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In free space optical communication links, atmospheric turbulence causes ran-

dom fluctuations in the refractive index of air at optical wavelengths, which in turn

cause random fluctuations in the intensity and phase of a propagating optical sig-

nal. These intensity fluctuations, termed “fading,” can lead to an increase in link

error probability, thereby degrading communication performance. Two techniques

are suggested to combat the detrimental effects of fading, viz., (a) estimation of

channel fade and use of these estimates at the transmitter or receiver; and (b)

use of multiple transmitter and receiver elements. In this thesis, we consider sev-

eral key issues concerning reliable transmission over multiple input multiple output

(MIMO) optical fading channels. These include the formulation of a block fading

channel model that takes into account the slowly varying nature of optical fade;

the determination of channel capacity, viz., the maximum achievable rate of reliable
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communication, when the receiver has perfect fade information while the transmit-

ter is provided with varying degrees of fade information; characterization of good

transmitter power control strategies that achieve capacity; and the capacity in the

low and high signal-to-noise ratio (SNR) regimes.

We consider a shot-noise limited, intensity modulated direct detection optical

fading channel model in which the transmitted signals are subject to peak and

average power constraints. The fading occurs in blocks of duration Tc (seconds)

during each of which the channel fade (or channel state) remains constant, and

changes across successive such intervals in an independent and identically distributed

(i.i.d.) manner. A single-letter characterization of the capacity of this channel is

obtained when the receiver is provided with perfect channel state information (CSI)

while the transmitter CSI can be imperfect. A two-level signaling scheme (“ON-

OFF keying”) with arbitrarily fast intertransition times through each of the transmit

apertures is shown to achieve channel capacity. Several interesting properties of

the optimum transmission strategies for the transmit apertures are discussed. For

the special case of a single input single output (SISO) optical fading channel, the

behavior of channel capacity in the high and low signal-to-noise ratio (SNR) regimes

is explicitly characterized, and the effects of transmitter CSI on capacity are studied.



RELIABLE COMMUNICATION OVER

OPTICAL FADING CHANNELS

by

Kaushik Chakraborty

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Professor Prakash Narayan, Chair/Advisor
Professor Alexander Barg
Professor Benjamin Kedem
Professor P. S. Krishnaprasad
Professor Armand Makowski
Professor Adrian Papamarcou
Professor Sennur Ulukus



c© Copyright by

Kaushik Chakraborty

2005



Dedication

To my son Sattwik.

ii



ACKNOWLEDGMENTS

I express my profound gratitude to my advisor, Professor Prakash Narayan,

for his wholehearted support, timely encouragement, and invaluable guidance in

every stage of this work. It has been a privilege to be able to work with him; I shall

endeavor to follow his exemplary professional and ethical standards.

I am grateful to Professors Alexander Barg, Benjamin Kedem, P. S. Krish-

naprasad, Armand Makowski, Adrian Papamarcou and Sennur Ulukus for serving

on my dissertation committee. I thank Professor Adrian Papamarcou for his help

and guidance from my earliest days at the University of Maryland.

I thank the Institute for Systems Research and the Department of Electrical

and Computer Engineering at the University of Maryland for providing the neces-

sary financial support during my graduate studies. I gratefully acknowledge that this

research was supported by the Army Research Office under ODDR&E MURI01 Pro-

gram Grant No. DAAD19-01-1-0465 to the Center for Communicating Networked

Control Systems (through Boston University).

I am deeply indebted to my colleagues and friends, Dr. Amit K. Roy Chowd-

hury, Dr. Damianos Karakos, Dr. Amit Kale, Mr. Chunxuan Ye, and Dr. Onur

Kaya for numerous stimulating discussions. I thank Indrajit Bhattacharya, Anub-

hav Datta, Souvik Mitra, Kaushik Ghosh, Mainak Sen, Ayan Roy Chowdhury and

Ayush Gupta for their companionship and support.

iii



I want to take this opportunity to express my gratitude and affection to my

parents and brother for their continued encouragement and support. I thank my

father-in-law, mother-in-law and sisters-in-law for their affection and faith in me.

I thank my dear wife Sharmistha for standing by me through thick and thin; her

unconditional love and unwavering faith form the backbone of my life. Finally, I

thank my son Sattwik for allowing me to spend much of his share of time towards

research. To him, I owe the successful completion of this thesis.

iv



TABLE OF CONTENTS

List of Figures vii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Historical perspective . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Atmospheric optical propagation . . . . . . . . . . . . . . . . 4
1.2.3 Brief description of the optical communication system . . . . . 6
1.2.4 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Overview of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 Contributions of this dissertation . . . . . . . . . . . . . . . . . . . . 12

2 SISO Poisson fading channel 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 MIMO Poisson channel with constant channel fade 50
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3.2 Optimum transmission strategy . . . . . . . . . . . . . . . . . 57

3.3.2.1 Individual average power constraints . . . . . . . . . 58
3.3.2.2 Average sum power constraint . . . . . . . . . . . . . 62

3.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 MIMO Poisson channel with random channel fade 98
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.3.1 Channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.3.2 Optimum power control strategy . . . . . . . . . . . . . . . . 105
4.3.3 Symmetric MIMO channel with isotropic fade . . . . . . . . . 106

4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.5 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

v



5 Conclusions 143
5.1 Directions for future research . . . . . . . . . . . . . . . . . . . . . . 143
5.2 RF/optical wireless sum channel . . . . . . . . . . . . . . . . . . . . . 146

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . 148
5.2.3 Channel capacity . . . . . . . . . . . . . . . . . . . . . . . . . 153

A 156
A.1 Proof of (2.37) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
A.2 Proof of (2.42) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.3 Proof of (2.74) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B 160
B.1 Proof of (3.34) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
B.2 Proof of (3.43) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
B.3 Proof of (3.52) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
B.4 Proof of (3.75) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

C 167
C.1 Proof of (4.37) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
C.2 Proof of (4.60) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
C.3 Proof of (4.85) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

D Proof of Theorem 10 170

Bibliography 174

vi



LIST OF FIGURES

1.1 An intensity modulation direct detection (IM/DD) optical communi-
cation system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Poisson fading channel. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Block fading channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Subintervals of [0, T ]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Discrete channel approximation. . . . . . . . . . . . . . . . . . . . . . 37

2.5 Optimal power control law with perfect CSI at transmitter and receiver. 45

2.6 Comparison of capacity versus σ for various assumptions on trans-
mitter CSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7 Comparison of capacity versus SNR for various assumptions on trans-
mitter CSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 N ×M MIMO Poisson channel with deterministic channel fade. . . . 51

3.2 The structure of the optimal solution for N = 2. Region Rk corre-
sponds to condition (k) in Theorem 5, k = 1, · · · , 6. . . . . . . . . . . 60

3.3 The possible variations of I
′

0(x) versus x.
(a) I

′

0(0) < 0;
(b) I

′

0(x0) = 0 for some 0 ≤ x0 < σ;
(c) I

′

0(σ
−) > 0, I

′

0(σ
+) < 0;

(d) I
′

0(x0) = 0 for some σ < x0 ≤ (1 + 1/a)σ;
(e) I

′

0((1 + 1/a)σ) > 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4 Decision region of optimal duty cycles for individual average power
constraints σ1, σ2 for Example 3.1. . . . . . . . . . . . . . . . . . . . 87

3.5 Optimal duty cycles for an average sum power constraint σ for Ex-
ample 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.6 Plot of capacity (Cind) versus σ1, σ2 for Example 3.1. . . . . . . . . . 89

3.7 Plot of capacity (Csum) versus σ for Example 3.1. . . . . . . . . . . . 90

3.8 Decision region of optimal duty cycles for individual average power
constraints σ1, σ2 for Example 3.2. . . . . . . . . . . . . . . . . . . . 91

vii



3.9 Optimal duty cycles for an average sum power constraint σ for Ex-
ample 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.10 Plot of capacity (Cind) versus σ1, σ2 for Example 3.2. . . . . . . . . . 93

3.11 Plot of capacity (Csum) versus σ for Example 3.2. . . . . . . . . . . . 94

4.1 N ×M MIMO Poisson channel with random channel fade. . . . . . . 99

4.2 Block fading channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Mirror states of a 2 × 2 MIMO Poisson channel. . . . . . . . . . . . . 107

4.4 State set diagram for Example 4.1. . . . . . . . . . . . . . . . . . . . 137

4.5 Lower bounds on capacity for Example 4.1. . . . . . . . . . . . . . . . 138

4.6 State set diagram for Example 4.2. . . . . . . . . . . . . . . . . . . . 139

4.7 Channel capacity for Example 4.2. . . . . . . . . . . . . . . . . . . . 140

5.1 Block schematic of the DMC sum channel. . . . . . . . . . . . . . . . 146

5.2 Block schematic of the combined RF/optical sum channel. . . . . . . 148

5.3 RF fading channel model. . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4 Optical channel model. . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



Chapter 1

Introduction

1.1 Motivation

Free space optics (FSO) is emerging as an attractive technology for several

applications, e.g., metro network extensions; last mile connectivity; fiber backup;

RF-wireless backhaul; and enterprise connectivity [49]. There are many benefits

of wireless optical systems, viz., rapid deployment time; high security; inexpensive

components; seamless wireless extension of the optical fiber backbone; immunity to

RF interference; and lack of licensing regulations, to name a few. Consequently,

free space optical communication through the turbulent atmospheric channel has

received much attention in recent years [20, 21, 23, 34, 51, 53, 54].

In free space optical communication links, atmospheric turbulence can cause

random variations in refractive index of air at optical wavelengths, which, in turn,

result in random fluctuations in both the intensity and phase of a propagating

optical signal [24, 48]. Such fluctuations can lead to an increase in the link error

probability, thereby degrading communication performance [54]. The fluctuations

in the intensity of the transmitted optical signal, termed “fading,” can be modeled

in terms of an ergodic lognormal process with a correlation time of the order of

10−3 to 10−2 second [44]. In practice, these fades can routinely exceed 10 dB. In the

systems under consideration, data rates can typically be of the order of gigabits per
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second. Therefore, the free space optical channel is a slowly varying fading channel

with occasional deep fades that can affect millions of consecutive bits [21].

A technique that is often used to achieve higher rates of reliable communica-

tion over fading channels is to use estimates of the channel fade (also referred to

as path gain or channel state) at the transmitter and the receiver. See [40] for a

comprehensive review of relevant research in radio frequency (RF) communication.

In optical fading channels, instantaneous realizations of the channel state can be

estimated at the receiver; at typical speeds, nearly 106 bits are transmitted during

each coherence period, a small fraction of which can be used by the receiver to form

good estimates of the channel fade. Depending on the availability of a feedback link

and the amount of acceptable delay, the transmitter can be provided with complete

or partial knowledge of the channel state, which can be used for adaptive power con-

trol, thereby achieving higher throughputs (cf. e.g., [6, 40]). These assumptions lead

to a variety of interesting problems which are the subject of current investigation.

Another popular technique to combat the detrimental effects of fading is the

use of spatial diversity in the form of multiple transmit and receive elements. In

RF communication, the use of multiple transmit and receive antennae has been

shown to significantly improve the communication throughput in the presence of

channel fade. For a survey of recent results, see [16]. In a recent experimental study

[29], multiple laser beams were employed to improve communication performance

in a turbulent atmospheric channel. Some attempts have since then been made

to characterize analytically the benefits of MIMO communication in optical fading

channels [20, 21, 34, 51].
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In this dissertation, we consider several important issues concerning reliable

communication over MIMO optical fading channels. These include the formulation

of a block fading channel model that takes into account the slowly varying nature of

optical fade; the determination of channel capacity, viz., the maximum achievable

rate of reliable communication, when the receiver has very good estimates of channel

state information (CSI) while the transmitter is provided with varying degrees of

CSI; characterization of good transmitter power control strategies that achieve ca-

pacity; and the limiting behavior of channel capacity in low and high signal-to-noise

ratio (SNR) regimes.

1.2 Background

1.2.1 Historical perspective

Historically, conveying information optically through the atmospheric channel

is one of the most primitive forms of communication known to mankind. Ever since

the discovery of fire, man has used fire beacons and smoke signals for establishing and

maintaining contact with other human beings. Classical works, e.g., Euclid’s Optica

and Hero’s Catopricia discuss how the ancient Greeks used the sun’s reflection from

metal disks to signal messages over vast distances. Early naval communication relied

on signaling flags and shuttered lamps [17]. Claude Chappe invented the “optical

telegraph” in the 1790s, a series of semaphores mounted on towers, where human

operators relayed messages from one tower to the next [22]. In 1880, Alexander

Graham Bell used a “photophone” to transmit telephone signals via an intensity-
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modulated optical beam 200m through air to a distant receiver [28]. However, Bell’s

other technology, which evolved to telephony and wireless telegraphy, became the

preferred mode of communication.

The resurrection of modern optical communication can be attributed to the

invention of lasers in the late 1950s. Laser radiation is monochromatic, coherent,

and intense, which makes it an attractive carrier for high data rate communication.

Most of the early development of unguided laser communication was directed to-

wards satellite and remote military applications. In the commercial sector, as the

popularity of optical fibers soared in the 1970s and 1980s, the interest in wireless op-

tical communication dwindled. However, since the mid-1990s, an increasing demand

for broadband communication, fuelled by the explosive growth of the internet, has

opened new horizons for optical wireless communication, especially in urban and

metropolitan environments. Free space optics was voted as one of the ten “hottest”

technologies in 2001 [36].

1.2.2 Atmospheric optical propagation

An optical signal propagating through the free space atmospheric channel un-

dergoes degradations due to many factors. Molecular and aerosol absorbers1 in the

atmosphere, and thermal inhomogeneities in the troposphere2 cause absorption and

1Water vapor, ice, dust, carbon dioxide, nitrogen, oxygen, ozone, organic molecules, etc. con-

tribute to absorption and scattering at optical wavelengths. These effects can be substantially

reduced by choosing the operating carrier frequency judiciously. For details, see [27, 50].
2The troposphere is the lowest layer of the atmosphere extending from the earth surface up to

an elevation of about 15 km (9 miles).
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scattering of the propagating optical field. Absorption and scattering can have sev-

eral detrimental effects on the propagating optical wavefront,viz., attenuation, beam

spread, multipath spread, angular spread, Doppler spread and depolarization [45].

We shall focus our attention on atmospheric optical communication under clear

weather conditions. The effects of atmospheric absorption are negligible for short

to medium range communication links, and will be ignored. We shall assume that

typical transmitter beam divergence and receiver field-of-view values are much larger

than the beam spread and angular spread induced by turbulence [45]. Under clear

weather conditions, multipath spread is of the order of 10−12 second for line-of-sight

communication [44], and will be ignored henceforth.

Heated air rising from the earth and man-made devices such as heating ducts

create thermal inhomogeneities in the troposphere. This leads to random variations

in the refractive index of air at optical wavelengths, a phenomenon referred to as “at-

mospheric turbulence” or “refractive turbulence,” which, in turn, result in random

fluctuations in both the intensity and phase of a propagating optical signal [24, 48].

Atmospheric turbulence manifests itself in several familiar atmospheric conditions,

e.g., the twinkling of stars at night and the shimmering of the horizon on a hot day

[28]. The intensity fluctuations of the propagating optical signal, termed “fading,”

can be modeled in terms of an ergodic lognormal process with a correlation time

of the order of 1–10 milliseconds [44]. We shall assume that the fade is frequency

nonselective (which is justified by the negligible effect of multipath spread), so that

the intensities of the optical signals at the transmit and recieve apertures for each

transmit-receive aperture pair are related via a multiplicative fade coefficient [18].

5



1.2.3 Brief description of the optical communication system

In conventional optical communication systems, the transmitter comprises a

photoemitter, e.g., a laser diode (LD) or a light-emitting diode (LED), while the

receiver comprises a photodetector, e.g., a semiconductor photodiode, a PIN diode,

or an avalanche photodiode (APD). At typical operating frequencies,3 the simplest

and most popular technique for modulating the information onto the emitted light

signal is intensity modulation [13, 26]. The intensity, and hence the instantaneous

power, of the transmitted optical signal is proportional to the modulating current

at the photoemitter.4 At the direct detection photodetector, an electrical current is

generated by photoabsorption at a rate which is proportional to the instantaneous

optical power incident on the active detector surface. The intrinsically discrete

nature of the current gives rise to shot noise observed in low light level detection;

additional shot noise results from external sources of radiation (“background noise”),

as well as from spontaneously generated charge particles (“dark current”) [13, 44].

In this dissertation, we restrict our attention to an idealized direct detection optical

receiver, in which the photocurrent generated at the detector is modeled as a doubly

stochastic Poisson counting process (PCP) whose rate is proportional to the incident

optical power at the detector plus a constant (dark current rate) [13, 21]. This simple

3Conventional diodes used for wireless optical communication emit light in the infrared spec-

trum, viz., at wavelengths in the range of 850–950 nanometers [26, 50].
4Herein lies an important difference between optical and RF communication; in RF commu-

nication, typically the amplitude of the propagating RF signal is proportional to the modulating

electrical current, whence the instantaneous power of the transmitted signal is proportional to the

square of the input current.
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Figure 1.1: An intensity modulation direct detection (IM/DD) optical communica-

tion system.

receiver model is valid in the shot noise limited regime, when the effect of background

radiation is minimal compared to the incident optical signal at the detector.

A block schematic diagram of a shot noise limited free space optical commu-

nication system is given in Figure 1.1. The IR-valued amplitude of the transmitted

optical waveform is given by

xO(t, r) =
√

x(t)x̃(r) cos(2πf0t), t ≥ 0, r ∈ IR3, (1.1)

where {x(t), t ≥ 0} is the IR+
0 -valued intensity of the transmitted signal (which is

proportional to the modulating electrical current at the photoemitter); {x̃(r), r ∈

IR3} is the IR-valued directional (or spatial) component of the amplitude of the

transmitted waveform; and f0 is the optical carrier frequency. In practice, the light

emitting devices are limited in transmission power, which is captured in terms of

the following peak and average transmitter power constraints:

0 ≤ x(t) ≤ A, 0 ≤ t ≤ T,

1
T

∫ T

0
x(τ)dτ ≤ σA,

(1.2)

where A > 0 and 0 ≤ σ ≤ 1 are fixed.

The optical waveform, propagating through the turbulent atmospheric chan-
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nel, undergoes frequency nonselective time-varying fading, so that the amplitude of

the received optical waveform (in the absence of dark current) is given by

RO(t, r) =
√

S(t)xO(t; r), t ≥ 0, r ∈ IR3, (1.3)

where {S(t), t ≥ 0} is the IR+
0 -valued multiplicative channel fade (or channel state).

The receiver is assumed to possess perfect channel state information (CSI) {S(t), t ≥

0}, while the transmitter CSI is given by {U(t) = h(S(t)), t ≥ 0}, with a given

mapping h : IR+
0 → U , where U is arbitrary. The electrical current generated

at the (idealized) direct detection receiver is a Poisson counting process (PCP)

{Y (t), t ≥ 0} with rate (or intensity)

Λ(t) = R(t) + λ0, (1.4)

where {R(t) ∝ S(t)x(t), t ≥ 0} is the intensity of the received optical signal, and

λ0 ≥ 0 is the background noise (dark current) rate which is assumed to be constant.

Henceforth we refer to this channel model as the Poisson fading channel.

It should be noted that our model ignores the bandwidth limitations of the

transmitter and receiver devices currently used in practice. We also assume that

the effects of infrared and visible background radiation can be effectively captured

by a constant rate at the photodetector. These assumptions lead to simple channel

models amenable to an exact analysis. Other models have been proposed in the

literature that describe the background noise as additive white Gaussian (cf. e.g.,

[20, 23, 26, 51, 53, 54] and the references therein).

In this dissertation, we provide a systematic treatment of the problem of the

determination of the capacity of the multiple input multiple output (MIMO) Pois-

8



son fading channel, and analyze how the knowledge of varying levels of CSI at

the transmitter with perfect CSI at the receiver can be favorably used to enhance

capacity.

1.2.4 Previous work

The direct detection photon channel without any fading has been studied ex-

tensively in the literature. Most of these studies focus on the Poisson channel with

transmitter power constraints. Kabanov [25] used martingale techniques5 to deter-

mine the capacity of the Poisson channel subject to a peak transmitter signal power

constraint. Davis [11] considered the same channel subject to both peak and aver-

age transmitter power constraints. In [52], Wyner employed more direct methods

to derive not only the capacity, but also an exact expression for the error exponent

of the Poisson channel subject to peak and average power constraints. A strong

converse for the coding theorem using a sphere packing bound was derived in [4].

The capacity of the Poisson channel with random noise intensity subject to time-

varying peak and average power constraints was derived in [12]. The capacity region

of the Poisson multiple-access channel was obtained in [32], and the error exponents

for this channel were determined in [2]. The Poisson broadcast channel has been

addressed in [33]. Capacity and decoding rules for the Poisson arbitrarily varying

channel were discussed in [3].

5See [1] for a comprehensive treatment of the application of martingale techniques to the theory

of point processes. In this dissertation, we do not employ this powerful analytical tool to prove

our results, but rely instead on more elementary methods.
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In practice, the transmitting devices are limited in bandwidth. This important

issue was considered in [41, 42], where the author discussed the Poisson channel with

constraints on the intertransition times of the transmitted signal. More general

spectral constraints on the transmitted signals were considered in [43]. In [31],

bounds on channel capacity were obtained for a discrete-time Poisson channel.

In the last decade, several researchers have investigated the use of multiple

transmit and receive apertures in optical channels. In [34], the authors have demon-

strated that use of multiple transmit and receive apertures can lead to reduction in

bit error rate. Of direct relevance to our work are the recent results of Haas and

Shapiro [19, 21]. Upper and lower bounds on the capacity of the MIMO Poisson

channel with deterministic channel fade are derived in [19], whereas ergodic and

outage capacity issues for the MIMO Poisson channel with random channel fade are

addressed in [21].

1.3 Overview of the dissertation

This dissertation is organized as follows. We begin with the single input single

output (SISO) Poisson fading channel in Chapter 2. We propose a block fading

channel model that takes into account the slowly varying nature of optical fade.

The channel coherence time Tc is used as a measure of the intermittent coherence

of the time-varying fade. The channel fade is assumed to remain fixed over time

intervals of width Tc, and change in an independent and identically distributed

(i.i.d.) manner across successive such intervals. The receiver is assumed to possess
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perfect CSI, while the transmitter CSI may be imperfect. Under these assumptions,

we characterize the capacity of the Poisson fading channel when the transmitted

signals are subject to peak and average power constraints, and analyze properties of

optimal transmission strategies that achieve channel capacity. Two extreme cases of

this general formulation are of special interest, viz., (a) perfect CSI at transmitter,

and (b) no CSI at transmitter. We also study the behavior of channel capacity in the

high and low signal-to-noise regimes, and identify situations when the availability

of good estimates of CSI at the transmitter can lead to increased throughput.

In Chapter 3, we consider a MIMO Poisson channel with constant channel

fade, i.e., the channel fade is assumed to remain constant throughout the duration

of transmission. Though this assumption of deterministic channel fade does not

capture the practical channel conditions effectively, this model is rich enough to

reveal some of the complexities of communicating over MIMO Poisson channel with

random fade (which is discussed in Chapter 4), and to provide useful insights into the

structure of efficient transmission strategies. In this setting, we allow for two kinds of

transmitter power constraints: (a) peak and average transmitter power constraints

on individual transmit apertures; and (b) individual peak power constraints and an

average power constraint on the sum of the transmitted signals from all transmit

apertures. We characterize the properties of optimal transmission strategies that

achieve capacity, and discuss their implications on communication system design.

The average sum power constraint, although apparently artificially introduced, finds

an application in Chapter 4, where a simplified expression for channel capacity is

derived for the symmetric MIMO Poisson channel with isotropic channel fade.
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The MIMO Poisson channel with random channel fade is addressed in Chapter

4. A block fading channel model is considered; the channel fade matrix is assumed

to remain unvarying on intervals of duration Tc, and vary in an i.i.d. manner across

successive intervals. The receiver is assumed to possess perfect CSI, while the trans-

mitter CSI can be imperfect. The transmit apertures are subject to individual peak

and average power constraints. In this setting, we investigate the general capacity

problem for the MIMO Poisson fading channel. Several important properties of op-

timal transmission strategies are identified for the symmteric MIMO channel when

the channel fade is isotropically distributed and the transmitter has perfect CSI.

Finally, in the concluding section in Chapter 5, a new RF/optical sum channel

model is introduced, in which information is transmitted using one of two avail-

able wireless channels, viz., an RF fading channel and an optical channel (without

fading), depending on the instantaneous RF channel conditions. Furthermore, by

randomly switching between the two channels, additional information can be con-

veyed. We outline some of the information theoretic issues which might arise in

communication over such a hybrid RF/optical wireless channel.

1.4 Contributions of this dissertation

We conclude this chapter by outlining the main contributions of this disserta-

tion.

(i) A block fading channel model has been introduced for the slowly varying

free space optical fading channel. The channel fade is assumed to remain unvarying
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on intervals of duration Tc, where Tc is the channel coherence time, and is assumed to

vary in an i.i.d. manner across successive such intervals. This simplistic abstraction

of a complicated physical phenomenon allows us to derive exact expressions for

channel capacity and to identify properties of optimal transmission strategies for

reliable communication over a shot-noise limited Poisson fading channel.

(ii) We have analyzed two techniques to combat fading in optical channels,

viz., (a) estimation of channel state, and use of channel state information (CSI) at

the transmitter and the receiver; and (b) use of multiple apertures at the transmitter

and receiver. The receiver is assumed to possess perfect CSI, while the transmitter

CSI can be imperfect. In this setting, we have obtained a single-letter characteriza-

tion of the capacity of a block fading MIMO Poisson channel subject to peak and

average transmitter power constraints, and discussed several properties of optimal

transmission and reception strategies.

(iii) We have demonstrated that a two-level signaling scheme (“ON-OFF key-

ing”), in which each transmit aperture either remains silent (“OFF”) or transmits at

its peak power level (“ON”), with arbitrarily fast intertransition times can achieve

channel capacity. Furthermore, the capacity of the block fading Poisson channel

with perfect receiver CSI does not depend on the coherence time Tc.

(iv) For the SISO Poisson fading channel, it has been established that a knowl-

edge of CSI at the transmitter leads to higher channel capacity in the high signal-

to-noise (SNR) regime when the average power constraint is stringent, while in the

low SNR regime, the transmitter CSI does not increase capacity. This is in contrast

to the results cited in [21], where the authors have claimed that at the high SNR
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regime, a knowledge of CSI at transmitter does not improve capacity.

(v) For the MIMO Poisson channel with constant channel fade, a key property

of the correlation structure of transmitted signals from all the transmit apertures

has been identified: it been established that whenever a transmit aperture remains

ON, all the transmit apertures with higher allowable average power levels must

also remain ON. Under a symmetric average power constraint, it follows that the

“simultaneous ON-OFF keying” strategy, which dictates all the transmit apertures

to simultaneously remain either ON or OFF, can achieve channel capacity, thereby

establishing the tightness of the lower bound proposed in [19].

(vi) For the symmetric MIMO Poisson channel with isotropically distributed

random fade, the notion of “mirror states” has been introduced to obtain a simplified

expression for channel capacity. We have identified a partitioning of the channel

state set, which separates the channel states according to the relative ordering of

the transmit apertures’ optimal average conditional duty cycles. The simultaneous

ON-OFF keying lower bound is shown to be strictly suboptimal for the MIMO

Poisson channel with isotropic fade, even when the power constraints are symmetric.

An improved lower bound is proposed based on our results for the MIMO Poisson

channel with deterministic fade and a sum average power constraint.

(vii) We have studied a combined RF/optical sum channel with perfect RF

fade information at the receiver and partial RF fade information at the transmitter.

We have determined an expression for capacity of this channel in terms of the

capacities of the individual RF and optical channels, and a gain in the code rate

due to random switching. A complete characterization of the optimal power control
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and switching strategies, which are functions of transmitter RF fade information,

remains unresolved, primarily due to the lack of an exact expression for capacity of

the discrete-time Poisson channel.
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Chapter 2

SISO Poisson fading channel

2.1 Introduction

In this chapter, we consider a single-user single input single output (SISO)

Poisson fading channel limited by shot noise. Information is transmitted over this

channel by modulating the intensity of an optical signal, and the receiver performs

direct detection, which in effect, counts individual photon arrivals at the photode-

tector. The nonnegative transmitted signal is constrained in its peak and average

power. A block fading channel model is introduced that accounts for the slowly vary-

ing nature of optical fade; the channel fade remains constant for a coherence interval

of a fixed duration Tc (seconds), and changes across successive such intervals in an

independent and identically distributed (i.i.d.) fashion. We then consider situations

in which varying levels of information regarding the channel fade, i.e., channel state

information (CSI) can be provided to the transmitter, while the receiver has perfect

CSI.

We provide a systematic treatment of the problem of the determination of the

capacity of a Poisson fading channel, and analyze how the knowledge of varying

levels of CSI at the transmitter with perfect CSI at the receiver can favorably be

used to enhance capacity. Our model is similar to the one studied in [21], but

in this chapter is limited to the case of SISO single-user channel. In this setting,
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Y (t)
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Figure 2.1: Poisson fading channel.

we consider a more general class of problems than those considered in [21]. From

our new capacity results, conclusions are drawn that differ considerably from those

reported in [21].

The remainder of this chapter is organized as follows. Section 2.2 deals with the

problem formulation. Our results are stated in Section 2.3 and proved in Section

2.4. An illustrative example of a channel with a lognormal fade is considered in

Section 2.5. Finally, some concluding remarks are provided in Section 2.6.

2.2 Problem formulation

The following notation will be used throughout this dissertation. Random

variables (rvs) are denoted by upper-case letters and random vectors by bold upper-

case letters. We use the notation X
j
i to denote a sequence of rvs {Xi, Xi+1, · · · , Xj};

when i = 1, we use Xj = {X1, · · · , Xj}. A continuous time random process {X(t),

a ≤ t ≤ b} is denoted in shorthand notation by Xb
a; when a = 0, we use Xb = {X(t),

0 ≤ t ≤ b}. Realizations of rvs and random processes, which are denoted in lower-

case letters, follow the same convention.
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A block schematic diagram of the channel model is given in Figure 2.1. For

a given IR+
0 -valued1 transmitted signal {x(t), t ≥ 0}, the received signal Y ∞ =

{Y (t), t ≥ 0} is a Z
+
0 -valued nondecreasing (left-continuous) Poisson counting pro-

cess (PCP) with rate (or intensity) equal to

Λ(t) = S(t)x(t) + λ0, t ≥ 0,

where {S(t), t ≥ 0} is the IR+
0 -valued random fade, and λ0 ≥ 0 is the background

noise (dark current) rate which is assumed to be constant. Note that Y ∞ is an

independent increments process with Y (0) = 0, such that for 0 ≤ τ , t <∞,

Pr
{

Y (t+ τ) − Y (t) = j|Λt+τ
t = λt+τt

}

=
1

j!
e−Γ(λt+τ

t )Γj(λt+τt ), j = 0, 1, · · · ,

where Γ(λt+τt ) =
∫ t+τ

t
λ(u)du. Physically, the jumps in Y ∞ correspond to the

arrival of photons in the receiver. Let Σ(T ) denote the space of nondecreasing,

left-continuous, piecewise-constant, Z
+
0 -valued functions {g(t), 0 ≤ t ≤ T} with

g(0) = 0. Then the output process Y T = {Y (t), 0 ≤ t ≤ T} takes values in Σ(T ).

The input to the channel is a IR+
0 -valued signal xT = {x(t), 0 ≤ t ≤ T}

which is proportional to the transmitted optical power, and which satisfies peak

and average power constraints of the form:

0 ≤ x(t) ≤ A, 0 ≤ t ≤ T,

1
T

∫ T

0
x(t)dt ≤ σA,

(2.1)

where the peak power A > 0 and the ratio of average-to-peak power σ, 0 ≤ σ ≤ 1,

are fixed.

1The set of nonnegative real numbers is denoted by IR+
0 , the set of positive integers by Z

+, and

the set of nonnegative integers by Z
+
0 .
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Figure 2.2: Block fading channel.

The channel fade, i.e., path gain, is modeled by a IR+
0 -valued random process

{S(t), t ≥ 0}. The channel coherence time Tc is a measure of the intermittent co-

herence of the time-varying channel fade. We assume that the channel fade remains

fixed over time intervals of width Tc, and changes in an i.i.d. manner across suc-

cessive such intervals. For k = 1, 2, · · ·, let the channel fade on [(k − 1)Tc, kTc) be

denoted by the rv S[k] (see Figure 2.2); in other words,

S(t) = S[k], t ∈ [(k − 1)Tc, kTc), k = 1, 2, · · · .

The channel fade is then described by the random sequence S∞ = {S[1], S[2], · · ·}

of i.i.d. repetitions of a rv S with known distribution. Our general results hold for

a broad class of distributions for S which satisfy the following technical conditions:

Pr{S > 0} = 1, IE[S] <∞ and2 IE[S logS] <∞. Note that the rate of the received

signal Y ∞ is now given by3

Λ(t) = S[⌈t/Tc⌉]x(t) + λ0, t ≥ 0.

In an illustrative example discussed in Section 2.5 below, we shall use the lognormal

distribution with normalized channel fade, as advocated in [21].

2Unless mentioned otherwise, all logarithms are natural logarithms.
3The expression ⌈x⌉ denotes the smallest integer greater than or equal to x.
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Various degrees of CSI can be made available to the transmitter and the re-

ceiver. We shall assume throughout that the receiver has perfect CSI4. In general,

we can model the CSI available at the transmitter in terms of a given mapping

h : IR+
0 → U , where U is an arbitrary subset of IR+

0 , not necessarily finite. For

S∞ = s∞, the transmitter (resp. receiver) is provided with CSI u[k] = h(s[k]) (resp.

s[k]) on [(k − 1)Tc, kTc), k = 1, 2, · · ·. Let {U [k] = h(S[k]), k = 1, 2, · · ·} denote

the CSI at the transmitter, hereafter referred to as the transmitter CSI h. We shall

be particularly interested in two special cases of this general framework. In the first

case, the transmitter has perfect CSI, i.e., h is the identity mapping. In the second

case, the transmitter is provided no CSI, i.e., h is the trivial (constant) mapping.

