n: &

MASTER IN HIGH PERFORMANCE
COMPUTING

Porting of DSMC to
multi-GPUs using OpenACC

Supervisor(s):

Gianluca Di Staso SUPERVISOR,

Ivan Girotto SUPERVISOR,

Sebastiano Fabio Schifano SUPERVISOR

Candidate:
Marco CELORIA

]t gprrion
2021-2022

" ' Master in
' High Performance

Abstract

The Direct Simulation Monte Carlo has become the method of choice for studying gas flows
characterized by variable rarefaction and non-equilibrium effects, rising interest in industry
for simulating flows in micro-, and nano-electromechanical systems.

However, rarefied gas dynamics represents an open research challenge from the computer
science perspective, due to its computational expense compared to continuum computational
fluid dynamics methods.

Fortunately, over the last decade, high-performance computing has seen an exponential
growth of performance. Actually, with the breakthrough of General-Purpose GPU
computing, heterogeneous systems have become widely used for scientific computing,
especially in large-scale clusters and supercomputers.

Nonetheless, developing efficient, maintainable and portable applications for hybrid systems
is, in general, a non-trivial task.

Among the possible approaches, directive-based programming models, such as OpenACC,
are considered the most promising for porting scientific codes to hybrid CPU/GPU systems,
both for their simplicity and portability.

This work is an attempt to port a simplified version of the fm_dsmc code developed

at FLOW Matters Consultancy B.V., a start-up company supporting this project, on
a multi-GPU distributed hybrid system, such as Marconil00 hosted at CINECA, using
OpenACC.
Finally, we perform a detailed performance analysis of our DSMC application on Volta
(NVIDIA V100 GPU) architecture based computing platform as well as a comparison with
previous results obtained with x64_86 (Intel Xeon CPU) and ppc64le (IBM Power9 CPU)
architectures.

Contents

(I__Introduction |

2 Direct Simulation Monte Carlo method for modeling rarefied gas flows|
[2.1 From the Boltzmann equation to hydrodynamics|.
[2.1.1 Conserved quantities and hydrodynamics|

[2.1.2 Splitting approach|o

2.2 DBasics of the DSMC methodl oo

[2.2.2 Streaming step|o
[2.2.3 Indexing and Communication steps|
[2.2.4 Collision step|
[2.2.5 Sampling and averaging flow properties|

3 GPU programming with OpenACC|

[3.1 Programming models|o L
[3.1.1 The CUDA programming model
[3.1.2 The OpenACC programming model|
4 on s wit pen
[4.1 Data Layout|.
[4.2 Streaming step|
[4.3 Indexing step|
[4.4 Communication step| L
[4.5 Collision step|
[4.6 Sampling step|
4.7 Validationl
6_Results|
[>.1 Strong scaling|
.2 Weak scalingl
6 Conclusions|

[A° AoS vs SoA: a toy-model example|

[Bibliography|

7

10
13
14
14
16
17
17
20

21
24
25
27

31
32
36
36
38
41
42
42

46
48
51

54

56

59

Chapter 1

Introduction

Over the last decade, heterogeneous systems, where general-purpose Central Processing Units
(CPUs) are supported by hardware accelerators, have become widely used for scientific
computing, especially in large-scale clusters and supercomputers.

There are two main reasons for this trend.

The first key factor, in the success of accelerators, is power efficiency, as performance per
watt has been playing a major role in the recent evolution of supercomputing technologies.
Remarkably, the Green500 (November, 2022) [I] shows that heterogeneous systems are
consistently the most energy-efficient ones.

The second key factor is the need to optimize larger and larger systems for certain specific
workloads, given the fact that scientific and industrial applications are combining different
technologies into complex work-flows, ranging from scientific simulations to data analytic and
machine learning [2].

Actually, at the time of writing, 7 out of 10 most powerful HPC systems, according to
Top500 list (November, 2022) [3], employ Graphics Processing Units (GPUs) accelerators,
highly parallel multi-core systems allowing efficient manipulation of large blocks of data.

In fact, GPUs were originally designed for acceleration of real time graphics in applications
such as video games, but it was then realized that their highly parallel computing power
could also be used for scientific computations or machine learning. In general, the use of
GPUs in non-graphical applications is known as General-Purpose Graphics Processing Unit
(GPGPU) programming,.

However, developing efficient, maintainable and portable applications for such hybrid

systems is in general a non-trivial task and several approaches are possible.
The first possibility is using a dedicated parallel computing platform such as Computed
Unified Device Architecture (CUDA), developed by NVIDIA since 2006 [4, 5]. Working
directly at the programming language level with an interface based on C/C++ results
in maximum flexibility, although there are some drawbacks, the most relevant ones being
portability and complexity.

As far as portability is concerned, CUDA-enabled GPUs are only available from NVIDIA.
As an open alternative to CUDA, the Open Computing Language (OpenCL) has been
developed since 2008 by the non-profit technology consortium Khronos Group [6].

However, from the complexity perspective, both CUDA and OpenCL are low-level
Application Programming Interfaces (APIs) and developing or porting programs to GPUs

within these frameworks may be difficult.

For these reasons, recent interest has been focused on directive-based approaches such
as OpenMP [7] and OpenACC [8, O], where, unlike low-level programming models,
the complexity is handled mainly by the compiler, allowing GPGPU programming to
non-CUDA /OpenCL experts. Such directives represent a useful tool to accelerate intensive
applications, significantly reducing the work required to port an existing code to any
accelerator platform, although generally limiting the performance of the GPU compared
to CUDA (see for instance [10]).

In this work, we focus on OpenACC, a programming standard for parallel computing
designed to simplify parallel programming of heterogeneous CPU/GPU systems. Developed
by Cray, CAPS, NVIDIA and PGI in 2012, it is currently maintained by the non-profit
OpenACC corporation.

Similarly to OpenMP, the programmer can annotate C, C+4 and Fortran source code
to identify the areas that should be accelerated using compiler directives. As a result,
GPGPU programming becomes, not only straightforward, but also portable across parallel
and multi-core processors.

In conclusion, OpenACC can be seen as a promising tool for developing or porting scientific
codes to hybrid CPU/GPU systems.

In this work, we present the OpenACC implementation of a Direct Simulation Monte Carlo
(DSMC) algorithm, a numerical method proposed by Bird [I1], 12, [13] for modeling rarefied
gas flows. Actually, the coarse-grained distribution of work across processors is effectively
handled via MPI, whereas the fine-grain parallelism is accelerated using OpenACC by
carefully designing the data structures and the algorithms to fully exploit the multi-GPUs
capabilities.

This thesis is outlined as following.

In Chapter 2] we introduce the standard approaches to rarefied gas modeling both from a
theoretical as well as numerical perspective, describing the DSMC model.

In Chapter we describe the GPGPU architecture and its massively data parallel
capabilities, including a review of two programming models, namely CUDA and OpenACC.
Then, in Chapter 4] we present the details of our DSMC implementation, focusing on the
algorithm we have designed and the main OpenACC directives we have used.

Finally, the results that we achieved are shown in Chapter |5, while the conclusions can be
found in Chapter [0}

The work presented in this document was performed as a training thesis of the Master in
High Performance Computing - MHPC, and supported by FLOW Matters Consultancy B.V.
fm, a start-up company originated from the Eindhoven University of Technology.

Chapter 2

Direct Simulation Monte Carlo
method for modeling rarefied gas flows

Fluid dynamics, describing the flow of fluids, liquids and gases, typically involves the
calculation of various macroscopic properties of the fluid, such as flow velocity, pressure,
density, and temperature, as functions of space and time.

By combing the conservation laws (conservation of mass, linear momentum and energy) with
a continuum assumption (valid on length scales much greater than the inter-atomic distances)
and the thermodynamic equation of state (relating pressure, temperature and density), these
slowly-varying macroscopic properties are well-defined at infinitesimally small points in space
and vary continuously from one point to another.

Under the further assumption that the flow velocity is small compared to the speed of light
and after specifying a constitutive law for the stress tensor, the dynamics of the fluid is
described by a non-linear set of differential equations, called Navier-Stokes equations.

Such equations do not have a general closed-form solution, and are mainly solved using
computational fluid dynamics.

However, the situation changes completely for rarefied gas flows, where the mean free
path of a molecule is of the same order (or greater) than a representative physical length
scale. In this case, the continuum assumption of fluid dynamics might not be valid, and the
Navier-Stokes equations can be inaccurate.

To be more precise, we can introduce the Knudsen number (Kn), a dimensionless number
defined as the ratio of the molecular mean free path length A to a representative physical
length scale L

Kn = — (2.1)

where L is defined taking into account the overall dimensions of the flow, e.g. the height of
a channel, or according to the macroscopic flow gradients

Q

L= —_—%
|dQ/dt| °

(2.2)

where () might be chosen as the gas density, velocity, temperature, or other hydrodynamic
quantities and ¢ is the smallest hydrodynamic length scale.
According to the Knudsen number, we can classify the gas flows into the continuous or

hydrodynamic (Kn < 0.01), slip (0.01 < Kn < 0.1), transition (0.1 < Kn < 10) and free
molecular (Kn > 10) regimes, see Figure

0<=Kn 0.1 1 10 100 Kn = oo

S o‘osgzoo A ;

Figure 2.1: Visual representation of flows at different levels of rarefaction, with the associated
Knudsen number [14].

The Navier-Stokes equations are valid for Kn < 0.1 that is the hydrodynamic as well as
the slip regime (using specific slip boundary conditions).

However, for Kn > 0.1 the continuum assumption does not hold and we need to rely on
kinetic equations (such as the Boltzmann, Enskog or the collisionless Boltzmann equation
for free molecular flow). For a comprehensive treatment of the subject see [13] 15, [16].

Such discrete particles methods are typically studied numerically within Molecular Dynamics
(MD) simulations by solving Newton’s equations of motion for a system of interacting
particles, where forces between the particles and potential energies are often calculated using
interatomic potentials or molecular mechanics force fields.

Note that quantum mechanical effects can be ignored if the dynamics of electrons are
so fast that they can be considered to react instantaneously to the motion of their nuclei
(Born-Oppenheimer approximation) and if de Broglie wavelength A = h/p (where h =
6.62607015 x 1073* m? Kg s™! is the Planck constant and p is the particle momentum)
associated to nuclei, which are much heavier than electrons, is substantially smaller than
the intermolecular distances a. Actually, we can estimate the de Broglie thermal wavelength
with

o S L. Y G WS (2.3)
T om T 2maz T 2 = \BmksT '

where kp = 1.380649 x 10~ m? Kg s~2 K™! is the Boltzmann constant.
As an example, for Argon gas (m = 6.63 x 10726 Kg) at T = 300 K, where the typical
inter-molecular distance is @ =4 A, we get A~ 0.1 A < 4 A.

Under these hypothesis, we can model the gas as a collection of N (of the order of
the Avogadro number, Ny, = 6.02214076 x 10%*) point-like objects interacting via an
intermolecular potential in a box of volume V' at temperature T and satisfying the Newton
equations of motion.

However, we are not typically interested in microscopic information such as the final
position or the velocity of each particle, but rather we are interested in macroscopic
observables obtained by statistical averages over microscopic degrees of freedom. For this
reason, such microscopic approach is not only computationally impracticable but also useless,
since what we are really interested in is the statistical behavior of a thermodynamic system
generally out-of-equilibrium, thus described by the Boltzmann equation.

2.1 From the Boltzmann equation to hydrodynamics

In this section we follow [17, 18] [19].

The Boltzmann equation can be derived by considering the probability distribution function
(pdf) fi to find a molecule of mass m at position r with momentum p = mv at time ¢.
More formally, consider a set of coordinates in a 6-dimensional phase space (r,p) =
(2,9, 2, Dz, Dy, 0-) €V C R? x R?, parametrised by time ¢ € [0, tqz]-

Then, the one-particle pdf f; at time ¢ is the non negative function such that

dN = fi(r,p,t) &Pr d’p = fi(r,p,t) dz dy dz dp, dp, dp. (2.4)

is the number of molecules which all have positions lying within a volume element d°r about
r and momenta lying within a momentum space element d*p about p, at time ¢.
Therefore, the fluid number density is defined as

e = [@' hilrp). 25

The average velocity of the particles is
u(r, 1) = / @'p 2 fi(r,p,t) = (v) . (2.6)
R3 m

Integrating over a region of position and momentum space V' C R? x R? gives the total
number of particles which have positions and momenta in that region

N = / d’r &°p fi(r,p,t) Vit . (2.7)
1%

Notice that, from the Liouville’s theorem, the streaming motion of the particles along the
trajectories connected with the external force field F(r,t), not due to other particles, satisfies

dfi _0f Ofidr; Ofidp;
dt ot Or; dt Op; dt =0, (2:8)

where we are using the convention that we sum over the repeated index.
However, taking also into account the forces acting between particles in collisions, we finally

get the Boltzmann equation
dfy dfr
— = = . 2.9
dt (ot coll ()
Let us focus on the collision term.

Consider a particle sitting at (r,p) in phase space and colliding with a particle at (r, ps).
After the collision, the resulting particles emerge with momenta p} and pj.

The details of the collision are captured by the scattering function w containing the
information about the dynamics of the process. Notice that any scattering which is invariant
under time reversal, parity and translational invariance must obey

w(p, P2|P}, Py) = w(P, P2|P}, Ph) - (2.10)

9

Now, the typical timescales involved in the problem are the time between collisions, 7, known
as the scattering time or relaxation time, and the time it takes for the process of collision
between particles to occur, 7..;, known as collision time. For dilute gas, we have

T L Teoll - (211)

In this regime, we can assume the molecular chaos hypothesis (Stosszahlansatz), that is
the velocities of colliding particles are uncorrelated as well as independent of position, and
multi-body collisions can be neglected.

