
ABSTRACT

Title of Thesis: CHECKING FOR APPLICATION
VULNERABILITIES USING FAULT
INJECTION

MELODY DJAM
Master of Science, July 2005
Reliability Engineering

Thesis Directed By: Dr. Michel Cukier
Center for Risk and Reliability,
Department of Mechanical Engineering

This thesis introduces a fault injector, called “Pulad”, specifically developed for finding

application vulnerabilities. Most previous approaches for finding application

vulnerabilities involved static verification methods. With these methods, the source code

is not executed. Since vulnerabilities can only be revealed when they are exploited, the

use of a dynamic verification method, executing the source code, seems needed. The

main two dynamic verification areas are software testing and fault injection. This thesis

focuses on fault injection.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Repository at the University of Maryland

https://core.ac.uk/display/56099558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Pulad, the fault injector described in this thesis consists of two main parts called the

“collector” and the “fault injector”. The goal of the collector is to record all the

environment-application interactions when the application is running. These interactions

focusing on the environment files are then analyzed and the following fields are uploaded

into a database including the file name, file extension, file size, file directory, number of

times the file was used, file permission (includes symbolic link and ownership) and

number of times an error occurred. The fault injector allows injecting faults either using a

graphical user interface (GUI) or directly through a text file. The faults in the files

include the file name, the directory name, the execution path, the library path, the file

existence, the file ownership, the file permission, etc. For each of the faults, the specific

type of fault needs to be indicated. Moreover, the interaction points where the faults

should be injected are also provided by the user.

CHECKING FOR APPLICATION VULNERABILITIES

USING FAULT INJECTION

by

Melody Djam

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2005

Advisory Committee:

Dr. Michel Cukier, Chair
Dr. Ali Mosleh
Dr. Carol Smidts

Copyright by

Melody Djam

2005

ii

Dedication

To my parents, Azar Manavizadeh and Davoud Djam

My sister, Maryam Djam

And my advisor Dr. Michel Cukier

iii

Acknowledgements

It has been a wonderful experience for the past two years to work with my advisor Dr.

Michel Cukier. He has been a constant source of encouragement and inspiration

during various tough times and helped me going trough every step of my research.

Without his directions and support, this thesis could not have been possible.

My greatest debt goes to my parents, my sister and my friends who have been

encouraged and supported me all the way since the beginning of my studies. They

offered me unconditional love and support throughout my education.

I would like to thank the Shrada Upadhyay and Rohit Krishna who helped me

implementing Pulad.

Finally a word of thanks also goes to my laboratory mates Anil Sharma and Susmit

Panjwani. They have been very cooperative and enlivened the work environment in

the laboratory.

To each of the above, I extend my deepest appreciation

iv

Table of Contents

Dedication ii
Acknowledgements iii
Table of Contents iv
List of Tables vi
List of Figuresvii
Chapter 1: Introduction 1
Chapter 2: Approaches for Checking for Application Vulnerabilities 4

Introduction... 4

Terminology.. 4

Static and Dynamic Verification Methods.. 5

Limitations of Static Analysis... 7

Conclusions... 10

Chapter 3: Checking for Application Vulnerabilities using Fault Injection 11
Introduction... 11

Fault Injection using Environment Perturbation... 11

Revised Approach for Conducting Fault Injection Using Environment Perturbation

... 16

Conclusions... 20

Chapter 4: Collecting Environment-Application Interactions: Design and
Implementation 21

Introduction... 21

Overview of the Collector Architecture.. 21

Detailed Design of the Collector... 23

Types of Environment-Application Interaction Files ... 31

Database Tables .. 32

Functional Descriptions .. 35

Sequence Diagrams... 36

v

How to Run Pulad... 37

Conclusions... 39

Chapter 5: Fault Injection for Finding Application Vulnerabilities: Design and
Implementation 40

Introduction... 40

Overview of the Fault Injector Architecture... 40

Fault Injection techniques for Fault Injector... 43

Detailed Design of the Fault Injector.. 45

Functional Description.. 50

Conclusions... 53

Chapter 6: Validation of Pulad 54
Introduction... 54

Selected Testing Techniques... 55

Examples of Applications ... 57

Testing Results.. 58

Conclusions... 69

Chapter 7: Conclusion and Future Work 71
Appendix A: Code of the tracking system written in C: 74

vi

List of Tables

Table 1: Vulnerabilities Identified by Static Analysis Tools 8

Table 2: Number of False Positives and False Negatives 9

Table 3: Buffer Overflows Identified by Static Analysis and the Evolved Strategy 10

Table 4: Sub-categories of Indirect Faults 15

Table 5: Sub-categories of Direct Faults 17

Table 6: Environment Faults Considered in this Thesis. 20

Table 7: Fault Injection Considered in this Thesis. 21
Table 8: Example of Input File 43

Table 9: Sorting of Files Based on Interaction Times 44

vii

List of Figures

Figure1: Collector Architecture Overview 22

Figure2: Collector Sequence Diagrams 37

Figure 3: Fault Injector Architecture Overview 41

Figure4: Fault Injector Sequence Diagrams 52

1

Chapter 1: Introduction

Everyday new vulnerabilities are discovered in operating systems, services and

applications. These vulnerabilities would not be such an issue would the black-hat

community or attackers not be so active. In a recent paper [Pan05], it was shown that

2 computers left with about 25 vulnerabilities open would be attacked by 760

different attackers (each attacker being associated with a source IP address) in just 48

days of data collection. Since vulnerabilities left open are so quickly exploited, the

issue of finding vulnerabilities is critical.

Vulnerabilities can be classified into host, network and application vulnerabilities

based on their location. Tools exist for checking for host and network vulnerabilities.

Since these vulnerabilities are located in operating systems and services used by a

large community, vulnerabilities have a high probability to be discovered. Tools can

then be used to check if the operating system or services used contain the

vulnerabilities. However, most of the code is not contained in operating systems or

services but in applications [Vie02a]. Since most applications are used by a smaller

community, some vulnerabilities have a lower probability of being found. Moreover,

few tools exist for checking for these vulnerabilities. In fact, most existing tools rely

on the source code of the application and analyze statically if vulnerabilities are

present. This method only indicates potential vulnerabilities and misses some

vulnerabilities since the code is not executed. Finding an approach for checking for

application vulnerabilities based on a dynamic approach that executes the application

2

code is an important issue. This thesis tackles this issue applying fault injection for

finding application vulnerabilities.

This thesis is structured as follows. In Chapter 2, we first introduce the terminology

we will use through the entire thesis. We then review the most well-known static and

dynamic verification methods applied to finding application vulnerabilities. We then

identify the limitations of using only static verification methods.

In Chapter 3 we focus on one specific dynamic verification method, fault injection.

[Gho98] perturbed the internal state of the executing application and [Du00]

perturbed the environmental state. When neither approach has led to a tool that can

automatically check for application vulnerabilities, the fault injector described in this

thesis is based on a revised version of the framework developed by [Du00] to conduct

fault injection. The first part of Chapter 3 will review the concepts introduced by

[Du00]. The second part of Chapter 3 will detail the concepts used for the fault

injector presented in this thesis and the issues associated with the proposed approach.

We described in Chapter 4 and 5 the tool that we have developed. Our fault injector is

called “Pulad” and consists of two main components. The first main component

focuses on the collection of environment-application interactions related to files when

the application is executed and is called the “collector”. The second main component

focuses on the injection of faults and is called the “fault injector”. The collector will

be described in Chapter 4. The fault injector will be described in Chapter 5. In both

chapters, we will describe the collector and fault injector at a high level, then provide

design and implementation details. A functional description, sequence diagrams and

details on how to execute the collector will also be provided.

3

In Chapter 6, we focus on the validation of Pulad based on software testing. Three

applications were used and developed. Three different testing techniques were used to

ensure the proper behavior of Pulad.

Finally, in Chapter 7, we conclude this thesis and list issues and future work.

4

Chapter 2: Approaches for Checking for Application

Vulnerabilities

Introduction

In this chapter, we first introduce the terminology we will use through the entire

thesis. We then review the most well-known static and dynamic verification methods

applied to finding application vulnerabilities. We then identify the limitations of using

only static verification methods by comparing the outcome obtained by some popular

static analysis tools with a revised testing strategy targeting buffer overflows. This

example illustrates the need for developing dynamic verification methods for finding

application vulnerabilities. Instead of software testing, this thesis focuses on another

important dynamic verification method: fault injection.

Terminology

Over the years, software in computing systems has become significantly larger and

more complex. This increase of size and complexity leads to an increase of the

number of faults or bugs present in the software. Most faults might lead to software

failures when the fault is activated. However, some of these faults might also be

targeted by malicious users (attackers). Indeed, some of these faults might lead to

system compromises when an attacker exploits these faults. More precisely, this

special type of fault is called a (security) vulnerability. A vulnerability is a weakness

5

of the computing system that can be exploited by an attacker. An exploit of a

vulnerability can lead to an intrusion in the computing system by the attacker.

Building a secure computing system thus requires to find and remove vulnerabilities.

Vulnerabilities are usually classified into host vulnerabilities, network vulnerabilities,

and application vulnerabilities. Host vulnerabilities are linked to potential attacks

from insiders and lead to potential theft and abuse of privilege (i.e., improper use of

authorized operations). Network vulnerabilities are linked to potential attacks from

outsiders and lead to potential theft of privilege (i.e., unauthorized increase in

privilege). Like host vulnerabilities, application vulnerabilities allow a theft of

privilege and an abuse of privilege. The definition of the concepts related to security

presented in this section are taken from [MAFTIA00] and [MAFTIA01].

This thesis focuses on application vulnerabilities. Since most of the currently

developed code belongs to the application category, application vulnerabilities are of

paramount importance. However, among all possible application vulnerabilities, so

far the security community has mainly focused on buffer overflows (considered as the

vulnerability of the decade [Cow99]) and race conditions [Vie02a]. Like for any other

fault, finding (application) vulnerabilities can be done by using either static

verification methods (without software execution) or dynamic verification methods

(with software execution).

Static and Dynamic Verification Methods

The main static verification methods are formal methods and static analysis. The

advantage of the use of formal methods is the precision associated with the approach.

