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Abstract

The most recent catalog of gravitational waves compiled by the LIGO-Virgo-KAGRA col-

laboration contains over 90 compact-binary coalescences, mostly binary black holes. The

astrophysical interpretations of the detected sources are still uncertain, although the number

is expected to rise significantly over the next few years.

From a theoretical point of view, one of the possible explanations for the formation of

merging compact binaries is the isolated binary scenario. In this instance, two stars are

gravitationally bound from the moment they are formed. During stellar evolution, stars

move closer to one another, and at the end of their lives, they turn into compact remnants.

As a result, a formed compact binary system has the potential to merge during the lifetime

of the Universe.

Binary population-synthesis codes are tools that can evolve massive populations of single

or binary stars from the formation moment to the compact remnants stage. They play an

essential role in the investigation of this scenario. The evolution of one binary system does

not require significant computational resources. However, to obtain sufficient statistics on

compact object mergers, we require simulations of billions of binary systems with different

initial conditions, stellar masses, evolutionary prescriptions, and metallicities.

In this project, I will implement a novel parallelization method for the SEVN code,

a state-of-the-art population-synthesis code developed in SISSA and at the University of

Padova. The final goal is to make the SEVN code run effectively on multi-node supercom-

puters. To accomplish that, I will use the Message Passing Interface (MPI) for inter-node
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parallelization and the Open Multi-Processing (OpenMP) interface for intra-node paralleliza-

tion. Furthermore, I will also implement an automatic and adaptive data loading algorithm

to load input binaries in chunks. Finally, I will investigate the weak and strong scaling of

the code on various computing machines.

The new code is expected to significantly speed up the evolution of binary systems, giving

us the chance to investigate the formation of gravitational-wave sources in different stellar

environments, possibly up to the regime of galaxies (i.e., billions of binaries).
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Chapter 1

Introduction

1.1 Merging compact object binaries

On September 14, 2015, the LIGO-Virgo collaboration discovered the first direct evidence

of merging compact-object binaries. The two ground-based interferometers of the LIGO 1

measured the effect of a passing GW, identified as GW150914. The signal was associated

with the merger of two BHs with masses M1 = 36+5
−4M⊙ and M2 = 29+4

−4M⊙ [1, 2]. The event

had numerous scientific implications and laid the groundwork for a new way to investigate

the Universe. GW150914 detection confirmed the existence of BHs binaries that can merge

within the Hubble time and revealed stellar BHs with masses ≳ 30M⊙.

GW150914 marked the beginning of a new chapter in astrophysics. It gave an unprece-

dented boost to the development of new theoretical models to investigate the formation and

evolution of compact-object binaries and their progenitor stars, with the new objective of

providing an astrophysical interpretation of GW sources.

The first run, O12, reported the first 3 detections, all BBH mergers. The second run,

O23, detected 7 BBH mergers and the first BNS merger [3]. The third run, O3, splitted into

1At the time of the event, the Virgo detector was offline and undergoing a major upgrade.
2O1 run from 12 September 2015 to 19 January 2016
3O2 run from 30 November 2016 to 25 August 2017
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O3a4 and O3b5 made the first detection of the merger of a NS with a BH. The most recent

catalog of GWs that was compiled by the LIGO-Virgo-KAGRA collaboration contains 93

compact-binary coalescences, the vast majority of which are BBH [4, 5, 6, 7]. The catalog

already contains numerous merging compact-object binaries that challenge even the most

recent theoretical models. For example, GW190814 is an event with very asymmetric masses,

a merger that most theoretical models find difficult to explain [8]. Furthermore, the lightest

member is a compact mystery object with an uncertain nature: it can be the heaviest NS or

the lightest BH ever observed, and its mass falls right into the lower mass gap. GW190521

is the event with the heaviest BHs, with at least one of the two falling in the upper mass

gap [9, 10]. Its merger product, a BH with mass 148+28
−16M⊙, is the first confirmation of the

existence of intermediate-mass BHs. Almost all merger events obtained by the LIGO-Virgo-

KAGRA collaboration are consistent with eccentricity equal to zero. The main subject of

the debate is GW190521. Some work show that the binary system that produced GW190521

might be consistent with a non-zero eccentricity merger [11, 12, 13].

The scientific insights uncovered by these detections have already revolutionized multiple

areas of physics and astrophysics. For example, GW170817 is an event associated with

a merger of two NSs. It is the only event observed through GWs and throughout the

electromagnetic spectrum, a crucial milestone for multi-messenger astronomy [14].