Then, the collision term can be written as a momentum-space integral over the product of
one-particle distribution functions

(G) = [o2 0Bl) o) s,) — i))]
coll

(2.12)
=/meM@mmmmmmmwﬁmmmmmm

where p and py are the momenta of any two particles before a collision, p| and p} are the
momenta after the collision,

g = |p2 — p| = [P, — P (2.13)

is the magnitude of the relative momenta, and 1(g, () is the differential cross section.
Note that the Variable Hard Sphere (VHS) model is characterized by [20]

1(9,9) = Cag™™" (2.14)

where C,, is a positive constant. The Hard Sphere model corresponds to the case a = 1.

2.1.1 Conserved quantities and hydrodynamics

Recall that hydrodynamics describes the dynamics of systems that are in local equilibrium,
with density p(r,t), temperature T'(r,t) and velocity u(r,t) that vary slowly in space and in
time.
Actually, for macroscopic physical processes involving space-time scales much larger than
relaxation time 7 (and relaxation length), the only relevant long-wavelength variables are
those associated with conserved quantities, as non-conserved quantities will have typically
relaxed back to equilibrium. More precisely, conserved quantities are slowly varying variables
in “local equilibrium” that provide the background for fast relaxing non-conserved quantities
[21]. Remarkably, perturbations in conserved quantities can relax back to equilibrium only
by transports, see Figure [2.2]

Let’s see how hydrodynamics equations can be derived from the Boltzmann equation.
Consider a general function A(r, p) over the single particle phase space.
Integrating over the momenta, we define the average

1
n(r,t)

(At =~ | @ Alrp)filep.t). (2.15)

10

Figure 2.2: Relaxation of different types of excitations [21]. The grey dashed lines denote the
global equilibrium values and the orange lines denote values of perturbed quantities. In the
upper panel, perturbations in non-conserved quantities can relax back to equilibrium values
locally in a time of order of the relaxation time 7. In the lower panel, conserved quantities
can only relax through transports, i.e. excesses have to be transported to regions with deficits
to achieve equilibrium.

Notice that

n(r,t) (A(r,t)) =

s [A A0 = e A 210

Now, any local equilibrium distribution function, obeying the detailed balance condition

of
ACPDAr Y = ArAre) = (D) 0 e
coll
has the form of a Maxwell-Boltzmann equilibrium distribution function

local n(r7 t) m(v B u(r, t))2
N — 2.18
V) = T) O (2%pT(r, 1) (2.18)
where the number density n(r,t) (defined in Equation 2.5)), drift velocity u(r,?) (defined
in Equation and the temperature T'(r,t) are slowly varying over space and time. In
particular, the temperature 7'(r,t) of a non-equilibrium gas, in general, is defined by

. m
3k

From the Boltzmann equation, we get

0O p 0O 0 of
3 J— —_ . — - —_— — 3 _
/RdeA(r,p) (8t+m 8r+F 8p> fi(r,p,t) /RadpA(r,p)<at>co” . (2.20)

The function A(r,p) is a collisional invariant if

NN AN
/R?)dpA(,p)(at)cou 0. (2.21)

11

T(r,t) v —u(r,0)) . (2.19)

For collisional invariants, integrating by parts, throwing away boundary termsﬂ and using
the fact that A(r, p) has no explicit time dependence, we get

8815 d3pAf1+§ Sdgp%Afl—/de?’ 2. %f F-%flzo(zﬂ)
and so 9 0 A 0A

2 0+ 2t s 20 . %>:0. oz
Density

Now, consider the mass conservation. Substituting A = m in Equation [2.23] we get

dp 0 B
a—l-a-(pu)—o, (2.24)

where we have defined p(r,t) = m n(r,t).

Momentum

Similarly, for momentum conservation, setting A = mv in Equation [2.23] it is possible to get
the following expression
0 0
@(Pui) + or; (pvjvi) — (nkF;) = 0. (2.25)
Note that
p(vjvi) = p (v — u;)(vi — w;)) + pluiu; + uju; — uguy)

(2.26)
= p{(vj — uy)(vi —w)) + p wiuj = Pji + p wyu;

where we have defined the pressure tensor as P;; = p ((v; — u;)(v; — u;)).
Finally, using Equation and (F;(r)) = E(r) (since, by assumption, the force can depend
on position but not on momentum), we get

0 0 OP;
i = p Dyu; = i , 2.27
(aﬁ%&)“ p o or, (227)
where we have introduced the material derivative
0 0 0 0
D, = - - = o 2.28
ot tu or Ot T or; ()

capturing the rate of change of a quantity as seen by an observer swept along the streamline

of the fluid.

'Dropping boundary terms is justified because f; is normalized and so f; — 0 in asymptotic parts of
phase space

12

Kinetic Energy

The last collisional invariant is the kinetic energy of the particles. However, to simplify
calculations, we consider the relative kinetic energy.

Actually, substituting A = m(VT_")Z into Equation [2.23, we get

19
20t

)2 1 (v 12\ ,8uj a2\

(ol =) + ooty =) = o (0GP) =0, (229
since (v —u)=u—u=0and ((v—u)-0u/ot) = (v—u)-0u/dt =0.

Now, consider

1
mp (v;(v —u)?) = mp {(vi — w)(v —u)®) + =mpu; (v — u)?)
2 2 ; 2 (2.30)
= ¢+ §puikBT)
where we have used the out of equilibrium expression for the temperature (Equation [2.19))
and defined the heat flux as

mp

%= ((vi —w;) (v —u)?) . (2.31)

Then, Equation becomes the conservation of energy
an

30 0 3
——(pkpT) 4+ — | ¢ + =pu;kpT P,—=0. 2.32
A)+ari<Q+2p“ 5)+m i or, (232)
Finally, using Equation [2.24] we get
kgD, T + — -mU;;P;; =0, 2.33
prpli "‘38”“‘37713] ()
where the symmetric tensor U;; = % <g;f] + %) is known as the rate of strain.

As a concluding remark, notice that the set of Equations [2.24] 2.27, [2.33 are not closed
since the equation for p depends on u; the equation for u depends on P;; and the equation
for T" depends on q. The problem is that, to determine any of these, we need to solve the
Boltzmann equation and compute the distribution f;. How can we do this?

2.1.2 Splitting approach

In the framework of DSMC, to solve the full Boltzmann equation we use an operator splitting
algorithm scheme. Actually, the solution after one time step At can be obtained by the
sequence of two steps: a free flow step (i.e. streaming of the particles) in which we solve the
collisionless Boltzmann equation over a time interval At

ahl(r7vat) ahl(r7v7t) _
o VT (2.34)
hl(ra v, O) = f?(ra V))

13

and the collision step where we integrate the space homogeneous equation

8h2(r7 v, t) _
o Y

hg(r, Vv, 0) = hl(r, v, At) s

(2.35)

where () is the collision operator.
The final solution ho(r, v, At) after one time interval At represents an approximate form of
the solution of the Boltzmann equation, fi(r, v, At).

2.2 Basics of the DSMC method

In this section, we present the basis of the DSMC method, following [14], [13]. Specifically, we
focus on the classical method originally developed by Bird [13] known as No Time Counter
(NTC) algorithm, providing a good compromise between accuracy and efficiency. The typical
DSMC simulation flowchart is depicted in Figure 2.3]

However, within the DSMC framework, several schemes have been proposed, such as the
time counter [22], the majorant collision frequency [23] or the Bernoulli trials scheme [24]
that differ in the determination of the number of potential collision pairs during a time step.

2.2.1 Initialization of the simulation

During the Initialization phase, the grid composed of cells is created.

Notice that, in general, we can consider variable-sized grid cells, in order to group similar
numbers of particles even when the spatial density of particles varies dramatically.

In our implementation, for simplicity, we consider a Cartesian grid and the very same cells are
used both for sampling the microscopic properties as well as processing collisions. However,
other approaches are possible, see for instance [14].

One of the rules of thumb typically employed in DSMC simulations prescribes that the
cell size, Ax, should be comparable to the microscopic molecular mean free path A, and
specifically Az < \/3.

As an example, consider a gas composed of Argon atoms (with diameter d = 3.66x107!% m)
that occupies a square box of size L = 1 mm at a temperature 7' = 273 K and pressure
p = 10® Pa. Using nkgT = p, we get n = 2.6531 x 10> m~3. The mean free path, calculated
according to the Hard Sphere model, is roughly A\ = ﬂ;dgn ~ 6.3 pm giving Axr = 2.1 pm.
This means a total of 1.1 x 10® cells to fully discretize the domain.

Once we have created the geometry, we need to initialize the particles.
Note that each particle in the DSMC framework represents, in reality, a very large number
of real molecules that are moving along the same direction with the same velocity, thus
corresponding to the definition of the single particle distribution function fi(r,v,t).
In order to reduce the risk of repeated collisions between the same particles, we need about
20 DSMC particles per cell.

Having in mind the example above, we have Az® ~ (2.1 ym)? ~ 9.3x1071® m? ~ 1077 m3,

QA? ~ 2.5 x 10° real particles. On the other hand,
B

so each cell would contain N,., =

14

Set up cells and DSMC Move-Collide-Sample
subcells network
~ I flowchart for steady state flow

Distribute particles NTC algorithm

into cells with initial

position and velocity
. >y

[Move particles & compute
interaction with boundaries)

!

[Index particles into cells] —>[Sample flow properties)
| v
Determine the number of [Average samples
collisions in each cell (NTC) l'
l [Output of results
Select collision pairs and per- i
form intermolecular collisions
i No
No Yes Yes

Figure 2.3: Typical DSMC simulation flowchart for the NTC algorithm and for steady state
flow. The represented order of the operations, Move-Collide-Sample (MCS), is the classical
one, but other options exist [14].

considering 20 DSMC particles per cell, we have that each DSMC particle represents about
Nyear /20 ~= 1.25 x 10° real Argon atoms.

So far, we have described how to create the grid and populate it with particles, but we
still need to initialize the particles’ positions and velocities. Actually, one possibility is to
assign to each particle a random initial position within a cell and sample the three velocity
components from a probability distribution function taking into account the local flow
properties.

The most common pdf used for this initialization is the Maxwell Boltzmann distribution.
However, this is not the only option, since what we really need is that the Equation is
satisfied.

15

2.2.2 Streaming step

After the Initialization, we enter inside the time loop where the sequence of streaming and
collisions are performed.

Let’s focus on the Streaming step during which the particles’ positions r; are updated
according to their velocity v; and the fixed time step At.

In order to choose At properly, a few considerations are in order. First, the most probable

velocity is given by
[3kgT
Ump = 7’)3 . (236)

Second, the residence time for a particle in a cell is

Az
Ump—l—Uf ’

(2.37)

lres =

where Uy is the estimated flow velocity. Then, in order to minimize inaccuracies in the
collisional transport, the rule of thumb is to impose

At < fres : (2.38)
4
In this way, particles will likely stay within the same cell or move as far as the nearest
neighbor cells during one time step, thus reducing possible errors related to an excessive
collisional transport.
Then, in absence of external forces, we can integrate the equation of motion via the Euler
method:
r;(t+ At) = r;(t) + vi(t)At . (2.39)

Moreover, during the streaming step, we also need to take into account the interactions with
boundaries. Specifically, there are three main possibilities:

e the periodic boundary conditions
e the specular wall model

e the diffusive wall model

In this work, we consider for simplicity periodic boundary conditions, often chosen for
approximating large (infinite) systems. When one molecule diffuses across the boundary
of the simulation box it reappears on the opposite side.

For completeness, let us just briefly describe the other two possibilities.
The specular wall model prescribes that, once a particle hits a wall, the velocity component
normal to the wall is reverted while the other two components are unchanged. In this case,
the underlying hypothesis is that the surface of the wall is perfectly smooth.
On the contrary, assuming a microscopically rough surface, we have the diffusive wall model,
which prescribes that the post-interaction velocity components are sampled from a biased
Maxwellian distribution in the frame of reference of the wall.
In any case, after the solid boundary interactions, the particles complete their advection for
the residual time.
See, for example, Figure for a schematic representation of the Streaming step.

16

D

v

Figure 2.4: Particles configuration before (red dots) and after the streaming step (green
dots). Particles are free to stream along any direction with any speed. Periodic boundary
conditions are imposed on orange walls. Specular boundary conditions are imposed on the
pink wall. Diffusive boundary conditions are imposed on the grey wall.

2.2.3 Indexing and Communication steps

After the Streaming step is completed, we need to sort and index particles by grid cell. The
reason is twofold: on one hand the inter-molecular collisions are performed only between
particles in the same cell. On the other hand, macroscopic fields are computed by evaluating
the properties of particles residing in the same cell, for example by averaging the velocities
of the particles within a cell.

The main idea is to have a map between each cell and the particles residing in that cell.
However, because particles continuously move to new cells, we need to constantly update
such mapping.

Notice that, for DSMC codes in HPC, the grid cells are typically distributed among many
processors. Moreover, each processor also owns ghost cells, which are copies of grid cells
owned by other processors that overlap its extended bounding box.

Therefore, after the Indexing step, we have a Communication step, where particles which
ended their advection in a ghost cell owned by another processor are sent to that processor.

2.2.4 Collision step

Once particles are sorted and indexed in cells, stochastic binary collisions are performed
within particles residing in the same cells.

Actually, consider the collision between two particles labeled by 1 and 2, with mass m; and
me and initial velocities v, and vq, respectively.

Then, the goal of the Collision step is to determine the post-collision velocities vi and v}

17

satisfying conservation of momentum

* *
mivy + Mmavy

mivi + move = myvi + mavy = (mq + my) [} = (my +mo)Vi | (2.40)

my + Mo
together with the conservation of energy

my|vi|? + ma|val? = my|[Vi[2 + ma|vi|* . (2.41)
Moreover, the magnitude of the relative velocity should remain unchanged

vl = [vi = vl = [vi| = [vi = Vi - (2.42)
In order to determine the post-collision relative velocity v, let’s focus on the collision solid
angle. Several approaches are available in the literature, the simplest one being the so-called
Hard Sphere (HS) model for which fully elastic interactions between two particles are assumed
to occur. Actually, for the HS model, the scattering is isotropic in the center of mass frame
of reference, that is

v = |v,| [(sin x cos ¢)X + (sin x sin @)y + (cos x)z] , (2.43)

where the elevation angle y is sampled from a distribution of the form:

1
P, (x)dx = 5 sin xdx (2.44)
while the azimuthal angle ¢ is sampled from the uniform distribution between 0 and 2.
After the solid angle has been determined, the post-collision velocities are given by

V] = Vem + <&) v, Vi = Vem — (L) A (2.45)

mi + Mo my + Mo

See, for example, Figure for a sketch representing collisions between particles.