6

The disadvantages are the difficulty in specifying the requirements and the system

and the development of techniques for checking the requirements specification

against system specification. Static analysis is mainly based on code analysis to

identify potential vulnerabilities (i.e., vulnerabilities that can potentially be exploited

by attackers). Static analysis is a lightweight approach to find with high efficiency

potential vulnerabilities. However, since the software is not executed, only potential

vulnerabilities can be identified. Moreover, vulnerabilities might also be missed when

applying static analysis. Since many tools are currently apply static analysis

approaches, we will examine in detail later in this chapter the efficiency of some of

the most popular tools.

Dynamic verification methods include fault injection and software testing. Two

recent approaches applying fault injection both simulated the incoming attacks.

[Gho98] perturbed the internal state of the executing application and [Du00]

perturbed the environmental state. However, none of these approaches can be easily

ported into a tool checking for generic application vulnerabilities. Among the

software testing strategies, penetration testing is the main strategy where assumptions

on possible vulnerabilities are made by accessing, for example, documents on the

application and its environment. Each of these assumptions is then verified by testing

[Dow01, Dan99]. [McG98] points out that penetration testing occurs too late in the

software development process, just before software is released. Moreover, there is no

rigorous approach associated with penetration testing. Besides penetration testing,

very few software testing strategies have been applied in the context of security. Of

those few, the PROTOS project [PROTOS] at the University of Oulu, Finland,

7

focuses on testing the security of protocol implementations. The researchers created

several test suites, available on the project web site, that identified vulnerabilities in

most of the tested products, leading even to a CERT advisory (CA-2002-03) for

vulnerabilities found in many implementations of the Simple Network Management

Protocol (SNMP). As part of the PROTOS project, [Kak00] developed a method of

vulnerability analysis through syntax testing. Moreover, at Purdue University, [Asl96]

developed a taxonomy of security faults and linked the faults with software testing

strategies. Faults are classified into synchronization errors, condition validation

errors, configuration errors, and environment faults. The surveyed testing strategies

include symbolic testing, path analysis testing, functional testing, syntax testing, and

mutation testing. Finally, [Vie02a] claims that black box testing is not very effective

in the context of security. White box testing however is claimed to be much more

effective.

Limitations of Static Analysis

As previously mentioned, static analysis is a well-known static method that is mainly

based on code analysis to identify potential vulnerabilities (i.e., vulnerabilities that

can potentially be exploited by attackers). However, static analysis cannot identify the

environmental conditions needed for some vulnerabilities to be exploited. Therefore,

a number of false positives (i.e., identified vulnerabilities that cannot be exploited by

an attacker) can be expected. Tools applying static analysis include Flawfinder

[Flawfinder], RATS [RATS], and ITS4 [Vie02b]. RATS, ITS4, and Flawfinder use a

built-in database of vulnerabilities. For example, Flawfinder uses a built-in database

8

of C/C++ functions with well-known vulnerabilities. On the other hand, CQUAL uses

constraint-based type inference. To analyze a program, CQUAL traverses the

program’s abstract syntax tree and generates a series of constraints that capture the

relations between type qualifiers. Since the exploit of a vulnerability might depend on

environmental conditions that cannot be identified by static verification methods,

dynamic verification methods complement static analysis. The following example

illustrates the limitations of exclusively using static analysis. We applied Flawfinder,

RATS, and ITS4 on the “mingetty.c” benchmark which is described as “a small,

efficient, console-only getty for Linux that opens a tty port, prompts for a login name

and invokes the /bin/login command” [mingetty]. We obtained the results given in

Table 1.

Vulnerability Type / Tool FLAWFINDER RATS ITS4
Buffer Overflow 21 10 6

Format String 2 2 14
Race Condition 2 0 10

Table 1: Vulnerabilities Identified by Static Analysis Tools

The 21 buffer overflow vulnerabilities identified by Flawfinder include the 10 and 6

buffer overflow vulnerabilities found respectively by RATS and ITS4. An evolved

version of robust worst-case boundary value analysis testing was applied

independently1 to find buffer overflows and found a total of 13 buffer overflows. The

vulnerabilities found by robust worst-case boundary value analysis were then

1 The development and application of the evolved testing technique was conducted by Avik Sinha and

Ming Li under the supervision of Dr. Carol Smidts.

9

compared with the vulnerabilities found by the static analysis tools. The number of

false positives and the number of vulnerabilities missed by the static analysis tools

(i.e. false negatives) are shown in Table 2.

Static Analysis Tool Number of False Positives Number of False Negatives
ITS4 3 (50%) 10 (77%)

RATS 7 (70%) 10 (77%)
Flawfinder 8 (38%) 0 (0%)

Table 2: Number of False Positives and False Negatives

By inspection it was found that some of the vulnerabilities initially identified by static

analysis tools were not actual buffer overflows since the application contained bound

checks to protect against range violations. Flawfinder includes the 13 actual buffer

overflow vulnerabilities among the 21 identified vulnerabilities. In addition Table 2

shows that not all vulnerabilities could be identified using ITS4 and RATS, because

mingetty.c contains some user- built functions, which are not included in the

vulnerability definition libraries of the tools. This example shows that testing can be

used in conjunction with static analysis to remove false positives. This example also

shows that static analysis tools are not always effective at finding buffer overflows

caused by user-defined functions.

In another example, we applied the same static analysis tools (i.e., Flawfinder, RATS,

and ITS4) on a tracking system, Tracker.c (presented in Appendix A), written in C

that contains one buffer overflow vulnerability. Tracker.c is a projectile tracking

system that has user defined library functions that implement data input and

processing. The results of static analysis showed that no buffer overflow was found

10

by any of the static tools. We2 then developed a suite of test cases based on the

evolved testing strategy. The result showed that a buffer overflow was present in the

code. This example confirms the previously mentioned result, i.e. that static analysis

tools are not always effective at finding buffer overflows caused by user-defined

functions (see Table 3). Based on the limitations of static analysis and the inherent

ability of dynamic approaches to reproduce the execution environment, dynamic

approaches should be used in complement to static analysis.

Static Analysis Tool Number of False Positives Number of False Negatives
ITS4 0 1

RATS 0 1
Flawfinder 0 1

Table 3: Buffer Overflows Identified by Static Analysis and the Evolved Strategy

Conclusions

This chapter reviews different static and dynamic verification methods for finding

application vulnerabilities. The pros and cons of different approaches are described.

In particular, the limitations associated with using only static verification methods are

detailed. The conclusion of this chapter is the use of dynamic verification approaches

combined with static analysis. In the next chapter we detail a dynamic verification

method based on fault injection.

2 The development and application of the evolved testing technique was conducted by Avik Sinha and

Ming Li under the supervision of Dr. Carol Smidts.

11

Chapter 3: Checking for Application Vulnerabilities

using Fault Injection

Introduction

In Chapter 2, we identified the limitations of the sole use of static verification

methods for finding application vulnerabilities and the usefulness of combining static

and dynamic verification methods. In this chapter we focus on one specific dynamic

verification method, fault injection. In the previous chapter, we stated that the two

recent approaches applying fault injection both simulated the incoming attacks.

[Gho98] perturbed the internal state of the executing application and [Du00]

perturbed the environmental state. When neither approach has led to a tool that can

automatically check for application vulnerabilities, the fault injector described in this

thesis is based on a revised version of the framework developed by [Du00] to conduct

fault injection. The first part of this chapter will review the concepts introduced by

[Du00]. The second part of the chapter will detail the concepts used for the fault

injector presented in this thesis and the issues associated with the proposed approach.

Fault Injection using Environment Perturbation

Like [Du00], we assume that a “system” combines an “application” and its

“environment”. Based on this definition, all code that is not part of the application

would be part of the environment. The range of the environment can be reduced by

12

only defining as “environment” the portions of the code that have a direct or indirect

coupling with the application code. The use of common resources (e.g., files, network

components) or global variables are examples of such couplings. [Gar96] and [Krs98]

empirically demonstrate that the environment plays a significant role in triggering

vulnerabilities that lead to security policy violations.

We define a “secure” program as a program that tolerates environment perturbations

without any security policy violation. If we now consider environment perturbations

as faults, we then consider a secure system as a fault-tolerant system able to tolerate

faults in the environment. Fault injection can be defined as “the deliberate insertion of

faults into an operational system to determine its response” [Cla 95]. In the approach

introduced by [Du00], faults are injected in the application environment and thus

perturbating the environment. The perturbation then might lead to a security

violation. If it does not lead to a security violation, then the application is considered

secure.

The terminology introduced by [Du00] defines:

• Internal entity: any element in the application’s code and data space.

• Internal state: a state that consists of the status of the internal entities.

• Environment entity: any element that is external to an application’s code and

data space.

• Environment state: a state that consists of the status of the environment

entities.

Examples include: a variable in an application (i.e., internal entity), the value of the

13

variable (i.e., internal state), files and network (i.e., environment entities), the

permission or ownership of a file (i.e., environment state). The shared nature of the

environment entity differentiates internal entities from environment entities. An

environment entity is not only accessed and changed by an application. Other objects

also can access and change an environment entity. This is not the case with internal

entities that only applications can access and modify.

Environment faults usually affect an application in two ways [Du00]. An application

can receive inputs from its environment. In that case the associated environment

faults are faults in the input. The input is included in an internal entity of the

application. The fault then propagates through the application via the internal entities.

A security violation might occur if the application is not able to correctly handle the

faults. When the direct reason of this violation seems to be due to the faults in the

internal entities, the real reason is the propagation of environment faults. The

environment thus indirectly causes a security violation via the internal entities. These

faults are called indirect environment faults. For example, assume that an application

receives its input from the network. Any fault in the network message is included in

the internal entity. When the application copies this message into a buffer without

checking the buffer’s boundaries, a security violation occurs. Indirect environment

faults can be divided into the following sub-categories according to their origin:

• user input

• environment variable

• file system input

14

• network input

• process input

The different sub-categories are summarized in the following table [Du98].

