

ABSTRACT

Title of dissertation: A FEATURE-BASED SHAPE SIMILARITY
ASSESSMENT FRAMEWORK

 Antonio Cardone, Ph.D., 2005

Directed by: Associate Professor Satyandra K. Gupta,
 Department of Mechanical Engineering

The popularity of 3D CAD systems is resulting in a large number of CAD models being

generated. Availability of these CAD models is opening up new ways in which

information can be archived, analyzed, and reused. 3D geometric information is one of

the main components of CAD models. Therefore shape similarity assessment is a

fundamental geometric reasoning problem that finds several different applications. In

many design and manufacturing applications, the gross shape of the 3D parts does not

play an important role in the similarity assessment. Instead certain attributes of part

features play a dominant role in determining the similarity between two parts.

 Different feature-based models are usually created using their own coordinate

systems. Therefore, feature-based shape similarity assessment involves finding the

optimal alignment transformations for two sets of feature vectors. The optimal alignment

corresponds to the minimum value of a distance function that is computed between the

two sets of feature vectors being aligned. In order to compute the distance function the

closest neighbor to each feature vector needs to be identified. We have developed optimal

feature alignment algorithms based on the partitioning of the transformation space into

regions such that the closest neighbors are invariant within each region. These algorithms

can work with customizable distance functions. We have shown that they have

polynomial time complexity. For higher dimension transformation spaces it is harder to

design algorithms based on the partitioning of transformation spaces because the data

structures involved are very complex. In those cases, feature alignment algorithms based

on iterative strategies have been developed. Iterative strategies make use of optimal

feature alignment algorithms based on the partitioning of lower dimension transformation

spaces. Extensive experiments have been carried out to provide empirical evidence that

iterative strategies can find the optimal solution for feature alignment problems. A

feature-based shape similarity analysis framework has been built based on the feature

alignment algorithms. This framework has been demonstrated with the two following

applications. A machining feature based alignment algorithm has been developed to

automatically search databases for parts that are similar to a newly designed part in terms

of machining features. We expect that the retrieved parts can be used as a basis to

perform cost estimation of the newly designed part. A surface feature based alignment

algorithm has been developed to automatically search databases for parts that are similar

to a newly designed part in terms of surface features. We expect that the retrieved parts

can be used as a basis to choose the most appropriate tool maker for the newly designed

part.

 We believe that the feature-based shape similarity assessment algorithms developed

in this thesis will provide the foundations for designing new feature-based shape

similarity algorithms that will enable designers to efficiently retrieve archived geometric

information. We expect that these tools will facilitate information reuse and therefore

decrease product development time and cost.

A FEATURE-BASED SHAPE SIMILARITY ASSESSMENT FRAMEWORK

By

Antonio Cardone

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:
Associate Professor Satyandra K. Gupta, Chairman / Advisor
Professor Davinder K. Anand
Professor David M. Mount
Associate Professor Jeffrey W. Herrmann
Associate Professor Linda C. Schmidt

© Copyright by

Antonio Cardone

2005

ii

Acknowledgements

I would like to thank my advisor, Dr. Satyandra K. Gupta, for his help and support

through these years. Working with Dr. Gupta has been an invaluable experience thanks to

his hardworking spirit, skilled ways of analyzing and solving complex problems and

ability to motivate me and guide me through challenging research work. Dr. Gupta’s

ability to create a diverse, hardworking and coordinated research group has proven an

invaluable life experience that I will jealously keep in my heart and from which I am sure

I will benefit in all my life.

 I would like to give special thanks to Dr. David M. Mount, who is one of my

dissertation committee members, for giving me invaluable advice on the algorithms that

are designed in this thesis. I am sure my future research work will benefit from his advice

as well.

 I would like to thank my family and friends for their support during these rewarding

but also difficult years. I would like to thank in particular my mother Dora, my father

Michele and my brother Giuseppe for their continuous support, valuable advice, strength

and patience though these years. Without them I would have never been able to overcome

the difficult times and I would have never fully enjoyed my achievements.

 I would also like to thank my dissertation committee members: Drs. Davinder K.

Anand, Jeffrey W. Herrman and Linda C. Schmidt for serving in the committee and

giving suggestions that will be useful not only for my dissertation but also to improve my

research skills.

iii

 I would like to thank my past and present colleagues from Dr. Gupta’s research group

for their invaluable advice, help, support and friendship: Abhijit, Alok, Ashis, Brent,

Changxin, Greg, Ira, Jun, Mukul, Sunil, Tao and Yao.

 Finally, I am thankful to the Center for Energetic Concepts Development at the

University of Maryland for supporting this research.

iv

Table of contents

Chapter 1: Introduction ... 1
1.1 Background... 1
1.2 Motivation... 4
1.3 Research Issues ... 8
1.4 Thesis Outline ... 10

Chapter 2: Related Research... 13
2.1 Overview of Techniques ... 14
2.2 Feature-Based Shape Signatures... 18
2.3 Spatial Function Based Shape Signatures... 23
2.4 Shape Histogram Based Shape Signatures ... 29
2.5 Section Image Based Shape Signatures .. 33
2.6 Topological Graph Based Shape Signatures... 35

2.6.1 Model Signature Graphs .. 35
2.6.2 Multiresolutional Reeb Graphs .. 38
2.6.3 Graphs of Aligned Models... 41
2.6.4 Skeletal Graphs .. 42

2.7 Shape Statistics ... 43
2.8 Point Pattern Alignment.. 46
2.9 Observations ... 48

Chapter 3: Optimal Attributed Point Alignment Algorithms Based On Partitioning Of
Transformation Spaces.. 50

3.1 Motivation... 50
3.2 Mathematical Foundations.. 53
3.3 Problem Formulation .. 55
3.4 Optimal Alignment Under 2 DOF Translations In 2 .. 56

3.4.1 Step a: Building The Set Of Regions For The Attributed Points Of Set P 57
3.4.2 Step b: Minimization Of The Distance Function Within A Given Region...... 65
3.4.3 Steps c And d: Computing The Translation That Minimizes The Distance Over
All The Regions .. 68

3.5 Optimal Alignment Under 1 DOF Rotations In 2 .. 69
3.5.1 Step a: Building The Set Of Theta Intervals For The Attributed Points Of Set P
... 71
3.5.2 Step b: Minimization Of The Distance Function Within A Given Theta Interval
... 77
3.5.3 Steps c and d: Computing The Rotation That Minimizes The Distance Over
All The Theta Intervals ... 79

3.6 Optimal Alignment Under 3 DOF Translations In 3 .. 79
3.6.1 Step a: Building The Set Of Regions For The Attributed Points Of Set P 80
3.6.2 Step b: Minimization Of The Distance Function Within A Given Region...... 83
3.6.3 Steps c and d: Computing The Translation That Minimizes The Distance Over
All The Regions .. 84

3.7 Complexity Evaluation For Optimal Alignment Algorithms Based On Partitioning
Of Transformation Space.. 84

v

3.7.1 Overview.. 84
3.7.2 Complexity Of The Overlapping Of Two Voronoi Diagrams In 2 86

3.7.3 Complexity Of The Overlapping Of m Spatial Arrangements S(Pi) In d...... 93
3.8 Summary ... 96

Chapter 4: Attributed Point Alignment Algorithms Based On Iterative Strategies.......... 98
4.1 Motivation... 98
4.2 Problem Formulation .. 99
4.3 Definition Of Iterative Strategies.. 100
4.4 Mathematical Foundations For Iterative Strategies In 2..................................... 102
4.5 Experimental Results .. 106

4.5.1 Tests On Iterative Strategies In 2... 106

4.5.2 Tests On Iterative Strategies In 3 Using 6 DOFs .. 108

4.5.3 Tests On Iterative Strategies In 3 Using 3 Rotational DOFs....................... 112
4.6 Summary ... 115

Chapter 5: Feature-Based Similarity Assessment Algorithms.. 118
5.1 Motivation... 118
5.2 Background And Problem Formulation.. 122

5.2.1 Machining Features.. 122
5.2.2 Distance Function For Similarity Assessment... 124
5.2.3 Problem Statement ... 128

5.3 Computing Similarity For Query Parts With Single Preferred Feature
Interpretations ... 130
5.4 Finding The Optimal Alignment Under One Degree Of Freedom....................... 133

5.4.1 Step a: Building The Set Of Theta Intervals For The RFVs Of Set P 134
5.4.2 Step b: Minimization Of The Distance Function Within A Given Theta Interval
... 139
5.4.3 Steps c and d: Computing The Value Of Theta That Minimizes The Distance
Over All The Theta Intervals .. 144

5.5 Experimental Results For Single Feature Interpretations 145
5.6 Similarity Assessment In Presence Of Multiple Feature Interpretations.............. 151
5.7 Summary ... 160

Chapter 6: Surface Feature-Based Shape Similarity Assessment Algorithms................ 163
6.1 Motivation... 163
6.2 Background And Problem Formulation.. 165

6.2.1 Surface Features... 165
6.2.2 Distance Function For Similarity Assessment... 168
6.2.3 Problem Statement ... 172

6.3 Computing Surface Feature-Based Similarity For Parts....................................... 173
6.4 Finding The Optimal Alignment Under One Degree Of Freedom Rotations....... 175

6.4.1 Step a: Building The Set Of Theta Intervals For The RSFVs Of Set P......... 176
6.4.2 Step b: Minimization Of The Distance Function Within A Given Theta Interval
... 180
6.4.3 Steps c and d: Computing The Value Of Theta That Minimizes The Distance
Over All The Theta Intervals .. 185

vi

6.5 Iterative Schemes To Find Optimal Alignment Under Three Rotational Degrees Of
Freedom .. 186
6.6 Experimental Results .. 189

6.6.1 Tests To Study The Performance Of Iterative Scheme 189
6.6.2 Tests On Mechanical Parts... 191

6.7 Summary ... 196
Chapter 7: Conclusions ... 202

7.1 Intellectual Contributions.. 202
7.2 Anticipated Benefits.. 205
7.3 Directions For Future Work.. 207

References... 211
Appendix... 222

A. Calculation Of Partitioning Lines And Planes For Attributed Points In 2 And 3

... 222
B. Calculation Of Partitioning Curves For Attributed Points On The Unit Sphere.... 224
C. Calculation Of Partitioning Theta Values For Attributed Applied Vectors Under 1
DOF Rotations In 3... 226

vii

List of figures

Figure 1.1: An Example of Using a Similar Part for Cost Estimation................................ 3
Figure 1.2: An Example of Using a Similar Part for Tool Maker Selection 5
Figure 1.3: Part C Is More Similar to Part A In Gross Shape, But Part B Is More Similar

to Part A in Machining Cost ... 6
Figure 1.4: Part C Is More Similar to Part A In Feature Type And Count, But Part B Is

More Similar to Part A in Machining Cost ... 7
Figure 1.5: Organization of the Thesis ... 12
Figure 2.1: An Example Depicting Different Ways of Representing Features 21
Figure 2.2: An Example Indicating the Low Discrimination Capability of Shape

Distributions.. 31
Figure 2.3: An Example of Same Model Signature Graph for Two Different Parts 37
Figure 3.1: An Example of Aligning Two Parts Represented In Two Different Coordinate

Systems ... 51
Figure 3.2: The Transformation Space of Point p1 of Set P Is Partitioned Into Two

Regions (a) Transformation-invariant Attributes Are the Same for Each Point (b)
Transformation-invariant Attributes Are Different for Each Point, and Hence the
Line L’ Is Offset With Respect to the Line L ... 60

Figure 3.3: Example of Overlapping of Sets of Regions .. 65
Figure 3.4: Set of Theta-intervals for Point p1 of Set P: (a) Case of Intersection Between

Line L and Circle C1 (b) Case of Non-intersection Between Line L and Circle C1 . 73
Figure 3.5: Set of Theta-intervals for Point p1 of Set P When Transformation Invariant

Attributes of Points q1 and q2 of Set Q Are Different... 75
Figure 3.6: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets

of Theta Intervals .. 76
Figure 3.7: The Transformation Space of Point p1 of Set P Is Partitioned Into Two

Regions (a) Transformation-invariant Attributes Are the Same for Each Point (b)
Transformation-invariant Attributes Are Different for Each Point, and Hence the
Plane π’12 Is Offset With Respect to the Line π12 ... 82

Figure 3.8: Instance of Event e(i,6) Occurring in 2. Line L1 Generated by Points p11 and
p12 of Set A1 and Line L2 Generated by Points p21 and p22 of Set A2 Intersect Within
the Unit Square. Point p11 of Set A1 Is the Farthest Point From the Intersection Point
q and Lies in Ring Ri at Distance rmax From q. There Are Six Points in Total
Contained in Si .. 89

Figure 4.1: Histogram Showing the Number of Converging and Non-converging
Instances Vs. The Number of Initial Conditions Used for Iterative Strategy in 2 109

Figure 4.2: Histogram Showing the Number of Converging and Non-converging
Instances Vs. The Number of Initial Conditions Used for Iterative Strategy Ii

3 in 3

... 114
Figure 4.3: Histogram Showing the Number of Converging and Non-converging

Instances vs. The Number of Initial Conditions Used for Iterative Strategies IRi
3 in

3 .. 116
Figure 5.1: The Previously Machined Part (b) Can Be Potentially Used to Estimate the

Cost of the Newly Designed Part (a) .. 120

viii

Figure 5.2: Features Considered With Access and Orientation Vector: (a) Pocket (b) Slot
(c) Notch (d) Through Slot (e) Step (f) Hole .. 124

Figure 5.3: Machined Parts With Access and Orientation Vectors 125
Figure 5.4: Access Vectors for the Parts of Figure 5.3... 127
Figure 5.5: Equivalence Between Reduced Feature Vectors and Attributed Set of Points

on Unit Sphere .. 129
Figure 5.6: Example of Composite Feature .. 131
Figure 5.7: Transformation-invariant Attributes Are The Same For Each Reduced Feature

Vector: The Two Intersection Points Between Circle C1 and Plane π12 Represent The
Extreme Values Of The Theta Intervals ... 138

Figure 5.8: Transformation-invariant Attributes Are Different: The Two Intersection
Points Between Circle C1 and Plane π’12 Represent The Extreme Values Of The
Theta Intervals .. 140

Figure 5.9: Set of Theta Intervals for Reduced Feature Vector p1 of P.......................... 143
Figure 5.10: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets

of Theta Intervals .. 144
Figure 5.11: (a) Initial Orientation of Part MQ and Its Randomly Rotated Version Part MP;

(b) Orientation of Part MP After Step3b(iii) of the Algorithm
COMPUTESIMILARITYMEASURE; (c) Final Orientation of Part MP 147

Figure 5.12: Results Obtained For Query Part#A Used As Input to the System............ 149
Figure 5.13: Results Obtained for Query Part#B Used As Input To The System 150
Figure 5.14: Results Obtained for Query Part#A As Input Using a Shape Histogram

Technique.. 152
Figure 5.15: Results Obtained for Query Part#B As Input Using a Shape Histogram

Technique.. 153
Figure 5.16: Results Obtained for Query Part#C Used As Input To The System 154
Figure 5.17: Example Of Two Possible Feature Interpretations For A Machined Part.. 155
Figure 5.18: Dominance Analysis For The Two Interpretations Of Feature 1 of part MP

With Respect To Their Closest Neighbor Feature 1 of Part MQ............................. 161
Figure 5.19: Results Obtained for Query Part#D Used As Input To The System.......... 162
Figure 6.1: The Tool Maker of Part (b) Can Be A Potential Tool Maker for the Newly

Designed Part (a)... 165
Figure 6.2: Types Of Patches That Are Considered With Corresponding Location Point

and Orientation Vector: (a) General (b) Cylindrical (c) Planar (d) Toroidal (e)
Spherical ... 167

Figure 6.3: Equivalence Between Reduced Surface Feature Vectors and Set of Attributed
Applied Vectors in 3... 169

Figure 6.4: Set of Theta Intervals for Reduced Surface Feature Vector p1 of P............. 183
Figure 6.5: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets

of Theta Intervals .. 184
Figure 6.6: Histogram Representing Number of Converging and Non-converging

Instances vs. Initial Conditions Used.. 191
Figure 6.7: (a) Initial Position of Part MQ and Its Randomly Transformed Version Part

MQ; (b) Position of Part MP Before Step3b(iii) of the Algorithm
COMPUTESIMILARITYMEASURE_TWO; (c) Final Position of Part MP 194

Figure 6.8: Results Obtained for Query Part#A Used As Input to the System............... 197

ix

Figure 6.9: Results Obtained for Query Part#B Used As Input to the System............... 198
Figure 6.10: Results Obtained for Query Part#A As Input Using Fourier Transformation

Based Technique... 199
Figure 6.11: Results Obtained for Query Part#B As Input Using Fourier Transformation

Based Technique... 200
Figure 6.12: Results Obtained for Query Part#C As Input To The System; In Case (a)

More Importance Is Given to Surface Patch Area and Location, in Case (b) More
Importance Is Given to Surface Patch Type and Location 201

1

Chapter 1: Introduction

This chapter is organized in the following manner. Section 1.1 gives the necessary

background to introduce the problem addressed in this thesis. Section 1.2 describes the

motivation behind the research work described in this thesis. Section 1.3 identifies the

major research issues addressed in this thesis. Section 1.4 describes how the remainder of

the thesis is organized.

1.1 Background

Over the last fifteen years 3D CAD systems have become very popular in the industry.

These CAD systems are being used to generate 3D models of parts. These models are

used as a basis for engineering analysis and to generate manufacturing plans. 3D models

also allow virtual prototyping and hence reduce the need for physical prototyping.

Nowadays, organizations routinely set up databases of CAD models to enable all

participants in the product development process to have access to 3D data to support their

functions. Design, manufacturing, and service engineers are expected to greatly benefit

from these databases. These databases are kept current by incorporating the latest

versions of parts and hence significantly improve information dissemination. CAD

databases for even moderate size companies are expected to be large in size.

 Manufacturing companies are constantly looking for ways to reduce costs and the

time-to-market. Intuitively, if two products are similar, it is possible to reuse information

about one product to derive corresponding information about the other one. There are

many possible applications where reuse of information can be of significant value.

Representative examples include part-family formation, redesign suggestion generation,

supplier selection, cost estimation, tooling design, machine selection, stock selection, and

2

design reuse. The following two examples illustrate in detail how shape similarity

assessment can be used:

• Machining Feature-Based Shape Similarity Assessment: Nowadays, many job

shops allow designers to submit a 3D model of the part to be machined over the

Internet and provide a cost estimate based on the 3D part model. For some

manufacturing domains such as rapid prototyping, reasonably accurate estimates of

cost can be achieved by estimating volume or weight of the part. However, for some

manufacturing domains such as machining, cost estimate depends on the geometric

details of the object and automated procedures are not available for doing accurate

cost estimation. Currently in such cases, humans perform cost estimation. In the

Internet era, where designers solicit many quotes to make a decision, manual cost

estimation is not economical. The cost of manufacturing a new part can be quickly

estimated by finding previously manufactured parts that are similar in shape to the

new part. If a sufficiently similar part can be found in the database of the previously

manufactured objects, then the cost of the new part can be estimated by suitably

modifying the actual cost of the previously manufactured similar part. Figure 1.1

shows an example of a previously manufactured part retrieved by a database search

tool that can be used as a basis for providing a cost estimate for the new part.

3

• Surface Feature-Based Shape Similarity Assessment: Selecting a tool maker is an

important step in molding of plastic parts. Many different kinds of tools exist that can

be used to create plastic parts depending upon the shape of the part. Different tool

makers specialize in different kinds of toolings. Therefore, one has to analyze the

shape of the part to determine the most appropriate tool maker based on the type of

tool needed for the part. Currently a fully generative method to determine the tool

type based on the part shape does not exist. Therefore, another possible way to

Figure 1.1: An Example of Using a Similar Part for Cost Estimation

Machining feature-based
search for geometrically
similar parts in database

Machined part database

Cost: 120$

Cost: 50$Cost: 80$

Newly designed part
(query part)

Similar part found in
database

The cost estimator can
estimate the cost of the
new part by suitably
modifying the cost of
the retrieved part

Machining feature-based
search for geometrically
similar parts in database

Machined part database

Cost: 120$

Cost: 50$Cost: 80$

Newly designed part
(query part)

Similar part found in
database

The cost estimator can
estimate the cost of the
new part by suitably
modifying the cost of
the retrieved part

4

identify potential tool makers is to find similar parts to the given part and identify tool

makers for the similar parts. This method is currently being practiced by experienced

part designers. However, they currently rely on their memory to locate the similar

parts. Figure 1.2 shows an example of a previously molded part retrieved by a

database search tool whose shape details are very similar to a new plastic part. Hence

the same toolmaker that fabricated the mold for the retrieved plastic part can be

approached to provide a mold for the new plastic part.

1.2 Motivation

The ability to search for similar products in a database by specifying a query product is

expected to help companies in significantly reducing the associated time and cost

compared with the manual methods of locating the similar products.

 Currently, the following search tools are available to designers. First, if the part

models are stored on computer hard drives, designers can use file name based search

tools. These search tools work if a meaningful file naming convention based on part

shape is adopted. However, developing and deploying a shape-based naming convention

appears to be impractical in many large organizations. Second, designers can also attach

text notations to parts and store them in the PDM database. This scheme only provides

limited search capabilities and has a limited discrimination power. In the last few years

many different part similarity based search tools have emerged. However existing shape

similarity assessment techniques do not have a good performance in manufacturing

applications. Shape similarity assessment techniques based on gross shape can only

account for the overall shape of the parts and tend to ignore important shape details if

they are relatively small in size. Figure 1.3 shows an example in which gross shape

5

similarity assessment techniques do not work from machining cost point of view. Part C

in the figure would be ranked more similar to Part A than Part B if a gross shape

similarity assessment technique was used. However machining cost of Part B is closer to

Part A, as they both need one machining setup.

 Figure 1.2: An Example of Using a Similar Part for Tool Maker Selection

Surface feature-based
search for geometrically
similar parts in database

Molded part database

Newly designed part
(query part)

Similar part found in
database

Tool maker D

Tool maker A Tool maker B Tool maker C

The designer can identify
potential tool makers for
the new part by referring to
the tool makers of the
retrieved parts

Surface feature-based
search for geometrically
similar parts in database

Molded part database

Newly designed part
(query part)

Similar part found in
database

Tool maker D

Tool maker A Tool maker B Tool maker C

The designer can identify
potential tool makers for
the new part by referring to
the tool makers of the
retrieved parts

6

 Most designer and engineers that use CAD system conceive the design in terms of

shape features. In fact, in most modern CAD systems (e.g., Pro/Engineer, Unigraphics,

etc.) features are the atomic elements using which parts and assemblies are defined.

Based on our analysis of several applications, we believe that in order to be useful, the

notion of similarity will have to be based on features. Furthermore, features are also used

to define manufacturing and inspection operations. A feature can be viewed as a

parameterized geometric object. Each feature has geometric (e.g., size, position, and

orientation) and non-geometric (e.g., tolerance, surface finish) attributes associated with

it. For a given application, not all feature attributes may play a role in determining the

extent of similarity. For example, when looking for parts that have similar machining

costs feature positions are not important. However, feature orientations are crucial as they

affect the number of setups. On the other hand, in some other applications, feature

positions may play an important role in determining similarity. Therefore, only

Figure 1.3: Part C Is More Similar to Part A In Gross Shape, But Part B Is More Similar
to Part A in Machining Cost

Part A Part B Part C

Machining setup
direction for Part A

Machining setup
direction for Part B

Machining setup
directions for Part C

Part A Part B Part C

Machining setup
direction for Part A

Machining setup
direction for Part B

Machining setup
directions for Part C

7

application-relevant feature attributes should be used in searching for similar parts. In

summary, features provide a very convenient way of including critical details and

filtering out irrelevant details in search for similar parts.

 Existing feature based shape similarity assessment techniques also do not have a good

performance in manufacturing applications. In fact they ignore relative positions and

orientations of features, and hence cannot account for important issues such as feature

interactions. Figure 1.4 shows an example in which a feature count based technique does

not work from machining cost point of view. In fact Part C would be ranked more similar

to Part A than Part B if a feature type and count similarity assessment technique was

used. However the machining cost of Part B is closer to Part A, as they both need one

machining setup.

 Current search tools do not have a good performance on manufacturing applications.

Hence currently designers locate parts by manually opening various files and browsing

through them using a computer aided design system. This is a highly inefficient use of

Figure 1.4: Part C Is More Similar to Part A In Feature Type And Count, But Part B Is
More Similar to Part A in Machining Cost

Part A Part B Part C

Machining setup
direction for Part A

Machining setup
direction for Part B

Machining setup
directions for Part C

Part A Part B Part C

Machining setup
direction for Part A

Machining setup
direction for Part B

Machining setup
directions for Part C

8

designer’s time, and is becoming a serious problem as the numbers of part models grow

in the database.

1.3 Research Issues

To advance the field of shape similarity assessment for design and manufacturing

applications, this thesis will focus on the following research issues:

• Development Of A Feature-Based Shape Similarity Analysis Framework: In

many design and manufacturing applications the gross shape of the 3D parts does not

play an important role in similarity assessment. Instead certain attributes of part

features play a dominant role in determining the similarity between two parts.

Therefore, we need a framework that uses feature information in assessing similarity.

Typically, the degree of similarity between two parts can be measured using a

distance function. Different applications typically require sometimes slightly (and

sometimes significantly) different notions of similarities. Therefore, in order to be

successful, the shape similarity search method will need to be able to work with user-

specified distance functions. In addition to accounting for geometric attributes, this

distance function will need to take into account non-geometric attributes such as

tolerances and surface finish. Furthermore each feature characteristic can have

different impact on similarity between parts, depending on the application. Hence the

distance function must allow assigning a weight to each feature characteristic

depending on its importance in the particular application addressed.

• Optimal Alignment Of Feature-Based Models Based On Partitioning Of

Transformation Space: Feature-based similarity measures are defined using feature-

based representations of the 3D parts. Hence a 3D part is represented by a set of

9

feature vectors. In order to assess similarity between two sets of feature vectors it is

necessary to compute the distance between them. The distance depends on the

relative position of the two sets of feature vectors belonging to two 3D parts, and on

the closest neighbor to each feature vector. In general the closest neighbor to each

feature vector and the distance value changes by applying a rigid body transformation

to a set of feature vectors. So in order to assess similarity between two parts the

transformation space is partitioned into regions within which the closest neighbor to

each feature vector is invariant. Then the rigid body transformation that yields the

minimum distance between the two sets of feature vectors needs to be computed for

each region. Finally the rigid body transformation that yields the minimum distance

over all the regions needs to be found. We will refer to such transformation as optimal

alignment of feature-based models. Finding the optimal alignment is a computational

task that involves a certain number of degrees of freedom, which depends on the

transformation used and on the characteristics of the feature vectors being considered.

In general finding the optimal alignment is harder if a higher dimension

transformation is involved. For lower dimension transformations it is possible to

design algorithms that can find the optimal alignment. Hence it is necessary to

identify the classes of transformations for which algorithms to find the optimal

alignment can be designed. Once the corresponding algorithms are designed it is also

necessary to study their complexity in order to assess their efficiency.

• Alignment of Feature-Based Models Based On Iterative Strategies: It appears to

be difficult to design algorithms to directly obtain the optimal alignment of feature-

based models for higher dimension transformation spaces due to implementation

10

challenges in computing four and higher dimensional geometric entities. However,

many applications involve finding the optimal alignment for higher dimension

transformations. In these cases solutions can be found by iteratively solving many

different alignment problems in lower dimension transformation spaces. However,

iterative strategies can get stuck in local minima and they may take a long time to

converge. Hence it is necessary to identify the classes of alignment problems for

which iterative strategies can be used in a computationally efficient manner.

• Applications Of Feature-Based Similarity Assessment Algorithms: Feature–based

similarity algorithms can be used to perform feature-based shape similarity

assessment in many applications. However it is necessary for each application to

choose a feature representation that characterizes each part based on its most

significant characteristics. Then, based on the feature-representation chosen, it is

necessary to study the performance of the feature-alignment algorithms for that

particular application. In this thesis two applications will be used to demonstrate the

possible use of the feature-based similarity assessment algorithms: part database

search based on machining features and part database search based on surface

features. In general there might be multiple possible interpretations of the machining

features characterizing a part. Hence the machining feature-based similarity

algorithms must account for multiple possible interpretations of features.

1.4 Thesis Outline

This thesis is organized as follows.

 Chapter 2 describes literature survey related to shape similarity assessment and

alignment problems.

11

 Chapter 3 describes optimal alignment algorithms based on partitioning of

transformation spaces.

 Chapter 4 describes alignment algorithms based on iterative strategies.

 Chapter 5 describes a machining feature-based shape similarity assessment algorithm

that can be used to search part databases.

 Chapter 6 describes a surface feature-based shape similarity assessment algorithm

that can be used to search part databases.

 Chapter 7 identifies the main research contributions of this thesis and describes the

anticipated industrial benefits from this research work.

 Figure 1.5 shows the general organization of the thesis.

12

Figure 1.5: Organization of the Thesis

Optimal alignment algorithms
based on partitioning of
transformation spaces (Chapter 3)

Alignment algorithms based on
iterative strategies (Chapter 4)

Machining feature-based shape
similarity assessment algorithm
(Chapter 5)

Surface feature-based shape
similarity assessment algorithm
(Chapter 6)

Feature-based shape similarity assessment

They can be used to optimally solve
feature alignment problems under
lower dimension transformations

They can be used to solve feature
alignment problems under higher
dimension transformations

It can be used to automatically locate
in a database parts that are similar in
machining features to a newly
designed part

It can be used to automatically locate
in a database parts that are similar in
surface features to a newly designed
part

Optimal alignment algorithms
based on partitioning of
transformation spaces (Chapter 3)

Alignment algorithms based on
iterative strategies (Chapter 4)

Machining feature-based shape
similarity assessment algorithm
(Chapter 5)

Surface feature-based shape
similarity assessment algorithm
(Chapter 6)

Feature-based shape similarity assessment

They can be used to optimally solve
feature alignment problems under
lower dimension transformations

They can be used to solve feature
alignment problems under higher
dimension transformations

It can be used to automatically locate
in a database parts that are similar in
machining features to a newly
designed part

It can be used to automatically locate
in a database parts that are similar in
surface features to a newly designed
part

13

Chapter 2: Related Research

The popularity of 3D models poses new challenges in managing databases of increasing

size. With more and more 3D models being added to databases, a need to organize and

index databases of 3D models is imminent. This will provide a systematic and efficient

way of retrieving similar models from the database. One of the main criteria used to

organize and index databases is shape similarity of the 3D models.

 Over the last few years several papers have been written that describe algorithms for

shape similarity assessment [Card03, Camp01, Tang04]. Specialized algorithms for

medical [Keim99, Youn74] and computer vision [Arma93, Belo01, From04, Mori01,

Sidd99, Thac95, Zhan99] applications have also been developed. However the main

body of work can be divided into two different categories: (1) similarity assessment of

2D shapes, and (2) similarity assessment of 3D shapes. Representative work in 2D

category includes shape signatures based on Fourier descriptor [Arbt90], turning

functions [Arki91], bending functions [Youn74], and arch height functions [Lin92]. A

comprehensive discussion of 2D shape signatures can be found in [Alt96], [Lonc98],

[Velt01]. 2D geometry and 3D geometry have several fundamental differences.

Unfortunately in most cases methods for computing and matching signatures of 2D

shapes cannot be easily extended to 3D shapes. Hence it is often necessary to build new

algorithms that deal with 3D shapes. We will mainly focus on algorithms that deal with

3D shapes.

 This chapter is organized in the following manner. Section 2.1 provides an overview

of the various techniques that are being used to perform similarity assessment along with

a classification scheme. Sections 2.2 to 2.7 describe various approaches in detail,

14

summarizing their advantages as well as limitations. Section 2.8 addresses the point

alignment problem, describing some of the techniques used. Finally, Section 2.9

concludes this chapter with a few observations.

2.1 Overview of Techniques

Various techniques have been developed to perform similarity assessment of 3D solid

models. A computationally efficient way to solve this problem is to first abstract 3D

shapes into shape signatures and use them to perform similarity assessment. Shape

signatures are abstractions of the actual shapes that completely characterize the 3D

object. For instance a 3D object can have a matrix, a set of vectors or a graph as shape

signature. Similarity assessment between two 3D parts involves two main steps. The first

step is to compute the shape signature of the object. The second step is to compare the

shape signatures by a suitable distance function. Most papers in literature argue that the

distance function should satisfy certain properties. Some of them are listed as follows and

will be used to evaluate the shape similarity techniques. Positivity requires that the

distance function be non-negative. Identity requires that, if the distance function is equal

to 0, the two parts compared be the same and vice versa. Symmetry requires that the

distance function be symmetric. Triangle inequality can be defined as follows: consider

three solid models x, y and z. Let (S(),S())y wδ be the distance between the shape

signatures S(y) and S(w) of two solid models y and w. Triangle inequality is satisfied if

(S(),S()) (S(),S()) (S(),S())x y y z x zδ δ δ+ ≥ . Even shape signatures should satisfy certain

properties. For instance, they should be invariant with respect to the representation of the

solid model (CSG, B-rep etc.) and to the transformations applied to it. They should also

be robust and sensitive with respect to changes in shape. Majority of the techniques used

15

in the shape similarity assessment area can be classified on the basis of the type of shape

signatures being used. The following types of shapes signatures are currently being used.

• Features: Feature-based techniques compute the shape signature of an object based

on the type, size, orientation, number and other properties of the features and their

interactions. Once the features are extracted and their significant characteristics are

determined, the comparison is carried out using a suitable distance function. For

example, feature-graph signatures are compared by performing graph isomorphism.

These techniques discriminate the 3D models based on the features and their

characteristics. Hence, they do not consider the gross shape of the object. Feature

interactions and multiple interpretations still pose significant challenges to successful

extraction of features. Many different types of approaches have been developed

[Gupt99, Karn05]. Some of these techniques appear to be promising for the cost

estimation domain. Particularly techniques described in [Rame01] can be used as a

filter to quickly prune dissimilar machined parts. Section 2.2 describes representative

feature-based techniques in detail.

• Spatial Functions: These techniques use shape signatures that are spatial functions.

An example of a spatial function is the Gaussian map that maps the set of normal

vectors of a solid onto a unit sphere. The problem of matching and comparing 2D

spatial functions defined over a unit sphere involves manipulating three degrees of

freedom (the three angles needed to align the surface of a sphere). The main

challenge in these techniques is to identify the characteristics to be represented using

spatial functions and to determine an efficient matching procedure to compare two

16

shape signatures. Section 2.3 describes representative spatial function based

techniques in detail.

• Shape Histograms: These techniques are based on sampling of points on the surface

of the 3D models. Several significant characteristics can be extracted from the set of

points obtained. Once these characteristics are determined, they are organized in the

form of histograms that store the frequency of occurrence of their values. Then, these

histograms are compared using a suitable distance function. The accuracy of these

signatures depends on the number of points used. Large numbers of points result in

higher accuracy. However, the efficiency of these signatures is inversely proportional

to the number of points. Thus with an increase in the accuracy, the efficiency

decreases. Section 2.4 describes representative shape histogram based techniques in

detail.

• Section Images: These techniques use sections of the solids as shape signatures.

Solids are sectioned at various places and the sections are then analyzed for

similarity. This analysis can be carried out using neural network or by using 2D

similarity assessment techniques. As these techniques involve sections, they are not

invariant to scaling, translation and rotation and can compare objects only with

known orientations. They are well suited for rotational parts due to their rotational

symmetry. Techniques that use neural networks do not actually compare the two

solids but classify the solids into groups based on group technology codes. Based on

the images of the sections they determine the group code to which the part belongs.

They are robust but involve training of the network to improve the classification and

hence require significant time to implement. Also the number of sections affects the

17

accuracy of comparison. If number of sections being considered is small, then small

features on the objects may not be recorded. Section 2.5 describes representative

section image based techniques in detail.

• Topological Graphs: These techniques use topological graphs as shape signatures to

perform similarity analysis. These graphs usually represent the connectivity

information of the boundary of the solid such as the adjacency between faces. The

nodes and edges of the graph may carry additional information related to the solid

model. The comparison can then be carried out by matching the graphs based on

relevant characteristics or by graph isomorphism algorithms. However, comparing

graphs is not trivial and requires considerable computational time if a graph

isomorphism algorithm is used. In order to have sufficient discrimination capability,

the graphs need to store as much information as possible. But storing excessive

information further increases the computational time. Hence there exists a tradeoff

between accuracy of comparison and computational time. In some cases, graph

properties such as degree of nodes, number of nodes, number of edges, eigenvalues

etc. have been used for comparison. Section 2.6 describes representative topological

graph based techniques in detail.

• Shape Statistics: Many shape comparison techniques use basic geometric properties

in order to perform coarse comparison between solids. They may also be used to

reduce the search space. Commonly used properties include volume, surface area,

convex hull volume etc. These numerical values representing statistical properties of

the shape form the signature of the solid. Such signatures do not carry any topological

information. These methods cannot provide sufficient discrimination power for

18

detailed comparison but are useful as quick and efficient filters. The approaches in

this category are explained in Section 2.7.

• GT Codes: Group Technology has traditionally been used to categorize parts having

similarities in design and manufacturing. Group Technology (GT) involves

classifying similar products into groups in order to achieve economies of scale

normally associated with high-volume production [Burb75]. In order to implement

GT, one must have a concise coding scheme for describing products and a method for

grouping (or classifying) similar products, such as the popular Opitz, DCLASS, and

MICLASS schemes. In each case the basic idea is for the users to use various tables

and rules to capture critical design and manufacturing attributes of a part in an

alphanumeric string, or GT code, that is assigned to that part. However, as the

classification is done manually, it is subject to individual interpretation. It has been

shown that human perception of similarity is subjective [Sant95]. Thus, there are

possibilities of errors in such classifications.

2.2 Feature-Based Shape Signatures

The first step in the technique described in [Rame01] consists of extracting the features

from a B-rep model. This is achieved by constructing cells that are portions of space

resembling machining features. Once these cells are obtained following a series of rules,

they are mapped to machining features. Then, relevant feature characteristics are used to

perform the comparison. For this, a feature class is defined as a group of geometrically

similar features (i.e. identical topology and relative angles between faces). A T-group is a

group of features in which the features differ from each other only by translation.

Similarly an S-group is such that the features belonging to it have the same critical

19

dimensions. Seven characteristics are used for comparison. These include feature

existence, feature count, feature direction, feature size, directional distribution, size

distribution and relative orientation. Feature existence represents the number of different

classes of features present in the object and is expressed as a binary vector of dimension

n, where n is the total number of feature classes in the two objects being compared. Each

element in the vector assumes a value of 1 if the corresponding type of feature is present

in the object or else it is 0. Feature count represents the number of instances for every

class of feature in a given 3D object. It is expressed as a vector of dimension n. Each

element denotes the number of instances of the corresponding feature. Feature direction

represents the number of T-groups for every class and is expressed as a vector of

dimension n. Each element indicates the number of T-groups for the corresponding class.

Feature size is similar to feature direction and represents the number of S-groups. For

every class of features, directional distribution represents the number of instances of

features within a T-group belonging to the class considered. Size distribution is similar to

directional distribution and is defined for S-groups. Finally, relative orientation represents

the relative orientation between T-groups over all the different classes of features. Two

objects PA and PB are compared by a weighted distance using the following formula.

()1/

0
(,) [((), ())]

rn r
A B i i i i

i
d P P w d c A c B

=
= ∑

where n is the number of characteristics chosen for the comparison, di is the distance

between the two compared objects relative to the ith characteristic and wi is the weight

assigned to the ith characteristic. The characteristics considered in the comparison have

to be independent of each other. Only planar and cylindrical surfaces are considered.

20

Objects where the cylindrical features intersect other faces non-orthogonally are also

ruled out. This technique also does not account for local feature interactions.

 Another technique described in [Cici00, Cici01, Cici02], involves feature extraction

and comparison to determine similarity between mechanical parts. It defines a Model

Dependency Graph for each of the two objects being compared and determines the

largest common sub-graph between them to assess similarity. The feature extraction is

carried out using FBMach System consisting of a library of machining features. After

performing feature extraction, the Model Dependency Graph representing the features

and their interactions is defined. The nodes of this graph correspond to features and store

attributes of the features as ‘labels’ at the nodes. Thus model dependency graph G = (V,

E) comprises of a set of nodes V = {f0,…,fn} where fi is a machining feature of the solid.

An edge between the two nodes exists if the corresponding features fi and fj have non-

zero intersection between them. Thus E = {{ fi , fj} such that vol(fi) ∩ vol(fj) ≠ ∅}. To

compare the two solids, the largest common sub-graph (LCS) between the two model

dependency graphs needs to be determined. The problem of exactly determining the

largest common sub-graph, however, is NP-complete and hence a hill climbing/ gradient

descent algorithm is used to obtain a large enough sub-graph. The proposed algorithm

involves assigning random mapping between the nodes of the two graphs initially, and

then swapping the mappings such that evaluation function assumes the lowest value. The

evaluation function H is the count of the number of mismatched edges. The measure of

similarity is given as 1

1

min{ ,..., }*H nH H
E

= where H1,…, Hn are the final values of H

from up to n random restarts of the algorithm and |E1| is the number of edges in the

smaller of the two graphs.