Notice that, at macroscopic scales, the HS model implies that the dynamic viscosity scales
with the temperature as pu ~ 7% with w = 1/2. However, experimentally, we measure
w =~ 3/4. The reason can be traced back to the fact that, within the HS model, the collision
cross-section is op = md?, where the molecular diameter d = d,ey is independent of the
relative velocity.

In order to recover the experimental dependency, more refined collision models have been
proposed, such as the Variable Hard Sphere (VHS) and Variable Soft Sphere (VSS).

For example, within the VHS model, the diameter of the molecules d, and therefore the
collision cross-section o7 = wd? is expressed as an inverse power law function of the relative
velocity, as

1/2
(2kT,es/(myv, - v,))" 2]

d=d,, : 2.46
/ I'(5/2 —w) (2.46)
where e
my = ——— . (2.47)
my + Mo

18

m4 V2
mz
*
\"
2 ma
Vem Vem Vel
Vel Vrel Vrel

Figure 2.5: Sketch representing collisions between particles of equal mass in two neighboring
cells. In the figure, the pre-collision velocities are labeled with vy, va, post-collision velocities
with vi, vi. The velocity of the center of mass as well as the pre- and post-collision relative
velocities are also indicated below and labeled with v, v, and v}, respectively. Note that
in DSMC, it is not required that the two particles touch in order to have a collisional event.

As a result, on macroscopic scales, we recover the following relation for the dynamic viscosity:

T w
=i (1) (2.19)

Finally, we need to determine the total number of collisions to be performed in each cell.
Again, several approaches are possible. As mentioned before, in this work we have considered
the NTC algorithm, setting the number of attempted collisions M_,,q between two randomly
selected partners as A
1N(N —1)At
5%(UT|W|)mam , (2.49)
where NN is the instantaneous number of particles in the cell and AV is the cell volume.
For each cell, we keep track of the maximum value of the product (o7|vy|)mas and
continuously update such quantity.

Then, an attempted collision is accepted with probability:

M, cand —

or|v,|

) G

(2.50)
expressing the fact that pairs with larger relative velocity are more probable to collide.

19

2.2.5 Sampling and averaging flow properties

For the last step of the main time loop, recall that we are interested in hydrodynamics
variables, so, we finally need to measure the flow macroscopic properties by statistical
sampling.

Actually, consider a generic microscopic property . For volume-averaged measurements,
given the number of acquired samples S and the number of particles N (t) residing in the cell
with volume AV, the average moments can be evaluated as

1 S 1 N(s,t)
(y(v)) = ZA_V Z (Vi) - (2.51)

|

Using this relation, we can finally compute

p=(m)

u=(v)

T=g{v—uf)=go(vviwu-2vau=go(v-v)—uu) o5,
Py = p{((vi —w;)(v; — u;))

Qi:%<(vi_ui)<v_u)2> :

Note that two successive samples should not be temporally correlated, and so the sampling
operation shall not be performed at each time step, but rather with a prescribed frequency
(typically one sampling operation every 10 time steps).

As a concluding remark, note that for a large number of particles per cell and for sufficiently
small time and space discretizations, it is possible to show [25] that the solution provided by
the DSMC method is equivalent to the one given by the Boltzmann equation.

20

Chapter 3

GPU programming with OpenACC

As mentioned in Chapter [I] current supercomputers feature heterogeneous architectures,
combining multi-core CPUs with hardware accelerators such as GPUs, digital signal
processors (DSPs) or field-programmable gate arrays (FPGAs), all characterized by a high
level of parallelism.

Moreover, memories show hierarchical structures, where the main memory (typically DDR
for CPUs) is accompanied by multiple layers of cache memory.

In fact, parallelism shows up at different levels, with varying degrees of coarseness [26], 27].

The Flynn’s taxonomy

At hardware level, we can classify different architectures according to the Flynn’s taxonomy

e Single Instruction Single Data (SISD)

e Single Instruction Multiple Data (SIMD)

e Multiple Instruction Single Data (MISD)

e Multiple Instruction Multiple Data (MIMD)

The simplest one, SISD, corresponds to computer architecture (the von Neumann
architecture) in which a single uni-core processor executes a single instruction at a time
and fetches or stores one data at a time.

On the other hand, SIMD describes computers with multiple processing units capable of
performing the same operation on different data elements simultaneously. As a practical
example, consider the situation where hardware registers are loaded with numbers, and a
mathematical operation is performed on all registers simultaneously.

MIMD architectures, including multi-core superscalar processors and distributed systems,
are multiple autonomous processors simultaneously executing different instructions on
different data. They can be of either shared-memory (if block of Random Access
Memory (RAM) can be accessed by several CPUs in a multiprocessor computer system)
or distributed-memory (if each processor is coupled with its own memory and explicit
communication between the various processor-memory pairs of the system is required).

Finally, applications for MISD architecture are much less common than MIMD and SIMD,
as the latter two are often more appropriate for common data parallel techniques.

21

The role of GPUs

With this complex situation in mind, it is clear that programmers must choose a programming
model that balances the need for performance with the need for portability, otherwise their
applications may not be able to run on future architectures.

As far as performance is concerned, contemporary high-performance computing is typically
associated with GPGPU. Actually, a significant milestone was the discovery in 2003 that
GPU-based approaches for the solution of general linear algebra problems ran faster on
GPUs than on CPUs.

However, at that time, GPU handled computations only for computer graphics, so these early
efforts required reformulating scientific problems in terms of graphics primitives.

The situation changed in 2006 when NVIDIA released CUDA, allowing programmers to
ignore such graphical paradigm in favor of common high-performance computing concepts.
By adding a relatively small number of keywords to standard C, in order to take advantage
of the CUDA architecture, NVIDIA was able to obtain orders-of-magnitude of performance
improvement over the previous state-of-the-art implementations.

How was it possible?

The basic idea behind GPU architectures is rather simple: remove everything that makes
a single instruction run fast on modern CPUs (such as out-of-order control logic, complex
branch predictions, memory prefetching, etc.), instead invest the saved transistors into more
copies of simple cores, that can process thousands of threads simultaneously.

Briefly, on one hand we have the CPU, designed following a latency-oriented vision and
equipped with a large cache memory (saving data that is accessed frequently thus reducing
the long latency) and a sophisticated logic control unit. On the other hand, we have the GPU,
that is an example of throughput-oriented design, as it acts to maximize the throughput
rather than investing in latency.

In other words, the CPU is great for control-intensive tasks, while the GPU is great for
data-parallel computation-intensive tasks.

Therefore, a GPU works efficiently for algorithms that process large blocks of data in
parallel, in the Single Instruction Multiple Threads (SIMT) execution model, where SIMD is
combined with multi-threading. Actually, in the SIMT framework, each thread can access its
own registers, can load and store from divergent addresses, and can follow divergent control
paths, thus performing the same instruction on different data.

Notice that, currently, GPUs are not standalone platforms, but rather co-processors that
operate in conjunction with CPUs, through PCI-Express buses. For this reason, the CPU is
called the host and the GPU is called the device, see Figure |3.1

The NVIDIA Volta architecture

In order to describe GPU architectures, let’s focus on the NVIDIA Volta V100 released in
2017 and included in CINECA Marconil00 supercomputer. For details, see [28].

First of all, recall that GPUs are capable of executing multiple threads simultaneously.
At hardware level, such execution is supported by an array of highly threaded Streaming

Multiprocessors (SMs), each containing thousand of registers, several caches, warp schedulers,
and floating-point execution cores. Figure [3.2] shows a full GV100 GPU.

22

ALU ALU =
Control —
ALU ALU —
Cache =
PCle Bus
DRAM DRAM
CPU GPU

Figure 3.1: Representation of a heterogeneous system [26].

Actually, the NVIDIA Tesla V100 contains 80 SMs, each divided into 4 processing blocks
consisting of: 8 FP64 Cores, 16 FP32 Cores, 16 INT32 Cores, two mixed precision Tensor
Cores for deep learning and matrix arithmetic, 8 LD /ST units, one Special Function Units,
one Warp Scheduler, one Dispatch Unit, LO Instruction Cache, and 64 KB register file, see
Figure 3.3

With the impressive number of 21.1 billions transistors on a die of 815 mm?, the delivered
peak performances are

e 7.8 TFLOP/s of double precision floating-point (FP64) performance.
e 15.7 TFLOP/s of double precision floating-point (FP32) performance.
e 125 TFLOPS/s of mixed precision matrix-multiply-and-accumulate.

Each SM also features 128KB of L1 data cache combined with shared memory. The amount

of cache dedicated to shared memory can be set at runtime with the range of available
capacities going from 0 to 96 KB for SM.
Merging L1 and shared memory together allows .1 cache operations to benefit from shared
memory performance. Actually, shared memory provides high bandwidth and low latency,
but requires more coding effort since the programmer needs to explicitly manage this memory.
Therefore, while shared memory remains the best choice for maximum performance, the Volta
L1 design enables programmers to get excellent performance quickly. In addition, there is a
6144 KB unified L2 cache for data, instructions, and constant memory.

Each GPU currently comes with gigabytes DRAM, referred to as Global Memory. For a
Tesla V100 the High Bandwidth Memory 2 (HBM2) global memory can be either 32 GB or
16 GB[] with 900 GB/s of peak memory bandwidth.

Actually, GPUs are designed for stream or throughput computing, and device memory
supports very high data bandwidth using a wide data path. This, in turns, comes with
severe effective bandwidth degradation for strided accesses.

Every GPU is connected to a CPU (host) through a high-speed 1/O bus. While the peak
bandwidth guaranteed by PCle is typically much lower than that of global memory, the newer
generations support NVLink 2.0, a CPU-GPU or GPU-GPU interconnect that can deliver a

IThe 16 GB configuration is the one hosted on Marconil00.

23

PCI Express 3.0 Host Interface

k-
4
2
8
S
2
]
£
H
=

Memory Controll
J9j10u09 Aiowep

Figure 3.2: A Full NVIDIA GV100 Architecture [29].

unidirectional bandwidth of up to 25 GB/s.
Moreover, the introduction of NVSwitch, supporting up to 18 NVLinks, enables upto 900
GB/s bidirectional bandwidth between GPUs in high-end HPC facilities.

Finally, the thermal design power (TDP), i.e. the maximum amount of heat generated by
the GPU that the cooling system is designed to dissipate under any workload, is 300 watts.

3.1 Programming models

As mentioned in the previous sections, taking advantage of hundreds of cores, GPUs can
process thousands of software threads in parallel. However, to exploit such an extensive
execution activity, an efficient organizational structure of the threads is needed.

This structure, in turns, may create several challenges for programmers, like mapping
algorithms onto thread hierarchy as well as designing data, both in global memory and shared
memory, to maximize coalesced memory access for the threads. For these reasons, porting
programs to GPUs with low-level APIs (such as CUDA and OpenCL) may be difficult, time
consuming, and typically needs extensive modifications to the original source code, decreasing
code readability.

In the next sessions, we are first going to describe the most popular, low level, language
based programming model for GPU, CUDA. Then, we are going to introduce the more
high-level, open standard, directive-based OpenACC, that is becoming one of the most
promising tool for developing or quick porting scientific applications to hybrid systems.

24

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

INT FP32 FP32

CORE

INT FP32 FP32

INT FP32 FP32
FP32 FP32
FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT [FP32 FP32

INT INT [FP32 FP32

INT FP32 FP32

INT FP32 FP32

CORE

INT FP32 FP32

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR TENSOR

CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

TENSOR TENSOR
CORE CORE

TENSOR TENSOR

CORE CORE

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT FP32 FP32 FP64 INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/

J LD/ LD/ LD/ / LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

SFU ST ST ST ST ST ST ST

128KB L1 Data Cache / Shared Memory

Tex Tex

Figure 3.3: The V100 streaming multiprocessor (SM)[29].

3.1.1 The CUDA programming model

CUDA is a general purpose parallel computing platform developed by NVIDIA to allow
programmers to exploit the computing power of GPUs.
Basically, it provides a bridge between an application and its implementation on GPU
hardware by means of an API representing an abstraction of the GPU architecture.
In fact, there are two very similar CUDA APIs, the driver API and the runtime API, that
can be used interchangeably for the most part. While the runtime API makes device code
management easier by providing implicit initialization, context management, and module
management, the CUDA driver API allows for more extensive control of the GPU but requires
more programming effort.

Let us see the main concepts of the CUDA programming model.
To execute any CUDA program, there are three main steps [30]:

25

e Copy the input data from host memory to device memory (host-to-device transfer).
e Load the GPU program and execute, caching data on-chip for performance.
e Copy the results from device memory to host memory (device-to-host transfer).

The portion of code that runs exclusively on the GPU is the kernel, where it is executed K
times in parallel by K different CUDA threads.

As shown in Figure CUDA threads are organized in a 2-level hierarchy: threads are
grouped into CUDA blocks and CUDA blocks are grouped into grids. Actually, all threads
created by a single kernel launch, collectively, form a grid.

host device

Grid 1

Block Block
Kernel 1 > (0, 0) 0, 1)
(1,0))’ ‘\‘
R ,' ‘\ \

y ! \
, 7 7 \
Grid 2~ K N

Block (1,1)
Kernel 2 > (100) (101) (102) (1,0.3)

Thread Thread Thread Thread

(0,00) (0,0,1) (0,0,2) (0,0,3)

Thread Thread Thread Thread
(0,1,00 (0,1,1) (0,1,2) (0.1.3)

Figure 3.4: Threads hierarchy; 2D and 3D blocks grid [26].