Indirect Fault Semantic Attribute Description
file name Name of a file
directory Name of a directoryUser Input
command Name of a command executed in the application
file name Name of a file
directory Name of a directory
execution path List of paths used to search executable files or commands
library path List of paths used to search libraries

Environment
Variable

permission mask A mask which decides default permission of a newly
created file

file content Content of a file
file name Name of a file
directory Name of a directory

File System
Input

file extension Special string that represents that type of files
IP address Representation of IP address
packet Packet
host name String that represents the name of host

Network
Input

DNS reply Reply from DNS server
Process
Input

message Message sent from one process to another

Table 4: Sub-categories of Indirect Faults

The second way environment faults affect an application is when the fault remains

within the environment entity and when the application interacts with the

environment without correctly handling these faults. In that case, a security violation

occurs. Environment faults are then the direct cause of the security violation and the

medium for environment faults is the environment entity itself. These faults are called

direct environment faults. For example, when an application needs to execute a file,

the owner of the file might be the owner of the application or some malicious user. In

case the application does not check who the owner of the file is, some arbitrary code

15

might get executed leading to a security violation. Indirect environment faults can be

divided into the following sub-categories:

• file system

• process

• network

The different sub-categories are summarized in the following table.

Direct
Fault

Attribute Description

file existence File does or does not exist
file ownership Owner of the file
file permission Access permission for different users
symbolic link File is a symbolic link to another file
file content
invariance

File can or cannot be modified during the
execution of the application

file name invariance File name can or cannot be modified during
the execution of the application

File
System

working directory Directory where the application is invoked
message authenticity Message is genuine or is spoofed by other

people
protocol Message from network does or does not

comply with underlying protocol
status of socket Socket is or is not shared with another

process
availability of
service

Network service is or is not available

Network

trustability of
entity

Entity at the other end of network is or is
not trusted

message authenticity Message is genuine or is spoofed by other
people

trustability process Process with which the application is
communicating is or is not trusted

availability of
service

Service that the application requested is or
is not available

Process

protocol Message from another process does or does
not comply with underlying protocol

Table 5: Sub-categories of Direct Faults

16

Revised Approach for Conducting Fault Injection Using

Environment Perturbation

The fault injector we have developed is based on a similar theoretical framework.

However, several significant differences exist between the framework proposed by

[Du00] and the one we have developed. First, we only consider environment faults

through files and not faults through the network or processes. Second, we also no

longer maintain the distinction between indirect and direct environment faults. We

now detail the reasons for making these changes.

 [Krs98] analyzed a security vulnerability database consisting of around 195

application vulnerabilities from different operating systems such as Windows-NT,

Solaris, HP-UX, and Linux. Among these vulnerabilities, 142 could be used to be

classified as indirect or direct environment faults. 57% of the vulnerabilities could be

identified as indirect environment faults, 34% as direct environment faults, and 9%

could not be categorized as neither indirect nor direct environment faults. Among the

indirect environment faults, 90% were linked to files, 10% to network inputs and 0%

to process inputs. Among the direct environment faults, 87% were linked to files,

10% to the network and 2% to processes. The first reason for focusing on

environment faults linked to files is the significant number of vulnerabilities

associated with files. Moreover, the approach proposed by [Du00] to find application

vulnerabilities requires: a) to have access to the source code of the application, and b)

to manually analyze the source code to find specific cases that would lead to a

security violation. A fault would then be injected to verify that indeed the fault leads

17

to a security violation. As previously mentioned, the automation of such a process

would be very complex. The most complex analysis of a security violation involves

issues related to “trust” (i.e., trustability of entity, trustability process). Both cases

involve the network and processes. So, in order to reach some automation and avoid

systematic manual analysis, we will no longer consider issues related to the network

and processes. Since network and process environment faults count for about 10% of

the cases, this condition for reaching some level of automation only discards about

10% of the environment faults leading to a security violation.

As already mentioned, the method proposed by [Du00] requires the analysis of the

source code of the application to identify potential security violations when specific

faults are injected. This approach leads to a very small number of faults that need to

be injected but requires a complex manual analysis before fault injection and is based

on the source code. We do not believe that these assumptions are reasonable for most

applications. Source code is not often made available, Moreover, in practice, rare will

be the cases when an organization agrees that some programmers spend large

amounts of time analyzing manually an application source code to identify the faults

to be injected that would lead to a security violation. Therefore, we decided to take

the “black-box” approach, assuming that the source code would not have been made

available. Moreover, our goal is also to move from manual analysis to some

automation. The direct consequence is that we no longer will be able to identify

precisely which faults will lead to a security violation. A significant higher number of

faults will need to be injected. And for these faults, some analysis is needed after fault

injection to check if the fault led to a security violation. Mainly because we opted for

18

the black-box approach, the distinction between indirect and direct environment faults

becomes less relevant. The following table presents the environment faults that will

be considered from now.

Fault Attribute Description
file name Name of a file
directory Name of a directoryUser Input
command Name of a command executed in the application
file name Name of a file
directory Name of a directory
execution path List of paths used to search executable files or commands
library path List of paths used to search libraries

Environment
Variable

permission mask A mask which decides default permission of a newly
created file

file content Content of a file
file name Name of a file
directory Name of a directory

File System
Input

file extension Special string that represents that type of files
file existence File does or does not exist
file ownership Owner of the file
file permission Access permission for different users
symbolic link File is a symbolic link to another file
file content
invariance

File can or cannot be modified during the execution of the
application

file name
invariance

File name can or cannot be modified during the execution
of the application

File System

working
directory

Directory where the application is invoked

Table 6: Environment Faults Considered in this Thesis

The goal of the fault model proposed by [Du00] is to allow fault injection to be

conducted at the environment-application interaction level to try to “emulate what a

“real” attacker does”. The claim made by the authors is that “since most of the

vulnerability databases record the way attackers exploit a vulnerability, we transform

these exploits to environment faults to be injected with little analysis on those records

19

thereby narrowing the semantic gap between faults injected at the interaction level

and faults that really occur during the intended use of the system.” This goal is

relevant when conducting an extensive manual analysis of the code to identify

potential security violations. Since we are taking the black-box approach, we have

less insight on the application. Therefore, out goal should not to emulate “real”

attacks but rather perturb in many different ways the environment to check the cases

when a security violation appears. This approach has also the advantage of not

assuming what the attacker might do and therefore also includes original attacks that

we would not have thought of. Our approach can thus been seen as checking if

building blocks linked to the files that attackers could use to develop attacks might

lead or not to a security violation.

The following table lists the different possible fault injections for the attributes that

we have identified.

Entity Attribute Fault Injection
file name Change length, use relative path, use absolute path, insert

special characters such as “..”, “/” in the name
directory Change length, use relative path, use absolute path,

insert special characters such as “..”, “/” in the name

User Input

command Change length, use relative path, use absolute path, insert
special characters such as “|”, “&”, “>” or new line in the
command

file name Change length, use relative path, use absolute path, use
special characters such as “|”, “&”, “>” in the name

directory Change length, use relative path, use absolute path, use
special characters such as “|”, “&”, “>” in the name

execution path Change length, rearrange order of path, insert a untrusted
path, use incorrect path, use recursive path

library path Change length, rearrange order of path, insert a untrusted
path, use incorrect path, use recursive path

Environment
Variable

permission mask Change mask to 0 so it will not mask any permission bit
file name Change length, use relative path, use absolute path, use

special characters such as “|”, “&”, “>” in the name

20

directory Change length, use relative path, use absolute path, use
special characters such as “|”, “&”, “>” in the name

file extension Change to other file extensions like “.exe” in Windows
system; change length of file extension

file existence Delete an existing file or make a non-existing file exist
file ownership Change ownership to the owner of the process, other

normal users, or root
file permission Flip the permission bit
symbolic link If the file is a symbolic link, change the target it links to; if

the file is not a symbolic link, change it to a symbolic link
file content
invariance

Modify file

file name
invariance

Change file name

File System

working
directory

Start application in different directory

Table 7: Fault Injection Considered in this Thesis

Conclusions

In this chapter we described an approach for identifying application vulnerabilities

applying fault injection using environment perturbation. We then revised some of the

concepts of the described approach so that automation would be possible and having

the application source code would not be required. Based on these new concepts,

Chapter 4 and Chapter 5 introduce the tool we have developed for finding application

vulnerabilities using fault injection.

21

Chapter 4: Collecting Environment-Application

Interactions: Design and Implementation

Introduction

After having motivated the choice of applying a dynamic verification method for

checking for application vulnerabilities using fault injection, we describe in Chapter 4

and 5 the tool that we have developed. Our fault injector is called “Pulad” which

means “hard, strong, hard to break” in Persian. The story behind Pulad is deeply

rooted in Persian culture. Pulad consists of two main components. The first main

component focuses on the collection of environment-application interactions related

to files when the application is executed and is called the “collector”. The second

main component focuses on the injection of faults and is called the “fault injector”.

The collector will be described in Chapter 4. The fault injector will be described in

Chapter 5.

Overview of the Collector Architecture

For running the collector, the user only needs to provide the application’s execution

command and the directory name of the specific application as inputs. The output of

the collector is then stored in an Oracle database table. The following figure shows

the overview of the collector architecture.

22

User Inputs

Application Execution
Command Application Directory

Collector

InputFile

General Output

MainOutput

Environment Application
Interacion scanner (EAIS)

Parser

Store InputFile

DataBase

DB UtilDBStore

Figure1: Collector Architecture Overview

First, the user needs to provide the application execution command and the

application directory name. This data is needed as input to the collector and is stored

in the collector input file. The input file is then stored in the database. Using this

information, the collector then runs the Environment-Application Interaction Scanner

23

(EAIS) module to capture all the environment-application interactions associated with

files. The output of EAIS is stored in the in collector GeneralOutput file. The parser

in the collector then parses the GeneralOutput file to remove all extra symbols

generated by Java (Java will add some unnecessary data when executing the

application), changes the time reference, and saves the output into the MainOutput

file. DBStore then scans the MainOutput file and saves the information in the Oracle

database through the DBUtil module (DBUtil connects the application with the

Oracle database engine and ports data from DBStore to the Oracle database).

Detailed Design of the Collector

In this section we detail the different parts of the collector.

The Input File

The input file stores the user input provided to the collector. As already mentioned,

the user inputs consist of the application execution command and the application

directory name. The application execution command is the command that is used to

run the specific application. For instance, the “ls” command in UNIX is a simple

application execution command. The application directory name is the name of the

directory where the application is located. For instance, the directory name for the

same UNIX command, ls, is “/bin”. The user provides this information in the

following format: “ls /bin collector”. Finally, as a third argument, the user needs to

enter a keyword, “co” or “fi”, referring either to running the collector component or

the fault injector component (to be described in Chapter 5). These three inputs are

24

also saved in the Oracle database. The collector or fault injector can then retrieve

these user inputs at anytime.

