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Introduction
Gauge theories and topological phases play a fundamental role in different areas of physics.

The first ones are at the basis of the Standard Model in the field of particle physics, describing
the electroweak and strong interactions through a non-Abelian gauge theory [5–7]. In condensed
matter and statistical physics, gauge theories arise as low-energy effective descriptions of strongly
correlated phenomena, such as quantum spin liquids and quantum Hall effect [8]. In this realm
there is a strong connection with topological phases and order, as emergent gauge fermions and
bosons often describe collective excitations of new exotic states of matter of spin models [9].

The discretization on a lattice is a possible way of dealing with the strongly coupled nature
of these theories [10, 11], due to the fact that this formulation at finite volume provides natural
regularizing cut-offs, i.e. the lattice size and spacing. This allows for the investigation of different
non-perturbative properties both numerically and analytically [12, 13]. Despite the success of these
methods, there are various aspects which remain intractable due to the sign or complex action
problems, like the out of equilibrium real time evolution or the analysis of quantum chromodynamics
with finite chemical potential [14, 15].

In this respect, quantum simulators of many-body systems to simulate high energy physics
arise as promising alternatives to face these problems in the near future. They are quantum systems
that can be controlled and used to simulate more complicated systems, whose properties could not
be analysed with classical computational, experimental or theoretical tools. In the last decades,
there has been a huge development in the fields of quantum optics and atomic physics, allowing
for the realization highly precise and controllable platforms [16–18] by means of trapped ions [19],
superconducting circuits [20], Rydberg atoms [21] and ultracold atoms in optical lattices [22].

This work of Thesis is part of these fields and has different purposes, all of them connected
with the study of gauge theories and topological phases. Firstly, we want to develop a reformulation
of lattice gauge theories in terms of gauge invariant fields, in a way to deal solely with physical
variables directly in the action. Among several possible advantages, a crucial point is that this can
be particularly helpful for the construction of consistent approximation schemes, such as mean-field
theories, in order to understand and capture some of the physical features of the theory and
make the mean-field approximation consistent with the Elitzur theorem, stating that a local gauge
symmetry can not be spontaneously broken [23].

As a second point, we face the problem of simulating higher dimensional gauge theories with
ultracold atoms. One of the challenges in more than one dimension is indeed the realization of
plaquette interaction terms in the Hamiltonian of lattice gauge theories: these can be engineered
through four correlated hoppings in perturbation theory, or by means of constrained hoppings
in the dual formulation [21]. In this respect, our main target is to set up an ultracold atomic
platform generating the plaquette term in two dimensions using only two correlated hoppings, and

iii



protecting gauge invariance through angular momentum conservation [24].

The last point we address in the Thesis is related to the analysis of particles moving in static
background gauge potentials, i.e. when the considered gauge field has no dynamical term in the
action of the system. Indeed, the dynamics of quantum particles in the presence of static gauge
fields gives rise to intriguing physical phenomena. In particular, using ultracold atom setups,
the realization of artificial gauge potentials can be used to investigate the physics of topological
semimetals, such as Weyl or Dirac type [25]. In the last ten years, a lot of attention has been
paid to their characterization, due to the appearence of clear theoretical predictions and very
well-controlled experimental techniques [26]. We investigate here the relation between topological
phase transitions and van Hove singularities, i.e. the discontinuities in the energy derivative of
the density of states, in three-dimensional gapless systems. In such materials, topological phase
transitions can be defined by changes of the topological invariants of the Fermi sheets, happening at
specific singular points. Moreover, Fermi surface singularities result in the presence of the so-called
van Hove points. We then present a general argument to relate topological phase transitions and van
Hove singularities, and show observable consequences that are related to the transport properties
of the system. We exemplify our argument in Weyl systems by analyzing the three-dimensional
Hofstadter model for various commensurate fluxes, which offers the opportunity to consider different
kinds of Weyl metals and to understand the features of their density of states.

The structure of the Thesis is divided into three parts, each one referred to the previous points.
Each part contains two chapters, i.e. a first opening Chapter, as a reminder of known results
necessary for the topics we are going to treat, and a second Chapter containing the original results
of our research.

In particular, Part I is devoted to reformulations of lattice gauge theories. Chapter 1 contains
a brief introduction about gauge theories in the continuum and on the lattice, alongside a brief
summary of the different reformulations present in literature and the application of analytical
methods to analyze them. Chapter 2 presents our gauge invariant reformulation of Abelian gauge
theories, and is based on Ref. [1].

The Part II is about the quantum simulators of lattice gauge theories: in Chapter 3 we give a
short summary about quantum simulators with ultracold atoms, paying particular attention to the
discussion of the higher dimensional proposals present in literature so far. Chapter 4 contains our
proposal for bosonic and fermionic link models in two dimensions,and is based on Ref. [2].

The last part of the thesis, Part III, discusses topological phases of lattice models. In Chapter
5 we discuss the role of topology in condensed matter systems, presenting the topological invariants
that characterize the three-dimensional topological metals we are interested in. Chapter 6 is entirely
based on Ref. [3], and shows the connection between topological phase transitions and van Hove
singularities in Weyl metals.
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Part IV contains the Appendices relative to the results presented in the Chapters 2, 4 and 6,
respectively.
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Chapter 1

Gauge theories: review of formulations and
mean-field methods

Due to their broad applicability, gauge theories have a key importance in physics that can be
hardly overstated [5–7]. In the field of particle physics they are at the basis of the Standard Model,
a non-Abelian gauge theory with gauge symmetry group U(1)× SU(2)× SU(3), where the first
two groups refer to the electroweak sector and the last to quantum chromodynamics (QCD). They
also play an important role in condensed matter physics, where gauge fields may emerge from the
effective description of strongly correlated phenomena at low energies, like quantum Hall systems
and quantum spin liquids [8].

In the first Chapter of this Thesis we define the mathematical structure of gauge theories in
quantum field theory (QFT), summarizing their main features firstly in the continuum and then on
the lattice, where we present both the Lagrangian and the Hamiltonian formulations. The last two
Sections constitute the most important parts of this Chapter, where respectively we are going to:

• review the reformulations of gauge theories in terms of gauge invariant fields;

• show how the mean-field method is applied to gauge theories.

In both cases we explore and summarize, to our best knowledge, the state of the art present in the
scientific literature. This has a double purpose, i.e. to highlight the main difficulties encountered
so far in the various attempts and to set the background for our proposal, that we are going to
present in Chapter 2.
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CHAPTER 1. GAUGE THEORIES: REVIEW OF FORMULATIONS AND MEAN-FIELD
METHODS

1.1 Gauge symmetry in quantum field theory

To define what are gauge theories, we consider as a starting point a multicomponent scalar field
ϕ = (ϕ1, . . . , ϕn)

T with values in the vector space V = Cn, whose Lagrangian and Lorentz invariant
action are

L[ϕ, ∂µϕ] = ∂µϕ
∗ · ∂µϕ−m2ϕ∗ · ϕ, S =

∫
ddx L[ϕ, ∂µϕ]. (1.1)

The Lagrangian is invariant under global U(n) transformations of the scalar field

ϕ(x) −→ ϕ′(x) = Ω ϕ(x), Ω ∈ U(n), (1.2)

where Ω does not depend on the space-time point coordinates. At the same time, the scalar
product is invariant under simultaneous U(n) transformations, since ϕ∗ · χ = (ϕ′)∗ · χ′. Despite
these properties, the Lagrangian is not invariant under the corresponding local transformation

ϕ(x) −→ ϕ′(x) = Ω(x) ϕ(x), Ω(x) ∈ U(n). (1.3)

It is however possible to extend the above global symmetry to a local one, by coupling the charged
scalar field ϕ to a gauge potential Aµ [5–7, 27]. In the so-called minimal coupling procedure, the
rule is to replace the space-time derivative with the covariant derivative

∂µ −→ Dµ(A) = ∂µ − igAµ, (1.4)

where g is the coupling constant of the matter-gauge interaction. By requiring that the covariant
derivative locally transforms as

Dµ(A
′)ϕ′(x) = Ω(x)Dµ(A)ϕ(x) (1.5)

we find that, using Eq. (1.3), this reduces to the condition

Dµ(A
′)ϕ′(x) = Ω(x)Dµ(A)Ω(x)

−1. (1.6)

This last equation is satisfied if the gauge potential transforms as

A′
µ(x) = Ω(x)Aµ(x)Ω(x)

−1 − i

g
[∂µΩ(x)]Ω(x)

−1. (1.7)

If we assume that Ω(x) ∈ G, where G is a Lie group, then all the other elements appearing in Eq.
(1.7) are Lie-algebra valued.

Out of the gauge potential we can construct the field strength tensor as the commutator

Fµν(A) =
i

g
[Dµ, Dν ] = ∂µAν − ∂νAµ − ig[Aµ, Aν ], Fµν −→ Ω(x)FµνΩ(x)

−1. (1.8)
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CHAPTER 1. GAUGE THEORIES: REVIEW OF FORMULATIONS AND MEAN-FIELD
METHODS

In analogy to quantum electrodynamics (QED), we could take the square of Fµν to obtain the
dynamical term of the gauge field. However, if the gauge symmetry group is non-Abelian, the
quantity FµνF µν is not gauge invariant. If we consider its trace, i.e. tr(FµνF µν), we generalize the
QED term to the Yang-Mills term.

With this in mind, the full, gauge invariant, Lagrangian is then

LG[ϕ,Aµ] = −1

4
tr(FµνF µν) + L[ϕ,Dµϕ]. (1.9)

We notice that, apart from the Yang-Mills term for the gauge part, we have the original Lagrangian
in Eq. (1.1) with the substitution ∂µ → Dµ(A).

From now on we will consider the specific case of Abelian groups, referring to the Abelian
gauge theories. Formally, the previous local transformations can be written as

ϕ(x) → Ω(x)ϕ(x), Aµ → Aµ −
i

g
[∂µΩ(x)]Ω

−1(x) (1.10)

for the matter and gauge fields, respectively. The field strength tensor Fµν takes the form

Fµν ≡ ∂µAν − ∂νAµ. (1.11)

Under a gauge transformation, this quantity is left unchanged, i.e. Fµν → Fµν , therefore it
represents a gauge invariant of the theory. A prominent example of an Abelian gauge theory is
QED. Its Lagrangian reads

LQED = ψ̄(i /D −m)ψ − 1

4
FµνF

µν = ψ̄(i/∂ −m)ψ − eAµψ̄γ
µψ − 1

4
FµνF

µν . (1.12)

where ψ and ψ̄ are the fermionic degrees of freedom and m and e are, respectively, the fermionic
mass and charge parameters. The gauge group is G = U(1) and a generic local transformation can
be written as a phase factor Ω(x) = exp (ieΛ(x)).

1.1.1 Parallel transport

A key object in the passage to the lattice formulation of a gauge theory is the parallel transport. This
can be defined in the continuum, and on the lattice its discretized version will be the fundamental
constituent of the theory, as we are going to see in the next Section.

We start with the definition of a covariantly constant field, i.e. a field ϕ that satisfies

Dµϕ = 0 ⇒ [Dµ, Dν ]ϕ = 0. (1.13)
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CHAPTER 1. GAUGE THEORIES: REVIEW OF FORMULATIONS AND MEAN-FIELD
METHODS

This equation can be studied along a path Cxy joining two space-time points x, y. We can
parametrize this path by z(s), with s ∈ [0, 1] and z(0) = x, z(1) = y. The field ϕ is said covariantly
constant along the path Cxy if

żµDµϕ = 0 ⇒ ϕ̇(s)− igAµ(z(s))ż
µ(s)ϕ(s) = 0, (1.14)

where ϕ(s) ≡ ϕ(z(s)). The solution to this equation can be obtained by direct integration

ϕ(s) = P
(
eig

∫ s
0 du Aµ(z(u))żµ(u)

)
ϕ(x), (1.15)

where P stands for the path-ordering operation. This symbol is necessary in the non-Abelian case,
while is superfluous for Abelian theories, due to the commutativity of the symmetry group. The
definition of parallel transporter can be obtained by putting s = 1 in the previous equation

ϕ(y) = UCxy(A)ϕ(x), UCxy(A) = P
(
eig

∫ 1
0 ds Aµżµ

)
. (1.16)

The parallel transport is, by definition, a path-dependent quantity, as it is a function of Cxy. It has
the following properties:

• if C1 : x→ y and C2 : y → z are two space-time paths, it satisfies the composition rule

UC1◦ C2 = UC1UC2 ; (1.17)

• under a gauge transformation

UCxy(A
′) = Ω(y)UCxy(A)Ω(x)

−1. (1.18)

From the last property, it follows immediately that the trace of the parallel transporter associated
to an arbitrary closed loop is a gauge invariant quantity, called Wilson loop, and is defined as

WCxy(A) ≡ tr[UCxy(A)]. (1.19)

As anticipated, this is a gauge invariant quantity since tr[UCxy(A
′)] = tr[UCxy(A)].

1.2 Lattice gauge theories

The analysis of gauge theories in the strong coupling regime is an arduous problem where perturba-
tive approaches typically fail. One way to deal with this problem is to work under the framework of
lattice gauge theories (LGT) [10–12, 28]. The lattice formulation at finite volume provides natural
infrared and ultraviolet cut-offs that regularize the theory. Moreover, within this formulation,
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CHAPTER 1. GAUGE THEORIES: REVIEW OF FORMULATIONS AND MEAN-FIELD
METHODS

𝒏 𝒏 + Ƹ𝜇

𝑈𝜇 (𝒏)

𝒏 𝒏 + Ƹ𝜇

𝑈𝜇
†(𝒏)

𝒏 𝒏 + Ƹ𝜇

𝒏 + Ƹ𝜈 𝒏 + Ƹ𝜇 + Ƹ𝜈𝑈𝜇
†(𝒏 + Ƹ𝜈)

(a) (b)

Figure 1.1: (a) Graphical representations of link variables Uµ(n), U †
µ(n). (b) The contribution

Uµν(n) of an elementary plaquette with base site n, in the µ− ν plane.

numerical approaches to the problem are possible using Monte Carlo methods [12, 28] and crucial
results have been obtained, e.g. for lattice QCD in its strongly coupled low-energy regime. Among
the various points that have been addressed, we mention here the studies regarding string tension
and quark potentials in pure gauge theories and full QCD [29–32], chiral symmetry breaking [33],
mass spectrum of bound states in pure QCD [34], hadron mass spectrum [35, 36], deconfinement
phase transition and high-temperature phases of QCD [37].

The lattice discretization of gauge theories can be performed following essentially two paths.
The first one entails the discretization of the continuum theory Lagrangian. This constitutes
the Lagrangian formalism of LGT. There is also the possibility of considering the Hamiltonian
formalism, in which space dimensions are discretized but time is not. In this formulation the theory
is projected only on its physical states |Ψ⟩, i.e. the ones satisfying Gauss’s law [11, 38]. In these
discretization schemes involving fermions, it is well known that particular attention must be paid
to address the fermion doubling problem1 [12].

1.2.1 Lagrangian formulation

We denote a generic site, on a (d + 1) dimensional lattice, by (d + 1) integers n = (n0, . . . , nd),
where each component takes values between 1 and N . According to the original picture of Wilson
[10], the gauge field Aµ is defined on the links of the lattice, while the field strength tensor Fµν

1This can be done by considering different discretizations of the fermionic field (e.g. Wilson fermions, staggered
fermions or domain wall fermions). As these schemes preserve gauge invariance, our following discussion about the
reformulations in terms of gauge invariants is largely independent on the type of employed lattice fermions.
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CHAPTER 1. GAUGE THEORIES: REVIEW OF FORMULATIONS AND MEAN-FIELD
METHODS

lives on the plaquettes. It is useful to define [12]

Uµ(n) = eieaAµ(n), Uµν(n) = eiea
2Fµν(n), (1.20)

where Uµ ∈ G are the link variables connecting the site n to the site n+ µ̂, for µ ∈ {0, . . . , N}, and
Uµν(n) are the plaquette variables (see Fig. 1.1 for their graphical representations). We observe
that the Uµ are nothing but the discretized version of Eq. (1.16) along the path n → n+ µ̂. The
discretized version of the field strength tensor is written as

aFµν(n) ≡ Aν(n+ µ̂)− Aν(n)− Aµ(n+ ν̂) + Aµ(n). (1.21)

The quantities e and a are respectively the charge and the lattice spacing. We set a = 1 and we
will only recover it once we take the continuum limit.

Referring explicitly to the G = U(1) gauge group, the action is given by

S = SG[Uµν ] + Sfermions[ψ, ψ̄, Uµ], (1.22)

where
SG =

1

g2

∑
P

[
1− 1

2
(Uµν + U †

µν)

]
(1.23)

is the pure gauge contribution, with the sum extended over all the plaquettes P , and Sfermions

represents the interaction with matter, whose explicit form depends on the discretization scheme
used to treat the fermions.

1.2.2 Hamiltonian formulation

With respect to the Lagrangian formulation presented in the previous Subsection, the electric and
magnetic fields are now operators acting in a given Hilbert space [16]. The electric field operator,
acting on the link connecting the site n to the site n+ µ̂, is represented by Eµ(n) and commutes
non-trivially with the Wilson operator Uµ(n) on the same link, according to

[Uµ(n), Eν(n
′)] = −δµ,νδn,n′Uµ(n), [U †

µ(n), Eν(n
′)] = δµ,νδn,n′U †

µ(n), (1.24)

with all remaining commutation relations set to zero. Along with the definitions in Eq. (1.20), we
can write down the Hamiltonian of the system in terms of spatial plaquettes Uµν and electric fields
Eµ, which is called the Kogut-Susskind (KS) Hamiltonian [11]. Mathematically its structure is
H = Hg +Hm, where

Hg =
e2

2

∑
n,µ

E2
µ(n)−

1

4a2e2

∑
P

(Uµν + U †
µν) (1.25)

is the pure gauge field contribution, while Hm is the matter contribution, that depends again on
the employed discretization scheme for the lattice fermions. When matter is absent, Eq. (1.25)
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represents the KS Hamiltonian of a pure Abelian U(1) LGTs. The KS Hamiltonian is gauge
invariant, i.e. it commutes with the set of local operators

G(n) =
∑
µ

[Eµ(n)− Eµ(n− µ̂)], [H,G(n)] = 0. (1.26)

Among the eigenstates of H, The physical states |ψ⟩ of the system are the ones satisfying Gauss’
law G(n)|ψ⟩ = 0, ∀n. We point out that possible gauge invariant extensions, i.e. terms preserving
the above commutation relations, can be added to the Hamiltonian2.

The condition in Eq. (1.26) identifies the gauge invariant Hilbert space of the model. We note,
however, that the physical Hilbert space is infinite-dimensional, because of the continuous nature
of the U(1) gauge group. A possible way of dealing with this infinite dimensionality is to introduce
quantum link models (QLMs), i.e. to replace the Wilson operators Uµ by discrete quantum degrees
of freedom, still living on the links of the lattice, that are called quantum links [40–42]. In the
remaining part of this Section, we briefly review the bosonic and fermionic versions of the QLMs.

Bosonic quantum link models

QLMs realize the commutation relations in Eq. (1.24) using quantum spin operators as

Uµ(n) = S+
µ (n), U †

µ(n) = S−
µ (n), Eµ(n) = Szµ(n). (1.27)

The local Hilbert space is now finite-dimensional: for a spin S, on each link of the lattice the
Hilbert space is (2S + 1)-dimensional [16]. When compared with the Wilson formulation, the
Wilson operators of different links are not commuting anymore, as they satisfy

[Uµ(n), U
†
ν(n

′)] = 2Eµ(n)δµ,νδn,n′ . (1.28)

This difference gives rise to interesting physical phenomena [43–45], while still providing a route to
recover the Wilson discretization as one takes the spin representation S to be large.

In the particular case of S = 1/2 there are only two states per link, associated with the values
Eµ(n) = ±1/2 of the electric field. The Hamiltonian gets simplified because (Szµ)

2 = 1/4: the
electric part is trivial and we are left with magnetic interactions only. The physics of the described
Hamiltonian (1.25) can be enriched by introducing the Rokhsar-Kivelson (RK) term, with coupling
λ, giving rise to the Hamiltonian [39]

HRK = Hg + λ
∑
P

(Uµν + U †
µν)

2. (1.29)

2In the electric basis, the sum of plaquette operators can be seen as a kinetic term acting on electric configurations,
by interchanging them. Potential terms that are diagonal in the electric basis can be added without modifying the
gauge invariance of the Hamiltonian. An important example is given by the Roksha-Kivelson (RK) Hamiltonian
[39].
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We point out that in the particular case of d = 2, only six states satisfy the Gauss law in Eq.
(1.26). Despite the apparent simplicity of the model, its physics is very rich [16], being closely
related to the quantum dimer model [46].

An alternative way to view the spin-1/2 QLM is provided by mapping spins to hardcore bosons.
There, the + or − signs of Eµ(n) label, respectively, the presence or absence of an hardcore boson
in the link n → n+ µ̂ [47]. In terms of bosons, the gauge operators are written as

Uµ(n) = b†µ(n), U †
µ(n) = bµ(n), Eµ(n) = nµ(n)−

1

2
. (1.30)

The plaquette term can be written as

Uµν(n) = bµ(n)bν(n+ ν̂)b†µ(n+ ν̂)b†ν(n) (1.31)

and can be interpreted as a correlated hopping of two bosons. The RK term can be written in this
language as a sum of two-, three- and four-particles interactions. While this is simple to write,
it does not arise as easily in an ultracold atomic setting. In this language, the generators in Eq.
(1.26) take the form

G(n) =
∑
µ

[nµ(n)− nµ(n− µ̂)]. (1.32)

and commute with the Hamiltonian by construction.

Fermionic quantum link models

The particle representation opens the door to the construction of an alternative gauge theory,
constructed with fermionic links [47, 48]. By replacing the bosonic creation and annihilation
operators in Eq. (1.30) by fermionic ones we obtain a new theory. This is still gauge theory, as
there is still a set of local symmetries, but possibly hosting different physics due to the different
commutation relations between the Wilson operators Uµ and U †

µ. It turns out that in d = 2 the
theories are equivalent, while for d = 3 they represent effectively different models [47, 48].

For concreteness, in the fermionic case, we can choose, as a basis for the two-dimensional local
Hilbert space the states |0⟩ and |1⟩ = c†µ(n)|0⟩, and identify the Wilson and electric field through

Uµ(n) = c†µ(n), U †
µ(n) = cµ(n), Eµ(n) = nµ(n)−

1

2
, (1.33)

where nµ(n) ≡ c†µ(n)cµ(n) is the number operator. It is straightforward to verify that Eq.s (1.24),
(1.28) are satisfied with these definitions. As anticipated, the Wilson operators anticommute.

Fermionic QLMs have been subjected to much less intense research when compared to their
bosonic counterparts. Their analysis can lead, in principle, to the characterization of new phases
of matter for LGTs. At the same time, quantum simulators of LGTs in d = 2 with ultracold
atoms may profit from the fermionic interpretation of the plaquette interactions, as they provide
an alternative equivalent way of realizing the same physics.
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1.3 Reformulations in terms of gauge invariants

The gauge symmetry is not properly physical, since it has no observable consequences to look at,
as happens in the case of global symmetries. Mathematically speaking, it represents a redundancy
in our description of the system, in a way to describe the theory in terms of a local and causal
Lagrangian. This is particularly important in the spirit of QFT, as non-local theories may have
poles in the scattering matrix that are not associated with physical3 particles, meaning that the
theory is non-unitary. Therefore, from the usual field theoretical point of view, working with a
redundancy is easier, since it simplifies the computations, and it is consistent with the properties
that we want to preserve in the realm of QFT [5–7].

Besides the usual writing in terms of the gauge potential there is another way to study gauge
theories, relying on their formulation directly in terms of gauge invariant variables. In the pure
gauge case, this happens if we try to quantize the theory directly in terms of the field strength
tensor Fµν , instead than the gauge potential Aµ. In that procedure, we usually encounter two
difficulties: the Lagrangian will contain non-local terms and the dynamics of the variables is moved
to the interaction terms [6]. However, a crucial point is that this can be particularly helpful for the
construction of consistent analytical approximation schemes, such as strong coupling expansions or
mean-field methods [49].

In this Section we provide a summary of the main approaches present in the scientific literature
to reformulate gauge theories in terms of gauge invariant degrees of freedom, pointing out the
possible pros and cons of the various attempts. We distinguish three principal paths developed
over the past years: the first one relies on the recombination of matter and gauge fields to rewrite
the theory in terms of gauge invariant variables; the second one regards the so-called field strength
reformulations, entirely based on the above mentioned substitution Aµ → F [Aµ], while the third
one is about the Wilson loop reformulations, where the fundamental blocks are the Wilson lines
introduced in Eq. (1.19).

1.3.1 Recombinations of degrees of freedom

Historically, Dirac was the first one to think about gauge invariant reformulations of Abelian gauge
theories [50]. He firstly proposed to use the field

Ψ(x) ≡ eiC(x)ψ(x), C(x) ≡ e∂iA
i

∇2
(1.34)

as the gauge invariant redefinition of fermions in QED. The object Ψ(x) represents the electron
dressed with its Coulomb field: the reformulated theory has gauge invariant operators associated

3With physical we mean here that they do not belong to the Hilbert space of the underlying field theory.
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to these dressed particles. Physically, we could interpret these particles as electrons with a photon
cloud around them, being the field Ψ(x) in Eq. (1.34) non-local (and even non-covariant).

A second attempt was done few years later by Mandelstam, who proposed a reformulation of
QED without gauge potentials [51]. His purpose was to use directly the electromagnetic field Fµν ,
without introducing Aµ, to show that the usual schemes to quantize QED could be derived from a
gauge-independent formalism. The set of gauge invariant fundamental variables is

{Fµν ,Ψ,Ψ∗}, Ψ(x) ≡ ψ(x)e−ie
∫ x
−∞ dξµAµ(ξ), (1.35)

and we observe that Ψ(x) is again non-local, and path-dependent. This last property is a deep
seated phenomenon, as it is related to the arbitrariness in the choice of the phase factors in the
field operators. Moreover, as the Fµν is now a fundamental variable, the inhomogeneous Maxwell
equations must be imposed as consistency condition, as they are not automatically satisfied4.

From the early 1980s on, a series of papers came out with the aim to realize a precise
quantization program, i.e. to reformulate the physical action of QED and find the generating
functional of the quantum theory in terms of solely gauge invariant variables [52–57]. Specifically,
scalar QED and SU(2) LGTs in presence of bosonic matter fields were investigated in [52]. The
main idea consists in introducing the gauge invariants of the corresponding continuum theories
to rewrite the Lagrangians and derive the associated dynamics. In the continuum, this change of
variables was applied to bosonic matter fields [53] and later to classical [54] and quantum [55, 57]
electrodynamics. In particular, the matter fields are combined into new bosonic fields. In the case
of 1 + 1 dimensions, the Schwinger model, it was shown [56] that the construction is related to the
bosonization of the original theory [58, 59].

More recently, in [60] non-Abelian SU(N) QLMs were reformulated in terms of rishons,
i.e. variables encoding the fermionic constituents of the non-Abelian gauge fields. Despite these
variables are not explicitly gauge invariant, they can be recombined with the color index of the
fermions (or that of the neighbouring links, in the pure gauge cause) to give rise to gauge invariants
with which reformulate the theory [61, 62].

In the last decade, SU(2) LGTs with fundamental fermions were studied and reformulated via
the so-called loop-string-hadron formulation [63]: this allows for a description of the dynamics of
the theory in terms of local and physical observables, using strictly SU(2) gauge invariant variables
at the cost of introducing extra lattice links and an Abelian Gauss law. In [64–66] the problem is
addressed making use of dual formulations for the case of U(1) gauge symmetry and having as a
particular motivation the implementation of gauge theories in quantum devices.

4This is because Fµν has no memory of its structure in terms of the gauge potential in this formulation. This is
an important non-trivial point, and will be important in the context of the field strength reformulations.
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1.3.2 Field strength reformulations

The purpose of this class of reformulations is to obtain, even in the case of pure gauge theories,
a theory entirely written using Fµν . However, since not all the components of this tensor are
independent, the reformulated model will be constrained. In this spirit, Mandelstam was the first
to think about using Fµν to quantize QED, but we inserted his proposal in the previous discussion,
as he recombines gauge and matter degrees of freedom to obtain the set of variables in Eq. (1.35).

In the late 1970s Halpern obtained the inversion Aµ → Fµν(Aµ) for QED in d = 3, using a
completely fixed axial gauge [67]. The change of variables can be schematically summarized in the
following equations for the generating functional

ZA =

∫
DA δ[F(A)]e−

1
4

∫
F 2(A) =⇒ ZF =

∫
DF δ[I(F )]e−

1
4

∫
F 2

. (1.36)

Respectively, ZA is the starting generating functional in terms of the gauge potential, constrained
with the gauge fixing condition F(A) = 0. On the other side, we have the reformulated functional
ZF using the field strength, that is now constrained with the Bianchi identities I(F ) = 0. The
main advantages of this formulation involve the absence of constraints on the state of the theory
and the fact that confining states are easier to construct in the reformulated theory.

Later in the 1980s other attempts were done on the same lines in the coordinate gauge, both
in the Lagrangian and Hamiltonian formulations [68, 69]. The resulting theory has still a non-local
action in terms of Fµν , constrained with a set of restricted Bianchi identities, similarly to Eq.
(1.36). In the Hamiltonian approach, the constraints coming from the Lagrangian formulation need
to be complemented by extra conditions, to properly construct the quantization of the theory [69].
In these papers it appears firstly, to our best knowledge, the reconstruction theorem, i.e. the set of
conditions that Aµ and Fµν [Aµ] must satisfy in a way to be in one-to-one correspondence5.

1.3.3 Wilson loop reformulations

The last class of reformulations employs the Wilson loops as fundamental variables of the gauge
theories. The first attempt in this direction, both for the Abelian and non-Abelian cases, was
done in the 1980s by Giles, with the aim to reconstruct the gauge potentials from a complete
set of Wilson loops [70]. Here it is proved that the Wilson loops along with a specific class of
kinematical constraints, called Mandelstam constraints, provide sufficient conditions to reproduce
the underlying local gauge theory. The presence of constraints is necessary because the Wilson
variables are non-local, and form an overcomplete set with respect to the gauge potential Aµ.