21

 This technique provides means for determining objects having similar machining

features. However, the Model Dependency Graph generated using this method is not

unique for a given solid. This is because the features can be constructed in different order

and in multiple different ways. In Figure 2.1 an example of features that can be

constructed in different ways is shown. In fact, the issue of multiple feature interaction is

a common problem to all existing feature-based similarity assessment methods. This

technique considers only feature interaction and does not account for feature size and

orientation.

 The technique described in [Kim03] is based on convex decomposition of 3D solid

models and their form feature decomposition (FFD) and negative feature decomposition

(NFD). These decompositions result in a tree yielding a hierarchical representation of a

3D model. The convex hull is the root of the tree, i.e. the most abstract representation of

the 3D model. In FFD the features are detected and divided into positive features (i.e.

volume added to part) and negative features (i.e. volume subtracted from part). In NFD

Figure 2.1: An Example Depicting Different Ways of Representing Features

Feature orientationFeature orientationFeature orientationFeature orientation

22

only the negative features are considered along with the machining precedence among

features and some feature characteristics such as feature type, union and intersection of

accessibility cones and features number. Hence it is possible to identify groups of

features using the information contained in the tree. Each group corresponds to a branch

of the tree. The groups of features are compared based on the characteristics of the

features listed previously. So 3D models are compared by matching pairs of branches of

the corresponding trees. The branches are matched using optimization algorithms such as

best-first search ones. Furthermore the matching is refined using feature machining

directions. This technique’s performance is also affected by multiple feature

interpretations.

 The technique described in [Elin97] is based on a graph representation of the input

3D models. This graph representation is used as the shape signature for the model. Let us

consider two objects, m and m′. Then c(m) and c(m′) will be the value of a characteristic

for the object m and m′. The equivalence relation Ei(m, m′) is true if and only if c(m)=

c(m′) (i.e., the two objects are equivalent with respect to the characteristic considered).

So, depending on the number of properties or characteristics considered, many different

equivalence relations can be defined. Let Ri be an equivalence relation. Ri is valid if Ri+1

is valid, as the former is contained in the latter. To compare the two objects it is

necessary to define M(m,m′) as the biggest value of i for which Ri(m,m′) holds true. So, if

we consider three objects m, m′ and m′′, and if M(m,m′)> M(m,m′′) then m is closer to m′

than m is to m′′. Given the previous definitions, a tree can be built whose leaf nodes

represent the parts in the database being compared and the rest of the nodes represent the

equivalence relations. Once the tree is obtained, it is possible to obtain the degree of

23

similarity between two objects by calculating the value of M. In [Elin97], the main focus

is on the manufacturing aspects of the object represented by the 3D model (see also

[Elin96]). For each model a graph called design signature is constructed. The nodes

represent some characteristics of the design, while the edges represent the relationships

among these characteristics. An application is provided in [Elin97], where nodes

represent features and edges their interactions. The nodes are labeled with a number of

parameters, such as type of feature and machining direction. The edges are labeled

depending on the type of intersection occurred: a description of the types of intersections

is provided in [Elin97]. The equivalence relation considered in this application is

isomorphism between two graphs. It is usually an expensive task, but in this case it is

made easier from the labeling of nodes and edges. In fact the labeling allows matching

sub graphs more easily.

 In the technique described in [Srin98], different attributes of features such as feature

type, machining type etc. are stored in Attribute Type table. A qualitative matrix is used

to record all the feature interactions. By searching through the Attribute Type table and

qualitative matrix similar models can be retrieved.

 Techniques described in this section perform similarity assessment based on the

features of the parts and their characteristics. Hence the techniques have been primarily

developed for product design and manufacturing.

2.3 Spatial Function Based Shape Signatures

In [Hebe95] a spherical representation that stores the curvature distribution of 3D

surfaces of an object is used as signature. The solids to be compared must have a genus of

zero. To generate the representation, a tessellated sphere is deformed such that it closely

24

approximates the shape of the object. Each node of the tessellated sphere has three

adjacent nodes. A local regularity constraint is introduced during the deformation to

ensure that each mesh is similar to others in area. According to this condition, the

projection of each node on the triangle formed by the adjacent three nodes should

coincide with the centroid of that triangle. This representation then yields the shape

signature of the object. Two types of forces are used to perform the deformation. One

type of force tries to bring the mesh nodes closer to the surface, while the other helps in

maintaining the local regularity constraint. The algorithm for deforming the sphere is

based on combining these two forces between the solid model and the spherical mesh.

After a uniform surface mesh is obtained, the curvature at every node of the mesh is

computed using three discrete nodes in the neighborhood of that node. Once the curvature

function is defined, one of the two objects is rotated such that it aligns with the other. Let

SA and SB be the mesh representations of the shapes A and B, and kI (SA) and kR (SB) be the

local curvature functions, where I and R are identity and rotation matrix respectively.

Then the distance between the shapes A and B can be computed using Lp norm as shown

below. Alternatively Hausdorff distance may be used to compute the difference

[Hutt90b].

1/(, ,) (k () k ())p p
p A B I A R Bd S S R S S dS= −∫

where (, ,)p A Bd S S R is the sum of the curvature differences over the sphere [Shum96].

The distance between A and B is then expressed as follows.

(,) min (, ,)p R p A BD A B d S S R=

which is dp minimized over all possible rotations R.

25

 The shape similarity assessment in this case is invariant with respect to translation,

rotation and scaling as the curvature depends only on the relative locations of the four

nodes that are used to define the local curvature function k. As the distance is computed

using Lp norm, it obeys the positivity property. It also satisfies the identity, symmetry,

and triangle inequality properties [Shum96]. The distance between the two shapes can be

computed in time O(n2) where n is the number of nodes on the sphere. However, this

technique is restricted to solids having zero genus (i.e. solids without holes). This is a

serious restriction considering that holes are a common feature in CAD models. Also, the

mesh is an approximate representation of the solid and the accuracy depends on the

number of tessellations. As the mesh becomes finer, accuracy increases but so does the

computational time. A technique similar to this one is described in [Schw87].

 In [Ko03a] a technique to match two free-form solids is described. The matching is

performed by using the distribution of Gaussian and mean curvature over the 3D models

and minimizing a distance function defined in [Ko03a]. The distance function is based on

Euclidean distance between points. The Interval Projected Polyhedron (IPP) algorithm is

used. It finds correspondences among the intersection points between iso-curvature lines

of the two solids that are being matched. These correspondences are found by solving a

non-linear polynomial equation system. The constraints for this equation system are

obtained from the distance function being minimized. The equation system yields a

solution, which is the translation and rotation to be applied in order to match the two

solids. If tight tolerances and good curvature estimations are used the accuracy of the

technique is high but the efficiency decreases. In [Ko03b] the matching of solids is

26

performed by referring also to the umbilical points on their surface. A possible

application is copyright preservation.

 The technique described in [Tuzi00] uses the slope diagram representation [Ghos96]

of convex polyhedra [Grun67] and uses mixed volumes and volumes based on

Minkowski addition [Ghos93] to define the similarity measure. The definition and

mathematical representation of mixed volume can be found in [Tuzi00]. A slope diagram

representation (SDR) is one where a face is represented on the unit sphere by a spherical

point, which is an intersection of its normal with the unit sphere. An edge is represented

by a spherical arc, which is an arc of a great circle joining the points representing the two

faces that share the edge. A vertex is represented by a region of the sphere known as a

spherical polygon bounded by the spherical arcs corresponding to the edges sharing the

vertex. Let P and Q be the two objects to be compared. Then a rotation r is applied to the

SDR of Q while the SDR of P is kept fixed. Such a rotation r can be determined by

identifying a set of finite number of critical rotations. Such critical rotations include

situations where spherical points of the rotated SDR of Q intersect spherical arcs or

points of the SDR of P. These rotations minimize the objective functions defined based

on volumes and mixed volumes. This technique, which is defined for convex shapes, is

invariant with respect to translation and rotation. However, a considerable computational

effort is needed to determine the set of finite critical angles. The technique described in

[Tuzi00] is restricted to convex polyhedra. Hence, it is limited in scope.

 The techniques described previously have not been developed for product design and

manufacturing, but they could be applied to this domain. In particular, these techniques

could be used in applications where curvature plays a major role.

27

 In [Novo03] 3D Zernike descriptors are used to represent 3D models. The 3D models

are voxelized in order to obtain the Zernike descriptors. An object function that defines

the object is obtained using the Zernike functions and the Zernike moments. This object

function is projected onto a set of orthonormal Zernike functions. The formulae and

theory behind it are presented in detail in [Novo03]. Zernike functions are combinations

of monomial up to a given order. So Zernike descriptors (i.e. Zernike functions, moments

and object function) are invariant with respect to scaling and affine transformations.

Their performance in similarity assessment has been compared in [Novo03] to other

techniques such as spherical harmonic descriptors [Funk03]. Zernike descriptors have a

better performance in similarity assessment. In fact they are able to detect topological and

geometrical details that spherical harmonic descriptors cannot when the complexity of the

3D models increases.

 The accuracy of Zernike descriptors increases with the number of Zernike moments

considered and with the number of voxels used in voxelization. In fact this way higher

frequencies are considered and the discrimination capability increases [Novo03]. On the

other hand, with higher frequencies the Zernike moments are unstable and not robust with

respect to geometry and topology. Hence it is necessary to trade off between accuracy of

similarity assessment and robustness with respect to topology and geometry. Even

efficiency decreases if the number of Zernike moments considered is increased.

 In [Dey03] a topological approach is used to represent the 3D models. The 3D models

are represented initially by point samples. A flow discretization is used and applied to the

set of input points. The technique uses tools such as Voronoi diagrams and Delaunay

triangulations [Dey03]. The part is finally divided into a number of Delaunay tetrahedra.

28

These tetrahedra are grouped: each group corresponds to a feature of the part. A feature is

represented by a weighted point. The point is the weighted average of all the centroids of

the tetrahedra forming each feature. The weight used is the volume of the tetrahedra that

form the feature. Hence each part is represented by a set of weighted points. Similarity

assessment is performed by aligning the sets of points representing the two parts being

compared and evaluating the distance between them. In this technique the features

extracted do not necessarily correspond to the intuitive ones [Dey03].

 In [Elad01] 3D models in VRML format are represented by moments calculated on

the model surfaces. A weighted Euclidean distance is used to compare two models. An

interactive and iterative database search procedure is used to retrieve similar parts from a

database. After each application of the database search the user identifies the relevant and

irrelevant top matches by his/her criteria. Then a quadratic optimization problem is

solved such that the weights of the distance function are modified to fit user preferences.

This iterative process ends when the user is satisfied with the outcome of the database

search.

 In [Vran01] and [Yu03] two techniques that rely on spherical harmonics are

described. In both of them a preliminary alignment of the parts is performed to obtain

invariance with respect to translation, rotation and scaling. Then spherical harmonics are

obtained by shooting rays from the origin and detecting the distance of the origin from

the intersections of the rays with the model surface. The similarity assessment is

performed by evaluating Euclidean distance on the Fourier transforms of the spherical

harmonics obtained.

29

2.4 Shape Histogram Based Shape Signatures

The technique described in [Osad01, Osad02] computes shape distributions of solid

models using shape functions and then compares these shape distributions to assess

similarity. Initially random points are generated on the surface of a triangulated solid. For

creating a single random point, a triangle is randomly selected from the set of triangles

that make up the solid. A point P on the surface is then obtained by generating two

random numbers r1 and r2 and evaluating the following expression.

1 1 1 2 2 1 2 3(1) (1)P r p r r p r r p= − + − +

where p1, p2, and p3 are the points representing the vertices of the triangle under

consideration.

 Once a set of random points is obtained on the surface of the solid model, different

shape functions are used to compute shape distributions for the solid model. The shape

functions include

• D1: Computes the distance between a fixed point and a random point. This shape

function is not suitable as the chosen fixed point is usually not invariant to rotation or

translation.

• D2: Computes the distance between two random points. This function is invariant to

rotation and translation and is robust.

• D3: Computes the square root of the area of triangle generated by three random

points. This function is also invariant to translation and rotation but not as efficient as

D2.

30

• D4: Computes the cube root volume of the tetrahedron generated by selecting four

random points. This method is computationally inefficient even for lesser number of

points.

• A3: Computes the angle between three random points. This function is invariant to

translation, rotation and scaling but it is not very robust.

Out of these the D2 shape function has been found to be most suitable for computing

shape distributions due to its robustness and efficiency along with invariance to rotation

and translation. After calculating the distances between random points, they are

normalized using the mean distance. The shape distribution is the histogram that

measures the frequency of occurrence of distances within a specified range of distance

values. Once the shape distributions are generated the distance between the two solid

models is computed using LN norm. Thus the distance can be expressed as follows.

1/(,) ()N ND f g f g= −∫

where f and g are the shape distributions. Usually L2 norm is used for comparison. Other

distances such as Earth Mover’s distance [Rubn98] or Match distances [Shen83],

[Werm85] can also be used.

 This technique is robust and efficient. Also there is no restriction on the type of solid

models that can be compared. However, as this method involves generating random

points on the surface of the solid, it fails to satisfy conditions of identity and symmetry.

As the number of points increase the comparison is more robust, but the computational

time increases. Furthermore as objects become more and more complex, the shape

distributions tend to assume similar shape. This results in inaccurate comparison of solid

models. Figure 2.2 shows three parts and their corresponding D2 shape signatures. Based

31

on our implementation of the algorithm it can be seen that heat_exchanger2 is more

similar to a grip than to heat_exchanger1. Thus this technique has limited discrimination

capability.

 An extension of the previous technique is described in [Ip02]. The procedure for

generating random points on the surface as well as the shape function used is the same.

However, instead of computing a single shape distribution for each solid model, this

method computes four different shape distributions based on in/out classification of the

line joining the random points whose length is the distance measure. The first distribution

is the same as in the previous method. The second distribution takes into consideration

Figure 2.2: An Example Indicating the Low Discrimination Capability of Shape
Distributions

32

all the lines joining the random points that lie inside the solid model. The frequency of

occurrence of the length of these lines is also measured. The third distribution accounts

for all the lines that lie outside the solid. Finally, the fourth distribution includes those

lines that lie partially inside the solid and partially outside. The distributions are then

compared using L2 norm. This technique aims at improving the ability of the previous

one to distinguish between complex parts having detailed features. However, it fails to

satisfy the properties of identity and symmetry for the same reasons as the previous

method. Moreover its computational efficiency is low, as it involves determining whether

a line lies inside, outside or partially inside a solid. In [Ip03] this technique is used with

an automated learning system based on k closest neighborhood learning algorithm.

 In [Ohbu03a] another extension of the technique described in [Osad01, Osad02] is

described. The shape distribution is based both on the distance between random points

generated as described previously and on the angle between the normal vectors to the

triangles to which the random points belong. The corresponding histogram is called

Absolute Angle-Distance histogram. In [Ohbu03b] a further improvement is obtained by

defining a number of alpha-shapes representing the 3D models. Each alpha shape

represents the model at a different resolution, from convex hull to detailed representation.

Then for each alpha-shape the corresponding Absolute Angle-Distance histogram is

created. This technique performs better than the one described in [Ohbu03a] but it is less

efficient [Ohbu03b].

 The similarity assessment techniques described in this section can detect gross shape

similarity. Hence these techniques could be used to perform a pruning on the database to

search for similar parts in design and manufacturing applications.

33

2.5 Section Image Based Shape Signatures

Manual classification and coding of parts for group technology applications is time-

consuming and prone to errors. In [Kapa91] a neural network system has been proposed

for classifying parts based on bitmaps of the part drawings. The neural network consists

of number of layers of neurons, which include an input layer, some hidden layers and an

output layer. The theory of neural network systems is described in [Khan90]. The input to

the neural network system is a vector I containing bit data that represents the image of a

part drawing. For every input i, there is a neuron with a weight vector Wi attached to it.

The input to each neuron is the dot product of these two vectors. The output of the neuron

is a vector Oi corresponding to the input and activation function fs. The algorithm for

determining the output is described in [Lipp89]. The maximum number of neurons that

can be used in any given layer is defined using Kolmogorov’s theorem [Ande88]. The

vector element of Oi with the highest value represents the group to which the part

belongs. The output in this case is an Opitz code used to classify rotational parts based on

characteristics such as length to diameter ratio. At the beginning, random values are

assigned to the weight vectors. The network is then trained using standard inputs for

which target outputs have been identified. If the difference between the actual output and

target output is above the threshold value then the weight vectors are adjusted such that

the error is reduced.

 This technique involves classification of part drawings and hence it does not account

for rotation or translation of the solid model. It classifies the part drawings using group

technology. There is no direct comparison between the part drawings: they are classified

based on their characteristics such as L/D ratio, presence of holes etc. However, the solid

34

models available in the databases or the Internet have arbitrary orientation and hence this

method will require manual intervention to identify the part drawing with desired

orientation.

 The technique described previously involves classification of rotational parts using

neural network system. In [Chun94] this classification has been extended to include 3D

parts based on their binarized part drawing image. A back-propagation neural network

system has been proposed to classify the 3D parts into a number of predetermined part

families. The theory of back-propagation neural network is explained in [Hech89]. Also

some concepts related to the neural network such as learning rate, number of neurons in

the hidden layer and number of hidden layers are discussed in [Chun94]. The modified

technique described in [Chun94] is similar to the one discussed before and uses gradient

search procedure to determine the weight vectors such that they reduce the error between

the target value and actual value. The learning rate should allow the learning algorithm to

converge to minimum error solution without oscillation of the network and without

getting trapped in a local minimum. The local minimum can be avoided by adjusting the

value of the momentum. The momentum is similar to physical momentum and allows the

network to bounce from a local position and seek a better solution. The formation of part

families depends on the predetermined number of part families. Also the learnability of

the group increases as the number of hidden neurons increases. This technique involves

classification of parts using neural network and hence suffers from the same problems

associated with the previous technique. However, it provides an insight into the various

parameters that affect the performance of the neural network system used to classify the

part drawings.

35

 In [Herr00] a technique for variant fixture planning is defined. The two dimensional

projection of the part to be manufactured is considered. The attributes used for assessing

shape similarity include the maximum inter vertex distance (MID), the maximum vertex

edge distance (MVED) and the total enclosed area (TEA) [Herr00]. Three similarity

measures are defined to compare the parts, each one corresponding to one of the

parameters mentioned previously.

 In [Chen03] a 3D part retrieval system that is based on similarity between 2D views

is proposed. 2D images are compared using both contour shape descriptors (based on

Zernike moment descriptors) and region shape descriptors (based on Fourier descriptors).

This technique is invariant with respect to translation, rotation and scaling. In choosing

the number of 2D views to be considered it is necessary to trade-off between efficiency

and accuracy.

 These techniques have been applied to product design and manufacturing

applications. Most of them are specifically used to classify the parts in a database to reuse

design information.

2.6 Topological Graph Based Shape Signatures

2.6.1 Model Signature Graphs

In [McWh01a] Model Signature Graphs have been proposed for topological comparison

of solid models. They are an extension of Attribute Adjacency Graphs, mentioned in

[Josh88], and are introduced in order to consider curved surfaces. Model Signature

Graphs are constructed from the boundary representation of the solid. Each node in the

Model Signature Graph represents a face of the solid model. There exists an edge

between two nodes of the graph if the corresponding faces are adjacent. This graph forms

36

the shape signature of the solid model. Along with the connectivity information between

the faces, the identifier for the face (planar, conical, etc.), mathematical representation of

the surface, surface area and set of surface normals can also be stored at the nodes. The

edge of a Model Signature Graph represents the edge between two adjacent faces of the

solid model. Identifier for the edge, concavity/convexity of the edge, mathematical

representation of the edge and length of the curve can also be stored at the edge

[McWh01a]. This additional information helps in more accurate comparison of the solid

models. However, in the current implementation the edge angle information is not stored.

Thus two simple objects may have the same Model Signature Graph, as shown in Figure

2.3. Once a Model Signature Graph is constructed, the solid models are compared using

spectral graph theory. The eigenvalues of the Laplacian matrix [Chun97] are used in the

comparison. A ‘normalized’ form of Laplacian is defined as follows.

1 : if and 0
1L (,) : if and are adjacent

0 : otherwise

v

G
u v

u v d

u v u v
d d

⎧ ⎫= ≠
⎪ ⎪

−⎪ ⎪= ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

where u and v are nodes of the graph and du and dv are the degrees of the nodes. The

eigenvalues of the Laplacian are strongly related to other graph properties such as the

graph diameter. The graph diameter is the largest number of vertices, which must be

traversed, in order to travel from one vertex to another in the graph.

37

 Another technique proposed for comparing the graphs is the use of graph invariance

vectors [McWh01b, McWh01c]. Graph invariance vectors are vectors whose elements

are graph invariants. The vectors are then compared using L2 norm to determine

similarity between the graphs and hence the solid models. The graph invariants that form

the graph invariance vectors include node and edge count, minimum and maximum

degree of the nodes, median and mode degree of the nodes, and diameter of the graph.

The use of graph invariance vectors improves the efficiency of the method. However it

decreases the accuracy of comparison.

Figure 2.3: An Example of Same Model Signature Graph for Two Different Parts

38

 In [ElMe03a] a graph representation similar to Model Signature Graphs is obtained.

The attributed graph used has the same topological information as the MSG. Additional

information on the mathematical formulation, type and orientation of faces and edges is

attached to the nodes and the edges of the attributed graph. The graph is obtained from

the STEP representation of the 3D parts through an algorithm described in [ElMe03a].

The STEP representation contains information about surface and edge equations that is

directly transferred to the corresponding attributed graph. The attributed graphs are then

used to assess similarity between the corresponding 3D parts [ElMe03b]. A coarse

indexing and comparison of graphs is performed based on the number of nodes of the

graphs and their attributes such as corresponding surface type or number of incident

edges. A more precise comparison is performed by using graph comparison. In this case

it is necessary to trade-off between efficiency and accuracy. Graph comparison is

computationally expensive. Disregarding some of the information stored in the graph

improves the efficiency of graph comparison, but decreases the accuracy. Hence both an

exact algorithm and an inexact, but more efficient algorithm are given in [ElMe03b].

 These techniques have been applied to mechanical parts and are applicable to product

design and manufacturing domain.

2.6.2 Multiresolutional Reeb Graphs

In this technique, the skeletal and topological structure of the 3D model is defined by

Multiresolutional Reeb Graphs [Reeb46], which are used to compare the 3D objects.

Reeb graphs have already been used in applications such as modeling 3D shapes

[Laza99], [Taka97]. First, the Reeb Graph is defined on the input object, which is a

triangulated solid. It is obtained by defining a suitable function over the 3D object

39

considered. An example of a suitable function is geodesic curvature. In general, the

similarity function can be chosen depending on the particular topological properties

selected. Then the function value range over the object is split into a number of sub

ranges. This number is chosen depending on the desired level of resolution. A part of the

object will correspond to each sub range. This part will be made of several connected

regions. Every connected region will correspond to a node of the Reeb graph, and the

adjacent nodes will be connected by edges. The corresponding nodes and connecting

edges are also shown. The Reeb graph for the two models is created in O(Vlog(V)) time,

where V is the number of vertices in the mesh of the solid. Now the two corresponding

graphs need to be matched. Corresponding nodes are matched in such a way so as to

maximize a similarity function. In fact, the function is chosen such that the similarity

between the two objects increases with its value. Thus, the best possible matching among

the pair of nodes of the two graphs will maximize the value of the similarity function.

Once this best matching is found, the value of similarity function between the two objects

will yield the degree of similarity. At this stage the similarity function values

corresponding to the best matching found are computed for every matched pair of nodes.

They are then summed over the two objects, yielding a similarity value for the two

objects being compared. Higher the value, more similar are the objects. Self-comparison

of an object yields a value of 1, which is the maximum possible value. It takes

O(M(N+M)) to match and assess similarity, where N and M are the number of nodes in

the two graphs with M<N. So, with the increase in the accuracy of mesh and in the

resolution of the Reeb graph, the efficiency decreases. Furthermore, if the function used

to define Reeb graph is based on geodesic distance it is not very robust with respect to

40

small deformations on the surface. It is necessary to choose both a robust and efficiently

computable function, which is not a trivial task. Finally, from the experimental results

reported in [Hila01] it can be observed that this method is not invariant to Euclidean

transformations (e.g., rotation, translation, scaling). Thus a given model when compared

with its scaled, translated or rotated version will not yield a similarity value of 1.

 In [Besp03a] the Multiresolutional Reeb Graphs defined in [Hila01] are used to assess

similarity between 3D models of increasing geometric complexity. The experimental

results show that the similarity assessment is insensitive to topology with the increase in

geometric complexity of the parts compared. Hence an open issue is to define the

function used to define Reeb Graphs in such a way that the similarity assessment is more

sensitive to topology changes in the 3D parts.

 This technique has been applied to product design and manufacturing domain.

However, the choice of the function used to construct the Reeb graph obviously affects

the resulting graph. In fact in [Bias05] the Reeb Graph is built by using two different

functions over the 3D object: geodesic curvature and distance from the center of mass of

the object. Then shape similarity is assessed by using an error tolerant algorithm for

graph isomorphism. The experimental results presented in [Bias05] show that the

performance of the two Reeb graphs defined previously by using two distinct distance

functions is different. Hence Reeb graph is a flexible tool that can be used to assess

similarity in several applications of product design and manufacturing, by choosing an

appropriate function.

 A technique that uses some of the tools and concepts developed in the previous two

approaches is described in [Besp03b]. It uses space-scale decomposition to extract the

41

features from a 3D mechanical part model in VRML format. The geodesic distance is

used as a distance function between the points of the 3D model, and the matrix of the

distances is built for all the points of the 3D model. Then a singular value decomposition

(SVD) of the matrix is performed, and using it k sets of points are extracted from the 3D

model. Each set of points is a feature of the 3D model [Besp03b]. In [Besp03b] it is k = 2.

The decomposition algorithm is applied recursively splitting each obtained feature into 2

features until the desired resolution is reached. This way a binary tree is obtained, and a

recursive algorithm is used to match the binary trees of the two 3D models being

compared. The algorithm finds the best match between nodes of the trees that are at the

same level. From the perspective of the application to design and manufacturing domain,

the feature extraction proposed in [Besp03b] does not necessarily obtain machining

features of the part.

2.6.3 Graphs of Aligned Models

In [Sun95] a similarity assessment technique has been described based on the information

provided by B-rep model and CSG tree termed as T0 tree. T0 tree is a specialized linear

tree whose primitives are all sweeps obtained by sweeping a face in space along a profile.

Initially, in the preprocessing stage, the T0 tree is used to determine the major sweep

directions. Each of the sweep directions is expressed as a double (v1, v2), where v1 is the

normal vector of a set of parallel faces and v2 is the vector indicating the direction by

which these parallel faces are organized in space. The set of parallel faces having normal

vector v1 is called layer faces F. Initially, for each pair of matched major sweep

directions, the layer faces are matched using their normalized areas and their offsets

along v2. If p1 is a point on plane P1 and p2 a point on P2 such that p2 = p1 + dv, where d is

42

a real number and v is a unit vector, then d is called offset from P1 to P2 along v. Once the

layer faces of major sweep directions are matched such that there exists a one-to-one

mapping, the objects are rotated so that the unit vectors v2 match. Additional pair of

faces, which do not have normal along v2 are matched by attributed string matching

algorithm [Tsai85], to completely align the two models. After rotating the layer faces to

the correct orientation, initial matched sub-graphs of the layer faces are obtained. The

nodes in the graph represent faces while the edges represent the intersection between

those two faces. Once the layer faces are matched faces adjacent to matched layer faces

are analyzed. If they match then they are included in the matched sub-graphs by

expanding the sub-graphs. All possible matching sub-graphs are generated for all the

major sweep directions and the B-rep matching coefficient is computed. This technique

has the following restrictions on the models it can compare. All the solid models should

have at least one or more major sweep directions. Also the models must be polyhedral.

 This technique has been applied to product design and manufacturing on models that

comply with the restrictions mentioned previously.

2.6.4 Skeletal Graphs

In [Sund03] a technique is described that uses skeletal graphs of the 3D models to assess

their similarity. The 3D models are first voxelized with a certain resolution. Then, using a

distance function described in detail in [Sund03], a skeleton is obtained that represents

the structure of the model. The thickness of the skeleton and its level of detail can be

modified as needed. The skeleton obtained consists of segments of the desired thickness

and of joints. Using a minimum spanning tree (MST) based algorithm an undirected

graph is obtained. Finally the graph is directed by orienting the edges. Each node

43

corresponds to a segment in the skeleton of the 3D model, and carries information on the

local shape of the 3D model. On the other hand each edge corresponds to a joint of the

skeleton and carries information on the flexibility of the 3D model. In order to match the

obtained skeletal graphs efficiently the larger isomorphic subgraph problem is not solved.

Instead the nodes are matched using the eigenvalue information stored at each node and

obtained from the adjacency matrix of the graph. Hence a one-to-one mapping among the

nodes of the two skeletal graphs is created. The outcome of the match is not guaranteed

to comply with the hierarchical structure of the skeletal graphs that are being matched. In

order to achieve it, a depth-first search algorithm is used. It is necessary to design

algorithms that improve the matching process with different levels of resolutions in the

voxelization and in the skeletal graph extraction [Sund03]. Furthermore, machining

features are not guaranteed to be accurately detected by a skeletal graph.

2.7 Shape Statistics

The technique described in [Rea01], uses global shape metrics such as surface

area/volume ratio, number of holes, compactness, and crinkliness to perform similarity

assessment. These metrics are orientation independent and are extracted from a STL file.

Compactness is the non-dimensional ratio of the square of the volume over the cube of

the surface area while crinkliness is the surface area of the model divided by surface area

of a sphere having the same volume. They are calculated for all the solid models and are

stored as searchable entries in a database. To analyze the performance of the search

engine, similarity matrices based on human perception of similarity have been generated.

In [Sung02] and [Corn03] new filters for shape matching have been proposed. These are

based on the coefficient of surface area and convex hull of the solid model. The convex

44

hull based filters include hull crumpliness, hull packing and hull compactness. Hull

crumpliness is the ratio of surface area of object to surface area of its convex hull. Hull

packing is the percentage of the convex hull volume not occupied by the original object.

 The filters proposed in this technique are useful for pruning out parts from a large

database. They do not have a high discrimination power. These filtering techniques have

been applied to large databases of mechanical parts.

 In [Iyer03] and [Lou04] the 3D models are voxelized with different resolutions (i.e.

voxel sizes) depending on the desired approximation level. The geometric characteristics

considered are moment invariants, geometric parameters and principal moments. The

moment invariants are derived from the second order moments. Their analytical

expression can be found in [Iyer03]. In order to calculate the moment invariants, the 3D

model needs to be translated so that its centroid corresponds to the origin of the

coordinate system. Because of the described translation the moment invariants are

invariant with respect to translation, scaling and rotation. The geometric parameters are

the ratio of overall surface area to normalized volume of the 3D models, the factor used

to normalize the volume and the overall volume of the 3D models. The principal

moments reflect the distribution of the models in the coordinate system. The principal

moments can be very sensitive to noise if they are calculated taking into account higher

order moments. Hence in [Iyer03] and [Lou04] only the second order moments are

considered. In order to take into account topologic characteristics of the 3D models as

well, a thinning algorithm is used to obtain the skeleton of the voxel model. The thinning

algorithm preserves topology but not geometry in general. Then the skeletal graph is

obtained, and the eigenvalues of its adjacency matrix are extracted. So finally each 3D

45

model is represented by a vector whose components are moment invariants, geometric

parameters, principal moments and eigenvalues. The performance of this technique in

shape similarity assessment can be improved. The geometric characteristics have a good

discrimination capability. However the skeletal graph eigenvalues do not show a good

discrimination capability and more information is needed. Furthermore, when applying

this technique to machined parts, there is not direct relationship between machining

features and skeletal graphs.

 The technique introduced in [Ohbu02] uses a combination of three vectors to

characterize a polygonal-mesh model. The first vector contains the moments of inertia of

the model surfaces around its principal axes, the second vector contains the average

distances of the model surfaces from its principal axes and the third vector contains the

standard deviation of the average distances of the model surfaces from its principal axes.

The similarity between models is assessed by computing Euclidean distance between the

corresponding vectors. In some cases an elastic-matching distance is used instead in order

to give a less rigid similarity measure than Euclidean distance [Ohbu02].

 The technique introduced in [Anke99] is based on the partition of the space into

regions. Each region (i.e. circular sector, shell) contains a certain fraction of the volume

of the 3D model. Some regions may not contain any volume of the 3D model. With the

help of these regions of space a histogram is built. The histogram measures the fraction of

volume contained in each of the space regions considered. The distance between shape

distributions is calculated using a quadratic distance function. As observed in [Anke99]

the performance of this technique is affected both by the number of space regions and

their geometric form. Increasing the number of space regions decreases the efficiency of

46

the technique while improving the discrimination capability. Also, the histograms

obtained in the technique do not carry any specific information on the features of the 3D

model. Hence this technique cannot be used for machined parts similarity assessment, but

as a quick filter.

2.8 Point Pattern Alignment

As explained in Chapter 1, feature-based similarity assessment involves alignment of sets

of feature vectors. This problem is directly related to point pattern alignment problems. A

large number of papers have been written on the point pattern-alignment problem in the

field of computer vision, pattern recognition, and computational geometry [Alt96],

[Hutt90a]. Some of the formulations focus on exact alignments [Atki87], [Alt88],

[Spri94]. However, in an attempt to circumvent the high complexity of point pattern

matching, a number of approximation algorithms have been proposed.

 Some of the approximate alignment techniques proposed perform 1-1 alignments

[Alt88], [Heff94], in case the two sets being aligned have the same number of points. A

hybrid approach combining branch-and-bound search of the transformation space with

point-to-point alignments was proposed by Mount et al. [Moun99] in the context of

image registration. Experimental studies have shown these methods to be quite efficient

and accurate [Gavr99]. In case of different cardinalities of the two sets some of the

approximate alignment techniques use the assumption that every point in one set has a

close match in the other set in terms of the (standard) Hausdorff distance [Chew99],

[Hutt92], [Hutt93c]. Efficient constant factor approximation algorithms have been

proposed in [Good94] and [Indy99]. In the latter case the running times are sensitive to

the ratio between the farthest and the closest points in the set. The fundamental

47

combinatorial issue is bounding the number of possible aligning elements. Another

interesting approach is based on using the speed of a graphics coprocessor to accelerate

the search [Agar03a]. These techniques are not suitable for object similarity applications

where models may fail to share some features in common. Even under these relatively

restrictive assumptions, the computational complexity can be quite high. Generalizations

of these techniques to match more complex shapes such as segments, disks and balls have

been proposed in [Chew97], [Agar94] and [Agar03b].

 Robust similarity measures have been introduced to account for the fact that models

may fail to share some common features. The best-known approach is based on the

partial Hausdorff distance [Hutt93a], [Hutt93b], which allows some fraction of the points

to be unmatched by minimizing the kth largest distance rather than the maximum

distance. Another approach is the symmetric difference measure, which is based on the

number of common features between the two sets [Velt01].

 An important class of alignment methods for searching in large object databases is

geometric hashing [Lamd88a], [Lamd88b], [Lamd88c], [Wolf97]. Geometric hashing

was originally proposed as an approach to geometric object recognition. A small number

of points are chosen from the object, which together define a local coordinate frame. The

remaining points are then stored in a hash table according to their relation to this local

frame, where each hash entry stores the index of the object and the defining frame. This

is repeated for all object and all frames. In order to search for a given query object, a

frame is selected from the query object, and its points are then hashed relative to this

frame. The resulting entries of the hash table then “vote” as to the most likely choice of

the frame and object that would give rise to this combination of hashes. Transformation

48

invariance is therefore achieved by storing points relative to a local frame. Geometric

hashing has been successfully used in a wide variety of applications, and has been shown

to quite efficient in some of them [Iran96].

2.9 Observations

Based on the literature survey given in this chapter, the following observations can be

made.

• Shape signatures are abstractions of parts that capture only the 3D shape

characteristics that are considered relevant. In manufacturing applications shape

features rather than gross shape determine similarity between parts. However existing

feature-based similarity assessment approaches do not consider feature relative

positions and orientations. Therefore they may not be able to account for feature

interactions that are dependent on these attributes. Furthermore they do not account

for multiple feature interpretations.

• As mentioned before, GT coding schemes have been used primarily for classification

and retrieval of mechanical parts. Although the GT approach has been used with

some success in past, it has several limitations. Describing designs as short strings

creates a coarse classification scheme, which limits the kinds of real-world retrieval

problems for which the approach can be useful. Moreover, these techniques were

developed prior to the advent of inexpensive computer technology; hence, they are

not rigorously defined and are intended for human, not machine interpretation. This

can cause difficulty in automating the generation of GT codes.

• Many previous approaches have favored symmetric distance measures. However,

distance measures that are not symmetric in nature are of interest as well because of

49

the following reasons. Let A and B be two objects. Let A contain subset of features of

B. In this case, B can be used to estimate cost of A by simply deleting extra

processing steps (i.e., steps corresponding to features that are not present in A) from

B. So distance of A from B should be small. On the other hand A cannot be used to

estimate cost for B. So distance of B from A should be very large. Therefore use of

asymmetric distance measures should be explored.

• The choice of the distance function depends on the field of application for shape

similarity assessment. Consider for instance cost estimation of machined parts. Two

machined parts may have in general different number and types of features. Hence it

is critical to choose a distance function that can be applied to two sets of features of

different cardinality and types.

50

Chapter 3: Optimal Attributed Point Alignment Algorithms Based On Partitioning

Of Transformation Spaces

This chapter is organized as follows. Section 3.1 describes the motivation behind the

research work described in this chapter. Section 3.2 presents a result that will be the

foundation for the algorithms described in this chapter. In Section 3.3 the problem

formulation is given. In Section 3.4 an optimal alignment algorithm in 2 under 2 DOF

translations is presented. In Section 3.5 an optimal alignment algorithm in 2 under 1

DOF rotations is described. In Section 3.6 an optimal alignment algorithm in 3 under 3

DOF translations is presented. In Section 3.7 the complexity of the algorithms described

is evaluated. Then Section 3.8 summarizes the chapter.

3.1 Motivation

For feature-based shape similarity assessment 3D parts are represented by sets of feature

vectors. A distance function that is evaluated between the two sets of feature vectors

yields the similarity degree between the two parts being compared. In general the parts to

be compared are represented in different coordinate systems. Therefore in order to assess

similarity between two parts it is necessary to align the two parts such that the distance

between the two corresponding sets of feature vectors is minimized. Figure 3.1 shows an

example of aligning two parts that are initially represented in two different coordinate

systems. We will refer to the aligning transformation that minimizes the distance between

two sets of features as optimal feature alignment. Part features can be represented as

attributed points in the space. Part features can be represented as attributed points or

vectors in the space. Attributed points are points that also carry parameters other than

51

their coordinates. Point coordinates represent the feature position in the space, while

other parameters represent the other significant feature characteristics of interest.

Therefore attributed point optimal alignment problems will be addressed in this chapter.

 Most of the distance functions that are used to compare sets of points involve

computing the closest neighbor to each point of one set among the points of the other set.

The distance function that will be used to compare two sets of attributed points in this

Figure 3.1: An Example of Aligning Two Parts Represented In Two Different
Coordinate Systems

x y

z

x y

z

Part A represented in
coordinate system 1

Part B represented in
coordinate system 2

Aligned Part A and Part B after aligning transformation is applied to Part B

Aligning transformation
applied to Part B

Part A Part B

x y

z

x y

z

x y

z

Part A represented in
coordinate system 1

Part B represented in
coordinate system 2

Aligned Part A and Part B after aligning transformation is applied to Part B

Aligning transformation
applied to Part B

Part A Part B

52

chapter is defined as follows. In general an attributed point will have some components

that change with the transformation and some components that remain invariant with the

transformation. We will refer to the former components as transformation-dependent

attributes and to the latter components as transformation-invariant attributes. Consider an

attributed point p in 3 that is represented by using four components. The first three

components are the transformation-dependent coordinates xp, yp and zp of point p. The

fourth component wp represents the transformation-invariant attribute that is assigned to

point p. For the sake of simplicity each point carries a transformation-invariant attribute.

The transformation-invariant attribute can be seen as the combination of any number of

transformation-invariant attributes without affecting the generality of the problem. Let P

and Q be sets of attributed points in 3. Then, P and Q are compared using the following

distance function.

1
min (,)

(,)

n

iq Qi
d p q

d P Q n
∈=

∑
= (3.1)

 Depending on the form of distance function chosen, properties such as positivity,

identity, symmetry and triangle inequality may or may not be satisfied. The form of the

distance function defined in Equation (3.1) is such that positivity and identity properties

are satisfied. It is asymmetric because this property is often desirable in manufacturing

applications, as observed in Chapter 2. Also, the distance function consists of a

summation of quadratic terms and hence it does not satisfy triangle inequality. However

this particular form of distance function is easy to differentiate, which is a highly

desirable property. Furthermore it can be observed that the distance function consists of

the summation of single attributed point distances. Thus, the attributed points belonging

53

to the two sets that are aligned by minimizing the distance function will be distributed in

a similar way in the space.