The EAIS Module

The Environmental Application Interaction Scanner (EAIS) module is a module that

captures all environment-application interactions involving files. This module

intercepts and records the system calls, which are called and received by the

application. EAIS consists of a modified version of the tool called strace [strace].

This open source tool is a useful diagnostic, instructional, and debugging tool. It

captures most interactions between the application and the environment. But it would

not give all the information for the specific file system. For instance strace will not

provide the ownership of the file that interacted with the application. Also, the times

of the interactions recorded by strace (the first eighteen digit of each line) refer to the

time that strace was built. We modified strace to get the ownership of the file. Also

we modified strace to change the time reference of each interaction. The output

format of EAIS is the identical to the one used by strace. We added an argument to

show the ownership of each file system. The following is the pseudo-code of EAIS to

capture the file ownership:

For each file interacting with the application, after the

interaction(while it is open)

{

 run the UNIX command “ls –al”;

 parse the output of “ls –al” to get the ownership;

25

 save the ownership name in the output file as 3rd argument in the

lines starting with “open”;

}

The following is the output of “ls –al bash_logout”.

-rw-r--r-- 1 Root oinstall 24 Dec 20 19:01 .bash_logout

The third argument shows the ownership of the file. In the above example,the owner

is “root”. So EAIS will trace the ls output, capture the ownership and save it into the

GeneralOutput file as the third argument in of each line starting with “open”. The

command to run the EAIS module in the collector is as follow :

strace -ttt [-o GeneralOutput] [Application execution command]

This command runs the application and stores the output in the GenaralOutput file.

The argument “–ttt” is used so that each environment-application interaction time is

recorded. The “Application execution command” argument contains the command to

execute the application provided by the user.

The GeneralOutput File

The GeneralOutput file contains the output of the EAIS module. This output contains

some unnecessary symbols that Java added while running this module. The following

shows the content of the GeneralOutput file when running the “ls” UNIX command:

1114466952.522425 execve("./ls", ["./ls"], [/* 37 vars */]) = 0
1114466952.522803 uname({sys="Linux", node="Redhat9", ...}) = 0
1114466952.523025 brk(0) = 0x804a368
1114466952.523106 old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000
1114466952.523206 open ("/etc/ld.so.preload", O_RDONLY) = -1 ENOENT

26

(No such file or directory)

The Parser Module

To remove all unnecessary symbols added by Java while running EAIS and change

the time reference (removing the first 10 digits) we developed the parser module. This

module parses the GeneralOutput file and deletes all extra arguments that were

generated by Java. The output of this module will be saved in the MainOutput file.

For instance, in the GeneralOutput file, each file directory contains:

/usr/java/j2sdk1.4.2_06/jre/lib/i386/client/tls/i686

which is the directory where Java is running. The parser module removes these

directories and stores the rest in the MainOutput file. As we can see from the

GeneralOutput file presented in the previous section, each line that starts with “open”,

“fstat” or “stat” contains the directory path that Java creates. The parser also cuts the

first 10 digits of 16 digit long timestamps, removes the “.” in the time format, and

removes the space after the timestamp. The parser will parse this output file based on

the following pseudo-code.

Create file a =GeneralOutput file
While each line in a != Null
{
 int q=line.indexOf('(');
 b=line.substring(16,q);
 S_command=Take the command after b;
 If S_command =”open” then
 {
 take the first argument;
 trace all the directories that contains java path;
 omit the java path;
 take the first sixteen digits and take the first argument after
“open”;
 omit the first ten digits for each timestamp;
 }
 If S_command = ”close” then
 {
 take the fist sixteen digits;
 omit the first ten digits for each timestamp;
 }

27

 If S_command = ”fstat” or “stat” then
 {
 take the first argument;
 trace all the directory that contains Java path;
 omit the Java path;
 take the first sixteen digits before “fstat” or “stat”;
 omit the first ten digits for each timestamp;
 }
save in MainOutput file
}

The MainOutput File

The MainOutput file is the output of the parser module. In this file, each line contains

the timestamp (first six digits), the interaction file name, followed by its arguments in

parentheses and its return value. The arguments associated with the interaction files

include the directory name, permission, file extension, file ownership and size of the

file.

The following shows the MainOutput file when executing the UNIX “ls” command:

522425execve("./ls", ["./ls"], [/* 33 vars */]) = 0
522803uname({sys="Linux", node="Redhat9", ...}) = 0
523025brk(0) = 0x804a368
523106old_mmap(NULL, 4096, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x40016000
523206open("/etc/ld.so.preload", O_RDONLY, root) = -1 ENOENT (No
such file or directory)

As you we can see from this output, all the unnecessary directory names and

associated symbols were removed by the parser module. The sixteen digit numbers

were also removed from the GeneralOutput file to only keep the last six digits in the

MainOutput file.

The DBStore Module

After having caught all the information related to the environment-application

interaction files, we store it in database tables (so that we can retrieve the information

28

later). The information stored related to each files is:

• The file name, which contains the name of each environment-application

interaction file.

Each interaction file name can be found in the MainOutput file. This data is

the first argument of the line that starts with ”open”. For instance from the

following line, we can capture the name of the interaction file which is

ls.so.cache: open("/etc/ld.so.cache", O_RDONLY, root) = 3

• The directory name where the file is located.

The directory name can be found from the MainOutput file. Each directory

name is the first argument of each line that starts with ”open”. In the previous

example, the directory is “/etc/”.

• The owner of the file, who can make changes to the file.

This field can be captured from the third argument of each line that starts with

“open” in the MainOutput file. In the previous example, the owner is “root”.

• The file permissions, which are the permissions associated with the file.

Permission of each file can be captured from the second argument of each line

that starts with “open” in the MainOutput file. In the previous example, the

permission is “O_RDONLY” which indicates that this file can just be opened

to be read.

• Open time, which is the time when file started interacting with the application.

This field consists of the first six digits of each line that start with “open” in

MainOutput file.

29

• Close time, which is the time when the file stopped interacting with the

application.

The close time can be captured from the first six digits of the line that starts

with the “close”. This line shows that the interaction file stopped interacting

with the application.

• File size, which is the size of the file interacting with the application.

The file size is the second argument of the line that starts with “fstat” or

“fstat3”.

• File existence.

The value assigned to the line that starts with “open” shows the existence of

the file. If the number is 3, it means that file interacted with the application. If

the number is -1 it means that the file could not be interact with the

application. For instance the first line in the following shows that ld.so.preload

file could not interact with the application .The second line shows that

ld.so.cache file interacted with the application:

open("/etc/ld.so.preload", O_RDONLY, root) = -1
open("/etc/ld.so.cache", O_RDONLY, root) = 3

All this information can be obtained from the MainOutput file. For instance, from the

following lines, we can get the interaction file name which is “libc.so.6”, the

directory name where the file is located which is “/lib/tls/”, the file permission which

is O_RDONLY and the owner of the file which is root. Also from the second line, we

can get the size of the interaction file, which is 50025 bytes. The third line gives some

information about the memory map of the file, while it was interacting with the

30

application. The fourth line, which is “close(3)=0”, indicates that the interaction file

stopped interacting with the application.

open("/lib/tls/libc.so.6", O_RDONLY, root) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=50025, ...}) = 0
old_mmap(NULL, 50025, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40017000
close(3)=0

The DBStore module takes the information from the MainOutput file and stores it

into the specific table in database. The following pseudo-code shows how the

information is captured from the MainOutput file:

Create file a= MainOutput file
While each line in a != Null
{
 q=Get the first world
 If start=”open” then
 {
 Get the start time;
 Store it into start time field in database;
 pass “(“;
 look for the first argument
 Store it into filename field in database;
 Store the directory into file directory field in database;
 Get file type from directory;
 Store it into file type field in database;
 Take the second argument;
 Store it into file permission field in database;
 Take the third argument;
 Store it into ownership field in database;
Go to next line;
 }
if q =”fstats” Then
 {
 Take the second argument;
 Store it into number of link filed in the database;
 }
 if q=”close” Then
 get the end time;
 store it into end time field in database;
 store it in to the start time and the ending time fields in the
database
}

The algorithm ports the MainOutput file to a temporary file called “file a”. First it

31

checks if the line is not null. Then for each line, it looks at each line’s first word. If

the line begins with “open”, it ports the start time, the first argument to the file’s

name and the directory to the database. Then it ports the second argument to the file

permission’s directory. Thereafter, it gets the third argument and ports it to the

ownership field. If the line starts with “fstats”, then the algorithm takes the second

argument and ports it to the size field. If the line starts with “close”, it ports the

ending time to the database.

Types of Environment-Application Interaction Files

The environment-application interaction files can be categorized as follows:

Temporary files. These files are created and deleted while the application is running.

Temporary files are located in the “/tmp” or “$temp” directories. These files are

identified by searching the MainOutput file, if the first argument in parenthesis of

each system call contains the path “/tmp/<file name>”. If it does, the application is

using that particular temporary file.

Environment files. All global environment variables that different programs use are

located in the “/etc”, “/etc/env.d”, “/etc/profile.env” or “/etc/profile.ed” directories.

These files are identified by searching the MainOutput file, if the first argument in

each system call contains one of the above environment directories. If it does, the

application is using that particular environment variable.

Library files. Library files are global files and could be accessed by other

applications. These files are located in the “/lib” directory. Therefore, we just need to

check for this directory in the MainOutput file to identify if the application has

32

interacted with any library file.

Database Tables

We designed three tables in Oracle to store data. The three tables are the following.

File table. In this table the fields contain general information on each interaction file.

The fields are as follow:

• File ID

This is the unique ID number that is assigned to each interaction. We use this ID

number as a primary key of the table.

• Interaction file name (which is the primary key of this table)

Interaction file names are identified as the first argument after ”open” in each line in

the MainOutput file. For instance, in

open("/lib/tls/libc.so.6", O_RDONLY, root) = 3

libc.so.6 is the name of the interaction file.

• File type

The type of each interaction file can be found from the directory where the file is

located. As previously mentioned, each type of file is located in a specific directory.

