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Abstract

The microscopic interpretation of the Bekenstein-Hawking entropy is still an open challenge
in theoretical physics. Supersymmetric indices and holography, turn out to be major tools to
improve our knowledge.

In the first part of this thesis, using a Bethe Ansatz formulation, we compute the large
𝑁 limit of the superconformal index with arbitrary chemical potentials for all charges and
angular momenta, for generic 4d N = 1 conformal theories with a holographic dual. We
conjecture and bring evidence that a particular universal Bethe vacuum dominates the
index at large 𝑁 . For N = 4 super-Yang-Mills, this contribution correctly leads to the
entropy of BPS Kerr-Newman black holes in AdS5 × 𝑆5 for arbitrary values of the conserved
charges, completing the derivation of their microstates. We also consider theories dual to
AdS5 × SE5, where SE5 is a Sasaki-Einstein manifold. We first check our results against the
so-called universal black hole. We then explicitly construct the near-horizon geometry of
BPS Kerr-Newman black holes in AdS5 × 𝑇1,1, charged under the baryonic symmetry of
the conifold theory, and with equal angular momenta. We compute their entropy using the
attractor mechanism and find complete agreement with the field theory predictions.

For BPS black holes with an AdS2 factor at the horizon, the black-hole microstates can be
seen as ground states of a dual 1d theory. In the second part of this dissertation, we construct
an N = 2 supersymmetric gauged 1d model by starting from the 3d N = 2 Chern-Simons
matter theory holographically dual to massive type IIA string theory on AdS4 × 𝑆6, and
Kaluza-Klein reducing it on 𝑆2 with a background dual to the asymptotics of static dyonic
BPS black holes in AdS4. The background involves a choice of gauge fluxes, that we fix via
a saddle-point analysis of the 3d topologically twisted index at large 𝑁 . The ground-state
degeneracy of the effective quantum mechanics reproduces the entropy of BPS black holes,
and we expect its low-lying spectrum to contain information about near-extremal horizons.
Interestingly, the model has a large number of statistically-distributed couplings, reminiscent
of SYK-like models.





Declaration

I hereby declare that, except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part for
consideration for any other degree or qualification in this, or any other university.

The discussion is based on the following published works and preprints.

[1] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni, and Z. Zhang, “Superconformal indices
at large 𝑁 and the entropy of AdS5 × SE5 black holes,” Class. Quant. Grav. 37 no. 21, (2020)
215021, arXiv:2005.12308 [hep-th]

[2] F. Benini, S. Soltani, and Z. Zhang, “A quantum mechanics for magnetic horizons,”
arXiv:2212.00672 [hep-th]

Saman Soltani
February 2023

http://dx.doi.org/10.1088/1361-6382/abb39b
http://dx.doi.org/10.1088/1361-6382/abb39b
http://arxiv.org/abs/2005.12308
http://arxiv.org/abs/2212.00672




Contents

1 Introduction 1
1.1 Supersymmetric localization . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Holographic microstate counting . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Leaving the BPS safe harbor . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Superconformal indices at large 𝑁 and the entropy of AdS5 × SE5 black holes 11
2.1 The SCI of N = 4 SYM at large 𝑁 . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The SCI building block . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.2 The SCI entropy function . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The SCI of quiver theories with a holographic dual . . . . . . . . . . . . . 19
2.2.1 Example: the conifold . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Example: toric models . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 The toric entropy function . . . . . . . . . . . . . . . . . . . . . . 31

2.3 The universal AdS5 rotating black hole . . . . . . . . . . . . . . . . . . . . 32
2.4 AdS5 Kerr-Newman black holes in 𝑇1,1 . . . . . . . . . . . . . . . . . . . 34

2.4.1 Reduction from 5d to 4d and the attractor mechanism . . . . . . . . 36
2.4.2 Example: the conifold . . . . . . . . . . . . . . . . . . . . . . . . 40

3 A quantum mechanics for magnetic horizons 45
3.1 Saddle-point approach to the TTI . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 The basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.1.2 The 3d CS-matter model . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 The large 𝑁 limit of the TTI . . . . . . . . . . . . . . . . . . . . . 51

3.2 Reduction on a flux background . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.1 Decomposing 3d multiplets into 1d multiplets . . . . . . . . . . . . 54
3.2.2 Reduction background . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Partial gauge fixing . . . . . . . . . . . . . . . . . . . . . . . . . . 60



x Contents

3.2.4 Supersymmetrized gauge fixing . . . . . . . . . . . . . . . . . . . 64
3.2.5 Vector multiplet spectrum . . . . . . . . . . . . . . . . . . . . . . 68
3.2.6 Matter multiplets spectrum . . . . . . . . . . . . . . . . . . . . . . 72

3.3 The effective quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.1 Quantum mechanics 1-loop determinants and the Witten index . . . 76

3.4 Stability under quantum corrections . . . . . . . . . . . . . . . . . . . . . 78
3.4.1 Interactions involving �̃� . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4.2 Presence of N = 2 supersymmetry and R-symmetry . . . . . . . . 79
3.4.3 Symmetry constraints . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Conclusions 85

Appendix A Large 𝑁 computations 91
A.1 Special functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.2 The large 𝑁 SCI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

A.2.1 Simplifications of the SCI building block . . . . . . . . . . . . . . 94
A.2.2 SU(𝑁) vs. U(𝑁) holonomies . . . . . . . . . . . . . . . . . . . . 98
A.2.3 Generic 𝑁 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

A.3 The large 𝑁 TTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3.1 Useful integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.3.2 Continuum expressions for 𝑉 ′ and Ω . . . . . . . . . . . . . . . . . 105
A.3.3 Solutions to the saddle-point equations . . . . . . . . . . . . . . . 108

Appendix B Supergravity generalities 113
B.1 5d N = 2 abelian gauged supergravity . . . . . . . . . . . . . . . . . . . . 113

B.1.1 Conifold truncation . . . . . . . . . . . . . . . . . . . . . . . . . . 120
B.2 4d N = 2 abelian gauged supergravity . . . . . . . . . . . . . . . . . . . . 122

Appendix C Scherk-Schwarz reduction 127
C.1 Reduction with background gauge fields . . . . . . . . . . . . . . . . . . . 127

C.1.1 Reduction of the conifold truncation . . . . . . . . . . . . . . . . . 132
C.2 Reduction of black-hole charges . . . . . . . . . . . . . . . . . . . . . . . 133

C.2.1 Baryonic charge quantization in the conifold theory . . . . . . . . . 137

Appendix D Monopole spherical harmonics on 𝑆2 139

Appendix E 1d N = 2 superspace 145
E.1 Matter multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Contents xi

E.2 Vector multiplet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
E.2.1 Wess-Zumino gauge . . . . . . . . . . . . . . . . . . . . . . . . . 149
E.2.2 Transformations in Wess-Zumino gauge . . . . . . . . . . . . . . . 151
E.2.3 Supersymmetric Lagrangians . . . . . . . . . . . . . . . . . . . . 152
E.2.4 Twisted 3d YM and CS terms . . . . . . . . . . . . . . . . . . . . 154

Bibliography 157





Chapter 1

Introduction

The formulation of a complete quantum gravity theory is still an open problem in modern
theoretical physics. The extreme regimes at which quantum corrections become relevant in
the treatment of gravitational systems make experimental tests of quantum gravity theories
very difficult.1 Because of this, one has often to resort to alternative methods to probe
promising candidates. In this respect, black holes turn out to be a privileged theoretical
laboratory where to put our favorite theory under investigation. Black holes turn out to exhibit
a macroscopic entropy [3–6], which can be computed and motivated semi-classically. It is
known as Bekenstein-Hawking entropy and it is proportional to the area of the black-hole
horizon

𝑆𝐵𝐻 =
𝑘𝐵 𝑐

3

ℏ

𝐴𝐵𝐻

4𝐺𝑁

. (1.1)

Notice that the presence of ℏ at the denominator tells us that this quantity has an intrinsically
quantum origin. It is difficult to think of a purely classical way to identify microstates
𝑑𝐵𝐻,micro accounting for such an entropy via the usual statistical expression

𝑆𝐵𝐻 = 𝑘𝐵 log 𝑑𝐵𝐻,micro . (1.2)

This is because a classical black hole is a terribly simple system, due to the presence of the
event horizon which prevents access to the black hole’s interior. From here on, we will use a
system of units in which 𝑐 = ℏ = 𝑘𝐵 = 1.

A good quantum gravity candidate should be able to reproduce and motivate the Bekenstein-
Hawking entropy from a microscopic perspective (1.2). The most concrete candidate we have
up to date is string theory. In this framework, much work has been done and the discovery of
D-branes [7] allowed people, starting from the seminal work [8] for BPS Reissner-Nordström

1The advent of the gravitational-wave astronomy era and advances in experimental cosmology made realistic
quantum gravity tests nearer than they were some 10 years ago.
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black holes in type IIB on 𝑆1 × K3, to model asymptotically-flat black holes as D-brane
systems. By counting the degeneracy of these systems the Bekenstein-Hawking entropy
was reproduced, and it has also been possible to compute quantum corrections to it [9–30]
(see [31] and [32] for a recent account and further references).

Another class of black holes that one might be interested in studying is the one of
asymptotically-AdS black holes. For these black holes, a brane picture is not available, and
one has to resort to alternative descriptions. In this respect holography, under the disguise
of the AdS/CFT correspondence [33, 34], is a tremendously powerful tool. The AdS/CFT
correspondence can be taken as a complete, non-perturbative definition of quantum gravity
via the dual lower-dimensional (non-gravitational) field theory, leaving at the conformal
boundary of AdS. This concrete take on the holographic principle [35–37] has been so
powerful that people are actively working to extend the correspondence to different setups;
the celestial holography program (see [38] for a recent account), for example, aims at a
formulation of holography for asymptotically-flat gravitational systems.

In this thesis, the main focus will be on how the AdS/CFT correspondence accounts for
the asymptotically-AdS black-hole microstates. The analysis for a generic black hole, though,
is complicated: the computations in the dual field theory have to be carried out at strong
coupling, and, in these regimes, there are usually few handles one can rely on. A simplifying
setup is the one of supersymmetric (BPS) black holes: in this case, instead of computing a
partition function, one can compute an index, for which supersymmetric localization [39]
often offers exact results.

1.1 Supersymmetric localization

Supersymmetric localization is a powerful technique in supersymmetric quantum field
theories, which allows one to “localize” a complicated path integral to a simpler finite
dimensional regular integral over BPS configurations. This technique takes inspiration from
equivariant localization in mathematics. Rigorous definitions go beyond the scope of this
dissertation and we refer to [39, 40] for further details and a broad list of references.

Let us sketch what is the idea behind this technique. We will focus on the following
Euclidean path integral

IO =

∫
D𝜑O 𝑒−𝑆[𝜑] . (1.1.1)

Let us assume that the action 𝑆 is annihilated by a fermionic symmetry generator Q, which
we will refer to as supersymmetry. Let us also assume that the operator O and the measure
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D𝜑 are annihilated by Q. We can now consider the following modification of (1.1.1):

IO (𝑡) =
∫

D𝜑O 𝑒−𝑆[𝜑]−𝑡Q𝑉 [𝜑] , (1.1.2)

where Q𝑉 is a positive semi-definite functional of the fields and 𝑡 > 0 a real parameter. The
functional 𝑉 has to be chosen in such a way that Q2𝑉 = 0. One can now explicitly prove the
invariance of (1.1.2) with respect to 𝑡

𝑑

𝑑𝑡
IO (𝑡) = −

∫
D𝜑OQ𝑉 [𝜑] 𝑒−𝑆[𝜑]−𝑡Q𝑉 [𝜑]

= −
∫

D𝜑Q
(
O𝑉 [𝜑] 𝑒−𝑆[𝜑]−𝑡Q𝑉 [𝜑]

)
= 0 .

(1.1.3)

Notice here how crucial the invariance of the measure concerning Q is. In particular, when
computing thermal correlators, this forces fermions to have periodic boundary conditions.
From an operatorial perspective, this corresponds to (−1)𝐹 insertions in the correlator, 𝐹
being the fermion parity operator. One often refers to these quantities as indices.

Given (1.1.3), one has the following relation:

IO = IO (0) = IO (𝑡) = lim
𝑡→∞

IO (𝑡) . (1.1.4)

The last equality is the essence of supersymmetric localization. At this point, the integral
can be evaluated by the saddle-point method. Let 𝜑0 be the BPS configurations, i.e., the
configurations satisfying

BPS ≡ {𝜑0 |Q𝑉 [𝜑0] = 0} . (1.1.5)

Notice that, since Q𝑉 is semi-positive definite, 𝜑0, is an extremum of Q𝑉 . By splitting the
field integration variable as

𝜑 = 𝜑0 +
1
√
𝑡
𝜑 , (1.1.6)

one gets, in the strict limit 𝑡 → ∞, that

IO =

∫
BPS

𝑑𝜑0 O 𝑒−𝑆[𝜑0]
∫

D𝜑 𝑒
− 𝛿2
𝛿𝜑2 Q𝑉

���
𝜑0
𝜑2

≡
∫

BPS
𝑑𝜑0 O 𝑒−𝑆[𝜑0] Z1-loop(𝜑0) ,

(1.1.7)

where we have defined

Z1-loop(𝜑0) ≡
∫

D𝜑 𝑒
− 𝛿2
𝛿𝜑2 Q𝑉

���
𝜑0
𝜑2

. (1.1.8)
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This quantity is called 1-loop determinant and it is a product of determinants of the quadratic
forms at the exponent. These determinants appear at the numerator when coming from
fermionic fields and at the denominator when coming from bosonic ones.

This trick is particularly useful when the BPS locus (1.1.5) is a finite-dimensional
manifold. In this case, one has reduced a complicated path integral down to a more tractable
finite-dimensional integral, which can be evaluated either analytically or numerically.

1.2 Holographic microstate counting

Starting from [41,42], the possibility of capturing the microstates of BPS asymptotically-AdS
black holes using indices became apparent in the case of static magnetically-charged black
holes in AdS4 × 𝑆7. This result was subsequently generalized in many respects [43–71], for
example extending it to different classes of black holes or by computing quantum corrections
to the leading Bekenstein-Hawking term. Assuming that the cancellations due to the (−1)𝐹

insertion are optimally obstructed, the entropy is obtained as follows. The index I (Δ) is
computed in the grand-canonical ensemble, in the presence of fugacities Δ for the global
symmetries commuting with the supercharges, and the entropy is obtained by taking its
Fourier transform

𝑒𝑆𝐵𝐻 (𝑄) =

∫ (∏
𝐼

𝑑Δ𝐼

)
I (Δ) 𝑒−2𝜋𝑖

∑
𝐼 𝑄𝐼Δ𝐼 . (1.2.1)

By evaluating this expression at large 𝑁 for large black holes, we get at leading order the
entropy as Legendre transform of the index

𝑆𝐵𝐻 (𝑄) = I (Δ̂) − 2𝜋𝑖
∑︁
𝐼

𝑄 𝐼Δ̂𝐼 , Δ̂𝐼 s.t.
𝜕I
𝜕Δ𝐼

����
Δ̂

= 2𝜋𝑖𝑄 𝐼 . (1.2.2)

This procedure goes under the name of I-extremization [72].
Another important step in this direction was made when the entropy of BPS Kerr-

Newman AdS5 × 𝑆5 black holes was holographically reproduced in [73–75] by computing
the superconformal index of the dual 4d N = 4 super-Yang-Mills (SYM) theory, i.e., by
counting its 1/16-BPS states on 𝑆1 × 𝑆3. Also in this case, there has been a lot of effort in
the last few years to generalize and understand these results [76–132]. In this context, our
work [1]2 generalized the results obtained in [73] in the so-called Bethe ansatz formulation
of the superconformal index to the case of generic angular and flavor chemical potentials and
a broader class of N = 1 holographic quiver models, including toric quiver models.

2While this work was ready to be posted on the arXiv, the preprint [93] appeared, which discusses the index
in the particular case 𝜏 = 𝜎 using a different approach.
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The results in the AdS5 case have been particularly relevant. The superconformal index
was first formulated [133,134] to capture the entropy of Gutowski-Reall black holes [135].
The large N computation performed in [134], though, did not agree with this expectation,
suggesting a large cancellation between bosonic and fermionic BPS states. A computation
with real flavor fugacities was performed, which gave an order O(1) entropy function,
incapable of reproducing the O(𝑁2) black-hole entropy. This remained a puzzle, until
in [73–75], taking inspiration from the results for 4d black holes [41, 42], the importance of
using complex flavor fugacities was understood, and the correct result was obtained.

Why an index should capture the entropy of BPS asymptotically-AdS black holes was
nicely argued in [41, 42]. Taking inspiration from a similar argument [23, 28, 31] in the case
of asymptotically-flat black holes, the black-hole solution is interpreted as a renormalization-
group flow across dimensions. The asymptotically-AdS𝑑≥4 region is dual to the UV CFT𝑑−1

whose index captures the entropy. The near horizon AdS2 × M𝑑−2 region, where M𝑑−2

is some (d-2)-dimensional manifold, is supposedly dual to an IR CFT1 which captures the
near-horizon physics of the black hole. In the case of single-center black holes without hair,
the entropy information should only be encoded in this theory. In particular, the presence
of a superconformal R-symmetry in the CFT1 motivates the complete obstruction to the
boson-fermion cancellations provided by the (−1)𝐹 insertion in the index, and thus the
equivalence (up to a sign) between the zero temperature partition function, capturing the
black-hole entropy, and the index.

1.3 Leaving the BPS safe harbor

The idea of capturing the near-horizon physics of black holes is one of the driving forces
in the study of AdS2/CFT1 correspondence. Due to the low dimensionality of the theories
involved in this duality, it can offer a unique opportunity to clarify aspects of holography that
are too complicated to be addressed in higher dimensions.

Starting from [136–142], people have studied and generalized the correspondence between
the Sachdev-Ye-Kitaev (SYK) model [143–145] and Jackiw-Teitelboim (JT) gravity [146,147].
This correspondence exhibits many peculiar features; for example, the gravity theory is
conjecturally dual not to a single quantum mechanical model, but to a random average of
models, instead. For a detailed treatment and further references, we refer to [148–151].

In the series of papers [152–158] this low-dimensional holographic setup was used to
clarify many aspects in black-hole thermodynamics. The supergravity zero modes around a
black-hole background in the near-horizon region were matched by a particular JT-gravity
effective theory. In particular, the contribution to the density of states coming from near-
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extremal black holes was predicted at low temperatures by using this effective theory: the
large order O(𝑁2) degeneracy of AdS5 BPS black holes at 𝑇 = 0 was reproduced, and strong
suppression of the density of states for extremal black holes in the non-BPS case was obtained;
the analysis also revealed an order O(𝑁−2) gap above extremality for BPS black holes. This
being said, a first principle derivation of the holographic dual 1d quantum-mechanical model,
describing the near-horizon degrees of freedom, was still missing.

In [2] we fill in this gap by explicitly reducing the boundary CFT3 dual to a class of
asymptotically-AdS4 magnetic black holes on a sphere 𝑆2, and obtaining a 1d quantum-
mechanical model putatively dual to the black-hole near-horizon physics. This model correctly
reproduces the entropy of BPS black holes and it should match the gravitational results in
the near-BPS case. Having a tool to study near-BPS black holes is a major result since the
absence of supersymmetry is most of the time prohibitive in the quantitative analysis of a
system. Moreover, by studying this model, one can probe basic features of the AdS2/CFT1

correspondence: for example in our model (in the spirit of what was done in [159] in
the context of asymptotically-flat black holes in string theory), disorder averages are only
introduced as a simplifying tool while performing the computations, being the couplings
“statistically distributed”, but fixed; in the SYK model, instead, disorder averages are a
structural ingredient of the theory. We leave further analysis of this model for future works.

1.4 Outline

We will now outline the structure of this thesis, by going into some more detail on the two
original works [1, 2] on which our discussion is based. They will be the focus of Chapter 2
and Chapter 3, respectively.

Chapter 2. The family of AdS5 × 𝑆5 supersymmetric black holes found in [135, 160–163]
depends on three charges 𝑄𝑎 associated with the Cartan subgroup of the internal isometry
SO(6), and two angular momenta 𝐽𝑖 in AdS5, subject to a non-linear constraint.3 The entropy
can be written as the value at the critical point of the entropy function [118]

S (𝑋𝑎, 𝜏, 𝜎) = −𝑖𝜋𝑁2 𝑋1𝑋2𝑋3
𝜏 𝜎

− 2𝜋𝑖
( 3∑︁
𝑎=1

𝑋𝑎𝑄𝑎 + 𝜏𝐽1 + 𝜎𝐽2

)
(1.4.1)

with the constraint 𝑋1 + 𝑋2 + 𝑋3 − 𝜏 −𝜎 = ±1, where 𝑁 is the number of colors of the dual 4d
N = 4 SU(𝑁) SYM theory. The same entropy function can also be obtained by computing the

3Supersymmetric hairy black holes depending on all charges have been recently found in [164,165], but
their entropy seems to be parametrically smaller in the range of parameters where our considerations apply.
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zero-temperature limit of the on-shell action of a class of supersymmetric but non-extremal
complexified Euclidean black holes [74,96]. The two constraints with ± sign lead to the same
value for the entropy, which is real precisely when the non-linear constraint on the black-hole
charges is imposed. The parameters 𝑋𝑎, 𝜏, and 𝜎 are chemical potentials for the conserved
charges 𝑄𝑎 and 𝐽𝑖 and can also be identified with the parameters the superconformal index
depends on. With this identification, we expect that the entropy 𝑆(𝑄𝑎, 𝐽1, 𝐽2) is just the
constrained Legendre transform of log I (𝑋𝑎, 𝜏, 𝜎), where I (𝑋𝑎, 𝜏, 𝜎) is the superconformal
index.

Initially, the entropy of AdS5 × 𝑆5 Kerr-Newman black holes has been derived from the
superconformal index and shown to agree with (1.4.1) only in particular limits. In [75], the
entropy was derived for large black holes (whose size is much larger than the AdS radius)
using a Cardy limit of the superconformal index where Im(𝑋𝑎), 𝜏, 𝜎 ≪ 1. In [73], the
entropy was instead derived in the large 𝑁 limit in the case of black holes with equal angular
momenta, 𝐽1 = 𝐽2.4 The large 𝑁 limit has been evaluated by writing the index as a sum over
Bethe vacua [85], an approach that has been successful for AdS black holes in many other
contexts.

It is one of the purposes of this Chapter to extend the derivation of [73] to the case of
unequal angular momenta, thus providing a large 𝑁 microscopic counting of the microstates of
BPS Kerr-Newman black holes in AdS5×𝑆5 for arbitrary values of the conserved charges. We
will make use of the Bethe ansatz formulation of the superconformal index derived for 𝜏 = 𝜎
in [166] and generalized to unequal angular chemical potentials in [85]. This formulation
allows us to write the index as a sum over the solutions to a set of Bethe Ansatz Equations
(BAEs) — whose explicit form and solutions have been studied in [62, 73, 81, 111, 116, 125]
— and over some auxiliary integer parameters 𝑚𝑖. We expect that, in the large 𝑁 limit, one
particular solution dominates the sum.5 In Section 2.1 we will show that the “basic solution"
to the BAEs, already used in [73], correctly reproduces the entropy of black holes in the form
(1.4.1) for a choice of integers 𝑚𝑖. We stress that our result comes from a single contribution
to the index, which is an infinite sum. Such a contribution might not be the dominant one
— and so our estimate of the index might be incorrect — in some regions of the space of
chemical potentials. It is known from the analysis in [73] that when the charges become
smaller than a given threshold, new solutions take over and dominate the asymptotic behavior
of the index. This suggests the existence of a rich structure to which other black holes might
also contribute. However, we conjecture and will bring some evidence that the contribution

4The same result has been later reproduced with a different approach in [90].
5It is argued in [81] that there exist families of continuous solutions. This does not affect our argument

provided the corresponding contribution to the index is subleading.
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of the basic solution is the dominant one in the region of the space of chemical potentials
corresponding to sufficiently large charges.

In Section 2.2 we will also extend the large 𝑁 computation of the index to a general class
of superconformal theories dual to AdS5 × SE5, where SE5 is a 5d Sasaki-Einstein manifold.
The analysis for 𝐽1 = 𝐽2 was already performed in [125]. For toric holographic quiver gauge
theories, we find a prediction for the entropy of black holes in AdS5 × SE5 in the form of the
entropy function

S (𝑋𝑎, 𝜏, 𝜎) = −𝑖𝜋𝑁
2

6

𝐷∑︁
𝑎,𝑏,𝑐

𝐶𝑎𝑏𝑐
𝑋𝑎𝑋𝑏𝑋𝑐

𝜏 𝜎
− 2𝜋𝑖

(
𝐷∑︁
𝑎=1

𝑋𝑎𝑄𝑎 + 𝜏𝐽1 + 𝜎𝐽2

)
, (1.4.2)

with the constraint
∑𝐷
𝑎=1 𝑋𝑎 − 𝜏 − 𝜎 = ±1, in terms of chemical potentials 𝑋𝑎 for a basis

of independent R-symmetries 𝑅𝑎. The coefficients 𝐶𝑎𝑏𝑐 𝑁2 = 1
4 Tr 𝑅𝑎𝑅𝑏𝑅𝑐 are the ’t Hooft

anomaly coefficients for this basis of R-symmetries. The form of the entropy function (1.4.2)
was conjectured in [167] and reproduced for various toric models in the special case 𝜏 = 𝜎
in [125]. We will give a general derivation, valid for all toric quivers and even more. We
will also show that both constraints in (1.4.2), which lead to the same value for the entropy,
naturally arise from the index in different regions of the space of chemical potentials. The
function (1.4.2) was also derived in the Cardy limit in [77].

In the last part of the Chapter, we will provide some evidence that (1.4.2) correctly
reproduces the entropy of black holes in AdS5 × SE5. In Section 2.3 we first check that our
formula correctly reproduces the entropy of the universal black hole that arises as a solution
in 5d minimal gauged supergravity, and, as such, can be embedded in any AdS5 × SE5

compactification. It corresponds to a black hole with electric charges aligned with the exact
R-symmetry of the dual superconformal field theory and with arbitrary angular momenta
𝐽1 and 𝐽2. Since the solution is universal, the computation can be reduced to that of
N = 4 SYM and it is almost trivial. More interesting are black holes with general electric
charges. Unfortunately, to the best of our knowledge, there are no available such black hole
solutions in compactifications based on Sasaki-Einstein manifolds SE5 other than 𝑆5. To
overcome this obstacle, in Section 2.4 we will explicitly construct the near-horizon geometry
of supersymmetric black holes in AdS5 ×𝑇1,1 with equal angular momenta and charged under
the baryonic symmetry of the dual Klebanov-Witten theory [168]. Luckily, the background
AdS5×𝑇1,1 admits a consistent truncation to a 5d gauged supergravity containing the massless
gauge field associated with the baryonic symmetry [169–171]. We then use the strategy
suggested in [118]: a rotating black hole in 5d with 𝐽1 = 𝐽2 can be dimensionally reduced
along the Hopf fiber of the horizon three-sphere to a static solution of 4d N = 2 gauged
supergravity. We will explicitly solve the BPS equations [172–174] for the horizon of static
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black holes with the appropriate electric and magnetic charges in N = 2 gauged supergravity
in 4d. The main complication is the presence of hypermultiplets. By solving the hyperino
equations at the horizon, we will be able to recast all other supersymmetric conditions as a
set of attractor equations, and we will show that these are equivalent to the extremization of
(1.4.2) for the Klebanov-Witten theory with 𝜏 = 𝜎. This provides a highly non-trivial check
of our result and the conjecture that the basic solution to the BAEs dominates the index.

Chapter 3. In this Chapter we construct a supersymmetric gauged quantum mechanics
(QM) that we expect to capture information about near-extremal black-hole horizons. We
work in a very specific setup: massive Type IIA string theory on 𝑆6, which is dual to the
3d N = 2 SU(𝑁)𝑘 Chern-Simons-matter (CS-matter) theory [175] in Section 3.1.2. The
supergravity admits asymptotically-AdS4 static magnetic (or topologically twisted) BPS
black holes [176–178], that we aim to describe. The quantum mechanics is then obtained by
reducing the dual 3d field theory on 𝑆2, with a specific background that corresponds to the
black-hole asymptotics.6

More specifically, the entropy of static magnetically-charged BPS black holes in AdS4

is captured by the topologically-twisted (TT) index [72, 179] of the dual 3d boundary
theory [41, 42, 63, 67, 180–182], see in particular [43, 64] for the specific example in massive
Type IIA studied here. In the Lagrangian formulation, the topologically-twisted index is the
Euclidean partition function of the theory on 𝑆2 × 𝑆1, in the presence of a supersymmetric
background that holographically reflects the asymptotics of the BPS black hole. The
background can be thought of as a topological twist on 𝑆2 that preserves two supercharges, or
equivalently as an external magnetic flux for the R-symmetry. In Section 3.1.1 we observe that
the topologically-twisted index takes the form of the Witten index of a quantum mechanics,
obtained by reducing the 3d theory on 𝑆2 with the twisted background. Up to exponentially
small corrections at large 𝑁 , the index is the grand-canonical partition function for the BPS
ground states of that quantum mechanics. In other words, the ground states of that quantum
mechanics are the microstates of a BPS black hole with given charges, and one expects the
excited states to describe near-extremal black holes. The goal of this Chapter is to construct
such quantum mechanics.

The procedure we outlined has a technical complication: the formula for the topologically-
twisted index — schematically in (3.1.1) — has an infinite sum over gauge fluxes on 𝑆2.
For each term in the sum, one obtains different quantum mechanics upon reduction. Thus
it appears that, even at finite 𝑁 , one has to deal with a quantum mechanical model with

6The background is dual to the black-hole chemical potentials, or charges, depending on the ensemble.
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an infinite number of sectors, over which we do not have good control.7 Nevertheless, in
the large 𝑁 limit we expect one sector to dominate the entropy8 and thus contribute to the
majority of the states. In Section 3.1 we determine such a sector by performing a saddle-point
evaluation of the index in the sum over fluxes. This gives us an N = 2 supersymmetric
gauged quantum mechanics with a finite number of fields (at finite 𝑁).

The resulting N = 2 quantum mechanics, that we exhibit in Section 3.3 and on which
we discuss the stability in Section 3.4, has some interesting features. It has U(1)𝑁 gauge
group and a number of fields that scales as 𝑁 7

3 . It has an SU(2) global symmetry, dual
to the isometry of the 𝑆2 black-hole horizon. More importantly, it has a large number of
couplings among the fields, expressed in terms of Clebsch-Gordan coefficients (arising in the
reduction from the overlap of Landau-level wave functions on 𝑆2). Therefore, although the
quantum mechanics is specific and well-defined, at large 𝑁 its couplings can be approximated
by random variables following a statistical distribution. This makes us hopeful that the IR
dynamics might have some traits in common with supersymmetric SYK models [154, 183].

In the large 𝑁 saddle-point evaluation of the topologically-twisted index, we noticed that
there is actually a series of saddle points — one of which dominates the large 𝑁 expansion.
These saddle points are labeled by shifts of the chemical potentials by 1 and likely correspond
to a series of complex supergravity solutions with the very same boundary conditions, as
in [184,185].

Appendices. Technical computations as well as some review material can be found in several
appendices. In Appendix A we report all the details of the large 𝑁 computations performed at
various stages of the thesis. Appendix B and Appendix C set our supergravity conventions and
display all the details of the Scherk-Schwarz reduction, respectively. Appendix D contains
details on the expansion in monopole harmonics on 𝑆2. Finally, Appendix E contains a brief
overview of 1d N = 2 supersymmetry.

7This is partially because the reduction is in the grand-canonical ensemble for the electric charges (though it
is micro-canonical for the magnetic charges), with fixed chemical potentials. Therefore, the states of all BPS
and near-BPS black holes are mixed up together.

8We are grateful to Juan M. Maldacena for suggesting this possibility to us years ago.



Chapter 2

Superconformal indices at large 𝑵 and
the entropy of AdS5 × SE5 black holes

In this Chapter, we holographically compute the entropy of a broad class of BPS asymptotically-
AdS5 black holes. It is organized as follows. In Section 2.1 we review the setting introduced
in [73] and we evaluate the large 𝑁 contribution of the “basic solution" to the BAEs to the
superconformal index for generic angular fugacities. We show that it correctly captures the
semi-classical Bekenstein-Hawking entropy of BPS black holes in AdS5 × 𝑆5. In Section 2.2
we discuss the generalization of this result to general toric quiver gauge theories and find
agreement with the entropy function prediction (1.4.2) in certain corners of the space of
chemical potentials. In Section 2.3 we discuss the particular case of the universal black hole,
which can be embedded in all string and M-theory supersymmetric compactifications with an
AdS5 factor. In Section 2.4 we match formula (1.4.2) with the entropy of a supersymmetric
black hole in AdS5 × 𝑇1,1, whose near-horizon geometry we explicitly construct.

2.1 The SCI of N = 4 SYM at large 𝑵

We are interested in evaluating the large 𝑁 limit of the superconformal index of 4d N = 1
holographic theories. We will consider in this Section the simplest example, namely N = 4
SU(𝑁) SYM. The superconformal index counts (with sign) the 1/16-BPS states of the theory
on R × 𝑆3 that preserve one complex supercharge 𝑄. These states are characterized by two
angular momenta 𝐽1,2 on 𝑆3 and three R-charges for U(1)3 ⊂ SO(6)𝑅. We write N = 4 SYM
in N = 1 notation in terms of a vector multiplet and three chiral multiplets Φ𝐼 and introduce
a symmetric basis of R-symmetry generators 𝑅1,2,3 such that 𝑅𝐼 (Φ𝐽) = 2𝛿𝐼𝐽 . The index is
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defined by the trace [133,134]

I4𝑑 (𝑝, 𝑞, 𝑣1, 𝑣2) = Tr (−1)𝐹𝑒−𝛽{𝑄,𝑄†} 𝑝𝐽1+ 𝑟2 𝑞𝐽2+ 𝑟2 𝑣𝑞1
1 𝑣

𝑞2
2 , (2.1.1)

in terms of two flavor generators 𝑞1,2 = (𝑅1,2 − 𝑅3)/2 commuting with 𝑄, and the R-charge
𝑟 = (𝑅1 + 𝑅2 + 𝑅3)/3. Notice that (−1)𝐹 = 𝑒2𝜋𝑖𝐽1,2 = 𝑒𝑖𝜋𝑅1,2,3 . Here 𝑝, 𝑞, 𝑣 𝐼 with 𝐼 = 1, 2 are
complex fugacities associated with the various quantum numbers, while the corresponding
chemical potentials 𝜏, 𝜎, b𝐼 are defined by

𝑝 = 𝑒2𝜋𝑖𝜏 , 𝑞 = 𝑒2𝜋𝑖𝜎 , 𝑣 𝐼 = 𝑒
2𝜋𝑖b𝐼 . (2.1.2)

The index is well-defined for |𝑝 |, |𝑞 | < 1. It is convenient to redefine the flavor chemical
potentials in terms of

Δ𝐼 = b𝐼 +
𝜏 + 𝜎

3 for 𝐼 = 1, 2 . (2.1.3)

It is also convenient to introduce an auxiliary chemical potential Δ3 such that

𝜏 + 𝜎 − Δ1 − Δ2 − Δ3 ∈ 2Z + 1 , (2.1.4)

and use the corresponding fugacities

𝑦𝐼 = 𝑒
2𝜋𝑖Δ𝐼 . (2.1.5)

The index then takes the more transparent form

I4𝑑 = TrBPS 𝑝
𝐽1 𝑞𝐽2 𝑦

𝑅1/2
1 𝑦

𝑅2/2
2 𝑦

𝑅3/2
3 . (2.1.6)

It shows that the constrained fugacities 𝑝, 𝑞, 𝑦𝐼 with 𝐼 = 1, 2, 3 are associated with the angular
momenta 𝐽1,2 and the charges 𝑄 𝐼 ≡ 𝑅𝐼/2.

Our starting point is the so-called Bethe ansatz formulation of the superconformal
index [85,166]. The special case that the two angular chemical potentials are equal, 𝜏 = 𝜎,
was already studied in [73] (see also [81]). Here we take them to be unequal. The formula
of [85] can be applied when the ratio between the two angular chemical potentials is a rational
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number.1 We thus set

𝜏 = 𝑎𝜔 , 𝜎 = 𝑏𝜔 with Im𝜔 > 0 (2.1.7)

and with 𝑎, 𝑏 ∈ N coprime positive integers. We call H = {𝜔 | Im𝜔 > 0} the upper
half-plane. We then have the fugacities

ℎ = 𝑒2𝜋𝑖𝜔 , 𝑝 = ℎ𝑎 = 𝑒2𝜋𝑖𝜏 , 𝑞 = ℎ𝑏 = 𝑒2𝜋𝑖𝜎 with |ℎ |, |𝑝 |, |𝑞 | < 1 .
(2.1.8)

The formula in [85] allows us to write the superconformal index as a sum over the
solutions to a set of Bethe Ansatz Equations (BAEs). Explicitly, the index reads

I4𝑑 = ^𝑁
∑︁

𝑢 ∈BAE
Ztot 𝐻

−1
���
𝑢
. (2.1.9)

The expressions of ^𝑁 , 𝐻 and Ztot for a generic N = 1 theory are given in [85]. Here, we
specialize them to N = 4 SU(𝑁) SYM. The quantity

^𝑁 =
1
𝑁!

(
(𝑝; 𝑝)∞ (𝑞; 𝑞)∞ Γ̃(Δ1; 𝜏, 𝜎) Γ̃(Δ2; 𝜏, 𝜎)

Γ̃(Δ1 + Δ2; 𝜏, 𝜎)

)𝑁−1
(2.1.10)

is a pre-factor written in terms of the elliptic gamma function Γ̃ and the Pochhammer symbol
defined in (A.1.6) and (A.1.1), respectively. The sum in (2.1.9) is over the solution set to the
following BAEs2

1 = 𝑄𝑖 (𝑢;Δ, 𝜔) ≡ 𝑒2𝜋𝑖(_+3
∑
𝑗 𝑢𝑖 𝑗)

𝑁∏
𝑗=1

\0
(
𝑢 𝑗𝑖 + Δ1;𝜔

)
\0

(
𝑢 𝑗𝑖 + Δ2;𝜔

)
\0

(
𝑢 𝑗𝑖 − Δ1 − Δ2;𝜔

)
\0

(
𝑢𝑖 𝑗 + Δ1;𝜔

)
\0

(
𝑢𝑖 𝑗 + Δ2;𝜔

)
\0

(
𝑢𝑖 𝑗 − Δ1 − Δ2;𝜔

) ,
(2.1.11)

written in terms of 𝑢𝑖 𝑗 = 𝑢𝑖 − 𝑢 𝑗 with 𝑖, 𝑗 = 1, . . . , 𝑁 and the theta function defined in (A.1.3).
The unknowns are the “complexified SU(𝑁) holonomies”, which are expressed here in terms
of U(𝑁) holonomies 𝑢𝑖 further constrained by

𝑁∑︁
𝑖=1

𝑢𝑖 = 0 (mod Z) , (2.1.12)

1This might sound like a strong limitation. However, the index (2.1.6) is invariant under integer shifts of 𝜏
and 𝜎 compatible with (2.1.4). As proven in [85], the set of complex number pairs {𝜏, 𝜎} ∈ H2 (two copies of
the upper half-plane) whose ratio becomes a (real) rational number after some integer shifts of 𝜏 and 𝜎, is dense
in H2. Thus, by continuity, the formula of [85] fixes the large 𝑁 limit of the superconformal index for generic
complex chemical potentials.

2The Bethe operators 𝑄𝑖 should not be confused with the charges 𝑄𝐼 introduced before.
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as well as a “Lagrange multiplier” _. The SU(𝑁) holonomies are to be identified with the first
𝑁 − 1 variables 𝑢𝑖=1,...,𝑁−1. As unknowns in the BAEs, they are subject to the identification

𝑢𝑖 ∼ 𝑢𝑖 + 1 ∼ 𝑢𝑖 + 𝜔 , (2.1.13)

meaning that each one of them naturally lives on a torus of modular parameter 𝜔. Instead, the
last holonomy 𝑢𝑁 is determined by the constraint (2.1.12). The relation between SU(𝑁) and
U(𝑁) holonomies will be further clarified in Appendix A.2.2. The prescription in (2.1.9) is
to sum over all the inequivalent solutions on the torus [85]. The function 𝐻 is the Jacobian

𝐻 = det
[

1
2𝜋𝑖

𝜕 (𝑄1, . . . , 𝑄𝑁 )
𝜕 (𝑢1, . . . , 𝑢𝑁−1, _)

]
. (2.1.14)

Finally, the function Ztot is the following sum over a set of integers 𝑚𝑖 = 1, . . . , 𝑎𝑏:

Ztot =
𝑎𝑏∑︁

{𝑚𝑖}=1
Z

(
𝑢 − 𝑚𝜔; 𝜏, 𝜎

)
, (2.1.15)

where Z , for N = 4 SU(𝑁) SYM, reads

Z =

𝑁∏
𝑖, 𝑗=1
𝑖≠ 𝑗

Γ̃(𝑢𝑖 𝑗 + Δ1; 𝜏, 𝜎) Γ̃(𝑢𝑖 𝑗 + Δ2; 𝜏, 𝜎)
Γ̃(𝑢𝑖 𝑗 + Δ1 + Δ2; 𝜏, 𝜎) Γ̃(𝑢𝑖 𝑗 ; 𝜏, 𝜎)

. (2.1.16)

The sum in (2.1.15) freely varies over the first 𝑁 − 1 integers 𝑚𝑖=1,...,𝑁−1 as indicated, while
𝑚𝑁 is determined by the constraint

𝑁∑︁
𝑖=1

𝑚𝑖 = 0 . (2.1.17)

More details can be found in [73, 85]. In the following, when a double sum starts from 1 we
will leave it implicit.

2.1.1 The SCI building block

We will show that one particular contribution to the sums in (2.1.9) and (2.1.15) alone
reproduces the entropy function of [118], and therefore it captures the Bekenstein-Hawking
entropy of BPS black holes in AdS5 × 𝑆5. To that aim, we are interested in the contribution
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from the so-called “basic solution” to the BAEs [62, 73, 116], namely

𝑢𝑖 =
𝑁 − 𝑖
𝑁

𝜔 + 𝑢 , 𝑢𝑖 𝑗 ≡ 𝑢𝑖 − 𝑢 𝑗 =
𝑗 − 𝑖
𝑁

𝜔 , _ =
𝑁 − 1

2 . (2.1.18)

Here 𝑢 is fixed by enforcing the constraint (2.1.12). We also consider the contribution from a
particular choice for the integers {𝑚 𝑗 }:

𝑚 𝑗 ∈ {1, . . . , 𝑎𝑏} such that 𝑚 𝑗 = 𝑗 mod 𝑎𝑏 . (2.1.19)

Note that this choice for {𝑚 𝑗 } does not satisfy the constraint (2.1.17). Nevertheless, we show
in Appendix A.2.2 that this does not affect the contribution to the leading order in 𝑁 , in the
sense that changing the single entry 𝑚𝑁 has a subleading effect.

Now, the crucial technical point is to evaluate the following basic building block

ΨSCI =
𝑁∑︁
𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔 𝑗 − 𝑖

𝑁
+ 𝜔

(
𝑚 𝑗 − 𝑚𝑖

)
; 𝑎𝜔, 𝑏𝜔

)
, (2.1.20)

for 𝑁 → ∞. Here Δ plays the role of an electric chemical potential. To simplify the
discussion, we assume that 𝑁 is a multiple of 𝑎𝑏, i.e., we take 𝑁 = 𝑎𝑏𝑁 . As we show in
Appendix A.2.3, this assumption can be removed without affecting the leading behavior at
large 𝑁 . By making use of the identity (A.1.11) we can rewrite it as

ΨSCI =
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁∑︁
𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔 𝑗 − 𝑖

𝑁
+ 𝜔

(
𝑚 𝑗 − 𝑚𝑖 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
. (2.1.21)

Let us set 𝑖 = 𝛾𝑎𝑏 + 𝑐, 𝑗 = 𝛿𝑎𝑏 + 𝑑 with 𝛾, 𝛿 = 0, . . . , 𝑁 − 1 and 𝑐, 𝑑 = 1, . . . , 𝑎𝑏. Then

ΨSCI =
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁−1∑︁
𝛾,𝛿=0

𝑎𝑏∑︁
𝑐,𝑑=1︸     ︷︷     ︸

s.t. 𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔𝛿 − 𝛾

𝑁
+ 𝜔𝑑 − 𝑐

𝑁
+ 𝜔

(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
.

(2.1.22)
We will now perform two simplifications and prove in Appendix A.2.1 that their effect is of

subleading order at large 𝑁 . More precisely, ΨSCI is of order 𝑁2 while the two simplifications
modify it at most at order 𝑁 if Im

(
Δ/𝜔

)
∉ Z× Im

(
1/𝜔

)
, or at most at order 𝑁 log 𝑁 if Δ = 0.

First, we substitute the condition 𝑖 ≠ 𝑗 with the condition 𝛾 ≠ 𝛿 in the summation. Second
and more importantly, we drop the term 𝜔(𝑑 − 𝑐)/𝑁 in the argument. We then redefine
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𝑐 → 𝑎𝑏 − 𝑐, 𝑑 → 𝑑 + 1, 𝛾 → 𝛾 − 1, 𝛿 → 𝛿 − 1 and obtain

ΨSCI ≃
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁∑︁
𝛾≠𝛿

𝑎𝑏−1∑︁
𝑐,𝑑=0

log Γ̃
(
Δ + 𝜔𝛿 − 𝛾

𝑁
+ 𝜔

(
𝑑 + 𝑐 + 1 − 𝑎𝑏 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
(2.1.23)

where ≃ means equality at leading order in 𝑁 . At this point we can resum over 𝑐, 𝑑 using
(A.1.10) (with 𝜏, 𝜎 → 𝜔 and 𝑎, 𝑏 → 𝑎𝑏):

ΨSCI ≃
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁∑︁
𝛾≠𝛿

log Γ̃
(
Δ + 𝜔𝛿 − 𝛾

𝑁
+ 𝜔

(
1 − 𝑎𝑏 + 𝑎𝑠 + 𝑏𝑟

)
;𝜔, 𝜔

)
. (2.1.24)

We can now recall the large 𝑁 limit computed in [73]

𝑁∑︁
𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔 𝑗 − 𝑖

𝑁
;𝜔, 𝜔

)
= −𝜋𝑖𝑁2 𝐵3

(
[Δ]′𝜔 − 𝜔

)
3𝜔2 +O(𝑁) , (2.1.25)

valid for Im
(
Δ/𝜔

)
∉ Z×Im

(
1/𝜔

)
. Here 𝐵3(𝑥) is a Bernoulli polynomial, defined in (A.1.13)

and satisfying (2.1.28). The function [Δ]′𝜔 is defined in the following way:

[Δ]′𝜔 =

{
𝑧

���� 𝑧 = Δ mod 1 , 0 > Im
( 𝑧
𝜔

)
> Im

( 1
𝜔

)}
. (2.1.26)

This function is only defined for Im
(
Δ/𝜔

)
∉ Z × Im

(
1/𝜔

)
, it is continuous in each open

connected domain, and it is periodic by construction under Δ → Δ + 1. In the following we
will also use the function [Δ]𝜔 = [Δ]′𝜔 − 1, that is

[Δ]𝜔 =

{
𝑧

���� 𝑧 = Δ mod 1 , Im
(
− 1
𝜔

)
> Im

( 𝑧
𝜔

)
> 0

}
. (2.1.27)

The functions [Δ]𝜔 and [Δ]′𝜔 are the mod 1 reductions of Δ to the fundamental strips shown
in Figure 2.1. Then, one can explicitly prove the following formula

1
𝑎𝑏

𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝐵3
(
𝑥 + 𝜔(𝑎𝑠 + 𝑏𝑟 − 𝑎𝑏)

)
=

= 𝐵3

(
𝑥 − 𝑎 + 𝑏

2 𝜔

)
+ 2𝑎2𝑏2 − 𝑎2 − 𝑏2

4 𝜔2 𝐵1

(
𝑥 − 𝑎 + 𝑏

2 𝜔

)
, (2.1.28)
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0

𝜔

−1
1

𝜔 − 1
𝜔 + 1

Figure 2.1 Fundamental strips for [Δ]𝜔 and [Δ]′𝜔. The function [Δ]𝜔 is the restriction of Δ
mod 1 to the region Im(−1/𝜔) > Im(Δ/𝜔) > 0 (in yellow, on the left), while [Δ]′𝜔 is the
restriction of Δ mod 1 to the region 0 > Im(Δ/𝜔) > Im(1/𝜔) (in blue, on the right).

where 𝐵1(𝑥) is another Bernoulli polynomial defined in (A.1.13). Thus

ΨSCI = −𝜋𝑖𝑁
2

3𝜏𝜎 𝐵3
(
[Δ]′𝜔 − 𝜏 + 𝜎

2

)
− 𝜋𝑖𝑁2

12

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

)
𝐵1

(
[Δ]′𝜔 − 𝜏 + 𝜎

2

)
+O(𝑁)

(2.1.29)
for Im

(
Δ/𝜔

)
∉ Z × Im

(
1/𝜔

)
. As a check, notice that[
𝜏 + 𝜎 − Δ

]′
𝜔
= 𝜏 + 𝜎 + 1 − [Δ]′𝜔 . (2.1.30)

From the properties of 𝐵1,3(𝑥) noticed in (2.1.28), it follows that

ΨSCI(𝜏 + 𝜎 − Δ) ≃ −ΨSCI(Δ) (2.1.31)

at leading order in 𝑁 . This is in accordance with the inversion formula of the elliptic gamma
function (A.1.9).

The case Δ = 0 requires some care, because [0]𝜔 is undefined. Taking the limit of ΨSCI as
Δ → 0 from the left or the right, one obtains two values that differ by an imaginary quantity.
The limit from the right corresponds to taking [Δ]′𝜔 → 0 in (2.1.29), while the limit from the
left corresponds to [Δ]𝜔 → 0 (i.e., [Δ]′𝜔 → 1). The difference is

ΨSCI

���
[Δ]′𝜔→0

− ΨSCI

���
[Δ]𝜔→0

=
𝑖𝜋𝑁2

6

(
3 + 𝑎𝑏 + 𝑎

𝑏
+ 𝑏
𝑎

)
. (2.1.32)

Since ΨSCI is, in any case, ambiguous by shifts of 2𝜋𝑖 because it is a logarithm, only the
remainder modulo 2𝜋𝑖 is meaningful but this is an order 1 quantity which can be neglected.
It turns out that, with 𝑁 = 𝑎𝑏𝑁 , the quantity on the right-hand-side of (2.1.32) is always
an integer multiple of 𝑖𝜋𝑁 , and so its exponential is a sign. We should also notice that, for
Δ = 0, our approximation gets corrections at order 𝑁 log 𝑁 .
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2.1.2 The SCI entropy function

We are now ready to put all the ingredients together. Our working assumption is that, in the
large 𝑁 limit, the index (2.1.9) is dominated by the basic solution (2.1.18) and the choice of
integers (2.1.19). Some evidence that the basic solution dominates the index for 𝜏 = 𝜎 has
been given in [73] (see also [81]).

The leading contribution to (2.1.9) originates from Ztot that can be evaluated using
(2.1.29). Indeed, the term ^𝑁 is manifestly sub-leading. That the contribution of 𝐻 is also
subleading follows from the analysis in [73] for 𝜏 = 𝜎, since 𝐻 only depends on the solutions
to the BAEs and not explicitly on 𝜏 and 𝜎. The large 𝑁 limit of the index at leading order is
then

log I4𝑑 = ΨSCI(Δ1) + ΨSCI(Δ2) − ΨSCI(Δ1 + Δ2) − ΨSCI(0) , (2.1.33)

where the definition of the last term has an ambiguity of order 1.
Recall that in (2.1.4) we introduced the auxiliary chemical potential Δ3. Notice, in

particular, that the chemical potentials are defined modulo 1. Using the basic properties

[Δ + 1]𝜔 = [Δ]𝜔 , [Δ + 𝜔]𝜔 = [Δ]𝜔 + 𝜔 , [−Δ]𝜔 = −[Δ]𝜔 − 1 , (2.1.34)

we find
[Δ3]𝜔 = 𝜏 + 𝜎 − 1 − [Δ1 + Δ2]𝜔 . (2.1.35)

It follows from the definition of the function [Δ]𝜔 that

[Δ1 + Δ2]𝜔 = [Δ1]𝜔 + [Δ2]𝜔 + 𝑛 (2.1.36)

where 𝑛 = 0 or 𝑛 = 1. The result then breaks into two cases. If [Δ1 + Δ2]𝜔 = [Δ1]𝜔 + [Δ2]𝜔
then

[Δ1]𝜔 + [Δ2]𝜔 + [Δ3]𝜔 − 𝜏 − 𝜎 = −1 , (2.1.37)

and, using (2.1.33) and (2.1.29),

log I4𝑑 = −𝜋𝑖𝑁2 [Δ1]𝜔 [Δ2]𝜔
(
𝜏 + 𝜎 − 1 − [Δ1]𝜔 − [Δ2]𝜔

)
𝜏 𝜎

= −𝑖𝜋𝑁2 [Δ1]𝜔 [Δ2]𝜔 [Δ3]𝜔
𝜏 𝜎

.

(2.1.38)

To obtain this formula we used ΨSCI(0) = ΨSCI
��
[Δ]𝜔→0. Notice that the contributions from

𝐵1 cancel out. As we will see in Section 2.2, this is a consequence of the holographic relation
𝑎 = 𝑐 among the two 4d central charges in the large 𝑁 limit. If [Δ1+Δ2]𝜔 = [Δ1]𝜔+ [Δ2]𝜔+1,
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namely [Δ1 + Δ2]′𝜔 = [Δ1]′𝜔 + [Δ2]′𝜔, then

[Δ1]′𝜔 + [Δ2]′𝜔 + [Δ3]′𝜔 − 𝜏 − 𝜎 = 1 , (2.1.39)

and
log I4𝑑 = −𝜋𝑖𝑁2 [Δ1]′𝜔 [Δ2]′𝜔

(
𝜏 + 𝜎 + 1 − [Δ1]′𝜔 − [Δ2]′𝜔

)
𝜏 𝜎

= −𝑖𝜋𝑁2 [Δ1]′𝜔 [Δ2]′𝜔 [Δ3]′𝜔
𝜏 𝜎

.

(2.1.40)

This time we used ΨSCI(0) = ΨSCI
��
[Δ]′𝜔→0.

As in [73], we can extract the entropy of the dual black holes by taking the Legendre
transform of the logarithm of the index. The precise identification of the charges associated
with the chemical potentials follows from (2.1.6). The prediction for the entropy can then be
combined into two constrained entropy functions

S±(𝑋𝐼 , 𝜏, 𝜎,Λ) = −𝑖𝜋𝑁2 𝑋1𝑋2𝑋3
𝜏 𝜎

− 2𝜋𝑖
( 3∑︁
𝐼=1

𝑋𝐼𝑄 𝐼 + 𝜏𝐽1 + 𝜎𝐽2

)
+

− 2𝜋𝑖Λ
(
𝑋1 + 𝑋2 + 𝑋3 − 𝜏 − 𝜎 ± 1

)
, (2.1.41)

where we used a neutral variable 𝑋𝐼 to denote either [Δ𝐼]𝜔 or [Δ𝐼]′𝜔, we introduced a
Lagrange multiplier Λ to enforce the constraint, and we recall that𝑄 𝐼 = 𝑅𝐼/2. This completes
our derivation of the entropy of supersymmetric black holes in AdS5 × 𝑆5 for generic angular
momenta and electric charges. The expression (2.1.41) represents indeed the two entropy
functions derived in [118], where it was shown that the (constrained) extremization of (2.1.41)
reproduces the entropy of a black hole of angular momenta 𝐽1 and 𝐽2 and charges𝑄 𝐼 . The two
results correspond to the two entropy functions that reproduce the same black-hole entropy
and are associated with two Euclidean complex solutions that regularize the black-hole
horizon [74].

2.2 The SCI of quiver theories with a holographic dual

We want now to generalize the large 𝑁 computation of the superconformal index to theories
dual to AdS5 × SE5 compactifications, where SE5 is a 5d Sasaki-Einstein manifold. We can
write general formulae with very few assumptions. We consider 4d N = 1 theories with
SU(𝑁) gauge groups, as well as adjoint and bi-fundamental chiral multiplet fields. To cancel
gauge anomalies, the total number of fields transforming in the fundamental representation
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of a group must be the same as the number of anti-fundamentals. We also require equality
of the conformal central charges 𝑐 = 𝑎 in the large 𝑁 limit, as dictated by holography. Our
analysis extends the results found in [125] for equal angular momenta.

We then assume that in the large 𝑁 limit, as for N = 4 SYM, the leading contribution to
the superconformal index comes from the basic solution with the choice of integers {𝑚𝑖}
discussed in (2.1.19). As already shown in [111, 125], the basic solution to the BAEs for
N = 4 SYM [62,73, 116] can easily be extended to quiver gauge theories by setting

𝑢
𝛼𝛽

𝑖 𝑗
≡ 𝑢𝛼𝑖 − 𝑢

𝛽

𝑗
=
𝑗 − 𝑖
𝑁

𝜔 𝛼, 𝛽 = 1, . . . , 𝐺 , (2.2.1)

where 𝛼, 𝛽 run over the various gauge groups in the theory and 𝐺 is the number of gauge
groups. Similarly, we choose the integers

𝑚𝛼𝑗 ∈ {1, . . . , 𝑎𝑏} such that 𝑚𝛼𝑗 = 𝑗 mod 𝑎𝑏 . (2.2.2)

Notice in particular that neither 𝑢𝛼𝛽
𝑖 𝑗

nor 𝑚𝛼
𝑗

depend on 𝛼, 𝛽. As for N = 4 SYM, the
contribution of the determinant 𝐻 to the Bethe ansatz expansion (2.1.9) is subleading [125].

