate

√
SQ ≈ 10−3erms

√
Hz.

The Derivative Map

There are two main factors contributing to the discrepancy between the the-

oretical estimate of the charge sensitivity and what we determined experimentally.

The first is the sinusoidal approximation of ISD (Qg). This approximation simply

assumes that the SET is in the normal state and biased at the onset of tunneling.

In fact, for the data displayed in Fig. 5.3, the SET was in the superconducting state

and biased around a DJQP resonance (see Appendix B). Second, the estimate does

not take into account the self heating of the SET, which, while not a problem at

that DJQP resonance, could certainly be a factor for bias points near the onset of

tunneling. Therefore, to obtain an accurate estimate of the charge sensitivity as a

function of the bias-points VSD and Qg (Vg), I would need to model both super-

conducting processes and self heating on top of the Coulomb-blockade effects. This

would be an involved numerical task.

For an existing device, the same information can be obtained more efficiently

by simply taking an ISDVSDVg map and numerically calculating the curvature. Go-

ing back to Eq. 5.3, it is simple to see that measuring the modulation of the re-

flection coefficient, Γ, is equivalent to measuring the second-order derivative of ISD
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with repsect to VSD and Vg :

Γ ≈ 1 − 2Q2
T Zo

RSET
≈ 1 − 2Q2

T Zo
∂ISD

∂VSD
. (5.17)

The small Vg or Qg response of is thus

∆Γ(t) =
∂Γ

∂Qg
∆Qg(t) = −2Q2

TZo
∂2ISD

∂VSD∂Qg
∆Qg(t). (5.18)

The charge sensitivity is then

√
SQ =

√
kBTdet

n

Zo

(
∂2ISD

∂VSD∂Qg

)−1
1

Q2
Tvc

, (5.19)

where Qg is in units of e and vc should be in units of Vpeak. Additionally, the response

has been divided by a factor of 2 to account for mixing.

Figures 5.4 and 5.5 display plots of ISDVSDVg , the numerical second-derivative,

and the modulated reflected signal for Device X. The ISDVSDVg map was taken in the

superconducting state (see Appendix B for a description of how this is done). The

numerical derivatives of the IV-map (Fig. 5.5(a)) were then taken using Savitzky-

Golay filtering [117]. Finally, the reflected-signal modulation was measured (Fig.

5.5(b)) by applying a charge modulation of amplitude 0.02 erms and frequency 1

MHz to the SET gate and a carrier signal of Pc = -26 dBm to rf in. A computer was

used to increment VSD and Vg . For each bias point, the modulated reflected-signal

amplitude was measured with an RF lock-in and recorded using GPIB (see Fig. 5.1).

Comparing Fig. 5.5(a) and Fig. 5.5(b), I find agreement to within a factor

of two between the numerically calculated derivative and the measured reflection

modulation. Using Eq. 5.19, I calculate the sensitivity at the bias point VSD ≈

0.4 mV and Vg ≈ - 9.8 mV (the DJQP resonance) to be ∼ 70 µerms/
√

Hz, which
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Figure 5.4: ISDVSDVg map in the superconducting state.
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Figure 5.5: (a) Plot of the numerical derivative ∂2ISD

∂VSD∂Vg
of the superconducting IV

map in Figure 5.4. (b) Plot of the measured reflected signal modulation ∆Γ for the

same range of Vg and VSD as in (a). Here ∆Γ has been scaled so that ∆Γ
2Q2

T Zo∆Vg
is

the quantity plotted. Device Y.
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is in good agreement with the 65 µerms/
√

Hz calculated from the signal-to-noise

ratio measured in Fig. 5.3. Here, a carrier amplitude of 4 µVpeak (-26 dBm applied,

-72 dB attenuatation in the circuit) was used to construct the reflection map. To

perform the conversion from Vg to Qg, it is necessary to know that Cg = 11 aF for

this device. I also used Tdet
n ∼ 22 K and QT ∼ 8 for the calculation.

The value of the derivative map is that it allowed us to quickly and accurately

determine which points in the VSD-Vg plane yielded maximum gain and hence maxi-

mum charge sensitivity (the dark red and blue regions of Fig. 5.4(a). We then biased

the SET at one of these points, turned on the 1 MHz rf mod and the carrier signal,

and adjusted vc until we maximized the 1 MHz sideband, which we measured with

the rf lock-in or spectrum analyzer.

Close comparison of Fig. 5.5(a) and Fig. 5.5(b) reveals a problem. While the

calculated curvature and measured reflection amplitude are in close ageement, it is

clear that the reflection amplitude map is shifted by ∼ 3 mV along the Vg axis.

This is a result of the slow SET background charge drift and the fact that the

ISDVSDVg map and the reflection map were taken several minutes apart. Especially

in the presence of large electric fields, which were necessary for RFSET displacement

detection, the SET background charge was so unstable that retuning of the Vg

bias point was necessary every few seconds. Clearly this is not ideal if one needs

to average for times longer periods of time. In the next section, we discuss the

engineering that allowed us to overcome this problem.
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5.2 Gain Stabilization

In our SET’s, charge-drift and telegraph noise tended to destabilize the SET

gain, and limit the detection time to several minutes or less before retuning of Vg

was required. To overcome this, we implemented a feedback scheme to keep the

amplitude of the 1 MHz reflection sideband maximized.

The basic idea of the feedback technique can be understood by refering to

Fig. 5.6. The plot shows the amplitude of the 1 MHz sideband as a function of Vg

(Qg). As one would expect from the discussion in the previous section, the sideband

amplitude is a maximum with respect to Vg (Qg) when ∂ISD/∂Vg is a maximum.

This occurs twice for each e-period, with the difference in height of the two peaks

directly related to the difference in the magnitude of the positive and negative ISDVg

slopes. Obviously, for maximum gain, I would like to set Vg to bias position A (or

an integer multiple of e from position A).

To keep the SET biased at point ‘A’, I consider the curvature of the side-

band response. For small displacement from point ‘A’, the sideband response is

approximately quadratic. Therefore, if I apply a small Qg(t) modulation, with am-

plitude Cg∆Vg� e and frequency ωA, on top of the initial Vg=A bias, I expect to

amplitude-modulate the 1 MHz sideband at 2ωA (Fig. 5.7(a)):

vr ∝ Qg(t)
2 cosω1t ∝ (Cg∆Vg)

2

4
[2 cos ω1t + cos(ω1 + 2ωA)t + cos(ω1 − 2ωA)t] .

Alternatively, if I bias the SET at points such as those labeled ‘B’ and ‘C’ in

Fig. 5.6, the small Qg(t) modulation response is approximately linear, resulting in
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Figure 5.6: Dependence of the 1 MHz sideband amplitude on Vg (1 MHz sideband

response) in Device 1 at a mixing chamber temperature of 35 mK. As expected

there are two maxima in the sideband amplitude per period. The arrows about bias

points A, B, and C indicate audio modulation of the sideband.
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(a)

(b)

Figure 5.7: Power spectrum of the audio modulation of the 1 MHz sideband re-

sponse. (a) Bias condition A. Sidebands at ± 20 KHz from 1 MHz sideband are

prominent. (b) Bias condition B or C. Sidebands at ± 10 KHz from 1 MHz sideband

are prominent. Device X.
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the amplitude moudlation of the 1 MHz sideband at ωA (Fig. 5.7(b)):

vr ∝ Qg(t) cos ω1t ∝ (Cg∆Vg)

2
[cosω1t + cos(ω1 + ωA)t + cos(ω1 − ωA)t] .

In addition, if the bias point is off maximum, at positions such as ‘B’ or ‘C’,

the phase of the resulting audio sidebands depends on the sign of the slope of the

transfer function; this tells me whether to increase or decrease Qg to return to the

maximum, ‘A’.

Thus by modulating the 1 MHz sideband with an audio signal, and monitoring

the harmonic content and phase of the resulting product frequencies, I can determine

the bias point Qg of the SET and whether Qg should be increased, decreased or left

alone to maximize the SET gain. I then apply the appropriate correction to Qg.

Obviously, we did not make the corrections to Qg by hand. A schematic of

the circuit we used is presented in Fig. 5.8 and Fig. 5.9. A charge modulation

of amplitude 0.02 erms and frequency ωA = 10 kHz was applied to the SET gate

through the port labeled “audio mod” for the modulation of the 1 MHz sideband.

The reflected signal vr was monitored at port “rf out”, and directed to the

audio feedback circuit. In the audio feedback circuit (Fig. 5.9), vr was amplified

and then mixed with the orignial carrier signal to recover the sideband modulation.

The signal was then filtered and mixed with the original 1 MHz modulation

to recover the audio sidebands of the 1 MHz modulation. The resulting audio signal

was amplified and mixed with the original 10 kHz modulation.

The product of the audio mixing, or the error signal, was sent into a PID

controller with the reference set to 0.0 Volts (ie. it was set to minimize the 10 kHz
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Figure 5.8: Circuit schematic for RFSET gain stabilization.
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Figure 5.9: Feedback scheme for gain stabilization.
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sidebands). The output of the PID was split: one branch directed the signal to the

SET gate to adjust the bias position; the other branch fed the signal into a digital

voltmeter that was monitored by the PC using GPIB. Using LabVIEW software,

the PC monitored the feedback signal. By adjusting the DAC output Vg , it kept

the output of the PID below a predefined threshold voltage.

Finally, for the rapid charge drift which occured when a large electric field was

used to couple the nanoresonator and SET, the DAC output Vg saturated within

minutes. To compensate for this, the same LabVIEW program reset the DAC output

by 1 electron (ie. one period in the ISD vs. Qg curve) at the SET gate.

The effectiveness of the feedback scheme is demonstrated in Fig. 5.10. With

feedback on (Fig. 5.10(a)), the 1 MHz sideband amplitude was stabilized to within

1% over minutes to hours, depending on the coupling voltage between the resonator

and the SET. In the frequency domain (Fig. 5.10(b)) the effect of the feedback was

seen as a reduction by nearly a factor of 100 in the spectral noise density of the 1

MHz sideband amplitude. The bandwidth of the feedback circuit was set by the

time constant of the integrator in the PID controller, which was typically on the

order of 1 - 10 ms.

122



(a)

(b)

Figure 5.10: (a) Sideband amplitude stability in time domain and (b) sideband

amplitude spectral noise density. Device X.
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Chapter 6

RFSET Displacement Detection

In this chapter I discuss the implementation of the RFSET as a displacement

detector and present the main results of my thesis. The chapter is divided into three

sections. In the first section I draw on the results of the previous chapter to discuss

the basic principles of the detection scheme and the measurement methodology.

Some of our results for the RFSET detection of capacitively driven nanoresonators

is presented and discussed. In the second section I discuss the RFSET displacement

detector as a mechanical noise thermometer and use the results to characterize

the performance of our devices. In particular, I show a minimum resonator mode

temperature of approximately 56 mK for Device 2. Further, I demonstrate our

RFSET displacement detection scheme to be nearly an ideal one, approaching within

a factor of 5 from the quantum limit. In the final section I address the issue of SET

back action.

RFSET Displacement Response and Sensitivity

Having developed the small charge-signal response for the RFSET in the pre-

vious chapter, I discuss how we implemented the RFSET electrometer as a displace-

ment transducer. In principle, the main idea [12] [13] is straightforward (Fig. 6.1):

a static SET gate is replaced with a metallized nanoresonator and a large dc bias
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Figure 6.1: A circuit schematic of the RFSET displacement detector. A metallized

nanoresonator serves as an SET gate to modulate the induced SET-island charge

and, consequently, the SET’s impedance. The impedance fluctuations are measured

using microwave reflectometry at the frequency of the LT CT tank circuit resonance.
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VNR is applied between the suspended gate and the SET island; displacement of the

resonator from its equilibrium position modulates the induced SET-island charge;

the resulting modulation of the SET impdedance is then monitored by microwave

reflectometry.

6.1 Methodology

Using Eq. 5.18, I can express the amplitude modulation of the reflected mi-

crowave signal in terms of the mechanically-induced SET-island charge ∆QNR:

vr(t) = ∆Γ(t)vc(t) ≈ −2Q2
T Zo

∂2ISD

∂VSD∂QNR

∆QNR(t)vc(t), (6.1)

where QNR =CNRVNR. For small displacment ym(t) of the resonator, I can approx-

imate the corresponding charge modulation as

∆QNR ≈ ∂CNR

∂ym
VNRym ≈ b

CNRVNR

dNR
ym(t) (6.2)

where dNR is the separation between the nanoresonator and the SET island, and

b is a geometrical constant of order unity and calculated using the capacitance

extraction software FastCap [65]. I consider ym(t) to be the in-plane fundamental

mode displacement of the resonator averaged over the length of the SET island.

I can rewrite Eq. 6.1 as

vr(t) ≈ −2Q2
TZo

∂2ISD

∂VSD∂ym
ym(t)vc(t). (6.3)

Here I have simply replaced ∆QNR with ym as the differential quantity. It is

important, though, to clarify a simple, yet, potentially confusing point. As discussed
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in Appendix B, the SET current ISD is dependent on the change in free energy ∆F

of the SET circuit for the respective electron tunneling events. This in turn is a

function of the SET-island potential,

φislandCΣ = −ne + C1VSD + CNRVNR + CgVg , (6.4)

where I have assumed an asymmetrical source-drain bias as in Appendix B.

In the previous chapter, as Vg was the modulated quantity, I discussed the

RFSET response in terms of Vg or Qg; in other words, ∆φislandCΣ= ∆Qg. In this

chapter, the modulated quantity is CNR, so that ∆φislandCΣ ≈ ∆QNR - assuming

that CΣ 	 ∆CNR. The important point is that, for ∆Qg = ∆QNR, the modulation

of ∆φisland and the RFSET response are the same:

∂2ISD

∂VSD∂Qg
=

∂2ISD

∂VSD∂QNR
≈ dNR

bCNRVNR

∂2ISD

∂VSD∂ym
,

Thus, I use the curvature ∂2ISD/∂VSD∂Qg, which I numerically calculate from the

ISDVSDQg map, to determine the RFSET displacement response:

vr(t) ≈ −2Q2
TZo

bCNRVNR

dNR

∂2ISD

∂VSD∂Qg
ym(t)vc(t). (6.5)

Assuming that the noise floor of our detection scheme is limited by the mea-

surement circuit noise, I estimate the displacement sensitivity to be

δy ≡
√

Sy ≈ dNR

bCNRVNR

1

Q2
Tvc

√
kBTdet

N

Zo

(
∂2ISD

∂VSD∂Qg

)−1

. (6.6)

As in the previous chapter, I divide the response by a factor of two to account

for the homodyne detection; and vc is the carrier amplitude given in peak units to

calculate the sensitivity.
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Equation 6.6 can be expressed in terms of the charge sensitivity using Eq. 5.19

δy ≡
√

Sy ≈ dNR

bCNRVNR

√
SQ. (6.7)

Equation 6.7 simply states that, for a given resonator displacement, as I in-

crease VNR, I increase the charge signal detected by the SET. Of course, there are

obvious limitations that will affect how far I can turn the knob for VNR before Eq.

6.7 breaks down.

For one, I have not taken into account the SET back action, the contribution

of which to the spectral displacement noise density increases linearly with VNR. In

Chapter 2, I discussed how the coupling voltage at which back action becomes a

factor depends on many parameters, and can range from milli-volts to 10’s of volts.

A second limitation arises from the electrostatic force between the resonator

and the gate electrode and the resonator and the SET island. Increasing VNR will

eventually result in the resonator “snapping” to either the gate or SET island. A

crude approximation of the voltage at which this will occur can be made by finding

VNR, for a given dNR, which yields an inflection point in the resonators potential

energy, U(y) ≈ 1
2
ky2-1CNRV 2

NR/2. The result, Vsnap =
√

4kd2
NR/9CNR, yields 100’s

Volts for the devices presented here, and is not relevant. However, it could easily

be reduced to the order of Volts and be a greater concern for much more tightly

coupled devices.

