ABSTRACT

Title of Dissertation: PRODUCTION AND ENVIRONMENTAL

INFLUENCES ON SOYBEAN ISOFLAVONE

TYPE AND CONCENTRATION

William Henry Phillips, II, Doctor of Philosophy, 2005

Dissertation Directed

By:

Professor, Charles Mulchi Marine, Estuarine, and Environmental Sciences

Environmental conditions can have major impacts on the production of soybean [Glycine max (L.) Merr.] metabolites. In two studies, isoflavone type and concentration of soybean seed tissue was evaluated. Study one evaluated the effects of treatments with lactofen; weed control (WC) and white-mold suppression (WM) rates and timings of 217 g ai ha⁻¹ applied at the V1 stage and 122 g ai ha⁻¹ applied at the V5-R1 stages, respectively. Leaf tissue isoflavone concentration for post-lactofen treated leaf tissue was 26% higher for total soybean treated with WC than WM. Yield was unaffected by lactofen treatments, but double crop (DC) averages were ~16% higher than full season (FS). highest concentrations of seed isoflavones for DC and FS were malonyldaidzin and malonylgenistin. The damage

caused to the leaf tissue by lactofen applications did not result in a change in the seed isoflavone concentrations, individually or quantified as total isoflavone. While the Lactofen treatments did not show an effect on isoflavone type and concentration with respect to application timing for the seed tissue, the consistency of the relative isoflavone concentrations for seed are important for cultivar selection. The second study focused on cultivar differences and interaction with elevated tropospheric ozone concentrations. Four cultivars were grown in the field in open-top chambers and fumigated with either carbon filtered (CF) or ozone (O_3) enriched air. The two β -glucosides, daidzin and genistin, and their Malonyl forms, plus one aglycone, genistein were present at detectable levels. The levels of the isoflavones daidzin, malonyldaidzin, malonylgenistin, and genistein were reduced for the seeds produced in O_3 , 25, 19, 15, and 11%, respectively. Genistin levels were not significantly different, but the data did trend toward lower concentrations for the O3 AQT. Genistein was the only aglycone detected. Williams 82 ranked consistently higher in levels of isoflavones, in some cases regardless of the AQT, than the other cultivars. Cultivar selection is important for the

production of high isoflavone soybeans near urban centers. The affects of production and environmental influences on soybean seed isoflavone type and concentration are variable and should be evaluated independently. Total isoflavone concentration is the best measure of overall cultivar isoflavone production.

PRODUCTION AND ENVIRONMENTAL INFLUENCES ON SOYBEAN ISOFLAVONE TYPE AND CONCENTRATION

Ву

William Henry Phillips, II

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy

2005

Advisory Committee:

Professor Larry Douglass Assistant Professor M. Monica Giusti Associate Professor Scott Glenn Professor William Kenworthy © Copyright by William Henry Phillips, II 2005

Dedication

To God for the love of his only son, and for all of the opportunities and gifts that he has given me in my life.

To my wife Carol Jo Osiecki Phillips and my son

Camden Edward Osiecki Phillips. Thank you for all of

your hard work, time, patience, and love. Without you in

my life, I could never have accomplished this work. Your

love and devotion both inspire and humble me. May God

bless you and keep you.

Acknowledgements

I would like to acknowledge Dr. Scott Glenn and Dr. William Kenworthy for all of their support throughout a major portion of my college education. Their tireless efforts to guide me through my education while allowing me the opportunities to succeed and fail on my own could never be repaid. Thankfully, guidance from Dr. Glenn and Dr. Kenworthy always included moral direction.

To Rosanna Louie, I will be ever grateful for her hard work, time, assistance, and cheering. Rosanna's tireless efforts and words of encouragement made this journey much more enjoyable.

To Dr. Charles Mulchi for his wisdom and good humor during some difficult tasks in the heat of the summer.

To Dr. Monica Giusti for her help and encouragement in the lab and from afar.

Table of Contents

Dedicationii
Acknowledgementsiii
Table of Contentsiv
List of Tablesvi
Chapter 3 vi
Chapter 4ix
List of Figuresxi
Chapter 2 xi
Chapter 3 xi
Chapter 4 xii
Chapter 1: Introduction
1.1 Overview
1.2 Dissertation Sections 4
1.2.1 Chapter 2
1.2.2 Chapter 3
1.2.3 Chapter 4
_
1.2.4 Chapter 5
1.2.5 Appendices
Chapter 2: Literature Review
2.1 Isoflavones 6
2.1.1 Introduction
2.1.2 Production 8
2.2 Soybeans and Isoflavones
2.2.1 Leaf Tissue
2.2.2 Root and Rhizosphere
2.2.3 Seed Tissue
2.2.4 Isoflavone Genetics
2.3 Human Health
2.3.1 Processing
2.3.2 Human Studies
2.3.3 Human Indications
2.4 Summation 51
2.5 Figures 54
2.6 Literature Citations 56
Chapter 3: Soybean [Glycine max (L.) Merr.] Leaf And Seed
Isoflavone Response To Lactofen Applications
3.1 Abstract
3.2 Introduction
3.3 Materials and Methods80
3.3.1 Leaf Extraction
3.3.2 Seed Extraction
3.3.3 Statistical Analysis
3.4 Results and Disscussion
7.4 NESULLS AND PLASCUSSION

3.4.1 Soybean Leaf Isoflavones
3.4.2 Soybean Seed Constituents90
3.4.3 Soybean Seed Isoflavones91
3.5 Conclusions 94
3.6 Tables and Figures
3.6.1 Tables
3.6.2 Figures
Chapter 4: Ozone Air Pollution Effects on the
Concentration of Isoflavones in Soybean [Glycine max (L.)
Merr.] Seeds
4.1 Abstract
4.2 Introduction
4.3 Materials and Methods
4.3.1 Field
4.3.2 Laboratory
4.3.4 Statistical Analysis
4.4 Results and Discussion
4.5 Tables and Figures
4.5.1 Tables
4.5.2 Figures
Chapter 5: Dissertation Conclusions
Appendices141
Statistical Analysis141
SAS Programming141
SAS Results
Data Sets
Chapter 6: References

List of Tables

Chapter 3

Table 3.8. Seed tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), four cultivars (Bass, Corsica, Jack, and Williams 82), two lactofen treatments (217 g active ingredient [ai] ha⁻¹ for weed control [WC] and 122 g ai ha⁻¹ for white mold suppression [WM]), and a untreated

control 105

Table 3.9. Soybean seed tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), two cropping systems (full-season and double-crop), two lactofen treatments (217 g active ingredient [ai] ha⁻¹ for weed control [WC] and 122 g ai ha⁻¹ for white mold suppression [WM]), and a untreated control

Chapter 4

Table 4.2. Soybean seed oil and protein concentrat:	ions
for cultivars grown in open-top field chambers	
fumigated with either carbon-filtered or ozone-	
enriched air at Beltsville, MD, in	
2001	133

Table 4.4. Soybean seed malonyl and aglycone isoflavone concentrations in soybean cultivars grown in open-top field chambers fumigated with carbon-filtered or ozone-enriched air at Beltsville, MD, in 2001 and

List of Figures

Chapter 2
Figure 2.1. Structures of the nine primary
economically important isoflavones found in soybean
seeds54
Figure 2.2. Phenylalnine pathway responsible for the
production of the economically important isoflavones
found in the soybean seeds55
<u>Chapter 3</u>
Figure 3.1. Chromatogram of the isoflavones extracted
from soybean leaf tissue 48 hours after treatment with
the white mold suppression application (WS) of
lactofen at 122 g active ingredient (ai) ha^{-1} for weed
control108
Figure 3.2. Phenylalnine pathway responsible for the
production of all isoflavones found in the soybean

Chapter 4

Figure 4.1. Three meter Open-Top Chamber (OTC) fitted
with an air intake containing a charcoal filter
system136
Figure 4.2. Average daily 7 h (1000 - 1700 h) ozone
concentration for in-field Open-Top Chambers (OTC)
averaged across chamber replications137
Figure 4.3. View from above an open-top chamber of a
soybean plot with transplants arranged in three
replications (Plot 1=Ozone Treatment + Replication 1
Cultivar Bass)138

Chapter 1: Introduction

1.1 Overview

People have utilized Soybean [Glycine max (L.) Merr.] seeds in many ways. Recently, products made from soybean seed, and its constituents, are being studied in agronomic, food science, and human health research all over the world. One of the most prolific areas of ongoing research focuses on soybean seed isoflavones.

Isoflavones are secondary plant metabolites that act as phytoalexins and are often referred to as phytoestrogens. These compounds are found in many plant families but none as much as the Leguminosae family. Previous research projects have concentrated in areas such as; environmental influences on soybean isoflavone production, searching for isoflavone-rich plant sources, and the absorption, metabolism, and functions of isoflavones in the human diet, as well as the development of human nutrition supplements. The impetus behind a large portion of the research is predominantly the potential for monetary gain placed upon isoflavones by the food, nutraceutical, and pharmaceutical industries. Much of the resources in the human health fields are focused on the safety and efficacy of isoflavones. The nutriceutical, and to a much lesser extent the

pharmaceutical, industries have marketed these compounds as being key to fighting diseases such as various cancers and osteoporoses or use in hormone replacement therapies for postmenopausal women. Many of the putative benefits made for isoflavones in human health have limited or no clinical research to support the purported findings. To this end, the relationship of isoflavones to human health is an ever-expanding field.

Much of the focus of the agronomic research has been limited to the amount of isoflavones produced by soybeans and the types that are produced. The primary focus of past and current research has been on isoflavone variability among cultivars, as well as the comparative response of these soybean cultivars to environmental stresses (Panizz and Bordingnon 2000). One area of potential for the alteration of isoflavone concentrations and types in soybean seed may be tied to the physiologic responses of specific cultivars to various production methodologies and crop protection chemicals and/or procedures. In many cases research conducted on soybean isoflavones has been conducted primarily within disciplines. Future research should take a multidisciplinary approach.

The objectives of the following research were to: 1. Evaluate differential cultivar responses from leaf damage, and subsequent leaf isoflavone production, resulting from applications of the herbicide lactofen and its relationship on the type and concentration of seed isoflavones. 2. Evaluate differential soybean cultivar seed responses to elevated ozone concentrations thru the analysis of isoflavone type and concentration.

1.2 Dissertation Sections

1.2.1 Chapter 2

This chapter contains a review of the research literature covering the areas of isoflavone production, soybean isoflavone genetics and physiology, as well as human health metabolism and absorption of isoflavones.

1.2.2 Chapter 3

This chapter presents the results of research conducted to evaluate the effects of the herbicide lactofen on soybean seed isoflavones. Lactofen was applied according to labeled rates and timings, as either an herbicide or as a suppressant of white mold.

1.2.3 Chapter 4

This chapter presents the results of the research conducted to evaluate the effects of chronic exposure to moderately elevated tropospheric O_3 on soybean seed isoflavones.

1.2.4 Chapter 5

This chapter presents the findings of this research as well as the contributions that this research has made to the overall body of research.

1.2.5 Appendices

In the appendices of this dissertation there are completed SAS^1 programs as well as their results, labeled "SAS Output". The programs that are included are written in macro format. The primary file is the first to be run in SAS and is used to invoke all macros and import the data set from the database Microsoft Access 2000^2 .

¹ SAS ver 8.01, Copyrite © 1999-2000 by SAS Institute Inc., Cary, North Carolina, USA.

² Copyright© 1992-1999 Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052-6399 U.S.A.

Chapter 2: Literature Review

2.1 Isoflavones

2.1.1 Introduction

There are more than 100 isoflavones and isoflavone glucosides known (Wong, 1975). These compounds are secondary plant metabolites that are produced as phytoalexins.

Isoflavones are produced predominantly in plants of the Leguminosae family, such as soybean [Glycine max (L.) Merr.], and also in a few non-leguminous plants including the important agronomic crop sugarbeet (Beta vulgaris) (Jung et al., 2000). Still, other plants produce significant concentrations of isoflavones. An extract of the inedible fruit of the Osage Orange tree (Maclura pomifera) was found to be a significant source of the isoflavones osajin and pomiferin, containing 25.7 and 36.2%, respectively (Tsao et al., 2003). There is current research to suggest that both osajin and pomiferin may be a repellant to insects (Peterson et al. 2002).

In soybean plants, isoflavones are found primarily in the seed, but under environmental stresses they can be extracted from various parts of the plant including the leaf tissue.

Three soybean cultivars, Emiliana, Elvir, and Kure were analyzed

for phenolic compounds over a three-month period. With the exception of pods, all parts of the plants were found to contain isoflavones (Romani et al., 2003). However, the researchers explained that the levels and locations of flavonols within the plant gave the indication that the plants were under ultraviolet light stress. The conclusion was that this stress might have been the cause of elevated levels of isoflavones; in some cases concentrations were ten-fold the averages represented in the literature. Isoflavones have also been reported in the roots and root exudates of soybean plants without stress induction (Kosslak et al., 1987).

Isoflavones are produced as the basic molecular structure known as the aglycone. The aglycone molecule is the basic building block from which two of these molecule isoflavone conjugates are made. The aglycone can have a glucose molecule attached at the number seven carbon thus resulting in the second molecule, the β -glucoside. The addition of a malonyl group to the 6'' carbon of the β -glucoside results in the formation of the malonyl conjugate (Figure 1.). The water-soluble β -glucosides are found in greatest abundance as compared to the aglycone (Wollenweber and Dietz, 1981).

Announced and described in 1980 the "new" isoflavone extracted from soybean was determined to be the 6"-O-

acetylgenistin conjugate (Ohta et al., 1980). Later it was found that this was not a new isoflavone, but a by-product of an extraction procedure that used high temperatures.

There are more than 100 isoflavones known, but only nine soybean isoflavones are thought to be of primary economic interest (Figure 1.). These isoflavones are comprised of three aglycons and three β -glucosides. Daidzein, genistein, and glycitein are the aglycones and daidzin, genistin, and glycitin are the β -glucosides. The rest of the nine forms have the malonyl prefix attached to their respective β -glucoside name: malonyldaidzin, malonylgenistin, and malonylglycitin.

2.1.2 Production

The biochemical production of isoflavones begins in the phenylalanine pathway, when triggered by specific conditions within the plant a portion of the pathway is shifted toward the production of isoflavones (Figure 2). Further down the pathway isoflavones can become precursors for other secondary metabolites. Daidzein was found to be the precursor to another phytoestrogen, coumestrol, in alfalfa (Medicago sativa). When soybean leaves were damaged using CuCl₂ and UV treatments the level of coumestrol was not affected (Dewick and Martin, 1979). However, this study has produced insight into the enzyme system

to which the plants quickly shift the biochemical pathway for isoflavone production. The system elucidated by Cosio et al (1985) included the enzymes chalcone synthase, phenylalanine ammonia-lyase, and UDP-glucose:isoflavone 7-0-glucosyl transferase. This enzymatic activity leading to the production of isoflavones will be detailed in the following section.

2.2 Soybeans and Isoflavones

2.2.1 Leaf Tissue

Mature soybean leaf tissue contains no isoflavones but does contain the flavonol kaempferol-3-glucoside (K3G) (Cosio et al., 1985). Following damage to leaf tissue, cells will produce isoflavones as a means of chemical defense. This production is localized and is a shift in leaf physiology and biochemistry. While the concentration of the flavonol K3G does not change as a result of the leaf damage, isoflavones begin to develop in varying types and concentrations. Isoflavones found in the mature leaf tissue of soybean plants occur only in response to damage. Chemical, disease, insect, or mechanical damage can cause the trigger for this phytoalexin response. localization of these reactions in the leaf tissue has been studied in a few soybean cultivars. Mature soybean leaves of the cultivar Harosoy63 contain kaempferol-3-glucosides with no other flavonoids found at detectable levels (Cosio et al., 1985). In the same study, soybean leaves that were treated with 100 mg/L of the herbicide acifluorfen³ plus 0.01 % (v:v) Triton $x-100^4$ (Octylphenol ethoxylate) surfactant were found to contain

³ BASF AG. Carl-Bosch-Strasse 64, 67117 Limburgerhof, Germany

⁴ The Dow Chemical Company, 2030 Dow Center, Midland, Michigan 48674 USA

isoflavone aglycons and β -glucosides. In a separate study, the primary isoflavones induced in soybean leaf tissue by the herbicide lactofen⁵ (ethyl O-[5-(2-chloro- α , α , α -trifluoro-p-tolyloxy)-2-nitrobenzoyl]-DL-lactate), were formononetin aglycones, as well as the isoflavones diadzein and malonylgenistin (Landini et al., 2003).

Acifluorfen and lactofen are the common names of two members of the diphenylether or nitrodiphenylether, herbicide family with the trade names of Blazer and Cobra, respectively (Vencill et al., 2002). This family of herbicides is used for postemergence broadleaf weed control in soybean fields. chemicals are not readily translocated in soybean. The mode of action of these herbicides is the inhibition of protoporphyrinogen oxidase. This inhibition begins a cascading effect where by the inhibition of this enzyme further inhibits the production of chlorophyll via the lack of oxidation of protoporphyrinogen IX to protoporphyrin IX. A subsequent buildup of protoporphyrin IX in the thylakoid lumen leads to a spill over into the chloroplast stroma where it absorbs energy from sunlight, which in turn moves the outer-most electron into a third higher valence shell. This energy is then transferred to ground-state oxygen where it forms singlet oxygen that

⁵ Valent USA Corp. P.O. Box 8025, 1333 N. California Blvd. Suite 600, Walnut Creek California 94596-8025

interacts with the plasmalemma resulting in lipid peroxidation. The result of the application of acifluorfen to soybean plants is not death but necrotic lesions on the contacted leaves (Vencill, 2002). Lactofen is the uniquely label for the prevention of white mold in soybean. White mold is caused by the fungal pathogen *Sclerotinia sclerotiorum* in soybeans. Lactofen prevents white mold via the induction of isoflavones in soybean leaf tissue that inhibit *Sclerotinia sclerotiorum* (Nelson et al., 2002).

After treatment with acifluorfen, Cosio et al (1985)
evaluated enzyme induction through the accumulation and
subsequent identification of chalcone synthase (24% of leaf
activity), phenylalanine ammonia-lyase (12%), and UDPglucose:isoflavone 7-0-glucosyl transferase (20%). This
accumulation of enzymes was validated by an earlier study by
Cosio and McClure (1984) where untreated soybean leaflets 2.5 to
3 cm long were found to have no detectable levels of
phenylalanine ammonialyase activity. In addition to elucidating
the enzymes in the leaf tissue, the study by Cosio et al. (1985)
included a time sequence of leaf enzyme and isoflavone
production. Within the first 24 to 30 hours, post spray
application (PSA) of acifluorfen to the soybean plants, there
were significant increases in the phenylalanine and chalcone

synthase concentrations. After 48 h PSA isoflavone aglycons and pterocarpans increased, then after 72 h PSA UDP-glucose:isoflavone 7-O-glucosyl transferase also increased.

After 96 h PSA, and following the availability of the UDP-glucose:isoflavone 7-O-glucosyl transferase enzyme, isoflavone aglycons were present.

Isoflavone β -glucoside production and storage were found to be within the mesophyll cells (Cosio et al. 1985). These researchers theorize that the β -glucosides were detoxification products accumulated within the vacuoles of mesophyll cells. Isoflavone β -glucoside synthesis and accumulation were found to be within the cytosol of the mesophyll cells. Isoflavone aglycones and pterocarpans accumulated in the epidermis and intercellular spaces of the mesophyll cells. Pterocarpans and aglycones were detected only in the tissue adjacent to the necrotic tissue, which resulted from the Acifluorfen treatment.

From these two influential research findings it is probable that: 1. The aglycons and pterocarpans are the important constituents in the reaction to leaf tissue damage, as they were most available in the location where the damage occurred, 2. An explanation of the lack of phenylalanine ammonialyase activity in the leaf tissue is that the flavonol intermediates may be translocated to leaf tissue where they are later used in the

synthesis of secondary phenolic compounds. With respect to the later of the two findings, the evidence for this finding was the accumulation of the enzyme 4-coumarate:CoA ligase, which is an enzyme that occurs between the phenylpropanoid pathway and the flavonoid pathway. It is this enzyme that is needed to begin the production of the isoflavone phytoalexins. Further evidence is the concomitant accumulation of chalcone-flavanone isomerase, the primary enzyme required for the production of the aglycone isoflavone daidzein.

In 2003, Landini et al. found that the primary isoflavones induced by an application of lactofen were daidzein, formononetin aglycones, and malonylgenistin. The location of these induced phytoalexins were proximal the area of damage by the herbicide, thus confirming the findings of Cosio et al. (1985). Further findings from this research were that there was no movement of the isoflavones from the immediate area of damage. In this research, it was also observed that the treatment of soybean leaf tissue by several of the diphenyl ether herbicides induced a mechanism in the plant to respond to infection by *Phytophthora sojae*. This mechanism results in the soybean tissue accumulating glyceollin, which is a pterocarpan phytoalexin. This response is induced by chemical signals from the pathogen that are designed to induce the host cells into

producing glucan (Ebel et al., 1984; Ebel and A. Mithofer, 1998). A key to the successful use of lactofen over other diphenylether herbicides is that it is only one of a few of the diphenyl ethers to induce soybean leaf tissue into the production of isoflavones without a chemical signal from a pathogen (Landini et al., 2003). These researchers explain that the mode of action of the diphenyl ether herbicides, such as lactofen, result in oxygen radicals that "mimic some aspects of hypersensitive cell death" (Landini et al., 2003).

In addition to fungal pathogens, it is thought that damage caused by insects is also another stimulant by which isoflavone production is induced. While there has been no research working directly with soybean plants, there have been efforts to evaluate the role of isoflavones in insect feeding on crops such as subterranean clover (Trifolium subterraneum L.). According to Beck and Knox (1971), red clover (Trifolium pratense L.) was found to contain formononetin, biochanin, as well as both of their β -glucosides. The major concentration of formononetin and biochanin were in the form of malonate esters. Wang et al. (1999) also extracted isoflavones from subterranean clover. Using a methanol extraction procedure, they determined the type and concentration of the total leaf tissue (TLT) and surface leaf tissue (SLT) isoflavones. These researchers found that the

primary isoflavone in the TLT extract was genistein. The next highest concentration was biochanin A, which was only one-third of the concentration of the genistein. The concentration of the TLT isoflavones was found to be a poor predictor of the level of mite resistance. However, in the TST the concentration of biochanin A was more than three times the concentration of genistein. The level of 7-0-glucoside biocchanin-A in the leaf surface was the best predictor of mite resistance $(r^2 \ 0.84)$, while the concentrations of the total biochanin A plus genistein were almost as good $(r^2 \ 0.78)$. The major problem with the analysis of this research is the comparison of the use of r^2 for the evaluation of prediction. A simple analysis comparing the collected data to the predicted data would have provided evidence of the quality of the models discussed. Perhaps a better analysis of the data would have been to use genistein as a covariate, since they seem to believe that the total biochanin A plus the genistein was a better predictor. In this study, the nonglucosilated forms of the isoflavones were found to be active deterrents of mite feeding at concentrations ten times lower than their glucosalated forms.

The ability of plant leaf tissue to produce isoflavones is a key to their protection from damage that could reduce overall plant health as well as yield. The converse to this is that the

production of isoflavones requires plant products and the shifting of biochemical constituents and pathways. Thus the question yet to be evaluated involves the cost of leaf isoflavone production. Specifically, what is the cost to stored isoflavones in the seed? Are enzymes and precursors used for seed isoflavone production translocated to be used in leaf isoflavone production?

2.2.2 Root and Rhizosphere

Distribution of the isoflavones daidzein, daidzin, and the malonyated forms of daidzin and genistin were determined for seven-day-old seedlings of cultivars Williams 79 and Williams 82 (Graham, 1991). The concentrations were the same for the two thus the data were combined. Grown under lighted conditions the root had the highest concentration of daidzin and daidzein with the root tip having more than three times the concentration of daidzein than the remaining portion of the plant. The daidzin concentration in the root tip was about the same as that of the rest of the combined tissue.

Grown in dark conditions, the soybean root tip contained about the same concentration of daidzein as the remainder of the plant tissue while the cotyledons contained the same relative concentration of daidzin as the combination of all other tissue. There was a relative reduction in root isoflavones and an

increase in the cotyledon isoflavones. As for the malonyl forms, the root tip and the cotyledon had the same concentration, which was well over double that of the other tissue combined; Malonyldaidzin was high for the two, but highest in the cotyledons. Overall however, the concentrations of the isoflavones in the tissue grown in the dark was about one third that of the tissue from the light.

What role the light plays in the increased production of isoflavones was not determined, however it is clear that the lack of light causes an increase in the isoflavone concentration in the cotyledons and a decrease in the roots. The majority of the malonyldaidzin and malonylgenistin were found in the root tip and the cotyledons (Graham 1991).

Exudate at the root tip was found to have a high in aglycone daidzein concentration (Graham, 1991). The research was repeated and the findings were that the majority of the root exudate was malonyldaidzin. This lead to the belief that the exudate from the root tip was the of the malonyl form. The speculation was that there were β -glucosidases in the exudate resulting in the aglycone (Graham, 1991).

In 1987 it was reported that soybean roots exude the aglycon isoflavones coumestrol, daidzein, and genistein, and that these exudates stimulate *Bradyrhizobium japonicum* USDA123

to begin transcription of the gene responsible for nodulation, nod gene (Kosslak et al., 1987). Many studies have demonstrated that members of the tribe Phaseolleae share a common trait of using the same isoflavone chemical triggers for transcription of the nod gene regardless of their particular species of symbiont (Dakora, 2000).

The aglycone isoflavones, daidzein and genistein were found to be the primary nod gene inducing chemicals in root exudates of soybean (Loh and Stacey, 2003; Leibovitch et al., 2001; Kosslak, 1987). The nod gene induction is a result of activation of the NodD regulator by the presence of daidzein and genistein (Loh and Stacey, 2003). In fact, Leibovitch et al. (2001) found that an increase in exposure of *B. japonicum* to these isoflavones plus a subsequent increase in daidzein and genistein in the rhizosphere of the soybean plants, improved nitrogen fixation and seed yield 7%. In addition, root genistein and daidzein concentrations were elevated in soybean plants inoculated with rhizobium compared to the same cultivars, which were not inoculated (Zhang et al., 2000).

Three species of rhizobium were found to metabolize the induction compounds, isoflavones, with the metabolites found in the cells of the bacteria. Two of the metabolites found, umbelliferone and phenylacetic acid, sequestered in the cells

were proven to reduce the expression of the nod gene by 36% (Rao and Cooper 1995). The three rhizobia studied were Bradyrhizobium japonicum USDA 110spc4, Rhizobium fredii HH103, and Rhizobium sp. NGR234. Once the rhizobium has infected the root system the isoflavones are presumably no longer important to the system; thus the effort to reduce the isoflavone production by the bacteria (Rao and Cooper, 1995).

Medicarpin concentrations in the roots of Medicago truncatula increase during the early phase of mycorrhizal colonization (Harrison and Dixon, 1993). As a sign of the increase in flavonoids, Harrison and Dixon (1993) found that there was an increase in the concentrations of the enzymes phenylalanine ammonia-lyase (PAL) and chalcone synthase (CHS). The levels of isoflavone reductase (IFR) did not increase, but decreased for those cultivars colonized by mycorrhizae when compared to the control isolines that were negative for colonization. In addition, coumestrol was found in the colonized roots but not in the control isolines.

Volpin et al. 1995 later demonstrated that in the early stages of mycorrhizal colonization of alfalfa (*Medicago sativa*) there is a response by the plant to produce mRNA that codes for an increase in defensive secondary metabolites. Between the 14th and 18th day of colonization of roots by mycorrhizea, the levels

of mRNA coding for PAL doubled, and for chalcone isomerase (CHI) increased six fold over the isoline control levels. after the 18th day, the levels of mRNA decreased rapidly as if there was some recognition by the plant of the symbiotic nature of the colonization. Levels of formononetin and formononetin plus medicarpin glucosides were also found to increase then rapidly decrease in the colonized roots. These findings complement those of earlier researchers and yet take the research a step further. Perhaps the bacterial dissolution of the isoflavone compounds is a short-term mechanism to allow for the early stages of infection, then there is some type of "feedback mechanism" that the plant utilizes to reduce the defensive isoflavone compounds. Together the two major pieces of research conclude that there is some important interaction during the early infection by rhizobia in leguminous plants. However, in a continuing effort to elucidate the details of the role of flavonoids and isoflavonoids in the symbiosis of alfalfa and Rhizobium meliloti, McKhann et al. (1997) evaluated the expression of the CHS, IFR and CHI genes. CHS mRNA was located in the root hairs and epidermis of the root but almost none in nodule-forming tissue. IFR and CHI mRNA were not found to increase as a result of inoculation. The overall findings demonstrated that there was no difference found for gene

expression in the comparison of the nod forming and no-nod forming alfalfa. These findings then controvert that of the earlier observations of researchers. It is perhaps important to remember that there may be some molecular recognition between the plant and its symbiont that may also control the genetic machinery. While there was an increase in isoflavones when soybean roots were infected with *Phytophthora megasperma* (Graham et al., 1990), there is no response from *Rhizobium meliloti*.

In another area of this crossover of root zone ecology and root physiology research, there is the possible role of flavonoides and isoflavones in nematode resistance. Root-lesion nematode (*Pratylenchus penetrans*) resistant (RST) and susceptible (SUS) alfalfa plants were evaluated for root flavanoid and isoflavone type and content (Baldridge et al., 1998). Prior to nematode infection, the concentrations of root phenylpropanoid pathway mRNA for RST cultivars were 1.3 to 1.8 times that of the SUS.

Post nematode infection found the mRNA levels for the RST plants began to slowly decline while the concentration in the SUS root tissue increased for a short period prior to its decline. Analyses of total isoflavone concentrations were the same for the RST and SUS cultivars; however the types and ratios of isoflavones varied between the RST and the SUS. The most

important of these differences was the finding that the phytoalexin medicarpin was found to be in the highest concentrations in the RST plant roots. Key to this discovery was also the fact that medicarpin was found to be a motility inhibitor of this species of nematodes in vitro. Given that these phytoalexins have an effect on nematodes; it would seem that the gradual "loss of resistance" by nematode-resistant cultivars is an elementary case of selection.

2.2.3 Seed Tissue

The primary source of marketable isoflavones is the seed, or grain, of the soybean plant. Currently on the market there are diet supplements that are marketed as containing isoflavones derived directly from soybean seed. The demand for nutraceuticals, as these types of supplements are called, has begun to be an important area for soybean marketing. This marketing for the industry is becoming very important as a value-added source for soybean growers and processors. Current research on soybean-derived nutraceuticals has focused on two major areas, genotypic variation and environmental interactions with the production of nutraceuticals.

The role of isoflavones in the tissue of soybean, or any other species of plant, is first as a protectant to the

developing seed and seedling. Within 24 h of seed imbibition, exudate increases in isoflavone concentrations; the largest fraction of these isoflavones has been found to be malonyldaidzin and genistin (Graham, 1991). In harvested seed, there are four predominant isoflavones, daidzin, genistin, malonyldaidzin, and malonylgenistin (Tsukamoto et al., 1995). Since the early 1970's there have been announcements of new isoflavones isolated from soybean seeds. Glycitein was announced as a newly elucidated isoflavone aglycone in 1973 by Naim et al. Later in 2003, Thoruwa et al. announced an in vitro synthesis of glycitein. In 1980, Ohta et al. announced and described a "new" isoflavone extracted from soybean as 6"-Oacetyl genistin. However in 1981, Murphy found that acetylated forms of isoflavone glucosides are most likely the result of β glucosides exposed to heat during the processing of seed. two aforementioned β -glucosides and the two malonyl forms of the isoflavones are well accepted to be the most prevalent, while the acetyl forms are considered a non-issue (Murphy, 1981).

Recent research has demonstrated that the combined genistein and daidzein derivatives accumulated in seeds range from 4.49 to 12.61 g $\rm kg^{-1}$ for a mix of different cultivars analyzed (Romani et al., 2003). The distribution of the recovered isoflavones from soybean seed have been found to be

80-90% in the cotyledons and 10-20% recovered from the hypocotyls, by weight (Tsukamoto et al., 1995). Isoflavone species extracted from whole seed in the same study were daidzin, genistin, malonylgenistin, and malonyldaidzin, while from the hypocotyls alone they were daidzin, genistin, glycitin, malonylgenistin, malonyldaidzin, and malonylglycitin (Figure 1.). Eldridge and Kwolck (1983) also found "trace" amounts of isoflavones in the seed coat. However, this amount of isoflavones is so small that it is regarded as insignificant.

Several studies have been published that attempted to explain the highly variable nature of isoflavones found in soybean cultivars (Duke et al., 2003; Hoeck et al., 2000; Wang et al., 2000; Tsukamoto et al., 1995; Wang and Murphy, 1994a; Graham, 1991). Initially the variability had been thought to be simply cultivar differences, most likely unintended selection of breeding lines. Early research began to focus on the role that environmental influences have on the content and concentration of isoflavones in soybean seed. Tsukamoto et al. (1995) found that the seed from soybean plants harvested from environments of high relative temperatures consistently contained higher concentration of isoflavones than the seed from plants that were harvested from areas of relatively lower season-long temperatures. This characteristic was found to be true for all

seven cultivars tested in this study. This agreed with studies of Hoeck et al. (2000) where they found that the isoflavone concentrations were significantly different between environments. In addition, in this study the within environment isoflavone levels at the genotypic level were found to be different. In the Tsukamoto et al. (1995) study, all isoflavones extracted from the seed of cultivars grown in the cool temperature environments were lower in concentration when compared to the warm weather grown seed. This shift in isoflavone concentrations at high temperatures was found to be isolated to the cotyledons. When a comparison was made between growth chamber-grown soybean plants and field-grown plants, a lower overall isoflavone concentration was found for seed harvested from the growth chamber plants. Suppositional findings were related to macro- and microorganism damage. Indeed this finding would be consistent with the theory of tissue-damage induction for isoflavones. In an effort to expand on the role of environmental variability, Hoeck et al. (2000) evaluated six soybean genotypes at eight locations to determine what effect genotype by environment interactions may have on isoflavone concentration and production. The data were analyzed with year and environment (location) as fixed effects and as a result, when the year effect was determined to be significant,

the data were separated and analyzed by year using F tests to determine significance. The isoflavone concentrations were significantly different between environments. Within each environment, isoflavone concentrations for genotypes were also determined to be different. Differences in mean genotype by environment interactions remained consistent for all six genotypes across the eight locations. Due to the similarity in the responses of the total and individual isoflavone concentrations, these authors contend that the results support the hypothesis that isoflavone concentration is a quantitive trait.

In another study, a total of 210 cultivars of soybeans, made up of 41, 96, and 73 cultivars of maturity groups 0, I, II, respectively, were grown in one location then evaluated for seed isoflavone concentration and types (Wang et al., 2000).

Differences in isoflavones did not follow any trends based on maturity groups. In fact, maturity group differences were mixed, total isoflavones for group 0 were lower than for group II, but group I concentrations were not different from either.

Genistein concentrations were higher for group 0 and I compared to group II, but daidzein was higher for group I than for groups 0 and II. In addition, findings in this study revealed that

disease resistance was not linked to isoflavone type or concentration, but hilum color was linked.

Hilum color was not different for total isoflavone concentration; however seeds with a green hilum had higher concentrations of genistin when compared to black or brown hilum seeds. Daidzein was higher in yellow hilum seeds versus black, and the black hilum seeds had the lowest genistein overall. Given the research in the area of soybean seed isoflavones, it seems that if there is a qualitative trait for isoflavone type and concentrations, it may be hilum color.

While it was not the intention of this research or the data presented herein, it may be an indication of a much broader point; there is a lack of genetic diversity among modern soybean cultivars. There is a broad spectrum of cultivars used in current breeding programs and thus those that are sold to farmers. However, given data such as that from the studies discussed herein, it is easy to deduce that the cultivated soybeans of today are inbred to an extent that current progeny are descendants of only a small number of progenitors. Current annual soybean cultivars descend from the two species Glycine max and Glycine soja. These two species are so readily crossed sexually that Hymowitz (2004) has referred to these two species as "effectively constituting a single species". Perhaps armed

with this knowledge, researchers interested in the search for regulating isoflavone type and concentration in soybean seed may choose to begin their search at the beginning of the soybean lineage. It is clear that there remains much research to be conducted into isoflavone types and concentrations among soybean cultivar seeds, and the effects that cause a change in expression.

2.2.4 Isoflavone Genetics

The basic body of research into the genetics of isoflavone production in plants was begun first by enzyme isolation, then the bioengineering of plants to produce isoflavones. This first step began with the isolation of the enzyme responsible for the in vivo production of isoflavones in legumes. The focus of a study by Jung et al (2000) announced the finding of the soybean isoflavone synthase (IFS) gene (Genbank accession number AF195798). There were two genes IFS1 and IFS2 found in soybean that were determined to be 96.7% identical. However, the total conversion and the speed at which conversion takes place is more than double for IFS1. The existence of two IFS genes was also found in nonlegume sugarbeet (Beta vulgaris). These genes were found to be >95% similar to the IFS genes in soybeans (GenBank accession numbers AF195816).

Later in 2000, Yu et al. followed up with research focused on the genetic transformation of plants that do not produce isoflavones. This was accomplished by the transformation of Arabidopsis, tobacco (Nicotiana tabacum), and Maize Black Mexican Sweet (BMS) (Zea mays) plants. Transgenic arabidopsis produced the IFS enzyme that utilized the in vitro naringenin substrate to produce genistein in hydrolyzed leaf and stem tissue. In subsequent research, plants belonging to these transgenic lines were found to accumulate genistein in leaf tissue that had been damaged by UV-B.

Transgenic tobacco (Nicotiana tabacum cv SR1) did not produce genistein unless there was damage to the leaf tissue, such as with UV-B light. These plants were found to produce the IFS enzyme, however there was little of the substrate naringenin due to use of its precursor in the anthocyanin pathway. The damage to the leaf tissue, however caused a shift in the use of the phenylpropanoid pathway from anthocyanins to isoflavones.

Transgenic BMS cells were used as the monocot model for the isoflavone production study. Of the 25 cell lines that were found by PCR to contain the IFS gene, none produced detectable levels of genistein. A chimeric transcription factor (CRC) was used to activate gene expression for anthocyanins in cells thus producing the substrate naringnin and subsequently genistein.

The levels of genistein were increased through stimulation by UV-B light, proving that the IFS was able to compete in the transformed monocot cell lines just as in the dicot plants.

The arabidopsis, tobacco, and BMS plants contained isoflavones in the form of genistin, while the tobacco plants contained malonyl-genistin in red flowers. Daidzein synthesis follows much the same biochemical route: the IFS gene is involved in triggering the production of the enzyme isoflavone synthase, along with chalcone reductase (CHR), the substrate liquiritigenin is produced. This process continues and results in the production of daidzein.

Transformed BMS containing the IFS, CRC, and CHR genes resulted in the production of daidzein as determined by cochromatography using high-pressure liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS). This conversion is much faster than that of the naringnin to genistein. It was determined from this research that the missing part of the biochemical machinery of non-leguminous plant species is due to a lack of the production of the substrate. Jung et al. (2000) determined that the lack of genistin in the leaves of transformed tobacco is due to the lack of naringnin and not the competition for this substrate (Figure 2.). The basis of their determination was that there was a high

level of IFS detected in the leaves of the tobacco plants. In the BMS cells the need of the CRC was not a result of the lack of the substrate but the over abundance of a conjugated substrate. The foundation of the research in this paper is to be able to incorporate the production of isoflavones into more popular food crops, such as wheat, to give humans the opportunity to utilize these compounds for their health benefits.

Through metabolic engineering, a decrease in the level of genistein along with a complete blockage of the anthocyanin pathway caused an increase in the production of daidzein in two independent transformed soybean lines (Yu et al., 2003). increase in daidzein was reported to be above four fold that of "wild-type seed". It was noted that in the two transformed lines the progeny seed exhibited differences in seed morphology. The seed coat in the transformed lines was in one case wrinkled while in the other soybean line there was a pronounced dark stripe on the seed. The researchers noted that there was a strong correlation between the transformed seed exhibiting the wrinkled seed coat with increased daidzein. There was also a strong correlation between the transformed striped seed with reduced genistein levels. The conclusion was that the phenotypic variability was related to the change in isoflavone

concentrations. This finding supports the results of Wang et al (2000) who found hilum color to be closely correlated to isoflavone type and concentrations.

2.3 Human Health

The natural progression from a discussion of agronomic crops such as soybean would be to the products that are made from the seeds of these plants. Isoflavone rich foods, nutriceuticals, and pharmaceuticals have become important for their human benefits. In fact, the type and concentrations of isoflavones in end use products can be altered by the manner in which they are processed and prepared.

It is beyond the scope of this literature review to delve into the entire body of human health research with respect to isoflavones. However, it is important to understand the potential and the scope of how the production of isoflavones from soybean seed may someday impact human health. For this reason the following discussion will highlight a few of the major achievements in the current body of research.

2.3.1 Processing

The isoflavone composition of many commercial foods is varied based upon the type of soy products used in the making of these foods, as well as the process by which they are made (Wang and Murphy, 1994b). As with almost all chemical reactions, the amount of heat added to a system can result in changes and conjugated products. This includes the changes in soy foods

during the cooking process (Toda et al., 2000). In the cases of the production of toasting soy flour, decarboxylation of 6''-0-malonyl- β -glucoside resulted in the conjugation to 6''-0-acetyl- β -glucoside caused by excessive heat. Baking and frying also caused the conversion of malonyl forms of isoflavones to β -glucosides (Coward et al., 1998).

While excessive heat can result in changes to isoflavones in food products, there are also other processing steps that have been found to alter isoflavones as well. Low-fat soy products and soymilk were found to be low in all isoflavones (Coward et al., 1998). However, isoflavone aglycon concentrations are increased when soybeans are presoaked in water as part of the processing for soymilk. The results of this increase in aglycons are the increase in a perceived acerbic and "beany" flavor. Preheating of soybeans decreased the malonyl forms of isoflavones via their conversion to β -glucosides, however no increases in the concentration of aglycons were observed. This was not perceived to impart the negative taste of soymilk made with the presoaked soybeans (Carrao-Panizzi et al., 1999).

While the processing of soybean seeds has an impact on the type of isoflavones present, as consumers it is only the choice of what we take in that can be controlled. It is for this

reason that much research has focused upon the intake of different isoflavones, their absorption and ultimately the role they have in human health.

2.3.2 Human Studies

Diet and nutraceutical intake are two areas of isoflavone exposure in adults and children that are unique enough to be considered separately and then together. The unintended ingestion of foods and food products that are either directly made from, or indirectly contain isoflavones can be important with respect to human health. The addition of the intentional consumption of federally unregulated nutraceutical products for their anti-carcinogenic or hormonal effects may increase the overall considerations for human health.

Consumption of isoflavones resulting from food intake can be an issue in whole and processed foods. As previously stated, the type of isoflavones found in processed soy products can vary based upon how they are processed. Nutraceutical use by humans has increased as marketing has become more multifaceted and people become more informed and proactive with respect to their health (Kurtzweil, 1999). According to the Federal Food and Drug Administration (FDA) from the period of 1990 to 1996 the growth of the dietary supplement sales have almost doubled from

\$3.3 billion to \$6.5 billion dollars (Kurtzweil, 1999).

Pharmaceutical research has branched into the "natural" health care market by the inclusion of "plant-based phytochemicals" into premixed treatments as well as a few stand-alone products.

One of the most famous of these products is Tamoxifen Citrate⁶.

Together the source of daily intake of isoflavones from the American diet has yet to become a major focus of health-care research. This may perhaps be due to the lack of available data sets for epidemiological researchers, the lack of concern or the lack of clinical knowledge in the subject area.

Research has been undertaken to evaluate the type of isoflavones absorbed via human digestion of soy products. This type of research can be used in an effort to understand the significance of isoflavones in the human diet, but it can also be exploited for the monetary value of those products sold without standardized testing.

Park et al. (2003) focused on extracting and transforming isoflavones via a method that will result in the conversion of β -glucosides to aglycones because their hypothesis was that aglycone isoflavones have greater biological activity than β -glucosides. This process resulted in the commercial yield of aglycone isoflavones from soybean seeds to be higher than that

⁶ ZENECA Pharmaceuticals, Wilmington, Delaware 19850-5437

of their initial concentration. There is no mutually agreed upon standard of human absorption of isoflavones. However, the majority of the research has demonstrated that the isoflavone aglycones are readily absorbed and that β -glucosides are hydrolyzed in the large intestine via gut micro flora prior to absorption.

Wilkinson et al. (1999) evaluated the absorption and metabolism of isoflavones ingested by humans. isoflavones were found in the blood plasma within 30 min of in take, thus the implication was that the absorption must be in the small intestine. It is currently accepted that once in the small intestine, daidzein diffusion is passive via the enterocyte. This diffusion of daidzin into the enterocyte is via "Active Sugar Transport Mechanisms". Hydrolysis may occur in the mucosal brush border membrane forming daidzein that then diffuses as stated above. This study used in vitro rat gut as the model to test isoflavone absorption. It is thought that isoflavone β -glucosides are hydrolyzed in the large intestine via gut micro flora. This study indicated that there is no difference between aglycone or glucoside absorption, a finding that is very controversial and not widely accepted. However, in a study by Izumi et al (2000) in humans, soy isoflavone aglycones were absorbed at a faster rate and a higher percentage

than their glucosides. Aglycone concentration in blood plasma was at its maximum at two h, while for the glucosides it was twice as long. When test subjects ingested the same concentration of daidzein as genistein, the blood plasma always had a higher concentration of genistein. The end result is that for perceived health reasons, food products high in isoflavone aglycones may be the ideal form. These forms may be fermented soy protein and fermented soy protein extracts. In fact in 1996 Fukutake et al. quantified the concentration of genistein and genistin in soybean and soybean products. Their findings were that the aglycon genistein is higher in fermented soybean and fermented products of soybean.

Researchers investigated the variability of intestinal metabolism of the aglycone daidzein among individual people (Rafii et al 2003). Using gut micro flora from ten individuals, it was found that those whom had changed their diets to a soyrich diet also changed their ability to metabolize daidzein. This study supported other research, which demonstrated that a change in diet could also affect gut micro flora in such a manner as to alter the resulting metabolites.

In 2003, Setchell et al. conducted research into the pharmacokinetics of the differential absorption of aglycone isoflavone types. In this study, the concentration of genistein

in blood serum was highest at 7.4 hr while daidzein concentration was highest at 5.5 hr after ingestion. Pharmacokinetics of genistein and daidzein were studied and found that genistein was more bioavailable than daidzein. In the dose response portion of the research the nonlinearity of the bioavailability of genistein and daidzein lead the researchers to the conclusion that the intake of these two isoflavones is saturable. This finding suggests that isoflavone supplements may have limited value and that a change in diet could offer the maximum pharmacological benefit that can be gained from isoflavone ingestion.

In a 2000 statement for healthcare professionals, the American Heart Association (AHA) recommended, "...the consumption of soy protein containing isoflavones..." for the population in general, but specifically for those with elevated total and LDL cholesterol (Krauss et al., 2001). This statement came just short of an acknowledgment that there is a cholesterol-lowering activity resulting from the consumption of soy protein that is due to the isoflavone content. On the other side of this debate, is the fact that while the growth parameters of infants fed soy-based formula were no different than that of breast fed babies, the American Academy of Pediatrics (AAP) has found inconsistencies in the evidence regarding soy-based formula for

preterm infants (Zung et al 2001). Due to the inconsistent findings in the literature, the AAP has stated that it does not recommend soy-based infant formulas for preterm infants <1,800 This paper by Zung et al. (2001) stated that it was the isoflavone content of soy-based formula that resulted in reduced cholesterol and lipoprotein levels. The literature does confirm that isoflavones are found in the maternal blood, cord plasma, and amniotic fluid thus proving their passage from mother to prepartum infant. In studies using rodent models, there have been several findings that demonstrated prepartum and postpartum exposure to genistein resulting in female offspring experiencing early puberty, reduced ovary and uterus size, and a reduction in estradiol and progesterone. In the Journal of Clinical Nutrition, Setchell et al. (1998) reported on the exposure of infants to phytoestrogens from soy-based infant formula. this study, they found that infants are exposed to isoflavone levels in soy-based infant formula at levels four times the concentration of that found in human breast milk.

Franke et al. (1998) found that human breast milk contained absorbed isoflavones in forms of glucuronide or sulfate conjugates, which were thought to increase their absorption and perhaps mobility. The metabolites of isoflavones, such as equal, were present in urine samples but not in the breast milk.

Human research subjects fed 20g of soybeans had blood plasma levels of genistein that were more than twice the concentration of daidzein. The level of genistein in urine was less than that of daidzein. Franke et al. (1998) attributed this to the higher polarity of the daidzein. Infants fed a diet high in soy-based formula had higher levels of malonyl and acetyl forms of isoflavones in their urine. This was speculated to be due to the lack of gut micro flora required to carry out β -glucosidic cleavage. Clearly there are mixed messages and a lack of information regarding infant intake of isoflavones. This is perhaps the conundrum that brought the AAP to their decision.

2.3.3 Human Indications

There are three areas in which isoflavones are thought to play an active role in human health. The first of the three areas are as antioxidants to prevent and/or aid in the treatment of some cancers. Second is the ability isoflavones have in the role of increased bone density and hormone replacement therapy (HRT) for postmenopausal women. In the third area there has been some limited success at evaluating isoflavones for their antidipsotropic properties.

There has been research conducted to evaluate the theory relating isoflavone antioxidative potential to the cellular

level. Both Fleury et al. (1992) and then Yang et al. (2001) evaluated isoflavones for their antioxidative potentials. In addition to this body of work, much has been published on the role that isoflavones can play in HRT. The third area is the antidipsotropic property, which is believed to have the potential to inhibit serotonin and dopamine metabolism (Keung and Vallee, 1998). These properties have been studied with the motivation to assist in the long-term treatment of dipsomania. Current animal studies have resulted in some promising findings.

Yang et al. (2001) estimated the antioxidant activities (AA) of flavonoids from their oxidation potentials. This study was designed to develop a methodology for the estimation for the AA of several types of flavonoids. Estimation of the lipid peroxidation (LPO) inhibition of flavonoids was established. An inhibitory concentration of 50% (IC₅₀) was determined for each of the flavonoids in the study. The relationship of an IC₅₀ to the LPO of the compound was that, the lower the IC₅₀ the less of the compound that it takes to inhibit LPO. Compounds lacking the 2-3 double bond and the 3-hydroxyl group resulted in the electron delocalization of the molecule, thus a decrease in the LPO and an increase in the IC₅₀. To further characterize the LPO, the comparisons of the IC₅₀, $E_{1/2}/V$ (a measure of the oxidation and electron transfer on the first wave of oxidation occurring) and

the log octanol/water partition coefficient (O/WPC) resulted in elucidating the AA of many compounds. As it turned out, there was a strong relationship between the $E_{1/2}/V$ and the structure of the flavonoid molecule. Thus the molecular structure plus the other two measured parameters were important in the determination of the AA of flavonols, flavones, flavanones, isoflavones, flavans, and flavanonols. In this study, the flavonoid with the highest AA was the flavonol quercetin (3,5,7,3',4'-pentahydroxyflavone). The 2-3 double bond and the 3-hydroxyl group resulted in a low $IC_{50}/\mu M$ of 8.5 and a 1.15 O/WPC. The O/WPC was found to be a value that when too high or too low the lipophilicity will not allow for the correct interaction with a cellular lipid bilayer, thus resulting in a higher IC_{50} (Yang et al., 2001; Terao et al., 1994). findings of Yang et al. (2001) provided the same conclusions as Terao et al. (1994) with respect to the AA nature of quercetin. Comparing the values of the two isoflavones included in the study with the values for quercetin demonstrated the lack of AA of these chemicals. The two isoflavones included in this study were daidzein and daidzin. There was an IC_{50} of $>100/\mu M$ and $>100/\mu M$ plus a 2.69 and 0.85 O/WPC for the aglycon daidzein (7,4'-dihydroxyisoflavone) and the β -glucoside daidzin (4'hydroxyisoflavone-7--glucoside), respectively. This

demonstrated a clear lack of AA properties for these chemicals. Lacking the 2-3 double bond and having the O/WPC at either extreme resulted in a very high IC_{50} for each of the two isoflavones.

As with many potential finds in pharmacognosy there are often high hopes. In the early stages of research, the potential indications for the drug tamoxifen were numerous. In fact, tamoxifen became very important for those women who have had breast cancers that are dependant upon estrogen, or those who have the potential for these types of cancers (Anonymous, 1998; Alberts and Garcia. 1995). While this turns out to be a small part of the population, to these women the early hopes did bear fruit. However, there were many for whom this research excluded them from treatment as contraindicated. In the potential role as antioxidants, isoflavones are currently being marked in the nutraceutical industry for a wide range of treatments.

The aglycone genistein has been evaluated as an inhibitor of tumor cell growth resulting from its estrogen agonistic activities in vitro (Zava and Duwe, 1997). Acting as an estrogen antagonist, genistein had properties like tamoxifen, which aid in the reduction of cellular growth in cancer cells that require estrogen to proliferate. While tamoxifen and

genistein each have a different mode of action, both are considered antiestrogenic compounds. The encouraging information to come out of this research is that the concentrations of genistein required to have this effect is at levels that are consistent with acceptable *in vivo* concentrations.

A study conducted by Miltyk et al. (2003) focused on the genistein potential for prostate cancer treatment. problem facing this is that past findings state that genistein causes damage to genetic material of human cells in vitro (Miltyk et al., 2003; Record et al., 1995; Yamashita et al., 1990). The research by Miltyk et al. (2003) and Jarred et al. (2003) demonstrated that there was no genotoxic effect when genistein was administered at 300 mg d^{-1} for 28 d, then 600 mg d^{-1} for an additional 56 d. The study by Davies et al. (1998) was based upon the findings of Gallaher et al (1996) that isolated soy proteins that were proven to be cancer preventatives. However, these same anticarcinogenic compounds were said to perhaps cause colon cancer if stored for greater than two years. It was found that the rate of genistein breakdown over time was inversely related to the browning, Maillard reaction, of the stored isolated soy protein. While no further cause and effect relationship was investigated, it seems to indicate that the

degradation of genistein was related to the carcinogenicity of the stored isolated soy protein.

When evaluating the effects that increased isoflavones can have on women, it is important to put into perspective the concentrations and intake reported in the literature. The average daily intake of genistein for the Japanese population is 1.5 to 4.1 mg person⁻¹, and 6.3 to 8.3 mg person⁻¹ for genistin (Fukutake et al., 1996). In evaluating the biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women, the daily intake of just 0.7 mg kg⁻¹ is enough to have a hormonal effect on the menstrual cycle of premenopausal women (Cassidy et al., 1994).

Ishida et al. (1998) found that genistin and daidzin prevented the effects of bone loss in ovariectomized rats. Suh et al. (2003) found that when genistein and daidzein were added to cultures of osteoblastic cells in the presence of tumor necrosis factor- α , the addition of the isoflavones resulted in the reduction of apoptosis when compared to cultures without the isoflavones. Isoflavones blocked the production of interleukin-6 (IL-6) and prostaglandin E2 (PGE2). The findings of this study show isoflavones to be important in bone remolding as a result of increased osteoblastic cells. The beneficial effect on bone density is one area that isoflavone research has

demonstrated promise (Piersen, 2003). This is a welcomed addition to postmenopausal women facing a potential future of suffering from the effects of osteoporosis.

The enhancement of the binding of estrogen α (ER α) and estrogen β (ER β) to the estrogen response element (ERE) as a result of the addition of several estrogen stimulants were evaluated by Kostelac et al. (2003). The binding of the two ERs to the ERE was evaluated in the presence of 17β -estradiol, coumestrol, daidzein, genistein, and the metabolite of daidzein, equol. The response was concentration dependant and for ERlphathere was a two hundred-fold increase in the EC_{50} of daidzein over genistein; while for $ER\beta$ the increase was only slightly greater than 11%. This demonstrated that binding affinity was increased for $\text{ER}\beta$ by the presence of the two phytoestrogens. In the same study, the metabolites of daidzein and equol were more active for $ER\alpha$ at an EC_{50} of 85-fold lower then that required for daidzein, but for $ER\beta$ the two were roughly the same. compared with 17β -estradiol; daidzein, genistein and equol required 10,000, 500, and 117 times higher concentration to reach an EC₅₀, respectively, for ER α , while for ER β the concentrations were 35, 3, and 40 times higher. This study demonstrates the variability in the affinities that

phytoestrogens, like isoflavones, have on biological effects that are activated by estrogen induction.

Another use for isoflavones was studied based upon the use of a daidzin containing plant extract in Chinese medicine for the treatment of alcoholism. A group of researchers began to evaluate the effect of daidzin on the dipsomania activity, or alcoholism, using hamster models (Keung et al., 1996). They found that a methanol extract of the plant Radix puerariae (RP) increased the "uptake" of daidzin by golden hamsters and thus had a synergistic effect. The daidzin in the extract resulted in a ten-fold increase over doses of pure daidzin. A dose of 150 and 230 mg/kg of RP extract reduced ethanol uptake in hamsters by approximately 50%. This research provides a clearer picture of the importance of daidzin as an antidipsotropic, and that some constituent in the plant extract acts in synergy to aid daidzin absorption. Keung and Vallee (1998) followed the original research and again used rodent models to evaluate the effect of pure daidzin on alcohol intake inhibition. In this study, the researchers found that in vitro daidzin inhibited the hamster mitochondrial enzymes required to metabolize dopamine and serotonin. In vivo studies with hamsters resulted in a statistical correlation between the concentration of daidzin and the level of ethanol suppression. All of the treated rodents in the study responded with a positive correlation between daidzin concentration and ethanol intake suppression.

2.4 Summation

Secondary plant metabolites such as isoflavones have found their way into the diet of humans either indirectly or directly. The indirect method of intake via the consumption of food and food products has been ongoing for centuries. However, the intentional consumption of nutraceutical and herbal supplements, along with a choice to add new food products containing isoflavones into a daily diet, is a relatively new phenomenon in the west. Regardless of the mode of consumption of isoflavones, interest sparked in this area has lead to the research that has found that soybean seed, and products from soybean seed, are the best extractable and dietary sources of isoflavones.

Given the almost universal acceptance of soybean as a primary source of isoflavones, it should now be the focus of researchers to understand how the production and physiology of the soybean crop function together. It will be this information that will result in the physiological manipulation and/or breeding that will ultimately benefit farmers in marketing their soybean crops based upon isoflavone content.

Attempts to date to manipulate the production of soybean isoflavones have focused on isolated parts of the plant rather than the whole. Herbicide applications to leaf tissue have

induced isoflavones in that tissue, and in fact this induction has been found to be important in the role of plant disease prevention. Research has also revealed the importance of the role that the production of the three isoflavones coumestrol, daidzein, and genistein each play in the relationship between legumes and atmospheric nitrogen fixing soil bacteria. Adding to this body of research was the isolation and manipulation of the IFS genes and the substrates that are required to support isoflavone production. Finally, the research focusing on the type and concentration of isoflavones in the seed produced by soybean plants has expanded on the two fronts of environmental variability and selection of cultivars.

The entire body of research evaluating the relationship of isoflavones and soybean seeds has yet to be linked to physiological changes in other portions of the plant. Cultivar selection has been in the area of research that has not been widely undertaken. Research focusing on cultivar as well as maturity group variability has demonstrated that among cultivars there are consistent differences in isoflavones. Also, however, these studies have identified the variability within cultivars. It is this within cultivar variability in isoflavones that is not clearly understood, but is assumed to be inherent to environmental effects.

Research on the changes in isoflavones in one part of a plant, such as mature leaves, and the effects these changes have on seed isoflavones is useful for understanding the plants' reaction to environmental effects, and could provide a clearer explanation for the plant-to-plant variation observed under field conditions.

2.5 Figures

Figure 2.1. Structures of the nine primary economically important isoflavones found in soybean seeds.

Figure 2.2. Phenylalnine pathway responsible for the production of all isoflavones found in the soybean seeds.

2.6 Literature Citations

Alberts, D.S., and D.J. Garcia. 1995. An overview of clinical cancer chemoprevention studies with emphesis on positive phase III studies. J. Nutr. 125(35): 692S-697S

Anonymous. 1998. Tamoxifen approved for reducing breast cancer incidence. *In* HHS News 98-34.

http://www.fda.gov/bbs/topics/NEWS/NEW00662.html

Baldridge, G.D., N.R. O'Neill, and D.A. Samac. 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol. Biol. 38(6): 999-1010.

Beck, A.B. and J.R. Knox. 1971. The acylated isflavone glucosides from subterranean clover and red clover. Aust. J. Chem. 24:1509-1518.

Branham, W.S., S.L. Dial, C.L. Moland, B.S. Hass, R.M. Blair, H. Fang, L. Shi, W. Tong, R.G. Perkins and D. M. Sheehan. 2002. Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr. 132:658-664.

Carrao-Panizzi, M.C., A.D.P. Beleia, S.H. Prudencio-ferreira, M.C.N. Olivera, and K. Kitamura. 1999. Effects of Genetics and Environment on Isoflavone Content of Soybean from Different Regions of Brazil. Pesq. Agropec. 34(6):1045-1052

Cassidy, A., S. Bingham, and K.D.R. Setchell. 1994. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am. J. Clin. Nutr. 60:333-340.

Cosio, E.G., G. Weissenbock and J.W. McClure. 1985. Acifluorfen-induced isoflavonoids and enzymes of their biosynthesis in mature soybean leaves. Plant Physiol. 78:14-19.

Cosio, E.G. and J.W. McClure. 1984. Kaempferol glucosides and enzymes of flavonol biosynthesis in leaves of a soybean strain with low photosynthetic rates. Plant Physiol. 74:877-881

Coward, L., M. Smith, M. Kirk, and S. Barnes. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1486S-1491S.

Dakora, F.D. 2000. Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust. J. Plant Physiol. 27:885-892.

Davies, C.G.A., F.M. Netto, N. Glassenap, C.M. Gallaher, T.P. Labuza, and D.D. Gallaher. 1998. Indication of the Maillard reaction during storage of protein isolates. J. Agric. Food Chem. 46 (7):2485-2489.

Dewick, P.M. and M. Martin.1979. Biosynthesis of pterocarpan, isoflavan and coumestan metabolites of *Medicago sativa*: chalcone, isoflavone and isoflavanone precursors. Phytochem. 18:597-602

Duke, S.O., A.M. Rimando, P.F. Pace, K.N. Reddy, and R.J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51(1):340-344

Ebel, J. and A. Mithofer. 1998. Early events in the elicitation of plant defense. Planta 206(3): 335-348

Ebel, J., W.E. Schmidt and R. Loyal. 1984. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonialyase and chalcone synthase mRNSs and correlation with phytoalexin accumulation. Arch. Biochem. And Biophys. 232(1): 240-248.

Eldridge, A.C. and W.F. Kwolck. 1983. Soybean isoflavones:

Effects of environment and variety on composition. J. Agric.

Food Chem. 31:394-396

Fleury, Y., W.G. Welti, G. Philippossian, and D. Magnolato.

1992. Soybean (malonyl) isoflavones: characterization and
antioxidant properties. p. 98-113. *In* Huang, M.T., C.T. Ho, and
C.Y. Lee. (ed.) Phenolic compounds in food and their effects on
health II. American Chem. Soc. Symp. Series 507. 25-30 Aug.1991.

American Chem. Soc., New York, N.Y.

Franke, A.A., L.J. Custer, and Y. Tanaka. 1998. Isoflavones in human breast milk and other biological fluids. Am. J. Clin. Nutr. 68:1466S-1473S.

Fukutake, M., M. Takahashi, K. Ishida, H. Kawamura, T. Sugimura, and K. Wakabayashi. 1996. Quantification of genistein and

genistin in soybean and soybean products. Food Chem. Toxicol. 34(5): 457-461

Gallaher, D.D., C.M. Gallaher, and, R.M. Hoffman. 1996. Soy protein isolate and genistein: effects on initiation and progression of colon cancer. Second International Symposium on the Role of Soy in Preventing and Treating Chronic Disease, Brussels, Belgium, Sept 15-18, 1996.

Gildersleeve, R.R., G.R. Smith, I.J. Pemberton and C.L. Gilbert.

1991. Detection of isoflavones in seedling subterranean clover.

Crop Sci. 31:889-892

Gottfert, M. 1993. Regulation and function of rhizobial genes. Fed. Eur. Microbiol. Soc. 104(1/2):39-63

Graham, T.L. 1991. Flavonoid distribution in developing soybean seedling tissue and in seed and root exudates. Plant Physiol. 95(2):594-603

Graham, T.L., J.E. Kim, M.Y. Graham. 1990. Role of constitutive isoflavone conjugates in the accumulation of Glyceollin I in

relation to fungal hyphae in soybean roots infected with Phytophthora megasperma. Mol. Plant Microbe Interact. 3:157-166

Harrison, M.J. and R.A. Dixon. 1993. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of *Medicago truncatula*. Mol. Plant-Microb. Interact. 6(5):643-654.

Hoeck, J.A., W.R. Fehr, P.A. Murphy and G.A. Welke. 2000.

Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40:48-51.

Hymowitz, T. 2004. Speciation and cytogenetics. In Boerma, H.R. and J.E. Specht, ed. Soybeans: Improvement, Production, and Uses, ED 3, Agronomy Monograph No. 16. American Society of Agronomy-Crop Science Society of American-Soil Science Society of America, Madison, WI, pp. 97-136.

Ishida, H., T. Vesugi, T. Toda, H. Nukaya, K. Yokotsuka and K. Tsuji. 1998. Preventive effects of the plant isoflavones, daidzin and genistin, on bone loss in ovariectomized rat fed a calcium-deficient diet. Biol. Pharm. Bull. 1:62-66. (Available

on-line at

http://www.ncbi.nlm.nih.gov/entrez/query.fcig?cmd=Retrieve&db=Pu
bMed&list uids=9477170).

Izumi, T., M.K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130(7): 1695-1699

Jung, W.S., I. Chung, H.Y. Heo. 2003. Manipulating Isoflavone Levels in Plants. J. Plant Biotech. 5(3) 149-155.

Jarred, R.A., S.J. McPherson, M.E. Jones, E.R. Simpson and G.P. Risbridger. 2003. Anti-androgenic action by red clover derived dietary isoflavones reduces nonmaligment prostate enlargement in aromatase knockout (ArKo) mice. Prostate 56(1):54-64.

Jung, W, O. Yu, S.M.C. Lau, D.P. O'Keefe, J. Odell, G. Fader, and B. McGonigle. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech. 18:208-212. (Available online at http://biotech.nature.com)

Keung, W.M. and B.L. Vallee. 1998. Daidzin and its
antidipsotropic analogs inhibit serotonin and dopamine
metabolism in isolated mitochondria. Proc. Natl. Acad. Sci.
95(5):2198-2203. (Available on-line at
http://www.pubmedcentral.nih.gov/articlerender.fcig?too1=pubmed&
pubmedid=9482862).

Keung. W.M., O. Lazo, L. Kunze, and B.L. Vallee. 1996.

Potentiation of the bioavailability of daidzin by an extract of
Radix puerariae. Proc. Natl. Acad. Sci. USA 93(9): 4284-4288

Kosslak, R.M., R. Bookland, J. Barkei, H.E. Paaren, and E.R. Applebaum. 1987. Induction of *Bradyrhizobium japonicum* common nod genes by isoflavones isolated from *Glycine max*. Proc. Nat. Academ. Sci. USA 84:7428-7432

Kostelac, D., G. Rechkemmer, and K. Briviba. 2003. Phytoestrogens modulate binding response of estrogen receptors α and β to the estrogen response element. J. Agric. Food Chem. 51:7632-7635.

Krauss, R.M., R.H. Eckle, B. Howard, L.J. Appel, S.R. Daniels,
R.J. Dickelbaum, J.W. Erdman, Jr., P. Kris-Etherton, I.J.

Goldberg, T.A. Kotchen, A.H. Lichtenstein, W.E. Mitch, R.

Mullis, K. Robinson, Judith Wylie-Rosett, S. St. Jeor, J.

Suttie, D.L. Tribble, and T.L. Bazzarre. 2001. Revision 2000: A

statement for healthcare professionals from the nutrition

committee of the American Heart Association. J. Nutr. 131:132146.

Kurtzweil, P. 1999. An FDA guide to dietary supplements. *In* FDA consumer magazine September-October 1998. (Available on-line at http://www.fda.gov/fdac/features/1998/598_guid.html)

Landini, S., M.Y. Graham, and T.L. Graham. 2003. Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean. Phytochem. 62(6): 865-874

Leibovitch, S., P. Migner, F. Zhang, and D.L. Smith. 2001.

Evaluation of the effect of soya signal technology on soybean yield [Glycine max (L.) Merr.] under field conditions over 6 years in eastern Canada and the northern United States. J. Agro. And Crop Sci. 187(4): 281

Lin, F., and M.M. Giusti, 2005. Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural Food Chemistry 53:3795-3800.

Loh, J. and G. Stacey. 2003. Nodulation gene regulation and Bradyrhizobium japonicum: a unique intergration of global regulatory circuits. App. And Env. Microbio. 69(1): 10-17.

McKhann, H.I., N.L. Paiva, R.A. Dixon, and A.M. Hirsch. 1997.

Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol. Plant-Microb. Interact. 10 (1):50-58.

Millington, A.J., C.M. Francis and N.R. McKeown. 1964. Wether bioassay of annual pasture legumes: II. The oestrogenic activity of nine strains of *Trifolium subterraneum* L. Aust. J. Exper. Agric. Res. 41:841-842

Miltyk, W., C.N. Craciunescu, L. Fischer, R.A. Jeffcoat, M.A. Koch, W. Lopaczynsky, C. Mahoney, J. Crowell, and J. Paglieri. 2003. Lack of significant genotoxicity of purified soy

isoflavones (genistein, daidzein, and glycitein) in 20 patients with prostate cancer. Amer. J. Clin. Nutr. 77(4):875-882

Murphy, P.A. 1981. Separation of genistin, daidzin and their aglycones, and coumesterol by gradient high performance liquid chromatography. J. Chromatogr. 211:166-169.

Naim, M., B. Gestetner, Y. Birk, and A. Bondi. 1973. A new isoflavone from soya beans. Phytochem. 12:169-170

Nelson, K.A., K.A. Renner, and R. Hammerschmidt. 2002. Cultivar and herbicide selection affects soybean development and the incidence of *Sclerotinia* stem rot. Agron. J. 94(6) 1270-1281

Ohta, N., G. Kuwata, H. Akahori, and T. Watanabe. 1980.

Isolation of a new isoflavone acetyl glucoside, 6"-O-acetyl genistin from soybeans. Agric. Biol. Chem. 44(2):469-470.

Park, Y.K., M.C.Y. Lui and C.L. Aguiar. 2003. Production of enriched isoflavone aglycones during processing of soy protein isolates and soy protein concentrations. International Food Technology Annual Meeting, Chicago, Illinois.

Panizz, M.C.C., and J.R. Bordingnon. 2000. Activity of beta-glucosidase and levels of isoflavone glucosides in soybean cultivars affected by the environment. Pesq. Agropec. Bras. 35(5):873-878.

Peterson, C., J. Zhu, and J.R. Coats. 2002. Identification of components of Osage orange fruit (Maclura pomifera) and their repellency to German cockroaches. J. Essent. Oil. 14 (3):233-236.

Piersen, C.E. 2003. Phytoestrogens in botanical dietary supplements: Implications for cancer. Integr. Cancer Ther. 2(2):120-138

Rafii, F., C. Davis, M. Park, T.M. Heinze, and R.D. Beger. 2003. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals. Arch. Microbiol. 180(1):11-16.

Rao, J.R. and J.E. Cooper. 1995. Soybean nodulating rhizobia modify *nod* gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity.

Mol. Plant-Microb. Interact. 8(6):855-862

Record, I.L., M. Jannes, I.E. Dreosit, and R.A. King. 1995.

Induction of micronucleus formation in mouse spleocytes by the soy isoflavone genistein *in vitro* but not in vivo. Food Chem.

Toxicol. 33: 919-922

Romani, A., P. Vignolini, C. Galardi, C. Aroldi, C. Vazzana, and D. Heimler. 2003. Phenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agric. Food. Chem. 51:5301-5306.

Romani, A., P. Vignolini, C. Galardi, C. Aroldi, C. Vazzana, and D. Heimler. 2003. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agri. Food Che. 51(18):5301-5306.

Suh, K.S., G. Koh, C.Y. Park, J.T. Woo, S.W. Kim, J.W. Kim, I.K. Park, and Y.S. Kim. 2003. Soybean isoflavones inhibit tumor necrosis factor-alpha-induced apoptosis and the production of interleukin-6 and prostaglandin E2 in osteoblastic cells. Phytochem. 63(2):209-215

Setchell, K.D.R., L. Zimmer-Nechemias, J. Cai, and J.E. Heubi. 1998. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 68: 1453S-1461S.

Setchell, K.D.R., M. S. Faughnan, T. Avades, L. Zimmer-Nechemias, N.M. Brown, B.E. Wolfe, W.T. Brashear, P. Desai, M.F. Oldfield, and N.P. Botting. 2003. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in permenopausal women. Am. J. Clinical Nutr. 77(2):411-419.

Stacey, G., L. Vodkin, W.A. Parrott, and R.C. Shoemaker. 2004.

National science foundation-sponsored workshop report. Draft

plan for soybean genomics. Pl. Physiol. 135: 59-70

Terao, J., M. Piskula, and Q. Yao. 1994. Protective effects of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipids bilayers. Arch. Biochem. Biophys. 308(1): 278-284

Thoruwa, C.L., T.T. Song, J. Hu, A.L. Simons, and P.A. Murphy. 2003. A simple synthesis of 7,4'-Dihydroxy-6-methoxyisoflavone,

glycitein, the third soybean isoflavone. J. Nat. Prod. 66:149-151.

Toda, T., A. Sakamoto, T. Takayanagi, and K. Yokotsuka. 2000. Changes in isoflavone compositions of soyfoods during cooking. Food Sci. Technol. Res. 6(4):314-319.

Toyomura, K. and S. Kono. 2002. Soybeans, soy foods, isoflavones and risk of colorectal cancer: a review of experimental and epidemiological data. Asian Pacific J. Cancer Prev. v. 3: 125-132

Tsao, R., R. Yang, and J.C. Young. 2003. Antioxidant isoflavones in Osage orange, *Maclura pomifera*. Jour. Agri.and Food Chem. 51(22):6445-6451.

Tsukamoto, C., S. Shimada, K. Igita, S. Kudo, M. Kokubun, K. Okuba and K. Kitamura. 1995 Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43:1184-1192.

Tyler, B.M. 2002. Molecular basis of recognition between phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40:137-167.

Vencill, W.K. 2002. Herbicide Handbook, Eighth Edition. Weed Sci. Soc. Am. Publishers Lawrence, KS. 66044-8897. USA

Volpin, H., D.A. Phillips, Y. Okon, and Y. Kapulnik. 1995.

Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108:1449-1454.

Wang, G., S.S Kuan, O.J. Francis, G.M. Ware and A.S. Carman. 1990. A simplified method for the determination of phytoestrogens in soybeans and its processed products. J. Agric. Food Chem. 38(1):185-190.

Wang, H.J., and P.A. Murphy. 1994a. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. 42:1674-1677.

Wang, H.J. and P.A. Murphy. 1994b. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42:1666-1673.

Wang, S.F., T.J. Ridsdill-Smith, and E.L. Ghisalberti. 1998.

Role of isoflavonoids in resistance of subterranean clover trifoliates to redlegged earth mites *Halotydeus destructor*. J. Chem. Ecology. 24:2089-2100.

Wang, S.F., T.J. Ridsdill-Smith, and E.L. Ghisalberti. 1999. Levels of isoflavonoids as indicators of resistance of subterranean clover trifoliates to redlegged earth mites *Halotydeus destructor*. J. Chem. Ecology. 25:795-803

Wang, W., M. Sherrard, S. Pagadala, R. Wixon, and R.A. Scott.

2000. Isoflavone content among maturity group 0 to II soybeans.

J. Am. Oil Chem. Soc. 77(5): 483-487.

Wilkinson, A.P., J.M. Greel, A.J. Day, M.S. DuPont, P.W. Needs, G.W. Plumb, I.T. Johnson, M.R. Morgan and G. Williamson. 1999.

Isoflavone absorption and metabolism. [Online] Third

International Symposium on the role of soy in preventing and treating chronic disease, Washington, D.C. 31 Oct. - 03 Nov.

1999. Available at http://www.soyfoods.com/3rdsoysymp/B4.html

(posted 01 March, 2000).

Wollenweber, E., V.H. Dietz. 1981. Occurrence and disribution of free flavonoid aglycones in plants. Phytochemistry 20:869-932

Wong, E. 1975. The isoflavonoids. P.748-800 In Harborne, J.B., T.J. Mabry, and H. Mabry (ed.) The flavonoids. Academic Press, New York, N.Y.

Yamashata, Y., S. Kawada, H. Nakano. 1990. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem. Pharmacol. 39: 737-744.

Yang, B., A. Kotani, A. Kensuke and F. Kusu. 2001. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Analytical Sciences. 17:599-604

Yu, O., J. Shi, A.O. Hession, C.A. Maxwell, B. McGonigle, and J.T. Odell. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochem. 63:753-763. (Available online at http://www.sciencedirect.com)

Yu, O., W. Jung, J. Shi, R.A. Croes, G.M. Fader, B. McGonigle, and J. T. Odell. 2000. Production of the isoflavones genistein

and daidzein in non-legume dicot and monocot tissue. Plant Physiol. 124:781-793.

Zava, D.T. and G. Duwe. 1997. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells *in vitro*. Nutr. Cancer. 27(1): 31-40

Zhang, F., F. Mace, and D.L. Smith. 2000. Mineral nitrogen availability and isoflavonoid accumulation in the root systems of soybeans. J. Agron. Crop Sci. 184:197-204

Zung, A., R. Reifen, Z. Kerem, and Z. Zadik. 2001.

Phytoestrogens: The pediatric perspective. J. Pediatr.

Gastroenterol. Nutr. 33(2):112-118.

Chapter 3: Soybean [Glycine max (L.) Merr.] Leaf
And Seed Isoflavone Response To Lactofen
Applications

3.1 Abstract

Environmental conditions can have major impacts on the production of soybean [Glycine max (L.) Merr.] metabolites. this study, isoflavone type and concentration of both soybean leaf and seed tissue were evaluated under double-crop (DC) and full-season (FS) field conditions following treatment with lactofen. Lactofen was applied at weed control (WC) and whitemold suppression (WM) rates and timings of 219 g ai ha⁻¹ applied at the V-1 stage and 122 g ai ha^{-1} applied at the V-5 to R-1 stages, respectively. Grain yield was obtained from the two center rows of each plot to be used for yield and laboratory analysis. Leaf tissue was obtained from plants prior to spray application. Isoflavone concentration for post-lactofen treated leaf tissue was 26% higher for total soybean treated with WC than WM. Leaf tissue concentrations of genistin were significantly higher for WC at $3.1 \text{ mg } 100\text{g seed}^{-1}$ than WM at 1.5mg 100g seed⁻¹. Genistin had no response to the lactofen treatments in the FS cropping system. Yield was unaffected by

lactofen treatments in FS or DC. The DC yields averaged ~16% higher than FS. Cropping systems had no effect on average soybean seed weight. Lactofen treatment did not have an effect on soybean seed isoflavone concentrations, however, cropping systems and cultivars did. Total isoflavone concentration for DC seed was one-third higher than FS. The highest concentrations of seed isoflavones for DC and FS were malonyldaidzin and malonylgenistin. Total isoflavones within each cropping system were not different but daidzin, genistin, malonyldaidzin, malonylgenistin and genistein were, and within cropping system for cultivars, relative seed isoflavones remained consistent. The damage caused to the leaf tissue by lactofen applications did not result in a change in the seed isoflavone concentrations, individually or when quantified as total isoflavone.

3.2 Introduction

Environmental conditions can have a major impact on the production of soybean [Glycine max (L.) Merr.] plant metabolites during the growing season, and thus on the composition of the harvested seed. Terrestrial and edaphic environmental factors that lead to plant stress have been shown to modify the type and concentration of soybean isoflavones found in seed. (Eldridge and Kwolck, 1983; Wang and Murphy, 1994; Tsukamoto et al., 1995; Hoeck et al. 2000; Wang et al., 2000).

Eldridge and Kwolck (1983) evaluated four soybean cultivars at one location and determined that the differences in the three aglycones, daidzein, genistein, and glycitein, and β -glucosides, daidzin, genistin, and glycitin, were significant. As part of the same study, two additional cultivars were evaluated over four years at the same location. As with the first set of cultivars, there were large differences in isoflavones across different cultivars as well as differences from year to year for each cultivar type. Although not pointed out in the research, the relative concentrations of total and individual isoflavones across years were consistent with one another. In another study, Wang and Murphy (1994) evaluated six soybean cultivars grown in eight locations over two growing seasons for the

effects of interactions between environment and genotypes on the type and concentration of isoflavones. The harvested grain was analyzed for nine of the twelve known soybean isoflavones.

While their findings demonstrated significant differences in the total and individual isoflavones, the relative amounts remained consistent within the cultivars across years.

The studies evaluating soybean isoflavone changes have focused on the results of many plant stresses that are often encompassed in the broad term of environment. Included within environmental stresses are many production practices that may influence the macro- and/or microenvironment. Production practices such as tillage, fertility, and residual fertility, as well as crop protection inputs all play a role in shaping, or influencing, the environment of a crop ecosystem. Some of these practices and inputs can have measurable effects.

The effects of the diphenylether herbicides, acifluorfen 7 (5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid) and lactofen (ethyl O-[5-(2-chloro- α , α , α -trifluoro-p-tolyloxy)-2-nitrobenzoyl]-DL-lactate), on isoflavone induction in soybean leaf tissue have been studied (Landini et al., 2003; Hoagland, 1989; Cosio et al., 1985). In a study by Cosio et al. (1985), soybean leaves that were treated with 100 mg L⁻¹ acifluorfen were

⁷ BASF AG. Carl-Bosch-Strasse 64, 67117 Limburgerhof, Germany

Nalent USA Corp. P.O. Box 8025, 1333 N. California Blvd. Suite 600, Walnut Creek California 94596-8025

found to contain isoflavone aglycons and β -glucosides. In a separate study, the primary isoflavones induced in soybean leaf tissue by lactofen were daidzein and daidzin, malonylgenistin, along with the aglycone flavonoid formononetin (Landini et al., 2003).

The objectives of this research were to evaluate isoflavone type and concentration in both soybean leaf and seed tissue under field conditions following treatment with the herbicide lactofen. Foliar lactofen treatments were applied at two labeled rates and timings to evaluate their effect on isoflavone type and concentration in soybean leaf and seed tissue. The relative relationships between leaf and seed tissue isoflavone types and concentrations were determined.

3.3 Materials and Methods

Field studies were established in 2002 and 2003 at the University of Maryland Wye Research and Education Center (WREC) and the Lower Eastern Shore Research and Education Center, Poplar Hill Facility (LESREC) in Queenstown and Quantico Maryland, respectively. Full-season and double-crop soybeans fields were planted at each location in each year. All field studies at WREC were treated with preemergence application of 1,120 g ai ha⁻¹ metolachlor and sulfentrazone 198 g ai ha⁻¹ plus 33 q ai ha⁻¹ chlorimuron-ethyl. Double-crop soybean fields at WREC also received an application of glyphosate at 630 g ae ha⁻¹. Full-season field studies at LESREC were treated with the preemergence applications of 1,700 g ai ha⁻¹ metolachlor, 185 g ai ha^{-1} linuron and 119 g ai ha^{-1} sulfentrazone plus 20 g ai ha^{-1} chlorimuron-ethyl. Double-crop soybean fields at LESREC were treated with 630 g ae ha^{-1} glyphosate, 1,120 g ai ha^{-1} metolachlor, and 316 g ai ha^{-1} sulfentrazone plus 53 g ai ha^{-1} chlorimuron-ethyl.

Full-season soybean seeds were planted on 23 May and 29 May 2002, and 27 June and 30 June 2003 at a density of 6.5 seeds per 30-cm of row spaced 60 cm apart. The full-season plots were planted in a split-plot arrangement with subplots of four, 6-m

Double-crop soybean seeds were planted following a barley (Hordeum valgare L.) harvest on 19 June and 25 June 2002, and 10 July and 18 July 2003 at a density of 6.5 seeds per 30-cm of row spaced 40 cm on center and 3.5 seeds per 30-cm of row spaced 20cm on center at WREC and LESREC, respectively. The plots for double-crop soybeans were planted in a split-plot arrangement with subplots of seven, 7.5-m rows at WREC and five, 6-m rows at LESREC. Each whole plots contained one of the cultivars Bass, Corsica, Jack, or Williams 82. The herbicide treatments were randomly assigned to the subplots and were either a control, WC lactofen application or WM lactofen application. The WC rate and timing for lactofen was 219 g ha⁻¹ applied at the V-1 stage of the soybean crop and the WM rate and timing for lactofen was 122 g ha⁻¹ applied at the V-5 to R-1 stages of the soybean crop growth. The two center rows of each plot were harvested for yield and laboratory analysis.

3.3.1 Leaf Extraction

Isoflavones were extracted from soybean leaves harvested prior to lactofen applications then 48 h post spray application (PSA). The 48 h PSA was chosen based on the work of Cosio et al. (1985) that demonstrated that the concentrations of aglycone isoflavones reach their maximum in the leaf tissue at this

point. After 96 h the maximum conversion of the aglycones to glucosides would prevent detection of the aglycones (Cosio et al., 1985). Leaf isoflavone extraction was achieved using a modification of a method that was developed for soybean seed extraction (Figallo et al., 2003; Lin and Giusti, 2003). Two whole leaves from two randomly selected plants within each plot were ground to a fine powder in liquid nitrogen using a mortar and pestle. A 2.5-g sample of the flour was transferred to a 50-ml Erlenmeyer flask. A 20-ml aliquot of 80% (v:v) methanol and a 50-ul internal standard of 20 mM flavone were added to the flask. A Teflon stirrer bar was added to the solution then placed on a stirrer plate at medium speed for 2 h. After 2 h the supernatant was separated from the flour by vacuum separation through number one Whatmann filter paper in an Erlenmeyer vacuum apparatus under 500 mm of mercury.

The supernatant was transferred from the Erlenmeyer flask to two 10-ml plastic centrifuge tubes and placed into a water bath at 40C under a constant flow of dry nitrogen until the volume reached approximately 6 ml. The samples were then centrifuged in a Beckman J2-21 at 33 g at 5 C for 10 minutes. The supernatant was then removed and transferred to 5-cm³

⁹ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 1001-070

syringes with Tru Loc tips¹⁰ fitted with 17-mm polypropylene syringe filters¹¹. The syringes and filters were then flushed with 1.5 ml of 16% (v:v) acetonitrile. Filtered samples and acetonitrile wash were collected and the final volume was adjusted to 5 ml using the 16% (v:v) acetonitrile. The samples were then placed into a freezer at -20 C until analyzed for isoflavones.

3.3.2 Seed Extraction

Isoflavones were extracted from soybean seeds harvested in September. Total seed weight was determined for each plot.

Seed size was determined on a 100-seed sample from each plot.

Approximately 5 g of soybean seed was obtained from each plot and was analyzed for oil and protein using infrared analysis via an Infratec model 1255 Feed and Food Analyzer¹². An additional 5-g sample of seeds was obtained and ground to a fine flour using a Braun Type 4041 Model KSM2 coffee grinder¹³. The grinder was pulsed for 3 sec over a 30-sec period. This flour was then used for isoflavone extraction.

Isoflavone extraction was achieved using the method outlined by Figallo et al. (2003) and Lin and Giusti (2003). A

¹⁰ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 14-823-35

¹¹ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part DDP04T17NB

¹² FOSS North America, Eden Prairie, MN 55344, USA

¹³ BRAUN, 1 Gillette Park, Boston, MA 02127-1096

2-g sample of the soybean seed flour was transferred to a 25-ml Erlenmeyer flask. A 10-ml aliquot of 80% (v:v) methanol and a 50-ul internal standard of 20 mmol flavone were added to the flask. A Teflon stirrer bar was added to the solution then placed on a stirrer plate at medium speed for 2 h. After 2 h, the supernatant was separated from the flour by vacuum separation through number one Whatmann¹⁴ filter paper in an Erlenmeyer vacuum apparatus under 500 mm of mercury.

A slight modification was made to the procedure of Figallo et al. (2003) for concentrating the samples. A steady stream of dry nitrogen gas replaced the rotary evaporator. The supernatant was transferred from the Erlenmeyer flask to a 10-ml plastic centrifuge tube and placed into a water bath at 40 C under a constant flow of dry nitrogen until the volume reached approximately 3ml. The samples were then transferred to 3-cm³ syringes with Tru Loc tips¹5 fitted with 17-mm polypropylene syringe filters¹6. The syringes and filters were then flushed with 1.5 ml of 16% (v:v) acetonitrile. Filtered samples and acetonitrile wash were collected and the final volume was adjusted to 5 ml using the 16% (v:v) acetonitrile. The samples

¹⁴ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 1001-070

¹⁵ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 14-823-35

¹⁶ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part DDP04T17NB

were then placed into a freezer at -20 C until analyzed for isoflavones.

Identification and quantification of isoflavones occurred through high performance liquid chromatography (HPLC). Separation of isoflavones was on a C18 column with a linear gradient of acidified water (Solvent A: 0.1% acetic acid and 5% acetonitrile in water) and acidified acetonitrile (Solvent B was 0.1% acetic acid in acetonitrile). The flow rate of 1 ml min⁻¹ and the gradient started at 10% and increasing to 14% B over 10 min, then increased to 20% over 2 min, was maintained at 20% over 8 min, continued to increase to 70% over 10 min, maintained at 70% for 3 min, and returned to 10% at the end of the 34 min run time (lin and Giusti 2005). The injection volume was 50 μ l. A Waters 17 HPLC equipped with a Delta 600 pump, model 996 Photodiode Array Detector and 717plus Autosampler was used. Elution was monitored at 254 nm with spectrial data collected from 200-450 nm. Identification and quantification of isoflavones was achieved by comparing spectral data and retention times to standard references. Calibration curves were developed from pure standards of isoflavone aglycones and glucosides. Standards for the malonyl forms of the glucosides were not chromatographed due their instability; rather, molar

¹⁷ Waters Inc. 34 Maple Street, Milford, MA. 01757 USA

equivalents were calculated using the $\beta\mbox{-glucosides}$ peaks (Figure 1).

3.3.3 Statistical Analysis

Statistical analysis was conducted as a split plot design with four randomized blocks. The whole plots contained one of the cultivars Bass, Corsica, Jack, or Williams 82. The herbicide treatments were randomly assigned to the subplots and were a control, WC lactofen application or WM lactofen application. In the analysis, blocks, years, and their interaction terms were treated as random effects in a mixed models analysis using SAS 8.1¹⁸. Residuals were examined to determine if the analysis of variance assumptions were adequately met. In all cases, normality of residuals and homogeneity of variances were assumed. The Tukey-Kramer method was used for means comparisons at a 5% significance level.

¹⁸ SAS/STAT, version 8.1, SAS Institute Inc., Cary North Carolina

3.4 Results and Disscussion

3.4.1 Soybean Leaf Isoflavones

Total isoflavone concentrations for untreated leaf tissue were highest for Williams 82 and Jack. Bass and Corsica were the cultivars with the two lowest isoflavone concentrations, however, Jack was not significantly different from Bass and Corsica (Table 3.1). Of the isoflavones detected in all untreated leaf samples, Williams 82 was highest for three of the four isoflavones: genistin, malonylgenistin, and genistein. The fourth isoflavone malonylglycitin was detected at very low levels and was highly variable among experimental units and as such resulted in no significant differences between cultivars.

Total isoflavone concentrations for post-lactofen treated leaf tissue was 26% higher for soybeans treated with WC applications than WM (Table 3.2). The three isoflavones genistin, malonylgenistin and genistein were found at higher concentrations for the WC treated soybeans. Leaf tissue concentrations of genistin for the WC lactofen treatments applied to DC soybeans were significantly higher at 3.1 mg 100 g seed⁻¹ than WM at 1.5 mg 100 g seed⁻¹. Genistin concentrations for these same treatments applied to FS soybeans were found not to be different with levels of 1.9 and 1.3 mg 100g seed⁻¹ for the

WC and WM treatments, respectively. The isoflavones daidzin, malonyldaidzin, and malonylglycitin were not different when compared between the two lactofen treatments. The three isoflavones, daidzin, malonyldaidzin, and malonylglycitin that did not show an increase were also the same isoflavones that were either at, or below, the level of detection in untreated leaf tissue (Table 3.1).

