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Abstract

We study analytically the role of initial conditions in nonequilibrium quantum dynamics considering the 
one-dimensional ferromagnets in the regime of spontaneously broken symmetry. We analyze the expecta-
tion value of local operators for the infinite-dimensional space of initial conditions of domain wall type, 
generally intended as initial conditions spatially interpolating between two different ground states. At large 
times the unitary time evolution takes place inside a light cone produced by the spatial inhomogeneity of the 
initial condition. In the innermost part of the light cone the form of the space-time dependence is universal, 
in the sense that it is specified by data of the equilibrium universality class. The global limit shape in the 
variable x/t changes with the initial condition. In systems with more than two ground states the tuning of an 
interaction parameter can induce a transition which is the nonequilibrium quantum analog of the interfacial 
wetting transition occurring in classical systems at equilibrium. We illustrate the general results through the 
examples of the Ising, Potts and Ashkin-Teller chains.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

Universality is a central paradigm of statistical physics. In the equilibrium setting, in which it 
originated and is well established [1], it says that systems possessing a continuous phase transi-
tion exhibit a number of quantitative properties that do not depend on the microscopic details of 
the Hamiltonian, for example the range of the interaction as long as it is short. In a given space 
dimensionality, these universal properties depend instead on the group G of internal transfor-
mations that leave the Hamiltonian invariant, so that G is the label of the different universality 
classes.

The extension of such a notion of universality to the nonequilibrium framework is a nontrivial 
task. In the quantum case that we consider in this paper, a time independent Hamiltonian H gen-
erates unitary time evolution as in equilibrium. However, observables are now expectation values 
on a “nonequilibrium state” |ψ〉 that is not an eigenstate of H , but rather, in the physically inter-
esting cases, a superposition of infinitely many eigenstates. The question then arises of whether 
the notion of universality is compatible with the presence of the infinitely many coefficients of 
the superposition, which in turn correspond to infinitely many possible initial conditions of the 
time evolution. Since at the mathematical level these coefficients can be arbitrary, it is essential 
to refer to well defined physical problems.

In one of these, the Hamiltonian H that rules the time evolution for time t > 0 results from 
the change of an interaction parameter at t = 0 [2]. The name “quantum quench” [3,4] has been 
introduced for this problem in analogy with thermal quenches in classical systems. If for t < 0
the system was in the ground state of the pre-quench Hamiltonian H0, the nonequilibrium post-
quench state |ψ〉 is dynamically generated, with the coefficients of the superposition entirely 
determined by the quench. The analytical determination of |ψ〉 is nontrivial, but the general 
formalism has been developed in the last years [5–8]. It shows, in particular, how |ψ〉 depends on 
the equilibrium universality class and how the transformation properties of the quench operator 
under the group G affect the dynamics at large times.

A physical problem involving no quench but still leading to a nonequilibrium state |ψ〉 is 
that in which H is the Hamiltonian of a translation invariant system, but the initial condition of 
the time evolution is spatially inhomogeneous. In this paper we will study this problem for the 
case of the one-dimensional ferromagnets with interaction parameters in the range in which the 
spontaneous breaking of a discrete symmetry G leads to degenerate ground states that we denote 
|0a〉, a = 1, 2, . . . , N . We are interested in the expectation value 〈�(x, t)〉ab of a local operator 
� (e.g. the order parameter operator), for initial (t = 0) conditions that interpolate between a 
ground state |0a〉 as x → −∞, and a different ground state |0b〉 as x → +∞. This interpolation 
2
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is chosen to preserve the symmetry G of the system, but still can be realized in infinitely many 
ways, meaning that the corresponding nonequilibrium states |ψ〉 form an infinite-dimensional 
space W . We refer to W as the space of domain wall states or, equivalently, of domain wall 
initial conditions. We will show that for any initial condition belonging to a subspace W1 – itself 
infinite dimensional – of W the time evolution leads for large t to1

〈�(x, t)〉ab �

⎧⎪⎪⎨
⎪⎪⎩

〈�〉a , x < −t ,

1
2 [〈�〉a + 〈�〉b] +A

{
C�

0 /M − [〈�〉a − 〈�〉b] x
}
t−1 , |x| � t ,

〈�〉b , x > t ,

(1)

where

〈�〉a = 〈0a|�(x, t)|0a〉 (2)

is the equilibrium expectation value in the ground state |0a〉, C�
0 is also determined by the 

equilibrium universality class, M is the equilibrium mass gap, and the positive dimensionless 
amplitude A is the only quantity depending on the specific initial condition. The flat results for 
|x| > t show the presence of a light cone expanding with velocity 1, which in our natural units 
is the maximal velocity of the excitation modes of the system.2 Concerning the region inside the 
light cone (|x| < t), our derivation will make explicit that the generality of the result for |x| � t