We assume, without loss of generality, that the message transmission duration

T is an integer multiple of the channel coherence time Tc, i.e., T = KTc, K ∈ Z
+.

For the channel under consideration, a (W, T )–code (f, φ) is defined as follows.

1. For each uK ∈ UK , the codebook comprises a set of W waveforms f(w,uK) =

{xw(t, u⌈t/Tc⌉), 0 ≤ t ≤ T}, w ∈ W = {1, · · · , W}, satisfying peak and

average power constraints which follow from (2.1):

0 ≤ xw(t,u⌈t/Tc⌉) ≤ A, 0 ≤ t ≤ T, w ∈ W;

1
T

∫ T

0
xw
(

t,u⌈t/Tc⌉
)

dt ≤ σA, w ∈ W.

(2.2)

Note that the transmitter output, i.e., the signal xw(t) at time t is allowed to

be a function of u⌈t/Tc⌉.

4Typically Tc is of the order of 1− 10 ms, during which 1− 10 Mb can be transmitted at a rate

of 1 Gbps. A fraction of the bits transmitted and received during a coherence interval can be used

by the receiver to estimate the prevailing fade value.
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2. The decoder is a mapping φ : Σ(T ) ×(IR+
0 )K → W.

For each message w ∈ W and transmitter CSI uK ∈ UK corresponding to the fade

vector sK ∈ (IR+
0 )K , the transmitter sends a waveform xw(t, u⌈t/Tc⌉), 0 ≤ t ≤ T , over

the channel. The receiver, upon observing yT and being provided with sK , produces

an output ŵ = φ(yT , sK). The rate of this (W, T )–code is given by R = 1
T

logW

nats/sec., and its average probability of decoding error is given by

Pe(f, φ) =
1

W

W
∑

w=1

IE
[

Pr
{

φ(Y T ,SK) 6= w
∣

∣xTw(UK),SK
}]

,

where we have used the shorthand notation

xTw
(

UK
)

=
{

xw
(

t,U⌈t/Tc⌉
)

, 0 ≤ t ≤ T
}

, w ∈ W.

Definition 1 Let A, λ0, σ, Tc be fixed. Given 0 < ǫ < 1, a number R > 0 is

an ǫ-achievable rate if for every δ > 0 and for all T sufficiently large, there exist

(W, T )–codes (f, φ) such that 1
T

logW > R−δ and Pe(f, φ) < ǫ; R is an achievable

rate if it is ǫ-achievable for all 0 < ǫ < 1. The supremum of all achievable rates is

the capacity of the channel, and will be denoted by C.

2.3 Statement of results

Our first and main result provides a single–letter characterization of the ca-

pacity of the Poisson fading channel model described above. Recall our persistent

assumption that the receiver has perfect CSI. The two special cases of perfect and

no CSI at the transmitter are considered next. Finally, we analyze the limiting
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behavior of channel capacity in the high and low signal-to-shot-noise ratio (SNR)

regimes, viz. in the limits as λ0 → 0 and λ0 → ∞, respectively.

For stating our results, it is convenient to set

ζ(x, y)
∆
= (x+ y) log(x+ y) − y log y, x ≥ 0, y ≥ 0 (2.3)

(with 0 log 0
∆
= 0), and

α(x)
∆
=

1

x

(

e−1(1 + x)(1+1/x) − 1
)

, x ≥ 0, (2.4)

whence it can be verified that

ζ(x, y) − x(1 + log y) = x log(1 + α(x/y)x/y), x ≥ 0, y ≥ 0. (2.5)

Note that ζ(·, y) is strictly convex on [0, ∞) for every y ≥ 0.

Theorem 1 Let A, λ0, σ, Tc be fixed. The capacity for transmitter CSI h is given

by

C = max
µ:U→[0, 1]

IE[µ(U)]≤σ

IE [µ(U)ζ(SA, λ0) − ζ(µ(U)SA, λ0)] , (2.6)

where U = h(S).

The capacities for the special cases of perfect and no CSI at the transmitter

follow directly from Theorem 1.

Corollary 1 The capacity for perfect CSI at the transmitter and the receiver is

given by

CP = max
µ:IR+

0 →[0, 1]

IE[µ(S)]≤σ

IE [µ(S)ζ(SA, λ0) − ζ(µ(S)SA, λ0)] . (2.7)
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The capacity for no CSI at the transmitter and perfect CSI at the receiver is given

by

CN = max
0≤µ≤σ

IE [µζ(SA, λ0) − ζ(µSA, λ0)] . (2.8)

Remarks: (i) The optimization in (2.6) (as also in (2.7), (2.8)) is that of a concave

functional over a convex compact set, so that the maximum clearly exists.

(ii) From Theorem 1, we see that the channel capacity does not depend on

the coherence time Tc. Conditioned on the transmitted signal {xt, 0 ≤ t ≤ T},

and perfect receiver CSI sK , the received signal {Yt, 0 ≤ t ≤ T} is independent

across coherence intervals; hence it suffices to look at a single coherence interval in

the mutual information computations. Furthermore, in a single coherence interval,

conditioned on perfect receiver CSI, the optimality of i.i.d. transmitted signals leads

to a lack of dependence of capacity on Tc. The fact that the channel capacity of a

block fading channel with perfect receiver CSI does not depend on the block size

has been reported in the literature in various settings in other contexts (cf., e.g.,

[37] for such a result on block interference channels).

(iii) Our proof of the achievability part of Theorem 1 shows that {0, A}-valued

transmitted signals, which are i.i.d. (conditioned on the current transmitter CSI)

with arbitrarily fast intertransition times, can achieve channel capacity. This is in

concordance with previous results (cf., e.g., [52]), where the optimality of binary

signaling for Poisson channels has been established.

(iv) The optimizing “power control law” µ in (2.6), (2.7) and (2.8) depicts

the probability with which the transmitter picks the signal level A depending on
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the available transmitter CSI. Thus, it can be interpreted as the optimal average

“conditional duty cycle” of the transmitted signal as a function of transmitter CSI.

Theorem 2 The optimal power control law µ∗ : U → [0, 1] that achieves the max-

imum in (2.6) is given as follows. For ρ ≥ 0, u ∈ U , let µ = µρ(u) be the solution

of the equation

IE

[

SA log
(1 + α(SA/λ0)SA/λ0)

(1 + µSA/λ0)

∣

∣

∣

∣

U = u

]

= ρ. (2.9)

If σ0
∆
= IE[µ0(U)] > σ, let ρ = ρ∗ > 0 be the solution of the equation5

IE
[

[µρ(U)]+
]

= σ. (2.10)

Then the optimal power control law µ∗ in (2.6) is given by

µ∗(u) =















µ0(u), σ0 ≤ σ,

[µρ∗(u)]
+ , σ0 > σ, u ∈ U .

(2.11)

The following corollary particularizes the previous optimal power control law

in the special cases of perfect and no CSI at the transmitter.

Corollary 2 For perfect CSI at the transmitter, the optimal power control law µ∗ :

IR+
0 → [0, 1] that achieves the maximum in (2.7) is given as follows. For ρ ≥ 0, let

µρ(s)
∆
=

λ0

sA

(

e−(1+ ρ
sA)
(

1 +
sA

λ0

)(1+
λ0
sA)

− 1

)

, s ∈ IR+
0 . (2.12)

Let σ0
∆
= IE[µ0(S)], and if σ0 > σ, let ρ = ρ∗ > 0 be the solution of the equation

IE [[µρ(S)]+] = σ. Then the optimal power control law µ∗ in (2.7) is given by

µ∗(s) =















µ0(s), σ0 ≤ σ,

[µρ∗(s)]
+ , σ0 > σ, s ∈ IR+

0 .

(2.13)

5We denote max{x, 0} by [x]+.
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For no CSI at the transmitter, the maximum in (2.8) is achieved by µ∗ = min{σ, µ0},

with µ0 being the solution of the equation

IE

[

SA log
(1 + α(SA/λ0)SA/λ0)

(1 + µ0SA/λ0)

]

= 0. (2.14)

Remarks: (i) It can be verified that the left-side of (2.10) decreases monotonically

from σ0 to 0 as ρ increases from 0 to ∞, so that for each 0 ≤ σ < σ0, there exists

a unique ρ = ρ∗ > 0 that solves (2.10). Furthermore, it can be shown that for

each u ∈ U , 0 ≤ µ∗(u) ≤ 1/2, so that the power control law given by (2.11) is

well-defined.

(ii) For the case of perfect transmitter CSI, the optimal power control law in

(2.13) differs from, and yields a higher capacity value than, the claimed optimal

power control law in ([21], eq. 4). An example in Section 2.5 shows the difference

in the values of channel capacity when computed using the two power control laws

for a range of values of A/λ0 and σ.

The peak signal-to-noise ratio, ,denoted SNR, is defined as SNR = A/λ0. We

characterize next the capacity in the low and high shot-noise regimes (equivalently

the high and low SNR regimes) when the peak signal power A is fixed.

Theorem 3 In the high SNR regime in the limit as λ0 → 0, the capacity for trans-

mitter CSI h is

CH = IE
[

µH(U)ζ(SA, 0) − ζ(µH(U)SA, 0)
]

, (2.15)

with U = h(S), where the optimal power control law µH : U → [0, 1] is given as

follows: if σ < 1/e, let ρ = ρ∗ > 0 be the solution of the equation IE
[

e−ρ/A IE[S|U ]
]

=
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eσ; then µH is given by

µH(u) =















e−1−ρ∗/A IE[S|U=u], σ < 1/e,

e−1, σ ≥ 1/e, u ∈ U .
(2.16)

In the low SNR regime for λ0 ≫ 1, the capacity is6

CL = µL(1 − µL) IE[S2]A2/2λ0 +O
(

λ−2
0

)

, (2.17)

where µL = min{σ, 1/2}.

Remark: In the low SNR regime for λ0 ≫ 1, we see from (2.17) that transmitter

CSI does not improve capacity. The capacity increases with SNR (approximately)

linearly with a slope proportional to µL(1−µL), where the optimal conditional duty

cycle µL = min{1/2, σ} does not depend on the transmitter CSI. However, in the

high SNR regime as λ0 → 0, if σ < 1/e, the optimal conditional duty cycle µH (and

hence the capacity in (2.15)) depends on transmitter CSI. This is in contrast with

the results in [21], where the authors have argued that at high SNR, a knowledge

of the fade at the transmitter does not improve capacity.

In the next two corollaries of Theorem 3, we characterize the capacity in the

high and low SNR regimes, in the special cases when the transmitter is provided

with perfect and no CSI, respectively.

Corollary 3 For perfect CSI at transmitter, in the high SNR regime in the limit as

λ0 → 0, the capacity is

CH
P = IE

[

µH(S)ζ(SA, 0) − ζ(µH(S)SA, 0)
]

, (2.18)
6By the standard notation f(x) = O(g(x)), we mean that there exists a number 0 ≤ A < ∞,

not depending on x, such that f(x) ≤ Ag(x) ∀ x ≥ x0, where x0 = x0(A) < ∞.
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where the optimal power control law µH : IR+
0 → [0, 1] is given as follows: if σ < 1/e,

let ρ = ρ∗ > 0 be the solution of IE
[

e−ρ/SA
]

= eσ; then µH is given by

µH(s) =















e−1−ρ∗/sA, σ < 1/e,

e−1, σ ≥ 1/e, s ∈ IR+
0 .

(2.19)

In the low SNR regime for λ0 ≫ 1, the capacity is the same as in (2.17), i.e.,

CL
P = µL(1 − µL) IE[S2]A2/2λ0 +O

(

λ−2
0

)

, (2.20)

where µL = min{σ, 1/2}.

Corollary 4 For no CSI at transmitter, in the high SNR regime in the limit as

λ0 → 0, the capacity is

CH
N = IE

[

µHζ(SA, 0) − ζ(µHSA, 0)
]

, (2.21)

where µH = min{σ, 1/e}.

In the low SNR regime for λ0 ≫ 1, the capacity is the same as in (2.17), i.e.,

CL
N = µL(1 − µL) IE[S2]A2/2λ0 +O

(

λ−2
0

)

, (2.22)

where µL = min{σ, 1/2}.

2.4 Proofs

We begin this section with some additional definitions that will be needed in

our proofs. First, observe that for any τ > 0, the number of photon arrivals Nτ on

[0, τ ] together with the corresponding (ordered) arrival times TNτ = (T1, · · · , TNτ )
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are sufficient statistics for Y τ , so that the random vector (NT , T
NT ) is a complete

description of the random process Y T .

The channel is characterized as follows. For an input signal xT satisfying (2.1)

and a fade vector SK = sK , the channel output (NT , T
NT ) has the “conditional

sample function density” (cf. e.g., [47])

fNT ,T
NT |XT ,SK

(

nT , t
nT
∣

∣xT , sK
)

= exp

(

−
∫ T

0

λ(τ)dτ

)

·
nT
∏

i=1

λ(ti), (2.23)

where

λ(τ) = s[⌈τ/Tc⌉]x(τ) + λ0, 0 ≤ τ ≤ T.

In order to write the channel output sample function density conditioned only on

the fade for a given joint distribution of (XT , SK), consider the conditional mean

of XT (conditioned causally on the channel output and the fade) by

X̂(τ)
∆
= IE

[

X(τ)
∣

∣Nτ , T
Nτ , S⌈τ/Tc⌉

]

, 0 ≤ τ ≤ T, (2.24)

where we have suppressed the dependence of X̂(τ) on (Nτ , T
Nτ , S⌈τ/Tc⌉) for nota-

tional convenience; and define

Λ(τ)
∆
= S[⌈τ/Tc⌉]X(τ) + λ0, 0 ≤ τ ≤ T, (2.25)

and

Λ̂(τ)
∆
= IE

[

Λ(τ)
∣

∣Nτ , T
Nτ , S⌈τ/Tc⌉

]

= S⌈τ/Tc⌉X̂(τ) + λ0, 0 ≤ τ ≤ T. (2.26)

From ([47], Theorem 7.2.1), it follows that conditioned on SK , the process (NT , T
NT )

is a self-exciting PCP with rate process Λ̂T , and the (conditional) sample function
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density is given by

fNT ,T
NT |SK

(

nT , t
nT
∣

∣sK
)

= exp

(

−
∫ T

0

λ̂(τ)dτ

)

·
nT
∏

i=1

λ̂(ti), (2.27)

where

λ̂(τ) = s[⌈τ/Tc⌉]x̂(τ) + λ0,

with

x̂(τ) = IE
[

X(τ)
∣

∣Nτ = nτ , T
Nτ = tnτ , S⌈τ/Tc⌉ = s⌈τ/Tc⌉

]

, 0 ≤ τ ≤ T.

Proof of Theorem 1:

Converse part: Let the rv W be uniformly distributed on (the message set)

W = {1, · · · , W}, and independent of SK . With T = KTc, K ∈ Z
+, consider a

(W, T )–code (f, φ) of rate R = 1
T

logW , and with Pe(f, φ) ≤ ǫ, where 0 ≤ ǫ ≤ 1 is

given. Denote X(t)
∆
= xW (t, U⌈t/Tc⌉), 0 ≤ t ≤ T . Note that (2.2) then implies that

0 ≤ X(t) ≤ A, 0 ≤ t ≤ T,

1
T

∫ T

0
IE[X(τ)]dτ ≤ σA.

(2.28)

Let (NT , T
NT ) be the channel output when XT is transmitted and the channel fade

is SK . Clearly, the following Markov condition holds:

W −◦−X t S⌈t/Tc⌉ −◦−NtT
Nt , 0 ≤ t ≤ T. (2.29)

By a standard argument,

R =
1

T
H(W )

=
1

T

[

I(W ∧ φ(NT , T
NT , SK)) +H(W |φ(NT , T

NT , SK))
]

,
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which, upon using Fano’s inequality

H(W |φ(NT , T
NT , SK)) ≤ ǫ logW + hb(ǫ)

= ǫTR + hb(ǫ),

leads to

R ≤ 1

(1 − ǫ)

[

1

T
I(W ∧ φ(NT , T

NT , SK)) +
1

T
hb(ǫ)

]

, (2.30)

where hb denotes binary entropy. Since 0 < ǫ < 1 was arbitrary, we get the standard

converse result that the rate R of the (W, T )–code (f, φ) with Pe(f, φ) ≤ ǫ must

satisfy

R /
1

T
I
(

W ∧ φ(NT , T
NT , SK)

)

. (2.31)

Proceeding further with the right side of (2.31),

I
(

W ∧ φ(NT , T
NT , SK)

)

≤ I
(

W ∧NT , T
NT , SK

)

(2.32)

= I
(

W ∧NT , T
NT |SK

)

(2.33)

= h(NT , T
NT |SK) − h(NT , T

NT |W, SK)

≤ h(NT , T
NT |SK) − h(NT , T

NT |XT ,SK) (2.34)

where (2.32), (2.33) and (2.34) follow, respectively, by the data processing result for

mixed rvs7, the independence of W from SK , and (2.29). The difference between

the conditional entropies of the mixed rvs8 on the right side of (2.34) is

h(NT , T
NT |SK) − h(NT , T

NT |XT , SK)
7This result can be deduced, for instance, from [39], the last paragraph of Section 3.4, p. 36,

and Kolmogorov’s formula (3.6.3) on p. 37.
8Our definition of the conditional entropy of mixed rvs is consistent with the general formulation

developed, for instance, in [39], Chapter 3.
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= IE
[

− log fNT ,T
NT |SK(NT , T

NT |SK)
]

− IE
[

− log fNT ,T
NT |XT ,SK (NT , T

NT |XT , SK)
]

= IE



log
exp

(

−
∫ T

0
Λ(τ)dτ

)

∏NT

i=1 Λ(Ti)

exp
(

−
∫ T

0
Λ̂(τ)dτ

)

∏NT

i=1 Λ̂(Ti)



 (2.35)

= IE

[∫ T

0

(

Λ̂(τ) − Λ(τ)
)

dτ

]

+ IE

[

NT
∑

i=1

(

log Λ(Ti) − log Λ̂(Ti)
)

]

= IE

[

NT
∑

i=1

(

log Λ(Ti) − log Λ̂(Ti)
)

]

(2.36)

=

∫ T

0

{

IE [ζ (S[⌈τ/Tc⌉]X(τ), λ0)] − IE
[

ζ
(

S[⌈τ/Tc⌉]X̂(τ), λ0

)]}

dτ,(2.37)

where (2.35) is by (2.23), (2.27); (2.36) holds by an interchange of operations9 to

get

IE

[
∫ T

0

(Λ̂(τ) − Λ(τ))dτ

]

=

∫ T

0

IE
[

Λ̂(τ) − Λ(τ)
]

dτ,

followed by noting that IE[Λ̂(τ)] = IE[Λ(τ)], 0 ≤ τ ≤ T , by (2.26); and (2.37) is

proved in Appendix A.1.

Next, in the right side of (2.37),

IE
[

ζ
(

S[⌈τ/Tc⌉]X̂(τ), λ0

)]

= IE
[

IE
[

ζ
(

S[⌈τ/Tc⌉]X̂(τ), λ0

)∣

∣

∣
S[⌈τ/Tc⌉]

]]

≥ IE
[

ζ
(

IE
[

S[⌈τ/Tc⌉]X̂(τ)
∣

∣

∣
S[⌈τ/Tc⌉]

]

, λ0

)]

(2.38)

= IE
[

ζ
(

S[⌈τ/Tc⌉] IE
[

X̂(τ)
∣

∣

∣
S[⌈τ/Tc⌉]

]

, λ0

)]

= IE [ζ (S[⌈τ/Tc⌉] IE [X(τ)|S[⌈τ/Tc⌉]] , λ0)] (2.39)

= IE [ζ (S[⌈τ/Tc⌉] IE [X(τ)|U [⌈τ/Tc⌉]] , λ0)] , (2.40)

9The interchange is permissible as the assumed condition IE[S] < ∞ implies the integrability of

{Λ(τ), 0 ≤ τ ≤ T } and {Λ̂(τ), 0 ≤ τ ≤ T }.
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where (2.38) is by Jensen’s inequality applied to the convex function ζ(·, λ0); (2.39)

is from

IE
[

X̂(τ) |S[⌈τ/Tc⌉]
]

= IE
[

IE
[

X(τ)
∣

∣Nτ , T
Nτ , S⌈τ/Tc⌉

]

|S[⌈τ/Tc⌉]
]

= IE [X(τ) |S[⌈τ/Tc⌉] ] ;

and (2.40) holds as

IE [X(τ) |S[⌈τ/Tc⌉] ] = IE [X(τ) |S[⌈τ/Tc⌉], U [⌈τ/Tc⌉] ]

= IE [X(τ) |U [⌈τ/Tc⌉] ] (2.41)

by virtue of the Markov condition

X(τ) −◦− U [⌈τ/Tc⌉] −◦− S[⌈τ/Tc⌉], 0 ≤ t ≤ T, (2.42)

which is established in Appendix A.2. Summarizing collectively (2.34), (2.37),

(2.40), we get that

I
(

W ∧ φ(NT , T
NT , SK)

)

≤
∫ T

0

{IE [ζ(S[⌈τ/Tc⌉]X(τ), λ0)

−ζ(S[⌈τ/Tc⌉] IE[X(τ)|U [⌈τ/Tc⌉]], λ0)]} dτ. (2.43)

The right side of (2.43) is further bounded above by a suitable modification of

the argument of Davis [11]. Considering the integrand in (2.43), fix 0 ≤ τ ≤ T and

condition on S[⌈τ/Tc⌉] = s, s ∈ IR+
0 . Then

IE [ζ (S[⌈τ/Tc⌉]X(τ), λ0) − ζ (S[⌈τ/Tc⌉] IE[X(τ)|U [⌈τ/Tc⌉]], λ0) |S[⌈τ/Tc⌉] = s]

= IE [ζ(sX(τ), λ0)|S[⌈τ/Tc⌉] = s] − ζ(s IE[X(τ)|U [⌈τ/Tc⌉] = h(s)], λ0)
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= IE [ζ(sX(τ), λ0)|U [⌈τ/Tc⌉] = h(s)]

−ζ(s IE[X(τ)|U [⌈τ/Tc⌉] = h(s)], λ0), (2.44)

by (2.42). Consider maximizing the right side of (2.44) over all conditional dis-

tributions of X(τ) conditioned on U [⌈τ/Tc⌉] = h(s) with a fixed conditional mean

IE[X(τ)|U [⌈τ/Tc⌉] = h(s)] = πτ (h(s)), say, and subject to the first constraint (alone)

in (2.28). Then, the right side of (2.44) equals

IE[ζ(sX(τ), λ0)|U [⌈τ/Tc⌉] = h(s)] − ζ(sπτ(h(s)), λ0), (2.45)

and is maximized by considering the first term above. Using the strict convexity of

ζ(·, λ0), this term is largest (see [11], proof of Theorem 1, or [43], Lemma 1)10 iff

X(τ) is a {0, A}-valued rv with

Pr(X(τ) = A|U [⌈τ/Tc⌉] = h(s)) = 1 − Pr(X(τ) = 0|U [⌈τ/Tc⌉] = h(s))

= πτ (h(s))/A, (2.46)

and the corresponding largest value of (2.45) is

πτ (h(s))ζ(sA, λ0)/A− ζ(sπτ (h(s)), λ0). (2.47)

10An alternative proof can be gleaned from the following simple observation. Let X be a [0, A]-

valued rv, A > 0, of arbitrary distribution but with fixed mean µ = IE[X ]. Let g : [0, A] → IR+
0

be a strictly convex mapping, with g(0) = 0. Then, g(X) ≤ g(A)
A X , whence IE[g(X)] ≤ g(A)µ

A . It

is readily seen that this upper bound on IE[g(X)] is achieved if X ∈ {0, A} with Pr{X = 0} =

1 − Pr{X = A} = 1 − µ
A . The necessity of this choice of (optimal) X follows from the strict

convexity of g(·) on [0, A].
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Noting that (2.28) implies that

0 ≤ πτ (h(s)) ≤ A, 0 ≤ τ ≤ T, s ∈ IR+
0 ,

1
T

∫ T

0
IE[πτ (h(S[⌈τ/Tc⌉]))]dτ ≤ σA,

(2.48)

we thus see from (2.43), (2.44), (2.45), (2.47), (2.48) that

1

T
I
(

W ∧ φ(NT , T
NT , SK)

)

≤ max
πτ :U→[0, A], 0≤τ≤T

1
T

∫ T
0

IE[πτ (h(S[⌈τ/Tc⌉]))]dτ≤σA

1

T

∫ T

0

{IE[πτ (h(S[⌈τ/Tc⌉]))ζ(S[⌈τ/Tc⌉]A, λ0)/A]

− IE[ζ(S[⌈τ/Tc⌉]πτ (h(S[⌈τ/Tc⌉])), λ0)]} dτ

= max
πτ :U→[0, A], 0≤τ≤T

1
T

∫ T
0

IE[πτ (U [⌈τ/Tc⌉])]dτ≤σA

1

T

∫ T

0

{IE[πτ (U [⌈τ/Tc⌉])ζ(S[⌈τ/Tc⌉]A, λ0)/A]

− IE[ζ(S[⌈τ/Tc⌉]πτ (U [⌈τ/Tc⌉]), λ0)]} dτ. (2.49)

In order to simplify the right side of (2.49), for every u ∈ U , define

νk(u) =
1

Tc

∫ kTc

(k−1)Tc

IE[πτ (U [k])|U [k] = u]dτ, k = 1, · · · , K, (2.50)

µ(u) =
1

K

K
∑

k=1

νk(u)

A
. (2.51)

From (2.48), we get

0 ≤ µ(u) ≤ 1, u ∈ U , (2.52)

and

σ ≥ 1

A

1

T

∫ T

0

IE[πτ (h(S[⌈τ/Tc⌉]))]dτ

=
1

A

1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE[πτ (U [k])]dτ

=
1

A

1

K

K
∑

k=1

IE[νk(U [k])] (2.53)
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=
1

A

1

K

K
∑

k=1

IE[νk(U)] (2.54)

= IE[µ(U)], (2.55)

where (2.53) is by (2.50); (2.54) holds by the i.i.d. nature of the channel fade

sequence S∞; and (2.55) is by (2.51). The time-averaged integral on the right side

of (2.49) can be written as

1

T

∫ T

0

{IE[πτ (U [⌈τ/Tc⌉])ζ(S[⌈τ/Tc⌉]A, λ0)/A] − IE[ζ(S[⌈τ/Tc⌉]πτ (U [⌈τ/Tc⌉]), λ0)]} dτ

=
1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

{IE[πτ (U [k])ζ(S[k]A, λ0)/A− ζ(S[k]πτ (U [k]), λ0)]} dτ

≤ 1

K

K
∑

k=1

IE[νk(U [k])ζ(S[k]A, λ0)/A− ζ(S[k]νk(U [k]), λ0)] (2.56)

=
1

K

K
∑

k=1

IE[νk(U)ζ(SA, λ0)/A− ζ(Sνk(U), λ0)] (2.57)

≤ IE[µ(U)ζ(SA, λ0) − ζ(Sµ(U)A, λ0)], (2.58)

where (2.56) is by Jensen’s inequality applied to the convex function ζ(·, λ0) and

(2.50); (2.57) holds by the i.i.d. nature of S∞; and (2.58) is by Jensen’s inequality

and (2.51). Summarizing collectively (2.31), (2.49), (2.52), (2.55), (2.58), we get

that

R / max
µ:U→[0, 1]

IE[µ(U)]≤σ

IE [µ(U)ζ(SA, λ0) − ζ(µ(U)SA, λ0)] . (2.59)

This concludes the proof of the converse part of Theorem 1.

Achievability part: We closely follow Wyner’s approach [52].

Fix L ∈ Z
+ and set ∆

∆
= Tc/L. Divide the time interval [0, T ], where T = KTc

with K ∈ Z
+, into KL equal subintervals, each of duration ∆. See Figure 2.3. Then,

in the channel fade sequence S∞ = {S[k]}∞k=1, each S[k] remains unvarying for a
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0

Transmission interval

Tc T2Tc (k − 1)Tc kTc (K − 1)Tc

S[k]S[2]S[1] S[K]

∆

(k − 1)L∆ + ∆

kth coherence interval
kL∆ − ∆ kL∆(k − 1)L∆

Figure 2.3: Subintervals of [0, T ].

block of L consecutive ∆-duration subintervals within [(k−1)Tc, kTc], and {S[k]}∞k=1

varies across such blocks in an i.i.d. manner.

Now, consider the situation in which for each message w ∈ W, the channel

input waveform f(w, uK) = {xw(t, u⌈t/Tc⌉), 0 ≤ t ≤ T} is restricted to be {0, A}-

valued and piecewise constant in each of the KL time slots of duration ∆. Define

x̃n(w, u
⌈n/L⌉)

∆
=































0, if xw(t, u⌈t/Tc⌉) = 0,

1, if xw(t, u⌈t/Tc⌉) = A,

t ∈ [(n− 1)∆, n∆), n = 1, · · · , KL.

(2.60)

Note that the condition (2.2) requires that

1

KL

KL
∑

n=1

x̃n(w, u
⌈n/L⌉) ≤ σ, w ∈ W, uK ∈ UK . (2.61)

Next, consider a decoder φ : {0, 1}KL× (IR+
0 )K → W based on restricted

observations over the KL time slots, comprising

Ỹn = 1(Y (n∆) − Y ((n− 1)∆) = 1), n = 1, · · · , KL, (2.62)

(with Y (0) = 0), and SK . The largest achievable rate of restricted (W, T )-codes

as above – and, hence, the capacity C for transmitter CSI h – is clearly no smaller
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1 1

X̃ Ỹ
1 − w10(L)

w10(L)

w11(s, L)

1 − w11(s, L)

Figure 2.4: Discrete channel approximation.

than C(L)
Tc

, where C(L) is the capacity of a (L-) block discrete memoryless channel

(in nats per block channel use) with input alphabet X̃ L = {0, 1}L; output alphabet

ỸL = {0, 1}L; state alphabet IR+
0 ; transition probability mass function (pmf)

W (L)(ỹL|x̃L, s) =

L
∏

l=1

WỸ |X̃, S(ỹl|x̃l, s),

x̃L ∈ {0, 1}L, ỹL ∈ {0, 1}L, s ∈ IR+
0 , (2.63)

where X̃, S, Ỹ , respectively, are X̃ -, IR+
0 - and Ỹ-valued rvs and WỸ |X̃, S(·|·, s), s ∈

IR+
0 , is given by (see Figure 2.4)

WỸ |X̃, S(1|0, s) = 1 −WỸ |X̃, S(0|0, s)

= λ0
Tc

L
exp

(

−λ0
Tc

L

) ∆
= w10(L),

WỸ |X̃, S(1|1, s) = 1 −WỸ |X̃, S(0|1, s)

= (λ0 + sA)Tc

L
exp

(

−(λ0 + sA)Tc

L

) ∆
= w11(s, L),

(2.64)

with transmitter CSI h (and perfect receiver CSI); and under constraint (2.61).

From ([9], Remark A2 following Proposition 1), it is readily obtained11 that

C(L) = max
P
X̃L|U

:
∑L

l=1 IE[X̃l]≤Lσ
I(X̃L ∧ ỸL|S), (2.65)

11In [9], S is taken to be finite-valued; however the result (2.65) can be seen to hold also when

S is IR+
0 -valued.
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with U = h(S), where the joint conditional pmf PX̃L, ỸL|S is given by

PX̃L, ỸL|S(x̃
L, ỹL|s) = PX̃L|U(x̃L|h(s))W (L)(ỹL|x̃L, s),

x̃L ∈ {0, 1}L, ỹL ∈ {0, 1}L, s ∈ IR+
0 . (2.66)

By a standard argument which uses (2.63), the maximum in (2.65) is achieved by

PX̃L|U(x̃L|h(s)) =

L
∏

l=1

PX̃l|U
(x̃l|h(s)), x̃L ∈ {0, 1}L, s ∈ IR+

0 , (2.67)

so that from (2.65),

C(L) = L max
PX̃|U : IE[X̃]≤σ

I(X̃ ∧ Ỹ |S), (2.68)

where PX̃, Ỹ |S is given by

PX̃, Ỹ |S(x̃, ỹ|s) = PX̃|U(x̃|h(s))WỸ |X̃, S(ỹ|x̃, s),

x̃ ∈ {0, 1}, ỹ ∈ {0, 1}, s ∈ IR+
0 . (2.69)

Setting

µ(u)
∆
= Pr{X̃ = 1|U = u} = IE[X̃|U = u], u ∈ U , (2.70)

and

βL(s)
∆
= I(X̃ ∧ Ỹ |S = s)

= H(Ỹ |S = s) −H(Ỹ |X̃, S = s)

= hb (µ(h(s))w11(s, L) + (1 − µ(h(s)))w10(L))

− (µ(h(s))hb(w11(s, L)) + (1 − µ(h(s)))hb(w10(L))) , s ∈ IR+
0 , (2.71)

where hb(·) is the binary entropy function, we can express (2.68) as

C(L) = max
µ:U→[0, 1]

IE[µ(U)]≤σ

L IE[βL(S)]. (2.72)
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Since L ∈ Z
+ was arbitrary, we have

C ≥ lim
L→∞

C(L)

Tc

≥ max
µ:U→[0, 1]

IE[µ(U)]≤σ

lim
L→∞

IE[βL(S)]

Tc/L
(2.73)

by (2.72). Finally, it is shown in Appendix A.3 that

lim
L→∞

IE[βL(S)]

Tc/L
= IE[µ(U)ζ(SA, λ0) − ζ(Sµ(U)A, λ0)], (2.74)

whence

C ≥ max
µ:U→[0, 1]

IE[µ(U)]≤σ

IE[µ(U)ζ(SA, λ0) − ζ(Sµ(U)A, λ0)], (2.75)

thereby completing the proof of the achievability part.

Remarks: (i) In Section 2.3, remark (iii) following Theorem 1 constitutes an inter-

pretation of (2.67) when L→ ∞.

(ii) In the proof above of the achievability part of Theorem 1, we could also

have considered a restricted decoder φ with Ỹn in (2.62) replaced by

Ỹn = 1 − 1(Y (n∆) − Y ((n− 1)∆) = 0), n = 1, · · · , KL.