A final limitation occurs if the resonator’s motion is so large that the swing

in the induced SET-island charge approaches one electron. For 1 pm of motion, a

typical thermal amplitude at 100 mK for the resonators we study, the corresponding
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voltage at which this “shuttling” should occur is VNR ≈ .5edNR/ymCNR ≈ 100’s

Volts. Again, this is much larger than any voltage which we used. However, this

estimate does suggest, and experiments seem to confirm, that shuttling is a concern

for the SET measurement of resonators driven into the non-linear regime, where

amplitudes are ∼ nm’s.

RFSET Detection of Capacitively Excited Nanoresonators

In practice, we maximized vr by first applying VNR to the resonator and then

measuring the ISDVSDVg characteristics. After numerically calculating the curva-

ture, we then adjusted Vg and VSD to the positions yielding maximum curvature.

Finally, we adjusted vc, and then implemented the feedback stabilization as de-

scribed in the previous chapter. There was a good deal of tuning involved, but

these were the general steps.

With the SET gain stabilized at maximum, we then tried to detect the res-

onator’s motion. Typically, before we cooled down a new sample with the dilution

refrigerator, we used the magnetomotive technique (Appendix A) to identify the

resonator’s fundamental in-plane mode frequency in a test probe at 4 Kelvin. The

resonant frequency measured at 4 K, thus, served as the starting point at which to

“look” for the resonance once we have cooled the sample down to mK.

Figure 6.2 shows a schematic of the circuit we used to probe the resonator’s

response with the RFSET. Essentially, we used the same circuit as the stabilized-

RFSET reflectometry circuit described in the previous chapter. However, we applied
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Figure 6.2: Circuit schematic for RFSET detection of capacitively excited nanores-

onators.
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an additional swept-sine signal VD cos ωt, to the SET gate to capacitively excite the

nanoresonator’s motion. The nature of the excitation can be understood by writing

the potential energy of the capacitor Cgnrformed by the metallized nanoresonator

and the gate electrode,

U = −1

2
Cgnr(VNR + VD cosωt)2, (6.8)

and the force from the potential energy gradient,

F = −1
1

2

∂Cgnr

∂y
(VNR + VD cosωt)2 ≈ b

2

Cgnr

dgnr
(VNR + VD cos ωt)2, (6.9)

where dgnr is the separation between the nanoresonator and the gate electrode.

There is a dc component of the force as well as terms at both ω and 2ω.

Keeping just the ω term, I find

F ≈ b
CgnrVNRVD

dgnr
cosωt. (6.10)

From Eqs. A.19, A.25, and A.26, the fundamental mode response of the

resonator is described by

y(x, t) = b
CgnrVNRVD

dgnrmeff

η1Y1(x)

((ω1
2 − ω2) + j (ω1ω/Qe))

cos ωt, (6.11)

where Y1(x) is the fundamental eigenmode for a clamped-clamped rectangular bar.

For the calculation of η1, I have assumed that the force is uniform over the section

of the resonator defined by the ends of the gate electrode, and that it is zero outside

of this section. The function Y1(x) has been normalized so that it is dimensionless

and the mid-point displacement, Y(L/2), is equal to 1.
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From Eqs. A.11 and 6.11, the average displacement over the length of the SET

island is given by

ym(t) ≈ b

a1

CgnrVNRVD

dgnrMm

a1η1

((ω1
2 − ω2) + j (ω1ω/Qe))

cosωt, (6.12)

where a1 is the geometrical factor accounting for the averaging of Y1(x) over the

length of the SET island.

Using Eqs. 6.5 and 6.12, the modulation of the reflected signal due to the

motion of the capacitively driven resonator is given by

vr(t) ≈ 2Q2
T Zo

(
∂2ISD

∂VSD∂QNR

)
b2CgnrCNRV 2

NRVD

a1dNRdgnrMm
×

× a1η1

((ω1 − ω2) + j(ω1ω/Qe)
vc(t) cos ωt. (6.13)

On resonance, and using the definition of the Km from Appendix A, I find the

amplitude of the modulated reflected signal:

Ar ≈ 2Q2
TZo

(
∂2ISD

∂VSD∂QNR

)
η1b

2QeCgnrCNRV 2
NRVD

a1dNRdgnrKm
vc. (6.14)

In practice, the real and imaginary components of the response were mea-

sured by directing the output of the homodyne detection to an RF lock-in (Fig.

6.2) and sweeping the drive VD cosωt through resonance ω1. A computer program

incremented the frequency of the sinusoidal drive step-wise and recorded the two

quadratures of the output of the amplifier at each step.

Figure 6.3 shows the response of the nanoresonator in Device 2 to continuous

swept-sine capacitive excitation as measured with an RFSET. The data was taken

at a sample-stage temperature of 30 mK, and the RFSET was biased near the JQP

resonance as illustrated in Fig. 6.4. A coupling voltage of VNR= 4 V was applied.
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Figure 6.3: Response of the capacitively excited resonator as measured with an

RFSET, Device 2.
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Figure 6.4: ISDVSDVNR map of Device 2 with color surface depicting numerically

calculated curvature. Bias point is near the JQP resonance ridge.
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Fitting the quadratures to a harmonic oscillator response, the resonant fre-

quency, quality factor and peak amplitude were determined to be f1 = 19.654486(3)

MHz, Qe = 44.85(6) x 103 , and Ar = 75.95(6) µVrms respectively.

I can compare the measured amplitude Ar with what is expected from Eq.

6.14. For Device 2, dNR= 600 nm, dgnr = 1.2 µm, vc = 7.9 µVpeak, η1 = .838, Cgnr

≈ 15 aF, VD ≈ 350 µVpeak, and b ≈ .47 - the other parameters are listed in Tables

A.3, B.1, and 3.1. From Fig. 6.4, I estimate that ∂2ISD/∂VSD∂QNR ≈ 0.01/CNR =

3.8 x 1014. The gain of the detection circuit at the output of the shielded room is

+64 dB. The gain of the audio feedback circuit is -1 dB (attenuator -13 dB, amplifier

+36 dB, 2 power splitters -8 dB, and mixer -8 dB). Thus, using the rms value of Eq.

6.14, I estimate the amplitude at the input of the lock-in to be 110 ± 60 µVrms. The

uncertainty in the estimate is due mainly to the ∼ 50% error in Km. It does not

include the uncertainty the attenuation and gain in the measurement circuit. These

can be estimated from the discrepancy between measured and calculated charge

sensitivity at the measurement bias point VSD= -.9 mV. The values are 60 and 30

µe/
√

Hz respectively.

I can also determine the amplitude of the resonator’s displacement from the

measured reflected signal and Eq. 6.5. I calculate that the amplitude Ar = 76 µVrms

roughly corresponds to 50 pmrms of motion. From Eq. 6.12, I expect approximately

20 pmrms of motion. Again, the uncertainty is at least 50 % due to uncertainties in

the spring constant and measurement circuit gain.

Given the uncertainty in the estimate of the amplitude of the reflected signal

and in the conversion of the reflected signal to resonator displacement, order-of-
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magnitude agreement between the estimates and measurements is about the best I

can expect. The total uncertainty could be reduced by determining more precisely

the resonator’s spring constant and the measurement circuit’s transfer characteris-

tics. However, as I will discuss in the next section, it is not necessary to go to such

efforts in order to assess the performance of the detection scheme in terms of the

quantum limit.

Before concluding this section, I want to discuss the measurement of the

nanoresonator’s response in the time domain. In addition to applying a swept-sine

to the gate and measuring the nanoresonator’s frequency response with a lock-in, we

also applied a pulse to the gate and measured the nanoresonator’s amplitude decay

with a digital oscilloscope. We used the same measurement circuit as in Fig. 6.2 ex-

cept we replaced the lock-in with a digital oscilloscope - the same function generator

was used to apply the drive signal except we switched it from ”swept-sine” mode to

”burst” mode. Also, an additional amplifier with gain of 36 dB and an high-pass

filter with a 10 MHz cut-off were inserted between the mixer and the oscilloscope.

Typically, the pulse we applied was a 60 kilo-cycle sinusoid at the nanores-

onator’s fundamental mode frequency ω1. At the falling edge of the pulse, the

digital oscilloscope was triggered, and the resonator’s decay was recorded for 20 ms

at a sampling rate of 50 - 100 MS/s. The process was repeated 50 - 100 times and

the waveforms were averaged.

Figure 6.5 shows the “ring-down” of the nanoresonator in Device 2. The signal

has been digitally filtered in three steps. First, in the time domain, I multiplied the

waveform by an exponential decay with time constant τ =Qe/ω1 [118]. Second,
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(a)

(b)

Figure 6.5: (a) Filtered time-domain response of a nanoresonator to capacitive-pulse

at the fundamental mode frequency, captured using a digital oscilloscope. (b) Blow-

up of (a) to demonstrate time-resolved oscillations at 19.65 MHz. Device 2, TS =

30 mK, VNR =6 V.
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Figure 6.6: FFT of the raw time-domain response of a nanoresonator to a capacitive-

pulse, Device 2.
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I numerically calculated the FFT of the waveform and multiplied the result by a

Gaussian with a width of σ = 10 MHz. Third, I transformed the data back into the

time domain by numerically calculating the inverse FFT. The decay time for the

exponential in the first step was determined by taking the FFT of the raw time-

domain data and fitting it to an harmonic oscillator response (Fig. 6.6). From the

fit, the frequency and quality factor were determined to be f1 = 19.6515382(4) MHz

and Qe = 64300 ± 250 respectively.

Finally, I note that the difference in resonant frequency of ∼ 2.9 kHz between

Figs. 6.3 and 6.6 was due to the electrostatic softening of the resonator’s mode.

Expanding the electrostatic energy of the resonator to second order about the equi-

librium position of the resonator,

∆2Ue ≈ −CNR

d2
NR

V 2
NRy2, (6.15)

I find the correction to the fundamental mode frequency to be

∆ω

ω1
≈ −CNRV 2

NR

Kavgd2
NR

. (6.16)

Thus, if I increase VNR from 4 V to 6 V, I expect a shift in resonant frequency

of ∼ - 2 kHz , which is comparable to what we measured. For a more precise

determination it would be necessary to include the capacitive coupling between the

resonator and the gate, and, as well, determine the geometrical coefficient for the

second derivative of CNR.
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6.2 Mechanical Noise Thermometry

The Equipartition of Energy

I now turn to discuss the measurement of the resonators’ random thermal

motion. I assume that the resonator and RFSET detector are sufficiently weakly

coupled so that the back action effects of the detector are negligible with respect

to the thermal fluctuations. From Eq. 2.59 and Eq. 2.60, then, Te = Tb and Qe =

Qb. In this case, then, the classical equation of motion for a resonator in thermal

contact with a heat bath is given by the Langevin equation [49],

Mm
∂2ym(t)

∂t2
+ µ

∂ym

∂t
+ Kmym = fN (t), (6.17)

where

fN(t) =
FN(t)

a1

∫ L

0
dxY1(x) (6.18)

and

µ =
γ1

a1
(6.19)

Here, the equation of motion is written in terms of the average displacement

of the resonator over the length of the SET island, which is the measured quantity.

For each of the devices I discuss, Mm, Km and a1 are defined in Appendix A.

Simply put, the Langevin equation states that a resonator in thermal contact

with a heat bath is subject to two external forces: a frictional force proportional to

µ and a random driving force represented by fN(t). Generally, it is assumed that

fN (t) is both Gaussian and Markovian, meaning it has a white power spectrum,
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Sf (ω), and its auto-correlation function is given by

〈fN (t1)fN(t2)〉 = Sf (ω)δ(t1 − t2). (6.20)

Here Sf (ω) = Sfb
(see Chapter 2) in the limit that h̄ω/kBTb → 0.

From these assumptions, and the fact that the resonator is considered to be in

thermal contact with the heat bath, it can be shown that the dissipative force and

the random driving force are related through [53]

µ =
1

kBTeff

∫ ∞

0
dt〈fN (t1)fN(t2)〉 =

Sf(ω)

2kBTe
, (6.21)

or

Sf (ω) = 2µkBTe =
2Mmω1kBTe

Qe
, (6.22)

where I have used the relationship µ = Mmω1/Qe; Te=Tb is the bath temperature;

and Qe = Qb is the quality factor due to coupling to the thermal bath.

Equation 6.21 is generally known as the fluctuation-dissipation theorem [53],

and is a fundmantal classical statement equating the random forces which define

a state of equilibrium to the dissipative forces which tend to bring a driven or

nonequlibrium state back toward equilibrium. Practically speaking, then, knowing

the resonator’s response, one can determine the thermal forces driving the resonator,

and, thus, determine the resonator’s temperature.

The resonator’s response is found by solving Eq. 6.17 for the time-averaged,

mean-square displacement, [31]:

〈ym(t)
2〉 =

1

2π

∫ ∞

−∞
dωSy(ω), (6.23)
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where

Sy(ω) =
Sf(ω)

Mm
2
(
(ω2

1 − ω2)
2
+ (ω1ω/Qe)

2
) (6.24)

is the mechanical displacement noise spectral density.

Separating into positive and negative frequencies and integrating Eq. 6.23, I

find

〈ym(t)2〉 =
Sf(ω)Q2

e

K2
m

∆f +
Sf (ω)Q2

e

K2
m

∆f, (6.25)

where ∆f = ω1/4Qe is defined as the resonator’s noise-equivalent bandwidth and I

have assumed that Qe 	1.

Using Eqs. 6.22 and 6.25, I recover the equipartition theorem:

〈ym(t)
2〉 =

1

2

kBTe

Km
+

1

2

kBTe

Km
=

kBTe

Km
. (6.26)

Of course, Eq. 6.26 is a classical expression and ceases to be valid when

kBTe/h̄ω1 � 1. However, for the temperature and frequency ranges in which we

conducted our experiments, the resonators were still more than an order of magni-

tude above this limit. Consequently, we were able to use Eq. 6.26 and measurements

of 〈ym(t)2〉 to determine Te.

Power Spectra

Equation 6.26 is the basis of mechanical noise thermometry. Of course, as I

discussed earlier in the chapter, the RFSET is sensitive to ym(t) rather than 〈ym(t)2〉.

To recover 〈ym(t)2〉, we used a spectrum analyzer with FFT capability to record and

average the power density spectrum of the output of the mixer (“signal out” in Fig.

6.2).
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From Eqs. 6.5, 6.22, and 6.24, the power spectral density at the input to the

spectrum analyzer takes the form:

Ps ≈ 4G
Q4

T Zov
2
c (∂

2ISD/∂VSD∂QNR)
2
(bCNRVNR/dNR)2ω1(

(ω2 − ω2
1)

2
+ (ω1ω/Qe)

2
)
MmQe

kBTe, (6.27)

where G represents the total gain of the measurement circuit up to the spectrum

analyzer.

In practice to compare each averaged power spectrum, we simultaneously

recorded the charge gain of the circuit by measuring the magnitude of the 1 MHz

reflection modulation with a lock-in (“rf lock-in” in Fig. 6.2). We then divided the

power spectrum by the average gain AQ (in units of W/e2
rms) recorded during the

measurement of the power spectrum. This converted the measured thermal response

of the resonator into units of e2
rms/Hz. I thus rewrite Eq. 6.27 as

P =
A(

(ω2 − ω2
1)

2
+ (ω1ω/Qe)

2
) ω4

1

Q2
e

, (6.28)

where “A” is in units of e2
rms

Hz
and is given by

A = GQ4
T Zov

2
c

(
∂2ISD

∂VSD∂QNR

)2(
bCNRVNR

dNR

)2
kBTe

Km

1

AQ∆f
. (6.29)

Figure 6.7 displays the power spectra of a nanoresonator’s thermal response

at sample-stage temperatures TS = 75 mK, 150 mK, 300 mK, and 500 mK and

a coupling voltage of VNR=10 V. The data was taken using Device 2. For each

temperature, 500 to 1500 traces were taken, averaged, and fit (lines) to Eq. 6.28

plus a background. From the fit we extracted the resonant frequency ω1, quality

factor Qe, peak amplitude A, and background Po, for each temperature. The error
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bars for each of these quantities was determined using standard error propagation

with a uniform variance assigned to each point in the power spectrum plot. The

variance was taken from the variance in the background level far from resonance.