comes from the fact that in this limit the excitation modes with largest wavelength dominate, 
and these are maximally insensitive to the details of the initial condition. On the other hand, we 
also show that if the operator distinguishes the two ground states, namely if 〈�〉a 	= 〈�〉b , when 
t → ∞ 〈�(x, t)〉ab tends everywhere to a function of x/t changing with the initial condition. 
Since the space W1 includes the low energy modes relevant for the region |x| � t , we expect 
the result (1) to generally hold at large times, and explicitly illustrate how this extension occurs. 
A caveat arises in systems with at least three degenerate ground states when the change of an 
interaction parameter causes an “unbinding” transition to a regime in which W1 shrinks to zero 
and the result (1) is affected for |x| � t . This is the same mechanism [10,11] responsible for 
interfacial wetting [12] in the theory of phase separation in classical systems at equilibrium.

It is worth pointing out that the problem of identifying and analytically determining univer-
sal properties emerging at late times in nonequilibrium quantum dynamics – irrespectively of 
the fine details of the initial condition – is addressed here for the first time. The theoretical 
advances we achieve are made possible by our ability to cast the problem in the nonperturba-
tive field theoretical framework, the natural one in which to address the questions concerning 
universality. For the problem at hand, it allows us to generally perform the analysis for all the 
universality classes displaying spontaneous symmetry breaking in one spatial dimension, and for 
the infinite-dimensional space of initial conditions corresponding to the same topological class 
of nonequilibrium states spatially interpolating between different ferromagnetic ground states.

The paper is organized as follows. The main analysis is performed in the next section, with a 
generalization presented in the appendix. The results are then illustrated in section 3 through the 
examples of the Ising, Potts and Ashkin-Teller chains, while section 4 contains few concluding 
remarks.

1 Throughout the paper the symbol � indicates omission of terms subleading for large t .
2 The presence of a light cone was originally observed in the study of a free fermionic chain with a steplike initial 

condition [9].
3
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2. Space of domain wall initial conditions and time evolution

The elementary excitation modes of a one-dimensional ferromagnet in the regime of spon-
taneously broken symmetry are kinks interpolating between two degenerate ground states. In 
the proximity of the quantum critical point these are relativistic quasiparticles with energy and 
momentum

(E,p) = (M cosh θ,M sinh θ) , (3)

where θ is called rapidity, and the mass M is a measure of the deviation from criticality. The 
interpolating initial conditions we are interested in correspond to nonequilibrium states of the 
form

|ψ〉 =
∞∑

n=1

|ψn〉 =
∞∑

n=1

∫
dθ1 . . . dθn fn(θ1, . . . , θn) |θ1, . . . , θn〉 , (4)

where |θ1, . . . , θn〉 is a n-kink state starting in |0a〉 and ending in3 |0b〉. The different choices of 
the functions fn span the space W of the domain wall states |ψ〉 and allow for arbitrary spatial 
interpolation in the initial condition. Since we consider initial conditions that do not introduce 
any explicit breaking of the symmetry of the system under the group G, the functions fn are 
required to preserve this property. They are also required to decay for θi → ±∞ sufficiently 
rapidly to ensure convergence of the integrals over rapidities, and to be free of singularities 
for real values of the rapidities. The expectation value of a local operator with such a general 
symmetry preserving domain wall initial condition is given by

〈�(x, t)〉ab = 〈ψ |�(x, t)|ψ〉
〈ψ |ψ〉 . (5)

We will now investigate the properties of the dynamics in the infinite dimensional subspace 
W1 of initial conditions corresponding to one-kink states

|ψ1〉 =
∫

dθ f (θ) |θ〉 , (6)

where we have simplified the notation setting f1 = f . In this subspace the expectation value (5)
reads

G�(x, t) = 1

Nf

〈ψ1|�(x, t)|ψ1〉 (7)

= 1

Nf

∫
dθ1dθ2 f ∗(θ1)f (θ2)F�(θ1 − θ2) ei[(p1−p2)x+(E1−E2)t] ,

where we defined4

Nf = 〈ψ1|ψ1〉 = 2π

∫
dθ |f (θ)|2 , (8)

F�(θ1 − θ2) = 〈θ1|�(0,0)|θ2〉 , (9)

3 It is understood that for N > 2 degenerate ground states and n > 1 the expansion (4) includes a sum over the inter-
mediate ground states visited in the n-step path from |0a 〉 to |0b〉.

4 We use the state normalization 〈θ |θ ′〉 = 2π δ(θ − θ ′).
4
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and used

�(x, t) = ei(Px+Ht) �(0,0) e−i(P x+Ht) , (10)

with P the momentum operator. The operators � of our interest are invariant under relativis-
tic transformations and, since such a transformation shifts rapidities by a constant, the matrix 
element (9) depends on the rapidity difference. It can be written as [13]

F�(θ) = i
〈�〉a − 〈�〉b

θ − iε
+

∞∑
k=0

C�
k θk + 2π δ(θ)〈�〉a , (11)

where the term containing δ(θ) is the disconnected part corresponding to the annihilation of the 
particle on the left with the particle on the right, while the connected part has been expanded in 
powers of θ . The pole term is a remnant in the connected part of the annihilation configuration5

θ = 0, and the infinitesimal imaginary part iε specifies the regularization prescription for the 
integral in (7).

