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     The behaviors of biological systems depend on complex networks of interactions 

between large numbers of components.  The network of interactions that allows 

biological cells to detect and respond to external gradients of small molecules with 

directed movement is an example where many of the relevant components have been 

identified.  This behavior, called chemotaxis, is essential for biological functions 

ranging from immune response in higher animals to the food gathering and social 

behavior of ameboid cells.  Gradient sensing is the component of this behavior 

whereby cells transduce the spatio-temporal information in the external stimulus into 

an internal distribution of molecules that mediate the mechanical and morphological 

changes necessary for movement.  Signaling by membrane lipids, in particular 3' 

phosphoinositides (3'PIs), is thought to play an important role in this transduction.  

Key features of the network of interactions that regulates the dynamics of these lipids 

are coupled positive feedbacks that might lead to response bifurcations and the 

involvement of molecules that translocate from the cytosol to the membrane, coupling 

responses at distant point on the cell surface.  Both are likely to play important roles 

in amplifying cellular responses and shaping their qualitative features. 
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     To better understand the network of interactions that regulates 3'PI dynamics in 

gradient sensing, we develop a computational model at an intermediate level of detail.  

To investigate how the qualitative features of cellular response depend on the 

structure of this network, we define four variants of our model by adjusting the 

effectiveness of the included feedback loops and the importance of translocating 

molecules in response amplification.  Simulations of characteristic responses suggest 

that differences between our model variants are most evident at transitions between 

efficient gradient detection and failure.  Based on these results, we propose criteria to 

distinguish between possible modes of gradient sensing in real cells, where many 

biochemical parameters may be unknown.  We also identify constraints on parameters 

required for efficient gradient detection.  Finally, our analysis suggests how a cell 

might transition between responsiveness and non-responsiveness, and between 

different modes of gradient sensing, by adjusting its biochemical parameters. 
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Preface 

Modern molecular and cellular biology are continually identifying cellular 

components and interactions that are important for regulating cellular behaviors, such 

as gradient sensing.  In this dissertation, we ask, how do the identified components 

and interactions work together to regulate cellular responses to chemical gradients?  

Several models of cellular gradient sensing have recently been published, and it has 

become apparent that multiple gradient sensing mechanisms are consistent with 

experimental observations of characteristic behaviors.  Further, different cell types 

might make use of different mechanisms.   

     For these reasons, we have developed a model of eukaryotic gradient sensing, and 

used it to explore a range of possible mechanisms, or 'Modes', of gradient sensing.  

Our model includes cellular components whose dynamics can be visualized in live 

cells, and is based on proposed biochemical mechanisms.  Thus, our model can be 

used to investigate how cellular behaviors depend on particular biochemical 

mechanisms, and how these behaviors might be observed experimentally.  In 

particular, we find that different Modes of gradient sensing are characterized by 

differences in transitions in cellular response between efficient gradient sensing and 

failure.  We use these differences to suggest criteria for distinguishing between 

different Modes of gradient sensing in real cells.  These are some of the features that 

make our model unique. 

     This model was primarily developed at the NIH.  The longer I remained there, the 

more I became interested in the cell biological aspects of this project.  This 

dissertation is directed towards researchers with varying backgrounds in both biology 
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and physics.  Each chapter is broken into many subsections.  I have tried to indicate 

which might contain more mathematical or biochemical detail, and which contain 

more qualitative discussions.  Each chapter also includes overview and summary 

sections.  These should allow the reader to choose those sections that are most 

appropriate to his/her interests and background.  In addition, important and cell 

biological terms are highlighted in bold and generally discussed the first time that 

they are mentioned.   The glossary found in 'Molecular Biology of the Cell', which 

cited as reference 28, might be helpful for further definitions. 
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Chapter 1: Introduction and Background 

 

1.1 Overview 

Many biological cells move directionally in response to external gradients of small 

molecules at some time during their development.  This behavior, called chemotaxis, is 

important in functions ranging from immune response in higher animals to the food 

gathering and social behavior of ameboid cells.   

     Successful chemotaxis requires that the cell's experience of chemotactic stimuli be 

relayed to the biochemical machinery that controls its movements and generates forces.  

This transduction processes, referred to as gradient sensing, depends on the spatio-

temporal dynamics of many types of molecules, on multiple length and time scales, in a 

closed and irregular geometry.  These dynamics demonstrate high gain in response to 

external stimuli, at the same time as adaptation and plasticity, and are regulated by 

complex networks of biochemical interactions having multiple levels of organization.  

The relevant interactions often involve supramolecular structures, such as cytoskeletal 

filaments and various cellular membranes, and may couple biochemical reactions to 

mechanical deformations.  Modern molecular and cellular biology have identified many 

cellular constituents that are important for this regulation, but detailed mechanisms 

remain to be elucidated. 

     Computational modeling has become an essential tool for understanding how complex 

networks of interactions regulate cellular behaviors.  The complexity involved, as well as 

the many unknowns, presents an exciting opportunity to employ and develop a wide 

range of theoretical and experimental approaches.  The model of eukaryotic gradient 
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sensing that we develop in this dissertation represents only one such approach to 

modeling cellular behaviors.  It focuses on a particular subset of the features and 

interactions that are involved.  Further investigations based on alternative approaches 

undoubtedly will yield new insights. 

     This first chapter gives a broad background as well as a general introduction to our 

model of eukaryotic gradient sensing.  In Chapter 2, we will develop a set of model 

equations to describe the network of regulatory interactions that are thought to be 

relevant.  We will then define four variants of our model that illustrate the qualitatively 

different gradient sensing possibilities that are suggested by the generic features of this 

network.  Our model and its variants are further characterized in Chapter 3.  In Chapter 4, 

the responses to typical chemotactic stimuli are simulated and the results are used to 

define criteria that distinguish between our model variants.  These criteria are then 

applied to characterize the behaviors of our model as several parameters are 

systematically varied.  We conclude with a discussion of implications for real cells.     

     This chapter begins by introducing eukaryotic gradient sensing in its larger biological 

context and highlighting several related aspects of cellular behavior whose understanding 

would benefit from further theoretical modeling (Sec. 1.2).  The types of cells to which 

our model applies, in particular Dictyostelium and neutrophils, are discussed in Sec. 

1.2.2; characteristic behaviors in these cells, which our model will capture, are discussed 

Sec. 1.2.6.   

     Phosphoinositide (PI) signaling will provide the biochemical basis for our model, and 

is introduced in Sec. 1.3.  In particular, Sec. 1.3.3 discusses the important features of 

spatial localization and feedback regulation that make PI signaling particularly well 
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suited to mediate cellular behaviors that, like gradient sensing, are highly regulated in 

space and time.   

     General considerations for modeling cellular signal transduction processes are 

discussed in Sec. 1.4; our approach, which includes an intermediate level of detail, is 

discussed in Sec. 1.5.4.  Section 1.5 discusses recent models of eukaryotic gradient 

sensing, focusing on their differences.  This discussion serves to motivate our focus on 

regulatory elements that might lead to qualitatively different gradient sensing 

mechanisms (Secs. 1.5.4 and 1.5.5).  Our model is further introduced in Sec. 1.6.  

 

1.2 Eukaryotic chemotaxis and spatial gradient sensing 

Cellular chemotaxis is the process whereby cells respond to gradients of small 

molecules, which are often ligands for cell surface receptors, with directional movement.  

Chemotactic ligands that induce cellular movement towards higher concentrations are 

referred to as chemoattractants.  Eukaryotic cells are defined by a nucleus that contains 

genetic material, as well as other spatially organized internal compartments.  Eukaryotic 

chemotactic response depends directly on the spatial as well as the temporal features of 

chemotactic stimuli# (4-6).  In this section, we will place eukaryotic gradient sensing in 

the larger context of cellular chemotactic behavior.   

 

1.2.1 Importance of chemotaxis  

Cellular chemotaxis is important in phenomena as diverse as the immune response of 

                                                 
# Spatial sensing in eukaryotic chemotaxis is often contrasted with bacterial chemotaxis, which relies on a 
'run and tumble' mechanism.  Bacterial chemotaxis is generally thought to directly involve only responses 
to temporal gradients; spatial sensing in bacterial cells is achieved by movement, which transduces an 
external spatial gradient of chemottractant into an experienced temporal gradient in receptor activation.  
This, in turn, affects the bacterial tumbling frequency (1-3). 
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higher animals (7, 8), wound healing (9, 10), neuronal patterning (11, 12), vascular (13) 

and embryonic (14) development, as well as the food gathering and social behavior of 

some amoeboid cells (15).  Its disregulation can have deleterious effects, including 

immune disease (16), aberrant angiogenesis (17), and cancer metastasis (18-20) in multi-

cellular organisms, and aggregation defects in ameboid cells (15). 

 

1.2.2. Cell types and experimental systems – Neutrophils and Dictyostelium 

In this dissertation, we will be primarily concerned with the chemotactic behavior of 

highly motile eukaryotic cells.  Most of the data that we consider will be derived from 

experiments in neutrophils, which are a type of immune cell (white blood cell), and the 

ameboid cell, Dictyostelium discoidium in its early aggregation stage (we will simply 

refer to these cells as Dictyostelium).  When fully extended, these types of cells might be 

of order 20 µm in length.  Their chemotactic behavior can be characterized as a biased 

random walk (21-23), generally involving velocities of order 10 µm/min. (~1/2 cell 

length per minute) and highly polarized morphologies.  Cells adapt to the average ligand 

concentration presented in solution, and detect and respond to changing gradients of a 

few percent across their length, within seconds to tens of seconds, over several orders of 

magnitude in absolute concentration (6, 24, 25).  The adaptive yet highly amplified and 

persistent nature of this response has inspired a great deal of mathematical modeling over 

the past several decades (26, 27).  

     Neutrophils are part of the body's innate immune system which is constantly active 

and responds to generic features of typical infectious agents.  Neutrophils are one of the 

first types of immune cells recruited to a new site of infection.  They generally have short 
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life times (hours to days) and their production rate from progenitor cells increases in 

response to an infection.   

     An example of a neutrophil's response to an infection and associated inflammation 

might be as follows:  If the neutrophil is circulating in the blood stream, it will recognize 

chemokines (a particular class of small molecule ligands, for which neutrophils have 

receptors) released by other immune cells (such as macrophage) and by the endothelial 

cells that line the capillaries near a site of infection.  Adhesion receptors on the surface 

of the neutrophil will then become activated and bind proteins on the surface of the 

endothelial cells (the expression of these endothelial proteins is increased as part of the 

inflammatory response).  The neutrophil will then crawl from the blood stream to the 

infected tissue by either passing through spaces in the capillary walls (also created as part 

of the inflammatory response) or by being transcytosed through the endothelial cells.  

Chemotaxis towards the source of infection will continue, both in response to 

chemokines released by other body cells near the infection and in response to molecules 

released by the pathogen (such as metabolites).  The neutrophil might then either engulf 

the pathogen (via phagocytosis) or release toxic enzymes to attack it (28). 

     The role of neutrophils in immune response involves many cellular behaviors, 

including responses to multiple chemotactic ligands and a coordinated population 

dynamics with other immune and body cells.  However, neutrophils can also be isolated, 

and their chemotactic responses to different ligands studied under controlled conditions 

(29, 30).  Further, cell lines have been developed that share with neutrophils many 

qualitative features, as well as many specific biochemical pathways important in 

chemotactic response (31, 32).  These cell lines, often referred to as neutrophil-like 
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cells, can be grown in the lab and are easier to manipulate than neutrophils (neutrophils 

need to be harvested from animals and have short lifetimes).  A typical experiment might 

involve allowing an initial distribution of cells to adhere to a coverslip, generating a 

pattern of chemoattractant by using a micropipette, and imaging the cellular response.  If 

molecules inside of the cell are fluorescently labeled, their distribution can be imaged as 

well (33, 34). 

     Dictyostelium is a model organism often used to study chemotaxis.  Dictyostelium 

cells act as single celled organisms under conditions when food is plentiful.  Under 

conditions of starvation, a development program begins, involving changes in gene 

expression.  Among other things, the cells begin to periodically secrete and chemotax in 

response to the cyclic nucleotide, cAMP.  As a result, streaming patterns and spirals with 

well defined centers spontaneously form.  The cells aggregate towards these centers and 

form a multi-cellular slug, finally developing into a fruiting body composed of a narrow 

stalk with a collection of spores at the top.  This structure is stable without food or water 

over long periods of time (15, 35-38).  Patterning during Dictyostelium aggregation is an 

area which has been fruitful for mathematical modeling (39-45). 

     The experiments that will be discussed in this dissertation generally refer to 

Dictyostelium cells in the early stages of aggregation/starvation.  Starvation can be 

initiated in the lab by, for example, plating cells at an appropriate density on agar in the 

absence of nutrients.  After approximately 5 hours, the cells will have reached an 

appropriate stage of development where they can be studied individually and where 

chemotaxis in response to gradients of cAMP is robust (25, 46).  In a typical experiment, 
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the cells might be dispersed and plated on a glass coverslip, stimulated with different 

patterns of cAMP, and their responses imaged under a microscope.   

     A major advantage of performing experiments with Dictyostelium is that they are 

genetically much simpler than mammalian cells (such as neutrophils or neutrophil-like 

cells).  Many of the molecules involved in Dictyostelium chemotaxis and gradient 

sensing have been fluorescently labeled, mutated, and/or knocked out.  The relevant 

signaling pathways and interactions inside of the cell are generally simpler as well.  For 

example, there are fewer known chemoattractants and generally fewer isoforms 

(variants) of a given protein in Dictyostelium than in neutrophils.  Despite these 

differences, many of the mechanisms and molecules involved in chemotaxis are similar 

enough between these two cell types that results in one can generally be applied to 

generate new understanding in the other (15, 47, 48). 

     In developing our model, we will be using data taken from both Dictyostelium and 

neutrophils.  We expect the general features of our analysis to apply to both.  Other 

cellular systems in which chemotaxis has been studied, such as neurons (nerve cells) or 

fibroblasts (connective tissue cells), respond on time scales that are slower by at least an 

order of magnitude than responses in Dictyostelium and neutrophils (on the order of 

hours to days) (11, 49, 50).  These cells might not demonstrate the characteristic 

behaviors that we will enumerate below (Sec. 1.2.6).  In particular, there is evidence to 

suggest that fibroblasts do not adapt to the spatial average of the stimulus that they 

experience (49, 51, 52).  Thus, the ideas developed in this dissertation would have to be 

modified for applications to these types of cells.       
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1.2.3 Cellular processes involved in chemotaxis 

Chemotaxis results from the integration of several distinct and complex processes, each 

involving multiple proteins and assembly or disassembly of supramolecular structures 

(26).  The cell adopts a polarized morphology with a distinct leading edge (front) and 

uropod (back).  Organelles, such as the nucleus and endosomal system (53), become 

polarized with respect to the axis of the cell.  The microtubule network (54), together 

with intracellular functions such as membrane and protein trafficking (55), becomes 

polarized as well.  Actin rich protrusions, such as a lamellipodium and filopodia, are 

extended preferentially at the leading edge of the cell (29, 56) and become attached to the 

substrate upon which the cell crawls (57-59).  Contractile polymer bundles, including 

motor proteins of the Myosin family, maintain tension in the uropod.  The uropod is 

detached from the substrate and pulled forward as the cell moves (60).     

     In order for the above processes to result in directed movement with respect to an 

external gradient of chemoattractant ligand, the cell must transduce the external pattern of 

ligand into an internal distribution of signaling molecules, which mediate the necessary 

mechanical and morphological changes.  We refer to this transduction as gradient 

sensing.  Figure 1.1 depicts the above-discussed cellular processes and structures. 

 

1.2.4 Chemotaxis as an integrated cellular behavior 

To produce the cellular behavior of chemotaxis, each of the processes discussed in Sec. 

1.2.3 is integrated and involved in complex feedback regulation with the others.  For 

example, in the process of gradient sensing, the cell might localize one set of molecules 

which will define a leading edge – these molecules will take part in nucleating the actin- 
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Uropod

Leading edge
Plasma membrane Cytosol

Filopodia

Lamellapod

Nucleus

Branched, dendritic actin structures 
drive protrusion of the leading edge, possibly via a 
Brownian ratchet mechanism.  Actin forms flexible 
filaments on cellular length scales, which are 
cross-linked and bundled for stability.

Cross-linked actin structures contract to pull the uropod forward.   Associated motor 
proteins maintain tension and prevent protrusions away from the leading edge.

Microtubules, which help define intracellular polarity and provide ‘tracks’ for
trafficking vesicles, become oriented.  These are stiff polymers on cellular 
length scales, and have an intrinsic polarity (the two ends have different properties). 

Endosomes form a network of membrane compartments  that becomes oriented with respect 
to the axis of a chemotaxing cell; other intracellular compartments become oriented as well.  
Endosomes receive vesicles from the plasma membrane and other internal membrane compart-
ments.  Material is sorted, repackage into vesicles, and delivered to appropriate compartments.

Membrane vesicles exchange material between intracellular compartments.  This 
trafficking becomes oriented with respect to the axis of a chemotaxing cell. 

Adhesions to the surface upon which the cell crawls are formed as the leading edge is 
extended and are released as the uropod is pulled forward.  These are dynamic and often 
include specialized proteins (for example, integrins in neutrophils).

Leading edge – The front of a chemotaxing cell, characterized by protrusive actin-based structures.
Lamellapod – Wide flat extension at the leading edge, characterized by a dendritic actin network.
Filopodia – Narrow extensions that ‘explore’ the environment, characterized by parallel actin bundles. 
Cytosol – Fluid component of the cell interior.
Plasma membrane – Fluid lipid bilayer that acts as an interface between the cell and its environment.
Nucleus – Contains genetic material.  Positioned with respect to the axis of the cell.
Uropod – Rear of the cell, characterized by a contractile actin network.

10 µm

 
 
Fig. 1.1 Cellular processes involved in chemotaxis.  Structures and processes discussed 
in the text are represented schematically.  The schematic is only meant to be illustrative; 
it is not to scale, the depicted structures appear at much higher densities in real cells, and 
details differ from cell to cell.  In particular, a typical cell contains many internal 
membrane-bound compartments and a dense polymer network that gives it structure (the 
cytoskeleton).  In addition, the cytosol contains a high concentration of macromolecules 
(typically 50-400 mg/ml, or up to 40% of the fluid volume (61, 62)).  
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based structures that drive cellular protrusions (56, 63-65).  Another set of molecules will 

be localized at the rear – these will regulate the contractile network that defines the 

uropod (66).  The structures at the front and back of the cell are thought to be mutually 

exclusive; cellular polarization might thus be interpreted as a kind of self organization 

that is initiated by the external stimulus (67).  The discussed structures can further act as 

scaffolds, themselves localizing the molecules that regulate their production (68, 69).   

     In addition, the morphological and mechanical changes at the leading edge and uropod 

will affect the positioning of internal membrane compartments, as well as the 

microtubule network.  This internal reorganization and polarization will affect the 

membrane and protein trafficking patterns inside of the cell (70-72).  Membrane 

trafficking is thought to play a role in extending the leading edge and retracting the 

uropod by delivering material from the back to the front of the cell (72-74).  Protein 

trafficking (often involving membrane vesicles) directs signaling molecules to specific 

locations inside of the cell.  The positioning of microtubules is also thought to play a role 

in controlling the stability of cellular adhesions to the substrate upon which it crawls 

(possibly by modulating protein trafficking patterns) (75, 76).  Cellular adhesions localize 

signaling molecules that mediate many cellular processes (58).  This localization is 

thought to depend on the forces exerted on the adhesion (77).   

     Modeling each of the above processes in the complex environment of the cell is a 

separate and unique challenge.  How to integrate them into a more complete model of 

chemotaxis is still very much an open question (26, 78).  
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1.2.5 Gradient sensing decoupled from motility 

Recent experiments have suggested that aspects of eukaryotic gradient sensing can be 

decoupled from other major processes in chemotactic response.  Cells treated with actin 

depolymerizing agents, such as Latrunculin A or B, still localize certain signaling 

molecules with spatio-temporal dynamics similar to those of untreated cells.  These cells 

are round, immobile, and cannot form protrusions that depend on actin polymerization.  

Nevertheless, in these drug treated cells, markers for 3' phosphorylated 

phosphoinositides (3'PIs, which are signaling lipids to be discussed in Sec. 1.3.2) still 

translocate from the cytosol to the plasma membrane in a pattern that parallels the 

spatio-temporal dynamics of actin polymerization in untreated cells (29, 32, 79).  

     Motivated by these observations, we will develop a model of 3'PI-mediated gradient 

sensing decoupled from motility.  Integrating this model with models of other processes 

involved in chemotaxis will be the subject of future work.  

 

1.2.6 Characteristic behaviors of gradient sensing 

Gradient sensing responses in cells such as neutrophils and Dictyostelium are generally 

characterized by three types of behaviors.  These characteristic behaviors are reflected in 

the dynamics of actin polymerization and in the localization of specific signaling 

molecules in response to chemotactic stimuli.  In particular, these behaviors are still seen 

in the dynamics of markers for 3'PIs on the plasma membrane in the above-mentioned 

cells where actin has been depolymerized (illustrated in Fig. 1.2 below).  

 
i) Cells adapt to the average concentration of chemotactic ligand in solution.  This allows 

sensitivity to relative gradients over many orders of magnitude in absolute concentration  
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Fig. 1.2. Characteristic behaviors of gradient sensing.  The characteristic gradient sensing 
behaviors discussed in the text are illustrated by microscopy images of Dictyostelium cells 
expressing fluorescently tagged marker for 3'PI (PH-GFP) (i, ii, iii) or a fluorescent marker for 
polymerized actin (Coronin-GFP)  (ii/iii).  Images are labeled by the characteristic behavior that 
they illustrate.  i) A transient response to a uniform increase in extra-cellular cAMP.  Numbers 
indicate the time in seconds relative to when the cAMP was added.  The scale bar represents 6 µm 
(reproduced with permission from reference 79). ii) Persistent polarization in response to a static 
gradient.  A microipette, positioned to the top right of the figure, generates a gradient of cAMP.  
Time is labeled and the scale bar represents 5.6 µm (reproduced with permission from reference 
79).  ii,iii) Persistent polarization in response to a static gradient and reorientation when the 
gradient changes.  Actin is labeled.  Notice that the pattern of fluorescence is similar to the 3'PI 
label in ii.  A circle marks the position of a pipette that leaks cAMP.  The scale bar represents 10 
µm (reproduced with permission from reference 80).  iii) Cells are treated with laruculin to 
depolymerized actin.  Time is labeled in seconds and an arrow indicates the position of the 
micropipette.  The scale bar represents 10 µm (reproduced with permission from reference 81). 
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(25, 82).  In particular, Disctyostelium cells can respond to gradients of cAMP whose 

absolute concentration ranges from picomolar to miromolar concentration (25).  If a 

uniform dose of ligand is applied suddenly, the cellular response, which includes 

production of 3'PIs, is transient and returns to baseline (79), as illustrated in Fig. 1.2.i.   

 
ii) When exposed to a shallow and static gradient of chemotactic ligand, the cell responds 

with a sharp and persistent internal gradient of signaling molecules, including 3'PIs (32), 

as illustrated in Fig. 1.2.ii and 1.2.ii/iii.  Cells have been observed to respond to gradients 

of a few percent across their length (25), corresponding to a difference in ligand binding 

between the front and back of the cell that is on the order of what might be expected form 

thermal fluctuations under some conditions (21, 83). This permits immune cells to 

migrate towards a source of infection and amoeboid cells to move towards a food source 

over long distances.   

 
iii) If the gradient of ligand changes direction, the distribution of signaling molecules 

(including 3'PIs) will follow with some fidelity (81), as illustrated in Fig. 1.2.iii.   A 

neutrophil thereby can capture a moving bacterium, and Dictyostelium cells can form 

dynamic patterns during development in response to changing gradients of cAMP. 

 

1.3 Signal transduction and 3'PIs 

Gradient sensing is an example of signal transduction in cells.  In this section we discuss 

general features of this transduction.  The above mentioned 3'PIs are further introduced.  

The dynamics of 3'PIs on the plasma membrane in response to external stimuli will be a 

primary output of our model. 
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1.3.1 General features of cellular signal transduction 

All biological cells experience their environment and modify their behavior based on that 

experience.  The complex network of interactions that relays the information from the 

cell's experience of its environment to the structures that actuate its responses is generally 

referred to as cellular signal transduction (28, 84, 85).  Gradient sensing is an example of 

such a transduction, where a pattern of ligand-mediated receptor activation at the cell 

surface represents its experience of the environment and its response is actuated via 

cytoskeletal rearrangements that lead to mechanical and morphological changes.  The 

lipid signaling that we will discuss below is thought to be an important component of the 

network of interactions that mediates the relevant information relay.  

 

1.3.2 Phosphoinositide signaling 

Phosphoinositides (PIs) are signaling lipids in the membranes of eukaryotic cells, 

generally accounting for only a minor fraction of total membrane lipid (on the order of a 

few percent) (86, 87).  They help regulate processes as diverse as cytoskeletal 

rearrangement, vesicle formation, gene regulation, cell survival and proliferation (88-93), 

as well as cell migration and gradient sensing (6, 32, 94). 

     PIs are composed of two fatty acids (hydro-carbon chains) esterified to two adjactent 

carbons of a glycerol backbone (a 3-carbon structure).  An inositol sugar (6 carbon ring) 

is attached to the third carbon of the glycerol via a phosphate group.  The fatty acid 

chains are hydrophobic and insert into one side of the bilayer of biological membranes.  

The inositol ring, which is exposed at the surface of the bilayer, can be phosphorylated 

at various positions.  PIs are thus named according to which carbons on the inositol ring 
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Inositol head group

O

P Phosphate group = PO4.  These are hydrogenated in the environment of the cell such that their 
effective charges are between -1e– and –2e–, depending on their location.
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hydrogen atoms are not labeled.
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in mammalian phosphoinositides.
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Fig. 1.3. Anatomy of a phosphoinositide.  a) A typical chemical structure of a 
phosphoinositide.  Structures discussed in the text are labeled, as well as the numbering 
scheme for carbons of the inositol head group.  PI(3,4,5)P3 is depicted.  Note, that the 
number of carbons and double bonds in the fatty acid tails are variable, and any double 
bonds will result in kinks in the fatty acid chain (not depicted).  b) Cartoon of PI(3,4,5)P3 
in the inner leaflet of the plasma membrane.  The bilayer is fluid and lipids such as PIs 
can thus diffuse laterally.  The drawings are not to scale. 
 

are phosphorylated.  For example, 3'PIs are phosphorylated in the 3' position and 

PI(3,4,5)P3 specifies a PI with three additional phosphates, which are located the 3', 4' 

and 5' positions (86), as illustrated in Fig. 1.3. 

     The primary function of PIs, with which we will be concerned, is to recruit to the 

membrane specific subsets of cytosolic molecules that are involved in various cellular 

behaviors.  These molecules often bind, via various binding domains (91, 95, 96), to 
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specifically phosphorylated PIs.  Thus, the phosphorylation state and localization of PIs 

are highly regulated (87, 91).   

     Particular PIs are phosphorylated at specific positions by various families of kinases 

and dephosphorylated at specific positions by various families of phosphatases.  The 

activities of these kinases and phosphatases often depend on extracellular signals.  In this 

way, the concentrations and spatial localizations of the various PIs in the cell will be 

modulated in response to external stimuli.  This modulation will alter the properties of 

any given cellular membrane, as well as the activities of the combinations of molecules 

that are recruited to that membrane, and effect particular cellular responses (87). 

 

1.3.3 Ubiquitous features of PI signaling: Spatial localization and feedback regulation  

Biological membranes, which are multi-component fluid bilayers with well regulated 

compositions, form the interface between eukaryotic cells and their environment (as well 

as between the various intracellular compartments).  Membrane viscosity is generally 

significantly higher than cytosolic viscosity.  Thus, reactions such as interconversions of 

PIs, whose kinetics would generate relatively uniform distributions if they took place in 

the cytosol, can lead to spatial patterns because they occur on a membrane (97).  Further, 

molecules that translocate from the cytosol to the membrane will couple dynamics on 

different length and time scales.  

     PIs recruit many molecules to the membrane, including proteins that regulate 

cytoskeletal dynamics (98), as well as proteins implicated in vesicle formation (99) and 

trafficking (89).  In particular, enzymes directly affecting membrane composition and PI 

interconversion are recruited (100).  Thus, molecules affecting various cellular functions 
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are recruited to the membrane in combination, interacting with each other and themselves 

localizing other proteins and lipids.  Such feedback regulation is a common feature of PI 

signaling in cells (101, 102).   

    As a result of the above-mentioned feedback regulation and spatial localization, a 

relatively small signal on the cell surface might be amplified in a highly regulated and 

localized way via PI interconversion.  Such a mechanism is particularly well suited to 

affect functions that include morphological changes at the cell surface, such as 

chemotaxis.  The mentioned ubiquitous features of PI signaling in cells are depicted 

schematically in Fig. 1.4. 

 

 

1 2

Plasma membrane Various PIs

Cytosol

Regulatory molecules Dendritic actin structures

Fig. 1.4.  Ubiquitous features of PI signaling in cells.           A small signal changes the 
local distribution of PIs on the membrane, causing regulatory molecules to translocate
from the cytosol to the membrane.  Some of these molecules further affect the distribution 
of PIs on the membrane, recruiting more molecules.  This is feedback regulation. 
Molecules on the membrane can form local patterns, while those in the cytosol are 
generally diffuse.  Thus, translocation couples dynamics with different characteristic 
length scales.         As a result, highly localized signals in space and time can be generated 
on the membrane to regulate cellular processes.  Nucleation of dendritic actin structures, 
such as those at the leading edge of chemotaxing cells, is depicted as an example.

1

2
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1.3.4 3' PIs in gradient sensing 

The PIs that we will focus on, which are thought to play important roles in eukaryotic 

gradient sensing, are the 3' PIs, PI(3,4,5)P3 and PI(3,4)P2.  Together they comprise on the 

order of 0.02% of total plasma membrane lipid in resting cells and specifically act to 

recruit a similar set of cytosolic molecules to the membrane (66, 87, 103).  PI(4,5)P2 is 

also important in many cellular functions, including cytoskeletal regulation; these will not 

be discussed in this dissertation. 

     The following picture has emerged concerning the potential role of 3'PIs in gradient 

sensing (schematized in Fig. 1.5).  Chemotactic ligand binding activates receptors on the 

cell surface, which activate the heterotrimeric G-proteins (HTGs) to which they are 

coupled.  This combination of activated receptors and HTGs on the inner surface of the 

plasma membrane will activate many intercellular proteins, both on the membrane and in 

the cytosol.  In particular, PI3' Kinases (PI3Ks, which are enzymes that phosphorylate  

PIs in the 3' position) will be recruited to the membrane and activated.  The newly 

generated 3'PIs will recruit other regulatory molecules to the membrane and the 3'PI 

signal will be amplified via feedback regulation, as discussed in the previous subsection.  

Among the molecules recruited to the membrane will be those that nucleate and regulate 

the actin-based structures at the leading edge of chemotaxing cells – this accounts for the 

coincidence of markers for 3'PIs and actin polymerization, which was noted in Sec. 1.2.6 

(4, 48, 66, 104).  As mentioned, a qualitatively similar dynamic of 3'PIs is observed in 

response to chemotactic stimuli in rounded and immobile cells where actin 

polymerization has been poisoned.  It is the 3'PI dynamics in these rounded cells that our 

model will aim to capture. 
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Fig. 1.5.  3'PIs in gradient sensing.  Chemotactic ligand in solution binds to 
chemotactic receptors on the cell surface.  These become activated, together with the 
heterotrimeric G-proteins (HTGs) to which they are coupled (causing dissociation of 
their β and γ subunit from the α subunit).  Activated receptors and HTGs recruit 
PI3K to the membrane.  3'PIs are generated on the membrane.  Regulatory 
molecules are recruited to the membrane and feedback regulation amplifies the 3'PI 
signal.          Localization of regulatory proteins and 3'PIs leads to production of the 
structures that define the leading edge of a chemotaxing cell.  For example, dendritic
actin structures are nucleated.  
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1.4 Modeling cellular signal transduction 

Biological systems are complex and approaches to modeling their behavior are constantly 

developing.  In this section, we discuss several general considerations that motivate our 

approach to modeling eukaryotic gradient sensing. 

 

1.4.1 Systems/computational biology 

The behaviors of biological systems depend on complex networks of interactions 
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between large numbers of components.  Even a small number of biological components 

studied in isolation, such as membrane lipids or cytoskeletal proteins, can demonstrate a 

wide range of behaviors.  As modern molecular biology continues to identify more of 

these parts and their interactions, it becomes less intuitive how the network of 

interactions in a biological system functions to regulate its observed behaviors.  Thus, 

there is an increasing trend in modern biology, and in particular in studies of signal 

transduction, to develop 'systems' types of approaches (85, 105-110).  These approaches 

are often motivated by ideas from the more quantitative sciences, such as physics and 

engineering.  However, it is often unclear how to apply these ideas to biological systems.  

Thus, there is tremendous need and opportunity in biology to develop new approaches to 

better understand and to experimentally probe the network of interactions that regulates 

the systems-level behaviors of cells. 

 

1.4.2 Modularity in signaling networks 

One approach to analyzing the complex networks of interactions that regulate cellular 

behaviors is to break them down into smaller functional blocks, often referred to as 

'modules' (111, 112).  There have been attempts to formalize the definition of a module, 

such that it can be applied to a complex network of interactions whose function might not 

be known (113, 114).  However, when a known function is investigated, a partitioning of 

the relevant network into modules is often done empirically as a simplifying tool.  This 

breakdown is generally not unique.   

     For the purposes of this dissertation, we might roughly define a module as a subset of 

interactions that regulate a given response, and that may be coupled loosely or in a well 
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defined way to the rest of the network under investigation.  For example, gradient sensing 

might be considered a functional module involved in chemotactic response and the 

network of interactions for 3'PI regulation, from which we will develop our model, might 

be considered a functional module involved in gradient sensing.  In Secs. 1.2.5 and 1.2.6, 

we have noted that actin depolymerization can decouple aspects of 3'PI-meidated 

gradient sensing from the other processes involved in chemotaxis.   