CUDA defines built-in 3D variables for identifying threads and blocks. Specifically, each

thread in the block has its own thread index called threadIdx. Similarly, blocks are also
indexed using the in-built 3D variable called blockIdx. Threads belonging to the same block
have the same blockIdx value. Notice that CUDA architectures, including Tesla V100, limit
the numbers of threads per block (1024 threads per block limit).
Threads within a block can cooperate by sharing data through shared memory and can
coordinate memory accesses by synchronizing their execution. However, thread blocks are
required to execute independently. This need of independence means that the blocks are
scheduled in any order through any number of cores.

A block is also divided into warps generally consisting of 32 threads, that are executed
simultaneously by one SM. Basically, each thread in a warp executes the same instruction on
different data, in a SIMT fashion. As thread blocks terminate, new blocks are launched on
the vacated SMs. Actually, one SM can run several concurrent CUDA blocks depending on

26

the resources needed by CUDA blocks.

Moreover, since all threads in a warp must execute identical instructions on the same cycle,
warp divergence can cause significant performance degradation if threads in the same warp
take different paths. Indeed, the warp serially executes each branch path, disabling threads
that don’t take that path.

For details regarding the CUDA programming model, see for instance [31], 32} 33] [34].

3.1.2 The OpenACC programming model

As mentioned in Chapter [I] in this work we focus on OpenACC, that we are now going to
briefly introduce, following [35 [36] 37, 38, [39].

To summarize the CUDA programming model, in GPU computing we use as many threads as
data items/tasks we have to process. As a consequence, we need a rule to match a thread to
a data item/task that this thread needs to process. Unfortunately, this is a common source
of errors and frustration for CUDA developers.

It would be simpler if the compiler took care of this task by means of a collection of directives
used to expose parallelism in the code, without programmers prior extensive knowledge on
the specifics of the accelerator being used.

OpenACC is an open standard, initially developed in 2011 by CAPS, CRAY, PGI, and

NVIDIA, providing such directive-based, portable programming model for accelerators.
Actually, in order to ensure portability to all available as well as future computing
architectures, OpenACC defines an abstract model for accelerated computing, exposing
multiple levels of parallelism together with a hierarchy of memories (with varying degrees of
speed and addressability).
This is particularly relevant for the ofloading of both computation and data from the host to
an accelerator device. Actually, recall that on heterogeneous systems host and accelerators
may have completely different architectures as well as different memory spaces. In this case,
the compiler implicitly maps each component of this abstract model into the specific structure
of the target architecture.

There are three layers of parallelism in OpenACC: vector threads, workers and gangs.
Vector threads represent the finest granularity, performing the same instruction on multiple
data elements in a SIMT-fashion. Notice that, if there are fewer data than the length of the
vector, the operation is performed on null data and the results are discarded.

Each vector is processed by a worker. All workers within a gang can share resources, such as
cache memory.

A gang, comprised of one or multiple workers, represents the coarse-grained parallelism. The
OpenACC model associates a cache memory for each gang that can be used by all workers
and vectors within the gang. Actually, gangs work independently, do not share memory, and
do not support synchronization.

In C and C++, directives take the form of a pragma. For example, in order to generate a
compute region to be executed on the accelerator, we can can annotate the code with

| #pragma acc parallel

. {
3 //
)

27

1
2
3
1

1
2
3
4

where the parallel directive is used for explicit parallelism, i.e. creating a number of parallel
threads that execute the parallel region redundantly.

Alternatively, we can rely on compiler automatic parallelization techniques to identify
operations that are safe to parallelize using the kernels directive

#pragma acc kernels

{
/!
}

Notice that we can execute serially a portion of code on the device using the directive

#pragma acc serial

{
//
}

Upon the creation of such regions, the compiler also creates an implicit data region. All
variables used inside parallel or kernels regions will be treated as implicit variables if they
are not present in any data clauses, meaning that, by default, all the data required for the
computation is copied from the host to the device once entering the region, and copied back
at the end of the parallel region.

Remarkably, we can minimize and synchronize data movements between host and device
memory with the data directive. Such directive facilitates the sharing of data between
multiple parallel regions, thus optimizing data locality. In particular, we can control the
data flow with the following clauses:

copy allocates space for the specified variables on the device, copying data on the device
at the beginning of the region. At the end of the region, it copies data back to the host,
releasing the allocated memory on the device.

copyin allocates space for the specified variables on the device, copying data on the
device at the beginning of the region. At the end of the region, it releases the allocated
memory on the device without copying the data back to the host.

copyout allocates space for the specified variables on the device at the beginning of the
region. At the end of the region, it copies them from the device to the host, releasing
the allocated memory on the device.

create allocates space for the specified variables on the device at the beginning of the
region. At the end of the region, it releases the allocated memory on the device.

present specifies that vars in var-list are in shared memory or are already present in
the current device memory and should be used without any further redundant data
movement.

deviceptr is used to declare that the pointers in var-list are device pointers, allowing
interaction with other APIs for handling the accelerator memory.

Notice that there are situations when structured data regions are not sufficient to tell
the compiler the data layout. This is the case, for example, if complex structures, with

28

dynamically allocated data members, are allocated and freed in different scopes. As another
example, when using C++ classes, data transfer on the device (using the class constructors
and destructors) and data usage (with the class methods) are performed in very different
places.

To handle such cases OpenACC introduced unstructured data regions, where the
enter data directive defines the start of an unstructured data region, supported by the
create and copyin clauses to specify how data should be created on the device.

On the other hand, the exit data directive defines the end of an unstructured data region.
The copyout and delete clauses can be used to identify precisely when data should be
copied back or deallocated from the device.

In order to synchronize data between host and device memories, we can rely on the update
directive. More specifically, we can move the specified data from device to host with the
device clause and viceversa with the self clause.

In general, the main focus in parallel programming is represented by loops.

The OpenACC loop directive applies to the loop which immediately follows and can be used
to provide the compiler with additional information using the following clauses:

e collapse specifies how many tightly nested loops are associated with the loop.
e private declares that a copy of each item in the var-list will be created for each gang.

e firstprivate declares that a copy of each item in the var-list will be created for each
gang, and that the copy will be initialized with the value of that item on the local
thread when a parallel or serial construct is encountered.

e reduction performs a reduction operation on a chosen variable by creating a private
copy of the variable for each loop iteration returning the result of the combined result
of the reduction at the end of the loop.

e independent tells the implementation that the loop iterations must be data
independent, except for vars which appear in a reduction clause or which are modified
in an atomic region. This allows the implementation to generate code to execute the
iterations in parallel with no synchronization.

e tile(N[,M,...]) specifies that the implementation should split each loop in the
loop nest into two loops, with an outer set of tile loops and an inner set of element
loops. Basically, it breaks the next one or more loops into tiles based on the provided
dimensions.

e seq executes the loop or loops sequentially.

Moreover, we can specify how the compiler should map the loop iterations into hardware
parallelism by using the gang, worker and vector clauses.

Mapping the high-level gang, worker, vector concepts to the loop constructs is vendor
dependent. For example, considering the CUDA execution model, gangs correspond to CUDA
blocks, vectors are mapped into threads and the number of workers can be fixed to match
the warp size.

29

In OpenACC, we can overlap data movements with computation on the host, on the device,
or both by means of the async clause. In this way, we can tell the compiler that, once a
given operation has been sent to the accelerator, the host can asynchronously process the
next instruction rather than waiting for its completion. The flow of asynchronous operations
can be controlled using the wait directive to stop the execution until all operations are
completed.

Finally, the OpenACC API can interoperate with other accelerator programming models,
like CUDA or OpenCL. For example, suppose we create an array using OpenACC and
we want to call a CUDA function performing some operations on such array. The
host_data use_device construct makes the address of device data available on the host,
so we can pass it to functions expecting CUDA device pointers. In other words, we can
directly access the device copy of the arrays instead of the host copy.

This construct is also useful when passing in device pointers to MPI calls.

Porting Cycle

As a concluding remark, note that the best practice when porting scientific applications
to GPUs with OpenACC is to proceed incrementally. First, it is important to understand
the most time-consuming parts of the application. Then, we can use OpenACC directives
to accelerate these regions on the target device. Finally, we can optimize data locality, to
remove unnecessary data migrations between the host and device, as well loop optimizations
to maximize performance on a given architecture.

Note that, after each modification, it is important to check the program results for
correctness. In order to proceed incrementally, we can modify one routine at a time by
updating data on device just before the function call, then performing the execution on
device, and finally update back data on the host.

30

Chapter 4

DSMC on GPUs with OpenACC

In this chapter, we describe our implementation of a multi-GPUs DSMC solver.

Over the years, several DSMC codes have been developed and optimized for various
architectures such as GPUs and many-threaded CPUs. Examples include DAC [40], SPARTA
[41], [42), MGDS [43], dsmcFoam [44], Monaco [45] 46] or SMILE [47] to name but a few.
Our work builds on top of a simplified version of the fm_dsmc code developed in [14] 48], [49],
written in C programming language and using the generic compiler /profiling library ftmake
[50, [51], establishing a baseline for performance comparisons. However, several major
modifications have been performed, since different data structure and different algorithms
are needed to enable threaded parallelism.

Within this framework, we consider a fluid flow in a L, x L, x L, Cartesian grid, with
the only boundary lying on the surface of the six outer-faces of the box, where we assume
periodic boundary conditions. Moreover, in order to simplify MPI communications, each
processor’s grid is enveloped in a halo surface.

The program takes as input a param.in file, where we can specify the parameters listed in
Table [4.1] The schematic algorithm of the main calls is shown in Algorithm

Parameter Description
dsmc_sx, dsmc_sy, dsmc_sz Number of physical cells L,, Ly, L.
dsmc_boundary_x m, dsmc_boundary_x_p Box size in the x direction
dsmc_boundary_y.-m, dsmc_boundary_y_p Box size in the y direction
dsmc_boundary_z_m, dsmc_boundary_z_p Box size in the z direction
dsmc_steps_segregate Number of time steps
dsmc_dt Duration of each time step measured in s
dsmc_steps_sampling, dsmc_steps_sampling ndiag Control the sampling step
dsmc_molecules number _total Number of DSMC molecules
dsmc_number _density Number density of the real molecules in m—3
dsmc_mass, dsmc_diameter Mass (Kg) and diameter (m) of real particles
dsmc_omega Parameter w for the VHS model
dsmc_temperature Temperature in K
dsmc_forced_decomposition_procx Force a MPI decomposition along the x direction
dsmc_forced_decomposition_procy Force a MPI decomposition along the y direction
dsmc_forced_decomposition_procz Force a MPI decomposition along the z direction

Table 4.1: Parameters specified in the param. in file.

31

0N

Algorithm 1 Schematics of the DSMC Algorithm

1: Initialization
2: Mowe grid-cells and particles data from host to device
3: for istep DSMC < 0 to dsmc_steps_segregate do

4: Deterministic ballistic motion

5: Indexing

6: Periodic boundary conditions

7: Communication

8: Collision

9: if istep DSMC > dsmc_steps_sampling ndiag then
10: if istep DSMC%dsmc_steps_sampling == O then
11: Data Sampling

12: end if

13: end if

14: end for

15: Mowe grid-cells and particles data from device to host
16: Dump Data
17: Finalization

During the initialization, we start by handling GPUs affinity, and we rely on process
placement with one rank per GPU, as shown in the snippet.

#if defined (DSMC.OPENACC.GPU)

int ngpu = acc_get_num _devices(acc_device_nvidia);

int igpu = me % ngpu;

acc_set_device_num (igpu, acc_device_nvidia);

acc_init (acc_-device_nvidia);

if (AMIROOT) fprintf(stdout, "NUM GPU: %d\n”, ngpu);

fprintf(stdout, "GPU ID: %d, PID: %d\n”, igpu, me);

#endif /+DSMC.OPENACC.GPUx/

Then, we proceed with the allocation of the grid cells and the DSMC molecules both
on host (using the C dynamic memory allocation function malloc) and device (using the
#pragma acc enter data create (...) directive). After the initialization of cells and
DSMC molecules on the host, we move grid cells and particles data to device by means
of the #pragma acc update device (...) directive.

4.1 Data Layout

The basic structure for the DSMC code is the particle, characterized by the position r =
(x,y, z) and velocity v = (vy, vy, v,).
Clearly other information is needed such as the number of particles per each cell, possibly the
mass of the particle and so on, but, for the moment, let’s focus for simplicity just on positions
and velocities represented by six double precision floating point numbers per particle.

For the DSMC algorithm, the canonical data structure that we would naturally use is

32

the Array of Structures (AoS), which corresponds to a single array dsmc_particle_aos

with one element per particlee. ~ Each particle is represented by a data structure
used to store the six features (r;,v;) associated to the particle with index i
(i.e. dsmc_particle aos[i] .x, dsmc_particle_aos[i].y, dsmc_particle_aos[i].z,

dsmc_particle aos[i].ux, dsmc particle aos[i] .uy, dsmc particle aos[i].uz).
Remarkably, while the AoS can represent a good choice for serial CPU implementations,

as shown in [52] in the context of Lattice Boltzmann methods, the same is not true for GPU

architectures due to poor memory access patterns.

In fact, within the AoS framework all the data associated with one particular particle are

contiguous in memory, but the features (e.g. the z coordinate) of different particles, that

we want to process in a SIMT fashion, are not contiguous, which results in non-unit strided

access in memory, thus halting the SIMT instruction sets.

See for a graphical representation of the memory organization of the AoS data structure.

8 et e e e b e

Figure 4.1: Graphical representation of the memory organization of the AoS data structure.
In the Figure, we show three particles (described by different colors), each with six features
(described by different borders). Contiguous blocks represent contiguous data in memory.

A different approach is represented by the Structure of Arrays (SoA) format.

As an example, in our simple case, dsmc_particle soa consists of a structure
with six arrays, each one corresponding to particles’” coordinates and velocities
(i.e. dsmc_particle soa.x[i], dsmc_particle soa.y[i], dsmc_particle soa.z[i],
dsmc_particle soa.ux[i], dsmc_particle_soa.uy[i], dsmc_particle_soa.uzl[i]).
Actually, the SoA organization is the appropriate layout for SIMD and SIMT architectures
since it guarantees better coalescence of global memory accesses and it is therefore the
mandatory choice for exploiting GPU architectures [53], 54], 55].

