
ABSTRACT

Title of Thesis: CHECKING FOR APPLICATION 
VULNERABILITIES USING FAULT 
INJECTION

MELODY DJAM
Master of Science, July 2005
Reliability Engineering

Thesis Directed By: Dr. Michel Cukier 
Center for Risk and Reliability,
Department of Mechanical Engineering

This thesis introduces a fault injector, called “Pulad”, specifically developed for finding 

application vulnerabilities. Most previous approaches for finding application 
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main two dynamic verification areas are software testing and fault injection. This thesis 

focuses on fault injection.
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Pulad, the fault injector described in this thesis consists of two main parts called the 

“collector” and the “fault injector”. The goal of the collector is to record all the 

environment-application interactions when the application is running. These interactions 

focusing on the environment files are then analyzed and the following fields are uploaded 

into a database including the file name, file extension, file size, file directory, number of 

times the file was used, file permission (includes symbolic link and ownership) and 

number of times an error occurred. The fault injector allows injecting faults either using a 

graphical user interface (GUI) or directly through a text file. The faults in the files 

include the file name, the directory name, the execution path, the library path, the file 

existence, the file ownership, the file permission, etc. For each of the faults, the specific 

type of fault needs to be indicated. Moreover, the interaction points where the faults 

should be injected are also provided by the user. 
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Chapter 1: Introduction

Everyday new vulnerabilities are discovered in operating systems, services and 

applications. These vulnerabilities would not be such an issue would the black-hat 

community or attackers not be so active. In a recent paper [Pan05], it was shown that 

2 computers left with about 25 vulnerabilities open would be attacked by 760 

different attackers (each attacker being associated with a source IP address) in just 48 

days of data collection. Since vulnerabilities left open are so quickly exploited, the 

issue of finding vulnerabilities is critical.

Vulnerabilities can be classified into host, network and application vulnerabilities 

based on their location. Tools exist for checking for host and network vulnerabilities. 

Since these vulnerabilities are located in operating systems and services used by a 

large community, vulnerabilities have a high probability to be discovered. Tools can 

then be used to check if the operating system or services used contain the 

vulnerabilities. However, most of the code is not contained in operating systems or 

services but in applications [Vie02a]. Since most applications are used by a smaller 

community, some vulnerabilities have a lower probability of being found. Moreover, 

few tools exist for checking for these vulnerabilities. In fact, most existing tools rely 

on the source code of the application and analyze statically if vulnerabilities are 

present. This method only indicates potential vulnerabilities and misses some 

vulnerabilities since the code is not executed. Finding an approach for checking for 

application vulnerabilities based on a dynamic approach that executes the application 
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code is an important issue. This thesis tackles this issue applying fault injection for 

finding application vulnerabilities.

This thesis is structured as follows. In Chapter 2, we first introduce the terminology 

we will use through the entire thesis. We then review the most well-known static and 

dynamic verification methods applied to finding application vulnerabilities. We then 

identify the limitations of using only static verification methods.

In Chapter 3 we focus on one specific dynamic verification method, fault injection. 

[Gho98] perturbed the internal state of the executing application and [Du00] 

perturbed the environmental state. When neither approach has led to a tool that can 

automatically check for application vulnerabilities, the fault injector described in this 

thesis is based on a revised version of the framework developed by [Du00] to conduct 

fault injection. The first part of Chapter 3 will review the concepts introduced by 

[Du00]. The second part of Chapter 3 will detail the concepts used for the fault 

injector presented in this thesis and the issues associated with the proposed approach.

We described in Chapter 4 and 5 the tool that we have developed. Our fault injector is 

called “Pulad” and consists of two main components. The first main component 

focuses on the collection of environment-application interactions related to files when 

the application is executed and is called the “collector”. The second main component 

focuses on the injection of faults and is called the “fault injector”. The collector will 

be described in Chapter 4. The fault injector will be described in Chapter 5. In both 

chapters, we will describe the collector and fault injector at a high level, then provide 

design and implementation details. A functional description, sequence diagrams and 

details on how to execute the collector will also be provided.
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In Chapter 6, we focus on the validation of Pulad based on software testing. Three 

applications were used and developed. Three different testing techniques were used to 

ensure the proper behavior of Pulad.

Finally, in Chapter 7, we conclude this thesis and list issues and future work.
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Chapter 2: Approaches for Checking for Application 

Vulnerabilities

Introduction

In this chapter, we first introduce the terminology we will use through the entire 

thesis. We then review the most well-known static and dynamic verification methods 

applied to finding application vulnerabilities. We then identify the limitations of using 

only static verification methods by comparing the outcome obtained by some popular 

static analysis tools with a revised testing strategy targeting buffer overflows. This 

example illustrates the need for developing dynamic verification methods for finding 

application vulnerabilities. Instead of software testing, this thesis focuses on another 

important dynamic verification method: fault injection.

Terminology

Over the years, software in computing systems has become significantly larger and 

more complex. This increase of size and complexity leads to an increase of the 

number of faults or bugs present in the software. Most faults might lead to software 

failures when the fault is activated. However, some of these faults might also be 

targeted by malicious users (attackers). Indeed, some of these faults might lead to 

system compromises when an attacker exploits these faults. More precisely, this 

special type of fault is called a (security) vulnerability. A vulnerability is a weakness 
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of the computing system that can be exploited by an attacker. An exploit of a 

vulnerability can lead to an intrusion in the computing system by the attacker. 

Building a secure computing system thus requires to find and remove vulnerabilities.

Vulnerabilities are usually classified into host vulnerabilities, network vulnerabilities, 

and application vulnerabilities. Host vulnerabilities are linked to potential attacks 

from insiders and lead to potential theft and abuse of privilege (i.e., improper use of 

authorized operations). Network vulnerabilities are linked to potential attacks from 

outsiders and lead to potential theft of privilege (i.e., unauthorized increase in 

privilege). Like host vulnerabilities, application vulnerabilities allow a theft of 

privilege and an abuse of privilege. The definition of the concepts related to security 

presented in this section are taken from [MAFTIA00] and [MAFTIA01].

This thesis focuses on application vulnerabilities. Since most of the currently 

developed code belongs to the application category, application vulnerabilities are of 

paramount importance. However, among all possible application vulnerabilities, so 

far the security community has mainly focused on buffer overflows (considered as the 

vulnerability of the decade [Cow99]) and race conditions [Vie02a]. Like for any other 

fault, finding (application) vulnerabilities can be done by using either static 

verification methods (without software execution) or dynamic verification methods 

(with software execution).

Static and Dynamic Verification Methods

The main static verification methods are formal methods and static analysis. The 

advantage of the use of formal methods is the precision associated with the approach. 



6

The disadvantages are the difficulty in specifying the requirements and the system 

and the development of techniques for checking the requirements specification 

against system specification. Static analysis is mainly based on code analysis to 

identify potential vulnerabilities (i.e., vulnerabilities that can potentially be exploited 

by attackers). Static analysis is a lightweight approach to find with high efficiency 

potential vulnerabilities. However, since the software is not executed, only potential 

vulnerabilities can be identified. Moreover, vulnerabilities might also be missed when 

applying static analysis. Since many tools are currently apply static analysis 

approaches, we will examine in detail later in this chapter the efficiency of some of 

the most popular tools.

Dynamic verification methods include fault injection and software testing. Two 

recent approaches applying fault injection both simulated the incoming attacks. 

[Gho98] perturbed the internal state of the executing application and [Du00] 

perturbed the environmental state. However, none of these approaches can be easily 

ported into a tool checking for generic application vulnerabilities. Among the 

software testing strategies, penetration testing is the main strategy where assumptions 

on possible vulnerabilities are made by accessing, for example, documents on the 

application and its environment. Each of these assumptions is then verified by testing 

[Dow01, Dan99]. [McG98] points out that penetration testing occurs too late in the 

software development process, just before software is released. Moreover, there is no 

rigorous approach associated with penetration testing. Besides penetration testing, 

very few software testing strategies have been applied in the context of security. Of 

those few, the PROTOS project [PROTOS] at the University of Oulu, Finland, 
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focuses on testing the security of protocol implementations. The researchers created 

several test suites, available on the project web site, that identified vulnerabilities in 

most of the tested products, leading even to a CERT advisory (CA-2002-03) for 

vulnerabilities found in many implementations of the Simple Network Management 

Protocol (SNMP). As part of the PROTOS project, [Kak00] developed a method of 

vulnerability analysis through syntax testing. Moreover, at Purdue University, [Asl96] 

developed a taxonomy of security faults and linked the faults with software testing 

strategies. Faults are classified into synchronization errors, condition validation 

errors, configuration errors, and environment faults. The surveyed testing strategies 

include symbolic testing, path analysis testing, functional testing, syntax testing, and 

mutation testing. Finally, [Vie02a] claims that black box testing is not very effective 

in the context of security. White box testing however is claimed to be much more 

effective.