Proof of Theorem 2:

From 2.6,

C = max
µ:U→[0, 1]

IE[µ(U)]≤σ

IE[ψ(U, µ(U))], (2.76)

where

ψ(u, µ(u))
∆
= IE[µ(u)ζ(SA, λ0) − ζ(Sµ(u)A, λ0)|U = u], u ∈ U . (2.77)
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Note that

∂ψ
∂µ

= IE [ζ(SA, λ0) − SA(1 + log(Sµ(u)A+ λ0))|U = u]

= IE
[

SA log (1+α(SA/λ0)SA/λ0)
(1+µ(u)SA/λ0)

∣

∣

∣
U = u

]

,

∂2ψ
∂µ2 = − IE

[

S2A2

(Sµ(u)A+λ0)

∣

∣

∣
U = u

]

, u ∈ U .

(2.78)

In order to determine the optimal power control law µ∗ : U → [0, 1] we use varia-

tional calculus.

First consider the “unconstrained optimization” problem, i.e., without the

constraints µ : U → [0, 1] and IE[µ(U)] ≤ σ:

max
µ:U→IR

IE[ψ(U, µ(U))], (2.79)

and let µ0 : U → IR denote the maximizer. Then µ0 must satisfy the (necessary)

Euler-Lagrange condition (cf. e.g., [15])

∂ψ

∂µ

∣

∣

∣

∣

µ0

= 0, (2.80)

which, by (2.78) is

IE

[

SA log
(1 + α(SA/λ0)SA/λ0)

(1 + µ0(u)SA/λ0)

∣

∣

∣

∣

U = u

]

= 0, u ∈ U . (2.81)

Furthermore, by (2.78), ∂2ψ
∂µ2 < 0, u ∈ U , i.e., ψ(·) is a strictly concave function of µ,

so that (2.80) also constitutes a sufficient condition. It can be verified (cf. e.g., [11],

Figure 2) that α(·) is monotone decreasing on [0, ∞) with α(0) = 1
2

and α(∞) = 1
e
.

Therefore, from (2.81), it follows that 1
e
≤ µ0(u) ≤ 1

2
, u ∈ U . With σ0

∆
= IE[µ0(U)],

we see that 1
e
≤ σ0 ≤ 1

2
.

Consider next the constrained optimization problem on the right side of (2.76),

i.e., now with the inclusion of the constraints µ : U → [0, 1] and IE[µ(U)] ≤ σ. If σ ≥
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σ0, then the “unconstrained” maximizer µ0 satisfies the previous two constraints,

and hence is the solution of the constrained problem in (2.76) as well. Suppose next

that σ < σ0. First ignore the (local) constraint 0 ≤ µ(u) ≤ 1, u ∈ U , and define the

Lagrangian functional

L(µ) = IE[ξ(U, µ(U))], (2.82)

where

ξ(u, µ(u))
∆
= ψ(u, µ(u)) − ρµ(u), u ∈ U , (2.83)

and ρ ≥ 0 is a Lagrange multiplier. Using the strict concavity of L(·), we conclude

that a necessary and sufficient condition for µρ : U → IR to be the maximizer in

(2.76) is given by the Euler-Lagrange equation

∂ξ

∂µ

∣

∣

∣

∣

µρ

= 0. (2.84)

By (2.78), (2.83) and (2.84), we then see that µρ satisfies

IE

[

SA log
(1 + α(SA/λ0)SA/λ0)

(1 + µρ(u)SA/λ0)

∣

∣

∣

∣

U = u

]

= ρ, u ∈ U . (2.85)

We now impose the constraint 0 ≤ µ(u) ≤ 1, u ∈ U . Note that µρ(u) ≤ µ0(u)

≤ 1
2
, u ∈ U for all ρ ≥ 0. However, given ρ > 0, µρ(u) can be < 0 for some u ∈ U . By

the strict concavity of ξ(u, ·), it follows that if for some u ∈ U , µρ(u) < 0, then for all

ω ≥ 0, ξ(u, ·) is a strictly decreasing function of ω. Therefore, if µρ(u) < 0 for some

u ∈ U , the constraint µ(u) ≥ 0 dictates the maximizing solution to be µ∗(u) = 0;

otherwise, the maximizing solution is given by µ∗(u) = µρ(u). Summarizing the

previous observations, we get that µ∗(u) = [µρ(u)]
+, u ∈ U . Finally, the optimal
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Lagrange multiplier ρ∗ is chosen to satisfy the power constraint IE[[µρ∗(U)]+] = σ.

This concludes the proof of Theorem 2.

Proof of Theorem 3:

First consider the limit as λ0 → 0. Let CH = limλ0→0C, µHρ (u) = limλ0→0 µρ(u)

and µH(u) = limλ0→0 µ
∗(u), u ∈ U , ρ ≥ 0, where C, µρ(·) and µ∗(·) are as defined

in (2.6), (2.9) and (2.11) respectively. Since

lim
λ0→0

IE

[

SA log
(1 + α(SA/λ0)SA/λ0)

(1 + µSA/λ0)

∣

∣

∣

∣

U = u

]

= IE[SA log(α(0)/µ)|U = u], 0 ≤ µ ≤ 1,

by (2.9), it follows that µHρ (u) = e−1−ρ/A IE[S|U=u]. Clearly, 0 ≤ µHρ (u) ≤ e−1,

ρ ≥ 0, u ∈ U . Furthermore, µH0 (u) = e−1, u ∈ U , so that σ0 = e−1. By (2.11), it

follows that

µH(u) =















e−1, σ ≥ e−1,

e−1−ρ∗/A IE[S|U=u], σ < e−1,

where for σ < e−1, ρ∗ ≥ 0 satisfies IE[e−1−ρ∗/A IE[S|U ]] = σ. Finally, by (2.6), in the

limit as λ0 → 0, we get

CH = IE
[

µH(U)ζ(SA, 0) − ζ(µH(U)SA, 0)
]

.

This concludes the proof of the first part of Theorem 3.

Next consider the case λ0 ≫ 1. Let µLρ (u) = limλ0→∞ µρ(u) and µL(u) =

limλ0→∞ µ∗(u), u ∈ U , ρ ≥ 0. Given s ≥ 0, a ≥ 0,

ζ(sA, λ0) − sA(1 + log(λ0 + asA))

= sA log λ0 + (sA+ λ0) log (1 + sA/λ0) − sA (1 + logλ0 + log (1 + asA/λ0)) ,
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which, for λ0 ≫ 1, with the approximation log x = x − x2/2 + O(x3) for x ≪ 1,

equals

(sA+ λ0)
(

sA/λ0 − (sA/λ0)
2 /2 +O(λ−3

0 )
)

−sA
(

1 + asA/λ0 − (asA/λ0)
2 /2 +O(λ−3

0 )
)

= (1 − 2a)s2A2/2λ0 +O(λ−2
0 ) → 0 as λ0 → ∞, (2.86)

Hence, for λ0 ≫ 1, by (2.9), (2.78) and (2.86), it follows that

ρ = IE[ζ(SA, λ0) − SA(1 + log(λ0 + µLρ (u)SA))|U = u]

= (1 − 2µLρ (u)) IE[S2|U = u]A2/2λ0 +O(λ−2
0 ),

so that as λ0 → ∞, ρ → 0 and µLρ (u) = 1/2 + O(λ−1
0 ) → 1/2, u ∈ U . In this case

σ0 = 1/2, and therefore µL(u) = min{σ, 1/2}, u ∈ U , a constant which we denote

by µL.

Finally, we compute CL. Given s ≥ 0, for λ0 ≫ 1, we have

µLζ(sA, λ0) − ζ(µLsA, λ0)

= µL(sA+ λ0) log(1 + sA/λ0) − (µLsA+ λ0) log(1 + µLsA/λ0)

= µL(sA+ λ0)
(

sA/λ0 − (sA/λ0)
2/2 +O(λ−3

0 )
)

−(µLsA+ λ0)
(

µLsA/λ0 − (µLsA/λ0)
2/2 +O(λ−3

0 )
)

(2.87)

= µL(1 − µL)s2A2/2λ0 +O
(

λ−2
0

)

,

where we have used the approximation log x = x− x2

2
+O(x3) for x ≪ 1 in (2.87).

By (2.6), we then obtain

CL = µL(1 − µL) IE[S2]A2/2λ0 +O(λ−2
0 ).
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This completes the proof of Theorem 3.

2.5 Numerical example

In this example, we consider the fade to have a lognormal distribution. We

determine the capacity for the two special cases discussed in Section 2.3, and com-

pare the values with the capacity as determined by the results of [21] as well as for

the channel without fading.

The channel fade is an i.i.d. lognormal process, i.e., Sk ∼ S = exp(2G),

k = 1, 2, · · ·, where G is Gaussian with mean µG and variance σ2
G. We choose

µG = −σ2
G so that the fade is normalized, i.e., IE[S] = 1. This implies that the

atmosphere, on an average, does not attenuate or amplify the transmitted signal.

The log-amplitude variance σ2
G can vary from 0 (negligible fading) to 0.5 (severe

turbulence) [21]. We pick σ2
G = 0.1, which corresponds to a moderately turbulent

Poisson channel. Denote the (peak) signal-to-noise ratio by SNR = 10 log10(A/λ0)

(in dB). We fix A = 1 and vary the parameters σ and λ0 to study the effect of the

average power constraint and SNR on the channel capacity.

Figure 2.5 shows the behavior of the optimal power control law µ∗
P (·) (see

(2.13)) with the channel fade for different values of σ for SNR = 0 dB. The power

law in ([21], eq. 4) is also plotted for comparison. Note that the average power

constraint becomes ineffective if σ > σ0. If σ < σ0, the optimal power control law

dictates that the transmitter should not transmit when the channel fade is very bad

(i.e., for small values of s). This behavior is similar to the waterfilling power law in
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Figure 2.6: Comparison of capacity versus σ for various assumptions on transmitter

CSI.

RF Gaussian fading channels (cf. e.g., [40]). On the other hand, the power control

law due to ([21], eq. 4) is constant over a wide range of values of σ, and does not

properly exploit the channel fade.

In Figures 2.6 and 2.7, we compare the capacity values obtained under dif-

ferent assumptions. In particular, we plot the capacity for perfect transmitter and

receiver CSI (CP ), the capacity for no transmitter CSI (CR), the capacity obtained

from [21] (CHS) and the capacity of the Poisson channel without fading (C0) (cf.

e.g. [52], eq. 1.5) for various values of σ and SNR. From the figures, we conclude
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that the knowledge of CSI at the transmitter can increase the channel capacity. The

improvement is greater for small σ values, i.e., when the average power constraint

is severe. Furthermore, knowledge of CSI at the transmitter can greatly improve

capacity at high SNR when σ is small. It is clear that CHS, the capacity computed

from [21], is very close to CR, the capacity when no CSI is available at the trans-

mitter. This can be understood from the power law in Figure 2.5, which does not

depend on the fade for a large range of values of σ.

2.6 Discussion

We have studied the capacity problem for a shot-noise limited direct detection

block-fading Poisson channel. A novel channel model for the free-space Poisson

fading channel has been proposed in which the channel fade remains unvarying in

intervals of duration Tc, and vary across successive such intervals in an i.i.d. fashion.

Under the assumptions of perfect CSI at the receiver while the transmitter CSI can

be imperfect, a single-letter characterization of the capacity has been obtained when

the transmitted signal is constrained in its peak and average power levels.

Binary signaling with arbitrarily fast intertransition times is shown to be opti-

mal for this channel. The two signaling levels correspond to no transmission (“OFF”

state) and transmission at the peak power level (“ON” state). Furthermore, with

perfect CSI at the receiver, the channel capacity does not depend on the channel

coherence time Tc. The i.i.d. nature of channel fade allows us to focus on a sin-

gle coherence interval, while inside a single interval, the optimality of i.i.d. input
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signaling (as a function of current transmitter CSI) leads to a lack of dependence

of the capacity formula on Tc. An exact characterization of the “optimal power

control law,” which represents the conditional probability of the transmit aperture

remaining in the ON state as a function of current transmitter CSI, and can be

viewed as the optimal average conditional duty cycle of the transmitted signal, has

been obtained.

We have analyzed the effects of varying degrees of CSI at the transmitter on

channel capacity as a function of the peak signal-to-noise power ratio (SNR). In the

high SNR regime, a knowledge of varying degrees of CSI at the transmitter can lead

to a significant gain in capacity when the average power constraint is stringent. On

the other hand, in the low SNR regime, a knowledge of CSI at the transmitter does

not provide any additional advantage.
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Chapter 3

MIMO Poisson channel with constant channel fade

3.1 Introduction

In this chapter, we focus on the shot-noise limited, single-user MIMO Poisson

channel with N transmit and M receive apertures. We refer to this channel as the

N ×M MIMO Poisson channel. We assume, for the time being, that the channel

fade remains unvarying for the duration of transmission and reception, with the

fade coefficients being known to the transmitter and the receiver. We consider two

variants of transmitter power constraints: (a) peak and average power constraints

on individual transmit apertures; and (b) peak power constraints on individual

transmit apertures and a constraint on the sum of the average powers from all

transmit apertures. In this setting, we provide a “single-letter characterization” of

the channel capacity and outline key properties of optimal transmission strategies.

The results of this chapter provide useful insights into the capacity problem of the

MIMO Poisson fading channel with a random fade, which is addressed in the next

chapter. Several properties of optimal transmission strategies are derived for the

MIMO Poisson channel with constant fade, many of which are relevant even when

the channel fade is random. For the MIMO channel with constant fade and a

sum average power constraint, a key property of optimum transmission strategy is

identified, which helps us to derive a simplified expression for channel capacity of a
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Figure 3.1: N ×M MIMO Poisson channel with deterministic channel fade.

symmetric MIMO Poisson channel with isotropically distributed channel fade.

The remainder of the chapter is organized as follows. In Section 3.2, we in-

troduce the channel model and state the problem formulation. In Section 3.3, we

state our results, which are proved in Section 3.4. A few illustrative examples are

discussed in Section 3.5. We close the chapter with some concluding remarks in

Section 3.6.

3.2 Problem formulation

A block schematic diagram of the channel model is given in Figure 3.1. For

a given set of N IR+
0 –valued transmitted signals {xn(t), t ≥ 0}Nn=1, the received

signal {Ym(t), t ≥ 0} at the mth receive aperture is a Z
+
0 –valued nondecreasing,

(left-continuous) Poisson counting process (PCP) with rate (or intensity) equal to

λm(t) =

N
∑

n=1

sn,mxn(t) + λ0,m, t ≥ 0, (3.1)
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where sn,m ≥ 0 is the (deterministic) fade (or path gain) from the nth transmit

aperture to the mth receive aperture, n = 1, · · · , N , m = 1, · · · , M , and λ0, m ≥

0 is the background noise (dark current) rate at the mth receive aperture, m =

1, · · · , M . We assume that the channel fade coefficients {sn,m}N,Mn=1, m=1 and the

dark current rates {λ0, m}Mm=1 remain unvarying throughout the entire duration of

transmission and reception, and are known to both the transmitter and the receiver.

We also assume that the receive apertures are sufficiently separated in space, so

that given the knowledge of x∞ = {xn(t), t ≥ 0}Nn=1, the processes Y ∞
1 , · · · , Y ∞

M are

conditionally mutually independent [47, 19].

The input to the channel is a set of N IR+
0 –valued transmitted signals, one

corresponding to each transmit aperture, collectively denoted by xT = {xn(t), 0 ≤

t ≤ T}Nn=1, each of which is proportional to the transmitted optical power from the

respective transmit aperture, and which satisfy peak and average power constraints

of the form:

0 ≤ xn(t) ≤ An, 0 ≤ t ≤ T,

1
T

∫ T

0
xn(t)dt ≤ σnAn,

(3.2)

where the peak powers An > 0 and the average-to-peak power ratios σn, 0 ≤ σn ≤ 1,

n = 1, · · · , N are fixed.

Definition 2 We say that the transmitted signals are subject to a symmetric av-

erage (resp. peak) power constraint σ (resp. A) if σn = σ (resp. An = A) for all

n = 1, · · · , N ; else the average (resp. peak) power constraints are asymmetric.

In practice, the transmit apertures may belong to a laser array with similar specifica-

tions, or they may be a collection of a diverse group of devices (lasers or LEDs) with
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different operating characteristics. A symmetric power constraint is a reasonable as-

sumption for the former case, while asymmetric constraints are more appropriate for

the latter. In [19], the authors addressed the special case of MIMO Poisson chan-

nel with a symmetric average power constraint. Here we also allow for asymmetric

average power constraints, with significantly different consequences.

We consider another variant of the average transmit power constraint, viz., a

constraint on the sum of the average powers of the transmitted signals from all the

transmit apertures. We say that the transmitted signals are subject to peak power

constraints An, n = 1, · · · , N , and an average sum power constraint σ if

0 ≤ xn(t) ≤ An, n = 1, · · · , N,

1
T

∫ T

0

∑N
n=1 xn(t)dt ≤ σ

∑N
n=1An,

(3.3)

where 0 ≤ σ ≤ 1 is fixed. We shall see later in Chapter 4 that the average sum

power constraint plays an important role in the characterization of channel capacity

of the MIMO Poisson fading channel with random channel fade.

For the channel under consideration, a (W, T )–code (f, φ) is defined as follows.

1. The codebook comprises a set of W waveform vectors f(w) = {xn(w, t), 0 ≤

t ≤ T}Nn=1, w ∈ W = {1, · · · , W}, satisfying the following peak and average

power constraints which follow from (3.2):

0 ≤ xn(w, t) ≤ An, 0 ≤ t ≤ T, w ∈ W;

1
T

∫ T

0
xn(w, t)dt ≤ σnAn, w ∈ W.

(3.4)

If the transmitted signals are subject to individual peak power constraints

An, n = 1, · · · , N , and an average sum power constraint σ, the waveform
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vectors f(w), w ∈ W satisfy the following peak and average power constraints

which follow from (3.3):

0 ≤ xn(w, t) ≤ An, 0 ≤ t ≤ T, w ∈ W;

1
T

∫ T

0

∑N
n=1 xn(w, t)dt ≤ σ

∑N
n=1An, w ∈ W.

(3.5)

2. The decoder is a mapping φ : (Σ(T ))M → W, where Σ(T ) has been defined

earlier in Chapter 2, Section 2.

For each message w ∈ W, the transmitter sends N waveforms, one from each trans-

mit aperture; the waveform xTn (w) = {xn(w, t), 0 ≤ t ≤ T} is sent from the nth

transmit aperture, n = 1, · · · , N . The receiver, upon observing yTm from the mth

receive aperture, m = 1, · · · , M , produces an output ŵ = φ(yT1 , · · · , yTM). The rate

of this (W,T )–code is given by R = 1
T

logW nats/sec., and its average probability

of decoding error is given by

Pe(f, φ) =
1

W

W
∑

w=1

Pr
{

φ(Y T
1 , · · · , Y T

M) 6= w
∣

∣xT1 (w), · · · , xTN (w)
}

.

In this chapter, we provide a “single-letter characterization” of the channel

capacity C (see Definition 1) in terms of signal and channel parameters, and examine

some properties of the optimum transmission strategies. We use the notation Cind

and Csum to denote the capacity with individual and sum average power constraints

respectively.
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3.3 Statement of results

The following inequality, which can be verified by simple algebra, will be used

in our results:

ζ

(

N
∑

n=1

xn, y

)

=
N
∑

n=1

ζ

(

xn, y +
n−1
∑

k=1

xk

)

≥
N
∑

n=1

ζ(xn, y), xn ≥ 0, n = 1, · · · , N, y ≥ 0, (3.6)

with x0 = 0.

3.3.1 Channel capacity

Our main result characterizes the capacity of the N × M MIMO Poisson

channel.

Theorem 4 The capacity of the N × M MIMO Poisson channel with peak and

average power constraints An, n = 1, · · · , N and σn, n = 1, · · · , N respectively, is

given by

Cind = max
0≤µn≤σn,

n=1, ···, N

I(µN , s), (3.7)

where

I(µN , s)
∆
=

M
∑

m=1





N
∑

n=1

νnζ





Π(n)
∑

k=Π(1)

sk,mAk, λ0,m





−ζ





N
∑

n=1

νn

Π(n)
∑

k=Π(1)

sk,mAk, λ0, m







 , (3.8)

with Π : {1, · · · , N} → {1, · · · , N} being a permutation of {1, · · · , N} such that

µΠ(n) ≥ µΠ(n+1), n = 1, · · · , N − 1, (3.9)
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and

νn
∆
=















µΠ(n) − µΠ(n+1), n = 1, · · · , N − 1,

µΠ(N), n = N.

(3.10)

Corollary 5 The capacity with peak power constraints An, n = 1, · · · , N and an

average sum power constraint σ, is given by

Csum = max
0≤µn≤1, n=1, ···, N

∑N
n=1 µnAn≤σ

∑N
n=1 An

I(µN , s), (3.11)

where I(·, ·) is as defined in (3.8).

Remarks: (i) The optimization in (3.7) (as well as in (3.11)) is of a concave func-

tional over a convex compact set, so that the maximum clearly exists.

(ii) Our proof of the achievability part of Theorem 4 (as well as Corollary

5) shows that binary signaling from each transmit aperture, with arbitrarily fast

intertransition times, can achieve channel capacity. The two signaling levels at each

transmit aperture correspond to no transmission (“OFF” state), and transmission at

the peak power level (“ON” state). The parameter µn in (3.7) (as well as in (3.11))

is the probability of the transmitted signal through transmit aperture n remaining

in the level An (ON state), and can be interpreted as the average duty cycle of the

nth aperture’s transmitted signal, n = 1, · · · , N .

(iii) In general, the capacity-achieving transmitted signals through the N

transmit apertures are correlated across apertures but i.i.d. in time. A transmission

event is an assignment of ON and OFF states to the N transmit apertures at each

time instant. We show that the optimum set of transmission events can take at most

N + 1 values (out of a total of 2N possible values), which correspond to k transmit

56



apertures being ON, k = 0, 1, · · · , N . Whenever a transmit aperture is ON, all the

transmit apertures with higher average duty cycles (in the sense of the permutation

Π) must also remain ON.

3.3.2 Optimum transmission strategy

The optimum transmission strategy can be examined upon solving the opti-

mization problems in (3.7) and (3.11), which involve the computation of the max-

imum of a concave function of N variables, viz., {µn, n = 1, · · · , N}, over linear

constraint sets. The optimization problem in (3.11) differs from the problem in (3.7)

only in the constraint set, with the individual constraints on the average duty cy-

cles, viz., µn ≤ σn, n = 1, · · · , N being replaced by a constraint on their sum, viz.,

∑N
n=1 µnAn ≤ σ

∑N
n=1An. Optimal solutions of both the problems can be computed

using Kuhn-Tucker conditions (cf. e.g., [35], p. 233).

We present below the structure of the optimal solutions of (3.7) and (3.11)

for the special case of N = 2 transmit apertures and M receive apertures, where

M ∈ Z
+ is arbitrary. The optimal solutions for general N ∈ Z

+ can be obtained

along similar lines, but are omitted due to notational complications.
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3.3.2.1 Individual average power constraints

First consider the MIMO Poisson channel with peak and average power con-

straints on individual transmit apertures. We begin with some notation. Let

bn,m
∆
= sn, mAn

λ0, m
, n = 1, 2,

Bm =
∑2

n=1 bn,m, m = 1, · · · ,M.

(3.12)

Let ρ = ρn be the solution of

M
∑

m=1

λ0, mbn,m log

(

1 + α(bn,m)bn,m
1 + ρBm

)

= 0, n = 1, 2, (3.13)

where α(·) is as defined in (2.4), and let ρ = ρ̄ be the solution of

M
∑

m=1

λ0, mBm log

(

1 + α (Bm)Bm

1 + ρBm

)

= 0. (3.14)

It can be verified that1 ρ1 ≥ 0, ρ2 ≥ 0, 1
e
≤ ρ̄ ≤ 1

2
and ρ̄ ≥ max{ρ1, ρ2}. For

0 ≤ x ≤ ρ1, let β1 = β1(x) solve

M
∑

m=1

λ0, mb1, m log

(

1 + α(b1, m)b1, m
1 + b1, mβ1 + b2, mx

)

= 0, (3.15)

and for 0 ≤ x ≤ ρ2, let β2 = β2(x) solve

M
∑

m=1

λ0, mb2, m log

(

1 + α(b2, m)b2, m
1 + b1, mx+ b2, mβ2

)

= 0. (3.16)

It can be verified that β1(·) and β2(·) are monotone decreasing, 1
e
≤ βn(0) ≤ 1

2
,

βn(ρn) = ρn, n = 1, 2. The parameters ρ1, ρ2, ρ̄ and the functions β1(·) and β2(·)

are obtained in course of evaluation of the Kuhn-Tucker conditions.

We are now ready to characterize the optimum transmission strategy for the

2 ×M MIMO Poisson channel with peak and average power constraints.
1The following fact is useful for the purpose of the said verification: α(·) is monotone decreasing

on [0, ∞) with α(0) = 1
2 and α(∞) = 1

e .
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Theorem 5 The pair (µ∗
1, µ

∗
2) that maximizes the optimization problem in (3.7) for

the special case of N = 2 is given as follows.

1. If max{σ1, σ2} ≥ ρ̄, then µ∗
1 = µ∗

2 = ρ̄.

2. If σ1 ≥ σ2 and ρ1 ≤ σ2 ≤ ρ̄, then µ∗
1 = µ∗

2 = σ2.

3. If σ1 ≤ σ2 and ρ2 ≤ σ1 ≤ ρ̄, then µ∗
1 = µ∗

2 = σ1.

4. If σ2 ≤ ρ1 and σ1 ≥ β1(σ2), then µ∗
1 = β1(σ2), µ

∗
2 = σ2.

5. If σ1 ≤ ρ2 and σ2 ≥ β2(σ1), then µ∗
1 = σ1, µ

∗
2 = β2(σ1).

6. For all other (σ1, σ2) pairs, µ∗
1 = σ1, µ

∗
2 = σ2.

Remarks: (i) In Figure 3.2, we partition the unit square into regions corresponding

to the conditions (1) − (6) of Theorem 5. Specifically, condition (k) of Theorem 5

corresponds to (σ1, σ2) pairs in region Rk in Figure 3.2, k = 1, · · · , 6. The optimum

pair (µ∗
1, µ

∗
2) lies either inside or on the boundary of R6, which is characterized by

one of the lines specified by the equations (i) µ∗
1 = µ∗

2 = ρ, min{ρ1, ρ2} ≤ ρ ≤ ρ̄,

(ii) µ∗
1 = β1(µ

∗
2), 0 ≤ µ∗

2 ≤ ρ1, (iii) µ∗
2 = β2(µ

∗
1), 0 ≤ µ∗

1 ≤ ρ2. The average power

constraints involving both σ1 and σ2 are active at optimality2 for points in R6, while

neither constraint is active at optimality for points in R1. For points in R3 and R5,

only the constraint involving σ1 is active at optimality, while for points in R2 and

R4, only the constraint involving σ2 is active at optimality. This is a generalization

of the SISO Poisson channel capacity result [11, 52], in which the average power

2We say that the power constraint µi ≤ σi is active at optimality if µ∗
i = σi, i = 1, 2. See [35],

p. 220 for a formal definition of active constraints.
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Figure 3.2: The structure of the optimal solution for N = 2. Region Rk corresponds

to condition (k) in Theorem 5, k = 1, · · · , 6.
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constraint is active at optimality only below a threshold (km in [11], Theorem 1)

which is determined from the system parameters.

(ii) It follows from Theorem 5 that if σ1 = σ2 = σ, then µ∗
1 = µ∗

2 = min{σ, ρ̄}.

This implies that for the 2 ×M MIMO Poisson channel with a symmetric average

power constraint, the optimum transmission strategy assigns nonzero probability to

only 2 transmission events, viz., (a) both transmit apertures in the ON state (with

probability min{σ, ρ̄}), and (b) both apertures in the OFF state (with probability

1 − min{σ, ρ̄}). This simultaneous ON-OFF keying strategy can achieve capacity

for an arbitrary number of transmit apertures, under a symmetric average power

constraint. This special case corresponds to the problem addressed in [19], wherein

the lower bound derived is always tight.

(iii) For the 2 ×M MIMO Poisson channel with asymmetric average power

constraints, the optimum set of transmission events has at most 3 values. In particu-

lar, if σ1 > σ2, the following events can have nonzero probability: (a) both transmit

apertures in the ON state (with probability µ∗
2), (b) aperture 1 in the ON state and

aperture 2 in the OFF state (with probability µ∗
1 − µ∗

2), and (c) both apertures in

the OFF state (with probability 1 − µ∗
1). If σ1 < σ2, the corresponding events are:

(a’) both transmit apertures in the ON state (with probability µ∗
1), (b’) aperture 1

in the OFF state and aperture 2 in the ON state (with probability µ∗
2 − µ∗

1), and

(c’) both apertures in the OFF state (with probability 1 − µ∗
2). However, for a

range of values of σ1 and σ2 (corresponding to regions R1, R2, R3 in Figure 3.2), the

optimum number of transmission events is still 2, and the simultaneous ON-OFF

keying strategy is optimal.
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3.3.2.2 Average sum power constraint

Consider next the MIMO Poisson channel with peak average power constraints

on individual transmit apertures and a constraint on the sum of the average powers

from all the transmit apertures. We begin with some notation. Define

K1
∆
=

∑M
m=1 λ0,m (Bm log (1 + ρ̄Bm) − (1 + a)b2, m log(1 + ρ2Bm)) ,

K2
∆
=

∑M
m=1 λ0,m ((1 + a)b1, m log(1 + ρ1Bm) − aBm log (1 + ρ̄Bm)) ,

(3.17)

where a = A1

A2
. Using (3.6), it is not difficult to verify that K1 ≥ K2. For x, y ∈ IR,

define

d(x, y)
∆
=

M
∑

m=1

λ0, m(b1, m − ab2, m) log(1 + (b1, m − ab2, m)x+ (1 + a)b2, my).(3.18)

Note that d(·, y) is nondecreasing on IR for every y ∈ IR. Let x = γn(y) be the

solution of the equation

d(x, y) = Kn, n = 1, 2, (3.19)

whence it can be verified that γ1(y) ≥ γ2(y), y ∈ IR.

We are now ready to characterize the optimum transmission strategy for the

2 × M MIMO Poisson channel with peak power constraints and an average sum

power constraint.

Theorem 6 The pair (µ∗
1, µ

∗
2) that maximizes the optimization problem in (3.11)

for the special case of N = 2 is given as follows.

1. If σ ≥ ρ̄, then µ∗
1 = µ∗

2 = ρ̄.
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2. If σ < ρ̄, then µ∗
2 = (1 + a)σ − aµ∗

1, where

µ∗
1 =































max{0, γ1(σ)}, if K1 ≤ d(σ, σ),

min{γ2(σ), (1 + 1/a)σ}, if K2 ≥ d(σ, σ),

σ, otherwise.

(3.20)

A key property of the optimum pair (µ∗
1, µ

∗
2) is discussed in the following corollary.

We show that the relative ordering of µ∗
1 and µ∗

2, i.e., whether µ∗
1 ≥ µ∗

2 or µ∗
1 ≤ µ∗

2,

does not depend on σ. An application of this property is shown in Chapter 4

where we consider the MIMO Poisson channel with isotropically distributed random

channel fade.

Corollary 6 For all σ ∈ [0, 1],

1. if K1 ≥ 0 and K2 ≤ 0, then µ∗
1 = µ∗

2;

2. if K2 > 0, then µ∗
1 ≥ µ∗

2;

3. if K1 < 0, then µ∗
1 ≤ µ∗

2.

Remarks: (i) From Corollary 6, it follows that regardless of the value of 0 ≤ σ ≤ 1,

µ∗
1 ≥ µ∗

2 iff K1 + K2 ≥ 0. Thus, the relative ordering of µ∗
1 and µ∗

2 does not

depend on σ. This implies that given a set of fade coefficients {sn,m}N,Mn=1,m=1, peak

power constraints {An}Nn=1, and background noise rates {λ0,m}Mm=1, one transmit

aperture experiences better channel conditions (which is reflected by the condition

1(K1 + K2 ≥ 0)), and hence is assigned a higher optimal average duty cycle, than

the other transmit aperture, for all 0 ≤ σ ≤ 1.

(ii) The remark above can be generalized to the case of an arbitrary number

of transmit apertures. The relative ordering of {µ∗
n}Nn=1 does not depend on σ.
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3.4 Proofs

We begin this section with some additional definitions that will be needed in

our proofs. For any τ > 0, the number of photon arrivals Nm(τ) on [0, τ ] together

with the corresponding (ordered) arrival times T
Nm(τ)
m = {Tm, 1, · · · , Tm,Nm(τ)} are

sufficient statistics for Y τ
m, m = 1, · · · , M . Therefore, the random vector Yss(τ) =

{(Nm(τ), T
Nm(τ)
m )}Mm=1 is a complete description of the random processes Yτ =

{Y τ
1 , · · · , Y τ

M}, τ ≥ 0.

The channel is characterized as follows. For an input signal xT = {xn(t), 0 ≤

t ≤ T}Nn=1 satisfying (3.2), the channel output (Nm(T ),T
Nm(T )
m ) at the mth receive

aperture has the “conditional sample function density” (cf. e.g., [47])

f
Nm(T ),T

Nm(T )
m |XT

(

nm, t
nm
m

∣

∣xT
)

= exp

(

−
∫ T

0

λm(τ)dτ

)

·
nm
∏

i=1

λm(tm, i), (3.21)

where λm(·) is as defined in (3.1). Recall that the processes (Nm(T ), T
Nm(T )
m ),

m = 1, · · · ,M are conditionally mutually independent given the knowledge of xT .