 In order to minimize the distance function described in Equation (3.1) it is necessary

to know the closest neighbor to each attributed point pi ∈ P among the attributed points of

set Q. The closest neighbor to each point depends on the relative position of the two sets.

Hence the closest neighbors change for specific values of the aligning transformation

applied to one of the two sets. Therefore in order to find the optimal aligning

transformation that minimizes the distance function it is necessary to know how the

closest neighbors change with the aligning transformation.

 The number of DOFs that is involved in the optimal alignment problem depends on

the dimension of the points and on the aligning transformations used, and it is referred to

as dimension of the optimal alignment problem. In this chapter optimal alignment

algorithms are designed by using the distance function defined by Equation (3.1).

3.2 Mathematical Foundations

As previously explained in order to minimize the distance function defined in Equation

(3.1) it is necessary to know the closest neighbors for each aligning transformation

applied. Unfortunately, closest neighbors change throughout the transformation space and

hence it is difficult to apply classical optimization techniques to compute the

transformation that leads to the minimum distance. Given two sets of features, there are

exponentially many closest neighbor combinations. Therefore solving this problem by

enumeration is not likely to work. In practice, it turns out that actually a significantly

lower number of combinations are geometrically feasible. Hence the transformation

space needs to be partitioned into regions or intervals such that within each region the

54

closest neighbors do not change. Within each region the problem is solved by using the

analytical techniques and then the minimum over all the regions is found. The following

theorem provides a basis for a spatial partitioning approach to work.

 Theorem 1: Given a partitioning of the transformation space T into regions such that

the closest neighbors are invariant in each region, the transformation Tmin corresponding

to the minimum value mind of the distance function over all the regions is guaranteed to

lie within the region c* whose corresponding closest neighbors have been used to

compute it.

 Proof. Suppose by way of contradiction that the transformation Tmin does not lie

within region c*, but it lies within region c’. In that case compute the distance function in

correspondence of the transformation Tmin, but this time using the closest neighbors

corresponding to region c’. Let us denote the corresponding distance value by min'd .

Observe that, by definition of closest neighbors, for each translation belonging to region

c’ to compute the distance by using the closest neighbors corresponding to region c’ is

guaranteed to yield a distance value smaller than by using the closest neighbors

corresponding to any other region. Hence as the transformation Tmin lies within region c’

we are guaranteed that min'd < mind . This leads to a contradiction, as the initial hypothesis

was that mind is the minimum value of the distance function over all the regions. Hence

the transformation Tmin is guaranteed to lie within region c*, which proves Theorem 1.

 Theorem 1 ensures that the transformation that minimizes the distance function lies

within the region whose closest neighbors have been used to minimize the distance

function. Please note that the phrase “within the region” means that the point lies either in

55

the interior or on the boundary of the region. This result is the basis of the optimal

alignment algorithms described in this chapter.

3.3 Problem Formulation

Consider the distance function defined in Equation (3.1). The distance function between

points p ∈ P and q ∈ Q is defined as follows.

2 2 2 2(,) () () () ()p q p q p q p qd p q x x y y z z w w= − + − + − + − (3.2)

 Consider a rigid body transformation applied to the set P in 3. The most general

rigid body transformation applied to a set of points in 3 involves six DOFs. Given a

Cartesian coordinate system, six DOFs are represented by the three components of a

translation ∆x, ∆y and ∆z along the three coordinate axis and the three rotations ∆θ, ∆ϕ

and ∆ψ about the three coordinate axis. Hence the corresponding transformation matrix T

will be function of the six DOFs involved. The distance function defined in Equation

(3.1) can then be written as:

1
min (,)

(,)

n

iq Qi
d p q

d P Q n
∈=

∑
=

T
T (3.3)

 Imagine applying a transformation T to set P. The distance function between sets P

and Q can be evaluated, for every possible transformation T, by using Equation (3.3). We

refer to the problem of finding the transformation T applied to set P that minimizes the

distance function defined in Equation (3.3) between attributed point sets P and Q as

attributed point alignment under the transformation T. The definitions and notations

introduced in this section will be modified in order to refer to attributed points in 2. In

2 the most general rigid body transformation T will involve three DOFs, that is the two

56

components of translation ∆x and ∆y and the rotation ∆θ about the origin. In this section

the algorithms for the following three attributed point set optimal alignment problems are

presented: (1) optimal alignment under 2 DOF translations in 2, (2) optimal alignment

under 1 DOF rotations in 2 and (3) optimal alignment under 3 DOF translations in 3.

The most general alignment problem in 3 involves a 6 DOF transformation and hence its

dimension is six. As the three alignment problems solved in this chapter have lower

dimension we refer to them as lower dimension alignment problems. Their solution will

be the basis to solve higher dimension alignment problems.

 The alignment algorithm presented in this chapter can be used in many different

applications, as the points carry a transformation-invariant attribute that can be obtained

by combining any number of transformation-invariant attributes for a given feature. The

distance function defined in Equations (3.1), (3.2) and (3.3) is a very general one. It is not

sensitive to outliers like Hausdorff distance, and its mathematical form has been chosen

so that mathematical operations such as differentiation can be easily performed.

3.4 Optimal Alignment Under 2 DOF Translations In 2

The algorithm TWODOFALIGNMENT finds the translation (∆x,∆y) that minimizes the

distance function given by Equation (3.1). Given a Cartesian coordinate system, the

transformation space in this case is represented by the two components of the translation

(∆x,∆y) in the coordinate plane XY. The general Equation (3.1) can be specified for two

sets of attributed points in 2 and for the two degrees of freedom translation (∆x,∆y). The

overall algorithm that solves the two-degree of freedom problem is given below.

57

Algorithm: TWODOFALIGNMENT

 Input:

• Sets P and Q of attributed points in 2.

Output:

• Translation (∆xmin,∆ymin) that minimizes the distance function defined in

Equation (3.1).

Steps:

a. Partition the transformation space into regions such that the closest neighbor qj

∈ Q to each attributed point pi ∈ P is invariant in each region using the

algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL.

b. Within each region c obtained from Step a compute the value of the translation

(∆x(c),∆y(c)) that minimizes the distance function defined in Equation (3.1) for

region c.

c. Find region c* such that the distance function defined in Equation (3.1) reaches

the minimum value over all the regions obtained in Step a.

d. Return the corresponding value (∆xmin,∆ymin) = (∆x(c*),∆y(c*)) of the translation

for the region c* found in Step c.

 In the Subsection 3.4.1, 3.4.2 and 3.4.3 the steps of the previously described

algorithm and the algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL will be

described.

3.4.1 Step a: Building The Set Of Regions For The Attributed Points Of Set P

To compute the distance value in Equation (3.1), the closest neighbor qj ∈ Q to each pi ∈

P needs to be determined. The closest neighbor qj ∈ Q to each pi ∈ P changes with the

58

translation of set P with respect to set Q. Thus, the closest neighbor to each pi ∈ P needs

to be obtained by taking into account the translation (∆x,∆y). As anticipated before, the

transformation space in this case is the plane representing each possible translation being

applied to the points of set P. It is necessary to know for each value of the translation

(∆x,∆y) the closest attributed point qj ∈ Q to each attributed point pi ∈ P. The closest

neighbor to each attributed point of P changes at specific values of (∆x,∆y). Therefore the

transformation space can be partitioned into a set of regions within which the closest

neighbor to each attributed point of P is known and invariant. The following algorithm is

used for this purpose.

Algorithm: FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL

 Input:

• Sets P and Q of attributed points in 2.

Output:

• Set of regions and for each region the closest neighbor to every attributed point

of P from set Q.

Steps:

1. For each attributed point pi of P, do the following.

a. For each possible pair of distinct attributed points qk and ql of Q do the

following. Partition the transformation space into regions within which

either d(pi,qk) > d(pi,ql) or d(pi,qk) < d(pi,ql). The partitioning is performed

by intersecting the transformation space on which pi, qk and ql are located

59

with a line whose locus is such that d(pi,qk) = d(pi,ql), where d is the

distance function defined in Equation (3.2). This step will be described in

more detail after the description of the overall algorithm.

b. Overlap the intersecting regions obtained in Step 1.a so that the

transformation space is further partitioned into a set of regions.

c. For each region obtained in Step 1.b, do the following. Using the closest

neighbors obtained in Step 1.a, find the attributed point qj of Q such that

d(pi,qj) is minimum over all the attributed points of Q.

d. Merge the adjacent regions that have the same closest neighbor into one

single region.

2. Overlap the set of intersecting regions being obtained in Step 1 for each

attributed point pi of P. Within the set of intervals being obtained the closest

neighbor to every attributed point of P from set Q is invariant and known.

 The algorithm described above yields the set of regions for the attributed points of P.

In the next paragraphs Step 1.a and Step 2 will be explained in detail.

60

In Step 1.a, the closest neighbor to each attributed point pi ∈ P needs to be obtained by

using the distance function defined in Equation (3.2). The distance function accounts for

the transformation-invariant attribute. Hence the transformation-invariant attribute needs

to be considered in obtaining the closest neighbors. First let us consider the case where

the attributed points have identical transformation-invariant attributes. As shown in

Figure 3.2(a), the two attributed points q1 and q2 of set Q are represented on the

transformation space of attributed point p1 of P. As their transformation-invariant

attributes have the same value, the locus of points L of the transformation space whose

distance defined in Equation (3.2) from point q1 is the same as the distance from point q2

is the line through the midpoint between q1 and q2 and perpendicular to the segment

joining q1 and q2. Now let us consider the case where the attributed points have different

Figure 3.2: The Transformation Space of Point p1 of Set P Is Partitioned Into Two
Regions (a) Transformation-invariant Attributes Are the Same for Each Point (b)
Transformation-invariant Attributes Are Different for Each Point, and Hence the
Line L’ Is Offset With Respect to the Line L

(a)

∆x

∆y

L

(b)

∆x

∆y
L L’

α

Transformation
space for point
p1 of set P

q1 q2 q1 q2

L and L’ are lines whose points represent translations that
bring point p1 of set P at the same distance between points
q1 and q2 of set Q

61

transformation-invariant attributes. Let ∆w11 be the difference between the

transformation-invariant attributes of attributed point p1 of P and attributed point q1 of Q.

Similarly let ∆w12 be the difference between the transformation-invariant attributes of

attributed point p1 of P and attributed point q2 of Q. Let ∆w11 > ∆w12 and ∆w2 = ∆w11
2

 -

∆w12
2. In this case it is necessary to locate the locus of points L’ such that d(p1,q1) =

d(p1,q2) using the distance function defined in Equation (3.2). Because of the presence of

transformation-invariant attributes, the locus of points L’ will no longer be the line

through the midpoint between q1 and q2 and perpendicular to the segment joining q1 and

q2. As shown in Figure 3.2(b), the line will be offset by α in the direction of the point

having the higher value ∆wij, in this case q1. The value of α is defined as follows.

2

2
w
H

α ∆
= (3.4)

where H is equal to the Euclidean distance between q1 and q2. The value of the offset α

depends on the value of ∆w and H. In Appendix A the value of α defined in Equation

(3.4) will be derived.

 After Step 1.c the closest neighbor for each region of the transformation space of

point pi is known and invariant. However in general there might be adjacent regions of

the transformation space whose correspondent closest neighbors are coincident. In those

cases it is necessary to merge those regions into one by eliminating the common edges.

 Observe that Step 1 of the algorithm

FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL yields the closest neighbors for each

attributed point of P separately. A set of regions is built for a particular attributed point pi

∈ P such that in each region the closest attributed point of Q to pi is known. Thus several

62

sets of regions are obtained, one for each member of P. The overlapping of the sets of

regions being performed in Step 2 yields the set of regions for P. Within each of the

regions the distance given by Equation (3.1) can be minimized using closed form

mathematical formulae. The only independent variables in the formulae are the

components of the translation (∆x,∆y). The single sets of regions for each attributed point

of P are combined into the set of regions for the attributed points of P by overlapping so

that the transformation space is further partitioned into regions.

63

 Each of the resulting regions is obtained from the intersection of the regions of the

initial sets of regions. Figure 3.3 shows two sets of regions that are overlapped. One set

of regions is the set of regions of attributed point p1 of set P (see Figure 3.3(a)), the other

one is the set of regions of attributed point p2 of set P (see Figure 3.3(b)). The region c,

indicated in Figure 3.3(c) by an arrow point, is clearly contained in one of the regions of

each of the two sets of regions that have been overlapped. As shown in Figure 3.3(a) and

Figure 3.3(b), the regions c1 and c2 overlap to generate region c. Thus, region c represents

a region in the set of regions for the attributed points of P. Within c, q1 is the closest

64

neighbor to p1 and q2 is the closest neighbor to p2. Each point of c corresponds to a

transformation applied to the set of attributed points P while Q is fixed. Thus, within any

region of the set of regions for the attributed points of P, the closest attributed point of Q

to each attributed point in P is known. The distance function defined in Equation (3.1)

can now be computed for each region. The distance function defined in Equation (3.1)

for each region can be expressed as a function of the coordinates (x, y) of the attributed

points of P and Q. Coordinates of P and Q can be expressed as a function of (∆x,∆y),

65

which are the components of translation. Thus the distance function defined in Equation

(3.1) is expressed as a function of (∆x,∆y) as explained in the next subsection.

3.4.2 Step b: Minimization Of The Distance Function Within A Given Region

The location of an attributed point p in the planar transformation space can be represented

by the coordinates (xp,yp). Let ip
ox and ip

oy be the coordinates of the known initial

position for attributed point pi ∈ P.

 In the previous subsection the set of regions for all the attributed points of P was built

by overlapping the single sets of regions of each attributed point. The transformation

Figure 3.3: Example of Overlapping of Sets of Regions

Region generated
from point q4

(a): Set of Regions for Point p1 of

Region generated
from point q1

Region generated
from point q2

c1

∆x

∆y

Region generated
from point q3

(b): Set of Regions for Point p2 of

Region generated
from point q1 Region generated

from point q2

c2

Region generated
from point q4

Region generated
from point q3

(c): Set of Regions Resulting From Overlapping of Individual Set of Regions (a) and (b)

c

∆x

∆y

∆x

∆y

66

space is thus partitioned into a number of regions. Within each region the closest

attributed point in Q to each of the attributed point in P is known. The following

definitions, valid within each single region, will be used:

() coordinate of the closest attributed point () to

() coordinate of the closest attributed point () to

() transformation-invariant attribute of the closest point (

j

j

j

q
j i

q
j i

q
j

x i x q i Q p P

y i y q i Q p P

w i q

= ∈ ∈

= ∈ ∈

=) to ii Q p P

⎧
⎪⎪
⎨
⎪

∈ ∈⎪⎩

 (3.5)

 Consider a single region and an attributed point pi ∈ P. Let (∆x,∆y) be the translation

applied to the attributed points of set P. Then,

()
 point

()

i i

i i

p p
o

ip p
o

x x x x
p P

y y y y

⎧ ∆ = + ∆⎪ ∀ ∈⎨
∆ = + ∆⎪⎩

 (3.6)

 Within a single region, it is necessary to compute (,)d P Q as a function of the

transformation (∆x,∆y). The term accounting for Z coordinate in the distance function

defined in Equation (3.2) is not considered in this case as the alignment problem involves

attributed points in 2.

2 2

21

{[() ()] [() ()]

(())
(,)((), ())

j ji i

ji
i i

q qp p
n

qpi
p p

x x x i y y y i

w w i
d P Q x x y y

n

=

⎧ ⎫∆ − + ∆ − +⎪ ⎪
∑⎨ ⎬

+ −⎪ ⎪⎩ ⎭∆ ∆ =T (3.7)

 Using the notations introduced in Equations (3.5) and (3.6), Equation (3.7) can be

simplified to,

2 2

21

{[()] [()]

(())
(,)

j ji i

ji

q qp p
n o o

qpi

x x x i y y y i

w w i
d x y

n

=

⎧ ⎫+ ∆ − + + ∆ − +⎪ ⎪
∑⎨ ⎬

+ −⎪ ⎪⎩ ⎭∆ ∆ = (3.8)

67

 In order to minimize (,)d x y∆ ∆ its derivative with respect to ∆x and ∆y must be set to

zero. By doing this and simplifying, we get the following expression for the translation

components.

{ }

{ }

1

1

()

()

j i

j i

n q p
o

i

n q p
o

i

x i x
x

n

y i y
y

n

=

=

⎧ −∑⎪∆ =⎪⎪
⎨
⎪ −∑
⎪∆ =
⎪⎩

 (3.9)

 Observe that the distance function defined in Equation (3.8) is a continuous function,

and it is also bounded. The values of ∆x and ∆y resulting from Equations (3.9) identify a

local minimum of the distance function if and only if the corresponding Hessian matrix is

positive definite, that is its eigenvalues are positive. As
2

0
() ()

d
x y
∂

=
∂ ∆ ∂ ∆

 and

2 2

2 2 2
() ()

d d
x y

∂ ∂
= =

∂ ∆ ∂ ∆
 the Hessian has two coincident positive eigenvalues whose value is

2. Hence the values of ∆x and ∆y resulting from Equations (3.9) identify a local

minimum of the distance function.

 Equations (3.9) yield the translation (∆x,∆y), applied to the set of attributed points P,

which minimizes the distance between the sets of attributed points P and Q. This value of

the translation is valid only within a single region of the set of regions for all the

attributed points of P. In general the value of (∆x,∆y) that is found is not guaranteed to lie

in the region where the distance function is defined. Values of (∆x,∆y) that lie outside the

corresponding region have no physical meaning and should be discarded. In fact, by

referring to Theorem 1, values of the translation (∆x,∆y) that lie outside the region whose

closest neighbors have been used to compute them will not correspond to the global

68

minimum of the distance function. By not considering those regions the computation of

the translation that minimizes the distance function over all the regions may be speeded

up, as several regions will not be considered.

 Equations (3.9) have been obtained by differentiating the distance function with

respect to ∆x and ∆y, which is a standard minimization technique in the continuous

domain. Thus, the translation value obtained for a region c of the set of regions for all the

attributed points of P yields the best possible alignment between the two attributed point

sets for all permissible translations within the region c.

3.4.3 Steps c And d: Computing The Translation That Minimizes The Distance Over

All The Regions

The values of ∆x(c) and ∆y(c) obtained in the Equations (3.9) yield the translation that

minimizes the distance between the two attributed point sets P and Q within a single

region c of the set of regions for all the attributed points of P. To obtain the

corresponding value of the distance ()d c it is sufficient to substitute the value of ∆x and

∆y obtained from Equations (3.9) into Equation (3.8). Hence, for each region, ()d c is the

minimum distance. Finally Steps c and d of the algorithm TWODOFALIGNMENT involve

finding the values of ∆x and ∆y corresponding to the minimum distance over all the

regions. The minimum distance over all the regions is obtained as follows:

min min ()
c C

d d c
∈

= (3.10)

where C is the set of all the regions c of the partitioned transformation space. The value

given by the Equation (3.10) is the minimum distance between sets P and Q. The

corresponding translation (∆xmin,∆ymin) is found as follows: let c* be the region in which

69

the minimum distance was found (refer to Equation (3.10)). Then (∆xmin,∆ymin) is

obtained as follows:

min

min

()

()

x x c

y y c

∗

∗

⎧∆ = ∆⎪
⎨
∆ = ∆⎪⎩

 (3.11)

 The Equations (3.11) yield the translation to apply to P in order to minimize the

distance between P and Q. Equation (3.10) provides the minimum distance between two

sets of attributed points in 2 under two degree of freedom translation.

3.5 Optimal Alignment Under 1 DOF Rotations In 2

The second optimal alignment algorithm that is designed in this chapter is

ONEDOFALIGNMENT. It finds the rotation θ that minimizes the distance function given

by Equation (3.1) in 2. The distance function defined in Equation (3.1) can be specified

for two sets of attributed points in 2 and for the one degree of freedom rotation θ. From

now on in this thesis the range of rotations [0,2π] will be referred to as theta range, and

any interval contained in this range as theta interval. Given a Cartesian coordinate

system, consider the rotation θ about a coordinate axis Z and the coordinate plane XY

perpendicular to it. Each attributed point can only move along a circle lying on the

coordinate plane XY. The initial position of the attributed point must belong to the circle.

The center of the circle corresponds to the center of rotation being used. In this case the

center of mass of the rotating set of points P computed without considering the

transformation-invariant attributes will be used as center of rotation. Each point of the

previously defined circle corresponds to one and only one value of the rotation θ about

the coordinate axis Z. The transformation space in this case is represented by the closed

70

interval of real numbers representing all the possible rotationsθ ∈ [0,2π]. The

transformation space will be referred to as the theta range [0,2π]. The overall algorithm

that solves the one degree of freedom problem is given below.

Algorithm: ONEDOFALIGNMENT

 Input:

• Sets P and Q of attributed points in 2.

Output:

• Angle θmin that minimizes the distance function defined in Equation (3.1).

Steps:

a. Partition the theta range [0,2π] into theta intervals such that the closest neighbor

qj ∈ Q to each attributed point pi ∈ P is invariant in each interval using the

algorithm FINDINVARCLOSESTNEIGHBORSFOR1DOFROT.

b. Within each theta interval c obtained from Step a compute the value of the

rotation θ(c) that minimizes the distance function defined in Equation (3.1) for

interval c.

c. Find interval c* such that the distance function defined in Equation (3.1) reaches

the minimum value over all the intervals obtained in Step a.

d. Return the corresponding value θmin = θ(c*) of the rotation for the interval c*

found in Step c.

 In the Subsections 3.5.1, 3.5.2 and 3.5.3 the steps of the previously described

algorithm and the algorithm FINDINVARCLOSESTNEIGHBORSFOR1DOFROT will be

described.

71

3.5.1 Step a: Building The Set Of Theta Intervals For The Attributed Points Of Set

P

As in Section 3.4, in order to compute the distance value in Equation (3.1), the closest

neighbor qj ∈ Q to each pi ∈ P needs to be determined. The closest neighbor qj ∈ Q to

each pi ∈ P changes with the rotation of set P with respect to set Q. Thus, the closest

neighbors for each pi ∈ P need to be obtained by taking into account the rotation θ around

the fixed axis that has been defined in the previous subsection. It is necessary to know,

for each value of the rotation θ, the closest attributed point qj ∈ Q to each attributed point

pi ∈ P. The closest neighbor to each attributed point of P changes only at specific values

of θ. Thus, the theta range [0,2π] can be partitioned into a set of theta intervals within

which the closest neighbor to each attributed point of P is known and invariant. The

following algorithm is used for this purpose.

Algorithm: FINDINVARCLOSESTNEIGHBORSFOR1DOFROT

 Input:

• Sets P and Q of attributed points.

Output:

• Set of theta intervals and for each interval the closest neighbor to every

attributed point of P from set Q.

Steps:

1. For each attributed point pi of P do the following.

a. For each possible pair of distinct attributed points qk and ql of Q do the

following. Partition the theta range [0,2π] into intervals within which either

72

d(pi,qk) > d(pi,ql) or d(pi,qk) < d(pi,ql). The partitioning is performed by

intersecting the circle representing the trajectory of pi with a line whose

locus is such that d(pi,qk) = d(pi,ql), where d is the distance function defined

in Equation (3.2). This step will be described in more detail after the

description of the overall algorithm.

b. Overlap the intersecting subintervals obtained in Step 1.a so that the range

[0,2π] is further partitioned into a set of intervals.

c. For each interval obtained in step 1.b do the following. Using the closest

neighbors being obtained in Step 1.a, find the attributed point qj of Q such

that d(pi,qj) is minimum over all the attributed points of Q.

d. Merge the adjacent intervals that have the same closest neighbor into one

single interval.

2. Overlap the set of intersecting intervals obtained in Step 1 for each attributed

point pi of P. Within the set of intervals being obtained the closest neighbor to

every attributed point of P from set Q is invariant and known.

 The algorithm described above yields the set of theta intervals for the attributed

points of P. In the next paragraphs Step 1.a and Step 2 will be explained in detail.

73

 In Step 1.a, the closest neighbors for each attributed point pi ∈ P need to be obtained

by using the distance function defined in Equation (3.2). The transformation-invariant

attributes need to be considered. As we did in Subsection 3.4.1, let us consider a case

where the attributed points have identical transformation-invariant attributes. As shown

in Figure 3.4, the dotted circle C1 centered on the rotation center represents the trajectory

of p1 of P as it is rotated. Consider two attributed points q1 and q2 of Q in 2. In general

along a portion of the trajectory d(p1,q1) < d(p1,q2) and along the remaining portion

d(p1,q1) > d(p1,q2). The procedure to obtain the theta intervals such that the closest

neighbors are invariant is as follows. As the transformation-invariant attributes have the

Figure 3.4: Set of Theta-intervals for Point p1 of Set P: (a) Case of Intersection Between
Line L and Circle C1 (b) Case of Non-intersection Between Line L and Circle C1

Transformation
space for point p1
of set P

Circle C1 representing
trajectory of point p1 of P

Line L

Intersections
between C1 and L
corresponding to
theta values θ1
and θ2

x

y

Theta intervals being obtained
0 2π θ1 θ2

(a)

q1 q2

Circle C1 representing
trajectory of point p1 of P

Line L

x

y

No theta intervals are obtained

(b)

q1 q2

74

same value, the locus of points L of the transformation space whose distance defined in

Equation (3.2) from point q1 is the same as the distance from point q2 is the line through

the midpoint between q1 and q2 and perpendicular to the segment joining q1 and q2. In

Figure 3.4(a) the line L and the circle C1 are intersected, obtaining two points on the

circle. Each point of the circle corresponds to a value of theta within the theta range

[0,2π]. Hence the two intersection points correspond to the extreme values of the theta

intervals being obtained, as shown in Figure 3.4(a). Within each interval either d(p1,q1) <

d(p1,q2) or d(p1,q1) > d(p1,q2) and the closest neighbor to p1 is known. In Figure 3.4(b) the

line L and the circle C1 do not intersect. That means that for the entire theta range [0,2π]

either d(p1,q1) < d(p1,q2) or d(p1,q1) > d(p1,q2): the closest neighbor does not change. Now

let us consider the case where the attributed points have different transformation-

invariant attributes. Let ∆w11 be the difference between the transformation-invariant

attributes of attributed point p1 of P and attributed point q1 of Q. Let ∆w12 be the

difference between the transformation-invariant attributes of attributed point p1 of P and

attributed point q2 of Q. Let ∆w11 > ∆w12 and ∆w2 = ∆w1
2

 - ∆w12
2. In this case it is

necessary to locate the locus of points L’ such that d(p1,q1) = d(p1,q2) using the distance

function defined in Equation (3.2). As in Subsection 3.4.1 the locus of points L’ will no

longer be the line through the midpoint between q1 and q2 and perpendicular to the

segment joining q1 and q2. As shown in Figure 3.5, the line will be offset by α in the

direction of the point having the higher value ∆wij, in this case q1. The value of α is

defined in Equation (3.4). Again, there are two possibilities: L’ can either intersect the

circle or not. The same conclusions can de drawn as in the case of points having the same

transformation-invariant attributes.

75

 Step 2 of the algorithm FINDINVARCLOSESTNEIGHBORSFOR1DOFROT can be

explained by using the same arguments as for Step 2 of the algorithm

FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL presented in Subsection 3.4.1. For a

particular attributed point pi ∈ P a set of theta intervals is available such that in each

interval the closest attributed point of Q to pi is known. The sets of theta intervals for

each single point of P are overlapped. This yields the set of theta intervals for the

attributed points of P. Figure 3.6 shows an example of two sets of intervals that are

overlapped. One set of intervals is the set of theta intervals of attributed point p1 of set P

(see Figure 3.6(a)), the other one is the set of theta intervals of attributed point p2 of set P

(see Figure 3.6(b)). The interval c, indicated in Figure 3.6(c) by an arrow point, is clearly

contained in one of the intervals of each of the two sets of theta intervals that have been

Figure 3.5: Set of Theta-intervals for Point p1 of Set P When Transformation Invariant
Attributes of Points q1 and q2 of Set Q Are Different

Circle C1 representing
trajectory of point p1 of P

Line L
Intersections between C1
and L corresponding to
theta values θ1 and θ2

x

y

Theta intervals being obtained

0 2π θ1 θ2

(a)

Transformation
space for point p1
of set P

Line L’
q1 q2

α

76

overlapped. As shown in Figure 3.6(a) and Figure 3.6(b), the intervals c1 and c2 overlap

to generate interval c. Thus, interval c represents a region in the set of theta intervals for

the attributed points of P. Within c, q1 is the closest neighbor to p1 and q2 is the closest

neighbor to p2. Each point of c corresponds to a rotation applied to the set of attributed

points P while Q is fixed. Within any obtained interval the closest attributed point of Q to

each attributed point in P is known.

 Within each of the obtained intervals the distance function defined in Equation (3.1)

can now be computed and minimized using closed form mathematical formulae. It can

be expressed as a function of the coordinates (x,y) of the attributed points of P and Q.

Coordinates of P and Q can be expressed as functions of θ, which is the angle of rotation.

Thus the distance function defined in Equation (3.1) is expressed as a function of θ as

Figure 3.6: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets
of Theta Intervals

(c): Set of Theta Intervals Resulting From Overlapping of
Sets of Theta Intervals (a) and (b)

θ = 0 θ = 2π c

(a): Set of Theta Intervals of Point p1 of P

Interval generated from point q1

θ = 0 θ = 2π Interval
generated

from point q2

c1

θ = 0

(b): Set of Theta Intervals of Point p2 of P

Interval generated from point q2

θ = 2π Interval
generated

from point q1

Interval
generated

from point q3

c2

77

explained in the next subsection. Rotation θ will be the only independent variable in the

formulae.

3.5.2 Step b: Minimization Of The Distance Function Within A Given Theta

Interval

Some of the notations introduced in Subsection 3.4.2 hold for the algorithm being

presented here. In particular, the location of an attributed point p in the planar

transformation space can be represented by the coordinates (xp,yp). Equations (3.5) hold

as well. In this case it is necessary to define also the center of rotation (xB,yB). The angle

ip
oθ determines the initial position of point pi. The quantity di represents the Euclidean

distance between each attributed point pi ∈ P and the center of rotation.

 Focus on a single interval and a moving attributed point pi ∈ P. Let θ be the

translation applied to the attributed points of set P. Then,

() cos()
 point

() sin()

i i

i i

p p
B i o

ip p
B i o

x x d
p P

y y d

θ θ θ

θ θ θ

⎧ = + +⎪ ∀ ∈⎨
= + +⎪⎩

 (3.12)

 Within a single interval, it is necessary to compute (,)d P Q as a function of the

rotation θ. The term accounting for Z coordinate in the distance function defined in

Equation (3.2) is not considered as the alignment problem addressed involves points in

2.

2 2

21

{[() ()] [() ()]

(())
()

j ji i

ji

q qp p
n

qpi

x x i y y i

w w i
d

n

θ θ

θ
=

⎧ ⎫− + − +⎪ ⎪
∑⎨ ⎬

+ −⎪ ⎪⎩ ⎭= (3.13)

 Using the notations introduced in Equations (3.5) and (3.12), Equation (3.13) can be

simplified to,

78

2 2

21

{[cos() ()] [sin() ()]

(())
()

j ji i

ji

q qp p
n B i o B i o

qpi

x d x i y d y i

w w i
d

n

θ θ θ θ

θ
=

⎧ ⎫+ + − + + + − +⎪ ⎪
∑⎨ ⎬

+ −⎪ ⎪⎩ ⎭= (3.14)

 In order to minimize ()d θ its derivative with respect to θ must be set to zero. It is

important to remember that (xB,yB) is the center of mass of set P computed without

considering the transformation-invariant attributes. By setting the derivative to zero and

simplifying, we get the following expression for the rotation angle:

()
()

1

1

() cos () sin
()

() cos () sin

j ji i

j ji i

n
q qp p

i B o B o
i
n

q qp p
i B o B o

i

d y y i x x i
tg

d x x i y y i

θ θ
θ

θ θ

=

=

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦
=

⎡ ⎤ ⎡ ⎤− + −⎣ ⎦ ⎣ ⎦

∑

∑
 (3.15)

 The distance function defined in Equation (3.14) is a continuous function, and it is

also bounded. The values of θ resulting from Equation (3.15) can identify a local

minimum or a local maximum of the distance function, depending on the sign of the

second derivative. Hence, we also check the sign of the second derivative in order to

choose the right value of θ.

 Equation (3.15) yields the transformation θ, applied to the set of attributed points P,

which minimizes the distance between the sets of attributed points P and Q. This value of

the transformation is valid only within a single interval of the set of theta intervals for all

the attributed points of P. In case θ does not lie in the interval whose closest neighbors

have been used in computing the distance function, referring to Theorem 1 the interval in

question should not be considered.

 The transformation value obtained for an interval c of the set of theta intervals for all

the attributed points of P yields the optimal alignment between the two attributed point

sets for all permissible rotations within the interval c.

79

3.5.3 Steps c and d: Computing The Rotation That Minimizes The Distance Over

All The Theta Intervals

The value of θ(c) obtained in Equation (3.15) yields the rotation that minimizes the

distance between the two attributed point sets P and Q within a single interval c of the set

of theta intervals for all the attributed points of P. To obtain the corresponding value of

the distance ()d c the value of θ obtained from Equation (3.15) should be substituted into

Equation (3.14). Hence, for each interval, ()d c is the minimum distance. Finally in Step

d of the algorithm ONEDOFALIGNMENT the value of θ corresponding to the minimum

distance over all the intervals is found. The minimum distance over all the intervals is

obtained as follows.

min min ()
c C

d d c
∈

= (3.16)

where C is the set of all the intervals c of the partitioned theta range [0, 2π]. The value

given by the Equation (3.16) is the minimum distance between sets P and Q. The

corresponding rotation θmin is found as follows: let c* be the interval in which the

minimum distance was found (refer to Equation (3.16)). Then θmin is obtained as follows:

min ()cθ θ ∗= (3.17)

 Equation (3.17) yields the rotation to apply to P in order to minimize the distance

between P and Q. Equation (3.16) provides the minimum distance between two sets of

attributed points P and Q.

3.6 Optimal Alignment Under 3 DOF Translations In 3

The third optimal alignment algorithm THREEDOFALIGNMENT finds the translation

(∆x,∆y,∆z) that minimizes the distance function given by Equation (3.1). The general

80

Equation (3.1) can be specified for two sets of attributed points in 3 and for three

degrees of freedom translations (∆x,∆y,∆z). Given a Cartesian coordinate system, the

transformation space in this case is represented by the three components of a translation

(∆x,∆y,∆z) in the space. The overall algorithm that solves the three-degree of freedom

problem can be obtained from the algorithm TWODOFALIGNMENT presented in Section

3.4. It is only necessary to substitute 2 by 3 and to consider the third coordinate Z. The

algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL needs to be substituted by

the algorithm FINDINVARCLOSESTNEIGHBORSFOR3DOFTRANSL. Hence the algorithm

THREEDOFALIGNMENT can be analyzed referring to the algorithm TWODOFALIGNMENT

defined in Section 3.4 with the only changes described previously. In the next subsections

the steps of the algorithm THREEDOFALIGNMENT and the algorithm

FINDINVARCLOSESTNEIGHBORSFOR3DOFTRANSL will be described.

3.6.1 Step a: Building The Set Of Regions For The Attributed Points Of Set P

Step a of the algorithm THREEDOFALIGNMENT can be described referring to Subsection

3.4.1 with the only difference that in this case the algorithm is defined in 3 and hence

the third coordinate of the attributed points needs to be considered. The transformation

space in this case is the three-dimensional space 3 representing each possible translation

being applied to the points of set P. Even in this case it is necessary to obtain the closest

neighbors for each of the attributed points pi ∈ P.

 The algorithm FINDINVARCLOSESTNEIGHBORSFOR3DOFTRANSL will be used to

obtain the closest neighbors. Even this algorithm is very similar to the one defined in

81

Subsection 3.4.1. It is only necessary to substitute 2 by 3 and to consider the third

coordinate Z. Furthermore, as the algorithm is defined in 3, in Step 1.a the

transformation space is intersected with a plane rather than a line. Hence the algorithm

FINDINVARCLOSESTNEIGHBORSFOR3DOFTRANSL can be analyzed referring to the

algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL defined in Subsection 3.4.1

with the only changes described previously. In the next paragraphs Step 1.a and Step 2 of

the algorithm FINDINVARCLOSESTNEIGHBORSFOR3DOFTRANSL will be explained.

 Step 1.a is similar to the corresponding step described in Subsection 3.4.1 for

algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL. The only difference is that

in this case planes need to be used instead of lines. Figure 3.7(a) shows the case in which

the two attributed points q1 and q2 of set Q have identical transformation-invariant

attributes. The locus of points π12 of the transformation space whose distance defined in

Equation (3.2) from point q1 is the same as the distance from point q2 is the plane through

the midpoint between q1 and q2 and perpendicular to the segment joining q1 and q2. On

the other hand Figure 3.7(b) shows the case in which the attributed points have different

transformation-invariant attributes. Let ∆w11 be the difference between the

transformation-invariant attributes of attributed point p1 of P and attributed point q1 of Q.

Similarly let ∆w12 be the difference between the transformation-invariant attributes of

attributed point p1 of P and attributed point q2 of Q. Let ∆w11 > ∆w12 and ∆w2 = ∆w1
2

 -

∆w12
2. In this case the locus of points π12 of the transformation space whose distance

defined in Equation (3.2) from point q1 is the same as the distance from point q2 is a

plane perpendicular to the segment joining q1 and q2, but offset with respect to the

82

midpoint between q1 and q2. The offset value is the same as the one given by Equation

(3.4), and it is derived in Appendix A as well.

 In Step 2 the set of regions for the attributed points of P are obtained by overlapping

the sets of regions obtained in Step 1. Within each region the distance defined in

Equation (3.3) can be minimized. The observations made in Subsection 3.4.1 about Step

2 of algorithm FINDINVARCLOSESTNEIGHBORSFOR2DOFTRANSL apply to this subsection

as well.

 At this stage it is possible to compute the distance function defined in Equation (3.3)

for each region. It can be expressed as a function of the coordinates (x,y,z) of the

attributed points of P and Q. Coordinates of P and Q can be expressed as a function of

Figure 3.7: The Transformation Space of Point p1 of Set P Is Partitioned Into Two
Regions (a) Transformation-invariant Attributes Are the Same for Each Point (b)
Transformation-invariant Attributes Are Different for Each Point, and Hence the Plane
π’12 Is Offset With Respect to the Line π12

∆y

Plane π12 through the midpoint between q1
and q2 and perpendicular to the segment q1q2

Plane π12

Plane π’12

αq1

q2

q1

q2

Transformation space for point p1 of set P

(a) (b)

∆x

∆z

∆y
∆x

∆z

83

(∆x,∆y,∆z), which are the components of translation. Thus the distance function defined

in Equation (3.3) is expressed as a function of (∆x,∆y,∆z) as explained in the next

subsection.

3.6.2 Step b: Minimization Of The Distance Function Within A Given Region

The formulae and notations presented in this subsection are very similar to the ones

presented in Subsection 3.4.2, as both the alignment problems solved involve

translations, one in 2 and the other one in 3. All the definitions and notations presented

in Subsection 3.4.2, in particular Equations (3.5), (3.6), (3.7) and (3.8), can be easily

modified to take into account the third coordinate Z in 3. Hence only the final values of

the translation, obtained in the same way as in Subsection 3.4.2, are shown as follows.

{ }

{ }

{ }

1

1

1

()

()

()

j i

j i

j i

n q p
o

i

n q p
o

i

n q p
o

i

x i x
x

n

y i y
y

n

z i z
z

n

=

=

=

⎧ −∑⎪∆ =⎪
⎪
⎪ −∑⎪∆ =⎨
⎪
⎪ −∑⎪
∆ =⎪
⎪⎩

 (3.18)

 All the considerations on the distance function and the values of translations given by

Equations (3.9) made in Subsection 3.4.2 can be extended to Equations (3.18).

84

3.6.3 Steps c and d: Computing The Translation That Minimizes The Distance Over

All The Regions

The formulae derived in Subsection 3.4.3 can be extended to the case of 3 attributed

points. So Equation (3.10) that yields the minimum distance over all the regions is

reported again as follows:

min min ()
c C

d d c
∈

=

where C is the set of all the regions c of the transformation space. The corresponding

translation (∆xmin,∆ymin,∆zmin) is found as follows: let c* be the interval in which the

minimum distance was found (refer to Equation (3.10)). Then (∆xmin,∆ymin,∆zmin) is

obtained as follows:

min

min

min

()
()
()

x x c
y y c
z z c

∗

∗

∗

⎧
⎪
⎨
⎪
⎩

∆ = ∆
∆ = ∆
∆ = ∆

 (3.19)

 Equations (3.19) correspond to Equations (3.11) which were obtained for alignment

problems under two DOF translations in 2.