     When we develop our model, we will further interpret the network of interactions 

regulating 3'PIs in gradient sensing as being composed of an amplification and adaptation 

module; their coupling accounts for the characteristic behaviors of gradient sensing 

(discussed further in Sec. Sec. 1.5.2).  Thus, the breakdown of a given network into 

functional modules is often hierarchical, as illustrated schematically in Fig. 1.6.  

Integration of the modules under consideration into the larger network of relevant 

interactions is a difficult and important problem.   

 

 
Fig. 1.6.  Hierarchical organization 
of cellular behavior modules.  
Chemotaxis is a type of cellular 
behavior; gradient sensing is a process 
involved in chemotaxis; 3'PI regulation 
can account for characteristic gradient 
sensing behaviors, though other 
regulation is probably important as 
well.   We will choose a subset of the 
interactions involved in 3'PI regulation 
to develop our model of gradient 
sensing, and break this network down 
into an amplification and adaptation 
module.  These are drawn as 
overlapping to indicate that they may 

share components and interact.  Processes at each level are integrated with other 
processes on that level, which are not depicted.   

Cellular behaviors

Chemotaxis

Gradient sensing

3'PI-mdiated gradient sensing

Amplification
module

Adaptation 
module
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1.4.3 Reaction-diffusion models 

Measurements of gradient sensing responses in rounded and immobile cells (see Secs. 

1.2.5 and 1.2.6) suggest that aspects of gradient sensing are regulated by a network of 

biochemical interactions (as opposed to, for example, long range mechanical 

interactions), and that simple geometries might be considered.  Further, fluorescent 

labeling techniques have allowed experimental observations of the spatio-temporal 

dynamics of 3'PIs on the plasma membrane in response to chemotactic stimuli, as well as 

observations of several key enzymes that regulate their production/degradation (discussed 

further in Sec. 2.3.1).  These observations motivate our choice of reaction-diffusion 

equations to model the dynamics of 3'PIs and of the enzymes that regulate their 

interconversion.   

 

1.4.4 Level of detail 

The level of detail included in models of cellular processes such as gradient sensing can 

vary over a wide range.  For example, Turing-type activator/inhibitor models with only a 

few components have been used to explain aspects of patterning and morphogenesis 

during development of multi-cellular organisms (115, 116).  Minimal models of this sort 

are useful for understanding general features of cellular behavior.  In particular, they can 

be used to capture characteristic gradient sensing behaviors.  However, they can be 

difficult to map onto the more complex regulatory networks that are often thought to be 

important in real cells.  Further, the application of these types of models to predict 

cellular responses under a given set of conditions is generally unclear.   



 23

     At the other extreme, models have been developed that include most known 

components of particular signaling pathways.  These types of models might include 

hundreds of components and thousands of parameters, a large fraction of which will be 

either unknown or poorly constrained (110, 117-119).  Due to their large size, however, it 

is often unclear how to interpret these models and extract useful information   

     In general, the appropriate level of detail to be included in a model will depend on the 

available data and on the questions that one would like to address. 

 

1.4.5 Our approach  

The molecular mechanisms involved in eukaryotic gradient sensing are continuously 

being uncovered.  Nevertheless, many details remain unknown and many regulatory 

mechanisms are not fully understood.  Thus, in developing our model, we will focus on 

regulatory elements that affect the qualitative features of gradient sensing responses.  We 

will make simplifications concerning elements that are not well understood in such a way 

that preserves the qualitative features under consideration.  We will further be interested 

in how these qualitative features depend on cellular biochemical parameters and 

particular regulatory mechanisms.  Thus, our model will not be a minimal model 

consisting of unnamed activators and inhibitors.  Rather, we will include those molecules 

that are directly relevant to 3'PI-mediated gradient sensing, whose spatio-temporal 

dynamics in response to chemotactic stimuli have been studied experimentally.  The 

structure of the regulatory network that controls their dynamics will be derived directly 

from cellular biochemical data whenever possible, and our equations will be derived 
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directly from an interpretation of this network.  In this way, we will develop our model at 

an intermediate level of detail. 

 
 

1.5 Recent models of eukaryotic gradient sensing 

Several models directly relating to PI-mediated gradient sensing were published by other 

groups as we were developing our own.  These models include several features that are 

present in our model, though our approach and the questions that we address differ 

significantly.  In this section, we introduce a conceptual framework for understanding 

many of the essential features of eukaryotic gradient sensing, as well as models thereof.  

We then briefly discuss several recent models, focusing on their differences.  This serves 

to motivate the development of our model, which takes a comparative approach and 

focuses on elements affecting the qualitative features of gradient sensing mechanisms. 

 

1.5.1 Local activation, global inhibition 

The gradient sensing response that we wish to model involves a highly amplified 

response restricted to the up-gradient side of a cell in a shallow gradient of 

chemoattractant (characteristic behavior 'ii' in Sec. 1.2.6).  This suggests that localized 

amplification mechanisms are involved in regulating responses to chemotactic stimuli.  

On the other hand, cellular responses adapt to the average value of the external stimulus 

(characteristic behavior 'i'), which is a global quantity.  This suggests that global 

inhibitory mechanisms, which integrate the information in the pattern of receptor 

activation around the perimeter of the cell, regulate responses as well.  Thus, it has been 

suggested that gradient sensing results from the combination of local activation and  
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Fig. 1.7.  Conceptual framework for understanding eukaryotic gradient sensing.  
Receptor activation leads to fast production of locally acting activator molecules and 
slower production of globally acting inhibitor molecules.  Their balance drives an 
amplification module, a component of which is recorded as the cellular response.  If the 
stimulus is uniform, then at long times the production of activator and inhibitor balance 
each other everywhere on the membrane.  The result is a transient response followed by 
response adaptation, as was illustrated in Fig. 1.2.i.  If a gradient of stimulus is applied, 
the entire cell experiences the same level of inhibitor (which acts globally), while the 
production of activator molecules (which is local) reflects the slight gradient of stimulus 
(i).  Their balance results in a slightly higher value of the driving parameter at the front of 
the cell then at the back (ii), driving the amplification module at the front of the cell.  The 
result is a highly amplified response at the front of the cell (iii).  
 

global inhibition (6, 120), as depicted schematically in Fig. 1.7 and discussed further in 

the next subsection.   

 

1.5.2 Amplification and adaptation modules 

In order to apply the ideas of Sec. 1.5.1 to analyze the network of biochemical interaction 

that is thought to be involved in eukaryotic gradient sensing, we suggest a modular 

interpretation.  The network of interactions that regulates response amplification might be 

considered to constitute an amplification module.  In the simplest case, we might 
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identify a single driving parameter, which controls the response of this amplification 

module at each point on the membrane. This driving parameter will include a 

combination of concentrations and activities of various signaling molecules, and should 

be coupled directly to the outside stimulus.  In order to reproduce the characteristic 

responses of gradient sensing, this driving parameter must further be controlled by an 

adaptation module, such that the response of the cell always adapts to the spatial 

average of the outside stimulus around the membrane.  This can be accomplished if the 

driving parameter reflects a balance between local activation and global inhibition, as 

discussed in Sec. 1.5.1 and depicted schematically in Fig. 1.7.  If this regulation of the 

driving parameter approximates an integral feedback, then perfect adaptation will be 

ensured (121).  Variants of this modular structure can be found in several of the recent 

models of gradient sensing (discussed below), as well as our own. 

 

1.5.3 Recent models relating to phosphoinositide-mediated gradient sensing 

The suggestion that gradient sensing can be decoupled from motility, and that it is 

mediated by a feedback scheme such as those implicated in PI signaling, has inspired 

several recent mathematical models.  Each accounts for characteristic behaviors in a 

different way.   

     Levchenko and Iglesias (122) have analyzed a general model (which we will refer to 

as the LI model) that maps onto a scheme of receptor-mediated production of PI(3,4,5)P3 

with feedback through small GTPases (molecules that hydrolize GTP); feedback 

involving small GTPases will be an important component of our model as well.  The ratio 

of PI3K (a kinase that produces 3'PIs) and PTEN (a phosphatase that depohsphorylates 
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3'PIs) can be interpreted as a driving parameter in the LI model, and adaptation occurs 

because receptor activation stimulates both of these molecules.     

     Narang, Subramanian and Lauffenburger (123) have analyzed a model (henceforth, 

NSL model) abstracted from a scheme of receptor-mediated regulation of PI(4,5)P2 

levels, modulated by Phospholipase C activity (PLC, which is an enzyme that cleaves the 

inositol head group from PIs)  and feedback through substrate delivery from other 

membrane compartments.  Receptor activity can be interpreted as a driving parameter in 

this model and adaptation occurs through receptor desensitization.     

     Postma and Van Haastert (97) have analyzed a general model (PvH model) in which a 

cytosolic effector molecule (a molecule that 'effects' a cellular response) enhances 

receptor-mediated production of a lipid second messenger (that is, a signaling lipid).  In 

turn, the lipid recruits the effector molecule from the cytosol to the membrane.  Positive 

feedback of this sort, involving translocating molecules, will be an important feature of 

our model as well.  The PvH model does not include adaptation.   

     The above mentioned models share important features with our model.  Other recent 

models relating to PI-mediated gradient sensing that take substantially different 

approaches have been developed as well (see, for example, 19 and 20). 

 

1.5.4 Differences between the models 

In addition to being based on different biochemical mechanisms, the models mentioned 

in Sec. 1.5.3 demonstrate qualitative differences in behavior, suggesting that they 

represent different modes of gradient sensing.  For example, in the LI model the steady-

state response of the cell always reflects the current stimulus, while in the NSL model, 
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once elicited by an above-threshold stimulus, a cellular response can persist.  The PvH 

model requires a high baseline concentration of translocating molecule on the membrane 

for efficient gradient sensing.  Qualitative comparisons of these models, addressing some 

of their differences, have been published in several recent reviews (5, 78).   

 

1.5.5 Coupled positive feedbacks and translocation 

Which elements in the above mentioned models lead to their noted differences?  If the 

gradient sensing machinery of the cell is modeled as a reaction-diffusion system, we 

expect to find qualitative differences in systems that include different spatial couplings 

and/or exhibit different types of bifurcations.   

     The general picture of PI signaling presented in Secs. 1.3.2 and 1.3.3 suggests that 

regulation by coupled positive feedbacks and/or cooperative interactions is ubiquitous.  

Variations in the strengths of these feedbacks might lead to response bifurcations.  

Another ubiquitous feature of PI signaling is regulation by molecules that translocate to 

the membrane from a shared pool in the cytosol.  Including these molecules might lead to 

a global coupling of responses at all points on the membrane.  Using our model, we will 

investigate how variations in these features lead to qualitative differences in gradient 

sensing behavior such as those noted above.  To our knowledge, ours is the first 

quantitative and systematic analysis of this sort. 

 

1.6 Our model 

Our model aims to capture the spatio-temporal dynamics of 3'PIs in gradient sensing.  We 

will focus on the qualitatively different gradient sensing mechanisms that result 
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depending on how coupled positive feedbacks and translocating molecules are included.  

The possibilities that we will analyze derive directly from the generic features of PI 

regulation, as discussed above.   

     Here we give a brief overview of our model.  The approach that we take and the kinds 

of simplifications that we will make are further discussed as our model is developed in 

Chapter 2. 

 

1.6.1 Questions to be addressed 

We have suggested that qualitatively different gradient sensing mechanisms might be 

possible, depending on how coupled positive feedbacks and translocating molecules are 

included.  What are these qualitatively different possibilities (which we will refer to as 

'Modes' of gradient sensing) and how can they be distinguished experimentally?  How do 

the qualitative features of gradient sensing response depend on biochemical parameters 

and proposed regulatory mechanisms?  Why might a given cell type make use of one 

Mode vs. another, and how might it adjust its biochemical parameters to make use of a 

given Mode or transition from one type of behavior to another?  These are the types of 

questions that we will address with our model. 

 

1.6.2 Overview of the model 

To address the above questions, we will develop a mathematical model of PI-mediated 

gradient sensing at an intermediate level of detail, assuming a highly simplified 

geometry.  Our model will consist of a set of reaction-diffusion equations for the spatio-

temporal patterns of 3'PIs on the plasma membrane, as well as for the kinase that 
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generates them and the phosphatase that deactivates them.  Our equations will be 

developed from proposed regulatory network, based on observation in several different 

types of cells.  Because many relevant details remain unknown, simplifications will be 

made that preserve the topological features of this regulatory network and effectively 

include the feedbacks and translocation that we would like to study.  Most of our model 

parameters will be unknown and we will set them empirically to reproduce characteristic 

responses in Dictyostelium cells.  We will be particularly interested in identifying those 

parameters that are most important in shaping the qualitative features of our model's 

responses, and in the behavior of our model as a function of those parameters.   

 

1.6.3 Model variants – a comparative approach 

To analyze the qualitatively different gradient sensing possibilities that depend on how 

coupled positive feedbacks and translocating molecules are included in our model, we 

will develop four model variants by appropriately adjusting parameters.  Thus, we will 

take a comparative approach to understand possible gradient sensing mechanisms, rather 

than analyzing a single version of our model.   

 

1.6.4 Main results 

We will show that each of our model variants demonstrates the characteristic gradient 

sensing behaviors enumerated in Sec. 1.2.6.  These behaviors are generally elicited by 

strong stimuli in experiments whose aim is to observe a clear response.  Differences 

between our model variants will become evident in responses to weaker stimuli.  These 

differences are seen most clearly in simulated dose-response experiments, which 
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highlight transitions between efficient and inefficient gradient sensing.  We will use these 

results to define criteria that distinguish between the Modes of gradient sensing illustrated 

by our model variants.  Applying these criteria to analyze the parameter space of our 

model suggests that boundaries between different types of behavior can be sharp and 

regions that display a given behavior can be narrow with respect to variations of some 

combinations of parameters.  Thus, efficient gradient sensing might require homeostatic 

mechanisms, which regulate combinations of parameters to be within specified ranges.  

Further, because cells in a given population will have a distribution of biochemical 

parameters, we expect that subpopulations might function in different regions of 

parameter space, making use of different Modes of gradient sensing.  Finally, because 

biochemical parameters can vary during the course of development (e.g. through changes 

in gene expression), any given cell might transition between efficient and inefficient 

gradient sensing, and between different modes of gradient sensing, to suite its needs. 

 

1.6.5 Distinctive features of our approach to modeling gradient sensing 

Several features of our model are particularly important in distinguishing it from other 

recent models of gradient sensing.  First, we have developed our model under the premise 

that several qualitative possibilities are consistent with current experimental observations, 

and that different cell types under different sets of conditions might demonstrate a range 

of gradient sensing behaviors.  We have developed our model variants to investigate 

some of these possibilities.  Second, we have focused on transitions that occur under non-

ideal conditions, when gradient sensing responses begin to fail.  All of our model variants 

reproduce characteristic gradient sensing behaviors under ideal conditions, and it is only 
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by analyzing these transitions that the qualitative behaviors demonstrated by our model 

variants can be distinguished.  Finally, our model includes molecules whose dynamics 

can be visualized, and is developed from real biochemical mechanisms.  Thus, our 

criteria to differentiate between Modes of gradient sensing can be applied to real cells, 

and our model can be used to investigate how the qualitative features of cellular response 

depend on proposed biochemical mechanisms.       

 

1.7 Summary 

Cellular chemotaxis is the process whereby biological cells respond with directed 

movement to gradients of small molecules, which are often ligands for cell surface 

receptors.  To accomplish this behavior, these cells must transduce the external 

distribution of ligand into an internal distribution of molecules that mediate the 

mechanical and morphological changes necessary for movement.  This transduction, 

referred to as gradient sensing, is an example of cellular signal transduction whereby 

cells modulate the activities and spatial localizations of subsets of molecules that affect 

cellular behaviors in response to external cues. 

     Gradient sensing in eukaryotic cells involves responses to both the spatial and the 

temporal features of chemotactic stimuli.  In this dissertation, we will focus on gradient 

sensing in highly motile eukaryotic cells, such as neutrophils (which are immune cells) 

and Dictyostelium (an aggregating ameboid cell).  Both of these types of cells respond to 

relative gradients of a few percent across their length over several orders of magnitude in 

absolute concentration with cellular velocities of order 10 µm/min. (about 1/2 cell 

length/min.).    
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     Phosphoinositides (PIs) are signaling lipids in the membranes of eukaryotic cells.  

They are named according to the positions on their inositol head group that are 

phosphorylated.  Depending on how they are phosphorylated, PIs specifically recruit to 

the membrane cytosolic molecules that participate in a wide range of cellular functions, 

including those that regulate the phosphorylation state of PIs.  This feedback regulation, 

as well as the spatial localization of PIs on biological membranes, makes them well 

suited to mediate cellular processes that are highly regulated in space and time, such as 

chemotaxis.  In particular, PIs phosphorylated in the 3' position (3'PIs) have been found 

to be important for gradient sensing.   

     3'PIs are thought to function in gradient sensing by recruiting molecules to the 

membrane  that regulate the actin-based structures that drive protrusion at the leading 

edge of chemotaxing cells.  Recent experiments in cells that are round and immobile, due 

to drug induced disruption of actin structures, have demonstrated that the patterns of 3'PIs 

on the membrane in response to chemotactic stimuli in these cells are qualitatively 

similar to the patterns observed in normal cells.  These experiments suggest that aspects 

of gradient sensing can be decoupled from motility.  Our model aims to capture the 

dynamics of 3'PI on the plasma membrane in response to chemotactic stimuli, as well as 

of the molecules that regulate their production, in the absence of motility. 

     Our model will capture three characteristic behaviors of gradient sensing.   

i) Cells adapt to the average stimulus.  In particular, if the stimulus is uniform, the 

response is transient and the state of the cell returns to baseline. 

ii) In response to a small static gradient, the response is highly polarized and persistent. 

iii) If the gradient of stimulus changes direction, the direction of response polarization 
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follows with some fidelity. 

These behaviors can be observed in the dynamics of markers for 3'PIs on the plasma 

membrane, both in rounded and in motile cells.   

     Many details of the mechanisms regulating eukaryotic gradient sensing are still being 

discovered.  For this reason, we will develop our model at an intermediate level of 

detail and focus on elements that affect the qualitative features of cellular response.  

Differences between recent models relating to PI-mediated gradient sensing, as well as 

the general features of PI regulation, suggest that qualitative different gradient sensing 

mechanisms might result depending on whether coupled positive feedbacks lead to 

response bifurcations, and on the way in which molecules that translocate from the 

cytosol to the membrane affect spatial couplings.  We will generate four variants of 

our model to explore and characterize several such possibilities, and use simulations to 

suggest experiments that distinguish between them.  
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Chapter 2: Model Development  

 

2.1 Overview 

In Chapter 1, we introduced eukaryotic gradient sensing as a cellular signal transduction 

process involved in chemotaxis.  Data were discussed suggesting that aspects of gradient 

sensing may be decoupled from the morphological and mechanical changes necessary for 

motility and that signaling by 3' phosphoinositides (3'PIs) might mediate this 

transduction.  We further suggested that regulation by coupled positive feedbacks and 

translocating molecules, both of which are generic features of PI signaling in cells, might 

lead to a range of gradient sensing possibilities.  In this Chapter, we develop a reaction-

diffusion model of 3'PI-mediated gradient sensing and define four variants of our model 

to investigate the qualitative possibilities that result. 

     Biological cells are complex entities and many approaches are possible to model their 

behaviors.  Because many biochemical details and interactions that are relevant to 

eukaryotic gradient sensing remain unknown, we have suggested developing our model at 

an intermediate level of detail.  Thus, we begin this chapter with a discussion of the 

general features of our model and the simplifications that are made (Sec. 2.2).  These 

simplifications concern model elements or mechanisms that are either poorly understood 

or that do not seem essential to capture the characteristic behaviors and qualitative 

features that we will investigate.   

      Our model is derived directly from a suggested biochemical schematic that represents 

the network of interactions thought to regulate 3'PIs in gradient sensing cells.  This 

schematic is developed on multiple levels in Sec. 2.3 and the qualitative features of our 
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biochemical scheme are highlighted in Figs. 2.3 and 2.4.  In Sec. 2.5, we write a set of 

model equations based this schematic (summarized in Table 2.3).  A qualitative 

discussion of our model's response to typical chemotactic stimuli is given in Sec. 2.5.5.  

Our model parameters are set empirically to reproduce characteristic gradient sensing 

behaviors and noted biochemical observations (Sec. 2.6 and Table 2.4).   

     In Sec. 2.7, parameters controlling the strengths of coupled positive feedbacks and the 

degree to which translocating molecules are depleted upon cellular stimulation are 

adjusted to define four variants of our model.  The qualitative features of our model 

variants are illustrated schematically in Fig. 2.14 and are summarized in Table 2.7.  These 

variants are further characterized in Chapter 3 and their responses to chemotactic stimuli 

are simulated in Chapter 4. 

  

2.2 General features of the model 

2.2.1 Geometry 

We treat the cell as a disk with the cytosol as its interior and the plasma membrane as its 

perimeter, reflecting the geometry of a rounded cell where actin has been depolymerized.    

'X' marks the position along the membrane and is normalized so that the circumference of 

the cell is 1.  Cytosolic molecules translocate to this boundary, along which 3'PIs diffuse, 

as depicted in Fig. 2.1.     

     Clearly, more pattern forming possibilities would be available if we treated the 

membrane as two-dimensional and considered cellular deformations.  However the 

simplified geometry chosen adequately accounts for the gradient sensing possibilities that  
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Fig. 2.1.  Model geometry.  The normalized coordinate, X, is periodic.  Lipid diffusion 
along the membrane, and protein translocation from the cytosol to the membrane, are 
indicated.  The cell radius, rc, is equal to 1/2π in units where the circumference of the cell 
is 1.  The labeled model components are discussed further in Secs. 2.2.2 and 2.2.4.  
 

we will investigate.  Extending our model to include a 2-d treatment of the membrane and 

possible deformations is a subject of current work.  

 
 
2.2.2 Space/time scales  
 
A rounded Dictyostelium cell might have a radius (rc) of 4 µm, and the fastest cellular 

responses occur on time scales of seconds (81, 124).  Diffusion coefficients for cytosolic 

proteins, membrane bound proteins, and membrane lipids, might be of order 20 µm2/s, 

0.03 µm2/s and 0.5 µm2/s, respectively (52, 125, 126).  On cellular length scales, these 

estimates result in diffusion times of order 100 ms, 100 s and 1 s (t ~ rc
2/2dD, where 'd' is 

the dimension of the space and D is the relevant diffusion coefficient).   
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     Because of the noted differences in time scales, we simplify our model by treating 

cytosolic molecules as being uniformly distributed and membrane bound proteins as 

fixed.   Lipid diffusion, however, occurs on the same time scale as cellular response and 

is explicitly calculated.  Thus, in our model, cytosolic molecules act globally, coupling 

reactions at all points on the membrane, proteins act locally, and the spatial 

characteristics of lipids are context dependent.  The discussed characteristic space/time 

scales and model simplifications are summarized in Table 2.1. 

 
Table 2.1.  Characteristic space/time scales 
Cellular 
component 

Typical diffusion
coefficient 
D (µm2/s) 

Characteristic 
time scale 

t = rc
2/2dD (s) 

Model treatment 

Membrane proteins 0.03 > 100 Fixed 
Cytosolic proteins 20 < 0.1 Uniform 
Membrane lipids 1 ~ 1 Diffusion calculated 
 
Cellular response 
     Characteristic length scale (rc): ~ 4 µm 
     Characteristic time scale (T): ~ Secs. 

  

     The above simplifications, based on the suggested characteristic space/time scales for 

the types of molecules considered, are intuitive.  While our simplified treatment will be 

sufficient to capture the gradient sensing possibilities that we will analyze, other authors 

have proposed that dynamics on faster time scales (of order 10 – 100 ms) might be 

important for gradient sensing (127).  These authors have suggested gradient sensing 

mechanisms that explicitly depend on the dynamics of cytosolic diffusion and on 

geometric constraints, though experimental evidence to support such a hypothesis does 

not yet exist.   
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     In addition to the possible importance of such fast cellular processes, diffusion of 

large molecules through the cross-linked cytoskeletal network at the cell periphery might 

be significantly slower than our above estimate (125, 128-130).  Further, bulk diffusion 

can play an essential role in controlling surface instabilities when moving boundaries are 

considered (131).  Thus, explicitly considering cytosolic diffusion will be important for 

possible extensions of our model. 

 

2.2.3 Coupling to outside stimuli 

In both Dictyostelium and neutrophils, ligand binding activates receptors, which activate 

the heterotrimeric G-proteins (HTGs) to which they are coupled (see Fig. 1.5) in a pattern 

that closely reflects that of ligand in solution  (31, 81, 126).  Both receptor and HTG 

activation lead to recruitment and activation of PI3' kinases (PI3Ks), which are enzymes 

that phosphorylate PIs in the 3' position.  Many details of this activation remain unknown 

(132, 133).  For these reasons and because, at least in Dictyostelium, receptor and HTG 

desensitization do not seem to drive adaptation on time scales considered# (136), we let a 

single variable, R, represent ligand-mediated receptor and HTG activation, which 

together drive PI3K recruitment and activation.  In our model, this defines the external 

stimulus at each point on the membrane.    
 
 
 
2.2.4 Model Components 

Our model will include the dynamics on the membrane of the 3'PIs thought to be relevant 

for gradient sensing.  The enzyme that produces them (a PI3K) and an enzyme that 
                                                 
# Receptor and HTG desensitization might play a more significant role for adaptation in neutrophil 
chemotaxis (134).  Such desensitization is also thought to affect receptor affinity in Dictyostelium, 
allowing sensitivity over many orders of magnitude in ligand concentration (25, 135). 
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dephosphorylates them (a PTEN phosphatase) will be included as well.  We will calculate 

the dynamics at each point on the membrane for these enzymes, as well as the dynamics 

of a cytosolic inactive fraction (discussed further in Sec. 2.3). 

     The spatio-temporal dynamics of 3'PIs have been observed experimentally in 

Dictyostelium cells expressing fluorescently tagged protein domains that bind them 

specifically (such as particular PH domains).  Several PI3Ks, and the single known 

PTEN, have also been fluorescently labeled in Dictyostelium as well.  Sample data from 

the literature concerning these molecules are illustrated in Fig. 2.2.     

 

2.2.5 Steady-state assumptions and intermediate level of detail 

The dynamics of the molecules that regulate the above-discussed components of our 

model are generally less well characterized (in several cases the molecules have not yet 

been identified experimentally). Further, we are not aware of any observed delays in 

cellular response, which are specifically associated with activation of these regulatory 

molecules.  Thus, we will introduce simplifications to effectively include them in our 

model.  Concentrations of regulatory molecules whose dynamics are not thought to be 

directly relevant to the role of 3'PIs in gradient sensing will be treated as fixed.  

Concerning regulatory molecules whose dynamics are likely to be an integral part of 3'PI 

regulation in gradient sensing, we introduce the following simplifying procedure: kinetic 

equations are written for the dynamics of these molecules; time derivatives are set to 

zero; the resulting steady-state equations are used to express the concentrations of these 

molecules in terms of our model variables.  This procedure will be illustrated when we 

derive our scaled model equations in Secs. 2.5.2 and 2.5.3.   
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Fig. 2.2.  Sample images of fluorescently labeled cells.  All images are of 
Dictyostelium cells responding to cAMP.  3' PIs are visualized in cells that have been 
stably transfected to express domains of proteins that are thought to specifically bind 
3'PIs, and which are tagged with GFP or a variant thereof (33).  PI3K and PTEN 
dynamics are visualized in cells that stably express chimeras of those proteins, also 
tagged with GFP variants as well.  a) In response to a uniform increase in cAMP, 3'PIs 
are produced transiently on the membrane, PI3K translocates to the membrane, and 
PTEN is removed.  The depicted microscopy images are taken from a movie of PTEN 
translocation from the membrane (reproduced with permission from reference 137).  
Time courses which attempt to quantify the change in fluorescence on the membrane are 
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also illustrated; PhdA is a protein domain the binds specifically to 3'PIs; PI3K1 and 
PI3K2 are isoforms of PI3K in Dictyostelium that are thought to be relevant for gradient 
sensing (reproduced with permission from reference 132).  b) Spatial localization of 
signaling molecules in response to a gradient of cAMP generated by a micropipette.  
3'PIs are produced and PI3K is recruited to the leading edge of the cell, while PTEN is 
removed.  For the image with 3'PIs labeled, the pipette is located to the top right and the 
scale bar represents 5.6 µm (reproduced with permission from reference 79).  For the 
images of PI3K and PTEN distributions, the pipette location is indicated by the arrow and 
the scale bar corresponds to 15 µm (reproduced with permission from reference 4). (Fig. 
2.2. caption, cont.) 
 
 

     The above procedure has the virtues of preserving steady-state solutions, as well as 

many effects of translocation; i.e. it preserves the qualitative features that we wish to 

investigate (see Secs. 1.5.5 and 1.6.1; also Sec. 2.7.4).  Many uncertain biochemical 

details will no longer appear explicitly in our equations; further, our equations will often 

be consistent with alternate biochemical mechanisms that give rise to similar qualitative 

behaviors.  On the other hand, our equations will be directly developed from a 

biochemical scheme thought to be relevant for 3'PI-mediated gradient sensing, and our 

model parameters will be related to real cellular biochemical parameters.  Thus, we will 

be able to investigate how qualitative behaviors depend on biochemical parameters.  In 

this way, our model will be developed at an intermediate level of detail (levels of detail in 

models of cellular signal transduction were discussed in Secs. 1.4.4 and 1.4.5).  

 

2.3 Biochemical scheme 

Our biochemical scheme for 3'PI regulation in gradient sensing is developed in several 

stages.  First, biochemical observations that motivate our choice of model variables, and 

suggest a topology for the network of interactions that regulates their dynamics, are 

discussed in Sec. 2.3.1; a modular interpretation of this network is given in Sec. 2.3.2.  
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We then propose biochemical mechanisms that account for the suggested regulatory 

loops.  Where the relevant mechanisms have not been identified in gradient sensing cells, 

we suggest regulatory mechanisms based on interactions that have been studied in the 

context of other cellular behaviors.   

     The figures in this section will schematize the biochemical interactions included in our 

model at various levels of detail, as is appropriate to the discussion in each subsection.  

The interactions associated with regulation of each of our model variables will be 

represented in more detail in Sec. 2.5, when our model equations are developed. 

 

2.3.1 Biochemical observation, model variables and network topology 

Our model variables and the topological features of the network of interactions that 

regulates them are summarized in Fig. 2.3 at the end of this subsection.  First, we discuss 

regulation of each of our model components separately. 

 
2.3.1a 3'PIs 

The 3'PIs thought to be relevant in gradient sensing are PI(3,4,5)P3 and PI(3,4)P2.  Both 

specifically act to recruit a similar set of cytosolic molecules to the membrane (66, 87, 

103).  Production of PI(3,4,5)P3 via phosphorylation of PI(4,5)P2 by a PI3K , and of 

PI(3,4)P2 via dephosphorylation of PI(3,4,5)P3 by a PI 3' phosphatase such as SHIP 

(138), are thought to be the relevant production pathways (87, 138).   

     PI(3,4)P2 dynamics generally follows PI(3,4,5)P3 dynamics with a slight lag (139).  

However, there is evidence in Dictyostelium cells suggesting that disruption of a 

phosphatase which acts on both (PTEN, discussed below) affects their dynamics 

differently (140).  Thus, we will model PI(3,4,5)P3 and PI(3,4)P2 separately and use the 
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scaled variables, P3 and P2, to represent their concentrations.  Their sum, which we 

denote Pn, is a primary output of our model. 

     There is evidence in neutrophil-like cell lines for a positive feedback from 3'PIs to 

delivery of PI(4,5)P2 to PI3K, involving small GTPases of the Arf and Rho family (102, 

141, 142).  This feedback, which enhances substrate delivery for production of 

PI(3,4,5)P3, is highlighted by Loop I in Fig. 2.3.    

 
2.3.1b Membrane-bound PI3K/PTEN  

The enzyme that generates 3'PIs – a PI3K – and an enzyme that dephosphorylates 3'PIs in 

the 3' position – the PTEN phosphatase – are also essential components of our model.  As 

mentioned, PI3K localization and activation are thought to be coupled to outside stimuli 

(see Sec. 2.2.3).  Further, in Dictyostelium, PI3K localization has been observed to 

parallel 3'PI localization upon cellular stimulation (132), and PTEN translocation to the 

membrane has been observed to occur in an inverse pattern (132, 137); these observations 

were illustrated in the sample data of Fig. 2.2.  If we consider 3'PIs to be the primary 

signal that localizes other molecules in gradient sensing, this suggests a positive feedback 

from 3'PIs to the enzymes that produce and degrade them, represented by Loop II in Fig. 

2.3.  In our model, the variables Km and Tm will represent scaled concentrations on the 

membrane of PI3K and PTEN, respectively. 

 
2.3.1c Phosphorylated/inactive PI3K and PTEN in the cytosol  

Because cellular response eventually adapts to the average stimulus, as do PI3K and 

PTEN activities (132, 137), there must be some form of integral feedback regulating 

cellular responses (121).  We represent this negative feedback for adaptation by Loop III 
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in Fig. 2.3.  The mechanism of this feedback is currently unknown, though several 

possibilities have been suggested (48).  Both PI3K and PTEN activity are known to be 

controlled by phosphorylation in some cell types (143, 144), and we will suggest this as a 

mechanism for global inhibition in Sec. 2.3.3d.  We use the scaled variables Kc* and Tc* 

represent the fractional concentrations of PI3K and PTEN, respectively, which are 

cytoplasmic and phosphorylated; these are catalytically inactive in our model.  