Let us call Gsing
� the contribution to (7) of (11) without the regular part 

∑∞
k=0 C�

k θk . Defining 
θ± = θ1 ± θ2 we write this contribution in the form

G
sing
� (x, t) = 〈�〉a + i

〈�〉a − 〈�〉b
2Nf

∫
dθ+dθ−

f ∗(θ1)f (θ2)

θ− − iε
e2iMt B(x/t,θ+) sinh θ−

2 , (12)

where

B(x/t, θ+) = x

t
cosh

θ+
2

+ sinh
θ+
2

. (13)

We can set sinh θ−
2 = p and consider the integral over p in which we close the contour in the 

upper (lower) complex half-plane if B is positive (negative). In particular, we can close the 
contour along the line with constant imaginary part Imp = c. When t → ∞, the contribution 
coming from the integral on this line is suppressed as e−2M|cB|t and can be neglected. On the 
other hand, we can reduce |c| in such a way that the closed integration contour contains only the 
singularity at p = iε/2 for c > 0, and no singularity at all for c < 0. Hence, Cauchy’s residue 
integration tells us that for t large

G
sing
� (x, t) � 〈�〉a − 〈�〉a − 〈�〉b

Nf

2π

∞∫
θ0

dθ |f (θ)|2 , (14)

where θ0 is the value of θ above which tanhθ > −x/t . Since θ0 is equal to +∞ when x/t < −1
and to −∞ when x/t > 1, we have

G
sing
� (x, t) �

{ 〈�〉a , x < −t ,

〈�〉b , x > t
(15)

for t large. On the other hand, θ0 � −x/t when |x|/t � 1, and we can break the integration over 
θ into that on the small interval between −x/t and 0, in which f (θ) � f (0), and that for θ > 0. 

5 The pole is known to account for phase separation in the classical case at equilibrium [10], in which it yields, in 
particular, the exact order parameter profile originally obtained in [14] from the lattice solution of the two-dimensional 
Ising model. Annihilation poles are well known in the multiparticle matrix elements of integrable theories [15], but 
integrability plays no role in the determination of the residue for the matrix element (9) [13].
5
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Since the ground states |0a〉 and |0b〉 are exchanged by the symmetry G of the Hamiltonian 
and play a symmetric role preserved by the initial condition, |f (θ)|2 is an even function. As a 
consequence 2π

∫∞
0 dθ |f (θ)|2 = Nf /2 and we have

G
sing
� (x, t) � 〈�〉a + 〈�〉b

2
− 2πAf [〈�〉a − 〈�〉b]

x

t
, |x| � t , (16)

with Af = |f (0)|2/Nf .
Now we consider the contribution to (7) coming from the regular part 

∑∞
k=0 C�

k θk of (11), 
namely

G
reg
� (x, t) = 1

Nf

∞∑
k=0

C�
k

∫
dθ1dθ2 f ∗(θ1)f (θ2) (θ1 − θ2)

k ei[(p1−p2)x+(E1−E2)t] . (17)

We first observe that for t large enough the rapid oscillations of the integrand suppress the in-
tegral unless the phase is stationary, namely unless Ejx + pj t = 0, j = 1, 2. Since |pj |/Ej =
| tanh θj | < 1, the stationarity condition is satisfied inside the light cone6 |x| < t . Hence, for t
large we have

G
reg
� (x, t) � 0 , |x| > t , (18)

where the corrections are small and rapidly vanishing as |x| increases with t fixed.
On the other hand, the stationarity condition tanhθj = −x/t implies that inside the light cone 

small rapidities dominate the integral for |x|/t � 1. Hence in this limit we can write

G
reg
� (x, t) � Af

∞∑
k=0

C�
k

∫
dθ1dθ2 (θ1 − θ2)

k eiM[(θ1−θ2)x+ 1
2 θ2

1 (t+iε)− 1
2 θ2

2 (t−iε)] , (19)

where the infinitesimal imaginary parts added to t preserve the convergence of the integral. We 
can now rescale the rapidities and deduce that the k-th term decays at large times as t−(k+2)/2. 
Hence the leading contribution comes from k = 0 and we have

G
reg
� (x, t) � Af C�

0

∣∣∣∣
∫

dθ eiM[θx+ 1
2 θ2(t+iε)]

∣∣∣∣
2

= Af C�
0

2π

M|t + iε| e
− Mεx2

t2+ε2

→ Af C�
0

2π

Mt
, |x| � t . (20)