3.7 Complexity Evaluation For Optimal Alignment Algorithms Based On

Partitioning Of Transformation Space

3.7.1 Overview

The three optimal alignment algorithms presented in the previous section are based on

partitioning the transformation space into regions or intervals for which the closest

neighbors remain invariant. Then a distance function is minimized within each interval or

region, and finally the minimum value of the distance function over all the regions or

intervals obtained is found. Therefore the complexity of the algorithms depends on the

85

number of intervals or regions obtained. Hence in order to evaluate the complexity of the

optimal algorithms it is necessary to evaluate the number of intervals or regions the

transformation space is partitioned into. Observe that the spatial arrangement that

partitions the transformation space into regions or intervals is obtained by overlapping a

number of spatial arrangements of the same dimension. Hence in order to evaluate the

complexity of the final spatial arrangement it is necessary to evaluate the number of

regions or intervals resulting from the overlapping of several spatial arrangements. A

formal definition of the problem is given as follows.

 Consider a set P of attributed points p = 1 2(, ,..., ,)p p p p
dx x x w in d and the following

distance function, generalization of the one defined in Equation (3.2).

2 2

1
(,) () ()

d
p q p q

i i
i

d p q x x w w
=

= − + −∑ (3.20)

 The quantity wp represents the transformation-invariant attribute of point p. Consider

the partitioning of d into convex regions. Each region contains only one point p and all

the points of the regions are closer to p than to any other point of P. The distance is

measured by using the distance function defined in Equation (3.20). We will refer to the

previously defined partitioning as spatial arrangement S(P). Consider the overlapping of

m spatial arrangements S(Pi) that are built from m different sets Pi of attributed points.

We would like to evaluate the complexity of the resulting spatial arrangement.

 Observe that if the transformation-invariant attributes of each point p are not

considered each spatial arrangement S(Pi) corresponds to the Voronoi diagram of the set

of points Pi [deBe97]. In order to simplify the problem, in the next subsection Voronoi

diagrams in 2 are considered. In particular the complexity of the overlapping of two

86

Voronoi diagrams in 2 is evaluated. This result will then be used to solve the problem

previously defined.

3.7.2 Complexity Of The Overlapping Of Two Voronoi Diagrams In 2

Consider a problem involving two random sets of point sites in 2, denoted by A1 and A2.

We assume that each of the sets consists of n points that have been sampled from a

uniform distribution over a square of side length n in 2. Thus, the expected number of

points in each unit square within this region is 1. Let Vor(A1) and Vor(A2) denote the

respective Voronoi diagrams of these point sets. The number of vertices, edges and cells

of a Voronoi diagram determine its complexity. A Voronoi diagram in 2 has complexity

O(n) [Aure91]. The question that we wish to consider is the complexity of the two

dimensional arrangement resulting from the overlapping of two Voronoi diagrams

Vor(A1) and Vor(A2).

 Unfortunately, this problem is complicated by the presence of boundary effects. To

simplify matters, we will consider a different formulation, which captures the essential

elements of the problem, without the boundary issues. A set generated by a Poisson

process [Grim85] in 2 with rate δ≥0 has the property that, for any measurable region R

of area A(R), if we let n(R) denote the random variable of the number of point sites that

the process generates in R, then for all k≥0, it is well known that

(()) exp(())Pr(())
!

kA R A Rn R k
k

δ δ−
= = (3.21)

 It follows that the expected value, E(n(R)), is δA(R).

87

 Let A1 and A2 be two sets of points in 2 that have been generated by a Poisson

process with rate 1. For i≥1, let Si denote an axis-parallel square of side length i centered

at the origin, and let S0 be the empty set. Clearly A(Si) = i2. For i≥1, define a ring Ri to

be the set-theortic difference of two concentric squares Si - Si-1.

 Let us consider the problem in the Poisson context. Let m = n⎢ ⎥
⎣ ⎦ , and consider an

m×m square Sm centered at the origin. From Equation (3.21) the expected number of

point sites of A1 and A2 lying within this square is O(n). Let Vor(A1) and Vor(A2) denote

the respective Voronoi diagrams, restricted to lie within Sm. Our main result is as

follows.

 Theorem 2: Consider two random point sets A1 and A2 generated independently from

a Poisson process with rate 1 in 2. Then the expected complexity of the two

dimensional arrangement resulting from the overlapping of Vor(A1) and Vor(A2) is O(n).

 Proof. The complexity of the two dimensional arrangement resulting from the

overlapping of Vor(A1) and Vor(A2) is determined by the number of intersections

between the edges of Vor(A1) and Vor(A2). In fact the number of new edges, cells and

vertices resulting from the overlapping is proportional to the number of edge intersections

occurring. Because the Poisson process is stationary, the random variables that evaluate

the number of edge intersections occurring in any unit square contained within Sm are

identical. Thus, it suffices to show that the expected number of edge intersections

occurring within the unit square S1 centered at the origin is O(1), and it will follow

immediately by the linearity of expectation that the total number of intersections in Sm is

88

O(m2) = O(n). Let I1 be a random variable denoting the number of intersections resulting

from the overlapping of Vor(A1) and Vor(A2) that lie in the square S1. Our goal is to show

that E(I1) is O(1).

 Let i and k be nonnegative integer values. Consider an intersection that occurs within

S1. This intersection is generated by the intersection of two Voronoi edges, one from

Vor(A1) and the other from Vor(A2). Let {p11, p12}∈A1 and {p21, p22}∈A2 denote the

points that gave rise to the intersecting edges, and let rmax denote the farthest distance of

any of these points from the intersection point. Let e(i,k) denote the random event that the

edge intersection lies in S1, where the point at distance rmax lies in the ring Ri, and there

are exactly k points of A1∪A2 lying within Si. In Figure 3.8 an instance of the event e(i,6)

is shown. Every edge intersection can uniquely be associated with some event e(i,k), and

since the complexity of a Voronoi diagram generated by k points is O(k), it follows that at

most O(k2) intersections between the O(k) edges can be associated with each such event.

Let Pr(e(i,k)) denote the probability of this event occurring. Thus, up to a constant factor

c, the expected complexity in S1 satisfies:

2
1

1 0
() Pr((,))

i k
E I c k e i k

≥ ≥

≤ ∑∑ .

89

For e(i,k) to occur, two necessary events must occur. First, let q denote the intersection

point of the two Voronoi edges. It follows from Voronoi diagram properties that there

must be a circle centered at q whose radius has length rmax that contains no points of

either A1 or A2. Because the point at distance rmax from point q lies in Ri, its distance from

the origin is at least (i-1)/2. Since the distance from q to the origin is at most 2 / 2 , it

follows that there is a circle of radius (i-3)/2 centered at the origin thateither contains no

points of A1 or no points of A2. For concreteness, let us assume the former. Because the

two point sets are drawn from the same distribution, the other case will give rise to the

Figure 3.8: Instance of Event e(i,6) Occurring in 2. Line L1 Generated by Points p11

and p12 of Set A1 and Line L2 Generated by Points p21 and p22 of Set A2 Intersect
Within the Unit Square. Point p11 of Set A1 Is the Farthest Point From the Intersection
Point q and Lies in Ring Ri at Distance rmax From q. There Are Six Points in Total
Contained in Si

x

y

p11

p12
p21

p22
Ring Ri

Square n x n⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Unit square

Line L2 Line L1

p13
p14

q

rmax

p15
x

y

p11

p12
p21

p22
Ring Ri

Square n x n⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦Square n x n⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Unit square

Line L2 Line L1

p13
p14

q

rmax

p15

90

same expected number of intersections, and so this will only increase the total number of

intersections by a factor of 2. For i>3, let e1(i) denote the event that there is a circle of

radius (i-3)/2 centered at the origin that contains no point of A1. To simplify notation, for

i 3, let e1(i) denote an event that occurs with probability 0. Second, there must be k

points lying within Si. Call this event e2(i,k).

 Let P1(i) and P2(i,k) denote the respective probabilities of events e1(i) and e2(i,k).

From Equation (3.21), the fact that the circle has area π(i-3)2/4 and the fact that the circle

must be empty, that is k = 0, we have

() ()2 2

1

3 /
() exp exp

4 4
i i C

P i
π π⎛ ⎞ ⎛ ⎞−

= − ≤ −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,

where the constant C > 2 and
3

2
Ci

C
>

−
. Values of

3
2

Ci
C

<
−

 can be discarded. The

rationale behind this will be explained below.

 From Equation (3.21), the fact that by independence the union A1∪A2 is a Poisson

process with rate 2 and the fact that the square Si has area i2 we have

()2 2

2

2 exp(2)
(,)

!

k
i i

P i k
k

−
= .

 Thus to provide an upper bound on the expected complexity E(I1), it suffices to bound

the following quantity:

()2
1 2

1 0

P () (,)
i k

X k i P i k
≥ ≥

= ∧∑∑ .

 Here is a quick outline of the analysis. Observe that when i is large, the probability

P1(i) decreases rapidly, because it is very unlikely that there can be a large circle with no

91

points. On the other hand, when i is small, it is unlikely that k will be much larger than

its expected value, which is O(i2), since the probability P2(i,k) decreases rapidly as k

increases above this quantity. Thus, for an intersection to lie in S1 we expect i to be small

and so we expect k to be small as well. Thus, we expect number of intersections

occurring within S1 to be small on average.

 In order to separate these two cases, we define k to be small if it is less than (ei)2

(where e is the base of the natural logarithm), and large otherwise. We break the analysis

of X into two parts, depending on the size of k. Henceforth, let w = ei.

 Using the fact that P1(i)∧P2(i,k) ≤ min(P1(i),P2(i,k)) the following formulae are

obtained.

2
1 2

1 0

min((), (,))
i k

X k P i P i k
≥ ≥

≤∑∑

2 2

2 2
1 2 1 2

1 0

min((), (,)) min((), (,))
i k w k w

k P i P i k k P i P i k
≥ ≤ ≤ ≥

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑ ∑ ∑

2 2

2 2
1 2

1 0

() (,)
i k w k w

k P i k P i k
≥ ≤ ≤ ≥

⎡ ⎤
≤ +⎢ ⎥

⎣ ⎦
∑ ∑ ∑

2 2

2 2
1 2

1 10

() (,)
i ik w k w

k P i k P i k
≥ ≥≤ ≤ ≥

≤ +∑ ∑ ∑∑ .

 Let
2

2
1 1

1 0

()
i k w

X k P i
≥ ≤ ≤

=∑ ∑ and
2

2
2 2

1
(,)

i k w

X k P i k
≥ ≥

=∑∑ . We will show that each of these

is O(1). First we consider X1. By applying our bound on P1(i) in X1 and ignoring the

terms for i<C, which can be always bounded, we have

() () ()
2

2 2 2
2 6 6

1
0

/ / /
exp exp () exp

4 4 4i C i C i Ck w

i C i C i C
X k w ei

π π π

≥ ≥ ≥≤ ≤

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
≤ − ≤ − ≤ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ .

 By making the variable substitution j = πi2 / 4C2 we have

92

()6 3

1 3
0

64
j

j

Ce jX
eπ ≥

≤ ∑ .

 It is well known [Corm01] that last summation converges and so X1 = O(1).

 Next we consider X2. First observe that because k≥w2 = (ei)2 and so /i k e≤ , we

can alter the order of the summation to obtain

2

2 2
2 2 2

1 0 1 /

(,) (,)
i k i k ek w

X k P i k k P i k
≥ ≥ ≤ ≤≥

= ≤∑∑ ∑ ∑ .

 Now, by applying our bound on P2(i,k) in X2 we have

()2 2
2

2
0 1 /

2 exp(2)
!

k

k i k e

i i
X k

k≥ ≤ ≤

⎛ ⎞−⎜ ⎟≤
⎜ ⎟
⎝ ⎠

∑ ∑ ,

and making the substitution j = 2i2 we have

()
2

2
2

0 2 2 /

exp()
!

k

k j k e

j j
X k

k≥ ≤ ≤

⎛ ⎞−
≤ ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑ .

 Recall that by Stirling's approximation [Corm01], there exists a constant c such that

!
kkk c k

e
⎛ ⎞≥ ⎜ ⎟
⎝ ⎠

. Clearly 22 2 /j k e≤ ≤ and exp(-j) ≤1, and so we have

() ()
()

1 12 2 5/ 2 3
2 2

2 2
0 0 1 1

2 / 2 / 2
! /

2 2

k k

k k k
k k k k

k e k e k kX k k
k e cc k k e e e

+ +

≥ ≥ ≥ ≥

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≤ ≤ ≤ ≤
⎜ ⎟ ⎜ ⎟ ⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑ .

 As before, this summation converges, and so X2 = O(1). Therefore, the expected

number of intersections is at most X = X1 + X2 = O(1), as desired. As the number of edge

intersection occurring is O(n), the complexity of the two dimensional arrangement

resulting from the overlapping of the two Voronoi diagrams Vor(A1) and Vor(A2) is O(n).

93

 The important result obtained in Theorem 2 will be extended to d dimensional

Voronoi diagrams in the next subsection. Then the complexity of the overlapping of m

spatial arrangements defined in Subsection 3.7.1 will be evaluated.

3.7.3 Complexity Of The Overlapping Of m Spatial Arrangements S(Pi) In d

The result of Theorem 2 can be extended to d dimensional Voronoi diagrams by using the

following theorem. Note that the constant hidden in the O notation of the Voronoi

diagram complexity O(n) grows exponentially with the Voronoi diagram dimension d.

 Theorem 3: Consider two random point sets A1 and A2 generated independently from

a Poisson process with rate 1 in d for a fixed constant d. Then the expected complexity

of the d dimensional arrangement resulting from the overlapping of Vor(A1) and Vor(A2)

is O(n).

 Proof. In order to prove Theorem 3 let us focus on the complexity of d dimensional

Voronoi diagrams. For random point sets generated independently from a Poisson

process with rate 1 in d the expected complexity is O(n). In fact Voronoi diagrams for

any reasonable probabilistic distribution are combinatorially simple and their

complexities are linear with respect to the number of points n with constant of

proportionality increasing exponentially with d [Bien05, Dwye91]. By using this result

the proof for Theorem 2 can be used to prove Theorem 3 as well. In the case of d

dimensional Voronoi diagrams the concept of Voronoi entities needs to be introduced.

Voronoi-entities can be defined as i-faces, that is the i-dimensional faces forming the

Voronoi diagram. In particular d-faces are the d-dimensional spatial regions into which

d is partitioned by the Voronoi diagram. The (d-1)-faces are called facets and (d-2)-

94

faces are called ridges. In 3 2-faces are the 3D spatial regions of the Voronoi diagram,

facets (i.e. 2-faces) are the faces forming each region, ridges (i.e. 1-faces) are the edges

bounding each facet and 0-faces are vertices. Therefore in d Voronoi entity intersections

need to be counted rather than Voronoi edge intersections. Therefore the proof of

Theorem 2 can be extended to d dimensional space by substituting the concept of edge

intersection with the more general one of entity intersection. Therefore the estimated

number of intersections will be O(n) in the d dimensional space as well. Hence the

complexity of the d dimensional arrangement resulting from the overlapping of Vor(A1)

and Vor(A2) is O(n).

 Now the complexity of the overlapping of m spatial arrangements S(Pi) in d defined

in Subsection 3.7.1 can be evaluated referring to two corollaries that follow immediately

from Theorem 3. They are stated and proved as follows.

 Corollary 1: Consider m random point sets Ai for i=1,2,…,m of cardinality n

generated independently from a Poisson process with rate 1 in d for a fixed constant d.

Then the expected complexity of the d dimensional arrangement resulting from the

overlapping of Vor(Ai) is O(m2n).

 Proof. The complexity of the d-dimensional arrangement resulting from the

overlapping of the m Voronoi diagrams Vor(A1) is determined by the total complexity of

these m diagrams plus the total number of intersections between each pair of distinct

Voronoi diagrams Vor(Ai) and Vor(Aj). Each individual diagram has an expected

complexity of O(n) and hence their total complexity is O(mn). In order to bound the

number of intersections, we observed previously that the number of new entities resulting

95

from the overlapping is proportional to the number of intersections occurring. From

Theorem 3 it follows that for each pair of Voronoi diagrams, their overlap has O(n)

intersections in expectations. As there are O(m2) possible distinct pairs of the m Voronoi

diagrams being overlapped, the total number of new entities in the resulting d-

dimensional arrangement is O(m2n). Therefore the complexity of the d dimensional

arrangement resulting from the overlapping of m Voronoi diagrams Vor(Ai) is O(m2n).

 Corollary 2: Consider m random attributed point sets Ai for i=1,2,…,m of cardinality

n generated independently from a Poisson process with rate 1 in d. The attributes are

assumed to be generated independently from a Poisson process of rate 1 over . Then the

expected complexity of the d-dimensional arrangement resulting from the overlapping of

S(Ai) is O(m2n).

 Proof. A spatial arrangement S(Ai) has been defined in Subsection 3.7.1. Observe that

a set P of attributed points p = 1 2(, ,..., ,)p p p p
dx x x w in d can be seen as a set P’ of non-

attributed points p = 1 2 1(, ,..., ,)p p p p
d dx x x x + in d+1, where 1

p p
dx w+ = . Hence let us consider

the d+1-dimensional arrangement resulting from the overlapping of m Voronoi diagrams

Vor(Ai) of non-attributed point sets in d+1. From Corollary 1 it can be inferred that the

complexity of the d+1-dimensional arrangement is O(m2n). In order to address attributed

points in d it is necessary to consider the intersection of the d+1-dimensional

arrangement with the hyperplane 1
p
dx c+ = in Rd+1 where c is a constant real number. The

resulting d-dimensional spatial arrangement in d will have complexity O(m2n).

96

 Corollary 2 addresses the problem stated in Subsection 3.7.1 in the case of attributed

point sets generated from a Poisson process and yields the complexity evaluation for the

lower dimension algorithms. In fact Corollary 2 guarantees that the number of regions

resulting from the overlapping of m spatial arrangements of complexity O(n) generated

independently from a Poisson process is O(m2n). The evaluated low order polynomial

complexity is smaller than the exponential complexity O(nm), which is obtained in case

each entity of each overlapping arrangement intersects with all the entities of all the other

arrangements. Hence, considering the fact that some of the regions will also be discarded

by using Theorem 1, the optimal algorithms based on partitioning of transformation

spaces that have been developed can efficiently solve attributed point alignment

problems.

3.8 Summary

In this chapter, we have shown that it is possible to partition the transformation space into

a set of regions such that the closest neighbors remain invariant in each region. Using this

partitioning, we have designed new algorithms to perform attributed point optimal

alignment by searching for optimal solutions in each region. We have also shown that the

resulting numbers of partitions are bounded by low order polynomials in the case of well-

behaved uniform attributed point distributions and hence it is possible to use these

algorithms in practice.

 Theoretically, the method used in this chapter can work for all types of rigid body

transformations. However, in higher dimensions, the data structures needed to perform

partitioning and hold results are very complex and difficult to implement. Therefore, in

this chapter we have focused on lower dimension transformations. In Chapter 4 we

97

describe how these algorithms can be used in iterative strategies to perform alignment

using higher dimensional transformations.

 The optimal alignment corresponds to the global minimum of a distance function that

is computed between the two sets of attributed points being aligned. The distance

function that is used needs to be differentiable. It accounts for transformation dependent

and transformation invariant attributes. Distance function can include desired numbers of

attributes and their weights, hence it is customizable. Furthermore the distance function is

asymmetric, a property that may be desirable in manufacturing applications. The

algorithms can be easily modified in order to be extended to symmetric distance

functions.

 The complexity of the algorithms designed depends on the complexity of the spatial

arrangements used to partition the transformation space. A low order polynomial upper

bound complexity has been obtained in the general case of d dimensional arrangements

for well-behaved uniform attributed point distributions.. The result obtained is valid for

sets of attributed points generated by using a Poisson process. This assumption is

reasonable as the optimal alignment algorithms in this thesis are used to perform feature-

based shape similarity assessment for manufacturing applications. In manufacturing field

part features are expected to be uniformly distributed attributed points or vectors. Hence

the theoretical result should be applicable to manufacturing applications.

98

Chapter 4: Attributed Point Alignment Algorithms Based On Iterative Strategies

This chapter is organized as follows. In Section 4.1 the motivation behind the research

work described in this chapter is described. Section 4.2 gives the problem formulation. In

Section 4.3 iterative strategies are formally defined. In Section 4.4 properties of a

particular class of iterative strategies are analyzed. In Section 4.5 experimental results are

presented. In Section 4.6 the main results are summarized.

4.1 Motivation

In theory, the partitioning scheme described in Chapter 3 can be used to handle any

arbitrary transformation space. For example, if we have a six dimensional transformation

space, then this space can be partitioned into spatial regions that are six dimensional

entities. However, implementing direct partitioning of transformation spaces that involve

more than three dimensions appears to be a very challenging task for the following

reason. Years of research in solid modeling community has established excellent

foundations for representing and computing three dimensional geometric entities with

adequate precision. In fact, numerous commercial and academic libraries are available for

constructing two and three dimensional geometric entities. A typical library for

constructing and querying three dimensional geometric entities consists of tens of

thousands of lines of codes. Currently, libraries are not available for constructing and

querying four or higher dimensional geometric entities. Data structures and algorithms

involved in implementing four dimensional entities are significantly more complex than

three dimensional entities. Therefore, at least in the near term, robust implementation of

partitioning of transformation spaces involving more then three dimensions appears to be

impractical.

99

 We are interested in exploring strategies in which a higher dimension problem is

transformed into a sequence of lower dimension problems by fixing certain dimensions in

each of the lower dimensional problems. We refer to these problem solving strategies as

iterative strategies. These strategies involve use of sequential application of optimal

alignment algorithms based on partitioning of lower dimension transformation spaces.

This corresponds to searching for the optimal alignments in certain projections of the

transformation space in an iterative manner.

 Building iterative strategies that can lead to the optimal solution of higher dimension

alignment problems is a challenging task. In fact iterative strategies can get stuck in local

minima rather than leading to the optimal solution. Hence it is necessary to identify

characteristics and properties of iterative strategies such that optimal solutions of higher

dimension alignment problems can be found.

4.2 Problem Formulation

Consider two sets of attributed points P and Q. P and Q are compared using the distance

function defined in Equation (3.1). The distance function between the attributed points p

∈ P and q ∈ Q was defined in Equation (3.2). A more general definition is the following.

2 2

1
(,) () ()

d p q p q
i i

i
d p q x x w w

=
= − + −∑ (4.1)

 In Equation (4.1) d is the dimension of the attributed points p ∈ P and q ∈ Q, p
ix and

q
ix are the i-th coordinates of points p ∈ P and q ∈ Q and finally wp and wq are the

transformation-invariant attributes associated to points p ∈ P and q ∈ Q. The

transformation T applied to one set with respect to the other such that distance between

the two sets is minimized is sought. The distance function defined in Equation (3.1) can

100

be written as in Equation (3.3) as it is function of the transformation T. The global

minimum of the distance function is the optimal solution of the alignment problem.

4.3 Definition Of Iterative Strategies

In order to solve problems involving higher degree of freedom transformations iterative

strategies that use optimal alignment algorithms based on partitioning of lower dimension

transformation spaces are defined as follows.

 Consider two sets of points P and Q. P needs to be aligned with respect to Q using a

transformation T = (t1, t2, ..,tm) belonging to a transformation space Γ. Assume that a set

of algorithms that can perform optimal alignment between P and Q based on partitioning

of lower dimension transformation spaces Γs is available. Every Ts ∈ Γs is of the form

such that one or more of its components is zero (e.g., Ts = (t1, t2, t3, 0, 0, 0)). Therefore Γs

⊂ Γ.

 Let the given set of optimal alignment algorithms based on partitioning of lower

dimension transformation spaces be

{ALIGN-Ts
1, ALIGN-Ts

2, …, ALIGN-Ts
n} (4.2)

where ALIGN-Ts
i performs the optimal alignment of P with respect to Q using a Ts

i

transformation. The following notation describes the effect of alignment.

P’ = ALIGN-Ts
i(P,Q) (4.3)

where P’ is transformed P after applying the transformation that results in the optimal

alignment of P with respect to Q using Ts
i.

 Assume that the transformation set {Ts
1, Ts

2, …, Ts
n} that corresponds to the optimal

alignment algorithms described previously is such that for every component ti of general

transformation T, there exists a lower dimension transformation with a corresponding

101

non-zero component. If this condition is met then set {Ts
1, Ts

2, …, Ts
n} is said to span the

dimension of T.

 Now consider the following sequence of application of algorithms.

(P1 = ALIGN1(P,Q), P2 = ALIGN2(P1, Q), …, Pk = ALIGNk (Pk-1,Q)) (4.4)

where ALIGNi ∈ {ALIGN-Ts
1, ALIGN-Ts

2, …, ALIGN-Ts
n}

 This sequence terminates when the following condition is met.

(,) (,)kd P Q d P Q ε′− < (4.5)

where P’ = ALIGN(Pk,Q) and ALIGN ∈{ALIGN-Ts
1, ALIGN-Ts

2, …, ALIGN-Ts
n}.

 Two general observations can be made about iterative strategies. The first one is that

different iterative strategies applied to the same alignment problem can lead to different

outcomes and can have significantly different performances. From now on the initial

position of the point sets being aligned will be referred to as initial condition. The second

observation is that the outcome of an iterative strategy depends also on the initial

condition. The same iterative strategy applied to the same sets of attributed points starting

from two different initial conditions can in general have different outcomes. In light of

these observations, in order to choose the most appropriate iterative strategy to optimally

solve a higher dimension alignment problem the following two pieces of information are

needed. The first one is whether the outcome of a particular iterative strategy is

guaranteed to be at least a local minimum. In fact an iterative strategy that is guaranteed

to reach a local minimum is expected to perform better than an iterative strategy that is

not guaranteed to reach a local minimum. This is because the performance of an iterative

strategy would depend only on the average number of local minima expected for the

alignment problem. The other piece of information needed is the number of initial

102

conditions that are needed to reach the global minimum. Observe that this piece of

information is related to the average number of local minima expected for the alignment

problem addressed. This is true especially if the iterative strategy being used is

guaranteed to reach a local minimum.

 In the next section the mathematical foundations for a class of iterative strategies in

2 are given. These mathematical foundations guarantee that this particular class of

iterative strategies in 2 always leads to a local minimum of the distance function defined

in Equation (3.1).

4.4 Mathematical Foundations For Iterative Strategies In 2

Consider the alignment problem in 2 under 3 DOF transformations. In this case,

referring to the two sets of attributed points P and Q, P needs to be aligned with respect

to Q using the transformation T = (∆x,∆y,θ) belonging to the transformation space Γ. The

first two components of the transformation T represent the translation components and

the third one represents the rotation around an axis perpendicular to 2. The optimal

alignment algorithms described in Section 3.4 and Section 3.5 can be used to provide

partial solutions to the alignment problem defined above. Call the former algorithm

ALIGN-T1 and the latter algorithm ALIGN-T2. Consider the lower dimension

transformation spaces Γ1 and Γ2. The transformations T1 ∈ Γ1 and T2 ∈ Γ2 are such that

one or more components are zero: T1 = (∆x,∆y,0) and T2 = (0,0,θ). Algorithm ALIGN-T1

can perform optimal alignment by using the transformations T1 ∈ Γ1 and algorithm

ALIGN-T2 can perform optimal alignment by using the transformations T2 ∈ Γ2.

103

 The two optimal alignment algorithms ALIGN-T1 and ALIGN-T2 provide partial

solutions for the alignment problem defined above. However it is possible to define an

iterative strategy I2 by using these two algorithms as follows.

(P1 = ALIGN1(P,Q), P2 = ALIGN2(P1, Q), …, Pk = ALIGNk(Pk-1,Q)) (4.6)

where referring to Equation (4.2) and to the previous paragraph the following is valid.

1

2

LIGN LIGN

LIGN LIGN

A (,) = A - if is even
A (,) = A - if is odd

i

i

P Q i
P Q i

⎧⎪
⎨
⎪⎩

T
T

 (4.7)

 The rotation θ that is used in algorithm ALIGN-T2 is performed around the center of

mass of the point set P that is being rotated. The center of mass is computed without

considering the transformation-invariant attribute of each point. This paragraph and in

particular Equations (4.6) and (4.7) define the iterative strategy I2. An important theorem

on iterative strategy I2 is proved as follows.

 Theorem 4: Consider the attributed point alignment problem in 2 under 3 DOF

transformation formulated in this section. If the iterative strategy I2 defined by Equations

(4.6) and (4.7) is applied to that alignment problem, then the resulting distance value is

guaranteed to be a local minimum for the distance function defined in Equation (3.1).

 Proof. In order to prove Theorem 4, let us refer to the notations introduced in

Subsections 3.4.2 and 3.5.2 and corresponding equations. As in this case both translations

and rotations are being considered, the following representation of points of transformed

set P can be used.

() cos() point
() sin()

i i

i i

p p
B i o

ip p
B i o

x x x d p P
y y y d

θ θ θ
θ θ θ

⎧⎪
⎨
⎪⎩

= +∆ + +
∀ ∈

= +∆ + +
 (4.8)

104

 The distance function defined in Equation (3.1) can be adapted for the notations being

used and the transformation T = (∆x,∆y,θ). Theorem 4 can be proved by checking the

following conditions in correspondence of the outcome of the iterative strategy I2.

1. The first partial derivatives of the distance function with respect to each of the

transformation component must be equal to 0

2. The Hessian of the distance function must be positive definite.

 Observe that the first partial derivatives of the distance function defined in Equation

(3.1) are equal to 0 by definition of the iterative strategy I2 itself. In fact the outcome of

the iterative strategy corresponds to a minimum of the distance function with respect to

both translations and rotations. Hence the first derivatives of the distance function with

respect to translations and rotations are both equal to 0. So it is only necessary to check

the second condition. In order for the second condition to be valid it is necessary that all

the eigenvalues of the Hessian matrix be strictly positive. Consider the Hessian matrix

corresponding to the distance function used.

2 2 2

2

2 2 2

2

2 2 2

2

(, ,) (, ,) (, ,)

(, ,) (, ,) (, ,)

(, ,) (, ,) (, ,)

d x y d x y d x y
x y

d x y d x y d x y
x x x y

d x y d x y d x y
y y x y

θ θ θ
θ θ θ

θ θ θ
θ

θ θ θ
θ

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥=

∂ ∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦

H (4.9)

 The elements of the Hessian have the following expression.

105

2 2

2 2

2
1 1

2

2

2
1

2

(, ,) (, ,) 2

2 [()] cos() 2 [()] sin()
(, ,)

(, ,) 0

2 sin()
(, ,)

2 cos(
(, ,)

j ji i

i

n n
q qp p

B i o B i o
i i

n
p

i o
i

i

d x y d x y
x y

x x x i d y y y i d
d x y

n
d x y

x y

d
d x y

x n

d
d x y

y

θ θ

θ θ θ θ
θ

θ
θ

θ θ
θ

θ

θ
θ

θ

= =

=

∂ ∂
= =

∂ ∂

− ∆ + − + − ∆ + − +
∂

=
∂

∂
=

∂ ∂

− +
∂

=
∂ ∂

+
∂

=
∂ ∂

∑ ∑

∑

1
)i

n
p

o
i

n

θ
=

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

∑

 (4.10)

 By definition of the iterative strategy I2 and in particular by using the fact that the

rotations take place around the center of mass of the set being rotated, the third and the

fourth Equations (4.10) are equal to 0. Hence the characteristic equation of the Hessian

matrix defined in Equation (4.9) has the following simple expression.

()
2

2
2

(, ,)2 d x y θλ λ
θ

⎛ ⎞∂
− −⎜ ⎟

∂⎝ ⎠
 (4.11)

 So two eigenvalues are coincident and equal to 2, which is a positive number. The

sign of the third eigenvalue depends on the sign of the second derivative
2

2

(, ,)d x y θ
θ

∂
∂

.

Observe that both algorithm ALIGN-T1 and algorithm ALIGN-T2 defined in this section are

optimal. Hence in correspondence of the outcome of iterative strategy I2 both the

algorithms reach the global minimum with respect to the transformations that they use. In

particular ALIGN-T2 will reach the global minimum with respect to rotation θ. Therefore

106

it immediately follows that
2

2

(, ,)d x y θ
θ

∂
∂

 > 0 in correspondence of the outcome of the

iterative scheme I2. This proves that the Hessian is positive definite. Hence both the

conditions stated previously are met and so the value of distance represents a local

minimum for the distance function, which proves the theorem.

4.5 Experimental Results

A series of experiments has been run to assess the performance of the previously

described iterative strategies. In this section these experiments are presented. In

Subsection 4.5.1 experimental results by using iterative strategies in 2 are presented. In

Subsection 4.5.2 experimental results by using iterative strategies in 3 using 6 DOFs are

presented. In Subsection 4.5.3 experimental results by using iterative strategies in 3

using 3 rotational DOFs are presented.

4.5.1 Tests On Iterative Strategies In 2

Consider the alignment problem in 2 under 3 DOF transformations formulated in

Section 4.4 and the iterative strategy I2 defined by Equations (4.6) and (4.7). By Theorem

4 the distance value corresponding to the two sets being aligned is guaranteed to be a

local minimum for the distance function defined in Equation (3.1). Hence the solution is

in general a local minimum. The local minimum reached depends on the initial condition

of the point sets being aligned. The same iterative scheme applied to the same sets of

points starting from different initial conditions may lead to two different local minima.

107

Hence more initial conditions are considered, more likely the global minimum is reached

by iterative strategy I2.

 In order to assess the performance of iterative strategy I2, in the first two experiments

it has been applied to the attributed point alignment problem in 2 under 3 DOF

transformations.

 In the first experiment, 200 initial sets of 20, 40 and 80 attributed points inside a

circle of a fixed size were randomly generated for a total of 600 initial sets. The

transformation-invariant attributes were also generated randomly. Then a random

transformation was applied to each of the 600 sets, creating 600 more sets of attributed

points. Hence finally 600 pairs of attributed points were obtained. Consider all the pairs

of sets consisting of one initial set and one corresponding additional sets created as

explained previously. The iterative strategy I2 was applied to each pair of attributed point

sets, evaluating a total of 600 instances. The expected minimum distance corresponding

to the optimal alignment computed among the sets of each pair is 0. Cases in which the

optimal alignment was not found were handled using the following procedure. A random

transformation was applied to the initial set of the pair in order to create a different initial

condition. Then the experiment was repeated with the different initial condition that had

been obtained for those instances. This procedure was repeated until the optimal

alignment was found or the limit of ten different initial conditions was reached. Hence

out of the 600 instances, the optimal alignment (i.e. distance = 0) was found in all of

them.

 In the second experiment, 200 initial sets of 20 attributed points were randomly

generated and then again a random transformation was applied to each of them, creating

108

200 more sets of attributed points. This time before applying the iterative scheme 5%,

10%, 20% and 40% of the attributed points were erased from one of the sets being

compared. We expected the erasing of the points not to affect the alignment of each pair

of sets, as the distance function used is defined also for sets of different cardinality. Out

of the 800 instances (i.e. 200 instances for each distinct number of erased points), the

optimal alignment was found in all of them.

 In Figure 4.1 a histogram representing the number of converging and non-converging

instances vs. the number of initial conditions used for both the first and the second

experiment is shown.

4.5.2 Tests On Iterative Strategies In 3 Using 6 DOFs

Consider the alignment problem in 3 under 6 DOF transformations. In this case,

referring to the two sets of attributed points P and Q, P needs to be aligned with respect

to Q using the transformation T = (∆x,∆y,∆z,ψ,ϕ,θ). The first three components of the

transformation T represent the translation components. The second three components

represent the rotations around the coordinate axis X, Y, and Z respectively. The optimal

alignment algorithms described in Section 3.4 and Section 3.5 can be used to provide

partial solutions to the alignment problem defined above. Call ALIGN-TXY the algorithm

described in Section 3.4 if it uses translations in the coordinate plane XY. Similarly call

ALIGN-Tθ the algorithm described in Section 3.5 if it uses rotations about the coordinate

axis Z. Observe that the Z coordinate of each attributed point remains constant when the

two optimal alignment algorithms ALIGN-TXY and ALIGN-Tθ are applied to attributed

109

points in 3. However it is necessary to account for it in the distance function as a

transformation-invariant attribute.

 It is possible to define an iterative strategy IXY in 3 by using the two algorithms

previously defined as follows.

Figure 4.1: Histogram Showing the Number of Converging and Non-converging
Instances Vs. The Number of Initial Conditions Used for Iterative Strategy in 2

1391 1398

1400
9 2

1 2 3

Number of initial conditions used

Number of converging
instances

Number of non-converging
instances

1391 1398

1400
9 2

1 2 3

Number of initial conditions used

Number of converging
instances

Number of non-converging
instances

110

(P1 = ALIGN-TXY (P,Q), P2 = ALIGN-Tθ(P1, Q), P3 = ALIGN-TXY (P2,Q), P4 = ALIGN-

Tθ(P3, Q), …)

 (4.12)

 The rotation θ that is used in algorithm ALIGN-Tθ is performed around the center of

mass of the point set P that is being rotated. The center of mass is computed without

considering the transformation-invariant attribute of each point.

 Iterative strategy IXY can be used as basis to solve the optimal alignment problem in

3. In fact iterative strategy IXY involves 3 degree of freedom transformations: translation

in a coordinate plane and rotation around the axis perpendicular to the coordinate plane.

Iterative strategy Ixy provides a partial solution to the optimal point alignment problem in

3 because it uses only three out of the six degrees of freedom involved. Similarly the

iterative strategies Ixz and Iyz can be defined. The same observations made for iterative

strategy Ixz apply to iterative strategies Ixz and Iyz. Now consider the following six

possible distinct sequences of application of the iterative strategies previously defined.

()
()
()
()
()
()

3
1

3
2

3
3

3
4

3
5

3
6

, , ,...

, , ,...

, , ,...

, , ,...

, , ,...

, , ,...

xy xz yz

xy yz xz

xz xy yz

xz yz xy

yz xy xz

yz xz xy

I I I I

I I I I

I I I I

I I I I

I I I I

I I I I

⎧ =
⎪
⎪ =
⎪
⎪ =⎪
⎨

=⎪
⎪

=⎪
⎪

=⎪⎩

 (4.13)

 Each of the 3
iI uses all the six degrees of freedom involved in the optimal alignment

problem in 3. Hence each of the iterative strategies 3
iI can be applied to the optimal

111

alignment problem in 3. In order to assess the performance of the iterative strategies 3
iI

defined by Equations (4.12) and (4.13), in the first and second experiments they are

applied to the optimal alignment problem in 3.

 In the first experiment, 1000 initial sets of 20, 40 and 80 attributed points inside a

sphere of a fixed size were randomly generated. The transformation-invariant attributes

were also generated randomly. Then a random transformation was applied to each of the

1000 sets, creating 1000 more sets of attributed points. Hence finally 3000 pairs of sets of

attributed points were obtained. Consider all the pairs of sets consisting of one initial set

and one corresponding additional sets created as explained previously. The iterative

strategies 3
iI were applied to each pair of attributed point sets, for i = 1,2,…,6, until

convergence was reached. A total of 3000 instances were evaluated. The expected

minimum distance corresponding to the optimal alignment computed among the sets of

each pair is 0. Cases in which the optimal alignment was not found were handled using

the same procedure as previously. A random transformation was applied to the initial set

of the pair in order to create a different initial condition. Then the experiment was

repeated with the different initial condition that had been obtained for those instances.

This procedure was repeated until the optimal alignment was found or the limit of ten

different initial conditions was reached. Out of the 3000 instances, the optimal alignment

(i.e. distance = 0) was found in all of them.

 In the second experiment, 1000 initial sets of 20 points were randomly generated and

then again a random transformation was applied to each of them, creating 1000 more sets

of points. This time, as it was done previously, before applying the iterative scheme 5%,

112

10%, 20% and 40% of the points were erased from one of the sets being compared. The

erasing of the points was not expected to affect the alignment, as the distance function

can be applied to sets of different cardinality. Out of the 4000 instances (i.e. 1000

instances for each distinct number of erased points), the optimal alignment was found in

all of them.

 In Figure 4.2 a histogram representing the number of converging and non-converging

instances vs. the number of initial conditions used for both the first and the second

experiment is shown.

 For the point alignment problem in 3 under 6 DOF transformations we have

investigated whether the iterative strategies 3
iI are guaranteed to lead to a local minimum

or not. For this purpose the Hessian of the distance function has been evaluated in

correspondence of the outcomes that did not corresponded to the optimal alignment (i.e.

distance = 0). Its positive definiteness cannot be guaranteed. Experiments have been

carried out in order to assess the performance of this class of iterative strategies on the

optimal point alignment problem in 3D. Out of the 757 evaluations of the Hessian, 6.87%

of the cases were found not positive definite. Hence for the point alignment problem in

3 under 6 DOF transformations the Hessian is not guaranteed to be positive definite.