Using the general expressions given in [85] and following the logic of Section 2.1, it is
easy to write the large 𝑁 limit of the leading contribution to the superconformal index of a
holographic theory, with adjoint and bi-fundamental chiral fields. We find

log I4𝑑 ≃
𝑁∑︁
𝑖≠ 𝑗

[∑︁
𝐼𝛼𝛽

log Γ̃
(
𝑢
𝛼𝛽

𝑖 𝑗
−𝜔

(
𝑚𝛼𝑖 −𝑚

𝛽

𝑗

)
+Δ𝐼𝛼𝛽 ; 𝜏, 𝜎

)
−

𝐺∑︁
𝛼=1

log Γ̃
(
𝑢𝛼𝛼𝑖 𝑗 −𝜔

(
𝑚𝛼𝑖 −𝑚

𝛽

𝑗

)
; 𝜏, 𝜎

)]
(2.2.3)

where 𝑧𝛼
𝑖
= 𝑒2𝜋𝑖𝑢𝛼

𝑖 are the gauge fugacities, 𝑢𝛼
𝑖

represent the basic solution (2.2.1) and 𝑚𝛼
𝑖

are given in (2.2.2). The sum over 𝐼𝛼𝛽 is over all adjoint (if 𝛼 = 𝛽) and bi-fundamental (if
𝛼 ≠ 𝛽) chiral multiplets in the theory. The second sum is the contribution of vector multiplets.
When no confusion is possible, we will keep the gauge group indices implicit and just write
Δ𝐼𝛼𝛽 ≡ Δ𝐼 . In the previous formula,

Δ𝐼 = b𝐼 + 𝑟𝐼
𝜏 + 𝜎

2 , (2.2.4)

where 𝑟𝐼 is the exact R-charge of the field and b𝐼 are the flavor chemical potentials. The
R-charges satisfy ∑︁

𝐼∈𝑊
𝑟𝐼 = 2 (2.2.5)
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for each superpotential term 𝑊 in the Lagrangian. In this notation, the index 𝑊 runs over
the monomials in the superpotential, while 𝐼 ∈ 𝑊 indicates all chiral fields appearing in a
given monomial. Using that each superpotential term must be invariant under the flavor
symmetries, but chemical potentials are only defined up to integers, we also require∑︁

𝐼∈𝑊
b𝐼 = 𝑛𝑊 for some 𝑛𝑊 ∈ Z . (2.2.6)

The values 𝑛𝑊 ≡ 𝑛0 = ±1 have been used in [91, 123] to study the Cardy limit. As a
consequence of the previous formulae, for each superpotential term, we have∑︁

𝐼∈𝑊
Δ𝐼 = 𝜏 + 𝜎 + 𝑛𝑊 . (2.2.7)

Hence, we stress that the chemical potentials Δ𝐼 are not independent. Notice that the
expression (2.2.3) correctly reduces to the one for N = 4 SYM (2.1.16), once we use the
definition (2.1.4) as well as the inversion formula for the elliptic gamma function (A.1.9).
We also need to use the exact R-charges 𝑟𝐼 = 2/3 of the chiral fields Φ𝐼 .

Applying (2.1.29), we can evaluate the large 𝑁 limit of (2.2.3) and obtain

log I4𝑑 ≃ −𝜋𝑖𝑁
2

3𝜏𝜎
∑︁
𝐼

[
𝐵3

(
[Δ𝐼]𝜔 + 1 − 𝜏+𝜎

2

)
+ 𝜏𝜎4

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

)
𝐵1

(
[Δ𝐼]𝜔 + 1 − 𝜏+𝜎

2

)]
+

+ 𝜋𝑖𝐺𝑁
2

3𝜏𝜎

[
𝐵3

(
1 − 𝜏+𝜎

2

)
+ 𝜏𝜎4

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

)
𝐵1

(
1 − 𝜏+𝜎

2

)]
. (2.2.8)

The corrections are of order 𝑁 log 𝑁 or smaller. The formula is obtained by summing (2.1.29)
for each chiral multiplet, as well as (2.1.29) with [Δ]𝜔 → 0 (and opposite sign) for each
vector multiplet. We stress that (2.2.8) comes from a single contribution — in the Bethe
ansatz expansion — to the index. Such a contribution might not be the dominant one, and
so our estimate of the index might be incorrect, in some regions of the space of chemical
potentials. However, we conjecture and will bring some evidence that this contribution always
captures the semi-classical Bekenstein-Hawking entropy of BPS black holes.

Due to the presence of the brackets [Δ𝐼]𝜔, the expression (2.2.8) assumes different analytic
forms in different regions of the space of chemical potentials Δ𝐼 . There are two regions where
the expression greatly simplifies. They correspond to the natural generalization of the two
regions for N = 4 SYM discussed in Section 2.1.2 and are expected to lead to the correct
black-hole entropy. In particular, they smoothly reduce to the results obtained in the Cardy
limit [77, 91, 123] and match the previous analysis done for equal angular momenta [125].
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The first region corresponds to chemical potentials Δ𝐼 satisfying∑︁
𝐼∈𝑊

[Δ𝐼]𝜔 = 𝜏 + 𝜎 − 1 . (2.2.9)

As we will discuss later, many models — in particular all toric ones — exhibit a corner in the
space of chemical potentials where this constraint is satisfied. We can define the rescaled
variables

Δ̂𝐼 = 2 [Δ𝐼]𝜔
𝜏 + 𝜎 − 1 (2.2.10)

which, under the assumption (2.2.9), satisfy∑︁
𝐼∈𝑊

Δ̂𝐼 = 2 (2.2.11)

and can be interpreted as an assignment of R-charges to the chiral fields in the theory. In
terms of Δ̂𝐼 the contributions in (2.2.8) combine into

log I4𝑑 ≃ −𝜋𝑖𝑁
2

24
(𝜏 + 𝜎 − 1)3

𝜏𝜎

[∑︁
𝐼

(
Δ̂𝐼 − 1

)3 + 𝐺
]
+ (2.2.12)

+ 𝜋𝑖𝑁
2

24
(𝜏 + 𝜎 − 1)

𝜏𝜎

(
1 − 𝜏𝜎

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

)) [∑︁
𝐼

(
Δ̂𝐼 − 1

)
+ 𝐺

]
.

Introducing the charge operator 𝑅(Δ̂) of R-charges parameterized by Δ̂𝐼 and indicating with
Tr the sum over all fermions in the theory, we can also write

log I4𝑑 ≃ − 𝜋𝑖24

[
(𝜏 + 𝜎 − 1)3

𝜏𝜎
Tr 𝑅(Δ̂)3 − (𝜏 + 𝜎 − 1)

𝜏𝜎

(
1 − 𝜏𝜎

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

))
Tr 𝑅(Δ̂)

]
,

(2.2.13)
valid at leading order in 𝑁 .

In the large 𝑁 limit, theories with a holographic dual satisfy 𝑐 = 𝑎. Using standard
formulae for the central charges 𝑎 and 𝑐 in terms of the fermion R-charges [186], one finds

Tr 𝑅 = O(1) , and 𝑎 =
9
32 Tr 𝑅3 +O(1) , (2.2.14)

from which we obtain the final expression

log I4𝑑 ≃ −4𝜋𝑖
27

(𝜏 + 𝜎 − 1)3

𝜏𝜎
𝑎(Δ̂) , (2.2.15)
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where
𝑎 =

9
32 𝑁

2
(∑︁

𝐼

(
Δ̂𝐼 − 1

)3 + 𝐺
)
, (2.2.16)

at leading order in 𝑁 . The result (2.2.15) was conjectured in [167] — see (A.7) there. It is
also compatible with the Cardy limit performed in [91, 123].

We can find an analogous result in a second region of chemical potentials where∑︁
𝐼∈𝑊

[Δ𝐼]′𝜔 = 𝜏 + 𝜎 + 1 , (2.2.17)

written in terms of the primed bracket [Δ]′𝜔 = [Δ]𝜔+1. As discussed at the end of Section 2.1,
the contribution of vector multiplets can be written, up to subleading terms, as minus the
contribution of a chiral multiplet with [Δ𝐼]′𝜔 → 0. After defining another set of normalized
R-charges,

Δ̂′
𝐼 = 2

[Δ𝐼]′𝜔
𝜏 + 𝜎 + 1 (2.2.18)

which satisfy ∑︁
𝐼∈𝑊

Δ̂′
𝐼 = 2 (2.2.19)

under the assumption (2.2.17), we can rewrite the index as

log I4𝑑 ≃ − 𝜋𝑖24

[
(𝜏 + 𝜎 + 1)3

𝜏𝜎
Tr 𝑅(Δ̂′)3 − (𝜏 + 𝜎 + 1)

𝜏𝜎

(
1 − 𝜏𝜎

(
2𝑎𝑏 − 𝑎

𝑏
− 𝑏

𝑎

))
Tr 𝑅(Δ̂′)

]
(2.2.20)

at leading order in 𝑁 . This reduces to the simple expression

log I4𝑑 ≃ −4𝜋𝑖
27

(𝜏 + 𝜎 + 1)3

𝜏𝜎
𝑎(Δ̂′) (2.2.21)

for holographic theories.
In the remainder of this Section, we will interpret the general results (2.2.15) and (2.2.21)

and provide examples. In particular, we will show that both regions (2.2.9) and (2.2.17) in the
space of chemical potentials always exist in toric quiver gauge theories. We will also see that
the two expressions (2.2.15) and (2.2.21) lead to the very same result for the semi-classical
entropy of dual black holes, generalizing what happens for N = 4 SYM.

2.2.1 Example: the conifold

We start with the example of the Klebanov-Witten theory dual to AdS5×𝑇1,1, the near-horizon
limit of a set of 𝑁 D3-branes sitting at a conifold singularity [168]. This example was already
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Field 𝑟 𝑄𝐹1 𝑄𝐹2 𝑄𝐵 𝑅1 𝑅2 𝑅3 𝑅4

𝐴1
1
2 1 0 1 2 0 0 0

𝐴2
1
2 −1 0 1 0 2 0 0

𝐵1
1
2 0 1 −1 0 0 2 0

𝐵2
1
2 0 −1 −1 0 0 0 2

Table 2.1 Charges of chiral multiplets in the Klebanov-Witten theory, under the maximal
torus of the global symmetry U(1)𝑅 × SU(2)𝐹1 × SU(2)𝐹2 × U(1)𝐵. In the table, we indicate
two useful bases. Notice that 𝑟 and 𝑅𝐼 are R-charges, while 𝑄𝐹1,2 and 𝑄𝐵 are flavor charges.

studied for equal angular momenta in [125] and our results are consistent with those found
there when we set 𝜏 = 𝜎.

The theory has gauge group SU(𝑁) × SU(𝑁), bi-fundamental chiral multiplets 𝐴1, 𝐴2

transforming in the representation (𝑁, 𝑁) and 𝐵1, 𝐵2 transforming in the representation
(𝑁, 𝑁), and a superpotential

𝑊 = Tr
(
𝐴1𝐵1𝐴2𝐵2 − 𝐴1𝐵2𝐴2𝐵1

)
. (2.2.22)

The global symmetry of the theory is U(1)𝑅 × SU(2)𝐹1 × SU(2)𝐹2 × U(1)𝐵, where the first
factor is the superconformal R-symmetry with charge 𝑟, while the other three factors are
flavor symmetries. The charge assignments of chiral multiplets under the maximal torus are
in Table 2.1. The index is defined as

I4𝑑 = Tr (−1)𝐹 𝑒−𝛽{Q,Q†} 𝑝𝐽1+𝑟/2 𝑞𝐽2+𝑟/2 𝑣
𝑄𝐹1
𝐹1

𝑣
𝑄𝐹2
𝐹2

𝑣
𝑄𝐵
𝐵
. (2.2.23)

It is convenient to introduce an alternative basis of R-charges 𝑅𝐼 with 𝐼 = 1, 2, 3, 4, such
that each of them assigns R-charge 2 to one of the chiral multiplets and zero to the other
ones. Correspondingly, we associate a variable Δ𝐼 to each chiral multiplet. Notice that
(−1)𝐹 = 𝑒2𝜋𝑖𝐽1,2 = 𝑒𝜋𝑖𝑅1,2,3,4 . According to (2.2.4) and up to integer ambiguities, the variables
Δ𝐼 are related to the chemical potentials for the charges in Table 2.1 by

Δ1 = b𝐹1 + b𝐵 +
𝜏 + 𝜎

4 , Δ3 = b𝐹2 − b𝐵 +
𝜏 + 𝜎

4 ,

Δ2 = −b𝐹1 + b𝐵 +
𝜏 + 𝜎

4 , Δ4 = −b𝐹2 − b𝐵 +
𝜏 + 𝜎

4 + (2Z + 1) ,
(2.2.24)
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where the chemical potentials b are related to the fugacities a by (2.1.2). Then, the constraint
(2.2.7) reads

Δ1 + Δ2 + Δ3 + Δ4 = 𝜏 + 𝜎 + 𝑛𝑊 (2.2.25)

and the index takes the more transparent form

I4𝑑 = TrBPS 𝑝
𝐽1 𝑞𝐽2 𝑦

𝑅1/2
1 𝑦

𝑅2/2
2 𝑦

𝑅3/2
3 𝑦

𝑅4/2
4 , (2.2.26)

where 𝑦 is defined as in (2.1.5). This shows that Δ𝐼 are the chemical potentials associated
with the charges 𝑄 𝐼 ≡ 𝑅𝐼/2.

We select three independent variables, say Δ1,Δ2, and Δ3. Then, using (2.1.34) we find

[Δ4]𝜔 = 𝜏 + 𝜎 − 1 − [Δ1 + Δ2 + Δ3]𝜔 . (2.2.27)

In general, there are three possible cases:

[Δ1 + Δ2 + Δ3]𝜔 = [Δ1]𝜔 + [Δ2]𝜔 + [Δ3]𝜔 + 𝑛 with 𝑛 = 0, 1, 2 (2.2.28)

that we call Case I, II, and III, respectively.3 Case I corresponds to the corner of moduli
space (2.2.9), where

[Δ1]𝜔 + [Δ2]𝜔 + [Δ3]𝜔 + [Δ4]𝜔 = 𝜏 + 𝜎 − 1 . (2.2.29)

In this corner, we can use (2.2.15). One can explicitly compute, at leading order in 𝑁 ,

Tr 𝑅(Δ̂)3 ≃ 𝑁2
(
2+

4∑︁
𝐼=1

(
Δ̂𝐼 −1

)3
)
= 3𝑁2

(
Δ̂1Δ̂2Δ̂3 + Δ̂1Δ̂2Δ̂4 + Δ̂1Δ̂3Δ̂4 + Δ̂2Δ̂3Δ̂4

)
(2.2.30)

imposing
∑4
𝐼=1 Δ̂𝐼 = 2. Using (2.2.10), we can write the index (2.2.15) as

log I4𝑑 ≃ −𝜋𝑖𝑁
2

𝜏𝜎

(
[Δ1]𝜔 [Δ2]𝜔 [Δ3]𝜔 + [Δ1]𝜔 [Δ2]𝜔 [Δ4]𝜔+

+ [Δ1]𝜔 [Δ3]𝜔 [Δ4]𝜔 + [Δ2]𝜔 [Δ3]𝜔 [Δ4]𝜔
)

(2.2.31)

with the constraint (2.2.29).4 Case III corresponds to the corner of moduli space (2.2.17).
Indeed we have

[Δ1]′𝜔 + [Δ2]′𝜔 + [Δ3]′𝜔 + [Δ4]′𝜔 = 𝜏 + 𝜎 + 1 . (2.2.32)

3For the sake of comparison, the notation is the same as in [125].
4This result is a special case of the one for toric models, discussed in detail in Section 2.2.2.
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In this corner, we can use (2.2.21) and (2.2.18) and find

log I4𝑑 ≃ −𝜋𝑖𝑁
2

𝜏𝜎

(
[Δ1]′𝜔 [Δ2]′𝜔 [Δ3]′𝜔 + [Δ1]′𝜔 [Δ2]′𝜔 [Δ4]′𝜔+

+ [Δ1]′𝜔 [Δ3]′𝜔 [Δ4]′𝜔 + [Δ2]′𝜔 [Δ3]′𝜔 [Δ4]′𝜔
)

(2.2.33)

with the constraint (2.2.32).
The entropy, which is the logarithm of the number of states, is given by the Legendre

transform of the index, i.e., by the critical value of the entropy function

S± = −𝜋𝑖𝑁
2

𝜏𝜎

(
𝑋1𝑋2𝑋3 + 𝑋1𝑋2𝑋4 + 𝑋1𝑋3𝑋4 + 𝑋2𝑋3𝑋4

)
+

− 2𝜋𝑖
(
𝜏𝐽1 + 𝜎𝐽2 +

4∑︁
𝐼=1

𝑋𝐼𝑄 𝐼

)
− 2𝜋𝑖Λ

( 4∑︁
𝐼=1

𝑋𝐼 − 𝜏 − 𝜎 ± 1
)
. (2.2.34)

Here the variables 𝑋𝐼 stand for [Δ𝐼]𝜔 or [Δ𝐼]′𝜔 depending on whether we are in case I or III,
respectively, and the ± sign is chosen accordingly. One can check that the two signs lead to
the same entropy. We will give a general argument in Section 2.2.3.

In Section 2.4 we will compare the field theory result (2.2.34) with the entropy of black
holes in AdS5 × 𝑇1,1, in the special case that 𝐽1 = 𝐽2 ≡ 𝐽 and the SU(2)𝐹1 × SU(2)𝐹2

symmetry is unbroken. To that purpose, let us specialize the index to the case that 𝜏 = 𝜎 and
b𝐹1 = b𝐹2 = 0, which corresponds to 𝑋1 = 𝑋2 and 𝑋3 = 𝑋4. It is then useful to define the
new variables

𝑋𝑅 = 𝑋1 + 𝑋3 , 𝑋𝐵 =
𝑋1 − 𝑋3

2 , (2.2.35)

associated with R-symmetry and baryonic symmetry, respectively. The entropy function
takes the simplified form

S± = −𝜋𝑖𝑁
2

2𝜏2 𝑋𝑅
(
𝑋2
𝑅 − 4𝑋2

𝐵

)
− 2𝜋𝑖

(
2𝜏𝐽 + 𝑋𝑅 𝑟 + 𝑋𝐵𝑄𝐵

)
− 2𝜋𝑖Λ

(
2𝑋𝑅 − 2𝜏 ± 1

)
. (2.2.36)

2.2.2 Example: toric models

In this Section, we consider the gauge theory dual to an AdS5 × SE5 geometry, where SE5 is
a toric Sasaki-Einstein manifold. The theory lives on a stack of 𝑁 D3-branes sitting at the
toric Calabi-Yau singularity 𝐶 (SE5) obtained by taking the cone over SE5 [168, 187]. There
is a general construction to extract gauge theory data from the geometry of the Calabi-Yau
singularity [188–191]. The main complication compared to the C3 and the conifold cases are
that there is no one-to-one correspondence between bi-fundamental fields Φ𝐼 (and associated
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variables Δ𝐼) and R-symmetries 𝑅𝑎. However, we will argue in general that there always exist
two corners of the space of chemical potentials where (2.2.9) and (2.2.17) are satisfied and
the results (2.2.15) and (2.2.21) are valid. Other corners should be analyzed separately for
every specific model. Our findings are consistent with the case-by-case analysis performed
in [125] for equal angular momenta.

We first need to understand how to write the trial central charges 𝑎(Δ̂) and 𝑎(Δ̂′) that
enter in the expressions (2.2.15) and (2.2.21). Since the quantities Δ̂𝐼 and Δ̂′

𝐼
satisfy the

constraints (2.2.11), they can be interpreted as a set of trial R-charges for the chiral fields in
the quiver. In the toric case, we can find an efficient parameterization of the trial R-charges of
fields using the data of the toric diagram. Let us review how this is done.

A toric Calabi-Yau threefold singularity can be specified by a fan, i.e., a convex cone in
R3 defined by 𝐷 integer vectors 𝑣𝑎 = (1, ®𝑣𝑎), with ends on the plane 𝑥 = 1. The restrictions
®𝑣𝑎 of those vectors to the plane define a regular convex polygon with integer vertices called
the toric diagram. In the list {𝑣𝑎} we should include all integer vectors such that ®𝑣𝑎 is along
the perimeter of the polygon, i.e., we should include all integer points along the edges of the
toric diagram. Moreover, we take the points ®𝑣𝑎 to be ordered in a counterclockwise fashion.
The number of vectors in the fan is associated with the total rank of the global symmetry of
the dual field theory [190]: for a toric model with 𝐷 vectors in the fan (including integer
points along the edges of the toric diagram) there is a flavor symmetry of rank 𝐷 − 1, besides
the R-symmetry U(1)𝑅.5 This allows us to parameterize flavor and R-symmetries in terms
of variables associated with the vertices of (and integer points along) the toric diagram. In
particular, the possible R-charges of fields in a toric theory can be parameterized using 𝐷
variables 𝛿𝑎 satisfying the constraint

𝐷∑︁
𝑎=1

𝛿𝑎 = 2 , (2.2.37)

and the corresponding R-charge can be written as

𝑅(𝛿) =
𝐷∑︁
𝑎=1

𝛿𝑎

2 𝑅𝑎 (2.2.38)

5The distinction between R- and flavor symmetries changes in the case of extended supersymmetry.
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in terms of a basis {𝑅𝑎}. This is done as follows [192]. In a minimal toric phase,6 the
theory contains a number 𝐺 of gauge group factors SU(𝑁) equal to twice the area of the
toric diagram. Moreover, defining the vectors ®𝑤𝑎 = ®𝑣𝑎+1 − ®𝑣𝑎 lying in the plane (we identify
indices modulo 𝐷, so that, for example, ®𝑣𝐷+1 ≡ ®𝑣1), for each pair (𝑎, 𝑏) such that ®𝑤𝑎 can
be rotated counterclockwise into ®𝑤𝑏 in the plane with an angle smaller than 𝜋, there are
precisely7 det{ ®𝑤𝑎, ®𝑤𝑏} bi-fundamental chiral fields Φ𝑎𝑏 with R-charge

𝑅[Φ𝑎𝑏] = 𝛿𝑎+1 + 𝛿𝑎+2 + . . . + 𝛿𝑏 . (2.2.39)

Interestingly, for all toric models the trial central charge 𝑎(𝛿) is a homogeneous function of
degree three at large 𝑁:

𝑎(𝛿) = 9
32 Tr 𝑅(𝛿)3 =

9𝑁2
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𝐷∑︁
𝑎,𝑏,𝑐=1

𝐶𝑎𝑏𝑐 𝛿𝑎 𝛿𝑏 𝛿𝑐 . (2.2.40)

Here𝐶𝑎𝑏𝑐 are the ’t Hooft anomaly coefficients, which can be read from the toric data through
𝐶𝑎𝑏𝑐 =

��det{𝑣𝑎, 𝑣𝑏, 𝑣𝑐}
��, see [193], and in field theory are defined by

𝑁2𝐶𝑎𝑏𝑐 =
1
4 Tr 𝑅𝑎𝑅𝑏𝑅𝑐 . (2.2.41)

Another important property of toric models that we will use in the following is that the
constraints ∑︁

𝐼∈𝑊
𝑅[Φ𝐼] = 2 , (2.2.42)

that must be satisfied for each monomial term 𝑊 in the superpotential, always reduce to
(2.2.37). Indeed, it follows from tiling techniques [188–192] that the R-charges 𝑅[Φ𝐼], 𝐼 ∈ 𝑊 ,
of the chiral fields entering in a superpotential monomial𝑊 correspond to a partition of the
𝐷 elementary R-charges {𝛿1, . . . , 𝛿𝐷} into sums of the form (2.2.39), with each 𝛿𝑎 entering
in just one 𝑅[Φ𝐼].

We can similarly parameterize the chemical potentials Δ[Φ] entering the superconformal
index in terms of 𝐷 basic quantities Δ𝑎, 𝑎 = 1, . . . , 𝐷. For the chiral fields Φ𝑎𝑏 we have

Δ[Φ𝑎𝑏] = Δ𝑎+1 + Δ𝑎+2 + . . . + Δ𝑏 . (2.2.43)

6Many different quiver theories describe the same IR SCFT. They are called “phases”, and are related by
Seiberg dualities. The toric phases are the quiver theories where all gauge groups are SU(𝑁) with the same
rank 𝑁 . It turns out that all toric phases have the same number 𝐺 of gauge groups, but have different matter
content. The “minimal” phases correspond to the quivers with the smallest number of chiral fields. There could
be one or more minimal toric phases, for a given IR SCFT.

7The condition on the angle guarantees that the formula for the number of fields gives a non-negative integer.
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The conditions ∑︁
𝐼∈𝑊

Δ[Φ𝐼] = 𝜏 + 𝜎 + 𝑛𝑊 , (2.2.44)

to be imposed for each monomial term𝑊 in the superpotential (and where 𝑛𝑊 is the same for
all monomial terms), are then equivalent to

𝐷∑︁
𝑎=1

Δ𝑎 = 𝜏 + 𝜎 + 𝑛𝑊 . (2.2.45)

Independently of the value of 𝑛𝑊 , we have

[Δ𝐷]𝜔 = 𝜏 + 𝜎 − 1 −
[∑︁𝐷−1

𝑎=1
Δ𝑎

]
𝜔

. (2.2.46)

In general [∑︁𝐷−1

𝑎=1
Δ𝑎

]
𝜔

=

𝐷−1∑︁
𝑎=1

[Δ𝑎]𝜔 + 𝑛 (2.2.47)

where 𝑛 = 0, . . . , 𝐷 − 2, thus dividing the space of parameters into 𝐷 − 1 regions.
Two regions are particularly important for our analysis. The region 𝑛 = 0 corresponds to

𝐷∑︁
𝑎=1

[Δ𝑎]𝜔 = 𝜏 + 𝜎 − 1 , (2.2.48)

while 𝑛 = 𝐷 − 2 corresponds to

𝐷∑︁
𝑎=1

[Δ𝑎]′𝜔 = 𝜏 + 𝜎 + 1 . (2.2.49)

We can argue that the two regions (2.2.48) and (2.2.49) are always realized somewhere in the
space of parameters. For example, we can choose one elementary variable, say Δ1, to live in
the fundamental strip Im(−1/𝜔) > Im

(
Δ1/𝜔

)
> 0 (see Fig. 2.1) and slightly on the right of

the vertical line passing through 𝜏 + 𝜎 − 1, while all the other Δ𝑎 to live in the fundamental
strip and slightly on the left of the vertical line passing through zero. One easily verifies that
they can be arranged to satisfy (2.2.48). A similar construction gives parameters satisfying
(2.2.49). We now argue that (2.2.48) and (2.2.49) imply (2.2.9) and (2.2.17), respectively.
We start noticing that

𝐷∑︁
𝑎=1

[Δ𝑎]𝜔 = 𝜏 + 𝜎 − 1 ⇒ Im
(

1
𝜔

∑︁𝐷

𝑎=1
[Δ𝑎]𝜔

)
= Im

(
− 1
𝜔

)
. (2.2.50)
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Since each of the [Δ𝑎]𝜔 lives in the fundamental strip Im(−1/𝜔) > Im
(
[Δ𝑎]𝜔/𝜔

)
> 0, the

previous equation implies that Im(−1/𝜔) > Im
(∑

𝑎∈𝑆 [Δ𝑎]𝜔/𝜔
)
> 0 for any proper subset 𝑆

of the indices {1, . . . , 𝐷}. Thus (2.2.48) implies that[∑︁
𝑎∈𝑆

Δ𝑎

]
𝜔
=

∑︁
𝑎∈𝑆

[Δ𝑎]𝜔 (2.2.51)

for any proper subset 𝑆 ⊊ {1, . . . , 𝐷}. This implies that all charges in (2.2.43) split, in the
sense that

[
Δ𝑎+1 + . . . +Δ𝑏

]
𝜔
= [Δ𝑎+1]𝜔 + . . . + [Δ𝑏]𝜔. At this point, since all

[
Δ[Φ𝐼]

]
𝜔

split
and each Δ𝑎 enters precisely once in every superpotential constraint, the condition (2.2.9) is
a consequence of (2.2.48).8 A similar argument shows that (2.2.49) implies (2.2.17). Notice
that the region specified by (2.2.9) can be larger than (2.2.48) and, similarly, the region
specified by (2.2.17) can be larger than (2.2.49). This, in particular, happens for Calabi-Yau
cones with codimension-one orbifold singularities. This is the case of the models SPP and
dP4 discussed in [125].9 For all the cones without orbifold singularities that we checked, the
two regions (2.2.9) and (2.2.48) coincide. It would be interesting to see if this is a general
result.

We are now ready to evaluate the index. Consider region (2.2.9) first. Since the chemical
potentials [Δ𝐼]𝜔 split, the rescaled quantities

Δ̂𝑎 = 2 [Δ𝑎]𝜔
𝜏 + 𝜎 − 1 with

𝐷∑︁
𝑎=1

Δ̂𝑎 = 2 (2.2.52)

8There is an alternative algorithm that produces potentials Δ𝐼 satisfying (2.2.9). Choose a perfect matching
𝑝𝛼 of the dimer model of the theory [190]. It divides the chiral fields into two groups: those ΦP appearing in
the perfect matching, and those ΦNP not doing so. Choose the potentials ΔNP to be in the fundamental strip and
slightly on the left of the origin. Each superpotential term𝑊 contains one and only one of the fields ΦP (by
definition of perfect matching): choose the corresponding ΔP to be in the fundamental strip and slightly on the
right of the point 𝜏 + 𝜎 − 1, in such a way that (2.2.9) for that particular𝑊 is satisfied. The drawback of this
construction is that it does not tell us what the independent variables Δ𝑎 are.

9Models with codimension-one orbifold singularities are characterized by toric diagrams where at least one
vector ®𝑣𝑎 lies in the interior of an edge. The parameters 𝛿𝑎 associated with integer points lying in the interior of
an edge of the polygon enter in the parameterization (2.2.39) of the R-charges of chiral fields, but no elementary
field carries precisely charge 𝛿𝑎. To recover the region (2.2.9), we can require the following. Construct a set 𝑀
by grouping the points {1, . . . , 𝐷} along the toric diagram in the following way: break each edge in two pieces
at a non-integer point, and then for each vertex form a group (that will be an element of 𝑀) that contains the
vertex itself and all other integer points (if any) along the two pieces of edges on the two sides. (In the absence
of orbifold singularity, 𝑀 necessarily coincides with {1, . . . , 𝐷}.) Then require that the sums split over the
groups in 𝑀 for every proper subgroup 𝑆′ ⊊ 𝑀 , and every possible choice of 𝑀 . This region is typically larger
than (2.2.48).
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provide a parameterization of the R-charges of chiral fields in the quiver in the sense discussed
above. Using the general formula (2.2.40) we can then write

𝑎(Δ̂) = 9𝑁2
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𝐷∑︁
𝑎,𝑏,𝑐=1

𝐶𝑎𝑏𝑐 Δ̂𝑎 Δ̂𝑏 Δ̂𝑐 . (2.2.53)

Plugging it into (2.2.15) and re-expressing the result in terms of the chemical potentials
[Δ𝑎]𝜔, we find the large 𝑁 limit of the superconformal index in region (2.2.9):10

log I4𝑑 ≃ −𝜋𝑖𝑁2
𝐷∑︁

𝑎,𝑏,𝑐=1

𝐶𝑎𝑏𝑐

6
[Δ𝑎]𝜔 [Δ𝑏]𝜔 [Δ𝑐]𝜔

𝜏𝜎
,

𝐷∑︁
𝑎=1

[Δ𝑎]𝜔 = 𝜏 + 𝜎 − 1 .

(2.2.54)
A similar argument shows that, in region (2.2.17),

log I4𝑑 ≃ −𝜋𝑖𝑁2
𝐷∑︁

𝑎,𝑏,𝑐=1

𝐶𝑎𝑏𝑐

6
[Δ𝑎]′𝜔 [Δ𝑏]′𝜔 [Δ𝑐]′𝜔

𝜏𝜎
,

𝐷∑︁
𝑎=1

[Δ𝑎]′𝜔 = 𝜏 + 𝜎 + 1 .

(2.2.55)
We will show in the next Section that both (2.2.54) and (2.2.55) lead to the same entropy.

2.2.3 The toric entropy function

For toric holographic quivers, we have found two different expressions, (2.2.54) and (2.2.55),
for the large 𝑁 limit of the superconformal index, valid in two different regions in the space
of chemical potentials. The two expressions differ only for the constraint and give rise to the
very same entropy. This generalizes an observation made in [74] for N = 4 SYM and holds
for general quivers.

To show that, we define two entropy functions

S± = −𝜋𝑖𝑁2
𝐷∑︁

𝑎,𝑏,𝑐=1

𝐶𝑎𝑏𝑐

6
𝑋𝑎𝑋𝑏𝑋𝑐

𝜏𝜎
− 2𝜋𝑖

(
𝜏𝐽1 + 𝜎𝐽2 +

𝐷∑︁
𝑎=1

𝑋𝑎𝑄𝑎

)
+

− 2𝜋𝑖Λ
( 𝐷∑︁
𝑎=1

𝑋𝑎 − 𝜏 − 𝜎 ± 1
)
, (2.2.56)

where Λ is a Lagrange multiplier and we used neutral variables 𝑋𝑎 to denote either [Δ𝑎]𝜔
or [Δ𝑎]′𝜔. Each of the electric charges 𝑄𝑎 ≡ 𝑅𝑎/2 is defined in terms of an R-charge 𝑅𝑎
that assigns charge 2 to all chiral multiplets Φ𝑎𝑏 such that 𝛿𝑎 appears in the decomposition

10For the conifold: 𝑣1 = (1, 0, 0), 𝑣2 = (1, 1, 0), 𝑣3 = (1, 1, 1) , 𝑣4 = (1, 0, 1) and thus 𝐶123 = 𝐶124 =

𝐶134 = 𝐶234 = 1 (and symmetrizations), recovering (2.2.31).
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(2.2.39), and zero to all the other ones. The ’t Hooft anomaly coefficients are defined by
(2.2.41). Above, S+ is the prediction for the entropy of the dual black hole based on the
superconformal index in the region of parameters (2.2.9) while S− in the region (2.2.17). The
form of the entropy function (2.2.56) was first conjectured in [167].

Observe that since 𝑆± ± 2𝜋𝑖Λ are homogeneous functions of degree one in (𝑋𝑎, 𝜏, 𝜎),
the values of the functions 𝑆±(𝑋𝑎, 𝜏, 𝜎,Λ) at the critical point are related to the Lagrange
multiplier by

𝑆±
��
crit = ∓2𝜋𝑖Λ . (2.2.57)

Observe also that, if 𝑄𝑎, 𝐽𝑖 are real (as charges should be), then the two functions are related
by 𝑆+(𝑋𝑎, 𝜏, 𝜎,Λ) = 𝑆−

(
−𝑋𝑎,−𝜏,−𝜎,Λ

)
. Hence, if (𝑋𝑎, 𝜏, 𝜎,Λ) is a critical point of 𝑆+,

then
(
−𝑋𝑎,−𝜏,−𝜎,Λ

)
is a critical point of 𝑆− with critical value

𝑆−
��
crit = 𝑆+

��
crit . (2.2.58)

For arbitrary and general real charges 𝑄𝑎 and 𝐽𝑖, the critical value of 𝑆+ is not real. For
N = 4 SYM, however, it becomes real and equal to the entropy when imposing the non-linear
constraint on conserved charges that characterizes supersymmetric black holes [74,118]. The
same phenomenon was already observed in AdS4 in [42]. We expect the same to be true for
general black holes in Sasaki-Einstein compactifications. Even if this were wrong and 𝑆+
were not real, it would still make sense to identify the entropy with Re 𝑆+. In all cases, we
see from (2.2.58) that both constraints in (2.2.56) lead to the very same result for the entropy.

The entropy functions (2.2.56) give our result for the entropy of generic black holes in
AdS5 × SE5. We derived it for toric quiver gauge theories, but the very same argument can be
extended to a class of more general non-toric quivers. In particular, the expression (2.2.56)
only depends on the ’t Hooft anomaly coefficients 𝐶𝑎𝑏𝑐 for a basis of R-symmetries and, as
such, we expect that it is the correct result for generic holographic quiver theories.

2.3 The universal AdS5 rotating black hole

In this Section, we discuss the case of the universal rotating black hole which has an electric
charge aligned with the exact R-symmetry of the theory. This black hole arises as a solution
of minimal gauged supergravity in 5d and, as such, it can be embedded in any AdS5 × SE5

compactification of type IIB and, more generally, in any AdS5 solution of type II or M-theory.11

11It is believed and checked in many cases that the effective theory for all such compactifications can be
consistently truncated to minimal gauged supergravity.
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Due to its universal character, most of the analysis is identical to the one for AdS5 × 𝑆5. It is
however interesting to see how the details work.

The universal black hole in AdS5 was found in [162] in minimal gauged supergravity in
5d. It has charge 𝑄𝑅 under the gravi-photon and angular momenta 𝐽1 and 𝐽2 in AdS5.12 The
entropy can be compactly written as [194]

𝑆(𝑄𝑅, 𝐽) = 2𝜋
√︃

3𝑄2
𝑅
− 2𝑎(𝐽1 + 𝐽2) (2.3.1)

where we introduced the quantity

𝑎 =
𝜋ℓ3

5

8𝐺 (5)
N

, (2.3.2)

where 𝐺 (5)
N is the 5d Newton constant and ℓ5 is the radius of AdS5. The conserved charges

must satisfy the nonlinear constraint

8𝑄3
𝑅 + 6𝑎𝑄2

𝑅 − 6𝑎(𝐽1 + 𝐽2)𝑄𝑅 − 2𝑎𝐽1𝐽2 − 4𝑎2(𝐽1 + 𝐽2) = 0 (2.3.3)

for the BPS black hole to have a smooth horizon.
Consider now the uplift of the universal black hole to AdS5 × SE5, where SE5 is a Sasaki-

Einstein manifold. In such an embedding, the standard holographic dictionary identifies 𝑎
with the central charge of the dual CFT4. The black hole carries angular momenta 𝐽1 and
𝐽2 and an electric charge aligned with the exact R-symmetry of the dual CFT4. We need to
check that its entropy is reproduced by our result (2.2.15) (the same result can be similarly
obtained using (2.2.21), instead). It is convenient to parameterize the chemical potentials as

Δ𝑎 =
𝜏 + 𝜎 − 1

2

(
Δ̂
(0)
𝑎 + �̂�𝑎

)
, (2.3.4)

where Δ̂(0)
𝑎 is the exact superconformal R-symmetry of the dual CFT4 while �̂�𝑎 parameterize

a basis of flavor symmetries. These quantities satisfy

𝐷∑︁
𝑎=1

Δ̂
(0)
𝑎 = 2 ,

𝐷∑︁
𝑎=1

�̂�𝑎 = 0 . (2.3.5)

12To compare with the notations of [162]: 𝑄there = −
√

3𝑔𝑄𝑅,here, 𝐺 (5)
N = 1, and ℓ5 = 1/𝑔.
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The entropy of the universal black hole is given by the Legendre transform of (2.2.15). Using
(2.2.48) we can write the entropy function as

S = −4𝜋𝑖
27

(𝜏 + 𝜎 − 1)3

𝜏𝜎
𝑎

(
Δ̂(0) + �̂�

)
− 2𝜋𝑖

(
(𝜏 + 𝜎 − 1)𝑄𝑅 + 𝜏𝐽1 + 𝜎𝐽2

)
, (2.3.6)

where we introduced a charge

𝑄𝑅 =
1
2

𝐷∑︁
𝑎=1

Δ̂
(0)
𝑎 𝑄𝑎 (2.3.7)

in the direction of the exact R-symmetry, and set all other charges to zero. We need to
extremize the function S with respect to 𝜏, 𝜎, and �̂�𝑎 subject to the constraint (2.3.5). By
𝑎-maximization, since Δ̂

(0)
𝑎 is the exact R-symmetry, the function is extremized at �̂�𝑎 = 0.

We can then restrict the entropy function to

S = −4𝜋𝑖𝑎
27

(𝜏 + 𝜎 − 1)3

𝜏𝜎
− 2𝜋𝑖

(
(𝜏 + 𝜎 − 1)𝑄𝑅 + 𝜏𝐽1 + 𝜎𝐽2

)
, (2.3.8)

where 𝑎 ≡ 𝑎
(
Δ̂(0) ) is the central charge of the CFT4, or, introducing a Lagrange multiplier Λ,

S = −4𝜋𝑖𝑎 Δ3

𝜏𝜎
− 2𝜋𝑖

(
3Δ𝑄𝑅 + 𝜏𝐽1 + 𝜎𝐽2

)
− 2𝜋𝑖Λ

(
3Δ − 𝜏 − 𝜎 + 1

)
. (2.3.9)

If we set 𝑎 = 𝑎N=4 = 𝑁2/4, the function (2.3.9) becomes identical to the entropy function of
N = 4 SYM for equal charges 𝑄1 = 𝑄2 = 𝑄3 ≡ 𝑄𝑅, which is known to correctly reproduce
(2.3.1) [118]. An analytic derivation of (2.3.1) and (2.3.3) for N = 4 SYM is explicitly
discussed in [74] and for equal angular momenta in [73]. The charge constraint (2.3.3) is
obtained as the requirement that the extremum of S be real.

At this point, the result for the universal black hole simply follows from the homogeneity
properties of (2.3.9):

𝑆(𝑄, 𝐽1, 𝐽2) =
𝑎

𝑎N=4
𝑆N=4

(𝑎N=4
𝑎

𝑄,
𝑎N=4
𝑎

𝐽1,
𝑎N=4
𝑎

𝐽2
)
. (2.3.10)

It is then immediate to derive the relations (2.3.1) and (2.3.3), thus completing our derivation.

2.4 AdS5 Kerr-Newman black holes in 𝑻1,1

We would like to compare the entropy function we obtained in Section 2.2 from the
large 𝑁 limit of the superconformal index of generic (toric) quiver gauge theories, with
the Bekenstein-Hawking entropy of BPS black holes in the corresponding 5d gauged
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supergravities. In particular, the setup we would like to analyze is that of type IIB supergravity
on asymptotically-AdS5 × SE5 space-times, where SE5 is a toric Sasaki-Einstein manifold,13
reduced and truncated to a 5d N = 2 gauged supergravity on AdS5. Unfortunately, except for
the case of 𝑆5 truncated to the so-called 5d STU model, and the case of any SE5 truncated
to minimal N = 2 gauged supergravity (that we analyzed in Section 2.3), all other known
consistent truncations are to gauged supergravities with hypermultiplets (besides vector
multiplets), and no supersymmetric black-hole solutions have been constructed in such
theories to date.

The strategy we propose to perform a test of our field theory results is as in [118]. We
assume that a 5d BPS rotating black-hole solution exists. Such a solution has the topology of
a fibration of AdS2 over 𝑆3 (the three-sphere being the topology of the event horizon), and
thus we can reduce it along the Hopf fiber of 𝑆3. This gives a (putative) 4d BPS rotating
black-hole solution, with the same entropy.14 The reduction generates an extra vector field
𝐴0, corresponding to the isometry along the Hopf fiber. The 4d black hole has one unit
of magnetic charge under 𝐴0, corresponding to the first Chern class of the Hopf fibration.
Calling 𝐽1 and 𝐽2 the 5d angular momenta along two orthogonal planes, the quantity 𝐽1 + 𝐽2

appears in 4d as the electric charge under 𝐴0, while 𝐽1 − 𝐽2 becomes the angular momentum
of the 4d black hole. Constructing such a 4d rotating black-hole solution is still a difficult
task, and an attractor mechanism is not known in general.15 However, if we restrict to 5d
black holes with two equal angular momenta 𝐽1 = 𝐽2 (so that the isometry of the squashed
𝑆3 is enhanced from U(1)2 to U(1) × SU(2)), then the 4d black hole is static: in this case,
we can determine its entropy by exploiting the attractor mechanism in the near-horizon
geometry [172–174], without actually constructing the whole solution.

The simplest non-trivial example is when SE5 is 𝑇1,1, the base of the conifold Calabi-Yau
threefold, whose holographic dual is the Klebanov-Witten gauge theory [168]. We already
presented the field theory analysis in Section 2.2.1. On the other hand, starting from 10d type
IIB supergravity on 𝑇1,1, we can exploit a consistent truncation that preserves SU(2)2 ×U(1)
isometry, down to a 5d N = 2 gauged supergravity with the graviton multiplet, two vector
multiplets, and two hypermultiplets. This is the second truncation presented in Section 7
of [169] (see also [170,171]). On the AdS5 vacuum, one vector multiplet (sometimes called
“Betti multiplet”) is massless and is associated with the baryonic symmetry, while the other
vector multiplet is massive.

13More precisely, the cone over SE5 is a toric Calabi-Yau threefold.
14The 4d solution has an exotic asymptotic behavior, that follows from the reduction of AdS5 [195].

Nonetheless, it has a regular extremal horizon, whose area determines the entropy.
15There are however some general results for theories with vector multiplets [196, 197].
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Hence, with the simplification that 𝐽1 = 𝐽2 and only the R-symmetry and baryonic
symmetry charges are turned on (while the SU(2)2 isometry of 𝑇1,1 is unbroken), we will
be able to match the Legendre transform of the superconformal index at large 𝑁 with the
extremization problem that comes from the attractor mechanism in supergravity. It follows
that the bulk and boundary computations of the entropy exactly match.

2.4.1 Reduction from 5d to 4d and the attractor mechanism

A 5d N = 2 Abelian gauged supergravity with 𝑛𝑉 vector multiplets and 𝑛𝐻 hypermultiplets —
whose main building blocks we summarize in Appendix B.1 — is specified by the following
data [198–200].

1. A very special real manifold SM of real dimension 𝑛𝑉 , specified by a symmetric tensor
of Chern-Simons couplings 𝐶𝐼𝐽𝐾 with 𝐼, 𝐽, 𝐾 = 1, . . . , 𝑛𝑉 + 1. The coordinates are Φ𝐼

with the cubic constraint

V (Φ) ≡ 1
6𝐶𝐼𝐽𝐾Φ

𝐼Φ𝐽Φ𝐾 = 1 . (2.4.1)

2. A quaternionic-Kähler manifold QM of real dimension 4𝑛𝐻 with coordinates 𝑞𝑢.

3. A set of 𝑛𝑉 + 1 Killing vectors 𝑘𝑢
𝐼

(that could be linearly dependent, or vanish) on QM,
compatible with the quaternionic-Kähler structure, representing the isometries to be
gauged by the vector fields 𝐴𝐼 . Each Killing vector comes equipped with a triplet of
moment maps ®𝑃𝐼 .16

On the other hand, a 4d N = 2 Abelian gauged supergravity with 𝑛𝑉 + 1 vector multiplets and
𝑛𝐻 hypermultiplets — that we summarize in Appendix B.2 — is specified by the following
data (see for instance [201,202]).

1. A special Kähler manifold KM of complex dimension 𝑛𝑉 + 1, with coordinates 𝑧𝐼 and
𝐼 = 1, . . . , 𝑛𝑉 +1. We will work in a duality frame in which the geometry is specified by
holomorphic sections 𝑋Λ(𝑧), with Λ = 0, . . . , 𝑛𝑉 + 1, and a holomorphic prepotential
𝐹 (𝑋), homogeneous of degree two.

2. A quaternionic-Kähler manifold QM of real dimension 4𝑛𝐻 with coordinates 𝑞𝑢.

3. In duality frames in which all gaugings are purely electric, a set of 𝑛𝑉 + 2 Killing
vectors 𝑘𝑢

Λ
(that could be linearly dependent, or vanish) on QM, compatible with the

16If 𝑛𝐻 = 0, instead, one has to specify 𝑛𝑉 + 1 Fayet-Iliopoulos parameters Z 𝐼 , not all vanishing.
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quaternionic-Kähler structure, representing the isometries to be electrically gauged by
the vector fields 𝐴Λ. Each Killing vector comes equipped with a triplet of moment
maps ®𝑃Λ (see footnote 16).

We reduce the 5d theory on a circle, which will eventually be the Hopf fiber of 𝑆3.
Following [118,203–207] we use the ansatz

𝑑𝑠2(5) = 𝑒
2𝜙𝑑𝑠2(4) + 𝑒

−4𝜙
(
𝑑𝑦 − 𝐴0

(4)

)2

Φ𝐼 = −𝑒2𝜙 Im 𝑧𝐼 .

(2.4.2)

Here 𝑦 is the direction of the circular fiber, that we take with range 4𝜋/𝑔 in terms of the
coupling 𝑔 = ℓ−1

5 , inversely proportional to the AdS5 radius ℓ5, therefore the size of the circle
is 𝑒−2𝜙 4𝜋/𝑔. Because of the constraint V (Φ) = 1 in (2.4.1), the field 𝜙 is redundant and can
be eliminated with

𝑒−6𝜙 = −V (Im 𝑧𝐼) . (2.4.3)

On the other hand, 𝐴0
(4) is the Kaluza-Klein (KK) vector. As noted in [118,208], a Scherk-

Schwarz (SS) twist for the gravitino as in [206] is necessary to satisfy the BPS conditions in
4d. We prefer to work in a gauge in which all bosonic fields are periodic around the circle,
but there are flat gauge connections b 𝐼 turned on along 𝑦. This corresponds to the ansatz

𝐴𝐼(5) = 𝐴
𝐼
(4) + Re 𝑧𝐼

(
𝑑𝑦 − 𝐴0

(4)

)
+ b 𝐼𝑑𝑦 , (2.4.4)

together with no 𝑦-dependence for any field. Notice that this ansatz is invariant under the
redefinitions

𝑧𝐼 → 𝑧𝐼 + 𝛿b 𝐼 , 𝐴𝐼(4) → 𝐴𝐼(4) + 𝛿b
𝐼𝐴0

(4) , b 𝐼 → b 𝐼 − 𝛿b 𝐼 (2.4.5)

where 𝛿b 𝐼 are real parameters. We will fix this redundancy below. The reduction of the 5d
theory can be found in Appendix C.1. The 4d data in terms of 5d ones are as follows.

1. The special Kähler manifold in 4d is described by the prepotential

𝐹 (𝑋) = 1
6 𝐶𝐼𝐽𝐾

𝑋 𝐼𝑋𝐽𝑋𝐾

𝑋0 with 𝑋 𝐼 = 𝑋 𝐼 + b 𝐼𝑋0 . (2.4.6)

The holomorphic sections 𝑋Λ can be used as homogeneous coordinates, and the
physical scalars are identified with the special coordinates 𝑧𝐼 = 𝑋 𝐼/𝑋0.

2. The quaternionic-Kähler manifold in 4d is the same as in 5d.
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3. The 4d Killing vectors 𝑘𝑢
𝐼

are inherited from 5d, while the additional Killing vector is

𝑘𝑢0 = b 𝐼 𝑘𝑢𝐼 ⇒ ®𝑃0 = b 𝐼 ®𝑃𝐼 , (2.4.7)

and is gauged by the KK vector field 𝐴0
(4) .

Next, we study the attractor equations for the near-horizon limit of 4d BPS static black-hole
solutions [172–174]. Our goal is to use the BPS equations to fix the VEVs in massive vector
multiplets and hypermultiplets, and be left with an extremization principle for the scalars
in massless vector multiplets, similarly to [43, 64]. We consider the near-horizon geometry
AdS2 × 𝑆2:

𝑑𝑠2near-horizon = − 𝑟
2

𝐿2
A
𝑑𝑡2 +

𝐿2
A
𝑟2 𝑑𝑟2 + 𝐿2

S 𝑑𝑠
2
𝑆2 , (2.4.8)

where 𝐿A and 𝐿S are the radii of AdS2 and 𝑆2, respectively. Electric and magnetic charges
are defined as appropriate integrals over 𝑆2 in the near-horizon region, respectively:

𝑞Λ =
𝑔

4𝜋

∫
𝑆2

16𝜋𝐺 (4)
N
𝛿𝑆4d

𝛿𝐹Λ
, 𝑝Λ =

𝑔

4𝜋

∫
𝑆2
𝐹Λ . (2.4.9)

Here 𝐺 (4)
N is the 4d Newton constant, related to the 5d one by

4𝜋
𝑔𝐺

(5)
N

=
1
𝐺

(4)
N

, (2.4.10)

while 𝑆4d is the 4d supergravity action. The 4d black holes we are interested in have both
electric and magnetic charges. The magnetic charge 𝑝0 = 1 is equal to the first Chern class of
the Hopf fibration. On the other hand, we fix the redundancy (2.4.5) by setting the remaining
magnetic charges to zero. In Appendix C.2 we compute the relation of the 5d charges 𝑄 𝐼 and
angular momentum 𝐽 measured at infinity, with the 4d charges measured at the horizon. We
should be careful that only massless vector fields are associated with conserved charges. We
indicate as B𝐼

𝐽
the matrix of linear redefinitions such that B𝐼

𝐽
𝐴𝐽` are the 5d mass eigenstates

in the AdS5 vacuum, and we take the index 𝔗 to run only over the massless vectors B𝔗
𝐽
𝐴𝐽`.

The corresponding conserved charges are 𝑄𝔗 ≡ 𝑄𝐽 (B−1)𝐽
𝔗

. We find

𝑝0 = 1 , 𝑞0 = 4𝐺 (4)
N 𝑔2𝐽 + 1

3𝐶𝐼𝐽𝐾b
𝐼b𝐽b𝐾 ,

𝑝𝐼 = 0 , 𝑞𝔗 = 4𝐺 (4)
N 𝑔2𝑄𝔗 + 1

2𝐶𝔗𝐽𝐾b
𝐽b𝐾 ,

(2.4.11)
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where 𝐽1 = 𝐽2 ≡ 𝐽, while the “non-conserved charges” 𝑞𝐽≠𝔗 will be fixed by the equations
of motion. Notice that the conserved charges 𝑄𝔗 are the same, but possibly expressed in a
different basis, as the charges 𝑄𝑎 introduced in Sections 2.2.2 and 2.2.3.17

Using a symplectic covariant notation, electric and magnetic charges form a symplectic
vector

Q = (𝑝Λ, 𝑞Λ) . (2.4.12)

One also defines
®P = (0, ®𝑃Λ) , ®Q = ⟨ ®P ,Q⟩ , (2.4.13)

where vectors are triplets and ⟨𝑉,𝑊⟩ = 𝑉Λ𝑊Λ −𝑉Λ𝑊Λ is the symplectic-invariant antisym-
metric form.

To find covariantly-constant spinors, we impose the following twisting ansatz:

𝜖𝑖 = − ®Q · ®𝜎 𝑗

𝑖
Γ�̂�𝑟𝜖 𝑗 , (2.4.14)

whose square gives ®Q · ®Q = 1. Here Γ�̂�𝑟 is the antisymmetric product of two gamma matrices
with flat indices �̂� and 𝑟. We choose a gauge in which Q1 = Q2 = 0 and

Q3 = −1 (2.4.15)

at the horizon, as in [43].
The remaining BPS conditions are in general complicated, but they simplify at the

horizon [172–174]. First, Maxwell’s equations give

K𝑢ℎ𝑢𝑣 ⟨K𝑣,Q⟩ = 0 , (2.4.16)

where we defined
K𝑢 = (0, 𝑘𝑢Λ) (2.4.17)

because we work in a duality frame with purely electric gaugings. In fact, (2.4.16) in this
case is equivalent to

𝑝Λ𝑘𝑢Λ = 0 , (2.4.18)

that must hold in the full solution simply because of spherical symmetry (see Appendix C.2).
Second, the vanishing of the hyperino variation implies

⟨K𝑢,V⟩ = 0 , (2.4.19)

17Similarly, the restriction of 𝐶𝐼 𝐽𝐾 to 𝐶𝔗𝔍𝔎 with curly indices is the same, but possibly in a different basis,
as the ’t Hooft anomaly coefficients 𝐶𝑎𝑏𝑐 previously defined.
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where V (𝑧, �̄�) = 𝑒K/2(𝑋Λ, 𝐹Λ) is the covariantly-holomorphic section defined in (B.2.3) and
𝐹Λ = 𝜕Λ𝐹 (𝑋). Third, we have the attractor equations18

𝜕

𝜕𝑧𝐼

(
Z
L

)
= 0 , Z

L
= 2𝑖𝑔2𝐿2

S , (2.4.20)

where the derivatives are with respect to the physical scalars 𝑧𝐼 and we defined

Z = ⟨Q,V⟩ , L = ⟨P3,V⟩ . (2.4.21)

The equation on the right in (2.4.20) determines 𝐿S, and thus the horizon area.

2.4.2 Example: the conifold

We apply the general strategy to the case of the conifold. We start with the 5d N = 2
gauged supergravity with 𝑛𝑉 = 2 vector multiplets and 𝑛𝐻 = 2 hypermultiplets constructed
in Section 7 of [169] (called the “second model” in that paper), obtained as a consistent
truncation of 10d type IIB supergravity on 𝑇1,1 that preserves the SU(2)2 ×U(1) isometry. In
Appendix B.1.1 we have recast its action as in the general formalism, and in Appendix C.1.1
we have reduced it down to 4d N = 2 gauged supergravity. We are now ready to look for
BPS near-horizon black-hole solutions.

Using (B.1.46) and (B.1.47), the conditions (2.4.15) and (2.4.18) take the form:{
𝑃3

0 = −1
𝑘𝑢0 = 0

⇒ 𝑏Ω1,2 = 𝑐Ω1,2 = 0 , b1 = −b2 = −1
3 , (2.4.22)

where 𝑏Ω1,2, 𝑐
Ω
1,2, 𝑎, 𝜙, 𝐶0, 𝑢 are the scalar fields in hypermultiplets. In fact, since (2.4.18)

must hold in the whole solution, so (2.4.22) does. Using the form (B.1.47) of the moment
maps, this is consistent with Q1 = Q2 = 0. The hyperino condition (2.4.19) then gives

𝑋1 + 𝑋2 = 0 (2.4.23)

at the horizon, where 𝑋Λ are the holomorphic sections. The fields 𝐶0 and 𝜙 are not fixed by
the equations of motion. However, together they form the axio-dilaton of type IIB supergravity
and are thus fixed by the boundary conditions that set them in terms of the complexified gauge
coupling of the boundary theory. As apparent from the expression of 𝑘𝑢2 in (B.1.46), 𝑎 is a

18There is an extra factor of 2 in front of 𝐿2
S compared to [42,43, 201] due to the different normalization of

kinetic terms in the Lagrangian (B.2.2): this is noticed in footnote 4 of [206] and in footnote 10 of [118].
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Stückelberg field that breaks an Abelian gauge symmetry and is eaten up as the corresponding
gauge field becomes massive via the Higgs mechanism.