In addition to the relationship between the un-treated and post-lactofen treatment leaf tissue for the three isoflavones, daidzin, malonyldaidzin, and malonylglycitin, there was a strong relationship between isoflavone concentrations and cultivar type (Table 3.1). However, following either of the lactofen treatments, there was no relationship between isoflavone concentration and cultivar type (Table 3.3).

Overall, the isoflavones that displayed a significant postlactofen application effect were higher for the WC treatment over the WM treatment. The one exception to this was the isoflavone genistin, which had no response to the lactofen treatments in the FS cropping system. It would be expected that a WC rate, which was over two times that used for the WM treatment, would result in higher levels of isoflavones.

As isoflavone production in leaf tissue is an acute response to physical damage, the propagation of isoflavone

species would begin with aglycone production, followed by the conjugate species. In fact, genistin is the aglycone substrate from which the β -glucoside and malonylgenistin are produced, thus the level of the leaf tissue aglycone is directly related to the turnover dictated by the stimulation of the enzyme system. The ratio of total detected malonylgenistin plus genistein to the total aglycone genistin (MGG:G) for the untreated leaf was approximately 2.8:1, and the MGG:G ratio for lactofen treated leaf tissue was 4.5:1. There was no daidzin aglycone or malonyl form detected in the untreated leaf tissue. The ratio of the detected malonyldaidzin to the aglycone daidzin (MD:D) for the combined WC and WM lactofen-tissue treatments was 11.2:1.

The stimulus of leaf damage results in the production, or increased production of isoflavone aglycones, with a concomitant quick conversion of those aglycone isoflavones to their conjugate β -glucoside and malonyl forms. As discussed in Cosio et al. (1985), there is a temporal component to the different leaf tissue aglycone. From this information it can be deduced that at the 48h harvest time, both treatments of lactofen had induced aglycone isoflavone production. Further proof of this induction is the level of enzyme activity, demonstrated by the ratio of aglycones to their converted conjugate species.

3.4.2 Soybean Seed Constituents

Soybean yield was unaffected by lactofen treatments in FS or DC plantings (Table 3.4). The DC soybean yields averaged approximately 16% higher than the FS crop. This unexpected higher DC yield was driven by consistently lower yields in FS soybean at the LESREC location. DC soybean yields may have been higher since they were planted into no-tillage fields following barley. The DC no-tillage cropping systems may have allowed for increased moisture availability. While the yield difference among cropping systems did not translate to a difference in average soybean seed weight, Jack displayed an 11% decrease in weight of the full-season versus the double-crop seed (Table 3.5). This single full-season seed weight was the lowest seed weight of all cultivar weights regardless of the cropping system.

Lactofen applications did not significantly affect seed oil and protein concentrations (Table 3.6 and 3.7). The significance in the cultivar main effect for percent oil established that the four cultivars had differences of <5% between the highest and lowest concentration (Table 3.7). Tsukamoto et al. (1995) reported that soybeans seeds produced under high seasonal temperatures displayed a concomitant decrease in total fatty acid concentration and isoflavone

concentration. In this study there were no differences in total percent oil when treatments were compared across cultivars with the controls. The cultivar main effect indicated that the protein variability was also low. Corsica and Williams 82 contained the highest protein concentrations of the cultivars tested (Table 3.7).

3.4.3 Soybean Seed Isoflavones

Soybean seed tissue isoflavone concentrations from untreated, WC treated, and WM treated plants were not found to be different. Significant isoflavone differences were found among cropping systems and cultivars.

Individual seed tissue isoflavones from DC soybeans were consistently higher than in tissue from the FS soybean seeds. Total isoflavone concentration for DC soybean seed (100 mg 100g⁻¹) was one-third higher than that of the FS seed tissue (62.56 mg 100g⁻¹) (Table 3.8). The isoflavone concentrations followed the pattern of higher yields for the DC soybeans than the FS soybeans. The highest concentrations of seed tissue isoflavones for both DC and FS were the malonyl forms of daidzin and genistin (Table 3.8).

Cultivar differences in total seed tissue isoflavone concentrations were highest for Williams 82, with no difference

among the other three cultivars (Table 3.9). Also, the relative isoflavone concentrations for Bass, Corsica, Jack, and Williams 82 were similar over all five of the detected isoflavones. Seed isoflavone concentrations for Williams 82 were consistently among the highest of the cultivars for all isoflavones detected.

The total isoflavones within each cropping system were not different (Table 3.10). However, within cropping system, the relative concentrations of seed isoflavones at the cultivar level remained consistent. This consistency in the seed tissue isoflavones may be key to understanding the reactions of soybeans cultivars to different environments. If relative isoflavone concentrations respond consistently over varying environmental influences, quantitatively, the genetics should be based upon cultivar response and not individual isoflavone response. When Wang and Murphy (1994) evaluated seeds from six soybean cultivars over different environments, they demonstrated that regardless of environmental influences, consistency in isoflavone concentrations remained related to individual cultivars. Within this current study the importance of cultivar selection for isoflavone is clear. The consistant relative concentrations of isoflavones and the consistently high concentrations of isoflavones found over both cropping systems in the seeds of the single cultivar Williams 82, demonstrate

cultivar importance. Total seed isoflavone concentration is thus the best measure for cultivar selection.

3.5 Conclusions

The results of this study demonstrate that at 48h post-lactofen treatment, there is enough daidzin and genistin in the leaf tissue that the conversion to the β -glucoside and malonyl forms are well under way. If the production of aglycone forms in the leaf tissue were to have an impact on the subsequent production in the seed, both treatments could have demonstrated this proclivity. In fact, from the seed-tissue isoflavone data it is clear that the damage caused to the leaf tissue did not translate to a change in the seed-tissue isoflavone concentrations; neither individually or quantified as total isoflavone concentration.

Future applied research should focus on establishing the isoflavone production capability of cultivars. A more basic approach to soybean isoflavone production needs to be focused on the production and storage enzymology and genetics. A better understanding of the functioning and controls of these systems could lead to the ability of farmers to produce for potential high isoflavone markets in the future.

3.6 References

Cosio, E.G., G. Weissenbock, and J.W. McClure. 1985.

Acifluorfen-induced isoflavonoids and enzymes of their

biosynthesis in mature soybean leaves. Plant Physiol. 78:14-19.

Eldridge, A.C. and W.F. Kwolck. 1983. Soybean isoflavones:

Effects of environment and variety on composition. J. Agric.

Food Chem. 31:394-396

Figallo, V.B., W.J. Kenworthy and M.M. Giusti. 2003. The effect of planting time and location on the isoflavone content of different soybean (Glycine max) cultivars. Institute of Food Technologists Annual Meeting. Institute of Food Technologists 525 W. Van Buren, Ste. 1000; Chicago, IL 60607

Hoagland, R.E. 1989. Acifluorfen action on growth and phenolic metabolism in soybean (Glycine max) seedlings. Weed Sci. 37(6):743-747

Hoeck, J.A., W.R. Fehr, P.A. Murphy, and G.A. Welke. 2000.

Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40:48-51. Panizz, M.C.C., and J.R.

Bordingnon. 2000. Activity of beta-glucosidase and levels of

isoflavone glucosides in soybean cultivars affected by the environment. Pesq. Agropec. Bras. 35(5):873-878.

Landini, S., M.Y. Graham, and T.L. Graham. 2003. Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean. Phytochem. 62(6): 865-874

Lin, F., and M.M. Giusti, 2005. Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural Food Chemistry 53:3795-3800.

Tsukamoto, C., S. Shimada, K. Igita, S. Kudo, M. Kokubun, K. Okuba, and K. Kitamura. 1995 Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43:1184-1192.

Wang, H., and P.A. Murphy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. J. Agric. Food. Chem. 42(8):1674-1677.

Wang, W., M. Sherrard, S. Pagadala, R. Wixon, and R.A. Scott.

2000. Isoflavone content among maturity group 0 to II soybeans.

J. Am. Oil Chem. Soc. 77(5): 483-487.

3.6 Tables and Figures

3.6.1 Tables

Table 3.1. Soybean untreated leaf tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), and two cropping systems (full-season and double-crop).

	Cultivar					
Isoflavones	Bass	Corsica	Jack	Williams 82		
		mg 1	00g ⁻¹ —			
Daidzin	nd	nd	nd	nd		
Genistin	1.76ab	1.58b	1.73ab	2.05a		
Glycitin	nd	nd	nd	nd		
Malonyldaidzin	nd	nd	nd	nd		
Malonylgenistin	3.90b	3.87b	4.70ab	5.61a		
Malonylglycitin	0.07	0.07	0.15	0.31		
Genistein	0.12ab	0.06b	0.12ab	0.20a		
Total	5.86b	5.58b	6.72ab	8.19a		

Isoflavone means across cultivars followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

nd=no detection of that isoflavone for the cultivar.

Table 3.2. Soybean post-lactofen treated (48 h)leaf tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), two cropping systems (full-season and double-crop), and four cultivars (Bass, Corsica, Jack, and Williams 82), for soybean plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

Isoflavones	Weed Control (WC)mg 10	White Mold Supression (WM)
Daidzin	0.09	0.02
Genistin	2.22a	1.70b
Glycitin	nd	nd
Malonyldaidzin	3.44	2.79
Malonylgenistin	10.20a	6.88b
Malonylglycitin	1.23	1.47
Genistein	0.31a	0.07b
Total	17.20a	12.70b

Treatment means within isoflavone and total isoflavones followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 3.3. Soybean post-lactofen treated (48 h)leaf tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), and two cropping systems (full-season and double-crop), for soybean plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

	Cultivar						
Isoflavones	Bass	Corsica	Jack	Williams 82			
		mg 1	00g ⁻¹ —				
Daidzin	0	0	0.18	0.06			
Genistin	2.12	1.90	1.68	2.14			
Glycitin	nd	nd	nd	nd			
Malonyldaidzin	4.29	3.54	1.90	2.72			
Malonylgenistin	8.87	8.39	7.99	8.86			
Malonylglycitin	1.34	1.17	1.57	1.32			
Genistein	0.23	0.15	0.18	0.19			
Total	16.53	14.97	13.25	15.05			

Isoflavone means across cultivars followed by the same letter are not significantly different according to Tukey-Kramer (0.05). nd=no detection of the specific isoflavone for the cultivar.

Table 3.4. Soybean yields in full-season and double-crop cropping system averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), for soybeans plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

Full-season Yields					Double-crop Yields				
Cultivar	WC	WM	Control	Mean	WC	WM	Control	Mean	
	kg ha ⁻¹					kg	ha ⁻¹		
Bass	1,901	1,787	1,806	1,831	2,185	2,049	2,642	2,292	
Corsica	1,866	1,988	1,974	1,943	2,335	2 , 551	2,469	2,452	
Jack	1,808	1,868	1,831	1,836	2,064	2,160	2,244	2,156	
Williams 82	2,268	2,080	1,916	2,088	2,081	2,397	2,264	2,247	
Mean	1,961	1,931	1,882	1,925b	2,166	2,289	2,405	2,287a	

Cropping system main effect was tested in the anova, and means for cropping system are significantly different (0.05).

Table 3.5. Soybean seed weight in full-season and double-crop cropping system averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), for soybeans plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

		season Weight							
Cultivar	WC	MM	Control	Mean*	WC	MM	Control	Mean*	Cultivar*
	g 100 Seed ⁻¹				g 100	Seed ⁻¹		g 100 Seed ⁻¹	
Bass	11.8	12.2	12.1	12.0bc	14.3	14.3	14.9	14.5ab	13.3b
Corsica	12.9	13.1	13.6	13.2ab	15.2	15.9	16.3	15.8a	14.5a
Jack	11.9	11.8	11.3	11.7c	12.6	13.2	13.6	13.1b	12.4b
Williams 82	14.3	14.1	14.3	14.2a	15.0	14.9	15.2	15.0a	14.6a
Mean	12.7	12.8	12.8	12.8	14.3	14.6	15.0	14.6	

 $^{^*}$ Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 3.6. Soybean seed oil concentration in full-season and double-crop plantings averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), for soybeans plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

	Full-season Oil					Double-crop Oil				
Cultivar	WC	WM	Control	Mean*	WC	WM	Control	Mean*	Cultivar*	
			ଚ				·			
Bass	21.1	21.1	20.9	21.0a	20.1	20.2	20.2	20.2ab	20.6a	
Corsica	20.4	20.6	20.3	20.4b	19.6	19.5	19.7	19.6b	20.0b	
Jack	20.3	20.6	19.8	20.2b	20.4	19.9	20.3	20.2a	20.2ab	
Williams 82	20.6	20.7	20.5	20.6ab	20.1	19.9	19.7	19.9ab	20.2ab	
Mean	20.6	20.7	20.4		20.0	19.9	20.0			

*Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 3.7. Soybean seed protein concentration in full-season and double-crop cropping system averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), for soybeans plants treated with lactofen at 217 g active ingredient (ai) ha^{-1} for weed control (WC), 122 g ai ha^{-1} for white mold suppression (WM).

Full-season Protein									
Cultivars	WC	WM	Control	Mean [*]	WC	WM	Control	Mean*	Cultivar*
-			응		-		%		%
Bass	41.0	41.2	41.3	41.2b	40.8	40.7	41.0	40.8b	41.0b
Corsica	42.0	41.7	42.3	42.0a	41.8	42.0	41.8	41.8a	41.9a
Jack	41.5	41.3	42.2	41.7ab	40.0	40.1	40.0	40.0c	40.9b
Williams 82	42.0	41.9	42.6	42.2a	40.9	40.9	40.9	40.9b	41.6a
Mean	41.6	41.5	42.1	41.7	40.9	40.9	40.9	40.9	

*Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 3.8. Seed tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), four cultivars (Bass, Corsica, Jack, and Williams 82), two lactofen treatments (217 g active ingredient [ai] ha⁻¹ for weed control [WC] and 122 g ai ha⁻¹ for white mold suppression [WM]), and a untreated control.

Isoflavones	Double Crop	Full Season
	mg 1	00g ⁻¹
Daidzin	5.40a	3.26b
Genistin	13.75a	7.18b
Glycitin	nd	nd
Malonyldaidzin	20.27a	12.52b
Malonylgenistin	60.06a	39.51b
Malonylglycitin	nd	nd
Genistein	0.57a	0.01a
Total	100.0a	62.56b

Treatment means within isoflavone and total isoflavones followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 3.9. Soybean seed tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), two cropping systems (full-season and double-crop), two lactofen treatments (217 g active ingredient [ai] ha^{-1} for weed control [WC] and 122 g ai ha^{-1} for white mold suppression [WM]), and a untreated control.

	Cultivar						
Isoflavones	Bass	Corsica	Jack	Williams 82			
		mg	100g ⁻¹ ——				
Daidzin	4.10b	4.71ab	3.10c	5.40a			
Genistin	10.13ab	10.43ab	8.87b	12.43a			
Glycitin	nd	nd	nd	nd			
Malonyldaidzin	14.19bc	17.70ab	11.41c	22.26a			
Malonylgenistin	47.37b	46.30b	44.39b	61.07a			
Malonylglycitin	nd	nd	nd	nd			
Genistein	0.24b	0.25ab	0.32ab	0.36a			
Total	76.05b	79.49b	68.16b	101.49a			

Isoflavone means and total isoflavones across cultivars followed by the same letter are not significantly different according to Tukey-Kramer (0.05). nd=no detection of that isoflavone for the cultivar.

Table 3.10. Soybean seed tissue isoflavone concentration averaged over two growing seasons (2002 and 2003), two locations (Quantico and Queenstown, Maryland), two lactofen treatments (217 g active ingredient [ai] ha^{-1} for weed control [WC] and 122 g ai ha^{-1} for white mold suppression [WM]), and a untreated control.

		Full	Season		Double Crop				
- -		Cul	tivar		Cultivar				
Isoflavones	Bass	Corsica	Jack	Williams 82	Bass	Corsica	Jack	Williams 82	
		mg i	100g ⁻¹			mg 1	00g ⁻¹		
Daidzin	2.66bc	3.70ab	3.39c	4.28a	5.54a	5.72a	3.82bc	6.51a	
Genistin	6.49ab	7.41ab	5.46b	9.37a	13.77ab	13.45ab	12.29b	15.49a	
Glycitin	nd	nd	nd	nd	nd	nd	nd	nd	
Malonyldaidzin	9.46	14.44	7.91	18.26	18.93	20.97	14.91	26.25	
Malonylgenistin	35.78b	38.43b	31.82b	52.02a	58.96ab	54.18b	56.98b	70.12a	
Malonylglycitin	Nd	nd	nd	nd	nd	nd	nd	nd	
Genistein	0.01a	0a	0a	0.03a	0.46b	0.50b	0.63ab	0.69a	
Total	54.4	64.2	47.7	84.0	97.7	94.8	88.6	119.0	

Means across isoflavones type and within cropping systems (Full Season and Double Crop) followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

nd=no detection of that isoflavone for the cultivar.

3.6.2 Figures

Figure 3.1. Chromatogram of the isoflavones extracted from soybean leaf tissue 48 hours after treatment with the white mold suppression application (WS) of lactofen at $122~\mathrm{g}$ active ingredient (ai) ha⁻¹ for weed control.

Figure 3.2. Phenylalnine pathway responsible for the production of all isoflavones found in the soybean seeds.

Chapter 4: Ozone Air Pollution Effects on the Concentration of Isoflavones in Soybean [Glycine max (L.) Merr.] Seeds

4.1 Abstract

Production of isoflavones is highly variable between plants, and environmental conditions are known to increase this variability. This study focused on cultivar differences in four predominant isoflavones in soybean [Glycine max (L.) Merr.] seeds: daidzin, genistin, malonyldaidzin, and malonylgenistin and the interaction with elevated tropospheric ozone concentrations. Four cultivars (Bass, Corsica, Jack, and Williams 82) were grown in the field in open-top chambers and fumigated with either carbon filtered (CF) or ozone (O_3) enriched air, 1.4 parts per billion above ambient(ppb) air. Average seasonal O_3 levels were 57.1 ppb and 31.4 ppb for O_3 and CF treatments, respectively. Soybean seed yields and average seed weight were reduced by 22% and 14%, respectively. However, the O_3 air quality treatments (AQT) had little effect on seed oil and protein concentrations. The two β -glucosides, daidzin and genistin, as well as their malonyl forms plus the only aglycone, genistein were present at detectable levels. The levels of

daidzin, malonyldaidzin, malonylgenistin and genistein were reduced for seeds from plants grown in O₃ by 25, 19, 15, and 11%, respectively compared to CF air. Although genistin levels were not significantly different, the data did trend toward lower concentrations for the plants receiving the elevated O₃ AQT. Other aglycone isoflavones were below the level of detection. Williams 82 ranked consistently higher than the other cultivars in levels of isoflavones regardless of the AQT and Jack exhibited the lowest concentration of isoflavones, except for genistein.

4.2 Introduction

Environmental conditions can have major impacts on the production of plant metabolites during the growing season, and thus may alter the composition of the harvested seed. Air pollution has become a very important consideration in the quality of agronomic-crop end products. In fact, the role of air pollutants and their effects on crop plants is an important research topic in plant sciences and has been reviewed (Hoeck et al., 2000; Heck et al., 1988; Mulchi et al., 1995). Ozone (O₃) is the primary air pollutant found to cause damage to crop plants and worldwide results in losses that and believed to be in excess of a billion dollars annually.

The background ambient level of O_3 common in the troposphere is approximately 25 parts per billion (ppb=ng g⁻¹) averaged over a 7-h mean (0900 to 1700 h EDT). However, in some regions of the United States, ambient O_3 levels above 100 ppb are not uncommon during the mid-day of summer months. Tropospheric O_3 is primarily produced by photochemical reactions among emissions from the burning of fossil fuels. Moderate to high levels of exposure to O_3 are phytotoxic to plants and result in reduced chlorophyll concentration and other traits including crop yields (Chernikova et al., 2000; Mulchi et al., 1988). An additional

area of interest in O₃ air pollution is its impact on secondary plant metabolites such as isoflavones. Isoflavones extracted from the seeds of soybeans are very important in nutraceuticals and pharmaceuticals (Anonymous, 2000). These phytoestrogen compounds are currently sought for their possible health benefits of preventing some cancers and for hormone replacement therapy (Anonymous, 2000). There is also concern about the effects of these estrogen-like compounds in soy foods on the development of infants and children. Currently there is no FDA standards or requirements to monitor the concentrations of isoflavone compounds in foodstuffs or infant formulas. This remains true even in light of toxicological evidence that small disruptions in the human endocrine system can lead to health and developmental abnormalities.

Yu et al. (2000) illustrated that exposure to ultraviolet-B light increased the level of β -glucoside isoflavones of genetically transformed tobacco (Nicotiana tabacum) and Arabidopsis leaves. Wang et al. (1999) evaluated the concentration of the β -glucosides in subterranean clover (Trifolium subterraneum). They found that Reddlegged Earth Mite-resistant clover had higher levels of β -glucoside isoflavones. The levels of these forms of isoflavones, specifically daidzin and genistin, found in damaged tissue as

well as insect-resistant tissues would lend support to the assertion that these metabolites were simply being routed to the strongest sink tissue. The isoflavones daidzin and genistin are highly water-soluble β -glucosides and are known to be among the most predominant in soybean seed tissue (Tsukamoto et al., 1995; Wollenweber and Dietz, 1981).

If in the future, contracts are available to farmers to produce soybean seeds for isoflavones, knowledge of how environmental factors will impact isoflavone production will be vital. If environmental conditions such as O₃ air pollution have major impacts on the production, mobility, and storage of soybean seed isoflavones, additional research is needed in order to gain a more basic understanding of such impacts. This study investigated the effect of elevated tropospheric ozone on the concentration of 12 isoflavones in the seeds of the soybean cultivars Bass, Corsica, Jack, and Williams 82. In this research the focus was on the effects of O₃ on soybean isoflavone concentrations.

4.3 Materials and Methods

4.3.1 Field

The field design of this experiment included six open-top chambers with a diameter of three meters (OTC) (Figure 4.1).

When treatments began, three of the OTC were continuously fumigated with carbon-filtered air (CF) and the remaining three OTC with ambient air plus enough O_3 to increase the ambient air O_3 concentration by 7 parts per billion (ppb).

Ozone treatments followed those described by Chernikova et al. 2000. The O₃ treatments were a mix of ambient air and artificially produced O₃, which was generated from passing O₂ through a Griffin¹⁹ O₃ generator. The O₃ was injected into the airstream of blowers where it was mixed prior to entering the distribution ring of the chamber. Treatments were applied beginning on 13 June of 2002 for 7 h day⁻¹ (1000 - 1700 h) for five days a week, over an eight-week duration (Figure 4.2).

Ozone chamber air quality was sampled at canopy level hourly using a Dasibi model 1008, UV Photometric O₃ analyzer as described by Mulchi et al. (1992, 1995).

Seeds were planted in 3-cm diameter pots in the greenhouse in April for transplanting in early May. As illustrated in figure 4.3, each chamber was partitioned into six rows 1.8 m in length with rows spaced 40 cm apart. The two end rows in each chamber served as border rows. The rows were divided into three replicates 0.6 m in length with four plots per replicate. The plots within each replicate were randomly assigned to the four

¹⁹ Griffin Technics Corp., Lodi, New Jersey

cultivars prior to transplanting. Transplants at the V1-V2 stage were taken to the field and planted in the OTC in three 0.6-m length rows replicate with plants spaced 10 cm apart, or six plants per plot row. Each OTC contained three replicated plots for each of the four cultivars. Three chambers were equipped with charcoal filters (CF) and three were purged continuously with ambient air.

After two weeks of growth, O₃ treatment began. The O₃ levels were monitored through an automated sampling system (Chernikova et al., 2000). Supplemental O₃ was supplied to the three ambient air chambers from 0900 to 1600 h, EDT, five days week⁻¹. The activated charcoal lowered O₃ levels approximately 50% of ambient (Figure 4.1). All OTC were irrigated by hand immediately after planting and then every day for the first three days. Supplemental irrigation was made to all OTC when rainfall was insufficient for optimal plant growth. The O₃ treatments were terminated when canopy leaves were at advanced senescence.

Seed harvest yields and weights were obtained from the plants, which were hand-harvested in late September. Total seed weight was determined for each plot. Seed size (100 g^{-1} seed) was determined on a 100-seed sample from each plot.

4.3.2 Laboratory

Grain quality was obtained from approximately 5 g of soybean seed from each replicated cultivar and was analyzed for oil and protein contents using infrared analysis via an Infratec model 1255 Feed and Food Analyzer. An additional 5-g sample of seeds was obtained and ground into a fine flour using a Braun Type 4041 Model KSM2 coffee grinder. The grinder was pulsed for 3 sec over a 30-sec period. This flour was then used for isoflavone extraction.

Isoflavone extraction was achieved using the method outlined by Lin and Giusti (2005) and Figallo et al (2003). A 2-g sample of the soybean seed flour was transferred to a 25-ml Erlenmeyer flask. A 10-ml aliquot of 80% (v:v) methanol and a 50-ul internal standard of 20 mmol flavone were added to the flask. A Teflon stirrer bar was added to the solution then placed on a stirrer plate at medium speed for 2 h. After 2 h, the supernatant was separated from the flour by vacuum separation through number one Whatmann²⁰ filter paper in an Erlenmeyer vacuum apparatus under 500 mm of mercury.

A slight modification was made to the procedure of Figallo et al. (2003) for concentrating the samples. A steady stream of dry nitrogen gas replaced the rotary evaporator. The

²⁰ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 1001-070

supernatant was transferred from the Erlenmeyer flask to a 10-ml plastic centrifuge tube and placed into a water bath at 40C under a constant flow of dry nitrogen until the volume reached approximately 3ml. The samples were then transferred to 3-cm³ syringes with Tru Loc tips²¹ fitted with 17-mm syringe polypropylene filters²². The syringes and filters were then flushed with 1.5ml of 16% (v:v) acetonitrile. Filtered samples and acetonitrile wash were collected and the final volume was adjusted to 5ml using the 16% (v:v) acetonitrile. The samples were then placed into a freezer at -20 C until analyzed for isoflavones.

Identification and quantification of the isoflavones occurred through high performance liquid chromatography (HPLC) using a Waters²³ HPLC with a model 996 Photodiode Array Detector, model 600 Controller, 717plus Autosampler and Delta 600 pump. Identification and quantification of isoflavones occurred through high performance liquid chromatography (HPLC).

Separation of isoflavones was on a C18 column with a linear gradient of acidified water (Solvent A: 0.1% acetic acid and 5% acetonitrile in water) and acidified acetonitrile (Solvent B was 0.1% acetic acid in acetonitrile). The flow rate of 1 ml min⁻¹

²¹ Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part 14-823-35

²³ Waters Inc. 34 Maple Street, Milford, MA. 01757 USA

²² Fisher Scientific, Research, 2000 Park Lane Drive, Pittsburgh, PA 15275, Part DDP04T17NB

and the gradient started at 10% and increasing to 14% B over 10 min, then increased to 20% over 2 min, was maintained at 20% over 8 min, continued to increase to 70% over 10 min, maintained at 70% for 3 min, and returned to 10% at the end of the 34 min run time (lin and Giusti 2005). The injection volume was 50 μ l. A Waters²⁴ HPLC with a Delta 600 pump, model 996 Photodiode Array Detector and 717plus Autosampler was used. Elution was monitored at 254 nm with spectrial data collected from 200-450 Identification and quantification of isoflavones was achieved by comparing spectral data and retention times to standard references. Calibration curves were developed from pure standards of isoflavone aglycones and glucosides. Standards for the malonyl forms of the glucosides were not chromatographed due to their instability; rather, molar equivalents were calculated using the β -glucosides peaks (Figure 1).

4.3.4 Statistical Analysis

Statistical analysis was conducted as a completely randomized design with three chambers per treatment. Within each chamber there were three replicated blocks, each of which contained four soybean cultivars Bass, Corsica, Jack, or

²⁴ Waters Inc. 34 Maple Street, Milford, MA. 01757 USA

Williams 82. The treatments were either Ambient air plus ozone (O_3) or carbon filtered air (CF). A mixed models analysis using SAS 8.1^{25} was used. Chambers were treated as replicates and the plots within each block were treated as samples in the final analysis. Chamber and the associated interactions were designating as random variables. Residuals were examined to determine if the analysis of variance assumptions were adequately met. In all cases, normality of residuals and homogeneity of variances were assumed. The Tukey-Kramer method was used for means comparisons at a 5% significance level.

_

²⁵ SAS/STAT, version 8.1, SAS Institute Inc., Cary North Carolina

4.4 Results and Discussion

Through daily monitoring, the average O₃ enrichment for the ambient air plus O₃ treatment was 1.4 ppb (Figure 4.2.). This change from the target of 7 ppb was the result of high seasonal ambient ozone levels and that O₃ injection was only 5 days week⁻¹, which resulted in a lower seasonal average of O₃ concentration in the treatment chambers. Average seasonal ambient O₃ level was 55.7 ppb, while O₃ and CF treatment levels were 57.1 ppb and 31.4 ppb, respectively.

Even with the modest increase in O_3 levels, average soybean seed yields were significantly reduced by 22% for plants grown in elevated O_3 AQT (90.8 g m⁻²) when compared to those grown in CF AQT 117.0 g m⁻²) (Table 4.1.). It has been well documented that moderate levels of O_3 exposure are phytotoxic to soybean plants and result in reduced crop yields (Chernikova et al., 2000; Mulchi et al., 1988).

In addition, individual seed weights from plants grown in elevated O_3 AQT had average weights (12.4 g g m⁻²) that were 14% less than those from the CF AQT (14.4 g m⁻²). All cultivars reacted similarly to the AQT. There was no significant cultivar effect, or cultivar by treatment interaction observed for seed yield or individual seed weight. The cultivars Corsica and

Williams 82 had the highest average seed weight regardless of the AQT to which they were exposed. Visual comparisons of leaf tissues between the two AQT confirmed damage from O_3 as characteristic signs of necrotic spotting on the adaxial portions of leaves. This is consistent with reported symptoms of O_3 exposure (Mulchi et al., 1995).

Likewise, the AQT did not have a significant effect on seed oil concentration (Table 4.2). However, seed oil concentrations were significantly different between cultivars. Bass and Williams 82 had the highest oil concentrations. Differences in oil concentrations were not consistent between cultivars with respect to AQT. This treatment by cultivar interaction was due to a change in ranking of the cultivars for oil concentration at each AQT. The cultivar's genotype had more influence on oil concentration than the AQT (Table 4.2).

The AQT did not have a significant effect on the seed protein concentrations (Table 4.2). Although there were significant differences between cultivars for their protein concentrations, there was no significant cultivar by treatment interaction. Averaged over all cultivars, protein concentrations were not significantly different for the comparison of the O_3 AQT and the CF AQT. Overall, the exposure to elevated O_3 had little effect on soybean seed oil and protein

concentrations. The magnitude of the oil and protein changes were consistent with other studies (Mulchi et al., 1988)

Together, the reduced yield and seed weight plus the lack of effect of O_3 on oil and protein concentrations suggest that the soybean plants in the O_3 -AQT were stressed, but the overall treatment effects were not severe enough to cause considerable leaf loss and necrosis.

The average levels of daidzin for soybean cultivar grown in O_3 (3.2 mg 100 g⁻¹) were 25% lower than for plants grown in CF AQT $(4.2 \text{ mg } 100 \text{ g}^{-1})$ (Table 4.3). Cultivar Williams 82 had the highest concentration of daidzin (5.1 mg 100 g^{-1}) regardless of AQT. Concentrations of the other glucoside, genistin, were not different with respect to ozone treatments; however, there were clear trends for lower concentrations with O_3 -AQT as compared to the CF AQT. Cultivar differences for daidzin and genistin responded similarly. Cultivar Williams 82 was likewise found to be in the group with the highest levels of genistin (12.5 mg 100 q^{-1}). The isoflavone β -glucosides daidzin and genistin extracted from the seeds of plants grown under the two AQT did follow the same trends as found for some environmental stress such as elevated temperature, but opposite of those found for others such as ultraviolet light. (Yu et al., 2000; Tsukamoto et al., 1995)

The malonyl forms of isoflavones responded in much the same way as the β -glucosides (Table 4.4). Malonyldaidzin and malonylgenistin were both at lower concentrations in seeds from plants grown in the elevated O_3 AQT compared to the CF AQT. The average concentration of malonyldaidzin was 19% lower in the soybean seed from the O_3 AQT, while the malonylgenistin average concentration was 15% lower for the same AQT. Williams 82 exhibited the highest concentration for both of these malonyl forms of isoflavones.

Aglycone concentrations were below the level of detection with the exception of genistein. Since aglycones are produced then stored in cell vacuoles as glucosyl and malonyl forms, the rapid conversion of aglycones, in vivo, to β -glucoside and malonyl forms often results in low or undetectable concentrations of these forms of isoflavones (Yu et al., 2000). In this study, the average genistein concentration was reduced in seed produced from soybean plants grown in the O₃ AQT (0.42 mg 100 g⁻¹) by 11% compared to seeds from plants exposed to the CF AQT (0.50 mg 100 g⁻¹).

Cultivar differences were significant for genistein with Williams 82 having a higher concentration (0.57 mg 100 g⁻¹) than other cultivars. Because of the interdependency of the isoflavone types (aglycone \rightarrow β -glucoside \rightarrow malonyl), an

observed change in one form of isoflavone due to an affect of O_3 may be the result of an affect on another isoflavone type.

Speculation as to the causal factors lowering the isoflavone concentrations in soybean seeds in response to O3 exposure, across the four cultivars, would probably be best focused on a shift in the biochemical requirements of leaf tissue and/or a reduction of photosynthate. The enzyme changes in functioning leaf tissue have been proven to favor the production of isoflavones over other essential biochemicals such as anthocyanins (Cosio et al., 1985). In addition, the phytotoxic nature of O_3 has been proven to result in a reduction of crop leaf canopy, leaf area, and thus lowering the capacity of the plant to produce the required amount of photosynthate (Chernokova et al., 2000: Mulchi et al., 1992). Together changes in biochemical and photosynthetic leaf functions may have reduced overall plant production below some threshold. As a result, the overall plant biochemistry shifted resources that would have been used for increased seed production, toward repair. This resulted in a less healthy plant that is unable to both produce seed and repair damaged tissue.

4.5 Conclusions

Overall, the O_3 AQT lowered the isoflavone concentrations in the soybean seeds. Rankings of cultivar means within isoflavone types demonstrated that Williams 82 consistently produced higher levels of isoflavones compared to other cultivars, Jack exhibited the lowest levels except for genistein.

These research findings are supported by the work of Hoeck et al. (2000). In their study, cultivar variability had a greater significance than environmental factors on isoflavone concentration. While environmental influences did result in changes in isoflavone concentrations, there remained consistency among the cultivars within the environments. The four cultivars used in this study were of two maturity groups (MG). Bass, Jack, and Williams 82 are MG III and Corsica is an early MG IV cultivar. With the exception of the β -glucoside genistin, Bass and Williams 82 were consistently different from one another with respect to isoflavone concentrations. Just as with the findings of Wang et al. (2000), this study did not demonstrate a relationship between isoflavone production and maturity group since Williams 82 and Jack, both are MG III, exhibited one higher and lower levels of isoflavones, in general.

While only four cultivars were evaluated for the impacts of ${\rm O}_3$ AQT on isoflavones in this study, the concentrations of

isoflavones were found to be significantly lower among cultivars when exposed to O_3 levels of >55 ppb. Previous research has demonstrated an increase in soybean seed isoflavones as a result of environmental stresses such as temperature. The four cultivars used in this study failed to show a similar stress response to O_3 air pollution as had been reported in the literature for temperature. The elevated air pollution resulted in a reduction in yield, which was the result of an overall reduction in physiological productivity. This lower productivity most probably resulted in the lower isoflavone concentrations observed. It would seem at this level of O_3 , the response of soybean plants was to redirect resources, thus increasing the compensation point for O_3 injury, thereby lowering the overall productivity. Considering that this is the first study to examine the impact of elevated O_3 air pollution on soybean isoflavones levels in seed, follow up studies would appear to be warranted. Additional studies should be conducted to quantify and corroborate these results with elevated tropospheric O₃, and perhaps adding other environmental stresses such as drought.

4.6 References

Anonymous, 2000. "The plant-based conjugated estrogens alternative to Premarin". DRMD-CED-057. Duramed Pharmaceuticals, Inc. 5040 Duramed Drive, Cincinnati, Ohio 45213.

Chernikova, T., J.M. Robinson, E.H. Lee, and C.L. Mulchi. 2000. Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosynthesis Research 64(1):15-26.

Cosio, E.G., G. Weissenbock, and J.W. McClure. 1985.

Acifluorfen-induced isoflavonoids and enzymes of their

biosynthesis in mature soybean leaves. Plant Physiol. 78:14-19.

Figallo, V.B., W.J. Kenworthy, and M.M. Giusti. 2003. The effect of planting time and location on the isoflavone content of different soybean (Glycine max) cultivars. Institute of Food Technologists Annual Meeting. Institute of Food Technologists 525 W. Van Buren, Ste. 1000; Chicago, IL 60607

Heck, W.W., J.A. Dunning, R.A. Reinert, S.A. Prior, M. Rangappa, and P.S. Benepal. 1988. Differential responses of four bean cultivars to chronic doses of ozone. Journal of American Society of Horticultural Science. 113(1):46-51

Hoeck, J.A., W.A. Fehr, P.A. Murphy, and G.A. Welke. 2000.

Influence of genotype and environment on isoflavone content of soybean. Crop Science. 40:48-51.

Lin, F., and M.M. Giusti. 2005. Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural Food Chemistry 53:3795-3800.

Mulchi, C.L., B. Rudorff, E. Lee, R. Rowland, and R. Pausch. 1995. Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO_2 and O_3 . Water, Air, and Soil Pollution v. 85(3):1379-1386.

Mulchi, C.L., E. Lee, K. Tuthill, and E.V. Olinick. 1988.

Influence of ozone stress on growth processes, yields and grain quality characteristics among soybean cultivars. Environmental pollution: Series A: Ecological and Biological. 53(1/4):151-169.

Mulchi, C.L., L. Slaughter, M. Saleem, E.H. Lee, R. Pausch, and R. Rowland, 1992. Growth and physiological characteristics of

soybean in open-top chambers in response to ozone and increased and atmospheric CO2. Agricultural Ecosystems Environment 38:107-118.

Tsukamoto, C., S. Shimada, K. Igita, S. Kudo, M. Kokubun, K. Okuba, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. Journal of Agricultural Food Chemistry 43:1184-1192.

Wollenweber, E., and V.H. Dietz. 1981. Occurrence and disribution of free flavonoid aglycones in plants.

Phytochemistry 20:869-932

Wang, C., M. Sherrand, P. Sudhaker, R. Wixon, and R.A. Scott.

2000. Isoflavone content among maturity group 0 to II soybeans.

Journal of American Oil Chemist's Society 77(5):483-487.

Wang, S.F., T.J. Ridsdill and E.L. Ghisalberti. 1999. Levels of isoflavonoids as indicators of resistance of subterranean clover trifoliates to Redlegged Earth mites. Journal of Chemical Ecology 25:795-803

Yu, O., J. Woosuk, J. Shi, R.A. Croes, M. Fader, B. McGonigle, and J.T. Odell. 2000. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissue. Plant Physiology 124:781-793.

4.5 Tables and Figures

4.5.1 Tables

Table 4.1. Soybean yield and weight per 100 seeds for cultivars grown in open-top field chambers fumigated with either carbon-filtered or ozone-enriched air at Beltsville, MD, in 2001.

		Total Seed Yield			Weight 100 Seed ⁻¹			
Cultivar	Filtered Ozone Mean*		Mean*	Filtered	Ozone	Mean*		
	g m ⁻²			g				
Bass	106.1	89.5	97.8a	13.6	11.7	12.7a		
Corsica	139.3	92.8	116.0a	16.8	14.4	15.6a		
Jack	86.7	84.4	85.6a	11.5	9.3	10.4a		
Williams 82	135.8	96.7	116.3a	15.6	14.1	14.8a		
Mean**	117.0a	90.8b		14.4a	12.4a			

^{*}Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

^{**}Column means within total seed yield or weight 100 seed⁻¹ followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 4.2. Soybean seed oil and protein concentrations for cultivars grown in open-top field chambers fumigated with either carbon-filtered or ozone-enriched air at Beltsville, MD, in 2001.

	Seed Oil			Seed Protein			
Cultivar	Filtered	Ozone	Mean*	Filtered	Ozone	Mean*	
		<u> </u>			%		
Bass	22.6	23.0	22.8a	39.8	39.4	39.6 a	
Corsica	21.3	21.8	21.6b	42.3	41.4	41.9 b	
Jack	21.8	20.2	21.0b	40.0	42.2	41.1bc	
Williams 82	22.6	22.6	22 . 6a	40.1	40.0	40.1ac	
Mean	22.1	21.9		40.5	40.8		

^{*}Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 4.3. Soybean seed glucoside isoflavones daidzin and genistin concentrations for cultivars grown in open-top field chambers fumigated with carbon-filtered and ozone-enriched air at Beltsville, MD, in 2001.

	Daidzin			Genistin			
Cultivar	Filtered	Ozone	Mean*	Filtered	Ozone	Mean*	
		mg 100g ⁻¹		-	mg 100g ⁻¹		
Bass	3.4	2.7	3.1a	10.2	8.2	9.2ab	
Corsica	4.5	3.5	4.0b	9.6	7.7	8.7b	
Jack	3.2	2.1	2.6a	9.5	5.5	7.5b	
Williams 82	5.6	4.7	5.1c	13.6	11.4	12.5a	
Mean**	4.2a	3.2b		10.7a	8.2a		

 $^{^*}$ Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

 $^{^{**}}$ Column means within individual isoflavone and followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

Table 4.4. Soybean seed malonyl and aglycone isoflavone concentrations in soybean cultivars grown in open-top field chambers fumigated with carbon-filtered or ozone-enriched air at Beltsville, MD, in 2001 and 2002.

	Malonyl						_	Aglycone	
	Daidzin			Genistin			Genistein		
Cultivar	Filtered	Ozone	Mean*	Filtered	Ozone	Mean*	Filtered	Ozone	Mean*
	mg 100g ⁻¹			mg 100g ⁻¹		mg 100g ⁻¹			
Bass	12.7	8.4	10.5ab	51.1	37.3	44.2a	0.34	0.34	0.37a
Corsica	15.5	11.3	13.4a	47.3	37.2	42.3a	0.39	0.32	0.36a
Jack	10.0	5.8	7.90b	44.1	25.9	35.0a	0.62	0.51	0.51ab
Williams 82	20.2	18.1	19.1c	61.7	58.8	60.3b	0.58	0.57	0.57b
Mean**	14.5a	10.9b		51.1a	39.8b		0.50a	0.42b	

 $^{^*}$ Within column means followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

 $^{^{**}}$ Column means within individual isoflavone type followed by the same letter are not significantly different according to Tukey-Kramer (0.05).

4.5.2 Figures

Figure 4.1. Three meter Open-Top Chamber (OTC) fitted with an air intake containing a charcoal filter system.

Figure 4.2. Average daily 7 h (0900 - 1600 h EDT) ozone concentration for in-field Open-Top Chambers (OTC) averaged across chamber replications.

Figure 4.3. View from above an open-top chamber of a soybean plot with transplants arranged in three replications (Plot 1=0zone Treatment + Replication 1 + Cultivar Bass).

Chapter 5: Dissertation Conclusions

Agronomic research focus has been limited to the amount of isoflavones produced by soybeans and the types that are produced. The primary focus of past and current research has been on isoflavone type and concentration with respect to the comparative response of cultivars to specific environmental stresses. The primary focus of this research was on the potential for the alteration of soybean seed isoflavone concentrations and types, in specific cultivars, to herbicide as well as ozone damage.

The findings of this research have added to the overall body of the research literature by demonstrating that: 1.

Lactofen treatments did not show an effect from herbicide induced leaf injury on the isoflavone type and/or concentration in the seed tissue, 2. Cultivar selection is important for the production of high isoflavone soybeans near urban centers where air pollution is of concern. Perhaps the single most important result of this research is the determination that the effects of production and environmental influences on soybean seed isoflavone type and concentration are variable and should be evaluated independently. The dogmatic philosophy that stress will increase isoflavone concentration, and somehow alter the type of detectable isoflavone species must be rethought in light

of this research. The findings of this research support the notion that total soybean plant seed isoflavone concentration is the best measure for cultivar selection.

The role of future research may best be focused on the physiological affects of three specific treatment effects. first broad focused area would be to evaluate various cropping systems, chemical protectants, and air pollutants in combination with temperature and moisture stress. This effort could aid in focusing breeding on cultivars better suited to these extremes. In addition, it would also be of practical benefit to evaluate soybean cultivars from extreme maturity groups such as 0 and 12 to elucidate any potential temporal effects with respect to repair and isoflavone specific enzyme production. The third area of research would focus specifically on the isoflavone production and storage. A more basic approach to soybean isoflavone production needs to be focused on the production and storage enzymology and genetics. A better understanding of the functioning and controls of these systems would could lead to the ability of farmers to select high isoflavone markets.

Appendices

Statistical Analysis

SAS Programming

Isoflavone Analysis - Lactofen Study

```
______
Data HPLC;
options ls=96 ps=33 pageno=1;
title1 "Bill Phillips, II";
%include 'E:\PhD Program\Biometrics\Chapter 3\Isoflavone Analysis Post
Defense\Analysis.sas';
%include 'E:\PhD Program\Biometrics\Chapter 3\Isoflavone Analysis Post
Defense\pdmix800.mac';
Proc Import Out=NewHPLC
             datafile="E:\PhD Program\Biometrics\Chapter 3\Isoflavone
Analysis Post Defense\NewHPLCData.xls";
             Quit;
/*----
Macro cantains the Mixed analysis*/
%Analysis
/*========*/
Proc Print Data=NewHPLC (Obs=26);
Quit;
/* -----This
is a macro to calculate the consentration of Isoflavones from the area under
the curve. Due to differences in dilutions between the leaf tissue (20 ml)
and the seed (10 ml) there are two sets.*/
/*Calculations Area -> mg/L Malonyl use a ratio of mol wt [~malony]*(Malonyl
mol wt/Glucoside mol wt)
_____*/
%MACRO ConsCalc;
Data HPLC;
```

```
Set HPLC;
Data HPLC;
Set HPLC:
      If Daidzin > 1 Then Daidzin=(((3.55E-6*Daidzin)+6.79)/5);
           Else If Daidzin < 1 Then Daidzin=0;
      If Malonyl Daidzin > 1 Then Malonyl Daidzin=((((3.55E-
6*Malonyl Daidzin)+6.79)*1.20666)/5);
            Else If Malonyl Daidzin < 1 Then Malonyl Daidzin=0;
      If Genistin > 1 Then Genistin=(((6.9E-6*Genistin)+3.19)/5);
           Else If Genistin < 1 Then Genistin=0;</pre>
      If Malonyl Genistin > 1 Then Malonyl Genistin=((((6.9E-
6*Malonyl Genistin)+3.19)*1.19901)/5);
           Else If Malonyl Genistin < 1 Then Malonyl Genistin=0;</pre>
      If Glycitin > 1 Then Glycitin=(((3.04E-6*Glycitin)-0.55)/5);
            Else If Glycitin < 1 Then Glycitin=0;</pre>
      If Malonyl Glycitin > 1 Then Malonyl Glycitin=((((3.04E-
6*Malonyl Glycitin) -0.55) *1.19276) /5);
           Else If Malonyl Glycitin < 1 Then Malonyl Glycitin=0;</pre>
      If Genistein > 1 Then Genistein=(((4.78E-6*Genistein)-0.03)/5);
           Else If Genistein < 1 Then Genistein=0;</pre>
Run;
Leaf extract was diluted double that of the seed.
_____:
Proc Sort Data=HPLC;
      By Sample Type;
     Quit;
Data NewHPLC;
Set HPLC;
      If Sample_Type=LeafPre Then Daidzin=(Daidzin/2);
If Sample_Type=LeafPre Then Malonyl_Daidzin=(Malonyl_Daidzin/2);
      If Sample_Type=LeafPre Then Genistin=(Genistin/2);
     If Sample Type=LeafPre Then Malonyl Genistin=(Malonyl Genistin/2);
      If Sample Type=LeafPre Then Glycitin=(Glycitin/2);
     If Sample Type=LeafPre Then Malonyl Glycitin=(Malonyl Glycitin/2);
     If Sample Type=LeafPre Then Genistein=(Genistein/2);
     If Sample Type=LeafPost Then Daidzin=(Daidzin/2);
      If Sample Type=LeafPost Then Malonyl Daidzin=(Malonyl Daidzin/2);
     If Sample Type=LeafPost Then Genistin=(Genistin/2);
     If Sample Type=LeafPost Then Malonyl Genistin=(Malonyl Genistin/2);
     If Sample Type=LeafPost Then Glycitin=(Glycitin/2);
      If Sample Type=LeafPost Then Malonyl Glycitin=(Malonyl Glycitin/2);
      If Sample Type=LeafPost Then Genistein=(Genistein/2);
```

```
Keep Farm Year Field Type Block Sample Type Timing Cultivar Plot
     Daidzin Genistin Glycitin Malonyl Daidzin Malonyl Genistin
Malonyl Glycitin Genistein;
Proc Export data=NewHPLC Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\NewHPLC.xls";
  Ouit:
%MEND ConsCalc;
%MACRO Analysis;
______
OVERALL ANALYSIS for Main Effects and Interactions
______
Dependant Variable (mg/Kg) = mgPerKg
______
2 \text{ Years} = \text{Year}
2 Locations = Farm
2 Cropping Systems at each farm (DC and FS) = Field Type
3 Blocks within each field (12 plots - Each block has
                                  2 treatments and one
control/cultivar) = Block
4 Cultivars (Bass, Corsica, Jack, Williams82) = Cultivar
2 Herbicide Application Timings on Each Cultivar = Timing
2 Samples Harvested (Leaf and Seed) = Sample Type
7 Isoflavone Types (1-7) = Isoflavone
_____
/***********************
****************************
Proc Sort Data=NewHPLC;
By Sample_Type;
Ouit;
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
        Daidzin=Farm
                   Field Type
                   Field_Type*Farm
                   Cultivar
                   Cultivar*Field Type
                   Timing
                   Timing*Field Type
                   Timing*Cultivar
                   Timing*Field Type*Cultivar
                   / outp=residsD;/*ddfm=kr*/
         Year Year*Farm
Random
         Field Type*Year*Farm
         Block (Year Farm Field Type)
```

```
Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing; */
lsmeans Field Type Cultivar Field Type*Cultivar/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmD;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsmD, slice=Field Type);
%pdmix800(diffs, lsmD, slice=Cultivar);
Quit;
Proc Univariate data=residsD PLOT NORMAL;
     By Sample Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsD Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsD.xls";
  Quit;
Proc Export data=lsmD Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansD.xls";
  Quit;
/**********************
MalonvlDaidzin
************************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
          Malonyl Daidzin=Farm
                     Field_Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsMD;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
```

```
Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing; */
lsmeans Field Type Cultivar Field Type*Cultivar/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmMD;
ods listing exclude diffs;
ods output diffs=diffs;
Ouit;
%pdmix800(diffs, lsmMD, slice=Field Type);
%pdmix800(diffs, lsmMD, slice=Cultivar);
Quit;
Proc Univariate data=residsMD PLOT NORMAL;
     By Sample Type
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsMD Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsMD.xls";
  Quit;
Proc Export data=lsmMD Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansMD.xls";
/*********************
Genistin
*************************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
          Genistin=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field Type
                     Timing*Cultivar
                     Timing*Field_Type*Cultivar
                     / outp=residsG;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
```

```
Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
```

```
lsmeans Field Type Cultivar Field Type*Timing/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmG;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsmG, slice=Field Type);
%pdmix800(diffs, lsmG, slice=Cultivar);
%pdmix800(diffs, lsmG, slice=Timing);
Quit;
Proc Univariate data=residsG PLOT NORMAL;
     By Sample Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=resids Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsG.xls";
  Quit;
Proc Export data=1smG Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansG.xls";
  Quit;
/**********************
MalonylGenistin
*****************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
          Malonyl Genistin=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field_Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsMG;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
```

```
lsmeans Field Type Cultivar Field Type*Cultivar Timing / ADJUST=TUKEY pdiff;
ods listing exclude 1smeans;
ods output lsmeans=lsmMG;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsmMG, slice=Field Type);
%pdmix800(diffs, lsmMG, slice=Cultivar);
%pdmix800(diffs, lsmMG, slice=Timing);
Ouit;
Proc Univariate data=residsMG PLOT NORMAL;
     By Sample_Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsMG Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsMG.xls";
  Ouit;
Proc Export data=lsmMG Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansMG.xls";
  Quit;
/**********************
Glycitin
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
          Glycitin=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsGL;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
```

```
lsmeans Cultivar*Timing / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmGL;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsmGL, slice=Cultivar);
%pdmix800(diffs, lsmGL, slice=Timing);
Quit;
Proc Univariate data=residsGL PLOT NORMAL;
     By Sample Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsGL Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsGL.xls";
  Quit;
Proc Export data=lsmGL Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansGL.xls";
  Ouit;
/**********************
MalonylGlycitin
**********************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
          Malonyl Glycitin=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsML;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;
lsmeans Field Type Cultivar Field Type*Cultivar Farm*Field Type*Block /
ADJUST=TUKEY pdiff;
```

```
ods listing exclude lsmeans;
ods output lsmeans=lsmML;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Field Type);
%pdmix800(diffs, lsm, slice=Cultivar);
%pdmix800(diffs, lsm, slice=Timing);
%pdmix800(diffs, lsm, slice=Sample Type);
%pdmix800(diffs, lsm, slice=Isoflavone);*/
Ouit;
Proc Univariate data=residsML PLOT NORMAL;
     By Sample_Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=resids Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsML.xls";
  Ouit;
Proc Export data=lsmML Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansML.xls";
  Quit;
/***********************
Genistein
*****************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
          Genistein=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field_Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsGE;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
```

```
lsmeans Timing Cultivar Field Type*Cultivar Farm*Field Type / ADJUST=TUKEY
pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmGE;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsmGE, slice=Field Type);
%pdmix800(diffs, lsmGE, slice=Cultivar);
%pdmix800(diffs, lsmGE, slice=Timing);
Ouit;
Proc Univariate data=residsGE PLOT NORMAL;
     By Sample Type;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=resids Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsGE.xls";
  Quit;
Proc Export data=lsmGE Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansGE.xls";
  Ouit:
/**********************
Total
*************************
Proc Mixed Data=NewHPLC;
By Sample Type;
Class Year Farm Field Type Block Cultivar Timing;
Model
          Total Iso=Farm
                     Field Type
                     Field Type*Farm
                     Cultivar
                     Cultivar*Field Type
                     Timing
                     Timing*Field_Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                     / outp=residsT;/*ddfm=kr*/
Random
          Year Year*Farm
          Field Type*Year*Farm
          Block (Year Farm Field Type)
          Block*Year*Farm*Cultivar
          Block*Year*Farm*Cultivar*Timing
          Block*Year*Farm*Field Type*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
```

```
lsmeans Timing Cultivar Field Type/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmT;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Field_Type);
%pdmix800(diffs, lsm, slice=Cultivar);
%pdmix800(diffs, lsm, slice=Timing);
Quit;
/**/
Proc Univariate data=residsT PLOT NORMAL;
     By Sample_Type;
      var resid;
      Histogram/Normal;
      quit;
Proc Export data=residsT Replace
   outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsT.xls";
   Quit;
Proc Export data=lsmT Replace
   outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansT.xls";
   Quit;
%MEND;
```

```
Yield, Seed Weight, Protein and Oil Analysis - Lactofen Study
Data Seed;
options ls=96 ps=33 pageno=1;
title1 "Bill Phillips, II";
%include 'E:\PhD Program\Biometrics\Chapter 3\SeedTotalWt.sas';
%include 'E:\PhD Program\Biometrics\Chapter 3\SeedHndWt.sas';
%include 'E:\PhD Program\Biometrics\Chapter 3\SeedProNOil.sas';
%include 'E:\PhD Program\Biometrics\Chapter 3\pdmix800.mac';
proc import
   file='E:\PhD Program\Biometrics\Chapter 3\Poplar Hill and Wye Seed Data
28 April 2005.xls'
   out=Seed
   dbms=excel2000
   replace;
sheet=Sheet3;
getnames=yes;
quit;
Proc Print Data=Seed /* (Obs=50) */;
Quit;
/*-----
This is a macro to */
%SeedTotalWt
/*========*/
%SeedProNOil
/*=======*/
%SeedHndWt
/*=========*/
%MACRO SeedTotalWt;
/*----*/
Title2'Seed Total Weight';
/*----
2 \text{ Years} = \text{Year}
2 Locations = Farm
2 Cropping Systems at each farm (DC and FS) = Field_Type
3 Replications
4 Cultivars (Bass, Corsica, Jack, Williams82) = Cultivar
2 Herbicide Application Timings on Each Cultivar = Timing
_____*/
Proc Mixed Data=Seed;
Class Year Farm Field Type Cultivar Timing Rep;
/*TotlWgt HndSedWt Protein Oil;*/
         Yield=Farm
Model
```

Field Type

```
Field Type*Farm
                       Cultivar
                       Cultivar*Field Type
                       Timing
                       Timing*Field Type
                       Timing*Cultivar
                       Timing*Field_Type*Cultivar
                       / outp=residseed ddfm=sat;
           Year Year*Farm
Random
           Field Type*Year*Farm
           Rep (Year Farm Field Type)
           Rep*Year*Farm*Cultivar
           Rep*Year*Farm*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Rep*Year*Farm*Field Type*Cultivar*Timing;*/
lsmeans Farm Farm*Field Type Field Type / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
%pdmix800(diffs, lsm, slice=Farm);
%pdmix800(diffs, lsm, slice=Field Type);
Quit;
Proc Univariate data=residseed PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residseed Replace
   outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsSeed.xls";
   Quit;
Proc Export data=1sm Replace
   outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansSeed.xls";
%MEND;
%MACRO SeedHndWt;
Title2 'Seed Hundred Weight';
Proc Mixed Data=Seed;
Class Year Farm Field Type Cultivar Timing Rep;
/*TotlWgt HndSedWt Protein Oil; */
Model
            HndSedWt=Farm
                       Field Type
                       Field Type*Farm
                       Cultivar
```

```
Cultivar*Field Type
                     Timing
                     Timing*Field Type
                     Timing*Cultivar
                     Timing*Field Type*Cultivar
                      / outp=residseed2; /*ddfm=kr;*/
Random
           Year Year*Farm
           Field Type*Year*Farm
           Rep (Year Farm Field Type)
           Rep*Year*Farm*Cultivar
           Rep*Year*Farm*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
lsmeans Field Type Cultivar Timing Field Type*Timing Field Type*Cultivar
Timing*Field Type*Cultivar
     / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm2;
ods listing exclude diffs;
ods output diffs=diffs;
%pdmix800(diffs, lsm2, slice=Field Type);
%pdmix800(diffs, lsm2, slice=Cultivar);
%pdmix800(diffs, lsm2, slice=Timing);
Quit;
Proc Univariate data=residseed2 PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residseed2 Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsSeed2.xls";
  Quit;
Proc Export data=1sm2 Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansSeed2.xls";
  Quit;
%MEND;
%Macro SeedProNOil;
Title2 'Seed Protein';
Proc Mixed Data=Seed;
Class Year Farm Field Type Cultivar Timing Rep;
/*TotlWgt HndSedWt Protein Oil;*/
Model
           Protein=Farm
                      Field Type
                      Field Type*Farm
```

```
Cultivar
                      Cultivar*Field Type
                      Timing
                      Timing*Field Type
                      Timing*Cultivar
                      Timing*Field Type*Cultivar
                      / outp=residsP; /*ddfm=kr;*/
Random
           Year Year*Farm
           Field Type*Year*Farm
           Rep (Year Farm Field Type)
           Rep*Year*Farm*Cultivar
           Rep*Year*Farm*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
     Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
lsmeans Field Type Cultivar Timing Field Type*Timing / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmP;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
*%pdmix800(diffs, lsmP, slice=Field Type);
*%pdmix800(diffs, lsmP, slice=Cultivar);
*%pdmix800(diffs, lsmP, slice=Timing);
Quit;
Proc Univariate data=residsP PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsP Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsP.xls";
Proc Export data=lsmP Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansP.xls";
/*_____
 _____* /
Title2 'Seed Oil';
Proc Mixed Data=Seed;
Class Year Farm Field Type Cultivar Timing Rep;
/*TotlWgt HndSedWt Protein Oil;*/
Model
              Oil=Farm
                      Field Type
                      Field Type*Farm
                      Cultivar
                      Cultivar*Field Type
                      Timing
                      Timing*Field Type
                      Timing*Cultivar
```

```
Timing*Field Type*Cultivar
                        / outp=residsO; /*ddfm=kr;*/
Random
            Year Year*Farm
            Field Type*Year*Farm
            Rep (Year Farm Field Type)
            Rep*Year*Farm*Cultivar
            Rep*Year*Farm*Cultivar*Timing;
/*Repeated Isoflavone / Type=un r rcorr
      Subject=Block*Year*Farm*Field Type*Cultivar*Timing;*/
lsmeans Field Type Cultivar Timing Field Type*Timing / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsmO;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
*%pdmix800(diffs, lsmO, slice=Field Type);
*%pdmix800(diffs, lsmO, slice=Cultivar);
*%pdmix800(diffs, lsmO, slice=Timing);
Quit;
Proc Univariate data=residsO PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Proc Export data=residsO Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\ResidsO.xls";
   Quit;
Proc Export data=lsmO Replace
  outfile="E:\PhD Program\Biometrics\Chapter 3\Output\LSMeansO.xls";
  Ouit;
%MEND;
```

<u>Chapter 4:</u> SAS Programming for Statistical Analysis of Ozone Effects on the Concentration of Seed Isoflavones in Soybean [Glycine max (L.) Merr.] Seeds

Isoflavone Analysis - Ozone Study

```
/*=======This is a
macro to calculate the consentration of Isoflavones from the area under the
curve. Due to differences in dilutions between the leaf tissue (20 ml) and
the seed (10 ml) there are two sets.*/
/*Calculations Area -> mg/L Malonyl use a ratio of mol wt [~malony]*(Malonyl
mol wt/Glucoside mol wt)
_____*/
%MACRO ISOConsCalc;
Data Ozone1;
Set Ozone1;
Data Ozone debug;
Set Ozone1;
     If Daidzin > 1 Then Daidzin=(((3.55E-6*Daidzin)+6.79)/5);
          Else If Daidzin < 1 Then Daidzin=0;</pre>
     If M Daidzin > 1 Then M Daidzin=((((3.55E-
6*M \text{ Daidzin} + 6.79 \times 1.20666 \times 5;
          Else If M Daidzin < 1 Then M Daidzin=0;</pre>
     If Genistin > 1 Then Genistin=(((6.9E-6*Genistin)+3.19)/5);
          Else If Genistin < 1 Then Genistin=0;</pre>
     If M Genistin > 1 Then M Genistin=(((6.9E-
6*M Genistin) + 3.19) * 1.19901) / 5);
          Else If M Genistin < 1 Then M Genistin=0;</pre>
     If Genistein > 1 Then Genistein=log(((4.78E-6*Genistein)-0.03)/5);
          Else If Genistein < 1 Then Genistein=0;</pre>
Run;
Proc Export data=Ozone Replace
  outfile="E:\PhD Program\Biometrics\Ozone\Ozone.xls";
  Quit;
Data OzoneISO1;
Set OzoneISO1;
Data OzoneISO:
Set OzoneISO1;
     If Daidzin > 1 Then Daidzin=(((3.55E-6*Daidzin)+6.79)/5);
          Else If Daidzin < 1 Then Daidzin=0;
```

```
If M_Daidzin > 1 Then M_Daidzin = ((((3.55E-
6*M \text{ Daidzin} + 6.79) * 1.20666) / 5);
           Else If M Daidzin < 1 Then M Daidzin=0;</pre>
     If Genistin > 1 Then Genistin=(((6.9E-6*Genistin)+3.19)/5);
           Else If Genistin < 1 Then Genistin=0;</pre>
     If M Genistin > 1 Then M Genistin=(((6.9E-
6*M Genistin) + 3.19) * 1.19901) / 5);
           Else If M_Genistin < 1 Then M_Genistin=0;</pre>
     If Genistein > 1 Then Genistein=((((4.78E-6*Genistein)-
0.03)/5) * (((4.78E-6*Genistein)-0.03)/5));
           Else If Genistein < 1 Then Genistein=0;</pre>
Run:
Proc Export data=OzoneISO Replace
  outfile="E:\PhD Program\Biometrics\Ozone\OzoneISO.xls";
  Ouit:
%MEND ISOConsCalc;
%MACRO OzoneAnalysis;
*===========;
*********Note Chamber=Replication**********;
Title1 "Genistin";
Proc Mixed Data=OzoneISO;
Class Chamber Cultivar Treatmnt;
Model Genistin=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=Ginresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Proc Univariate data=Ginresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Title1 "MalGenistin";
Proc Mixed Data=OzoneISO;
Class Chamber Cultivar Treatmnt;
Model M Genistin=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr
outp=MGinresids;
Random Chamber;
```

```
lsmeans Treatmnt Cultivar Cultivar*Treatmnt / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Quit;
Proc Univariate data=MGinresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
*----;
*----;
*----;
**********Note Chamber=Replication*********;
Title1 "Daidzin";
Proc Mixed Data=OzoneISO;
Class Chamber Cultivar Treatmnt;
Model Daidzin=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=Dinresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Ouit;
Proc Univariate data=Dinresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Title1 "MalDaidzin";
Proc Mixed Data=OzoneISO:
Class Chamber Cultivar Treatmnt;
Model M Daidzin=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=MDinresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Ouit;
Proc Univariate data=MDinresids PLOT NORMAL;
     var resid:
     Histogram/Normal;
     quit;
```

```
*=============;;
*=======;
*======;
**********Note Chamber=Replication**********;
Title1 "Genistein";
Proc Mixed Data=OzoneISO;
Class Chamber Cultivar Treatmnt;
Model Genistein=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr
outp=Geneinresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt / ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Quit;
Proc Univariate data=Geneinresids PLOT NORMAL;
    var resid;
    Histogram/Normal;
    quit;
*/*----;
*----;
%MEND OzoneAnalysis;
```

Yield, Seed Weight, Protein and Oil Analysis - Ozone Study

```
*=============:::
Title1 "Weight/Hundrd/Seed";
Proc Mixed Data=Ozone1;
Class Chamber Cultivar Treatmnt;
Model WtHundrd=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=WtHunresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Quit;
Proc Univariate data=WtHunresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     auit;
Title1 "Yield";
Proc Mixed Data=Ozone1;
Class Chamber Cultivar Treatmnt;
Model Wtg=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=Yldresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar);
Quit;
Proc Univariate data=Yldresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
Title1 "Oil";
Proc Mixed Data=Ozone1;
Class Chamber Cultivar Treatmnt;
Model Oil=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=Oilresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt/ ADJUST=TUKEY pdiff;
ods listing exclude 1smeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
```

```
Ouit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar*Treatmnt);
Ouit;
Proc Univariate data=Oilresids PLOT NORMAL;
      var resid;
     Histogram/Normal;
     quit;
**********Note Chamber=Replication**********;
Title1 "Protein";
Proc Mixed Data=Ozone1;
Class Chamber Cultivar Treatmnt;
Model Protein=Cultivar Treatmnt Cultivar*Treatmnt/ ddfm=kr outp=Proresids;
Random Chamber;
lsmeans Treatmnt Cultivar Cultivar*Treatmnt/ ADJUST=TUKEY pdiff;
ods listing exclude lsmeans;
ods output lsmeans=lsm;
ods listing exclude diffs;
ods output diffs=diffs;
Quit;
%pdmix800(diffs, lsm, slice=Treatmnt);
%pdmix800(diffs, lsm, slice=Cultivar*Treatmnt);
Quit;
Proc Univariate data=Proresids PLOT NORMAL;
     var resid;
     Histogram/Normal;
     quit;
**********Note Chamber=Replication**********;
```

SAS Results

Seed and Leaf Isoflavone Analysis - Lactofen Study

Daidzin Analysis

------ Sample_Type=LeafPost ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Daidzin
Covariance Structure Variance Components
Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	184.16631177	
1	2	153.55454458	18.33844279
2	1	139.04376030	0.14050833

3	3	125.60418772	
4	3	121.00633877	0.00536667
5	3	120.94172349	0.00370710
6	2	120.55138043	0.01067350
7	5	120.53362403	•
8	1	120.50890025	0.00000892
9	1	120.50827420	0.00000002

------ Sample_Type=LeafPost ------

The Mixed Procedure

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
10	1	120.50827284	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.000488
Year*Farm	0
Year*Farm*Field_Ty	/pe 0
Bloc(Year*Farm*Fie	el) 0
Year*Farm*Bloc*Cul	lti 1.86E-20
Yea*Far*Blo*Cul*T	imi 0.03874
Ye*Fa*Fi*Blo*Cul*	Γim 0.09057
Residual	0.01827

Fit Statistics

-2 Res Log Likelihood	120.5
AIC (smaller is better)	128.5
AICC (smaller is better)	128.8
BIC (smaller is better)	123.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	1.30	0.4578
Field_Type	1	2	0.94	0.4347
Farm*Field_Type	1	2	1.20	0.3884
Cultivar	3	26	1.29	0.2979
Field_Type*Cultivar	3	26	0.66	0.5858
Timing	1	26	0.70	0.4119
Field_Type*Timing	1	26	0.13	0.7215
Cultivar*Timing	3	26	2.01	0.1379
Field_*Cultiv*Timing	3	26	1.26	0.3081

----- Sample_Type=LeafPre

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Daidzin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	0	1.797693135E308	

 ${\tt WARNING: Stopped \ because \ of \ infinite \ likelihood.}$

------ Sample_Type=LeafPre ------

The Mixed Procedure

Covariance Parameter Values At Last Iteration

Cov Parm	Estimate
Year	0
Year*Farm	0
Year*Farm*Field_Type	0
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0

Residual 0

------ Sample_Type=Seed ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Daidzin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1002.19658576	
1	2	891.37705683	0.01388133
2	1	887.87553204	0.00332836
3	1	887.08723434	0.00038001
4	1	887.00086665	0.00002914
5	1	886.99434552	0.00000099
6	1	886.99413956	0.00000000

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.8254
Year*Farm	0
Year*Farm*Field_Type	0
Bloc(Year*Farm*Fiel)	0.06018
Year*Farm*Bloc*Culti	0.6042
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	1.0045

Fit Statistics

-2 Res Log Likelihood	887.0
AIC (smaller is better)	895.0
AICC (smaller is better)	895.1
BIC (smaller is better)	889.8

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.02	0.9070
Field_Type	1	2	189.91	0.0052
Farm*Field_Type	1	2	9.05	0.0950
Cultivar	3	33	14.70	<.0001
Field_Type*Cultivar	3	117	6.46	0.0004
Timing	2	88	0.82	0.4419
Field_Type*Timing	2	117	0.02	0.9765
Cultivar*Timing	6	88	0.62	0.7100
Field_*Cultiv*Timing	6	117	0.16	0.9874

----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=0.30055 maxSD=0.30055 ------

Obs Sample_Type

- 1 LeafPost
- 2 LeafPost

	Field_	Standard				Pr >	Let		
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			0.08929	0.05215	2	1.71	0.2290	Α
2	FS			0.02158	0.05961	2	0.36	0.7520	Α

------ Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.3069 maxSD=0.31352 ------

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

3 4 5 6		Bass Corsica Jack Williams82		-0.00841 -0.00783 0.1785 0.05948	0.08013 0.08139 0.07912 0.08450	26 26 26 26	-0.10 0.9 2.26 0.0	172 A 241 A 327 A 877 A	
		Effect=1	iming A=T	ukey-Kramer	(.05) avgSD=0	0.16556	maxSD=0.1655	6	
0bs	Sample_T	ype							
	LeafPost LeafPost								
0hs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
	. , , , ,	041114	_		2	٥.		1-1	S. P
7 8			Early Late	0.08902 0.02185	0.06608 0.05207	26 26	1.35 0.42	0.1896 0.6782	A A
	· E [.]	ffect=Field_1	ype*Culti	.var A=Tukey	-Kramer(.05)	avgSD=0	.42769 maxSD	=0.48026 -	
0bs	Sample_T	ype							
9	LeafPost								
10	LeafPost								
	LeafPost LeafPost								
	LeafPost								
14	LeafPost								
	LeafPost LeafPost								
Ohs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF t	P Value	r > Let t Grp	
003	Туре	ouitivai	TIMITING	LSCIIIACE	LITOI	DI C	value	iti dib	
9	DC	Bass		-0.01879	0.09698	26	-0.19 0.8	479 A	
10 11	DC DC	Corsica		-0.01732 0.2761	0.1014 0.09272	26 26		657 A 062 A	
12	DC	Jack Williams82		0.2761	0.09586	26		062 A 326 A	
13	FS	Bass		0.001959	0.1111	26		861 A	
14	FS	Corsica		0.001661	0.1120	26		883 A	
15 16	FS FS	Jack Williams82		0.08088 0.001812	0.1104 0.1228	26 26		702 A 883 A	
		Effect=Fi	leld_Type	A=Tukey-Kra	mer(.05) avg	SD=0.667	6 maxSD=0.66	76	
0bs	Sample_T	ype							
	Seed Seed								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
17 18	DC FS			5.3978 3.2596	0.6613 0.6613	2 2	8.16 4.93	0.0147 0.0388	A B

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.97084 maxSD=0.97233 ------

Obs Sample_Type

Field	I_			Pr >	Let			
Obs Type	e Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	Pass		4 0000	0 6023	33	5 02	< 0001	В
19	Bass		4.0999	0.6923	33	5.92	<.0001	

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.97084 maxSD=0.97233 ------ (continued)

Obs Sample_Type

20 Seed

21 Seed

22 Seed

	Field_				Pr >	Let			
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
20		Corsica		4.7126	0.6925	33	6.81	<.0001	AB
20		COTSICA		4.7120	0.0923	33	0.01	<.0001	AD
21		Jack		3.1035	0.6925	33	4.48	<.0001	С
22		Williams82		5.3989	0.6929	33	7.79	<.0001	Α

------ Effect=Timing A=Tukey-Kramer(.05) avgSD=0.34573 maxSD=0.34654 ------

Obs Sample_Type

23 Seed

24 Seed

25 Seed

Field_	_			Standard			Pr >	Let
Obs Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
23		Control	4.3855	0.6620	88	6.62	<.0001	Α
24		Early	4.3797	0.6620	88	6.62	<.0001	Α
25		Late	4.2210	0.6621	88	6.37	<.0001	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=1.09763 maxSD=1.10463 -----

Obs Sample_Type

26 Seed

27 Seed

28 Seed

29 Seed

30 Seed

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
26	DC	Bass		5.5373	0.7035	117	7.87	<.0001	Α
27	DC	Corsica		5.7236	0.7042	117	8.13	<.0001	Α
28	DC	Jack		3.8156	0.7042	117	5.42	<.0001	В

29 30	DC FS	Williams82 Bass		6.5148 2.6624	0.7060 0.7044	117 117	9.23 3.78	<.0001 0.0002	A BC	
	E	Effect=Field_	Гуре*Culti		r-Kramer(.05) ontinued)	avgSD=1	.09763	maxSD=1.	10463 -	
0bs	Sample_1	⁻ype								
32	Seed Seed Seed									
	Field_				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t	Grp	
31	FS	Corsica		3.7016	0.7042	117	5.26	<.0001	AB	
32	FS	Jack		2.3913	0.7042	117	3.40	0.0009		
33	FS	Williams82		4.2830	0.7042	117	6.08	<.0001	Α	
		Effect=Fie	eld_Type A	=Tukey-Kram	ner(.05) avgSl	D=0.3005	5 maxSD	=0.30055		
0bs	Sample_1	уре								
	LeafPost LeafPost									
Oho	Field_	Cultivan	Timina	Estimata	Standard	DE	+ 1/0	luo	Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Va	Iue	t	Grp
1 2	DC FS			0.08929 0.02158	0.05215 0.05961	2 2			.2290 .7520	A A
		Effect=(Cultivar A	=Tukey-Kram	ner(.05) avgSl	D=0.3069	maxSD=	0.31352		
0bs	Sample_1	⁻ уре								
9	LeafPost	_								
	LeafPost									
5	LeafPost									
6	LeafPost									
	Field_				Standard			Pr >	Let	
0bs	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t	Grp	
3		Bass		-0.00841	0.08013	26	-0.10	0.9172	Α	
4		Corsica		-0.00783	0.08139	26	-0.10	0.9241		
5		Jack		0.1785	0.07912	26	2.26	0.0327		
6		Williams82		0.05948	0.08450	26	0.70	0.4877	Α	
		Effect=	Γiming A=T	ukey-Kramer	`(.05) avgSD=0	0.16556	maxSD=0	.16556 -		
0bs	Sample_1	- ype								

7 LeafPost8 LeafPost

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
7 8			Early Late	0.08902 0.02185	0.06608 0.05207	26 26	1.35 0.42	0.1896 0.6782	A A
	E	ffect=Field_1	Γype*Culti	var A=Tukey	-Kramer(.05)	avgSD=0.	.33656 maxSD	=0.35139 -	
0bs	Sample_T	ype							
	LeafPost LeafPost								
	LeafPost								
	LeafPost								
	LeafPost LeafPost								
	LeafPost								
16	LeafPost								
	Field_				Standard		Р	r > Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
9	DC	Bass		-0.01879	0.09698	26	-0.19 0.8	479 A	
10	FS	Bass		0.001959	0.1111	26	0.02 0.9		
11	DC	Corsica		-0.01732	0.1014	26	-0.17 0.8	657 A	
12	FS	Corsica		0.001661	0.1120	26	0.01 0.9	883 A	
13	DC	Jack		0.2761	0.09272	26	2.98 0.0		
14 15	FS DC	Jack Williams82		0.08088	0.1104	26 26		702 A 326 A	
16	FS	Williams82		0.1172 0.001812	0.09586 0.1228	26	0.01 0.9		
		Effect=Fi	ield_Type	A=Tukey-Kraı	mer(.05) avg	SD=0.6676	6 maxSD=0.66	76	
0bs	Sample_T	ype							
17	Seed								
18	Seed								
	Field				Standard			Pr >	Let
	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
47	DO.			5 0070	0.0010	0	0.40	0.0447	
17 18	DC FS			5.3978 3.2596	0.6613 0.6613	2 2	8.16 4.93	0.0147 0.0388	A B
				0.2000	0.00.0	_		0.0000	_
		Effect=Cu	ultivar A=	Tukey-Krame	r(.05) avgSD	=0.97084	maxSD=0.972	33	
0bs	Sample_T	ype							
19	Seed								
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
19		Bass		4.0999	0.6923	33	5.92	<.0001	В
		Effect=Cı	ıltivar A=	-	r(.05) avgSD: ntinued)	=0.97084	maxSD=0.972	33	
				`	•				

```
Obs Sample_Type
```

20 Seed

21 Seed

22 Seed

Fie Obs Ty	ld_ pe Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
20	Corsica		4.7126	0.6925	33	6.81	<.0001	AB
21	Jack		3.1035	0.6925	33	4.48	<.0001	С
22	Williams82		5.3989	0.6929	33	7.79	<.0001	Α

----- Effect=Timing A=Tukey-Kramer(.05) avgSD=0.34573 maxSD=0.34654 ------

Obs Sample_Type

23 Seed

24 Seed

25 Seed

Field_			Standard					
Obs Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
23		Control	4.3855	0.6620	88	6.62	<.0001	Α
24		Early	4.3797	0.6620	88	6.62	<.0001	Α
25		Late	4.2210	0.6621	88	6.37	<.0001	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=0.61099 maxSD=0.62025 -----

Obs Sample_Type

26 Seed

27 Seed

28 Seed

29 Seed 30 Seed

	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
26	DC	Bass		5.5373	0.7035	117	7.87	<.0001	Α
27	FS	Bass		2.6624	0.7044	117	3.78	0.0002	В
28	DC	Corsica		5.7236	0.7042	117	8.13	<.0001	Α
29	FS	Corsica		3.7016	0.7042	117	5.26	<.0001	В
30	DC	Jack		3.8156	0.7042	117	5.42	<.0001	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=0.61099 maxSD=0.62025 ------ (continued)

Obs Sample_Type

31 Seed

32 Seed

33 Seed

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
31	FS	Jack		2.3913	0.7042	117	3.40	0.0009	В
32	DC	Williams82		6.5148	0.7060	117	9.23	<.0001	Α
33	FS	Williams82		4.2830	0.7042	117	6.08	<.0001	В

Genistin Analysis

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Genistin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	438.05513306	
1	4	407.67612777	0.11383027
2	2	406.55449341	
3	3	405.54607559	0.00010354
4	1	405.53790031	0.00000289
5	1	405.53768090	0.00000000

Convergence criteria met.

------ Sample_Type=LeafPost ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.02639
Year*Farm	0
Year*Farm*Field_Type	0.4930
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	1.3E-18
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	0.7446

Fit Statistics

-2 Res Log Likelihood	405.5
AIC (smaller is better)	411.5
AICC (smaller is better)	411.7
BIC (smaller is better)	407.6

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	1.44	0.4425
Field_Type	1	2	1.58	0.3352
Farm*Field_Type	1	2	0.64	0.5070
Cultivar	3	26	2.00	0.1389
Field_Type*Cultivar	3	26	0.96	0.4260
Timing	1	26	9.14	0.0056
Field_Type*Timing	1	26	39.03	<.0001
Cultivar*Timing	3	26	0.16	0.9245
Field_*Cultiv*Timing	3	26	0.21	0.8876

------ Sample_Type=LeafPre ------

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Genistin
Covariance Structure	Variance Components
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Teal	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timina	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
		3	
•	_	550 00070540	
0	1	558.66072540	
1	3	505.32066316	0.03250902
2	3	502.12251581	i
3	2	502.04965139	0.00018033
4	1	502.04224255	0.00000398
5	1	502.04208961	0.00000000

Convergence criteria met.

------ Sample_Type=LeafPre

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.2102
Year*Farm	0.008384
Year*Farm*Field_Type	0.09030
Bloc(Year*Farm*Fiel)	0.009615
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	0.05253
Ye*Fa*Fi*Blo*Cul*Tim	0.03043
Residual	0.3233

Fit Statistics

-2 Res Log Likelihood	502.0
AIC (smaller is better)	516.0
AICC (smaller is better)	516.5
BIC (smaller is better)	506.9

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.23	0.7154
Field_Type	1	2	7.93	0.1064
Farm*Field_Type	1	2	0.01	0.9192
Cultivar	3	33	3.95	0.0164
Field_Type*Cultivar	3	36	0.73	0.5429
Timing	1	36	0.48	0.4917
Field_Type*Timing	1	36	3.90	0.0559

Cultivar*Timing	3	36	2.60	0.0669
Field *Cultiv*Timing	3	36	1.65	0.1953

------Sample_Type=Seed ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Genistin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
V	0	0000 0000
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1553.48688370	
1	2	1404.07347642	0.00337155
2	1	1402.19450685	0.00063956
3	1	1401.85710114	0.00005110
4	1	1401.83204816	0.0000060
5	1	1401.83177080	0.00000000

Convergence criteria met.