Limitations of Static Analysis

As previously mentioned, static analysis is a well-known static method that is mainly 

based on code analysis to identify potential vulnerabilities (i.e., vulnerabilities that

can potentially be exploited by attackers). However, static analysis cannot identify the 

environmental conditions needed for some vulnerabilities to be exploited. Therefore, 

a number of false positives (i.e., identified vulnerabilities that cannot be exploited by 

an attacker) can be expected. Tools applying static analysis include Flawfinder 

[Flawfinder], RATS [RATS], and ITS4 [Vie02b]. RATS, ITS4, and Flawfinder use a 

built-in database of vulnerabilities. For example, Flawfinder uses a built-in database 
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of C/C++ functions with well-known vulnerabilities. On the other hand, CQUAL uses 

constraint-based type inference. To analyze a program, CQUAL traverses the 

program’s abstract syntax tree and generates a series of constraints that capture the 

relations between type qualifiers. Since the exploit of a vulnerability might depend on 

environmental conditions that cannot be identified by static verification methods, 

dynamic verification methods complement static analysis. The following example 

illustrates the limitations of exclusively using static analysis. We applied Flawfinder, 

RATS, and ITS4 on the “mingetty.c” benchmark which is described as “a small, 

efficient, console-only getty for Linux that opens a tty port, prompts for a login name 

and invokes the /bin/login command” [mingetty]. We obtained the results given in 

Table 1.

Vulnerability Type / Tool FLAWFINDER RATS ITS4
Buffer Overflow 21 10 6

Format String 2 2 14
Race Condition 2 0 10

Table 1: Vulnerabilities Identified by Static Analysis Tools

The 21 buffer overflow vulnerabilities identified by Flawfinder include the 10 and 6 

buffer overflow vulnerabilities found respectively by RATS and ITS4. An evolved 

version of robust worst-case boundary value analysis testing was applied 

independently1 to find buffer overflows and found a total of 13 buffer overflows. The 

vulnerabilities found by robust worst-case boundary value analysis were then 

1 The development and application of the evolved testing technique was conducted by Avik Sinha and 

Ming Li under the supervision of Dr. Carol Smidts.
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compared with the vulnerabilities found by the static analysis tools. The number of 

false positives and the number of vulnerabilities missed by the static analysis tools 

(i.e. false negatives) are shown in Table 2. 

Static Analysis Tool Number of False Positives Number of False Negatives 
ITS4 3 (50%) 10 (77%)

RATS 7 (70%) 10 (77%)
Flawfinder 8 (38%) 0 (0%)

Table 2: Number of False Positives and False Negatives

By inspection it was found that some of the vulnerabilities initially identified by static 

analysis tools were not actual buffer overflows since the application contained bound 

checks to protect against range violations. Flawfinder includes the 13 actual buffer 

overflow vulnerabilities among the 21 identified vulnerabilities. In addition Table 2 

shows that not all vulnerabilities could be identified using ITS4 and RATS, because 

mingetty.c contains some user- built functions, which are not included in the 

vulnerability definition libraries of the tools. This example shows that testing can be 

used in conjunction with static analysis to remove false positives. This example also 

shows that static analysis tools are not always effective at finding buffer overflows 

caused by user-defined functions.

In another example, we applied the same static analysis tools (i.e., Flawfinder, RATS, 

and ITS4) on a tracking system, Tracker.c (presented in Appendix A), written in C 

that contains one buffer overflow vulnerability. Tracker.c is a projectile tracking 

system that has user defined library functions that implement data input and 

processing. The results of static analysis showed that no buffer overflow was found 
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by any of the static tools. We2 then developed a suite of test cases based on the 

evolved testing strategy. The result showed that a buffer overflow was present in the 

code. This example confirms the previously mentioned result, i.e. that static analysis 

tools are not always effective at finding buffer overflows caused by user-defined 

functions (see Table 3). Based on the limitations of static analysis and the inherent 

ability of dynamic approaches to reproduce the execution environment, dynamic 

approaches should be used in complement to static analysis. 

Static Analysis Tool Number of False Positives Number of False Negatives
ITS4 0 1

RATS 0 1
Flawfinder 0 1

Table 3: Buffer Overflows Identified by Static Analysis and the Evolved Strategy

Conclusions

This chapter reviews different static and dynamic verification methods for finding 

application vulnerabilities. The pros and cons of different approaches are described. 

In particular, the limitations associated with using only static verification methods are 

detailed. The conclusion of this chapter is the use of dynamic verification approaches 

combined with static analysis. In the next chapter we detail a dynamic verification 

method based on fault injection.

2 The development and application of the evolved testing technique was conducted by Avik Sinha and 

Ming Li under the supervision of Dr. Carol Smidts.
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Chapter 3: Checking for Application Vulnerabilities 

using Fault Injection

Introduction

In Chapter 2, we identified the limitations of the sole use of static verification 

methods for finding application vulnerabilities and the usefulness of combining static 

and dynamic verification methods. In this chapter we focus on one specific dynamic 

verification method, fault injection. In the previous chapter, we stated that the two 

recent approaches applying fault injection both simulated the incoming attacks. 

[Gho98] perturbed the internal state of the executing application and [Du00] 

perturbed the environmental state. When neither approach has led to a tool that can 

automatically check for application vulnerabilities, the fault injector described in this 

thesis is based on a revised version of the framework developed by [Du00] to conduct 

fault injection. The first part of this chapter will review the concepts introduced by 

[Du00]. The second part of the chapter will detail the concepts used for the fault 

injector presented in this thesis and the issues associated with the proposed approach.

Fault Injection using Environment Perturbation

Like [Du00], we assume that a “system” combines an “application” and its 

“environment”. Based on this definition, all code that is not part of the application 

would be part of the environment. The range of the environment can be reduced by 
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only defining as “environment” the portions of the code that have a direct or indirect 

coupling with the application code. The use of common resources (e.g., files, network 

components) or global variables are examples of such couplings. [Gar96] and [Krs98] 

empirically demonstrate that the environment plays a significant role in triggering 

vulnerabilities that lead to security policy violations.

We define a “secure” program as a program that tolerates environment perturbations 

without any security policy violation. If we now consider environment perturbations 

as faults, we then consider a secure system as a fault-tolerant system able to tolerate 

faults in the environment. Fault injection can be defined as “the deliberate insertion of 

faults into an operational system to determine its response” [Cla 95]. In the approach 

introduced by [Du00], faults are injected in the application environment and thus 

perturbating the environment. The perturbation then might lead to a security 

violation. If it does not lead to a security violation, then the application is considered 

secure.

The terminology introduced by [Du00] defines:

• Internal entity: any element in the application’s code and data space.

• Internal state: a state that consists of the status of the internal entities.

• Environment entity: any element that is external to an application’s code and 

data space.

• Environment state: a state that consists of the status of the environment 

entities.

Examples include: a variable in an application (i.e., internal entity), the value of the 
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variable (i.e., internal state), files and network (i.e., environment entities), the 

permission or ownership of a file (i.e., environment state). The shared nature of the 

environment entity differentiates internal entities from environment entities. An 

environment entity is not only accessed and changed by an application. Other objects 

also can access and change an environment entity. This is not the case with internal 

entities that only applications can access and modify.

Environment faults usually affect an application in two ways [Du00]. An application 

can receive inputs from its environment. In that case the associated environment 

faults are faults in the input. The input is included in an internal entity of the 

application. The fault then propagates through the application via the internal entities. 

A security violation might occur if the application is not able to correctly handle the 

faults. When the direct reason of this violation seems to be due to the faults in the 

internal entities, the real reason is the propagation of environment faults. The 

environment thus indirectly causes a security violation via the internal entities. These 

faults are called indirect environment faults. For example, assume that an application 

receives its input from the network. Any fault in the network message is included in 

the internal entity. When the application copies this message into a buffer without 

checking the buffer’s boundaries, a security violation occurs. Indirect environment 

faults can be divided into the following sub-categories according to their origin:

• user input

• environment variable

• file system input
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• network input

• process input

The different sub-categories are summarized in the following table [Du98].

Indirect Fault Semantic Attribute Description
file name Name of a file
directory Name of a directoryUser Input
command Name of a command executed in the application
file name Name of a file
directory Name of a directory
execution path List of paths used to search executable files or commands
library path List of paths used to search libraries

Environment 
Variable

permission mask A mask which decides default permission of a newly 
created file

file content Content of a file
file name Name of a file
directory Name of a directory

File System 
Input

file extension Special string that represents that type of files
IP address Representation of IP address
packet Packet
host name String that represents the name of host

Network 
Input

DNS reply Reply from DNS server
Process 
Input

message Message sent from one process to another

Table 4: Sub-categories of Indirect Faults

The second way environment faults affect an application is when the fault remains 

within the environment entity and when the application interacts with the 

environment without correctly handling these faults. In that case, a security violation 

occurs. Environment faults are then the direct cause of the security violation and the 

medium for environment faults is the environment entity itself. These faults are called 

direct environment faults. For example, when an application needs to execute a file, 

the owner of the file might be the owner of the application or some malicious user. In 

case the application does not check who the owner of the file is, some arbitrary code 
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might get executed leading to a security violation. Indirect environment faults can be 

divided into the following sub-categories:

• file system

• process

• network

The different sub-categories are summarized in the following table.

Direct 
Fault

Attribute Description

file existence File does or does not exist
file ownership Owner of the file
file permission Access permission for different users
symbolic link File is a symbolic link to another file
file content 
invariance

File can or cannot be modified during the 
execution of the application

file name invariance File name can or cannot be modified during 
the execution of the application

File 
System

working directory Directory where the application is invoked
message authenticity Message is genuine or is spoofed by other 

people
protocol Message from network does or does not 

comply with underlying protocol
status of socket Socket is or is not shared with another 

process
availability of 
service

Network service is or is not available

Network

trustability of 
entity

Entity at the other end of network is or is 
not trusted

message authenticity Message is genuine or is spoofed by other 
people

trustability process Process with which the application is 
communicating is or is not trusted

availability of 
service

Service that the application requested is or 
is not available

Process

protocol Message from another process does or does 
not comply with underlying protocol

Table 5: Sub-categories of Direct Faults
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Revised Approach for Conducting Fault Injection Using 

Environment Perturbation

The fault injector we have developed is based on a similar theoretical framework. 