See for a graphical representation of the memory organization of the SoA data structure.

Figure 4.2: Graphical representation of the memory organization of the SoA data structure.
In the Figure, we show three particles (described by different colors), each with six features
(described by different borders). Contiguous blocks represent contiguous data in memory.

33

Besides the particles’ positions and velocities, we need to store other information for the
execution of the DSMC code. Actually, the grid is composed by several cells, and we need
to access the particles residing in each cell to perform stochastic binary collisions.

As a consequence, in order to represent the particles, we consider the structure
dsmc_particle type_soa, with 2D arrays (one 2D array per feature), along with a 1D vector
with counts of particles per cell.

Each 2D array is composed of the feature of the i-th particle in the cell (rows) versus the
j-th cells in the grid (columns), as depicted in Figure [4.3]

Notice that, to avoid memory reallocation, we consider a fixed maximum number of particles
per cell — MAX_PARTICLES_PER_CELL.

Cell0 Cell1 Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9

Coordinate x of the first particle in the cell 0.023 | 0.876 0.35 | 0.225 0.654 | 0.109 | 0.999 0.765 0.22 0.1

7

Coordinate x of the second particle in the cell

Coordinate x of the third particle in the cell

Coordinate x of the fourth particle in the cell

Coordinate x of the fifth particle in the cell

MAX_PARTICLE_PER_CELL

Coordinate x of the sixth particle in the cell

Coordinate x of the seventh particle in the cell

Number of particles in Cellk=0,1...,9 5 3 4 5 3 4 3 3 4 3

Figure 4.3: Visual representation of the dsmc_particle_type_soa data structure. Notice
that here we have presented only the 2D array for the x coordinate. But, in reality, there is
a 2D array for each feature (i.e. similar matrices also for y, z, ux, uy, uz, dx, dy, dz, ...).

Moreover, as a result of the deterministic ballistic motion, the new coordinates of the
particles might be associated to a different cell. As we will explain, information regarding
the destination cell can be particularly useful in the Indexing step.

For this reason, we additionally store three integers for each particle ¢, implemented in
the SoA format as arrays of integers dsmc_particle_soa.dx[i], dsmc_particle_soa.dy[i],
dsmc_particle_soa.dz[i].

For neighborhood cell displacement, dx[il,dy[il,dz[i] € {—1,0,1} (where dx[i] =
dy[i] = dz[i] = 0 if the particle i remains in the same cell).

Finally, other information might be useful, such as the distance that the particles have
traveled during the simulation (in order to compute the mean free path), or the mass of the
particles (for instance if we have a mixture of gasses).

Therefore, the dsmc_particle type_soa data structure is as follows:

34

1 #define MAX PARTICLES PER_CELL 64
> typedef struct {

3 double =*x, xy, xz; /* molecule position x/

| int xdx, xdy, =xdz; /* molecule cell variation x/

5 double *ux, *xuy, *uz; /* molecule velocity components x/
6 double xdistance_traveled; /* distance travelled by particle x/
7 double *xmass; /* molecule mass x/

8 int *xnumber_particle_per_cell;
9 } dsmc_particle_type_soa;

To access the particles, we perform the following loop

| #pragma acc parallel loop present (...) collapse(3)
2 for (mx = 0; mx < (NX+2); mx++){
3 for (my = 0; my < (NY42); my++){

4 for (mz = 0; mz < (NZ+2); mzt++){

5 int cell_idx = mx x (NZ+2) x (NY+2) + my * (NZ+2) + mz;

6 int n = dsmc_particle_soa.number_particle_per_cell[cell_idx];

7 int 1i;

8 #pragma acc loop seq

9 for (i=0; i <mn ; i++) {

10 int part_idx = cell_idx + number_cells * i;

11 /* For example: x/

12 dsmec_particle_soa.x[part_idx] += dsmc_particle_soa.ux|[part_idx] * dt;

13 }
14 }

15 }

16 }

Recall that the goal of the DSMC code is to evaluate flow macroscopic properties by
means of statistical sampling. Such sampling procedure is performed by volume-averaged
measurements at the cell level. For this reason, we need a second data structure to store
information that pertains to each cell, such as the sampled hydrodynamic moments as well
quantities used within the Collision step like (o7 |V, |)maz-

Therefore, we define dsmc_cell_type_soa SoA data structure as follows:
1 typedef struct {

2 double *sigma_relativevelocity ;
/* product of collision cross—section and relative velocity x*/

5 unsigned long long int xmolecule_sum; /* sum of molecules in the cell x/
6 double *remainder;
7 /% remainder when molecules selection number in each cell is rounded */

9 double #sum_ux, #sum_uy, *sum_uz; /x sum of molecules velocity components =/
10 double #sum_ke_x, *sum_ke_y, *sum_ke_z; /% sum of molecules kinetic energysx/
11 double #sum_uxux, *sum_uxuy, *SUmM_UXUZ, *SUM_Uyuy, *SUM_Uyuz, *SUM_UZUZ;

12 /# sum of molecules velocity components product with cumulative average x/

14 double #sum_uxsqu, *sum_uysqv, *sum_uzsqw ;

15 /* sum of molecules peculiar velocities multiplied by
16 squared module of peculiar velocity =/

17 } dsmec_cell_type_soa;

35

4.2 Streaming step

During the Streaming step, we need to update the particles’ coordinates according to the
Euler method, see Algorithm 2]

Algorithm 2 Deterministic ballistic motion

1: for each cell ¢ do > #pragma acc parallel loop present(...) collapse(3)
2 for each particle p in cell ¢ do > #pragma acc parallel loop seq
3 Save the indices idx, idy, idz that identify the cell ¢ within the grid

4 x(p) < x(p) + dt * ux(p)

5: y(p) <= y(p) + dt = uy(p)

6: z(p) < z(p) + dt *x uz(p)

7 Compute the indices idx’, idy’, idz’ of the cell ¢ associated to x(p), y(p), z(p)

8 dx(p) < idx’ — idx

9 dy(p) < idy’ — idy

10: dz(p) < idz’ — idz
11: end for
12: end for

From the implementation perspective, we perform the deterministic ballistic motion with a
kernel consisting in a loop over all cells, where each per-grid-cell thread updates the particles’
coordinates within the cell r;, such that schematically r; < r; + u; At.

At the same time, we record with three integers dx[i], dy[i], dz[i] whether the particle
¢ remained in the same cell or moved in a different cell. Such information will be used in
the Indexing step. In our implementation, if the particle ¢ remained in the same cell we set
dx[i] =dyl[i] = dz[i] = 0, otherwise, for small enough At, we can assume that particles
can move at most to neighboring cells.

In this case, we have dx[i],dy[i],dz[i] € {—1,0,1} Vi, as shown in Figure [4.4]

4.3 Indexing step

As we have seen, during the deterministic ballistic motion, particles can move from one
cell to the neighboring cells. Therefore, we now have to re-index these particles. In
other words, in the Indezing step, we need to update the lists dsmc_particle_soa (of the
dsmc_particle type_soa type) storing the particles’ features for each cell. However, particles
assigned to different threads may end up in the same grid cell, as shown in Figure 4.5 In
this case, threads have to coordinate to ensure safe updates of the arrays.
In fact, there are several possibilities to do so.
For example, we can use atomic operations [42]. However, atomics are typically a bottleneck,
and we usually need to reduce such operations to increase application performance.
Actually, we have considered a different strategy.
The main idea is to coordinate the threads by first updating only the particles moving in one
direction, say (dx,dy,dz) = (—1,—1,—1).
Once all the threads have completed the update in the first direction, we proceed updating

36

Cell 30 Cell 31 Cell 32 Cell 33 Cell 34 Cell 35

(dx,dy,dz)=(0,1,0)

A

Cell 24 Cell 25 Cell 26 Cell 27 Cell 28 Cell 29

J(dx,dy,dz)=(0,0,-1)

o e
Cell 18 Cell 19 Cell 20 Cell 21 Cell 22 Cell 23
T (dx,dy,d2)=(0,1,-1

Cell 12 Cell 13¢ Cell 14 Cell 15 WNCell 16 Cell 17

|(dx,dy,dz)=(0,-1,0)}

Cell 8 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11
y
(d;lfiz):(o’o’o) (dx.dy,d2)=(0,0,1)
X ¢o—
Cell O Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Figure 4.4: Particles configuration before (red dots) and after the deterministic ballistic
motion (green dots). Physical cells have blue borders, whereas halo cells are identified with
red borders. If the particle remains in the same cell we set (dx,dy,dz) = (0,0,0). If the
particle move to a neighbor cell in the z direction we have (dx, dy, dz) = (0,0, £1). Similarly,
for x and y. In total, for each cell, we have 26 neighboring cells.

the particles moving in the second direction, e.g. (dx,dy,dz) = (—1,—1,0) and so on. In the
end, we update all the 26 directions, one direction at a time.
More technically, we implement this operation by means of a for loop on the host running
on the 26 directions. At each iteration, we open and close (thus creating an implicit
synchronization) a parallel region performing the update.

In order to perform such updates, we copy the moving particles in an auxiliary buffer
dsmc_particle_soa new of the dsmc_particle_type_soa type.
In this way, threads always work in parallel, but we organize the updating procedure
sequentially in the directions, as depicted in Figure [4.6]
Next, we add the particles that have remained within the same cell to the buffer
dsmc_particle_soa_new array.
Finally, we swap dsmc_particle soa new and dsmc_particle_soa.

Once the particles have been indexed in the correct cells, we can update the coordinates
imposing the periodic boundary conditions.

37

Cell0 GCell1 Cell2 Cell3 Cell4 Cell5 Cell6 Cell7 Cell8 Cell9

Coordinate x of the first particle in the cell 0.023 | 0.876 0.35 | 0.225 0.654 | 0.109 | 0.999 0.765 0.22 0.1

7

Coordinate x of the second particle in the cell

-
-

m

Coordinate x of the third particle in the cell 9
\\ 7/ «

" :

Coordinate x of the fourth particle in the cell / i/ H‘
[&]

4 4 E

Coordinate x of the fifth particle in the cell 4_”_ g
é\

Coordinate x of the sixth particle in the cell =

Coordinate x of the seventh particle in the cell

Number of particles in Cell k =0,1...,9 5 3 4+1 5-2 3+2 4-1 3 3 441 3-1

Figure 4.5: Representation of the dsmc_particle_soa 2D array after the ballistic motion. In
our parallel pattern, each cell (i.e. each column) corresponds to a different thread. Particles
moving to a different cell need to be re-indexed to the associated new column. Ensuring
thread-safe updates of the arrays requires particular care, as more threads might have to
update the same column.

4.4 Communication step

Recall that each processor also owns halo cells, i.e. copies of grid cells owned by other
processors that overlap its extended bounding box.

Typically, after ballistic motion, the majority of the particles that a processor owns will
remain within the physical cells of the the same processor. However, there is the possibility
that some particles will move to cells owned by other processors. This means, in other words,
that after the streaming some particles are indexed in the halo cells of a processor and need
to be communicated to their new owning processor.

Now, a 3D Cartesian grid can be partitioned either across one, two or three dimensions,
where higher-dimension partitions have the advantage of scaling the number of particles to
be communicated over the processing nodes.

However, for simplicity, consider a 1D partitioning in the x-direction, that is, consider a ring
topology consisting of N nodes, in which each node i exchanges data only with its neighbors
¢t — 1 and 7 + 1. In this case, the Communication step requires three simple kernels:

i) We loop over the left and right halo cells in parallel, where each per-grid-cell thread
buffers the particles residing in that halo cell.

ii) Once the particles have been moved into the right and left sending buffers, we perform
MPI communication. More concretely, using MPI _Sendrecv, the send to right
buffer is sent from processor ¢ to ¢ + 1 where it is received in the receiving buffer
receive from left. Similarly, the send to_left buffer is sent from processor i + 1 to
i where it is received in the receiving buffer receive from right.

38

Cell 11

N

Cell 19

Cell 21

Figure 4.6: Visual representation of the Indexing update. Per-cell threads work in parallel
updating the neighboring cell list one direction at a time, following the color gradient.
Synchronization happens at the end of each direction. Since all threads update concordantly
(without interfering) on the 26 directions, thread safety is guaranteed.

iii) Once the buffers have been received, we move the particles from the buffers to the
corresponding physical cells, as in Figure 4.7

Notice that some NVIDIA architectures, as CINECA Marconil00, support MPI
CUDA-Aware [56] where the host and the device memory on a single node are combined
into unique virtual address space. In this case, we can use the pointers to memory locations
resident on the device in the MPI communications on the host side, increasing the efficiency by
pipelining all the operations required in a data transfer and allowing RDMA communications

[37].

39

H [\
send_to_right . receive_ from left
A}
(o) MPI_Sendrecv Q Y
.
F'S . .
Y A}
1 A3
1 1
A}
1 A)
'Y A}
. A)
I A}
. A}
G o [\ “
Process 0 r. : ' Process 1
“ M A
3
Cell 2 Cell 8 Cell 14 Cdl 20 Cell 2“ ?ell 8 ’ Cell 14 Cell 20
\ 3 Y
' v
z \ '
.)
s 1
Cell 1 Cell 7 Cell 13 Ccqgl19 y Cell 1 [} Cell f‘ Cell 13 Cell 19
‘\
A
A\l
1)
1
> X 1
CellO Cell 6 Cell 12 Ccqdl 18 CellO W celle Cell 12 Cell 18
Al
.
<

Figure 4.7: Schematic representation of the Communication step. Physical cells have blue
borders, whereas halo cells are identified with red borders. After the Streaming step and the
Indexing step, some particles (green dots) reside in the halo cells. In order to perform the
Communication step, (i) each per-halo-cell thread (each thread is associated to a halo cell)
moves their particles from the right halo to the send_to_right buffer. Using MPI_Sendrecv,
data in the send_to_right buffer is sent from Process 0 and received by Process 1 in the
receive_from_left buffer (i7). Finally, we move the particles from the receive from left
buffer to the correspondingly physical cells (ii).