The remaining BPS conditions are the attractor equations (2.4.20). Given𝐶𝐼𝐽𝐾 in (B.1.42),
the prepotential is

𝐹 (𝑋) =
𝑋1 ((𝑋2)2 − (𝑋3)2)

𝑋0 where 𝑋 𝐼 = 𝑋 𝐼 + b 𝐼𝑋0 . (2.4.24)

Using special coordinates 𝑧𝐼 = 𝑋 𝐼/𝑋0 as well as homogeneity of the prepotential 𝐹 (𝑋), one
can easily show that the two equations in (2.4.20) are equivalent to

𝜕Λ

[
𝑒−K/2

(
Z (𝑋) − 2𝑖𝑔2𝐿2

S L(𝑋)
)]

= 0 , (2.4.25)

where the derivatives are with respect to independent sections 𝑋Λ. In these equations 𝐿S

should be regarded as one of the unknowns. Notice that (2.4.20) or (2.4.25) give, in general,
isolated solutions in terms of (𝑧𝐼 , 𝐿S), however the sections 𝑋Λ are only fixed up to the
“gauge” redundancy (related to Kähler transformations on KM) 𝑋Λ → 𝑒 𝑓 𝑋Λ. To remove the
redundancy, we choose to fix L(𝑋) to a constant, which can elegantly be imposed by taking
a derivative of the square bracket in (2.4.25) with respect to 𝐿2

S as well. More precisely,
expanding Z and L using (B.1.47), we consider the following set of equations:

𝜕Λ

[
𝑋1 ((𝑋2)2 − (𝑋3)2)

(𝑋0)2 + 𝑞Λ𝑋Λ − 2𝑖𝑔2𝐿2
S

(
3𝑋1 − 𝑋0 − 2𝑒−4𝑢 (𝑋1 + 𝑋2) − 𝛼

)]
= 0

𝜕

𝜕𝐿2
S

[
𝑋1 ((𝑋2)2 − (𝑋3)2)

(𝑋0)2 + 𝑞Λ𝑋Λ − 2𝑖𝑔2𝐿2
S

(
3𝑋1 − 𝑋0 − 2𝑒−4𝑢 (𝑋1 + 𝑋2) − 𝛼

)]
= 0

(2.4.26)
where

𝑞𝐼 = 𝑞𝐼 −
1
2𝐶𝐼𝐽𝐾b

𝐽b𝐾 , 𝑞0 = 𝑞0 −
1
3𝐶𝐼𝐽𝐾b

𝐼b𝐽b𝐾 . (2.4.27)

The first line is the same as (2.4.25), except for the addition of the constant 𝛼 that does not
affect the equations. The second line fixes the gauge L = 𝛼. Notice that (2.4.23) should be
imposed after solving (2.4.26).

From the point of view of AdS/CFT, only massless vector fields correspond to symmetries
of the boundary theory and only their charges are conserved and fixed by the boundary
conditions. On the contrary, the “charges” under massive vector fields are not conserved, and
their radial profile should be determined by the equations of motion. The spectrum of the 5d
supergravity under consideration around its supersymmetric AdS5 vacuum was computed
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in [169] and we report it in our conventions in (B.1.49). In the basis

𝐴𝑅 ≡ 𝐴1 − 2𝐴2 , 𝐴3 , 𝐴𝑊 ≡ 𝐴1 + 𝐴2 ,

𝑘𝑅 ≡ 1
3 (𝑘1 − 𝑘2) , 𝑘3 , 𝑘𝑊 ≡ 1

3 (2𝑘1 + 𝑘2) ,
(2.4.28)

it turns out that 𝐴𝑅 (corresponding to the R-symmetry) and 𝐴3 are massless, while 𝐴𝑊 is
massive because of Higgs mechanism eating up the Stückelberg field 𝑎. In (2.4.28) we have
indicated also the Killing vectors of the corresponding gauged isometries. On the black-hole
background, the mass eigenstates may change (because the gauge kinetic functions have a
non-trivial radial profile), however the fact that

𝑘𝑅 = 𝑘3 = 0 (2.4.29)

everywhere — which follows from (2.4.22) — guarantees that there is no hypermultiplet
source in the 5d Maxwell equations (C.2.4) and thus the Page charges 𝑄𝑅 and 𝑄3 are
conserved (while 𝑄𝑊 is not).

Indeed, the variation in (2.4.26) with respect to 𝑋2 gives the complex equation

2 𝑋
1𝑋2

(𝑋0)2 + 𝑞2 + 4𝑖𝑔2𝐿2
S 𝑒

−4𝑢 = 0 (2.4.30)

that fixes 𝑢 and the “non-conserved charge” 𝑞2 in terms of the sections and 𝐿S. We can then
use the hyperino condition (2.4.23) to eliminate 𝑋2 as well. Notice that the second condition
in (2.4.22) implies that in 5d we cannot turn on a “flat connection” for 𝐴𝑊 along the circle.

We are left with the unknowns 𝑋0, 𝑋1, 𝑋3, 𝐿2
S. One can check that, when (2.4.23) and

(2.4.30) are in place, the remaining equations in (2.4.26) are equivalent to the conditions of
extremization of the function

S = 𝛽

[
𝑋1 ((𝑋1)2 − (𝑋3)2)

(𝑋0)2 + 𝑞0𝑋
0 + 3𝑞𝑅𝑋1 + 𝑞3𝑋

3 − 2𝑖𝑔2𝐿2
S
(
3𝑋1 − 𝑋0 − 𝛼

) ]
(2.4.31)

with respect to the variables 𝑋0, 𝑋1, 𝑋3, 𝐿2
S. Here 𝛽 is a constant included for later convenience,

while 𝑞𝑅 is the charge with respect to the massless vector 𝐴R:

𝑞𝑅 =
𝑞1 − 𝑞2

3 =
𝑔

4𝜋

∫
𝑆2

16𝜋𝐺 (4)
N
𝛿𝑆4d

𝛿𝐹𝑅
− 1

6
(
𝐶1𝐽𝐾 − 𝐶2𝐽𝐾

)
b𝐽b𝐾 = 4𝑔2𝐺 (4)

N 𝑄𝑅 . (2.4.32)

It is encouraging that we find an extremization problem in which only conserved charges
appear. Since S is homogeneous in 𝑋Λ of degree 1 except for the term involving 𝛼, it follows



2.4 AdS5 Kerr-Newman black holes in 𝑇1,1 43

that S
��
crit = 2𝑖𝛼𝛽𝑔2𝐿2

S at the critical point. With the choice

𝛼𝛽 =
𝜋

2𝑖𝐺 (4)
N 𝑔2

(2.4.33)

we obtain that S
��
crit is the black-hole entropy:

S
��
crit =

4𝜋𝐿2
S

4𝐺 (4)
N

= 𝑆BH , (2.4.34)

and therefore S is the entropy function. Using (2.4.11) and (2.4.27) we can express the 4d
charges 𝑞0, 𝑞𝔗 computed at the horizon in terms of the 5d black-hole charges 𝐽,𝑄𝔗 computed
at infinity:

S =
1
𝛼

[
𝜋

2𝑖𝐺 (4)
N 𝑔2

(𝑋1)3 − 𝑋1(𝑋3)2

(𝑋0)2 − 2𝜋𝑖
(
𝐽𝑋0 + 3𝑄𝑅𝑋

1 +𝑄3𝑋
3
)
+

− 2𝜋𝑖Λ
(
3𝑋1 − 𝑋0 − 𝛼

)]
, (2.4.35)

where we redefined the Lagrange multiplier 𝐿2
S = 2𝑖𝐺 (4)

N Λ for convenience.
It remains to spell out the AdS/CFT dictionary between gravity and field theory charges.

First, the gauge group ranks in field theory are determined by (see Appendix C.2.1)

𝑁2 =
8𝜋

27𝐺 (5)
N 𝑔3

=
2

27𝐺 (4)
N 𝑔2

. (2.4.36)

This is in agreement with (2.3.2) using 𝑎 = 27𝑁2/64 for the Klebanov-Witten theory. Second,
the angular momentum 𝐽 is the same in gravity and field theory. Third, the electric charges
are identified as

𝑟 = 2𝑄𝑅 , 𝑄𝐵 =
4
3𝑄3 . (2.4.37)

This is determined as follows. From (B.1.36) we infer that the gravitino components have
charge 𝑄𝑅 = ±1/2. In the boundary field theory, the corresponding operators are of the
schematic form Tr(𝐹`aΓa_) (where 𝐹 is a field strength and _ a gaugino) and have charge
𝑟 = ±1 under U(1)𝑅. We deduce the first relation in (2.4.37). Obtaining the second relation
is more subtle because no supergravity field is charged under 𝐴3: what is charged are massive
particles obtained from D3-branes wrapped on the 3-cycle of 𝑇1,1, corresponding to dibaryon
operators 𝐴𝑁1,2 or 𝐵𝑁1,2 in field theory. The 5d supergravity gauge field 𝐴3 comes from the
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reduction of the Ramond-Ramond field strength 𝐹RR
5 of 10d type IIB supergravity on 𝑇1,1.

Therefore, from the 10d flux quantization condition we can deduce the 5d charge quantization
condition 4𝑄3/3𝑁 ∈ Z (see the details in Appendix C.2.1). In field theory the dibaryon
operators have charge 𝑄𝐵 = ±𝑁 , implying the second relation in (2.4.37). Alternatively,
we could compare the Chern-Simons terms restricted to massless vector fields in the 5d
Lagrangian with the ’t Hooft anomalies of the boundary theory. Taking into account the
’t Hooft anomalies

Tr(𝑟3) = 3
2𝑁

2 , Tr(𝑟𝑄2
𝐵) = −2𝑁2 , (2.4.38)

at leading order in 𝑁 , the restriction of the 5d Chern-Simons action in (B.1.2) to 𝐴𝑊 → 0
matches the general expression

𝑆CS =
𝑔3

24𝜋2

∫
Tr(𝑄𝑎𝑄𝑏𝑄𝑐) 𝐹𝑎 ∧ 𝐹𝑏 ∧ 𝐴𝑐 (2.4.39)

after setting 𝐴𝑅 → 2𝐴𝑟 and 𝐴3 → 4𝐴𝐵/3. These correspond to (2.4.37).
Rewriting the entropy function (2.4.35) in terms of field theory charges, we find

S =
1
𝛼

[
−27𝜋𝑖𝑁2

4
(𝑋1)3 − 𝑋1(𝑋3)2

(𝑋0)2 − 2𝜋𝑖
(
𝐽𝑋0 + 3

2𝑟𝑋
1 + 3

4𝑄𝐵𝑋
3
)
+

− 2𝜋𝑖Λ
(
3𝑋1 − 𝑋0 − 𝛼

)]
. (2.4.40)

This exactly matches the entropy function (2.2.36) we found in field theory from the large
𝑁 limit of the superconformal index of the Klebanov-Witten theory, after the change of
coordinates 𝑋0 → 2𝛼𝜏, 𝑋1 → 2𝛼𝑋𝑅/3, 𝑋3 → 4𝛼𝑋𝐵/3.



Chapter 3

A quantum mechanics for magnetic
horizons

In this Chapter, we try to construct an effective 1d theory describing the black-hole near-
horizon degrees of freedom. It is organized as follows. In Section 3.1 we re-examine the
large 𝑁 limit of the topologically twisted index by performing a saddle-point approximation,
both in the integration variables as well as in the sum over fluxes. This analysis appeared
recently in [65]. Section 3.2, which is the most technical one, is devoted to the dimensional
reduction of the 3d theory on 𝑆2 in the presence of gauge magnetic fluxes. This reduction
involves a judicious choice of gauge fixing. In Section 3.3 we exhibit the effective N = 2
gauged quantum mechanics we are looking for; the hurried reader who is only interested in
the final result can directly jump there. Finally, in Section 3.4 we comment on which type of
classical and quantum corrections to our analysis one might expect.

3.1 Saddle-point approach to the TTI

We begin by re-examining the evaluation of the topologically twisted index of 3d N = 2
gauge theories at large 𝑁 . The localization formula for the index found in [72] involves a sum
over gauge fluxes 𝔪 on 𝑆2, as well as a contour integral in the space of complexified gauge
connections 𝑢 on 𝑆1. At large 𝑁 , we apply a saddle-point approximation both to the integral
over 𝑢 as well as to the sum over fluxes, treated as a continuous variable 𝔪. The idea to
compute a supersymmetric index in this way was put forward, for instance, in [57, 209] (see
also [65, 210, 211]).1 The upshot is to identify a specific gauge flux sector that dominates the

1In particular, the evaluation of the (refined) topologically twisted index of the specific model studied here,
through a saddle-point approximation of the sum over fluxes, has recently already appeared in [65].
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index and, via holography, the BPS black-hole entropy. In Section 3.2 we will use that flux
sector to perform a reduction of the 3d theory on 𝑆2 down to a quantum mechanics.

The analysis in this and the following sections are performed in a specific (and simple)
model, presented in Section 3.1.2. This choice is made for the sake of concreteness, but other
theories (for instance ABJM [212]) could be studied similarly.

3.1.1 The basic idea

We are interested in the topologically twisted index [72] of the theory, because this quantity
is known to reproduce the entropy of a class of BPS AdS4 magnetic black holes [43,64]. The
localization formula for the index can be written schematically as

I𝑆2×𝑆1 =
1
|W|

∑︁
𝔪∈Γ𝔥

∮
C

𝑁∏
𝑖=1

𝑑𝑢𝑖 𝑒
𝔪𝑉 ′ (𝑢) +Ω(𝑢) . (3.1.1)

Here |W| is the order of the Weyl group, Γ𝔥 is the co-root lattice, 𝑁 is the rank of the gauge
group, and C is an appropriate integration contour for the complexified Cartan-subalgebra-
valued holonomies {𝑢𝑖} ∈ 𝔥C/Γ𝔥. Let us outline three different approaches to this expression
at large 𝑁 .

1. The approach developed in [72] was to resum over 𝔪, schematically

I𝑆2×𝑆1 =
1
|W|

∮
C

𝑁∏
𝑖=1

𝑑𝑢𝑖
𝑒Ω(𝑢)

1 − 𝑒𝑉 ′ (𝑢) , (3.1.2)

then determine the positions 𝑢 of the poles by solving the “Bethe Ansatz Equations"
(BAEs)

𝑒𝑉
′ (𝑢) = 1 , (3.1.3)

and, finally, take the residues

IBAE
𝑆2×𝑆1 =

1
|𝑊 |

∑︁
𝑢∈BAE

(2𝜋)𝑁𝑒Ω(𝑢)

𝑖𝑁 𝑉 ′′(𝑢)
. (3.1.4)

2. Alternatively, we can evaluate both the sum over 𝔪 and the integral over 𝑢 in (3.1.1) in
the saddle-point approximation, treating 𝔪 as a continuous variable. The simultaneous
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saddle-point equations for 𝔪 and 𝑢 are, schematically:{
0 = 𝑉 ′(𝑢)
0 = �̄�𝑉 ′′(𝑢) +Ω′(𝑢) .

(3.1.5)

Taking into account that 𝑉 ′(𝑢) in (3.1.1) is defined up to integer shifts by 2𝜋𝑖, the first
set of equations is exactly the set of BAEs, while the second set of equations uniquely
fixes �̄� in terms of 𝑢. The Jacobian at the saddle point is

𝐽3d(𝔪, 𝑢) = det
(

0 𝑉 ′′(𝑢)
𝑉 ′′(𝑢) 𝔪𝑉 ′′′(𝑢) +Ω′′(𝑢)

)
= −

(
𝑉 ′′(𝑢)

)2
. (3.1.6)

Therefore, in the saddle-point approximation:

Isaddle
𝑆2×𝑆1 ≃ 1

|W|
∑︁

𝑢∈saddles
(2𝜋)𝑁 𝑒

Ω(𝑢)
√
𝐽3d

=
1
|W|

∑︁
𝑢∈BAEs

(2𝜋)𝑁𝑒Ω(𝑢)

𝑖𝑁 𝑉 ′′(𝑢)
. (3.1.7)

This method gives the same answer as the previous method.

3. A more rough approximation is to fix 𝔪 in (3.1.1) to the value determined by the
equations (3.1.5),

Ifix �̄�

𝑆2×𝑆1 ≃ I𝑆1 ≡ 1
|W|

∮
C

𝑁∏
𝑖=1

𝑑𝑢𝑖 𝑒
�̄�𝑉 ′ (𝑢) +Ω(𝑢) , (3.1.8)

and then solve the integral in 𝑢 in the saddle-point approximation. The saddle-point
equations are �̄�𝑉 ′′(𝑢) +Ω′(𝑢) = 0, therefore all solutions 𝑢 of (3.1.5) are also saddle
points of (3.1.8). Assuming that there are no other solutions, we find

I𝑆1 ≃ 1
|W|

∑︁
𝑢∈BAEs

(2𝜋)𝑁 𝑒
Ω(𝑢)
√
𝐽1d

. (3.1.9)

The Jacobian in this case is

𝐽1d = �̄�𝑉 ′′′(𝑢) +Ω′′(𝑢) = 𝑉 ′′
(
Ω′

𝑉 ′′

)′
(𝑢) , (3.1.10)

and is different from before, however, as long as the Jacobian is subleading with respect
to the exponential contribution, this approach captures the leading behavior.
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In our setup we will find a series of saddle points (𝑢, �̄�), and the expression I𝑆1 in (3.1.8)
evaluated on the dominant one will turn out to be the Witten index of an effective quantum
mechanics we will construct. To do that, we will first have to find the saddle-point flux �̄� and
then reduce the 3d theory on 𝑆2 in the presence of such a flux.

3.1.2 The 3d CS-matter model

We consider the AdS/CFT pair discovered in [175], that was used in [43, 64] to study
certain magnetic black holes in massive type IIA on AdS4 × 𝑆6 [176–178]. The field theory
is a 3d N = 2 Chern-Simons-matter theory with gauge group SU(𝑁)𝑘 , coupled to three
chiral multiplets Φ𝐼=1,2,3 in the adjoint representation. We can simplify the computation
by considering a U(𝑁)𝑘 gauge theory, with no sources for the new topological symmetry.
No field is charged under U(1) ⊂ U(𝑁) and thus the only effect of this is to introduce a
decoupled sector, whose Hilbert space on Σ𝔤 consists of 𝑘𝔤 states, which is a single one in
the case of 𝑆2. The theory has a superpotential2

𝑊 = _3d TrΦ1 [Φ2,Φ3] . (3.1.11)

The global symmetry is SU(3) × U(1)𝑅. We parameterize its Cartan subalgebra with three
R-charges 𝑅𝐼 , characterized by the charge assignment 𝑅𝐼 (Φ𝐽) = 2𝛿𝐼𝐽 . We choose the Cartan
generators of the flavor symmetry to be 𝑞1,2 = (𝑅1,2 − 𝑅3)/2. In this basis, all fields have
integer charges. Notice that 𝑒𝑖𝜋𝑅𝐼 = (−1)𝐹 for 𝐼 = 1, 2, 3.

To study AdS4 BPS magnetic black holes, we place the theory on3 𝑆2 × R using a
topological twist on 𝑆2, so that one complex supercharge is preserved [213]. This is
precisely the background of the topologically twisted index in [72]. In other words, there is a
background gauge field 𝐴𝑅 corresponding to an R-symmetry that is equal and opposite to the
spin connection when acting on the top component of the supersymmetry parameter 𝜖 :

1
2𝜋

∫
𝑆2
𝑑𝐴𝑅 = −1 . (3.1.12)

The R-symmetry used for the twist must have integer charge assignments, and a generic such
R-charge can be written as

𝑞𝑅 = 𝑅3 − 𝔫1𝑞1 − 𝔫2𝑞2 , 𝔫1,2 ∈ Z ; . (3.1.13)

2Notice that this theory is just the dimensional reduction on 𝑆1 of the 4d N = 4 SYM theory we studied in
Section 2.1, deformed by an N = 2 supersymmetric Chern-Simons term.

3One could also study the theory on a Riemann surface Σ𝔤 [179, 180], but here we will focus on the sphere.
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Note that
∑
𝐼 (𝑞𝑅)𝐼 = 2 and the superpotential correctly has R-charge 2. Under these

inequivalent twists, the scalar component of Φ𝐼 experiences a flux

𝔫𝐼 = (𝑞𝑅)𝐼
∫
𝑆2

𝑑𝐴𝑅

2𝜋 = −(𝑅3)𝐼 + 𝔫1(𝑞1)𝐼 + 𝔫2(𝑞2)𝐼 ; . (3.1.14)

This formula defines 𝔫3 ≡ −2−𝔫1 −𝔫2. Thus, twisting by a generic R-symmetry with integer
charge assignments is the same as twisting with respect to 𝑅3 and simultaneously turning on
background gauge fields 𝐴1,2 coupled to the flavor charges 𝑞1,2 with

1
2𝜋

∫
𝑆2
𝑑𝐴1,2 = 𝔫1,2 . (3.1.15)

The theory that we are considering has a UV Lagrangian consisting of various building
blocks which are individually supersymmetric off-shell. The vector multiplet 𝑉 (in Wess-
Zumino gauge) contains the adjoint-valued fields (𝜎, _, _, 𝐴`, 𝐷), where 𝜎 is a dynamical
real scalar field and 𝐷 a real auxiliary field. We consider a supersymmetrized Chern-Simons
Lagrangian for it, but we also add the SYM Lagrangian as a regulator. The chiral multiplets
Φ𝐼 contain the adjoint-valued fields (𝜙𝐼 ,Ψ𝐼 , 𝑓𝐼), for which we consider the kinetic Lagrangian
and the superpotential term. These Lagrangians, in Lorentzian signature and Wess-Zumino
gauge, are:

LYM =
1

2𝑒2
3d

Tr
[
−1

2𝐹`a𝐹
`a − 𝐷`𝜎𝐷

`𝜎 + 𝐷2 − 𝑖_
(
𝐷/ − 𝜎

)
_

]
, (3.1.16)

LCS =
𝑘

4𝜋 Tr
[
−𝜖 `a𝜌

(
𝐴`𝜕a𝐴𝜌 −

2𝑖
3 𝐴`𝐴a𝐴𝜌

)
− 𝑖__ − 2𝐷𝜎

]
,

Lchiral = −𝐷`𝜙
†
𝐼
𝐷`𝜙𝐼 − 𝜙†𝐼

(
𝜎2 + 𝐷

)
𝜙𝐼 + 𝑓

†
𝐼
𝑓𝐼 − 𝑖Ψ𝐼

(
𝐷/ + 𝜎

)
Ψ𝐼 + 𝑖Ψ𝐼_𝜙𝐼 + 𝑖𝜙†𝐼_Ψ𝐼 ,

LW =
𝜕𝑊

𝜕𝜙𝐼
𝑓𝐼 +

1
2

𝜕2𝑊

𝜕𝜙𝐼𝜕𝜙𝐽
Ψ𝑐
𝐽
Ψ𝐼 + c.c. ,

where we used the convention Ψ𝑐 ≡ 𝑖𝜎1Ψ
∗ for the conjugated spinor. The superpotential must

be a gauge-invariant holomorphic function of R-charge 2. The supersymmetry variations
preserved by these Lagrangians, in terms of a single Dirac spinor 𝜖 , are:

𝑄𝜙 = 0 𝑄Ψ =
(
𝑖𝛾`𝐷`𝜙 − 𝑖𝜎𝜙

)
𝜖 𝑄Ψ = 𝜖 𝑐 𝑓

𝑄𝜙 = −𝜖 Ψ 𝑄 Ψ = −𝜖
(
𝑖𝛾`𝐷`𝜙

† + 𝑖𝜙†𝜎
)

𝑄Ψ = −𝜖 𝑐 𝑓 †

𝑄𝜙† = Ψ 𝜖 𝑄 𝑓 = −𝜖 𝑐
(
𝑖𝛾`𝐷`Ψ + 𝑖𝜎Ψ − 𝑖_𝜙

)
𝑄 𝑓 = 0

𝑄𝜙† = 0 𝑄 𝑓 † =
(
𝑖𝐷`Ψ𝛾

` − 𝑖Ψ𝜎 + 𝑖𝜙†_
)
𝜖 𝑐 𝑄 𝑓 † = 0

(3.1.17)
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and

𝑄𝐴` = − 𝑖2 _𝛾`𝜖 𝑄_ =

(
1
2𝛾

`a𝐹`a + 𝑖𝐷 − 𝑖𝛾`𝐷`𝜎

)
𝜖 𝑄_ = 0

𝑄𝐴` =
𝑖

2 𝜖𝛾`_ 𝑄_ = 𝜖

(
1
2𝛾

`a𝐹`a + 𝑖𝐷 + 𝑖𝛾`𝐷`𝜎

)
𝑄_ = 0

𝑄𝜎 = −1
2 _𝜖 𝑄𝐷 = −1

2
(
𝐷`_𝛾

` − 𝜎_
)
𝜖

𝑄𝜎 =
1
2 𝜖_ 𝑄𝐷 = −1

2𝜖
(
𝛾`𝐷`_ − 𝜎_

)
.

(3.1.18)

To obtain a microscopic description of the BPS black-hole entropy, one counts the ground
states of this theory. It is convenient to work in the grand canonical ensemble, in which one
introduces a set of chemical potentials Δ𝐼 , 𝐼 = 1, 2 for each flavor Cartan generator. As for
the fluxes (and as done in Section 2.1), it is useful to introduce a third chemical potential Δ3,
constrained because of supersymmetry [42], such that

Δ1 + Δ2 + Δ3 ∈ Z . (3.1.19)

All chemical potentials are only defined modulo 1. Computing the thermal partition function
is hard because the theory is strongly coupled in the IR, therefore one can start from a quantity
protected by supersymmetry: the topologically twisted index

I3d(𝔫,Δ) = Tr (−1)𝐹 𝑒−𝛽𝐻 𝑒2𝜋𝑖
∑
𝐼 𝑞𝐼Δ𝐼 , (3.1.20)

where 𝐹 is the Fermion number, 𝐻 the Hamiltonian on the sphere 𝑆2 in the presence of
the magnetic fluxes (3.1.12)-(3.1.15), and the trace is over the Hilbert space of states. This
quantity only gets contributions from the ground states of the theory. It was argued in [41],
exploiting the 𝔰𝔲(1, 1|1) superconformal symmetry algebra expected to emerge from the
AdS2 × 𝑆2 near-horizon region in gravity, that the BPS states of a pure single-center black
hole have constant statistics (−1)𝐹 in each charge sector, meaning that the index gets non-
interfering contributions (at least at leading order in 𝑁) and can account for the black-hole
entropy.4

4This expectation was confirmed for rotating black holes in AdS5 in [152]. For asymptotically-flat black
holes, the argument was first formulated in [18, 28].
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The Topologically twisted index (3.1.20) can be computed exactly using supersymmetric
localization techniques [72, 179], and for the model considered here one obtains [43, 64]:

I3d(𝔫,Δ) =
(−1)𝑁
𝑁!

3∏
𝐼=1

𝑦
𝑁2 (𝔫𝐼+1)/2
𝐼

(1 − 𝑦𝐼)𝑁 (𝔫𝐼+1)

∑︁
𝔪∈Γ𝔥

∮
JK

𝑁∏
𝑖=1

𝑑𝑧𝑖

2𝜋𝑖𝑧𝑖
𝑧
𝑘𝔪𝑖

𝑖
×

×
𝑁∏
𝑖≠ 𝑗

(
1 − 𝑧𝑖

𝑧 𝑗

) 3∏
𝐼=1

𝑁∏
𝑖≠ 𝑗

(
𝑧𝑖 − 𝑦𝐼 𝑧 𝑗
𝑧 𝑗 − 𝑦𝐼 𝑧𝑖

)𝔪𝑖
(
1 − 𝑦𝐼

𝑧𝑖

𝑧 𝑗

)−𝔫𝐼−1
. (3.1.21)

Here 𝑧𝑖 ≡ 𝑒2𝜋𝑖𝑢𝑖 and 𝑦𝐼 ≡ 𝑒2𝜋𝑖Δ𝐼 . This expression can be conveniently compiled into the same
form as (3.1.1):

I3d(𝔫,Δ) =
1
𝑁!

∑︁
𝔪∈Γ𝔥

∮
JK

(
𝑁∏
𝑖=1

𝑑𝑢𝑖

)
𝑒
∑
𝑖 𝔪𝑖𝑉

′
𝑖
(𝑢,Δ) +Ω(𝑢,𝔫,Δ) . (3.1.22)

The two functions appearing in the exponent are

𝑁∑︁
𝑖=1

𝔪𝑖𝑉
′
𝑖 (𝑢,Δ) =

𝑁∑︁
𝑖=1

𝔪𝑖

{
𝑁∑︁
𝑗=1

3∑︁
𝐼=1

[
Li1

(
𝑒2𝜋𝑖(𝑢 𝑗𝑖−Δ𝐼 )

)
− Li1

(
𝑒2𝜋𝑖(𝑢 𝑗𝑖+Δ𝐼 )

)]
+ (3.1.23)

+ 2𝜋𝑖𝑘𝑢𝑖 + 𝑖𝜋
(
𝑁 − 2𝑛𝑖

)}
,

Ω(𝑢, 𝔫,Δ) =
3∑︁
𝐼=1

(1 + 𝔫𝐼)
𝑁∑︁
𝑖, 𝑗

Li1
(
𝑒2𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

)
−

𝑁∑︁
𝑖≠ 𝑗

Li1
(
𝑒2𝜋𝑖𝑢𝑖 𝑗 )+ (3.1.24)

+ 𝑖𝜋𝑁2
3∑︁
𝐼=1

(1 + 𝔫𝐼)Δ𝐼 + 𝜋𝑖(2𝑀 + 𝑁) ,

where 𝑢 𝑗𝑖 = 𝑢 𝑗 − 𝑢𝑖 whilst 𝑛𝑖 and 𝑀 are integer ambiguities. The JK integration contour is
the so-called Jeffrey-Kirwan residue [214]. We used the poly-logarithm function

Li1(𝑧) = − log(1 − 𝑧) , (3.1.25)

while more properties can be found in Appendix A.1.

3.1.3 The large 𝑵 limit of the TTI

To obtain the saddle-point equations, we first formulate (3.1.22) in a large 𝑁 continuum
description as in [215] and subsequently take functional derivatives. The Weyl symmetry
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permuting the discrete Cartan subalgebra index 𝑖 can be used to order the holonomies 𝑢𝑖 such
that Im 𝑢𝑖 increases with 𝑖. The discrete index 𝑖 is then substituted with a continuous variable
𝑡 ∈ [𝑡−, 𝑡+], after which 𝑢 and the flux 𝔪 become functions of 𝑡. The reparameterization
symmetry in 𝑡 is fixed by identifying, up to normalization, 𝑡 with Im 𝑢(𝑡):

𝑢(𝑡) = 𝑁𝛼
(
𝑖𝑡 + 𝑣(𝑡)

)
. (3.1.26)

This introduces the density

𝜌(𝑡) ≡ 1
𝑁

𝑑𝑖

𝑑𝑡
,

∑︁
𝑖

→ 𝑁

∫
𝑑𝑡 𝜌(𝑡) , (3.1.27)

in terms of which any sum will be replaced by an integral. The density 𝜌 must be real,
positive, and integrate to 1 in the defining range.

We perform the large 𝑁 computation in Appendix A.3.2. In (A.3.19) and (A.3.20) we
find: ∫

𝑑𝑡𝔪𝑉 ′ = 2𝜋𝑖𝑘𝑁
∫
𝑑𝑡 𝜌𝔪 𝑢 + 2𝜋𝑖𝑁2−2𝛼 𝐺 (Δ)

∫
𝑑𝑡

¤𝔪 𝜌2

(1 − 𝑖 ¤𝑣)2 +O
(
𝔪𝑁2−3𝛼) ,

Ω = −2𝜋𝑁2−𝛼 𝑓+(𝔫,Δ)
∫
𝑑𝑡

𝜌2

1 − 𝑖 ¤𝑣 +O
(
𝑁2−2𝛼) ,

(3.1.28)
where we introduced the functions

𝐺 (Δ) = 1
6

3∑︁
𝐼=1

𝐵3(Δ𝐼) , 𝑓+(𝔫,Δ) = −1
2

3∑︁
𝐼=1

(1 + 𝔫𝐼)
(
𝐵2(Δ𝐼) − 𝐵2(0)

)
, (3.1.29)

where 𝐵2 and 𝐵3 are the Bernoulli polynomials defined in (A.1.13). The entire exponent in
the integrand of (3.1.22) is the functional:

V = 2𝜋𝑖𝑘𝑁1+𝛼
∫
𝑑𝑡 𝜌𝔪 (𝑖𝑡 + 𝑣) + 2𝜋𝑖𝑁2−2𝛼 𝐺 (Δ)

∫
𝑑𝑡

¤𝔪 𝜌2

(1 − 𝑖 ¤𝑣)2 +

− 2𝜋𝑁2−𝛼 𝑓+(𝔫,Δ)
∫
𝑑𝑡

𝜌2

1 − 𝑖 ¤𝑣 + 2𝜋𝑁2−𝛼 `

(∫
𝑑𝑡 𝜌 − 1

)
, (3.1.30)

where we added a Lagrange multiplier ` to enforce the normalization of 𝜌. For the terms in
V to compete, we need 𝛼 = 1

3 and 𝔪 ∝ 𝑁 1
3 .
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To find the saddle-point configurations at large 𝑁 , we extremize V with respect to 𝜌, 𝑣, 𝔪
and `. After some massaging, the saddle-point equations are:

0 =
𝑑

𝑑𝑡

[
2𝐺 𝔪 𝜌

1 − 𝑖 ¤𝑣 − 𝑁 1
3 ` (𝑖𝑡 + 𝑣)

]
+ 2𝑖𝑁

1
3 𝑓+ 𝜌 , (3.1.31)

0 = 𝜌𝔪 − 2𝑖𝐺
𝑘

𝑑

𝑑𝑡

[ ¤𝔪 𝜌2

(1 − 𝑖 ¤𝑣)3

]
+ 𝑓+
𝐺
𝜌 𝑢 , (3.1.32)

0 =
𝑑

𝑑𝑡

[
𝑘 (𝑖𝑡 + 𝑣)2 − 4𝑖𝐺 𝜌

1 − 𝑖 ¤𝑣

]
, (3.1.33)

together with
∫
𝑑𝑡 𝜌 = 1. One can check that the functional V is invariant under reparametri-

zations of 𝑡 that preserve the scaling ansatz (3.1.26) for the holonomies. Such reparameteri-
zations act as:

𝑡 = 𝑡 (𝑡′) , 𝑣(𝑡) = 𝑖
[
𝑡′ − 𝑡 (𝑡′)

]
+ 𝑣′(𝑡′) ,

𝜌(𝑡) =
(
𝑑𝑡 (𝑡′)
𝑑𝑡′

)−1
𝜌′(𝑡′) , 𝔪(𝑡) = 𝔪′(𝑡′) .

(3.1.34)

Notice in particular that 𝑣′ becomes complex after the transformation.
As we review in Appendix A.3.3, the equations (3.1.31)–(3.1.33) can be solved, yielding:

𝑢(𝑡) =
(
3𝑁𝐺
𝑘

) 1
3
𝑡 , 𝔪(𝑡) =

(
𝑁

9𝑘𝐺2

) 1
3
𝑓+ 𝑡 , 𝜌(𝑡) = 3

4
(
1 − 𝑡2

)
, 𝑡 ∈ [−1, 1] . (3.1.35)

This solution is obtained after making use of the reparameterization symmetry, so, in
particular, 𝑣(𝑡) is complex. The value of the functional V at the saddle point for 𝜌, 𝑣 and 𝔪 —
which reproduces the logarithm of the index at leading order — is

V = −2𝜋𝑖𝑁 5
3

5

(
9𝑘
𝐺 (Δ)

) 1
3
𝑓+(𝔫,Δ) . (3.1.36)

If
∑
𝐼 Δ𝐼 = 1, the two functions 𝐺 and 𝑓+ take the particularly simple form

𝐺 (Δ) = 1
2Δ1Δ2Δ3 , 𝑓+(𝔫,Δ) = −1

2 Δ1Δ2Δ3

3∑︁
𝐼=1

𝔫𝐼

Δ𝐼
. (3.1.37)

In this case, the saddle-point value of the logarithm of the index is

V =
2𝜋𝑖𝑁 5

3

5

(
9𝑘
4

) 1
3 (
Δ1Δ2Δ3

) 2
3

3∑︁
𝐼=1

𝔫𝐼

Δ𝐼
. (3.1.38)
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When the Δ𝐼’s are real this expression matches the result of [43, 64], which reproduces the
black-hole entropy upon performing a Legendre transform.

As mentioned above, the chemical potentials Δ𝐼 are defined modulo 1. The expression
for V in (3.1.36), however, is not periodic under Δ𝐼 → Δ𝐼 + 1. This means that we have
found an infinite number of saddle points, parameterized by the shifts.5 This suggests that
— as in AdS3 [184] and AdS5 [185] — there might be an infinite number of complex BPS
black-hole-like supergravity solutions dual to the semi-classical expansion of the topologically
twisted index. This issue deserves more study. In the following, we will assume that we have
identified the dominant saddle point, and we will work with it.

3.2 Reduction on a flux background

The next step is to perform a Kaluza-Klein (KK) reduction of the 3d N = 2 gauge theory on
the sphere 𝑆2, in the presence of the flux background 𝔪 (3.1.35) determined as the saddle
point of the topologically twisted index. By keeping only the light modes, we will obtain a 1d
quantum mechanical model which we expect to contain information about the near-horizon
degrees of freedom of the magnetic AdS4 black holes we are interested in. This section
is rather technical, and the reader only interested in the final result can directly jump to
Section 3.3.

Here we will first show how the full twisted theory can be seen as a gauged N = 2
quantum mechanics. Afterward, we will introduce the background of the reduction and review
the standard procedure to fix the 3d gauge group down to the 1d gauge group. We will then
explain why complications arise when computing the KK spectrum of the vector multiplet,
and how they can be resolved by a further modification of the gauge-fixing Lagrangian. Lastly,
we will exhibit the KK spectra of the vector and chiral multiplets.

3.2.1 Decomposing 3d multiplets into 1d multiplets

After the topological twist, the theory exactly fits into the framework of a gauged N = 2
quantum mechanics, and we perform various changes of variables in this section to make it
explicit. A similar discussion can be found in [216]. We give a brief review of 1d N = 2
supersymmetry in Appendix E, adapted from [217], but in E.2.3 and E.2.4 we also present
new supersymmetric Lagrangians peculiar to our 3d theory.

5In general, only a subset of the complex saddle points contribute to the contour integral: which ones do
(depending on the contour) should be determined with the steepest descent.
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We shall write the supersymmetry transformations in terms of anticommuting generators
𝑄 and 𝑄, with the understanding that generators should be multiplied by a complex anti-
commuting parameter to produce a generic supersymmetry transformation. With 𝜖 = (1, 0)T,
𝑄 is obtained from 𝑄3d while 𝑄 is obtained from 𝑄3d in (3.1.17) and (3.1.18). Note that 𝑄
and 𝑄 are related by Hermitian conjugation, that is (𝑄𝑋) = (−1)𝐹 𝑄 𝑋 . The supersymmetry
algebra is

𝑄2 = 𝑄
2
= 0 , {𝑄,𝑄} = 𝑖

[
𝜕𝑡 − 𝛿gauge(𝐴𝑡 + 𝜎)

]
, (3.2.1)

where 𝛿gauge(𝛼) is a gauge transformation with parameter 𝛼. We will use frame fields 𝑒1
`, 𝑒1̄

`

on 𝑆2, which we introduce in Appendix D, and write differential forms on 𝑆2 with flat indices
1, 1̄. From now on, 𝑋 will denote the Hermitian conjugate of 𝑋 (since Dirac conjugates
are no longer present anyway). After this rewriting, the supersymmetry variations and
supersymmetric Lagrangians are described below.

Vector multiplet. In the Wess-Zumino gauge, the 3d vector multiplet consists of the gauge
field 𝐴`, a real scalar 𝜎, a real auxiliary scalar 𝐷, and a Dirac spinor _. The bosonic
components are R-neutral while _ has R-charge −1. We decompose _ in components as

_ =

(
−Λ𝑡
Λ1̄

)
, (3.2.2)

and redefine 𝐷 with a shift
𝐷′ = 𝐷 − 2𝑖𝐹11̄ . (3.2.3)

Now, Λ1̄ has R-charge −1 whereas Λ𝑡 has R-charge +1. These field redefinitions have trivial
Jacobian. Under the supercharges preserved by the twist, the supersymmetry variations of
the vector multiplet split into 2 sets of variations. The first set (Hermitian conjugate relations
being implied) is:

𝑄𝐴𝑡 = −𝑄𝜎 = − 𝑖2 Λ𝑡 , 𝑄Λ𝑡 = −𝐷𝑡𝜎 − 𝑖𝐷 ,

𝑄𝐷 = −1
2 (𝐷𝑡 − 𝑖𝜎) Λ𝑡 , 𝑄Λ𝑡 = 0 .

(3.2.4)

These coincide with the supersymmetry variations (E.2.32) of a 1d U(𝑁) vector multiplet
in the Wess-Zumino gauge. Note that here the fields and gauge transformations are also
functions on 𝑆2. The second set is:

𝑄𝐴1̄ =
1
2Λ1̄ , 𝑄𝐴1̄ = 0 , 𝑄Λ1̄ = 0 , 𝑄Λ1̄ = 2𝑖

(
𝜕𝑡𝐴1̄ − 𝐷 1̄(𝐴𝑡 + 𝜎)

)
. (3.2.5)
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These coincide with the supersymmetry variations (E.2.34) of a chiral multiplet
(
𝐴1̄,

1
2Λ1̄

)
in

Wess-Zumino gauge, provided that the corresponding superfields

Ξ1̄,ℎ = 𝐴1̄ +
\

2Λ1̄ −
𝑖

2 \\ 𝜕𝑡𝐴1̄ , Ξ1,ℎ ≡ Ξ1̄,ℎ = 𝐴1 −
\

2 Λ1 +
𝑖

2 \\ 𝜕𝑡𝐴1 , (3.2.6)

satisfying 𝐷 Ξ1̄,ℎ = 𝐷 Ξ1,ℎ = 0, transform as connections under super-gauge transformations:

Ξ1̄,ℎ → ℎ
(
Ξ1̄,ℎ + 𝑖𝜕1̄

)
ℎ−1 , Ξ1,ℎ → ℎ

−1 (
Ξ1,ℎ + 𝑖𝜕1

)
ℎ , (3.2.7)

with ℎ = 𝑒𝜒 and 𝐷𝜒 = 0. We indicated as Λ1 the complex conjugate to Λ1̄.
The Yang-Mills Lagrangian is composed of two pieces, independently supersymmetric:

2𝑒2
3d LYM = Tr

[
4
��𝐹𝑡1̄��2 + 4𝑖𝐷𝐹11̄ − 4

��𝐷 1̄𝜎
��2 + 𝑖Λ1(𝐷𝑡 + 𝑖𝜎)Λ1̄ + 2Λ𝑡𝐷1Λ1̄ − 2Λ1𝐷 1̄Λ𝑡

]
+

+ Tr
[
(𝐷𝑡𝜎)2 + 𝐷2 + 𝑖Λ𝑡 (𝐷𝑡 − 𝑖𝜎)Λ𝑡

]
. (3.2.8)

Notice also that

2𝑒2
3d LYM = 𝑄𝑄 Tr

[
−4𝑖𝐴1𝜕𝑡𝐴1̄ + 4𝑖(𝐴𝑡 − 𝜎)𝐹11̄

]
+𝑄𝑄 Tr

[
−Λ𝑡Λ𝑡

]
, (3.2.9)

so both terms are exact. The first piece is the appropriate kinetic term for a chiral transforming
as a connection and its superspace expression is in (E.2.52). The second piece is the standard
1d gauge kinetic term (E.2.42). Likewise, the Chern-Simons Lagrangian splits into two
pieces which are separately supersymmetric:

4𝜋
𝑘

LCS = Tr
[
4𝑖𝐴1𝜕𝑡𝐴1̄ − 4𝑖(𝐴𝑡 + 𝜎)𝐹11̄ + Λ1 Λ1̄

]
+ Tr

[
Λ𝑡Λ𝑡 − 2𝐷𝜎

]
. (3.2.10)

The superspace expression of the first piece is given in (E.2.60), whereas the second piece
matches (E.2.46).

Chiral multiplet. A 3d chiral multiplet consists of a complex scalar 𝜙 and a Dirac spinor
Ψ. We split Ψ into components as

Ψ = −𝑖
(
𝜓

[

)
. (3.2.11)

Their R-charges are 𝑅(𝜓) = 𝑅([) = 𝑅(𝜙) − 1. Under the supercharges preserved by the twist,
the supersymmetry variations of the 3d chiral multiplet can also be organized into two sets.
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The first set (Hermitian conjugate relations are again implicit) is:

𝑄𝜙 = 𝜓 , 𝑄𝜙 = 0 , 𝑄𝜓 = 0 , 𝑄𝜓 = 𝑖(𝐷𝑡 − 𝑖𝜎)𝜙 . (3.2.12)

They coincide with the supersymmetry variations (E.2.34) of a 1d chiral multiplet (𝜙, 𝜓) in
Wess-Zumino gauge, with corresponding superfield

Φℎ = 𝜙 + \𝜓 − 𝑖

2 \\ 𝜕𝑡𝜙 . (3.2.13)

The second set is instead:

𝑄[ = − 𝑓 , 𝑄[ = −2𝐷 1̄𝜙 , 𝑄 𝑓 = 0 , 𝑄 𝑓 = −𝑖(𝐷𝑡−𝑖𝜎)[−2𝐷 1̄𝜓+𝑖Λ1̄𝜙 . (3.2.14)

They match the variations (E.2.36) of a 1d Fermi multiplet ([, 𝑓 ) in Wess-Zumino gauge,
whose corresponding superfield

Yℎ = [ − \ 𝑓 + 2\𝐷 1̄𝜙 + \\
(
− 𝑖2 𝜕𝑡[ − 2𝐷 1̄𝜓 + 𝑖Λ1̄𝜙

)
(3.2.15)

satisfies
𝐷 Yℎ = 𝐸

(
Φℎ,Ξ1̄,ℎ

)
= −2

(
𝜕1̄ − 𝑖Ξ1̄,ℎ

)
Φℎ . (3.2.16)

Here 𝜕1̄ contains the background U(1)𝑅 connection. In the language of 1d supersymmetry,
there is an E-term superpotential for Yℎ. After the shift (3.2.3), the kinetic term of a 3d chiral
multiplet also splits into two separately supersymmetric pieces, i.e., the kinetic terms of the
1d chiral (E.2.47) and of the 1d Fermi (E.2.50):

Lchiral =
[
|𝐷𝑡𝜙|2 − |𝜎𝜙|2 − 𝜙𝐷𝜙 + 𝑖𝜓(𝐷𝑡 + 𝑖𝜎)𝜓 − 𝑖𝜓 Λ𝑡𝜙 + 𝑖𝜙Λ𝑡𝜓

]
+ (3.2.17)

+
[
𝑖[(𝐷𝑡 − 𝑖𝜎)[ + 𝑓 𝑓 − |2𝐷 1̄𝜙 |2 − 2𝜓𝐷1[ + 2[𝐷 1̄𝜓 − 𝑖[Λ1̄𝜙 + 𝑖𝜙Λ1[

]
.

Note that one has
Lchiral = 𝑄𝑄

(
−𝑖𝜙(𝐷𝑡 + 𝑖𝜎)𝜙

)
+𝑄𝑄

(
−[[

)
, (3.2.18)

so that both terms are exact.
The superpotential terms can be written as

LW = −𝑄
(
[𝐼
𝜕𝑊

𝜕𝜙𝐼

)
+𝑄

(
[𝐼
𝜕𝑊

𝜕𝜙𝐼

)
, (3.2.19)
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which in the language of 1d supersymmetry are J-terms for the Fermi multiplets [𝐼 with
𝐽𝐼 = − 𝜕𝑊

𝜕𝜙𝐼
. Supersymmetry of the first term under 𝑄, and the second term under 𝑄, are

obvious. When 𝑄 acts on the first term we get, up to a total time derivative,

𝑄𝑄

(
[𝐼
𝜕𝑊

𝜕𝜙𝐼

)
= −2𝑄

(
𝐷 1̄𝜙𝐼

𝜕𝑊

𝜕𝜙𝐼

)
= −2𝑄(𝜕1̄𝑊) = −2𝜕1̄𝑄𝑊 , (3.2.20)

which is another total derivative. Thus the superpotential terms are
(
𝑄 + 𝑄

)
-exact. The

supersymmetric Chern-Simons Lagrangian is the only piece that is not exact under any
supercharge.

3.2.2 Reduction background

As mentioned at the beginning of this section, we want to reduce the theory in the presence
of background fluxes for the global symmetries. In particular, we turn on a (negative) unit
flux for the R-symmetry 𝑞𝑅. Since it is a background for a non-dynamical field, it can be
off-shell without any consequences. The presence of this background, under which the chiral
multiplets are differently charged, generically breaks the SU(3) flavor symmetry down to its
diagonal subgroup U(1)2

𝐹
. We also single out a configuration of fluxes for the dynamical

gauge fields:

𝐹11̄ =
𝑖𝔪

4𝑅2 , where 𝔪 is a constant in the Cartan subalgebra. (3.2.21)

The choice of 𝔪 will eventually be the one dictated by the saddle-point approximation to the
topologically twisted index, discussed in Section 3.1. Since 𝐹11̄ couples to the auxiliary field
𝐷 in (3.2.8) like a FI parameter, the D-term equation for supersymmetric vacua is:

2𝑖
𝑒2

3d
𝐹11̄ +

∑︁
𝐼

[𝜙𝐼 , 𝜙𝐼] −
𝑘

2𝜋𝜎 = 0 . (3.2.22)

The background should satisfy the D-term equation to be supersymmetric, and it is simplest
to turn on a background for 𝜎 to cancel the background flux. This falls into the class of
“topological" vacua discussed in [218]. Moreover, since 𝐴𝑡 +𝜎 appears in the algebra (3.2.1),
we also find it appropriate to turn on a background for 𝐴𝑡 , opposite to that of 𝜎, so that the
background of 𝐴𝑡 + 𝜎 is zero. This ensures that BPS states have zero energy even before
projecting onto gauge singlets. Thus, the background we use for the reduction is:

𝐹11̄ =
𝑖𝔪

4𝑅2 , 𝜎 = − 𝔪

2𝑚𝑘𝑅
2 , 𝐴𝑡 =

𝔪

2𝑚𝑘𝑅
2 , where 𝑚𝑘 ≡

𝑘 𝑒2
3d

2𝜋 . (3.2.23)



3.2 Reduction on a flux background 59

One can check that all the equations of motion are satisfied on this background, except for
that of 𝐴𝑡 + 𝜎, unless 𝔪 = 0. Consequently, when expanding the action, there will be a
Lagrangian term linear in 𝐴𝑡 + 𝜎, that is

Tr
(
𝑘𝔪

4𝜋𝑅2 (𝐴𝑡 + 𝜎)
)
. (3.2.24)

In other words, background fluxes produce a background electric charge in the presence of
Chern-Simons terms. As we will discuss later, the presence of this linear term is crucial and
it is the main source of complications when computing the vector multiplet spectrum.

We parameterize the Lie algebra 𝔰𝔲(𝑁) by 𝑁 × 𝑁 matrices 𝐸𝑖 𝑗 (𝑖, 𝑗 = 1, . . . , 𝑁) which
have a single nonzero entry 1 in row 𝑖 and column 𝑗 : (𝐸𝑖 𝑗 )𝑘𝑙 = 𝛿𝑖𝑘𝛿 𝑗 𝑙 . Elements with 𝑖 = 𝑗

are a basis for the Cartan subalgebra, while those with 𝑖 ≠ 𝑗 correspond to roots with root
vector (𝛼𝑖 𝑗 )𝑘 = 𝛿𝑘𝑖 − 𝛿𝑘 𝑗 . The commutation relations in this basis are

[𝐸𝑖 𝑗 , 𝐸𝑘𝑙] = 𝛿 𝑗 𝑘𝐸𝑖𝑙 − 𝛿𝑖𝑙𝐸𝑘 𝑗 . (3.2.25)

Note also that 𝐸𝑖 𝑗 = 𝐸 𝑗𝑖 and

Tr 𝐸𝑖 𝑗𝐸𝑘𝑙 = 𝛿 𝑗 𝑘𝛿𝑖𝑙 , Tr 𝐸𝑖 𝑗 [𝐸𝑘𝑙 , 𝐸𝑚𝑛] = 𝛿 𝑗 𝑘𝛿𝑙𝑚𝛿𝑛𝑖 − 𝛿𝑖𝑙𝛿 𝑗𝑚𝛿𝑘𝑛 . (3.2.26)

We write the expansion of adjoint fields in this basis as 𝑋 = 𝑋 𝑖 𝑗𝐸𝑖 𝑗 . Note that 𝑋 𝑖 𝑗
= 𝑋 𝑗𝑖.

The Cartan components will sometimes be written as 𝑋 𝑖 ≡ 𝑋 𝑖𝑖 for simplicity.
In the presence of global and gauge fluxes, the Lie algebra components of various fields

in the vector multiplet and chiral multiplets are U(1)spin sections with different monopole
charges 𝑞 (see Appendix D for details). A field 𝜒𝑞 (𝑡, \, 𝜑) with monopole charge 𝑞 can then
be expanded in a complete set of monopole harmonics 𝑌𝑞,𝑙,𝑚 (\, 𝜑), and the time-dependent
expansion coefficients 𝜒𝑞,𝑙,𝑚 (𝑡) are the 1d fields after the reduction:

𝜒𝑞 (𝑡, \, 𝜑) =
∑︁
𝑙≥|𝑞 |

∑︁
|𝑚 |≤𝑙

𝜒𝑞,𝑙,𝑚 (𝑡) 𝑌𝑞,𝑙,𝑚 (\, 𝜑) . (3.2.27)

Defining the quantities

𝑞𝑖 𝑗 ≡
𝔪𝑖 −𝔪 𝑗

2 , 𝑞𝐼𝑖 𝑗 ≡
𝔪𝑖 −𝔪 𝑗 + 𝔫𝐼

2 , (3.2.28)

the monopole charges of the fields and their charges under the global symmetries of the
theory are summarized in Table 3.1.
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VM 𝜎𝑖 𝑗 , 𝐴
𝑖 𝑗
𝑡 , 𝐷

𝑖 𝑗 Λ
𝑖 𝑗
𝑡 𝐴

𝑖 𝑗

1̄ 𝐴
𝑖 𝑗

1 Λ
𝑖 𝑗

1̄ Λ
𝑖 𝑗

1
𝑞 𝑞𝑖 𝑗 𝑞𝑖 𝑗 𝑞𝑖 𝑗 + 1 𝑞𝑖 𝑗 − 1 𝑞𝑖 𝑗 + 1 𝑞𝑖 𝑗 − 1
𝑞𝑅 0 1 0 0 −1 1
𝑞1 0 0 0 0 0 0
𝑞2 0 0 0 0 0 0

CM 𝜙
𝑖 𝑗

𝐼
𝜓
𝑖 𝑗

𝐼
[
𝑖 𝑗

𝐼
𝑓
𝑖 𝑗

𝐼

𝑞 𝑞𝐼
𝑖 𝑗

𝑞𝐼
𝑖 𝑗

𝑞𝐼
𝑖 𝑗
+ 1 𝑞𝐼

𝑖 𝑗
+ 1

𝑞𝑅 −𝔫𝐼 −𝔫𝐼 − 1 −𝔫𝐼 − 1 −𝔫𝐼 − 2
𝑞1 𝛿1𝐼 − 𝛿3𝐼 𝛿1𝐼 − 𝛿3𝐼 𝛿1𝐼 − 𝛿3𝐼 𝛿1𝐼 − 𝛿3𝐼
𝑞2 𝛿2𝐼 − 𝛿3𝐼 𝛿2𝐼 − 𝛿3𝐼 𝛿2𝐼 − 𝛿3𝐼 𝛿2𝐼 − 𝛿3𝐼

Table 3.1 Monopole and global charges of all fields. The R-charge is 𝑞𝑅, while 𝑞1,2 are flavor
charges. Above: modes from 3d vector multiplets. The modes are defined for pairs 𝑖, 𝑗 such
that 𝑞𝑖 𝑗 > 0. Below: modes from 3d chiral multiplets, defined for any 𝑖 𝑗 . In both cases, the
modes are in SU(2) representations with 𝑙 ≥ |𝑞 | and 𝑙 = 𝑞 mod 1.

We assume that 𝔪𝑖 ≠ 𝔪 𝑗 , ∀ 𝑖 ≠ 𝑗 , since this is true for the saddle-point flux, and thus
𝑞𝑖 𝑗 ≠ 0 for 𝑖 ≠ 𝑗 . Given a Hermitian adjoint field 𝑋 = 𝑋 𝑖 𝑗𝐸𝑖 𝑗 = 𝑋 in a vector multiplet (i.e.,
𝐴𝑡 , 𝜎, 𝐷), its components satisfy 𝑋 𝑗𝑖 = 𝑋 𝑖 𝑗 . We parameterize the off-diagonal components in
terms of complex fields 𝑋 𝑖 𝑗 with 𝑖 𝑗 such that 𝑞𝑖 𝑗 > 0. For complex adjoint fields𝑌 = 𝑌 𝑖 𝑗𝐸𝑖 𝑗 in
vector multiplets (i.e., 𝐴1̄, 𝐴1, Λ1̄, Λ1), we initially parameterize the off-diagonal components
in terms of complex fields 𝑌 𝑖 𝑗 , 𝑌 𝑖 𝑗 with 𝑖 𝑗 such that 𝑞𝑖 𝑗 > 0. For complex adjoint fields in
chiral multiplets, instead, we simply use all components 𝑌 𝑖 𝑗 .

The flux breaks the gauge group U(𝑁) to its maximal torus U(1)𝑁 , and the 1d gauge
group will consequently be U(1)𝑁 . Indeed, the generators of 1d gauge transformations have
to be constant on 𝑆2, however the components 𝜖 𝑖 𝑗 of the gauge-transformation parameter have
monopole charges 𝑞𝑖 𝑗 , and since 𝑙 ≥ |𝑞𝑖 𝑗 |, only those in the Cartan subalgebra have an 𝑙 = 0
mode which is constant on 𝑆2.

3.2.3 Partial gauge fixing

To reduce to a gauged quantum mechanics, we need to fix the 3d gauge group to the
unbroken 1d gauge group, consisting of time-dependent transformations that are constant on
𝑆2. A systematic procedure to achieve this, which we review here, was presented in [219]
to which we refer for more details. Let G be the infinite-dimensional group of gauge
transformations, and {𝑒𝐴} a Hermitian basis for its algebra 𝔤. Denote the structure constants
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of 𝔤 as [𝑒𝐴, 𝑒𝐵] = 𝑖 𝑓𝐴𝐵𝐶 𝑒𝐶 . The basis {𝑒𝐴} is also chosen such that it is orthonormal under
the inner product ∫

Tr (𝑒𝐴 𝑒𝐵) = 𝛿𝐴𝐵 . (3.2.29)

Let R ⊂ G be a subgroup, which will be the group of residual gauge transformations after
partial gauge fixing. We call its algebra 𝔯 ⊂ 𝔤 (𝔯 stands for residual). We split the basis
as {𝑒𝐴} = {𝑒𝑖, 𝑒𝑎}, where {𝑒𝑖} is a basis for 𝔯 whereas {𝑒𝑎} is a basis for 𝔣 � 𝔤/𝔯 (𝔣 stands
for gauge fixed).6 Since R is a subgroup, 𝔯 is a subalgebra and [𝔯, 𝔯] ⊂ 𝔯, or 𝑓𝑖 𝑗𝑎 = 0. By
anti-symmetry of the structure constants this implies 𝑓𝑖𝑎 𝑗 = 0, or [𝔯, 𝔣] ⊂ 𝔣. In summary, the
algebra of 𝔤 decomposes as

[𝑒𝑖, 𝑒 𝑗 ] = 𝑖 𝑓𝑖 𝑗 𝑘 𝑒𝑘 , [𝑒𝑖, 𝑒𝑎] = 𝑖 𝑓𝑖𝑎𝑏 𝑒𝑏 , [𝑒𝑎, 𝑒𝑏] = 𝑖 𝑓𝑎𝑏𝑖 𝑒𝑖 + 𝑖 𝑓𝑎𝑏𝑐 𝑒𝑐 . (3.2.30)

In particular, this implies that the 𝑒𝑎’s transform under the adjoint action in a real orthogonal
representation of R, which we call 𝑅 𝑓 .