However, several significant differences exist between the framework proposed by 

[Du00] and the one we have developed. First, we only consider environment faults 

through files and not faults through the network or processes. Second, we also no 

longer maintain the distinction between indirect and direct environment faults. We 

now detail the reasons for making these changes.

 [Krs98] analyzed a security vulnerability database consisting of around 195 

application vulnerabilities from different operating systems such as Windows-NT, 

Solaris, HP-UX, and Linux. Among these vulnerabilities, 142 could be used to be 

classified as indirect or direct environment faults. 57% of the vulnerabilities could be 

identified as indirect environment faults, 34% as direct environment faults, and 9% 

could not be categorized as neither indirect nor direct environment faults. Among the 

indirect environment faults, 90% were linked to files, 10% to network inputs and 0% 

to process inputs. Among the direct environment faults, 87% were linked to files, 

10% to the network and 2% to processes. The first reason for focusing on 

environment faults linked to files is the significant number of vulnerabilities 

associated with files. Moreover, the approach proposed by [Du00] to find application 

vulnerabilities requires: a) to have access to the source code of the application, and b) 

to manually analyze the source code to find specific cases that would lead to a 

security violation. A fault would then be injected to verify that indeed the fault leads 
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to a security violation. As previously mentioned, the automation of such a process 

would be very complex. The most complex analysis of a security violation involves 

issues related to “trust” (i.e., trustability of entity, trustability process). Both cases 

involve the network and processes. So, in order to reach some automation and avoid 

systematic manual analysis, we will no longer consider issues related to the network 

and processes. Since network and process environment faults count for about 10% of 

the cases, this condition for reaching some level of automation only discards about 

10% of the environment faults leading to a security violation.

As already mentioned, the method proposed by [Du00] requires the analysis of the 

source code of the application to identify potential security violations when specific 

faults are injected. This approach leads to a very small number of faults that need to 

be injected but requires a complex manual analysis before fault injection and is based 

on the source code. We do not believe that these assumptions are reasonable for most 

applications. Source code is not often made available, Moreover, in practice, rare will 

be the cases when an organization agrees that some programmers spend large 

amounts of time analyzing manually an application source code to identify the faults 

to be injected that would lead to a security violation. Therefore, we decided to take 

the “black-box” approach, assuming that the source code would not have been made 

available. Moreover, our goal is also to move from manual analysis to some 

automation. The direct consequence is that we no longer will be able to identify 

precisely which faults will lead to a security violation. A significant higher number of 

faults will need to be injected. And for these faults, some analysis is needed after fault 

injection to check if the fault led to a security violation. Mainly because we opted for 
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the black-box approach, the distinction between indirect and direct environment faults 

becomes less relevant. The following table presents the environment faults that will 

be considered from now.

Fault Attribute Description
file name Name of a file
directory Name of a directoryUser Input
command Name of a command executed in the application
file name Name of a file
directory Name of a directory
execution path List of paths used to search executable files or commands
library path List of paths used to search libraries

Environment 
Variable

permission mask A mask which decides default permission of a newly 
created file

file content Content of a file
file name Name of a file
directory Name of a directory

File System 
Input

file extension Special string that represents that type of files
file existence File does or does not exist
file ownership Owner of the file
file permission Access permission for different users
symbolic link File is a symbolic link to another file
file content 
invariance

File can or cannot be modified during the execution of the 
application

file name 
invariance

File name can or cannot be modified during the execution 
of the application

File System

working 
directory

Directory where the application is invoked

Table 6: Environment Faults Considered in this Thesis

The goal of the fault model proposed by [Du00] is to allow fault injection to be 

conducted at the environment-application interaction level to try to “emulate what a 

“real” attacker does”. The claim made by the authors is that “since most of the 

vulnerability databases record the way attackers exploit a vulnerability, we transform 

these exploits to environment faults to be injected with little analysis on those records 



19

thereby narrowing the semantic gap between faults injected at the interaction level 

and faults that really occur during the intended use of the system.” This goal is 

relevant when conducting an extensive manual analysis of the code to identify 

potential security violations. Since we are taking the black-box approach, we have 

less insight on the application. Therefore, out goal should not to emulate “real” 

attacks but rather perturb in many different ways the environment to check the cases 

when a security violation appears. This approach has also the advantage of not 

assuming what the attacker might do and therefore also includes original attacks that 

we would not have thought of. Our approach can thus been seen as checking if 

building blocks linked to the files that attackers could use to develop attacks might 

lead or not to a security violation.

The following table lists the different possible fault injections for the attributes that 

we have identified.

Entity Attribute Fault Injection
file name Change length, use relative path, use absolute path, insert 

special characters such as “..”, “/” in the name
directory Change length, use relative path, use absolute path, 

insert special characters such as “..”, “/” in the name

User Input

command Change length, use relative path, use absolute path, insert 
special characters such as “|”, “&”, “>” or new line in the 
command

file name Change length, use relative path, use absolute path, use 
special characters such as “|”, “&”, “>” in the name

directory Change length, use relative path, use absolute path, use 
special characters such as “|”, “&”, “>” in the name

execution path Change length, rearrange order of path, insert a untrusted 
path, use incorrect path, use recursive path

library path Change length, rearrange order of path, insert a untrusted 
path, use incorrect path, use recursive path

Environment 
Variable

permission mask Change mask to 0 so it will not mask any permission bit
file name Change length, use relative path, use absolute path, use 

special characters such as “|”, “&”, “>” in the name
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directory Change length, use relative path, use absolute path, use 
special characters such as “|”, “&”, “>” in the name

file extension Change to other file extensions like “.exe” in Windows 
system; change length of file extension

file existence Delete an existing file or make a non-existing file exist
file ownership Change ownership to the owner of the process, other 

normal users, or root
file permission Flip the permission bit
symbolic link If the file is a symbolic link, change the target it links to; if 

the file is not a symbolic link, change it to a symbolic link
file content 
invariance

Modify file

file name 
invariance

Change file name

File System

working 
directory

Start application in different directory

Table 7: Fault Injection Considered in this Thesis

Conclusions

In this chapter we described an approach for identifying application vulnerabilities 

applying fault injection using environment perturbation. We then revised some of the 

concepts of the described approach so that automation would be possible and having 

the application source code would not be required. Based on these new concepts, 

Chapter 4 and Chapter 5 introduce the tool we have developed for finding application 

vulnerabilities using fault injection.
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Chapter 4: Collecting Environment-Application 

Interactions: Design and Implementation

Introduction

After having motivated the choice of applying a dynamic verification method for 

checking for application vulnerabilities using fault injection, we describe in Chapter 4 

and 5 the tool that we have developed. Our fault injector is called “Pulad” which 

means “hard, strong, hard to break” in Persian. The story behind Pulad is deeply 

rooted in Persian culture. Pulad consists of two main components. The first main 

component focuses on the collection of environment-application interactions related 

to files when the application is executed and is called the “collector”. The second 

main component focuses on the injection of faults and is called the “fault injector”. 

The collector will be described in Chapter 4. The fault injector will be described in 

Chapter 5.

Overview of the Collector Architecture

For running the collector, the user only needs to provide the application’s execution 

command and the directory name of the specific application as inputs. The output of 

the collector is then stored in an Oracle database table. The following figure shows 

the overview of the collector architecture.
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User Inputs

Application Execution
Command Application Directory

Collector

InputFile

General Output

MainOutput

Environment Application
Interacion scanner (EAIS)

Parser

Store InputFile

DataBase

DB UtilDBStore

Figure1: Collector Architecture Overview

First, the user needs to provide the application execution command and the 

application directory name. This data is needed as input to the collector and is stored 

in the collector input file. The input file is then stored in the database. Using this 

information, the collector then runs the Environment-Application Interaction Scanner 
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(EAIS) module to capture all the environment-application interactions associated with 

files. The output of EAIS is stored in the in collector GeneralOutput file. The parser 

in the collector then parses the GeneralOutput file to remove all extra symbols 

generated by Java (Java will add some unnecessary data when executing the 

application), changes the time reference, and saves the output into the MainOutput 

file. DBStore then scans the MainOutput file and saves the information in the Oracle 

database through the DBUtil module (DBUtil connects the application with the 

Oracle database engine and ports data from DBStore to the Oracle database). 

Detailed Design of the Collector

In this section we detail the different parts of the collector.

The Input File

The input file stores the user input provided to the collector. As already mentioned, 

the user inputs consist of the application execution command and the application 

directory name. The application execution command is the command that is used to 

run the specific application. For instance, the “ls” command in UNIX is a simple 

application execution command. The application directory name is the name of the 

directory where the application is located. For instance, the directory name for the 

same UNIX command, ls, is “/bin”. The user provides this information in the 

following format: “ls /bin collector”. Finally, as a third argument, the user needs to 

enter a keyword, “co” or “fi”, referring either to running the collector component or 

the fault injector component (to be described in Chapter 5). These three inputs are 
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also saved in the Oracle database. The collector or fault injector can then retrieve 

these user inputs at anytime.

The EAIS Module

The Environmental Application Interaction Scanner (EAIS) module is a module that 

captures all environment-application interactions involving files. This module 

intercepts and records the system calls, which are called and received by the 

application. EAIS consists of a modified version of the tool called strace [strace]. 