The background is Gaussian and due the 80 pV /
√

Hz input voltage noise of the

cryogenic microwave pre-amplifier.

Effective Resonator Temperature

Knowing the resonator’s amplitude A, quality factor Qe and fundamental mode

frequency ω1/2π, I can calculate the effective temperature of the resonator’s funda-

mental mode. There are two ways that I can do this: (1) use Eq. 6.29 and the known

device parameters (eg. Km, G, etc.); or (2) use a a primary thermometer (eg. nuclear

orientation thermometer) or calibrated secondary thermometer (eg. RuO resistor)

to calibrate the temperature dependence of one of the resonator’s extracted param-

eters (eg. A, Qe, etc.). The total uncertainty in the device parameters is greater

than 50 % (due mainly to uncertainties in Km and G), whereas the uncertainty in

the extracted parameters is typcially 1 - 10 % (see Fig. 6.7). Provided I choose a

suitable parameter, it is clear that the second method is much more precise.

While not necessary, it is preferable that I choose a parameter that varies

linearly with Te. Neither the resonator’s amplitude A, quality factor Qe or funda-

mental mode frequency ω1/2π demonstrate this behavior. However, if I integrate

Eq. 6.28, for Qe 	 1, I find

IR =
∫ ∞

0
Pdω =

ω1

4Qe
A = GQ4

T Zov
2
c

(
∂2ISD

∂VSD∂QNR

)2(
bCNRVNR

dNR

)2
kBTe

AQKm
, (6.30)
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Figure 6.7: Power spectrum measurements of a nanoresonator’s thermal response,

P, (squares) fit to harmonic oscillator response (lines). Data taken with coupling

voltage VNR = 10 V. Device 2.
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where IR stands for integrated response. Below 500 mK, the temperature depen-

dence of the parameters in Eq. 6.30 is negligible and, hence, IR is linear in Te. Above

500 mK, the temperature dependence of ∂2ISD/∂VSD∂QNR becomes significant, and

IR is no longer linearly proportional to Te.

In practice, to calibrate IR, we first measured the resonator’s frequency re-

sponse P as a function of sample-stage temperature TS (see the Thermometry sec-

tion in Chatper 4 to see how we measured TS)and extracted the parameters A, Qe,

and ω1/2π from an harmonic oscillator fit to the data at each temperature. We then

calculated IR via

IR =
ω1

4Qe
A. (6.31)

From the scatter in the power spectra data, the error in the calculation of this

quantity was typically 1 - 15%. Finally, we plotted IR versus TS (Fig. 6.8).

For TS > 100 mK, we found IR exhibited a linear dependence on TS. The

y-intercept was within measurement error of the origin (Fig. 6.8). Furthermore, the

data scaled with V2
NR, Figs. 6.9 and 6.10. That is, when divided by the square of

the coupling voltage, for a given Te, IR exhibited no dependence on V2
NR. These

observations were sufficient evidence to conclude that IR was an accurate measure-

ment of the temperature of the fundamental mode of the resonator, and that the

mode was in thermal equilibrium with the sample holder and RuO2 thermometer

(ie. Te = TS). Accordingly, in this temperature regime, the slope of IR versus TS

could be used as a calibration for performing noise thermometry. It is evident in

both Fig. 6.9 and Fig. 6.10 that there was scatter of 10 - 20% in some of the data
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Figure 6.8: Plot demonstrating the integrated resonator response, IR, versus TS at

a coupling voltage of VNR = 4 V. Data is for device 2.
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points. I address this issue at the end of the section when I discuss evidence for

back action.

From Fig. 6.9 and Fig. 6.10, it is clear that, for TS < 100 mk, the data did not

exhibit a linear dependence on sample-stage temperature. From Eq. 6.12, several

microvolts at the SET gate could have driven the resonators to an rms amplitude

of ∼ 200 fm - approximately the thermal amplitude of device 2 at 50 mK. However,

this can be ruled out based on several facts. First, the data for 100 mK and above fit

to a straight line through the origin. Second, the integrated power data, both above

and below 100 mK, exhibited no obvious dependence on V 4
NR, as one would expect if

the resonator was driven by a capacitively coupled signal. And third, we knew from

transmission measurements that the attenuation down the gate lead was around -

20 dB at 20 MHz, and, thus, the noise at the input to the fridge would have to have

been ∼ 10’s µVrms, which was much greater than the expected Johnson noise from

the resistors in the voltage dividers (10’s nV/
√

Hz at most) or the output noise of

the optical isolators (also 10’s nV/
√

Hz at 20 MHz). It was more likely the result of

either power from the RFSET line or dissipation in the SET heating the resonator

- in Chapter 7, I address these possible reasons and solutions for the hang-up.

Regardless of the source of the heating, we could use the calibration of IR

at and above 100 mK to determine the effective temperature Te below 100 mK.

For example, Te, at a sample-stage temperature of TS = 35 mK was determined by

dividing the integrated response at 35 mK by the integrated response at 100 mK,

Fig. 6.11. For the left peak, IR35mK= 423 ± 43 µe2/V 2, and for the right peak,
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Figure 6.9: A log-log plot demonstrating the integrated resonator response, IR,

versus TS temperature scaled by V 2
NR for Device 2. Using the data from 100 mK

and above as a calibration, the minimum temperature of the resonator’s fundamental

mode is found to be 56 ± 7 mK.
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Figure 6.10: A log-log plot demonstrating the integrated resonator response, IR,

versus TS scaled by V 2
NR for Device 1. Using the data from 100 mk and above as a

calibration, the minimum temperature of the resonator’s fundamental mode is found

to be 99 ± 4 mK.

150



Figure 6.11: Using the data from the 100 mK peak as a calibration, the integrated

response at 35 mK is found to correspond to Te = 56 mK. The data is for Device 2.

Please note that the 100 mK peak has been shifted by 1.0 kHz for clarity.
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IR100mK = 747 ± 47 µe2/V 2. Thus we obtained

Te =
IR35mK

IR100mK
= 56 ± 7 mK., (6.32)

Incidentally, Te = 56 mK was the lowest mode temperature that we measured.

Using the the Planck distribution function,

〈nth〉 = (eh̄ω1/kBTeff − 1)−1 (6.33)

we calculate that this corresponds to a thermal occupation number of 59 ± 7. This

is the lowest thermal occupation number ever measured for a collective mechanical

mode [15].

Finally, I note that the slope of the IR/V 2
NR versus TS for Devices 1 and 2 differ

by approximately a factor of 7 (see Figs. 6.9 and 6.10). This is a result of several

factors: (1) the increased coupling capacitance of Device 1 compared to Device 2

(61 aF compared to 27 aF); (2) the increased bandwidth of the spectrum analyzer

for the measurement of Device 1 (a factor of 1.7); and (3) different spring constants

for the two devices (19 N/m for Device 1 compared with 15 N/m for Device 2).

Figure 6.12 shows a plot of the integrated resonator response versus sample-

stage temperature for both Devices 1 and 2. The data has been scaled with respect

to the derivative of the capacitive coupling, ∂CNR/∂ym and the effective spring con-

stant Km for each device. That is, I have plotted IR/(Km∂CNRV2
NR/∂ym). Note that

the data for the two devices fall on the same line, confirming that we understand the

basic principles of the detection scheme, and have taken into account the dominant

parameters - eg. CNR, Km. However, the fact that the slope of the scaled response

deviates from kB by a factor of ∼ 3 tells us that there is systematic uncertainty in
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Figure 6.12: A plot demonstrating that the integrated resonator response, IR, for

Devices 1 and 2 collapse onto the same line when the data for each device is scaled

by the corresponding AQ, VNR, CNR, and Km.
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our estimate of the measurement circuit gain. This discrepancy is consistent with

the deviation in the calculation of the capacitively driven resonator response from

the measured response, Section 6.1, and the deviation between the measured and

calculated charge sensitivity. Also note that the errors bars on the data points in

Fig. 6.12 are considerably larger then the error bars in the previous integrated power

plots. The main source of the error is from uncertainty in the spring constant, ∼

50%. I have not included uncertainty in the gain of the measurement circuit.

Noise Temperature

The noise performance of the displacement detection scheme can be evaluated

by defining the noise temperature TN . This quantity correponds to the effective

resonator mode temperature, Te, at which the resulting thermal displacement can

be transduced and detected with a signal-to-noise ratio of 1. In other words, it is

the temperature at which the rms amplitude of the resonator response A is equal

to the rms background level Po.

Figure 6.13 displays a plot of the resonator response (Device 2) for sample-

stage temperature TS = 35 mK and coupling voltage VNR = 15 V. The data was

fit to an harmonic oscillator response, and the frequency, quality factor, amplitude,

background, and integrated response (IR), were extracted. Using the integrated

resonator response versus TS (7.3 ± .1 µe2/V2) as the calibration (Fig. 6.9), the

integrated response of the peak (535 ± 24 µe2/V2) was found to correspond to a

resonator mode temperature of Te = 73 ± 2 mK. From the ratio of the amplitude
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Figure 6.13: A plot demonstrating the lowest noise temperature, TN achieved by

RFSET displacement detection. From the slope of the integrated response versus

sample-stage temperature, Te = 73 mK . The ratio of the amplitude to the back-

ground yields a noise temperature of 15.5 ± .4 mK. Data is taken at VNR= 15 V,

and is for device 2.
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to the background (4.71 ± .01) the noise temperature for the measurement of the

peak was found to be

TN =
Te

4.71
= 15.5 ± .4 mK. (6.34)

Similiarly, we found, for Device 1, that the minimum noise temperature achieved

was 43 ± 2 mK.

From TN and the equipartition relation, a rough estimate of the corresponding

displacement noise spectral density within the resonator’s noise equivalent band-

width can be made:

Sy =
kBTN

Km

4Qe

ω1

. (6.35)

Thus, a noise temperature of TN=15.5 ± .4 mK corresponded to a displacement

sensitivity of 3.8 ± .9 fm/
√

Hz, for Qe ∼ 3.5 x 104. For Device 1, the minimum TN

corresponded to a displacment sensitivity of 7.5 ± 2 fm/
√

Hz. Notice, though, that

because the calculation of the displacement sensitivity requires knowledge of the

spring constant, Km, the error in the estimate was roughly 25 % for both devices.

To find out how close our detection scheme was to the ideal, we expressed the

displacement sensitivity in terms of the quantum limit for each device, Chapter 2:

(
δym

∆yQL

)2

=
TN

TQL
=

ln3kB

h̄ω1
TN . (6.36)

Notice that the dependence on Km has dropped out. For Device 1 then,

δym

∆yQL
= 7.4 ± .2, (6.37)
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For Device 2,

δym

∆yQL
= 4.3 ± .3. (6.38)

These numbers represented the closest approach to the quantum limit, to date,

achieved in the read-out of the displacement of a mechanical system [15].

Finally, Figs. 6.14 and 6.15 show the noise temperature, TN (left axis) and

mean-square displacement noise (right axis) of Devices 1 and 2 as a function of

V 2
NR. The displacement noise was normalized with respect to the quantum limit for

each device, δym/∆yQL . Also plotted in the figure are lines (dashed) representing

the expected displacment sensitivity for a measurement circuit charge sensitivity

of 10 and 20 µerms/
√

Hz. Thus as we increased the coupling voltage, the noise

temperature improved linearly with V 2
NR, as expected from Eq. 6.7.

6.3 Discussion of SET Back Action

From the discussion in Chapter 2, SET back action produces three effects in

the measurement of a nanomechanical resonator’s displacement: a frequency shift,

damping, and displacement fluctuations. In this section, I argue that there is no

clear evidence of any of these effects in the measurement of Device 1 or Device 2.

First, I note that the SET-induced frequency shift and damping arise as a

result of the dependence of the SET-island potential φ on resonator position. A

change in the resonator’s position alters the island potential, which changes the

electrostatic force between the SET island and the resonator.

The in-phase component of the response shifts the resonator’s frequency ac-
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Figure 6.14: A plot demonstrating the noise temperature, TN , of the RFSET dis-

placement detection scheme as a function of V2
NR for device 1. The right axis is

the corresponding square of the position sensitivity normalized with respect to the

quantum limit. A minimum noise temperature of 43 ± 2 mK was achieved. This

corresponds to a displacement sensivity of a factor of 7.4 ± .2 from the quantum

limit, or 7.5 ± 2 fm/
√

Hz.
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Figure 6.15: A plot demonstrating the noise temperature of the RFSET displace-

ment detection scheme as a function of V2
NR for device 2. The right axis is the corre-

sponding square of the position sensitivity normalized with respect to the quantum

limit. A minimum noise temperature of 15.5 ± .4 mK was achieved. This corre-

sponds to a displacement sensivity a factor of 4.3 ± .3 from the quantum limit, or

3.8 ± .9 fm/
√

Hz.
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cording to

∆ω1

ω1
≈ −CNRV 2

NR

Kmd2
NR

CNR

2CΣ
. (6.39)

Comparison with Eq. 6.16 shows that this shift in the resonator’s frequency

should be ∼ CNR

CΣ
smaller than the frequency shift due strictly to the electrostatic

softening from VNR. For Devices 1 and 2, the ratio is ∼ 0.1 - 0.2, so the effect

should provide a small correction.

Figure 6.16 shows the frequency shift of the nanoresonators from Device 1 and

Device 2 versus V 2
NR.1 From a linear fit to the data, a slope of 72 and 124 Hz/V2

were obtained respectively. These values are to be compared with the estimates of

140 and 100 Hz/V 2 provided by Eq. 6.16.

From Eq. 6.39, I expect that the effect of the back action should have been

about 10 - 20% of these values or ∼ 10 Hz/V 2, which was approximately the magni-

tude of the scatter in the data points. Little more can be said as we lacked the data

to make a more precise determination of the slope. Furthermore, for this small of

an effect, I would need to develop a more detailed model of both the frequency shift

due strictly to V 2
NR (ie. calculate numerically ∂2CNR/∂y2

m) and the frequency shift

due to the back action (ie. calculate correlations between tunneling and position

fluctuations). Thus, the frequency shift of the resonator cannot be used as a gauge

of the level of SET back action in the measurement.

Second, I note that the out-of-phase component of the SET response produces

1The data for Device 1 excludes the 6 V coupling data as it was taken on a separate cool-down,

and exhibited a shift of 15 kHz.
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(a)

(b)

Figure 6.16: Plot of the frequency shift versus V 2
NR for (a) Device 1 at 35 mK and

(b) Device 2 at 100 mK. The shift is measured with respect to the lowest voltage

data point.

161



damping:

γdet ≡ ω1

Qd
=

(
bCNRVNR

CΣVSD

)2
e2RΣ

2Mmd2
NR

= ANRV 2
NR, (6.40)

where ANR/2π ∼ 0.02 and 0.003 Hz/V 2 for Devices 1 and 2 respectively. The total

effective resonator damping is thus

γeff =
ω1

Qeff
= γbath + AV 2

NR. (6.41)

It is assumed that ANR is independent of the bath temperature, Tb. I expect,

then, that the temperature dependence of γe should follow the temperature depen-

dence of γb. While the sources responsible for γb in nanoresonators are not well

understood, γb has generally been observed to obey a power-law dependence of T a
b

in several different materials, with a ∼ 0.2 [121]. Assuming that the power-law holds

down to mK temperatures, if γd is comparable to or greater than γb, then its effect

should be evident in the deviation of γe from the T
1/5
b dependence; the deviation

becoming more pronounced at lower Tb as γb decreases and γd remains constant.