 

2.3.2 Modular interpretation 

The topology of the regulatory network, suggested by the observations noted in Sec. 2.3.1 

and illustrated in Fig. 2.3 maps easily onto the modular scheme suggested for  

 

 

Pn = P3 + P2 = 3'PIs
(signaling lipids)

K = PI3' Kinase
(makes Pn)

T = PTEN = PI 3'Phosphatatse
(degrades Pn)

subscript m/c = membrane/cytosol
* = phosphorylated/inactive

Km

Kc* KcTc*Tc

Tm Pn = 
P3 +P2

R
II

I

III

substrate

Outside
stimulus

InterconversionPositive feedback Negative feedback
 

 
Fig. 2.3.  Model variables and network topology.  Regulatory loops are represented by 
bold arrows and labeled with Roman numerals. Variables drawn along arrows represent 
enzymes that are necessary for the depicted interconversion (e.g. R is required for PI3K 
translocation to the membrane).  Details of biochemical mechanisms are discussed in Sec. 
2.3.3.  Negative feedback Loop III is drawn as regulating PI3K translocation in 
anticipation of our proposed adaptation mechanism (see Sec. 2.3.3d).    
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gradient sensing in Sec. 1.5.2.  We will consider positive feedback Loops I and II to 

constitute an amplification module.  These feedbacks are driven by receptor and HTG 

activation (represented by the scaled variable, R, as discussed in Sec. 2.2.3), which drive 

cytosolic unphosphorylated PI3K (Kc) to the membrane.  Their product will be 

interpreted as a driving parameter for our model.  Negative feedback Loop III will be 

treated as an adaptation module.  This modular interpretation, which is illustrated 

schematically in Fig. 2.4, will be important to develop a more intuitive understanding of 

our model and its variants (discussed further in Secs. 2.5.5 and 2.7, as well as Chapter 3). 

 

2.3.3 Proposed biochemical mechanisms 

The biochemical mechanisms that might account for the above noted observations and 

suggested regulatory loops are still not well understood.  Possible mechanisms, from  

 

Fig. 2.4.  Modular 
structure.  Boxes and 
color-coding are used 
to indicate the features 
discussed in the text.  
These will be more 
formally defined when 
we develop and discuss 
our model equations 
(see, in particular, Sec. 
2.5.5).  Elements of the 
amplification module 
will be adjusted to 
define variants of our 
model, which 
demonstrate qualitative 
differences in gradient 
sensing mechanisms 
(Sec. 2.7).   Notation is 
as in Fig. 2.3. 
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which we will develop our model equations, are schematized and discussed individually 

below; experimental observations that suggest these mechanisms are summarized as well.   

     The complete biochemical scheme, upon which our model is based, is schematized in 

Fig. 2.8 at the end of this subsection.  

 
2.3.3a Loop I – Positive feedback through substrate delivery 

A possible mechanism for the feedback in Loop I, many elements of which have been 

studied in neutrophils or neutrophil-like cells, is depicted in Fig. 2.5.  3'PIs recruit GTP 

exchange factors (GEFs) to the membrane (     ), where they catalyze the exchange of 

GDP for GTP in specific small GTPases (gP) of the Arf and Rho family (145, 146) (     ).  

These GTPases are then activated and stabilized on the membrane (147, 148), and play 

roles (together with their regulators) in remodeling the membrane and actin network (67, 

149, 150).  Some have been shown to stimulate PI(4)P5′ kinases (PIPKs) to make 

additional PI(4,5)P2 (     ) (141, 142).    

     Experimental observations do not indicate an accumulation of free PI(4,5)P2 upon 

cellular stimulation (151, 152), suggesting that the PI(4,5)P2 generated by the feedback in 

Loop I is used immediately.  This observation could be explained if the generated 

PI(4,5)P2 was bound to a transfer protein (PITP) (     ) and passed directly to PI3K for 

conversion to PI(3,4,5)P3 (     ).    The importance of PITP activity for 3'PI production has 

been suggested by experiments in neutrophils  (153), though it has not been investigated 

in Dictyostelium and the role that it might play in gradient sensing is not yet clear.  In our 

model, we assume this mechanism and do not include the dynamics of free PI(4,5)P2.  

This simplification is consistent with the lack of clear evidence for spatial gradients of 

free PI(4,5)P2 in chemotaxing cells (151, 154).          
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Fig. 2.5.  Mechanisms for 
Loop I.  Processes discussed 
in the text are numbered.  
Molecules that will be 
modeled directly are labeled 
in large bold font, those that 
will be included through 
steady-state assumptions are 
labeled in normal font, and 
those whose concentrations 
will be treated as fixed are 
labeled in grey.  A GAP 
(GTPase Activating 
Protein), which is generally 
considered essential for 
hydrolysis of GTP 
(conversion of GTP to GDP) 

by the GTPase (gP), has been included in the diagram, though its regulation is not 
modeled (several GAPs are known to bind PI(4,5)P2). Abbreviations have been given in 
the text, and are summarized in Fig. 2.8.   
      

     Feedback regulation by small GTPases is the most essential feature of Loop I that we 

would like to capture in our model.  The action of GEFs, which often exist in the cell at 

low concentrations, is essential for small GTPase activation.  Thus, it is possible that the 

relevant GEFs involved in Loop I may become depleted from the cytosol upon cellular 

stimulation, saturating its activity.  Under these conditions, competition for GEF might 

act to couple responses over the entire membrane.  We will consider this possibility when 

we define variants of our model.   

 
2.3.3b Loop II – Positive feedback through enzyme regulation 

The biochemical mechanisms for the suggested feedback in Loop II have not yet been 

identified experimentally.  To capture the qualitative features of this feedback in our 

model, we propose the mechanisms depicted in Fig. 2.6.  3'PIs recruit an as yet  
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Fig. 2.6.  Mechanisms for Loop 
II.  'A' represents an unidentified 
molecule that stabilizes PI3K on 
the membrane.  In our model, it 
will do so by forming a complex 
with PI3K and inhibiting PI3K 
phosphorylation (     ).  Other 
possibilities for this feedback are 
discussed in Sec. 2.5.4.  
Abbreviations and notation are 
as in the text and in Fig. 2.5.   
 

 

unidentified molecule (labeled 'A') to the membrane (     ), which stabilizes membrane-

bound PI3K (     ).  Membrane-bound PI3K then produces more PI(3,4,5)P3 (     ).  To 

account for a PTEN dynamic inverse to that of PI3K, we propose that PI3K, in its 

capacity as a protein kinase (155), or another molecule whose dynamics parallels PI3K 

dynamics, phosphorylates PTEN (     ).  In our model, phosphorylated PTEN is cytosolic 

and inactive.   

     Our proposed mechanisms for Loop II are a convenient way to reproduce the PI3K 

and PTEN translocation dynamics observed experimentally in Dictyostelium (see Fig. 2.2 

and Sec. 2.3.1b).  The protein kinase activity of PI3K and regulation of PTEN activation 

by phosphorylation have been studied in several types of mammalian cells.  However, the 

roles that these processes might play in chemotaxis and gradient sensing are unclear, and 

neither has been investigated in Dictyostelium.  In addition, to our knowledge, an 

interaction between PI3K and PTEN has not been directly investigated experimentally in 

any cell type.  Further investigation of the plausibility of translocation dynamics being 

regulated by PI3K activity is a subject of current work.  
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2.3.3c Loop III – Negative feedback for adaptation 

The mechanisms of response adaptation in gradient sensing, which we have represented 

by negative feedback Loop III in Fig. 2.3, are not yet understood experimentally.  To 

account for this feedback, we propose the mechanism depicted in Fig. 2.7.  PI3K on the 

membrane is phosphorylated by an as yet unidentified kinase# (labeled 'B'), which is 

constitutively active on the membrane (     ).  Phosphorylated PI3K is cytosolic and 

inactive in our model.  We will assume that the reaction that dephosphrylates PI3K in the 

cytosol is saturated (     ) (this assumption is discussed further in Sec. 2.5.3d); PI3K 

phosphorylation acts as a mechanism of global inhibition in our model because it depletes     

the cytosolic pool of active/unphosphorylated PI3K, which is a shared pool for 

recruitment to the entire membrane. 

     Regulation of PI3K activity by phosphorylation has been studied in several types of 

mammalian cells, but not in Dictyostelium; the role that this regulatory mechanism might 

play in gradient sensing is still unclear.  In our model, it is a convenient mechanism that 

accounts for response adaptation, but requires further experimental investigation. 

 

Fig. 2.7.  Mechanisms for Loop III.   'B' 
represents the unidentified kinase that 
phosphorylates PI3K.  Abbreviations and 
notation are as in Fig. 2.5.   
 

                                                 
# An attractive alternative that leads to the same set of equations in our treatment without proposing an 
unidentified kinase, is that PI3K autophosphorylates.  This has been shown to occur in some cellular 
systems, though the role that it plays in chemotaxis is unclear (143, 155-158).  To our knowledge, PI3K 
autophosphorylation has not yet been directly investigated in Dictyostelium.  Further, recent data in 
Dictyostelium cells where PI3K activity has been inhibited suggests that adaptation mechanisms 
independent of PI3K activity must be relevant as well.  Thus, even if it plays an important role, 
autophosphorylation cannot be the sole mechanism for response adaptation in Dictyostelium.  Investigation 
of cellular response under conditions of PI3K inhibition is a subject of current work. 

PI3Km

PI3Kc* PI3Kc
IIIBm

saturated

1
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2.3.3d Constitutive processes 

The above-proposed biochemical mechanisms will be used to account for the 

characteristic behaviors of gradient sensing, as enumerated in Sec. 1.2.6, and for the 

observations noted in Sec. 2.3.1.  In addition to the processes discussed above, our model 

will also include constitutive unregulated processes (not depicted in Figs. 2.5 – 2.8).  

These will be assumed to occur in parallel with the regulated processes of our model and 

will be represented by constant terms in our equations.   

     Unregulated processes are included in our model because inhibition of any of the 

processes whose regulation is modeled generally does not lead to complete inactivation 

of the signaling network.  Further, our model treatment of cellular biochemical processes 

is at best phenomenological, and only a subset of the interactions are included that might 

regulate our model variables in real cells.  Thus, our inclusion of constitutive processes 

might be interpreted as a lowest order attempt to include some of the other regulatory 

processes that undoubtedly exist.  Specific constitutive terms are discusses briefly when 

we develop our model equations in Sec. 2.5.  

 

2.4 Assessing the biochemical scheme 

The complete biochemical scheme, from which our model will be developed, is 

represented schematically in Fig. 2.8.  Schematics of this sort are often used to represent 

the networks of interactions that regulate cellular behaviors such as gradient sensing.  

However, there are many difficulties and subtleties involved in developing and 

interpreting them.  For example, many relevant interactions are often unknown, and it 

may be necessary to propose mechanisms to complete the schematic and to accounts for 
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Fig. 2.8.  Complete biochemical scheme.  Notation is as in Figs. 2.5-2.7.  Unidentified 
molecules 'A' and 'B' are not explicitly represented, nor are constitutive processes that act 
in parallel with the regulated processes of our model.  Abbreviations used:  PI(3,4,5)P3 = 
PI(3,4,5) tris-phosphate; PI(4,5)P2 = PI(4,5) bis-phosphate; PI(3,4)P2 = PI(3,4) bis-
phosphate; PI3K = PI 3'kinase; PTEN = PI 3' phosphatase ();  R = chemotactic stimulus; 
gP = small GTPase; GEF = GTP exchange factor; PITP = PI transfer protein; PIPK = 
PI(4)P 5'Kinase; GAP = GTPase activating protein.  Subscripts c/m denote 
cytosolic/membrane. 
 
 
experimental observations.  Relevant data often comes from multiple cell types, and a 

single cell may not employ all of the proposed regulatory mechanisms.  Multiple 

isoforms will exist of most of the molecules involved, and they will interact with multiple 

partners, possibly functioning in other cellular processes that are not considered.  Few 

rate constants and biochemical parameters have been measured directly in intact cells. 

     Difficulties of the sort discussed above motivate the approach that we have taken to 

modeling 3'PI regulation in gradient sensing.  In particular, we will include an 

intermediate level of detail, making many simplifications and focusing on qualitative 

features of cellular response.  We will explore a wide range of model parameters to 
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investigate these qualitative features and their dependence on proposed biochemical 

mechanisms.   

     Given the complexity of cellular behaviors, and the many unknowns relating to their 

regulation, other theoretical approaches are likely to yield further insight as well. 

 

2.5 Model equations 

To develop our model, we will assume linear mass-action kinetics (Sec. 2.5.1) to write a 

set of unscaled equations representing the biochemical processes schematized in Fig. 2.8 

(Sec. 2.5.2).  Steady-state assumptions are then employed, and quantities scaled (as 

discussed in Sec. 2.2.5) to write a set of equations for our six model variables.  These are 

discussed term by term in Sec. 2.5.3 and parameters that are important in shaping the 

qualitative features of our model are emphasized.  Our equations are summarized in 

Table 2.3 of Sec. 2.5.4 and a qualitative discussion of how our model accounts for the 

characteristic behaviors of gradient sensing is given in Sec. 2.5.5. 

 

2.5.1 Reaction kinetics 

In order to derive a set of model equations from the biochemical scheme in Fig. 2.8, we 

must assume functional forms to represent the depicted biochemical processes.  Because 

we do not aim to investigate detailed reaction kinetics for biochemical processes inside of 

the cell, which are generally unknown, we will thus assume linear mass-action kinetics 

unless otherwise noted.  That is, the concentrations of each molecule involved in a given 

reaction will appear linearly in our equations.  In several instance (that will be discussed) 

we will assume Michaelis-Menten type kinetics.   
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2.5.2 Unscaled equations and model reduction – a worked example 

As an example of how our scaled model equations are derived from a more complete set 

of unscaled equations, we consider the regulation of PI3K on the membrane.  This 

includes the feedback in Loop II and coupling to outside stimuli.  The relevant 

interactions are summarized in Fig. 2.9. 

 
2.5.2a Symbolic representation of reactions in kinetic equations 

We can symbolically represent the processes regulating PI3K dynamics on the membrane 

as follows: 

[ ] [ ]( ) [ ]( ) [ ] [ ] [ ]( )m
c c m m m

PI3K
PI3K PI3K PI3K

3 3 3

{ } { }K R K B A
t

a a b

∂
= ξ −

∂
′

, ,
���	��
 ���	��
 ����	���

RP D . (2.1) 

 

 

Fig. 2.9.  Regulation of membrane-
bound PI3K.   In order to write 
kinetic equation, the depiction here is 
more detailed than the corresponding 
part of the schematic in Fig. 2.8.  R 
is the unscaled counterpart of our 
model variable, R, which represents 
receptor and HTG activation that 
drive PI3K to the membrane.  
Constitutive processes, occurring in 
parallel with the regulated processes 
of Fig. 2.8, are represented by the 
symbol 'ξ' (e.g. ξR) and labeled with 

a prime (e.g. 3a').  PI3Km represents total membrane-bound PI3K (assumed to be 
catalytically active).  PI3K bound to molecule A ( mPI3KmA i ) cannot be phosphorylated 
in our model (see Sec. 2.3.3).  m mPI3K PI3KmA− i , which appears at the center of the 
schematic, thus represents the portion of membrane-bound PI3K can be phosphorylated.  
Terms in our kinetic equations below are numbered in correspondence to the labeled 
interactions.  The model element, for which we would like to write a kinetic equation, is 
represented in larger font (PI3Km).  Notation and abbreviations are otherwise as in Fig. 
2.8.     
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The function { }KP  represents processes that increase the concentration of PI3K on the 

membrane, and the function { }KD  represents processes that decrease PI3K on the 

membrane.  Each relevant process is represented in parentheses in Eq. 2.1 and labeled 

below the equation in correspondence with Fig. 2.9.   Concentrations are denoted by strait 

brackets ('[ ]').  To represent an enzyme or other molecule, EX, acting on or regulating 

another molecule Y that changes its state, we use the notation, ( )[ ] [ ]XE Y .  Constitutive 

processes are generally represented by the symbol, ξ, and labeled with a prime (e.g. 3a', 

see Sec. 2.3.3d for discussion).   

     Based on the above conventions, process 3a in Eq. 2.1 represents activated receptors 

and HTGs, (whose concentration on the membrane is represented by the unscaled 

variable R) acting to recruit PI3K from the cytosol to the membrane (i.e. PI3Km is 

converted to PI3Kc).  Process 3a' represents unregulated recruitment of PI3K to the 

membrane.  This will define the baseline state of the cell in our model, since it will drive 

the feedbacks of our amplification module in the absence of receptor activation (depicted 

in Fig. 2.4).  Process 3b represents removal of PI3K from the membrane due to 

phosphorylation by an unidentified kinase (Bm) that is constitutively on the membrane 

(Loop III).  This phosphorylation is regulated by an unidentified molecule 'A' that binds 

stochiometrically to PI3K – our model assumes that PI3K bound to molecule A cannot be 

phosphorylated, and that molecule A is recruited to the membrane by 3'PIs, as indicated.  

This will account for the feedback in Loop II, as described below.  Diffusion of PI3K 

along the membrane is not included in our model (we assume that the on/off rates for 

PI3K binding to the membrane are faster than its diffusion along the membrane on 

cellular length scales, as discussed in Sec. 2.2.2). 
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2.5.2b Writing unscaled kinetic equations  

Assuming linear kinetics, we write the following equation to model the processes 

represented in Eq. 2.1:   

[ ] [ ] N N [ ] [ ] [ ]( )m
c m m

PI3K
PI3K ) PI3K PI3K

3 3 3
K R K m mB A

t a a b

+ −∂
= κ + ξ − κ −

∂
′

( i
�������	������


R ,  (2.2) 

where  and K K
+ −κ κ  are forward and backwards rate constants, respectively, and the 

parameter Rξ  may include both rate constants and concentrations of molecules whose 

regulation is not modeled (assumed fixed).  [ ]mPI3KmA i  represents the concentration of 

PI3K on that is bound by molecule A; the factor [ ] [ ]( )m mPI3K PI3KmA− i  represents the 

local unbound fraction of PI3K on the membrane, which can be phosphorylated and 

return to the cytosol#.  

     The notation of Eq. 2.1 is used further in Appendix A to symbolically represent the 

biochemical processes in Fig. 2.8.  Below, we directly assume linear kinetics and write 

equations for the regulation of molecule A and its complex with PI3K on the membrane, 

as in Eq. 2.2.   

     For the concentration of molecule A on the membrane, we write the following 

equation: 

[ ] [ ][ ] [ ]
  

3 PI

11 11

m
A c A m

  

A
A A

t
a b

+ −∂
′= κ − κ

∂ ���	��
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 ,       (2.3) 

where [ ] [ ] [ ]3 23 PI PIP PI(3,4)P′ ≡ + .       (2.3a) 

                                                 
# We assume that PI3K bound to A is still catalytically active.  Total PI3K on the membrane (PI3Km, which 
includes the portion complexed with molecule A) is thus the appropriate specie to consider where PI3K 
activity is included in our model. 
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Term 11a represents cytosolic A (Ac) binding to 3'PIs on the membrane with rate constant 

A
+κ .  Term 11b represents spontaneous returns of A to the cytosol. 

     To describe complex formation between PI3K and molecule A, we write the following 

equation:   

[ ] [ ] [ ] [ ]( ) [ ]m
m m m
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PI3K PI3K  PI3K
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�������	������


.  (2.4) 

Term 12a describes complex formation, with rate constant, AK
+κ , between molecule A on 

the membrane (Am) and the fraction of PI3K that is not already bound to A; we assume 

that the reaction is limited by the availability of PI3K#.  Term 12b describes spontaneous 

dissociation of the complex mPI3KmA i , with rate constant AK
−κ .   

 
2.5.2c Model reduction using steady-state assumptions  

Because the properties of molecule A are unknown, we simplify our analysis by setting 

the LHS of Eqs. 2.3 and 2.4 to zero; the concentration of the complex, mPI3KmA i , can 

then be expressed in terms of components of our model variables (as discussed in Sec. 

2.2.5).  We find: 
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where 
[ ]

A AK
AK

A c AKA

− −

+ +

κ κ
κ =

κ κ
,  and we have further assumed that only a small fraction of A 

translocates to the membrane (Ac ~ constant).  Thus, the fraction of PI3K on the 

                                                 
# PI3K generally exists in cells at low concentrations.  We thus assume that molecule A is relatively more 
abundant on the membrane than PI3K.  Am will thus approximate the concentration of A on the membrane 
that is not already complexed with PI3K.  
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membrane, which is not bound to molecule A – this fraction is free to be phosphorylated 

and return to the cytosol – is given by: 

[ ]
[ ] [ ]

m
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m

AK

A
− =
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.       (2.6)      

Using Eq. 2.6, we can rewrite Eq. 2.2 as: 
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The form obtained for term 3b describes phosphorylation by molecule B, with rate 

constant, K
−κ , of the fraction of PI3K on the membrane not bound to molecule A.  In this 

way, 3'PIs on the membrane prevent PI3K return to the cytosol, accounting for the 

feedback regulation of PI3K represented by Loop II in our model.    

 
2.5.2d Conservation relations can be used to eliminate model variables  

In our model, PI3K can be on the membrane, and either phosphorylated or 

unphosphorylated in the cytosol.  The following equation represents conservation of total 

PI3K, and can be used to eliminate [ ]cPI3K   from Eq. 2.7 (as an alternative, cPI3K * can 

be eliminated, as is convenient): 

[ ] [ ] [ ] [ ]1

0 c c m0
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.   (2.8) 

[PI3K0] is the total PI3K in our assumed 2-d cell, divided by the area of the cell, Acell, 

where we have assumed that cytosolic molecules are uniformly distributed (discussed in 

Sec. 2.2.2).  In units where the circumference is of the cell is 1, Acell = 1/4π. 
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     This example is continued below in Sec. 2.5.3b, where we rewrite Eqs. 2.7 and 2.8 in 

terms of our scaled model variables and further discuss their form. 

 

2.5.3 Scaled equations 

In Appendix A, we apply the procedure demonstrated above to write a complete set of 

unscaled equations describing the processes represented in Fig. 2.8.  We similarly apply 

simplifying steady-state assumptions to write all concentrations in terms of those 

represented by our scaled model variables.  This set of 'reduced' equation is then rewritten 

in terms of scaled model variables and parameters.  Scaled model variables are 

summarized in Table 2.2; definitions of scaled model parameters, in terms of unscaled 

parameter, are summarized in Table A.2 of Appendix A.       

    In our scaled model equations below, integrals over X account for exchange of 

translocating molecules between cytosolic pools and the entire membrane.  Because our 

spatial variable is normalized, these integrals are equivalent to spatial averages (denoted 

 

Table 2.2. Model variables 
Variable Meaning Scaled by# 

R The combination of receptor and HTG activation 
that drives PI3K to the membrane. 

Constitutive PI3K activation 
( Rξ , see Eq. 2.7). 

Pn = 
  P3 + P2 

Sum of the 3'PIs thought to be important in 
gradient sensing – a primary model output of our 
model. 

[3'PI] that saturates Loop I 
– results in the relationship 
1/κm+1/κc=1 (see Eq. 2.9a). 

Km PI3K on the membrane – generates P3. Acell[PI3K0] 

Kc* Inactive cytosolic PI3K. Acell[PI3K0] 

Tm PTEN on membrane – dephosphorylates  Pn. Acell[PTEN0] 

Tc* Inactive cytosolic PTEN. Acell[PTEN0] 
 

# Acell is the area of the cell, [PI3K0] and [PTEN0] are the total concentrations of PI3K and PTEN in the cell; 
thus, Acell[PI3K0] and Acell[PTEN0] are the total PI3K and PTEN is the cell.  
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X
).  The parameter, χ, is generally used to represent scaled forward rate constants, λ to 

represent backwards rate constants, and κ to represent saturation concentrations and/or 

concentrations at which a term becomes effective.  The parameter ζ is used to represent 

constitutive processes acting in parallel with the regulated processes of our model, as 

discussed in Sec. 2.3.3d. 

 
2.5.3a 3'PI dynamics – a primary model output 

The interactions of our model that regulate the 3'PIs on the membrane, PI(3,4,5)P3 (P3) 

and PI(3,4)P2 (P2) , are schematized in Fig. 2.10.   

     The following equations describe the dynamics of P3 on the membrane: 
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Fig. 2.10.  Pn regulation.  The 
schematic is written in terms of our 
scaled model variables.  The symbol, Ξ, 
represents the scaled concentration of 
PITP-bound PI(4,5)P2 that results when 
elements of Loop I are set to steady-
state with respect to our model variables 
(derived in Appendix A and discussed 
below).  Numbered interactions 
represent terms in our scaled equations.  
Constitutive terms are labeled with a 
prime; the molecules involved are 
represented by the symbol ζ, which is 
the same parameter used to include them 
in our scaled equations.  Processes 

appearing in multiple equations are numbered twice (e.g. 2a, 1b').  Notation is otherwise 
as in earlier schematics.   
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and 3 2≡ +nP P P ;         (2.9b)  

Because the feedback in our model generally depends on the sum of the 3'PIs (Pn), which 

is a primary output of our model, we have made the substitution 2.9b wherever possible.     

     In Eq. 2.9, term 1a accounts for P3 production due to PI3K acting on PITP-bound 

PI(4,5)P2.  This term couples Loops I and II, and saturates at large Km (of order κ3) 

because the PITP is depleted.  The factor, Ξ, is proportional to the concentration of PITP-

bound PI(4,5)P2.  Its form (Eq. 2.9a) is obtained in Appendix A by writing kinetic 

equations for the regulatory molecules in Loop I (depicted in Figs. 2.5 and 2.8), many of 

whose spatio-temporal dynamics are not well characterized; the concentrations of these 

regulatory molecules are set to steady-state with respect to the variables of our model, as 

was illustrated in the example of Sec. 2.5.2.   

     The denominator of the small G-protein dependent (gP-dependent) part of Ξ includes 

a local term ( / mκnP ), which accounts for saturation of Loop I due to depletion of 

membrane bound molecules, and a global term (
1

0
/ /c cX

dX κ ≡ κ∫ n nP P ), which 

accounts for saturation of this feedback due to depletion of cytosolic molecules that 

translocate to the membrane (in particular, the GEF in Loop I).  If the latter term 

dominates, then under conditions where redistribution of translocating molecule keeps 

XnP  fixed, Ξ will vary approximately linearly with Pn and hence contain a term linear 

in P3; the degradation terms in Eq. 2.9 (1b and 1b') are linear in P3 as well.  Under these 

conditions, we might expect a sharp transition in P3 production as Km and Tm vary, and 

the balance between production and degradation shifts.  The constitutive production 

terms in Eq. 2.9, 3 3, , and PITP PITPζ ζ ζ/  (1a', 1a'' and gP-independent), which account for 
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production of P3 by mechanisms independent of the various molecules in Loop I, cushion 

any such sharp transitions.   

     The loss terms in Eq. 2.9 account for dephosphorylation of P3 at the 3' position by 

PTEN (Tm, term 1b) and for conversion of P3 to P2 by a phosphatase such as SHIP (138), 

whose dynamics are not included in our model (represented by 3 Tζ / , term 1b').  The final 

term in Eq. 2.9 accounts for diffusion of P3 along the membrane with diffusion 

coefficient, D. 

     In Eqs. 2.9 and 2.9a, the relative values of κm and κc determine the relative importance 

of molecules in Loop I that translocate from the cytosol to the membrane; both P3 and P2 

have been scaled such that the relationship, 1 1 1/ /m cκ + κ =  is preserved.  The ratio χ3/λ3 

is important in determining the strength of Loop I.  The ratio D/λ3 controls the effects of 

diffusion on spatial responses.   

    The following equation describes the dynamics on the membrane of P2, which track P3 

dynamics with a slight lag: 
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P2 is generated from P3 (2a), as well as from other sources (2a').  The loss terms account 

for dephosphorylation of P2 at the 3' position by PTEN (Tm, process 2b) and for 

dephosphorylation by other phosphatases (2b').  The final term in Eq. 2.10 accounts for 

diffusion of P2 along the membrane with diffusion coefficient, D (assumed to be the same 

for P3 and P2).  The ratio D/λ2 controls the effects of diffusion on spatial responses. 

 
2.5.3b Membrane bound PI3K – coupling to outside stimuli 

Figure 2.11 represents the interactions that regulate PI3K on the membrane (Km) in terms 
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of our scaled model variables (these interactions were represented in terms of unscaled 

model variables in Fig. 2.9).  Scaled equations representing these processes are obtained 

by rewriting Eqs. 2.7 and 2.8 in terms of the scaled model variables (defined in Table 2.2 

above) and parameters (defined in Table A.2 of Appendix A).  The result is: 

N 1
3

3

K
n Kt

a a
b

∂
= λ −

∂ + κ
( )

/
, ' ��	�


m mK Kγ
P

,        (2.11) 

where ( ) N N1
3 3

K K

a a
≡ χ λ +/ ( )

'
cγ KR         (2.11a) 

and ( )1

0
1 cell cellA dX A= − −∫* /c c mK K K .      (2.11b) 

     The term γ in Eq. 2.11 represents recruitment of cytosolic PI3K (Kc) to the membrane 

in response to receptor activation by outside stimuli (R, term 3a in Eq. 2.11), as well as 

constitutive recruitment (3a').  R is scaled by unregulated recruitment of PI3K to the 

membrane, such that the factor R+1 thus accounts for the sum of receptor-mediated and 

unregulated recruitment.  Equation 2.11b expresses conservation of total PI3K and is 

used to eliminate Kc from our equations (alternatively, it could be used to eliminate Kc*); 

total PI3K is scaled to 1 (see Table 2.2).   

     The loss term in Eq. 2.11 (3b) represents PI3K phosphorylation by molecule B, which 

is assumed to be constitutively on the membrane; [Bm] is fixed and has been absorbed by 

 
Fig. 2.11.  Km regulation.  Loop II interactions 
involving unidentified molecules A and B, which are 
not explicitly included in our model, are represented 
schematically by Pn inhibition of PI3K 
phosphorylation (conversion of Km to Kc*).   

 

Km

Kc*

Pn 3b

R
Kc

3a'

3a
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the scaled rate constant, λK.  PI3K phosphorylation is regulated by molecule A, which has 

been eliminated via steady-state assumptions, as discussed in Sec. 2.5.2.  The resulting 

factor in the denominator, 1 /n K+ κP , accounts for the feedback in Loop II by decreasing 

the rate of removal of PI3K from the membrane with increasing Pn.  This factor becomes 

important only when ~n KκP .  Thus, the magnitude of Kκ determines the effectiveness 

of Loop II in signal amplification. 
 
 
2.5.3c. PTEN dynamics – amplifying the effects of PI3K 

The dynamics of PTEN on the membrane (Tm), and of the fraction of total PTEN 

concentration that is cytosolic and phosphorylated/inactive (Tc*), are schematized in Fig. 

2.12 and captured by the following equations: 
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The first term in Eq. 2.12 (4a) accounts for constitutive 

recruitment of cytosolic PTEN (Tc) to the membrane with 

rate constant, χT.  The loss term represents PTEN removal 

from the membrane by PI3K-mediated phosphorylation 

(4b, as discussed in Sec. 2.3.3b), as well as constitutive 

removal (4b'); the magnitude of Tζ determines the value 

Km

Tc*Tc

Tm

5b

4b'

4a
4b,5a

Fig. 2.12.  Regulation of 
Tm and Tc*.  Notation as 
in previous schematics.

ζ2/T
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of Km where PI3K inhibition of PTEN becomes important in our model.  Equation 2.12a 

expresses conservation of total PTEN and is used to eliminate Tc from our equations 

(alternatively, it could be used to eliminate Tc*); total PTEN is scaled to 1.     

     In Eq. 2.13, the first term (5a) accounts for phosphorylation of PTEN over the entire 

membrane and subsequent return to the cytosol; this term is the integral of term 4b in Eq. 

2.12 divided by the area of the cell.  The loss term (5b) represents dephosphorylation of 

PTEN in the cytosol, which is constitutive with rate constant λT*.   

     Equations 2.12 and 2.13 reproduce a Tm dynamics inverse to Km dynamics, enhancing 

the effects of Loop II.   

 
2.5.3d. Cytosolic/inactive PI3K – adaptation 

Figure 2.13 illustrates regulation of the fractional concentration of PI3K that is cytosolic 

and phosphorylated/inactive in our model (Kc*).  The following equation describes the 

dynamics that result: 
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The first term in Eq. 2.14 (6a) represents phosphorylation of PI3K over the entire 

membrane; this term is the integral of term 3b in Eq. 2.11 divided by the area of the cell.  

We have chosen parameters such that the reaction 

which dephosphorylates PI3K in the cytosol (6b) is 

saturated (Kc* >> κK*).  This ensures that at steady 

state we have the following relation, which results 

from averaging Eq. 2.11 over the entire membrane, 
Km

Kc* Kcsaturated

Pn 6a

6b

Fig. 2.13. Regulation of Kc*.
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combining with Eq. 2.14, and replacing the integral with an equivalent spatial average: 

( )( ) 01
1

*/ ~
/

cell K
K KX X

n K KX

A λ
≡ χ λ + = ≡ γ

+ κ λ
m

c
Kγ K
P

R  = constant. (2.15)   

Thus, adaptation to the average stimulus occurs in our model because PI3K is 

phosphorylated over the entire membrane, thus depleting the shared cytosolic pool of 

unphosphorylated PI3K (Kc) such that γ always return to γ0 (discussed further below). 

 

2.5.4 Equation summary and alternative biochemical mechanisms 

Our model equations are summarized below in Table 2.3 for easier reference.  They are 

labeled with an 'M' for 'Model'; terms representing the discussed feedback loops are 

indicated. 

     Equations M.1 – M.2, which describe lipid dynamics on the membrane, are spatially 

dependent and include diffusion.  Equations M.3 – M.4 describe the dynamics of proteins 

on the membrane.  These are spatially dependent as well, but their diffusion is not 

included (see Sec. 2.2.2 and Table 2.1); the effects of diffusion in our model are thus 

completely tied to lipid dynamics.   

     Equations M5 – M.6 describe the dynamics of cytosolic proteins, which are assumed 

to be uniform in our treatment.  Equations M.7 – M.8 account for conservation of total 

PI3K and PTEN in the cell.  These equations are used to eliminate Kc and Tc from Eqs. 

