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Decays and scattering events are two of the principal ways to learn about

particle physics. Decays, in which a particle spontaneously disintegrates and we

examine the debris, are quantified by a decay width. The decay of a resonance state

provides information about the structure of the state and the interaction between

its components. In particular, we can learn about the dynamics of quarks and

gluons by studying the decay of hadrons. Scattering, in which particles are directed

towards each other and interact, are quantified by partial-wave amplitudes. These

amplitudes give us information about the interaction between the scattered particles.

In principle, all of hadronic physics follows from quantum chromodynamics

(QCD), which describes the interactions of quarks and gluons. However, the tech-

niques of perturbation theory are not applicable to QCD at low energy because the

strong coupling constant (the natural choice for the expansion parameter) is large

at the energy scale of hadronic physics. A powerful model-independent method is

the 1/Nc expansion in which the number of quark color degrees of freedom (Nc)
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is treated as a large number. This thesis presents the application of the 1/Nc ex-

pansion to the calculation of physical observables for excited baryons, pion-nucleon

scattering, and pion photoproduction.

The framework of the contracted SU(4) group that emerges in large Nc QCD

is applied to the study of excited baryon decays. The Nc power scaling of the excited

baryon’s decay width depends on the symmetry of its spin-flavor wavefunction. The

scaling with Nc for different symmetries is discussed in the context of a quark-shell

model that permits mixing of different symmetry types. The subtle issues concerning

the legitimacy of applying the contracted SU(4) group theory to excited baryons are

discussed.

The contracted SU(4) spin-flavor symmetry severely restricts the angular mo-

mentum and isospin dependence of partial-wave amplitudes. The consequences of

this restriction on pion-nucleon scattering and pion photoproduction are discussed.

In particular, model-independent linear relations among different hadronic scatter-

ing amplitudes holding to leading order in 1/Nc are obtained and compared with

experimental data. The group-theoretic structure of large Nc QCD allows for a

systematic expansion of scattering amplitudes in powers of 1/Nc which leads to

model-independent relations holding to next-to-leading order in 1/Nc. These rela-

tions are derived and shown to compare more favorably with experiments to the

extent expected for the 1/Nc expansion.
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Chapter 1

Introduction: Methods of Quantum Chromodynamics

1.1 QCD and Hadronic Physics

The strong interaction sector of the Standard Model includes the basic ingredients

of matter, protons and neutrons, which are found in the atomic nucleus and provide

fusion fuel for stars. This sector is described by the theory of quantum chromody-

namics (QCD) where the fundamental degrees of freedom of the QCD Lagrangian [1]

are spin-1/2 quarks and spin-1 gluons. Each quark takes on one of the three values

of a label called color [2] that plays a role similar to that of electric charge in quan-

tum electrodynamics (QED). The interaction between the quarks and the gluons is

then determined by gauging the local SU(3)-color symmetry.

Quantum chromodynamics exhibits a phenomena called color confinement,

which states that the asymptotic states of QCD are colorless. While color confine-

ment is currently not totally understood within the theory of QCD, it is firmly based

on the empirical fact that quarks or gluons have not been observed in nature. The

observed particles of QCD are colorless bound states of quarks and gluons, called

hadrons which fall into two classes: mesons and baryons. Mesons are spin-0 or -1

hadrons with the quantum numbers of a quark–anti-quark pair. Baryons are spin-1
2

or -3
2

hadrons with the quantum numbers of a three-quark composite.

One goal of hadronic physics is to understand the properties and interactions
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of mesons and baryons using QCD. However, the dimensionless QCD coupling g

is of order unity at the low energies (on the order of the QCD scale parameter,

ΛQCD ≈ 200 MeV) and large distances (on the order of the proton radius ∼ 1 fm)

relevant to hadronic physics. This means that the powerful techniques of pertur-

bation theory using the coupling as an expansion parameter developed for QED

(gQED ∼ 1/137) are inapplicable. The large value of the coupling at small energies

is due to the phenomenon of asymptotic freedom [3] exhibited by non-Abelian gauge

groups like SU(3)-color. Asymptotic freedom also hints at a partial explanation for

color confinement: low-energy colored quarks and gluons interact strongly with each

other and condense into colorless states (hadrons). According to asymptotic free-

dom, the QCD coupling is small at high energies (and short distances) and thus

is a suitable perturbation parameter in this regime. Research using perturbative

QCD at high energies has enjoyed a lot of success. For example, Bjorken scaling

and deviations from scaling in the context of deep inelastic lepton-hadron scattering

are well understood [4, 5].

In the hadronic physics energy regime, progress is made by constructing models

that encode varying levels of QCD features. Among the popular and successful

models are the quark model [6], the MIT bag model [7], the vector dominance

model [8], and the Skyrme model [9, 10]. We briefly describe these below.

The quark model of Gell-Mann and Ne’eman [6] provided the genesis for quan-

tum chromodynamics. In this model, the known hadrons are imagined to be com-

posed of point-like entities called constituent quarks with electric charges in multiples

of 1
3

and a color label. The quarks are spin-1
2

and come in six flavors with increasing
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mass, {up, down, strange, charm, top, bottom}. Although they share the same

name, the quarks of the QCD Lagrangian and the quark model have no obvious

connection. A constituent quark is an object made up of quarks and gluons that

has the quantum numbers (spin, color, baryon number, etc.) of a single quark. The

interaction between constituent quarks in the quark model is not based directly on

QCD, but on phenomenological parameters chosen so that the predicted hadronic

masses fit the observed spectrum. Despite its shortcomings, this model has been

very helpful for understanding hadronic properties.

The original quark model only considered the three lightest flavors, q = (u, d, s)

and assumes that their masses are small compared to ΛQCD. This hypothesis ex-

plains the observation that hadrons with masses below ∼ 1700 MeV can be grouped

into SU(3)-flavor multiplets if mesons are taken as qq̄ pairs and baryons as qqq

composites. Isospin is a sub-group of this approximate SU(3)-flavor symmetry. An

SU(2) isospin quantum number is assigned to particles that can be grouped together

by mass and other properties (strangeness, etc.). For example, the proton and neu-

tron form an isospin-1
2

doublet with mass ≈ 939 MeV, called a nucleon. Other

multiplets that will be important in this thesis are the pions (π+, π0, π−) with

isospin 1 and mass ≈ 138 MeV, and the deltas (∆++, ∆+, ∆0, ∆−) with isospin 3
2

and mass ≈ 1232 MeV. Since QCD respects the isospin symmetry, the total isospin

of a hadronic system is conserved in strong interaction processes.

In the MIT bag model, a hadron is modeled as a spherical (“bag-like”) cav-

ity in the QCD vacuum that contains free quarks. The QCD vacuum provides the

external pressure needed to stabilize the hadron and color confinement is explic-
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itly incorporated by choosing appropriate color values for the quarks. Calculations

within this model of the hyperfine mass splittings in the hadronic spectrum match

a lot of experimental data nicely [7].

Even before the quark model or QCD, J.J. Sakurai [8] attempted to model the

strong interaction as a gauge theory where the vector mesons ρ(770), ω(782), and

φ(1020) play the role of the gauge bosons. The so called vector dominance model

has successfully explained many phenomenological aspects of hadronic physics such

as form factors, absorption cross sections, and πN and NN scattering.

An effective theory of pions with a close connection to the vector dominance

model is due to T.H. Skyrme [9, 10]. It is an extension of the non-linear sigma

model, which is based on chiral symmetry. This symmetry follows from the fact

that the up and down quark masses are very close to zero and the QCD Lagrangian

restricted to these flavors is invariant under SUL(2)×SUR(2) transformations. The

Skyrme Lagrangian is given by

L =
1

4
f 2
π Tr(∂µU∂µU †) +

1

32e2
Tr
[
(∂µU)U †, (∂νU)U †]2 , (1.1)

where U = exp(i�τ · �π/fπ) ∈ SU(2), �π represents the pion fields, and �τ is the set of

Pauli matrices acting in isospin space. The pion decay constant, fπ ≈ 93 MeV, is

a fundamental parameter that governs low-energy hadronic physics. Skyrme noted

that the equations of motion derived from Eq. (1.1) include static classical solutions

of finite size and energy (called solitons), with a conserved topological quantum

number (charge), b. Skyrme suggested that the number b can be identified with the

baryon number and furthermore that the b = 1 solitons are nucleons. That a meson
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(boson) theory can describe baryons (fermions) is not obvious a priori [11], but the

hypothesis has provided many good predictions (within 30% accuracy) for baryonic

properties like magnetic moments, couplings, and charge radii [12].

Chiral symmetry is spontaneously broken by the QCD vacuum. According

to Goldstone’s theorem, a continuous symmetry that is spontaneously broken is

accompanied by a zero-mass boson field. The anomalously low mass of the pions

compared to other hadronic masses makes them a good candidate for the Goldstone

bosons. The non-zero mass of the pions is explained by the fact that chiral symmetry

is broken by the non-zero masses of the up and down quarks. Given the low mass of

the pions compared to the nucleon mass, it is possible to implement an expansion

for observables in the perturbation parameter mπ/mN ≈ 0.15. Chiral perturbation

theory has yielded many useful results for scattering lengths and cross sections [13,

14].

One of the few non-perturbative and model-independent approaches to un-

derstanding hadronic physics is lattice QCD [15]. This method is implemented by

discretizing the space-time continuum into a 3+1 dimensional lattice and formulat-

ing QCD in path integral language at each point. The integrals involved can then

be computed on large computers to calculate observables, like the hadronic mass

spectrum. A serious drawback to this approach is the difficultly encountered when

one attempts to compute time-dependent quantities like those relevant to decay and

scattering processes.

Although the above techniques have sustained hadronic physics for decades, we

continue to search for a model-independent approach that reflects all the features
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of QCD. In the following section, we introduce one such approach that has had

some success: The 1/Nc expansion of QCD, where the number of quark colors,

Nc is treated as a large number [16]. It is an empirical fact that Nc = 3 in our

universe. Historically, the three colors were introduced to explain the symmetry of

baryon wavefunctions in the quark model in light of the Pauli exclusion principle [2].

The three colors also explain the measured decay rate for π0 → γγ and the ratio,

R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−) for energies away from thresholds for

new quark flavor production. Despite its fixed value in nature, treating Nc as an

arbitrarily large number yields a predictive field theory of hadrons.

1.2 Large Nc QCD and All That

As mentioned above, the QCD coupling constant g becomes large at low energies

through the workings of asymptotic freedom. We therefore cannot perform a per-

turbative expansion in powers of g as done in QED and are thus deprived of the

physical insights usually gained from perturbation theory. Given the absence of any

other useful expansion parameter, ’t Hooft [16] suggested generalizing the number of

QCD quark colors to Nc and assuming it to be a large number. That is, rather than

study the SU(3)-color gauge group, we should focus on SU(Nc)-color and calculate

observables with an expansion in powers of 1/Nc. This is done with the hope that

the two worlds described by the Nc → 3 and Nc → ∞ limits have similar properties.

To implement this idea, ’t Hooft re-scaled the coupling constant, g �→ g/
√

Nc

while keeping ΛQCD fixed. This serves to produce a nontrivial and predictive theory
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of strong interactions at all energy scales. It also gives the one-loop gluon polariza-

tion and other diagrams a smooth limit (i.e., approaches a finite value) as Nc → ∞

with g2Nc fixed. The main advantage of a large number of colors is the simplifica-

tion of QCD that occurs when summing over the color indices in Feynman diagrams

containing quarks and gluons. This follows from the fact that there are N2
c − 1

gluon fields (represented by trace-less Nc × Nc matrices) and Nc quark states. The

color sum contributes a unique Nc-dependent combinatorial factor to each diagram

that becomes either large or small as Nc → ∞. The immediate consequence of this

scaling and the combinatorics of the SU(Nc)-color group is that only diagrams that

lie in a plane (called planar diagrams) contribute to matrix elements as Nc → ∞.

All other diagrams–those that contain quark loops or for which one cannot draw all

the particle lines in a plane without crossing them (non-planar)–are suppressed by

a factor of 1/Nc or higher. Therefore, large Nc QCD provides an organization of

Feynman diagrams into a hierarchy of classes according to their Nc scaling.

In large Nc QCD, color confinement is assumed to occur for Nc greater than

three. If color confinement did not persist as Nc → ∞, the theory would have

little phenomenological value since colored QCD states have not been observed. By

applying the 1/Nc expansion to the theory of mesons, one can show that there are an

infinite number of pure qq̄ states with masses independent of Nc [i.e., mass ∼ O(N0
c )],

decay amplitudes of order O(N−1/2
c ), and meson-meson elastic scattering amplitudes

of order O(N−1
c ). Therefore, the large Nc limit of QCD becomes a theory of stable

and non-interacting mesons. Also, the matrix element for a current to create a meson

is O(N1/2
c ) and each additional meson at a vertex contributes another suppression
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factor of N−1/2
c . Thus the pion decay constant, which governs most of low-energy

hadronic physics scales as fπ ∼ O(N1/2
c ).

Incorporating baryons into the framework of the 1/Nc expansion was pioneered

by Witten [17]. In order to form a color singlet as required by color confinement,

baryons become a bound state of Nc quarks. At this point, we insist that Nc be

an odd number to form a fermionic bound state. The Nc quarks are described by a

Hartree mean field approximation in which each quark moves in an O(N0
c ) potential

created by the other Nc − 1 quarks. Witten’s Nc power counting rules follow from

this formalism and predict that the baryon has a mass of order O(N1
c ), with a size

and shape independent of Nc [i.e., O(N0
c )].

1.3 Applications of Nc Power Counting Rules

It is possible to use the Nc power counting rules to investigate several hadronic

processes. For example, baryon-baryon scattering cross sections are shown to have

a smooth large Nc limit if the baryon momentum is of order O(N1
c ). Momenta of

order O(N0
c ) are encountered in an analysis of the nucleon-nucleon potential [18,

19, 20], while the p ∼ O(N1/2
c ) regime in nucleon-nucleon scattering was explored

in Refs. [21, 22]. In the latter regime, it was shown that predictions for nucleon-

nucleon scattering observables derived from time-dependent mean-field theory are

still valid, thus relaxing Witten’s above restriction that the baryon momentum must

be of order O(N1
c ). Despite the validity of the predictions, empirical evidence did

not support the claims of Ref. [21] for a subtle reason. As shown in Ref. [22], the
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expansion is effectively in the parameter (βNc)
−1/2, where β is the ratio of mπ to

typical hadronic energy scales. Given the approximate chiral symmetry of QCD

discussed in Sec. 1.1, β is a small number and thus the expansion converges slowly

and prevents us from making precise numerical predictions.

Meson-baryon scattering has a smooth and non-trivial large Nc limit when

meson energies are of order O(N0
c ). This result of Witten’s counting rules will be

crucial for describing the spin-flavor properties of baryons, as noted below. The

counting rules also show that scattering with an excited baryon does not have a

smooth limit. In fact, the amplitude for meson + baryon → meson + excited

baryon is of order O(N−1/2
c ) [23]. This scaling will be important in our discussion

of excited baryon decays in Chapter 2. The cross sections for the production or

annihilation of a baryon–anti-baryon pair in mesonic reactions vanish exponentially

for large Nc [i.e., e−Nc ]. This follows from the difficulty in creating or destroying a

large number (Nc) of quark pairs.

Witten elegantly summarized the above results for large Nc baryons [17] by

proposing that they are solitons of a weakly-interacting meson theory. As noted

above, the mesons of large Nc QCD have an effective coupling of order O(N−1
c ).

Baryon properties like mass [m ∼ O(N1
c )] and size [〈r2〉 ∼ O(N0

c )] scale with this

effective coupling constant like those of a soliton.

A popular way to realize this idea is the Skyrme model introduced in Sec. 1.1.

In the Skyrme model, baryons are solitons with a conserved topological number

interpreted as the baryon number. However, the solitons do not have the proper

(fixed) spin and isospin quantum numbers to describe a baryon, so the correct
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quantum numbers are generated by rotating (or quantizing) the soliton in spin-

isospin space. The quantized baryon states have equal isospin and spin (I = J);

this describes the nucleons (I = J = 1
2
) and deltas (I = J = 3

2
). The rotational

energy contributes to the baryon mass as mJ = m + 1
2λ

J(J + 1), where m ∼ O(N1
c )

is the soliton mass and λ ∼ m 〈r2〉 ∼ O(N1
c ) is its moment of inertia. This yields an

important relation [12] between the mass of the deltas and nucleons: m∆ − mN ∼

O(N−1
c ).

Using large Nc QCD as a guide, one can formulate pion-baryon scattering and

pion photoproduction in the Skyrme model with considerable success [25, 24, 26, 27].

Several relations among static and dynamic observables from the Skyrme model

are found to be independent of the model parameters such as fπ and indeed hold

true for any chiral soliton model [28]. For example, the Skyrme model predicts

that gπN∆/gπNN = 3
2

for pion couplings. This is experimentally confirmed within

one percent, whereas typical Skyrme model predictions are within 30% [12]. This

strongly suggests that these model-independent predictions are more general results

that follow directly from pure large Nc QCD arguments. In the following section,

we present an approach to large Nc QCD that is independent of any models.