Figure 6.17 shows plots of γe/2π versus TS for VNR = 6 V (Device 1) and 10

V (Device 2). The data sets each represent the largest bias voltage for each device

for which complete data sets (35 mK to 500 mK) were taken. If back action is

a factor, it should be most pronounced here. The solid line in each plot denotes

T
1/5
S dependence, and was generated by forcing a fit of the data to

γeff = C + DT .2
S , (6.42)

where A and B are off-set and slope parameters. It is clear from the plots that the

effective damping does not saturate as TS decreases to 35 mK.2

2The other complete data sets for both Device 1 and Device 2 exhibit similiar behavior.
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(a)

(b)

Figure 6.17: Plots of γe/2π Vs. TS for (a) Device 1 at VNR = 6 V and (b) Device

2 at VNR = 10 V.
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Furthermore, at the lowest TS, it is seen that there was no obvious dependence

of damping on VNR (Fig. 6.18). For both devices, γe/2π was scattered about 500

Hz, ranging from 400 to 900 Hz. Using the estimate of γd from Eq. 6.40 and the

parameters for Devices 1 and 2, I find that γd/2π should have become comparable

to this range of values when VNR > 100 V, which is well above the parameter range

explored.

Finally I turn to the third back action effect: position-fluctuations. In Chapter

2, I showed that, in the absence of coupling to any other environment, the SET will

drive the measured resonator, resulting in fluctuations in the resonator’s position

with a variance given by

〈y2
m〉 =

kBTd

Km
, (6.43)

where Td is considered to be a measure of the asymmetry in the SET’s quantum

noise.

If, in addition, the resonator is coupled to a thermal bath, then the resonator’s

variance will be given by

〈y2
m〉 =

kB

Km
Te, (6.44)

where

Te =
(γbTb + γdTd)

γe
. (6.45)

For small VNR, one expects Te = Tb. However, as one increases VNR, it is expected

that the dependence of Te on Tb will become weaker until γdTd 	 γbTb, at which

point the resonator will hang-up at Te = Td.

Turning back to Figs. 6.10 and 6.9, there is no discernible evidence for this
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(a)

(b)

Figure 6.18: A plot of damping versus coupling for (a) Device 1 and (b) Device 2.
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effect in either Device 1 or Device 2. As VNR was increased, the dependence of Te

on TS (or Tb above 100 mK) remained constant.

From Eq. 2.96 and the parameters for Device 2, it is stright-forward to estimate

the expected contribution of the SET back action to Te at 15 V coupling. An order of

magnitude estimate of the SET potential fluctuations yields S
1/2
φφ (ω) ∼ 1 nV/

√
Hz.

The SET-island potential fluctuations should have then driven the resonator to an

rms amplitude of 30 fmrms. This would have corresponded to an effective heating

of ∼ 100 µK, and, at Tb = TS = 100 mK, would have been a 0.1 % effect.

I close this chapter with a few comments. First, it is clear that, for each

of the three quantities (∆f1, γe, and Te), there is scatter beyond the statistical

uncertainty determined from the least-squares fit of the power spectrum data and

error propagation. For example, in Fig. 6.9, at 175 mK, the three data points for 10

V coupling each have error bars representing ± 2% relative uncertainty. However,

the scatter about the mean of the three points is ∼ 10 - 15 %.

While it is not shown, there may have been a correlation between the scatter

in Te and the scatter in γe; that is, for a set of data points at a particular coupling

voltage and temperature, the data points which exhibited larger Te - as compared

to the other data points in the set - also exhibited larger γe, and vice versa.

Additionally, for Device 2, the scatter in the data at 10 V and 15 V coupling

was accompanied by fluctuations in the RFSET gain. These fluctuations were sub-

stantial, and resulted in the RFSET gain-feedback unlocking. The frequency and

magnitude of the fluctuations appeared to increase with VNR.

Two-level charge fluctuators and back action are both possible explanations for
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the observed scatter in the ∆ f1, γe, and Te. The possibility of charge fluctuations is

bolstered by the observation that the magnitude of scatter appeared to increase with

increasing coupling, and that it was accompanied by RFSET gain fluctuations. The

possibility of back action being the culprit is weakened by the estimates above which

demonstrate that all three back action manifestations should be small with respect

to thermal noise and other factors. Of course, until the back action is measured,

limited confidence can be placed in these estimates.

Finally, in all of the back action estimates, we used normal-state SET ap-

proximations. Recent theoretical [59] [60] and experimental [73] investigations of

the SSET back action near the JQP resonances demonstrate significantly different

behavior than what is predicted for a simple normal-state SET. For instance, both

the magnitude and the sign of Td and γd are very sensitive functions of the SET’s

detuning from the JQP (DJQP) resonance ridges. Furthermore, it has been found

that the SET must be biased off of the center of the JQP ridge and the RFSET

carrier amplitude (vc) must be reduced to a fraction of the JQP resonance-width

in order to avoid sampling both the stable (negative γd, negative detuning) and

unstable (positive γd, positive detuning) regimes.

At the time the measurements of Device 1 and Device 2 were made, we were

not aware of these details. We were also not particularly careful with maintaining a

consistent SET bias point. Typically, the intent was to choose whichever bias point

maximized the RFSET gain. The records we have for the bias points (Fig. 6.3 for

example) demonstrate that at least some of the time we were biased near the top of

the JQP ridge. As well, the peak-peak amplitude of vc at the SET corresponded to
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∼ 2QT 8 µV ∼ 140 µV, which is on the order of the half-width of the JQP resonance.

There are significant differences though between the present work (Devices

3,4,Y) and the work I report in this Chapter (Devices 1 and 2). The level of cou-

pling is much greater. For the present generations devices, dNR, the resonator/SET

spacing, has been decreased to ∼ 100 nm. This is to be compared with the 600 nm

spacing of Devices 1 and Devices 2. Additionally, the spring constants of the present

generations devices have been reduced by as much as a factor of 2 - 3, making the

resonator more ”susceptible” to the SET’s back action forces.

Finally, the evidence for back action in the more recent samples, while not yet

fully understood, is much greater. For example, in Device 3, the effective quality

factor has been observed to decrease with V 2
NR dependence from above 1 x 105 at

1 V coupling to 2 x 104 at 12 V coupling. For the same span in coupling voltage,

the relationship between Te and TS is shown to go from directly proportional at 1

V to independent at 12 V. Finally, in an even more recent sample (Device Y), both

positive and negative damping have been observed in the vicinity of the both the

JQP and DJQP resonances.

In the light of these facts, while we cannot completely rule out the influence

of SET back action in Devices 1 and 2, it is clearly not a significant effect.
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Chapter 7

Conclusions

So far, I have demonstrated that we are capable of approaching the quantum

limit on two fronts: we have implemented a near-ideal displacement detection scheme

with sensitivity δym = 4.3∆yQL; and we have cooled a mode of a nanomechanical

oscillator to 〈nth〉 ≈ 60. These observations are the closest approach to the quantum

limit for a nanomechanical or macroscopic object to date. In this final chapter,

I discuss possible reasons why our observations were limited to these values and

suggest several technical improvements to push even closer to the quantum limit in

future work.

7.1 Shot Noise Limited Detection

Figure 7.1 demonstrates the deviations from ideality of the displacement de-

tection scheme for the measurement of Device 2. We found that as we increased

V 2
NR, the noise temperature TN decreased linearly with a slope (dashed line) deter-

mined by SQ ∼ 10µe
√

Hz. This is at odds with the charge sensitivity of 30µe/
√

Hz

we measured from the 1 MHz gain calibration (Chapter 5 and Appendix II). The

discrepancy could be a result of the improper calibration of charge sensitivity during

the measurement of Device 2. At that time we were not aware of the Bessel func-

tion calibration method. It could also be the case that the charge sensitivity was
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Figure 7.1: A plot of TN Vs. V 2
NR for Device 2. The solid line is the total noise

temperature including both SET shot noise and back action.
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better at 20 MHz than at 1 MHz. Nevertheless, the solid lines denote the estimated

SET shot noise and back action contribution to the noise temperature, assuming a

normal-state SET.

It is clear that there is room for a factor of 5 reduction in the forward-coupling

measurement circuit contribution before the detection scheme becomes limited by

the SET shot noise. To achieve this, there are at least three improvements that we

could make.

First, we could account for and reduce the 4 - 5 dB attenuation in the portion

of the microwave circuit between the sample and the HEMT pre-amplifier.1 From a

simple consideration of the measurement circuit noise performance, one can see that

a loss of 4 - 5 dB between the RFSET and the HEMT pre-amplifier is a significant

contribution to the mesasurement circuit noise temperature

Tdet
n ≈ TL +

THEMT

10−L/10
≈ 11 − 15 K, (7.1)

where TL = 4(10L/10 − 1) is the equivalent noise temperature for the section of the

circuit where the 4 - 5 dB is lost, L = 4 - 5 dB is the loss, and THEMT ≈ 2 K is the

equivalent noise temperature of the pre-amplifier. Thus, while it is still a significant

factor, the ultra-low noise HEMT accounts for less than 20% of the measurement

circuit noise temperature.

Second, we could replace the HEMT with a better cryogenic amplifier and use

the HEMT as a follower. One possibile replacement would be the nearly-quantum

limited microstrip SQUID amplifier [119], which has been demonstrated with an

1For Devices 1 and 2, we do not have a record of the loss in this portion of the circuit. Consid-

ering that Tdet
n ≈ 20 K for Device 2, the attenuation was probably closer to 6 dB.
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equivalent noise temperature a factor of 2 from the quantum limit at 500 MHz

[119]. It has been used routinely with a noise temperature of 100 mK and gain of 20

dB up to 500 MHz. These amplifiers can operate below 100 mK, which would allow

for placement very close to the sample, and thus reduce the possibility of signal-loss

in the coupled-portion of the microwave circuit (See Chapter 5 and Appendix II).

I can calculate the overall improvement in the noise temperature of the mea-

surment circuit for the case that the RFSET is read-out with a microstrip SQUID.

Assuming a gain of 20 dB and noise temperature of 100 mK for the SQUID, and

using the 2K HEMT2 as a follower, I calculate

Tdet
n ≈ 120 mK, (7.2)

without loss in the circuit.

With 5 dB of loss following the SQUID, I calculate

Tdet
n ≈ 250 mK. (7.3)

This is a factor of at least 40 improvement in the noise temperature of the

measurement circuit. Assuming, an SET with the identical parameters as Device 1

or Device 2, this should result in the reduction of the charge sensitivity to the SET

shot noise limit.

There are several concerns with using the microstrip SQUID amplifier. One

is that it might require the use of a lower carrier frequency for the RFSET, and

hence lower bandwidth. This problem could probably be circumvented by detuning

2There is a HEMT amplifier available from Reference[107] with a quoted noise temperature of

.9 K at 650 MHz which could be used as a follower for the SQUID.
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the carrier frequency from the tank circuit resonance by the expected mechanical

resonator frequency. The second concern deals with dynamic range. It isn’t clear

whether the reflected signal from the RFSET would swamp the SQUID amplifier.

For example, in Reference[120], the author calculates that the maximum output

power a typical SQUID in open-loop configuration could supply to a 50 Ωload is

approximately 3 nW. Based on this calculation, if the SQUID amplifier has a gain

of 20 dB, then the maximum input power is limited to approximately 30 pW. For

RFSET operation, depending on the bias point, the reflected power could be as

large as several 100 pW. This requires further invsetigation.

Finally, the third improvement that we could make would be to the matching

characteristics of the RFSET LC circuit. For Devices 1 - 4, the transformed SET

impedance on resonance, ZLRC , was approximately 0.04 - 0.12 Zo. As a result, the

reflection coefficients at maximum conductance, Γmax, ranged from ∼ 0.8 - 0.92,

and yielded maximum depths of modulation M = 20log(Γmax) of ∼ 0.7 - 2.0 dB.

The obvious solution to this is to begin using larger inductance coils. Keeping

CT fixed at ∼ 250 fF would require increasing the inductance up to 100’s nH for

optimal matching. This would also have the desired affect of reducing the tank-

circuit frequency down to an acceptable range for the microstrip SQUID amplifier.

Again, though, we would pay the price in bandwidth. For CT ∼ 250 fF, optimal

matching at 400 MHz, would require LT ≈ 600 nH. This fixes the tank-circuit

quality factor and bandwidth to be ∼ 15 and 27 MHz respectively. Obviously, the

optimization is tricky. One might not need to implement perfect matching. For

example, increasing LT so that ZLRC ∼ 0.5 Zo would increase M by 6 - 8 dB, and
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hence improve the charge sensitivity by approximately a factor of 2.

7.2 Sample Thermalization

Ultimately, the base temperature of the dilution refrigerator is ∼ 9 mK. This

has been confirmed using nuclear orientation thermometry. In the previous chapter,

I showed that the minimum resonator mode temperature that we measured was

around 60 mK. Thus, it is clear that considerable improvement could be made to

bring the mixing chamber and the nanoresonator’s fundamental mode into thermal

equilibrium. There are at least three components to this problem: (1) minimizing

the thermal impedance between the mixing chamber and the sample stage; (2) min-

imizing the thermal impedance between the nanoresonator’s mode and the sample

stage; and (3) reducing heat to the device. I assume that the first component, while

not trivial, can be made negligible using the proper materials and connections. The

second component is also not trivial and should depend on both the material out

of which the samples are made and the geometry and mode of the nanoresonator.

While, for a given nanoresonator mode, the thermal coupling between the mode and

the substrate “bath” can be inferred from measurements of the resonator’s quality

factory, the nature of the coupling is not well understood [121] and is deserving of

an entire thesis. Thus, in the section, I focus on the third component. In particular,

I discuss two possible sources of heating: the Nb-Nb microwave coax and the SET.
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Heat Transfer Through Nb-Nb Coax

It is possible that heat was conducted via the microwave coaxial cable to

the sample stage. From 1 K down to the mixing-chamber, we used Nb-Nb UT-85

coax (see Chapter 4) [106]. Gold-plated copper clamps were used to thermalize the

outer-shield of the coax at the still-stage and cold-plate. At the mixing-chamber,

the coax connected to a bias tee. The connection from the bias tee to the sample

holder was made via a Cu UT-85 semi-rigid coax. From the clamps and the low

thermal conductivity of the superconducting Nb [111], it seems unlikely, then, that

heat flow through the outer-shield of the coax was responsible for heating of the

sample. However, because of the Teflon insulation between the outer shield and

inner conductor, it is possible that heat transfer through the coax’s center conductor

could have resulted in the center conductor being out of equilibrium with the shield

and the mixing chamber.

To estimate the temperature difference between the inner and outer conductor

of the coax at the mixing chamber, I consider the coax to be a cylinder of length

L and composed of three concentric regions (Fig. 7.2): (1) an inner Nb conductor

with thermal conductivity κ1 and radius r1; (2) a Teflon insulator with thermal

conductivity κo; and (3) an outer Nb shield with thermal conductivity κ2 = κ1,

inner diameter 2πr2, and thickness t. I assume that the inner and outer conductors

are in thermal equilibrium at the 1 K pot (z = 0). On our dilution fridge, a typical

1 K pot temperature was 1.7 K. Thus T1(0) = T2(0) = 1.7 K. I further assume that,

at the mixing chamber (z = L), the shield and the mixing chamber are in thermal
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Figure 7.2: An illustration of the Nb-Nb coax semi-rigid coax for heat-flow calcula-

tion. It is assumed that the center conductor and shield are in thermal equilibrium

at 1 K (T1K) and that the mixing-chamber end of the shield is in thermal equilbrium

with the mixing chamber.
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equilbrium. The problem is to find the temperature T1(L) of the inner conductor

at the mixing chamber.