For instance /lib/tls/libc.so.6 shows that the file is located in the lib directory,

indicating the file type is a library file.

• File size

The file size is captured from second argument in each line that starts with “fstat”.

The size is indicated after “st_size” in the second argument. For instance the

following line in the output of the MainOutput file shows the size of 50025 for

33

ld.so.cache file

open("/etc/ld.so.cache", O_RDONLY, root) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=50025, ...}) = 0

• File directory

The file directory name can be captured from the first argument of each line that

starts with “open”. For instance line

open("/etc/ld.so.cache", O_RDONLY, root) = 3

/etc is the directory of the ld.so.cache file.

• Number of environment-application interactions for file

DBStore module counts the number of times the application interacted with a specific

environment file.

• Permission of the file

The permission of each interaction file can be captured from the second argument of

the line that starts with “open”. Permissions are read and/or write. For instance, in the

following line, O_RDONLY shows that this file is just opened to be read.

open("/etc/ld.so.cache", O_RDONLY, root) = 3

If the file has read and write permission, this argument shows ”O_RDWR” .If the file

has only write permission, this argument will be “O_WRONLY”.

• File owner

The file’s owner can be captured from the last argument of the each line that starts

with “open” argument. For instance, in the following line, the owner of this file is

root.

open("/etc/ld.so.cache", O_RDONLY, root) = 3

• Start time

34

Each interaction file starts interacting with the application when the file has been

opened. The start time can be captured from the MainOutput file.

• End time

Same as the start time field, the end time can be captured from the MainOutput

file.

• File Existence

To make sure that a file starts interacting with the application while it is open, we

check the number in front of each line that contains “open” in the beginning. If

the value that assigned to the “ open’ arguments is equal to 3, it means that file

has been successfully opened. If the number is –1, it means that the file could not

interact with the application. For instance the following line shows that the file

interacted with the application and was opened successfully:

open("/etc/ld.so.cache", O_RDONLY, root) = 3

But the following line shows that the file could not interact with the application:

open("/etc/ld.so.preload", O_RDONLY, root) = -1

Error Table. Each file can interact with the application at different times. The

followings are the fields of the table indicating the status of each interaction.

• File name

• Number of errors

To get the number of times that an error occurred when the application interacted

with a file, we scan in the MainOutput file each line that starts with “open“. If the

number that is assigned after the argument is “-1”, it shows that the file could not

35

interact with the application and that an error had occurred. For instance the following

line:

open("/etc/ld.so.preload", O_RDONLY, root) = -1

shows that ld.so.preload file could not interact with the application. DBStore parses

the MainOutput file for each file and increases the counter for each “–1 “it finds and

stores this number in this field.

User input Table. This table records user inputs contained in the collector InputFile.

User inputs consist of the application execution command and the application

directory name where the application is located. The fields of the table are as follow:

• Application Execution Command

The execution command is used to run the application. For instance the ”ls”

command is the UNIX command to run “ls”.

• Application Directory Name

This field contains the directory name where the application is located. For instance

in “/bin/ls”, /bin is the directory where “ls” is located.

Note that these fields are filled after DBStore is run.

Functional Descriptions

In this part we focus on the functional description of the collector and the

dependencies of the functions and associated tasks.

All the modules and files that we described in this chapter are implemented in three

main java modules. These modules are Main.java and Basicfilelist.java and DBUtil.

36

Main.java

Identification : Main.java
Type : Module
Purpose : provides detailed information from system call
Function : Retreive the inputs from the user and stores the data into Inputfile.

 Then run EAIS module and port the output to the generaloutput file.
 Following, this function will run the parser module and save the data
 to the MainOutput file.

Basicfilelist.java

Identification : Basicfilelist.java
Type : Module
Purpose : provides detailed information about interaction files and their

 properties to the user from the database. It will show all the data in
 two tables. The first table contains general information about the
 interaction files. The user can choose any of the files from the table
 to get detailed properties of the filed that interacted with the
 application in a new window.

DBUtil.java

Identification : DBUtil.java
Type : Module
Purpose : connects the collector with the Oracle database.

Sequence Diagrams

We can use sequence diagrams to better understand the sequence of actions that are

taken in collector to gain information on the environment-application interactions and

to store them into the database. With sequence diagram, we can also monitor the life

line of each module that was executed. The following figure shows the sequence

diagram of the collector and the steps taken to execute this part of Pulad.

37

:Colletor
Interface : EAIS

Application command
,Directory

Run

Generaloutput

: DBStore: Parser

Scan
genraloutput

Mainoutput f ile

Run

Oracle
Database

Scan
MainOutput file

Figure2: Collector Sequence Diagrams

As we can see from the figure, the first module that is executed in the collector is

EAIS. This module will be run by the collector and will stop running after saving the

output in the GeneralOutput file. The solid line for each module shows the lifeline of

that module. Then the collector will run the parser module to remove all unnecessary

parts and symbols from the output file that was generated by Java and will store the

outcome in the MainOutput file. Afterwards, DBStore module will be run in the

collector. This module will port the data to the Oracle database. Each arrow in the

figure shows the input and the output of each module.

How to Run Pulad

Pulad is implemented in java using the Eclipse development environment on Linux.

38

(Eclipse is an open platform for tool integration built by an open community of tool

providers.) [Eclipse] We also use Oracle [Oracle] as the database engine to store the

data and results. Before running Pulad and executing applications, some preliminary

steps are required to connect Pulad with Oracle and Eclipse.

Start the database.

To install Oracle on Linux, a new user account as “oracle” needs to be created. The

account can then be used to install Oracle. Once Oracle is installed, it is run oracle

using the following commands:

$Oracle_Home
sqloracle

You then will have to indicate your username and password. Once the sql prompt

appears, you just need to type STARTUP.

Start the listener

Oracle has a client-server architecture allowing different users to use this database

engine simultaneously. Since t users of Oracle are the clients, the client side of Oracle

also needs to be run. The following command is needed to run the client side:

Oracle_Home
lsnrctl
start

Now the oracle client side is ready, we can start running Pulad.

Execute Pulad

First Eclipse needs to be started. Once in the directory of Eclipse, the following

commands are run:

39

./eclipse

With this command, Eclipse is upload and ready to run Pulad. To execute Pulad, first

we should upload the Pulad project. Then by clicking the “Run“command, Pulad will

start running.

Conclusions

In this chapter we have described one of the main components our tool for finding

application vulnerabilities using fault injection: the collector. The collector records all

the environment-application interactions when an application is executed. This

information is then used by the fault injector component, which will be described in

Chapter 5. In this chapter, we have described the collector at a high level, then have

provided design and implementation details. A functional description, sequence

diagrams and details on how to execute the collector are also provided.

40

Chapter 5: Fault Injection for Finding Application

Vulnerabilities: Design and Implementation

Introduction

After having described in Chapter 4 the first main component of Pulad called the

“collector” that focuses on the collection of environment-application interactions

related to files when the application is executed and is called the “collector”, we

detail in this chapter the second main component that focuses on the injection of

faults and is called the “fault injector”. More precisely, the architectural view,

detailed design and implementation details of the fault injector are described in the

following sections.

Overview of the Fault Injector Architecture

The following figure shows the architecture of the fault injector in Pulad.

41

User Inputs

Env-application File
name Fault type

Fault Injectot

Input File

General Output

Mainoutput

EAIS

Parser

Interaction point

Processor

fault Methods

Collector Tables

Fault injector
Tables

DB Util

DBStore

Figure 3: Fault Injector Architecture Overview

In the fault injector, the user provides the inputs either through a file or using a

graphical user interface (GUI). The user chooses the interaction file names, faults and

the environment-application interaction points in which the faults should be injected

either by just clicking the options in the GUI or by creating an input file. All the

42

inputs will then be stored in an input file.

The processor module then processes the input file. This module searches for each

environment-application file with the specific interaction point in the collector’s

database tables to find all the information regarding that specific environment-

application interaction file. The result is returned to the processor. For instance, if the

user wants to inject a fault to the File1 at the interaction point 1, the parser searches

for the first interaction of File1 with the application and ports the result to the

processor. If the processor cannot find such interaction file with the specific

interaction point in the database, an error message will appear.

Also the processor searches for the specific fault type that the user chose among the

fault methods. The specific fault module associated with a fault type is retrieved and

returned to the processor. Note that all fault modules are located in the fault methods

file. So the fault module is ready with the interaction file name and the specific

information of that interaction point.

Now all the environment-application interaction files and fault types chosen by the

user are ready to be injected at the specific interaction time. The EAIS module then

runs the application while injecting specific faults just before the selected interactions

between the environment and the application. EAIS stores the output in the

GenralOutput file. As for the collector, Java has created some extra symbols when

executing the application. As described in Chapter 4, the parser module will mainly

trace the GeneralOutput file and remove the extra symbols and store the result into

the MainOutputfile. Afterwards, the DBUtil module will connect the fault injector to

the database. DBStore will then parse the MainOutput file to store the data in the

43

specific database tables.

Fault Injection techniques for Fault Injector

Each environment-application interaction file might interact with the application

more than once. So each file can have many interaction points. To inject faults in

specific interaction points, each fault should be injected in the specific environment-

application interaction file just before the specified interaction with the application.

For instance, the following table shows the interaction of one application with three

different files at different times. The user is interested in injecting one fault (change

path) in File1 at interaction point 2, injecting one fault (change directory) in File2 at

interaction point 3 and injecting one fault (change name) in File3 at the interaction

point 3.

FILE Interaction 1 Interaction 2 Interaction 3
File 1 0-1 2-10 -
File 2 1-3 6-8 11-15
File 3 0-1 2-9 10-12

Table 8: Example of Input File

The above table shows the interaction file name and the start time and close time of

each interaction point. For instance File1 interacts with the application at three

different times. The first interaction is between time 0 and time 1. The second

interaction is between time 2 till time 10. The two other files also interact with the

application at different times. To inject faults at the specific interaction point, each

fault should be injected before the interaction starts. Also each fault for each file that

interacts with the application several times should be injected after the previous

44

interaction point. To inject faults in each file at a specific interaction point, we also

need the ending time of the previous interaction points. This is the time when we

should inject the fault.