Putting all together, since G�(x, t) is the sum of Gsing
� (x, t) and Greg

� (x, t), the results that 
we obtained for these two terms lead to the large time behaviors (1), where

A = 2πAf = 2π
|f (0)|2

Nf

. (21)

When 〈�〉a 	= 〈�〉b , G�(x, t) should tend as t → ∞ to a nonconstant limit shape as a function 
of x/t , since in this variable the edges of the light cone are fixed at ±1. To see this, we notice 
that if the large time analysis of the contribution (17) of regular terms is performed at a generic 
point x inside the light cone, the stationarity condition tanhθj = −x/t selects the rapidities 
around which to expand to evaluate the integral, and considerations analogous to those we just 

6 This mechanism leading to the light cone can be compared with that for two-point functions in homogeneous systems 
out of equilibrium, in which the connectedness structure of matrix elements plays an essential role [16].
6
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made for x small lead to the conclusion that again this contribution is suppressed at large times. 
It follows that (17) goes to zero for any x at large times, so that in this limit the dominant x-
dependence is given by (14), as long as 〈�〉a 	= 〈�〉b . Hence, for t → ∞ and 〈�〉a 	= 〈�〉b , 
G�(x, t) → G

sing
� (x, t) and is a function of x/t , since θ0 in (14) depends on x/t . We also see 

that the large time limit of G�(x, t)/〈�〉a changes with the initial condition and depends on the 
universality class only through the “dilatation” factor 〈�〉b/〈�〉a .

We saw that the generality of the large time result (1) for |x| � t is due to the dominance in 
this region of the low energy modes.7 Since the energy of a n-kink state is at least nM , this result 
should generically8 hold in the whole space W of domain wall states, as long as the one-kink 
contribution from W1 is present, and we show in the appendix the mechanism through which this 
extension occurs. The one-kink state will naturally be present in the states (4) arising in physical 
applications, but an interesting exception occurs for systems with more than two degenerate 
ground states, where the tuning of an interaction parameter can induce a transition to a regime in 
which W1 is empty; we illustrate this phenomenon in section 3.3.

3. Some universality classes

3.1. Ising

A first illustration of the results of the previous section is provided by the Ising universal-
ity class (symmetry group G = Z2), whose simplest lattice realization is the nearest neighbor 
transverse field Ising chain with Hamiltonian

HIsing = −J
∑

i

(
σx

i σ x
i+1 + g σ z

i

)
, (22)

where σx,z
i are Pauli matrices at site i, and J > 0, |g| < 1 is the ferromagnetically ordered 

regime of our interest. Denoting the two degenerate ground states as |0+〉 and |0−〉, we have 
〈σx〉− = −〈σx〉+ and 〈σz〉− = 〈σz〉+. Hence, for the order parameter operator σx , the large 
time result (1) becomes

〈σx(x, t)〉−+
〈σx〉+ �

⎧⎪⎪⎨
⎪⎪⎩

−1 , x < −t ,

2Ax/t , |x| � t ,

1 , x > t .

(23)

Here we also took into account that Cσx

0 = 0, as expected on symmetry grounds and explicitly 
following from [17] (see [18] for a review)

Fσx (θ) = [i coth(θ/2) + 2π δ(θ)] 〈σx〉− . (24)

Recalling our result that A depends on the initial condition, (23) is consistent with the behav-
ior displayed by the plots of [19,20] for the chain (22) with two different realizations of sharp 
(steplike) domain wall initial conditions. Similarly, our result that (23) tends at large times to a 

7 The fact that the low energy modes dominate the large time dynamics in the general case of interacting quasiparticles 
is known for quantum quenches [5–8].

8 Fine tuning of the functions fn can lead to peculiar states. These, however, will form some zero measure subset, and 
typically will not be physically relevant.
7
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Fig. 1. Ising magnetization components in the nonequilibrium state (27) with MR = 1. Left: Order parameter 
〈σx(x, t)〉−+/〈σx 〉+ . Right: Connected transverse magnetization 〈σz(x, t)〉c−+/〈σz(0, 0)〉c−+, with 〈σz(x, t)〉c−+ =
〈σz(x, t)〉−+ − 〈σz〉+.

function of x/t depending on the initial condition explains the observations of [20] about the 
plots against x/t .

We already remarked that for |x| � t the dependence on the initial condition in (1) is limited 
to the constant A because long wavelength modes dominate in this region. On the other hand, 
when moving towards the edges of the light cone from inside, the fine structure of the initial 
condition becomes more and more relevant. For the chain (22) this feature is illustrated by the 
modulated behavior9 of the order parameter observed in [19] zooming in close to the edges of 
the light cone for the two sharp domain wall initial conditions.