------ Sample_Type=Seed ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year Year*Farm	9.9110 0
Year*Farm*Field_Type	0.8394
Bloc(Year*Farm*Fiel)	0.8026
Year*Farm*Bloc*Culti	3.6654
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	7.0941

Fit Statistics

-2 Res Log Likelihood	1401.8
AIC (smaller is better)	1411.8
AICC (smaller is better)	1412.1
BIC (smaller is better)	1405.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.12	0.7838
Field_Type	1	2	66.04	0.0148
Farm*Field_Type	1	2	3.60	0.1980
Cultivar	3	33	5.32	0.0042
Field_Type*Cultivar	3	117	0.88	0.4545
Timing	2	88	1.32	0.2733
Field_Type*Timing	2	117	0.09	0.9164
Cultivar*Timing	6	88	0.89	0.5040
Field_*Cultiv*Timing	6	117	0.22	0.9680

------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=2.31723 maxSD=2.31723 ------

Obs Sample_Type

- 1 LeafPost
- 2 LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			2.2982	0.4024	2	5.71	0.0293	Α
2	FS			1.6205	0.3932	2	4.12	0.0541	Α

------ Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.61418 maxSD=0.63605 ------

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

F	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timina	Estimate	Error	DF	t Value	ltl	Grp

3		Bass		2.1199	0.3212	26	6.60 <.	0001 A	
4		Corsica		1.9020	0.3240	26	5.87 <.	0001 A	
5		Jack		1.6769	0.3193	26		0001 A	
6		Williams82		2.1387	0.3289	26	6.50 <.	0001 A	
		Effect=T	iming A=Tuk	key-Kramer(.	05) avgSD=0	.35296 m	axSD=0.352	296	
			-						
Obo	Sample Ty	rno.							
003	Sample_1	ype							
7	LeafPost								
8	LeafPost								
	Field				Ctandand			Dm >	l o+
Ohs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
000	1 3 00	ourcival	ı illi	Locimaco	21101	υ.	t value	151	u, p
7			Early	2.2189	0.3122	26	7.11	<.0001	Α
8			Late	1.6999	0.2979	26	5.71	<.0001	В
		Effect=Field	Tvpe*Timir	na A=Tukev-K	ramer(.05)	avaSD=0.	5956 maxSD)=0.6935	
			_ ′'	,	(3			
0bs	Sample_Ty	ype							
a	LeafPost								
	LeafPost								
	LeafPost								
12	LeafPost								
	E1.14				01 1 1			D	1
Oho	Field_	Cultivan	Timina	Estimata	Standard	DE	+ //01/10	Pr >	Let
005	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
9	DC		Early	3.0944	0.4061	26	7.62	<.0001	Α
10	DC		Late	1.5021	0.4230	26	3.55	0.0015	В
11			Early	1.3434	0.4455	26	3.02	0.0057	A
12	FS		Late	1.8976	0.3869	26	4.90	<.0001	Α
	E1	ffect=Field_T	ype*Cultiva	ar A=Tukey-K	ramer(.05)	avgSD=0.	92172 max	SD=1.07507 -	
Obo	Comple To	.m.o							
800	Sample_Ty	ype							
13	LeafPost								
	LeafPost								
15	LeafPost								
	LeafPost								
	LeafPost LeafPost								
	LeafPost								
	LeafPost								
								_	
Obc	Field_	Cultivan	Timina 5		tandard	DE +	Value	Pr > Let	
0bs	Type	Cultivar	Timing E	Estimate	Error	DF t	vatue	t Grp	
13	DC	Bass		2.5709	0.4333	26	5.93 <.	0001 A	
14	DC	Corsica		2.3941	0.4410	26		0001 A	
15	DC	Jack		1.8736	0.4374	26		0002 A	
16	DC	Williams82		2.3543	0.4391	26	5.36 <.	.0001 A	

1.6690

1.4098

1.4802

26

26

26

3.75

3.16

3.40

0.0009

0.0040

0.0022

0.4455

0.4459

0.4359

Α

Α

Α

17

18

19 FS

FS

FS

Bass

Jack

Corsica

20 FS Williams82 1.9231 0.4620 26 4.16 0.0003 Α ----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=1.02591 maxSD=1.02591 -------Obs Sample Type 21 LeafPre 22 LeafPre Field_ Standard Pr > Let Obs Type Cultivar Error DF t Value Timing Estimate |t| Grp 21 DC 2.1204 0.3711 2 5.71 0.0293 Α 22 FS 0.3674 0.0587 1.4490 2 3.94 Α ----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.37744 maxSD=0.38064 ------Obs Sample_Type 23 LeafPre 24 LeafPre 25 LeafPre 26 LeafPre Field_ Standard Pr > Let Obs Type Cultivar Timing Estimate Error t Value DF |t| Grp 23 Bass 1.7690 0.3602 33 4.91 <.0001 24 Corsica 0.3595 0.0001 1.5848 33 4.41 В 25 Jack 1.7331 0.3596 33 4.82 <.0001 AB 26 Williams82 2.0520 0.3598 33 5.70 <.0001 ----- Effect=Timing A=Tukey-Kramer(.05) avgSD=0.21554 maxSD=0.21554 -----Obs Sample_Type 27 LeafPre 28 LeafPre Field Standard Pr > Let Obs Type Cultivar Timing Estimate Error DF t Value |t| Grp 27 Early 1.7478 0.3514 36 4.97 <.0001 Α 28 Late 1.8217 0.3556 36 5.12 <.0001 Α ----- Effect=Field_Type*Timing A=Tukey-Kramer(.05) avgSD=0.34729 maxSD=0.3969 -----Obs Sample_Type 29 LeafPre 30 LeafPre 31 LeafPre 32 LeafPre Field Standard Pr > Let Obs Type Cultivar Timing Estimate Error DF t Value |t| Grp

29	DC		Early	1.9882	0.3705	36	5.37	<.0001	Α
30			Late	2.2526	0.3890	36	5.79	<.0001	A
31			Early	1.5074	0.3740	36	4.03	0.0003	Α
32			Late	1.3907	0.3709	36	3.75	0.0006	Α
	-				K (05)		50007 00	0 50000	
	E	ffect=Field_1	ype^Cult1	var A=Tukey	-Kramer(.U5)	avgsb=0	.52827 maxSD	=0.59636 -	
0bs	Sample_T	ype							
	LeafPre								
	LeafPre								
	LeafPre								
	LeafPre LeafPre								
	LeafPre								
	LeafPre								
	LeafPre								
	Field_				Standard			r > Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
33	DC	Bass		2.1908	0.3933	36	5.57 <.0	001 A	
34	DC	Corsica		1.8617	0.3895	36	4.78 <.0	001 A	
35	DC	Jack		2.1054	0.3909	36	5.39 <.0	001 A	
36	DC	Williams82		2.3240	0.3920	36	5.93 <.0	001 A	
37	FS	Bass		1.3472	0.3807	36	3.54 0.0	011 A	
38		Corsica		1.3080	0.3817	36		015 A	
39		Jack		1.3608	0.3808	36		010 A	
40	FS	Williams82		1.7801	0.3808	36	4.68 <.0	001 A	
		Effect=Fi	ield_Type	A=Tukey-Kra	mer(.05) avg	SD=3.475	9 maxSD=3.47	59	
Obs	Sample_T	ype							
41	Seed								
	Seed								
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
41	DC			13.7494	2.3148	2	5.94	0.0272	Α
42				7.1846	2.3147	2	3.10	0.0900	В
		Effect=Cu	ıltivar A=	Tukey-Krame	r(.05) avgSD	=2.43373	maxSD=2.437	91	
0bs	Sample_T	ype							
43	Seed								
44	Seed								
	Seed								
46	Seed								
	Eiold				C+andand			n \ 10±	
Oha	Field_	Cultivan	Timing	Ectimoto	Standard	ne +		r > Let	
อมร	Type	Cultivar	ı ±III±IIY	Estimate	Error	DF t	Value	t Grp	
43		Bass		10.1314	2.3445	33	4.32 0.0	001 AB	
44		Corsica		10.4292	2.3447	33	4.45 <.0		
		OUI SICA		10.4232					

```
45
                                               2.3447
                                                                 3.79
                                                                        0.0006 B
            Jack
                                    8.8774
                                                          33
            Williams82
                                   12.4300
                                               2.3457
                                                                 5.30
                                                                       <.0001
46
                                                          33
----- Effect=Timing A=Tukey-Kramer(.05) avgSD=0.91882 maxSD=0.92095 ------
Obs Sample_Type
47 Seed
48 Seed
49 Seed
   Field
                                                Standard
                                                                                Pr >
Obs Type
             Cultivar
                         Timing
                                    Estimate
                                                 Error
                                                             DF
                                                                    t Value
                                                                                 |t|
                                                                                        Grp
47
                         Control
                                     10.5707
                                                  2.2901
                                                             88
                                                                      4.62
                                                                              <.0001
                                                                                         Α
48
                         Early
                                     10.7151
                                                  2.2900
                                                             88
                                                                       4.68
                                                                              <.0001
                                                                                         Α
                                                                      4.42
49
                         Late
                                     10.1151
                                                  2.2903
                                                             88
                                                                              <.0001
                                                                                         Α
----- Effect=Field_Type*Timing A=Tukey-Kramer(.05) avgSD=1.42059 maxSD=1.42836 -----
Obs Sample_Type
50 Seed
51 Seed
52 Seed
53 Seed
54 Seed
55 Seed
   Field
                                                Standard
                                                                                Pr >
                                                                                        Let
Obs Type
             Cultivar
                         Timing
                                    Estimate
                                                 Error
                                                                   t Value
                                                                                 |t|
                                                                                        Grp
50
     DC
                                     13.8757
                                                  2.3359
                                                                      5.94
                                                                              <.0001
                         Control
                                                             117
                                                                                         Α
51
     DC
                         Early
                                     13.9082
                                                  2.3357
                                                             117
                                                                      5.95
                                                                              <.0001
                                                                                         Α
52
     DC
                         Late
                                     13.4643
                                                  2.3369
                                                             117
                                                                      5.76
                                                                              <.0001
53
     FS
                                      7.2658
                                                  2.3361
                                                                              0.0023
                         Control
                                                             117
                                                                      3.11
                                                                                         Α
                         Early
54
     FS
                                      7.5220
                                                  2.3359
                                                             117
                                                                      3.22
                                                                              0.0017
                                                                                         Α
55
     FS
                                      6.7659
                                                  2.3359
                                                             117
                                                                       2.90
                                                                              0.0045
----- Effect=Field Type*Cultivar A=Tukey-Kramer(.05) avgSD=2.78201 maxSD=2.80164 ------
Obs Sample_Type
56 Seed
57 Seed
58 Seed
59 Seed
60 Seed
61 Seed
62 Seed
63 Seed
   Field
                                             Standard
                                                                          Pr >
                                                                                 Let
Obs Type
            Cultivar
                         Timing
                                  Estimate
                                              Error
                                                              t Value
                                                                           |t|
                                                                                 Grp
     DC
                                   13.7658
                                               2.3932
                                                                 5.75
                                                                        <.0001
                                                                                 AB
56
            Bass
                                                         117
57
     DC
            Corsica
                                   13.4494
                                               2.3947
                                                         117
                                                                 5.62
                                                                        <.0001
                                                                                 AB
58
     DC
            Jack
                                   12.2933
                                               2.3947
                                                         117
                                                                 5.13
                                                                        <.0001
                                                                                 В
```

59	DC	Williams82		15.4890	2.3984	117	6.46 <.0	001 A	
60	FS	Bass		6.4970	2.3951	117		077 AB	
61	FS	Corsica		7.4089	2.3947	117		025 AB	
62	FS	Jack		5.4614	2.3947	117		244 B	
63	FS	Williams82		9.3709	2.3947	117	3.91 0.0	002 A	
		Effect=Fie	eld_Type A	-Tukey-Kram	ner(.05) avgS	D=2.31723	3 maxSD=2.31	723	
0bs	Sample_T	ype							
	LeafPost LeafPost								
	Field				Standard			Pr >	Let
	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			2.2982	0.4024	2	5.71	0.0293	Α
2	FS			1.6205	0.3932	2	4.12	0.0541	Α
		Effect=Cu	ıltivar Δ=	:Tukev-Krame	ar(05) avgSD	=0 61418	maxSD=0 636	05	
		Lileot of	ilcivai /	rakey Krame	71 (100) uvgob	0.01410		00	
0bs	Sample_T	ype							
	LeafPost								
	LeafPost LeafPost								
	LeafPost								
	Field_				Standard			r > Let	
Obs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
3		Bass		2.1199	0.3212	26	6.60 <.0	001 A	
4		Corsica		1.9020	0.3240	26	5.87 <.0	001 A	
5		Jack		1.6769	0.3193	26		001 A	
6		Williams82		2.1387	0.3289	26	6.50 <.0	001 A	
		Effect=1	Timina ∧-T	Tukov Knamor	v(05) avgSD-	0 35306 m	12VSD-0 3530	6	
		Lilect-i	IIIIIII A-I	ukey-ki allei	(.03) avgob-	0.33290 1	18X3D-0.3329	0	
0bs	Sample_T	ype							
	LeafPost LeafPost								
	Field				Standard			Pr >	Let
	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			Early	2.2189	0.3122	26	7.11	<.0001	Α
8			Late	1.6999	0.2979	26	5.71	<.0001	В
		Effect=Field_	_Type*Timi	.ng A=Tukey-	Kramer(.05)	avgSD=1.2	25221 maxSD=	1.62483	

Obs Sample_Type

- 9 LeafPost
- 10 LeafPost
- 11 LeafPost

12 LeafPost

	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
_									
9	DC		Early	3.0944	0.4061	26	7.62	<.0001	Α
10	DC		Late	1.5021	0.4230	26	3.55	0.0015	В
11	FS		Early	1.3434	0.4455	26	3.02	0.0057	В
12	FS		Late	1.8976	0.3869	26	4.90	<.0001	AB

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=1.50171 maxSD=1.5311 -----

Obs Sample_Type

- 13 LeafPost
- 14 LeafPost
- 15 LeafPost
- 16 LeafPost
- 17 LeafPost
- 18 LeafPost
- 19 LeafPost
- 20 LeafPost

	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
13	DC	Bass		2.5709	0.4333	26	5.93	<.0001	Α
14	FS	Bass		1.6690	0.4455	26	3.75	0.0009	Α
15	DC	Corsica		2.3941	0.4410	26	5.43	<.0001	Α
16	FS	Corsica		1.4098	0.4459	26	3.16	0.0040	Α
17	DC	Jack		1.8736	0.4374	26	4.28	0.0002	Α
18	FS	Jack		1.4802	0.4359	26	3.40	0.0022	Α
19	DC	Williams82		2.3543	0.4391	26	5.36	<.0001	Α
20	FS	Williams82		1.9231	0.4620	26	4.16	0.0003	Α

------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=1.02591 maxSD=1.02591 ------

Obs Sample_Type

- 21 LeafPre
- 22 LeafPre

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	DC			2.1204	0.3711	2	5.71	0.0293	Α
22	FS			1.4490	0.3674	2	3.94	0.0587	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.37744 maxSD=0.38064 -----

Obs Sample_Type

- 23 LeafPre
- 24 LeafPre
- 25 LeafPre
- 26 LeafPre

Field_ Standard Pr > Let

0bs	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
23		Bass		1.7690	0.3602	33	4.91 <.	.0001 AB	
24		Corsica		1.5848	0.3595	33		.0001 B	
25		Jack		1.7331	0.3596	33	4.82 <.	.0001 AB	
26		Williams82		2.0520	0.3598	33	5.70 <.	.0001 A	
		Effect=T	iming A=Tu	ıkey-Kramerı	(.05) avgSD=0	.21554 r	maxSD=0.215	554	
0bs	Sample_T	ype							
	LeafPre LeafPre								
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
27			Early	1.7478	0.3514	36	4.97		Α
28			Late	1.8217	0.3556	36	5.12	<.0001	Α
		Effect=Field_	Type*Timir	ng A=Tukey-h	Kramer(.05) a	vgSD=0.	5922 maxSD=	=0.74205	
0bs	Sample_T	ype							
29	LeafPre								
	LeafPre								
31	LeafPre								
32	LeafPre								
	E1.14				Ol seedeed			Б	1
Oho	Field_	Cultivan	Timina	Eotimoto	Standard	DE	+ //01/10	Pr >	Let
obs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
29	DC		Early	1.9882	0.3705	36	5.37	<.0001	AB
30	DC		Late	2.2526	0.3890	36	5.79		Α
31	FS		Early	1.5074	0.3740	36	4.03	0.0003	В
32	FS		Late	1.3907	0.3709	36	3.75	0.0006	В
		ffect=Field_T	ype*Cultiv	ar A=Tukey	-Kramer(.05)	avgSD=0	.68708 maxS	SD=0.69313 -	
0bs	Sample_T	ype							
	LeafPre								
	LeafPre								
	LeafPre								
	LeafPre								
	LeafPre LeafPre								
	LeafPre								
	LeafPre								
	Field_				Standard			Pr > Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
33	DC	Bass		2.1908	0.3933	36	5.57 <	.0001 A	
34	FS	Bass		1.3472	0.3807	36		.0011 A	
35	DC	Corsica		1.8617	0.3895	36	4.78 <	.0001 A	
36	FS	Corsica		1.3080	0.3817	36		.0015 A	
37	DC	Jack		2.1054	0.3909	36	5.39 <	.0001 A	

38 39 40	FS DC FS	Jack Williams82 Williams82		1.3608 2.3240 1.7801	0.3808 0.3920 0.3808	36 36 36	5.93 <.0	0010 A 0001 A 0001 A	
		Effect=Fi	.eld_Type	A=Tukey-Kram	ner(.05) avgS	D=3.4759	maxSD=3.47	'59	
0bs	Sample_T	ype							
	Seed Seed								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
41 42	DC FS			13.7494 7.1846	2.3148 2.3147	2 2	5.94 3.10	0.0272 0.0900	A B
		Effect=Cu	ltivar A=	Tukey-Kramer	`(.05) avgSD=	2.43373	maxSD=2.437	'91	
0bs	Sample_T	ype							
	Seed								
	Seed Seed								
46	Seed								
	Field_				Standard			r > Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
43		Bass		10.1314	2.3445	33		001 AB	
44 45		Corsica Jack		10.4292 8.8774	2.3447 2.3447	33 33		1001 AB 1006 B	
46		Williams82		12.4300	2.3457	33		001 A	
		Effect=T	iming A=T	ukey-Kramer((.05) avgSD=0	.91882 m	axSD=0.9209	15	
0bs	Sample_T	ype							
	Seed								
	Seed Seed								
								_	
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
47			Control	10.5707	2.2901	88	4.62	<.0001	A
48 49			Early Late	10.7151 10.1151	2.2900 2.2903	88 88	4.68 4.42	<.0001 <.0001	A A
		Effect=Field_	Type*Timi	ng A=Tukey-k	Kramer(.05) a	vgSD=2.2	3518 maxSD=	2.67885	
0bs	Sample_T	ype							
50	Seed								
	Seed								
52	Seed								

54	Seed Seed Seed								
	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
50 51 52 53 54 55	DC DC DC FS FS		Control Early Late Control Early Late	13.8757 13.9082 13.4643 7.2658 7.5220 6.7659	2.3359 2.3357 2.3369 2.3361 2.3359 2.3359	117 117 117 117 117 117	5.94 5.95 5.76 3.11 3.22 2.90	<.0001 <.0001 <.0001 0.0023 0.0017 0.0045	A A A B B
	E	ffect=Field_T	ype*Cultiv	var A=Tukey-	Kramer(.05)	avgSD=2	.31448 maxSD	=2.33196 -	
0bs	Sample_T	ype							
57 58 59 60 61 62	Seed Seed Seed Seed Seed Seed Seed Seed								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF t		r > Let t Grp	
56 57 58 59 60 61 62 63	DC FS DC FS DC FS DC FS	Bass Bass Corsica Corsica Jack Jack Williams82	1111119	13.7658 6.4970 13.4494 7.4089 12.2933 5.4614 15.4890 9.3709	2.3932 2.3951 2.3947 2.3947 2.3947 2.3947 2.3984 2.3947	117 117 117 117 117 117 117 117	5.75 <.00 2.71 0.00 5.62 <.00 3.09 0.00 5.13 <.00 2.28 0.00 6.46 <.00 3.91 0.00	001 A 077 B 001 A 025 B 001 A 244 B	
		Effect=Fie	ld_Type A	=Tukey-Krame	r(.05) avgSI	D=2.31723	3 maxSD=2.31	723	
0bs	Sample_T	ype							
	LeafPost LeafPost								
	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
1 2	DC FS			2.2982 1.6205	0.4024 0.3932	2 2	5.71 4.12	0.0293 0.0541	A A

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.61418 maxSD=0.63605 -----

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost

	LeafPost LeafPost								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF t	Value	Pr > Let t Grp	
3		Bass		2.1199	0.3212	26	6.60 <	.0001 A	
4		Corsica		1.9020	0.3240	26	5.87 <	.0001 A	
5		Jack		1.6769	0.3193	26		.0001 A	
6		Williams82		2.1387	0.3289	26	6.50 <	.0001 A	
		Effect=T	iming A=T	ukey-Kramer	(.05) avgSD=0	.35296 n	naxSD=0.352	296	
0bs	Sample_T	ype							
	LeafPost LeafPost								
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			Early	2.2189	0.3122	26	7.11	<.0001	Α
8			Late	1.6999	0.2979	26	5.71	<.0001	В
Obs 9	Sample_T LeafPost LeafPost	ype	Type*Timi	ng A=Tukey-	Kramer(.05) a	vgSD=1.4	4042 maxSD [:]	=1.44216	
11	LeafPost LeafPost								
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
9	DC		Early	3.0944	0.4061	26	7.62	<.0001	Α
10	FS		Early	1.3434	0.4455	26	3.02	0.0057	В
11	DC		Late	1.5021	0.4230	26	3.55	0.0015	Α
12	FS		Late	1.8976	0.3869	26	4.90	<.0001	Α
	E [.]	ffect=Field_T	ype*Culti	var A=Tukey	-Kramer(.05)	avgSD=1.	.57967 max	SD=2.03147 -	
0bs	Sample_T	ype							
13	LeafPost								
14	LeafPost								
15	LeafPost								
	LeafPost								
	LeafPost								
	LeafPost								
	LeafPost LeafPost								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF t	Value	Pr > Let t Grp	

2.5709 0.4333 26 5.93 <.0001 A

13 DC Bass

14	DC	Corsica		2.3941	0.4410	26	5.43 <.00	001 A	
15	DC	Jack		1.8736	0.4374	26	4.28 0.00	002 A	
16	DC	Williams82		2.3543	0.4391	26	5.36 <.00	001 A	
17	FS	Bass		1.6690	0.4455	26	3.75 0.00	009 A	
18	FS	Corsica		1.4098	0.4459	26	3.16 0.00	040 A	
19	FS	Jack		1.4802	0.4359	26	3.40 0.00	022 A	
20	FS	Williams82		1.9231	0.4620	26	4.16 0.00	003 A	
		Effect=Fi	eld_Type /	A=Tukey-Kramα	er(.05) avgSl	D=1.02591	maxSD=1.02	591	
0bs	Sample_T	ype							
21	LeafPre								
	LeafPre								
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	DC			2.1204	0.3711	2	5.71	0.0293	Α
22	FS			1.4490	0.3674	2	3.94	0.0587	Α
23 24 25	Sample_T LeafPre LeafPre LeafPre	ype							
26	LeafPre								
	Field_				Standard			r > Let	
Obs	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
00		Daga		1 7600	0.0600	00	4.01 - 0	001 AB	
23		Bass		1.7690	0.3602	33	4.91 <.00		
24		Corsica		1.5848	0.3595	33	4.41 0.00		
25 26		Jack Williams82		1.7331	0.3596	33 33	4.82 <.00		
20		WIIIIalii502		2.0520	0.3598	33	5.70 <.00	001 A	
		Effect=	Timing A= ⁻	Γukey-Kramer	(.05) avgSD=0	O.21554 m	naxSD=0.2155	4	
0bs	Sample_T	ype							
	LeafPre LeafPre								
	Field				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
			-						•
27			Early	1.7478	0.3514	36	4.97	<.0001	Α
28			Late	1.8217	0.3556	36	5.12	<.0001	Α
	Sample T	Effect=Field	_Type*Tim:	ing A=Tukey-H	Kramer(.05)	avgSD=0.6	62806 maxSD=0	0.65628	
- 20		3 i							

29 LeafPre

31	LeafPre LeafPre LeafPre								
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
29	DC		Fanl.	1 0000	0.0705	0.6	F 07	< 0001	Δ.
30			Early Early	1.9882 1.5074	0.3705 0.3740	36 36	5.37 4.03	<.0001 0.0003	A A
31			Late	2.2526	0.3890	36	5.79	<.0001	A
32			Late	1.3907	0.3709	36	3.75	0.0006	В
	Е	ffect=Field_	Γype*Culti	var A=Tukey	-Kramer(.05)	avgSD=0	.7814 maxSD=0	0.94169	
0bs	Sample_T	ype							
33	LeafPre								
	LeafPre								
35	LeafPre								
	LeafPre								
	LeafPre								
	LeafPre LeafPre								
	LeafPre								
40	LCUITTC								
	Field_				Standard		Pi	r > Let	
0bs	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
33	DC	Bass		2.1908	0.3933	36	5.57 <.00	001 AB	
34		Corsica		1.8617	0.3895	36	4.78 <.00		
35		Jack		2.1054	0.3909	36	5.39 <.00		
36		Williams82		2.3240	0.3920	36	5.93 <.00		
37	FS	Bass		1.3472	0.3807	36	3.54 0.00	011 B	
38	FS	Corsica		1.3080	0.3817	36	3.43 0.00	015 B	
39		Jack		1.3608	0.3808	36	3.57 0.00		
40	FS	Williams82		1.7801	0.3808	36	4.68 <.00	001 AB	
		Effect=F:	ield_Type	A=Tukey-Kra	mer(.05) avg§	SD=3.4759	9 maxSD=3.47	59	
0bs	Sample_T	ype							
	Seed Seed								
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
44	DC			13 7404	0 0140	0	F 04	0 0070	٨
41 42	DC FS			13.7494 7.1846	2.3148 2.3147	2 2	5.94 3.10	0.0272 0.0900	A B
Obs	Sample_T		ultivar A=	Tukey-Krame	r(.05) avgSD=	=2.43373	maxSD=2.4379	91	

43 Seed 44 Seed 45 Seed 46 Seed

Field_ Obs Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
43	Bass		10.1314	2.3445	33	4.32	0.0001	AB
44	Corsica		10.4292	2.3447	33	4.45	<.0001	AB
45	Jack		8.8774	2.3447	33	3.79	0.0006	В
46	Williams82		12.4300	2.3457	33	5.30	<.0001	Α

------ Effect=Timing A=Tukey-Kramer(.05) avgSD=0.91882 maxSD=0.92095 ------

Obs Sample_Type

47 Seed

48 Seed

49 Seed

Fie	eld_			Standard			Pr >	Let
Obs Ty	pe Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
47		Control	10.5707	2.2901	88	4.62	<.0001	Α
48		Early	10.7151	2.2900	88	4.68	<.0001	Α
49		Late	10.1151	2.2903	88	4.42	<.0001	Α

----- Effect=Field_Type*Timing A=Tukey-Kramer(.05) avgSD=2.18954 maxSD=2.19353 ------

Obs Sample_Type

50 Seed

51 Seed

52 Seed

53 Seed

54 Seed 55 Seed

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
50	DC		Control	13.8757	2.3359	117	5.94	<.0001	Α
51	FS		Control	7.2658	2.3361	117	3.11	0.0023	В
52	DC		Early	13.9082	2.3357	117	5.95	<.0001	Α
53	FS		Early	7.5220	2.3359	117	3.22	0.0017	В
54	DC		Late	13.4643	2.3369	117	5.76	<.0001	Α
55	FS		Late	6.7659	2.3359	117	2.90	0.0045	В

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=3.41098 maxSD=3.87671 ------

Obs Sample_Type

56 Seed

57 Seed

58 Seed

59 Seed

60 Seed

61 Seed

62 Seed

63 Seed

	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
56	DC	Bass		13.7658	2.3932	117	5.75	<.0001	AB
57	DC	Corsica		13.4494	2.3947	117	5.62	<.0001	AB
58	DC	Jack		12.2933	2.3947	117	5.13	<.0001	ВС
59	DC	Williams82		15.4890	2.3984	117	6.46	<.0001	Α
60	FS	Bass		6.4970	2.3951	117	2.71	0.0077	DE
61	FS	Corsica		7.4089	2.3947	117	3.09	0.0025	DE
62	FS	Jack		5.4614	2.3947	117	2.28	0.0244	Е
63	FS	Williams82		9.3709	2.3947	117	3.91	0.0002	CD

Glycitin Analysis

None Detected

Malonyldaidzin Analysis

	Sample_Type=LeafPost	
--	----------------------	--

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC

Dependent Variable Malonyl_Daidzin

Covariance Structure Variance Components

Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	878.64062305	
1	4	875.96300897	0.00045704
2	2	875.87784915	0.00000116
3	1	875.87750240	0.00000000

Convergence criteria met.

------ Sample_Type=LeafPost ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate
Year 1.3251

Year*Farm	0
Year*Farm*Field_Type	0.7049
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	6.07E-17
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	22.4430

Fit Statistics

-2 Res Log Likelihood	875.9
AIC (smaller is better)	881.9
AICC (smaller is better)	882.1
BIC (smaller is better)	878.0

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	4.76	0.2737
Field_Type	1	2	1.96	0.2966
Farm*Field_Type	1	2	1.99	0.2938
Cultivar	3	26	1.53	0.2312
Field_Type*Cultivar	3	26	0.24	0.8700
Timing	1	26	0.52	0.4785
Field_Type*Timing	1	26	0.38	0.5427
Cultivar*Timing	3	26	0.03	0.9926
Field_*Cultiv*Timing	3	26	0.18	0.9064

------ Sample_Type=LeafPre

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC Dependent Variable Malonyl_Daidzin Variance Components Covariance Structure Estimation Method REML Residual Variance Method Profile Fixed Effects SE Method Model-Based

Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters Columns in ${\sf X}$ 51

Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	0	1.797693135E308	

WARNING: Stopped because of infinite likelihood.

------ Sample_Type=LeafPre

The Mixed Procedure

Covariance Parameter Values At Last Iteration

Cov Parm	Estimate
Year	0
Year*Farm	0
Year*Farm*Field_Type	0
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	0

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Daidzin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1940.65428871	
1	4	1614.09609805	0.02870862
2	1	1592.87277343	0.01500097
3	1	1582.17505068	0.00627375
4	1	1577.87044104	0.00178570
5	1	1576.70626385	0.00027521
6	1	1576.53424442	0.00002810
7	1	1576.51688404	0.00000169
8	1	1576.51591161	0.0000001
9	1	1576.51590559	0.00000000

------ Sample_Type=Seed ------

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	82.5832
Year*Farm	4.0961
Year*Farm*Field_Type	3.28E-18
Bloc(Year*Farm*Fiel)	0.6119
Year*Farm*Bloc*Culti	14.8691
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	12.6825

Fit Statistics

-2 Res Log Likelihood	1576.5
AIC (smaller is better)	1586.5
AICC (smaller is better)	1586.8
BIC (smaller is better)	1580.0

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F

Farm	1	1	0.27	0.6926
Field_Type	1	2	214.94	0.0046
Farm*Field_Type	1	2	10.41	0.0841
Cultivar	3	33	15.45	<.0001
Field_Type*Cultivar	3	117	2.42	0.0696
Timing	2	88	1.74	0.1815
Field_Type*Timing	2	117	0.48	0.6194
Cultivar*Timing	6	88	1.39	0.2273
Field_*Cultiv*Timing	6	117	0.32	0.9259

----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=4.86519 maxSD=4.86519 -----

Obs Sample_Type

- 1 LeafPost
- 2 LeafPost

	Field_ Standard				Pr >	Let			
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			2.3233	1.1285	2	2.06	0.1757	Α
2	FS			3.9057	1.1684	2	3.34	0.0790	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=3.36574 maxSD=3.48945 -----

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

Field_				Standard			Pr >	Let
Obs Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3	Bass		4.2986	1.2402	26	3.47	0.0018	Α
4	Corsica		3.5424	1.2605	26	2.81	0.0093	Α
5	Jack		1.8961	1.2128	26	1.56	0.1301	Α
6	Williams82		2.7209	1.2884	26	2.11	0.0445	Α

----- Effect=Timing A=Tukey-Kramer(.05) avgSD=1.86562 maxSD=1.86562 ------

Obs Sample_Type

- 7 LeafPost
- 8 LeafPost

Field_			Standard				Pr >	Let
Obs Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7		Early	3.4408	1.1597	26	2.97	0.0064	Α
8		Late	2.7882	1.0326	26	2.70	0.0120	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=5.05044 maxSD=5.87722 -----

Obs Sample_Type

```
9 LeafPost
10 LeafPost
11 LeafPost
12 LeafPost
13 LeafPost
14 LeafPost
15 LeafPost
16 LeafPost
   Field_
                                             Standard
                                                                          Pr >
                                                                                 Let
Obs Type
            Cultivar
                                  Estimate
                                              Error
                                                         DF
                                                              t Value
                         Timing
                                                                           |t|
                                                                                 Grp
 9
     DC
            Bass
                                    3.7571
                                               1.4614
                                                                 2.57
                                                                        0.0162
                                                         26
                                                                                  Α
10
     DC
            Corsica
                                    2.7964
                                               1.5157
                                                         26
                                                                 1.84
                                                                        0.0765
     DC
            Jack
                                    0.5202
                                               1.4447
                                                                 0.36
                                                                        0.7217
11
                                                         26
                                                                                  Α
12
     DC
            Williams82
                                    2.2197
                                               1.4616
                                                                 1.52
                                                                        0.1409
                                                         26
13
     FS
            Bass
                                    4.8401
                                               1.6365
                                                         26
                                                                 2.96
                                                                        0.0065
                                                                                  Α
14
     FS
            Corsica
                                    4.2885
                                                         26
                                                                 2.61
                                                                        0.0147
                                               1.6416
                                                                                  Α
15
     FS
            Jack
                                    3.2719
                                               1.5583
                                                         26
                                                                 2.10
                                                                        0.0456
                                                                                  Α
16
     FS
            Williams82
                                    3.2222
                                               1.7698
                                                         26
                                                                 1.82
                                                                        0.0802
------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=2.27442 maxSD=2.27442 ------
Obs Sample_Type
17 Seed
18 Seed
   Field
                                               Standard
                                                                               Pr >
                                                                                       Let
Obs Type
             Cultivar
                         Timing
                                                Error
                                   Estimate
                                                            DF
                                                                  t Value
                                                                                |t|
                                                                                       Grp
17
     DC
                                    20.2659
                                                 6.5395
                                                             2
                                                                     3.10
                                                                             0.0903
                                                                                        Α
18
    FS
                                    12.5160
                                                 6.5395
                                                             2
                                                                     1.91
                                                                             0.1957
                                                                                        В
------ Effect=Cultivar A=Tukey-Kramer(.05) avgSD=4.55313 maxSD=4.5572 ---------
Obs Sample_Type
19 Seed
   Field
                                               Standard
                                                                               Pr >
                                                                                       Let
Obs Type
             Cultivar
                         Timing
                                   Estimate
                                                Error
                                                            DF
                                                                  t Value
                                                                                |t|
                                                                                       Grp
19
               Bass
                                    14.1947
                                                 6.6147
                                                                     2.15
                                                                             0.0393
------ Effect=Cultivar A=Tukey-Kramer(.05) avgSD=4.55313 maxSD=4.5572 ---------
                                         (continued)
Obs Sample_Type
20 Seed
21 Seed
22 Seed
   Field_
                                             Standard
                                                                          Pr >
                                                                                 Let
Obs Type
            Cultivar
                         Timing
                                 Estimate
                                              Error
                                                             t Value
                                                                           |t|
                                                                                 Grp
```

20 21 22		Corsica Jack Williams82		17.7017 11.4096 22.2578	6.6149 6.6149 6.6155	33 33 33	2.68 1.72 3.36	0.0115 0.0939 0.0020	AB C A	
Effect=Timing A=Tukey-Kramer(.05) avgSD=1.22871 maxSD=1.23163										
0bs	Sample_T	ype								
24	Seed Seed Seed									
	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Va	lue	Pr > t	Let Grp
23			Control	16.4564	6.5409	88	2	.52 0	.0137	Α
24			Early	16.8359	6.5409	88			.0117	Α
25			Late	15.8806	6.5410	88	2	.43 0	.0172	Α
	Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=4.94762 maxSD=4.96782									
0bs	Sample_T	ype								
26	Seed									
27	Seed									
	Seed									
	Seed Seed									
	Field_ Type	Cultivar	Timing		tandard Error	DF t	Value	Pr > t	Let Grp	
ODO	1,400	ourcival	riming	Locimaco	21101	Δ, .	Value	151	GI P	
26	DC	Bass		18.9319		117	2.86	0.0051	ВС	
27	DC	Corsica		20.9658	6.6301	117	3.16	0.0020	AB	
28 29	DC DC	Jack Williams82		14.9129 26.2530	6.6301 6.6325	117 117	2.25 3.96	0.0264	C A	
30	FS	Bass		9.4576	6.6303	117	1.43	0.1564	ВС	
	E	ffect=Field_T	ype*Cultiv	ar A=Tukey-K	ramer(.05)	avgSD=4.	94762 m	axSD=4.9	6782	
(continued)										
0bs	Sample_T	ype								
32	Seed Seed Seed									
	Field			S	tandard			Pr >	Let	
	Type	Cultivar	Timing		Error	DF t	Value	t	Grp	
31	FS	Corsica		14.4375	6.6301	117	2.18	0.0314	AB	
32	FS	Jack		7.9064	6.6301	117	1.19	0.2355	С	
33	FS	Williams82		18.2626	6.6301	117	2.75	0.0068	Α	
Effect=Field Type A=Tukey-Kramer(.05) avgSD=4.86519 maxSD=4.86519										
		ETTECT=F10	_u_iype A=	ıukey-Kramer	(.us) avgSL	-4.86519	maxsu=	4.80519		

Obs Sample_Type

1 LeafPost

2	LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			2.3233	1.1285	2	2.06	0.1757	Α
2	FS			3.9057	1.1684	2	3.34	0.0790	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=3.36574 maxSD=3.48945 ------

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		Bass		4.2986	1.2402	26	3.47	0.0018	Α
4		Corsica		3.5424	1.2605	26	2.81	0.0093	Α
5		Jack		1.8961	1.2128	26	1.56	0.1301	Α
6		Williams82		2.7209	1.2884	26	2.11	0.0445	Α

------ Effect=Timing A=Tukey-Kramer(.05) avgSD=1.86562 maxSD=1.86562 ------

Obs Sample_Type

- 7 LeafPost
- 8 LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			Earlv	3.4408	1.1597	26	2.97	0.0064	Α
8			Late	2.7882	1.0326	26	2.70	0.0120	A

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=4.66975 maxSD=4.90499 ------

Obs Sample_Type

- 9 LeafPost
- 10 LeafPost
- 11 LeafPost
- 12 LeafPost
- 13 LeafPost
- 14 LeafPost15 LeafPost
- 15 LeafPost 16 LeafPost
- Field_ Standard Pr > Let Obs Type Cultivar Timing Estimate Error t Value |t| Grp 9 DC Bass 3.7571 1.4614 2.57 0.0162 26 Α

10	FS	Bass		4.8401	1.6365	26	2.96	0.0065	Α	
11	DC	Corsica		2.7964	1.5157	26	1.84	0.0765	Α	
12	FS	Corsica		4.2885	1.6416	26	2.61	0.0147	Α	
13	DC	Jack		0.5202	1.4447	26	0.36	0.7217	Α	
14	FS	Jack		3.2719	1.5583	26	2.10	0.0456	Α	
15	DC	Williams82		2.2197	1.4616	26	1.52	0.1409	Α	
16	FS	Williams82		3.2222	1.7698	26	1.82	0.0802	Α	
		Effect=Fi	eld_Type <i>A</i>	A=Tukey-Kram	er(.05) avgSl	D=2.2744	2 maxSD=2	.27442 -		
0bs	Sample_T	ype								
	Seed Seed									
	Field				Standard			Р	r >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Valu		t	Grp
	,,		J							·
17	DC			20.2659	6.5395	2	3.1	0.0	903	Α
18	FS			12.5160	6.5395	2	1.9	1 0.1	957	В
		Effect=0	Cultivar A	A=Tukey-Kram	er(.05) avgSl	D=4.5531	3 maxSD=4	.5572		
0bs	Sample_T	ype								
19	Seed									
01	Field_	01+4	T::	F-+:+-	Standard	DE	+ 1/-1		r >	Let
Obs	Type	Cultivar	Timing	Estimate	Error	DF	t Valu	е	t	Grp
19		Bass		14.1947	6.6147	33	2.1	5 0.0	393	ВС
		Effect=(Cultivar A	-	er(.05) avgSl ntinued)	D=4.5531	3 maxSD=4	.5572		
0bs	Sample_T	ype								
20	Seed									
21	Seed									
22	Seed									
								_		
01	Field_	01+4	T::	F-4:4-	Standard	DE +	V-1	Pr >	Let	
obs	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t	Grp	
20		Corsica		17.7017	6.6149	33	2.68	0.0115	AB	
21		Jack		11.4096	6.6149	33		0.0939	C	
22		Williams82		22.2578	6.6155	33		0.0020	Α	
		Effect=	Timing A=1	ukey-Kramer	(.05) avgSD=	1.22871	maxSD=1.2	3163		
0bs	Obs Sample_Type									
23	Seed									
24	Seed									
25	Seed									

Field_				Standard			Pr >	Let
Obs Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
23		Control	16.4564	6.5409	88	2.52	0.0137	Α
24		Early	16.8359	6.5409	88	2.57	0.0117	Α
25		Late	15.8806	6.5410	88	2.43	0.0172	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=2.13932 maxSD=2.17369 -----

Obs Sample_Type

26 Seed

27 Seed

28 Seed

29 Seed

30 Seed

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
26	DC	Bass		18.9319	6.6291	117	2.86	0.0051	Α
27	FS	Bass		9.4576	6.6303	117	1.43	0.1564	В
28	DC	Corsica		20.9658	6.6301	117	3.16	0.0020	Α
29	FS	Corsica		14.4375	6.6301	117	2.18	0.0314	В
30	DC	Jack		14.9129	6.6301	117	2.25	0.0264	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=2.13932 maxSD=2.17369 ------ (continued)

Obs Sample_Type

31 Seed

32 Seed

33 Seed

	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
31	FS	Jack		7.9064	6.6301	117	1.19	0.2355	В
32	DC	Williams82		26.2530	6.6325	117	3.96	0.0001	Α
33	FS	Williams82		18.2626	6.6301	117	2.75	0.0068	В

Malonylgenistin Analysis

------ Sample_Type=LeafPost ------

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Malonyl_Genistin
Covariance Structure	Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	963.99041655	
1	4	903.66686151	0.00274108
2	2	903.16102053	0.00004826
3	2	903.14667876	0.0000059
4	1	903.14648823	0.00000000

Convergence criteria met.

------ Sample_Type=LeafPost ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate
Year 20.5700

Year*Farm	0
Year*Farm*Field_Type	21.6096
Bloc(Year*Farm*Fiel)	0.7449
Year*Farm*Bloc*Culti	8.26E-18
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	25.1273

Fit Statistics

-2 Res Log Likelihood	903.1
AIC (smaller is better)	911.1
AICC (smaller is better)	911.4
BIC (smaller is better)	905.9

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.29	0.6878
Field_Type	1	2	1.72	0.3202
Farm*Field_Type	1	2	0.13	0.7537
Cultivar	3	26	0.22	0.8796
Field_Type*Cultivar	3	26	0.09	0.9643
Timing	1	26	10.90	0.0028
Field_Type*Timing	1	26	2.33	0.1392
Cultivar*Timing	3	26	0.14	0.9336
Field_*Cultiv*Timing	3	26	0.07	0.9738

------ Sample_Type=LeafPre

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Genistin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters 8
Columns in X 51

Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1101.55217395	
1	2	994.48123576	0.04597139
2	3	992.45401515	
3	3	991.55107681	
4	3	982.12128484	
5	2	981.17487119	0.00035281
6	3	981.14766372	
7	1	981.06208571	0.00001718
8	1	981.05701550	0.0000019
9	1	981.05696244	0.00000000

------ Sample_Type=LeafPre ------

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	1.8412
Year*Farm	0
Year*Farm*Field_Type	4.9304
Bloc(Year*Farm*Fiel)	2.28E-36
Year*Farm*Bloc*Culti	0.3432
Yea*Far*Blo*Cul*Timi	1.56E-18
Ye*Fa*Fi*Blo*Cul*Tim	2.3546
Residual	1.4122

Fit Statistics

-2 Res Log Likelihood	981.1
AIC (smaller is better)	991.1
AICC (smaller is better)	991.3
BIC (smaller is better)	984.5

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Farm	1	1	0.09	0.8107
Field_Type	1	2	2.46	0.2570
Farm*Field_Type	1	2	0.01	0.9483
Cultivar	3	33	5.24	0.0046
Field_Type*Cultivar	3	36	2.00	0.1307
Timing	1	36	1.64	0.2092

Field_Type*Timing	1	36	0.01	0.9211
Cultivar*Timing	3	36	0.86	0.4731
Field *Cultiv*Timing	3	36	0.40	0.7528

------ Sample_Type=Seed ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Genistin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	5	Levels	Values
Year		2	2002 2003
Farm		2	PHill Wye
Field	I_Type	2	DC FS
Block	(3	1 2 3
Culti	var	4	Bass Corsica Jack Williams82
Timin	ıq	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	2482.97218141	
1	2	2071.31099454	0.00390521
2	1	2067.46978069	0.00101242
3	1	2066.52274455	0.00014237
4	1	2066.39418860	0.00001351
5	1	2066.38233118	0.0000051
6	1	2066.38191118	0.00000000

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	779.83
Year*Farm	35.9103
Year*Farm*Field_Type	1.5503
Bloc(Year*Farm*Fiel)	5.1722
Year*Farm*Bloc*Culti	53.5547
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	88.9296

Fit Statistics

-2 Res Log Likelihood	2066.4
AIC (smaller is better)	2078.4
AICC (smaller is better)	2078.7
BIC (smaller is better)	2070.5

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.31	0.6754
Field_Type	1	2	146.55	0.0068
Farm*Field_Type	1	2	9.44	0.0916
Cultivar	3	33	10.13	<.0001
Field_Type*Cultivar	3	117	3.85	0.0114
Timing	2	88	1.79	0.1731
Field_Type*Timing	2	117	0.08	0.9237
Cultivar*Timing	6	88	1.20	0.3160
Field_*Cultiv*Timing	6	117	0.68	0.6636

----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=15.1877 maxSD=15.1877 ------

Obs Sample_Type

- 1 LeafPost
- 2 LeafPost

Field_					Pr >	Let			
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			10.8456	4.0831	2	2.66	0.1173	Α
2	FS			6.2181	4.0460	2	1.54	0.2641	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=3.57648 maxSD=3.70318 ------

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

Field_ Standard Pr > Let

0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
3		Bass		8.8772	3.7403	26	2.37	0.0253	Α	
4		Corsica		8.3912	3.7491	26	2.24	0.0340	A	
5		Jack		7.9970	3.7359	26	2.14	0.0419	Α	
6		Williams82		8.8619	3.7647	26				
0		WIIIIaiii562		0.0019	3.7047	20	2.35	0.0264	Α	
	E [.]	ffect=Field_	Γype*Culti	ivar A=Tukey	/-Kramer(.05)	avgSI	D=5.3666 m	axSD=6.26	825	
0bs	Sample_T	ype								
	LeafPost									
	LeafPost									
	LeafPost									
	LeafPost LeafPost									
	Field_				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
7	DC	Bass		11.4366	4.1874	26	2.73	0.0112	Α	
8	DC	Corsica		10.9082	4.2156	26	2.59	0.0156	Α	
9	DC	Jack		10.2374	4.2039	26	2.44	0.0220	Α	
10	DC	Williams82		10.8003	4.2102	26	2.57	0.0164	Α	
11	FS	Bass		6.3179	4.2252	26	1.50	0.1469	Α	
	E [.]	ffect=Field_	Γype*Culti	-	y-Kramer(.05) ontinued)	avgSI	D=5.3666 m	axSD=6.26	6825	
0bs	Sample_T	ype								
12	LeafPost									
	LeafPost									
	LeafPost									
• •	Louiroot									
	Field				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
	. 7							1-1	[-	
12	FS	Corsica		5.8742	4.2270	26	1.39	0.1764	Α	
13	FS	Jack		5.7566	4.1916	26	1.37	0.1814	Α	
14	FS	Williams82		6.9236	4.2871	26	1.61	0.1184	Α	
		Effect:	=Timing A=	-Tukey-Krame	er(.05) avgSD	=2.063	35 maxSD=2	.0635		
0bs	Sample_T	ype								
	LeafPost LeafPost									
	Field				Standard				Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	Г	OF t Va	lue	t	Grp
	31 · -		9			-	- 15		1 1	r
15			Early	10.1886	3.7161	2	26 2	.74 0.	0109	Α
16			Late	6.8751	3.6752				0727	В

----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=6.92838 maxSD=6.92838 ------

```
Obs Sample_Type
17 LeafPre
```

18 LeafPre

Field_				Standard				Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
17	DC			5.7863	1.4963	2	3.87	0.0608	Α
18	FS			3.2583	1.4864	2	2.19	0.1597	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=1.37193 maxSD=1.38291 ------

Obs Sample_Type

19 LeafPre

20 LeafPre

21 LeafPre

22 LeafPre

	Field_					Pr >	Let		
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
19		Bass		3.9040	1.2941	33	3.02	0.0049	В
20		Corsica		3.8747	1.2919	33	3.00	0.0051	В
21		Jack		4.7004	1.2934	33	3.63	0.0009	AB
22		Williams82		5.6101	1.2936	33	4.34	0.0001	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=1.94101 maxSD=2.13723 ------

Obs Sample_Type

23 LeafPre

24 LeafPre

25 LeafPre

26 LeafPre

27 LeafPre

28 LeafPre

29 LeafPre 30 LeafPre

	Field_				Standard
Obs	Type	Cultivar	Timing	Estimate	Error

	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
23	DC	Bass		4.7666	1.5659	36	3.04	0.0043	В
24	DC	Corsica		4.7732	1.5553	36	3.07	0.0041	В
25	DC	Jack		6.2423	1.5628	36	3.99	0.0003	AB
26	DC	Williams82		7.3629	1.5635	36	4.71	<.0001	Α
27	FS	Bass		3.0413	1.5327	36	1.98	0.0549	Α
28	FS	Corsica		2.9761	1.5367	36	1.94	0.0607	Α
29	FS	Jack		3.1585	1.5339	36	2.06	0.0468	Α
30	FS	Williams82		3.8573	1.5340	36	2.51	0.0165	Α

----- Effect=Timing A=Tukey-Kramer(.05) avgSD=0.7026 maxSD=0.7026 ------

21	LoafPro									
	LeafPre LeafPre									
	Field_				Standard				Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	D	F t Va	lue	t	Grp
31			Early	4.7438	1.2613				.0006	Α
32			Late	4.3008	1.2732	3	6 3	.38 0	.0018	Α
		Effect=Fi	eld Type <i>A</i>	N=Tukey-Kram	er(.05) avgS	D=7.30	255 maxSD	=7.30255		
				•	, , ,					
0bs	Sample_T	уре								
33	Seed									
34	Seed									
	Field_				Standard	_		_	Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	D	F t Va	Lue	t	Grp
33 34	DC FS			60.0591 39.5126	20.0362 20.0361				.0956 .1874	A B
04	10			09.5120	20.0001		_ !	.91 0	.1074	Ь
		Effect=C	ultivar A=	-Tukey-Krame	r(.05) avgSD	=9.138	98 maxSD=	9.15298		
0bs	Sample_T	ype								
35	Seed									
	Seed									
	Seed Seed									
	Field				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t		
35		Bass		47.3696	20.1241	33	2.35	0.0247	В	
36		Corsica		46.3042	20.1246	33	2.30	0.0279		
37		Jack		44.3992	20.1246	33	2.21			
38		Williams82		61.0704	20.1259	33	3.03	0.0047	Α	
	E	ffect=Field_	Tvpe*Culti	ivar A=Tukev	-Kramer(.05)	avaSD	=10.3318	maxSD=10	.3978 -	
		_	J.	·	,	J				
0bs	Sample_T	ype								
39	Seed									
40	Seed									
	Seed									
42	Seed									
42 43										
42 43 44 45	Seed Seed Seed Seed									
42 43 44 45	Seed Seed Seed									
42 43 44 45 46	Seed Seed Seed Seed Seed Field_		-	5	Standard			Pr >		
42 43 44 45 46	Seed Seed Seed Seed Seed	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t		
42 43 44 45 46 Obs	Seed Seed Seed Seed Seed Field_ Type	Bass	Timing	58.9550	Error 20.1631	117	2.92	t 0.0042	Grp AB	
42 43 44 45 46 Obs	Seed Seed Seed Seed Seed Field_ Type		Timing		Error			t	Grp AB B	

42 43 44 45 46	DC FS FS FS	Williams82 Bass Corsica Jack Williams82		70.1237 35.7842 38.4311 31.8179 52.0171	20.1707 20.1659 20.1654 20.1654 20.1654	117 117 117 117 117	1.77 0. 1.91 0. 1.58 0.	0007 A 0786 B 0591 B 1173 B 0111 A					
	Effect=Timing A=Tukey-Kramer(.05) avgSD=3.25311 maxSD=3.26068												
0bs	Sample_T	ype											
48	Seed Seed Seed												
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp				
47			Control	49.8469	20.0336	88	2.49	0.0147	Α				
48 49			Early Late	51.0453 48.4653	20.0335 20.0339		2.55 2.42		A A				
		Effect=Fie	eld_Type A=	Tukey-Krame	r(.05) avgSl	D=15.1877	maxSD=15.	1877					
0bs	Sample_T	ype											
	LeafPost LeafPost												
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp				
1 2	DC FS			10.8456 6.2181	4.0831 4.0460	2 2	2.66 1.54	0.1173 0.2641	A A				
		Effect=Cu	ltivar A=T	ukey-Kramer	(.05) avgSD=	=3.57648	maxSD=3.70	0318					
0bs	Sample_T	ype											
4 5	LeafPost LeafPost LeafPost LeafPost												
05-	Field_	Cultiva	Timi		Standard	DE 3	Volue	Pr > Let					
0bs	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp					
3		Bass		8.8772	3.7403	26		0253 A					
4 5		Corsica Jack		8.3912 7.9970	3.7491 3.7359	26 26		0340 A 0419 A					
6		Williams82		8.8619	3.7647	26		0264 A					
	E	ffect=Field_T	ype*Cultiv	ar A=Tukey-	Kramer(.05)	avgSD=9.	62675 maxS	D=9.78866 -					

Obs Sample_Type
7 LeafPost

10	LeafPost LeafPost								
	LeafPost								
	Field				Standard			Pr >	Le
os	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
7	DC	Bass		11.4366	4.1874	26	2.73	0.0112	Α
8	FS	Bass		6.3179	4.2252	26	1.50	0.1469	Α
9	DC	Corsica		10.9082	4.2156	26	2.59	0.0156	Α
10	FS	Corsica		5.8742	4.2270	26	1.39	0.1764	Α
11	DC	Jack		10.2374	4.2039	26	2.44	0.0220	Α
-	E1	fect=Field_	Type*Culti		-Kramer(.05) ntinued)	avgSD=9	.62675 maxSD	=9.78866 -	
วร	Sample_Ty	/pe							
12	LeafPost								
13	LeafPost								
4	LeafPost								
	Field_				Standard		P	r > Let	
S	Туре	Cultivar	Timing	Estimate	Error	DF t	Value	t Grp	
2		Jack		5.7566	4.1916	26		814 A	
13		Williams82		10.8003	4.2102	26		164 A	
14	FS	Williams82		6.9236	4.2871	26	1.61 0.1	184 A	
		· Effect:	=Timing A=	-Tukey-Krame	r(.05) avgSD=	=2.0635 ı	naxSD=2.0635		
วร	Sample_Ty	/pe							
	LeafPost								
	LeafPost							Pr >	
	Field_				Standard				Le
16		Cultivar	Timing	Estimate	Standard Error	DF	t Value	t	
16 0s	Field_ Type	Cultivar	Early	10.1886	Error 3.7161	26	2.74	t 0.0109	Le Gr A
16 0s	Field_ Type	Cultivar	Ü		Error			t	Gr
16 08 15 16	Field_ Type		Early Late	10.1886 6.8751	Error 3.7161	26 26	2.74 1.87	t 0.0109 0.0727	Gr A B
16 15 16	Field_ Type	Effect=Fi	Early Late	10.1886 6.8751	Error 3.7161 3.6752	26 26	2.74 1.87	t 0.0109 0.0727	Gr A B
16 15 16	Field_ Type	Effect=Fi	Early Late	10.1886 6.8751	Error 3.7161 3.6752	26 26	2.74 1.87	t 0.0109 0.0727	Gr A B
16 bs 15 16	Field_ Type Sample_Ty	Effect=Fi	Early Late	10.1886 6.8751	Error 3.7161 3.6752	26 26	2.74 1.87	t 0.0109 0.0727	Gr A B
16 15 16	Field_ Type	Effect=Fi	Early Late	10.1886 6.8751	Error 3.7161 3.6752	26 26	2.74 1.87	t 0.0109 0.0727	Gr A B

Obs Type

17 DC

18 FS

Cultivar

Timing

Estimate

5.7863

3.2583

Error

1.4963

1.4864

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=1.37193 maxSD=1.38291 ------

DF

2

2

t Value

3.87

2.19

|t|

0.0608

0.1597

Grp

Α

```
Obs Sample_Type
19 LeafPre
20 LeafPre
21 LeafPre
22 LeafPre
   Field
                                            Standard
                                                                                Let
Obs Type
            Cultivar
                         Timing
                                 Estimate
                                             Error
                                                             t Value
                                                                          |t|
                                                                                Grp
19
                                   3.9040
                                              1.2941
                                                                3.02
                                                                       0.0049
                                                                                В
            Bass
                                                         33
20
            Corsica
                                   3.8747
                                              1.2919
                                                         33
                                                                3.00
                                                                       0.0051
21
            Jack
                                   4.7004
                                              1.2934
                                                         33
                                                                3.63
                                                                       0.0009
                                                                                ΑB
            Williams82
                                   5.6101
                                                                       0.0001
22
                                              1.2936
                                                                4.34
                                                         33
----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=4.1606 maxSD=4.16504 ------
Obs Sample_Type
23 LeafPre
24 LeafPre
25 LeafPre
26 LeafPre
27 LeafPre
28 LeafPre
29 LeafPre
30 LeafPre
   Field
                                                                         Pr >
                                            Standard
                                                                                Let
                                             Error
Obs Type
            Cultivar
                        Timing
                                Estimate
                                                             t Value
                                                                          |t|
                                                                                Grp
23
     DC
            Bass
                                   4.7666
                                              1.5659
                                                         36
                                                                3.04
                                                                       0.0043
                                                                                 Α
24
     FS
                                              1.5327
                                                                       0.0549
            Bass
                                   3.0413
                                                         36
                                                                1.98
                                                                                 Α
25
     DC
            Corsica
                                   4.7732
                                              1.5553
                                                         36
                                                                3.07
                                                                       0.0041
26
     FS
            Corsica
                                   2.9761
                                              1.5367
                                                         36
                                                                1.94
                                                                       0.0607
27
     DC
                                              1.5628
                                                         36
                                                                3.99
                                                                       0.0003
            Jack
                                   6.2423
28
     FS
            Jack
                                   3.1585
                                              1.5339
                                                         36
                                                                2.06
                                                                       0.0468
                                                                                 Α
29
     DC
            Williams82
                                   7.3629
                                              1.5635
                                                         36
                                                                 4.71
                                                                       <.0001
                                                                                 Α
30
     FS
            Williams82
                                   3.8573
                                              1.5340
                                                         36
                                                                2.51
                                                                       0.0165
                                                                                 Α
----- Effect=Timing A=Tukey-Kramer(.05) avgSD=0.7026 maxSD=0.7026 ------
Obs Sample_Type
31 LeafPre
32 LeafPre
   Field_
                                              Standard
                                                                              Pr >
                                                                                      Let
Obs Type
             Cultivar
                                               Error
                                                            DF
                                                                 t Value
                        Timing
                                  Estimate
                                                                                      Grp
                                                                               |t|
31
                                                            36
                                                1.2613
                                                                     3.76
                                                                            0.0006
                         Early
                                     4.7438
                                                                                       Α
32
                         Late
                                    4.3008
                                                1.2732
                                                            36
                                                                    3.38
                                                                            0.0018
                                                                                       Α
------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=7.30255 maxSD=7.30255 ------
```

Obs Sample_Type

	Seed Seed									
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	D	F t Va		Pr > t	Let Grp
33	DC			60.0591	20.0362				0956	A
34	FS			39.5126	20.0361		2 1	.97 0.	1874	В
	Effect=Cultivar A=Tukey-Kramer(.05) avgSD=9.13898 maxSD=9.15298									
0bs	Sample_T	ype								
35	Seed									
	Seed Seed									
	Seed									
	Field_				Standard			Pr >	Let	
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
35		Bass		47.3696	20.1241	33	2.35	0.0247	В	
36		Corsica		46.3042	20.1246	33	2.30		В	
37 38		Jack Williams82		44.3992 61.0704	20.1246 20.1259	33 33	2.21 3.03	0.0344 0.0047	B A	
0bs	Sample_T	ype								
39	Seed									
	Seed									
	Seed Seed									
	Seed									
44	Seed									
	Seed									
40	Seed									
	Field_				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
39	DC	Bass		58.9550	20.1631	117	2.92	0.0042	Α	
40	FS	Bass		35.7842	20.1659	117	1.77	0.0786	В	
41 42		Corsica Corsica		54.1772 38.4311	20.1654 20.1654	117 117	2.69 1.91	0.0083 0.0591	A B	
43		Jack		56.9805	20.1654	117	2.83	0.0055	A	
44	FS	Jack		31.8179	20.1654	117	1.58	0.1173	В	
45		Williams82		70.1237	20.1707	117	3.48	0.0007	Α	
46	FS	Williams82		52.0171	20.1654	117	2.58	0.0111	В	
		Effect=1	Γiming A=T	ukey-Kramer	(.05) avgSD=	3.2531	1 maxSD=3	.26068		
0bs	Sample T	ype								
	. –									

47 Seed 48 Seed 49 Seed

F	ield_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
47			Control	49.8469	20.0336	88	2.49	0.0147	Α
48			Early	51.0453	20.0335	88	2.55	0.0126	Α
49			Late	48.4653	20.0339	88	2.42	0.0176	Α

------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=15.1877 maxSD=15.1877 ------

Obs Sample_Type

- 1 LeafPost
- 2 LeafPost

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	DC			10.8456	4.0831	2	2.66	0.1173	Α
2	FS			6.2181	4.0460	2	1.54	0.2641	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=3.57648 maxSD=3.70318 ------

Obs Sample_Type

- 3 LeafPost
- 4 LeafPost
- 5 LeafPost
- 6 LeafPost

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
3		Bass		8.8772	3.7403	26	2.37	0.0253	Α
4		Corsica		8.3912	3.7491	26	2.24	0.0340	Α
5		Jack		7.9970	3.7359	26	2.14	0.0419	Α
6		Williams82		8.8619	3.7647	26	2.35	0.0264	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=9.86558 maxSD=12.9776 ------

Obs Sample_Type

- 7 LeafPost
- 8 LeafPost
- 9 LeafPost
- 10 LeafPost
- 11 LeafPost

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
7	DC	Bass		11.4366	4.1874	26	2.73	0.0112	Α
8	DC	Corsica		10.9082	4.2156	26	2.59	0.0156	Α
9	DC	Jack		10.2374	4.2039	26	2.44	0.0220	Α
10	DC	Williams82		10.8003	4.2102	26	2.57	0.0164	Α
11	FS	Bass		6.3179	4.2252	26	1.50	0.1469	Α

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=9.86558 maxSD=12.9776 ------(continued) Obs Sample_Type 12 LeafPost 13 LeafPost 14 LeafPost Field_ Standard Pr > Let Obs Type Cultivar Estimate Error t Value Timing DF |t| Grp 12 FS Corsica 5.8742 4.2270 26 1.39 0.1764 Α 13 5.7566 4.1916 1.37 FS Jack 26 0.1814 Α 14 Williams82 6.9236 4.2871 1.61 0.1184 ----- Effect=Timing A=Tukey-Kramer(.05) avgSD=2.0635 maxSD=2.0635 ------Obs Sample_Type 15 LeafPost 16 LeafPost Field_ Standard Let Obs Type Cultivar Timing Estimate Error DF t Value |t| Grp 15 Early 10.1886 3.7161 26 2.74 0.0109 Α 16 Late 6.8751 3.6752 26 1.87 0.0727 ----- Effect=Field Type A=Tukey-Kramer(.05) avgSD=6.92838 maxSD=6.92838 ------Obs Sample_Type 17 LeafPre 18 LeafPre Field_ Standard Pr > Let Obs Type Cultivar Timing Error DF t Value Grp Estimate |t| 17 DC 5.7863 1.4963 2 3.87 0.0608 18 FS 3.2583 1.4864 0.1597 2 2.19 Α ----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=1.37193 maxSD=1.38291 ------Obs Sample_Type 19 LeafPre 20 LeafPre 21 LeafPre 22 LeafPre Field Standard Pr > Let Obs Type Timing Cultivar Estimate Error t Value |t| Grp

3.9040

3.8747

1.2941

1.2919

33

33

3.02

3.00

0.0049

0.0051

В

В

19

20

Bass

Corsica

21 22		Jack Williams82		4.7004 5.6101	1.2934 1.2936	33 33	3.63 4.34	0.0009 0.0001	AB A	
	E	ffect=Field_1	ype*Culti	.var A=Tukey	-Kramer(.05)	avgSD=4	1.08116	maxSD=5.	54312	
0bs	Sample_T	ype								
23	LeafPre									
	LeafPre									
	LeafPre LeafPre									
	LeafPre									
	LeafPre									
	LeafPre									
30	LeafPre									
	Field				Standard			Pr >	Let	
0bs	Type	Cultivar	Timing	Estimate	Error	DF 1	t Value	t	Grp	
23	DC	Bass		4.7666	1.5659	36	3.04	0.0043	В	
24 25	DC DC	Corsica Jack		4.7732 6.2423	1.5553 1.5628	36 36	3.07 3.99	0.0041	B AB	
26	DC	Williams82		7.3629	1.5635	36	4.71	<.0001	A	
27	FS	Bass		3.0413	1.5327	36	1.98	0.0549	AB	
28	FS	Corsica		2.9761	1.5367	36	1.94	0.0607	AB	
29	FS	Jack		3.1585	1.5339	36	2.06	0.0468	AB	
30	FS	Williams82		3.8573	1.5340	36	2.51	0.0165	AB	
	Sample_T	Effect= ype	Timing A=	Tukey-Krame	r(.05) avgSD	=0.7026	maxSD=0	.7026		
	LeafPre LeafPre									
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Va	lue	Pr > t	Let Grp
31 32			Early Late	4.7438 4.3008	1.2613 1.2732	36 36			.0006	A A
		Effect=Fie	eld_Type A	x=Tukey-Kram	er(.05) avgS	D=7.3025	55 maxSD	=7.30255		
0bs	Sample_T	ype								
	Seed Seed									
	Field				Standard				Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Va	lue	t	Grp
33	DC			60.0591	20.0362	2	3	.00 0	.0956	Α
34	FS			39.5126	20.0361	2			.1874	В
		Effect=Cu	ıltivar A=	:Tukey-Krame	r(.05) avgSD	=9.13898	3 maxSD=	9.15298		

```
Obs Sample_Type
 35 Seed
 36 Seed
 37 Seed
 38 Seed
    Field
                                             Standard
                                                                           Pr >
                                                                                  Let
Obs Type
                         Timing
                                              Error
                                                               t Value
            Cultivar
                                  Estimate
                                                          DF
                                                                            |t|
                                                                                  Grp
                                                                         0.0247
 35
             Bass
                                   47.3696
                                              20.1241
                                                          33
                                                                  2.35
                                                                                   В
 36
             Corsica
                                   46.3042
                                              20.1246
                                                          33
                                                                  2.30
                                                                         0.0279
                                                                                   В
 37
             Jack
                                   44.3992
                                              20,1246
                                                          33
                                                                  2.21
                                                                         0.0344
                                                                                   В
             Williams82
                                   61.0704
                                              20.1259
                                                          33
                                                                  3.03
                                                                         0.0047
----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=11.281 maxSD=12.2456 ------
Obs Sample_Type
 39 Seed
 40 Seed
 41 Seed
 42 Seed
 43 Seed
 44 Seed
 45 Seed
 46 Seed
    Field
                                             Standard
                                                                           Pr >
                                                                                  Let
Obs Type
             Cultivar
                          Timing
                                  Estimate
                                              Error
                                                               t Value
                                                                            |t|
                                                                                  Grp
 39
      DC
             Bass
                                   58.9550
                                              20.1631
                                                                  2.92
                                                                         0.0042
                                                         117
                                                                                  AB
 40
      DC
             Corsica
                                   54.1772
                                              20.1654
                                                         117
                                                                  2.69
                                                                         0.0083
 41
     DC
            Jack
                                   56.9805
                                              20.1654
                                                         117
                                                                  2.83
                                                                         0.0055
                                                                                  В
 42
     DC
                                                                         0.0007
            Williams82
                                   70.1237
                                              20.1707
                                                                  3.48
                                                         117
                                                                                  Α
 43
     FS
            Bass
                                   35.7842
                                              20.1659
                                                         117
                                                                  1.77
                                                                         0.0786
 44
     FS
            Corsica
                                   38.4311
                                              20.1654
                                                         117
                                                                  1.91
                                                                         0.0591
                                                                                  С
 45
     FS
             Jack
                                   31.8179
                                              20.1654
                                                         117
                                                                  1.58
                                                                         0.1173
                                                                                  C
 46
     FS
            Williams82
                                              20.1654
                                                                  2.58
                                   52.0171
                                                         117
                                                                         0.0111
----- Effect=Timing A=Tukey-Kramer(.05) avgSD=3.25311 maxSD=3.26068 ------
Obs Sample_Type
 47 Seed
 48 Seed
 49 Seed
    Field_
                                                Standard
                                                                                 Pr >
                                                                                         Let
Obs Type
             Cultivar
                         Timing
                                    Estimate
                                                 Error
                                                              DF
                                                                    t Value
                                                                                  |t|
                                                                                         Grp
 47
                          Control
                                      49.8469
                                                 20.0336
                                                              88
                                                                       2.49
                                                                               0.0147
                                                                                          Α
```

51.0453

48.4653

Early

Late

20.0335

20.0339

2.55

2.42

88

88

0.0126

0.0176

Α

Α

48

49

Malnoylglycitin Analysis

------ Sample_Type=LeafPost ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Glycitin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	683.02389098	
1	4	627.58546906	0.00510310
2	2	626.99083332	0.00087231
3	2	626.79986828	0.00014554
4	1	626.76944746	0.00000897
5	1	626.76769995	0.00000008
6	1	626.76768579	0.00000000

Malnoylglycitin Analysis

63

------ Sample_Type=LeafPost ------

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	2.1534
Year*Farm	0
Year*Farm*Field_Type	4.5554
Bloc(Year*Farm*Fiel)	0.09976
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	3.4650

Fit Statistics

-2 Res Log Likelihood	626.8
AIC (smaller is better)	634.8
AICC (smaller is better)	635.1
BIC (smaller is better)	629.5

Type 3 Tests of Fixed Effects

Num	Den		
DF	DF	F Value	Pr > F
1	2.76	0.11	0.7639
1	2.84	2.71	0.2032
1	2.76	0.11	0.7596
3	130	0.25	0.8620
3	130	0.39	0.7589
1	134	0.40	0.5268
1	134	0.82	0.3664
3	130	0.64	0.5922
3	130	0.59	0.6200
	DF 1 1 1 3 3 1 1 3	DF DF 1 2.76 1 2.84 1 2.76 3 130 3 130 1 134 1 134 3 130	DF DF F Value 1 2.76 0.11 1 2.84 2.71 1 2.76 0.11 3 130 0.25 3 130 0.39 1 134 0.40 1 134 0.82 3 130 0.64

----- Sample_Type=LeafPre

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Glycitin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	455.40175972	
1	2	409.85293277	477.75672487
2	1	384.89335516	86.57168638
3	1	350.78125191	22.04098081
4	1	310.80120042	6.26256525
5	1	267.35831615	1.86832520
6	1	221.90694510	0.57275686
7	1	175.47657600	0.17869141
8	1	128.90938883	0.05639550

------ Sample_Type=LeafPre

The Mixed Procedure

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
9	1	83.03755667	0.01791314
10	1	38.81833531	0.00569528
11	1	-2.59216973	0.00180094
12	3	-26.69352736	
13	1	-72.13255412	0.09738260
14	1	-104.26762148	0.05356535
15	1	-122.60817631	0.02247523
16	3	-131.39098823	0.00342668
17	3	-132.50400839	0.00047745
18	2	-132.62497415	•
19	2	-132.62778424	0.0000001

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0
Year*Farm	0.001693
Year*Farm*Field_Type	0.008130
Bloc(Year*Farm*Fiel)	0.2399
Year*Farm*Bloc*Culti	0.06003
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0.3476
Residual	0.000344

Fit Statistics

-2 Res Log Likelihood	-132.6
AIC (smaller is better)	-120.6
AICC (smaller is better)	-120.3
BIC (smaller is better)	-128.5

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	2.02	1.41	0.3563
Field_Type	1	2.05	1.41	0.3539

------ Sample_Type=LeafPre

The Mixed Procedure

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm*Field_Type	1	2.03	1.43	0.3532
Cultivar	3	18.7	0.88	0.4694
Field_Type*Cultivar	3	77.6	1.08	0.3625
Timing	1	57.6	0.01	0.9434
Field_Type*Timing	1	57.6	0.00	0.9447
Cultivar*Timing	3	74.1	0.56	0.6412
Field_*Cultiv*Timing	3	60.8	0.91	0.4393

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Malonyl_Glycitin
Covariance Structure Variance Components
Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Satterthwaite

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	190.08293174	
1	3	122.17034830	
2	2	121.82873239	
3	1	121.41291987	0.00736767
4	1	114.94229045	0.01096299
5	1	112.15805525	0.01084028
6	1	109.38295991	0.01075114
7	1	106.60978547	0.01066972
8	1	103.83705497	0.01059094

------ Sample_Type=Seed ------

The Mixed Procedure

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
9	1	101.06443136	0.01051364
10	1	98.29183398	0.01043755
11	1	95.51924310	0.01036257
12	1	92.74665384	0.01028867
13	1	89.97406499	0.01021582
14	1	87.20147623	0.01014399
15	1	84.42888750	0.01007316
16	1	81.65629877	0.01000331
17	1	78.88371003	0.00993443
18	1	76.11112134	0.00986649
19	1	73.33853258	0.00979947
20	1	70.56594400	0.00973336
21	1	67.79335517	0.00966813
22	1	65.02076655	0.00960377
23	1	62.24817617	0.00954027
24	1	59.47558936	0.00947758
25	1	56.70300447	0.00941572
26	1	53.93040520	0.00935472
27	1	51.15781190	0.00929445
28	1	48.38524702	0.00923483
29	1	45.61256250	0.00917659
30	1	42.83987096	0.00911882
31	1	40.06754354	0.00906012
32	1	37.29459900	0.00900554
33	1	34.52026318	0.00895689
34	1	31.74600828	0.00890476
35	1	28.96554214	0.00887847
36	1	26.20471062	0.00875458
37	1	25.30750083	0.00876323
38	1	25.28908621	0.00877333
39	1	25.27883550	0.00880167
40	1	25.27676361	0.00880318

41	6	25.27622874	0.00880368
42	5	25.27588525	0.00880388
43	15	25.27388751	0.00881056
44	18	25.27388179	0.00881058
45	19	25.27386960	0.00881064

WARNING: Did not converge.

 Sample_Type=Seed	

The Mixed Procedure

Covariance Parameter Values At Last Iteration

Cov Parm	Estimate
Year	0
Year*Farm	0
Year*Farm*Field_Type	0.000767
Bloc(Year*Farm*Fiel)	0.02629
Year*Farm*Bloc*Culti	0.01319
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0.05545
Residual	1.11E-12

Malnoylglycitin Analysis 70 15:01 Thursday, August 11, 2005

------ Effect=Field_Type A=Tukey-Kramer(.05) avgSD=5.20394 maxSD=5.20394 ------

0bs	Sample_ Type	_	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
1	LeafPost	DC			2.6540	1.5350	1.79	1.73	0.2405	Α
2	LeafPost	FS			0.04513	1.5197	1.72	0.03	0.9794	Α

 Effect=Cultivar	A=Tukey-Kramer(.05)	avgSD=1.25991	maxSD=1.30451	

0bs	Sample_ Type	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
3	LeafPost		Bass		1.3415	1.3362	1.1	1.00	0.4860	Α
4	LeafPost		Corsica		1.1701	1.3396	1.11	0.87	0.5306	Α
5	LeafPost		Jack		1.5686	1.3346	1.1	1.18	0.4352	Α
6	LeafPost		Williams82		1.3180	1.3457	1.13	0.98	0.4907	Α

------ Effect=Timing A=Tukey-Kramer(.05) avgSD=0.73829 maxSD=0.73829 ------

0bs	Sample_ Type	_	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
-	LeafPost LeafPost			Early Late	1.2311 1.4680	1.3268 1.3113			0.5153 0.4609	A A

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=1.88228 maxSD=2.19852 ------

Oho	Sample	Field				Standard			Pr >	Le'
800	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
9	LeafPost	DC	Bass		2.6507	1.5728	1.97	1.69	0.2357	Α
	LeafPost	DC	Corsica		2.2178				0.2949	
	LeafPost	DC	Jack		3.1263				0.1862	
	LeafPost	DC	Williams82							
					2.6210				0.2385	
	LeafPost	FS	Bass		0.03227				0.9856	
	LeafPost	FS	Corsica			1.5862			0.9454	
15	LeafPost	FS	Jack		0.01096	1.5732	1.98	0.01	0.9951	Α
16	LeafPost	FS	Williams82		0.01497	1.6083	2.16	0.01	0.9934	Α
	Ef	fect=Fie	ld_Type A=T	ukey-Krar	mer(.05) av	gSD=1.004	22 max	SD=1.0042	2	
	Sample_	Field_				Standard			Pr >	Let
0bs	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	LeafPre				0.2921				0.1779	Α
18	LeafPre	FS			0.007830	0.1693	3.17	0.05	0.9659	Α
	E	Effect=Cu	ltivar A=Tu	key-Krame	er(.05) avg	SD=0.4949	8 maxS	D=0.49906		
	Sample	Field				Standard			Pr >	Le
0bs		Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
19	LeafPre		Bass		0.06647	0.1666	5.67	0.40	0.7045	Α
20	LeafPre		Corsica		0.06714	0.1648	5.42	0.41	0.6992	Α
21	LeafPre		Jack		0.1516				0.4003	Α
	LeafPre		Williams82		0.3147				0.1108	
		Effect=T	iming A=Tuk	ey-Krameı	r(.05) avgS	SD=0.22465	maxSD	=0.22465		
	Sample_	Field_	-		, , ,	Standard			Pr >	Let
		Field_	-			Standard		=0.22465 t Value		Let
0bs	Sample_	Field_ Type	-		, , ,	Standard Error	DF	t Value	Pr >	Let
0bs 23	Sample_ Type	Field_ Type	-	Timing	Estimate	Standard Error 0.1327	DF 2.47	t Value	Pr > t	Let Grp
0bs 23 24	Sample_ Type LeafPre LeafPre	Field_ Type	-	Timing Early Late	0.1460 0.1540	Standard Error 0.1327 0.1437	DF 2.47 3.43	t Value 1.10 1.07	Pr > t 0.3668 0.3534	Let Grp A A
0bs 23 24	Sample_ Type LeafPre LeafPre	Field_ Type ==Field_T	Cultivar	Timing Early Late	0.1460 0.1540	Standard Error 0.1327 0.1437	DF 2.47 3.43	t Value 1.10 1.07	Pr > t 0.3668 0.3534	Let Grp A A
0bs 23 24	Sample_ Type LeafPre LeafPre	Field_ Type ==Field_T	Cultivar	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0	Standard Error 0.1327 0.1437 0.1437 0.5) avgSD=0	DF 2.47 3.43	t Value 1.10 1.07 5 maxSD=0	Pr > t 0.3668 0.3534 .70112 -	Let Grp A A
0bs 23 24 	Sample_ Type LeafPre LeafPre Effect	Field_ Type =Field_T Field_	Cultivar Cultivar ype*Cultiva	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0	Standard Error 0.1327 0.1437 0.1437 0.5) avgSD=0	DF 2.47 3.43 0.6435	t Value 1.10 1.07 5 maxSD=0 t Value	Pr > t 0.3668 0.3534 .70112 -	Let Grp A A
0bs 23 24 0bs 25	Sample_ Type LeafPre LeafPre Effect Sample_ Type	Field_ Type ==Field_T Field_ Type	Cultivar ype*Cultiva Cultivar	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0	Standard Error 0.1327 0.1437 0.1437 Standard Error	DF 2.47 3.43 0.6435 DF 11.5	t Value 1.10 1.07 5 maxSD=0 t Value 0.55	Pr > t 0.3668 0.3534 .70112 - Pr > t	Let Grp A A
0bs 23 24 0bs 25 26	Sample_ Type LeafPre LeafPre Effect Sample_ Type LeafPre	Field_ Type ==Field_T Field_ Type DC	Cultivar ype*Cultiva Cultivar Bass	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284	Standard Error 0.1327 0.1437 0.1437 Standard Error 0.2352	DF 2.47 3.43 0.6435 DF 11.5 10.1	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956	Let Grp A A
0bs 23 24 0bs 25 26 27	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC	Cultivar ype*Cultiva Cultivar Bass Corsica Jack	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073	Standard Error 0.1327 0.1437 0.1437 Standard Error 0.2352 0.2275	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169	Let Grp A A
0bs 23 24 0bs 25 26 27 28	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC	Cultivar ype*Cultiva Cultivar Bass Corsica Jack Williams82	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050	Standard Error 0.1327 0.1437 0.1437 Standard Error 0.2352 0.2275 0.2352 0.2351	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252	Let Grp A A
0bs 23 24 Obs 25 26 27 28 29	Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC DC FS	Cultivar Ype*Cultiva Cultivar Bass Corsica Jack Williams82 Bass	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0) Estimate 0.1284 0.1279 0.3073 0.6050 0.004577	Standard Error 0.1327 0.1437 0.1437 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834	Let Grp A A
0bs 23 24 0bs 25 26 27 28 29 30	Sample_ Type LeafPre LeafPre Type LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC DC FS FS	Cultivar Cultivar Bass Corsica Jack Williams82 Bass Corsica	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374	Standard Error 0.1327 0.1437 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772	Let Grp A A
0bs 23 24 Obs 25 26 27 28 29 30 31	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC FS FS FS	Cultivar Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374 -0.00404	Standard Error 0.1327 0.1437 95) avgSD=0 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160 0.2139	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772 0.9854	Lett Grp A A Let A A A A A A
0bs 23 24 Obs 25 26 27 28 29 30 31	Sample_ Type LeafPre LeafPre Type LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC DC FS FS	Cultivar Cultivar Bass Corsica Jack Williams82 Bass Corsica	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374	Standard Error 0.1327 0.1437 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772	Lett Grp A A Let A A A A A A
0bs 23 24 Obs 25 26 27 28 29 30 31 32	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC FS FS FS	Cultivar Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.C Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374 -0.00404 0.02441	Standard Error 0.1327 0.1437 05) avgSD=0 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160 0.2139	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02 0.11	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772 0.9854 0.9120	Lett Grp AAAAAAAAAAAAAAAAAAA
0bs 23 24 Obs 25 26 27 28 29 30 31 32	Sample_ Type LeafPre LeafPre Type LeafPre	Field_ Type =Field_T Field_ Type DC DC DC DC FS FS FS FS FS	Cultivar ype*Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	Timing Early Late r A=Tukey	Estimate 0.1460 0.1540 y-Kramer(.C Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374 -0.00404 0.02441	Standard Error 0.1327 0.1437 0.1437 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160 0.2139 0.2139	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02 0.11	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772 0.9854 0.9120	Let Grp A A
0bs 23 24 0bs 25 26 27 28 29 30 31 32	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre	Field_ Type ==Field_T Field_ Type DC DC DC DC FS FS FS	Cultivar ype*Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	Timing Early Late r A=Tukey Timing	Estimate 0.1460 0.1540 y-Kramer(.00 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374 -0.00404 0.02441	Standard Error 0.1327 0.1437 05) avgSD=0 Standard Error 0.2352 0.2275 0.2352 0.2351 0.2124 0.2160 0.2139	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02 0.11	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772 0.9854 0.9120	Lett Grp A A Let A A A A A A A A A Let
0bs 23 24 0bs 25 26 27 28 29 30 31 32	Sample_ Type LeafPre LeafPre Type LeafPre	Field_ Type =Field_T Field_ Type DC DC DC DC FS FS FS FS FS Type	Cultivar ype*Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	Timing Early Late r A=Tukey Timing	Estimate 0.1460 0.1540 y-Kramer(.00 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577 0.006374 -0.00404 0.02441	Standard Error 0.1327 0.1437 Standard Error 0.2352 0.2351 0.2124 0.2160 0.2139 0.2139 rgSD=5.2038	DF 2.47 3.43 0.6435 DF 11.5 10.1 11.5 11.4 7.64 8.08 7.87 7.87	t Value 1.10 1.07 5 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03 -0.02 0.11 SD=5.2039	Pr > t 0.3668 0.3534 .70112 - Pr > t 0.5956 0.5862 0.2169 0.0252 0.9834 0.9772 0.9854 0.9120 4	Let Grp A A

		E 2 3 2 3				0+			5	
	Sample_	Field_				Standard			Pr >	
Obs	Туре	Type	Cultivar	liming	Estimate	Error	DF	t Value	t	G
3	LeafPost		Bass		1.3415	1.3362	1.1	1.00	0.4860	
	LeafPost		Corsica		1.1701				0.5306	
	LeafPost		Jack		1.5686	1.3346			0.4352	
6	LeafPost		Williams82		1.3180	1.3457	1.13	0.98	0.4907	
	[Effect=T	iming A=Tuk	ey-Krameı	r(.05) avgS	SD=0.73829	maxSD	=0.73829		
	Sample_	Field				Standard			Pr >	Le
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
	LeafPost			Early	1.2311	1.3268			0.5153	Α
8	LeafPost			Late	1.4680	1.3113	1.02	1.12	0.4609	А
	Effect	=Field_T	ype*Cultiva	r A=Tukey	/-Kramer(.0	05) avgSD=	6.1230	1 maxSD=6	.19881 -	
	Sample_	Field_				Standard			Pr >	L
0bs	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
9	LeafPost	DC	Bass		2.6507	1.5728	1.97	1.69	0.2357	
10	LeafPost	FS	Bass		0.03227	1.5855	2.04	0.02	0.9856	
	LeafPost	DC	Corsica		2.2178				0.2949	
	LeafPost	FS	Corsica		0.1223				0.9454	
	LeafPost	DC	Jack		3.1263				0.1862	
	LeafPost	FS	Jack		0.01096				0.9951	
15	LeafPost	DC	Williams82		2.6210	1.5820	2.02	1.66	0.2385	
16	LeafPost	FS	Williams82		0.01497	1.6083	2.16	0.01	0.9934	
	Ef	fect=Fie	ld_Type A=T	ukey-Krar	ner(.05) av	/gSD=1.004	22 max	SD=1.0042	2	
				ukey-Krar	ner(.05) av		22 max	SD=1.0042		
	Sample_ Type	fect=Fie Field_ Type		-	ner(.05) av Estimate	Standard		SD=1.0042 t Value	2 Pr > t	Le
0bs	Sample_	Field_		-		Standard	DF	t Value	Pr >	Le Gi
0bs 17	Sample_ Type	Field_ Type		-	Estimate	Standard Error	DF 3.96	t Value	Pr > t	Le Gr
0bs 17 18	Sample_ Type LeafPre LeafPre	Field_ Type DC FS		Timing	Estimate 0.2921 0.007830	Standard Error 0.1786 0.1693	DF 3.96 3.17	t Value 1.64 0.05	Pr > t 0.1779 0.9659	Le Gr
0bs 17 18	Sample_ Type LeafPre LeafPre	Field_ Type DC FS	Cultivar	Timing	Estimate 0.2921 0.007830	Standard Error 0.1786 0.1693	DF 3.96 3.17	t Value 1.64 0.05	Pr > t 0.1779 0.9659	Le Gr
0bs 17 18	Sample_ Type LeafPre LeafPre	Field_ Type DC FS	Cultivar	Timing key-Krame	Estimate 0.2921 0.007830	Standard Error 0.1786 0.1693	DF 3.96 3.17 8 maxS	t Value 1.64 0.05	Pr > t 0.1779 0.9659	Le Gr //
Obs 19	Sample_ Type LeafPre LeafPre End Sample_ Type LeafPre	Field_ Type DC FS ffect=Cu	Cultivar ltivar A=Tu Cultivar Bass	Timing key-Krame	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647	Standard Error 0.1786 0.1693 gSD=0.4949 Standard Error 0.1666	DF 3.96 3.17 8 maxSl DF 5.67	t Value 1.64 0.05 D=0.49906 t Value 0.40	Pr > t 0.1779 0.9659 Pr > t 0.7045	Le Gr #
Obs 19	Sample_ Type LeafPre LeafPre Ef Sample_ Type	Field_ Type DC FS ffect=Cu	Cultivar ltivar A=Tu Cultivar	Timing key-Krame	Estimate	Standard Error 0.1786 0.1693 gSD=0.4949 Standard Error 0.1666	DF 3.96 3.17 8 maxSl DF 5.67	t Value 1.64 0.05 D=0.49906 t Value 0.40	Pr > t 0.1779 0.9659 Pr > t	Le Gr # #
0bs 17 18 Obs 19 20	Sample_ Type LeafPre LeafPre End Sample_ Type LeafPre	Field_ Type DC FS ffect=Cu	Cultivar ltivar A=Tu Cultivar Bass	Timing key-Krame	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647	Standard Error 0.1786 0.1693 gSD=0.4949 Standard Error 0.1666	DF 3.96 3.17 8 maxS DF 5.67 5.42	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41	Pr > t 0.1779 0.9659 Pr > t 0.7045	Le Gr
0bs 17 18 Obs 19 20 21	Sample_ Type LeafPre LeafPre End Sample_ Type LeafPre LeafPre LeafPre	Field_ Type DC FS ffect=Cu	Cultivar ltivar A=Tu Cultivar Bass Corsica	Timing key-Krame Timing	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647 0.06714	Standard Error 0.1786 0.1693 gSD=0.4949 Standard Error 0.1666 0.1648	DF 3.96 3.17 8 maxS DF 5.67 5.42 5.73	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41 0.91	Pr > t 0.1779 0.9659 Pr > t 0.7045 0.6992	Le Gi
0bs 17 18 0bs 19 20 21 22	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type DC FS ffect=Cu Field_ Type	Cultivar ltivar A=Tu Cultivar Bass Corsica Jack	Timing key-Krame Timing	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1786 0.1693 gSD=0.49496 Standard Error 0.1666 0.1648 0.1669	DF 3.96 3.17 8 maxSi DF 5.67 5.42 5.73 5.7	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41 0.91 1.89	Pr > t 0.1779 0.9659 Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr //
0bs 17 18 0bs 19 20 21 22	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type DC FS ffect=Cu Field_ Type	Cultivar ltivar A=Tu Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing key-Krame Timing	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1786 0.1693 gSD=0.49496 Standard Error 0.1666 0.1648 0.1669	DF 3.96 3.17 8 maxSi DF 5.67 5.42 5.73 5.7	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41 0.91 1.89	Pr > t 0.1779 0.9659 Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A
0bs 17 18 0bs 19 20 21 22	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre	Field_ Type DC FS ffect=Cu Field_ Type	Cultivar ltivar A=Tu Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing key-Krame Timing ey-Krame	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1786 0.1693 gSD=0.49496 Standard Error 0.1666 0.1648 0.1669 0.1669	DF 3.96 3.17 8 maxSl DF 5.67 5.42 5.73 5.7	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41 0.91 1.89	Pr > t 0.1779 0.9659 Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr
Obs 17 18 Obs 19 20 21 22 Obs	Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre Sample_ Companies of the state of the stat	Field_ Type DC FS ffect=Cu Field_ Type Effect=T	Cultivar ltivar A=Tu Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing key-Krame Timing ey-Krame	Estimate 0.2921 0.007830 er(.05) avg Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1786 0.1693 gSD=0.49496 Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard	DF 3.96 3.17 8 maxSI DF 5.67 5.42 5.73 5.7 maxSD	t Value 1.64 0.05 D=0.49906 t Value 0.40 0.41 0.91 1.89 =0.22465 t Value	Pr > t 0.1779 0.9659 Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A

0bs	Sample	Field				Standard			Pr >	L
	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
25	LeafPre	DC	Bass		0.1284	0.2352	11.5	0.55	0.5956	
26	LeafPre	FS	Bass		0.004577	0.2124	7.64	0.02	0.9834	
27	LeafPre	DC	Corsica		0.1279	0.2275	10.1	0.56	0.5862	
	LeafPre	FS	Corsica		0.006374				0.9772	
	LeafPre	DC	Jack		0.3073				0.2169	
	LeafPre	FS	Jack		-0.00404				0.9854	
	LeafPre	DC	Williams82		0.6050				0.0252	
	LeafPre	FS	Williams82		0.02441				0.9120	
	Ef1	fect=Fie	ld_Type A=Tu	ukey-Krar	ner(.05) a\	/gSD=5.203	94 max	SD=5.2039	4	
	Sample_	Field_				Standard			Pr >	Le
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
	LeafPost	DC			2.6540	1.5350			0.2405	А
2	LeafPost	FS			0.04513	1.5197	1.72	0.03	0.9794	Α
	E1	ffect=Cu	ltivar A=Tuŀ	key-Krame	er(.05) avç	JSD=1.2599	1 maxS	D=1.30451		
	Sample	Field				Standard			Pr >	
0bs		Type	Cultivar	Timing	Estimate			t Value		
3	LeafPost		Bass		1.3415	1.3362	1.1	1.00	0.4860	
4	LeafPost		Corsica		1.1701	1.3396	1.11	0.87	0.5306	
5	LeafPost		Jack		1.5686	1.3346	1.1	1.18	0.4352	
6	LeafPost		Williams82		1.3180	1.3457	1.13	0.98	0.4907	
	E	Effect=T	iming A=Tuke	ey-Krameı	r(.05) avg	SD=0.73829	maxSD	=0.73829		
	Sample	Field				Standard			Pr >	Le
0bs	Туре	Туре		Timing	Estimate		DF	t Value	t	Gr
				Early	1 0011	1.3268	1 07	0 03	0.5153	A
7	LeafPost			Laity	1.2311			0.90		
	LeafPost LeafPost			Late	1.2311 1.4680	1.3113			0.4609	F
8	LeafPost		ype*Cultivar	Late	1.4680	1.3113	1.02	1.12	0.4609	
8	LeafPost		ype*Cultivar	Late	1.4680	1.3113	1.02 3.8763	1.12	0.4609	
	LeafPost	=Field_T Field_	ype*Cultivar Cultivar	Late A=Tukey	1.4680 /-Kramer(.0	1.3113 05) avgSD=3	1.02 3.8763	1.12	0.4609 .28021 -	L
0bs	LeafPost Effect= Sample_	=Field_T Field_		Late A=Tukey	1.4680 /-Kramer(.0	1.3113 05) avgSD=: Standard	1.02 3.8763 DF	1.12 4 maxSD=5 t Value	0.4609 .28021 -	L G
0bs 9	LeafPost Effect= Sample_ Type	=Field_T Field_ Type	Cultivar	Late A=Tukey	1.4680 /-Kramer(.0	1.3113 05) avgSD=3 Standard Error 1.5728	1.02 3.8763 DF 1.97	1.12 4 maxSD=5 t Value 1.69	0.4609 .28021 - Pr > t	 L G
0bs 9 10	LeafPost Effect= Sample_ Type LeafPost	=Field_T Field_ Type DC	Cultivar Bass	Late A=Tukey	1.4680 /-Kramer(.0 Estimate 2.6507	1.3113 05) avgSD=3 Standard Error 1.5728 1.5834	1.02 3.8763 DF 1.97 2.02	1.12 4 maxSD=5 t Value 1.69 1.40	0.4609 .28021 - Pr > t 0.2357	L G
0bs 9 10 11	LeafPost Effect= Sample_ Type LeafPost LeafPost	=Field_T Field_ Type DC DC	Cultivar Bass Corsica	Late A=Tukey	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178	1.3113 Standard Error 1.5728 1.5834 1.5797	1.02 3.8763 DF 1.97 2.02	1.12 4 maxSD=5 t Value 1.69 1.40 1.98	0.4609 .28021 - Pr > t 0.2357 0.2949	L G
0bs 9 10 11 12	LeafPost Effect= Sample_ Type LeafPost LeafPost LeafPost	=Field_T Field_ Type DC DC DC	Cultivar Bass Corsica Jack	Late A=Tukey	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178 3.1263	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820	1.02 3.8763 DF 1.97 2.02 2	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862	L G
0bs 9 10 11 12 13	LeafPost Effect= Sample_ Type LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	=Field_T Field_ Type DC DC DC DC DC FS	Cultivar Bass Corsica Jack Williams82 Bass	Late A=Tukey	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178 3.1263 2.6210 0.03227	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820 1.5855	1.02 3.8763 DF 1.97 2.02 2 2.02 2.04	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66 0.02	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862 0.2385 0.9856	L G
Obs 9 10 11 12 13 14	LeafPost Effect= Sample_ Type LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	=Field_T Field_ Type DC DC DC DC DC FS FS	Cultivar Bass Corsica Jack Williams82 Bass Corsica	Late A=Tukey	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178 3.1263 2.6210 0.03227 0.1223	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820 1.5855 1.5862	1.02 3.8763 DF 1.97 2.02 2.02 2.04 2.05	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66 0.02 0.08	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862 0.2385 0.9856 0.9454	L G
Obs 9 10 11 12 13 14 15	LeafPost Effect= Sample_ Type LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	=Field_T Field_ Type DC DC DC DC DC FS	Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack	Late A=Tukey Timing	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178 3.1263 2.6210 0.03227 0.1223 0.01096	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820 1.5855 1.5862 1.5732	1.02 3.8763 DF 1.97 2.02 2.02 2.04 2.05 1.98	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66 0.02 0.08 0.01	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862 0.2385 0.9856 0.9454 0.9951	l (
Obs 9 10 11 12 13 14 15	LeafPost Effect= Sample_ Type LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	=Field_T Field_ Type DC DC DC DC FS FS FS	Cultivar Bass Corsica Jack Williams82 Bass Corsica	Late A=Tukey Timing	1.4680 /-Kramer(.0 Estimate 2.6507 2.2178 3.1263 2.6210 0.03227 0.1223	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820 1.5855 1.5862 1.5732	1.02 3.8763 DF 1.97 2.02 2.02 2.04 2.05 1.98	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66 0.02 0.08 0.01	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862 0.2385 0.9856 0.9454	L G
0bs 9 10 11 12 13 14 15 16	LeafPost Effect= Sample_ Type LeafPost	=Field_T Field_ Type DC DC DC DC FS FS FS FS	Cultivar Bass Corsica Jack Williams82 Bass Corsica Jack	Late A=Tukey	1.4680 7-Kramer(.0 Estimate 2.6507 2.2178 3.1263 2.6210 0.03227 0.1223 0.01096 0.01497	1.3113 Standard Error 1.5728 1.5834 1.5797 1.5820 1.5855 1.5862 1.5732 1.6083	1.02 3.8763 DF 1.97 2.02 2.02 2.04 2.05 1.98 2.16	1.12 4 maxSD=5 t Value 1.69 1.40 1.98 1.66 0.02 0.08 0.01 0.01	0.4609 .28021 - Pr > t 0.2357 0.2949 0.1862 0.2385 0.9856 0.9454 0.9951 0.9934	I (

Obs	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
17	LeafPre	DC			0.2921	0.1786	3 96	1 64	0.1779	Α
	LeafPre	FS			0.007830	0.1693			0.9659	A
	E1	ffect=Cui	ltivar A=Tul	key-Krame	er(.05) avg	JSD=0.4949	B maxS[0=0.49906		
	Sample	Field				Standard			Dr >	Let
0bs	Type	Type	Cultivar	Timina	Estimate			t Value		
	. 7 -	. 7							1-1	-
19	LeafPre		Bass		0.06647	0.1666	5.67	0.40	0.7045	Α
20	LeafPre		Corsica		0.06714	0.1648	5.42	0.41	0.6992	Α
	LeafPre		Jack		0.1516				0.4003	Α
22	LeafPre		Williams82		0.3147	0.1669	5.7	1.89	0.1108	Α
		Effect=T:	iming A=Tuke	ey-Krameı	r(.05) avgS	SD=0.22465	maxSD=	=0.22465		
			3	,	() 3					
	Sample_	Field_				Standard			Pr >	Let
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
										_
	LeafPre			Early	0.1460				0.3668	A
24	LeafPre			Late	0.1540	0.1437	3.43	1.07	0.3534	Α
	Effect	Field T	ype*Cultiva	r A=Tuke	y-Kramer(.C)5) avgSD=(0.86443	3 maxSD=0	.99503 -	
					,	, .				
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
			_							
	LeafPre	DC	Bass		0.1284				0.5956	A
	LeafPre	DC	Corsica		0.1279				0.5862	A
	LeafPre LeafPre	DC DC	Jack Williams82		0.3073 0.6050				0.2169 0.0252	
	LeafPre	FS	Bass		0.004577				0.0232	A
	LeafPre	FS	Corsica		0.004377				0.9772	
	LeafPre	FS	Jack		-0.00404				0.9854	A
	LeafPre	FS	Williams82		0.02441				0.9120	Α
	Ef1	fect=Fie	ld_Type A=Ti	ukey-Krar	mer(.05) av	/gSD=5.203	94 maxs	SD=5.2039	4	
	Sample	Field				Standard			Pr >	Let
0bs	. –	Type	Cultivar	Timina	Estimate		DE	t Value	t	Grp
000	турс	Турс	ourcival	riming	Locimaco	LITOI	Di.	t value	101	ai p
1	LeafPost	DC			2.6540	1.5350	1.79	1.73	0.2405	Α
2	LeafPost	FS			0.04513	1.5197	1.72	0.03	0.9794	Α
	_			.,						
	· E1	ffect=Cu.	ltivar A=Tul	key-Krame	er(.05) avg	JSD=1.2599	1 maxSI	0=1.30451		
	Sample	Field				Standard			Dr >	Let
Ohs	Type	Type	Cultivar	Timina	Estimate	Error		t Value	t	
000	1,900	1 9 00	ourcival	Timing	Locamaco	21101	Δ.	t value	151	or b
3	LeafPost		Bass		1.3415	1.3362	1.1	1.00	0.4860	Α
4	LeafPost		Corsica		1.1701	1.3396	1.11	0.87	0.5306	Α
5	LeafPost		Jack		1.5686	1.3346	1.1	1.18	0.4352	Α
6	LeafPost		Williams82		1.3180	1.3457	1.13	0.98	0.4907	Α
	-		: • - :	V.: - ::	- (05) - 3	ND-0 70000	05	-0.70000		
	[rrect=Γ:	iming A=Tuke	ey-Kramei	r(.us) avgs	ou=u./3829	maxSD=	-u.73829		
	Sample	Field				Standard			Pr >	Let

0bs	Type	Type	Cultivar	9						
	LeafPost LeafPost			Early Late	1.2311 1.4680	1.3268 1.3113			0.5153 0.4609	A A
	Effect	=Field_T	ype*Cultiva	r A=Tuke	y-Kramer(.0	05) avgSD=	3.8763	4 maxSD=5	.28021 -	
	Sample_	Field_				Standard			Pr >	Le
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Gr
9	LeafPost	DC	Bass		2.6507	1.5728	1.97	1.69	0.2357	Α
10	LeafPost	DC	Corsica		2.2178	1.5834	2.02	1.40	0.2949	Α
11	LeafPost	DC	Jack		3.1263	1.5797	2	1.98	0.1862	Α
12	LeafPost	DC	Williams82		2.6210	1.5820	2.02	1.66	0.2385	Α
13	LeafPost	FS	Bass		0.03227	1.5855	2.04	0.02	0.9856	Α
14	LeafPost	FS	Corsica		0.1223	1.5862	2.05	0.08	0.9454	Α
15	LeafPost	FS	Jack		0.01096	1.5732	1.98	0.01	0.9951	Α
16	LeafPost	FS	Williams82		0.01497	1.6083	2.16	0.01	0.9934	Α
	Ef	fect=Fie	ld_Type A=T	ukey-Kra	mer(.05) av	/gSD=1.004	22 max	SD=1.0042	2	
	Sample	Field				Standard			Pr >	Let
0bs	Type	Type		Timing	Estimate		DF	t Value	t	Grp
17	LeafPre	DC			0.2921	0.1786	3.96	1.64	0.1779	Α
	LeafPre	FS			0.007830	0.1693			0.9659	Α
			ltivar A=Tul	key-Kram	er(.05) avç			D=0.49906		
	Sample_	Field_				Standard			Pr >	Le
			ltivar A=Tul Cultivar		er(.05) avç Estimate			D=0.49906 t Value		Le
0bs	Sample_	Field_				Standard Error	DF	t Value	Pr >	Le Gr
0bs 19	Sample_ Type	Field_	Cultivar		Estimate	Standard Error	DF 5.67	t Value	Pr > t	Le Gr
0bs 19 20	Sample_ Type LeafPre	Field_	Cultivar Bass		Estimate 0.06647	Standard Error 0.1666	DF 5.67 5.42	t Value 0.40 0.41	Pr > t	Le Gr A
0bs 19 20 21	Sample_ Type LeafPre LeafPre	Field_	Cultivar Bass Corsica	Timing	Estimate 0.06647 0.06714	Standard Error 0.1666 0.1648	DF 5.67 5.42 5.73	t Value 0.40 0.41 0.91	Pr > t 0.7045 0.6992	Le Gr A A
0bs 19 20 21 22	Sample_ Type LeafPre LeafPre LeafPre LeafPre	Field_ Type	Cultivar Bass Corsica Jack	Timing	Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1666 0.1648 0.1669	DF 5.67 5.42 5.73 5.7	t Value 0.40 0.41 0.91 1.89	Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A A
0bs 19 20 21 22	Sample_ Type LeafPre LeafPre LeafPre LeafPre	Field_ Type	Cultivar Bass Corsica Jack Williams82 iming A=Tuke	Timing	Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1666 0.1648 0.1669	DF 5.67 5.42 5.73 5.7	t Value 0.40 0.41 0.91 1.89	Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A A
0bs 19 20 21 22	Sample_ Type LeafPre LeafPre LeafPre LeafPre	Field_ Type	Cultivar Bass Corsica Jack Williams82 iming A=Tuke	Timing Timing	Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1666 0.1648 0.1669 0.1669	DF 5.67 5.42 5.73 5.7	t Value 0.40 0.41 0.91 1.89	Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A A A
0bs 19 20 21 22	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_	Field_ Type Effect=T	Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing Timing	Estimate 0.06647 0.06714 0.1516 0.3147	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465	DF 5.67 5.42 5.73 5.7 maxSD	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value	Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A A A
0bs 19 20 21 22 0bs	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type	Field_ Type Effect=T	Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing ey-Krame Timing	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10	Pr > t 0.7045 0.6992 0.4003 0.1108	Le Gr A A A A
0bs 19 20 21 22 Obs 23 24	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre	Field_ Type Effect=T Field_ Type	Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing ey-Krame Timing Early Late	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534	Let Grp A A A A A
0bs 19 20 21 22 Obs 23 24	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre	Field_ Type Effect=T Field_ Type	Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing ey-Krame Timing Early Late	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534	Le Grp
0bs 19 20 21 22 Obs 23 24	Sample_ Type LeafPre LeafPre LeafPre LeafPre Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre	Field_ Type Effect=T Field_ Type =Field_T	Cultivar Bass Corsica Jack Williams82 iming A=Tuk	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534	Le Grp A A A Let Grp A A Let
0bs 19 20 21 22 Obs 23 24 Obs 25	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type Effect=T. Field_ Type =Field_T; Field_ Type DC	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar ype*Cultivar Cultivar Bass	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0	Standard	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5	t Value	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r 0.5956	Let Grp A A C C C C C C C C C C C C C C C C C
0bs 19 20 21 22 Obs 23 24 Obs 25	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type Effect=T. Field_ Type =Field_T; Field_ Type	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07 3 maxSD=0 t Value 0.55 0.56	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r	Let Grp A A C C C C C C C C C C C C C C C C C
0bs 19 20 21 22 Obs 23 24 Obs 25	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type Effect=T. Field_ Type =Field_T; Field_ Type DC	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar ype*Cultivar Cultivar Bass	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0	Standard	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1	t Value	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r 0.5956	Let Grp A A A A A A A A A A A A A A A A A A A
0bs 19 20 21 22 Obs 23 24 Obs 25 26	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type Effect=T. Field_ Type =Field_Type DC DC	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar ype*Cultivar Cultivar Bass Corsica	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1 11.5	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07 3 maxSD=0 t Value 0.55 0.56 1.31	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r 0.5956 0.5862	Let Grp AA AA Let Grp AA
0bs 19 20 21 22 0bs 23 24 0bs 25 26 27	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre	Field_ Type Effect=T. Field_ Type =Field_Type DC DC DC	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar Cultivar Bass Corsica Jack	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437 Standard Error 0.1327 0.1437	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1 11.5 11.4	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07 3 maxSD=0 t Value 0.55 0.56 1.31 2.57	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r 0.5956 0.5862 0.2169	Let Grp AAAA
0bs 19 20 21 22 0bs 23 24 0bs 25 26 27 28	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre	Field_ Type Effect=T. Field_ Type =Field_T; Field_ Type DC DC DC DC	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar Cultivar Bass Corsica Jack Williams82	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437 Standard Error 0.2352 0.2352 0.2351	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1 11.5 11.4 7.64	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07 3 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r 0.5956 0.5862 0.2169 0.0252	Let Grp A A A A A A A A A A A A A A A A
0bs 19 20 21 22 0bs 23 24 0bs 25 26 27 28 29	Sample_ Type LeafPre LeafPre LeafPre LeafPre Sample_ Type LeafPre	Field_ Type Effect=T. Field_ Type =Field_T; Field_ Type DC DC DC DC DC FS	Cultivar Bass Corsica Jack Williams82 iming A=Tuke Cultivar Cultivar Bass Corsica Jack Williams82 Bass	Timing ey-Krame Timing Early Late r A=Tuke	Estimate 0.06647 0.06714 0.1516 0.3147 r(.05) avgs Estimate 0.1460 0.1540 y-Kramer(.0 Estimate 0.1284 0.1279 0.3073 0.6050 0.004577	Standard Error 0.1666 0.1648 0.1669 0.1669 SD=0.22465 Standard Error 0.1327 0.1437 Standard Error 0.2352 0.2352 0.2351 0.2124	DF 5.67 5.42 5.73 5.7 maxSD DF 2.47 3.43 DF 11.5 10.1 11.5 11.4 7.64 8.08	t Value 0.40 0.41 0.91 1.89 =0.22465 t Value 1.10 1.07 3 maxSD=0 t Value 0.55 0.56 1.31 2.57 0.02 0.03	Pr > t 0.7045 0.6992 0.4003 0.1108 Pr > t 0.3668 0.3534 .99503 - r	Let Grp AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Genistein Analysis

Sample Type=LeafPost	
----------------------	--

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Genistein

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Levels	Values
2	2002 2003
2	PHill Wye
2	DC FS
3	1 2 3
4	Bass Corsica Jack Williams82
2	Early Late
	2 2 2 3 4

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	98.33895094	
1	4	98.13867694	0.00951723
2	3	97.98700591	0.00152020
3	2	97.91210953	0.00005542
4	1	97.90739946	0.0000065
5	1	97.90734718	0.0000000

Convergence criteria met.