M.3 and M.4 for our simulations.  Alternatively, Kc* and Tc* could be eliminated and the 

auxiliary equations M.10 and M.11 could be used in place of Eqs. M.5 and M.6; this 

alternative is chosen in several instances where it leads to easier analysis.   

     The steady-state equation, M.9, defines the baseline state of the cell in the absence of 

receptor activity and will ensure perfect adaptation to the spatial average of the external 
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Table 2.3.  Model equations 
Primary equations: 
Membrane lipids 
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stimulus, when one is present.  This will be discussed further in the next subsection.  

Definitions M.3a and M.6a can be used to simplify Eq. M.11, as indicated. 

      Our model equations were derived by assuming specific biochemical mechanisms for 

the suggested regulatory loops.  To the extent that our model parameters are related to the 

unscaled biochemical parameters from which they were derived, our model retains 

connection with the details of our proposed mechanisms.  However, the qualitative 

features of our equations are consistent with other possibilities.  For example, a similar 

PTEN dynamics would result if PTEN were inactivated by another molecule whose 

dynamics parallels that of PI3K upon cellular stimulation.  The form of Eqs. M.3 and M.6 

would be preserved if we assumed PI3K autophosphorylation as the mechanism for PI3K 

removal from the membrane, rather than phosphorylation by another kinase.  The 

feedback in Loop II could be effectively included in Eq. M.3 if we had assumed that 

3'PIs recruit a molecule to the membrane that helped bring PI3K to the membrane, rather 

than one that inhibited its removal (the Pn dependence would then be shifted to the 

production term from the denominator of the degradation term).  We are currently 

exploring several of these possibilities.   

 
 
2.5.5 Qualitative discussion – Defining modules and accounting for characteristic  
 behaviors 
 
Equations M.1 – M.5 describe positive feedback (Loops I and II) and can be considered 

to constitute an amplification module; Equation M.6 describes negative feedback (Loop 

III) and constitutes an adaptation module.  The parameter γ (defined Eq. M.3a) is 
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interpreted as a driving parameter.  It serves both to couple these modules to each other 

and to couple the entire system to outside stimuli# (see Fig. 2.4).  

     The signaling network described by Eqs. M.1 – M.6 might function in gradient 

sensing as follows:  Receptor activation increases the local value of R and hence the 

local value of γ (Eqs. M.3, M.3a), recruiting PI3K to the membrane and driving the 

amplification module (Eqs. M.1 – M.5).  PI3K on the membrane is then phosphorylated 

and returns to the cytosol (Eq. M.6).  The pool of PI3K that is free to return to the 

membrane (Kc), and hence the level value of γ, drops.  If R is uniform, γ returns to γ0 

everywhere, as indicated by Eq. M.9 and M.11, and the cellular response returns to 

baseline.  Thus, we interpret γ0 as setting the baseline state of the cell.  If there is a 

gradient in R, γ will remain elevated at the front of the cell, where R is above its 

average value, 
X

R .  If γ0 is set appropriately, the amplification module will still be 

driven in this region, but not at the back of the cell where R is below 
X

R  and γ has 

dropped below γ0. 
 

2.6 Setting parameters  

Our model parameters are generally not known experimentally.  Thus, we have set them 

empirically to capture characteristic gradient sensing behaviors and to reproduce the 

qualitative features of experimental observations in Dictyostelium (discussed in Secs. 

1.2.6, 2.2.4 and 2.3.3.b).  The meanings of our model parameters, as well as their values, 

are summarized in Table 2.4; a range is indicated for parameters that differ between our 

model variants, which will be discussed in Sec. 2.7.  Here, we briefly outline the intuitive 

                                                 
# The LI model is based on a similar modular structure, as is a more recent variation (159). 
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procedure that was used to fix their values.  A more detailed discussion is given in 

Appendix B. 

     Combinations of parameters that determine the uniform steady state of values of our 

model variables were set first.  Based on an intuitive interpretation of the roles that they 

play in our equations, these parameters can be qualitatively divided into the following 

categories: parameters that set uniform steady-state concentrations in the unstimulated 

cell; parameters that adjust the range of our model variables for which a given feedback 

is effective; parameters controlling the strengths of the feedbacks in our model; 

parameters controlling the importance of constitutive process in our model.  The roles 

that many of these parameters play in our equations were discussed when they were 

introduced in Sec. 2.5.3.   

     Variations of parameters in the same category often had similar effects, and 

simultaneous variations of several parameters could thus compensate for each other.  A 

specific example of parameters whose variations might compensate for each other is 

given in Sec. 4.5.3.  Under these conditions, parameter values were chosen empirically to 

give a robust set of results and allow clear definitions of variants of our model, which 

will be introduced in Sec. 2.7.     

     Parameters that fix cytosolic concentrations were set next.  The fraction of PI3K and 

PTEN that is cytosolic and phosphorylated (Kc* and Tc*) in the unstimulated cell, for 

which we could not find experimental data in Dictyostelium, was fixed at 50%.           

     Finally, degradation rate constants (λ) were set to adjust the kinetics of each of our 

model variables.  These were set such that the initial response to a uniform stimulus 

occurs within seconds, and response adaptation within tens of seconds with 3'PIs, PI3K  



 71

Table 2.4.  Model parameters 
Parameter Equation Interpretation Value 

3χ  Rate constant for Loop I regulated P3 production  120.0 

mκ  Pn which begins to saturate Loop I by depleting membrane 
molecules. 

1.18 – 5.0 

cκ  Pn which begins to saturate Loop I by depleting cytosolic 
molecules. 

1.25 – 6.7 

PITPζ  Rate of g-P independent P3 production/rate constant for gP 
dependent production. 

0.025 

3κ  Km at which PI3K binding to PITP·PI(4,5)P2 becomes 
saturated.        

0.05 

3 PITPζ /  Rate of PITP independent P3 production/rate constant for 
PITP dependent production.  

0.025 

3ζ  Rate of unregulated P3 production.  0.3 

3λ  Rate constant for P3 removal by Tm. 15.0 

3 Tζ /  

M.1 

Rate of P3 conversion to P2/rate constant for Tm-mediated 
removal.    

0.13 

2ζ  Rate of unregulated production of P2.   0.02 

2λ  Rate constant for Tm-mediated removal of P2. 8.0 

2 Tζ /  

M.2 

Rate of unregulated removal of P2/rate constant for Tm-
mediated removal.    

0.05 

Kχ  Rate constant for unregulated Kc translocation to the 
membrane. 

0.0049 –  
0.0076 

R      Ligand-induced, receptor-mediated activation, which drives 
translocation of Kc. 

external 

Kλ  Rate constant for Km phosphorylation and removal from the 
membrane. 

0.73 – 4.2 

Kκ  

M.3 

Pn at which 3'PI inhibition of Km return to the cytosol (Loop 
II) becomes effective. 

0.95 – 5.5 

Tχ  Rate constant for Tc translocation to the membrane. 0.019 

Tλ  Rate constant for Tm phosphorylation by Km. 30.0 

Tζ  

M.4 

Rate of unregulated Tm return to cytosol/rate constant for Tm 
phosphorylation by Km. 

0.002 

Tλ *  M.5 Rate constant for Tc* dephosphorylation in the cytosol. 0.15 – 0.21 

Kλ *  Rate constant for Kc* dephosphorylation in the cytosol. 0.34 – 0.58 

Kκ *  

M.6 

Kc* for which the reaction that dephosphorylates PI3K begins 
to saturate. 

0.013 

D 1,2 Coefficient of lipid diffusion in units where the circumference 
of the cell is 1. 

0.003 

Acell M.5 – M.8 Area of the cell in units where the circumference is 1 (1/4π). 1/4π 
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and PTEN (Pn, Km, and Tm) showing similar time courses, as has been observed in 

Dictyostelium.  The lipid diffusion coefficient, D (defined in units where the 

circumference of the cell is 1), was set to a value corresponding to approximately twice 

the typical value suggested by experimental measurements (assuming a rounded cell with 

a radius of 4 µm).  A larger value of D was done because only 1-d diffusion is considered 

in our model.   

 

2.7 Model variants 

2.7.1 Qualitative possibilities 

A highly non-linear response of our amplification module and the possibility of multiple 

steady states are expected if both Loops I and II become strongly activated upon cellular 

stimulation.  If depletion of translocating molecules saturates either of these Loops, 

qualitative differences in responses to uniform stimuli and to gradients, where                                            

redistribution of these molecules can significantly amplify responses, will be possible.  

To investigate these possibilities, and the qualitatively different gradient sensing 

mechanisms to which they lead, we develop four variants of our model.   

 

2.7.2 Adjusting strength of positive feedbacks and the importance of translocation 

To vary whether coupled positive feedbacks lead to multiple steady-states, we adjusted 

the parameter κK (Eq. M.3); this parameter controls the effectiveness of Loop II in signal 

amplification.  To adjust the importance of redistribution of translocating molecules in 

amplifying responses to gradients, we varied the parameter κc (Eq. M.1, M.1a); this  
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parameter controls the degree to which cytosolic depletion saturates Loop I#.  After 

combinations of κK and κc were chosen, the baseline parameter, γ0, was adjusted to 

optimize cellular responses to a small static gradient of stimulus (discussed further in Sec. 

3.5.1).  Larger γ0 results in higher concentrations of PI3K and 3'PIs on the membrane in 

the unstimulated cell. 

     By varying these parameters, we generated four variants of our model that illustrate 

the qualitatively different 'Modes' of gradient sensing that result from varying the roles of 

coupled positive feedbacks and translocation in our model.  We refer to these as Cases 1-

4; their qualitative features are schematized in Fig. 2.14.  The parameters values that 

define our model variants are given in Table 2.5.  The steady-state values of our model 

variables in the uniform unstimulated cell are given in Table 2.6; these will be used to 

initialize our simulations. 

 
Fig. 2.14. Model variants.  
Depicted elements of the model's 
amplification module are adjusted 
by varying model parameters to 
define four variant of our model.  
The thickness of an arrow 
indicates the strengths of the 
depicted feature.  When Loops I 
and II are sufficiently activated 
upon cellular stimulation, coupled 
positive feedbacks can result in 
multiple steady states (as in Cases 
3, 4).  If translocation ('Trans.') is 
important for amplification, then 
redistribution of molecules 
between the front and back of the 

cell can enhance responses to gradients (as in Cases 2 and 4). 
 

                                                 
# As mentioned in Sec. 2.5.3a, 1/κm, which controls the degree to which depletion of membrane-bound 
molecules saturates Loop I, was adjusted such that the relationship 1/κc + 1/κm = 1 was preserved. 
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2.7.3 Descriptions of the model variants 

The characteristics of our model variants are summarized Table 2.7 at the end of this 

subsection and discussed below.  As mentioned, our model shares important features with 

several recently published models; these are discussed briefly as well. 

 
Case 1: Coupled positive feedbacks do not result in multiple steady states for any 

stimulus, and redistribution of signaling molecules does not significantly contribute to 

responses amplification.  We expect this variant to share features with the LI model# 

(122).  

 
Case 2:  Multiple steady states are absent.  Upon global stimulation, the amplification 

module depletes cytosolic molecules and the response saturates.  In response to gradients, 

however, these molecules are redistributed from the back to the front of the cell, 

                                                 
# The LI model does not deplete cytosolic molecules in the amplification module, and the steady-state response of the 
cell is uniquely determined by the pattern of receptor activation (which determines the ratio [PI3K]/[PTEN] that acts as 
a driving parameter in this model) (122). 

Table 2.5.  Parameters which define the model variants
Parameter Case 1 Case 2 Case 3 Case 4 
κK 1.3 5.5 0.95 4.0 
κc 6.7 1.38 5.0 1.25 
γ0 0.014 0.037 0.011 0.028 

Table 2.6.  Steady-state, uniform profile for each variant at zero stimulus 
Variable Case 1 Case 2 Case 3 Case 4 
P3 0.38 1.16 0.19 0.85 
P2 0.60 2.82 0.25 1.78 
Pn (=P3+P2) 0.98 4.0 0.44 2.63 
Km 0.025 0.064 0.016 0.046 
Tm 0.1 0.054 0.15 0.071 
AcellKc* 0.50 0.50 0.50 0.50 
AcellTc* 0.50 0.50 0.50 0.50 
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stabilizing and enhancing the polarized response.  This variant's amplification module 

shares features with the PvH model (97). 

 
Case 3: Coupled positive feedback in Loops I and II is sufficient to produce multiple 

steady states.  Responses to uniform stimuli as well as to gradients are amplified, but 

some redistribution of translocating molecules between the front and back of the cell is 

necessary to stabilize polarized responses against diffusion.  In a shallow gradient of 

stimulus, the cell can be either in a slightly or highly polarized state; switching between 

these states requires overcoming a threshold in stimulus.  Thus, the steady-state response 

of the cell depends on the history of the applied stimulus, as well as on its current value.  

We expect this variant to share features with the NSL model (123) (as well as 

Meinhardt's formulation, (160)), where strong polarization requires overcoming a 

stimulus threshold and, under some conditions, cellular responses can persist after the 

stimulus is removed.  

 

Case 4: As in Case 2, responses to uniform stimuli are weak due to depletion of cytosolic 

molecules.  However, redistribution of translocating molecules in response to a gradient 

enhances amplification due to coupled positive feedbacks and results in multiple steady 

states.  The uniform state of the cell is unstable and a slight gradient will induce a highly 

polarized state, which is stable and can persist when the stimulus is removed.  This 

variant shares features with the NSL and Meinhardt models, as well (123, 160). 

 

2.8 Summary 

In this chapter, we have developed a model for the dynamics and regulation of 3'PIs in 
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Table 2.7.  Characteristics of model variants 
 Case 1 Case 2 Case 3 Case 4 
Relating to coupled positive feedbacks:     

Multiple steady states in response to gradients. No No Yes Yes 
Responses to gradients depend on how the  
     stimulus was applied.  

No No Yes Yes 

Highly polarized response to small gradients 
requires overcoming a stimulus threshold. 

No No Yes No 

Uniform state is unstable to small 
perturbations. 

No No No Yes 

 
Relating to translocation: 

    

Strong responses to uniform stimuli –  
     comparable to responses to gradients. 

Yes No Yes No 

A cytosolic factor is significantly depleted in  
     uniform responses. 

No Yes No Yes 

Redistribution of translocating molecules  
     enhances responses to gradients. 

No Yes Some-
what 

Yes 

 

eukaryotic gradient sensing.  Our aim was to better understand how the network of 

interactions that regulates 3'PIs accounts for characteristic cellular responses to 

chemotactic stimuli and to examine elements that might shape the qualitative features of 

these responses.  In particular, we focused on how coupled positive feedbacks and 

molecules that translocate from the cytosol to the membrane might lead to qualitatively 

different gradient sensing mechanisms.  Another goal of our model was to investigate 

how its qualitative features depend on proposed biochemical mechanisms that might 

change during cellular development, and that might be externally perturbed through 

genetic and pharmacological means.  These considerations shaped our approach to model 

development. 

     We began by making several simplifications.  A simplified geometry was suggested 

by experiments which noted that characteristic gradient sensing behaviors can be 
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observed in round and immobilized cells (Sec. 2.2.1 and Fig. 2.1).  Because the time 

scale for bulk diffusion in the cytosol is likely to be faster than cellular response, we 

chose to treat the cytosol as uniform; membrane proteins, demonstrating much slower 

diffusion times, were treated as fixed (Sec. 2.2.2 and Table 2.1).  Fluorescent labeling 

techniques have allowed observation of several key molecules involved in gradient 

sensing.  These were explicitly included in our model (Sec. 2.2.4), and we made 

simplifying steady-state assumptions to effectively include other regulatory molecules in 

our model, whose dynamics are less well characterized (Sec. 2.2.5).  Our model, with 

these simplifications, adequately captures the qualitative features of gradient sensing 

response that we aim to investigate.  Further addressing these simplifications and 

extending our model to investigate other aspects of gradient sensing behaviors, is the 

subject of current work.     

     We continued by noting key biochemical observations in gradient sensing cells (Sec. 

2.3.1).  In particular, data using fluorescent labeling techniques in Dictyostelium 

indicated that in the transient response to a uniform chemotactic stimulus, 3'PIs are 

produced on the membrane (represented by our model variable, Pn), PI3K (the molecule 

that makes 3'PIs, represented by the scaled variable Km) translocates to the membrane, 

and PTEN (the molecule that degrades 3'PIs, represented by the scaled variable Tm) 

leaves the membrane.  In response to a gradient of chemoattractant, 3'PIs are produced at 

the leading edge of the cell, PI3K becomes localized at the leading edge, and PTEN is 

removed from the leading edge.  These observations suggest that the dynamics of these 

molecules are coupled together and that a potential feedback exists from 3'PIs to the 
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molecules that produce and degrade them.  Biochemical observations also suggest a 

second positive feedback from 3'PIs to delivery of substrate to PI3K.   

     We interpreted these two coupled positive feedback loops as together constituting and 

amplification module.  We interpreted the product of activated receptors on the cell 

surface and PI3K in the cytosol (which is recruited to the cell surface by activated 

receptors) as a driving parameter for this amplification module.  Some form of negative 

feedback is necessary to account for cellular adaptation to the average value of the 

applied stimulus.  We considered this negative feedback to constitute an adaptation 

module.  This suggested modular structure for our model was discussed in Sec. 2.3.2 and 

Figs. 2.3 – 2.4. 

     Many details of the biochemical mechanisms that account for the suggested topology 

of the network of interactions regulating gradient sensing remain unknown.  Thus, to 

continue our model development, we proposed biochemical mechanisms for the noted 

feedback loops (Sec. 2.3.3).  Some are based on interactions that have been observed in 

the context of other cellular behaviors and clearly require further experimental 

investigation.  Theoretical investigation of the roles that these mechanisms play in our 

model is a subject of current research. 

    We then developed a set of six partial differential equations to describe the dynamics 

of our model variables (model variables are summarized in Table 2.2) and their 

regulation by our proposed biochemical scheme (Sec. 2.5).  Diffusion was only included 

for lipid dynamics.  Cytosolic molecules in our model were assumed to be uniform, and 

acted to couple the dynamics at all points on our model membrane; this lead to integrals 

in our equations.  A qualitative discussion of how our model accounts for characteristic 
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gradient sensing behaviors was given in Sec. 2.5.5.  Our model equations, to which we 

will continue to refer in the remainder of this dissertation, were summarized in Table 2.3.     

     Most of our model parameters are unknown, and were set empirically to reproduce 

characteristic gradient sensing behaviors (Sec. 2.6).  Several parameters controlling the 

effectiveness of coupled positive feedbacks and the degree to which cytosolic molecules 

are depleted upon cellular stimulation were adjusted to define four variants of our model.  

These variants are designed to illustrate the qualitatively different Modes of gradient 

sensing that depend on the roles of these elements in our model.  We will further 

characterize the differences between our model variants in Chapter 3.  The responses of 

our model to different patterns of chemotactic stimuli will be investigated in Chapter 4.  
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Chapter 3: Model characterization 

 

3.1 Overview 

In the previous chapter, we had developed a mathematical model of 3'PI-mediated 

gradient sensing at an intermediate level of detail.  We had further suggested that 

qualitatively different gradient sensing mechanisms might result, depending on how 

coupled positive feedbacks and translocating molecules are included.  These elements 

were thus adjusted to generate four variants of our model.  The features of our model 

variants were summarized in Table 2.7; our model equations, to which we will make 

extensive reference in this chapter, are summarized in Table 2.3 of Sec. 2.5.4. 

     How do the qualitative features of our model variants arise from our model's structure, 

and what are the conditions for each to adequately reproduce characteristic gradient 

sensing behaviors?  In Sec. 2.3.2 and 2.5.4, we had suggested that our model might be 

better understood based on a modular interpretation.  In this chapter, we continue to make 

use of this interpretation and further characterize our model using several approaches.   

     We begin this chapter by analyzing a projection in the Pn, γ plane of the phase space 

dynamics for our model's responses to spatially uniform shifts in its initial conditions 

(Sec. 3.2).   This dynamics will demonstrate the coupled behaviors of our model's 

amplification and adaptation modules.  We continue by analyzing the steady-state 

response of each variant's amplification module (represented by Pn) at fixed values of its 

driving parameters (γ), making several different simplifying assumptions relating to 

spatial couplings (Sec. 3.3).  This analysis will highlight the formal features that lead to 

the qualitative differences between our model variants. 
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     Steady-state solutions to our model equations are characterized in Sec. 3.4 based on a 

linear stability analysis.  In particular, we illustrate how the stability properties of 

uniform steady-state solutions can be understood based on the previously-analyzed 

responses of our model's amplification module (Sec. 3.4.2).  We then investigate the 

stability of polarized solutions and suggest that the shape of the slowest decaying 

eigenmode perturbations for these solutions may contain information relating to the 

turning behavior of our model in response to changing gradients (Sec. 3.4.5).  Finally, we 

analyze necessary constraints on several model parameters for efficient gradient sensing 

in each of our model variants (Sec. 3.6). 

 

3.2 Projected phase-space dynamics in the γ, Pn plane 

In Secs. 2.3.2 and 2.5.4 we had suggested that our model might be interpreted as being 

composed of an amplification module and an adaptation module, coupled by a driving 

parameter.  Our model is designed such that in response to a uniform stimulus all of the 

variables of the amplification module respond approximately in phase, in accordance 

with the qualitative features of the experimental data that was illustrated in Fig. 2.2.  

Thus, we might consider the behavior of the model variable, Pn (representing the total 

concentration of 3'PIs on the membrane), to be representative of the response of the entire 

amplification module.  Our model's driving parameter, γ, controls the response of this 

amplification module.  The dynamics of γ are in turn controlled by the adaptation 

module.  We might thus hope to capture the dynamics of our model's response to uniform 

stimuli, including the action of both its amplification and adaptation modules, by 

visualizing the dynamics of the variables Pn and γ. 
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     An equation for the dynamics of the model variable, Pn, can be written by combining 

Eqs. M.1 and M.2 of Table 2.3.  The result is 

( )

3 3 3 2
3

2

3 3 2 2 2

1
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∂
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Ξ

.     (3.1) 

Similarly, an approximate equation for the dynamics of the driving parameter, γ, can be 

written based on Eq. M.11, using definition M.3a, and assuming that the outside stimulus 

is constant.  The result is 

( )( )( )01 K cell X
A

t
∂

+ χ γ −
∂

~ /γ γR .       (3.2) 

As before, R represents the external stimulus in our model, ( )( )1/K K≡ χ λ + cγ KR  (Eq. 

M.3a), and the spatial variable, X, is normalized such that the average in Eq. 3.2 is 

equivalent to an integral over the entire membrane. 

     Figure 3.1 depicts the phase space dynamics, projected into the γ, Pn plane, of the 

uniform response of our model to shifts in its initial conditions that mimic application of 

a uniform stimulus (long-dashed curves).  The bold circle represents the uniform steady-

state solution for each of our model variants, which is unique and specified by the values 

in Table 2.6 of Sec. 2.7.2.  Our model variables were first initialized to these values, with 

R = 0.  The value of γ was then shifted by changing the variable Kc
#, which represents 

the concentration of cytosolic PI3K that is available to translocate to the membrane in our 

model.  These initial conditions are marked by the non-bold circles.       
 
 
                                                 
# Similar results were observed by uniformly changing R, after first initializing with R ≠ 0, to directly 
simulate our model's response to a uniform step stimulus (see Sec. 4.3.1).   
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Figure 3.1.  Phase space dynamics for uniform solutions, projected in the γ, Pn 
plane.  = /�

n n nP P P  is plotted against 0= γ/�γ γ  to illustrate the dynamics of our model's 
amplification and adaptation modules.  nP  is the uniform steady-state value of Pn in the 
unstimulated cell (at 1=�γ ) and γ0 is the steady-state value of γ, which sets the baseline 
state of the cell (see Eq. 3.2 and discussion in Secs. 2.5.4 – 2.5.5).  The long-dashed 
curves represent projections in the γ, Pn plane of trajectories for a spatially uniform 
system.  The non-bold circles denote initial conditions for these trajectories.  The bold 
solid line represents the nullcline of the equation describing the dynamics of the driving 
parameter, γ (Eq. 3.2).  The bold short-dashed curve represents the nullcline of the 
equation describing Pn dynamics (Eq. 3.1) in the 'reduced' model described in the text.  
The uniform steady-state solution for each model variant, to which all uniform 
trajectories evolve, is marked by a bold circle at the intersection of these nullclines.   

     The bold vertical line in each plot of Fig. 3.1 represents the projection of the nullcline 
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of Eq. 3.2 onto the γ, Pn plane.  This projection is possible because Eq. 3.2 only depends 

on γ.  Uniform solutions to our model equations evolve towards this line from the right 

and the left.  The bold short-dashed curve in each plot represents the nullcline of Eq. 3.1 

in the γ, Pn plane, for what we will refer to as a 'reduced' model.  That is, to generate this 

curve, we have assumed that our other variables are set to uniform steady-state values 

with respect to Pn and γ.  Solutions in Fig. 3.1 evolve towards this 'reduced' nullcline 

from above and below.  A similar kind of reduction was used to effectively include 

regulation in our model by molecules whose dynamics are not known (see Secs. 2.2.5 and 

2.5.2).  We will see in Secs. 3.3 and 3.4 how consideration of such a 'reduced' model (i.e. 

where other model variables are set to steady-state values with  respect to Pn and γ) can 

lead to a more intuitive understanding of the formal features of our model.  The 

intersection of the two depicted nullclines in each plot of Fig. 3.1, which is marked by the 

bold circle, represents a fixed point solution for our model under conditions where its 

spatial profile remains uniform.  

     The trajectories in Fig. 3.1 represent time courses similar to those depicted in the 

sample experimental data of Fig. 2.2 in Sec. 2.2.4, and to the simulation results for 

responses to uniform stimuli that will be discussed in Fig. 4.1 of Chapter 4.  If γ is 

increased, then PI3K is recruited to the membrane, PTEN is removed, and 3'PIs are 

produced.  This is the response of the amplification module, which is represented by an 

initial increase of Pn in Fig. 3.1.  Subsequently, PI3K becomes phosphorylated, the pool 

of PI3K that is free to return to the membrane is depleted, and γ returns to its baseline 

value ( 1=�γ ) with the other variables of our amplification module following.  This 

illustrates the action of our model's adaptation module, which returns Pn and γ to their 
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uniform steady-state values in the phase space plot.  The dynamics are inverted for the 

depicted trajectories where γ is initially decreased.   

     We see that all of the trajectories in Fig. 3.1.return to the uniform steady-state 

solution, marked by the bold circle for each Case, suggesting that this fixed point solution 

is stable if the system is forced to remain uniform (we will see that this is true for all 

Cases, though for Case 4 the uniform steady-state solution is unstable towards non-

uniform perturbations).  Further, the trajectories generally cross the bold short-dashed 

curve approximately horizontally, suggesting that points on this 'reduced' nullcline 

approximate well the projected position where the true nullcline of the Pn equation is 

crossed by the illustrated phase-space trajectories.  The value of Pn on this 'reduced' 

nullcline for a given initial value of γ correlates with the peak value of Pn along that 

trajectory.  This peak value increases sharply for trajectories as the initial value of γ is 

increased for Cases 1 and 3, indicating a strong uniform response of our model's 

amplification module for these Cases.  In contrast, Cases 2 and 4 require redistribution of 

translocating molecules to produce a highly amplified response, and thus demonstrate a 

weaker uniform response to increases in γ.  Finally, the projected trajectories do not 

cross, supporting our suggestion that the dynamics of uniform solutions to our model can 

be captured by projection onto the γ, Pn plane.     

 

3.3 Response of the amplification module (Pn vs. γ)   

Our model equations describe the dynamics of six model variables, four of which are 

spatially dependent.  However, our analysis above suggested that many features of our 

model might be understood in the γ, Pn plane.  Further, the responses of our model's 
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amplification module (represented by the value of Pn) at fixed values of the driving 

parameter (γ) might contain important information about the features that distinguish our 

model variants (the differences between our model variants are in their respective 

amplification modules, see Sec. 2.7).   

     In this section, we analyze the steady-state responses of our model's amplification 

module at fixed values of its driving parameter, making different simplifying assumptions 

concerning the spatial dependences in our equations.  By interpreting these responses as 

nullclines of the equation for Pn dynamics in an appropriate 'reduced' model, we will 

propose simple criteria for the stability of uniform steady-state solutions of our model.  

This will be explored further in the next section.   

 

3.3.1 Simplifying assumptions concerning spatial dependences 

In our model, fixing γ is equivalent to decoupling the amplification and adaptation 

modules.  Thus, the steady-state value of Pn at fixed γ represents the steady-state 

response of the amplification module.  We will calculate this response by setting the LHS 

of Eqs. M.1 – M.5 (Table 2.3) to zero and solving for Pn in terms of γ.   

     Our model equations contain spatial couplings consisting of diffusion terms and 

integrals (these integrals are equivalent to spatial averages and account for exchange of 

molecules between cytosolic pools and the entire membrane, see Secs. 2.2.2 and 2.5.3).  

In order to calculate the steady-state response of our amplification module, we will make 

three kinds of simplifying assumptions concerning these spatial couplings.   
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     First, we will consider the situation where the cell remains spatially uniform.  Then 

the spatial average of a quantity is equal to its value anywhere on the membrane.  We will 

refer to these solutions as the 'uniform' response of the amplification module. 

     Second, we will consider the situation where diffusion is neglected and all averages 

are fixed at the values they obtain in the uniform cell at steady-state.  This might be 

appropriate if we wish to consider the response at a single point on the membrane 

(neglecting diffusion), which would not affect averages and cytosolic concentrations.  We 

will refer to this second set of solutions as the 'fixed average' response of the 

amplification module.  Comparison to the 'uniform' response will highlight the relative 

importance of translocating molecules in each model variant's amplification module.   

     We note that the 'uniform' response of the amplification module is, by definition, the 

nullcline for the Pn equation in the γ, Pn plane for the 'reduced' model, where all 

concentrations are set to steady-state values with respect to Pn and γ for a uniform 

system.  This was discussed in Sec. 3.2 and depicted by the bold short-dashed curves in 

Fig. 3.1.  The 'fixed average' response', however, does not have a useful interpretation as 

a nullcline for non-uniform solutions because it neglects diffusion.   

     The final situation that we will consider is a lowest order attempt to include the effects 

of diffusion on non-uniform responses of our amplification module, without formally 

calculating spatially dependent solutions.  Averages and cytosolic concentrations are 

fixed, as for the 'fixed average' response.  However, instead of neglecting diffusion, we 

will replace diffusion terms by ' ( ) ( )22D− π −i iP P ', where the subscript, i, takes the 

values 2, 3 or n, depending on if Eq. M.1, M.2, or 3.1 is being considered, and iP  is the 

uniform steady-state value of Pi.  This transformation preserves the value of Pi that will 



 88

be calculated for γ = γ0 (i.e. i iP = P  for the baseline state of the cell), while including the 

effects of diffusion for a solution of the form ( ) ( )2 jX− π − ϕcosi iP P  with j = 1, where φ 

is an arbitrary phase.  We will thus refer to these solutions as the '1st mode' response of 

the amplification module.   

     A spatially linear gradient in the outside stimulus results in a pattern of γ with a spatial 

dependence of the form ( )2 Xπ − ϕcos , where φ specifies the direction of the gradient 

with respect to the X = 0 direction (this will be discussed further in Sec. 4.2.3).  If the 

steady-state response of the cell to gradients varies continuously, then for small gradients, 

all of the spatially dependent model variables will be altered from their uniform steady-

state distributions by a component with this same spatial dependence; our model 

equations can also be linearized under these conditions, as discussed further in Sec. 3.4.  

If we cancel this spatial dependence from our equations, then the resulting diffusion 

terms will be of the form suggested for our '1st mode' response of the amplification 

module and spatial averages will remain fixed.  Thus, the '1st mode' response gives the 

amplitude of the steady-state polarized response to small gradients in γ about γ = γ0.  The 

resulting relationship between Pn and γ gives the nullcline, near γ = γ0 in the γ, Pn plane, 

of the equation describing the amplitude of this response in the variable Pn, for the 

'reduced' model, with the above '1st mode' assumption made concerning its spatial 

dependences.   
 
 
 
3.3.2 Responses of the amplification module – General features and those that 
distinguish the model variants 

The steady-state responses of our model's amplification module are plotted in Fig. 3.2.   
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Figure 3.2.  Steady-state response of the amplification module: isoclines in Pn, γ 
plane.  Steady-state solutions to our model equations are calculated at fixed γ for each 
variant, under the simplifying conditions described in Sec. 3.3.1.  These solutions 
represent the 'uniform' response, the 'fixed average' response, and the '1st mode' response 
of our model's amplification module.  = /�

n n nP P P  is plotted against 0= γ/�γ γ , where nP  
is the uniform steady-state value of Pn in the unstimulated cell (at 1=�γ ) and γ0 is the 
steady-state value of γ, which sets the baseline state of the cell (defined in Eq. M.6a of 
Table 2.3, and discussed in Secs. 2.5.3 – 2.5.5).  A circle marks the uniform steady-state 
solution for each variant.   

 

The curves that result from our three simplifying assumptions concerning spatial 
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circle at 1=�γ .  We note several general features of these curves, which exist for a large 

range of parameter values about those that were considered.  At 0=�γ , nP�  is small and 

increases slowly with �γ  for all curves.  In this regime, Pn production is controlled by the 

constitutive processes that have been included in our model.  As �γ  becomes of order 1, 

i.e. as it approaches the baseline value for each model variant, positive feedbacks in the 

amplification module become effective and nP�  increases more sharply.  This increase is 

further sharpened if parameters are adjusted such that coupled positive feedbacks become 

more effective and constitutive processes become less significant.   

     Some of the curves depicted in Fig. 3.2 double back on themselves.  For these curves, 

positive feedbacks are sufficiently strong to induce multiple steady-state responses of our 

amplification module at fixed γ (under the appropriate simplifying assumption).  On the 

other hand, a single value of Pn always uniquely specifies a value of γ for each curve.  