Therefore, the conditional sample function density of Yss(T ) given xT is given by

fYss(T )|XT (yss|xT ) =

M
∏

m=1

f
Nm(T ),T

Nm(T )
m |XT (nm, t

nm
m |xT )

=
M
∏

m=1

exp

(

−
∫ T

0

λm(τ)dτ

)

·
nm
∏

i=1

λm(tm,i), (3.22)

where yss = {(nm, tnm
m )}Mm=1. In order to write the channel output sample func-

tion density for a given distribution of XT , consider the conditional mean of XT
n

(conditioned causally on the channel output) by

X̂n(τ)
∆
= IE[Xn(τ)|Yss(τ)], 0 ≤ τ ≤ T, n = 1, · · · , N, (3.23)
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where we have suppressed the dependence of X̂n(τ), n = 1, · · · , N on Yss(τ) for

notational convenience; and define

Λm(τ)
∆
=

N
∑

n=1

sn,mXn(τ) + λ0, m, 0 ≤ τ ≤ T, m = 1, · · · , M, (3.24)

and

Λ̂m(τ)
∆
= IE[Λm(τ)|Yss(τ)]

=

N
∑

n=1

sn,mX̂n(τ) + λ0, m, 0 ≤ τ ≤ T, m = 1, · · · , M. (3.25)

From ([47], pp. 425-427), it follows that the process (Nm(T ), T
Nm(T )
m ) is a self-

exciting PCP with rate process Λ̂T
m, m = 1, · · · , M , and the output sample function

density is given by

fYss(T )(yss) =
M
∏

m=1

exp

(

−
∫ T

0

λ̂m(τ)dτ

)

·
nm
∏

i=1

λ̂m(tm, i), (3.26)

where yss = {(nm, tnm
m )}Mm=1, and

λ̂m(τ) =

N
∑

n=1

sn,mx̂n(τ) + λ0, m, m = 1, · · · , M,

with

x̂n(τ) = IE[Xn(τ)|Yss(τ) = yss], 0 ≤ τ ≤ T, n = 1, · · · , N.

Proof of Theorem 4:

Converse part: Let the rv W be uniformly distributed on (the message set)

W = {1, · · · ,W}. Consider a (W, T )–code (f, φ) of rate R = 1
T

logW , and with

Pe(f, φ) ≤ ǫ, where 0 ≤ ǫ ≤ 1 is given. Denote Xn(t)
∆
= xn(W, t), 0 ≤ t ≤ T ,

n = 1, · · · , N . Note that (3.4) then implies that

0 ≤ Xn(t) ≤ An, 0 ≤ t ≤ T, n = 1, · · · , N,

1
T

∫ T

0
IE[Xn(τ)]dτ ≤ σnAn, n = 1, · · · , N.

(3.27)
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Let (Nm(T ), T
Nm(T )
m ) be the channel output at the mth receive aperture when XT

n is

transmitted from the nth transmit aperture, n = 1, · · · , N , m = 1, · · · ,M . Clearly,

the following Markov condition holds:

W −◦− Xτ −◦− Yss(τ), 0 ≤ τ ≤ T. (3.28)

By a standard argument, the rate R of the (W, T )–code (f, φ) with Pe(f, φ) ≤ ǫ

must satisfy

R /
1

T
I (W ∧ φ(Yss(T ))) . (3.29)

Proceeding further with the right side of (3.29),

I (W ∧ φ(Yss(T ))) ≤ I (W ∧Yss(T )) (3.30)

= h(Yss(T )) − h(Yss(T )|W )

≤ h(Yss(T )) − h(Yss(T )|XT ) (3.31)

where (3.30) is by the data processing result for mixed rvs3; and (3.31) is by (3.28).

The difference between the entropies of mixed rvs4 on the right side of (3.31) is

h(Yss(T )) − h(Yss(T )|XT )

= IE
[

− log fYss(T )(Yss(T ))
]

− IE
[

− log fYss(T )|XT (Yss(T )|XT )
]

= IE



log

∏M
m=1 exp

(

−
∫ T

0
Λm(τ)dτ

)

∏Nm(T )
i=1 Λm(Tm, i)

∏M
m=1 exp

(

−
∫ T

0
Λ̂m(τ)dτ

)

∏Nm(T )
i=1 Λ̂m(Tm, i)



 (3.32)

3This result can be deduced, for instance, from [39], the last paragraph of Section 3.4, p. 36,

and Kolmogorov’s formula (3.6.3) on p. 37.
4Our definition of the conditional entropy of mixed rvs is consistent with the general formulation

developed, for instance, in [39], Chapter 3.
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=
M
∑

m=1

{

IE

[∫ T

0

(

Λ̂m(τ) − Λm(τ)
)

dτ

]

+ IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)











=

M
∑

m=1

IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)



 (3.33)

=
M
∑

m=1

∫ T

0

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0,m

)

− ζ

(

N
∑

n=1

sn,mX̂n(τ), λ0,m

)]}

dτ, (3.34)

where (3.32) is by (3.22), (3.26); (3.33) holds by an interchange of operations5 to

get

IE

[
∫ T

0

(Λ̂m(τ) − Λm(τ))dτ

]

=

∫ T

0

IE
[

Λ̂m(τ) − Λm(τ)
]

dτ,

followed by noting that IE[Λ̂m(τ)] = IE[Λm(τ)], 0 ≤ τ ≤ T , m = 1, · · · , M , by

(3.25); and (3.34) is proved in Appendix B.1.

Next, in the right side of (3.34),

IE

[

ζ

(

N
∑

n=1

sn,mX̂n(τ), λ0, m

)]

≥ ζ

(

N
∑

n=1

sn,m IE[X̂n(τ)], λ0, m

)

(3.35)

= ζ

(

N
∑

n=1

sn,m IE[Xn(τ)], λ0, m

)

, (3.36)

where (3.35) is by Jensen’s inequality applied to the convex function ζ(·, λ0); and

(3.36) holds as

IE[X̂n(τ)] = IE[IE[Xn(τ)|Yss(τ)]] = IE[Xn(τ)].

Summarizing collectively (3.31), (3.34), (3.36), we get that

I (W ∧ φ(Yss(T ))) ≤
∫ T

0

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)

5The interchange is permissible by the integrability of {Λm(τ), 0 ≤ τ ≤ T } and {Λ̂m(τ), 0 ≤

τ ≤ T }, m = 1, · · · , M .
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−ζ
(

N
∑

n=1

sn,m IE[Xn(τ)], λ0, m

)]}

dτ. (3.37)

The right side of (3.37) is further bounded above by a suitable modification of

Footnote 10, Chapter 2. Fixing 0 ≤ τ ≤ T , consider maximizing the integrand

on the right side of (3.37) over all joint distributions of {Xn(τ), n = 1, · · · , N}

with fixed means IE[Xn(τ)] = χn(τ)An, n = 1, · · · , N , say, and subject to the first

constraint (alone) in (3.27). Then, the integrand on the right side of (3.37) at time

instant τ equals

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)]

− ζ

(

N
∑

n=1

sn,mχn(τ)An, λ0, m

)}

,

and is maximized by considering the first term above. Consider the optimization

problem

h(τ,χN(τ)) = max
0≤Xn(τ)≤An

IE[Xn(τ)]=χn(τ)An
n=1,···,N

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

sn,mXn(τ), λ0,m

)]

. (3.38)

We now establish the fact that the optimal marginal distributions of {Xn(τ)}Nn=1 that

maximize the right-side of (3.38) are binary {0, An}-valued. To this end, consider

the following alternate formulation of (3.38):

h(τ, χ
N(τ))

= max
0≤Xn(τ)≤An

IE[Xn(τ)]=χn(τ)An
n=2, ···, N

IE[η1(XN
2 (τ))]=χ1(τ)An

max
0≤X1(τ)≤A1

IE[X1(τ)|XN
2 (τ)]=η1(XN

2 (τ))

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)]

,

where the inner optimization is performed over the class of conditional distributions

of X1(τ) (conditioned on XN
2 (τ)) with a finite support [0, A1] and fixed conditional

mean IE[X1(τ)|XN
2 (τ) = xN2 ] = η1(x

N
2 ), xN2 ∈∏N

n=2[0, An]. Using the strict convex-

ity of ζ(·, y), the inner maximum is achieved (see footnote 10, Chapter 2) iff X1(τ)
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is a {0, A1}–valued rv with

Pr{X1(τ) = A1|XN
2 (τ) = xN2 } = 1 − Pr{X1(τ) = 0|XN

2 (τ) = xN2 }

=
η1(x

N
2 )

A1
, xN2 ∈

N
∏

n=2

[0, An].

Returning to (3.38), we see that the optimal marginal pmf of X1(τ) that maximizes

the right side of (3.38) is {0, A1}–valued with

Pr{X1(τ) = A1} =
IE[η1(X

N
2 (τ))]

A1

= χ1(τ).

By symmetry, it follows that the optimal marginal pmf of Xn(τ) that maximizes the

right side of (3.38) is {0, An}–valued with

Pr{Xn(τ) = An} = 1 − Pr{Xn(τ) = 0}

= χn(τ), n = 1, · · · , N. (3.39)

It suffices, therefore, to focus on the joint pmf of binary {0, An}–valued rvs Xn(τ),

n = 1, · · · , N , in order to compute the right side of (3.38). To this end, we introduce

the following notation. Let bn(i) ∈ {0, 1} denote the nth bit in the binary represen-

tation of i, i = 0, 1, · · · , 2N − 1, n = 1, · · · , N ; in other words, i =
∑N

n=1 bn(i)2
n−1.

Let Ii = {n ∈ {1, · · · , N} : bn(i) = 1} denote the set of nonzero bit positions in the

binary representation of i, i = 0, · · · , 2N − 1. Then

qi(τ)
∆
= Pr{Xn(τ) = bn(i)An, n = 1, · · · , N}, i = 0, · · · , 2N − 1, (3.40)

denotes the (joint) pmf of nth transmit aperture remaining in state bn(i), n =

1, · · · , N , at time instant τ, 0 ≤ τ ≤ T . By (3.39) and (3.40), the joint pmf
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vector q(τ) = {qi(τ)}2N−1
i=0 satisfies

qi(τ) ≥ 0, i = 0, · · · , 2N − 1,

∑2N−1
i=0 qi(τ) = 1,

∑

i:bn(i)=1 qi(τ) = χn(τ), n = 1, · · · , N.

(3.41)

Summarizing collectively (3.38), (3.39), (3.40), we get that

h(τ, χ
N(τ)) = max

q(τ)

2N−1
∑

i=0

qi(τ)

M
∑

m=1

ζ

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

, (3.42)

where q(τ) = {qi(τ)}2N−1
i=0 satisfies (3.41). In Appendix B.2, we show that the

maximum in the right side of (3.42) is achieved by

q∗i (τ) =















































χPτ (k)(τ) − χPτ (k+1)(τ), if i =
∑k

n=1 2Pτ (n)−1, k = 1, · · · , N − 1,

χPτ (N)(τ), if i = 2N − 1,

1 − χPτ (1)(τ), if i = 0,

0, otherwise,

(3.43)

where Pτ : {1, · · · , N} → {1, · · · , N} is a permutation of {1, · · · , N} such that

χPτ (n)(τ) ≥ χPτ (n+1)(τ), n = 1, · · · , N − 1. (3.44)

By (3.42) and (3.43), we then get

h(τ, χ
N(τ)) =

N−1
∑

n=1

(

χPτ (n)(τ) − χPτ (n+1)(τ)
)

M
∑

m=1

ζ

(

n
∑

k=1

sPτ (k), mAPτ (k), λ0,m

)

+χPτ (N)(τ)
M
∑

m=1

ζ

(

N
∑

k=1

sPτ (k), mAPτ (k), λ0,m

)

=

N
∑

n=1

ψn,PτχPτ (n)(τ), (3.45)

where we have defined6

ψn,P
∆
=

M
∑

m=1

{

ζ

(

n
∑

k=1

sP (k),mAP (k), λ0,m

)

6We take
∑0

k=1 xk = 0.
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−ζ
(

n−1
∑

k=1

sP (k),mAP (k), λ0,m

)}

(3.46)

for n = 1, · · · , N and any permutation P of {1, · · · , N}. Noting that (3.27) implies

that

0 ≤ χn(τ) ≤ 1, 0 ≤ τ ≤ T,

1
T

∫ T

0
χn(τ)dτ ≤ σn, n = 1, · · · , N,

(3.47)

we thus see from (3.37), (3.38), (3.45), (3.47) that

1

T
I(W ∧ φ(Yss(T ))) ≤ max

0≤χn(τ)≤1
1
T

∫ T
0 χn(τ)dτ≤σn

n=1, ···, N

1

T

∫ T

0

g(τ, χ
N(τ))dτ, (3.48)

where we have defined

g(τ, χ
N(τ))

∆
=

N
∑

n=1

ψn,PτχPτ (n)(τ) −
M
∑

m=1

ζ

(

N
∑

n=1

sn,mχn(τ)An, λ0,m

)

.(3.49)

Setting

µn
∆
=

1

T

∫ T

0

χn(τ)dτ, n = 1, · · · , N, (3.50)

from (3.49), we then get

1

T

∫ T

0

g(τ, χ
N(τ))dτ

=
1

T

∫ T

0

{

N
∑

n=1

ψn,PτχPτ (n)(τ) −
M
∑

m=1

ζ

(

N
∑

n=1

sn,mχn(τ)An, λ0,m

)}

dτ

≤
N
∑

n=1

1

T

∫ T

0

ψn,PτχPτ (n)(τ)dτ −
M
∑

m=1

ζ

(

N
∑

n=1

sn,mµnAn, λ0,m

)

(3.51)

≤
N
∑

n=1

ψn,ΠµΠ(n) −
M
∑

m=1

ζ

(

N
∑

n=1

sn,mµnAn, λ0,m

)

(3.52)

=

N
∑

n=1

µΠ(n)ψn,Π −
M
∑

m=1

ζ

(

N
∑

n=1

µΠ(n)sΠ(n),mAΠ(n), λ0, m

)

, (3.53)

71



where (3.51) is by Jensen’s inequality applied to the convex function ζ(·, y) for all

y ≥ 0 and (3.50); (3.52) (with Π as defined in (3.9)) is proved in Appendix B.3; and

(3.53) is obtained by a rearrangement of terms. Next, we use the following identity

to simplify (3.53). For sequences of real numbers {xn}Nn=1 and {yn}Nn=1,

N
∑

n=1

xnyn =
N−1
∑

n=1

(xn − xn+1)
n
∑

k=1

yk + xN

N
∑

k=1

yk. (3.54)

Setting xn = µΠ(n) and yn = ψn,Π, n = 1, · · · , N , by (3.54), we get

N
∑

n=1

µΠ(n)ψn,Π =
N−1
∑

n=1

(µΠ(n) − µΠ(n+1))
n
∑

k=1

ψk,Π + µΠ(N)

n
∑

k=1

ψk,Π

=

N
∑

n=1

νn

M
∑

m=1

ζ

(

n
∑

k=1

sΠ(k),mAΠ(k), λ0,m

)

, (3.55)

by (3.10), (3.46). Similarly, by setting xn = µΠ(n) and yn = sΠ(n), mAΠ(n), n =

1, · · · , N , by (3.10), (3.54), we get

N
∑

n=1

µΠ(n)sΠ(n), mAΠ(n) =
N
∑

n=1

νn

N
∑

k=1

sΠ(k), mAΠ(k). (3.56)

Summarizing collectively (3.29), (3.48), (3.53), (3.55), (3.56),

R / max
0≤µn≤σn
n=1, ···, N

M
∑

m=1

[

N
∑

n=1

νnζ

(

n
∑

k=1

sΠ(k), mAΠ(k), λ0, m

)

−ζ
(

N
∑

n=1

νn

n
∑

k=1

sΠ(k),mAΠ(k), λ0,m

)]

. (3.57)

This concludes the proof of the converse part of Theorem 4.

Achievability part: Fix L ∈ Z
+ and set ∆ = T/L. Divide the time interval

[0, T ] into L equal subintervals, each of duration ∆. Now, consider the situation

in which for each message w ∈ W, the channel input waveform at the nth transmit

aperture, {xn(w, t), 0 ≤ t ≤ T}, is restricted to be {0, An}–valued and piecewise
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constant in each of the L time slots of duration ∆. Define

x̃n(w, l)
∆
=































0, if xn(w, t) = 0,

1, if xn(w, t) = An,

t ∈ [(l − 1)∆, l∆), l = 1, · · · , L.

(3.58)

Note that the condition (3.2) requires that

1

L

L
∑

l=1

x̃n(w, l) ≤ σn, w ∈ W, n = 1, · · · , N. (3.59)

Next, consider a decoder φ : {0, 1}ML → W based on restricted observations

over the L time slots, comprising

Ỹm(l) = 1(Ym(l∆) − Ym((l − 1)∆) = 1), l = 1, · · · , L, (3.60)

(with Ym(0) = 0) at themth receive aperture, m = 1, · · · , M . The largest achievable

rate of restricted (W, T )–codes as above – and, hence, the capacity Cind – is clearly

no smaller than C(L)
T

, where C(L) is the capacity of a (L –) block discrete memoryless

channel (in nats per block channel use) with input alphabet X̃NL = {0, 1}NL; output

alphabet ỸML = {0, 1}ML; transition probability mass function (pmf)

W (L)(ỹML|x̃NL) =
L
∏

l=1

M
∏

m=1

W
(m)

Ỹm|X̃N (ỹm(l)|x̃N(l)),

x̃NL ∈ {0, 1}NL, ỹML ∈ {0, 1}ML, (3.61)

where X̃n, n = 1, · · · , N and Ỹm, m = 1, · · · , M are X̃– and Ỹ–valued rvs respec-

tively, and the channel transition pmf W
(m)

Ỹm|X̃N (·|·) (corresponding to the mth receive

aperture) is given by

W
(m)

Ỹm|X̃N (1|x̃N) = wm(x̃N )T
L

exp
(

−wm(x̃N)T
L

) ∆
= ωm(x̃N , L),

W
(m)

Ỹm|X̃N (0|x̃N) = 1 − ωm(x̃N , L),

(3.62)
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with

wm(x̃N )
∆
=

N
∑

n=1

sn,mx̃nAn + λ0, m, x̃N ∈ {0, 1}N , m = 1, · · · , M, (3.63)

and under constraint (3.59). From [14], it is readily obtained that

C(L) = max
P
X̃NL :

∑L
l=1

IE[X̃n(l)]≤Lσn

n=1, ···, N

I(X̃NL ∧ ỸML), (3.64)

where the joint pmf PX̃NL, ỸML is given by

PX̃NL, ỸML(x̃NL, ỹML) = PX̃NL(x̃NL)W (L)(ỹML|x̃NL),

x̃NL ∈ {0, 1}NL, ỹML ∈ {0, 1}ML. (3.65)

By a standard argument which uses (3.61), the maximum in (3.64) is achieved by

PX̃NL(x̃NL) =

L
∏

l=1

PX̃N (l)(x̃
N(l)), x̃NL ∈ {0, 1}NL, (3.66)

so that from (3.64),

C(L) = L max
P
X̃N :IE[X̃n]≤σn
n=1, ···, N

M
∑

m=1

I(X̃N , Ỹm), (3.67)

where PX̃N , Ỹm
is given by

PX̃N , Ỹm
(x̃N , ỹ) = PX̃N (x̃N )W

(m)

Ỹm|X̃N
(ỹ|x̃N),

x̃N ∈ {0, 1}N , ỹ ∈ {0, 1}. (3.68)

Let the joint pmf of X̃N be represented by the vector p = {pi}2N−1
i=0 , where

pi = Pr{X̃n = bn(i), n = 1, · · · , N}, i = 0, · · · , 2N − 1, (3.69)
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where bn(i) is the nth bit in the binary representation of i. Clearly, p = {pi}2N−1
i=0

satisfies the constraints

pi ≥ 0, i = 0, · · · , 2N − 1,

∑2N−1
i=0 pi = 1,

∑

i:bn(i)=1 pi ≤ σn, n = 1, · · · , N,

(3.70)

where the last inequality follows from the constraints IE[X̃n] ≤ σn, n = 1, · · · , N .

From (3.62) and (3.69), it follows that for m = 1, · · · , M ,

Pr{Ỹm = 1} =
∑2N−1

i=0 piωm
(

bN (i), L
)

,

H
(

Ỹm|X̃N
)

=
∑2N−1

i=0 pihb
(

ωm
(

bN (i), L
))

,

H(Ỹm) = hb

(

∑2N−1
i=0 piωm

(

bN(i), L
)

)

.

(3.71)

Therefore, by (3.67), (3.71), it follows that

C(L) = max
p

LβL(p), (3.72)

with

βL(p)
∆
=

M
∑

m=1



hb





2N−1
∑

i=0

piωm
(

bN(i)
)



−
2N−1
∑

i=0

pihb
(

ωm
(

bN (i)
))



 , (3.73)

where p = {pi}2N−1
i=0 satisfies (3.70). Since L ∈ Z

+ was arbitrary, we have

Cind ≥ lim
L→∞

C(L)

T

≥ max
p

lim
L→∞

βL(p)

T/L
(3.74)

= max
p

M
∑

m=1





2N−1
∑

i=0

piζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

−ζm





N
∑

n=1

sn,mAn

2N−1
∑

i=0

pibn(i), λ0,m







 , (3.75)
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with p = {pi}2N−1
i=0 satisfying (3.70), where (3.74) is by (3.72); and (3.75) is estab-

lished in Appendix B.4. Setting

µn =

2N−1
∑

i=0

pibn(i)

=
∑

i:bn(i)=1

pi, n = 1, · · · , N, (3.76)

by (3.70) and (3.75), it follows that

Cind ≥ max
0≤µn≤σn
n=1, ···, N

[

h(µN ) −
M
∑

m=1

ζm

(

N
∑

n=1

sn,mµnAn, λ0, m

)]

, (3.77)

where

h(µN) = max
p

2N−1
∑

i=0

pi

M
∑

m=1

ζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

, (3.78)

with p = {pi}2N−1
i=0 satisfying the constraints

pi ≥ 0, i = 0, · · · , 2N − 1,

∑2N−1
i=0 pi = 1,

∑

i:bn(i)=1 pi = µn, n = 1, · · · , N.

(3.79)

Comparing (3.42) and (3.78), we immediately see that the optimum p∗ = {p∗i }2N−1
i=0

that obtains the maximum in (3.78) is given by

p∗i =















































µΠ(k) − µΠ(k+1), if i =
∑k

n=1 2Π(n)−1, k = 1, · · · , N − 1,

µΠ(N), if i = 2N − 1,

1 − µΠ(1), if i = 0,

0, otherwise,

(3.80)

where Π(·) is as defined in (3.9), and the corresponding largest value is

h(µN) =
N
∑

n=1

µΠ(n)ψn,Π, (3.81)
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with ψn,Π as defined in (3.46). Summarizing collectively (3.74), (3.77), (3.81), we

get

Cind ≥ max
0≤µn≤σn
n=1, ···, N

[

N
∑

n=1

µΠ(n)ψn,Π −
M
∑

m=1

ζ

(

N
∑

n=1

sn,mµnAn, λ0,m

)]

= max
0≤µn≤σn
n=1, ···, N

M
∑

m=1

[

N
∑

n=1

νnζ

(

n
∑

k=1

sΠ(k), mAΠ(k), λ0, m

)

−ζ
(

N
∑

n=1

νn

n
∑

k=1

sΠ(k), mAΠ(k), λ0,m

)]

, (3.82)

by (3.55), (3.56). This concludes the proof of the achievability part.

Proof of Corollary 5:

The proof follows the same arguments as the proof of Theorem 4, taking

into account the difference between individual average power constraints at each

transmit aperture (see (3.4)) and an average sum power constraint (see (3.5)). In

the following, we identify only the differences.

Consider first the proof of the converse part. Note that instead of (3.27), from

(3.5), it follows that

0 ≤ Xn(t) ≤ An, 0 ≤ t ≤ T, n = 1, · · · , N,
∑N

n=1
1
T

∫ T

0
IE[Xn(τ)]dτ ≤ σ

∑N
n=1An,

(3.83)

whence instead of (3.47), we now get

0 ≤ χn(τ) ≤ 1, 0 ≤ τ ≤ T, n = 1, · · · , N,
∑N

n=1
1
T

∫ T

0
χn(τ)Andτ ≤ σ

∑N
n=1An,

(3.84)

whence by (3.50), it follows that

0 ≤ µn ≤ 1, n = 1, · · · , N,
∑N

n=1 µnAn ≤ σ
∑N

n=1An.

(3.85)
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By (3.85), instead of (3.57), we now get

R / max
0≤µn≤1, n=1, ···, N

∑N
n=1 µnAn≤σ

∑N
n=1An

M
∑

m=1

[

N
∑

n=1

νnζ

(

n
∑

k=1

sΠ(k), mAΠ(k), λ0, m

)

−ζ
(

N
∑

n=1

νn

n
∑

k=1

sΠ(k),mAΠ(k), λ0,m

)]

, (3.86)

which concludes the proof of the converse part.

Consider next the achievability part. Instead of (3.59), by (3.5), we now have

1

L

L
∑

l=1

N
∑

n=1

x̃n(w, l)An ≤ σ

N
∑

n=1

An, w ∈ W. (3.87)

Instead of (3.64), we now have

C(L) = max
P
X̃NL :

∑N
n=1 IE[X̃L

n ]An≤Lσ
∑N

n=1An

I(X̃NL ∧ ỸML), (3.88)

which leads to

C(L) = L max
P
X̃N :

∑N
n=1

IE[X̃n]An≤σ
∑N

n=1
An

M
∑

m=1

I(X̃N , Ỹm), (3.89)

instead of (3.67). With p = {pi}2N−1
i=0 as defined in (3.69), the last inequality in

(3.70) is now replaced by

N
∑

n=1

An
∑

i:bn(i)=1

pi ≤ σ

N
∑

n=1

An, (3.90)

which implies the following constraints on {µn}Nn=1:

0 ≤ µn ≤ 1, n = 1, · · · , N,
∑N

n=1 µnAn ≤ σ
∑N

n=1An.

(3.91)

The proof of the achievability part is completed by replacing the constraints on

{µn}Nn=1 in (3.82) by (3.91).
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Proof of Theorem 5:

The proof is an exercise in convex optimization. Without loss of generality,

assume that σ1 ≥ σ2. The case of σ1 ≤ σ2 follows by symmetry.

For the special case of N = 2 transmit apertures, from (3.7), we have

Cind = max
0≤µ1≤σ1
0≤µ2≤σ2

I(µ1, µ2, s), (3.92)

with

I(µ1, µ2, s) =















I1>2(µ1 − µ2, µ2, s), if µ1 ≥ µ2,

I1<2(µ2 − µ1, µ1, s), otherwise,

(3.93)

where for x1 ≥ 0, x2 ≥ 0, s ∈ (IR+
0 )2×M , we have defined

I1>2(x1, x2, s) =
∑M

m=1

[

x1ζ(s1,mA1, λ0, m) + x2ζ
(
∑2

n=1 sn,mAn, λ0,m

)

−ζ
(

x1s1, mA1 + x2

∑2
n=1 sn,mAn, λ0, m

)]

,

I1<2(x1, x2, s) =
∑M

m=1

[

x1ζ(s2,mA2, λ0, m) + x2ζ
(
∑2

n=1 sn,mAn, λ0,m

)

−ζ
(

x1s2, mA2 + x2

∑2
n=1 sn,mAn, λ0, m

)]

.

(3.94)

By (2.5), (3.12), it follows that

∂I1>2

∂x1
=

∑M
m=1 λ0,mb1,m log

(

1+α(b1,m)b1,m

1+x1b1,m+x2Bm

)

,

∂I1<2

∂x1
=

∑M
m=1 λ0,mb2,m log

(

1+α(b2,m)b2,m

1+x1b2,m+x2Bm

)

,

∂I1>2

∂x2
= ∂I1<2

∂x2
=

∑M
m=1 λ0,mBm log

(

1+α(Bm)Bm

1+x1b1,m+x2Bm

)

.

(3.95)

Observe that I(x1, x2, s) is nondifferentiable for any s ∈ (IR+
0 )2×M if x1 = x2. In

order to determine the optimal pair (µ∗
1, µ

∗
2) that achieves the maximum in (3.92),

we divide the constraint set {0 ≤ µ1 ≤ σ1, 0 ≤ µ2 ≤ σ2} into two half sets as

follows. Setting

F1>2 = {(x1, x2) : 0 ≤ x1 ≤ σ1, 0 ≤ x2 ≤ σ2, x1 ≥ x2},

F1<2 = {(x1, x2) : 0 ≤ x1 ≤ σ1, 0 ≤ x2 ≤ σ2, x1 ≤ x2},
(3.96)
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by (3.92), we get

Cind = max {C1>2, C1<2} , (3.97)

where

C1>2 = max
(µ1, µ2)∈F1>2

I1>2(µ1 − µ2, µ2, s), (3.98)

C1<2 = max
(µ1, µ2)∈F1<2

I1<2(µ2 − µ1, µ1, s). (3.99)

We apply the transformation ν1 = µ1 − µ2 (resp. ν1 = µ2 − µ1) and ν2 = µ2 (resp.

ν2 = µ1) in order to compute C1>2 (resp. C1<2). By (3.96), (3.98), (3.99),

C1>2 = max
(ν1, ν2)∈G1>2

I1>2(ν1, ν2, s), (3.100)

C1<2 = max
(ν1, ν2)∈G1<2

I1<2(ν1, ν2, s), (3.101)

where

G1>2 = {(x1, x2) : x1 ≥ 0, 0 ≤ x2 ≤ σ2, x1 + x2 ≤ σ1},

G1<2 = {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ σ2}.
(3.102)

We first compute C1<2 using the Lagrangian

J1<2(ν1, ν2) = I1<2(ν1, ν2, s) + η1ν1 + η2ν2 + η3(σ2 − ν1 − ν2), (3.103)

where ηk ≥ 0, k = 1, 2, 3 are Lagrange multipliers to be determined. The optimal

pair (ν∗1 , ν
∗
2) that achieves the maximum in (3.101) satisfies the following Kuhn-
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Tucker conditions (cf. e.g., [35], p. 233):

∂I1<2

∂ν1

∣

∣

∣

(ν∗1 , ν
∗
2 )

+ η1 − η3 = 0,

∂I1<2

∂ν2

∣

∣

∣

(ν∗1 , ν
∗
2 )

+ η2 − η3 = 0,

η1ν
∗
1 = 0,

η2ν
∗
2 = 0,

η3(σ2 − ν∗1 − ν∗2) = 0,

(3.104)

whose solution yields

ν∗1 = 0,

ν∗2 = min{σ2, ρ̄},
(3.105)

where ρ̄ is as defined in (3.14), so that by (3.101),

C1<2 = I1<2(0, min{σ2, ρ̄}, s). (3.106)

We now compute C1>2 using the Lagrangian

J1>2(κ1, κ2) = I1>2(κ1, κ2, s) + η1κ1 + η2κ2

+η3(σ2 − κ2) + η4(σ1 − κ1 − κ2), (3.107)

where ηk ≥ 0, k = 1, · · · , 4 are Lagrange multipliers to be determined. The optimal

pair (κ∗1, κ
∗
2) that achieves the maximum in (3.100) satisfies the following Kuhn-
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Tucker conditions:

∂I1<2

∂κ1

∣

∣

∣

(κ∗1, κ
∗
2)

+ η1 − η4 = 0,

∂I1<2

∂κ2

∣

∣

∣

(κ∗1, κ
∗
2)

+ η2 − η3 − η4 = 0,

η1κ
∗
1 = 0,

η2κ
∗
2 = 0,

η3(σ2 − κ∗2) = 0,

η4(σ1 − κ∗1 − κ∗2) = 0,

(3.108)

whose solution yields

κ∗1 =















0, if σ2 ≥ ρ1,

min{σ1, β1(σ2)} − σ2, otherwise,

κ∗2 = min{σ2, ρ̄},

(3.109)

where ρ1, ρ̄ and β1(·) are as defined in (3.13), (3.14) and (3.15) respectively, so that

by (3.100), we get

C1>2 =















I1>2(0, min{σ2, ρ̄}, s), if σ2 ≥ ρ1,

I1>2(min{σ1, β1(σ2)} − σ2, min{σ2, ρ̄}, s), otherwise.

(3.110)

Comparing (3.106) and (3.110), we see that if σ1 ≥ σ2, then C1>2 ≥ C1<2. Therefore,

Cind = C1>2, and by the inverse transformation, the optimal pair µ∗
1 = κ∗1 + κ∗2 and

µ∗
2 = κ∗2 satisfies one of the conditions (1), (2), (4), (6) of Theorem 5. Conditions

(1), (3), (5), (6) corresponding to the case σ1 ≤ σ2 can be verified using similar

arguments. This concludes the proof of Theorem 5.

Proof of Theorem 6:

First, note that standard Lagrangian techniques (as used in the proof of The-
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orem 5), can be used to show that at optimality,

µ∗
1A1 + µ∗

2A2 = σ(A1 + A2) (3.111)

holds iff σ ≤ ρ̄, where ρ̄ is as defined in (3.14). If σ > ρ̄, then the optimal pair

(µ∗
1, µ

∗
2) that achieves the maximum in (3.11) is given by µ∗

1 = µ∗
2 = ρ̄, the “uncon-

strained” optimum pair.

Next, we consider the case σ < ρ̄, when (3.111) holds at optimality. Substi-

tuting µ1 = x and µ2 = (1 + a)σ − ax, with a = A1

A2
, from (3.11), we get

Csum = max
0≤x≤(1+1/a)σ

I0(x), (3.112)

where

I0(x) =































































∑M
m=1[(1 + a)(σ − x)ζ(s2,mA2, λ0,m) + xζ(

∑2
n=1 sn,mAn, λ0,m)

−ζ(xs1,mA1 + ((1 + a)σ − ax)s2, mA2, λ0,m)], if x ≤ σ,

∑M
m=1[(1 + a)(x− σ)ζ(s1,mA1, λ0,m)

+((1 + a)σ − ax)ζ(
∑2

n=1 sn,mAn, λ0,m)

−ζ(xs1,mA1 + ((1 + a)σ − ax)s2, mA2, λ0,m)], otherwise,

(3.113)

and µ∗
1 = arg max0≤x≤(1+1/a)σ I0(x).

Observe that I0(·) is a continuous, concave, piecewise differentiable function

on [0, (1 + 1/a)σ], with a nondifferentiable point at σ. From (3.113), using (2.5)

and (3.12), it can be verified that

I
′

0(x) =
dI0(x)

dx
=















K1 − d(x, σ), if x < σ,

K2 − d(x, σ), if x > σ,

(3.114)
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Figure 3.3: The possible variations of I
′

0(x) versus x.