To fix G to R, we need to choose as many gauge-fixing conditions as there are generators
in 𝔣. In other words, we need to choose gauge-fixing functions 𝐺𝑎

gf(𝑋), where 𝑋 collectively
denotes the physical fields in chiral and vector multiplets. Notice that𝐺𝑎

gf(𝑋) should transform
in 𝑅 𝑓 under R. This is true for all the gauge-fixing functions we can think of. The first step
in the gauge-fixing procedure is to integrate in an adjoint scalar Λ ∈ 𝔤, and add

∫ 1
2 TrΛ2

to the action. Notice that Λ will have mass dimension [Λ] = 3/2. Since Λ is completely
decoupled from everything else, introducing it does not change the path integral. We then
insert 1 in the path integral, written as

1 = Δ(𝑋,Λ)
∫
G
D𝑔

∏
𝑎

𝛿
(
𝐺𝑎

gf(𝑋
𝑔) − (Λ𝑔)𝑎

)
, (3.2.31)

where superscripts (·)𝑔 denote a finite gauge transformation by 𝑔. Suppose that 𝑔𝑋,Λ ∈ G
satisfies

𝐺𝑎
gf(𝑋

𝑔𝑋,Λ) − (Λ𝑔𝑋,Λ)𝑎 = 0 , (3.2.32)

then so does 𝑟𝑔𝑋,Λ for any 𝑟 ∈ R, due to the covariant transformations of 𝐺𝑎
gf and Λ𝑎 under

R. Therefore, R remains as the residual gauge group. Notice that Λ must transform under
gauge transformations. This is different from the standard Faddeev-Popov procedure, in
which Λ is only integrated over at the very last step. That would have been sufficient if the
gauge were completely fixed (R = 0). The slightly different procedure described here will

6In the Coulomb gauge (3.2.43), 𝔯 contains diagonal transformations with 𝑙 = 0, while 𝔣 contains diagonal
transformations with 𝑙 > 0 as well as all off-diagonal transformations.
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produce extra interaction terms in the ghost action. Now, as usual, the invariance of D𝑔
ensures that the determinant Δ is gauge invariant, and

Δ(𝑋,Λ)−1 = Δ(𝑋𝑔𝑋,Λ ,Λ𝑔𝑋,Λ)−1 =

∫
G
D𝑔

∏
𝑎

𝛿

(
𝐺𝑎

gf(𝑋
𝑔·𝑔𝑋,Λ) − (Λ𝑔·𝑔𝑋,Λ)𝑎

)
. (3.2.33)

Assuming no Gribov copies and writing 𝑔 = 1 + 𝜖 𝐴𝑒𝐴, 𝛿𝐴 ≡ 𝛿gauge(𝑒𝐴), one can expand the
argument of the delta function to linear order in 𝜖 𝐴 and obtain

𝜖𝑏 𝛿𝑏
[
𝐺gf(𝑋𝑔𝑋,Λ) − Λ𝑔𝑋,Λ

]𝑎
. (3.2.34)

The fact that the terms with 𝜖 𝑖 disappear ensures that Vol(R) is factorized as an overall factor
in the Faddeev-Popov determinant:

Δ(𝑋,Λ) = det 𝛿𝑏
[
𝐺𝑎

gf(𝑋
𝑔𝑋,Λ) − (Λ𝑔𝑋,Λ)𝑎

]
/Vol(R) . (3.2.35)

The determinant can be shown to be well-defined on the coset R𝑔𝑋,Λ. Having determined
Δ(𝑋,Λ), inserting 1 in the path integral gives∫

D𝑋 DΛD𝑔 𝑒𝑖𝑆(𝑋)−
𝑖
2
∫

TrΛ2
Δ(𝑋,Λ)

∏
𝑎

𝛿
(
𝐺𝑎

gf(𝑋
𝑔) − (Λ𝑔)𝑎

)
. (3.2.36)

Undoing the gauge transformation in the delta function, the integral over the gauge group
factorizes and one gets∫

D𝑋 DΛ 𝑒𝑖𝑆(𝑋)−
𝑖
2
∫

TrΛ2 det
(
𝛿𝑏𝐺

𝑎
gf(𝑋) − 𝛿𝑏Λ

𝑎
) ∏

𝑎

𝛿
(
𝐺𝑎

gf(𝑋) − Λ𝑎
)
. (3.2.37)

Using
𝛿𝑏Λ

𝑎 = 𝑖Λ𝐴 [𝑒𝑏, 𝑒𝐴]𝑎 = −Λ𝐴 𝑓𝑏𝐴𝑎 = − 𝑓𝑎𝑏𝑖Λ𝑖 − 𝑓𝑎𝑏𝑐Λ
𝑐 (3.2.38)

we can explicitly write:

det
(
𝛿𝑏𝐺

𝑎
gf(𝑋) − 𝛿𝑏Λ

𝑎
)
=

∫ (∏
𝑎

D�̃� 𝑎 D𝑐𝑎
)

exp
[
−�̃� 𝑎

(
𝛿𝑏𝐺

𝑎
gf(𝑋) + 𝑓𝑎𝑏𝑖Λ

𝑖 + 𝑓𝑎𝑏𝑐Λ
𝑐
)
𝑐𝑏

]
,

(3.2.39)
where we have introduced the Grassmann scalars 𝑐𝑎, �̃� 𝑎. Note that they are valued in 𝔣 and
not in 𝔤: modes corresponding to residual gauge transformations are not present. Also note
that by dimensional analysis, [ �̃� ] + [𝑐] = [𝐺gf] = 3/2. Without loss of generality, we can
take [𝑐] = 0, [ �̃� ] = 3/2. Integrating out Λ𝑖 and imposing the delta functions for Λ𝑎, one gets
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the action:

𝑆(𝑋) +
∫

Tr
[
−
𝐺2

gf

2 + 𝐺gf
{
�̃�, 𝑐

}
+ 𝑖 �̃� 𝛿gauge(𝑐)𝐺gf +

1
2 {�̃�, 𝑐}𝔯{�̃�, 𝑐}𝔯

]
. (3.2.40)

This is equivalent to the following action with extra scalars 𝑏𝑎 integrated in:

𝑆(𝑋) +
∫

Tr
[
𝑏2

2 + 𝑏
(
𝐺gf − {�̃�, 𝑐}

)
+ 𝑖 �̃� 𝛿gauge(𝑐)𝐺gf +

1
2 {�̃�, 𝑐}

2
]
. (3.2.41)

Notice that 𝑏𝑎 have dimension [𝑏] = 3/2. One should keep in mind that 𝑐, �̃�, 𝑏 only contain
modes in 𝔣. We will now rescale

𝐺gf → 𝑒−1
3d 𝐺gf 𝑏 → 𝑒−1

3d 𝑏 , 𝑐 → 𝑒−1
3d 𝑐 , (3.2.42)

after which [𝐺gf] = 2, [𝑐] = 1/2, and [𝑏] = 2. The gauge-fixing action gains an overall factor
of 1/𝑒2

3d. This is useful because the gauge-fixing function we chose, i.e., the background
Coulomb gauge, precisely has dimension 2 (like many other standard choices like Lorenz and
background-field gauge). The explicit expression of this gauge-fixing function is

𝐺gf =
2
√
b

(
𝐷𝐵

1 𝐴1̄ + 𝐷𝐵

1̄ 𝐴1
)
, (3.2.43)

with [b] = 0. One can check that it leaves the 1d gauge group unfixed. The covariant
derivatives above only contain the spin connection and monopole background. All in all, for
any 𝐺gf, the gauge-fixing procedure adds the following terms to the Lagrangian:

1
𝑒2

3d
Tr

[
𝑏2

2 + 𝑏
(
𝐺gf − {�̃�, 𝑐}

)
+ 𝑖 �̃� 𝛿gauge(𝑐)𝐺gf +

1
2 {�̃�, 𝑐}2

]
. (3.2.44)

We can now define a BRST supercharge 𝑠 as:

𝑠𝑋 = 𝛿gauge(𝑐) 𝑋 , 𝑠𝑐 =
𝑖

2 {𝑐, 𝑐}𝔣 , 𝑠�̃� = 𝑖𝑏 , 𝑠𝑏 = 𝛿gauge(𝑅) �̃� , 𝑅 ≡ −1
2 {𝑐, 𝑐}𝔯 .

(3.2.45)
One can check that

𝑠2 = 𝑖 𝛿gauge(𝑅) , 𝑠𝑅 = 0 . (3.2.46)



64 A quantum mechanics for magnetic horizons

This allows us to define an 𝑠-cohomology on invariants of the residual gauge group. The
terms produced by gauge fixing can then be written in a BRST-exact form:

(3.2.44) =
1
𝑒2

3d
𝑠Tr �̃�

(
−𝑖 𝐺gf −

𝑖

2 𝑏 +
𝑖

2 {�̃�, 𝑐}
)
≡ 𝑠Ψgf . (3.2.47)

We note that there is still complete freedom in specifying the inner product in the ghost sector,
i.e., the Hermiticity properties of 𝑐 and �̃�. For the theory to be unitary and have a consistent
Hamiltonian formulation [220], one needs that 𝑐 and �̃� are Hermitian, so that 𝑠 is a real
supercharge and (3.2.44) is real. With this choice, (3.2.44) is invariant under a ghost-number
symmetry valued in R∗, which acts as:

𝑐 ↦→ 𝑒𝛼 𝑐 , �̃� ↦→ 𝑒−𝛼 �̃� , 𝑠 ↦→ 𝑒𝛼 𝑠 , (3.2.48)

with 𝛼 ∈ R. We say that 𝑐 has ghost number 𝑛𝑔 = 1 and �̃� has 𝑛𝑔 = −1. Physical observables
are identified with the 𝑠-cohomology at 𝑛𝑔 = 0 since external states must be gauge invariant
and cannot contain ghosts. Since 𝑐, �̃�, and 𝑏 are Hermitian, they are neutral under U(1)𝑅,
and (3.2.44) is invariant under U(1)𝑅, since 𝐺gf is R-neutral.

3.2.4 Supersymmetrized gauge fixing

As anticipated, the linear term (3.2.24) causes complications in the computation of the KK
spectrum of the vector multiplet, and the following discussion aims to explain why. The
standard Faddeev-Popov gauge-fixing procedure we just reviewed generically breaks the
supersymmetries that were defined on the original action because of the presence of the
BRST-exact term 𝑠Ψgf, which might not be supersymmetric. Considering a supercharge 𝑄,
and assuming that it does not act on the fields in the gauge-fixing complex, the transformation
of 𝑠Ψgf is −𝑠𝑄Ψgf. When computing 𝑠-closed (i.e., gauge-invariant) quantities, this is
harmless because the potentially violating term is 𝑠-exact, and it does not affect the result.
For example, supersymmetric Ward identities (as we will show in Section 3.4) can be derived
for any observable in the theory, since their correlators do not depend on 𝑠-exact terms.

However, the spectrum of the Chern-Simons-matter theory around a monopole background
is not gauge invariant, because the quadratic action is not invariant under linearized BRST
transformations.7 This can be seen from the presence of the linear term (3.2.24). Its BRST
variation is

𝑠𝑆(1) =
1

4𝜋𝑅2 Tr
(
𝑖𝑘𝔪 [𝑐, 𝐴𝑡 + 𝜎]

)
, (3.2.49)

7Although the BRST transformations are non-linear in the fields, to have a gauge-invariant spectrum, it
would be enough that the quadratic action be invariant under the linearized transformations.
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and it must cancel with the linearized BRST variation of the quadratic action, which is then
nonzero. Consequently, there is no guarantee that the spectrum will be supersymmetric,
because it is computed from a quadratic action that is not 𝑠-closed, and therefore 𝑠-exact
terms violating supersymmetry cannot be neglected.

A way to resolve this issue takes inspiration from [221]. In addition to adding 𝑠Ψgf

to gauge fix our path integral, we can further add QΨgf. The real supercharge Q acts as
Q = 𝑄 + 𝑄 on physical fields, and we choose its action on the gauge-fixing complex such
that 𝛿 ≡ (𝑠 +Q) closes on symmetries and unfixed gauge transformations. We will show
that the further addition of QΨgf does not change the expectation value of any (possibly non-
supersymmetric) operator O with ghost number 𝑛𝑔 ≤ 0. In particular, physical observables
with 𝑛𝑔 = 0 are not affected. At this point, we have added 𝛿Ψgf to the original action. The
real supercharge 𝛿 is explicitly preserved because our choice that 𝛿2 contains symmetries
and unfixed gauge transformations implies 𝛿2Ψgf = 0. With this procedure, the number of
preserved supercharges has not changed; while the gauge-fixed action with 𝑠Ψgf is invariant
under 𝑠, the gauge-fixed action with 𝛿Ψgf is invariant under 𝛿. Its usefulness for computing the
spectrum lies in the fact that 𝐴𝑡 +𝜎 can be redefined by shifting with a quadratic combination
of ghosts such that 𝛿(𝐴′𝑡 + 𝜎′) = 0, making the linear term (3.2.24) 𝛿-closed. By extension,
the quadratic action which is modified by the shift is also 𝛿-closed, and its spectrum is
supersymmetric.

For 𝛿Ψgf = (𝑠 +Q)Ψgf to be invariant under 𝛿, 𝛿2 should only contain residual gauge
transformations and possibly other symmetries of Ψgf. This condition constrains how Q can
act on fields in the gauge-fixing complex. The supersymmetry transformations of the physical
fields 𝑋 under Q are given in (3.2.4)-(3.2.5) and (3.2.12)-(3.2.14). Without specifying how
Q acts on the fields 𝑌 in the gauge-fixing complex, we find:

Q2𝑋 = {𝑄,𝑄}𝑋 = 𝑖
[
𝜕𝑡 − 𝛿gauge(𝐴𝑡 + 𝜎)

]
𝑋 , {Q, 𝑠}𝑋 = 𝛿gauge

(
Q𝑐

)
𝑋 ,

𝛿2𝑋 = 𝑖

[
𝜕𝑡 − 𝛿gauge

(
𝐴𝑡 + 𝜎 + 𝑖Q𝑐 − 𝑅

) ]
𝑋 .

(3.2.50)

If we want 𝛿 to close on time translations and residual gauge transformations, the only
possibility is to set

Q𝑐 = 𝑖(𝐴𝑡 + 𝜎)𝔣 . (3.2.51)

Hence, physical fields satisfy the algebra:

𝛿2𝑋 = 𝑖

[
𝜕𝑡 − 𝛿gauge

(
𝐴𝑡,𝔯 + 𝜎𝔯 − 𝑅

) ]
𝑋 . (3.2.52)
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Having fixed Q𝑐, we find that 𝑐 also satisfies (3.2.52) and specifically

Q2𝑐 = 0 , {Q, 𝑠}𝑐 = 𝑖
[
𝜕𝑡 − 𝛿gauge(𝐴𝑡,𝔯 + 𝜎𝔯)

]
𝑐 , (3.2.53)

which imply (3.2.52). For uniformity, we demand that (3.2.53) is satisfied on all fields 𝑌
in the gauge-fixing complex. Setting Q �̃� = 0 for simplicity, we find that this fixes Q𝑏 and,
altogether, Q acts on the fields in the gauge-fixing complex as:

Q 𝑐 = 𝑖(𝐴𝑡 + 𝜎)𝔣 , Q �̃� = 0 , Q 𝑏 =
[
𝜕𝑡 − 𝛿gauge(𝐴𝑡,𝔯 + 𝜎𝔯)

]
�̃� . (3.2.54)

Given Ψgf that we defined in (3.2.47), we can now determine

QΨgf =
1
𝑒2

3d
Tr

[
𝑖 �̃�Q𝐺gf +

𝑖

2 �̃�
(
𝐷𝑡 − 𝑖𝜎

)
�̃�

]
, (3.2.55)

where 𝜎 acts in the adjoint representation (namely, 𝜎�̃� stands for [𝜎, �̃� ] in matrix notation).
Hence, collecting the contributions from (3.2.44) and (3.2.55), the supersymmetrized gauge-
fixing procedure requires us to add the following terms to the original Lagrangian:

𝛿Ψgf =
1
𝑒2

3d
Tr

[
𝑏2

2 + 𝑏
(
𝐺gf − {�̃�, 𝑐}

)
+ 𝑖 �̃�

(
𝛿gauge(𝑐) +Q

)
𝐺gf +

1
2 {�̃�, 𝑐}

2 + 𝑖2 �̃�
(
𝐷𝑡 − 𝑖𝜎

)
�̃�

]
.

(3.2.56)
With the choice that 𝑐 and �̃� are Hermitian, 𝛿Ψgf is real.

It is important to note (following [221]) that adding QΨgf to 𝑠Ψgf does not change the
expectation values of operators with 𝑛𝑔 ≤ 0, even if they are not invariant under Q. In
particular, it does not change physical observables. This can be shown explicitly for the
thermal partition function. We first integrate in an adjoint-valued auxiliary field 𝑎 to rewrite
the quartic ghost interactions, after which the gauge-fixing action becomes:

𝛿Ψgf =
1
𝑒2

3d
Tr

[
𝑏2 − 𝑎2

2 +𝑏 𝐺gf+�̃�
[
𝑎+𝑏, 𝑐

]
+𝑖�̃�

(
𝛿gauge(𝑐)+Q

)
𝐺gf+

𝑖

2 �̃�
(
𝐷𝑡−𝑖𝜎

)
�̃�

]
. (3.2.57)

Note that 𝑎 has both gauge-fixed and residual components. Since the full action is quadratic
in the Grassmann fields {𝐹phys, 𝑐, �̃� }, where 𝐹phys is the set of physical fermions, we can
formally perform the path integral over them, obtaining:

det
©«
𝑆0 |𝐹,𝐹 0 QΨgf |𝐹,�̃�

0 0 𝑠Ψgf |𝑐,�̃�
QΨgf |�̃�,𝐹 𝑠Ψgf |�̃�,𝑐 QΨgf |�̃�,�̃�

ª®®¬ ∼ det
(

0 𝑠Ψgf |𝑐,�̃�
𝑠Ψgf |�̃�,𝑐 QΨgf |�̃�,�̃�

)
det

(
𝑆0 |𝐹,𝐹

)
. (3.2.58)
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All entries of the matrix on the LHS are (possibly differential) operators involving the bosons.
This proves that the thermal partition function does not depend on the term QΨgf.

More generally, we prove that the expectation value of any operator O with ghost number
𝑛𝑔 ≤ 0 is unchanged by the addition of QΨgf to the Lagrangian. The key property is that
QΨgh is the sum of two terms, of ghost number −1 and −2, respectively. Let ⟨·⟩𝑠 be the path
integral with 𝑠Ψgf as gauge fixing, and let ⟨·⟩𝛿 be the path integral with 𝛿Ψgf as gauge fixing.
We have

⟨O⟩𝛿 =
〈
O 𝑒𝑖QΨgf

〉
𝑠
= ⟨O⟩𝑠 +

∞∑︁
𝑛=1

(𝑖)𝑛
𝑛!

〈
O (QΨgf)𝑛

〉
𝑠
= ⟨O⟩𝑠 . (3.2.59)

The last equality holds because the ghost number is a symmetry of ⟨·⟩𝑠, implying a null
expectation value for any correlator that has 𝑛𝑔 ≠ 0. Since O (QΨgf)𝑛 has 𝑛𝑔 < 0, one
concludes that ⟨O (QΨgf)𝑛⟩𝑠 = 0 for every 𝑛. For the restricted set of operators O with
𝑛𝑔 ≤ 0, one can constrain ⟨·⟩𝛿 using the symmetries of ⟨·⟩𝑠. In particular, although both
supersymmetry and U(1)𝑅 are not symmetries of ⟨·⟩𝛿 because QΨgf breaks them, their Ward
identities can still be used to constrain the correlators ⟨O⟩𝛿. This result will play a crucial
role in Section 3.4.

We can now show how the linear Lagrangian term containing 𝐴𝑡 + 𝜎 can be made
𝛿-invariant using a field redefinition. This is crucial to have a reliable and supersymmetric
spectrum. The linear term (3.2.24) only contains modes (𝐴𝑡 + 𝜎)𝔯 which are constant on
𝑆2, due to the integral over 𝑆2. Since 𝐴𝑡,𝔯 + 𝜎𝔯 − 𝑅 appears in (3.2.52) as a central charge,
𝛿(𝐴𝑡,𝔯 + 𝜎𝔯 − 𝑅) = 0. Therefore, by redefining

𝐴′𝑡,𝔯 + 𝜎′
𝔯 = 𝐴𝑡,𝔯 + 𝜎𝔯 +

1
2 {𝑐, 𝑐}𝔯 , (3.2.60)

the linear term (3.2.24) becomes (dropping the ′ on 𝐴′𝑡,𝔯 + 𝜎′
𝔯):

𝑆(1) → 𝑘

4𝜋𝑅2 Tr
(
𝔪 (𝐴𝑡 + 𝜎)

)
+ 𝑚𝑘

4𝑅2𝑒2
3d

Tr
(
𝑐 [𝔪, 𝑐]

)
, (3.2.61)

where 𝔪 is diagonal and 𝑚𝑘 was defined in (3.2.23). The first term is invariant under 𝛿,
therefore after adding the second term to the quadratic action, the latter becomes invariant
under 𝛿 as well, and the spectrum has to be supersymmetric (i.e., 𝛿-symmetric). Notice that
the newly shifted field 𝐴𝑡,𝔯 + 𝜎𝔯 is still Hermitian because 𝑐 is Hermitian.
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3.2.5 Vector multiplet spectrum

We are now ready to compute the spectrum of the (gauge-fixed) vector multiplet action.
We start by considering the off-diagonal components. The Yang-Mills, Chern-Simons, and
gauge-fixing terms are expanded to quadratic order in fluctuations around (3.2.23). After
integrating out the auxiliary fields 𝐷 and 𝑏, the independent components consist of 4 complex
bosons

(
𝐴
𝑖 𝑗

1 , 𝐴
𝑖 𝑗
𝑡 , 𝜎

𝑖 𝑗 , 𝐴
𝑖 𝑗

1̄
)

and 6 complex fermions
(
Λ
𝑖 𝑗

1 ,Λ
𝑖 𝑗
𝑡 ,Λ

𝑖 𝑗

𝑡 , 𝑐
𝑖 𝑗 , �̃� 𝑖 𝑗 ,Λ

𝑖 𝑗

1̄
)

for every
𝑖 ≠ 𝑗 such that 𝑞𝑖 𝑗 > 0.8 All components are then rescaled by a factor of 𝑒3d/𝑅. Moreover
𝐴
𝑖 𝑗

1 , 𝐴𝑖 𝑗1̄ get an extra factor of 1/
√

2, while Λ
𝑖 𝑗

1̄ , Λ
𝑖 𝑗

1 , Λ𝑖 𝑗𝑡 , Λ
𝑖 𝑗

𝑡 get an extra factor of
√

2. This
is to ensure that the standard 1d kinetic terms are canonically normalized. After expanding in
monopole harmonics according to Table 3.1 and integrating over 𝑆2, the quadratic action for
off-diagonal components in momentum space becomes:∫

𝑑𝑝

2𝜋
∑︁

𝑖, 𝑗 | 𝑞𝑖 𝑗>0

∑︁
𝑙, |𝑚 |≤𝑙

(
𝐵
𝑖 𝑗

𝑙,𝑚
(𝑝) 𝑀𝐵 𝐵

𝑖 𝑗

𝑙,𝑚
(𝑝) + 𝐹𝑖 𝑗

𝑙,𝑚
(𝑝) 𝑀𝐹 𝐹

𝑖 𝑗

𝑙,𝑚
(𝑝)

)
(3.2.62)

where the vectors of bosonic and fermionic fields are, respectively,

𝐵
𝑖 𝑗

𝑙,𝑚
=

(
𝐴
𝑖 𝑗

1,𝑙,𝑚 , 𝐴
𝑖 𝑗

𝑡,𝑙,𝑚
, 𝜎

𝑖 𝑗

𝑙,𝑚
, 𝐴

𝑖 𝑗

1̄,𝑙,𝑚
)T
,

𝐹
𝑖 𝑗

𝑙,𝑚
=

(
Λ
𝑖 𝑗

1,𝑙,𝑚 , Λ
𝑖 𝑗

𝑡,𝑙,𝑚
, Λ

𝑖 𝑗

𝑡,𝑙,𝑚 , 𝑐
𝑖 𝑗

𝑙,𝑚
, �̃�

𝑖 𝑗

𝑙,𝑚
, Λ

𝑖 𝑗

1̄,𝑙,𝑚
)T
.

(3.2.63)

The operators acting on the bosonic and fermionic fields are:

𝑀𝐵 =

©«

𝑝(𝑝 + 𝑚𝑘 + 2𝜎0) −
b + 1
b

𝑠2−
2𝑅2 −𝑖𝑠−(𝑝 + 𝑚𝑘 + 𝜎0)√

2𝑅
−𝑖𝜎0𝑠−√

2𝑅
1 − b
b

𝑠+𝑠−
2𝑅2

𝑖𝑠−(𝑝 + 𝑚𝑘 + 𝜎0)√
2𝑅

𝑠20
𝑅2 + 𝜎2

0 𝜎0(𝑝 + 𝜎0) −𝑖𝑠+(𝑝 − 𝑚𝑘 + 𝜎0)√
2𝑅

𝑖𝜎0𝑠−√
2𝑅

𝜎0(𝑝 + 𝜎0) (𝑝 + 𝜎0)2 − 𝑚2
𝑘
−
𝑠20
𝑅2 −𝑖𝜎0𝑠+√

2𝑅
1 − b
b

𝑠+𝑠−
2𝑅2

𝑖𝑠+(𝑝 − 𝑚𝑘 + 𝜎0)√
2𝑅

𝑖𝜎0𝑠+√
2𝑅

𝑝(𝑝 − 𝑚𝑘 + 2𝜎0) −
b + 1
b

𝑠2+
2𝑅2

ª®®®®®®®®®®®®®®¬
(3.2.64)

with

𝜎0 = −
𝑞𝑖 𝑗

𝑚𝑘𝑅
2 , 𝑠0 =

√︃
𝑙 (𝑙 + 1) − 𝑞2

𝑖 𝑗
, 𝑠± =

√︃
𝑙 (𝑙 + 1) − 𝑞𝑖 𝑗 (𝑞𝑖 𝑗 ± 1) =

√︃
𝑠20 ∓ 𝑞𝑖 𝑗 ,

(3.2.65)

8We have chosen to write 𝐴𝑖 𝑗1 = 𝐴
𝑗𝑖

1̄ , Λ
𝑖 𝑗

1 = Λ
𝑗𝑖

1̄ and Λ
𝑖 𝑗

𝑡 = Λ
𝑗𝑖
𝑡 as fundamental fields.
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(notice that 𝜎0, 𝑠0, and 𝑠± depend on 𝑖 𝑗) and

𝑀𝐹 =

©«

−𝑝 − 𝑚𝑘 − 2𝜎0 − 𝑠−
𝑅

0 0 − 𝑖𝑠−√
2b𝑅

0

− 𝑠−
𝑅

−𝑝 + 𝑚𝑘 0 0 0 0

0 0 −𝑝 − 𝑚𝑘 0 0 − 𝑠+
𝑅

0 0 0
𝑚𝑘𝑞𝑖 𝑗

𝑅2
𝑖𝑠20√
b𝑅2 0

𝑖𝑠−√
2b𝑅

0 0 −
𝑖𝑠20√
b𝑅2 −𝑝 − 𝑖𝑠+√

2b𝑅
0 0 − 𝑠+

𝑅
0 𝑖𝑠+√

2b𝑅
−𝑝 + 𝑚𝑘 − 2𝜎0

ª®®®®®®®®®®®®®®®®®¬

. (3.2.66)

For 𝑙 ≥ 𝑞𝑖 𝑗 + 1, all modes exist and are massive. Moreover, the masses of the modes9 from
bosons and fermions are paired thanks to the 𝛿-invariance of the action, and the ratio of
fermionic to bosonic determinants is 1. For 𝑙 = 𝑞𝑖 𝑗 , the modes of 𝐴𝑖 𝑗1̄ and Λ

𝑖 𝑗

1̄ do not exist
(see Table 3.1), so the rightmost column and the bottom row of the matrices 𝑀𝐵, 𝑀𝐹 should
be removed. In this case, there is a massless fermionic mode while the other massive modes
are paired between bosons and fermions. The ratio of determinants is −𝑝. For 𝑙 = 𝑞𝑖 𝑗 − 1
(this case takes place only if 𝑞𝑖 𝑗 ≥ 1), modes only exist in 𝐴𝑖 𝑗1 and Λ

𝑖 𝑗

1 . The bosonic field 𝐴𝑖 𝑗1
has a massless pole, and a massive pole that cancels with that of Λ

𝑖 𝑗

1 .
The effective degrees of freedom at energies much smaller than 𝑚𝑘 and 1

𝑅
are the massless

fermionic modes with 𝑙 = 𝑞𝑖 𝑗 and the massless modes in 𝐴𝑖 𝑗1 with 𝑙 = 𝑞𝑖 𝑗 − 1 (if 𝑞𝑖 𝑗 ≥ 1).
The identity of the massless fermionic modes is not immediately clear due to the off-diagonal
entries in (3.2.66). We can first rescale the fields 𝑐𝑖 𝑗

𝑙,𝑚
→ 𝑅 𝑐

𝑖 𝑗

𝑙,𝑚
so that they have the same

mass dimension as the other fermions. Defining the dimensionless ratio 𝛼 = 1/(𝑚𝑘𝑅) for
convenience, the fermionic kinetic operator above becomes:

𝑀𝐹
��
𝑙=𝑞𝑖 𝑗

=

©«

−𝑝 − (1 − 2𝑞𝑖 𝑗𝛼2) 𝑚𝑘 −
√︁

2𝑞𝑖 𝑗 𝛼 𝑚𝑘 0 0 −𝑖
√︃
𝑞𝑖 𝑗

b
𝛼 𝑚𝑘

−
√︁

2𝑞𝑖 𝑗 𝛼 𝑚𝑘 −𝑝 + 𝑚𝑘 0 0 0
0 0 −𝑝 − 𝑚𝑘 0 0
0 0 0 𝑞𝑖 𝑗 𝑚𝑘 𝑖

𝑞𝑖 𝑗√
b
𝛼 𝑚𝑘

𝑖

√︃
𝑞𝑖 𝑗

b
𝛼 𝑚𝑘 0 0 −𝑖 𝑞𝑖 𝑗√

b
𝛼 𝑚𝑘 −𝑝

ª®®®®®®®®®¬
.

(3.2.67)
By introducing a kinetic term 𝑖Y 𝑐𝑖 𝑗 𝜕𝑡𝑐

𝑖 𝑗 by hand for the fermion 𝑐𝑖 𝑗 , the problem of finding
mass eigenstates is reduced to the usual problem of diagonalizing a mass matrix. Taking
Y → 0 at the end of the computation, we obtain the desired SL(5,C) transformation that

9The counting of modes works as follows. A complex field with a 2-derivative kinetic term gives two modes,
with only a 1-derivative kinetic term one mode, whereas with no kinetic term no modes.
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diagonalizes (3.2.67):

𝑆 =

©«

− 𝐴−√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

− + 𝐵2
−

− 𝐴+√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

+ + 𝐵2
+

0 0 𝛼√︃
b + 𝑞𝑖 𝑗𝛼2 + 2𝑞2

𝑖 𝑗
𝛼4

𝐵−√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

− + 𝐵2
−

𝐵+√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

+ + 𝐵2
+

0 0
√

2𝛼2√︃
b + 𝑞𝑖 𝑗𝛼2 + 2𝑞2

𝑖 𝑗
𝛼4

0 0 1 0 0

−
2
√

2b𝑞𝑖 𝑗𝛼3√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

− + 𝐵2
−

−
2
√

2b𝑞𝑖 𝑗𝛼3√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

+ + 𝐵2
+

0 −𝑖
√︃

b

𝑞𝑖 𝑗

√
b𝛼√︃

b + 𝑞𝑖 𝑗𝛼2 + 2𝑞2
𝑖 𝑗
𝛼4

−
𝑖2
√

2𝑞𝑖 𝑗𝛼2√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

− + 𝐵2
−

−
𝑖2
√

2𝑞𝑖 𝑗𝛼2√︃
8𝑞2

𝑖 𝑗
𝛼4b + 𝐴2

+ + 𝐵2
+

0 0 𝑖√︃
b + 𝑞𝑖 𝑗𝛼2 + 2𝑞2

𝑖 𝑗
𝛼4

ª®®®®®®®®®®®®®®®®®®®®¬

,

(3.2.68)
where we have defined

𝐴± =
√︁

2𝑞𝑖 𝑗𝛼
(
𝑞𝑖 𝑗𝛼

2 (1 + 2b) ±
√︃
𝑞2
𝑖 𝑗
𝛼4 (1 + 2b)2 + 4b (𝑞𝑖 𝑗𝛼2 + b)

)
𝐵± = 2b + 𝑞𝑖 𝑗𝛼2 (1 + 2b) ±

√︃
𝑞2
𝑖 𝑗
𝛼4 (1 + 2b)2 + 4b (𝑞𝑖 𝑗𝛼2 + b) .

(3.2.69)

The resulting fermionic kinetic operator is

𝑆† 𝑀𝐹

��
𝑙=𝑞𝑖 𝑗

𝑆 =

©«

−𝑝 − _+𝑚𝑘 0 0 0 0
0 −𝑝 − _−𝑚𝑘 0 0 0
0 0 −𝑝 − 𝑚𝑘 0 0
0 0 0 𝑚𝑘 0
0 0 0 0 −𝑝

ª®®®®®®®¬
(3.2.70)

with

_± =

𝑞𝑖 𝑗 𝛼
2 (1 − 2b) ±

√︃
𝑞2
𝑖 𝑗
𝛼4(1 + 2b)2 + 4b

(
𝑞𝑖 𝑗 𝛼

2 + b
)

2b . (3.2.71)

Each row of the matrix 𝑆 expresses an original fermion in terms of the mass eigenstates. The
linear combinations are generically complicated, but they simplify in the physical regime of
interest. Since we want to reduce a Chern-Simons-matter theory on 𝑆2, and the Yang-Mills
term was only introduced to make propagating gauge degrees of freedom massive, we are
motivated to take 𝑚𝑘 ≫ 1/𝑅, or 𝛼 → 0. In this limit, the massless fermion at 𝑙 = 𝑞𝑖 𝑗 is
−𝑖
√
b �̃� (last row of 𝑆), and _± → ±1.
The spectrum of the diagonal components can be analyzed in the same way and we will

be brief. One finds that every mode is massive for 𝑙 > 0. After integrating out the 𝑙 = 0
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mode of the auxiliary fields 𝐷𝑖, the quadratic Lagrangian (including the linear terms) for the
remaining diagonal 𝑙 = 0 modes is:∑︁

𝑖

{
𝑘𝔪𝑖

(
𝐴𝑖𝑡,0,0 + 𝜎𝑖0,0

)
+ 4𝜋𝑅2

𝑒2
3d

[
1
2
(
𝜕𝑡𝜎

𝑖
0,0

)2 − 1
2𝑚

2
𝑘

(
𝜎𝑖0,0

)2 + 1
2 Λ

𝑖

𝑡,0,0
(
𝑖𝜕𝑡 + 𝑚𝑘

)
Λ𝑖𝑡,0,0

]}
.

(3.2.72)
We observe that 𝜎𝑖0,0 and Λ𝑖

𝑡,0,0 have mass 𝑚𝑘 and should be integrated out at low energies
𝑝 ≪ 𝑚𝑘 . Only the combination

(
𝐴𝑖
𝑡,0,0 + 𝜎𝑖0,0

)
remains, which is a 1d gauge field for the

gauge group U(1)𝑁 .10
To summarize, we write the quadratic Lagrangian for the modes from the vector

multiplet that contain massless poles, including fermionic partners which are necessary for
supersymmetry. After having rescaled 𝐴1̄ and Λ1̄ by 𝑚−1/2

𝑘
we have:

𝑘
∑︁
𝑖

𝔪𝑖 (𝐴𝑖𝑡+𝜎𝑖)+
∑︁
𝑖≠ 𝑗

{
Θ(𝑞𝑖 𝑗 −1)

∑︁
|𝑚 |≤𝑞𝑖 𝑗−1

[
𝐴
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 𝑖𝜕𝑡 𝐴
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚+Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚+

+ 1
𝑚𝑘

(���𝜕𝑡𝐴 𝑗𝑖1̄,𝑞𝑖 𝑗−1,𝑚

���2 + Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 𝑖𝜕𝑡 Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚

)]
+ Θ(𝑞𝑖 𝑗 )

∑︁
|𝑚 |≤𝑞𝑖 𝑗

(
�̃�
𝑖 𝑗
𝑞𝑖 𝑗 ,𝑚 𝑖𝜕𝑡 �̃�

𝑖 𝑗
𝑞𝑖 𝑗 ,𝑚

)}
(3.2.73)

where Θ(𝑥) = 1 for 𝑥 ≥ 0 and it vanishes otherwise. Here we have changed notation, and
used the fields

(
𝐴
𝑗𝑖

1̄ ,Λ
𝑗𝑖

1̄
)

in place of 𝐴𝑖 𝑗1 , Λ
𝑖 𝑗

1 because the former live in a chiral multiplet, see
(3.2.5), while the latter in an anti-chiral multiplet. Besides, notice that there are matching
degrees of freedom in 𝐴 𝑗𝑖1̄ and Λ

𝑗𝑖

1̄ with mass𝑚𝑘 , which should not be included in the effective
theory at energies 𝑝 ≪ 𝑚𝑘 . These modes are encoded in the term proportional to 1/𝑚𝑘 and
can be integrated out by neglecting that kinetic term. The workings are explained in [222].
The quadratic Lagrangian for the massless modes is then:11

𝑘
∑︁
𝑖

𝔪𝑖 (𝐴𝑖𝑡 + 𝜎𝑖) +
∑︁
𝑖 𝑗

{
Θ(𝑞𝑖 𝑗 − 1)

∑︁
|𝑚 |≤𝑞𝑖 𝑗−1

(
𝐴
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 𝑖𝜕𝑡 𝐴
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 +

+ Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚 Λ
𝑗𝑖

1̄,𝑞𝑖 𝑗−1,𝑚

)
+ Θ(𝑞𝑖 𝑗 − 1

2 )
∑︁

|𝑚 |≤𝑞𝑖 𝑗

�̃�
𝑖 𝑗
𝑞𝑖 𝑗 ,𝑚 𝑖𝜕𝑡 �̃�

𝑖 𝑗
𝑞𝑖 𝑗 ,𝑚

}
. (3.2.74)

10In other words, in the language of Appendix E, we find that the superfield 𝑉− is massive, while Ω stays
light and enforces gauge invariance.

11Using the assumption that 𝑞𝑖 𝑗 ≠ 0 for 𝑖 ≠ 𝑗 , we have substituted Θ(𝑞𝑖 𝑗 ) → Θ(𝑞𝑖 𝑗 − 1
2 ) in (3.2.73), and

consequently we have substituted
∑
𝑖≠ 𝑗 →

∑
𝑖 𝑗 .
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The bosons 𝐴 𝑗𝑖1̄ and the fermions �̃� 𝑖 𝑗 have a 1-derivative action, while the fermions Λ 𝑗𝑖

1̄ are
auxiliary.

3.2.6 Matter multiplets spectrum

To find the spectrum of modes coming from the 3d chiral multiplets, we expand the chiral
multiplet Lagrangian (3.2.17) to quadratic order in fluctuations around (3.2.23). All fields in
the chiral multiplet are rescaled by 1/𝑅. After expanding in monopole harmonics according
to Table 3.1 and integrating over 𝑆2, the quadratic action in momentum space is:∫

𝑑𝑝

2𝜋
∑︁
𝐼

∑︁
𝑖, 𝑗

∑︁
𝑙, |𝑚 |≤𝑙

{[
𝑝(𝑝 + 2𝜎0) −

𝑠2+,𝐼
𝑅2

] ��𝜙𝑖 𝑗
𝐼,𝑙,𝑚

(𝑝)
��2 + �� 𝑓 𝑖 𝑗

𝐼,𝑙,𝑚
(𝑝)

��2 +
+

(
𝜓
𝑖 𝑗

𝐼,𝑙,𝑚
(𝑝) , [𝑖 𝑗

𝐼,𝑙,𝑚
(𝑝)

) (
−𝑝 − 2𝜎0

𝑠+,𝐼
𝑅

𝑠+,𝐼
𝑅

−𝑝

) (
𝜓
𝑖 𝑗

𝐼,𝑙,𝑚
(𝑝)

[
𝑖 𝑗

𝐼,𝑙,𝑚
(𝑝)

)}
(3.2.75)

where

𝜎0 = −𝑞𝑖 𝑗𝛼2𝑚𝑘 ≡ −𝑚𝜎2 , 𝑠±,𝐼 ≡
√︃
𝑙 (𝑙 + 1) − 𝑞𝐼

𝑖 𝑗
(𝑞𝐼
𝑖 𝑗
± 1) . (3.2.76)

For 𝑙 ≥ |𝑞𝐼
𝑖 𝑗
| + 1, all modes exist (see Table 3.1) and are massive. Moreover, the masses of

bosons and fermions are paired and the ratio of determinants is 1. The modes with 𝑙 = |𝑞𝐼
𝑖 𝑗
|

exist in all fields if 𝑞𝐼
𝑖 𝑗

≤ −1
2 , whereas they only exist in 𝜙𝑖 𝑗

𝐼
and 𝜓𝑖 𝑗

𝐼
if 𝑞𝐼

𝑖 𝑗
≥ 0. In the

former case, all modes are massive. In the latter case, the field 𝜙𝑖 𝑗
𝐼

has a massless pole and a
massive pole that cancels with that of 𝜓𝑖 𝑗

𝐼
. Provided that 𝑞𝐼

𝑖 𝑗
≤ −1, there exist modes with

𝑙 = |𝑞𝐼
𝑖 𝑗
| − 1 = −𝑞𝐼

𝑖 𝑗
− 1 in [𝑖 𝑗

𝐼
and 𝑓

𝑖 𝑗

𝐼
, such that [𝑖 𝑗

𝐼
is massless while 𝑓 𝑖 𝑗

𝐼
is auxiliary.

To summarize, the quadratic Lagrangian for modes that contain massless poles, and that
of their supersymmetry partners is∑︁
𝑖 𝑗 , 𝐼

{
Θ(𝑞𝐼𝑖 𝑗 )

∑︁
|𝑚 |≤𝑞𝐼

𝑖 𝑗

[
𝑚
𝑖 𝑗
𝜎

(
𝜙
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚
𝑖𝜕𝑡 𝜙

𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

+ 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚
𝜓
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

)
+

���𝜕𝑡𝜙𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

���2 + (3.2.77)

+ 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚
𝑖𝜕𝑡 𝜓

𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

]
+ Θ(−𝑞𝐼𝑖 𝑗 − 1)

∑︁
|𝑚 |≤−𝑞𝐼

𝑖 𝑗
−1

(
[
𝑖 𝑗

𝐼,−𝑞𝐼
𝑖 𝑗
−1,𝑚 𝑖𝜕𝑡 [

𝑖 𝑗

𝐼,−𝑞𝐼
𝑖 𝑗
−1,𝑚 +

�� 𝑓 𝑖 𝑗
𝐼,−𝑞𝐼

𝑖 𝑗
−1,𝑚

��2)} ,
where the 𝑖, 𝑗 dependence of 𝑚𝜎 was made explicit. At low energies 𝑝 ≪ 𝑚

𝑖 𝑗
𝜎 , the quadratic

kinetic term of 𝜙𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

and the kinetic term of 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

can again be neglected. Note that

𝑞𝐼
𝑖 𝑗
≥ 0 does not exclude the possibility that 𝑖 = 𝑗 , in which case 𝑚𝑖 𝑗𝜎 = 0. We might also have
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𝑚
𝑖 𝑗
𝜎 → 0 as 𝛼 → 0.12 In either case, all of 𝜙𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

and 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

would be classically massless.
However, quantum effects would still generically generate supersymmetric terms like

𝑚
𝑖 𝑗

𝜎(q)

(
𝜙
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚
𝑖𝜕𝑡 𝜙

𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

+ 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚
𝜓
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

)
, (3.2.78)

whose superspace expression is (E.2.49). At scales 𝑝 ≪ 𝑚
𝑖 𝑗

𝜎(q), the quadratic kinetic term of
𝜙
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

and the kinetic term of 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

would still be negligible. Therefore, rescaling 𝜙𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

and 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚

by 1/(𝑚𝑖 𝑗𝜎 )1/2 (including quantum corrections), the resulting quadratic effective
Lagrangian is:∑︁

𝑖 𝑗 , 𝐼

[
Θ(𝑞𝐼𝑖 𝑗 )

∑︁
|𝑚 |≤𝑞𝐼

𝑖 𝑗

(
𝜙
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚
𝑖𝜕𝑡 𝜙

𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

+ 𝜓𝑖 𝑗
𝐼,𝑞𝐼

𝑖 𝑗
,𝑚
𝜓
𝑖 𝑗

𝐼,𝑞𝐼
𝑖 𝑗
,𝑚

)
+ (3.2.79)

+ Θ(−𝑞𝐼𝑖 𝑗 − 1)
∑︁

|𝑚 |≤−𝑞𝐼
𝑖 𝑗
−1

(
[
𝑖 𝑗

𝐼,−𝑞𝐼
𝑖 𝑗
−1,𝑚 𝑖𝜕𝑡 [

𝑖 𝑗

𝐼,−𝑞𝐼
𝑖 𝑗
−1,𝑚 +

�� 𝑓 𝑖 𝑗
𝐼,−𝑞𝐼

𝑖 𝑗
−1,𝑚

��2)] .
3.3 The effective quantum mechanics

In this Section, we present the proposed low-energy quantum mechanical model, which is
the result of setting to zero all massive modes in the gauge-fixed 3d Lagrangian while only
keeping the light modes.

The gauge group is U(1)𝑁 and the vector multiplet only contains the gauge fields 𝐴𝑖𝑡 + 𝜎𝑖,
with 𝑖 = 1, . . . , 𝑁 .13 Their role is to impose Gauss’s law. Because of the presence of a Wilson
line of charges 𝑘𝔪𝑖, coming from the 3d Chern-Simons term, Gauss’s law projects onto a
sector of non-vanishing gauge charges.

The matter content consists of various chiral and Fermi multiplets 𝑋 𝑖 𝑗 with charges +1
under U(1)𝑖 ⊂ U(1)𝑁 and −1 under U(1) 𝑗 . They interact with the gauge fields via the
covariant derivative

𝐷+
𝑡 𝑋

𝑖 𝑗 =

(
𝜕𝑡 − 𝑖

(
𝐴𝑖𝑡 + 𝜎𝑖 − 𝐴

𝑗
𝑡 − 𝜎 𝑗

) )
𝑋 𝑖 𝑗 . (3.3.1)

The matter content depends on the fluxes 𝔪𝑖 — determined in (3.1.35) — and 𝔫𝐼 through
the combinations 𝑞𝑖 𝑗 and 𝑞𝐼

𝑖 𝑗
defined in (3.2.28). For every pair of indices 𝑖 𝑗 , from the 3d

vector multiplet we get the following matter multiplets. If 𝑞𝑖 𝑗 ≤ −1, there are 1d chiral

12Indeed 𝑚𝜎 ∼ 𝛼2𝑚𝑘 ∼ 𝛼/𝑅, therefore its scaling is not fixed by the choices we already made.
13In the Wess-Zumino gauge, the only non-vanishing component of the superfield 𝑉 (or equivalently of Ω) is

𝐴𝑡 + 𝜎. See Appendix E.2.1.
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𝐴
𝑖 𝑗

1̄,𝑚 �̃�
𝑖 𝑗
𝑚 𝜙

𝑖 𝑗

𝐼,𝑚
[
𝑖 𝑗

𝐼,𝑚

chiral Fermi chiral Fermi

existence: 𝑞𝑖 𝑗 ≤ −1 𝑞𝑖 𝑗 ≥ 1
2 𝑞𝐼

𝑖 𝑗
≥ 0 𝑞𝐼

𝑖 𝑗
≤ −1

𝑙 |𝑞𝑖 𝑗 | − 1 𝑞𝑖 𝑗 𝑞𝐼
𝑖 𝑗

|𝑞𝐼
𝑖 𝑗
| − 1

𝑅3 0 0 2𝛿3𝐼 2𝛿3𝐼 − 1
𝑞1 0 0 𝛿1𝐼 − 𝛿3𝐼 𝛿1𝐼 − 𝛿3𝐼
𝑞2 0 0 𝛿2𝐼 − 𝛿3𝐼 𝛿2𝐼 − 𝛿3𝐼

Table 3.2 Matter multiplets (we indicate the bottom components) for indices 𝑖 𝑗 and their
representations under the global symmetries. We label the SU(2) representation by the
highest weight 𝑙 ∈ Z/2. The charges of the lowest components in each multiplet are indicated,
while their superpartners have R-charges 𝑅3 which are shifted by −1.

multiplets Ξ𝑖 𝑗1̄,𝑚 =
(
𝐴
𝑖 𝑗

1̄,𝑚,Λ
𝑖 𝑗

1̄,𝑚
)

in the SU(2) representation of highest weight 𝑙 = −𝑞𝑖 𝑗 − 1.
Otherwise, if 𝑞𝑖 𝑗 ≥ 1

2 , there are 1d Fermi multiplets 𝐶𝑖 𝑗𝑚 =
(
�̃�
𝑖 𝑗
𝑚 , 𝑔

𝑖 𝑗
𝑚

)
with 𝑙 = 𝑞𝑖 𝑗 . Here we

introduced the auxiliary fields 𝑔𝑖 𝑗𝑚 , even though they are not present in the 3d theory, to make
off-shell supersymmetry manifest. From the 3d chiral multiplet with flavor index 𝐼, we get
1d chiral multiplets Φ

𝑖 𝑗

𝐼,𝑚
=

(
𝜙
𝑖 𝑗

𝐼,𝑚
, 𝜓

𝑖 𝑗

𝐼,𝑚

)
with 𝑙 = 𝑞𝐼

𝑖 𝑗
if 𝑞𝐼

𝑖 𝑗
≥ 0, and otherwise 1d Fermi

multiplets Y 𝑖 𝑗
𝐼,𝑚

=
(
[
𝑖 𝑗

𝐼,𝑚
, 𝑓

𝑖 𝑗

𝐼,𝑚

)
with 𝑙 = −𝑞𝐼

𝑖 𝑗
− 1 if 𝑞𝐼

𝑖 𝑗
≤ −1. We summarize this content in

Table 3.2, where we also list the representations and charges of each multiplet under the
global symmetries SU(2), U(1)2

𝐹
and U(1)𝑅.

In addition to gauge interactions, other interactions are specified by 𝐸 and 𝐽 superpotentials.
We have as many 𝐸 and 𝐽 functions as there are Fermi multiplets. For a given Fermi multiplet
[, 𝐸 is in the same gauge and flavor representation as [, and its R-charge is 𝑅([) + 1. On
the contrary, 𝐽 is in the conjugate gauge and flavor representation with respect to [, and its
R-charge is −𝑅([) + 1. We find that the 𝐸 and 𝐽 functions are zero for the Fermi multiplets
�̃�
𝑖 𝑗
𝑚 . For the Fermi multiplets [𝑖 𝑗

𝐼,𝑚
, the 𝐸 and 𝐽 superpotentials are:

𝐸
𝑖 𝑗

𝐼,𝑚
= 𝑖

∑︁
𝑘

[
Θ(𝑞𝐼𝑘 𝑗 )

∑︁
|𝑚′ |≤𝑞𝐼

𝑘 𝑗

𝑒
𝑘 𝑗

1d
√︃

2𝑞𝐼
𝑘 𝑗
+1 𝐶

( |𝑞𝑖𝑘 |−1 𝑞𝐼
𝑘 𝑗

|𝑞𝐼
𝑖 𝑗
|−1

𝑚−𝑚′ 𝑚′ 𝑚

)
𝐴𝑖𝑘1̄,𝑚−𝑚′ 𝜙

𝑘 𝑗

𝐼,𝑚′+

− Θ(𝑞𝐼𝑖𝑘 )
∑︁

|𝑚′ |≤𝑞𝐼
𝑖𝑘

𝑒𝑖𝑘1d
√

2𝑞𝐼
𝑖𝑘
+1 𝐶

( |𝑞𝑘 𝑗 |−1 𝑞𝐼
𝑖𝑘

|𝑞𝐼
𝑖 𝑗
|−1

𝑚−𝑚′ 𝑚′ 𝑚

)
𝜙𝑖𝑘𝐼,𝑚′ 𝐴

𝑘 𝑗

1̄,𝑚−𝑚′

]
, (3.3.2)
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𝐽
𝑗𝑖

𝐼,−𝑚 = −
∑︁
𝐽𝐾, 𝑘

𝜖𝐼𝐽𝐾 Θ(𝑞𝐽𝑗 𝑘 ) Θ(𝑞𝐾𝑘𝑖)×

×
∑︁

|𝑚′ |≤𝑞𝐽
𝑗𝑘

|𝑚+𝑚′ |≤𝑞𝐾
𝑘𝑖

_
𝑗 𝑘𝑖

1d

√︂
(2𝑞𝐽

𝑗𝑘
+1) (2𝑞𝐾

𝑘𝑖
+1)

2|𝑞𝐼
𝑖 𝑗
|−1 (−1)−𝑞

𝐼
𝑖 𝑗
−1−𝑚

𝐶
( 𝑞𝐽

𝑗𝑘
𝑞𝐾
𝑘𝑖

|𝑞𝐼
𝑖 𝑗
|−1

𝑚′ −𝑚−𝑚′ −𝑚

)
𝜙
𝑗 𝑘

𝐽,𝑚′ 𝜙
𝑘𝑖
𝐾,−𝑚−𝑚′ , (3.3.3)

where 𝐶
(
𝑙 𝑙′ 𝑙′′
𝑚 𝑚′ 𝑚′′

)
are the Clebsch-Gordan coefficients given in (D.23) and we defined

𝑒
𝑖 𝑗

1d =
1

𝑅

√︃
𝑘 𝑚

𝑖 𝑗
𝜎

, _
𝑖 𝑗 𝑘

1d =
_3d

𝑅

√︃
4𝜋 𝑚𝑖 𝑗𝜎 𝑚 𝑗 𝑘

𝜎

. (3.3.4)

The sign (−1)−𝑞
𝐼
𝑖 𝑗
−1−𝑚 in the J-term is necessary for SU(2) invariance. The term 𝐸

𝑖 𝑗

𝐼
in

(3.3.2) exists for 𝑞𝐼
𝑖 𝑗
≤ −1, then the condition 𝑞𝐼

𝑘 𝑗
≥ 0 in the first line guarantees that 𝐴𝑖 𝑗1̄

and 𝜙𝑘 𝑗
𝐼

both exist, and the condition 𝑞𝐼
𝑖𝑘
≥ 0 in the second line guarantees that 𝜙𝑖𝑘

𝐼
and 𝐴𝑘 𝑗1̄

both exist. Also the term 𝐽
𝑗𝑖

𝐼
in (3.3.3) exists for 𝑞𝐼

𝑖 𝑗
≤ −1, which is guaranteed by the two

conditions 𝑞𝐽
𝑗 𝑘

≥ 0, 𝑞𝐾
𝑘𝑖
≥ 0 on the RHS. The E-term comes from the reduction of (3.2.16)

whereas the J-term from the reduction of the 3d superpotential (3.1.11). One can check, by
substituting (D.25) and relabeling the indices, that∑︁

𝑖 𝑗 , 𝐼

Θ
(
−𝑞𝐼𝑖 𝑗 − 1

) ∑︁
|𝑚 |≤−𝑞𝐼

𝑖 𝑗
−1

𝐸
𝑖 𝑗

𝐼,𝑚
𝐽
𝑗𝑖

𝐼,−𝑚 = 0 , (3.3.5)

which is required for supersymmetry. The couplings 𝑒1d and _1d are obtained by tree-level
matching.