1.4 Large Nc Consistency Conditions

A completely model-independent approach to large Nc QCD follows from consistent

Nc power counting in low-energy pion-baryon scattering. This approach begins

by considering the scattering of pions off of baryons [m ∼ O(N1
c )] with energies

10



)(qaπ )'(qbπ
)(qaπ )'(qbπ

B 'B B 'B

Figure 1.1: Tree-level diagrams that contribute to leading order in 1/Nc for pion-

baryon scattering.

of order O(N0
c ). To calculate the amplitude for pion-baryon scattering, we must

evaluate the two tree-level Feynman diagrams shown in Fig. 1.1. The evaluation

requires a knowledge of the pion-nucleon vertex factor and baryon propagator. The

vertex factor follows after recalling that pions are pseudo-Goldstone bosons of the

broken chiral symmetry and thus are derivatively coupled to the axial vector baryon

current with the form:

gA
〈
B′
∣∣∣q̄γiγ5τ

aq
∣∣∣B〉 ∂iπ

a/fπ, (1.2)

where the axial coupling gA ∼ O(N1
c ) and pion decay constant fπ ∼ O(N1/2

c ). The

matrix element of the axial current is parameterized in terms of an order O(N0
c )

spin-flavor operator by 〈B′|q̄γiγ5τ
aq|B〉 = X ia. Using the heavy baryon propagator

[i/p · v] for a baryon at rest [ v = (1, 0, 0, 0) ], which is appropriate since m ∼ O(N1
c ),

the amplitude is

A = −i

(
gA
fπ

)2
qiq

′j

q0

[
X ia, Xjb

]
, (1.3)

where we sum over all possible baryon intermediate spin and isospin states. Naive

power counting based on the appearance of (gA/fπ)
2 ∼ O(N1

c ) implies the amplitude

is also of order O(N1
c ), which violates unitarity and is inconsistent with Witten’s
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argument that the scattering cross section has a smooth large Nc limit. It is possible

to control this divergence if a set of intermediate baryons, degenerate to leading

order in 1/Nc, contributes to the sum and cancels a factor of Nc. The spin-flavor

operator X ia for these baryons must satisfy the following (minimal) condition on

their commutator [29, 30]:

[
X ia, Xjb

]
∼ O(N−1

c ). (1.4)

Therefore the commutator vanishes in the large Nc limit and forms part of the Lie

algebra for a contracted SU(4) spin-flavor symmetry:

[
J i, Xjb

]
= iεijkX

kb, (1.5)

[
Ia, Xjb

]
= iεabcX

jc,

[
J i, J j

]
= iεijkJ

k,

[
Ia, Ib

]
= iεabcI

c,

[
Ia, J i

]
= 0 ,

where J i and Ia are the generators of spin and isospin transformations, respectively.

The simplest irreducible representation [29] of the contracted SU(4) group is

an infinite tower of degenerate baryons with I = J = 1
2
, 3

2
, 5

2
, · · · , Nc

2
. The states

with I = J = 1
2

and I = J = 3
2

are identified with the observed nucleons and deltas,

respectively. The others are merely large Nc QCD artifacts. We note that these

are the same states found in the Skyrme model and the large Nc non-relativistic

quark model. We also find that the states are degenerate with a spin-dependent

mass splitting of order O(N−1
c ), confirming the previous Skyrme-model result that
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m∆ − mN ∼ O(N−1
c ).

The contracted SU(4) symmetry allows us to make model-independent predic-

tions based only on group theory methods. The Skyrme model also contains this

symmetry [29], providing evidence for our suggestion that those predictions that are

independent of any model parameters are truly (model-independent) results of large

Nc QCD.

The contracted SU(4) symmetry also provides us with a systematic method

for including 1/Nc corrections to predictions. For example, it is shown that the

next-to-leading order correction to the gπN∆/gπNN ratio vanishes, implying that

gπN∆/gπNN = 3
2
[1 + O(N−2

c )] [29] and explaining why the Skyrme model prediction

is so empirically accurate.

Another important result that follows from the contracted SU(4) spin-flavor

symmetry is the Nc scaling of matrix elements of a general n-quark operator Ô
(n)
I0,J0

with baryon number equal to zero, isospin I0, and spin J0. The matrix element

between two baryon states scales as [32]

〈B′|Ô(n)
I0,J0

/Nn
c |B〉 ∼ 1/N |I0−J0|

c . (1.6)

Note that operators whose spin equals isospin have the largest matrix elements and

contribute to leading order in the 1/Nc expansion. The results of Chapters 3 and 4

will follow directly from this relation.

Large Nc QCD has become a powerful tool for studying many aspects of

hadronic and nuclear physics. It has developed over many years with a rich his-

tory of success. While its quantitative predictions are often rough, large Nc QCD
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provides a framework for organizing operators and Feynman diagrams according to

powers of Nc and serves as a trusty guide to QCD calculations.

1.5 Thesis Outline

This thesis presents two distinct applications of the large Nc limit to hadronic

physics. In Chapter 2, we discuss the decay widths of excited baryons. It was

suggested previously [33] that some spin-flavor mixed-symmetric baryon states have

strong couplings of order O(N−1/2
c ) to nucleons [implying narrow widths of order

O(1/Nc)], as opposed to the generic expectation based on Witten’s counting rules

of an order O(N0
c ) coupling. The calculation obtaining these narrow widths was

performed in the context of a simple quark-shell model. We address the question of

whether the existence of such narrow states is a general property of large Nc QCD.

We show that a general large Nc QCD analysis does not predict such narrow states;

rather they are a consequence of the extreme simplicity of the quark model.

In Chapters 3 and 4, we show that the spin-flavor symmetry discussed in

Sec. 1.4 relates partial-wave amplitudes for different hadronic scattering channels.

In particular, we produce linear relations for pion-nucleon scattering (Chap. 3) and

pion photoproduction (Chap. 4) that hold to leading order or next-to-leading order

in the 1/Nc expansion. These results follow from Eq. (1.6) of Sec. 1.4. All of our

predictions are tested using available data with satisfying agreement.

Throughout this thesis, we consider only two light quark flavors, the up and

down quark, though our results can be generalized to include a third light flavor,
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the strange quark [34].

This thesis is based on the original work of Cohen, Dakin, Lebed, Martin, and

Nellore [36, 35, 37].

15



-.-

16



Chapter 2

Excited Baryon Decay Widths

2.1 Describing Excited Baryons

Distinct excited baryon states are abundant in the hadronic spectrum, with masses

ranging from 1440 to 1990 MeV [38]. These states appear as bumps in a partial-wave

analysis of hadronic scattering experiments. In a typical situation, a ground-state

baryon target couples to an incoming meson, creating a short-lived intermediate

state, which then decays into a meson and baryon. Quantum chromodynamics pro-

vides no simple method for understanding these resonances or their properties, such

as their mass and decay width. We usually resort to models, the standard of which

is the constituent quark model of Chapter 1. However, despite its phenomenological

successes, the simplest version of the quark model has a major conceptual problem:

The predicted excited states are stable, implying vanishing decay widths, which

is inconsistent with observations. While the excited baryons are resolvable in the

spectrum, they decay rapidly and their widths are not small, but typically on the

order of 200 MeV. In order to describe decays in the quark model, ad hoc dynamics

must be introduced to account for couplings to decay channels. A more overarching

problem with the quark model is that it has no direct connection with QCD as dis-

cussed in Chapter 1. Given these problems, we seek a model-independent approach

to understanding excited baryons and turn to large Nc QCD.
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In Chapter 1, we developed Witten’s Nc power counting rules, originally with-

out regard to hadron spin and flavor quantum numbers, and applied them to mesons

and baryons. We found that the decay widths of mesons are of order O(N−1
c ), while

the widths of excited baryons are of order O(N0
c ). In the large Nc limit, the meson

widths are vanishingly narrow; this helps explain why they are visible in the hadron

spectrum. However, generic excited baryons do not have narrow widths in the large

Nc limit [the size is of order O(N0
c )], yet we still see them clearly in the spectrum. It

is conceivable that the observed states are exceptional in that their widths do vanish

as Nc → ∞. One might imagine that states of this kind may appear once we account

for the spin and flavor quantum numbers of the baryons, as done in the consistency

condition approach to large Nc QCD. As discussed in the next section, Pirjol and

Yan [33] suggested that an approach of this type yields a certain class of excited

baryons with narrow widths. This class includes baryons transforming under the

mixed-symmetric representation of the spin-flavor group SU(4). (This terminology

will be explained in the following section; for now, accept “mixed-symmetric” as an

identifying adjective.) This could be an exciting result since the observed narrow

baryons are usually assigned to such a representation in simple quark models. This

chapter focuses on the question of whether the narrowness of this class of states is,

in fact, a model-independent consequence of large Nc QCD.

As shown in Chapter 1, the ground-state baryons of large Nc QCD form mul-

tiplets of a completely symmetric representation of a contracted SU(4) spin-flavor

symmetry [30, 29]. The symmetry arises when we enforce consistent Nc power count-

ing rules for the scattering of mesons off of ground-state baryons. Methods based
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on the group theory of this symmetry provide model-independent predictions for

hadronic observables and have been fruitful in describing hadronic physics. The

success of the consistency condition method for describing ground-state baryons led

to the question of whether the study of excited baryons could profit in a similar

manner. Pirjol and Yan [33] developed such an approach in a fashion analogous to

the original one of Gervias and Sakita [30] and Dashen, Jenkins, and Manohar [29].

That is, they considered pions scattering off of excited baryons and insisted that

the scattering amplitudes obey unitarity and Witten’s generic Nc power counting

rules [17, 23]. However, it is not obvious how to formulate a physical scattering

process with asymptotic excited baryon states. Excited baryons are resonances and

decay rapidly; they cannot be used as targets in scattering experiments. Thus, the

consistency condition approach is only applicable if there exist excited baryons in

the large Nc world with widths that are indeed narrow. Pirjol and Yan assumed

such states exist and it is not clear if their general mode-independent predictions

are valid. However, if a class of narrow excited baryons exists, then the model-

independent arguments can be applied to these in a legitimate way. Therefore, the

existence of a class of narrow baryon states in large Nc QCD is also important for

providing a theoretical justification for the elegant model-independent analysis of

Ref. [33], as applied to at least this class of states.

Interestingly, Ref. [33] itself offered an argument that there exists a class of

narrow excited baryons in the large Nc limit. It finds that the baryons in the mixed-

symmetric representation of the spin-flavor group have widths of order O(N−1
c ),

which thus vanish in the large Nc limit. This is in contrast to the generic Nc power
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counting rule prediction, in which the widths are of order O(N0
c ) [39]. Unfortunately,

the prediction of narrow decay widths for the mixed-symmetric states in Ref. [33]

was not based directly on the large Nc QCD consistency conditions. Rather, it

arose from calculations done in the context of a simple, nonrelativistic quark model.

The particular model employed was the quark-shell model to be described in Sec-

tion 2.2.2. At this point, there is no cause for alarm since quark models have a

long and distinguished history of successful phenomenological descriptions. In the

large Nc QCD context, quark models have been used to describe the lowest-lying

excited baryon states [40, 41, 42, 43, 44, 45, 46], and have revealed interesting mass

degeneracy patterns [33, 39, 57]. Recently, it was shown that the quark-shell model

is compatible with the more realistic picture of excited baryons as resonances in

meson-baryon scattering, in the sense that both describe the same mass and width

degeneracy patterns [39]. How this pattern arises in the resonance picture will be

described in Sec. 3.2.

Although the quark model is useful in hadronic physics, the question of interest

in this chapter is whether the prediction of narrow excited baryon states presented

in Ref. [33] is a direct consequence of large Nc QCD. It is useful to note that a large

number of the model-independent relations found with the consistency condition

method [29, 30, 31, 47, 48, 49, 50, 51] were originally seen in the context of soliton

models [28], and indeed all of these hold for quark models. Thus, the issue is whether

the existence of narrow excited baryon states found in the quark-shell model of

Ref. [33] similarly indicates a general large Nc QCD result. If so, this is an important

general result in understanding excited baryons. In contrast, if the prediction is
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merely an artifact of the particular choice of model, then it is far less important.

In light of this, it is important to note that the model used in Ref. [33] is not

completely general, as will be described in Sec. 2.2.2. It is limited in so far as it

does not include admixtures of different single-particle descriptions (i.e., it neglects

configuration mixing).

The issue of whether the mixed-symmetric excited baryons described in the

simple quark-shell model correspond to physical states in large Nc QCD is not

addressed in Ref. [33]. If the states are physical, then a previously unrecognized

symmetry in large Nc QCD is manifesting itself and prevents the states from de-

caying rapidly. In particular, the narrowness depends upon a symmetry beyond the

contracted SU(4) spin-flavor symmetry deduced in Chapter 1 and Refs. [29, 30, 31,

47, 48, 49, 50, 51]. In those works the “spin” in “spin-flavor” corresponds to the

total angular momentum of the baryon state in its rest frame. As shown below, the

narrow states predicted in Ref. [33] depend on two distinct spin-flavor symmetries:

one as before, in which the spin corresponds to the total angular momentum of the

baryon state in its rest frame, and a second one in which the spin is purely asso-

ciated with the spin of the quarks. While these two symmetries are identical for a

quark-shell model with all of the quarks in the orbital ground level (s wave), they

differ for more general models. The prediction of a new symmetry emerging in the

large Nc limit for excited states is certainly exciting; the issue, however, is whether

it is physical.

In this chapter, we show that the seemingly narrow excited baryons are in fact

not a feature of large Nc QCD; they are merely artifacts of the simple quark model
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used in Ref. [33]. This chapter is organized as follows: We review the construction

of baryon states in the quark-shell model and the significance of key matrix elements

in Ref. [33]. Next, we use a quark-shell model Hamiltonian to show that the states

used in Ref. [33] are not physical in large Nc QCD. In fact, the physical states are

superpositions of both symmetric and mixed-symmetric spin-flavor representations.

2.2 Consistency Conditions and the Quark-shell Model

We begin our review of Pirjol and Yan’s argument for narrow excited baryons by

pointing out that the narrowness can arise for one of two reasons. They follow from

Fermi’s golden rule applied to decay processes, where the decay rate is given by

Decay rate =
2π

h̄
|M|2 × (phase space) . (2.1)

The matrix element (or amplitude), M, characterizes how strongly an initial state

couples to its potential decay products. For excited baryons, the matrix element

is proportional to the meson-baryon coupling, which is the important quantity in

our study. The phase space (or density of final states) accounts for all the possible

outcomes of a decay process. A state will be narrow if either the matrix element

or the phase space for decay is small. According to Ref. [33], the meson-baryon

coupling for the mixed-symmetric states is of order O(N−1/2
c ), and thus even when

the phase space is of order O(N0
c ), the decay rate vanishes as Nc → ∞ and produces

narrow states.

Pirjol and Yan’s analysis [33] of excited baryons begins in a manner that is

formally similar to that described in Sec. 1.4 of Chapter 1. Pions are scattered
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off of excited baryons, and the Nc power counting rules are enforced for the total

scattering amplitude. Any analysis of a physical scattering event presupposes that

the target is stable; in Ref. [33], the target was a p-wave baryon, and it was taken

to be narrow in the large Nc limit. This is a tenuous assumption unless the quark

mass is taken to be large, in which case the baryon has no possible decay channels

due to phase space limitations. For the sake of argument, we will work in such a

world in the following and assume that results obtained can be safely extrapolated

back to the physical world of light quarks. As noted in Sec. 2.1, it is by no means

clear that such a procedure is justifiable, since the consistency conditions cannot

legitimately be formulated for states that are unstable in large Nc QCD. However,

for the present purpose this procedure is adequate since states may be narrow for

one of two reasons: Either the phase space for decay is small (or zero) or the meson-

baryon coupling is small. The claim of Ref. [33] is that mixed-symmetric states

have a meson-baryon coupling that is of order O(N−1/2
c ), and thus even when the

phase space is of order O(N0
c ), they still have narrow widths. If the coupling is truly

of order O(N−1/2
c ) as a result of general large Nc QCD arguments, this counting

would be expected to hold regardless of whether the quark mass were taken to be

light or heavy enough to suppress the phase space for decay. Conversely, if one

can show even in this world of heavy quarks that the coupling to potential decay

channels (which are now phase space suppressed) is generally of order O(N0
c ) and

not O(N−1/2
c ) for all low-lying states in the spectrum, then it is clear that large Nc

QCD arguments alone do not predict a class of narrow states.

The analysis of Pirjol and Yan is composed of two parts: (i) A set of con-
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sistency conditions for couplings of excited baryons to mesons (analogous to the

consistency conditions for ground-state baryons) is derived. Functional forms of

relations that solve these conditions are proposed and then verified by substitution

into the condition equations. (ii) A simple nonrelativistic quark-shell model is used

to motivate the functional forms proposed for the model-independent analysis. As

a result of this quark model analysis, it is seen that the strength of the coupling

between an excited baryon and a meson plus a ground-state baryon depends on the

symmetry type of the excited baryon.

2.2.1 (i) Model-independent Part

In the model-independent part of Pirjol and Yan’s analysis, the aforementioned

consistency conditions were determined by imposing Witten’s counting rules [17]

(see Chapter 1) on the following scattering processes at large Nc:

πa + B(s-wave) → πb + B′(s-wave), (2.2)

πa + B(p-wave) → πb + B′(p-wave), (2.3)

πa + B(p-wave) → πb + B′(s-wave), (2.4)

where s-wave refers to the ground-state band of baryons modeled as having all quarks

in a spatial s-wave; p-wave refers to excited levels that have quantum numbers

consistent with a single quark excited into a p-wave ( = 1) orbital; a and b are

isospin indices.

The analysis of process (2.2) is identical to that of Sec. 1.4. Recall that the

irreducible tensor operator, X ia, parameterizing the axial current matrix element
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obeys the condition, [Xjb†, X ia] = 0 in the large Nc limit. The vanishing of this

commutator is the leading-order consistency condition for ground-state baryons and

is the key to the contracted SU(4) algebra [30, 29].