From a theoretical perspective, astrophysical interpretations of the detected GW sources

are highly uncertain, although the number of GWs will increase significantly over the fol-

lowing years due to upcoming next-generation GW detectors (for example, the LIGO-India

[15, 16], LIGO Voyager [17], the Einstein Telescope [18], Cosmic Explorer [19], the Laser

Interferometer Space Antenna [20, 21, 22, 23, 24, 25, 26]).

The processes that can shrink a binary system so that it can merge within Hubble time

via GWs are highly uncertain, as well as the mass spectrum of stellar BHs.

The time required for a system to merge is proportional to the total integrated GW

4O3a run from 1 April to 30 September 2019
5O3b run from 1 November 2019 until it was suspended on 27 March 2020 due to COVID-19
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Figure 1.1: The time needed for a binary system to merge via GW emission as a function of
a star’s masses (M1 = M2). Time is shown in the units of Hubble time (tH) for systems with
different semi-major axes a. The time is calculated using formula 1.1 for binary systems
with circular orbits (e = 0).

luminosity during the coalescence phase:

τGW =
1

4

a

|ȧ|
=

5

256

c5

G3

a4

M1M2 (M1 +M2)
(1− e2)7/2 (1.1)

Equation 1.1 demonstrates that the time required for a binary system to reach coalescence

is highly dependent on the semi-major axis, the eccentricity of the orbit, and the masses of

the two compact objects:

τGW ∼ a4M−3 (1− e2)7/2 (1.2)

According to formula 1.1, the time required for a binary system to merge depends on the

orbit’s eccentricity. Suppose that the binary’s eccentricity equals zero, i.e., the binary has a

circular orbit. In that case, we can estimate the merger time of binaries with different initial

masses and the semi-major axis.

Figure 1.1 shows the time required for a binary system to merge via GW emission in

units of the Hubble time (tH) for different initial masses and semi-major axes, in the case

of circular orbits (e = 0). From figure 1.1 it is apparent that, to merge in a Hubble time

and produce detectable sources of GWs, compact objects must have quite small initial semi-
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Figure 1.2: Final mass of the stars as a function of their initial mass, for different values of
metallicity. The dashed line at 45 degrees corresponds to the no-wind limit (i.e., final mass
= initial mass). The plot has been obtained using the SEVN code [34, 35, 36] couples with
the PARSEC [37], [38], [39], [40], [41], [42] tracks and it is presented in detail in [33].

major axes. For example, two objects with mass 5 M⊙ merge within tH provided that the

semi-major axis is below 10 R⊙. Two objects with masses of 80 M⊙ merge within the Hubble

time if a ≲ 100R⊙. The processes that can shrink a binary system so that it can merge

within Hubble time via GWs are highly uncertain.

The final mass of a stellar remnant are also quite uncertain and depend on rotation,

chemical composition, convection, dredge-up, wind mass loss, and nuclear reaction rates

[27, 28, 29, 30, 31, 32]. Stellar winds have a central role in this concept since they drive

mass loss over the lifetime of a star. Stellar winds, especially for massive stars, are uncertain,

but their strength depends crucially on metallicity (e.g., [33]). Figure 1.2 shows the typical

impact of different metallicity values on the stars’ final mass, prior to the SN explosion.

Stars at low Z retain significantly more mass than stars at higher Z. Thus the former can

collapse and form significantly heavier BHs. Stars with the same initial mass but different

amounts of metals will form a remnant whose mass differs by one order of magnitude.
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The SN process, and so the link between progenitor stars and BHs, is also complex

and very uncertain. The SN explosion starts with the collapse of the stellar structure,

which is not sustained anymore by either the core’s nuclear reactions or electron degener-

acy pressure. The mechanism that triggers the explosion is still a matter of debate, but

neutrinos and convection instability are thought to play a crucial role in the explodability

of stars. State-of-the-art, three-dimensional hydrodynamical simulations of neutrino-driven

SNe predict booming explosions for stars up to 25 − 30M⊙. However, such sophisticated

multi-dimensional simulations are subject to significant uncertainties, and they are compu-

tationally intensive (e.g., [43, 44, 45])

Electromagnetic observations and modeling of systems containing BHs have led to spec-

ulation about potential “gaps” in the BH mass spectrum. The observations of X-ray binaries

combined with Bayesian population modeling [46, 47, 48] suggest a dearth of compact ob-

jects with masses between 2.5 M⊙ and 5 M⊙ [49, 50, 51, 52]. The existence and nature

of this gap is still to be determined [53]. GW observations can either limit the size of the

lower mass gap or disprove its existence [54, 55, 56, 57]. On the high end of the BH mass

spectrum, models of late stellar evolution phases predict the presence of another gap, gen-

erally referred to as the upper mass gap. Very massive stars reach a stage where either

pair-instability (PISNe) or pulsational pair-instability (PPISNe) occur [58, 59, 60, 36, 61].