As a first approximation, I assume that the heat transfer in the Teflon is

purely radial (ie. the heat transfer along the length of the coax between 1.7 K and

the mixing chamber is dominated by the Nb conductors, which have a much larger

thermal conductance due to κ1,2/κo 	 1 below 1 K [111]). Thus, I write the heat

transfer per unit length between the inner conductor and the shield at a position z

along the length of the coax as [122]

Q̇ =
2πκo

ln(r2/r1)
(T1(z) − T2(z)). (7.4)

I also assume that the heat transfer is purely axial (along z) within the in-

ner conductor and within the shield. Fourier’s law [122] for a segment dz of each

conductor thus yields

κ1πr2
1

∂T1

∂z

∣∣∣∣
z
− Q̇dz = κ1πr2

1

∂T1

∂z

∣∣∣∣
z+dz

(7.5)

and

2πr2tκ2
∂T2

∂z

∣∣∣∣
z
+ Q̇dz = 2πr2tκ2

∂T2

∂z

∣∣∣∣
z+dz

, (7.6)

where I have assumed that r2 	 t.

Expanding about z, the steady-state temperature profile of the inner conductor

is found from

πr2
1κ1

∂2T1(z)

∂z2
+

2πκo

ln(r2/r1)
(T2(z) − T1(z)) = 0. (7.7)
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As well, the steady-state temperature profile of the shield is found from

2πr2tκ2
∂2T2(z)

∂z2
+

2πκo

ln(r2/r1)
(T1(z) − T2(z)) = 0. (7.8)

If I assume that the thermal conductivities κ1, κ2, and κo are temperature

independent and that κ1 = κ2 = κ, then the temperature difference between the

inner conductor and shield is given by

T1(z) − T2(z) = (T1K − Tm/c)
r2
1 + 2r2t

r2
1sinh(L/λ) + (2r2tL/λ)cosh(L/λ)

sinh(z/λ), (7.9)

where

λ =

√√√√(κln(r2/r1)

κo

)
r2
1r2t

r2
1 + 2r2t

. (7.10)

Using the ratio κ/κo ∼ 1 x 103 at 100 mK [111], and measuring r1 ∼ 0.25 mm,

r2 ∼ 3.5r1 and t ∼ 0.75r1, I calculate that, for Tm/c = .01 K and T1K = 1.7 K,

T1(L) ≈ 30 mK, (7.11)

where I have assumed that L = 0.5 m.

This analysis suggests that the inner-conductor of the microwave coax is heated

by approximately 20 mK above the mixing chamber. However, the assumption that

the thermal conductivities of Teflon and Nb are independent of temperature between

1 K and 10 mK (and that their ratio is given by their values at 100 mK) is not

accurate. In fact, both materials exhibit a strong temperature dependence below

1 K. Specifically, κ ∝ T3 and κo ∝ T2 [111]. Thus, the ratio κ/κo is a function

of position along the length of the cable, decreasing from ∼ 104 at 1.7 K to ∼ 102

at the mixing-chamber. It is likely, then, that T1(L) could be heated less than
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indicated by the above considerations. To estimate a lower bound, I assume that

the ratio of the thermal conductivities is given by their values at 10 mK (∼ 100). I

calculate, then, that T1(L) ≈ 17 mK. To conclude, I note that, at a minimum, the

center conductor should have been heated by approximately 10 mK above the mixing

chamber. However, a more detailed analysis taking into account the temperature

dependence of the thermal conductivity of each component of the coax must be

done.

Dissipation in the SET

It is also possible that the heating of the resonator mode was due to the

dissipation of power in the SET. I can estimate the phonon temperature in the

vicinity of the resonator using a steady-state thermal circuit model (Fig. 7.3). I

make several assumptions. First, I assume that the power dissipated in the SET

was determined by the dc current ISD and the SET resistance RΣ:

Q̇ ≈ I2
SDRΣ = 400 fW (7.12)

for ISD = 2 nA and RΣ = 100 kΩ.

Second, I assume that the power dissipated in the SET must have been con-

ducted from the electrons in the SET island to the phonons in the SiN membrane

beneath the SET via the electron-phonon coupling for normal metals [123] [124]

Q̇ = Σ1V1

(
T 5

1 − T 5
2

)
, (7.13)

where Σ1 � 2 x 109 nW/m3K, V1 � 5 x 10−21 m3 is the volume of the SET island,

T1 is the temperature of the electrons in the SET island, and T2 is the temperature
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of the phonons in the membrane in the vicinity of the SET. It is not known how

accurate this assumption is for superconducting metals.

Next, I assume that the phonon transport in the SiN membrane was diffusive

[125] and that the power delivered through the SiN membrane (beneath the SET)

to the Si substrate can be written as [125]

Q̇1 = .0145
A

3L

(
T 3

2 − T 3
0

)
, (7.14)

where A � 5 x 10−12 m2 is the cross-sectional area of the SiN membrane between

the SET and the edge of the mebrane, L = 25 µm is the distance between the SET

and the edge of the membrane, and T0 = 30 mK is the bath temperature, assumed

to be the temperature of the Si substrate and sample stage.

Similarly, I write the power delivered through the SiN membrane, from the

SET island to the phonons in the vicinity of the resonator, as [125]

Q̇2 = .0145
A′

3L′
(
T 3

2 − T 3
3

)
, (7.15)

where L′ = 600 nm is the distance between the SET island and the resonator, A′ �

1 x 10−12 m2 is the cross-sectional area of the SiN membrane between the SET and

the resonator, and T3 is the phonon temperature near the resonator.

Finally, I assume that there were two “paths” between the region around

the resonator and the sample-stage bath: (1) diffusive transport through the SiN

membrane [125]

Q̇3 = .0145
A

3L

(
T 3

3 − T 3
0

)
; (7.16)

and (2) electron-phonon coupling [123] [124] between the phonons in the SiN mem-

brane near the resonator and the electrons in the Au film, which are thermally
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Figure 7.3: Thermal circuit for the SET and resonator on the SiN membrane. Dissi-

pation in the SET (Q̇) results in the heating of the phonon temperature around the

resonator to T3. The thermal resistances in the circuit are: (REP ) electron-phonon

resistance for the Al SET island; (R2D) 2D thermal resistance of the SiN membrane

from the SET to the bath; (R’2D) 2D thermal resistance of SiN membrane between

the SET and resonator; (R’EP) electron-phonon coupling for the Au layer of the

resonator; and (RWF ) Weidemann-Franz resistance of the Au layer of the resonator

to the bath.

181



connected to the bath through electron scattering (Weidemann-Franz) [111],

Q̇4 = Σ2V2

(
T 5

3 − T 5
4

)
=

A′′

L′′σLo

(
T 2

4 − T 2
0

)
, (7.17)

where, for simplicity, I set Σ2 = Σ1 Here, V2 � 1 x 10−18 m3 is the volume of the Au

on the membrane (this does not include the Au film on top of the resonator, just

the Au film leading to the resonator), A′′ = 2 x 10−14 m2 is the area of the interface

between the Au layer and the SiN membrane, L′′ = 2×25 µm is the length of the

Au film (essentially from the ends of the resonator to the edges of the membrane),

T4 is the temperature of the electrons in the Au film layer, σ � 1 x 108 1/Ωm is the

conductivity of Au, and Lo = 2.4 x 10−8 WΩ/K2 is the Lorenz number [111].

With the additional assumption that Kirchoff’s law applies (ie. Q̇ = Q̇1 + Q̇2

and Q̇2 = Q̇3 + Q̇4), I use Matlab to solve Eqs. 7.13, 7.14, 7.15, 7.16, and 7.17

for T3. I find that, for T0 = 30 mK and Q̇ = 400 fW , approximately 200 fW is

delivered to the SiN membrane near the resonator. This results in the heating of

the resonator region to

T3 ≈ 60 mK. (7.18)

Figure 7.4 shows a numerical calculation of the local resonator temperature

T3 as a function of both the bath temperature T0 and the power dissipated in the

SET Q̇. For the calculation of the plot in Fig. 7.4(a), I assumed that the total power

dissipated in the SET is Q̇ = 400 fW. It is seen that T3 saturates at approximately 60

mK. Above 100 mK, T3 is linear with T0. It appears that this behavior results from

the increase in electron-phonon conductance above 100 mK. For example, at 10 mK,

Q̇4 (the power delivered from the phonons in the vicinity of the resonator through
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(a)

(b)

Figure 7.4: Numerical calculation of temperature T3 of phonons near the nanores-

onator as a function of (a) bath temperature T0 for Q̇ = 400 fW and (b) power

dissipated in the SET Q̇ for T0 = 30 mK.
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the electron-phonon coupling to the electrons in the Au film) is approximately 1.4

fW. On the other, at T0 = 500 mK, Q̇4 ≈ 80 fW. The electron-phonon coupling

throughout this temperature range (T0 = 10 - 500 mK) is still weak enough, though,

that the electrons in the Au layer stay thermalized with the bath T0. I note that

the SET electron temperature T1 saturates at 380 mK below T0 = 200 mK, rising

to approximately 520 mK at T0 = 500 mK.

For the calculation of the plot in Fig. 7.4(b), I assumed that the bath temper-

ature T0 = 30 mK. It is seen that for Q̇ < 10 fW, the local phonon temperature T3

is heated by less than 2 mK. For Q̇ = 1 pW, T3 ≈ 80 mK.

The actual power dissipated in the SETs during measurement is not known

with high precision. Typically, the SET was biased near IV features like the JQP

and DJQP peak (see Appendix B). However, for Devices 1 and 2, we did not keep

a record of both the IV characteristics and the bias point for each measurement.

For most of the measurements, we simply recorded the value of VSD and adjusted

Vg to maximize the gain. I can estimate the order-of-magnitude of the dissipated

rf and dc power from the existing ISDVSDVg maps (see Figs. 5.4 and 5.5). The

half-width (in VSD) and height of the JQP peaks were ∼ 50 - 100 µV and ISD ∼ 1 -

2 nA respectively. Thus, the dissipated dc power should have been Q̇dc ∼ 100s fW.

Typically, the incident rf signal was on the order of 10s µV. Thus, the dissipated rf

power should have been comparable to the dissipated dc power.

To conclude this section I make several remarks. First, the temperature T3

calculated in the above analysis is not necessarily the effective temperature of the

resonator’s fundamental flexural mode Te. To calculate Te, it would be necessary
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to determine the thermal conductance between the flexural mode and the phonons

in the SiN membrane near the resonator. In general, the thermal conductance of a

suspended nano-bar is a complicated problem (see references [37] [126] [127]) and is

beyond the scope of this thesis. Future work could involve incorporating the existing

nanoresonator thermal models into the above circuit analysis and fitting the data

for Devices 1 and 2 to the theroetical predictions. This work could be important for

understanding the nature of dissipation in nanoresonators. For instance, from such

an analysis, I could extract the thermal conductance between the nanoresonator and

the bath and compare this with the measured quality factor Qe of the fundamental

flexural mode. If I assume that the heat capacity of the flexural mode is given by

[35]

Cv =
∂E

∂T0
= kB , (7.19)

and that the thermal time constant for the mode is given by

τ =
Qe

ω1
= R1Cv, (7.20)

where R1 is the thermal resistance between the fundamental flexural mode and

some dissipative environment, then I expect that the thermal conductance should

be related to Qe through the relationship

g1 =
1

R1
=

ω1kB

Qe
. (7.21)

Of course, other sources of dissipation, such as the SET detector (see Chapters 2

and 6) or charge noise in the substrate (see Chapter 6), might contribute to Qe.

From the considerations of Chapter 6, I expect that the back action was a negligible
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factor in the resonator’s dynamics. However, a comparison of the agreement between

Qe predicted from thermal conductance models and Qe measured over a range of

coupling voltages VNR might allow for a more precise determination of how small

the effect was.

Second, I note that it is also possible that the heating of the resonator mode

could have been a result of dissipation in the Au film on top of the resonator.

However, from an analysis similiar to the analysis for heating due to SET dissipation,

I have found that this would require the electron temperature in the Au film to be

approximately 200 mK, far out of equilibrium with the sample stage. Based upon the

thermalization of the wiring for the resonator connection (see Chapter 4), it seems

unlikely that the resonator lead on-chip would have been at such a temperature.

Future work is necessary, though, to rule out black body radiation from the copper

grains in the powder filters at the mixing chamber.

Finally, I note that several experimental implementations could be made to

determine the nature of the sample’s heating. First, heat sinks (see Chapter 4) could

be added to the microwave circuit below the 1 K pot to see if better thermalization

of the Nb coax’s center conductor reduces the sample temperature. Second, the SiN

membrane geometry could be eliminated or the SETs could be fabricated off of the

membrane to allow for the dissipation from the SET to radiate ballistically to the

bath. Third, insight could be gained by operating an SET far from the back action

limit and monitoring the effective temperature of the resonator’s mode as a function

of VSD, Vg, and carrier amplitude vc, at a given bath temperature T0.
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7.3 Parting Motivation

Besides serving as a manual for myself and others, it was my hope that this

text would motivate the pursuit of quantum mechanics in nanomechanical systems

by demonstrating how close we are technologically to this possibility.

First, we have demonstrated that the RFSET displacement detector is a near-

ideal detector, with sensitivity a factor of 4.3 from the quantum limit. It is thus a

promising candidate to be used for advanced measurement techniques such as the

quantum squeezing of a mechanical oscillator [29] [30]

Second, we have demonstrated that it is possible to cool and measure me-

chanical resonators to low thermal occupation numbers, 〈nth〉 ∼ 60. With technical

improvements and the implementation of feedback cooling [28], or by moving to

higher frequency resonators, this number could be reduced toward unity where we

could implement techniques to see evidence for quantized harmonic oscillator en-

ergy levels and zero-point fluctuations. Even with slight improvement, 〈nth〉 ∼ 50, a

proposal to use a Cooper-pair box to prepare a nanoresonator in a superposition of

coherent position states could be implemented [25]. As well, these results open up

the possibility of implementing various other proposals that could extend the study

of quantum mechanics to much larger size scales [23-33].
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Appendix A

Useful Mechanics Information

In this appendix, classical elasticity theory is used to model the transverse

displacement of a nanomechanical beam. In the first section, I make the connection

between the vibration of an elastic body and simple harmonic motion. In the second

section, I calculate the spring constants for SET detection. In the third secion, I

solve for the eigenfrequenices and eigenmodes of an elastic bar under tension. In

section four, I discuss the case of an elastic body undergoing damped-driven motion.

Finally, in the fifth section, I briefly discuss the magnetomotive detection technique.

A.1 Euler-Bernoulli Theory and The Simple Harmonic Oscillator

I start by modeling our nanomechanical resonators as prismatic bars, clamped

at both ends, and composed of isotropic, linear elastic materials (Fig. A.1). If I

consider small displacements from equilibrium1 and assume the cross-sectional area

of the bars remain deformationless and perpendicular to the neutral surface, the

Euler-Bernoulli assumptions, I can express the equation of motion for vibration in

1I consider displacements sufficiently small so that the radius of curvature is large with respect

to the transverse dimensions of the resonator. The resonators measured in our research easily

satisfy this criteria as a typical ratio of displacement-to-length is ∼ 10−6.
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Figure A.1: A schematic of a prismatic, doubly-clamped nanoresonator.

the y-direction as [128]

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
= 0. (A.1)

Equation A.1 equates the inertial force-per-unit-length on a segment of the

bar with the elastic restoring force the segment experiences when deformed. Here

E is the Young’s modulus of the material, and I = w3t/12 is the moment of inertia.

Parameters ρ and A are the material density and the rectangular cross-sectional

area respectively. For composite resonators, such as the metallized resonators in

our research, EI should be replace by E1I1 + E2I2, where E1, I1 and E2, I2 are the

Young’s moduli and moments of inertia for the two layers, respectively. Additionally,

for such a resonator, ρA should be replaced by ρ1A1 +ρ2A2, where ρ1 and ρ2 are the

layer densities, and A1 and A2 are the respective layer cross-sectional areas [129].
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Equation A.1 can be solved using separation of variables,

y(x, t) = Y (x)[C1 cosωt + C2 sinωt] (A.2)

where C1 and C2 are determined from the resonator’s shape and velocity at some

initial time, t = 0.