This procedure can be extended to the process (2.3) involving excited baryons

if the current matrix element is parameterized in terms of a new operator Z ia:

〈B′|q̄γiγ5τ
aq|B〉 = Nc〈B′|Z ia|B〉. As in the above case, which is described in Chap-

ter 1, the scattering amplitude apparently diverges at large Nc in the absence of

cancellations, and thus consistency requires that

[Zjb†, Z ia] = 0, (2.5)

in the large Nc limit. This condition is analogous to that for X ia, meaning that

solutions for Z ia also fill irreducible representations of a contracted SU(4) algebra.

These representations can be labeled by the magnitude of a spin vector �∆ such that

�∆ = �I + �J (but only in the sense that the allowed eigenvalues of �∆ are determined

by the vector addition rule of quantum mechanics; indeed, Ref. [33] uses a relative

minus sign in their definition). Note that this operator (denoted by �K in Ref. [39])

has a very simple interpretation in terms of chiral soliton models where �∆ = �I + �J

in a true vector operator sense; the combined operator is called the “grand spin.”

See Sec. 3.2 of Chapter 3 for more information about grand spin in the context of

meson-baryon scattering.

To extend this procedure to the process (2.4), we introduce two new operators,

Y a and Qij, a, in order to parameterize the current matrix elements between an s-
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Figure 2.1: The tree level diagrams that contribute to meson-excited baryon scat-

tering in Eq. (2.4). The B refers to a ground-state (s-wave) baryon, while the B∗

refers to an excited (p-wave) baryon.

wave and p-wave baryon:

〈B′|q̄γ0γ5τ
aq|B〉 = N1/2

c 〈B′|Y a|B〉, (2.6)

〈B′|q̄γiγ5τ
aq|B〉 = N1/2

c qj〈B′|Qij, a|B〉, (2.7)

where qµ is the momentum of the current and |B′〉 indicates the ground-state

baryon. These expressions differ from those in Ref. [33] by the absorption of possible

additional Nc powers and coefficients, g(Y ) and g(Q), into the right-hand sides,

which can be accommodated by the explicit rescaling of Y and Q. The scattering

amplitude for (2.4) [See Fig. 2.1] still violates the Witten power-counting prediction

if the matrix elements of Y and Q scale as N−1/2
c or larger (note that generic Witten

counting rules suggest that Y and Q scale as N0
c ). In these cases, consistency
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requires that

X iaY b† − Y b†Z ia = 0, (2.8)

X ib†Y a − Y aZ ib† = 0, (2.9)

X iaQjk, b† − Qjk, b†Z ia = 0, (2.10)

Xkb†Qij, a − Qij, aZkb† = 0. (2.11)

The set of consistency conditions in Eqs. (2.5) and (2.8)-(2.11) form the basis of

Pirjol and Yan’s model-independent analysis. Matrix elements of the operators

Z, Y , and Q between baryon states |J, J3, I, I3, ∆〉 can be found by solving this

set. We repeat, for emphasis, that the minimum set of quantum numbers needed

to construct solutions to the consistency conditions includes the baryon spin and

isospin with their z-components and the ∆ vector: {J, J3, I, I3, ∆}. To find the

solutions to Eqs. (2.8)-(2.11), we convert them into a set of algebraic equations by

first reducing the matrix elements with the Wigner-Eckart theorem, then inserting

a complete set of intermediate states (1 =
∑ |b〉 〈b|), then projecting the expressions

into a channel of fixed total angular momentum and isospin with the aide of Clebsch-

Gordan coefficients. The Y a matrix element, for example, is found in this manner

to be

〈J ′=I ′, J ′
3, I

′
3|Y a|J, J3, I, I3, ∆〉 = gY (−1)1+2J

×
√

2I + 1

3(2J + 1)
〈I ′I ′

3|I, 1; I3, a〉 δJJ ′δJ3J ′
3
δ∆1, (2.12)

where the fact that |B′〉 is a ground-state baryon imposes the condition that I ′=J ′.

The constant, gY , encodes the overall strength of the matrix element, including
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any overall nontrivial Nc scaling. If the system scales according to the generic

Witten rule, then gY ∼O(N0
c ). If, for some special class of states, the coupling is

characteristically smaller, then gY is less than order O(N0
c ). Reference [33] calculates

the matrix elements of Y a in the quark-shell model and finds the same spin-flavor

structure as is given by Eq. (2.12), regardless of the symmetry of the state |B〉.

However, the Nc dependence of the coefficient gY in the quark-shell model is found

to depend upon the symmetry of the excited states, with gY ∼ O(N0
c ) for spin-

flavor symmetric states and gY ∼ O(N−1/2
c ) for mixed-symmetric states. It is this

scaling for the mixed-symmetric states that leads to the prediction of narrow baryon

resonances. In the next section, we introduce the quark-shell model and use it to

directly calculate the matrix elements of Y a and Qij, a.

2.2.2 (ii) Model-dependent Part

We begin by discussing some features of quark models and, in particular, the quark-

shell model. One can treat the quark model as a standard many-body problem in

which each quark moves in a potential derived from the two-body or three-body

interactions between quarks. However, treatments of this sort are technically dif-

ficult and the resulting wave functions are complicated, making it hard to extract

useful information from them. It is possible to simplify the dynamics by consider-

ing a single-particle description in which the potential is created by all the other

quarks. This approach is analogous to the shell model of nuclear physics that de-

scribes protons and neutrons in the nucleus. In the simple quark-shell model of

Ref. [33], each excited baryon is treated as a single orbitally excited quark with
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angular momentum  acting on top of a spin-flavor symmetric core of Nc−1 quarks.

For the case of Nc = 3, the simplest version of the quark-shell model describes the

ground-state baryons as three quarks in s-wave orbitals, filling a 20-plet spin-flavor

representation. The lowest-lying excited baryons have one quark in a p-wave or-

bital, also filling a 20-plet spin-flavor representation [78, 39]. This version of the

quark-shell model has been successful in describing the excited baryon spectrum

and it is the most popular quark-based treatment of excited baryons in large Nc

QCD [56, 40, 41, 42, 43, 44, 45, 46].

We can develop more sophisticated quark-shell models that incorporate config-

uration mixing in which the physical states are admixtures of different single-particle

descriptions. These have the benefit of including particle correlations. However, for

now, we will neglect configuration mixing in the quark-shell model.

The quark model wave function describing the Nc quarks is composed of three

parts: (color) × (spatial) × (spin − flavor). It is worth noting that in the present

context “spin-flavor” refers to the spin and flavor of the quarks and not of the

baryon. The Pauli principle requires that the complete wave function describing the

baryon is antisymmetric under the exchange of any two (fermionic) quarks. Color

confinement requires that the quark color labels form a fully antisymmetric singlet

wave function, and thus the space and spin-flavor wave functions together must

be symmetric. Only symmetric or mixed-symmetric spatial wave functions can be

constructed when a single quark is excited. Therefore, the spin-flavor wave functions

of the quark-shell model states are either symmetric (S) or mixed-symmetric (MS)

under quark exchange.
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We focus on the nonstrange states of SU(4), in which the distinction between

the S and the MS representations is clean: Spin and isospin are related by S =I for

the S case and |S − I| ≤ 1 for the MS case. This distinction may be neatly encoded

by introducing the concept of P spin [33]: set P =0 for the S case and P =1 for the

MS case. Thus, treating �P as though it were a true angular momentum, one sees

that the single triangle rule δ(SIP ) characterizes both permutational symmetries

(See Appendix B for a discussion of triangle rules).

The matrix elements of Z, Y , and Q in the quark model are obtained by

defining the currents and constructing the baryon states in quark model language.

Up to overall multiplicative constants of order unity, the currents in the quark model

are [33]:

Nc Z
ia = σi ⊗ τa, (2.13)

N1/2
c Y a =

1√
3

+1∑
j=−1

(−)1−jσjr−j ⊗ τa, (2.14)

N1/2
c Qka =

+1∑
i,j=−1

〈2, k|1, 1; j, i〉 σjri ⊗ τa. (2.15)

The σ, τ , and r operators act on the quark’s spin, isospin, and orbital degrees

of freedom, respectively. The spin-2, isospin-1 operator, Qka satisfies the same

consistency conditions as Qij, a = σjri ⊗ τa in Eqs. (2.10) and (2.11) of Sec. 2.2.1.

Reference [33] constructs quark model states of conserved or fixed (quark) spin

(S, mS), isospin (I, I3), and orbital angular momentum (, m�) in such a manner

that each is either symmetric or mixed-symmetric under spin-flavor exchanges. As

an example, we will outline the construction of the mixed-symmetric states in the

quark-shell model. We begin by writing the state obtained by adding the jth quark
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to a symmetric state of Nc − 1 quarks with spin and isospin i:

|SI; mSI3〉j =
∑

m1m2
α1α2

〈S, mS | i, 1

2
; m1, m2〉 〈I, I3 | i, 1

2
; α1, α2〉 | i, m1, α1〉⊗|1

2
, m2, α2〉j .

(2.16)

We impose the mixed symmetry on the spin-flavor wave function by forming an

expression that is antisymmetric under a permutation of the first quark with any

one of the remaining Nc−1 quarks in the baryon. This wave function is denoted by

|SI; mSI3〉[j,1] =
1√
2

(
|SI; mSI3〉j − |SI; mSI3〉1

)
, (2.17)

for 2 ≤ j ≤ Nc. In order to form a completely symmetric baryon wave function as

required by the Pauli principle (after accounting for the antisymmetric color labels),

the spatial wave function must also be mixed symmetric under quark exchange. The

spatial wave function has a form similar to Eq. (2.17) and is denoted by |; m�〉[j,1].

After combining the spin-flavor and spatial parts into a completely symmetric wave

function with well-defined spin and isospin, we arrive at our final result,

|SI; mSI3m�〉 =
1√

Nc − 1

Nc∑
j=2

|SI; mSI3〉[j,1] ⊗ |; m�〉[j,1] . (2.18)

See Ref. [33] for a derivation of the normalization factor and the phase factor [sup-

pressed in Eq. (2.18)].

It is not clear at the outset how to interpreted these states. Either these states

may be taken to be eigenstates of some unspecified Hamiltonian H that is assumed

to model QCD, or they may be taken as merely a convenient basis that allows

one to enumerate the possible physical states. If they are eigenstates of H, then

the quantum numbers specifying the states must be associated with operators that
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commute with H in order to be conserved. If this is the case, then the eigenstates

of H include the narrow excited states predicted in Ref. [33] and incorporate a new

large Nc QCD symmetry that stabilizes these states against decay. This apparent

symmetry arises because H commutes separately with the (quark) spin and with

the total angular momentum.

Note that if the states |P, SI; mSI3m�〉 are merely used to form a basis set,

superpositions of which form possible physical states, then one is faced with the issue

of determining the extent of mixing between the basis states. If each physical state is

predominantly a single basis state (with admixtures of other states characteristically

suppressed in the large Nc limit), the system then acts much as it would above for

the case where the states are treated as eigenstates of a QCD-like Hamiltonian:

The physical eigenstates that are predominantly MS in spin-flavor are then narrow.

However, if the mixing is of order O(N0
c ), then the concept of a physical state that is

predominantly mixed-symmetric is ill-defined, and all states allowed by phase space

have widths of order O(N0
c ).

It should also be observed that the quantum numbers {P, S, mS, I, I3, , m�}

denoting the quark-shell model states are different from those used in the (model-

independent) consistency condition method of Sec. 2.2.1, {J, J3, I, I3, ∆}. In par-

ticular, it should be noted that the there is no analog for the P quantum number

(which specifies the nature of the spin-flavor symmetry of the quark model state) in

the model-independent analysis. This raises the obvious question of whether or not

the concept of the P spin has a well-defined meaning in large Nc QCD outside the

context of the simple quark model.
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The matrix elements of the currents in Eqs. (2.13)-(2.15) can be calculated with

the quark model states described above [e.g., Eq. (2.18)]. A lengthy calculation

in Ref. [33] revealed the Nc scaling and detailed spin-flavor structure of the matrix

elements of Y (and Q) between excited and ground-state baryons. It was found that

〈P ′= 0, ′= 0︸ ︷︷ ︸
S

|Y, Q|P = 0,  �= 0〉︸ ︷︷ ︸
S

∼ O(N0
c ), (2.19)

while

〈P ′= 0, ′= 0︸ ︷︷ ︸
S

|Y, Q|P = 1,  �= 0〉︸ ︷︷ ︸
MS

∼ O(N−1/2
c ), (2.20)

where the states are labeled by their P spin and excited quark orbital angular

momentum, . Since the spin-flavor structure of the matrix elements is not relevant

to our discussions, it was suppressed in the above equations. We note that the

structure is identical to that of the solutions to the consistency condition equations

in Sec. 2.2.1 [e.g., see Eq. (2.12)]. This lends some support to the idea that the

quark-shell model is an adequate calculation tool for excited baryons and that its

predictions may be taken as general results of large Nc QCD. We shall see in the

next section that this idea is not necessarily valid.

The excited baryon decay widths are determined by squaring the matrix ele-

ments of the physical states, dividing by the pion decay constant, f 2
π , and including

the appropriate phase space factor [see Eq. (2.1)]. Recalling from Chapter 1 that

f 2
π∼O(N1

c ) and the phase space is of order O(N0
c ), it is straightforward to determine

the scaling of the decay widths. If one assumes that the quark model assignments

of states correspond to physical states (with only small admixtures of states with

different quark model spin-flavor symmetries), then the decay width of a mixed-
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symmetric baryon (P =1) is of order O(N−1
c ), while the decay width of a symmetric

baryon (P =0) is of order O(N0
c ). In the large Nc limit, the former vanishes. This

result is important since it implies that mixed-symmetric excited baryon states are

narrow. This would neatly explain the phenomenological fact that certain baryons

are narrow enough to discern from the spectrum and would render the consistency

argument of Ref. [33] valid for these states. However, these desirable results hinge

on the physical baryon states corresponding to the quark model states in terms of

their quantum numbers. In the following section, we face the question of whether

this correspondence is realized in large Nc QCD.

2.3 Spin-flavor Symmetry Breaking and Baryon Decay Widths

In this section we focus on the issue of whether the physical baryon states truly

correspond to the simple quark model states of Ref. [33], which, in effect, is the

question of whether narrow excited baryons appear in large Nc QCD. If this is a

generic large Nc QCD result, one would expect it to be seen in all models that

correctly encode large Nc physics. Thus, to disprove it, we need only find some

model that encodes the correct large Nc scaling rules for which it is untrue. We will

consider a fairly general quark-shell model Hamiltonian that shares some essential

properties with the QCD Hamiltonian. In particular, we consider the most general

quark model for which the number of quarks in a given orbital is well defined. In

practice, this restriction means one excludes operators that remove quarks from one

orbital and place them in different orbitals. We impose this restriction to keep the
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model tractable. Note, however, that even with this restriction, this Hamiltonian

is considerably more general then the Hamiltonian implicitly used to construct the

quark model states in the previous section.

Large Nc scaling rules greatly restrict the number of possible operators that

contribute at order O(N0
c ) or larger (and hence that can contribute in the large

Nc limit [40, 41]). For example, as shown in Ref. [40, 41], the only operators that

contribute at order O(N0
c ) for states with a single excited quark are given by:

H = c11 + c2 ·s + c3 (2)g Gc/Nc, (2.21)

where , s, (2), and g are the orbital, spin, ∆ = 2 tensor, and combined spin-flavor

(Gamow-Teller) operators, respectively, acting only on the excited quark, while Gc

is the combined spin-flavor operator acting only on the core of unexcited quarks.

The combined spin-flavor operator is a generator of SU(4), and has the following

form in the quark model language:

Gia ≡
Nc∑
α=1

q†α

(
σi

2
⊗ τa

2

)
qα , (2.22)

where σ and τ are Pauli matrices in spin and isospin spaces, respectively. The rank-2

tensor (2) takes the form


(2)
ij =

1

2
{ li, lj } − 2

3
δij . (2.23)

Thus the operator (2)g Gc/Nc in H, shown with explicit indices, is 
(2)
ij gia Gja

c /Nc.

The factor of 1/Nc accounts for the two quark-quark-gluon couplings (each costing

a factor of 1/
√

Nc) needed to generate this operator.

The coefficients in H have the following scaling rules:

c1 ∼ N1
c , c2 ∼ N0

c , c3 ∼ N0
c . (2.24)
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The scaling of c1 is a bit subtle. Most of the contribution to c1 comes from the

unexcited quarks in the core. Thus c1 = mN+δc1 with the ground-state baryon mass,

mN ∼ O(N1
c ) and δc1 ∼ O(N0

c ). In general, each coefficient contains corrections at

all subleading powers of 1/Nc.

Consider, as an example, the  · s operator. If this operator induces significant

mixing [i.e., of order O(N0
c )] between the S and MS states of the basis described in

Sec. 2.2.2, then this model—which correctly encodes the large Nc scaling rules—does

not automatically give excited baryons that are weakly coupled in the large Nc limit.

To begin, note that the ·s operator does not commute with the spin operator S;

that is, mS is not generally a good quantum number for the Hamiltonian eigenstates.

Thus, the operator does induce mixing between the states enumerated above. The

central question becomes the scale of this mixing. If the mixing is small (or zero) in

the large Nc limit, then a state with a fixed spin-flavor symmetry (either S or MS)

is a well-defined object with symmetry-dependent properties.