Thus, we can write 
 

( )f= nγ P ,          (3.3) 
 

for some function, f.  When multiple steady-state responses do exist for a particular γ, the 

following relationships hold: ( )1 0f∂ ∂ ≡ ∂ ∂ >/ / /n nP γ P  for the solution with smallest Pn; 

the sign of  /∂ ∂nP γ  alternates for successive solutions, assuming that it remains finite; in 

general, no more than three solutions were found for a given γ.   

     For the 'uniform' responses of the amplification module depicted in Fig. 3.2, we find 

that the value of Pn is always uniquely determined at 1=�γ  , i.e. the uniform steady state 

in the unstimulated cell is uniquely determined by γ0 for each variant.  At 1=�γ , the 'fixed 

average' response and the '1st mode' response always increase more sharply with γ than 
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the 'uniform' response.  This is because averages and cytosolic quantities are held fixed 

for the 'fixed average' and the '1st mode' responses, while these terms act to saturate the 

'uniform' response as γ is increased. 

     The curves in Fig. 3.2 highlight the differences between our model variants, which are 

essentially found in their respective amplification modules.  Cases 1 and 3 demonstrate 

high gain in the 'uniform' response of their amplification modules.  For these Cases, 

cytosolic molecules are not significantly depleted as γ is increased about 1=�γ .  In 

addition, because positive feedbacks are more effective for Case 3, multiple uniform 

steady-states at fixed γ are possible for a range of γ.  The depicted uniform response is 

weaker for Cases 2 and 4 because cytosolic molecules are more significantly depleted as 

γ is increased.  On the other hand, the 'fixed average' and '1st mode' responses, for which 

cytosolic concentrations are held fixed, are sharp for all Cases.  The greater difference 

between the 'uniform' response and the 'fixed average' response, for Cases 2 and 4 near 

their circled intersections, indicates that redistribution of translocating molecules plays a 

more important role in amplifying responses to non-uniform stimuli for these Cases than 

for the others.   

     For all Cases, the 'fixed average' response eventually doubles back on itself, 

suggesting that multiple steady-states may be possible for patterns of stimuli that lead to 

non-uniform steady-state patterns of γ on the membrane.  On the other hand, the '1st 

mode' response, which includes some effects of diffusion, only doubles back on its self 

for Cases 3 and 4.  This suggests that when diffusion is included, multiple steady-states 

may only be possible for these Cases.  This will be confirmed later with simulations of 

our model's responses to spatial gradients of stimulus (see Sec. 4.3.2). 
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3.3.3 Interpretation as nullclines – stability criteria for uniform steady-state solutions, 
based on the reduced model 
 
In Sec. 3.3.1, we had suggested that the 'uniform' and '1st mode' responses of our model's 

amplification module (depicted in Fig. 3.2) can be interpreted as nullclines of the Pn 

equation for a 'reduced' model where other variables are set to steady-state with respect to 

Pn and γ and appropriate assumptions are made concerning spatial dependences.  In 

particular, the 'uniform' response describes the nullcline of the Pn equation in the 

'reduced' model, assuming uniform solutions, and the '1st mode' response describes the 

nullcline if the spatial dependence is of the form that would result in response to a '1st 

mode' harmonic perturbation.  Here we further develop these ideas.   

     For small perturbations, the equations describing the dynamics of the reduced model 

can be linearized about the uniform steady-state solution defined by γ = γ0 and n nP = P .  

The resulting linearized equation describing the dynamics of γ can be written in the form 

( )0 γ
t γ

∂
= λ γ −

∂
γ .         (3.4) 

For a uniform system, 0γλ >  is given by Eq. 3.2.  For a system with fixed averages (such 

as the '1st mode' response), 0γλ =  in the absence of external stimuli since γ depends only 

on the cytosolic variable, Kc, which has no spatial dependence.   

     The linearized equation describing Pn dynamics can be written in the form   

( ) ( ) ( )0

f
t

 ∂∂
= λ − γ − − 

∂ ∂ 
 

n

nn
P n n

n
nP

PP γ P P
P

.      (3.5) 

The function f, defined in Eq. 3.3, describes the nullcline of the Pn equation in the 

reduced model under the appropriate simplifying assumption, as described in the previous 

subsection.  If the nullcline derived from the 'uniform' response of the amplification 
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module is used, then Eqs. 3.4 and 3.5 describe the dynamics of small uniform 

perturbations.  If the nullcline derived from the '1st mode' response is used, then these 

equations describe the dynamics of small 1st mode harmonic perturbations.  From Eqs. 

M.3 and M.1 of Table 2.3, it is clear that increasing γ above its uniform steady-state 

value will increase Km and produce more Pn.  Thus, 0λ >
nP  in Eq. 3.5 for both 

interpretations.   

     If eigenmode solutions for Eqs. 3.4 and 3.5 are calculated, it can be shown that the 

condition for linear growth of perturbations is ( ) ( )1 0
isocline

f
γ

∂ ∂ ≡ ∂ ∂ <
,

/ / /
0n

n n n =P
P P P γ

γ
.  

We see in Fig. 3.2 that for the uniform responses of the amplification module, 

0/∂ ∂ >nP γ  at 1=�γ  for all Cases.  We thus conclude that in the 'reduced' model, the 

uniform steady-state solution is stable to uniform perturbations for all Cases.  Only for 

Case 4 is 0/∂ ∂nP γ <  for the '1st mode' response at 1=�γ .  We thus conclude that the 

uniform steady state is unstable towards 1st mode perturbations for Case 4, while the 

uniform steady-state solutions for the other Cases are stable towards '1st mode' 

perturbations.  Because higher mode harmonic perturbations are dissipated mode quickly 

by the diffusion terms in our equations, the other Cases will be stable to those 

perturbations as well; they are thus linearly stable to all perturbations in the 'reduced' 

model.  In the next section, we will show that the criteria for uniform steady-state 

solutions to be linearly stable in the 'full' model are equivalent to these simpler stability 

criteria in the 'reduced' model. 

 

3.4  Linear stability analysis  

We now explore stability properties of solutions to our model equations.  We begin by 
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formally writing linearized equations for small perturbations about uniform steady-state 

solutions and inserting normal-mode test solutions (Sec. 3.4.1).  Analyzing these 

linearized equations will further elucidate the structure of our model and identify 

parameters that qualitatively shape its responses.  We will then argue that the criteria for 

stability of uniform steady-state solutions to our full set of model equations are 

equivalent to the more intuitive stability criteria suggested in Sec. 2.3.3, based on the 

discussed 'reduced' model (Sec. 3.4.2).  This equivalence is confirmed numerically when 

we explicitly calculate linear growth rates for the fastest growing eigenmode 

perturbations about our model's uniform steady-state solutions (Sec. 3.4.3).  We conclude 

this section by discussing bifurcations in the response of our model at zero stimulus (Sec. 

3.4.4), and by extending our numerical analysis to investigate the stability of polarized 

steady-state solutions (Sec. 3.4.5).  

 

3.4.1  Linearized equations for analyzing responses to small perturbations 

To explore the stability properties of our model, we linearize our six model equations 

(M.1 – M.6 in Table 2.3) about their steady-state solutions, and insert trial solutions that 

describe the dynamics of small normal-mode perturbations.  The analysis is clearer if we 

make several changes of variables.  Perturbations in P3 are eliminated in favor of 

perturbations in the variable Pn – we consider Eq. 3.1 in place of Eq. M.1.  Perturbations 

in the variable Kc* are eliminated in favor of perturbations in the driving parameter, γ –  

we consider Eq. 3.2 in place of Eq. M.6.  Perturbations in the variable Tc* are eliminated 

in favor of Tc – we consider Eq. M.10 in place of Eq. M.5.   
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     We begin by inserting trial solution of the form                 

( ) ( ) ( )= + δ0U X,t U X U X,t         (3.6) 

in our model equations, making the above-mentioned substitutions and linearizing with 

respect to ( )δU X,t .  Here, U represents any model variable, ( )
0U X  describes the initial 

spatial distribution of that variable, and ( )δU X,t  describes the dynamics of 

perturbations in that variable.   

     If outside stimuli are absent or constant in time, then our system contains no explicit 

time dependence.  Thus, we can introduce trial solutions of the form 

( ) ( ) ( )exp jtδ = ε σjU X,t U X� ,       (3.7) 

where ε  is small.  Here, 'j' designates an anticipated normal-mode solution with spatial 

distribution given by ( )
jU X�  and linear growth rate, jσ  (both of which might be 

complex).  If, in addition, we are considering perturbations about uniform steady-state 

solutions, then our equations will not include any explicit spatial dependence.  We may 

then introduce a harmonic spatial dependence as 

( ) ( )2ˆ exp i jX= πj jU X U� .        (3.8) 

Here, i is the imaginary unit and j must be an integer for solutions that vary smoothly 

about X = 0.  ˆ
jU  is the component of the perturbation in the 'direction' of the variable 'U' 

in the space of our six model variables.  We note that for cytosolic variables no subscript 

is necessary, as only uniform perturbations with j = 0 are considered.   

     For perturbations about uniform steady-state solutions, we thus use the forms in Eqs. 

3.7 and 3.8 in our linearized equations, keeping only lowest order terms in ε.  After 

multiplying by a complex conjugate solution, integrating over the membrane, and making 
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the appropriate changes of variables, we arrive at the following system of linear equations 

in our perturbation components:  

( ) ( )
( )

( )( ) ( )

3
3 3 3 22

3 3

2
3 3 2 2

1 1

     2

j j PITP

T D j

χ  σ = + χ + ζ − λ + λ  + κ + κ 

− λ + λ − λ + ζ − π

/

/

ˆ ˆ ˆ ˆ
/ /

ˆ ˆ ˆ

�m
n, j n, j m, j 3 2 m, j

m m

m n, j m m 2, j n, j

KP P K P P T
K K

T P T T P P

Ξ
Ξ

(3.9)  

where, 
( )

( )
0

2

1 1

1
, /

/ /
j cX

j

m cX

+ − δ κ
=

κ + κ +
� n

n n

P

P P
Ξ ,      (3.9a) 

and Ξ is defined in Eq. M.1a. 

( ) ( )( )2
3 3 2 3 3 2 2 2T T T D jσ = λ ζ − λ − λ ζ + λ + ζ + π/ / /

ˆ ˆ ˆ ˆ
j 2, j n, j 2 m, j m 2, jP P P T T P   (3.10) 

( )0 2 11
,

/ˆ ˆ ˆˆ
//

K K K
j j K

KK

λ κ λ
σ = δ λ −

+ κ+ κ
m

m, j n, j m, j
nn

KK γ + P K
PP

,    (3.11) 

( )ˆ ˆ ˆ ˆ
T T T Tσ = χ δ − λ − λ + ζj m, j 0, j c m m, j m m, jT T T K K T      (3.12) 

( ) ( )0 T T T cell T cell TA Aσ = − λ − λ ζ − χ + λ* *
ˆ ˆ ˆ/ /c m,0 cT T T .     (3.13) 

( )( )0 ~ 1K cellAσ − χ +ˆ ˆ/γ γR         (3.14) 

Here, variables with no '^' represent the steady-state solutions about which we perturb, 

and we have replaced integrals by spatial averages to make a more compact notation.  

Terms involving 0, jδ  arise because the average value of our perturbation around the 

membrane is 0 unless j = 0, and because perturbations in cytosolic quantities have no 

spatial dependence.  Our model variables are defined with subscripts that are fixed (e.g. 

2, 3, n, c, m).  Thus, we have introduced a ',' before the subscript, j, whose range includes 

all integers. 
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     Equations. 3.9 – 3.14 can be written in matrix form as                               

j jAσ j jU = U
IK K

,          (3.15) 

where jA
I

 is a 6X6 matrix and the vector jU
K

 is the vector of components, ˆ
jU , of the 

perturbation in our six model variables.  For each j, Eq. 3.15 is an eigenvalue problem.  

We will be particularly interested in the sign of the growth rate, σj, for the fastest growing 

solution.  A positive growth rate indicates that our steady-state solution is unstable to the 

corresponding perturbation.  Before solving Eq. 3.15, we discuss some of the important 

terms and parameters that will determine when instability might result.        

     As noted in Sec. 3.2, our model has been designed such that the variables P3, P2 and 

Km generally display a similar dynamic, while Tm displays an inverse dynamic.  These 

variables are all constituents of our model's amplification module.  Consistent with this 

observation, we can conclude from Eq. 3.9 that the growth rate of a perturbation in Pn is 

increased if  and ˆ ˆ
2, j m, jP K  have the same sign as ˆ

n, jP  (parameters are set such that 

( )( )3 2 2 0/Tλ − λ + ζ >m mT T ), while ˆ
m, jT  has the opposite sign.  The growth rate in Eq. 3.9 

is further enhanced if the feedback in Loop I is strong.  Thus, increased χ3, Km and Pn 

(which result in increased  and jΞ Ξ ) will all increase the possibility of a positive growth 

rate and could potentially lead to instability.   

     We further see from Eq. 3.9 that, though diffusion results in greater dissipation for 

higher j, j
�Ξ  is larger for non-uniform perturbations ( )0j ≠ .  This increase in jΞ  is more 

significant for smaller κc, i.e. if depletion of translocating molecules in our model is more 

significant.  Thus, if depletion of translocating molecules in our amplification module is 

significant, a non-uniform perturbation might grow more quickly than a uniform one 
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because it redistributes translocating molecules rather than further depleting them from 

the cytosol.  As mentioned in Sec. 2.7.2, the value of κc was adjusted to control the role 

of translocating molecules in our model and to specify our model variants.   

     From Eq. 3.10, we see that the growth rate of a perturbation in P2 is increased if 

 and ˆ ˆ
2, j n, jP P  have the same sign, while ˆ

m, jT  has opposite sign.   

     The possibility of instability also requires Loop II to be effective, as this feedback 

will control  and ˆ ˆ
m, j m, jK T .  Equation 3.11, which describes the primary feedback in Loop 

II, says that perturbations grow more quickly if  and ˆ ˆ
n, j m, jP K   have the same sign.  The 

growth rate is further enhanced if κK is small, which makes the feedback in Loop II more 

effective; the parameter κK was adjusted to control the role of coupled positive feedbacks 

in our model and to specify our model variants (as discussed in Sec. 2.7.2).  The growth 

rate for j = 0 involves γ̂  as well.  However we will see below that  0γ̂ ~  is required for 

positive σ0.  Thus, we can conclude from Eq. 3.11 for all j, that positive σj requires 

 and ˆ ˆ
n, j m, jP K  have the same sign.     

     Similarly, Eq. 3.12, which also describes Loop II regulation, indicates that 

perturbations grow more quickly if  and ˆ ˆ
m, j m, jT K  have opposite sign.  Equation 3.13 

requires that  and ˆ ˆ
m,0 cT T  have opposite sign for positive σ0 (parameters were set such that 

0T T Tλ − λ ζ >* ).  Thus, we can conclude from Eq. 3.12 and 3.13 that for any j, if σj is to 

be positive,  and ˆ ˆ
m, j m, jT K  must have opposite sign. 

     Finally, Eq. 3.14 describes the dynamics of small perturbations in our driving 

parameter, as controlled by our adaptation module (Loop III).  These perturbations 
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always decay.  We thus conclude that a positive growth rate requires                        

0γ̂ ~ .                     (3.14')  

                   

3.4.2. Stability criteria based in the reduced model (Pn and γ) 

To clarify the conditions for linear instability of uniform solutions, we regroup terms in 

our linearized equations: 

( ) ( )( )

( ) ( ) ( )( )

( )
( )

2
3 3

3
3 3 2 2

3

3 3 3 22
3

2

     
1

     
1

j T

j T T

PITP

D jσ λ + ζ + π =

χ
+ λ + ζ − λ + ζ

+ κ

 + χ + ζ − λ + λ  + κ 

/

/ /

/

ˆ

ˆ ˆ
/

ˆ ˆ
/

�

m n, j

m
n, j m m 2, j

m

m, j 3 2 m, j
m

+ T P

K P T T P
K

K P P T
K

Ξ

Ξ

   (3.9') 

where 
( )

( )
0

2

1 1

1
, /

/ /
j cX

j

m cX

+ − δ κ
=

κ + κ +
� n

n n

P

P P
Ξ       (3.9a') 

( ) ( )( )2
3 3 2 2 3 3 22T T TD jσ λ ζ + λ + ζ + π = λ ζ − λ/ / /

ˆ ˆ ˆ
j m 2, j n, j 2 m, j+ T P P P T    (3.10') 

( )21 1
K KK

j
K K

λ κλ σ + = + κ + κ 

/ˆ ˆ
/ /

m
m, j n, j

n n

KK P
P P

      (3.11') 

( )( ) ˆ ˆ ˆ
T T T Tσ + λ + ζ = χ δ −λj m m, j 0, j c m m, jK T T T K      (3.12') 

( ) ( )0 T cell T T T T cellA Aσ χ + λ = − λ − λ ζ* *
ˆ ˆ/ /c m,0+ T T       

 (3.13') 

0ˆ ~γ                     (3.14') 

These equations have been renumbered with primes in correspondence to the equations in 

Sec. 3.4.1.   
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     As noted in Sec. 3.4.1, for positive σ, Eq. 3.13' requires ˆ ˆ∝ −c m,0T T .  Similarly, Eq. 

3.12' requires ˆ ˆ∝ −m, j m, jT K  and Eq. 3.11' requires ˆ ˆ∝m, j n, jK P .  Then Eq. 3.10' requires 

ˆ ˆ∝2, j n, jP P .  These conditions hold as well, with the same sign, if σ is set to 0 in Eqs. 3.10' 

– 3.13'.  This is equivalent to setting our other model variables to steady-state values with 

respect to Pn and γ.  The resulting system of linearized equations describes the dynamics 

of perturbations in the 'reduced' model introduced earlier in this chapter, under the 

appropriate simplifying assumptions concerning spatial dependences (j = 0 corresponds 

to the assumption that the system remains 'uniform' and j = 1 corresponds to the 

assumption of a '1st mode' spatial dependence, as discussed in Sec. 3.3.1 and 3.3.3). 

     In fact, we show in Appendix C that the conditions for stability of uniform solutions to 

perturbations in our full model are precisely the same as conditions for stability in the 

'reduced' model.  Thus, if we are only concerned with whether a solution is stable (i.e. we 

are concerned with the sign of the growth rate for the fastest growing perturbation), the 

result can be obtained intuitively by noting the slope of the nullcline for the Pn equation 

in the reduced model, considering 'uniform' and '1st mode' spatial dependences, as 

discussed in Sec. 3.3.3.  As noted in Sec. 3.3.2, this is equivalent to analyzing the slopes 

of the 'uniform' and '1st mode' responses of our model's amplification module as, the 

driving parameter is increased about its baseline value.  In practice, such 'reduced' criteria 

were generally used to qualitatively characterize the stability properties of our model as 

parameters were varied.  Obtaining the actual growth rate for the fastest growing 

perturbation of wave number j, however, requires explicitly solving the eigenvalue 

problem represented by Eq. 3.15.     
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3.4.3 Growth rates of perturbations about uniform steady-state solutions 

To confirm the suggested simplified stability criteria of Sec. 3.4.2, and to investigate in 

more detail the growth rates of perturbations about uniform steady-state solutions, we 

explicitly solved the eigenvalue problem, represent by Eqs. 3.9 – 3.14, for fastest growing 

eigenmode perturbation for each j.  If the steady-state solution was found to be stable, the 

fastest growing mode was the one that decayed most slowly.   

     The components of the fastest growing mode, jU
K

, and its corresponding growth rate, 

σj, were calculated from Eq. 3.15 using the following iterative algorithm.  The matrix jA
I

  

was first shifted according to the transformation 

j j jA A I′ = + α
I I I

,         (3.16) 

where I
I

 is the identity matrix with '1's on the diagonal and all other elements 0 and  jα  

is a constant large enough that ( ) 0jA′ >j jU U
I K K

i  for any vector, jU
K

.  Thus, all of the 

eigenvalues of jA ′
I

 are positive; the eigenvalues of jA
I

, representing the linear growth 

rates of eigenmode perturbations in our linearized equations, can be obtained from those 

of jA ′
I

 by subtracting jα .  Starting with a set of basis vectors for the 6-d space of our 

model variables as initial guesses, we applied the matrix jA ′
I

 and then normalized the 

result.  This procedure was iterated until the normalization factor became constant; the 

direction of the resulting normalized vector became constant as well, indicating that the 

solution had in fact converged on an eigenvector.   

     The results of applying the above algorithm to find the fastest growing perturbations 

about uniform steady-state solutions are given in Fig. 3.3.  For each j, applying our 
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iteration to a complete basis of initial guesses always converged on a unique solution and 

the components of the calculated eigenvector were always found in a relationship 

consistent with our discussion in Sec. 3.4.2.   

     In Fig. 3.3, we see that the 'fastest growing' perturbations generally decay more 

quickly for larger j due to increased diffusive dissipation.  However, for Cases 2 and 4, 

the growth rate is larger for j = 1 than for j = 0.  This occurs because perturbations for 

0j ≠  do not affect averages and cytosolic concentrations in our linearized equations, 

while perturbations with j = 0 (uniform perturbations) deplete cytosolic molecules, 

causing the positive feedbacks in our model to saturate.  The slower decay rate for non-

uniform perturbations highlights the importance of redistribution of translocating 

molecules for amplifying responses to gradients in Cases 2 and 4.  A positive growth rate 

is found only for Case 4 at j = 1.  Thus, for Case 4, the uniform steady-state solution is 

unstable towards polarization, while the uniform steady-state solutions for the other 

 

Figure 3.3.  Linear growth rates 
of perturbations about uniform 
steady-state solutions.  The 
largest linear growth rate for a 
small perturbation of mode number 
j is calculated for each Case by 
using the iterative procedure 
outlined in the text.  Symbols 
represent calculated growth rates, 
while lines are meant as a guide to 
the eye (only integer values of j 
represent perturbations with correct 
periodic boundary conditions).  
Notice, that the largest growth 
rates are all negative, except for j = 
1 for Case 4.  
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Cases are stable to all perturbations.  These stability properties are consistent with the 

intuitive criteria suggested in Secs. 3.3.3 and 3.4.2.   

     The calculations of this subsection have further been confirmed by explicitly 

diagonalizing the linearized matrix to obtain the full spectrum of eigenmodes for each j 

(not shown). 

 

3.4.4 Bifurcations in parameter space (κK and κc) 

We have noted in the above discussion that our model variants have different linear 

stability properties.  The characteristics our model variants were adjusted by varying the 

parameter κK, which controls the effectiveness of Loop II, and the parameter κc, which 

controls the degree to which depletion of translocating molecules saturates Loop I (the 

baseline parameter, γ0, was also adjusted; this will be discussed further in the next 

section).   

     To further characterize the stability properties of our model, we calculate the linear 

growth rates for the fastest growing perturbations as Kκ  and 1/ cκ  are systematically 

varied.  Other parameters are set as in Case 4.  Only j = 0 and j = 1 are considered, as 

these are always the fastest growing spatial modes.   

     We see in Fig 3.4 that as Kκ  is varied the uniform steady state always remains stable 

to uniform perturbations (i.e., with j = 0).  However, it becomes unstable towards 

perturbations with j = 1 (i.e. '1st mode' perturbations) at intermediate values of Kκ .    

Decreasing Kκ  increases the effectiveness of Loop II and initially drives instability.  On 

the other hand, the uniform steady-state value of Pn increases as Kκ  is decreased and 

eventually the effectiveness of Loop I becomes saturated.  As the value of Kκ  is 
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Figure 3.4.  Bifurcation plot.  The largest growth rates for perturbations with j = 0 and j 
= 1 about uniform steady-state solutions, are calculated as in Fig. 3.3.  Unless otherwise 
mentioned, the indicated parameter is varied with other parameters fixed at the values 
used for Case 4.  For each parameter choice, the uniform steady-state solution is 
recalculated before the eigenvalue problem is solved.  a) Kκ  is varied.  The feedback in 
Loop II becomes more effective for smaller Kκ  and the uniform steady-state value of Pn 
increases, though it always remains unique for these combinations of parameters.  4Kκ =  
specifies Case 4.  b) 1/κc is varied and 1/κm is adjusted such that the relationship 
1 1 1m cκ + κ/ / =  is maintained, thus preserving the uniform steady-state solution.  Larger 
1/κc means that translocating molecules play a more important role in saturating the 
response of Loop I.  Their redistribution can lead to highly amplified non-uniform 
responses. 1 0 8cκ =/ .  specifies Case 4.     
 

decreased below approximately 3, the effect of saturation begins to dominate and the 

growth rate begins to decrease.  4Kκ =  specifies Case 4.    

     Increasing 1/κc increases the potential for translocating molecules in Loop I to 

enhance non-uniform responses.  As 1/κc is varied in Fig. 3.4, 1/κm is adjusted such that 

the relationship 1 1 1/ /m cκ + κ =  is preserved (see Table 2.2 and discussion in Appendix 

A).  Thus, the uniform steady-state solution, as well as its response to uniform 

perturbations (j = 0), is unaffected.  The growth rate for the fastest growing perturbation 

at j = 1 increases with 1/κc, eventually becoming positive.  For large 1/κc, redistribution 
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of translocating molecules in response to non-uniform perturbations enhances the 

feedback from Loop I sufficiently to cause instability.  1 0 8/ .cκ =  specifies Case 4. 

     We note that the bifurcations illustrated in Fig. 3.4 are all supercritical (161).  As the 

indicated parameters are varied and the uniforms steady-state solution to our model 

equations becomes unstable, a stable polarized solution becomes available.  The 

transition from one stable steady-state response to the other is continuous (not shown).  In 

contrast, we will find in Chapter 4 that steady-state responses to outside stimuli can vary 

discontinuously as outside stimuli are varied. 

 

3.4.5 Stability of polarized solutions 

We had found in the previous subsections that the uniform steady-state solution for Case 

4 is unstable towards non-uniform perturbations.  Thus we might ask if polarized 

solutions to our model equations are generally stable, and if there is any characteristic 

shape to the fastest growing perturbations about polarized steady-state solutions.  To 

investigate this, we consider steady-state solutions to our model equations in response to 

an externally applied spatially linear gradient of stimulus.  Thus, we consider steady-state 

solutions in response to a pattern of receptor activation given by 

( ) ( ){ }0, 0 ; 1 2 , 0( ) cos ( )t S G S X t= < = + + π >R R ,    (3.17)  

where S = 2 and G = 0.05.  This results in a 5% gradient in γ with respect to an external 

Cartesian coordinate in the direction of the gradient.  The forms that R takes in our 

model to reflect different patterns of outside stimuli are discussed further in Sec. 4.2.3 of 

Chapter 4.  The numerical routine that is used to solve our model equations for steady-

state solutions is discussed in Sec. 4.2.1. 
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     To investigate linear stability of these polarized steady-state solutions, we discretize 

our model equations in space and use a finite difference approximation in place of the 

diffusion terms.  Trial solutions for the growth of small perturbations about these 

polarized solutions are inserted in our equations, as expressed by Eq. 3.6, and the 

equations are linearized with respect to the applied perturbations.  We can no longer 

assume a harmonic spatial dependence (as in Eq. 3.8) because our steady-state solutions, 

and hence our linearized equations, are now explicitly spatially dependent.   

     For each disretized spatial point, we obtain a system similar to Eqs. 3.9 – 3.14, with 

two important differences.  First, the finite difference approximation to the diffusion 

terms results in a coupling between neighboring spatial points (these coupling terms 

replace the terms of the form ( )22D j− π î, jP  in Eq. 3.9 and 3.10, where i = n or 2).  

Second, because we are assuming a general spatial dependence for our perturbations, the 

integrals in our equations need to be linearized and explicitly calculated (they can no 

longer be replaced by terms of the form 0, jδ , which are appropriate for harmonic spatial 

dependences).  These integrals couple our linearized equations at all spatial points.  The 

final result is a linear system of 4N + 2 equations, where N is the number of points used 

to discretize the spatial variable of our model. 

     We solve this system for the components and growth rate of the fastest linearly 

growing perturbation by the same iteration used to analyze uniform steady states in Sec. 

3.4.3.  Our system is not symmetric and we are not guaranteed a set of eigenvectors that 

spans the entire solution space (this was also true when we considered perturbations 

about uniform solutions) (162).  The size of the system, and potential lack of a basis of 

eigenvectors, makes the calculation a bit less certain (further calculations, however, seem 
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to indicate that a set of eigenvactors which span the solution space can always be found).  

Nevertheless, we find that for all initial guesses, the iteration eventually converges on an 

eigenvector.  In general, however, eigenvalues for the fastest growing modes were 

closely spaced and different choices for our initial guess converged on a small number of 

different solutions.  A complete basis of initial vectors was investigated and the solution 

corresponding to the largest growth rate was selected.  The normalized Pn distribution for 

this fastest growing eigemode is plotted in Fig. 3.5, together with the normalized Pn 

distribution of the steady-state solution about which the perturbation was applied. 

     The growth rate of the fastest growing eigenmode is labeled for each Case in Fig. 3.5, 

and found to always be negative.  Thus, the polarized solutions generated by this 

particular stimulus are linearly stable to all perturbations.  We see in Fig. 3.5 that the Pn 

distributions for these fastest growing eigenmodes are single peaked.  However, the peak 

of the perturbation is shifted with respect to the steady-state profile#.  This suggests that 

polarized solutions are most sensitive to perturbation in the region surrounding their 

peaks.  These kinds of perturbations might cause the axis of polarization to change 

direction, which is required for a cell to respond to a changing gradient.  The depicted 

eigenmodes have significant components in all of their membrane variables, which are in 

the qualitative relationship suggested in Secs. 3.4.2 and 3.4.3.   

     The qualitative features of the above results have been confirmed by explicitly 

diagonalizing the matrix for our linearized equations, though several details are still 

                                                 
# This shift is on the order of 20% of the cell circumference (corresponding to an angle of order π/2 rad) for 
Cases 2-4.  For Cases 1 and 3, a solution with a similar shape to those depicted for Cases 2 and 4 was also 
obtained with a slightly faster decay rate by our iteration.  Further investigation by explicitly diagonalizing 
our linear matrix, however, suggests that the most slowly decaying perturbations for Cases 1 and 3 in fact 
have the same shape as those depicted for Case 2 and 4. 
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Figure 3.5.  Perturbations about polarized steady-state solutions.  Our system is 
evolved to steady-state in response to a spatially linear gradient of outside stimulus, 
defined by Eq. 3.16.  The fastest growing eigenmode is calculated by the iterative method 
of Sec. 3.4.3.  The steady-state Pn distribution is given by the solid curve, and the Pn 
distribution for the eigenmode is given by the dashed curve.  Both are normalized by their 
peak value.  The growth rate of the eigenmode, σ, is indicated for each Case. 
 
 

under investigation.  Stability of other polarized solutions was not investigated, but is 

expected to have similar features.  
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3.5 Restrictions on parameters for efficient gradient sensing 

Our model variants have been defined to illustrate the different qualitative behaviors that 

depend on the role of coupled positive feedbacks and translocating molecules in response 

amplification (see Sec. 2.7 of Chapter 2).  These qualitative behaviors exist for a range of 

parameters, as will be seen in Sec. 4.5 of Chapter 4, when we characterize our model's 

behaviors over several surfaces in its parameter space.  Within the range of parameters 

that are consistent with a given qualitative behavior, we further expect that different 

combinations of parameters will result in different efficiencies of gradient sensing.  Here 

we investigate our model's polarized response to a small static gradient of stimulus as 

several parameters are systematically varied about the values used to define our model 

variant (parameter values can be found in Tables 2.4 and 2.5 of Chapter 2).  In particular, 

we vary the parameter, γ0, which sets the baseline state of the cell (defined in Eq. M.6a of 

Table 2.3 and discussed in Secs. 2.5.3d and 2.5.5), and the value of the scaled coefficient 

of lipid diffusion, D.  For each model variant, we will find different restrictions on these 

parameters for efficient gradient sensing. 

 

3.5.1 Restrictions on the baseline parameter 

The features of the various responses of our model's amplification module (depicted in 

Fig. 3.2) suggest that in order for each variant to reproduce the characteristic gradient 

sensing behaviors (enumerated in Sec. 1.2.6), there must be different constraints on the 

baseline state of the cell, as determined by γ0 (defined in Eq. M.6a).  If the cell is to adapt 

to all uniform stimuli, γ0 should not be set in the bistable regime of the uniform response 

of the amplification module (solid curves in Fig. 3.2) since the uniform baseline state of 
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the cell would then no longer be unique.  Additionally, if there is to be a sharp cellular 

response to small gradients in R, γ0 should be set to a value where responses to non-

uniform γ, approximated by the '1st mode' response of the amplification module (short-

dashed curves in Fig. 3.2), is sharp.   

     To investigate constraints on γ0, we simulate cellular response to a small static 

spatially linear gradient in R, as described by Eq. 3.16.  γ0 is varied by appropriately 

adjusting λK* (see Eqs. M.6 and M.6a); the parameter χK (see Eq. M.3) was adjusted as 

well, such that AcellKc = 0.5 was maintained in the unstimulated cell (i.e. 50% of total 

PI3K was phosphorylated in the unstimulated cell).  In Fig. 3.6, we plot a measure of the 

normalized polarization in the 3'PI (Pn) distribution that results, as a function of the 

normalized baseline parameter, 0 0 / iγ ≡ γ γ� .  Here, { }1 2 3 4, , ,i ∈ and γi is the fixed value 

of γ0 for variant i which is used in subsequent simulations (see Table 2.5).  Notice that the 

values of γi have been chosen such that for each curve the polarized response at 0 1γ =�  is 

nearly optimal.   

     We further see in Fig. 3.6 that for efficient gradient detection in Cases 1 and 3, γ0 must 

be restricted to a narrow range of values.  This range corresponds to the range of γ in Fig. 