5This is also present in the series of papers [52–57], generalized to the one-to-one correspondence between classes
of generic gauge equivalent configurations and sets of gauge invariant degrees of freedom.
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Moreover, it is showed that a reconstruction theorem holds also in this case: the gauge fields
indeed can be reconstructed uniquely from the Wilson lines, up to gauge transformations. This
equivalence theorem can be stated as

A/G ≃ {W (γ)}/M, (1.37)

where the left-hand side gives the usual description in terms of gauge potentials and gauge
transformations (A is the space of gauge orbits, G the set of gauge transformations), and the
right-hand side denotes the set of Wilson lines W (γ) associated to the path γ, subjected to the
Mandelstam constraints M [71].

The features of the space of all Wilson loops are well discussed in Ref. [72]: such a group
is non-Abelian and non-locally compact, meaning that even at the local level is very large. The
Mandelstam constraints represent non-linear algebraic equations to be solved for the Wilson lines,
whose form depends the gauge group features. In Ref. [72] their explicit form in the U(1), SU(N)

classical cases is discussed. In the lattice framework, the gauge invariant states can be labelled by
closed paths of the lattice links. The main problem is to find an efficient way of isolating a set of
independent loop states.

There are various reasons why, during the year, the development of a consistent loop refor-
mulation for gauge theories failed to succeed [6, 71, 72]. In addition to the difficulties due to
quantization procedures and the Mandelstam constraints, we mention that, due to the complicated
structure of the loop space, it is hard to argue which part is the most physically relevant. In
spite of these considerations, the formulation in terms of independent loop variables opens new
possibilities in the analysis of LGTs. First of all, for the fact that the theory is reformulated using
gauge invariants; secondly, it could lead to the construction of meaningful, intrinsically gauge
invariant analytical approaches, such as analytical loop perturbation theory, strong coupling and
mean-field expansions [49, 72].

1.4 Analytical methods for gauge theories

LGTs may be considered, in all respects, as statistical mechanics lattice models. Therefore, tools
coming from statistical mechanics like series expansions and mean-field methods offer powerful
analytical methods to extract approximate results [13, 49]. When applying these methods to LGTs,
a particular attention to the intrinsic local nature of gauge symmetry must be paid, and how
this is reflected in the variables formulating the theory. This issue has been already addressed in
literature, leading to different conclusions depending on the formulation of the underlying theory.

In this Thesis we focus on the mean-field theoretical approach to the analysis of gauge theories.
In the remaining part of this Section we briefly remind what is mean-field theory in statistical
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mechanics, and then show its application to pure LGTs with generic compact gauge group. In
the final part we discuss how this method has been applied in literature, discussing the results
obtained so far and how they depend on the formulation of the theory.

1.4.1 Mean-field theory

We present the mean-field technique in its variational formulation, which is more suitable for the
application to LGTs in the Lagrangian formulation [13, 49]. Given a statistical system with action
S[ϕ], its partition function is written as

Z =

∫
Dϕ e−βS[ϕ], (1.38)

where β = T−1 is the inverse temperature. The general idea behind the mean-field approximation
is to replace the dynamics of the theory by that of independent degrees of freedom in a given
external source, which must me chosen carefully in a way to simulate the real dynamics in the best
possible way. For this reason, we add and subtract a source term Sh[ϕ] in the action

S[ϕ] → S[ϕ] + Sh[ϕ]− Sh[ϕ] ≡ S̃h[ϕ]− Sh[ϕ], (1.39)

where h is a variational parameter; the partition function becomes

Z =

∫
Dϕ e−βS̃h[ϕ]+βSh[ϕ]. (1.40)

At this point we can use the convexity inequality

⟨ef⟩ ≥ e⟨f⟩, ⟨f⟩ ≡
∫

f(x)ρ(x) dx, (1.41)

where ρ(x) is a normalized measure, to bound the exact free energy of the model from below.
Mathematically, the application of Eq. (1.41) to the free energy gives

F ≥ Fh + ⟨S̃h[ϕ]⟩h, (1.42)

and the optimal estimate in terms of the variational parameter h leads us to the formula

Fvar = max
h

[Fh + ⟨S̃h[ϕ]⟩h], (1.43)

which gives a self-consistent equation for the external field h.
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1.4.2 Application to gauge theories

We apply the previous variational argument to the pure gauge action in Eq. (1.23), in generic
dimensions d, with a source term of the form

Sh[U ] = h
∑
µ

(Uµ + U †
µ) (1.44)

for all the links of the lattice. The equation for the mean-field free energy is

FMF = −d(d− 1)

2
t(h)4 +

d

β
h t(h)− d log c(h), (1.45)

where
c(h) ≡

∫
eh(U+U†) dU , t(h) ≡ c−1(h)

∫
(U + U †)eh(U+U†) dU (1.46)

are the hyperbolic functions for the U(1) gauge group6. The self-consistent equation for h is
obtained through the differentiation

dFMF

dh
= 0 ⇒ h = 2(d− 1)β t3(h). (1.47)

We observe that, since t(h = 0) = 0, the trivial solution h = 0 is always present, and it is the only
one for high temperatures. Moreover, this is always a local minimum for the mean-field free energy
in Eq. (1.45). The mean-field solutions of Eq. (1.47) predict a first-order transition, and this
results is true also for other gauge groups, and, as usual in mean-field theory, should be trusted
only for large dimensions.

The most important observation, however, is the following one: in this form, the mean-field
solution violates an important theorem by Elitzur, which states that, in gauge theories with compact
gauge groups, the only operators that can have non-trivial expectation values are invariant under
local gauge transformations [23]. This is in contrast with Eq. (1.44): a non-trivial solution to the
mean-field equation would imply ⟨Uµ⟩ ̸= 0, but we know that ⟨Uµ⟩ = 0 because the link variable is
not gauge invariant.

This problem may be faced in three different ways:

1. perform the computation in a given gauge. This, of course, will give a different result for any
possible gauge choice. For example, in the axial gauge, where the temporal links are fixed to
the identity and are no more dynamical, this restores the Elitzur theorem, but the price to
pay is to have long-range correlated spatial links along the temporal direction [73];

6The generalization to arbitrary continuous gauge groups gives a redefinition of the hyperbolic functions, while
the form of the variational equation is the same [13].
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2. use a generalized mean-field procedure [49], where the source term is chosen as

Sh[U ] ∼
∑
µ,ν

hµν(Uµν + U †
µν), (1.48)

with hµν being a square matrix for each link variable. However, the general solutions
with this method are basically impossible to be found. With a guided ansatz of the form
hµν = hgig

−1
j , gi ∈ G, we recover the original mean-field picture of Eq. (1.47), but without

the violation of the Elitzur theorem in the intermediate steps [74];

3. reformulate the theory in terms of gauge invariant variables. This allows for the choice of
any possible type of order parameter, without violation of the Elitzur theorem. However,
depending on the reformulation, we have different pros and cons that we are going to comment.

Field strength reformulations

On the lattice, the first step is to change from links Uµ to plaquette variables Uµν , and was
firstly accomplished by Batrouni [75]. When performing this change of variables, we get
a Jacobian enforcing the Bianchi identity as a constraint for the new variables. Once the
plaquettes are introduced, they are gauge invariant objects by construction, and can be taken
as order parameters for consistent mean-field expansions. More recently, it was shown that the
mean-field approximation can be further improved by determining the self-consistent mean
distributions for the plaquette variables [76]. This approach works again at zero temperature,
and has some disadvantages, even if it solves the inconsistency with gauge invariance. First
of all, it does not allow straightforwardly the computation of non-local quantities at the
mean-field level. Secondly, it is practically difficult to extend to the case of non-Abelian
gauge theories.

Loop reformulations

The reformulation in terms of Wilson loops, despite being consistent with the Elitzur theorem,
would be particularly hard to analyze with mean-field theory, and we are not aware of any
attempt in the scientific literature towards this direction. This is because of the presence of
Mandelstam constraints, discussed in Sec. 1.3.3, that are more complicated to be handled
with respect to the Bianchi identity.

At last, we mention that LGTs can be reformulated also in terms of Polyakov loops, to obtain
a description in terms of effective line actions. Once reformulated, consistent mean-field
procedures can be developed for the effective theory at any temperature [77].
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Chapter 2

A gauge invariant reformulation and
applications to mean-field computations

In this Chapter we set up a formalism allowing to reformulate Abelian gauge theories in terms of
gauge invariant fields (GIF). In particular, we look for a reformulation satisfying three requirements:

1. it should allow to investigate the dependence on the particular construction used to eliminate
the gauge covariant quantities;

2. it would be suitably extendable to continuum gauge theories;

3. in presence of matter fields ψ, it should allow to straightforwardly determine a gauge invariant
combination ψ′ of the original matter and gauge variables.

Regarding the second point, we present two different constructions to split the gauge field into its
gauge invariant and gauge covariant part. The gauge invariant part is taken as a new variable,
while the gauge covariant part can be combined with matter to obtain, as mentioned, a new GIF.
These constructions are presented – keeping the size of the system finite – both on the lattice and
in the continuum for arbitrary dimension and for two kinds of boundary conditions: periodic and
open.

Fulfilling the last requirement is the key point of the presented formalism, since once the GIF
ψ′ has been identified it can be used as a new gauge invariant degree of freedom of the theory.
While generic expectation values of ψ are not gauge invariant, the corresponding expectation values
of ψ′ are fully physical. This is particularly relevant for finding suitable order parameters in light
of Elitzur’s theorem, stating that local symmetries cannot be spontaneously broken [23]. For this
reason, the presented reformulation could be useful to analyze the phase diagrams of gauge theories
using approximate analytical methods, such as the mean-field one, since it gives information about
possible – gauge invariant – order parameters of the theory.

21



CHAPTER 2. A GAUGE INVARIANT REFORMULATION AND APPLICATIONS TO
MEAN-FIELD COMPUTATIONS

We finally observe that the choice of the GIF is not unique: other combinations of the initial
gauge and matter covariant fields can be gauge invariant, and a choice for the definition of ψ′ should
emerge from the procedure. Our reformulation leads to a simple expression for ψ′ in the form
ψ′ ∼ Eψ, where E is an operator depending only on the gauge field. Once this choice has been done,
we can perform the elimination of the initial matter and gauge fields with different geometrical
constructions, whose role is explicitly discussed in the following Sections. This structure of the
GIF is analogous to the one already introduced by Dirac in [50], where the proper gauge invariant
operator creates the electron along with a "photon cloud" around it. A similar structure is also
present in [78], where gauge invariance is traded by a path-dependent choice of gauge invariant
variables.

This Chapter is structured as follows: we firstly present the idea of our reformulation, to
elucidate the logic behind the change of variables. In the Sections 2.2, 2.3 and 2.4 we discuss the
details of the reformulation in various dimensions, starting from the simplest case of d = 1 and
then generalizing to arbitrary d > 1, investigating the constraints that come out in the various
constructions. We then show how to rewrite the lattice action for pure Abelian gauge theories
on the lattice, focusing on the particular example of gauge theories in (2 + 1) dimensions (Sec.
2.5), the Hamiltonian of a single particle in a magnetic field and the Lagrangian of QED (Sec.
2.6). In Section 2.7 we consider the Hofstadter Hamiltonian in d = 2 and d = 3, showing how
they are written in terms of the new gauge invariant variables. In Section 2.8 we comment about
the applications of the reformulation. In Section 2.9 we summarize our results and present our
conclusions.

2.1 Introduction of the new variables: main idea

The main idea behind our formalism is to use the lattice definition of the Maxwell tensor given in
Eq. (1.21) to express the gauge field Aµ as a function of Fµν . Clearly, this operation is not uniquely
defined, since Fµν is gauge invariant while Aµ is not. Stated differently, the Maxwell tensor does
not carry the gauge covariant part of Aµ, which, instead, will be carried by a new scalar field ϕ.
This will amount to replace Aµ by a combination of Fµν and ϕ. In turn, not all the components of
Fµν are independent. The idea is then to define independent sums of Fµν over various strips on
the lattice, which will be denoted by F̄µν . The presented formalism allows finally to perform the
change of variables

Aµ → {F̄µν , ϕ}. (2.1)

We will show how to reformulate the Lagrangian with the new variables in two ways, referred in
the following as asymmetric and symmetric constructions. One has to check, for each construction,
whether the new fields F̄µν are independent, and, if not, what are the constraints between them.
Our procedure bears some similarities with the path-dependent choice of gauge invariant fields in

22



CHAPTER 2. A GAUGE INVARIANT REFORMULATION AND APPLICATIONS TO
MEAN-FIELD COMPUTATIONS

a)

ത𝐹𝜈𝜇𝐴1(𝒏)

b)

= − −

𝐴1(𝒏)

Figure 2.1: (a) Graphical representation of A1(n) after the first iteration of our procedure. (b)
Iterative isolation of the link A1(n), the leftmost in the blue column, in terms of plaquettes. The
highlighted strip is the sum of F10 present in Eq. (2.3). The temporal and spatial directions are,
respectively, the horizontal and vertical ones.

[78]. In contrast to that approach, all of our gauge invariant variables are independent and do not
have to satisfy any constraint.

We emphasize that ϕ is a field and it is not fixed by our procedure: in the computation of
the generating functional of the theory, we must sum over all the possible configurations of F̄µν .
On the other hand, we can fix ϕ, corresponding to choosing a specific gauge, or sum over it. The
result will be the same. Contrary to standard gauge fixing, this will not alter the form of the
Lagrangian, as the non-physical degrees of freedom were decoupled. This description holds both
for open boundary conditions (OBC) and periodic boundary conditions (PBC). However, in order
to correctly reproduce all the degrees of freedom, some extra care is needed for the latter. To
this end, a further new set of variables, associated with Wilson loops piercing the lattice, will be
introduced for PBC.

We finally anticipate that when the matter fields ψ are present, an advantage of our reformu-
lation with respect to other possible ones is that the introduction of ϕ naturally indicates how to
rewrite ψ in terms of a new gauge invariant matter field ψ′, combining both ψ and ϕ. Once the
integration over ϕ is performed, part of the contribution of the gauge field remains through F̄µν
and – as will be clarified in the following – the theory will be expressed in terms of the fields ψ′

and F̄µν .

2.2 The (1 + 1)− d case: asymmetric construction

In (1 + 1) dimensions there is only one independent component of the strength tensor, i.e. F10.
Since we want to express the gauge fields A0 and A1 in terms of F10, we use Eq. (1.21) to isolate
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A1 for a generic site n

A1(n) = F10(n)− A0(n+ 1̂) + A0(n) + A1(n+ 0̂). (2.2)

Graphically, this has a simple interpretation: it can be thought of as a plaquette with all the edges
being removed except for A1(n). The next step is to use Eq. (2.2), iteratively, to express all the
A1 links appearing on the right-hand side. This is done until the boundary n0 = N is reached, as
illustrated in Fig. 2.1. In the end, we are left with the following expression for the gauge field:

A1(n) =

N−n0−1∑
k=0

[
F10(n+ k · 0̂)−A0(n+ 1̂ + k · 0̂) +A0(n+ k · 0̂)

]
+A1(n+ (N − n0) · 0̂). (2.3)

We now introduce the vertex variables ϕ(n), defined on the vertices of the lattice, as shown in
Fig. 2.2, and encoding the gauge covariant part of Aµ(n). Due to the nature of the considered
gauge group G = U(1), these are scalar fields. The variables ϕ are related to A0 through a finite
derivative along the 0̂ direction, that is

A0(n) ≡ ϕ(n+ 0̂)− ϕ(n). (2.4)

Note that this can always be done. In turn, the choices for the values of ϕ are not unique, as we
can always shift them by a function with arbitrary dependence on n1 without changing the value of
any A0 (n). This freedom will be explored in what follows. Inserting this into Eq. (2.3) we obtain
a telescopic sum, resolving the part associated to the horizontal links

A1(n) = A1(n+ (N − n0) · 0̂)− [ϕ(n+ (N − n0) · 0̂ + 1̂)− ϕ(n+ (N − n0) · 0̂)]

+ ϕ(n+ 1̂)− ϕ(n) +

N−n0−1∑
k=0

F10(n+ k · 0̂). (2.5)

By exploiting the aforementioned freedom for choosing the field ϕ, we can set

A1(nB) = ϕ(nB + 1̂)− ϕ(nB) (2.6)

at the boundary points nB ≡ (N, n1). For the OBC case this essentially completes the map, while
for PBC further considerations are necessary.

2.2.1 Open boundary conditions

The OBC case is depicted in Fig. 2.2(a). By plugging Eq. (2.6) into (2.5) we can write

A1(n) =

N−n0−1∑
k=0

F10(n+ k · 0̂) + ϕ(n+ 1̂)− ϕ(n) (2.7)
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Figure 2.2: Plot of a lattice with linear size N = 3. In black the original gauge field components
Aµ living on the links. In color the representation of the new set of variables. a) For OBC the new
degrees of freedom are represented in blue (the ϕ’s that live on the vertices) and in red (the F̄µν ’s
defined on the plaquettes). b) For PBC the same new degrees of freedom are present plus extra
ones corresponding to the loops (the fµ in brown).

which, with (2.6), concludes the rewriting of the vertical links. By defining the plaquette strip

F̄10(n) ≡
N−n0−1∑
k=0

F10(n+ k · 0̂), (2.8)

the vertical links can be written as

A1(n) = F̄10(n) + ϕ(n+ 1̂)− ϕ(n). (2.9)

We can characterize OBC by imposing A0(N, n1) = 0 and A1(n0, N) = 0. Consequently, Eqs.
(2.4) and (2.9) summarize the mapping of Eq. (2.1) for the OBC case, by adopting the boundary
conditions F̄10(N, n1) = F̄10(n0, N) = 0. There is yet the residual freedom on the choice of the field
ϕ. This is reflected by the fact that shifting all ϕ (n) by a constant will leave the initial Aµ (n)
invariant. This ambiguity can be resolved by simply imposing ϕ (N,N) = 0, for example. We can
now verify that the number of degrees of freedom matches the original one. There is a total of
N2 − 1 non-trivial values for ϕ and (N − 1)2 for F̄10, which sum to the original 2N(N − 1) degrees
of freedom associated with the links of open boundaries.

2.2.2 Periodic boundary conditions

The PBC case is depicted in Fig. 2.2(b). In comparison to OBC, we need to map an extra set
of degrees of freedom. These correspond to links emanating from the boundary, i.e. A0(N, n1)

and A1(n0, N), as well as to specify how the fields transform under a full lattice translation, i.e.
Aµ(n + Nν̂). Regarding the first set of variables, we introduce the Wilson loops WC0 and WC1 ,
which are associated to paths that wrap around the lattice along the 0̂ and 1̂ directions. We may
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formally write these loops as [12]

WC0 =
N∏

ni=1

eieA0(ni,n1) ≡ eief0(n1), WC1 =
N∏

ni=1

eieA1(n0,ni) ≡ eief1(n0), (2.10)

where fµ(nν) corresponds to the sum of all Aµ along a straight line of constant nν (µ ̸= ν). Using
the definitions in Eqs. (2.4), (2.7) to rewrite the gauge fields for the remaining links, we can isolate
the boundary fields as functions of the introduced loops as

A0(N,n1) = f0(n1)− ϕ(N, n1) + ϕ(1, n1),

A1(n0, N) = f1(n0)− ϕ(n0, N) + ϕ(n0, 1)−
N−1∑
nj=1

F̄10(n0, nj). (2.11)

By complementing Eqs. (2.4), (2.6) and (2.9) with the above expression we can see that the
mapping {A0, A1} → {ϕ, F̄10, f0, f1} is one-to-one. In particular, the number of degrees of freedom
correctly match. In fact, the link variables Aµ form a total of 2N2 degrees of freedom. At the
same time, the set {ϕ, F̄10} introduced in the OBC case has 2N(N − 1) non-trivial values and the
remaining 2N degrees of freedom are precisely given by the set of 2N loops {f0, f1}. It remains to
specify how the fields Aµ(n+Nν̂) are expressed in terms of the gauge invariant degrees of freedom.
As PBC should only be imposed on physical fields, the most general form of PBC on a gauge
theory amounts to imposing periodicity on Aµ up to a gauge transformation [79–82]. Explicitly
this means that

Aµ(n+Nν̂) = Aµ(n) + φν(n+ µ̂)− φν(n), (2.12)

where φν are called transition functions and are crucial to study non-trivial topological sectors
of the theory [82, 83]. They have to satisfy a consistency condition, called the cocycle condition,
guaranteeing that certain quantities, such as Aµ(n+N 0̂ +N 1̂), are single valued. Such a condition
reads

φν(n+Nµ̂) + φµ(n) = φµ(n+Nν̂) + φν(n) + φνµ, (2.13)

where φµν is the twist tensor, which is antisymmetric and gauge invariant [82]. Moreover, the φν ’s
have to be considered as a set of new dynamical variables, i.e. physical degrees of freedom to be
integrated in the functional integrals of the theory [79].

We can show that these boundary conditions can be incorporated within our reformulation.
In fact, it follows from Eqs. (2.4), (2.9) and (2.11) that the twisted boundary conditions in Eq.
(2.12) are exactly implemented by the following boundary conditions on ϕ

ϕ(n+Nν̂) = ϕ(n) + φν(n). (2.14)

The transition functions are the same in our reformulation and, consequently, the degrees of freedom
that they carry are trivially translated to our construction. Concerning the strip variables F̄10, they
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are subject to PBC, i.e. F̄10(n+Nµ̂) = F̄10(n). This can be taken into account by appropriately
redefining the strips as

F̄10(n) =

(N−n0−1) mod N∑
k=0

F10(n+ k · 0̂). (2.15)

We finally observe that the loops f0, f1 obey PBC as long as periodic gauge transformations are
considered. Indeed, the Wilson loops (2.10) acquire non-trivial phases under the application of
topologically non-trivial gauge transformations, i.e. transition functions that are periodic up to
integer multiples of 2π/e (sometimes such gauge transformations are called large topologically
non-trivial gauge transformations [82]). This gauge redundancy can further be lifted by suitably
combining the transition functions φν with the loops fν . Accordingly, we define

f̄0(n1) = f0(n1)− φ0(1, n1), f̄1(n0) = f1(n0)− φ1(n0, 1). (2.16)

The non-trivial phases acquired by the Wilson loops in Eq. (2.10) under large gauge transformations,
corresponding to translations of the fµ, are canceled by the respective gauge transformations
of the transition functions and we obtain quantities that are invariant under general gauge
transformations. Under a full lattice translation, these loops are transformed by the twist tensor:
f̄0(n1 +N) = f̄0(n1) + φ01 and f̄1(n0 +N) = f̄1(n0) + φ10.

2.2.3 Comments about gauge fixing

We showed that the mapping presented is defined in a consistent way, as any gauge field Aµ(n) can
be expressed as a function of the new, independent, variables {ϕ, F̄10} through Eqs. (2.4), (2.6)
and (2.9) for OBC – or as a function of {ϕ, F̄10, f0, f1} through Eqs. (2.4), (2.9), (2.6) and (2.11)
for PBC. The price to pay is hidden in locality and translational invariance. The reformulation,
as anticipated, shifts the effect of gauge transformations G to the vertex variables, since Aµ ∼
Aµ + Λ(n+ µ̂)− Λ(n), which is the lattice version of Eq. (1.7), implies ϕ(n) ∼ ϕ(n) + Λ(n).

We observe that fixing a particular configuration of the vertex variables, e.g. ϕ = ϕ̃, would
be equivalent to some gauge fixing F , where one sums only over configurations that satisfy the
constraint F (Aµ) = 0. As an example one could choose ϕ̃ = 0, which corresponds to a maximal
tree gauge [84].

A careful reader could object that there is no real difference between our reformulation and
other approaches corresponding to particular choices of ϕ. However, the substantial difference is
not that in these approaches ϕ is fixed and in ours is not, since the ϕ at the end will be anyway
integrated out. At variance, the main difference will be clear when the matter field ψ will be
introduced: we will show that our reformulation allows for the definition of new matter variables
ψ′ expressed in terms of the original variables ψ and the to-be-integrated variables ϕ. So the
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Figure 2.3: Graphical representation of the constraint in Eq. (2.26), equivalent to the Mandelstam
constraint for crossing Wilson loops on the square lattice showed in fig. 2.5(a).

initial fields are {ψ,Aµ}, which are separately gauge variants, while at the end of our reformulation
procedure the theory is expressed in terms of the variables {ψ′, F̄µν}:

{ψ,Aµ} → {ψ′, F̄µν}, (2.17)

where the fields {ψ′, F̄µν} are gauge invariant. In the case of PBC, new degrees of freedom are
present through transition functions. Analogously, a reformulation in terms of purely gauge
invariant fields can be achieved through (ψ,Aµ, φµ) → (ψ′, F̄µν , f̄µ).

2.3 The (1 + 1)− d case: symmetric construction

Here we present an alternative construction starting from the set {ϕ, Fµν}. As previously mentioned,
if we choose to isolate the temporal component in Eq. (2.2) rather than the spatial one, we get
vertical strips instead of the horizontal ones of the previous setup. The idea of the symmetric
constructions is to remove such arbitrariness in the procedure and to combine both these asymmetric
constructions, to obtain a more symmetric result.

We proceed following the same structure of Sec. 2.2. For the OBC case, the gauge fields in
the asymmetric construction are written in Eqs. (2.4) and (2.9) in terms of F̄10. However, if we
had chosen F01, the final formulas would have been

A1(n) ≡ ϕ′(n+ 1̂)− ϕ′(n), (2.18)

A0(n) =

N−n1−1∑
k=0

F01(n+ k · 1̂) + ϕ′(n+ 0̂)− ϕ′(n) ≡ F̄01 + ϕ′(n+ 0̂)− ϕ′(n). (2.19)

Here the fundamental variables are {ϕ′, F̄01}. To obtain a symmetric construction, we can define

ϕ̃ =
ϕ+ ϕ′

2
(2.20)
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and sum the previous relations with Eqs. (2.4), (2.7). The symmetrized gauge fields are

A0(n) = ϕ̃(n+ 0̂)− ϕ̃(n) +
1

2

N−n1−1∑
k=0

F01(n+ k · 1̂), (2.21)

A1(n) = ϕ̃(n+ 1̂)− ϕ̃(n) +
1

2

N−n0−1∑
k=0

F10(n+ k · 0̂). (2.22)

This result can be obtained from the asymmetric construction, as in Eqs. (2.18) and (2.19), by
means of the gauge transformation

ϕ −→ ϕ̃− 1

2

N−n0−1∑
k=0

N−n1−1∑
ℓ=0

F01(n+ k · 0̂ + ℓ · 1̂). (2.23)

The specific details pertaining to PBC trivially extend to the symmetric construction. In particular,
the boundary condition in Eq. (2.14) of the periodic case still holds with ϕ̃ in place of ϕ and the
boundary links in Eq. (2.11) are symmetrized with respect to the strips F̄10 and F̄01, i.e.

A0(N,n1) = f0(n1)− ϕ̃(N, n1) + ϕ̃(1, n1)−
1

2

N−1∑
nj=1

F̄01(nj, n1), (2.24)

A1(n0, N) = f1(n0)− ϕ̃(n0, N) + ϕ̃(n0, 1)−
1

2

N−1∑
nj=1

F̄10(n0, nj). (2.25)

where the loops fµ are introduced according to the definition in Eq. (2.10). Finally we notice that,
within this particular construction, the strips F̄10 and F̄01 satisfy the relation

F̄01(n) + F̄10(n+ 0̂)− F̄10(n)− F̄10(n+ 1̂) = 0, (2.26)

which shows explicitly that they are not all independent variables (see Fig. 2.3 for the graphical
representation). This is a particular case of more general constraints that are present in higher
dimensions, as we are going to discuss, called Mandelstam constraints.

2.4 Higher dimensions

We now consider (d+ 1) dimensions, generalizing the previous construction to a hypercubic lattice
of size Nd+1. We choose a reference plane to which we apply the procedure described in Sec. 2.2.
Then, given an arbitrary link, we can repeatedly apply identities of the form of Eq. (2.2) until we
arrive at the reference plane.
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Figure 2.4: Graphical representation of the (2 + 1) − d case: the link A0(n) (light black line)
is a difference of vertex variables (light black dots), while the others, A1(n) and A2(n), involves
plaquette strips (light blue and orange lines, respectively). The surface links and strips are in blue
(and orange) for the links A1(n) (and A2(n)) respectively.

2.4.1 Asymmetric construction

We choose the reference plane to be the d = 2 surface defined by ni = N for i = 2, . . . , d. To
lighten the notation, we will denote a boundary site by

n(µ) ≡ (N, . . . , N︸ ︷︷ ︸
µ+1−times

, nµ+1, . . . , nd). (2.27)

Accordingly, n(0) represents a point at the boundary 0, n(1) a point at boundaries 0 and 1, and so
on. Moreover, we generalize the plaquette strip on the lattice as

F̄µν(n
(ν−1)) ≡

N−nν−1∑
ℓ=0

Fµν(n
(ν−1) + ℓ · ν̂). (2.28)

In this compact notation the rewriting of a generic component Aµ(n) of the gauge field is

Aµ(n) =
∑
ν<µ

F̄µν(n
(ν−1)) + ϕ(n+ µ̂)− ϕ(n). (2.29)

As before, there is a component written solely in terms of vertex variables, i.e. A0(n), and all the
others are built by filling the lattice with the plaquette strips. Now A0(n) fixes ϕ up to arbitrary
translations by functions dependent on n1, . . . , nd (but not n0), a freedom that is explored to fix
the remaining Ai at the boundaries. In agreement with (2.29), we can take F̄µν(n(j−1)), with µ > ν,
as the new set of independent variables.
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Open boundary conditions

As in the (1 + 1) dimensional case, the considerations above are enough to establish the transfor-
mation to the new variables for OBC. Once again, the values of the field ϕ is completely fixed up
to an overall shift by a constant which is used to set ϕ(N, . . . , N) = 0. Furthermore the plaquette
strips, at the proper boundary, are put to zero as well

F̄µν(n
(ν−1)) = 0, nµ = N or nν = N. (2.30)

Here, we also observe that the degrees of freedom are properly matched. There is a total of
Nd+1 − 1 vertex variables ϕ. The strips F̄ij entail Nd−1−j(N − 1)2 for any 0 ≤ j < i ≤ d, giving
a total of dNd+1 − (d + 1)Nd + 1 strip variables. Summing these together we find the required
(d+ 1)Nd(N − 1) link variables of the initial formulation.