1 #ifdef DSMC.OPENACC.GPU

> #pragma acc host_data use_device(send_to_right ,recv_from_left)

3 #endif

1+ MPI_Sendrecv(send_to_right , buffer_size ,MPIDOUBLE, pxp,3,recv_from_left ,
5 buffer_size ,MPIDOUBLE, pxm,3 , MPLCOMM ALONG X,& statusl) ;

6

7 #ifdef DSMC.OPENACC.GPU

s #pragma acc host_data use_device(send_to_left ,recv_from_right)

o #endif

10 MPI_Sendrecv(send_to_left , buffer_size ,MPILDOUBLE,pxm,4,recv_from_right ,
11 buffer_size ,MPIDOUBLE, pxp,4 ,MPLCOMM ALONG X,& status2) ;

40

4.5 Collision step

In the Collision step, we perform stochastic binary collisions among particles within the
same cell and compute the resulting post-collision velocities.

A technical aspect that we need to stress is the choice of the random number generator. For
our purposes, we have considered a simplified linear congruential generator based on the
APE random generator.

From the implementation point of view, we follow the Algorithm [3|

Algorithm 3 Collision step

1: for each cell ¢ do > #pragma acc parallel loop present(...) collapse(3)
2 compute M.qna

3 for 7+ 0 to M.,,q do > #pragma acc parallel loop seq
4 randomly select two different particles m and ¢
5 compute the pre-collision relative velocity |v,| between m and ¢
6: compute the new collision cross section op
7 f:ompute P(.Vm,.Vg) = %

8 if the collision is accepted then

9 randomly sample the angles x and ¢

10: compute the post-collision velocities v, and v}
11: end if

12: end for

13: update (o7|vy|)maz(€)

14: end for

Actually, the collision kernel consists of a parallel loop over all cells, where each per-grid-cell
thread first computes how many couples of particles M,,,q might perform the collision,
according to Equation [2.49
Then, within the same parallel loop, each thread performs a sequential for loop, choosing
randomly two candidate particles for each couple. In our implementation, all threads use the
same seed for the random number generator during these random selections.

The attempted collision between two candidate particles is accepted with probability given
by Equation [2.50]

Then, if the collision takes place, we need to sample the elevation and the azimuthal angles,
as explained in Chapter [2|

Note that, for these latter operations, we choose a different strategy to improve the statistics.
Specifically, for accepting the collision and sampling the angles, each thread has its own seed
for the APE random number generator.

Once the collision is performed, the velocities of the two particles are updated with the
post-collision values.

Finally, once all the candidate couples have been considered, each per-grid-cell thread updates
the value of (07|v,|)maz-

41

4.6 Sampling step

The last step is to sample flow properties and standard hydrodynamic moments.

From the implementation perspective, we consider a kernel with a parallel loop over all the
cells, where each per-grid-cell thread computes and updates the averaging flow properties
based on the particles residing in that cell.

For details see Algorithm [4 and recall the dsmc_cell_type_soa data structure defined in
Section [4.1] as well as the definition of the pressure tensor in Equation [2.20]

Algorithm 4 Sampling step

1: for each cell ¢ do > #pragma acc parallel loop present(...) collapse(3)
2 for each particle p in cell ¢ do > #pragma acc parallel loop seq
3 molecule_sum(c) <— molecule_sum(c) + 1

4 sum_u; (¢) < sum_u;(c) + u;(p) >i=x,y,z
5: sum ke; () < sum ke;(c) + (u;i(p))? >i=x,y,z
6: end for

7 stream; (c) < sum u;(c)/molecule_sum(c) >i=2x,y,z
8 for each particle p in cell ¢ do > #pragma acc parallel loop seq
9: vi(p) < ui(p) — stream;(c) >i=x,y,z
10 sum_u;u;(c) <= sum_usu;(c) + vi(p) © vy(p) >1i,j=x,y,z
11: end for

12: end for

As mentioned in Chapter [2] the sampling operation shall not be performed at each time
step, but rather every dsmc_steps_sampling steps (typically dsmc_steps_sampling ~ 10),
and only after dsmc_steps_sampling ndiag steps from the beginning of the simulations have
completed, that is when the system has already reached a steady state.

4.7 Validation

Conservation laws

In order to validate the code, we first verify that the total number of particles N is conserved,
as particles are not created nor destroyed at the boundaries.

Similarly, since we have imposed periodic boundary conditions, the momentum along the
three directions as well as the total kinetic energy must also be conserved, namely

P, (t) = Zszl MUy, = const.
Py(t) = Zivzl MUy, = const.
P.(t) = Yo, myvsk = const.

K(t) =S5, (v, + v2, + v2) = const.

(4.1)

42

Relaxation towards equilibrium

Another possible check is to study how the system relaxes towards equilibrium.
For instance, this can be done by initializing the particles with velocities

kgT
{vg,vy,0,} =+ — (4.2)

where + is a random number either {+1, —1}.

After performing several time steps O(10%), we check whether the final probability
distribution functions for the velocities are close to the theoretically predicted ones.
Actually, the probability of finding a particle with velocity in the infinitesimal element
[dv,, dv,, dv,| about velocity v = [v,, vy, v,] is [57]

fv (g, vy, 0,) dvg dvy dv, = fi,(vs) fo(vy) fo(v2) vy duy, du, (4.3)

where the distribution for a single direction is

Jolvs) =\ 5 g &P <_2kTi> ' (44)

Integrating over solid angle, the probability distribution for v = |v| is given by

m \3/2 g _mv?
flv) = <27rk:T> Adrve” 2T . (4.5)

Typical results are depicted in Figure [4.8|

Mean free path

Finally, we can compare the mean free path measured in the DSMC simulation with the
theoretical one A\y,. Specifically, for the VHS model, we have [14]

1
w—1/2
\/ﬁﬂnd%ef <%>

(4.6)

For example, we consider the scaling relation A(7") by varying the temperature 7" from 100 K
to 500 K and keeping fixed w = 0.81, the reference temperature 7,.; = 273 K, number
density n = 2 x 10* m™® and diameter d,.; = 4.092 x 107! m. The comparison between
the theoretical mean free path Ay and the measured one after 30000 time step is shown in

Figure [£.9]

43

Relaxation towards equilibrium

BN Initial velocity distribution B [nitial velocity distribution

0.5
1.0

0.4 4
0.8 4

0.3
0.6

U [
9 9
o o
0.4 021
0.2 0.1
0.0 r r T r 0.0 r r + T r
200 300 400 500 600 —300 -200 -100 o 100 200 300
vim/s] vilm/s]
0.0030 0.00200
I Measured velocity distribution after 30000 time steps I Measured velocity distribution after 30000 time steps
—— Theoretical Prediction —— Theoretical Prediction

0.00175 4
0.0025 {

0.00150 1
0.0020 +

0.00125 A

[—
T 0.0015 4 T 0.00100 A
[=N Q

0.00075 A
0.0010 A
0.00050 A

0.0005 A
0.00025 A

0.0000 - 0.00000 -

1200 0 1000
vim/s] Vx[m/s]

Figure 4.8: We consider a simulation with 16384 DSMC molecules (8 x 8 x 8 = 512 cells with
32 particles per cell) representing particles with mass m = 6.63 x 1072 Kg and diameter
drep = 4.092 x 1071° m at temperature 7' = 300 K and number density n = 2 x 10* m™* in
a box of 1 m®. For the collisions, we consider the VHS with parameter w = 0.81. The upper
panel shows the initial velocities distributions for v = |v| and v, as in Equation The
lower panel shows the final velocities distributions after 30000 time steps each of duration
At = 1079 s, as well as the theoretical predictions given by Equation and Equation

44

Mean free path A as a function of the temperature T

® Measured after 30000 time steps
0.0080 1 —— Theoretical Prediction

0.0075 4

0.0070 4

0.0065 +

0.0060 +

Mean Free Path A [m]

0.0055 4

0.0050 4

T T T T T T T T T
100 150 200 250 300 350 400 450 500

TIK]

Figure 4.9: Theoretical (according to Equation and measured (within the DSMC
simulation) mean free path as a function of the temperature.

45

Chapter 5

Results

The benchmark problem used here to assess performance is a variable hard-sphere gas in a
box with periodic boundary conditions.

We initialize the gas with initial velocity as in Equation then molecular collisions lead
the gas to eventually reach thermodynamic equilibrium.

For these benchmark runs, we simulate Argon-like gas at a temperature of 273.15 K and
number density of 7.1 x 10*2 m~2 with an average of 20 DSMC particles per grid cell (setting
MAX_PARTICLES_PER_CELL = 64).

The gas is composed by molecules of mass m = 6.63 x 10726 Kg and reference diameter
drep = 4.17 x 1071% m, with the VHS parameter w = 0.81.

We consider simulations of 1000 time steps, each during 7.0 x 107 s.

Moreover, in order to have a homogeneous MPI topology, we consider a 1D decomposition
of the domain along the z direction.

For benchmark timings, in general, there are several metrics of interest when studying the
performance of the DSMC code.

Here, we mainly focus on Average Time per Call (AVG x Call), which is the total time spent
on the kernel divided by the number of calls to that kernel,
Total Time
AVG x Call = Num Calls (5.1)
where the Calls refer to the function in the time loop, namely Ballistic motion, Indexing,
Periodic boundary conditions, Communication, Collision and Data Sampling.

An important aspect that we need to stress is that performances strongly depend on the
size of the problem, expressed in terms of the number of DSMC particles in the simulation.
Recall that we keep the number of particles per cell fixed (specifically 20 particles per cell).
As a consequence, when we vary the total number of particles, also the number of grid cells
changes. Since we consider a per-grid-cell thread parallelism, this implies that the total
number of DSMC particles is associated to the number of threads, and thus related to the
performances of the GPUs.

The performance analysis of the code we have implemented refers to simulations running
on Marconil0([], one of the HPC clusters hosted by CINECA.

The Table lists the one node specification for Marconil00.

"Marconil00 cluster: https://www.hpc.cineca.it/hardware/marconil00

46

Specification Marconil00 Marconi
CPU model IBM POWER9 AC922 Intel Xeon 8160 CPU (Skylake)
Architecture ppcbdle x86.-64
Sockets 2 2
Cores/socket 16 24
Threads/core 4 2
Total physical cores 32 48
Total logical cores 128 96
Processor Base Frequency 2.60 GHz 2.10 GHz
CPU Max frequency 3.8 GHz 3.70 GHz
L1d cache/core 32KB 32KB
L1i cache/core 32KB 32KB
L2 cache/core 512KB 1024KB
L3 cache 10240KB 33792KB
RAM 256 GB DDR4 192 GB DDR4
Memory channels per socket 8 6
GPU (on specific nodes) 4 x Tesla V100-SXM2 16GB

Table 5.1: Hardware specification of the one node of Marconil00 and Marconi (A3) clusters.
Marconil0O0 runs on a Mellanox IB EDR DragonFly++ (100Gb/s) high-performance network.
Marconi runs on a Intel OmniPath (100Gb/s) high-performance network.

Moreover, the source code was compiled using the Nvidia HPC SDK (hpc-sdk/2021)
compiler with the following flags ~-fast -03 -Minline -Msafeptr -ta=tesla:cc70.

As an example, it is interesting to study the AVG x Call for one full node (with 4 MPI
processes associated to the 4 GPUs of the Marconil00 node) as a function of the simulated
DSMC particles. Results are shown in Figure [5.1| where on the z-axis we vary the number of
particles p from p ~ 500 K (thousand) to p &~ 125 M (million) (corresponding to ¢ ~ 25 K
to ¢ &~ 6.25 M cells, respectively).

Remarkably, from the plot we see one of the main problem of our implementation,
namely the Indexing function scales only for large simulations. In other words, we observe
performance degradation when the number of particles per process is less than ~ 4 M.
Further investigation is needed to fully understand and possibly improve such behavior,
but few considerations are in order. First of all, the Indexing function does not perform any
floating point operations, but rather memory accesses, that is not what GPUs are optimized
for. The second aspect is that, in the Indexing function, 26 kernels are created to sequentially
update the particles moving in one of the 26 directions at a time. Even though we tried to
minimize data movements using the present clause, the compiler might need to perform
data transfer operations.

Clearly, this does not affect just small size simulations, but, importantly, also large
simulations as we increase the number of processors, that is the strong scaling.

As already mentioned, this work is based on a simplified version of the fm_dsmc code
developed in [I4], 48, 49]. In this original fm_dsmc code, parallelization is achieved by
distributing cells and particles among MPI processes, in a pure distributed memory approach
(e.g. no shared memory paralellization with OpenMP threads).

While porting the code to multi-GPUs required major modifications, such as different data
structures and different algorithms, it is still useful to compare the original code and our

47

AVGxCall as a function of the number of particles
Focus on GPUs: 4 x Tesla V100

AVGxCall [s]

aa
Number of particles

Figure 5.1: AVGxCall as a function of the number of particles for one full node of
Marconil00 (4 x Tesla-V100-SXM2-16GB), with 20 particles per cell.

implementation with GPU offloading, to fully understand pros and cons.
Also notice that the original code takes into account the possibility that collision cells differ
from sampling cells. More precisely, for computational reasons, each sampling cell is divided
into ng. collision subcells.
In order to compare the original code and our new implementation, we have set ny,. = 1, but
such comparison is slightly biased due to additional branching of the original code.
Simulations with the original code have been performed both on Marconil00 and Marconi?]
clusters. The Table lists the one node specification also for Marconi.
On Marconil00 we compile the original code with IBM XL C compiler (x1/16.1.1) and
Spectrum-MPI parallel library (spectrum mpi/10.4.0), using the -03 optimization flag.
On the other hand, on Marconi we compile the original code with the INTEL Compiler
(intel/pe-xe-2018) and IntelMPI (intelmpi/2018), using the -03 -xCORE-AVX512
optimization flag, where the —xCORE-AVX512 flag generates AVX-512 instructions, optimised
for the Skylake processor.