Genistein Analysis 08:32 Wednesday, August 10, 2005 174

------ Sample_Type=LeafPost -------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate

Year	5.91E-20
Year*Farm	0
Year*Farm*Field_Type	0.002435
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	0.08747

Fit Statistics

-2 Res Log Likelihood	97.9
AIC (smaller is better)	101.9
AICC (smaller is better)	102.0
BIC (smaller is better)	99.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	6.58	0.2366
Field_Type	1	2	0.26	0.6637
Farm*Field_Type	1	2	0.04	0.8685
Cultivar	3	26	0.35	0.7919
Field_Type*Cultivar	3	26	0.51	0.6784
Timing	1	26	19.58	0.0002
Field_Type*Timing	1	26	1.27	0.2704
Cultivar*Timing	3	26	0.11	0.9525
Field_*Cultiv*Timing	3	26	0.90	0.4536

------ Sample_Type=LeafPre

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Genistein
Covariance Structure	Variance Components
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Evaluations	-2 Res Log Like	Criterion
1	-103.23537154	
3	-109.63260505	0.00227340
3	-110.28409590	0.00024626
1	-110.35360269	0.00000168
1	-110.35405670	0.00000000
	1 3	1 -103.23537154 3 -109.63260505 3 -110.28409590 1 -110.35360269

Convergence criteria met.

------ Sample_Type=LeafPre ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0
Year*Farm	0.001385
Year*Farm*Field_Type	0
Bloc(Year*Farm*Fiel)	0
Year*Farm*Bloc*Culti	1.41E-20
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0.009942
Residual	0.02125

Fit Statistics

-2 Res Log Likelihood	-110.4
AIC (smaller is better)	-104.4
AICC (smaller is better)	-104.2
BIC (smaller is better)	-108.3

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Farm	1	1	0.01	0.9439
Field_Type	1	2	1.61	0.3322
Farm*Field_Type	1	2	20.57	0.0453
Cultivar	3	33	4.64	0.0082
Field_Type*Cultivar	3	36	0.52	0.6705
Timing	1	36	4.66	0.0376
Field_Type*Timing	1	36	0.13	0.7199
Cultivar*Timing	3	36	1.98	0.1349
Field_*Cultiv*Timing	3	36	0.04	0.9901

	- Sample_Type=Seed	
--	--------------------	--

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Genistein

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance Parameters	8
Columns in X	66
Columns in Z	514
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	370.53513501	
1	2	57.91741166	0.00034508
2	1	57.83937474	0.00000434
3	1	57.83844633	0.00000000

Convergence criteria met.

------ Sample_Type=Seed ------

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.07428
Year*Farm	0

Year*Farm*Field_Type	0.1688
Bloc(Year*Farm*Fiel)	0.002278
Year*Farm*Bloc*Culti	0.004029
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	0.04797

Fit Statistics

-2 Res Log Likelihood	57.8
AIC (smaller is better)	67.8
AICC (smaller is better)	68.1
BIC (smaller is better)	61.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.00	0.9876
Field_Type	1	2	3.65	0.1961
Farm*Field_Type	1	2	0.00	0.9613
Cultivar	3	33	3.27	0.0332
Field_Type*Cultivar	3	117	3.72	0.0135
Timing	2	88	2.05	0.1349
Field_Type*Timing	2	117	1.63	0.2002
Cultivar*Timing	6	88	1.41	0.2185
Field_*Cultiv*Timing	6	117	1.14	0.3423

	Sample_		Field_				Standard			Pr >	Let
Obs	Туре	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	LeafPost				Early	0.3135	0.04955	26	6.33	<.0001	Α
2	LeafPost				Late	0.06578	0.03882	26	1.69	0.1021	В
				var A=Tukey	-Kramer(.05) avgSD=		xSD=0	.21783		
	Sample_		_				Standard			Pr >	
)S I	Гуре	Farm	Type	Cultivar	liming	Estimate	Error	DF	t Value	t	Gr
3 L	LeafPost			Bass		0.2310	0.05772	26	4.00	0.0005	A
4 L	LeafPost			Corsica		0.1534	0.05907	26	2.60	0.0153	P
5 L	LeafPost			Jack		0.1832	0.05493	26	3.34	0.0026	A
6 L	LeafPost			Williams82	!	0.1909	0.06122	26	3.12	0.0044	A

0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
7	LeafPost		DC	Bass		0.2709	0.07460	26	3.63	0.0012	Α
8	LeafPost		DC	Corsica		0.1125	0.07864	26	1.43	0.1644	Α
9	LeafPost		DC	Jack		0.2121	0.07306	26	2.90	0.0074	Α
10	LeafPost		DC	Williams82		0.2329	0.07434	26	3.13	0.0043	Α
11	LeafPost		FS	Bass		0.1910	0.08811	26	2.17	0.0395	Α
12	LeafPost		FS	Corsica		0.1943	0.08816	26	2.20	0.0366	Α
13	LeafPost		FS	Jack		0.1544	0.08205	26	1.88	0.0712	Α

14	LeafPost		FS	Williams82		0.1490	0.09728	26	1.53	0.1378	Α
	E [.]	ffect=Fa	arm*Fiel	ld_Type A=T	ukey-Krar	ner(.05) av	/gSD=0.5254	maxSI)=0.54268		
Oha	Sample_	Fo	Field_	_	Timina	Fatimata	Standard	DE	+ //01//0		Let
0bs	Туре	Farm	Type	Cultivar	liming	Estimate	Error	DF	t Value	t	Grp
15	LeafPost	PHill	DC			0.1202	0.07588	2	1.58	0.2539	Α
	LeafPost	Wye	DC			0.2940	0.05340	2	5.51	0.0314	Α
17		PHill	FS			0.09713	0.07321	2	1.33		A
18	LeafPost	Wye	FS			0.2472	0.05977	2	4.14	0.0538	Α
		Effe	ct=Timir	ng A=Tukey-I	Kramer(.0	D5) avgSD=0).05882 max	SD=0.0)5882		
	Sample		Field				Standard			Pr >	Let
0bs		Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
19	LeafPre				Early	0.1562	0.02549	36	6.13	<.0001	Α
	LeafPre				Late	0.09361	0.03017	36		0.0037	В
		Effe	ct=Cult:	ivar A=Tuke	y-Kramer	(.05) avgSE)=0.1017 max	xSD=0	.10263		
	Sample_	F	ield_				Standard			Pr >	Let
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	LeafPre			Bass		0.1227	0.03355	33	3.66	0.0009	AB
	LeafPre			Corsica		0.06064	0.03279	33	1.85		В
	LeafPre			Jack		0.1172	0.03304	33	3.55		
24	LeafPre			Williams82		0.1992	0.03327	33	5.99	<.0001	Α
	Eff	ect=Fie]	ld_Type	*Cultivar A	=Tukey - Kı	ramer(.05)	avgSD=0.15	184 ma	axSD=0.17	04	
		F	Field				Standard			Pr >	Let
0bs	Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
0bs	Type				Timing	Estimate		DF	t Value		
25	LeafPre		Type DC	Bass	Timing	0.1636	Error 0.04795	36	3.41	t 0.0016	Grp A
25 26	LeafPre LeafPre		Type DC	Bass Corsica	Timing	0.1636 0.08541	0.04795 0.04546	36 36	3.41 1.88	t 0.0016 0.0684	Grp A A
25 26 27	LeafPre LeafPre LeafPre		Type DC DC DC	Bass Corsica Jack	·	0.1636 0.08541 0.1316	0.04795 0.04546 0.04667	36 36 36	3.41 1.88 2.82	t 0.0016 0.0684 0.0078	Grp A A A
25 26 27 28	LeafPre LeafPre LeafPre LeafPre		DC DC DC DC	Bass Corsica Jack Williams82	·	0.1636 0.08541 0.1316 0.1939	0.04795 0.04546 0.04667 0.04723	36 36 36 36	3.41 1.88 2.82 4.10	0.0016 0.0684 0.0078 0.0002	Grp A A A
25 26 27 28 29	LeafPre LeafPre LeafPre LeafPre LeafPre		Type DC DC DC DC FS	Bass Corsica Jack Williams82 Bass	·	0.1636 0.08541 0.1316 0.1939 0.08184	0.04795 0.04546 0.04667 0.04723 0.03856	36 36 36 36 36	3.41 1.88 2.82 4.10 2.12	t 0.0016 0.0684 0.0078 0.0002 0.0408	Grp A A A A AB
25 26 27 28 29 30	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre		Type DC DC DC DC FS FS	Bass Corsica Jack Williams82 Bass Corsica	·	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587	0.04795 0.04546 0.04667 0.04723 0.03856 0.03906	36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646	Grp A A A A B B
25 26 27 28 29 30 31	LeafPre LeafPre LeafPre LeafPre LeafPre		Type DC DC DC DC FS	Bass Corsica Jack Williams82 Bass		0.1636 0.08541 0.1316 0.1939 0.08184	0.04795 0.04546 0.04667 0.04723 0.03856	36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66	t 0.0016 0.0684 0.0078 0.0002 0.0408	Grp A A A A AB B AB
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Farm	Type DC DC DC DC FS FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82		0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865	36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001	Grp A A A A B B AB AB
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Farm	Type DC DC DC DC FS FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack		0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865	36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001	Grp A A A A B B AB AB
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Farm	Type DC DC DC DC FS FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865	36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001	Grp A A A A B B AB AB
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	Farm	Type DC DC DC DC FS FS FS FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 0.03865	36 36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001	Grp A A A A B B AB A
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre Sample	Farm	Type DC DC DC DC FS FS FS FS FS FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 7gSD=0.32596	36 36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 SD=0.3481	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001	Grp A A A A B B AB A C C C C C C C C C C C
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre TeafPre	Farm ffect=Fa Farm	Type DC DC DC DC FS FS FS FS FS FS Type	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 vgSD=0.32596 Standard Error 0.04838	36 36 36 36 36 36 36 DF	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 CD=0.3481	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 t	Grp A A A A B B AB A C C C C C C C C C C C
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre Type LeafPre LeafPre	Farm ffect=Fa Farm PHill	Type DC DC DC DC FS FS FS FS FS FS DC	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044 mer(.05) av	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 0.03865 Standard Error 0.04838 0.03525	36 36 36 36 36 36 36 DF	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 CD=0.3481 t Value 1.67 5.86	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 r 0.2376	Grp A A A A B B AB A C C C C C C C C C C C
25 26 27 28 29 30 31 32	LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre Type LeafPre LeafPre LeafPre	Farm Farm PHill Wye	Type DC DC DC DC FS FS FS FS FS FS DC	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Krar	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044 mer(.05) av Estimate 0.08060 0.2066	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 0.03865 Standard Error 0.04838 0.03525	36 36 36 36 36 36 36 36 36	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 CD=0.3481 t Value 1.67 5.86 5.03	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 r 0.2376 0.0279	Grp A A A A B B AB A C C C C C C C C C C C
25 26 27 28 29 30 31 32 Obs 33 34 35 36	LeafPre	Farm Farm PHill Wye PHill Wye	Type DC DC DC DC FS FS FS FS FS Field Type DC DC FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82	ukey-Kran Timing	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044 mer(.05) av Estimate 0.08060 0.2066 0.1734 0.03901	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 VgSD=0.32596 Standard Error 0.04838 0.03525 0.03449 0.03809	36 36 36 36 36 36 36 36 22 22 2	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 SD=0.3481 t Value 1.67 5.86 5.03 1.02	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 t 0.2376 0.0279 0.0373 0.4135	Grp A A A A B AB A A C C C C C C C C C C C
25 26 27 28 29 30 31 32 Obs 33 34 35 36	LeafPre	Farm Farm PHill Wye PHill Wye	Type DC DC DC DC FS FS FS FS Field Type DC DC FS FS FS CC DC FS FS CC DC FS FS CC	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82 Ld_Type A=To	ukey-Kran Timing	0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044 mer(.05) av Estimate 0.08060 0.2066 0.1734 0.03901	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 QSD=0.32596 Standard Error 0.04838 0.03525 0.03449 0.03809	36 36 36 36 36 36 36 36 22 22 2	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 SD=0.3481 t Value 1.67 5.86 5.03 1.02	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 t 0.2376 0.0279 0.0373 0.4135	Grp A A A A B B AB A C C C C C C C C C C C
25 26 27 28 29 30 31 32 Obs 33 34 35 36	LeafPre	Farm Farm PHill Wye PHill Wye	Type DC DC DC DC FS FS FS FS FS Field Type DC DC FS FS FS	Bass Corsica Jack Williams82 Bass Corsica Jack Williams82 Ld_Type A=To	ukey-Krar Timing -Kramer(0.1636 0.08541 0.1316 0.1939 0.08184 0.03587 0.1027 0.2044 mer(.05) av Estimate 0.08060 0.2066 0.1734 0.03901	Error 0.04795 0.04546 0.04667 0.04723 0.03856 0.03906 0.03865 VgSD=0.32596 Standard Error 0.04838 0.03525 0.03449 0.03809	36 36 36 36 36 36 36 36 22 22 22 25 25 25	3.41 1.88 2.82 4.10 2.12 0.92 2.66 5.29 SD=0.3481 t Value 1.67 5.86 5.03 1.02	t 0.0016 0.0684 0.0078 0.0002 0.0408 0.3646 0.0117 <.0001 7 t 0.2376 0.0279 0.0373 0.4135	Grp A A A A B B AB A C C C C C C C C C C C

37 38 39	Seed				Contr Early Late	0.2836 0.3254 0.2624	0.2427 0.2427 0.2428	88 88 88	1.17 1.34 1.08	0.2459 0.1836 0.2827	A A A
		Effe	ct=Cult:	ivar A=Tuke	y-Kramer	(.05) avgSD)=0.1213 ma	xSD=0.	12183		
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
40 41				Bass Corsica		0.2361 0.2505	0.2436 0.2436	33 33		0.3395 0.3114	B AB
		Effe	ect=Cult:	ivar A=Tuke		(.05) avgSE inued))=0.1213 ma	xSD=0.	.12183		
	Complo		Fiold				C+andand			Dn >	l o+
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timina	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
	. 7 [. 7 [9					1-1	-
	Seed			Jack		0.3162	0.2436	33	1.30		AB
43	Seed			Williams82		0.3591	0.2437	33	1.47	0.1500	Α
	Eff	ect=Fie	eld_Type	*Cultivar A	=Tukey - Kı	ramer(.05)	avgSD=0.16	037 ma	axSD=0.16	239	
	Sample_		Field_				Standard			Pr >	Let
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
44	Seed		DC	Bass		0.4603	0.2849	117	1.62	0.1088	В
	Seed		DC	Corsica		0.5009	0.2850	117	1.76		В
	Seed		DC	Jack		0.6323	0.2850	117	2.22		AB
47	Seed		DC	Williams82		0.6857	0.2851	117	2.40		
48	Seed		FS	Bass		0.01182	0.2850	117	0.04		
49	Seed		FS	Corsica		8.2E-15	0.2850	117	0.00		Α
50	Seed		FS	Jack		8.27E-15	0.2850	117	0.00	1.0000	Α
51	Seed		FS	Williams82		0.03245	0.2850	117	0.11	0.9095	Α
	E	ffect=F	arm*Fie.	ld_Type A=Ti	ukey-Krar	mer(.05) av	rgSD=2.4377	9 maxs	SD=2.4378	1	
	Sample_		Field	_			Standard			Pr >	Let
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
52	Seed	PHill	. DC			0.5589	0.3504	2	1.60	0.2517	Α
53		Wye	DC			0.5807	0.3504	2		0.2393	Α
54		PHill				0.01623	0.3504	2		0.9673	Α
55	Seed	Wye	FS			0.005912	0.3504	2	0.02	0.9881	Α
		Effe	ct=Timi	ng A=Tukey-I	Kramer(.0	D5) avgSD=0).11509 max	SD=0.1	11509		
	Sample		Field				Standard			Pr >	Let
0bs	Туре	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	LeafPost				Early	0.3135	0.04955	26	6.33	<.0001	Α
2					Late	0.06578	0.03882	26		0.1021	В
		- Effec	t=Culti	var A=Tukey	-Kramer(.05) avgSD=	0.21001 ma	xSD=0.	21783		
	Samn10		Field				Standard			Pr >	Let
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

3	LeafPost			Bass		0.2310	0.05772	26	4.00	0.0005	Α
4	LeafPost			Corsica		0.1534	0.05907	26	2.60	0.0153	Α
5	LeafPost			Jack		0.1832	0.05493	26	3.34	0.0026	Α
6	LeafPost			Williams82		0.1909	0.06122	26	3.12	0.0044	Α
	Eff	ect=Fie	ld_Type'	Cultivar A	=Tukey - Kı	ramer(.05)	avgSD=0.28	941 ma	axSD=0.30	424	
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	
7	LeafPost		DC	Bass		0.2709	0.07460	26	3.63	0.0012	Α
8	LeafPost		FS	Bass		0.1910	0.08811	26	2.17	0.0395	Α
9	LeafPost		DC	Corsica		0.1125	0.07864	26	1.43	0.1644	Α
10	LeafPost		FS	Corsica		0.1943	0.08816	26	2.20	0.0366	Α
11	LeafPost		DC	Jack		0.2121	0.07306	26	2.90	0.0074	Α
12	LeafPost		FS	Jack		0.1544		26	1.88	0.0712	Α
13	LeafPost		DC	Williams82		0.2329	0.07434	26	3.13	0.0043	Α
14	LeafPost		FS	Williams82		0.1490	0.09728	26	1.53	0.1378	Α
	E	ffect=F	arm*Fie]	Ld_Type A=T	ukey-Krar	ner(.05) av	/gSD=0.6364	5 max	SD=0.7305	1	
	Sample		Field				Standard			Pr >	Let
0bs	-	Farm	Type	-	Timing	Estimate	Error	DF	t Value	t	
15	LeafPost	PHill	DC			0.1202	0.07588	2	1.58	0.2539	Α
	LeafPost					0.09713		2		0.3158	
	LeafPost		DC			0.2940		2	5.51		
18		•	FS			0.2472	0.05977	2			
	Sample_		Field_				Standard			Pr >	Let
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
19	LeafPre LeafPre				Early Late	0.1562 0.09361	0.02549 0.03017	36 36	6.13 3.10		A B
		Effe	ct=Culti	ivar A=Tuke	y-Kramer	(.05) avgSL)=0.1017 ma:	xSD=0	.10263		
	Sample_		Field_				Standard			Pr >	Let
0bs	Туре	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	LeafPre			Bass		0.1227	0.03355	33	3.66	0.0009	AB
22	LeafPre			Corsica		0.06064	0.03279	33	1.85	0.0734	
23	LeafPre			Jack		0.1172	0.03304	33	3.55	0.0012	
24	LeafPre			Williams82		0.1992	0.03327	33	5.99	<.0001	Α
	Eff	ect=Fie	ld_Type'	*Cultivar A	=Tukey-Kı	ramer(.05)	avgSD=0.13	362 ma	axSD=0.13	545	
	Sample	ı	Field				Standard			Pr >	Let
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
25	LeafPre		DC	Bass		0.1636	0.04795	36	3.41	0.0016	Α
26	LeafPre		FS	Bass		0.08184	0.03856	36	2.12	0.0408	Α
27	LeafPre		DC	Corsica		0 00541	0.04546	36	1.88	0.0684	Α
28	LoofDoo					0.08541					
29	LeafPre		FS	Corsica		0.03587	0.03906	36	0.92	0.3646	Α
	LeafPre		DC	Jack		0.03587 0.1316	0.04667	36	2.82	0.0078	Α
30 31						0.03587					A A

32	LeafPre		FS	Williams82		0.2044	0.03865	36	5.29	<.0001	Α
	E	ffect=Fa	arm*Fie]	Ld_Type A=Tu	ukey-Krai	mer(.05) av	/gSD=0.35021	maxs	SD=0.4274	5	
	Sample		Field				Standard			Pr >	Let
0bs	Туре	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
33	LeafPre	PHill	DC			0.08060	0.04838	2	1.67	0.2376	Α
	LeafPre	PHill	FS			0.1734		2		0.0373	
35	LeafPre	Wye	DC			0.2066	0.03525	2	5.86	0.0279	Α
36	LeafPre	Wye	FS			0.03901	0.03809	2	1.02	0.4135	Α
		Effe	ect=Timi	ina A=Tukev	-Kramer(.05) avgSD=	=0.0755 maxS	D=0.0	07565		
				9,	(,					
01.	Sample_	.	Field_	0.11	- · · · · · ·	F. I. S	Standard	D.E.		Pr >	
Obs	Туре	Farm	Type	Cultivar	liming	Estimate	Error	DF	t Value	t	Grp
37	Seed				Contr	0.2836	0.2427	88	1.17	0.2459	Α
38	Seed				Early	0.3254	0.2427	88	1.34	0.1836	Α
39	Seed				Late	0.2624	0.2428	88	1.08	0.2827	Α
		Effec	ct=Culti	ivar A=Tukey	/-Kramer	(.05) avgSE	D=0.1213 max	SD=0	.12183		
	Sample		Field				Standard			Pr >	Let
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
40	Seed			Bass		0.2361	0.2436	33	0.97	0.3395	В
41	Seed			Corsica		0.2505	0.2436	33		0.3114	
				ivar A=Tukey		(.05) avgSE inued)	D=0.1213 max	SD=0	.12183		
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	t	Let Grp
40	Seed			Jack		0.2160	0.0436	22	1 20	0.2033	AB
	Seed			Williams82		0.3162 0.3591	0.2436 0.2437	33 33			
	Eff	ect=Fie]	ld_Type'	*Cultivar A=	=Tukey-Ki	ramer(.05)	avgSD=0.702	1 max	xSD=0.7024	14	
	Sample_		ield_				Standard			Pr >	Let
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
44	Seed		DC	Bass		0.4603	0.2849	117	1.62	0.1088	Α
45	Seed		FS	Bass		0.01182		117	0.04		Α
46	Seed		DC	Corsica		0.5009	0.2850	117	1.76	0.0814	Α
47	Seed		FS	Corsica		8.2E-15	0.2850	117	0.00	1.0000	Α
48	Seed		DC	Jack		0.6323	0.2850	117	2.22	0.0284	Α
49	Seed		FS	Jack		8.27E-15	0.2850	117	0.00	1.0000	Α
50	Seed		DC	Williams82		0.6857		117		0.0177	Α
51	Seed		FS	Williams82		0.03245	0.2850	117	0.11	0.9095	Α
	E	ffect=Fa	arm*Fie]	Ld_Type A=Tı	ıkey-Kraı	mer(.05) av	/gSD=2.86619	maxs	SD=2.86716	ŝ	
	Comple		Ei al d				C+ondond			D	1.6+
0bs	Sample_ Type	Farm	Field_ Type	-	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
52	Seed	PHill	DC			0.5589	0.3504	2	1.60	0.2517	Α

53	Seed	PHill	FS			0.01623	0.3504	2	0.05	0.9673	
54	Seed	Wye	DC			0.5807	0.3504	2	1.66	0.2393	
55	Seed	Wye	FS			0.005912	0.3504	2	0.02	0.9881	
		Effe	ct=Timi	ng A=Tukey-	Kramer(.0	05) avgSD=0	0.11509 max	SD=0.	11509		
	Sample_		Field_				Standard			Pr >	L
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
1	LeafPost				Early	0.3135	0.04955	26	6.33	<.0001	
2	LeafPost				Late	0.06578	0.03882	26	1.69	0.1021	
		- Effec	t=Culti	var A=Tukey	-Kramer(.05) avgSD	=0.21001 max	xSD=0	.21783		
	Sample_		Field_				Standard			Pr >	
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	
3	LeafPost			Bass		0.2310	0.05772	26	4.00	0.0005	
4	LeafPost			Corsica		0.1534	0.05907	26	2.60	0.0153	
5	LeafPost			Jack		0.1832	0.05493	26	3.34	0.0026	
6	LeafPost			Williams82		0.1909	0.06122	26	3.12	0.0044	
	Eff	ect=Fie	ld_Type	*Cultivar A	=Tukey-K	ramer(.05)	avgSD=0.370	066 ma	axSD=0.41	162	
	Sample		Field				Standard			Pr >	
0bs	Туре	Farm	Type	Cultivar	Timing	Estimate		DF	t Value	t	
7	LeafPost		DC	Bass		0.2709	0.07460	26	3.63	0.0012	
8	LeafPost		DC	Corsica		0.1125	0.07864	26	1.43	0.1644	
9	LeafPost		DC	Jack		0.2121	0.07306	26	2.90	0.0074	
10	LeafPost		DC	Williams82		0.2329	0.07434	26	3.13	0.0043	
11	LeafPost		FS	Bass		0.1910	0.08811	26	2.17	0.0395	
12	LeafPost		FS	Corsica		0.1943	0.08816	26	2.20	0.0366	
13	LeafPost		FS	Jack		0.1544	0.08205	26	1.88	0.0712	
14	LeafPost		FS	Williams82		0.1490	0.09728	26	1.53	0.1378	
	E	ffect=F	arm*Fie	ld_Type A=T	ukey-Krai	mer(.05) a	vgSD=0.6364	5 max	SD=0.7305	1	
	Sample_		Field	_			Standard			Pr >	
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	
15						0.1202	0.07588	2		0.2539	
16						0.09713		2	1.33		
17 18	LeafPost LeafPost	•	DC FS			0.2940 0.2472		2 2	5.51 4.14	0.0314 0.0538	
		Effe	ct=Timi	ng A=Tukey-	Kramer(.0	05) avaSD=0	0.05882 max	SD=0.0	05882		
	Sample		Field		`	, ,	Standard			Pr >	L
0bs		Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
19 20	LeafPre LeafPre				Early Late	0.1562 0.09361	0.02549	36 36		<.0001 0.0037	
20	Leairie				Late	0.03001	0.03017	50	5.10	J.0007	
		Effe	ct=Cult	ivar A=Tuke	y-Kramer	(.05) avgSI	D=0.1017 max	xSD=0	.10263		
	Sample_		Field_				Standard			Pr >	

22 23	LeafPre LeafPre LeafPre LeafPre			Bass Corsica Jack Williams82		0.1227 0.06064 0.1172 0.1992	0.03355 0.03279 0.03304 0.03327	33 33 33 33	3.66 1.85 3.55 5.99	0.0012	AB B AB A
	2041110					31.1552	0.10002.		3.33		•
	Eff	ect=Fie	ld_Type	*Cultivar A	=Tukey-K	ramer(.05)	avgSD=0.17	332 ma	axSD=0.19	086	
0bs	Sample_ Type	Farm	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
25	LeafPre		DC	Bass		0.1636	0.04795	36	3.41	0.0016	AB
26	LeafPre		DC	Corsica		0.08541	0.04546	36	1.88	0.0684	AB
27	LeafPre		DC	Jack		0.1316	0.04667	36	2.82	0.0078	AB
28	LeafPre		DC	Williams82		0.1939	0.04723	36	4.10	0.0002	AB
29	LeafPre		FS	Bass		0.08184	0.03856	36	2.12	0.0408	AB
30	LeafPre		FS	Corsica		0.03587	0.03906	36	0.92	0.3646	В
31	LeafPre		FS	Jack		0.1027	0.03866	36	2.66	0.0117	AB
32	LeafPre		FS	Williams82		0.2044	0.03865	36	5.29	<.0001	Α
	E	ffect=Fa	arm*Fie:	ld_Type A=T	ukey-Kra	mer(.05) av	/gSD=0.3502	1 max	SD=0.4274	5	
	Sample		Field				Standard			Pr >	Let
0bs		Farm	Type	_	Timing	Estimate	Error	DF	t Value	t	Grp
33	LeafPre	PHill	DC			0.08060	0.04838	2	1 67	0.2376	Α
	LeafPre	PHill				0.1734	0.03449	2	5.03		Α
35		Wye	DC			0.2066	0.03525	2	5.86		A
	LeafPre	•	FS			0.03901		2		0.0279	A
30	Leairie	Wye	13			0.03901	0.03809	۷	1.02	0.4133	A
		Eff	ect=Tim:	ina A=Tukev	-Kramer(05) avgSD=	-0 0755 max	SD=0 (07565		
				5	111 411101 (.oo, avgob	Oloroo max	00-0.			
	Sample			,	iti amer (.oo, avgob		00-0.			
0bs	Sample_ Type	Farm	Field_ Type	Cultivar			Standard Error		t Value	Pr > t	Let Grp
	Туре		Field_		Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
37	Type Seed		Field_		Timing Contr	Estimate 0.2836	Standard Error 0.2427	DF 88	t Value	Pr > t 0.2459	Let Grp A
	Type Seed Seed		Field_		Timing	Estimate	Standard Error	DF	t Value 1.17 1.34	Pr > t	Let Grp
37 38 39	Type Seed Seed Seed	Farm	Field_ Type		Timing Contr Early Late	Estimate 0.2836 0.3254 0.2624	Standard Error 0.2427 0.2427 0.2428	DF 88 88 88	t Value 1.17 1.34 1.08	Pr > t 0.2459 0.1836 0.2827	Let Grp A A A
37 38 39	Type Seed Seed Seed	Farm	Field_ Type	Cultivar	Timing Contr Early Late	Estimate 0.2836 0.3254 0.2624	Standard Error 0.2427 0.2427 0.2428	DF 88 88 88	t Value 1.17 1.34 1.08	Pr > t 0.2459 0.1836 0.2827	Let Grp A A A
37 38 39	Type Seed Seed Seed Seed Seed	Farm	Field_ Type ct=Cult: Field_	Cultivar	Timing Contr Early Late y-Kramer	Estimate 0.2836 0.3254 0.2624 (.05) avgSE	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma	DF 88 88 88 88	t Value 1.17 1.34 1.08	Pr > t 0.2459 0.1836 0.2827	Let Grp A A A
37 38 39	Type Seed Seed Seed Seed Sred Sample Type	Farm	Field_ Type ct=Cult: Field_	Cultivar ivar A=Tuke Cultivar	Timing Contr Early Late y-Kramer	Estimate 0.2836 0.3254 0.2624 (.05) avgSE	Standard Error 0.2427 0.2427 0.2428 D=0.1213 ma Standard Error	DF 88 88 88 xSD=0	t Value 1.17 1.34 1.08 .12183	Pr > t 0.2459 0.1836 0.2827 Pr > t	Let Grp A A A Let Grp
37 38 39	Type Seed Seed Seed Seed Sample_ Type Seed	Farm	Field_ Type ct=Cult: Field_	Cultivar Cultivar ivar A=Tuke	Timing Contr Early Late y-Kramer	Estimate 0.2836 0.3254 0.2624 (.05) avgSE	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma	DF 88 88 88 88	t Value 1.17 1.34 1.08 .12183 t Value 0.97	Pr > t 0.2459 0.1836 0.2827	Let Grp A A A Let Grp
37 38 39 Obs	Type Seed Seed Seed Seed Sample Type Seed	Farm	Field_ Type ct=Cult: Field_	Cultivar ivar A=Tuke Cultivar Bass Corsica	Timing Contr Early Late y-Kramer Timing	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436	DF 88 88 88 xSD=0 DF 33 33	t Value 1.17 1.34 1.08 .12183 t Value 0.97	Pr > t 0.2459 0.1836 0.2827 Pr > t 0.3395 0.3114	Let Grp A A A Let Grp B AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type	Cultivar ivar A=Tuke Cultivar Bass Corsica	Timing Contr Early Late y-Kramer Timing	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505	Standard Error 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We	DF 88 88 88 xSD=0 DF 33 33 dnesd:	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus	Pr > t 0.2459 0.1836 0.2827 Pr > t 0.3395 0.3114 t 10, 200	Let Grp A A A Let Grp B AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type	Cultivar ivar A=Tuke Cultivar Bass Corsica	Timing Contr Early Late y-Kramer Timing Genistei	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505	Standard Error 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We	DF 88 88 88 xSD=0 DF 33 33 dnesd:	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus	Pr > t 0.2459 0.1836 0.2827 Pr > t 0.3395 0.3114 t 10, 200	Let Grp A A A Let Grp B AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type	Cultivar ivar A=Tuke Cultivar Bass Corsica	Timing Contr Early Late y-Kramer Timing Genistei	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505 n Analysis (.05) avgSE	Standard Error 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We	DF 88 88 88 xSD=0 DF 33 33 dnesd:	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus	Pr > t 0.2459 0.1836 0.2827 Pr > t 0.3395 0.3114 t 10, 200	Let Grp A A A Let Grp B AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type	Cultivar ivar A=Tuke Cultivar Bass Corsica	Timing Contr Early Late y-Kramer Timing Genistei	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505 n Analysis (.05) avgSE	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 0.2436 08:32 We	DF 88 88 88 xSD=0 DF 33 33 dnesda	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus	Pr > t 0.2459 0.1836 0.2827 Pr > t 0.3395 0.3114 t 10, 200	Let Grp A A A Let Grp B AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Sample_Type Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type ct=Cult:	Cultivar ivar A=Tuke Cultivar Bass Corsica ivar A=Tuke	Timing Contr Early Late y-Kramer Timing Genistei	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505 1 Analysis (.05) avgSE inued)	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We 0=0.1213 ma Standard Error	DF 88 88 88 xSD=0 DF 33 33 dnesd: xSD=0	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus .12183 t Value	Pr > t	Let Grp A A A Let Grp B AB 05 187 Let Grp
37 38 39 Obs 40 41	Seed Seed Seed Sample_ Type Seed Seed Sample_ Type Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type ct=Cult:	Cultivar ivar A=Tuke Cultivar Bass Corsica ivar A=Tuke	Timing Contr Early Late y-Kramer Timing Genistein y-Kramer (cont.)	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505 n Analysis (.05) avgSE inued) Estimate	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We 0=0.1213 ma Standard Error 0.2436	DF 88 88 88 xSD=0 DF 33 33 dnesd: xSD=0	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus .12183 t Value 1.30	Pr > t	Let Grp A A A Let Grp B AB 05 187 Let Grp AB
37 38 39 Obs 40 41	Seed Seed Seed Seed Seed Seed Sample_Type Seed Seed Seed Seed	Farm Effe	Field_ Type ct=Cult: Field_ Type ct=Cult:	Cultivar ivar A=Tuke Cultivar Bass Corsica ivar A=Tuke	Timing Contr Early Late y-Kramer Timing Genistein y-Kramer (cont.)	Estimate 0.2836 0.3254 0.2624 (.05) avgSE Estimate 0.2361 0.2505 1 Analysis (.05) avgSE inued)	Standard Error 0.2427 0.2427 0.2428 0=0.1213 ma Standard Error 0.2436 0.2436 08:32 We 0=0.1213 ma Standard Error	DF 88 88 88 xSD=0 DF 33 33 dnesd: xSD=0	t Value 1.17 1.34 1.08 .12183 t Value 0.97 1.03 ay, Augus .12183 t Value 1.30	Pr > t	Let Grp A A A Let Grp B AB 05 187 Let Grp AB

	Sample_	ı	ield_				Standard			Pr >	Let
0bs	Type	Farm	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
44	Seed		DC	Bass		0.4603	0.2849	117	1.62	0.1088	В
45	Seed		DC	Corsica		0.5009	0.2850	117	1.76	0.0814	В
46	Seed		DC	Jack		0.6323	0.2850	117	2.22	0.0284	AB
47	Seed		DC	Williams82		0.6857	0.2851	117	2.40	0.0177	Α
48	Seed		FS	Bass		0.01182	0.2850	117	0.04	0.9670	AB
49	Seed		FS	Corsica		8.2E-15	0.2850	117	0.00	1.0000	AB
50	Seed		FS	Jack		8.27E-15	0.2850	117	0.00	1.0000	AB
51	Seed		FS	Williams82		0.03245	0.2850	117	0.11	0.9095	AB
	E	Effect=Fa	arm*Fie	ld_Type A=Tu	ıkey-Kram	er(.05) av	gSD=2.86619	maxS	D=2.86716		
	Sample_		Field	_			Standard			Pr >	Let
0bs	Туре	Farm	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
52	Seed	PHill	DC			0.5589	0.3504	2	1.60	0.2517	Α
53	Seed	PHill	FS			0.01623	0.3504	2	0.05	0.9673	Α
54	Seed	Wye	DC			0.5807	0.3504	2	1.66	0.2393	Α
	0					0 005010	0.0504	_		0 0001	

0.005912

0.3504

2

0.02 0.9881 A

55 Seed

Wye

FS

Total Isoflavone Analysis

------ Sample_Type=LeafPost ------

The Mixed Procedure

Model Information

Data Set	WORK.NEWHPLC
Dependent Variable	Total_Iso

Covariance Structure Variance Components Estimation Method REML

Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Levels	Values
2	2002 2003
2	PHill Wye
2	DC FS
3	1 2 3
4	Bass Corsica Jack Williams82
2	Early Late
	2 2 2 3 4

Dimensions

Covariance Parameters	8
Columns in X	51
Columns in Z	298
Subjects	1
Max Obs Per Subject	158
Observations Used	158
Observations Not Used	0
Total Observations	158

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1131.98530584	
1	4	1085.01518006	0.03637163
2	2	1084.41881731	0.00205476
3	3	1083.92871574	
4	1	1083.91484049	0.00000022
5	1	1083.91474817	0.00000000

------ Sample_Type=LeafPost -------

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate

Year	58.3395
Year*Farm	0
Year*Farm*Field_Type	49.5690
Bloc(Year*Farm*Fiel)	0.4479
Year*Farm*Bloc*Culti	0
Yea*Far*Blo*Cul*Timi	2.82E-17
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	93.9313

Fit Statistics

-2 Res Log Likelihood	1083.9
AIC (smaller is better)	1091.9
AICC (smaller is better)	1092.2
BIC (smaller is better)	1086.7

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.86	0.5235
Field_Type	1	2	1.14	0.3976
Farm*Field_Type	1	2	0.37	0.6038
Cultivar	3	26	0.62	0.6103
Field_Type*Cultivar	3	26	0.08	0.9680
Timing	1	26	5.67	0.0249
Field_Type*Timing	1	26	0.89	0.3553
Cultivar*Timing	3	26	0.15	0.9290
Field_*Cultiv*Timing	3	26	0.00	0.9999

------ Sample_Type=LeafPre

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Total_Iso
Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	2	Early Late

Dimensions

Columns in X	51
Columns in Z	329
Subjects	1
Max Obs Per Subject	250
Observations Used	250
Observations Not Used	0
Total Observations	250

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1256.77579809	
U	ı	1230.77379609	
1	2	1157.75456467	0.03972301
2	3	1156.54707231	
3	3	1142.18808955	
4	2	1140.31937424	
5	2	1139.84390098	0.00027467
6	1	1139.72701639	0.00004032
7	1	1139.71114530	0.00000128
8	1	1139.71067845	0.00000000

------ Sample_Type=LeafPre

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	3.8407
Year*Farm	0
Year*Farm*Field_Type	7.8084
Bloc(Year*Farm*Fiel)	0.9708
Year*Farm*Bloc*Culti	0.5946
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	5.3032
Residual	2.4367

Fit Statistics

-2 Res Log Likelihood	1139.7
AIC (smaller is better)	1151.7
AICC (smaller is better)	1152.1
BIC (smaller is better)	1143.9

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Farm	1	1	0.20	0.7295
Field_Type	1	2	2.94	0.2287
Farm*Field_Type	1	2	0.00	0.9905
Cultivar	3	33	5.36	0.0041
Field_Type*Cultivar	3	36	1.39	0.2607
Timing	1	36	0.65	0.4237

Field_Type*Timing	1	36	0.21	0.6493
Cultivar*Timing	3	36	0.88	0.4586
Field *Cultiv*Timina	3	36	0.70	0.5601

Total Isoflavone Analysis

37

------ Sample_Type=Seed ------

The Mixed Procedure

Model Information

Data Set WORK.NEWHPLC
Dependent Variable Total_Iso

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	PHill Wye
Field_Type	2	DC FS
Block	3	1 2 3
Cultivar	4	Bass Corsica Jack Williams82
Timing	3	Control Early Late

Dimensions

Covariance	Parameters	8
Columns in	Χ	66
Columns in	Z	514
Subjects		1
Max Obs Per	Subject	288
Observation	ns Used	288
Observation	ns Not Used	0
Total Obser	rvations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	2704.75692835	
1	2	2334.47798241	0.00458326
2	1	2329.14773499	0.00143209
3	1	2327.55637447	0.00025582
4	1	2327.28508141	0.00002807
5	1	2327.25561882	0.00000210
6	1	2327.25355325	0.0000003
7	1	2327.25352980	0.00000000

-------Sample_Type=Seed -------

The Mixed Procedure

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Year	1724.80
Year*Farm	56.3131
Year*Farm*Field_Type	8.2692
Bloc(Year*Farm*Fiel)	8.8683
Year*Farm*Bloc*Culti	162.65
Yea*Far*Blo*Cul*Timi	0
Ye*Fa*Fi*Blo*Cul*Tim	0
Residual	238.91

Fit Statistics

-2 Res Log Likelihood	2327.3
AIC (smaller is better)	2339.3
AICC (smaller is better)	2339.6
BIC (smaller is better)	2331.4

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.37	0.6522
Field_Type	1	2	156.83	0.0063
Farm*Field_Type	1	2	9.00	0.0955
Cultivar	3	33	12.00	<.0001
Field_Type*Cultivar	3	117	2.46	0.0661
Timing	2	88	1.92	0.1530
Field_Type*Timing	2	117	0.07	0.9336
Cultivar*Timing	6	88	1.18	0.3255
Field_*Cultiv*Timing	6	117	0.48	0.8252

	Sample	Field				Standard			Pr >	Let
0bs	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	LeafPost			Early	17.2497	6.1869	26	2.79	0.0098	Α
2	LeafPost			Late	12.6574	6.0938	26	2.08	0.0478	В
		Effect=C Field_	ultivar A=T	ukey-Krar	mer(.05) av	gSD=6.9013 Standard	4 max			
	Sample_	Field_		, and the second	, ,	Standard		SD=7.1467	 Pr >	Let
bs	Sample_ Type		Cultivar	ukey-Kran Timing	Estimate	Standard Error	DF	SD=7.1467 t Value	Pr > t	Let Grp
- bs	Sample_ Type LeafPost	Field_	Cultivar Bass	, and the second	Estimate	Standard Error 6.2421	DF 26	SD=7.1467 t Value 2.65	Pr > t	Let Grp
bs 3 4	Sample_ Type	Field_	Cultivar	, and the second	Estimate	Standard Error	DF	t Value 2.65 2.39	Pr > t	Le ⁺ Gr _l A A

7 8	LeafPost LeafPost	DC FS			17.8904 12.0167	6.6932 6.6255	2 2	2.67 1.81	0.1161 0.2114	A A
	Effect	=Field_T	ype*Cultivar	A=Tukey	/-Kramer(.0	05) avgSD=10	3561	maxSD=12	2.0822 -	
	01-	E4.14				0+			D	1
01	Sample_	Field_	0.111	- · · · · ·	F. 1	Standard	D.E.			Let
0bs	Туре	Type	Cultivar	ıımıng	Estimate	Error	DF	t Value	t	Grp
_			_							
	LeafPost	DC	Bass		20.1814		26	2.91		A
	LeafPost	DC	Corsica		17.9201		26		0.0165	
	LeafPost	DC	Jack		15.7492		26		0.0323	Α
	LeafPost	DC	Williams82		17.7108	6.9776	26	2.54	0.0175	Α
	LeafPost	FS	Bass		12.8878	7.0303	26		0.0783	
14	LeafPost	FS	Corsica		12.0252	7.0340	26	1.71	0.0993	Α
15	LeafPost	FS	Jack		10.7586	6.9549	26	1.55	0.1340	Α
16	LeafPost	FS	Williams82		12.3953	7.1648	26	1.73	0.0955	Α
	[Effect=T: Field	iming A=Tuke	ey-Kramer	^(.05) avgS	GD=1.02007 n Standard	naxSD=1	.02007	Pr >	
Ohe	Type	Type		Timina	Fetimata	Error	DE +	Value	t	Grp
003	туре	Туре	Oultival	TIMITING	LSCIMACE	LITOI	Di (. value	101	ui p
17	LeafPre			Early	6.7914	1.7458	36	3.89	0.0004	Α
	LeafPre			Late	6.3843	1.7639	36	3.62		A
10	Learrie			Late	0.3643	1.7039	30	3.02	0.0009	A
	Sample_	ffect=Cui	ltivar A=Tuŀ	key-Krame	er(.05) avç	gSD=1.94968 Standard	maxSD=	-1.96691	Pr >	
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
19	LeafPre		Bass		5.8598	1.7931	33	3.27	0.0025	В
20	LeafPre		Corsica		5.5757	1.7898	33	3.12	0.0038	В
21	LeafPre		Jack		6.7220	1.7924	33	3.75	0.0007	AB
22	LeafPre		Williams82		8.1939	1.7926	33	4.57	<.0001	Α
	Ef1	fect=Fie:	ld_Type A=Tu	ukey-Kram	ner(.05) av	/gSD=8.95777	′ maxSE)=8.95777	7	
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF t	Value	t	Grp
23	LeafPre	DC			8.3721	2.0326	2	4.12	0.0542	Α
24	LeafPre	FS			4.8036	2.0171	2	2.38	0.1402	Α
	Effect	=Field_T	ype*Cultiva	^ A=Tukey	/-Kramer(.C	05) avgSD=2.	.78206	maxSD=3	.06882 -	
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
25	LeafPre	DC	Bass		7.2428	2.1374	36	3.39	0.0017	AB
26	LeafPre	DC	Corsica		6.8400	2.1207	36	3.23	0.0027	В
27	LeafPre	DC	Jack		8.8435	2.1336	36	4.14		AB
28	LeafPre	DC	Williams82		10.5622	2.1342	36	4.95		
	LeafPre	FS	Bass		4.4768		36	2.15		
30	LeafPre	FS	Corsica		4.3114	2.0931	36	2.06		
31	LeafPre	FS	Jack		4.6004	2.0889	36	2.20		A
	LeafPre	FS	Williams82		5.8257	2.0890	36	2.79		
		-								

	Е	Effect=T	iming A=Tuke	ey-Krame	r(.05) avg	SD=5.33208	maxSD=	=5.34452		
	Sample	Fiold				Standard			Pr >	Lot
0bs	. –	Field_ Type	Cultivar	Timina	Fstimate	Error	DE	t Value	t	Grp
000	Турс	Турс	ouicivai	riming	Locimaco	LITOI	Di	t value	101	ui p
33	Seed			Contr	81.5628	29.7282	88	2.74	0.0074	Α
	Seed			Early	83.3463		88		0.0062	A
	Seed			Late	78.9871		88		0.0094	Α
	5554				, 0.00, .	2011200				,,
	_									
	t	ttect=C	ultivar A=Tı	ukey-Krai	mer(.05) av	/gSD=15.725	maxSl)=15.747		
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	Seed		Bass		76.0548	29.9117	33		0.0159	В
	Seed		Corsica		79.4908	29.9125	33		0.0120	В
38	Seed		Jack		68.1615	29.9125	33	2.28	0.0293	В
	E	Effect=C	ultivar A=Tu	-	mer(.05) av ontinued)	/gSD=15.725	maxSI	D=15.747		
	Sample	Field				Standard			Pr >	Let
0bs	Туре	Type	Cultivar	Timing	Estimate		DF	t Value	t	
39	Seed		Williams82		101.49	29.9149	33	3.39	0.0018	Α
0bs	Sample_ Type	_	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
							_			_
	Seed	DC			100.03	29.7381	2	3.36		A
41	Seed	FS			62.5627	29.7378	2	2.10	0.1701	В
			ype*Cultiva	r A=Tuke	y-Kramer(.0		7.6294	4 maxSD=1		
	Sample_	Field_				Standard				Let
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
42	Seed	DC	Bass		97.6779	29.9872	117	3.26	0.0015	В
	Seed	DC	Corsica		94.8169		117		0.0020	В
44	Seed	DC	Jack		88.6347	29.9913	117	2.96		В
45	Seed	DC	Williams82		119.01	30.0010	117	3.97		A
	Seed	FS	Bass		54.4317	29.9922	117	1.81		В
	Seed	FS	Corsica		64.1647		117	2.14		В
	Seed	FS	Jack		47.6883	29.9913	117		0.1145	В
49	Seed	FS	Williams82		83.9661	29.9913	117		0.0060	A
10	occu	. 0	WIIIIamool		0010001	2010010		2100	010000	,,
	E	Effect=T	iming A=Tuk	ey-Krame	^(.05) avg§	SD=3.96493	maxSD=	=3.96493		
	Sample	Field				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	•	- *		-						
1	LeafPost			Early	17.2497	6.1869	26	2.79	0.0098	Α
2	LeafPost			Late	12.6574	6.0938	26	2.08	0.0478	В
		- f foc+-0	1+4a= A-T	المال المال	man/ C5) -	.~CD=6 0010	1	D-7 1407		
	t	ilect=C	ultivar A=Tı	ukey-Krai	ııeı (.∪5) a\	/you=0.9013	4 max	140/.ו40/		

	Sample_	Field_				Standard			Pr >	
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3	LeafPost		Bass		16.5346	6.2421	26	2.65	0.0135	Α
	LeafPost		Corsica		14.9727	6.2612	26	2.39	0.0243	Α
	LeafPost		Jack		13.2539	6.2308	26		0.0431	
6	LeafPost		Williams82		15.0530	6.2939	26	2.39	0.0243	Α
	Ef	fect=Fie	ld_Type A=T	ukey-Kraı	ner(.05) av	gSD=23.6802	2 maxs	SD=23.6802	2	
	Sample	Field				Standard			Pr >	Let
0bs	Туре	Туре		Timing	Estimate	Error	DF	t Value	t	Grp
7	LeafPost	DC			17.8904	6.6932	2	2.67	0.1161	Α
8	LeafPost	FS			12.0167	6.6255	2	1.81	0.2114	Α
	Effect	=Field_T	ype*Cultiva	r A=Tuke	/-Kramer(.C	5) avgSD=15	5.672 ⁻	l maxSD=10	6.0247 -	
	Sample	Field				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value		
9	LeafPost	DC	Bass		20.1814	6.9332	26	2.91	0.0073	Α
	LeafPost	FS	Bass		12.8878	7.0303	26		0.0783	
11	LeafPost	DC	Corsica		17.9201	6.9941	26	2.56	0.0165	Α
12	LeafPost	FS	Corsica		12.0252	7.0340	26	1.71	0.0993	Α
		DC	Jack		15.7492	6.9640	26	2.26	0.0323	Α
	LeafPost					0.0540	26	1 55	0.1340	Α
13	LeafPost LeafPost	FS	Jack		10.7586	6.9549	26	1.00		
13 14							26			
13 14 15 16	LeafPost LeafPost LeafPost	FS DC FS	Jack Williams82 Williams82 Timing A=Tuk		17.7108 12.3953	6.9776 7.1648	26 26	2.54 1.73	0.0175 0.0955	A A
13 14 15 16	LeafPost LeafPost LeafPost	FS DC FS	Williams82 Williams82 Timing A=Tuk	ey-Krame	17.7108 12.3953 r(.05) avgS	6.9776 7.1648	26 26 naxSD=	2.54 1.73	0.0175 0.0955	A A
13 14 15 16	LeafPost LeafPost LeafPost Sample Type	FS DC FS Effect=T Field_	Williams82 Williams82 Timing A=Tuk	ey-Krame Timing	17.7108 12.3953 C(.05) avgS Estimate	6.9776 7.1648 D=1.02007 r Standard Error	26 26 naxSD=	2.54 1.73 =1.02007 t Value	0.0175 0.0955 Pr > t	A A Let Grp
13 14 15 16 Obs	LeafPost LeafPost LeafPost Sample_ Type LeafPre	FS DC FS Effect=T Field_	Williams82 Williams82 Timing A=Tuk	ey-Krame Timing Early	17.7108 12.3953 C(.05) avgS Estimate 6.7914	6.9776 7.1648 SD=1.02007 r Standard Error 1.7458	26 26 naxSD= DF 36	2.54 1.73 =1.02007 t Value 3.89	0.0175 0.0955 Pr > t	A A Let Grp
13 14 15 16	LeafPost LeafPost LeafPost Sample Type	FS DC FS Effect=T Field_	Williams82 Williams82 Timing A=Tuk	ey-Krame Timing	17.7108 12.3953 C(.05) avgS Estimate	6.9776 7.1648 D=1.02007 r Standard Error	26 26 naxSD=	2.54 1.73 =1.02007 t Value 3.89	0.0175 0.0955 Pr > t	A A Let Grp
13 14 15 16 Obs 17 18	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk	ey-Krame Timing Early Late	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843	6.9776 7.1648 5D=1.02007 r Standard Error 1.7458 1.7639	26 26 maxSD= DF 36 36	2.54 1.73 =1.02007 t Value 3.89 3.62	0.0175 0.0955 Pr > t 0.0004 0.0009	A A Let Grp A A
13 14 15 16 Obs 17 18	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar	ey-Krame Timing Early Late	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843	6.9776 7.1648 5D=1.02007 r Standard Error 1.7458 1.7639	26 26 maxSD= DF 36 36	2.54 1.73 =1.02007 t Value 3.89 3.62	0.0175 0.0955 Pr > t 0.0004 0.0009	A A Let Grp A A
13 14 15 16 Obs 17 18	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843	6.9776 7.1648 SD=1.02007 of Standard Error 1.7458 1.7639 SD=1.94968	26 26 maxSD= DF 36 36 maxSD	2.54 1.73 =1.02007 t Value 3.89 3.62	0.0175 0.0955 Pr > t 0.0004 0.0009	A A Let Grp A A
13 14 15 16 Obs 17 18	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 c(.05) avgS Estimate 6.7914 6.3843 er(.05) avg	6.9776 7.1648 SD=1.02007 of Standard Error 1.7458 1.7639 SD=1.94968 Standard	26 26 maxSD= DF 36 36 maxSD	2.54 1.73 =1.02007 t Value 3.89 3.62 D=1.96691 t Value	0.0175 0.0955 Pr > t 0.0004 0.0009	A A Let Grp A A
13 14 15 16 Obs 17 18 Obs 19	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar Oldivar Cultivar	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 r(.05) avgS Estimate 6.7914 6.3843 er(.05) avg	6.9776 7.1648 D=1.02007 r Standard Error 1.7458 1.7639 SD=1.94968 Standard Error	26 26 maxSD= DF 36 36 maxSD	2.54 1.73 =1.02007 t Value 3.89 3.62 D=1.96691 t Value 3.27	0.0175 0.0955 Pr > t 0.0004 0.0009	A A Let Grp A A Let Grp B
13 14 15 16 Obs 17 18	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar Cultivar Cultivar Bass	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 c(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598	6.9776 7.1648 D=1.02007 r Standard Error 1.7458 1.7639 SD=1.94968 Standard Error 1.7931	26 26 26 26 26 26 26 26 26 26 26 26 26 2	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025	A A Let Grp A A Let Grp B B
13 14 15 16 Obs 17 18 Obs 19 20 21	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar Cultivar Bass Corsica Jack	ey-Kramen Timing Early Late key-Krame	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757 6.7220	6.9776 7.1648 D=1.02007 of Standard Error 1.7458 1.7639 SD=1.94968 Standard Error 1.7931 1.7898 1.7924	26 26 26 26 26 26 26 26 26 26 26 26 26 2	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038 0.0007	A A Let Grp A A Let Grp B B AB
13 14 15 16 Obs 17 18 Obs 19 20 21	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Sample_ Type LeafPre LeafPre LeafPre	FS DC FS Effect=T Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar Cultivar Bass Corsica	ey-Kramen Timing Early Late key-Krame	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757	6.9776 7.1648 6D=1.02007 of Standard Error 1.7458 1.7639 6SD=1.94968 Standard Error 1.7931 1.7898	26 26 26 DF 36 36 DF 33 33 33	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038	A A Let Grp A A Let Grp B B AB
13 14 15 16 Obs 17 18 Obs 19 20 21 22	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	FS DC FS Effect=T Field_ Type ffect=Cu Field_ Type	Williams82 Williams82 Timing A=Tuk Cultivar Cultivar Bass Corsica Jack	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757 6.7220 8.1939	6.9776 7.1648 8D=1.02007 of Standard Error 1.7458 1.7639 8D=1.94968 Standard Error 1.7931 1.7898 1.7924 1.7926	26 26 maxSD= DF 36 36 maxSI DF 33 33 33 33 33 33 33	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75 4.57	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038 0.0007 <.0001	A A Let Grp A A Let Grp B B A A A
13 14 15 16 Obs 17 18 Obs 19 20 21 22	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Type LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre LeafPre	FS DC FS Effect=T Field_ Type ffect=Cu Field_ Type	Williams82 Williams82 Williams82 Ciming A=Tuk Cultivar Cultivar Bass Corsica Jack Williams82	ey-Krame Timing Early Late key-Kram	17.7108 12.3953 C(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757 6.7220 8.1939	6.9776 7.1648 8D=1.02007 of Standard Error 1.7458 1.7639 8D=1.94968 Standard Error 1.7931 1.7898 1.7924 1.7926	26 26 maxSD= DF 36 36 maxSI DF 33 33 33 33 33 33 33	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75 4.57	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038 0.0007 <.0001	A A Let Grp A A B B B A B A A
13 14 15 16 Obs 17 18 Obs 19 20 21 22	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Type LeafPre	FS DC FS Effect=T Field_ Type ffect=Cu Field_ Type	Williams82 Williams82 Williams82 Ciming A=Tuk Cultivar Cultivar Bass Corsica Jack Williams82	ey-Krame Timing Early Late key-Kram Timing	17.7108 12.3953 r(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757 6.7220 8.1939	6.9776 7.1648 8D=1.02007 of Standard Error 1.7458 1.7639 8D=1.94968 Standard Error 1.7931 1.7898 1.7924 1.7926	26 26 26 26 26 26 26 26 26 26 26 26 26 2	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75 4.57	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038 0.0007 <.0001	A A Let Grp A A B B B A B A A
13 14 15 16 Obs 17 18 Obs 19 20 21 22 Obs	LeafPost LeafPost LeafPost Sample_ Type LeafPre LeafPre Type LeafPre	FS DC FS Effect=T Field_ Type ffect=Cu Field_ Type fect=Fie Field_ Field_	Williams82 Williams82 Williams82 Ciming A=Tuk Cultivar Cultivar Bass Corsica Jack Williams82	ey-Krame Timing Early Late key-Kram Timing	17.7108 12.3953 r(.05) avgS Estimate 6.7914 6.3843 er(.05) avg Estimate 5.8598 5.5757 6.7220 8.1939	6.9776 7.1648 8D=1.02007 of Standard Error 1.7458 1.7639 8D=1.94968 Standard Error 1.7931 1.7898 1.7924 1.7926	26 26 26 26 26 26 26 26 26 26 26 26 26 2	2.54 1.73 =1.02007 t Value 3.89 3.62 0=1.96691 t Value 3.27 3.12 3.75 4.57	0.0175 0.0955 Pr > t 0.0004 0.0009 Pr > t 0.0025 0.0038 0.0007 <.0001	A A Let Grp B B A A Let Crp Let

	Sample	Field				Standard			Pr >	Let	
Obs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
25	LeafPre	DC	Bass		7.2428	2.1374	36	3.39	0.0017	Α	
	LeafPre	FS	Bass		4.4768	2.0867	36	2.15	0.0387	Α	
27	LeafPre	DC	Corsica		6.8400	2.1207	36	3.23	0.0027	Α	
28	LeafPre	FS	Corsica		4.3114	2.0931	36	2.06	0.0467	Α	
29	LeafPre	DC	Jack		8.8435	2.1336	36	4.14	0.0002	Α	
30	LeafPre	FS	Jack		4.6004	2.0889	36	2.20	0.0341	Α	
31	LeafPre	DC	Williams82		10.5622	2.1342	36	4.95	<.0001	Α	
32	LeafPre	FS	Williams82		5.8257	2.0890	36	2.79	0.0084	Α	
		Γffoot-T	imina A-Tulca	Knomo	a/ 05) avac	SD-E 00000 r	CD-	-5 04450			
		ETTECT=1	iming A=Tuke	ey-Kramei	r(.05) avgs	SD=5.33208 I	ııaxsu=	5.34452			
	Sample	Field				Standard			Pr >	Let	
0bs	Type	Type		Timina	Estimate	Error	DF	t Value	t	Grp	
5.55	. , , , ,	. , , , ,	0411114	9	2012	2	٥.		1 - 1	ω. р	
33	Seed			Contr	81.5628	29.7282	88	2.74	0.0074	Α	
	Seed			Early	83.3463		88		0.0062	Α	
	Seed			Late	78.9871	29.7288	88		0.0094	Α	
		Effect=C	ultivar A=Tu	ıkey-Krar	mer(.05) av	/gSD=15.725	maxSD)=15.747			
	Sample_	Field_				Standard			Pr >	Let	
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
36	Seed		Bass		76.0548	29.9117	33	2.54	0.0159	В	
37	Seed		Corsica		79.4908	29.9125	33	2.66	0.0120	В	
38	Seed		Jack		68.1615	29.9125	33	2.28	0.0293	В	
		ETTECT=C	ultivar A=Tu		ner(.05) av ontinued)	/gSD=15./25	maxsL	J=15./4/ ·			
	Sample	Field_				Standard			Pr >	Let	
0bs	Туре		Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
				_						-	
39	Seed		Williams82		101.49	29.9149	33	3.39	0.0018	Α	
				1	(05)	.00 10 074		ND 40 074	_		
	E1	rtect=Fie	ld_Type A=Tu	ıkey-Krar	mer(.05) av	/gSD=12.874	b maxs	SD=12.874)		
	Sample	Field				Standard			Pr >	Lot	
Oho		_		Timina	Estimata		DE	+ \/o1uo			
UDS	Type	Type	Cultival	TIMITING	Estimate	ELLOI.	DΓ	t Value	t	GI-p	
40	Seed	DC			100.03	29.7381	2	3 36	0.0782	Α	
41		FS			62.5627	29.7378	2		0.1701	В	
41	seeu	го			02.3027	29.7376	2	2.10	0.1701	Ь	
	Effect	t=Field T	ype*Cultivar	A=Tuke	v-Kramer(.0	05) avgSD=10	0.3431	maxSD=10	0.474		
			51		,	, 3					
	Sample	Field				Standard			Pr >	Let	
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp	
	31	,,		3					' '		
42	Seed	DC	Bass		97.6779	29.9872	117	3.26	0.0015	Α	
43	Seed	FS	Bass		54.4317	29.9922	117	1.81	0.0721	В	
44	Seed	DC	Corsica			29.9913	117	3.16		A	
45		DC			94.8169					-	
46					94.8169 64.1647			2.14		В	
40	Seed Seed	FS DC	Corsica Jack		94.8169 64.1647 88.6347	29.9913	117 117	2.14 2.96	0.0345	B A	
47	Seed Seed	FS DC	Corsica Jack		64.1647 88.6347	29.9913 29.9913	117 117	2.96	0.0345 0.0038	Α	
47	Seed Seed Seed	FS DC FS	Corsica Jack Jack		64.1647 88.6347 47.6883	29.9913 29.9913 29.9913	117 117 117	2.96 1.59	0.0345 0.0038 0.1145	A B	
	Seed Seed	FS DC	Corsica Jack		64.1647 88.6347	29.9913 29.9913	117 117	2.96	0.0345 0.0038 0.1145 0.0001	Α	

	· · · · · · · · · · · · · · · · · · ·	Effect=T	iming A=Tuke	ey-Krameı	(.05) avg	SD=3.96493 r	naxSD:	=3.96493		
	Sample	Field				Standard			Pr >	Let
0bs	Type	Type		Timina	Estimate	Error	DF	t Value	t	Grp
	31	,,		3					' '	•
1	LeafPost			Early	17.2497	6.1869	26	2.79	0.0098	Α
2	LeafPost			Late	12.6574	6.0938	26	2.08	0.0478	В
	[Effect=C	ultivar A=Tı	ukey-Krai	ner(.05) a\	/gSD=6.9013	4 max	SD=7.1467		
	Sample_	Field				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timina	Estimate		DF	t Value		
	,	,,		Ü						
3	LeafPost		Bass		16.5346	6.2421	26	2.65	0.0135	Α
4	LeafPost		Corsica		14.9727	6.2612	26	2.39	0.0243	Α
5	LeafPost		Jack		13.2539	6.2308	26	2.13	0.0431	Α
6	LeafPost		Williams82		15.0530	6.2939	26	2.39	0.0243	Α
	Ef1	fect=Fie	ld_Type A=Tu	ukey-Krar	ner(.05) a\	/gSD=23.6802	2 max	SD=23.6802	2	
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	LeafPost				17.8904	6.6932	2		0.1161	Α
8	LeafPost	FS			12.0167	6.6255	2	1.81	0.2114	Α
		_	ype*Cultiva	r A=Tukey	/-Kramer(.0	, •	6.840	7 maxSD=2		
01	Sample_	Field_	0.11	-	F. 1	Standard		1 1/-1 -		Let
ops	Type	Туре	Cultivar	ıımıng	Estimate	Error	DF	t Value	t	Grp
9	LeafPost	DC	Bass		20.1814	6.9332	26	2 01	0.0073	Α
	LeafPost	DC	Corsica		17.9201	6.9941	26		0.0165	A
	LeafPost	DC	Jack		15.7492		26		0.0323	
	LeafPost	DC	Williams82		17.7108		26		0.0175	
	LeafPost	FS	Bass		12.8878		26		0.0783	
	LeafPost	FS	Corsica		12.0252		26		0.0993	
	LeafPost	FS	Jack		10.7586		26		0.1340	A
	LeafPost	FS	Williams82		12.3953		26		0.0955	A
	[Effect=T	iming A=Tuke	ey-Krameı	^(.05) avg§	SD=1.02007 r	naxSD:	=1.02007		
	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	• •									
17	LeafPre			Early	6.7914	1.7458	36	3.89	0.0004	Α
18	LeafPre			Late	6.3843	1.7639	36	3.62	0.0009	Α
	E1	ffect=Cu	ltivar A=Tul	key-Krame	er(.05) avç	JSD=1.94968	maxSI	D=1.96691		
	0	E				01 - 1 - 1			_	1
٠.	Sample_	Field_				Standard				Let
0bs	Туре	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	LoofDag		Page		E 0500	1 7001	00	0.07	0 0005	D
19	LeafPre		Bass		5.8598	1.7931	33	3.27		В
	LeafPre		Corsica		5.5757	1.7898	33	3.12		B AB
21 22	LeafPre LeafPre		Jack Williams 22		6.7220	1.7924	33 33	3.75		
			Williams82		8.1939	1.7926	ುತ	4.57	<.0001	Α

	Ef	fect=Fie	ld_Type A=T	ukey-Krar	mer(.05) av	rgSD=8.95777	7 maxs	SD=8.9577	7	
	Sample	Field				Standard			Pr >	Let
Oho	. –	_	Cultivan	Timina	Entimoto		DE	+ Volue		
0bs	Type	Type	Cultivar	TIMITING	ESTIMATE	Error	DΓ	t Value	t	Grp
00	LoofDag	DC			0 0701	0.0006	0	4 10	0 0540	^
	LeafPre	DC			8.3721	2.0326	2		0.0542	A
24	LeafPre	FS			4.8036	2.0171	2	2.38	0.1402	Α
	Effect	=FleId_l	ype*Cultiva	r A=Tuke	y-Kramer(.C	ob) avgSD=5.	. 46178	3 maxSD=7	.26754 -	
									_	
	Sample_	Field_				Standard				Let
0bs	Туре	Туре	Cultivar	liming	Estimate	Error	DF	t Value	t	Grp
			_							
	LeafPre	DC	Bass		7.2428		36		0.0017	
	LeafPre	DC	Corsica		6.8400	2.1207	36		0.0027	
27	LeafPre	DC	Jack		8.8435	2.1336	36	4.14	0.0002	AB
28	LeafPre	DC	Williams82		10.5622	2.1342	36	4.95	<.0001	Α
29	LeafPre	FS	Bass		4.4768	2.0867	36	2.15	0.0387	AB
30	LeafPre	FS	Corsica		4.3114	2.0931	36	2.06	0.0467	AB
31	LeafPre	FS	Jack		4.6004	2.0889	36	2.20	0.0341	AB
	LeafPre	FS	Williams82		5.8257	2.0890	36	2.79		
		Fffact=T	iming A=Tuk	ov-Kramoi	r(05) avg	:D=5 33208 n	navQD:	5 3//52		
		LIICOL I.	Iming / Tak	cy Kramer	(100) avgc	D 0.00200 II	пахов	0.04402		
	Complo	Field				Standard			Pr >	1.0+
01	Sample_	_	01+4	T:	F-+		DE	+ 1/-1		Let
ado	Type	Туре	Cultivar	liming	Estimate	Error	DF	t Value	t	Grp
33	Seed			Contr	81.5628	29.7282	88	2.74	0.0074	Α
34	Seed			Early	83.3463	29.7280	88	2.80	0.0062	Α
35	Seed			Late	78.9871	29.7288	88	2.66	0.0094	Α
		Effect=C	ultivar A=T	ukey-Krar	mer(.05) av	gSD=15.725	maxSI)=15.747		
	Sample	Field				Standard			Pr >	Let
0bs		Type		Timina	Estimate	Error	DF	t Value	t	Grp
000	1 9 00	1 9 0 0	ourciva	11119	Locimaco	21101	υ.	t value	1 - 1	u. p
36	Seed		Bass		76.0548	29.9117	33	2.54	0.0159	В
								2.66		
37			Corsica		79.4908	29.9125	33			В
38	Seed		Jack		68.1615	29.9125	33	2.28	0.0293	В
		Effect=C	ultivar A=T			gSD=15.725	maxSI)=15.747		
				(00	ontinued)					
	Sample_	Field_				Standard			Pr >	Let
0bs	Туре	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
39	Seed		Williams82		101.49	29.9149	33	3.39	0.0018	Α
	Ff	fect=Fie	ld Type A=T	ukev-Krar	mer(.05) av	aSD=12.874	5 maxs	SD=12.874	5	
	-1		,		(.30) av	5,5 .2.0,40			-	
	Sample_	Field				Standard			Pr >	Let
0bs	_	_	Cultivar	Timina	Estimata		DF	+ \/a1		
800	Type	Type	ourtival.	TILLING	ro crilla re	Error	DΓ	t Value	t	Grp
40	Cood	DC			100.00	00 7001	0	0.06	0 0700	٨
40	Seed	DC			100.03	29.7381	2	3.36	0.0782	A
41	Seed	FS			62.5627	29.7378	2	2.10	0.1701	В

----- Effect=Field_Type*Cultivar A=Tukey-Kramer(.05) avgSD=19.3182 maxSD=21.0769 -----

	Sample_	Field_				Standard			Pr >	Let
0bs	Type	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
42	Seed	DC	Bass		97.6779	29.9872	117	3.26	0.0015	В
43	Seed	DC	Corsica		94.8169	29.9913	117	3.16	0.0020	В
44	Seed	DC	Jack		88.6347	29.9913	117	2.96	0.0038	В
45	Seed	DC	Williams82		119.01	30.0010	117	3.97	0.0001	Α
46	Seed	FS	Bass		54.4317	29.9922	117	1.81	0.0721	С
47	Seed	FS	Corsica		64.1647	29.9913	117	2.14	0.0345	С
48	Seed	FS	Jack		47.6883	29.9913	117	1.59	0.1145	С
49	Seed	FS	Williams82		83.9661	29.9913	117	2.80	0.0060	В

Output Yield, Seed Weight, Protein, and Oil Analysis - Lactofen Study

Yield

The Mixed Procedure

Model Information

Data Set	WORK.SEED
Dependent Variable	Yield
Covariance Structure	Variance Components
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based
Degrees of Freedom Method	Satterthwaite

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	P W
Field_Type	2	D F
Cultivar	4	BASS CORC JACK WM82
Timing	3	c e l
Rep	3	1 2 3

Dimensions

Covariance Parameters	7
Columns in X	66
Columns in Z	230
Subjects	1
Max Obs Per Subject	288
Observations Used	211
Observations Not Used	77
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	2921.44318929	
1	2	2891.22230764	0.00014496
2	1	2891.01824823	0.00000457
3	1	2891.01229461	0.0000001

Convergence criteria met.

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm Estimate

Year	25122
Year*Farm	0
Year*Farm*Field_Type	0
Rep(Year*Farm*Field)	39081
Year*Farm*Cultiv*Rep	90667
Yea*Far*Cul*Timi*Rep	0
Residual	191355

Fit Statistics

-2 Res Log Likelihood	2891.0
AIC (smaller is better)	2899.0
AICC (smaller is better)	2899.2
BIC (smaller is better)	2893.8

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	16.6	2.18	0.1583
Field_Type	1	8.68	7.46	0.0240
Farm*Field_Type	1	9.04	4.82	0.0556
Cultivar	3	29.4	0.76	0.5253
Field_Type*Cultivar	3	171	1.29	0.2791
Timing	2	133	0.57	0.5661
Field_Type*Timing	2	133	2.20	0.1146
Cultivar*Timing	6	134	0.91	0.4917
Field_*Cultiv*Timing	6	133	0.77	0.5935

----- Effect=Cultivar A=' ' avgSD=412.899 maxSD=414.306 -----

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
1		BASS		2061.79	164.08	1.96	12.57	0.0068	
2		CORC		2197.05	163.89	1.95	13.41	0.0061	
3		JACK		1995.79	163.71	1.94	12.19	0.0074	
4		WM82		2167.52	164.24	1.97	13.20	0.0061	

----- Effect=Field_*Cultiv*Timing A=' ' avgSD=948.936 maxSD=1133.7 ------

	Field				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
5	D	BASS	С	2642.09	220.41	6.16	11.99	<.0001	
6	D	BASS	е	2184.80	220.41	6.16	9.91	<.0001	
7	D	BASS	1	2049.26	236.58	8.03	8.66	<.0001	
8	D	CORC	С	2469.07	220.38	6.15	11.20	<.0001	
9	D	CORC	е	2334.66	220.38	6.15	10.59	<.0001	
10	D	CORC	1	2551.46	228.26	7.06	11.18	<.0001	
11	D	JACK	С	2243.94	220.40	6.16	10.18	<.0001	
12	D	JACK	е	2063.68	220.40	6.16	9.36	<.0001	
13	D	JACK	1	2159.77	220.40	6.16	9.80	<.0001	
14	D	WM82	С	2263.53	220.58	6.17	10.26	<.0001	
15	D	WM82	е	2080.65	220.58	6.17	9.43	<.0001	
16	D	WM82	1	2397.04	220.58	6.17	10.87	<.0001	
17	F	BASS	С	1806.06	236.43	8.01	7.64	<.0001	
18	F	BASS	е	1901.45	220.47	6.16	8.62	0.0001	
19	F	BASS	1	1787.06	212.48	5.36	8.41	0.0003	
20	F	CORC	С	1973.72	220.37	6.16	8.96	<.0001	

0.4	_	0000		1005.00	222 27	0.10	0.47	0 0004	
21	F	CORC	е	1865.62	220.37	6.16	8.47	0.0001	
22	F	CORC	1	1987.74	220.37	6.16	9.02	<.0001	
23	F -	JACK	С	1831.45	236.16	7.99	7.76	<.0001	
24	F -	JACK	e	1808.06	216.11	5.72	8.37	0.0002	
25	F	JACK	1	1867.85	216.15	5.72	8.64	0.0002	
26	F	WM82	С	1916.44	248.24	9.58	7.72	<.0001	
27	F	WM82	е	2267.65	212.39	5.35	10.68	<.0001	
28	F	WM82	1	2079.78	227.79	6.96	9.13	<.0001	
		Effoo	+-Eiold Tv	no A=' ' ava	SD-301 701 m	12×6D-301	701		
		Effec	t-Field_Ty	pe A- avy	30-301.791	14X3D-30 I	.791		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
000	Турс	ourtiva	Timing	Locimaco	LITOI	Di	t value	141	ui p
29	D			2286.66	150.49	1.35	15.19	0.0178	
30	F			1924.41	150.49	1.35	12.79	0.0225	
-	·							0.0220	
		Eff	ect=Timing	A=' 'avgSD	=178.536 max	SD=182.5	38		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
31			С	2143.29	142.57	1.13	15.03	0.0308	
32			е	2063.32	141.27	1.09	14.61	0.0351	
33			1	2109.99	141.90	1.11	14.87	0.0328	
		Effect=Field	_Type A=Tu	key-Kramer(.	05) avgSD=30)1.791 ma	xSD=301.791		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	D			2286.66	150.49	1.35	15.19	0.0178	A
2	F			1924.41	150.49	1.35	12.79	0.0225	В
		- Effect=Tim	ina A=Tuke	v-Kramer/ 05) avgSD=178	536 mays	n=182 538 -		
		Lilect-IIII	IIII A-TUKE	y-Ki alliei (100) avgob-170.	JOU MAXC	D-102.330 -		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
0.20	.,,,,	04212141	g	2012	2			1-1	ч. Р
3			С	2143.29	142.57	1.13	15.03	0.0308	Α
4			e	2063.32	141.27	1.09	14.61	0.0351	Α
5			1	2109.99	141.90	1.11	14.87	0.0328	Α
_			_						
		· Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=412	2.899 max	SD=414.306		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
6		BASS		2061.79	164.08	1.96	12.57	0.0068	Α
7		CORC		2197.05	163.89	1.95	13.41	0.0061	Α
8		JACK		1995.79	163.71	1.94	12.19	0.0074	Α
9		WM82		2167.52	164.24	1.97	13.20	0.0061	Α
	Effec	t=Field_*Cul	tiv*Timing	A=Tukey-Kra	mer(.05) avg	SD=855.2	93 maxSD=99	5.393	
								_	_
	Field_				Standard -			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

10	D	BASS	С	2642.09	220.41	6.16	11.99	<.0001	Α
11	D	BASS	е	2184.80	220.41	6.16	9.91	<.0001	Α
12	D	BASS	1	2049.26	236.58	8.03	8.66	<.0001	Α
13	D	CORC	С	2469.07	220.38	6.15	11.20	<.0001	Α
14	D	CORC	е	2334.66	220.38	6.15	10.59	<.0001	Α
15	D	CORC	1	2551.46	228.26	7.06	11.18	<.0001	Α
16	D	JACK	C	2243.94	220.40	6.16	10.18	<.0001	A
17	D	JACK	e	2063.68	220.40	6.16	9.36	<.0001	A
18	D	JACK	1	2159.77	220.40	6.16	9.80	<.0001	A
19	D	WM82	С	2263.53	220.58	6.17	10.26	<.0001	A
20	D	WM82	е	2080.65	220.58	6.17	9.43	<.0001	Α
21	D	WM82	1	2397.04	220.58	6.17	10.87	<.0001	Α
22	F	BASS	С	1806.06	236.43	8.01	7.64	<.0001	Α
23	F	BASS	е	1901.45	220.47	6.16	8.62	0.0001	Α
24	F	BASS	1	1787.06	212.48	5.36	8.41	0.0003	Α
25	F	CORC	С	1973.72	220.37	6.16	8.96	<.0001	Α
26	F	CORC	е	1865.62	220.37	6.16	8.47	0.0001	Α
27	F	CORC	1	1987.74	220.37	6.16	9.02	<.0001	Α
28	F	JACK	С	1831.45	236.16	7.99	7.76	<.0001	Α
	Field_	ct=Field_*Cul	tiv*Timing.	g A=Tukey-Krar (continu		SD=855.2	93 maxSD=99	5.393 Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
29	F	JACK	е	1808.06	216.11	5.72	8.37	0.0002	Α
30	F	JACK	1	1867.85	216.15	5.72	8.64	0.0002	Α
31	F	WM82	С	1916.44	248.24	9.58	7.72	<.0001	Α
32	F	WM82	е	2267.65	212.39	5.35	10.68	<.0001	Α
33	F	WM82	1	2079.78	227.79	6.96	9.13	<.0001	Α
33	•								
			I_Type A=Tu Timing	ıkey-Kramer(.(Estimate					Let Grp
	Field_	Effect=Field		ıkey-Kramer(.(D5) avgSD=30 Standard	1.791 ma	xSD=301.791	 Pr >	Let
	Field_	Effect=Field		ıkey-Kramer(.(D5) avgSD=30 Standard	1.791 ma	xSD=301.791	 Pr >	Let
Obs	Field_ Type	Effect=Field		ikey-Kramer(.(Estimate	D5) avgSD=30 Standard Error	1.791 ma DF	xSD=301.791 t Value	Pr > t	Let Grp
0bs	Field_ Type D F	Effect=Field Cultivar	Timing	ukey-Kramer(.0 Estimate 2286.66	Standard Error 150.49 150.49) avgSD=178.	1.791 ma DF 1.35 1.35	xSD=301.791 t Value 15.19 12.79	Pr > t 0.0178 0.0225	Let Grp A B
0bs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim	Timing Timing Jing A=Tuke	Estimate 2286.66 1924.41 ey-Kramer(.05)	Standard Error 150.49 150.49) avgSD=178.	1.791 ma DF 1.35 1.35	xSD=301.791 t Value 15.19 12.79 D=182.538 -	Pr > t 0.0178 0.0225	Let Grp A B
0bs	Field_ Type D F	Effect=Field Cultivar	Timing	Estimate 2286.66 1924.41	Standard Error 150.49 150.49) avgSD=178.	1.791 ma DF 1.35 1.35	xSD=301.791 t Value 15.19 12.79	Pr > t 0.0178 0.0225	Let Grp A B
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim	Timing Timing A=Tuke Timing	Estimate 2286.66 1924.41 ey-Kramer(.05)	Standard Error 150.49 150.49 avgSD=178. Standard Error	1.791 ma DF 1.35 1.35 536 maxS	t Value 15.19 12.79 D=182.538 - t Value	Pr > t 0.0178 0.0225	Let Grp A B
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim	Timing Timing A=Tuke Timing C	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29	Standard Error 150.49 150.49 avgSD=178. Standard Error 142.57	1.791 ma DF 1.35 1.35 536 maxS DF 1.13	t Value 15.19 12.79 D=182.538 - t Value 15.03	Pr > t 0.0178 0.0225 Pr > t 0.0308	Let Grp A B Let Grp
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim	Timing Timing A=Tuke Timing C e	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351	Let Grp A B Let Grp A A
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim	Timing Timing A=Tuke Timing C	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29	Standard Error 150.49 150.49 avgSD=178. Standard Error 142.57	1.791 ma DF 1.35 1.35 536 maxS DF 1.13	t Value 15.19 12.79 D=182.538 - t Value 15.03	Pr > t 0.0178 0.0225 Pr > t 0.0308	Let Grp A B Let Grp
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar	Timing Timing A=Tuke Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27 141.90	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328	Let Grp A B Let Grp A A
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27 141.90 5) avgSD=412 Standard	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328	Let Grp A B Let Grp A A
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar	Timing Timing A=Tuke Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27 141.90	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328	Let Grp A B Let Grp A A
Obs 1 2 Obs 3 4 5	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar Effect=Cult	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99 sey-Kramer(.05)	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27 141.90 Standard Error Standard Error	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11 .899 max	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306 t Value	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328 Pr > t	Let Grp A B Let Grp A A Let Grp
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar Effect=Cult Cultivar BASS	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99	Standard Error 150.49 150.49 1 avgSD=178. Standard Error 142.57 141.27 141.90 Standard Error Standard Error 142.65	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11 .899 max DF 1.96	xSD=301.791 t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306 t Value 12.57	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328 Pr > t 0.0068	Let Grp A B Let Grp A A
Obs 1 2 Obs 3 4 5	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar Effect=Cult	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99 sey-Kramer(.05)	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.27 141.90 Standard Error Standard Error	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11 .899 max	t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306 t Value	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328 Pr > t	Let Grp A B Let Grp A A Let Grp
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar Effect=Cult Cultivar BASS	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99 sey-Kramer(.05)	Standard Error 150.49 150.49 1 avgSD=178. Standard Error 142.57 141.27 141.90 Standard Error Standard Error 142.65	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11 .899 max DF 1.96	xSD=301.791 t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306 t Value 12.57	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328 Pr > t 0.0068	Let Grp A B Let Grp A A Let Grp
Obs 1 2	Field_ Type D F	Effect=Field Cultivar Effect=Tim Cultivar Cultivar BASS CORC	Timing Timing Timing c e 1	Estimate 2286.66 1924.41 ey-Kramer(.05) Estimate 2143.29 2063.32 2109.99 sey-Kramer(.05)	Standard Error 150.49 150.49) avgSD=178. Standard Error 142.57 141.90 Standard Error 144.08 163.89	1.791 ma DF 1.35 1.35 536 maxS DF 1.13 1.09 1.11 .899 max DF 1.96 1.95	xSD=301.791 t Value 15.19 12.79 D=182.538 - t Value 15.03 14.61 14.87 SD=414.306 t Value 12.57 13.41	Pr > t 0.0178 0.0225 Pr > t 0.0308 0.0351 0.0328 Pr > t 0.0068 0.0061	Let Grp A B Let Grp A A Let Grp

	Effect=Field_	*Cultiv*Timing	A=Tukey-Kramer(.05)	avgSD=875.906	maxSD=988.85	
--	---------------	----------------	-----------------	------	---------------	--------------	--

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D	BASS	С	2642.09	220.41	6.16	11.99	<.0001	Α
11	D	CORC	С	2469.07	220.38	6.15	11.20	<.0001	Α
12	D	JACK	С	2243.94	220.40	6.16	10.18	<.0001	Α
13	D	WM82	С	2263.53	220.58	6.17	10.26	<.0001	Α
14	F	BASS	С	1806.06	236.43	8.01	7.64	<.0001	Α
15	F	CORC	С	1973.72	220.37	6.16	8.96	<.0001	Α
16	F	JACK	С	1831.45	236.16	7.99	7.76	<.0001	Α
17	F	WM82	С	1916.44	248.24	9.58	7.72	<.0001	Α
18	D	BASS	е	2184.80	220.41	6.16	9.91	<.0001	Α
19	D	CORC	е	2334.66	220.38	6.15	10.59	<.0001	Α
20	D	JACK	е	2063.68	220.40	6.16	9.36	<.0001	Α
21	D	WM82	е	2080.65	220.58	6.17	9.43	<.0001	Α
22	F	BASS	е	1901.45	220.47	6.16	8.62	0.0001	Α
23	F	CORC	е	1865.62	220.37	6.16	8.47	0.0001	Α
24	F	JACK	е	1808.06	216.11	5.72	8.37	0.0002	Α
25	F	WM82	е	2267.65	212.39	5.35	10.68	<.0001	Α
26	D	BASS	1	2049.26	236.58	8.03	8.66	<.0001	Α
27	D	CORC	1	2551.46	228.26	7.06	11.18	<.0001	Α
28	D	JACK	1	2159.77	220.40	6.16	9.80	<.0001	Α

----- Effect=Field_*Cultiv*Timing A=Tukey-Kramer(.05) avgSD=875.906 maxSD=988.85 ------ (continued)

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
29	D	WM82	1	2397.04	220.58	6.17	10.87	<.0001	Α
30	F	BASS	1	1787.06	212.48	5.36	8.41	0.0003	Α
31	F	CORC	1	1987.74	220.37	6.16	9.02	<.0001	Α
32	F	JACK	1	1867.85	216.15	5.72	8.64	0.0002	Α
33	F	WM82	1	2079.78	227.79	6.96	9.13	<.0001	Α

Seed Weight / 100

Model Information

Data Set WORK.SEED Dependent Variable HndSedWt

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	P W
Field_Type	2	D F
Cultivar	4	BASS CORC JACK WM82
Timing	3	c e l
Rep	3	1 2 3

Dimensions

Covariance Parameters	7
Columns in X	66
Columns in Z	230
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	1209.99618216	
1	3	1068.25997628	0.00000272
2	1	1068.25917037	0.00000000

Convergence criteria met.