Periodic boundary conditions

For the periodic case, the rewriting of (1 + 1) dimensions also extends to higher dimensions,
including the introduction of the loops fµ defined in Eq. (2.10) and the corresponding gauge
invariant f̄µ. In particular, a generic boundary link Aµ(n0, . . . , nµ = N, . . . , nd) is expressed as

Aµ(n0, . . . , nµ = N, . . . , nd) = fµ(n0, . . . , nµ−1, nµ+1, . . . , nd)−
∑
ν<µ

N−1∑
nµ=1

F̄µν(n
(ν−1))

− ϕ(n0, . . . , nµ = N, . . . , nd) + ϕ(n0, . . . , nµ = 1, . . . , nd). (2.31)

The transformation in Eq. (2.14) implements the periodicity on the gauge field of Eq. (2.29), up to
a gauge transformation in exactly the same way. Once again the F̄µν are periodic and f̄µ transform
with the twist tensor, i.e. F̄µν(n+Nδ̂) = F̄µν(n) and f̄µ(n+Nδ̂) = f̄µ(n) + φµδ. The number of
degrees of freedom can be computed by summing the ones from OBC, i.e. (d+ 1)Nd(N − 1), with
the number of loops fµ introduced, i.e. (d+ 1)Nd. This gives (d+ 1)Nd+1, which matches exactly
the number of starting links Aµ.

2.4.2 Symmetric construction

We repeat here the procedure done in (1+1)−d for the symmetrization of the gauge field. The first
step towards this is to allow for the presence of strips F̄µν with ν ̸= µ, with µ ∈ U = {0, 1, . . . , d}.
Given these variables, the idea is to consider the possible asymmetric constructions along the
different directions and then take their average. The final result will be a gauge field written as

Aµ(n) = ∆µϕ(n) +
∑
ν ̸=µ

ανF̄µν(n
(ν−1)), (2.32)
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where ∆µϕ(n) ≡ ϕ(n+ µ̂)−ϕ(n), the strips are defined in the usual way, and αν are real coefficients,
that must be chosen in a way to reproduce consistently the Maxwell tensor. The simplest way
to realize our proposal in general dimensions is to start from cyclically permuted asymmetric
constructions, and then average over them. This procedure defines the new vertex variables as the
average of the cyclically permuted ones and automatically gives the correct strips to be included in
the gauge field’s component.

We consider the cyclic permutations defined by the map σ = (0 1 . . . d), written in the cycle
notation. This means that every time σ acts on µi ∈ U it returns σ(µi) = µi+1, with the condition
σ(d) = 0. of the set of indices µ. For example:

σ1(U) = U ′ =

(
0 1 . . . d− 1 d

1 2 . . . d 0

)
= {1, 2, . . . , d, 0}, (2.33)

and so on. This defines a set of reshuffled indices Γ = {U , σ(U), σ(σ(U)), . . .} ≡ {U0,U1, . . . ,Ud}
that contains exactly d+ 1 elements.

The starting point is the asymmetric construction with µ ∈ U0:

Aµ(n) = ∆µϕ(n) +
∑
ν<µ

F̄µν(n
(ν−1)), (2.34)

and the procedure is the following one: we do d+ 1 asymmetric constructions with µ ∈ Ui, ∀i ∈ U ,
and sum over them. This is equivalent to sum cyclically over the permutations of the indices µ.
The important remark in the i-th construction is the order of the indices in Ui: this has to be
taken as the right order in the sum of the strips, and also for their definition. Indeed, it can be
recast in the form

F̄µν(n
(ν−1)) ≡

∫ L

xν

Fµν(yν) dyν , µ, ν ∈ U within its internal order. (2.35)

With these definitions, we can formally combine the asymmetric constructions Aσ(µ) as a cyclic
sum:

Aµ(n) ≡
1

d+ 1

∑
σ

Aσ(µ)(n). (2.36)

This will automatically define a mapping Aµ → {ϕ′, F̄µν}, where again the vertex variables ϕ′

are encoding the gauge covariant part of Aµ, while the F̄ are gauge invariant. Out of this last
equation, the coefficients αν can be determined by direct comparison.

To present a concrete example, let us consider the symmetrization of the d = 2 case. In the
asymmetric construction we have (we omit the vertex variables, for simplicity)

A0 ∼ 0, A1 ∼ F̄10(n), A2 ∼ F̄20(n) + F̄21(n
(0)). (2.37)
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We now consider the new frame σ(µ) = {1, 2, 0} = {0′, 1′, 2′}, with coordinates n′ = (n1, n2, n0).
In terms of the primed indices, the expressions of Aµ′ are the same as in the previous equation.
We have however to read the strips in the original frame, that is

F̄1′0′(n
′) =

∫ L

n′
0

F1′0′(y0, n
′
1, n

′
2) dy0 =

∫ L

n1

F21(n0, y0, n2) dy0 ≡ F̄21(n), (2.38)

F̄2′0′(n
′) ≡ F̄01(n), F̄2′1′(n

(0)) ≡ F̄02(n
′(0)) = F̄02(n1 = L). (2.39)

The last line clarify the notation for n′(0): we have to take the rotated n′ and use the compact
notation n(ν−1) introduced for the asymmetric construction. There is however a different order
in this set of indices; the 0-th component of n′ is now n1, then it is this that we have to set to
n1 = L. In general it is easier to write n′(ν−1), to make it compatible with our previous notation:
this denotes n′(ν−1) = (L, . . . , L, n′

ν , . . . , n
′
d′). When doing the cyclic sum, however, we have to read

everything in the original frame µ ∈ U .

With these prescriptions, at the end of the computation we will have

A0 =
∆0ϕ̃+ F̄02(n) + F̄02(n

′(0)) + F̄01(n)

3
, (2.40)

A1 =
∆1ϕ̃+ F̄10(n) + F̄10(n

′′(0)) + F̄12(n)

3
, (2.41)

A2 =
∆2ϕ̃+ F̄20(n) + F̄21(n

(0)) + F̄21(n)

3
, (2.42)

and this correctly reproduces the components of Fµν .

Despite the more symmetric form of the gauge fields rewritings, here the disadvantage with
respect to the asymmetric construction is that the {F̄µν}µ̸=ν are not all independent: they satisfy
the so-called Mandelstam constraints, which will be examinated in the next Sections.

The Mandelstam constraints

Our reformulation corresponds to change variables from gauge fields to specific elementary lattice
Wilson loops, i.e. F̄µν(n(ν−1)). In the case of µ > ν, they are independent, as we showed in the
previous Sections. If however we pass to the symmetric construction, they must satisfy the so-called
Mandelstam constraints, as introduced in Chapter 1, Section 1.3.3.

In our case, where we have elementary loops corresponding to F̄µν with µ ̸= ν in the most
general case, we have to look at the case of crossing Wilson loops, as showed for example in Fig.
2.5(a) for two generic space-time directions µ, ν. In the continuum, the Mandelstam constraints
for an Abelian gauge group read

W (C1)W (C2)−W (C1 ◦ C2) = 0, (2.43)
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Figure 2.5: (a) Graphical representation of crossing loops (blue and orange) along the (µ, ν)

space-time directions. (b) Graphical representation of the Abelian Mandelstam constraints for the
loops W1, W2 and the composite loop W1◦2, in the continuum. (c) Representation of the tubes
that are obtained moving out from the planar Mandelstam constraints in the case d = 2. The
colored arrows are associated to the corresponding differences of plaquette strips along the different
space-time directions.

where C1 and C2 are two paths joining at x = n, and C1 ◦ C2 is their composition. Such a
constraint, in the continuum, is pictorially showed in Fig. 2.5(b). For our variables on the lattice,
the identification should be

W (C1) = F̄νµ(n2
(µ−1)), W (C2) = F̄µν(n1

(ν−1)), (2.44)

for the horizontal and vertical strips in Fig. 2.5(a), with n
({ν,µ}−1)
{1,2} the corresponding boundary

sites. By imposing the Mandelstam constraints on these planes, and calling nint the site at which
the two strips touch, they result in

F̄µν [(nint + ν̂)(ν−1)] + F̄νµ[(nint + µ̂)(µ−1)]− F̄µν [(nint)
(ν−1)]− F̄νµ[(nint)

(µ−1)] = 0. (2.45)

This enforces the Mandelstam constraints for crossing loops on a given plane.

However, the plaquette strips can intersect also when we move out from the above planar
situation. This case is depicted in Fig. 2.5(c): graphically this situation reminds the lattice Bianchi
identity, where if we sum all the plaquettes forming a cube on the lattice we must get zero. Here,
the situation is the same, but our variables are the strips: instead of getting a sum over cubes, we
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get sums over rectangular parallelepipeds. We make again reference to the d = 2 case, since it is
the only non-trivial visual example, and refer to Fig. 2.5 (c).

To derive the relative constraint analytically, we start from the expression of the Maxwell
tensor written in terms of the plaquette strips. In the case of Fig. 2.5(c), we consider

F01(n) =
1

3
[∆0F̄10(n) + ∆0F̄10(n

′′(0)) + ∆0F̄12(n)−∆1F̄02(n)−∆1F̄01(n)] (2.46)

and use the fact that F01 = ∆1F̄01, from the definition in Eq. (2.28). By inserting this in the
previous equation, we end up in the constraint

∆1F̄10(n) + ∆0F̄10(n
′′(0)) + ∆0F̄12(n)−∆1F̄02(n) = 0, (2.47)

i.e. exactly the tube represented in Fig. 2.5(c). For the other components of the Maxwell tensor
the logic is the same, and the final result is similar to Eq. (2.47).

In generic dimensions, the explicit form of the non-planar Mandelstam constraints is in
principle difficult to write, because of the symmetric definition of the gauge field in Eq. (2.36).
What is important, however, is that the sets of planar and non-planar Mandelstam constraints
give the right number of degrees of freedom to match the asymmetric construction.

2.4.3 Continuum limit

So far we developed the formalism on the lattice. It is straightforward to take the continuum limit
of Eq. (2.29). We recover the lattice spacing a and take the limit a→ 0 and N → ∞ while keeping
Na ≡ L fixed. We obtain

F̄µν(x
(ν−1)) =

∫ L

xν

dyν Fµν(yν) (2.48)

as the continuum counterpart of the plaquette strip, while the gauge field is written as

Aµ(x) = ∂µϕ(x) +
∑
ν<µ

F̄µν(x
(ν−1)). (2.49)

In the previous expressions we have introduced

x(ν) ≡ (L, . . . , L︸ ︷︷ ︸
ν+1−times

, xν+1, . . . , xd), (2.50)

yν ≡ (L, . . . , L︸ ︷︷ ︸
ν−times

, yν , xν+1, . . . , xd), (2.51)

as a shorthand notation for the real space vectors, being ν ∈ {0, . . . , d}. We remark that this
completely characterizes the case of open but not of periodic boundaries, since the lattice description
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of the latter relied on the special mapping of a single link, which does not generalize straightforwardly
in the continuum limit at finite size L. We do not see conceptual problems in doing it, and we
leave the explicit implementation of PBC at finite L in the continuum limit as a subject for a
future work.

2.5 Pure abelian gauge theories on the lattice

Before discussing systems with matter fields present, we provide a more concrete example. We
consider the standard action for non-compact gauge fields, in imaginary time and in (d + 1)

dimensions
S =

β

2

∑
n

Fµν(n)
2 (2.52)

where the sum is taken over the Nd+1 lattice points. The present discussion holds for any action
depending solely on Fµν . The main premise of the present Chapter is to rewrite the model purely
in terms of gauge invariant quantities. This is already done in Eq. (2.52) where the action only
depends on Fµν(n): however, they are not all independent. They satisfy the Bianchi identity in the
continuum, and, on the lattice, a discretized version that in this case can be written as

Fµν(n+ α̂)− Fµν(n) + Fαµ(n+ ν̂)− Fαµ(n) + Fνα(n+ µ̂)− Fνα(n) = 0. (2.53)

This identity is trivially satisfied when the Fµν are written in terms of the Aα. In other words,
while Fµν are gauge invariant but not all independent, Aα are gauge covariant but independent.
With our construction we are able to achieve both gauge invariance and independence on the new
variables. In fact, since the description of the theory in terms of Aα satisfies the Bianchi identity
and Eq. (2.29) is a rewriting of them in terms of independent quantities, the Bianchi identity will
be automatically satisfied for this case.

In order to make the discussion more specific, let us focus on the non-trivial case of the
(2 + 1)− d gauge theory. Following Eq. (2.29) we write

A0(n) = ϕ(n+ 0̂)− ϕ(n), A1(n) = F̄10(n) + ϕ(n+ 1̂)− ϕ(n), (2.54)

A2(n) = F̄20(n) + F̄21(n
(0)) + ϕ(n+ 2̂)− ϕ(n). (2.55)

In these formulas F̄10 and F̄20 are defined in all lattice points. At variance, F̄21 is only defined for
boundary points where n0 = N . The plaquettes Fµν(n) in terms of these fields are given by

F10(n) = F̄10(n)− F̄10(n+ 0̂), F20(n) = F̄20(n)− F̄20(n+ 0̂) (2.56)

F21(n) = F̄10(n+ 2̂)− F̄10(n) + F̄20(n)− F̄20(n+ 1̂) + F̄21(n
(0))− F̄21(n

(0) + 1̂). (2.57)

where we define any F̄10 to be zero outside of any point on the lattice.
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As a further check, one can see that the Bianchi identity is trivially satisfied once the Fµν are
written in this way. To emphasize the differences with the new description of the theory, let us
denote an ≡ F̄10(n), cn ≡ F̄20(n) and bn(0) ≡ F̄21(n

(0)) as a boundary field. We have, for a general
lattice point, n = (n0, n1, n2) and (n0, n1, n2)

(0) = (N, n1, n2). The action takes the form

S =β
∑
n

[(
an+0̂ − an

)2
+
(
cn+0̂ − cn

)2
+
(
an+2̂ − an

)2
+
(
cn+1̂ − cn

)2]
+ βN

∑
n,n0=N

[(
bn+1̂ − bn

)2]
+ 2β

∑
n

[(
bn(0)+1̂ − bn(0)

) (
an+2̂ − an − cn+1̂ + cn

)]
. (2.58)

This is a non-isotropic, non-local model. The first two terms are purely local. The second term is a
boundary term that, nonetheless, is not predicted to be negligible in the infinite volume limit since
it has a prefactor N . The last term is non-local and couples fields in the bulk to the boundary
fields (at the boundary n0 = N). The resulting non-locality can be regarded as the integration
of the gauge covariant part of the gauge fields. Other examples of the integration of gauge fields
lead naturally to non-local interactions [85–87]. In contrast to the cited results, here the full gauge
degrees of freedom are not totally integrated out but only their non-physical part.

Despite the apparent complication of this model, it is described by fewer degrees of freedom,
all of them physical. As an example, for the case of OBC where we counted the degrees of freedom,
all the N3 − 1 vertex variables ϕ have decoupled from the system.

2.6 Quantum electrodynamics

In this Section we rewrite the Lagrangian of QED in terms of gauge invariant quantities, using the
asymmetric construction in (3 + 1) dimensions. We refer to the next Section, where we discuss
the Hofstadter model, for a discussion of the effects produced by the choice of the asymmetric vs
symmetric construction. In that example, the differences are particularly clear. Before dealing
with QED case, we investigate the simple and instructive case of the Hamiltonian of a particle in
the presence of an external magnetic field, in d = 3.

2.6.1 Single particle in a magnetic field

We consider a quantum particle in a static background magnetic field. As it is usually done in
quantum mechanics textbooks, the particle is charged (with charge −e) and we denote the size of
the system by L, taking then the thermodynamic limit L→ ∞. The Hamiltonian reads

H =
(p+ eA)2

2m
, (2.59)
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where p = −i∇ and we make use of natural units ℏ = c = 1. The only non-trivial component
of the field strength tensor is F21 = B, therefore we only have the strip F̄21 in the asymmetric
construction. This results in

Ai = ∂iϕ, i ̸= 2, (2.60)

A2 = ∂2ϕ+ F̄21 = ∂2ϕ+B(L− x) (2.61)

where i = 1, 2, 3. The crucial point consists in transforming the wavefunction, |ψ⟩, and observables
in such a way that we deal only with gauge invariant quantities, independent of ϕ. This is achived
by the unitary transformation |ψ′⟩ = exp (−ieϕ) |ψ⟩ ≡ S|ψ⟩ and H′ = SHS−1. A closer look into
the new momenta

p′i = SpiS
−1 = pi + e∂iϕ (2.62)

confirms that the vertex variables are reabsorbed . It is easy to verify that both |ψ′⟩ and p′i are
gauge invariant. We conclude that

H′ =
1

2m

3∑
i=1

(
p′i +

∑
j<i

F̄ij

)2

. (2.63)

is the correct rewriting for the Hamiltonian. Since the transformation S is unitary, the spectra of
H′ and H coincide, reproducing the well-known Landau levels as expected [88].

2.6.2 The QED Lagrangian

Let us now consider the QED Lagrangian of Eq. (1.12), defined in a cubic volume with OBC, for
simplicity. It can be transformed into

L = ψ̄

[
i/∂−m− e(∂µϕ)γ

µ− e
∑
ν<µ

F̄µνγ
µ

]
ψ− 1

4

[∑
α<ν

∂µF̄να−
∑
α<µ

∂νF̄µα

][∑
α<ν

∂µF̄ να−
∑
α<µ

∂νF̄ µα

]
.

(2.64)
using the continuum rewriting of the gauge field of Eq. (2.49). Due to the presence of matter, this
is not yet written in terms of gauge invariant fields alone. Consequently, we define

ψ′ = exp (ieϕ)ψ. (2.65)

The equation above is the most important result of this Section, since it provides an expression of
the GIF expressed in the form of the field operator ψ of the initial fermionic operator, which is not
gauge invariant, multiplied by an operator depending on the gauge degrees of freedom. Overall,
ψ′ is gauge invariant. The term with the vertex variables is canceled from the Lagrangian, which
finally reads

L = ψ̄′
[
i/∂ −m− e

∑
ν<µ

F̄µνγ
µ

]
ψ′ − 1

4

[∑
α<ν

∂µF̄να −
∑
α<µ

∂νF̄µα

][∑
α<ν

∂µF̄ να −
∑
α<µ

∂νF̄ µα

]
. (2.66)
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This completes the rewriting of the QED Lagrangian in terms of F̄µν and the new fields ψ′, ψ̄′,
which are combinations of the vertex variables and the original fermionic fields. When written
explicitly we find a non-local structure of the Lagrangian both in the gauge kinetic part as well as
in the coupling to the matter fields. In principle, it is possible to derive a Hamiltonian through
canonical quantization. In practice, due to the non-locality of the kinetic term, this may be highly
non-trivial1.

2.7 Hofstadter model

We present now the reformulation of the Hofstadter model in d = 2 and d = 3, in terms of the new
variables. We perform it by using the asymmetric and symmetric constructions, in order to discuss
their differences and to show how they reproduce the correct results for the energy spectrum.

For a complete discussion of the importance and analytical properties of the Hofstadter model
we refer to Section 5.3.3. Here we remind its Hamiltonian, assuming the Peierls substitution to
take into account the effects of the external field [89]

H = −t
∑
r,ĵ

c†
r+ĵ
eiθr+ĵ,rcr + h.c., (2.67)

where ĵ are unit vectors along the spatial directions of the lattice (ĵ = x̂, ŷ in d = 2 and ĵ = x̂, ŷ, ẑ

in d = 3) , c†r, cr are the fermionic creation and annihilation operators and θr+ĵ,r is the Peierls
phase. The vector potential A(x) is associated with the external field. In order to have an isotropic
magnetic flux on each plaquette of the lattice, we consider a magnetic field whose magnitude is

Φ =
2πm

n
(2.68)

where m, n are coprime integer numbers. Its direction will be specified below. In the following, we
consider cubic lattices with V = Nd sites, d being the dimension, and sizes N = κn, with κ ∈ N.

In the next two Subsections we consider the 2d and 3d models, in both cases assuming PBC.
Our aim is to explicitly show how the formal constructions presented in Sections 2.2.2, 2.3 and
2.4.1 work and reproduce the known results.

1More precisely, writing explicitly the terms involving the strips in Eq. (2.66) we get that the only non-trivial
conjugate momenta are associated to F̄i0, i = 1, 2, 3, the electric field components. The right way to proceed should
be to introduce a set of Lagrange multipliers, associated to the vanishing conjugate momenta of the theory, i.e.
F̄21,31,32. Once done that, it should be quantized as a constrained theory.
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2.7.1 The 2d model

We consider a square lattice with V = N2 sites and a perpendicular commensurate magnetic field
B = Φ(0, 0, 1). We change notation with respect to Sec. 2.2, denoting a generic lattice site by
r = (r1, r2), in order to avoid confusion with the integer n appearing in Eq. (2.68).

Asymmetric construction

The only non-trivial component of the field strength tensor is F21. We use then Eqs. (2.28) and
(2.29) to rewrite the gauge field. The only non-zero plaquette strip is F̄21 = Φ(N−r1), with r1 < N .
We have still to specify the gauge invariant loops f̄i: they can be determined by imposing that the
flux on the plaquettes of the boundary sites rB,1 = (N, r2), rB,2 = (r1, N) is equal to Φ, so we have
a uniform magnetic field through the whole lattice. Using the definitions in Eq. (2.11) we get

f̄1(r2) = ΦNr2 + ϑ1, f̄2(r1) = −ΦNr1 + ϑ2. (2.69)

The constants ϑ1, ϑ2 account for twists of the fermionic operators at the boundaries. They are
gauge invariant physical quantities that should be specified along with the magnetic field. In order
to compare our construction with the known results in the literature for PBC, we choose these
parameter to be ϑ1 = ϑ2 = 0, and for further discussion on these parameters we refer to [90]. The
Hamiltonian (2.67) is rewritten as

H = −t
∑

r̸=rB,i

(c†
r+1̂

ei[ϕ(r+1̂)−ϕ(r)]cr + c†
r+2̂

ei[ϕ(r+2̂)−ϕ(r)+F̄21]cr + h.c.) +HB,

where the boundary terms are

HB = −t(c†
rB,1+1̂

ei(f1(r2)−ϕ(N,r2)+ϕ(1,r2))crB,1
+ c†

rB,2+2̂
ei(f2(r1)−ϕ(r1,N)+ϕ(r1,1)−(N−1)F̄21(r1))crB,2

+ h.c.).
(2.70)

The fermionic operators at the boundaries transform as

c†
rB,1+1̂

= e−iφ1(1,r2)c†(1,r2), c†
rB,2+2̂

= e−iφ2(r1,1)c†(r1,1), (2.71)

which allow us to suitably identify gauge invariant loops f̄i in the hopping phases of HB and
replace them with their values (2.69). Analogously to the QED case, we define new fermionic gauge
invariant operators

dr ≡ e−iϕ(r)cr, d†r ≡ c†re
iϕ(r). (2.72)

The operator dr is the equivalent of the GIF ψ′ introduced for QED in Eq. (2.65). The gauge
invariance of the operator dr, as well as its fermionic nature, is explicit. A gauge transformation of
function Λ(r) modifies the vertex variables through the shift ϕ(r) ∼ ϕ(r) + Λ(r), exactly canceled
by the phases of the gauge transformed operators cr, c†r, see Eq. (1.10).
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It is now immediate to check that the boundary terms in HB have the same structure of the
bulk terms. This is due to the definitions of Φ, N (since ΦN is an integer multiple of 2π) and the
chosen values of ϑ1 = ϑ2 = 0. Indeed we have

eif̄1(r2) = eiΦNr2 = 1, eif̄2(r1) = ei(Φ(N−N2)−Φr1) = e−iΦr1 (2.73)

As a consequence, the Hamiltonian in terms of the new gauge invariant variables is

H = −t
∑
r

(d†
r+2̂

e−iΦr1dr + d†
r+1̂

dr + h.c.). (2.74)

We remark that the above description of the physical system, which does not reference gauge
covariant operators, was achieved without ever fixing a gauge.

We now move to the momentum space, introducing the Fourier transformed operators

dr =
1√
V

∑
k

dke
ik·r, d†r =

1√
V

∑
k

d†ke
−ik·r. (2.75)

The full Hamiltonian then becomes

H = −t
∑
k

(2 cos k1d
†
kdk + e−ik2d†

k+Φ1̂
dk + h.c.) (2.76)

where the momenta are chosen in the first Brillouin zone (1BZ), i.e. the square [−π, π)× [−π, π).

The interplay between gauge and translational invariance in presence of a commensurate
background magnetic field allows us to introduce the concept of magnetic Brillouin zone [91]. In
this case, it is given by

MBZ : k1 ∈
[
− π

n
,
π

n

)
, k2 ∈

[
− π, π

)
. (2.77)

This enables us to split the structure of the Hamiltonian in terms of the so-called magnetic bands,
labeled by an index τ ∈ {0, 1, . . . , n− 1}:

H = −t
∑

k∈MBZ

∑
τ

[2 cos (k1 + τΦ)d†
k+τΦ1̂

dk+τΦ1̂ + e−ik2d†
k+(τ+1)Φ1̂

dk+τΦ1̂ + h.c.]. (2.78)

In matrix form, it can be written compactly as

H = −t
∑

k∈MBZ

(d†k, . . . , d
†
k+(n−1)Φ1̂

) Gn

 dk
...

dk+(n−1)Φ1̂

 , (2.79)

where

Gn =



2 cos (k1) e−ik2 0 . . . eik2

eik2 2 cos(k1 + Φ) e−ik2 0 . . .

0 eik2
. . . . . . . . .

... 0
. . . . . . e−ik2

e−ik2
... . . . eik2 2 cos(k1 + (n− 1)Φ)


. (2.80)
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This matrix depends on the flux, it has size n× n, and its eigenvalues, for each value of k, provide
the energy spectrum of the model. It is immediate to check that the result coincides with the one
obtained using directly a gauge, such as the Landau gauge. A simple check can be done in the
so-called π−flux case, where (m,n) = (1, 2). Here the matrix is

G2

2
=

(
cos k1 − cos k2
− cos k2 − cos k1

)
(2.81)

and the associated spectrum
Ek = ±2t

√
cos2 k1 + cos2 k2, (2.82)

recovering the known 2d analytical result [92, 93]. For general values of the magnetic fields, i.e. for
generic n and m, we checked that the spectrum of Gn is the correct one, e.g. by comparison with
the exact diagonalization of Eq. (2.67).

Symmetric construction

We present here the rewriting of Eq. (2.67) using the symmetric construction of Sec. 2.3. The
symmetry considerations leading to the definition of the MBZ still hold, the only difference is that
now the size of the lattice has to be N = 2κn, with κ ∈ N. The gauge field for the sites r ̸= rB,i is
now rewritten using Eqs. (2.21) and (2.22) , with

F̄12 = −Φ(N − r2), F̄21 = Φ(N − r1), ri < N. (2.83)

For the links at the boundary sites rB,i we use the Eqs. (2.24), (2.25) with the gauge invariant
loops f̄i of Eq. (2.69). As in the asymmetric case, the boundary terms have the same functional
form of the bulk ones, because of the assumption on the size N . Going into momentum space, the
MBZ is

MBZ :

[
− π

2n
,
π

2n

)
×
[
− π

2n
,
π

2n

)
. (2.84)

Introducing the gauge invariant operators d†r, dr as in Eq. (2.72) and the reduced magnetic field
Φ̃ ≡ Φ/2, the Hamiltonian can be rewritten as

H = −t
∑

k∈MBZ

∑
λ,τ

[e−i(k1+τ Φ̃)d†
k+τ Φ̃1̂+(λ+1)Φ̃2̂

dk+τ Φ̃1̂+λΦ̃2̂ + e−i(k2+λΦ̃)d†
k+τ Φ̃1̂+λΦ̃2̂

dk+(τ+1)Φ̃1̂+λΦ̃2̂ + h.c.].

(2.85)
using the two magnetic band indices τ, λ = {0, . . . , 2n− 1}. The associated matrix turns out to
be of size (2n)2 × (2n)2, which has to be compared with the Gn, of size n× n, obtained with the
asymmetric construction. Besides the energy spectrum being the same, the main difference is in
the definition of the MBZ, as we are going to discuss at the end of the Section.
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2.7.2 The 3d model

The analysis done in 2d can be extended to the 3d model. We consider a cubic lattice of size
V = N3, with an isotropic magnetic field B = Φ(1, 1, 1). Different orientations of the magnetic field,
such as B = Φ(1, 0, 0), produce different results, but the method is the same and for convenience
of exposition we limit ourselves to the isotropic case. In the following we will show how to retrieve
the spectrum of the model within our formalism.

Asymmetric construction

The non-trivial components of the field strength tensor are F21 = F32 = Φ and F31 = −Φ. We use
Eq. (2.29) to express the vector potential A(x). The relevant strip variables are

F̄21 = −F̄31 = Φ(N − r1), F̄32 = Φ(N − r2), ri < N. (2.86)

The functional form of the loops f̄i can be determined by imposing the constraints on the proper
flux per plaquette at the boundary sites, as for the 2d case. By using the definition in Eq. (2.31),
we obtain the loops

f̄1(r2, r3) = ΦN(r2− r3)+ϑ1, f̄2(r1, r3) = NΦ(r3− r1)+ϑ2, f̄3(r1, r2) = NΦ(r1− r2)+ϑ3.

(2.87)
As before, we consider the case ϑ1 = ϑ2 = ϑ3 = 0. Introducing directly the operators in Eq. (2.72)
and the MBZ

MBZ :

[
− π

n
,
π

n

)
×
[
− π

n
,
π

n

)
×
[
− π, π

)
, (2.88)

we split the structure of the Hamiltonian in magnetic bands, labeled by two indices λ, τ ∈
{0, 1, . . . , n− 1}:

H = −t
∑

k∈MBZ

∑
λ,τ

[
2 cos(k1 + λΦ)d†

k+λΦ1̂+τΦ2̂
dk+λΦ1̂+τΦ2̂ + e−i(k2+τΦ)d†

k+λΦ1̂+τΦ2̂
dk+(λ+1)Φ1̂+τΦ2̂

(2.89)

+ e−ik3d†
k+λΦ1̂+τΦ2̂

dk+(λ−1)Φ1̂+(τ+1)Φ2̂ + h.c.
]
.