Both gaps may be probed using data from current ground-based GW interferometers and

have been the target of a number of studies. The possible detection of BHs in the mass gaps

might be explained by the merger of NS or BH binaries and not by the collapse of stars into

a BH [62].

While there are many uncertainties about the evolution of isolated stars and their rem-

nants, the number of uncertainties increases even more when we try to investigate the for-

mation and evolution of binaries and how the latter evolution may end up forming merging

compact-object systems.

So far, two main formation channels have been proposed to explain the formation of
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merging compact-object binaries. The first of these is the dynamical scenario. In this

channel, two compact objects approach after a single or a series of gravitational interactions

with other stars or compact objects in dense stellar environments, such as globular and

young dense star clusters [63, 64, 65, 66, 67], nuclear star clusters [68, 69], or disks of active

galactic nuclei [70, 71, 72].Dynamical interactions in triple [73] or quadruple [74] stellar

systems can also contribute to the shrinkage of orbital distances and facilitate mergers of

compact objects.

The second channel for the formation of merging compact objects is the isolated channel.

In the isolated binary scenario, two progenitor stars are bound since their formation. They

evolve, become compact objects, and merge without experiencing any external perturbations

[75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88]. The processes of single and binary

stellar evolution drive this scenario.

In reality, the two formation pathways might have a strong interplay in star clusters,

because single, binary evolution, and stellar dynamics are all active at the same time, and

binaries might form in dense environments and merge outside them because of dynamical

kicks. Such kind of hybrid scenarios blur the line between the dynamical and the isolated

binary channel, and they have already been investigated by various authors [89, 90, 91, 92].

In the context of the isolated channel, chemical homogeneous evolution (CHE) might be

one of the key processes that can bring two compact objects very close to each other so they

can merge via GWs within the Hubble time. [93, 94, 95]. CHE assumes that the stellar

evolution in a very close stellar binary differs from that of a single star due to strong tidal

forces. The burning of chemical elements occurs homogeneously, thus the star’s outer layers

do not expand significantly and they can stay very close to each other without merging

during their life. Therefore, the close star systems can survive the phase of stellar expansion

and form a merging compact-object binary.

The common envelope (CE) phase is another process that can play a crucial role in

the evolution of merging binary systems [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106,
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107, 108, 109, 110, 111]. In a tight binary system, the CE phase happens when one star

overfills its Roche lobe and initiates a process of dynamically unstable mass transfer. In this

scenario, the mass transfer rate increases with time, the secondary star cannot accrete all

the incoming material, and the latter surrounds the entire binary. The gas surrounding the

binary star is known as CE.

During the CE phase, the binary system rotates at a different rate than the CE. The

orbital energy decreases due to the friction between the binary system and the CE. More

massive and bound envelopes result in stronger friction forces and enhanced loss of orbital

energy. Due to orbital energy loss, the core of the donor and the companion star spiral

toward one another within the CE (spiral-in phase). The orbital semi-major axis of binary

systems can shrink by orders of magnitude during the spiral-in phase.

The lost fraction of orbital energy is transferred to the envelope, which heats up and

expands. The CE phase can end with two different outcomes. In the first scenario, the

envelope is ejected, leaving the binary system with quite small semi-major axes. In the

other scenario, during the spiral-in phase, the two stars merge and become an (evolved)

massive star.

If the envelope is completely ejected we have

Ebind ≤ ∆Eorb (1.3)

otherwise, if the stars merge before the envelope is ejected,

Ebind ≥ ∆Eorb (1.4)

where Ebind is the total binding energy of the envelope and ∆Eorb is the change in orbital

energy that has been transferred from the orbit to the envelope.

In particular, the amount of energy removed from the orbit and transferred to the en-

velope (efficiency of the CE evolution) and the envelope’s binding energy, which roughly
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corresponds to the maximum amount of energy that can be removed from the orbit, deter-

mine the occurence of the two scenarios. The details of the overall energy balance during

the CE phase are highly uncertain from both the observational and theoretical points of

view. This aspect hampers us from having detailed constraints on the outcomes of the CE

evolution.