Substituting Eq. A.2 into Eq. A.1, I eliminate the time depedence, and solve

for the normal modes. Assuming clamped-clamped boundary conditions, Yn(0) =

Yn(L) = 0 and dYn(0)
dx

= dYn(L)
dx

= 0 , the normal modes are found to be [128]

Yn(x) = Cn

[
(sin knx− sinh knx) −

−
(

sin knL − sinh knL

cos knL − cosh knL

)
(cos knx− cosh knx)

]
, (A.3)

where the constants Cn, Table A.1, are determined by normalizing the neutral sur-

face displacement of the mode of interest to unity at maximum displacement. The

choice of normalization is arbitrary. I have chosen this particular normalization con-

vention so that, for the fundamental mode, the equations of motion represent the

motion of the resonator’s mid-point (mid-point with respect to resonator length).

Also note that for this normalization convention the mode functions Yn(x) are di-

mensionless. The first four modes are plotted in Fig. A.2.

The normal mode frequencies, ωn, are found from

ωn
2 =

EIk4
n

ρA
, (A.4)

with kn determined by the roots of the eigenvalue equation

cos knL cosh knL = 1. (A.5)
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Figure A.2: The functions Yn(x) for the first four modes of a doubly-clamped res-

onator. The x-axis has been normalized by the resonator length in each plot.
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Table A.1: Geometric Constants: Modes 1-5.

n kn Cn αn δn

1 4.730 .619 .397 .295

2 7.853 .663 .439 .145

3 10.996 .661 .437 .081

4 14.137 .661 .437 .052

5 17.279 .661 .437 .036

6 20.420 .661 .437 .026

The eigenvalue equation can be solved graphically or numerically. Table A.1

lists kn for the first six modes.

In our research, we were typically concerned with resonator motion of purely

one mode. Using Eqs. A.2 and A.3, the solution for a given mode, n is simply

yn(x, t) = Yn(x) [Cn,1 cos ωt + Cn,2 sinωt] . (A.6)

I now make the connection between the dynamics of a particular mode and

the simple harmonic oscillator. To calculate the bending energy En of the mode, I

consider the average work done in deforming the bar into the mode shape Yn(x):

En =
1

2

∫
〈dθnMn〉, (A.7)

where, Mn = EI∂2yn(x, t)/∂x2 is the mode’s bending moment, and θn = ∂yn(x, t)/∂x

is the slope of the bar’s deformation.
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Plugging the expressions for Mn and θn into Eq. A.7, I find

〈En〉 ≡ EI

2

∫ L

0
〈(∂

2yn(x, t)

∂x2
)2〉dx =

ωn
2Aρ

2

∫ L

0
〈y2

n(x, t)〉dx

En =
αn

2
ρALωn

2〈y2
n(t)〉 =

1

2
Kn〈y2

n(t)〉. (A.8)

It is apparent that this is just the potential energy of an object undergoing

simple harmonic motion, with effective spring constant, Kn = meff,nω
2
n, and effective

mass, meff,n = αnρAL. Here αn are dependent on mode shape, and are listed

in Table (A.1) for the first 6 modes. For the fundamental mode, the paramater

〈y2
1(t)〉 is the mean square amplitude of the resonator’s mid-point (length-wise),

with magnitude determined by initial conditions.

Finally, using the definitions of Kn and meff,n, I multiply Eq. A.1 by Yn(x)

and integrate over x to recover the simple relation

meff,n
∂2yn(t)

∂t2
= −Knyn(t). (A.9)

For the fundamental mode, this is simply the expression for the harmonic oscillation

of the mid-point of the resonator.

A.2 Spring Constants for SET Detection

While Eq. A.8 expresses the potential energy of a particular resonator in terms

of the motion of the resonator’s midpoint, in practice, the SET detector is sensitive

to the average displacement of the resonator over the length of the SET island.

It would be nice, then, to recast Eq. A.8 in terms of this quantity so that I am
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able to easily calculate the potential energy of the mode from the observed motion.

For example, for a resonator undergoing brownian motion, knowing the relation

between the measured displacement and the potential energy of the mode, and using

the equipartition theorem, I could calculate the mechcanical mode temperature.

Alternatively, knowing the temperature of the mechanical mode, I could calculate

the displacement signal I should expect to measure with the detector. Essentially,

then, what I want to know is the spring constant Kn,m for the mean motion of the

resonator over the length of the SET island. I can calculate Kn,m from Eq. A.8. To

do this, I need to determine the relationship between the mean displacement over

the length of the SET and the displacement of the mid-point of the resonator:

yn,m(t) = anyn(t), (A.10)

where

an =
1

L2 − L1

∫ L2

L1

dxYn(x), (A.11)

and L1 and L2 define the section of the resonator which corresponds to the length

of the SET island. I assume that the SET island is centered about the mid-point of

the resonator.

I solve Eq. A.11 numerically for the fundamental mode of Devices 1 - 4 (Table

A.3). For each sample, the length of the SET island was approximately 5 µm. The

length of the respective resonators is listed in Table A.2. For the first mode, Eq.

A.8 becomes

E1 =
α1

2a2
1

ρALω1
2〈y2

1,m(t)〉 =
1

2
K1,m〈y2

1,m(t)〉, (A.12)

where K1,m=M1,mω2
1 , and M1,m=α1/a

2
1ρAL are the effective spring constant and
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effective mass for the motion of the fundamental mode of the resonator averaged

over the 5 µm length of the SET. As I am only concerned with the fundamental mode

frequency, the superscript “1” is dropped from K1,m and M1,m for the remainder of

the section and througout the text.

To calculate Km for each device, I need to know both Mm and ω1. To estimate

Mm, I use values of A = wt and L obtained from scanning electron micrograph

(SEM) images and knowledge of the etch rates in the processing of the resonator;

I assume typical densities of Au and SiN to be 19.3 x 103 kg/m3 and 3000 kg/m3

respectively [130]. The raw mass mr = ρALt is calculated by including both the Au

and SiN layers (Table A.2). To estimate ω1 (Table A.3), I use either Eqs. A.15 and

A.16 or Eq. A.17. The additional parameters required for this calculation are the

Young moduli EAu and ESiN , which I assume to be approximately 50 GPa [131] and

250 GPa [75] respectively. I have assumed ± 50 GPa uncertainty in the value of

the Young’s modulus for SiN to reflect the spread in values found in the literature

(see [76]) and neglected the uncertainty in Young’s modulus for the Au layer (50

- 90 GPa reported in Reference [131] depending on grain size and thickness) as its

contribution to the total error should be a factor of 5 - 10 times smaller than the

contribution from the uncertainty in ESiN (a consequence of tAu ≈ 0.2tSiN for our

samples after etching).
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Table A.2: Geometry and raw mass, mr, of Devices 1-4. The error in the length

and width of the resonator comes from 10% quoted error in the SEM calibration.

The error of 30% in the thickness of the Au layer on the resonator comes from the

spread in etch rates over time, and is a very rough estimate.

Device w(nm) L(µm) tAu(nm) tSiN (nm) mr (pg)

1 300 ±30 10 ±1 30 ±20 100 ±2 2.6 ±1.2

2 200 ±20 8 ±.8 30 ±20 100 ±2 1.4 ±.7

3 200 ±20 15 ±1.5 30 ±20 100 ±2 2.6 ±1.2

4 225 ±23 18 ±1.8 30 ±20 100 ±2 3.2 ±1.5

Table A.3: Effective masses, Mm, and spring constants of Devices 1-4. “a” corre-

sponds to frequency calculated using either Eqs. A.15 and A.16 or Eq. A.17. “b”

corresponds to the frequency measured using SET detection at a temperature of 100

mK.

Device a1 Mm(pg) ω1/2π(MHz)a Ka
m(N/m) ω1/2π

b Kb
m

1 .838 1.5 ±.7 17 ±5 17 ±8 17.976648(3) 19 ±9

2 .760 .96 ±.45 18 ±6 12 ±6 19.654505(7) 15 ±7

3 .941 1.2 ±.54 6 ±1.8 1.5 ±.7 9.37163340(2) 4 ±2

4 .947 1.4 ±.66 4 ±1 .9 ±.4 4.8976624(2) 1.4 ±.6
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A.3 Corrections to Frequency Due to Tension

The nanomechanical resonators used in our research are made from amorphous

silicon nitride, which has been deposited using low pressure chemical vapor deposi-

tion (LPCVD). The resulting intrinsic stress σint in the silicon nitride films is on the

order of MPa’s [132], and is largely tensile. We can model the effect of the stress by

including an effective tension T = σint A in the equation of motion (Eq. A.1): [133]

ρA
∂2y

∂t2
+ EI

∂4y

∂x4
− T

∂2y

∂x2
= 0. (A.13)

Using dimensional-analysis, I can estimate the order of magnitude of the con-

tribution of the tension to the restoring force. From Eq. (A.13), the ratio of tensile-

to-bending force is TL2/EI . For TL2/EI � 1, we can expect the bending moment

to dominate, and the dynamics to be governed by the results of the previous section.

For TL2/EI 	 1, the tenisle force will dominate, and the dynamics will be similiar

to the case of a tensioned string. For silicon nitride nanoresonators, however, the

dimensionless ratio can range from TL2/EI � 1 to TL2/EI ∼ 1. For this range,

it would be helpful then to calculate the corrections to normal mode shape and

frequency .

Equation (A.13) can be solved exactly using separation of variables, yielding:

Yn(x) = Cn

[(
sinλnx − λn

µn
sinhµnx

)
−

−
⎛
⎝sinλnL − λn

µn
sinhµnL

cosλnL − cosh µnL

⎞
⎠ (cosλnx − coshµnx)

]
, (A.14)
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where

λnL = knL
[
(a2 + 1)

1
2 − a

] 1
2 , µnL = knL

[
(a2 + 1)

1
2 + a

]1
2 ,

and

a =
T

2EIk2
,

with

k4
n =

ρAω2
n

EI
. (A.15)

The values of k are found numerically from the characteristic equation:

cos(λnL) cosh(µnL) − 1

2
(
µn

λn
− λn

µn
) sinh(µnL) sin(λnL) = 1. (A.16)

It is straight-forward to verify that, as T → 0, these expressions reduce to the

corresponding expressions in Section A.1.

Figure A.3 demonstrates the effect of tension on the frequency of the normal

modes of a doubly-clamped silicon-nitride resonator. In the Fig. A.3(a), the ratio of

frequency calculated with tension, ωn(T ), to frequency calculated without tension,

ωn(0), is plotted versus the dimensionless correction factor, TL2/12EI , for the first

six normal modes of a resonator with a fundamental frequency of 13.037 MHz and

length of 10 µm. A bi-morph resonator with cross-sectional area A = 0.0375 µm2,

width w = 250 nm, and a 50 nm thick layer of gold as the conducting layer are

assumed. Young’s moduli and densities of 300 GPa and 3000 Kg/m3and 50 GPa

and 19.3 x 103 Kg/m3 are assumed for the silicon nitride and gold respectively.

It is apparent that for TL2/12EI < 0.01, tension increases the resonant fre-

quency of the first six modes by less than 0.1%. For the fundamental mode, this

corresponds to a frequency shift of ∼ 10 kHz.
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(a)

(b)

Figure A.3: (a) The normalized mode frequency is plotted versus TL2/12EI , for

the first six modes of a doubly-clamped resonator with fundamental frequency of

13.037 MHz and a length of 10 µm. (b) The normalized fundmental mode frequency

is plotted versus resonator length for intrinsic stress values of 1, 10, and 100 MPa’s.
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As the tension is increased to TL2/12EI ∼ 1, the shift in resonant frequency

for the fundamental mode grows to ∼ 15% . The shift in the higher order modes is

smaller as they are effectively stiffer than the fundamental mode, and ranges from

∼ 1% to ∼ 8%.

Figure A.3(b) demonstrates the shift in frequency of the fundamental mode of

a doubly-clamped resonator as a function of the resonator’s length for σint = 1, 10,

and 100 MPa. For each curve, the tension is held constant, and the length of the

resonator is increased. Here, I used the same values of EI, ρ, and cross-section as

were used in Fig. A.3(a). It is evident, that for silicon nitride resonators with lengths

less than 10 µm, the shift in frequency due to tension can be expected to be less

than 10% for the fundamental mode - while not shown, the shift in the higher-order

mode frequencies is even smaller.

An alternative to solving Eq. A.13 exactly is to use a pertubative technique in

which it is assumed that the effect of tension on the mode shape is negligible, the

so-called Rayleigh Method [46]. Starting with Eq. A.13, I separate variables and

solve for ωn:

ωn(T ) = ωn(0)

(
1 + δn

TL2

12EI

) 1
2

, (A.17)

with

ωn(0) =
βn

L2

(
EI

ρA

) 1
2

,

and

δn =
12

L2

∫ L
0 dx(∂Yn(x)/∂x)2∫ L

0 dx (∂2Yn(x)/∂x2)2 ,
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where

βn = L2

(∫ L
0 dx (∂2Yn(x)/∂x2)

2

∫ L
0 dxY 2

n (x)

)
.

I then make the approximation that Yn(x) are unaltered by the tension and

given by Equation A.3. For this case, βn are found to be equal to kn determined

from Eq. A.5. The first ten δn are listed in Table A.1.

For TL2/12EI ≤ 1, I have found that the agreement between Eq. A.17 and

the exact resonant frequency calculated by solving for the roots of Eq. A.16 is better

than .01%. This implies that the approximation that the Yn(x) are left unaffected

by tension T is a good one, and, thus, throughout the report, I simply use the

mode-shapes given by Eq. A.3.