Seed Hundred Weight

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0
Year*Farm	0
Year*Farm*Field_Type	3.6038
Rep(Year*Farm*Field)	0
Year*Farm*Cultiv*Rep	0.5006
Yea*Far*Cul*Timi*Rep	0

Residual 2.2015

Fit Statistics

-2 Res Log Likelihood	1068.3
AIC (smaller is better)	1074.3
AICC (smaller is better)	1074.4
BIC (smaller is better)	1070.3

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	1.07	0.4899
Field_Type	1	2	1.86	0.3060
Farm*Field_Type	1	2	0.34	0.6198
Cultivar	3	33	15.14	<.0001
Field_Type*Cultivar	3	121	5.89	0.0009
Timing	2	88	1.59	0.2096
Field_Type*Timing	2	121	0.98	0.3799
Cultivar*Timing	6	88	0.52	0.7939
Field_*Cultiv*Timing	6	121	0.34	0.9147

Seed Hundred Weight

		Effect=Field	_Type A=Tu	key-Kramer(.	05) avgSD=5.8	32594 ma	xSD=5.82594		
	Field				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	D			14.6111	0.9626	2	15.18	0.0043	Α
2	F			12.7653	0.9631	2	13.25	0.0056	Α
		Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=1.03	3495 max	SD=1.03992		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		13.2589	0.7232	33	18.33	<.0001	В
4		CORC		14.4891	0.7231	33	20.04	<.0001	Α
5		JACK		12.3955	0.7244	33	17.11	<.0001	В
6		WM82		14.6093	0.7239	33	20.18	<.0001	Α
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.523	307 maxS	D=0.53565 -		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			С	13.8986	0.6993	88	19.87	<.0001	Α
8			е	13.4980	0.6948	88	19.43	<.0001	Α
9			1	13.6681	0.6948	88	19.67	<.0001	Α
	Eff	ect=Field_Ty	pe*Timing	A=Tukey-Kram	er(.05) avgSD	0=0.8076	8 maxSD=0.8	648	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D		С	14.9937	0.9784	121	15.32	<.0001	Α

4.4									
11	D		е	14.2812	0.9784	121	14.60	<.0001	Α
12	D		1	14.5583	0.9784	121	14.88	<.0001	Α
13	F		С	12.8034	0.9890	121	12.95	<.0001	Α
14	F		е	12.7147	0.9762	121	13.03	<.0001	Α
15	F		1	12.7778	0.9762	121	13.09	<.0001	Α
	Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Krar	ner(.05) avg	SD=1.267	'04 maxSD=1.	29476	
	Fiold.				Ctandand			Dn >	1.0+
	Field_	0.1			Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
16	D	BASS		14.5000	1.0019	121	14.47	<.0001	AB
17	D	CORC		15.8000	1.0019	121	15.77	<.0001	Α
18	D	JACK		13.1278	1.0019	121	13.10	<.0001	В
19	D	WM82		15.0167	1.0019	121	14.99	<.0001	Α
20	F	BASS		12.0179	1.0025	121	11.99	<.0001	BC
				Seed Hundred	d Weight				
	Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Krar	ner(.05) avg	SD=1.267	'04 maxSD=1.	29476	
				(continu	ued)				
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
000	Турс	ourcival	TIMITING	Locimaco	LITOI	ы	t value	141	ui p
21	F	CORC		13.1781	1.0021	121	13.15	<.0001	AB
22	F	JACK		11.6633	1.0060	121	11.59	<.0001	С
23	F	WM82		14.2020	1.0043	121	14.14	<.0001	Α
	Effe	ort=Fiald *Cu							
		oct-i lela_ ou	11(10 1 1	g A=Tukey-Kra	amer(.05) avç	gSD=2.36	5522 MaxSD=2		
	Field_	_			Standard			Pr >	Let
0bs	Field_ Type	Cultivar	Timing	g A=Tukey-kra		gSD=2.36 DF	t Value		
0bs 24	_	_			Standard			Pr >	Let
	Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
24	Type D	Cultivar BASS	Timing c	Estimate	Standard Error 1.0612	DF 121	t Value	Pr > t <.0001	Let Grp ABCD
24 25	Type D D	Cultivar BASS BASS	Timing c e	Estimate 14.9250 14.3083	Standard Error 1.0612 1.0612	DF 121 121	t Value 14.06 13.48	Pr > t <.0001 <.0001	Let Grp ABCD ABCD
24 25 26	Type D D D	Cultivar BASS BASS BASS	Timing c e 1	Estimate 14.9250 14.3083 14.2667	Standard Error 1.0612 1.0612 1.0612	DF 121 121 121	t Value 14.06 13.48 13.44	Pr > t <.0001 <.0001 <.0001	Let Grp ABCD ABCD
24 25 26 27 28	Type D D D D D D	Cultivar BASS BASS BASS CORC	Timing c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121	t Value 14.06 13.48 13.44 15.39 14.29	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD A
24 25 26 27 28 29	Type D D D D D D D	Cultivar BASS BASS BASS CORC CORC	Timing c e l c e l	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121	t Value 14.06 13.48 13.44 15.39 14.29 14.98	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD A ABC
24 25 26 27 28 29 30	Type D D D D D D D D	Cultivar BASS BASS BASS CORC CORC CORC JACK	Timing c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD
24 25 26 27 28 29 30 31	Type D D D D D D D D D D	Cultivar BASS BASS CORC CORC CORC JACK JACK	Timing c e 1 c e 1 c e	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D
24 25 26 27 28 29 30 31 32	Type D D D D D D D D D D D D	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK	Timing c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD
24 25 26 27 28 29 30 31 32 33	Type D D D D D D D D D D D D D D D D D D	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK WM82	Timing c e 1 c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD ABC
24 25 26 27 28 29 30 31 32 33 34	Type D D D D D D D D D D D D D D D D D D	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82	Timing c e l c e l c e l c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD ABC ABC
24 25 26 27 28 29 30 31 32 33 34 35	Type D D D D D D D D D D D D D D D D D D	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82	Timing c e l c e l c e l c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD ABC ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36	Type D D D D D D D D D D D D F	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS	Timing c e 1 c e 1 c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD ABC ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37	Type D D D D D D D D D F F	Cultivar BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS	Timing c e l c e l c e l c e l c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD ABC D CD ABC ABCD ABCD A
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D D D D D F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS	Timing c e 1 c e 1 c e 1 c e 1 c e 1	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD CD CD ABC ABCD ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D D D D F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS BASS CORC	Timing c e l c e l c e l c e l c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD ABC D CD ABC ABCD ABCD A
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D D D D D F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS	Timing c e 1 c e 1 c e 1 c e 1 c e 1	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD CD CD ABC ABCD ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D D D D F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS BASS CORC	Timing c e 1 c e 1 c e 1 c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB BCD D CD ABCD ABCD A
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	Type D D D D D D D D F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC	Timing c e 1 c e 1 c e 1 c e 1 c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC AB CD CD ABCD ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	Type D D D D D D D F F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC	Timing c e 1 c e 1 c e 1 c e 1 c e 1 c e 1	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732 13.0750	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0609 1.0552 1.0612	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20 12.32	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD A ABC CD CD ABCD ABCD ABCD AB
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	Type D D D D D D D F F F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC CORC	Timing c e 1 c e 1 c e 1 c e 1 c e 1 c e 1 c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732 13.0750 11.2978	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0500 1.0699 1.0552 1.0612 1.1301	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20 12.32 10.00	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD ABCD CD ABCD ABCD ABCD A
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Type D D D D D D D F F F F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC CORC CORC	Timing c e l c e l c e l c e l c e l c e l	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732 13.0750 11.2978 11.8641 11.8278	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0500 1.0699 1.0552 1.0612 1.1301 1.0498 1.0451	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20 12.32 10.00 11.30	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD D CD ABCD ABCD ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	Type D D D D D D D F F F F F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 BASS BASS BASS CORC CORC CORC CORC CORC CORC CORC CO	Timing c e l c e l c e l c e l c e l c e l c e l c e l c	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732 13.0750 11.2978 11.8641 11.8278	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0500 1.0699 1.0552 1.0612 1.1301 1.0498 1.0451 1.1098	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20 12.32 10.00 11.30 11.32 12.84	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD D CD ABCD ABCD ABCD ABCD
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	Type D D D D D D D F F F F F F F	Cultivar BASS BASS BASS CORC CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC CORC CORC	Timing c e l c e l c e l c e l c e l c e l	Estimate 14.9250 14.3083 14.2667 16.3333 15.1667 15.9000 13.5667 12.6083 13.2083 15.1500 15.0417 14.8583 12.0753 11.8250 12.1534 13.5862 12.8732 13.0750 11.2978 11.8641 11.8278	Standard Error 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0612 1.0500 1.0699 1.0552 1.0612 1.1301 1.0498 1.0451	DF 121 121 121 121 121 121 121 121 121 1	t Value 14.06 13.48 13.44 15.39 14.29 14.98 12.78 11.88 12.45 14.28 14.17 14.00 11.17 11.14 11.57 12.70 12.20 12.32 10.00 11.30 11.32	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp ABCD ABCD ABCD ABC CD ABCD ABCD ABCD AB

Seed Hundred Weight

		Effect=Field	_Type A=Tu	ıkey-Kramer(.	05) avgSD=5.8	82594 ma	xSD=5.82594		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
003	туре	Cultival	TIMITING	LSCIMACE	LITOI	ы	t value	[]	αιρ
1	D			14.6111	0.9626	2	15.18	0.0043	Α
2	F			12.7653	0.9631	2	13.16	0.0045	A
2	į			12.7033	0.9031	2	13.23	0.0030	^
		Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=1.00	3495 max	SD=1.03992		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
000	Турс	Oulciva	ı ımıng	Locimaco	LITOI	Di	t value	141	ui p
3		BASS		13.2589	0.7232	33	18.33	<.0001	В
4		CORC		14.4891	0.7231	33	20.04	<.0001	A
5		JACK		12.3955	0.7244	33	17.11	<.0001	В
6		WM82		14.6093	0.7239	33	20.18	<.0001	Α
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.520	307 maxS	D=0.53565 -		
			Ü	,	,				
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	. 7							1-1	-
7			С	13.8986	0.6993	88	19.87	<.0001	Α
8			е	13.4980	0.6948	88	19.43	<.0001	Α
9			1	13.6681	0.6948	88	19.67	<.0001	A
	Eff	ect=Field_Ty	pe*Timing	A=Tukey-Kram	er(.05) avgSl	D=2.7527	maxSD=4.00	685	
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D		С	14.9937	0.9784	121	15.32	<.0001	Α
11	D		е	14.2812	0.9784	121	14.60	<.0001	Α
12	D		1	14.5583	0.9784	121	14.88	<.0001	Α
13	F		С	12.8034	0.9890	121	12.95	<.0001	Α
14	F		е	12.7147	0.9762	121	13.03	<.0001	Α
15	F		1	12.7778	0.9762	121	13.09	<.0001	Α
			_	.2	0.0.02		.0.00		,,
	Effe	ct=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avg	SD=3.294	74 maxSD=3.	29862	
	Field_				Standard			Pr >	Let
Oho	_	Cultivan	Timina	Estimata		DE	+ //01/10		
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
16	D	BASS		14.5000	1.0019	121	14.47	<.0001	Α
17	F	BASS		12.0179	1.0025	121	11.99	<.0001	Α
18	D	CORC		15.8000	1.0019	121	15.77	<.0001	Α
19	F	CORC		13.1781	1.0021	121	13.15	<.0001	Α
20	D	JACK		13.178	1.0019	121	13.10	<.0001	A
20	U	UAUN		10.12/0	1.0019	121	10.10	~.UUU1	^
				Seed Hundre	d Weight				
	Effe	ct=Field_Typ	e*Cultivar	A=Tukey-Kra	, , ,	SD=3.294	74 maxSD=3.	29862	

(continued)

	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	F	JACK		11.6633	1.0060	121	11.59	<.0001	Α
22	D	WM82		15.0167	1.0019	121	14.99	<.0001	Α
23	F	WM82		14.2020	1.0043	121	14.14	<.0001	Α
	Effec	t=Field_*Cul	tiv*Timing	A=Tukey-Kra	mer(.05) avgS	SD=3.720	17 maxSD=4.	99767	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
24	D	BASS	С	14.9250	1.0612	121	14.06	<.0001	Α
25	D	BASS	е	14.3083	1.0612	121	13.48	<.0001	Α
26	D	BASS	1	14.2667	1.0612	121	13.44	<.0001	Α
27	F	BASS	С	12.0753	1.0807	121	11.17	<.0001	Α
28	F	BASS	е	11.8250	1.0612	121	11.14	<.0001	Α
29	F	BASS	1	12.1534	1.0500	121	11.57	<.0001	Α
30	D	CORC	C	16.3333	1.0612	121	15.39	<.0001	A
31	D	CORC	e	15.1667	1.0612	121	14.29	<.0001	A
32	D	CORC	1	15.9000	1.0612	121	14.98	<.0001	A
33	F	CORC	C	13.5862	1.0699	121	12.70	<.0001	A
34	r F				1.0552			<.0001	
	F	CORC	e 1	12.8732		121	12.20		A
35		CORC		13.0750	1.0612	121	12.32	<.0001	A
36	D	JACK	С	13.5667	1.0612	121	12.78	<.0001	A
37	D	JACK	е	12.6083	1.0612	121	11.88	<.0001	A
38	D _	JACK	1	13.2083	1.0612	121	12.45	<.0001	Α
39	F	JACK	С	11.2978	1.1301	121	10.00	<.0001	Α
40	F	JACK	е	11.8641	1.0498	121	11.30	<.0001	Α
41	F	JACK	1	11.8278	1.0451	121	11.32	<.0001	Α
42	D	WM82	С	15.1500	1.0612	121	14.28	<.0001	Α
43	D	WM82	е	15.0417	1.0612	121	14.17	<.0001	Α
44	D	WM82	1	14.8583	1.0612	121	14.00	<.0001	Α
45	F	WM82	С	14.2544	1.1098	121	12.84	<.0001	Α
46	F	WM82	е	14.2965	1.0451	121	13.68	<.0001	Α
47	F	WM82	1	14.0552	1.0552	121	13.32	<.0001	Α
				Seed Hundre	d Weight				
		Effect=Field	Type A=Tu	key-Kramer(.	05) avgSD=5.8	32594 ma	xSD=5.82594		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
ODS	туре	Oultival	TIMITING		LITOI	ы	t value	141	uιρ
1	D			14.6111	0.9626	2	15.18	0.0043	Α
2	F			12.7653	0.9631	2	13.25	0.0056	Α
		E66 0.11			5) - OD 4 00	2.405	00.1.00000		
		Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=1.03	3495 max	SD=1.03992		
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		13.2589	0.7232	33	18.33	<.0001	В
4		CORC					20.04	<.0001	
4 5				14.4891	0.7231	33			A
5 6		JACK		12.3955 14.6093	0.7244	33	17.11	<.0001 <.0001	В
0		WM82		14.6093	0.7239	33	20.18	<.0001	Α
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.523	307 maxS	D=0.53565 -		
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

_									
7			С	13.8986	0.6993	88	19.87	<.0001	A
8 9			e 1	13.4980 13.6681	0.6948 0.6948	88 88	19.43 19.67	<.0001 <.0001	A A
9			1	13.0081	0.0948	00	19.07	\.0001	^
	· Eff	ect=Field Ty	pe*Timing	A=Tukey-Kram	er(.05) avgSl	D=3.2688	34 maxSD=3.2	8325	
				-					
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D		С	14.9937	0.9784	121	15.32	<.0001	Α
11	F		С	12.8034	0.9890	121	12.95	<.0001	Α
12	D		е	14.2812	0.9784	121	14.60	<.0001	Α
13	F		е	12.7147	0.9762	121	13.03	<.0001	Α
14	D		1	14.5583	0.9784	121	14.88	<.0001	Α
15	F		1	12.7778	0.9762	121	13.09	<.0001	Α
	· Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avg	SD=3.091	55 maxSD=4.	37961	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
16	D	BASS		14.5000	1.0019	121	14.47	<.0001	ABCD
17	D	CORC		15.8000	1.0019	121	15.77	<.0001	ABC
18	D	JACK		13.1278	1.0019	121	13.77	<.0001	DE
19	D	WM82		15.0167	1.0019	121	14.99	<.0001	ABC
20	F	BASS		12.0179	1.0019	121	11.99	<.0001	BCE
20		Влоо		12.0173	1.0020	121	11133	1,0001	DOL
				Seed Hundre	d Weight				
	· Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Kra (contin	mer(.05) avgs ued)	SD=3.091	55 maxSD=4.	37961	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	31		· ·						•
21	F	CORC		13.1781	1.0021	121	13.15	<.0001	ABD
22	F	JACK		11.6633	1.0060	121	11.59	<.0001	CE
23	F	WM82		14.2020	1.0043	121	14.14	<.0001	AD
	· Effec	ct=Field_*Cul	tiv*Timing	A=Tukey-Kra	mer(.05) avg	SD=3.879	016 maxSD=5.	24001	
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
24	D	BASS	С	14.9250	1.0612	121	14.06	<.0001	AB
25	D	CORC	С	16.3333	1.0612	121	15.39	<.0001	Α
26	D	JACK	С	13.5667	1.0612	121	12.78	<.0001	В
27	D	WM82	С	15.1500	1.0612	121	14.28	<.0001	AB
28									۸D
29	F	BASS	С	12.0753	1.0807	121	11.17	<.0001	AB
	F	CORC	С	13.5862	1.0699	121	12.70	<.0001	AB
30	F F	CORC JACK	c c	13.5862 11.2978	1.0699 1.1301	121 121	12.70 10.00	<.0001 <.0001	AB AB
30 31	F F F	CORC JACK WM82	с с с	13.5862 11.2978 14.2544	1.0699 1.1301 1.1098	121 121 121	12.70 10.00 12.84	<.0001 <.0001 <.0001	AB AB AB
30 31 32	F F	CORC JACK	c c	13.5862 11.2978	1.0699 1.1301	121 121 121 121	12.70 10.00	<.0001 <.0001	AB AB
30 31	F F F	CORC JACK WM82 BASS CORC	с с с	13.5862 11.2978 14.2544	1.0699 1.1301 1.1098	121 121 121 121 121	12.70 10.00 12.84	<.0001 <.0001 <.0001	AB AB AB ABC AB
30 31 32 33 34	F F D D	CORC JACK WM82 BASS CORC JACK	C C e e e	13.5862 11.2978 14.2544 14.3083 15.1667 12.6083	1.0699 1.1301 1.1098 1.0612 1.0612 1.0612	121 121 121 121 121 121	12.70 10.00 12.84 13.48 14.29 11.88	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001	AB AB AB ABC AB CD
30 31 32 33 34 35	F F D D D	CORC JACK WM82 BASS CORC JACK WM82	с с е е	13.5862 11.2978 14.2544 14.3083 15.1667	1.0699 1.1301 1.1098 1.0612 1.0612	121 121 121 121 121 121 121	12.70 10.00 12.84 13.48 14.29 11.88 14.17	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	AB AB ABC AB CD ABC
30 31 32 33 34 35 36	F F D D D	CORC JACK WM82 BASS CORC JACK WM82 BASS	C C e e e	13.5862 11.2978 14.2544 14.3083 15.1667 12.6083	1.0699 1.1301 1.1098 1.0612 1.0612 1.0612 1.0612 1.0612	121 121 121 121 121 121 121 121	12.70 10.00 12.84 13.48 14.29 11.88 14.17	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	AB AB AB ABC AB CD ABC BD
30 31 32 33 34 35	F F D D D	CORC JACK WM82 BASS CORC JACK WM82	C C e e e e	13.5862 11.2978 14.2544 14.3083 15.1667 12.6083 15.0417	1.0699 1.1301 1.1098 1.0612 1.0612 1.0612	121 121 121 121 121 121 121	12.70 10.00 12.84 13.48 14.29 11.88 14.17	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	AB AB ABC AB CD ABC

39	F	WM82	е	14.2965	1.0451	121	13.68	<.0001	AC
40	D	BASS	1	14.2667	1.0612	121	13.44	<.0001	AB
41	D	CORC	1	15.9000	1.0612	121	14.98	<.0001	Α
42	D	JACK	1	13.2083	1.0612	121	12.45	<.0001	В
43	D	WM82	1	14.8583	1.0612	121	14.00	<.0001	AB
44	F	BASS	1	12.1534	1.0500	121	11.57	<.0001	AB
45	F	CORC	1	13.0750	1.0612	121	12.32	<.0001	AB
46	F	JACK	1	11.8278	1.0451	121	11.32	<.0001	AB
47	F	WM82	1	14.0552	1.0552	121	13.32	<.0001	AB

Seed Protein

The Mixed Procedure

Model Information

Data Set	WORK.SEED
Dependent Variable	Protein

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Model-Based
Degrees of Freedom Method Containment

Class Level Information

Class	Levels	Values
Year	2	2002 2003
Farm	2	P W
Field_Type	2	D F
Cultivar	4	BASS CORC JACK WM82
Timing	3	c e l
Rep	3	1 2 3

Dimensions

Covariance	Parameters	7
Columns in	Χ	66
Columns in	Z	230
Subjects		1
Max Obs Per	Subject	288
Observation 0 4 1	ns Used	288
Observation 0 4 1	ns Not Used	0
Total Obser	rvations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	979.47619376	
1	3	817.74631779	0.00052721
2	1	817.65102636	0.00000868
3	1	817.64954724	0.00000000

Convergence criteria met.

Seed Protein

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0.3924
Year*Farm	0
Year*Farm*Field_Type	1.1132
Rep(Year*Farm*Field)	0.1852

Year*Farm*Cultiv*Rep	0.07319
Yea*Far*Cul*Timi*Rep	0
Residual	0.8445

Fit Statistics

-2 Res Log Likelihood	817.6
AIC (smaller is better)	827.6
AICC (smaller is better)	827.9
BIC (smaller is better)	821.1

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	0.39	0.6430
Field_Type	1	2	1.22	0.3850
Farm*Field_Type	1	2	0.01	0.9231
Cultivar	3	33	13.52	<.0001
Field_Type*Cultivar	3	121	10.85	<.0001
Timing	2	88	2.54	0.0844
Field_Type*Timing	2	121	1.82	0.1669
Cultivar*Timing	6	88	0.12	0.9931
Field_*Cultiv*Timing	6	121	0.60	0.7277

Seed Protein

		Effect=Field	_Type A=Tu	key-Kramer(.	05) avgSD=3.3	3148 ma	xSD=3.33148		
	Field				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	D			40.8937	0.7052	2	57.99	0.0003	Α
2	F			41.7478	0.7055	2	59.18	0.0003	Α
		Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=0.51	564 max	SD=0.51941		
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		40.9948	0.6008	33	68.23	<.0001	В
4		CORC		41.9201	0.6008	33	69.78	<.0001	Α
5		JACK		40.8437	0.6014	33	67.92	<.0001	В
6		WM82		41.5245	0.6011	33	69.08	<.0001	Α
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.323	379 maxS	D=0.33144 -		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			С	41.5056	0.5961	88	69.63	<.0001	Α
8			е	41.2317	0.5941	88	69.40	<.0001	Α
9			1	41.2250	0.5941	88	69.39	<.0001	Α
	Effe	ct=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avgS	D=0.681	01 maxSD=0.	7005	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

10									
	D	BASS		40.8306	0.7207	121	56.65	<.0001	В
11	D	CORC		41.8361	0.7207	121	58.05	<.0001	Α
12	D	JACK		40.0028	0.7207	121	55.50	<.0001	С
13	D	WM82		40.9056	0.7207	121	56.75	<.0001	В
14	F	BASS		41.1590	0.7211	121	57.08	<.0001	В
15	F	CORC		42.0041	0.7208	121	58.27	<.0001	Α
16	F	JACK		41.6846	0.7229	121	57.66	<.0001	Α
17	F	WM82		42.1434	0.7220	121	58.37	<.0001	Α
	Effec	t=Field_*Cul	tiv*Timing	A=Tukey-Kra	mer(.05) avg	SD=1.393	885 maxSD=1.	75376	
	Field				Standard			Pr >	L
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
005	Type	Cultival	TIMITING	ESTIMATE	ELLOI	DΓ	t value	[]	u
18	D	BASS	С	41.0167	0.7526	121	54.50	<.0001	Α
19	D	BASS	е	40.7833	0.7526	121	54.19	<.0001	Α
20	D	BASS	1	40.6917	0.7526	121	54.07	<.0001	Α
	_	2/100	_				0.1.07		•
				Seed Pr					
	Effec	t=Field_*Cul	tiv*Timing	A=Tukey-Kra (contin	mer(.05) avg ued)	SD=1.393	885 maxSD=1.	75376	
	Field				Standard			Pr >	L
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	G
21	D	CORC	С	41.7917	0.7526	121	55.53	<.0001	Д
22	D	CORC	e	41.7583	0.7526	121	55.49	<.0001	A
23	D	CORC	1	41.9583	0.7526	121	55.75	<.0001	A
24	D	JACK	С	39.9917	0.7526	121	53.14	<.0001	В
		ΙΔΛΙΚ	е	39.9667	0.7526	121	53.11	<.0001	В
25	D	JACK							_
26	D	JACK	1	40.0500	0.7526	121	53.22	<.0001	В
26 27	D D	JACK WM82	1 c	40.9083	0.7526	121	54.36	<.0001	A
26 27 28	D D D	JACK WM82 WM82	1 c e		0.7526 0.7526	121 121	54.36 54.33	<.0001 <.0001	A
26 27	D D	JACK WM82	1 c	40.9083	0.7526	121	54.36	<.0001	A
26 27 28	D D D	JACK WM82 WM82	1 c e	40.9083 40.8917	0.7526 0.7526	121 121	54.36 54.33	<.0001 <.0001	Α Α Α
26 27 28 29	D D D	JACK WM82 WM82 WM82	1 c e 1	40.9083 40.8917 40.9167	0.7526 0.7526 0.7526	121 121 121	54.36 54.33 54.37	<.0001 <.0001 <.0001	A A A
26 27 28 29 30	D D D D	JACK WM82 WM82 WM82 BASS	1 c e 1 c	40.9083 40.8917 40.9167 41.2530	0.7526 0.7526 0.7526 0.7630	121 121 121 121	54.36 54.33 54.37 54.07	<.0001 <.0001 <.0001 <.0001	A A A B
26 27 28 29 30 31	D D D F F	JACK WM82 WM82 WM82 BASS BASS	1 c e 1 c	40.9083 40.8917 40.9167 41.2530 40.9833	0.7526 0.7526 0.7526 0.7630 0.7526	121 121 121 121 121	54.36 54.33 54.37 54.07 54.46	<.0001 <.0001 <.0001 <.0001 <.0001	A A A E
26 27 28 29 30 31 32	D D D F F	JACK WM82 WM82 WM82 BASS BASS BASS	1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465	121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A B A
26 27 28 29 30 31 32 33 34	D D D F F F F	JACK WM82 WM82 WM82 BASS BASS BASS CORC	1 c e 1 c e 1 c	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493	121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A B A A
26 27 28 29 30 31 32 33 34 35	D D D F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC	1 c e 1 c e 1 c	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493	121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A A A A
26 27 28 29 30 31 32 33 34 35 36	D D D F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK	1 c e 1 c e 1 c c e 1 c c	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A A A A
26 27 28 29 30 31 32 33 34 35 36 37	D D D F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK	1 c e 1 c e 1 c e 1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A A A A A
26 27 28 29 30 31 32 33 34 35 36 37 38	D D D F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK JACK	1 c e 1 c e 1 c e 1 c e 1	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	6 6 6 6 6 6 6 6 6
26 27 28 29 30 31 32 33 34 35 36 37 38 39	D D D F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82	1 c e 1 c e 1 c e 1 c c e 1 c c	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A A A A A A A A A A A A A A A A A
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	D D D F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82 WM82	1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	### ##################################
26 27 28 29 30 31 32 33 34 35 36 37 38 39	D D D F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82	1 c e 1 c e 1 c e 1 c c e 1 c c	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	######################################
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	D D D F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82 WM82	1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	######################################
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	D D F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82 WM82 WM82	1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510 41.8601 Seed Pr	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40 55.86	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	A A A A A A A A A A A A A A A A A A A
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	D D F F F F F F F F F F F F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK WM82 WM82 WM82 WM82	1 c e 1 c e 1 c e 1 c e 1 c e 1 c e 1	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510 41.8601 Seed Pr	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439 0.7785 0.7439 0.7493	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40 55.86	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	### ##################################
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	D D F F F F F F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC JACK JACK JACK WM82 WM82 WM82	1 c e 1 c e	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510 41.8601 Seed Pr	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439 0.7785 0.7439	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40 55.86	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	4 A A A A A A A A A A A A A A A A A A A
26 27 28 29 30 31 32 33 34 35 36 37 38 39	D D F F F F F F F F F F F F F F F F F F	JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK WM82 WM82 WM82 WM82	1 c e 1 c e 1 c e 1 c e 1 c e 1 c e 1	40.9083 40.8917 40.9167 41.2530 40.9833 41.2407 42.2640 42.0151 41.7333 42.2002 41.5042 41.3493 42.6193 41.9510 41.8601 Seed Pr	0.7526 0.7526 0.7526 0.7630 0.7526 0.7465 0.7573 0.7493 0.7526 0.7894 0.7464 0.7439 0.7785 0.7439 0.7785 0.7439 0.7493	121 121 121 121 121 121 121 121 121 121	54.36 54.33 54.37 54.07 54.46 55.25 55.81 56.07 55.45 53.46 55.60 55.59 54.74 56.40 55.86	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	B A A A A A A A A G G

Standard

Pr >

Let

Field_

3	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		40.9948	0.6008	33	68.23	<.0001	В
4		CORC		41.9201	0.6008	33	69.78	<.0001	A
5		JACK		40.8437	0.6014	33	67.92	<.0001	В
6		WM82		41.5245	0.6011	33	69.08	<.0001	Α
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.323	379 maxS	D=0.33144 -		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			С	41.5056	0.5961	88	69.63	<.0001	Α
8			е	41.2317	0.5941	88	69.40	<.0001	Α
9			1	41.2250	0.5941	88	69.39	<.0001	Α
	Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avg	SD=1.892	01 maxSD=1.	89456	
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D	BASS		40.8306	0.7207	121	56.65	<.0001	Α
11	F	BASS		41.1590	0.7211	121	57.08	<.0001	Α
12	D	CORC		41.8361	0.7207	121	58.05	<.0001	Α
13	F	CORC		42.0041	0.7208	121	58.27	<.0001	A
14	D	JACK		40.0028	0.7207	121	55.50	<.0001	A
15	F -	JACK		41.6846	0.7229	121	57.66	<.0001	Α
16	D	WM82		40.9056	0.7207	121	56.75	<.0001	Α
17	F	WM82		42.1434	0.7220	121	58.37	<.0001	Α
	· Effec	t=Field_*Cul	.tiv*Timing	A=Tukey-Kra	mer(.05) avg	SD=2.188	09 maxSD=2.	90706	
	Field				Standard			Pr >	Let
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
	Type				Error			t	Grp
18	Type D	BASS	С	41.0167	Error 0.7526	121	54.50	t <.0001	Grp A
18 19	Type D	BASS BASS	c e	41.0167 40.7833	0.7526 0.7526			t <.0001 <.0001	Grp
18	Type D	BASS	С	41.0167	Error 0.7526	121	54.50	t <.0001	Grp A
18 19	Type D	BASS BASS	c e	41.0167 40.7833	Error 0.7526 0.7526 0.7526	121 121	54.50 54.19	t <.0001 <.0001	Grp A A
18 19 20	Type D D D	BASS BASS BASS	c e 1	41.0167 40.7833 40.6917 Seed Pro	Error 0.7526 0.7526 0.7526 o.7526	121 121 121	54.50 54.19 54.07	t <.0001 <.0001 <.0001	Grp A A A
18 19 20	Type D D D	BASS BASS BASS	c e 1	41.0167 40.7833 40.6917	Error 0.7526 0.7526 0.7526 otein mer(.05) avg	121 121 121	54.50 54.19 54.07	t <.0001 <.0001 <.0001	Grp A A A
18 19 20	Type D D D D	BASS BASS BASS	c e 1	41.0167 40.7833 40.6917 Seed Pro	Error 0.7526 0.7526 0.7526 otein mer(.05) avgs	121 121 121	54.50 54.19 54.07	t <.0001 <.0001 <.0001	Grp A A A
18 19 20	Type D D D	BASS BASS BASS	c e 1	41.0167 40.7833 40.6917 Seed Pro	Error 0.7526 0.7526 0.7526 otein mer(.05) avg	121 121 121	54.50 54.19 54.07	t <.0001 <.0001 <.0001	Grp A A A
18 19 20	Type D D D Field Type	BASS BASS BASS et=Field_*Cul	c e l tiv*Timing Timing	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Krai (continu	Error 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error	121 121 121 121 6D=2.188	54.50 54.19 54.07 09 maxSD=2.	t <.0001 <.0001 <.0001 90706 Pr > t	Grp A A A
18 19 20	Type D D D Field Type F	BASS BASS BASS et=Field_*Cul Cultivar BASS	c e l tiv*Timing Timing c	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Krai (continu	0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630	121 121 121 121 6D=2.188 DF 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07	t <.0001 <.0001 <.0001 90706 Pr > t <.0001	Grp A A A Let Grp A
18 19 20 Obs 21 22	Type D D D Field Type F	BASS BASS BASS et=Field_*Cul Cultivar BASS BASS	c e l tiv*Timing Timing c e	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Krai (continu Estimate 41.2530 40.9833	0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526	121 121 121 121 6D=2.188 DF 121 121	54.50 54.19 54.07 09 maxSD=2.	t <.0001 <.0001 <.0001 90706 t <.0001 <.0001	Grp A A A
18 19 20	Type D D D Field Type F	BASS BASS BASS et=Field_*Cul Cultivar BASS	c e l tiv*Timing Timing c	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Krai (continu	0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630	121 121 121 121 6D=2.188 DF 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07	t <.0001 <.0001 <.0001 90706 Pr > t <.0001	Grp A A A Let Grp A
18 19 20 Obs 21 22	Type D D D Field Type F	BASS BASS BASS et=Field_*Cul Cultivar BASS BASS	c e l tiv*Timing Timing c e	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Krai (continu Estimate 41.2530 40.9833	0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526	121 121 121 121 6D=2.188 DF 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46	t <.0001 <.0001 <.0001 90706 t <.0001 <.0001	Grp A A A Let Grp A A
18 19 20 Obs 21 22 23	Type D D Type Field Type F F F	BASS BASS ct=Field_*Cul Cultivar BASS BASS BASS	c e l tiv*Timing Timing c e l	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Kran (continu Estimate 41.2530 40.9833 41.2407	Error 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7465	121 121 121 121 SD=2.188 DF 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25	t <.0001 <.0001 <.0001 90706 r <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A
18 19 20 Obs 21 22 23 24	Type D D D Field Type F F D	BASS BASS Cultivar BASS BASS BASS BASS CORC	c e l tiv*Timing Timing c e l c	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Kran (continu Estimate 41.2530 40.9833 41.2407 41.7917	0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7465 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A
18 19 20 Obs 21 22 23 24 25 26	Type D D D Field Type F F D D D	BASS BASS Cultivar BASS BASS BASS CORC CORC	c e l tiv*Timing Timing c e l c e l	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Kran (continu Estimate 41.2530 40.9833 41.2407 41.7917 41.7583 41.9583	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 6D=2.188 DF 121 121 121 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75	t <.0001 <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27	Type D D D Field Fr F D D D F	BASS BASS Cultivar BASS BASS CORC CORC CORC	c e l tiv*Timing Timing c e l c e l c	41.0167 40.7833 40.6917 Seed Pro A=Tukey-Kran (continu Estimate 41.2530 40.9833 41.2407 41.7917 41.7583 41.9583 42.2640	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28	Type D D D F F D D F F F D D F F F	BASS BASS Cultivar BASS BASS BASS CORC CORC CORC CORC CORC	c e l tiv*Timing Timing c e l c e l c e	41.0167 40.7833 40.6917 Seed Professional Continuation of the C	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7523 0.7493	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28 29	Type D D D F F F F F F F F F F F F F F F F	BASS BASS Cultivar BASS BASS BASS CORC CORC CORC CORC CORC CORC CORC	c e l tiv*Timing Timing c e l c e l c e l	41.0167 40.7833 40.6917 Seed Production of the second o	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121 121	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07 55.45	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28 29 30	Type D D D F F F D D F F F D D F F F D D F F F D D	BASS BASS Cultivar BASS BASS BASS CORC CORC CORC CORC CORC CORC CORC CO	c e l tiv*Timing C e l c e l c e l c	41.0167 40.7833 40.6917 Seed Property of the second of	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121 121 12	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07 55.45 53.14	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28 29 30 31	Type D D D F F D D D D D D D D D D D D D D	BASS BASS Cultivar BASS BASS CORC CORC CORC CORC CORC CORC CORC CO	c e l .tiv*Timing C e l c e l c e l c e l	41.0167 40.7833 40.6917 Seed Property of the second of	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121 121 12	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07 55.45 53.14 53.11	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28 29 30 31 32	Type D D D F F D D D D D D D D D D D D D D	BASS BASS BASS Cultivar BASS BASS BASS CORC CORC CORC CORC CORC CORC CORC CO	c e l tiv*Timing C e l c e l c e l c	41.0167 40.7833 40.6917 Seed Property of the second of	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7465 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121 121 12	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07 55.45 53.14 53.11 53.22	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A A A
18 19 20 Obs 21 22 23 24 25 26 27 28 29 30 31	Type D D D F F D D D D D D D D D D D D D D	BASS BASS Cultivar BASS BASS CORC CORC CORC CORC CORC CORC CORC CO	c e l .tiv*Timing C e l c e l c e l c e l	41.0167 40.7833 40.6917 Seed Property of the second of	Error 0.7526 0.7526 0.7526 0.7526 otein mer(.05) avgs ued) Standard Error 0.7630 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526 0.7526	121 121 121 121 SD=2.188 DF 121 121 121 121 121 121 121 121 121 12	54.50 54.19 54.07 09 maxSD=2. t Value 54.07 54.46 55.25 55.53 55.49 55.75 55.81 56.07 55.45 53.14 53.11	t <.0001 <.0001 <.0001 90706 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A A A Let Grp A A A A A A A A A A

35									
	F	JACK	1	41.3493	0.7439	121	55.59	<.0001	Α
36	D	WM82	С	40.9083	0.7526	121	54.36	<.0001	Α
37	D	WM82	e	40.8917	0.7526	121	54.33	<.0001	Α
38	D	WM82	1	40.9167	0.7526	121	54.37	<.0001	A
39	F	WM82	С	42.6193	0.7785	121	54.74	<.0001	A
40	F	WM82	е	41.9510	0.7439	121	56.40	<.0001	Α
41	F	WM82	1	41.8601	0.7493	121	55.86	<.0001	Α
				Seed Pr	otein				
		Effect=Field	_Type A=Tu	key-Kramer(.	05) avgSD=3.3	33148 ma	xSD=3.33148		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
000	1,700	ourciva	Timing	Locimaco	21101	υ,	t varao	151	u. p
1	D			40.8937	0.7052	2	57.99	0.0003	Α
2	F			41.7478	0.7055	2	59.18	0.0003	Α
		· Fffect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=0 5:	1564 max	SD=0 51941		
		2001 0411			o, argos oro				
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		40.9948	0.6008	33	68.23	<.0001	В
4		CORC		41.9201	0.6008	33	69.78	<.0001	A
5		JACK		40.8437	0.6014	33	67.92	<.0001	В
6		WM82		41.5245	0.6011	33	69.08	<.0001	Α
		·- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.323	379 maxS	D=0.33144 -		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
7			С	41.5056	0.5961	88	69.63	<.0001	Α
8			e	41.2317	0.5941	88	69.40	<.0001	A
9			1	41.2250	0.5941	88	69.39	<.0001	A
9			1	41.2230	0.5941	00	09.09	\.0001	Α
	· Effe	ect=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avgs	SD=1.740	58 maxSD=2.	48627	
	E1.14				01 1 1			ъ	
01	Field_							Pr >	Let
0bs	Type				Standard				_
	,,	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10			Timing		Error			t	-
10 11	D	BASS	Timing	40.8306	Error 0.7207	121	56.65	t <.0001	BE
11	D D	BASS CORC	Timing	40.8306 41.8361	Error 0.7207 0.7207	121 121	56.65 58.05	t <.0001 <.0001	BE AD
11 12	D D D	BASS CORC JACK	Timing	40.8306 41.8361 40.0028	0.7207 0.7207 0.7207 0.7207	121 121 121	56.65 58.05 55.50	<.0001 <.0001 <.0001	BE AD CF
11 12 13	D D D	BASS CORC JACK WM82	Timing	40.8306 41.8361 40.0028 40.9056	0.7207 0.7207 0.7207 0.7207 0.7207	121 121 121 121	56.65 58.05 55.50 56.75	t <.0001 <.0001 <.0001 <.0001	BE AD CF BE
11 12 13 14	D D D D	BASS CORC JACK WM82 BASS	Timing	40.8306 41.8361 40.0028 40.9056 41.1590	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211	121 121 121 121 121	56.65 58.05 55.50 56.75 57.08	<.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF
11 12 13 14 15	D D D D F	BASS CORC JACK WM82 BASS CORC	Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208	121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC
11 12 13 14 15	D D D F F	BASS CORC JACK WM82 BASS CORC JACK	Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229	121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15	D D D D F	BASS CORC JACK WM82 BASS CORC	Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208	121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27	<.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC
11 12 13 14 15	D D D F F F	BASS CORC JACK WM82 BASS CORC JACK WM82		40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220	121 121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15	D D D F F F F	BASS CORC JACK WM82 BASS CORC JACK WM82		40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220	121 121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15 16 17	D D D F F F F F F	BASS CORC JACK WM82 BASS CORC JACK WM82	tiv*Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434	0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220	121 121 121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15	D D D F F F F	BASS CORC JACK WM82 BASS CORC JACK WM82		40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434	0.7207 0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220	121 121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15 16 17	D D D F F F F F F	BASS CORC JACK WM82 BASS CORC JACK WM82	tiv*Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434	0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220	121 121 121 121 121 121 121 121 121	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	BE AD CF BE DEF ABC ABCD
11 12 13 14 15 16 17	D D D F F F F T T T T T T D T T D T D T	BASS CORC JACK WM82 BASS CORC JACK WM82 t=Field_*Cul	tiv*Timing Timing	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434 A=Tukey-Krai	0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220 mer(.05) avgs	121 121 121 121 121 121 121 121 SD=2.238	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.10001 <.10001	BE AD CF BE DEF ABC ABCD ABCD
11 12 13 14 15 16 17	D D D F F F F T T T T T D	BASS CORC JACK WM82 BASS CORC JACK WM82 ct=Field_*Cul	tiv*Timing Timing c	40.8306 41.8361 40.0028 40.9056 41.1590 42.0041 41.6846 42.1434 A=Tukey-Krau	0.7207 0.7207 0.7207 0.7207 0.7211 0.7208 0.7229 0.7220 mer(.05) avgs Standard Error 0.7526	121 121 121 121 121 121 121 121 SD=2.238	56.65 58.05 55.50 56.75 57.08 58.27 57.66 58.37 73 maxSD=3.	t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.10001 <.0001 <.10001 <.10001 <.10001	BE AD CF BE DEF ABC ABCD ABCD ABC

Seed Protein
----- Effect=Field_*Cultiv*Timing A=Tukey-Kramer(.05) avgSD=2.23873 maxSD=3.01782 ----(continued)

	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	D	WM82	С	40.9083	0.7526	121	54.36	<.0001	AB
22	F	BASS	С	41.2530	0.7630	121	54.07	<.0001	AB
23	F	CORC	С	42.2640	0.7573	121	55.81	<.0001	AB
24	F	JACK	С	42.2002	0.7894	121	53.46	<.0001	AB
25	F	WM82	С	42.6193	0.7785	121	54.74	<.0001	AB
26	D	BASS	е	40.7833	0.7526	121	54.19	<.0001	AB
27	D	CORC	е	41.7583	0.7526	121	55.49	<.0001	Α
28	D	JACK	е	39.9667	0.7526	121	53.11	<.0001	В
29	D	WM82	е	40.8917	0.7526	121	54.33	<.0001	AB
30	F	BASS	е	40.9833	0.7526	121	54.46	<.0001	AB
31	F	CORC	е	42.0151	0.7493	121	56.07	<.0001	AB
32	F	JACK	е	41.5042	0.7464	121	55.60	<.0001	AB
33	F	WM82	е	41.9510	0.7439	121	56.40	<.0001	AB
34	D	BASS	1	40.6917	0.7526	121	54.07	<.0001	AB
35	D	CORC	1	41.9583	0.7526	121	55.75	<.0001	Α
36	D	JACK	1	40.0500	0.7526	121	53.22	<.0001	В
37	D	WM82	1	40.9167	0.7526	121	54.37	<.0001	AB
38	F	BASS	1	41.2407	0.7465	121	55.25	<.0001	AB
39	F	CORC	1	41.7333	0.7526	121	55.45	<.0001	AB
40	F	JACK	1	41.3493	0.7439	121	55.59	<.0001	AB
41	F	WM82	1	41.8601	0.7493	121	55.86	<.0001	AB

Seed Oil

The Mixed Procedure

Model Information

Data Set	WORK.SEED
Dependent Variable	Oil
Covariance Structure	Variance Components
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Model-Based

Degrees of Freedom Method

Class Level Information

Containment

Class	Levels	Values
Year	2	2002 2003
Farm	2	P W
Field_Type	2	DF
Cultivar	4	BASS CORC JACK WM82
Timing	3	c e l
Rep	3	1 2 3

Dimensions

Covariance Parameters	7
Columns in X	66
Columns in Z	230
Subjects	1
Max Obs Per Subject	288
Observations Used	288
Observations Not Used	0
Total Observations	288

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	717.82538339	
1	4	686.59349386	0.00576743
2	2	686.04883414	0.00114227
3	1	685.91704019	0.00006706
4	1	685.90982038	0.0000056
5	1	685.90976293	0.0000000

Convergence criteria met .

The Mixed Procedure

Covariance Parameter Estimates

Cov Parm	Estimate
Year	0
Year*Farm	0
Year*Farm*Field_Type	0.1582
Rep(Year*Farm*Field)	0.04101
Year*Farm*Cultiv*Rep	0.05398
Yea*Far*Cul*Timi*Rep	0
Residual	0.5384

Fit Statistics

-2 Res Log Likelihood	685.9
AIC (smaller is better)	693.9
AICC (smaller is better)	694.1
BIC (smaller is better)	688.7

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Farm	1	1	6.18	0.2435
Field_Type	1	2	3.77	0.1916
Farm*Field_Type	1	2	0.02	0.8916
Cultivar	3	33	5.08	0.0053
Field_Type*Cultivar	3	121	5.32	0.0018
Timing	2	88	0.87	0.4237
Field_Type*Timing	2	121	2.60	0.0786
Cultivar*Timing	6	88	0.19	0.9776
Field_*Cultiv*Timing	6	121	0.89	0.5070

Seed Oil

		Effect=Field	_Type A=Tu	key-Kramer(.	05) avgSD=1.3	31652 ma	xSD=1.31652		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
1	D			19.9639	0.2187	2	91.29	0.0001	Α
2	F			20.5581	0.2192	2	93.79	0.0001	Α
		Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=0.42	2241 max	SD=0.42534		
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		20.5935	0.1831	33	112.46	<.0001	Α
4		CORC		19.9953	0.1830	33	109.29	<.0001	В
5		JACK		20.2228	0.1843	33	109.76	<.0001	AB
6		WM82		20.2324	0.1837	33	110.13	<.0001	AB
		- Effect=Tim	ing A=Tuke	y-Kramer(.05) avgSD=0.258	335 maxS	D=0.26442 -		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp

7			С	20.1769	0.1716	88	117.57	<.0001	Α
8			е	20.3177	0.1672	88	121.54	<.0001	Α
9			1	20.2884	0.1672	88	121.36	<.0001	Α
	Effe	ct=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avg	SD=0.552	27 maxSD=0.	56759	
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
			-						
10	D	BASS		20.1583	0.2498	121	80.69	<.0001	AB
11	D	CORC		19.5889	0.2498	121	78.41	<.0001	В
12	D	JACK		20.2278	0.2498	121	80.97	<.0001	Α
13	D	WM82		19.8806	0.2498	121	79.58	<.0001	AB
14	F	BASS		21.0287	0.2504	121	83.97	<.0001	Α
15	F	CORC		20.4017	0.2500	121	81.62	<.0001	В
16	F	JACK		20.2179	0.2537	121	79.68	<.0001	В
17	F	WM82		20.5842	0.2522	121	81.63	<.0001	AB
	Fff6	oct=Field *Cu	l+iv*Timir	ng A=Tukey-Kra	amer(O5) avo	nSD=1 11	82 maySD=1	40567	
	Litte	.oc 1c1a_ oa	1010 111111	ig / rukey kir	amer (100) av	JOD 1.11	02 maxob 1.	40001	
	Field_				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
18	D	BASS	С	20.2333	0.3038	121	66.59	<.0001	Α
19	D	BASS	е	20.0833	0.3038	121	66.10	<.0001	Α
20	D	BASS	1	20.1583	0.3038	121	66.34	<.0001	Α
				Seed (Dil				
	Effe	ct=Field *Cu	ltiv*Timir	ng A=Tukey-Kra	amer(.05) avç	aSD=1.11	82 maxSD=1.	40567	
		_		-	ued)	•			
		_		(continu	ned)				
	Field_	_		(continu	Standard			Pr >	Let
0bs	Field_ Type	Cultivar	Timing	-	·	DF	t Value		
0bs 21	_	Cultivar	Timing C	(continu	Standard			Pr >	Let
	Type			(continu	Standard Error	DF	t Value	Pr > t	Let Grp
21	Type D	CORC	С	(continu	Standard Error 0.3038	DF 121	t Value 64.78	Pr > t <.0001	Let Grp A
21 22	Type D D D D	CORC CORC	c e	(continue) Estimate 19.6833 19.5667	Standard Error 0.3038 0.3038	DF 121 121 121 121	t Value 64.78 64.40	Pr > t <.0001 <.0001	Let Grp A A
21 22 23 24 25	Type D D D D D D	CORC CORC CORC JACK JACK	c e l c	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121	t Value 64.78 64.40 64.23 66.95 67.14	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A
21 22 23 24 25 26	Type D D D D D D D D	CORC CORC CORC JACK JACK JACK	c e 1 c e 1	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121	t Value 64.78 64.40 64.23 66.95 67.14 65.63	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A
21 22 23 24 25 26 27	Type D D D D D D D D D	CORC CORC CORC JACK JACK JACK WM82	c e 1 c e 1 c	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A
21 22 23 24 25 26 27 28	Type D D D D D D D D D D	CORC CORC CORC JACK JACK JACK WM82	c e 1 c e 1 c	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121 121	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A
21 22 23 24 25 26 27 28 29	Type D D D D D D D D D D D D	CORC CORC JACK JACK JACK WM82 WM82 WM82	c e 1 c e 1 c e 1	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121 121 121	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A
21 22 23 24 25 26 27 28 29 30	Type D D D D D D D D D D F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS	c e 1 c e 1 c c e 1 c c	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121 121 121 12	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A
21 22 23 24 25 26 27 28 29 30 31	Type D D D D D D D D F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS	c e 1 c e 1 c e 1 c e	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884 21.1250	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32	Type D D D D D D F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 WM82 BASS BASS BASS	c e 1 c e 1 c e 1 c e 1	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884 21.1250 21.0726	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33	Type D D D D D D F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC	c e 1 c e 1 c e 1 c c e 1 c c	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884 21.1250 21.0726 20.2534	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34	Type D D D D D D F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC	c e 1 c e 1 c e 1 c e 1 c e 1 c e	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884 21.1250 21.0726 20.2534 20.3933	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34	Type D D D D D F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC	c e 1 c e 1	(continue) Estimate 19.6833 19.5667 19.5167 20.3417 20.4000 19.9417 19.7167 20.1083 19.8167 20.8884 21.1250 21.0726 20.2534 20.3933 20.5583	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986 0.3038	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	Type D D D D D F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS BASS CORC CORC CORC JACK	c e 1 c e 1	(continue (conti	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3112 0.2940 0.3112 0.2986 0.3038 0.3038	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66 55.20	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Type D D D D D F F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK	c e 1 c e 1	(continue (conti	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986 0.3038 0.3583	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66 55.20 69.07	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D F F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK JACK JACK	c e 1 c e 1	(continue (conti	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986 0.3038 0.3583 0.2939 0.2897	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66 55.20 69.07 71.03	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp A A A A A A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D F F F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK JACK WM82	c e 1 c e 1	(continue (conti	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986 0.3038 0.3583 0.2939 0.2897 0.3428	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66 55.20 69.07 71.03 59.86	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let p A A A A A A A A A A A A A A A A A A A
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	Type D D D D D F F F F F F	CORC CORC JACK JACK JACK WM82 WM82 WM82 BASS BASS CORC CORC CORC JACK JACK JACK JACK	c e 1 c e 1	(continue (conti	Standard Error 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3038 0.3199 0.3038 0.2940 0.3112 0.2986 0.3038 0.3583 0.2939 0.2897	DF 121 121 121 121 121 121 121 121 121 1	t Value 64.78 64.40 64.23 66.95 67.14 65.63 64.89 66.18 65.22 65.29 69.53 71.67 65.09 68.29 67.66 55.20 69.07 71.03	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let p A A A A A A A A A A A A A A A A A A A

Seed Oil

----- Effect=Field_Type A=Tukey-Kramer(.05) avgSD=1.31652 maxSD=1.31652 ------

	Fiold				Standard			Pr >	Let
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	t	Grp
1	D			19.9639	0.2187	2	91.29	0.0001	Α
2	F			20.5581	0.2192	2	93.79	0.0001	Α
		Effect=Cult	:ivar A=Tuk	ey-Kramer(.0	5) avgSD=0.4	2241 max	SD=0.42534		
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
3		BASS		20.5935	0.1831	33	112.46	<.0001	A
4 5		CORC JACK		19.9953 20.2228	0.1830 0.1843	33 33	109.29 109.76	<.0001 <.0001	B AB
6		WM82		20.2226	0.1837	33	110.13	<.0001	AB
Ū		MMOZ		20.2024	0.1007	00	110.10	1.0001	710
		- Effect=Tim	ning A=Tuke	y-Kramer(.05) avgSD=0.25	835 maxS	SD=0.26442 -		
	E1.14				01 1 1			ъ	
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
000	турс	ourcival	TIMITING	Locimaco	LITOI	Di	t value	101	ui p
7			С	20.1769	0.1716	88	117.57	<.0001	Α
8			е	20.3177	0.1672	88	121.54	<.0001	Α
9			1	20.2884	0.1672	88	121.36	<.0001	Α
	Effe	ct=Field_Typ	e*Cultivar	A=Tukey-Kra	mer(.05) avg	SD=0.810	065 maxSD=0.	81445	
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
10	D	BASS		20.1583	0.2498	121	80.69	<.0001	Α
11	F	BASS		21.0287	0.2504	121	83.97	<.0001	Α
12	D	CORC		19.5889	0.2498	121	78.41	<.0001	Α
13	F	CORC		20.4017	0.2500	121	81.62	<.0001	Α
14	D	JACK		20.2278	0.2498	121	80.97	<.0001	Α
15	F -	JACK		20.2179	0.2537	121	79.68	<.0001	Α
16	D	WM82		19.8806	0.2498	121	79.58	<.0001	A
17	F	WM82		20.5842	0.2522	121	81.63	<.0001	Α
	Fffec	t=Field *Cul	tiv*Timino	A=Tukev-Kra	mer(.05) avg	SD=1.233	322 maxSD=1.	50969	
	200			, , , , and , , , , ,					
	Field_				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
18	D	BASS	С	20.2333	0.3038	121	66.59	<.0001	Α
19	D	BASS	e	20.0833	0.3038	121	66.10	<.0001	Α
20	D	BASS	1	20.1583	0.3038	121	66.34	<.0001	Α
				Seed	0i1				
	Effec	t=Field_*Cul	tiv*Timing.	A=Tukey-Kra (contin	mer(.05) avg	SD=1.233	322 maxSD=1.	50969	
	Fiold				Ctandand			Pn >	1.0+
0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
			3						
21	F	BASS	С	20.8884	0.3199	121	65.29	<.0001	A
22	F	BASS	e 1	21.1250	0.3038	121	69.53	<.0001	A
23 24	F D	BASS CORC	1 c	21.0726 19.6833	0.2940 0.3038	121 121	71.67 64.78	<.0001 <.0001	A A
4	U	OUNU	C	13.0000	0.5036	121	04.70	~.0001	^

25 26 27	D	0000							
27		CORC	е	19.5667	0.3038	121	64.40	<.0001	Α
	D	CORC	1	19.5167	0.3038	121	64.23	<.0001	Α
00	F	CORC	С	20.2534	0.3112	121	65.09	<.0001	Α
28	F	CORC	е	20.3933	0.2986	121	68.29	<.0001	Α
29	F	CORC	1	20.5583	0.3038	121	67.66	<.0001	Α
30	D	JACK	С	20.3417	0.3038	121	66.95	<.0001	Α
31	D	JACK	е	20.4000	0.3038	121	67.14	<.0001	Α
32	D	JACK	1	19.9417	0.3038	121	65.63	<.0001	Α
33	F	JACK	С	19.7756	0.3583	121	55.20	<.0001	Α
34	F	JACK	е	20.2995	0.2939	121	69.07	<.0001	Α
35	F	JACK	1	20.5785	0.2897	121	71.03	<.0001	Α
36	D	WM82	С	19.7167	0.3038	121	64.89	<.0001	Α
37	D	WM82	e	20.1083	0.3038	121	66.18	<.0001	Α
38	D	WM82	1	19.8167	0.3038	121	65.22	<.0001	Α
39	F	WM82	c	20.5227	0.3428	121	59.86	<.0001	Α
40	F	WM82	e	20.5652	0.2897	121	70.98	<.0001	Α
41	F	WM82	1	20.6646	0.2986	121	69.20	<.0001	A
71	•	WWOZ	-	20.0040	0.2300	121	03.20	1.0001	,,
		Effect=Field	_Type A=Tu	Seed (31652 ma	xSD=1.31652	!	
	Field				Standard			Pr >	Let
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	
ons	туре	Cultival	TIMITING	ESTIMATE	ELLOI	DF	t value	141	Grp
1	D			10 0620	0.0107	2	01 00	0.0001	Α
2	D F			19.9639	0.2187		91.29	0.0001	
2	r			20.5581	0.2192	2	93.79	0.0001	Α
	Field_	Effect=Cult	ivar A=Tuk	ey-Kramer(.0	5) avgSD=0.42 Standard	2241 max	SD=0.42534	Pr >	Let
							_		
0bs	Type	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
	Type		Timing		Error			t	Grp
3	Type	BASS	Timing	20.5935	Error 0.1831	33	112.46	t <.0001	Grp A
3 4	Туре	BASS CORC	Timing	20.5935 19.9953	0.1831 0.1830	33 33	112.46 109.29	t <.0001 <.0001	Grp A B
3 4 5	Type	BASS CORC JACK	Timing	20.5935 19.9953 20.2228	0.1831 0.1830 0.1843	33 33 33	112.46 109.29 109.76	t <.0001 <.0001 <.0001	Grp A B AB
3 4	Туре	BASS CORC	Timing	20.5935 19.9953	0.1831 0.1830	33 33	112.46 109.29	t <.0001 <.0001	Grp A B
3 4 5		BASS CORC JACK WM82	·	20.5935 19.9953 20.2228	0.1831 0.1830 0.1843 0.1837 0.1837	33 33 33 33	112.46 109.29 109.76 110.13	t <.0001 <.0001 <.0001 <.0001	Grp A B AB AB
3 4 5 6	Field_	BASS CORC JACK WM82	ing A=Tuke	20.5935 19.9953 20.2228 20.2324	0.1831 0.1830 0.1843 0.1837 0.1837	33 33 33 33 33	112.46 109.29 109.76 110.13	t <.0001 <.0001 <.0001 <.0001	Grp A B AB
3 4 5		BASS CORC JACK WM82	·	20.5935 19.9953 20.2228 20.2324	0.1831 0.1830 0.1843 0.1837 0.1837	33 33 33 33	112.46 109.29 109.76 110.13	t <.0001 <.0001 <.0001 <.0001	Grp A B AB AB
3 4 5 6 6	Field_	BASS CORC JACK WM82	ing A=Tuke Timing	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05	0.1831 0.1830 0.1843 0.1837 0.1837 avgSD=0.258 Standard Error	33 33 33 33 335 maxS	112.46 109.29 109.76 110.13 D=0.26442 -	t <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp
3 4 5 6 CODS	Field_	BASS CORC JACK WM82	ing A=Tuke	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05 Estimate 20.1769	0.1831 0.1830 0.1843 0.1837 0.1837	33 33 33 33 335 maxS	112.46 109.29 109.76 110.13 D=0.26442 - t Value	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001	Grp A B AB AB
3 4 5 6	Field_	BASS CORC JACK WM82	ing A=Tuke Timing c e	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05 Estimate 20.1769 20.3177	0.1831 0.1830 0.1843 0.1837 0.1837 avgSD=0.258 Standard Error 0.1716 0.1672	33 33 33 33 335 maxS DF 88 88	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54	t <.0001 <.0001 <.0001 <.0001 0001 0001 0001	Grp A B AB AB Let Grp A A
3 4 5 6 CODS	Field_	BASS CORC JACK WM82	ing A=Tuke Timing C	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05 Estimate 20.1769	0.1831 0.1830 0.1843 0.1837 0.1837 avgSD=0.258 Standard Error 0.1716	33 33 33 33 335 maxS	112.46 109.29 109.76 110.13 D=0.26442 - t Value	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001	Grp A B AB AB Let Grp A
3 4 5 6	Field_ Type	BASS CORC JACK WM82 - Effect=Tim Cultivar	ing A=Tuke Timing c e l	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05 Estimate 20.1769 20.3177	0.1831 0.1830 0.1843 0.1837 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672	33 33 33 33 335 maxS DF 88 88 88	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36	t <.0001 <.0001 <.0001 <.0001000100010001000100010001	Grp A B AB AB Let Grp A A
3 4 5 6	Field_ Type Effe Field_	BASS CORC JACK WM82 - Effect=Tim Cultivar	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 Ty-Kramer(.05) Estimate 20.1769 20.3177 20.2884	0.1831 0.1830 0.1843 0.1837 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672 0.1672	33 33 33 33 335 maxS DF 88 88 88	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 <.0001 <.0001 Pr >	Grp A B AB AB Let Grp A A A
3 4 5 6	Field_ Type	BASS CORC JACK WM82 - Effect=Tim Cultivar	ing A=Tuke Timing c e l	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05 Estimate 20.1769 20.3177 20.2884	0.1831 0.1830 0.1843 0.1837 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672	33 33 33 33 335 maxS DF 88 88 88	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36	t <.0001 <.0001 <.0001 <.0001000100010001000100010001	Grp A B AB AB Let Grp A A
3 4 5 6	Field_ Type Effe Field_ Type	BASS CORC JACK WM82 - Effect=Tim Cultivar cct=Field_Typ Cultivar	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer	0.1831 0.1830 0.1843 0.1837 0.1837 0 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672 0.1672 mer(.05) avgS	33 33 33 33 335 maxS DF 88 88 88 SD=0.882	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t	Grp A B AB AB Let Grp A A A
3 4 5 6 6	Field_ Type Effe Field_ Type D	BASS CORC JACK WM82 - Effect=Tim Cultivar cct=Field_Typ Cultivar BASS	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583	0.1831 0.1830 0.1843 0.1837 0.1837 0.1837 0.1837 0.1837 0.1716 0.1672 0.1672 0.1672 0.1672 0.1672 mer(.05) avgs Standard Error	33 33 33 33 33 335 maxS DF 88 88 88 SD=0.882	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001	Grp A B AB AB Let Grp A A A Let Grp AA A
3 4 5 6 6	Field_ Type Effe Field_ Type D	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 y-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583 19.5889	0.1831 0.1830 0.1843 0.1837 0.1837 0 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672 0.1672 mer(.05) avgS Standard Error	33 33 33 33 33 33 B35 maxS DF 88 88 88 BD=0.882	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69 78.41	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A Let Grp A A C C C
3 4 5 6 6	Field_ Type Effe Field_ Type D D D	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC JACK	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 Py-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583 19.5889 20.2278	0.1831 0.1830 0.1843 0.1837 0.1837 0 avgSD=0.258 Standard Error 0.1716 0.1672 0.1672 0.1672 mer(.05) avgS Standard Error 0.2498 0.2498 0.2498	33 33 33 33 33 33 335 maxS DF 88 88 88 8D=0.882 DF 121 121 121	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 t Value 80.69 78.41 80.97	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A Let Grp A A A
3 4 5 6 0bs 7 8 9 0bs	Field_ Type Effe Field_ Type D D D	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC JACK WM82	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 by-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583 19.5889 20.2278 19.8806	0.1831 0.1830 0.1843 0.1837 0.1837 0.1837 0.1837 0.1837 0.1716 0.1716 0.1672 0.1672 0.1672 mer(.05) avgs Standard Error 0.2498 0.2498 0.2498 0.2498	33 33 33 33 33 335 maxS DF 88 88 88 SD=0.882 DF 121 121 121 121	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69 78.41 80.97 79.58	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A C Let Grp AB BC C AB BC
3 4 5 6 0bs 7 8 9 0bs 10 11 12 13 14	Field_ Type Field_ Type D D D F	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC JACK WM82 BASS	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 Py-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583 19.5889 20.2278 19.8806 21.0287	0.1831 0.1830 0.1843 0.1837 0.1837 0.1837 0.1837 0.1837 0.1716 0.1716 0.1672 0.1672 0.1672 mer(.05) avgs Standard Error 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498	33 33 33 33 33 335 maxS DF 88 88 88 SD=0.882 DF 121 121 121 121 121	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69 78.41 80.97 79.58 83.97	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A C C AB BC A
3 4 5 6 0bs 7 8 9 0bs 10 11 12 13 14 15	Field_ Type Field_ Type D D D F F	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC JACK WM82 BASS CORC	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 29-Kramer(.05 Estimate 20.1769 20.3177 20.2884 A=Tukey-Kran Estimate 20.1583 19.5889 20.2278 19.8806 21.0287 20.4017	0.1831 0.1830 0.1843 0.1837 0.1837 0.1837 0.1837 0.1837 0.1716 0.1716 0.1672 0.1672 0.1672 0.1672 0.1672 0.1672 0.1672 0.1672	33 33 33 33 33 335 maxS DF 88 88 88 88 DF 121 121 121 121 121 121	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69 78.41 80.97 79.58 83.97 81.62	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A C C AB BC A BC A BC
3 4 5 6 0bs 7 8 9 0bs 10 11 12 13 14	Field_ Type Field_ Type D D D F	BASS CORC JACK WM82 - Effect=Tim Cultivar Cultivar BASS CORC JACK WM82 BASS	ing A=Tuke Timing c e 1	20.5935 19.9953 20.2228 20.2324 Py-Kramer(.05) Estimate 20.1769 20.3177 20.2884 A=Tukey-Kramer Estimate 20.1583 19.5889 20.2278 19.8806 21.0287	0.1831 0.1830 0.1843 0.1837 0.1837 0.1837 0.1837 0.1837 0.1716 0.1716 0.1672 0.1672 0.1672 mer(.05) avgs Standard Error 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498 0.2498	33 33 33 33 33 335 maxS DF 88 88 88 SD=0.882 DF 121 121 121 121 121	112.46 109.29 109.76 110.13 D=0.26442 - t Value 117.57 121.54 121.36 89 maxSD=1. t Value 80.69 78.41 80.97 79.58 83.97	t <.0001 <.0001 <.0001 <.0001 Pr > t <.0001 <.0001 09842 Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Grp A B AB AB Let Grp A A C C AB BC A

 Fffect=Field	*Cultiv*Timing	A=Tukey-Kramer(.0	1=d2nys (i	29328 ma	axSD=1 58788	

0bs	Field_ Type	Cultivar	Timing	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
18	D	BASS	С	20.2333	0.3038	121	66.59	<.0001	Α
19	D	CORC	С	19.6833	0.3038	121	64.78	<.0001	Α
20	D	JACK	С	20.3417	0.3038	121	66.95	<.0001	Α

Seed Oil

------ Effect=Field_*Cultiv*Timing A=Tukey-Kramer(.05) avgSD=1.29328 maxSD=1.58788 ------ (continued)

	Field				Standard			Pr >	Let
0bs	Туре	Cultivar	Timing	Estimate	Error	DF	t Value	t	Grp
21	D	WM82	С	19.7167	0.3038	121	64.89	<.0001	Α
22	F	BASS	C	20.8884	0.3199	121	65.29	<.0001	A
23	F	CORC	C	20.2534	0.3112	121	65.09	<.0001	A
24	F	JACK	C	19.7756	0.3583	121	55.20	<.0001	A
25	F	WM82	C	20.5227	0.3428	121	59.86	<.0001	A
26	D D	BASS	e	20.0833	0.3038	121	66.10	<.0001	A
27	D	CORC		19.5667	0.3038	121	64.40	<.0001	A
			е						
28	D	JACK	е	20.4000	0.3038	121	67.14	<.0001	Α
29	D	WM82	е	20.1083	0.3038	121	66.18	<.0001	Α
30	F	BASS	е	21.1250	0.3038	121	69.53	<.0001	Α
31	F	CORC	е	20.3933	0.2986	121	68.29	<.0001	Α
32	F	JACK	е	20.2995	0.2939	121	69.07	<.0001	Α
33	F	WM82	е	20.5652	0.2897	121	70.98	<.0001	Α
34	D	BASS	1	20.1583	0.3038	121	66.34	<.0001	Α
35	D	CORC	1	19.5167	0.3038	121	64.23	<.0001	Α
36	D	JACK	1	19.9417	0.3038	121	65.63	<.0001	Α
37	D	WM82	1	19.8167	0.3038	121	65.22	<.0001	Α
38	F	BASS	1	21.0726	0.2940	121	71.67	<.0001	Α
39	F	CORC	1	20.5583	0.3038	121	67.66	<.0001	Α
40	F	JACK	1	20.5785	0.2897	121	71.03	<.0001	Α
41	F	WM82	1	20.6646	0.2986	121	69.20	<.0001	Α

 $\underline{\text{Chapter 4:}}$ SAS Output for Statistical Analysis of Ozone Effects on the Concentration of Seed Isoflavones in Soybean [Glycine max (L.) Merr.] Seeds

Isoflavone Analysis - Ozone Study

Genistin

The Mixed Procedure

Model Information

Data Set	WORK.OZONEISO
Dependent Variable	Genistin
Covariance Structure	Variance Components
Estimation Method	REML
Residual Variance Method	Profile
Fixed Effects SE Method	Prasad-Rao-Jeske-
	Kackar-Harville
Degrees of Freedom Method	Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber Cultivar Treatmnt	6 4 2	1 2 3 4 5 6 Bass Corsica Jack Williams F O

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	77.66568411	
1	1	77.22756996	0.00000000

Convergence criteria met.

Covariance	Parameter
Esti	nates
O D	

Cov Parm	Estimate
Chamber	0.6309

Residual 3.7049

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	77.2
AIC (smaller is better)	81.2
AICC (smaller is better)	82.2
BIC (smaller is better)	80.8

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Cultivar	3	12	7.31	0.0048
Treatmnt	1	4	6.08	0.0693
Cultivar*Treatmnt	3	12	0.43	0.7357

----- Effect=Treatmnt A=Tukey(.05) avgSD=2.82887 maxSD=2.82887 -----Pr > Let Standard 0bs Cultivar Treatmnt Estimate Error DF t Value |t| Grp 0.0001 F 0.7205 10.7287 4 14.89 Α 0 8.2173 0.7205 11.41 0.0003 ----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=3.29922 maxSD=3.29922 ------Standard Pr > Let 0bs Cultivar Treatmnt Estimate Error DF t Value |t| Grp Bass 9.1971 0.8501 15 10.82 <.0001 AB Corsica 8.6906 0.8501 15 10.22 <.0001 В 5 Jack 7.5229 0.8501 15 8.85 <.0001 В Williams 12.4812 0.8501 15 14.68 <.0001 Α ----- Effect=Cultivar*Treatmnt A=Tukey-Kramer(.05) avgSD=5.00928 maxSD=5.00928 ------

				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
7	Bass	F	10.1516	1.2022	15	8.44	<.0001	Α
8	Corsica	F	9.6496	1.2022	15	8.03	<.0001	Α
9	Jack	F	9.5456	1.2022	15	7.94	<.0001	Α
10	Williams	F	13.5678	1.2022	15	11.29	<.0001	Α
11	Bass	0	8.2426	1.2022	15	6.86	<.0001	AB
12	Corsica	0	7.7316	1.2022	15	6.43	<.0001	AB
13	Jack	0	5.5003	1.2022	15	4.58	0.0004	В
14	Williams	0	11.3945	1.2022	15	9.48	<.0001	Α

Effect=Treatmnt A=Tukey(.05) avgSD=2.82887 maxSD=2.82887								
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
1		F	10.7287	0.7205	4	14.89	0.0001	Α
2		0	8.2173	0.7205	4	11.41	0.0003	Α
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD=	3.29922	maxSD=3.29	922	
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
3	Bass		9.1971	0.8501	15	10.82	<.0001	AB
4	Corsica		8.6906	0.8501	15	10.22	<.0001	В
5	Jack		7.5229	0.8501	15	8.85	<.0001	В
6	Williams		12.4812	0.8501	15	14.68	<.0001	A
	Effect=Cu	ıltivar*Treat	mnt A=Tukey-	Kramer(.05) a	avgSD=4.	41476 maxSD	=4.41476 -	
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value		
obs	Cultival	Treatmint	ESTIMATE	ELLOI.	DF	t value	t	Grp
7	Bass	F	10.1516	1.2022	15	8.44	<.0001	Α
8	Bass	0	8.2426	1.2022	15	6.86	<.0001	Α
9	Corsica	F	9.6496	1.2022	15	8.03	<.0001	Α
10	Corsica	0	7.7316	1.2022	15	6.43	<.0001	Α
11	Jack	F	9.5456	1.2022	15	7.94	<.0001	Α
12	Jack	0	5.5003	1.2022	15	4.58	0.0004	Α
13	Williams	F	13.5678	1.2022	15	11.29	<.0001	Α
14	Williams	0	11.3945	1.2022	15	9.48	<.0001	Α

MalonylGenistin

The Mixed Procedure

Model Information

Data Set	WORK.OZONEISO
Dependent Variable	M_Genistin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Williams
Treatmnt	2	F 0

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	116.56352009	
1	1	116.34754855	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Chamber	4.9438
Residual	44.3618

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	116.3
AIC (smaller is better)	120.3
AICC (smaller is better)	121.3

BIC (smaller is better) 119.9

Type 3 Tests of Fixed Effects

			ı	Num	Den				
		Effect		DF	DF	F Value	Pr > F		
		Cultivar		3	12	15.35	0.0002		
		Treatmnt		1	4	11.84	0.0263		
		Cultivar*Tre	atmnt	3	12	1.40	0.2903		
		Effect=Treatm	nt A=Tukey	(.05)	avgSD=9	.07757 max	(SD=9.07757		
				St	andard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Е	rror	DF	t Value	t	Grp
1		F	51.0553		2.3119	4	22.08	<.0001	Α
2		0	39.8067		2.3119	4	17.22	<.0001	В
	Fffe	ct=Cultivar A	=Tukey-Krai	mer(.O	5) avgS	D=11.4163	maxSD=11.4	163	
					-,				
				St	andard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Е	rror	DF	t Value	t	Grp
3	Bass		44.1722		2.8666	15.5	15.41	<.0001	В
4	Corsica		42.2632		2.8666	15.5	14.74	<.0001	В
5	Jack		35.0143		2.8666	15.5	12.21	<.0001	В
6	Williams		60.2743		2.8666	15.5	21.03	<.0001	Α
	Effect=0	ultivar*Treat	mnt A=Tukey	y-Kram	er(.05)	avgSD=17.	3336 maxSD	=17.3336 -	
				C+	andard			Pr >	1.0+
0bs	Cultivar	Treatmnt	Estimate		rror	DF	t Value	t	Let Grp
ODS	Ourtival	ii eatiiiit	LSCIIIACE	_	1101	Di	t value	141	ui p
7	Bass	F	51.0748		4.0540	15.5	12.60	<.0001	Α
8	Corsica	F	47.3203		4.0540	15.5	11.67	<.0001	Α
9	Jack	F	44.0826		4.0540	15.5	10.87	<.0001	Α
10	Williams	F	61.7433		4.0540	15.5	15.23	<.0001	Α
11	Bass	0	37.2697		4.0540	15.5	9.19	<.0001	В
12	Corsica	0	37.2061		4.0540	15.5	9.18	<.0001	В
13	Jack	0	25.9459		4.0540	15.5	6.40	<.0001	В
14	Williams	0	58.8052	•	4.0540	15.5	14.51	<.0001	Α
		Effect=Treatm	nt A=Tukev	(.05)	avaSD=9	.07757 max	(SD=9.07757	·	
				. ,					
				St	andard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	E	rror	DF	t Value	t	Grp
1		F	51.0553		2.3119	4	22.08	<.0001	Α
2		0	39.8067		2.3119	4	17.22	<.0001	В
	Effe	ct=Cultivar A	=Tukey-Krar	mer(.O	5) avgSl	D=11.4163	maxSD=11.4	163	
				St	andard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Е	rror	DF	t Value	t	Grp
3	Bass		44.1722		2.8666	15.5	15.41	<.0001	В
4	Corsica		42.2632		2.8666	15.5	14.74	<.0001	В
5	Jack		35.0143		2.8666	15.5	12.21	<.0001	В

6 Williams 60.2743 2.8666 15.5 21.03 <.0001 A

----- Effect=Cultivar*Treatmnt A=Tukey-Kramer(.05) avgSD=14.8381 maxSD=14.8381 -----

				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
7	Bass	F	51.0748	4.0540	15.5	12.60	<.0001	Α
8	Bass	0	37.2697	4.0540	15.5	9.19	<.0001	Α
9	Corsica	F	47.3203	4.0540	15.5	11.67	<.0001	Α
10	Corsica	0	37.2061	4.0540	15.5	9.18	<.0001	Α
11	Jack	F	44.0826	4.0540	15.5	10.87	<.0001	Α
12	Jack	0	25.9459	4.0540	15.5	6.40	<.0001	Α
13	Williams	F	61.7433	4.0540	15.5	15.23	<.0001	Α
14	Williams	0	58 8052	4 0540	15 5	14 51	< 0001	Α

Daidzin

The Mixed Procedure

Model Information

Data Set	WORK.OZONEISO
Dependent Variable	Daidzin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Williams
Treatmnt	2	F 0

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	37.46166550	
1	1	36.62931177	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Chamber	0.07189
Residual	0.2795

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	36.6
AIC (smaller is better)	40.6
AICC (smaller is better)	41.6

BIC (smaller is better) 40.2

Type 3 Tests of Fixed Effects

				Num Den					
		Effect		DF DF		ie Pr	> F		
		Cultivar		3 12	26.6	31 <.0	001		
		Treatmnt		1 4					
		Cultivar*Tre	eatmnt	3 12	0.1				
		Effect=Treatm	nt A=Tukev	(.05) avgSD	=0.85355 m	axSD=0.8	5355		
			•	, ,					
				Standar	d		Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Val	ue t	Grp	
								•	
1		F	4.1668	0.217	4 4	19.	17 <.0001	Α	
2		0	3.2440	0.217		14.		В	
	Eff	ect=Cultivar	A=Tukey-Kra	amer(.05) a	vgSD=0.906	2 maxSD=	0.9062		
			-		_				
				Standar	d		Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Val	ue t	Grp	
								·	
3	Bass		3.0518	0.242	0 14.2	12.	61 <.0001	С	
4	Corsica		3.9843	0.242	0 14.2	16.	46 <.0001	В	
5	Jack		2.6389	0.242		10.9		С	
6	Williams		5.1465	0.242		21.		A	
	Effect=	-Cultivar*Trea	atmnt A=Tuk	ey-Kramer(.	05) avgSD=	1.3759 m	axSD=1.3759		
				Standar			Pr >		
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Val	ue t	Grp	
7	Bass	F	3.4345	0.342		10.		В	
8	Corsica	F	4.4800	0.342		13.		AB	
9	Jack	F	3.1778	0.342		9.	29 <.0001	В	
10	Williams	F	5.5747	0.342		16.		Α	
11	Bass	0	2.6690	0.342	2 14.2	7.	80 <.0001	В	
12	Corsica	0	3.4886	0.342	2 14.2	10.	19 <.0001	AB	
13	Jack	0	2.0999	0.342	2 14.2	6.	14 <.0001	В	
14	Williams	0	4.7182	0.342	2 14.2	13.	79 <.0001	Α	
		Effect=Treatm	nnt A=Tukey	(.05) avgSD	=0.85355 m	naxSD=0.8	5355		
				Standar	d		Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Val	ue t	Grp	
1		F	4.1668	0.217	4 4	19.		Α	
2		0	3.2440	0.217	4 4	14.	92 0.0001	В	
	Eff	ect=Cultivar	A=Tukey-Kr	amer(.05) a	vgSD=0.906	32 maxSD=	0.9062		
				Standar			Pr >		
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Val	ue t	Grp	
3	Bass		3.0518	0.242	0 14.2	12.	61 <.0001	С	
4	Corsica		3.9843	0.242	0 14.2	16.	46 <.0001	В	

5	Jack	2.6389	0.2420	14.2	10.90	<.0001	С
6	Williams	5.1465	0.2420	14.2	21.27	<.0001	Α

----- Effect=Cultivar*Treatmnt A=Tukey-Kramer(.05) avgSD=1.26461 maxSD=1.26461 -----

				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
7	Bass	F	3.4345	0.3422	14.2	10.04	<.0001	Α
8	Bass	0	2.6690	0.3422	14.2	7.80	<.0001	Α
9	Corsica	F	4.4800	0.3422	14.2	13.09	<.0001	Α
10	Corsica	0	3.4886	0.3422	14.2	10.19	<.0001	Α
11	Jack	F	3.1778	0.3422	14.2	9.29	<.0001	Α
12	Jack	0	2.0999	0.3422	14.2	6.14	<.0001	Α
13	Williams	F	5.5747	0.3422	14.2	16.29	<.0001	Α
14	Williams	0	4.7182	0.3422	14.2	13.79	<.0001	Α

MalonlyDaidzin

The Mixed Procedure

Model Information

Data Set	WORK.OZONEISO
Dependent Variable	M_Daidzin

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile
Fixed Effects SE Method Prasad-F

Fixed Effects SE Method Prasad-Rao-Jeske-Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Williams
Treatmnt	2	F 0

Dimensions

Covariance	Parameters	2
Columns in	X	15
Columns in	Z	6
Subjects		1
Max Obs Per	Subject	24
Observation	ns Used	24
Observation	ns Not Used	0
Total Obser	rvations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	80.39951076	
1	1	78.78122363	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Chamber	1.4976
Residual	3 6461

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	78.8
AIC (smaller is better)	82.8
AICC (smaller is better)	83.7
BIC (smaller is better)	82.4

Type 3 Tests of Fixed Effects

				Num Dei	า			
		Effect		DF DI	F Value	Pr > F		
		Cultivar		3 12	2 38.13	<.0001		
		Treatmnt		1 4	4 8.53	0.0432		
		Cultivar*Tre	atmnt	3 12	0.44			
		Effect=Treatm	nt A=Tukey	(.05) avgSl	D=3.51868 ma	xSD=3.5186	8	
				Standa	rd		Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
1		F	14.5976	0.896	61 4	16.29	<.0001	Α
2		0	10.8955	0.896	61 4	12.16	0.0003	В
	ETTE	ct=Cultivar A	=Tukey-Kra	` ,		maxSD=3.2	7293 Pr >	
0bs	Cultivar	Treatmnt	Estimate	Standa: Error	rd DF	t Value	Pr > t	Let Grp
003	Cultival	ii eatiiiit	LStillate	LITOI	ы	t value		GI P
3	Bass		10.5450	0.92	59 12.8	11.39	<.0001	ВС
4	Corsica		13.3857	0.92	59 12.8	14.46	<.0001	В
5	Jack		7.9140	0.92	59 12.8	8.55	<.0001	С
6	Williams		19.1415	0.92	59 12.8	20.67	<.0001	Α
	· Effect=C	ultivar*Treat	mnt A=Tuke	y-Kramer(.0	D5) avgSD=4.	96936 maxS	D=4.96936	
	· Effect=C	ultivar*Treat	mnt A=Tuke	y-Kramer(.0 Standa		96936 maxS	D=4.96936 Pr >	Let
	Effect=C Cultivar	ultivar*Treat Treatmnt	mnt A=Tuke Estimate	Standa		96936 maxS t Value		
				Standaı Error	nd DF		Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Standa Error 1.309	rd DF 94 12.8	t Value	Pr > t	Let Grp
0bs 7	Cultivar Bass	Treatmnt F	Estimate	Standa Error 1.309 1.309	DF 12.8 94 12.8	t Value	Pr > t <.0001	Let Grp B
0bs 7 8	Cultivar Bass Corsica	Treatmnt F F	Estimate 12.7165 15.4538	Standar Error 1.309 1.309	DF 12.8 94 12.8 94 12.8	t Value 9.71 11.80	Pr > t <.0001 <.0001	Let Grp B AB
0bs 7 8 9	Cultivar Bass Corsica Jack	Treatmnt F F F	Estimate 12.7165 15.4538 9.9969	Standar Error 1.309 1.309 1.309	DF 12.8 94 12.8 94 12.8 94 12.8	t Value 9.71 11.80 7.63	Pr > t <.0001 <.0001 <.0001	Let Grp B AB B
0bs 7 8 9	Cultivar Bass Corsica Jack Williams	Treatmnt F F F F	Estimate 12.7165 15.4538 9.9969 20.2232	Standar Error 1.309 1.309 1.309 1.309	DF 24 12.8 24 12.8 24 12.8 24 12.8 24 12.8	t Value 9.71 11.80 7.63 15.44	Pr > t <.0001 <.0001 <.0001 <.0001	Let Grp B AB B A
0bs 7 8 9 10 11	Cultivar Bass Corsica Jack Williams Bass	Treatmnt F F F F O	Estimate 12.7165 15.4538 9.9969 20.2232 8.3736	Standar Error 1.309 1.309 1.309 1.309 1.309	DF 24 12.8 24 12.8 24 12.8 24 12.8 24 12.8 24 12.8	t Value 9.71 11.80 7.63 15.44 6.39	Pr > t <.0001 <.0001 <.0001 <.0001 <.0001 <.0001	Let Grp B AB B A