CE evolution is very uncertain from both the observational and theoretical points of

view. This happens because (i) the CE phase is supposed to be very short (∼ 104 years), so

it is very difficult to observe, (ii) the details of energy balancing considerations are difficult

to constrain, and (iii) we have major uncertainties in stellar evolution calculations especially

when rapid mass losses are involved.

Accurate three-dimensional hydrodynamic simulations might provide a comprehensive

view of the processes within the overall envelope, however such simulations are very complex

because the involve a very wide range of time and spatial scales [112, 113, 114, 115, 116,

117, 118, 119, 120, 121, 122, 123, 124, 112, 125, 126, 127, 128, 126, 129].

For fast population-synthesis calculations, the CE process is modeled using approximate

approaches. The (α,λ)-formalism is one of the most used among the scientific community.

This is based on simplified considerations on energy exchanges between the orbit and the

envelope where α parameterizes the fraction of orbital energy transferred to the envelope,

and λ is the envelope’s binding-energy parameter.

The αCE parameter parametrizes all sinks or sources of energy, such as radiative losses

and, possibly, recombination energy. In this formalism, the condition for envelope ejection

becomes

Ebind ≤ αCE∆Eorb (1.5)

and, respectively, the condition for a merger is

Ebind ≥ αCE∆Eorb (1.6)
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.

The λ parameter is generally referred to as the envelope shape factor and it constraints

the envelope energy reservoir for a specific binary star system.

A parameter λ was introduced by de Kool [130] as a numerical factor to simplify the

computationally expensive calculation of the binding energy of the stellar envelope:

Ebind = −G
MdMenv

λ ai rL
(1.7)

where Menv is the mass of the donor’s envelope.

A proper binding energy estimation is required to accurate prediction of a binary system’s

fate.

For many years, the λ parameter was used as a constant for all stars, independently

of their initial mass MZAMS
6, chemical composition, metallicity Z, and, more importantly,

stellar evolution phase. This is a rough approximation since the main stellar evolution

parameters and evolutionary stage all have a crucial impact on the stellar envelopes’ binding

energies.

Using the (α,λ)-formalism, assuming that envelope is completely ejected, we can write

the change of orbital energy as

∆Eorb = G

(
Mcore Ma

2af
− MdMa

2ai

)
(1.8)

By combining equation 1.8 with the energy balance equation Ebind = αCE∆Eorb, we can

find the ratio between the final and the initial orbital semi-major axis:

af
ai

=
McoreMa

Md

(
Ma +

2Menv

αCE λ rL

)−1

(1.9)

6A star’s initial mass is the star’s mass at the beginning of the main sequence. Such mass is called the
Zero-Age Main Sequence (ZAMS) mass.
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By substituting equation 1.9 into equation 1.1, we obtain the following:

τGW+CE =
5

256

c5

G3

a4i M3
core M

3
a

M4
d (Mcore +Ma)

(
Ma +

2Menv

αCE λ rL

)−4

(1− e2)7/2 (1.10)

The time required for the coalescence of a binary system that evolves through a CE phase

scales as

τGW+CE ∝ α4
CE λ4 (1.11)

The time required for a binary system to merge is highly dependent on the α and λ

parameters, so their values have a crucial impact on the interpretation of many astrophysical

systems, including merging compact-object binaries. While constraining the α parameter is

challenging [131, 132, 133, 134], we can calculate the λ values and consider λ as a physical

quantity instead of a parameter.

Despite the existence of self-consistent λ parameter calculations, a comprehensive and

detailed analysis of λ parameters for all stellar stages at all possible metallicities and for a

broad range of stellar masses is still missing, as well as studying the implications of self-

consistent calculations of λ on large populations of binary stars and how up-to-date λ values

can affect the formation of loud GW sources.

The main result is that differences in the details of stellar evolution calculations, such

as stellar rotation, stellar winds models, criteria of core definition, and overshooting, can

have a crucial impact on the calculation of the λ parameters for both non-naked and naked-

helium stars. Thus, having self-consistent calculations for the envelopes’ binding energies is a

crucial step that must be performed before studying populations of merging compact-object

binaries via population-synthesis codes.

We performed self-consistent calculations of the λ parameter for a large set of stars, at

different metallicities, through an up-to-date version of the PARSEC stellar evolution code.