A.4 The Driven-Damped Harmonic Oscillator

I can append Eq. A.1 to account for external non-dissipative forces by simply

adding in a term F (x, t) (in dimensions of Force/Length). I can account for damping

by also inserting a phenomenological term proportional to the resonator’s transverse

velocity. Dissipation in nanomechanical resonators is not well understood [121], and

several mechanisms including thermoelastic loss [134], attachment loss [135] [136],

and loss due to the measurement process itself [55] [137] have been proposed. Some

authors account for damping effects by defining a complex Young’s modulus where

dissipation is incorporated in the imaginary component (see [134] [138]). For the

purpose of this appendix, however, it is sufficient to account for the damping by
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inserting a velocity-dependent term, as it captures the general physics. Thus,

ρA
∂2y(x, t)

∂t2
+ EI

∂4y(x, t)

∂x4
+ µ

∂y(x, t)

∂t
= F (x, t), (A.18)

Following the approach of Reference [139], I assume that the damping and

driving force have a negligible effect on the mode shapes Yn(x). I then substitute

solutions of the form

yn(x, t) = Yn(x)yn(t), (A.19)

into Eq. A.18, multiply by Yn(x), and integrate over the length of the resonator,

obtaining the equation of motion for a mode, n,:

meff,n
∂2yn(t)

∂t2
+ Knyn(t) + γn

∂yn(t)

∂t
= fn(t), (A.20)

where

γn =
∫ L

0
dxY 2

n (x)µ (A.21)

and

fn(t) =
∫ L

0
dxF (x, t)Yn(x). (A.22)

Equation A.20 is the familiar damped-driven harmonic oscillator equation of

motion. A simple case to treat, and one which will be important for Section A.5, is

when F (x, t) is spatially invariant and has an harmonic time-dependence:

F (x, t) =
Fo

L
ejωt, (A.23)

where Fo is the magnitude of the force.
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In this case, fn(t) = ηnFoe
jωt, where ηn is the average of Yn(x) over the length

of the resonator,

ηn =
1

L

∫ L

0
dxYn(x), (A.24)

and determines the projection of the force on a given mode (Table A.1). The steady-

state solutions, found for t/τ 	 1, where τ = meff,n/γn, are then given by:

yn(t) = Ane
jωt, (A.25)

where

An =
ηnFo

meff,n ((ωn
2 − ω2) + j (ωnω/Qe))

. (A.26)

For a general force F(x,t), Eq. A.26 is replaced by

An =

∫ L
0 dxYn(x)F (x)

meff,n ((ωn
2 − ω2) + j (ωnω/Qe))

. (A.27)

The resonant frequencies, ωn, are given by Eq. A.4. The effective quality

factor, Qe is defined as Qe = ωnmeff,n/γn, and sets the width of the resonator’s

frequency response. I assume that it could be a result of dissipation from coupling

to both the measurement environment and a thermal reservoir. Finally, I define the

phase difference, φn, between drive signal and resonator response

φn = arctan

(
ωnω/Qe

ωn
2 − ω2

)
. (A.28)

A.5 The Magnetomotive Technique

For the past decade, researchers have used various forms of magnetomotive

detection to study the properties of nanomechanical resonators [140] [141] [142]
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Figure A.4: a). Schematic of Magnetomotive technique. b). Circuit diagram dis-

playing electromechanical impedance, Zm, current drive, I , and voltage amplifier -

assumed to have infinite input impedance.
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[36]. In its simplest realization (Fig. A.4(a)), ac current I is applied, length-wise,

through a metallized resonator; in the presence of a transverse magnetic field B the

resonator is driven by the Lorentz force F = IBL and an EMF εn = BLvn, develops

across it’s length L. Here,

vn =
∂yn(t)

∂t

1

L

∫ L

o
dxYn(x) = ηn

∂yn(t)

∂t
(A.29)

is resonator’s mode-dependent velocity. From Eqs. A.25 and A.26, the electromotive

response takes the form:

εn =
jη2

nB2L2ω

meff,n (ωn
2 − ω2 + jωnω/Qeff )

I. (A.30)

The response of the resonator is measured by sweeping the frequency of the

applied current through the mechanical resonance, and simultaneously measuring

the induced EMF. The magnetomotive measurement is thus an impedance measure-

ment. In fact, it is apparent that the response function is equivalent to a parallel

RLC circuit (Fig. A.4(b)) with an electromechanical impedance defined as [137]

1

Zm

=
Qe

jωnωRn

(
ω2

n − ω2 + jωnω/Qe

)
, (A.31)

where

Rn = η2
n

QeB
2L2

meff,nωn
, (A.32)

and ω2
n = (LnCn)−1, with Ln = ηL2B2/meff,nω

2
n, and Cn = meff,n/ηnL2B2.

Figure A.5 demonstrates the magnetomotive measurement of the fundamental

mode resonance of device 1. A 200 µVrms voltage signal was applied through a 10

kΩ resistance to provide the current I. The data was taken at a mixing chamber
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Figure A.5: Plot of the response of the fundamental mode resonance of Device

1, measured using magnetomotive detection. A lock-in was used to measure the

quadrature components of the resonator response. The response (solid line) was fit

to a driven-damped harmonic oscillator response. The data (circles) were taken at a

mixing chamber temperature of 15 mK and magnetic field B = 6 T. A drive current

of I ∼ 10 nA was used. The quality factor, resonant frequency, and amplitude were

determined to be 10881(3), 17.9756642(3)MHz, and 601.1(1) nV respectively.
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temperature of 15 mK and a magnetic field of 6 T. A lock-in was used to measure the

quadrature components of the resonator’s response. These were then fit to a driven-

damped harmonic oscillator response. In the plot, the circles are the amplitude of

the response from the measured quadratures, and the line is the amplitude of the

least-squares fits to the individual quadratures. The resonant frequency and quality

factor were extracted from the fit and determined to be f1 = 19.976 MHz and Qe =

10.9 x 103. While the resonant frequency agrees very well with results of the SET

displacement detection technique, the quality factor is substantially lower. This is a

result of the loading from the capacitance of the co-axial cable and the 50 Ω amplifier

impedance, which is much greater than the loading from SET detection. For more

details on the loading effect and the magnetomotive measurement in general, please

see reference [137].
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Appendix B

Useful SET and RFSET Information

Knowledge of the SET and measurement circuit parameters is essential for

both the determination of the operating points of the RF-SET displacement detec-

tion scheme and for the characterization of its performance. In this appendix, using

the normal state and superconducting state current-voltage (IV) characteristics, I

first demonstrate how to extract the coupling-capacitance CNR, the gate capaci-

tance Cg, the junction capacitances Cj, the SET junction resistances Rj , and the

superconducting gap energy ∆. I then discuss a technique to evaluate the frequency

response of the measurement circuit. Finally, I summarize a method that allows for

the calibration of the charge sensitivity.

B.1 SET Parameters

IV Map Measurement

To determine the SET parameters, four DC measurements of the SET source-

drain current, ISD, were made (Fig. B.1): in the normal state, ISD as a function of

the source-drain bias VSD and the resonator bias VNR; in the normal state, ISD as a

function of VSD and the gate bias Vg ; in the superconducting state (SSET), ISD as

a function of VSD and VNR
1; in the superconducting state, ISD as a function of VSD

1Both of the leads and the island are superconducting so the SET is in fact an (SSS) SET.

208



Figure B.1: Circuit diagram for IV map measurement .

and Vg. The voltages are set and swept by a computer-controlled digital-to-analog

card. For each increment of the voltages, the current is sensed by a transimpedance

amplifier, and the output is measured by a digital voltmeter and recorded by the

computer through GPIB. A 1 Tesla magnetic field is applied to operate the SET in

the normal state.

The Normal-State Characteristics: The Orthodox Theory and Capac-

itance Calculations

Figure B.2 demonstrates a typical result of a normal-state IV map measure-

ment. Coulomb-blockade suppresses ISD for VSD below a threshold voltage Vt, which
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Figure B.2: Normal state IV map Device 2.
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is periodic in VNR(Vg) with period e. Above Vt, ISD asymptotes to a linear depen-

dence on VSD. The value and periodicity of Vt are sensitive functions of Cj and

CNR(Cg), and the asymptotic behavior of ISD at large VSD is a function of the

series combination of the Rj’s. Both limits, the onset of current and large VSD,

are described by the orthodox theory of single-electron tunneling [68], and can, in

principle, be used to extract the corresponding parameters [143] [144] [145].

In the orthodox theory, it is assumed that the charge state of the SET is-

land evolves stochastically through single-electron tunneling events, yielding, at any

instant of time, a value of n electrons with steady-state probability P (n) [68].

The tunneling events occur through either of the SET junctions, i, and in

either direction, on (+) or off of (-) the SET island. They are characterized by the

tunneling rates Γ±
i [68].

The net charge transfer or current through each junction is determined by

performing a weighted sum over all charge states, n, of the difference between the

(+) and (-) tunneling rates [68]:

I1 = −e
∞∑

n=0

P (n)
(
Γ+

1 − Γ−
1

)

I2 = −e
∞∑

n=0

P (n)
(
Γ−

2 − Γ+
2

)
.

As P (n) is assumed to be stationary in time, charge accumulation on the SET

island does not occur, and the current through each junction must be equal, yielding

[68]

ISD = I1 = I2. (B.1)
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The assumption that P (n) be stationary, also leads to the condition of detailed

balance [68],

P (n + 1)Γ−(n + 1) = P (n)Γ+(n), (B.2)

where

Γ−(n + 1) = Γ−
1 (n + 1) + Γ−

2 (n + 1)

and

Γ+(n) = Γ+
1 (n) + Γ+

2 (n).

The tunneling rates Γ±
i are calculated using Fermi’s golden rule [50]:

Γ±
i (n) =

∆F±
i (n)

e2Ri

1

eβ∆F±
i (n) − 1

, (B.3)

where β = kBT and ∆F±
i (n) is the change in system free-energy accompanying a

particular tunneling event, and given, for the case of an asymmetrically biased SET,

by

∆F±
1 (n) = ±Ec

[
2
(
n − CNRVNR

e
− CgVg

e

)
± 1 +

+
2(C2 + CNR + Cg)VSD

e

]
(B.4)

and

∆F±
2 (n) = ±Ec

[
2
(
n − CNRVNR

e
− CgVg

e

)
± 1 − 2C1VSD

e

]
. (B.5)

where Ec = e2/2CΣ is the charging energy or electrostatic cost for the tunneling of

a single electron, and CΣ = C1 + C2 + CNR + Cg.

Knowing Γ±
i , P (n) and ISD can be calculated using Eqs. B.2 and B.1.
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I can obtain a quantitative understanding of the Coulomb-blockade regime

without explicitly solving for P (n). For simplicity’s sake, I first set n = 0, VNR = 0

, and Vg = 0 in Eqs. B.4 and B.5). For small |VSD|, ∆F±
i (n) > 0, and the work done

by the bias VSD is not enough to overcome the charging energy Ec. Consequently

all four transisitions (±, junctions 1 and 2) are exponentially suppressed through

Eq. B.3, and no current is observed.

As VSD is increased from zero bias, eventually one of the transitions becomes

energetically favorable. That is, either ∆F +
2 (0) = 0 or ∆F−

1 (0) = 0, depending on

which threshold is smaller, V +,2
T (0) = e/2C1 or V −,1

T (0) = e/(2(C2 + CNR + Cg)). If

C1 > (C2 +CNR +Cg), then an electron tunnels onto the island. As a result, n = 1,

and the corresponding discharging step, ∆F−
1 (1), becomes energetically favorable,

and an electron tunnels off through junction 1. After the discharge, n = 0, and the

charging step through junction 2 again becomes favorable, and so on. On the other

hand, if C1 < (C2 + CNR + Cg), then V −,1
t (0) < V +,2

t (0), and the onset of current

begins with an electron tunneling off through junction 1,2 at which point ∆F +
2 (−1)

< 0, and an electron tunnels on through junction 2, and so on. Similiar processes

are observed if VSD is decreased from zero bias, as one can verify from Eqs. B.4 and

B.5.

Returning to Eqs. B.4 and B.5, it is apparent that the threshold voltage can

be tuned by adjusting VNR or Vg . Leaving Vg = 0, increasing |VNR| lowers the

2In practice there is an unknown background charge on the SET island which should be included

into Eqs. B.4 and (B.5). The designation of the SET island charge state as n thus refers to n

electrons induced above or below the background.

213



electrostatic tunneling cost and reduces |Vt|. At CNR|VNR| = e/2, the barrier is

completely removed, and current flows for infinitesimal |Vt|. At this bias point, the

charge configurations n = 0 and n = ± 1 are equally probable (n = 1 if VNR is

positive and n = -1 if VNR is negative). As |VNR| is increased further, the n =

± 1 state becomes more favorable than the n = 0 state. |Vt| thus increases, and

eventually returns to the maximum, Vt = e/2C1 or Vt = e/2(C2 + CNR + Cg) at

CNRVNR = ± e. This process is repeated for higher n states as VNR is further

increased. I have thus found that the threshold for tunneling is periodic in CNRVNR

with a period of one electron. The same is found to be true for tuning of Vg with

VNR = 0.

Turning back to Fig. B.2, the Coulomb-blockade regions are now understood

to be a result of ∆F±
i (n) > 0 for all four transisitions (±, junctions 1 and 2) and all

n. From Eqs. B.4 and B.5, the width of the blockade in VSD is seen to be periodic

in CNRVNR with a period of e: minimized when CNRVNR = en/2; and maximized

when CNRVNR = 0 or a multiple of ne. Knowing the blockade to have period e, I

can calculate CNR from the relation

CNR∆VNR = e, (B.6)

where ∆VNR is the corresponding periodicity in mV (Fig. B.3). Similarly, I

can calculate Cg, from the normal-state IV map with VNR = 0 (not shown),

Cg∆Vg = e. (B.7)
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Figure B.3: Extracting capacitances from normal-state IV Device 2.
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An expression for the edge of the blockade Vt can be derived by noting that

the onset of tunneling occurs when at least one of ∆F±
i satisfies ∆F±

i = 0:

V ±,1
t =

CNRVNR + CgVg

(CNR + Cg + C2)
∓ e(1 ± 2n)

2(CNR + Cg + C2)
(B.8)

and

V ±,2
t = −CNRVNR + CgVg

C1
+

e(2n ± 1)

2C1
. (B.9)

With the knowledge of CNR and Cg, the junction capacitances C1 and C2 can

be extracted by equating the slopes of the experimental tunneling onset (Fig. B.3)

with the pre-factor of VNR in Eqs. B.8 and B.9.

Normal-State Characteristics: Junction Resistances

I cannot simply extract RΣ from electrostatic considerations, and must solve

for ISD using the detailed balance condition (Eq. B.2) and the definitions of Γ±
i . For

VSD 	 2Ec/e, it is necessary to compute P(n) for several thousand n. I solve Eq.

B.2 numerically, and find that the slope of ISD vs. VSD asymptotes to R−1
Σ . The

serial resistance, RΣ is thus extracted from the normal-state IV map by a linear fit

of ISD at large VSD (Fig. B.4).

With the knowledge of the junction capacitances C1 and C2 and the serial

resistance RΣ, a rough estimate of the individual junction resistances R1 and R2

can be made [145] (Table B.1). Assuming that the thicknesses of the two junctions

are equal (both junctions are grown at the same time under similiar conditions of

pressure and temperature, see Chapter 3) and that Ci ∝ Ai and Ri ∝ 1/Ai, where
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Ai is the cross-sectional area of junction-i, the individual junction resistances can

be expressed as

R1 =
C2

C1 + C2
RΣ (B.10)

R2 =
C1

C1 + C2
RΣ. (B.11)

Failure of Normal-State Extraction Method

Two effects combine to make the extraction of the junction capacitances from

the normal-state IV map unreliable: self heating of the SET island and quantum

charge fluctuations (co-tunneling).

Self-heating of the SET island results from the combination of dissipation in

the SET island and poor thermal coupling between the electron gas and phonon

bath [152]. Using the standard model for electron-phonon coupling [123] [124], and

assuming that ∼ 50% of the total power dissipated in the SET is dissipated in the

SET island, with the SET leads thermalized at the temperature of the phonon bath,

the SET-island electron-bath temperature Tisland at the onset of tunneling can be

estimated [152]:

Tisland =
(

Pisland

ΣΩ

)1
5

, (B.12)

where Σ = 0.2 nW/µm3K5 [152] is the electron-phonon coupling for aluminum and

Ω = 0.05 µm2 is the total volume of the SET island. I have assumed that the

phonon-bath temperature, Tb � Tisland. If Pisland ≈ ISDVSD/2, with VSD = e/CΣ

and ISD ≈ e/4RjCΣ from Eqs. B.3, B.4, and B.5, then

Tisland ≈
(

e2

8RjC2
ΣΩΣ

) 1
5

≈ 350 − 400mK (B.13)
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for parameters CΣ = 1 fF and Rj = 50 kΩ. This estimate does not take into

account cooling of the island due to the tunneling of electrons to and from the

lower-temperature SET leads and should thus be considered as an upper-bound

[152].

Nonetheless, the tunneling threshold is broadened, leaving the onset of current

Vt indistinct [151]. This is modeled with the orthodox theory. Figures B.4(a) and

B.4(b) shows two simulations of the onset of tunneling of a normal-state SET with

charging energy EC/kB = 1.5 K and C1 = C2 	 Cg = 10 aF, and CΣ = 590 aF.

In Fig. B.4(a), Tisland = 10 mK, and the onset of tunneling is very clear and readily

fit, yielding onset contour slopes of 0.033 and thus EC = 1.5 K through Eqs. B.8

and B.9. In Fig. B.4(b), Tisland = 300 mK, the onset of tunneling is unclear, and

different slopes are obtained depending on the contour chosen.