The complete Lagrangian in terms of the 𝐸 and 𝐽 given above is:

LQM = 𝑘
∑︁
𝑖

𝔪𝑖

(
𝐴𝑖𝑡 + 𝜎𝑖

)
+

∑︁
𝑖 𝑗

{
Θ(𝑞𝑖 𝑗 − 1)

∑︁
|𝑚 |≤𝑞𝑖 𝑗−1

(
𝐴
𝑗𝑖

1̄,𝑚 𝑖𝐷
+
𝑡 𝐴

𝑗𝑖

1̄,𝑚 + Λ
𝑗𝑖

1̄,𝑚 Λ
𝑗𝑖

1̄,𝑚

)
+ (3.3.6)

+ Θ(𝑞𝑖 𝑗−1
2 )

∑︁
|𝑚 |≤𝑞𝑖 𝑗

(
�̃�
𝑖 𝑗
𝑚 𝑖𝐷

+
𝑡 �̃�

𝑖 𝑗
𝑚 +

��𝑔𝑖 𝑗𝑚 ��2) + ∑︁
𝐼

[
Θ(𝑞𝐼𝑖 𝑗 )

∑︁
|𝑚 |≤𝑞𝐼

𝑖 𝑗

(
𝜙
𝑖 𝑗

𝐼,𝑚
𝑖𝐷+

𝑡 𝜙
𝑖 𝑗

𝐼,𝑚
+ 𝜓𝑖 𝑗

𝐼,𝑚
𝜓
𝑖 𝑗

𝐼,𝑚

)
+

+ Θ(−𝑞𝐼𝑖 𝑗 − 1)
∑︁

|𝑚 |≤−𝑞𝐼
𝑖 𝑗
−1

(
[
𝑖 𝑗

𝐼,𝑚
𝑖𝐷+

𝑡 [
𝑖 𝑗

𝐼,𝑚
+

�� 𝑓 𝑖 𝑗
𝐼,𝑚

��2 − ��𝐸 𝑖 𝑗
𝐼,𝑚

��2 − [𝑖 𝑗
𝐼,𝑚
𝑄𝐸

𝑖 𝑗

𝐼,𝑚
−𝑄 𝐸 𝑖 𝑗

𝐼,𝑚
[
𝑖 𝑗

𝐼,𝑚
+

− 𝑓
𝑖 𝑗

𝐼,𝑚
𝐽
𝑗𝑖

𝐼,−𝑚 − 𝐽 𝑗𝑖
𝐼,−𝑚 𝑓

𝑖 𝑗

𝐼,𝑚
− [𝑖 𝑗

𝐼,𝑚
𝑄𝐽

𝑗𝑖

𝐼,−𝑚 −𝑄 𝐽 𝑗𝑖
𝐼,−𝑚 [

𝑖 𝑗

𝐼,𝑚

)]}
,
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where 𝑖, 𝑗 = 1, . . . , 𝑁 whereas 𝐼 = 1, 2, 3. Note that both bosons and fermions have at most
1-derivative kinetic terms. The Lagrangian can be more compactly written in superspace:

LQM =

∫
𝑑\𝑑\

{
𝑘
∑︁
𝑖

𝔪𝑖𝑉
𝑖 +

∑︁
𝑖 𝑗

[
Θ(𝑞𝑖 𝑗 − 1)

∑︁
|𝑚 |≤𝑞𝑖 𝑗−1

Ξ
𝑗𝑖

1̄,𝑚Ξ
𝑗𝑖

1̄,𝑚 + Θ(𝑞𝑖 𝑗−1
2 )

∑︁
|𝑚 |≤𝑞𝑖 𝑗

𝐶
𝑖 𝑗
𝑚𝐶

𝑖 𝑗
𝑚+

+
∑︁
𝐼

(
Θ(𝑞𝐼𝑖 𝑗 )

∑︁
|𝑚 |≤𝑞𝐼

𝑖 𝑗

Φ
𝑖 𝑗

𝐼,𝑚
Φ
𝑖 𝑗

𝐼,𝑚
+ Θ(−𝑞𝐼𝑖 𝑗 − 1)

∑︁
|𝑚 |≤−𝑞𝐼

𝑖 𝑗
−1

Y 𝑖 𝑗
𝐼,𝑚

Y 𝑖 𝑗
𝐼,𝑚

)]}
+

+
∑︁
𝑖 𝑗 , 𝐼

Θ(−𝑞𝐼𝑖 𝑗 − 1)
∑︁

|𝑚 |≤−𝑞𝐼
𝑖 𝑗
−1

{∫
𝑑\ Y 𝑖 𝑗

𝐼,𝑚
𝐽
𝑗𝑖

𝐼,−𝑚 (Φ) +
∫

𝑑\ Y 𝑖 𝑗
𝐼,𝑚

𝐽
𝑗𝑖

𝐼,−𝑚 (Φ)
}
.

(3.3.7)

Here we promoted the scalar fields in 𝐽 to be chiral superfields.
The observables of the 3d theory include the gauge-invariant operators. After gauge fixing

by 𝑠Ψgf, they are the BRST-closed operators, invariant under the residual gauge symmetry,
and with ghost number 𝑛𝑔 = 0. The further addition of QΨgf to the Lagrangian does not
modify their correlators, see (3.2.59). When we go to the effective 1d description (3.3.6),
the ghost field 𝑐 is completely integrated out. Any operator containing �̃� 𝑖 𝑗𝑚 should not be
regarded as a physical observable, because it will have 𝑛𝑔 < 0. For instance, one might have
noticed that the Lagrangian (3.3.6) has a large number of additional global U(1) symmetries
that rotate each �̃� 𝑖 𝑗𝑚 independently. However, their currents are not physical observables
(because they are constructed with �̃� 𝑖 𝑗𝑚 ), and indeed the symmetries act trivially on the sector
of physical observables.14 They should not be regarded as emergent symmetries of the
physical theory. On the other hand, all operators constructed from the fields of the low-energy
1d description other than �̃� 𝑖 𝑗𝑚 and invariant under U(1)𝑁 , are physical observables. This is
because the BRST transformations of the physical fields 𝑋 are 𝑠𝑋 = 𝛿gauge(𝑐)𝑋 , but 𝑐 is
massive and set to zero in the low-energy description.

3.3.1 Quantum mechanics 1-loop determinants and the Witten index

A simple check that we can perform of the proposed 1d quantum mechanics (3.3.7) is that its
Witten index matches the topologically twisted index of the 3d theory, at leading order in the
large 𝑁 expansion. This ensures that its ground-state degeneracy reproduces the entropy of
BPS black holes.

14In view of holographic applications of the low-energy quantum mechanics, one should not expect the extra
symmetries to appear as gauge fields in AdS2.
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The Witten index of N = 2 supersymmetric quantum mechanics is defined in the same
way as the topologically twisted index in (3.1.20). In the Lagrangian formulation, the
chemical potentials Δ𝐼 are introduced as twisted boundary conditions on the fields. For a
class of these models, the Witten index has been computed in [217] (see also [223,224]), and
it takes a Jeffrey-Kirwan contour integral form as in (3.1.21). We want to make sure that the
quantum mechanics (3.3.7) reproduces the integrand in (3.1.21) for the value of 𝔪𝑖 singled
out by the saddle-point approximation.

After fixing the 1d gauge 𝜕𝑡
(
𝐴𝑖𝑡 + 𝜎𝑖

)
= 0, the Wilson line gives a classical contribution

exp
(
2𝜋𝑖

∑
𝑖 𝑘𝔪𝑖𝑢𝑖

)
, where 2𝜋𝑢 is the constant mode of the Wick-rotated 𝐴𝑡 + 𝜎. The chirals

Ξ1̄ and Fermi’s 𝐶 coming from the 3d vector multiplet contribute to the 1-loop determinant as

ZΞ1̄ =
∏
𝑖≠ 𝑗

(
𝑒𝜋𝑖 𝑢𝑖 𝑗

1 − 𝑒2𝜋𝑖𝑢𝑖 𝑗

)Θ(−𝑞𝑖 𝑗−1) (−2𝑞𝑖 𝑗−1)
, Z𝐶 =

∏
𝑖≠ 𝑗

(
𝑒2𝜋𝑖𝑢𝑖 𝑗 − 1
𝑒𝜋𝑖 𝑢𝑖 𝑗

)Θ(𝑞𝑖 𝑗 ) (2𝑞𝑖 𝑗+1)
,

(3.3.8)
where 𝑢𝑖 𝑗 = 𝑢𝑖 − 𝑢 𝑗 . The exponents come from the 2𝑙 + 1 degeneracy in each SU(2)
representation of highest weight 𝑙, and the Θ functions ensure that nontrivial contributions
only enter when the multiplets exist. Recalling that 𝑞𝑖 𝑗 ≠ 0 for 𝑖 ≠ 𝑗 , their product simplifies:

ZΞ1̄ Z𝐶 = (−1)
𝑁 (𝑁−1)

2
∏
𝑖≠ 𝑗

(
1 − 𝑧𝑖

𝑧 𝑗

)
, (3.3.9)

where 𝑧𝑖 = 𝑒2𝜋𝑖𝑢𝑖 . The result above matches (up to an inconsequential sign) the 1-loop
determinant of a 3d vector multiplet given in [72] and appearing in (3.1.21).15 As opposed to
the indirect Higgsing argument which was used in [72], the result here provides an explicit
derivation based on a careful gauge-fixing procedure. This computation shows that the
ghost multiplet 𝐶𝑖 𝑗 appearing in the quantum mechanics is needed to reproduce the correct
degeneracy of BPS states. Lastly, the chirals Φ𝐼 and Fermi’s Y𝐼 coming from the 3d chiral
multiplets contribute to the 1-loop determinant as

ZΦ𝐼 =
∏
𝑖, 𝑗

(
𝑒𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

1 − 𝑒2𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

)Θ(𝑞𝐼
𝑖 𝑗
) (2𝑞𝐼

𝑖 𝑗
+1)
, ZY𝐼 =

∏
𝑖, 𝑗

(
1 − 𝑒2𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

𝑒𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

)Θ(−𝑞𝐼
𝑖 𝑗
−1) (−2𝑞𝐼

𝑖 𝑗
−1)
,

(3.3.10)

15The 1-loop determinant of a Fermi multiplet has a sign ambiguity coming from the assignment of fermion
number to states in the fermionic Fock space. We have fixed this ambiguity in a specific way to get (3.3.9), but
different conventions are possible. Notice, for example, the different choice made in (3.3.10).



78 A quantum mechanics for magnetic horizons

where 2𝜋Δ𝐼 is the (off-shell) background flavor gauge field (𝐴𝑡 + 𝜎) 𝐼 . Their product is

ZΦ𝐼ZY𝐼 =
∏
𝑖, 𝑗

(
𝑒𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

1 − 𝑒2𝜋𝑖(𝑢𝑖 𝑗+Δ𝐼 )

)2𝑞𝐼
𝑖 𝑗
+1

=
𝑦
𝑁2 (𝔫𝐼+1)/2
𝐼

(1 − 𝑦𝐼)𝑁 (𝔫𝐼+1)

∏
𝑖≠ 𝑗

(
𝑧𝑖 − 𝑦𝐼 𝑧 𝑗
𝑧 𝑗 − 𝑦𝐼 𝑧𝑖

)𝔪𝑖
(
1 − 𝑦𝐼

𝑧𝑖

𝑧 𝑗

)−𝔫𝐼−1
,

(3.3.11)

where 𝑦𝐼 = 𝑒2𝜋𝑖Δ𝐼 . The complete integrand is thus

Ztot = 𝑒
2𝜋𝑖𝑘

∑
𝑖 𝔪𝑖𝑢𝑖 ZΞZ𝐶

∏
𝐼

ZΦ𝐼 ZY𝐼 , (3.3.12)

matching the integrand in (3.1.21). This guarantees that a large 𝑁 saddle-point computation
of the 3d topologically twisted index matches a saddle-point computation of the 1d Witten
index.

3.4 Stability under quantum corrections

The gauge-fixing action 𝛿Ψgf preserves the real supercharge 𝛿, U(1)2
𝐹
, and SU(2). We first

use the 𝛿 invariance of the full action to show that the fermion �̃� 𝑖 𝑗𝑚 only has gauge interactions.
This allows us to focus on fields other than �̃� 𝑖 𝑗𝑚 . Although the gauge fixing breaks 𝑄, 𝑄,
and U(1)𝑅, we will then give arguments for why they should be preserved in the effective
action. The key observation will be (3.2.59). Finally, we will use all the symmetries 𝑄, 𝑄,
U(1)2

𝐹
, U(1)𝑅 and SU(2) to discuss which classical and quantum corrections to the quantum

mechanics computed in Section 3.3 one could expect.

3.4.1 Interactions involving �̃�

Using the fermionic symmetry 𝛿, we can argue that the part of the Lagrangian involving
the fermions �̃� 𝑖 𝑗𝑚 cannot be anything other than (3.3.6) at low energies. Let ⟨·⟩𝛿 denote the
gauge-fixed path integral, as in (3.2.59). For 𝑖, 𝑗 such that 𝑞𝑖 𝑗 > 0, we consider the quantity〈

�̃�
𝑖 𝑗
𝑚 (𝑡) 𝐷+

𝑡 �̃�
𝑖 𝑗
𝑚 (𝑡′)

〉
𝛿
=

〈
�̃�
𝑖 𝑗
𝑚 (𝑡) 𝛿𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
−

〈
�̃�
𝑖 𝑗
𝑚 (𝑡) 𝛿gauge(𝑅) �̃� 𝑖 𝑗𝑚 (𝑡′)

〉
𝛿

≈
〈
�̃�
𝑖 𝑗
𝑚 (𝑡) 𝛿𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
.

(3.4.1)

Here 𝑏𝑖 𝑗𝑚 is the 𝑙 = 𝑞𝑖 𝑗 mode of the auxiliary field 𝑏 in the gauge-fixing complex. In the first
equality, we used (3.2.45) and (3.2.54). The approximate equality ≈ only holds in the IR
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limit because the term that was discarded is a correlation function involving massive ghosts 𝑐
in 𝑅 = −{𝑐, 𝑐}𝔯/2, which is exponentially suppressed at large 𝑡 − 𝑡′. We continue using the
Leibniz rule on 𝛿 and the fact that 𝛿-exact correlators vanish, to write〈

�̃�
𝑖 𝑗
𝑚 (𝑡) 𝛿𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
= −

〈
𝛿�̃�

𝑖 𝑗
𝑚 (𝑡) 𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
= 𝑖

〈
𝑏
𝑖 𝑗
𝑚 (𝑡) 𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
. (3.4.2)

The path integral over 𝑏𝑖 𝑗𝑚 is quadratic and can be done exactly, yielding〈
�̃�
𝑖 𝑗
𝑚 (𝑡) 𝐷+

𝑡 �̃�
𝑖 𝑗
𝑚 (𝑡′)

〉
𝛿
≈ 𝑖

〈
𝑏
𝑖 𝑗
𝑚 (𝑡) 𝑏𝑖 𝑗𝑚 (𝑡′)

〉
𝛿
= −𝛿(𝑡 − 𝑡′) + 𝑖

〈
O𝐻 (𝑡)O𝐻 (𝑡′)

〉
𝛿
≈ −𝛿(𝑡 − 𝑡′) ,

(3.4.3)
where

O𝐻 =

√︂
𝑞𝑖 𝑗

b𝑅2 𝐴
𝑖 𝑗

1,𝑞𝑖 𝑗 ,𝑚 − 𝑒3d
𝑅

{�̃�, 𝑐}𝑖 𝑗
𝑙=𝑞𝑖 𝑗 ,𝑚

. (3.4.4)

The expression {�̃�, 𝑐}𝑖 𝑗
𝑙=𝑞𝑖 𝑗 ,𝑚

stands for the
(
𝑙 = 𝑞𝑖 𝑗 , 𝑚

)
mode of {�̃�, 𝑐}𝑖 𝑗 . Both terms insideO𝐻

contain massive fields only, therefore
〈
O𝐻 (𝑡)O𝐻 (𝑡′)

〉
𝛿

is exponentially suppressed at large
distances and the approximation holds to increasing accuracy in the IR. Using only symmetry
arguments for 𝛿, we have shown that �̃� 𝑖 𝑗𝑚 must satisfy the Schwinger-Dyson equation derived
from (3.3.6) in the IR limit. Any modification of (3.3.6) containing �̃� 𝑖 𝑗𝑚 would change the
Schwinger-Dyson equation, and can thus be excluded.

3.4.2 Presence of N = 2 supersymmetry and R-symmetry

Having taken care of �̃� 𝑖 𝑗𝑚 , we want to constrain the effective Lagrangian for the remaining
fields. Here we show that in the IR it must preserve 1d N = 2 supersymmetry and U(1)𝑅,
even though these symmetries are broken by the gauge-fixing term 𝛿Ψgf.

First, we show that the Ward identities for the supercharges 𝑄 and 𝑄 are satisfied on
correlators O constructed from 1d fields excluding �̃� 𝑖 𝑗𝑚 , which are modes of physical fields in
3d. More precisely, we show that ⟨𝑄O⟩𝛿 ≈ 0 (and analogously for𝑄). As before, approximate
equalities ≈ hold in the IR limit. Firstly, since O is constructed from modes of physical fields,
it has 𝑛𝑔 = 0, and the same goes for 𝑄O. Then (3.2.59) tells us that ⟨𝑄O⟩𝛿 = ⟨𝑄O⟩𝑠. It
remains to show that ⟨𝑄O⟩𝑠 ≈ 0.

We then follow the standard procedure to derive a Ward identity. In the path integral
⟨O⟩𝑠 we perform a field redefinition 𝑋′ = 𝑋 + 𝜖 𝑄𝑋 on physical fields 𝑋 in the form of
a supersymmetry transformation, while keeping the fields 𝑌 in the gauge-fixing complex
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unchanged. Let 𝑆ph be the original action before gauge fixing. At first order in 𝜖 we get

⟨O⟩𝑠 =
∫

D𝜙 O 𝑒𝑖(𝑆ph+𝑠Ψgf) =
∫

D𝜙
(
O + 𝜖 𝑄O

)
𝑒𝑖(𝑆ph+𝑠Ψgf)−𝑖𝜖 𝑠 𝑄Ψgf

= ⟨O⟩𝑠 + 𝜖
(
⟨𝑄O⟩𝑠 − 𝑖⟨O 𝑠 𝑄Ψgf⟩𝑠

)
+ . . .

(3.4.5)

Suppose that O is fermionic so that ⟨𝑄O⟩𝑠 ≈ 0 is a non-trivial statement. At order 𝜖 , that
equality implies

⟨𝑄O⟩𝑠 = 𝑖⟨O 𝑠 𝑄Ψgf⟩𝑠 = 𝑖
〈
(𝑠O) (𝑄Ψgf)

〉
𝑠
= 𝑖

〈(
𝛿gauge(𝑐)O

)
(𝑄Ψgf)

〉
𝑠
≈ 0 . (3.4.6)

We used that
〈
𝑠(O𝑄Ψgf)

〉
𝑠
= 0 because the action 𝑆ph + 𝑠Ψgf is 𝑠-closed. In the last step, 𝑐

is massive and therefore its correlators vanish in the IR. We can now use (3.2.59) to conclude
that ⟨𝑄O⟩𝛿 = ⟨𝑄O⟩𝑠 ≈ 0.

The Ward identity for U(1)𝑅 can be derived with much less work. Any O built out of 1d
fields excluding �̃� 𝑖 𝑗𝑚 has 𝑛𝑔 = 0, and ⟨O⟩𝛿 = ⟨O⟩𝑠 by (3.2.59). Since 𝑠Ψgf is U(1)𝑅 invariant,
⟨O⟩𝑠 = 0 if O has nonzero R-charge. Therefore ⟨O⟩𝛿 = 0 if O has nonzero R-charge.

Given the above Ward identities, any effective action in the IR should have 1d N = 2
supersymmetry and U(1)𝑅 symmetry. For U(1)𝑅, we can see this in the following way (the
argument for supersymmetry is analogous). Formally, the exact effective action for the fields
in the quantum mechanics is given by

𝑒𝑖(𝑆0+
∑
𝑟≠0 𝑆𝑟) =

∫
D𝜙𝐻 𝑒𝑖(𝑆ph+𝛿Ψgf) , (3.4.7)

where 𝑆𝑟 , 𝑟 ∈ Z are pieces of the effective action with R-charge 𝑟, and 𝜙𝐻 are the massive
fields which are integrated out. Note that the U(1)𝑅 violating pieces 𝑆𝑟≠0 can in principle be
generated because 𝛿Ψgf breaks U(1)𝑅. However, the presence of any 𝑆𝑟≠0 would generically
violate the U(1)𝑅 Ward identities. Indeed, suppose 𝑆𝑟 is present for some 𝑟 ≠ 0 and consider
an operator O with R-charge −𝑟 which is constructed out of the fields 𝜙𝐿 in the quantum
mechanics excluding �̃� 𝑖 𝑗𝑚 . The Ward identities tell us that ⟨O⟩𝛿 = 0. However, computing
⟨O⟩𝛿 directly gives:

⟨O⟩𝛿 =
∫

D𝜙𝐿 O 𝑒𝑖(𝑆0+𝑆𝑟 ) =
∞∑︁
𝑛=0

𝑖𝑛

𝑛!

∫
D𝜙𝐿 O 𝑆𝑛𝑟 𝑒

𝑖𝑆0 = 𝑖

∫
D𝜙𝐿 O 𝑆𝑟 𝑒

𝑖𝑆0 ≠ 0 . (3.4.8)

We used that 𝑆0 is U(1)𝑅 invariant, while O and O𝑆𝑛≥2
𝑟 have nonzero R-charge. The operator

O𝑆𝑟 has zero R-charge and its expectation value is generically nonzero.
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3.4.3 Symmetry constraints

We can use U(1)𝑅,𝑄, and𝑄, together with the other symmetries, to constrain the interactions
that could appear in the effective action. We work within the framework of [217] (see
also [225]), where the interactions in an N = 2 supersymmetric quantum mechanics are
specified by 𝐸 and 𝐽 functions, i.e., holomorphic functions of chiral superfields satisfying
(3.3.5). The argument in Section 3.4.1 tells us that the 𝐸 and 𝐽 functions corresponding to 𝐶
must vanish in the IR:

𝐸
𝑖 𝑗

𝐶,𝑚
= 0 , 𝐽

𝑗𝑖

𝐶,−𝑚 = 0 . (3.4.9)

Besides, 𝐶 cannot appear in the E- and J-terms of the other Fermi multiplets Y𝐼 . Since it is
already true classically that 𝐷Y𝐼 ≠ 0 for every Y𝐼 , one expects that Y𝐼’s cannot appear in 𝐸
or 𝐽 functions either, because quantum corrections would need to be finely tuned to make
them chiral. Therefore, 𝐸 and 𝐽 functions can only be holomorphic functions of Φ𝐼 and Ξ1̄.

Let us neglect gauge charges and SU(2) invariance momentarily, and suppress the
corresponding indices. To have the same U(1)2

𝐹
charges as Y𝐼 and R-charge 𝑅(Y𝐼) + 1, the 𝐸

function corresponding to Y𝐼 must have the simple form

𝐸𝐼 ∼ Φ𝐼 ℎ𝐸 (Ξ1̄) , (3.4.10)

where ℎ𝐸 is a holomorphic function. Fleshing out the gauge and SU(2) indices, we enforce
that 𝐸 𝑖 𝑗

𝐼,𝑚
have the same gauge charges and be in the same SU(2) representation as Y 𝑖 𝑗

𝐼,𝑚
.

Imposing those conditions on the constant term in ℎ𝐸 , we get 𝐸 𝑖 𝑗
𝐼,𝑚

∼ Φ
𝑖 𝑗

𝐼,𝑚
. However, such a

term is impossible because Y 𝑖 𝑗
𝐼,𝑚

(and therefore 𝐸 𝑖 𝑗
𝐼,𝑚

) exists when 𝑞𝐼
𝑖 𝑗
≤ −1, while Φ𝑖 𝑗

𝐼,𝑚
exists

when 𝑞𝐼
𝑖 𝑗
≥ 0. The two conditions are mutually exclusive.16 We remain with terms in ℎ𝐸

which are at least linear in Ξ1̄. Writing the first term explicitly, we find:

𝐸
𝑖 𝑗

𝐼,𝑚
=

∑︁
𝑘

𝑒
𝑖 𝑗

𝐼,𝑘
Θ(𝑞𝐼𝑘 𝑗 )

∑︁
|𝑚′ |≤𝑞𝐼

𝑘 𝑗

𝐶
( |𝑞𝑖𝑘 |−1 𝑞𝐼

𝑘 𝑗
|𝑞𝐼
𝑖 𝑗
|−1

𝑚−𝑚′ 𝑚′ 𝑚

)
Ξ𝑖𝑘1̄,𝑚−𝑚′ Φ

𝑘 𝑗

𝐼,𝑚′+

+
∑︁
𝑘

�̃�
𝑖 𝑗

𝐼,𝑘
Θ(𝑞𝐼𝑖𝑘 )

∑︁
|𝑚′ |≤𝑞𝐼

𝑖𝑘

𝐶
( |𝑞𝑘 𝑗 |−1 𝑞𝐼

𝑖𝑘
|𝑞𝐼
𝑖 𝑗
|−1

𝑚−𝑚′ 𝑚′ 𝑚

)
Φ𝑖𝑘
𝐼,𝑚′ Ξ

𝑘 𝑗

1̄,𝑚−𝑚′ + . . . (3.4.11)

TheΘ functions are necessary to ensure that the fieldsΦ𝐼 andΞ1̄ exist with their corresponding
gauge charges. The Clebsch-Gordan coefficients project the product of Ξ1̄ and Φ𝐼 to the
same SU(2) representation carried by 𝐸 𝑖 𝑗

𝐼,𝑚
, i.e., 𝑙 = |𝑞𝐼

𝑖 𝑗
| − 1. Finally, 𝑒𝑖 𝑗

𝐼,𝑘
and �̃� 𝑖 𝑗

𝐼,𝑘
are

16Because of this, the chirals and Fermi’s in the quantum mechanics cannot gap each other out through a
dynamically generated E-term.
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free coefficients. Analogously, terms of the form Φ𝐼 (Ξ1)𝑛≥2 should contain a product of 𝑛
Clebsch-Gordan coefficients and balanced gauge indices.

When constraining the functions 𝐽𝐼 corresponding to Y𝐼 , we again start with U(1)2
𝐹

and
U(1)𝑅. Now, 𝐽𝐼 must have the opposite U(1)2

𝐹
charges to Y𝐼 , and R-charge −𝑅(Y𝐼) + 1. Thus

𝐽𝐼 must have the form
𝐽𝐼 ∼ Φ𝐽 Φ𝐾 ℎ𝐽 (Ξ1̄) , (3.4.12)

where 𝐽 and 𝐾 are different flavor indices complementary to 𝐼. Again, ℎ𝐽 is a holomorphic
function. We should impose the gauge and SU(2) invariance. Expanding ℎ𝐽 as a polynomial
in Ξ1̄ and writing the first (constant) term explicitly, we have

𝐽
𝑗𝑖

𝐼,−𝑚 =
∑︁
𝑘

[
_
𝑗𝑖

𝐼,𝑘√︃
2|𝑞𝐼

𝑖 𝑗
|−1

Θ(𝑞𝐽𝑗 𝑘 )Θ(𝑞𝐾𝑘𝑖)
∑︁

|𝑚′ |≤𝑞𝐽
𝑗𝑘

|𝑚+𝑚′ |≤𝑞𝐾
𝑘𝑖

(−1)−𝑞
𝐼
𝑖 𝑗
−1−𝑚

𝐶
( 𝑞𝐽

𝑗𝑘
𝑞𝐾
𝑘𝑖

|𝑞𝐼
𝑖 𝑗
|−1

𝑚′ −𝑚−𝑚′ −𝑚

)
Φ
𝑗 𝑘

𝐽,𝑚′Φ
𝑘𝑖
𝐾,−𝑚−𝑚′+

+
_̃
𝑗𝑖

𝐼,𝑘√︃
2|𝑞𝐼

𝑖 𝑗
|−1

Θ(𝑞𝐾𝑗𝑘 ) Θ(𝑞𝐽𝑘𝑖)
∑︁

|𝑚′ |≤𝑞𝐾
𝑗𝑘

|𝑚+𝑚′ |≤𝑞𝐽
𝑘𝑖

(−1)−𝑞
𝐼
𝑖 𝑗
−1−𝑚

𝐶
( 𝑞𝐾

𝑗𝑘
𝑞𝐽
𝑘𝑖

|𝑞𝐼
𝑖 𝑗
|−1

𝑚′ −𝑚−𝑚′ −𝑚

)
Φ
𝑗 𝑘

𝐾,𝑚′ Φ
𝑘𝑖
𝐽,−𝑚−𝑚′

]
+ ...

(3.4.13)

The indices 𝐽 and 𝐾 above are chosen such that 𝜖 𝐼𝐽𝐾 = 1, and the factor 1/
√︃

2|𝑞𝑖 𝑗
𝐼
|−1 was added

for later convenience. Similarly to the 𝐸 function, there are two unfixed coefficients _ 𝑗𝑖
𝐼,𝑘

and
_̃
𝑗𝑖

𝐼,𝑘
. Terms of the form Φ𝐽Φ𝐾 (Ξ1̄)𝑛≥1 should contain a product of 𝑛 + 1 Clebsch-Gordan

coefficients and gauge indices should be balanced.
Lastly, supersymmetry requires (3.3.5). If we restrict 𝐸 𝑖 𝑗

𝐼,𝑚
and 𝐽 𝑗𝑖

𝐼,−𝑚 to the terms written
explicitly in (3.4.11) and (3.4.13), this condition implies

𝑒
𝑖 𝑗

𝐼,𝑘
_
𝑗𝑖

𝐼,𝑙
+ �̃� 𝑙𝑘𝐾,𝑖 _

𝑘𝑙
𝐾, 𝑗 = 0 if 𝜖 𝐼𝐽𝐾 = 1 and Θ(𝑞𝐼𝑘 𝑗 ) Θ(𝑞𝐽𝑗 𝑙) Θ(𝑞𝐾𝑙𝑖 ) = 1 ,

𝑒
𝑖 𝑗

𝐼,𝑘
_̃
𝑗𝑖

𝐼,𝑙
+ �̃� 𝑙𝑘𝐽,𝑖 _̃

𝑘𝑙
𝐽, 𝑗 = 0 if 𝜖 𝐼𝐽𝐾 = 1 and Θ(𝑞𝐼𝑘 𝑗 ) Θ(𝑞𝐾𝑗𝑙) Θ(𝑞𝐽𝑙𝑖) = 1 .

(3.4.14)

Note that none of the indices above are summed over. The coefficients in (3.3.2) and (3.3.3)
that we found from the reduction satisfy these equations, but they might not be a unique
choice. The constraint (3.3.5) would also have to be enforced on terms with higher powers of
Ξ1̄, strongly constraining their coefficients.

From classical scaling arguments, we are not able to rule out the presence in (3.4.11) and
(3.4.13) of terms that have higher powers of Ξ1̄. They could be generated both at the tree
and at the loop level. It would be consistent to neglect those terms if Ξ1̄, which is classically
dimensionless, gained a positive anomalous dimension. This is indeed the case for classically
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dimensionless fermions in SYK models such as [154,183], but it remains to be checked in
the theory discussed here.





Chapter 4

Conclusions

In this thesis, we investigated how holography can capture and describe the microstates of
BPS and near-BPS asymptotically-AdS black holes, by means of a dual field theory analysis.

In Chapter 2, we have evaluated, using a Bethe ansatz approach, the superconformal index
of a broad class of 4d N = 1 holographic quiver gauge theories at leading order in 𝑁 , for
generic fugacities for the global symmetries commuting with the supercharges. In particular,
we focused on the contribution of the so-called “basic solution” [116] to the Bethe ansatz
equations. By doing so, we extended previous results for N = 4 SYM [85] and toric quiver
gauge theories [125]. This result allowed us to match the Bekenstein-Hawking entropy of
Gutowski-Reall black holes [135] for generic electric charges and angular momenta. We were
also able, in Section 2.3 and 2.4, respectively, to match the entropy of the universal black
hole (which can be embedded in any AdS5×SE5 compactification of type IIB supergravity)
and predict the entropy of putative black holes in a consistent truncation [169] of type IIB
supergravity on AdS5 × 𝑇1,1.

The last result is particularly non-trivial: the matching was done using a purely near-
horizon analysis, in the spirit of [118]. A similar computation has been recently carried out for
the gravity dual of N = 1∗ theories in [80]. Supersymmetric black holes with generic electric
charges have not been constructed yet in the case of type IIB supergravity on AdS5×SE5, if
not in the case of SE5 = 𝑆5. It would be interesting to construct new supergravity solutions
for generic SE5, and explicitly see the duality at work there.

A better understanding of the solutions to the Bethe ansatz equations and the regimes in
which they are dominant is also crucial. First of all, it would be interesting to understand
the precise relation between the Bethe ansatz solutions and the saddles one gets from a
saddle-point evaluation of the superconformal index [93]. A step in this direction was done
in [90, 105]. Secondly, one has to establish a gravity interpretation for the different Bethe
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ansatz solutions. In [185] a detailed analysis was performed, but a complete picture is still
missing. For example, multi-center black-hole solutions could play a role in this business: the
existence of multi-center solutions in AdS space is still unsure, but recent analysis [226, 227]
point towards a positive answer, and one could thus expect to see their contribution to
the index. Other interesting analysis of the gravitational interpretation of the CFT results
are [76, 101, 103, 104, 109, 121, 126, 130, 131]. A more basic problem that is relevant for the
gravity interpretation is the definition of path-integrals for gravitational systems, for example
in light of the new advances [228, 229] regarding the importance of considering complex
metrics.

In Chapter 3 we have performed a first principle derivation of the quantum-mechanical
theory dual to the horizon of asymptotically-AdS4×𝑆6 static, magnetic black holes in massive
type IIA supergravity. To do this, we put the dual 3d N = 2 Chern-Simons-matter theory on
𝑆2 with fluxes, and we integrated out all the heavy modes. The theory we got in (3.3.7), given
(3.3.2) and (3.3.3), is an N = 2 gauged quantum mechanics with finitely many dynamical
bosons and fermions. All the fields have at most linear kinetic terms, and the E- and J-term
couplings are governed by Clebsch-Gordan coefficients.

In the last few years, starting from [139], many 1d models have been studied, aiming at a
holographic connection to black-hole physics. In [152–158] the authors were able to derive,
by zooming in the near-horizon region of asymptotically-AdS (and asymptotically-flat) black
holes, 2d JT-gravity models capturing the near-horizon physics. Unfortunately, first-principle
derivations on the dual field theory side were still lacking, but people found different 1d
models with promising features; we mention here the supersymmetric models [154, 183].
With respect to them, our model contains not only Fermi but also chiral multiplets. Due to
the linear kinetic terms, the chiral multiplets contain a single scalar dynamical degree of
freedom. In this respect, they are very similar to the Fermi multiplets. It would be interesting
to understand what are the differences between fermionic, bosonic, and mixed models like
ours.

Moreover, this model could be used to better understand the basics of the AdS2/CFT1

correspondence. What is the origin of the averages which play a central role in the JT-
gravity/SYK-model correspondence, and are they essential? In our theory, the couplings are
determined and fixed by the reduction. Nevertheless, they follow a “statistical distribution”:
to trade them for a random variable can be seen as a simplifying approximation.

We expect this model to capture the thermodynamics of near-BPS black holes. In the
near-BPS sector, one usually does not have enough control to analytically compute quantities
of interest. In field theory, for example, one should compute partition functions for a
d-dimensional theory at strong coupling, which is known to be a hard task. Our model is
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particularly useful because it is 1-dimensional: a partition function in 1d can be computed
using, for example, the Schwinger-Dyson techniques developed in the last few years in the
analysis of the SYK model; in this way, we gained computational power for a problem which
was previously difficult to attack.
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Appendix A

Large 𝑵 computations

In this Appendix, we present the manipulations needed to obtain the large 𝑁 results which
are heavily exploited throughout this dissertation. Appendix A.1 contains the definition of
useful special functions. In Appendix A.2 and Appendix A.3, instead, we will focus on the
4d superconformal index and the 3d topologically twisted index, respectively.

A.1 Special functions

It is useful to start by defining some special functions which will turn out useful in what
follows. We recall here that 𝑧 = 𝑒2𝜋𝑖𝑢, 𝑝 = 𝑒2𝜋𝑖𝜏, 𝑞 = 𝑒2𝜋𝑖𝜎, and ℎ = 𝑒2𝜋𝑖𝜔. We will also list
some properties which will play a role in our computations.

Elliptic functions. We begin with the functions which play a role in the evaluation of the
superconformal index. Firstly, the h-Pochhammer symbol is defined as

(𝑧; ℎ)∞ =

∞∏
𝑛=0

(1 − 𝑧ℎ𝑛) , (A.1.1)

and, for |𝑧 |, |ℎ | < 1, it admits the plethystic expansion

(𝑧; ℎ)∞ = exp
[
−

∞∑︁
𝑘=1

1
𝑘

𝑧𝑘

1 − ℎ𝑘

]
. (A.1.2)

The h-theta function is defined as

\0(𝑢;𝜔) = (𝑧; ℎ)∞(ℎ/𝑧; ℎ)∞ , (A.1.3)
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with plethystic expansion for |ℎ | < |𝑧 | < 1

\0(𝑢;𝜔) = exp
[
−

∞∑︁
𝑘=1

1
𝑘

𝑧𝑘 + 𝑧−𝑘ℎ𝑘
1 − ℎ𝑘

]
. (A.1.4)

It exhibits the reflection relation

\0(𝑢;𝜔) = −𝑒2𝜋𝑖𝑢 \0(−𝑢;𝜔) . (A.1.5)

The elliptic gamma function Γ̃ is defined as

Γ̃(𝑢; 𝜏, 𝜎) ≡ Γ(𝑧; 𝑝, 𝑞) =
∞∏

𝑚,𝑛=0

1 − 𝑝𝑚+1𝑞𝑛+1/𝑧
1 − 𝑝𝑚𝑞𝑛𝑧 , (A.1.6)

with plethystic expansion for |𝑝𝑞 | < |𝑧 | < 1

Γ̃(𝑢; 𝜏, 𝜎) = exp
[
−

∞∑︁
𝑘=1

1
𝑘

𝑧𝑘 − 𝑧−𝑘 (𝑝𝑞)𝑘
(1 − 𝑝𝑘 ) (1 − 𝑞𝑘 )

]
. (A.1.7)

It satisfies the following useful shift property

Γ̃
(
𝑢 + 𝑚𝑎𝑏𝜔, 𝑎𝜔, 𝑏𝜔

)
= (A.1.8)

= (−𝑒2𝜋𝑖𝑢)− 𝑎𝑏2 𝑚2+ 𝑎+𝑏−1
2 𝑚 (𝑒2𝜋𝑖𝜔)− 𝑎𝑏6 𝑚3+ 𝑎𝑏 (𝑎+𝑏)4 𝑚2− 𝑎2+𝑏2+3𝑎𝑏−1

12 𝑚 \0(𝑢, 𝜔)𝑚 Γ̃(𝑢, 𝑎𝜔, 𝑏𝜔) ,

where 𝑚 ∈ Z which was proven in [85], the inversion formula

Γ̃(𝑢; 𝜏, 𝜎) = 1/Γ̃(𝜏 + 𝜎 − 𝑢; 𝜏, 𝜎) , (A.1.9)

and the identity [230]

Γ̃(𝑢; 𝜏, 𝜎) =
𝑎−1∏
𝑟=0

𝑏−1∏
𝑠=0

Γ̃

(
𝑢 +

(
𝑟𝜏 + 𝑠𝜎

)
; 𝑎𝜏, 𝑏𝜎

)
, (A.1.10)

for any 𝜏, 𝜎 ∈ H and any 𝑎, 𝑏 ∈ N. This is can be proven by exploiting the infinite product
expression of Γ̃. Now, exchanging 𝑎 ↔ 𝑏 and 𝑟 ↔ 𝑠 in the formula, and then setting 𝜏 → 𝑎𝜔,
𝜎 → 𝑏𝜔, we obtain the formula [231]

Γ̃(𝑢; 𝑎𝜔, 𝑏𝜔) =
𝑎−1∏
𝑟=0

𝑏−1∏
𝑠=0

Γ̃

(
𝑢 +

(
𝑎𝑠 + 𝑏𝑟

)
𝜔; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
. (A.1.11)
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Bernoulli polynomials. One can define the Bernoulli polynomials by introducing their
generating function

𝐹 (𝑡, 𝑠) = 𝑡𝑒𝑡𝑠

𝑒𝑡 − 1 =

∞∑︁
𝑛=0

𝐵𝑛 (𝑠)
𝑡𝑛

𝑛! , 𝐵𝑛 (𝑠) =
𝜕𝑛

𝜕𝑡𝑛
𝐹 (𝑡, 𝑠)

����
𝑡=0

, (A.1.12)

from which we can explicitly extract the first few ones

𝐵0(𝑠) = 1 , 𝐵1(𝑠) = 𝑠 −
1
2 ,

𝐵2(𝑠) = 𝑠2 − 𝑠 +
1
6 , 𝐵3(𝑠) = 𝑠3 −

3
2 𝑠

2 + 1
2 𝑠 ,

(A.1.13)

and check that they satisfy the properties

𝐵𝑛 (1 − 𝑠) = (−1)𝑛𝐵𝑛 (𝑠) , 𝐵′𝑛 (𝑠) = 𝑛𝐵𝑛−1(𝑠) . (A.1.14)

Poly-logarithms. For the topologically twisted index is instead useful to introduce the
poly-logarithms. They are defined through their Taylor series around 𝑧 = 0

Li𝑘 (𝑧) =
∑︁∞

ℓ=1
𝑧ℓ

ℓ𝑘
, (A.1.15)

which is absolutely convergent for |𝑧 | < 1. This definition can be analytically continued
to the whole complex plane, with a branch cut on the real axis from 𝑧 = 1 to 𝑧 = ∞. In
particular Li1(𝑧) = − log(1 − 𝑧), where the principal sheet defined by (A.1.15)) is such that
Im log ∈ (−𝜋, 𝜋). The functions Li𝑘≥2 have an absolutely convergent series (A.1.15) on the
unit circle and are thus continuous at 𝑧 = 1, while the functions Li𝑘≤0 have a pole at 𝑧 = 1 but
no branch cut, in particular Li0(𝑧) = 𝑧(1 − 𝑧)−1.

One can define the single-valued analytic functions

𝐹𝑘 (𝑢) = Li𝑘
(
1 − 𝑒−2𝜋𝑖𝑢) (A.1.16)

defined by (A.1.15) in the domain
��1 − 𝑒−2𝜋𝑖𝑢�� < 1 with Re 𝑢 ∈

(
−1

4 ,
1
4
)
, implying that

𝐹𝑘 (0) = 0, and by analytic continuation elsewhere. For instance, we have

𝐹0(𝑢) = 𝑒2𝜋𝑖𝑢 − 1 , 𝐹1(𝑢) = 2𝜋𝑖𝑢 . (A.1.17)

Whenever the function is differentiable, we have

𝑧 𝜕𝑧Li𝑘 (𝑧) = Li𝑘−1(𝑧) (A.1.18)
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or alternatively

𝜕𝑢Li𝑘
(
𝑒2𝜋𝑖𝑢) = 2𝜋𝑖 Li𝑘−1

(
𝑒2𝜋𝑖𝑢) or 𝜕𝑢𝐹𝑘 (𝑢) =

2𝜋𝑖
𝑒2𝜋𝑖𝑢 − 1 𝐹𝑘−1(𝑢) . (A.1.19)

The last relation allows one to define

𝐹𝑘 (𝑢) =
∫ 𝑢

0
𝑑𝑤

2𝜋𝑖
𝑒2𝜋𝑖𝑤 − 1 𝐹𝑘−1(𝑤) , (A.1.20)

which is single-valued because the integrand is analytic with no poles. The poly-logarithms
satisfy the following identities:

Li0
(
𝑒2𝜋𝑖𝑢) + Li0

(
𝑒−2𝜋𝑖𝑢) = −𝐵0(𝑢) ,

Li1
(
𝑒2𝜋𝑖𝑢) − Li1

(
𝑒−2𝜋𝑖𝑢) = −(2𝜋𝑖)𝐵1(𝑢) ,

Li2
(
𝑒2𝜋𝑖𝑢) + Li2

(
𝑒−2𝜋𝑖𝑢) = −1

2 (2𝜋𝑖)
2𝐵2(𝑢) ,

Li3
(
𝑒2𝜋𝑖𝑢) − Li3

(
𝑒−2𝜋𝑖𝑢) = −1

6 (2𝜋𝑖)
3𝐵3(𝑢) ,

(A.1.21)

where 𝐵𝑛≤3(𝑢) where defined in (A.1.13). These relations are valid for Re 𝑢 ∈ (0, 1) and
the poly-logarithms in their principal determination, and can then be extended to the whole
complex plane by analytic continuation (notice that the functions on the RHS are polynomials
with no branch cuts).

A.2 The large 𝑵 SCI

In this Section, we will prove that, up to subleading corrections, the building block (2.1.20) can
be written as (2.1.29). This result is the core of our large 𝑁 computation of the superconformal
index.

A.2.1 Simplifications of the SCI building block

We want to show that the terms neglected in passing from (2.1.22) to (2.1.23) are subleading
at large 𝑁 . We will first analyze the effect of dropping the term 𝜔(𝑑 − 𝑐)/𝑁 from the
arguments of the gamma functions, in all those terms with 𝛾 ≠ 𝛿. We will later estimate the
contribution from the terms with 𝛾 = 𝛿 that were discarded from the sum. Defining

𝑓 (𝑧) =
𝑁∑︁
𝛾≠𝛿

log Γ̃
(
𝑧 + 𝜔𝛿 − 𝛾

𝑁
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
, (A.2.1)
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we want to show that ��� 𝑓 (𝑧 + 𝐶𝜔/𝑁 )
− 𝑓 (𝑧)

��� ≤ O(𝑁 log 𝑁) , (A.2.2)

where 𝐶 = (𝑑 − 𝑐)/𝑎𝑏, 𝑧 = Δ + 𝜔
(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
and 𝑐, 𝑑 = 1, . . . , 𝑎𝑏, 𝑟 = 0, . . . , 𝑎 − 1,

𝑠 = 0, . . . , 𝑏 − 1. Without loss of generality, we can assume 𝐶 > 0, because the case 𝐶 < 0 is
analogous while 𝐶 = 0 is trivial. As in [73], we discard the Stokes lines Δ ∈ Z + R𝜔 except
for the point Δ = 0, because the limit we compute would be singular along those lines anyway.
If Δ is not on a Stokes line, then the restriction of 𝑓 to the straight line in the complex plane
passing through the points 𝑧 and 𝑧 + 𝜔 is a 𝐶∞ complex function. In the case Δ = 0, instead,
we consider the restriction of 𝑓 to the straight closed segment from 𝑧 to 𝑧 + 𝐶𝜔/𝑁: one can
check that 𝑓 is 𝐶∞ along that segment, because for 𝛾 ≠ 𝛿 the segment, suitably shifted, it
hits neither zeros nor poles of any of the gamma functions in (A.2.1) (in both cases, 𝑓 is a
holomorphic function in a neighborhood of the restricted domain). A complex analog of the
Mean Value Theorem (MVT) then states that

Re
𝑓
(
𝑧 + 𝐶𝜔/𝑁

)
− 𝑓 (𝑧)

𝜔
=
𝐶

𝑁
Re 𝑓 ′

(
𝑧 + 𝑐1𝜔/𝑁

)
Im

𝑓
(
𝑧 + 𝐶𝜔/𝑁

)
− 𝑓 (𝑧)

𝜔
=
𝐶

𝑁
Im 𝑓 ′

(
𝑧 + 𝑐2𝜔/𝑁

) (A.2.3)

with 𝑐1, 𝑐2 ∈ (0, 𝐶). Summing the absolute values follows the bound����� 𝑓 (𝑧 + 𝐶𝜔/𝑁 )
− 𝑓 (𝑧)

𝜔

����� ≤ 1
𝑁

(��� 𝑓 ′ (𝑧 + 𝑐1𝜔/𝑁
) ��� + ��� 𝑓 ′ (𝑧 + 𝑐2𝜔/𝑁

) ���) (A.2.4)

where we used |𝐶 | ≤ 1 − 1
𝑎𝑏
< 1. It is therefore sufficient to show that

1
𝑁

��� 𝑓 ′ (𝑧 + 𝑐𝜔/𝑁 ) ��� ≤ O(𝑁 log 𝑁) (A.2.5)

for any 𝑐 ∈ (0, 𝐶). Notice that 0 < 𝑐 < 1 − 1
𝑎𝑏

.
We reason as follows. For Δ ∉ Z + R𝜔, the arguments of the elliptic gamma functions in

(A.2.1) remain at an 𝑁-independent distance from the zeros and poles, that in our case are
placed at the points

𝑢0,𝑖 = (1 + 𝑖)𝑎𝑏 𝜔 , 𝑢∞, 𝑗 = (1 − 𝑗)𝑎𝑏 𝜔 for 𝑖, 𝑗 ∈ Z≥1 , (A.2.6)
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respectively. The orders of the zeros and poles are 𝑖 and 𝑗 respectively. The ratio
��Γ̃′/Γ̃

�� is
bounded on the range of possible arguments, therefore

1
𝑁

��� 𝑓 ′ (𝑧 + 𝑐𝜔/𝑁 ) ��� ≤ 𝑁 max
𝑡∈[−𝑎𝑏, 3𝑎𝑏−𝑎−𝑏]

����� Γ̃′ (Δ + 𝑡𝜔; 𝑎𝑏𝜔, 𝑎𝑏𝜔
)

Γ̃
(
Δ + 𝑡𝜔; 𝑎𝑏𝜔, 𝑎𝑏𝜔

) ����� = O(𝑁) . (A.2.7)

The case Δ = 0 is more subtle since, as 𝑁 grows, the arguments of some of the gamma
functions can get increasingly close to zeros or poles instead of staying at an 𝑁-independent
distance, and the 𝑁-independent bound above does not apply. This happens when

𝑧 = 𝑢0,𝑖 ∈ {𝑢0,𝑖, 𝑢0,𝑖 ± 𝜔} or 𝑧 = 𝑢∞, 𝑗 ∈ {𝑢∞, 𝑗 , 𝑢∞, 𝑗 ± 𝜔} . (A.2.8)

One can easily see that for Δ = 0, 𝑧 can range from (1 − 𝑎𝑏)𝜔 to (3𝑎𝑏 − 𝑎 − 𝑏 − 1)𝜔 so that
the problematic points we may approach are the simple zero at 𝑢0,1, the simple pole at 𝑢∞,1,
and the double pole at 𝑢∞,2.

We now introduce a few results for later use. For a meromorphic function 𝑔 whose zeros
include {𝑧𝑖} of order {𝑚𝑖} and whose poles include {𝑝 𝑗 } of order {𝑛 𝑗 }, one can write

𝑔(𝑧) =
∏
𝑖 (𝑧 − 𝑧𝑖)𝑚𝑖∏
𝑗 (𝑧 − 𝑝 𝑗 )𝑛 𝑗

𝑠(𝑧), (A.2.9)

where 𝑠(𝑧) is meromorphic with zeros and poles at the remaining zeros and poles of 𝑔 that
were not included in {𝑧𝑖} and {𝑝 𝑗 }. Taking the derivative of this expression and computing
𝑔′/𝑔, one finds

𝑔′(𝑧)
𝑔(𝑧) =

∑︁
𝑖

𝑚𝑖

𝑧 − 𝑧𝑖
−

∑︁
𝑗

𝑛 𝑗

𝑧 − 𝑝 𝑗
+ ℎ(𝑧), (A.2.10)

where ℎ(𝑧) = 𝑠′(𝑧)/𝑠(𝑧) is meromorphic with simple poles at the remaining zeros and
poles of 𝑔 that were not included in {𝑧𝑖} and {𝑝 𝑗 }. Therefore we can apply (A.2.10) to the
meromorphic function Γ̃ and say that

1
𝑁

��� 𝑓 ′ (𝑧 + 𝑐𝜔/𝑁 ) ��� ≤ 1
𝑁

𝑁∑︁
𝛾≠𝛿

����� Γ̃′ (𝑧 + 𝑢𝑐
𝛾,𝛿

; 𝑎𝑏𝜔, 𝑎𝑏𝜔
)

Γ̃
(
𝑧 + 𝑢𝑐

𝛾,𝛿
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

) �����
≤ 1
𝑁

𝑁∑︁
𝛾≠𝛿

(
1

|𝑧 + 𝑢𝑐
𝛾,𝛿

− 2𝑎𝑏𝜔|
+ 1
|𝑧 + 𝑢𝑐

𝛾,𝛿
|
+ 2
|𝑧 + 𝑢𝑐

𝛾,𝛿
+ 𝑎𝑏𝜔|

)
+ (𝑁 − 1)𝐾 (A.2.11)
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where we defined

𝑢𝑐𝛾,𝛿 = 𝜔
𝛿 − 𝛾 + 𝑐

𝑁
, 𝐾 = max

𝑡∈[−𝑎𝑏, 3𝑎𝑏−𝑎−𝑏]

��ℎ
Γ̃
(𝑡𝜔)

�� (A.2.12)

and ℎ
Γ̃

is the meromorphic function associated to Γ̃ in (A.2.10). We can bound its value with
an 𝑁-independent quantity because it is holomorphic on the range of possible arguments. If
𝑧 ≠ 𝑢0,1, 𝑢∞,1, 𝑢∞,2, the outlying sums in (A.2.11) will be of order O(𝑁) since 𝑧 + 𝑢𝑐

𝛾,𝛿
will

be at least at a distance |𝜔 | away from the zeros and poles. To complete our proof when
𝑧 = 𝑢0,1, 𝑢∞,1, 𝑢∞,2, we now need to bound the quantities

𝑅𝑥 =
1
𝑁

𝑁∑︁
𝛾≠𝛿

1��𝑥 + 𝛿−𝛾+𝑐
𝑁

�� with 𝑥 = 0,±1 , (A.2.13)

where we wrote 𝑁 in place of 𝑁 in order not to clutter the formulae. We recall that
0 < 𝑐 < 1 − 1/𝑎𝑏. Considering 𝑥 = 0 first, we reparameterize the sum in terms of 𝛿 − 𝛾 so
that, after some manipulations, it becomes

𝑅0 =

𝑁−1∑︁
𝑀=1

(
𝑁 − 𝑀
𝑀 + 𝑐 + 𝑁 − 𝑀

𝑀 − 𝑐

)
< 2

𝑁−1∑︁
𝑀=1

𝑁 − 𝑀
𝑀 − 𝑐 . (A.2.14)

The summand on the right is a positive decreasing function of 𝑀 , therefore it can be bound
by its integral:

𝑅0 <
2(𝑁 − 1)

1 − 𝑐 + 2
∫ 𝑁−1

1

𝑁 − 𝑥
𝑥 − 𝑐 𝑑𝑥 = O(𝑁 log 𝑁) . (A.2.15)

To ensure convergence of sums and integrals it is crucial to recall that 1 − 𝑐 > (𝑎𝑏)−1. In a
similar way, for 𝑥 = +1 we can write

𝑅1 =

𝑁−1∑︁
𝑀=1

(
𝑁 − 𝑀

𝑁 + 𝑀 + 𝑐 + 𝑁 − 𝑀
𝑁 − 𝑀 + 𝑐

)
<

𝑁−1∑︁
𝑀=1

2 = O(𝑁) , (A.2.16)

while for 𝑥 = −1 we can write

𝑅−1 =

𝑁−1∑︁
𝑀=1

(
𝑁 − 𝑀

𝑁 − 𝑀 − 𝑐 + 𝑁 − 𝑀
𝑁 + 𝑀 − 𝑐

)
< 2

𝑁−1∑︁
𝑀=1

𝑁 − 𝑀
𝑁 − 𝑀 − 𝑐 <

2(𝑁 − 1)
1 − 𝑐 = O(𝑁) .

(A.2.17)
It remains to show that the terms we discarded from (2.1.22) when substituting the

condition 𝑖 ≠ 𝑗 with the condition 𝛾 ≠ 𝛿 give a subleading contribution. Notice that we now
return to the notation in which 𝑁 = 𝑎𝑏𝑁 . These are the terms in (2.1.22) with 𝛾 = 𝛿, whose



98 Large 𝑁 computations

total contribution is

ΦSCI = 𝑁
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑎𝑏∑︁
𝑐≠𝑑

log Γ̃
(
Δ + 𝜔 𝑑 − 𝑐

𝑁
+ 𝜔

(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
. (A.2.18)

We need to show that this is subleading in the large 𝑁 limit. We will bound the absolute value
of the summand for all possible 𝑐 ≠ 𝑑, 𝑟 , 𝑠 and drop the sums since they give an overall order
O(1) factor. After choosing a branch of the logarithm, the phases of Γ̃ can only give an order
𝑁 contribution to (the imaginary part of) ΦSCI.

For what concerns the absolute value of Γ̃, reasoning in a very similar way to the 𝛾 ≠ 𝛿

case discussed above, we see that if Δ is not on a Stokes line then
��log |Γ̃|

�� is bounded above
by an 𝑁-independent quantity and thus ΦSCI is of order O(𝑁). When Δ = 0, the argument
of Γ̃ can only approach zeros or poles if 𝑧 = 𝜔

(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
∈ {𝑢0,1, 𝑢∞,1, 𝑢∞,2}. Using

(A.2.9), we can write

log
����Γ̃(

𝑧 + 𝜔 𝑑 − 𝑐
𝑁

; 𝑎𝑏𝜔, 𝑎𝑏𝜔
)���� = log

�������
(
𝑧 + 𝜔 𝑑−𝑐

𝑁
− 𝑢0,1

)
𝑠
Γ̃

(
𝑧 + 𝜔 𝑑−𝑐

𝑁

)
(
𝑧 + 𝜔 𝑑−𝑐

𝑁
− 𝑢∞,1

) (
𝑧 + 𝜔 𝑑−𝑐

𝑁
− 𝑢∞,2

)2

������� (A.2.19)

where 𝑠
Γ̃

is a function which is regular at 𝑢∞,1, 𝑢∞,2 and non-zero at 𝑢0,1. We can therefore
bound

��log |𝑠
Γ̃
|
�� over its possible arguments with an 𝑁-independent constant, so that it

contributes to ΦSCI at order O(𝑁). When 𝑧 = 𝑢0,1, 𝑢∞,1, 𝑢∞,2, only one of the factors
multiplying 𝑠

Γ̃
is of order O(log 𝑁) while the other two do not approach zero and can be

bounded by an 𝑁-independent constant. Explicitly,

𝑁

�����log
����Γ̃(

𝑧 + 𝜔 𝑑 − 𝑐
𝑁

; 𝑎𝑏𝜔, 𝑎𝑏𝜔
)��������� ≤ 2𝑁

�����log
����𝜔𝑑 − 𝑐𝑁 ��������� +O(𝑁) = O(𝑁 log 𝑁) . (A.2.20)

A.2.2 SU(𝑵) vs. U(𝑵) holonomies

In what follows, as it is done in Section 2.1 and Section 2.2, in order to parametrize the
SU(𝑁) holonomies 𝑢SU we introduce U(𝑁) holonomies 𝑢U, constrained by

𝑁∑︁
𝑖=1

𝑢U
𝑖 = 0 . (A.2.21)

With the choice of bases for the Cartan subalgebras of SU(𝑁) and U(𝑁) required to write the
BA operators as in (2.1.11), the relation between the two sets of holonomies when expressing
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a generic element of the Cartan subalgebra of SU(𝑁) is

𝑢U
𝑖 = 𝑢SU

𝑖 for 𝑖 ≠ 𝑁 , 𝑢U
𝑁 = −

𝑁−1∑︁
𝑗=1

𝑢SU
𝑗 . (A.2.22)

Note that the holonomies are only defined modulo Z.
The SU(𝑁) superconformal index defined by (2.1.9) contains a sum over {𝑚SU

𝑖
} that

picks up (representatives of) solutions to the BAEs whose residue can contribute to the
index, as explained in [85] and made explicit in (2.1.15). Under a shift {𝑚SU

𝑖
} of the SU(𝑁)

holonomies, the U(𝑁) holonomies shift by corresponding amounts given by

𝑚U
𝑖 = 𝑚SU

𝑖 , 𝑚U
𝑁 = −

𝑁−1∑︁
𝑗=1

𝑚SU
𝑗 . (A.2.23)

Given these identifications for the holonomies and shifts, the SU(𝑁) quantities are always
equal to the first 𝑁 − 1 U(𝑁) quantities, so, in what follows, we will drop the superscripts
SU and U, remembering that 𝑢1,...,𝑁−1 and 𝑚1,...,𝑁−1 are independent while 𝑢𝑁 and 𝑚𝑁 are
determined by (A.2.22) and (A.2.23), respectively.