(a) I
′

0(0) < 0;

(b) I
′

0(x0) = 0 for some 0 ≤ x0 < σ;

(c) I
′

0(σ
−) > 0, I

′

0(σ
+) < 0;

(d) I
′

0(x0) = 0 for some σ < x0 ≤ (1 + 1/a)σ;

(e) I
′

0((1 + 1/a)σ) > 0.
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where K1, K2 and d(·, ·) are as defined in (3.17) and (3.18) respectively. Keeping in

mind that K1 ≥ K2 and d(·, y) is non-decreasing for any y ∈ IR, we conclude that

(see Figure 3.3)

1. if I ′0(0) < 0, i.e., if γ1(σ) < 0, then µ∗
1 = 0;

2. if I ′0(x0) = 0 for some 0 ≤ x0 < σ, i.e., if 0 ≤ γ1(σ) < σ, then µ∗
1 = x0 = γ1(σ);

3. if limx→σ− I
′
0(x) > 0 and limx→σ+ I ′0(x) < 0, then µ∗

1 = σ;

4. if I ′0(x0) = 0 for some σ < x0 ≤ (1 + 1/a)σ, i.e., if σ < γ2(σ) ≤ (1 + 1/a)σ,

then µ∗
1 = x0 = γ2(σ);

5. if I ′0((1 + 1/a)σ) > 0, i.e., if γ2(σ) > (1 + 1/a)σ, then µ∗
1 = (1 + 1/a)σ.

The statement of Theorem 6 is a rearrangement of these observations.

Proof of Corollary 6:

For 0 ≤ σ ≤ ρ̄, define D1(σ)
∆
= limx→σ− I

′
0(x), and D2(σ)

∆
= limx→σ+ I ′0(x). By

(3.114),

D1(σ) = K1 − d(σ, σ)

=
M
∑

m=1

λ0,m

[

Bm log

(

1 + ρ̄Bm

1 + σBm

)

+ (1 + a)b2, m log

(

1 + σBm

1 + ρ2Bm

)]

, (3.115)

and

D2(σ) = K2 − d(σ, σ)

= −
M
∑

m=1

λ0,m

[

aBm log

(

1 + ρ̄Bm

1 + σBm

)

+ (1 + a)b1,m log

(

1 + σBm

1 + ρ1Bm

)]

,(3.116)
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where (3.115), (3.116) are by (3.17), (3.18). Note that D1(0) = K1, D2(0) = K2,

and D1(σ) −D2(σ) = K1 −K2 for all 0 ≤ σ ≤ 1. By (3.115), (3.116), and the fact

that ρ̄ ≥ max{ρ1, ρ2}, it follows that D1(ρ̄) ≥ 0 and D2(ρ̄) ≤ 0.

Case 1: K1 < 0: By the continuity of D1(·) on [0, ρ̄], and the facts that

D1(0) = K1 < 0, D1(ρ̄) ≥ 0, we conclude that there exists 0 ≤ σc ≤ ρ̄ such that

D1(σc) = 0. If σ ≤ σc, then I
′

0(x0) = 0 for some 0 ≤ x0 ≤ σ. By Theorem 6,

it follows that µ∗
1 = x0 ≤ σ, and µ∗

2 = (1 + a)σ − aµ∗
1 ≥ σ. On the other hand,

if σ > σc, then D1(σ) > 0 and D2(σ) < 0, so that by Theorem 6, it follows that

µ∗
1 = µ∗

2 = σ. In summary, µ∗
1 ≤ σ ≤ µ∗

2 for all 0 ≤ σ ≤ 1.

Case 2: K2 > 0: By the continuity of D2(·) on [0, ρ̄], and the facts that

D2(0) = K2 > 0, D2(ρ̄) ≤ 0, we conclude that there exists 0 ≤ σc ≤ ρ̄ such that

D2(σc) = 0. If σ ≥ σc, then I
′

0(x0) = 0 for some σ ≤ x0 ≤ (1 + 1/a)σ. By Theorem

6, it follows that µ∗
1 = x0 ≥ σ, and µ∗

2 = (1 + a)σ − aµ∗
1 ≤ σ. On the other hand,

if σ < σc, then D1(σ) > 0 and D2(σ) < 0, so that by Theorem 6, it follows that

µ∗
1 = µ∗

2 = σ. In summary, µ∗
1 ≥ σ ≥ µ∗

2 for all 0 ≤ σ ≤ 1.

Case 3: K1 ≥ 0 ≥ K2: For all 0 ≤ σ ≤ ρ̄, D1(σ) ≥ 0 and D2(σ) ≤ 0, so that

µ∗
1 = µ∗

2 = σ.

3.5 Numerical examples

In this section, we provide some illustrative examples to supplement the results

described in this chapter. We determine the capacity of a 2 × 2 MIMO Poisson

channel with constant channel fade. We consider symmetric and asymmetric peak

86



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 σ
1
 −−>

 σ
2 −

−
>

 σ
1
 = σ

2

 σ
1
 = ρ

 _

 σ
2
 = ρ

 _

 σ
2
 = ρ

1

 σ
1
 = ρ

2

 σ
1
 = β

1
(σ

2
)

 σ
2
 = β

2
(σ

1
)

 R
1
 

 R
2
 

 R
3
 

 R
4
 

 R
5
 

 R
6
 

Figure 3.4: Decision region of optimal duty cycles for individual average power

constraints σ1, σ2 for Example 3.1.

and average power constraints, as well as average sum power constraint on the

transmitted signals.

Example 3.1: Consider a 2 × 2 MIMO Poisson channel with A1 = A2 = 1.0,

λ0, 1 = λ0, 2 = 1.0, s = [1.0 0.1; 1.0 0.1]. It can be verified that ρ1 = ρ2 = 0.236,

ρ̄ = 0.457, K1 = 0.5324, K2 = −0.5324. The channel conditions experienced by

the two transmit apertures are identical; therefore, it is not surprising that the

decision region of the optimal duty cycles is symmetric when the transmit apertures

are subject to individual average power constraints (see Figure 3.4). Furthermore,
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Figure 3.6: Plot of capacity (Cind) versus σ1, σ2 for Example 3.1.
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Figure 3.7: Plot of capacity (Csum) versus σ for Example 3.1.
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Figure 3.8: Decision region of optimal duty cycles for individual average power

constraints σ1, σ2 for Example 3.2.

when the transmit apertures are subject to an average sum power constraint σ, the

optimal average duty cycles of both transmit apertures are equal for all 0 ≤ σ ≤ 1

(see Figure 3.5). In Figures 3.6 and 3.7, we plot respectively the capacities for

individual and sum average power constraints versus the average power constraint

parameters.

Example 3.2: Consider a 2 × 2 MIMO Poisson channel with A1 = A2 = 1.0,

λ0, 1 = λ0, 2 = 1.0, s = [1.0 0.1; 0.1 0.1]. It can be verified that ρ1 = 0.425, ρ2 =

0.078, ρ̄ = 0.471, K1 = 0.4575, K2 = 0.3054. In this example, it can be seen
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Figure 3.10: Plot of capacity (Cind) versus σ1, σ2 for Example 3.2.
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Figure 3.11: Plot of capacity (Csum) versus σ for Example 3.2.
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that transmit aperture 1 experiences significantly better channel conditions than

transmit aperture 2, which is captured in the condition K1 > K2 > 0. The decision

region for optimal duty cycles when the transmit apertures are subject to individual

average power constraints (see Figure 3.8) is clearly asymmetric, with a bias towards

transmit aperture 1. When the transmit apertures are subject to a sum average

power constraint σ, we see that (see Figure 3.9) for a range of values of σ, the optimal

average duty cycle of transmit aperture 1 is strictly larger than that of transmit

aperture 2. In Figure 3.10 (resp. Figure 3.11), the variation of capacity with average

power constraint parameters σ1 and σ2 (resp. σ) is plotted; the asymmetric nature

of channel conditions with respect to the two transmit apertures is reflected in the

asymmetry of these plots.

3.6 Discussion

We have studied the shot-noise limited N ×M MIMO Poisson channel with

constant channel fade and background noise rates. At each receive aperture, the

optical fields received from different transmit apertures are assumed to be sufficiently

separated in frequency or angle of arrival such that the received total power is the

sum of powers from individual transmit apertures, scaled by the respective channel

fade. The transmit apertures are subject to individual peak power constraints,

and one of two types of average power constraints: (a) individual average power

constraints, or (b) a constraint on the sum of the average powers from all transmit

apertures. The capacity of this channel is explicitly characterized and optimum
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strategies for transmission are determined.

It has been established that a two-level signaling strategy through each trans-

mit aperture with arbitrarily fast intertransition times is capacity-achieving. The

two levels correspond to no transmission (OFF state) and transmission at the peak

power level (ON state). The transmitted signals through the N apertures are in

general correlated across apertures and i.i.d. in time. Furthermore, the optimum

set of transmission events has at most N + 1 values (out of 2N possible values).

Each of these values correspond to events in which exactly k transmit apertures are

ON and the remaining N − k are OFF, where k = 0, 1, · · · , N . There is a specific

ordering of the transmit apertures (denoted by Π) which dictates that whenever a

transmit aperture is ON, all the apertures with stronger average power constraints

(in the sense of Π) must also remain ON.

For the special case of a symmetric average power constraint, the optimum

transmission strategy corresponds to the simultaneous ON-OFF keying events, in

which all the transmit apertures are simultaneously ON or OFF. This implies that

the lower bound derived in [19] for the MIMO Poisson channel with a symmetric

average power constraint is always tight, a fact not mentioned therein.

On the other hand, in the case of asymmetric average power constraints, the

optimum set of transmission events may have more than 2 values, as was shown in

Theorem 5 for N = 2 transmit apertures. Specifically, the transmit apertures with

higher average power levels may remain ON even when the ones with lower average

power levels are OFF. However, for a range of values of average power levels, the

optimum strategy assigns nonzero mass to only the simultaneous ON-OFF keying
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transmission events.

We have identified a key property of the optimal transmission strategy for

communication over a MIMO Poisson channel subject to individual peak power

constraints and a constraint on the sum of the average power constraints. It has

been demonstrated that the relative ordering of the optimal average duty cycles

across the transmit apertures does not depend on the average sum power constraint

σ.

In the next chapter, these results will be used to characterize the capacity of

a MIMO Poisson channel with random channel fade. Several properties of optimal

transmission strategies, e.g., optimality of i.i.d. binary signaling from each transmit

aperture with arbitrarily fast intertransition times, and a relative ordering of trans-

mit apertures according to optimal average duty cycles will be shown to extend to

the random fading channel as well. Finally, the result of Corollary 6 will be used to

obtain a simplified expression for channel capacity of the symmetric MIMO channel

with isotropically distributed channel fade.
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Chapter 4

MIMO Poisson channel with random channel fade

4.1 Introduction

In this chapter, we consider the N ×M MIMO Poisson channel with random

channel fade. We assume that the channel fade matrix remains unvarying over

intervals of duration Tc, and changes across successive intervals in an i.i.d. manner.

The receiver is assumed to possess perfect CSI, while the transmitter CSI can be

imperfect. The transmitted signals from each transmit aperture are subject to

peak and average power constraints. We provide a single-letter characterization

of the channel capacity in terms of the channel and signal parameters. While an

explicit characterization of the capacity-achieving optimal power control law in its

full generality is yet to be determined, we are able to identify interesting properties

of the optimal transmission strategy for the special case of a symmetric MIMO

Poisson channel with isotropically distributed channel fade when the transmitter

has perfect CSI.

The remainder of this chapter is organized as follows. In Section 4.2, we

describe the problem formulation. The results are discussed in Section 4.3, and the

proofs are outlined in Section 4.4. An illustrative example is discussed in Section

4.5. Finally, the main contributions are summarized in Section 4.6.

98



PCP

PCP

PCP

Channel fade matrix

Y1(t)

Y2(t)

YM(t)

S1,1(t)

S1,2(t)

SN,M(t)
ΛM(t)

Λ2(t)

Λ1(t)

λ0,M

λ0,2

xN (t)

x2(t)

x1(t)

λ0,1

S1,M (t)

Figure 4.1: N ×M MIMO Poisson channel with random channel fade.

4.2 Problem formulation

A block schematic diagram of the channel model is given in Figure 4.1. For

a given set of N IR+
0 –valued transmitted signals {xn(t), t ≥ 0}Nn=1, the received

signal {Ym(t), t ≥ 0} at the mth receive aperture is a Z
+
0 -valued nondecreasing

(left-continuous) PCP with rate equal to

Λm(t) =

N
∑

n=1

Sn,m(t)xn(t) + λ0,m, t ≥ 0, (4.1)

where {Sn,m(t), 0 ≤ t ≤ T} is the IR+
0 -valued random fade from the nth transmit

aperture to the mth receive aperture, n = 1, · · · , N , m = 1, · · · , M , and λ0, m ≥ 0

is the (constant) background noise rate at the mth receive aperture, m = 1, · · · , M .

We also assume that the receive apertures are sufficiently separated in space, so

that conditioned on the knowledge of transmitted signals and the instantaneous

realization of channel fade at the receiver, the processes Y ∞
m = {Ym(t), t ≥ 0},

m = 1, · · · , M , are taken to be mutually independent [47, 19].
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Figure 4.2: Block fading channel.

The input to the channel is a set of N IR+
0 –valued transmitted signals, one

corresponding to each transmit aperture, collectively denoted by xT = {xn(t), 0 ≤

t ≤ T}Nn=1, each of which is proportional to the transmitted optical power from the

respective transmit aperture, and which satisfy peak and average power constraints

of the form

0 ≤ xn(t) ≤ An, 0 ≤ t ≤ T,

1
T

∫ T

0
xn(t)dt ≤ σnAn,

(4.2)

where the peak powers An > 0 and the ratios of average-to-peak power σn, 0 ≤

σn ≤ 1, n = 1, · · · , N , are fixed. Also, symmetric and asymmetric peak and

average power constraints can be defined in a manner similar to Definition 2.

The channel fade, i.e., path gain, from the nth transmit aperture to the mth

receive aperture is a IR+
0 -valued random process {Sn,m(t), t ≥ 0}. The channel

coherence time Tc is a measure of the intermittent coherence of the time-varying

channel fade. We assume that the channel fade remain fixed over time intervals

of duration Tc, and change in an i.i.d. manner across successive such intervals.

For k = 1, 2, · · ·, let the channel fade from the nth transmit aperture to the mth

receive aperture on [(k − 1)Tc, kTc) be denoted by the rv Sn,m[k]; in other words,

for n = 1, · · · , N , m = 1, · · · , M ,

Sn,m[k] = Sn,m(t), t ∈ [(k − 1)Tc, kTc), k = 1, 2, · · · .

100



The channel fade matrix on [(k − 1)Tc, kTc) is denoted by S[k] = {Sn,m[k], n =

1, · · · , N, m = 1, · · · , M}, k = 1, 2, · · · (see Figure 4.2). The channel fade is then

described by the random sequence {S[k], k ∈ Z
+} of i.i.d. repetitions of a random

matrix S with known distribution FS. Note that the rate of {Ym(t), t ≥ 0} is thus

given by

Λm(t) =
N
∑

n=1

Sn,m[⌈t/Tc⌉]xn(t) + λ0,m, t ≥ 0.

Our general results below hold for a broad class of distributions for S which satisfy

the following technical conditions: (a) Pr{Sn,m > 0} = 1, (b) IE[Sn,m] <∞ and (c)

IE [Sn,m log Sn,m] <∞, n = 1, · · · , N, m = 1, · · · , M .

Various degrees of channel state information (CSI) can be made available to

the transmitter and the receiver. As before, we shall assume that the receiver has

perfect CSI. In general, we can model the CSI available at the transmitter in terms of

a given mapping h : (IR+
0 )N×M → U , where U is an arbitrary subset of (IR+

0 )N×M , not

necessarily finite. For S[k] = s[k], s[k] ∈ (IR+
0 )N×M , the transmitter (resp. receiver)

is provided with CSI u[k] = h(s[k]) (resp. s[k]) on [(k − 1)Tc, kTc), k ∈ Z
+. Let

{U[k] = h(S[k]), k ∈ Z
+} denote the CSI at the transmitter, hereafter referred to

as the transmitter CSI h. We shall be particularly interested in two special cases of

this general framework. In the first case, the transmitter has perfect CSI, i.e., h is

the identity mapping. In the second case, the transmitter has no CSI, i.e., h is the

trivial (constant) mapping.

We assume, without loss of generality, that the message transmission duration

T is an integer multiple of the channel coherence time, i.e., T = KTc, K ∈ Z
+.
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Then the receiver CSI is given by the collection of matrices SK = {S[1], · · · ,S[K]}

and the transmitter CSI is given by UK . For the channel under consideration, a

(W, T )–code (f, φ) is defined as follows.

1. For each uK ∈ UK , the codebook comprises a set of W waveform vectors

f(w, uK) = {xn(w, t, u⌈t/Tc⌉), 0 ≤ t ≤ T}Nn=1, w ∈ W = {1, · · · , W}, satisfy-

ing peak and average power constraints which follow from (4.2):

0 ≤ xn(w, t,u
⌈t/Tc⌉) ≤ An, 0 ≤ t ≤ T, w ∈ W,

1
T

∫ T

0
xn(w, t,u

⌈t/Tc⌉)dt ≤ σnAn, w ∈ W.

(4.3)

Note that the transmitted signals {xn(w, t)}Nn=1 at time t are allowed to depend

on u⌈t/Tc⌉, the causal transmitter CSI.

2. The decoder is a mapping

φ : (Σ(T ))M × ((IR+
0 )N×M)K → W.

For each message w ∈ W and transmitter CSI uK ∈ UK corresponding to the

fade vector sK ∈ ((IR+
0 )N×M)K , the transmitter sends a waveform {xn(w, t,u⌈t/Tc⌉),

0 ≤ t ≤ T} from the nth transmit aperture, n = 1, · · · , N . The receiver, upon

observing yTm from the mth receive aperture, m = 1, · · · ,M , and being provided

with sK , produces an output ŵ = φ(yT1 , · · ·, yTM , sK). The rate of this (W, T )–code

is given by R = 1
T

logW nats/sec., and the average probability of decoding error is

given by

Pe(f, φ) =
1

W

W
∑

w=1

IE
[

Pr
{

φ(Y T
1 , · · · , Y T

M , S
K) 6= w

∣

∣

xT1 (w, UK), · · · , xTN (w, UK), SK
}]

,

102



where we have used the shorthand notation

xTn
(

w, UK
)

=
{

xn
(

w, t, U⌈t/Tc⌉
)

, 0 ≤ t ≤ T
}

, w ∈ W, n = 1, · · · , N.

In the subsequent sections, we provide a “single-letter characterization” of the

channel capacity C (see Definition 1) in terms of signal and channel parameters,

and examine some properties of the associated optimal transmission strategies.

4.3 Statement of results

4.3.1 Channel capacity

We begin with a single-letter characterization of the capacity of the MIMO

Poisson channel with block fading.

Theorem 7 The capacity of the MIMO Poisson fading channel for transmitter CSI

h is given by

C = max
µn:U→[0, 1]

IE[µn(U)]≤σn
n=1,···,N

IE[I(µN(U), S)], (4.4)

where U = h(S), and I(·, ·) is as defined in (3.8).

The capacities for the special cases of perfect and no CSI at the transmitter

follow directly from Theorem 7.

Corollary 7 The capacity for perfect CSI at the transmitter is given by

CP = max
µn:(IR

+
0 )N×M→[0, 1]

IE[µn(S)]≤σn
n=1,···,N

IE[I(µN(S), S)]. (4.5)
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The capacity for no CSI at the transmitter is given by

CN = max
0≤µn≤σn
n=1,···,N

IE[I(µN , S)]. (4.6)

Remarks: (i) The optimization in (4.4) (as well as in (4.5) and (4.6)) is that of a

concave functional over a convex compact set, so that the maximum clearly exists.

(ii) From Theorem 7, we see that the capacity of the MIMO Poisson fading

channel with perfect receiver CSI does not depend on the coherence time Tc. Con-

ditioned on the transmitted signals xT , and perfect receiver CSI sK , the received

signals {Y T
m}Mm=1 are independent across coherence intervals; hence it suffices to

look at a single coherence interval in the mutual information computations. Fur-

thermore, within a coherence interval, the optimality of i.i.d. (in time) transmitted

signals leads to a lack of dependence of capacity on Tc.

(iii) Our proof of the achievability part shows that {0, An}–valued transmitted

signals (corresponding to ON and OFF signal levels) from the nth transmit aper-

ture, n = 1, · · · , N , with arbitrarily fast intertransition times, can achieve channel

capacity. The signal characteristics during each coherence interval depend only on

the current transmitter CSI and not on the past transmitter CSI.

(iv) The optimizing “power control law” µn in (4.4), (4.5), (4.6) specifies the

conditional probability of the nth transmit aperture assuming the level An (ON

state) depending on the available transmitter CSI. Thus, it can be interpreted as

the average “conditional duty cycle” of the nth aperture’s transmitted signal as a

function of transmitter CSI.
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(v) In general, the optimal transmission strategy will comprise at most N + 1

transmission events, where each event corresponds to a set of k transmit apertures

remaining in the ON state and the remaining N − k transmit apertures simultane-

ously remaining in the OFF state. The active set of transmit apertures at any given

time instant will depend on the current transmitter CSI.

(vi) Theorem 1 (resp. Corollary 1) is obviously a special case of Theorem 7

(resp. Corollary 7), with N = M = 1.

4.3.2 Optimum power control strategy

It remains to determine the optimal power control law parameters {µ∗
n(·)}Nn=1

that achieve the maximum in (4.4). One difficulty in obtaining a closed form analyt-

ical solution for {µ∗
n(·)}Nn=1 is the nondifferentiability of I(·, s); standard variational

techniques for differentiable functions (cf. e.g., [15]) cannot be applied here. Nons-

mooth optimization techniques (cf. e.g., [7]) can be used to determine the solution

computationally. While the analytical structure of the optimal solution remains to

be characterized in full generality, we provide solutions in some special cases below.

For the sake of notational simplicity, we focus on N = 2 transmit apertures.

We begin with some notation. For s ∈ (IR+
0 )2×M , let ρ = ρn(s) be the solution

of

M
∑

m=1

λ0, mbn,m log

(

1 + α(bn,m)bn,m
1 + ρBm

)

= 0, n = 1, 2, (4.7)

where {bn,m}2,M
n=1,m=1 and {Bm}Mm=1 are as defined in (3.12); and let ρ = ρ̄(s) be the
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solution of

M
∑

m=1

λ0, mBm log

(

1 + α (Bm)Bm

1 + ρBm

)

= 0. (4.8)

From Section 3.3, recall that ρ1(s) ≥ 0, ρ2(s) ≥ 0, 1
e
≤ ρ̄(s) ≤ 1

2
and ρ̄(s) ≥

max{ρ1(s), ρ2(s)} for all s ∈ (IR+
0 )2×M . Let

K1(s) =
∑M

m=1 λ0, m [Bm log (1 + ρ̄(s)Bm) − (1 + a)b2, m log (1 + ρ2(s)b2, m)] ,

K2(s) =
∑M

m=1 λ0, m [(1 + a)b1, m log (1 + ρ1(s)b1, m) − aBm log (1 + ρ̄(s)Bm)] ,

(4.9)

with a = A1

A2
. From Section 3.3, recall that K1(s) ≥ K2(s), s ∈ (IR+

0 )2×M . For

x, y ∈ IR and s ∈ (IR+
0 )2×M , define

d(x, y, s) =
M
∑

m=1

λ0, m(b1, m − ab2, m) ×

log(1 + (b1, m − ab2, m)x+ (1 + a)b2, my), (4.10)

and let x = γj(y, s) be the solution of

d(x, y, s) = Kj(s), j = 1, 2, (4.11)

whence it can be verified that γ1(y, s) ≥ γ2(y, s) for all y ∈ IR and s ∈ (IR+
0 )2×M .

4.3.3 Symmetric MIMO channel with isotropic fade

We now consider a symmetric channel model with random isotropic channel

fade. We assume that the transmit apertures are subject to symmetric peak and

average power constraints, i.e., An = A, and σn = σ, n = 1, 2. Furthermore,

we assume that the receive apertures experience similar background radiation, so

that λ0, m = λ0, m = 1, · · · , M . The channel fade coefficients are assumed to be
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State s(1)
State s(2)

Figure 4.3: Mirror states of a 2 × 2 MIMO Poisson channel.

i.i.d., across both time and apertures, i.e., Sn,m[k] ∼ S, k = 1, · · · , K, n = 1, 2,

m = 1, · · · , M , with common cdf1 FS. For this special channel model, we pro-

vide a simplified characterization of channel capacity. We begin with the following

definition.

Definition 3 The states s(1) ∈ (IR+
0 )2×M and s(2) ∈ (IR+

0 )2×M are called mirror

states if the rows of the respective channel fade matrices are permutations of each

other, i.e., s
(1)
1, m = s

(2)
2, m and s

(1)
2,m = s

(2)
1, m, m = 1, · · · , M .

An example of mirror states for a 2×2 MIMO Poisson channel is given in Figure 4.3.

The channel characteristics experienced by the transmit apertures are interchanged

in the mirror states. We now summarize some interesting properties of mirror states.

Lemma 1 If s(1) and s(2) are mirror states, then

1. FS(s(1)) = FS(s(2));

1Recall that the distribution function of S[k] is denoted by FS. The distinction between FS

and FS should be clear from context.

107



2. K1(s
(1)) +K2(s

(2)) = 0 = K1(s
(2)) +K2(s

(1));

3. I(a, b, s(1)) = I(b, a, s(2)), a, b ≥ 0;

4. I(a1, b1, s
(1))+ I(a2, b2, s

(2)) ≤ 2I(a1+b2
2

, a2+b1
2
, s(1)), a1, a2, b1, b2 ≥ 0.

From the symmetry of the channel model, we conclude that

Lemma 2 If s(1) and s(2) are mirror states, then at optimality,

µ∗
1(s

(1)) = µ∗
2(s

(2)),

µ∗
1(s

(2)) = µ∗
2(s

(1)).

(4.12)

Remarks: (i) The channel fades experienced by the two transmit apertures are

interchanged in the mirror states. Given the symmetry of the channel model, it is,

therefore, not surprising that the role reversal of transmit apertures in the mirror

states is reflected in the optimum power control law.

(ii) We can generalize the notion of mirror states and interchange of roles of

transmit apertures for the case of an arbitrary number N of transmit apertures.

Any permutation of the rows of the channel fade matrix leads to a mirror state.

We state without proof the following generalization of Lemma 2: at optimality,

µ∗
n(s) = µ∗

P (n)(s
(P )), n = 1, · · · , N , where P is any permutation of {1, · · · , N} and

s(P ) is obtained by applying P on the rows of s.

Consider next the following partitioning of the state set that separates the

mirror states. Let

S0 = {s ∈ (IR+
0 )2×M : s = smir},

S1 = {s ∈ (IR+
0 )2×M : K1(s) +K2(s) ≥ 0, and smir ∈ S2},

S2 = {s ∈ (IR+
0 )2×M : K1(s) +K2(s) ≤ 0, and smir ∈ S1},

(4.13)

108



where smir is the mirror state of s. By Lemma 1, property 2, we see that if s ∈ S1,

then smir ∈ S2, and vice versa. Let

F̂S(s) =































FS(s), if s ∈ S0,

2FS(s), if s ∈ S1,

0, if s ∈ S2.

(4.14)

By Lemma 1, property 1, and (4.13), it follows that F̂S is a valid pdf.

Theorem 8 The capacity of the 2 ×M MIMO isotropic block fading channel for

perfect CSI at the transmitter is given by

C = max
µ1:(IR+

0
)2×M→[0, 1]

µ2:(IR+
0

)2×M→[0, 1]

µ1(S)≥µ2(S)

IE
F̂S

[µ1(S)+µ2(S)]≤2σ

IEF̂S
[I1>2(µ1(S) − µ2(S), µ2(S), S)], (4.15)

where I1>2(·, ·, ·) is as defined in (3.94).

Remark: For the symmetric MIMO channel with isotropic channel fade, we show

that a necessary and sufficient condition for µ∗
1(s) ≥ µ∗

2(s) is K1(s) + K2(s) ≥ 0,

s ∈ (IR+
0 )2×M . Heuristically, the condition 1(K1(s) + K2(s) ≥ 0) allows us to

partition the state set into channel states for which the channel conditions are “more

favorable” for one transmit aperture than the other. Clearly, the optimal power

control law assigns higher average power to the “stronger” transmit aperture, i.e.,

the one which experiences better channel conditions. Since the channel fade is

isotropically distributed, it follows that for each fade realization, there exists another

fade realization with the same probability of occurrence (which corresponds exactly

to the mirror state), for which the channel conditions experienced by the transmit
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apertures are reversed. By defining F̂S as in (4.14), we are able to reduce the state

set by picking the states for which the channel conditions are more favorable for

transmit aperture 1, and hence µ∗
1(·) ≥ µ∗

2(·).

Note that the individual average power constraints on µ1(·) and µ2(·) in the

right side of (4.5) (with N = 2) are replaced by a constraint on their sum in (4.15).

We now invoke the result of Theorem 6 to further simplify (4.15).

Theorem 9 The capacity of the 2 ×M MIMO isotropic block fading channel for

perfect CSI at the transmitter is given by

C = max
µ:(IR+

0
)2×M→[0, 1]

IE
F̂S

[µ(S)]≤σ

IEF̂S
[I1>2(κ1(S, µ(S)) − κ2(S, µ(S)), κ2(S, µ(S)), S)], (4.16)

where κ1(·, ·) and κ2(·, ·) are given as follows:

1. if µ(s) ≥ ρ̄(s), then

κ1(s, µ(s)) = κ2(s, µ(s)) = ρ̄(s); (4.17)

2. if µ(s) < ρ̄(s), then

κ1(s, µ(s)) =















min{γ2(µ(s), s), 2µ(s)}, if K2(s) ≥ d(µ(s), µ(s), s),

µ(s), otherwise,

(4.18)

κ2(s, µ(s)) = 2µ(s) − κ1(s, µ(s)). (4.19)

Remark: The optimization problem in (4.16) involves a single mapping µ : S0∪S1 →

[0, 1], as opposed to the bivariate optimization problem in (4.15). It is difficult to

obtain a closed form expression for the optimal µ∗(·) that maximizes the right side

of (4.16), primarily due to the following reason. For any s ∈ S0 ∪ S1, even though
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I1>2(·, ·, s) is differentiable everywhere with respect to its arguments (see (3.95)),

κ1(s, y) and κ2(s, y) are nondifferentiable functions of y, 0 ≤ y ≤ 1.

We now determine a lower bound on channel capacity, based on a suboptimal

power control law, and demonstrate that this new lower bound improves on the

“simultaneous ON-OFF keying” lower bound proposed in [21].

Corollary 8 Suppose µL : (IR+
0 )2×M → [0, 1] be the power control law that achieves

the maximum in

CSOOK = max
µ:(IR+

0 )2×M→[0, 1]

IE[µ(S)]≤σ

IE[I(µ(S), µ(S), S)], (4.20)

with I(·, ·, ·) as defined in (3.8) with N = 2. Let

CLB
∆
= IEF̂S

[I1>2(κ1(S, µL(S)) − κ2(S, µL(S)), κ2(S, µL(S)), S)], (4.21)

where κ1(·, ·), κ2(·, ·) are as defined in (4.17)–(4.19). Then,

C ≥ CLB ≥ CSOOK. (4.22)

Remark: In an illustrative example below, we show that for some values of σ, the

simultaneous ON-OFF keying transmission strategy is strictly suboptimal for the

symmetric MIMO channel with isotropic fade. This is in contrast to the optimum

power control strategy for the symmetric MIMO Poisson channel with constant fades

(see Remark (ii) following Theorem 5).

4.4 Proofs

We begin this section with some additional definitions that will be needed in

our proofs. First, observe that for any τ > 0, the number of photon arrivals Nm(τ)
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during [0, τ ] together with the corresponding (ordered) arrival times T
Nm(τ)
m =

{Tm, 1, · · · , Tm,Nm(τ)} are sufficient statistics for Y τ
m, m = 1, · · · , M . Therefore,

the random vector Yss(τ) = {(Nm(τ), T
Nm(τ)
m )}Mm=1 is a complete description of the

random processes Yτ = {Y τ
1 , · · · , Y τ

M}, τ ≥ 0.

The channel of interest is characterized as follows. For an input signal xT =

{xn(t), 0 ≤ t ≤ T}Nn=1 satisfying (4.2) and a fade vector SK = sK , the channel

output (Nm(T ), T
Nm(T )
m ) at the mth receive aperture has the “conditional sample

function density” (cf. e.g., [47])

f
Nm(T ),T

Nm(T )
m |XT ,SK

(

nm, t
nm
m

∣

∣xT , sK
)

= exp

(

−
∫ T

0

λm(τ)dτ

) nm
∏

i=1

λm(tm, i), (4.23)

where

λm(t) =

N
∑

n=1

sn,m[⌈t/Tc⌉]xn(t) + λ0, m, 0 ≤ t ≤ T.