	E	ffect=Treatm	nt A=Tukey(.	05) avgSD=3.	51868 ma	xSD=3.51868		
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
020	0411114		2012	2	٥.		1-1	ж. р
1		F	14.5976	0.8961	4	16.29	<.0001	Α
2		0	10.8955	0.8961	4	12.16	0.0003	В
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD	=3.27293	maxSD=3.27	293	
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
000	Oulciva	TT CU CIIITE	Locimace	LITOI	Di.	t value	141	ui p
3	Bass		10.5450	0.9259	12.8	11.39	<.0001	ВС
4	Corsica		13.3857	0.9259	12.8	14.46	<.0001	В
5	Jack		7.9140	0.9259	12.8	8.55	<.0001	С
6	Williams		19.1415	0.9259	12.8	20.67	<.0001	Α
	Effect=Cu	ltivar*Treat	mnt A=Tukey-	Kramer(.05)	avgSD=4.	90116 maxSD	=4.90116 -	
				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
020	0411114		2012	2	٥.		1-1	ж. р
7	Bass	F	12.7165	1.3094	12.8	9.71	<.0001	Α
8	Bass	0	8.3736	1.3094	12.8	6.39	<.0001	Α
9	Corsica	F	15.4538	1.3094	12.8	11.80	<.0001	Α
10	Corsica	0	11.3175	1.3094	12.8	8.64	<.0001	Α
11	Jack	F	9.9969	1.3094	12.8	7.63	<.0001	Α
12	Jack	0	5.8310	1.3094	12.8	4.45	0.0007	Α
13	Williams	F	20.2232	1.3094	12.8	15.44	<.0001	Α
14	Williams	0	18.0598	1.3094	12.8	13.79	<.0001	Α

Genistein

The Mixed Procedure

Model Information

Data Set	WORK.OZONEISO			
Dependent Variable	Genistein			
Covariance Structure	Variance Components			
Estimation Method	REML			
Residual Variance Method	Profile			

Residual Variance Method Profile
Fixed Effects SE Method Prasad-

Fixed Effects SE Method Prasad-Rao-Jeske-Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Williams
Treatmnt	2	F 0

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion		
0	1	-23.13121316			
1	1	-24.01139657	0.00000000		

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Chamber	0.001678
Residual	0.006285

Genistein 17:11 Sunday, August 14, 2005 38

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	-24.0
AIC (smaller is better)	-20.0
AICC (smaller is better)	-19.1
BIC (smaller is better)	-20.4

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Cultivar	3	12	8.61	0.0025
Treatmnt	1	4	2.32	0.2023
Cultivar*Treatmnt	3	12	3.72	0.0423

----- Effect=Treatmnt A=Tukey(.05) avgSD=0.12923 maxSD=0.12923 -----

0bs	Cultivar	Treatmnt	Estimate	Standard Error	DF	t Value	Pr > t	Let Grp
1		F	0.2487	0.03291	4	7.56	0.0016	Α
2		0	0.1777	0.03291	4	5.40	0.0057	Α

----- Effect=Cultivar A=Tukey-Kramer(.05) avgSD=0.13589 maxSD=0.13589 ------

				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
3	Bass		0.1405	0.03643	14.1	3.86	0.0017	ВС
4	Corsica		0.1268	0.03643	14.1	3.48	0.0036	С
5	Jack		0.2640	0.03643	14.1	7.25	<.0001	AB
6	Williams		0.3215	0.03643	14.1	8.82	<.0001	Α

----- Effect=Cultivar*Treatmnt A=Tukey-Kramer(.05) avgSD=0.20632 maxSD=0.20632 -----

				Standard			Pr >	Let
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
7	Bass	F	0.1182	0.05152	14.1	2.29	0.0376	В
8	Corsica	F	0.1487	0.05152	14.1	2.89	0.0119	В
9	Jack	F	0.3881	0.05152	14.1	7.53	<.0001	Α
10	Williams	F	0.3396	0.05152	14.1	6.59	<.0001	AB
11	Bass	0	0.1628	0.05152	14.1	3.16	0.0069	Α
12	Corsica	0	0.1049	0.05152	14.1	2.04	0.0609	Α
13	Jack	0	0.1399	0.05152	14.1	2.72	0.0166	Α
14	Williams	0	0.3034	0.05152	14.1	5.89	<.0001	Α

	E	ffect=Treatm	nt A=Tukey(.	05) avgSD=0.	12923 ma	xSD=0.12923			
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
1		F	0.2487	0.03291	4	7.56	0.0016	Α	
2		0	0.1777	0.03291	4	5.40	0.0057	Α	
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD	=0.13589	maxSD=0.13	589		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
3	Bass		0.1405	0.03643	14.1	3.86	0.0017	ВС	
4	Corsica		0.1268	0.03643	14.1	3.48	0.0036	С	
5	Jack		0.2640	0.03643	14.1	7.25	<.0001	AB	
6	Williams		0.3215	0.03643	14.1	8.82	<.0001	Α	
	Effect=Cu	ltivar*Treat	mnt A=Tukey-	Kramer(.05)	avgSD=0.	19052 maxSD	=0.19052 -		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
7	Bass	F	0.1182	0.05152	14.1	2.29	0.0376	Α	
8	Bass	0	0.1628	0.05152	14.1	3.16	0.0069	Α	
9	Corsica	F	0.1487	0.05152	14.1	2.89	0.0119	Α	
10	Corsica	0	0.1049	0.05152	14.1	2.04	0.0609	Α	
11	Jack	F	0.3881	0.05152	14.1	7.53	<.0001	Α	
12	Jack	0	0.1399	0.05152	14.1	2.72	0.0166	Α	
13	Williams	F	0.3396	0.05152	14.1	6.59	<.0001	Α	
14	Williams	0	0.3034	0.05152	14.1	5.89	<.0001	Α	

Yield, Seed Weight, Protein, and Oil - Ozone Study

WtHundrd

The Mixed Procedure

Model Information

Data Set	WORK.OZONE

Dependent Variable Wtg

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Willms82
Treatmnt	2	CF 03

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	159.11309228	
1	1	159.11309228	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm Estimate
Chamber 0
Residual 709.63

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood 159.1

AIC (smaller is better) 161.1 AICC (smaller is better) 161.4 BIC (smaller is better) 160.9

Type 3 Tests of Fixed Effects

Effect	Num DF	Den DF	F Value	Pr > F
Cultivar	3	16	1.29	0.3130
Treatmnt	1	16	4.39	0.0525
Cultivar*Treatmnt	3	16	0.47	0.7061

Least Squares Means

				Standard			
Effect	Cultivar	Treatmnt	Estimate	Error	DF	t Value	Pr > t
Treatmnt		CF	113.97	7.9267	16	14.38	<.0001
Treatmnt		03	90.8417	7.6900	16	11.81	<.0001
Cultivar	Bass		97.8167	10.8753	16	8.99	<.0001
Cultivar	Corsica		108.93	10.1729	16	10.71	<.0001
Cultivar	Jack		86.6250	12.1589	16	7.12	<.0001
Cultivar	Willms82		116.25	10.8753	16	10.69	<.0001
Cultivar*Treatmnt	Bass	CF	106.10	15.3800	16	6.90	<.0001
Cultivar*Treatmnt	Bass	03	89.5333	15.3800	16	5.82	<.0001
Cultivar*Treatmnt	Corsica	CF	125.10	13.3195	16	9.39	<.0001
Cultivar*Treatmnt	Corsica	03	92.7667	15.3800	16	6.03	<.0001
Cultivar*Treatmnt	Jack	CF	88.8500	18.8366	16	4.72	0.0002
Cultivar*Treatmnt	Jack	03	84.4000	15.3800	16	5.49	<.0001
Cultivar*Treatmnt	Willms82	CF	135.83	15.3800	16	8.83	<.0001
Cultivar*Treatmnt	Willms82	03	96.6667	15.3800	16	6.29	<.0001

Differences of Least Squares Means

						Standard		
Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Estimate	Error	DF	t Value
Treatmnt		CF		03	23.1292	11.0439	16	2.09
Cultivar	Bass		Corsica		-11.1167	14.8916	16	-0.75
Cultivar	Bass		Jack		11.1917	16.3129	16	0.69
Cultivar	Bass		Willms82		-18.4333	15.3800	16	-1.20
Cultivar	Corsica		Jack		22.3083	15.8533	16	1.41
Cultivar	Corsica		Willms82		-7.3167	14.8916	16	-0.49
Cultivar	Jack		Willms82		-29.6250	16.3129	16	-1.82

The Mixed Procedure

Differences of Least Squares Means

						Standard		
Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Estimate	Error	DF	t Value
O1+ d+T++	D	CF	D	03	40 5007	04 7500	16	0.70
Cultivar*Treatmnt	Bass		Bass		16.5667	21.7506		0.76
Cultivar*Treatmnt	Bass	CF	Corsica	CF	-19.0000	20.3458	16	-0.93
Cultivar*Treatmnt	Bass	CF	Corsica	03	13.3333	21.7506	16	0.61
Cultivar*Treatmnt	Bass	CF	Jack	CF	17.2500	24.3179	16	0.71
Cultivar*Treatmnt	Bass	CF	Jack	03	21.7000	21.7506	16	1.00
Cultivar*Treatmnt	Bass	CF	Willms82	CF	-29.7333	21.7506	16	-1.37
Cultivar*Treatmnt	Bass	CF	Willms82	03	9.4333	21.7506	16	0.43
Cultivar*Treatmnt	Bass	03	Corsica	CF	-35.5667	20.3458	16	-1.75
Cultivar*Treatmnt	Bass	03	Corsica	03	-3.2333	21.7506	16	-0.15
Cultivar*Treatmnt	Bass	03	Jack	CF	0.6833	24.3179	16	0.03
Cultivar*Treatmnt	Bass	03	Jack	03	5.1333	21.7506	16	0.24
Cultivar*Treatmnt	Bass	03	Willms82	CF	-46.3000	21.7506	16	-2.13
Cultivar*Treatmnt	Bass	03	Willms82	03	-7.1333	21.7506	16	-0.33
Cultivar*Treatmnt	Corsica	CF	Corsica	03	32.3333	20.3458	16	1.59
Cultivar*Treatmnt	Corsica	CF	Jack	CF	36.2500	23.0700	16	1.57
Cultivar*Treatmnt	Corsica	CF	Jack	03	40.7000	20.3458	16	2.00
Cultivar*Treatmnt	Corsica	CF	Willms82	CF	-10.7333	20.3458	16	-0.53
Cultivar*Treatmnt	Corsica	CF	Willms82	03	28.4333	20.3458	16	1.40
Cultivar*Treatmnt	Corsica	03	Jack	CF	3.9167	24.3179	16	0.16
Cultivar*Treatmnt	Corsica	03	Jack	03	8.3667	21.7506	16	0.38
Cultivar*Treatmnt	Corsica	03	Willms82	CF	-43.0667	21.7506	16	-1.98
Cultivar*Treatmnt	Corsica	03	Willms82	03	-3.9000	21.7506	16	-0.18
Cultivar*Treatmnt	Jack	CF	Jack	03	4.4500	24.3179	16	0.18
Cultivar*Treatmnt	Jack	CF	Willms82	CF	-46.9833	24.3179	16	-1.93
Cultivar*Treatmnt	Jack	CF	Willms82	03	-7.8167	24.3179	16	-0.32
Cultivar*Treatmnt	Jack	03	Willms82	CF	-51.4333	21.7506	16	-2.36
Cultivar*Treatmnt	Jack	03	Willms82	03	-12.2667	21.7506	16	-0.56
Cultivar*Treatmnt	Willms82	CF	Willms82	03	39.1667	21.7506	16	1.80
		Difference	s of Least	Squares N	leans			
Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Pr > t	Adjustmen	t	Adj P
					1-1	, ,	-	
Treatmnt		CF		03	0.0525	Tukey-Kra	ner	0.0525
Cultivar	Bass		Corsica		0.4662	Tukey-Krai	ner	0.8768
Cultivar	Bass		Jack		0.5025	Tukey-Krai	ner	0.9009
Cultivar	Bass		Willms82		0.2482	Tukey-Kra	ner	0.6365
Cultivar	Corsica		Jack		0.1785	Tukey-Krai	ner	0.5130
Cultivar	Corsica		Willms82		0.6299	Tukey-Krai	ner	0.9599
Cultivar	Jack		Willms82		0.0881	Tukey-Krai	ner	0.3021
Cultivar*Treatmnt	Bass	CF	Bass	03	0.4573	Tukey-Krai	ner	0.9930
Cultivar*Treatmnt	Bass	CF	Corsica	CF	0.3643	Tukey-Krai		0.9777
Cultivar*Treatmnt	Bass	CF	Corsica	03	0.5485	Tukey-Krai		0.9981
Cultivar*Treatmnt	Bass	CF	Jack	CF	0.4883	Tukey-Krai		0.9954
Cultivar*Treatmnt	Bass	CF	Jack	03	0.3333	Tukey-Krai		0.9682
Cultivar*Treatmnt	Bass	CF	Willms82	CF	0.1905	Tukey-Krai		0.8591
						,		
		Th	e Mixed Pr	ocedure				

Differences of Least Squares Means

Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Pr > t	Adjustment	Adj P
Cultivar*Treatmnt	Bass	CF	Willms82	03	0.6703	Tukey-Kramer	0.9998
Cultivar*Treatmnt	Bass	03	Corsica	CF	0.0996	Tukey-Kramer	0.6594

Cultiva	r*Treatmnt	Bass 03	Cors	ica 03	0.8	3837 Tuke	y-Kramer	1.0000	
Cultiva	r*Treatmnt	Bass 03	Jack	CF	0.9	9779 Tuke	y-Kramer	1.0000	
Cultiva	r*Treatmnt	Bass 03	Jack	03	0.8	3164 Tuke	y-Kramer	1.0000	
Cultiva	r*Treatmnt	Bass 03	Will	ms82 CF	0.0	0492 Tuke	y-Kramer	0.4383	
Cultiva	r*Treatmnt	Bass 03	Will	ms82 03	0.7	7472 Tuke	y-Kramer	1.0000	
Cultiva	r*Treatmnt	Corsica CF	Cors	ica 03	0.	1316 Tuke	y-Kramer	0.7500	
Cultiva	r*Treatmnt	Corsica CF	Jack	CF	0.		v-Kramer	0.7597	
Cultiva	r*Treatmnt	Corsica CF	Jack	03	0.0	0627 Tuke	y-Kramer	0.5105	
	r*Treatmnt	Corsica CF		ms82 CF			y-Kramer	0.9993	
	r*Treatmnt	Corsica CF					y-Kramer	0.8458	
	r*Treatmnt	Corsica 03		CF			y-Kramer	1.0000	
	r*Treatmnt						y-Kramer	0.9999	
	r*Treatmnt	Corsica 03					y-Kramer	0.5223	
	r*Treatmnt						y-Kramer	1.0000	
	r*Treatmnt	Jack CF		03			y-Kramer	1.0000	
	r*Treatmnt	Jack CF					y-Kramer y-Kramer	0.5504	
	r*Treatmnt						y-Kramer y-Kramer	1.0000	
	r*Treatmnt	Jack 03		ms82 CF			y-Kramer y-Kramer	0.3199	
	r*Treatmnt	Jack 03					y-Kramer y-Kramer	0.9989	
	r*Treatmnt	Willms82 CF					y-Kramer y-Kramer	0.6283	
Guitiva	ır" ir eatıllir	WIIIIII502 CF	MITTI	11562 03	0.0	1900 Tuke	y-Kramer	0.0263	
	Cff	ect=Treatmnt .	A-Tukov Knam	on(05) ava90	1-03 /10	maySD-23 /	10		
		ect-ireatimit	A-Tukey-Ki alli	er (.03) avgol	7-20.412	maxob-20.4	12		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
							1-1		
1		CF	113.97	7.9267	16	14.38	<.0001	Α	
2		03	90.8417	7.6900	16	11.81	<.0001	Α	
	Effe	ct=Cultivar A	=Tukev-Krame	r(.05) avgSD=	44.6521	maxSD=46.6	716		
			,	(, 3					
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
3	Bass		97.8167	10.8753	16	8.99	<.0001	Α	
4	Corsica		108.93	10.1729	16	10.71	<.0001	Α	
5	Jack		86.6250	12.1589	16	7.12	<.0001	Α	
6	Willms82		116.25	10.8753	16	10.69	<.0001	Α	
	Effect=C	ultivar*Treat	mnt A=Tukey-	Kramer(.05) a	vgSD=67	.5671 maxSD	=74.5021		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
7	Bass	CF	106.10	15.3800	16	6.90	<.0001	Α	
8	Corsica	CF	125.10	13.3195	16	9.39	<.0001	Α	
9	Jack	CF	88.8500	18.8366	16	4.72	0.0002	Α	
10	Willms82	CF	135.83	15.3800	16	8.83	<.0001	Α	
11	Bass	03	89.5333	15.3800	16	5.82	<.0001	Α	
12	Corsica	03	92.7667	15.3800	16	6.03	<.0001	Α	
13	Jack	03	84.4000	15.3800	16	5.49	<.0001	Α	
14	Willms82	03	96.6667	15.3800	16	6.29	<.0001	A	
• •						5.25			

				Standard			Pr >	Le
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Gr
1		CF	113.97	7.9267	16	14.38	<.0001	Α
2		03	90.8417	7.6900	16	11.81	<.0001	Α
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD=	44.6521	maxSD=46.6	716	
				Standard			Pr >	Le
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Gr
3	Bass		97.8167	10.8753	16	8.99	<.0001	Α
4	Corsica		108.93	10.1729	16	10.71	<.0001	Α
5	Jack		86.6250	12.1589	16	7.12	<.0001	Δ
6	Willms82		116.25	10.8753	16	10.69	<.0001	A
	Effect=Cu	ltivar*Treat	mnt A=Tukey-	Kramer(.05) a	vgSD=56	.8736 maxSD	=62.7482 -	
	Effect=Cu	ltivar*Treat	mnt A=Tukey-	Kramer(.05) a Standard	vgSD=56	.8736 maxSD	Pr >	
Obs	Effect=Cu Cultivar	ltivar*Treat Treatmnt	mnt A=Tukey- Estimate	, ,	vgSD=56 DF	t Value		Le
			•	Standard			Pr >	Le Gr
Obs	Cultivar	Treatmnt	Estimate	Standard Error	DF	t Value	Pr > t	Le Gr
0bs 7	Cultivar Bass	Treatmnt CF	Estimate	Standard Error 15.3800	DF 16	t Value	Pr > t <.0001	Le Gr A
0bs 7 8	Cultivar Bass Bass	Treatmnt CF 03	Estimate 106.10 89.5333	Standard Error 15.3800 15.3800	DF 16 16	t Value 6.90 5.82	Pr > t <.0001 <.0001	Le Gr A
0bs 7 8 9	Cultivar Bass Bass Corsica	Treatmnt CF 03 CF	Estimate 106.10 89.5333 125.10	Standard Error 15.3800 15.3800 13.3195	DF 16 16 16	t Value 6.90 5.82 9.39	Pr > t <.0001 <.0001 <.0001	Le Gr A A
0bs 7 8 9 10	Cultivar Bass Bass Corsica Corsica	Treatmnt CF 03 CF 03	Estimate 106.10 89.5333 125.10 92.7667	Standard Error 15.3800 15.3800 13.3195 15.3800	DF 16 16 16	t Value 6.90 5.82 9.39 6.03	Pr > t <.0001 <.0001 <.0001 <.0001	Le Gr A A A A
Obs 7 8 9 10	Cultivar Bass Bass Corsica Corsica Jack	Treatmnt CF 03 CF 03 CF	Estimate 106.10 89.5333 125.10 92.7667 88.8500	Standard Error 15.3800 15.3800 13.3195 15.3800 18.8366	DF 16 16 16 16 16	t Value 6.90 5.82 9.39 6.03 4.72	Pr > t <.0001 <.0001 <.0001 <.0001 0.0002	Le Gr A A A

Yield

The Mixed Procedure

Model Information

Data Set	WORK.OZONE
Donandant Vaniable	W+ a

Dependent Variable Wtg

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Willms82
Treatmnt	2	CF 03

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	159.11309228	
1	1	159.11309228	0.00000000

Convergence criteria met.

Covariance Parameter Estimates

Cov Parm	Estimate
Chamber	0
Residual	709.63

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	159.1
AIC (smaller is better)	161.1
AICC (smaller is better)	161.4
BIC (smaller is better)	160.9

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Cultivar	3	16	1.29	0.3130
Treatmnt	1	16	4.39	0.0525
Cultivar*Treatmnt	3	16	0.47	0.7061

Least Squares Means

				Standard			
Effect	Cultivar	Treatmnt	Estimate	Error	DF	t Value	Pr > t
Treatmnt		CF	113.97	7.9267	16	14.38	<.0001
Treatmnt		03	90.8417	7.6900	16	11.81	<.0001
Cultivar	Bass		97.8167	10.8753	16	8.99	<.0001
Cultivar	Corsica		108.93	10.1729	16	10.71	<.0001
Cultivar	Jack		86.6250	12.1589	16	7.12	<.0001
Cultivar	Willms82		116.25	10.8753	16	10.69	<.0001
Cultivar*Treatmnt	Bass	CF	106.10	15.3800	16	6.90	<.0001
Cultivar*Treatmnt	Bass	03	89.5333	15.3800	16	5.82	<.0001
Cultivar*Treatmnt	Corsica	CF	125.10	13.3195	16	9.39	<.0001
Cultivar*Treatmnt	Corsica	03	92.7667	15.3800	16	6.03	<.0001
Cultivar*Treatmnt	Jack	CF	88.8500	18.8366	16	4.72	0.0002
Cultivar*Treatmnt	Jack	03	84.4000	15.3800	16	5.49	<.0001
Cultivar*Treatmnt	Willms82	CF	135.83	15.3800	16	8.83	<.0001
Cultivar*Treatmnt	Willms82	03	96.6667	15.3800	16	6.29	<.0001

Differences of Least Squares Means

						Standard		
Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Estimate	Error	DF	t Value
Treatmnt		CF		03	23.1292	11.0439	16	2.09
Cultivar	Bass		Corsica		-11.1167	14.8916	16	-0.75
Cultivar	Bass		Jack		11.1917	16.3129	16	0.69
Cultivar	Bass		Willms82		-18.4333	15.3800	16	-1.20
Cultivar	Corsica		Jack		22.3083	15.8533	16	1.41
Cultivar	Corsica		Willms82		-7.3167	14.8916	16	-0.49
Cultivar	Jack		Willms82		-29.6250	16.3129	16	-1.82

The Mixed Procedure

Differences of Least Squares Means

Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Estimate	Standard Error	DF	t Value
Cultivar*Treatmnt	D	CF	Dana	03	16.5667	21.7506	4.0	0.76
Cultivar*Treatmnt	Bass Bass	CF	Bass Corsica	CF	-19.0000	20.3458	16 16	-0.93
Cultivar*Treatmnt	Bass	CF	Corsica	03	13.3333	21.7506	16	0.61
Cultivar*Treatmnt	Bass	CF	Jack	CF	17.2500	24.3179	16	0.71
Cultivar*Treatmnt	Bass	CF	Jack	03	21.7000	21.7506	16	1.00
Cultivar*Treatmnt	Bass	CF	Willms82	CF	-29.7333	21.7506	16	-1.37
Cultivar*Treatmnt	Bass	CF	Willms82	03	9.4333	21.7506	16	0.43
Cultivar*Treatmnt	Bass	03	Corsica	CF	-35.5667	20.3458	16	-1.75
Cultivar*Treatmnt	Bass	03	Corsica	03	-3.2333	21.7506	16	-0.15
Cultivar*Treatmnt	Bass	03	Jack	CF	0.6833	24.3179	16	0.03
Cultivar*Treatmnt	Bass	03	Jack	03	5.1333	21.7506	16	0.24
Cultivar*Treatmnt	Bass	03	Willms82	CF	-46.3000	21.7506	16	-2.13
Cultivar*Treatmnt	Bass	03	Willms82	03	-7.1333	21.7506	16	-0.33
Cultivar*Treatmnt	Corsica	CF	Corsica	03	32.3333	20.3458	16	1.59
Cultivar*Treatmnt	Corsica	CF	Jack	CF	36.2500	23.0700	16	1.57
Cultivar*Treatmnt	Corsica	CF	Jack	03	40.7000	20.3458	16	2.00
Cultivar*Treatmnt	Corsica	CF	Willms82	CF	-10.7333	20.3458	16	-0.53
Cultivar*Treatmnt	Corsica	CF	Willms82	03	28.4333	20.3458	16	1.40
Cultivar*Treatmnt	Corsica	03	Jack	CF	3.9167	24.3179	16	0.16
Cultivar*Treatmnt	Corsica	03	Jack	03	8.3667	21.7506	16	0.38
Cultivar*Treatmnt	Corsica	03	Willms82	CF	-43.0667	21.7506	16	-1.98
Cultivar*Treatmnt	Corsica	03	Willms82	03	-3.9000	21.7506	16	-0.18
Cultivar*Treatmnt	Jack	CF	Jack	03	4.4500	24.3179	16	0.18
Cultivar*Treatmnt	Jack	CF	Willms82	CF	-46.9833	24.3179	16	-1.93
Cultivar*Treatmnt	Jack	CF	Willms82	03	-7.8167	24.3179	16	-0.32
Cultivar*Treatmnt	Jack	03	Willms82	CF	-51.4333	21.7506	16	-2.36
Cultivar*Treatmnt	Jack	03	Willms82	03	-12.2667	21.7506	16	-0.56
Cultivar*Treatmnt	Willms82	CF	Willms82	03	39.1667	21.7506	16	1.80

Differences of Least Squares Means

Effect	Cultivar	Treatmnt	Cultivar	Treatmnt	Pr > t	Adjustment	Adj P
Treatmnt		CF		03	0.0525	Tukey-Kramer	0.0525
Cultivar	Bass		Corsica		0.4662	Tukey-Kramer	0.8768
Cultivar	Bass		Jack		0.5025	Tukey-Kramer	0.9009
Cultivar	Bass		Willms82		0.2482	Tukey-Kramer	0.6365
Cultivar	Corsica		Jack		0.1785	Tukey-Kramer	0.5130
Cultivar	Corsica		Willms82		0.6299	Tukey-Kramer	0.9599
Cultivar	Jack		Willms82		0.0881	Tukey-Kramer	0.3021
Cultivar*Treatmnt	Bass	CF	Bass	03	0.4573	Tukey-Kramer	0.9930
Cultivar*Treatmnt	Bass	CF	Corsica	CF	0.3643	Tukey-Kramer	0.9777
Cultivar*Treatmnt	Bass	CF	Corsica	03	0.5485	Tukey-Kramer	0.9981
Cultivar*Treatmnt	Bass	CF	Jack	CF	0.4883	Tukey-Kramer	0.9954
Cultivar*Treatmnt	Bass	CF	Jack	03	0.3333	Tukey-Kramer	0.9682
Cultivar*Treatmnt	Bass	CF	Willms82	CF	0.1905	Tukey-Kramer	0.8591

The Mixed Procedure

Differences of Least Squares Means

			DITTOT CITO	JO 01 L	ouor oquu.	00 1111	Julio			
Effect		Cultivar	Treatmnt	Culti	var Treat	mnt	Pr >	t Ad	justment	Adj P
Cultivar	r*Treatmnt	Bass	CF	Willm	s82 03		0.6	703 Tu	key-Kramer	0.9998
	r*Treatmnt		03	Corsi					key-Kramer	0.6594
Cultivar	r*Treatmnt	Bass	03	Corsi	ca 03		0.8		kev-Kramer	1.0000
Cultivar	r*Treatmnt	Bass	03	Jack	CF				key-Kramer	1.0000
	r*Treatmnt		03	Jack	03				key-Kramer	1.0000
	r*Treatmnt		03	Willm					key-Kramer	0.4383
	r*Treatmnt	Bass	03	Willm					key-Kramer	1.0000
	r*Treatmnt	Corsica	CF	Corsi					key-Kramer	0.7500
	r*Treatmnt		CF	Jack	CF				key-Kramer	0.7597
	r*Treatmnt		CF	Jack	03				key-Kramer	0.5105
Cultivar	r*Treatmnt		CF	Willm			0.6		key-Kramer	0.9993
	r*Treatmnt		CF	Willm					key-Kramer	0.8458
	r*Treatmnt		03	Jack	CF				key-Kramer	1.0000
	r*Treatmnt	Corsica	03	Jack	03				key-Kramer	0.9999
	r*Treatmnt	Corsica	03	Willm					key-Kramer	0.5223
	r*Treatmnt		03	Willm					key-Kramer	1.0000
	r*Treatmnt		CF	Jack	03		0.8		key-Kramer	1.0000
	r*Treatmnt		CF	Willm					key-Kramer	0.5504
	r*Treatmnt		CF	Willm					key-Kramer key-Kramer	1.0000
	r*Treatmnt		03	Willm					key-Kramer key-Kramer	0.3199
	r*Treatmnt		03	Willm					key-Kramer key-Kramer	0.9989
	r*Treatmnt	Willms82	CF	Willm					key-Kramer key-Kramer	0.6283
ourciva	TT OU CHITTE	WIIIIIIOOL	0.	*********	002 00		0.0		itoy iti amoi	010200
Obs 1	Cultivar	Treatmn CF		nate 3.97	Standard Error 7.9267		DF 16	t Value		Let Grp A
2		03	90.8	3417	7.6900		16	11.81	<.0001	Α
0bs	Effe Cultivar	ct=Cultiva Treatmn			(.05) avgS Standard Error	D=44	.6521 DF	maxSD=46 t Value	.6716 Pr >	Let
005	Cultival	Treatilli	L ESLI	liate	ELLOI		DF	t value	t	Grp
3	Bass		97 5	3167	10.8753		16	8.99	<.0001	Α
4	Corsica			3.93	10.1729		16	10.71		A
5	Jack			5250	12.1589		16	7.12		A
6	Willms82			5.25	10.8753		16	10.69		A
Ŭ	1111111002			7120	1010700		10	10100	10001	,,
	Effect=C	Gultivar*Tr	eatmnt A=	Γukey-K	ramer(.05)	avg	SD=67.	5671 max	SD=74.5021	
					Standard				Pr >	Let
0bs	Cultivar	Treatmn	t Estir	nate	Error		DF	t Value	t	Grp
7	Bass	CF	106	5.10	15.3800		16	6.90	<.0001	Α
8	Corsica	CF	12	5.10	13.3195		16	9.39	<.0001	Α
9	Jack	CF	88.8	3500	18.8366		16	4.72	0.0002	Α
10	Willms82	CF	138	5.83	15.3800		16	8.83	<.0001	Α
11	Bass	03	89.5	5333	15.3800		16	5.82	<.0001	Α
12	Corsica	03		7667	15.3800		16	6.03		Α
13	Jack	03	84.4	1000	15.3800		16	5.49	<.0001	Α

14 Willms82 03 96.6667 15.3800 16 6.29 <.0001 A

	Effe	ct=Treatmnt	A=Tukey-Kram	er(.05) avgSD	=23.412	maxSD=23.4	12		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
000	ouicivai	TT CU CIIITC	Locimaco	LITOI	D.	t value	161	ui p	
1		CF	113.97	7.9267	16	14.38	<.0001	Α	
2		03	90.8417	7.6900	16	11.81	<.0001	Α	
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD=	44.6521	maxSD=46.6	716		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
3	Bass		97.8167	10.8753	16	8.99	<.0001	Α	
4	Corsica		108.93	10.1729	16	10.71	<.0001	Α	
5	Jack		86.6250	12.1589	16	7.12	<.0001	Α	
6	Willms82		116.25	10.8753	16	10.69	<.0001	Α	
	Effect=Cu	ltivar*Treat	mnt A=Tukey-	Kramer(.05) a	vgSD=56	.8736 maxSD	=62.7482 -		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
7	Bass	CF	106.10	15.3800	16	6.90	<.0001	Α	
8	Bass	03	89.5333	15.3800	16	5.82	<.0001	Α	
9	Corsica	CF	125.10	13.3195	16	9.39	<.0001	Α	
10	Corsica	03	92.7667	15.3800	16	6.03	<.0001	Α	
11	Jack	CF	88.8500	18.8366	16	4.72	0.0002	Α	
12	Jack	03	84.4000	15.3800	16	5.49	<.0001	Α	
13	Willms82	CF	135.83	15.3800	16	8.83	<.0001	Α	
14	Willms82	03	96.6667	15.3800	16	6.29	<.0001	Α	

Oil

The Mixed Procedure

Model Information

Data Set WORK.OZONE

Dependent Variable Oil

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Willms82
Treatmnt	2	CF 03

Dimensions

Covariance Parameters	2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Used	0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	31.71204678	
1	1	31.71204678	0.00000000

Convergence criteria met.

Covariance	Parameter				
Estimates					

Cov	Parm	Estimate

Chamber 0 Residual 0.2471

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	31.7
AIC (smaller is better)	33.7
AICC (smaller is better)	34.0
BIC (smaller is better)	33.5

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Cultivar	3	16	15.88	<.0001
Treatmnt	1	16	0.85	0.3713
Cultivar*Treatmnt	3	16	4.83	0.0140

	Effec	t=Treatmnt A	=Tukey-Krame	r(.05) avgSD=	0.43691	maxSD=0.43	691		
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
								•	
1		CF	22.1063	0.1479	16	149.44	<.0001	Α	
2		03	21.9167	0.1435	16	152.72	<.0001	Α	
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD=	0.83328	maxSD=0.87	'097		
			•	, ,					
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
3	Bass		22.7833	0.2030	16	112.26	<.0001	Α	
4	Corsica		21.6292	0.1898	16	113.93		В	
5	Jack		21.0000	0.2269	16	92.55	<.0001	В	
6	Willms82		22.6333	0.2030	16	111.52	<.0001	Α	
	Effoo	+-Tnoo+mn+ A	-Tukov Knomo	r(.05) avgSD=	-0 42601	may CD=0 42	601		
	Ellec	t-ireatiliit A	- rukey-kralile	1 (.05) avgsb-	-0.43091	IIIaxoD-0.40	1091		_
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
1		CF	22.1063	0.1479	16	149.44	<.0001	Α	
2		03	21.9167	0.1435	16	152.72	<.0001	Α	
	Effec	t=Cultivar A	=Tukey-Krame	r(.05) avgSD=	0.83328	maxSD=0.87	097		
			•	, ,					
				Standard			Pr >	Let	
0bs	Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp	
3	Bass		22.7833	0.2030	16	112.26	<.0001	Α	
4	Corsica		21.6292	0.1898	16	113.93		В	
5	Jack		21.0000	0.2269	16	92.55	<.0001	В	
6	Willms82		22.6333	0.2030	16	111.52	<.0001	Α	

Protein

The Mixed Procedure

Model Information

Data Set WORK.OZONE
Dependent Variable Protein

Covariance Structure Variance Components

Estimation Method REML
Residual Variance Method Profile

Fixed Effects SE Method Prasad-Rao-Jeske-

Kackar-Harville

Degrees of Freedom Method Kenward-Roger

Class Level Information

Class	Levels	Values
Chamber	6	1 2 3 4 5 6
Cultivar	4	Bass Corsica Jack Willms82
Treatmnt	2	CF 03

Dimensions

Covariance Parameter	rs 2
Columns in X	15
Columns in Z	6
Subjects	1
Max Obs Per Subject	24
Observations Used	24
Observations Not Use	ed 0
Total Observations	24

Iteration History

Iteration	Evaluations	-2 Res Log Like	Criterion
0	1	55.31006813	
1	1	55.31006813	0.00000000

Convergence criteria met.

Covariance	Parameter
Estin	nates

Cov Parm	Estimate
Chamber	0
Residual	1.0801

The Mixed Procedure

Fit Statistics

-2 Res Log Likelihood	55.3
AIC (smaller is better)	57.3
AICC (smaller is better)	57.6
BIC (smaller is better)	57.1

Type 3 Tests of Fixed Effects

	Num	Den		
Effect	DF	DF	F Value	Pr > F
Cultivar	3	16	4.61	0.0165
Treatmnt	1	16	0.54	0.4730
Cultivar*Treatmnt	3	16	1.25	0.3248

	Effec	ct=Treatmnt A	a=Tukey-Krame	r(.05) avgSD=	0.91339	maxSD=0.91	339	
				Standard			Pr >	Let
Ok	os Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
1		CF	40.4417	0.3092	16	130.77	<.0001	A
2	2	03	40.7583	0.3000	16	135.85	<.0001	Α
	Effec	ct=Cultivar A	a=Tukey-Krame	r(.05) avgSD=	1.74204	maxSD=1.82	2083	
				Standard			Pr >	Let
Ok	os Cultivar	Treatmnt	Estimate	Error	DF	t Value	t	Grp
0.	ourciva.	TT Gu cimire	Locimaco	21101	υ.	· Value	1-1	a, p
3	B Bass		39.6000	0.4243	16	93.33	<.0001	В
4	1 Corsica		41.4583	0.3969	16	104.46	<.0001	Α
5	5 Jack		41.2750	0.4744	16	87.01	<.0001	AB
6	Willms82		40.0667	0.4243	16	94.43	<.0001	AB
	Effec	ct=Treatmnt A	x=Tukey-Krame	r(.05) avgSD=	0.91339	maxSD=0.91	339	
	Effec	ct=Treatmnt A	⊾=Tukey-Krame	. , .	-0.91339	maxSD=0.91		Let
Ok		ct=Treatmnt A Treatmnt	n=Tukey-Krame Estimate	r(.05) avgSD= Standard Error	=0.91339 DF	maxSD=0.91	Pr >	Let Grp
			-	Standard				
	os Cultivar		-	Standard			Pr >	
Ok	os Cultivar	Treatmnt	Estimate	Standard Error	DF	t Value	Pr > t	Grp
Ok	os Cultivar	Treatmnt CF	Estimate	Standard Error 0.3092	DF 16	t Value	Pr > t <.0001	Grp A
Ok	os Cultivar	Treatmnt CF 03	Estimate 40.4417 40.7583	Standard Error 0.3092 0.3000	DF 16 16	t Value 130.77 135.85	Pr > t <.0001 <.0001	Grp A A
Ok	os Cultivar I 2	Treatmnt CF 03	Estimate 40.4417 40.7583	Standard Error 0.3092 0.3000	DF 16 16	t Value 130.77 135.85	Pr > t <.0001 <.0001	Grp A A
Ok	os Cultivar I 2	Treatmnt CF 03	Estimate 40.4417 40.7583	Standard Error 0.3092 0.3000	DF 16 16	t Value 130.77 135.85	Pr > t <.0001 <.0001	Grp A A
Ok	os Cultivar 1 2 Effec	Treatmnt CF 03	Estimate 40.4417 40.7583	Standard Error 0.3092 0.3000 r(.05) avgSD=	DF 16 16	t Value 130.77 135.85	Pr > t <.0001 <.0001	Grp A A
Ok	os Cultivar 2 Effec	Treatmnt CF 03 ct=Cultivar A	Estimate 40.4417 40.7583 =Tukey-Krame	Standard Error 0.3092 0.3000 r(.05) avgSD=	DF 16 16 -1.74204	t Value 130.77 135.85 maxSD=1.82	Pr > t <.0001 <.0001 2083	Grp A A
Ok 2	os Cultivar 2 Effec	Treatmnt CF 03 ct=Cultivar A	Estimate 40.4417 40.7583 N=Tukey-Krame Estimate	Standard Error 0.3092 0.3000 r(.05) avgSD= Standard Error	DF 16 16 :1.74204 DF	t Value 130.77 135.85 maxSD=1.82 t Value	Pr > t <.0001 <.0001 2083 Pr > t	Grp A A Let Grp
Ok 2	os Cultivar 2 Cultivar Effect Sultivar Bass Corsica	Treatmnt CF 03 ct=Cultivar A	Estimate 40.4417 40.7583 =Tukey-Krame Estimate 39.6000	Standard Error 0.3092 0.3000 r(.05) avgSD= Standard Error 0.4243	DF 16 16 :1.74204 DF 16	t Value 130.77 135.85 maxSD=1.82 t Value 93.33	Pr > t <.0001 <.0001 2083 Pr > t <.0001	Grp A A Let Grp B

Data Sets

Seed and Leaf Tissue Isoflavone Analysis Data

Year Field_Type Block Sample_Type Timing Cultivar Plot Isoflavone Isof.Concen.
 2002
 DC
 1
 LeafPost Late
 Bass
 2

 2002
 DC
 1
 LeafPost Late
 Bass
 2
 2002 DC 1
2002 DC 1 LeafPost Late Bass 2 4 0
LeafPost Late Bass 2 4 0
LeafPost Late Bass 2 5 2.709462584
LeafPost Late Bass 2 6 0
LeafPost Late Bass 2 7 0
Seed Late Bass 2 1 8.23800508
Seed Late Bass 2 1 8.23800508
Seed Late Bass 2 2 16.56165854
Seed Late Bass 2 3 0
Seed Late Bass 2 4 27.2837303
Seed Late Bass 2 5 68.10513895
Seed Late Bass 2 6 0
Seed Late Bass 2 7 0
LeafPost Early Bass 3 1 LeafPost Late LeafPost Late Bass PHill PHill PHill PHill PHill PHill LeafPost Early Bass LeafPost Early Bass 3 2.06752268 DC DC LeafPost Early LeafPost Early Bass Bass Bass 3 Bass 3 Bass 3 Bass 3 DC DC LeafPost Early LeafPost Early 4.321613661 2002 0.345680852 7.76169661 LeafPost Early Seed Early DC DC PHill DC DC DC Seed Early
Seed Early
Seed Early
Seed Early
Seed Early
Seed Early PHill 2002 Bass 15.67024064 PHill 2002 Bass 26.4922947 67.24208527 Bass Bass DC DC 2002 Bass Seed Early Bass DC DC LeafPost Late Corsica 5 2002 LeafPost Late Corsica 5 2002 DC DC PHill 2002 LeafPost Late Corsica 5 LeafPost Late Corsica 5 DC DC 2002 LeafPost Late LeafPost Late Corsica 5 Corsica 5 DC DC PHill 2002 LeafPost Late Corsica 5 Seed Late
Seed Late
Seed Late
Seed Late PHill 2002 Corsica 5 3.7964453 DC DC 2002 Corsica 5 Corsica 5 PHill 2002 12.86048928 43.03097719 Corsica 5 Corsica 5 2002 DC Seed Late
Seed Late
Seed Late
Seed Late DC PHill 2002 DC DC Corsica 5 Corsica 5 0.503561384 LeafPost Early Corsica 6
LeafPost Early Corsica 6 PHill 2002 DC DC 1.95297854 PHill 2002 DC DC LeafPost Early Corsica 6
LeafPost Early Corsica 6 PHill 2002 2002 DC DC LeafPost Early Corsica 6
LeafPost Early Corsica 6 PHill 2002 5.030946898 0 0.289918328 4.23662755 10.97030564 DC DC 1 LeafPost Early Seed Early 2002 Corsica 6 Corsica 6 PHill 2002 Seed Early Seed Early Seed " DC DC PHill 2002 Corsica 6 Corsica 6 PHill 2002 DC DC Seed Early Seed Early 14.01009398 48.15582813 2002 Corsica 6 PHill 2002 Corsica 6 2002 DC Seed Early Corsica 6 Early Corsica 6 DC PHill 2002 Seed PHill 2002 DC DC LeafPost Early Jack Jack 0 1.75884152 LeafPost Early PHill 2002 Jack 7 Jack 7 2002 DC DC PHill LeafPost Early PHill 2002 LeafPost Early Jack 7
Jack 7 DC DC LeafPost Early LeafPost Early 3.852071609 0 PHill 2002 2002 LeafPost Early
Seed Early
Seed Early
Seed Early
Seed Early DC DC 0.2252564 2.58180357 PHill 2002 PHill 2002 DC DC 2002 9.60473216 PHill PHill 2002 Early 13.32600048 2002 Seed Earlv

PHill	2002	DC	1	Seed	Early	Jack	7	5	0	
PHill	2002	DC	1		Early	Jack	7	6	Ō	
PHill	2002	DC	1		Early	Jack	7	7	0	
PHill	2002	DC	1	LeafPost	Late	Jack	8	1	0	
PHill	2002	DC	1	LeafPost	Late	Jack	8	2	0.998	387
PHill	2002	DC	1	LeafPost	Late	Jack	8	3	0	
PHill	2002	DC	1	LeafPost		Jack	8	4	0	
PHill	2002	DC	1	LeafPost		Jack	8	5	0	
PHill	2002	DC	1	LeafPost	Late	Jack	8	6	0	
PHill	2002	DC	1	LeafPost	Late	Jack	8	7	0	
PHill	2002	DC	1	Seed	Late	Jack	8	1	2.913	56172
PHill	2002		1				8		6.148	
		DC			Late	Jack		2		00742
PHill	2002	DC	1	Seed	Late	Jack	8	3	0	
PHill	2002	DC	1	Seed	Late	Jack	8	4	8.462	290531
PHill	2002	DC	1	Seed	Late	Jack	8	5	27.94	93657
PHill	2002	DC	1		Late	Jack	8	6	0	
PHill	2002	DC	1	Seed		Jack	8	7	0	
					Late					
PHill	2002	DC	1	LeafPost		William		10	1	0
PHill	2002	DC	1	LeafPost	Late	William	s82	10	2	1.1645597
PHill	2002	DC	1	LeafPost	Late	William	s82	10	3	0
PHill	2002	DC	1	LeafPost		William		10	4	0
			1					10	5	2.22897182
PHill	2002	DC		LeafPost		William				
PHill	2002	DC	1	LeafPost		William		10	6	0
PHill	2002	DC	1	LeafPost	Late	William	s82	10	7	0
PHill	2002	DC	1	Seed	Late	William	s82	10	1	4.61363684
PHill	2002	DC	1	Seed	Late	William		10	2	8.37069338
PHill	2002	DC	1		Late	William		10	3	0
PHill	2002	DC	1	Seed	Late	William	s82	10	4	15.57137476
PHill	2002	DC	1	Seed	Late	William	s82	10	5	38.03821732
PHill	2002	DC	1	Seed	Late	William	s82	10	6	0
PHill	2002	DC	1		Late	William		10	7	0
PHill	2002	DC	1	LeafPost		William		11	1	0
PHill	2002	DC	1	LeafPost	Early	William	s82	11	2	2.03037722
PHill	2002	DC	1	LeafPost	Early	William	s82	11	3	0
PHill	2002	DC	1	LeafPost	-	William	582	11	4	0
PHill	2002	DC	1	LeafPost		William		11	5	6.348693947
					-					
PHill	2002	DC	1	LeafPost		William		11	6	0
PHill	2002	DC	1	LeafPost	Early	William	s82	11	7	0.15822168
PHill	2002	DC	1	Seed	Early	William	s82	11	1	5.15188997
PHill	2002	DC	1		Early	William		11	2	9.87640586
					-					
PHill	2002	DC	1		Early	William		11	3	0
PHill	2002	DC	1	Seed	Early	William	s82	11	4	16.91492226
PHill	2002	DC	1	Seed	Early	William	s82	11	5	42.01903294
PHill	2002	DC	1	Seed	Early	William	s82	11	6	0
PHill	2002	DC	1		Early	William		11	7	0.812031992
					-					
PHill	2002	DC	2	LeafPost	-	William		12	1	0
PHill	2002	DC	2	LeafPost	Early	William	s82	12	2	1.2178829
PHill	2002	DC	2	LeafPost	Early	William	s82	12	3	0
PHill	2002	DC	2	LeafPost	Early	William	s82	12	4	0
PHill	2002	DC	2	LeafPost	4	William		12	5	2.120090297
PHill	2002	DC	2	LeafPost	_	William		12	6	0
PHill	2002	DC	2	LeafPost	Early	William	s82	12	7	0
PHill	2002	DC	2	LeafPost	Late	Corsica	13	1	0	
PHill	2002	DC	2	LeafPost	Late	Corsica	13	2	0	
PHill	2002	DC	2	LeafPost		Corsica		3	0	
PHill	2002	DC	2	LeafPost		Corsica		4	0	
PHill	2002	DC	2	LeafPost		Corsica		5		25602
PHill	2002	DC	2	LeafPost	Late	Corsica	13	6	0	
PHill	2002	DC	2	LeafPost	Late	Corsica	13	7	0	
PHill	2002	DC	2	Seed	Late	Corsica	13	1	4 951	36822
PHill	2002	DC	2			Corsica		2	9.573	
					Late					0300
PHill	2002	DC	2		Late	Corsica		3	0	
PHill	2002	DC	2	Seed	Late	Corsica	13	4	15.72	095358
PHill	2002	DC	2	Seed	Late	Corsica	13	5	39.38	610021
PHill	2002	DC	2		Late	Corsica		6	0	
PHill	2002	DC	2			Corsica		7		08912
					Late					00712
PHill	2002	DC	2	LeafPost	-			1	0	
PHill	2002	DC	2			Corsica		2	1.501	73648
PHill	2002	DC	2	LeafPost	Early	Corsica	14	3	0	
PHill	2002	DC	2		-	Corsica		4	0	
PHill		DC	2			Corsica		5		151942
	2002									151942
PHill	2002	DC	2			Corsica		6	0	
PHill	2002	DC	2	LeafPost	Early	Corsica	14	7	0.124	146016
PHill	2002	DC	2	Seed	Earlv	Corsica	14	1	5.805	54295
PHill	2002	DC	2			Corsica		2		317694
									0	01.001
PHill	2002	DC	2			Corsica		3		0.405.40
PHill	2002	DC	2		-	Corsica		4		248548
PHill	2002	DC	2	Seed	Early	Corsica		5	45.10	382464
PHill	2002	DC	2	Seed	Early	Corsica	14	6	0	
					-					

PHill	2002	DC	2	bood	Famler	Corsica	1.4	7	0.5090	001024
				Seed	Early					701024
PHill	2002	DC	2	LeafPost		Jack	16	1	0	
PHill	2002	DC	2	LeafPost		Jack	16	2	0	
PHill	2002	DC	2	LeafPost	Late	Jack	16	3	0	
PHill	2002	DC	2	LeafPost		Jack	16	4	0	
PHill	2002	DC	2	LeafPost	Late	Jack	16	5	3.0016	542784
PHill	2002	DC	2	LeafPost	Late	Jack	16	6	0	
PHill	2002	DC	2	LeafPost	Late	Jack	16	7	0	
PHill	2002	DC	2		Late	Jack	16	1	25.579	925595
PHill	2002	DC	2		Late	Jack	16	2	9.7420	
PHill	2002	DC	2		Late	Jack	16	3	0	,,,,,,
PHill	2002	DC	2					4	11.541	12201
					Late	Jack	16			
PHill	2002	DC	2		Late	Jack	16	5	38.005	553168
PHill	2002	DC	2		Late	Jack	16	6	0	
PHill	2002	DC	2	Seed	Late	Jack	16	7	0.7742	223148
PHill	2002	DC	2	LeafPost	Early	Jack	17	1	0	
PHill	2002	DC	2	LeafPost	Early	Jack	17	2	2.0069	94206
PHill	2002	DC	2	LeafPost	Early	Jack	17	3	0	
PHill	2002	DC	2	LeafPost	Earlv	Jack	17	4	0	
PHill	2002	DC	2	LeafPost	-	Jack	17	5	5.5950	138034
PHill	2002	DC	2	LeafPost	-	Jack	17	6	0	,00001
PHill	2002	DC	2	LeafPost		Jack	17	7	0.2951	15144
								1		
PHill	2002	DC	2		Early	Jack	17		4.0335	
PHill	2002	DC	2	Seed	Early	Jack	17	2	10.645	50 /
PHill	2002	DC	2		Early	Jack	17	3	0	
PHill	2002	DC	2	Seed	Early	Jack	17	4	12.386	
PHill	2002	DC	2	Seed	Early	Jack	17	5	44.084	162317
PHill	2002	DC	2	Seed	Early	Jack	17	6	0	
PHill	2002	DC	2	Seed	Early	Jack	17	7	0	
PHill	2002	DC	2	LeafPost	Late	Bass	20	1	0	
PHill	2002	DC	2	LeafPost		Bass	20	2	1.4029	35056
PHill	2002	DC	2	LeafPost		Bass	20	3	0	
PHill	2002	DC	2				20	4	0	
				LeafPost		Bass				
PHill	2002	DC	2	LeafPost		Bass	20	5	0	
PHill	2002	DC	2	LeafPost		Bass	20	6	0	
PHill	2002	DC	2	LeafPost		Bass	20	7	0	
PHill	2002	DC	2	Seed	Late	Bass	20	1	5.6153	
PHill	2002	DC	2	Seed	Late	Bass	20	2	11.041	L81862
PHill	2002	DC	2	Seed	Late	Bass	20	3	0	
PHill	2002	DC	2	Seed	Late	Bass	20	4	17.660	023673
PHill	2002	DC	2	Seed	Late	Bass	20	5	43.917	786752
PHill	2002	DC	2	Seed	Late	Bass	20	6	0	
PHill	2002	DC	2		Late	Bass	20	7	0	
PHill	2002	DC	2	LeafPost		Bass	21	i	0	
PHill	2002	DC	2	LeafPost	-	Bass	21	2	2.1845	50114
					_					00114
PHill	2002	DC	2	LeafPost	-	Bass	21	3	0	
PHill	2002	DC	2	LeafPost		Bass	21	4	0	
PHill	2002	DC	2	LeafPost		Bass	21	5	4.5587	/12/5/
PHill	2002	DC	2	LeafPost	Early	Bass	21	6	0	
PHill	2002	DC	2	LeafPost	Early	Bass	21	7	0.2314	102524
PHill	2002	DC	2	Seed	Early	Bass	21	1	7.4688	38338
PHill	2002	DC	2	Seed	Early	Bass	21	2	15.580	044404
PHill	2002	DC	2	Seed	Early	Bass	21	3	0	
PHill	2002	DC	2		Early	Bass	21	4	20.465	51516
PHill	2002	DC	2	Seed	Early	Bass	21	5	52.625	
PHill	2002	DC	2		Early	Bass	21	6	0	
PHill	2002	DC	2		Early	Bass	21	7	0	
PHill	2002	DC	2	LeafPost		Williams		22	1	0
									2	
PHill	2002	DC	2	LeafPost		Williams		22		0.87121724
PHill	2002	DC	2	LeafPost		Williams		22	3	0
PHill	2002	DC	2	LeafPost		Williams		22	4	0
PHill	2002	DC	2	LeafPost		Williams		22	5	0
PHill	2002	DC	2	LeafPost	Late	Williams	382	22	6	0
PHill	2002	DC	2	LeafPost	Late	Williams	382	22	7	0
PHill	2002	DC	2	Seed	Late	Williams	382	22	1	3.73719438
PHill	2002	DC	2		Late	Williams		22	2	9.45471236
PHill	2002	DC	2	Seed	Late	Williams	382	22	3	0
PHill			2		Late	Williams		22	4	10.18533624
		DC				Williams		22	5	33.75621036
PHill	2002	DC DC		Seed					_	
PHill	2002 2002	DC	2		Late			22	6	
PHill	2002 2002 2002	DC DC	2 2	Seed	Late	Williams	82	22	6	0
PHill PHill	2002 2002 2002 2002	DC DC DC	2 2 2	Seed Seed	Late Late	Williams Williams	82 82	22	7	0
PHill PHill PHill	2002 2002 2002 2002 2002	DC DC DC DC	2 2 2 2	Seed Seed LeafPost	Late Late Early	Williams Williams Williams	382 382 382	22 23	7 1	0 0 0
PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002	DC DC DC DC	2 2 2 2 2	Seed Seed LeafPost LeafPost	Late Late Early Early	Williams Williams Williams Williams	382 382 382 382	22 23 23	7 1 2	0 0 0 1.5116711
PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC	2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost	Late Late Early Early Early	Williams Williams Williams Williams Williams	582 582 582 582 582	22 23 23 23	7 1 2 3	0 0 0 1.5116711
PHill PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC DC	2 2 2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost LeafPost	Late Late Early Early Early Early	Williams Williams Williams Williams Williams Williams	582 582 582 582 582 582	22 23 23 23 23 23	7 1 2 3 4	0 0 0 1.5116711 0
PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC	2 2 2 2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost	Late Late Early Early Early Early	Williams Williams Williams Williams Williams	582 582 582 582 582 582	22 23 23 23	7 1 2 3 4 5	0 0 0 1.5116711
PHill PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC DC	2 2 2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost LeafPost	Late Late Early Early Early Early Early	Williams Williams Williams Williams Williams Williams	582 582 582 582 582 582 582	22 23 23 23 23 23	7 1 2 3 4	0 0 0 1.5116711 0
PHill PHill PHill PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC DC	2 2 2 2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	Late Late Early Early Early Early Early Early Early	Williams Williams Williams Williams Williams Williams Williams	582 582 582 582 582 582 582 582 582	22 23 23 23 23 23 23	7 1 2 3 4 5	0 0 0 1.5116711 0 0 3.069515862
PHill PHill PHill PHill PHill PHill PHill PHill PHill	2002 2002 2002 2002 2002 2002 2002 200	DC DC DC DC DC DC DC DC	2 2 2 2 2 2 2 2 2 2 2	Seed Seed LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost	Late Late Early Early Early Early Early Early Early	Williams Williams Williams Williams Williams Williams Williams Williams	582 582 582 582 582 582 582 582 582	22 23 23 23 23 23 23 23	7 1 2 3 4 5 6	0 0 0 1.5116711 0 3.069515862

PHill	2002	DC	2	Seed	Early	Williams	82	23	2	8.98336094
PHill	2002	DC	2	Seed	Early	Williams	82	23	3	0
PHill	2002	DC	2	Seed	Early	Williams		23	4	9.102546089
PHill	2002	DC	2	Seed	Early	Williams	82	23	5	33.08811722
PHill	2002	DC	2	Seed	Early	Williams	82	23	6	0
PHill	2002	DC	2	Seed	Early	Williams		23	7	0
					_					
PHill	2002	DC	3	Seed	Late	Williams		26	1	7.19646277
PHill	2002	DC	3	Seed	Late	Williams	82	26	2	14.72673464
PHill	2002	DC	3	Seed	Late	Williams	82	26	3	0
PHill	2002	DC	3	Seed	Late	Williams	82	26	4	21.55464908
PHill	2002	DC	3	Seed	Late	Williams	82	26	5	54.70631651
PHill	2002	DC	3	Seed	Late	Williams		26	6	0
PHill	2002	DC	3	Seed	Late	Williams	82	26	7	0
PHill	2002	DC	3	LeafPost	Earlv	Williams	82	27	1	0
PHill	2002	DC	3	LeafPost	4	Williams		27	2	1.94327576
PHill	2002	DC	3	LeafPost	Early	Williams	82	27	3	0
PHill	2002	DC	3	LeafPost	Early	Williams	82	27	4	0
PHill	2002	DC	3	LeafPost		Williams		27	5	3.901172867
					4					
PHill	2002	DC	3	LeafPost	Early	Williams	82	27	6	0
PHill	2002	DC	3	LeafPost	Early	Williams	82	27	7	0.301036608
PHill	2002	DC	3	Seed	Early	Williams		27	1	8.0194969
					_					
PHill	2002	DC	3	Seed	Early	Williams	82	27	2	16.8720164
PHill	2002	DC	3	Seed	Early	Williams	82	27	3	0
PHill	2002	DC	3	Seed	Early	Williams	82	27	4	23.49073663
					-					
PHill	2002	DC	3	Seed	Early	Williams	82	27	5	59.47378641
PHill	2002	DC	3	Seed	Early	Williams	82	27	6	0
PHill	2002	DC	3	Seed	Early	Williams		27	7	0
					_					
PHill	2002	DC	3	Seed	Late	Corsica	28	1	4.871	.32779
PHill	2002	DC	3	Seed	Late	Corsica	28	2	9.735	555202
										.00202
PHill	2002	DC	3	Seed	Late		28	3	0	
PHill	2002	DC	3	Seed	Late	Corsica	28	4	13.58	3746634
PHill	2002	DC	3	Seed	Late	Corsica	28	5	34 27	7030674
										030074
PHill	2002	DC	3	Seed	Late		28	6	0	
PHill	2002	DC	3	Seed	Late	Corsica	28	7	0	
PHill	2002	DC	3	LeafPost	Early	Corsica	29	1	0	
					-					
PHill	2002	DC	3	LeafPost	Early	Corsica	29	2	1.646	526802
PHill	2002	DC	3	LeafPost	Early	Corsica	29	3	0	
PHill	2002	DC	3	LeafPost		Corsica	29	4	0	
					-					
PHill	2002	DC	3	LeafPost	Early	Corsica	29	5	3.697	783161
PHill	2002	DC	3	LeafPost	Early	Corsica	29	6	0	
PHill	2002	DC	3	LeafPost			29	7	0 100	957562
					_					
PHill	2002	DC	3	Seed	Early	Corsica	29	1	4.778	386804
PHill	2002	DC	3	Seed	Early	Corsica	29	2	9.861	7475
PHill	2002	DC	3	Seed	Early		29	3	0	
					_					
PHill	2002	DC	3	Seed	Early	Corsica	29	4	13.27	7447768
PHill	2002	DC	3	Seed	Early	Corsica	29	5	34.23	3405702
PHill	2002	DC	3	Seed	_		29	6	0	
					Early					
PHill	2002	DC	3	Seed	Early	Corsica	29	7	0	
PHill	2002	DC	3	LeafPost	Late	Jack	31	1	0	
PHill	2002	DC	3	LeafPost		Jack	31	2		26794
										.20794
PHill	2002	DC	3	LeafPost	Late	Jack	31	3	0	
PHill	2002	DC	3	LeafPost	Late	Jack	31	4	0	
PHill	2002	DC	3	LeafPost		Jack	31	5	2 22	3207379
										1201319
PHill	2002	DC	3	LeafPost	Late	Jack	31	6	0	
PHill	2002	DC	3	LeafPost	Late	Jack	31	7	0	
PHill	2002	DC	3	Seed	Late	Jack	31	1		67199
PHill	2002	DC	3	Seed	Late	Jack	31	2		570861
PHill	2002	DC	3	Seed	Late	Jack	31	3	0	
PHill	2002	DC	3	Seed	Late	Jack	31	4	11.35	762882
	2002		3	Seed			31	5		434536
PHill		DC			Late	Jack				.404000
PHill	2002	DC	3	Seed	Late	Jack	31	6	0	
PHill	2002	DC	3	Seed	Late	Jack	31	7	0	
PHill	2002	DC	3	LeafPost		Jack	33	1	0	
PHill	2002	DC	3	LeafPost	Early	Jack	33	2	1.192	288972
PHill	2002	DC	3	LeafPost	Earlv	Jack	33	3	0	
PHill	2002	DC	3	LeafPost		Jack	33	4	0	
										460055
PHill	2002	DC	3	LeafPost	- 2	Jack	33	5	1.614	1468955
PHill	2002	DC	3	LeafPost	Earlv	Jack	33	6	0	
PHill	2002	DC	3	LeafPost		Jack	33	7	0	
					_					110000
PHill	2002	DC	3	Seed	Early	Jack	33	1		312022
PHill	2002	DC	3	Seed	Early	Jack	33	2	9.409	95482
PHill	2002	DC	3	Seed	Early	Jack	33	3	0	
					_					110000
PHill	2002	DC	3	Seed	Early	Jack	33	4		3112909
PHill	2002	DC	3	Seed	Early	Jack	33	5	37.43	8851681
PHill	2002	DC	3	Seed	Early	Jack	33	6	0	
					_					
PHill	2002	DC	3	Seed	Early	Jack	33	7	0	
PHill	2002	DC	3	Seed	Late	Bass	34	1	4.382	2032
PHill	2002	DC	3	Seed	Late	Bass	34	2		.037448
		DC	3				34	3	0	
PHill	2002	DC	J	Seed	Late	Bass	J =	J	U	

PHill	2002	DC	3	Seed	Late	Bass	34	4	11.58999247
PHill	2002	DC	3	Seed	Late	Bass	34	5	41.884953
PHill	2002	DC	3	Seed	Late	Bass	34	6	0
PHill	2002	DC	3	Seed	Late	Bass	34	7	0
PHill	2002	DC	3	LeafPost		Bass	36	1	0
PHill	2002	DC	3	LeafPost	-	Bass	36	2	2.47215524
PHill	2002	DC	3	LeafPost		Bass	36	3	0
					4			4	
PHill	2002	DC	3	LeafPost	-	Bass	36		0
PHill	2002	DC	3	LeafPost		Bass	36	5	6.803614
PHill	2002	DC	3	LeafPost	Early	Bass	36	6	2.718217864
PHill	2002	DC	3	LeafPost	Early	Bass	36	7	0.25831488
PHill	2002	DC	3	Seed	Early	Bass	36	1	4.14726979
PHill	2002	DC	3	Seed	Early	Bass	36	2	10.36679714
PHill	2002	DC	3	Seed	Early	Bass	36	3	0
PHill	2002	DC	3	Seed	Early	Bass	36	4	11.94088366
PHill	2002	DC	3	Seed	Early	Bass	36	5	40.82956468
			3					6	0
PHill	2002	DC		Seed	Early	Bass	36		
PHill	2002	DC	3	Seed	Early	Bass	36	7	0
PHill	2002	FS	1	LeafPost	Late	William	ms82	1	1 0
PHill	2002	FS	1	LeafPost	Late	William	ms82	1	2 1.28578856
PHill	2002	FS	1	LeafPost	Late	William	ms82	1	3 0
PHill	2002	FS	1	LeafPost		William		1	4 0
PHill	2002	FS	1	LeafPost		William		1	5 2.231010329
PHill	2002	FS	1	LeafPost		William		1	6 0
PHill	2002	FS	1	LeafPost		William		1	7 0
PHill	2002	FS	1	Seed	Late	William		1	1 2.54415156
PHill	2002	FS	1	Seed	Late	William	ms82	1	2 4.79366438
PHill	2002	FS	1	Seed	Late	William	ms82	1	3 0
PHill	2002	FS	1	Seed	Late	William	ms82	1	4 7.588876285
PHill	2002	FS	1	Seed	Late	William	ms82	1	5 24.68907692
PHill	2002	FS	1	Seed	Late	William		1	6 0
PHill	2002	FS	1	Seed	Late	William		1	7 0
PHill	2002	FS	1	Seed	Early	William		2	1 3.13566037
PHill	2002	FS	1	Seed	Early	William		2	2 7.33009886
PHill	2002	FS	1	Seed	Early	William	ms82	2	3 0
PHill	2002	FS	1	Seed	Early	William	ms82	2	4 9.125025791
PHill	2002	FS	1	Seed	Early	William	ms82	2	5 34.66589659
PHill	2002	FS	1	Seed	Early	William	ms82	2	6 0
PHill	2002	FS	1	Seed	Early	William		2	7 0.737129392
PHill	2002	FS	1	LeafPost	-	William		3	1 0
PHill	2002	FS	1		-			3	2 1.59777482
				LeafPost	-	William			
PHill	2002	FS	1	LeafPost	-	William		3	3 0
PHill	2002	FS	1	LeafPost	-	William		3	4 4.666079841
PHill	2002	FS	1	LeafPost	Early	William	ms82	3	5 5.577027345
PHill	2002	FS	1	LeafPost	Early	William	ms82	3	6 0
PHill	2002	FS	1	LeafPost	Early	William	ms82	3	7 0
PHill	2002	FS	1	LeafPost	-	Bass	4	1	0
PHill	2002	FS	1	LeafPost		Bass	4	2	1.46045654
PHill	2002	FS	1	LeafPost		Bass	4	3	0
PHill	2002	FS	1			Bass	4	4	0
				LeafPost					
PHill	2002	FS	1	LeafPost		Bass	4	5	4.915005053
PHill	2002	FS	1	LeafPost		Bass	4	6	0
PHill	2002	FS	1	LeafPost	Late	Bass	4	7	0.357497968
PHill	2002	FS	1	Seed	Late	Bass	4	1	2.5282717
PHill	2002	FS	1	Seed	Late	Bass	4	2	5.0074526
PHill	2002	FS	1	Seed	Late	Bass	4	3	0
PHill	2002	FS	1	Seed	Late	Bass	4	4	6.275648418
PHill	2002	FS	1	Seed	Late	Bass	4	5	20.73619152
PHill	2002	FS	1	Seed	Late	Bass	4	6	0
	2002		1	Seed			4	7	0
PHill		FS			Late	Bass			
PHill	2002	FS	1	Seed	Early	Bass	5	1	1.83334003
PHill	2002	FS	1	Seed	Early	Bass	5	2	3.78065606
PHill	2002	FS	1	Seed	Early	Bass	5	3	0
PHill	2002	FS	1	Seed	Early	Bass	5	4	3.678850057
PHill	2002	FS	1	Seed	Early	Bass	5	5	16.5465942
PHill	2002	FS	1	Seed	Early	Bass	5	6	0
PHill	2002	FS	1	Seed	Early	Bass	5	7	0
PHill	2002	FS	1	Seed	Early	Jack	7	1	1.70140783
PHill	2002	FS	1	Seed	-		7	2	1.90286936
					Early	Jack			
PHill	2002	FS	1	Seed	Early	Jack	7	3	0
PHill	2002	FS	1	Seed	Early	Jack -	7	4	4.303662225
PHill	2002	FS	1	Seed	Early	Jack	7	5	8.622766384
PHill	2002	FS	1	Seed	Early	Jack	7	6	0
PHill	2002	FS	1	Seed	Early	Jack	7	7	0
PHill	2002	FS	1	LeafPost	Late	Jack	9	1	0
PHill	2002	FS	1	LeafPost		Jack	9	2	1.47458912
PHill	2002	FS	1	LeafPost		Jack	9	3	0
PHill	2002	FS	1	LeafPost		Jack	9	4	0
PHill	2002	FS	1	LeafPost		Jack	9	5	4.515933854
-11-1-1	2002	± Ø	_	Teat LOS (. дасе	Jack	,	J	1.0100004

PHill	2002	FS	1	LeafPost		Jack	9	6	0
PHill	2002	FS	1	LeafPost	Late	Jack	9	7	0
PHill	2002	FS	1	Seed	Late	Jack	9	1	1.98823363
PHill	2002	FS	1	Seed	Late	Jack	9	2	2.91603776
PHill	2002	FS	1	Seed	Late	Jack	9	3	0
PHill	2002	FS	1	Seed	Late	Jack	9	4	5.113769369
PHill	2002	FS	1	Seed	Late	Jack	9	5	14.58531043
PHill	2002	FS	1	Seed	Late	Jack	9	6	0
PHill	2002	FS	1	Seed	Late	Jack	9	7	0
PHill	2002	FS	1				10	1	0
				LeafPost	-				
PHill	2002	FS	1	LeafPost	-		10	2	1.1730536
PHill	2002	FS	1	LeafPost	-	Corsica	10	3	0
PHill	2002	FS	1	LeafPost	Early		10	4	3.985854468
PHill	2002	FS	1	LeafPost	Early	Corsica	10	5	4.846670331
PHill	2002	FS	1	LeafPost	Early	Corsica	10	6	0
PHill	2002	FS	1	LeafPost	Early	Corsica	10	7	0
PHill	2002	FS	1	Seed	Early	Corsica	10	1	3.14909002
PHill	2002	FS	1	Seed	Early	Corsica	10	2	8.25782318
PHill	2002	FS	1	Seed	Early		10	3	0
PHill	2002	FS	1	Seed	Early		10	4	9.321835198
PHill	2002	FS	1	Seed	Early		10	5	33.29799594
PHill	2002	FS	1	Seed	-		10	6	0
					Early			7	
PHill	2002	FS	1	Seed	Early		10		0
PHill	2002	FS	1	LeafPost			12	1	0
PHill	2002	FS	1	LeafPost	Late	Corsica		2	1.34956802
PHill	2002	FS	1	LeafPost	Late	Corsica	12	3	0
PHill	2002	FS	1	LeafPost	Late	Corsica	12	4	0
PHill	2002	FS	1	LeafPost	Late	Corsica	12	5	3.884140067
PHill	2002	FS	1	LeafPost	Late	Corsica	12	6	0
PHill	2002	FS	1	LeafPost			12	7	0
PHill	2002	FS	1	Seed	Late	Corsica		1	3.40772598
PHill	2002	FS	1	Seed	Late		12	2	8.26193006
PHill	2002	FS	1	Seed	Late		12	3	0
PHill	2002	FS	1	Seed	Late	Corsica		4	9.475536593
PHill	2002	FS	1	Seed	Late	Corsica		5	36.38301102
PHill	2002	FS	1	Seed	Late		12	6	0
PHill	2002	FS	1	Seed	Late	Corsica	12	7	0
PHill	2002	FS	2	Seed	Early	Corsica	14	1	3.28825641
PHill	2002	FS	2	Seed	Early	Corsica	14	2	8.22603212
PHill	2002	FS	2	Seed	Early	Corsica	14	3	0
PHill	2002	FS	2	Seed	Early		14	4	9.904867283
PHill	2002	FS	2	Seed	Early		14	5	35.30929763
PHill	2002	FS	2	Seed	Early		14	6	0
PHill	2002	FS	2	Seed	Early		14	7	0
			2		-		15		0
PHill	2002	FS		LeafPost				1	
PHill	2002	FS	2	LeafPost			15	2	1.12175486
PHill	2002	FS	2	LeafPost		Corsica		3	0
PHill	2002	FS	2	LeafPost	Late	Corsica		4	0
PHill	2002	FS	2	LeafPost	Late		15	5	2.910146499
PHill	2002	FS	2	LeafPost	Late	Corsica	15	6	0
PHill	2002	FS	2	LeafPost	Late	Corsica	15	7	0
PHill	2002	FS	2	Seed	Late	Corsica	15	1	3.21895899
PHill	2002	FS	2	Seed	Late	Corsica	1.5	2	7.86463634
PHill	2002	FS	2	Seed	Late		15	3	0
PHill	2002	FS	2	Seed	Late		15	4	8.614245056
PHill	2002	FS	2	Seed	Late	Corsica	15	5	33.60337184
			2						0
PHill	2002	FS	2	Seed	Late		15 15	6 7	0
PHill	2002	FS		Seed	Late	Corsica			
PHill	2002	FS	2	Seed	Early	Bass	16	1	1.83650166
PHill	2002	FS	2	Seed	Early	Bass	16	2	3.86591522
PHill	2002	FS	2	Seed	Early	Bass	16	3	0
PHill	2002	FS	2	Seed	Early	Bass	16	4	3.890454311
PHill	2002	FS	2	Seed	Early	Bass	16	5	16.68449635
PHill	2002	FS	2	Seed	Early	Bass	16	6	0
PHill	2002	FS	2	Seed	Early	Bass	16	7	0
PHill	2002	FS	2	LeafPost	Late	Bass	17	1	0
PHill	2002	FS	2	LeafPost		Bass	17	2	2.01766328
PHill	2002	FS	2	LeafPost		Bass	17	3	0
PHill	2002	FS	2	LeafPost		Bass	17	4	0
PHill	2002	FS	2	LeafPost		Bass	17	5	4.09111159
			2						
PHill	2002	FS		LeafPost		Bass	17	6	0
PHill	2002	FS	2	LeafPost		Bass	17	7	0
PHill	2002	FS	2	Seed	Late	Bass	17	1	1.62890618
PHill	2002	FS	2	Seed	Late	Bass	17	2	1.94712044
PHill	2002	FS	2	Seed	Late	Bass	17	3	0
PHill	2002	FS	2	Seed	Late	Bass	17	4	2.892839263
PHill	2002	FS	2	Seed	Late	Bass	17	5	7.198603217
PHill	2002	FS	2	Seed	Late	Bass	17	6	0
PHill	2002	FS	2	Seed	Late	Bass	17	7	0
		-							

					_					
PHill	2002	FS	2	Seed	Early	William	ns82	19	1	2.46360064
PHill	2002	FS	2	Seed	Early	Willian	ns82	19	2	6.04607234
PHill	2002	FS	2	Seed	Early	William	ns82	19	3	0
PHill	2002	FS	2	Seed	Early	Willian	ns82	19	4	6.706114273
PHill	2002	FS	2	Seed	Early	William		19	5	25.50805612
PHill	2002	FS	2		Early			19	6	0
				Seed	-	Willian				
PHill	2002	FS	2	Seed	Early	William		19	7	0
PHill	2002	FS	2	LeafPost	Late	William	ns82	21	1	0
PHill	2002	FS	2	LeafPost	Late	Willian	ns82	21	2	2.17387238
PHill	2002	FS	2	LeafPost	Late	William	ns82	21	3	0
			2						4	0
PHill	2002	FS		LeafPost		Willian		21		
PHill	2002	FS	2	LeafPost	Late	William	ns82	21	5	3.06234468
PHill	2002	FS	2	LeafPost	Late	Willian	ns82	21	6	0
PHill	2002	FS	2	LeafPost	Late	Willian	ns82	21	7	0
PHill	2002	FS	2	Seed	Late	Willian		21	1	3.02721213
PHill	2002	FS	2	Seed	Late	Willian		21	2	7.1469977
PHill	2002	FS	2	Seed	Late	Willian	ns82	21	3	0
PHill	2002	FS	2	Seed	Late	Willian	ns82	21	4	7.604141475
PHill	2002	FS	2	Seed	Late	William	ne82	21	5	29.20507722
PHill	2002	FS	2	Seed	Late	Willian		21	6	0
PHill	2002	FS	2	Seed	Late	Willian	ns82	21	7	0
PHill	2002	FS	2	Seed	Early	Jack	22	1	1.7	2435361
PHill	2002	FS	2	Seed	Early	Jack	22	2		4732966
					-					1732300
PHill	2002	FS	2	Seed	Early	Jack	22	3	0	
PHill	2002	FS	2	Seed	Early	Jack	22	4	2.8	85769539
PHill	2002	FS	2	Seed	Early	Jack	22	5	4.4	06845503
PHill	2002	FS	2	Seed	Early	Jack	22	6	0	
PHill	2002	FS	2	Seed	Early	Jack	22	7	0	
PHill	2002	FS	2	LeafPost	Early	Jack	23	1	0	
PHill	2002	FS	2	LeafPost	Earlv	Jack	23	2	1.3	8829634
PHill	2002	FS	2	LeafPost		Jack	23	3	0	
					_					07040400
PHill	2002	FS	2	LeafPost	-	Jack	23	4		97340493
PHill	2002	FS	2	LeafPost	Early	Jack	23	5	4.8	52531044
PHill	2002	FS	2	LeafPost	Earlv	Jack	23	6	0	
PHill	2002	FS	2	LeafPost	-	Jack	23	7	0	
					-					
PHill	2002	FS	2	LeafPost		Jack	23	1	0	
PHill	2002	FS	2	LeafPost	Late	Jack	23	2	1.3	69331
PHill	2002	FS	2	LeafPost	Late	Jack	23	3	0	
PHill	2002	FS	2	LeafPost	Tate	Jack	23	4	0	
PHill	2002		2				23	5		(107000)
		FS		LeafPost		Jack				61979006
PHill	2002	FS	2	LeafPost	Late	Jack	23	6	0	
PHill	2002	FS	2	LeafPost	Late	Jack	23	7	0	
PHill	2002	FS	2	Seed	Late	Jack	23	1	1 5	5548366
			2					2		
PHill	2002	FS		Seed	Late	Jack	23			3948638
PHill	2002	FS	2	Seed	Late	Jack	23	3	0	
PHill	2002	FS	2	Seed	Late	Jack	23	4	2.9	25699088
PHill	2002	FS	2	Seed	Late	Jack	23	5	5.7	80328891
PHill	2002	FS	2	Seed	Late	Jack	23	6	0	
PHill	2002	FS	2	Seed	Late	Jack	23	7	0	
PHill	2002	FS	3	Seed	Early	Willian	ns82	26	1	2.92386879
PHill	2002	FS	3	Seed	Early	William	ns82	26	2	7.82726042
PHill	2002	FS	3	Seed	Early	William		26	3	0
	2002				-					
PHill		FS	3	Seed	Early	William		26	4	7.743734263
PHill	2002	FS	3	Seed	Early	Willian	ns82	26	5	32.29151198
PHill	2002	FS	3	Seed	Early	Willian	ns82	26	6	0
PHill	2002	FS	3	Seed	Early	Willian	ns82	26	7	0
PHill	2002	FS	3		-			27	1	0
				LeafPost		Willian				
PHill	2002	FS	3	LeafPost		William		27	2	3.15040592
PHill	2002	FS	3	LeafPost	Late	Willian	ns82	27	3	0
PHill	2002	FS	3	LeafPost	Late	Willian	ns82	27	4	0
PHill	2002	FS	3	LeafPost		William		27	5	2.498557996
PHill	2002	FS	3	LeafPost		William		27	6	0
PHill	2002	FS	3	LeafPost	Late	Willian	ns82	27	7	0
PHill	2002	FS	3	Seed	Late	Willian	ns82	27	1	2.26185343
PHill	2002	FS	3	Seed	Late	William		27	2	4.75060838
	2002	FS				William		27	3	0
PHill			3	Seed	Late					
PHill	2002	FS	3	Seed	Late	Willian		27	4	4.985140993
PHill	2002	FS	3	Seed	Late	Willian	ns82	27	5	19.46259341
PHill	2002	FS	3	Seed	Late	William		27	6	0
PHill	2002	FS	3	Seed	Late	Willian		27	7	0
PHill	2002	FS	3	Seed	Early	Corsica		1		8603416
PHill	2002	FS	3	Seed	Early	Corsica	a 28	2	7.4	2444118
PHill	2002	FS	3	Seed	Early	Corsica		3	0	
PHill	2002	FS	3	Seed	Early	Corsica		4		05072604
					-					
PHill	2002	FS	3	Seed	Early	Corsica		5		34362192
PHill	2002	FS	3	Seed	Early	Corsica	a 28	6	0	
PHill	2002	FS	3	Seed	Early	Corsica	a 28	7	0	
PHill	2002	FS	3	LeafPost	-	Corsica		1	0	
										0160070
PHill	2002	FS	3	LeafPost	. шаке	Corsica	2 JU	2	0.9	8168072

D	0000	=-	_				2.0	_	^
PHill	2002	FS	3	LeafPost		Corsica	30	3	0
PHill	2002	FS	3	LeafPost		Corsica	30	4	0
PHill	2002	FS	3	LeafPost	Late	Corsica	30	5	2.611539701
PHill	2002	FS	3	LeafPost	Late	Corsica	30	6	0
PHill	2002	FS	3	LeafPost	Late	Corsica	30	7	0
PHill	2002	FS	3	Seed	Late		30	1	2.74341448
PHill	2002	FS	3	Seed	Late	Corsica	30	2	7.07384666
PHill	2002	FS	3	Seed	Late		30	3	0
PHill	2002	FS	3	Seed	Late	Corsica	30	4	6.899868587
PHill	2002	FS	3	Seed	Late	Corsica	30	5	25.2354734
PHill	2002	FS	3	Seed	Late	Corsica	30	6	0
PHill	2002	FS	3	Seed	Late	Corsica	30	7	0
PHill	2002	FS	3	Seed	Early	Jack	31	1	1.54840709
PHill	2002	FS	3	Seed	Early	Jack	31	2	1.43124884
PHill	2002	FS	3	Seed	Early	Jack	31	3	0
					-			4	2.558182224
PHill	2002	FS	3	Seed	Early	Jack	31		
PHill	2002	FS	3	Seed	Early	Jack	31	5	3.97639252
PHill	2002	FS	3	Seed	Early	Jack	31	6	0
PHill	2002	FS	3	Seed	Early	Jack	31	7	0
PHill	2002	FS	3	LeafPost	Late	Jack	32	1	0
PHill	2002	FS	3	LeafPost	Late	Jack	32	2	1.57088828
PHill	2002	FS	3	LeafPost		Jack	32	3	0
PHill	2002	FS	3	LeafPost		Jack	32	4	0
PHill	2002	FS	3	LeafPost		Jack	32	5	3.260339815
PHill	2002	FS	3	LeafPost	Late	Jack	32	6	0
PHill	2002	FS	3	LeafPost	Late	Jack	32	7	0
PHill	2002	FS	3	Seed	Late	Jack	32	1	1.6422556
PHill	2002	FS	3	Seed	Late	Jack	32	2	1.6706747
PHill	2002	FS	3	Seed	Late	Jack	32	3	0
PHill	2002	FS	3	Seed	Late	Jack	32	4	2.979009882
PHill	2002	FS	3	Seed	Late	Jack	32	5	4.764301006
PHill	2002	FS	3	Seed	Late	Jack	32	6	0
PHill	2002	FS	3	Seed	Late	Jack	32	7	0
PHill	2002	FS	3	Seed	Early	Bass	34	1	2.12345597
PHill	2002	FS	3	Seed	Early	Bass	34	2	6.7998725
PHill	2002	FS	3	Seed	Early	Bass	34	3	0
PHill					-		34	4	
	2002	FS	3	Seed	Early	Bass			4.184469002
PHill	2002	FS	3	Seed	Early	Bass	34	5	21.95143897
PHill	2002	FS	3	Seed	Early	Bass	34	6	0
PHill	2002	FS	3	Seed	Early	Bass	34	7	0
PHill	2002	FS	3	LeafPost	Late	Bass	35	1	0
PHill	2002	FS	3	LeafPost		Bass	35	2	1.99681148
PHill	2002	FS	3	LeafPost		Bass	35	3	0
PHill	2002	FS	3	LeafPost			35	4	0
						Bass			
PHill	2002	FS	3	LeafPost		Bass	35	5	5.648409902
PHill	2002	FS	3	LeafPost		Bass	35	6	0
PHill	2002	FS	3	LeafPost	Late	Bass	35	7	0
PHill	2002	FS	3	Seed	Late	Bass	35	1	1.80033923
PHill	2002	FS	3	Seed	Late	Bass	35	2	3.477626
PHill	2002	FS	3	Seed	Late	Bass	35	3	0
PHill	2002	FS	3	Seed	Late	Bass	35	4	3.35072386
PHill							35	5	
	2002	FS	3	Seed	Late	Bass			12.11335703
PHill	2002	FS	3	Seed	Late	Bass	35	6	0
PHill	2002	FS	3	Seed	Late	Bass	35	7	0
Wye	2002	DC	1	LeafPost	Early	Corsica	1	1	0
Wye	2002	DC	1	LeafPost	Early	Corsica	1	2	1.7054024
Wye	2002	DC	1	LeafPost	-	Corsica	1	3	0
Wye	2002	DC	1	LeafPost			1	4	0
Wye	2002	DC	1	LeafPost		Corsica		5	5.311433801
_					-				
Wye	2002	DC	1	LeafPost		Corsica		6	0
Wye	2002	DC	1	LeafPost			1	7	0
Wye	2002	DC	1	Seed	Early		1	1	5.69385995
Wye	2002	DC	1	Seed	Early	Corsica	1	2	13.32913412
Wye	2002	DC	1	Seed	Early	Corsica	1	3	0
Wye	2002	DC	1	Seed	Early		1	4	20.45112353
Wye	2002	DC	1	Seed	Early		1	5	52.88037186
_		DC	1	Seed	Early		1	6	0
Wye	2002				4				
Wye	2002	DC	1	Seed	Early		1	7	0
Wye	2002	DC	1	LeafPost		Corsica	3	1	0
Wye	2002	DC	1	LeafPost	Early		3	2	2.69438078
Wye	2002	DC	1	LeafPost	Early	Corsica	3	3	0
Wye	2002	DC	1	LeafPost	-		3	4	0
Wye	2002	DC	1	LeafPost			3	5	7.717835576
Wye	2002	DC	1	LeafPost			3	6	0
-								7	
Wye	2002	DC	1	LeafPost			3		0.363831468
Wye	2002	DC	1	Seed	Late		3	1	3.81978584
Wye	2002	DC	1	Seed	Late		3	2	6.13686392
Wye	2002	DC	1	Seed	Late		3	3	0
Wye	2002	DC	1	Seed	Late	Corsica	3	4	13.44088436

								_		
Wye	2002	DC	1	Seed	Late	Corsica		5		287545
Wye	2002	DC	1	Seed	Late	Corsica		6	0	
Wye	2002	DC	1	Seed	Late	Corsica		7	0	
Wye	2002	DC	1	LeafPost	Late	William		4	1	2.37089807
Wye	2002	DC	1	LeafPost	Late	William	ıs82	4	2	1.74255476
Wye	2002	DC	1	LeafPost	Late	William	ıs82	4	3	0
Wye	2002	DC	1	LeafPost	Late	William	ıs82	4	4	6.92398721
Wye	2002	DC	1	LeafPost	Late	William	ıs82	4	5	6.077357169
Wye	2002	DC	1	LeafPost	Late	William	ıs82	4	6	0
Wye	2002	DC	1	LeafPost		William		4	7	0.072380528
Wye	2002	DC	1	Seed	Late	William		4	1	2.69010129
-	2002	DC	1	Seed	Late	William		4	2	5.43729086
Wye								4		
Wye	2002	DC	1	Seed	Late	William		-	3	0
Wye	2002	DC	1	Seed	Late	William		4	4	7.671210474
Wye	2002	DC	1	Seed	Late	William		4	5	25.70771912
Wye	2002	DC	1	Seed	Late	William	ıs82	4	6	0
Wye	2002	DC	1	Seed	Late	William	ıs82	4	7	0
Wye	2002	DC	1	LeafPost	Early	William	ıs82	5	1	0
Wye	2002	DC	1	LeafPost		William	ıs82	5	2	1.93318796
Wye	2002	DC	1	LeafPost	-	William		5	3	0
Wye	2002	DC	1	LeafPost	-	William		5	4	0
_	2002	DC	1		-	William		5	5	4.501196031
Wye				LeafPost	-					
Wye	2002	DC	1	LeafPost		William		5	6	0
Wye	2002	DC	1	LeafPost	-	William		5	7	0
Wye	2002	DC	1	Seed	Early	William	ıs82	5	1	3.16773959
Wye	2002	DC	1	Seed	Early	William	ıs82	5	2	6.80932688
Wye	2002	DC	1	Seed	Early	William	ıs82	5	3	0
Wye	2002	DC	1	Seed	Early	William		5	4	10.01685113
Wye	2002	DC	1	Seed	Early	William		5	5	33.29532039
Wye	2002	DC	1	Seed	Early	William		5	6	0
_			1		-			5	7	0
Wye	2002	DC		Seed	Early	William				U
Wye	2002	DC	1	LeafPost	4	Jack	7	1	0	
Wye	2002	DC	1	LeafPost	Early	Jack	7	2		92466
Wye	2002	DC	1	LeafPost	Early	Jack	7	3	0	
Wye	2002	DC	1	LeafPost	Early	Jack	7	4	0	
Wye	2002	DC	1	LeafPost	Early	Jack	7	5	7.517	388274
Wye	2002	DC	1	LeafPost	-	Jack	7	6	0	
Wye	2002	DC	1	LeafPost		Jack	7	7	0	
_	2002	DC	1	Seed	Early	Jack	7	1	-	83667
Wye					4		7			
Wye	2002	DC	1	Seed	Early	Jack		2		31008
Wye	2002	DC	1	Seed	Early	Jack	7	3	0	
Wye	2002	DC	1	Seed	Early	Jack	7	4		005971
Wye	2002	DC	1	Seed	Early	Jack	7	5	38.05	213941
Wye	2002	DC	1	Seed	Early	Jack	7	6	0	
Wye	2002	DC	1	Seed	Early	Jack	7	7	0	
Wye	2002	DC	1	LeafPost	Late	Jack	8	1	0	
Wye	2002	DC	1	LeafPost		Jack	8	2	Ō	
Wye	2002	DC	1	LeafPost		Jack	8	3	0	
_	2002	DC	1				8	4	0	
Wye				LeafPost		Jack				
Wye	2002	DC	1	LeafPost		Jack	8	5	0	
Wye	2002	DC	1	LeafPost		Jack	8	6	0	
Wye	2002	DC	1	LeafPost	Late	Jack	8	7	0	
Wye	2002	DC	1	Seed	Late	Jack	8	1	3.760	76709
Wye	2002	DC	1	Seed	Late	Jack	8	2	10.02	293564
Wye	2002	DC	1	Seed	Late	Jack	8	3	0	
Wye	2002	DC	1	Seed	Late	Jack	8	4	12.91	567032
Wye	2002	DC	1	Seed	Late	Jack	8	5		162696
Wye	2002	DC	1	Seed	Late	Jack	8	6	0	
Wye	2002	DC	1	Seed	Late	Jack	8	7	0	
_									0	
Wye	2002	DC	1	LeafPost	-	Bass	11	1		
Wye	2002	DC	1	LeafPost		Bass	11	2		46198
Wye	2002	DC	1	LeafPost		Bass	11	3	0	
Wye	2002	DC	1	LeafPost	Early	Bass	11	4	0	
Wye	2002	DC	1	LeafPost	Early	Bass	11	5	8.145	106699
Wye	2002	DC	1	LeafPost	Early	Bass	11	6	0	
Wye	2002	DC	1	LeafPost	Early	Bass	11	7	0.780	097768
Wye	2002	DC	1	Seed	Early	Bass	11	1	4.586	92025
Wye	2002	DC	1	Seed	Early	Bass	11	2		627606
Wye	2002	DC	1	Seed	Early	Bass	11	3	0	
Wye	2002	DC	1	Seed	Early	Bass	11	4		529689
					4					
Wye	2002	DC	1	Seed	Early	Bass	11	5		480921
Wye	2002	DC	1	Seed	Early	Bass	11	6	0	
Wye	2002	DC	1	Seed	Early	Bass	11	7	0	
Wye	2002	DC	1	LeafPost		Bass	12	1	0	
Wye	2002	DC	1	LeafPost	Late	Bass	12	2	2.112	40028
Wye	2002	DC	1	LeafPost	Late	Bass	12	3	0	
Wye	2002	DC	1	LeafPost	Late	Bass	12	4	11.35	490271
Wye	2002	DC	1	LeafPost		Bass	12	5		221293
Wye	2002	DC	1	LeafPost		Bass	12	6	0	
		- 0	-					Ŭ	~	