Suppose one considers only states for which the excited quark is in an orbital

with  �= 0 (The case of  = 0 is special and is discussed below). This implies that

the  · s operator mixes states of differing spin-flavor symmetry. Consider a state

labeled by total angular momentum (J ,J3), total isospin (I, I3), total (quark) spin

(S), and P -spin: |JJ3; II3(, S = I + ρ)[P ]〉. The ρ (introduced in Refs. [40, 41])

plays a role similar to the P -spin of Sec. 2.2.2. It is a number that equals either ±1

or 0 for the mixed-symmetric case (P = 1), or 0 for the symmetric case (P = 0).

The states so labeled are identical to the ones enumerated in Sec. 2.2.1. The matrix

element of  ·s that connects two states in this basis of equal JJ3, II3, and  but
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different P -spin (i.e., spin-flavor symmetry) is written as

〈·s〉ρ′ ≡ 〈JJ3; II3(, S
′=I + ρ′)[1] |·s|JJ3; II3(, S =I)[0]〉. (2.25)

This matrix element is computed for general ρ and ρ′ in Ref. [40], but we present a

more concise expression than their Eq. (A7):

〈 · s〉 = (−1)J−I+�
√

3

2

√
( + 1)(2 + 1)(2S + 1)(2S ′ + 1)

×




  1

S S ′ J



∑
η=±1

cρηcρ′η(−1)(1−η)/2




1 1
2

1
2

I+ η
2

S ′ S


 . (2.26)

(See Appendix B for an introduction to the Wigner 6j symbol.) From here, we set

ρ = 0 (meaning that S = I for the S state in the ket) and calculate this matrix

element for each value of ρ′ in the mixed-symmetric bra. For ρ′ = 0, we have:

〈 · s〉0 = (−1)J−I+�+1

√
3

2

√
( + 1)(2 + 1)(2S + 1)cMS0− cMS0+




  1

S S J




×






1 1
2

1
2

I+ 1
2

S S


+




1 1
2

1
2

I− 1
2

S S





 . (2.27)

The coefficients cMS0− and cMS0+ are given by

cMS0− = −
√√√√(S + 1)(Nc − 2S)

Nc(2S + 1)
,

cMS0+ = +

√√√√S[Nc + 2(S + 1)]

Nc(2S + 1)
, (2.28)

and are both of order unity in the large Nc limit. For ρ′ = ±1, we have:

〈 · s〉±1 = (−1)J−I+�+1

√
3

2

√
( + 1)(2 + 1)(2S+1)(2S+1± 2)

× cMS0∓




  1

S S±1 J







1 1
2

1
2

I± 1
2

S±1 S


 . (2.29)
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In general, evaluation of these formulas for appropriate (physical) values of S, I,

J , and  yields nonzero matrix elements. The non-vanishing of MS → MS matrix

elements is confirmed in Refs. [40, 41]. Moreover, in all of these cases the matrix

element of 〈·s〉 is of order O(N0
c ). Combining this with the scaling of Eq. (2.24) for

the strength of the operator, implies that the  · s term in the Hamiltonian connects

states of different spin-flavor symmetry with strength of order O(N0
c ). Due to this

mixing, an energy eigenstate of the quark-shell model cannot be described as having

a well-defined spin-flavor symmetry. Thus, for this class of models there is no special

set of weakly-coupled excited baryons at large Nc (at least for  �= 0). Since these

models encode generic large Nc scaling rules, one concludes that these rules alone

do not imply that a set of weakly coupled states exists. Returning now to a world

where the quarks are light enough so that the amount of phase space [which is of

order O(N0
c )] permits decays, one concludes that there is no generic argument for

why such states should be narrow.

Note that an analogous argument could be made using the (2)gGc/Nc term

in the Hamiltonian, which also leads to mixing of order O(N0
c ). One might won-

der whether there is some way to evade this conclusion by hoping for a type of

cancellation between the (2)gGc/Nc and  ·s terms. However, in general, the two

terms are independent; their ratio is not fixed by large Nc QCD arguments. More-

over, although the operators commute at leading order in 1/Nc, they are distinct—

their matrix elements are not proportional to each other, even at leading order in

1/Nc [39, 40, 41, 57]. Hence, the only way for them to cancel in general is if they

are both zero.
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The conclusion that S and MS configurations are mixed in models of this type

is valid for all cases except where the excited quark is in an =0 orbital. However,

it is clear that all of the matrix elements of  ·s (where ∆ = 1) and (2)gGc/Nc

(where ∆ = 2) between states with  = 0 are zero. Thus, the argument presented

above does not exclude the possibility of weakly coupled, and thus narrow,  = 0

MS excited states. We note, however, that the quark model considered in this

thesis, though more general than that implicitly used to construct the basis states,

is by no means the most general one that one can consider. In particular, one can

consider models with configuration mixing—that is, in which the physical states

are admixtures of different single-particle descriptions (See Ref. [76]). Such mixing

operators can induce admixtures between the S and MS states at order O(N0
c ). It

is easy to see how this can come about. An allowable operator can mix a state with

a quark in an excited =0 orbital and a state with a quark in an =1 orbital that

has total angular momentum (spin plus orbital) equal to 1
2
. Such mixing violates

no symmetries of the system and is allowable at O(N0
c ). Once such a state admixes

with the =1 orbitals, the previously considered operators induce mixing between

the S and MS spin-flavor components.

The case of =1 presents its own subtlety, the well-known problem in many-

body physics of spurious modes associated with broken symmetries [76]. However,

the existence of spurious modes does not alter the conclusions drawn above for the

=1 case. Since the discussion of spurious modes is outside the scope of this chapter,

we defer it to Appendix A.
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2.4 Conclusion

In this chapter, we have explored the issue of whether excited baryons with mixed-

symmetric spin-flavor wave functions have decay widths that vanish in the large Nc

limit. If previous claims that a set of states is automatically narrow in the large Nc

limit were in fact generic, they would be both theoretically and phenomenologically

significant. On the other hand, the assertion that such states are narrow is based

only on calculations with a very simple quark model. We showed that the narrowness

of these states claimed by Pirjol and Yan is an artifact of the simple quark model

used in the calculations and is not, in fact, a generic feature of large Nc QCD. This

was shown in the context of a slightly more general class of quark models that encode

generic large Nc scaling rules by a demonstration that excited baryons cannot be

assigned a well-defined, fixed spin-flavor symmetry; the symmetry configurations

are admixed at order O(N0
c ). This implies that the relative narrowness of baryon

states observed in nature cannot be simply attributed to large Nc QCD scaling

behavior. It also implies that the general model-independent analysis of Ref. [33] is

not strictly correct because, without narrow states to serve as scattering targets, the

large Nc QCD consistency condition analysis is not applicable. Fortunately, many

of the conclusions of this analysis remain correct despite this deficiency, such as the

predicted pattern of degeneracies [39] discussed in Sec. 2.1.
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Chapter 3

Model-independent Linear Scattering Relations:

Pion-nucleon scattering

3.1 Pions as Hadronic Probes

Scattering particles off of each other is a time-honored method for investigating the

properties and interactions of matter and for discovering new physical phenomena.

The de Broglie wavelength of the injected particle changes with energy, allowing

an experimenter to probe different attributes of a particle’s properties and degrees

of freedom. For example, as the energy of an electron beam incident on an atomic

target increases, we are able to obtain information first about the electronic structure

of the atom, then the atomic nucleus, its proton and neutron content, and finally

the quarks. Our discussion in this chapter will concentrate on low-energy hadronic

scattering in which quarks and gluons are not the relevant degrees of freedom, but

rather nucleons, deltas, and pions.

Pions have been an important probe of hadronic properties for a long time and

for many reasons. Foremost is their intimate role in the nucleon-nucleon interaction.

According to the Yukawa model [58], pion exchange between protons and neutrons

is the dominant source of the strong force that binds the atomic nucleus together.

Another reason is their connection to the approximate chiral symmetry of QCD as
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discussed in Chapter 1. Due to their pseudo-Goldstone boson nature, pions are very

light compared to other hadrons and therefore stable against strong decays. The

charged pions eventually decay via the weak interaction, while the chiral anomaly

significantly reduces the lifetime of the neutral pion. Regardless of these decay

channels, the lifetimes are long enough so that pions can be used to form particle

beams and are easily detected. For these reasons, a great deal of experimental

data for pion-baryon scattering and pion photoproduction has been compiled and

analyzed over the last several decades.

In this chapter and the next, we will discuss pion-baryon scattering and pion

photoproduction, respectively within the framework of large Nc QCD. In particular,

we will show that amplitudes for these processes are not independent and can be

linearly related. This follows from an expansion of the S matrix describing these

processes that we derive in the next section.

3.2 Derivation of the S Matrix Expansion

In this section, we consider a pion scattering off of a nucleon at rest producing a pion

and a baryon in the final state. We focus our attention on the case where nucleons

and deltas are the final state baryons. We wish to compute the S matrix for this

process using the techniques of large Nc QCD and the contracted SU(4) spin-flavor

symmetry developed in Chapter 1. We begin by enumerating the relevant (conserved

or fixed) quantum numbers of the system: The isospin of the pion (Iπ = 1, Iπ3) and

its initial and final orbital angular momentum about the baryon (L, L3; L
′, L′

3), the
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spin=isospin of the initial and final baryon (R = 1
2
, R3; R

′, R′
3), the conserved total

isospin (Is, Is3), and the conserved total angular momentum (Js, Js3). We employ

the Wigner-Eckart theorem to eliminate any dependence on the quantum number

projections and thus seek an expression for the reduced S matrix: SLL′RR′IsJs(E),

where E is the scattering energy.

Our calculation begins by considering the operators that contribute to the S

matrix. Large Nc QCD becomes most useful when we consider the operator that con-

nects the pions and baryons in the t-channel exchange picture (See Fig. 3.1). This

operator does not carry baryon number, has isospin It and spin Jt and therefore

obeys the large Nc QCD result of Eq. (1.6) that takes the form 〈B′|Ô(n)
It,Jt

/Nn
c |B〉 ∼

1/N |It−Jt|
c . Thus, to leading order in the 1/Nc expansion, the dominant matrix el-

ements and scattering amplitudes in the t-channel have It = Jt ≡ J . This is the

famous “It = Jt rule” originally derived for meson-baryon scattering in the Skyrme

model [59]. Although we are discussing the process from the t-channel point of view,

this view can only be justified with large Nc QCD in the kinematic regime appro-

priate to the s-channel process, in which a meson of energy O(N0
c ) scatters quasi-

elastically from a massive, nonrelativistic baryon. Indeed, the t-channel process,

requiring meson energies of order O(N1
c ), is exponentially suppressed in large Nc

QCD as mentioned in Sec. 1.3.

According to the It = Jt rule, the leading order t-channel scattering amplitude

is characterized by a smaller set of quantum numbers: s̃tJLL′RR′(E). Also, the depen-

dence of this amplitude on the intrinsic baryon quantum numbers, {RR′}, can be fac-

tored out with the normalization of the baryon wavefunctions. Using the normaliza-
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ψψ SI , φφ SI ,

si, ',' siss JI ,

tt JI ,
ψψ SI , φφ SI ,

si, ',' si

(a) (b)

Figure 3.1: (a) The s-channel versus (b) t-channel meson-baryon scattering dia-

grams. The solid lines are baryons with isospin i, i′ and spin s, s′. The dashed

lines are mesons with isospin Iψ, Iφ and spin Sψ, Sφ. Appendix B presents the

relationship between the quantum numbers in the two channels.

tion derived from either the contracted SU(4) group or the Skyrme model [24], the re-

sult of this factorization is s̃tJLL′RR′(E) = (−1)−2(R+R′)
√

(2R + 1)(2R′ + 1)ŝtJLL′(E).

To obtain SLL′RR′IsJs(E), we must cross s̃tJLL′RR′(E) into the s-channel using stan-

dard angular momentum coupling algebra techniques involving Wigner 6j symbols

outlined in Appendix B [59, 60]. Also see Ref. [61] for more details. The result of

this crossing is

SLL′RR′IsJs(E) =
∑
J




Iπ R′ Is

R Iπ J






L′ R′ Js

R L J


 stJLL′(E) + O(N−1

c ),(3.1)

where stJLL′(E) is called the reduced amplitude. It is proportional to ŝtJLL′(E) with

the other quantum number-dependent factors absorbed inside. Note that an error

of O(N−1
c ) is included since our derivation produces only the leading order result.

The square brackets (called [6j] symbols) are real numbers related to Wigner’s 6j
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symbols by 


a b e

c d f


 ≡ (−1)−(b+d+e+f)

([a][b][c][d])1/4




a b e

c d f


 , (3.2)

where [X] ≡ 2X + 1. This notation serves to make the formulas more compact and

transparent since it displays only the relevant factors. The [6j] symbol still retains

many important properties of the Wigner 6j symbol (See Appendix B). Among

these properties are four triangle rules:




j1 j2 j12

j3 J j23


 ∝ δ(j1j2j12)δ(j2j3j23)δ(j1j23J)δ(j12j3J), (3.3)

which dictate which values of J contribute to the sum in Eq. (3.1). It is worth noting

that Eq. (3.1) can be generalized to mesons with arbitrary spin and isospin [62]. For

example, the η has isospin zero and the ω has spin one. The case for isospin zero

will be important in Sec. 4.1 and is trivial to derive from Eq. (3.1); simply insert

Iπ → 0 in the [6j] symbol.

Equation (3.1) is an important result and deserves some comments. The ex-

pansion of the physically measurable S matrix in terms of reduced amplitudes was

first made in the context of the Skyrme model [24, 25]. In this case, the reduced

amplitudes are amplitudes for pions scattering off of solitons in which the quantum

number K ≡ I + J is conserved. The solitons are then projected into well-defined

baryon states as discussed in Sec. 1.3, producing the [6j] symbols and a sum over K

numbers (equivalent to our sum over J ). It is possible to evaluate the reduced am-

plitudes directly from the Skyrme model (or any other chiral soliton model), which

yields SLL′RR′IsJs(E) using Eq. (3.1). The detailed behavior of these amplitudes
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can then be used to predict values for baryon resonance observables such as phase

shifts and absorption parameters [25, 24, 63, 64]. A slightly different derivation of

Eq. (3.1) clearly demonstrates that it is a model-independent result to leading order

in 1/Nc (Ref. [39]).

Our attempt to find the detailed behavior of SLL′RR′IsJs(E) has resulted in the

expansion in terms of other unknown functions (stJLL′(E)) shown in Eq. (3.1). We

know of no simple way to use a model-independent analysis of large Nc QCD to

evaluate the reduced amplitudes to obtain SLL′RR′IsJs(E). However, Eq. (3.1) is still

useful for understanding some aspects of hadronic physics. The key point is that the

set of quantum numbers needed to describe the S matrix, {LL′RR′IsJs} is smaller

than the set specifying the reduced amplitudes, {JLL′}. This implies that there

are fewer reduced amplitudes than S matrix elements and they are shared among

several different S matrices. This has many important consequences in hadronic

phenomenology. One is that degeneracies exist in the excited baryon spectrum to

leading order in 1/Nc [39] that can be labeled by the quantum number K. In the

study of baryon resonances, resonances in a given channel correspond to a pole

in the S matrix, which must appear in one of its associated reduced amplitudes.

This pole is then shared among S matrix elements for different scattering channels

through the reduced amplitude, creating the degeneracies. Certain decay properties

of the N(1535) and N(1650) baryons can also be explained in this analysis [39]. In

particular, it is predicted and confirmed that N(1535) couples strongly to the ηN

channel and weakly to the πN channel, while the coupling preference is reversed for

N(1650).
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A second consequence is that the set of S matrix elements for a given initial

angular momentum (L) is linearly dependent. Linear algebra can be used to elimi-

nate the unknown reduced amplitudes, stJLL′ and produce model-independent linear

relations among different physically measurable scattering amplitudes. Relations of

this type for πN → πN and πN → π∆ scattering were first derived by Hayashi,

Eckart, Holzwarth, and Walliser [25] and Mattis and Peskin [24] in the Skyrme

model. The linear relations display no explicit energy dependence and require only

experimentally extracted scattering data for validation. In this respect, they provide

an excellent test of large Nc QCD and are the focus of this chapter and the next. We

present linear relations in the following sections and demonstrate their great ability

to fit the experimental data.

So far we have only considered the leading order term in the 1/Nc expansion of

the scattering S matrix. The contracted SU(4) group formalism provides a straight-

forward method to extend the result to the next order in the 1/Nc expansion. This

follows directly from Eq. (1.6). According to that formula, if we construct the most

general term that violates the “It = Jt rule” by one unit, that is if |It − Jt| = 1,

then we incur a penalty of one factor of 1/Nc. The procedure is the following: We

will add the two terms for It = Jt± 1 with a 1/Nc factor to Eq. (3.1), yielding an S

matrix that includes all next-to-leading order effects. The result of this procedure

is

SLL′RR′IsJs(E) =
∑
J




Iπ R′ Is

R Iπ J






L′ R′ Js

R L J


 stJLL′(E)
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− 1

Nc

∑
x




Iπ R′ Is

R Iπ x






L′ R′ Js

R L x + 1


 s

t(+)
xLL′(E)

− 1

Nc

∑
y




Iπ R′ Is

R Iπ y






L′ R′ Js

R L y − 1


 s

t(−)
yLL′(E) + O(N−2

c ), (3.4)

where the s
t(±)
xLL′(E) functions are the reduced t-channel amplitudes corresponding

to stJLL′(E) for the two possible ways of combining It and Jt such that |It−Jt| = 1.