Recall our persistent assumption that the receive apertures are sufficiently separated

in space, so that conditioned on xT and sK , the processes Y T
1 , · · · , Y T

M are condi-

tionally mutually independent [47, 19]. Therefore, the conditional sample function

density of Yss(T ) given xT and sK is given by

fYss(T )|XT ,SK (yss|xT , sK)

=

M
∏

m=1

f
Nm(T ),T

Nm(T )
m |XT ,SK (nm, t

nm
m |xT , sK)

=
M
∏

m=1

exp

(

−
∫ T

0

λm(τ)dτ

) nm
∏

i=1

λm(tm,i), (4.24)

where yss = {(nm, tnm
m )}Mm=1. In order to write the channel output sample function

density conditioned only on the fade for a given joint distribution of (XT , SK),

112



consider the conditional mean of XT
n (conditioned causally on the channel output

and the fade) by

X̂n(τ)
∆
= IE

[

Xn(τ)|Yss(τ), S
⌈τ/Tc⌉

]

, 0 ≤ τ ≤ T, n = 1, · · · , N, (4.25)

where we have suppressed the dependence of {X̂n(τ)}Nn=1 on (Yss(τ), S
⌈τ/Tc⌉) for

notational convenience; and define

Λm(τ)
∆
=

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ) + λ0,m, 0 ≤ τ ≤ T, m = 1, · · · , M, (4.26)

and

Λ̂m(τ)
∆
= IE

[

Λm(τ)|Yss(τ),S
⌈τ/Tc⌉

]

=

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ) + λ0,m, 0 ≤ τ ≤ T, m = 1, · · · , M. (4.27)

By ([47], pp. 425-427), it follows that conditioned on SK , the process (Nm(T ),

T
Nm(T )
m ) is a self-exciting PCP with rate process Λ̂T

m, m = 1, · · · , M , so that the

output (conditional) sample function density is given by

fYss(T )|SK (yss|sK) =

M
∏

m=1

f
Nm(T ),T

Nm(T )
m |SK (nm, t

nm
m |sK)

=
M
∏

m=1

exp

(

−
∫ T

0

λ̂m(τ)dτ

)

·
nm
∏

i=1

λ̂m(tm, i), (4.28)

where yss = {(nm, tnm
m )}Mm=1, and

λ̂m(τ) =

N
∑

n=1

sn,m[⌈τ/Tc⌉]x̂n(τ) + λ0, m, 0 ≤ τ ≤ T, m = 1, · · · , M,

with

x̂n(τ) = IE
[

Xn(τ)|Yss(τ) = yss(τ), S
⌈τ/Tc⌉ = s⌈τ/Tc⌉

]

,

0 ≤ τ ≤ T, n = 1, · · · , N.
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Proof of Theorem 7:

Converse part: Let the rv W be uniformly distributed on the message set

W = {1, · · · ,W}, and independent of SK . With T = KTc, K ∈ Z
+, consider a

(W, T )–code (f, φ) of rate R = 1
T

logW , and with Pe(f, φ) ≤ ǫ, where 0 ≤ ǫ ≤ 1 is

given. Denote Xn(t)
∆
= xn(W, t,U

⌈t/Tc⌉), 0 ≤ t ≤ T , n = 1, · · · , N . Note that

(4.3) then implies that

0 ≤ Xn(t) ≤ An, n = 1, · · · , N, 0 ≤ t ≤ T,

1
T

∫ T

0
IE[Xn(τ)]dτ ≤ σnAn, n = 1, · · · , N.

(4.29)

Let (Nm(T ), T
Nm(T )
m ) be the channel output at the mth receive aperture when XT

n is

transmitted from the nth transmit aperture, n = 1, · · · , N , m = 1, · · · ,M . Clearly,

the following Markov condition holds:

W −◦−Xt S⌈t/Tc⌉ −◦− Yss(t), 0 ≤ t ≤ T, (4.30)

where Yss(t) = {(Nm(t), T
Nm(t)
m )}Mm=1, 0 ≤ t ≤ T . By a standard argument, the

rate R of the (W, T )–code (f, φ) with Pe(f, φ) ≤ ǫ must satisfy

R /
1

T
I
(

W ∧ φ(Yss(T ), SK)
)

. (4.31)

Proceeding further with the right side of (4.31),

I
(

W ∧ φ(Yss(T ), SK)
)

≤ I
(

W ∧ Yss(T ), SK
)

(4.32)

= I
(

W ∧ Yss(T )|SK
)

(4.33)

= h(Yss(T )|SK) − h(Yss(T )|W, SK)

≤ h(Yss(T )|SK) − h(Yss(T )|XT , SK), (4.34)
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where (4.32) is by the data processing result for mixed rvs (cf. (2.32)); (4.33) is by

the independence of W from SK ; and (4.34) is by (4.30). The difference between

the conditional entropies of mixed rvs on the right side of (4.34) is

h(Yss(T )|SK) − h(Yss(T )|XT , SK)

= IE
[

− log fYss(T )|SK (Yss(T )|SK)
]

− IE
[

− log fYss(T )|XT ,SK (Yss(T )|XT , SK)
]

= IE



log

∏M
m=1 exp

(

−
∫ T

0
Λm(τ)dτ

)

∏Nm(T )
i=1 Λm(Tm, i)

∏M
m=1 exp

(

−
∫ T

0
Λ̂m(τ)dτ

)

∏Nm(T )
i=1 Λ̂m(Tm, i)



 (4.35)

=
M
∑

m=1

IE

[
∫ T

0

(

Λ̂m(τ) − Λm(τ)
)

dτ

]

+
M
∑

m=1

IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)





=
M
∑

m=1

IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)



 (4.36)

=

M
∑

m=1

∫ T

0

{

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ), λ0,m

)]

− IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ), λ0, m

)]}

dτ, (4.37)

where (4.35) is by (4.24), (4.28); (4.36) holds by an interchange of operations2 to

get

IE

[
∫ T

0

(Λ̂m(τ) − Λm(τ))dτ

]

=

∫ T

0

IE
[

Λ̂m(τ) − Λm(τ)
]

dτ,

followed by noting that IE[Λ̂m(τ)] = IE[Λm(τ)], 0 ≤ τ ≤ T , m = 1, · · · , M , by

(4.27); and (4.37) is proved in Appendix C.1.
2The interchange is permissible as the assumed condition IE[Sn, m] < ∞, n = 1, · · · , N , m =

1, · · · , M implies the integrability of {Λm(τ), 0 ≤ τ ≤ T } and {Λ̂m(τ), 0 ≤ τ ≤ T }, m =

1, · · · , M .
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Next, in the right side of (4.37),

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ), λ0,m

)]

= IE

[

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ), λ0, m

)∣

∣

∣

∣

∣

S[⌈τ/Tc⌉]
]]

≥ IE

[

ζ

(

IE

[

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ)

∣

∣

∣

∣

∣

S[⌈τ/Tc⌉]
]

, λ0, m

)]

(4.38)

= IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉] IE
[

X̂n(τ)
∣

∣

∣
S[⌈τ/Tc⌉]

]

, λ0,m

)]

= IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉] IE [Xn(τ)|S[⌈τ/Tc⌉]] , λ0, m

)]

(4.39)

= IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉] IE [Xn(τ)|U[⌈τ/Tc⌉]] , λ0, m

)]

(4.40)

where (4.38) is by Jensen’s inequality applied to the convex function ζ(·, y), y ≥ 0;

(4.39) is from

IE
[

X̂n(τ) |S[⌈τ/Tc⌉]
]

= IE
[

IE
[

Xn(τ)
∣

∣Yss(τ), S
⌈τ/Tc⌉

]∣

∣S[⌈τ/Tc⌉]
]

= IE [Xn(τ) |S[⌈τ/Tc⌉] ] ;

and (4.40) holds as

IE [Xn(τ) |S[⌈τ/Tc⌉] ] = IE [Xn(τ) |S[⌈τ/Tc⌉], U[⌈τ/Tc⌉] ]

= IE [Xn(τ) |U[⌈τ/Tc⌉] ] (4.41)

by virtue of the Markov condition

Xn(τ) −◦−U[⌈τ/Tc⌉] −◦− S[⌈τ/Tc⌉], 0 ≤ t ≤ T, n = 1, · · · , N, (4.42)

which is obtained from Appendix A.2 by setting A = (W, U⌈τ/Tc⌉−1), B = S[⌈τ/Tc⌉],

C = U[⌈τ/Tc⌉] and X = Xn(τ). Summarizing collectively (4.34), (4.37), (4.40), we
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get that

I
(

W ∧ φ(Yss(T ), SK)
)

≤
∫ T

0

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ), λ0, m

)]

− IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉] IE [Xn(τ)|U[⌈τ/Tc⌉]] , λ0, m

)]}

dτ. (4.43)

The right side of (4.43) is further bounded above by a suitable modification

of Footnote 10, Chapter 2. Considering the integrand in (4.43), fix 0 ≤ τ ≤ T and

condition on S[⌈τ/Tc⌉] = s, s ∈ (IR+
0 )N×M . Then

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ), λ0,m

)

− ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉] IE[Xn(τ)|U[⌈τ/Tc⌉]], λ0, m

)∣

∣

∣

∣

∣

S[⌈τ/Tc⌉] = s

]}

=

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0,m

)∣

∣

∣

∣

∣

S[⌈τ/Tc⌉] = s

]

−ζ
(

N
∑

n=1

sn,m IE[Xn(τ)|U[⌈τ/Tc⌉] = h(s)], λ0, m

)}

=

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0,m

)∣

∣

∣

∣

∣

U[⌈τ/Tc⌉] = h(s)

]

−ζ
(

N
∑

n=1

sn,m IE[Xn(τ)|U[⌈τ/Tc⌉] = h(s)], λ0, m

)}

(4.44)

by (4.42). Consider maximizing the right side of (4.44) over all (conditional) joint

distributions of {Xn(τ), n = 1, · · · , N} conditioned on U[⌈τ/Tc⌉] = h(s) with fixed

conditional means IE[Xn(τ)|U[⌈τ/Tc⌉] = h(s)] = χn(τ, h(s))An, n = 1, · · · , N , say,

and subject to the first constraint (alone) in (4.29). The right side of (4.44) then

equals

M
∑

m=1

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)∣

∣

∣

∣

∣

U[⌈τ/Tc⌉] = h(s)

]
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− ζ

(

N
∑

n=1

sn,mχn(τ, h(s))An, λ0,m

)}

, (4.45)

and is maximized by considering the first term above. Let

h(τ, s, χ
N(τ, h(s)))

= max
0≤Xn(τ)≤An

IE[Xn(τ)|U[⌈τ/Tc⌉]=h(s)]=χn(τ, h(s))An
n=1, ···, N

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

sn,mXn(τ), λ0,m

)∣

∣

∣

∣

∣

U[⌈τ/Tc⌉] = h(s)

]

. (4.46)

Noting the structural similarity of the optimization problems in (4.46) and (3.38),

by (3.45), we conclude that

h(τ, s, χ
N (τ, h(s))) =

N
∑

n=1

ψn, Pτ (s)χPτ (n)(τ, h(s)), (4.47)

where Pτ is a permutation of {1, · · · , N} such that

χPτ (n)(τ, h(s)) ≥ χPτ (n+1)(τ, h(s)), n = 1, · · · , N − 1, (4.48)

and

ψn,P (s)
∆
=

M
∑

m=1

{

ζ

(

n
∑

k=1

sP (k),mAP (k), λ0, m

)

−ζ
(

n−1
∑

k=1

sP (k),mAP (k), λ0, m

)}

(4.49)

for n = 1, · · · , N and any permutation P of {1, · · · , N}. For notational brevity, we

have suppressed the dependence of Pτ on h(s). Since (4.29) implies that

0 ≤ χn(τ, h(s)) ≤ 1, 0 ≤ τ ≤ T, s ∈ (IR+
0 )N×M ,

1
T

∫ T

0
IE[χn(τ, h(S[⌈τ/Tc⌉]))]dτ ≤ σn, n = 1, · · · , N,

(4.50)
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we thus see from (4.43)–(4.47), (4.50) that

1

T
I(W ∧ φ(Yss(T ), SK))

≤ max
χn:[0, T ]×U→[0, 1]

1
T

∫ T
0 IE[χn(τ,h(S[⌈τ/Tc⌉]))]dτ≤σn

n=1, ···, N

1

T

∫ T

0

IE[g(τ, S[⌈τ/Tc⌉], χ
N(τ, h(S[⌈τ/Tc⌉])))]dτ

= max
χn:[0, T ]×U→[0, 1]

1
T

∫ T
0 IE[χn(τ,U[⌈τ/Tc⌉])]dτ≤σn

n=1, ···, N

1

T

∫ T

0

IE[g(τ, S[⌈τ/Tc⌉], χ
N(τ, U[⌈τ/Tc⌉]))]dτ, (4.51)

where for 0 ≤ τ ≤ T , s ∈ (IR+
0 )N×M , we have defined

g(τ, s, χ
N(τ, h(s)))

∆
=

N
∑

n=1

ψn,Pτ (s)χPτ (n)(τ, h(s))

−
M
∑

m=1

ζ

(

N
∑

n=1

sn,mχn(τ, h(s))An, λ0, m

)

. (4.52)

In order to simplify the right side of (4.51), for u ∈ U , define

ηn(k,u) =
1

Tc

∫ kTc

(k−1)Tc

IE[χn(τ, U[k])|U[k] = u]dτ, k = 1, · · · , K, (4.53)

µn(u) =
1

K

K
∑

k=1

ηn(k,u), n = 1, · · · , N, (4.54)

whence by (4.50), we get

0 ≤ µn(u) ≤ 1, u ∈ U , n = 1, · · · , N, (4.55)

and

σn ≥ 1

T

∫ T

0

IE[χn(τ, U[⌈τ/Tc⌉])]dτ

=
1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE[χn(τ, U[k])]dτ

=
1

K

K
∑

k=1

IE[ηn(k,U[k])] (4.56)

=
1

K

K
∑

k=1

IE[ηn(k,U)] (4.57)

= IE[µn(U)], (4.58)

119



where (4.56) is by (4.53); (4.57) holds by the i.i.d. nature of channel fade S∞; and

(4.58) is by (4.54). The time-averaged integral on the right side of (4.51) can be

written as

1

T

∫ T

0

IE[g(τ, S[⌈τ/Tc⌉], χ
N (τ, U[⌈τ/Tc⌉]))]dτ

=
1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE[g(τ, S[k], χ
N(τ, U[k]))]dτ

=
1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

{

IE

[

N
∑

n=1

ψn, Pτ (S[k])χPτ (n)(τ, U[k])

−
M
∑

m=1

ζ

(

N
∑

n=1

Sn,m[k]χn(τ, U[k])An, λ0,m

)]}

dτ, (4.59)

by (4.52). In Appendix C.2, we show that

1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE

[

N
∑

n=1

ψn,Pτ (S[k])χPτ (n)(τ, U[k])

]

dτ

≤ IE

[

N
∑

n=1

νn(U)
M
∑

m=1

ζ

(

n
∑

j=1

SΠ(j), mAΠ(j), λ0, m

)]

, (4.60)

where Π is a permutation of {1, · · · , N} so that for u ∈ U ,

µΠ(n)(u) ≥ µΠ(n+1)(u), n = 1, · · · , N − 1, (4.61)

(where for notational brevity, we have suppressed the dependence of Π on u), and

νn(u) =















µΠ(n)(u) − µΠ(n+1)(u), if n = 1, · · · , N − 1,

µΠ(N)(u), if n = N.

(4.62)

Furthermore, note that

1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

Sn,m[k]χn(τ, U[k])An, λ0, m

)]

dτ

≥ 1

K

K
∑

k=1

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

Sn,m[k]ηn(k, U[k])An, λ0, m

)]

(4.63)
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=
1

K

K
∑

k=1

IE

[

M
∑

m=1

ζ

(

N
∑

n=1

Sn,mηn(k, U)An, λ0, m

)]

(4.64)

≥ IE

[

M
∑

m=1

ζ

(

N
∑

n=1

Sn,mµn(U)An, λ0, m

)]

(4.65)

= IE

[

M
∑

m=1

ζ

(

N
∑

n=1

SΠ(n), mµΠ(n)(U)AΠ(n), λ0,m

)]

= IE

[

M
∑

m=1

ζ

(

N
∑

n=1

νn(U)

n
∑

j=1

SΠ(j),mAΠ(j), λ0,m

)]

, (4.66)

where (4.63) is by Jensen’s inequality applied to the convex function ζ(·, y) and

(4.53); (4.64) holds by i.i.d. nature of S∞; (4.65) is by Jensen’s inequality and

(4.54); and (4.66) is by application of (3.54) with the substitution xn = µΠ(n)(U),

yn = SΠ(n), mAΠ(n). Summarizing collectively (4.31), (4.51), (4.55), (4.58), (4.59),

(4.60), (4.66), we get

R / max
µn:U→[0, 1]

IE[µn(U)]≤σn
n=1, ···, N

IE

[

N
∑

n=1

νn(U)

M
∑

m=1

ζ

(

n
∑

j=1

SΠ(j), mAΠ(j), λ0, m

)

−
M
∑

m=1

ζ

(

N
∑

n=1

νn(U)

n
∑

j=1

SΠ(j),mAΠ(j), λ0, m

)]

. (4.67)

This concludes the proof of the converse part of Theorem 7.

Achievability part: We closely follow Wyner’s approach [52].

Fix L ∈ Z
+ and set ∆

∆
= Tc/L. Divide the time interval [0, T ], where T =

KTc with K ∈ Z
+, into KL equal subintervals, each of duration ∆. Then, in the

channel fade sequence S∞ = {S[k]}∞k=1, each S[k] remains unvarying for a block of

L consecutive ∆-duration subintervals within [(k − 1)Tc, kTc], and {S[k]}∞k=1 varies

across such blocks in an i.i.d. manner.

Now, consider the situation in which for each message w ∈ W and trans-

mitter CSI uK ∈ UK , the channel input waveform at the nth transmit aperture,
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{xn(w, t, u⌈t/Tc⌉), 0 ≤ t ≤ T}, is restricted to be {0, An}–valued and piecewise

constant in each of the KL time slots of duration ∆. Define

x̃n(w, l, u
⌈l/L⌉)

∆
=































0, if xn(w, t, u
⌈t/Tc⌉) = 0,

1, if xn(w, t, u
⌈t/Tc⌉) = An,

t ∈ [(l − 1)∆, l∆), l = 1, · · · , KL.

(4.68)

Note that the condition (4.3) requires that

1

KL

KL
∑

l=1

x̃n(w, l, u
⌈l/L⌉) ≤ σn, w ∈ W, uK ∈ UK , n = 1, · · · , N. (4.69)

Next, consider a decoder φ : ({0, 1}M)KL× ((IR+
0 )N×M)K → W based on

restricted observations over the KL time slots, comprising

Ỹm(l) = 1(Ym(l∆) − Ym((l − 1)∆) = 1), l = 1, · · · , KL, (4.70)

(with Ym(0) = 0) and SK , at the mth receive aperture, m = 1, · · · , M . The largest

achievable rate of restricted (W, T )–codes as above – and, hence, the capacity C

– is clearly no smaller than C(L)
Tc

, where C(L) is the capacity of a (L –) block

discrete memoryless channel (in nats per block channel use) with input alphabet

X̃NL = {0, 1}NL; output alphabet ỸML = {0, 1}ML; state alphabet (IR+
0 )N×M ;

transition pmf

W (L)(ỹML|x̃NL, s) =

L
∏

l=1

M
∏

m=1

W
(m)

Ỹm|X̃N ,S
(ỹm(l)|x̃N(l), s),

x̃NL ∈ {0, 1}NL, ỹML ∈ {0, 1}ML, s ∈ (IR+
0 )N×M ,(4.71)

where X̃n, n = 1, · · · , N , Ỹm, m = 1, · · · , M , and S are X̃ –, Ỹ –, and (IR+
0 )N×M

–valued rvs respectively, and the channel transition pmf (corresponding to the mth
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receive aperture) W
(m)

Ỹm|X̃N ,S
(·|·, s), s ∈ (IR+

0 )N×M , is given by

W
(m)

Ỹm|X̃N ,S
(1|x̃N , s) = wm(x̃N , s)Tc

L
exp

(

−wm(x̃N , s)Tc

L

) ∆
= ωm(x̃N , s, L),

W
(m)

Ỹm|X̃N ,S
(0|x̃N , s) = 1 − ωm(x̃N , s, L),

(4.72)

where

wm(x̃N , s)
∆
=

N
∑

n=1

sn,mx̃nAn + λ0,m, x̃N ∈ {0, 1}N , s ∈ (IR+
0 )N×M , (4.73)

with transmitter CSI h (and perfect receiver CSI); and under constraint (4.69).

From ([9], Remark A2 following Proposition 1), it is readily obtained3 that

C(L) = max
P
X̃NL|U

:
∑L

l=1
IE[X̃n(l)]≤Lσn

n=1, ···, N

I(X̃NL ∧ ỸML|S), (4.74)

with U = h(S), where the joint conditional pmf PX̃NL, ỸML|S is given by

PX̃NL, ỸML|S(x̃NL, ỹML|s)

= PX̃NL|U(x̃NL|h(s))W (L)(ỹML|x̃NL, s),

x̃NL ∈ {0, 1}NL, ỹML ∈ {0, 1}ML, s ∈ (IR+
0 )N×M . (4.75)

By a standard argument which uses (4.71), the maximum in (4.74) is achieved by

PX̃NL|U(x̃NL|h(s)) =

L
∏

l=1

PX̃N (l)|U(x̃N(l)|h(s)),

x̃NL ∈ {0, 1}NL, s ∈ (IR+
0 )N×M , (4.76)

so that from (4.74),

C(L) = L max
P
X̃N |U

: IE[X̃n]≤σn

n=1, ···, N

M
∑

m=1

I(X̃N ∧ Ỹm|S), (4.77)

3In [9], S is taken to be finite-valued; however the result (4.74) can be seen to hold also when

S is IR+
0 -valued.
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where PX̃N , Ỹm|S is given by

PX̃N , Ỹm|S(x̃N , ỹ|s) = PX̃N |U(x̃N |h(s))WỸm|X̃N ,S(ỹ|x̃N , s),

x̃N ∈ {0, 1}N , ỹ ∈ {0, 1}, s ∈ (IR+
0 )N×M . (4.78)

For u ∈ U , i = 0, · · · , 2N − 1, define

pi(u)
∆
= Pr{X̃n = bn(i), n = 1, · · · , N |U = u}, (4.79)

where bn(i) is the nth bit in the binary representation of i. Clearly, p(·) = {pi(·)}2N−1
i=0

satisfies the constraints

pi(u) ≥ 0, i = 0, · · · , 2N − 1,

∑2N−1
i=0 pi(u) = 1,

∑

i:bn(i)=1 IE[pi(U)] ≤ σn, n = 1, · · · , N,

(4.80)

where the last inequality follows from the constraints IE[X̃n] ≤ σn, n = 1, · · · , N .

By (4.72) and (4.79), it then follows that for m = 1, · · · , M ,

Pr{Ỹm = 1|S = s} =
∑2N−1

i=0 pi(h(s))ωm
(

bN (i), s
)

,

H
(

Ỹm|X̃N , S
)

= IE
[

∑2N−1
i=0 pi(h(S))hb

(

ωm
(

bN(i), S
))

]

,

H(Ỹm|S) = IE
[

hb

(

∑2N−1
i=0 pi(h(S))ωm

(

bN(i), S
)

)]

.

(4.81)

By (4.77) and (4.81), it follows that

C(L) = max
pi:U→[0,1]

i=0, ···, 2N−1

L IE[βL(p(U), S)], (4.82)

where p(·) = {pi(·)}2N−1
i=0 satisfies (4.80), and

βL(p, s)
∆
=

M
∑

m=1



hb





2N−1
∑

i=0

piωm
(

bN (i), s, L
)





−
2N−1
∑

i=0

pihb
(

ωm
(

bN (i), s, L
))



 ,

p ∈ [0, 1]2
N−1, s ∈ (IR+

0 )N×M . (4.83)
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Since L ∈ Z
+ was arbitrary, we have

C ≥ lim
L→∞

C(L)

Tc

≥ max
pi:U→[0, 1]

i=0, ···, 2N−1

lim
L→∞

IE[βL(p(U), S)]

Tc/L
(4.84)

= max
pi:U→[0, 1]

i=0, ···, 2N−1

M
∑

m=1

IE





2N−1
∑

i=0

pi(U)ζm

(

N
∑

n=1

Sn,mbn(i)An, λ0,m

)

−ζm





N
∑

n=1

Sn,mAn

2N−1
∑

i=0

pi(U)bn(i), λ0,m







 , (4.85)

with p(·) = {pi(·)}2N−1
i=0 satisfying (4.80), where (4.84) is by (4.82); and (4.85) is

established in Appendix C.3. Setting

µn(u) =

2N−1
∑

i=0

pi(u)bn(i)

=
∑

i:bn(i)=1

pi(u), n = 1, · · · , N, u ∈ U , (4.86)

by (4.80) and (4.85), it follows that

C ≥ max
µn:U→[0,1]

IE[µn(U)]≤σn
n=1, ···, N

IE

[

h(µN(U), S) −
M
∑

m=1

ζm

(

N
∑

n=1

Sn,mµn(U)An, λ0, m

)]

, (4.87)

where

h(µN , s) = max
p

2N−1
∑

i=0

pi

M
∑

m=1

ζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

,

µ
N ∈ [0, 1]N , s ∈ (IR+

0 )N×M , (4.88)

with p = {pi}2N−1
i=0 satisfying the constraints

pi ≥ 0, i = 0, · · · , 2N − 1,

∑2N−1
i=0 pi = 1,

∑

i:bn(i)=1 pi = µn, n = 1, · · · , N.

(4.89)
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Comparing (3.78) and (4.88), it follows that the optimum joint pmf p∗ that obtains

the maximum in (4.88) is given by

p∗i =















































µQ(k) − µQ(k+1), if i =
∑k

n=1 2Q(n)−1, k = 1, · · · , N − 1,

µQ(N), if i = 2N − 1,

1 − µQ(1), if i = 0,

0, otherwise,

(4.90)

where Q is a permutation of {1, · · · , N} such that

µQ(n) ≥ µQ(n+1), n = 1, · · · , N − 1,

and the corresponding largest value is

h(µN , s) =
N
∑

n=1

µQ(n)ψn,Q(s), (4.91)

where ψn, P (·) is as defined in (4.49). Summarizing collectively (4.87), (4.88), (4.91),

we get

C ≥ max
µn:U→[0, 1]

IE[µn(U)]≤σn
n=1, ···, N

IE

[

N
∑

n=1

µΠ(n)(U)ψn,Π(S)

−
M
∑

m=1

ζ

(

N
∑

n=1

Sn,mµn(U)An, λ0, m

)]

(4.92)

= max
µn:U→[0, 1]

IE[µn(U)]≤σn
n=1, ···, N

M
∑

m=1

IE

[

N
∑

n=1

νn(U)ζ

(

n
∑

k=1

SΠ(k),mAΠ(k), λ0,m

)

−ζ
(

N
∑

n=1

νn(U)

n
∑

k=1

SΠ(k),mAΠ(k), λ0,m

)]

, (4.93)

where Π(·), {νn(·)}Nn=1 are as defined in (4.61), (4.62) respectively, and (4.93) is by

(3.54) (see (3.55), (3.56) for similar applications of (3.54)). This concludes the proof

of the achievability part of Theorem 7.
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Proof of Lemma 1:

Property 1: The first property follows directly from the definition of mirror states

and the isotropic nature of channel fade matrix S.

Property 2: We prove K1(s
(1)) = −K2(s

(2)). The proof of K1(s
(2)) = −K2(s

(1))

follows in a similar manner. Noting that A1 = A2 = A, λ0,m = λ0, m = 1, · · · , M ,

by the definition of mirror states,

b
(1)
1, m = s

(1)
1,m

A
λ0

= s
(2)
2, m

A
λ0

= b
(2)
2, m,

b
(1)
2, m = s

(1)
2,m

A
λ0

= s
(2)
1, m

A
λ0

= b
(2)
1, m,

(4.94)

and

B
(1)
m = (s

(1)
1, m + s

(1)
2,m) A

λ0
= (s

(2)
2, m + s

(2)
1,m) A

λ0
= B

(2)
m , (4.95)

for m = 1, · · · , M , so that by (4.7), (4.8),

ρ1(s
(1)) = ρ2(s

(2)),

ρ1(s
(2)) = ρ2(s

(1)),

ρ̄(s(1)) = ρ̄(s(2)).

(4.96)

By (4.9), (4.94)–(4.96), it follows that

K1(s
(1)) = λ0

∑M
m=1

[

B
(1)
m log

(

1 + ρ̄(s(1))B
(1)
m

)

− 2b
(1)
2, m log

(

1 + ρ2(s
(1))b

(1)
2, m

)]

= λ0

∑M
m=1

[

B
(2)
m log

(

1 + ρ̄(s(2))B
(2)
m

)

− 2b
(2)
1, m log

(

1 + ρ1(s
(2))b

(2)
1, m

)]

= −K2(s
(2)).

Property 3: Without loss of generality, let a ≥ b ≥ 0. By (3.8), with N = 2,

I(a, b, s(1)) = (a− b)

M
∑

m=1

ζ
(

s
(1)
1, mA, λ0

)

+ b

M
∑

m=1

ζ
(

(s
(1)
1, m + s

(1)
2,m)A, λ0

)

−
M
∑

m=1

ζ
(

as
(1)
1, mA+ bs

(1)
2, mA, λ0

)
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= (a− b)
M
∑

m=1

ζ
(

s
(2)
2, mA, λ0

)

+ b
M
∑

m=1

ζ
(

(s
(2)
2, m + s

(2)
1,m)A, λ0

)

−
M
∑

m=1

ζ
(

as
(2)
2, mA+ bs

(2)
1, mA, λ0

)

= I(b, a, s(2)).

Property 4: By property 3, we get that I(a2, b2, s
(2)) = I(b2, a2, s

(1)). Therefore, it

suffices to prove that

D(a1, a2, b1, b2, s
(1))

∆
= 2I

(

a1 + b2
2

,
a2 + b1

2
, s(1)

)

− I(a1, b1, s
(1)) − I(b2, a2, s

(1))

≥ 0.

From (3.8), after rearrangement, we get

D(a1, a2, b1, b2, s
(1)) = Z(a1, a2, b1, b2, s

(1)) + L(a1, a2, b1, b2, s
(1)),

where

Z(a1, a2, b1, b2, s
(1))

=
M
∑

m=1

[

ζ
(

a1s
(1)
1, mA+ b1s

(1)
2, mA, λ0

)

+ ζ
(

b2s
(1)
1, mA+ a2s

(1)
2, mA, λ0

)

−2ζ

(

a1 + b2
2

s
(1)
1,mA+

b1 + a2

2
s
(1)
2,mA, λ0

)]

, (4.97)

and

L(a1, a2, b1, b2, s
(1))

=
(

[a1 − b1]
+ + [b2 − a2]

+ − [a1 − b1 + b2 − a2]
+
)

×
M
∑

m=1

(

ζ(s
(1)
1,mA+ s

(1)
2,mA, λ0) − ζ(s

(1)
1,mA, λ0) − ζ(s

(1)
2,mA, λ0)

)

, (4.98)
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where we use the notation [x]+ = max{x, 0}. By Jensen’s inequality applied to

the convex function ζ(·, λ0), from (4.97) we get Z(a1, a2, b1, b2, s
(1)) ≥ 0. Fi-

nally, noting that [x]+ + [y]+ ≥ [x + y]+, x, y ∈ IR, by (3.6) and (4.98), we get

L(a1, a2, b1, b2, s
(1)) ≥ 0, so that D(a1, a2, b1, b2, s

(1)) ≥ 0.

Proof of Lemma 2:

Suppose p1 : (IR+
0 )2×M → [0, 1] and p2 : (IR+

0 )2×M → [0, 1] constitute a

feasible power control law, i.e., IE[pn(S)] ≤ σ, n = 1, 2. For every s ∈ (IR+
0 )2×M ,

define p
′

1(s) = 1
2
(p1(s) + p2(s

mir)), and p
′

2(s) = 1
2
(p1(s

mir) + p2(s)), where smir is the

mirror state of s. Clearly, p
′

n(s) ∈ [0, 1], s ∈ (IR+
0 )2×M , n = 1, 2, and by property 1

of Lemma 1, it follows that

IE[p
′

1(S)] = IE[p
′

2(S)] =
1

2
IE[p1(S) + p2(S)] ≤ σ.

Therefore, {p′

1(·), p
′

2(·)} is a feasible power control law. Furthermore, by property

4 of Lemma 1, it follows that for any s ∈ (IR+
0 )2×M (and the corresponding mirror

state smir)

I(p
′

1(s), p
′

2(s), s) = I

(

p1(s) + p2(s
mir)

2
,
p1(s

mir) + p2(s)

2
, s

)

≥ 1

2

[

I(p1(s), p2(s), s) + I(p1(s
mir), p2(s

mir), smir)
]

,

so that

IE[I(p
′

1(S), p
′

2(S), S)] ≥ IE[I(p1(S), p2(S), S)].

In other words, given any feasible power control law {p1(·), p2(·)} satisfying the

constraints IE[pn(S)] ≤ σ, n = 1, 2, we can obtain another feasible power control

law {p′

1(·), p
′

2(·)} satisfying IE[p
′

n(S)] ≤ σ, n = 1, 2, and the conditions p
′

1(s) =
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p
′

2(s
mir), and p

′

2(s) = p
′

1(s
mir) for all pairs of mirror states s and smir, such that

IE[I(p
′

1(S), p
′

2(S), S)] ≥ IE[I(p1(S), p2(S), S)]. Therefore, the optimal power control

law {µ∗
1(·), µ∗

2(·)} must satisfy µ∗
1(s) = µ∗

2(s
mir), for all pairs of mirror states s and

smir. This completes the proof of Lemma 2.

Proof of Theorem 8:

Let µ∗
n : (IR+

0 )2×M → [0, 1], n = 1, 2, constitute an optimal power control law in

(4.5) with N = 2. At optimality,

IEFS
[µ∗

1(S)] =

∫

S0

µ∗
1(s)dFS(s) +

∫

S1

µ∗
1(s)dFS(s) +

∫

S2

µ∗
1(s)dFS(s)

=

∫

S0

1

2
(µ∗

1(s) + µ∗
2(s))dFS(s) +

∫

S1

(µ∗
1(s) + µ∗

2(s))dFS(s) (4.99)

=
1

2
IEF̂S

[µ∗
1(S) + µ∗

2(S)], (4.100)

where (4.99) is by Lemma 1, property 1 and Lemma 2; and (4.100) is by (4.14).

Similarly,

IEFS
[µ∗

2(S)] =
1

2
IEF̂S

[µ∗
1(S) + µ∗

2(S)]. (4.101)

Furthermore, for every pair of mirror states {s, smir},

I(µ∗
1(s), µ

∗
2(s), s) = I(µ∗

2(s), µ
∗
1(s), s

mir) (4.102)

= I(µ∗
1(s

mir), µ∗
2(s

mir), smir), (4.103)

where (4.102) is by Lemma 1, property 3; and (4.103) is by Lemma 2. By property

1 of Lemma 1, we now get

IEFS
[I(µ∗

1(S), µ∗
2(S), S)] = IEF̂S

[I(µ∗
1(S), µ∗

2(S), S)]. (4.104)

130



Summarizing collectively (4.5), (4.100), (4.101), (4.104), we get

C ≤ max
µ1:(IR+

0
)2×M→[0, 1]

µ2:(IR+
0

)2×M→[0, 1]

IE
F̂S

[µ1(S)+µ2(S)]≤2σ

IEF̂S
[I(µ1(S), µ2(S), S)]. (4.105)

Note that the optimization problem in the right side of (4.105) bears a struc-

tural resemblance to the capacity formula of the MIMO Poisson channel with con-

stant fade and an average sum power constraint (see (3.11)). Suppose µ⋄
1 : (IR+

0 )2×M

→ [0, 1] and µ⋄
2 : (IR+

0 )2×M → [0, 1] constitute an optimal solution that maximizes

the right side of (4.105). Then, by Corollary 6,

µ⋄
1(s) = µ⋄

2(s), s ∈ S0,

µ⋄
1(s) ≥ µ⋄

2(s), s ∈ S1.