We calculated the values of λ for non-rotating hydrogen stars with metallicities Z =0.0001,

0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.014, 0.017, 0.02 and 48 values of initial masses
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in the range between 2.0 M⊙ and 600.0 M⊙ (equally spaced in logarithmic scale). Further-

more, we also considered pure-helium stars as potential donors in the CE phase, and we

performed self-consistent λ-parameter calculations for a large set of helium stars, at metal-

licity Z =0.0001, 0.0002, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.03, 0.05, and

for 78 log-spaced values of initial masses in the range between 2.0 M⊙ and 350.0 M⊙.

We have provided all the obtained binding energy parameters for hydrogen and helium

stars for public use in the form of look-up tables. Tables containing the following data:

the mass (Mi, in grams), radius (Ri, in centimeters), effective temperature (Teff, in Kelvin),

luminosity (L, in watts), the λg, λb and λh parameter of the star during stellar evolution.

We have also provided a detailed description of the fitting functions and their coefficients

for public use. For each function, we pointed out the value of mean squared errors. The

data available on the website github.com/NataNazar/Binding energy parameters

This thesis aims to study how new prescriptions of CEE affect the formation of loud GW

sources with the use of the up-to-date population-synthesis code - SEVN.

1.2 Binary population synthesis codes

Binary population synthesis (BPS) codes can provide valuable insights into the expected rate

and distribution of the target population’s properties, the different evolutionary pathways

that lead to the formation of merging compact object binaries, and the effect that different

physical processes and parameters have on their evolution.

In general, there are essentially three different approaches to implement stellar evolution

in BPS codes:

• the most common method to quickly evolve the fundamental stellar parameters (e.g.,

luminosity, radius, mass, temperature, and chemical composition) far a large number of

either single or binary stars as a function of time, is using polynomial fitting formulas.

Population-synthesis codes based on fitting formulas are computationally very fast,

12

https://github.com/NataNazar/Binding_energy_parameters


but updating fitting formulas with new prescriptions might be challenging. Some

examples of BPSs based on fitting formulas are the “Single Star Evolution” (SSE,

[135]), the “Binary Stellar Evolution” (BSE, [82]), the SEBA [136], the BRUSSELS

CODE [137], the BINARYC [138], the STARTRACK [139], the “Compact Object

Mergers: Population Astrophysics Statistics” (COMPAS, [140, 86]), the “Massive

Objects in Binary Stellar Evolution” (MOBSE, [141, 142]), and the “Compact Object

Synthesis and Monte Carlo Investigation Code” (COSMIC, [143, 144]).

• The second option is to utilize look-up tables instead of fitting formulas [145]. These

tables include grids of pre-evolved stellar evolution models for single stars that are

dynamically read and interpolated on the fly by BPS codes, for example by “Stellar

Evolution for N-body” (SEVN, [34, 35, 36]) and COMBINE [146]. For binary stellar

evolution such codes also use analytical prescriptions. This method is both computa-

tionally efficient and flexible. The main advantage is also that we can update stellar

models by simply changing the look-up tables, without the need of modifying directly

the code.

• Hybrid methods typically use population synthesis codes combined with detailed sim-

ulations of stellar and binary evolution [147, 148, 149, 150, 151, 152, 153, 154, 155]

These studies show that including more detailed modeling of binary interactions may

reveal details that are missed using simpler approaches. The “Binary Population and

Spectral Synthesis code” (BPASS, [107]) and POSYDON [156, 157] use a hybrid ap-

proach to study the effect of detailed modeling of stellar and binary physics on compact

object mergers.

1.3 The SEVN code

In this thesis, we focus on the SEVN population-synthesis code, which is based on the

look-up tables approach. This will allow us to easily implement the new λ descriptions
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developed in this thesis in the form of a new look-up table that SEVN can interpolate

on the fly. SEVN interpolates stellar evolution from look-up tables (the default tables

being derived from PARSEC, [158, 159], includes five different models for core-collapse SNe,

contains prescriptions for PPISNe and PISNe and has been updated to implement also

binary evolution processes (wind mass transfer, Roche lobe overflow, CE, stellar mergers,

tidal evolution, GW decay and magnetic braking).

Since SEVN is already based on PARSEC tracks, the obtained binding energy parameters

will be fully self-consistent with the code.

The attributes for each object that we want to evolve can be set in the SEVN input file.