This open source tool is a useful diagnostic, instructional, and debugging tool. It 

captures most interactions between the application and the environment. But it would 

not give all the information for the specific file system. For instance strace will not 

provide the ownership of the file that interacted with the application. Also, the times 

of the interactions recorded by strace (the first eighteen digit of each line) refer to the 

time that strace was built. We modified strace to get the ownership of the file. Also 

we modified strace to change the time reference of each interaction. The output 

format of EAIS is the identical to the one used by strace. We added an argument to 

show the ownership of each file system. The following is the pseudo-code of EAIS to 

capture the file ownership:

For each file interacting with the application, after the 

interaction(while it is open)

{

 run the UNIX command “ls –al”;

 parse the output of “ls –al” to get the ownership;
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 save the ownership name in the output file as 3rd argument in the 

lines starting with “open”;

}

The following is the output of “ls –al bash_logout”.

-rw-r--r--  1 Root   oinstall       24 Dec 20 19:01 .bash_logout

The third argument shows the ownership of the file. In the above example,the owner 

is “root”. So EAIS will trace the ls output, capture the ownership and save it into the 

GeneralOutput file as the third argument in of each line starting with “open”. The 

command to run the EAIS module in the collector is as follow :

strace -ttt [-o GeneralOutput] [Application execution command]

This command runs the application and stores the output in the GenaralOutput file. 

The argument “–ttt” is used so that each environment-application interaction time is 

recorded. The “Application execution command” argument contains the command to 

execute the application provided by the user.

The GeneralOutput File

The GeneralOutput file contains the output of the EAIS module. This output contains 

some unnecessary symbols that Java added while running this module. The following 

shows the content of the GeneralOutput file when  running the “ls” UNIX command:

1114466952.522425 execve("./ls", ["./ls"], [/* 37 vars */]) = 0
1114466952.522803 uname({sys="Linux", node="Redhat9", ...}) = 0
1114466952.523025 brk(0)                = 0x804a368
1114466952.523106 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000
1114466952.523206 open ("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT 
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(No such file or directory)

The Parser Module

To remove all unnecessary symbols added by Java while running EAIS and change 

the time reference (removing the first 10 digits) we developed the parser module. This 

module parses the GeneralOutput file and deletes all extra arguments that were 

generated by Java. The output of this module will be saved in the MainOutput file. 

For instance, in the GeneralOutput file, each file directory contains:

/usr/java/j2sdk1.4.2_06/jre/lib/i386/client/tls/i686

which is the directory where Java is running. The parser module removes these 

directories and stores the rest in the MainOutput file. As we can see from the 

GeneralOutput file presented in the previous section, each line that starts with “open”, 

“fstat” or “stat” contains the directory path that Java creates. The parser also cuts the 

first 10 digits of 16 digit long timestamps, removes the “.” in the time format, and 

removes the space after the timestamp. The parser will parse this output file based on 

the following pseudo-code.

Create file a =GeneralOutput file
While each line in a != Null
{
  int q=line.indexOf('(');
  b=line.substring(16,q);
  S_command=Take the command after b;
  If S_command =”open” then
  { 
   take the first argument;
   trace all the directories that contains java path;
   omit the java path;
   take the first sixteen digits and take the first argument after 
“open”;
   omit the first ten digits for each timestamp;
  }
  If S_command = ”close” then
  {
   take the fist sixteen digits;
   omit the first ten digits for each timestamp;
  }
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  If S_command = ”fstat” or “stat” then
  {
   take the first argument;
   trace all the directory that contains Java path;
   omit the Java path;
   take the first sixteen digits before “fstat” or “stat”;
   omit the first ten digits for each timestamp;
  }
save in MainOutput file
}

The MainOutput File

The MainOutput file is the output of the parser module. In this file, each line contains 

the timestamp (first six digits), the interaction file name, followed by its arguments in 

parentheses and its return value. The arguments associated with the interaction files 

include the directory name, permission, file extension, file ownership and size of the 

file.

The following shows the MainOutput file when executing the UNIX “ls” command:

522425execve("./ls", ["./ls"], [/* 33 vars */]) = 0
522803uname({sys="Linux", node="Redhat9", ...}) = 0
523025brk(0)                                  = 0x804a368
523106old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, 
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000
523206open("/etc/ld.so.preload", O_RDONLY, root) = -1 ENOENT (No 
such file or directory)

As you we can see from this output, all the unnecessary directory names and 

associated symbols were removed by the parser module. The sixteen digit numbers 

were also removed from the GeneralOutput file to only keep the last six digits in the 

MainOutput file. 

The DBStore Module

After having caught all the information related to the environment-application 

interaction files, we store it in database tables (so that we can retrieve the information 
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later). The information stored related to each files is:

• The file name, which contains the name of each environment-application 

interaction file.

Each interaction file name can be found in the MainOutput file. This data is 

the first argument of the line that starts with ”open”. For instance from the 

following line, we can capture the name of the interaction file which is 

ls.so.cache: open("/etc/ld.so.cache", O_RDONLY, root) = 3

• The directory name where the file is located.

The directory name can be found from the MainOutput file. Each directory 

name is the first argument of each line that starts with ”open”. In the previous 

example, the directory is “/etc/”.

• The owner of the file, who can make changes to the file. 

This field can be captured from the third argument of each line that starts with 

“open” in the MainOutput file. In the previous example, the owner is “root”.

• The file permissions, which are the permissions associated with the file.

Permission of each file can be captured from the second argument of each line 

that starts with “open” in the MainOutput file. In the previous example, the 

permission is “O_RDONLY” which indicates that this file can just be opened 

to be read. 

• Open time, which is the time when file started interacting with the application.

This field consists of the first six digits of each line that start with “open” in 

MainOutput file. 
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• Close time, which is the time when the file stopped interacting with the 

application.

The close time can be captured from the first six digits of the line that starts 

with the “close”. This line shows that the interaction file stopped interacting 

with the application.

• File size, which is the size of the file interacting with the application.

The file size is the second argument of the line that starts with “fstat” or 

“fstat3”.

• File existence.

The value assigned to the line that starts with “open” shows the existence of 

the file. If the number is 3, it means that file interacted with the application. If

the number is -1 it means that the file could not be interact with the 

application. For instance the first line in the following shows that ld.so.preload 

file could not interact with the application .The second line shows that 

ld.so.cache file interacted with the application:

open("/etc/ld.so.preload", O_RDONLY, root) = -1 
open("/etc/ld.so.cache", O_RDONLY, root) = 3

All this information can be obtained from the MainOutput file. For instance, from the 

following lines, we can get the interaction file name which is “libc.so.6”, the 

directory name where the file is located which is “/lib/tls/”, the file permission which 

is O_RDONLY and the owner of the file which is root. Also from the second line, we 

can get the size of the interaction file, which is 50025 bytes. The third line gives some 

information about the memory map of the file, while it was interacting with the 
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application. The fourth line, which is “close(3)=0”, indicates that the interaction file 

stopped interacting with the application.

open("/lib/tls/libc.so.6", O_RDONLY, root) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=50025, ...}) = 0
old_mmap(NULL, 50025, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000
close(3)=0                              

The DBStore module takes the information from the MainOutput file and stores it 

into the specific table in database. The following pseudo-code shows how the 

information is captured from the MainOutput file:

Create file a= MainOutput file
While each line in a != Null
{
  q=Get the first world
  If start=”open” then 
   {
   Get the start time;
   Store it into start time field in database;
   pass “(“;
   look for the first argument 
    Store it into filename field in database;
    Store the directory into file directory field in database;
    Get file type from directory;
    Store it into file type field in database;
    Take the second argument;
    Store it into file permission field in database;
    Take the third argument;
     Store it into ownership field in database;
Go to next line;
   }
if q =”fstats” Then
 {
   Take the second argument;
   Store it into number of link filed in the database;
  }
   if q=”close” Then
   get the end time;
   store it into end time field in database;
   store it in to the start time and the ending time fields in the 
database
}

The algorithm ports the MainOutput file to a temporary file called “file a”. First it 
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checks if the line is not null. Then for each line, it looks at each line’s first word. If 

the line begins with “open”, it ports the start time, the first argument to the file’s 

name and the directory to the database. Then it ports the second argument to the file 

permission’s directory. Thereafter, it gets the third argument and ports it to the 

ownership field. If the line starts with “fstats”, then the algorithm takes the second 

argument and ports it to the size field. If the line starts with “close”, it ports the 

ending time to the database.

Types of Environment-Application Interaction Files

The environment-application interaction files can be categorized as follows:

Temporary files. These files are created and deleted while the application is running. 

Temporary files are located in the “/tmp” or “$temp” directories. These files are 

identified by searching the MainOutput file, if the first argument in parenthesis of 

each system call contains the path “/tmp/<file name>”. If it does, the application is 

using that particular temporary file.

Environment files. All global environment variables that different programs use are 

located in the “/etc”, “/etc/env.d”, “/etc/profile.env” or “/etc/profile.ed” directories. 

These files are identified by searching the MainOutput file, if the first argument in 

each system call contains one of the above environment directories. If it does, the 

application is using that particular environment variable. 

Library files. Library files are global files and could be accessed by other 

applications. These files are located in the “/lib” directory. Therefore, we just need to 

check for this directory in the MainOutput file to identify if the application has 
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interacted with any library file.

Database Tables

We designed three tables in Oracle to store data. The three tables are the following.