5.1 Strong scaling

In this section, we analyze the performances and timings for strong scaling, defined as the
variation of the time taken to complete the task with increasing number of parallel processes
while keeping the problem size constant.

Specifically, we consider a problem of p ~ 125 M particles and ¢ ~ 6.25 M cells (precisely
p = 125829120 DSMC molecules and ¢ = 6291456 grid-cells, with 20 particles per cell),
running on 1, 2,4, 8, 16, 32, 64 nodes.

2Marconi cluster: https://www.hpc.cineca.it/hardware/marconi

48

Moreover, for simulations with GPU offloading, we consider 4 MPI processes per node. In
this way, each process is associated to one of the 4 Tesla V100 within the Marconil00 node.
For the original code simulations running on Marconil00, with Power9 (P9) processors, we
consider 32 MPI processes per node, each associated to one of the 32 physical cores within
the node (no multi-threading). Similarly, for simulations running on Marconi with Skylake
(SKL) processors, we consider 48 MPI processes per node, each associated to one of the 48
physical cores within the node (no multi-threading).

In Figure 5.2 we show the AVG x Call as a function of the number of nodes.

Strong scaling for 125829120 DSMC particles
Comparison: V100 vs P9 vs SKL

AVGxCall [s]

8
Number of nodes

Figure 5.2: Strong scaling for 125829120 DSMC molecules, with 20 particles per cell. In the
plot, we show the AVGx Call as a function of the number of nodes for our implementation I
with GPU offloading running on 4 Tesla V100 per node (1V'100) as well as the original code
T running on 2 x 16 physical cores Power9 per node (1P9) and 2 x 24 physical cores Skylake
per node (1SKL).

Let’s focus on the pros and cons of our code with GPU offloading.
Remarkably, for the size under consideration, running on one single Marconil00 node, the
code with GPU offloading is significantly more performing compared to the original code.
Another way to see this is to notice that we need 16 nodes for the original code to achieve
performances comparable with one full GPU node.
Moreover, note that, for the problem size under consideration, the original code running on
Power9 processors shows better performances compared to the Skylake processors, especially
in the Periodic Boundary Conditions routine and in the creation of the buffer for the
Communication function. A possible reason for this behavior might be related to the higher
memory bandwidth of the Power9.
In fact, in the Colliston function, where most of the floating point operations are performed,
the Skylake processor shows better performances.
Conversely, for simulation running on 64 nodes, the aforementioned GPU performance

49

improvement is severely reduced. The reason can be traced back to the poor scaling of

our code, as we can see in Figure 5.3
In the plot, we show the speedup as a function of the number of nodes n defined by

Speedup(n) = T,(1)/T,(n) (5.2)

where p = 125829120 is the number of particles, 7,,(1) is the time for solving the problem
with p particles and one node, while T),(n) is the time for solving the problem with p
particles and n nodes.

Strong scaling Speedup for 125829120 DSMC particles
Comparison: V100 vs P9 vs SKL

20| —=— DSMC $V100 scaling

—— DSMC P9 scaling e

—=— DSMC 1SKL scaling e
Ideal scaling S

Speedup
3 8

30
Number of nodes

Figure 5.3: Strong scaling Speedup, defined in Equation for p = 125829120 DSMC
molecules, with 20 particles per cell. In the plot, we show the Speedup as a function of the
number of nodes for our implementation I with GPU offloading running on 4 Tesla V100 per
node ($V100) as well as the original code t running on 2 x 16 physical cores Power9 per node
(tP9) and 2 x 24 physical cores Skylake per node (1SKL).

Remarkably, on one hand, we see that the original code has an ideal scaling,
Speedup(n) =~ n. On the other hand, starting from 8 nodes (corresponding to 32
MPI processes) we have less than ~ 4 M particles per process, precisely the regime where
the Indexing function stops scaling, as we can see focusing on the GPU strong scaling in

Figure [5.4]

20

Strong scaling for 125829120 DSMC particles
Focus on GPUs: 4 x Tesla V100 per node

W Ballistic-Motion

= Indexing
PBC
Communica tion
Collision

= Data-Sampling

0.08
0.06
oo]
—
0.02
0.00 I . . L
1 2 4 8 16 E 64

Number of nodes

AVGxCall [s]

Figure 5.4: Strong scaling for p = 125829120 DSMC molecules, with 20 particles per
cell. In the plot, we focus on the AVGxCall as a function of the number of nodes for our
implementation, with GPU offloading, running on 4 Tesla V100 per node. As we can see, for
more than 8 nodes the Indexing function stops scaling.

5.2 Weak scaling

As we have seen in the previous sections, the code with GPU offloading, developed in this
work, stops scaling when we have less than &~ 4 M particles per process.
Therefore, in order to avoid such performance degradation, we have to keep a large number
of DSMC particle per process, that is, we need to consider weak scalability.
Actually, weak scaling can be defined as the variation in time taken to complete the task
with increasing number of processes while keeping workload per process constant.
In particular, the weak scaling results for p ~ 32 M (precisely p = 31457280) DSMC molecules
per node are shown in Figure [5.5

Moreover, in Figure we show the efficiency as a function of the nodes, defined as

T,(1)
Tp(n)

where T},,,(n) is the time for solving the problem with n - p particles and n nodes.

Note that the original code shows an almost ideal efficiency, Efficiency(n) ~ 1, with a slow
degradation as the number of nodes increases, due to the Communication step. Conversely,
the efficiency of our implementation drops significantly moving from 1 node to 2 nodes; then
for n > 2 we see the slow decay as the number of nodes increases, as before.

In order to understand what is happening, let’s focus on the weak scaling for our code with
GPU offloading, as shown in Figure 5.7 Remarkably, the Communication time moving
from intra-node to inter-node visibly increases (it more than doubles). Afterwards, the
Communication time slowly increases as more and more nodes are considered.

The Avg x Call for the other functions remain constant.

Efficiency(n) = (5.3)

o1

Weak scaling for 31457280 DSMC particles per nodes
Comparison: V100 vs P9 vs SKL

:
:

:
:

AVGxCall [s]

8
Number of nodes

Figure 5.5: Weak scaling for p = 31457280 DSMC molecules per process, with 20 particles
per cell. In the plot, we show the AVGxCall as a function of the number of nodes for our
implementation I with GPU offloading running on 4 Tesla V100 per node ($V100) as well
as the original code t running on 2 x 16 physical cores Power9 per node (P9) and 2 x 24
physical cores Skylake per node (1SKL).

Weak scaling efficiency for 31457280 DSMC particles per node
Comparison: V100 vs P9 vs SKL

—— DSMC V100 efficiency
—— DSMC 1P9 efficiency
—+— DSMC tSKL efficiency
Ideal efficiency

Efficiency

30
Number of nodes

Figure 5.6: Weak scaling Efficiency, defined in Equation [5.3 for p = 31457280 DSMC
molecules per process, with 20 particles per cell. In the plot, we show the Efficiency as a
function of the number of nodes for our implementation { with GPU offloading running on 4
Tesla V100 per node (1V100) as well as the original code running on 2 x 16 physical cores
Power9 per node (1P9) and 2 x 24 physical cores Skylake per node (fSKL).

52

Weak scaling for 31457280 DSMC particles per node
Focus on GPUs: 4 x Tesla V100 per node

B Ballistic-Motion

= Indexing
PBC
Communication
0.04 4 mmm Collision
|] || ||
||

W Data-Sampling ‘ ‘

o !

0.00 J I I I I I l
1 2 4 8 16 32 64

Number of nodes

AVGxCall [s]

Figure 5.7: Weak scaling for p = 31457280 DSMC molecules per process, with 20 particles
per cell. In the plot, we focus on the AVGx Call as a function of the number of nodes for our
implementation, with GPU offloading, running on 4 Tesla V100 per node. As we can see,
the Communication time moving from intra-node (1 node) to inter-node (> 2 nodes) visibly
increases.

23

Chapter 6

Conclusions

In this work, we have studied the offloading to accelerators, using OpenACC, of a simplified
version of the fm_dsmc code, developed at FLOW Matters Consultancy B.V. fu., a start-up
company supporting this project.

Despite possible performance degradation, compared to native programming languages such
as CUDA, OpenACC provides a very interesting and promising tool to express parallelism
in DSMC applications, both for its simplicity and portability. Actually, offloading kernels
to accelerators with OpenACC is quick and simple, while, at the same, preserving the code
readability and the maintainability.

However, when porting the DSMC code to multi-GPUs, different data structures and
different algorithms are needed to enable threaded parallelism and take advantage of the
GPUs computing power.

Actually, on one hand, exploiting GPU architectures requires the SoA data organization
rather than the traditional AoS format, as it guarantees better coalescence of global memory
accesses. On the other hand, Indering particles after the Streaming step requires dedicated
algorithms or specific expedients to ensure thread safety.

In particular, by carefully choosing the duration of the time step At, we could safely assume
that, after the Streaming step, particles can move at most to neighboring cells. In this way,
thread safety is guaranteed by updating particles moving in one of the 26 direction at a time,
thus avoiding atomic operations.

Performances strongly depend on the problem size and the available resources.

Actually, for simulations with p ~ 125 M DSMC particles, our application with GPU
offloading running on one full Marconil00 node (4 MPI processes for 4 NVIDIA Tesla V100)
shows about 18 times speedup when compared to the original code running on the same node
(32 MPI processes for 2 x 16 IBM Power AC922 physical cores).

Unfortunately, the situation completely changes as we increase the number of nodes, that is,
when we consider strong scalability.

For instance, consider simulations with p ~ 125 M particles running on 64 Marconil00 nodes.
In this case, the performance speedup of our application with GPU offloading drops to about
3 times when compared to the original code.

Similar results can be obtained with the original code running on Marconi supercomputer
(with Intel Xeon 8160 Skylake processors).

The reason can be traced back to the poor scaling of our Indexing function when we have

o4

less than ~ 4 M particles per MPI process (i.e. per GPU).
However, in a weak scaling test, keeping fixed p ~ 32 M particles per node, we have measured
about 12 times speedup up to 64 nodes.
Moreover, on MarconilO0, for simulations with p ~ 125 M DSMC particles, our application
with GPU offloading running on 8 nodes shows better performances then the original code
running on 64 nodes. This result can be relevant for efficiency in energy consumption, as well
as for quality of service and fare usage of HPC facilities with heterogeneous architectures.
Clearly, future developments need to be focused on improving the scaling of the Indexing
function, either by careful profiling and optimizing the existing algorithm, and/or by
asynchronously performing some operations on the host. Finally, another possibility is to
look for new algorithms ensuring thread safety as well as better scaling performances.

25

(S N VI N}

Appendix A

AoS vs SoA: a toy-model example

In this Appendix, we consider an illustrative comparison between the AoS and SoA
organization. Here, we are not providing a rigorous proof that the SoA format is the best
one for our DSMC code, but rather giving some intuition with a simple toy model.
Specifically, consider two very simple kernels (one for each data struct), representing a
simplified version of the streaming step, where we simply update N particles’ coordinates
according to the Euler method:

To have more statistics, we loop over many time steps, performing max_iter iterations.
For simplicity, the initial positions and velocities are randomly initialized. Moreover, since
this is a simple toy model, we consider an infinitely large box, without any collision grid
structure. Concretely, we define the following data structure
typedef struct {

double x, y, z; /* molecule position x/

double ux, uy, uz; /* molecule velocity components x/
} dsmc_basic_type_aos;

typedef struct {

double x*x, xy, xz; /* molecule position x/

double x*ux, *uy, *uz; /* molecule velocity components x/
} dsmc_basic_type_soa;

and the following kernels, where we take into account two different possibilities (to be
selected at compile time with the RANDOM flag).

o6

1 // AoS simple streaming kernel
> for (iter = 0; iter < max_iter ; 4++iter) {
#if defined (.OPENACC)
1 #pragma acc parallel loop present (dsmc_particle_aos[0:N],dt ,N,RND[0:N]) \
5 independent
¢ Felif defined (LOPENMP)
7 #pragma omp parallel for
s Fendif
9 for (i =0 ; i <N ; ++i) {
10 #ifdef RANDOM
1 int 1 = (int) (randf64(&RND[i])) * (N—0.001));
12 #else
13 int 1 = i;
14 #endif
15 dsmc_particle_aos[1].x += dt * dsmc_particle_aos[]l]. ux;
16 dsmc_particle_aos[1].y += dt * dsmc_particle_aos[l].uy;
17 dsmc_particle_aos[1].z += dt * dsmc_particle_aos[l].uz;
s}
19 }

1 // SoA simple streaming kernel
> for (iter = 0; iter < max_iter ; 4+iter) {

3 #if defined (.OPENACC)

! #pragma acc parallel loop present (dsmc_particle_soa ,dt,N,RND[:N], \

5 dsmc_particle_soa.x[:N],dsmc_particle_soa.y[:N],dsmc_particle_soa.z[:N],\

¢ dsmc_particle_soa.ux[:N],dsmc_particle_soa.uy[:N],dsmc_particle_soa.uz[:N])\
7 independent

s Felif defined (LOPENMP)

9 #pragma omp parallel for

#endif

1 for (i =0 ; i <N ; ++i) {

12 #ifdef RANDOM

13 int 1 = (int) (randf64(&RND[i])) * (N—0.001));

14 #else

15 int 1 = i;

16 #endif

17 dsmc_particle_soa.x[1l] += dsmc_particle_soa.ux[1l] * dt;
18 dsmc_particle_soa.y[l] += dsmc_particle_soa.uy[l] * dt;

19 dsmc_particle_soa.z[l] += dsmc_particle_soa.uz[l] * dt;

20 }
21 }

For the random memory accesses option, we use the same random number generator as in
our DSMC code. Moreover, we consider per-particle thread parallelism where each particle
(thread) has a different seed.