If the object is a “single star”, the input file needs to contain the following initial attributes:

• initial mass,

• metallicity,

• spin,

• stage of stellar evolution of each star.

If the type of the object to evolve is a “binary star”, we need to specify the following initial

physical quantities:

• initial mass of each star,

• metallicity of each star,

• spin of each star,

• stage of stellar evolution of each star,

• initial orbital distance,

• eccentricity of binary system.

1.4 Time and memory constrains of the SEVN code

Currently, the SEVN code is not parallel and sequentially evolves a population of binary

systems. Figure 1.3 shows the calculation time and the memory consumption of the serial
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Figure 1.3: Left panel shows the computational time of SEVN for different numbers of
binaries. The left vertical axis displays the total computational time for SEVN in seconds,
while the right vertical axis displays the time in weeks. Right panel is the memory usage
of SEVN for different numbers of binaries. The vertical axes represents the percentage
of total available memory on the regular2 partition during the execution of SEVN code.
The dashed purple horizontal line represents the maximum memory available on the Mizar
workstation.

SEVN code for different numbers of input binaries. Consumed memory is shown in units

of available memory on each Ulysses regular2 nodes, i.e. 64.0 GB. From Fig. 1.3 it is

apparent that the time needed to evolve 1 million binaries is approximately a week, which

is a very large amount of time considering that, to have a statistically significant sample of

merging compact-object binaries at all metallicities, we will need to evolve at least tens of

thousands of binaries.

Also, it is apparent that the serial version of SEVN is a high memory-consumption code.

Due to memory constraints, we can evolve up to one million binaries on Ulysses’s regular2

partition while only 500 thousand on Mizar’s workstation. The memory consumption of

SEVN is surely one of the aspects that must be improved, thus just speeding up the code’s

execution is not enough to guarantee sustainable performance on multiple architectures.

Specifically, the serial version of the SEVN code will complete the evolution of one set of

billion objects over 1000 weeks or 19 years (see Figure 1.3). In addition, such calculations

require an enormous amount of memory (more than 50 thousand GB)

Thus, we need to modify the SEVN code to both (i) speed up the calculations, and (ii)

15



avoid the high pressure on memory. To evaluate the performance of our parallelized code,

we will evaluate the speed-up as:

Sp =
execution time using one process

execution time using p processes
=

t1
tp

(1.12)

1.5 Optimization of the SEVN code

Before implementing the new λ prescriptions, the SEVN code must be first optimized, es-

pecially in terms of performance, so that we can quickly simulate large population of binary

stars (tens of millions, at least), that is an enough number to get statistically significant

result on the population of merging compact-object binaries.

Parallel computing can accomplish this goal. The strategy to enable an effective paral-

lelization of the SEVN code would be to divide the total number of objects to evolve into

smaller groups and run their simulations simultaneously using different processing units

(central processing units - CPUs or even graphics processing units - GPUs).

Supercomputers, workstations, and even personal laptops with multiple CPUs can exe-

cute parallel tasks. Workstations offer higher performance than mainstream personal com-

puters, especially in CPU, graphics, memory, and multitasking. Distributed systems with

many nodes, such as supercomputers, allow for massive parallelism.

We will achieve our main goal to speed-up the SEVN code by completing the following

tasks:

• implementing the parallelization on a single computing node,

• doing the same for multi-node supercomputers,

• evaluating potential bottlenecks, including input-output operations and/or memory

pressure, to understand how to further improve performance in the next future.
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Chapter 2

Methodology

2.1 Computer Architectures

We develop and test the parallel version of the SEVN code on the “Mizar” workstation (single

node) and on the Ulysses Compute Cluster in SISSA (multi node). Mizar and Ulysses are

both Linux-based systems. Mizar is a workstation, which contains 6 cores - 12 threads. In

contrast, each node on the regular2 partition of Ulysses contains:

• 2 sockets,

• 16 cores per socket.

• 2 CPUs per core,

• The maximum number of threads is 2 per core or 64 per node.

• Max available memory is 63500 MB.

The detailed information about Mizar and Ulysses (regular2 partition) is presented in

table 2.1. We chose the regular2 partition of Ulysses because all nodes have the same

configuration and available memory.

.