File table. In this table the fields contain general information on each interaction file. 

The fields are as follow: 

• File ID

This is the unique ID number that is assigned to each interaction. We use this ID 

number as a primary key of the table.

• Interaction file name (which is the primary key of this table) 

Interaction file names are identified as the first argument after ”open” in each line in 

the MainOutput file. For instance, in

open("/lib/tls/libc.so.6", O_RDONLY, root) = 3

libc.so.6 is the name of the interaction file.

• File type

The type of each interaction file can be found from the directory where the file is 

located. As previously mentioned, each type of file is located in a specific directory. 

For instance /lib/tls/libc.so.6 shows that the file is located in the lib directory, 

indicating the file type is a library file.

• File size

The file size is captured from second argument in each line that starts with “fstat”. 

The size is indicated after “st_size” in the second argument. For instance the 

following line in the output of the MainOutput file shows the size of 50025 for 
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ld.so.cache file

open("/etc/ld.so.cache", O_RDONLY, root) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=50025, ...}) = 0

• File directory

The file directory name can be captured from the first argument of each line that 

starts with “open”. For instance line

open("/etc/ld.so.cache", O_RDONLY, root) = 3

/etc is the directory of the ld.so.cache file.

• Number of environment-application interactions for file

DBStore module counts the number of times the application interacted with a specific 

environment file.

• Permission of the file

The permission of each interaction file can be captured from the second argument of 

the line that starts with “open”. Permissions are read and/or write. For instance, in the 

following line, O_RDONLY shows that this file is just opened to be read.

open("/etc/ld.so.cache", O_RDONLY, root) = 3

If the file has read and write permission, this argument shows ”O_RDWR” .If the file 

has only write permission, this argument will be “O_WRONLY”.

• File owner

The file’s owner can be captured from the last argument of the each line that starts 

with “open” argument. For instance, in the following line, the owner of this file is 

root.

open("/etc/ld.so.cache", O_RDONLY, root) = 3

• Start time
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Each interaction file starts interacting with the application when the file has been 

opened. The start time can be captured from the MainOutput file.

• End time

Same as the start time field, the end time can be captured from the MainOutput 

file.

• File Existence

To make sure that a file starts interacting with the application while it is open, we 

check the number in front of each line that contains “open” in the beginning. If 

the value that assigned to the “ open’ arguments is equal to 3, it means that file 

has been successfully opened. If the number is –1, it means that the file could not 

interact with the application. For instance the following line shows that the file 

interacted with the application and was opened successfully:

open("/etc/ld.so.cache", O_RDONLY, root) = 3

But the following line shows that the file could not interact with the application:

open("/etc/ld.so.preload", O_RDONLY, root) = -1 

 

Error Table. Each file can interact with the application at different times. The 

followings are the fields of the table indicating the status of each interaction.

• File name

• Number of errors

To get the number of times that an error occurred when the application interacted 

with a file, we scan in the MainOutput file each line that starts with “open“. If the 

number that is assigned after the argument is “-1”, it shows that the file could not 
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interact with the application and that an error had occurred. For instance the following 

line:

open("/etc/ld.so.preload", O_RDONLY, root) = -1 

shows that ld.so.preload file could not interact with the application. DBStore parses 

the MainOutput file for each file and increases the counter for each “–1 “it finds and 

stores this number in this field.

User input Table. This table records user inputs contained in the collector InputFile. 

User inputs consist of the application execution command and the application 

directory name where the application is located. The fields of the table are as follow:

• Application Execution Command

The execution command is used to run the application. For instance the ”ls” 

command is the UNIX command to run “ls”.

• Application Directory Name

This field contains the directory name where the application is located. For instance 

in “/bin/ls”, /bin is the directory where “ls” is located.

Note that these fields are filled after DBStore is run. 

Functional Descriptions

In this part we focus on the functional description of the collector and the 

dependencies of the functions and associated tasks. 

All the modules and files that we described in this chapter are implemented in three 

main java modules. These modules are Main.java and Basicfilelist.java and DBUtil.
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Main.java 

Identification : Main.java
Type : Module
Purpose : provides detailed information from system call
Function : Retreive the inputs from the user and stores the data into Inputfile.

  Then run EAIS module and port the output to the generaloutput file.
  Following, this function will run the parser module and save the data 
  to the MainOutput file.

Basicfilelist.java 

Identification : Basicfilelist.java
Type : Module
Purpose : provides detailed information about interaction files and their

  properties to the user from the database. It will show all the data in
  two tables. The first table contains general information about the
  interaction files. The user can choose any of the files from the table
  to get detailed properties of the filed that interacted with the
  application in a new window.

DBUtil.java 

Identification : DBUtil.java
Type : Module
Purpose : connects the collector with the Oracle database.

Sequence Diagrams

We can use sequence diagrams to better understand the sequence of actions that are 

taken in collector to gain information on the environment-application interactions and 

to store them into the database. With sequence diagram, we can also monitor the life 

line of each module that was executed. The following figure shows the sequence 

diagram of the collector and the steps taken to execute this part of Pulad.
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Figure2: Collector Sequence Diagrams

As we can see from the figure, the first module that is executed in the collector is 

EAIS. This module will be run by the collector and will stop running after saving the 

output in the GeneralOutput file. The solid line for each module shows the lifeline of 

that module. Then the collector will run the parser module to remove all unnecessary 

parts and symbols from the output file that was generated by Java and will store the 

outcome in the MainOutput file. Afterwards, DBStore module will be run in the 

collector. This module will port the data to the Oracle database. Each arrow in the 

figure shows the input and the output of each module. 

How to Run Pulad

Pulad is implemented in java using the Eclipse development environment on Linux. 
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(Eclipse is an open platform for tool integration built by an open community of tool 

providers.) [Eclipse] We also use Oracle [Oracle] as the database engine to store the 

data and results. Before running Pulad and executing applications, some preliminary 

steps are required to connect Pulad with Oracle and Eclipse.

Start the database. 

To install Oracle on Linux, a new user account as “oracle” needs to be created. The 

account can then be used to install Oracle. Once Oracle is installed, it is run oracle 

using the following commands:

$Oracle_Home
sqloracle

You then will have to indicate your username and password. Once the sql prompt 

appears, you just need to type STARTUP. 

Start the listener

Oracle has a client-server architecture allowing different users to use this database 

engine simultaneously. Since t users of Oracle are the clients, the client side of Oracle 

also needs to be run. The following command is needed to run the client side:

Oracle_Home
lsnrctl
start

Now the oracle client side is ready, we can start running Pulad.

Execute Pulad

First Eclipse needs to be started. Once in the directory of Eclipse, the following 

commands are run:
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./eclipse

With this command, Eclipse is upload and ready to run Pulad. To execute Pulad, first 

we should upload the Pulad project. Then by clicking the “Run“command, Pulad will 

start running.

Conclusions

In this chapter we have described one of the main components our tool for finding 

application vulnerabilities using fault injection: the collector. The collector records all 

the environment-application interactions when an application is executed. This 

information is then used by the fault injector component, which will be described in 

Chapter 5. In this chapter, we have described the collector at a high level, then have 

provided design and implementation details. A functional description, sequence 

diagrams and details on how to execute the collector are also provided.
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Chapter 5: Fault Injection for Finding Application 

Vulnerabilities: Design and Implementation

Introduction

After having described in Chapter 4 the first main component of Pulad called the 

“collector” that focuses on the collection of environment-application interactions 

related to files when the application is executed and is called the “collector”, we 

detail in this chapter the second main component that focuses on the injection of 

faults and is called the “fault injector”. More precisely, the architectural view, 

detailed design and implementation details of the fault injector are described in the 

following sections.

Overview of the Fault Injector Architecture

The following figure shows the architecture of the fault injector in Pulad.
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Figure 3: Fault Injector Architecture Overview

In the fault injector, the user provides the inputs either through a file or using a 

graphical user interface (GUI). The user chooses the interaction file names, faults and 

the environment-application interaction points in which the faults should be injected 

either by just clicking the options in the GUI or by creating an input file. All the 
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inputs will then be stored in an input file.

The processor module then processes the input file. This module searches for each 

environment-application file with the specific interaction point in the collector’s 

database tables to find all the information regarding that specific environment-

application interaction file. The result is returned to the processor. For instance, if the 

user wants to inject a fault to the File1 at the interaction point 1, the parser searches 

for the first interaction of File1 with the application and ports the result to the 

processor. If the processor cannot find such interaction file with the specific 

interaction point in the database, an error message will appear.

Also the processor searches for the specific fault type that the user chose among the 

fault methods. The specific fault module associated with a fault type is retrieved and 

returned to the processor. Note that all fault modules are located in the fault methods 

file. So the fault module is ready with the interaction file name and the specific 

information of that interaction point.

Now all the environment-application interaction files and fault types chosen by the 

user are ready to be injected at the specific interaction time. The EAIS module then 

runs the application while injecting specific faults just before the selected interactions 

between the environment and the application. EAIS stores the output in the 

GenralOutput file. As for the collector, Java has created some extra symbols when 

executing the application. As described in Chapter 4, the parser module will mainly 

trace the GeneralOutput file and remove the extra symbols and store the result into 

the MainOutputfile. Afterwards, the DBUtil module will connect the fault injector to 

the database. DBStore will then parse the MainOutput file to store the data in the 
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specific database tables.