Mrro	2002	DC	1	ToofDoot	T a + a	Daga	12	7	0	
Wye	2002	DC DC	1	LeafPost Seed	Late	Bass Bass	12	1	5.798227	83
Wye Wye	2002	DC	1		Late	Bass	12	2	13.42468	
Wye	2002	DC	1		Late		12	3	0	000
-	2002	DC	1	Seed	Late	Bass	12	4	18.14183	5.5.7
Wye	2002	DC	1		Late		12	5	51.18707	
Wye Wye	2002	DC	1		Late		12	6	0	237
Wye	2002	DC	1	Seed	Late		12	7	0	
Wye	2002	DC	2	LeafPost		Williams		14	1	0
Wye	2002	DC	2	LeafPost		Williams		14	2	1.84686206
_	2002	DC	2			Williams		14	3	0
Wye				LeafPost					4	0
Wye	2002	DC DC	2	LeafPost LeafPost		Williams		14 14	5	4.937097723
Wye	2002				4	Williams			6	0
Wye	2002	DC	2	LeafPost		Williams		14	7	0.49879668
Wye	2002 2002	DC	2	LeafPost	-	Williams		14 14	1	
Wye		DC DC	2	Seed Seed	Early	Williams Williams		14	2	2.96154139 6.94469522
Wye	2002		2		Early					0.94409322
Wye	2002	DC		Seed	Early	Williams		14	3	
Wye	2002	DC	2	Seed	Early	Williams		14		8.690526457
Wye	2002	DC	2	Seed	Early	Williams		14	5	30.13333671
Wye	2002	DC	2	Seed	Early	Williams		14	6	0
Wye	2002	DC	2	Seed	Early	Williams		14	7	0
Wye	2002	DC	2	LeafPost		Williams		15	1	0
Wye	2002	DC	2	LeafPost		Williams		15	2	1.53783728
Wye	2002	DC	2	LeafPost		Williams		15	3	0
Wye	2002	DC	2	LeafPost		Williams		15	4	6.959014559
Wye	2002	DC	2	LeafPost		Williams		15	5	7.21641204
Wye	2002	DC	2	LeafPost		Williams		15	6	0
Wye	2002	DC	2	LeafPost		Williams		15	7	0.130973768
Wye	2002	DC	2	Seed	Late	Williams		15	1	2.77341056
Wye	2002	DC	2	Seed	Late	Williams		15	2	6.32396708
Wye	2002	DC	2	Seed	Late	Williams	82	15	3	0
Wye	2002	DC	2	Seed	Late	Williams		15	4	7.903000967
Wye	2002	DC	2	Seed	Late	Williams	82	15	5	26.23687763
Wye	2002	DC	2	Seed	Late	Williams	82	15	6	0
Wye	2002	DC	2	Seed	Late	Williams	82	15	7	0
Wye	2002	DC	2	LeafPost	Early	Jack	16	1	0	
Wye	2002	DC	2	LeafPost	Early	Jack	16	2	1.381709	6
Wye	2002	DC	2	LeafPost	Early	Jack	16	3	0	
Wye	2002	DC	2	LeafPost	Early	Jack	16	4	0	
Wye	2002	DC	2	LeafPost	Early	Jack	16	5	2.003200	347
Wye	2002	DC	2	LeafPost	Early	Jack	16	6	0	
Wye	2002	DC	2	LeafPost	Early	Jack	16	7	0	
Wye	2002	DC	2	Seed	Early	Jack	16	1	2.486378	15
Wye	2002	DC	2	Seed	Early	Jack	16	2	5.622038	36
Wye	2002	DC	2	Seed	Early	Jack	16	3	0	
Wye	2002	DC	2	Seed	Early	Jack	16	4	7.239608	596
Wye	2002	DC	2	Seed	Early	Jack	16	5	25.85959	796
Wye	2002	DC	2	Seed	Early	Jack	16	6	0	
Wye	2002	DC	2	Seed	Early	Jack	16	7	0	
Wye	2002	DC	2	LeafPost	Late	Jack	17	1	0	
Wye	2002	DC	2	LeafPost	Late	Jack	17	2	1.52534	
Wye	2002	DC	2	LeafPost	Late	Jack	17	3	0	
Wye	2002	DC	2	LeafPost	Late	Jack	17	4	5.651790	646
Wye	2002	DC	2	LeafPost	Late	Jack	17	5	5.032651	171
Wye	2002	DC	2	LeafPost	Late	Jack	17	6	0	
Wye	2002	DC	2	LeafPost	Late	Jack	17	7	0.175774	796
Wye	2002	DC	2	Seed	Late	Jack	17	1	3.974407	
Wye	2002	DC	2	Seed	Late		17	2	10.40262	194
Wye	2002	DC	2	Seed	Late	Jack	17	3	0	
Wye	2002	DC	2	Seed	Late	Jack	17	4	13.87586	003
Wye	2002	DC	2	Seed	Late		17	5	48.35232	
Wye	2002	DC	2		Late		17	6	0	
Wye	2002	DC	2	Seed	Late		17	7	0	
Wye	2002	DC	2	Seed	Early	Corsica		1	7.179679	0.8
Wye	2002	DC	2		Early	Corsica		2	19,22172	
Wye	2002	DC	2	Seed	Early	Corsica		3	0	
Wye	2002	DC	2	Seed	Early	Corsica		4	13.38450	305
Wye	2002	DC	2	Seed	Early	Corsica		5	40.70248	
Wye	2002	DC	2	Seed	Early	Corsica		6	0	
Wye	2002	DC	2	Seed	Early	Corsica		7	0	
Wye	2002	DC	2	LeafPost	-	Corsica		1	0	
Wye	2002	DC	2	LeafPost		Corsica		2	1.943565	56
Wye	2002	DC	2	LeafPost		Corsica		3	0	- -
Wye	2002	DC	2	LeafPost		Corsica		4	6.878279	026
Wye	2002	DC	2	LeafPost		Corsica		5	7.279989	
Wye	2002	DC	2	LeafPost		Corsica		6	0	
Wye	2002	DC	2	LeafPost		Corsica		7	0	
Wye	2002	DC	2	Seed	Late	Corsica		1	6.738860	67
	2002		_	-004		-010104		-		- ·

	0000		^			~ .	0.1	^	15 60500060
Wye	2002	DC	2	Seed	Late	Corsica	21	2	17.62509068
Wye	2002	DC	2	Seed	Late	Corsica	21	3	0
Wye	2002	DC	2	Seed	Late	Corsica	21	4	13.47289602
Wye	2002	DC	2	Seed	Late	Corsica	21	5	39.99644167
Wye	2002	DC	2	Seed	Late	Corsica	21	6	0
Wye	2002	DC	2	Seed	Late	Corsica	21	7	0
Wye	2002	DC	2	Seed	Early	Bass	22	1	7.31075644
-	2002		2		4		22	2	15.73094546
Wye		DC		Seed	Early	Bass			
Wye	2002	DC	2	Seed	Early	Bass	22	3	0
Wye	2002	DC	2	Seed	Early	Bass	22	4	11.9738857
Wye	2002	DC	2	Seed	Early	Bass	22	5	27.97845582
Wye	2002	DC	2	Seed	Early	Bass	22	6	0
Wye	2002	DC	2	Seed	Early	Bass	22	7	0.094299696
	2002	DC	2		-	Bass	24	1	0.034233030
Wye				LeafPost					
Wye	2002	DC	2	LeafPost		Bass	24	2	1.34550806
Wye	2002	DC	2	LeafPost	Late	Bass	24	3	0
Wye	2002	DC	2	LeafPost	Late	Bass	24	4	3.911916219
Wye	2002	DC	2	LeafPost	Late	Bass	24	5	4.066525386
Wye	2002	DC	2	LeafPost		Bass	24	6	0
Wye	2002	DC	2	LeafPost		Bass	24	7	0.065401728
Wye	2002	DC	2	Seed	Late	Bass	24	1	10.03143455
Wye	2002	DC	2	Seed	Late	Bass	24	2	22.43895986
Wye	2002	DC	2	Seed	Late	Bass	24	3	0
Wye	2002	DC	2	Seed	Late	Bass	24	4	15.88788029
Wye	2002	DC	2	Seed	Late	Bass	24	5	36.81531057
Wye	2002	DC	2	Seed	Late	Bass	24	6	0
Wye	2002	DC	2	Seed	Late	Bass	24	7	0.437202556
Wye	2002	DC	3	LeafPost	Early	Corsica	20	1	0
Wye	2002	DC	3	LeafPost	Early	Corsica	20	2	3.40411616
Wye	2002	DC	3	LeafPost	Early	Corsica	20	3	0
Wye	2002	DC	3	LeafPost		Corsica	20	4	0
Wye	2002	DC	3	LeafPost	-	Corsica	20	5	5.812049876
-					4				
Wye	2002	DC	3	LeafPost		Corsica	20	6	0
Wye	2002	DC	3	LeafPost	Early	Corsica	20	7	0
Wye	2002	DC	3	LeafPost	Early	Bass	22	1	0
Wye	2002	DC	3	LeafPost	Early	Bass	22	2	2.1227075
Wye	2002	DC	3	LeafPost	Earlv	Bass	22	3	0
Wye	2002	DC	3	LeafPost	-	Bass	22	4	0
_	2002	DC	3		_		22	5	7.283537224
Wye				LeafPost	-	Bass			
Wye	2002	DC	3	LeafPost	-	Bass	22	6	0
Wye	2002	DC	3	LeafPost	Early	Bass	22	7	0
Wye	2002	DC	3	LeafPost	Early	Corsica	25	1	0
Wye	2002	DC	3	LeafPost	Early	Corsica	25	2	3.22638182
Wye	2002	DC	3	LeafPost	-	Corsica	25	3	0
Wye	2002	DC	3	LeafPost		Corsica	25	4	0
_					-				
Wye	2002	DC	3	LeafPost	-	Corsica	25	5	10.51248725
Wye	2002	DC	3	LeafPost	Early	Corsica	25	6	0
Wye	2002	DC	3	LeafPost	Early	Corsica	25	7	0.739424748
Wye	2002	DC	3	Seed	Early	Corsica	25	1	2.87705778
Wye	2002	DC	3	Seed	Early	Corsica	25	2	7.13289824
Wye	2002	DC	3	Seed	Early	Corsica	25	3	0
					-				
Wye	2002	DC	3	Seed	Early	Corsica	25	4	3.34214201
Wye	2002	DC	3	Seed	Early	Corsica	25	5	8.448045328
Wye	2002	DC	3	Seed	Early	Corsica	25	6	0
Wye	2002	DC	3	Seed	Early	Corsica	25	7	0
Wye	2002	DC	3	LeafPost		Corsica	26	1	0
Wye	2002	DC	3	LeafPost		Corsica	26	2	3.69480764
Wye	2002	DC	3	LeafPost		Corsica		3	0
Wye	2002	DC	3	LeafPost		Corsica		4	13.88636095
Wye	2002	DC	3	LeafPost	Late	Corsica		5	13.2649259
Wye	2002	DC	3	LeafPost	Late	Corsica	26	6	0
Wye	2002	DC	3	LeafPost	Late	Corsica	26	7	0.280426204
Wye	2002	DC	3	Seed	Late	Corsica	26	1	6.09309863
Wye	2002	DC	3	Seed	Late	Corsica		2	18.51183728
Wye	2002	DC	3	Seed	Late	Corsica	26	3	0
Wye	2002	DC	3	Seed	Late	Corsica		4	12.91101914
Wye	2002	DC	3	Seed	Late	Corsica	26	5	47.33868722
Wye	2002	DC	3	Seed	Late	Corsica	26	6	0
Wye	2002	DC	3	Seed	Late	Corsica	26	7	0
Wye	2002	DC	3	LeafPost		Bass	28	1	0
-			3	LeafPost			28	2	
Wye	2002	DC			4	Bass			3.09764024
Wye	2002	DC	3	LeafPost		Bass	28	3	0
Wye	2002	DC	3	LeafPost	Early	Bass	28	4	0
Wye	2002	DC	3	LeafPost	Early	Bass	28	5	8.227027618
Wye	2002	DC	3	LeafPost	-	Bass	28	6	0
Wye	2002	DC	3	LeafPost		Bass	28	7	0.66156046
			3		-			1	
Wye	2002	DC		Seed	Early	Bass	28		7.23417442
Wye	2002	DC	3	Seed	Early	Bass	28	2	17.97514976
Wye	2002	DC	3	Seed	Early	Bass	28	3	0

Wye	2002	DC	3	Seed Early	Bass 28	4	15.54	1561979
Wye	2002	DC	3	Seed Early	Bass 28	5	46.65	5585626
Wye	2002	DC	3	Seed Early	Bass 28	6	0	
Wye	2002	DC	3	Seed Early	Bass 28	7	0	
Wye	2002	DC	3	LeafPost Late	Bass 30	1	0	
Wye	2002	DC	3	LeafPost Late	Bass 30	2		365782
	2002		3	LeafPost Late		3	0	003702
Wye		DC						400000
Wye	2002	DC	3	LeafPost Late	Bass 30	4		3439878
Wye	2002	DC	3	LeafPost Late	Bass 30	5		342526
Wye	2002	DC	3	LeafPost Late	Bass 30	6	0	
Wye	2002	DC	3	LeafPost Late	Bass 30	7	0.074	1295396
Wye	2002	DC	3	Seed Late	Bass 30	1		221986
Wye	2002	DC	3	Seed Late	Bass 30	2		1088002
						3		1000002
Wye	2002	DC	3	Seed Late	Bass 30		0	
Wye	2002	DC	3	Seed Late	Bass 30	4		337364
Wye	2002	DC	3	Seed Late	Bass 30	5	53.27	7495072
Wye	2002	DC	3	Seed Late	Bass 30	6	0	
Wye	2002	DC	3	Seed Late	Bass 30	7	0	
Wye	2002	DC	3	LeafPost Late	Jack 31	1	0	
Wye	2002	DC	3	LeafPost Late	Jack 31	2		216686
Wye	2002	DC	3	LeafPost Late	Jack 31	3	0	210000
								221121
Wye	2002	DC	3	LeafPost Late	Jack 31	4		231121
Wye	2002	DC	3	LeafPost Late	Jack 31	5		7015264
Wye	2002	DC	3	LeafPost Late	Jack 31	6	0	
Wye	2002	DC	3	LeafPost Late	Jack 31	7	0.330	0209904
Wye	2002	DC	3	Seed Late	Jack 31	1	2.737	707986
Wye	2002	DC	3	Seed Late	Jack 31	2		599558
Wye	2002	DC	3	Seed Late	Jack 31	3	0	33330
-								7010051
Wye	2002	DC	3	Seed Late	Jack 31	4		7212951
Wye	2002	DC	3	Seed Late	Jack 31	5	3.771	L388356
Wye	2002	DC	3	Seed Late	Jack 31	6	0	
Wye	2002	DC	3	Seed Late	Jack 31	7	0	
Wye	2002	DC	3	LeafPost Early	Jack 32	1	0	
Wye	2002	DC	3	LeafPost Early	Jack 32	2		341644
Wye	2002	DC	3	LeafPost Early	Jack 32	3	0	711011
_	2002				Jack 32	4	0	
Wye		DC	3	LeafPost Early				
Wye	2002	DC	3	LeafPost Early	Jack 32	5		5416287
Wye	2002	DC	3	LeafPost Early	Jack 32	6	0	
Wye	2002	DC	3	LeafPost Early	Jack 32	7	0.672	238238
Wye	2002	DC	3	Seed Early	Jack 32	1	1.980	954
Wye	2002	DC	3	Seed Early	Jack 32	2		100678
Wye	2002	DC	3	Seed Early	Jack 32	3	0	100070
-				4		4		DE DOCCE
Wye	2002	DC	3	Seed Early	Jack 32			0502665
Wye	2002	DC	3	Seed Early	Jack 32	5		7840124
Wye	2002	DC	3	Seed Early	Jack 32	6	0	
Wye	2002	DC	3	Seed Early	Jack 32	7	0	
Wye	2002	DC	3	LeafPost Early	Williams82	34	1	0
Wye	2002	DC	3	LeafPost Early	Williams82	34	2	2.37946478
Wye	2002	DC	3	LeafPost Early	Williams82	34	3	0
_	2002					34	4	0
Wye		DC	3	LeafPost Early	Williams82			
Wye	2002	DC	3	LeafPost Early	Williams82	34	5	5.918133413
Wye	2002	DC	3	LeafPost Early	Williams82	34	6	0
Wye	2002	DC	3	LeafPost Early	Williams82	34	7	0
Wye	2002	DC	3	Seed Early	Williams82	34	1	4.26959072
Wye	2002	DC	3	Seed Early	Williams82	34	2	7.93401446
Wye	2002	DC	3	Seed Early	Williams82	34	3	0
Wye	2002	DC	3	Seed Early	Williams82	34	4	15.01450717
	2002	DC	3	Seed Early	Williams82	34	5	35.97212077
Wye								
Wye	2002	DC	3	Seed Early	Williams82	34	6	0
Wye	2002	DC	3	Seed Early		34	7	0
Wye	2002	DC	3	LeafPost Late	Williams82	36	1	0
Wye	2002	DC	3	LeafPost Late	Williams82	36	2	1.45379528
Wye	2002	DC	3	LeafPost Late	Williams82	36	3	0
Wye	2002	DC	3	LeafPost Late	Williams82	36	4	3.962356116
Wye	2002	DC	3	LeafPost Late	Williams82	36	5	4.339778231
	2002	DC	3	LeafPost Late	Williams82	36	6	0
Wye								
Wye	2002	DC	3	LeafPost Late	Williams82	36	7	0.601774132
Wye	2002	DC	3	Seed Late	Williams82	36	1	4.72028381
Wye	2002	DC	3	Seed Late	Williams82	36	2	8.80342826
Wye	2002	DC	3	Seed Late	Williams82	36	3	0
Wye	2002	DC	3	Seed Late	Williams82	36	4	19.06076438
Wye	2002	DC	3	Seed Late	Williams82	36	5	44.65054102
Wye	2002	DC	3	Seed Late	Williams82	36	6	0
-								
Wye	2002	DC	3	Seed Late	Williams82	36	7	0
Wye	2002	FS	1	LeafPost Late	Corsica 1	1	0	
Wye	2002	FS	1	LeafPost Late	Corsica 1	2		308772
Wye	2002	FS	1	LeafPost Late	Corsica 1	3	0	
Wye	2002	FS	1	LeafPost Late	Corsica 1	4	4.565	5053548
Wye	2002	FS	1	LeafPost Late	Corsica 1	5		858241
	-	-						

			_				
Wye	2002	FS	1	LeafPost Late	Corsica	1 6	
Wye	2002	FS	1	LeafPost Late	Corsica	1 7	
Wye	2002	FS	1	Seed Late	Corsica	1 1	
Wye	2002	FS	1	Seed Late	Corsica	1 2	4.95586958
Wye	2002	FS	1	Seed Late	Corsica	1 3	0
Wye	2002	FS	1	Seed Late	Corsica	1 4	7.906591516
Wye	2002	FS	1	Seed Late	Corsica	1 5	
-	2002	FS	1	Seed Late	Corsica	1 6	
Wye							
Wye	2002	FS	1	Seed Late	Corsica	1 7	
Wye	2002	FS	1	LeafPost Early	Corsica	3 1	
Wye	2002	FS	1	LeafPost Early	Corsica	3 2	1.18760846
Wye	2002	FS	1	LeafPost Early	Corsica	3 3	0
Wye	2002	FS	1	LeafPost Early	Corsica	3 4	3.807274531
Wye	2002	FS	1	LeafPost Early	Corsica	3 5	5.18849451
Wye	2002	FS	1	LeafPost Early	Corsica	3 6	
_		FS	1	LeafPost Early		3 7	
Wye	2002			4	Corsica		
Wye	2002	FS	1	Seed Early	Corsica	3 1	
Wye	2002	FS	1	Seed Early	Corsica	3 2	
Wye	2002	FS	1	Seed Early	Corsica	3 3	0
Wye	2002	FS	1	Seed Early	Corsica	3 4	9.144972146
Wye	2002	FS	1	Seed Early	Corsica	3 5	19.91475353
Wye	2002	FS	1	Seed Early	Corsica	3 6	
Wye	2002	FS	1	Seed Early	Corsica	3 7	
_			1	4		5 1	
Wye	2002	FS		LeafPost Early	Jack 		
Wye	2002	FS	1	LeafPost Early	Jack	5 2	
Wye	2002	FS	1	LeafPost Early	Jack	5 3	0
Wye	2002	FS	1	LeafPost Early	Jack	5 4	3.044768086
Wye	2002	FS	1	LeafPost Early	Jack	5 5	5.107832767
Wye	2002	FS	1	LeafPost Early	Jack	5 6	
_	2002	FS	1			5 7	
Wye				LeafPost Early	Jack		
Wye	2002	FS	1	Seed Early	Jack	5 1	
Wye	2002	FS	1	Seed Early	Jack	5 2	2.56794242
Wye	2002	FS	1	Seed Early	Jack	5 3	0
Wye	2002	FS	1	Seed Early	Jack	5 4	4.050390976
Wye	2002	FS	1	Seed Early	Jack	5 5	10.58209438
Wye	2002	FS	1	Seed Early	Jack	5 6	
_				-		5 7	
Wye	2002	FS	1	Seed Early	Jack		
Wye	2002	FS	1	LeafPost Late	Jack	6 1	
Wye	2002	FS	1	LeafPost Late	Jack	6 2	
Wye	2002	FS	1	LeafPost Late	Jack	6 3	0
Wye	2002	FS	1	LeafPost Late	Jack	6 4	3.89989032
Wye	2002	FS	1	LeafPost Late	Jack	6 5	5.061196913
Wye	2002	FS	1	LeafPost Late	Jack	6 6	
_			1				
Wye	2002	FS		LeafPost Late	Jack		
Wye	2002	FS	1	Seed Late	Jack	6 1	
Wye	2002	FS	1	Seed Late	Jack	6 2	
Wye	2002	FS	1	Seed Late	Jack	6 3	0
Wye	2002	FS	1	Seed Late	Jack	6 4	5.167120429
Wye	2002	FS	1	Seed Late	Jack	6 5	15.54001097
Wye	2002	FS	1	Seed Late	Jack	6 6	
	2002	FS	1		Jack	6 7	
Wye							
Wye	2002	FS	1	LeafPost Early	Bass	7 1	
Wye	2002	FS	1	LeafPost Early	Bass	7 2	
Wye	2002	FS	1	LeafPost Early	Bass	7 3	0
Wye	2002	FS	1	LeafPost Early	Bass	7 4	4.797801864
Wye	2002	FS	1	LeafPost Early	Bass	7 5	7.395767726
Wye	2002	FS	1	LeafPost Early	Bass	7	
Wye	2002	FS	1	LeafPost Early	Bass	7 7	
	2002	FS	1	Seed Early	Bass	7 1	
Wye				_			
Wye	2002	FS	1	Seed Early	Bass	7 2	
Wye	2002	FS	1	Seed Early	Bass	7 3	
Wye	2002	FS	1	Seed Early	Bass	7 4	8.330689308
Wye	2002	FS	1	Seed Early	Bass	7 5	33.9851455
Wye	2002	FS	1	Seed Early	Bass	7 6	5 0
Wye	2002	FS	1	Seed Early	Bass	7 7	0
Wye	2002	FS	1	Seed Late	Bass	8 1	
_			1			8 2	
Wye	2002	FS		Seed Late	Bass		
Wye	2002	FS	1	Seed Late	Bass	8 3	
Wye	2002	FS	1	Seed Late	Bass	8 4	
Wye	2002	FS	1	Seed Late	Bass	8 5	20.75746183
Wye	2002	FS	1	Seed Late	Bass	8 6	0
Wye	2002	FS	1	Seed Late	Bass	8 7	0
Wye	2002	FS	1	LeafPost Late	Bass	9 1	
Wye	2002	FS	1	LeafPost Late	Bass	9 2	
Wye	2002	FS	1	LeafPost Late	Bass	9 3	
Wye	2002	FS	1	LeafPost Late	Bass	9 4	
Wye	2002	FS	1	LeafPost Late	Bass	9 5	
Wye	2002	FS	1	LeafPost Late	Bass	9 6	
Wye	2002	FS	1	LeafPost Late	Bass	9 7	0.276577348
-							

Wye	2002	FS	1	LeafPost Late	Williams82	10	1	0
Wye	2002	FS	1	LeafPost Late	Williams82	10	2	2.97321254
Wye	2002	FS	1	LeafPost Late	Williams82	10	3	0
Wye	2002	FS	1	LeafPost Late	Williams82	10	4	6.954317973
Wye	2002	FS	1	LeafPost Late	Williams82	10	5	6.854656143
Wye	2002	FS	1	LeafPost Late	Williams82	10	6	0
	2002	FS	1	LeafPost Late	Williams82	10	7	0
Wye								
Wye	2002	FS	1	Seed Late	Williams82	10	1	3.57956728
Wye	2002	FS	1	Seed Late	Williams82	10	2	7.6509599
Wye	2002	FS	1	Seed Late	Williams82	10	3	0
Wye	2002	FS	1	Seed Late	Williams82	10	4	6.956412674
Wye	2002	FS	1	Seed Late	Williams82	10	5	19.47152347
Wye	2002	FS	1	Seed Late	Williams82	10	6	0
Wye	2002	FS	1	Seed Late	Williams82	10	7	0
-	2002	FS	1	LeafPost Early	Williams82	12	1	0
Wye				4				
Wye	2002	FS	1	LeafPost Early	Williams82	12	2	1.91803142
Wye	2002	FS	1	LeafPost Early	Williams82	12	3	0
Wye	2002	FS	1	LeafPost Early	Williams82	12	4	4.169489959
Wye	2002	FS	1	LeafPost Early	Williams82	12	5	8.312654917
Wye	2002	FS	1	LeafPost Early	Williams82	12	6	0
Wye	2002	FS	1	LeafPost Early	Williams82	12	7	0.609727096
Wye	2002	FS	1	Seed Early	Williams82	12	1	3.87989444
Wye	2002	FS	1	Seed Early	Williams82	12	2	8.00352092
	2002		1	4		12	3	0
Wye		FS		Seed Early	Williams82			
Wye	2002	FS	1	Seed Early	Williams82	12	4	10.80379919
Wye	2002	FS	1	Seed Early	Williams82	12	5	31.0659512
Wye	2002	FS	1	Seed Early	Williams82	12	6	0
Wye	2002	FS	1	Seed Early	Williams82	12	7	0
Wye	2002	FS	1	LeafPost Early	Jack 20	1	0	
Wye	2002	FS	1	LeafPost Early	Jack 20	2	1.5481	445
Wye	2002	FS	1	LeafPost Early	Jack 20	3	0	. 1 1 0
_								0.000
Wye	2002	FS	1	LeafPost Early	Jack 20	4	3.6842	
Wye	2002	FS	1	LeafPost Early	Jack 20	5	5.8364	183853
Wye	2002	FS	1	LeafPost Early	Jack 20	6	0	
Wye	2002	FS	1	LeafPost Early	Jack 20	7	0.4207	74652
Wye	2002	FS	2	LeafPost Early	Jack 13	1	0	
Wye	2002	FS	2	LeafPost Early	Jack 13	2	2.1320	7356
Wye	2002	FS	2	LeafPost Early	Jack 13	3	0	
_			2	_		4	-	00074
Wye	2002	FS		LeafPost Early	Jack 13		4.5900	
Wye	2002	FS	2	LeafPost Early	Jack 13	5	9.9845	26692
Wye	2002	FS	2	LeafPost Early	Jack 13	6	0	
Wye	2002	FS	2	LeafPost Early	Jack 13	7	1.0242	270684
Wye	2002	FS	2	Seed Early	Jack 13	1	2.4698	86497
Wye	2002	FS	2	Seed Early	Jack 13	2	6.1007	9348
Wye	2002	FS	2	Seed Early	Jack 13	3	0	
_	2002	FS	2	Seed Early	Jack 13	4	7.2496	34035
Wye				4				
Wye	2002	FS	2	Seed Early	Jack 13	5	24.880	184236
Wye	2002	FS	2	Seed Early	Jack 13	6	0	
Wye	2002	FS	2	Seed Early	Jack 13	7	0	
Wye	2002	FS	2	LeafPost Late	Jack 14	1	0	
Wye	2002	FS	2	LeafPost Late	Jack 14	2	1.7539	1216
Wye	2002	FS	2	LeafPost Late	Jack 14	3	0	
Wye	2002	FS	2	LeafPost Late	Jack 14	4	6.1887	64144
Wye	2002	FS	2	LeafPost Late	Jack 14	5	6.5308	
			2					30030
Wye	2002	FS		LeafPost Late		6	0	
Wye	2002	FS	2	LeafPost Late	Jack 14	7	0.3826	
Wye	2002	FS	2	Seed Late	Jack 14	1	2.6261	
Wye	2002	FS	2	Seed Late	Jack 14	2	6.7660	06802
Wye	2002	FS	2	Seed Late	Jack 14	3	0	
Wye	2002	FS	2	Seed Late	Jack 14	4	8.2922	38472
Wye	2002	FS	2	Seed Late	Jack 14	5	28.461	.53774
Wye	2002	FS	2	Seed Late	Jack 14	6	0	
Wye	2002	FS	2	Seed Late	Jack 14	7	Ō	
_	2002	FS	2			1	0	
Wye				LeafPost Early				7246
Wye	2002	FS	2	LeafPost Early	Bass 16	2	1.8144	1/346
Wye	2002	FS	2	LeafPost Early	Bass 16	3	0	
Wye	2002	FS	2	LeafPost Early	Bass 16	4	5.3718	
Wye	2002	FS	2	LeafPost Early	Bass 16	5	7.1975	64107
Wye	2002	FS	2	LeafPost Early	Bass 16	6	0.0347	34774
Wye	2002	FS	2	LeafPost Early	Bass 16	7	0.4781	
Wye	2002	FS	2	Seed Early	Bass 16	1	3.3274	
Wye	2002	FS	2	Seed Early	Bass 16	2	9.6126	
_			2	_		3		
Wye	2002	FS		Seed Early	Bass 16		0 (20)	777665
Wye	2002	FS	2	Seed Early	Bass 16	4	8.6200	
Wye	2002	FS	2	Seed Early	Bass 16	5	32.561	.49527
Wye	2002	FS	2	Seed Early	Bass 16	6	0	
Wye	2002	FS	2	Seed Early	Bass 16	7	0	
Wye	2002	FS	2	LeafPost Late	Bass 17	1	0	
Wye	2002	FS	2	LeafPost Late	Bass 17	2	2.6421	.8642
4 -	-	-						

TATE TO	2002	FS	2	LeafPost	Tato	Bass	17	3	0	
Wye	2002	FS	2				17	4	6.243713003	
Wye				LeafPost		Bass				
Wye	2002	FS	2	LeafPost		Bass	17	5	5.373535517	
Wye	2002	FS	2	LeafPost		Bass	17	6	0	
Wye	2002	FS	2	LeafPost	Late	Bass	17	7	0	
Wye	2002	FS	2	Seed	Late	Bass	17	1	3.00525609	
Wye	2002	FS	2	Seed	Late	Bass	17	2	7.88367482	
Wye	2002	FS	2	Seed	Late	Bass	17	3	0	
Wye	2002	FS	2	Seed	Late	Bass	17	4	7.448963081	
Wye	2002	FS	2	Seed	Late	Bass	17	5	27.65027906	
Wye	2002	FS	2	Seed	Late	Bass	17	6	0	
Wye	2002	FS	2	Seed	Late	Bass	17	7	0	
Wye	2002	FS	2	LeafPost		Williams		19	1 0	
Wye	2002	FS	2	LeafPost		Williams		19		979378
Wye	2002	FS	2	LeafPost		Williams		19	3 0	,,,,,,,
Wye	2002	FS	2	LeafPost		Williams		19	4 0	
_	2002	FS	2	LeafPost		Williams		19		1810196
Wye			2						6 0	1010190
Wye	2002	FS		LeafPost		Williams		19		
Wye	2002	FS	2	LeafPost		Williams		19		210056
Wye	2002	FS	2	Seed	Late	Williams		19		918856
Wye	2002	FS	2	Seed	Late	Williams		19		590006
Wye	2002	FS	2	Seed	Late	Williams		19	3 0	
Wye	2002	FS	2		Late	Williams		19		7125351
Wye	2002	FS	2		Late	Williams		19		1135655
Wye	2002	FS	2	Seed	Late	Williams		19	6 0	
Wye	2002	FS	2	Seed	Late	Williams	382	19	7 0	
Wye	2002	FS	2	Seed	Early	Williams	382	20	1 5.400	35234
Wye	2002	FS	2	Seed	Early	Williams	s82	20	2 11.93	3257964
Wye	2002	FS	2	Seed	Early	Williams	382	20	3 0	
Wye	2002	FS	2	Seed	Early	Williams	382	20	4 13.80	995361
Wye	2002	FS	2	Seed	Early	Williams	382	20	5 39.60	0059039
Wye	2002	FS	2	Seed	Early	Williams	382	20	6 0	
Wye	2002	FS	2	Seed	Early	Williams		20	7 0	
Wye	2002	FS	2	LeafPost	4	Corsica		1	0	
Wye	2002	FS	2	LeafPost	-		23	2	1.56617282	
Wye	2002	FS	2	LeafPost			23	3	0	
Wye	2002	FS	2	LeafPost	-	Corsica	23	4	5.885697258	
Wye	2002	FS	2	LeafPost		Corsica	23	5	8.477029548	
Wye	2002	FS	2	LeafPost	_	Corsica	23	6	0.438110977	
	2002	FS	2		-	Corsica	23	7	0.770188828	
Wye	2002	FS	2	LeafPost		Corsica	23	1	2.39822739	
Wye			2	Seed	Early		23	2		
Wye	2002	FS	2	Seed	Early			3	4.5707516 0	
Wye	2002	FS		Seed	Early	Corsica	23			
Wye	2002	FS	2	Seed	Early	Corsica	23	4	6.016453747	
Wye	2002	FS	2	Seed	Early		23	5	18.38036693	
Wye	2002	FS	2	Seed	Early		23	6	0	
Wye	2002	FS	2	Seed	Early	Corsica	23	7	0	
Wye	2002	FS	2	LeafPost			24	1	0	
Wye	2002	FS	2	LeafPost			24	1	0	
Wye	2002	FS	2	LeafPost		Corsica	24	2	2.58797726	
Wye	2002	FS	2	LeafPost			24	2	2.74993406	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	3	0	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	3	0	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	4	4.949190948	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	4	7.094391385	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	5	5.8368578	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	5	8.591614593	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	6	0	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	6	0	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	7	0.262168516	
Wye	2002	FS	2	LeafPost	Late	Corsica	24	7	0	
Wye	2002	FS	2	Seed	Late	Corsica	24	1	3.41571064	
Wye	2002	FS	2	Seed	Late	Corsica	24	2	5.55885506	
Wye	2002	FS	2		Late	Corsica		3	0	
Wye	2002	FS	2	Seed	Late	Corsica		4	8.61706455	
Wye	2002	FS	2		Late	Corsica		5	19.72987137	
Wye	2002	FS	2	Seed	Late	Corsica		6	0	
Wye	2002	FS	2	Seed	Late	Corsica		7	0	
Wye	2002	FS	3	LeafPost		Bass	26	1	0	
Wye	2002	FS	3	LeafPost		Bass	26	2	3.0659582	
Wye	2002	FS	3	LeafPost		Bass	26	3	0	
Wye Wye	2002	FS	3	LeafPost		Bass	26	4	4.810579971	
_			3					5		
Wye	2002	FS	3	LeafPost		Bass	26		7.229450555 0	
Wye	2002	FS		LeafPost		Bass	26	6		
Wye	2002	FS	3	LeafPost		Bass	26	7	0.367541704	
Wye	2002	FS	3	Seed	Late	Bass	26	1	2.07334062	
Wye	2002	FS	3	Seed	Late	Bass	26	2	5.00126606	
Wye	2002	FS	3	Seed	Late	Bass	26	3	0	
Wye	2002	FS	3	Seed	Late	Bass	26	4	3.813402711	

						_	
Wye	2002	FS	3	Seed Late	Bass 26	5	14.31549757
Wye	2002	FS	3	Seed Late	Bass 26	6	0
Wye	2002	FS	3	Seed Late	Bass 26	7	0
Wye	2002	FS	3	LeafPost Early	Bass 27	1	0
Wye	2002	FS	3	LeafPost Early	Bass 27	2	2.20159106
Wye	2002	FS	3	LeafPost Early	Bass 27	3	0
Wye	2002	FS	3	LeafPost Early	Bass 27	4	7.016788052
Wye	2002	FS	3	LeafPost Early	Bass 27	5	9.587525441
Wye	2002	FS	3	LeafPost Early	Bass 27	6	0.138388786
Wye	2002	FS	3	LeafPost Early	Bass 27	7	0.317766608
Wye	2002	FS	3	Seed Early	Bass 27	1	2.09544434
Wye	2002	FS	3	Seed Early	Bass 27	2	5.34679046
Wye	2002	FS	3	Seed Early	Bass 27	3	0
Wye	2002	FS	3	Seed Early	Bass 27	4	4.065069307
Wye	2002	FS	3	Seed Early	Bass 27	5	15.38950713
Wye	2002	FS	3	Seed Early	Bass 27	6	0
Wye	2002	FS	3	Seed Early	Bass 27	7	0
Wye	2002	FS	3	LeafPost Late	Williams82	28	1 0
Wye	2002	FS	3	LeafPost Late	Williams82	28	2 2.66843678
Wye	2002	FS	3	LeafPost Late	Williams82	28	3 0
Wye	2002	FS	3	LeafPost Late	Williams82	28	4 0
Wye	2002	FS	3	LeafPost Late	Williams82	28	5 3.429306055
Wye	2002	FS	3	LeafPost Late	Williams82	28	6 0
Wye	2002	FS	3	LeafPost Late	Williams82	28	7 0.186783136
Wye	2002	FS	3	LeafPost Early	Williams82	29	1 0
Wye	2002	FS	3	LeafPost Early	Williams82	29	2 1.852124
Wye	2002	FS	3	LeafPost Early	Williams82	29	3 0
Wye	2002	FS	3	LeafPost Early	Williams82	29	4 0
-	2002	FS	3	4	Williams82	29	5 9.422338384
Wye	2002		3	LeafPost Early	Williams82 Williams82	29	6 0
Wye		FS		LeafPost Early			
Wye	2002	FS	3	LeafPost Early	Williams82	29	
Wye	2002	FS	3	Seed Early	Williams82	29	1 2.93197344
Wye	2002	FS	3	Seed Early	Williams82	29	2 6.4258028
Wye	2002	FS	3	Seed Early	Williams82	29	3 0
Wye	2002	FS	3	Seed Early	Williams82	29	4 8.317921482
Wye	2002	FS	3	Seed Early	Williams82	29	5 26.90258314
Wye	2002	FS	3	Seed Early	Williams82	29	6 0
Wye	2002	FS	3	Seed Early	Williams82	29	7 0
Wye	2002	FS	3	LeafPost Late	Williams82	30	1 0
Wye	2002	FS	3	LeafPost Late	Williams82	30	2 1.51391222
Wye	2002	FS	3	LeafPost Late	Williams82	30	3 0
Wye	2002	FS	3	LeafPost Late	Williams82	30	4 3.920140814
Wye	2002	FS	3	LeafPost Late	Williams82	30	5 4.761061233
Wye	2002	FS	3	LeafPost Late	Williams82	30	6 0
Wye	2002	FS	3	LeafPost Late	Williams82	30	7 0.248551252
Wye	2002	FS	3	Seed Late	Williams82	30	1 2.66781155
Wye	2002	FS	3	Seed Late	Williams82	30	2 5.00882846
Wye	2002	FS	3	Seed Late	Williams82	30	3 0
Wye	2002	FS	3	Seed Late	Williams82	30	4 6.2874747
Wye	2002	FS	3	Seed Late	Williams82	30	5 18.57734778
Wye	2002	FS	3	Seed Late	Williams82	30	6 0
Wye	2002	FS	3	Seed Late	Williams82	30	7 0
Wye	2002	FS	3	LeafPost Early	Jack 32	1	0
Wye	2002	FS	3	LeafPost Early	Jack 32	2	1.80249368
Wye	2002	FS	3	LeafPost Early	Jack 32	3	0
Wye	2002	FS	3	LeafPost Early	Jack 32	4	3.982922742
Wye	2002	FS	3	LeafPost Early	Jack 32	5	8.051255869
Wye	2002	FS	3	LeafPost Early	Jack 32	6	0
Wye	2002	FS	3	LeafPost Early	Jack 32	7	0
Wye	2002	FS	3	Seed Early	Jack 32	1	1.61594513
Wye	2002	FS	3	Seed Early	Jack 32	2	2.4191315
Wye	2002	FS	3	Seed Early	Jack 32	3	0
Wye	2002	FS	3	Seed Early	Jack 32	4	0
Wye	2002	FS	3	Seed Early	Jack 32	5	6.614504248
Wye	2002	FS	3	Seed Early	Jack 32	6	1.446043483
Wye	2002	FS	3	Seed Early	Jack 32	7	0
Wye	2002	FS	3	LeafPost Late	Jack 33	1	0
	2002	FS	3	LeafPost Late	Jack 33	2	2.03611664
Wye Wye	2002	FS	3	LeafPost Late	Jack 33	3	0
wye Wye	2002	FS	3	LeafPost Late	Jack 33	4	0
_	2002		3			5	2.374663981
Wye	2002	FS	3	LeafPost Late		5 6	0
Wye		FS		LeafPost Late	Jack 33		
Wye	2002	FS	3	LeafPost Late	Jack 33	7	0
Wye	2002	FS	3	Seed Late	Jack 33	1	1.7300826
Wye	2002	FS	3	Seed Late	Jack 33	2	3.54447596
Wye	2002	FS	3	Seed Late	Jack 33	3	0
Wye	2002	FS	3	Seed Late	Jack 33	4	0
Wye	2002	FS	3	Seed Late	Jack 33	5	11.74331142
Wye	2002	FS	3	Seed Late	Jack 33	6	1.332365783

Mrso	2002	FS	3	Seed	Late	Jack	33	7	0
Wye Wye	2002	FS	3	Seed	Late	Corsica		1	2.71897486
_	2002	FS	3	Seed	Late	Corsica		2	5.34850166
Wye		FS						3	0
Wye	2002		3	Seed	Late	Corsica			
Wye	2002	FS	3	Seed	Late	Corsica		4	0
Wye	2002	FS	3	Seed	Late	Corsica		5	15.9433081
Wye	2002	FS	3	Seed	Late	Corsica		6	3.297631549
Wye	2002	FS	3	Seed	Late	Corsica		7	0
Wye	2002	FS	3	LeafPost	4	Corsica		1	0
Wye	2002	FS	3	LeafPost		Corsica		2	1.29368216
Wye	2002	FS	3	LeafPost	Early	Corsica		3	0
Wye	2002	FS	3	LeafPost		Corsica		4	3.996535303
Wye	2002	FS	3	LeafPost	Early	Corsica	35	5	4.765264003
Wye	2002	FS	3	LeafPost	Early	Corsica	35	6	0.257107338
Wye	2002	FS	3	LeafPost	Early	Corsica	35	7	0.374962176
Wye	2002	FS	3	Seed	Early	Corsica	35	1	2.31109761
Wye	2002	FS	3	Seed	Early	Corsica	35	2	4.29483854
Wye	2002	FS	3	Seed	Early	Corsica	35	3	0
Wye	2002	FS	3	Seed	Early	Corsica	35	4	0
Wye	2002	FS	3	Seed	Early	Corsica		5	16.14320938
Wye	2002	FS	3	Seed	Early	Corsica		6	3.378259797
Wye	2002	FS	3	Seed	Early	Corsica		7	0
PHill	2003	DC	1	Seed	Late	Corsica		1	5.50705895
PHill	2003	DC	1	Seed	Late	Corsica		2	11.99283458
PHill	2003		1	Seed		Corsica		3	
		DC			Late				0
PHill	2003	DC	1	Seed	Late	Corsica		4	26.08340556
PHill	2003	DC	1	Seed	Late	Corsica		5	64.29434522
PHill	2003	DC	1	Seed	Late	Corsica		6	0
PHill	2003	DC	1	Seed	Late	Corsica		7	0.444731056
PHill	2003	DC	1	LeafPost		Corsica		1	0
PHill	2003	DC	1	LeafPost	Early	Corsica		2	2.24502794
PHill	2003	DC	1	LeafPost	Early	Corsica	2	3	0
PHill	2003	DC	1	LeafPost	Early	Corsica	2	4	0
PHill	2003	DC	1	LeafPost	Early	Corsica	2	5	8.634932906
PHill	2003	DC	1	LeafPost	Early	Corsica	2	6	3.94942798
PHill	2003	DC	1	LeafPost	Early	Corsica		7	0
PHill	2003	DC	1	Seed	Early	Corsica		1	5.56526901
PHill	2003	DC	1	Seed	Early	Corsica		2	12.2099831
PHill	2003	DC	1	Seed	Early	Corsica		3	0
PHill	2003	DC	1	Seed	Early	Corsica		4	25.25866292
PHill	2003	DC	1	Seed	Early	Corsica		5	62.10449365
PHill	2003	DC	1	Seed	Early	Corsica		6	0
PHill	2003		1		-			7	0.664205712
		DC		Seed	Early	Corsica			
PHill	2003	DC	1	Seed	Late	Williams		5	1 8.20255123
PHill	2003	DC	1	Seed	Late	Williams		5	2 20.09638778
PHill	2003	DC	1	Seed	Late	Williams		5	3 0
PHill	2003	DC	1	Seed	Late	Williams		5	4 37.0539772
PHill	2003	DC	1	Seed	Late	Williams		5	5 97.09068293
PHill	2003	DC	1	Seed	Late	Williams	82	5	6 0
PHill	2003	DC	1	Seed	Late	Williams	82	5	7 1.284395416
PHill	2003	DC	1	Seed	Early	Williams	82	6	1 8.04411331
PHill	2003	DC	1	Seed	Early	Williams	82	6	2 19.89576338
PHill	2003	DC	1	Seed	Early	Williams	82	6	3 0
PHill	2003	DC	1	Seed	Early	Williams	82	6	4 35.85463598
PHill	2003	DC	1	Seed	Early	Williams		6	5 94.79103978
PHill	2003	DC	1	Seed	Early	Williams		6	6 0
PHill	2003	DC	1	Seed	Early	Williams		6	7 1.33934056
PHill	2003	DC	1	Seed	Early	Jack	7	1	4.64426624
PHill	2003	DC	1	Seed	Early	Jack	7	2	16.9458395
PHill	2003	DC	1	Seed	Early	Jack	7	3	0
PHill	2003	DC	1	Seed	-		7	4	18.23403928
					Early	Jack			
PHill	2003	DC	1	Seed	Early	Jack	7	5	79.61833905
PHill	2003	DC	1	Seed	Early	Jack	7	6	0
PHill	2003	DC	1	Seed	Early	Jack	7	7	1.383600492
PHill	2003	DC	1	Seed	Late	Jack	9	1	1.65267272
PHill	2003	DC	1	Seed	Late	Jack	9	2	15.7120712
PHill	2003	DC	1	Seed	Late	Jack	9	3	0
PHill	2003	DC	1	Seed	Late	Jack	9	4	17.24780073
PHill	2003	DC	1	Seed	Late	Jack	9	5	76.84433721
PHill	2003	DC	1	Seed	Late	Jack	9	6	0
PHill	2003	DC	1	Seed	Late	Jack	9	7	1.227695056
PHill	2003	DC	1	Seed	Early	Bass	10	1	4.21009911
PHill	2003	DC	1	Seed	Early	Bass	10	2	11.78059058
PHill	2003	DC	1	Seed	Early	Bass	10	3	0
PHill	2003	DC	1	Seed	Early	Bass	10	4	17.85522901
PHill	2003	DC	1	Seed	Early	Bass	10	5	63.5438811
PHill	2003	DC	1	Seed	Early	Bass	10	6	0
PHill	2003	DC	1	Seed	Early	Bass	10	7	0.862126392
PHILL	2003	DC	1	Seed	Late	Bass	12	1	3.70744538
	2000	20	_	Jeeu	шасе			-	0.1017700

PHill	2003	DC	1	Seed	Late	Bass	12	2	9.89334536
PHill	2003	DC	1	Seed	Late	Bass	12	3	0
PHill	2003	DC	1	Seed	Late	Bass	12	4	16.40033765
PHill	2003	DC	1	Seed	Late	Bass	12	5	57.72655599
PHill	2003	DC	1	Seed	Late	Bass	12	6	0
PHill	2003	DC	1	Seed	Late	Bass	12	7	0.694785284
PHill	2003	DC	2	Seed	Early	Bass	14	1	9.2014126
					-				
PHill	2003	DC	2	Seed	Early	Bass	14	2	23.25677132
PHill	2003	DC	2	Seed	Early	Bass	14	3	0
					-				
PHill	2003	DC	2	Seed	Early	Bass	14	4	38.20402911
PHill	2003	DC	2	Seed	Early	Bass	14	5	103.0633434
PHill	2003	DC	2		-		14	6	0
				Seed	Early	Bass			
PHill	2003	DC	2	Seed	Early	Bass	14	7	1.4501075
PHill	2003	DC	2	Seed	Late	Bass	15	1	9.87921836
PHill	2003	DC	2	Seed	Late	Bass	15	2	24.22250774
PHill	2003	DC	2	Seed	Late	Bass	15	3	0
PHill	2003	DC	2	Seed	Late	Bass	15	4	40.03307785
PHill	2003	DC	2	Seed	Late	Bass	15	5	103.1121088
PHill	2003	DC	2	Seed	Late	Bass	15	6	0
PHill	2003	DC	2	Seed	Late	Bass	15	7	1.359731084
PHill	2003	DC	2	Seed	Early	Jack	16	1	4.70199847
PHill	2003	DC	2	Seed	-		16	2	16.36251626
					Early	Jack			
PHill	2003	DC	2	Seed	Early	Jack	16	3	0
PHill	2003	DC	2	Seed	Early	Jack	16	4	18.14398682
					_				
PHill	2003	DC	2	Seed	Early	Jack	16	5	76.37910052
PHill	2003	DC	2	Seed	Early	Jack	16	6	0
					-				
PHill	2003	DC	2	Seed	Early	Jack	16	7	1.212769984
PHill	2003	DC	2	Seed	Late	Jack	17	1	5.20655713
PHill	2003	DC	2	Seed	Late	Jack	17	2	18.9720728
PHill	2003	DC	2	Seed	Late	Jack	17	3	0
PHill	2003	DC	2	Seed	Late	Jack	17	4	18.24336562
PHill	2003	DC	2	Seed	Late	Jack	17	5	77.36086756
PHill	2003	DC	2	Seed	Late	Jack	17	6	0
PHill	2003	DC					17		1.541288868
			2	Seed	Late	Jack		7	
PHill	2003	DC	2	Seed	Late	Corsica	20	1	7.21336148
PHill	2003	DC	2	Seed	Late	Corsica	20	2	17.34313046
PHill	2003	DC	2	Seed	Late	Corsica	20	3	0
PHill	2003	DC	2	Seed	Late	Corsica	20	4	27.52037845
			2				20	5	
PHill	2003	DC		Seed	Late	Corsica			70.24653292
PHill	2003	DC	2	Seed	Late	Corsica	20	6	0
PHill	2003	DC	2	Seed	Late	Corsica	20	7	1.012998488
PHill	2003	DC	2	Seed	Early	Corsica	21	1	7.53842859
PHill	2003	DC	2	Seed	Early	Corsica	21	2	17.5647074
			2		-				
PHill	2003	DC		Seed	Early	Corsica	21	3	0
PHill	2003	DC	2	Seed	Early	Corsica	21	4	27.39493625
PHill	2003	DC	2	Seed	Early	Corsica	21	5	70.0217443
					-				
PHill	2003	DC	2	Seed	Early	Corsica	21	6	0
PHill	2003	DC	2	Seed	Early	Corsica	21	7	1.036781856
					-				
PHill	2003	DC	2	Seed	Early	Bass	23	1	4.84516145
PHill	2003	DC	2	Seed	Early	Bass	23	2	14.62632584
PHill	2003	DC	2	Seed	Early	Bass	23	3	0
					-				
PHill	2003	DC	2	Seed	Early	Bass	23	4	18.30657677
PHill	2003	DC	2	Seed	Early	Bass	23	5	68.51182312
PHill	2003	DC	2		-		23	6	0
				Seed	Early	Bass			0
PHill	2003	DC	2	Seed	Early	Bass	23	7	0.409098068
PHill	2003	DC	2	Seed	Late	Bass	24	1	4.9883223
		DC					24		15.0904019
PHill	2003		2	Seed	Late	Bass		2	
PHill	2003	DC	2	Seed	Late	Bass	24	3	0
PHill	2003	DC	2	Seed	Late	Bass	24	4	18.5021148
									66.7346521
PHill	2003	DC	2	Seed	Late	Bass	24	5	66./346521
PHill	2003	DC	2	Seed	Late	Bass	24	6	0
PHill	2003	DC	2	Seed	Late	Bass	24	7	0.836622224
PHill	2003	DC	3	Seed	Early	Corsica	25	1	6.80042619
PHill	2003	DC	3	Seed	Early	Corsica	25	2	15.8911607
					-				
PHill	2003	DC	3	Seed	Early	Corsica	25	3	0
PHill	2003	DC	3	Seed	Early	Corsica	25	4	26.58884887
PHill	2003	DC	3	Seed	Early	Corsica		5	67.92459193
PHill	2003	DC	3	Seed	Early	Corsica	25	6	0
PHill	2003	DC	3	Seed	Early	Corsica	25	7	0.932601756
			3		4	Corsica		1	
PHill	2003	DC		Seed	Late				6.92019964
PHill	2003	DC	3	Seed	Late	Corsica	27	2	15.37429274
PHill	2003	DC	3	Seed	Late	Corsica		3	0
PHill	2003	DC	3	Seed	Late	Corsica		4	26.17574377
PHill	2003	DC	3	Seed	Late	Corsica	27	5	63.98155987
PHill	2003	DC	3	Seed	Late	Corsica	27	6	0
PHill	2003	DC	3	Seed	Late	Corsica	27	7	0.723655528
PHill	2003	DC	3	Seed	Early	Bass	28	1	4.55401317
					-				
PHill	2003	DC	3	Seed	Early	Bass	28	2	13.79029976
PHill	2003	DC	3	Seed	Early	Bass	28	3	0
	-			-	4	-			

PHill	2003	DC	3	Seed E	Early	Bass	28	4	17.38560724
PHill	2003	DC	3	Seed E	Early	Bass	28	5	63.99649956
PHill	2003	DC	3	Seed E	Early	Bass	28	6	0
PHill	2003	DC	3		-	Bass	28	7	0.790385284
PHill	2003	DC	3		-	Bass	30	1	4.85263633
PHill	2003	DC	3			Bass	30	2	14.963987
PHill	2003	DC	3			Bass	30	3	0
PHill	2003	DC	3	Seed L	Late	Bass	30	4	17.08340736
PHill	2003	DC	3	Seed L	Late	Bass	30	5	63.17862731
PHill	2003	DC	3	Seed L	Late	Bass	30	6	0
PHill	2003	DC	3			Bass	30	7	0.880059996
PHill	2003	DC	3			Jack	32	1	5.59764572
					-				
PHill	2003	DC	3		-	Jack	32	2	21.71734406
PHill	2003	DC	3	Seed E	Early	Jack	32	3	0
PHill	2003	DC	3	Seed E	Early	Jack	32	4	18.10827409
PHill	2003	DC	3	Seed E	Early	Jack	32	5	79.32755371
PHill	2003	DC	3		-	Jack	32	6	0
PHill	2003	DC	3		_	Jack	32	7	1.4807234
					-				
PHill	2003	DC	3			Jack	33	1	5.28529116
PHill	2003	DC	3	Seed L	Late	Jack	33	2	20.63268476
PHill	2003	DC	3	Seed L	Late	Jack	33	3	0
PHill	2003	DC	3	Seed L	Late	Jack	33	4	18.13454481
PHill	2003	DC	3	Seed L	Late	Jack	33	5	81.87275278
PHill	2003	DC	3			Jack	33	6	0
PHill	2003	DC	3			Jack	33	7	0
PHill	2003	DC	3	Seed L	Late	William	ıs82	35	1 9.47112101
PHill	2003	DC	3	Seed L	Late	William	ıs82	35	2 23.65974788
PHill	2003	DC	3	Seed L	Late	William	ıs82	35	3 0
PHill	2003	DC	3			William		35	4 35.88541224
PHill	2003	DC	3			William William		35	5 96.55974073
PHill	2003	DC	3			William		35	6 0
PHill	2003	DC	3	Seed L	Late	William	ıs82	35	7 0
PHill	2003	DC	3	LeafPost E	Early	Bass	36	1	0
PHill	2003	DC	3	LeafPost E	Early	Bass	36	2	5.20409432
PHill	2003	DC	3	LeafPost E	Earlv	Bass	36	3	0
PHill	2003	DC	3	LeafPost E	-	Bass	36	4	0
PHill	2003	DC	3	LeafPost E	-	Bass	36	5	32.35907564
PHill	2003	DC	3			Bass	36	6	8.552150689
				LeafPost E	_				
PHill	2003	DC	3	LeafPost E	-	Bass	36	7	1.0007875
PHill	2003	DC	3	Seed E	Early	William	ıs82	36	1 8.69775067
PHill	2003	DC	3	Seed E	Early	William	ıs82	36	2 22.12906154
	2003		3	Seed E	Carlv	William	ıs82	36	
PHill	2003	DC	3		-	William William		36 36	3 0
PHill PHill	2003	DC DC	3	Seed E	Early	William	ıs82	36	3 0 4 46.36445898
PHill PHill PHill	2003 2003	DC DC DC	3	Seed E Seed E	Early Early	William William	ıs82 ıs82	36 36	3 0 4 46.36445898 5 126.6248257
PHill PHill PHill PHill	2003 2003 2003	DC DC DC DC	3 3 3	Seed E Seed E Seed E	Early Early Early	William William William	1582 1582 1582	36 36 36	3 0 4 46.36445898 5 126.6248257 6 0
PHill PHill PHill PHill PHill	2003 2003 2003 2003	DC DC DC DC DC	3 3 3	Seed E Seed E Seed E Seed E	Early Early Early Early	William William William William	is82 is82 is82 is82	36 36 36 36	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536
PHill PHill PHill PHill	2003 2003 2003	DC DC DC DC	3 3 3	Seed E Seed E Seed E	Early Early Early Early	William William William	is82 is82 is82 is82	36 36 36	3 0 4 46.36445898 5 126.6248257 6 0
PHill PHill PHill PHill PHill	2003 2003 2003 2003	DC DC DC DC DC	3 3 3	Seed E Seed E Seed E Seed E	Early Early Early Early Eate	William William William William	1882 1882 1882 1882	36 36 36 36	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536
PHill PHill PHill PHill PHill PHill PHill PHill	2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS FS	3 3 3 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L	Early Early Early Early Eate	William William William William Corsica Corsica	1582 1582 1582 1582 1582 1582	36 36 36 36 1	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888
PHill	2003 2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS FS FS	3 3 3 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L	Early Early Early Early Early Eate Eate Eate	William William William William Corsica Corsica Corsica	1582 1582 1582 1582 1582 1582 1582 1582	36 36 36 36 1 2	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS FS FS FS	3 3 3 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L	Early Early Early Early Early Eate Eate Eate Eate	William William William William Corsica Corsica Corsica Corsica	1582 1582 1582 1582 1582 1 2 2 2	36 36 36 36 1 2 3	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS	3 3 3 1 1 1 1	Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L	Carly Carly Carly Carly Cate Cate Cate Cate Cate Cate Cate Cate	William William William William Corsica Corsica Corsica Corsica Corsica	1582 1582 1582 1582 1582 1 2 1 2 1 2 2 2	36 36 36 36 1 2 3 4	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS FS FS FS FS FS	3 3 3 1 1 1 1 1	Seed E Seed E Seed E LeafPost L	Carly Carly Carly Carly Carly Cate Cate Cate Cate Cate Cate	William William William William Corsica Corsica Corsica Corsica Corsica Corsica	1582 1582 1582 1582 1582 1 2 1 2 1 2 2 2 2 2	36 36 36 36 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS	3 3 3 1 1 1 1	Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L	Carly Carly Carly Carly Carly Cate Cate Cate Cate Cate Cate	William William William William Corsica Corsica Corsica Corsica Corsica	1582 1582 1582 1582 1582 1 2 1 2 1 2 2 2 2 2	36 36 36 36 1 2 3 4	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS FS FS FS FS FS	3 3 3 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William Corsica Corsica Corsica Corsica Corsica Corsica	1882 1882 1882 1882 1 2 1 2 1 2 1 2 2 2 2 2	36 36 36 36 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS FS FS FS FS	3 3 3 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L Seed L	Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William Corsica Corsica Corsica Corsica Corsica Corsica Corsica Corsica Corsica	1882 1882 1882 1882 1 2 1 2 1 2 1 2 1 2 2 2 2 2	36 36 36 1 2 3 4 5 6	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS FS FS FS FS	3 3 3 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed I Seed I	Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William Corsica Corsica Corsica Corsica Corsica Corsica Corsica Corsica	1882 1882 1882 1882 1 2 1 2 2 2 2 2 2 2 2 2 2 2	36 36 36 36 1 2 3 4 5 6 7 1 2	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 4.0140106 7.55640506
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1	Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L	Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William Corsica	1882 1882 1882 1882 1882 1882 1882 1882	36 36 36 1 2 3 4 5 6 7 1 2 3	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L	Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	ss82 ss82 ss82 ss82 2 2 2 2 2 2 2 2 2 2	36 36 36 1 2 3 4 5 6 7 1 2 3	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed L Seed L Seed L Seed L Seed L Seed L	Carly Carly Carly Carly Carly Cate Cate Cate Cate Cate Cate Cate Cate	William William William William William Corsica	1882 1882 1882 1882 192 193 193 193 193 193 193 193 193 193 193	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed L Seed L Seed L Seed L Seed L Seed L	Carly Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 4.0140106 7.55640506 0 16.63706204 45.26061112
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed I	Carly Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed I	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 82	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L Seed L	Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 4.87031391
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed I	Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 4.87031391 8.80450052
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed E Seed E Seed E Seed E	Carly Carly Carly Carly Carly Cate Cate Cate Cate Cate Cate Cate Cate	William William William William William Corsica	IS 82	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 82	36 36 36 37 2 3 4 5 6 7 1 2 3 4 5 6 7	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E	Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William William Corsica	IS 8 2	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396 59.94947211
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E	Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica	IS 8 2	36 36 36 37 2 3 4 5 6 7 1 2 3 4 5 6 7	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E	Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William William Corsica	IS 8 2	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396 59.94947211
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica Corsic	IS 8 2	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 7 1	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed I Seed I Seed I Seed I Seed I Seed E	Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William Corsica Jack Jack	IS 82	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396 59.94947211 0 0 3.01710386 9.06290966
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC TS FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica Corsic	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3	3 0 4 46.36445898 5 126.6248257 6 0 7 2.102750536 0 1.73975888 0 6.521549231 8.376786869 0 0 4.0140106 7.55640506 0 16.63706204 45.26061112 0 0 4.87031391 8.80450052 0 24.10191396 59.94947211 0 0 3.01710386 9.06290966 0
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica Corsic	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost LeafPost LeafPost LeafPost LeafPost LeafPost Seed E Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica Corsic	IS 82	36 36 36 37 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 3 4 5 6 6 7 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3
PHill PHIL PHIL PHIL PHIL PHIL PHIL PHIL PHIL	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E Seed E LeafPost I LeafPost I LeafPost I LeafPost I LeafPost I Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William William Corsica Corsic	IS 82	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 6 7 1 7 1	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica Corsic	IS 8 2	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS FS FS FS FS FFS FFS FFS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William William Corsica Corsic	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 7 1	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Late Late Late Late Late Late Late Late	William William William William William Corsica Corsic	IS 8 2	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FS FS FS FS FS FS FS FS FFS FFS FFS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed E Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William William Corsica Corsic	IS 8 2	36 36 36 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 7 1	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FS FFS FFS FFS FFS FFS FFS FFS FFS FFS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed E Seed E Seed E Seed E LeafPost L LeafPost L LeafPost L LeafPost L LeafPost L Seed L Seed L Seed L Seed L Seed E	Carly Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William William Corsica Corsic	IS 82	36 36 36 37 1 2 3 4 5 6 7 1 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3
PHill	2003 2003 2003 2003 2003 2003 2003 2003	DC DC DC DC FSS FFS FFSS FFSS FFSS FFSS	3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Seed	Carly Carly Carly Carly Carly Carly Cate Late Late Late Late Late Late Late L	William William William William William Corsica Corsic	IS 82	36 36 36 37 1 2 3 4 5 6 7 1 2 3 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3

m	0000		-		- , -		0
PHill	2003	FS	1	LeafPost Late	Jack 5	6	0
PHill	2003	FS	1	LeafPost Late	Jack 5	7	0
PHill	2003	FS	1	Seed Late	Jack 5	1	2.66091532
PHill	2003	FS	1	Seed Late	Jack 5	2	7.6367804
PHill	2003	FS	1	Seed Late	Jack 5	3	0
PHill	2003	FS	1	Seed Late	Jack 5	4	9.12916122
PHill	2003	FS	1	Seed Late	Jack 5	5	40.79710408
PHill	2003	FS	1	Seed Late	Jack 5	6	0
						7	0
PHill	2003	FS	1	Seed Late	Jack 5		
PHill	2003	FS	1	LeafPost Late	Bass 7	1	0
PHill	2003	FS	1	LeafPost Late	Bass 7	2	1.8071291
PHill	2003	FS	1	LeafPost Late	Bass 7	3	0
PHill	2003	FS	1	LeafPost Late	Bass 7	4	6.940852769
PHill	2003	FS	1	LeafPost Late	Bass 7	5	5.687232575
PHill	2003	FS	1	LeafPost Late	Bass 7	6	0
PHill	2003	FS	1	LeafPost Late	Bass 7	7	0
	2003		1			1	3.26139711
PHill		FS		Seed Late			
PHill	2003	FS	1	Seed Late	Bass 7	2	7.92662042
PHill	2003	FS	1	Seed Late	Bass 7	3	0
PHill	2003	FS	1	Seed Late	Bass 7	4	14.9278465
PHill	2003	FS	1	Seed Late	Bass 7	5	57.30839032
PHill	2003	FS	1	Seed Late	Bass 7	6	0
PHill	2003	FS	1	Seed Late	Bass 7	7	0
PHill	2003	FS	1	Seed Early	Bass 8	1	3.06058213
	2003					2	
PHill		FS	1	Seed Early	Bass 8		7.8422486
PHill	2003	FS	1	Seed Early	Bass 8	3	0
PHill	2003	FS	1	Seed Early	Bass 8	4	11.61579542
PHill	2003	FS	1	Seed Early	Bass 8	5	47.72131136
PHill	2003	FS	1	Seed Early	Bass 8	6	0
PHill	2003	FS	1	Seed Early	Bass 8	7	0
PHill	2003	FS	1	Seed Early	Williams82	10	1 7.17723881
PHill	2003		1	_	Williams82	10	
		FS					
PHill	2003	FS	1	Seed Early	Williams82	10	3 0
PHill	2003	FS	1	Seed Early	Williams82	10	4 34.49435144
PHill	2003	FS	1	Seed Early	Williams82	10	5 86.61194168
PHill	2003	FS	1	Seed Early	Williams82	10	6 0
PHill	2003	FS	1	Seed Early	Williams82	10	7 0
PHill	2003	FS	1	LeafPost Late	Williams82	12	1 0
PHill	2003	FS	1	LeafPost Late	Williams82	12	2 1.9575146
PHill	2003		1			12	3 0
		FS		LeafPost Late	Williams82		
PHill	2003	FS	1	LeafPost Late	Williams82	12	4 4.454002674
PHill	2003	FS	1	LeafPost Late	Williams82	12	5 7.621294313
PHill	2003	FS	1	LeafPost Late	Williams82	12	6 0
PHill	2003	FS	1	LeafPost Late	Williams82	12	7 0
PHill	2003	FS	1	Seed Late	Williams82	12	1 3.76915432
PHill	2003	FS	1	Seed Late	Williams82	12	2 6.64468322
PHill	2003	FS	1	Seed Late	Williams82	12	3 0
PHill	2003	FS	1	Seed Late	Williams82	12	4 16.73566293
PHill	2003	FS	1	Seed Late	Williams82	12	5 45.16630196
PHill	2003	FS	1	Seed Late	Williams82	12	6 0
PHill	2003	FS	1	Seed Late	Williams82	12	7 0
PHill	2003	FS	2	Seed Early	Jack 13	3 1	2.4309307
PHill	2003	FS	2	Seed Early	Jack 13	3 2	5.84947202
PHill	2003	FS	2	Seed Early	Jack 13		0
PHill	2003	FS	2	Seed Early	Jack 13		9.626816016
PHill	2003	FS	2	Seed Early	Jack 13		41.14595218
	2003		2	_			0
PHill		FS		Seed Early			
PHill	2003	FS	2	Seed Early	Jack 13		0
PHill	2003	FS	2	LeafPost Late	Jack 15		0
PHill	2003	FS	2	LeafPost Late	Jack 15	5 2	1.30742006
PHill	2003	FS	2	LeafPost Late	Jack 15	5 3	0
PHill	2003	FS	2	LeafPost Late	Jack 15	5 4	3.949697094
PHill	2003	FS	2	LeafPost Late	Jack 15		5.114138576
PHill	2003	FS	2	LeafPost Late	Jack 15		0
PHill	2003	FS	2	LeafPost Late	Jack 15		0
PHill	2003	FS	2	Seed Late	Jack 15		2.30276789
PHill	2003	FS	2	Seed Late	Jack 15		5.658992
PHill	2003	FS	2	Seed Late	Jack 15		0
PHill	2003	FS	2	Seed Late	Jack 15		8.045582881
PHill	2003	FS	2	Seed Late	Jack 15	5 5	33.97162548
PHill	2003	FS	2	Seed Late	Jack 15		0
PHill	2003	FS	2	Seed Late	Jack 15		0
PHill	2003	FS	2	Seed Early	Bass 16		2.42222255
PHill	2003	FS	2	Seed Early	Bass 16		5.44141844
PHill	2003	FS	2	Seed Early	Bass 16		0
PHill	2003	FS	2	Seed Early	Bass 16		8.564647324
PHill	2003	FS	2	Seed Early	Bass 16		34.18225871
PHill	2003	FS	2	Seed Early	Bass 16	6	0
PHill	2003	FS	2	Seed Early	Bass 16		0
				*			

			_				
PHill	2003	FS	2	LeafPost Late	Bass 17	1	0
PHill	2003	FS	2	LeafPost Late	Bass 17	2	1.87418054
PHill	2003	FS	2	LeafPost Late	Bass 17	3	0
PHill	2003	FS	2	LeafPost Late	Bass 17	4	5.342875731
PHill	2003	FS	2	LeafPost Late	Bass 17	5	5.510934653
PHill	2003	FS	2	LeafPost Late	Bass 17	6	0
PHill	2003	FS	2	LeafPost Late	Bass 17	7	0
PHill			2		Bass 17	1	
	2003	FS					2.8425461
PHill	2003	FS	2	Seed Late	Bass 17	2	6.7102691
PHill	2003	FS	2	Seed Late	Bass 17	3	0
PHill	2003	FS	2	Seed Late	Bass 17	4	11.28836917
PHill	2003	FS	2	Seed Late	Bass 17	5	42.56564949
PHill	2003	FS	2	Seed Late	Bass 17	6	0
PHill	2003	FS	2	Seed Late	Bass 17	7	0
PHill	2003	FS	2	Seed Early	Williams82	19	1 4.30869184
PHill	2003	FS	2	Seed Early	Williams82	19	2 7.74305972
PHill	2003	FS	2	Seed Early	Williams82	19	
PHill	2003	FS	2	Seed Early	Williams82	19	4 24.07995001
PHill	2003	FS	2	Seed Early	Williams82	19	5 63.84511711
PHill	2003	FS	2	Seed Early	Williams82	19	6 0
PHill	2003	FS	2	Seed Early	Williams82	19	7 0
PHill	2003	FS	2	LeafPost Late	Williams82	21	1 0
PHill	2003	FS	2	LeafPost Late	Williams82	21	2 2.64186764
PHill	2003	FS	2	LeafPost Late	Williams82	21	3 0
PHill	2003		2	LeafPost Late	Williams82	21	4 5.919880729
		FS					
PHill	2003	FS	2	LeafPost Late	Williams82	21	5 7.922374788
PHill	2003	FS	2	LeafPost Late	Williams82	21	6 0
PHill	2003	FS	2	LeafPost Late	Williams82	21	7 0
PHill	2003	FS	2	Seed Late	Williams82	21	1 5.09121976
PHill	2003	FS	2	Seed Late	Williams82	21	2 9.97721348
PHill	2003	FS	2	Seed Late	Williams82	21	3 0
PHill	2003	FS	2	Seed Late	Williams82	21	4 23.26315439
PHill	2003		2			21	
		FS		Seed Late	Williams82		
PHill	2003	FS	2	Seed Late	Williams82	21	6 0
PHill	2003	FS	2	Seed Late	Williams82	21	7 0.431177844
PHill	2003	FS	2	Seed Early	Corsica 23	1	4.14246948
PHill	2003	FS	2	Seed Early	Corsica 23	2	7.41899156
PHill	2003	FS	2	Seed Early	Corsica 23	3	0
PHill	2003	FS	2	Seed Early	Corsica 23	4	16.32693143
PHill	2003	FS	2	Seed Early	Corsica 23	5	40.55688931
PHill	2003	FS	2	Seed Early	Corsica 23	6	0
PHill	2003	FS	2	-	Corsica 23	7	0
				Seed Early			
PHill	2003	FS	2	LeafPost Late	Corsica 24	1	0
PHill	2003	FS	2	LeafPost Late	Corsica 24	2	2.22173906
PHill	2003	FS	2	LeafPost Late	Corsica 24	3	0
PHill	2003	FS	2	LeafPost Late	Corsica 24	4	5.709237725
PHill	2003	FS	2	LeafPost Late	Corsica 24	5	7.705794806
PHill	2003	FS	2	LeafPost Late	Corsica 24	6	0
PHill	2003	FS	2	LeafPost Late	Corsica 24	7	0
PHill	2003	FS	2	Seed Late	Corsica 24	1	3.09169433
PHill	2003	FS	2		Corsica 24	2	7.87813274
				Seed Late			
PHill	2003	FS	2	Seed Late	Corsica 24	3	0
PHill	2003	FS	2	Seed Late	Corsica 24	4	15.24495774
PHill	2003	FS	2	Seed Late	Corsica 24	5	56.62808432
PHill	2003	FS	2	Seed Late	Corsica 24	6	0
PHill	2003	FS	2	Seed Late	Corsica 24	7	0
PHill	2003	FS	3	LeafPost Late	Bass 26	1	0
PHill	2003	FS	3	LeafPost Late	Bass 26	2	2.04616994
PHill	2003	FS	3	LeafPost Late	Bass 26	3	0
PHill	2003	FS	3	LeafPost Late	Bass 26	4	7.550772424
							9.735128703
PHill	2003	FS	3	LeafPost Late	Bass 26	5	
PHill	2003	FS	3	LeafPost Late	Bass 26	6	0
PHill	2003	FS	3	LeafPost Late	Bass 26	7	0
PHill	2003	FS	3	Seed Late	Bass 26	1	2.26061945
PHill	2003	FS	3	Seed Late	Bass 26	2	4.45630544
PHill	2003	FS	3	Seed Late	Bass 26	3	0
PHill	2003	FS	3	Seed Late	Bass 26	4	9.230306598
PHill	2003	FS	3	Seed Late	Bass 26	5	37.8833287
PHill	2003	FS	3	Seed Late	Bass 26	6	0
PHill	2003	FS	3			7	0
				Seed Late			
PHill	2003	FS	3	LeafPost Early	Bass 27	1	0
PHill	2003	FS	3	LeafPost Early	Bass 27	2	1.1777732
PHill	2003	FS	3	LeafPost Early	Bass 27	3	0
PHill	2003	FS	3	LeafPost Early	Bass 27	4	5.300585037
PHill	2003	FS	3	LeafPost Early	Bass 27	5	4.732780232
PHill	2003	FS	3	LeafPost Early	Bass 27	6	0
PHill	2003	FS	3	LeafPost Early	Bass 27	7	0
PHill	2003	FS	3	Seed Early	Bass 27	1	2.50348134
PHill	2003	FS	3	Seed Early	Bass 27	2	5.42650754
	2000		~	Doca Early	2000 27	-	3.12000.01

PHill	2003	FS	3	Seed	Early	Bass	27	3	0
PHill	2003	FS	3	Seed	Early	Bass	27	4	11.82530669
PHill	2003	FS	3	Seed	Early	Bass	27	5	45.56294416
PHill	2003	FS	3	Seed	Early	Bass	27	6	0
					-		27		0
PHill	2003	FS	3	Seed	Early	Bass		7	
PHill	2003	FS	3	LeafPost		William		28	1 0
PHill	2003	FS	3	LeafPost	Late	William	ns82	28	2 2.2929443
PHill	2003	FS	3	LeafPost	Late	William	ns82	28	3 0
PHill	2003	FS	3	LeafPost		William		28	4 4.546480529
PHill	2003		3					28	5 6.805980126
		FS		LeafPost		William			
PHill	2003	FS	3	LeafPost	Late	William	ns82	28	6 0
PHill	2003	FS	3	LeafPost	Late	William	ns82	28	7 0.505855784
PHill	2003	FS	3	Seed	Late	William	1582	28	1 4.51041207
PHill	2003	FS	3			William		28	2 8.37784454
				Seed	Late				
PHill	2003	FS	3	Seed	Late	William		28	3 0
PHill	2003	FS	3	Seed	Late	William	ns82	28	4 26.2529213
PHill	2003	FS	3	Seed	Late	William	ns82	28	5 68.72689076
PHill	2003	FS	3	Seed	Late	William	1882	28	6 0
			3					28	7 0
PHill	2003	FS		Seed	Late	William			
PHill	2003	FS	3	Seed	Early	William	ns82	30	1 4.70146029
PHill	2003	FS	3	Seed	Early	William	ns82	30	2 8.60429564
PHill	2003	FS	3	Seed	Early	William	1582	30	3 0
PHill	2003	FS	3	Seed	Early	William		30	4 26.70918583
PHill	2003	FS	3	Seed	Early	William		30	5 68.09423326
PHill	2003	FS	3	Seed	Early	William	ns82	30	6 0
PHill	2003	FS	3	Seed	Early	William	ns82	30	7 0
PHill	2003	FS	3	Seed	Early	Jack	32	1	2.64777109
					-				
PHill	2003	FS	3	Seed	Early	Jack	32	2	6.12086144
PHill	2003	FS	3	Seed	Early	Jack	32	3	0
PHill	2003	FS	3	Seed	Early	Jack	32	4	12.08692761
PHill	2003	FS	3	Seed	Early	Jack	32	5	47.25591582
PHill	2003	FS	3	Seed	Early	Jack	32	6	0
					-				
PHill	2003	FS	3	Seed	Early	Jack	32	7	0
PHill	2003	FS	3	LeafPost	Late	Jack	33	1	0
PHill	2003	FS	3	LeafPost	Late	Jack	33	2	1.35799016
PHill	2003	FS	3	LeafPost	Late	Jack	33	3	0
PHill	2003	FS	3				33	4	5.183334017
				LeafPost		Jack			
PHill	2003	FS	3	LeafPost	Late	Jack	33	5	6.931757115
PHill	2003	FS	3	LeafPost	Late	Jack	33	6	0
PHill	2003	FS	3	LeafPost	Late	Jack	33	7	0
PHill	2003	FS	3	Seed	Late	Jack	33	1	2.17783984
PHill	2003	FS	3	Seed	Late	Jack	33	2	5.0308574
PHill	2003	FS	3	Seed	Late	Jack	33	3	0
PHill	2003	FS	3	Seed	Late	Jack	33	4	8.771929382
PHill	2003	FS	3	Seed	Late	Jack	33	5	36.45718659
PHill	2003	FS	3				33	6	0
				Seed	Late	Jack			
PHill	2003	FS	3	Seed	Late	Jack	33	7	0
PHill	2003	FS	3	Seed	Early	Corsica	a 34	1	3.50314217
PHill	2003	FS	3	Seed	Early	Corsica	a 34	2	5.50783922
PHill	2003	FS	3	Seed	Early	Corsica		3	0
PHill	2003	FS	3		-			4	16.91624162
				Seed	Early	Corsica			
PHill	2003	FS	3	Seed	Early	Corsica		5	43.33805406
PHill	2003	FS	3	Seed	Early	Corsica	a 34	6	0
PHill	2003	FS	3	Seed	Early	Corsica	a 34	7	0
PHill	2003	FS	3	LeafPost		Corsica		1	0
PHill			3					2	1.56533378
	2003	FS		LeafPost		Corsica			
PHill	2003	FS	3	LeafPost		Corsica		3	0
PHill	2003	FS	3	LeafPost	Late	Corsica		4	4.710799361
PHill	2003	FS	3	LeafPost	Late	Corsica	a 35	5	4.980100001
PHill	2003	FS	3	LeafPost	Tate	Corsica	35	6	0
PHill	2003	FS	3	LeafPost		Corsica		7	0
PHill	2003	FS	3	Seed	Late	Corsica		1	3.71452053
PHill	2003	FS	3	Seed	Late	Corsica	a 35	2	6.2956136
PHill	2003	FS	3	Seed	Late	Corsica	35	3	0
PHill	2003	FS	3	Seed	Late	Corsica	35	4	17.95435508
PHill	2003	FS	3	Seed	Late	Corsica		5	46.74566316
PHill	2003	FS	3	Seed	Late	Corsica		6	0
PHill	2003	FS	3	Seed	Late	Corsica		7	0
Wye	2003	DC	1	LeafPost	Early	Bass	2	1	0
Wye	2003	DC	1	LeafPost		Bass	2	2	7.10892212
-			1	LeafPost			2	3	0
Wye	2003	DC				Bass			
Wye	2003	DC	1	LeafPost		Bass	2	4	22.54139481
Wye	2003	DC	1	LeafPost	Early	Bass	2	5	30.40169349
Wye	2003	DC	1	LeafPost	Earlv	Bass	2	6	0
Wye	2003	DC	1	LeafPost		Bass	2	7	0
					-				
Wye	2003	DC	1	Seed	Early	Bass	2	1	4.54158533
Wye	2003	DC	1	Seed	Early	Bass	2	2	11.99264414
Wye	2003	DC	1	Seed	Early	Bass	2	3	0
Wye	2003	DC	1	Seed	Early	Bass	2	4	24.84333717
-		-			4				

							_	_	
Wye	2003	DC	1	Seed	Early	Bass	2	5	81.54799946
Wye	2003	DC	1	Seed	Early	Bass	2	6	0
Wye	2003	DC	1	Seed	Early	Bass	2	7	0.693144788
Wye	2003	DC	1	Seed	Early	Bass	3	1	4.18194903
Wye	2003	DC	1	Seed	Early	Bass	3	2	12.02637134
Wye	2003	DC	1	Seed	Early	Bass	3	3	0
Wye	2003	DC	1	Seed	Early	Bass	3	4	20.4579765
Wye	2003	DC	1	Seed	Early	Bass	3	5	72.74712803
Wye	2003	DC	1	Seed	Early	Bass	3	6	0
Wye	2003	DC	1	Seed	Early	Bass	3	7	1.272805828
_			1		-		3	1	0
Wye	2003	DC		LeafPost		Bass			
Wye	2003	DC	1	LeafPost		Bass	3	2	1.77382004
Wye	2003	DC	1	LeafPost		Bass	3	3	0
Wye	2003	DC	1	LeafPost		Bass	3	4	0
Wye	2003	DC	1	LeafPost	Late	Bass	3	5	11.54202356
Wye	2003	DC	1	LeafPost	Late	Bass	3	6	6.293091952
Wye	2003	DC	1	LeafPost	Late	Bass	3	7	0
Wye	2003	DC	1	Seed	Late	Corsica	4	1	5.40436029
Wye	2003	DC	1	Seed	Late	Corsica	4	2	11.89666928
Wye	2003	DC	1	Seed	Late	Corsica	4	3	0
	2003	DC	1	Seed	Late	Corsica	4	4	28.31792166
Wye			1						
Wye	2003	DC		Seed	Late	Corsica	4	5	68.8641294
Wye	2003	DC	1	Seed	Late	Corsica	4	6	0
Wye	2003	DC	1	Seed	Late	Corsica	4	7	0.78013792
Wye	2003	DC	1	LeafPost	Early	Corsica	6	1	0
Wye	2003	DC	1	LeafPost	Early	Corsica	6	1	0
Wye	2003	DC	1	LeafPost	Earlv	Corsica	6	2	5.09572568
Wye	2003	DC	1	LeafPost	4	Corsica	6	2	2.10322328
Wye	2003	DC	1	LeafPost	4	Corsica	6	3	0
	2003	DC	1	LeafPost	4	Corsica	6	3	0
Wye					4				
Wye	2003	DC	1	LeafPost	-	Corsica	6	4	13.52264882
Wye	2003	DC	1	LeafPost	-	Corsica	6	4	0
Wye	2003	DC	1	LeafPost	Early	Corsica	6	5	23.33019733
Wye	2003	DC	1	LeafPost	Early	Corsica	6	5	7.210678734
Wye	2003	DC	1	LeafPost	Early	Corsica	6	6	0
Wye	2003	DC	1	LeafPost	Early	Corsica	6	6	0
Wye	2003	DC	1	LeafPost	-	Corsica	6	7	0
Wye	2003	DC	1	LeafPost		Corsica	6	7	0
_	2003	DC	1	Seed	Early	Corsica	6	1	5.84426422
Wye					4			2	
Wye	2003	DC	1	Seed	Early	Corsica	6		13.35493046
Wye	2003	DC	1	Seed	Early	Corsica	6	3	0
Wye	2003	DC	1	Seed	Early	Corsica	6	4	30.33197237
Wye	2003	DC	1	Seed	Early	Corsica	6	5	74.58749613
Wye	2003	DC	1	Seed	Early	Corsica	6	6	0
Wye	2003	DC	1	Seed	Early	Corsica	6	7	0.883838108
Wye	2003	DC	1	LeafPost	Early	Jack	7	1	0
Wye	2003	DC	1	LeafPost	-	Jack	7	2	4.51492508
Wye	2003	DC	1	LeafPost	-	Jack	7	3	0
	2003	DC	1		-		7	4	0
Wye				LeafPost	-	Jack			
Wye	2003	DC	1	LeafPost		Jack	7	5	28.69320302
Wye	2003	DC	1	LeafPost	-	Jack	7	6	8.924942388
Wye	2003	DC	1	LeafPost	Early	Jack	7	7	1.02360244
Wye	2003	DC	1	LeafPost	Late	Jack	7	1	0
Wye	2003	DC	1	LeafPost	Late	Jack	7	2	1.30245344
Wye	2003	DC	1	LeafPost	Late	Jack	7	3	0
Wye	2003	DC	1	LeafPost	Late	Jack	7	4	0
Wye	2003	DC	1	LeafPost		Jack	7	5	8.80295435
Wye	2003	DC	1	LeafPost		Jack	7	6	4.500089738
Wye	2003	DC	1	LeafPost		Jack	7	7	0
_		DC	1	Seed			7	1	4.02477065
Wye	2003				Late	Jack			
Wye	2003	DC	1	Seed	Late	Jack	7	2	12.43099562
Wye	2003	DC	1	Seed	Late	Jack	7	3	0
Wye	2003	DC	1	Seed	Late	Jack	7	4	21.29826533
Wye	2003	DC	1	Seed	Late	Jack	7	5	82.81538442
Wye	2003	DC	1	Seed	Late	Jack	7	6	0
Wye	2003	DC	1	Seed	Late	Jack	7	7	1.187925456
Wye	2003	DC	1	LeafPost		Jack	9	1	0
Wye	2003	DC	1	LeafPost	4	Jack	9	2	1.19346932
Wye	2003	DC	1	LeafPost		Jack	9	3	0
	2003	DC	1	LeafPost	4		9	4	0
Wye						Jack			
Wye	2003	DC	1	LeafPost	4	Jack	9	5	0
Wye	2003	DC	1	LeafPost		Jack	9	6	1.617323666
Wye	2003	DC	1	LeafPost	-	Jack	9	7	0
Wye	2003	DC	1	Seed	Early	Jack	9	1	4.48544421
Wye	2003	DC	1	Seed	Early	Jack	9	2	15.30586268
Wye	2003	DC	1	Seed	Early	Jack	9	3	0
Wye	2003	DC	1	Seed	Early	Jack	9	4	20.51244902
Wye	2003	DC	1	Seed	Early	Jack	9	5	88.86597319
Wye	2003	DC	1	Seed	Early	Jack	9	6	0
	2000		-		_ ~ y		-	-	-

						_	
Wye	2003	DC	1	Seed Early	Jack 9	7	1.42351158
Wye	2003 2003	DC DC	1 1	LeafPost Early	Williams82	10 10	1 0 2 5.66535794
Wye	2003	DC	1	LeafPost Early LeafPost Early	Williams82 Williams82	10	3 0
Wye Wye	2003	DC	1	LeafPost Early	Williams82	10	4 0
Wye	2003	DC	1	LeafPost Early	Williams82	10	5 23.499104
Wye	2003	DC	1	LeafPost Early	Williams82	10	6 8.13716479
Wye	2003	DC	1	LeafPost Early	Williams82	10	7 0.991806836
Wye	2003	DC	1	LeafPost Late	Williams82	11	1 0
Wye	2003	DC	1	LeafPost Late	Williams82	11	2 2.18096972
Wye	2003	DC	1	LeafPost Late	Williams82	11	3 0
Wye	2003	DC	1	LeafPost Late	Williams82	11	4 0
Wye	2003	DC	1	LeafPost Late	Williams82	11	5 13.32326332
Wye	2003	DC	1	LeafPost Late	Williams82	11	6 5.710260408
Wye	2003	DC	1	LeafPost Late	Williams82	11	7 0
Wye	2003	DC	1	Seed Late	Williams82	11	1 7.04115808
Wye	2003	DC	1	Seed Late	Williams82	11	2 17.21117624
Wye	2003	DC	1	Seed Late	Williams82	11	3 0
Wye	2003	DC	1	Seed Late	Williams82	11	4 33.55186859
Wye	2003	DC	1	Seed Late	Williams82	11	5 85.83615504
Wye	2003	DC	1	Seed Late	Williams82	11	6 0
Wye	2003	DC	1	Seed Late	Williams82	11	7 1.172450684
Wye	2003	DC	1	LeafPost Early	Williams82	12	1 0
Wye	2003	DC	1	LeafPost Early	Williams82	12	2 4.17217034
Wye	2003	DC	1	LeafPost Early	Williams82	12	3 0
Wye	2003	DC	1	LeafPost Early	Williams82	12	4 10.85830084
Wye	2003	DC	1	LeafPost Early	Williams82	12	5 18.30484779
Wye	2003	DC	1	LeafPost Early	Williams82	12	6 0
Wye	2003	DC	1	LeafPost Early	Williams82	12	7 0.876883208
Wye	2003	DC	1	Seed Early	Williams82	12	1 8.25738595
Wye	2003	DC	1	Seed Early	Williams82	12	2 21.54889298
Wye	2003	DC	1	Seed Early	Williams82	12	3 0
Wye	2003	DC	1	Seed Early	Williams82	12	4 40.58828425
Wye	2003	DC	1	Seed Early	Williams82	12	5 105.1548535
Wye	2003	DC	1	Seed Early	Williams82	12	6 0
Wye	2003	DC	1	Seed Early	Williams82	12	7 1.38778108
Wye	2003	DC	2	LeafPost Early	Corsica 13	1	0
	2003	DC	2	LeafPost Early		2	4.27134956
Wye				_			
Wye	2003	DC	2	LeafPost Early	Corsica 13	3	0
Wye	2003	DC	2	LeafPost Early	Corsica 13	4	12.25054907
Wye	2003	DC	2	LeafPost Early	Corsica 13	5	19.84613587
Wye	2003	DC	2	LeafPost Early	Corsica 13	6	0
Wye	2003	DC	2	LeafPost Early	Corsica 13	7	0
Wye	2003	DC	2	Seed Early	Corsica 13	1	5.76820618
Wye	2003	DC	2	Seed Early	Corsica 13	2	13.66622948
Wye	2003	DC	2	Seed Early	Corsica 13	3	0
Wye	2003	DC	2	Seed Early	Corsica 13	4	31.54411912
Wye	2003	DC	2	Seed Early	Corsica 13	5	67.78780004
Wye	2003	DC	2	Seed Early	Corsica 13	6	0
Wye	2003	DC	2	Seed Early	Corsica 13	7	1.180028896
Wye	2003	DC	2	LeafPost Early	Corsica 14	1	0
Wye	2003	DC	2	LeafPost Early	Corsica 14	2	4.81579406
Wye	2003	DC	2	LeafPost Early	Corsica 14	3	0
Wye	2003	DC	2	LeafPost Early	Corsica 14	4	0
Wye	2003	DC	2	LeafPost Early	Corsica 14	5	28.60963077
Wye	2003	DC	2	LeafPost Early	Corsica 14	6	9.603716913
Wye	2003	DC	2	LeafPost Early	Corsica 14	7	0.367092384
Wye	2003	DC	2	LeafPost Late	Corsica 14	1	0
Wye	2003	DC	2	LeafPost Late	Corsica 14	2	1.96490864
Wye	2003	DC	2	LeafPost Late	Corsica 14	3	0
Wye	2003	DC	2	LeafPost Late	Corsica 14	4	0
Wye	2003	DC	2	LeafPost Late	Corsica 14	5	7.681041485
Wye	2003	DC	2	LeafPost Late	Corsica 14	6	2.16337824
Wye	2003	DC	2	LeafPost Late	Corsica 14	7	0
Wye	2003	DC	2	Seed Late	Corsica 14	1	6.17520374
Wye	2003	DC	2	Seed Late	Corsica 14	2	15.71979368
Wye	2003	DC	2	Seed Late	Corsica 14	3	0
Wye	2003	DC	2	Seed Late	Corsica 14	4	31.32083937
Wye	2003	DC	2	Seed Late	Corsica 14	5	79.64721076
Wye	2003	DC	2	Seed Late	Corsica 14	6	0
Wye	2003	DC	2	Seed Late	Corsica 14	7	1.005765392
Wye	2003	DC	2	LeafPost Early	Jack 16	1	3.21071944
Wye	2003	DC	2	LeafPost Early	Jack 16	1	2.17548974
Wye	2003	DC	2	LeafPost Early	Jack 16	2	5.2462685
Wye	2003	DC	2	LeafPost Early	Jack 16	2	3.83322854
Wye	2003	DC	2	LeafPost Early	Jack 16	3	0
Wye	2003	DC	2	LeafPost Early	Jack 16	3	0
Wye	2003	DC	2	LeafPost Early	Jack 16	4	15.18971331
Wye	2003	DC	2	LeafPost Early	Jack 16	4	0