3.2 where the 'uniform' response of the amplification module becomes sharp.  Thus, for 

these Cases, γ0 must be set very near an amplification threshold for the uniform response 

of the amplification module if a highly polarized response to a relatively weak gradient is 

to result# (characteristic behavior ii in Sec. 1.2.6).  Thus, Cases 1 and 3 seem to respond 

                                                 
# The authors of the LI model, which was discussed in Sec. 1.5.3 of Chapter 1, have also found responses to gradients 
to be sensitive to variations in parameters which set the baseline state of the cell but robust to perturbations in many 
other model parameters (122).  
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Figure 3.6.  Restrictions on the 
baseline state of the cell.  The 
parameter, γ0 (see Eq. M.6a of Table 
2.3 and Secs. 2.5.3d and 2.5.5 for 
discussion), is varied with respect to 
the value used to define our model 
variants; 0 0 iγ ≡ γ γ/�  is varied, where 

{ }1 2 3 4, , ,i ∈  and γi is the fixed 
value of γ0 for variant i, given in 
Table 2.6.  The steady-state cellular 
response to a small static gradient of 
external stimulus is calculated as 
described in the text.  The response 
of the cell is quantified by the 
normalized polarization of the 3'PI 
distribution, �P , which is 

proportional to the first Fourier component of the distribution divided by its average 
value (see Eq. 4.1 of Sec. 4.2.2 for a complete definition), normalized by the value at 

0 1γ =� .  The sharp rise in the response of Case 3 is a discontinuity; steady state solutions 
that might be obtained by a different time course of the applied stimulus are not depicted. 
 

seem to respond to gradients and uniform stimuli by similar mechanisms.  The restriction 

of γ0 to a narrow range of values suggests that in the development of cells which sense 

gradients by these mechanisms, there must exist homeostatic mechanisms that maintain 

the baseline state near such a threshold.  Cases 2 and 4, on the other hand, rely on 

redistribution of translocating molecules between the front and back of the cell to amplify 

responses to gradients.  These Cases merely require that γ0 be high enough for a large 

fraction of these molecules to be on the membrane in the unstimulated cell, such that their 

redistribution will have a significant effect# (this fraction increases with 
1

0 X
dX =∫ n nP P , 

which appears in Eqs. M.1/1a; see also Appendix A for a derivation).  Note that for Case 

3, the depicted jump in response represents a discontinuity, corresponding to a 

                                                 
# The authors of the PvH model (discussed in Sec. 1.5.3) have also demonstrated enhanced responses to 
gradients with a high baseline concentration of translocating molecule on the membrane (97).  
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bifurcation.  For this Case, a less polarized solution would result for a different time 

course of the applied stimulus (not depicted; discussed further in Sec. 4.3.2 of Chapter 4).  

Multiple steady-states exist for Case 4 as well, though the steady-state response here 

varies continuously for the depicted range of parameters.  

 

3.5.2 Restrictions on the membrane diffusion length 

In analyzing the response of our model's amplification module (depicted in Fig. 3.2,) we 

noted that the 'fixed average' response doubles back on its self, suggesting the possibility 

of multiple steady-state solutions in responses to some patterns of outside stimuli.  

However, consideration of the '1st mode' response suggested that this possibility may no 

longer exist when diffusion is considered, under some conditions.  Thus, we expect that 

cellular response might depend sharply on the relative value of the coefficient of lipid 

diffusion in our equations (D).  More specifically, steady-state profiles depend on the 

ratio  2 /D≡ λL , where λ is a degradation rate constant and L2 can be thought of as the 

squared length which a lipid may diffuse before being degraded, per unit concentration of 

degrading enzyme#.   

    In Fig. 3.7 we vary D, thereby varying the normalized diffusion length,  2  2  2
0/≡�L L L ; 

 2
0L  is the value of L2 used in subsequent simulations, which was the same for all 

variants (corresponding to of order 5% of the cell's circumference).  As in Sec. 3.5.1, we 

plot the normalized polarization of the 3'PI distribution in response to a static gradient. 

 
                                                 
# The authors of the PvH model (discussed in Sec. 1.5.3) have also investigated the role of diffusion length 
in gradient sensing, though their model does not include multiple steady states (97).  
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Figure 3.7.  Restrictions on 
diffusion length.   2 2  2

0 ≡ /� LL L is 
varied (see text) and the relative 
steady-state polarization ( �P , see 
Fig. 3.6) is calculated in response to 
a small static gradient.  �P  is 
normalized by its value at  2 1=�L .  
The depicted drop in the response of 
Case 3 as 2�L  is increased is a 
discontinuity; other steady-state 
solutions are not depicted. 
 

 

 

Notice that  2 1=�L  is in the regime where, for each variant, diffusion has a similarly 

significant affect on the polarized response of the cell.  

     For Case 3, multiple steady-states exist for small 2�L , and the sharp drop in polarized 

response as  2�L  is increased is a discontinuity, representing a bifurcation in steady-state 

response as the diffusion coefficient is varied.  As in Fig. 3.6, only the more polarized 

steady-state solution is plotted, which results from the specified time course of the 

applied stimulus.  While multiple steady-states exist for Case 4, the solution in response 

to this particular application of stimulus varies continuously.   

 

3.5 Summary 

In this chapter, we analyzed the structure of our model and its features that lead to the 

suggested differences in the behaviors of our model variants (Table 2.7).  We began by 

analyzing the phase space dynamics of our model in the Pn, γ plane, assuming that 

profiles remained uniform (Sec. 3.2).  Our analysis suggested that the uniforms steady-

state solutions of our model equations act as attractors in the space of our model 
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variables, provided that the system remains uniform.  Our analysis further suggested that 

many features of our model may be understood based on the behaviors of the variables Pn 

and γ, and that the steady-state response of our model's amplification module 

(represented by Pn) a fixed values of its driving parameter (γ), might contain important 

information.  Because our model includes six variables, four of which are spatially 

dependent, any analysis that depends on the behavior of two variables is considerably 

more intuitive. 

     In Sec. 3.3, we analyzed the steady-state response of our model's amplification 

module at fixed values of its driving parameter.  Simplifying assumptions were made 

concerning its spatial couplings, highlighting the roles that they play in our equations.  

We first considered the 'uniform' response of the amplification module.  This was found 

to be considerably steeper for Cases 1 and 3 than for Cases 2 and 4; Cases 2 and 4 

significantly deplete the cytosol of molecules that are necessary for response 

amplification, quickly saturating uniform responses.  Next, we analyzed the response of 

the amplification module, assuming that cytosolic concentrations are fixed (i.e. they do 

not become depleted in cellular response).  Under these conditions, all of the model 

variants demonstrated steep responses.  Thus, under non-uniform conditions, where 

translocating molecules can be redistributed rather than depleted, Cases 2 and 4 can also 

demonstrate high gain in their responses.  Finally, we analyzed a '1st mode' response, 

where the effects of diffusion are included, assuming the spatial profile of a 1st mode 

harmonic perturbation.  The responses remained sharp for each model variant.  However, 

where the 'fixed average' responses for all Cases had doubled back on themselves, 

suggesting the possibility of multiple steady-state responses to non-uniform stimuli, only 
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the responses of Cases 3 and 4 doubled back on themselves for the '1st mode' response.  

This suggests that diffusion plays an important role in affecting the stability of steady-

state solutions for our model. 

     In Sec. 3.4, we analyzed the linear stability properties of steady-state solutions to our 

model equations.  We began by suggesting that stability properties of uniform steady-

state solutions might be understood intuitively based on a 'reduced' model, where all 

model variables are set to steady-state values with respect to γ and Pn and appropriate 

assumptions made concerning spatial couplings (Sec. 3.4.2).  This analysis relied on the 

shape of the nullcline of the equation describing Pn dynamics in the 'reduced model'.  

This nullcline is given by the steady-state response of our model's amplification module 

at fixed γ, with appropriate assumptions made concerning spatial couplings.  Stability 

conditions in the 'reduced' model have been formally shown to be equivalent to stability 

conditions in the full model, and were used in practice to more intuitively understand the 

stability properties of our model as parameters were varied.   

     In Sec. 3.4.3, we confirmed that the uniform steady-state solutions to our model 

equations are linearly stable to all perturbations for Cases 1-3, but Case 4 is unstable to 

'1st mode' perturbations.  Indeed, any gradient in external stimulus results in a highly 

polarized response for Case 4 (discussed further in Chapter 4).  Stability properties of 

uniform steady-state solutions were also investigated as several parameters that had been 

adjusted to define our model variants were systematically varied (Sec. 3.4.4). 

     The stability propertied of a set of polarized steady-state solution were examined as 

well (Sec. 3.4.5).  We found that these polarized solutions were linearly stable to all 

perturbations.  The slowest decaying perturbations had a similar profile to the polarized 
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steady-state response under examination, but the peak was shifted.  This suggested that 

polarized solutions to our model equations are most sensitive to perturbations in the 

transition region, approximately perpendicular to the axis of polarization. 

    Finally, we analyzed constraints on several model parameters for efficient gradient 

detection.  We found that for Cases 1 and 3, the parameter that fixes that baseline state of 

the cell (γ0) must be restricted to a narrow range to generate a highly polarized response 

to a small gradient.  This corresponded to the range of γ where these variants 

demonstrated steep responses of their amplification modules (Sec. 3.3).  Cases 2 and 4 

merely required that a large fraction of translocating molecule be on the membrane in the 

unstimulated cell, such that their redistribution would have a substantial effect.   

     The value of the lipid diffusion coefficient also had a significant effect on polarized 

responses to a small gradient.  In particular, Case 3, which demonstrates multiple steady 

states in response to a range of gradients (discussed further in Sec. 4.3.2), no longer does 

so at sufficient large values of the diffusion coefficient.   

     We might conclude from the analysis in Sec. 3.5 (as well as 3.4) that homeostatic 

mechanisms are required in gradient sensing cells to maintain combinations of 

parameters within appropriate ranges, and that transitions in response can result from 

small changes in model parameters.  These possibilities are examined further in Sec. 4.5.      
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Chapter 4: Distinguishing modes of gradient sensing 

 

4.1 Overview 

How well does each model variant account for characteristic gradient sensing behaviors 

and how might the variants be distinguished?  To investigate this, we simulate cellular 

response to uniform stimuli, to static gradients, and to rotating gradients (Sec. 4.3).  

Differences between the model variants are seen most clearly in simulated dose-response 

curves which highlight transitions in cellular response.  We use these results to define 

criteria which distinguish between the Modes of gradient sensing that are illustrated by 

our model variants (Sec. 4.4).   

     In applications to real cells, many biochemical parameters and regulatory details will 

be unknown.  To further investigate how the qualitative behaviors of our model variants 

depend on suggested biochemical mechanisms and parameters, we systematically vary 

several of our model's parameters.  For each combination of parameters, we simulate 

characteristic responses and apply our suggested criteria to determine which Mode of 

gradient sensing best describes the results (Sec. 4.5).  In this way, we characterize several 

surfaces in the parameter space of our model.   

     The results that we emphasize in this chapter are quite general and depend on 

qualitative features of gradient sensing mechanisms.  Thus, while the details of our model 

development, as well as the specific molecules whose dynamics it captures, depend on 

experimental observations in Dictyostelium and Neutrophils, we expect many of our 

results to be applicable to a wide range of gradient sensing cells that demonstrate 
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characteristic behaviors.  We summarize the conclusions that might be drawn from our 

results, and discuss their implications for real cells, in Sec. 4.6. 

 

4.2 Computation   

4.2.1 Numerical techniques 

Our system of PDEs is converted to a system of ODEs by discretizing the spatial 

coordinate, X, with equally spaced points; a central difference approximation is used for 

diffusion terms.  We solve the system using a partially implicit Euler method; that is, our 

algorithm is first order in time, diffusion terms are treated implicitly for stability, and 

reaction terms (which are generally non-linear) are treated explicitly (162).  This type of 

algorithm has the virtues of both speed and stability, and should generalize well to 

include stochastic terms in extensions of our model.   

     The accuracy of our results was checked by varying the time step (h) and number of 

spatial points (N) by a factor of 2.  For all the patterns of stimuli that were tested, 

deviations between simulations with different h and N were always less than 0.2% 

(generally significantly less).  Additionally, many of our results have been confirmed 

using a PDE solver called FiPy, based on a finite volume approach, developed by 

Jonathan Guyer, Daniel Wheeler, and James Warren at the National Institute of Standards 

and Technology (163).   

 

4.2.2 Characterizing membrane distributions 

In order to analyze our simulation results, we will have to define quantities that 

characterize distributions of molecules on our model membrane.  If we assume a linear 
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relationship between the concentration of external stimulus and our model variable, R, 

then a spatially linear gradient of chemotactic stimulus will lead to a pattern of receptor 

activation on the membrane of the form ( )2 XA π − ϕcos~R ; here, our spatial variable, 

X, is defined on the perimeter of the cell and ϕ  specifies the direction of the gradient with 

respect to the X = 0 direction.  Under these conditions, we might quantify the polarized 

response of the cell based on the magnitude of the component of the resulting distribution 

of molecules on the membrane with the same spatial dependence as the stimulus.  That is, 

we define the polarization of a distribution of signaling molecules on the membrane, such 

as 3'PIs (Pn), as 

{ } { }( ) { }( )2 2
2 / n X

C S= +n n nP P P PP� ,      (4.1) 

where { } ( )
1

0
2n X dXC π≡ ∫ cosn PP , { } ( )

1

0
2n X dXS π≡ ∫ sinn PP , and

1

0 nn X
dX≡ ∫ PP .   

With this definition, if ( )2cos XA Bπ −= +nP θ  for some arbitraryθ  and constants 

 and A B′ , then Eq. 4.1 gives { } /A B=nPP� .   

     Gradient sensing cells seem to adapt their response to the average value of the external 

stimulus.  This suggests that cells respond to the relative value of a gradient of external 

stimulus, rather than its absolute value (6, 124).  Similarly, it is likely that the relevant 

measure of cellular response is the relative redistribution of signaling molecules on the 

membrane, rather than its absolute value#.  Thus, in Eq. 4.1, we have normalized by the 

spatial average of nP . 

                                                 
# We might imagine that a protein relevant to nucleation of the actin-based structures at the leading edge of 
a chemotaxing cell (see Sec. 1.3.4), N, translocates from the cytosol to the membrane, binding linearly to 
3'PIs.  We might then write an equation for its concentration on the membrane as follows: 

m
c mt

∂
= χ − λ

∂ nPN N
N

N N ; mN  represents the local concentration of the nucleating protein, 
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     We will also be concerned with whether the direction of the polarized response of the 

cell accurately reflects the direction of the gradient of stimulus.  We thus define the 

direction of polarization of the distribution as 

{ } { } { }( )1tan /S C−=n n nP P Pθ ;       (4.2) 

nπ (n = integer) is added or subtracted appropriately, so that θ changes continuously 

during the course of a simulation (unless the distribution depolarizes and repolarizes in a 

new direction).  Equation 4.2 was chosen to specify a polarization direction for 

membrane distributions because it maximizes ( )1

0
2cos X dX′π − ϕ∫ nP with respect to ′ϕ  – 

if ( )2cos XA π − ϕ=nP , then Eq. 4.2 specifies a polarization direction at the peak of the 

distribution, given by ϕ=θ . 

     Finally, we can define an angular velocity of rotation of the distribution as 

{ } { }
t

∂
=

∂
n

n

P
PV

θ
� .          (4.3) 

 

4.2.3 Defining outside stimuli 

In analyzing our model, we will measure outside stimuli by their effects on the driving 

parameter, γ, which includes both the outside stimuli and basal activation (defined in Eq. 

M.3a of Table 2.3 of Chapter 2).  This seems a natural choice to investigate the network 

                                                                                                                                                 
1

0
0

/c m celldX A= − ∫N N N  is the concentration of cytosolic nucleating protein that can be recruited to the 

membrane, and 0N  is the total concentration of the nucleating protein in the cell.  At steady-state, if we 
assume that most of the nucleating protein is depleted from the cytosol 0( /  , and thus ,/c κ = λ χN N NN N  are 

small), we find 0
m

cellX A
=

κ + /
n

n

P
PN

N
N 0 cell

X

A~ n

n

P
P

N ;  i.e., the fractional concentration of nucleating protein 

on the membrane is proportional to the local 3'PI concentration, normalized by its average over the 
membrane. 
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of interactions that regulate 3'PI dynamics in gradient sensing, based on our modular 

interpretation (see Fig. 2.4 of Sec. 2.3.1 and discussion in Secs. 2.5.4 – 2.5.5).  Further, as 

mentioned, the details leading from ligand binding to PI3K recruitment are still not well 

understood (see Sec. 2.2.3).   

     The kinds of stimuli that we will investigate in this chapter will be combinations of 

spatially linear gradients and uniform stimuli, and rotating gradients.  These types of 

stimuli can be written in general form as,   

( ) ( )( )1 2cos /S G S X t T= + + π −R .      (4.4) 

If our simulations are initialized with R = 0 and the outside stimulus is expressed as in 

Eq. 4.4, then S measures the fractional increase in γ above baseline due to ligand-mediate 

receptor activation.  Likewise, G measures the relative strength of a spatially linear 

gradient in γ.  Specifically, ( )/ /c XG r Z= ∂ ∂ γγ , where ( )2coscZ r X= π  is the Cartesian 

coordinate across the cell in the direction of the gradient and rc is the radius of the cell.  T 

is the period of gradient rotation.   

     We note that in applications of our model to any particular cell type, the experimental 

stimuli will need to be calibrated to relate patterns of ligand in solution to patterns of R 

in our model – a linear relationship is only likely to hold over a narrow range of 

conditions. 

 

4.3 Simulations of characteristic behaviors 

In this section, we simulate responses of our model variants to stimuli that illustrate 

characteristic gradient sensing behaviors (enumerated in Sec. 1.2.6).  Single simulations 

of individual responses are discussed first.  The results of groups of simulations are then 
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summarized in dose-response curves.  These highlight the differences between our model 

variants and will be used to define criteria that distinguish them in the next section. 

 

4.3.1 Responses to uniform stimuli 

Responses to spatially uniform step stimuli (characteristic behavior 'i' of Sec. 1.2.6) are 

often used to demonstrate adaptation in gradient sensing cells.  To simulate this type of 

response, we initialize our model cell by setting its variables to uniform steady-state 

values with R = 0 (given in Table 2.6).  At time t = 0, R is increased to a new value, S, 

at all points on the membrane.  The driving parameter, γ, is thus increased, and our 

model's amplification module is driven.  The concentrations of 3'PIs and of PI3K on the 

membrane increase (represented by the scaled variables Pn and Km), while the 

concentration of membrane bound PTEN decreases (Tm).  The response is transient.  

Within tens of seconds, γ returns to baseline, as do the values of all our model variables.  

A typical time course for such a simulation is illustrated in Fig. 4.1.  Here, Case 4 is 

depicted with S = 2.  Other Cases demonstrated qualitatively similar behavior#.   

     The simulated response in Fig. 4.1 captures the qualitative features observed 

experimentally in Dictyostelium cells responding a uniform step stimulus (see Fig. 2.2 for 

sample experimental data) (79, 132, 137, 164).  To our knowledge, however, the 

available experimental data is insufficient to resolve finer details of cellular responses 

than those summarized in the previous paragraph.  For example, the early features of the 

                                                 
# A different representation of a similar simulated response was depicted in the projected phase space of 
Fig. 3.1. 
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response, the absolute value of its maximum, as well as any possible lags between the 

responses of our three model components, have not been quantified experimentally.               

     In our simulations, we found that the peak response, represented by (Pn)max, increases 

as the size of the step in R increases.  This qualitative feature has been observed  

experimentally for non-saturating stimuli, though it has not been quantified in single cells 

(79).  In our model, the peak response occurs on a similar time scale to adaptation of γ (in 

Fig. 4.1, γ has nearly returned to its baseline value within ~10 s).  This timescale 

increases as the step size decreases, the effect being more pronounced for Cases 1 and 3 

than for Cases 2 and 4 (data not shown)#.  A slower response to weaker stimuli has also 

been recently noted in Dictyostelium (165).  In our model, this occurs because the 

relative increase in the rate of PI3K recruitment to the membrane, and hence the  
 

Fig. 4.1. Response to a 
uniform step stimulus 
applied at t = 0: 
{ 0, 0 ;( )t= <R

}, 0( )S t= >R .  A 
sample time course is 
depicted for Case 4, S = 2.  
Time courses for other 
Cases were qualitatively 
similar.  Quantities 
marked by a tilde are 
normalized by their values 
prior to t = 0.  (Pn)max 
marks the normalized 
peak 3'PI concentration 
during the transient 
response.   

                                                 
# For our chosen parameter values, response adaptation is generally slower for Cases 1 and 3.  For these Cases, γ passes 
near a bifurcation in the uniform response of the amplification module during adaptation.  We could have diminished 
this effect if the values of several kinetic parameters were increased for these Cases.  However, as the qualitative 
features of the time courses for these variants were still in agreement with the noted experimental data, we preferred to 
keep as many model parameters the same between the variants as possible.  
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subsequent relative increase in its rate of phosphorylation, is proportional to the increase 

in R.  The fraction of PI3K that needs to be phosphorylated in order for adaptation to 

occur, however, increases more slowly (never exceeding 1) when larger stimuli are 

investigated. 

     To quantify the response of our model to uniform stimuli of different magnitudes, we 

recorded the peak relative value of Pn ((Pn)max, as labeled in Fig. 4.1), in response to 

uniform stimuli, over a range of S.  Time courses for these simulations were always 

qualitatively similar to Fig. 4.1, with the state of the cell returning to baseline within tens 

of seconds.  The results are summarized by the dose-response curves in Fig. 4.2.  

     We find that responses to uniform stimuli are weaker for Cases 2 and 4 than for Cases 

1 and 3, due to depletion of cytosolic molecules.  This is consistent with the weaker 

uniform response of their amplification modules, as noted in Sec. 3.3 (Fig. 3.2).  

However, while all of the curves show quantitative differences, they are qualitatively 

similar – continuous and monotonically increasing.  Thus, experiments of this sort alone  
 

 
Fig. 4.2.  Dose-response curves 
for uniform step stimuli.  The 
normalized peak 3'PI 
concentration, (Pn)max, is 
recorded for each variant as a 
function of the stimulus step size, 
S.  Simulations were as described 
in Fig. 4.1.   
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are insufficient to distinguish between the qualitative behaviors illustrated by our model 

variants. 

 

4.3.2 Responses to static gradients 

Steady-state responses to static gradients are often used to illustrate high gain in the 

spatial sensing responses (characteristic behavior ii in Sec. 1.2.6).  To simulate this 

behavior, we initialize our model by setting its variables to their uniform steady-state 

values, this time with R = Si.  Because our model demonstrates perfect adaptation to the 

average stimulus, the initial steady-state profile is independent of the value of Si and is 

still given by the values in Table 2.6 for S = 0.  At time t = 0, a spatially linear gradient is 

applied, possibly together with a uniform stimulus.  The stimulus for t > 0 is thus given 

by ( ) ( )1 2cosf fS G S X= + + πR .  The parameter, G, measures the relative strength of 

the resulting gradient in γ (see Sec. 4.2.3).  If f iS S= , then the gradient was applied after 

equilibration to a uniform stimulus.  Alternately, f iS S>  represents a gradient applied 

together with a uniform stimulus.   

     Figure 4.3 illustrates the simulated steady-state profile of a cell in a 5% spatially linear 

gradient of stimulus (Case 4 is depicted with G = 0.05, though all of the Cases show 

qualitatively similar profiles).  A highly polarized distribution of signaling molecules 

results on the membrane, though the gradient in stimulus is relatively small.  The results 

are in qualitative agreement with experimental observation in Dictyostelium –  3'PIs are  

produced and PI3K is recruited to the up-gradient side of the cell, while PTEN becomes 

localized to the opposite side of the cell (132, 137, 164).  The magnitude of this polarized  
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Fig. 4.3. Steady-state response 
to a static, spatially linear 
gradient.  The stimulus is 
defined by: { , 0 ;( )iS t= <R  

( ) ( )1 2 ,cosf fS G S X= + + πR

}0( )t > .  The steady-state profile 
for Case 4 is depicted in a 5% 
relative gradient (G = 0.05), 
applied after equilibration to a 
uniform stimulus ( 2 0.fiS S= = ).  
Quantities are normalized by 
their steady-state values before 
application of the gradient 

0( )t < .  X = 0 and 1 mark the up-
gradient side of the cell. 

 

response is not well agreed upon experimentally.  However, recent data suggests that in 

rounded and immobile cells, the response may not be as steep as suggested by our 

simulations, though the spatial distributions in crawling cells may be quite steep (124).   

     To investigate how our model's response depends on the strength of the applied 

gradient, simulations were run for each model variant as described above, for a range of 

strengths of the relative gradient (specified by G).  Sf = 2 was always used, and Si = 0 or 2 

was used respectively, depending on if the gradient was applied together with or after 

equilibration to a uniform stimulus.  In practice, this only affected the response for Case 3 

(discussed below).  For each value of G and combination of Sf and Si, the system was 

evolved to steady state.  The response was quantified by calculating the relative 

polarization of the 3'PI distribution, { },nPP�  as described by Eq. 4.1.  The results are 

summarized by the dose-response curves in Fig. 4.4.     
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Fig. 4.4. Responses to static 
gradients – Dose-response 
curves.  Simulations were as 
described in Fig. 4.3.  The steady-
state relative polarization of the 
3'PI distribution was calculated for 
each variant in response to 
gradients of relative strength, G.  
The grey curve for Case 3 marks 
the range of gradient strengths for 
which the steady-state polarization 
depends on whether the gradient 
was applied together with, or after 
equilibration to, a uniform 
stimulus; responses for other Cases 
demonstrate no such dependence.  
The jumps in steady-state response 
for Cases 3 and 4 are 

discontinuities; they indicate bifurcations in steady-state response to gradients, as 
discussed in the text. 

 

     All of the variants show a strong relative polarization in response to relatively weak 

gradients.  For Cases 3 and 4, a discontinuity in the dose-response curve indicates the 

existence of multiple steady states, highlighting the effects of coupled positive feedbacks 

and distinguishing these Cases qualitatively from Cases 1 and 2.   

     For Case 3, a threshold in stimulus must be overcome to induce a highly polarized 

response to small gradients.  This is achieved if the gradient is applied together with a 

sufficient uniform stimulus (dark curve).  Otherwise, the response at small gradients 

remains weakly polarized (grey curve).  If one were to continuously increase the gradient 

from G = 0, the response would follow the grey curve (the gradient would not be applied 

together with a sufficient uniform stimulus).  At G ~ 0.08, a weakly polarized state no 

longer exists, and the steady-state response would jump discontinuously to the black 

curve.  If the gradient was then decreased continuously, the steady-state response would 
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then follow the black curve until G ~ 0.005.  At this point, a highly polarized solution no 

longer exists and the steady-state response would drop discontinuously.  Thus, the steady-

state response of Case 3 to gradients is hysteretic and demonstrates a subcritical 

bifurcation (161).   

     For Case 4, the uniform state is unstable to arbitrarily small gradients, and no 

threshold needs to be crossed to elicit a highly polarized response.  The dose-response 

response is thus discontinuous at zero-gradient.  However, because the system was 

initialized in an unstable uniform steady state, this discontinuity does not clearly 

demonstrate the response bifurcation that exists.   

     A more proper discontinuous/hysteretic dose-response curve could be generated for 

Case 4 by considering reverse polarized states.  That is, if Case 4 were initialized in a 

polarized state (which is stable at zero-gradient) and then a steady gradient applied in 

opposition to the polarization direction, the initial polarization direction would persists 

provided that the new gradient wass sufficiently small (data not shown).  Thus, a 

hysteretic response could be demonstrated for Case 4 by increasing and then decreasing 

the strength of a gradient, if the range of G was extended to include negative values and 

polarizations were recorded as negative when in opposition to the applied gradient. 

 

4.3.3 Responses to rotating gradients 

Investigation of responses to rotating gradients may provide insight into the functioning 

of each variant in natural settings, where stimuli vary in both space and time.  To 

simulate such responses, we first apply a static linear gradient, together with a uniform 

step stimulus, and allow the polarized distribution of signaling molecules to equilibrate.  
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We then begin to rotate the gradient at t = 0 with different Periods of rotation, T.  The 

space/time plots in Fig. 4.5 record Pn as a grey scale value in sample time courses.  The 

initial gradient is in the direction marked by X = 0 and 1 (the normalized spatial variable, 

X, is periodic); time is measured relative to T (in gradient revolutions); Pn values are 

normalized by the peak Pn value before gradient rotation.   
 
 

Fig. 4.5. Responses to 
rotating gradients.  
Unstimulated cells are first 
polarized in a static 
gradient (G = 0.075, S = 2, 
see Eq. 4.4).  After cellular 
equilibration occurs, the 
gradient begins to rotate (at 
t = 0) with period, T.  The 
Pn value around the 
membrane is plotted as a 
gray-scale value, 
normalized by its peak 
value before gradient 
rotation begins.  The 
spatial variable X, is 
periodic, and the initial 
gradient is in the X = 0 and 
1 direction.  t/T measures 
time in gradient rotations.  
The first plot, marked T = 
150 s, illustrates efficient 
following of a slowly 
rotating gradient.  The 
remaining time courses 
illustrate the different 
failings of each of our 
model variants to follow 
more quickly rotating 
gradients.  
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     The first time course in Fig. 4.5, labeled T = 150 s, represents cellular response under 

conditions of slow gradient rotation.  The shape of the Pn distribution remains relatively 

steady and its direction follows that of the gradient with a slight lag (the gray scale 

pattern keeps its shape and is translated diagonally with a period of 1).  Case 4 is 

depicted, though time courses are qualitatively similar for all Cases, for slow gradient 

rotation.  The results are consistent with the qualitative observations of experimental 

responses to changing gradients in rounder Dictyosetelium cells (81).  Further, during 

aggregation, Dictyostelium generate and respond to waves of cAMP with a period of 

order 5 min. (166, 167), suggesting that efficient gradient sensing in these cells implies 

the ability to follow gradients that change on time scales of order 1 min.   

     Figure 4.5 also illustrates sample time courses from simulations with shorter T, where 

our model variants demonstrate different kinds of failure in gradient following.  For 

Cases 1 and 2, the polarized distribution becomes gradually washed out, and the weakly 

polarized steady-state distribution that results eventually follows the direction of gradient 

rotation.  Case 3 suddenly becomes depolarized when gradient rotation becomes too fast 

to follow.  Case 4 remains polarized near its initial direction, turning towards the 

direction of the gradient whenever it is close to the direction of polarization; an 

oscillatory steady-state behavior results.  To our knowledge, cellular responses under 

conditions where gradient sensing fails have not yet been systematically investigated. 

     The above simulations were repeated for a range of T in order to analyze the transition 

in each variant's behavior when gradient rotation becomes too fast to follow.  For each 

simulation, we calculated the polarization of the 3'PI distribution at each time point (Eq. 

4.1) and normalized by its value prior to gradient rotation (at t = 0); we will refer to this 
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time course as ( )t�P .  The angular velocity of rotation of the distribution (Eq. 4.3) was 

also calculated at each time point and normalized by the angular velocity of gradient 

rotation; we will refer to this time course as ( )t�V .  1=�P  indicates that the polarized 

distribution remains stable during the gradient rotation and 1=�V indicates that the 

direction of polarization follows the gradient perfectly (with a slight lag).   

     For each T, we characterized the cellular response by recording the steady-state 

quantities, s
�P  and s

�
�V , which are long time averages of ( )t�P  and ( )t�V , respectively.  If 

no significant oscillations in the polarization direction occurred, we also recorded the 

long time value of the lag in the direction of polarization behind that of the gradient (θL, 

measured in revolutions for Cases 1-3).  When steady oscillations in ( )t�P and ( )t�V  did 

occur, the long-time value of the amplitude of the oscillations in polarization direction 

about the average motion was recorded (denoted θo, measured in revolutions for Case 4).  

The dose-response curves thus generated are depicted in Figs. 4.6 – 4.8 below, which 

summarize the responses of our model variants to simulated gradients rotating with 

different Periods. 

     For Cases 1 and 2, at shorter T, the Pn distribution becomes increasingly depolarized 

during an initial transient, after which following becomes perfect ( 1s =�V ).  Thus, we see 

in Fig. 4.6 that 1s =��V  for all T, but s
�P  goes smoothly to 0 at shorter T.  When gradient 

rotation becomes too fast to follow without significant depolarization, the lag angle, θL, 

begins to increase.  For both Cases 1 and 2, θL plateaus at ~ 0.2 rotations (~ π/2 rad.) for a 

small range of T beginning at T ~ 50 s.  This is consistent with our stability analysis of 

responses to static gradients, which suggested that polarized distributions in our model  
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Fig. 4.6. Rotating gradients – 
Dose-response curves for Cases 1 
and 2. The simulations of Fig. 4.5 
were carried out for a range of 
periods of gradient rotation (T).  
Quantities that characterize the 
response were recorded for each T.  

s
�P and s

�V  are long time averages of 

0( ) { ( )} / { ( )}nt t= nP P�P P P  and 

2( ) { ( )}( / )nt P t T= π�V V , which 
represent normalized polarizations 
and angular velocities of the 3'PI 
distribution, respectively (see text 
and Eqs. 4.1 – 4.3).  θL is the long 
time value of 2{ ( )} / /nP t t Tπ −θ , 
and measures the lag of the 
polarization angle behind that of 
the gradient, in rotations; 

{ ( )}nP tθ measures the polarization 
direction of the Pn distribution (in 
radians, see Eq. 4.2). 

 

      

 

are most sensitive to perturbations whose profile is shifted by on the order of 0.2 rotations 

from the direction of cellular polarization (see Sec. 3.4.5 and Fig. 3.5).         

     For Case 3, the highly polarized distribution becomes destabilized if it is not 

sufficiently aligned with the direction of the gradient, as occurs when the rotation 

becomes too fast to follow.  Thus, we see in Fig. 4.7 that s
�P  drops sharply at T ~ 140 s.  

This drop is a discontinuity and indicates a response bifurcation where the highly 

polarized distribution can no longer rotate stably at the frequency of gradient rotation.  If 

the simulation had been initialized in the weakly polarized state (that is, the gradient was  
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Fig. 4.7. Rotating gradients – 
Dose-response curve for Case 
3.  Simulations and notation are 
as in Fig. 4.6.  The sharp drop 
in s
�P  at T ~ 140 s is a 

discontinuity and indicates a 
bifurcation in the steady 
response of Case 3 to rotating 
gradients.  