The associated matrix has size n2×n2. We verified that the spectrum of this Hamiltonian coincides
with the known one in literature [94]. A simple analytical check can be done in the π−flux case,
where (m,n) = (1, 2). Here the matrix is (factorizing an overall factor of 2)

G2 =


cos k1 0 cos k2 cos k3
0 cos k1 cos k3 − cos k2

cos k2 cos k3 − cos k1 0

cos k3 − cos k2 0 − cos k1

 = cos k1 σz⊗12+cos k2 σx⊗σz+cos k3 σx⊗σx (2.90)
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whose eigenvalues are
λ1,2(k) = ±

√
cos2 k1 + cos2 k2 + cos2 k3. (2.91)

The full spectrum is related to them via

E(k)

2t
= λ1,2(k), (2.92)

reproducing exactly the dispersion relation in [94].

Symmetric construction

One can proceed as in the 2d case, the only computational difference being represented by the size
of the lattice, which now has to be N = 3κn, with κ ∈ N. The gauge field components are

A1 = ϕ(r+ 1̂)− ϕ(r) +
2F̄13 + F̄12

3
, (2.93)

A2 = ϕ(r+ 2̂)− ϕ(r) +
2F̄21 + F̄23

3
, (2.94)

A3 = ϕ(r+ 3̂)− ϕ(r) +
2F̄32 + F̄31

3
, (2.95)

with the boundary links that can be immediately obtained through the proper symmetrization of
Eq. (2.31). Going into momentum space, the resulting MBZ is

MBZ :

[
− π

3n
,
π

3n

)
×
[
− π

3n
,
π

3n

)
×
[
− π

3n
,
π

3n

)
. (2.96)

Introducing the gauge invariant operators d†r, dr as in Eq. (2.72) and the reduced magnetic field
Φ̃ ≡ Φ/3, the Hamiltonian can be rewritten as

H = −t
∑
τ,ϵ,λ

∑
k∈MBZ

[
d†
k+τ Φ̃1̂+(ϵ+1)Φ̃2̂+(λ−2)Φ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k1+τ Φ̃)

+ d†
k+(τ−2)Φ̃1̂+ϵΦ̃2̂+(λ+1)Φ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k2+ϵΦ̃)

+ d†
k+(τ+1)Φ̃1̂+(ϵ−2)Φ̃2̂+λΦ̃3̂

dk+τ Φ̃1̂+ϵΦ̃2̂+λΦ̃3̂e
−i(k3+λΦ̃) + h.c.

]
, (2.97)

with the help of three magnetic band indices τ, ϵ, λ = {0, . . . , 3n− 1}. The size of the associated
matrix is (3n)3 × (3n)3, much larger than the one obtained with the asymmetric construction.
Obviously, the spectra associated to the same pair (m,n) are found to coincide.
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Comparison between constructions

We are now ready to compare the two constructions applied to the Hofstadter model. First, we
remind that using the Hasegawa gauge [95] in 3d (or the Landau gauge [88] in 2d) one has to
diagonalize, for each k belonging to the MBZ, a matrix n× n. If one uses a different gauge, the
matrix to be diagonalized may be of larger size, and, at the same time, the MBZ also changes.
What does not change is the energy spectrum.

Let us now discuss the results obtained using our formalism in which a choice of the gauge
is not done. In 2d, with the asymmetric construction we obtained a matrix in momentum space
of size n × n, where the MBZ is Eq. (2.77). With the symmetric construction we symmetrized
the MBZ, as showed in Eq. (2.84), and the band structure of the Hamiltonian, but the price to
pay is in the dimensionality of the matrix, of size (2n)2 × (2n)2, larger than the asymmetric one.
The same considerations hold for the 3d case, with different dimensions of the matrix, respectively
n2 × n2 and (3n)3 × (3n)3, and the definitions of MBZ, given by Eqs. (2.88) and (2.96). One
concludes that the MBZ depends, in our formalism, on the chosen construction. Furthermore
the most symmetric MBZ, in which the x, y, z axis enter equally – as one would expect since the
magnetic field is isotropic – is given by the symmetric construction2. Therefore, if the symmetry in
momentum space has to be preserved, it is more convenient to use the symmetric construction. If,
at variance, one wants to reduce the dimension of the matrix to be diagonalized, e.g. for numerical
purposes, then the asymmetric construction is more suitable.

2.8 Gauge invariant mean-field theory

In the previous Sections, after having introduced the main ideas of the reformulation, we applied it
to different cases: a single particle in a static magnetic field, the pure lattice gauge theory (without
dynamical matter), the Hofstadter model (where the magnetic field is static) and QED (where
there are both dynamical matter and gauge fields). The reformulation can be applied as well to
other models, such as the Schwinger-Thirring model, where the matter is interacting with a term
Lint ∝ (ψ̄γµψ)2, the Gross-Neveau model or bosonic QED [96]. For example, in the case of the
Thirring interaction, the Lagrangian would be

L[F̄µν , ψ′, ψ̄′] = LQED[F̄µν , ψ
′, ψ̄′] + g(ψ̄′γµψ′)2, (2.98)

2We remark that from the textbook definition of MBZ one can see that its volume is unique for each dimensionality
[91]. Focusing on the 2d case, this is because, denoting with T̂ĵ the generators of the magnetic translational group,
the minimal integer doublet (a, b) such that [T̂a0̂, T̂b1̂] = 0 defines the magnetic unit cell in real space. For the
asymmetric construction we have (a, b) = (2, 1), while in the symmetric one (a, b) = (4, 4), therefore the minimal
one is the first one.
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where LQED[F̄µν , ψ
′, ψ̄′] is the reformulated Lagrangian in Eq. (2.66). Moreover, the reformulation

could be applied to models in ladder geometries, which are nowadays subject of considerable
attention [97–100].

The most interesting theories are the ones in which the matter is interacting in presence of
a magnetic field, or, even more, lattice and continuum gauge theories where the gauge fields are
dynamical. Here we discuss how the present formalism may be advantageous in both cases.

For fermions in a static magnetic field, interactions give rise to the so-called Hubbard-Hofstadter
model, which is considerably more difficult to analyze. Our reformulation provides an alternative
path, arguably more suitable as it preserves gauge invariance exactly, to study these models
within certain approximation schemes, like mean-field. Indeed, the order parameters that one
may introduce in the (non-magnetic) Hubbard model are clearly not gauge invariant. At variance,
using the fermionic operators d, d† one can construct gauge invariant order parameters, whose
self-consistency has to be checked. In a similar way the correlation functions of the Hubbard
model, when an approximation is used, are expected to be gauge dependent. However, if one
determines, even in an approximate way, correlation functions of the d d† operators, they will be
gauge invariant.

The situation is even more relevant for standard gauge theories, which have dynamical gauge
fields. The application of a naive mean-field approximation leads to a self-consistent equation
for a non gauge-invariant quantity, which is in tension with Elitzur theorem [10, 23]. On the
lattice, subsequent efforts were able to fix these drawbacks by introducing a generalized mean-field
procedure, where several “mean-fields" for each gauge degree of freedom are introduced [49]. In
general, this procedure appears rather cumbersome to be implemented and not easily extendable
to the continuum. The present reformulation provides an alternative starting point for a mean-field
approximation where a self-consistent equation for the targeted order parameter can be written
in agreement with Elitzur theorem. The main challenges consist in identifying suitable order
parameters in terms of F̄µν , ψ′ and subsequently solving their related self-consistent equations (see
Appendix A.1 for more details about Abelian LGTs).

2.9 Conclusions

In this Chapter we gave a reformulation of Abelian gauge theories in terms of gauge invariant fields
(GIF). In particular, we discussed how to split the gauge field Aµ into its gauge invariant part,
represented by Fµν , and its gauge covariant one, enclosed in the vertex variables ϕ. From the field
stress tensor, we have introduced the plaquette strips F̄µν in order to define a set of independent
field variables {F̄µν , ϕ}, whose determination is the main goal of our reformulation. For periodic
boundary conditions, these variables are supplemented by loops f̄µ that wrap around the different
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directions of space-time.

The construction was first developed on the lattice and in (1 + 1) − d, which provides the
basic building block for the generalization to arbitrary dimensions and to the continuum limit.
The choice of how to make these constructions is not unique and here we explored two of them,
that we called asymmetric and symmetric constructions. All possible constructions are related
by gauge transformations and, therefore, are physically equivalent. We stress, however, that a
gauge is not fixed and we deal only with fields that are independent of any possible chosen gauge.
The procedure is performed at finite volume and we have used open (OBC) and periodic (PBC)
boundary conditions, which fit well within the formalism.

This kind of constructions arises naturally, as a change of variables, in the Lagrangian formalism.
However, performing their canonical quantization is predicted to be an arduous task due to the
presence of non-local kinetic terms. Despite that, we emphasize that the non-locality of the
Lagrangian formalism does not break unitarity nor Lorentz invariance. Furthermore, we showed
through two examples, i.e. charged particle in an external magnetic field and in the Hofstadter
model, that the same kind of construction can be applied in the Hamiltonian formalism.

From the example provided by the Hofstadter model it becomes clear that different choices on
the constructions have practical implications. The Hamiltonian diagonalization can be reduced to
the diagonalization of matrices of finite size for every value of the momentum. The asymmetric
construction leads to smaller matrices but an asymmetric magnetic Brillouin zone (MBZ). At
variance, the symmetric constructions implies the diagonalization of larger matrices but produces a
symmetric MBZ.

In the literature, there are similar efforts of describing gauge theories solely in terms of gauge
invariant fields. The method presented in [54–57] recombines properly the matter and gauge fields
in order to rewrite quantum electrodynamics (QED) in terms of gauge invariants, and quantize
the theory in terms of them. Difficulties arise due to the presence of non-local quantities in the
quantization procedure [55, 57]. In this aspect this is analogous to our rewriting, as the plaquette
strips interact non-locally. Moreover, the authors underline that, within their approach, the
fermions and the photons are no longer fundamental fields [55]. The new degrees of freedom are
the currents of the theory, regarding the matter, and a couple of covector and complex scalar fields,
regarding the gauge part. In our rewriting the new degrees of freedom are different: we combined
the vertex variables with the matter fields to obtain degrees of freedom that remain fermionic
but are also now gauge invariant. Some aspects of our reformulation are also shared with [64–66]
where the plaquettes terms, on the lattice, are used to replace the links associated to the gauge
field Aµ. The main difference lies, again, in the definition of the matter variables, in Eqs. (2.65)
and (2.72) as just described. In our procedure, this leads to non-local interactions between gauge
and matter fields. The removal of non-locality, of a similar form, was solved in [66], thanks to the
introduction of new variables. A future interesting step would be to understand if it is possible to
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introduce further variables, in a similar way, in order to make the matter-gauge interacting term of
our theory local as well.

The reformulation presented here has been applied to gauge theories with an Abelian symmetry
group. We expect that the generalization to non-Abelian gauge theories is possible by following the
same lines presented here, and we do not anticipate specific problems related to the non-Abelian
nature of the symmetry group. At variance, we think that the generalization to LGTs on non-
bipartite lattices would not be straightforward. Moreover, in view of possible developments, we
observe that this formalism could be useful to investigate phase diagrams of gauge theories within
a mean-field framework, both in the continuum and on the lattice.

Finally, we would like to stress that both classical and quantum simulations of gauge theories
may considerably profit from the reformulation presented here. Clearly, reducing the number of
degrees of freedom is potentially interesting in both cases. For the case of quantum simulators
there is no longer a local symmetry to be implemented, as it was used to decouple the non-physical
fields. From the point of view of the reduction of the number of degrees of freedom, this formalism
is on a similar footing with maximal gauge fixings [84]. The difference lies in the fact that our
reformulation allows for the identification of a new matter field ψ′, expressed in terms of the
variables ϕ which are integrated out, and new fields F̄µν . Both ψ′ and F̄µν are gauge invariant
and the reformulated theory is expressed in terms of them: L = L(ψ′, F̄µν). In this, which is for
all practical purposes a trading of difficulties, the final Lagrangian has non-local terms and the
construction of the Hamiltonian could be a non-trivial step. Depending on the form of the final
theory, this may provide the starting point of approximate methods, in which correlation functions
and order parameters are gauge invariant by construction. Ultimately, it will be the success of
performing sensible approximations of interacting lattice field theories that will show whether the
reformulation presented here is useful.
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Chapter 3

Quantum simulators with ultracold atoms

In this second Part of the Thesis we focus directly on quantum simulations of Abelian gauge
theories, employing the Hamiltonian formulation introduced in Section 1.2.2. Among the various
platforms that have been developed during the last year, we make use of ultracold atoms loaded in
optical lattice to simulate the gauge degrees of freedom. The following Chapter has then a dual
purpose, i.e. to introduce the basic concepts about ultracold atoms loaded in optical lattice and to
show how they can be employed as quantum simulators of lattice gauge theories. Its structure is
divided into three blocks.

In the first and second parts, we discuss how to generate optical potentials to trap neutral
atoms in periodic lattices, and present the Hamiltonians describing the resulting systems in the
tight-binding approximation. After a general discussion, we focus in particular on the features of
the extended Hubbard models, allowing for the description of trapped ultracold Bose gases with
internal degrees of freedom.

In the third part, we show what is the state of the art regarding quantum simulators of gauge
theories with ultracold atoms, discussing the general features of the proposals that are present in
the scientific literature. We finally point out what are the open problems and challenges in higher
dimensions.

3.1 Ultracold atoms in optical lattices

Ultracold dilute atomic gases are made of neutral atoms that can have bosonic or fermionic features,
depending on their statistics, cooled down to temperatures of the order T ≃ 10− 100 nK by means
of techniques such as the laser or evaporative coolings [101]. The typical length scales and number of
atoms are L ≃ 10− 100 µm and N = 102− 106 atoms, giving rise to densities ρ ≃ 1013− 1015 cm−3.
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The presence of interfering counter-propagating laser beams leads to the generation of spatially
periodic optical potential, i.e. to the presence of an optical lattice. Ultracold atoms that experience
this potential are confined into periodic spatial structures, resembling crystalline lattices, whose
parameters and effective Hamiltonians can be controlled and tuned through the ultracold atomic
parameters.

Historically, there has been a huge progress starting from the 1980s, both theoretically and
experimentally, thanks to the development of optical control and imaging techniques for atoms and
molecules. In particular, ultracold atoms in optical lattices acquired a huge importance during the
last ten years in the realm of quantum many-body physics and quantum simulators, since they
allow for the study of various physical phenomena with a lot of flexibility in the design, analysis
and control of experimental set-ups and optical lattice parameters.

𝑁

𝐿

(a) (b)

Figure 3.1: (a) Ultracold atoms in a parabolic optical trap. N and L are respectively the number
of atoms and the size of the atomic cloud within the trap. (b) Three atoms loaded in the minima
of an optical lattice.

3.1.1 Optical potentials and control parameters

The basic tools for the generation of ultracold lattice gases are the optical potentials. They
essentially come from the interaction of the laser field with the induced dipole moment of the atom,
causing a shift in the potential energy, an effect that is usually called the AC Stark shift [102].
Mathematically this can be understood by considering a two-level atom, with ground state |g⟩ and
excited state |e⟩, in the presence of an external laser field of the form E(x, t) = E(x)e−iωtξ̂ + h.c..
By defining the detuning δ ≡ ωe − ω and moving to the rotating frame of frequency ω, the atomic
Hamiltonian is written as

Hatom =
p2

2m
+ δ|e⟩⟨e|. (3.1)
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If we assume that the amplitude of the electric field varies slowly with respect to the atomic size1,
we can consider the light-matter interaction in the dipolar approximation, i.e.

Hdip = −d · E(x, t), (3.2)

being d the induced atomic dipole moment. In principle, there is also the coupling with the
magnetic dipole moment of the atom, but usually it can be neglected in the study of optical lattices.
The Hamiltonian term Hdip can be written in the rotating frame too, with the action of the unitary
transformation U(t) = e−iωt|e⟩⟨e|, and neglecting the fast rotating terms ∝ e2iωt, i.e. performing the
rotating wave approximation, it reduces to

Hdip =
Ω(x)

2
|e⟩⟨g|+ h.c. (3.3)

with Rabi frequency Ω(x) = −2E(x)deg. By further assuming the far-detuned condition, i.e.
|δ| ≫ Ω, the transitions between the ground and excited states are largely suppressed. The dipole
term can be treated in perturbation theory, and the non-trivial virtual processes are associated to
back and forth transitions from the ground to the excited levels. The effective Hamiltonian is

H =
p2

2m
+ Vop(x), Vop = −|Ω(x)|2

4δ
, (3.4)

where Vop(x) is the optical trapping potential. This is an effective potential felt by the atom in the
ground state of this two-level picture, and can be attractive or repulsive depending on the sign of
the detuning δ. For δ < 0 the particles are trapped at the minima of Vop, and the lattice is said to
be blue-detuned. In the opposite case, i.e. δ > 0, the atoms sit at the maxima of the laser intensity
and the lattice is said to be red-detuned.

The proper choice of the spatial dependence of the laser field can generate a periodic structure
giving rise to the desired optical lattice, with the atoms filling the minima of the trapping potential.
For example, the one-dimensional standing wave E(x) = E0 cos(kx) results in the trapping potential
Vop(x) = V0 cos

2(kx), where k = 2π/λ, λ being the laser wavelength, and V0 the depth of the
optical lattice. In larger dimensions, pairs of counter-propagating lasers in orthogonal directions
can be considered to generate the optical lattice. As a general comment, the lattice geometry and
dimensionality of the optical lattice can be controlled by tuning the so called control parameters, i.e.
the direction, polarization, intensity phase and frequency of the counter-propagating laser beams
[103]. The optical lattices have a lot of interesting physical features: they are rigid and robust,
not supporting phononic excitations; the tunneling of the atoms between the various potential
wells can be controlled through various techniques, such as lattice tilting or laser assisted coherent
transitions; the on-site interactions, as well as nearest neighbor or long range ones, governs the

1This is all what we need in this case, since the laser amplitude is assumed time-independent. If this is not the
case, we must further assume that E(x, t) varies slowly with respect to ω−1.
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properties of the dilute atomic system. At last, we mention the possibility of having spin-dependent
optical lattices, that can be created using counter-propagating laser beams with polarizations
forming a given relative angle. In this way, atoms with different spin can experience different
potentials.

3.1.2 Hubbard models

Due to the above mentioned physical features, optical lattices are ideal and rigid periodic potentials
in which the ultracold atoms can move. For this reason, the moving particles resemble in many
aspects electrons in solid state systems: in the free case, the single particle energy spectrum displays
a band structure, where the Hamiltonian wave functions are the Bloch functions [104]. For deep
lattices, i.e. for sufficiently strong lattice potentials, the bands are well separed in energy, and if
the temperature is small enough only the lowest band of the system is occupied, constituting the
well-known tight-binding approximation.

Mathematically, the atomic quantum field operators are projected into the lowest band.
Instead of using the Bloch basis unk(x) we can write everything in the Wannier orthonormal basis
wn(x− xi), where n is the band index, k is the quasi-momentum in the first Brillouin zone (1BZ)
and xi are the lattice sites coordinates. Contrarily to the Bloch eigenfunctions, the Wannier ones
are not eigenstates of the Hamiltonian, but they have the advantage of exponentially localized
around the lattice sites xi: this choice of basis is particularly useful if one wishes to work with
local single-particle wave functions [17]. The Wannier functions can be written as

wn(x− xi) ∝
∑
k

e−ik·xiunk(x) (3.5)

in terms of the Bloch waves. In the tight-binding approximation we need only the lowest Wannier
orbital w0(x− xi) ≡ ψi(x), and we can perform a second-quantized expansion of the wave function
Ψ(x) in terms of the Wannier functions and single particle (bosonic or fermionic) annihilation
operators ai [105]

Ψ(x) =
∑
i

ψi(x)ai. (3.6)

The full quantum many-body Hamiltonian has the form

H0 =

∫
dx

[
Ψ†(x)

[
− ∇2

2m
+ Vop(x)

]
Ψ(x) +

g

2
Ψ†(x)Ψ†(x)Ψ(x)Ψ(x)

]
, (3.7)

where we assumed that s-wave interactions are the most relevant in the ultracold regime, and the
interactions between the atoms are given by the contact potential

V (x− x′) =
4π2a0
m

δ(x− x′) ≡ gδ(x− x′), (3.8)
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where m is the atomic mass and a0 is s-wave scattering length that characterizes the interactions
by means of elastic binary collisions at low energies between neutral atoms. By inserting Eq. (3.6)
into the last expression we get the Hubbard Hamiltonian

H0 = −
∑
⟨i,j⟩

tija
†
iaj + h.c. +

1

2

∑
i

Uia
†
ia

†
iaiai − µ

∑
i

a†iai, (3.9)

with the parameters defined as

tij ≡ −
∫

dx w∗
0(x− xi)

[
− ∇2

2m
+ Vop(x)

]
w0(x− xj), Ui ≡ g

∫
dx |w0(x− xi)|4. (3.10)

These parameters represent respectively the tunneling elements between nearest neighbors ⟨i, j⟩ in
the optical lattice2 and the on-site interaction Ui for the contact potential. Both of them can be
tuned and controlled properly to achieve the target system when the Hubbard model is employed
as a quantum simulator.

Indeed, the tunneling elements tij can be controlled through external laser beams, while the
tuning of the on-site interaction Ui require some extra care because of the double dependence on
the lattice laser beams and the Wannier orbitals. There are mainly two ways to tune the interaction
term, and both of them require the presence of external fields: the first one is related to the
Fano-Feshbach resonance, and makes use of a magnetic field B to change the effective scattering
length of the system as = as(B) [106–110]; the second one employs optical resonances to tune
interactions using the Rabi frequency of an external laser. In both cases there are pros and cons,
depending on the features of the external fields and on the atomic species loaded in the optical
lattice.

As a last point, we write down the expression of the Hubbard Hamiltonian in presence of more
than one atomic species with the same statistics [103, 110]. By denoting with Greek indices the
atomic species, we have

H0 = −
∑
⟨i,j⟩
α,β

tαβij a
†
iαajβ + h.c. +

1

2

∑
i

α,β,γ,δ

Uαβγδ
i a†iαa

†
iβaiγaiδ −

∑
i,α

µαa
†
iαaiα, (3.11)

where in the most general case also the hopping and interaction parameters, as well as the chemical
potential, depend on the given atomic species.

2This is true within the deep lattice condition, because the hopping energies are exponentially suppressed for all
the sites that are not nearest neighbors.
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3.2 Ultracold spinor atomic gases

In the previous Section we treated the theory of ultracold lattices and atoms without internal
degrees of freedom, considering the spinless case. Here we include the possibility of having atoms
with different internal states, considering the ultracold spinor atomic gases: the atoms can be
either fermions or bosons with non-zero internal angular momentum whose spatial orientation is
not externally constrained [103].

From now on, unless differently specified, we consider ultracold bosons loaded in optical lattice,
and therefore we deal with the theory of spinor Bose-Einstein condensates (BECs), i.e. degenerate
Bose gases with spin internal degrees of freedom. With respect to usual (scalar) BECs, they present
multicomponent order parameters and display richer physical phenomena, due to the interplay
between superfluidity and magnetic effects. As a consequence, they provide a useful platform for
the study of different physical aspects, such as the role of symmetry breaking and long-range order
in quantum-ordered materials, quantum phase transitions and non-equilibrium quantum dynamics
[103, 111, 112].

The general atomic Hamiltonian of spinor BECs can be written on the basis of symmetry
arguments, and, apart from the usual single-particle terms, it includes quantum number dependent
interaction terms. For a spin-f BEC we denote with ϕm(r) the bosonic field operators, satisfying
the canonical commutation relations [ϕm(r), ϕ

†
m′(r′)] = δm,m′δr,r′ , where m = −f,−f + 1, . . . , f

is the magnetic quantum number and f is the hyperfine spin of the given atomic species. The
microscopic Hamiltonian is

H = H0 +H
(f)
int , H0 =

∫
dr

∑
m

ϕ†
m(r)

[
− ℏ2∇2

2M
+ Utrap(r)

]
ϕm(r), (3.12)

H
(f)
int =

1

2

∫
dr

∑
m1,m2,m′

1,m
′
2

Cm1m2

m′
1m

′
2
ϕ†
m1

(r)ϕ†
m2

(r)ϕm′
1
(r)ϕm′

2
(r). (3.13)

The single-particle term, H0, includes the possibility of having a trapping potential Utrap(r). H
(f)
int

is the most general on-site interaction term for hyperfine spin f . For our purposes, it is enough to
consider the f = 2 case

H
(2)
int =

1

2

∫
dr [c0 : n

2(r) : +c1 : F
2(r) : +c2A

†
00(r)A00(r)], (3.14)

where : O : represents the normal order for the operator O, c0, c1 and c2 are numerical coefficients
related to the scattering lengths aF in the various channels, and

n(r) =
2∑

m=−2

ϕ†
mϕm, A00(r) =

2ϕ2ϕ−2 − 2ϕ1ϕ−1 + ϕ2
0√

5
, Fi(r) =

2∑
m,m′=−2

ϕ†
m(fi)mm′ϕm′ .

(3.15)
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The dependence on r, on the right hand side, was ommitted for simplicity. The above defined
quantities are n(r) the total density operator, A00 the amplitude of the spin singlet pair, and Fi
the spin density operators, with fi representing the spin-2 rotation matrices.

3.2.1 Effective Hubbard Hamiltonians and dipolar interactions

Without further interactions, the spinor BECs in spin-independent optical lattices can be described
by the Bose-Hubbard (BH) model [105, 113]. Expanding the field operators in terms of Wannier
functions, and introducing the associated annihilation and creation operators bim, b†im, the BH
Hamiltonian can be written as

HBH = −t
∑
⟨i,j⟩,m

(b†imbjm+h.c.)+
U0

2

∑
i

ni(ni−1)+U1

∑
i

(A†
00)i(A00)i+

U2

2

∑
i

F2
i −µ

∑
i

ni, (3.16)

with ni =
∑

m b
†
imbim, Fiα =

∑
m,m′ b

†
im(fα)mm′bim′ and A00 is the spin singlet amplitude written in

terms of bim, b†im. The single site interactions are not enough to generate the desired plaquette
terms within our proposal. However, this can be accomplished by including magnetic dipole-dipole
interaction (MDDI) terms, and considering spinor dipolar BECs. The MDDI couples the spin
degrees of freedom with the orbital ones, conserving the total angular momentum. For spinor
BECs, the MDDI can be relevant, as it is spin dependent and long-ranged. Its Hamiltonian in
second quantization is given by

Vdd =
cdd
2

∫
drdr′

∑
ν,ν′

: Fν(r)Qνν′(r− r′)Fν(r
′) :, Qνν′(r) =

δνν′ − 3r̂ν r̂ν′

r3
, (3.17)

with the coefficient cdd ∝ d2 related to the electric dipole moment. In the optical lattice Hamiltonian
this generates a series of long-range terms

Hdd =
1

2

∑
i̸=j

U ij
ddninj, U ij

dd ≡ cdd

∫
drdr′ |w(r− ri)|2

1− 3 cos2 θ

|r− r′|3
|w(r′ − rj)|2, (3.18)

where θ is the angle between the dipole moment and the vector r − ri. The full Hamiltonian
HEBH = HBH +Hdd falls in the class of the so-called extended Hubbard models. Depending on the
values of t, U0, U1 and Udd, that can be tuned independently, the extended BH has different quantum
transitions and phases, including Mott insulator, superfluid and even supersolid phases, provided
that more than nearest neighbors interaction terms are considered in the extended Hamiltonian
[114–116].

In principle, the dipolar interaction is dominant in gases of polar molecules when the application
of a strong electric field is considered, due to their strong electric dipole moments. In this case,
these are called spin-polarized dipolar BECs. The dipole-dipole interaction can be properly tuned
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through a rotating field [117], allowing for the control of the interaction strength cdd, that can be
positive or negative according to the relative orientation of the dipoles. On the other hand, the
MDDI can be neglected in several cold atomic systems, such as scalar alkali atoms, while they play
an important role for other species, e.g. Cr and Dy [118, 119]. We refer to the reviews [111, 112],
and the references therein, for more details on the various physical properties of spinor (dipolar)
BECs.

3.3 Quantum simulators of lattice gauge theories

Due to their physical features, ultracold quantum gases in optical lattices are highly tunable systems,
allowing for the investigation of strongly correlated quantum matter [120, 121] and proposing
themselves as an optimal example of the original Feynman’s idea about quantum simulators [122].
Indeed, they illustrate perfectly the modern definition of quantum simulator, i.e. a controllable
system that mimics a family of physical models whose properties are otherwise inaccessible through
the usual theoretical, experimental or numerical ways. In this respect, ultracold atoms can emulate
the physics of different systems in various physical sectors, from correlated electronic systems, such
as high-Tc superconductors [123, 124] to quantum phase transitions [125, 126].

Over the past years, particularly relevant has been the use of quantum simulators to study
gauge theories, since the classical approaches to analyse them present various drawbacks, depending
on the regimes and properties of interest. The most prominent example in high-energy physics is
the analysis of quantum chromodynamics (QCD) through Monte Carlo simulations: due to the
sign problem, this numerical method can not approach the out of equilibrium real time evolution
or the analysis of the theory with finite chemical potential [14, 15]. Quantum simulators based on
ultracold atomic platforms emerge here as a promising alternative to investigate such phenomena for
lattice gauge theories (LGTs), being not affected by the intrinsic limitations of classical simulators
[16, 17, 38]. Despite this, the quantum simulation of full QCD is still far from being realized, as
there are challenging aspects to be faced [127–130].

As a consequence, various simpler models sharing the key physical features of the respective
full models are analysed in the modern literature. In the case of pure Abelian gauge theories,
quantum simulators of compact quantum electrodynamics (cQED) are studied in (2 + 1)− d using
both BECs [131] and single atoms [132] loaded in optical lattice. With the inclusion of dynamical
matter, interesting features are observed both in (1 + 1)− d, with the simulation of the Schwinger
model [40–42, 60], and in (2 + 1)− d, including dynamical fermions in the pure gauge case [133].

In all these cases, the gauge symmetry is obtained only at low-energies, manifesting itself
as a property of the effective Hamiltonian of the model and not as a fundamental symmetry of
the simulators. This is due mainly to the fact that the typical experimental platforms used as
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quantum simulators of LGTs do not naturally encode any local symmetry. One has then to consider
different strategies to enforce it, such as brute force Hamiltonian engineering [134–137], gauge or
matter integration [63, 138–140], energy penalty [131, 132, 141–144] and Zeno dynamics [145]. For
a detailed presentation of these methods we refer to the review [38]. Another possibility, that we
are going to discuss in details in the next Section, is to enforce the gauge invariance in ultracold
atomic platforms by means of many-body interaction symmetries [24]. With this method, the local
invariance is directly built into the theory, and not obtained as an effective and emergent property
of the quantum dynamics.