Ulysses has then been extended and a new infrastructure was made available during late

2019. This new infrastructure consists of additional nodes, an upgraded software stack and
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Computer/property Mizar Ulysses, regular2
Architecture: x86 64 x86 64

CPU op-mode(s): 32-bit, 64-bit 32-bit, 64-bit
Byte Order: Little Endian Little Endian

Address sizes: 46 bits physical, 48 bits virtual
CPU(s): 12 64

On-line CPU(s) list: 0-11 0-63
Thread(s) per core: 2 2

Max Threads per Node 64
Core(s) per socket: 6 16

Socket(s): 1 2
NUMA node(s): 1 2

Max Memory per Node (MB) 15500 MB 63500 MB
Vendor ID: GenuineIntel GenuineIntel

CPU family: 6 6
Model: 62 79

Model name: Intel(R) Core(TM) Intel(R) Xeon(R)
i7-4930K CPU @ 3.40GHz CPU E5-2683 v4 @ 2.10GHz

Stepping: 4 1
CPU MHz: 1253.196 1200.000

CPU max MHz: 3900.0000 2100.0000
CPU min MHz: 1200.0000 1200.0000

BogoMIPS: 6800.40 4190.39
Virtualization: VT-x VT-x

L1d cache: 192 KiB 32K
L1i cache: 192 KiB 32K
L2 cache: 1,5 MiB 256K
L3 cache: 12 MiB 40960K

NUMA node0 CPU(s): 0-11 0-15,32-47
NUMA node1 CPU(s): 16-31,48-63

Table 2.1: The table displays information about the architecture of Mizar workstation and
Ulysses, regular2 partition.
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Figure 2.1: Symmetric multiprocessing or shared-memory multiprocessing design.

a new job scheduler, SLURM (Simple Linux Utility for Resource Management). After the

upgrade the old nodes are used in partitions regular1, long1, wide1 and gpu1, while the

new nodes are available as regular2, long2, wide2 and gpu2 (datailed information on the

Ulysses webcite).

Computer Architecture is very important for parallel computing. Total amount of CPUs,

their type and amount of available memory constrain the total speed up and scaling of

paralellization.

On Ulysses we used the following modules and compilers:

• cmake/3.15.4 CMake is a cross-platform build system generator. Projects specify

their build process with platform-independent CMake listfiles included in each direc-

tory of a source tree with the name CMakeLists.txt. Users build a project by using

CMake to generate a build system for a native tool on their platform.

• gnu8/8.3.0 GNU module provides C++ compilers. The variant 3.15.4 supporting

OpenMP and OpenACC offload is available. GCC 8.3 February 22, 2019

https://gcc.gnu.org/gcc-8/changes.html
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• openmpi3/3.1.4

• C++14

2.2 Adaptive data loading

Device capabilities and size of the Random-Access Memory (RAM) vary a lot. Occasionally,

the amount of data loaded during calculations may exceed the device’s capabilities. To

mitigate the issue of memory consumption of the SEVN code when evolving a very large

number of binaries, we implement the following automatic strategy. The SEVN code splits

the set of stars into chunks that fit into the available memory of the actual device. We call

this method adaptive data loading.

We use some pre-load strategies to find the ideal adaptive chunk size for the device the

SEVN code is running on. To find what is the maximum possible amount of binaries the

SEVN code can load without filling the hardware memory resources, we use the following

proportional formula.

Adaptive chunk = Memory Target Max × Test Chunk

Memory Consumed
(2.1)

where “Test Chunk” is a test-reference sample of any size which we run with the SEVN

code (for example, 1000 binary stars), and “Memory Consumed” is the memory consumption

associated with the evolution of the test chunk. “Maximum Target Memory” is the maximum

fraction of total Available Memory that we want to SEVN code to allocate during the

simulation:

Memory Target Max = Avail Memory×Mem Perc Max (2.2)

The SEVN code reads the total available memory from file /proc/meminfo on the fly.

To estimate the memory consumed by the test chunk during the run, we use the difference

between the amount of allocated virtual memory before and after the code lines that run
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the test sample. The file /proc/self/status contains the information about the current

SEVN run, including information about the allocated virtual memory, i.e., Virtual Memory

Resident Set Size (VmRSS). The SEVN code reads VmRSS from file /proc/self/status on-

the-fly during its run and we can estimate

Memory consumed = ∆VmRSS = VmRSS2 − VmRSS1 (2.3)

where VmRSS2 and and VmRSS1 are the amount of allocated virtual memory after and before

the code run the test sample.