As mentioned before, each fault will be injected while the application is running

through EAIS. While the application is running, faults will be injected in different

files. In the above example the user intends to inject three different faults in three

interaction files. Therefore, we should first order these files based on the interaction

times to know the order of injection. The files are ordered based on the ending time of

the previous interaction point. To do so, we capture the previous interaction points of

the files that are involved in fault injection. For instance for File1, since we want to

inject a fault at the interaction point 2, we get the ending time of the interaction point

1 of File1 with the application, which is time 1. This is the time from when we should

inject the fault to this file. We do the same procedure for the other files, so obtain the

following results:

FILES Time of injections based on previous interaction points
File1 1
File2 8
File3 9

Table 9: Sorting of Files Based on Interaction Times

For File1, time 1 is the ending time of the interaction point 1 (0-1) and time 8 is the

ending time of interaction point 2 (6-8). These are the times when different selected

faults should be injected. We also have to order these ending times for different files.

To do so, we sort them in function of time. Each fault for different interaction point

times should be injected to the files while the application is running. For the above

45

example, the faults should be injected in the following files based on their interaction

time in the following order: File1, File3, File2.

Detailed Design of the Fault Injector

Since several modules have already been detailed in Chapter 4, in this section we

provide brief description on the detailed design of each file and module of the fault

injector.

The Input File

This time, the input file stores the user inputs for the fault injector. User inputs consist

of environment-application interaction file names, interaction points and fault types.

All the inputs can be retrieved from the user either through a file or a GUI. The first

argument of the file is the environment-application file name in which the user wants

to inject a fault. These files were stored in the database by the collector. If the file that

user inputs cannot not be found in the database, an error will occur. The other user

input is the interaction point. As mentioned, each environment-application file can be

called more than once by the application. The collector captured the different

interaction points as well as the starting and ending time of the interactions for that

specific interaction file. The fault should be injected right before the starting time of

the interaction. The fault type is another input from the user. The fault type indicates

what kind of fault the user wants to inject. Later in this chapter we will describe each

fault type in more details.

The following line shows the user inputs from the input file:

46

libm.so.6 3 changename

The first argument is the name of the environment-application interaction file, which

is libm.so.6. The second argument is the interaction point. In this example, 3 means

that we want to inject the fault at the third interaction point between the application

and libm.so.6. “changename” means that the fault type module (here changename) is

changing the name of the file.

The Processor

The processor is the main module of the fault injector. It has four major tasks as

follow:

1. Get the application name and the directory name from the collector database.

2. Replace interaction point with the associated start time and ending time.

3. Scan the fault methods file for the specific fault type module for fault injection.

4. Sort all the environment-application files based on the interaction points.

The input of this module for each of these tasks is the Input file. Now we will

describe each of these tasks in detail:

Get the application name and the directory name from the collector database.

The first task consists of retrieving the application name and the directory name that

was stored in the Collector’s database. The processor gets the inputs from the input

file. The first argument in the input file is the environment-application interaction file

name. These interaction files were captured during the execution of the collector and

stored in their specific tables in the database. This module queries the tables to find

specific environment-application interaction files and their attributes at a specific

47

time. If this environment-application interaction file in the specific interaction point

exists, then the fault injector ports all the information regarding this specific file back

to the processor. If the processor could not find the specific environment-application

file in the specific interaction point, then the fault injector shows an error message.

Replace interaction point with the associated start time and ending time. The

other task of the processor is to replace the interaction point number with the start

interaction time and the end time of the specific environment-application file. These

two times give the interval time of the specific file interaction with the application. So

the processor, after retrieving all the information about the environment-application

interaction file at a specific interaction point, starts replacing the interaction point

with the start time and the end time of the file. The processor operates this task,

because each fault injection should occur just before the starting time of the

interaction. For instance if the interaction point is 2 (which means the second

interaction of the application and the specified file), the second start time and end

time of the file will be retrieved from database. Also the fault injection, while running

the application again, should happen just before the second starting time of the

interaction with the specific file.

Scan the fault methods file for the specific fault type module for fault injection.

The processor gets the fault type from the input file. Then it scans the specific fault

module from the fault methods file. The fault methods file contains all the fault

modules that inject faults to the interaction files. Later in this section we will describe

the fault methods file more in details.

Sort all the environment-application files based on the interaction points. Note

48

that the fault injections and the EAIS module run simultaneously. So in order to inject

faults before the staring time of each interaction, we need an algorithm to sort the

interaction files. The algorithm we developed is based on the interaction time. This

algorithm orders the faults based on the start time and the end time of the interaction.

This algorithm sorts the list of files in which a fault will be injected in an increasing

order of the start time and then increasing order of the end time. The only special case

is when a fault should be injected at time zero. This case happens when the

application starts interacting with the specific interaction file by the time it starts

executing. In this case the fault should be injected before the execution of the

application.

The following summarizes the algorithm developed.

1) Get the interaction file name, interaction point and fault module from Inputfile.

2) Replace interaction point (IP) from Inputfile with time intervals

(start_time, end_time)

3) Sort interaction files by increasing start_time

4) Sort interaction files by increasing end_time

5) Special case: If there is any IP, which is equal to one, inject the faults now

After ordering the interaction files based on the time, the fault injector is ready to

inject faults in the application while running the EAIS module.

The EAIS, Parser, and DBStore Modules

While injecting faults into the application, the EAIS module will be executed to

collect the environment-application interactions related to interaction files. The output

49

of the EAIS is stored in GeneralOutput file. As mentioned in Chapter 4, this file

contains some symbols that were created with java. The parser will then parse this file

and store the output in MainOutputfile. (The details of the parser were provided in

Chapter4). Then the DBUtil module will connect the application to the database. And

DBStore will port each of the interaction files to the fault injector database.

The fault injector tables in the database are the same as the collector tables with the

same fields but different names. The difference between these tables is that the

collector tables contain the data before fault injections and the fault injector tables

contain the data after fault injections.

The Fault Methods File

In order to inject faults in the environment-application interaction files, we need a

fault module to modify specific environment-application files before the start time of

the interaction. Each module injects one specific fault type. The fault methods file

contains all these modules. The modules are as follows:

1) Change file size.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbols. Delete

some characters to increase the size of the file.

2) Change file name.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbols. Delete the

name of the file

3) Change path.

Create the same file with the same content in another directory. Delete the file

50

in the directory.

4) Change ownership.

Change the owner of the file.

5) Change permission.

Change the permission of the file from read to write, or read and write. Flip

the permission bit.

6) Change content.

Insert characters such as “/”,”>”,”<” ,”|”,”&” or any other symbol. Delete

some characters to decrease the size of the file

Functional Description

In this part we focus on the functional description of the fault injector and the

dependencies of the functions and associated tasks.

All the modules and files that we described in this chapter are implemented in three

main java modules. These modules are Fault_Main.java and Fault_Filelist.java, Fault

Module, and DBUtil.

Fault_Main.java

Identification : new_Main.java
Type : Module
Purpose : Inject faults to the specific files and provides detailed information from

 system call after fault injection.
Function : Runs the processor to retrieve the application execution command and the

application directory from the database and gets fault type, file name and the
interaction point from Inputfile. EAIS runs the application while injecting
faults. The output is saved in output.txt. The parser scans each line and finds
the interaction’s attributes and ports them to the database through DBStore
module.

51

Fault_Filelist.java

Identification : Fault_Filelist.java
Type : Module
Purpose : Provides detailed information about interaction files and properties

after fault injection. The information from the database is presented
in two tables. The first table contains general information about the
interaction file, number of interaction points and fault type. The
second table gives details on each interaction points, start time and
end time.

Fault Module

Identification : FaultModule
Type : Module
Purpose : Contains different modules of fault models
Function : Injects faults to the file based on user demand.

DBUtil.java

Identification : DBUtil.java
Type : Module
Purpose : Connects Pulad to the Oracle database.

5.6 Sequence Diagram

We can use sequence diagrams to better understand the sequence of actions that are

taken by the fault injector to inject faults in the environment-application interaction

files and store the result in the database. With a sequence diagram, we can also

monitor the lifeline of each module that was executed. The following figure shows

the sequence diagram of the collector.

52

:Input FIle :processor :Database :Fault Methods :EAIS :Parser

Application
command/Dir choose Interacted

f ile , IP

User

run random
generator

Search fault modules

Run application w hile injecting fault

Return the specif ic module

:Database

Return the
result

Parse the
output

Store the
data

Figure 4: Fault Injector Sequence Diagrams

As we can see, first the user enters the inputs to inject faults. These data are stored in

an input file. Then the processor scans the collector to retrieve the interaction files

that the user entered as an input for fault injection for the specific interaction points.

Thereafter, the processor searches for the specific fault modules from the fault

methods file to inject the faults. All these data return to the processor and all files are

reordered based on the fault injection algorithm that Pulad is using. Then the

application runs through EAIS while faults are injected at the specific time. The

output is stored in the GeneralOutput file. The parser will parse all the data and

remove all unnecessary information and store the result in the MainOutput file. At the

end the DBStore module scans the MainOutput file and ports specific data into the

database. The solid line for each module shows the lifeline of each module. Also each

53

arrow indicates the input and the output of each module.

Conclusions

In this chapter, we detailed the second main component that focuses on the injection

of faults and is called the “fault injector”. More precisely, the architectural view,

detailed design and implementation details of the fault injector were described in this

chapter. Now that we have detailed the design and implementation of Pulad, we

describe how we validated Pulad in the next chapter.

54

Chapter 6: Verification of Pulad

Introduction

We introduced Pulad in Chapter 4 and 5. In this chapter we describe how we

validated Pulad. The following concepts are taken from [Lap98]. The validation

process consists of removing faults or bugs and predicting the behavior of the system

relative to the occurrence of faults and their activation. This chapter only focuses on

the removal of faults. Fault removal consists of three steps: verification, diagnosis,

and correction. Verification is the process of checking whether the system adheres to

properties, termed the verification conditions [Che81]. If not, the two other steps must

be undertaken: diagnosis of fault(s) preventing the verification conditions to be met

and then, performing the necessary corrections. Following correction, the process

must be repeated to ensure that fault removal has not entailed undesirable

consequences. The verifications thus performed are termed as non-regression.