(4.106)

For s ∈ (IR+
0 )2×M , define

µ†
1(s) =















µ⋄
1(s), if s ∈ S0 ∪ S1,

µ⋄
2(s

mir), otherwise,

(4.107)

and

µ†
2(s) =















µ⋄
2(s), if s ∈ S0 ∪ S1,

µ⋄
1(s

mir), otherwise,

(4.108)

where smir is the mirror state of s. By (4.14), (4.107), (4.108), it follows that

IEF̂S
[µ⋄

1(S) + µ⋄
2(S)] = IEF̂S

[µ†
1(S) + µ†

2(S)],

and

IEF̂S
[I(µ⋄

1(S), µ⋄
2(S), S)] = IEF̂S

[I(µ†
1(S), µ†

2(S), S)].
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Therefore, the pair {µ†
1(·), µ†

2(·)} also constitutes an optimal solution that maximizes

the right side of (4.105). Furthermore,

IEFS
[µ†

1(S)] =

∫

S0

µ⋄
1(s)dFS(s) +

∫

S1

µ⋄
1(s)dFS(s) +

∫

S2

µ⋄
2(s

m)dFS(s)

=

∫

S0

1

2
(µ⋄

1(s) + µ⋄
2(s))dFS(s) +

∫

S1

(µ⋄
1(s) + µ⋄

2(s))dFS(s) (4.109)

=
1

2
IEF̂S

[µ⋄
1(S) + µ⋄

2(S)] (4.110)

≤ σ, (4.111)

where (4.109) is by (4.106) and Lemma 1, property 1; (4.110) is by (4.14); and

(4.111) is by (4.105). Similarly,

IEFS
[µ†

2(S)] =
1

2
IEF̂S

[µ⋄
1(S) + µ⋄

2(S)] ≤ σ. (4.112)

By (4.5), (4.111), (4.112), it thus follows that

C ≥ IEFS
[I(µ†

1(S), µ†
2(S), S)]. (4.113)

Proceeding further with the right side of (4.113), we get that

IEFS
[I(µ†

1(S), µ†
2(S), S)]

=

∫

S0∪S1∪S2

I(µ†
1(s), µ

†
2(s), s)dFS(s)

=

∫

S0∪S1

I(µ⋄
1(s), µ

⋄
2(s), s)dFS(s) +

∫

S2

I(µ⋄
2(s

mir), µ⋄
1(s

mir), s)dFS(s) (4.114)

=

∫

S0∪S1

I(µ⋄
1(s), µ

⋄
2(s), s)dFS(s) +

∫

S1

I(µ⋄
1(s), µ

⋄
2(s), s)dFS(s) (4.115)

= IEF̂S
[I(µ⋄

1(S), µ⋄
2(S), S)], (4.116)

where (4.114) is by (4.107), (4.108); (4.115) is by Lemma 1, properties 1 and 3; and

132



(4.116) is by (4.14). Summarizing collectively (4.105), (4.113), (4.116), we get

C = max
µ1:(IR+

0
)2×M→[0, 1]

µ2:(IR+
0

)2×M→[0, 1]

IE
F̂S

[µ1(S)+µ2(S)]≤2σ

IEF̂S
[I(µ1(S), µ2(S), S)]. (4.117)

Recall that F̂S(s) = 0 for all s : K1(s) + K2(s) < 0. Therefore, by Corollary 6,

it suffices to consider µ1(S) ≥ µ2(S) with probability 1 in the computation of the

optimal solution in (4.117), whence by (3.8), we get

C = max
µ1:(IR+

0
)2×M→[0, 1]

µ2:(IR+
0

)2×M→[0, 1]

µ1(S)≥µ2(S)

IE
F̂S

[µ1(S)+µ2(S)]≤2σ

IEF̂S
[I1 > 2(µ1(S) − µ2(S), µ2(S), S)], (4.118)

where I1>2(·, ·, ·) is as defined in (3.94). This concludes the proof of Theorem 8.

Proof of Theorem 9:

By (4.15), it follows that

C ≤ max
µ:(IR+

0
)2×M→[0, 1]

IE
F̂S

[µ(S)]≤σ

IEF̂S
[Imax(µ(S), S)] , (4.119)

where

Imax(µ0, s) = max
0≤µ2≤µ1≤1

µ1+µ2≤2µ0

I1>2(µ1 − µ2, µ2, s),

s ∈ (IR+
0 )2×M , 0 ≤ µ0 ≤ 1. (4.120)

Since F̃S(s) = 0 for all s ∈ S2, it suffices to limit our attention to the solution of the

optimization problem in the right side of (4.120) for only the states s ∈ S0 ∪S1. By

Theorem 6, for s ∈ S0 ∪ S1, the optimal pair {κ1 = κ1(µ0, s), κ2 = κ2(µ0, s)} that

maximizes the right side of (4.120) is given as follows4:
4By Corollary 6, for all s ∈ S0 ∪ S1, the constraint set in the right side of (4.120) can be

expanded to include all pairs {µ1, µ2} satisfying 0 ≤ µ1 ≤ 1, 0 ≤ µ2 ≤ 1, µ1 + µ2 ≤ 2µ0, without

changing the optimal solution.
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1. if µ0 ≥ ρ̄(s), then

κ1 = κ2 = ρ̄(s);

2. if µ0 < ρ̄(s), then

κ1 =















min{2γ2(µ0, s), 2µ0}, if K2(s) ≥ d(µ0, µ0, s),

µ0, otherwise,

κ2 = 2µ0 − κ1.

By (4.119), (4.120), we thus get that

C ≤ max
µ:(IR+

0
)2×M→[0, 1]

IE
F̂S

[µ(S)]≤σ

IEF̂S
[I1>2(κ1(S, µ(S)) − κ2(S, µ(S)), κ2(S, µ(S)), S)].

It can be verified that 0 ≤ κ2(µ0, s) ≤ κ1(µ0, s) ≤ 1, 0 ≤ µ0 ≤ 1, s ∈ S0 ∪ S1; and

IEF̂S
[κ1(µ(S), S) +κ2(µ(S), S)] ≤ IEF̂S

[2µ(S)] ≤ 2σ. Therefore, by (4.15),

C ≥ max
µ:(IR+

0 )2×M→[0, 1]

IE
F̂S

[µ(S)]≤σ

IEF̂S
[I1>2(κ1(S, µ(S)) − κ2(S, µ(S)), κ2(S, µ(S)), S)],

whence we get the desired result.

Proof of Corollary 8:

Consider the class of “simultaneous ON-OFF keying” strategies, i.e., the power

control laws that dictate all the transmit apertures to simultaneously remain in

either the ON or the OFF state. It can be verified that the maximum rate achievable

by any simultaneous ON-OFF keying strategy is given by (4.20), and the optimal

power control law µL : (IR+
0 )2×M → [0, 1] that achieves the maximum in (4.20) has a

closed-form structure, which we state next5. For ρ ≥ 0, s ∈ (IR+
0 )2×M , let µ = µρ(s)

5The proof is similar to the proofs of Theorems 1 and 2, with appropriate modifications to

account for the complexity of the MIMO channel, and is omitted here.
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be the solution of the equation

M
∑

m=1

Bm log
(1 + α(Bm)Bm)

(1 + µBm)
=

ρ

λ0
, (4.121)

with Bm =
∑2

n=1 sn,m
A
λ0

, m = 1, · · · , M . If σ0
∆
= IE[µ0(S)] > σ, let ρ = ρ∗ > 0 be

the solution of the equation

IE
[

[µρ(S)]+
]

= σ. (4.122)

Then µL is given by

µL(s) =















µ0(s), σ0 ≤ σ,

[µρ∗(s)]
+ , σ0 > σ, s ∈ (IR+

0 )2×M .

(4.123)

Clearly, if s(1) and s(2) are mirror states, then by definition, B
(1)
m = B

(2)
m , m =

1, · · · , M , so that by (4.121)–(4.123),

µL(s
(1)) = µL(s

(2)). (4.124)

By (4.20), we now get

CSOOK = IE[I(µL(S), µL(S), S)]

= IEF̂S
[I(µL(S), µL(S), S)] (4.125)

= IEF̂S
[I1>2(0, µL(S), S)] (4.126)

≤ IEF̂S
[Imax(µL(S), S)] (4.127)

= IEF̂S
[I1>2(κ1(S, µL(S)) − κ2(S, µL(S)), κ2(S, µL(S)), S)]

≤ C, (4.128)

where (4.125) is by (4.124) and property 1, Lemma 1; (4.126) is by (3.8) and (3.94);

(4.127) is by (4.120); (4.128) is by (4.16). This concludes the proof.
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4.5 Numerical examples

We now discuss a few illustrative examples. For simplicity, we consider two-

valued state sets. In the first example, we show that for certain fade realizations, one

transmit aperture enjoys significantly better channel conditions and hence should

be assigned higher average power levels than the other transmit aperture; the new

lower bound (CLB) is shown to yield higher information rates than the simultaneous

ON-OFF keying lower bound (CSOOK) for some values of σ. In the second example,

we demonstrate that simultaneous ON-OFF keying is optimal for all values of 0 ≤

σ ≤ 1, and achieves channel capacity.

Example 4.1: Consider a symmetric MIMO Poisson channel with N = 2,

M = 2, A1 = A2 = 1.0, λ0, 1 = λ0, 2 = λ0 = 1.0. Let Sn,m, n = 1, 2, m = 1, 2 be

independent and uniformly distributed on S = {0.1, 1.0}. A pictorial representation

of the state set is provided in Figure 4.4. It is clear that for a state s ∈ S2×2 which

satisfies the conditions K1(s) ≥ 0, K2(s) ≤ 0, and which is represented by a circle

in Figure 4.4, the optimal average conditional duty cycles satisfy the condition

µ∗
1(s) = µ∗

2(s) for any 0 ≤ σ ≤ 1. However, for the states which are represented

by squares in Figure 4.4, the optimal average conditional duty cycles need not be

equal. In Figure 4.5, we plot two lower bounds on channel capacity, viz., CSOOK and

CLB (see (4.20) and (4.21)). It is clear from this figure that the new lower bound

(CLB) on capacity yields higher rates than the simultaneous ON-OFF lower bound

(CSOOK).
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Figure 4.4: State set diagram for Example 4.1.
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Figure 4.5: Lower bounds on capacity for Example 4.1.

138



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

 K
1
 −−>

 K
2 −

−
>

 K
1
 = K

2

 K
1
+K

2
 = 0

Figure 4.6: State set diagram for Example 4.2.

Example 4.2: Consider the 2 × 2 MIMO channel from the previous example,

with A = 1.0, λ0 = 1.0 as before, but now Sn,m, n = 1, 2, m = 1, 2 are independent

and uniformly distributed on S = {0.1, 0.2}. From Figure 4.6, it follows that for

all s ∈ S2×2, the conditions K1(s) ≥ 0, K2(s) ≤ 0 are satisfied, and hence the

optimal conditional duty cycles satisfy µ∗
1(s) = µ∗

2(s). For this special case, both

lower bounds, CLB and CSOOK are tight for all 0 ≤ σ ≤ 1, as shown in Figure 4.7.
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Figure 4.7: Channel capacity for Example 4.2.
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4.6 Discussion

We have studied the shot-noise limited N ×M MIMO Poisson fading channel

with perfect receiver channel state information. At each receive aperture, the op-

tical fields received from different transmit apertures are assumed to be sufficiently

separated in frequency or angle of arrival such that the received total power is the

sum of powers from individual transmit apertures, scaled by the respective channel

fades. The transmit apertures are subject to asymmetric peak and average power

constraints. A block fading channel model has been proposed to account for the

slowly varying nature of fading in the free-space optical channel. The capacity of

the MIMO Poisson channel with random channel fade has been explicitly character-

ized and several properties of optimum strategies for transmission over this channel

have been discussed.

It has been shown that a two-level signaling scheme (ON-OFF keying) with

arbitrarily fast intertransition times through each transmit aperture is capacity-

achieving. The transmitted signals through the N apertures are, in general, corre-

lated across apertures and i.i.d. in time. Furthermore, the optimum set of trans-

mission events for every realization of random channel gains has at most N + 1

values (out of a possible 2N values). Each of these values corresponds to an event

in which exactly k transmit apertures are ON and the remaining N − k are OFF,

where k = 0, 1, · · · , N .

While the structure of the optimal transmission strategy is yet to be charac-

terized in full generality, several interesting properties have been identified. For the

141



special case of a symmetric MIMO channel with isotropically varying channel fade,

a simpler characterization of channel capacity has been obtained based on the no-

tion of “mirror states.” In the mirror states, the channel characteristics experienced

by the transmit apertures are interchanged. By the symmetry of the channel and

input parameters, it follows that the optimal power control laws for the respective

transmit apertures are also interchanged in the mirror states. This observation leads

to a more tractable expression for channel capacity. A new easily computable lower

bound on channel capacity based on a simple suboptimal power control law has

been proposed, which improves upon the previously known “simultaneous ON-OFF

keying” lower bound [21].
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Chapter 5

Conclusions

We now present some of the unresolved issues in this dissertation, and discuss

possible directions for future research. We conclude by addressing some of the

information theoretic issues associated with reliable communication over optical and

RF wireless channels.

5.1 Directions for future research

We have addressed the general capacity problem of the block fading MIMO

Poisson channel with peak and average transmitter power constraints. With perfect

CSI at the receiver, it follows that that i.i.d. two-level signaling (“ON-OFF key-

ing”) with arbitrarily fast intertransition times through each transmit aperture, as

a function of current transmitter CSI, can achieve channel capacity; a single-letter

characterization of capacity, which does not depend on the channel coherence time,

has been obtained. For this general setup, an exact characterization of the opti-

mal power control law, which specifies the optimal average conditional duty cycles

(conditioned on current transmitter CSI) of the transmit apertures, is yet to be

determined.

It is natural to ask what happens when the assumption of perfect receiver CSI

is relaxed. In RF communication, it is well-known (cf. e.g., [40]) that the conditional
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Gaussianity of the channel transition pdf, and the optimality of i.i.d. Gaussian input

signals, break down when the receiver CSI is imperfect. Consider now the SISO

Poisson fading channel, for which the received signal {Y (t), 0 ≤ t ≤ T} is a doubly

stochastic Poisson process with rate

Λ(t) = S[⌈t/Tc⌉]x(t) + λ0, 0 ≤ t ≤ T.

Suppose that the receiver CSI is given by {D[k] = g(S[k]), k = 1, · · · , K}, where

K = T/Tc, and g : IR+
0 → D is a given mapping, with D ⊂ IR+

0 arbitrary. Then the

channel output (represented by the sufficient statistics (NT , T
NT )) “sample function

density,” conditioned on the receiver CSI DK and channel input XT , is given by

fNT ,TNT
|XT ,DK (nT , t

nT |xT , dK)

=

∫

sK∈(IR+
0 )K

fNT ,TNT
|XT ,SK (nT , t

nT |xT , sK) ·
K
∏

k=1

1(d[k] = g(s[k]))dsK,

where fNT ,TNT
|XT ,SK (·, ·|·, ·) is as defined in (2.23). Thus, the channel transition

pdf is now a mixture of Poisson counting processes; thenm conditioned on the trans-

mitted signal xT and the receiver CSI DK = dK , the received signal {Yt, 0 ≤ t ≤ T}

need no longer be independent, unlike in Remark (ii), Section 2.3. Also, the opti-

mum input distribution for the resulting channel with memory need no longer be

i.i.d. Hence the capacity may, in general, depend on the coherence time Tc.

In practice, the transmitter and receiver devices are limited in bandwidth.

The effects of various forms of bandwidth constraints on the capacity of Poisson

channels without any fading have been studied in [41, 42, 43, 31], and bounds

on capacity have been obtained. It is worthwhile to address these issues for the
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Poisson fading channel. Another assumption recurrent in this work is the shot-

noise limited operation regime of the direct detection receiver. In free space optical

communication systems, the ambient background radiation is the primary source of

receiver noise, whose intensity can often far exceed the intensity of the transmitted

signal; in such scenarios, a Gaussian model for background noise is often used [26].

The capacity problem for such channels has been studied in [23, 53], but several

issues remain unresolved.

A simple block fading channel model has been introduced in which the channel

fade is assumed to remain unchanged for a fixed time interval of duration Tc, and

varies in an i.i.d. manner across successive such intervals. It has been noted that

given the slowly varying nature of optical fade and the existing high-data rate laser

transmitters, millions of consecutive transmission bits experience identical fade. In

this setting, the notion of ergodic capacity, which has been addressed in this dis-

sertation, relies heavily on the ergodicity assumption T ≫ Tc; for delay-limited

applications, when this ergodicity condition does not hold, other notions of capac-

ity, e.g., capacity versus outage may be more relevant (cf. e.g., [40]). Some of these

issues for the MIMO Poisson channel have been addressed in [21], which can be

further strengthened with the results discussed in this dissertation.
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Figure 5.1: Block schematic of the DMC sum channel.

5.2 RF/optical wireless sum channel

5.2.1 Motivation

With the explosive growth in demand for RF bandwidth, and the increasing

popularity of optical wireless systems, recent proposals have recommended the use

of free space optics (FSO) as a viable alternative for RF communication [10, 38, 30].

There are several issues associated with the design and analysis of such hetero-

geneous communication systems. In the following, we introduce a simple “sum

channel” model for communication over RF and optical wireless channels; at each

time instant, information is transmitted using only one of the two channels, and

additional information is conveyed by switching between the channels.

We are motivated by [46], in which Shannon demonstrated that by randomly

switching between two DMCs, information can be conveyed. Consider a sum channel

comprising two DMCs with disjoint input and output alphabets (see Figure 5.1).

At each time instant, the switch at the transmitter chooses one of the two DMCs

for transmission; by virtue of disjointness of the output alphabets, the switching

146



information is losslessly conveyed to the receiver. The capacity of this sum channel

is given by [46]

Csum = max
0≤α≤1

[hb(α) + αC1 + (1 − α)C2] , (5.1)

where α is the probability of using channel 1, and Ci is the capacity of channel i,

i = 1, 2. The optimal α∗ that achieves the maximum on the right side of (5.1) is

given by

α∗ =
exp(C1)

exp(C1) + exp(C2)
, (5.2)

and the corresponding maximum value is given by

Csum = log (exp(C1) + exp(C2)) nats/ channel use. (5.3)

We propose a new sum channel model for communication over RF and optical

wireless channels. In RF fading channels, it is well known (cf. e.g., [40]) that

under severe fading conditions, (i.e., when the multiplicative fade coefficient is very

small), then the optimal power control strategy for the transmitter dictates it to

remain silent. If an optical wireless link is available, then the optical channel can

be used under such circumstances as a backup for the RF channel. On the other

hand, the RF channel can also be used as a backup for the optical channel under

certain fade conditions. Furthermore, additional information can be conveyed by

the means of switching between the two channels, although its amount and whether

it would make a significant difference, remains to be seen. In practice, this channel

model may be useful for conveying critical information over unreliable wireless links,

in which information is transmitted using the channel which experiences “better”
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Figure 5.3: RF fading channel model.

instantaneous channel conditions; and in delay-limited applications, where using the

sum channel to convey time-sensitive information may lead to higher communication

throughput while incurring lower delay.

5.2.2 Problem formulation

We consider a discrete-time memoryless sum channel model for communication

over RF and optical wireless channels. A block schematic diagram of the channel

model is given in Figure 5.2. For each use of the channel, the switch at the trans-

mitter picks one of two channels, viz., a RF fading channel (see Figure 5.3) and an
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optical channel (see Figure 5.4).

The IR-valued received RF signal is given by

Y
(R)
t = Stx

(R)
t + Zt, t ≥ 1, (5.4)

where {x(R)
t }∞t=1 is the IR-valued RF transmitted signal, which is proportional to

the instantaneous amplitude of the transmitted RF waveform; {St}∞t=1 is the IR+
0 -

valued i.i.d. RF channel fade with IE[S2
t ] < ∞; and {Zt}∞t=1 is the IR-valued i.i.d.

Gaussian noise rv with IE[Zt] = 0, and IE [(Zt − IE[Zt])
2] = σ2, with σ ≥ 0 fixed.

The rvs {St}∞t=1 and {Zt}∞t=1 are assumed to be mutually independent. We assume

that the receiver possesses perfect channel state information (CSI) {St}∞t=1, while

the transmitter CSI is given by {Ut = h(St)}∞t=1, with the mapping h : IR+
0 → U ,

where U ⊆ IR+
0 is arbitrary.

The Z
+
0 -valued received optical signal {Y (O)

t , t ≥ 1} is a Poisson rv with in-

tensity (or rate)1

λt = x
(O)
t + λ0, t ≥ 1, (5.5)

1For simplicity, in this dissertation we focus on an optical channel model without fading; how-

ever, the ideas can be extended (with appropriate modifications) to the case of an optical channel

with an i.i.d. block fading structure as discussed in the previous chapters.
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where {x(O)
t }∞t=1 is the IR+

0 -valued transmitted optical signal, which is proportional

to the instantaneous intensity of the transmitted optical waveform; and λ0 ≥ 0 is

the (constant) background noise (“dark current”) rate.

The switching device at the transmitter decides which channel to use at each

time instant, based on the available (causal) transmitter CSI. The {0, 1}-valued

switching rv {Vt = Vt(U
t)}∞t=1 is given as follows: if the RF channel is picked for

use at time instant t, then the switch sets Vt = 1; otherwise, i.e., if the optical

channel is picked for use at time instant t, then the switch sets Vt = 0, t ≥ 1. We

assume that the switches at the transmitter and the receiver are perfectly coor-

dinated, i.e., the switching rv {Vt}∞t=1 is available to the receiver. Physically, the

optical and RF modulation and demodulation schemes are fundamentally different

from one another, which justifies the perfectly coordinated switching assumption,

and also allows us to separate the respective input and output alphabets in our ab-

stract model. Note that by allowing the switching to depend on transmitter CSI, we

have introduced here an additional form of coding, which may lead to higher achiev-

able information rates than the DMC sum channel discussed earlier, since now the

switching probability (Pr{Vt = 1} = 1 − Pr{Vt = 0}) will, in general, depend on

transmitter CSI Ut, t ≥ 1.

The channel transition pdf for n uses of the combined RF/optical sum channel

is given by

WYn|Xn,Vn,Sn(yn|xn, vn, sn)

=
n
∏

t=1

{

W
(R)

Y
(R)
t |X

(R)
t , St

(yt|xt, st) · 1(vt = 1) +W
(O)

Y
(O)
t |X

(O)
t

(yt|xt) · 1(vt = 0)
}

,
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xn, yn ∈ IRn, sn ∈ (IR+
0 )n, vn ∈ {0, 1}n, (5.6)

where the RF channel transition pdf is given by

W
(R)

Y
(R)
t |X

(R)
t , St

(y|x, s) =
1√

2πσ2
exp

(

−(y − sx)2

2σ2

)

,

x, y ∈ IR, s ∈ IR+
0 , t = 1, · · · , n, (5.7)

and the optical channel transition pmf is given by

W
(O)

Y
(O)
t |X

(O)
t

(y|x) =















(x+λ0)y exp(−(x+λ0))
y!

, if x ∈ IR+
0 , y ∈ Z

+
0 ,

0, otherwise, t = 1, · · · , n.
(5.8)

The inputs to the sum channel are a {0, 1}n-valued switching signal {vt}nt=1,

and a IRn-valued transmitted signal {xt}nt=1, where {xt}nt=1 satisfies the following

peak and average power constraints2:

0 ≤ xt ≤ A, if vt = 0, t = 1, · · · , n, (5.9)

and

1

n

n
∑

t=1

[x2
t · 1(vt = 1) + xt · 1(vt = 0)] ≤ P, (5.10)

where 0 ≤ A <∞ and P ≥ 0 are fixed. Note that xt is proportional to the amplitude

of the transmitted RF signal if vt = 1, whereas if vt = 0, then xt is proportional to

2In (5.10), we have considered an average power constraint involving both the RF and op-

tical transmitted signals; alternatively, individual average power constraints on the transmit-

ted signals from both the channels can be considered as follows: (i) 1
n1

∑

t:vt=1 x2
t ≤ P (R),

and (ii) 1
n−n1

∑

t:vt=0 xt ≤ P (O), where P (R) ≥ 0 and P (O) ≥ 0 are fixed, and n1 =

|{t ∈ {1, · · · , n} : vt = 1}|.
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the intensity of the transmitted optical signal. This accounts for the difference in

the exponents of xt in the expression of average power constraint in (5.10).

Let the set of messages be denoted by W = {1, · · · , W}. A length-n block

code for the channel under consideration is a pair (f, φ) defined as follows.

1. For each un ∈ Un, the codebook comprises a set of W codewords f(w, un) =

{vt(w, ut), xt(w, ut, vt(w, ut))}nt=1, w ∈ W, where

xt(w, u
t, vt(w, u

t)) =















x
(R)
t (w, ut), if vt(w, u

t) = 1,

x
(O)
t (w), otherwise,

(5.11)

satisfies the following peak and average power constraints which follow from

(5.10):

0 ≤ x
(O)
t (w) ≤ A, t = 1, · · · , n, w ∈ W, (5.12)

and

1

n

n
∑

t=1

[

(

x
(R)
t (w, ut)

)2

· 1(vt(w, u
t) = 1)

+x
(O)
t (w) · 1(vt(w, u

t) = 0)
]

≤ P, w ∈ W. (5.13)

2. The decoder is a mapping3 φ : (IR ⊎ Z
+
0 )n × (IR+

0 )n → W.

For each message w ∈ W and transmitter CSI un ∈ Un corresponding to the fade

vector sn ∈ (IR+
0 )n, the transmitter generates a switching vector {vt(w, ut)}nt=1; a

RF signal vector {x(R)
t (w, ut)}nt=1; and an optical signal vector {x(O)

t (w)}nt=1. At

time instant t = 1, · · · , n, the transmitter sends x
(R)
t (w, ut) (resp. x

(O)
t (w)) if

3The notation IR ⊎ Z
+
0 is used to denote the physical separability of the output sets of the RF

and the optical detector signals.
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vt(w, u
t) = 1 (resp. vt(w, u

t) = 0) over the RF (resp. optical) channel. The

receiver, upon observing {y(R)
t , t : vt = 1} at the RF detector, {y(O)

t , t : vt = 0} at

the optical detector, and being provided with sn, produces an output ŵ = φ({y(R)
t , t :

vt = 1}, {y(O)
t , t : vt = 0}, sn). The rate of this length-n block code (f, φ) is given

by R = 1
n

logW nats/channel use, and the average probability of decoding error is

given by

Pe(f, φ) =
1

W

W
∑

w=1

IE[Pr{φ({Y (R)
t , t : vt(w, U

t) = 1}, {Y (O)
t , t : vt(w, U

t) = 0}, Sn)|

vn(w, Un), xn(w, Un, vn(w, Un)), Sn}], (5.14)

where we have used the shorthand notation

vn(w, Un) = {vt(w, Ut), t = 1, · · · , n}, w ∈ W,

and

xn(w, Un, vn(w, Un)) = {xt(w, Ut, vt(w, U
t)), t = 1, · · · , n}, w ∈ W.

We are interested in obtaining a “single-letter characterization” of the channel

capacity Csum of the RF/optical sum channel in terms of the signal and channel

parameters.

5.2.3 Channel capacity

We provide below an expression of the channel capacity of the RF/optical sum

channel in terms of the capacities of the individual RF and optical channels.
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Theorem 10 The capacity of the RF/optical sum channel is given by

Csum = max
α:U→[0,1]

µ1:U→IR+
0

0≤µ2≤A

IE[α(U)µ1(U)+(1−α(U))µ2 ]≤P

IE[g(S, α(U), µ1(U), µ2)], (5.15)

with U = h(S), where

g(s, a, m1, m2) = hb(a) + aCRF (s, m1) + (1 − a)CO(m2),

s ∈ IR+
0 , a ∈ [0, 1], m1 ∈ IR+

0 , 0 ≤ m2 ≤ A, (5.16)

and CRF (·, ·) and CO(·) are obtained as follows:

CRF (s, m1) = max
P

X(R)|U=h(s)
:IE[(X(R))2|U=h(s)]=m1

I(X(R) ∧ Y (R)|S = s),

s, m1 ∈ IR+
0 , (5.17)

where X(R), Y (R), S are related by

WY (R)|X(R), S(y|x, s) =
1√

2πσ2
exp

(

−(y − sx)2

2σ2

)

,

x, y ∈ IR, s ∈ IR+
0 , (5.18)

and

CO(m2) = max
P

X(O) :0≤X(O)≤A

IE[X(O)]=m2

I(X(O) ∧ Y (O)), 0 ≤ m2 ≤ A, (5.19)

where X(O), Y (O) are related by

WY (O)|X(O)(y|x) =















(x+λ0)y exp(−(x+λ0))
y!

, if x ∈ IR+
0 , y ∈ Z

+
0 ,

0, otherwise.

(5.20)
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Proof: See Appendix D.

Remark: Note the structural similarity of the capacity formula (5.15) with the

capacity formula for the DMC sum channel (5.1). The additional complexity in

(5.15) is due to (a) the dependence of the switching rv on transmitter CSI; and (b)

the power constraints on the transmitted signals.

The capacity problem for the discrete-time Gaussian channel is well docu-

mented (cf. e.g., [8], Chapter 10). It is easy to see from ([8], Theorem 10.1.1)

that

CRF (s, m1) =
1

2
log

(

1 +
s2m1

σ2

)

, s, m1 ∈ IR+
0 .

On the other hand, to the best of our knowledge, an exact expression for CO(·) is

not available; inner and outer bounds on the capacity of the discrete-time Poisson

channel have been obtained (cf. e.g., [31], and the references therein).

It remains to determine the optimal switching and transmitter power control

strategies α∗ : U → [0, 1], µ∗
1 : U → IR+

0 , and 0 ≤ µ∗
2 ≤ A that achieve the maximum

in (5.15). One major difficulty is the lack of availability of an exact expression for

CO(·).
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Appendix A

A.1 Proof of (2.37)

We begin with the following proposition:

Proposition 1 If {Y (τ), 0 ≤ τ ≤ T} is a PCP with (deterministic) rate function

{λ(τ), 0 ≤ τ ≤ T}, then for any function g(·) integrable on [0, T ],

IE

[

NT
∑

i=1

g(Ti)

]

=

∫ T

0

λ(τ)g(τ)dτ. (A.1)

Proof: A proof of this proposition can be found in [19, 18]. Here, we provide a

simpler proof. Observe that

IE

[

NT
∑

i=1

g(Ti)

]

=
∞
∑

n=1

Pr{NT = n} IE

[

n
∑

i=1

g(Ti)

∣

∣

∣

∣

∣

NT = n

]

=
∞
∑

n=1

Pr{NT = n} IE

[

n
∑

i=1

g(Ui)

∣

∣

∣

∣

∣

NT = n

]

, (A.2)

where we denote the unordered arrival times on [0, T ] by Ui, i = 1, · · · , NT . It can

be verified (cf. e.g., [47], pp. 62–63) that given NT = n, Ui are i.i.d. ∼ U with pdf

fU(u) =















λ(u)
∫ T
0
λ(τ)dτ

, if 0 ≤ u ≤ T,

0, otherwise.

(A.3)

Therefore,

IE

[

n
∑

i=1

g(Ui)

∣

∣

∣

∣

∣

NT = n

]

= n IE[g(U)]

= n

∫ T

0
g(τ)λ(τ)dτ
∫ T

0
λ(τ)dτ

, (A.4)
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so that by (A.2), it follows that

IE

[

NT
∑

i=1

g(Ti)

]

=

∫ T

0
g(τ)λ(τ)dτ
∫ T

0
λ(τ)dτ

IE[NT ]

=

∫ T

0

g(τ)λ(τ)dτ, (A.5)

since NT is a Poisson rv with mean
∫ T

0
λ(τ)dτ .

Note that (NT , T
NT ) is a doubly stochastic PCP with rate process {Λ(t), 0 ≤

t ≤ T}. Therefore, by (A.1), for any {λ(t), 0 ≤ t ≤ T} integrable on [0, T ],

IE

[

NT
∑

i=1

log Λ(Ti)
∣

∣ΛT = λT

]

=

∫ T

0

λ(τ) log λ(τ)dτ,

so that

IE

[

NT
∑

i=1

log Λ(Ti)

]

= IE

[

IE

[

NT
∑

i=1

log Λ(Ti)

∣

∣

∣

∣

∣

ΛT

]]

= IE

[
∫ T

0

Λ(τ) log Λ(τ)dτ

]

. (A.6)

Similarly, by noting that (NT , T
NT ) conditioned on SK is a self-exciting PCP with

rate process {Λ̂(t), 0 ≤ t ≤ T}, we get

IE

[

NT
∑

i=1

log Λ̂(Ti)

]

= IE

[
∫ T

0

Λ̂(τ) log Λ̂(τ)dτ

]

. (A.7)

Combining (A.6), (A.7), we get

IE

[

NT
∑

i=1

(

log Λ(Ti) − log Λ̂(Ti)
)

]

= IE

[
∫ T

0

(

Λ(τ) log Λ(τ) − Λ̂(τ) log Λ̂(τ)
)

dτ

]

= IE

[
∫ T

0

(

ζ(S⌈τ/Tc⌉X(τ), λ0) − ζ(S⌈τ/Tc⌉X̂(τ), λ0)
)

dτ

]

(A.8)

=

∫ T

0

{

IE
[

ζ(S⌈τ/Tc⌉X(τ), λ0)
]

− IE
[

ζ(S⌈τ/Tc⌉X̂(τ), λ0)
]}

dτ, (A.9)
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where (A.8) is by (2.3), (2.25), (2.26); and (A.9) holds by interchanging the order

of operations1 in (A.8).

A.2 Proof of (2.42)

Consider rvs A, B, C, X with (arbitrary) alphabets A, B, C, X , where

A is independent of B, C = k(B), X = l(A,C), (A.10)

with k, l being given mappings. Then,

0 ≤ I(X ∧ B|C) ≤ I(X,A ∧ B|C)

= I(A ∧ B|C) + I(X ∧ B|A,C)

≤ I(A ∧ B,C) + I(X ∧ B|A,C)

= 0, (A.11)

since by (A.10), A is independent of (B, C) andX = l(A,C). Set A = (W, U⌈τ/Tc⌉−1),

B = S⌈τ/Tc⌉, C = U⌈τ/Tc⌉ and X = X(τ). Clearly (A.10) is satisfied, so that (2.42)

follows from (A.11).