One might then worry that the choice of {𝑚 𝑗 } given in (2.1.19) is not allowed, since the
last integer 𝑚𝑁 there does not satisfy (A.2.23). Specifically, let us choose

𝑚 𝑗 ∈ {1, . . . , 𝑎𝑏} such that 𝑚 𝑗 = 𝑗 mod 𝑎𝑏 , for 𝑗 = 1, . . . , 𝑁 − 1 ,
(A.2.24)

so that 𝑚𝑁 is fixed by (A.2.23) to be a negative integer of O(𝑁). To match with the choice in
(2.1.19), we want to replace this with 𝑚𝑁 = 𝑁 mod 𝑎𝑏, belonging to {1, . . . , 𝑎𝑏}. We will
show that this replacement does not affect the value of Z to the leading order in 𝑁 . This will
be done in two steps. We will first show that the function Z evaluated on a configuration
{𝑢1, . . . , 𝑢𝑁 } which is obtained from the basic solution by shifting one or more variables 𝑢𝑖
by multiples of 2𝑎𝑏𝜔 (or even of 𝑎𝑏𝜔, in many cases), is the same as Z evaluated on the
basic solution. Using this property, Z is unaltered if evaluated on the following shifted value
of 𝑚𝑁 :

𝑚𝑁 ∈ {1, . . . , 2𝑎𝑏} such that 𝑚𝑁 =

(
−
𝑁−1∑︁
𝑖=1

𝑚𝑖

)
mod 2𝑎𝑏 . (A.2.25)

We will then show that the contribution toZ of the single holonomy 𝑢𝑁 is subleading, provided
𝑚𝑁 ∈ {1, . . . , 2𝑎𝑏}. Therefore, choosing instead 𝑚𝑁 = 𝑁 mod 𝑎𝑏 and in {1, . . . , 𝑎𝑏} as we
did in (2.1.19) does not change Z at leading order in 𝑁 . This completes the proof.
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As shown in [85], when evaluated on solutions to the BAEs, the function Z for a general
semi-simple gauge group is invariant under independent shifts of any gauge holonomy by
𝑎𝑏𝜔. This is proven by assuming that gauge and global symmetries are non-anomalous. In
our case, this result only allows us to shift the 𝑢𝑖’s while preserving the SU(𝑁) constraint.
This property does not allow us to independently shift the last holonomy 𝑢𝑁 , since it is always
fixed by the SU(𝑁) constraint. We now show that an independent shift of 𝑢𝑁 by a multiple of
𝑎𝑏𝜔 is also an invariance of Z for N = 4 SU(𝑁) SYM, when this function is evaluated on
the basic solution. To prove this, one has to use the property (A.1.8), the fact that the U(𝑁)
BA operators are periodic modulo 𝜔 in the 𝑢𝑖’s, and the explicit form of the basic solution
(2.1.18). Applying (A.1.8) for generic 𝑚 ∈ Z, we first have that∏

𝑖≠ 𝑗

Γ̃

(
𝑢𝑖 𝑗 + Δ + 𝑚𝑎𝑏𝜔(𝛿𝑖𝑁 − 𝛿 𝑗𝑁 ); 𝑎𝜔, 𝑏𝜔

)
(A.2.26)

= 𝑒−𝜋𝑖𝑎𝑏𝑚
2 (1+2Δ)+2𝜋𝑖(𝑎+𝑏−1)𝑚∑

𝑖 𝑢𝑖𝑁+𝜋𝑖𝑎𝑏(𝑎+𝑏)𝑚2𝜔
∏
𝑖

\0(𝑢𝑁𝑖 + Δ, 𝜔)𝑚
\0(𝑢𝑖𝑁 + Δ;𝜔)𝑚

∏
𝑖≠ 𝑗

Γ̃(𝑢𝑖 𝑗 + Δ; 𝑎𝜔, 𝑏𝜔),

and so from (2.1.11), (2.1.16) and (2.1.18) one obtains

Z (𝑢𝑖 + 𝑚𝑎𝑏𝜔𝛿𝑖𝑁 ; 𝑎𝜔, 𝑏𝜔,Δ)

=
∏
𝑖

(
\0(𝑢𝑁𝑖 + Δ1, 𝜔) \0(𝑢𝑁𝑖 + Δ2, 𝜔) \0(𝑢𝑖𝑁 , 𝜔) \0(𝑢𝑖𝑁 + Δ1 + Δ2, 𝜔)
\0(𝑢𝑖𝑁 + Δ1, 𝜔) \0(𝑢𝑖𝑁 + Δ2, 𝜔) \0(𝑢𝑁𝑖, 𝜔) \0(𝑢𝑁𝑖 + Δ1 + Δ2, 𝜔)

)𝑚
Z (𝑢𝑖; 𝑎𝜔, 𝑏𝜔,Δ)

= (−1)𝑚(𝑁−1) 𝑒2𝜋𝑖𝑚_𝑄−𝑚
𝑁 (𝑢𝑖;𝜔,Δ)Z (𝑢𝑖; 𝑎𝜔, 𝑏𝜔,Δ)

=Z (𝑢𝑖; 𝑎𝜔, 𝑏𝜔,Δ) . (A.2.27)

In the steps above we also used the theta function reflection property (A.1.5).
More generally, we can show that this shift invariance is true for quiver gauge theories

when Z is evaluated on the basic solution and the chemical potentials 𝑢𝛼
𝑁

are shifted by
a multiple of 2𝑎𝑏𝜔 (or even of 𝑎𝑏𝜔, in many cases) simultaneously for all gauge groups
SU(𝑁)𝛼. The steps are the same as in (A.2.27). We should notice that the expression for any
particular Lagrange multiplier _𝛼 is more complicated than for N = 4 SYM, but the sum of
all Lagrange multipliers is simple:

𝑒2𝜋𝑖
∑𝐺
𝛼=1 _𝛼 = (−1)𝑛𝜒 (𝑁−1) , (A.2.28)
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where 𝛼 runs over the 𝐺 SU(𝑁) gauge group factors and 𝑛𝜒 is the number of chiral multiplets
in the theory. Performing these steps one obtains

Z
(
𝑢𝛼𝑖 + 𝑚𝑎𝑏𝜔𝛿𝑖𝑁 ; 𝑎𝜔, 𝑏𝜔,Δ

)
(A.2.29)

=
𝑒2𝜋𝑖𝑚

∑𝐺
𝛼=1 _𝛼 (−1)−𝑚𝐺 (𝑁−1)+𝑚𝑎𝑏(𝑁−1) (𝑛𝜒−𝐺)(∏

𝛼𝑄
𝛼
𝑁
(𝑢𝛼
𝑖
;𝜔,Δ)

)𝑚 Z (𝑢𝛼𝑖 ; 𝑎𝜔, 𝑏𝜔,Δ)

= (−1)𝑚(𝐺−𝑛𝜒) (𝑎𝑏+1) (𝑁−1) Z (𝑢𝑎𝑖 ; 𝑎𝜔, 𝑏𝜔,Δ) .

There are now different cases in which the sign in the last line disappears. First, in the case of
toric quiver gauge theories, one uses the relation [188,189]

𝐺 − 𝑛𝜒 + 𝑁𝑊 = 0 (A.2.30)

between the number of gauge groups, chiral multiplets, and superpotential terms, as well as
the fact that the number 𝑁𝑊 of superpotential terms is even, to show that the sign disappears.
Second, if 𝑁 is odd then the sign disappears. Third, if the coprime integers 𝑎, 𝑏 are both
odd1 then the sign disappears. Fourth and most importantly, if we take 𝑚 even then the sign
disappears.

We now proceed to show that the contribution to Z of a single holonomy 𝑢𝑖 is subleading,
provided that 𝑚𝑖<𝑁 ∈ {1, . . . , 𝑎𝑏} and 𝑚𝑁 ∈ {1, . . . , 2𝑎𝑏}. In the building block ΨSCI

defined in (2.1.20), the contribution of a single holonomy 𝑢𝑖 consists of the two terms

Φ±
SCI,𝑖 ≡

𝑁∑︁
𝑗 (≠𝑖)

log Γ̃
(
𝑧± ± 𝜔 𝑗 − 𝑖

𝑁
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
, (A.2.31)

where we have defined

𝑧± ≡ Δ ± 𝜔
(
𝑚 𝑗 − 𝑚𝑖

)
+ 𝜔

(
𝑎𝑠 + 𝑏𝑟

)
. (A.2.32)

In particular, for the case 𝑖 = 𝑁 we will use the shift property just proven to substitute 𝑚𝑁

with 𝑚𝑁 defined in (A.2.25).
We will now show that Φ±

SCI,𝑖 is subleading. In the case 𝑖 = 𝑁 this will allow us to choose
𝑚𝑁 as in (2.1.19). To do this we want to bound the absolute value of the summand log Γ̃ in
Φ±

SCI,𝑖. What follows will be completely analogous to the argument used to show that (A.2.18)
is subleading. After choosing a branch of the logarithm, the phases of Γ̃ can only contribute

1This restriction is quite uninfluential because the set of pairs {𝜏 + Z, 𝜎 + Z} such that 𝜏/𝜎 = 𝑎/𝑏 ∈ Q>0
with 𝑎, 𝑏 both odd is still dense in H2.
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at order O(𝑁) to Φ±
SCI,𝑖. As before, we exclude Stokes lines and note that for Δ ≠ 0 we can

bound
��log |Γ̃|

�� with an 𝑁-independent constant so that |Φ±
SCI,𝑖 | = O(𝑁). For Δ = 0, 𝑧± have

the range
𝑧± ∈ {−2𝑎𝑏 + 1, . . . , 4𝑎𝑏 − 𝑎 − 𝑏 − 1}𝜔 , (A.2.33)

and the argument of Γ̃ may approach zeros or poles when 𝑧± = 𝑢0,1, 𝑢0,2, 𝑢∞,1, 𝑢∞,2, 𝑢∞,3,
which are defined in (A.2.8). If this is the case, further inspection is required. Using again
(A.2.9), we can write

log Γ̃
(
𝑧± ± 𝜔 𝑗 − 𝑖

𝑁
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
= log


∏2
𝑚=1

(
𝑧± ± 𝜔 𝑗−𝑖

𝑁
− 𝑢0,𝑚

)𝑚
𝑠
Γ̃

(
𝑧± ± 𝜔 𝑗−𝑖

𝑁

)
∏3
𝑛=1

(
𝑧± ± 𝜔 𝑗−𝑖

𝑁
− 𝑢∞,𝑛

)𝑛 
(A.2.34)

where 𝑠
Γ̃

is a function that is regular at 𝑢∞,1, 𝑢∞,2, 𝑢∞,3, and non-zero at 𝑢0,1, 𝑢0,2. This
allows us to bound

��log |𝑠
Γ̃
|
�� with an 𝑁-independent constant, and its contribution to Φ±

𝑖
is of

order O(𝑁). When 𝑧± = 𝑢0,1, 𝑢0,2, 𝑢∞,1, 𝑢∞,2, 𝑢∞,3 the logarithms of the other factors are
either bounded by an 𝑁-independent constant or are of the form

𝑁∑︁
𝑗≠𝑖

�����log
����𝑥 ± 𝑗 − 𝑖

𝑁

��������� ≤ (𝑁 − 1) log 𝑁 , (A.2.35)

where 𝑥 = 0,±1. Notice that the use of the shift property previously proved plays a major
role here. If we tried to apply this argument directly without first shifting 𝑚𝑁 , we would have
to consider an O(𝑁) number of poles or zeros whose order is also O(𝑁). This would lead to
an O(𝑁3 log 𝑁) bound, which does not help. What we did shows that a single Φ±

𝑖
is of order

O(𝑁 log 𝑁) for any choice of the corresponding 𝑚𝑖. In particular, this allows us to choose
𝑚𝑁 = 𝑁 mod 𝑎𝑏 ∈ {1, . . . , 𝑎𝑏} as we do in (2.1.19), without affecting the leading behavior
of the building block ΨSCI.

A.2.3 Generic 𝑵

Here we generalize the computation done in Section 2.1.1 and consider a generic 𝑁 which is
not necessarily a multiple of 𝑎𝑏. We will exploit many of the arguments in Section A.2.1. Let
𝑁 = 𝑎𝑏𝑁 + 𝑞, where 𝑞 ∈ {0, . . . , 𝑎𝑏 − 1}. We need to examine the leading order contribution
of the building block

ΨSCI =
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁∑︁
𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔 𝑗 − 𝑖

𝑁
+ 𝜔

(
𝑚 𝑗 − 𝑚𝑖 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
. (A.2.36)
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As shown in the final part of Section A.2.2, the contribution to the building block of a
single holonomy 𝑢𝑖 is subleading. Therefore the contribution of the last 𝑞 holonomies
𝑢
𝑎𝑏𝑁+1, . . . , 𝑢𝑁 is also subleading and can be discarded. Now, the sum over 𝑖 ≠ 𝑗 only goes

up to 𝑎𝑏𝑁 , and we can decompose the indices as in (2.1.22). Neglecting the 𝛾 = 𝛿 terms
using the same argument as after (A.2.18), we get

ΨSCI ≃
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁−1∑︁
𝛾≠𝛿=0

𝑎𝑏−1∑︁
𝑐,𝑑=0

log Γ̃
(
Δ + 𝜔 𝛿 − 𝛾

𝑁 + 𝑞

𝑎𝑏

+ 𝜔𝑑 − 𝑐
𝑁

+ 𝜔
(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
.

(A.2.37)
As in Section A.2.1, we want to drop 𝜔(𝑑 − 𝑐)/𝑁 in the argument of the elliptic gamma
function, and we can use the same reasoning given there, with the minor change that (A.2.13)
takes the form

𝑅𝑥 =
1

𝑁 + 𝑞

𝑎𝑏

𝑁∑︁
𝛾≠𝛿

1���𝑥 + 𝛿−𝛾+𝑐
𝑁+𝑞/𝑎𝑏

��� , 𝑥 = 0,±1 . (A.2.38)

The same bounds as for 𝑅𝑥 can be used here since one can show that

𝑅0 = 𝑅0 , 𝑅±1 ≤ 𝑅±1 . (A.2.39)

We can then use (A.1.10), as we did in Section 2.1.1, to change the moduli of the elliptic
gamma function from (𝑎𝑏𝜔, 𝑎𝑏𝜔) to (𝜔, 𝜔):

ΨSCI ≃
𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁−1∑︁
𝛾≠𝛿=0

𝑎𝑏−1∑︁
𝑐,𝑑=0

log Γ̃
(
Δ + 𝜔 𝛿 − 𝛾

𝑁 + 𝑞

𝑎𝑏

+ 𝜔
(
𝑑 − 𝑐 + 𝑎𝑠 + 𝑏𝑟

)
; 𝑎𝑏𝜔, 𝑎𝑏𝜔

)
=

𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁−1∑︁
𝛾≠𝛿=0

log Γ̃
(
Δ + 𝜔 𝛿 − 𝛾

𝑁 + 𝑞

𝑎𝑏

+ 𝜔
(
1 − 𝑎𝑏 + 𝑎𝑠 + 𝑏𝑟

)
;𝜔, 𝜔

)
=

1
(𝑎𝑏)2

𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁−1∑︁
𝛾≠𝛿=0

𝑎𝑏−1∑︁
𝑐,𝑑=0

log Γ̃
(
Δ + 𝜔 𝛿 − 𝛾

𝑁 + 𝑞

𝑎𝑏

+ 𝜔
(
1 − 𝑎𝑏 + 𝑎𝑠 + 𝑏𝑟

)
;𝜔, 𝜔

)
.

(A.2.40)
In the last equality, to make future steps clearer, we added a sum over 𝑐, 𝑑 even though nothing
depends on 𝑐 and 𝑑.

Now, to get the desired result we trace our steps backward. First, we will reintroduce
the term 𝜔(𝑑 − 𝑐)/𝑁 into the argument of the elliptic gamma functions. Then we will add
to the sum in (A.2.40) the 𝛾 = 𝛿 terms to form the sum over 𝑖 ≠ 𝑗 up to 𝑎𝑏𝑁 . Finally, we
will add terms containing the last 𝑞 holonomies 𝑢

𝑎𝑏𝑁+1, . . . , 𝑢𝑁 to build the complete sum
up to 𝑁 . These are the same steps we just performed to express ΨSCI as in (A.2.40) up to
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subleading terms, with the only difference being that the moduli of Γ̃ are now (𝜔, 𝜔) rather
than (𝑎𝑏𝜔, 𝑎𝑏𝜔). Therefore the same arguments can be used, with only slight modifications
involving the number and order of zeros and poles, but since these are parameterized here
by 𝑟 and 𝑠 that are 𝑁-independent, this is of no consequence. At this point, ΨSCI at leading
order is

ΨSCI ≃
1

(𝑎𝑏)2

𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝑁∑︁
𝑖≠ 𝑗

log Γ̃
(
Δ + 𝜔 𝑗 − 𝑖

𝑁
+ 𝜔

(
1 − 𝑎𝑏 + 𝑎𝑠 + 𝑏𝑟

)
;𝜔, 𝜔

)
, (A.2.41)

and using the result of [73] (that is our equation (2.1.25) we obtain

ΨSCI ≃ − 𝜋𝑖𝑁2

3(𝑎𝜔) (𝑏𝜔)
1
𝑎𝑏

𝑎−1∑︁
𝑟=0

𝑏−1∑︁
𝑠=0

𝐵3
(
[Δ]′𝜔 + 𝜔

(
𝑎𝑠 + 𝑏𝑟 − 𝑎𝑏

) )
. (A.2.42)

Then, using the property of Bernoulli polynomials (2.1.28), we finally get (2.1.29).

A.3 The large 𝑵 TTI

In this Section, instead, we will first obtain (3.1.28) in a continuum approximation, and then
solve the set of differential equations (3.1.31), (3.1.32), (3.1.33) coming from its variations.

A.3.1 Useful integrals

Let us evaluate, at large 𝑁 , the following useful integrals:

𝐼L,ℓ [𝜌] (𝑡,Δ) ≡
∫
𝑡±Δ

𝑑𝑡′ 𝜌(𝑡′) 𝑒2𝜋𝑖ℓ(𝑢(𝑡′)−𝑢(𝑡)) ,

𝐼U,ℓ [𝜌] (𝑡,Δ) ≡
∫ 𝑡±Δ

𝑑𝑡′ 𝜌(𝑡′) 𝑒2𝜋𝑖ℓ(𝑢(𝑡)−𝑢(𝑡′)) ,
(A.3.1)

where 𝑢(𝑡) = 𝑁𝛼
(
𝑖𝑡 + 𝑣(𝑡)

)
and 𝑡±Δ ≡ 𝑡 ± 𝑁−𝛼 ImΔ (the subscripts L and U stand for lower

and upper, respectively). We Taylor expand part of the integrand around 𝑡±Δ:

𝐼L,ℓ [𝜌] (𝑡,Δ) = 𝑒−2𝜋𝑖ℓ𝑢(𝑡)
∞∑︁
𝑚=0

1
𝑚! 𝜕

𝑚
𝑥

[
𝜌(𝑥) 𝑒2𝜋𝑖ℓ𝑁𝛼𝑣(𝑥)

]
𝑥=𝑡±Δ

∫
𝑡±Δ

𝑑𝑡′ 𝑒−2𝜋ℓ𝑁𝛼𝑡′ (𝑡′ − 𝑡±Δ)𝑚 .
(A.3.2)
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The integral on the RHS can be evaluated integrating by parts:∫
𝑡±Δ

𝑑𝑡′ 𝑒−2𝜋ℓ𝑁𝛼𝑡′ (𝑡′ − 𝑡±Δ)𝑚 = −
𝑚∑︁
𝑘=0

𝑚! (𝑡+ − 𝑡±Δ)𝑘
𝑘! (𝑁𝛼2𝜋ℓ)𝑚−𝑘+1 𝑒

−2𝜋ℓ𝑁𝛼𝑡+ + 𝑚!
(2𝜋𝑁𝛼ℓ)𝑚+1 𝑒

−2𝜋ℓ𝑁𝛼𝑡±Δ ,

(A.3.3)
where 𝑡+ is the upper limit of integration. The boundary terms at 𝑡+ can be neglected because
of an overall factor 𝑒−2𝜋ℓ𝑁𝛼 (𝑡+−𝑡±Δ) , which is exponentially suppressed, with respect to the last
term. This gives ∫

𝑡±Δ

𝑑𝑡′ 𝑒−2𝜋ℓ𝑁𝛼𝑡′ (𝑡′ − 𝑡±Δ)𝑚 ≃ 𝑚!
(2𝜋𝑁𝛼𝑙)𝑚+1 𝑒

−2𝜋ℓ𝑁𝛼𝑡±Δ . (A.3.4)

For the derivatives in (A.3.2), the terms up to NLO in the large 𝑁 expansion are

𝜕𝑚
[
𝜌 𝑒2𝜋𝑖ℓ𝑁𝛼𝑣

]
𝑥=𝑡±Δ

(A.3.5)

= 𝑒2𝜋𝑖ℓ𝑁𝛼𝑣 (2𝜋𝑖ℓ𝑁𝛼)𝑚−1
(
2𝜋𝑖ℓ𝑁𝛼 𝜌 ¤𝑣𝑚 + 𝑚 ¤𝜌 ¤𝑣𝑚−1 + 𝑚(𝑚−1)

2 𝜌 ¤𝑣𝑚−2 ¥𝑣 + . . .
)����
𝑥=𝑡±Δ

= 𝑒𝑖2𝜋ℓ(𝑁𝛼𝑣 ± ImΔ ¤𝑣) (2𝜋𝑖ℓ𝑁𝛼)𝑚−1
[
2𝜋𝑖ℓ𝑁𝛼 𝜌 ¤𝑣𝑚 + 𝑚 ¤𝜌 ¤𝑣𝑚−1 + 𝑚(𝑚−1)

2 𝜌 ¤𝑣𝑚−2 ¥𝑣 +

± 2𝜋𝑖ℓ ImΔ

(
¤𝜌 ¤𝑣𝑚 + 𝑚 𝜌 ¤𝑣𝑚−1 ¥𝑣 ± 1

2 2𝜋𝑖ℓ ImΔ 𝜌 ¤𝑣𝑚 ¥𝑣
)
+ . . .

]
.

In the last expression, 𝜌 and 𝑣 are functions of 𝑡. Other contributions are subleading by
powers of 𝑁−𝛼. Plugging this back in (A.3.2), we get

𝐼L,ℓ [𝜌] (𝑡,Δ) = 𝑒∓2𝜋ℓ ImΔ (1−𝑖 ¤𝑣)
[

1
2𝜋ℓ𝑁𝛼

𝜌

1 − 𝑖 ¤𝑣 + 1
2𝑁2𝛼 (ImΔ)2 𝑖 𝜌 ¥𝑣

1 − 𝑖 ¤𝑣 + (A.3.6)

+ 1
(2𝜋)2ℓ2𝑁2𝛼

(
1 ± 2𝜋ℓ ImΔ (1 − 𝑖 ¤𝑣)

) ( ¤𝜌
(1 − 𝑖 ¤𝑣)2 + 𝑖 𝜌 ¥𝑣

(1 − 𝑖 ¤𝑣)3

)]
.

Repeating the same steps for the other integral we find

𝐼U,ℓ [𝜌] (𝑡,Δ) = 𝑒±2𝜋ℓ ImΔ (1−𝑖 ¤𝑣)
[

1
2𝜋ℓ𝑁𝛼

𝜌

1 − 𝑖 ¤𝑣 − 1
2𝑁2𝛼 (ImΔ)2 𝑖 𝜌 ¥𝑣

1 − 𝑖 ¤𝑣 + (A.3.7)

− 1
(2𝜋)2ℓ2𝑁2𝛼

(
1 ∓ 2𝜋ℓ ImΔ (1 − 𝑖 ¤𝑣)

) ( ¤𝜌
(1 − 𝑖 ¤𝑣)2 + 𝑖 𝜌 ¥𝑣

(1 − 𝑖 ¤𝑣)3

)]
.

A.3.2 Continuum expressions for 𝑽′ and 𝛀

Let us start by studying the first line of (3.1.23) and, in particular, the terms involving the Li1
function, whose definition and properties can be found in Appendix A.1. We first perform
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the sum over 𝑗 (that becomes an integral over 𝑡′), leaving the sum over 𝑖 (that becomes an
integral over 𝑡) untouched.

The integral in 𝑡′ has to be broken in two parts, above and below 𝑡±Δ ≡ 𝑡 ± 𝑁−𝛼 ImΔ.
When Im(𝑢 𝑗𝑖 ∓ Δ) > 0 (for one of the two signs), we can use the series expansion (A.1.15).
This allows us to treat the integral above 𝑡±Δ:∑︁

𝑗

Θ
(
Im(𝑢 𝑗𝑖 ∓ Δ)

)
Li1

(
𝑒2𝜋𝑖(𝑢 𝑗𝑖∓Δ)

)
→ 𝑁

∫
𝑡±Δ

𝑑𝑡′𝜌(𝑡′)
∞∑︁
ℓ=1

1
ℓ
𝑒2𝜋𝑖ℓ(𝑢(𝑡′) − 𝑢(𝑡) ∓Δ)

≡ 𝑁

∞∑︁
ℓ=1

𝑒∓2𝜋𝑖ℓΔ

ℓ
𝐼L,ℓ [𝜌] (𝑡,Δ) . (A.3.8)

Using the results in Appendix A.3.1 we write (A.3.8) as

(A.3.8) =
𝑁1−𝛼 𝜌

2𝜋(1 − 𝑖 ¤𝑣) Li2
(
𝑒∓2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

)
+ (A.3.9)

+ 𝑁1−2𝛼
[

1
(2𝜋)2 Li3

(
𝑒∓2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

)
± 1

2𝜋 (ImΔ) (1 − 𝑖 ¤𝑣) Li2
(
𝑒∓2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

)]
×

×
[

¤𝜌
(1 − 𝑖 ¤𝑣)2 + 𝑖𝜌 ¥𝑣

(1 − 𝑖 ¤𝑣)3

]
+ 𝑖

2𝑁
1−2𝛼 (ImΔ)2(1 − 𝑖 ¤𝑣)2 Li1

(
𝑒∓2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

) 𝜌 ¥𝑣
(1 − 𝑖 ¤𝑣)3+

+O(𝑁1−3𝛼) .

When Im(𝑢 𝑗𝑖 ∓ Δ) < 0, the steps above are not applicable because the series expansion for
Li1 does not converge, but we can use (A.1.21) so that

Li1
(
𝑒2𝜋𝑖(𝑢 𝑗𝑖∓Δ)

)
= Li1

(
𝑒2𝜋𝑖(𝑢𝑖 𝑗±Δ)

)
− 2𝜋𝑖

(
𝑢 𝑗𝑖 ∓ Δ − 1

2

)
. (A.3.10)

Now the Li1 terms on the RHS can be analyzed in the same way as before∑︁
𝑗

Θ
(
Im(𝑢𝑖 𝑗 ± Δ)

)
Li1

(
𝑒2𝜋𝑖(𝑢𝑖 𝑗±Δ)

)
→ 𝑁

∫ 𝑡±Δ
𝑑𝑡′ 𝜌(𝑡′)

∞∑︁
ℓ=1

𝑒2𝜋𝑖ℓ(𝑢(𝑡) − 𝑢(𝑡′) ±Δ)
ℓ

≡ 𝑁
∞∑︁
ℓ=1

𝑒±2𝜋𝑖ℓΔ

ℓ
𝐼U,ℓ [𝜌] , (A.3.11)
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and using (A.3.7) we get

(A.3.11) = 𝑁1−𝛼 Li2
(
𝑒±2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

) 𝜌

2𝜋(1 − 𝑖 ¤𝑣) + (A.3.12)

− 𝑁1−2𝛼
[

1
(2𝜋)2 Li3

(
𝑒±2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

)
∓ 1

2𝜋 (ImΔ) (1 − 𝑖 ¤𝑣) Li2
(
𝑒±2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

)]
×

×
[

¤𝜌
(1 − 𝑖 ¤𝑣)2 + 𝑖𝜌 ¥𝑣

(1 − 𝑖 ¤𝑣)3

]
− 𝑖

2𝑁
1−2𝛼 (ImΔ)2(1 − 𝑖 ¤𝑣)2 Li1

(
𝑒±2𝜋𝑖(ReΔ−¤𝑣 ImΔ)

) 𝜌 ¥𝑣
(1 − 𝑖 ¤𝑣)3+

+O(𝑁−3𝛼) .

To obtain the full integral over 𝑡′, the contributions (A.3.9) and (A.3.12) with upper sign
must be summed with minus the ones with the lower sign, and the result can be simplified
using (A.1.21). As in (3.1.23), we then integrate over 𝑡 together with 𝔪(𝑡), and sum over
𝐼 = 1, 2, 3. We obtain:

− 2𝜋𝑖𝑁2−2𝛼
∫
𝑑𝑡

2 𝑖𝔪 𝜌2 ¥𝑣
(1 − 𝑖 ¤𝑣)3

3∑︁
𝐼=1

1
2 (ImΔ𝐼)2(𝑖 + ¤𝑣)2 𝐵1

(
ReΔ𝐼 − ¤𝑣 ImΔ𝐼

)
+ (A.3.13)

− 2𝜋𝑖𝑁2−2𝛼
∫
𝑑𝑡 𝔪

𝑑

𝑑𝑡

[
𝜌2

(1 − 𝑖 ¤𝑣)2

] 3∑︁
𝐼=1

[
1
6 𝐵3

(
ReΔ𝐼 − ¤𝑣 ImΔ𝐼

)
+

+ 1
2 (ImΔ𝐼) (𝑖 + ¤𝑣) 𝐵2

(
ReΔ𝐼 − ¤𝑣 ImΔ𝐼

) ]
.

It remains to add the contribution from the second term on the RHS of (A.3.10). We choose
the integer ambiguities 𝑛𝑖 in (3.1.23) such that

𝜋(𝑁−2𝑛𝑖) = −2𝜋
3∑︁
𝐼=1

𝑁∑︁
𝑗=1

[(
Θ

(
Im(𝑢𝑖 𝑗+Δ𝐼)

)
−Θ

(
Im 𝑢𝑖 𝑗

) )
+2Δ𝐼Θ(Im 𝑢𝑖 𝑗 )

]
+O(1) . (A.3.14)

The subleading O(1) term accounts for the possibility that 𝑁 might be odd and we would
not be able to cancel it completely. The contributions from the second term on the RHS of
(A.3.10) and (A.3.14) sum up to

2𝜋𝑖
∑︁
𝐼,𝑖, 𝑗

𝔪𝑖

[(
Θ

(
Im(𝑢𝑖 𝑗 + Δ𝐼)

)
− Θ(Im 𝑢𝑖 𝑗 )

) (
− 𝑢 𝑗𝑖 + Δ𝐼 −

1
2

)
+ (A.3.15)

+
(
Θ

(
Im(𝑢𝑖 𝑗 − Δ𝐼)

)
− Θ(Im 𝑢𝑖 𝑗 )

) (
𝑢 𝑗𝑖 + Δ𝐼 −

1
2

)]
= 2𝜋𝑖𝑁2

3∑︁
𝐼=1

∑︁
+,−

∫
𝑑𝑡𝔪(𝑡) 𝜌(𝑡)

∫ 𝑡±Δ𝐼

𝑡

𝑑𝑡′ 𝜌(𝑡′)
[
±𝑁𝛼

(
𝑖𝑡 − 𝑖𝑡′ + 𝑣(𝑡) − 𝑣(𝑡′)

)
+ Δ𝐼 −

1
2

]
.
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In each integral we perform the change of variables 𝑡′ = 𝑡 ± 𝑁−𝛼 (ImΔ𝐼)Y, obtaining:

(A.3.15) = 2𝜋𝑖𝑁2−𝛼
3∑︁
𝐼=1

∑︁
+,−

ImΔ𝐼

∫
𝑑𝑡𝔪(𝑡) 𝜌(𝑡)

∫ 1

0
𝑑Y × (A.3.16)

×
{
±𝜌

(
𝑡 ± 𝑁−𝛼 (ImΔ𝐼)Y

) [
−𝑖(ImΔ𝐼)Y ∓ 𝑁𝛼 𝑣

(
𝑡 ± 𝑁−𝛼 (ImΔ𝐼)Y

)
± 𝑁𝛼𝑣(𝑡) + Δ𝐼 −

1
2

]}
.

We expand 𝜌 and 𝑣 in the Taylor series and keep only the leading terms. Then we integrate in
Y and use that 𝐵1(Δ) = Δ − 1/2. We obtain the expression:

(A.3.15) = 2𝜋𝑖𝑁2−2𝛼
3∑︁
𝐼=1

(ImΔ𝐼)2
∫
𝑑𝑡𝔪

{
𝜌 ¤𝜌 𝐵1

(
ReΔ𝐼 − ¤𝑣 ImΔ𝐼

)
+ (A.3.17)

− ImΔ𝐼

6
𝑑

𝑑𝑡

[
𝜌2

(1 − 𝑖 ¤𝑣)2

]
(𝑖 + ¤𝑣)3

}
+O(𝔪𝑁2−3𝛼) .

We sum (A.3.13) and (A.3.17). We notice that the various terms can be organized into the
Taylor series of 𝐵3(Δ𝐼)/6 around the point Re(Δ𝐼) − ¤𝑣 Im(Δ𝐼), which has four terms because
𝐵3 is a cubic polynomial. We obtain the compact expression

(A.3.13)+ (A.3.17) = −2𝜋𝑖𝑁2−2𝛼 𝐺 (Δ)
∫
𝑑𝑡𝔪

𝑑

𝑑𝑡

[
𝜌2

(1 − 𝑖 ¤𝑣)2

]
+O

(
𝔪𝑁2−3𝛼, 1

)
, (A.3.18)

where 𝐺 (Δ) is the function defined in (3.1.29). It remains to add the first term on the RHS of
the first line of (3.1.23). We obtain the final expression:∫

𝑑𝑡𝔪𝑉 ′ = 2𝜋𝑖𝑘𝑁
∫
𝑑𝑡 𝜌𝔪 𝑢 +2𝜋𝑖𝑁2−2𝛼 𝐺 (Δ)

∫
𝑑𝑡

¤𝔪 𝜌2

(1 − 𝑖 ¤𝑣)2 +O
(
𝔪𝑁2−3𝛼) . (A.3.19)

We apply the same steps to obtain the large 𝑁 limit of Ω in (3.1.23). To avoid repetition,
we only present the result. We set the integer ambiguity 𝑀 to 𝑁/2 +O(1). We obtain:

Ω = −2𝜋𝑁2−𝛼 𝑓+(𝔫,Δ)
∫
𝑑𝑡

𝜌2

1 − 𝑖 ¤𝑣 +O
(
𝑁2−2𝛼) , (A.3.20)

where the function 𝑓+(𝔫,Δ) is defined in (3.1.29).

A.3.3 Solutions to the saddle-point equations

In this Appendix, we solve the saddle-point equations (3.1.31)–(3.1.33), in the original
parameterization in which 𝑣(𝑡) is a real function. Let us first solve (3.1.33). After integrating
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to
𝑘 (𝑖𝑡 + 𝑣)2 + 4𝐺𝜌

𝑖 + ¤𝑣 = 𝐴 ∈ C , (A.3.21)

its real and imaginary parts give

4𝜌 = −
(
1 + ¤𝑣2) Im[

𝐺−1 (
𝐴 − 𝑘 (𝑖𝑡 + 𝑣)2) ] , ¤𝑣 = −

Re
[
𝐺−1 (𝐴 − 𝑘 (𝑖𝑡 + 𝑣)2) ]

Im
[
𝐺−1 (𝐴 − 𝑘 (𝑖𝑡 + 𝑣)2) ] . (A.3.22)

We impose that 𝜌 is integrable. This necessarily implies that 𝜌 → 0 as 𝑡 → ±∞, or that 𝜌 is
defined on compact intervals where 𝜌 is zero at the endpoints. At infinity, or an endpoint

𝜌 = 0 =⇒ −𝑘 (𝑖𝑡 + 𝑣)2 = 0 . (A.3.23)

By considering real and imaginary parts, we see that this equation cannot be satisfied as
𝑡 → ±∞, and 𝜌 must have compact support. For 𝜌 to have two endpoints 𝑡± and be defined
on the interval [𝑡−, 𝑡+], 𝐴 cannot be on the positive real axis. Let 𝐴 1

2 be the square root whose
imaginary part is positive. The boundary conditions are

𝑡± = ± 𝑘− 1
2 Im(𝐴 1

2 ) , 𝑣(𝑡±) = ± 𝑘− 1
2 Re(𝐴 1

2 ) . (A.3.24)

We then solve the equation for ¤𝑣 in (A.3.22) using (A.3.24) as boundary conditions. The
equation can be rewritten and integrated to

Im
[
𝐺−1 (𝑖𝑡 + 𝑣)

(
𝐴 − 𝑘

3 (𝑖𝑡 + 𝑣)2
)]

= 𝐷 , (A.3.25)

where 𝐷 ∈ R is an integration constant. The boundary conditions (A.3.24) imply 𝐷 = 0 and
Im

(
𝐺−1𝐴

3
2
)
= 0. Using a real constant 𝐵 to parameterize the real part of 𝐺−1𝐴

3
2 , we write

𝐴 = 𝑘 (𝐵𝐺) 2
3 , 𝐵 ∈ R , (A.3.26)

where 𝑘 is included for convenience. It is important to keep in mind that there are 3 branches
for 𝐺 1

3 and the same branch is to be used in every expression. There is a triplet of solutions
at this point. The equation (A.3.25) can be written as

0 = Im
(
𝐺− 1

3 (𝑖𝑡 + 𝑣)
) [

3𝐵
2
3 +

(
Im

(
𝐺− 1

3 (𝑖𝑡 + 𝑣)
) )2

− 3
(
Re

(
𝐺− 1

3 (𝑖𝑡 + 𝑣)
) )2

]
. (A.3.27)
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The solutions obtained by setting to zero the square bracket lead to profiles for 𝜌 with a single
zero, and so they have to be discarded. We remain with

Im
(
𝐺− 1

3 (𝑖𝑡 + 𝑣)
)
= 0 ⇒ 𝑣(𝑡) = Re𝐺 1

3

Im𝐺
1
3
𝑡 , (A.3.28)

which through (A.3.22) gives the following profile for 𝜌:

𝜌(𝑡) = 𝑘

4
(
Im𝐺

1
3
)3

[
𝐵

2
3
(
Im𝐺

1
3
)2 − 𝑡2

]
. (A.3.29)

Requiring that 𝜌 > 0 within (𝑡−, 𝑡+) imposes

Im𝐺
1
3 > 0 , (A.3.30)

which restricts the branches we can take for 𝐺 1
3 . Requiring that

∫
𝑑𝑡 𝜌 = 1 fixes 𝐵 = 3/𝑘 and

the final result for 𝑢 and 𝜌 is:

𝑢(𝑡) = 𝑁 1
3

𝐺
1
3

Im𝐺
1
3
𝑡 , 𝜌(𝑡) = (9𝑘) 1

3

4 Im𝐺
1
3
− 𝑘

4
(
Im𝐺

1
3
)3 𝑡

2 , 𝑡± = ±
(
3
𝑘

) 1
3
Im𝐺

1
3 . (A.3.31)

Notice that if Δ𝐼 are real and 𝐺 > 0, (A.3.30) fixes the branch of the cube root such that 𝐺 1
3

has phase 𝑒 2𝜋𝑖
3 , and the solutions for 𝑢, 𝜌 reduce to those found in [43]. We can now solve for

𝔪 using (3.1.32). Inserting (A.3.31) for 𝑢 and 𝜌, the former reduces to:

(
𝑡2 − 𝑡2+

)
¥𝔪 + 4𝑡 ¤𝔪 + 2𝔪 =

𝑑2

𝑑𝑡2

[ (
𝑡2 − 𝑡2+

)
𝔪

]
= −2 𝑓+

𝐺
𝑢 , (A.3.32)

whose general solution is

𝔪(𝑡) = − 1(
𝑡2 − 𝑡2+

) 𝑁 1
3 𝑓+

3𝐺
𝐺

1
3

Im𝐺
1
3

(
𝑡3 + 𝐶𝑡 + 𝐷

)
, (A.3.33)

where 𝐶 and 𝐷 are integration constants. The requirement that 𝔪 has a compact image,
namely that it does not diverge at 𝑡 = 𝑡±, fixes 𝐶 = −𝑡2+ and 𝐷 = 0. This leads to the simple
solution

𝔪(𝑡) = − 𝑓+
3𝐺 𝑢(𝑡) . (A.3.34)
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One can then verify that (3.1.31) is automatically solved, with the following value for the
Lagrange multiplier:

` = 𝑖 𝑓+

(
𝑘

3𝐺

) 1
3
. (A.3.35)

The solution can be expressed more neatly by making use of the reparameterization symmetry
(3.1.34), performing the transformation

𝑡 =

(
3
𝑘

)1/3 (
Im𝐺

1
3
)
𝑡′ . (A.3.36)

This brings the solution to the form (3.1.35), in which primes have been omitted.





Appendix B

Supergravity generalities

In this Appendix, we set the supergravity conventions we used for our computations. We
do this both in the 5d case, where we also match the supergravity notation of [169] for the
conifold consistent truncation we are interested in and in the 4d case.

B.1 5d N = 2 abelian gauged supergravity

We report here the general form of 5d N = 2 Abelian gauged supergravity with 𝑛𝑉 vector
multiplets and 𝑛𝐻 hypermultiplets [198–200].1 The graviton multiplet contains a graviton, a
gravitino, and a vector; each vector multiplet contains a vector, a gaugino, and a real scalar;
each hypermultiplet contains four real scalars and a hyperino. All fermions are Dirac, but
can conveniently be doubled with a symplectic Majorana condition. We follow the notation
of [233,234]. We use indices

𝐼, 𝐽, 𝐾 = 1, . . . , 𝑛𝑉 + 1 , 𝑖, 𝑗 = 1, . . . , 𝑛𝑉 , 𝑢, 𝑣 = 1, . . . , 4𝑛𝐻 (B.1.1)

for the gauge fields 𝐴𝐼`, for the scalars 𝜙𝑖 in vector multiplets, and for the scalars 𝑞𝑢 in
hypermultiplets, respectively. The data defining the theory are:

1. A very special real manifold SM of real dimension 𝑛𝑉 .

2. A quaternionic-Kähler manifold QM of real dimension 4𝑛𝐻 .

3. A set of 𝑛𝑉 + 1 Killing vectors on QM compatible with the quaternionic-Kähler
structure (if 𝑛𝐻 = 0, 𝑛𝑉 + 1 FI parameters not all vanishing).

1A more complete discussion was developed in [232].
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The Killing vectors could be linearly dependent or vanish.
The bosonic Lagrangian is given by

8𝜋𝐺 (5)
N 𝑒−1L5d =

𝑅𝑠

2 − 1
2 G𝑖 𝑗 (𝜙) 𝜕`𝜙𝑖𝜕`𝜙 𝑗 −

1
2 ℎ𝑢𝑣 (𝑞)D`𝑞

𝑢D`𝑞𝑣 − 1
4 𝐺 𝐼𝐽 (𝜙) 𝐹 𝐼`a𝐹𝐽 `a+

+ 𝑒
−1

48 𝐶𝐼𝐽𝐾 𝜖
`a𝜌𝜎_ 𝐹 𝐼`a𝐹

𝐽
𝜌𝜎𝐴

𝐾
_ − 𝑔2𝑉 (𝜙, 𝑞) . (B.1.2)

Here 𝐺 (5)
N is the 5d Newton constant, 𝑒 𝑑5𝑥 is the spac-etime volume form, 𝑅𝑠 is the scalar

curvature, 𝐹 𝐼`a is the field strength of 𝐴𝐼`, 𝑔 is a coupling constant, and𝑉 is the scalar potential.
Let us explain the other terms.

Very special geometry. The scalars 𝜙𝑖 are real coordinates on the very special real manifold
SM [235]. The latter is specified by the totally symmetric tensor 𝐶𝐼𝐽𝐾 (which, controlling
also the Chern-Simons couplings, should be suitably quantized) as the submanifold

SM =

{
V (Φ) ≡ 1

6 𝐶𝐼𝐽𝐾 Φ𝐼Φ𝐽Φ𝐾 = 1
}
⊂ R𝑛𝑉+1 . (B.1.3)

Here Φ𝐼 are coordinates on R𝑛𝑉+1, and give rise to “sections” Φ𝐼 (𝜙𝑖) on SM. The metrics
𝐺 𝐼𝐽 and G𝑖 𝑗 for vector fields and vector multiplet scalar fields are

𝐺 𝐼𝐽 (𝜙) = −1
2

𝜕

𝜕Φ𝐼

𝜕

𝜕Φ𝐽
logV

���
V=1

, G𝑖 𝑗 (𝜙) = 𝜕𝑖Φ𝐼 𝜕𝑗Φ
𝐽 𝐺 𝐼𝐽

���
V=1

(B.1.4)

where 𝜕𝑖 ≡ 𝜕/𝜕𝜙𝑖. We recognize that G is the pull-back of 𝐺 from R𝑛𝑉+1 to SM. From
(B.1.3) it immediately follows

𝐶𝐼𝐽𝐾 Φ𝐼Φ𝐽𝜕𝑖Φ
𝐾
��
V=1 = 0 . (B.1.5)

With a little bit of algebra one then obtains a more explicit expression for 𝐺:

𝐺 𝐼𝐽 = −1
2𝐶𝐼𝐽𝐾Φ

𝐾 + 1
8𝐶𝐼𝐾𝐿𝐶𝐽𝑀𝑁Φ

𝐾Φ𝐿Φ𝑀Φ𝑁
���
V=1

. (B.1.6)

It follows that the kinetic term for vector multiplet scalars can also be written as

−1
2 G𝑖 𝑗 𝜕`𝜙𝑖𝜕`𝜙 𝑗 =

1
4 𝐶𝐼𝐽𝐾 Φ𝐼𝜕`Φ

𝐽𝜕`Φ𝐾
���
V=1

. (B.1.7)

One can define on SM the sections with lower indices:

Φ𝐼 ≡ 2
3𝐺 𝐼𝐽Φ

𝐽
���
V=1

=
1
6𝐶𝐼𝐽𝐾Φ

𝐽Φ𝐾
���
V=1

=
1
3
𝜕V
𝜕Φ𝐼

���
V=1

. (B.1.8)
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With simple algebra one can show the following identities:

Φ𝐼Φ
𝐼 = 1 , 𝐺 𝐼𝐽 =

9
2Φ𝐼Φ𝐽 −

1
2𝐶𝐼𝐽𝐾Φ

𝐾 ,

𝜕𝑖Φ𝐼 = −2
3𝐺 𝐼𝐽 𝜕𝑖Φ

𝐽 , Φ𝐼 𝜕𝑖Φ
𝐼 = Φ𝐼𝜕𝑖Φ𝐼 = 0 .

(B.1.9)

In particular, 𝜕𝑖Φ𝐼 for 𝑖 = 1, . . . , 𝑛𝑉 are the tangent vectors to SM in R𝑛𝑉+1 while Φ𝐼 is a
1-form orthogonal to SM. Another identity (and similar ones obtained by lowering one or
both of the indices 𝐼, 𝐽 with the metric 𝐺) is

G𝑖 𝑗 𝜕𝑖Φ𝐼𝜕𝑗Φ
𝐽 = 𝐺 𝐼𝐽 − 2

3Φ
𝐼Φ𝐽 , (B.1.10)

where 𝐺 𝐼𝐽 is the inverse of 𝐺 𝐼𝐽 . To prove it, one observes that the tensor on the LHS is the
projector on SM, and then verifies that the expression on the RHS has the same property.

When the manifold SM is a locally symmetric space, one can find a constant symmetric
tensor 𝐶 𝐼𝐽𝐾 with upper indices such that [198]

𝐶 𝐼𝑃𝑄 𝐶𝑃(𝐽𝐾 𝐶𝐿𝑀)𝑄 =
4
3 𝛿

𝐼
(𝐽 𝐶𝐾𝐿𝑀) . (B.1.11)

With some algebra, it follows that

Φ𝐼 =
3
2 𝐺

𝐼𝐽Φ𝐽 =
9
2 𝐶

𝐼𝐽𝐾Φ𝐽Φ𝐾 , 𝐺 𝐼𝐽 = 2Φ𝐼Φ𝐽 − 6𝐶 𝐼𝐽𝐾Φ𝐾 , (B.1.12)

as well as
𝐶 𝐼𝐽𝐾 =

1
8 𝐺

𝐼𝐿 𝐺𝐽𝑀 𝐺𝐾𝑁 𝐶𝐿𝑀𝑁 . (B.1.13)

Quaternionic-Kähler geometry. The scalars 𝑞𝑢 are real coordinates on the quaternionic-
Kähler manifold QM with metric ℎ𝑢𝑣 (𝑞) [236]. For 𝑛𝐻 ≥ 2,2 this is a 4𝑛𝐻-dimensional
Riemannian manifold with holonomy SU(2) × Sp(𝑛𝐻)/Z2. To express this fact, it is
convenient to introduce local “vielbeins” 𝑓 𝑖𝐴

𝑢 with 𝑖 = 1, 2 (not to be confused with the
index 𝑖 of very special geometry) in the fundamental of SU(2) and 𝐴 = 1, . . . , 2𝑛𝐻 in the
fundamental of Sp(𝑛𝐻), such that

ℎ𝑢𝑣 = 𝑓 𝑖𝐴
𝑢 𝑓

𝑗𝐵
𝑣 𝜖𝑖 𝑗Ω𝐴𝐵 , (B.1.14)

2The case 𝑛𝐻 = 1 is special because SU(2)2/Z2 � SO(4) and so the holonomy condition does not impose
any constraint on (orientable) Riemannian manifolds. However, supersymmetry requires (B.1.25) which we
can take as the definition of a quaternionic-Kähler manifold of dimension 4. A 4d space satisfying (B.1.25) is
Einstein with self-dual Weyl curvature.
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where 𝜖𝑖 𝑗 and Ω𝐴𝐵 are the invariant tensors of SU(2) and Sp(𝑛𝐻), respectively. Regarding
(𝑖𝐴) as a composite index, the inverse of the matrix 𝑓 𝑖𝐴

𝑢 is 𝑓 𝑢
𝑖𝐴

= ℎ𝑢𝑣 𝑓
𝑗𝐵

𝑣 𝜖 𝑗𝑖Ω𝐵𝐴. One can
then construct a locally-defined triplet of almost complex structures

®𝐽 𝑣
𝑢 ≡ (𝐽𝑥) 𝑣

𝑢 = −𝑖 𝑓 𝑖𝐴
𝑢 𝑓

𝑣

𝑗 𝐴
(𝜎𝑥) 𝑗

𝑖
(B.1.15)

where 𝑥 = 1, 2, 3 is in the adjoint of SU(2) and ®𝜎 are the Pauli matrices. The derived triplet
of almost symplectic forms is ®𝐽𝑢𝑣 = ®𝐽 𝑡

𝑢 ℎ𝑡𝑣. They are antisymmetric, using that ®𝜎 𝑗

𝑖
𝜖 𝑗 𝑘 is

symmetric.3 The almost complex structures automatically satisfy the quaternion relation

(𝐽𝑥) 𝑠
𝑢 (𝐽𝑦) 𝑡𝑠 = −𝛿𝑥𝑦𝛿𝑡𝑢 + 𝜖𝑥𝑦𝑧 (𝐽𝑧) 𝑡

𝑢 . (B.1.17)

The Levi-Civita connection takes values in 𝔰𝔲(2) × 𝔰𝔭(𝑛𝐻). Calling 𝜔 𝑖

𝑢 𝑗
and 𝜌 𝐴

𝑢𝐵
the two

projections, respectively, they are determined by the requirement that 𝑓 𝑖𝐴
𝑢 be covariantly

constant with respect to the full connection:

0 = ∇𝑣 𝑓 𝑖𝐴
𝑢 + 𝑓

𝑗 𝐴
𝑢 𝜔

𝑖

𝑣 𝑗
+ 𝑓 𝑖𝐵

𝑢 𝜌 𝐴
𝑣𝐵 . (B.1.18)

We can alternate between the vector and bispinor notations of SU(2) with4

®𝜔𝑢 = −𝑖 𝜔 𝑗

𝑢𝑖
®𝜎 𝑖

𝑗
, 𝜔

𝑗

𝑢𝑖
=
𝑖

2 ®𝜔𝑢 · ®𝜎 𝑗

𝑖
. (B.1.20)

The two connections are extracted from (B.1.18) through: 𝜔 𝑗

𝑢𝑖
𝛿𝐵
𝐴
+𝛿 𝑗

𝑖
𝜌 𝐵
𝑢𝐴

= − 𝑓 𝑤
𝑖𝐴

∇𝑢 𝑓 𝑗𝐵
𝑤 .

From (B.1.18) it immediately follows

∇̃𝑤 ®𝐽 𝑣
𝑢 ≡ ∇𝑤 ®𝐽 𝑣

𝑢 + ®𝜔𝑤 × ®𝐽 𝑣
𝑢 = 0 . (B.1.21)

3Using the fact that a 2 × 2 matrix can be expanded in the basis {1, ®𝜎}, we also find

2 𝑓 𝑖𝐴
𝑢 𝑓

𝑣

𝑗𝐴
= 𝛿𝑣𝑢𝛿

𝑖
𝑗 + 𝑖 ®𝐽 𝑣

𝑢 · ®𝜎 𝑖

𝑗
. (B.1.16)

4The SU(2) connection satisfies 𝜖 𝑗𝑚𝜔 𝑛
𝑢𝑚 𝜖𝑛𝑖 = 𝜔

𝑗

𝑢𝑖
, in particular 𝜔 𝑗

𝑢 𝑗
= 0, and a similar condition is

satisfied by 𝜌. This follows from the properties of the Pauli matrices. In going between the vector and bispinor
notation one can use the identities

®𝜎 𝑚
𝑛 · ®𝜎 𝑗

𝑖
= 𝛿

𝑗
𝑛𝛿
𝑚
𝑖 − 𝜖𝑚𝑗𝜖𝑛𝑖 , ®𝜎 𝑗

𝑖
× ®𝜎 𝑚

ℓ = 𝑖
(
®𝜎 𝑚
𝑖 𝛿

𝑗

ℓ
− 𝛿𝑚𝑖 ®𝜎 𝑗

ℓ

)
. (B.1.19)
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In other words, ®𝐽 is covariantly constant with respect to its natural SU(2) connection ®𝜔. From
the integrability condition of (B.1.18) one also obtains (in bispinor and vector notation):

𝑅 𝑠
𝑢𝑣 𝑡 = R 𝑗

𝑢𝑣𝑖
𝑓

𝑠

𝑗 𝐴
𝑓 𝑖𝐴𝑡 +R 𝐵

𝑢𝑣𝐴 𝑓
𝑠

𝑗𝐵
𝑓
𝑗 𝐴

𝑡 = −1
2

®R𝑢𝑣 · ®𝐽 𝑠𝑡 +R 𝐵
𝑢𝑣𝐴 𝑓

𝑠

𝑗𝐵
𝑓
𝑗 𝐴

𝑡 , (B.1.22)

where 𝑅 𝑠
𝑢𝑣 𝑡 is the Riemann tensor of ℎ𝑢𝑣 and we defined

R 𝑗

𝑢𝑣𝑖
≡ 2𝜕[𝑢𝜔

𝑗

𝑣]𝑖 − 2𝜔 𝑘

[𝑢 |𝑖 𝜔
𝑗

𝑣]𝑘 or ®R𝑢𝑣 ≡ 2𝜕[𝑢 ®𝜔𝑣] + ®𝜔𝑢 × ®𝜔𝑣
R 𝐵
𝑢𝑣𝐴 ≡ 2𝜕[𝑢𝜌

𝐵

𝑣]𝐴 − 2𝜌 𝐶

[𝑢 |𝐴 𝜌
𝐵

𝑣]𝐶 .
(B.1.23)

In particular
𝑅 𝑠
𝑢𝑣 𝑡

®𝐽 𝑡
𝑠 = 2𝑛𝐻 ®R𝑢𝑣 , (B.1.24)

i.e., the SU(2) field strength ®R𝑢𝑣 is the 𝔰𝔲(2) projection of the Riemann curvature.
One can prove [237] (see also [236,238]) that SU(2) × Sp(𝑛𝐻) holonomy manifolds with

𝑛𝐻 ≥ 2 are automatically Einstein. They satisfy a stronger property: the Riemann curvature
is the sum of the Riemann tensor of HP 𝑛𝐻 and a Weyl part,

𝑅𝑢𝑣𝑠𝑡 =
𝑅

8𝑛𝐻 (𝑛𝐻 + 2)

(
ℎ𝑠[𝑢ℎ𝑣]𝑡 + ®𝐽𝑢𝑣 · ®𝐽𝑠𝑡 − ®𝐽𝑠[𝑢 · ®𝐽𝑣]𝑡

)
+

+
(
𝑓 𝑖𝐴
𝑢 𝑓

𝑗𝐵
𝑣 𝜖𝑖 𝑗

) (
𝑓 𝑘𝐶
𝑠 𝑓 ℓ𝐷𝑡 𝜖𝑘ℓ

)
W𝐴𝐵𝐶𝐷 . (B.1.25)

The tensor W𝐴𝐵𝐶𝐷 is totally symmetric and controls the Weyl curvature, which is contained
in Sp(𝑛𝐻): it gives rise to a traceless (and thus Ricci flat) contribution to the Riemann
curvature. From that expression we obtain

𝑅𝑣𝑡 =
𝑅

4𝑛𝐻
ℎ𝑣𝑡 , ®R𝑢𝑣 =

𝑅

4𝑛𝐻 (𝑛𝐻 + 2)
®𝐽𝑢𝑣 . (B.1.26)

The first equation shows that the manifold is Einstein. The second equation shows that the
SU(2) part of the curvature is completely fixed in terms of the triplet of complex structures.
The tensor W𝐴𝐵𝐶𝐷 expresses the freedom in the Sp(𝑛𝐻) part.

While quaternionic-Kähler manifolds can have any size, local supersymmetry requires5

_ ≡ 𝑅

4𝑛𝐻 (𝑛𝐻 + 2) = −1 , (B.1.27)

5Had we chosen a canonical normalization for the action of hypermultiplet scalars, the scalar curvature
would be fixed in terms of the Planck mass to _ = −𝑚−2

Pl [236]. This reproduces the fact that the manifold of
hypermultiplet scalars is hyper-Kähler in rigid supersymmetry.
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fixing the scalar curvature [236]. Hence the manifold of hypermultiplet scalars is a non-trivial
quaternionic-Kähler manifold with negative scalar curvature.