3.3.1 Higher dimensions: proposals and challenges

With respect to usual many-body quantum systems, there are additional features to be considered
in the case of theories with gauge fields in dimensions d > 1. To be specific, the designed quantum
platform should

• be properly consistent with the local symmetry, i.e. the gauge invariance, of the theory;

• involve complex many-body interaction terms to simulate the gauge fields dynamics.

In addition, the implementation of the Hilbert space of dynamical gauge fields in a quantum
simulator is a complicated task, since it is infinite-dimensional for a single link in the Wilson
formulation of LGTs [10]. A possible way to overcome this difficulty is to replace the link variables
with discrete degrees of freedom, considering the quantum link formulation of gauge theories.
Even if they possess a finite number of states, quantum link models (QLMs) preserve the gauge
symmetry of the original model, paying the price of introducing non-unitary operators on the links
of the lattice [40–42]. Due to the finiteness of the Hilbert space and the preservation of the local
symmetry, they are suitable to be implemented and analysed as quantum simulators. In addition,
being them different from standard LGTs, different new phases are expected to appear in the
respective phase diagrams, and this is a further aspect that motivated the interest towards these
model in the modern literature [43–45, 47, 146, 147].

Recently, concerning the features in d > 1 both in the Wilson and quantum link formulations,
different proposals involving ultracold atoms in optical lattice ([24] and references therein) and
Rydberg atoms [21] were presented in the literature. In the next Subsections we describe in details
the techniques presented in [24], to highlight what are the strong points and limitations and show
how the plaquette interactions arise. As a last point, we compare it with the proposal of Ref. [21].
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Local gauge invariance from angular-momentum conservation

In the proposal of Ref. [24], the authors make use of a fundamental symmetry of the ultracold
atomic system to enforce the gauge invariance of the target theory. The difference with respect to
the above mentioned proposals is that the local symmetry is not emergent, but already built into
the theory.

(a) (b)

Figure 3.2: (a) Optical lattice structure with bosons (B) and fermions (F) respectively on the
links and vertices. (b) Choice of the mF values: the spacing between bosons (left) and fermions
(right) is required to enforce gauge-invariant collisions. Both panels are adapted from Ref. [24].

The proposal under discussion includes both fermions and bosons, to simulate both matter
and gauge fields. The gauge symmetry is generated by the atomic interactions between fermions
and bosons loaded in the optical lattice, structured as in Fig. 3.2(a): in this scheme, the species
are placed in order in order to have maximal interactions on the links.

Apart from the lattice structure, the internal states in the scattering processes between
fermions and bosons are chosen in a way to respect the angular momentum conservation. Indeed,
in the scatterings the z-component of the total hyperfine angular momentum, i.e. mF , is conserved.
The values of mF for the employed atomic species can be chosen to keep only the gauge-invariant
collisions, while others are automatically excluded since they violate a fundamental symmetry of
the simulator. Said differently, the angular momentum conservation of the quantum simulator is
equivalent to the gauge symmetry of the target theory.

With this setting, proposals for (1 + 1)− d and (2 + 1)− d cQED and SU(N) theories are
presented. For concreteness, let us discuss the (1 + 1)− d case: here two bosonic species, i.e. (a, b)

and two fermionic species, i.e. (c, d) are needed to simulate the theory. In the hypothesis that the
number of bosons per link is a constant, i.e. N0, we can represent each link with the Schwinger
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algebra [148]

L+ = a†b, L− = b†a, Lz =
a†a− b†b

2
. (3.19)

Concerning the fermions, the case in which the c-species populates the even vertices, while the
d-species the odd ones, is considered, in a way to simulate staggered fermions [138, 149]. In this
framework, the conservation of angular momentum reads

mF (a) +mF (c) = mF (b) +mF (d), (3.20)

and the only allowed process3 are scattering a, c → b, d, associated to terms in the Hamiltonian
like c†ia

†
ibidi+1 + h.c.. This ultimately means that the difference in angular momentum in the

fermionic hoppings is exactly compensated by bosonic hoppings in the opposite directions, leading
to correlated hoppings coming from the interactions between bosons and fermions.

Plaquette interactions and the loop method

(a) (b)

Figure 3.3: (a) Vertices associated to the auxiliary fermions ψ, χ: every plaquette in the lattice
contains two vertices of different types. (b) Virtual processes arising in perturbation theory,
respectively at second order (a) and fourth order (b and c), with c representing the plaquette
interaction. Both panels are adapted from Ref. [24].

In addition to the gauge-invariant elementary interactions explained in the previous Subsection,
we need the presence of plaquette terms in the Hamiltonian to generalize the discussion to higher

3The only other allowed scattering term is associated to density-density interactions. These are linear terms in
the fermionic number operator, due to the conservation of the total number of bosons per link, fixed to N0. When
summed over all the lattice sites, this gives a simply a constant shift of the energy.
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dimensions. In what follows we focus on the (2 + 1) − d case, but the description of higher
dimensional settings is the same.

The idea presented in Ref. [24] is to treat the two fermionic species ψ, χ present in the optical
lattice as ancillary particles, by adding a constraint H0 in the Hamiltonian that forces them to
occupy only some lattice sites, according to the picture in Fig. 3.3(a). The logic is then to construct
an effective theory in the ground sector of H0 to get the plaquette interaction in perturbation
theory. In this method the fermions are traced out at the end of the procedure, leaving us with a
pure gauge theory. More species of fermions are needed if dynamical matter must be included in
the proposal of the quantum simulator.

To consider a concrete example, we present here how the plaquette term arises in the (2+1)−d
cQED. The Hamiltonian of the system is

H =
e2

2

∑
i,j

E2
i,j + ϵ

∑
i,j

(ψ†
iUi,jψi+ĵ + χ†

iUi,jχi+ĵ + h.c.)− λ
∑
i

(Fψ,iψ
†
iψi + Fχ,iχ

†
iχi) (3.21)

≡ HE +Hint +H0, (3.22)

where HE is the electric part, Hint is the interaction term between bosons and fermions and H0 is
the constraint on the fermions. The functions Fψ,i, Fχ,i are defined as

Fψ,i =

{
0, if (−1)i1+i2 = −1

1, if (−1)i1+i2 = 1,
Fχ,i =

{
0, if (−1)i1+i2 = 1

1, if (−1)i1+i2 = −1.
(3.23)

For large λ, H0 represents an energy penalty term enforcing the configuration showed in Fig. 3.3(a).
Then we can consider λ≫ ϵ and perform time-independent perturbation theory as in [150], having
that4

• at first order we get only the electric part HE, without fermionic terms;

• at second order we get the virtual process a in Fig. 3.3(b), associated to back and forth
fermionic hoppings of both the species ψ and χ. These processes contribute only as constant
energy shifts in the effective Hamiltonian;

• at third order we get a combination of first and second order terms, plus constant energy
shifts;

4The following considerations in perturbation theory hold under the assumptions that the link operators Ui,j

are unitary, i.e. when the number of bosons per link N0 → ∞. If this is hypothesis is relaxed, non-constant terms
appear from the second order on, due to the non-unitarity of the ladder operators appearing in the interaction term
Hint.
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• at fourth order we get a renormalization of the electric part, the back and forth processes on
two consecutive links reported in the virtual process b in Fig. 3.3(b), and the plaquette term,
with virtual process c in Fig. 3.3(b).

The final effective Hamiltonian is then

Heff = HE + δHE +H□, δHE ∝ ϵ2

λ3
, H□ ∝ ϵ4

λ3
, (3.24)

where δHE and H□ are respectively the renormalization of the electric Hamiltonian and the
plaquette term.

As a final consideration, we mention that all the terms coming out in the perturbative expansion
have as energy scale ϵ2, and not ϵ: it is then sufficient to require λ2 ≫ ϵ2. This means that the
plaquette term is effectively of second order in ϵ2, due to the vanishing of the odd orders in the
expansion.

Before closing the Chapter and move on with the presentation of our proposal for the plaquette
term using ultracold atomic platforms, we compare the perturbative approach present in Ref. [24]
with the proposal of Ref. [21], that employs Rydberg atoms.

We just showed that in Ref. [24] the gauge invariance of the theory is obtained through angular
momentum conservation in the scattering processes of the atoms in the optical lattice, while the
dynamics of the gauge field emerges effectively in perturbation theory. At variance, using the
dual formulation [151], in Ref. [21] the implementation of quantum simulators for U(1) spin−1/2

models in d = 2 is treated, where plaquette interactions are mapped into single constrained hopping
processes on the dual lattice. A concrete proposals in terms of Rydberg configurable arrays is
presented, in which the physical states have a blockade character. As in Ref. [24], this proposal is
intrinsically done in terms of bosons. However, while in [24] the specific terms of the link models
are emerging at the fourth-order of a strong-coupling expansion, in this proposal the plaquette
term is implemented directly, without the use of any perturbative expansion. At the same time,
this approach relies on the two-dimensional nature of the system, and does not seem to be easily
generalizable to higher dimensions. In this respect, it would be desirable to have a set-up that is in
principle extendable to d > 2, and possibly able to use also fermions, instead than only bosons.
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Chapter 4

Bosonic and fermionic link models in two
dimensions: a proposal

In this Chapter we propose a scheme for the quantum simulation of quantum link models in
two-dimensional lattices. Our approach considers spinor dipolar gases on a suitably shaped lattice,
where the dynamics of particles in the different hyperfine levels of the gas takes place in one-
dimensional chains coupled by the dipolar interactions. We show that at least four levels are
needed. The present scheme does not require any particular fine-tuning of the parameters. We
present a derivation of the parameters of the quantum link models by using a perturbative method.
A comparison with other schemes for (2+ 1)-dimensional quantum link models present in literature
is discussed. Finally, the extension to three-dimensional lattices is presented, and its subtleties are
pointed out.

To be specific, we propose a quantum simulator for the U(1) spin−1/2 pure Abelian QLM
using spinor dipolar Bose-Einstein condensates (BECs) loaded in a spin-dependent optical lattice.
With respect to Ref. [24], we use only bosonic atoms of spin-2, so that we have access to five
internal states that, through angular momentum conservation in the various scattering channels,
give rise to gauge invariance. As in Ref. [24], the robustness of gauge invariance is tied to the one
of angular momentum conservation, and in the present proposal it is used to generate the plaquette
term. The same principle can be achieved without conservation of angular momentum, provided the
cold atomic parameters are properly tuned in the strong coupling regime. The resulting effective
Hamiltonian describes the dynamics of the gauge field at third-order in perturbation theory for a
square lattice, or at second-order for a triangular lattice.

The Chapter is organized as follows. In Sec. 4.1 we present our proposal using ultracold
atomic platforms: we show how to construct our optical lattice and the ground state of the system
(Sec. 4.1.1), and discuss how to obtain the effective Hamiltonian in perturbation theory (Sec. 4.1.2).
In Sec. 4.1.3 we discuss the relation with the target gauge theory. In Sec. 4.2 we discuss possible
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extensions and generalizations of our proposal. In Sec. 4.3 we summarize our results and present
our conclusions.

4.1 Plaquette terms from angular momentum conservation

In this Section we describe how the plaquette interactions in the 2D Abelian spin-1/2 QLMs can
be interpreted as a correlated hopping obtained through angular momentum conservation. The
use of angular momentum conservation in scattering processes to ensure local gauge invariance
was introduced, for the first time, in Ref. [24]. In that case, it guarantees that the gauge-
matter interaction satisfies gauge invariance. By other side, plaquette terms are still obtained
perturbatively. In contrast, our target model does not include matter and uses the conservation of
angular momentum as a mean to obtain robust plaquette terms of the pure gauge theory. In this
sense, the plaqutte term here is in treated on the same footing of the gauge-matter interaction in
Ref. [24].

4.1.1 Structure of the optical lattice

In our proposal, we consider a spin-2 dipolar BEC loaded in a square optical lattice, whose structure
is showed in the left panel of Fig. 4.1. The bosons are located on the vertices of the lattice,
which has a spin-dependent structure: an atom can sit at a generic site n if it has the magnetic
quantum number mF associated with that site. In other words, the color with which the site n

is painted, in Fig. 4.1, is associated with the magnetic quantum number of the atom that can
sit here. This can be accomplished, in principle, by the realization of a state-dependent optical
superlattice, with different periods and minima [152]. In Section 4.1.2 we provide an alternative
construction where correlated hoppings are induced by a one-site one-body term in the Hamiltonian,
i.e. Hi ∼ h ϵimb

†
imbim, where h is large and ϵim ∈ {0, 1}, penalizing or favoring, at the site i, particles

with different internal states. In this approach mF can be any quantum number with which a
superlattice of this form can be constructed. The details of the approach will be discussed in the
next Subsection.

Moreover, we require the presence of asymmetric hopping amplitudes within the lattice: by
denoting with tx and ty the horizontal and vertical hopping parameters, we assume that tx ≫ ty,
in a way that only horizontal hoppings processes are generated. With reference to the left panel of
Fig. 4.1, this is represented by dotted (∼ ty) and full (∼ tx) lines. The simulated lattice, whose
dynamics will be analyzed, is plotted in the right panel of Fig. 4.1. Here we associate each atom of
the spinor dipolar BEC to a single link of the simulated lattice, and we assume that the hopping of
the atoms can happen only along its diagonals, due to the requirement on tx and ty.
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𝑚𝐹
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Figure 4.1: Left panel: spin-dependent optical lattice with atoms on the vertices in the five
internal states mF = 0,±1,±2, whose color code is reported in the table. The dotted vertical lines
represent avoided hoppings. Right panel: simulated lattice (light blue lines) alongside the allowed
hoppings on the original spin-dependent optical lattice (inclined grey lines). While it is easier to
visualize the simulator as it is represented in the left panel, the mapping to the gauge theory is
more transparent when the lattice is rotated by 45◦, as in the right panel.

𝑚𝑚

𝑚′

𝑚′
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𝑚2

𝑚3
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Figure 4.2: Left panel: generic plaquette structure in the simulated lattice with the same color
appearing at opposite links. Right panel: generic vertex structure in the simulated lattice with all
four different link colors meeting at a vertex.

With this choice the plaquette term is generated by correlated hoppings induced by angular
momentum conservation. The geometric structure of the plaquette, as in left panel of Fig. 4.2,
guarantees that the correspondent correlated hoppings generate the plaquette term. Additionally,
by judicious choice of the four hyperfine levels, no correlated hoppings occur at vertices, as in left
panel of Fig. 4.2. We anticipate that it is not enough to have four different colours meeting at a
vertex, in order to forbid gauge symmetry breaking processes.

For these reasons, we consider two types of periodic sequences for the hyperfine levels along
the diagonals in the right panel of Fig. 4.1:

D1 : mF = −1 → 0 → 2 → −2 → −1 → . . . ,

(4.1)

D2 : mF = 0 → −1 → −2 → 2 → 0 → . . . ,
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already depicted in Fig. 4.1. Only four out of five possible hyperfine levels are used in our proposal
for the spin-dependent superlattice. However, the use of total spin 2 is necessary in order to avoid
correlated hopping processes at the vertices (see the Appendix B.1 for more details).

(a) (b)

Figure 4.3: (a) The six vertices of the spin-dependent optical lattice compatible with Gauss’ law.
Filled circles represent sites occupied with a single particle, empty circles do not contain particles.
(b) Fully flippable ground state of H0, see Eq. 4.3, made of disconnected flippable plaquettes.

4.1.2 Effective gauge field dynamics

The above description guarantees that the plaquette terms are obtained directly, without the use of
perturbation theory, as the most local processes allowed by conservation of angular momentum.
By “most local", we emphasize that there are other processes which preserve angular momentum.
For example, a particle hopping to its fourth neighbor (same color) along the diagonal in the right
panel of Fig. 4.2. This process is “less local" in a rather concrete sense, and it is expected to be
highly suppressed in the cold atomic dynamics. The purpose of this Subsection is twofold: first,
we would like to show how the plaquette terms can emerge in perturbation theory, even without
conservation of angular momentum, if the cold atomic parameters are properly tuned in the strong
coupling regime. Second, we would like to quantify the aforementioned statement, which classifies
the plaquette terms as the most local ones.

We consider a cold atomic Hamiltonian that has regular hopping terms along a one-dimensional
line, a one-body potential that promotes the lattice structure described above, and angular
momentum-preserving interactions among nearest neighbors. By performing a perturbative expan-
sion for large amplitude values of the one-body potential, we can construct an effective Hamiltonian
that exhibits gauge invariance at lowest orders, and contains all other angular momentum-conserving
processes suppressed at higher orders. We also consider the hardcore bosons limit, so that we
have, at most, one particle per site. In other words, there is a strong contact repulsion between
bosons characterized by a parameter U0 much larger than the relevant energy scales of the problem.
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Explicitly, the full Hamiltonian reads H = H0 +H1 where

H1 = Hhop +Hint ≡ −tx
∑

⟨i,j⟩d,m

(b†imbjm + h.c.) +
1

2

∑
⟨i,j⟩,m,m′

V ij
mm′b

†
imb

†
jm′bim′bjm, (4.2)

with the operators satisfying the hardcore bosons commutation relations [bim, b
†
jm′ ] = δmm′δij(1−

2b†imbim). In addition to these terms we add a one-body term

H0 = −h
∑
i,m

ϵimb
†
imbim (4.3)

with h ≫ tx, V
ij
mm′ , and the function ϵim is such that it is equal to 1 if m is the hyperfine state

associated with site i (according to Fig. 4.1) and 0 otherwise. This will enforce the desired lattice
structure. Of course, this choice for h implies that we have two large energy scales in the system (h
and U0), and the further assumption that any effect of the on-site interaction is much beyond the
scale we are interested in (see the Appendix B.2 for more details). We pause here to establish the
connection with the previous Subsection. The sum of the two Hamiltonians (4.2) and (4.3) does
not correspond exactly to the scenario described in 4.1.1. In fact, the hopping terms presented in
(4.2) imply that particles with the same angular momentum can sit at nearest neighbor sites, in
contrast to the situation described in Fig. 4.1, for example. In turn, the Hamiltonian (4.3) enforces
this lattice structure through energy penalty. This allows the construction of the gauge theory as
an effective theory at low energies, and the quantum numbers referred here could be different from
angular momentum quantum numbers. However, the spin-dependent lattice structure represents a
much more robust construction, as the plaquette terms rely on angular momentum conservation,
and not on the large magnitude of h with respect to the other parameters of the model.

In the same spirit of Ref. [24], the idea is to prepare the system in a gauge invariant configuration
that is a ground state of H0. The dynamics generated by the full Hamiltonian H = H0 +H1 is
gauge invariant at low energies, and our aim is to construct an effective Hamiltonian in perturbation
theory, using h as large scale, giving rise to the plaquette interaction. We have then to characterize
the ground states of H0 that are compatible with the hardcore bosons constraint and with Gauss’
law. Calling N the number of lattice sites, and Np the number of particles in the lattice, we have
two trivial cases, i.e. Np = 0 (empty lattice) and Np = N (full lattice), for which the dynamics is
completely frozen. The other possibilities are represented by gluing different vertices compatible
with Gauss’ law, reported in Fig. 4.3 (left panel), to form the full square lattice. The fully flippable
ground state is composed by alternating filled anti-diagonals as showed in the right panel of Fig.
4.3.

We denote with M0 the ground state manifold of H0. The system must be prepared in a
state |α⟩ ∈ M0, and we work in a subspace M ⊂ M0 which is gauge invariant. As h is the largest
scale in our system, we construct a low-energy Hamiltonian H(eff) within M0, that includes the
plaquette interactions as correlated hoppings emerging from H1. Up to third-order in perturbation
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theory, the effective Hamiltonian is

H(eff) =
t2x
h

∑
⟨i,j⟩d,m,m′

nimnjm′ − 1

h

∑
⟨i,j⟩,m,m′

(V ij
mm′)

2nimnjm′

+
1

h2

∑
i′,j,j′∈ □
m,m′

(V jj′

mm′)
2V j′i′

mmnj′mni′mnjm′ +
t2x
h2

∑
i,i′,j,j′∈ □
m,m′

V ii′

mm′b
†
j′mb

†
jm′bi′m′bim + h.c., (4.4)

and we refer to Appendix B.2 for details on the computation. We observe that the last term in the
previous equation corresponds exactly to the plaquette interaction, as the effect of two correlated
hoppings and a spin-exchange interaction, deriving from the dipolar term in H1. The pictorial
virtual processes are showed in Fig. 4.4.

𝑥

𝑦

𝑦′

𝑥′

𝑥

𝑦

𝑦′

𝑥′

𝑥

𝑦

𝑦′

𝑥′

(a) (b) (c)

𝐻𝑖𝑛𝑡

Figure 4.4: Virtual processes that build-up a plaquette flip, emerging at third-order in perturbation
theory. (a) Spin-exchange interactions change the internal state of the atoms in the position x, y;
(b) two hoppings from x → x′ and y → y′; (c) final state after the whole process, with the flipped
plaquette.

The other terms appearing in the first line of Eq. (4.4) arise from the second-order of the
perturbative expansion, and are related to back and forth hoppings (∼ t2x/h) and double spin-
exchange (∼ V 2/h) between nearest neighbors. Similarly, the first term in the second line arises
from the third-order of the expansion, and it is related to spin-exchange interactions (∼ V 3/h2)
within a given plaquette. These terms are not present in the initial model but are diagonal on the
occupation number and, therefore, associated with products of the electric field at different links,
in the gauge theory language. As a consequence, they are trivially gauge invariant.

4.1.3 Gauge theory interpretation

The effective model in Eq. (4.4) can be interpreted in the language of QLMs. We can identify

Uim = b†im, U †
im = bim (4.5)
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as the link operators of the associated LGT. In this way, the plaquette term has the desired form,
and the mapping of the operators is such that the commutation relation of the QLMs are satisfied,
using the hardcore bosonic commutation relations. Indeed, it is immediate to verify that

[Uim, U
†
jm′ ] = δijδmm′(2nim − 1) = 2δijδmm′

(
nim − 1

2

)
(4.6)

allowing for the identification of the electric field operator in terms of the particle number operator

Eim ≡ nim − 1

2
. (4.7)

As anticipated [Uim, U
†
jm′ ] = 2δijδmm′Eim. This is an explicit realization of the spin-1/2 QLMs,

because, due to the hardcore boson constraint, the eigenvalues of nim ∈ {0, 1}, and therefore the
possible values of the electric fields are Eim = ±1/2. With this comparison, different particle
sectors of the underlying bosonic theory are associated with different electric field sectors of the
related QLM. While we have always assumed that the we were dealing with ultracold bosonic gases,
the hardcore constraint makes the translation to fermionic link models trivial. As a consequence,
and to the best of our knowledge, this constitutes the first proposal for the realization of the
fermionic link models introduced in Ref.s [47, 48].

With the mapping in Eq. 4.5, the effective Hamiltonian derived in perturbation theory can be
written in the gauge theoretical language as

H(eff) = λ1
∑

⟨i,j⟩d,m,m′

EimEjm′ −
∑

⟨i,j⟩,m,m′

λ
(mm′)
2 EimEjm′

+
∑

i′,j,j′∈ □
m,m′

λ
(mm′)
3 Ei′mEjm′Ej′m −

∑
□

J (mm′)(U□ + U †
□) (4.8)

with λ1, λ2, λ3, J > 0. We observe, as already commented, that the plaquette term is properly
generated within this scheme alongside asymmetric terms containing the square of the electric field.
The asymmetry in the sums and the different coefficients λ1, λ2, λ3 are directly related to the
construction of the spin-dependent optical lattice. The physics of the model in Eq. (4.8) can be
analysed for some values of the parameters. We consider λ3 = 0, to discuss what happens in the
parameters space spanned by λ1, λ2. We also restrict our analysis to the half-filling case, since
in this sector there is the fully flippable ground state of H0. Clearly, for λ1 = λ2 = 0, our model
is equivalent to the RK Hamiltonian with λ = 0. When the two parameters are switched on, we
can discuss two limiting cases: for λ1 ≫ λ2, the Hamiltonian favors the configurations in which
the diagonals of the simulated lattice are independently filled as in the right panel of Fig. 4.3.
In the opposite limit, i.e. for λ2 ≫ λ1, the spin-exchange interaction between nearest neighbors
dominates. When instead both the parameters are such that λ1, λ2 ≫ J , this situation is exactly
the one showed in Fig. 4.3. This is analogous to the λ→ −∞ limit of the RK model, displaying
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therefore a Néel state [16, 146]. We point out these features to highlight the fact that, despite the
low-energy properties of Eq. (4.8) and the RK model are very similar, further considerations about
the specific phases of our effective model at intermediate couplings may not be easy to guess. In
general, we may expect that the two phase diagrams should be different, based on the different
symmetries of Eq.s (4.8) and (1.29).

4.2 Extensions and generalizations

In this Section we discuss how to generalize our proposal to different cases. The most important is
the extension to higher dimensions, and we discuss explicitly the d = 3 case. We then address how
the proposal can be generalized to other geometries, with the aim to generate U(1) plaquette terms
in lower order perturbation theory and to extend our analysis to discrete gauge groups. Finally, we
comment about the higher spin QLMs, closely related to the relaxation of the hardcore bosons
constraint in the underlying microscopic model.

4.2.1 Higher dimensions: the d = 3 case

The extension to d = 3 is challenging for all the schemes that have been proposed so far in
d = 2. In our proposal this is manifest by the increment of the number of atomic species. While
the same perturbative method will exhibit gauge breaking terms, we argue that, by relying on
angular momentum conservation, such terms are highly suppressed relatively to the gauge invariant
dynamics.

To see this, we discuss how the extension to d = 3 would work by using the same lattice and
the same number of internal states employed in d = 2, i.e. four out of five hyperfine levels of the
spinor dipolar BEC. The principle that allowed the construction of the plaquette term in d = 2 was
to associate the increase of the electric field in one of the links of the plaquette, with the decrease
of one of the other links. We can then associate the change of two links with a single hopping
term, and the full plaquette term with a correlated hopping. The resulting particles move in single
(diagonal) lines. The exact same principles apply in d = 3. The extra dimension lifts the lines into
planes, i.e., particles become confined in planes.

To identify these planes, it is useful to consider each link separately and construct the relative
staples that constitute the set of all links which are coupled to the central one, as showed in
Fig. 4.5. The centers of links of the lattice, where the particles reside, can be identified with
the positions (n1, n2, n3) + µ̂/2, with µ̂ one of the Cartesian unit vectors and nν integers. In Fig.
4.5 the cases µ = 1, 2, 3 are represented in (a), (b) and (c) respectively. The links to which the
particle can hop are colored the same as the particle. It becomes clear that particles at position
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Figure 4.5: Structure of the staples for (a) x-links (red full dot), (b) y-links (orange full dot) and
(c) z-links (black full dot) in d = 3. As in d = 2, we represent with blue links the target lattice.
The full dots represent bosons. The colored links in (a)-(c) are the links that the particle can
occupy after an hopping in the various possible directions. (d) Vertex structure in d = 3. The blue
and red links identify the sublattices in which the particles moving in different planes can hop.
The Pi, Ni are the possible internal states of the hardcore bosons at the given link.

r = (n1, n2, n3) + µ̂/2 can (only) hop to positions r± µ̂/2∓̂ν̂/2 with µ ̸= ν. We can conclude that
the planes along which the hardcore bosons move are described by the equation r · n = c, where
n = (1, 1, 1) and c is a constant that distinguishes the different parallel planes.

Having identified the planes, the subsequent task consists in identifying the values of angular
momentum associated to each link in a way that allows for the generation of plaquette terms,
but still forbids hoppings at the vertices, i.e. gauge symmetry breaking terms. The first part is
constructed in complete parallel with the d = 2: by associating the same angular momentum to
opposite links of the plaquette, we guarantee that the plaquette terms are such that conserve
angular momentum. Guaranteeing that these are the only allowed processes is less straightforward.
We refer to Fig. 4.5(d) to denote a generic vertex and call Ni and Pi the internal states of the two
sublattices that are associated with two different planes. The full lattice is constructed by reflecting
this vertex relatively to the different planes and gluing them, as represented in Fig. 4.6(a). The
equations that must be imposed for Ni and Pi result from requiring two types of conditions. As
a first point, differences of angular momentum across sublattices must be unequal so that such
hoppings are removed from the dynamics. Secondly, within a sublattice, we must guarantee that
each link does not have any neighbor with the same angular momentum in which it can hop to.
These requirements lead to

|Ai − Aj| ≠ |Bk −Bℓ|, ∀(i, j), (k, ℓ) ∈ {(1, 2), (2, 3), (3, 1)} and A,B ∈ {P,N}, (4.9)

Ni ̸= Nj, Pi ̸= Pj, Ni ̸= Pj ∀i ̸= j, (4.10)
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where the first equation comes from the first type of condition and the other two from the second.
The inspection of these equations show that they cannot be satisfied with four levels, see Table 4.1

P1 P2 P3 N1 N2 N3

-3/2 1/2 7/2 -7/2 -5/2 7/2
-7/2 5/2 7/2 -7/2 -1/2 3/2
1/2 -3/2 7/2 -5/2 -7/2 7/2
5/2 -7/2 7/2 -1/2 -7/2 3/2

Table 4.1:: Some solutions to the Eq.s (4.9). As commented in the main text, it is impossible to
satisfy them with the same number of internal levels employed in d = 2. To preserve the lattice
structure and the scheme employed in the previous Section, we need five out of eight internal levels.

and the discussion in the caption. We conclude that to extend our scheme to d = 3 we have to
increase the number of levels from four to five levels.