For the transverse magnetization, the result [17,18]

Fσz(θ) = [C cosh(θ/2) + 2π δ(θ)] 〈σz〉+ , (25)

with C real and dimensionless, gives Cσz

0 = C〈σz〉+, and then

〈σz(x, t)〉−+
〈σz〉+ �

{
1 , |x| > t ,

1 +AC/(Mt) , |x| � t .
(26)

We show in Figs. 1, 2 and 3 the expectation values 〈σx(x, t)〉−+ and 〈σz(x, t)〉−+ for the state 
(6) with f (θ) = e−MR θ2

, namely for the Gaussian wave packet∫
dθ e−MR θ2 |θ〉 . (27)

The distance over which the order parameter significantly differs from the asymptotic values in 
the initial condition grows with R. The large time regime corresponds to t much larger than 1/M

and R. The state (27) conveniently illustrates some global features of the large time behavior as 
the initial condition varies. In particular, the change in the order parameter limit shape shown 
in the left panel of Fig. 3 is essentially due to the fact that A, and then the slope in the origin, 
decreases with MR.

9 This type of behavior was originally observed in a free fermion chain with sharp domain wall initial condition [21].
8
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Fig. 2. Ising order parameter 〈σx(x, t)〉−+/〈σx 〉+ in the nonequilibrium state (27) with MR = 1. Left: Mt = 5, 10, 20, 
in order of decreasing slope at x = 0. Right: In the variable x/t the three curves approach the large time limit given by 
(14).

Fig. 3. Ising magnetization components in the nonequilibrium state (27). Left: Large time limit (14) of the order pa-
rameter 〈σx(x, t)〉−+/〈σx 〉+ for MR = 1 (continuous line) and MR = 0.1 (dashed line). Right: Connected transverse 
magnetization 〈σz(x, t)〉c−+/〈σz(0, 0)〉c−+ (as defined in Fig. 1) for MR = 1 and Mt = 5, 10, 20, in order of decreasing 
value at x = 0.

3.2. Potts and the third phase

The three-state Potts universality class, characterized by invariance under the permutational 
group G = S3, finds its simplest representative in the nearest neighbor chain [22]

HPotts = −J
∑

i

[
σ

†
i σi+1 + σiσ

†
i+1 + g(Mi + M

†
i )
]

, (28)

where σi and Mi are 3 × 3 matrices satisfying σ 2
i = σ

†
i , σ 3

i = M3
i = 1, M2

i = M
†
i , and Miσi =

ωσiMi , where ω = e2iπ/3. Explicit representations are

σ =
⎛
⎝ 1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , M =

⎛
⎝ 0 1 0

0 0 1
1 0 0

⎞
⎠ . (29)

We refer to the ferromagnetically ordered regime J > 0, |g| < 1, in which there are three degen-
erate ground states |0a〉, a = 1, 2, 3. The Hermitian order parameter operator with components

σa = ω−a σ + ωa σ † , a = 1,2,3 , (30)
9
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satisfies 
∑3

a=1 σa = 0 and, by permutational symmetry,

〈σa〉b = 1

2
(3δab − 1) 〈σa〉a . (31)

Hence, σa detects phase a and does not distinguish between the other two phases. The matrix 
elements [13]

Fσ1(θ) =
[
−

√
3

2

sinh
(

θ
6 − iπ

3

)
sinh θ

2

F(θ) + 2πδ(θ)

]
〈σ1〉1 , (32)

and

Fσ3(θ) =
[√

3

2

sinh
(

θ
6 − iπ

3

)+ sinh
(

θ
6 + iπ

3

)
sinh θ

2

F(θ) − πδ(θ)

]
〈σ1〉1 , (33)

where

F(θ) = exp

⎧⎨
⎩

∞∫
0

dx
2 sinh 2x

3

x sinh2 x
sin2 θx

2π

⎫⎬
⎭ , (34)

determine through (11) C
σ1
0 = −〈σ1〉1/(4

√
3) and Cσ3

0 = 〈σ1〉1/(2
√

3), so that we have the large 
time behaviors

〈σ1(x, t)〉12

〈σ1〉1
�

⎧⎪⎪⎨
⎪⎪⎩

1 , x < −t ,

1/4 −A
(

1
4
√

3
+ 3

2Mx
)

/(Mt) , |x| � t ,

−1/2 , x > t ,

(35)

and

〈σ3(x, t)〉12

〈σ3〉1
�
{

1 , |x| > t ,

1 −A/(
√

3Mt) , |x| � t .
(36)

Figs. 4 and 5 show the order parameter components 〈σ1(x, t)〉12 and 〈σ3(x, t)〉12 in the state 
(27). In (36) and Fig. 5 the deviation from 1 measures the presence of phase 3. Although this 
phase is not selected by the initial condition, it is produced by quantum fluctuations.