4.5.3 Tests On Iterative Strategies In 3 Using 3 Rotational DOFs

Consider the point alignment problem in 3 for 3 rotational DOFs. In this case, referring

to the two sets of attributed points P and Q, P needs to be aligned with respect to Q using

the transformation T = (ψ,ϕ,θ). The three components of the transformation T represent

113

the rotations around the coordinate axis X, Y, and Z respectively. The optimal alignment

algorithm described in Section 3.5 can be used to provide partial solutions to the

alignment problem defined above. Using the notations introduced in the previous

subsection call ALIGN-Tθ the algorithm described in Section 3.5 if it uses rotations about

the coordinate axis Z. Observe that the Z coordinate of each attributed point remains

constant when the optimal alignment algorithm ALIGN-Tθ is applied to attributed points in

3. However it is necessary to account for it in the distance function as a transformation-

invariant attribute. The algorithms ALIGN-Tψ and ALIGN-Tϕ are defined in a similar way.

 There are six possible distinct sequences 3
RiI of application of the lower dimension

optimal alignment algorithms ALIGN-Tθ, ALIGN-Tψ and ALIGN-Tϕ. They are defined as

follows.

()
()
()
()
()

3
1

3
2

3
3

3
4

3
5

3
6

ALIGN-T , ALIGN-T , ALIGN-T ,...

ALIGN-T , ALIGN-T , ALIGN-T ,...

ALIGN-T , ALIGN-T , ALIGN-T ,...

ALIGN-T , ALIGN-T , ALIGN-T ,...

ALIGN-T , ALIGN-T , ALIGN-T ,...

ALIGN-T , ALIGN-T , AL

R

R

R

R

R

R

I

I

I

I

I

I

θ ϕ ψ

θ ψ ϕ

ϕ θ ψ

ϕ ψ θ

ψ θ ϕ

ψ ϕ

=

=

=

=

=

= ()IGN-T ,...θ

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 (4.14)

 Each sequence 3
RiI identifies an iterative strategy. In order to assess the performance

of iterative strategies 3
RiI , they have been applied to the optimal point alignment problem

in 3 under three 1 DOF rotations.

114

In the experiment 1000 initial sets of 20 attributed points inside a sphere of a fixed size

were randomly generated. The transformation-invariant attributes were also generated

randomly. Then a random transformation was applied to each of the 1000 sets, creating

1000 more sets of attributed points. Hence finally 1000 pairs of sets of attributed points

were obtained. Consider all the pairs of sets consisting of one initial set and one

corresponding additional sets created as explained previously. For each pair of attributed

Figure 4.2: Histogram Showing the Number of Converging and Non-converging
Instances Vs. The Number of Initial Conditions Used for Iterative Strategy Ii

3 in 3

Number of initial conditions used

Number of converging
instances

Number of non-converging
instances

6728 6974 6997

7000
272 26 3

1 2 3 4

Number of initial conditions used

Number of converging
instances

Number of non-converging
instances

6728 6974 6997

7000
272 26 3

1 2 3 4

115

point sets two corresponding points were matched using a translation. Then the iterative

strategies 3
RiI were applied to each pair of point sets, for i = 1,2,…,6, until convergence

was reached. A total of 1000 instances were evaluated. The expected minimum distance

corresponding to the optimal alignment computed among the sets of each pair is 0. Cases

in which the optimal alignment was not found were handled using the same procedure as

previously. A random transformation was applied to the initial set of the pair in order to

create a different initial condition. Then the experiment was repeated with the different

initial condition that had been obtained for those instances. This procedure was repeated

until the optimal alignment was found or the limit of ten different initial conditions was

reached. Out of the 1000 instances, the optimal alignment (i.e. distance = 0) was found in

all of them. In Figure 4.3 a histogram representing the number of converging and non-

converging instances vs. the number of initial conditions used for the third experiment is

shown.

4.6 Summary

This chapter describes alignment algorithms based on iterative strategies in 2 and 3.

The iterative strategies use optimal alignment algorithms based on partitioning of lower

dimension transformation spaces. Extensive experiments have been carried out in order to

evaluate the performance of the iterative strategies and to identify some of their

characteristics. We have shown that iterative strategies are capable of producing optimal

solutions in 2 and 3.

116

We have shown that an iterative strategy in 2 leads to a local minimum. We have

designed iterative strategies and conducted experiments in 3 using 6 DOF and 3 DOF

transformations. The experiments show that the number of local minima is low and hence

few initial conditions are sufficient to find the optimal solution. Experiments were carried

out by using randomly generated sets of attributed points. In theory, there could be

pathological cases that are not represented in our experiments. In such pathological cases,

Figure 4.3: Histogram Showing the Number of Converging and Non-converging
Instances vs. The Number of Initial Conditions Used for Iterative Strategies IRi

3 in 3

Number of initial conditions used

Number of converging instances

Number of non-converging instances

955 996 999

1000
45 4 1

1 2 3 4

Number of initial conditions used

Number of converging instances

Number of non-converging instances

955 996 999

1000
45 4 1

1 2 3 4

117

the performance of the iterative strategy might be significantly different from the

performance observed in our experiments. However, we do not expect such pathological

cases to be encountered in manufacturing applications. Hence, we believe that reasonable

empirical evidence has been provided that iterative strategies can be used to find the

optimal solution for point alignment problems.

118

Chapter 5: Feature-Based Similarity Assessment Algorithms

This chapter is organized as follows. Section 5.1 gives the motivation and identifies the

goal of the chapter. Section 5.2 provides the necessary definitions and presents the

problem formulation. Section 5.3 describes the machining feature-based similarity

assessment algorithm in the case of single feature interpretation. The part of this

algorithm that performs optimal alignment under one degree of freedom rotations is

described in Section 5.4. Section 5.5 gives the results of the computational experiments

that have been performed by considering single preferred feature interpretations. Section

5.6 presents an extension of the algorithm to a class of multiple feature interpretations.

Finally, Section 5.7 presents the concluding remarks.

5.1 Motivation

For some manufacturing domains such as rapid prototyping, reasonably accurate

estimates of cost can be generated by estimating the volume or weight of the part.

However, for 3-axis machining, the accurate cost estimation is much more difficult. Cost

for a machined part can be defined as a summation of material costs, setup costs, tooling

costs, and operation costs. Material costs depend upon the cost of stock being used. Setup

costs depend on how many setups are needed and fixturing methods used in each setup.

Therefore, setup costs depend on how features are oriented in space and how they interact

with each other to affect fixturing and introduce precedence constraints. Tooling costs

depend on the tools being used. Therefore, tooling cost depends on machining feature

types. Operation costs depend on the time taken to machine various features. Therefore,

operation costs depend on feature types, dimensions, and tolerances.

119

 Given a set of machining features belonging to a part, it is easy to estimate operation

costs. However, it is difficult to estimate setup costs from the description of machining

features alone. Setup costs not only depend upon the total number of feature access

directions but also on the type of precedence constraints that exist among features and

how each setup is fixtured. Currently there is no automated method for performing setup

planning in commercially available process planning systems. Therefore, unless a

detailed setup plan is manually developed, machining cost cannot be estimated accurately

from the description of machining features alone. Therefore, currently cost estimation is

done manually for machined parts if high accuracy is desired in cost estimates.

 Accurate cost estimation can take any where from few minutes to a few hours

depending upon the expertise of the cost estimator and the complexity of the part. Based

upon our conversations with human cost estimators, it appears that many of them

implicitly use estimates from previously completed tasks to generate new quotes.

 Manual cost estimation is inefficient, especially when the designer submits the 3D

model over the Internet for getting quotes. One way to perform cost estimation is to

search a database of previously machined parts and automatically locate parts similar to

the newly designed part, so that the machining cost of the retrieved parts can be

potentially used to estimate the cost of the new part. Figure 5.1(a) shows a newly

designed part and Figure 5.1(b) shows a previously machined part that can be potentially

used to estimate the cost of the new part. Thus, there is a need to develop a system that

can assist the human cost estimators by quickly finding previously machined parts similar

to the query part.

120

 In order to be considered similar, two sets of machining features not only need to be

of similar number and of similar type but also the features need to be distributed in space

in a similar manner. The reason behind this requirement is as following. If two sets of

machining features are distributed in a similar way in the space, then they will have

similar interactions from a setup point of view. Feature interactions that need to be

considered during cost estimation are the spatial interactions that influence setups. If two

sets of given machining features can be aligned in the space such that for every feature in

the first set there is a corresponding feature in the second set, that is of the same type and

with similar parameters and situated at the same place in the space, then we can implicitly

ensure features in the two sets will have the same spatial interactions. This implicit

similarity in spatial interactions ensures that two parts will have similar setups both in

terms of operations and fixturing methods.

Figure 5.1: The Previously Machined Part (b) Can Be Potentially Used to Estimate the
Cost of the Newly Designed Part (a)

(b): Previously machined part(a): Newly designed part (b): Previously machined part(a): Newly designed part

121

 The cost of machined parts is determined by their machining features rather than their

overall shapes. Hence feature-based techniques are the most suitable to estimate the cost

of machined parts. Not all components of feature vectors play an equal role in

determining similarity between the two parts. Based on the nature of the application,

some components contribute significantly to similarity measures while others have

virtually no effect on the similarity. Therefore, we utilize reduced feature vectors in

determining the degree of similarity between two parts. Reduced feature vectors are

defined in such a way that they only include feature components having large influence

on similarity. In this chapter we will only focus on machining features defined for 3-axis

machining centers. Most modern 3D CAD/CAM systems (e.g., Pro/Engineer,

Unigraphics, etc.) allow users to define machining features.

 This chapter introduces reduced feature vector sets that are suitable for a cost

estimation application and describes the algorithms for the alignment of the reduced

feature vectors of a database part and the query part. Reduced feature vectors (RFVs) for

a part are usually defined using a specific coordinate system. In order to correctly

measure the distance between two given sets of reduced feature vectors, we need to

transform one set with respect to the other using rigid body transformations such that we

get the minimum distance between the two sets. We refer to this step as the alignment

step in this chapter.

 The output of the algorithms is a rank ordering of the machined parts in a database

based on the degree of similarity with respect to the query part. Each retrieved part will

have a distance value with respect to the query part. The larger the distance, the less

similar the retrieved part is to the query part. The cost of machining the query part can be

122

estimated by using the cost of previously machined parts that have a very small distance

value. The features of the query part may be interpreted differently corresponding to

different possible machining operations. The algorithms presented in this chapter have

been extended to account for existence of multiple interpretations of machining features.

These extensions are applicable to parts for which individual feature interpretations are

independent of each other.

5.2 Background And Problem Formulation

5.2.1 Machining Features

The key drivers for the machining cost of a prismatic part are the number of setups, the

number of tool changes and the machining operation cost. Setup is any changeover

activity that is necessary to change the part orientation. For 3-axis machining, the number

of setups depends on the relative orientation of the feature access vectors. The access

vector of a machining feature is a unit vector that gives the direction along which the tool

moves in order to machine the desired feature. The orientation vector of a machining

feature is a unit vector that gives the direction along which the tool moves in order to

give the desired orientation to the feature. For some features, such as holes, this vector

has no technical meaning. In this chapter we make the assumption that feature positions

do not play an important role in determining the machining cost of a prismatic part. This

is a reasonable assumption as long as the parts being considered do not have thin

sections. Feature positions play an important role in determining fixturing plans for part

with thin sections.

 Access vectors are modeled using unit vectors. A part having two differently oriented

features will require two setups while a part having two features with the same access

123

direction will require only a single setup. Tool changes are determined by the type of

feature that has to be machined. A part having a hole and a pocket with the same access

direction will require a tool change: the drill used to machine the hole needs to be

replaced by a mill to machine the pocket. The machining operation cost increases with

the volume of the feature to be machined. It also depends on the machining tolerance of

features.

 The features that have been considered include pockets, open slots, steps and holes.

Figure 5.2 shows all of the features considered. Open slots could be of three types: slot,

notch and through slot. They are shown in figures 5.2(b), 5.2(c) and 5.2(d) respectively

with their access and orientation vectors. The hole is an example of a feature where

orientation vector does not need to be defined because of symmetry. Each of the

previously listed features can be completely characterized by providing the values of

certain parameters such as height, width, length, and radius.

 Figures 5.3(a), 5.3(b), 5.3(c), 5.3(d) and 5.3(e) show parts A, B, C, D and E with their

corresponding feature access and orientation vectors. In Figure 5.4, the access vectors of

the parts are shown. Parts A and C are considered dissimilar from the cost estimation

point of view, and so are parts A and E, because the feature access directions cannot be

aligned. The feature access directions of parts A and B and parts A and D can be aligned

exactly. However part A is more similar to part B than to part D from a cost estimation

point of view, because the types of features of parts A and B match.

 RFVs of a feature of a part consist of those feature components that are important

from a machining effort point of view. RFVs are mathematically equivalent to attributed

points on the unit sphere. Figure 5.5 shows an example of RFVs of a part and their

124

equivalent attributed points on the unit sphere. Therefore, the problem of aligning two

sets of RFVs is equivalent to the problem of aligning attributed points on the unit sphere.

Hence in this chapter we will use terms RFVs and attributed points on unit sphere

interchangeably.

5.2.2 Distance Function For Similarity Assessment

Let p ∈ P and q ∈ Q be the two sets of RFVs corresponding to parts MP and MQ. Then, P

and Q are compared using the following distance function, which has the same

expression as the one defined in Equation (3.1).

1
min (,)

(,)

n

iq Qi
d p q

d P Q
n

∈=
∑

= (5.1)

Figure 5.2: Features Considered With Access and Orientation Vector: (a) Pocket (b)
Slot (c) Notch (d) Through Slot (e) Step (f) Hole

access

orientation

(a) (b)

(c)

(d)

(e)
(f)

access

orientation

(a) (b)

(c)

(d)

(e)
(f)

125

 As observed previously, the key drivers for the machining cost of a prismatic part are

the number of setups, the number of tool changes and the machining operation cost. The

distance function between two RFVs p ∈ P and q ∈ Q needs to account for them. Each

RFV is represented by using six components. Specific components are xp, yp, zp, V(p),

Figure 5.3: Machined Parts With Access and Orientation Vectors

a3

a1

a2

a3

a4

a5
a6

o1

o2

o3

o4

o5

o6

x

y

z

(a)

a1

a2
a3

a4a5
a6

o2

o1

o6

o4

o5

o3y

x

z

(b)

a5

a6 a4

a3

a1

a2

o2

o6

o4 o5

o1o3

y
x

z

(c)

y

x

z

a1

a2

a3

a4a5
a6

o1

o2

o3

o4o5

o6

(d)

yx

z
a1

a2

o3

o1

o2

(e)

a3

a1

a2

a3

a4

a5
a6

o1

o2

o3

o4

o5

o6

x

y

z

(a)

a1

a2

a3

a4

a5
a6

o1

o2

o3

o4

o5

o6

x

y

z a1

a2

a3

a4

a5
a6

o1

o2

o3

o4

o5

o6

x

y

z
x

y

z

(a)

a1

a2
a3

a4a5
a6

o2

o1

o6

o4

o5

o3y

x

z

(b)

a1

a2
a3

a4a5
a6

o2

o1

o6

o4

o5

o3y

x

z

a1

a2
a3

a4a5
a6

o2

o1

o6

o4

o5

o3y

x

z

y

x

z

(b)

a5

a6 a4

a3

a1

a2

o2

o6

o4 o5

o1o3

y
x

z

(c)

a5

a6 a4

a3

a1

a2

o2

o6

o4 o5

o1o3

y
x

z
a5

a6 a4

a3

a1

a2

o2

o6

o4 o5

o1o3

y
x

z

y
x

z

(c)

y

x

z

a1

a2

a3

a4a5
a6

o1

o2

o3

o4o5

o6

(d)

y

x

z

a1

a2

a3

a4a5
a6

o1

o2

o3

o4o5

o6

y

x

z

y

x

z

a1

a2

a3

a4a5
a6

o1

o2

o3

o4o5

o6

(d)

yx

z
a1

a2

o3

o1

o2

(e)yx

z
a1

a2

o3

o1

o2

yx

z

yx

z
a1

a2

o3

o1

o2

(e)

126

ε(p), n(p). The first three components xp, yp and zp represent the orientation of the RFV p,

and are transformation-dependent. The other three components V(p), ε(p) and n(p) are

transformation-invariant. The fourth component V(p) represents the normalized volume

of the RFV. The volumes are normalized using the average volume of all the features of

the parts being compared. The fifth component ε(p) represents the normalized

dimensional tolerance. In this chapter only dimensional tolerances are taken into account.

The dimensional tolerances are normalized using the dimensional tolerance value

occurring most often in the database. The sixth component n(p) is referred to as the group

cardinality of p. The reason behind including this component is the following. Two

different features may have the identical first five components in the reduced feature

vectors, making it difficult to distinguish between them. This may cause a problem in the

use of asymmetric distance functions. Therefore, we group such features into a single

composite feature. In order to handle composite features, we have introduced the group

cardinality as the sixth component. If no grouping has been performed then the value of

n(p) is set to 1. Figure 5.6 shows an example of a composite feature.

 To increase the efficiency of comparison and avoid the problem described above,

parts that do not have a comparable value to the number of features of the query part are

discarded. This pruning step ensures that parts with a comparable number of features are

assessed for similarity, so that the retrieved parts have a cost comparable to the query

part.

The distance function between RFVs p ∈ P and q ∈ Q is defined as follows.

()2 2 2 2

2 2

(,) () () () 1 (,) [(() ())

(() ()) (() ())] (,)

p q p q p q
V

C T

d p q x x y y z z p q w V p V q

w p q w n p n q w p qε

δ

ε ε δ

= − + − + − + − − +

+ − + − +
 (5.2)

127

 The first three terms account for the difference in position between p and q and relate

to the number of tool setups. The last four terms account for the difference in the

transformation-invariant attributes that are considered. Specifically, the fourth term

accounts for the difference in volume between the corresponding features and relates to

the machining operation cost. The fifth term accounts for the difference in dimensional

tolerance between the corresponding features and relates to machining operation cost.

The sixth term of the distance function accounts for the difference in group cardinality

Figure 5.4: Access Vectors for the Parts of Figure 5.3

x
y

z

a2,a3,a4,a5,a6

a1

Part A x
y

z

a2,a3,a4,a5,a6

a1

Part B

x

y

z

Part C

a3,a4

a1,a2

a5,a6

x

y

z

a2,a3,a4,a5,a6

a1

Part D

x

y

z

a1,a2,a3

Part E

x
y

z

a2,a3,a4,a5,a6

a1

Part Ax
y

z

a2,a3,a4,a5,a6

a1

x
y

z

x
y

z

a2,a3,a4,a5,a6

a1

a2,a3,a4,a5,a6

a1

Part A x
y

z

a2,a3,a4,a5,a6

a1

Part Bx
y

z

x
y

z

a2,a3,a4,a5,a6

a1

a2,a3,a4,a5,a6

a1

Part B

x

y

z

Part C

a3,a4

a1,a2

a5,a6

x

y

z

x

y

z

Part C

a3,a4

a1,a2

a5,a6

a3,a4

a1,a2

a5,a6

x

y

z

a2,a3,a4,a5,a6

a1

Part Dx

y

z

x

y

z

a2,a3,a4,a5,a6

a1

a2,a3,a4,a5,a6

a1

Part D

x

y

z

a1,a2,a3

Part Ex

y

z

x

y

z

a1,a2,a3a1,a2,a3

Part E

128

between the RFVs corresponding to p and q and relates to the machining operation cost.

Finally, the seventh term accounts for the difference in type between the corresponding

RFVs and relates to the number of tool changes. The term δ has the following expression.

(,) 0 if type of is equal to type of
(,) 1 if type of is different from type of
p q p q
p q p q

δ
δ

=⎧
⎨ =⎩

 So all the key drivers for the machining cost of a prismatic part are accounted for.

The volume, tolerance and group cardinality terms are multiplied by the

quantity ()1 (,)p qδ− , so that when the types of features p and q do not match, volume

and tolerance terms are not considered. The quantities wV, wε, wC and wT represent the

weights given by the user to the volume, tolerance, group cardinality and type terms

respectively. The distance function can be customized by: (a) changing the weight

associated with each of the terms in the distance function, (b) considering additional

transformation-invariant feature parameters as needed.

 The distance function defined in Equation (5.1) is the measure of similarity between

parts MP and MQ, represented by two sets of RFVs; the smaller the value of the distance

given by Equation (5.1), the more similar are the parts MP and MQ.

5.2.3 Problem Statement

The input to the system described in this chapter is a database of previously machined

parts whose cost is already known and a newly designed part whose machining cost is to

be estimated. The system outputs previously machined parts similar to the query part.

129

Each part has been modeled in its own coordinate system. Therefore, we need to align the

parts using rigid body transformations before computing the distance. The parts are

represented by using two sets of RFVs. Hence, as stated previously, the problem of

aligning two sets of RFVs is equivalent to the problem of aligning attributed points on the

unit sphere. To align the two sets of attributed points on the unit sphere, one set has to be

moved with respect to the other set. Rigid body transformation of a set of attributed

Figure 5.5: Equivalence Between Reduced Feature Vectors and Attributed Set of
Points on Unit Sphere

(a): 3D Object With Feature
Accesses and Orientations

a1

o1
o2

a2

o3

a3

o6

a6

o5

a5

o4
a4

z

yx

f1

f2

f3

f4

f5

f6

fi = ith feature

(b): Equivalent Attributed
Points on Unit Sphere

x y

z
p2,p3,p4,p5,p6

p1 = {0, 1, 0, 0.20 m3, 40 µm, 1}

Reduced feature vector attributes

(a): 3D Object With Feature
Accesses and Orientations

a1

o1
o2

a2

o3

a3

o6

a6

o5

a5

o4
a4

z

yx

f1

f2

f3

f4

f5

f6

fi = ith feature

(a): 3D Object With Feature
Accesses and Orientations

a1

o1
o2

a2

o3

a3

o6

a6

o5

a5

o4
a4

z

yx

f1

f2

f3

f4

f5

f6

fi = ith feature

(b): Equivalent Attributed
Points on Unit Sphere

x y

z
p2,p3,p4,p5,p6

p1 = {0, 1, 0, 0.20 m3, 40 µm, 1}

Reduced feature vector attributes

(b): Equivalent Attributed
Points on Unit Sphere

x y

z
p2,p3,p4,p5,p6

p1 = {0, 1, 0, 0.20 m3, 40 µm, 1}

Reduced feature vector attributes

130

points on the surface of the unit sphere involves three degrees of freedom. The distance

function has to be minimized over all of the possible configurations of the moving

attributed point set with respect to the stationary one. The transformation matrix for the

three degrees of freedom transformation is given by (, ,)θ ϕ ψ=R R where θ, ϕ, and ψ

are the three degrees of freedom considered. Assuming that P is the moving set, the

transformed set P can be written as RP. The distance function defined in Equation (5.1)

can then be written as

(,) (,)(, ,)d P Q d P Q θ ϕ ψ=R R (5.3)

 This chapter introduces an algorithm to find the best alignment between two sets of

attributed points on the unit sphere by transforming one attributed point set such that the

distance function is minimized.

 In general, a query part can have multiple feature interpretations based on how access

directions for machining features are selected [Gupt95]. Sections 5.3, 5.4, and 5.5

describe an algorithm for feature-based shape similarity assessment of parts having a

single preferred interpretation. Section 5.6 extends this algorithm to deal with query parts

with multiple possible interpretations.

5.3 Computing Similarity For Query Parts With Single Preferred Feature

Interpretations

As mentioned previously, aligning two sets of attributed points on the unit sphere is a

three degree of freedom problem. For estimating the cost of machining the new part

based on an existing part, the two parts should have at least one feature of the same type.

If the two parts have no common features then one part cannot be used to estimate the

cost of the other and hence the part needs to be pruned. Thus, two degrees of freedom in

131

this problem can be constrained by considering combinations of features. Each feature of

MP is aligned with every feature of MQ having the same type. The total number of

alignments that need to be performed is not large. This is because the number of

combinations of features of the two parts of the same type is not significantly large, as

most of the reasonably complex mechanical parts have fewer than 100 instances of

composite features.

Figure 5.6: Example of Composite Feature

a1

f1
o1

a2

f2

o2

a3

f3

o3

a4

f4

o4

ac

fc
oc

fi = ith feature

fc = composite feature
obtained grouping
features f1, f2, f3, f4 all of
type hole

xc = 0
yc = 0
zc = 1
V = 0.05 m3

e = 40 µm
n = 4

x y

z

a1

f1
o1

a2

f2

o2

a3

f3

o3

a4

f4

o4

ac

fc
oc

fi = ith feature

fc = composite feature
obtained grouping
features f1, f2, f3, f4 all of
type hole

xc = 0
yc = 0
zc = 1
V = 0.05 m3

e = 40 µm
n = 4

x y

z

x y

z

132

 Consider a pair of RFVs pi ∈ P and qj ∈ Q of the same type equivalent to two

attributed points on the unit sphere. Initially, the rotation represented by the matrix Ri,j is

applied to the two sets P and Q such that pi ∈ P and qj ∈ Q are aligned. Then the two sets

P and Q are rotated again such that pi ∈ P and qj ∈ Q are aligned with the Z axis. Finally

the set P is rotated with respect to Q about the Z axis. The rotation value θ for which the

distance function computed between P and Q is minimized is found using the algorithm

COMPUTETHETA (described in Section 5.4). The value of the distance function

corresponding to the value θ is the minimum value of the distance function for a

particular RFV pair alignment. Now, the next alignment is considered and the procedure

is repeated. The output is the minimum value of the distance over all the RFV pair

alignments. The overall algorithm is given below.

Algorithm: COMPUTESIMILARITYMEASURE

 Input:

• Parts MP and MQ.

Output:

• Degree of similarity between MP and MQ based on the distance function

defined in Equation (5.1).

Steps:

1. Let P and Q be the RFV sets corresponding to MP and MQ.

2. Initialize dmin = Infinity.

3. For each RFV pi of P, do the following.

a. Initialize (dmin)i = Infinity.

b. For each RFV qj of Q, do the following.

133

i. If pi ∈ P and qj ∈ Q are of the same type, rotate P using the

transformation matrix Ri,j such that pi aligns with qj.

ii. Else go to next value of j in Step 3b.

iii. Rotate P and Q using transformation matrix Rz such that pi and qj

align with Z axis.

iv. Compute (θmin)i,j rotation about Z axis that minimizes the distance

function and the corresponding distance function value (dmin)i,j using

the algorithm COMPUTETHETA.

v. If (dmin)i, is greater than (dmin)i,j then (dmin)i, = (dmin)i,j.

c. If dmin is greater than (dmin)i then dmin = (dmin)i.

2. Return dmin.

5.4 Finding The Optimal Alignment Under One Degree Of Freedom

The algorithm COMPUTETHETA finds the angle θ that minimizes the distance function

given by Equation (5.1) between two sets of RFVs on the unit sphere. The angle θ

represents a rotation around a fixed axis: the algorithm solves the one degree of freedom

problem. The one independent variable of the problem is the rotation θ applied to one of

the two sets. The overall algorithm is given below.

Algorithm: COMPUTETHETA

 Input:

• Sets P and Q of RFVs.

Output:

• Angle θmin that minimizes the distance function defined in Equation (5.1).

134

Steps:

a. Partition the theta range [0,2π] into theta intervals such that the closest

neighbor qj ∈ Q to each RFV pi ∈ P is invariant in each interval using the

algorithm FINDINVARIANTCLOSESTNEIGHBORS.

b. Within each theta interval c obtained from Step a compute the value of the

rotation θ(c) that minimizes the distance function defined in Equation (5.1) for

interval c.

c. Find interval c* such that the distance function defined in Equation (5.1)

reaches the minimum value over all the intervals obtained in Step a.

d. Return the corresponding value θmin = θ(c*) of the rotation for the interval c*

found in Step c.

 Note that many steps of algorithms COMPUTETHETA and

FINDINVARIANTCLOSESTNEIGHBORS defined in this chapter are very similar to the steps

of algorithms ONEDOFALIGNMENT and FINDINVARCLOSESTNEIGHBORSFOR1DOFROT

described in Chapter 3. However in this chapter RFVs on the unit sphere are aligned,

while in Chapter 3 attributed points in 2 were aligned. Hence there are some substantial

differences.

 In the next subsections the steps of algorithms COMPUTETHETA and

FINDINVARIANTCLOSESTNEIGHBORS will be described.

5.4.1 Step a: Building The Set Of Theta Intervals For The RFVs Of Set P

To compute the distance value in Equation (3.1), the closest neighbor qj ∈ Q to each pi ∈

P needs to be determined. The closest neighbor qj ∈ Q to each pi ∈ P changes with the

rotation of set P with respect to set Q. Thus, the closest neighbors for each pi ∈ P need to

135

be obtained by taking into account the rotation θ around the fixed axis as explained in the

previous section. It is necessary to know, for each value of the rotation θ, the closest RFV

qj ∈ Q to each RFV pi ∈ P. The closest neighbor to each RFV of P changes only at

specific values of θ. Thus, the theta range [0,2π] can be partitioned into a set of theta

intervals within which the closest neighbor to each RFV of P is known and invariant. The

following algorithm is used for this purpose.

Algorithm: FINDINVARIANTCLOSESTNEIGHBORS

 Input:

• Sets P and Q of RFVs.

Output:

• Set of theta intervals and for each interval the closest neighbor to every RFV of

P from set Q.

Steps:

1. For each RFV pi of P, do the following.

a. For each possible pair of distinct RFVs qk and ql of Q, do the following.

Partition the theta range [0,2π] into subintervals within which either d(pi,

qk) > d(pi, ql) or d(pi, qk) < d(pi, ql). The partitioning is performed by

intersecting the unit sphere on which pi, qk and ql are located with a plane

whose locus is such that d(pi, qk) = d(pi, ql), where d is the distance

function defined in Equation (3.2). This step will be described in more

detail after the description of the overall algorithm.

b. Overlap the intersecting subintervals obtained in Step 1.a so that the range

[0,2π] is further partitioned into a set of intervals.

136

c. For each interval being obtained in Step 1.b, do the following. Using the

closest neighbors being obtained in Step 1.a, find the RFV qj of Q such that

d(pi, qj) is minimum over all the RFVs of Q.

2. Overlap the set of intersecting intervals being obtained in Step 1 for each RFV

pi of P. Within the set of intervals being obtained the closest neighbor to every

RFV of P from set Q is invariant and known

 The algorithm described previously yields the set of theta intervals for the RFVs of P.

In the next paragraphs Step 1.a and Step 2 will be explained in detail.

 In Step 1.a, the closest neighbors for each RFV pi ∈ P need to be obtained by using

the distance function defined in Equation (5.2). The distance function accounts for

relevant feature attributes. The transformation-invariant attributes need to be considered.

First let us consider a case where the RFVs have identical transformation-invariant

attributes. As shown in Figure 5.7, the dotted circle represents the trajectory of p1 of P.

Consider two RFVs q1 and q2 of Q on the unit sphere. Along a portion of this trajectory

d(p1, q1) < d(p1, q2) and along the remaining portion d(p1, q1) > d(p1, q2). The procedure

to obtain the theta intervals such that the closest neighbor is invariant is as follows.

Consider a plane π12 through the center of the unit sphere which represents the locus of

the points whose distance from RFV q1 of Q is the same as the one from RFV q2 of Q.

Consider also the circle C1 representing the trajectory of RFV p1 of P around the fixed

axis. The plane and the circle are intersected, obtaining two points on the circle. The

circle corresponds to the theta range [0,2π] and the two intersection points correspond to

the extreme values of the two theta intervals being obtained, as shown in Figure 5.7.

Within each interval either d(p1, q1) < d(p1, q2) or d(p1, q1) > d(p1, q2) and the closest

137

neighbor to p1 is known. Now let us consider the case where reduced feature vectors have

different transformation-invariant attributes. Let ∆w11
2 be the difference between the

transformation-invariant attributes in d(p1, q1) and let ∆w12
2 be the difference between the

transformation-invariant attributes in d(p1, q2). Let ∆w11
2

 < ∆w12
2 and ∆w2 = ∆w12

2 -

∆w11
2. In this case it is necessary to locate a plane π′12 such that d(p1, q1) = d(p1, q2) using

the distance function defined in Equation (5.2). Because of the presence of

transformation-invariant attributes, the plane π′12 will no longer be the plane that is

located at the same distance from RFVs q1 and q2 of Q. As shown in Figure 5.8, the plane

will be offset by α in the direction of the point having the smaller value ∆wij, in this case

q2. The value of α is defined as follows.

2

2
w
H

α ∆
= (5.4)

where H is equal to the Euclidean distance between q1 and q2. Depending on the value of

∆w and H, it is possible that the value of the offset α is such that the plane does not

intersect the circle at all. In this case, the theta range [0,2π] will not be divided into

intervals, and it will be either d(p1, q1) < d(p1, q2) or d(p1, q1) > d(p1, q2) throughout the

theta range [0,2π]. In Appendix B the value of α defined in Equation (5.4) will be

derived.

138

 Observe that Step 1 of the algorithm FINDINVARIANTCLOSESTNEIGHBORS yields the

closest neighbors for each RFV of P separately. A set of theta intervals is built for a

particular RFV pi ∈ P such that in each interval the closest RFV of Q to pi is known. In

Figure 5.9 the set of theta intervals within the range [0, 2π] for the RFV p1 ∈ P is shown.

Thus several sets of theta intervals are obtained, one for each RFV of P. The overlapping

of the sets of theta intervals being performed in Step 2 yields the set of theta intervals for

the RFVs of P. Within each of the intervals the distance given by Equation (5.1) can be

minimized using closed form mathematical formulae. The only independent variable in

the formulae is rotation θ: The single sets of theta intervals for each RFV of P are

combined into the set of theta intervals for the RFVs of P by overlapping so that the

Figure 5.7: Transformation-invariant Attributes Are The Same For Each Reduced Feature
Vector: The Two Intersection Points Between Circle C1 and Plane π12 Represent The
Extreme Values Of The Theta Intervals

x y

z
Unit sphere

1 1 1
1 1 1 1(, , , (), (), ())q q pq x y y V p p n pε=

2 2 2
2 2 2 2(, , , (), (), ())q q pq x y y V p p n pε=

Circle C1 representing
trajectory of reduced
feature vector p1 of P

Plane π12

Intersections
between C1 and π12

V(p1) = V(p2)
ε(p1) = ε(p2)
n(p1) = n(p2)

139

resulting range [0, 2π] is further partitioned into intervals. Each of the resulting intervals

is obtained from the intersection of the intervals of the initial sets of intervals. Figure 5.10

shows two sets of intervals that are overlapped. One set of intervals is the set of theta

intervals of RFV p1 of set P (see Figure 5.10(a)), the other one is the set of theta intervals

of RFV p2 of set P (see Figure 5.10(b)). The interval c, indicated in Figure 5.10(c) by an

arrow point, is clearly contained in one of the intervals of each of the two sets of theta

intervals that have been overlapped. As shown in Figure 5.10(a) and Figure 5.10(b), the

intervals c1 and c2 overlap to generate interval c. Thus, interval c represents a region in

the set of theta intervals for the RFVs of P. Within c, q1 is the closest neighbor to p1 and

q2 is the closest neighbor to p2. Each point of c corresponds to a transformation applied to

the set of RFVs P while Q is fixed. Thus, within any interval of the set of theta intervals

for the RFVs of P, the closest RFV of Q to each RFV in P is known. The distance

function defined in Equation (5.1) can now be computed for each interval. The distance

function defined in Equation (5.1) for each interval can be expressed as a function of the

coordinates (x, y, z) of the RFVs of P and Q. Co-ordinates of P and Q can be expressed as

a function of θ, which is the angle of rotation. Thus the distance function defined in

Equation (5.1) is expressed as a function of θ as explained in the next subsection.

5.4.2 Step b: Minimization Of The Distance Function Within A Given Theta

Interval

The location (xp, xp, xp) of an attributed point p on the unit sphere can be represented by

two angles: θ and ϕ. Let ipθ and ipϕ be the known angle values for RFV pi ∈ P before

applying algorithm COMPUTETHETA. Similarly, let jqϕ and jqθ be the known angle

values for RFV qj ∈ Q before applying algorithm COMPUTETHETA. These angle values

140

refer to the positions of RFVs of P and Q after the initial alignment described in Section

5.3.

 In the previous subsection, the set of theta intervals for all the RFVs of P was built by

overlapping the single sets of theta intervals of each RFV. The range [0, 2π] is thus

partitioned into a number of intervals. Within each interval the closest RFV in Q to each

of the RFV in P is known. The following definitions, valid within each single interval,

will be used.

Figure 5.8: Transformation-invariant Attributes Are Different: The Two Intersection
Points Between Circle C1 and Plane π’12 Represent The Extreme Values Of The Theta
Intervals

x y

z Unit sphere

Circle C1
representing
trajectory of
reduced feature
vector p1 of P

Plane π’12

Intersections
between C1 and π’12

Plane π12
 α

V(p1) ≠V(p2)

ε(p1) ≠ ε(p2)

1 1 1
1 1 1 1(, , , (), (), ())q q pq x y y V p p n pε=

2 2 2
2 2 2 2(, , , (), (), ())q q pq x y y V p p n pε=

141

() coordinate of the closest RFV () to the RFV

() coordinate of the closest RFV () to the RFV

() coordinate of the closest RFV () to the RFV

() angle

j

j

j

j

q
j i

q
j i

q
j i

q

x i x q i Q p P

y i y q i Q p P

z i z q i Q p P

iθ θ

= ∈ ∈

= ∈ ∈

= ∈ ∈

= of the closest RFV () to the RFV

() angle of the closest RFV () to the RFV j

j i

q
j i

q i Q p P

i q i Q p Pϕ ϕ

⎧
⎪
⎪
⎪⎪
⎨
⎪

∈ ∈⎪
⎪

= ∈ ∈⎪⎩

 (5.5)

 Consider a single theta interval and a moving RFV pi ∈ P. Let θ be the rotation

applied to the RFVs of set P, ipθ and ipϕ the angles of pi previously defined. Then,

() cos() cos()
() sin() cos() point

sin()

i i i

i i i

i i

p p p

p p p
i

p p

x
y p P
z

θ θ θ ϕ

θ θ θ ϕ

ϕ

⎧ = +
⎪

= + ∀ ∈⎨
⎪ =⎩

 (5.6)

 On the other hand, for a fixed RFV qj(i) ∈ Q closest to pi ∈ P:

() cos(()) cos(())

() sin(()) cos(()) point ()

() sin(())

j j j

j j j

j j

q q q

q q q
j

q q

x i i i

y i i i q i Q

z i i

θ ϕ

θ ϕ

ϕ

⎧ =
⎪⎪ = ∀ ∈⎨
⎪ =⎪⎩

 (5.7)

 Within a single interval, it is necessary to compute (,)d P Q as a function of the

transformation θ:

() ()
()

2

2

2
1

2 2

2{[() ()] [() ()]

[()] } (, ())

1 (, ()) [() (())

() (() (() (()))]
(,)((), (),)

j ji i

ji

i i i

q qp p

qp
T i jn

i
i j V i j

i j C i jp p p

x x i y y i

z z i w p q i

p q i w V p V q i

w p q i w n p n q i
d P Q x y z

n
ε

θ θ

δ

δ

ε ε
θ θ

=

⎧ ⎫− + − +
⎪ ⎪
⎪ ⎪+ − + +⎪ ⎪

∑⎨ ⎬
+ − − +⎪ ⎪
⎪ ⎪
+ − + −⎪ ⎪⎩ ⎭=R (5.8)

 Using the notations introduced in (5.5), (5.6), and (5.7), Equation (5.8) can be

simplified to,

142

()
()
()

() ()
()

2

2

2

2

2

cos() cos() cos(()) cos(())

sin()cos() sin(()) cos(())

sin() sin(())

(, ()) 1 (, ()) [() (())

() (() (

()

j ji i

j ji i

ji

q qp p

q qp p

qp

T i j i j V i j

i j C

i i

i i

i

w p q i p q i w V p V q i

w p q i w n

d

ε

θ θ ϕ θ ϕ

θ θ ϕ θ ϕ

ϕ ϕ

δ δ

ε ε

θ

⎡ ⎤+ − +⎢ ⎥
⎢ ⎥

+ − + +⎢ ⎥
⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

+ + − − +

+ − +

=

1

2() (()))]

n

i

i jp n q i

n

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪

∑⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪−
⎪ ⎪
⎪ ⎪⎩ ⎭ (5.9)

 In order to minimize ()d θ its derivative with respect to θ must be set to zero. By

doing this and simplifying, we get the following expression.

1

1

sin(()) cos(()) cos()
()

cos(()) cos(()) cos()

j ji i

j ji i

n q qp p

i
n q qp p

i

i i
tg

i i

θ θ ϕ ϕ
θ

θ θ ϕ ϕ
=

=

⎡ ⎤−∑ ⎣ ⎦
=

⎡ ⎤−∑ ⎣ ⎦

 (5.10)

 Observe that the distance function defined in Equation (5.9) is a continuous function,

and it is also bounded. The values of θ resulting from Equation (5.10) can identify local

minima or local maxima of the distance function, depending on the sign of the second

derivative. Hence it is necessary to check the sign of the second derivative by substituting

the values of θ resulting from Equation (5.10) in the second derivative of the distance

function defined in Equation (5.9). The values of θ that yield a positive value for the

second derivative are local minima. Among them the θ value corresponding to the global

minimum will be chosen.