However, there is yet the problem that, even using five levels, we have the occurrence of gauge
breaking terms of the form

HGB = −txtytz
h2

∑
x.y∈Γ

b†ymbxm (4.11)

at the same order in perturbation theory as the plaquette term. If these terms are really competing
with the plaquettes, the effective theory is not gauge invariant and this formulation needs further
refinement. However, we remind that the presented perturbation theory scheme was introduced
in order to offer a quantitative approach that shows how the plaquette term is the dominant
dynamical process of the system, and that it can also emerge without conservation of angular
momentum. If we follow the route of construction of plaquette terms solely by conservation of
angular momentum, this process would correspond to tunneling to a third neighbor directly. In a
real experimental setting, we expect that the atomic wave function can extend, even if slightly, to
its nearest neighbors. Together with the dipolar interaction, which promotes exchange of angular
momentum, the correlated hopping appears as the simplest dynamical process. In turn, the term
above emerges through a triple hopping of a single particle, far beyond the point where the atomic
wave function has an appreciable value, and is expected to be much more suppressed. We then
expect that plaquette terms, which involve only nearest neighbors, are highly dominant over the
above process.

In order to follow the perturbative approach, we need to use ad hoc hopping terms, which
by the way must have a tunneling coefficient of opposite sign with respect to the sign of the tx,y,z
hopping parameters entering the microscopic Hubbard Hamiltonian of Eq. (4.2). In principle,
this can be accomplished by adding further lattices, one for each internal level, suitably located
to allow just the needed hoppings. These have to be shaken lattices [? ], in a way to enforce
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the right sign for the hopping parameters. It is clear that this particular extension appears to be
rather involved, and its realizability is far from being easy or conceivable. Finally, by modifying
properly the superlattice structure, it could be possible to remove these third-order hoppings from
the low-energy effective theory.

While it would be interesting to investigate if a suitable modification of the supperlatice would
remove these terms in perturbation theory, we believe that the key advantage of the proposal is to
tie the conservation of angular momentum to the correlated hopping that generates the plaquettes
and, in that case, these processes should be irrelevant.
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Figure 4.6: (a) Structure of the lattice in d = 3 with four out of five internal states. For the
explicit values of the levels Ni, Pi we refer to Table 4.1. We highlight here with different colors the
two sublattices in which the particles can hop, compatible with the planes identified in the main
text. (b) Graphical structure of the gauge breaking terms that appear alongside the plaquettes,
associated to a particle hopping from x → y along the blue path Γ.

4.2.2 Triangular lattice

The main purpose of this Section is to show that these principles are generalizable to other
geometries and, inclusively, we can use fewer internal states to generate plaquette interactions
in lower order in perturbation theory. In this specific case, we are able to use three consecutive
internal states, i.e. a spin-1 dipolar BEC, to generate plaquettes at second-order in perturbation
theory. Moreover, as we are going to discuss, the proposal looks arguably simpler in this geometry,
if compared with the square lattice one. The phase diagram of the spin-1/2 QLMs on a triangular
lattice, in the presence of the RK term, as been studied in [153].
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The structure of the triangular lattice is presented in Fig. 4.7(b). The particles are constrained
to hop along one-dimensional vertical lines, that we alternate with a set of two-level systems placed
on the hypotenuses of the triangles. The sites of the spin-dependent optical lattice coincide with
the sides of the target (triangular) lattice. According to the color code of Fig. 4.1, we use here the
three internal states mF = 0,±1, that can be realized by using a spin-1 dipolar BEC. With this
geometry, the plaquettes of the lattice can be identified graphically as in Fig. 4.7(a). They are
made of three links and we adopt the convention U△ = UzUxUy, alongside the corresponding one
for U †

△. Here the Gauss’ law takes a similar form, with the generator of gauge transformations
being an oriented sum of the six links joining at each vertex of the triangular lattice. Explicitly
G(n) =

∑
µ[Eµ(n) − Eµ(n − µ̂)], with µ representing the three directions x, y and z as in Fig.

4.7. By the judicious choice of the internal states for each site, again plaquette terms arise as the
angular momentum conserving processes.

Again, this can be made precise by constructing an Hamiltonian along the same lines discussed
before. If we denote by ty the coefficient of the hopping term along the vertical lines, in the
hardcore bosons limit the Hamiltonian reads

H△ = Hhop +Hint ≡ −ty
∑

⟨i,j⟩lines,m

(b†imbjm + h.c.) +
1

2

∑
⟨i,j⟩,m,m′

V ij
mm′b

†
imb

†
jm′bim′bjm, (4.12)

where the sum over nearest neighbors in the second term is extended to all the links of the triangular
lattice, including the ones hosting the two-level systems. In turn, the hopping only occurs between
neighbors along the line.

With this structure, we can proceed with perturbation theory exactly in the same logic of the
square lattice, i.e. introducing H0 as in Eq. (4.3) and take h as the largest scale in the system.
While the first-order in the expansion vanishes, as in the square lattice, in this case the plaquette
term emerges directly at second-order in perturbation theory. The effective Hamiltonian here
contains two terms, i.e.

H
(eff)
△ = −

t2y
h

∑
⟨i,j⟩lines,m

nim(1− njm)−
ty
h

∑
i,j,k∈ △
m,m′

V jk
mm′b

†
kmb

†
jm′bkm′bim, (4.13)

where the first one is associated to back and forth hoppings along the lines, and the second one is
the plaquette term. To make concrete the mapping with the gauge theory, we identify the link
operators on the different sides of the triangle as

Uz = b†zm′bzm, Uy = b†ym, Ux = bxm, (4.14)

making reference to the notation of Fig. 4.7(a). With this identification, the underlying LGT
effective Hamiltonian has the form

H
(eff)
△ = λ△

∑
⟨i,j⟩lines,m

EimEjm −
∑
△

J
(mm′)
△ (U△ + U †

△). (4.15)
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Figure 4.7: (a): Hopping processes generating the plaquette terms in the triangular lattice. (b):
Structure of the triangular lattice using three internal states. The color code is the same of Fig.
4.1, while the horizontal lines are the two-level systems described in the main text. The grey dotted
lines represent the d = 1 systems along which hopping processes can occur.

As in the square lattice case, we have the generation of the plaquette term plus an asymmetric
term in the square of the electric field, due to the optical lattice structure. This is again different
from the full RK model on the triangular lattice [153], and the various phases of the two models
are in principle different.

4.2.3 Higher spin quantum link models

In Section 4.1.2 we showed how to simulate spin-1/2 QLMs using ultracold gases of hardcore
bosons, i.e. working in the limit U0 → ∞. This allows for single particle occupations, and makes
each link of the target lattice an effective spin-1/2 variable. Here we comment about the relaxation
of the hardcore constraint on the ultracold bosons and about the quantum simulation of higher
spin QLMs.

First of all, let us consider U0 ↛ ∞: then one could resort to a Schrieffer-Wolff transformation
[154] to find the corresponding effective field theory and the terms generated by the finite U0,
i.e. the non-hardcore condition. Out of this procedure, one expects to obtain terms that can be
incorporated at low energies in the parameters of the QLM: in other words, the QLM parameters
are renormalized by U0 (as an example see [155] for the computation in the case of the extended
BH model at half-filling). Of course, this expectation is valid as soon that U0 is varied in a way
such that other phases appear.
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The implementation of higher spin QLMs is related to the previous comment. Indeed, suppose
that one is able to allow for multiple particles occupations at different sites of the optical lattice,
e.g. that one can impose that in each site there may be at most a certain number of bosons of
the same level. By imposing that the number of particles within the lattice is fixed, the above
mentioned procedure could be used to obtain the simulation of higher spin QLMs. However, it is
not a finite U0 the key ingredient to have such models, but rather higher-body terms to fix the
maximum occupation of the lattice sites.

4.3 Conclusions

In this Chapter we presented a proposal for the quantum simulation of Abelian spin-1/2 quantum
link models (QLMs) using spinor dipolar Bose-Einstein condensates (BECs) loaded in spin-
dependent optical lattice. We showed that plaquette interactions can be obtained by means of
angular momentum conservation, and are directly related to correlated hoppings of bosons within
a spin-dependent lattice.

In order to derive the effective theory corresponding to a gauge theory, we considered an
extended Bose-Hubbard (BH) model with anisotropic hoppings and isotropic nearest neighbors
interactions, with a further site-dependent energy penalty term to enforce the lattice structure. By
means of a perturbative expansion we derived an effective Hamiltonian, whose gauge theoretical
interpretation includes the plaquette interactions at third-order in perturbation theory. This
process is associated to correlated hoppings of bosons within elementary squares, with a subsequent
spin-dependent interaction to make their internal states compatible with the spin lattice structure.
The use of angular momentum conservation in scattering processes to ensure gauge invariance
was used in Ref. [24]: in that case, it guarantees that the gauge-matter interaction satisfies gauge
invariance. By other side, plaquette terms are still obtained perturbatively. In contrast, our target
model does not include matter and uses the conservation of angular momentum as a mean to
obtain robust plaquette terms of the underlying pure gauge theory. The net result is that we
have to use at least four internal states of a spinor dipolar gas, moving in one-dimensional chains
coupled by the dipolar interactions. Without angular momentum conservation, on-site energies
superimposed via additional superlattices are needed to produce the target lattice. We observe
that to have a scheme valid far from the perturbative regime, i.e. where the on-site energies Hi ∝ h

are not larger than other energy scales, or are even absent, requires that the particles can move and
simultaneously be flipped, conserving angular momentum. That would give directly the plaquette
terms, in exact parallel with gauge-matter coupling obtained in [24]. We think that it is worth
to ascertain whether this can be concretely an advantage to simulate QLMs with respect to the
perturbative scheme, where such requirements on the experimental control of the atoms are absent.

We further discussed possible extensions of our proposal to the triangular lattice, showing
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that it is possible to lower the perturbative order at which the plaquette terms appear, with the
proper choice of the spin-dependent lattice, and to higher spin QLMs, allowing for multiple site
occupations with a fixed number of bosons. In this last case it is not trivial to generalize our
proposal, since we get non-local effective interactions in the perturbative expansions, and the
plaquette term is coupled to the electric field. Finally, our proposal can be generalized to the
three-dimensional case by increasing the number of internal states employed in d = 2: with respect
to the four levels used in d = 2, we need to use five internal states in d = 3. This is done by
identifying the planes in which the particles move [48] and derive a set of equations for the internal
states of the links in the third spatial directions. These equations can be satisfied at the cost of
introducing extra atomic species. In the perturbative approach, gauge breaking terms emerge,
which should be removed by adding ad hoc terms. These complications show, in our particular
example, the difficulties of extending a scheme from d = 2 to d = 3.

To put our results in the wider context of quantum simulations of higher dimensional lattice
gauge theories (LGTs), we observe that these last are currently challenging to realize in the realm
of quantum simulators, even if there have been a lot of recent technical progresses in the field
[127–130]. This is mainly due to local symmetry of the model, and its direct implementation
in controllable physical systems. Our proposal employs many-body interaction symmetries to
achieve this target. The main advantage of our scheme is to relate the local conservation of angular
momentum to the gauge symmetric plaquette terms. Even in the perturbative approach, there is
advantage coming from the order at which the plaquette terms come out with respect to Ref. [24],
where it appears at fourth-order, here it shows up at third-order, involving only two correlated
hoppings between bosons. A disadvantage is provided by the complications to generalize the scheme
to d = 3, as discussed, anyway noticing that – to the best of our knowledge – the extension to
d = 3 is an issue for all the schemes present in literature so far.

There are open questions that are worth to pursue. First of all, it would be interesting to
understand the role of the additional terms coming from the perturbative expansion regarding
the phase diagram of the model. In the gauge theoretical interpretation they are anisotropic in
the electric field, and may give rise to a different phase diagram if compared with the Roksha-
Kivelson (RK) Hamiltonian [39], based on symmetry arguments. From the condensed matter
perspective, due to the extended nature of the Bose-Hubbard Hamiltonian, they could be related to
supersolid phases [114–116]. Another important point regards the inclusion of matter. There is no
straightforward way of doing this within this proposal but may be possible through the inclusion
of ancillary particles. This difficulty is also present in the proposal of [21], where it is proposed a
way to include static charges, but not dynamical ones. In the present proposal, static charges can
be easily included by violating Gauss’ law at the desired sites in the initial state. In the proposal
of [24], instead, they include dynamical matter by increasing the number of fermionic species, in
addition to the ancillary ones. Finally, it would be interesting to generalize the presented scheme
to non-Abelian gauge theories. However, the advantage gained in encoding plaquettes in correlated
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hopping is quickly lost by the increasing complicated substructure of the superlattice required by
non-Abelian symmetries. A more reasonable goal may consist on considering discrete groups, in
order to explore different physics and, possibly, simplify the superlattice structure.
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Topological phases of lattice models
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Chapter 5

Topology in condensed matter systems

In the last part of the Thesis we analyse the effects of static gauge fields on the dynamics of
quantum particles [25, 94]. This is because, even if the back action of the matter fields is not
considered, external gauge potentials provide a tool to play with the symmetries and the band
structures of the model of interest, allowing for the investigation of novel topological phases in
condensed matter systems. This last point raised a lot of interest in the scientific community in
the recent years.

The role of topology in physics acquired a huge importance during the second half of the
twentieth century. Indeed, prior to the 1980s, the Ginzburg-Landau theory [91] was the only
framework able to characterize the stable phases of matter through a local order parameter, that is
trivial in the disordered phase and non-trivial in the ordered one. Different ordered phases can be
organized by how the order parameters transform under a symmetry operation. In this historical
period this was the pillar for the study of phase transitions in condensed matter physics [125, 156].

The 1980 represents a turning point, due to the discovery of the integer quantum Hall effect
(IQHE): this was the first example of a system showing no spontaneous symmetry breaking [157].
Von Klitzing and collaborators observed that at low temperature the energy spectra of a two-
dimensional degenerate electron gas in a strong magnetic field display discrete energy bands, called
Landau levels [157]. When the Fermi energy is in a gap between the energy levels, the system
becomes insulating and the Hall conductance is quantized in units of e2/h, being e the electric
charge and h the Planck constant. This state breaks no symmetry, and the behaviour of the
system depends on topological invariants, i.e. physical quantities independent of the geometry or
microscopic properties of the system. Moreover, it was also argued that states confined to the edge
of the system, called edge states, must carry the Hall current. There is a close relation between
bulk topological invariants and the existence of these edge states, which is called bulk-boundary
correspondence.

80



CHAPTER 5. TOPOLOGY IN CONDENSED MATTER SYSTEMS

Four years later, in the 1984, thanks to the work of Berry about the geometric quantum phases
[158], it emerged that the computation of the above mentioned topological invariants is related to
the integral of the Berry field, over proper closed surfaces in momentum space. This was the first
connection between the physical states that were not classified according to the Ginzburg-Landau
paradigm and the realm of topology.

In this Chapter, we present the formalism of Berry’s geometric quantum phases. In particular,
we show that a quantum particle acquires a geometric phase under time evolution, called the
Berry phase. This is a global, topological invariant related to a local, geometrical quantity called
the Berry curvature. Finally, we present all these concept in three-dimensions, generalizing the
topological phases to include topological metals. In particular, we will introduce the physical
features of the Weyl semimetals, both in the continuum and on the lattice.

5.1 Berry phase and curvature

The theory of geometric phases can be seen as a manifestation of the adiabatic time evolution
of Hamiltonians that are controlled by a time-dependent set of parameters [159]. We consider a
set of parameters a(t), and an Hamiltonian H[a(t)] with a discrete and non-degenerate spectrum,
without level crossing during the time evolution. According to the adiabatic theorem1 [160, 161],
the fact that the Hamiltonian is slowly changing should guarantee that the system remains in its
evolving time-dependent ground state. This picture is however incomplete [158], and can be seen
by considering the Schroedinger equation

i∂tψ(t) = H[a(t)]ψ(t) (5.1)

with the introduction of the instantaneous set of eigenstates {ηk(t)} such that

H[a(t)]|ηk⟩ = ϵk(t)|ηk⟩, ψ(t) =
∑
k

ck(t)|ηk(t)⟩. (5.2)

By inserting this into the Schroedinger equation, we get a set of differential equations for the
coefficients ck(t)

∂tck(t) = −iϵk(t)ck(t)−
∑
j

cj(t)⟨ηk(t)|∂t|ηj(t)⟩. (5.3)

Using the definition of instantaneous eigenstates introduced in Eq. (5.2) we have that

⟨ηk(t)|∂t|ηj(t)⟩ =
⟨ηk(t)|∂tH(t)|ηj(t)⟩

ϵj(t)− ϵk(t)
≪ 1 (5.4)

1A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough
and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum.
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within the assumptions of the adiabatic theorem. Thus we can solve for ck(t) by direct integration
and find

ck(t) = eiαdyn(t)eiγ(t), ψ(t) =
∑
k

eiαdyn(t)eiγ(t)|ηk(t)⟩ (5.5)

where

αdyn(t) ≡ −
∫ t

0

dτ ϵk(τ), γ ≡ i

∫ a(t)

a(0)

⟨ηk|∇a|ηj⟩ · da. (5.6)

While αdyn is a dynamical phase, γ is the manifestation of the geometric aspects of the evolving
system. When the Hamiltonian evolves adiabatically around a closed loop in the parameters space,
the Berry phase is irreducible [158]. It can not be absorbed through a gauge transformation of the
form ψ(t) → eiµψ̃(t) of the state, since there are closed loops such that∮

C

A · da mod 2π ̸= 0, A ≡ i⟨ψ(a)|∇a|ψ(a)⟩, (5.7)

where C is a closed contour in the parameters space. This cyclic phase is observable, and it is
called the Berry phase. For non-degenerate states, the freedom in the choice of the wave function
is a local phase

ψ(a) → eiθ(a)ψ(a), A → A+∇aθ. (5.8)

This is reminiscent of the vector potential in electrodynamics, and for this analogy the field A is
also referred to as the Berry potential (or field). Moreover, in d = 3 we can use the vector calculus
to write that

γ =

∮
C

A · da mod 2π =

∫
S(C)

Ω · dSa mod 2π, (5.9)

using the Stokes theorem, where S(C) is a surface whose closed contour is C, and dSa is the
infinitesimal area element in the parameters space. Using again the analogy with electrodynamics,
the field Ω is like a magnetic field, and is called the Berry curvature. Its definition is

Ω ≡ ∇a ×A = ∂µAν − ∂νAµ = −2Im⟨∂αψ(a)|∂βψ(a)⟩. (5.10)

This three-dimensional case highlighted a couple of similarities with the theory of electromagnetism,
which is a U(1) gauge theory. In this case, the gauge group is represented by the set of phases
eiθ(a): the relative vector potential and magnetic field are respectively the Berry field and curvature.
The Berry phase, instead, can be seen as a flux through the closed surface S(C), and being defined
as the loop integral in Eq. (5.6), it is gauge-invariant and observable.

5.2 Chern number and topological invariants

The flux of the Berry curvature Ω(a) through a closed surface S in the parameters space has a
remarkable feature, i.e. it is a quantized quantity. This constitutes an example of a topological
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invariant [159, 162]. If we specialize again to the d = 3 case and consider a spherical surface S2,
the quantization can be expressed as

C1 =
1

2π

∫
S2

Ω(a) · dSa ∈ Z. (5.11)

The quantity C1 is called first Chern number, and it is a robust topological invariant associated
with physical observables, like the IQHE [157].

Concerning the characterization of topological invariants in condensed matter system, an
important fact coming from the homotopy theory [163] is that if a given system has a finite number
of bands Nbands, the sum of the Chern numbers associated to each band is zero

Nbands∑
k=1

Ck = 0. (5.12)

This statement implies that single-band systems can not have non-trivial topological invariants
associated to their band structure. Therefore, to have non-trivial topological features in solid-state
and condensed matter systems, we have to look at least to two-bands systems.

5.3 Three-dimensional topological metals

After the discoveries of the IQHE and its fractional counterpart [157, 164], several examples of
topological phases were characterized in condensed matter systems. In particular, in 2010 the
first three-dimensional topological systems involving all the previous features were the topological
insulators, opening the door to novel phases of matter with bulk energy gaps and protected gapless
edge states [165].

Later on, in 2011, another class of topological materials, called Weyl semimetals (WSMs)
[166, 167], emerged as the first topological systems no longer constrained by a bulk energy gap
protecting the topological nature of the energy bands. They are characterized by pairs of low-energy
bulk excitations with linear dispersion, whose dynamics is described by the gapless Weyl equation.
When the chemical potential coincides with the energy of the band-touching points, the system is
a topological semimetal ; if instead the chemical potential is not exactly equal to the band-touching
energy the corresponding state of matter is called topological metal [168].

In a broad area of condensed matter physics, ranging from graphene [169] to high-Tc supercon-
ductors [123], two- and three-dimensional topological metals show electronic properties that can
be described by Dirac and Weyl equations: the Dirac and Weyl particles describe the low-energy
physics of real solid-state systems. While the physics originating the Weyl fermions in various
systems may be different, the low-energy Hamiltonian descriptions and properties show the same
Dirac points.
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In the specific case of WSMs, that is the object of interest of this thesis, they have generated
a lot of interest in the modern literature, as three-dimensional counterparts of graphene. There
are also connections with the particle physics models of relativistic chiral fermions, solid-state
topological and Chern insulators [26, 170]. Their peculiar electronic properties allow for the
existence of protected surface states, novel responses to electromagnetic fields and charged Weyl
fermions characterized by high mobilities.

In the next Sections we remind what are Weyl fermions in the continuum, in a way to introduce
the Weyl Hamiltonian and the three main features that characterize a WSM. We pass then to
the lattice framework, and present a class of lattice models hosting pairs of Weyl points in their
spectra.

5.3.1 Weyl fermions

The massive Dirac equation for a particle of mass m, described by a spinor ψ, in (d+1)-dimensions
reads

(iγµ∂µ −m)ψ = 0, (5.13)

where the γ-matrices satisfy the algebra {γµ, γν} = 2ηµν , with µ, ν ∈ {0, . . . , d}.

In odd spatial dimensions, i.e. when d = (2k + 1), k ∈ N, the Dirac equation can be written
using the eigenstates of the fifth γ-matrix, which is defined as γ5 ≡ ikγ0γ1 · · · γd [171]. If we move
in momentum space in the spatial directions, where ∂i → ipi, Eq. (5.13) can be written as

i∂tψ = γ0mψ +
d∑
j=1

γ0γjpjψ. (5.14)

Due to the commutation properties of the γ-matrices, we have that [γ5, γ0γj] = 0. We notice that
in even spatial dimensions, d = 2k, k ∈ N, the matrix γ5 reduces trivially to the identity matrix,
and the previous rewriting is trivial.

We consider now two specific cases. For d = 1, we can represent the γ-matrices as γ0 = σz,
γ1 = iσy and γ5 = γ0γ1 = σx, where σ are the Pauli matrices. In this case, the last equation
reduces to

i∂tψ = mγ0ψ + γ0γ1pxψ. (5.15)

In the massless case, when m = 0, we can use the eigenstates of γ5 to identify the underlying
Hamiltonian. Indeed, by considering the states ψ± such that γ5ψ± = ±ψ±, we have that

i∂tψ± = ±pxψ±, (5.16)

that is the (1 + 1)-dimensional Weyl equation: it describes right-moving and left-moving chiral
particles, whose dispersion relation is linear in the momentum, since ϵ(px) = ±px. We observe that
when m ̸= 0, the mass term causes the mix of the two chiralities.
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Figure 5.1: Left panel: three-dimensional band dispersion relation E(k) of two bands touching at
two isolated Weyl points. The red (blue) outgoing (ingoing) arrows in the lowest cone represent the
positive (negative) topological charge of the point. Right panel: Weyl nodes in the three-dimensional
bulk Brillouin zone The ingoing (outgoing) arrows represent the negative (positive) topological
charge. In the upper part of the cube, the topological surface state (yellow line) connects the
projections of the Weyl points on the surface BZ (grey plane) .

We move now to d = 3. In this case, the γ-matrices are represented by the four-dimensional
matrices γ0 = 1 ⊗ σx, γj = iσj ⊗ σy and γ5 = −1 ⊗ σz. The Dirac equation reduces to

i∂tψ± = ∓p · σ ψ±. (5.17)

Out of this equation, which is the Weyl equation in (3+1)−d, we learn that the fermion propagates
with spin that is parallel (or antiparallel) to its momentum. This defines the chirality χ = ±1 of
the Weyl fermion. From Eq. (5.17) it is immediate to read out the Hamiltonian, i.e.

H(p) = χ p · σ, (5.18)

which is called the Weyl Hamiltonian. Ultimately, this shows how Weyl fermions come out from
the massless solutions of the relativistic Dirac equation.

5.3.2 Features of Weyl semimetals

In three-dimensional condensed matter systems, Weyl fermions may emerge as low-energy excitations
of quantum materials. When two non-degenerate bands meet at isolated points in the Brillouin
zone (BZ), close to the Weyl points they can be described using the Weyl Hamiltonian in Eq.
(5.18).
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The most prominent example is represented by WSMs. For these topological metals, the
excitations in the bulk are gapless, but still the system has topological invariant and topologically
protected gapless edge modes. In general the criteria to characterize WSM, at least in the standard
case, are three [166, 168]:

1. linearly dispersing Weyl nodes in the bulk structure;

2. monopoles of Berry curvature originating at the location (in momentum space) of the Weyl
points;

3. boundary modes connecting projections of Weyl nodes in the surface Brillouin zone (Fermi
arcs).

In the remaining part of this Subsection, we elucidate the three items of the list, in a way to fully
characterize the physics of WSMs.

Dispersion relation: Weyl nodes and density of states

We take as a reference the Weyl Hamiltonian in Eq. (5.18). Out of this, it is immediate to see that
the dispersion relation is

ϵ(p) = ±p ≡ ±
√
p2x + p2y + p2z, (5.19)

which is linear in the modulus of the momentum p. This gives rise to the conic structure showed in
the left panel of Fig. 5.1, with the only difference that the cone of Eq. (5.19) is centered around
p = 0. Given this dispersion relation, we can compute the density of states

ρ(ϵ) =
1

(2π)3

∫
ϵ(k)=ϵ

dS

|∇pϵ(p)|
=
ϵ2

π2
, (5.20)

where dS is the infinitesimal surface element, and the surface integral is performed on a surface of
constant energy ϵ(k) = ϵ. The main property is that the density of states vanishes quadratically
at the Weyl energy, a fact that is strongly related to the peculiar transport properties of WSMs,
leading to a vanishing conductivity at low temperatures.

This simple computation for the Weyl Hamiltonian shows that the linearly dispersing Weyl
points emerge quite naturally from the relative dispersion relation. This can be stated for a more
general class of Hamiltonian [159]. Indeed, let us consider any system with a finite number of
bands, and suppose that its Hamiltonian restricted to any couple of consecutive bands has the form

H = h(p) · σ, h(p) ≡ (h1(p), h2(p), h3(p)), (5.21)

and we immediately read the dispersion relation

ϵ±(p) = ±
√
h21(p) + h22(p) + h23(p). (5.22)
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The expression for ϵ±(p) implies that the two bands touch if hj(p)|p=p0 = 0, for a specific point
p0 in momentum space. The role of the dimensionality here plays a crucial role. Indeed, in three
dimensions the equation hj1(p) = 0, for fixed j1, defines a two-dimensional surface. The same
happens if we consider hj2(p) = 0, for j2 ̸= j1. These two surfaces may intersect along lines, and
if we introduce finally the third equation hj3(p) = 0, with j3 ̸= j1,2, the lines may intersect this
last surface in isolated points in momentum space, without the need of fine-tuning [172]. In the
two-dimensional case this would have been required necessarily to fine-tune one parameter.

Around the point p = p0 we can linearize the Hamiltonian in Eq. (5.21) to obtain

H(δp) = ϵp0 +
3∑
j=1

vj · δpσj, δp ≡ p− p0, (5.23)

where ϵp0 is the energy at the Weyl cone and vj ≡ ∇phj(p)|p=p0 . This Hamiltonian describes Weyl
nodes centered at p = p0 in momentum space, with the possibility of having anisotropies in the
spatial directions.

Monopoles of the Berry curvature

The eigenstates of the Weyl Hamiltonian in Eq. (5.18) are

ψ± =
χ√

2p(p± χpz)

(
pz ± χp

px − ipy

)
. (5.24)

Out of them we can compute the components of the Berry fields and curvature, A±(p) and Ω±(p),
where we are considering a ≡ p in the formalism of Sec. 5.1. Mathematically we have

A±(p) = i⟨ψ±(p)|∇p|ψ±(p)⟩, Ω±(p) = ∇p ×A±(p), (5.25)

and using Eq. (5.24) we get that
Ω±(p) = ±χ

2

p

p3
. (5.26)

This quantity is gauge-invariant, while the Berry field is gauge-dependent [159]. The mathematical
structure of the Berry curvature in Eq. (5.26) has the form of a magnetic monopole field of charge
±χ placed at the origin, since

1

2π

∫
S2

Ω(p) · dSp = ±χ. (5.27)

We ultimately conclude that the Weyl points are monopoles in the BZ, with charges given by their
chiralities, that can be considered as topological charges [168]. The sign of the charge indicates if
the monopole represents a source or a sink (see both panels of Fig. 5.1).
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Let us now consider a more general system with N Weyl points in its spectrum, located at
p = pj and with chiralities χj, j = 1, . . . , N . The total Berry curvature is

Ω(p) =
N∑
j=1

χj
2

(p− pj)

p3
. (5.28)

We can integrate the divergence of this field over the whole BZ to get∫
BZ(p)

dp ∇p ·Ω(p) = 2π
N∑
j=1

χj, (5.29)

and further use the divergence theorem to rewrite the volume integral as∫
BZ(p)

dp ∇p ·Ω(p) =

∫
∂BZ(p)

dSp ·Ω(p). (5.30)

Since the BZ is topologically equivalent to a torus [104, 159], we have that ∂BZ(p) is trivial and
the integral must vanish. We finally conclude that

N∑
j=1

χj = 0, (5.31)

that is, the total chirality of Weyl nodes in the BZ is zero. This implies that, if Weyl nodes exist in a
system, they must appear in pairs of opposite chiralities [173], constituting monopole-antimonopole
pairs in the BZ, as in the right panel of Fig. 5.1.

Boundary modes: the Fermi arcs

A key property of WSMs is the presence of topological surface states reminiscent of topological
insulators [165]. Since the Fermi surface is a set of discrete points in momentum space, these
surface states, called Fermi arcs, stretch between the projections of the Weyl points on the surface
BZ [166].