Note that an error of O(N−2
c ) is included since our 1/Nc expansion includes only

the leading order and next-to-leading order terms. This expansion is one of the

main achievements of this thesis. It is possible to continue in this manner with the

remaining terms in the 1/Nc expansion, but this has limited utility for πN scattering

as discussed in Sec. 3.4.

If linear dependence remains in the system of equations for a πN scattering

process, then we can construct linear relations that hold to next-to-leading order

(NLO) in 1/Nc; these have small errors of order O(N−2
c ). In so far as the 1/Nc

expansion is useful, these NLO relations should be more robust against experimental

scrutiny than their leading order counterparts. Indeed, for the cases of πN scattering

and pion photoproduction, we find this to be true qualitatively.

3.3 Pion-nucleon Scattering Relations

We begin our discussion of pion-nucleon scattering relations by deriving the leading

order (LO) formulas of Refs. [24, 25]. To this end, we need only the leading order

terms of Eq. (3.4) (i.e., the formula in Eq. (3.1)). We will derive the next-to-leading
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order expressions in the next section.

Before deriving the LO linear relations, it is helpful to discuss restrictions

on the reduced amplitudes stJLL′(E) and the pion angular momentum {L, L′} due

to the symmetries of the strong interaction. Time-reversal invariance of the πN

scattering process dictates that the S matrix is symmetric under the exchange of

initial and final states (characterized by the quantum numbers {L, R} and {L′, R′},

respectively). We see that the symmetry properties of the [6j] symbols (inherited

from the 6j symbols) imply that the product in Eq. (3.1) is invariant under this

exchange (See Appendix B). Thus, the reduced amplitudes must also be symmetric

(i.e., stJLL′(E) = stJL′L(E)) in order to maintain the symmetries of QCD. The

triangle rules of the [6j] symbols also encode important restrictions on the change

in the pion orbital angular momentum, ∆L ≡ |L′ − L|. In order to get a non-zero

[6j] symbol for the πN → πN reaction, the allowed change is ∆L = 0, 1. For

πN → π∆, the allowed change is ∆L = 0, 1, 2.

We can further restrict the possible values of ∆L by considering parity. The

strong interaction conserves parity, meaning the world described by a position �r is

the same as the one described by −�r. A particle is assigned a number ±1 depending

on its parity properties: A particle field with negative parity (−1) reverses sign

under the application of the parity operator. Pseudo-scalar mesons like the pion

have a (−1) parity. Particles with orbital angular momentum L have a parity

(−1)L derived from the angular part of their wavefunction, Y L
m(θ, φ). The parity

of a system is the product of the parity of its parts. Thus the pion-baryon system

has a total conserved parity of (−1)L+1. The ∆L = 1 possibility is forbidden by
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parity conservation since P = (−1)L+1 = (−1)L
′+1, meaning that ∆L must be an

even number. To summarize, the permitted cases are ∆L = 0 for πN → πN and

∆L = 0, 2 for πN → π∆.

The procedure for deriving the linear relations is straightforward. First, we

write out the expansion in Eq. (3.1) for all the possible total isospin and angular

momentum values for a given L (and noting that Iπ = 1 and real initial target

baryons are always nucleons, R = 1/2): Is = {1
2
, 3

2
} and Js = L ± 1

2
. Next,

we algebraically eliminate the reduced amplitudes, stJLL′(E) to produce the linear

relations. We present them now using the more compact notation, SLLRR′IsJs →

SπR′
L,2Is,2(Js−L), or SLL′RR′IsJs → SπR′

L,L′,2Is,2(Js−L) if L �= L′ and with R′ represented by

the baryon’s symbol:

SπN
L,3,−1 =

L − 1

4L + 2
SπN
L,1,−1 +

3L + 3

4L + 2
SπN
L,1,+1 + O(N−1

c ), (3.5)

SπN
L,3,+1 =

3L

4L + 2
SπN
L,1,−1 +

L + 2

4L + 2
SπN
L,1,+1 + O(N−1

c ), (3.6)

Sπ∆
L,3,−1 =

4(L − 1)√
10(2L + 1)

Sπ∆
L,1,−1 +

3

2L + 1

[
(L + 1)(2L + 3)(2L − 1)

10L

]1/2
Sπ∆
L,1,+1

+O(N−1
c ), (3.7)

Sπ∆
L,3,+1 =

3

2L + 1

[
L(2L + 3)(2L − 1)

10(L + 1)

]1/2
Sπ∆
L,1,−1 +

4(L + 2)√
10(2L + 1)

Sπ∆
L,1,+1

+O(N−1
c ), (3.8)

and

√
L + 1Sπ∆

L,L+2,1,+1 = −√
L + 2Sπ∆

L+2,L,1,+3 + O(N−1
c ), (3.9)

√
L + 1Sπ∆

L,L+2,3,+1 = −√
L + 2Sπ∆

L+2,L,3,+3 + O(N−1
c ), (3.10)
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and

√
10(L + 1)Sπ∆

L,L+2,3,+1 = +
√

L + 2Sπ∆
L+2,L,1,+3 + O(N−1

c ), (3.11)

Sπ∆
L+2,L,1,+3 = −

√
10Sπ∆

L+2,L,3,+3 + O(N−1
c ), (3.12)

and

SπN
L,1,−1 − SπN

L,1,+1 =

√
2L − 1

L + 1
Sπ∆
L,1,−1 +

√
2L + 3

L
Sπ∆
L,1,+1 + O(N−1

c ), (3.13)

where each S matrix element is evaluated at the same scattering energy, E. Note

that the LO relations fall into three distinct classes: (1) Linear combinations involv-

ing only πN → πN amplitudes [Eqs. (3.5) & (3.6)] and (2) πN → π∆ amplitudes

[Eqs. (3.7)–(3.12)], and (3) a mixture of the two reactions [Eq. (3.13)]. Class 2

further divides into linear combinations for L = L′ and proportionalities for L �= L′.

Values for each S matrix element (SπR′
L,2Is,2(Js−L) or SπR′

L,L′,2Is,2(Js−L)) over an

appropriate energy range can be found in the available experimental data tables [69].

Using these extracted amplitudes in the above relations for each L, we find they

generally compare well with experiment. Mattis and Peskin found that overall

agreement improves with higher energy and higher L-valued partial waves [24]. As

typical examples, we consider relations (3.5) and (3.6) for two different L values

[See Appendix C for more a complete collection of plots]. Inserting L = 2 into

Eq. (3.5) gives D33 = 1
10

D13 + 9
10

D15, where the partial wave is denoted by the L2I,2J

notation for elastic pion-nucleon scattering. Inserting L = 3 into Eq. (3.6) gives

F37 = 9
14

F15 + 5
14

F17. In Figures 3.2 and 3.3, we plot the real and imaginary part of

the dimensionless T matrix [T ≡ (S − 1)/2i] as a function of center-of-mass energy
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W for the πN system. A more in-depth discussion of this scattering data is deferred

to Sec. 3.5.

Figures 3.2 and 3.3 demonstrate that the relations are able to effectively repro-

duce some features of a partial wave including peaks and the background. Note in

Fig. 3.3 that while the detailed structure of the peaks is correct, there is a shift be-

tween them of about 230 MeV. This hints that the shift is caused by the same 1/Nc

effect of Sec. 1.4 that causes the ∼ 290 MeV mass difference between the delta and

nucleon. While the leading order analysis cannot capture this physics, an extension

of the linear relations to the next order in the 1/Nc expansion should improve the

predictions.

While most of the LO relations follow the data nicely, notable exceptions are

Eqs. (3.11) and (3.12) with the
√

10 coefficient. This mystery was noticed by Mattis

and Peskin [24] and we present the resolution in the following section.

3.4 NLO Pion-nucleon Scattering Relations

The linear relations of the previous section were derived from the leading order term

in the S matrix expansion and thus had an error of order O(N−1
c ). It is possible

to derive linear relations with errors of order O(N−2
c ) by using the expansion in

Eq. (3.4) that includes the next-to-leading order terms. This method for improving

the accuracy of linear relations is superior to attempts to fix the LO relations of

Sec. 3.3 through modifications of the Skyrme model [65]. Those results only capture

some of the 1/Nc effects.
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Figure 3.2: Experimentally determined D33 partial-wave amplitude (solid curve)

for πN → πN scattering compared to the combination predicted by Eq. (3.5):

1
10

D13 + 9
10

D15 (dotted curve). The data is provided by SAID [69].
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Figure 3.3: Experimentally determined F37 partial-wave amplitude (solid curve)

for πN → πN scattering compared to the combination predicted by Eq. (3.6):

9
14

F15 + 5
14

F17 (dotted curve). The data is provided by SAID [69].
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Let us first consider the reactions πN → πN and πN → π∆ when the pion

orbital angular momentum is unchanged: L = L′. There are eight physical ampli-

tudes corresponding to the different ways to add the spin and isospin of the pion and

the nucleon in the two reactions: Is = 1
2
, 3

2
and Js = L± 1

2
. We can expand these in

terms of seven reduced amplitudes using Eq. (3.4). Therefore, there is only one re-

lation among the physical amplitudes with all references to the reduced amplitudes

eliminated. This relation is:

SπN
L,1,−1 − SπN

L,1,+1 =

√
2L − 1

L + 1
Sπ∆
L,1,−1 +

√
2L + 3

L
Sπ∆
L,1,+1

+
[
2

3

(
SπN
L,3,−1 − SπN

L,3,+1

)
+

1

3

(
SπN
L,1,−1 − SπN

L,1,+1

)

+
1

3

√
5

2



√

2L − 1

L + 1
Sπ∆
L,3,−1 +

√
2L + 3

L
Sπ∆
L,3,+1




−5

6



√

2L − 1

L + 1
Sπ∆
L,1,−1 +

√
2L + 3

L
Sπ∆
L,1,+1






+O(N−2
c ). (3.14)

The left hand side and the first two terms resemble one of the original LO relations

[Eq. (3.13)], but there is a correction term in the square brackets. The 1/Nc cor-

rections to the terms in the square bracket from Eqs. (3.5)–(3.8) precisely cancel

the corrections to Eq. (3.13), yielding a result that holds to order O(N−2
c ). It is

natural that the only NLO relation that exists for L = L′ is a mixture of πN and

π∆ amplitudes due to all the additional unknown reduced amplitudes included in

Eq. (3.4). Equation (3.13) works rather well empirically (see the plots in Ref. [24]),

and we defer a discussion of the possible effects of the correction term to Sec. 3.5.

Now we consider the reactions for which the pion orbital angular momentum
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is changed by two units, L = L′ ± 2. The parity arguments of Sec. 3.3 restrict this

case to the πN → π∆ reaction. There are four physical amplitudes that can be

expressed in terms of two reduced amplitudes. This implies the existence of two

NLO linear relations:

√
L + 1 Sπ∆

L,L+2,1,+1 = −√
L + 2 Sπ∆

L+2,L,1,−1 + O(N−2
c ), (3.15)

√
L + 1Sπ∆

L,L+2,3,+1 = −√
L + 2 Sπ∆

L+2,L,3,−1 + O(N−2
c ). (3.16)

These resemble two of the LO relations [cf. Eqs. (3.9), (3.10)]. However, we have

now shown that they hold at NLO in 1/Nc, and thus, to the extent that the 1/Nc

expansion applies to these observables, one expects that these relations hold better

than the generic LO predictions. As discussed in the following section, we show that

this is, in fact, experimentally true. These formulae also constitute a resolution to

the
√

10 mystery of Mattis and Peskin [24] mentioned in Sec. 3.3: Those authors

unknowingly held a LO relation [Eqs. (3.11), (3.12)] to the same level of performance

as a NLO one.

We note that all of our NLO relations involve the πN → π∆ reaction. This

is natural due to the large number of reduced amplitudes introduced at NLO in

1/Nc; therefore, more physical amplitudes are required to algebraically eliminate

them. These predictions however are problematic to verify experimentally as will

be discussed in Sec. 3.5. The main point is that the delta is unstable in the Nc = 3

world and extensive modeling is required to extract its scattering amplitudes from

the data.

In principle, our “It = Jt rule” method can be applied again to derive the
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1/N2
c terms in the S matrix expansion, as noted in Sec. 3.2. However, we note

that such a procedure is of minimal utility for describing pion-nucleon scattering

in the physical Nc = 3 world. The resulting triangle rules appearing in the 1/N2
c

corrections, applied to terms with a nucleon (R = 1
2
) in the initial state, cannot be

satisfied for any baryon in the R′ = I = J multiplet of the large Nc world; this forces

the 6j symbols to vanish, thus terminating the expansion. Therefore, it appears that

we have exhausted the number of experimentally accessible NLO relations in pion-

nucleon scattering. There are no relations that hold at next-to-next-to-leading order

in the 1/Nc expansion (i.e., have order O(N−3
c ) errors).

Before proceeding with the experimental tests of our new relations, we note

in passing an interesting consistency check of the Weinberg-Tomozawa relation for

scattering lengths. According to soft-pion theorems of chiral symmetry, the s-wave

pion-nucleon scattering lengths for the isospin I = 1
2
, 3

2
channels (a1/2, a3/2) are

related to leading order in the chiral expansion by [14]

a1/2 = −2a3/2 =
g2
V

πf 2
π

mπmN

mπ + mN
+ O(mπ/mN ), (3.17)

where mπ and mN and the pion and nucleon mass, respectively and gV ∼ O(N0
c ) is

the vector current coupling. This relation is experimentally well satisfied; the ratio

a1/2/a3/2 equals −2 to within 5% [66]. The scattering length (a) is related to the

S matrix by S = exp[2ika] for small values of pion momenta, k. Using the leading

order 1/Nc expansion of Eq. (3.1), we find that the S matrices for L = 0, J = 1
2

with I = 1
2
, 3

2
are equal (i.e., SI=1/2 = SI=3/2 = st000/2

√
3), apparently implying that

a1/2 = a3/2, in contradiction of the Weinberg-Tomozawa relation.
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However, after imposing the Nc scaling for the various factors from Chapter

1, we find that the function on the right hand side of Eq. (3.17) is of order O(N−1
c ).

Therefore, to leading order in 1/Nc, the scattering lengths should vanish. For con-

sistency with this result, chiral symmetry imposes the constraint ∂
∂k

st000|k→0 = 0 to

all orders in 1/Nc. This was originally uncovered by Mattis and Peskin [24], but a

trivial “0 = 0” consistency check of this relation is unsatisfactory. Since this pre-

diction holds at next-to-leading in 1/Nc, we gain some insight into this problem by

considering our NLO expansion in Eq. (3.4). Carrying out the sum in Eq. (3.4) for

L = 0, J = 1
2

and I = 1
2
, 3

2
, we have

SI=1/2 =

[
1

2
√

3
st000

]
+


−
√

2

3
s
t(−)
100

1

Nc


 , (3.18)

SI=3/2 =

[
1

2
√

3
st000

]
+
(
−1

2

)−
√

2

3
s
t(−)
100

1

Nc


 . (3.19)

At next-to-leading order in 1/Nc, the relative factor of −2 between the scattering

lengths in Eq. (3.17) follows directly from the −1/2 in Eq. (3.19). This constitutes

a satisfying nontrivial consistency check of the Weinberg-Tomozawa relation in the

1/Nc expansion.

It is not necessary that the two expansions (chiral and 1/Nc) produce the same

result. Cases are known (e.g., predictions for the charge radius of the nucleon) in

which the limits do not commute [67]. The problem can be traced to the inclusion

of the delta particle. In the large Nc limit, the delta and nucleon are degenerate

in mass (see Chapter 1) and both contribute to pion loops in Feynman diagrams

for an observable. This can be seen more clearly when we compute the diagrams in

terms of the parameter, d ≡ (m∆ − mN)/mπ. Note that d → ∞ in the chiral limit
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(mπ → 0) and d → 0 in the large Nc limit since m∆ − mN ∼ O(N−1
c ). Quantities

with strong d dependence can vary drastically depending on the ordering of the two

limits. In the case of the Weinberg-Tomozawa relation, we properly accounted for

the order O(N−1
c ) effects and demonstrated consistency between the two predictions.

3.5 Experimental Check of the NLO Pion-nucleon Relations

In principle, all three linear relations derived in Sec. 3.4 (for each allowed value

of L) can be tested with available experimental data. The amplitudes we will use

come from a partial-wave analysis applied to raw data from scattering experiments.

These experiments use charged pions produced in proton collisions which are then

magnetically directed into bubble chambers. The chambers are filled with either

hydrogen gas serving as proton targets or deuterium serving as neutron targets.

The pion energy-momentum is selected with magnetic fields and the scattering cross

section is inferred from detector signals and the visible particle tracks. The partial-

wave amplitudes are treated as complex parameters and fitted to the measured cross

sections at each energy with a χ2-minimization analysis. Clebsch-Gordan coefficients

allow us to account for the z-components of the spin and isospin quantum numbers

for particular charged reactions (e.g., π+p → π0∆++), so the final result is a partial-

wave amplitude LL′
2Is,2Js

as a function of scattering energy for πN → πN and

πN → π∆.