Fault Injection techniques for Fault Injector

Each environment-application interaction file might interact with the application 

more than once. So each file can have many interaction points. To inject faults in 

specific interaction points, each fault should be injected in the specific environment-

application interaction file just before the specified interaction with the application.

For instance, the following table shows the interaction of one application with three 

different files at different times. The user is interested in injecting one fault (change 

path) in File1 at interaction point 2, injecting one fault (change directory) in File2 at 

interaction point 3 and injecting one fault (change name) in File3 at the interaction 

point 3.

FILE Interaction 1 Interaction 2 Interaction 3
File 1 0-1 2-10 -
File 2 1-3 6-8 11-15
File 3 0-1 2-9 10-12

Table 8: Example of Input File

The above table shows the interaction file name and the start time and close time of 

each interaction point. For instance File1 interacts with the application at three 

different times. The first interaction is between time 0 and time 1. The second 

interaction is between time 2 till time 10. The two other files also interact with the 

application at different times. To inject faults at the specific interaction point, each 

fault should be injected before the interaction starts. Also each fault for each file that 

interacts with the application several times should be injected after the previous 
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interaction point. To inject faults in each file at a specific interaction point, we also 

need the ending time of the previous interaction points. This is the time when we 

should inject the fault.

As mentioned before, each fault will be injected while the application is running 

through EAIS. While the application is running, faults will be injected in different 

files. In the above example the user intends to inject three different faults in three 

interaction files. Therefore, we should first order these files based on the interaction 

times to know the order of injection. The files are ordered based on the ending time of 

the previous interaction point. To do so, we capture the previous interaction points of 

the files that are involved in fault injection. For instance for File1, since we want to 

inject a fault at the interaction point 2, we get the ending time of the interaction point 

1 of File1 with the application, which is time 1. This is the time from when we should 

inject the fault to this file. We do the same procedure for the other files, so obtain the 

following results:

FILES Time of injections based on previous interaction points
File1 1
File2 8
File3 9

Table 9: Sorting of Files Based on Interaction Times

For File1, time 1 is the ending time of the interaction point 1 (0-1) and time 8 is the 

ending time of interaction point 2 (6-8). These are the times when different selected 

faults should be injected. We also have to order these ending times for different files. 

To do so, we sort them in function of time. Each fault for different interaction point 

times should be injected to the files while the application is running. For the above 
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example, the faults should be injected in the following files based on their interaction 

time in the following order: File1, File3, File2.

Detailed Design of the Fault Injector

Since several modules have already been detailed in Chapter 4, in this section we 

provide brief description on the detailed design of each file and module of the fault 

injector.

The Input File

This time, the input file stores the user inputs for the fault injector. User inputs consist 

of environment-application interaction file names, interaction points and fault types. 

All the inputs can be retrieved from the user either through a file or a GUI. The first

argument of the file is the environment-application file name in which the user wants 

to inject a fault. These files were stored in the database by the collector. If the file that 

user inputs cannot not be found in the database, an error will occur. The other user 

input is the interaction point. As mentioned, each environment-application file can be 

called more than once by the application. The collector captured the different 

interaction points as well as the starting and ending time of the interactions for that 

specific interaction file. The fault should be injected right before the starting time of 

the interaction. The fault type is another input from the user. The fault type indicates 

what kind of fault the user wants to inject. Later in this chapter we will describe each 

fault type in more details.

The following line shows the user inputs from the input file:
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libm.so.6 3 changename

The first argument is the name of the environment-application interaction file, which 

is libm.so.6. The second argument is the interaction point. In this example, 3 means 

that we want to inject the fault at the third interaction point between the application 

and libm.so.6. “changename” means that the fault type module (here changename) is 

changing the name of the file.

The Processor

The processor is the main module of the fault injector. It has four major tasks as 

follow:

1. Get the application name and the directory name from the collector database.

2. Replace interaction point with the associated start time and ending time.

3. Scan the fault methods file for the specific fault type module for fault injection.

4. Sort all the environment-application files based on the interaction points.

The input of this module for each of these tasks is the Input file. Now we will 

describe each of these tasks in detail:

Get the application name and the directory name from the collector database. 

The first task consists of retrieving the application name and the directory name that 

was stored in the Collector’s database. The processor gets the inputs from the input 

file. The first argument in the input file is the environment-application interaction file 

name. These interaction files were captured during the execution of the collector and 

stored in their specific tables in the database. This module queries the tables to find 

specific environment-application interaction files and their attributes at a specific 
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time. If this environment-application interaction file in the specific interaction point 

exists, then the fault injector ports all the information regarding this specific file back 

to the processor. If the processor could not find the specific environment-application 

file in the specific interaction point, then the fault injector shows an error message.

Replace interaction point with the associated start time and ending time. The 

other task of the processor is to replace the interaction point number with the start 

interaction time and the end time of the specific environment-application file. These 

two times give the interval time of the specific file interaction with the application. So 

the processor, after retrieving all the information about the environment-application 

interaction file at a specific interaction point, starts replacing the interaction point 

with the start time and the end time of the file. The processor operates this task, 

because each fault injection should occur just before the starting time of the 

interaction. For instance if the interaction point is 2 (which means the second 

interaction of the application and the specified file), the second start time and end 

time of the file will be retrieved from database. Also the fault injection, while running 

the application again, should happen just before the second starting time of the 

interaction with the specific file. 

Scan the fault methods file for the specific fault type module for fault injection.

The processor gets the fault type from the input file. Then it scans the specific fault 

module from the fault methods file. The fault methods file contains all the fault 

modules that inject faults to the interaction files. Later in this section we will describe 

the fault methods file more in details.

Sort all the environment-application files based on the interaction points. Note 
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that the fault injections and the EAIS module run simultaneously. So in order to inject 

faults before the staring time of each interaction, we need an algorithm to sort the 

interaction files. The algorithm we developed is based on the interaction time. This 

algorithm orders the faults based on the start time and the end time of the interaction. 

This algorithm sorts the list of files in which a fault will be injected in an increasing 

order of the start time and then increasing order of the end time. The only special case 

is when a fault should be injected at time zero. This case happens when the 

application starts interacting with the specific interaction file by the time it starts 

executing. In this case the fault should be injected before the execution of the 

application. 

The following summarizes the algorithm developed.

1) Get the interaction file name, interaction point and fault module from Inputfile.

2) Replace interaction point (IP) from Inputfile with time intervals 

(start_time, end_time)

3) Sort interaction files by increasing start_time

4) Sort interaction files by increasing end_time

5) Special case: If there is any IP, which is equal to one, inject the faults now

After ordering the interaction files based on the time, the fault injector is ready to 

inject faults in the application while running the EAIS module.

The EAIS, Parser, and DBStore Modules

While injecting faults into the application, the EAIS module will be executed to 

collect the environment-application interactions related to interaction files. The output 
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of the EAIS is stored in GeneralOutput file. As mentioned in Chapter 4, this file 

contains some symbols that were created with java. The parser will then parse this file 

and store the output in MainOutputfile. (The details of the parser were provided in 

Chapter4). Then the DBUtil module will connect the application to the database. And 

DBStore will port each of the interaction files to the fault injector database.

The fault injector tables in the database are the same as the collector tables with the 

same fields but different names. The difference between these tables is that the 

collector tables contain the data before fault injections and the fault injector tables 

contain the data after fault injections.

The Fault Methods File

In order to inject faults in the environment-application interaction files, we need a 

fault module to modify specific environment-application files before the start time of 

the interaction. Each module injects one specific fault type. The fault methods file 

contains all these modules. The modules are as follows:

1) Change file size.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbols. Delete 

some characters to increase the size of the file.

2) Change file name.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbols. Delete the 

name of the file

3) Change path.

Create the same file with the same content in another directory. Delete the file 
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in the directory. 

4) Change ownership.

Change the owner of the file. 

5) Change permission.

Change the permission of the file from read to write, or read and write. Flip 

the permission bit.

6) Change content.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbol. Delete 

some characters to decrease the size of the file

Functional Description

In this part we focus on the functional description of the fault injector and the 

dependencies of the functions and associated tasks. 

All the modules and files that we described in this chapter are implemented in three 

main java modules. These modules are Fault_Main.java and Fault_Filelist.java, Fault 

Module, and DBUtil.

Fault_Main.java

Identification : new_Main.java
Type : Module
Purpose : Inject faults to the specific files and provides detailed information from

  system call after fault injection.
Function : Runs the processor to retrieve the application execution command and the 

application directory from the database and gets fault type, file name and the 
interaction point from Inputfile. EAIS runs the application while injecting 
faults. The output is saved in output.txt. The parser scans each line and finds 
the interaction’s attributes and ports them to the database through DBStore 
module.
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Fault_Filelist.java

Identification : Fault_Filelist.java
Type : Module
Purpose : Provides detailed information about interaction files and properties 

after fault injection. The information from the database is presented 
in two tables. The first table contains general information about the 
interaction file, number of interaction points and fault type. The 
second table gives details on each interaction points, start time and 
end time.

Fault Module

Identification : FaultModule
Type : Module
Purpose : Contains different modules of fault models
Function : Injects faults to the file based on user demand.

DBUtil.java

Identification : DBUtil.java
Type : Module
Purpose : Connects Pulad to the Oracle database.

5.6 Sequence Diagram

We can use sequence diagrams to better understand the sequence of actions that are 

taken by the fault injector to inject faults in the environment-application interaction 

files and store the result in the database. With a sequence diagram, we can also 

monitor the lifeline of each module that was executed. The following figure shows 

the sequence diagram of the collector.