To concretely show what are the dispersion relation and wavefunction of the Fermi arcs, we
consider a three-dimensional WSM with a boundary placed at z = 0 [174]. The starting point is
again the Weyl Hamiltonian in Eq. (5.18), and we want to solve the system{

H(px, py, z)ψ = ϵsψ

Nψ|z=0 = 0,
(5.32)

where N is a generic Hermitian matrix parametrizing the boundary conditions of the system at
z = 0. In Ref. [174] it is explicitly shown that the solution of the previous eigensystem, that gives
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the dispersion relation ϵs and the wavefunction ψs of the surface states, is dictated by a single
real boundary parameter θ. This is derived essentially by imposing the self-conjugacy of the Weyl
Hamiltonian.

Since there is a boundary at z = 0, we can not consider pz as a coordinate in momentum
space, as there is no more the translation symmetry along the z-axis. We have then to consider
pz → −i∂z and solve the equation

H(px, py,−i∂z)ψ = ϵsψ ⇒
(
−i∂z − ϵs px − ipy
px + ipy i∂z − ϵs

)(
ξ

η

)
= 0, (5.33)

where in the last step we parametrized the field ψ using a 2-component spinor ψ = (ξ, η)T and
exploited the structure of the Hamiltonian in terms of the Pauli matrices. The solution is(

ξ

η

)
= e−α(ϵs)z

(
1

e2iθ

)
, α(ϵs) = p2x + p2y − ϵ2s > 0. (5.34)

If we insert this into the eigensystem in Eq. (5.33), we find that the dispersion relation of the
Fermi arc is

ϵs(px, py, θ) = −px cos 2θ − py sin 2θ, α(px, py, θ) = px sin 2θ − py cos 2θ. (5.35)

It is explicit here the dependence on the boundary parameter. The Fermi arc is defined by ϵs = 0,
for vanishing chemical potential. Correspondingly, the wavefunction is

ψs(z) =
√
α(ϵs)e

−α(ϵs)z
(
e−iθ

1

)
. (5.36)

Due to the condition α(ϵs) > 0, the surface states exist only in a limited region of the momentum
space.

To conclude, the dispersion relation of the Fermi arc is tangential to the Weyl cone and ends
at the touching line on the Weyl cone. At zero energy, then, there is a Fermi arc in the surface BZ,
ending at the Weyl points momenta.

Classification of Weyl points

In this Section we pointed out and clarified what are the features of an ideal WSM, and as a final
part we give a symmetry argument to establish a priori what could be the number of Weyl points
and their location in momentum space.

Due to the Kramers theorem, to have individually separed Weyl nodes we have to break
either time-reversal (TR) or space-inversion (SI) symmetries [156, 159]. Let us then consider the
Hamiltonian

H = χσ · (p− p0), (5.37)
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describing the Weyl node at p = p0 with chirality χ, which transforms as

TR : p → −p, σ → −σ ⇒ H ′ = χσ · (p+ p0), (5.38)

SI : p → −p, σ → σ ⇒ H ′ = −χσ · (p+ p0) (5.39)

under the action of the above mentioned symmetries. This implies that for TR-invariant systems
there must exist a Weyl point at p = −p0 with the same chirality, while for SI-invariant systems
the nodal point at p = −p0 must have opposite chirality.

With this in mind, there are four possible cases:

1. presence of both symmetries: it is not possible to have individual Weyl points in momentum
space, due to the Kramers theorem;

2. TR symmetry is broken in SI-invariant systems: there are at least two degenerate points at
p = ±p0 with opposite topological charge;

3. SI symmetry is broken in TR-invariant systems: there are at least four Weyl points, because
the doublet due to TR-invariance acquires a partner with opposite chirality;

4. absence of TR and SI symmetries: the position of the Weyl points may be everywhere in
momentum space, and they may have different energies [173].

Out of this classification, we read that the simplest case of a model with a single pair of Weyl
points with the same energy can be obtained by breaking explicitly TR symmetry and preserving,
at the same time, SI symmetry.

5.3.3 A lattice model for Weyl semimetals: the Hofstadter model

To have a realization of the ideal WSM in a lattice model, we should consider a three-dimensional
system that preserves SI symmetry and has the TR symmetry explicitly broken: this requires the
presence of an external magnetic field, realizing the so-called magnetic WSMs [26, 159, 168, 170].

In generic dimensions, the physics of a single particle hopping on a hypercubic lattice in
the presence of an external applied magnetic field is described by the Hofstadter model. In two
dimensions, the Hofstadter model [89] is a paradigmatic example for the study of Chern insulators
and the physics of the quantum Hall effect. Its spectrum as a function of the magnetic flux is the
celebrated fractal Hofstadter butterfly, as showed in Fig. 5.2(a).

The three-dimensional version of the model on a cubic lattice with commensurate fluxes of
the form Φ = 2π/n, n ∈ N, presents a complex and fractal spectrum as well [175, 176]. For n = 2,
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Figure 5.2: (a) Spectrum of the Hofstadter model in d = 2 for different magnetic fluxes Φ,
reproducing the Hofstadter butterfly. The figure is taken from [38]. (b) Schematic illustration of
the Hofstadter model on a square lattice, with magnetic flux Φ piercing the plaquettes of the lattice.
The flux corresponds to the total phase accumulated by the wavefunction of a single particle which
moves around the plaquette.

with Φ = π, it realizes a WSM at half-filling [93, 177–179] which, in particular, does not break the
physical TR and SI symmetries [180]. For n ̸= 2, TR symmetry is broken and the system displays
n connected energy bands. The spectrum is in general symmetric around zero energy due to the
chiral sublattice symmetry. The Hamiltonian on a cubic lattice reads

H = −t
∑
r,ĵ

c†
r+ĵ
eiθj(r)cr + h.c., θj(r) =

∫ r+ĵ

r

A(x) · dx. (5.40)

where t is the strenght of the hopping term, and the Peierls phases θj define the magnetic fluxes
across all plaquettes.

Diagonalization of the model in momentum space

The Hofstadter model on a cubic lattice can be solved in momentum space, by taking advantage
of the interplay between gauge and translational invariance in the presence of a commensurate
background magnetic field. This allows for the introduction of the concept of a magnetic Brillouin
zone (MBZ) [91], which can be defined for every choice of the gauge field A(x). We will focus on
the case of a magnetic field Φ = 2π/n in all plaquettes (n ∈ N), corresponding to a magnetic field
B = Φ(1, 1, 1). Other fluxes, such as Φ = 2πm/n (m ∈ N), or orientations of the magnetic field,
such as B ∝ (0, 1, 1), yield analogous results.

Due to the presence of the Peierls phases in the Hamiltonian, the cubic lattice can be
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decomposed in a certain number of independent sublattices, depending on the gauge choice. This
arbitrariness can be used to determine the gauge generating the smallest number of the sublattices
associated with Φ, i.e. the integer n. As analyzed in [94], on a 3d cubic lattice the minimal number
of sublattices is given by n, and a convenient gauge to work with is the Hasegawa gauge [95], given
by

A(x) = Φ(0, x− y, y − x). (5.41)

Within this gauge choice, the MBZ is

MBZ : kx ∈
[
− π

n
,
π

n

]
, ky ∈

[
− π

n
,
π

n

]
, kz ∈

[
− π, π

]
, . (5.42)

The Hamiltonian can be written in terms of smaller independent blocks, the so-called magnetic
bands. For each sublattice we have an associated band, and each one is n-fold degenerate. We
observe that with k ∈ MBZ the allowed values for the momenta are N/n2, and for each of them the
matrix to be diagonalized has size n× n. We then get N/n eigenvalues, each one with degeneracy
n, matching the dimensionality of the problem in real space, see e.g. [94].

The expression of the Hofstadter Hamiltonian in momentum space is

H = −t
∑

k∈MBZ

∑
ĵ,s

c†s′,k(Tĵ)s′,se
−ik·ĵcs,k + h.c., (5.43)

where s is an index labeling the sublattices, and the matrices Tĵ are

Tx̂ =


0 1 0 0

0 0
. . . 0

0 · · · 0 1

1 0 · · · 0

 , Tŷ = e−
iπ
n


0 · · · 0 φ0

φ1 0 · · · 0

0
. . . 0 0

0 0 φn−1 0

 , Tẑ =


φ0 0 · · · 0

0 φn−1 0 0

0 0
. . . 0

0 · · · 0 φ1


(5.44)

in the sublattice basis. In the previous expressions, we defined for the sake of simplicity φl = e
2πil
n ,

with l = 0, . . . , n − 1. We observe that for n ̸= 2 the matrices Tĵ are not invariant by the
conjugate operation, reflecting the fact that time-reversal symmetry is broken by the presence
of the external magnetic field. Moreover, the Hamiltonian in Eq. (5.40) has a chiral sublattice
symmetry cr → (−1)x+y+zcr that maps H → −H. As a consequence, the model has a symmetric
single-particle energy spectrum.
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Chapter 6

Topological van Hove singularities at phase
transitions in Weyl metals

In Chapter 5 we observed that Weyl semimetals (WSMs) [167, 181] are the simplest three-
dimensional (3d) systems that combine a gapless spectrum with topological features. When their
chemical potential matches the energy of the Weyl band-touching points, the Fermi surface shrinks
to a discrete set of bulk points, and the low-energy transport properties are dominated by the
topological surface features.

By shifting the chemical potential away from the Weyl nodes, the Fermi surface becomes
in general a collection of two-dimensional Fermi sheets [182–184] surrounding, in momentum
space, each band-touching point. They are characterized by a non-zero Chern number, realizing a
topological metal [168]. By varying the chemical potential further away, the Fermi sheets typically
merge, recovering trivial non-topological metallic states. This process not only constitutes a Lifshitz
transition [185], due to the change of the topology of the Fermi surface, but it can also be seen as
a topological phase transition (TPT) between two gapless states of matter, due to the change of
the topological invariants associated with the Berry fluxes of the Fermi surface1. Therefore, not
all the Lifshitz transitions are topological in this sense, and in the following we will refer to the
non-topological Lifshitz transitions as standard Lifshitz transitions.

In this Chapter, we show that the TPTs between Weyl and trivial metallic phases are
accompanied by van Hove (VH) singularities, as in the case of standard Lifshitz transitions, and
they are signaled, in general, by peculiar magnetotransport features resulting from the vanishing
chiral anomaly (see also [186]).

1To avoid any misunderstanding, we comment that very often the term TPT is used to denote a transition, as
it occurs in 2D systems, where the gap closes and the topological invariants change. Here, we are considering 3D
systems and the transition is between gapless phases, with a change of the topological invariants.
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WEYL METALS

In 3d gapless systems, TPTs can be defined by changes of the topological invariants of the
Fermi sheets, occurring at specific singular points. Additionally, Fermi surface singularities result
in the presence of VH points, namely discontinuities in the energy derivative of the density of states
(DOS). One can have a change in the topology of the Fermi surface, thus a Lifshitz transition [185],
without a TPT. Therefore, not all the VH points are associated with TPTs. We will show that the
TPTs between 3d topological and trivial metals, occurring when the chemical potential is varied,
are characterized and accompanied by the appearance of VH singularities in the DOS.

As a case study, we will consider the 3d Hofstadter model, which offers a useful playground
for modeling several topological metallic phases. Our choice is inspired by the recent progress in
the engineering of quantum matter in artificial lattices with large effective magnetic fluxes, which
encompasses many branches of many-body physics [187], including driven ultracold atoms trapped
in an optical lattice [188–192], molecular nanostructures built with scanning tunneling microscopes
[193, 194], moiré double-layer heterostructures [195, 196], and photonic crystals [197].

This Chapter is organized as follows: we firstly introduce the main general concept by analyzing
a continuum model showing ideal Weyl points; we then discuss some characteristic properties
of the TPTs based on their chiral anomaly signatures; in particular, we investigate the ballistic
magnetotransport features of two toy models in proximity to the TPTs. After this first part we
analyse the 3d Hofstadter model, and we present our result for generic magnetic fluxes. In the
final part we summarize and present our conclusions.

6.1 General concept

To begin our discussion we use the minimal two-band toy model [183, 198–200] defined by:

H(k) =
v

2k0

(
k2x − k20

)
σx + vkyσy + vkzσz − µ . (6.1)

For µ = 0, the Hamiltonian (6.1) describes a WSM with two Weyl points of opposite topological
charges located at kW = (±k0, 0, 0). Their linear dispersion is characterized by the same velocity
v in all directions and the corresponding DOS quadratically vanishes at zero energy. For small
variations of µ, the Fermi surface is composed by two (almost) spherical Fermi sheets of radius
|µ/v| centered on each Weyl point, as in Fig. 6.1(c). These Fermi sheets are characterized by
Chern numbers ±1, matching the Weyl topological charges; thus the system is a topological metal
[168, 182–184]. This topological phase survives until |µ| = vk0/2 (magenta lines in Fig. 6.2). Here,
the two Fermi sheets become connected in the point ks = (0, 0, 0), as in Fig. 6.1(b), with the result
that the protected surface states completely overlap in momentum space with the zero-energy bulk
states. For |µ| ≥ vk0/2, there are paths within the Fermi surface connecting in momentum space
the two Weyl points. Es ≡ vk0/2 is the minimum value of |µ| such that these paths open and, as a
result, for |µ| = Es the Fermi surface becomes a single connected surface with Chern number zero,
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Figure 6.1: Fermi surfaces of the toy model in Eq. (6.1) for different values of the chemical
potential. (a) |µ| > vk0/2: the Fermi surface has a single sheet enclosing the two Weyl points. (b)
|µ| = vk0/2: the two blobs enclosing the Weyl points touch exactly at the van Hove singularity,
showing the topological phase transition. (c) |µ| < vk0/2: two spherical sheets enclosing the Weyl
points, each one with Chern number C = ±1, according to the chirality of the nodes.

as in Fig. 6.1(a), since it encloses two Weyl points with opposite charges. This is indeed a TPT
between a topological metal at |µ| < Es and a trivial metal for |µ| > Es.

In momentum space, ks constitutes a saddle point for the energies of both bands, hence it
gives rise to two VH singularities in the DOS ρ(ϵ) of the system at energies ±Es, which correspond
to discontinuities in the derivative dρ/dϵ, as shown in Fig. 6.2. These VH singularities can be
observed through bulk transport measurements or the investigation of optical properties via ARPES
techniques [26, 201, 202].

The concurrence of the TPT between topological and trivial metals and the appearance of a
VH singularity in the DOS of the system is a general feature of Weyl metals. To be more specific,
let us consider two energy bands connected by two Weyl points with opposite topological charges.
These Weyl points may have different energies and different velocities (we exclude, however, the case
of strongly tilted type-II Weyl points [203, 204]). For each path K between these two band-touching
points in momentum space we can associate the differentiable function ϵ(k) with k ∈ K, describing
the lowest band energy along K. (analogous results are obtained for the highest bands). The
Weyl points are local maxima of the energy. Therefore, for each K, there exists at least one global
minimum ϵ(kmin). The TPT is located at µ = Es, where Es is the maximum of the energy minima
ϵ(kmin) over the paths K. This implies that ∇kϵ(ks) = 0. Then, Es is a minimum of the energy
along a path K, but a maximum of the energy against variations of the path. Thus, in the most
common scenario, it corresponds to a saddle point, and the vanishing of the velocity in this point
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Figure 6.2: Dispersion relation of Eq. (6.1) for kz = 0, alongside the associated DOS. We highlight
the Weyl points energy ϵ = 0 (black dashed line) and the VH singularities at ϵ = ±Es (magenta
dashed lines). In this figure and in the following, energies are in units of t.

causes a VH singularity at ϵ = Es (other situations with stronger VH singularities are possible as
well).

The previous argument can also be rephrased by applying the Morse theory [205] to the
differentiable function ϵ(k). In this framework, the critical points of ϵ(k), such that ∇kϵ(k) = 0,
correspond to a change in the topology of the level sets of the function, i.e. the Fermi surfaces. In
addition, the presence of the Weyl points ensure the change in the Chern number giving rise to a
TPT. In realistic tight-binding models, however, several additional VH singularities may appear
that are not related to TPTs and that correspond to standard Lifshitz transitions. Therefore, in
the following, we will distinguish topological VH singularities from trivial VH singularities.

The topological VH singularities we discussed so far are based on a variation of the Chern
number of the Fermi sheets by ±1. More complicated scenarios may be verified in systems presenting
multi-Weyl points [206–210], or other kinds of band touching points with multiple topological
charges [211–213].

Let us consider, for instance, the case of double Weyl points with topological charge ±2. In
these models, characterized by the presence of additional symmetries, additional topological VH
singularities can appear that are associated with the merging of two Fermi sheets with Chern
numbers ±2. The set of TPTs in these gapless systems, however, is richer: when considering
models with multiple bands, further band-touching points may cause TPTs in which a Fermi sheet
with Chern number ±2 split into two sheets with Chern number ±1. These kinds of TPTs are not
associated with VH singularities because they occur in correspondence with Weyl points connecting
different bands, rather than saddle points appearing in a single band.
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Figure 6.3: Landau levels ϵn(k) at fixed ky = kz = 0, up to n = 5, in the case of negative
magnetic field in the two regimes |B| < Bc (a), and |B| > Bc (b). The chiral Landau level (n = 0)

is plotted in blue. For large magnetic fields we distinguish the three regimes discussed in the main
text: µ0 ∈ (−

√
|B|, Es) (brown dashed line), µ1 ∈ [Es,

√
|B|) (gray dashed line), and µ2 ≥

√
|B|

(magenta dashed line).

6.2 Signatures of the chiral anomaly in the topological phases

Across a TPT, the topological invariants associated with the Fermi sheets change: in a topological
metallic phase, the system presents disjoint Fermi sheets with different Chern numbers, which give
rise to signatures associated with the onset of chiral anomaly [168]. Chiral anomaly is indeed one
of the main distinguishing features of the topological phases and in the following we investigate the
related response of a Weyl system upon the introduction of parallel magnetic and electric fields,
when the chemical potential varies across a TPT.

6.2.1 Ideal Weyl points

We refer in particular to the toy model in Eq. (6.1), and we consider the application of a magnetic
field along the direction of the Weyl points, i.e. B = Bx̂. The dispersion of the corresponding
Landau levels ε±n (kx) is easily calculated as a function of B [186]:

ε±n (k) = ±

√
|B|n+

v2(k2x − k20)
2

4k20
, (6.2)

ε0(k) = −v sgn(B)
k2x − k20
2k0

. (6.3)

The Landau level at n = 0 displays an opposite chiral behavior in proximity to the two Weyl points
at kx = ±k0. This chirality is exchanged when changing the sign of the magnetic field B, as a
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result of the different wave function of the n = 0 Landau level. Hereafter we fix B < 0, but the
following considerations hold for B > 0 and opposite energies. At fixed magnetic field, we can
distinguish different regimes of the system depending on µ.

For weak magnetic fields |B| < Bc = E2
s , the system is gapless for any µ, and indeed in Fig.

6.3 (a) there is at least one partially filled Landau level for any chemical potential. In this case,
for µ < −Es only non-chiral Landau levels contribute to the zero-temperature conductance of the
system, while for µ > −Es also the chiral n = 0 Landau level conducts. Based on the construction
by Nielsen and Ninomiya [173], we conclude that the conservation of chirality of the bulk states is
broken for µ > −Es.

At stronger fields, |B| > Bc (the so-called quantum limit), the situation is qualitatively
different and we can identify four regimes: for µ ≥

√
|B| [see µ2 in Fig. 6.3 (b)] all the Landau

levels ε+n (k) contribute to the zero-temperature conductance; for µ ∈ [−Es,
√

|B|) [see µ1 in Fig.
6.3 (b)] only the chiral Landau level contributes to the bulk conductance; for µ < −Es [see µ0 in
Fig. 6.3 (b)] an insulating phase appears; for other values of µ only the non-chiral Landau levels
ε−n (k) conduct.

In summary, for the trivial phase at |µ| > Es there exists a critical value of the magnetic field
amplitude Bc above which an insulating phase appears. Within the topological phase at |µ| < Es,
instead, the chiral Landau levels always contributes to the magnetoelectric transport, and, in
particular, the system displays chiral anomaly. Another consequence of chiral anomaly is that in
the topological phase for |µ| < Es, the system necessarily displays chiral Fermi arcs localized on any
surface parallel to x̂. In the trivial phase |µ| > Es, the Fermi arcs may instead vanish depending on
the surface properties [200]. This implies that the topological phase necessarily displays anomalous
Hall conductivity, which, instead, may vanish in the trivial phase.

6.2.2 Multiple Weyl points

The above argument relies on the assumption of an ideal Weyl semimetal with a single pair of
Weyl points. In the following, we extend it to a more general class of Weyl systems, characterized
by multiple pairs of Weyl points. We focus in particular on systems displaying a collection of
well-separated Weyl dipoles, each constituted by two Weyl points with opposite charges displaced
by a small momentum distance. Our analysis of the Landau levels in Eqs. (6.2),(6.3) can indeed
be generalized to Hamiltonians of the form

H(k) =
∑

j=x,y,z

gj(kj)σj − µ, (6.4)
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Figure 6.4: Landau levels εn(k) of the model in Eq. (6.6) at fixed kz = π/2, in the case of positive
magnetic field B ≳ Bc. The chiral Landau levels (n = 0) are plotted in blue. We show two of the
four regimes discussed in the main text: µ0 ∈ [ϵ, Es] (magenta dashed line), µ1 ∈ [Es, ε1,min] (grey
dashed line). The saddle point energy Es (dotted brown line) is reported too.

and, to present a concrete example, we consider the following model of spin 1/2 fermions on a
cubic lattice:

Hlat = − v

2 sin k0

∑
r

(
c†r+x̂σxcr +H.c.

)
+ v cot k0

∑
r

c†rσxcr

− µ
∑
r

c†rcr +
v

2

∑
j=y,z

∑
r

(
ieiθj(r)c†

r+ĵ
σjcr +H.c.

)
. (6.5)

Here and in the following we set the lattice spacing to unit value. When the phases θj vanish, no
magnetic field is present and the model displays four Weyl dipoles at µ = 0, each oriented along kx
and with charges separated by 2k0, which we assume to be much smaller than π. In this case, Hlat

describes a system that replicates four times the toy model in Eq. (6.5), with the four Weyl dipoles
displaced by π in the ky and kz directions of the BZ, and characterized by alternating orientations.
The topological VH singularities lie at energy Es = v tan(k0/2).

The Peierls phases θj introduce a magnetic field in the system, and, analogously to the
previuous example, we consider a magnetic field B = Bx̂ parallel to the Weyl dipoles. We adopt a
Landau gauge and we set θy(r) = 0 and θz(r) = By. In this case, kx, kz are conserved momenta,
and the problem is effectively reduced to a collection of 1d systems:

H(kx, kz) =
v

2

∑
y

(
ic†y+1σycy +H.c.

)
− v

∑
y

c†y

[
(cos kx − cos k0)

sin k0
σx + sin (kz +By)σz + µ

]
cy.

(6.6)
This choice of the magnetic field gives rise to a set of Landau levels for each Weyl dipole, analogous
to the ones discussed for the ideal Weyl model. In particular, we expect two chiral Landau levels
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approaching zero energy and kx = ±k0 for each chirality. Based on commensurability effects
between B and the Weyl point momentum distance, however, these chiral Landau levels may
display avoided crossings, determined by the non-linear momentum dependence along ky and kz of
the original lattice model (see [214–216]). Depending on the value of B, these avoided crossings
may affect all the chiral Landau levels, or only a subset (as in the case of Fig. 6.4), and they
introduce a further energy scale in the problem, which we label with ϵ. This splitting of the chiral
Landau levels can be considerable (see Fig. 6.4) and was discussed in [214, 216] for the ideal Weyl
system in Eq. (6.5) with a magnetic field orthogonal to the Weyl point separation. However,
an estimate of this energy scale in our model is a non-trivial problem, related to the solution of
the generalized Harper model obtained by setting kx = ±k0 in Eq. (6.6). Intuitively, we expect
that ϵ grows with B, and with the ratio 2k0/π between the separation in momentum space of the
Weyl points in the same dipole and the momentum distance of different dipoles, but given its
non-monotonic behavior in B, the ballistic transport properties of the system (6.6) are difficult to
predict around zero energy.

Another effect of the non-linear perturbations of the dispersion of the cones, is that the critical
field Bc for the onset of the quantum limit decreases below E2

s . For a weak splitting of the chiral
Landau levels, at fixed B ≳ Bc, we identify four main regimes (see Fig. 6.4):

1. for µ ≲ ϵ, the conductance depends on the detail of the splitting of the chiral Landau levels,
and, for specific values of B and system sizes, insulating phases may appear (consistently
with the analysis in [214–216]);

2. for ϵ ≲ |µ| ≲ Es, instead, the chiral Landau levels stemming from all the monopoles contribute
to the bulk conductance G (see µ0 in Fig. 6.4); thus, in the limit of ballistic transport2.

G =
4e2

h

(
L2

2πl2B

)
, (6.7)

where L2 is the area of the section of the system orthogonal to B, and lB is the magnetic
length of the system;

3. for |µ| ∈ (Es, ε1,min], where ε1,min is the minimum of the energy of the non-chiral Landau
levels, only the chiral Landau levels with a given chirality contribute to the transport (see µ1

in Fig. 6.4), therefore

G =
2e2

h

(
L2

2πl2B

)
. (6.8)

2We remind that the ballsitic regime, in the context of transport phenomena for Weyl metals, is defined by the
condition L > Lm ∼ D/B, where D is the diffusion coefficient D ∼ vF ℓ, related to the mean-free path, and B is the
applied external magnetic field. This has to be distinguished from the diffusive regime, where instead L < Lm.
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Figure 6.5: Left panel: second band in Eq. (6.10) for kz = π/2 centered around the point k−,−
W ,

together with the topological (brown dots) and trivial (magenta dots) VH singularities. Right
panel: Hofstadter model DOS for n = 2 and ϵ ≤ 1. We highlight the topological (brown dashed
lines) and trivial (magenta dashed lines) VH singularities. Insets: Fermi surfaces in the MBZ for
the different regions of µ explored in the text, highlighting the main points in momentum space.

4. for |µ| > ε1,min also the Landau levels with n ̸= 0 contribute to the conductance, increasing it
at least by

∆G =
4e2

h

(
L2

2πl2B

)
. (6.9)

In conclusion, at |µ| = Es we expect a considerable variation in the number of channels contributing
to the magnetotransport properties of the system in the large magnetic field regime; this gives
rise to a peculiar discontinuity in the conductivity which drops from G = 4 (e2/h) (L2/2πl2B) on
the topological side to G = 2 (e2/h) (L2/2πl2B) on the trivial side. Importantly, the aforementioned
transport features do not appear, in general, if the system undergoes a standard Lifshitz transition.

6.3 The three-dimensional Hofstadter model

To investigate how trivial and topological metallic phases alternate in lattice models and the
corresponding patterns of VH singularities, we consider, as a case study, the 3d Hofstadter model.
We consider the Hamiltonian in Eq. (5.40) on a cubic lattice with commensurate magnetic fluxes
Φ = 2π/n in all plaquettes (n ∈ N), corresponding to a magnetic field B = Φ(1, 1, 1) in units of
the magnetic flux quantum.
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6.3.1 Varying the magnetic flux

To study the model in Eq. (5.40) it is convenient to choose the Hasegawa gauge [95] A(r) =

Φ(0, x− y, y − x) for the definition of the θ phases [94]. In the following, the behavior of the DOS,
and the properties and location of the VH singularities, are studied for different values of n ≥ 2.

The Weyl semimetal appearing at n = 2 is characterized by the band dispersion:

ϵ(k) = ±2t
√

cos2 kx + cos2 ky + cos2 kz. (6.10)

as explained in Section 5.3.3. It presents four inequivalent Weyl nodes in the magnetic Brillouin zone
(MBZ), at kW

±,± = (±π/2,±π/2, π/2). When |µ| < Es ≡ 2t, the Fermi surface is composed of four
sheets with Chern number ±1. As expected, at µ = ±2t the system undergoes a TPT, and the Fermi
sheets merge in a single surface with vanishing Chern number. This phase transition is accompanied
by a topological VH singularity, generated by the saddle points in ks = (±π/2,±π/2, 0) (and
the corresponding permutations within the MBZ; see the brown dots in Fig. 6.5). In the lowest
band, the energy Hessian ∂ki∂kjϵ at the saddle points is diagonal with eigenvalues 2t {1,−1,−1},
corresponding indeed to a minimum of the energy along the line joining two opposite Weyl points
and to a local maximum in the orthogonal directions (the opposite happens in the highest band).

By inspecting the DOS and the spectrum, we clearly see other singularities at ϵ = ±2
√
2t

corresponding to additional saddle points at (0, 0, π/2) and the analogous points; see Fig. 6.5.
These additional VH singularities can be understood by considering the behavior of the system for
−2

√
3t < µ < −2

√
2t, close to the minimum of the lowest band. In this regime, the Fermi surface

is constituted by inequivalent disconnected sheets in the MBZ surrounding each band minimum
(upper left inset in fig. 6.5). Each sheet has a vanishing Chern number. When µ = −2

√
2t, these

Fermi sheets merge in a single surface with zero Chern number (upper right inset in fig. 6.5),
and the corresponding saddle points of the spectrum have a diagonal Hessian with eigenvalues
2t {1, 1,−1}. The topology of the Fermi surface changes at this energy, thus the system undergoes
a Lifshitz phase transition between two topologically trivial metallic phases [185]. Therefore, we
label the VH singularities at µ = ±2

√
2t as topologically trivial.

Similar features characterize the Hofstadter model with n = 3. In this case, the three bands
of the model are separated by inequivalent pairs of Weyl points: within the MBZ there are two
Weyl cones between the first two bands located at energy ϵ = −

√
3t [95], and the symmetric cones

between the second and third band at ϵ =
√
3t. The system is thus in a Weyl semimetal phase

when the chemical potential matches these energy levels, and the DOS vanishes quadratically at
ϵ = ±

√
3t. By varying µ around the Weyl points, the system is in a metallic Weyl phase with

disconnected Fermi sheets; the lowest and highest bands behave qualitatively as the bands in the
n = 2 model. The central band, instead, presents two TPTs from the topological phases at |µ| > t

to a trivial phase for |µ| < t. Besides these topological VH singularities, we can detect other VH
singularities corresponding to local extrema of the three energy bands. At the level of the Fermi
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n Energy (Weyl points → boldface; Topological VH singularities → red)
2 -2 0 2
3 -2.42 −

√
3 -1.03 1.03

√
3 2.42

4 -2.70 -2.17 -1.63 -0.34 0 0.34 1.63 2.17 2.70
5 -2.71 -2.34 -1.96 1.96 2.34 2.71
6 -2.67 -2.43 -2.18 2.18 2.43 2.67
7 -2.60 -2.50 -2.40 2.40 2.50 2.60

Table 6.1:: Energies of the Weyl points and their associated topological VH singularities for
2 ≤ n < 8.

surface, these singularities signal the appearance of particle or hole pockets, thus of trivial Fermi
sheets, and do not change the topological properties of the system.