143

Equation (5.10) yields the transformation θ, applied to the set of RFVs P, which

minimizes the distance between the sets of RFVs P and Q. This value of the

transformation is valid only within a single interval of the set of theta intervals for all the

RFVs of P. In general the value of θ that is found is not guaranteed to lie in the interval

where the distance function is defined. Values of θ that lie outside the corresponding

interval have no physical meaning and should be discarded. In fact Theorem 1 guarantees

that none of them will be the θ value corresponding to the global minimum over all the

intervals.

 Figure 5.9: Set of Theta Intervals for Reduced Feature Vector p1 of P

θ = 0 θ = 2π
θ1 θ2 θ3

θ = 0 corresponds to the initial
position of the RFV p1

Interval
corresponding to
closest neighbor

RFV q2

p1

θ

θ2
θ1

θ3

Interval
corresponding to
closest neighbor

RFV q1

Interval
corresponding to
closest neighbor

RFV q3
θ = 0

144

 Equation (5.10) has been obtained by differentiating the distance function with

respect to θ, which is a standard minimization technique in the continuous domain. Thus,

the transformation value obtained for an interval c of the set of theta intervals for all the

RFVs of P yields the best possible alignment between the two RFV sets for all

permissible transformations within the interval c.

5.4.3 Steps c and d: Computing The Value Of Theta That Minimizes The Distance

Over All The Theta Intervals

The value of θ(c) obtained in the Equation (5.10) yields the rotation that minimizes the

distance between the two RFV sets P and Q within a single interval c of the set of theta

intervals for all of the RFVs of P. To obtain the corresponding value of the distance ()d c

Figure 5.10: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets
of Theta Intervals

(c): Set of Theta Intervals Resulting From Overlapping of
Sets of Theta Intervals (a) and (b)

θ = 0 θ = 2π c

(a): Set of Theta Intervals of RFV p1 of P

Interval generated from RFV q1

θ = 0 θ = 2π Interval
generated

from RFV q2

c1

(b): Set of Theta Intervals of RFV p2 of P

θ = 0

Interval generated from RFV q2

θ = 2π Interval
generated

from RFV q1

Interval
generated from

RFV q3

c2

145

it is sufficient to substitute the value of θ obtained from Equation (5.10) into Equation

(5.9). Hence, for each interval, ()d c is the minimum distance. Finally Step d of the

algorithm COMPUTETHETA involves finding the value of θ corresponding to the minimum

distance over all of the intervals. The minimum distance over all of the intervals is

obtained as in Subsection 3.5.3. The same formulae can be used and the same

considerations are valid. They are reported for clarity as follows.

min min ()
c C

d d c
∈

= (5.11)

where C is the set of all the intervals c of the partitioned theta range [0, 2π]. Equation

(5.11) yields the minimum distance between sets P and Q. The corresponding rotation

θmin is found as follows.

min ()cθ θ ∗= (5.12)

where c* is the interval in which the minimum distance was found.

 Equation (5.12) yields the rotation to apply to P in order to minimize the distance

between P and Q and Equation (5.11) yields the minimum distance between two sets of

RFVs equivalent to attributed points on the unit sphere under one degree of freedom

rotation.

5.5 Experimental Results For Single Feature Interpretations

A software system has been implemented based on the algorithms presented in this

chapter in C++ programming language. The input to the system is the query part that the

designer has newly designed and the directory in which all the previously machined parts

exist. The system performs the alignment using the algorithms described previously and

outputs those previously machined parts that are similar to the query part based on the

146

distance function described in Section 5.2. The output models are rank ordered based on

this distance function starting with the one having the smallest distance value.

 The parts have been defined using our own feature-based design system implemented

in C++ programming language using ACIS geometric kernel libraries. The user needs to

define the dimensional parameters, type, location, orientation and dimensional tolerance

of all the features of the part. For each part the features are listed in a text file along with

their parameters. We also generate its boundary representation to visually verify its

correctness. Our information model is consistent with the Pro/Manufacture feature

information model. We have tested this consistency on several different examples. In

order to use our algorithm, one needs to either directly define features using features in

our system, model parts using Features in Pro/Manufacture, or use a feature recognition

system to identify machining features.

 The procedure for aligning the two parts used as input to the system is illustrated

using the example shown in Figure 5.11. Figure 5.11(a) shows the initial orientations of

two parts MP and MQ that are to be compared. Part MP is obtained by randomly rotating

part MQ. The system, initially, orients part MP such that one of its features aligns with a

feature of the same type of part MP as shown in Figure 5.11(b). The system then

computes the angle of rotation θ such that the distance function is minimized. The final

orientations of the two parts are shown in Figure 5.11(c).

147

The database used for all the experiments consists of 120 parts having 20 to 30 features

each. The dimensional tolerance value for all the features of 116 out of 120 parts has

been set to 50µm. The features of the remaining four parts have dimensional tolerance

values of 10µm, 25µm, 75µm and 100µm. The weights of the volume (wV) and group

cardinality (wC) terms have been set to 1. The weight of the type term (wT) has been set to

10 so that if two features of different type are aligned, the distance value is magnified.

Figure 5.11: (a) Initial Orientation of Part MQ and Its Randomly Rotated Version
Part MP; (b) Orientation of Part MP After Step3b(iii) of the Algorithm
COMPUTESIMILARITYMEASURE; (c) Final Orientation of Part MP

y

x

z

y

x

z

y

x

z

y

x

z

y

x z

y

x

z

(a)

(b)

(c)

Angle of Rotation
θ = 125.2°

Part MQ Part MP

y

x

z

y

x

z

y

x

z

y

x

z

y

x z

y

x

z

(a)

(b)

(c)

Angle of Rotation
θ = 125.2°

Part MQ Part MP

148

The weight of tolerance term (wε) has been set to 10 in order to increase its influence on

the distance function. The weights can be modified by the user to increase/decrease the

influence of feature attributes on the distance function. In computing the distance

function the volume of each feature has been normalized using the average value of the

volumes of all the features of the parts being compared. The dimensional tolerance values

have been normalized by dividing the dimensional tolerance value for each feature by

50µm.

 The first two experiments test the algorithms performance by focusing on feature

volume, orientation, group cardinality and type. All of the features of the two query parts

Part#A and Part#B being used have been assigned a dimensional tolerance value of

50µm, so that almost all of the parts in the database have the same dimensional tolerance

values as the query parts. Hence the parts being retrieved from the database will be the

ones that are more similar to the query parts in feature volume, orientation, group

cardinality and type. Figures 5.12 and 5.13 show the two query parts and those previously

machined parts from the database of existing parts that are similar to the query parts. For

each experiment the top three matches will be shown. The value of the distance between

the parts is also indicated. Let us consider Part#118 in Figure 5.13. The distance value

between Part#118 and the query Part#B is d = 1.3107. The contribution of the

transformation-dependent term to the distance defined in Equation (5.2) is 0.3745.

Among the transformation-invariant terms, the contribution of the volume term is 0.1670

and the contribution of the type term is 0.7692. Both the tolerance term and the group

cardinality term do not give contribution to the distance.

149

 The performance of this algorithm was compared with a representative gross-shape

based technique based on D2 shape function for similarity assessment between 3D parts

[Osad01, Osad02]. Figures 5.12 and 5.13 show the results of our feature-based algorithm.

Figures 5.14 and 5.15 show the results for the shape histogram based technique when

applied to the same query parts. Part#120 and Part#119 are the only common retrieved

parts in both cases. They have exactly the same features as respectively the query Part#A

and Part#B, and their gross shape is also very similar to Part#A and Part#B.

Figure 5.12: Results Obtained For Query Part#A Used As Input to the System

x

y

z

x

y
z

x

y

z

x

y

z

Part#120
Distance: 0.0000

Part#111
Distance: 0.0406

Part#113
Distance: 0.0778

Query : Part#A

x

y

z

x

y
z

x

y

z

x

y

z

Part#120
Distance: 0.0000

Part#111
Distance: 0.0406

Part#113
Distance: 0.0778

Query : Part#A

150

 As shown in Figure 5.12, Part#113 is different in gross shape from the query Part#A,

and hence it is not retrieved by the shape histogram based technique but is retrieved by

our feature-based algorithm. The features of the two parts are similar in orientation and

types, and hence have potentially similar machining costs. Therefore the cost of Part#A

can be potentially estimated by using Part#113. As shown in Figure 5.14, not all of the

parts have features similar to the query Part#A. For instance, Part#561 has all the features

oriented along one of the coordinate axis, and the number and type of features does not

match with the query Part#A. Part#561 is retrieved by the shape histogram based

 Figure 5.13: Results Obtained for Query Part#B Used As Input To The System

x

y

z

x

y
z

x

y

z

x

y
z

Part#119
Distance: 0.0000 Part#116

Distance: 1.5189
Part#118
Distance: 1.3107

Query: Part#B

x

y

z

x

y
z

x

y

z

x

y
z

Part#119
Distance: 0.0000 Part#116

Distance: 1.5189
Part#118
Distance: 1.3107

Query: Part#B

151

technique but not by our feature-based algorithm. The cost of Part#A cannot be estimated

by using Part#561 as the two parts are very different in feature orientation, types and

volume. Hence, our feature-based algorithm is more suitable for cost estimation of

machined parts. Similar conclusions can be drawn from examples in Figures 5.13 and

5.15.

 The third experiment assesses the performance of the algorithm by focusing on

feature dimensional tolerances. The query part used in this case is Part#C with a feature

dimensional tolerance value of 10µm. As described previously, most of the parts of the

database have dimensional tolerance values of 50µm, while only four of them have

different dimensional tolerance values. Figure 5.16 shows those previously machined

parts from the database of existing parts that are similar to the query part, along with their

distance from the query part and their dimensional tolerance value. In this case, the

retrieved parts are the ones that have dimensional tolerance values closest to the query

part.

5.6 Similarity Assessment In Presence Of Multiple Feature Interpretations

In order to compute the degree of similarity using feature-based algorithms between pairs

of 3D machined parts correctly, sometimes it is necessary to account for multiple possible

interpretations of features [Gupt95]. Each feature interpretation corresponds to a different

way of machining the feature. Figure 5.17 shows an example of multiple feature

interpretations.

 It is reasonable to assume that the database parts that will be used to estimate the cost

of the newly designed part have already been machined and their machining cost is

known. Hence, for each database part, we can safely assume that the preferred

152

interpretation is known. On the other hand, the newly designed part whose cost needs to

be estimated may have multiple possible interpretations, each corresponding to a different

way of machining it and the preferred interpretation may not be known. For these reasons

it will be assumed that only the query part has the possibility of multiple feature

interpretations, while the database parts have unique preferred feature interpretations.

 We generate multiple feature interpretations for each feature of the query part by

changing the access direction and suitably transforming size parameters for certain types

of features. The permissibility of a particular access direction is tested by performing

accessibility analysis by sweeping the feature in the access direction and testing its

Figure 5.14: Results Obtained for Query Part#A As Input Using a Shape Histogram
Technique

Query: Part#A

x

y

z

x

y
z

Part#120
Distance: 0.7857

x

y

z

Part#561
Distance: 1.0013

x

y

z

Part#117
Distance: 1.0609

Query: Part#A

x

y

z

x

y
z

Part#120
Distance: 0.7857

x

y

z

Part#561
Distance: 1.0013

x

y

z

Part#117
Distance: 1.0609

153

intersection with the part. If the swept body intersects with the part, then the

corresponding access direction is not permitted. Each permissible interpretation is used

for further analysis in the algorithm.

 In order to handle multiple feature interpretation, it is necessary to modify the

distance function defined in Equation (5.1). Refer to the definitions given in Section 5.2.

Imagine that part MQ is a database part whose cost is known. Hence the interpretation of

the features for part MQ is unique. On the other hand, part MP is a newly designed part

whose cost needs to be estimated. Hence its feature interpretation has not been yet

defined. Denote the set of RFVs for these parts as P and Q. Let 1 2(, ,...,)ik
i i i iA p p p= be

the set of possible ki interpretations for RFV pi of set P. Let

Figure 5.15: Results Obtained for Query Part#B As Input Using a Shape Histogram
Technique

x

y

z

Query: Part#B

x

y
z

Part#119
Distance: 1.0675

y

x z

Part#710
Distance: 1.3177

x

y
z

Part#340
Distance: 1.3593

x

y

z

Query: Part#B

x

y
z

Part#119
Distance: 1.0675

y

x z

Part#710
Distance: 1.3177

x

y
z

Part#340
Distance: 1.3593

154

(, , , (), (), ())
k k k
i i ip p pk k k k

i i i i ip x y z V p p n p A Pε= ∈ ⊂ be the kth interpretation of RFV pi. In

order to account for multiple interpretations of features, the sets P and Q are compared

using the following distance function.

1
min min (,)

(,)

n k
ik q Qi p Ai i

d p q
d P Q

n
∈= ∈

∑
= (5.13)

 The overall algorithm described in Section 5.3 constrains two out of the three degrees

of freedom involved by aligning all the possible pairs of RFVs of the same type. The

Figure 5.16: Results Obtained for Query Part#C Used As Input To The System

x

y
z

x

y
z

Part#216
Distance: 1.1292

Query: Part#C

Tolerance: 10 µm

Tolerance: 10 µm

x

y
z

Part#217
Distance: 2.2823
Tolerance: 25 µm

x

y
z

Part#201

Tolerance: 50 µm
Distance: 8.1920

x

y
z

x

y
z

Part#216
Distance: 1.1292

Query: Part#C

Tolerance: 10 µm

Tolerance: 10 µm

x

y
z

Part#217
Distance: 2.2823
Tolerance: 25 µm

x

y
z

Part#201

Tolerance: 50 µm
Distance: 8.1920

155

same reasoning can be used in case of multiple interpretations of features. In this case

pairs of RFVs of the same type are identified, but then all the possible interpretations of

each RFV of P need to be aligned to the corresponding RFV of part Q.

 In order to compute the distance value in Equation (5.13), we need to know the

closest RFV qj ∈ Q to each interpretation k
ip P∈ . The closest neighbor change with the

Figure 5.17: Example Of Two Possible Feature Interpretations For A Machined Part

Feature access directionFeature access directionFeature access direction

156

rotation θ around the fixed axis identified through the alignment of a pair of RFVs of the

same type. It is necessary to divide the theta range [0,2π] into theta intervals such that the

closest neighbor to each RFV interpretation is invariant. In order to use the algorithm

defined in Section 5.4, it is necessary to consider each RFV interpretation for part MP as a

regular RFV. By using this assumption it is possible to apply the algorithm defined in

Section 5.4 without any modification, to obtain a set of theta intervals. Within each

interval the closest RFV qj ∈ Q to each RFV interpretation k
ip P∈ is invariant. Observe

that in this case the pruning based on number of features will not be performed, as each

feature interpretation of part MP will be considered as a feature and hence the number of

features being considered will be higher than the actual one. Also, the features of part MP

will not be grouped, as the grouping may result in considering simultaneously two or

more interpretations of the same feature in computing the distance function defined in

Equation (5.13).

 Once the set of theta intervals is obtained, a further step is necessary in order to

compute the distance function defined in Equation (5.13). It is necessary to choose the

RFV interpretation whose distance from its closest neighbor is minimum over all the

interpretations. Such RFV interpretation will be referred to as preferred interpretation.

This choice needs to be made within each theta interval for each RFV of part MP. Let us

focus on the set 1 2(, ,...,)ki
i i iA p p pi = of possible ki interpretations for point pi of set P

corresponding to a feature of part MP. Observe that the distance function defined in

Equation (5.13) is a linear combination distance function. This property allows to focus

on each term min min (,)k
ik q Qp Ai i

d p q
∈∈

independently and minimize it. Within each interval, the

157

closest neighbor (,)jq k i of Q to each interpretation k
ip is constant. Hence each term of

the distance function can be written as min (, (,))
k
i i

k
i

p A
d p q k i

∈
. So it is necessary to perform a

dominance analysis on the distance functions (, (,))k
id p q k i between each

interpretation k
ip and its closest neighbor (,)jq k i within the interval being considered.

The dominance analysis consists of identifying the distance function that has the

minimum value over all the distance functions corresponding to the RFV interpretations.

The RFV interpretation corresponding to the minimum distance function will be the

preferred one. The dominance analysis in some cases might result in splitting the theta

interval into subintervals within which different RFV interpretations are the preferred

ones. In order to visualize the described procedure, refer to the example in Figure 5.18.

The Z axis is the rotation axis being considered, and the theta interval is assumed to be

the entire [0,2π] range. In Figure 5.18(a), the access vectors to the two interpretations of

feature 1 of part MP are shown. Also the access vector to feature 1 of part MQ, that is the

closest neighbor to both the feature interpretations, is shown. In Figure 5.18(b) the

representation of the corresponding RFVs on the unit sphere is shown. In Figure 5.18(c)

the corresponding distance functions are plotted. As shown in the figure, the distance

functions are both constant in the interval being considered and the distance function

corresponding to RFV 1
1p is the minimum one. Hence the corresponding RFV

interpretation is the preferred one. So the described dominance analysis needs to be

performed for each theta interval. It yields a set of theta intervals, in general but not

necessarily different from the one previously obtained. Within each interval the preferred

RFV interpretation and its closest neighbor are invariant. The described procedure yields

158

the theta intervals for a single feature of MP. It needs to be repeated for each RFV of part

MP. So finally a set of theta intervals for each feature of MP is available. Overlapping the

intersecting intervals will further split the range [0,2π] into theta intervals, within which

the preferred RFV interpretation and its closest neighbor are invariant for all the features

of part MP. Now it is possible to compute the distance function defined in Equation (5.13)

and minimize it.

 The minimization of the distance function defined in Equation (5.13) can be

performed following the same steps as in Subsection 5.4.2. The following notations need

to be introduced. Let
k
ipθ and

k
ipϕ be the known angle values for RFV interpretation

k
i ip A P∈ ⊂ at the end of the RFV pair alignment described previously. Similarly let jqϕ

and jqθ be the known angles for RFV qj ∈ Q at the end of the RFV pair alignment

described previously. Within each interval, for each set of

interpretations 1 2(, ,...,)ki
i i i iA p p p= , let ki

ip be the preferred one. The definitions (5.5)

need to be modified as follows.

(,) coordinate of the closest RFV (,) to the RFV

(,) coordinate of the closest RFV (,) to the RFV

(,) coordinate of the closest RFV (,) t

j

j

j

kq i
i j i i i

kq i
i j i i i

q
i j i

x k i x q k i Q p A P

y k i y q k i Q p A P

z k i z q k i Q

= ∈ ∈ ⊂

= ∈ ∈ ⊂

= ∈ o the RFV

(,) angle of the closest RFV (,) to the RFV

(,) angle of the closest RFV (,) to the RFV

j

j

ki
i i

kq i
i j i i i

kq i
i j i i i

p A P

k i q k i Q p A P

k i q k i Q p A P

θ θ

ϕ ϕ

⎧
⎪
⎪
⎪
⎪ ∈ ⊂⎨
⎪

= ∈ ∈ ⊂⎪
⎪
⎪ = ∈ ∈ ⊂
⎩

 (5.14)

 Following the same steps as in Subsection 5.4.2 with the new notations introduced

previously, again ()d θ is minimized by setting its derivative with respect to θ to zero.

159

1

1

sin((,)) cos((,)) cos()
()

cos((,)) cos((,)) cos()

k ki ij ji i

k ki ij ji i

n q qp p
i i

i
n q qp p

i i
i

k i k i
tg

k i k i

θ θ ϕ ϕ
θ

θ θ ϕ ϕ
=

=

⎡ ⎤−∑ ⎢ ⎥⎣ ⎦=
⎡ ⎤−∑ ⎢ ⎥⎣ ⎦

 (5.15)

 The same observations made in Subsection 5.4.2 are valid here. The last step consists

of minimizing the distance over all of the theta-intervals. The same reasoning and

formulae presented in Subsection 5.4.3 can be used for this task. So by modifying the

algorithms and using slightly different notations than in the previously described way, it

is possible to account for multiple interpretations of features. In defining the previously

described algorithms the assumption that each group of RFV interpretations Ai is

independent from the others has been used.

 An experiment that has been carried out to assess the performance of our approach is

described. Both the database and the distance function weights are the same as the ones

used for the experiments in Section 5.5. In this case the query Part #D has two features

with two possible interpretations each, as shown in Figure 5.19. The top three matches to

the query part from the database are shown in Figure 5.19. Part#211 is the first retrieved

part. It has exactly the same feature orientation, type and characteristics as the query part,

and the feature interpretations suggested are the ones corresponding to access vectors 1
1a

and 1
2a . Part#212 and Part#213 are the second and third retrieved parts. They have

slightly different feature characteristics from the query part. The feature interpretations

suggested are the ones corresponding to access vectors 2
1a and 2

2a . Part#211 can be

potentially used for estimating the cost of the query part, as it has both similar features

and it suggests the most convenient feature interpretation. In fact, machining the features

shown in Figure 5.19 along Z axis is more appropriate than along X axis. Thus, even

160

though Part#212 and Part#213 have features similar to the query part, Part#211 can be

potentially used for cost estimation.

5.7 Summary

This chapter provides algorithms for identifying those parts in a database that are similar

to a given query part in machining features and hence can be potentially used as a basis

for estimating the machining cost of the query part. We have developed a distance

function to account for the key drivers for the machining features of a prismatic part. We

have developed an algorithm that performs feature alignment to minimize this function.

We have implemented the algorithm to show proof of the concept. We have tested the

algorithm on some examples in order to assess its performance.

 The feature-based algorithm described in this chapter is expected to perform better

than the gross-shape based algorithms in similarity assessment from a machining cost

point of view. This is because the machining cost mainly depends on the orientation, size,

tolerance and group cardinality of the features and not on the gross shape of the part. The

algorithm does not restrict the features to have a particular orientation as needed in some

other techniques. It can handle features having any arbitrary orientation in space. It can

also handle query parts that have features with multiple interpretations. The current

algorithm can handle only parts for which individual feature interpretations are

independent of each other. It accounts for the relative feature orientation that is not

considered by other feature-based techniques. Also, the distance function includes feature

attributes such as dimensional tolerances.

161

Figure 5.18: Dominance Analysis For The Two Interpretations Of Feature 1 of part MP
With Respect To Their Closest Neighbor Feature 1 of Part MQ

z

x

y z

x

y

Part MP

Part MQ

feature 1 of MQ

Rotation θ

feature 1 of MP (two
interpretations)

(a)

1
1p

2
1p

Rotation θ 1q

(b)

(c)

0 2π θ

d 2
1 1(,)d p q

1
1 1(,)d p q

1
1p corresponds to the preferred interpretation

162

Figure 5.19: Results Obtained for Query Part#D Used As Input To The System

Query: Part#D

x

y
z

Part#211
Distance: 0

x

y
z

x

y
z

x

y
z

Part#212
Distance: 0.1485

Part#213
Distance: 0.1815

Access vectors
corresponding
to the two
possible
interpretations

1
1a

2
1a

1
2a

2
2a

Query: Part#D

x

y
z

Part#211
Distance: 0

x

y
z

x

y
z

x

y
z

Part#212
Distance: 0.1485

Part#213
Distance: 0.1815

Access vectors
corresponding
to the two
possible
interpretations

1
1a

2
1a

1
2a

2
2a

163

Chapter 6: Surface Feature-Based Shape Similarity Assessment Algorithms

This chapter is organized as follows. Section 6.1 gives the motivation behind the

application addressed in this chapter. Section 6.2 provides the definitions that are needed

and presents the problem formulation. Section 6.3 describes the algorithm for finding

similar parts based on surface features. Section 6.4 describes the step of this algorithm

that computes optimal alignment under one degree of freedom. Section 6.5 describes the

iterative algorithm that computes optimal alignment under three degrees of freedom by

utilizing the algorithm presented in Section 6.4. Section 6.6 provides the computational

experiments that have been performed. Finally, Section 6.7 presents the summary of this

chapter.

6.1 Motivation

Manufacturing of plastic parts is a two-step process. During the first step the tool is

designed and constructed for making the parts. During the next step, parts are produced

using the tool. Often tool makers and molders are two different organizations. Therefore,

selecting a tool maker is an important step in molding of plastic parts. Many different

kinds of tools exist that can be used to create plastic parts depending upon the shape of

the part. Different tool makers specialize in different kinds of toolings. Therefore, one has

to analyze the shape of the part to determine the most appropriate tool maker based on the

type of tool needed for the part. Internet-based tool ordering systems give an organization

an opportunity to contact a wide variety of tool makers (many of them located in different

geographical locations) to solicit quotes from them in order to get the best deal. However,

contacting a very large number of tool makers to get quotes is not practical due to the

time needed to send the data and analyze the quotes. Therefore, designers and

164

manufacturers often rely on their prior experience to contact the tool makers that have

capabilities to handle the new part. This model worked well when designers and

manufacturers were dealing with a small number of local tool makers. In the era of global

operations and access to a large number of tool makers, designers and manufactures can

benefit from software support to help them in identifying potential tool makers.

Currently a fully generative method to determine the tool type based on the part shape

does not exist. Therefore, another possible way to identify potential tool makers is to find

similar parts to the given part and identify tool makers for the similar parts. This method

is currently being practiced by experienced part designers. However, they currently rely

on their memory to locate similar parts. We believe that a system that enables them to

find similar parts based on surface features will be a useful system to them. Figure 6.1(a)

shows a new part and Figure 6.1(b) shows a previously molded part whose tool maker

can be approached to make the mold for the new part. The automatic part database search

tool will clearly decrease the time needed to search for similar parts.

 Similarity between two parts from the tool maker selection point of view needs to be

assessed by referring to the surface features of the parts. In fact, the tooling for plastic

parts depends mainly on their surface features. For example, surface parameters such as

spatial location, type and curvature distribution determine the type and complexity of the

tooling needed to manufacture the part. Similarly, the surface area determines the size of

the tooling. Surface features do not always have explicitly defined parameters. Hence we

need to identify components of surface feature vectors that are significant in determining

the similarity between two parts from the tooling point of view.

165

 This chapter introduces reduced surface feature vector sets that are suitable for the

tool maker selection application and provides alignment algorithms for the reduced

surface vectors of two parts. Reduced surface feature vectors (RSFVs) for a part are

defined for a specific coordinate system. In order to measure the distance between two

sets of reduced surface feature vectors, one set is transformed with respect to the other by

using rigid body transformations such that the minimum distance between two sets is

obtained. The alignment algorithms rank order the parts in a database based on the degree

of similarity with respect to the query part.

6.2 Background And Problem Formulation

6.2.1 Surface Features

A plastic part can be characterized from the tooling point of view by referring to its

surface features. In this chapter surface patches represent the surface features of a part. A

patch is defined as a surface region delimited by patch edges. A patch edge is a curve

belonging to the surface of the part. The curve is either a segment corresponding to a

Figure 6.1: The Tool Maker of Part (b) Can Be A Potential Tool Maker for the Newly
Designed Part (a)

(a): Newly designed part (b): Previously molded part(a): Newly designed part(a): Newly designed part (b): Previously molded part(b): Previously molded part

166

sharp corner or a set of points corresponding to locally maximum curvature values. Some

definitions are given as follows.

 Location of a surface patch is a point that gives the position of the patch in the space.

Orientation vector of a surface patch is a unit vector that gives the orientation of a patch

in the space. For some types of surface patches, such as spherical patches, this vector is

not defined.

 In order to give a formal definition of the surface patch location and orientation,

assume without loss of generality that n points pi are sampled from surface patch A along

with the normal vector oi in correspondence of each point. Surface patch location lA and

orientation oA are computed as follows.

1

n

i
i

A

p
l

n
==
∑

 and 1

1

n

i
i

A n

i
i

=

=

=
∑

∑

o
o

o
 (6.1)

 In case the surface patch is represented in the continuous domain (i.e. an equation

representing the surface patch is defined), the sums in Equations (6.1) are replaced by the

corresponding integrals. Observe that for some particular types of surface patches the

second of Equations (6.1) cannot be used.

 The following types of surface patches are considered in this chapter: cylindrical,

planar, toroidal and spherical patches. All the rest are defined as general patches. They

are shown in Figures 6.2 respectively with their access vectors and locations. The toroidal

and cylindrical patches are examples of surface patches where the second of Equations

(6.1) cannot be used. In these cases surface patch orientation is defined as the unit vector

along the axis of the cylinder or torus. Orientation is not defined for spherical patches.

Each of the previously listed surface patches can be completely characterized by

167

providing the values of certain parameters such as area, curvature distribution and normal

vector distribution. In particular, normal vector distribution is characterized by the

orientation standard deviation. In order to formally define orientation standard deviation,

consider surface patch orientation oA and the normal vectors oi sampled from patch A.

Consider the discrete function fi = oA . oi. The orientation standard deviation is defined as

the standard deviation of the discrete function fi, which is defined as follows.

()2

1

n
i f

f
i

f
n
µ

σ
=

−
= ∑

where 1

n

i
i

f

f

n
µ ==

∑
. A number of techniques can be used to compute the curvature in

correspondence of each sampled point pi. We use the curvature computation technique

suggested in [Hebe95]. As for the surface patches whose resolution is low (i.e. whose

Figure 6.2: Types Of Patches That Are Considered With Corresponding Location Point
and Orientation Vector: (a) General (b) Cylindrical (c) Planar (d) Toroidal (e) Spherical

(a)

(b)(c)

(d)

(e)

(a)

(b)(c)

(d)

(e)

168

number of sampled points pi is low) the curvature is computed referring to the angles

between the normal vectors oi in correspondence of each sampled point. Once the value

of curvature ci for each sampled point pi of the surface patch is known, the mean

curvature µc and the curvature standard deviation σc can be computed.

 In order to formally define a RSFV, let us recall the definitions of free and applied

vectors. A free vector is a vector whose orientation and magnitude are specified. An

applied vector is a vector whose orientation, magnitude and point of application are

defined. The point of application of a vector is the position of the vector in the space.

 RSFVs of a surface patch consist of those surface patch components that are

important from the tooling point of view. RSFVs are mathematically equivalent to

attributed applied vectors in 3, where the application points of the vectors correspond to

the patch location and the vector orientations correspond to patch orientations. Figure 6.3

shows an example of RSFVs of a part and their equivalent attributed applied vectors in

3. Therefore, the problem of aligning two sets of RSFVs is equivalent to the problem of

aligning attributed applied vectors in 3. Hence in this chapter we will use terms RSFVs

and attributed applied vectors in 3 interchangeably.

6.2.2 Distance Function For Similarity Assessment

Let p ∈ P and q ∈ Q be the two sets of RSFVs corresponding to parts MP and MQ. Then,

P and Q are compared using the following distance function, that has the same expression

as the one defined in Equation (3.1).

1
min (,)

(,)

n

iq Qi
d p q

d P Q n
∈=

∑
= (6.2)

169

 As observed in the previous section, the key drivers for tool maker selection of a

plastic part are the surface patch relative locations and orientations, the surface patch

curvature and the orientation distribution and surface patch type. The distance function

between two RSFVs p ∈ P and q ∈ Q needs to account for them. Each RSFV is

represented by using ten components. Specific components are xp, yp, zp, , , ,p p p
x y zv v v A(p),

Figure 6.3: Equivalence Between Reduced Surface Feature Vectors and Set of
Attributed Applied Vectors in 3

(a): 3D Object With Surface Patch Locations and Orientations

x y

z

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

(b): Equivalent Attributed Applied Vectors in 3

RSFV5 = {-2, 3, 1, 0, 1, 0, 0.20 m2, 0, 0 m-1, 0}

The five attributes of a reduced
surface feature vector

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

l6

l3

l7

x y

z

(a): 3D Object With Surface Patch Locations and Orientations

x y

z

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

(a): 3D Object With Surface Patch Locations and Orientations

x y

z

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

x y

z

x y

z

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

(b): Equivalent Attributed Applied Vectors in 3

RSFV5 = {-2, 3, 1, 0, 1, 0, 0.20 m2, 0, 0 m-1, 0}

The five attributes of a reduced
surface feature vector

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

l6

l3

l7

x y

z

(b): Equivalent Attributed Applied Vectors in 3

RSFV5 = {-2, 3, 1, 0, 1, 0, 0.20 m2, 0, 0 m-1, 0}

The five attributes of a reduced
surface feature vector

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

l6

l3

l7

x y

z

RSFV5 = {-2, 3, 1, 0, 1, 0, 0.20 m2, 0, 0 m-1, 0}

The five attributes of a reduced
surface feature vector

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

l6

l3

l7

o1

o2
o3

o4
o5

o6

o7

l1
l2

l4 l5

l6

l3

l7

x y

z

x y

z

170

σo(p), µc(p), σc(p). The first three components xp, yp and zp represent the location of the

RSFV p, and are transformation-dependent. Similarly the second three components

, and p p p
x y zv v v represent the orientation of the RPV p and are also transformation-

dependent. The other four components A(p), σo(p), µc(p) and σc(p) are transformation-

invariant. The seventh component A(p) represents the normalized area of the RSFV. The

areas are normalized using the maximum value of the area over all the surface patches of

the parts being compared. The eighth component σo(p) represents the normalized

orientation standard deviation, which is not defined in the case where the surface patch is

a sphere or a cylinder. For all the other types, the orientation standard deviation is

normalized using the maximum value of the orientation standard deviation over all the

surface patches of the parts being compared. The ninth component µc(p) represents the

normalized average curvature, which is normalized using the maximum value of the

average curvature over all the surface patches of the parts being compared. The tenth

component σc(p) represents the normalized curvature standard deviation, which is

normalized using the maximum value of the curvature standard deviation over all the

surface patches of the parts being compared.

 To increase the efficiency of comparison and avoid the problem just described, parts

that do not have a comparable value to the number of surface patches of the query part

are discarded. This pruning step ensures that parts with a comparable number of surface

patches are assessed for similarity, so that the retrieved parts have shapes comparable to

the query part.

The distance function between RSFVs p ∈ P and q ∈ Q is defined as follows.

171

()

2 2 2

2 2 2

2 2

2 2

(,) [() () ()]

[() () ()] 1 (,)

(() ()) (() ())

(() ()) (() ())

(,)

p q p q p q
L

p q p q p q
O x x y y z z

A o o o

c c c c

T

d p q w x x y y z z

w v v v v v v p q

w A p A q w p q

w p q w p q

w p q

σ

µ σ

δ

σ σ

µ µ σ σ

δ

= − + − + − +

− + − + − + −

⎡ ⎤− + −
+⎢ ⎥

+ − + −⎢ ⎥⎣ ⎦
+

 (6.3)

 The first three terms account for the difference in position between p and q and relate

to surface patch interactions. The second three terms account for the difference in the

orientation and relate to the surface patch interactions as well. The last five terms account

for the difference in transformation-invariant attributes that are considered. Specifically,

the seventh term accounts for the difference in area between the corresponding surface

patches and relates to patch size. The eighth, night and tenth terms account for the

difference in the orientation standard deviation, the average curvature and the curvature

standard deviation between the corresponding surface patches and relate to patch

complexity. The eleventh term accounts for the difference in type between the

corresponding surface patches that has been defined in Subsection 6.2.1. It relates to

patch complexity as well. The term δ has the following expression.

(,) 0 if type of is equal to type of
(,) 1 if type of is different from type of
p q p q
p q p q

δ
δ
⎧⎪
⎨
⎪⎩

=
=

 So all the key drivers for the surface feature-based shape recognition of parts are

accounted for. The quantity ()1 (,)p qδ− is defined so that when the types of surface

patches p and q do not match most of the terms are not considered. The quantities wO, wL,

wA, wσo, wµc, wσc, and wT represent the weights given by the user to all the terms

previously defined. The distance function can be customized by: (a) changing the weight

172

associated with each of the terms in the distance function, (b) considering additional

transformation-invariant shape parameters as needed.

 The distance function defined in Equation (6.2) is the measure of similarity between

parts MP and MQ, represented by two sets of RSFVs; the smaller the value of the distance

given by Equation (6.2), the more similar are the parts MP and MQ.

6.2.3 Problem Statement

The input to the system described in this chapter is a database of parts whose tool makers

are known and a newly designed part for which a tool maker needs to be selected. The

system outputs parts similar to the query part.

 Each part has been modeled in its own coordinate system. Therefore, we need to align

the parts using rigid body transformations before computing the distance. The parts are

represented by using two sets of RSFVs. Hence, as stated previously, the problem of

aligning two sets of RSFVs is equivalent to the problem of aligning attributed applied

vectors in 3. To align the two sets of attributed applied vectors in 3, one set has to be

moved with respect to the other set. Rigid body transformation of a set of attributed

applied vectors in 3 involves six degrees of freedom. The distance function has to be

minimized over all the possible configurations of the moving attributed applied vector set

with respect to the stationary one. The transformation matrix for the six degrees of

freedom transformation is given by (, , , , ,)x y z θ ϕ ψ= ∆ ∆ ∆T T where ∆x, ∆y, ∆z, θ, ϕ, and

ψ are the six degrees of freedom considered. Assuming that P is the moving set, the

transformed set P can be written as TP. The distance function defined in Equation (6.2)

can then be written as:

173

(,) (,)(, , , , ,)d P Q d P Q x y z θ ϕ ψ= ∆ ∆ ∆T T (6.4)

 This chapter introduces an algorithm to find the best alignment between two sets of

attributed applied vectors in 3 by transforming one attributed applied vector set such that

the distance function is minimized.

 In Sections 6.3, 6.4, and 6.5 the surface feature-based shape similarity assessment

algorithm is described.

6.3 Computing Surface Feature-Based Similarity For Parts

As mentioned previously, aligning two sets of attributed applied vectors in 3 is a six

degree of freedom problem. For selecting the tool maker of the new part based on the

database of existing parts, the two parts should have at least one surface patch of the

same type. If the two parts have no common surface patches, then one part cannot be

used to select the tool maker for the other and hence the part needs to be pruned. Thus,

three degrees of freedom in this problem can be constrained by considering combinations

of surface patches. Each surface patch location of MP is aligned with every surface patch

location of MQ having the same type. The total number of alignments that need to be

performed is not large. This is because the number of combinations of surface patches of

the two parts of the same type is not significantly large, as most of the reasonably

complex plastic parts have fewer than 100 instances of surface patches.

 Consider a pair of RSFVs pi ∈ P and qj ∈ Q of the same type equivalent to two

attributed applied vectors in 3. Initially, the translation represented by the matrix Ti,j is

applied to the two sets P and Q such that the locations of pi ∈ P and qj ∈ Q are aligned.

Then the set P is transformed with respect to Q using the three degrees of freedom left,

174

which are the rotations θ, ϕ and ψ around the three coordinate axis. The center of rotation

is the location corresponding to the pair of RSFVs being aligned. An iterative scheme

THREEDOFITER is used to solve the corresponding three degree of freedom alignment

problem. The iterative scheme, defined in Section 6.5, will iterate through the algorithm

COMPUTEANGLE applied to each of the three rotations θ, ϕ, and ψ around the three

coordinate axis. The algorithm COMPUTEANGLE, described in Section 6.4, can solve

separately the alignment problem for each degree of freedom. The value of the distance

function corresponding to the outcome of the iterative scheme is the minimum value of

the distance function for a particular RSFV pair alignment. Now, the next alignment is

considered and the procedure is repeated. The output is the minimum value of the

distance over all the RSFV pair alignments. The overall algorithm is given below.

Algorithm: COMPUTESIMILARITYMEASURE_TWO

 Input:

• Parts MP and MQ.

Output:

• Degree of similarity between MP and MQ based on the distance function defined

in Equation (6.2).

Steps:

1. Let P and Q be the RSFV sets corresponding to MP and MQ.

2. Initialize dmin = Infinity.

3. For each RSFV pi of P, do the following.

a. Initialize (dmin)i = Infinity.

b. For each RSFV qj of Q, do the following.

175

i. If pi ∈ P and qj ∈ Q are of the same type, translate P using the

transformation matrix Ti,j such that pi aligns with qj.

ii. Else go to next value of j in Step 3b.

iii. Compute the minimum distance value (dmin)i,j using the algorithm

THREEDOFITER.

iv. If (dmin)i is greater than (dmin)i,j then (dmin)i = (dmin)i,j.

c. If dmin is greater than (dmin)i then dmin = (dmin)i.

4. Return dmin.

6.4 Finding The Optimal Alignment Under One Degree Of Freedom Rotations

The algorithm COMPUTEANGLE finds the angle θ that minimizes the distance function

given by Equation (6.2) between two sets of RSFVs in 3. The angle θ represents a

rotation around a fixed axis that can be any of the coordinate axes: the algorithm solves

the one degree of freedom problem. The one independent variable of the problem is the

rotation θ applied to one of the two sets. In order to describe the algorithm the rotation θ

about Z axis will be considered. Clearly the algorithm can be applied to the rotations ϕ

and ψ about Y axis and X axis as well. The overall algorithm is given below.