1The interchange is permissible as the assumed condition IE[|ζ(SA, λ0)|] < ∞ ensures the

integrability of {ζ(S⌈τ/Tc⌉X(τ), λ0), 0 ≤ τ ≤ T } and {ζ(S⌈τ/Tc⌉X̂(τ), λ0), 0 ≤ τ ≤ T }.
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A.3 Proof of (2.74)

In (2.64), for L≫ 1, we use the approximation exp(a/L) = 1+a/L+O(L−2),

a ∈ IR, to get

w10(L) = λ0Tc/L+O (L−2) ,

w11(s, L) = (λ0 + sA)Tc/L+O (L−2) ,

(A.12)

and in (2.71), for x ≪ 1, we use the approximations [52]

hb(x) = −x log x+ x+O(x2),

hb(x+O(x2)) = hb(x) +O(x2 log x).

(A.13)

Then, for L≫ 1, we have from (2.71) and (A.12) that for s ∈ IR+
0 ,

βL(s) = hb
(

(λ0 + sµ(h(s))A)Tc/L+O
(

L−2
))

−µ(h(s))hb
(

(λ0 + sA)Tc/L+O
(

L−2
))

−(1 − µ(h(s)))hb
(

λ0Tc/L+O
(

L−2
))

=
Tc
L

[µ(h(s))(λ0 + sA) log(λ0 + sA) + (1 − µ(h(s)))λ0 log λ0

−(λ0 + sµ(h(s))A) log(λ0 + sµ(h(s))A)] +O
(

L−2 logL
)

(A.14)

=
Tc
L

[µ(h(s))ζ(sA, λ0) − ζ(sµ(h(s))A, λ0)] +O
(

L−2 logL
)

(A.15)

where (A.14) is by (A.13), and (A.15) is by (2.3). Hence,

lim
L→∞

βL(s)

Tc/L
= µ(h(s))ζ(sA, λ0) − ζ(sµ(h(s))A, λ0), s ∈ IR+

0 ,

whereby (2.74) follows.
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Appendix B

B.1 Proof of (3.34)

By Proposition 1, noting that Y T
m is a doubly stochastic PCP with rate process

{Λm(t), 0 ≤ t ≤ T}, we get that

IE





Nm(T )
∑

i=1

log(Λm(Tm, i))



 = IE



IE





Nm(T )
∑

i=1

log(Λm(Tm, i))

∣

∣

∣

∣

∣

∣

ΛT
m









= IE

[
∫ T

0

Λm(τ) log(Λm(τ))dτ

]

. (B.1)

Similarly, by noting that Y T
m is a self-exciting PCP with rate process {Λ̂m(t), 0 ≤

t ≤ T}, by (A.1), we get

IE





Nm(T )
∑

i=1

log(Λ̂m(Tm, i))



 = IE

[
∫ T

0

Λ̂m(τ) log(Λ̂m(τ))dτ

]

. (B.2)

From (3.33), we thus get that

M
∑

m=1

IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)





=

M
∑

m=1

IE

[
∫ T

0

Λm(τ) log(Λm(τ))dτ

]

− IE

[
∫ T

0

Λ̂m(τ) log(Λ̂m(τ))dτ

]

(B.3)

=

M
∑

m=1

IE

[

∫ T

0

{

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)

−ζ
(

N
∑

n=1

sn,mX̂n(τ), λ0, m

)}

dτ

]

(B.4)

=

M
∑

m=1

∫ T

0

{

IE

[

ζ

(

N
∑

n=1

sn,mXn(τ), λ0, m

)

−ζ
(

N
∑

n=1

sn,mX̂n(τ), λ0, m

)]}

dτ, (B.5)
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where (B.3) is by (B.1), (B.2); (B.4) is by (2.3), (3.24), (3.25); and (B.5) holds by

interchanging the order of operations1 in (B.4).

B.2 Proof of (3.43)

From (3.41) and (3.42), after rearrangement we get

h(τ, χ
N(τ)) =

N
∑

n=1

χn(τ)

M
∑

m=1

ζ(sn,mAn, λ0,m) + max
q(τ)

2N−1
∑

i=0

ciqi(τ), (B.6)

where

ci =
M
∑

m=1

{

ζ

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

−
N
∑

n=1

bn(i)ζ (sn,mAn, λ0, m)

}

(B.7)

for i = 0, · · · , 2N − 1. The following property of c = {ci}2N−1
i=0 can be derived from

(3.6):

Ii ⊆ Ij ⇒ 0 ≤ ci ≤ cj , i, j ∈ {0, · · · , 2N − 1}. (B.8)

The linearity of the summand on the right side of (B.6) with respect to the

variables {qi(τ)}2N−1
i=0 , and the special property (B.8) of c suggest the following N -

step algorithm to compute the optimal pmf vector q∗(τ):

• Step 1: By (B.8), it follows that c2N−1 ≥ ci for all i = 0, · · · , 2N−1. Therefore,

q∗2N−1(τ) should be assigned the highest allowable value. By (3.41), it follows

that q2N−1(τ) ≤ χn(τ), n = 1, · · · , N . Therefore,

q∗2N−1(τ) = min
n=1, ···, N

χn(τ) = χPτ (N)(τ), (B.9)

1The interchange is permissible as the assumed conditions 0 ≤ Xn(τ) ≤ 1, 0 ≤ τ ≤ T ,

n = 1, · · · , N , ensures the integrability of the rvs
{

ζ
(

∑N
n=1 sn, mXn(τ), λ0, m

)

, 0 ≤ τ ≤ T
}

and

{

ζ
(

∑N
n=1 sn, mX̂n(τ), λ0, m

)

, 0 ≤ τ ≤ T
}

, m = 1, · · · , M .
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where Pτ is as defined in (3.44). By (3.41), it follows that

q∗i (τ) = 0, i : bPτ (N)(i) = 1, i 6= 2N − 1. (B.10)

• Step 2: For all i ∈ {0, · · · , 2N − 1} : bPτ (N)(i) = 0, by (B.8), it follows that

cj ≥ ci, where j =
∑N−1

n=1 2Pτ (n)−1. Furthermore, for all i : bPτ (N)(i) = 0, by

(3.41), it follows that qi(τ) ≤ χn(τ) − χPτ (N)(τ), n = Pτ (1), · · · , Pτ (N − 1).

Summarizing these facts, we have

q∗∑N−1
n=1 2Pτ (n)−1(τ) = χPτ (N−1)(τ) − χPτ (N)(τ), (B.11)

whence by (3.41), we get

q∗i (τ) = 0, i : bPτ (N)(i) = 0, bPτ (N−1)(i) = 1, i 6=
∑N−1

n=1 2Pτ (n)−1.(B.12)

• Step k, 2 < k < N : In this step, repeating the arguments of Step 2, we get

q∗∑N−k+1
n=1 2Pτ (n)−1(τ) = χPτ (N−k+1)(τ) − χPτ (N−k+2)(τ), (B.13)

and

q∗i (τ) = 0, i : bPτ (j)(i) = 0, j = N − k + 2, · · · , N,

bPτ (N−k+1)(i) = 1, i 6= ∑N−k+1
n=1 2Pτ (n)−1.

(B.14)

• Step N: The only remaining pmf is q∗0(τ). By (3.41) and (B.9)–(B.14), it follows

that

q∗0(τ) = 1 −
2N−1
∑

i=1

q∗i (τ) = 1 − χPτ (1)(τ). (B.15)
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B.3 Proof of (3.52)

It suffices to prove that

N
∑

n=1

1

T

∫ T

0

ψn, PτχPτ (n)(τ)dτ ≤
N
∑

n=1

ψn,ΠµΠ(n). (B.16)

Without loss of generality, we assume that Π(n) = n for all n = 1, · · · , N , i.e.,

µn ≥ µn+1, n = 1, · · · , N − 1. Let P denote the set of all possible permutations

of {1, · · · , N}; clearly, |P| = N !. We fix an indexing2 {Pi, i = 1, · · · , N !} of the

elements of P with P1 = Π. Consider the following partition of [0, T ]:

Ti = {τ ∈ [0, T ]\ ∪j<i Tj : χPi(1)(τ) ≥ · · · ≥ χPi(N)(τ)}, (B.17)

and let

li =
1

T

∫

Ti

dτ, i = 1, · · · , N !. (B.18)

In other words, Ti is the set of time instants τ ∈ [0, T ] when the elements of

χ
N(τ) satisfy the permutation Pi but no other permutation Pj , j < i, and li is the

proportion of Ti relative to the transmission interval [0, T ]. Clearly, li ≥ 0, i =

1, · · · , N !, and
∑N !

i=1 li = 1. Define

Θn, i =
1

∫

Ti
dτ

∫

Ti

χn(τ)dτ, n = 1, · · · , N, i = 1, · · · , N !. (B.19)

By (3.50), (B.17) and (B.18), we have

∑N !
i=1 liΘn, i = µn, n = 1, · · · , N,

ΘPi(n), i ≥ ΘPi(n+1), i, n = 1, · · · , N − 1, i = 1, · · · , N !.

(B.20)

2For the sake of brevity, we use similar notation to denote the permutations Pi, i ∈ {1, · · · , N !}

and Pτ , τ ∈ [0, T ]. The distinction should be clear from the context.
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In order to prove (B.16), we now establish the nonnegativity of the difference

N
∑

n=1

ψn,ΠµΠ(n) −
N
∑

n=1

1

T

∫ T

0

ψn, PτχPτ (n)(τ)dτ

=

N
∑

n=1

ψn, P1

N !
∑

i=1

liΘn, i −
N
∑

n=1

N !
∑

i=1

li
∫

Ti
dτ

∫

Ti

ψn, Pi
χPi(n)(τ)dτ (B.21)

=

N !
∑

i=1

li

N
∑

n=1

(

ψn, P1Θn, i − ψn,Pi
ΘPi(n), i

)

(B.22)

=

N !
∑

i=1

li

N
∑

n=1

(

ψPi(n), P1 − ψn, Pi

)

ΘPi(n), i

=
N !
∑

i=1

li

[

N−1
∑

n=1

(

ΘPi(n), i − ΘPi(n+1), i

)

n
∑

k=1

(

ψPi(k), P1
− ψk, Pi

)

+ΘPi(N), i

N
∑

k=1

(

ψPi(k), P1 − ψk, Pi

)

]

, (B.23)

where (B.21) and (B.22) follow by (B.17)–(B.20) with Π = P1; and (B.23) follows by

(3.54) with the substitution xn = ΘPi(n), i and yn = ψPi(n), P1 − ψn, Pi
, n = 1, · · · , N .

By definition (see (3.46)), for every n = 1, · · · , N and i = 1, · · · , N !,

n
∑

k=1

ψPi(k), P1
=

n
∑

k=1

M
∑

m=1



ζ





Pi(k)
∑

j=1

sj,mAj , λ0,m



− ζ





Pi(k)−1
∑

j=1

sj,mAj , λ0, m









=
M
∑

m=1

n
∑

k=1

ζ



sPi(k), mAPi(k), λ0,m +

Pi(k)−1
∑

j=1

sj,mAj



 , (B.24)

where (B.24) follows by (3.6). On the other hand, by (3.46),

n
∑

k=1

ψk, Pi

=

n
∑

k=1

M
∑

m=1

[

ζ

(

k
∑

j=1

sPi(j), mAPi(j), λ0,m

)

− ζ

(

k−1
∑

j=1

sPi(j), mAPi(j), λ0,m

)]

=

M
∑

m=1

ζ

(

n
∑

j=1

sPi(j),mAPi(j), λ0,m

)

=

M
∑

m=1

n
∑

k=1

ζ



sPi(k), mAPi(k), λ0,m +

Pi(k)−1
∑

j=1

sj,mAj1(j ∈ {Pi(1), · · · , Pi(n)})



 ,(B.25)
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where (B.25) is by (3.6). Using the fact that ζ(x, y+z) ≥ ζ(x, y) for all x, y, z ≥ 0,

by (B.24) and (B.25), we get

n
∑

k=1

(

ψPi(k), P1 − ψk, Pi

)

≥ 0, n = 1, · · · , N, i = 1, · · · , N !, (B.26)

whence by (B.20), (B.23), it follows that

N
∑

n=1

ψn,ΠµΠ(n) −
N
∑

n=1

1

T

∫ T

0

ψn, PτχPτ (n)(τ)dτ ≥ 0,

which is the desired result.

Remark: It can be seen from the preceding proof that (B.16) holds for the case

of a discrete sum instead of an integral, i.e., the following inequality is true:

N
∑

n=1

1

K

K
∑

k=0

ψn, Pk
χPk(n)(k) ≤

N
∑

n=1

ψn,ΠµΠ(n), (B.27)

where Pk is a permutation of {1, · · · , N} such that

χPk(n)(k) ≥ χPk(n+1)(k), n = 1, · · · , N − 1, k = 1, · · · , K,

µn = 1
K

∑K
k=1 χn(k), n = 1, · · · , N , and Π is a permutation of {1, · · · , N} such that

µΠ(n) ≥ µΠ(n+1), n = 1, · · · , N − 1.

B.4 Proof of (3.75)

In (3.62), for L≫ 1, we use the approximation exp(a/L) = 1+a/L+O(L−2),

a ∈ IR, to get

ωm(x̃N , L) = wm(x̃N)
T

L
+O(L−2), x̃N ∈ {0, 1}N , (B.28)
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for m = 1, · · · , M . For L≫ 1, we have from (3.73) and (B.28) that

βL(p) =
M
∑

m=1



hb





2N−1
∑

i=0

piwm(bN(i))
T

L
+O(L−2)





−
2N−1
∑

i=0

pihb

(

wm(bN (i))
T

L
+O(L−2)

)





=
T

L

M
∑

m=1

2N−1
∑

i=0

piwm(bN (i)) log

(

wm(bN (i))
∑2N−1

i=0 piwm(bN(i))

)

+O(L−2 logL) (B.29)

=
T

L

M
∑

m=1

2N−1
∑

i=0

pi

(

N
∑

n=1

sn,mbn(i)An + λ0,m

)

×

log





(

∑N
n=1 sn,mbn(i)An + λ0,m

)

∑2N−1
i=0 pi

(

∑N
n=1 sn,mbn(i)An + λ0, m

)



+O(L−2 logL) (B.30)

=
T

L

M
∑

m=1





2N−1
∑

i=0

piζm

(

N
∑

n=1

sn,mbn(i)An, λ0, m

)

−ζm





2N−1
∑

i=0

pi

N
∑

n=1

sn,mbn(i)An, λ0,m







+O(L−2 logL), (B.31)

where (B.29) is by (A.13); (B.30) is by (3.63); and (B.31) holds by (2.3). Hence

lim
L→∞

βL(p)

T/L
=

M
∑

m=1





2N−1
∑

i=0

piζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

−ζm





2N−1
∑

i=0

pi

N
∑

n=1

sn,mbn(i)An, λ0, m







 , (B.32)

whence (3.75) follows.
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Appendix C

C.1 Proof of (4.37)

By Proposition 1, noting that Y T
m is a doubly stochastic PCP with rate process

{Λm(t), 0 ≤ t ≤ T}, by (A.1), we get that

IE





Nm(T )
∑

i=1

log(Λm(Tm, i))



 = IE



IE





Nm(T )
∑

i=1

log(Λm(Tm, i))

∣

∣

∣

∣

∣

∣

ΛT
m









= IE

[
∫ T

0

Λm(τ) log(Λm(τ))dτ

]

. (C.1)

Similarly, by noting that Y T
m is a self-exciting PCP with rate process {Λ̂m(t), 0 ≤

t ≤ T}, by (A.1), we get that

IE





Nm(T )
∑

i=1

log(Λ̂m(Tm, i))



 = IE

[
∫ T

0

Λ̂m(τ) log(Λ̂m(τ))dτ

]

. (C.2)

By (C.1), (C.2), we then get

M
∑

m=1

IE





Nm(T )
∑

i=1

(

log Λm(Tm, i) − log Λ̂m(Tm, i)
)





=

M
∑

m=1

IE

[
∫ T

0

Λm(τ) log(Λm(τ))dτ

]

− IE

[
∫ T

0

Λ̂m(τ) log(Λ̂m(τ))dτ

]

=

M
∑

m=1

IE

[

∫ T

0

{

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ), λ0, m

)

−ζ
(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ), λ0,m

)}

dτ

]

(C.3)

=

M
∑

m=1

∫ T

0

{

IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]Xn(τ), λ0, m

)]

− IE

[

ζ

(

N
∑

n=1

Sn,m[⌈τ/Tc⌉]X̂n(τ), λ0, m

)]}

dτ, (C.4)
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where (C.3) is by (2.3), (4.26), (4.27); and (C.4) holds by interchanging the order

of operations1 in (C.3).

C.2 Proof of (4.60)

Let Qk be a permutation of {1, · · · , N} such that

ηQk(n)(k, u) ≥ ηQk(n+1)(k, u), n = 1, · · · , N − 1, (C.5)

for u ∈ U , k = 1, · · · , K, where we have suppressed the dependence of Qk on u for

notational brevity. By B.16, it follows that

N
∑

n=1

1

Tc

∫ kTc

(k−1)Tc

ψn, Pτ (s)χPτ (n)(τ, u)dτ ≤
N
∑

n=1

ψn,Qk
(s)ηQk(n)(k, u), (C.6)

for k = 1, · · · , K, s ∈ (IR+
0 )N×M , u ∈ U . Therefore, by (C.6), we now get

1

K

K
∑

k=1

1

Tc

∫ kTc

(k−1)Tc

IE

[

N
∑

n=1

ψn,Pτ (S[k])χPτ (n)(τ, U[k])

]

dτ

≤ 1

K

K
∑

k=1

IE

[

N
∑

n=1

ψn,Qk
(S[k])ηQk(n)(k, U[k])

]

=
1

K

K
∑

k=1

IE

[

N
∑

n=1

ψn,Qk
(S)ηQk(n)(k, U)

]

(C.7)

≤ IE

[

N
∑

n=1

ψn,Π(S)µΠ(n)(U)

]

(C.8)

= IE

[

N
∑

n=1

νn(U)
M
∑

m=1

ζ

(

n
∑

j=1

SΠ(j), mAΠ(j), λ0, m

)]

, (C.9)

1The interchange is permissible as the assumed conditions IE
[∣

∣

∣ζ
(

∑N
n=1 Sn, mAn, λ0, m

)∣

∣

∣

]

< ∞,

m = 1, · · · , M , ensure the integrability of
{

ζ
(

∑N
n=1 Sn, m[⌈τ/Tc⌉]Xn(τ), λ0, m

)

, 0 ≤ τ ≤ T
}

and

{

ζ
(

∑N
n=1 Sn, m[⌈τ/Tc⌉]X̂n(τ), λ0, m

)

, 0 ≤ τ ≤ T
}

, m = 1, · · · , M .
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where (C.7) is by the i.i.d. nature of {S[k]}∞k=1; (C.8) follows by (4.61), (4.54),

(B.27); and (C.9) is by the application of (3.54) with the substitution xn = µΠ(n)(U),

yn = ψn,Π(S).

C.3 Proof of (4.85)

In (4.72), for L≫ 1, we use the approximation exp(a/L) = 1+a/L+O(L−2),

a ∈ IR, to get

ωm(x̃N , s, L) = wm(x̃N , s)
Tc
L

+O(L−2),

x̃N ∈ {0, 1}N , s ∈ (IR+
0 )N×M , (C.10)

for m = 1, · · · , M . For L≫ 1, we have from (4.83) and (C.10) that

βL(p, s) =

M
∑

m=1



hb


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2N−1
∑

i=0

piwm(bN (i), s)
Tc
L

+O(L−2)





−
2N−1
∑

i=0

pihb

(

wm(bN(i), s)
Tc
L

+O(L−2)

)





=
Tc
L

M
∑

m=1





2N−1
∑

i=0

piζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

−ζm





2N−1
∑

i=0

pi

N
∑

n=1

sn,mbn(i)An, λ0, m







+O(L−2 logL), (C.11)

where (C.11) holds by (B.31). Hence

lim
L→∞

βL(p, s)

Tc/L
=

M
∑

m=1





2N−1
∑

i=0

piζm

(

N
∑

n=1

sn,mbn(i)An, λ0,m

)

−ζm





2N−1
∑

i=0

pi

N
∑

n=1

sn,mbn(i)An, λ0,m







 , (C.12)

whence (4.85) follows.
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Appendix D

Proof of Theorem 10

Denote the input and the output alphabets of the RF/optical sum channel

by X = IR ⊎ IR+
0 and Y = IR ⊎ Z

+
0 respectively, where we use the notation A ⊎ B

to denote the physical separability of the sets A and B by virtue of the material

differences between the respective modulation and demodulation schemes. It can be

inferred from [5, 31, 9] that the capacity of the memoryless RF/optical sum channel

is given by

Csum = max
PX, V |U :IE[X2·1(V=1)+X·1(V =0)]≤P

I(X, V ∧ Y |S), (D.1)

where the rvsX, Y, V, S, U take values in the sets X , Y , {0, 1}, IR+
0 , U respectively,

and the joint distribution of the rvs X, Y, V, S, U is determined by U = h(S), FS,

PV |U ,

X = X(R)1(V = 1) +X(O)1(V = 0),

Y = Y (R)1(V = 1) + Y (O)1(V = 0),

(D.2)

with the rvs X(R), Y (R), X(O), Y (O) taking values in the sets IR, IR, [0, A], Z
+
0 re-

spectively; the distribution function1

WY |X,V, S(y|x, v, s)

= W
(R)

Y (R)|X(R), S
(y|x, s) · 1(v = 1) +W

(O)

Y (O)|X(O)(y|x) · 1(v = 0),

1We denote by WY |X, V, S the conditional distribution function of a collection of discrete and

continuous rvs.
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x, y ∈ IR, s ∈ IR+
0 , v ∈ {0, 1}, (D.3)

where W
(R)

Y (R)|X(R), S
(·|·, ·) and W

(O)

Y (O)|X(O)(·|·) are given by (5.18) and (5.20) respec-

tively; and the Markov condition

X, V −◦− U −◦− S. (D.4)

Note that

I(X, V ∧ Y |S) = I(V ∧ Y |S) + I(X ∧ Y |V, S)

= H(V |S) −H(V |Y, S) + I(X ∧ Y |V, S)

= H(V |S) + I(X ∧ Y |V, S) (D.5)

= IE[hb(α(U))] + I(X ∧ Y |V, S), (D.6)

where (D.5) follows by the physical separability of the RF and optical signals at

the detector, so that H(V |Y, S) = 0; and (D.6) holds with α(u) = Pr{V = 1|U =

u}, u ∈ U , since by (D.4),

H(V |S) = H(V |U) = IE[hb(α(U))].

Next, for any s ∈ IR+
0 , note that

I(X ∧ Y |V = 1, S = s) = I(X(R) ∧ Y (R)|V = 1, S = s) (D.7)

= I(X(R) ∧ Y (R)|S = s), (D.8)

where (D.7) is by (D.2), and (D.8) follows from the fact that the RF encoding and

decoding are independent of the switching operation, so that V is conditionally

independent of (X(R), Y (R)) given S. Similarly, for s ∈ IR+
0 ,

I(X ∧ Y |V = 0, S = s) = I(X(O) ∧ Y (O)|V = 0, S = s) (D.9)
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= I(X(O) ∧ Y (O)), (D.10)

where (D.9) is by (D.2), and (D.10) follows from the fact that optical encoding and

decoding are independent of the switching operation as well as RF channel fade, so

that (X(O), Y (O)) is independent of (V, S). Combining (D.6), (D.8), (D.10), we get

that

I(X, V ∧ Y |S) = IE[hb(α(U))] + IE[α(U)I(X(R) ∧ Y (R)|S)]

+ IE[(1 − α(U))I(X(O) ∧ Y (O))]. (D.11)

Next, note that

IE[X2 · 1(V = 1) +X · 1(V = 0)]

= IE[X(R)2 · 1(V = 1) +X(O) · 1(V = 0)] (D.12)

= IE[IE[X(R)2 · 1(V = 1) +X(O) · 1(V = 0)|S]]

= IE[α(U) IE[X(R)2|U ] + (1 − α(U)) IE[X(O)]], (D.13)

where (D.12) is by (D.2); and (D.13) holds by (D.4), the conditional independence

of V and X(R) given S, and the independence of (V, S) and X(O). Summarizing

collectively (D.1), (D.11), (D.13), we get that

Csum = max
α:U→[0, 1]

0≤X(O)≤A

IE[α(U) IE[X(R)2|U ]+(1−α(U)) IE[X(O)]]≤P

IE[hb(α(U)) + α(U) I(X(R) ∧ Y (R)|S)

+(1 − α(U)) I(X(O) ∧ Y (O))].

(D.14)

Finally, setting CRF (·, ·) and CO(·) as in (5.17) and (5.19) respectively, by (D.14),

we have

Csum = max
α:U→[0, 1]

µ1:U→IR+
0

0≤µ2≤A

IE[α(U)µ1(U)+(1−α(U))µ2 ]≤P

IE[hb(α(U)) + α(U)CRF (S, µ1(U))

+(1 − α(U))CO(µ2)],
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which is the desired result (5.15).

173



BIBLIOGRAPHY

[1] P. Bremaud. Point Processes and Queues: Martingale Dynamics. Springer-

Verlag, New York, 1981.

[2] S. I. Bross, M. V. Burnashev, and S. Shamai. Error exponents for the two-user

Poisson multiple-access channel. IEEE Trans. Inform. Theory, 47(5): 1999–

2016, July 2001.

[3] S. I. Bross and S. Shamai. Capacity and decoding rules for Poisson arbitrarily

varying channel. IEEE Trans. Inform. Theory, 49(11): 3076–3093, Nov 2003.

[4] M. V. Burnashev and Y. A. Kutoyants. On the sphere-packing bound, capacity,

and similar results for Poisson channels. Problems of Information Transmission,

35(2): 95–111, Apr–June 1999.

[5] G. Caire and S. Shamai. On the capacity of some channels with channel state

information. IEEE Trans. Inform. Theory, 45(6): 2007–2019, Sept 1999.

[6] G. Caire, G. Taricco, and E. Biglieri. Optimum power control over fading

channels. IEEE Trans. Inform. Theory, 45(5): 1468–1489, July 1999.

[7] F. H. Clarke. Optimization & Nonsmooth Analysis. John Wiley & Sons, New

York, 1983.

[8] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley

& Sons, New York, 1991.

174



[9] A. Das and P. Narayan. Capacities of time-varying multiple-access channels

with side information. IEEE Trans. Inform. Theory, 48(1): 4–25, Jan 2002.

[10] C. C. Davis, I. I. Smolyaninov, and S. D. Milner. Flexible optical wireless links

and networks. IEEE Commun. Mag., 41(3): 51–57, Mar 2003.

[11] M. H. A. Davis. Capacity and cutoff rate for Poisson-type channels. IEEE

Trans. Inform. Theory, 26(6): 710–715, Nov 1980.

[12] M. R. Frey. Information capacity of the Poisson channel. IEEE Trans. Inform.

Theory, 37(2): 244–256, Mar 1991.

[13] R. M. Gagliardi and S. Karp. Optical Communications. John Wiley & Sons,

New York, 2nd edition, 1995.

[14] R. G. Gallager. Information Theory and Reliable Communication. John Wiley

& Sons, New York, 1968.

[15] I. M. Gelfand and S. V. Fomin. Calculus of Variations. Prentice-Hall, New

Jersey, 1963.

[16] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath. Capacity limits of

MIMO channels. IEEE J. Select. Areas Commun., 21(5): 684–702, June 2003.

[17] J. Gowar. Optical Communication Systems. Prentice-Hall International, Inc.,

London, 1984.

[18] S. M. Haas. Capacity and coding for multiple-aperture, wireless, optical com-

munications. Ph.D. thesis, Massachusetts Inst. Tech., Cambridge, MA, 2003.

175



[19] S. M. Haas and J. H. Shapiro. Capacity of the multiple-input, multiple-output

Poisson channel. In B. Pasik-Duncan, editor, Proceedings of the Kansas Work-

shop on Stochastic Theory and Control, Lecture notes in Control and Informa-

tion Sciences, Lawrence, KS, Oct 2001.

[20] S. M. Haas, J. H. Shapiro, and V. Tarokh. Space-time codes for wireless optical

communications. Eurasip Journal on Applied Signal Processing, 2002(3): 211–

220, Mar 2002.

[21] S. M. Haas and J. H. Shapiro. Capacity of wireless optical communications.

IEEE J. Select. Areas Commun., 21(8): 1346–1357, Oct 2003.

[22] J. Hecht. City of Light: The Story of Fiber Optics. Oxford University Press,

Inc., 1999.

[23] S. Hranilovic and F. R. Kschischang. Capacity bounds for power- and band-

limited optical intensity channels corrupted by Gaussian noise. IEEE Trans.

Inform. Theory, 50(5): 784–795, May 2004.

[24] A. Ishimaru. Wave Propagation and Scattering in Random Media. IEEE Press

and Oxford University Press, 1997.

[25] Y. M. Kabanov. Capacity of a channel of the Poisson type. Theory of Probability

and its Applications, 23(1): 143–147, 1978.

[26] J. M. Kahn and J. R. Barry. Wireless infrared communications. Proc. IEEE,

85(2): 265–298, Feb 1997.

176



[27] S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts. Optical Channels:

Fibers, Clouds, Water, and the Atmosphere. Plenum Press, NY, 1988.

[28] D. Killinger. Free space optics for laser communication through the air. Optics

& Photonics News, 13(10): 36–42, Oct 2002.

[29] I. I. Kim, H. Hakakha, P. Adhikari, E. Korevaar, and A. K. Mazumdar. Scintil-

lation reduction using multiple transmitters. Free Space Laser Communication

Technologies IX, Proc. SPIE, 2990: 102–113, 1997.

[30] I. I. Kim and E. Korevaar. Availability of Free Space Optics (FSO) and hy-

brid FSO/RF systems. Proceedings of SPIE ITCOM 2001; Optical Wireless

Communications IV, Vol. 4530, August 21, 2001.

[31] A. Lapidoth and S. M. Moser. Bounds on the capacity of the discrete-time

Poisson channel. In Proceedings of 41st Annual Allerton Conference on Com-

munication, Control, and Computing, Monticello, IL, Oct. 1-3, 2003.

[32] A. Lapidoth and S. Shamai. The Poisson multiple-access channel. IEEE Trans.

Inform. Theory, 44(2): 488–501, Mar 1998.

[33] A. Lapidoth, I. E. Telatar, and R. Urbanke. On wideband broadcast channels.

IEEE Trans. Inform. Theory, 49(12): 3250–3258, Dec 2003.

[34] E. J. Lee and V. W. S. Chan. Part 1: optical communication over the clear

turbulent atmospheric channel using diversity. IEEE J. Select. Areas Commun.,

22(9): 1896–1906, Nov 2004.

177



[35] D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison

Wesley, MA, 1972.

[36] S. Masud, S. Buckley, and T. McKenna. Ten hottest technologies. Telecommu-

nications Americas, 35(5): 30–35, May 2001.

[37] R. J. McEliece and W. E. Stark. Channels with block interference. IEEE Trans.

Inform. Theory, 30(1): 44–53, Jan 1984.

[38] The Optical & RF Combined Link Experiment (ORCLE). Available online at

http://www.darpa.mil/ato/programs/orcle.htm.

[39] M. S. Pinsker. Information and Information Stability of Random Variables and

Processes. Holden-Day, Inc., San Fransisco, 1964.

[40] J. Proakis, E. Biglieri, and S. Shamai. Fading channels: information-theoretic

and communications aspects. IEEE Trans. Inform. Theory, 44(6): 2619–2692,

Oct 1998.

[41] S. Shamai. Capacity of a pulse-amplitude modulated direct detection photon

channel. Proc. IEEE, 137(6): 424–436, Dec 1990.

[42] S. Shamai. On the capacity of a direct-detection photon channel with

intertransition-constrained binary input. IEEE Trans. Inform. Theory, 37(6):

1540–1550, Nov 1991.

[43] S. Shamai and A. Lapidoth. Bounds on the capacity of a spectrally constrained

Poisson channel. IEEE Trans. Inform. Theory, 39(1): 19–29, Jan 1993.

178



[44] J. H. Shapiro. Imaging and optical communication through atmospheric turbu-

lence. In J. W. Strohbehn, editor, Laser Beam Propagation in the Atmosphere,

chapter 6. Springer, Berlin, 1978.

[45] J. H. Shapiro. Random medium propagation theory applied to communication

and radar system analyses. In J. Carl Leader, editor, Laser Beam Propagation

in the Atmosphere, Proceedings of SPIE, 410: 98–102, Apr 1983.

[46] C. E. Shannon. A mathematical theory of communication. Bell Sys. Tech. J.,

27: 379–423, 1948.

[47] D. N. Snyder and M. I. Miller. Random Point Processes in Time and Space.

Springer-Verlag, New York, 2nd edition, 1991.

[48] V. I. Tatarskii. Wave Propagation in a Turbulent Medium. Dover, New York,

1961.

[49] H. A. Willebrand and B. S. Ghuman. Fiber optics without fiber. IEEE Spectr.,

38(8): 41–45, Aug 2001.

[50] H. A. Willebrand and B. S. Ghuman. Free Space Optics: Enabling Optical

Connectivity in Today’s Networks. SAMS Publishing, Indianapolis, IN, 2002.

[51] S. G. Wilson, M. Brandt-Pierce, Q. Cao, and J. Leveque. Free-space optical

MIMO communication with Q-ary PPM. IEEE Trans. Commun., 53(8): 1402–

1412, Aug 2005.

179



[52] A. D. Wyner. Capacity and error exponent for the direct detection photon

channel, parts I & II. IEEE Trans. Inform. Theory, 34(6): 1449–1471, Nov

1988.

[53] R. You and J. M. Kahn. Upper-bounding the capacity of optical IM/DD chan-

nels with multiple subcarrier modulation and fixed bias using trigonometric

moment space method. IEEE Trans. Inform. Theory, 48(2): 514–523, Feb

2002.

[54] X. Zhu and J. M. Kahn. Free-space optical communication through atmospheric

turbulent channels. IEEE Trans. Commun., 50(8): 1293–1300, Aug 2002.

180