The extraction of partial-wave amplitudes for the πN → πN reaction from

the large amount of reliable (though old) data is straightforward. However, all of

59



the NLO relations of Sec. 3.4 involve the reaction πN → π∆. The extraction of

partial-wave amplitudes for πN → π∆ is complicated by the fact that the delta

decays strongly to πN . This decay occurs because the chiral limit dominates the

large Nc limit; the pion mass is smaller than the delta-nucleon mass difference. The

delta lifetime is on the order of 10−23 seconds and thus the final state observed in the

laboratory is ππN . The observed reaction πN → ππN can take several intermediate

routes. For example, it is possible to produce a ρ vector meson (mρ = 776 MeV),

πN → ρN , which then decays strongly to two pions. The πN → π∆ partial waves

must therefore be extracted with a model that distinguishes events in the observed

reaction πN → ππN that pass through an intermediate delta resonance and which

do not.

The πN → π∆ partial-wave amplitude data therefore necessarily contains

some model dependence, making it somewhat less reliable. Due to this uncertainty,

much less attention has been paid to these reactions and the set of analyzed data

is far more sparse. Fortunately, the ∆ is an extremely prominent resonance (under-

standable in the context of large Nc QCD), and hence it is believed that the model

dependence should be rather modest.

For the comparisons presented in this section, we use results from the isobar

model analysis of Manley, Arndt, Goradia, and Teplitz [68], which is readily available

through the SAID program at George Washington University [69]. The analysis is

presented in terms of the dimensionless T matrix [T ≡ (S − 1)/2i] rather than the

S matrix. This causes no complications, since any extra factors and terms cancel in

our formulas. The results of Ref. [68] are presented in terms of the center-of-mass
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energy W of the πN system in the range 1340–1910 MeV. While this range is merely

that presented by the most up-to-date analysis, it is appropriate for a test of our

πN → π∆ scattering relations. Our assumption that the baryon is at rest becomes

tenuous at impact energies slightly higher than 1910 MeV because the delta’s recoil

can no longer be neglected.

We first consider Eq. (3.14) and restrict our attention to 1 ≤ L ≤ 3. The lower

bound is an elementary consequence of angular momentum conservation, while the

upper bound reflects limitations of the available data. Even with this restriction

we see that for each L, Eq. (3.14) requires partial-wave amplitudes that are, unfor-

tunately, not available in the data set. For example, the amplitudes PP31, PP13,

DD33, and FF17 are not given. Mattis and Peskin were able to circumvent this prob-

lem in their LO comparisons [24] by rewriting the unknown amplitudes in terms of

known ones using formulas Eqs. (3.7) & (3.8). We have no such luxury; insert-

ing Eqs. (3.7) & (3.8) into our NLO relation [Eq. (3.14)] simply introduces an error

of order O(N−1
c ) and effectively converts it to a LO relation. Since our goal is to

test the extent to which a NLO relation is more experimentally effective than a LO

one, this type of substitution would be counterproductive. We therefore make no

assumptions about these unknown partial-wave amplitudes and thus cannot test the

validity of Eq. (3.14) at the present time.

We now consider Eqs. (3.15) and (3.16) and restrict our attention to 0 ≤

L ≤ 1. The upper bound is again the limit of available data. Fortunately, there is

sufficient analyzed data to study these relations for the L = 0 case. To test the 1/Nc

expansion, we will compare the quality of the agreement of these NLO relations with
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the L = 0 LO relations, Eqs. (3.11) & (3.12). Both sets of predictions involve only

the πN → π∆ reaction and we view the loss of predictive power due to modeling

the πN → π∆ partial-wave amplitudes as a comparable systematic uncertainty for

the two types of relations. Our predictions are as follows:

SD11 = −√
2 DS13 + O(N−2

c ), (3.20)

SD31 = −
√

2 DS33 + O(N−2
c ), (3.21)

and

SD11 = +
√

20DS33 + O(N−1
c ), (3.22)

SD31 = +
1√
5

DS13 + O(N−1
c ), (3.23)

where the first two equations are the NLO relations (see Fig. 3.4) and the second

two are the LO relations (see Fig. 3.5).

It is immediately apparent that the NLO relations agree with experiment con-

siderably better than their LO analogs. For the NLO relations, the gross structure

of the amplitudes is clearly discernible on both the left- and right-hand sides of

the relation. In contrast, the LO relations are much less robust in describing the

data. We note that the LO relations tested here work much more poorly than those

involving only the πN → πN amplitudes (See Figs. 3.2 and 3.3). We also note that

the reported errors in the real and imaginary parts of the T matrix at each energy

point are less than 0.04 for the partial-waves considered here [69] and are thus too

small to explain the difference in the level of agreement.
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Figure 3.4: Experimentally determined πN → π∆ amplitudes SD11 and SD31 com-

pared to the predictions of Eqs. (3.20), (3.21). In plots (a) and (b), the closed circle

(•) is SD11 and the box is −√
2 DS13. In plots (c) and (d), the open circle (◦) is

SD31 and the diamond (�) is −√
2DS33. The data is provided by SAID [69].
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Figure 3.5: Experimentally determined πN → π∆ amplitudes SD11 and SD31 com-

pared to the predictions of Eqs. (3.22), (3.23). In plots (a) and (b), the closed circle

(•) is SD11 and the diamond (�) is +
√

20DS33. In plots (c) and (d), the open circle

(◦) is SD31 and the box is +1/
√

5DS13. The data is provided by SAID [69].
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3.6 Summary

In the previous sections, we have demonstrated the power and utility of the 1/Nc ex-

pansion for describing pion-nucleon scattering. We have shown that the contracted

SU(4) spin-flavor symmetry that emerges in large Nc QCD allows us to make non-

trivial predictions that are testable by data. Given the rigor of large Nc QCD, these

predictions passed all experimental expectations, thus helping us to understand

some rather complicated features of hadronic physics. This understanding can be

expanded by considering the photoproduction of pions off of nucleons as done the

next chapter.

In this chapter, we have shown that the symmetries of large Nc QCD create

linear dependence among amplitudes for pion-nucleon scattering. This allows us to

derive model-independent linear relations that were directly confirmed using experi-

mental data. In the following chapter, the techniques developed here will be applied

to pion photoproduction.
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Chapter 4

Model-independent Linear Scattering Relations:

Pion Photoproduction

4.1 Pion Photoproduction

The production of pions with real or virtual photons (γN → πN) is another im-

portant source of hadronic information. In pion electroproduction, electrons emit

virtual photons that are absorbed by a nucleon, creating an intermediate state that

then couples to a pion and nucleon. In pion photoproduction, a nucleon absorbs

gamma rays from electron bremsstrahlung, then decays into a pion and nucleon. The

key difference is that a virtual photon has an additional longitudinal propagation

mode that is forbidden for an on-shell (real) spin-1 photon. The pion production

process can be symbolically described as 〈πN |Hπ|N∗〉 〈N∗ |Hγ| γN〉, where N∗ is

the intermediate state and Hπ and Hγ are the pionic and electromagnetic interaction

operators, respectively. Given that 〈πN |Hπ|N∗〉 is well-studied and documented

as indicated by Sec. 3.5, pion production gives us access to the electromagnetic in-

teraction through 〈N∗ |Hγ| γN〉. In this section, we focus on pion photoproduction

and derive an S matrix expansion similar to Eq. (3.1) for electromagnetic multipole

amplitudes. In the next section, we will derive linear relations among multipole am-

plitudes that hold to leading order (LO) and next-to-leading order (NLO) in 1/Nc.
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In Sec. 4.3, we compare all the predicted relations with experimental data.

Pion photoproduction can be described by the same S matrix expansion in

Eq. (3.1) derived for πN scattering once certain modifications are made to account

for the electromagnetic interaction. These modifications include assigning the initial

“pion” with the spin and isospin quantum numbers of a photon. Although the

photons are spin 1, one traditionally precombines the photon spin with its orbital

angular momentum about the nucleon target. This gives the usual multipole angular

momentum () for scattering processes involving radiation [70]. Since  represents

all the sources of angular momentum for the photon, its intrinsic spin may effectively

be set to zero, as with the pion.

The photon has the interesting property that it interacts with hadrons through

either an isoscalar (Iγ = 0) or isovector current (Iγ = 1). The operators that

connect the hadronic and photonic isospin currents have distinct properties in large

Nc QCD. The dominant isovector coupling of a photon to a nucleon enters through

the combined spin-flavor operator, Gia, introduced in Sec. 2.3, which in a quark

model representation is

Gia ≡
Nc∑
α=1

q†α

(
σi

2
⊗ τa

2

)
qα , (4.1)

where σ and τ are Pauli matrices in spin and isospin spaces, respectively. We sum

α over the Nc quark fields, qα, in the nucleon. It should be noted that this operator

does not require a quark model to be well defined. However, the quark model

exactly reproduces the results of the contracted SU(4) symmetry and is a simple

way to implement the group theory [29]–it is often joked that this is the “poor
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man’s” way to do group theory. In the field-theoretic context, qα simply stands for

an interpolating field with the quantum numbers of a current quark, whose effect,

summed over α, completely exhausts the full nucleon wave function [71]. In the

same quark model language, the (spin-dependent) isoscalar coupling enters via the

operator

J i ≡
Nc∑
α=1

q†α

(
σi

2

)
qα . (4.2)

The two operators differ in that the matrix elements of Gia are of order O(N1
c ) for

ground-state baryons due to the collective effect of the Nc quarks, while the matrix

elements of J i are, by construction, of order O(N0
c ) for ground-state baryons like

the nucleon.

The S matrix expansion of Eq. (3.1) does not reflect the different Nc scaling

for isospin couplings discussed above. The scaling must be put in by hand by adding

to the leading isovector (Iγ=1) terms additional isoscalar (Iγ=0) terms suppressed

by an explicit factor of 1/Nc.

This suppression follows from the isospin symmetry breaking in the electro-

magnetic interaction since both isoscalar and isovector currents couple to the pho-

ton spin operator. However, a truly spinless isoscalar meson (viz., the η) can couple

through the operator

1 ≡
Nc∑
α=1

q†αqα , (4.3)

whose nucleon matrix elements are of order O(N1
c ), and therefore couples just as

strongly to nucleons as pions do through the isovector coupling, Eq. (4.1).

We are now ready to proceed with the derivation of pion photoproduction
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multipole amplitudes from Eq. (3.1). We substitute R = R′ = 1
2

for the nucleons

and Iπ = 1 for the pion. We also have Iγ∈{0, 1} for the photon, where we sum the

two cases to get the full physical amplitude. The result for a particular Iγ is

S
Iγ
�L 1

2
1
2
IsJs

(E) =
∑
J




1 1
2

Is

1
2

Iγ J






L 1
2

Js

1
2

 J


 s

t,Iγ
J �L(E). (4.4)

We need to evaluate this expansion for a particular electromagnetic transition and

charge channel. Processes involving radiation proceed through an electric or mag-

netic transition depending on the relative parity of the initial and final states as

determined by  and L. If ( − L) is odd, then the transition is electric and de-

scribed by an electric multipole amplitude (M e
�LJs

). If ( − L) is even, then the

transition is magnetic and described by a magnetic multipole amplitude (Mm
�LJs

). It

is possible to be even more specific since our initial and final baryons are both spin

1
2

particles (viz., the nucleons): In the magnetic case, the photon and pion have the

same orbital angular momentum ( = L), whereas in the electric case, there is a

change of one unit ( = L ± 1).

In order to project γN → πN into a particular charge channel, we need to

specify the z-component of isospin for the incoming nucleon (mI) and for the pion

(ν). With the appropriate Clebsch-Gordan coefficients describing the initial and

final states, we have:

M
λIγ ,mIν
�LIsJs

(E) =




1 1
2

ν mI−ν

∣∣∣∣∣∣∣∣∣
Is

mI






Iγ
1
2

0 mI

∣∣∣∣∣∣∣∣∣
Is

mI


S

λIγ
�L 1

2
1
2
IsJs

(E), (4.5)

where the index λ ∈ {e, m} indicates the type of electromagnetic transition and the

isospin of the photon (Iγ ∈ {0, 1}) has been left unevaluated. Finally, we must sum
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over all possible the total isospin states.

Let us summarize before proceeding with the NLO additions to the 1/Nc ex-

pansion. The multipole amplitude that describes pion photoproduction is a sum of

the isoscalar and isovector expansions. The isoscalar piece is suppressed by a factor

of 1/Nc relative to the isovector piece. Therefore an expansion to consistent order

in 1/Nc requires the inclusion of NLO amplitudes for only the isovector channel.

The structure of the isovector amplitudes [Eq. (4.5) with Iγ = 1] is identical to the

πN scattering case [see Eq. (3.1)] and the construction of the NLO amplitudes will

follow exactly as in Sec. 3.2. The NLO term is

M
λ1,mIν (NLO)
�LIsJs

(E) =
1

Nc




1 1
2

ν mI−ν

∣∣∣∣∣∣∣∣∣
Is

mI






1 1
2

0 mI

∣∣∣∣∣∣∣∣∣
Is

mI




×



∑
x




1 1
2

Is

1
2

1 x






L 1
2

Js

1
2

 x+1


stλ(+)

x�L (E)

+
∑
y




1 1
2

Is

1
2

1 y






L 1
2

Js

1
2

 y−1


stλ(−)

y�L (E)


 .

(4.6)

The total multipole amplitude expansion, including all leading order and next-to-

leading order terms in the 1/Nc expansion, is the sum

Mλ,mIν
�LJs

=
∑
Is

(
Mλ1,mIν

�LIsJs
+

1

Nc
Mλ0,mIν

�LIsJs
+ M

λ1,mIν (NLO)
�LIsJs

)
. (4.7)

An expression for multipole amplitudes similar to this one was previously derived in

the Skyrme model [26, 27]. However, that derivation did not utilize large Nc QCD

as a constraint–the isoscalar and isovector operators are treated equally and the
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M
λ1,mIν (NLO)
�LIsJs

term is absent–and thus did not yield any truly model-independent

predictions.

Equation (4.7) can be evaluated for particular values of {mI , ν} and we will

show that linear dependence among these quantities exists, meaning we can derive

linear relations. These are discussed in the following section.

4.2 Pion Photoproduction Relations

In this section, we derive nine linear relations among pion photoproduction ampli-

tudes that follow from Eq. (4.7). They hold to LO or NLO in 1/Nc and compare

reasonably well with experiment as demonstrated in Sec. 4.3 below. Before proceed-

ing, we must consider an important restriction that isospin invariance imposes on

the individual charge channels.

Charge conservation limits the number of pion photoproduction channels to

four: γp → π+n, γn → π−p, γp → π0p, γn → π0n. However, due to the isospin

invariance of the strong interaction, only three of these channels are independent.

This can be seen explicitly once we decompose the amplitude for the charge channels

in terms of the isospin amplitudes appropriate for the reaction to proceed via the

isovector current with an intermediate I = 3
2

state (T
3/2
V ) or I = 1

2
state (T

1/2
V ), or

via the isoscalar current with an I = 1
2

state (TS):

A(γp → π+n) =

√
2

3
T

3/2
V −

√
2

3
T

1/2
V +

√
2

3
TS,

A(γn → π−p) =

√
2

3
T

3/2
V −

√
2

3
T

1/2
V −

√
2

3
TS,

A(γp → π0p) =
2

3
T

3/2
V +

1

3
T

1/2
V −

√
1

3
TS,
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A(γn → π0n) =
2

3
T

3/2
V +

1

3
T

1/2
V +

√
1

3
TS, (4.8)

where we have summed over all the total isospin states with the appropriate Clebsch-

Gordan coefficients. Note that this system is linearly dependent and thus one of

the amplitudes can be written in terms of the other three. Since all the species in

γn → π0n are neutral, this reaction is difficult to study experimentally and isospin

freedom allows us to ignore its amplitudes:

A(γn → π0n) = A(γp → π0p) +
√

1/2
[
A(γp → π+n) − A(γn → π−p)

]
. (4.9)

Given this restriction, the set of multipole amplitudes [Mλ,mIν
�LJs

(E)] describing the

three remaining channels can be written in terms of a still smaller set of reduced

amplitudes [s
tλ,Iγ
J �L (E), s

tλ(−)
y�L (E), s

tλ(+)
x�L (E)]. Thus one expects this linear dependence

to yield relations among the physically measurable amplitudes.

Linear relations can be derived at both LO and NLO in the 1/Nc expansion.

In order to find the LO relations, we work only with the LO terms in Eq. (4.7) (i.e.,

disregard the 1/Nc-suppressed terms, 1
Nc

Mλ0,mIν
�LIsJs

, M
λ1,mIν (NLO)
�LIsJs

). To find the rela-

tions that hold to NLO in 1/Nc, we use the complete expression. Since the electric

and magnetic transitions have distinct expansions, we investigate them separately.

We use a more convenient notation than Mλ,mIν
�LJs

for the multipole amplitudes

to present our relations. The total angular momentum Js will be represented by the

equivalent information of the sign in Js=L±1
2
. The channel will not be represented

by the numerical superscripts, {mI , ν}, but by the more illuminating and traditional

nuclear reaction notation, N(π)N ′. For example, M
e, 1

2
,+1

L+1,L,L+ 1
2

will be replaced by

M
e,p(π+)n
L+1,L,+ .
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We begin with the expansion of the electric multipole amplitudes. There are

six physical amplitudes corresponding to the two ways of combining the pion and

nucleon angular momenta, Js = L± 1
2
, for each of the three independent charged

reactions. To LO in 1/Nc these depend on only two reduced amplitudes implying

four linear relations. Two of these are

M
e, p(π+)n
L−1,L,− = M

e, n(π−)p
L−1,L,− + O(N−1

c ) (L ≥ 2), (4.10)

M
e, p(π+)n
L+1,L,+ = M

e, n(π−)p
L+1,L,+ + O(N−1

c ) (L ≥ 0). (4.11)

These relations follow simply from the isospin symmetry of isovector amplitudes,

since the isoscalar component of the photon current is absent at leading order in

1/Nc as discussed in Sec. 4.1. This can be seen explicitly with Eq. (4.8) if we set

TS → 0 to get A(γp → π+n) = A(γn → π−p) + O(N−1
c ).