Algorithm: COMPUTEANGLE

 Input:

• Sets P and Q of RSFVs.

Output:

• Angle θmin that minimizes the distance function defined in Equation (6.2).

Steps:

176

a. Partition the theta range [0,2π] into theta intervals such that the closest

neighbor qj ∈ Q to each RSFV pi ∈ P is invariant within each interval by using

the algorithm FINDINVARIANTCLOSESTNEIGHBORS_TWO

b. Within each theta interval c obtained from Step a compute the value of the

rotation θ(c) that minimizes the distance function defined in Equation (6.2) for

interval c.

c. Find interval c* such that the distance function defined in Equation (6.2)

reaches the minimum value over all the intervals obtained in Step a.

d. Return the corresponding value θmin = θ(c*) of the rotation for the interval c*

found in Step c.

 Note that many steps of algorithms COMPUTEANGLE and

FINDINVARIANTCLOSESTNEIGHBORS_TWO defined in this chapter are coincident to the

steps of algorithms COMPUTETHETA and FINDINVARIANTCLOSESTNEIGHBORS described

in Chapter 5. However in this chapter RSFVs in 3, while in Chapter 5 RFVs on the unit

sphere were aligned. Hence there are some differences, as RSFVs are mapped to the

attributed applied vectors in 3 while RFVs are mapped to the attributed points on the

unit sphere.

 In the following subsections the steps of algorithms COMPUTEANGLE and

FINDINVARIANTCLOSESTNEIGHBORS_TWO will be described.

6.4.1 Step a: Building The Set Of Theta Intervals For The RSFVs Of Set P

To compute the distance value in Equation (6.2), the closest neighbor qj ∈ Q to each pi ∈

P needs to be determined. The closest neighbor qj ∈ Q to each pi ∈ P changes with the

177

rotation of set P with respect to set Q. Thus, the closest neighbors for each pi ∈ P need to

be obtained by taking into account the rotation θ around the fixed axis as explained in the

previous section. It is necessary to know, for each value of the rotation θ, the closest

RSFV qj ∈ Q to each RSFV pi ∈ P. The closest neighbor to each RSFV of P changes

only at specific values of θ. Thus, the theta range [0,2π] can be partitioned into a set of

theta intervals within which the closest neighbor to each RSFV of P is known and

invariant. The following algorithm is used for this purpose.

Algorithm: FINDINVARIANTCLOSESTNEIGHBORS_TWO

 Input:

• Sets P and Q of RSFVs.

Output:

• Set of theta intervals and for each interval the closest neighbor to every RSFV

of P from set Q.

Steps:

1. For each RSFV pi of P, do the following.

a. For each possible pair of distinct RSFVs qk and ql of Q, do the following.

Partition the theta range [0,2π] into subintervals within which either d(pi,

qk) > d(pi, ql) or d(pi, qk) < d(pi, ql). The partitioning is performed by

finding the values of θ such that d(pi, qk) = d(pi, ql), where d is the distance

function defined in Equation (6.3). This step can be carried out analytically

and it will be described in more detail after the description of the overall

algorithm.

b. Overlap the intersecting subintervals obtained in Step 1.a so that the range

178

[0,2π] is further partitioned into a set of intervals.

c. For each interval being obtained in Step 1.b, do the following. Using the

closest neighbors being obtained in Step 1.a, find the RSFV qj of Q such

that d(pi, qj) is minimum over all the RSFVs of Q.

2. Overlap the set of intersecting intervals being obtained in Step 1 for each

RSFV pi of P. Within the set of intervals being obtained the closest neighbor to

every RSFV of P from set Q is invariant and known.

 The algorithm described previously yields the set of theta intervals for the RSFVs of

P. In the next paragraphs Step 1.a and Step 2 will be explained in detail.

 In Step 1.a, the closest neighbors for each RSFV pi ∈ P need to be obtained by using

the distance function defined in Equation (6.2). The distance function accounts for the

relevant surface patch attributes. The transformation-invariant attributes need to be

considered in obtaining the closest neighbors. The task is carried out analytically as

follows. In order to partition the theta range [0,2π] into subintervals within which either

d(pi, qk) > d(pi, ql) or d(pi, qk) < d(pi, ql), it is necessary to find the values of θ such that

d(pi, qk) = d(pi, ql). If there are not such values, it is either d(pi, qk) > d(pi, ql) or d(pi, qk) <

d(pi, ql) for all the values of θ. It is possible to verify that the values of θ are obtained

solving the following equation:

Acosθ + Bsinθ = C (6.5)

 The constant values A, B and C depend on the initial location and orientation of the

RSFVs considered, on the center of rotation considered and on the transformation-

invariant attributes of the RSFVs considered. In Appendix C more details on how to

obtain Equation (6.5) will be given. The values of the angle θ that are obtained from

179

Equation (6.5) will partition the theta range [0,2π] into subintervals within which it is

easy to verify whether d(pi, qk) > d(pi, ql) or d(pi, qk) < d(pi, ql). In some cases Equation

(6.5) might not have any real number solution for θ. In this case it is either d(pi, qk) >

d(pi, ql) or d(pi, qk) < d(pi, ql), which can be verified by substituting in Equation (6.5) any

real number value for θ.

Observe that Step 1 of the algorithm FINDOPTIMALNEIGHBOR_2 yields the closest

neighbors for each RSFV of P separately. A set of theta intervals is built for a particular

RSFV pi ∈ P such that in each interval the closest RSFV of Q to pi is known. In Figure

6.4 the set of theta intervals within the range [0, 2π] for the RSFV p1 ∈ P is shown. Thus

several sets of theta intervals are obtained, one for each RSFV of P. The overlapping of

the sets of theta intervals being performed in Step 2 yields the set of theta intervals for the

RSFVs of P. Within each of the intervals the distance given by Equation (6.2) can be

minimized using closed form mathematical formulae. The only independent variable in

the formulae is rotation θ: The single sets of theta intervals for each RSFV of P are

combined into the set of theta intervals for the RSFVs of P by overlapping so that the

resulting range [0, 2π] is further partitioned into intervals. Each of the resulting intervals

is obtained from the intersection of the intervals of the initial sets of intervals. Figure 6.5

shows two sets of intervals that are overlapped. One set of intervals is the set of theta

intervals of RSFV p1 of set P (see Figure 6.5(a)), the other one is the set of theta intervals

of RSFV p2 of set P (see Figure 6.5(b)). The interval c, indicated in Figure 6.5(c) by an

arrow point, is clearly contained in one of the intervals of each of the two sets of theta

intervals that have been overlapped. As shown in Figure 6.5(a) and Figure 6.5(b), the

intervals c1 and c2 overlap to generate interval c. Thus, interval c represents a region in

180

the set of theta intervals for the RSFVs of P. Within c, q1 is the closest neighbor to p1 and

q2 is the closest neighbor to p2. Each point of c corresponds to a transformation applied to

the set of RSFVs P while Q is fixed. Thus, within any interval of the set of theta intervals

for the RSFVs of P, the closest RSFV of Q to each RSFV in P is known. The distance

function defined in Equation (6.2) can now be computed for each interval. The distance

function defined in Equation (6.2) for each interval can be expressed as a function of the

location coordinates (x, y, z) and the orientation components (vx, vy, vz) of the RSFVs of P

and Q. The location coordinates and the orientation components of P and Q can be

expressed as a function of θ, which is the angle of rotation. Thus the distance function

defined in Equation (6.2) is expressed as a function of θ as explained in the next

subsection.

6.4.2 Step b: Minimization Of The Distance Function Within A Given Theta

Interval

Consider the location (, ,)i i ip p px y z and the orientation (, ,)i i ip p p
x y zv v v of a RSFV pi in 3.

Let ip
zov be the initial Z component of the orientation for attributed point pi ∈ P, while

2 2() ()i i ip p p
xyo xo yov v v= + is the initial component in the coordinate plane XY before

applying algorithm COMPUTEANGLE. Let (xB,yB) be the center of rotation. Define ip
oθ as

the known initial angle of each RSFV pi∈P with respect to the center of rotation before

applying algorithm COMPUTEANGLE. Similarly let dzi be the Z component and dxyi the XY

component of the Euclidean distance between each RSFV pi∈P and the center of rotation.

Let also ip
voθ be the known initial angle of the XY component of the orientation of each

RSFV pi∈P with X axis before applying algorithm COMPUTEANGLE. The angle and

181

component values defined previously refer to the positions of RSFVs of P and Q after the

initial alignment described in Section 6.3.

 In the previous subsection the set of theta intervals for all the RSFVs of P was built

by overlapping the single sets of theta intervals of each RSFV. The range [0, 2π] is thus

partitioned into a number of intervals. Within each interval the closest RSFV in Q to each

of the RSFVs in P is known. The following definitions, valid within each single interval,

will be used.

() coordinate of the position of the closest RSFV () to RSFV

() coordinate of the position of the closest RSFV () to RSFV

() coordinate of the position of the close

j

j

j

q
j i

q
j i

q

x i x q i Q p P

y i y q i Q p P

z i z

= ∈ ∈

= ∈ ∈

= st RSFV () to RSFV

() component of the orientation () of the closest RSFV to RSFV

() component of the orientation () of the closest RSFV to RSFV

() compon

j j

j j

j

j i

q q
x i

q q
y i

q
z

q i Q p P

v i x v i p P

v i y v i p P

v i z

∈ ∈

= ∈

= ∈

= ent of the orientation () of the closest RSFV to RSFV jq
iv i p P

⎧
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪

∈⎪⎩

 (6.6)

 Consider a single theta interval and a moving RSFV pi ∈ P. Let θ be the rotation

applied to the RSFVs of set P. Then,

() cos()

() sin()

 RSFV
() cos()

() sin()

i i

i i

i

i i i

i i i

i i

p p
B xyi o

p p
B xyi o

p
B zi

ip p p
x xyo vo

p p p
y xyo vo

p p
z zo

x x d

y y d

z z d
p P

v v

v v

v v

θ θ θ

θ θ θ

θ θ θ

θ θ θ

⎧ = + +
⎪

= + +⎪
⎪

= +⎪ ∀ ∈⎨
= +⎪

⎪ = +⎪
⎪ =⎩

 (6.7)

 Within a single interval, it is necessary to compute (,)d P Q as a function of the

transformation θ:

182

()

2 2 2

2 2 2

2 2

2

(() ()) (() ()) (())

(() ()) (() ()) (())

(() (())) (() (()))
1 (,)

(() (())) ((

()

j j ji i i

j j ji i i

q q qp p p
L

q q qp p p
O x x y y z z

A i j o o i o j

c i j c c

w x x i y y i z z i

w v v i v v i v v i

w A p A q i w p q i
p q

w p q i w

d

σ

µ σ

θ θ

θ θ

σ σ
δ

µ µ σ

θ

⎡ ⎤− + − + − +⎣ ⎦
⎡ ⎤− + − + − +⎣ ⎦

− + − +
−

− +

=

1

2) (()))

(, ())

n

i

i c j

T i j

p q i

w p q i
n

σ

δ

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪

∑⎨ ⎬⎡ ⎤
⎪ ⎪+⎢ ⎥
⎪ ⎪−⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭ (6.8)

 Using the notations introduced in Equations (6.6) and (6.7), Equation (6.8) can be

simplified to,

()

2

2 2

2 2 2

(cos() ())

(sin() ()) (())

(cos() ()) (sin() ()) (())

(() (())
1 (,)

()

ji

j ji

j j ji i i i i

qp
B xyi o

L q qp
B xyi o B zi

q q qp p p p p
O xyo vo x xyo vo y zo z

A i j

x d x i
w

y d y i z d z i

w v v i v v i v v i

w A p A q i
p q

d

θ θ

θ θ

θ θ θ θ

δ

θ

⎡ ⎤+ + − +
⎢ ⎥ +
⎢ ⎥+ + − + + −⎣ ⎦
⎡ ⎤+ − + + − + − +⎣ ⎦

−
−

=

1 2 2

2 2

) (() (()))

(() (())) (() (()))

(, ())

n

i
o o i o j

c i j c c i c j

T i j

w p q i

w p q i w p q i

w p q i
n

σ

µ σ

σ σ

µ µ σ σ

δ

=

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪

∑⎨ ⎬
⎪ ⎪⎡ ⎤+ − +
⎪ ⎪+⎢ ⎥
⎪ ⎪− + −⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪⎩ ⎭

 (6.9)

 In order to minimize ()d θ its derivative with respect to θ must be set to zero. By

doing this and simplifying, we get the following expression.

1

[()] cos() [()] sin()

() cos() () sin()
()

[()] cos() [()] sin()

() cos(

j ji i

j ji i i i

j ji i

j i

q qp p
n L B xyi o L B xyi o

q qp v p vi
O y xyo o O x xyo o

q qp p
L B xyi o L B xyi o

q p v
O x xyo o

w y y i d w x x i d

w v i v w v i v
tg

w x x i d w y y i d

w v i v

θ θ

θ θ
θ

θ θ

θ

=

⎛ ⎞− − − −
⎜ ⎟∑
⎜ ⎟− +⎝ ⎠=

− + − −

−1) () sin()ji i i

n

q p vi
O y xyo ow v i v θ=

⎛ ⎞
⎜ ⎟∑
⎜ ⎟−⎝ ⎠

 (6.10)

183

Observe that the distance function defined in Equation (6.9) is a continuous function, and

it is also bounded. The values of θ resulting from Equation (6.10) can identify local

minima or local maxima of the distance function, depending on the sign of the second

derivative. Hence it is necessary to check the sign of the second derivative by substituting

the values of θ resulting from Equation (6.10) in the second derivative of the distance

function defined in Equation (6.9). The values of θ that yield a positive value for the

second derivative are local minima. Among them the θ value corresponding to the global

minimum will be chosen.

 Figure 6.4: Set of Theta Intervals for Reduced Surface Feature Vector p1 of P

θ = 0 θ = 2π
θ1 θ2 θ3

θ = 0 corresponds to the initial
position of the RSFV p1

Interval
corresponding to
closest neighbor

RSFV q2

p1

θ

θ2
θ1

θ3

Interval
corresponding to
closest neighbor

RSFV q1

Interval
corresponding to
closest neighbor

RSFV q3
θ = 0

184

Equation (6.10) yields the transformation θ, applied to the set of RSFVs P, which

minimizes the distance between the sets of RSFVs P and Q. This value of the

transformation is valid only within a single interval of the set of theta intervals for all the

RSFVs of P. In general the value of θ that is found is not guaranteed to lie in the interval

where the distance function is defined. Values of θ that lie outside the corresponding

interval have no physical meaning and should be discarded. In fact Theorem 1 guarantees

that none of them will be the θ value corresponding to the global minimum over all the

intervals.

 Equation (6.10) has been obtained by differentiating the distance function with

respect to θ, which is a standard minimization technique in the continuous domain. Thus,

Figure 6.5: Example of Set of Theta Intervals Resulting From Overlapping of Two Sets
of Theta Intervals

(c): Set of Theta Intervals Resulting From Overlapping of Sets of
Theta Intervals (a) and (b)

θ = 0 θ = c

(a): Set of Theta Intervals of RSFV p1 of P

Interval generated from RSFV q1

θ = 0 θ = Interval
generated

from RSFV q2

c1

θ = 0

(b): Set of Theta Intervals of RSFV p2 of P

Interval generated from RSFV q2

θ = 2π Interval
generated

from RSFV q1

Interval
generated

from RSFV q3

c2

185

the transformation value obtained for an interval c of the set of theta intervals for all the

RSFVs of P yields the best possible alignment between the two RSFV sets for all

permissible transformations within the interval c.

6.4.3 Steps c and d: Computing The Value Of Theta That Minimizes The Distance

Over All The Theta Intervals

The value of θ(c) obtained in the Equation (6.10) yields the rotation that minimizes the

distance between the two RSFV sets P and Q within a single interval c of the set of theta

intervals for all the RSFVs of P. To obtain the corresponding value of the distance ()d c

it is sufficient to substitute the value of θ obtained from Equation (6.10) into Equation

(6.9). Hence, for each interval, ()d c is the minimum distance. Finally Step d of the

algorithm COMPUTETHETA involves finding the value of θ corresponding to the minimum

distance over all the intervals. The minimum distance over all the intervals is obtained as

in Subsection 3.5.3. The same formulae can be used and the same considerations are

valid. They are reported for clarity as follows.

min min ()
c C

d d c
∈

= (6.11)

where C is the set of all the intervals c of the partitioned theta range [0, 2π]. Equation

(6.11) yields the minimum distance between sets P and Q. The corresponding rotation

θmin is found as follows.

min ()cθ θ ∗= (6.12)

where c* is the interval in which the minimum distance was found.

186

 Equation (6.12) yields the rotation to apply to P in order to minimize the distance

between P and Q and Equation (6.11) yields the minimum distance between two sets of

RSFVs equivalent to applied vectors in 3 under one degree of freedom rotation.

6.5 Iterative Schemes To Find Optimal Alignment Under Three Rotational Degrees

Of Freedom

In this section the algorithm THREEDOFITER used in Step 3.b.iii. of the algorithm

COMPUTESIMILARITYMEASURE_TWO is described in detail. As explained in Section 6.3, a

translation Ti,j has been applied to the two sets P and Q such that the locations of the

pairs of two attributed applied vectors of the same type pi ∈ P and qj ∈ Q are aligned.

Consequently the alignment problem to be solved involves only three rotational DOFs.

The three rotational DOFs involved correspond to the three rotations θ, ϕ, and ψ around

the three coordinate axis. Consider the corresponding transformation matrix R = (θ, ϕ,

ψ). The transformations R1 ∈ Γ1, R2 ∈ Γ2 and R3 ∈ Γ3 are such that two of the

components of R are zero: R1 = (θ, 0, 0), R2 = (0, ϕ, 0) and R3 = (0, 0, ψ). The algorithm

COMPUTEANGLE can perform alignment between P and Q in the lower dimension

transformation spaces Γ1, Γ2 and Γ3. Define the three optimal alignment algorithms based

on partitioning of the transformation space ALIGN-Ri with i = 1, 2, 3 as the optimal

alignment algorithm COMPUTEANGLE under the transformation Ri. The following

notation introduced in Chapter 4 describes the effect of alignment.

P’ = ALIGN-Ts
i(P,Q)

where P’ is rotated P after applying algorithm COMPUTEANGLE. Now consider the

following sequence of algorithms.

187

(P1 = ALIGN-R1(P,Q), P2 = ALIGN-R2(P1, Q), P3 = ALIGN-R3(P2, Q), P4 = ALIGN-

R1(P3,Q), …, Pk-1 = ALIGN-R2(Pk-2,Q), Pk = ALIGN-R3(Pk-1,Q))

 (6.13)

 This sequence terminates when the following condition is met.

(,) (,)kd P Q d P Q ε<′− (6.14)

 The sequence defined in Equations (6.13) is an iterative strategy I1. There are 3!=6

possible sequences of the three optimal alignment algorithms ALIGN-R1, ALIGN-R2 and

ALIGN-R3, each corresponding to an iterative strategy Ii. The first iterative strategy I1 has

already been defined in Equations (6.13). The remaining five are listed as follows.

I2 = (P1 = ALIGN-R1(P,Q), P2 = ALIGN-R3(P1, Q), P3 = ALIGN-R2(P2, Q), P4 = ALIGN-

R1(P3,Q), …, Pk-1 = ALIGN-R3(Pk-2,Q), Pk = ALIGN-R2(Pk-1,Q))

I3 = (P1 = ALIGN-R2(P,Q), P2 = ALIGN-R1(P1, Q), P3 = ALIGN-R3(P2, Q), P4 = ALIGN-

R2(P3,Q), …, Pk-1 = ALIGN-R1(Pk-2,Q), Pk = ALIGN-R3(Pk-1,Q))

I4 = (P1 = ALIGN-R2(P,Q), P2 = ALIGN-R3(P1, Q), P3 = ALIGN-R1(P2, Q), P4 = ALIGN-

R2(P3,Q), …, Pk-1 = ALIGN-R3(Pk-2,Q), Pk = ALIGN-R1(Pk-1,Q))

I5 = (P1 = ALIGN-R3(P,Q), P2 = ALIGN-R1(P1, Q), P3 = ALIGN-R2(P2, Q), P4 = ALIGN-

R3(P3,Q), …, Pk-1 = ALIGN-R1(Pk-2,Q), Pk = ALIGN-R2(Pk-1,Q))

I6 = (P1 = ALIGN-R3(P,Q), P2 = ALIGN-R2(P1, Q), P3 = ALIGN-R1(P2, Q), P4 = ALIGN-

R3(P3,Q), …, Pk-1 = ALIGN-R2(Pk-2,Q), Pk = ALIGN-R1(Pk-1,Q))

 (6.15)

 The algorithm THREEDOFITER aligns two sets of RSFVs under the three rotations θ,

ϕ, and ψ for each pair of RSFVs pi ∈ P and qj ∈ Q of the same type being matched by

188

using the translation Tij. Algorithm THREEDOFITER uses the previously defined iterative

schemes Ii.

 Observe that the iterative schemes Ii are not guaranteed to optimize the distance

function. They do not necessarily lead to a local minimum either. In order to reach the

global minimum and so optimize the distance function, it is necessary to start from a

number r of different initial conditions. The higher the number r of initial conditions

being used, the higher the chances of optimizing the distance function by obtaining the

global minimum. On the other hand, the complexity of the algorithm increases with the

number of initial conditions used. Hence, in choosing the number of initial conditions r to

use, it is necessary to tradeoff between the complexity of the corresponding algorithm

and the accuracy of the outcome.

 Using the iterative strategies defined in Equations (6.13) and (6.15) it is now possible

to define the algorithm THREEDOFITER used in Step 3.b.iii of algorithm

COMPUTESIMILARITYMEASURE_TWO. The algorithm is described in detail as follows.

Algorithm: THREEDOFITER
 Input:

• Parts MP and MQ and number of different initial conditions r.

Output:

• Minimum distance value dmin between MP and MQ based on the distance

function defined in Equation (6.2).

Steps:

1. Let P and Q be the RSFV sets corresponding to MP and MQ

2. Initialize dmin = Infinity.

189

3. For i = 1 to 6, do the following.

a. Apply iterative scheme Ii to sets P and Q starting from r different initial

conditions of set P and obtaining for the j-th each initial condition the

distance dj.

b. Among the obtained distances dj with j = 1, 2, 3…, r find the minimum

distance d.

c. If the minimum distance d < dmin then dmin = d.

d. If dmin = 0 go to Step 4.

4. Return dmin.

 In the next section experimental results are presented.

6.6 Experimental Results

In this section it is verified experimentally whether iterative schemes Ii can be used to

solve the attributed applied vectors alignment problems. Also, extensive experiments give

an estimate of the number r of initial conditions needed to reach the global minimum.

The experiments are similar to the ones carried out to verify the performance of iterative

schemes 3
RiI on the attributed point alignment problems under three rotational DOFs

described in Chapter 4. Furthermore experimental results to assess the performance of the

algorithm COMPUTESIMILARITYMEASURE_TWO are presented.

6.6.1 Tests To Study The Performance Of Iterative Scheme

The first set of experiments was carried out to assess the performance of the iterative

schemes defined in Section 6.5. A total of 1000 initial sets of 20 attributed applied

vectors were randomly generated. In particular, the vector locations were randomly

generated inside a sphere of a fixed size. The orientations and transformation-invariant

190

attributes were also generated randomly. Then a random transformation was applied to

each of the 1000 sets, creating 1000 more sets of attributed applied vectors. Hence finally

1000 pairs of sets of applied vectors were obtained. Consider all the pairs of sets

consisting of one initial set and one corresponding additional set created as explained

previously. The iterative strategies Ii were applied to each pair of applied vector sets until

convergence was reached following algorithm THREEDOFITER. A total of 1000 instances

were evaluated. The expected minimum distance corresponding to the optimal alignment

computed among the sets of each pair is 0. Cases in which the optimal alignment was not

found were handled using the following procedure. A random transformation was applied

to the initial set of the pair in order to create a different initial condition. Then the

experiment was repeated with the different initial condition that had been obtained for

those instances. This procedure was repeated until the optimal alignment was found or

the limit of ten different initial conditions was reached. Out of the 1000 instances, the

optimal alignment (i.e. distance = 0) was found in all of them. In Figure 6.6 a histogram

representing the number of converging and non-converging instances versus the number

of initial conditions used is shown.

 The first set of experiments suggests that the number of initial conditions needed to

obtain the optimal alignment is low. In fact, in 97.2 % of the cases only one initial

condition was needed, and in the remaining 2.8 % of the cases two initial conditions were

enough. This result is general as the applied vectors were randomly generated. In

particular the applied vector locations were generated inside a sphere of fixed size in

order not to have preferential directions or pattern in the applied vector sets. The obtained

results suggest that the iterative scheme used in algorithm 3DOFITER has a good

191

performance on 3 rotational DOF attributed applied vector alignment problems under

three rotations. Hence algorithm THREEDOFITER can be conveniently used within

algorithm COMPUTESIMILARITYMEASURE_TWO to perform surface feature based shape

similarity assessment of parts. Referring to the outcome of the first experiment we

decided to use r = 3 initial conditions in the second experiment described in next

subsection.

6.6.2 Tests On Mechanical Parts

A software system has been implemented based on the algorithms presented in this

chapter in C++ programming language using Microsoft Foundation Classes (MFC) and

Figure 6.6: Histogram Representing Number of Converging and Non-converging
Instances vs. Initial Conditions Used

972 1000

28

1 2

Number of Initial conditions used

Number of converging instances

Number of non-converging instances

972 1000

28

1 2

Number of Initial conditions used

Number of converging instances

Number of non-converging instances

192

OpenGL on a Windows platform. The input to the system is a query part and the

directory in which all the previously designed parts are stored. The system performs the

alignment using the algorithms described previously and outputs those previously

designed parts that are similar to the query part based on the distance function described

in Section 6.2. The output models are rank ordered based on this distance function

starting with the one having the smallest distance value. Surfaces feature parameters are

computed from the boundary representation of the parts.

 The procedure for aligning the two parts used as input to the system is illustrated

using the example shown in Figure 6.7. Figure 6.7(a) shows the initial positions of two

parts MP and MQ that are to be compared. Part MP is obtained by randomly transforming

part MQ. The system, initially, translates part MP such that one of its patches matches a

patch of the same type of part MP as shown in Figure 6.7(b). The system then computes

the angles of rotation θ, ϕ and ψ such that the distance function is minimized. The final

positions of the two parts are shown in Figure 6.7(c).

 The database used for all the experiments consists of 150 parts and is different from

the one used in Chapter 5. The weights wL, wO, wA, wσo, wµc, wσc, and wT are set to 1. The

weights can be modified by the user to increase/decrease the influence of surface patch

attributes on the distance function.

The first and second experiments test the algorithm performance by focusing on the

surface patch area, the orientation, the average curvature, the standard deviations and the

type. The parts being retrieved from the database will be the ones that are more similar to

the query parts in these surface patch characteristics. Figures 6.8 and 6.9 show the two

query parts and those parts from the database that are similar to the query parts. For each

193

experiment the top three matches will be shown. The value of the distance between the

parts is also indicated. Let us consider Part#118 in Figure 6.9. The distance value

between Part#118 and the query Part#B is d = 0.0031. The contribution of the location

term to the distance defined in Equation (6.2) is 0.0013. There is no contribution of the

orientation term to the distance. Among the transformation-invariant terms, the

contribution of the area term is 0.0007 and the contribution of the average curvature term

is 0.0011. Both the curvature standard deviation terms and the type term do not give

contribution to the distance.

 The performance of our surface feature-based shape similarity assessment algorithm

was compared with a Fourier transformation based technique described in [Chak04,

Chak05] that is the best-known technique for performing similarity analysis based on the

boundary representation. Figures 6.8 and 6.9 show the results for our surface feature-

based algorithm. Figures 6.10 and 6.11 show the results for the Fourier transformation

based technique when applied to the same database. The three top matches retrieved by

the Fourier transformation based technique are all similar in gross shape to the query

parts. However, focusing on the shape details of the query part, it can be noticed that they

are significantly different from the shape details of the retrieved parts. This did not

happen using our surface feature-based shape similarity assessment algorithm, where the

three top matches are very similar in surface features to the query parts as it can be

noticed in Figures 6.8 and 6.9.

194

As shown in Figure 6.8, Part#120 is almost identical to the query Part#A in surface

features, and hence it is retrieved by the surface feature-based shape similarity

assessment algorithm. However Part#120 has two cylindrical protrusions on the bottom

Figure 6.7: (a) Initial Position of Part MQ and Its Randomly Transformed Version Part
MQ; (b) Position of Part MP Before Step3b(iii) of the Algorithm
COMPUTESIMILARITYMEASURE_TWO; (c) Final Position of Part MP

y x z

(a)

(b)

(c)

Angles of Rotation
θ = 12.2°
φ = 20.1°
ψ = 15.5°

Part MQ Part MP

y

x

z

Matched patches

y

x

z

y x z

y x z

y

x

z

195

that make its gross shape different from the one of query Part#A. Hence Part#120 is not

retrieved from the Fourier transformation based technique. Surface features of Part#120

and Part#A are similar in orientation, location, curvature, area and types, and hence they

have similar molds. Hence, the tool maker of Part#120 can potentially be the tool maker

of Part#A as the two parts have very similar surface feature characteristics. On the other

hand Figure 6.10 shows that Part#122 has significantly different surface features from the

query Part#A. Patch locations, orientation, area, curvature and type are different from

query Part#A. So the mold for Part#122 is significantly different from the one used for

query Part#A. Hence, our surface feature-based shape similarity assessment algorithm is

more suitable for tool maker selection. Similar conclusions can be drawn from examples

in Figures 6.9 and 6.11.

 The third experiment assesses the performance of the algorithm by focusing on patch

characteristics. The query part used in this case is Part#C. Our surface feature-based

algorithm is applied to the same database using different patch characteristic weights. In

the first case, location weight wL and the area weight wA are set to 10, while the type

weight wT is set to 0. All the other weights are set to 1. This way more importance is

given to the surface patch area and the location than to the other surface patch

characteristics, and the surface patch type is not taken into account. In the second case,

the location weight wL and the type weight wT are set to10, while the area weight wA is set

to 0. All the other weights are set to 1. This way more importance is given to the surface

patch type and the location than to the other surface patch characteristics, and the surface

patch area is not taken into account. Figure 6.12(a) shows the top two matches in the first

case, while Figure 6.12(b) shows the top two matches in the second case. In Figure

196

6.12(a) the top match Part#323 is very similar to the query Part#C in surface patch area

and location, but the surface patch types are significantly different. On the other hand

Part#315, which is the second match, is very similar to the query Part#C in surface patch

type and location but not in surface patch area. Hence Part#315 is ranked less similar to

the query Part#C than Part#323 because a higher weight has been given to surface patch

area than to surface patch type. The reverse reasoning can be made on the two top

matches shown in Figure 6.12(b). In this case Part#315 becomes the top match, as it has a

surface patch type and a location very similar to the query Part#C, and Part#323 becomes

the second match as expected. This experiment shows that by modifying the weight

values the user can determine the outcome of the database search. Hence, it is possible to

modify the database search parameters depending on the particular part characteristics

that are considered more important by the user. This gives flexibility to the surface

feature-based shape similarity assessment algorithm presented.

6.7 Summary

This chapter provides algorithms for identifying those parts in a database that are similar

to a given query part in surface features and hence can be potentially used as a basis for

locating potential tool makers for the query part. We have developed a distance function

to account for the key drivers for the surface features of a part. The selected distance

function accounts not only for the explicit feature parameters such as the area, the

location and the orientation, but also for features’ implicit parameters such as the

curvatures and the distribution of normal vectors. We have developed an algorithm that

performs feature alignment to minimize this function. We have implemented the

197

algorithm to show the proof of the concept. We have tested the algorithm on some

examples in order to assess its performance.

 The surface feature-based shape similarity assessment algorithm described in this

chapter can handle features having any arbitrary orientation in space. We have shown that

the algorithm described in this chapter performs better than the best known technique for

comparing parts based on the boundary representation.

Figure 6.8: Results Obtained for Query Part#A Used As Input to the System

x

y

z

x

y
z

x

y

z

x

y

z

Part#120
Distance: 0.0000

Part#111
Distance: 0.0007

Part#113
Distance: 0.0061

Query: Part#A

x

y

z

x

y
z

x

y

z

x

y

z

Part#120
Distance: 0.0000

Part#111
Distance: 0.0007

Part#113
Distance: 0.0061

Query: Part#A

198

Figure 6.9: Results Obtained for Query Part#B Used As Input to the System

x

y

z

x

y
z

x

y

z

x

y
z

Part#119
Distance: 0.0001 Part#116

Distance: 0.0035
Part#118
Distance: 0.0031

Query: Part#B

x

y

z

x

y
z

x

y

z

x

y
z

Part#119
Distance: 0.0001 Part#116

Distance: 0.0035
Part#118
Distance: 0.0031

Query: Part#B

199

Figure 6.10: Results Obtained for Query Part#A As Input Using Fourier Transformation
Based Technique

Query: Part#A

x

y

z

x

y
z

Part#122
Distance: 0.7857

x

y

z

Part#561
Distance: 1.0013

x

y

z

Part#117
Distance: 1.0609

Query: Part#A

x

y

z

x

y
z

Part#122
Distance: 0.7857

x

y

z

Part#561
Distance: 1.0013

x

y

z

Part#117
Distance: 1.0609

200

Figure 6.11: Results Obtained for Query Part#B As Input Using Fourier
Transformation Based Technique

x

y

z

Query: Part#B

x

y
z

Part#121
Distance: 1.0675

y

x z

Part#710
Distance: 1.3177

x

y
z

Part#340
Distance: 1.3593

x

y

z

Query: Part#B

x

y
z

Part#121
Distance: 1.0675

y

x z

Part#710
Distance: 1.3177

x

y
z

Part#340
Distance: 1.3593

201

Figure 6.12: Results Obtained for Query Part#C As Input To The System; In
Case (a) More Importance Is Given to Surface Patch Area and Location, in
Case (b) More Importance Is Given to Surface Patch Type and Location

x

y

z

Query: Part#C

x

y
z

Part#323
Distance: 0.0103

y

x z

Part#315
Distance: 0.0632

(a)

x

y
z

Part#315
Distance: 0.0400

y

x z

Part#323
Distance: 0.2876

(b)

x

y

z

Query: Part#C

x

y
z

Part#323
Distance: 0.0103

y

x z

Part#315
Distance: 0.0632

(a)

x

y
z

Part#315
Distance: 0.0400

y

x z

Part#323
Distance: 0.2876

(b)

202

Chapter 7: Conclusions

This chapter is organized as follows. In Section 7.1 the intellectual contributions of this

thesis are presented. In Section 7.2 the anticipated industrial benefits of the research work

described in this thesis are identified. Finally, Section 7.3 suggests the future research

directions resulting from this thesis.

7.1 Intellectual Contributions

This thesis makes the following intellectual contributions.

• Optimal Feature Alignment Algorithms Based On Partitioning Of

Transformation Spaces: We have designed a new class of feature alignment

algorithms based on partitioning of the transformation space. The transformation

spaces corresponding to the following three transformations are used: two DOF

translations in 2, one DOF rotations in 2 and three DOF translations in 3. The

algorithms designed provide an optimal solution for the corresponding alignment

problems. The optimal alignment is obtained by transforming one set of features such

that a distance function between the two sets of features that are being compared is

minimized. Any differentiable distance function whose form is consistent with

Equation (3.1) can be used in our framework. In order to compute the distance

function it is necessary to know for each feature the closest neighbor from the other

set. The closest neighbor changes with the transformation applied to one of the two

feature sets. As there are exponentially many closest neighbor combinations it would

not be efficient to solve the problem by enumeration. Instead, in our framework, we

partition the transformation space into regions such that the closest neighbors are

known and invariant for each of them. Then the distance function is minimized within

203

each region by using standard analytical tools for optimization and finally the

minimum value of the distance function over all the regions is found. The

corresponding transformation is the optimal alignment. The complexity of the

algorithms has been studied by assessing the complexity of spatial arrangements that

are used to partition the transformation space. A low order polynomial upper bound

for the spatial arrangement complexity with respect to the number of features has

been found in the general case of d spatial arrangements for well-behaved uniform

feature distributions. The distance function used in our research accounts both for

transformation-dependent attributes such as feature position and orientation and for

transformation-invariant attributes such as feature size and type. The user can choose

the number of feature parameters to take into account. The user can also assign a

weight to each feature parameter. Hence the underlying distance functions are flexible

and customizable.

• Feature Alignment Algorithms Based On Iterative Strategies: In theory, feature

alignment algorithms based on partitioning of the transformation space can be used to

find optimal solutions for alignment problems under transformations of any

dimension. However in the case of higher dimension transformations, feature

alignment algorithms based on partitioning of the transformation space involve very

complex data structures. Therefore we have designed feature alignment algorithms

based on iterative strategies. They solve higher dimension alignment problems by

using optimal alignment algorithms based on partitioning of lower dimension

transformation spaces. Optimal alignment algorithms based on partitioning of lower

dimension transformation spaces represent partial optimal solutions for higher

204

dimension alignment problems. Therefore iterative strategies that use those partial

solutions can find the optimal solution also for higher dimension alignment problems.

The optimal solution corresponds to the global minimum of the selected distance

function. The initial positions of the two sets being aligned are referred to as initial

conditions. Initial conditions affect the performance of iterative strategies because

depending on them an iterative strategy may reach a local minimum of the distance

function rather than its global minimum. We have identified an iterative strategy in

2 that is guaranteed to lead to a local minimum of the distance function. We have

provided empirical evidence that very few initial conditions are needed to reach the

optimal alignment by performing extensive experiments in 2 and 3. Hence

alignment algorithms based on iterative strategies in 2 and 3 can be used to find the

optimal solution for alignment problems under higher dimension transformations.

• Surface Feature-Based Similarity Algorithms: We have designed surface-feature

based similarity assessment algorithms. These algorithms are capable of assessing

similarity based not only on explicit feature parameters such as feature size, location

or orientation, but also on implicit feature parameters such as surface curvature and

distribution of normal vectors. Hence we have shown that the ideas presented in this

thesis works both for explicit as well as implicit feature parameters.

• Incorporation of Alternative Interpretations of Volumetric Features in

Similarity Assessment Algorithms: We have developed a mathematical framework

that allows us to incorporate alternative interpretations of volumetric machining

features in similarity assessment. This framework is applicable to parts for which

205

individual feature interpretations are independent of each other. It eliminates the need

for considering the combinatorial enumeration of various alternative feature

interpretations for parts.

7.2 Anticipated Benefits

This thesis provides a feature-based shape similarity assessment framework. This

framework can be used to assess similarity between parts based on their feature

characteristics. The feature characteristics can be chosen by the user depending on the

application. The anticipated industrial benefits are as following.

• Machining Feature-Based Shape Similarity Assessment: The machining cost of

parts depends on their machining feature characteristics. Cost estimators often

estimate the cost of a new part by referring to similar parts whose cost has been

already estimated. Searching large databases for similar parts can be time consuming.

Our machining feature-based shape similarity assessment algorithm can help cost

estimators in searching large databases of machined parts, automatically, in order to

find the parts that are similar in machining features to the one whose cost has to be

estimated. Then the cost estimators can analyze the cost of the retrieved parts in order

to give an estimate of the cost of the newly designed part. This will reduce the time

and effort required to locate parts in the database similar to the query part.

• Surface Feature-Based Shape Similarity Assessment: Nowadays many companies

have global operations, and hence they use many tool makers, each specializing in

different kinds of toolings. Designers rely on their own experience in choosing the

most appropriate tool maker. An alternative way to identify the appropriate tool

maker for a new part is to find similar parts to the new part. Tool makers used for the

206

similar parts can be approached by the designer to get quotes for the new part. Our

surface feature-based shape similarity assessment algorithm can help designers in

automatically searching large databases in order to find parts that are similar to the

new one from the surface feature point of view. This will reduce the time and effort

required to locate parts in the database similar to the query part. As the parts retrieved

from the database are similar in surface feature characteristics to the new part, the

type of tool used is potentially similar.

• Feature-Based Shape Similarity Assessment To Search For Potentially Reusable

Designs: In many applications, designers need to use previously designed

components in new designs. The use of archived design information improves the

quality of the new designs by increasing their reliability and reducing part

proliferation. It also decreases the cost of developing new designs. Nowadays

companies are building large repositories of designs. Designers currently search these

repositories manually. Searching large design repositories is time consuming. The

reusable designs archived in the repository include the geometric model of the parts

that have been designed. In manufacturing applications shape details of the parts to be

designed are among the main elements that determine part design. For instance shape

details determine the tooling needed to manufacture the part. Our feature-based shape

similarity assessment algorithm can be used to automatically search repositories for

the designs whose part feature characteristics are similar to the ones of the new part to

be designed.