Let now consider n ≥ 3. For n smaller than a “critical" value nc, found to be nc = 8, the DOS
of the system shows isolated zeros at ϵ = ∓ϵw,n, corresponding to Weyl points that separate the
lowest (and the highest) energy bands from the others. This result for nc is consistent with the
observation by Hasegawa [95] that, for Φ ≲ 4π/31, all the bands in the model overlap in energy. For
n < 8, the filling at the Weyl point with negative energy is thus ν = 1

n
, generalizing the well-known

result for n = 2.

Around the energies ϵw,n, the band structure is qualitatively similar to the n = 2 case: there
are two energy thresholds E∓

s,n, corresponding to saddle points, which determine topological VH
singularities, thus the system is in a topological metal phase for E−

s,n < |µ| < E+
s,n. Additional

trivial VH singularities appear at different energies, signaling trivial Lifshitz transitions.

The case n = 4 stands on its own, since a zero of the DOS is found also at ϵ = 0, corresponding
to two Weyl cones. These points overlap in energy with additional local extrema of the central
bands, which are quadratically tangent to ϵ = 0. As a consequence, in this case the DOS vanishes
as ρ(ϵ) ∼

√
|ϵ|, and not quadratically, at ϵ = 0, and the topological saddle points are doubled

accordingly (see Appendix C.3). In particular, for µ ≃ 0, the Fermi surface is made by four
disconnected sheets: two of them enclose the bands’ stationary points, with Chern numbers equal
to zero, while the remaining enclose the Weyl points, with Chern number ±1.

Concerning smaller fluxes, i.e. n ≥ nc, ρ(ϵ) does not display any zero. As a consequence, there
are ranges of µ for which the system is in a multiband metallic state, whose Fermi surface contains
sheets generated from consecutive bands.

Nonetheless, the system presents Weyl points at the energy ϵ = Ew between the first and
the second band (and possibly between higher bands), whose presence is “hidden" by the band
overlap. In this case, an additional VH singularity appears, which is associated with the minimum
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of the second band, with energy Em < Ew (see Appendix C.2). This singularity signals a Lifshitz
non-TPT between two topological metals, i.e. a single band metal for µ < Em and a multiband
metal for µ > Em, which corresponds to the opening of an electron pocket. The topological VH
singularity is located at the lower energy E−

s < Em. Similar hidden Weyl points appear also
between the intermediate bands for n = 5, 6, 7.

Our results on the Weyl points and their corresponding topological VH singularities for the
Hofstadter model with n < 8 are summarized in the Table 6.1.

To conclude this Section, we comment about the characterization of the TPTs in the 3d

Hofstadter model using the chiral anomaly ballistic transport signatures discussed above. The
study of the magnetotransport in this model is a non-trivial task due to the commensurability
effects induced by the presence of the magnetic field [217]. On general ground, the Landau levels
analysis presented in Sec. 6.2 can be applied to the 3D Hofstadter model when considering small
variations of the magnetic fluxes around a commensurate value in finite-size systems. In particular,
a small flux perturbation of strength |δϕ| = 2π/q around the value ϕ = 2π/n (with q ≫ n)
introduces a volume scale dependent on q below which the Nielsen-Ninomiya argument for the
appearence of the chiral anomaly is expected to hold, in analogy to similar results for the DOS
obtained in [180, 217]. A full analysis of the dependence on the magnetic perturbation of the Weyl
points in the 3d Hofstadter model and their magnetotransport properties is a subject certainly
deserving of further study.

6.4 Conclusions

We showed that the topological phase transitions (TPTs) in Weyl metals are signaled by the
appearance of Van Hove (VH) singularities. As a function of the chemical potential, these
transitions occur between a trivial phase, with a connected Fermi surface, and a topological phase,
displaying disconnected Fermi sheets with non-zero Chern numbers. The related topological VH
singularities manifest themselves as cusps in the DOS and are caused by the saddle points of the
momentum space paths joining Weyl points with opposite chiralities. Their transport signatures
may be enhanced for models displaying higher-order saddle points, whereas, in general, we expect
them to vanish for strongly tilted (type-II) Weyl semimetals [203, 204].

To characterize these TPTs between different metallic states, we investigated some of the
effects of the chiral anomaly and the Landau levels structure of these systems. Indeed, the chiral
anomaly gives rise to peculiar behaviors in the magnetotransport of Weyl semimetals [218–221]
and it allows us to distinguish topological and trivial phases. In particular, we studied the ballistic
bulk magnetoconductance of relevant Weyl metal toy models. We verified that for sufficiently high
magnetic fields with suitable orientation, the conductance of these systems displays a characteristic
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reduction by varying the chemical potential across a topological VH singularity from the topological
to the trivial phase. In the case of ideal Weyl systems in this extreme quantum limit, insulating
phases may appear in the trivial phase under strong magnetic fields [186, 214–216]; for models
with multiple pairs of Weyl points instead, the most common scenario corresponds to halving of
the conductance. This discontinuity of the magnetoconductance is typical of the topological VH
transitions, and it does not appear for standard Lifshitz transitions.

As an illustrative example of the onset of topological VH singularities, interesting per se, we
investigated the Hofstadter model on a 3d cubic lattice as a function of the magnetic flux Φ of
the form Φ = 2π/n, which hosts several trivial and topological gapless phases when n is varied,
and is relevant for the study of novel superconducting materials [222, 223]. For n < 8, its lowest
bands do not overlap, and we identified the TPTs by inspecting directly the singular points of
the DOS. For n ≥ 8 the bands overlap, and Lifshitz transitions between single and multiband
metallic phases can be identified. Our analysis opens the possibility of definining a 3d analog of
the Hofstadter butterfly by distinguishing it as a function of the flux and the chemical potential
trivial and topological gapless phases.

Analogous features can be investigated for generic fluxes of the form Φ = 2πm/n and generic
filling. For each m > 1, we expect the existence of a critical value of n, which separates phases
without and with overlapping bands. In any case presenting Weyl cones between neighboring
bands, TPTs are identified by the topological VH singularities. The behavior of the model for
general m/n is non-trivial due to the fractal nature of the spectrum; a natural question, however,
would be to verify the existence of a general limit Φc of the critical flux for large m (and study its
dependence on the filling).

Depending on the physical system of interest, the topological VH singularities discussed in this
Chapter can be detected through different methods, e.g. ARPES techniques, scanning tunneling
spectroscopy and microscopy, and optical and transport measurements [26]. The Hofstadter model
can be realized in ultracold atom quantum simulations with artificial gauge fluxes [187–189, 191].
In this context, several techniques have been successfully applied to detect the presence of band-
touching points, including Landau-Zener scattering processes [224], interferometric experiments
[225] and Bragg spectroscopy [226]. Furthermore, very recent works allow for the experimental
realization of Weyl semimetals by engineering 2d and 3d spin-orbit couplings [227], presenting
different methods to locate the position of the Weyl nodes in momentum space and to measure the
Berry curvature [228].

Finally, we comment that it would be interesting to study the fate of the topological VH
singularities and the associated topological phase transitions discussed here in the case of higher-
order Weyl metals, such as the ones studied in [229, 230], and when the dimension d is increased.
Moreover, a deserving line of activity could be the study of the role of the topological VH
singularities in the determination of the superconducting/superfluid-metal critical temperature
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transition when an attractive interaction is introduced [223], especially when it may be tailored in
order to preserve the topological properties.
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Appendix A

A gauge invariant reformulation and
applications to mean-field computations

Here we provide additional information about the gauge invariant mean-field application of the
formalism presented in Chapter 2. More work on these lines is currently pursued.

A.1 (1+1)−d Abelian gauge theory in different constructions

We reformulate the pure gauge action in Eq. (1.23) in (1 + 1)− d, using both the symmetric and
the asymmetric constructions. Explicitly we have that

SG =
1

e2

∑
n

[
1− U01(n) + U †

01(n)

2

]
. (A.1)

Using firstly the symmetric construction, we simply have A0 = ∆0ϕ+ F̄01/2 and A1 = ∆1ϕ+ F̄10/2

at each site n of the lattice. For the moment, we do not specific the boundary conditions and
keep the discussion at a general level. We denote with Ūµν the plaquette written in terms of the
variables F̄µν , whose expression is

Ū01(n) = exp

[
i
e

2
F(n)

]
, F(n) = F̄01(n) + F̄10(n+ 0̂)− F̄10(n)− F̄10(n+ 1̂). (A.2)

The action is then
Ssym ≡ 1

e2

∑
n

[
1− 1

2
(Ū01(n) + Ū †

01(n))

]
, (A.3)

but the strips F̄10, F̄01 are not independent, as they satisfy Eq. (2.26). At the level of partition
function, we include the Mandelstam constraints as

Zsym =

∫
DF̄10DF̄01 e

−βSsym δ(G(n)), (A.4)
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G(n) ≡
∑
n

[F̄01(n) + F̄10(n)− F̄10(n+ 0̂)− F̄01(n+ 1̂)]. (A.5)

A.1.1 Exact resolution of the Mandelstam constraint

Particularly simple here is to resolve the constraint, and sum over one of the two fields. For
example, we can express F(n) only in terms of F̄01 and get

F(n) = 2[F̄01(n)− F̄01(n+ 1̂)] ⇒ Ū01 = exp
{
{ie[F̄01(n)− F̄01(n+ 1̂)]}

}
. (A.6)

This is nothing but the plaquette U01 reformulated within the asymmetric construction {ϕ, F̄01}.
This is not surprising, since the partition function of the theory Z, whatever is the reformulation,
must be the same. Therefore we must have Zsym = Zasym. which is

Zasym =

∫
DF̄01

(∫
DF̄10 e

−βSsym δ(G(n))
)

︸ ︷︷ ︸
≡e−βSasym

=

∫
DF̄01 e

−βSasym . (A.7)

This defines the reformulated action in the asymmetric construction as a function of the symmetric
one:

Sasym = − 1

β
log

(∫
DF̄10 e

−βSsym δ(G(n))
)
. (A.8)

As a quick comment, this can be generalized also to higher dimensions: the difficulty, as already
discussed in Section 2.4, regards the integration of the Mandelstam constraints, which may be in
general a non-trivial task. This highlights the fact that the asymmetric construction is the only
one with the minimum number of independent variables1.

A.1.2 Constraint imposed at the mean-field level

Let us forget about the exact integration of the constraint, and discuss what happens if we try to
deal with it at the mean-field level. The proper way to do this would be to write the δ(G) in its
exponential form

Zsym =

∫
DF̄µνe−βSsym[F̄ ] δ(G(n)) =

∫ +∞

−∞
dη

∫
DF̄µν e−βSsym[F̄ ]+iηG(n), (A.9)

where η ∈ R. Since we want to take W = ⟨Ūµ⟩ as (gauge invariant) order parameter, it would be
better to further change variables to the links and rewrite the functional as

Zsym =

∫ +∞

−∞
dη

∫
DŪµ |J(Ūµ)| e−βSsym[Ū ]+iηG(n), (A.10)

1This however does not mean that it is automatically the best choice to begin with, if the purpose is to build
proper approximation schemes for the starting theory.
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both for open and periodic boundary conditions, up to the determinant of the Jacobian of the
change of variables |J(Ūµ)|. Therefore, we can take

W ≡ ⟨Ūµ⟩ =
〈
exp

{
ie
∑
µ̸=ν

ανF̄µν

}〉
(A.11)

as order parameter in the effective action Seff ≡ Ssym − iη/β · G(n)− log |J(Ūµ)|, and perform the
functional derivatives with respect to Ūµ directly, in order to derive the self-consistent equations.

Besides these observations, holding in general dimensions, for d = 1 we have that{
Ū0 = eieF̄01/2

Ū1 = eieF̄10/2
→

{
F̄01 =

2
ie
log Ū0

F̄10 =
2
ie
log Ū1

, |J(Ūµ)| =
4

e2
1

Ū0Ū1

, (A.12)

and the effective action is

Seff[Ū ] = Ssym[Ū0, Ū1]−
∑
n

log Ū0(n)Ū1(n)−
2η

eβ

∑
n

log

[
Ū0(n)Ū1(n+ 0̂)

Ū1(n)Ū0(n+ 1̂)

]
. (A.13)

By writing Ū = W + δŪ , and assuming W ∈ R for the mean-field ansatz, we have that

Ssym[δŪ ]− log |J(δŪ)| = 1

e2

[
1−

(
W 3 +

2e2

W

)
(δŪ + δŪ †)

]
+

2W 4

e2
− 2 logW, (A.14)

while the ratio appearing in the Mandelstam constraints reduces to

Ū0(n)Ū1(n+ 0̂)

Ū1(n)Ū0(n+ 1̂)
=
W 2 + 2WδŪ +O(δŪ)2

[W + δŪ ]2
= 1 +O(δŪ)2. (A.15)

The meaning of this is that, if we neglect higher orders in the fluctuations, the Mandelstam
constraints vanish at the mean-field order, since we have log[1+O(δŪ)2] → 0 in the effective action.
Therefore, using this order parameter W , at the mean-field level the symmetric construction does
not see the Mandelstam constraints. They are taken into account only by going at subsequent
order in the mean-field expansion.

The effective action then reduces to Seff[δŪ ] → Ssym[δŪ ]− log |J(δŪ)|, with W that satisfies
the self-consistent equation

δSeff

δŪ
= 0 ⇒ 2βW̃ =

I1(2βW̃ )

I0(2βW̃ )
, W̃ ≡

(
W 3 +

2e2

W

)
, (A.16)

where
I0(x) ≡

1

π

∫ π

0

ex cos θ dθ, I1(x) ≡
1

π

∫ π

0

ex cos θ cos θ dθ (A.17)

are standard modified Bessel functions.
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The structure of Eq. (A.16) is consistent with the Eq. (1.47) presented in Chapter 1: more
precisely, the functional form is the same, while its argument changes. If we consider the specific
case of d = 1 in Eq. (1.47), the field h coincides with W in the notation of the present Section.
Within our formalism, instead, we have h = W̃ , accounting for the Jacobian of the change of
coordinates, while the Mandelstam constraints are not taken into account at the mean-field level.
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Appendix B

Bosonic and fermionic link models in two
dimensions: a proposal

We provide here additional details about the proposal of the quantum simulator presented in
Chapter 4.

B.1 Determination of the number of species

B A’

B

B’

B’

A

A

A’

B C’

B’

C

A

A’

A

A’

X

X’

𝑁𝑠 = 2 𝑁𝑠 = 3

Figure B.1: Lattice structure with Ns = 2 (left panel) and Ns = 3 (right panel) internal states.
The quantum numbers are denoted respectively with A, B and C. The primed letters denote a
different permutations of the internal states along the two lattice diagonals. The green (red) square
encloses the vertices that are problematic (correct) in the spirit of our proposal.

We motivate here the choice of four internal states for our proposal on the square lattice.
To do this, we show what are the inconsistencies when less internal states are considered in the
construction of the spin-dependent optical lattice.
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Let us firstly discuss the case of Ns = 2 internal states (left panel of Fig. B.1). We consider
two diagonals of the lattice, with generic internal levels A, B and A′, B′ that can assume only two
integer values. If we want to generate the plaquette term through angular momentum conservation,
we have to impose the condition

∆1 = B′ − A′, ∆2 = B − A ⇒ ∆1 +∆2 = 0. (B.1)

By imposing this condition, no matter what follows in the diagonal, we get unwanted problems at
the subsequent vertex (see the green square in the left panel of Fig. B.1). Indeed, for any value of
A, B and A′, B′, there could be hopping processes at the vertices, that within our proposal we
want to avoid.

If we try to repeat the same reasoning with Ns = 3 internal levels (right panel of Fig. B.1),
we can solve this inconsistency in the first vertex (red square in Fig. B.1) by choosing C and C ′

such that ∆1 +∆2 = 0, and at the same time ∆3 +∆2 ≠ 0, with ∆3 = C ′ − C. We have then two
different types of plaquettes in this scheme. However, inconsistencies arise again when we go to
the subsequent vertex (green square in the right panel of Fig. B.1), and try to combine A, A′ with
X,X ′ that could be either B (B′) or C (C ′) internal states. Also in this case, for any X, X ′ there
are unwanted hopping processes at this vertex.

The solution to this is to use four internal states, but this is still not enough. To avoid hopping
at the vertices throughout all the lattice, there must be two internal states m, m′ such that their
difference is |m−m′| > 1, as in our proposal of Fig. 4.1, and this is the reason why we introduce
four out of five internal states.

B.2 Perturbation theory contributions

We present here the computations in perturbation theory that give rise to the effective model in
Eq. (4.4). The starting point is the full Hamiltonian H = H1 +H0, with h≫ tx, V

ij
mm′ . Making

reference to the definition of M0 given in the main text, we define respectively the projector on
M0 and the restricted inverse of (H0 − E0) as

P0 =
∑
α∈M0

|α⟩⟨α|, K =
∑
α/∈M0

|α⟩⟨α|
E0(α)− E0(0)

, (B.2)

where E0 is the eigenvalue of H0, and proceed with the computations order by order [150]. At
first order the contribution is H(eff)

1 = P0H1P0, and it is always zero. This is because, both for
the hopping and interaction term, with a single application of H1 we move out of the ground
state manifold. Therefore, once P0 acts again, the projection gives zero. At second order we have
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H
(eff)
2 = −P0H1KH1P0, and the two non-trivial contributions are

P0HhopKHhopP0 = −t
2
x

h

∑
⟨x,x′⟩d,m,m′

nxm(1− nx′m′), (B.3)

P0HintKHintP0 = −1

h

∑
⟨x,y⟩,m,m′

(V xy
mm′)

2nxmnym′ . (B.4)

𝑥

𝑥′

∼
𝑡𝑥
2

ℎ 𝑥

𝑦

𝑥
∼ 0 ∼

𝑉2

ℎ

(a) (b) (c)

Figure B.2: Virtual processes at second order in perturbation theory. In all the panels, light
blue lines are representing the target lattice, while grey lines the optical one, according to the
convention of the main text. (a) Back and forth hopping process x → x′ → x, generating the
term in Eq. (B.4). This process can happen if x is occupied and x′ is empty, independently of the
other two sites of the plaquette. (b)-(c): Processes associated to the Hint −Hint contribution of Eq.
(B.4). The only trivial situation is when all of the nearest neighbors of x are empty.

The graphical representation of the virtual processes associated to these two terms is showed
in Fig. B.2. Concerning the hopping contribution, it is associated to back and forth hopping
processes happening along the diagonals; for the interaction part, we have that two generic nearest
neighbors in the optical lattice interact mutually. These are the only processes that do not vanish
when projected back to the ground state manifold M0.

At third order we get two non-trivial contribution, including the plaquette term already
commented in the main text. The mathematical structure of the effective Hamiltonian is

H
(eff)
3 = P0H1KH1KH1P0 −

1

2
{P0H1K2H1P0,P0H1P0} ≡ H̃3 + H̃2, (B.5)

where H̃2 is a combination of lower order terms, and H̃3 is the real third order contribution. Due
to the fact that

H̃2 = −1

2
{P0H1K2H1, H

(eff)
1 } (B.6)

and since H
(eff)
1 = 0, this term vanishes. We are left only with H̃3, and among the various

contributions the only non-trivial ones are P0HintKHhopKHhopP0, generating the plaquette term,
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and P0HintKHintKHintP0, due to the spin-exchange interactions within a given plaquette. We
make reference to Fig. B.3 for the representation of the virtual process in this last case, which is
constrained to have the sites x′, y, y′ in the plaquettes occupied by particles compatible with the
spin-dependent lattice structure.

The total third order contribution is therefore

H̃3 =
t2x
h2

∑
x,x′,y,y′∈ □

m,m′

V xx′

mm′b
†
y′mb

†
ym′bx′m′bxm + h.c. +

1

h2

∑
x′,y,y′∈ □
m,m′

(V yy′

mm′)
2V y′x′

mm ny′mnx′mnym′ . (B.7)

𝑥

𝑦

𝑦′

𝑥′

𝑥

𝑦

𝑦′

𝑥′

𝑥

𝑦

𝑦′

𝑥′

(a) (b) (c)

Figure B.3: Virtual processes due to three spin-exchange interactions at third order in perturbation
theory. We have the spin-exchange between y − y′ (a), followed by the ones involving y′ − x′ (b)
and again y′ − y (c). The final state here coincides with the initial one. This process can happen if
all the three involved sites contain the bosons in the proper initial states, according to the lattice
structure. In all the panels, light blue lines are representing the target lattice, while grey lines the
optical one, according to the convention of the main text.
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Appendix C

Phase transitions in Weyl metals

We report here additional details and analysis for the Hofstader model in d = 3, supporting the
description reported in Chapter 6.

C.1 Properties of the density of states of the 3D Hofstadter
model

There are some general features that can be identified from the DOS profiles, which are displayed
in Fig. C.1 for n ≤ 8. We consider, in particular, the behavior of the topological metal phase at
filling ν ≈ 1/n.

The quantities we adopt to characterize the energy features as a function of n are as follows:
the bottom of the lowest band of the system, i.e. the lowest eigenvalue ϵmin of the Hamiltonian;
the energy location ϵ0 of the first zero of the DOS; and the number Nw of inequivalent Weyl points
in the MBZ at ϵ0. We also numerically checked that the filling νw of the system in the Weyl phase
at µ = ϵ0 is 1/n, as expected from the diagonalization of the n × n Hamiltonian (5.43). These
quantities are summarized in Table C.1 (given the chiral sublattice symmetry, symmetric results
hold for ϵ > 0).

The position of ϵ0 is determined through the identification of the DOS zeros. Its value decreases
as a function of n, and thus for decreasing magnetic fluxes, as can be clearly seen in the left panel
of Fig. C.2, where we display the function ϵ0 ∼ n−b, with b ≈ −2.8, as a guide for the eye on top
of the estimated values of ϵ0.

Qualitatively, the same behavior of ϵ0 is observed for ϵmin, as shown in the central panel of
Fig. C.2. Here we consider magnetic fields up to n ≤ 50, using the Lanczos algorithm [231] to get
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Figure C.1: Normalized DOS profiles from n = 3 to n = 8, obtained with the exact diagonalization
of the Hofstadter Hamiltonian on a finite cubic system of linear size L = 120 (except for n = 7,
where we considered L = 119). Because the energy spectrum is symmetric with respect to the
origin, we plot the profiles for ϵ < 0.

the lowest eigenvalue of Eq. (5.43). To characterize this decreasing behavior, we fit the data with
the function

ϵmin = α +
β

nγ
. (C.1)

The optimal parameters are found to be α = −6.09(1), β = 6.8(1) and γ = 0.79(1).

Regarding the number Nw of inequivalent Weyl points in the MBZ, since the system has
inversion symmetry but no time-reversal symmetry, its minimum value is 2, allowing for the
existence of a pair of Weyl nodes with opposite momenta at the same energy [159, 168]. For n < 8

we exactly observe two nodes at ϵ = ϵ0, as reported in Table C.1: therefore, within the MBZ, the
Hofstadter model hosts the minimum number of nodes compatible with the symmetries of the
system, being an example of the so-called ideal Weyl semimetals [232, 233]. Denoting with k

(±)
0

the positions of the Weyl nodes in momentum space, the effective Hamiltonian around them can
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n ϵmin ϵ0 Nw νw
3 -3.46 -1.75 2 1/3
4 -3.86 -2.18 2 1/4
5 -4.18 -2.32 2 1/5
6 -4.43 -2.43 2 1/6
7 -4.63 -2.49 2 1/7
8 -4.78 / / /

Table C.1:: Parameters as a function of the integer n. We report the bottom of the energy bands
ϵmin, the energy location ϵ0, the related number Nw of Weyl points and the filling νw of the Weyl
semimetal phase (energies in units of t). For n = 8 the DOS does not display zeros, therefore it is
not possible to properly identify ϵ0, Nw and νw from it. The values are calculated for a discretized
MBZ with a mesh of L3 points with L = 120 (except for n = 7, where we considered L = 119). By
doing finite-size scaling with a dependence of the form α + β/Lγ , one finds values compatible with
those of the table in the first two columns with error ≈ 0.01.

be written as
H(δk) = f(δk) 1 +

∑
i,j=x,y,z

(δk)ivijσj, (C.2)

with δk = k − k
(±)
0 . The function f(δk) represents the overall tilt of the Weyl cone, while the

tensor vij contains the velocity vectors. Their specific form can be computed by expanding the
Hamiltonian (5.43) around the Weyl points, and then computing the low-energy Hamiltonian (C.2)
using degenerate perturbation theory. Since there do not exist directions along which the tilt
dominates over the pure Weyl part, the Weyl points are of type I. The contributions of these points
to the DOS are still quadratic, but the presence of the tilt and anisotropies makes the computations
of the DOS coefficients not analytically doable [234].

We finally investigate the difference between the minima of the first and the second bands
∆ϵ = ϵ1min − ϵmin, in order to verify that for Φ ≪ 1 and filling ν ≪ 1 the lattice structure becomes
negligible, and the system can be described by its continuum counterpart [95]. We therefore
expect ∆ϵ ∼ n−1, in agreement with a Landau levels description of the model. We plot the energy
difference ∆ϵ as a function of the magnetic field in Fig. C.2, observing the expected behavior.

C.2 Topological van Hove singularities and Weyl points

We investigate in this Appendix how the energy difference between ϵ0 and the topological VH
singularity vanishes as a function of n. Denoting with ϵ(R)

m > ϵ0 the energy of the first topological
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Figure C.2: Left panel: Weyl node energy ϵ0, for n ≤ 6, (a dotted function ϵ0 = n−2.8 + κ is
depicted as a guide for the eye). Central panel: ϵmin, for n ≤ 50 together with the fit function in
Eq. (C.1). Right panel: ∆ϵ, for 25 ≤ n ≤ 50, superimposed with the function ∆ϵ ∝ n−1. All the
estimated values are obtained through a finite-size scaling analysis, up to L = 120.

VH singularity found by increasing the energy from the Weyl points, we define the parameter

δ ≡ ϵ(R)
m − ϵ0, (C.3)

whose plot as a function of n is shown in Fig. C.3. Apart from the special value of n = 2, we
observe a net linear trend, therefore we interpolate the data with a linear function of the form
δ = τn+ q. The obtained parameters are τ = −0.16(1), q = 1.20(5), and the value of n such that
the energy difference closes, i.e. δ = 0, corresponds to 7.6(2).

The associated critical value of the flux ϕc = 2π/nc is consistent with the estimate found by
Hasegawa [95]. In his work, he observed how the energy bands of the Hofstadter model overlap
for several pairs (m,n), associated with the flux Φ = 2πm/n, finding that this happens for fluxes
ϕ > ϕc, with ϕc associated with (mc, nc) = (4, 31) ∼ (1, 8).

Our analysis on the critical points of the energy bands supports this argument, allowing us to
conclude that the contribution of the Weyl point in the DOS for n ≥ 8 is always screened by the
presence of other states from the upper band overlapping at the same energy (see, for example, the
right panel of Fig. C.3). In this case, the Weyl semimetal phase disappears, and the system enters
a more general topological metallic phase. Quantitatively, this is parametrized by the behavior of
δ(n), which linearly closes at nc ∈ (7, 8). As a consequence, the DOS for n > nc no longer displays
any zero at ϵ0, despite the presence of Weyl points.

C.3 The case n = 4 at zero energy

For n = 4, the Hofstadter model shows a peculiar behavior at ϵ = 0. Indeed, at this energy
there are two crossing points for the central bands, exactly in correspondence of the two momenta

119



APPENDIX C. PHASE TRANSITIONS IN WEYL METALS

1 2 3 4 5 6 7 8 9
n

0.0

0.5

1.0

1.5

2.0

=
(R

)
m

0

Linear fit (n 2)
= 0

2.5 0.0 2.5
kz

4

3

2

(k
z)

0.0 0.3 0.6
( )

Figure C.3: Left plot: energy difference δ as a function of n, for n ≤ 8. We also plot δ = τn+ q

(see the text), with the estimated parameters values (blue dashed line) and the line δ = 0 (black
dotted line), for which the energy difference closes. The errorbars in the plot are estimated through
a binning analysis on the DOS profiles. Right plot: two lowest energy bands at fixed kx = k

(w)
x ,

ky = k
(w)
y (left panel), alongside the DOS of the model (right panel) for n = 8. We highlight the

VH singularity associated with the minimum of the second band at energy Em (brown dashed line)
and the energy position of the Weyl nodes Ew > Em (black dashed line).
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Figure C.4: Plot of the central bands of the Hofstadter model with n = 4 at fixed kx = ky = 0.
We highlight the stationary points k = (0, 0,±π), (0, 0, 0) at ϵ = 0 (orange dots) together with the
Weyl points (black dots).

k
(±)
0 = (0, 0,±π/2). At the same energy there are also two stationary points of the crossing bands,

namely a maximum of the second band at kM = (0, 0, 0) and a minimum of the third band at
km = (0, 0, π), as shown in Fig. C.4. We expand the dispersion relations around these points,
determining the eigenvalues of the Hessian and the behavior of the DOS at ϵ = 0. The functional
forms of the DOS around them are [235, 236]

ρm(ϵ ≃ 0) =

{
A
√
ϵ, ϵ > 0,

O(ϵ), ϵ < 0,
ρM(ϵ ≃ 0) =

{
A
√
−ϵ, ϵ < 0,

O(ϵ), ϵ > 0,
(C.4)
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where the coefficient A, which depends on the curvature of the energy band around the stationary
point, turns out to be the same for both the functions, since the Hessians of the dispersion relations
in km and kM are equal and opposite, giving rise to the same modulus of the curvature.

The total contribution to the DOS at ϵ = 0 is the sum of the single DOS at the stationary
points and at the Weyl points

ρ(ϵ = 0) = ρm + ρM + ρW = A
√

|ϵ|+Bϵ2, (C.5)

where B is a numerical factor encoding the effects of the tilt and the anisotropy of the Weyl cones
[234]. From Eq. (C.5) we conclude that the behavior of the DOS around ϵ = 0 is not quadratic,
due to the presence of stationary points at the same energy of the Weyl ones.
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