3.3. Ashkin-Teller and the unbinding transition

The Ashkin-Teller chain [22,25] corresponds to two transverse field Ising chains with site 
variables σ1,i and σ2,i interacting via the Hamiltonian

HAT = −J
∑

i

[
σx

1,iσ
x
1,i+1 + σx

2,iσ
x
2,i+1 + λσx

1,iσ
x
1,i+1σ

x
2,iσ

x
2,i+1

+ g(σ z
1,i + σz

2,i + λσz
1,iσ

z
2,i )
]
. (37)

The theory possesses a Z2 symmetry in each of the two Ising variables, as well as the symmetry 
under exchange of the two variables. It is characterized by the fact that g = 1 leads to a line
of critical points as λ varies in an interval including the decoupling point λ = 0, with critical 
10



G. Delfino and M. Sorba Nuclear Physics B 983 (2022) 115910
Fig. 4. Potts order parameter component 〈σ1(x, t)〉12/〈σ1〉1 in the nonequilibrium state (27) with MR = 1. On the right 
Mt = 1 (dashed), Mt = 3 (dotted) and Mt = 20 (continuous); the latter curve is indistinguishable from the large time 
limit shape (14).

Fig. 5. Potts order parameter component 〈σ3(x, t)〉12/〈σ3〉1 in the nonequilibrium state (27) with MR = 1. On the right, 
Mt = 1, 5, 10, 20 in order of increasing value at x = 0. The deviation from 1 measures the presence of the phase not 
selected by the initial condition.

exponents varying continuously with λ [26]. In the ferromagnetically ordered regime there are 
four degenerate ground states |0++〉, |0+−〉, |0−+〉, |0−−〉, labeled by the signs that the two Ising 
order parameters take in each of them. The vicinity of the critical line is described by the sine-
Gordon theory [27], through a mapping that determines, in particular, the nature of the kinks 
interpolating between the different ground states [28]. A pair of ground states such as |0++〉
and |0−+〉 (|0+−〉), related by spin reversal in the first (second) Ising copy, is connected by a 
kink A1 (A2) with mass M . For λ > 0, A1 and A2 form a bound state B with mass MB that 
connects the ground states |0++〉 and |0−−〉. Consider now 〈�(x, t)〉++,−−. We deduced from 
the analysis of section 2 and the appendix that the leading behavior at large times for |x| � t

is determined by the n-kink states with minimal n among those connecting |0++〉 and |0−−〉. 
For λ > 0, n = 1 and the relevant states are given by (6) with |θ〉 = |B(θ)〉. However, when the 
decoupling point λ = 0 is approached, MB tends to the unbinding threshold 2M , and for λ < 0
the bound state B no longer exists. Hence, for λ < 0 the space W1 is empty and the dominant 
11
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contribution comes from the n = 2 state A1A2. It follows that two-kink contributions that in 
the appendix are neglected as subleading with respect to one-kink contributions become leading 
for λ < 0 and modify the result (1) for |x| � t . This same unbinding mechanism accounts for 
interfacial wetting in the theory of phase separation in classical systems at equilibrium [10,11,29,
30]. Clearly, the mechanism requires at least three degenerate ground states. For the Potts chain 
of the previous section the existence of a single-kink excitation connecting any pair of ground 
states is ensured by the permutational symmetry.

4. Conclusion

We studied the role of initial conditions in nonequilibrium quantum dynamics in the frame-
work of one-dimensional ferromagnets in the regime of spontaneously broken symmetry. We 
considered domain wall initial conditions, generally intended as initial conditions that spatially 
interpolate between two different ground states. The interpolation is arbitrary, with the only con-
straint of preserving the symmetry characteristic of the equilibrium universality class (e.g. the Z2

symmetry for Ising). In this setting we obtained analytical results for the one-point functions of 
local operators at large times. We showed that in this limit the time evolution takes place inside 
a light cone produced by the spatial inhomogeneity of the initial condition, and that in the inner-
most region of the light cone (|x| � t) the space-time dependence is (up to an overall amplitude 
depending on the initial condition) universal, namely is determined by data of the equilibrium 
universality class. The origin of the universality is that the result in this region is determined by 
the excitations with the largest wavelength, which are maximally insensitive to the fine structure 
of the initial condition. This result should then hold also when the distance from the critical point 
is not small, in spite of the fact that it was derived in the continuum limit. We also showed that 
the large time limit curve in the variable x/t (which is nontrivial for operators that distinguish 
between the two ground states involved in the initial condition) changes with the initial con-
dition. Our formalism also allowed us to show that in systems with more than two degenerate 
ground states the tuning of an interaction parameter (within the spontaneously broken regime) 
can change the structure of the space of nonequilibrium states, since the subspace of one-kink 
excitations disappears via the unbinding of a bound state. The corresponding transition is the 
nonequilibrium quantum analog of the interfacial wetting transition observed at equilibrium in 
classical systems at phase coexistence.
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Appendix A. Composite excitations