In addition to self-heating, quantum charge fluctuations, or co-tunneling, can

round the onset of current [69]. In general, co-tunneling is the process of charge

transfer through the SET via an energetically unfavorable intermediate virtual state,

and is the dominant charge transfer mechanism within the coulomb-blockade regime

[69]. From the energy-time uncertainty relation, for example, an electron may tunnel

through one junction to a forbidden island state, and dwell there for time ∆t =

h̄/∆E, where ∆E ∼ EC is the energy required to make the transition. During

∆t, it is energetically favorable for an electron to tunnel off the island through the

second junction, resulting in a finite probability for the net transfer of one electron

across the SET.

The transition probability rate for the net process, and thus the contribution
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of co-tunneling to ISD, can be estimated by multiplying the transition probability

rate for the forbidden transisition, Γ1 ∼ 1/RΣCSigma, by the probability for the

energetically favorable tunneling event Γ1∆t:

Γco−tunneling ∼ Γ1
RQ

RΣ

, (B.14)

where RQ = h/e2 is the quantum of resistance. The contribution of co-tunneling

is thus found to be a fraction RQ/RΣ of the sequential-tunneling current. For our

devices,
RQ

RΣ
∼ .2 − .8. This is expected to result in the renormalization of the

charging energy by the same order of magnitude [150]:

E ′
C ≈ EC(1 − 4

RQ

π2RΣ
). (B.15)

By not accounting for the effect of co-tunneling in the normal-state IV charac-

teristics, I thus expect to err by as much as 30% in the determination of the junction

capacitances. While modeling of the SET self-heating is straight-forward, account-

ing for the co-tunneling processes would require calculating 2nd-order (and higher,

depending on the precision desired) transition matrices for the tunneling rates and

could become both tedious and difficult. Rather than going to all that trouble, a

simpler method is to use the features of the superconducting IV curve.

Superconducting IV Characteristics

Figure B.6 demonstrates a typical result of the superconducting IV map mea-

surement ISDVSDV g. The complexity of the map reflects the large variety of tun-

neling processes that can occur in an SSET due to the combination of Coulomb
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Figure B.6: Supreconducting IV map Device 2.
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blockade, Josephson tunneling effects, and the superconducting gap energy [148]

[149]. Most prominent here are three distinct processes: the double Josephson-

quasiparticle resonance (DJQP) [146], the Josephson-quasiparticle resonance (JQP)

[147], and single quasiparticle tunneling. All three processes have been studied ex-

tensively, and consideration of the respective dynamics can be used to infer the

junction capacitances and the superconducting gap energy, ∆.

Figure B.7 is a color contour plot of the superconducting IV map in Fig. (B.6.

The threshold for single quasiparticle tunneling defines the width of the IV plateau.

This threshold corresponds to the energy required for a quasiparticle to overcome

both the superconducting gap energy and the Coulomb charging barrier, and is seen

from simple electrostatic considerations to vary between 4∆ and 4∆ + e/CΣ. The

minimum width of the plateau is thus 8∆.

Knowing ∆, I can determine the Josephson coupling Ej of each junction -

I assume ∆ is equal for the leads and the island, which should be the case con-

sidering that they have similiar cross-sections and composition - using the Ambe-

gaokar/Baratoff relation [144]:

Ej,i =
h̄π∆

4e2Ri
. (B.16)

Within the plateau, current ridges are evident. Along these ridges, the bias

voltage is sufficient for the resonant tunneling of Cooper-pairs, followed by the tun-

neling of single quasiparticles [146] [147]. As the processes are initiated with the

tunneling of a Cooper-pair, the thresholds for the processes can be determined us-

ing electrostatic arguments similiar to the case of normal-state tunneling processes
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(previous section). From these thresholds, the slope of ridges can be determined:

m1 =
Cg

C2 + CNR + Cg
(B.17)

m2 = −Cg

C1
. (B.18)

Having already determined CNR and Cg, I can use m1 and m2 to determine

the individual junction capacitances, Table B.1.

The intersection of the ridges at VSD = e/CΣ and VSD = 2e/CΣ are known as

the DJQP and JQP resonance peaks respectively. In the case of the JQP resonance,

it is energetically favorable for a Cooper-pair tunneling event to occur through

either of the two junctions, followed by two sequential quasiparticle tunneling events

through the opposite junction (for example, the charge state of the island, n, goes

from 0 → 2 → 1 → 0 and so on). In the case of the DJQP resonance, the Cooper-pair

tunneling event is followed, first, by a single quasiparticle, then the tunneling of a

Cooper-pair, and finally the tunneling of a single quasiparticle (0 → 2 → 1 → -1 → 0

and so on). For all four transitions in the DJQP cycle to be energetically favorable,

it is necessary for Ec > 2∆/3. The locations of the JQP and DJQP intersections in

terms of VSD give independent determinations of CΣ (Table B.2).

For Devices 1, 2, 3, I find that CΣ’s calculated from the slope of the current

ridges and the CΣ’s calculated from the JQP and the DJQP process agree to within

15%. Comparison of CΣ calculated using the JQP and DJQP process shows agree-

ment within 7%. For Device 4, the DJQP peak was absent and the ridges of the JQP

were very indistinct. The only available calculation of CΣ was from the location of

the JQP peaks. From the symmetry in the normal-state IV map with respect to Vg
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Table B.1: Junction capacitances and resistances of Devices 1-4.

Device C1(aF ) R1(kΩ) C2(aF ) R2(kΩ) Cg(aF ) CNR(aF )

1 81 61 84 59 14 61

2 250 21 100 53 10 26

3 173 47 341 24 14 64

4 ∼ 600 ∼ 15 ∼ 600 ∼ 15 19 63

Table B.2: Total capacitance, charging energy, gap energy and Josephson energies

Devices 1 - 4. (a) Total capacitance found by summing Ci, Cg , CNR. (b) Total

capacitance found from position of JQP peak. (c) Total capacitance found from

position of DJQP peak.

Device Ca
Σ(aF ) Cb

Σ(aF ) Cc
Σ(aF ) Ec

e
(µV ) ∆

e
(µV )

Ej,i

e
(µV )

1 241 - 279 287 220 12, 12

2 386 410 435 184 220 37, 14

3 592 577 540 148 200 15, 21

4 - 1310 - 61 180 ∼ 40, 40
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for Device 4, we assume that C1 ∼ C2 and R1 ∼ R2.

For Devices 1, 2, 3, I find that EC/e > 2∆/3e, consistent with the observation

of the presence of the DJQP resonance in the superconducting IV maps for these

devices. For Device 4, EC/e ≈ ∆/3, consistent with the absence of the DJQP

resonance in the superconducting IV map.

For Devices 1, 2, 3, I see that EC/e > Ej/e. This is consistent with the absence

of a supercurrent in the superconducting IV map for these devices. For Device 4,

EC/e ≈ Ej/e. This is consistent with the presence of a supercurrent modulated

with Vg in the superconducting IV map of Device 4.

The reason for the chronologically increasing junction capacitances (decreasing

charging energy) is not known, but is consistent with the observed line-widths of

the SET leads and islands becoming progressively larger for each successive device

(see Chapter 3). As well, it is consistent with the general trend of decreasing RΣ

and charge sensitivity.

B.2 Measurement Circuit Parameters

The measurement circuit parameters, including the RF tank circuit, were de-

termined by applying a large dc bias (VSD 	 Vt) across the SET source-drain, and

recording shot noise ring-up of the tank circuit with a spectrum analyzer [63] ( Fig.

B.8).

For VSD > Vt and time-scales slow with respect to the SET tunneling time, ∼

RΣCΣ ∼ 0.1 GHz−1, the spectral density of the SET shot noise is white and given
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Figure B.8: Circuit schematic for the measurement of the shot noise ring-up of the

tank circuit.
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by SII = eISD [43]. As the center frequency of the tank circuit was designed to be

∼ 1 GHz < 1/RΣCΣ, the shot noise served as a calibrated white noise source with

which we could probe the measurement circuit’s frequency response.

The resulting noise power density measured at the input of the spectrum

analyzer (Fig. B.9) takes the form:

Pin � GeISDZo
f4

o

(f2
T − f2)

2
+ (ffT /Q)2 . (B.19)

Here,

Q =
(

ZLC

RΣ
+

Zo

ZLC

)−1

= ZLC

(
ZLCR + Zo

)−1

(B.20)

is the loaded quality factor of the tank resonance, Zo is the 50 Ω transmission

line impedance, ZLC =
√

LT /CT is the tank circuit characteristic impedance, ZLCR

=LT /(RΣCT ) is the transformed-SET impedance on resonance, and G is the power

gain of the measurement circuit.

Because the LC circuit was superconducting at the measurement temperature,

T ∼ 50 mK, and because the length of the circuit was at most 0.1λ1GHz, I have

assumed that the tank circuit was a dissipation-less, lumped-element LC component.

Additionally, I have neglected the effect of loading on the resonant frequency, fo =

1/(2π
√

LT CT ), as it was of the order Zo/RΣ ∼ 0.001.

Including the noise of the measurement circuit, on resonance, the noise power

at the input of the spectrum analyzer thus takes the form:

P � GB
(
eISDQ2Zo + kBT det

n

)
, (B.21)

where T det
n , and B are measurement circuit noise temperature, and bandwidth re-

spectively. I have assumed that T det
n is independent of the SET bias point, at large
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(a)

(b)

Figure B.9: Tank circuit response Device 3. (a) A lorentzian fit (red line) of the

noise power versus frequency for ISD = 120 nA (black circles). (b) A linear fit (red

line) of the integrated noise power versus ISD (black circles).
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Table B.3: Measurement circuit matching, gain, and noise temperature Devices 1-4.

TSET measured at ISD ∼ 120nA.

Device ZLCR(Ω) Γmax M(dB) T det
n (K) G(dB) TSET (K)

1 - - - - - -

2 2.2-3.4 .87-.92 .72-1.2 20.2-31.7 62-64 4.3-6.6

3 2.5 .90 .82 12.6 67 5.8

4 5.6 .8 2.0 13.4 66.5 3.8

Vds [116]. The equivalent noise temperature of the detection scheme To is then

defined by dividing Eq. B.21 by ‘GBkB’:

To =
eISDQ2Zo

kB

+ T det
n . (B.22)

Figure B.9 displays a typical result of the shot noise measurement. Figure

B.9(a) is a plot of the noise spectrum as was measured using the spectrum analyzer.

From a fit to Eq. B.19, I can extract the width ∆f and center frequency fT of the

resonance. From the width, I estimate the quality factor Q = fT /∆f , and the

detection bandwidth ∆F = ∆f/2. From the definitions of fT and Q, I calculate LT ,

CT , ZLC , and the impedance of the LRC on resonance ZLCR (Tables 3.1 and B.3).

Figure B.9(b) displays the integrated noise power and total noise temperature

of the detection scheme To as a function of ISD. The integration was done over a

1 MHz band about the center frequency. As expected, the noise power increased

linearly with ISD. Fitting Eq. B.21 to the data, I estimate G and T det
n from the
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slope and y-intercept respectively (Table B.3).

For Devices 2, 3, and 4, T det
n = 20.2 K, 12.6 K, 13.4 K respectively. The

decrease of ∼ 40% between Device 2 and Devices 3 and 4 is believed to have been

due mainly to the factor of ∼ 2 improvement in gain of the measurement scheme

for the measurement of Devices 3 and 4. For Devices 3 and 4, the calculated gain,

G, was ∼ 2 dB less than the gain measured from room temperature transmission

measurements (see Chapter (4)). For Device 2, G is ∼ 5 dB less than expected.

Finally, the contribution of the SET shot noise TSET to the overall detection

noise can be estimated by subtracting T det
n from To at a particular VSD. At ∼ 120

nA, the smallest ISD at which we measured the output shot noise power, TSET

ranged from ∼ 3.8 K - 5.8 K, or ∼ 20% - 50% of the total noise.

B.3 Calibration of Charge Sensitivity

The charge sensitivity of the detection scheme was measured using amplitude-

modulated (AM) reflectometry (Chapter 5). Microwaves resonant with the LC cir-

cuit were applied to the SET drain, and the reflected signal was recorded. Simulta-

neously, a 1 MHz sine wave bias of charge amplitude ∆Qg (in units of electrons) was

applied to the gate of the SET, modulating the amplitude of the reflected carrier

signal, and producing sidebands at fo ± nf , where f = 1 MHz . The sidebands were

recovered using homodyne detection, mixing the reflected signal with the carrier,

and measured with a spectrum analyzer. The charge sensitivity was then calculated

from the ratio of the background noise power level PBackground to the power in the
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Figure B.10: Illustration of the experimental determination of the charge sensitivity

from amplitude-modulated reflectometry. The plot shows a 1 MHz sideband of

the measured reflected signal after recovery with homodyne mixing at the carrier

frequency.
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1MHz sideband P1MHz (Fig. B.10):

√
SQ =

∆Qg√
B

10−SNR/10, (B.23)

where SNR = P1MHz(dBM) - PBackground(dBm) is the signal-to-noise ratio and B

is the resolution bandwidth of the spectrum analyzer.

In practice, due to losses in the sample lead and losses in the cabling and

filters inside the dilution refrigerator, the amplitude of the charge signal applied

to the SET gate at 1MHz was not known. However, from the dependence of the

reflected signal’s sideband amplitude on the amplitude of the 1 MHz modulation, I

can calculate the losses in the circuit and calibrate the charge sensitivity.

For a dc gate bias, Vg ≈ 0, the sideband power response can be approximated

by [153]

P = Po sin(2π∆Qg sin 2πft), (B.24)

where f=1MHz. This can be expanded in terms of the Bessel functions Jn(2π∆Qg)

[153]:

P = 2Po

∞∑
n=0

J2n+1(2π∆Qg) sin ((2n + 1)ωt). (B.25)

Using lock-in detection, we measured the amplitude of the fundamental of the

response, n = 0, as a function of the amplitude ∆Vg of the 1 MHz modulation at

the output of the waveform generator (Fig. B.11). I assume that the relationship

between the voltage modulation at the generator and the charge modulation at the

device is given by ∆Qg = A∆Vg/e. Fitting the response to J1(A∆Vg), and knowing

that the first zero of J1(x) occurs at x = 3.832, I extract A and determine the ratio

∆Qg/∆Vg in electrons/volt. From the value of ∆Vg, I calculate ∆Qg, and, using Eq.
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B.23, I calculate the charge sensitivity at the operating points of the the Devices 1

- 4 (Table B.5).

For Devices 3 and 4, using the Bessel function fit, I find 5 - 7 dB attenuation in

the gate line. This is consistent with room temperature transmission measurements

of the same line (see Chapter 4). For Devices 1 and 2, we were not aware of the Bessel

function calibration technique. Thus the reported values of
√

SQ are estimated using

a value of 6 dB attenuation in the gate line.

Finally, the uncoupled energy sensitivity of the total detection scheme, SET

shot noise plus measurement circuit noise, is defined as [116]

δε =
SQ

2CΣ
. (B.26)
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Figure B.11: Bessel function fit to sideband response Device 3.
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Table B.4: Charge modulation calibration Devices 1 - 4. Note that the attenuation

listed is the attenuation of the gate line. This does not include an additional 60 dB

of attenuation due to attenuators put in place at the top of the fridge.

Device A ( erms

V
) ∆Vg(Vrms) ∆Qg(erms) Attenuation (dB)

1 - 0.50 ∼ .015 ∼ 6

2 - 0.50 ∼ .015 ∼ 6

3 .036 1.0 .036 7

4 .062 1.0 .062 5

Table B.5: Charge sensitivity Devices 1 - 4. (a) Measured charge sensitivity. (b)

Calculated charge sensitivity from curvature of ISDVSDVg map. Both at 1 MHz

Device SNR (dB)
√

SQ
a(µerms/

√
Hz)

√
SQ

b δε(J/Hz) δεSET(J/Hz)

1 56 20 30 85h̄ -

2 58 30 20 50h̄ 10h̄

3 52 90 70 1300h̄ 600h̄

4 50 200 150 3750h̄ 1100h̄
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