52

:Input FIle :processor :Database :Fault Methods :EAIS :Parser

Application
command/Dir choose Interacted

f ile , IP

User

run random
generator

Search  fault modules

Run application w hile injecting fault

Return the specif ic module

:Database

Return the
result

Parse the
output

Store the
data

Figure 4: Fault Injector Sequence Diagrams

As we can see, first the user enters the inputs to inject faults. These data are stored in 

an input file. Then the processor scans the collector to retrieve the interaction files 

that the user entered as an input for fault injection for the specific interaction points. 

Thereafter, the processor searches for the specific fault modules from the fault 

methods file to inject the faults. All these data return to the processor and all files are 

reordered based on the fault injection algorithm that Pulad is using. Then the 

application runs through EAIS while faults are injected at the specific time. The 

output is stored in the GeneralOutput file. The parser will parse all the data and 

remove all unnecessary information and store the result in the MainOutput file. At the 

end the DBStore module scans the MainOutput file and ports specific data into the 

database. The solid line for each module shows the lifeline of each module. Also each 
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arrow indicates the input and the output of each module.

Conclusions

In this chapter, we detailed the second main component that focuses on the injection 

of faults and is called the “fault injector”. More precisely, the architectural view, 

detailed design and implementation details of the fault injector were described in this 

chapter. Now that we have detailed the design and implementation of Pulad, we 

describe how we validated Pulad in the next chapter.
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Chapter 6: Verification of Pulad

Introduction

We introduced Pulad in Chapter 4 and 5. In this chapter we describe how we 

validated Pulad. The following concepts are taken from [Lap98]. The validation 

process consists of removing faults or bugs and predicting the behavior of the system 

relative to the occurrence of faults and their activation. This chapter only focuses on 

the removal of faults. Fault removal consists of three steps: verification, diagnosis, 

and correction. Verification is the process of checking whether the system adheres to 

properties, termed the verification conditions [Che81]. If not, the two other steps must 

be undertaken: diagnosis of fault(s) preventing the verification conditions to be met 

and then, performing the necessary corrections. Following correction, the process 

must be repeated to ensure that fault removal has not entailed undesirable 

consequences. The verifications thus performed are termed as non-regression.

We applied in this chapter only software testing, which is the most popular dynamic 

verification method. Software testing is a process used to identify the correctness, 

completeness and quality of developed computer software. Actually, testing can never 

establish the correctness of computer software, as this can only be done by formal 

verification (and only when there is no mistake in the formal verification process). 

[SoftwareTesting] The methods for the determination of the test patterns can be 

divided into several classes according to two viewpoints: criteria for selecting the test 
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inputs, and generation of the test inputs.

The techniques for selecting the test inputs may in turn be classified according to 

three viewpoints:[lap98]

• The purpose of the testing: checking whether the system satisfies its 

specification is conformance testing, whereas testing aimed at revealing fault 

is fault-finding testing;

• The system model: depending on whether the system model relates to the

function or the structure of the system, leads respectively to functional testing 

and structural testing;

• Fault model: the existence of a fault model leads to fault-based testing, aimed 

at revealing specific classes of faults.

According to the approaches considered, test input generation may either be 

deterministic or probabilistic:

• In deterministic testing, test sets are determined by a selective choice 

according to the criterion retained,

• In the random testing, test sets are selected according to a probabilistic 

distribution of the input field, the distribution and number of data inputs being 

determined in accordance with the criterion retained.

Selected Testing Techniques

For Pulad, we applied boundary testing, functional testing and stress testing.

Pulad gets different inputs from the user, either in the collector or in the fault injector. 

Wrong inputs might be considered as a fault and lead to the failure of Pulad. So 
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boundary testing will compare Pulad’s inputs, which were entered by the user, with 

the expected results that we had obtained through the collector.

We also applied functional testing, a black-box testing technique, to ensure that each 

function runs and performs its task as expected.

The other testing method we chose is stress testing because it is applicable to 

programs that operate interactively. We chose this technique for Pulad to check the 

behavior of the application based on the overload of user inputs.

Boundary Testing

“ The systematic testing of error handling is called boundary testing. Boundary 

testing refers to the testing of forms and data inputs, starting from known good 

values, and progressing through reasonable but invalid inputs all the way to known 

extreme and invalid values [Bei90]. The logic for boundary testing forms is 

straightforward. We start with known good and valid values because if the system 

fails on that, it’s not ready for testing. Next we move through expected bad values 

because if those fail, the system isn't ready for testing. Then we try reasonable and 

predictable faults because users are likely to make such faults. Then start hammering 

with extreme faults and inputs in order to catch problems that might affect the tool’s 

functioning “ [Bei90].

Functional testing

The other way of verifying the Pulad application is using another testing technique 

called functional testing. Functional testing is a process of attempting to find 
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discrepancies between the program and the external specification. External 

specification is a precise description of the program’s behavior from the point of view 

of the end user [Mye04]. In other words, it is a technique to check and verify each

module and function in the source code and to compare the result with what is 

expected. To perform a functional test, the specification is analyzed to derive a set of 

test cases. We supply the test cases as an input data; the output data (if applicable) or 

an error code (if the input data is not valid) is expected. 

Stress testing

Stress testing is a form of testing which is used to determine the stability of a given 

system. It involves testing beyond normal operational capacity, often to a breaking 

point, in order to observe the results. Stress testing subjects the program to heavy 

loads or stresses. A heavy stress is an important volume of data, or activity, 

encountered over a short span of time. To perform the stress testing, the specifications 

are analyzed and the test cases are created based on the specifications. In each test 

case, the heavy load (often to a breaking point) of data will be run as an input data 

[Mye04].

Examples of Applications

We chose different applications and run them through Pulad to observe different 

results. First, we chose a simple UNIX command, called ls. We chose this application 

because it is small and runs in any directory in UNIX. The ls application interacts 

with different files like ld.so.preload , libtermcap.so.2, ld.so.cache, libtermcap.so.2, 
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libc.so.6, ld.so.cache and libm.so.6 that would be captured by Pulad.

To have a better control on Pulad and to validate it, we implemented two applications.

In these two applications we know exactly what files these applications are 

interacting with. So we can track the results obtained by Pulad with the base 

information about the application implementation. The first application interacts with 

5-6 environment–application interaction files. Each of the files interacts twice with 

the application. We chose one file from each file type. For instance we chose one 

library file, one environment file, and one temporary file. So the first application 

starts calling each file, gets the ownership, directory and the permission of each file 

and ports the result to the terminal. So the user can monitor the result after modifying 

each file on the terminal. 

The second application that we implemented interacts with more than ten 

environment-application interaction files (3 files from each file type) and each file 

was called more than two times by the application. In this application, each file that 

was called interacts 100 times with the application. Note that each interaction occurs 

at different times, so we have more than one interaction in different time intervals.

We will call one of the applications a “small application” because consists of about 

one hundred lines of code and interacts with a few files, and the other one a “large 

application” because it consists of more than a hundred lines of code and interacts 

with more files. 

Testing Results

We used three testing methods on the application examples (ls, small application and 
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complex application). We now present the results we have obtained.

Boundary Testing

We used this technique to test the collector and the fault injector of Pulad with the 

small application and the ls command. In the first step of boundary testing, we used 

the correct inputs from the user, which was the running command of the application 

and the directory. For instance for the ls command, we used “/bin ls” as an input and 

we run Pulad. Then we modified this input. For example we changed the length of the 

directory, or we inserted a directory name that did not exist, to verify the error 

message at the right time. Then entered inputs to check the boundary, for instance 

long directory path or long directory names for the application.

When focusing on the fault injector, first we ran the application with the correct 

inputs, which consists of the interaction file name, interaction point and fault type. 

Then we entered a wrong type of data, for instance a wrong interaction file name, or 

an interaction point that did not exist, or a fault type that did not exist in the fault 

methods file. So an error message for these cases is expected. Then we checked the 

boundaries by entering long or short input data.

With this technique all the test cases based on the description of the inputs were 

examined and compared with the definition of each module and output. The 

following table shows the 23 test cases we used for the “ls“ command with boundary 

testing. We used the same test cases for the small and large applications.