Isometries and gauging. We consider gaugings of Abelian isometries of the quaternionic-
Kähler manifold QM by the vectors 𝐴𝐼`. The isometries are generated by (possibly vanishing
or linearly dependent) Killing vectors 𝑘𝑢

𝐼
(𝑞) that also satisfy a quaternionic version of the

triholomorphic condition:

ℎ𝑤(𝑢∇𝑣)𝑘𝑤𝐼 = 0 , ®𝐽 𝑤
𝑢 (∇𝑤𝑘𝑣𝐼 ) − (∇𝑢𝑘𝑤𝐼 ) ®𝐽

𝑣
𝑤 = _ ®𝐽 𝑣

𝑢 × ®𝑃𝐼 . (B.1.28)

The second equation expresses the fact that the derivative of each Killing vector commutes
with the triplet of complex structures, up to a rotation parameterized by the SU(2) sections
®𝑃𝐼 . Notice that the LHS can be written, after lowering 𝑣, as 2∇̃[𝑢

( ®𝐽𝑣]𝑠𝑘 𝑠𝐼 ) , therefore in the
hyper-Kähler case that _ = 0 and the SU(2) bundle is trivial, this reduces to the familiar
condition that the three symplectic forms ®𝐽𝑢𝑣 be preserved by the isometries. By taking the
cross product of the second equation in (B.1.28) with ®𝐽 𝑢

𝑣 we obtain

2𝑛𝐻_ ®𝑃𝐼 = ®𝐽 𝑣
𝑢 ∇𝑣𝑘𝑢𝐼 . (B.1.29)

This shows that on quaternionic Kähler manifolds, the sections ®𝑃𝐼 are completely fixed in
terms of the Killing vectors. With a little bit of work6 we obtain

∇̃𝑢 ®𝑃𝐼 = ®𝐽𝑢𝑤 𝑘𝑤𝐼 . (B.1.30)

This shows that ®𝑃𝐼 are a triplet of moment maps for the action of 𝑘𝑢
𝐼
. Taking a derivative and

using that 2∇̃[𝑢∇̃𝑣] ®𝑃𝐼 = ®R𝑢𝑣 × ®𝑃𝐼 we get back the second equation in (B.1.28), showing that
the correction term on the RHS is unavoidable. The divergence of (B.1.30) gives

∇̃𝑢∇̃𝑢 ®𝑃𝐼 = −2𝑛𝐻_ ®𝑃𝐼 , (B.1.31)

showing that the moment maps are eigenfunctions of the Laplacian.
Finally, let us consider for the moment the general case that the Killing vectors might

form a non-Abelian group:

[𝑘 𝐼 , 𝑘𝐽]𝑢 = 2𝑘 𝑠[𝐼∇𝑠𝑘
𝑢
𝐽] = 𝑓 𝐾

𝐼𝐽 𝑘𝑢𝐾 , (B.1.32)

6We take the derivative ∇̃ of (B.1.29), recalling that ®𝐽 is covariantly constant. From the algebraic Bianchi
identity we have 𝑅𝑢𝑣𝑠𝑡 ®𝐽𝑢𝑠 = 1

2𝑅
𝑠

𝑣𝑡 𝑢
®𝐽 𝑢
𝑠 = 𝑛𝐻 ®R𝑣𝑡 = 𝑛𝐻_ ®𝐽𝑣𝑡 . Then we use that the vectors are Killing, as well

as the properties of quaternionic-Kähler manifolds.
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where on the LHS is the Lie bracket and 𝑓 𝐾
𝐼𝐽

are the structure constants. Multiplying
(B.1.28) by ∇𝑣𝑘𝑢𝐽 and using (B.1.29), and then exploiting the derivative ∇𝑤 of (B.1.32), we
obtain

𝑘𝑢𝐼
®𝐽𝑢𝑣 𝑘𝑣𝐽 = 𝑓 𝐾

𝐼𝐽
®𝑃𝐾 + _ ®𝑃𝐼 × ®𝑃𝐽 . (B.1.33)

This is called the equivariance relation. In the Abelian case, we just set 𝑓 to zero. In the
special case 𝑛𝐻 = 0 that there are no hypermultiplets, all Killing vectors vanish and the only
remnant of the quaternionic-Kähler structure is the condition ®𝑃𝐼 × ®𝑃𝐽 = 0. The solution, up
to SU(2) rotations, is 𝑃𝑥

𝐼
= 𝛿𝑥3Z𝐼 where Z𝐼 are the so-called Fayet-Iliopoulos (FI) parameters,

which in this case are extra parameters one needs to specify.
We now have all the ingredients to write the covariant derivative

D`𝑞
𝑢 = 𝜕`𝑞

𝑢 + 𝑔 𝐴𝐼`𝑘𝑢𝐼 , (B.1.34)

as well as the scalar potential

𝑉 = 𝑃𝑥𝐼𝑃
𝑥
𝐽

(
1
2G

𝑖 𝑗𝜕𝑖Φ
𝐼𝜕𝑗Φ

𝐽 − 2
3Φ

𝐼Φ𝐽

)
+ 1

2ℎ𝑢𝑣 𝑘
𝑢
𝐼 𝑘

𝑣
𝐽 Φ

𝐼Φ𝐽

= 𝑃𝑥𝐼𝑃
𝑥
𝐽

(
1
2𝐺

𝐼𝐽 −Φ𝐼Φ𝐽

)
+ 1

2ℎ𝑢𝑣 𝑘
𝑢
𝐼 𝑘

𝑣
𝐽 Φ

𝐼Φ𝐽

(B.1.35)

that couples the scalars on SM and QM. To go to the second line we used (B.1.10).
The covariant derivative of the supersymmetry parameter 𝜖SUSY

𝑖
(subject to symplectic-

Majorana condition, with 𝑖 = 1, 2) is

𝐷`𝜖
SUSY
𝑖 =

(
∇`𝛿 𝑗𝑖 −

𝑖

2
®V` · ®𝜎 𝑗

𝑖

)
𝜖SUSY
𝑗 (B.1.36)

with connection

®V` = D`𝑞
𝑢 ®𝜔𝑢 − 𝑔 𝐴𝐼`®𝑟𝐼 and ®𝑟𝐼 = 𝑘𝑢𝐼 ®𝜔𝑢 − _ ®𝑃𝐼 ,

= 𝜕`𝑞
𝑢 ®𝜔𝑢 + 𝑔_ 𝐴𝐼` ®𝑃𝐼

(B.1.37)

where _ is the constant (B.1.27). Under gauge transformations7

𝛿𝑞𝑢 = 𝑔 𝛼𝐼 𝑘𝑢𝐼 , 𝛿𝐴𝐼` = −𝜕`𝛼𝐼 (B.1.38)

7The covariant derivative transforms as 𝛿D`𝑞
𝑢 = 𝑔 𝛼𝐼D`𝑘

𝑢
𝐼
.
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with parameters 𝛼𝐼 , using (B.1.26), (B.1.30) and (B.1.33) one can show that ®V` transforms
as an SU(2) connection:

𝛿 ®V` = 𝜕` ®Λ + ®V` × ®Λ with ®Λ = 𝑔 𝛼𝐼 ®𝑟𝐼 . (B.1.39)

Therefore, 𝐷`𝜖
SUSY
𝑖

is covariant if 𝜖SUSY
𝑖

transforms as

𝛿𝜖SUSY
𝑖 =

𝑖

2
®Λ · ®𝜎 𝑗

𝑖
𝜖SUSY
𝑗 . (B.1.40)

B.1.1 Conifold truncation

Here we embed the consistent truncation of type IIB supergravity on 𝑇1,1 to a 5d N = 2
gauged supergravity with a so-called “Betti multiplet”, described in Section 7 of [169] (called
the “second model” in that paper), in the general framework. The model has 𝑛𝑉 = 2 and
𝑛𝐻 = 2. We identify the fields

𝜙𝑖 =

(
𝑢 + 𝑣
𝑤

)
CF

, Φ𝐼 =
©«

𝑒−4(𝑢+𝑣)/3

−𝑒2(𝑢+𝑣)/3 cosh 2𝑤
−𝑒2(𝑢+𝑣)/3 sinh 2𝑤

ª®®¬CF

, 𝐴𝐼 =
©«
𝐴

𝑎𝐽1
𝑎Φ1

ª®®¬CF

, 𝑞𝑢 =

©«

𝑏Ω1
𝑏Ω2
𝑐Ω1
𝑐Ω2
𝑎

𝜙

𝐶0

𝑢

ª®®®®®®®®®®®®®®¬CF

(B.1.41)

where “CF” indicates the notation of [169]. The scalar fields 𝑏Ω, 𝑐Ω are complex and we used
𝑧1 = Re(𝑧), 𝑧2 = Im(𝑧) to indicate their real and imaginary parts, while 𝑢, 𝑣, 𝑤, 𝑎, 𝜙, 𝐶0 are
real. The hypermultiplet scalars 𝐶0 and 𝜙 together form the type IIB axio-dilaton 𝐶0 + 𝑖𝑒−𝜙.
Then we identify the Chern-Simons couplings

𝐶122 = −𝐶133 = 2 (B.1.42)

and symmetric permutations thereof, while all other components vanish, and the very special
geometry of SO(1, 1) × SO(1, 1):

G𝑖 𝑗 =
(
4/3 0
0 4

)
, 𝐺 𝐼𝐽 = 𝑒

− 4
3 (𝑢+𝑣)

©«
1
2𝑒

4(𝑢+𝑣) 0 0
0 cosh(4𝑤) − sinh(4𝑤)
0 − sinh(4𝑤) cosh(4𝑤)

ª®®¬ . (B.1.43)
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The tensor 𝐶 𝐼𝐽𝐾 has non-vanishing components 𝐶122 = −𝐶133 = 1/2 and permutations.
The quaternionic-Kähler manifold is SO(4, 2)/(SO(4) × SO(2)). Its metric is

ℎ𝑢𝑣𝑑𝑞
𝑢𝑑𝑞𝑣 = 𝑒−4𝑢−𝜙𝑑𝑏Ω𝑑𝑏Ω + 𝑒−4𝑢+𝜙 (𝑑𝑐Ω − 𝐶0𝑑𝑏

Ω
) (
𝑑𝑐Ω − 𝐶0𝑑𝑏Ω

)
+

+ 1
2𝑒

−8𝑢
(
2𝑑𝑎 + Re

(
𝑏Ω𝑑𝑐Ω − 𝑐Ω𝑑𝑏Ω

) )2
+ 1

2𝑑𝜙
2 + 1

2𝑒
2𝜙𝑑𝐶2

0 + 8𝑑𝑢2 .

(B.1.44)
In this normalization 𝑅 = −32 and thus _ = −1. The SU(2) connection is

𝜔1 − 𝑖𝜔2 = 𝑒−2𝑢−𝜙/2𝑑𝑏Ω + 𝑖 𝑒−2𝑢+𝜙/2 (𝑑𝑐Ω − 𝐶0𝑑𝑏
Ω
)

𝜔3 =
1
2𝑒

−4𝑢
(
2𝑑𝑎 + Re

(
𝑏Ω𝑑𝑐Ω − 𝑐Ω𝑑𝑏Ω

) )
− 1

2𝑒
𝜙𝑑𝐶0 .

(B.1.45)

Finally, we identify the Killing vectors

𝑘1 = 3
(
−𝑏Ω2

𝜕

𝜕𝑏Ω1
+ 𝑏Ω1

𝜕

𝜕𝑏Ω2
− 𝑐Ω2

𝜕

𝜕𝑐Ω1
+ 𝑐Ω1

𝜕

𝜕𝑐Ω2

)
+ 2 𝜕

𝜕𝑎
, 𝑘2 = 2 𝜕

𝜕𝑎
, 𝑘3 = 0

(B.1.46)
and the corresponding moment maps

𝑃𝑥1 =
©«
3𝑒𝜙/2−2𝑢 (𝑐Ω1 − 𝐶0𝑏

Ω
1 + 𝑒−𝜙𝑏Ω2 )

3𝑒𝜙/2−2𝑢 (𝐶0𝑏
Ω
2 − 𝑐Ω2 + 𝑒−𝜙𝑏Ω1 )

3 − 𝑒−4𝑢 (2 + 3𝑏Ω2 𝑐Ω1 − 3𝑏Ω1 𝑐Ω2 )

ª®®¬ , 𝑃𝑥2 =
©«

0
0

−2𝑒−4𝑢

ª®®¬ , 𝑃𝑥3 = 0 . (B.1.47)

The SU(2) connection and the moment maps were given in [171] and can be translated
into the notation of [169] (up to a conventional minus sign in the gauge fields) using the
identifications

𝜙𝑖 =

(
−3𝑢3

𝑢2

)
HLS

, 𝐴𝐼 =

©«
𝐴1

𝑘11 − 𝑘12
2

𝑘11 + 𝑘12
2

ª®®®®®¬HLS

, 𝑞𝑢 =

(
2Re 𝑏1

0, 2 Im 𝑏1
0, 2Re 𝑏2

0, 2 Im 𝑏2
0,
𝑘

2 , 𝜙, 𝑎, 𝑢1

)T

HLS
,

(B.1.48)
where “HLS” indicates the notation of [171].

The theory has a supersymmetric AdS5 vacuum at 𝑢 = 𝑣 = 𝑤 = 𝑏Ω = 𝑐Ω = 0 and
any value of 𝑎, 𝐶0, 𝜙 (in particular, the axio-dilaton can take any value). The potential is
𝑉
��
AdS = −6 leading to AdS radius ℓ5 = 𝑔−1. The spectrum therein was computed in [169]

(see its Table 2). We are particularly interested in the spectrum of vector fields and the Killing
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vectors they couple to:

𝐴𝑅 ≡ 𝐴1 − 2𝐴2 , 𝐴3 : 𝑚2 = 0 , 𝐴𝑊 ≡ 𝐴1 + 𝐴2 : 𝑚2 = 24𝑔2 .

𝑘𝑅 = 1
3 (𝑘1 − 𝑘2) , 𝑘3 𝑘𝑊 = 1

3 (2𝑘1 + 𝑘2)
(B.1.49)

The vector 𝐴𝑊 acquires a mass by the Higgs mechanism, eating the Stückelberg scalar 𝑎. The
mass eigenstates are

B𝐼𝐽𝐴
𝐽
` where B =

©«
1 −2 0
0 0 1
1 1 0

ª®®¬ (B.1.50)

is the matrix that diagonalizes them (see also Appendix C.2).

B.2 4d N = 2 abelian gauged supergravity

We summarize the salient features of 4d N = 2 Abelian gauged supergravity with 𝑛𝑉 vector
multiplets and 𝑛𝐻 hypermultiplets, following [201,202,233]. The graviton multiplet contains
a graviton, two gravitini, and a vector; each vector multiplet contains a vector, two gaugini,
and a complex scalar; each hypermultiplet contains four real scalars and two hyperini (all
fermions can be taken Majorana). We use indices

Λ, Σ = 0, . . . , 𝑛𝑉 , 𝑖, 𝑗 = 1, . . . , 𝑛𝑉 , 𝑢, 𝑣 = 1, . . . , 4𝑛𝐻 (B.2.1)

for the gauge fields 𝐴Λ` , for the complex scalars 𝑧𝑖 in vector multiplets, and for the real scalars
𝑞𝑢 in hypermultiplets, respectively. The data defining the theory are:

1. A special Kähler manifold KM of complex dimension 𝑛𝑉 .

2. A quaternionic-Kähler manifold QM of real dimension 4𝑛𝐻 .

3. A set of 𝑛𝑉 + 1 Killing vectors on QM compatible with the quaternionic-Kähler
structure (if 𝑛𝐻 = 0, 𝑛𝑉 + 1 FI parameters not all vanishing).

The Killing vectors could be linearly dependent or vanish.
It is always possible to find a duality frame in which all gaugings are purely electric. In

such frames the bosonic Lagrangian is

8𝜋𝐺 (4)
N 𝑒−1L4d =

𝑅𝑠

2 − 𝑔𝑖 �̄� (𝑧, 𝑧) 𝜕`𝑧𝑖𝜕`𝑧 �̄� −
1
2 ℎ𝑢𝑣 (𝑞)D`𝑞

𝑢D`𝑞𝑣+

+ 1
8 ImNΛΣ (𝑧, 𝑧) 𝐹Λ

`a𝐹
Σ`a + 𝑒

−1

16 ReNΛΣ (𝑧, 𝑧) 𝐹Λ
`a𝐹

Σ
𝜌𝜎𝜖

`a𝜌𝜎 − 𝑔2𝑉 (𝑧, 𝑧, 𝑞) . (B.2.2)
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The notation is mostly as in Appendix B.1. Let us explain the other terms.

Special Kähler geometry. The scalars 𝑧𝑖 are complex coordinates on the special Kähler
manifold KM [202]. This is a Kähler-Hodge manifold — i.e., a Kähler manifold with Kähler
potential K(𝑧, 𝑧) and metric 𝑔𝑖 �̄� (𝑧, 𝑧) = 𝜕𝑖𝜕 �̄�K as well as a line bundle (i.e., a holomorphic
vector bundle of rank 1) L such that its first Chern class coincides (up to a constant) with
the Kähler class 𝜔 = 𝑖𝜕𝜕K of the manifold8 — further endowed with a flat Sp(𝑛𝑉 + 1,R)
symplectic bundle. The manifold comes equipped with a covariantly-holomorphic section of
the tensor product of the symplectic bundle with the U(1)-bundle U associated with L,

V =

(
𝐿Λ

𝑀Λ

)
such that

𝐷𝑖V ≡ 𝜕𝑖V + 1
2 (𝜕𝑖K)V

𝐷 �̄�V ≡ 𝜕𝚤V − 1
2 (𝜕𝚤K)V = 0 ,

(B.2.3)

obeying the constraints
⟨V ,V⟩ ≡ 𝑀Λ𝐿

Λ − 𝐿Λ𝑀Λ = −𝑖 (B.2.4)

and
⟨V , 𝐷𝑖V⟩ = 0 , (B.2.5)

where we introduced the 𝑆𝑝-invariant antisymmetric form 𝑖⟨ , ⟩. Equivalently, there is a
holomorphic section of the tensor product of the symplectic bundle with L,9

𝑣(𝑧) = 𝑒−K/2 V ≡
(
𝑋Λ

𝐹Λ

)
such that

𝐷𝑖𝑣 ≡ 𝜕𝑖𝑣 + (𝜕𝑖K) 𝑣
𝐷 �̄�𝑣 ≡ 𝜕𝚤𝑣 = 0 ,

(B.2.6)

in terms of which the constraint (B.2.4) reads

K = − log
(
𝑖 ⟨𝑣, 𝑣⟩

)
= − log

[
2 Im

(
𝑋Λ𝐹Λ

) ]
, (B.2.7)

while the constraint (B.2.5) becomes ⟨𝑣, 𝐷𝑖𝑣⟩ = ⟨𝑣, 𝜕𝑖𝑣⟩ = 0. From (B.2.3)–(B.2.5) it is easy
to prove the following properties (or equivalent ones written in terms of 𝑣):

⟨𝐷𝑖V ,V⟩ = 0 , 𝐷 �̄�𝐷𝑖V = 𝑔𝑖 �̄� V , ⟨𝐷𝑖V , 𝐷 �̄�V⟩ = 𝑖 𝑔𝑖 �̄�
⟨𝐷𝑖V , 𝐷 𝑗V⟩ = 0 , 𝐷 [𝑖𝐷 𝑗]V = 0

(B.2.8)

from which the Kähler metric is extracted in a symplectic-invariant way.

8Because fermions are sections of the square root of L, the Kähler class of KM equal to the first Chern
class of L is required to be an even integer cohomology class.

9In particular, 𝐴 = 𝜕K is the Chern connection on L. Moreover, 𝐷𝑖V = 𝑒K/2𝐷𝑖𝑣 and 𝐷 �̄�V = 𝑒K/2𝐷 �̄�𝑣.
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The rescaling of 𝑋Λ, 𝐹Λ under Kähler transformations suggests the use of 𝑋Λ as homoge-
neous coordinates on KM. It is always possible to find symplectic frames10 in which the
Jacobian matrix 𝑒_

𝑖
(𝑧) = 𝜕𝑖

(
𝑋_/𝑋0) (with _ = 1, . . . , 𝑛𝑉 ) is invertible. Notice that

det
(
𝑒_𝑖

)
= (𝑋0)𝑛𝑉+1 det

(
𝑋Λ, 𝜕𝑖𝑋

Λ
)
= (𝑋0)𝑛𝑉+1 det

(
𝑋Λ, 𝐷𝑖𝑋

Λ
)

(B.2.9)

where the two square matrices on the right have size 𝑛𝑉 + 1, therefore the matrix
(
𝑋Λ, 𝜕𝑖𝑋

Λ
)

is invertible as well. Invertibility of the Jacobian ensures that we can use 𝑋Λ as homogeneous
coordinates, and regard 𝐹Λ(𝑋) as homogeneous functions of degree 1, namely 𝑋Σ𝜕Σ𝐹Λ = 𝐹Λ.
From (B.2.5) and (B.2.8), written as ⟨𝑣, 𝜕𝑖𝑣⟩ = ⟨𝜕𝑖𝑣, 𝜕𝑗𝑣⟩ = 0, one obtains the equations(

𝑋Λ, 𝜕𝑖𝑋
Λ
)
𝜕[Λ𝐹Σ]

(
𝑋Σ, 𝜕𝑗𝑋

Σ
)
= 0 . (B.2.10)

Invertibility of the matrix implies 𝜕[Λ𝐹Σ] = 0. Hence, in these frames, the sections 𝐹Λ
are the derivatives of a holomorphic homogeneous function 𝐹 (𝑋) of degree 2, called the
prepotential, namely 𝐹Λ = 𝜕Λ𝐹. In such frames, the Kähler potential (and thus the geometry)
is completely specified by the prepotential. The coordinates 𝑡𝑖 ≡ 𝑋 𝑖/𝑋0 with 𝑖 = 1, . . . , 𝑛𝑉
are called special coordinates.

The couplings of vector fields to the scalars 𝑧𝑖 are determined by the (𝑛𝑉 + 1) × (𝑛𝑉 + 1)
period matrix N , which is uniquely defined by the relations

𝑀Λ = NΛΣ 𝐿
Σ , 𝐷 �̄�𝑀Λ = NΛΣ 𝐷 �̄�𝐿

Σ
. (B.2.11)

Explicitly, one needs to invert the matrix relation
(
𝐹Λ, 𝐷 �̄�𝐹Λ

)
= NΛΣ

(
𝑋Σ, 𝐷 �̄�𝑋

Σ) . The
requirement that 𝑔𝑖 �̄� be positive definite guarantees that the rightmost matrix is invertible [202].
Indeed, introducing the square matrix LΛ

𝐼
=

(
𝐿Λ, 𝐷 �̄�𝐿

Λ
)

of size 𝑛𝑉 + 1, one can rewrite the
scalar products in (B.2.4), (B.2.5) and (B.2.8) as

LT (
N −NT)

L = 0 , L† (N −N †)L = −𝑖 diag
(
1, 𝑔𝑖 �̄�

)
. (B.2.12)

The first equation shows that NΛΣ is a symmetric matrix, given the invertibility of L. The
second equation then, assuming that 𝑔𝑖 �̄� is positive definite, proves that L is invertible and
that ImNΛΣ is negative definite. It also gives an expression for ImNΛΣ that, after taking the
inverse, reads

𝐷𝑖𝐿
Λ𝐷 �̄�𝐿

Σ
𝑔𝑖 �̄� + 𝐿Λ𝐿Σ = −1

2

( (
ImN

)−1
)ΛΣ

. (B.2.13)

10See [239] for examples of frames in which, instead, a prepotential does not exist.
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This relation, or the equivalent one in terms of the holomorphic section, will be used to
rewrite the scalar potential below. When a prepotential exists, N is obtained from

NΛΣ = 𝐹ΛΣ + 2𝑖 (Im 𝐹ΛΓ)𝑋Γ (Im 𝐹ΣΔ)𝑋Δ

𝑋Ω(Im 𝐹ΩΨ)𝑋Ψ
, (B.2.14)

where 𝐹ΛΣ = 𝜕Λ𝜕Σ𝐹. In this expression, N is manifestly symmetric.
Finally, one can define the tensor

𝐶𝑖 𝑗 𝑘 = ⟨𝐷𝑖𝐷 𝑗V , 𝐷𝑘V⟩ = ⟨V , 𝐷𝑘𝐷𝑖𝐷 𝑗V⟩ . (B.2.15)

Using (B.2.3)–(B.2.8) and the fact that the metric is Kähler, one easily proves that 𝐶𝑖 𝑗 𝑘 is
totally symmetric and covariantly holomorphic, 𝐷

ℓ
𝐶𝑖 𝑗 𝑘 = 0 where 𝐶 has twice the charge

of V . One can prove that (V , 𝐷𝑖V ,V , 𝐷 �̄�V) point-wise form a basis for the symplectic
bundle [202], hence

𝐷𝑖𝐷 𝑗V = 𝑖 𝐶𝑖 𝑗 𝑘𝑔
𝑘𝑘𝐷

𝑘
V (B.2.16)

follows by taking the product of the LHS with the basis. Among other things, 𝐶 controls the
curvature tensor: 𝑅

�̄� 𝑗 𝑘ℓ
= 𝑔 𝑗 �̄�𝑔ℓ𝑘 + 𝑔 𝑗 𝑘𝑔ℓ�̄� − 𝐶 𝑗ℓ𝑚𝐶�̄�𝑘𝑛𝑔

𝑚𝑛. In special coordinates, the tensor
𝐶 takes the particularly simple form

𝐶𝑖 𝑗 𝑘 = 𝑒
K 𝜕𝑖𝜕𝑗𝜕𝑘F (𝑡) with F (𝑡) = (𝑋0)−2𝐹 (𝑋) (B.2.17)

and 𝑡𝑖 = 𝑋 𝑖/𝑋0.

Hypermultiplets and gauging. The part of the action involving the hypermultiplets has the
same features as in the 5d case, summarized in Appendix B.1: the hypermultiplet scalars 𝑞𝑢

(with 𝑢 = 1, . . . , 4𝑛𝐻) are coordinates on a quaternionic-Kähler manifold QM with metric
ℎ𝑢𝑣 (𝑞). As before, we consider gauging of Abelian isometries of QM, generated by 𝑛𝑉 + 1
(possibly vanishing or linearly dependent) Killing vectors 𝑘𝑢

Λ
(𝑞) that must be compatible

with the quaternionic-Kähler structure, with associated triplets of moment maps ®𝑃Λ(𝑞). In
full generality, one could consider both electric and magnetic gaugings, described by Killing
vectors 𝑘𝑢

Λ
and 𝑘𝑢Λ, respectively, and transforming as a vector under Sp(𝑛𝑉 + 1,R) duality

transformations. It is always possible to find a duality frame in which all gaugings are purely
electric, and we will work in such a frame. Notice that there is no guarantee that in this frame
a prepotential exists.
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The scalar potential is

𝑉 = 2 𝑃𝑥Λ𝑃
𝑥
Σ 𝑒

K
(
𝑔𝑖 �̄�𝐷𝑖𝑋

Λ𝐷 �̄�𝑋
Σ − 3𝑋Λ𝑋

Σ
)
+ 4 𝑒Kℎ𝑢𝑣 𝑘𝑢Λ𝑘

𝑣
Σ𝑋

Λ𝑋
Σ

= −𝑃𝑥Λ𝑃
𝑥
Σ

( (
ImN

)−1ΛΣ + 8 𝑒K𝑋Λ𝑋
Σ
)
+ 4 𝑒Kℎ𝑢𝑣 𝑘𝑢Λ𝑘

𝑣
Σ𝑋

Λ𝑋
Σ
.

(B.2.18)

To go to the second line we used (B.2.13).
The covariant derivative of the supersymmetry parameter 𝜖SUSY

𝑖
(subject to symplectic-

Majorana condition, with 𝑖 = 1, 2) is

𝐷`𝜖
SUSY
𝑖 =

(
∇`𝛿 𝑗𝑖 −

𝑖

2 A`𝛿
𝑗

𝑖
− 𝑖

2
®V` · ®𝜎 𝑗

𝑖

)
𝜖SUSY
𝑗 (B.2.19)

with connections
®V` = 𝜕`𝑞𝑢 ®𝜔𝑢 + 𝑔_ 𝐴𝐼` ®𝑃𝐼

A` =
𝑖

2_
[
(𝜕𝛼K)𝜕`𝑧𝛼 − (𝜕𝛼K)𝜕`𝑧𝛼

]
.

(B.2.20)

Here ®V` is the SU(2) connection that descends from the quaternionic-Kähler manifold QM,
as in the 5d case (B.1.37). Instead A` descends from the connection on the U(1)-bundle U
on the special Kähler manifold KM.



Appendix C

Scherk-Schwarz reduction

In this Appendix, the focus will be on the Scherk-Schwarz (SS) reduction of a 5d abelian
N = 2 supergravity on 𝑆1, down to a 4d abelian N = 2 supergravity. We will first reduce the
Lagrangian of the theory, and then we will look at the relation between 5d and 4d charges.

C.1 Reduction with background gauge fields

Following [206] we will now reduce, piece by piece, the bosonic Lagrangian (B.1.2) of 5d
N = 2 gauged supergravity down to 4d. We start in 5d with 𝑛𝑉 vector multiplets and 𝑛𝐻
hypermultiplets. We use indices

𝐼, 𝐽 = 1, . . . , 𝑛𝑉 + 1 , Λ, Σ = 0, . . . , 𝑛𝑉 + 1 , 𝑢, 𝑣 = 1, . . . , 4𝑛𝐻 . (C.1.1)

We indicate the 5d vector fields as 𝐴𝐼
𝑀

(where 𝑀, 𝑁 = 0, . . . , 4 are space-time indices)
and parameterize the vector multiplet scalars in terms of sections Φ𝐼 subject to the cubic
constraint V (Φ) = 1 in (B.1.3). The hypermultiplet scalars are 𝑞𝑢. We employ the rather
standard Kaluza-Klein reduction ansatz (2.4.2) and (2.4.4):

�̂�𝑀𝑁 =

(
𝑒2𝜙𝑔`a + 𝑒−4𝜙𝐴0

`𝐴
0
a −𝑒−4𝜙𝐴0

`

−𝑒−4𝜙𝐴0
a 𝑒−4𝜙

)
, �̂�𝑀𝑁 =

(
𝑒−2𝜙𝑔`a 𝑒−2𝜙𝐴0`

𝑒−2𝜙𝐴0a 𝑒4𝜙 + 𝑒−2𝜙𝐴0
𝜌𝐴

0𝜌

)
,

𝑒(5) = 𝑒
2𝜙 𝑒(4) , Φ𝐼 = −𝑒2𝜙 𝑧𝐼2 , 𝐴𝐼𝑀 =

(
𝐴𝐼` − 𝑧𝐼1𝐴0

`, 𝑧
𝐼
1 + b 𝐼

)
. (C.1.2)

The last coordinate, which we call 𝑦 and whose range Δ𝑦 we leave generic for now, is
compactified on a circle of length 𝑒−2𝜙Δ𝑦, and no field depends on it. We indicated as �̂�𝑀𝑁
and 𝑒(5) the 5d metric and the square root of its determinant, respectively, and as 𝑔`a and
𝑒(4) (with `, a = 0, . . . , 3 space-time indices) their 4d counterparts. In 4d we end up with
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𝑛𝑉 + 1 vector multiplets, and we indicate as 𝐴Λ` the vector fields. The physical scalars in 4d
vector multiplets are the complex fields 𝑧𝑖. With a useful abuse of notation, we utilize the
very same index 𝐼 for 5d vector fields and 4d physical scalars, 𝑧𝐼 , because in 4d we have one
more vector field than in 5d. We also use the notation

𝑧𝐼1 ≡ Re 𝑧𝐼 , 𝑧𝐼2 ≡ Im 𝑧𝐼 . (C.1.3)

Notice that the real scalar 𝜙 can be eliminated with the 5d constraint,

𝑒−6𝜙 = −V (𝑧2) , (C.1.4)

then the scalars 𝑧𝐼 can be treated as independent. The real parameters b 𝐼 represent background
gauge fields along the circle, therefore, up to a gauge transformation, this ansatz is equivalent
to a Scherk-Schwarz reduction.

The reduction of the Einstein term gives

8𝜋𝐺 (4)
N L1 = 𝑒(5)

𝑅𝑠

2 = 𝑒(4)

[
𝑅𝑠

2 − 3 𝜕`𝜙 𝜕`𝜙 −
𝑒−6𝜙

8 𝐹0
`a𝐹

0`a
]
+ total derivatives . (C.1.5)

Here 𝑅𝑠 and 𝑅𝑠 are the 5d and 4d Ricci scalars, respectively. The 4d and 5d Newton constants
are related by

1
𝐺

(4)
N

=
Δ𝑦

𝐺
(5)
N

. (C.1.6)

In the following, for clarity, we will omit the factor 8𝜋𝐺 (4)
N . The reduction of the kinetic term

of vector multiplet scalars gives

L2 = −𝑒(5)
1
2 𝐺 𝐼𝐽 �̂�

𝑀𝑁𝜕𝑀Φ
𝐼𝜕𝑁Φ

𝐽 = 𝑒(4)

[
−𝑒

4𝜙

2 𝐺 𝐼𝐽𝜕`𝑧
𝐼
2𝜕

`𝑧𝐽2 + 3 𝜕`𝜙 𝜕`𝜙
]
. (C.1.7)

The last term exactly cancels the second term in L1, therefore

L1 + L2 = 𝑒(4)

[
𝑅𝑠

2 − 𝑒4𝜙

2 𝐺 𝐼𝐽 𝜕`𝑧
𝐼
2 𝜕

`𝑧𝐽2 −
𝑒−6𝜙

8 𝐹0
`a𝐹

0`a
]
. (C.1.8)

The reduction of the kinetic term of hypermultiplet scalars gives

L3 = −𝑒(5)
1
2 ℎ𝑢𝑣 �̂�

𝑀𝑁D̂𝑀𝑞
𝑢D̂𝑁𝑞

𝑣

= 𝑒(4)

[
−1

2 ℎ𝑢𝑣 D`𝑞
𝑢D`𝑞𝑣 − 𝑔2𝑒6𝜙

2
(
𝑘𝑢0 + 𝑧𝐼1𝑘𝑢𝐼

)
ℎ𝑢𝑣

(
𝑘𝑣0 + 𝑧𝐽1𝑘𝑣𝐽

) ]
.

(C.1.9)
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Here D̂𝑀𝑞
𝑢 = 𝜕𝑀𝑞

𝑢 + 𝑔 𝐴𝐼
𝑀
𝑘𝑢
𝐼

is the 5d covariant derivative in (B.1.34), while

D`𝑞
𝑢 = 𝜕`𝑞

𝑢 + 𝑔 𝐴𝐼`𝑘𝑢𝐼 + 𝑔 𝐴
0
` b

𝐼 𝑘𝑢𝐼 = 𝜕`𝑞
𝑢 + 𝑔 𝐴Λ` 𝑘𝑢Λ (C.1.10)

is the 4d covariant derivative, and we defined the new Killing vector

𝑘𝑢0 ≡ b 𝐼 𝑘𝑢𝐼 . (C.1.11)

The reduction of the gauge kinetic term gives

L4 = −𝑒(5)
1
4 𝐺 𝐼𝐽 𝐹

𝐼
𝑀𝑁𝐹

𝐽𝑀𝑁

= 𝑒(4)

[
−𝑒

−2𝜙

4 𝐺 𝐼𝐽

(
𝐹 𝐼` − 𝑧𝐼1𝐹0

`a

) (
𝐹𝐽`a − 𝑧𝐽1𝐹0`a) − 𝑒4𝜙

2 𝐺 𝐼𝐽 𝜕`𝑧
𝐼
1𝜕

`𝑧𝐽1

]
,

(C.1.12)

where 𝐹𝑀𝑁 and 𝐹`a are the 5d and 4d field strengths, respectively. We used

𝐹 𝐼`4 = 𝜕`𝑧
𝐼
1 , 𝐹 𝐼`a = 𝐹

𝐼
`a − 𝑧𝐼1𝐹0

`a + 2𝐴0
[`𝜕a]𝑧

𝐼
1 . (C.1.13)

To reduce the Chern-Simons term, we extend the geometry (2.4.2) to a 6d bulk whose
boundary is the original 5d space. A convenient way to do that is to complete the circle
parameterized by 𝑦 into a unit disk with radius 𝜌 ∈ [0, 1]. We extend the 5d connections 𝐴𝐼

in (2.4.4) to 6d connections 𝐴𝐼 as follows:

𝐴𝐼 = 𝐴𝐼 + b 𝐼𝐴0 + 𝜌2(𝑧𝐼1 + b 𝐼)
(
𝑑𝑦 − 𝐴0) . (C.1.14)

We then write the Chern-Simons action term as∫
5d

L5 =

∫
5d

1
12 𝐶𝐼𝐽𝐾 𝐹

𝐼 ∧ 𝐹𝐽 ∧ 𝐴𝐾 =

∫
6d

1
12 𝐶𝐼𝐽𝐾 𝐹

𝐼 ∧ 𝐹𝐽 ∧ 𝐹𝐾 . (C.1.15)

Substituting 𝐹 𝐼 = 𝑑𝐴𝐼 and performing the integrals over 𝑑𝜌2 ∧ (𝑑𝑦 − 𝐴0), we extract the 4d
reduced Lagrangian

L5 =
1
16 𝐶𝐼𝐽𝐾𝜖

`a𝜌𝜎

[ (
𝑧𝐼1 + b 𝐼

)
𝐹𝐽`a𝐹

𝐾
𝜌𝜎 −

(
𝑧𝐼1𝑧

𝐽
1 − b 𝐼b𝐽

)
𝐹𝐾`a𝐹

0
𝜌𝜎 +

𝑧𝐼1𝑧
𝐽
1𝑧
𝐾
1 + b 𝐼b𝐽b𝐾

3 𝐹0
`a𝐹

0
𝜌𝜎

]
.

(C.1.16)
Notice that the contributions containing the b 𝐼’s are standard theta terms.
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Finally, the reduction of the scalar potential gives

L6 = −𝑒(5)𝑔2𝑉 = −𝑒(4)𝑔2
[
𝑃𝑥𝐼𝑃

𝑥
𝐽

(
𝑒2𝜙

2 G𝑖 𝑗𝜕𝑖Φ𝐼𝜕𝑗Φ
𝐽 − 2𝑒6𝜙

3 𝑧𝐼2𝑧
𝐽
2

)
+ 𝑒

6𝜙

2 ℎ𝑢𝑣𝑘
𝑢
𝐼 𝑘

𝑣
𝐽𝑧
𝐼
2𝑧
𝐽
2

]
.

(C.1.17)
We proceed now with recasting the various pieces of the action in the general form (B.2.2)

of 4d N = 2 gauged supergravity with 𝑛𝑉 + 1 vector multiplets and 𝑛𝐻 hypermultiplets. The
Einstein term receives its contribution from L1:

L ′
1 = 𝑒(4)

𝑅𝑠

2 . (C.1.18)

The kinetic term of vector multiplet scalars gets contributions from L2 and L4:

L ′
2 = −𝑒(4)

𝑒4𝜙

2 𝐺 𝐼𝐽

(
𝜕`𝑧

𝐼
2𝜕

`𝑧𝐽2 + 𝜕`𝑧𝐼1𝜕`𝑧𝐽1
)
= −𝑒(4) 𝑔𝐼𝐽 𝜕𝑧

𝐼𝜕`𝑧𝐽 , (C.1.19)

where we defined the Hermitian metric

𝑔
𝐼𝐽

=
𝑒4𝜙

2 𝐺
𝐼𝐽
. (C.1.20)

The kinetic term of hypermultiplet scalars gets its contribution from L3,

L ′
3 = −𝑒(4)

1
2 ℎ𝑢𝑣 D`𝑞

𝑢D`𝑞𝑣 , (C.1.21)

with the covariant derivativeD` defined in (C.1.10)-(C.1.11). The gauge kinetic term receives
contributions from L1 and L4:

L ′
4 = −𝑒(4)

𝑒−6𝜙

8

[
𝐹0
`a𝐹

0`a + 4𝑔𝐼𝐽
(
𝐹 𝐼`a − 𝑧𝐼1𝐹0

`a

) (
𝐹𝐽`a − 𝑧𝐽1𝐹0`a) ] = 𝑒(4)

1
8 ImNΛΣ 𝐹

Λ
`a𝐹

Σ`a

(C.1.22)
where we defined the field-dependent matrix of gauge couplings

ImNΛΣ = −𝑒−6𝜙

(
1 + 4𝑔𝐾𝐿𝑧𝐾1 𝑧𝐿1 −4𝑔𝐾𝐽𝑧𝐾1
−4𝑔𝐼𝐾 𝑧𝐾1 4𝑔𝐼𝐽

)
(C.1.23)

in which the indices Λ, Σ run over 0 and then the values of 𝐼, 𝐽. On the other hand, the
field-dependent theta terms are contained in L5:

L ′
5 = L5 =

1
16 ReNΛΣ 𝜖

`a𝜌𝜎𝐹Λ
`a𝐹

Σ
𝜌𝜎 (C.1.24)
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where

ReNΛΣ =

(
1
3𝐶𝐾𝐿𝑀

(
𝑧𝐾1 𝑧

𝐿
1 𝑧

𝑀
1 + b𝐾b𝐿b𝑀

)
−1

2𝐶𝐽𝐾𝐿
(
𝑧𝐾1 𝑧

𝐿
1 − b𝐾b𝐿

)
−1

2𝐶𝐼𝐾𝐿
(
𝑧𝐾1 𝑧

𝐿
1 − b𝐾b𝐿

)
𝐶𝐼𝐽𝐾

(
𝑧𝐾1 + b𝐾

) )
. (C.1.25)

It turns out that 𝑔
𝐼𝐽

and NΛΣ descend from the following prepotential:

𝐹 (𝑋) = 1
6 𝐶𝐼𝐽𝐾

𝑋 𝐼𝑋𝐽𝑋𝐾

𝑋0 with 𝑋 𝐼 ≡ 𝑋 𝐼 + b 𝐼𝑋0

=
1
6 𝐶𝐼𝐽𝐾

𝑋 𝐼𝑋𝐽𝑋𝐾

𝑋0 + 1
2𝐶𝐼𝐽𝐾

(
b 𝐼𝑋𝐽𝑋𝐾 + b 𝐼b𝐽𝑋𝐾𝑋0 + 1

3b
𝐼b𝐽b𝐾 (𝑋0)2

)
.

(C.1.26)

The terms in parenthesis involving the b 𝐼’s only affect standard theta terms, which are
topological and thus do not enter into the equations of motion. Indeed, using special
coordinates 𝑧𝐼 = 𝑋 𝐼/𝑋0 and in the Kähler frame |𝑋0 |2 = 1, one derives the Kähler potential1

K = − log
(

1
6𝑖 𝐶𝐼𝐽𝐾

(
𝑧𝐼 − 𝑧𝐼

) (
𝑧𝐽 − 𝑧𝐽

) (
𝑧𝐾 − 𝑧𝐾

) )
= − log

(
8 𝑒−6𝜙) (C.1.27)

from which the Kähler metric (C.1.20) with (B.1.6) follows. On the other hand,

𝐹ΛΣ =

(
1
3𝐶𝐾𝐿𝑀

(
𝑧𝐾 𝑧𝐿𝑧𝑀 + b𝐾b𝐿b𝑀

)
−1

2𝐶𝐽𝐾𝑀
(
𝑧𝐾 𝑧𝑀 − b𝐾b𝐿

)
−1

2𝐶𝐼𝐾𝑀
(
𝑧𝐾 𝑧𝑀 − b𝐾b𝐿

)
𝐶𝐼𝐽𝐾

(
𝑧𝐾 + b𝐾

) )
(C.1.28)

from which the matrix N in (C.1.23) and (C.1.25) follows. It might be useful

(𝑋0)−2𝑋Λ
(
Im 𝐹ΛΣ

)
𝑋Σ = 4𝐶𝐼𝐽𝐾

(
1
3 Im(𝑧𝐼 𝑧𝐽𝑧𝐾) − 1

2 Im(𝑧𝐼 𝑧𝐽)Re(𝑧𝐾)
)

= −4
3 𝐶𝐼𝐽𝐾 𝑧

𝐼
2𝑧
𝐽
2𝑧
𝐾
2 = 𝑒−K = 8 𝑒−6𝜙 ,

(C.1.29)

as well as (
Im 𝐹𝐼Σ

)
𝑋Σ/𝑋0 = 𝑖 𝐶𝐼𝐾𝑀 𝑧

𝐾
2 𝑧

𝑀
2 . (C.1.30)

Finally, the scalar potential gets contributions from L3 and L6:

L ′
6 = −𝑒(4)𝑔2

[
𝑃𝑥𝐼𝑃

𝑥
𝐽

(
𝑒2𝜙

2 G𝑖 𝑗𝜕𝑖Φ𝐼𝜕𝑗Φ
𝐽 − 2𝑒6𝜙

3 𝑧𝐼2𝑧
𝐽
2

)
+

+ 𝑒
6𝜙

2 ℎ𝑢𝑣

(
𝑘𝑢𝐼 𝑘

𝑣
𝐽𝑧
𝐼
2𝑧
𝐽
2 + (𝑘𝑢0 + 𝑧𝐼1𝑘𝑢𝐼 ) (𝑘

𝑣
0 + 𝑧𝐽1𝑘𝑣𝐽)

)]
,

(C.1.31)

1The completely covariant expression for the Kähler potential is 𝑒−K = 8 |𝑋0 |2 𝑒−6𝜙 .
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which can be rewritten as

L ′
6 = −𝑒(4)𝑔2

[
−𝑃𝑥Λ𝑃

𝑥
Σ

( (
ImN )−1ΛΣ + 8 𝑒K𝑋Λ𝑋

Σ
)
+ 4 𝑒Kℎ𝑢𝑣𝑘𝑢Λ𝑘

𝑣
Σ𝑋

Λ𝑋
Σ
]
. (C.1.32)

To manipulate the first line we used (B.1.10) as well as( (
ImN

)−1
)ΛΣ

+ 8 𝑒K𝑋 (Λ𝑋Σ) = −𝑒6𝜙

(
0 0
0 1

4𝑔
𝐼𝐽 − 𝑧𝐼2𝑧𝐽2

)
, (C.1.33)

which immediately follows from (C.1.23). Notice in particular that ®𝑃0 drops out of the
potential and cannot be extracted from it, but it is still determined as ®𝑃0 = b 𝐼 ®𝑃𝐼 from (C.1.11).
The action L ′

6 exactly reproduces the potential in (B.2.18).
Summarizing, the compactification gives the following map from 5d to 4d data:

5d

𝑛𝑉 vector multiplets

SM with 𝐶𝐼𝐽𝐾

QM with ℎ𝑢𝑣 (𝑞)

gauging of 𝑘𝑢
𝐼

reduction with b 𝐼
−−−−−−−−−−−−→
background fields

4d

𝑛𝑉 + 1 vector multiplets

KM with 𝐹 =
1
6𝐶𝐼𝐽𝐾

𝑋 𝐼𝑋𝐽𝑋𝐾

𝑋0

QM with ℎ𝑢𝑣 (𝑞)

gauging of 𝑘𝑢
Λ
=

(
b𝐽𝑘𝑢

𝐽
, 𝑘𝑢

𝐼

)
(C.1.34)

where 𝑋 𝐼 = 𝑋 𝐼 + b 𝐼𝑋0.

C.1.1 Reduction of the conifold truncation

The reduction of the 5d conifold truncation described in Appendix B.1.1 gives a 4d supergravity
with the following data. The prepotential is

𝐹 =
𝑋1 ((𝑋2)2 − (𝑋3)2)

𝑋0 . (C.1.35)

It induces the vector multiplet scalar metric

𝑔
𝐼𝐽

=
1
2

©«

1
2(𝑧12)2

0 0
(𝑧22)

2+(𝑧32)
2(

(𝑧22)2−(𝑧
3
2)2

)2 − 2 𝑧22 𝑧
3
2(

(𝑧22)2−(𝑧
3
2)2

)2

Symmetrized (𝑧22)
2+(𝑧32)

2(
(𝑧22)2−(𝑧

3
2)2

)2

ª®®®®®®®¬
(C.1.36)
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that depends on 𝑧𝐼2, the theta terms (C.1.25) that depend on 𝑧𝐼1 and b 𝐼 , while the gauge coupling
function ImNΛΣ takes a lengthier expression that depends on 𝑧𝐼1 and 𝑧𝐼2 and can be easily
derived from (C.1.23). Since in 5d 𝑘3 = 0, the 4d extra Killing vector is 𝑘0 = b1𝑘1 + b2𝑘2.

C.2 Reduction of black-hole charges

The electric black-hole charges computed in [163] in our notation read

𝑄𝔗 = − 1
8𝜋𝐺 (5)

N 𝑔

∫
𝑆3
∞

𝐺𝔗𝐽 ★5 𝐹
𝐽 , (C.2.1)

where the integral is taken on the three-sphere at infinity, and they are dimensionless. We
recall that only a subspace 𝐴𝔗` of the vector fields are massless on the AdS5 vacuum and the
index 𝔗 runs over them. The massless vectors are such that the hypermultiplet scalars sit at a
fixed point of the gauged isometries, and are thus identified by the conditions

𝑘𝑢
𝔗
(𝑞) = 0 . (C.2.2)

Indeed, let B𝐼
𝐽

be a matrix of linear redefinitions such that B𝐼
𝐽
𝐴𝐽` are mass eigenstates. Such

a matrix is characterized by

B𝐼𝐽𝐺
𝐽𝑁 𝑘𝑢𝑁ℎ𝑢𝑣𝑘

𝑣
𝐿 = _𝐼𝑁B

𝑁
𝐿 , (C.2.3)

where _ is the diagonal matrix of squared masses (in units of 𝑔2). The corresponding linear
transformation of charges is 𝑄 𝐼 → 𝑄𝐽 (B−1)𝐽

𝐼
, while the Killing vectors corresponding to

the mass eigenstates are 𝑘𝑢
𝐽
(B−1)𝐽

𝐼
. Now consider a massless vector and let the index 𝔗 be

such that _𝔗
𝔗
= 0 (not summed over 𝔗). Using non-degeneracy of the metrics 𝐺 𝐼𝐽 and ℎ𝑢𝑣,

one easily proves that 𝑘𝑢
𝐽
(B−1)𝐽

𝔗
= 0, which is (C.2.2).

Now, the equations of motion for the bosonic fields of 5d gauged supergravity following
from (B.1.2) are

𝑑

(
𝐺 𝐼𝐽 ★5 𝐹

𝐽
)
=

1
4𝐶𝐼𝐽𝐾𝐹

𝐽 ∧ 𝐹𝐾 − 𝑔 ℎ𝑢𝑣 𝑘𝑢𝐼 ★5 D̂𝑞𝑣

𝑅𝑀𝑁 = 𝐺 𝐼𝐽

(
𝐹 𝐼𝑀𝑃𝐹

𝐽𝑃
𝑁 − 1

6 �̂�𝑀𝑁𝐹
𝐼
𝑃𝑄𝐹

𝐽𝑃𝑄

)
+

+ G𝑖 𝑗 𝜕𝑀𝜙𝑖𝜕𝑁𝜙 𝑗 + ℎ𝑢𝑣 D̂𝑀𝑞
𝑢D̂𝑁𝑞

𝑣 + 2
3 �̂�𝑀𝑁 𝑔

2𝑉 .

(C.2.4)
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Notice that (C.2.2) is just the condition not to have a source in the 𝔗-th component of
Maxwell’s equation from the hypermultiplets. We can express the charges Q𝔗 in terms of
integrals at the horizon [240] using the EOMs (C.2.4):

𝑄𝔗 = − 1
8𝜋𝐺 (5)

N 𝑔

[∫
𝑆3
𝑟

𝐺𝔗𝐽★5𝐹
𝐽+

∫
𝑆3
𝑟×𝐼 [𝑟,∞]

(
1
4 𝐶𝔗𝐽𝐾 𝐹

𝐽∧𝐹𝐾−𝑔 ℎ𝑢𝑣 𝑘𝑢𝔗★5D̂𝑞𝑣
)]
. (C.2.5)

The first term is an integral evaluated at radius 𝑟 , which we will take to be the horizon location.
The second term is a correction, integrated on a cylinder 𝑆3 × 𝐼 where 𝐼 is the interval from 𝑟

to ∞, that leads to a Page charge. Assuming that the condition 𝑘𝑢
𝔗
(𝑞) = 0 remains true also

on the black-hole background,2 the third term vanishes.
We can apply a similar manipulation to the angular momenta 𝐽𝑎=1,2. Given the space-time

Killing vectors 𝐾𝑎 ≡ 𝐾𝑀
𝑎 𝜕𝑀 , the angular momenta are defined in [163] as

𝐽𝑎 =
1

16𝜋𝐺 (5)
N

∫
𝑆3
∞

★5 𝑑𝐾𝑎 (C.2.6)

where we have indicated with the same symbol 𝐾𝑎 ≡ 𝐾𝑎𝑀𝑑𝑥𝑀 the 1-forms dual to the Killing
vectors, and the integral is evaluated once again at infinity. One can show that the Killing
equation implies

𝑑 ★5 𝑑𝐾 = 2𝑅𝑀𝑁𝐾𝑀 ★5 𝑑𝑥
𝑁 . (C.2.7)

We can then use the EOMs (C.2.4) to replace the Ricci scalar 𝑅𝑀𝑁 . We assume that 𝑆3 is
invariant under the isometries generated by 𝐾𝑎, therefore, indicating as i𝐾 the interior product,
the integral of �̂�𝑀𝑁𝐾𝑀 ★5 𝑑𝑥

𝑁 = i𝐾 (★51) vanishes. We also assume that i𝐾𝑑𝜙𝑖 = 0. We
obtain

𝐽𝑎 =
1

16𝜋𝐺 (5)
N

[∫
𝑆3
𝑟

★5 𝑑𝐾𝑎 + 2
∫
𝑆3×𝐼

(
𝐺 𝐼𝐽

(
i𝐾𝑎𝐹 𝐼

)
∧★5𝐹

𝐽 + ℎ𝑢𝑣
(
i𝐾𝑎D̂𝑞𝑢

)
★5 D̂𝑞𝑣

]
. (C.2.8)

Now let us proceed and reduce the charges to 4d imposing the ansatz (C.1.2), in particular

𝐴𝐼 = 𝐴𝐼 + b 𝐼𝐴0 + (𝑧𝐼1 + b 𝐼) (𝑑𝑦 − 𝐴0)
𝐹 𝐼 = 𝐹 𝐼 − 𝑧𝐼1𝐹0 + 𝑑𝑧𝐼1 ∧ (𝑑𝑦 − 𝐴0) ,

(C.2.9)

and performing the integrals along the circle. Notice that because of (C.1.6) and since the
horizon areas in 5d and 4d are related by Area(5) = Δ𝑦Area(4) , the black-hole entropy is the

2In the case of the conifold compactification discussed in Section 2.4.2, this assumption is true, see (2.4.29).
We expect the assumption to be true in all cases.
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same in 5d and 4d. We find∫
𝑆3
𝐺 𝐼𝐽 ★5 𝐹

𝐽 = Δ𝑦

∫
𝑆2
𝑒−2𝜙 𝐺 𝐼𝐽 ★4

(
𝐹𝐽 − 𝑧𝐽1𝐹0)

𝐶𝐼𝐽𝐾

∫
𝑆3×𝐼

𝐹𝐽 ∧ 𝐹𝐾 = −Δ𝑦 𝐶𝐼𝐽𝐾
∫
𝑆2
𝑟

(
2𝑧𝐽1𝐹

𝐾 − 𝑧𝐽1𝑧𝐾1 𝐹0
)
.

(C.2.10)

In the second equality, we used that 𝑧𝐼1 → 0 at infinity. The electric charges are thus

Q𝔗 =
1
𝑔

∫
𝑆2
𝑟

𝛿𝑆4d

𝛿𝐹𝔗
− 1

8𝜋𝐺 (4)
N 𝑔

𝐶𝔗𝐽𝐾

∫
𝑆2
𝑟

(
1
2 b

𝐽𝐹𝐾 + 1
4 b

𝐽b𝐾𝐹0
)
, (C.2.11)

where
𝛿𝑆4d

𝛿𝐹Λ
=

1
16𝜋𝐺 (4)

N

(
ImNΛΣ ★4 𝐹

Σ + ReNΛΣ𝐹
Σ
)

(C.2.12)

are the derivatives of the action obtained from (B.2.2) with (C.1.23) and (C.1.25).
We define the 4d dimensionless magnetic charges as

𝑝Λ =
𝑔

4𝜋

∫
𝑆2
𝐹Λ , (C.2.13)

where the integral can be done at any radius because of the Bianchi identities. On the other
hand, the first Chern class of the circle fibration — that we take to be the Hopf fibration of 𝑆3

— is 1
Δ𝑦

∫
𝑑𝐴0 = 1. Thus, we obtain a properly quantized 𝑝0 = 1 if we set

Δ𝑦 =
4𝜋
𝑔
. (C.2.14)

We will use this normalization from now on.
Let us now reduce the angular momentum. We consider the case 𝐽1 = 𝐽2, with 𝐽1,2

normalized such that they generate orbits of length 2𝜋, and define 𝐽 = (𝐽1 + 𝐽2)/2. The
corresponding Killing vector and dual 1-form are

𝐾𝑀𝜕𝑀 =
Δ𝑦

4𝜋
𝜕

𝜕𝑦
=

1
𝑔

𝜕

𝜕𝑦
, 𝐾𝑀𝑑𝑥

𝑀 =
1
𝑔
𝑒−4𝜙 (𝑑𝑦 − 𝐴0) . (C.2.15)

The first term in (C.2.8) gives∫
𝑆3
★5 𝑑𝐾 = −Δ𝑦

𝑔

∫
𝑆2
𝑒−6𝜙 ★4 𝐹

0 . (C.2.16)
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To reduce the second term we use i𝐾𝐹 𝐼 = −1
𝑔
𝑑𝑧𝐼1, integrate by parts, and use the EOMs

(C.2.4). To reduce the third term we use i𝐾D̂𝑞𝑢 =
(
𝑧𝐼1 + b 𝐼

)
𝑘𝑢
𝐼

and i𝜔 (★1) = ★𝜔 for a 1-form
𝜔. Eventually

𝐽 =
1

8𝜋𝐺 (4)
N 𝑔

{∫
𝑆2
𝑟

[
−1

2 𝑒
−6𝜙 ★4 𝐹

0 + 𝑒−2𝜙 𝐺 𝐼𝐽 𝑧
𝐼
1 ★4

(
𝐹𝐽 − 𝑧𝐽1𝐹0)+ (C.2.17)

− 𝐶𝐼𝐽𝐾
(
1
4 𝑧

𝐼
1𝑧
𝐽
1𝐹

𝐾 − 1
6 𝑧

𝐼
1𝑧
𝐽
1𝑧
𝐾
1 𝐹

0
)]

+
∫
𝑆2×𝐼

★4 𝑔 𝑘
𝑢
0 ℎ𝑢𝑣 D𝑞

𝑣

}
=

1
𝑔

∫
𝑆2
𝑟

𝛿𝑆4d
𝛿𝐹0 − 1

8𝜋𝐺 (4)
N 𝑔

[
𝐶𝐼𝐽𝐾b

𝐼b𝐽
∫
𝑆2
𝑟

(
1
4 𝐹

𝐾 + 1
6 b

𝐾𝐹0
)
+

∫
𝑆2×𝐼

★4 𝑔 𝑘
𝑢
0 ℎ𝑢𝑣 D𝑞

𝑣

]
.