Let us consider the state

|ψ〉 = |ψ1〉 + |ψ2〉 , (38)

where |ψ1〉 is the one-kink state (6) and |ψ2〉 is a superposition of two-kink states
|Kac(θ1)Kcb(θ2)〉 with a, b, c all different. Since such a state requires at least three degener-
ate ground states, we will consider the three-state Potts universality class of section 3.2. It is 
convenient to exploit the fact that this model possesses a duality between the ferromagnetically 
ordered and the paramagnetic regime. One implication is the correspondence A = Ka,a+1 (mod 3), 
Ā = Ka,a−1 (mod 3) between the kinks of the ordered phases and the elementary excitations A, 
Ā of the paramagnetic phase. A and Ā are charge conjugated quasiparticles and the theory is 
invariant under charge conjugation. It follows that a general superposition of states |K12K23〉
corresponds to

|ψ2〉 =
∫

dθ1dθ2 f2(θ1, θ2) |A(θ1)A(θ2)〉 . (39)

The Potts theory is integrable in the scaling limit we consider [23,24], and we have10

〈A(θ ′
1) . . .A(θ ′

m)|�̃(0,0)|A(θ1) . . .A(θn)〉 =
〈A(θ ′

2) . . .A(θ ′
m)|�̃(0,0)|Ā(θ ′

1 + iπ)A(θ1) . . .A(θn)〉

+
n∑

j=1

2πδ(θ ′
1 − θj )

⎡
⎣j−1∏

k=1

SAA(θk − θ ′
1)

⎤
⎦

× 〈A(θ ′
2) . . .A(θ ′

m)|�̃(0,0)|A(θ1) . . .A(θj−1)A(θj+1) . . .A(θn)〉 , (40)

where SAA(θ1 − θ2) is the scattering amplitude11 of A(θ1) with A(θ2); it satisfies crossing

SAA(θ) = SĀA(iπ − θ) , (41)

and unitarity

SAA(θ)SAA(−θ) = 1 . (42)

We also took into account that when working in the paramagnetic phase we have to consider the 
dual �̃ of the operator � of interest in the regime of spontaneously broken symmetry. Iterative 
use of (40) allows one to express any matrix element in terms of the form factors

F�̃
α1...αn

(θ1, . . . , θn) = 〈0|�̃(0,0)|α1(θ1) . . . αn(θn)〉 , (43)

where αi = A, Ā, and |0〉 is the unique ground state of the paramagnetic phase. We will con-
sider operators whose expectation values 〈�〉a in the ordered phases are a-independent. This 
introduces some simplifications in the equations satisfied by the form factors, which read [15]

F�̃
...αj αj+1...

(. . . , θj , θj+1, . . .) = Sαj αj+1(θj − θj+1)F
�̃
...αj+1αj ...(. . . , θj+1, θj , . . .) , (44)

10 See [31] for an early advanced application of this formalism in the Potts paramagnetic phase.
11 The scattering in the three-state Potts theory is completely elastic, meaning that the final state is identical to the initial 
one.
13



G. Delfino and M. Sorba Nuclear Physics B 983 (2022) 115910
F�̃
α1...αn

(θ1 + 2iπ, θ2, . . . , θn) = F�̃
α2...αn,α1

(θ2, . . . , θn, θ1) , (45)

Resθ ′=θF
�̃
ᾱβα1...αn

(θ ′ + iπ, θ, θ1, . . . , θn)

= iδαβ

⎡
⎣1 −

n∏
j=1

Sααj
(θ − θj )

⎤
⎦F�̃

α1...αn
(θ1, θ2, . . . , θn) . (46)

Let us consider 〈�(x, t)〉13 = 〈ψ |�(x, t)|ψ〉/〈ψ |ψ〉 with |ψ〉 given by (38). The contribution 
proportional to 〈ψ1|�|ψ1〉 follows from the results of section 2. We now consider the contribu-
tion proportional to

〈ψ2|�(x, t)|ψ2〉 =
∫

dθ1dθ2dθ3dθ4 f ∗
2 (θ2, θ1)f2(θ3, θ4) (47)

× 〈A(θ2)A(θ1)|�̃(0,0)|A(θ3)A(θ4)〉 ei[(p1+p2−p3−p4)x+(E1+E2−E3−E4)t],

where

〈A(θ2)A(θ1)|�̃(0,0)|A(θ3)A(θ4)〉
= F�̃

ĀAAĀ
(θ2 + iπ, θ3, θ4, θ1 − iπ)

+ 2π
[
δ(θ14)SAA(θ12)SAA(θ31)F

�̃

ĀA
(θ2 + iπ, θ3) + δ(θ13)SAA(θ12)F

�̃

ĀA
(θ2 + iπ, θ4)

+ δ(θ23)F
�̃

ĀA
(θ1 + iπ, θ4) + δ(θ24)SAA(θ34)F

�̃

ĀA
(θ1 + iπ, θ3)

]
+ (2π)2 [δ(θ23)δ(θ14) + δ(θ24)δ(θ13)SAA(θ32)] 〈�̃〉 , (48)

with θij = θi − θj and 〈�̃〉 = 〈0|�̃|0〉 = 〈�〉a .