Wye	2003	DC	2	LeafPost Early	Jack 1	6 5	27.34014608
Wye	2003	DC	2	LeafPost Early	Jack 1		26.3160469
Wye	2003	DC	2	LeafPost Early	Jack 1		0
Wye	2003	DC	2	LeafPost Early	Jack 1		6.736983521
Wye	2003	DC	2	LeafPost Early	Jack 1		0.80426736
Wye	2003	DC	2	LeafPost Early	Jack 1		0.812016696
Wye	2003	DC	2	Seed Early	Jack 1		4.12105446
Wye	2003	DC	2	Seed Early	Jack 1		13.78505576
Wye	2003	DC	2	Seed Early	Jack 1		0
Wye	2003	DC	2	Seed Early	Jack 1		19.6337933
Wye	2003	DC	2	Seed Early	Jack 1		79.06887819
Wye	2003	DC	2	Seed Early	Jack 1		0
Wye	2003	DC	2	Seed Early	Jack 1		1.462524984
_	2003	DC	2	LeafPost Late	Jack 1		0
Wye	2003	DC	2	LeafPost Late	Jack 1		2.52936176
Wye	2003	DC	2	LeafPost Late			0
Wye	2003		2				0
Wye		DC	2	LeafPost Late			
Wye	2003	DC		LeafPost Late	Jack 1		16.98161398
Wye	2003	DC	2	LeafPost Late	Jack 1		6.829628301
Wye	2003	DC	2	LeafPost Late	Jack 1		0
Wye	2003	DC	2	Seed Late	Jack 1		3.395345
Wye	2003	DC	2	Seed Late	Jack 1		9.9219707
Wye	2003	DC	2	Seed Late	Jack 1		0
Wye	2003	DC	2	Seed Late	Jack 1		14.01042811
Wye	2003	DC	2	Seed Late	Jack 1		52.42668285
Wye	2003	DC	2	Seed Late	Jack 1		0
Wye	2003	DC	2	Seed Late	Jack 1		1.04891254
Wye	2003	DC	2	LeafPost Late	Bass 1		0
Wye	2003	DC	2	LeafPost Late	Bass 1		2.25791024
Wye	2003	DC	2	LeafPost Late	Bass 1	9 3	0
Wye	2003	DC	2	LeafPost Late	Bass 1	9 4	0
Wye	2003	DC	2	LeafPost Late	Bass 1	9 5	14.14911256
Wye	2003	DC	2	LeafPost Late	Bass 1	9 6	9.188614257
Wye	2003	DC	2	LeafPost Late	Bass 1	9 7	0
Wye	2003	DC	2	Seed Late	Bass 1	9 1	4.32202777
Wye	2003	DC	2	Seed Late	Bass 1	9 2	12.6199052
Wye	2003	DC	2	Seed Late	Bass 1	9 3	0
Wye	2003	DC	2	Seed Late	Bass 1		19.95657866
Wye	2003	DC	2	Seed Late	Bass 1		72.07386085
Wye	2003	DC	2	Seed Late	Bass 1		0
Wye	2003	DC	2	Seed Late	Bass 1		1.004275944
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		4.03060994
_	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		16.49706573
Wye	2003		2	-			21.12592396
Wye		DC		LeafPost Early			
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		1.366642008
Wye	2003	DC	2	Seed Early	Bass 2		4.28393414
Wye	2003	DC	2	Seed Early	Bass 2		11.99358392
Wye	2003	DC	2	Seed Early	Bass 2		0
Wye	2003	DC	2	Seed Early	Bass 2		20.50303186
Wye	2003	DC	2	Seed Early	Bass 2		70.16166344
Wye	2003	DC	2	Seed Early	Bass 2		0
Wye	2003	DC	2	Seed Early	Bass 2		1.032338368
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		3.40362488
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2		4.278818212
Wye	2003	DC	2	LeafPost Early	Bass 2		0
Wye	2003	DC	2	LeafPost Early	Bass 2	1 7	0
Wye	2003	DC	2	LeafPost Early	Williams82	22	1 0
Wye	2003	DC	2	LeafPost Early	Williams82	22	2 6.73117334
Wye	2003	DC	2	LeafPost Early	Williams82	22	3 0
Wye	2003	DC	2	LeafPost Early	Williams82	22	4 19.2483888
Wye	2003	DC	2	LeafPost Early	Williams82	22	5 33.0852696
Wye	2003	DC	2	LeafPost Early	Williams82	22	6 0
Wye	2003	DC	2	LeafPost Early	Williams82		7 1.309587928
Wye	2003	DC	2	Seed Early	Williams82		1 8.82187784
Wye	2003	DC	2	Seed Early	Williams82		2 21.99401198
Wye	2003	DC	2	Seed Early	Williams82		3 0
Wye	2003	DC	2	Seed Early	Williams82		4 37.76224416
Wye	2003	DC	2	Seed Early	Williams82		5 98.11789283
Wye	2003	DC	2	Seed Early	Williams82		6 0
Wye	2003	DC	2	Seed Early	Williams82		7 1.797963396
Wye	2003	DC	2	LeafPost Early	Williams82		1 0
Wye	2003	DC	2	LeafPost Early	Williams82		2 3.2134319
Wye Wye	2003	DC	2	LeafPost Early	Williams82		3 0
"Ye	2003	DC	4	nearthor party	wrrtrains02	. 23	J 0

TyTeen	2003	DC	2	TanéDant Baula	Williams82	23	4	0
Wye		DC		LeafPost Early				
Wye	2003	DC	2	LeafPost Early	Williams82	23	5	8.670375162
Wye	2003	DC	2	LeafPost Early	Williams82	23	6	0
Wye	2003	DC	2	LeafPost Early	Williams82	23	7	0
Wye	2003	DC	2	LeafPost Late	Williams82	23	1	0
Wye	2003	DC	2	LeafPost Late	Williams82	23	2	2.0524586
	2003	DC	2	LeafPost Late	Williams82	23	3	0
Wye								
Wye	2003	DC	2	LeafPost Late	Williams82	23	4	0
Wye	2003	DC	2	LeafPost Late	Williams82	23	5	10.81199747
Wye	2003	DC	2	LeafPost Late	Williams82	23	6	5.192510315
Wye	2003	DC	2	LeafPost Late	Williams82	23	7	0
-								
Wye	2003	DC	2	Seed Late	Williams82	23	1	8.93949715
Wye	2003	DC	2	Seed Late	Williams82	23	2	21.78939248
Wye	2003	DC	2	Seed Late	Williams82	23	3	0
Wye	2003	DC	2	Seed Late	Williams82	23	4	38.97333884
Wye	2003	DC	2	Seed Late	Williams82	23	5	102.4662307
							6	0
Wye	2003	DC	2		Williams82	23		
Wye	2003	DC	2	Seed Late	Williams82	23	7	1.69886348
Wye	2003	DC	3	LeafPost Early	Williams82	25	1	0
Wye	2003	DC	3	LeafPost Early	Williams82	25	1	0
Wye	2003	DC	3	LeafPost Early	Williams82	25	2	7.34450744
_								
Wye	2003	DC	3	LeafPost Early	Williams82	25	2	3.39028718
Wye	2003	DC	3	LeafPost Early	Williams82	25	3	0
Wye	2003	DC	3	LeafPost Early	Williams82	25	3	0
Wye	2003	DC	3	LeafPost Early	Williams82	25	4	18.87504447
	2003	DC	3	LeafPost Early	Williams82	25	4	0
Wye								
Wye	2003	DC	3	LeafPost Early	Williams82	25	5	38.37353217
Wye	2003	DC	3	LeafPost Early	Williams82	25	5	17.36850045
Wye	2003	DC	3	LeafPost Early	Williams82	25	6	4.098043548
Wye	2003	DC	3	LeafPost Early	Williams82	25	6	5.30494285
							7	
Wye	2003	DC	3	LeafPost Early	Williams82	25		1.445817928
Wye	2003	DC	3	LeafPost Early	Williams82	25	7	0
Wye	2003	DC	3	Seed Early	Williams82	25	1	11.90595312
Wye	2003	DC	3	Seed Early	Williams82	25	2	31.23866372
Wye	2003	DC	3	Seed Early	Williams82	25	3	0
				*				
Wye	2003	DC	3	Seed Early	Williams82	25	4	54.39238635
Wye	2003	DC	3	Seed Early	Williams82	25	5	149.5823882
Wye	2003	DC	3	Seed Early	Williams82	25	6	0
Wye	2003	DC	3	Seed Early	Williams82	25	7	1.948362272
-	2003	DC	3	LeafPost Late	Williams82	27	1	0
Wye								
Wye	2003	DC	3	LeafPost Late	Williams82	27	2	2.58485846
Wye	2003	DC	3	LeafPost Late	Williams82	27	3	0
Wye	2003	DC	3	LeafPost Late	Williams82	27	4	0
Wye	2003	DC	3	LeafPost Late	Williams82	27	5	17.43741264
_							6	
Wye	2003	DC	3	LeafPost Late	Williams82	27		7.358380374
Wye	2003	DC	3	LeafPost Late	Williams82	27	7	0
Wye	2003	DC	3	Seed Late	Williams82	27	1	7.68650903
Wye	2003	DC	3	Seed Late	Williams82	27	2	19.0819277
Wye	2003	DC	3	Seed Late	Williams82	27	3	0
_							4	38.40851909
Wye	2003	DC	3	Seed Late	Williams82	27		
Wye	2003	DC	3	Seed Late	Williams82	27	5	99.70857007
Wye	2003	DC	3	Seed Late	Williams82	27	6	0
Wye	2003	DC	3	Seed Late	Williams82	27	7	1.10654022
_	2003	DC	3	LeafPost Early	Corsica 28	1	0	1.10001022
Wye							0	
Wye	2003	DC	3	LeafPost Early	Corsica 28	1	-	
Wye	2003	DC	3	LeafPost Early	Corsica 28	2	7.308	26726
Wye	2003	DC	3	LeafPost Early	Corsica 28	2	5.704	46852
Wye	2003	DC	3	LeafPost Early	Corsica 28	3	0	
Wye	2003	DC	3	LeafPost Early	Corsica 28	3	0	
_			3			4		33.CE1.0
Wye	2003	DC		LeafPost Early	Corsica 28			.326519
Wye	2003	DC	3	LeafPost Early	Corsica 28	4	0	
Wye	2003	DC	3	LeafPost Early	Corsica 28	5	34.14	527103
Wye	2003	DC	3	LeafPost Early	Corsica 28	5	29.91	759563
Wye	2003	DC	3	LeafPost Early	Corsica 28	6	0	
			3			6		122712
Wye	2003	DC		LeafPost Early	Corsica 28			432742
Wye	2003	DC	3	LeafPost Early	Corsica 28	7	0	
Wye	2003	DC	3	LeafPost Early	Corsica 28	7	1.396	285656
Wye	2003	DC	3	Seed Early	Corsica 28	1		89515
Wye	2003	DC	3	Seed Early	Corsica 28	2		09598
			3			3		
Wye	2003	DC		Seed Early	Corsica 28		0	220100
Wye	2003	DC	3	Seed Early	Corsica 28	4		339129
Wye	2003	DC	3	Seed Early	Corsica 28	5	70.86	330263
Wye	2003	DC	3	Seed Early	Corsica 28	6	0	
-	2003	DC	3	Seed Early	Corsica 28	7		661476
Wye				*				001410
Wye	2003	DC	3	LeafPost Late	Corsica 29	1	0	
Wye	2003	DC	3	LeafPost Late	Corsica 29	2		69966
Wye	2003	DC	3	LeafPost Late	Corsica 29	3	0	
Wye	2003	DC	3	LeafPost Late	Corsica 29	4	0	
Wye	2003	DC	3	LeafPost Late	Corsica 29	5		512837
wyc	2003	DC	J	Hearrost hate	COLDICA ZD	J	14.07	J120J1

Wye	2003	DC	3	LeafPost	Tata	Corsica	29	6	4.408474739
Wye	2003	DC	3	LeafPost		Corsica	29	7	0
Wye	2003	DC	3	Seed	Late	Corsica	29	1	5.64882394
_	2003	DC	3	Seed	Late	Corsica	29	2	13.24699514
Wye								3	
Wye	2003	DC	3	Seed	Late	Corsica	29		0
Wye	2003 2003	DC	3	Seed	Late	Corsica	29	4	27.10021989
Wye		DC	3	Seed	Late	Corsica	29	5	67.31591503
Wye	2003	DC	3	Seed	Late	Corsica	29	6	0
Wye	2003	DC	3	Seed	Late	Corsica	29	7	0.67427048
Wye	2003	DC	3	LeafPost	-	Jack	32	1	2.34104967
Wye	2003	DC	3	LeafPost		Jack	32	2	4.55099414
Wye	2003	DC	3	LeafPost		Jack	32	3	0
Wye	2003	DC	3	LeafPost	Early	Jack	32	4	0
Wye	2003	DC	3	LeafPost	Early	Jack	32	5	30.19257756
Wye	2003	DC	3	LeafPost	Early	Jack	32	6	7.992291245
Wye	2003	DC	3	LeafPost	Early	Jack	32	7	0.568190808
Wye	2003	DC	3	LeafPost	Late	Jack	32	1	0
Wye	2003	DC	3	LeafPost	Late	Jack	32	2	1.48416218
Wye	2003	DC	3	LeafPost	Late	Jack	32	3	0
Wye	2003	DC	3	LeafPost		Jack	32	4	0
Wye	2003	DC	3	LeafPost		Jack	32	5	9.233372586
Wye	2003	DC	3	LeafPost		Jack	32	6	3.811147936
Wye	2003	DC	3	LeafPost		Jack	32	7	0
Wye	2003	DC	3	Seed	Late	Jack	32	1	4.21780829
_	2003	DC	3				32	2	13.54917236
Wye				Seed	Late	Jack		3	
Wye	2003	DC	3	Seed	Late	Jack	32		0
Wye	2003	DC	3	Seed	Late	Jack	32	4	20.45283698
Wye	2003	DC	3	Seed	Late	Jack	32	5	81.51357315
Wye	2003	DC	3	Seed	Late	Jack	32	6	0
Wye	2003	DC	3	Seed	Late	Jack	32	7	0.951523864
Wye	2003	DC	3	LeafPost	-	Jack	33	1	2.6569663
Wye	2003	DC	3	LeafPost		Jack	33	2	3.7166006
Wye	2003	DC	3	LeafPost	Early	Jack	33	3	0.260762656
Wye	2003	DC	3	LeafPost	Early	Jack	33	4	0
Wye	2003	DC	3	LeafPost	Early	Jack	33	5	23.20432602
Wye	2003	DC	3	LeafPost	Early	Jack	33	6	10.29837835
Wye	2003	DC	3	LeafPost	Early	Jack	33	7	0.876876516
Wye	2003	DC	3	Seed	Early	Jack	33	1	4.54269293
Wye	2003	DC	3	Seed	Early	Jack	33	2	16.62733826
Wye	2003	DC	3	Seed	Early	Jack	33	3	0
Wye	2003	DC	3	Seed	Early	Jack	33	4	22.74712619
Wye	2003	DC	3	Seed	Early	Jack	33	5	99.53461842
Wye	2003	DC	3	Seed	Early	Jack	33	6	0
Wye	2003	DC	3	Seed	Early	Jack	33	7	1.222903584
Wye	2003	DC	3	LeafPost	-	Bass	34	1	0
Wye	2003	DC	3	LeafPost		Bass	34	2	2.04583736
Wye	2003	DC	3	LeafPost		Bass	34	3	0
	2003	DC	3	LeafPost			34	4	0
Wye						Bass			
Wye	2003	DC	3	LeafPost		Bass	34	5	13.39955518
Wye	2003	DC	3	LeafPost		Bass	34	6	9.480488355
Wye	2003	DC	3	LeafPost		Bass	34	7	0
Wye	2003	DC	3	Seed	Late	Bass	34	1	3.87868176
Wye	2003	DC	3	Seed	Late	Bass	34	2	11.28779534
Wye	2003	DC	3	Seed	Late	Bass	34	3	0
Wye	2003	DC	3	Seed	Late	Bass	34	4	18.16383122
Wye	2003	DC	3	Seed	Late	Bass	34	5	66.16933157
Wye	2003	DC	3	Seed	Late	Bass	34	6	0
Wye	2003	DC	3	Seed	Late	Bass	34	7	0.777479284
Wye	2003	DC	3	Seed	Early	Bass	35	1	4.59177026
Wye	2003	DC	3	Seed	Early	Bass	35	2	13.80880418
Wye	2003	DC	3	Seed	Early	Bass	35	3	0
Wye	2003	DC	3	Seed	Early	Bass	35	4	20.68893168
Wye	2003	DC	3	Seed	Early	Bass	35	5	72.75868234
Wye	2003	DC	3	Seed	Early	Bass	35	6	0
Wye	2003	DC	3	Seed	Early	Bass	35	7	0.884631588
Wye	2003	DC	3	LeafPost		Bass	35	1	0
Wye	2003	DC	3	LeafPost		Bass	35	2	4.14588272
Wye	2003	DC	3	LeafPost		Bass	35	3 4	0
Wye	2003	DC	3	LeafPost		Bass	35		21.03900641
Wye	2003	DC	3	LeafPost		Bass	35	5	21.87427015
Wye	2003	DC	3	LeafPost		Bass	35	6	0
Wye	2003	DC	3	LeafPost		Bass	35	7	1.125181264
Wye	2003	FS	1	LeafPost		Williams		1	1 0
Wye	2003	FS	1	LeafPost		Williams		1	2 2.21507642
Wye	2003	FS	1	LeafPost		Williams		1	3 0
Wye	2003	FS	1	LeafPost		Williams		1	4 7.66571456
Wye	2003	FS	1	LeafPost	Late	Williams	82	1	5 9.854255718
Wye	2003	FS	1	LeafPost	Late	Williams	82	1	6 0
Wye	2003	FS	1	LeafPost	Late	Williams	82	1	7 0.266820412

Wye	2003	FS	1	Seed	Late	Williams		1	1	4.95983497
Wye	2003	FS	1	Seed	Late	Williams		1	2	6.86185658
Wye	2003	FS	1	Seed	Late	Williams		1	3	0
Wye	2003	FS	1	Seed	Late	Williams	82	1	4	28.72626936
Wye	2003	FS	1	Seed	Late	Williams	82	1	5	87.20686691
Wye	2003	FS	1	Seed	Late	Williams	82	1	6	0
Wye	2003	FS	1	Seed	Late	Williams	82	1	7	0
Wye	2003	FS	1	LeafPost	Late	Williams	82	2	1	0
Wye	2003	FS	1	LeafPost		Williams		2	2	1.75066364
Wye	2003	FS	1	LeafPost		Williams		2	3	0
_	2003	FS	1	LeafPost		Williams		2	4	0
Wye										
Wye	2003	FS	1	LeafPost		Williams		2	5	2.667444813
Wye	2003	FS	1	LeafPost		Williams		2	6	0
Wye	2003	FS	1	LeafPost	Late	Williams		2	7	0.121919492
Wye	2003	FS	1	Seed	Early	Williams	82	3	1	5.15685216
Wye	2003	FS	1	Seed	Early	Williams	82	3	2	13.7711771
Wye	2003	FS	1	Seed	Early	Williams	82	3	3	0
Wye	2003	FS	1	Seed	Early	Williams	82	3	4	28.0848358
Wye	2003	FS	1	Seed	Early	Williams		3	5	87.38263535
Wye	2003	FS	1	Seed	Early	Williams		3	6	0
_	2003	FS	1	Seed	_	Williams		3	7	0
Wye					Early					0
Wye	2003	FS	1	LeafPost		Bass	4	1	0	2226
Wye	2003	FS	1	LeafPost		Bass	4	2	1.869	3326
Wye	2003	FS	1	LeafPost	Late	Bass	4	3	0	
Wye	2003	FS	1	LeafPost	Late	Bass	4	4	9.608	991777
Wye	2003	FS	1	LeafPost	Late	Bass	4	5	8.875	624212
Wye	2003	FS	1	LeafPost	Late	Bass	4	6	0	
Wye	2003	FS	1	LeafPost		Bass	4	7	0.251	166868
Wye	2003	FS	1	Seed	Late	Bass	4	1	3.231	
_	2003	FS	1	Seed	Late	Bass	4	2	8.965	
Wye										00034
Wye	2003	FS	1	Seed	Late	Bass	4	3	0	
Wye	2003	FS	1	Seed	Late	Bass	4	4		605065
Wye	2003	FS	1	Seed	Late	Bass	4	5	61.59	384884
Wye	2003	FS	1	Seed	Late	Bass	4	6	0	
Wye	2003	FS	1	Seed	Late	Bass	4	7	0	
Wye	2003	FS	1	Seed	Early	Bass	5	1	2.787	87965
Wye	2003	FS	1	Seed	Early	Bass	5	2	6.910	40498
Wye	2003	FS	1	Seed	Early	Bass	5	3	0	
Wye	2003	FS	1	Seed	Early	Bass	5	4		589007
-			1		-		5	5		
Wye	2003	FS		Seed	Early	Bass				597185
Wye	2003	FS	1	Seed	Early	Bass	5	6	0	
Wye	2003	FS	1	Seed	Early	Bass	5	7	0	
Wye	2003	FS	1	LeafPost	Late	Bass	6	1	0	
Wye	2003	FS	1	LeafPost	Late	Bass	6	2	0	
Wye	2003	FS	1	LeafPost	Late	Bass	6	3	0	
Wye	2003	FS	1	LeafPost	Late	Bass	6	4	0	
Wye	2003	FS	1	LeafPost		Bass	6	5	1.800	881654
Wye	2003	FS	1	LeafPost		Bass	6	6	0	001001
_	2003	FS	1	LeafPost			6	7	0	
Wye						Bass			3.332	E0716
Wye	2003	FS	1	Seed	Early	Jack	7	1		
Wye	2003	FS	1	Seed	Early	Jack	7	2		707776
Wye	2003	FS	1	Seed	Early	Jack	7	3	0	
Wye	2003	FS	1	Seed	Early	Jack	7	4	16.15	656323
Wye	2003	FS	1	Seed	Early	Jack	7	5	74.59	046785
Wye	2003	FS	1	Seed	Early	Jack	7	6	0	
Wye	2003	FS	1	Seed	Early	Jack	7	7	0	
Wye	2003	FS	1	LeafPost		Jack	8	1	0	
Wye	2003	FS	1	LeafPost		Jack	8	2	1.171	49834
Wye	2003	FS	1	LeafPost		Jack	8	3	0	13001
_		FS	1				8	4	0	
Wye	2003			LeafPost		Jack				041010
Wye	2003	FS	1	LeafPost		Jack	8	5		241818
Wye	2003	FS	1	LeafPost		Jack	8	6	0	
Wye	2003	FS	1	LeafPost		Jack	8	7	0	
Wye	2003	FS	1	Seed	Late	Jack	8	1	3.086	9281
Wye	2003	FS	1	Seed	Late	Jack	8	2	9.599	39156
Wye	2003	FS	1	Seed	Late	Jack	8	3	0	
Wye	2003	FS	1	Seed	Late	Jack	8	4	15.15	203353
Wye	2003	FS	1	Seed	Late	Jack	8	5		337881
Wye	2003	FS	1	Seed	Late	Jack	8	6	0	
Wye	2003	FS	1	Seed	Late	Jack	8	7	0	
_			1				9	1	0	
Wye	2003	FS		LeafPost		Jack				7.6.6.6
Wye	2003	FS	1	LeafPost		Jack	9	2	1.379	0000
Wye	2003	FS	1	LeafPost		Jack	9	3	0	
Wye	2003	FS	1	LeafPost		Jack	9	4	0	
Wye	2003	FS	1	LeafPost		Jack	9	5		697019
Wye	2003	FS	1	LeafPost	Late	Jack	9	6	0	
Wye	2003	FS	1	LeafPost	Late	Jack	9	7	0	
Wye	2003	FS	1	Seed	Early	Corsica	10	1	3.912	22145
Wye	2003	FS	1	Seed	Early	Corsica	10	2	7.122	
-					-					

M	2002	EC	1	bood	Famler	Consida	1.0	3	0
Wye	2003	FS FS	1	Seed Seed	Early	Corsica	10 10	4	20.12847097
Wye	2003				Early	Corsica			
Wye	2003	FS	1	Seed	Early	Corsica	10	5	47.86047434
Wye	2003	FS	1	Seed	Early	Corsica	10	6	0
Wye	2003	FS	1	Seed	Early	Corsica	10	7	0
Wye	2003	FS	1	Seed	Late	Corsica	11	1	4.74908212
Wye	2003	FS	1	Seed	Late	Corsica	11	2	9.26358926
Wye	2003	FS	1	Seed	Late	Corsica	11	3	0
Wye	2003	FS	1	Seed	Late	Corsica	11	4	24.39595778
Wye	2003	FS	1	Seed	Late	Corsica	11	5	57.90074922
Wye	2003	FS	1	Seed	Late	Corsica	11	6	0
Wye	2003	FS	1	Seed	Late	Corsica	11	7	0
Wye	2003	FS	1	LeafPost		Corsica	12	1	0
Wye	2003	FS	1	LeafPost			12	2	1.13310674
Wye	2003	FS	1	LeafPost		Corsica	12	3	0
-			1				12	4	0
Wye	2003	FS		LeafPost		Corsica			
Wye	2003	FS	1	LeafPost		Corsica	12	5	2.265092476
Wye	2003	FS	1	LeafPost		Corsica	12	6	0
Wye	2003	FS	1	LeafPost	Late	Corsica	12	7	0
Wye	2003	FS	2	LeafPost	Late	Corsica	11	1	0
Wye	2003	FS	2	LeafPost	Late	Corsica	11	2	1.81779374
Wye	2003	FS	2	LeafPost	Late	Corsica	11	3	0
Wye	2003	FS	2	LeafPost	Late	Corsica	11	4	7.248465457
Wye	2003	FS	2	LeafPost			11	5	9.396315959
_	2003	FS	2	LeafPost		Corsica	11	6	0
Wye									
Wye	2003	FS	2	LeafPost		Corsica	11	7	0.146449496
Wye	2003	FS	2	LeafPost		Corsica	13	1	0
Wye	2003	FS	2	LeafPost	Late	Corsica	13	2	2.43049442
Wye	2003	FS	2	LeafPost	Late	Corsica	13	3	0
Wye	2003	FS	2	LeafPost	Late	Corsica	13	4	8.708936698
Wye	2003	FS	2	LeafPost	Late	Corsica	13	5	9.687830996
Wye	2003	FS	2	LeafPost		Corsica	13	6	0
Wye	2003	FS	2	LeafPost		Corsica	13	7	0
_	2003	FS	2	Seed	Late	Corsica	13	1	4.61723015
Wye	2003	FS	2				13	2	8.71104416
Wye				Seed	Late	Corsica			
Wye	2003	FS	2	Seed	Late	Corsica	13	3	0
Wye	2003	FS	2	Seed	Late	Corsica	13	4	24.1304713
Wye	2003	FS	2	Seed	Late	Corsica	13	5	56.88777082
Wye	2003	FS	2	Seed	Late	Corsica	13	6	0
Wye	2003	FS	2	Seed	Late	Corsica	13	7	0
Wye	2003	FS	2	LeafPost	Late	Corsica	14	1	0
Wye	2003	FS	2	LeafPost	Late	Corsica	14	2	1.20205154
Wye	2003	FS	2	LeafPost		Corsica	14	3	0
Wye	2003	FS	2	LeafPost		Corsica	14	4	0
_	2003	FS	2	LeafPost		Corsica	14	5	2.160251569
Wye									
Wye	2003	FS	2	LeafPost		Corsica	14	6	0
Wye	2003	FS	2	LeafPost		Corsica	14	7	0
Wye	2003	FS	2	Seed	Early	Corsica	15	1	4.93193268
Wye	2003	FS	2	Seed	Early	Corsica	15	2	10.21982162
Wye	2003	FS	2	Seed	Early	Corsica	15	3	0
Wye	2003	FS	2	Seed	Early	Corsica	15	4	27.13142966
Wye	2003	FS	2	Seed	Early	Corsica	15	5	66.67120351
Wye	2003	FS	2	Seed	Early	Corsica	15	6	0
Wye	2003	FS	2	Seed	Early	Corsica	15	7	0
Wye	2003	FS	2	LeafPost	4	Bass	16	1	0
Wye	2003	FS	2	LeafPost		Bass	16	2	1.91429576
-	2003	FS	2				16	3	0
Wye				LeafPost		Bass			
Wye	2003	FS	2	LeafPost		Bass	16	4	9.978236663
Wye	2003	FS	2	LeafPost		Bass	16	5	8.905622723
Wye	2003	FS	2	LeafPost	Late	Bass	16	6	0
Wye	2003	FS	2	LeafPost	Late	Bass	16	7	0.21776614
Wye	2003	FS	2	Seed	Late	Bass	16	1	2.74740326
Wye	2003	FS	2	Seed	Late	Bass	16	2	6.47846222
Wye	2003	FS	2	Seed	Late	Bass	16	3	0
Wye	2003	FS	2	Seed	Late	Bass	16	4	11.98464792
Wye	2003	FS	2	Seed	Late	Bass	16	5	44.2579957
Wye	2003	FS	2	Seed	Late	Bass	16	6	0
Wye	2003	FS	2	Seed	Late	Bass	16	7	0
	2003		2	Seed				1	
Wye		FS			Early	Bass	17		3.26369325
Wye	2003	FS	2	Seed	Early	Bass	17	2	8.57281508
Wye	2003	FS	2	Seed	Early	Bass	17	3	0
Wye	2003	FS	2	Seed	Early	Bass	17	4	17.43326362
Wye	2003	FS	2	Seed	Early	Bass	17	5	65.34253092
Wye	2003	FS	2	Seed	Early	Bass	17	6	0
Wye	2003	FS	2	Seed	Early	Bass	17	7	0
Wye	2003	FS	2	LeafPost	-	Bass	18	1	0
Wye	2003	FS	2	LeafPost		Bass	18	2	1.24561952
Wye	2003	FS	2	LeafPost		Bass	18	3	0
_	2003	FS	2	LeafPost		Bass	18	4	0
Wye	2003	T 0	∠	_earrost	Tare	nass	± 0	4	9

Wye	2003	FS	2	LeafPost Late	Bass 18	5	2.190787836
Wye	2003	FS	2	LeafPost Late	Bass 18	6	0
Wye	2003	FS	2	LeafPost Late	Bass 18	7	0
Wye	2003	FS	2	LeafPost Late	Williams82	19	1 0
Wye	2003	FS	2	LeafPost Late	Williams82	19	2 2.02368698
Wye	2003	FS	2	LeafPost Late	Williams82	19	3 0
Wye	2003	FS	2	LeafPost Late	Williams82	19	4 0
Wye	2003	FS	2	LeafPost Late	Williams82	19	5 3.937579774
Wye	2003	FS	2	LeafPost Late	Williams82	19	6 0
Wye	2003	FS	2	LeafPost Late	Williams82	19	7 0.19702094
Wye	2003	FS	2	LeafPost Late	Williams82	20	1 0
Wye	2003	FS	2	LeafPost Late	Williams82	20	2 3.35962496
Wye	2003	FS	2	LeafPost Late	Williams82	20	3 0
Wye	2003	FS	2	LeafPost Late	Williams82	20	4 8.642178692
Wye	2003	FS	2	LeafPost Late	Williams82	20	5 13.25417574
Wye	2003	FS	2	LeafPost Late	Williams82	20	6 0 7 0.317258972
Wye	2003 2003	FS	2	LeafPost Late Seed Late	Williams82 Williams82	20 20	7 0.317258972 1 5.74663567
Wye	2003	FS FS	2	Seed Late Seed Late	Williams82 Williams82	20	2 13.17360674
Wye Wye	2003	FS	2	Seed Late	Williams82	20	3 0
Wye	2003	FS	2	Seed Late	Williams82	20	4 33.03912852
Wye	2003	FS	2	Seed Late	Williams82	20	5 94.07884403
Wye	2003	FS	2	Seed Late	Williams82	20	6 0
Wye	2003	FS	2	Seed Late	Williams82	20	7 0
Wye	2003	FS	2	Seed Early	Williams82	21	1 5.93752769
Wye	2003	FS	2	Seed Early	Williams82	21	2 14.63031542
Wye	2003	FS	2	Seed Early	Williams82	21	3 0
Wye	2003	FS	2	Seed Early	Williams82	21	4 30.62596222
Wye	2003	FS	2	Seed Early	Williams82	21	5 89.14886924
Wye	2003	FS	2	Seed Early	Williams82	21	6 0
Wye	2003	FS	2	Seed Early	Williams82	21	7 0
Wye	2003	FS	2	LeafPost Late	Jack 22	1	0
Wye	2003	FS	2	LeafPost Late	Jack 22	2	1.47255086
Wye	2003	FS	2	LeafPost Late	Jack 22	3	0
Wye	2003	FS	2	LeafPost Late	Jack 22	4	0
Wye	2003	FS	2	LeafPost Late	Jack 22	5	2.492477216
Wye	2003	FS	2	LeafPost Late	Jack 22	6	0
Wye	2003	FS	2	LeafPost Late	Jack 22	7	0
Wye	2003	FS	2	Seed Early	Jack 23	1	3.07044616
Wye	2003	FS	2	Seed Early	Jack 23	2	9.3428399
Wye	2003 2003	FS	2	Seed Early	Jack 23 Jack 23	3 4	0
Wye	2003	FS FS	2	Seed Early Seed Early	Jack 23 Jack 23	5	16.01701842 70.02661554
Wye Wye	2003	FS	2	Seed Early	Jack 23	6	0
Wye	2003	FS	2	Seed Early	Jack 23	7	0
Wye	2003	FS	2	LeafPost Late	Jack 24	1	0
Wye	2003	FS	2	LeafPost Late	Jack 24	2	1.9387604
Wye	2003	FS	2	LeafPost Late	Jack 24	3	0
Wye	2003	FS	2	LeafPost Late	Jack 24	4	6.085132539
Wye	2003	FS	2	LeafPost Late	Jack 24	5	8.366701876
Wye	2003	FS	2	LeafPost Late	Jack 24	6	0
Wye	2003	FS	2	LeafPost Late	Jack 24	7	0.227019264
Wye	2003	FS	2	Seed Late	Jack 24	1	2.50361624
Wye	2003	FS	2	Seed Late	Jack 24	2	6.63334238
Wye	2003	FS	2	Seed Late	Jack 24	3	0
Wye	2003	FS	2	Seed Late	Jack 24	4	12.01814687
Wye	2003	FS	2	Seed Late	Jack 24	5	54.8116869
Wye	2003	FS	2	Seed Late	Jack 24	6	0
Wye	2003	FS	2	Seed Late	Jack 24	7	0
Wye	2003	FS	3	LeafPost Late	Williams82	25	1 0
Wye	2003	FS	3	LeafPost Late	Williams82 Williams82	25	2 2.13043826
Wye Wye	2003 2003	FS FS	3 3	LeafPost Late LeafPost Late	Williams82 Williams82	25 25	3 0 4 7.560416618
Wye Wye	2003	FS	3	LeafPost Late	Williams82	25	5 9.013109389
Wye	2003	FS	3	LeafPost Late	Williams82	25	6 0
Wye	2003	FS	3	LeafPost Late	Williams82	25	7 0.293353236
Wye	2003	FS	3	Seed Late	Williams82	25	1 5.80647234
Wye	2003	FS	3	Seed Late	Williams82	25	2 14.30808956
Wye	2003	FS	3	Seed Late	Williams82	25	3 0
Wye	2003	FS	3	Seed Late	Williams82	25	4 27.20573287
Wye	2003	FS	3	Seed Late	Williams82	25	5 79.80889992
Wye	2003	FS	3	Seed Late	Williams82	25	6 0
Wye	2003	FS	3	Seed Late	Williams82	25	7 0
Wye	2003	FS	3	LeafPost Late	Williams82	26	1 0
Wye	2003	FS	3	LeafPost Late	Williams82	26	2 1.7955785
Wye	2003	FS	3	LeafPost Late	Williams82	26	3 0
Wye	2003	FS	3	LeafPost Late	Williams82	26	4 0
Wye	2003	FS	3	LeafPost Late	Williams82	26	5 3.561766109
Wye	2003	FS	3	LeafPost Late	Williams82	26	6 0

Wasa	2002	EC	2	T D + T - + -	Williams82	2.0	7 0.196317324
Wye	2003	FS	3	LeafPost Late		26	
Wye	2003	FS	3	Seed Early	Williams82	27	1 5.31488822
Wye	2003	FS	3	Seed Early	Williams82	27	2 12.39685994
Wye	2003	FS	3	Seed Early	Williams82	27	3 0
Wye	2003	FS	3	Seed Early	Williams82	27	4 41.39752095
Wye	2003	FS	3	Seed Early	Williams82	27	5 77.55285802
Wye	2003	FS	3	Seed Early	Williams82	27	6 0
Wye	2003	FS	3	Seed Early	Williams82	27	7 0
Wye	2003	FS	3	Seed Early	Corsica 28	1	4.52755076
Wye	2003	FS	3	Seed Early	Corsica 28	2	9.01431158
_	2003	FS	3	Seed Early	Corsica 28	3	0
Wye				4			
Wye	2003	FS	3	Seed Early	Corsica 28	4	19.88098349
Wye	2003	FS	3	Seed Early	Corsica 28	5	48.0045069
Wye	2003	FS	3	Seed Early	Corsica 28	6	0
Wye	2003	FS	3	Seed Early	Corsica 28	7	0
Wye	2003	FS	3	LeafPost Late	Corsica 29	1	0
Wye	2003	FS	3	LeafPost Late	Corsica 29	2	1.1678855
Wye	2003	FS	3	LeafPost Late	Corsica 29	3	0
Wye	2003	FS	3	LeafPost Late	Corsica 29	4	0
	2003	FS	3	LeafPost Late	Corsica 29	5	2.574844887
Wye							
Wye	2003	FS	3	LeafPost Late	Corsica 29	6	0
Wye	2003	FS	3	LeafPost Late	Corsica 29	7	0
Wye	2003	FS	3	LeafPost Late	Corsica 30	1	0
Wye	2003	FS	3	LeafPost Late	Corsica 30	2	1.63754642
Wye	2003	FS	3	LeafPost Late	Corsica 30	3	0
Wye	2003	FS	3	LeafPost Late	Corsica 30	4	9.061038445
Wye	2003	FS	3	LeafPost Late	Corsica 30	5	7.850803603
_	2003	FS	3	LeafPost Late	Corsica 30	6	0
Wye							
Wye	2003	FS	3	LeafPost Late	Corsica 30	7	0
Wye	2003	FS	3	Seed Late	Corsica 30	1	4.97130289
Wye	2003	FS	3	Seed Late	Corsica 30	2	9.8426
Wye	2003	FS	3	Seed Late	Corsica 30	3	0
Wye	2003	FS	3	Seed Late	Corsica 30	4	25.33075063
Wye	2003	FS	3	Seed Late	Corsica 30	5	61.68172975
Wye	2003	FS	3	Seed Late	Corsica 30	6	0
-	2003	FS	3	Seed Late	Corsica 30	7	0
Wye							
Wye	2003	FS	3	LeafPost Late	Jack 31	1	0
Wye	2003	FS	3	LeafPost Late	Jack 31	2	1.47781832
Wye	2003	FS	3	LeafPost Late	Jack 31	3	0
Wye	2003	FS	3	LeafPost Late	Jack 31	4	0
Wye	2003	FS	3	LeafPost Late	Jack 31	5	2.453508936
Wye	2003	FS	3	LeafPost Late	Jack 31	6	0
Wye	2003	FS	3	LeafPost Late	Jack 31	7	0
_	2003	FS	3	LeafPost Late	Jack 32	1	0
Wye							
Wye	2003	FS	3	LeafPost Late	Jack 32	2	1.9134029
Wye	2003	FS	3	LeafPost Late	Jack 32	3	0
Wye	2003	FS	3	LeafPost Late	Jack 32	4	7.412221418
Wye	2003	FS	3	LeafPost Late	Jack 32	5	8.333013531
Wye	2003	FS	3	LeafPost Late	Jack 32	6	0
Wye	2003	FS	3	LeafPost Late	Jack 32	7	0.313244728
Wye	2003	FS	3	Seed Late	Jack 32	1	2.9832397
Wye	2003	FS	3	Seed Late	Jack 32	2	8.62840424
_	2003		3			3	0.02040424
Wye		FS					
Wye	2003	FS	3	Seed Late	Jack 32	4	12.13531564
Wye	2003	FS	3	Seed Late	Jack 32	5	49.49266634
Wye	2003	FS	3	Seed Late	Jack 32	6	0
Wye	2003	FS	3	Seed Late	Jack 32	7	0
Wye	2003	FS	3	Seed Early	Jack 33	1	3.49944378
Wye	2003	FS	3	Seed Early	Jack 33	2	11.93756282
Wye	2003	FS	3	Seed Early	Jack 33	3	0
Wye	2003	FS	3	Seed Early	Jack 33	4	15.06999663
Wye	2003	FS	3	Seed Early	Jack 33	5	65.98897152
			3	4		6	0
Wye	2003	FS		Seed Early	Jack 33		
Wye	2003	FS	3	Seed Early	Jack 33	7	0
Wye	2003	FS	3	LeafPost Late	Bass 34	1	0
Wye	2003	FS	3	LeafPost Late	Bass 34	2	2.06469368
Wye	2003	FS	3	LeafPost Late	Bass 34	3	0
Wye	2003	FS	3	LeafPost Late	Bass 34	4	10.85593113
Wye	2003	FS	3	LeafPost Late	Bass 34	5	9.866665472
Wye	2003	FS	3	LeafPost Late	Bass 34	6	0
Wye	2003	FS	3	LeafPost Late	Bass 34	7	0.165044652
	2003		3			1	
Wye		FS		Seed Late			3.55851365
Wye	2003	FS	3	Seed Late	Bass 34	2	9.76967666
Wye	2003	FS	3	Seed Late	Bass 34	3	0
Wye	2003	FS	3	Seed Late	Bass 34	4	16.2649197
Wye	2003	FS	3	Seed Late	Bass 34	5	60.02014483
Wye	2003	FS	3	Seed Late	Bass 34	6	0
Wye	2003	FS	3	Seed Late	Bass 34	7	0
Wye	2003	FS	3	Seed Early	Bass 35	1	3.81643251
		-	-	1		-	· · · · · · · · · · · · · · · · · · ·

Wye	2003	FS	3	Seed	Early	Bass	35	2	10.73824208
Wye	2003	FS	3	Seed	Early	Bass	35	3	0
Wye	2003	FS	3	Seed	Early	Bass	35	4	16.49115773
Wye	2003	FS	3	Seed	Early	Bass	35	5	59.82608938
Wye	2003	FS	3	Seed	Early	Bass	35	6	0
Wye	2003	FS	3	Seed	Early	Bass	35	7	0
Wye	2003	FS	3	LeafPos	st Late	Bass	36	1	0
Wye	2003	FS	3	LeafPos	st Late	Bass	36	2	1.24061702
Wye	2003	FS	3	LeafPos	st Late	Bass	36	3	0
Wye	2003	FS	3	LeafPos	st Late	Bass	36	4	0
Wye	2003	FS	3	LeafPos	st Late	Bass	36	5	2.974222193
Wye	2003	FS	3	LeafPos	st Late	Bass	36	6	0
Wye	2003	FS	3	LeafPos	st Late	Bass	36	7	0

	Seed Constituent			tuent	Analysis		Data				
Year	Farm	Field_Type				Rep			HndSedWt		Oil
2002 2002	P P	D D	BASS	С	1 4	1 1	839.0 1596.6	44.8 42.6	17.1 17.7	41.4 42.6	20.8
2002	P	D	CORC JACK	C C	9	1	1079.5	28.8	15.0	42.6	20.4
2002	P	D	WM82	C	12	1	1374.4	36.7	19.6	41.9	20.0
2002	P	D	CORC	С	15	2	1421.1	37.9	20.0	44.1	19.6
2002	P	D	JACK	C	18	2	1560.4	41.7	18.6	42.1	21.2
2002	P	D	BASS	С	19	2	1560.4	41.7	19.2	42.2	20.3
2002	P	D	WM82	С	24	2	1156.7	30.9	14.3	41.1	20.8
2002	P	D	WM82	С	25	3	1496.9	40.0	18.2	41.7	20.4
2002	P	D	CORC	С	30	3	1691.9	45.2	19.9	43.4	20.0
2002	P	D	JACK	С	32	3	1174.8	31.4	15.1	40.8	21.2
2002	P	D	BASS	С	35	3	1805.3	48.2	17.6	41.5	21.2
2002	P	D	BASS	е	3	1	1660.1	44.3	17.4	41.0	21.4
2002	P	D	CORC	е	6	1	1623.9	43.4	17.9	42.0	21.0
2002	P	D	JACK	е	7	1	807.4	43.1	15.2	41.5	20.1
2002	P	D	WM82	е	11	1	1687.4	45.1	19.1	43.3	20.2
2002 2002	P P	D D	CORC	е	14 17	2	1746.4	46.6 43.4	19.1 17.5	42.8 42.1	20.1
2002	P	D	JACK BASS	e e	21	2	1623.9 1651.1	44.1	17.7	41.4	20.6
2002	P	D	WM82	e	23	2	1056.9	28.2	15.2	41.4	21.0
2002	P	D	WM82	e	27	3	1161.2	31.0	18.0	41.1	20.8
2002	P	D	CORC	e	29	3	1646.5	44.0	19.5	43.9	19.7
2002	P	D	JACK	e	33	3	1220.2	32.6	15.2	40.8	21.4
2002	P	D	BASS	e	36	3	1723.7	46.0	17.2	42.0	20.6
2002	P	D	BASS	1	2	1			18.2	41.4	21.5
2002	P	D	CORC	1	5	1	1642.0	43.8	17.7	42.2	20.5
2002	P	D	JACK	1	8	1	1165.7	31.1	15.1	41.7	19.9
2002	P	D	WM82	1	10	1	1741.8	46.5	19.3	44.1	19.2
2002	P	D	CORC	1	13	2	1664.7	44.4	19.1	44.0	19.6
2002	P	D	JACK	1	16	2	1655.6	44.2	17.4	41.8	20.8
2002	P	D	BASS	1	20	2	1374.4	36.7	17.7	41.8	20.6
2002	P	D	WM82	1	22	2	1270.1	33.9	15.4	41.9	20.4
2002 2002	P P	D D	WM82	1	26	3	1755.4	46.9	17.8	41.3 43.9	21.4
2002	P	D	CORC JACK	1	28 31	3 3	1782.6 1297.3	47.6 34.6	18.4 15.5	40.5	19.7 21.0
2002	P	D	BASS	1	34	3	1297.5		17.8	41.7	21.5
2002	P	F	WM82	e	2	1	643.3	32.2	14.3	41.3	20.4
2002	P	F	BASS	e	5	1	358.3	17.9	9.3	40.7	20.3
2002	P	F	JACK	e	7	1	525.1	26.3	8.5	41.1	19.4
2002	P	F	CORC	е	10	1	714.5	35.7	14.1	42.2	20.0
2002	P	F	CORC	е	14	2	809.1	40.5	13.3	41.3	21.0
2002	P	F	BASS	е	16	2	386.4	19.3	9.9	40.1	21.3
2002	P	F	WM82	е	19	2	535.9	26.8	14.6	41.3	21.1
2002	P	F	JACK	е	22	2	690.4	34.5	8.6	40.4	19.3
2002	P	F	WM82	е	26	3	654.8	32.7	13.5	40.8	21.2
2002	P	F	CORC	е	28	3	718.0	35.9	13.6	41.7	20.9
2002 2002	P P	F F	JACK BASS	e e	31 34	3 3	601.5 751.6	30.1 37.6	9.1 10.2	41.0 39.0	19.5 22.3
2002	P	F	WM82	1	1	1	504.0	25.2	12.7	41.3	20.7
2002	P	F	BASS	1	4	1	390.0	19.5	10.2	40.9	20.8
2002	P	F	JACK	1	9	1	561.0	28.1	10.9	40.9	20.4
2002	P	F	CORC	1	12	1	713.7	35.7	13.4	41.4	20.7
2002	P	F	CORC	1	15	2	777.2	38.9	15.1	41.1	21.1
2002	P	F	BASS	1	17	2	349.0	17.5	8.5	40.9	20.3
2002	P	F	WM82	1	21	2	508.0	25.4	15.1	41.3	21.2
2002	P	F	JACK	1	23	2	708.9	35.4	9.4	40.6	19.6
2002	P	F	WM82	1	27	3	618.2	30.9	12.8	41.4	20.9
2002	P	F	CORC	1	30	3	666.3	33.3	13.4	41.6	20.5
2002	P	F	JACK	1	32	3	703.8	35.2	8.9	41.0	19.8
2002	P	F	BASS	1	35	3	586.5	29.3	10.3	40.1	21.5
2002	P	F	WM82	C	3	1	416.0	20.8	13.0	41.9	20.3
2002 2002	P P	F F	BASS JACK	C	6 8	1 1	356.2	17.8 26.7	9.7 10.1	41.7 40.8	19.3
2002	P	F F	CORC	C	8 11	1	533.5 718.0	35.9	14.6	40.8	19.7 20.3
2002	P	F	CORC	c	13	2	798.9	39.9	14.0	40.9	20.3
2002	P	F	BASS	c	18	2	396.0	19.8	10.1	40.2	21.2
2002	P	F	WM82	C	20	2	389.0	19.5	11.3	41.7	20.5
2002	P	F	JACK	C	24	2	685.3	34.3	10.2	40.1	20.5
2002	P	F	WM82	C	25	3	590.1	29.5	13.3	40.8	21.7
2002	P	F	CORC	C	29	3	568.6	28.4	13.2	41.6	20.6
2002	P	F	JACK	С	33	3	674.4	33.7	9.1	41.6	19.8
2002	P	F	BASS	C	36	3	557.1	27.9	9.5	40.7	20.6
2002	M	D	CORC	С	2	1	•		16.3	42.5	19.6

2002	W	D	WM82	С	6	1			10.5	40.7	19.2
2002	W	D	JACK		9	1	•	•	13.2	42.8	19.5
				С			•	•			
2002	M	D	BASS	C	10	1	•		13.9	42.4	19.8
2002	W	D	WM82	С	13	2			8.0	41.1	20.1
2002	W	D	JACK		18	2			12.4	41.5	20.3
				С			•	•			
2002	M	D	CORC	С	19	2			14.1	42.0	20.1
2002	W	D	BASS	С	23	2			14.9	42.9	19.0
2002	W	D	CORC		27	3			12.9	42.2	19.9
				С			•	•			
2002	M	D	BASS	C	29	3			14.5	42.7	19.3
2002	W	D	JACK	С	33	3			10.3	40.9	20.2
2002		D			35	3				42.4	19.9
	M		WM82	С			•	•	14.7		
2002	M	D	CORC	e	1	1			14.7	41.9	19.1
2002	W	D	WM82	е	5	1	_	_	10.7	40.4	19.8
2002	W	D	JACK		7	1			12.3	41.4	19.5
				е			•	•			
2002	M	D	BASS	е	11	1	•		12.9	42.0	20.0
2002	W	D	WM82	е	14	2	_	_	10.7	41.0	20.3
2002	W	D	JACK	e	16	2			12.2	42.1	19.4
							•	•			
2002	M	D	CORC	е	20	2	•		13.4	42.2	20.0
2002	W	D	BASS	е	22	2			14.8	43.6	18.6
2002	W	D	CORC	e	25	3			5.5	42.3	21.5
							•	•			
2002	M	D	BASS	е	28	3	•		14.1	42.1	21.1
2002	M	D	JACK	е	32	3			5.6	41.2	22.0
2002	W	D	WM82	е	34	3			14.7	43.2	18.9
							•	•			
2002	M	D	CORC	1	3	1	•		13.1	43.1	19.1
2002	M	D	WM82	1	4	1			10.0	41.8	19.6
2002	W	D	JACK	1	8	1			11.5	40.6	20.0
							•	•			
2002	M	D	BASS	1	12	1	•		12.7	43.8	19.1
2002	M	D	WM82	1	15	2			10.8	41.8	19.5
2002	W	D	JACK	1	17	2			11.6	41.6	19.7
							•	•			
2002	M	D	CORC	1	21	2	•		12.6	41.9	19.5
2002	M	D	BASS	1	24	2			14.9	41.8	19.1
2002	W	D	CORC	1	26	3			13.5	42.3	19.1
							•	•			
2002	M	D	BASS	1	30	3	•		12.5	41.2	19.5
2002	M	D	JACK	1	31	3			10.3	41.5	19.1
2002	W	D	WM82	1	36	3			14.0	42.6	20.1
							400 0				
2002	M	F	CORC	е	3	1	490.8	24.5	13.4	43.1	20.2
2002	M	F	JACK	е	5	1	723.8	36.2	7.2	41.1	16.9
2002	M	F	BASS	е	7	1	1183.8	59.2	10.9	38.2	22.5
2002	M	F	WM82	е	12	1	1075.9	53.8	14.8	42.5	20.4
2002	M	F	JACK	е	13	2	330.3	16.5	9.7	38.5	20.8
2002	M	F	BASS	е	16	2	897.6	44.9	12.2	39.9	22.1
2002	M	F	WM82	е	20	2	1214.3	60.7	15.5	42.4	20.4
2002	M	F	CORC	e	23	2	784.5	39.2	13.4	43.9	20.5
2002	W	F	BASS	е	27	3	485.9	24.3	10.2	44.0	19.5
2002	W	F	WM82		29	3	764.2	38.2	13.6	44.6	19.3
				е							
2002	M	F	CORC	e	32	3	334.2	16.7	7.1	44.0	16.0
2002	W	F	JACK	е	35	3	767.8	38.4	14.1	45.1	19.6
2002	W	F	CORC	ĺ	1	1	1007.3	50.4	13.6	43.5	20.2
2002	M	F	JACK	1	6	1	843.8	42.2	8.4	40.3	19.0
2002	M	F	BASS	1	9	1	844.8	42.2	11.3	39.9	21.9
2002	W	F	WM82	1	10	1	946.7	47.3	13.7	42.8	20.6
2002	M	F	JACK	1	14	2	717.1	35.9	9.5	40.6	19.5
2002	M	F	BASS	1	17	2	703.6	35.2	9.6	40.1	21.5
2002	W	F	WM82	1	19	2	1040.9	52.0	14.3	42.5	20.0
2002	W	F	CORC	1	24	2	1029.4	51.5	13.9	43.9	20.2
2002	M	F	BASS	1	26	3	684.2	34.2	11.7	42.6	20.3
2002	W	F	WM82	1	30	3	948.4	47.4	13.2	44.1	20.2
2002	W	F	CORC	1	33	3	479.6	24.0	7.9	41.2	17.9
2002	W	F	JACK	1	34	3	692.0	34.6	12.6	45.4	19.9
2002	M	F	CORC	С	2	1	1050.5	52.5	14.1	43.6	20.5
2002	M	F	JACK	С	4	1	694.0	34.7	7.5	42.5	17.5
2002	W	F	BASS	С	8	1	760.8	38.0	9.7	40.6	21.0
2002	M	F	WM82	С	11	1	1051.6	52.6	14.8	43.2	20.3
2002	M	F	JACK	С	15	2	232.6	11.6	7.0	42.1	17.2
2002	W	F	BASS	С	18	2	1095.0	54.8	10.4	38.5	22.3
2002	M	F	WM82	С	21	2	968.7	48.4	14.3	44.4	19.3
2002	M	F	CORC	С	22	2	357.7	17.9	12.9	45.2	18.9
2002	W	F	BASS	С	25	3	753.1	37.7	12.6	43.3	20.3
					28		748.5				
2002	W	F	WM82	С		3		37.4	12.7	45.5	19.0
2002	M	F	CORC	С	31	3	489.4	24.5	8.0	42.5	17.2
2002	M	F	JACK	С	36	3	910.7	45.5	15.7	44.7	19.9
	P				3	1				41.6	
2003		D -	CORC	С			671.3	35.8	15.8		19.3
2003	P	D	WM82	С	4	1	997.9	26.6	15.1	40.0	19.4
2003	P	D	JACK	С	8	1	1451.5	38.8	12.6	38.1	21.2
2003	P	D	BASS	c	11	1	1619.3	43.2	13.5	40.0	21.3
2003	P	D	WM82	С	13	2	1102.2	29.4	15.3	39.9	20.1
2003	P	D	JACK	С	18	2	1551.3	41.4	12.4	36.0	20.7
2003	P	D	CORC	C	19	2	1823.4	48.7	15.6	39.8	19.6
2003	P	D				2					
Z.UU.3	r	D	BASS	C	22	∠	1324.5	35.4	13.2	38.5	20.4

2003	P	D	CORC	С	26	3	1905.1	50.9	15.4	40.6	19.5
2003	P	D	BASS		29	3	1655.6	44.2	13.2	40.5	21.6
				С							
2003	P	D	JACK	C	31	3	1392.5	37.2	11.7	37.7	21.1
2003	P	D	WM82	С	34	3	1437.9	38.4	15.2	39.8	19.7
2003	P	D	CORC		2	1	1214.3	32.4	15.6	41.9	18.9
				е							
2003	P	D	WM82	е	6	1	1124.9	30.0	14.6	41.0	19.6
2003	P	D	JACK	е	7	1	1238.3	33.1	11.4	36.0	21.1
2003	P	D	BASS	е	10	1	775.6	20.7	13.0	39.9	20.0
2003	P	D	WM82	е	14	2	1419.7	37.9	14.4	39.5	19.6
2003	P	D	JACK	e	16	2	1115.8	29.8	12.0	37.8	20.4
2003	P	D	CORC	е	21	2	1669.2	44.6	14.7	40.5	19.6
2003	P	D	BASS	е	23	2	1020.6	27.3	13.3	39.6	20.5
2003	P	D	CORC	е	25	3	1292.7	34.5	14.3	40.4	19.0
2003	P	D	BASS	е	28	3	1233.7	32.9	12.5	38.9	19.9
2003	P	D	JACK	е	32	3	1542.2	41.2	12.0	38.6	20.1
2003	P	D	WM82	е	36	3	1115.8	29.8	14.9	39.6	20.0
2003	P	D	CORC	1	1	1	1311.5	35.0	15.9	40.9	20.0
2003	P			1	5	1					
		D	WM82				1061.4	28.3	14.6	39.6	20.0
2003	P	D	JACK	1	9	1	1528.6	40.8	12.3	38.2	20.7
2003	P	D	BASS	1	12	1	807.4	21.6	13.9	39.7	19.9
2003	P	D	WM82	1	15	2	1292.7	34.5	15.1	38.5	20.2
2003	P	D	JACK	1	17	2	1487.8	39.7	12.7	37.1	21.3
2003	P	D	CORC	1	20	2	1841.6	49.2	15.4	40.3	21.0
2003	P	D	BASS	1	24	2	743.9	19.9	12.7	39.2	20.5
2003	P	D	CORC	1	27	3	1714.6	45.8	15.3	40.5	20.1
2003	P	D		1	30	3			12.5	39.0	19.8
			BASS				1601.2	42.8			
2003	P	D	JACK	1	33	3	1759.9	47.0	13.0	36.9	20.9
2003	P	D	WM82	1	35	3	1841.6	49.2	15.4	38.0	20.1
2003	P	F	WM82	е	2	1	50.5		15.1	42.7	20.7
2003	P	F	BASS	е	5	1	49.1		13.1	41.1	22.3
2003	P	F	JACK	e	7	1	49.1		14.9	41.8	22.0
								•			
2003	P	F	CORC	е	10	1	51.0		15.4	41.7	21.7
2003	P	F	CORC	е	14	2	51.0		13.7	41.0	22.2
								•			
2003	P	F	BASS	е	16	2	50.7	•	13.2	41.8	21.7
2003	P	F	WM82	е	19	2	49.2		14.1	41.6	21.1
2003	P	F	JACK	е	22	2	50.3		16.6	43.2	20.7
								•			
2003	P	F	WM82	е	26	3	49.4	•	12.5	41.8	20.8
2003	P	F	CORC	е	28	3	51.1		14.3	41.5	21.0
2003	P	F	JACK	e	31	3	49.4		13.6	41.4	22.0
							49.4	•			
2003	P	F	BASS	е	34	3			14.8	42.1	20.7
2003	P	F	WM82	1	1	1	50.0		17.1	41.1	20.9
	P			1	4	1	50.4	•			
2003		F	BASS					•	14.5	41.8	21.8
2003	P	F	JACK	1	9	1	51.0		14.4	41.1	21.8
2003	P	F	CORC	1	12	1	49.6		14.7	41.8	21.1
								•			
2003	P	F	CORC	1	15	2	50.5	•	13.2	41.7	22.0
2003	P	F	BASS	1	17	2	50.7		14.3	41.9	21.0
2003	P	F	WM82	1	21	2	49.5		15.0	41.5	21.4
								•			
2003	P	F	JACK	1	23	2	50.6	•	15.5	42.1	20.6
2003	P	F	WM82	1	27	3	49.8		13.0	41.3	21.5
2003	P	F	CORC	1	30	3	49.7		15.0	41.6	21.4
								•			
2003	P	F	JACK	1	32	3	50.9		14.5	41.2	22.1
2003	P	F	BASS	1	35	3			14.7	42.3	21.0
2003	P	F	WM82	е	3	1	50.3		16.7	42.5	20.8
								•			
2003	P	F	BASS	C	6	1	50.1		13.8	41.5	21.7
2003	P	F	JACK	е	8	1	50.6	_	13.1	41.2	21.7
2003	P	F	CORC	С	11	1	50.4	-	15.0	41.7	21.0
								•			
2003	P	F	CORC	е	13	2	51.0		13.6	41.3	21.9
2003	P	F	BASS	С	18	2	49.8		14.8	42.6	20.7
2003	P	F	WM82	С	20	2	50.1		15.9	41.6	21.2
								•			
2003	P	F	JACK	1	24	2	50.5		15.3	42.3	21.5
2003	P	F	WM82	С	25	3	50.9		14.8	42.3	21.3
2003	P	F	CORC	С	29	3	51.1		15.2	41.9	21.3
2003	P	F	JACK	1	33	3	49.6		12.8	42.3	21.6
2003	P	F	BASS	С	36	3			16.6	42.0	21.2
2003	M	D	BASS	С	1	1	1564.9	41.8	14.4	40.4	20.5
2003	M	D	CORC	С	5	1	1737.3	46.4	16.7	41.6	19.4
2003	W	D	JACK	C	8	1	1437.1	38.4	13.8	39.5	20.0
2003	M	D	WM82	С	10	1	1378.9	36.8	17.0	39.9	19.0
2003	W	D	CORC	С	15	2	1496.9	40.0	15.2	39.6	20.0
2003	W	D	JACK	С	18	2	1596.6	42.6	13.7	37.8	20.0
2003	M	D	BASS	С	21	2	1601.2	42.8	13.5	40.1	19.0
2003	W	D	WM82	С	24	2	1564.9	41.8	16.5	40.5	19.0
						3					
2003	W	D	WM82	С	26		1546.7	41.3	17.4	40.4	19.0
2003	W	D	CORC	С	30	3	1036.6	27.7	16.4	41.5	18.8
2003	W	D	JACK	С	31	3	1469.6	39.2	14.0	40.8	18.7
2003	M	D	BASS	С	36	3	1583.0	42.3	14.1	39.6	19.6
2003	W	D	BASS	е	2	1	1310.0	35.0	13.3	40.3	19.2
2003	W	D	CORC	е	6	1	1297.3	34.6	15.6	40.9	18.5
2003	W	D	JACK	е	9	1	1043.3	27.9	12.3	39.1	19.7

2003	W	D	WM82	е	12	1	1016.0	27.1	16.4	40.5	21.6
2003	W	D	CORC	e	13	2	1451.5	38.8	15.8	40.3	19.5
2003	M	D	JACK	e	16	2	1070.5	28.6	12.9	38.6	19.8
2003	M	D	BASS	е	20	2	1174.8	31.4	12.5	39.2	19.6
2003	W	D	WM82	е	22	2	1342.6	35.8	15.8	39.6	20.1
2003	M	D	WM82	е	25	3	1106.8	29.6	16.0	40.2	19.4
2003	W	D	CORC	e	28	3	1356.2	36.2	15.9	42.0	17.9
2003	M	D	JACK	е	33	3	1233.8	32.9	12.7	40.4	20.2
2003	M	D	BASS	е	35	3	1279.1	34.2	13.0	39.4	19.5
2003	W	D	BASS	1	3	1	1283.7	34.3	13.6	40.3	21.3
2003	M	D	CORC	1	4	1			16.8	41.1	18.3
2003	W	D	JACK	1	7	1	1024.1	27.3	12.9	40.4	18.0
					11						
2003	M	D	WM82	1		1	1251.9	33.4	15.6	40.5	19.1
2003	M	D	CORC	1	14	2	1846.1	49.3	17.2	41.4	18.5
2003	W	D	JACK	1	17	2	1088.7	29.1	13.0	39.6	19.4
2003	M	D	BASS	1	19	2	1233.8	32.9	12.1	38.6	19.9
2003	W	D	WM82	1	23	2	1134.0	30.3	15.1	39.7	19.5
2003	M	D	WM82	1	27	3	1456.0	38.9	15.2	41.2	18.7
2003	M	D	CORC	1	29	3	1288.2	34.4	15.8	41.9	18.8
2003	W	D	JACK	1	32	3	1233.8	32.9	13.2	40.7	18.5
2003	W	D	BASS	1	34	3	1324.5	35.4	12.6	39.8	19.2
2003	M	F	CORC	e	3	1	846.2	22.6	14.0	41.3	20.7
2003	M	F	JACK	е	5	1	367.7	9.8	13.3	40.6	21.3
2003	M	F	BASS	е	7	1	1434.2	38.3	12.7	41.6	20.7
2003	M	F	WM82	е	12	1	941.7	25.1	14.7	42.3	19.8
2003	W	F	JACK	e	13	2	1271.4	33.9	12.7	41.7	20.1
2003	M	F	BASS		16	2	1083.6	28.9	11.3	40.2	20.7
				е							
2003	M	F	WM82	е	20	2	1258.8	33.6	14.0	40.6	20.7
2003	M	F	CORC	е	23	2	1661.9	44.4	12.0	42.1	20.1
2003	W	F	BASS	е	27	3	1491.2	39.8	14.1	43.1	19.4
2003	W	F	WM82	e	29	3	1885.1	50.3	14.2	41.9	20.6
2003	M	F	CORC		32	3	1220.9	32.6	10.9	41.2	19.8
				е							
2003	M	F	JACK	е	35	3	1624.4	43.4	12.4	42.0	20.9
2003	M	F	CORC	1	1	1	565.6	15.1	13.4	40.4	20.8
2003	W	F	JACK	1	6	1	423.8	11.3	12.5	41.0	20.6
2003	M	F	BASS	1	9	1	1563.7	41.8	13.7	40.7	21.5
2003	W	F	WM82	1	10	1	1000.7	11.0	15.9	43.1	19.6
							1710 0	45.0			
2003	M	F	JACK	1	14	2	1718.2	45.9	14.0	41.8	20.8
2003	M	F	BASS	1	17	2	1559.7	41.6	12.3	41.4	21.1
2003	M	F	WM82	1	19	2	1528.8	40.8	15.2	41.8	20.6
2003	M	F	CORC	1	24	2	558.4	14.9	10.8	40.9	20.1
2003	W	F	BASS	1	26	3	1677.9	44.8	15.1	42.3	21.0
	M	F		1	30	3					20.7
2003			WM82				1326.7	35.4	12.4	40.8	
2003	M	F	CORC	1	33	3	1749.5	46.7	12.5	41.7	20.7
2003	W	F	JACK	1	34	3	1161.8	31.0	10.9	39.6	21.2
2003	M	F	CORC	С	2	1	768.2	20.5	15.9	40.8	21.1
2003	W	F	JACK	1	4	1	366.4	9.8	12.4	39.8	21.9
						1					
2003	M	F	BASS	1	8		1440.2	38.5	11.9	41.4	20.3
2003	M	F	WM82	1	11	1			13.1	40.9	20.3
2003	W	F	JACK	е	15	2	1799.0	48.0	15.0	41.6	21.0
2003	W	F	BASS	С	18	2	1258.1	33.6	12.8	41.7	20.6
2003	W	F	WM82	e	21	2	1539.5	41.1	15.8	41.1	20.5
								43.6			20.3
2003	W	F	CORC	С	22	2	1633.4		12.5	42.0	
2003	M	F	BASS	1	25	3	537.6	14.4	12.8	40.8	21.0
2003	M	F	WM82	е	28	3	1955.5	52.2	14.2	41.7	21.3
2003	M	F	CORC	С	31	3	1686.2	45.0	12.6	42.4	19.9
2003	W	F	JACK	c	36	3	1521.5	40.6	12.2	44.2	21.2
2000	**	-	011011	0	30	9	1021.0	10.0		11.2	21.2

Chapter 6: References

Alberts, D.S., and D.J. Garcia. 1995. An overview of clinical cancer chemoprevention studies with emphesis on positive phase III studies. J. Nutr. 125(35): 692S-697S

Anonymous, 2000. "The plant-based conjugated estrogens alternative to Premarin". DRMD-CED-057. Duramed Pharmaceuticals, Inc. 5040 Duramed Drive, Cincinnati, Ohio 45213.

Anonymous. 1998. Tamoxifen approved for reducing breast cancer incidence. In HHS News 98-34.

http://www.fda.gov/bbs/topics/NEWS/NEW00662.html

Baldridge, G.D., N.R. O'Neill, and D.A. Samac. 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant Mol. Biol. 38(6): 999-1010.

Beck, A.B. and J.R. Knox. 1971. The acylated isflavone glucosides from subterranean clover and red clover. Aust. J. Chem. 24:1509-1518.

Branham, W.S., S.L. Dial, C.L. Moland, B.S. Hass, R.M. Blair, H. Fang, L. Shi, W. Tong, R.G. Perkins and D. M. Sheehan. 2002.

Phytoestrogens and mycoestrogens bind to the rat uterine estrogen receptor. J. Nutr. 132:658-664.

Carrao-Panizzi, M.C., A.D.P. Beleia, S.H. Prudencio-ferreira, M.C.N. Olivera, and K. Kitamura. 1999. Effects of Genetics and Environment on Isoflavone Content of Soybean from Different Regions of Brazil. Pesq. Agropec. 34(6):1045-1052

Cassidy, A., S. Bingham, and K.D.R. Setchell. 1994. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am. J. Clin. Nutr. 60:333-340.

Chernikova, T., J.M. Robinson, E.H. Lee, and C.L. Mulchi. 2000. Ozone tolerance and antioxidant enzyme activity in soybean cultivars. Photosynthesis Research 64(1):15-26.

Cosio, E.G., G. Weissenbock and J.W. McClure. 1985. Acifluorfen-induced isoflavonoids and enzymes of their biosynthesis in mature soybean leaves. Plant Physiol. 78:14-19.

Cosio, E.G. and J.W. McClure. 1984. Kaempferol glucosides and enzymes of flavonol biosynthesis in leaves of a soybean strain with low photosynthetic rates. Plant Physiol. 74:877-881

Coward, L., M. Smith, M. Kirk, and S. Barnes. 1998. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 1486S-1491S.

Dakora, F.D. 2000. Commonality of root nodulation signals and nitrogen assimilation in tropical grain legumes belonging to the tribe Phaseoleae. Aust. J. Plant Physiol. 27:885-892.

Davies, C.G.A., F.M. Netto, N. Glassenap, C.M. Gallaher, T.P. Labuza, and D.D. Gallaher. 1998. Indication of the Maillard reaction during storage of protein isolates. J. Agric. Food Chem. 46 (7):2485-2489.

Dewick, P.M. and M. Martin.1979. Biosynthesis of pterocarpan, isoflavan and coumestan metabolites of *Medicago sativa*: chalcone, isoflavone and isoflavanone precursors. Phytochem. 18:597-602

Duke, S.O., A.M. Rimando, P.F. Pace, K.N. Reddy, and R.J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. J. Agric. Food Chem. 51(1):340-344

Ebel, J. and A. Mithofer. 1998. Early events in the elicitation of plant defense. Planta 206(3): 335-348

Ebel, J., W.E. Schmidt and R. Loyal. 1984. Phytoalexin synthesis in soybean cells: elicitor induction of phenylalanine ammonialyase and chalcone synthase mRNSs and correlation with phytoalexin accumulation. Arch. Biochem. And Biophys. 232(1): 240-248.

Eldridge, A.C. and W.F. Kwolck. 1983. Soybean isoflavones:

Effects of environment and variety on composition. J. Agric.

Food Chem. 31:394-396

Figallo, V.B., W.J. Kenworthy, and M.M. Giusti. 2003. The effect of planting time and location on the isoflavone content of different soybean (Glycine max) cultivars. Institute of Food Technologists Annual Meeting. Institute of Food Technologists
525 W. Van Buren, Ste. 1000; Chicago, IL 60607

Fleury, Y., W.G. Welti, G. Philippossian, and D. Magnolato.

1992. Soybean (malonyl) isoflavones: characterization and
antioxidant properties. p. 98-113. *In* Huang, M.T., C.T. Ho, and
C.Y. Lee. (ed.) Phenolic compounds in food and their effects on
health II. American Chem. Soc. Symp. Series 507. 25-30 Aug.1991.

American Chem. Soc., New York, N.Y.

Franke, A.A., L.J. Custer, and Y. Tanaka. 1998. Isoflavones in human breast milk and other biological fluids. Am. J. Clin. Nutr. 68:1466S-1473S.

Fukutake, M., M. Takahashi, K. Ishida, H. Kawamura, T. Sugimura, and K. Wakabayashi. 1996. Quantification of genistein and genistin in soybean and soybean products. Food Chem. Toxicol. 34(5): 457-461

Gallaher, D.D., C.M. Gallaher, and, R.M. Hoffman. 1996. Soy protein isolate and genistein: effects on initiation and progression of colon cancer. Second International Symposium on the Role of Soy in Preventing and Treating Chronic Disease, Brussels, Belgium, Sept 15-18, 1996.

Gildersleeve, R.R., G.R. Smith, I.J. Pemberton and C.L. Gilbert.

1991. Detection of isoflavones in seedling subterranean clover.

Crop Sci. 31:889-892

Gottfert, M. 1993. Regulation and function of rhizobial genes. Fed. Eur. Microbiol. Soc. 104(1/2):39-63

Graham, T.L. 1991. Flavonoid distribution in developing soybean seedling tissue and in seed and root exudates. Plant Physiol. 95(2):594-603

Graham, T.L., J.E. Kim, M.Y. Graham. 1990. Role of constitutive isoflavone conjugates in the accumulation of Glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma. Mol. Plant Microbe Interact. 3:157-166

Harrison, M.J. and R.A. Dixon. 1993. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of *Medicago truncatula*. Mol. Plant-Microb. Interact. 6(5):643-654.

Heck, W.W., J.A. Dunning, R.A. Reinert, S.A. Prior, M. Rangappa, and P.S. Benepal. 1988. Differential responses of four bean cultivars to chronic doses of ozone. Journal of American Society of Horticultural Science. 113(1):46-51

Hoeck, J.A., W.R. Fehr, P.A. Murphy and G.A. Welke. 2000.

Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40:48-51.

Hymowitz, T. 2004. Speciation and cytogenetics. In Boerma, H.R. and J.E. Specht, ed. Soybeans: Improvement, Production, and Uses, ED 3, Agronomy Monograph No. 16. American Society of Agronomy-Crop Science Society of American-Soil Science Society of America, Madison, WI, pp. 97-136.

Ishida, H., T. Vesugi, T. Toda, H. Nukaya, K. Yokotsuka and K. Tsuji. 1998. Preventive effects of the plant isoflavones, daidzin and genistin, on bone loss in ovariectomized rat fed a calcium-deficient diet. Biol. Pharm. Bull. 1:62-66. (Available on-line at

http://www.ncbi.nlm.nih.gov/entrez/query.fcig?cmd=Retrieve&db=Pu
bMed&list uids=9477170).

Izumi, T., M.K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130(7): 1695-1699

Jung, W.S., I. Chung, H.Y. Heo. 2003. Manipulating Isoflavone Levels in Plants. J. Plant Biotech. 5(3) 149-155.

Jarred, R.A., S.J. McPherson, M.E. Jones, E.R. Simpson and G.P. Risbridger. 2003. Anti-androgenic action by red clover derived dietary isoflavones reduces nonmaligment prostate enlargement in aromatase knockout (ArKo) mice. Prostate 56(1):54-64.

Jung, W, O. Yu, S.M.C. Lau, D.P. O'Keefe, J. Odell, G. Fader, and B. McGonigle. 2000. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nature Biotech. 18:208-212. (Available online at http://biotech.nature.com)

Keung, W.M. and B.L. Vallee. 1998. Daidzin and its antidipsotropic analogs inhibit serotonin and dopamine metabolism in isolated mitochondria. Proc. Natl. Acad. Sci. 95(5):2198-2203.

Keung. W.M., O. Lazo, L. Kunze, and B.L. Vallee. 1996.

Potentiation of the bioavailability of daidzin by an extract of
Radix puerariae. Proc. Natl. Acad. Sci. USA 93(9): 4284-4288

Kosslak, R.M., R. Bookland, J. Barkei, H.E. Paaren, and E.R. Applebaum. 1987. Induction of *Bradyrhizobium japonicum* common nod genes by isoflavones isolated from *Glycine max*. Proc. Nat. Academ. Sci. USA 84:7428-7432

Kostelac, D., G. Rechkemmer, and K. Briviba. 2003. Phytoestrogens modulate binding response of estrogen receptors α and β to the estrogen response element. J. Agric. Food Chem. 51:7632-7635.

Krauss, R.M., R.H. Eckle, B. Howard, L.J. Appel, S.R. Daniels,
R.J. Dickelbaum, J.W. Erdman, Jr., P. Kris-Etherton, I.J.
Goldberg, T.A. Kotchen, A.H. Lichtenstein, W.E. Mitch, R.
Mullis, K. Robinson, Judith Wylie-Rosett, S. St. Jeor, J.
Suttie, D.L. Tribble, and T.L. Bazzarre. 2001. Revision 2000: A
statement for healthcare professionals from the nutrition
committee of the American Heart Association. J. Nutr. 131:132146.

Kurtzweil, P. 1999. An FDA guide to dietary supplements. *In* FDA consumer magazine September-October 1998. (Available on-line at http://www.fda.gov/fdac/features/1998/598 guid.html)

Landini, S., M.Y. Graham, and T.L. Graham. 2003. Lactofen induces isoflavone accumulation and glyceollin elicitation competency in soybean. Phytochem. 62(6): 865-874

Leibovitch, S., P. Migner, F. Zhang, and D.L. Smith. 2001.

Evaluation of the effect of soya signal technology on soybean yield [Glycine max (L.) Merr.] under field conditions over 6 years in eastern Canada and the northern United States. J. Agro. And Crop Sci. 187(4): 281

Lin, F., and M.M. Giusti, 2005. Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). Journal of Agricultural Food Chemistry 53:3795-3800.

Loh, J. and G. Stacey. 2003. Nodulation gene regulation and Bradyrhizobium japonicum: a unique intergration of global regulatory circuits. App. And Env. Microbio. 69(1): 10-17.

McKhann, H.I., N.L. Paiva, R.A. Dixon, and A.M. Hirsch. 1997.

Chalcone synthase transcripts are detected in alfalfa root hairs following inoculation with wild-type Rhizobium meliloti. Mol. Plant-Microb. Interact. 10 (1):50-58.

Millington, A.J., C.M. Francis and N.R. McKeown. 1964. Wether bioassay of annual pasture legumes: II. The oestrogenic activity of nine strains of *Trifolium subterraneum* L. Aust. J. Exper. Agric. Res. 41:841-842

Miltyk, W., C.N. Craciunescu, L. Fischer, R.A. Jeffcoat, M.A. Koch, W. Lopaczynsky, C. Mahoney, J. Crowell, and J. Paglieri. 2003. Lack of significant genotoxicity of purified soy isoflavones (genistein, daidzein, and glycitein) in 20 patients with prostate cancer. Amer. J. Clin. Nutr. 77(4):875-882

Mulchi, C.L., B. Rudorff, E. Lee, R. Rowland, and R. Pausch. 1995. Morphological responses among crop species to full-season exposures to enhanced concentrations of atmospheric CO_2 and O_3 . Water, Air, and Soil Pollution v. 85(3):1379-1386.

Mulchi, C.L., E. Lee, K. Tuthill, and E.V. Olinick. 1988.

Influence of ozone stress on growth processes, yields and grain quality characteristics among soybean cultivars. Environmental pollution: Series A: Ecological and Biological. 53(1/4):151-169.

Mulchi, C.L., L. Slaughter, M. Saleem, E.H. Lee, R. Pausch, and R. Rowland, 1992. Growth and physiological characteristics of soybean in open-top chambers in response to ozone and increased and atmospheric CO2. Agricultural Ecosystems Environment 38:107-118.

Murphy, P.A. 1981. Separation of genistin, daidzin and their aglycones, and coumesterol by gradient high performance liquid chromatography. J. Chromatogr. 211:166-169.

Naim, M., B. Gestetner, Y. Birk, and A. Bondi. 1973. A new isoflavone from soya beans. Phytochem. 12:169-170

Nelson, K.A., K.A. Renner, and R. Hammerschmidt. 2002. Cultivar and herbicide selection affects soybean development and the incidence of *Sclerotinia* stem rot. Agron. J. 94(6) 1270-1281

Ohta, N., G. Kuwata, H. Akahori, and T. Watanabe. 1980.

Isolation of a new isoflavone acetyl glucoside, 6"-O-acetyl genistin from soybeans. Agric. Biol. Chem. 44(2):469-470.

Park, Y.K., M.C.Y. Lui and C.L. Aguiar. 2003. Production of enriched isoflavone aglycones during processing of soy protein isolates and soy protein concentrations. International Food Technology Annual Meeting, Chicago, Illinois.

Panizz, M.C.C., and J.R. Bordingnon. 2000. Activity of beta-glucosidase and levels of isoflavone glucosides in soybean cultivars affected by the environment. Pesq. Agropec. Bras. 35(5):873-878.

Peterson, C., J. Zhu, and J.R. Coats. 2002. Identification of components of Osage orange fruit (Maclura pomifera) and their repellency to German cockroaches. J. Essent. Oil. 14 (3):233-236.

Piersen, C.E. 2003. Phytoestrogens in botanical dietary supplements: Implications for cancer. Integr. Cancer Ther. 2(2):120-138

Rafii, F., C. Davis, M. Park, T.M. Heinze, and R.D. Beger. 2003. Variations in metabolism of the soy isoflavonoid daidzein by human intestinal microfloras from different individuals. Arch. Microbiol. 180(1):11-16.

Rao, J.R. and J.E. Cooper. 1995. Soybean nodulating rhizobia modify *nod* gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity.

Mol. Plant-Microb. Interact. 8(6):855-862

Record, I.L., M. Jannes, I.E. Dreosit, and R.A. King. 1995.

Induction of micronucleus formation in mouse spleocytes by the soy isoflavone genistein *in vitro* but not in vivo. Food Chem.

Toxicol. 33: 919-922

Romani, A., P. Vignolini, C. Galardi, C. Aroldi, C. Vazzana, and D. Heimler. 2003. Phenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agric. Food. Chem. 51:5301-5306.

Romani, A., P. Vignolini, C. Galardi, C. Aroldi, C. Vazzana, and D. Heimler. 2003. Polyphenolic content in different plant parts of soy cultivars grown under natural conditions. J. Agri. Food Che. 51(18):5301-5306.

Suh, K.S., G. Koh, C.Y. Park, J.T. Woo, S.W. Kim, J.W. Kim, I.K. Park, and Y.S. Kim. 2003. Soybean isoflavones inhibit tumor necrosis factor-alpha-induced apoptosis and the production of interleukin-6 and prostaglandin E2 in osteoblastic cells. Phytochem. 63(2):209-215

Setchell, K.D.R., L. Zimmer-Nechemias, J. Cai, and J.E. Heubi. 1998. Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life. Am. J. Clin. Nutr. 68: 1453S-1461S.

Setchell, K.D.R., M. S. Faughnan, T. Avades, L. Zimmer-Nechemias, N.M. Brown, B.E. Wolfe, W.T. Brashear, P. Desai, M.F. Oldfield, and N.P. Botting. 2003. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in permenopausal women. Am. J. Clinical Nutr. 77(2):411-419.

Stacey, G., L. Vodkin, W.A. Parrott, and R.C. Shoemaker. 2004.

National science foundation-sponsored workshop report. Draft

plan for soybean genomics. Pl. Physiol. 135: 59-70

Terao, J., M. Piskula, and Q. Yao. 1994. Protective effects of epicatechin, epicatechin gallate, and quercetin on lipid peroxidation in phospholipids bilayers. Arch. Biochem. Biophys. 308(1): 278-284

Thoruwa, C.L., T.T. Song, J. Hu, A.L. Simons, and P.A. Murphy. 2003. A simple synthesis of 7,4'-Dihydroxy-6-methoxyisoflavone, glycitein, the third soybean isoflavone. J. Nat. Prod. 66:149-151.

Toda, T., A. Sakamoto, T. Takayanagi, and K. Yokotsuka. 2000. Changes in isoflavone compositions of soyfoods during cooking. Food Sci. Technol. Res. 6(4):314-319.

Toyomura, K. and S. Kono. 2002. Soybeans, soy foods, isoflavones and risk of colorectal cancer: a review of experimental and epidemiological data. Asian Pacific J. Cancer Prev. v. 3: 125-132

Tsao, R., R. Yang, and J.C. Young. 2003. Antioxidant isoflavones in Osage orange, *Maclura pomifera*. Jour. Agri.and Food Chem. 51(22):6445-6451.

Tsukamoto, C., S. Shimada, K. Igita, S. Kudo, M. Kokubun, K. Okuba and K. Kitamura. 1995 Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43:1184-1192.

Tyler, B.M. 2002. Molecular basis of recognition between phytophthora pathogens and their hosts. Annu. Rev. Phytopathol. 40:137-167.

Vencill, W.K. 2002. Herbicide Handbook, Eighth Edition. Weed Sci. Soc. Am. Publishers Lawrence, KS. 66044-8897. USA

Volpin, H., D.A. Phillips, Y. Okon, and Y. Kapulnik. 1995.

Suppression of an isoflavonoid phytoalexin defense response in mycorrhizal alfalfa roots. Plant Physiol. 108:1449-1454.

Wang, G., S.S Kuan, O.J. Francis, G.M. Ware and A.S. Carman.

1990. A simplified method for the determination of

phytoestrogens in soybeans and its processed products. J.

Agric. Food Chem. 38(1):185-190.

Wang, H.J., and P.A. Murphy. 1994a. Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year, and location. 42:1674-1677.

Wang, H.J. and P.A. Murphy. 1994b. Isoflavone content in commercial soybean foods. J. Agric. Food Chem. 42:1666-1673.

Wang, S.F., T.J. Ridsdill-Smith, and E.L. Ghisalberti. 1998.

Role of isoflavonoids in resistance of subterranean clover trifoliates to redlegged earth mites *Halotydeus destructor*. J. Chem. Ecology. 24:2089-2100.

Wang, S.F., T.J. Ridsdill-Smith, and E.L. Ghisalberti. 1999. Levels of isoflavonoids as indicators of resistance of subterranean clover trifoliates to redlegged earth mites *Halotydeus destructor*. J. Chem. Ecology. 25:795-803

Wang, W., M. Sherrard, S. Pagadala, R. Wixon, and R.A. Scott.

2000. Isoflavone content among maturity group 0 to II soybeans.

J. Am. Oil Chem. Soc. 77(5): 483-487.

Wilkinson, A.P., J.M. Greel, A.J. Day, M.S. DuPont, P.W. Needs, G.W. Plumb, I.T. Johnson, M.R. Morgan and G. Williamson. 1999.

Isoflavone absorption and metabolism. [Online] Third

International Symposium on the role of soy in preventing and treating chronic disease, Washington, D.C. 31 Oct. - 03 Nov.

1999. Available at http://www.soyfoods.com/3rdsoysymp/B4.html

(posted 01 March, 2000).

Wollenweber, E., V.H. Dietz. 1981. Occurrence and disribution of free flavonoid aglycones in plants. Phytochemistry 20:869-932

Wong, E. 1975. The isoflavonoids. P.748-800 *In* Harborne, J.B., T.J. Mabry, and H. Mabry (ed.) The flavonoids. Academic Press, New York, N.Y.

Yamashata, Y., S. Kawada, H. Nakano. 1990. Induction of mammalian topoisomerase II dependent DNA cleavage by nonintercalative flavonoids, genistein and orobol. Biochem. Pharmacol. 39: 737-744.

Yang, B., A. Kotani, A. Kensuke and F. Kusu. 2001. Estimation of the antioxidant activities of flavonoids from their oxidation potentials. Analytical Sciences. 17:599-604

Yu, O., J. Shi, A.O. Hession, C.A. Maxwell, B. McGonigle, and J.T. Odell. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochem. 63:753-763. (Available online at http://www.sciencedirect.com)

Yu, O., W. Jung, J. Shi, R.A. Croes, G.M. Fader, B. McGonigle, and J. T. Odell. 2000. Production of the isoflavones genistein and daidzein in non-legume dicot and monocot tissue. Plant Physiol. 124:781-793.

Zava, D.T. and G. Duwe. 1997. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells *in vitro*. Nutr. Cancer. 27(1): 31-40

Zhang, F., F. Mace, and D.L. Smith. 2000. Mineral nitrogen availability and isoflavonoid accumulation in the root systems of soybeans. J. Agron. Crop Sci. 184:197-204

Zung, A., R. Reifen, Z. Kerem, and Z. Zadik. 2001.

Phytoestrogens: The pediatric perspective. J. Pediatr.

Gastroenterol. Nutr. 33(2):112-118.