The other two LO relations imply the vanishing of the electric multipole am-

plitudes for the γp → π0p reaction at leading order in 1/Nc :

M
e, p(π0)p
L±1,L,± = 0 + O(1/Nc) . (4.12)

After extrapolating to the real world of Nc = 3, one expects these amplitudes to

be about a factor of Nc=3 smaller (on average) than those of the charge-exchange

reactions. Indeed, a qualitative check of experimental data [69, 74] reveals this to

be the case for low energies a safe distance away from resonances. A more in-depth

discussion of this case is presented in Sec. 4.3 below.

Once the NLO terms in Eq. (4.7) are included, four new reduced amplitudes

appear and the linear dependence of the set of electric multipole amplitudes dis-
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appears. Therefore, there are no electric multipole linear relations among these

reactions that hold to NLO in 1/Nc.

Turning to the magnetic transition, one sees that only two reduced amplitudes

are needed to describe the six physical amplitudes to leading order in 1/Nc. This

yields four LO linear relations for L ≥ 1:

M
m, p(π0)p
L,L,− = M

m, p(π0)p
L,L,+ + O(N−1

c ), (4.13)

M
m, p(π+)n
L,L,− = M

m, n(π−)p
L,L,− = −L + 1

L
M

m, p(π+)n
L,L,+ = −L + 1

L
M

m, n(π−)p
L,L,+ . (4.14)

Two of these [M
m, p(π+)n
L,L,− = M

m, n(π−)p
L,L,− +O(N−1

c ), M
m, p(π+)n
L,L,+ = M

m, n(π−)p
L,L,+ +O(N−1

c )]

follow from isospin symmetry among the isovector amplitudes as mentioned earlier

in reference to the electric transition case.

The NLO terms in Eq. (4.7) introduce only three more reduced amplitudes,

meaning that one linear relation remains at NLO in 1/Nc. Indeed, one might have

anticipated that a NLO relation would be found for the magnetic rather than the

electric transition case. This follows because there are fewer quantum number com-

binations (thus fewer amplitudes) in the magnetic transition case since only =L is

allowed. The NLO relation for L ≥ 1 is

M
m, p(π+)n
L,L,− = M

m, n(π−)p
L,L,− +

(
−L + 1

L

) [
M

m, p(π+)n
L,L,+ − M

m, n(π−)p
L,L,+

]
+ O(N−2

c ). (4.15)

We see that this is a linear combination of the LO relations in Eq. (4.14); it is the

unique combination for which the NLO corrections (in brackets) cancel. One expects

this relation to hold empirically a factor of Nc=3 better than its LO counterpart in

Eq. (4.14).
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In the following section, we test these predictions using the available experi-

mental data for pion photoproduction.

4.3 Experimental Check of the Pion Photoproduction Relations

In principle, all nine linear relations included in Eqs. (4.10)–(4.15) (for each allowed

value of L), plus the smallness of Eqs. (4.12), can be tested through a comparison

with available experimental data. The numbers we will use are the result of a partial-

wave analysis applied to raw data from pion photoproduction experiments. In a

typical experiment [73], an electron beam creates photons (gamma rays) which are

directed towards a target of liquid hydrogen (proton targets) or deuterium (neutron

targets). The differential cross section for the photon-nucleon scattering is measured

by detecting the final state particles. The partial-wave analysis follows a procedure

similar to that used for πN scattering (see Sec. 3.5) and the final result is a set of

complex electromagnetic multipoles, as defined below. As we will see below, photon-

decay couplings will play an important role in our experimental check. These are

extracted from the multipoles by fitting the resonant part of the amplitude to a

Breit-Wigner form.

For our comparisons, we use the electromagnetic multipole data presented by

the SAID program [69] at George Washington University and the MAID 2003 pro-

gram [74] at Universität Mainz. Although one requires only a single data set, it

is useful to check the extent to which the model dependence of the data analysis

used by the two groups affects our comparisons. We find that the difference is not
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significant when applied to the LO relations, but tends to make our NLO relation

unconvincing. As discussed below, the ultimate verification of the NLO relation

requires a “resonant parameter test” using photon-decay couplings (helicity ampli-

tudes) taken from the Particle Data Group [38]. It should also be noted that the sign

of the p (π+) n amplitudes appearing in the data sets is often reversed (in MAID,

for example) compared to those fixed by the standard Condon-Shortley convention

used in this thesis.

We now introduce the notation used in the experimental data tables. The

electromagnetic multipoles are given in terms of our multipole amplitudes by

M e
L−1,L,− = +β

√
L(L − 1)EL−,

M e
L+1,L,+ = +β

√
(L + 2)(L + 1)EL+,

Mm
L,L,+ = −β

√
L(L + 1)ML+,

Mm
L,L,− = −β

√
L(L + 1)ML−, (4.16)

where [26]

β ≡ −fπ

√
kγ

2πα
(4.17)

is an energy scale with fπ ≈ 93 MeV, α ≈ 1/137, and kγ being the photon center-

of-mass momentum. This factor cancels from all linear relations and therefore is

irrelevant to this work. In fact, as seen from Sec. 4.2, each term in any one of our

linear relations has the same prefactors of β and L entering via Eq. (4.16). The

relations therefore take the same form when written in terms of the electromagnetic

multipoles. For easy referencing purposes, we present our nine relations in the
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experimental notation:

E
p(π+)n
L− = E

n(π−)p
L− + O(N−1

c ) (L ≥ 2), (4.18)

E
p(π+)n
L+ = E

n(π−)p
L+ + O(N−1

c ) (L ≥ 0), (4.19)

E
p(π0)p
L± = 0 + O(N−1

c ), (4.20)

M
p(π0)p
L− = M

p(π0)p
L+ + O(N−1

c ) (L ≥ 1), (4.21)

M
p(π+)n
L− = M

n(π−)p
L− = −L + 1

L
M

p(π+)n
L+ = −L + 1

L
M

n(π−)p
L+ (L ≥ 1), (4.22)

M
p(π+)n
L− = M

n(π−)p
L− +

(
−L + 1

L

) [
M

p(π+)n
L+ − M

n(π−)p
L+

]
+ O(N−2

c ). (4.23)

Before presenting plots comparing our predictions to data, we describe what

suitable agreement among the relations entails. Each partial wave consists of a

continuum punctuated by occasional resonances. Our relations should be taken at

face value in the continuum regions. Therefore, if the two sides of a relation in such

a region are expected to have only order O(N−2
c ) corrections, but the agreement

is much poorer, then one can say that the relation fails. However, even in such a

case, one must question whether the method of extracting the partial wave might

be at fault. For example, the L=4 results for Eqs. (4.22) and (4.23) differ greatly

between MAID (Figs. 4.6 & 4.7) and SAID (Fig. 4.8), with the former much more

supportive of our relations; but without further information, one cannot definitively

say which scenario is correct. Fortunately, this effect does not occur in most cases.

In the resonant regions, the agreement between amplitudes is much less impres-

sive for a variety of reasons. Foremost, the delta resonance may appear prominently

in some partial waves although the delta is not a resonance at all in large Nc QCD,

but a stable partner of the nucleon (See Chapter 1). The delta of the Nc = 3 world
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is unstable only because the pion mass (139 MeV) is smaller then the delta-nucleon

mass difference (290 MeV) which is an order O(N−1
c ) effect. Thus, the chiral limit

which fixes the pion mass wins out over the large Nc limit which determines the

delta-nucleon mass difference. There also exist multiplets of true resonances degen-

erate in mass to order O(N−1
c ) as mentioned in Sec. 3.2 [39], and these appear as

bumps in the two sides of relations at relatively shifted positions: For a preview,

see the L = 2 cases in Figs. 4.6 and 4.8. In such cases, we rely upon an analysis

(“resonant parameter test” described below) introduced in Ref. [27] of comparing

the extracted resonant amplitudes (helicity amplitudes) directly. As we shall see,

the agreement of the resonant parameters in the L = 2 case turns out to be very

satisfactory.

In all the following plots, we present both the real and imaginary parts of the

electromagnetic multipoles measured in units of 10−3/mπ+ in terms of the center-

of-mass energy W of the γN system in the range, 1.1–2.0 GeV. This energy range

reflects the limitations of the data tables, as does the maximum value of pion angular

momentum (L = 5) [69, 74].

We begin with an illustration of the electric multipole results, Eqs. (4.18)–

(4.20). In Fig. 4.1 we plot the left-hand side (l.h.s.) and right-hand side (r.h.s.)

of Eq. (4.18) for L = 2–5, and similarly for Eq. (4.19) with L = 0–5 in Figs. 4.2

and 4.3. It is immediately clear that the relations are convincing, particularly in

the energy range below resonances. Recall that these relations follow from the

isospin symmetry of isovector amplitudes and it is well established that isoscalar

amplitudes are suppressed compared to isovector amplitudes. The 1/Nc expansion
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Figure 4.1: Experimentally determined electric multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eq. (4.18), while the dashed lines indicate the

r.h.s.

simply provides an expectation for the relative magnitude of the difference; indeed,

the agreement often seems better than 1/Nc, or 1 part in 3.

Comparing Eq. (4.20) with data is more difficult. One may, for example,

superimpose plots of E
p(π0)p
L± with the corresponding charge-exchange amplitudes

and ask whether the former are truly of order O(N−1
c ) smaller than the latter.

Since both of these amplitudes have their own unique structure as functions of

energy, an averaging procedure is necessary and a decisive result is not immediately
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Figure 4.2: Experimentally determined electric multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eq. (4.19), while the dashed lines indicate the

r.h.s.
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Figure 4.3: Experimentally determined electric multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eq. (4.19), while the dashed lines indicate the

r.h.s.

visible. We therefore do not include such plots in this thesis. Indeed, there are

certain energy values where the p(π0)p electric multipoles are actually larger than

their charged counterparts, particularly for the imaginary parts in the lower partial

waves. However, the p(π0)p electric multipoles tend to be smaller overall at most

energies, in general agreement with Eq. (4.20).

We next plot the two sides of the p(π0)p magnetic relation, Eq. (4.21) in

Figs. 4.4 and 4.5 for L=1–5. Agreement for the L=1 partial wave is particularly

poor because of the presence of the ∆+(P33) resonance at W ≈ 1.23 GeV, which,

in the large Nc limit, is a stable partner of the nucleons. As L increases, however,

one observes an increasingly satisfactory comparison. Even in L=2, where the reso-

nances D13(1520) and D15(1675) appear separated and quite different in amplitude,

there is good reason for optimism as we show below in a resonance parameter test
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Figure 4.4: Experimentally determined magnetic multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eq. (4.21), while the dashed lines indicate the

r.h.s.

for the charge-changing magnetic multipoles.

Turning now to the charged magnetic multipole relations, we simultaneously

test both LO [leftmost of Eq. (4.22)] and NLO [Eq. (4.23)] relations in a single set

of plots for L = 1–5. It is appropriate to compare these relations, so we can test

the extent to which a NLO relation is more experimentally effective than a LO one.

In each plot, three curves appear corresponding to M
p(π+)n
L− [the l.h.s. of Eqs. (4.22)

and (4.23)] and the r.h.s.’s of the LO and NLO relations. Since the NLO relations

are more sensitive to the modeling effects of the data analysis, we present these

combinations using both the MAID (Figs. 4.6 & 4.7) and the SAID (Fig. 4.8) data.
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Figure 4.5: Experimentally determined magnetic multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eq. (4.21), while the dashed lines indicate the

r.h.s.

The SAID multipole amplitudes and the magnetic multipoles are related by:

M
p(π+)n
L± = −

√
2
(
L1, 2L±1pM − 1

3
L3, 2L±1pM

)
,

M
n(π−)p
L± = +

√
2
(
L1, 2L±1nM +

1

3
L3, 2L±1nM

)
.

One can draw several interesting conclusions from these figures. First, the LO

relations definitely have merit, particularly in the energy range below the appearance

of resonances. This is true for all partial waves, real and imaginary parts alike.

However, the addition of the correction term to the NLO relation does not seem to

greatly improve agreement between the two curves; indeed, in certain low partial

waves (e.g., L=1), the addition of NLO terms seems to make the agreement worse.

However, a clue to what is happening may be inferred from the fact the NLO term

in square brackets in Eq. (4.23) may introduce resonances completely absent from

the LO term.
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Figure 4.6: Experimentally determined magnetic multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eqs. (4.22) and (4.23), while the dotted lines

indicate the LO relation [first r.h.s. of Eq. (4.22)] and the dashed lines indicate the

NLO relation [l.h.s. of Eq. (4.23)].
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Figure 4.7: Experimentally determined magnetic multipoles provided by MAID [74].

The solid lines indicate the l.h.s. of Eqs. (4.22) and (4.23), while the dotted lines

indicate the LO relation [first r.h.s. of Eq. (4.22)] and the dashed lines indicate the

NLO relation [l.h.s. of Eq. (4.23)].
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Figure 4.8: Experimentally determined magnetic multipoles provided by SAID [69].

As before, the solid lines indicate the l.h.s. of Eqs. (4.22) and (4.23), while the

dotted lines indicate the LO relation [first r.h.s. of Eq. (4.22)] and the dashed lines

indicate the NLO relation [l.h.s. of Eq. (4.23)].
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These plots reveal the strong effect of resonances in the lower partial waves on

the quality of our predictions. This was noted earlier by Schwesinger et al. [27] when

they attempted to compare their Skyrme model relations with experiment. Rather

than comparing the electromagnetic multipoles along the full energy range, they

proposed an alternate testing method using the resonance parameters (obtainable

through the helicity amplitudes) for the relevant resonances.

Such an approach is all the more sensible in the 1/Nc expansion, where reso-

nances that would be degenerate in the large Nc limit may differ in mass by as much

as 300 MeV. For example, the delta-nucleon mass difference of about 290 MeV is

formally only an order O(N−1
c ) effect. One should not be surprised if LO and NLO

terms differ by bumps that are shifted in energy with respect to each other.

One can proceed in a similar manner to that of Ref. [27], once Eqs. (4.22) and

(4.23) are written in terms of the Walker helicity amplitudes [75] Ap, An, Bp, and

Bn, which are, respectively, proportional to the helicity amplitudes Ap
1/2, An

1/2, Ap
1/2,

and An
3/2 at each resonance given in the Review of Particle Properties [38]. In the

present case, each of these amplitudes may have a total angular momentum of either

J =L± 1
2
. The conversion between these amplitudes is outlined in Appendix D; the

final result is:

[Ap − An]L− +
1

2
(L − 1) [Bp − Bn]L− = 0 + O(N−1

c ), (4.24)

and

[Ap − An]L− + 1
2
(L − 1) [Bp − Bn]L−

+ [Ap − An]L+ − 1
2
(L + 2) [Bp − Bn]L+ = 0 + O(N−2

c ). (4.25)
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We now consider each partial wave and insert the resonance couplings for

nearby I = 1
2

resonances into the above formulas (paired I = 3
2

resonances appear to

occur too high in energy to significantly influence these plots). After consulting the

Review of Particle Properties [38], one sees that only L = 2 provides a meaningful

test since D13(1520) and D15(1675) can be grouped together as distinct resonances

(with a mass difference of about 155 MeV) appearing in one of the plotted partial

waves. This is fortunate, because the L = 2 plot is the most inconclusive of those

discussed above (See Figs. 4.6 & 4.7 and 4.8). Resonances in other partial waves are

either poorly resolved or separated too far apart to make a convincing match. We

evaluate the l.h.s.’s of Eqs. (4.24) and (4.25), and also show in curly braces the sum

of the absolute values of each term to demonstrate the extent of the cancellations.

If the 1/Nc expression is working, the l.h.s. in the first should be about 1/3 of the

corresponding factor in braces, and that in the second should be about 1/9. See

Appendix D for details; the result is

l.h.s. (4.24) = −38.4 ± 5.6 {100.9} × 10−3 GeV−1, (4.26)

l.h.s. (4.25) = −18.2 ± 8.5 {140.2} × 10−3 GeV−1. (4.27)

Expressed as absolute value ratios, the results are 0.38 ± 0.06 and 0.13 ± 0.06,

respectively. Noting that 1/Nc ≈ 0.33 and 1/N2
c ≈ 0.11, one sees that the behavior

is exactly what one would expect from the 1/Nc expansion. We conclude that

Eq. (4.23) and the 1/Nc expansion work well, even though the presence of somewhat

separated resonances obscures agreement over the full energy range.
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4.4 Summary

In this chapter, we have shown that the symmetries of large Nc QCD create linear

dependence among amplitudes for pion photoproduction, using the techniques of

the previous chapter. This allows us to derive model-independent linear relations

that can be directly confirmed with experimental data. The agreement between our

predictions and experiments is very satisfactory and gives us further encouragement

for the 1/Nc expansion as a powerful tool for understanding hadronic physics.
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Appendix A

The Role of Spurious Modes in Excited Baryon Descriptions

In Chapter 2, we showed that certain operators in a general quark model Hamil-

tonian can connect states of different spin-flavor symmetry. This has been shown

for all values of the excited quark’s orbital angular momentum, l. The case of l = 1,

however, requires special attention due to the issue of spurious states.