• Feature-Based Shape Similarity Assessment To Search For Redesign Suggestion:

Archived redesign projects can provide meaningful suggestions on how to carry out

207

the redesign in a new project. This way redesign cost will be reduced by exploiting

past redesign experiences. We expect repositories to include the models of both the

initial and redesigned parts or assemblies. In manufacturing applications shape details

of the parts or assemblies to be redesigned are among the main elements that

determine the redesign process. For instance this applies to redesigning an assembly

in order to make it manufacturable by multi-material molding. Our feature-based

shape similarity assessment algorithms can be used to automatically search

repositories for the previous redesign projects of parts or assemblies whose feature

characteristics are similar to the part in a new redesign project. This will reduce the

time and effort to locate redesign projects in large repositories.

7.3 Directions For Future Work

The following future work is suggested to overcome the limitations of the research work

described in this thesis.

• Enable Additional Optimal Alignment Algorithms Based On Partitioning Of

Transformation Spaces: Three optimal alignment algorithms based on partitioning

of transformation spaces in 2 and 3 have been designed in this thesis. They

partition the transformation space into regions within which the alignment problem

can be solved directly. Spatial arrangements in 2 and 3 are used to partition the

transformation space. The data structure for the spatial arrangements in higher

dimensional transformations becomes more complex and theory for constructing

them is not well studied. Therefore it is necessary to investigate if it is possible to

define efficient data structures and procedures to build spatial arrangements to

208

partition higher dimension transformation spaces. They will enable the optimal

solution of alignment algorithms that involve higher dimension transformations.

• Identify Characteristics Of Alignment Problems Such That The Optimal

Solution Can Be Efficiently Found By Using Iterative Strategies: The

performance of iterative strategies depends on the number and distribution of local

minima of the distance function. Hence it is necessary to investigate how exactly the

number and distribution of local minima are affected by the characteristics of the

alignment problems being addressed. In particular it is necessary to identify the

characteristics of the alignment problems such that iterative strategies can provide the

optimal solution by using very few initial conditions. This will enable a more efficient

use of alignment algorithms based on iterative strategies to solve particular classes of

alignment problems.

• Define Feature-Based Similarity Assessment Algorithms In Presence Of Multiple

Feature Interpretations With Constraints On Feature Interpretation

Combinations: Machining feature-based shape similarity assessment algorithms

have been extended to the case of multiple possible feature interpretations in this

thesis. These algorithms are based on partitioning of the transformation spaces into

regions such that the closest neighbor is invariant, like the algorithms designed for

single feature interpretations. In this case the partitioning is built by assuming that

selecting an interpretation for a feature does not depend on the interpretation chosen

for some other feature. However, in some cases feature interpretations may not be

independent. Therefore, algorithms developed in this thesis work need to be extended

to cases in which feature interpretations need to meet certain constraints. In particular

209

the procedure and data structure used to define the partitioning of the transformation

space need to be able to account for constraints on the possible closest neighbor

combinations.

• Develop Additional Pruning Criteria: Pruning is a fundamental step towards

efficient information retrieval from databases. The feature-based shape similarity

assessment algorithms designed in this thesis are used to search part databases. They

are based on optimal feature alignment algorithms. Finding the optimal alignment

between two sets of features can be time-consuming if the number of features of the

two sets that are being aligned is high. Therefore it is necessary to establish additional

pruning criteria so that the part database search is performed in a more efficient way.

The additional pruning criteria need to be consistent with the feature-based similarity

assessment algorithms proposed in this thesis. In particular, they need to be

customized for the distance function that is used to assess similarity between two

parts.

• Develop Clustering Techniques: Clustering analysis is a fundamental data search

technique to retrieve information from large databases. It consists of grouping

database objects based on a similarity function. Then in searching databases it is

possible to focus on the groups of interest. This results in a reduction of time and

effort needed to search databases. Therefore it will be necessary to define clustering

techniques customized for the feature-based shape similarity assessment algorithms

that have been designed in this thesis. In particular the clustering criteria need to be

consistent with the distance function that is used in the algorithms.

210

• Perform More Extensive Tests To Assess The Performance Of The Feature-

Based Shape Similarity Assessment Framework: A feature-based shape similarity

assessment framework has been developed in this thesis for two applications, and it

has been tested with some examples to assess its performance. It will be useful to

carry out more extensive tests in order to assess the performance of the feature-based

shape similarity assessment framework developed in this thesis on different databases

consisting of different types of parts that are obtained by using different

manufacturing procedures. These tests will give an insight that can be used to

improve the algorithms and decrease the number of false positives and false

negatives.

211

References

[Agar94] P. Agarwal, M. Sharir, and S. Toledo. Applications Of Parametric Searching
In Geometric Optimization. Journal Of Algorithms, 17(3): 292-318, 1994.

[Agar03a] P. Agarwal, S. Krishnan, N. H. Mustafa, and S. Venkatasubramanian.
Streaming Geometric Optimization Using Graphics Hardware. In
Proceedings Of 11th Annual European Symposium On Algorithms, 2003.

[Agar03b] P. Agarwal, S. Har-Peled, M. Sharir, and Y. Wang. Hausdorff Distance
Under Translations Of Points, Disks, And Balls. In Proceeding Of 19th
Annual ACM Symposium On Computational Geometry, 282-291, 2003.

[Alt88] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, Similarity
And Symmetries Of Geometric Objects. Discrete And Computational
Geometry, 3: 237-256, 1988.

[Alt96] H. Alt and L.J. Guibas. Discrete Geometric Shapes: Matching, Interpolation,
And Approximation: A Survey. Technical Report B96-11, EVL-1996-142,
Institute of Computer Science, Freie Universität Berlin, December 1996.

[Ande88] J. A. Anderson and E. Rosenfeld. Neurocomputing – Foundations Of
Research. MIT Press, Cambridge, MA, 1988.

[Anke99] M. Ankerst, G. Kastenmuller, H.-P. Kriegel, and T. Seidl. 3D Shape
Histograms For Similarity Search And Classification In Spatial Databases.
In Proceedings Of 6th International Symposium On Large Spatial
Databases, 207-226, 1999.

[Arbt90] K. Arbter, W.E. Snyder, H. Burkhardt, and G. Hirzinger. Application Of
Affine-Invariant Fourier Descriptors To Recognition Of 3D Objects. IEEE
Transactions On Pattern Analysis And Machine Intelligence, 12(7): 640-
647, July 1990.

[Arki91] E.M. Arkin, L.P. Chew, D.P. Huttenlocher, K. Kedem, and J.S. Mitchell. An
Efficiently Computable Metric For Comparing Polygonal Shapes. IEEE
Transactions On Pattern Analysis And Machine Intelligence, 13(3): 209-
216, March 1991.

[Arma93] F. Arman and J. Aggrawal. Model-Based Object Recognition In Dense-
Range Images - A Review. ACM Computing Surveys, 25(1): 5-43, March
1993.

[Atki87] M. D. Atkinson. An Optimal Algorithm For Geometrical Congruence.
Journal Of Algorithms, 8(2): 159-172, 1987.

[Aure91] F. Aurenhammer. Voronoi Diagrams - A Survey Of A Fundamental
Geometric Data Structure. ACM Computing Survey, 23(3): 345-405, 1991.

212

[Belo01] S. Belongie, J. Malik, and J. Puzicha. Matching Shapes. In Proceedings Of
8th IEEE International Conference On Computer Vision, 454-461,
Vancouver, Canada, July 2001.

[Besp03a] D. Bespalov, W. C. Regli, and A. Shokoufandeh. Reeb Graph Based Shape
Retrieval For CAD. In Proceedings Of 23rd ASME DETC Computers And
Information In Engineering (CIE) Conference, Chicago, IL, 2003.

[Besp03b] D. Bespalov, A. Shokoufandeh, W. C. Regli, W. Sun. Scale-Space
Representation Of 3D Models And Topological Matching. In Proceedings
Of Symposium On Solid Modeling And Applications, 208-215, 2003.

[Bias05] S. Biasotti and S. Marini. 3D Object Comparison Based On Shape
Descriptors. International Journal Of Computer Applications In
Technology, 23(2-4): 57-69, 2005.

[Bien05] M. Bienkowski, V. Damerow, F. Meyer auf der Heide, and C. Sohler.
Average Case Complexity Of Voronoi Diagrams Of N Sites From The Unit
Cube. In Proceedings Of The 21st European Workshop on Computational
Geometry (EWCG), 167-170, Eindhoven, Holland, March 2005.

[Burb75] J.L. Burbidge. The Introduction Of Group Technology. Heinemann,
London, UK, 1975.

[Camp01] R. J. Campbell and P. J. Flynn. A Survey On Free-Form Object
Representation And Recognition Techniques. Computer Vision And Image
Understanding, 81(2): 166-210, February 2001.

[Card03] A. Cardone, S. K. Gupta, and M. Karnik. A Survey Of Shape Similarity
Assessment Algorithms For Product Design And Manufacturing
Applications. Journal Of Computing And Information Science In
Engineering, 3(2):109-118, June 2003.

[Chak04] T. Chakraborty, S. Venkataraman, and M. Sohoni. A fast 3D Shape
SearchTechnique For 3D Cax/PDM Repositories. Technical Paper, Society
Of Manufacturing Engineers, August 16th 2005.

[Chak05] T. Chakraborty. Shape-Based Clustering Of Enterprise CAD Databases.
Computer Aided Design and Applications, 2(1-4): 145-154, 2005.

[Chen03] D. Y. Chen, X. P. Tian, Y. T. Shen, and M. Ouhyoung. On Visual Similarity
Based 3D Model Retrieval. Computer Graphics Forum, 22(3): 223-232,
September 2003.

[Chew97] L.P. Chew, M. T. Goodrich, D.P. Huttenlocher, K. Kedem, J. M. Kleinberg,
and D. Kravets. Geometric Pattern Matching Under Euclidean Motion.
Computational Geometry: Theory And Application, 7(1-2): 113-124,
January 1997.

213

[Chew99] L. P. Chew, D. Dor, A. Efrat, and K. Kedem. Geometric Pattern Matching
In D Dimensional Space. Discrete And Computational Geometry, 21: 257-
274, 1999.

[Chun94] Y. Chung and A. Kusiak. Grouping Parts With A Neural Network. Journal
Of Manufacturing System, 13(4): 262 – 275, 1994.

[Chun97] F.R.K. Chung. Spectral Graph Theory. In Proceedings Of American
Mathematical Society’s Regional Conference Series In Mathematics No. 92,
Providence, RI, 1997.

[Cici00] V. Cicirello and W.C. Regli. Managing Digital Libraries For Computer-
Aided Design. Computer Aided Design, 32(2): 119-132, February 2000.

[Cici01] V.A. Cicirello and W.C Regli. Machining Feature-Based Comparisons Of
Mechanical Parts. In Proceedings Of International Conference On Shape
Modeling And Applications, Genova, Italy, May 2001.

[Cici02] V. Cicirello and W.C. Regli. An Approach To Feature-Based Comparison
Of Solid Models Of Machined Parts. Journal of Artificial Intelligence For
Engineering Design Analysis And Manufacturing (AI EDAM), 16(5): 385-
399, November 2002.

[Corm01] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein. Introduction To
Algorithms. MIT Press, Cambridge, MA, 2001.

[Corn03] J. Corney, H. Rea, D. Clark, J. Pritchard, R. MacLeod, and M. Breaks.
Coarse Filters for Shape Matching. IEEE Computer Graphics and
Applications, 22(3): 65-74, May/June 2003.

[deBe97] M. deBerg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry. Springer-Verlag, New York, 1997.

[Dey03] T. K. Dey, J. Giesen, and S. Goswami. Shape Segmentation And Matching
With Flow Discretization. In Proceedings Of Workshop On Algorithms And
Data Structures, 25-36, 2003.

[Dwye91] R. A. Dwyer. Higher-Dimensional Voronoi Diagrams In Linear Expected
Time. Discrete and Computational Geometry, 6(4): 343-367, May 1991.

[Elad01] M. Elad, A. Tal, and S. Ar. Content Based Retrieval Of VRML Objects - An
Iterative And Interactive Approach. In Proceedings Of 6th Eurographics
workshop in Multimedia, 107-111, Manchester, UK, September 2001.

[Elin96] A. Elinson, D. Nau, and W. C. Regli. Solid Similarity Measurements.
Technical Report ISR-TR96-63, Institute for Systems Research, University
of Maryland, 1996.

214

[Elin97] A. Elinson, D.S Nau, and W.C. Regli. Feature-Based Similarity Assessment
Of Solid Models. In Proceedings Of ACM Symposium On Solid Modeling
And Applications, 297-310, Atlanta, GA, 1997.

[ElMe03a] M. El-Mehalawi and R. A. Miller. A Database System Of Mechanical
Components Based On Geometric And Topological Similarity. Part I:
Representation. Computer-Aided Design, 35(1): 83-94, 2003.

[ElMe03b] M. El-Mehalawi and R. A. Miller. A Database System Of Mechanical
Components Based On Geometric And Topological Similarity. Part II:
Indexing, Retrieval, Matching, And Similarity Assessment. Computer-Aided
Design, 35(1): 95-105, 2003.

[From04] A. Frome, D. Huber, R. Kolluri, T. Bulow, and J. Malik. Recognizing
Objects in Range Data Using Regional Point Descriptors. In Proceedings Of
European Conference on Computer Vision, 224-237, Prague, Czech
Republic, May 2004.

[Funk03] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman, D. Dobkin,
and D. Jacobs. A Search Engine For 3D Models. ACM Transactions on
Graphics, 22(1): 83-105, January 2003.

[Gavr99] M. Gavrilov, P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric
Pattern Matching: A Performance Study. In Proceedings Of 15th ACM
Symposium On Computational Geometry, 79-85, 1999.

[Ghos93] P. K. Ghosh. A Unified Computational Framework For Minkowski
Operations. Computers And graphics, 17(4): 357-378, 1993.

[Ghos96] P. K. Ghosh and R. M Haralick. Mathematical Morphological Operations Of
Boundary-Represented Geometric Objects. Journal Of Mathematical
Imaging And Vision, 6(2-3): 199-222, June 1996.

[Good94] M. T. Goodrich, J. S. Mitchell, and M. W. Orletsky. Practical Methods For
Approximate Geometric Pattern Matching Under Rigid Motion. In
Proceedings Of 10th Annual ACM Symposyum On Compuational Geometry,
103-112, 1994.

[Grim85] G. R. Grimmett and D. R. Stirzaker. Probability And Random Processes.
Clarendon Press, Oxford, UK, 1985.

[Grun67] B. Grunbaum. Convex Polytopes. Interscience Publishers, 1967.

[Gupt95] S.K. Gupta and D. Nau. A Systematic Approach For Analyzing The
Manufacturability Of Machined Parts. Computer Aided Design, 27(5): 343 –
352, 1995.

215

[Gupt99] S.K. Gupta and D.A. Bourne. Sheet Metal Bending: Generating Shared
Setups. Journal Of Manufacturing Science And Engineering, 121(4): 689-
694, November 1999.

[Hebe95] M. Hebert, K. Ikeuchi, and H. Delingette. A Spherical Representation For
Recognition Of Free-Form Surfaces. IEEE Transactions On Pattern
Analysis And Machine Intelligence, 17(7): 681-690, July 1995.

[Hech89] R. Hecht-Nielsen. Theory Of Backpropagation Neural Networks. In
Proceedings Of IEEE International Joint Conference On Neural Networks,
Washington D.C., June 1989.

[Heff94] P. J. Heffernan and S. Schirra. Approximate Decision Algorithms For Point
Set Congruence. Computational Geometry: Theory And Applications, 4(3):
137-156, 1994.

[Herr00] J. W. Herrmann, S. Balasubramanian, and G. Singh. Defining Specialized
Design Similarity Measures. International Journal of Production Research,
38(15): 3603-3621, 2000.

[Hila01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T.L. Kunii. Topology Matching
For Fully Automatic Similarity Estimation Of 3D Shapes. In Proceedings Of
SIGGRAPH, 203-212, Los Angeles, CA, August 2001.

[Hutt90a] D. Huttenlocher and S. Ullman. Recognizing Solid Objects By Alignment
With An Image. International Journal Of Computer Vision, 5(2): 195-212,
1990.

[Hutt90b] D. Huttenlocher and K. Kedem. On Computing The Minimum Hausdorff
Distance For Point Sets Under Translation. In Proceedings Of 6th ACM
Symposium On Computational Geometry, Berkeley, CA, June 1990.

[Hutt92] D. P. Huttenlocher, K. Kedem, and J. M. Kleinberg. On Dynamic Voronoi
Diagrams And The Minimum Hausdorff Distance For Point Sets Under
Euclidean Motion In The Plane. In Proceedings Of 8thannual ACM
Symposium On Computational Geometry, 110-120, 1992.

[Hutt93a] D. P. Huttenlocher and W. J. Rucklidge. A Multi-Resolution Technique For
Comparing Images Using The Hausdorff Distance. In Proceedings Of IEEE
Conference In Computer Vision And Pattern Recognition, 705-706, New
York, NY, 1993.

[Hutt93b] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge. Comparing
Images Using The Hausdorff Distance. IEEE Transactions On Pattern
Analysis And Machine Intelligence, 15: 850-863, 1993.

216

[Hutt93c] D. P. Huttenlocher, K. Kedem, and M. Sharir. The Upper Envelope Of
Voronoi Surfaces And Its Applications. Discrete And Computational
Geometry, 9: 267-291, 1993.

[Indy99] P. Indyk, R. Motwani, and S. Venkatasubramanian. Geometric Matching
Under Noise: Combinatorial Bounds And Algorithms. In Proceedings Of
10th ACM-SIAM Symposium On Discrete Algorithms, 457-465, 1999.

[Ip02] C. Y. Ip, D. Lapadat, L. Sieger, and W.C. Regli. Using Shape Distributions
To Compare Solid Models. In Proceedings Of 7th Symposium On Solid
Modeling And Applications, Saarbrücken, Germany, June 2002.

[Ip03] C. Y. Ip, W. C. Regli, L. Sieger, and A. Shokoufandeh. Automated Learning
Of Model Classifications. In Proceedings Of 8th ACM Symposium On Solid
Modeling And Applications, 322-327, Seattle, WA, June 2003.

[Iran96] S. Irani and P. Raghavan. Combinatorial And Experimental Results For
Randomized Point Matching Algorithms. In Proceedings Of 12th Annual
ACM Symposium On Computational Geometry, 68-77, 1996.

[Iyer03] N. Iyer, Y. Kalyanaraman, K. Lou, S. Jayanti, and K. Ramani. A
Reconfigurable, Intelligent 3D Engineering Share Search System Part I:
Shape Representation. In Proceedings Of 23rd ASME DETC Computers And
Information In Engineering (CIE) Conference, Chicago, IL, 2003.

[Josh88] S. Joshi and T. C. Chang. Graph-Based Heuristics For Recognition Of
Machined Features From A 3D Solid Model. Computer Aided Design, 20:
58-66, 1988.

[Kapa91] S. Kaparthi and N.C. Suresh. A Neural Network System For Shape Based
Classification And Coding Of Rotational Part. International Journal Of
Production Research, 29(9): 1771-1784, 1991.

[Karn05] M.V. Karnik, S.K. Gupta, and E.B. Magrab. Geometric Algorithms for
Containment Analysis of Rotational Parts. Computer Aided Design, 37(2):
213-230, February 2005.

[Keim99] D.A. Keim. Efficient Geometry-Based Similarity Search Of 3D Spatial
Databases. In Proceedings Of ACM SIGMOD International Conference On
Management Of Data, Philadephia, PA, June 1999.

[Khan90] T. Khanna. Foundations Of Neural Networks. Addison Wesley, 1990.

[Kim03] Y. S. Kim, Y. H. Jung, B. G. Kang, and H. M. Rho. Feature-Based Part
Similarity Assessment Method Using Convex Decomposition. In
Proceedings Of 23rd ASME DETC Computers And Information In
Engineering (CIE) Conference, Chicago, IL, 2003.

217

[Ko03a] K. H. Ko, T. Maekawa, and N. M. Patrikalakis. An Algorithm For Optimal
Free-Form Object Matching. Computer Aided Design, 35(10): 913-923,
2003.

[Ko03b] K. H. Ko, T. Maekawa, N. M. Patrikalakis, H. Masuda, and F.-E. Wolter.
Shape Intrinsic Fingerprints For Free-Form Object Matching. In
Proceedings Of 8th ACM Symposium On Solid Modeling And Applications,
196-207, Seattle, WA, June 2003.

[Lamd88a] Y. Lamdan and H. J. Wolfson. Geometric Hashing: A General And Efficient
Model-Based Recognition Scheme. In Proceedings Of 2nd International
Conference On Computer Vision, 238-249, 1988.

[Lamd88b] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. Object Recognition By
Affine Invariant Matching. In Proceedings Of Computer Vision And Pattern
Recognition, 335-344, 1988.

[Lamd88c] Y. Lamdan, J. T. Schwartz, and H. J. Wolfson. On Recognition Of 3D
Objects From 2D Images. In Proceedings Of IEEE International Conference
On Robotics And Automation, 3: 1407-1413, 1988.

[Laza99] F. Lazarus and A. Verroust. Level Set Diagrams Of Polyhedral Objects. In
Proceedings Of ACM Solid Modeling, Ann Arbor, MI, June 1999.

[Lin92] Y. Lin, J. Dou, and H. Wang. Contour Shape Description Based On Arch
Height Function. Pattern Recognition, 25(1): 17-23, 1992.

[Lipp89] R.P. Lippmann. Pattern Classification Using Neural Networks. IEEE
Communications Magazine, 27(11): 47-64, November 1989.

[Lonc98] S. Loncaric. A Survey Of Shape Analysis Techniques. Pattern Recognition,
31(8): 983-1001, August 1998.

[Lou04] K. Lou, S. Prabhakar, and S. Ramani. Content Based Three Dimensional
Engineering Shape Search. In Proceedings Of 20th International Conference
On Data Engineering, 754-765, Boston, MA, 2004.

[McWh01a] D. McWherter, M. Peabody, A. Shokoufandeh, and W.C. Regli. Database
Techniques For Archival Of Solid Models. In Proceedings Of 6th
ACM/SIGGRAPH Symposium on Solid Modeling and Applications, Ann
Arbor, MI, June 2001.

[McWh01b] D. McWherter, M. Peabody, W.C. Regli, and A. Shokoufandeh.
Transformation Invariant Shape Similarity Comparison Of Solid Models. In
Proceedings Of ASME 6th Design For Manufacturing Conference,
Pittsburgh, PA, Sept 2001.

218

[McWh01c] D. McWherter, M. Peabody, A. Shokoufandeh, and W.C. Regli. Solid
Model Databases: Techniques And Empirical Results. Journal Of Computer
And Information Science In Engineering, 1(4): 300-310, December 2001.

[Mori01] G. Mori, S. Belongie, and J. Malik. Shape Contexts Enable Efficient
Retrieval Of Similar Shapes. In Proceedings Of IEEE Computer Society
Conference On Computer Vision And Pattern Recognition, Kauai Marriott,
Hawaii, December 2001.

[Moun99] D. M. Mount, N. S. Netanyahu, and J. Le Moigne. Efficient Algorithms For
Robust Point Pattern Matching. Pattern Recognition, 32: 17-38, 1999.

[Novo03] M. Novotni and R. Klein. 3D Zernike Descriptors For Content Based Shape
Retrieval. In Proceedings Of 8th ACM Symposium On Solid Modeling And
Applications, 216-225, Seattle, WA, USA

[Ohbu02] R. Ohbuchi, T. Minamitani, and T. Takei. Shape Similarity Search of 3D
Models By Using Enhanced Shape Functions. In Proceedings Of 10th
Pacific Conference On Computer Graphics And Applications, 97-104,
Beijing, China, October 2002.

[Ohbu03a] R. Ohbuchi, T. Minamitani, and T. Takei. Shape-Similarity Search Of 3D
Models By Using Enhanced Shape Functions. International Journal Of
Computer Applications In Technology, 23(3/4/5): 70-85, 2005.

[Ohbu03b] R. Ohbuchi and T. Takei. Shape-Similarity Comparison Of 3D Shapes
Using Alpha Shapes. In Proceedings Of 11th Pacific Conference On
Computer Graphics And Applications, 293-302, Canmore, Canada, October
2003.

[Osad01] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Matching 3D Models
With Shape Distributions. In Proceedings Of International Conference On
Shape Modeling And Applications, Genova, Italy, May 2001.

[Osad02] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape Distributions.
ACM Transactions On Graphics, 21(4): 807-832, 2002.

[Rame01] M. Ramesh, D. Yip-Hoi, and D. Dutta. Feature-Based Shape Similarity
Measurement For Retrieval Of Mechanical Parts. Journal Of Computing
And Information Science In Engineering, 1(3): 245-256, September 2001.

[Rea01] H. J. Rea, J. R. Corney, D. E. R. Clark, J. Pritchard, M. L. Breaks, and R. A.
MacLeod. Part-Sourcing In A Global Market. In Proceedings Of 2001
International Conference On Ecommerce Engineering, Icece 2001. Xi’an,
P.R. China, September 2001.

219

[Reeb46] G. Reeb. On The Singular Points Of A Completely Integrable Pfaff Form Or
Of A Numerical Function. Comptes Rendus De l’Academie De Sciences,
Paris, France, 222: 847-849, 1946.

[Rubn98] Y. Rubner, C. Tomasi, and L. Guibas. A Metric For Distributions With
Applications To Image Databases. In Proceedings Of 6th International
Conference On Computer Vision, Bombay, India, January 1998.

[Sant95] S. Santini and R. Jain. Similarity Matching. In Proceedings Of 2nd Asian
Conference On Computer Vision, Singapore, December 1995.

[Schw87] J. Schwarz and M. Scharir. Identification Of Partially Obscured Objects In
Two And Three Dimensions By Matching Noisy Characteristic Curves.
International Journal Robotics Research, 6(2): 29-44, Summer 1987.

[Shen83] H. C. Shen and A.K.C. Wong. Generalized Texture Representation And
Metric. Computer Vision, Graphics And Image Processing, 23(2): 187-206,
August 1983.

[Shum96] H. Shum, M. Hebert, and K. Ikeuchi. On 3D Shape Similarity. In
Proceedings Of IEEE Conference On Computer Vision And Pattern
Recognition, San Francisco, CA, June 1996.

[Sidd99] K. Siddiqi, A. Shokoufandeh, S. J. Dickenson, and S.W. Zucker. Shock
Graphs And Shape Matching. International Journal Of Computer Vision,
35(1):13-32, 1999.

[Spri94] J. Sprinzak and M. Werman. Affine Point Matching. Pattern Recognition
Letters, 15(4): 337-339, 1994.

[Srin98] G. Srinivas, D.E. Fasse, and M.M. Marefat. Retrieval Of Similarly Shaped
Parts From A CAD Database. In Proceedings Of IEEE International
Conference On Systems, Man, And Cybernetics, San Diego, CA, October,
1998.

[Sun95] T.L. Sun, C.J. Su, R.J. Mayer, and R.A. Wysk. Shape Similarity Assessment
Of Mechanical Parts Based On Solid Models. In Proceedings Of Design For
Manufacturing Symposium, ASME Design Technical Conference, Boston,
MA, September 1995.

[Sund03] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton Based Shape
Matching And Retrieval. In Proceedings Of Shape Modeling And
Applications Conference SMI, 130-142, Seoul, Korea, May 2003.

[Sung02] R. Sung, H. J. Rea, J. R. Corney, D. E. R. Clark, J. Pritchard, M. L. Breaks,
and R. A. MacLeod. Assessing The Effectiveness Of Filters For Shape
Matching. In Proceedings Of 2002 Asme International Mechanical

220

Engineering Congress & Exposition, IMECE ‘02. New Orleans, LA,
November 2002.

[Taka97] S. Takahashi, Y. Shinagawa, and T. L. Kunii. A Feature-Based Approach
For Smooth Surfaces. In Proceedings Of 4th ACM Symposium On Solid
Modeling And Applications, Atlanta, GA, May 1997.

[Tang04] J. Tangelder and R. Veltkamp. A Survey Of Content-Based 3D Shape
Retrieval Methods. In Proceedings Of Shape Modeling International, 145-
156, Genoa, Italy, June 2004.

[Thac95] N. Thacker, P. Riocreux, and R. Yates. Assessing The Completeness
Properties Of Pairwise Geometric Histograms. Image And Vision
Computing, 13(5): 423-429, June 1995.

[Tsai85] W.H. Tsai and S.S. Yu. Attributed String Matching With Merging For
Shape Recognition. IEEE Transactions On Pattern Analysis And Machine
Intelligence, 7(4): 453-462, July 1985.

[Tuzi00] A. V. Tuzikov, J.B.T.M. Roerdink, and H.J.A.M. Heijmans. Similarity
Measures For Convex Polyhedra Based On Minkowski Addition. Pattern
Recognition, 33(6): 979-995, June 2000.

[Velt01] R.C. Veltkmap. Shape Matching: Similarity Measures And Algorithms. In
Proceedings Of International Conference On Shape Modeling And
Applications, Genova, Italy, May 2001.

[Vran01] D. V. Vranic, D. Saupe, and J. Richter. Tools For 3D-Object Retrieval:
Karhunen-Loeve Transform And Spherical Harmonics. In Proceedings Of
IEEE 2001 Workshop Multimedia Signal Processing, 293-298, Cannes,
France, October 2001.

[Werm85] M. Werman, S. Peleg, and A. Rosenfeld. A Distance Metric For
Multidimensional Histograms. Computer Vision, Graphics And Image
Processing, 32(3): 328-336, December 1985.

[Wolf97] H.J. Wolfson and I. Rigoutsos. Geometric Hashing: An Overview. IEEE
Computational Science And Engineering, 4:10-21, 1997.

[Youn74] I. Young, J. Walker, and J. Bowie. An Analysis Technique For Biological
Shape. Information And Control, 25(4): 357-370, August 1974.

[Yu03] M. Yu, I. Atmosukarto, W. K. Leow, Z. Huang, and R. Xu. 3D Model
Retrieval With Morphing-Based Geometric And Topological Feature Maps.
In Proceedings Of IEEE Computer Society Conference On Computer Vision
And Pattern Recognition, 656-661, Madison, WI, June 2003.

221

[Zhan99] D. Zhang and M. Hebert. Harmonic Maps And Their Applications In
Surface Matching. In Proceedings Of IEEE Conference On Computer Vision
And Pattern Recognition, Fort Collins, CO, June 1999.

222

Appendix

A. Calculation Of Partitioning Lines And Planes For Attributed Points In 2 And

3

Consider two attributed points b1 = (x1, y1, z1, w1) and b2 = (x2, y2, z2, w2) in 3, where w1

and w2 are the transformation-invariant attributes of the two points. Consider also point p

= (x, y, z, w) in 3, where w is the transformation-invariant attribute. Suppose the distance

between p and b1 is computed using the following equation.

() () ()2 2 2
1 1 1 1 1(,) - - -d p b x x y y z z w= + + + ∆ 2 (A.1)

 Distance between p and b2 is computed using a similar equation.

 The differences ∆w1 = w - w1 and ∆w2 = w - w2 correspond to the transformation-

invariant terms of respectively d(p, b1) and d(p, b2). We are interested in finding the

partitioning plane for points b1 and b2, that is locus of attributed points p = (x, y, z, w) in

3 such that d(p, b1) = d(p, b2).

 First of all observe that it is always possible to apply a rigid body transformation to

the attributed points b1 and b2 in 3 such that the following constraints are valid.

1 2

1 2

1 2 0

x x
z z
y y

= −⎧
⎪ =⎨
⎪ = =⎩

 (A.2)

 In order to solve the previously formulated problem, it is also necessary to comply

with the following constraint.

() () () () () ()2 2 2 2 2 22 2
1 1 1 1 2 2 2 2- - - - - -x x y y z z w x x y y z z w+ + + ∆ = + + + ∆ (A.3)

223

 Equation (A.3) constrains point p = (x, y, z, w) to be at the same distance from points

b1 and b2. Using the Equations (A.2), Equation (A.3) simplifies in the following manner.

() () () ()2 2 2 22 2 2 2
2 2 1 2 2 2- - -x x y z z w x x y z z w+ + + +∆ = + + +∆ (A.4)

 It is possible to assume without loss of generality that ∆w2 = ∆w2
2-∆w1

2
 > 0. Using

this assumption and the notations introduced previously, the second Equation (A.4) can

be simplified to

2

24
wx
x

∆
= (A.5)

 Equation (A.5) represents a plane π parallel to plane YZ. If the value of ∆w is set to 0,

then the plane π corresponds to plane YZ itself.

 So the locus of attributed points in 3 such that their distance from b1 = (x1, y1, z1, w1)

and b2 = (x2, y2, z2, w2) is equal corresponds to plane π parallel to coordinate plane YZ.

Plane π is the plane perpendicular to the line segment joining attributed points b1 and b2.

The intersection between plane π and the line segment joining attributed points b1 and b2

has a distance from the midpoint of the line segment that is equal to the offset value

defined by Equation (A.5).

 The reasoning and equations described in this appendix can be easily modified to

address the same problem in 2 by not considering coordinate Z. Therefore it is easy to

verify that the locus of attributed points in 2 such that their distance from b1 = (x1, y1,

w1) and b2 = (x2, y2, w2) is equal corresponds to line L perpendicular to the line segment

joining b1 and b2 and whose distance from the midpoint of the line segment is equal to the

offset value defined by Equation (A.5).

224

B. Calculation Of Partitioning Curves For Attributed Points On The Unit Sphere

Consider two attributed points b1 = (x1, y1, z1, w1) and b2 = (x2, y2, z2, w2) that lie on the

unit sphere, where w1 and w2 are the transformation-invariant attributes of the two points.

Consider also the attributed point p = (x, y, z, w) of the unit sphere, where w is the

transformation-invariant attribute. Suppose the distance between p and b1 is computed

using the following equation.

() () ()2 2 2 2
1 1 1 1 1(,) - - -d p b x x y y z z w= + + + ∆ (B.1)

 Distance between p and b2 is computed using a similar equation.

 The differences ∆w1
2

 = w2 - w1
2 and ∆w2

2
 = w2 - w2

2 correspond to the transformation-

invariant terms of respectively d(p, b1) and d(p, b2). We are interested in finding the

partitioning curve for points b1 and b2, that is locus of attributed points p = (x, y, z, w) on

the unit sphere such that d(p, b1) = d(p, b2).

 First of all observe that it is always possible to apply a rigid body transformation to

the attributed points b1 and b2 that lie on the unit sphere such that the following

constraints are valid.

1 2

1 2

1 2 0

x x
z z
y y

= −⎧
⎪ =⎨
⎪ = =⎩

 (B.2)

 In order to solve the previously formulated problem, it is also necessary to comply

with the following constraints.

() () () () () ()

2 2 2

2 2 2 2 2 22 2
1 1 1 1 2 2 2 2

1

- - - - - -

x y z

x x y y z z w x x y y z z w

⎧ + + =⎪
⎨

+ + + ∆ = + + + ∆⎪⎩
 (B.3)

 The first equation constrains the attributed point p = (x, y, z, w) to lie on the unit

sphere. The second equation constrains point p = (x, y, z, w) to be at the same distance

225

from points b1 and b2. Using Equations (B.2), Equations (B.3) simplify in the following

manner.

() () () ()

2 2 2

2 2 2 22 2 2 2
2 2 1 2 2 2

1

- - -

x y z

x x y z z w x x y z z w

⎧ + + =⎪
⎨

+ + + +∆ = + + +∆⎪⎩
 (B.4)

 It is possible to assume without loss of generality that ∆w2 = ∆w2
2 – ∆w1

2 > 0. Using

this assumption and the notations introduced previously, the second Equation (B.4) can

be simplified to

2

24
wx
x

∆
= (B.5)

 Equation (B.5) represents a plane π parallel to plane YZ. If the value of ∆w2 is set to

0, then the plane π corresponds to plane YZ itself. If the expression for x being obtained

in Equation (B.2) is substituted into the first of Equations (B.3), a circle is obtained with

having following equation.

4
2 2

2
2

1
16

wy z
x

∆
+ = − (B.6)

 Equations (B.5) and (B.6) represent a circle for values of ∆w4 < 16 x2
2. Otherwise

Equation (B.6) is not defined.

 For values of ∆w4 ≤ 16 x2
2 the partitioning curve defined as the locus of attributed

points p on the unit sphere such that d(p, b1) = d(p, b2) corresponds to a circle C that lies

on the unit sphere. The circle C is obtained from the intersection between the unit sphere

and the plane π parallel to plane YZ. The distance of the plane π from plane YZ is given

by Equation (B.5).

 For values of ∆w4 > 16 x2
2 Equation (B.6) becomes unsolvable. It means that the

offset value of the plane parallel to plane YZ given by Equation (B.5) is such that the

226

plane does not intersect the unit sphere. In this case the partitioning curve is not defined.

This means that for all the attributed points p on the unit sphere it is always d(p, b2) >

d(p, b1) as we defined ∆w2 = ∆w2
2 – ∆w1

2.

C. Calculation Of Partitioning Theta Values For Attributed Applied Vectors Under

1 DOF Rotations In 3

Consider two attributed applied vectors a and b whose locations are (xa, ya, za) and (xb, yb,

zb) and whose orientations are (, ,)a a a
x y zv v v and (, ,)b b b

x y zv v v that lie in 3. Define wa and wb

as the transformation-invariant attributes of the two applied vectors. Consider also the

attributed applied vector p whose location is (xp, yp, zp) and whose orientation is

(, ,)p p p
x y zv v v that lie in 3 as well, where wp is the transformation-invariant attribute.

Suppose the distance between p and a is computed using the following equation.

2 2 2

2 2 2 2

(,) () () ()
() () () ()

p a p a p a

p a p a p a p a
x x y y z z

d p a x x y y z z
v v v v v v w w

= − + − + − +

− + − + − + −
 (C.1)

 Distance between p and b is computed using a similar equation.

 Imagine that the attributed applied vector p is rotated about Z axis of θ. Let p
zov be the

initial Z component of the orientation for attributed point p, while 2 2() ()p p p
xyo xo yov v v= +

is the initial component in the coordinate plane XY before applying rotation θ. Let (xB,yB)

be the center of rotation. Define p
oθ as the known initial angle of p with respect to the

center of rotation before applying rotation θ. Similarly let dz be the Z component and dxy

the XY component of the Euclidean distance between p and the center of rotation. Let

227

also p
voθ be the known initial angle of the XY component of the orientation of p with X

axis before applying rotation θ.

 Given the previous definitions, the following equations hold.

() cos()

() sin()

() cos()

() sin()

p p
B xy o

p p
B xy o

p
B zi

p p p
x xyo vo

p p p
y xyo vo

p p
z zo

x x d

y y d

z z d

v v

v v

v v

θ θ θ

θ θ θ

θ θ θ

θ θ θ

⎧ = + +
⎪

= + +⎪
⎪

= +⎪
⎨

= +⎪
⎪ = +⎪
⎪ =⎩

 (C.2)

 Hence the distance function defined in Equation (C.1) can be written as follows.

2 2 2

2 2 2 2

((),) (()) (()) ()
(()) (()) () ()

p a p a p a

p a p a p a p a
x x y y z z

d p a x x y y z z
v v v v v v w w

θ θ θ

θ θ

= − + − + − +

− + − + − + −
 (C.3)

 We are interested in finding the values of the rotation θ such that d(p(θ), a) = d(p(θ),

b), which are the partitioning theta values. By using the definitions given previously and

Equation (C.3) the following equation must hold.

2 2 2

2 2 2 2

2 2 2

2 2 2 2

(()) (()) ()
(()) (()) () ()

(()) (()) ()
(()) (()) () ()

p a p a p a

p a p a p a p a
x x y y z z

p b p b p b

p b p b p b p b
x x y y z z

x x y y z z
v v v v v v w w

x x y y z z
v v v v v v w w

θ θ

θ θ

θ θ

θ θ

− + − + − +

− + − + − + − =

− + − + − +

− + − + − + −

 (C.4)

 Equation (C.4) can be simplified to

() ()
() () () () ()

() () ()

2 2 2 2 2

2 2 2 2

2 () 2 () 2 ()

2 ()

p a b p a b p a b
x x x

p a b a a a a b
y y y x y

b b b
x y

x x x y y y v v v

v v v x y v v x

y v v w

θ θ θ

θ

⎡ ⎤− + − + − +⎣ ⎦

⎡ ⎤− = + + + − −⎣ ⎦

− − + ∆

 (C.5)

where

228

2 2 2 2 2 2 2() () () () () ()p a p a p a p b p b p b
z z z zw z z v v w w z z v v w w∆ = − + − + − − − − − − − .

 From Equations (C.2) and (C.5) it can be inferred that the values of the rotation angle

θ such that d(p(θ), a) = d(p(θ), b) can be found solving an equation of the following type:

A cosθ + B sinθ = C (C.6)

where the terms A, B and C are function of locations (xa, ya, za) and (xb, yb, zb),

orientations (, ,)a a a
x y zv v v and (, ,)b b b

x y zv v v , rotation-invariant attributes wa and wb and the

constant terms in Equations (C.2) defined previously. Equation (C.6) might have one,

more or no solution depending on the value of the terms A, B and C. There are well-

known mathematical procedures to solve it.