We applied in this chapter only software testing, which is the most popular dynamic

verification method. Software testing is a process used to identify the correctness,

completeness and quality of developed computer software. Actually, testing can never

establish the correctness of computer software, as this can only be done by formal

verification (and only when there is no mistake in the formal verification process).

[SoftwareTesting] The methods for the determination of the test patterns can be

divided into several classes according to two viewpoints: criteria for selecting the test

55

inputs, and generation of the test inputs.

The techniques for selecting the test inputs may in turn be classified according to

three viewpoints:[lap98]

• The purpose of the testing: checking whether the system satisfies its

specification is conformance testing, whereas testing aimed at revealing fault

is fault-finding testing;

• The system model: depending on whether the system model relates to the

function or the structure of the system, leads respectively to functional testing

and structural testing;

• Fault model: the existence of a fault model leads to fault-based testing, aimed

at revealing specific classes of faults.

According to the approaches considered, test input generation may either be

deterministic or probabilistic:

• In deterministic testing, test sets are determined by a selective choice

according to the criterion retained,

• In the random testing, test sets are selected according to a probabilistic

distribution of the input field, the distribution and number of data inputs being

determined in accordance with the criterion retained.

Selected Testing Techniques

For Pulad, we applied boundary testing, functional testing and stress testing.

Pulad gets different inputs from the user, either in the collector or in the fault injector.

Wrong inputs might be considered as a fault and lead to the failure of Pulad. So

56

boundary testing will compare Pulad’s inputs, which were entered by the user, with

the expected results that we had obtained through the collector.

We also applied functional testing, a black-box testing technique, to ensure that each

function runs and performs its task as expected.

The other testing method we chose is stress testing because it is applicable to

programs that operate interactively. We chose this technique for Pulad to check the

behavior of the application based on the overload of user inputs.

Boundary Testing

“ The systematic testing of error handling is called boundary testing. Boundary

testing refers to the testing of forms and data inputs, starting from known good

values, and progressing through reasonable but invalid inputs all the way to known

extreme and invalid values [Bei90]. The logic for boundary testing forms is

straightforward. We start with known good and valid values because if the system

fails on that, it’s not ready for testing. Next we move through expected bad values

because if those fail, the system isn't ready for testing. Then we try reasonable and

predictable faults because users are likely to make such faults. Then start hammering

with extreme faults and inputs in order to catch problems that might affect the tool’s

functioning “ [Bei90].

Functional testing

The other way of verifying the Pulad application is using another testing technique

called functional testing. Functional testing is a process of attempting to find

57

discrepancies between the program and the external specification. External

specification is a precise description of the program’s behavior from the point of view

of the end user [Mye04]. In other words, it is a technique to check and verify each

module and function in the source code and to compare the result with what is

expected. To perform a functional test, the specification is analyzed to derive a set of

test cases. We supply the test cases as an input data; the output data (if applicable) or

an error code (if the input data is not valid) is expected.

Stress testing

Stress testing is a form of testing which is used to determine the stability of a given

system. It involves testing beyond normal operational capacity, often to a breaking

point, in order to observe the results. Stress testing subjects the program to heavy

loads or stresses. A heavy stress is an important volume of data, or activity,

encountered over a short span of time. To perform the stress testing, the specifications

are analyzed and the test cases are created based on the specifications. In each test

case, the heavy load (often to a breaking point) of data will be run as an input data

[Mye04].

Examples of Applications

We chose different applications and run them through Pulad to observe different

results. First, we chose a simple UNIX command, called ls. We chose this application

because it is small and runs in any directory in UNIX. The ls application interacts

with different files like ld.so.preload , libtermcap.so.2, ld.so.cache, libtermcap.so.2,

58

libc.so.6, ld.so.cache and libm.so.6 that would be captured by Pulad.

To have a better control on Pulad and to validate it, we implemented two applications.

In these two applications we know exactly what files these applications are

interacting with. So we can track the results obtained by Pulad with the base

information about the application implementation. The first application interacts with

5-6 environment–application interaction files. Each of the files interacts twice with

the application. We chose one file from each file type. For instance we chose one

library file, one environment file, and one temporary file. So the first application

starts calling each file, gets the ownership, directory and the permission of each file

and ports the result to the terminal. So the user can monitor the result after modifying

each file on the terminal.

The second application that we implemented interacts with more than ten

environment-application interaction files (3 files from each file type) and each file

was called more than two times by the application. In this application, each file that

was called interacts 100 times with the application. Note that each interaction occurs

at different times, so we have more than one interaction in different time intervals.

We will call one of the applications a “small application” because consists of about

one hundred lines of code and interacts with a few files, and the other one a “large

application” because it consists of more than a hundred lines of code and interacts

with more files.

Testing Results

We used three testing methods on the application examples (ls, small application and

59

complex application). We now present the results we have obtained.

Boundary Testing

We used this technique to test the collector and the fault injector of Pulad with the

small application and the ls command. In the first step of boundary testing, we used

the correct inputs from the user, which was the running command of the application

and the directory. For instance for the ls command, we used “/bin ls” as an input and

we run Pulad. Then we modified this input. For example we changed the length of the

directory, or we inserted a directory name that did not exist, to verify the error

message at the right time. Then entered inputs to check the boundary, for instance

long directory path or long directory names for the application.

When focusing on the fault injector, first we ran the application with the correct

inputs, which consists of the interaction file name, interaction point and fault type.

Then we entered a wrong type of data, for instance a wrong interaction file name, or

an interaction point that did not exist, or a fault type that did not exist in the fault

methods file. So an error message for these cases is expected. Then we checked the

boundaries by entering long or short input data.

With this technique all the test cases based on the description of the inputs were

examined and compared with the definition of each module and output. The

following table shows the 23 test cases we used for the “ls“ command with boundary

testing. We used the same test cases for the small and large applications.

LSR Test Cases Expected Result Application

Result

Fail/

Pass

Bug Fixed

60

1 Entering number in User

input , in application

execution command in

collector

Error

Message” No

Such choice”

displays

As

expected

Pass -

2 Entering numbers in

application directory in

collector

Error

Message” No

Such choice”

displays

As

expected

Pass -

3 Entering long directory

as an input in collector

Error

Message” long

path”

displays

As

expected

Pass -

4 Entering long application

execution command in the

collector

Error

Message” long

path”

displays

As

expected

Pass -

5 Entering short directory

path as in put in the

collector

Error

Message”

Short Path”

displays

As

expected

Pass -

6 Entering short execution

command (less than what

is expected) as in put in

the collector

Error

Message”

Short Path”

displays

Shows

error

Fail -

61

7 Entering numbers in Env-

application file name in

Fault Injector

Error

Message” No

Such choice”

displays

As

expected

Pass -

8 Entering characters in

Interaction Point (IP)as

input in Fault Injector

Error

Message” No

Such choice”

displays

As

Expected

Pass -

9 Entering characters in IP

in the collector

Displays

error

Accept the

input

Fail Y

10 Entering IP =0 in fault

injector

Display Error Accept the

input

Fail Y

11 Entering long number more

than 100 in fault

injector

Display Error Accept

input

Fail Y

12 Entering number as a

fault type in Fault

injector

Display Error As

expected

Pass -

13 Entering long name as a

fault type in fault

injector

Error

message”

Invalid fault

type”

As

expected

Pass -

14 Entering Wrong Fault type

in fault injector

Error message

“Invalid

fault type,”

As

expected

Pass -

15 Entering blank in IP in

fault injector

Error

displays

As

expected

Pass -

62

16 Entering blank in Env-

application name in fault

injector

Error

displays

As

expected

Pass -

17 Entering blank in Fault

type in fault injector

Error message As

expected

Pass -

18 Entering blank in

application execution

command in collector

Error message As

expected

Pass -

19 Entering bank in

application directory in

collector

Error message As

expected

Pass -

20 Entering long Env-

application file name

Error

displays

As

expected

Pass -

21 Entering two application

execution command as

input in collector

Error

displays

As

expected

Pass -

22 Entering no information

as an input for fault

injector

Error

displays

As

Expected

Pass -

23 Entering numbers in fault

type in fault injector

Error

displays

As

expected

Pass -

Functional Testing

We used functional testing to make sure that each module in Pulad is working and

63

that the result is as expected. So each of the modules that were described in Chapter 4

and 5 was tested and run. The result of each module was compared with the purpose

and goal of each module. So for the collector and the fault injector, we tested each of

the modules that we described based on the input and the output of each file and

compared the result with what we expected from the definitions and the structure in

Chapter 4 and 5.

The following table shows the 17 test cases that we created to compare each module’s

result with the expected result. We run these test cases three times with the three

applications we have.

LSR Test Cases Expected Result Application Result Fail/

Pass

Bug

Fixed

1 Entering

application

directory path

and execution

command to check

if it will be

stored in an

input file

Get the input

and port it

into the input

file

As expected Pass -

64

2 Providing

application

directory path

and the

execution

command to check

EAIS module

Get the input

and port the

output into

the General

out put file

As expected Pass -

3 Providing EAIS

result in

Genral- Output

file to test

Parser module

Get the input,

scan and

delete extra

symbols

As expected Pass -

4 Providing Main

out put file to

check DBStore

module

Get the file,

scan the

output file

and get the

information

for each

specific field

As expected Pass -

5 DBUtill module Connect the

parser to

Oracle

database

As expected Pass -

65

6 Providing fault

type , file name

and IP to check

if the input

file stores them

Get the input

and stores it

into Input

file

As expected Pass -

7 Provide all the

info to check

the processor

Get the input

and starts

scanning

through

collector

database

As expected Pass -

8 Provide file

name to the

processor

through input

file

Get the file

name and

search for the

file name

through

collector

database

As expected Pass -

66

9 Provide

Interaction

point to the

processor

through input

file

Get the

interaction

point and

search for the

specific

interaction

point for the

specific file

name through

collector

database

As expected Pass -

10 Provide Fault

type to the

processor

through input

file

Get the fault

type and scans

it through

fault module

As expected Pass -

11 Given a fault

type to the

fault module to

check the fault

type module

Get the fault

type and scans

its through

its functions

and port the

specific

function to

the fault type

module

As expected Pass -

67

12 Given all the

inputs from the

Processor to

EAIS to check

EAIS module

Get the inputs

from the

processor and

the collector

database and

runs the

application

As expected Pass -

13 Provide all the

data from EAIS

in General

Output file to

check Parser

module

Get general

out put file ,

scans it ,

delete extra

symbols and

port the

result in the

Main output

file

As expected Pass -

14 Provide all the

inputs for

DBStore ready to

check DBStore

function

Get the inputs

from Main out

put file and

scan it and

port the data

to the

database

As expected Pass -

15 Heck DBUtill

module

Connect the

Fault injector

and oracle

database

As expected Pass -

68

16 Providing inputs

in to the input

file to port the

database to the

database

collector

Get the inputs

to the input

file and port

the data to

the collector

database

As expected Pass -

17 Providing

application

directory and

the execution

command to check

EAIS module in

fault injector

Get the

application

command and

the directory

from the

collector

database

As expected Pass -

Stress Testing

We ran the collector with the “ls” command application and used the stress

testing.We created the test cases for stress testing with the high volume of inputs to

check the behavior of the collector and the fault injector.