Traditionally, one attempts to calculate the states of an Nc-body field theory

within a single-particle potential model such as the Hartree-Fock, Tamm-Dancoff,

or random-phase approximation [76]. In each case, a spurious state corresponding

to the collective motion of the particles’ center of mass is generated. Its appearance

can be traced to a violation of translational invariance that occurs in solving for the

states when one replaces a translationally invariant many-body problem with a shell

model which violates translational invariance. This state is not a genuine excitation

of the quarks and should be disregarded. We note that since the spurious center

of mass motion is vectorial in nature (it is associated with the total momentum,

�P ), one expects that it manifests itself only in channels that transform vectorially,

which means the =1 channels.

A systematic method for isolating the spurious states has not been established.

One must first calculate all the states and then find those that are simply translations

of the center of mass. However, the spurious states generated by the random-phase
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approximation (RPA) can easily be eliminated by rejecting solutions to the RPA

equations having a zero energy eigenvalue [77]. Procedures relying on ‘conserving

approximations’ that maintain ‘consist symmetries’ at each step in the calculation

yield spurious states also. However, to their advantage, these procedures may allow

one to quickly identify a spurious state; for example, as a zero-energy pole in the

particle-hole Green’s function [76]. We emphasize that in all cases the spurious

states and their properties are only revealed after the complete calculation.

Once a spurious state is identified, the behavior of its spin-flavor wavefunction

under permutation can be determined. There is no a priori method for determin-

ing the spin-flavor symmetry of the spurious state before the complete calculation.

However, it is known that in a harmonic oscillator basis, the l = 1 spurious mode

has a spin-flavor symmetry that is symmetric under permutation [78]. This has led

some to believe that l = 1 symmetric states may be immediately discarded on the

grounds that they do not represent internal excitations. We know that this is not a

generally valid way to proceed prior to enumerating all the states.

The problem of spurious modes as discussed here is generic in quark-shell

models. In principle, it is separate from the issue of relevance to this thesis, that

of whether the spin-flavor symmetric and mixed-symmetric states mix strongly in

forming the physical excited baryon states. One should follow the strategy given

above: Using the quark-shell model, calculate all of the =1 modes and discard the

ones that are mostly spurious. The general arguments given in Sec. 2.3 show that

the states so generated have strong mixing of order O(N0
c ), and this is sufficient for

our purpose. One expects the physical =1 state to exhibit strong mixing between

92



states of different spin-flavor symmetries, and hence one expects the states to have

decay widths of order O(N0
c ).

Thus, we conclude that our previous arguments are valid even for =1 states.

We note, however, that the entire issue is moot. At the end of the day, the problem

of spurious states is a disease of quark-shell models. They appear in translationally-

invariant quark models with ad hoc truncations that create them. Of course, we

introduced these models following the treatment of Ref. [33] and then generalized

them to show that quark-shell models have mixing of order O(N0
c ) between different

spin-flavor symmetries. Such models are computationally tractable. Of course, in

principle one may use any model consistent with large Nc QCD scaling to establish

this point. Ideally, one should consider models that do not suffer from the spurious

mode problem, in order to completely avoid the issue. One might consider, for ex-

ample, a translationally invariant model of Nc quarks interacting among themselves.

Such a model obviously has the drawback that it is computationally hard to solve.

However, for our purposes the only issue of relevance is whether quark spin, S, is

a good quantum number. If the model has tensor interactions between quarks at

leading order [which is 1/Nc, leading to order O(N0
c ) matrix elements when quark

combinatorics are included], then quark spin is not a good quantum number, and

even in the absence of explicit computation one expects generic mixing of order

O(N0
c ) between states of different spin-flavor symmetry.
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Appendix B

Wigner’s 6j Symbols and their Applications

This appendix is meant to serve as an introduction to the group theory required to

derive Eq. (3.1). We will discuss the Wigner 6j symbol and its properties and the

crossing relations for quantum numbers between different scattering channels. Most

of the material from this appendix can be found in Ref. [79].

Consider the addition of three angular momenta (j1, j2, j3) to form the sum,

J : J = j1 + j2 + j3. There is no unique way to combine the three angular momenta

due to the associative nature of vector addition. In fact, we can imagine two distinct

coupling schemes, as depicted in Fig. B.1 [80]:

(a) j12 = j1 + j2, j12 + j3 = J, (B.1)

|(j1j2)j12, j3; JM〉 =
∑

m1m2
m3µ12

〈j1j2; m1m2|j12µ12〉 〈j12j3; µ12m3|JM〉 | m1m2m3〉 ,

(b) j23 = j2 + j3, j1 + j23 = J, (B.2)

|j1, (j2j3)j23; JM〉 =
∑

m1m2
m3µ23

〈j2j3; m2m3|j23µ23〉 〈j1j23; µ1m23|JM〉 | m1m2m3〉 .

For each coupling scheme, we show the basis kets in the (2j1 + 1)(2j2 + 1)(2j3 + 1)-

dimensional space spanned by the vectors, | m1m2m3〉 ≡ | j1m1〉 | j2m2〉 | j3m3〉.

The two representations below Eqs. (B.1) and (B.2) are connected by a unitary

transformation. The coefficients of this unitary transformation are given in terms

of the Wigner 6j symbol:
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Figure B.1: The two different coupling schemes from Eqs. (B.1) and (B.2).

|(j1j2)j12, j3; JM〉 =
∑
j23

√
(2j12 + 1)(2j23 + 1)(−1)j1+j2+j3+J

×




j1 j2 j12

j3 J j23


 |j1, (j2j3)j23; JM〉 . (B.3)

This is the defining relation for the 6j symbol, denoted by the curly brackets; the

other factors are chosen so that the 6j symbol has useful symmetry properties to be

discussed below. We note that it is possible to relate 6j symbols to Clebsch-Gordan

coefficients [79]. The 6j symbol is important in all situations where angular momenta

are being recoupled; even when there are more than three angular momenta.

The 6j symbol has many interesting properties that are relevant for this thesis.

Foremost, the 6j symbol is a real number and is non-zero only when four triangle

rules are satisfied:


j1 j2 j12

j3 J j23


 ∝ δ(j1j2j12)δ(j2j3j23)δ(j1j23J)δ(j12j3J), (B.4)

where δ(abc) = 1 if c is among the set {a+ b, a+ b−1, · · · , |a− b|+1, |a− b|} and is

zero otherwise. The 6j symbols encode two symmetries under a permutation of the
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elements. Namely, the 6j symbol is invariant under a permutation of its columns

and an exchange of two elements in the top row with the corresponding elements in

the bottom row. A nice way to summarize these symmetries is to say that the six

angular momenta (j1, j2, j3, j12, j23, J) form the sides of a tetrahedron.

In Sec. 3.3, these symmetries were used to describe the behavior of the reduced

amplitudes under the time-reversal operation. The main point is that the product of

6j symbols in Eq. (3.1) is invariant under time-reversal because of the permutation

symmetry discussed above. That is,


Iπ R′ Is

R Iπ J







L′ R′ Js

R L J


 =




Iπ R Is

R′ Iπ J







L R Js

R′ L′ J


 . (B.5)

In Sec. 4.1, the case for Iγ = 0 requires the explicit form of the 6j symbol with

a zero element. This has a compact closed form:


j j′ 0

J J ′ g


 = (−1)j+J+g δjj′δJJ ′√

(2j + 1)(2J + 1)
δ(jJg). (B.6)

Other values for the 6j symbols have been tabulated and can be found in ancient

texts or with computer programs.

The 6j symbols find many applications in atomic and molecular spectroscopy

and scattering. We focus on hadronic scattering due to its relevance to Chapters

3 and 4. Consider the three ways to describe a two-body scattering event (See

Fig. B.2), called a channel: s, t, u.

(s) A + B → C + D,

(t) A + C̄ → B̄ + D,

(u) A + D̄ → B̄ + C. (B.7)
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Each channel is characterized by an amplitude that depends on the set of angular

momentum and isospin quantum numbers, including the total spin and isospin.

Crossing between any two channels (i.e., projecting the quantum numbers for one

channel into another) involves disentangling the vector sums and re-coupling them;

this is accomplished with a 6j symbol. The channels that concern us most for

hadronic scattering are the s- and t-channel (See Fig. B.2). Let us first consider

only the isospin quantum numbers that describe this channel. We will denote the

total isospin by Is, It for the s- and t-channel, respectively. The isospin for each

particle in Eqs. (B.7) is denoted by its label (A, B, C, or D) in a subscript. The

amplitude describing the s-channel process is As(Is), and similarly for the t-channel.

They are related in general by

As(Is) =
∑
It

(Xst)Is, ItAt(It), (B.8)

where the crossing matrix (Xst)Is, It is given by [60]

(Xst)Is, It = ξst(2It + 1)




IA IB Is

ID IC It


 . (B.9)

The phase, ξst, depends on whether particles B and C have integer or half-integer

quantum numbers. For our case of πN scattering and pion photoproduction, B is

a nucleon with half-integer spin and isospin and C is a pion or photon with integer

spin and isospin. Therefore, we have [60] ξst = (−1)Is+It+IB .

We now have the tools needed to derive the S matrix expansion in Chapter

3. We use the crossing relations in both spin and isospin space to obtain Eq. (3.1).

We begin in the t-channel of πN scattering and define the scattering amplitude as
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BB SI , ss JI ,

tt JI ,

(a) (b)

DD SI ,

AA SI , CC SI ,

BB SI , DD SI ,

Figure B.2: (a) The s-channel versus (b) t-channel meson-baryon scattering dia-

grams. The solid lines are baryons with isospin IB, ID and spin SB, SD. The

dashed lines are mesons with isospin IA, IC and spin SA, SC . The Is, Js and It, Jt

are the total isospin and spin in their respective channels.

s̄tItJtLL′RR′ . Crossing to the s-channel in both spin and isospin space with Eqs. (B.8)

and (B.9) yields

SLL′RR′IsJs =
∑
ItJt

(−1)(It+Jt+Is+Js+2R′)(2It + 1)(2Jt + 1)

×




Iπ R′ Is

R Iπ J







L′ R′ Js

R L J


 s̄tItJtLL′RR′ . (B.10)

According to the It = Jt rule of large Nc QCD [20], we can define the t-channel

amplitude, s̃tJLL′RR′ with J ≡ It = Jt, and eliminate one of the summation indices.

This gives us

SLL′RR′IsJs =
∑

J (−1)(2J+Is+Js+2R′)(2J + 1)2

×




Iπ R′ Is

R Iπ J







L′ R′ Js

R L J


 s̃tJLL′RR′ . (B.11)

This expression is equivalent to Eq. (3.1), though further simplification is possible.

As indicated in Sec. 3.2, the baryon wave functions can be used to factor out the
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{R R′} dependence on the amplitude,

s̃tJLL′RR′ = (−1)2(R+R′)
√

(2R + 1)(2R′ + 1)ŝtJLL′ . (B.12)

In order to produce an expression that explicitly displays only the relevant factors,

we define the [6j] symbols:




a b e

c d f


 ≡ (−1)−(b+d+e+f)

([a][b][c][d])1/4




a b e

c d f


 , (B.13)

where [X] ≡ 2X + 1. The normalization and phases of the [6j] symbol cancel many

unimportant factors in our expression. Factors which are introduced by the [6j]

symbols can be conveniently absorbed into the definition of the reduced amplitude,

stJLL′ . The final result is simply Eq. (3.1).
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Appendix C

Plots of Leading Order Pion-nucleon Scattering Relations

In Sec. 3.3, we presented linear relations among partial-wave amplitudes for πN

scattering. Equations (3.5)–(3.13) hold to leading order in the 1/Nc expansion and

can be tested with experimental data [69]. In this appendix, we display additional

plots of the linear relations to supplement those offered in Sec. 3.3. We hope these

will help develop a better appreciation for the quality of experimental agreement for

the leading order predictions.

Evaluating Eq. (3.6) for L = 0 yields the prediction: S31 = S11. This equality

is also known as the Chew-Low theorem [81] and is plotted in Fig. C.1.

Evaluating Eq. (3.5) for L = 1 yields P31 = P13, shown in Fig. C.2.

Evaluating Eq. (3.5) for L = 3 yields F35 = 1
7
F15 + 6

7
F17, shown in Fig. C.3.

To test Eq. (3.13) with available data, we must combine Eqs. (3.5)–(3.8) to

eliminate the partial waves that are absent in the data tables. Since all these rela-
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0.5
Re T

W (GeV)
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1
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Figure C.1: The solid line is S31 and the dashed line is S11.
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Figure C.2: The solid line is P31 and the dashed line is P13.
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Figure C.3: The solid line is F35 and the dashed line is the linear combination

1
7
F15 + 6

7
F17.
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Figure C.4: The solid line is 1√
2
(D13 − D33) and the dashed line is the linear com-

bination 9
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√
2
DD13 + 9

√
7

20
DD15.
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tions hold to leading order in 1/Nc, the final relation will also hold to this order. An

example for L = 2 is 1√
2
(D13 − D33) = 9

10
√

2
DD13 + 9

√
7

20
DD15, shown in Fig. C.4.
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Appendix D

Resonant Parameter Test

This appendix is a guide to the resonant parameter test of pion photoproduction

introduced in Chapter 4 (Sec. 4.3) with the goal of understanding the arithmetic

that leads to the calculations of Eqs. (4.26) and (4.27). The procedure is to change

the basis of our linear relations from magnetic multipoles ML± to helicity ampli-

tudes. Helicity is the projection of the system’s total spin vector along the photon’s

direction of propagation. For the γN system, the helicity has a total of four possible

values {−3
2
,−1

2
, 1

2
, 3

2
}. These reduce to two values {1

2
, 3

2
} once we account for the

parity and time-reversal invariance of the strong and electromagnetic interactions.

Helicity amplitudes are numbers that parameterize the resonant part of a multi-

pole at the resonance energy. The relationship between the helicity amplitudes and

multipoles will become clear as we change bases.

We begin by introducing the Walker helicity elements [75], AL± and BL± for

total angular momentum J =L± 1
2
. The labels A and B refer to an initial γN state

with helicity 1
2

and 3
2
, respectively. They are related to the magnetic multipoles for

L≥1 by [Ref. [75], Eq. (25)]:

ML+ =
1

L + 1

[
AL+ − 1

2
(L + 2)BL+

]
, (D.1)

ML− =
1

L

[
AL− +

1

2
(L − 1)BL−

]
. (D.2)

These should be regarded as eight equations: two for each of the four possible pion
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photoproduction reactions.

We now decompose the Walker helicity elements (represented collectively by

the symbol A) in isospin space for the individual charge-exchange channels: A(γp →

π+n) =
√

1/3A∆+
√

2/3Ap and A(γn → π−p) =
√

1/3A∆−
√

2/3An, where A∆ is

the amplitude for the reaction with an I = 3
2

intermediate state and Ap (An) is for

an I = 1
2

intermediate state with a proton (neutron) in the initial state. Substituting

these formulas and cancelling a common (1/L)(
√

2/3) factor yields our penultimate

result, Eqs. (4.24) and (4.25).

The Walker helicity elements evaluated at a resonant energy (WR) can be

then be written in terms of helicity amplitudes Ap
1/2, Ap

3/2, An
1/2, and An

3/2, whose

numerical values are tabulated in Ref. [38] for many baryons. The subscript indicates

the helicity of the state, while the superscript indicates the initial nucleon. The

relationship between these two representations is given by Eqs. (9.8) and (9.9) of

Ref. [27]:

Im Ap,n
L±
∣∣∣
WR

= ∓fAp,n
1/2 ,

Im Bp,n
L±
∣∣∣
WR

= ±f

√
16

(2J − 1)(2J + 3)
Ap,n

3/2 ,

f =

√
1

(2J + 1)π

kγ
kπ

mN

mR

Γπ
Γ2

. (D.3)

The kγ and kπ are the momenta magnitudes in the center-of-mass frame of the

photon and pion, respectively. These are given by a straightforward kinematic

calculation:

kb =

√
[m2

R − (mN − mb)2][m2
R − (mN + mb)2]

2mR
, (D.4)

where the subscript b stands for the photon (mγ = 0 GeV) or the pion (mπ ≈
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0.139 GeV). The mN and mR are the nucleon (mN ≈ 0.939 GeV) and resonance

masses, and Γπ and Γ are the pionic and total widths of the resonance, respectively.

While the pion photoproduction linear relations derived in Chapter 4 hold for

all energy values, the resonance parameter approach assumes that we evaluate the

amplitudes at a single resonance energy. To consistently implement this approach,

we need to pick baryons from the spectrum that share a common resonance energy

(i.e., have similar masses). For our purposes, a mass difference on the order of

the delta-nucleon splitting (∼ 290 MeV) is reasonable in light of large Nc QCD.

As pointed out in Chapter 4, the baryons D13(1520) and D15(1675) fit this criteria

for L = 2. The data for these baryons is presented in Table D.1. The results of

Eqs. (4.26) and (4.27) now follow from trivial substitution.

State λ Ap
λ An

λ Γ Γπ/Γ kγ kπ

(10−3GeV−1/2) (10−3GeV−1/2) (GeV) (GeV) (GeV)

D13(1520) 1
2

−24 ± 9 −59 ± 9 0.120 0.55 0.470 0.456

3
2

+166 ± 5 −139 ± 11

D15(1675) 1
2

+19 ± 8 −43 ± 12 0.150 0.45 0.576 0.565

3
2

+15 ± 9 −58 ± 13

Table D.1: Helicity amplitudes, decay widths, and momenta for L = 2 reso-

nances [38]. The momenta are calculated from Eq. (D.4).
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