The 4d angular momentum of the black-hole solution is proportional to 𝐽1−𝐽2, which vanishes
in the case under consideration. This implies that we can impose spherical symmetry on 𝑆2.
The section D𝑞𝑣 is charged under the Abelian vector fields 𝐴Λ` , therefore the magnetic fluxes
𝑝Λ give rise to an effective spin 𝑠 on 𝑆2. However, the spin spherical harmonics [241,242]
have total angular momentum 𝑗 ≥ |𝑠 |, which should vanish to have a spherically-symmetric
configuration. Since the Abelian symmetries are realized non-linearly on D𝑞𝑣 as soon as
𝑘𝑢
Λ
≠ 0, we obtain the condition

𝑝Λ𝑘𝑢Λ(𝑞) = 0 (C.2.18)

for spherically-symmetric black-hole solutions. Without loss of generality, in Section 2.4 we
have set 𝑝𝐼 = 0 which implies 𝑘𝑢0 = 0. We then see that the last term in (C.2.17) vanishes.

The magnetic charges that appear in the attractor equations of [174], in our conventions,
are (C.2.13) while the electric charges are

𝑞Λ =
𝑔

4𝜋

∫
𝑆2
𝑟

𝐺Λ with 𝐺Λ = 16𝜋𝐺 (4)
N
𝛿𝑆4d

𝛿𝐹Λ
. (C.2.19)

Setting 𝑝𝐼 = 0, we obtain the following dictionary between 5d and 4d charges:

𝑞0 = 4𝐺 (4)
N 𝑔2 𝐽 + 1

3 𝐶𝐼𝐽𝐾b
𝐼b𝐽b𝐾 𝑝0

𝑞𝔗 = 4𝐺 (4)
N 𝑔2𝑄𝔗 + 1

2 𝐶𝔗𝐽𝐾

1
2b

𝐽b𝐾 𝑝0 .
(C.2.20)
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C.2.1 Baryonic charge quantization in the conifold theory

To fix the exact relation between the supergravity charge 𝑄3 and the field theory baryonic
charge 𝑄𝐵, we deduce the Dirac quantization condition satisfied by 𝐴3

` from the consistent
reduction of [169].

The metric of 𝑇1,1 is

𝑑𝑠2 =
1
6

∑︁
𝑖=1,2

(
𝑑\2

𝑖 + sin2 \𝑖 𝑑𝜑
2
𝑖

)
+[2 with [ = −1

3

(
𝑑𝜓 +

∑︁
𝑖=1,2

cos \𝑖 𝑑𝜑𝑖
)
. (C.2.21)

We define the 2-forms3

𝐽 =
1
6

(
sin \1 𝑑\1 ∧ 𝑑𝜑1 + sin \2 𝑑\2 ∧ 𝑑𝜑2

)
=

1
2𝑑[

Φ =
1
6

(
sin \1 𝑑\1 ∧ 𝑑𝜑1 − sin \2 𝑑\2 ∧ 𝑑𝜑2

)
.

(C.2.22)

The expansion of the 10d RR field strength 𝐹RR
5 in [169] around the AdS5 × 𝑇1,1 vacuum

(where 𝑢 = 𝑣 = 𝑤 = 𝑏Ω = 𝑐Ω = 0), keeping only the dependence on the gauge fields and the
Stückelberg scalar 𝑎, in our conventions reads

𝐹RR
5 = 4𝑔 ★5 1 − 2𝑔−1 (★5 𝐷𝑎) ∧ ([ − 𝑔𝐴1) − 𝑔−2 (★5 𝑑𝐴

2) ∧ 𝐽 + 𝑔−2 (★5 𝑑𝐴
3) ∧Φ+

− 𝑔−3 𝑑𝐴2 ∧ 𝐽 ∧ ([ − 𝑔𝐴1) − 𝑔−3 𝑑𝐴3 ∧Φ ∧ ([ − 𝑔𝐴1)+
+ 𝑔−4 𝐽 ∧ 𝐽 ∧

(
𝐷𝑎 + 2([ − 𝑔𝐴1)

)
,

(C.2.23)
where ★5 is the Poincaré dual in AdS5 while 𝐷𝑎 = 𝑑𝑎 + 2𝑔(𝐴1 + 𝐴2). Dirac’s quantization
condition reads

1
2
√
𝜋 ^10

∫
C5

𝐹RR
5 ∈ Z (C.2.24)

for any closed 5-cycle C5. Here ^10 is the 10d gravitational coupling, related to the 5d Newton
constant by

Vol(𝑇1,1)
𝑔5^2

10
=

1
8𝜋𝐺 (5)

N

(C.2.25)

where Vol(𝑇1,1) = 16𝜋3/27. Applying (C.2.24) to C5 = 𝑇1,1 and imposing that there are 𝑁
units of 5-form flux, we recover (2.4.36). On the other hand, let us apply (C.2.24) to the
5-cycle 𝑋2 × 𝑆3, where 𝑋2 is the non-trivial 2-cycle of 𝑇1,1 while 𝑆3 is a spatial 3-sphere in

3The 2-form 𝐽 should not be confused with the angular momentum of the black hole.
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AdS5. Using
∫
𝑋2
𝐽 = 0 and

∫
𝑋2

Φ = 4𝜋/3 as well as (2.4.36), we obtain

1
2
√
𝜋 ^10

∫
𝑋2×𝑆3

𝐹RR
5 =

1
6𝜋𝐺 (5)

N 𝑔𝑁

∫
𝑆3

(
★5 𝐹

3 + 𝐹3 ∧ 𝐴1
)
= − 4

3𝑁 𝑄3 ∈ Z , (C.2.26)

where 𝐹3 = 𝑑𝐴3. According to (C.2.4) and using (B.1.42) and (B.1.43), the combination in
parenthesis gives the Page charge 𝑄3, which is conserved and quantized. Taking the 3-sphere
to spatial infinity, it coincides with the charge defined in (C.2.1).



Appendix D

Monopole spherical harmonics on 𝑺2

We use complex coordinates on 𝑆2 to perform the reduction in Section 3.2. We define
stereographic coordinates

𝑧 = 𝑒𝑖𝜑 tan \2 for \ < 𝜋 , 𝑣 = 𝑒−𝑖𝜑 cot \2 for \ > 0 , (D.1)

related by 𝑣 = 1/𝑧, which exhibit 𝑆2 as CP1. The round metric with radius 𝑅 is proportional
to the Fubini-Study metric, and the Lorentzian metric on 𝑆2 × R is

𝑑𝑠2 =
4𝑅2

(1 + 𝑧𝑧)2 𝑑𝑧 𝑑𝑧 − 𝑑𝑡
2 ≡ 𝑔

1
2 𝑑𝑧 𝑑𝑧 − 𝑑𝑡2 = 𝑒1𝑒1̄ − (𝑒3)2 , (D.2)

where we defined the vielbein

𝑒3 = 𝑑𝑡 , 𝑒1 = 𝑔
1
4 𝑑𝑧 , 𝑒1̄ = 𝑔

1
4 𝑑𝑧 . (D.3)

Here 𝑒1 and 𝑒1̄ are complex conjugate of each other, and therefore any real 𝑝-form expressed
in this basis has components satisfying the reality property 𝑋∗

1··· = 𝑋1̄···. Flat indices are
lowered and raised by the flat metric [𝑎𝑏 with [11̄ = [1̄1 = 1

2 . The volume form has flat
components 𝜖011̄ = 𝑖/2.

Let us now move to spinors. We choose the set of gamma matrices

𝛾𝑡 =

(
𝑖 0
0 −𝑖

)
, 𝛾1 =

(
0 0
1 0

)
, 𝛾1̄ =

(
0 1
0 0

)
, (D.4)

satisfying {𝛾𝑎, 𝛾𝑏} = 2[𝑎𝑏1. The generators of the Dirac representation are 𝛾𝑎𝑏 = 1
2 [𝛾𝑎, 𝛾𝑏].

On 𝑆2 × R the 3d Lorentz group SO(2, 1) is broken to the U(1) generated by 𝛾11̄, and fields
are characterized by a spin that is the charge under this U(1). The spin connection, defined
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by (𝜔𝑎𝑏)` = 𝑒𝑎a
(
𝜕`𝑒

a
𝑏 + Γa`𝜌𝑒

𝜌
𝑏

)
, has non-zero components

(𝜔1
1)𝑧 = −(𝜔1̄

1̄)𝑧 = − 𝑧

1 + 𝑧𝑧 , (𝜔1
1)𝑧 = −(𝜔1̄

1̄)𝑧 =
𝑧

1 + 𝑧𝑧 . (D.5)

The spinor covariant derivative (without gauge connections)

𝐷`

(
𝜓+

𝜓−

)
≡ (𝐷`𝜓+, 𝐷`𝜓−)T (D.6)

can be written as

𝐷 = 𝑑 − 𝑖𝑠𝜔 with 𝜔 = 𝑖
𝑧 𝑑𝑧 − 𝑧 𝑑𝑧

1 + 𝑧𝑧 = (cos \ − 1) 𝑑𝜑 (D.7)

and 𝑠 = ±1/2 is the spin. Note that

1
2𝜋

∫
𝑆2
𝑑𝜔 = −2 . (D.8)

The components 𝜓± are sections of the U(1) bundles associated to the line bundles K± 1
2 �

O(∓1), where K is the canonical bundle. A generic U(1) bundle is labeled by a half-integer
monopole charge 𝑞, and has covariant derivative 𝐷 = 𝑑 − 𝑖𝑞𝑎. To conform with the
conventions of [242] for the monopole harmonics, we write the connection as a half-integer
multiple of 𝑎 = −𝜔.

Similarly, the Levi-Civita connection on 1-forms is a U(1) connection when projected
onto the frame fields:

𝑒𝑧1 ∇`𝐴𝑧 = (𝜕` − 𝑖𝜔`)𝑒𝑧1𝐴𝑧 ≡ 𝐷`𝐴1 , 𝑒𝑧1̄ ∇`𝐴𝑧 = (𝜕` + 𝑖𝜔`)𝑒𝑧1̄𝐴𝑧 ≡ 𝐷`𝐴1̄ . (D.9)

Thus 𝐴1 = 𝑒𝑧1𝐴𝑧 and 𝐴1̄ = 𝑒𝑧1̄𝐴𝑧 are sections with 𝑞 = −1 and 𝑞 = +1, respectively. On the
other hand, 𝐷`𝐴3 = 𝜕`𝐴3, and thus 𝐴3, is a section of the trivial bundle, just like a scalar.
Defining 𝐷𝑎 = 𝑒

`
𝑎𝐷`, one finds

(𝑑𝐴)𝑎𝑏 = 𝑒`𝑎𝑒a𝑏 (∇`𝐴a − ∇a𝐴`) = 𝐷𝑎𝐴𝑏 − 𝐷𝑏𝐴𝑎 . (D.10)

If, in addition, the fields are in the adjoint representation of the gauge group and there is a
background gauge field with fluxes

𝐴 =
1
2𝔪𝑖𝐻

𝑖 𝑎 ⇒ 1
2𝜋

∫
𝑆2
𝑑𝐴 = 𝔪𝑖𝐻

𝑖 , (D.11)
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then including this background in the covariant derivatives 𝐷` shifts the spin 𝑠 → 𝑠 − 𝛼(𝔪)
2 ,

or equivalently 𝑞 → 𝑞 + 𝛼(𝔪)
2 , where 𝛼 are the roots.

The derivatives 𝐷1 and 𝐷 1̄ raise and lower the spin by 1, respectively. This is the opposite
in terms of the charge 𝑞. Their explicit expressions are

𝐷
(𝑞)
1 =

1
2𝑅

(
(1 + 𝑧𝑧) 𝜕𝑧 − 𝑞𝑧

)
, 𝐷

(𝑞)
1̄ =

1
2𝑅

(
(1 + 𝑧𝑧) 𝜕𝑧 + 𝑞𝑧

)
, (D.12)

where the superscript indicates the charge of the section they act on, whereas under complex
conjugation 𝐷 (𝑞) ∗

1 = 𝐷
(−𝑞)
1̄ and 𝐷 (𝑞) ∗

1̄ = 𝐷
(−𝑞)
1 . We define the operators

𝐿+ = 𝑧2𝜕𝑧 + 𝜕𝑧 − 𝑞𝑧 , 𝐿− = −𝑧2𝜕𝑧 − 𝜕𝑧 − 𝑞𝑧 , 𝐿𝑧 = 𝑧𝜕𝑧 − 𝑧𝜕𝑧 − 𝑞 , (D.13)

satisfying the 𝔰𝔲(2) algebra [𝐿𝑧, 𝐿±] = ±𝐿± and [𝐿+, 𝐿−] = 2𝐿𝑧. The covariant Laplacian is

−𝐷2 ≡ 𝐿2 − 𝑞2 =
1
2 {𝐿+, 𝐿−} + 𝐿

2
𝑧 − 𝑞2 = −

(
1 + 𝑧𝑧

)2
𝜕𝑧𝜕𝑧 − 𝑞(1 + 𝑧𝑧)𝐿𝑧 − 𝑞2

= − 1
sin \ 𝜕\

(
sin \ 𝜕\

)
+ 1

sin2 \

(
−𝑖𝜕𝜑 − 𝑞 + 𝑞 cos \

)2
,

(D.14)

which can be diagonalized simultaneously with 𝐿2 and 𝐿𝑧. Its eigenfunctions are the
monopole spherical harmonics 𝑌𝑞,𝑙,𝑚 with |𝑚 | ≤ 𝑙, that we choose to be orthonormal on an
𝑆2 of radius 1: ∫

𝑆2

√
𝑔 𝑌𝑞,𝑙,𝑚 𝑌𝑞,𝑙′,𝑚′ = 𝛿𝑙,𝑙′ 𝛿𝑚,𝑚′ . (D.15)

The highest harmonic with 𝑚 = 𝑙, annihilated by 𝐿+, is

𝑌𝑞,𝑙,𝑙 (𝑧, 𝑧) ∝ 𝑧𝑙+𝑞

(1 + 𝑧𝑧)𝑙
. (D.16)

Regularity at the poles implies 𝑙 + 𝑞 ∈ Z≥0 and 𝑙 ≥ |𝑞 |.
The Laplacian can be written in terms of the derivatives as

−𝐷2 = −4𝑅2𝐷1𝐷 1̄ + 𝑞 = −4𝑅2𝐷 1̄𝐷1 − 𝑞 = −2𝑅2{𝐷1, 𝐷 1̄} . (D.17)

Besides, one can verify that

[𝐷1, 𝐿𝑧] = [𝐷1, 𝐿±] = [𝐷 1̄, 𝐿𝑧] = [𝐷 1̄, 𝐿±] = 0 . (D.18)

Therefore the derivatives act as bundle-changing operators mapping 𝑌𝑞,𝑚,𝑙 to 𝑌𝑞±1,𝑚,𝑙 . The
exact relations can be derived integrating by parts the orthonormality conditions. For a
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suitable choice of phases one finds [242,243]:

𝐷
(𝑞)
1 𝑌𝑞,𝑙,𝑚 = − 𝑠−(𝑞, 𝑙)2𝑅 𝑌𝑞−1,𝑙,𝑚 with 𝑠−(𝑞, 𝑙) =

[
𝑙 (𝑙 + 1) − 𝑞(𝑞 − 1)

] 1
2 ,

𝐷
(𝑞)
1̄ 𝑌𝑞,𝑙,𝑚 =

𝑠+(𝑞, 𝑙)
2𝑅 𝑌𝑞+1,𝑙,𝑚 with 𝑠+(𝑞, 𝑙) =

[
𝑙 (𝑙 + 1) − 𝑞(𝑞 + 1)

] 1
2 .

(D.19)

Following the same conventions as in [243], the monopole harmonics satisfy

𝑌𝑞,𝑙,𝑚 = (−1)𝑞+𝑚 𝑌−𝑞,𝑙,−𝑚 (D.20)

under complex conjugation.
Finally, the triple overlap of harmonics is given in terms of Wigner 3 𝑗-symbols:∫
𝑑Ω 𝑌𝑞,𝑙,𝑚𝑌𝑞′,𝑙′,𝑚′𝑌𝑞′′,𝑙′′,𝑚′′ =

= (−1)𝑙+𝑙′+𝑙′′
[
(2𝑙 + 1) (2𝑙′ + 1) (2𝑙′′ + 1)

4𝜋

] 1
2
(
𝑙 𝑙′ 𝑙′′

𝑞 𝑞′ 𝑞′′

) (
𝑙 𝑙′ 𝑙′′

𝑚 𝑚′ 𝑚′′

)
, (D.21)

or equivalently

𝑌𝑞,𝑙,𝑚 𝑌𝑞′,𝑙′,𝑚′ = (D.22)∑︁
𝑙′′

(−1)𝑙+𝑙′+𝑙′′+𝑞′′+𝑚′′
[
(2𝑙 + 1) (2𝑙′ + 1) (2𝑙′′ + 1)

4𝜋

] 1
2
(
𝑙 𝑙′ 𝑙′′

𝑞 𝑞′ 𝑞′′

) (
𝑙 𝑙′ 𝑙′′

𝑚 𝑚′ 𝑚′′

)
𝑌−𝑞′′,𝑙′′,−𝑚′′

The 3 𝑗-symbols are directly related to Clebsch-Gordan coefficients that decompose the
angular momentum state |𝑙′′𝑚′′⟩ in terms of |𝑙 𝑚 𝑙′𝑚′⟩ = |𝑙 𝑚⟩ ⊗ |𝑙′𝑚′⟩:

𝐶
(
𝑙 𝑙′ 𝑙′′
𝑚 𝑚′ 𝑚′′

)
≡ ⟨𝑙 𝑚 𝑙′𝑚′| 𝑙′′𝑚′′⟩ = (−1)𝑙−𝑙′+𝑚′′√2𝑙′′ + 1

(
𝑙 𝑙′ 𝑙′′

𝑚 𝑚′ −𝑚′′

)
. (D.23)

In particular, the Clebsh-Gordan coefficients are zero unless 𝑚 + 𝑚′ = 𝑚′′,
��𝑚 (𝑖) �� ≤ 𝑙 (𝑖) with

𝑚 (𝑖) = 𝑙 (𝑖) mod 1, and 𝑙 (𝑖) ≤ 𝑙 ( 𝑗) + 𝑙 (𝑘) . The 3 𝑗-symbol is symmetric under even permutations
of its columns and gains a sign (−1)𝑙+𝑙′+𝑙′′ under odd permutations. It also gains a sign
(−1)𝑙+𝑙′+𝑙′′ when one changes sign to𝑚,𝑚′ and𝑚′′ simultaneously. This implies the following
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relations among Clebsch-Gordan coefficients:

𝐶
(
𝑙′ 𝑙′′ 𝑙
𝑚′ −𝑚′′ −𝑚

)
= (−1)𝑙−𝑙′′+𝑚′

[
2𝑙 + 1
2𝑙′′ + 1

]1/2
𝐶

(
𝑙 𝑙′ 𝑙′′
𝑚 𝑚′ 𝑚′′

)
,

𝐶
(
𝑙′′ 𝑙 𝑙′

−𝑚′′ 𝑚 −𝑚′
)
= (−1)𝑙′′−𝑙′+𝑚

[
2𝑙′ + 1
2𝑙′′ + 1

]1/2
𝐶

(
𝑙 𝑙′ 𝑙′′
𝑚 𝑚′ 𝑚′′

)
,

𝐶
(
𝑙′ 𝑙 𝑙′′
𝑚′ 𝑚 𝑚′′

)
= (−1)𝑙+𝑙′−𝑙′′𝐶

(
𝑙 𝑙′ 𝑙′′
𝑚 𝑚′ 𝑚′′

)
.

(D.24)

In the special case that 𝑙′′ = 𝑙 + 𝑙′ ≡ 𝐿 (and 𝑚 + 𝑚′ = −𝑚′′ ≡ 𝑀 as in the general case):(
𝑙 𝑙′ 𝐿

𝑚 𝑚′ −𝑀

)
= (−1)𝑙−𝑙′+𝑀

[
1

2𝐿 + 1

(
2𝐿

𝐿 + 𝑀

)−1 ( 2𝑙
𝑙 + 𝑚

) (
2𝑙′

𝑙′ + 𝑚′

)] 1
2
,

𝐶
(
𝑙 𝑙′ 𝐿
𝑚 𝑚′ 𝑀

)
=

[(
2𝐿

𝐿 + 𝑀

)−1 ( 2𝑙
𝑙 + 𝑚

) (
2𝑙′

𝑙′ + 𝑚′

)] 1
2
.

(D.25)





Appendix E

1d N = 2 superspace

We review here the 1d N = 2 superspace formalism, drawing from Appendix A of [217].
The N = 2 superspace in quantum mechanics, which we denote as R1|2, has coordinates
(𝑡, \, \), where \ is a complex fermionic coordinate. A supersymmetry transformation is
𝛿 = −𝜖 𝑄 + 𝜖 𝑄, where 𝜖 , 𝜖 are anticommuting parameters, and 𝑄, 𝑄 are anticommuting
generators so that 𝛿 is commuting. Here 𝑄 and 𝑄 are defined as differential operators acting
on superfields:

𝑄 ≡ 𝜕\ +
𝑖

2 \ 𝜕𝑡 , 𝑄 ≡ −𝜕
\
− 𝑖

2 \ 𝜕𝑡 . (E.1)

They satisfy the algebra 𝑄2 = 𝑄
2
= 0 and {𝑄,𝑄} = −𝑖𝜕𝑡 . Moreover, 𝑄 and 𝑄 anticommute

with another set of differential operators

𝐷 ≡ 𝜕\ −
𝑖

2 \ 𝜕𝑡 , 𝐷 ≡ −𝜕
\
+ 𝑖

2 \ 𝜕𝑡 , (E.2)

which satisfy the algebra 𝐷2 = 𝐷
2
= 0 and {𝐷, 𝐷} = 𝑖𝜕𝑡 . One has (𝐷𝑋) = (−1)𝐹𝐷 𝑋 and

(𝐷𝑋) = (−1)𝐹𝐷𝑋 .

E.1 Matter multiplets

A chiral superfield Φℎ is defined by 𝐷Φℎ = 0. Gauge transformations act as

Φℎ → ℎΦℎ , ℎ = 𝑒𝜒 , 𝜒 : R1|2 → C ⊗ 𝑟 , 𝐷𝜒 = 0 , (E.1.1)
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where 𝑟 is some representation of the gauge group. 𝐷Φℎ = 0 implies that Φℎ and its complex
conjugate anti-chiral superfield Φℎ have expansion:

Φℎ = 𝜙 + \𝜓 − 𝑖

2\\ 𝜕𝑡𝜙 , Φℎ = 𝜙 − \ 𝜓 + 𝑖

2\\ 𝜕𝑡𝜙 . (E.1.2)

Acting with (E.1) on Φℎ and Φℎ, we find the following supersymmetry variations:

𝑄𝜙 = 𝜓 , 𝑄𝜓 = 0 , 𝑄𝜙 = 0 , 𝑄𝜓 = 𝑖𝜕𝑡𝜙 . (E.1.3)

Suppose that Φ𝐼,ℎ are a collection of bosonic chiral superfields. We can also have fermionic
Fermi superfields Yℎ, satisfying 𝐷Yℎ = 𝐸 (Φℎ) for some holomorphic function 𝐸 (Φℎ), and
transforming as Yℎ → ℎYℎ under some representation of the gauge group. 𝐷Yℎ = 𝐸 (Φℎ)
implies that Yℎ and its conjugate Yℎ have expansion:

Yℎ = [ − \ 𝑓 − \𝐸 (𝜙) + \\
(
𝜕𝐼𝐸 (𝜙)𝜓𝐼 − 𝑖

2𝜕𝑡[
)
= [ − \ 𝑓 − \𝐸 (Φ) − 𝑖

2\\𝜕𝑡[ ,

Yℎ = [ − \ 𝑓 − \𝐸 (𝜙) + \\
(
𝜓 𝐼𝜕 𝐼𝐸 (𝜙) + 𝑖

2𝜕𝑡[
)
= [ − \ 𝑓 − \𝐸 (Φ) + 𝑖

2\\𝜕𝑡[ .
(E.1.4)

Acting with (E.1) gives the supersymmetry variations:

𝑄[ = − 𝑓 , 𝑄 𝑓 = 0 , 𝑄[ = 𝐸 (𝜙) , 𝑄 𝑓 = −𝑖𝜕𝑡[ + 𝜕𝐼𝐸 (𝜙) 𝜓𝐼 . (E.1.5)

E.2 Vector multiplet

We assume that the gauge group 𝐺 is semi-simple (inclusion of U(1) factors is trivial) with
Lie algebra 𝔤. Denote the complexified algebra as 𝔤C = 𝔤 ⊗ C = 𝔤 ⊕R 𝑖𝔤, with the Killing
form given by the trace operation Tr. It admits a root space decomposition 𝔤C = 𝔥C ⊕𝛼∈Φ 𝐿𝛼,
where 𝔥C is a Cartan subalgebra and Φ is the set of all roots. We can use the Chevalley basis
𝔤C = spanC{𝐻𝑖=1,...,rk𝐺 , 𝐸𝛼 | 𝛼 ∈ Φ}, where 𝑖 indexes a set of simple roots 𝛼𝑖 and 𝐻𝑖 is
defined in the following way:

∃! 𝐻𝑖 ∈ 𝔥C
�� 𝛼𝑖 (ℎ) = Tr(𝐻𝑖ℎ) , ∀ ℎ ∈ 𝔥C . (E.2.1)

The element 𝐸𝛼 is also normalized so that Tr 𝐸𝛼𝐸−𝛼 = 1. The compact real form is

𝔤 = spanR
{
𝑖𝐻𝑖, 𝐸𝛼 − 𝐸−𝛼, 𝑖(𝐸𝛼 + 𝐸−𝛼)

�� 𝛼 ∈ Φ+} , (E.2.2)
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where Φ+ is the set of positive roots. Using the fact that Tr splits between each summand
in 𝔥C ⊕𝛼∈Φ+ (𝐿𝛼 ⊕ 𝐿−𝛼), and that Tr is positive definite on 𝐻𝑖, it quickly follows that Tr is
negative (positive) definite on 𝔤 (𝑖𝔤). Any Λ ∈ 𝑖𝔤 can be expressed with Λ𝑖, Λ𝛼1 , Λ𝛼2 ∈ R as

Λ =
∑︁

𝑖
Λ𝑖𝐻𝑖 +

∑︁
𝛼∈Φ+

[
Λ𝛼1 (𝐸𝛼 + 𝐸−𝛼) + Λ𝛼2 𝑖(𝐸𝛼 − 𝐸−𝛼)

]
=

∑︁
𝑖
Λ𝑖𝐻𝑖 +

∑︁
𝛼∈Φ+

(
Λ𝛼𝐸𝛼 + Λ𝛼𝐸−𝛼) , Λ𝛼 ≡ Λ𝛼1 + 𝑖Λ𝛼2 .

(E.2.3)

Therefore, defining a formal Hermitian conjugation on elements of 𝔤C as 𝐻𝑖 ≡ 𝐻𝑖, 𝐸𝛼 ≡ 𝐸−𝛼,
we can alternatively define 𝑖𝔤 as

𝑖𝔤 =
{
Λ ∈ 𝔤C

��Λ = Λ
}
. (E.2.4)

A generic group element 𝑘 = 𝑒𝑖Λ then satisfies 𝑘 = 𝑒−𝑖Λ = 𝑘−1. If 𝐺 = U(𝑁), this formal
Hermitian conjugation becomes the actual conjugate transpose on 𝑁 × 𝑁 matrices.

To build gauge interactions, we introduce the independent superfields Ω and 𝑉−. Ω is
valued in 𝔤C, while 𝑉− is valued in 𝑖𝔤, i.e., 𝑉− = 𝑉−. One can either use Ω alone or include
both Ω and 𝑉− in the theory. The crucial role played by Ω is to allow for gauge-covariant
chiral and Fermi conditions. Under gauge transformations, they transform as:

𝑒Ω → 𝑘 𝑒Ω ℎ−1 , 𝑉− → 𝑘𝑉−𝑘−1 + 𝑖𝑘 (𝜕𝑡𝑘−1) ,
ℎ = 𝑒𝜒 , 𝜒 : R1|2 → 𝔤C , 𝐷𝜒 = 0 ,
𝑘 = 𝑒𝑖Λ , Λ : R1|2 → 𝑖𝔤 , Λ = Λ .

(E.2.5)

Without loss of generality, 𝑉− can be expanded as

𝑉− = 𝐴𝑡 − 𝜎 − 𝑖\_ − 𝑖\_ + \\𝐷 , (E.2.6)

where (𝐴𝑡 − 𝜎, 𝐷) are valued in 𝑖𝔤 and _ is valued in 𝔤C. We now define the various
ingredients used to construct supersymmetric actions. The gauge-covariant superspace
derivatives are defined as

D ≡ 𝑒−Ω 𝐷 𝑒Ω , D ≡ 𝑒Ω 𝐷 𝑒−Ω , D−
𝑡 ≡ 𝜕𝑡 − 𝑖𝑉− , (E.2.7)

which, according to (E.2.5) and using 𝐷ℎ = 𝐷ℎ = 0, transform as

D → 𝑘D𝑘−1 , D → 𝑘D𝑘−1 , D−
𝑡 → 𝑘D−

𝑡 𝑘
−1 . (E.2.8)
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They satisfy the algebra

D2 = D2
= 0 , {D,D} = 𝑖(𝜕𝑡 − 𝑖𝑉+) ≡ 𝑖D+

𝑡 , (E.2.9)

where 𝑉+ is an 𝑖𝔤-valued superfield constructed out of Ω only:

𝑉+ ≡ 𝐷
[
𝑒Ω

(
𝐷𝑒−Ω

) ]
+ 𝐷

[
𝑒−Ω

(
𝐷𝑒Ω

) ]
+

{
𝑒Ω

(
𝐷𝑒−Ω

)
, 𝑒−Ω

(
𝐷𝑒Ω

)}
. (E.2.10)

If the gauge group is Abelian this simplifies to

𝑉+ = −[𝐷, 𝐷] Ω . (E.2.11)

As it was for 𝐷 and 𝐷, one has (D𝑋) = (−1)𝐹 D 𝑋 and (D𝑋) = (−1)𝐹 D𝑋 . One can check
that the gauge transformation of 𝑉+ is identical to that of 𝑉−:

𝑉+ → 𝑘𝑉+𝑘−1 + 𝑖𝑘 (𝜕𝑡𝑘−1) , (E.2.12)

which is consistent with (E.2.8) and (E.2.9). We will also have occasion to use the field
strength superfield

Υ ≡ [D,D−
𝑡 ] = −𝑖𝐷𝑉− − 𝜕𝑡

[
𝑒Ω

(
𝐷𝑒−Ω

) ]
− 𝑖

[
𝑒Ω

(
𝐷𝑒−Ω

)
, 𝑉−] , (E.2.13)

which also transforms covariantly as Υ → 𝑘Υ𝑘−1. From the definition, it follows directly
that DΥ = 0.

Instead of Ω and 𝑉−, we can equivalently use two other superfields 𝑉 and 𝑉−
ℎ

defined as

𝑒𝑉 ≡ 𝑒Ω𝑒Ω , 𝑉−
ℎ ≡ 𝑒Ω𝑉−𝑒Ω + 𝑖

2𝑒
Ω𝜕𝑡𝑒

Ω − 𝑖

2
(
𝜕𝑡𝑒

Ω
)
𝑒Ω , 𝑉−

ℎ
= 𝑉−

ℎ , (E.2.14)

which only transform under the complexified gauge transformations as:

𝑒𝑉 → ℎ
−1
𝑒𝑉ℎ−1 , 𝑉−

ℎ → ℎ
−1
𝑉−
ℎ ℎ

−1 + 𝑖

2ℎ
−1
𝑒𝑉𝜕𝑡ℎ

−1 − 𝑖

2
(
𝜕𝑡ℎ

−1)
𝑒𝑉ℎ−1 . (E.2.15)

Note that 𝑉 is constructed solely out of Ω, while 𝑉−
ℎ

is built out of both 𝑉− and Ω. In this
formulation, the theory might contain 𝑉 only, or both 𝑉−

ℎ
and 𝑉 . Analogously to the above,

out of 𝑉 and 𝑉−
ℎ

we can construct

𝑉+
ℎ ≡ 1

2𝑒
𝑉𝐷

(
𝑒−𝑉𝐷𝑒𝑉

)
+ 1

2𝐷
(
𝑒𝑉𝐷𝑒−𝑉

)
𝑒𝑉 = 𝑒Ω𝑉+𝑒Ω + 𝑖

2𝑒
Ω𝜕𝑡𝑒

Ω − 𝑖

2
(
𝜕𝑡𝑒

Ω
)
𝑒Ω ,

Υℎ ≡ −𝑖 𝑒𝑉𝐷
[
𝑒−𝑉

(
𝑉−
ℎ + 𝑖

2𝜕𝑡𝑒
𝑉
)]

= 𝑒ΩΥ𝑒Ω .

(E.2.16)
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One can check that 𝑉+
ℎ

transforms in the same way as 𝑉−
ℎ

, and Υℎ transforms in the same way
as 𝑒𝑉 . In an Abelian theory,

𝑉+
ℎ =

1
2𝑒

𝑉
(
𝐷𝐷 − 𝐷𝐷

)
𝑉 . (E.2.17)

When writing matter Lagrangians in terms of Φℎ and Yℎ which transform with chiral gauge
transformations ℎ, it will be convenient to use 𝑉 and 𝑉−

ℎ
.

Given any chiral or Fermi superfield, one can define covariantly-chiral counterparts

Φ𝑘 ≡ 𝑒ΩΦℎ , Y𝑘 ≡ 𝑒ΩYℎ , DΦ𝑘 = 0 , DY𝑘 = 𝐸 (Φ𝑘 ) , (E.2.18)

which transform under the gauge group as Φ𝑘 → 𝑘 Φ𝑘 and Y𝑘 → 𝑘 Y𝑘 . These fields are
useful when one is using Ω and 𝑉− to describe the vector multiplet.

E.2.1 Wess-Zumino gauge

We can expand Ω and the gauge transformation parameters 𝜒, Λ as:

Ω = Ω0+\Ω\+\Ω\
+\\Ω

\\
, 𝜒 = 𝜒0+\𝜒\−

𝑖

2\\𝜕𝑡𝜒0 , Λ = Λ0+\Λ\−\ Λ\+\\Λ\\ .
(E.2.19)

We show that using gauge transformations every component of Ω can be canceled except
for Ω

\\
, and we can further set Ω

\\
= Ω

\\
, i.e., Ω

\\
is valued in 𝑖𝔤. We shall call this

component −(𝐴𝑡 + 𝜎)/2, where both 𝐴𝑡 and 𝜎 are valued in 𝑖𝔤. Due to the relative sign, this
is independent of (𝐴𝑡 − 𝜎) in 𝑉−. In other words, we can bring Ω to the form

Ω = −1
2 \\ (𝐴𝑡 + 𝜎) , (E.2.20)

that we dub the Wess-Zumino gauge. First, we use the transformation

𝜒 = Ω0 −
𝑖

2\\𝜕𝑡Ω0 , Λ = 0 , (E.2.21)

to set Ω0 → 0, after which only transformations with 𝜒0 = 𝑖Λ0 preserve Ω0 = 0 and are
allowed. Next, performing the transformation

𝜒 = \ (Ω\ +Ω
\
) , Λ = 𝑖\Ω

\
+ 𝑖\Ω

\
, (E.2.22)
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sets Ω\ , Ω\
→ 0. Further transformation parameters cannot have \ or \ components since

otherwise a nonzero Ω
\

would be generated. Lastly, we perform

𝜒 = 0 , Λ =
𝑖

2\\ (Ω\\
−Ω

\\
) , (E.2.23)

after which Ω
\\

→ (Ω
\\
+Ω

\\
)/2 is valued in 𝑖𝔤. The residual gauge transformations are

𝜒 = 𝑖Λ0 +
1
2\\𝜕𝑡Λ0 , Λ = Λ0 , (E.2.24)

under which
𝐴𝑡 + 𝜎 → 𝑒𝑖Λ0 (𝐴𝑡 + 𝜎)𝑒−𝑖Λ0 + 𝑖 𝑒𝑖Λ0𝜕𝑡𝑒

−𝑖Λ0 . (E.2.25)

These are standard time-dependent gauge transformations, as expected. In this gauge, the
gauge-covariant superspace derivatives simplify to

D+
𝑡 = 𝐷+

𝑡 = 𝜕𝑡 − 𝑖(𝐴𝑡 + 𝜎) , D = 𝜕\ −
𝑖

2\𝐷
+
𝑡 , D = −𝜕

\
+ 𝑖

2\𝐷
+
𝑡 , (E.2.26)

and
𝑉+ = 𝐴𝑡 + 𝜎 , Υ = _ − \

(
𝐷𝑡𝜎 + 𝑖𝐷

)
− 𝑖

2\\𝐷
+
𝑡 _ . (E.2.27)

The action of supersymmetry on Ω, using (E.1), is

𝛿Ω =
1
2𝜖\ (𝐴𝑡 + 𝜎) −

1
2𝜖\ (𝐴𝑡 + 𝜎) , (E.2.28)

and the Wess-Zumino gauge is not preserved. This can be compensated by an infinitesimal
gauge transformation with parameters

Λ =
𝑖

2 𝜖\ (𝐴𝑡 + 𝜎) +
𝑖

2𝜖\ (𝐴𝑡 + 𝜎) +O(𝜖2) , 𝜒 = −𝜖\ (𝐴𝑡 + 𝜎) +O(𝜖2) . (E.2.29)

The supersymmetry transformations that preserve the Wess-Zumino gauge are computed
using 𝛿 with the addition of the compensating gauge transformation above. For Ω, its
variation under the combined supersymmetry and gauge transformation is 𝛿Ω + 𝑖Λ − 𝜒 = 0
by construction. The superfields Φ𝑘 , Y𝑘 are only sensitive to the gauge transformations
generated by Λ, and not to those generated by 𝜒. The addition of the Λ-transformation
(E.2.29) to 𝛿 can be directly absorbed into the supercharges:

𝑄WZ ≡ 𝜕\ +
𝑖

2 \
[
𝜕𝑡−𝛿gauge(𝐴𝑡 +𝜎)

]
, 𝑄WZ ≡ −𝜕

\
− 𝑖2 \

[
𝜕𝑡−𝛿gauge(𝐴𝑡 +𝜎)

]
. (E.2.30)
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Note that 𝛿gauge(Λ) acts according to the gauge representation of each superfield, except for
𝑉±, on which 𝛿gauge(Λ)𝑉± = 𝜕𝑡Λ − 𝑖[𝑉±,Λ]. The modified supercharges satisfy the algebra

𝑄2
WZ = 𝑄

2
WZ = 0 , {𝑄WZ, 𝑄WZ} = −𝑖

[
𝜕𝑡 − 𝛿gauge(𝐴𝑡 + 𝜎)

]
. (E.2.31)

E.2.2 Transformations in Wess-Zumino gauge

Acting with (E.2.30) on 𝑉± and reading off the variations of each component, we find the
following supersymmetry variations (and their complex conjugate) for the vector multiplet:

𝑄WZ 𝐴𝑡 = −𝑄WZ 𝜎 = − 𝑖2 _ , 𝑄WZ _ = −𝐷𝑡𝜎 − 𝑖𝐷 ,

𝑄WZ 𝐷 = −1
2𝐷

+
𝑡 _ , 𝑄WZ _ = 0 .

(E.2.32)

Note that 𝑄WZ(𝐴𝑡 + 𝜎) = 𝑄WZ(𝐴𝑡 + 𝜎) = 0, consistently with (E.2.31). In Wess-Zumino
gauge, Φ𝑘 and its conjugate Φ𝑘 have expansion:

Φ𝑘 = 𝜙 + \𝜓 − 𝑖

2\\𝐷
+
𝑡 𝜙 , Φ𝑘 = 𝜙 − \ 𝜓 + 𝑖

2\\𝐷
+
𝑡 𝜙 . (E.2.33)

Acting with (E.2.30) on Φ𝑘 we find the following supersymmetry variations:

𝑄WZ 𝜙 = 𝜓 , 𝑄WZ 𝜓 = 0 , 𝑄WZ 𝜙 = 0 , 𝑄WZ 𝜓 = 𝑖𝐷+
𝑡 𝜙 . (E.2.34)

Alternatively, we can obtain the same variations by acting with 𝛿 + 𝜒 = −𝜖 𝑄WZ + 𝜖 𝑄WZ on
Φℎ, with 𝜒 given in (E.2.29). Analogously, Y𝑘 and its conjugate Y 𝑘 have the expansions

Y𝑘 = [ − \ 𝑓 − \𝐸 (𝜙) + \\
(
𝜕𝑎𝐸 (𝜙)𝜓𝑎 − 𝑖

2𝐷
+
𝑡 [

)
= [ − \ 𝑓 − \𝐸 (Φ) − 𝑖

2\\𝐷
+
𝑡 [

Y 𝑘 = [ − \ 𝑓 − \𝐸 (𝜙) + \\
(
𝜓𝑎𝜕𝑎𝐸 (𝜙) + 𝑖

2𝐷
+
𝑡 [

)
= [ − \ 𝑓 − \𝐸 (Φ) + 𝑖

2\\𝐷
+
𝑡 [ ,

(E.2.35)
and acting with (E.2.30) gives the supersymmetry variations:

𝑄WZ [ = − 𝑓 , 𝑄WZ 𝑓 = 0 , 𝑄WZ [ = 𝐸 (𝜙) , 𝑄WZ 𝑓 = −𝑖𝐷+
𝑡 [ + 𝜕𝑎𝐸 (𝜙) 𝜓𝑎 .

(E.2.36)
Again, we can obtain the same variations by acting with 𝛿 + 𝜒 on Yℎ.



152 1d N = 2 superspace

E.2.3 Supersymmetric Lagrangians

As with the prototypical 4d N = 1 supersymmetry, there are two broad classes of super-
symmetric terms: D-terms and F-terms. Let 𝑋 be a bosonic, gauge-invariant, real-valued
superfield with expansion

𝑋 = 𝑋0 + \𝑋\ − \ 𝑋\ + \\𝑋\\ . (E.2.37)

Acting with𝑄 and𝑄, we find that𝑄𝑋
\\

= −𝑖𝜕𝑡𝑋\/2 and𝑄𝑋
\\

= 𝑖𝜕𝑡𝑋\/2 are total derivatives.
Moreover, 𝑄𝑄𝑋0 = 𝑋

\\
up to a total derivative. Therefore,∫

𝑑\𝑑\ 𝑋 = −𝑋
\\

= 𝑄𝑄 (−𝑋0) (E.2.38)

is supersymmetric, and we call such terms D-terms. They are always 𝑄 and 𝑄 exact.
Conversely, suppose there is a term in the Lagrangian of the form 𝑄𝑄(−𝑋0) where 𝑋0 is real
and gauge invariant. If there is a real-valued superfield 𝑋 with bottom component 𝑋0, it must
have the same expansion (E.2.37). Therefore (E.2.38) holds and this term can be written as a
D-term in superspace.

Let 𝑌 be a fermionic, gauge-invariant, complex-valued chiral superfield, D𝑌 = 𝐷𝑌 = 0.
Its complex conjugate 𝑌 is anti-chiral and satisfies 𝐷𝑌 = 0. They have expansion:

𝑌 = 𝑌0 + \𝑌\ −
𝑖

2 \\ 𝜕𝑡𝑌0 , 𝑌 = 𝑌0 + \ 𝑌\ +
𝑖

2 \\ 𝜕𝑡𝑌0 . (E.2.39)

Acting with 𝑄 and 𝑄 on 𝑌 and 𝑌 , one finds that 𝑌\ and 𝑌\ are separately supersymmetric up
to total derivatives. Moreover, 𝑌\ = 𝑄𝑌0 and 𝑌\ = −𝑄𝑌0. Therefore:∫

𝑑\ 𝑌 +
∫
𝑑\ 𝑌 = 𝑌\ + 𝑌\ = 𝑄𝑌0 −𝑄𝑌0 = (𝑄 +𝑄) (𝑌0 − 𝑌0) (E.2.40)

is supersymmetric, and we call such terms F-terms. They are always (𝑄 +𝑄) exact.
We can now write the following supersymmetric Lagrangians, with component expressions

in the Wess-Zumino gauge. In the gauge sector, if the theory only contains Ω or equivalently
𝑉 , the only term we can think of is a Wilson line in 𝐴𝑡 + 𝜎. For a U(1) gauge group, the
supersymmetric Wilson loop of charge 𝑞 can be written as

exp
(
𝑖𝑞

∮
𝑑𝑡

∫
𝑑\𝑑\ 𝑉

)
WZ
= exp

(
𝑖𝑞

∮
𝑑𝑡 (𝐴𝑡 + 𝜎)

)
. (E.2.41)
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If both 𝑉− and Ω are present, we can write the following terms. The conventional gauge
kinetic term is

1
2𝑒2

1d

∫
𝑑\𝑑\ TrΥΥ =

1
2𝑒2

1d

∫
𝑑\𝑑\ TrΥℎ𝑒−𝑉Υℎ𝑒−𝑉

WZ
=

1
2𝑒2

1d
Tr

[
(𝐷𝑡𝜎)2 + 𝐷2 + 𝑖_𝐷+

𝑡 _

]
.

(E.2.42)

Note that the superfield 𝑉− −𝑉+ transforms covariantly, 𝑉− −𝑉+ → 𝑘 (𝑉− −𝑉+) 𝑘−1, under
gauge transformations. For an adjoint-invariant form Z : 𝑖𝔤 → R, the Fayet-Iliopoulos term
is: ∫

𝑑\𝑑\ Z
(
𝑉− −𝑉+) = ∫

𝑑\𝑑\ Z

( (
𝑉−
ℎ −𝑉+

ℎ

)
𝑒−𝑉

)
WZ
= −Z (𝐷) . (E.2.43)

If the gauge group is Abelian

𝑉+
ℎ 𝑒

−𝑉 =
1
2 (𝐷𝐷 − 𝐷𝐷)𝑉 (E.2.44)

becomes a total derivative under the superspace integral. Therefore, FI terms for Abelian
gauge groups can be written as ∫

𝑑\𝑑\ Z
(
𝑉−
ℎ 𝑒

−𝑉 ) . (E.2.45)

We can also write a mass term that gaps 𝑉− (or equivalently the gaugino and 𝜎):

−1
2

∫
𝑑\𝑑\ Tr

(
𝑉− −𝑉+)2

= −1
2

∫
𝑑\𝑑\ Tr

( (
𝑉−
ℎ −𝑉+

ℎ

)
𝑒−𝑉

)2 WZ
= Tr

(
__ − 2𝜎𝐷

)
.

(E.2.46)
Moving on to the matter sector, the conventional kinetic term for a chiral multiplet is:

𝑖

∫
𝑑\𝑑\ Φ𝑘D−

𝑡 Φ𝑘 =

∫
𝑑\𝑑\

(
𝑖

2 Φℎ 𝑒
𝑉𝜕𝑡Φℎ −

𝑖

2 𝜕𝑡Φℎ 𝑒
𝑉Φℎ +Φℎ𝑉

−
ℎ Φℎ

)
WZ
= −𝜙

(
𝐷2
𝑡 + 𝜎2 + 𝐷

)
𝜙 + 𝑖𝜓𝐷−

𝑡 𝜓 + 𝑖𝜙_𝜓 − 𝑖𝜓 _𝜙 ,
(E.2.47)

where 𝐷−
𝑡 ≡ 𝜕𝑡 − 𝑖(𝐴𝑡 − 𝜎). It requires the presence of both 𝑉− and Ω. Alternatively, we can

write a kinetic term that couples to 𝑉+ in place of 𝑉−, in which case only Ω (or 𝑉) is required:

𝑖

∫
𝑑\𝑑\ Φ𝑘D+

𝑡 Φ𝑘 =

∫
𝑑\𝑑\

(
𝑖

2 Φℎ 𝑒
𝑉𝜕𝑡Φℎ −

𝑖

2 𝜕𝑡Φℎ 𝑒
𝑉Φℎ +Φℎ𝑉

+
ℎ Φℎ

)
WZ
= 𝐷+

𝑡 𝜙 𝐷
+
𝑡 𝜙 + 𝑖𝜓𝐷+

𝑡 𝜓 .

(E.2.48)
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We can also write a term with a first-order action for 𝜙, and it only requires Ω:∫
𝑑\𝑑\ Φ𝑘Φ𝑘 =

∫
𝑑\𝑑\ Φℎ 𝑒

𝑉Φℎ
WZ
= 𝑖 𝜙𝐷+

𝑡 𝜙 + 𝜓𝜓 . (E.2.49)

The conventional kinetic term for a Fermi multiplet is∫
𝑑\𝑑\ Y 𝑘Y𝑘 =

∫
𝑑\𝑑\ Yℎ𝑒𝑉Yℎ

WZ
= 𝑖[𝐷+

𝑡 [ + 𝑓 𝑓 −
��𝐸 (𝜙)��2 − [ 𝜕𝐼𝐸 (𝜙) 𝜓𝐼 −𝜓 𝐼 𝜕 𝐼𝐸 (𝜙) [ ,

(E.2.50)
and it only requires Ω. If present, terms in 𝐸 (Φ) that are linear in the chiral superfields
Φ𝐼 give rise to mass terms that gap out the chiral and Fermi multiplets together. Quadratic
or higher-order terms in 𝐸 (Φ) produce cubic or higher-order interactions. We shall call
them E-interactions. Suppose now that we have a collection of Fermi superfields Y𝑖 with
𝐷Y𝑖 = 𝐸𝑖 (Φ). In addition to 𝐸𝑖, we associate another holomorphic function 𝐽𝑖 (Φ) of the
chiral superfields to each Fermi such that 𝐸𝑖𝐽𝑖 (with repeated indices summed) is gauge
invariant and 𝐸𝑖𝐽𝑖 = 0. Then Y𝑖 𝐽𝑖 (Φ) is a gauge-invariant fermionic chiral superfield. We
can therefore write the F-terms:∫

𝑑\ Y𝑖 𝐽𝑖 (Φ) +
∫
𝑑\ Y𝑖 𝐽𝑖 (Φ) = − 𝑓𝑖𝐽𝑖 (𝜙) − [𝑖 𝜕𝐼𝐽𝑖 (𝜙) 𝜓𝐼 − 𝑓 𝑖 𝐽𝑖 (𝜙) − 𝜓 𝐼 𝜕 𝐼𝐽𝑖 (𝜙) [𝑖 .

(E.2.51)
Note that because Y𝑖𝐽𝑖 is gauge invariant, Y𝑖,ℎ𝐽𝑖 (Φℎ) = Y𝑖,𝑘𝐽𝑖 (Φ𝑘 ). We will call interactions
that are constructed in this way J-interactions.

E.2.4 Twisted 3d YM and CS terms

In this subsection, we show how the parts of the topologically twisted 3d Yang-Mills and
Chern-Simons Lagrangians containing Ξ1̄ can be written in 1d superspace. The terms lie
slightly beyond the scope of the exposition above, because Ξ1̄ transforms as a connection on
𝑆2 under gauge transformations, as reported in (3.2.7).

Yang-Mills. The first line in (3.2.8) can be written in superspace as:

Tr
[
4|𝐹𝑡1̄ |2 + 4𝑖𝐷𝐹11̄ − 4|𝐷 1̄𝜎 |2 + 𝑖Λ1(𝐷𝑡 + 𝑖𝜎Λ1̄ + 2Λ𝑡 𝐷1Λ1̄ − 2Λ1 𝐷 1̄Λ𝑡

]
= (E.2.52)

WZ
= 4𝑖

∫
𝑑\𝑑\ Tr

(
Ξ1,𝑘 𝜕𝑡Ξ1̄,𝑘 − F11̄,𝑘 𝑉

−
)
,

where we defined the superfield

F11̄,𝑘 ≡ 𝜕1Ξ1̄,𝑘 − 𝜕1̄Ξ1,𝑘 − 𝑖
[
Ξ1,𝑘 ,Ξ1̄,𝑘

]
. (E.2.53)
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Here F11̄,𝑘 transforms covariantly under super-gauge transformations as F11̄,𝑘 ↦→ 𝑘F11̄,𝑘 𝑘
−1.

Note that the superspace expression has the same form as a Chern-Simons term for super-
fields, with 𝑉− playing the role of the connection along 𝑡. Therefore, under finite gauge
transformations:

𝛿gauge 4𝑖
∫
𝑑\𝑑\ Tr

(
Ξ1,𝑘 𝜕𝑡Ξ1̄,𝑘 − F11̄,𝑘 𝑉

−
)

= 2𝑖
∫
𝑑\𝑑\ Tr 𝑘−1𝜕𝑡𝑘

[
𝑘−1𝜕1𝑘, 𝑘

−1𝜕1̄𝑘] ,

= 2𝑖Tr 𝜕𝑡𝜕\
(
𝑘−1𝜕

\
𝑘
[
𝑘−1𝜕1𝑘, 𝑘

−1𝜕1̄𝑘
] )

+ cyclic . (E.2.54)

The omitted terms contain cyclic permutations of (𝑡, 1, 1̄). This gauge variation looks like
a winding number for super-gauge transformations. Since we are taking derivatives of the
winding number density (albeit with respect to fermionic variables), a total derivative is
expected because the winding number is homotopy invariant.

Alternatively, we can use superfields that are only sensitive to complexified gauge
transformations. The superspace expression in (E.2.52) can then be written as

(E.2.52) = 4𝑖
∫
𝑑\𝑑\ Tr

(
Ξ1,ℎ 𝜕𝑡Ξ1̄,ℎ − F11̄,ℎ 𝑒

−𝑉𝑉−
ℎ

)
, (E.2.55)

where total derivatives of the kind (E.2.54) have been neglected. One can check that (E.2.55)
is real and gauge invariant up to total derivatives.

Chern-Simons. We now want to write the first piece of (3.2.10) in superspace. To do this,
we follow a similar procedure as in [244]. First, the fields 𝑋 are extended to be functions 𝑋
of an auxiliary coordinate 𝑦 ∈ (0, 1) in an arbitrary way (similarly to what we did in C.1),
except that they must fulfill boundary conditions

𝑋 (\, 𝜑, 𝑡, 𝑦 = 0) = 0 , 𝑋 (\, 𝜑, 𝑡, 𝑦 = 1) = 𝑋 (\, 𝜑, 𝑡) . (E.2.56)

Extended quantities will be denoted with a hat. Given (E.2.56), we have:

LCS,Ξ

���
WZ

= L̂CS,Ξ(𝑦 = 1)
���
WZ

=

∫ 1

0
𝑑𝑦 𝜕𝑦L̂CS,Ξ

���
WZ

. (E.2.57)
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Now, 𝜕𝑦L̂CS,Ξ can be written in superspace as:

𝜕𝑦L̂CS,Ξ

���
WZ

= Tr
[
−4𝑖𝜕𝑦 (𝐴𝑡 + �̂�)𝐹11̄ + 4𝜕𝑦𝐴1

(
𝑖𝜕𝑡𝐴1̄ − 𝑖�̂� 1̄(𝐴𝑡 + �̂�)

)
+ 𝜕𝑦Λ̂1Λ̂1̄+

+ 4𝜕𝑦𝐴1̄
(
−𝑖𝜕𝑡𝐴1 + 𝑖�̂�1(𝐴𝑡 + �̂�)

)
− 𝜕𝑦Λ̂1̄Λ̂1

]
= 4𝜕𝑦

∫
𝑑\𝑑\ Tr

[
Ξ̂1,ℎ Ξ̂1̄,ℎ − 𝑖𝑉

(
𝜕1Ξ̂1̄,ℎ − 𝜕1̄Ξ̂1,ℎ − 𝑖

[
Ξ̂1,ℎ, Ξ̂1̄,ℎ

] )]
. (E.2.58)

This superspace expression is only valid in the Wess-Zumino gauge where 𝑉 = −\\ (𝐴𝑡 + 𝜎),
and it is not invariant under super-gauge transformations. Even so, we can take it as a starting
point for constructing the gauge-invariant completion. A gauge-invariant expression that
reduces to the above in the Wess-Zumino gauge is

𝜕𝑦L̂CS,Ξ = 4
∫
𝑑\𝑑\ Tr

[
− 𝑖 𝑒−𝑉𝜕𝑦

(
𝑒𝑉

)
F̂11̄,ℎ + Ξ̂1,ℎ 𝜕𝑦Ξ̂1̄,ℎ + 𝜕𝑦Ξ̂1,ℎ Ξ̂1̄,ℎ

]
. (E.2.59)

One can check that the first term is Hermitian, while the second and third terms are Hermitian
conjugates of each other. Therefore

LCS,Ξ = Tr
[
4𝑖𝐴1𝜕𝑡𝐴1̄ − 4𝑖(𝐴𝑡 + 𝜎)𝐹11̄ + Λ1Λ1̄

]
WZ
= 4

∫ 1

0
𝑑𝑦 𝑑\𝑑\ Tr

[
−𝑖 𝑒−𝑉𝜕𝑦

(
𝑒𝑉

)
F̂11̄,ℎ + Ξ̂1,ℎ 𝜕𝑦Ξ̂1̄,ℎ + 𝜕𝑦Ξ̂1,ℎ Ξ̂1̄,ℎ

]
.

(E.2.60)

If the gauge group is Abelian, (E.2.59) is a total derivative in 𝑦 and the auxiliary coordinate 𝑦
can be eliminated to give

LCS,Ξ = 4
∫
𝑑\𝑑\

[
Ξ1,ℎ Ξ1̄,ℎ − 𝑖𝑉

(
𝜕1Ξ1̄,ℎ − 𝜕1̄Ξ1,ℎ

)
+ 1

2𝜕1𝑉 𝜕1̄𝑉

]
. (E.2.61)

For non-Abelian gauge groups, there is no compact expression for the integral in 𝑦, but we
can expand in powers of 𝑉 . Choosing

Ξ̂1̄,ℎ = 𝑦 Ξ1̄,ℎ , 𝑉 = 𝑦 𝑉 , (E.2.62)

one obtains the following expression up to quadratic terms in 𝑉 :

LCS,Ξ = 4
∫
𝑑\𝑑\ Tr

[
Ξ1,ℎ Ξ1̄,ℎ − 𝑖𝑉

(
𝜕1Ξ1̄,ℎ − 𝜕1̄Ξ1,ℎ − 𝑖

[
Ξ1,ℎ, Ξ1̄,ℎ

] )
+

+ 1
2

(
𝜕1𝑉 − 𝑖

[
Ξ1,ℎ, 𝑉

] ) (
𝜕1̄𝑉 − 𝑖

[
Ξ1̄,ℎ, 𝑉

] )
+O(𝑉3)

]
. (E.2.63)
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