We ran the “ls” command though the Pulad with the following testcases and

compared the result with the expected result.

69

Conclusions

After having described the development of Pulad in Chapter 4 and 5, we detailed in

LSR Test Cases Expected Result Application Result Fail/

Pass

Bug

Fixed

1 Entering two

application name

and directory in

the collector

Error message

“ only one

application to

be run at the

time”

As expected Pas

s

-

2 Entering all

fault type to

all files in all

interaction

points

Inject faults

before IP was

reached

As expected Pas

s

-

3 Entering all

faults to one IP

of a file

Inject faults

before IP was

reached

Error Fai

l

Y

4 Entering all

faults to all

file in all

interaction

points

Inject faults

before IP was

reached

Error Fai

l

-

70

this chapter some of the tests that were conducted on Pulad to verify it.

71

Chapter 7: Conclusion and Future Work

This thesis introduces a fault injector, called “Pulad”, specifically developed for

finding application vulnerabilities. Most previous approaches for finding application

vulnerabilities involved static verification methods. With these methods, the source

code is not executed. Since vulnerabilities can only be revealed when they are

exploited, the use of a dynamic verification method, executing the source code, seems

needed. We have shown in Chapter 2 of this thesis that static analysis tools would not

only identify as vulnerabilities bugs that cannot be exploited (leading to false alarms)

but also miss vulnerabilities that could have been found had a dynamic verification

method been used (leading to false positives). Therefore, the use of dynamic

verification methods that would complement static verification ones is a natural

research thread. The main two dynamic verification areas are software testing and

fault injection. This thesis focuses on fault injection building upon some preliminary

research conducted by [Du00].

The approach introduced by [Du00] focuses on environment-application interactions.

These interactions can be used by an attacker to launch attacks on the application.

Therefore, a secure application needs to be able to tolerate perturbations of the

environment. If we now consider environment perturbations as faults, we then

consider a secure system as a fault-tolerant system able to tolerate faults in the

environment. We revised the classification given by [Du00] of environment direct

72

and indirect faults for the network, processes and files. The approach described in

[Du00] requires extensive manual analysis of the source code. To provide automation

and to remove the assumption on the need of source code, we focused on the sole

files and removed the distinction between direct and indirect environment faults.

In Chapter 4, we described Pulad focusing one of the main components of Pulad

called the “Collector”. The goal of the collector is to record all the environment-

application interactions when the application is running. These interactions focusing

on the environment files are then analyzed and the following fields are uploaded into

a database including the file name, file extension, file size, file directory, number of

times file used, file permission (includes symbolic link and ownership) and number of

times an error occurred. The chapter first describes the design goals of Pulad, then an

overview of the collector and finally some implementation details.

The next chapter then focuses on the fault injector, the second main component of

Pulad. The fault injector allows to inject faults either using a graphical user interface

(GUI) or directly through a text file. The faults in the files include the file name, the

directory name, the execution path, the library path, the file existence, the file

ownership, the file permission, etc. For each of the faults, the specific type of fault

needs to be indicated. Moreover, the interaction points where the faults should be

injected are also provided by the user.

Chapter 6 then describes the validation process we have used to validate Pulad. The

73

validation of the tool mainly relied on software testing. More precisely, functional

testing, boundary testing and stress testing were applied. Running the “ls” command,

a simple application interacting with some files of the environment and a larger

application interacting with a significant number of environment files were

developed. These applications were then used to apply the three testing techniques.

Details on the test cases and testing results are provided in Chapter 6.

The next step in finding application vulnerabilities using fault injection is to apply

Pulad on a real application to find vulnerabilities not identified yet. Issues related to

this research include the choice of the fault types and the number of faults to inject,

the interaction where to inject them. However, these issues are already present when

dealing with fault injection in fault-tolerant systems. An issue specific to fault

injection for proving that a system is secure, is the definition of a security violation

when limited knowledge on the system is provided. This is a challenging question

that needs to be answered in order to be able to provide some automation and remove

the need to having the application source code.

74

Appendix A: Code of the tracking system written in C:

/*Tracker.c*/
#include <stdio.h>
#include <stdlib.h>

int stackoverflow(char * strPara)
{
 char strLocalVar [6];

 strcpy(strLocalVar, strPara);

 return 0;
}

int heapoverflow(char * strPara)
{
 char * strHeapVar;

 strHeapVar = (char *)malloc(sizeof(char)*6);

 if(!strHeapVar){
printf("The heap runs out of space!\n");
exit(-1);

 }

 strcpy(strHeapVar, strPara);

 return 0;
}

75

Bibliography

[Asl96] T. Aslam, I. Krsul, and E. H. Spafford, “Use of a taxonomy of security
faults,” in Proc. 19th National Information Systems Security Conference,
(Baltimore, Maryland, USA), pp 551-560, October 1996.

[Bei90] B. Beizer, “Software Testing Techniques,” Second Edition, New York, Van
Nostrand Reinhold, 1990.

[Che81] M.H. Cheheyl, M. Gasser, G.A. Huff, J.K. Miller, “Verifying Security”,
Computing Surveys, vol. 13, no. 3, pp. 279-339, 1981.

[Cla95] J. Clark and D. Pradhan, “Fault injection: A method for validating computer-
system dependability,” in IEEE Computer, pp. 47-56, June 1995.

[Cow99] C. Cowan, P. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer Overflows:
Attacks and Defenses for the Vulnerability of the Decade,” in Proc. DARPA
Information Survivability Conference and Expo (DISCEX) (Co-sponsored by
the IEEE Computer Society), vol. 2, pp. 271 –283, 1999.

[Dan99] T. E. Daniels, B. A. Kuperman, and E. H. Spafford, “Penetration Analysis of
a XEROX Docucenter DC 230ST: Assessing the Security of a Multi-purpose
Office Machine,” in Proc. 23rd National Information Systems Security
Conference, (Baltimore, MD, USA), October 2000.

[Dow01] D. D. Downs and R. Haddad, “Penetration Testing – The Gold Standard for
Security Rating and Ranking,” in Proc. First Workshop on Information Security
System Rating and Ranking, (Williamsburg, Virginia, USA), May 2001.

[Du00] W. Du and A.P. Mathur, “Testing for Software Vulnerability Using
Environment Pertubation,” in Proc. International Conference on Dependable
Systems and Networks (FTCS-30 and DCCA-8), (New York City, New York,
USA), pp. 603-612, June 2000.

[Du98] W. Du and A.P. Mathur, “Vulnerability Testing of Software System Using
Fault Injection,” COAST, Purdue University, 1998.

[Eclipse] http://www.eclipse.org
[Flawfinder] http://www.dwheeler.com/flawfinder/
[Gar96] S. Garfinkel and G. Spafford, “Praxtical UNIX & Internet Security,”

O’Reilly & Associates, Inc., 1996.
[Gho98] A. K. Ghosh, T. O'Connor, and G. McGraw, “An automated approach for

identifying potential vulnerabilities in software,” in Proc. 1998 IEEE
Symposium on Security and Privacy, Los Alamitos, CA, USA, pp. 104-14,
1998.

[Kak00] R. Kaksonen, M. Laakso, and A. Takanen, “Vulnerability Analysis of
Software through Syntax Testing,” Technical Research Center of Finland,
http://www.ee.oulu.fi/research/ouspg/protos/analysis/WP2000-robustness/

[Krs98] I. Krsul, “Coast vulnerability database reference guide – draft version,
Technical report, Purdue University, Department of Computer Sciences, 1998.

[Lap98] Dependability Handbook: Preliminary Version, Ed. J.-C. Laprie, LAAS
Report no 98-346, 1998.

[MAFTIA00] C. Cachin et al., “Reference Model and Use Cases,” in MAFTIA
deliverable D1, 2000.

76

[MAFTIA01] “Conceptual Model and Architecture,” MAFTIA deliverable D2, D.
Powell and R. Stroud Ed., November 2001.

[McG98] G. McGraw, “Testing for Security During Development: Why We Should
Scrap Penetrate-and-Patch”, in IEEE AES Systems Magazine, April 1998.

[mingetty] http://ourworld.compuserve.com/homepages/KanjiFlash/mingetty.c
[Mye04] G. J. Myers, C. Sandler, T. Badgett, T. M. Thomas, “The Art of Software

Testing,” John Wiley & Sons, 2 edition, 2004.
[Oracle] http://www.oracle.com
[Pan05] S. Panjwani, S. Tan, K. Jarrin, and M. Cukier, “An Experimental Evaluation

to Determine if Port Scans are Precursors to an Attack,” in Proc. International
Conference on Dependable Systems and Networks (DSN-2005), Yokohama,
Japan, June 28-July 1, 2005, to appear.

[PROTOS] http://www.ee.oulu.fi/research/ouspg/protos/index.html
[RATS] http://www.securesoftware.com/rats.php
[SoftwareTesting] http://encyclopedia.laborlawtalk.com/Software_testing
[strace] http://www.liacs.nl/~wichert/strace/
[Vie02a] J. Viega and G. McGraw, “Building Secure Software,” Addison-Wesley,

2002.
[Vie02b] J. Viega, J.T. Bloch, T. Kohno, and G. McGraw, “ITS4: A Static

Vulnerability Scanner for C and C++ Code,” in Proc. Annual Computer
Security Applications Conference, Las Vegas, NE, USA, December 9-13, 2002,
to appear.