 

 

 

applied without a sufficient uniform stimulus; see Sec. 3.4.2), there would be no sharp 

transition in response at short T.  A hysteretic response would thus be observed if the 

simulation was initialized in the highly polarized state, as was done for the depicted 

simulations, and gradient rotation was initialed slowly.  If the period of rotation was 

gradually shortened, the highly polarized state would eventually become destabilized at T 

~ 140 s.  If the period of gradient rotation was then lengthened, the highly polarized state 

would not return, as this would require overcoming a threshold in stimulus (not shown). 

     Applying a weaker gradient for Case 3 results in destabilization of the highly 

polarized steady state at longer T, while a stronger gradient results in a highly polarized 

state that remains stable at shorter T.  If a sufficiently strong gradient is applied, Case 3 

no longer demonstrates a bistable response to static gradients (see Fig. 4.4), and 

responses to rotating gradients become similar to Cases 1 and 2 (not shown).   

     We see in Fig. 4.7 that for Case 3, before depolarization occurs at T ~ 140 s, the lag 

angle,  θL, has increased to approximately ~ 0.2 rotations.  Aagain, this is consistent with 

our analysis of stability of polarized solutions.  At even shorter T, the lag angle increases 
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steadily by approximately complete rotations, as illustrated by the distinct plateaus in θL.  

This indicates that for shorter T, the polarization direction of Case 3 remains 

approximately fixed in its initial direction for several gradient rotations before 

depolarization occurs.  The weakly depolarized distribution then follows the rotating 

gradient, lagging behind it by an amount of order 0.2 revolutions at shorter T (similar to 

the behaviors of Cases 1 and 2).       

     For Case 4, the polarized distribution remains fairly stable when gradient rotation 

becomes too fast to follow.  An oscillatory motion ensues, where the polarization 

direction of the distribution turns towards that of the gradient whenever they are closely 

aligned.  When the gradient has rotated such that there is no longer sufficient alignment, 

the polarization direction remains approximately fixed until the gradient has rotated such 

that alignment is again sufficient.   

     The transition from gradient-following to oscillatory behavior for Case 4 occurs 

discontinuously in the dose-response curve and is indicated in Fig. 4.8 by the sharp drop 

in s
�
�V  at shorter T.  The amplitude of the oscillations in the polarization direction, θO,  

 
Fig. 4.8. Rotating gradients – 
Dose-response curve for Case 
4.  Simulations and notation are 
as in Fig. 4.6.  θo measures half 
the range of 2{ ( )} / /snP t t Tπ − �θ V  
during the time after oscillations 
become steady.  The sharp drop 
in s
�V  at T ~ 75 s, where 

oscillations begin, is a 
discontinuity.  However, we 
were not able to find a hysteretic 
response for Case 4.   



 135

peaks near this transitions, and is of order of 0.2 revolutions.  For shorter T, the polarized 

response has less time to turn towards the direction of the gradient before the gradient is 

lost, and the amplitude of the oscillations shrinks.  Efficient gradient following for Case 4 

does continue at shorter T if a stronger gradient is used, similar to Case 3 (not shown).  

We could not identify a clear hysteretic response to rotating gradients for Case 4 (which 

was noted for Case 3).   

     The above simulations indicate that differences between our model variants are most 

apparent in the characteristics of transitions in response that occur when gradient rotation 

becomes too fast to follow.  The observed differences do not imply that one variant 

functions more efficiently than the others.  Rather, each might have a different utility to 

the cell types that may use them.  In particular, these simulations demonstrate that under 

conditions where a bistable response is possible, and the polarized response could 

potentially 'get stuck' in an initial direction (as in Cases 3 and 4), the direction of 

polarization can still turn to follow a slowly rotating gradient.  The simulated responses 

thus demonstrate sufficient plasticity to account for characteristic gradient sensing 

behaviors.   

     The simulations analyzed thus far are designed to probe the roles of coupled positive 

feedbacks and translocation in gradient sensing behaviors.  Experiments and simulations 

that investigate responses to dynamic stimuli, such as rotating gradients, could also be 

used to investigate possible lags in the dynamics of the various molecules included in our 

model.  This type of information might further elucidate the structure of the network of 

interactions that regulates their dynamics.  However, to our knowledge, these types of 

experiments have not yet been done.  Other types of dynamic simulations and 
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experiments could be useful as well to further analyze our model and to investigate other 

relevant biochemical/biophysical mechanisms (see, for example, 49, 127, 168). 
 

4.4 Defining criteria that distinguish modes of gradient sensing 

The behaviors of our model variants are representative of the qualitatively different 

modes of gradient sensing that depend on the roles of coupled positive feedbacks and 

translocation in our model.  We expect the illustrated behaviors to exist for a range of 

parameter values.  Further, we expect that these behaviors will be demonstrated in the 

responses of real cells and of other models of gradient sensing.  Thus, we develop criteria 

that might be applied to distinguish between the illustrated modes of gradient sensing.      

 

4.4.1 Criteria relating to coupled positive feedbacks 

We have seen in Fig. 4.4 that Cases 3 and 4 can be distinguished from the others based on 

discontinuities in their dose-response curves to gradients, with possible dependence on 

application of a uniform stimulus (differences are also clear in dose-response curves to 

rotating gradients, as seen in Figs. 4.6 – 4.8).  The distinct behaviors illustrated reflect the 

different roles played by coupled positive feedbacks in signal amplification (which lead 

to response bifurcations).   

 

4.4.2 Criteria relating to translocation 

Comparison of the data in Figs. 4.2 and 4.4 suggests that in Cases where redistribution of 

translocating molecules plays a significant role in amplifying responses to gradients, a 

measure of the slope of the dose-response curve for gradients will be significantly greater 
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than the slope for responses to uniform stimuli.  If, on the other hand, translocation does 

not play a significant role in response amplification, we then expect responses to uniform 

stimuli and gradients to be comparable.   

     Any comparison of responses to uniform stimuli and to gradients is necessarily 

empirical and model dependent, as it requires accounting for the dynamic nature of 

responses to step stimuli and for diffusive dissipation in responses to gradients.  We have 

found the following criteria, based on the dose-response curves in Figs. 4.2 and 4.4, to be 

effective in distinguishing between the responses of our model variants where 

translocating molecules play differing roles, using the notation of Figs. 4.2 and 4.4:  If 

( )max
max

0.4 { }/nP G G
S
∂  > ∂ 

P # for some G to be specified, then we consider responses to 

uniform stimuli and gradients to be comparable; under these conditions, redistribution of 

translocating molecules does not play a significant role in response amplification.  If, on 

the other hand, ( )max
max

0.2 { }/nP GGS
∂ 

< ∂  P , then we consider responses to uniform 

stimuli and gradients to not be comparable; we might then conclude that redistribution of 

translocating molecules does play a significant role in response amplification.  If neither 

of the above criteria is met, then the response is ambiguous and we can make no 

conclusion concerning the role of translocating molecules in response amplification.   

     In the above discussion, S specifies a uniform stimulus and (Pn)max quantifies the peak 

response, as in Fig. 4.2.  G specifies a gradient stimulus and { }GP  quantifies the 

polarized response, as in Fig. 4.4. G = 0.05 was used for all applications that follow. 

                                                 
# In our model, for the range of stimuli considered, responses to gradients were always steeper than the 

corresponding responses to uniform stimuli, and ( )max
max

1.0 { }/nP G G
S
∂  > ∂ 

P  never occurred. 
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4.4.3 Criteria for efficient gradient sensing 

We only wish to apply our criteria to distinguish between Modes of gradient sensing in 

systems that demonstrate characteristic behaviors and respond efficiently to gradients.  

Thus, we expect perfect adaptation in response to uniform stimuli.  We further expect a 

highly polarized response to a relatively weak static gradient, and that the polarized 

response follows a slowly changing gradient.  Thus, we specify the following criteria for 

efficient gradient sensing: If the relative polarization in response to a gradient defined by 

G = 0.05 is greater than 0.4 (about half the average value calculated for our model 

variants, see Fig. 4.4), then we consider the system to demonstrate a strong response to 

relatively weak gradients; otherwise, we consider the response to be 'weakly polarized'.  

If either the steady normalized polarization or angular velocity in response to a rotating 

gradient with a period of 150 s remains above 0.6 at steady state (see Figs. 4.6 – 4.8), 

then we consider the system to successfully follow a slowly rotating gradient; otherwise 

we consider the response to be 'poorly following'.  In the analysis that follows, we only 

consider situations where perfect adaptation to uniform stimuli is achieved.  

 

4.4.4 Criteria summary  

The criteria discussed in Secs. 4.1 – 4.3 are sufficient to distinguish between our model 

variants.  They are summarized in Table 4.1.  In Sec. 4.5, we will apply these criteria to 

determine if the responses of our model for different parameter values share qualitative 

features with any of our model variants. 
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4.5  Parameter space structure 

In applications to real cells, many of the interactions that regulate gradient sensing 

responses will be unknown, as will most of the biochemical parameters.  Thus, we wish 

to investigate how the qualitative features of our model's responses depend on its 

parameters and suggested regulatory mechanisms.  To accomplish this, we systematically 

varied several model parameters.  For each combination of parameters, we simulated 

responses to uniforms stimuli, to static gradients, and to rotating gradients.  The criteria 

discussed in Sec. 4.4 (summarized in Table 4.1) were then applied to determine if the 

results demonstrated efficient gradient sensing, and if they further demonstrated the 

qualitative features of one of the Modes of gradient sensing illustrated by our model 

variants.  We thus characterized several surfaces in the parameter space of our model.   

 

4.5.1 Parameters that define the model variants 

We began by systematically varying the parameters that were used to specify our model 

variants.  We varied the parameter κK, which adjusts the effectiveness of Loop II in 

Table 4.1.  Criteria for distinguishing Modes of gradient sensing 
 Mode 1 Mode 2 Mode 3 Mode 4 
Relating to coupled positive feedbacks     

Discontinuity in dose-response to gradients. 
 

No No Yes Yes 

Dependence of gradient dose-response on  
     simultaneous application of a uniform     
     stimulus. 
 

No No Yes No 

Relating to translocation     
Responses to uniform stimuli comparable to  
     responses to gradients. 

Yes No Yes No 

 
Criteria for efficient gradient sensing 

Strong polarization in response to a static 5% relative gradient. 
Successful following of a gradient rotating with a period of 150 s. 



 140

response amplification (see Eq. M.3 of Table 2.3) – decreased κK means that the feedback 

in Loop II is more effective.  We simultaneously varied 1/κc, which determines the 

degree to which depletion of translocating molecules saturates the response of Loop I 

(see Eq. M.1 and M1a) –  increased 1/κc means greater cytosolic depletion upon cellular 

stimulation, and hence a greater potential for redistribution of translocating molecules to 

amplify responses to gradients#.  Because our analysis in Fig. 3.6 had suggested that 

gradient sensing responses might be very sensitive to the value of the base line parameter 

of our model (defined in Eq. M.6a), for each combination of κK and κc, γ0 was chosen to 

optimize the polarization of the 3'PI distribution in response to a small static gradient (G 

= 0.05).  Only values of γ0 for which the uniform steady state of our model was unique 

were considered – this uniqueness is required for perfect adaptation in our model (see 

discussion in Sec. 3.3).  All other parameters were set as in previous simulations, 

according to the procedure outlined in Appendix B.  Model responses were simulated and 

the criteria of Sec. 4.4 were applied.  The results are illustrated in Fig. 4.9.   

       Decreasing κK increases the effectiveness of Loop II.  We see in Fig. 4.9 that this 

leads to transitions to Modes of gradient sensing with successively higher gain in 

response.  For example, decreasing κK at 1/κc = 0.5 results in the sequence of transitions:   

'Weakly polarized' Mode 2 Mode 4 Mode 4' Mode 3' 'Poorly following'→ → → → → .  

On the other hand, increasing 1/κc leads to transition to Modes where redistribution of 

translocating molecules makes coupled positive feedbacks more effective in responses 

amplification.  For example, decreasing 1/κc at κK = 3 results in the sequence of 

transitions: 'Weakly polarized' Mode 1'/2' Mode 2 Mode 4→ → →  in Fig. 4.9.   

                                                 
# As mentioned in Sec. 2.5.3a, 1/κm, which controls the degree to which depletion of membrane-bound 
molecules saturates Loop I, was adjusted such that the relationship 1/κc + 1/κm = 1 was preserved. 
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Fig. 4.9.  Parameters that specify 
the model variants are 
systematically varied, model 
responses are simulated, and the 
criteria of Sec. 4.4 (summarized in 
Table 4.1) are applied to the results.  
Decreased κK means that feedback in 
Loop II is more effective; increased 
1/κc means that translocation is more 
significant in amplifying responses to 
gradients.  Solid lines separate 
regions of qualitatively distinct 
model behaviors; bold lines indicate 
response bifurcations; regions of 
inefficient gradient sensing are 
demarcated by dashed lines and 

labeled 'Poorly following' or 'weakly polarized.  Numbers specify the 'Mode' of gradient 
sensing that best describes simulation results in a given region.  A '*' in a region marks 
the combination of parameters that was used to specify the corresponding model variant.  
Regions which gave ambiguous results with respect to translocation were labeled 3' or 4' 
if they met criteria for Modes 3 or 4 with respect to coupled positive feedbacks, and 1'/2' 
otherwise. 
 

     In general, transitions between Modes which differ in the roles played by coupled 

positive feedbacks are sharp and represent response bifurcations; these are indicated by 

bold lines in Fig. 4.9.  Gradient sensing responses were often found to be most efficient 

close to these boundaries.  For example, Modes 1 and 2 showed enhanced responses to 

small gradients; Modes 3 and 4 followed rotating gradients more efficiently (data not 

shown).  On the other hand, transitions between Modes which differ in the importance of 

translocating molecules pass through regions of parameter space whose qualitative 

behavior is ambiguous with respect to our criteria (labeled 1'/2', 3' or 4').  Further, we 

note that regions where each variant functions efficiently might be narrow in some 

directions, suggesting constraints on parameters.  Several such constraints on parameters 

were discussed in Sec. 3.5.  
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4.5.2 Parameters relating to specific biochemical mechanisms 

To investigate the dependence of the qualitative behaviors of our model on the proposed 

biochemical mechanisms from which it was developed, we systematically varied several 

other model parameters and applied the analysis of Sec. 4.5.1 to characterize several 

more surfaces in our parameter space.   

     In our model, we have interpreted PTEN translocation from the membrane in response 

to outside stimuli as enhancing the effectiveness of Loop II.  To our knowledge, 

however, a significant translocation of PTEN has only been observed experimentally in 

Dictyostelium.  Thus, we wished to investigate the significance of this translocation for 

our model's response.  To do this, we systematically varied the parameter ζT in Eq. M.4 

(Table 2.3), which adjusts the importance of constitutive removal of PTEN from the 

membrane in our model.  Larger ζT means a less significant inverse translocation of 

PTEN from the membrane in response to external stimuli, making Loop II less effective.  

We simultaneously varied 1/κc, as in Sec. 4.5.1.  For each combination of ζT and 1/κc, λT 

was adjusted such that ( )1T Tλ + ζmK  = constant, where 1mK  is the value of Km in the 

unstimulated cell for Case 1.  This condition kept the rate of removal of PTEN from the 

membrane in the unstimulated cell approximately constant, thus maintaining a similar 

baseline value of Tm as ζT was varied.  As in Sec. 4.5.1, γ0 was then adjusted to optimize 

the polarized response to a small, static relative gradient.  Other parameters were set to 

the values used for Case 1 in our previous simulations, according to the procedure of 

Appendix B.  Model responses were simulated and the criteria of Sec. 4.4 were applied.   

     The results, depicted in Fig. 4.10, demonstrate qualitatively similar features to those 

noted concerning Fig. 4.9.  For example, decreasing ζT (which increase the effectiveness 
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of Loop II) results in transitions to Modes of gradient sensing that involve stronger 

positive feedbacks;.  Regions that demonstrate a given behavior are again narrow in some 

directions, indicating constraints on parameters. 

     In developing our model, we had proposed that the feedback in Loop I operates by 

enhancing production of PI(4,5)P2 bound to a PITP (PI transfer protein), rather than 

enhancing the production of free PI(4,5)P2.  The particular feature in our model equations 

that results from including a PITP is the possibility of saturating Loop I at high 

concentrations of PI3K on the membrane if PITP availability is limiting.  We would not 

expect such a saturation to result if the primary 3'PI production were via PI3K acting on 

free PI(4,5)P2, which is relatively abundant.  The value of Pn at which this saturation 

occurs in our model is determined by the value of the parameter κ3 in Eq. M.1#.  Larger 

κ3 means that binding of PI3K to the PITP does not saturate until a higher fraction of  

 
Fig. 4.10.  The role of PTEN 
translocation in our model is 
investigated by systematically 
varying the parameter, ζT, as 
described in the text.  Decreased ζT 
means a more substantial inverse 
PTEN translocation in response to 
external stimuli; this enhances the 
effectiveness of Loop II in our 
model.  Notation and simulations are 
as in Fig. 4.9.  The '*' represents the 
combination of parameters that was 
used to define Case 1. 
 
 

                                                 
# One might imagine that the presence of a PITP would also enhance passage of PI(4,5)P2 to PI3K.  Thus, 
the parameter χ3 of Eq. M.1 would be affected as well.  Because increasing χ3 strengthens the feedback in 
Loop I, we found that its variation had a similar effect to variation of κ3, and that simultaneous variations 
in both parameters could compensate for each other under some conditions.  Response dependence on the 
value of the ratio χ3/λ3 was examined and this ratio was set empirically.  Its value was very significant in 
determining if clearly distinct variants of our model could be generated with robust gradient sensing 
responses through variations of κK, κc, and γ0. 

2

1'/2'

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.02 0.04 0.06 0.08 0.1

1/
κ c

ζ
T

1

3

Poorly
following

Weakly
polarized

43'

4'

*



 144

PI3K is on the membrane (saturation becomes significant when Km ~ κ3), making Loop I 

of our amplification module more effective.  Thus, to investigate the significance of 

including a PITP in our model, we systematically varied κ3 together with κc to generate 

another plot analogous to Fig. 4.9.  The results are represented in Fig. 4.11, which again 

demonstrate qualitatively similar features to those in Fig. 4.9.   

 

4.5.3 Compensating parameters 

The differences between the Modes of gradient sensing that we have investigated with 

our model variants derive from the differing roles played by coupled positive feedbacks 

and translocating molecules in response amplification.  Thus, we expect that variations of 

parameters that affect these model elements similarly will lead to similar transitions in 

the qualitative features of our model's response.  Indeed, we have noted that similar 

transitions result, for example, if the effectiveness of our model's positive feedbacks is 

 
 

Fig. 4.11.  The significance of 
including a PITP in our model is 
investigated by systematically 
varying the parameter, κ3, as 
described in the text.  Increased κ3 
means that PI3K binding to the PITP 
does not occur until higher values of 
Km, thus enhances the effects of 
Loop I in our model.  Increased κ3 
may reflect conditions where PI3K 
acts of free  PI(4,5)P2, which is 
abundant (this would eliminate the 
possibility of saturated binding in our 
treatment).  Notation and simulations 
are as in Fig. 4.9.  The '*' represents 
the combination of parameters that 
was used to define Case 1. 
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increased by decreasing κK (see Fig. 4.9), by decreasing ζT (Fig. 4.10), or by increasing κ3 

(Fig. 4.11).  Thus, we might expect that simultaneous variations of several of these 

parameters might compensate for each other.     

     To investigate the manner in which simultaneous variations of parameters might 

compensate for each other, we simultaneously varied the parameters ζT and κK. 

Decreasing the value of either of these parameters increases the effectiveness of Loop II, 

resulting in Modes of gradient sensing with stronger coupled positive feedbacks, as 

discussed in the previous subsection.  Parameters were varied and responses simulated as 

in Secs. 4.5.1 and 4.5.2, though this time model parameters not varied were set to the 

values used for Case 4 in previous simulations.  The resulting parameter space structure 

is depicted in Fig. 4.12.  As expected, we see that decreasing κK while appropriately 

increasing ζT often results in the same Mode of gradient sensing.  This is indicated by the  

 

 

Fig. 4.12.  Compensating 
parameters.  Increasing κK 
strengthens Loop II by enhancing 
3'PI-mediated stabilization of PI3K on 
the membrane; increasing ζT 
strengthens Loop II by enhancing 
PI3K-mediated removal of PTEN from 
the membrane.  Their simultaneous 
variation has a compensatory effect on 
the qualitative features of our model's 
response, as indicated by the 
hyperbolic boundaries in the depicted 
parameter space.  Notation and 
simulations are as in Fig. 4.9.  The '*' 
represents the combination of 
parameters used to define Case 4. 
 

2

0

0.01

0.02

0.03

0.04

0.05

1 2 3 4 5 6

ζ T

κ
K

Poorly
following

Weakly
polarized

4
3'

*



 146

 

hyperbolic shape of the depicted boundaries on this surface in our model's parameter 

space#.  Similar results were found for simultaneous variations of κ3 and κK as well (not 

shown). 

 

4.6 Conclusions and implications for real cells 

In presenting the results of this chapter, we have focused on qualitative features of 

cellular response that depend on the roles of coupled positive feedbacks and 

redistribution of translocating molecules in gradient sensing responses – these do not 

depend on the specific details of our model.  We thus expect many of our results to apply 

to a range of cells that demonstrate characteristic gradient sensing behaviors.  In this 

section, we summarize our conclusions from the above simulations and discuss their 

application to real cells, where many relevant biochemical mechanisms and parameters 

remain unknown. 

 

4.6.1 Multiple modes of gradient sensing are consistent with available data 

Our model reproduces the discussed dynamics of 3'PIs in gradient sensing cells, and is 

based on a proposed network of biochemical interaction for 3'PI regulation (see Sec. 2.3).  

The general features of this network suggest that qualitatively different gradient sensing 

mechanisms might result, depending on the roles of coupled positive feedbacks and 

redistribution of translocating molecules in response amplification.  We varied these 

                                                 
# Efficient gradient sensing was not found for values of ζT much grater than those depicted in Fig. 4.12.  
Though decreasing κK can partially compensate for an increase in ζT, in practice, for parameter values out 
of the plotted range, it was not possible to satisfy all of the conditions for efficient gradient sensing without 
simultaneously varying other model parameters.   
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elements by adjusting several parameters of our model.  We thereby generated four 

model variants that demonstrate the qualitatively different Modes of gradient sensing 

which result.  Each variant accounts for the characteristic gradient sensing behaviors (as 

enumerated in Sec. 1.2.6) and biochemical observations (Sec. 2.3.1).  We thus conclude 

that current experimental data is consistent with multiple Modes of gradient sensing. 

 

4.6.2 Transitions between efficient gradient sensing and failure highlight differences  
 between Modes of gradient sensing 
    
Experiments that investigate characteristic gradient sensing behaviors generally employ 

stimuli that give a clear result, such as a saturating uniform stimulus or a strong static 

gradient.  The need to reproduce characteristic gradient sensing behaviors under these 

idealized conditions greatly constrained our model and motivated the modular framework 

by which is was developed (Secs. 1.5.1, 1.5.2, 2.4, 2.5.4 and 2.5.5).  Further, restrictions 

on parameters were necessary for efficient gradient sensing, some of which were 

analyzed in Sec. 3.5.   Nevertheless, the behaviors of our model under conditions where 

gradient sensing begins to fail are not constrained by current observations.  Examples of 

conditions when gradient sensing responses fail include: when a uniform stimulus 

becomes too small to elicit an observable response; when a gradient is too small to 

produce a highly polarized response; or when the pipette in a rotating gradient 

experiment begins to move too quickly for the cell to follow.   

     Our simulations suggest that it is precisely in the nature of transitions in response from 

efficient gradient sensing to failure that our model variants can be distinguished.   These 

transitions are highlighted by dose-response experiments, such as those that were 

simulated in Sec. 4.3.  Based on these differences, we were able to suggest criteria that 
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distinguish between the modes of gradient sensing that were illustrated by our model 

variants (Sec. 4.4).      

 

4.6.3 Multiple measurements of single-cell responses are necessary to distinguish  
 between Modes of gradient sensing 
 
The criteria that we have proposed to distinguish between different Modes of gradient 

sensing depend on comparisons of cellular responses to several types of stimuli, rather 

than the results of isolated experiments.  For example, Fig. 4.4 indicates that Cases 1-3 all 

demonstrate weak polarization when very small gradients are applied;.  A comparison of 

transitions in response to gradients of increasing magnitude, applied together with and 

after equilibration to a uniform stimulus, is necessary to identify the bifurcations in 

steady-state response that characterize Cases 3 and 4 (Fig. 4.4).  Similarly, Cases 1 and 2 

cannot be distinguished based on responses solely to uniform stimuli or to gradients 

(Figs. 4.2 and 4.4);.  Rather, a comparison of the two responses is necessary.  Further, 

this comparison must be done empirically, with reference to a suggested model, in order 

to account for the dynamic nature of responses to uniform stimuli and for diffusive 

dissipation that shapes responses to gradients (see Sec. 4.4.2).  Thus, we conclude that it 

is necessary to perform multiple experiments on single cells to determine if they 

demonstrate the qualitative features of one of our model variants.    

     In addition, variability will exist in any population of cells.  For example, each cell 

will contain a different amount of each of the molecules considered in our model.  

Responses to any given stimulus will thus vary from one cell to the next, and transitions 

in a given cell will occur at different stimuli.  As a result, the response of each individual 

cell will be characterized by a different set of dose-response curves.  Thus, we further 



 149

conclude that multiple single-cell experiments must be repeated, using multiple cells, in 

order to analyze the distribution of behaviors in a given population. 

     Performing multiple experiments on single cells is not an easy task and may require 

development of new experimental tools such as microfluidic devices (169-172) and caged 

compounds (173-177).  The need for quantitative measurements on single cells to 

observe transitions in behavior has been emphasized in connection to other cellular 

systems (see, for example 178, 179).  Such measurements are only recently being done in 

connection to gradient sensing (see, for example, 52, 124, 180, 181). 

 

4.6.4 Responses to simple stimuli have implications for responses to more complex 
 stimuli 
 
The criteria that we have suggested to distinguish between the Modes of gradient sensing 

rely on differences in dose-response curves to uniform stimuli and to static gradients 

(Figs. 4.2 and 4.4).  These differences derive directly from the roles played by coupled 

positive feedbacks and translocating molecules in our model variants.  Our analysis of 

cellular responses to rotating gradients suggests that the differences that define our model 

variants have consequences for cellular responses to more complex stimuli (Sec. 4.3.3).  

For example, we found that Cases 1 and 2 always follow a rotating gradient perfectly, 

their polarization gradually weakening for fast rotations.  The polarized response for Case 

3 can be turned on and off by strong stimuli that change quickly.  Case 4 remains 

persistently polarized in an initial direction when the gradient changes quickly.  Each 

type of behavior might have a different utility for the cells that use them.   

     These observations suggest that the differences that define our model variants might 

further have non-trivial consequences for the behavior of cells in natural settings, where 
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chemotactic stimuli vary in space and time.  Examples of behaviors that might be thus 

affected include the aggregation of Dictyostelium cells during starvation and the 

population dynamics of neutrophils migrating to a source of infection.   

 

4.6.5 Identifying important parameters in real cells 

Our analysis suggests that application of the criteria in Sec. 4.4 to real cells might guide 

the identification of important positive feedbacks and scarce translocating molecules.  

For example, if a cell is found to demonstrate a Mode 3 or Mode 4 type of behavior, we 

might conclude that coupled positive feedbacks play an important role in response 

amplification; if the results indicate a Mode 2 or Mode 4 type of behavior, we might 

conclude that redistribution of translocating molecules plays an important role.   

     The cellular concentrations and activities of many of the molecules known to be 

involved in gradient sensing can be perturbed externally, either by genetic or 

pharmacological manipulation.  Our analysis of Sec. 4.5 suggests that the qualitative 

results of such perturbations will depend on their effects on the strengths of positive 

feedbacks and on depletion of translocating molecules.  Thus, investigating transitions in 

cellular behavior as a particular biochemical interaction is perturbed might further 

characterize its role in the network of interactions that regulates cellular gradient sensing.   

 

4.6.6 Homeostasis, population distributions and transitions during development 

The qualitative features of our model variants exist for a range of parameter values, as 

illustrated by our analysis of the parameter-space surfaces of Sec. 4.5.  In this way, we 

might think of the different Modes of gradient sensing represented by our model variants 
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as existing within volumes of parameter space and functioning efficiently within sub-

volumes.  These sub-volumes might have sharp boundaries and may be narrow with 

respect to variations of some combinations of parameters (the dependence of gradient 

sensing response on specific combinations of parameters was addressed in Sec. 3.5 as 

well).  Any given cell is continuously regulating its biochemical parameters.  Thus, a cell 

that makes use of a particular Mode of gradient sensing requires homeostatic mechanisms 

to maintain combinations of biochemical parameters within specific ranges. 

     As noted, the cells in a given population will have a distribution of biochemical 

parameters.  Further, transitions between qualitative behaviors in the parameter space of 

our model might depend on small changes in biochemical parameters.  Thus, we may 

further conclude that cells in a given population will demonstrate a range of qualitative 

behaviors. 

     Finally, cellular biochemical parameters change during development to accommodate 

changing needs.  For example, in response to starvation, Dictyostelium cells initiate 

changes in gene expression, that among other things, increase the concentration of 

receptors for cAMP on their surface, the concentration of Adenylyl Cyclase A (ACA, 

which is the protein that generates cAMP), and the concentrations of several PI3K 

isoforms that are relevant for 3'PI signaling in gradient sensing (36-38, 48).  Thus, 

observing transitions over time in the qualitative features of cellular gradient sensing 

responses could lead to deeper understanding of the roles played by the regulatory 

molecules that are involved.    
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4.6.7 Motivating new approaches to studying cellular behaviors 

In this dissertation, we have developed a quantitative model to analyze the potential 

function of 3'PI signaling in eukaryotic gradient sensing.  We have used this model to 

investigate a range of qualitative possibilities that are suggested by the generic features of 

PI signaling in cells.  The kinds of results that we have emphasized include: that 

qualitative differences in behavior can arise in systems that demonstrate different 

bifurcation in steady-state responses and that rely differently on spatial couplings; that 

comparisons of cellular behaviors near a threshold in the applied stimulus to elicit a given 

behavior can yield important information about the qualitative features of that behavior; 

that sharp transitions in qualitative behaviors can result as particular parameters are 

varied.  While the ideas that motivate these kinds of suggestions are commonplace in the 

physical sciences, their application is still in it infancy in the biological sciences.  Thus, 

there is tremendous opportunity for the development of new theoretical and experimental 

approaches for understanding the integrated functions of biological system. 
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Appendix A: Derivation of scaled model equation  
 

Here we present a complete set of unscaled equations representing the processes depicted 

in the biochemical scheme upon which our model is based.  This scheme, represented in 

Fig. 2.8 of the main text, is reproduced below in Fig. A.1.  Processes are numbered for 

easier correspondence with terms in the unscaled equations.  In deriving the scaled 

equations of the main text from unscaled equations, we make the following 

simplifications: concentrations of molecules whose spatio-temporal dynamics are not 

well characterized, but which are integral to the signaling network, are set to steady-state 

values with respect to our model variables (as discussed in Sec. 2.2.5 of the main text); 

concentrations whose dynamics do not directly concern us are held fixed.  This procedure 

simplifies our system of equations while capturing the structure of the biochemical 

scheme.  The connection between our unscaled and scaled equations could serve as a 

starting point for extending our analysis to include processes not explicitly modeled.   

     In our equations, linear kinetics have generally been assumed.  We first derive a set of 

six unscaled equations corresponding to the six scaled equations of the main text (Eqs. 

M1-M6 of Table 2.3).  A generalized notation, which we use to translate our biochemical 

scheme into differential equations, is discussed with our explanation of the first unscaled 

equation; this notation was introduced as well in Sec. 2.5.2a.  Equations representing the 

processes in Loop I of the biochemical scheme, which are set to steady state in our 

model, are given next.  We use the derived steady-state equations to write the 

concentrations of these molecules in terms of our model variables.  We then use these 

expressions to rewrite the first six unscaled equation, which correspond to our six scaled 

model equations, in terms of our model variables.  Parameters are grouped in  
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Fig. A.1.  Biochemical scheme.  Notation is as in Fig. 2.8 of the main text.  Reactions 
are numbered in correspondence to the process labels in the unscaled equations below. 
 

 

correspondence with the scaled model parameters of the main text.  Relationships 

between scaled and unscaled variables are given below in Table A.1, and relationships 

between scaled and unscaled parameters are given in Table A.2.  Discussions of the 

proposed biochemical mechanisms have been given in the main text (Sec. 2.3).   

 

Unscaled equations corresponding to the scaled equations of the main text 

We begin by writing unscaled equations corresponding to the six scaled equations in the 

main text (Eqs. 1-6 in Table 2.3 of Sec. 2.5.4).  To represent the processes regulating 
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PI(3,4,5)P3 dynamics on the membrane (abbreviated below, without ambiguity, as PIP3), 

we write following equation: 
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The function { }3P  represents biochemical processes that generate PIP3, and the 

function { }3D  represents processes that degrade PIP3.  Each biochemical process is 

represented in parentheses and labeled below the equation in correspondence with Fig. 

A.1.   Concentrations are denoted by strait brackets ('[ ]').  To represent an enzyme, EX, 

acting on molecule, Y, we use the notation, ( )[ ] [ ]XE Y .  Processes involving molecules 

whose dynamics are not calculated in our model (i.e. those whose concentrations are 

treated as fixed) are generally represented by the symbol ξ.  They are labeled with a 

prime (e.g. 1a'), but only included in Fig. A.1 if they do not make it more difficult to 

read.   In the main text, we have generally referred to these processes as constitutive (see 

Sec. 2.3.3d; their regulation is not included in our model.  They often occur in parallel 

with processes whose regulation is modeled (the corresponding unprimed processes).  