Compiling the OpenACC code with the nvec compiler (hpc-sdk/2021) and the OpenMP
code with the gcc compiler (gnu/8.4.0) using the following flags

GPU_ACC = -fast -O3 -acc -ta=tesla:cc70 -acc=noautopar
GPU_ACC_RANDOM = -fast -O3 -acc -ta=tesla:cc70 -acc=noautopar -DRANDOM
MULTICORE_ACC = -fast -O3 -acc -ta=multicore -Mvect=simd:256 -acc=noautopar
MULTICORE_OMP = -O3 -fopenmp -lm

27

and running on one node of CINECA Marconil00 using only one NVIDIA Volta V100 GPU
(there is no MPI communication in this toy model) and 32 cores IBM POWER9 AC922
(carefully setting the environment variable ACC_NUM_CORES = 32), we get the results shown
in Figure [A]]

Few considerations are in order.
Let’s start focusing on the GPU performances which are our primary concern.
Remarkably, the GPU with the SoA data structure with contiguous memory accesses
(GPU_ACC SoA) is clearly the most performing one.
However, the situation completely changes when compiling with the RANDOM flag, where on
one hand we generally observe a severe, but expected, performance degradation.
On the other hand, for strided memory accesses, the GPU shows better performances with
the AoS rather than the SoA data structure.

A second consideration regards a similar behavior for both the OpenMP and OpenACC
multicore CPUs. Actually, while the SoA data struct performs better than the AoS one for
N = 10% — 107, we observe the opposite for very large simulations N = 108.

A full explanation of these results is beyond the purposes of this Appendix and requires
further investigation.

In conclusion, we have a reassuring confirmation that, for contiguous memory accesses (i.e.
the typical memory accesses in the DSMC algorithm), the SoA data structure is the most
performing one for codes with GPU offloading.

In fact, we perform strided memory accesses only in the Collision step, where the number
of such random accesses is limited by the fact that there are only few particles per cell and
only a fraction of these particles (M 4,q) might perform a collision.

-e- :_ACC (32 cores) A0S 225
—e— MULTICORE_ACC (.

A

MULTICORE_OMP (32 cores) Ao _

MULTICORE_OMP (32 cores) SoA "
o -

—e— MULTICORE_ACC (32 cores) AoS/SoA
~e— MULTICORE_OMP (32 cores) AoS/SoA N

GPU_ACC A0S/SoA Ve
—e— GPU_ACC_RANDOM A0S/SoA

10° 107 10°

Figure A.1: On the left, we show the time (in seconds) it takes for the kernels to perform
max_iter = 1000 iterations as a function of the number of particles N € {105 107, 108}.
On the right, we plot the ratio %‘Sﬁ with the same compilation settings. The SoA data
structure is more performing than the AoS one for data points above the horizontal grey line.

o8

Bibliography

1]
2]

3]
[4]

[10]

[11]

[12]

[13]

The greenb00 project. https://www.top500.o0rg/lists/green500/2022/11/| 2022.

Paul Carpenter, Uwe-Haus Utz, Sai Narasimhamurthy, and Estela Suarez.
Heterogeneous high performance computing, February 2022.

The top500 project. https://www.top500.0rg/lists/top500/2022/11/, 2022.

John Nickolls, ITan Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. In ACM SIGGRAPH 2008 Classes, SIGGRAPH 08, New
York, NY, USA, 2008. Association for Computing Machinery.

NVIDIA. Thrust, the CUDA C++ template library.

Khronos Group. The Open Standard for Parallel Programming of Heterogeneous
Systems.

Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. Parallel programming in OpenMP. Morgan kaufmann, 2001.

Openacc 3.2 specification. https://www.openacc.org/sites/default/files/
inline-images/Specification/OpenACC-3.2-final.pdf. Accessed: November,
2021.

Openacc programming and best practices guide. https://www.openacc.org/sites/
default/files/inline-files/openacc-guide.pdf. Accessed: April 2022.

Enrico Calore, Alessandro Gabbana, Jiri Kraus, Sebastiano Fabio Schifano, and
Raffaele Tripiccione. Performance and portability of accelerated lattice boltzmann
applications with openacc. Concurrency and Computation: Practice and FExperience,
28(12):3485-3502, 2016.

G. A. Bird. Approach to translational equilibrium in a rigid sphere gas. The Physics of
Fluids, 6(10):1518-1519, 1963.

W. Steckelmacher. Molecular gas dynamics and the direct simulation of gas flows.
Vacuum, 47(9):1140-, 1996.

G.A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. The
Oxford engineering science series. Clarendon Press, 1994.

29

https://www.top500.org/lists/green500/2022/11/
https://www.top500.org/lists/top500/2022/11/
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.2-final.pdf
https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf
https://www.openacc.org/sites/default/files/inline-files/openacc-guide.pdf

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

23]

[24]

[25]

[26]

G. Di Staso. Hybrid discretizations of the Boltzmann equation for the dilute gas flow
regime. PhD thesis, Applied Physics, December 2018. Proefschrift.

Carlo Cercignani. The Boltzmann FEquation, pages 40-103. Springer New York, New
York, NY, 1988.

H. Struchtrup. Macroscopic Transport Equations for Rarefied Gas Flows: Approximation
Methods in Kinetic Theory. Interaction of Mechanics and Mathematics. Springer Berlin
Heidelberg, 2006.

D. Tong. Lectures on kinetic theory lecture notes for the cambridge mathematics course.
https://www.damtp.cam.ac.uk/user/tong/kinetic.html, 2012.

K. Huang. Statistical Mechanics. John Wiley and Sons, 2000.
M. Kardar. Statistical Physics of Particles. Cambridge University Press, 2007.

Pareschi, Lorenzo and Russo, Giovanni. An introduction to monte carlo method for the
boltzmann equation. ESAIM: Proc., 10:35-75, 2001.

Hong Liu and Paolo Glorioso. Lectures on non-equilibrium effective field theories and
fluctuating hydrodynamics. PoS, TASI2017:008, 2018.

G. A. Bird. The velocity distribution function within a shock wave. Journal of Fluid
Mechanics, 30(3):479-487, 1967.

S. K. Stefanov. On the basic concepts of the direct simulation monte carlo method.
Physics of Fluids, 31(6):067104, 2019.

Stefan K. Stefanov. On dsmc calculations of rarefied gas flows with small number of
particles in cells. SIAM Journal on Scientific Computing, 33(2):677-702, 2011.

Wolfgang Wagner. A convergence proof for bird’s direct simulation monte carlo method
for the boltzmann equation. Journal of Statistical Physics, 66(3):1011-1044, 1992.

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors, Third
Edition: A Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2016.

Peter Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition, 2011.

Zhe Jia, Marco Maggioni, Benjamin Staiger, and Daniele P. Scarpazza. Dissecting the
nvidia volta gpu architecture via microbenchmarking, 2018.

Luke Durant, Olivier Giroux, M. H., and N. Stam. Nvidia tesla v100 gpu architecture
the world’s most advanced data center gpu., 2017.

P. Gupta. Cuda refresher: The cuda programming model. https://developer.nvidia.
com/blog/cuda-refresher-cuda-programming-model/, 2020.

60

https://www.damtp.cam.ac.uk/user/tong/kinetic.html
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

[31]

32]

[43]

[44]

G. Ruetsch and M. Fatica. CUDA Fortran for Scientists and Engineers: Best Practices
for Efficient CUDA Fortran Programming. Elsevier Science, 2013.

J. Han and B. Sharma. Learn CUDA Programming: A beginner’s guide to GPU
programming and parallel computing with CUDA 10.z and C/C++. Packt Publishing,
2019.

J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Programming.
EBL-Schweitzer. Wiley, 2014.

Jimmy Vianello. Development of a multi-gpu navier-stokes solver, 2020.

S. Chandrasekaran and G. Juckeland. OpenACC" for Programmers: Concepts and
Strategies. Pearson Education, 2017.

Rob Farber. Parallel Programming with OpenACC. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 1st edition, 2016.

Alessandro Gabbana. Accelerating the d3q19 lattice boltzmann model with openacc and
mpi, 2015.

Saeid Aliei. Porting of the Ibe3d to gpu using openacc, 2020.

Alessandro Gabbana. Lattice Boltzmann Methods for Fluid-Dynamics in Relativistic
Regimes. PhD thesis, Wuppertal U., 2019.

G.J LeBeau and F.E Lumpkin III. Application highlights of the dsmc analysis code
(dac) software for simulating rarefied flows. Computer Methods in Applied Mechanics
and Engineering, 191(6):595-609, 2001. Minisymposium on Methods for Flow Simulation
and Modeling.

Michael A. Gallis, John R. Torczynski, Steven J. Plimpton, Daniel J. Rader, and
Timothy Koehler. Direct simulation monte carlo: The quest for speed. AIP Conference
Proceedings, 1628(1):27-36, 2014.

S. J. Plimpton, S. G. Moore, A. Borner, A. K. Stagg, T. P. Koehler, J. R. Torczynski,
and M. A. Gallis. Direct simulation monte carlo on petaflop supercomputers and beyond.
Physics of Fluids, 31(8), 8 2019.

Chonglin Zhang and Thomas E. Schwartzentruber. Robust cut-cell algorithms for dsmc
implementations employing multi-level cartesian grids. Computers & Fluids, 69:122-135,
2012.

T.J. Scanlon, E. Roohi, C. White, M. Darbandi, and J.M. Reese. An open source,
parallel dsmc code for rarefied gas flows in arbitrary geometries. Computers and Fluids,
39(10):2078-2089, 2010.

Stefan Dietrich and Iain D. Boyd. Scalar and parallel optimized implementation of the
direct simulation monte carlo method. J. Comput. Phys., 126(2):328-342, jul 1996.

61

[46]

[47]

[48]

[49]

[50]

[51]

[53]

[54]

[55]

Jose F. Padilla. Comparison of DAC and MONACO DSMC codes with flat plate
simulation. NASA /TM- ; 2010-216835. National Aeronautics and Space Administration,
Langley Research Center, Hampton, Va, 2010.

Mikhail S. Ivanov, Alexander V. Kashkovsky, Sergey F. Gimelshein, Gennady Markelov,
Alina A. Alexeenko, Yevgeny A. Bondar, G. A. Zhukova, S. B. Nikiforov, and P. V.
Vaschenkov. Smile system for 2 d / 3 d dsmc computations. In Proceedings of 25th
International Symposium on Rarefied Gas Dynamics, St. Petersburg, Russia, 2007.

G. Di Staso, H.J.H. Clercx, S. Succi, and F. Toschi. Dsmc-lbm mapping scheme for
rarefied and non-rarefied gas flows. Journal of Computational Science, 17:357-369, 2016.
Discrete Simulation of Fluid Dynamics 2015.

G. Di Staso, S. Srivastava, E. Arlemark, H. J.H. Clercx, and F. Toschi. Hybrid
lattice boltzmann-direct simulation monte carlo approach for flows in three-dimensional
geometries. Computers and Fluids, 172:492-509, August 2018.

Ivan Girotto, Sebastiano Fabio Schifano, Enrico Calore, Gianluca Di Staso, and Federico
Toschi. Performance and energy assessment of a lattice boltzmann method based
application on the skylake processor. Computation, 8(2), June 2020. This Paper Is
an FExtended Version of Our Paper Published in the Proceedings of the ParCo2019:
Mini-Symposium on Energy-Efficient Computing on Parallel Architectures, Prague,
Czech Republic, 10-13 September 2019.

Ivan Girotto, Sebastiano Fabio Schifano, Enrico Calore, Gianluca Di Staso, and Federico
Toschi. Computational performances and energy efficiency assessment for a lattice
boltzmann method on intel knl. In Ian Foster, Gerhard R. Joubert, Ludek Kucera,
Wolfgang E. Nagel, and Frans Peters, editors, Parallel Computing, volume 36 of Advances
in Parallel Computing, pages 605-613, Netherlands, 2020. IOS Press.

Jens Wilke, Thomas Pohl, Markus Kowarschik, and Ulrich Riide. Cache performance
optimizations for parallel lattice boltzmann codes. In Harald Kosch, Laszlé Bészorményi,
and Hermann Hellwagner, editors, Euro-Par 2003 Parallel Processing, pages 441-450,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

Christian Obrecht, Frédéric Kuznik, Bernard Tourancheau, and Jean-Jacques Roux. A
new approach to the lattice Boltzmann method for graphics processing units. Computers
and Mathematics with Applications, 2010.

Christian Feichtinger, Johannes Habich, Harald Késtler, Georg Hager, Ulrich Riide, and
Gerhard Wellein. A flexible patch-based lattice boltzmann parallelization approach for
heterogeneous gpu—cpu clusters. Parallel Computing, 37(9):536-549, 2011. Emerging
Programming Paradigms for Large-Scale Scientific Computing.

Mark J. Mawson and Alistair J. Revell. ~Memory transfer optimization for a
lattice boltzmann solver on kepler architecture nVidia GPUs. Computer Physics
Communications, 185(10):2566-2574, oct 2014.

62

[56] J. Kraus. An introduction to cuda-aware mpi. http://devblogs.nvidia.com/
parallelforall/introduction-cuda-aware-mpi/, 2013.

[57] Harald J W Miiller-Kirsten. Basics of Statistical Physics. WORLD SCIENTIFIC, 2nd
edition, 2013.

63

http://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/
http://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

	Introduction
	Direct Simulation Monte Carlo method for modeling rarefied gas flows
	From the Boltzmann equation to hydrodynamics
	Conserved quantities and hydrodynamics
	Splitting approach

	Basics of the DSMC method
	Initialization of the simulation
	Streaming step
	Indexing and Communication steps
	Collision step
	Sampling and averaging flow properties

	GPU programming with OpenACC
	Programming models
	The CUDA programming model
	The OpenACC programming model

	DSMC on GPUs with OpenACC
	Data Layout
	Streaming step
	Indexing step
	Communication step
	Collision step
	Sampling step
	Validation

	Results
	Strong scaling
	Weak scaling

	Conclusions
	AoS vs SoA: a toy-model example
	Bibliography