LSR Test Cases Expected Result Application 

Result

Fail/

Pass

Bug Fixed
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1 Entering number in User 

input , in application 

execution command in 

collector

Error 

Message” No 

Such choice” 

displays

As 

expected

Pass -

2 Entering numbers in 

application directory in 

collector

Error 

Message” No 

Such choice” 

displays

As 

expected

Pass -

3 Entering long directory 

as an input in collector

Error 

Message” long 

path” 

displays

As 

expected

Pass -

4 Entering long application 

execution command in the 

collector

Error 

Message” long 

path” 

displays

As 

expected

Pass -

5 Entering short directory 

path as in put in the 

collector

Error 

Message” 

Short Path” 

displays

As 

expected

Pass -

6 Entering short execution 

command ( less than what 

is expected) as in put in 

the collector

Error 

Message” 

Short Path”

displays

Shows 

error

Fail -
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7 Entering numbers in Env-

application file name in 

Fault Injector

Error 

Message” No 

Such choice” 

displays

As 

expected

Pass -

8 Entering characters in 

Interaction Point (IP)as 

input in Fault Injector

Error 

Message” No 

Such choice” 

displays

As 

Expected

Pass -

9 Entering characters in IP 

in the collector

Displays 

error

Accept the 

input

Fail Y

10 Entering IP =0 in fault 

injector

Display Error Accept the 

input

Fail Y

11 Entering long number more 

than 100 in fault 

injector

Display Error Accept 

input

Fail Y

12 Entering number as a 

fault type in Fault 

injector

Display Error As 

expected

Pass -

13 Entering long name as a 

fault type in fault 

injector

Error 

message” 

Invalid fault 

type”

As 

expected 

Pass -

14 Entering Wrong Fault type 

in fault injector

Error message 

“Invalid 

fault type,”

As 

expected

Pass -

15 Entering blank in IP in 

fault injector

Error 

displays 

As 

expected

Pass -
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16 Entering blank in Env-

application name in fault 

injector

Error 

displays

As 

expected

Pass -

17 Entering blank in Fault 

type in fault injector

Error message As 

expected

Pass -

18 Entering blank in 

application execution 

command in collector

Error message As 

expected

Pass -

19 Entering bank in 

application directory in 

collector

Error message As 

expected

Pass -

20 Entering long Env-

application file name

Error 

displays

As 

expected

Pass -

21 Entering two application 

execution command as 

input in collector

Error 

displays

As 

expected

Pass -

22 Entering no information 

as an input for fault 

injector

Error 

displays

As 

Expected

Pass -

23 Entering numbers in fault 

type in fault injector

Error 

displays

As 

expected

Pass -

Functional Testing

We used functional testing to make sure that each module in Pulad is working and 
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that the result is as expected. So each of the modules that were described in Chapter 4 

and 5 was tested and run. The result of each module was compared with the purpose 

and goal of each module. So for the collector and the fault injector, we tested each of 

the modules that we described based on the input and the output of each file and 

compared the result with what we expected from the definitions and the structure in 

Chapter 4 and 5.

The following table shows the 17 test cases that we created to compare each module’s 

result with the expected result. We run these test cases three times with the three 

applications we have.

LSR Test Cases Expected Result Application Result Fail/

Pass

Bug 

Fixed

1 Entering 

application 

directory path 

and execution 

command to check 

if it will be 

stored in an 

input file

Get the input 

and port it 

into the input 

file

As expected Pass -
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2 Providing 

application 

directory path 

and the 

execution 

command to check 

EAIS module

Get the input 

and port the 

output into 

the General 

out put file

As expected Pass -

3 Providing EAIS 

result in 

Genral- Output 

file to test 

Parser module

Get the input, 

scan and 

delete extra 

symbols

As expected Pass -

4 Providing Main 

out put file to 

check DBStore 

module

Get the file, 

scan the 

output file 

and get the 

information 

for each 

specific field

As expected Pass -

5 DBUtill module Connect the 

parser to 

Oracle 

database

As expected Pass -
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6 Providing fault 

type , file name 

and  IP to check 

if the input 

file stores them

Get the input 

and stores it 

into Input 

file

As expected Pass -

7 Provide all the 

info to check 

the processor

Get the input 

and starts 

scanning 

through 

collector 

database

As expected Pass -

8 Provide file 

name to the 

processor 

through input 

file

Get the file 

name and 

search for the 

file name 

through 

collector 

database

As expected Pass -
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9 Provide 

Interaction 

point to the 

processor 

through input 

file

Get the 

interaction 

point and 

search for the 

specific 

interaction 

point for the 

specific file 

name through 

collector 

database

As expected Pass -

10 Provide Fault 

type to the 

processor 

through input 

file

Get the fault 

type and scans 

it through 

fault module

As expected Pass -

11 Given a fault 

type to the 

fault module to 

check the fault 

type module

Get the fault 

type and scans 

its through 

its functions 

and port the 

specific 

function to 

the fault type 

module

As expected Pass -
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12 Given all the 

inputs from the 

Processor to 

EAIS to check 

EAIS module

Get the inputs 

from the 

processor and 

the collector 

database and 

runs the 

application

As expected Pass -

13 Provide all the 

data from EAIS 

in General 

Output file to 

check Parser 

module

Get general 

out put file , 

scans it , 

delete extra 

symbols and 

port the 

result in the 

Main output 

file

As expected Pass -

14 Provide all the 

inputs for 

DBStore ready to 

check DBStore 

function

Get the inputs 

from Main out 

put file and 

scan it and 

port the data 

to the 

database 

As expected Pass -

15 Heck DBUtill 

module

Connect the 

Fault injector 

and oracle 

database

As expected Pass -
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16 Providing inputs 

in to the input 

file to port the 

database to the 

database 

collector

Get the inputs 

to the input 

file and port 

the data to 

the collector 

database

As expected Pass -

17 Providing 

application 

directory and 

the execution 

command to check 

EAIS module in 

fault injector

Get the 

application 

command and 

the directory 

from the 

collector 

database

As expected Pass -

Stress Testing

We ran the collector with the “ls” command application and used the stress 

testing.We created the test cases for stress testing with the high volume of inputs to 

check the behavior of the collector and the fault injector.

We ran the “ls” command though the Pulad with the following testcases and 

compared the result with the expected result.
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Conclusions

After having described the development of Pulad in Chapter 4 and 5, we detailed in 

LSR Test Cases Expected Result Application Result Fail/

Pass

Bug 

Fixed

1 Entering two 

application name 

and directory in 

the collector

Error message 

“ only one 

application to 

be run at the 

time”

As expected Pas

s

-

2 Entering all 

fault type to 

all files in all 

interaction 

points

Inject faults 

before IP was 

reached

As expected Pas

s

-

3 Entering all 

faults to one IP 

of a file

Inject faults 

before IP was 

reached

Error Fai

l

Y

4 Entering all 

faults to all 

file in all 

interaction 

points

Inject faults 

before IP was 

reached

Error Fai

l

-
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this chapter some of the tests that were conducted on Pulad to verify it.
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Chapter 7: Conclusion and Future Work

This thesis introduces a fault injector, called “Pulad”, specifically developed for 

finding application vulnerabilities. Most previous approaches for finding application 

vulnerabilities involved static verification methods. With these methods, the source 

code is not executed. Since vulnerabilities can only be revealed when they are 

exploited, the use of a dynamic verification method, executing the source code, seems 

needed. We have shown in Chapter 2 of this thesis that static analysis tools would not 

only identify as vulnerabilities bugs that cannot be exploited (leading to false alarms) 

but also miss vulnerabilities that could have been found had a dynamic verification 

method been used (leading to false positives). Therefore, the use of dynamic 

verification methods that would complement static verification ones is a natural 

research thread. The main two dynamic verification areas are software testing and 

fault injection. This thesis focuses on fault injection building upon some preliminary 

research conducted by [Du00].

The approach introduced by [Du00] focuses on environment-application interactions. 

These interactions can be used by an attacker to launch attacks on the application. 

Therefore, a secure application needs to be able to tolerate perturbations of the 

environment. If we now consider environment perturbations as faults, we then 

consider a secure system as a fault-tolerant system able to tolerate faults in the 

environment. We revised the classification given by [Du00] of environment direct 
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and indirect faults for the network, processes and files. The approach described in 

[Du00] requires extensive manual analysis of the source code. To provide automation 

and to remove the assumption on the need of source code, we focused on the sole 

files and removed the distinction between direct and indirect environment faults.

In Chapter 4, we described Pulad focusing one of the main components of Pulad 

called the “Collector”. The goal of the collector is to record all the environment-

application interactions when the application is running. These interactions focusing 

on the environment files are then analyzed and the following fields are uploaded into 

a database including the file name, file extension, file size, file directory, number of 

times file used, file permission (includes symbolic link and ownership) and number of 

times an error occurred. The chapter first describes the design goals of Pulad, then an 

overview of the collector and finally some implementation details.

The next chapter then focuses on the fault injector, the second main component of 

Pulad. The fault injector allows to inject faults either using a graphical user interface 

(GUI) or directly through a text file. The faults in the files include the file name, the 

directory name, the execution path, the library path, the file existence, the file 

ownership, the file permission, etc. For each of the faults, the specific type of fault 

needs to be indicated. Moreover, the interaction points where the faults should be 

injected are also provided by the user. 

Chapter 6 then describes the validation process we have used to validate Pulad. The 
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validation of the tool mainly relied on software testing. More precisely, functional 

testing, boundary testing and stress testing were applied. Running the “ls” command, 

a simple application interacting with some files of the environment and a larger 

application interacting with a significant number of environment files were 

developed. These applications were then used to apply the three testing techniques. 

Details on the test cases and testing results are provided in Chapter 6.

The next step in finding application vulnerabilities using fault injection is to apply 

Pulad on a real application to find vulnerabilities not identified yet. Issues related to 

this research include the choice of the fault types and the number of faults to inject, 

the interaction where to inject them. However, these issues are already present when 

dealing with fault injection in fault-tolerant systems. An issue specific to fault 

injection for proving that a system is secure, is the definition of a security violation 

when limited knowledge on the system is provided. This is a challenging question 

that needs to be answered in order to be able to provide some automation and remove 

the need to having the application source code.
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Appendix A: Code of the tracking system written in C:

/*Tracker.c*/
#include <stdio.h>
#include <stdlib.h>

int stackoverflow(char * strPara)
{
    char strLocalVar [6];

    strcpy(strLocalVar, strPara);

    return 0;
}

int heapoverflow(char * strPara)
{
    char * strHeapVar;

    strHeapVar = (char *)malloc(sizeof(char)*6);

    if(!strHeapVar){
printf("The heap runs out of space!\n");
exit(-1);

    }

    strcpy(strHeapVar, strPara);

    return 0;
}
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