Let us call G4 the contribution to (47) of the term F�̃

ĀAAĀ
in (48). It follows from (46) that 

when integrating over θ2 we have to deal with poles at θ2 = θ3, θ4. Proceeding as in section 2, 
the contribution Gpole

4 of these poles at large times is determined by the residues on the poles, 
which we know from (46), and reads

G
pole
4 (x, t) � −2π

∞∫
θ0

dθ

{∫
dθ1dθ4 f ∗

2 (θ, θ1)f2(θ, θ4)F
�̃

AĀ
(θ4, θ1 − iπ)

× [1 − SAA(θ1 − θ)SAA(θ − θ4)] e
i[p14x+E14t]

+
∫

dθ1dθ3 f ∗
2 (θ, θ1)f2(θ3, θ)SAA(θ3 − θ)F �̃

AĀ
(θ3, θ1 − iπ)

× [1 − SAA(θ1 − θ)SAA(θ − θ3)] e
i[p13x+E13t]

}
, (49)

where pij = pi −pj and Eij = Ei −Ej . Since (46) shows that F�̃

AĀ
(θ4, θ1 − iπ) has no pole12 on 

the integration path, the behavior of (49) at large times can now be analyzed as the contribution of 
regular terms along the lines already seen in section 2. The stationary phase condition yields the 
light cone and the suppression of the integral outside it. Deeply inside the light cone, namely for 
|x|/t � 1, small values of θ1, θ4 (θ1, θ3) dominate in the first (second) term, and the expressions 

12 This corresponds to the fact that (11) has no pole for 〈�〉a = 〈�〉b .
14
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in the square brackets become 1 − SAA(−θ)SAA(θ), which vanishes due to (42). Hence, Gpole
4

can be ignored in the regions specified in (1). Concerning the contribution Greg
4 coming from the 

regular part of F�̃

ĀAAĀ
, we have again suppression outside the light cone and dominance of small 

rapidities θ1, . . . , θ4 for |x|/t � 1. In this region, rescaling of rapidities in (47) yields that Greg
4

is suppressed at least as t−2, and is then subleading with respect to the one-kink contribution.
Let us now call G2 the contribution to (47) of the four terms in (48) containing F�̃

ĀA
. It 

will be sufficient to consider one of these terms, say δ(θ14)SAA(θ12)SAA(θ31)F
�̃

ĀA
(θ2 + iπ, θ3). 

Since the form factor has no pole at θ2 = θ3, we have suppression of the integral outside 
the light cone and dominance of small values of θ2, θ3 for |x|/t � 1. In this region f ∗

2 (θ2,

θ1)f2(θ3, θ1)SAA(θ12)SAA(θ31)F
�̃

ĀA
(θ2 + iπ, θ3) � |f2(0, θ1)|2SAA(θ1)SAA(−θ1)F

�̃

ĀA
(iπ, 0), 

which reduces to |f2(0, θ1)|2C�
0 using (11), (42) and duality. The integral over θ2 and θ3 is 

analogous to (19) and, taking into account that the other terms in G2 behave in the same way, we 
get

G2(x, t) � Bf2

C�
0

Mt
, |x|/t � 1 . (50)

The last contribution to (47) comes from the term in (48) proportional to 〈�̃〉, and is equal to 
G0 = 〈ψ2|ψ2〉 〈�̃〉 = 〈ψ2|ψ2〉 〈�〉a .

Finally, 〈�(x, t)〉13 includes the off-diagonal contribution proportional to 〈ψ1|�|ψ2〉 +
〈ψ2|�|ψ1〉. It is sufficient to consider the first term, which involves

〈Ā(θ1)|�̃(0,0)|A(θ2)A(θ3)〉 = F�̃
AAA(θ1 + iπ, θ2, θ3) . (51)

Since (46) shows that this matrix element yields no poles on the integration path, we have sup-
pression outside the light cone and dominance of small θ1, θ2, θ3 for |x|/t � 1. In this region 
rescaling of the rapidities shows at least a t−3/2 suppression at large times, which is again sub-
leading with respect to the one-kink contribution.

Putting all together, and recalling that 〈ψ |ψ〉 = 〈ψ1|ψ1〉 + 〈ψ2|ψ2〉, we see that inclusion 
in |ψ〉 of the two-kink contribution gives again the result (1), specialized to the case of a-
independent 〈�〉a that we considered in this appendix. The difference with respect to the one-
kink result is a change of the constant A that encodes the dependence on the initial condition.
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