     Based on the above notation, we interpret the processes in Eq. A.1 that produce PIP3 

as follows: 1a - PI3K acting on PI(4,5)P2 bound to a transfer protein ( 2PI(4,5)P •PITP ); 

1a' - PI3K acting of free PI(4,5)P2; 1a'' - the constitutive action on PI(4,5)P2 of other 

PI3K isoforms that do not display the modeled translocation dynamics.  The processes 

that degrade PIP3 are interpreted as: 1b - dephosphorylation of PIP3 in the 3' position by 

PTEN (making it no longer a 3'PI); 1b' - conversion of PIP3 to PI(3,4)P2, through 
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dephosphorylation at the 5' position by a phosphatase such as SHIP (138).  Regulation of 

free PI(4,5)P2, of other PI3K isoforms, and of other phosphatases (such as SHIP), are not 

included in our model.  Thus, we have used the symbols 2 2(4,5) 3 / (4,5),  and PI P PI K PI P SHIP
+ + −ξ ξ ξ  

above in representing the processes involving these molecules.  PIP3 diffusion on the 

membrane is also included in Eq. A.1, and the spatial variable (X) is normalized so that 

the circumference of the cell is 1 (as in the main text). 

     To write a differential equation corresponding to Eq. A.1, we must choose an 

appropriate model to represent the chemical kinetics included in { }3P  and { }3D .  For 

simplicity, we have assumed linear kinetics (see Sec. 2.5.1).  That is, the concentration of 

each molecule involved appears linearly in our rate equation.  Thus, Eq. A.1 becomes: 
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We generally use the parameter κ+ to represent forward rate constants and κ- to represent 

backwards rate constants.  For simplicity, the same symbols used to represent constitutive 

processes in Eq. A.1 (ξ) appear as parameters relating to those processes in Eq. A.1'.  The 

parameters ξ in Eq. A.1' can be considered combinations of rate constants and 

concentrations of molecules whose regulation we have not modeled.  For example, we 

might think of 
2(4,5)PI P

+ξ  as being proportional to [PI(4,5)P2], 23 / (4,5)PI K PI P
+ξ  as proportional 

to the concentrations of other PI3K isoforms and to [PI(4,5)P2], and SHIP
−ξ  as proportional 

to [SHIP]. 
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     To represent the processes regulating PI(3,4)P2 dynamics on the membrane, we write 

following equation: 
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The notation used is as in Eq. A.1.  The represented processes that produce PI(3,4)P2 are: 

2a - conversion of PIP3 to PI(3,4)P2 by a phosphatase such as SHIP (an analogous 

degradation process appears in Eq. A.1);  2a' - constitutive production by other 

biochemical pathways.  Processes that degrade PI(3,4)P2 are; 2b - dephosphorylation at 

the 3' position by PTEN; 2b' - constitutive dephosphorylated at the 4' position by other 

phosphatases.  We assume that the scaled diffusion coefficient is the same for PI(3,4)P2 

and PIP3.  As with Eq. A.1, we assume linear kinetics to describe the processes in Eq. 

A.2, and derive the following differential equation:    
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   Unscaled equations for the dynamics of PI3K on the membrane were derived as an 

example in the main text (Sec. 2.5.2).  This example is repeated here.  We write 

following equation to represent the processes regulating PI3K dynamics on the 

membrane: 
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As in the main text, subscripts m/c denote membrane bound/cytosolic.  Membrane bound 

PI3K is assumed to be active.  The represented processes that recruit cytosolic PI3K 

(PI3Kc) to the membrane are: 3a - recruitment by ligand-activated receptors and HTGs 

(R); 3a' - constitutive recruitment.  Process 3b represents removal of PI3K from the 

membrane by phosphorylation.  We assume that PI3K is phosphorylated by an 

unidentified kinase that is constitutively on the membrane, and that this phosphorylation 

is regulated by an unidentified molecule A, as proposed in the main text (Sec. 2.3.3b).  

Diffusion of proteins along the membrane is not included. 

     The following mechanism accounts for a form of { }KD  that corresponds to the form 

in Eq. M.3 of the main text (Table 2.3).  We assume that A binds to PI3K on the 

membrane, and prevents PI3K phosphorylation.  We further assume that A translocates to 

the membrane in response to 3'PI production.  The following equations, assuming linear 

kinetics, describe the dynamics of molecule A on the membrane and its complex with 

PI3K (Am·PI3K m): 
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where [ ] [ ] [ ]3 23 PI PIP PI(3,4)P′ ≡ + .       (A.3c) 

In Eq. A.3a, cytosolic A (Ac) binds to 3'PIs on the membrane (1st term) and 

spontaneously returns to the cytosol (2nd term).  We assume that the interaction of A and 

PI3K is limited by the amount of PI3K on the membrane, rather than the amount of A.   

Thus, the 1st term in Eq. A.3b represents production of the complex Am·PI3K m due to 
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interaction of Am with PI3K on the membrane that is not already bound to A (PI3Km – 

Am·PI3K m).  The complex also spontaneously dissociates (2nd term).  Because the 

properties of molecule A are unknown, we simplify our analysis by setting the LHS of 

Eqs. A.3a and A.3b to zer0 and expressing the concentration of the complex, [Am·PI3Km], 

in terms of model variables (see discussion in Sec. 2.2.5).  We find: 
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,  and we have further assumed that only a small fraction of A 

translocates to the membrane (Ac ~ constant).  Thus, the fraction of PI3K on the 

membrane, which is not bound to molecule A and is free to return to the cytosol, is given 

by: 
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Thus, if we assume linear kinetics to describe the processes represented in Eq. S1.3, and 

use Eqs. S1.3e, the following differential equation results: 
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The form obtained for process 3b describes PI3K phosphorylation with rate constant, K
−κ , 

of the fraction of PI3K on the membrane not bound to molecule A.  The concentration of 

the unidentified kinase that phosphorylates PI3K, which is assumed to be constant on the 

membrane, has been absorbed in the rate constant, K
−κ .  This form captures the feedback 

represented by Loop II, as discussed in the main text.    
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     The following equation represents conservation of total PI3K, and is used to eliminate 

[ ]cPI3K  from Eq. A.3': 

[ ] [ ] [ ] [ ]
1

0 c c m0
PI3K PI3K PI3K * PI3Kcell cell cellA A A dX= + + ∫ .   (A.3'') 

[PI3K0] is the total PI3K in our assumed 2-d cell, divided by the area of the cell, (Acell) 

where we have assumed that cytosolic molecules are uniformly distributed (e.g. 

[ 3 *]c cellPI K A  is the total PI3K that is cytosolic and phosphorylated).  In units where the 

circumference is of the cell is 1, Acell = 1/4π. 

     We represent the processes that regulate the PTEN phosphatase on the membrane with 

the following equation: 
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Cytosolic PTEN (PTENc) is spontaneously recruited to the membrane (4a).  PTEN is 

removed from the membrane through PI3K mediated phosphorylation (4b), as well as 

spontaneously (4b').  These processes lead to the following differential equation for 

PTEN on the membrane: 
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The parameter, Tξ , is the ratio of the rate constant for spontaneous PTEN return to the 

cytosol to the rate constant for PI3K-mediated phosphorylation.  Possible PTEN 

anchoring to the membrane by PI(4,5)P2 (182) is not included, though we might imagine, 

for example, that the rate constants in Eq. A.4' depend on [PI(4,5)P2].  In this way, our 
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model could be extended to include this regulation.  The following relationship expresses 

conservation of total PTEN, and is used to eliminate [PTENc] from Eq. A.4': 

[ ] [ ] [ ] [ ]
1

0 c c m0
PTEN PTEN PTEN * PTENcell cell cellA A A dX= + + ∫ .   (A.4'') 

As in Eq. A3'', [PTEN0] is the total PTEN in our 2-d cell, divided by its area. 

     To represent the processes that regulate the concentration of phosphorylated inactive 

PTEN in the cytosol (a '*' denotes a catalytically inactive phosphorylated state in our 

equations), we write the following equation: 

[ ] [ ] [ ]( ) [ ]( )1c
* m m * c0

PTEN *
PI3K PTEN PTEN *

55

{ } { }T TdX
t

ba

∂
= −

∂ ∫ ��	�
�����	����

P D .  (A.5) 

We have assumed that the cytosol is uniform and exchanges material with the entire 

membrane (that is, cytosolic diffusion effectively occurs infinitely quickly in our model).  

Thus, process 5a represents PI3K-mediated phosphorylation of PTEN over the entire 

membrane.  An analogous degradation process appears in Eq. A.4.  Process 5b represents 

unregulated dephosphorylation of PTEN in the cytosol by unspecified phosphatases.  

Equation A.5 gives rise to the following differential equation: 

[ ] [ ][ ] [ ]
1c

m m * c0

PTEN *
PTEN PI3K / PTEN *

55
T cell TdX A

t
ba

− −∂
= −

∂ ∫ ���	��
�������	������

κ κ .   (A.5') 

A loss term analogous to 5a appears in Eq. A.4'.  If another phosphatase is required for 

PTEN dephosphorylation (process 5b), its concentration is included in the rate constant, 

*T
−κ .  Eq. A.5' does not depend on X.  

     The following equation represents the processes regulating cytosolic phosphorylated 

PI3K, which is catalytically inactive and uniformly distributed in our model: 
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[ ] [ ] [ ]( ) [ ]
[ ]

1c c
* m *0

c *

PI3K * PI3K *
, PI3K

PI3K *
6

6

{ } { }K K
K

A dX
t a

a
b

 ∂
= −   ∂ + 

∫����	���
 ����	���

P D .  (A.6) 

Process 6a represents PI3K phosphorylation over the entire membrane, and is analogous 

to process 3b in Eq. A.3.  Process 6b represents PI3K dephosphorylation in the cytosol by 

an unspecified phosphatase, with Michalis-Menten kinetics.  The constant, aK*, is 

assumed small, such that this reaction is saturated.  This condition leads to perfect 

adaptation in our model, as discussed in the main text (Secs. 2.5.3d and 2.5.5).  Equation 

A.6 leads to the following differential equation: 

[ ] [ ]
[ ]

[ ]
[ ]

1c m c
*0

c *

PI3K * PI3K PI3K *
/

3 PI / 1 PI3K *
6 6

K cell K
AK K

dX A
t a

a b

− −∂
= −

′∂ + +∫
������	�����
 ����	���

κ κ

κ
.   (A.6') 

Term 6a is analogous to term 3b in Eq. A.3'.  The rate constant, *K
−κ , includes the 

concentration of the relevant phosphatase that dephosphorylated PI3K.   

     Equations A.1' – A.6' are unscaled versions of the six scaled equations that comprise 

our model (Eqs. M.1-M.6 of Table 2.3).  Below we give equations for the elements of 

Loop I (Fig. A.1), which are set to steady-state in deriving our scaled equations. 

 

Unscaled equations for processes in Loop I that are set to steady-state.  

To describe the processes in Loop I that are set to steady-state in our model, we directly 

write differential equations, assuming linear kinetics, rather than first representing 

production and degradation processes symbolically.  Terms are still labeled in 

correspondence to the processes in Fig. A.1. 
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     For the concentration of PI(4,5)P2 that is bound to a transfer protein 

([ ]2PI(4,5)P •PITP ) we write the following differential equation: 

[ ]

[ ][ ] [ ]( ) [ ]( )

[ ][ ] [ ]

2

m m

3 m 2 2

PI(4,5)P •PITP

   PITP•PIP PIPK PA gP•GTP

7
   PI3K PI(4,5)P •PITP PI(4,5)P •PITP .

7 7

PITP non PA non gP

competitive

t

a

b b

+
− −

+

∂
=

∂
+ +

− −

′

�������������	������������


������	�����
 �����	����


κ ξ ξ

κ ξ

   (A.7) 

 

In Eq. A.7, the first term (7a) represents small GTPase-regulated production of PI(4,5)P2 

bound to a PI transfer protein (PITP).  We assume that PI(4')P is already bound to the 

PITP on the membrane ( PITP•PIP ).  A PI(4)P 5'kinase (PIPK) acts on this PI(4)P to 

produce 2PI(4,5)P •PITP .  Phosphatidic acid (PA) and small GTPases of the Arf and Rho 

families (in the GTP state, denoted mgP•GTP , which is membrane-bound), are known to 

enhance this reaction (183, 184).  The parameters, non PA−ξ  and gnon P−ξ  represent activity 

which is independent of PA and gP, respectively.  Regulation by small GTPases is the 

most essential feature of Loop I, while regulation of the other molecules involved does 

not play as clear a role.  Thus we simplify our system by setting: 

[ ]
[ ]
[ ]

     PITP•PIP constant

     PIPK constant

     PA constant.

=

=

=

        (A.7') 

Terms 7b and 7b' in Eq. A.7 represent loss of 2PI(4,5)P •PITP due to action of PI3K and 

to other competitive processes that make use of PI(4,5)P2, respectively.  
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     The dynamics of membrane-bound, activated small GTPase, are described by the 

following equation:   

[ ] [ ][ ] [ ][ ]m
m m m

gP•GTP
gP•GDP GEF GAP gP•GTP

8 8
gP T gP Tt

a b

+ −∂
= −

∂ i i�����	����
 �����	����

κ κ .   (A.8) 

The first term in Eq. A.8 (8a) corresponds to a GTP exchange factor (GEF) catalyzing the 

exchange of GDP for GTP in the GTPase, stabilizing its association with the membrane.  

Term 8b corresponds to hydrolysis of GTP by the GTPase, catalyzed by a GTPase 

activating protein (GAP).  This destabilizes the GTPase's association with the membrane.  

We do not model GAP dynamics, which often depends on PIP(4,5)P2 (150).  Thus, we 

set: 

[ ]GAP constant= .         (A.8') 

     We assume that the GTPase weakly associates with the membrane in the GDP state, 

before nucleotide exchange is achieved.  This is described by the following equation:  

[ ] [ ] [ ][ ] [ ]m
c m m m

gP•GDP
gP GDP gP•GDP GEF gP•GDP

9 9 9
gP D gP T gP Dt

a b c

+ + −∂
= − −

∂ i i ii
���	��
 �����	����
 ���	��

κ κ κ . (A.9) 

The production term in Eq. A.9 (9a) represents unregulated translocation of cytosolic 

GTPase (in the GDP state) to the membrane.  Term 9b represents nucleotide exchange in 

the GTPase (which was included as term 8a in Eq. A.8); term 9c represents unregulated 

return of the GTPase to the cytosol.  If only a small fraction of the GTPase associates 

with the membrane, we have the relationship: 

[ ]cgP GDP constant=i .        (A.9') 

     The dynamics of the exchange factor (GEF), required for nucleotide exchange in the 

GTPase, are described by the following equation:  
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[ ] [ ][ ] [ ]m
c m

GEF
GEF 3 PI GEF

10 10
GEF GEFt

a b

+ −∂
′= −

∂ ����	���
 ��	�
κ κ ,  `   (A.10) 

[ ] [ ] [ ]
1

c 0 m0
where GEF ( GEF GEF ) /cell cellA dX A= − ∫ .          (A.10') 

The first term in Eq. A.10 (10a) represents 3'PI-induced translocation of cytosolic GEF to 

the membrane.  Return to the cytosol is unregulated (10b).  Total GEF (GEF0) is 

conserved, and this is used to eliminate GEFc from our equations (Eq. A.10').  This 

completes the set of unscaled equations for our model. 

 

Steady-state solutions 

Here we present steady-state solutions to Eqs. A.7 – A.10.  The LHS of these equations 

are set to zero and the represented concentrations are expressed in terms of our model 

variables. 

     If we set Eq. A.10 to steady state, and use relationship A.10', we find: 

[ ] [ ] [ ]
[ ]
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      (A.11) 

Setting Eq. A.9 to steady state, we find: 
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κ κ

κ κ κ

       (A.12) 

   Setting Eq. A.8 to steady state, and using Eqs. A.11 and A.12, we find: 
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  (A.13) 

Finally, setting Eq. A.7 to steady state, and using Eq. A.13: 

[ ]

[ ]
[ ] [ ]
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[ ][ ] [ ]
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  (A.14) 

Eq. A.14 effectively includes the feedback in Loop I without explicitly including many 

of the molecules involved, whose dynamics are not well characterized.   

 

Correspondence to scaled equations: 

Now, we insert Eq. A.14 into Eq. A.1', and rewrite Eqs. A.1' – A.6' in terms of our model 

variables (see Table A.1).  Parameters are grouped to correspond with the presentation of 

the scaled equations in the main text. 
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Substituting the scaled parameters of Table A.2 below into Eqs. A.15-A.20, one obtains 

the scaled model equations of the main text (Eqs. M.1-M.6 of table 2.3).  Note, that the 

expressions for the scaled parameters in Table A.2 make use of the definitions in Eqs. 

A.11-A.15. 
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Table A.2: Definitions of scaled parameters  
Parameters Definition 

3χ  
3 0PI3KPITP cellV A+κ     

3κ  0PI3K/PITP cellAκ     

mκ  03 PI/gP T ′κ   i  

cκ  03 PI/GEF ′κ     

PITPζ  03 PI/non gP− ′ξ     

3/ PITPζ  
24 5 03 PI( , ) /PIP P PITPV+ ′ξ     

3ζ  
23 4 5 03 PI/ ( , ) /PI K PIP P

+ ′ξ     

3λ  
3 0PTENcellA−κ     

3/Tζ  
0PTEN/SHIP cellA−ξ     

2ζ  
2 03 PI/other
+

− ′ξ     

2λ  
2 0PTENcellA−κ     

2 /Tζ  4 0PTEN/phosphatase cellA−
′ξ     

Kχ  
K R
+κ ξ  

R       RξR/  

Kλ  K
−κ  

Kκ  03 PI/AK ′κ     

Tχ  
T
+κ  

Tλ  
0PI3KT cellA−κ     

Tζ  0PI3K/T cellAξ     

*Tλ  
*T

−κ  
*Kλ  

0PI3K* /K cellA−κ     

*Kκ  0PI3K* /K cella A     

Table A.1: Definitions of scaled 
variables  
Scaled 
variable 

Definition 

P3 [PIP3]/(κgP·T+κGEF) 
P2  [PI(3,4)P2]/(κgP·T+κGEF) 
Pn  P3 + P2 
Km [PI3Km]/Acell[PI3K0] 
Kc* [PI3Kc*]/Acell[PI3K0] 
Tm [PTENm]/Acell[PTEN0] 
Tc [PTENc*]/Acell[PTEN0] 
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Appendix B: Setting parameters 

 
Most of the parameters used in our model have not been measured directly.  Further, it is 
not clear how to quantitatively relate in-vitro data to processes occurring inside of cells, 
where multiple interactions and complex geometries exist.  For these reasons, most of our 
parameters have been set empirically, principally to give characteristic responses seen in 
Dictyostelium (see Sec. 2.6 of the main text).  Values of most parameters are the same for 
all of our model variants, but, as discussed in the main text, several were adjusted 
separately to generate the qualitative differences which distinguish our model variants 
(see Sec. 2.7).  Below we give the values of our model parameters, together with the 
procedure that we followed in setting them, indicating relevant data from the literature 
where ever possible.  The resulting uniform initial condition for each variant, before 
stimulation, is also given. 
 
 
   Combinations of parameters which determine the uniform steady-state response of the 
amplification module at fixed γ (Eqs. M1-M5 of Table 2.3), as depicted by the solid 
curves in Fig. 3.2 of Sec. 3.3, were set first.  Here we list them, together with 
considerations that suggest their approximate values.  Their specific values are given in 
the tables below.  The meanings of individual parameters are given in Table 2.4 of the 
main text. 
 
ζPITP, ζ3/PITP, ζ3/χ3κ3 (<< 1):  These are ratios of unregulated to regulated PIP3 production.  
They are set to be small so that a large increase in PIP3 production occurs upon cellular 
stimulation (139).  The following observations suggest that constitutive production plays 
a role secondary to that regulated by the molecules considered in our model: in 
permeabilized neutrophils there is a ~10X increase in stimulated PIP3 production when 
PITP and PI3Kγ are added (153); in HL60 cells treated with the Rho GTPase inhibitor, 
Clostridium difficile toxin B, translocation of 3'PI specific PH domains is not observed 
(102).   
 
ζ2/λ2ζ2/T (<< 1): This ratio determines the concentration of PI(3,4)P2 on the membrane in 
the absence of PIP3 and PTEN.  As above, this is set to be small so that there is only a low 
level of PI(3,4)P2 generated by unregulated processes, allowing for a large increase upon 
cellular stimulation (139). 
 
ζT + χT/AcellλT (~0.01): This is the scaled concentration at which PI3K begins to affect 
PTEN concentration on the membrane.  For PI3K-mediated inactivation of PTEN to 
contribute to feedback-enhanced PIP3 production upon cellular stimulation, this quantity 
should be set equal to or smaller than the scaled concentration of membrane-associated 
PI3K in the unstimulated cell.  The baseline fraction of PI3K on the membrane was set to 
be a few percent, as most PI3Kγ is cytosolic in resting neutrophils (153).   
 
κ3 (~0.05 - 0.1): Amount/fraction of PI3K on the membrane that begins to saturate 
available PITP.  This should be of the same order, or greater than, the scaled PI3K 
concentration on the membrane in a stimulated cell, if the feedback in Loop I is to be 
effective.  Since PI3K translocation seems to parallel PIP3 production upon cellular 
stimulation, we expect the peak membrane-bound fraction PI3K to be on the order of 5-
10X baseline, or on the order of 10% of the total PI3K (132, 140). 
 
(1 – AcellT*t=0)χT/AcellλTζ3/T, (1 – AcellT*t=0)χT/AcellλTζ2/T (~0.03 - 0.1): Scaled PI3K 
concentrations at which action of PTEN on PIP3 and PI(3,4)P2 is substantially inhibited, 
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respectively.  These quantities should be greater than the scaled baseline PI3K 
concentration on the membrane for PI3K inactivation of PTEN to enhance the effects of 
Loop II.  (1–AcellT*t=0)χT/AcellλTζ2/T should be greater than (1–AcellT*t=0)χT/AcellλTζ3/T, as 
well.  This means that in our model, PI3K affects the action of PTEN on PI(3,4)P2 over a 
larger range of concentration than on PIP3; indeed, there is evidence to suggest that 
PTEN action on  PI(3,4)P2 might be more important than on  PIP3 (140). 
 
λ3ζ3/T /λ2ζ2/T (~5 - 10): Ratio of rates of PTEN independent dephosphorylation of PIP3 to 
PTEN independent dephosphorylation of PI(3,4)P2.  This quantity should be large to 
account for the observation that in Dictyostelium, if PTEN is knocked out, PIP3 is 
degraded almost normally while PH domains translocation is prolonged upon uniform 
stimulation.  This suggests that degradation of another 3'PI besides PIP3 (probably 
PI(3,4)P2) has been perturbed in these cells, and that PTEN is essential for degradation of 
PI(3,4)P2  (140); i.e. that the actions of phosphatases other than PTEN on PIP3 are more 
important than they are on PI(3,4)P2. 
 
χ3κ3/λ3ζ3/T (>1): Sets the strength of Loop I.  This quantity can be interpreted as the ratio 
of rates of PIP3 production to degradation in the stimulated cell.  It should be set such that 
the feedback in Loop I becomes activated at scaled PI3K concentrations a little above the 
baseline state of the cell. 
 
κK (~1-5): Pn at which 3'PI inhibition of PI3K return to the cytosol becomes significant.  
This quantity controls the effectiveness of Loop II and should be of order 1 if Loops I 
and II are to be activated simultaneously upon cellular stimulation.  This was adjusted to 
control the amount of non-linearity in response amplification in defining our model 
variants.  Smaller κK means more non-linearity in amplification.   
 
γ0 (~0.01): This quantity is equal to ( )1 // K+m nK P κ  in the uniform, unstimulated cell, 
and sets the baseline state.  It should be of order 0.01 if only a few percent of total PI3K 
is to be membrane bound in the resting cell.  Larger γ0 means more PI3K, and hence 
more 3'PI, on the membrane in the unstimulated cell. 
 
 
   To analyze the 'fixed average' response of the amplification module (long-dashed 
curves in Fig. 3.2 of the main text), we further specified the following quantities: 
 
AcellK*t=0 (~0.5):  A higher fraction of phosphorylated PI3K results in faster adaptation 
dynamics for a given set of values for other parameters.  Kc* increases as the cell adapts 
to a uniform stimulus.  We were not able to find good estimates of the faction of PI3K 
that is phosphorylated in resting cells of the types considered, and chose a value 
intermediate between 0 and 1 for our simulations.  This quantity was not chosen too close 
to 1, so that depletion of cytoplasmic PI3K would not be very significant upon cellular 
stimulation.   
 
AcellT*t=0 (~0.5):  The fraction of phosphorylated PTEN in resting cells could not be set 
too high, in order to achieve ~5-10% of PTEN on the membrane (137) for the chosen 
values of other parameters.  As with PI3K, we could not find good estimates of the 
fraction of phosphorylated PTEN in resting cells of the types considered, and chose a 
value intermediate between 0 and 1 for our simulations. 
 
( ) ( )/ / /cell cellT T T T TA Aχ λ χ λ + ζ  (~0.5 - 1.0): This is the fraction of unphosphorylated PTEN 
that would be on the membrane in the absence of PI3K.  Since other parameters are set 
such that PI3K already inhibits a substantial amount of PTEN from binding to the 
membrane, this quantity should be set close to 1. 
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κc (~1 - 10): This parameter sets the scaled 3'PI concentration at which cytosolic 
depletion begins to saturate the amplification that results from activating Loop I upon 
cellular stimulation.  We adjusted κc, in defining our model variants, to control the 
importance of translocating molecules in amplifying responses to gradients.  Larger κc 
(smaller 1/κc) means that translocating molecules are less important in response 
amplification for typical Pn values. 
 
     Based on the above considerations, we chose values for the above mentioned 
quantities, as given in Tables B.1 and B.2, below. 
 

 
 

 
Specifying the quantities in Tables B.1 and B.2 sets the initial values for our model 
variables in the uniform, unstimulated cell.  These are given in Table B.3.  

 
Tables B.2 and B.3 were given in the main text as Tables 2.6 and 2.6 respectively. 
 
Finally, several dynamic parameters were set.  These parameters were set to the same 
value for all model variants, and are given in Table B.4, together with considerations in 
setting them.  
 
 

Table B.1.  Quantities that are the same for all model variants 
Quantity Value Quantity Value 
ζPITP 0.025 (1 – AcellT*t=0)χT/AcellλTζ3/T 0.03 
ζ3/PITP 0.025 (1 – AcellT*t=0)χT/AcellλTζ2/T 0.08 
ζ3/χ3κ3 0.05 λ3ζ3/T /λ2ζ2/T 5.0 
ζ2/λ2ζ2/T 0.05 χ3κ3/λ3ζ3/T 3.0 
ζT + χT/AcellλT 0.01 AcellKc*t=0 0.5 
κ3 0.05 AcellTc*t=0 0.5 
  ( ) ( )/ / /T cell T T cell T TA Aχ λ χ λ + ζ  0.8 

Table B.2.  Parameters which define the model variants
Parameter Case 1 Case 2 Case 3 Case 4 
κK 1.3 5.5 0.95 4.0 
κc 6.7 1.38 5.0 1.25 
γ0 0.014 0.037 0.011 0.028 

Table B.3.  Steady-state, uniform profile for each variant before stimulation 
Variable Case 1 Case 2 Case 3 Case 4 
P3 0.38 1.16 0.19 0.85 
P2 0.60 2.82 0.25 1.78 
Pn (=P3+P2) 0.98 4.0 0.44 2.63 
Km 0.025 0.064 0.016 0.046 
Tm 0.1 0.054 0.15 0.071 
AcellKc* 0.50 0.50 0.50 0.50 
AcellTc* 0.50 0.50 0.50 0.50 
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The above quantities specify the complete set of parameter values for our model, which 
are given in Table B.5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table B.4.  Remaining dynamic parameters
Parameter Value Considerations in setting 
λ3 15.0 λ3(Tm+ 3/Tζ ) gives the rate constant for PIP3 degradation, which 

should be  
> 1 s-1 so that transient PIP3 production and PI3K translocation to 
the membrane happen almost simultaneously in response to 
uniform stimuli (132), and in order to stabilize polarized responses 
against diffusion.   λ3 adjusts the diffusion length in our model (see 
'Model Characterization' in the main text).   

λKκK 4.0 λK sets the adaptation time in response to uniform step stimuli.  
This was set empirically (as our system is highly non-linear) to 
give typical time courses seen in Dictyostelium, with adaptation 
times on the order of ~25 s (132). 

λT 30.0 λT(Km+ Tζ ) gives the rate constant for PTEN removal from the 
membrane, which should also be > 1 s-1 so that transient PTEN 
translocation from the membrane follows PI3K translocation to the 
membrane in response to uniform stimuli, with a slight lag (132) 

κK* 0.013 << Kc* for perfect adaptation (see main text). 
D 0.003 This corresponds to a diffusion coefficient of ~2 µm2/s in a cell of 

radius of ~4 µm.  This is higher than some measured values (52) by 
a factor of  approximately 2, because we have only considered 1-D 
diffusion rather than 2-D. 
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Table B.5. Model parameters  
Parameter Case 1 Case 2 Case 3 Case 4 

3χ  120.0 120.0 120.0 120.0 

mκ  1.18 3.64 1.25 5.0 

cκ  6.7 1.38 5.0 1.25 

PITPζ  0.025 0.025 0.025 0.025 

3κ  0.05 0.05 0.05 0.05 

3/ PITPζ  0.025 0.025 0.025 0.025 

3ζ  0.3 0.3 0.3 0.3 

3λ  15.0 15.0 15.0 15.0 

3/Tζ  0.13 0.13 0.13 0.13 

2ζ  0.02 0.02 0.02 0.02 

2λ  8.0 8.0 8.0 8.0 

2/Tζ  0.05 0.05 0.05 0.05 

Kχ  0.0074 0.0049 0.0076 0.005 

Kλ  3.2 0.73 4.2 1.0 

Kκ  1.3 5.5 0.95 4.0 

Tχ  0.019 0.019 0.019 0.019 

Tλ  30.0 30.0 30.0 30.0 

Tζ  0.002 0.002 0.002 0.002 

*Tλ  0.17 0.21 0.15 0.20 

*Kλ  0.55 0.34 0.58 0.35 

*Kκ  0.013 0.013 0.013 0.013 
D = 0.003 
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Appendix C: Equivalence of stability criteria in the full and 'reduced'  
  models 
 

Here we demonstrate the equivalence of stability conditions for uniforms steady-state 

solutions to the equations of the 'full' (Eq. M.1-M.6 of Table 2.3) and the equations of the 

'reduced' model, where other model variables are set to steady-state values with respect to 

the variables, Pn and γ.  This appendix makes use of the terms and equations developed in 

Secs. 3.3.3 and 3.4.2. 

  
     The condition for a uniform solution of the 'full' model to be linearly unstable to a 

perturbation of wave number j is that there exists a solution to Eqs. 3.9' – 3.14' with σj > 0 

(see main text, Sec. 3.4.2).  The corresponding eigenvector can be used to find a 

perturbation with positive linear growth in the 'reduced' model, where we replace σ by 0 

in Eqs. 3.10' – 3.13'.  To see this, consider a solution to Eqs. 3.9' – 3.14' with positive 

growth rate for the full model, which we represent by the vector 

( )ˆ ˆ ˆ ˆ ˆ ˆ= δ δj, f n, j, f 2, j, f m, j, f m, j, f 0, j c, f 0, j fU P , P , K ,T , T , γ
K

, where the subscript, 'f' denotes the 'full' 

model.  Of course, 0ˆ =fγ  in accordance with Eq. 3.14'.  We denote the positive linear 

growth rate of this solution by σj,f.  Now, fix ˆ
n, j, fP  and solve Eq. 3.10' – 3.13' with σj = 0.  

We can denote this solution as ( )0ˆ ˆ ˆ ˆ ˆ= δj,r n, j, f 2, j,r m, j,r m,0,r 0, j c,rU P , P , K ,T , T ,
K

 up to 

normalization; the subscript 'r' is used because we will see that this is a solution with 

positive growth rate for the 'reduced' model.  From Eqs. 3.10' – 3.13' it is clear that such a 

solution exists and that the following relationships hold:   

; ; ; ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2, j,r 2, j, f m, j,r m, j, f m, j,r m,0, f c,r c, fP > P K > K T > T T > T     (C.1) 

Thus, the RHS of Eq. 3.9' will be larger for the 'reduced' model solution than for the 'full' 
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model solution, and j,rU
K

 is an eigenvector for the 'reduced' system, with σj,r > σj,f.  

Therefore, instability in the 'full' model implies instability in the 'reduced' model.   

     The procedure outlined above can be inverted to obtain a solution for a growing 

perturbation in the 'full' model from a solution for a growing perturbation in the 'reduced' 

model.  If such a solution exists, fix ˆ
n, j,rP .  Now we can continuously increase a trial 

growth rate, σj,f*, from 0 to σj,r.  For each σj,f*, at fixed ˆ
n, j,rP , we solve Eqs. 3.10' – 3.13' 

(replacing σj  by σj,f*) for the other components of the perturbation.  As above, these are 

necessarily smaller than the components for the 'reduced' model, though their signs are 

the same.  If we plug these components back Eq. 3.9', the RHS becomes smaller as well, 

but its sign is maintained.  Then we can solve for a new growth rate in Eq. 3.9' ( ˆ
n, j,rP  is 

still fixed), which we denote σj,r*, and the relationship σj,r* < σj,r must hold.  This 

procedure can be iterated by continuously increasing σj,f*, and calculating a new σj,r*, 

which should be smaller than the previous value.  The iteration is continued until σj,r* = 

σj,f*.  At this point the growth rate, in the 'full' model, of a solution to Eqs. 3.9' – 3.14', 

has been found as σj,r* = σj,f* = σj,f.  By construction, 0, ,( , )j f j rσ ∈ σ  and should exist 

because solutions of Eqs. 3.9' – 3.14' vary smoothly with σj over this range, and they 

maintain their sign.  Thus, instability in the 'reduced' model implies instability in the 'full' 

model, and we conclude that stability conditions for both models are equivalent. 
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