Users need to manually set the maximum percentage of memory “Mem Perc Max” the

code can use during the run. The user will use this percentage of all available memory at

the start of the simulation for calculations. However, we must limit this percentage from

above since the code uses memory for calculations and storing calculation results. During

the calculation, the SEVN code inserts information regarding the simulation outcomes of

each binary system into the output files. At the same time, we should take into account

that such output files can take up a significant amount of memory. Figure 2.2 shows the size

on input and output files of the SEVN code for a different amount of binaries. The results

of 108 binaries will use around 100 GB of memory, which is more than the total memory of

regular2 one node (62 GB) and a bit less than that of regular1 nodes with the maximum

memory (312.5 GB). The size of the initial data impacts the percentage of memory used

only indirectly since it reduces the value of available memory before the simulations start.

Therefore, the percentage must be re-calculated on the fly by the SEVN code and may be

less than the value manually selected by the user:

Mem Perc Max = min

(
Mem Perc Max,

Avail Memory

Total Memory
−X × Number of Binaries

Avail Memory

)
(2.4)

where X is memory of output of a single binary system. Approximately the size of a output

for a single binary is X = 1.6 KB.
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Figure 2.2: The dependence of the size of files with initial data and output files depending on
the number of binary systems. The solid blue line shows the amount of memory needed for
a single MPI process, while the orange solid line shows the amount of memory needed for 16
MPI processes. The horizontal dashed green line shows the maximum available memory on
the regular1 partition (or long1, etc.). The horizontal dashed red line shows the maximum
available memory on the regular2.

In all our calculations, we use 80 % of the available memory on the devices. It is crucial

to avoid the usage of all the available memory so to avoid filling up the resources of any

system without control.

2.3 Parallelization with OpenMP

After implementing the adaptive loading method, our next goal is to parallelize the SEVN

code on a single computing node. We can accomplish the goal through the Open Multi-

Processing (OpenMP) directives.

OpenMP is an Application Programming Interface (API) that supports multi-platform

shared-memory multiprocessing programming. Multithreading, in which a single thread (a

sequence of instructions executed in order) splits off into a number of parallel “sub-threads,”

is implemented in OpenMP. The threads are then scheduled to execute simultaneously, with

the runtime environment distributing them across the available CPU cores.

The beginning of a parallel section in the code is identified through a compiler directive
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that initiates thread creation before the code is executed. Once the parallelized code has

completed running, all created threads will merge back into the main thread, which continues

the execution until the end of the run.

Each thread operates autonomously on its own copy of the parallelized code, by default.

Using work-sharing constructs, it is possible to delegate specific portions of a task’s execution

to individual threads. OpenMP allows to accomplish task parallelism and data parallelism

in this way.

Threads are distributed to processors by the runtime environment based on factors such

as usage, machine load, and other conditions. The number of threads can be determined

either by the runtime environment using environment variables or by the code using thread

assignment functions. In C/C++, the “omp.h” header file contains the OpenMP directives.

In the SEVN code, all the objects to evolve can be either single or binary stars and their

initial conditions are stored into a C++ standard-template-library vector. In the following,

we will only refer to binaries, though the parallelization and the presented results are the

same for single stars. In our parallelization strategy, each OpenMP thread takes care of the

evolution of only its part of binaries (Bin Per Thread), simultaneously to other threads:

Bin Per Thread = std::ceil

(
Total Number of Binaries

Total Number of Threads

)
(2.5)

The adaptive chunk loading modulates the total number of binaries:

Total Number of Binaries = min( Total Number of Binaries, Adaptive chunk ) (2.6)

Function std::ceil(x) returns the smallest integer that is greater than or equal to x, so only

the last OpenMP thread will evolve less binaries in case the total amount of binaries and

adopted number of threads are not exact multiple of each other. Then each set of binaries

evolves simultaneously within the parallel loop construct. The initial (Omp Start) and
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final (Omp End) binary that each thread must evolve within the parallel loop are then

Omp Start = Bin Per Thread × Thread ID (2.7)

and

Omp End = min ( Bin Per Thread× (Thread ID + 1) , Total Number of Binaries ))

(2.8)

The main part of the code with OpenMP implementation is shown in the Appendix A.4.

The results of our OpenMP implementation are presented in the following chapter (Sec.

3.2).

2.4 Parallelization with MPI

Message Passing Interface (MPI) is a standardized and portable message-passing standard

designed to function on parallel computing architectures. MPI does not depend on its

underlying programming language.

MPI and OpenMP enable parallel programming, but they have an important difference.

MPI is used in distributed memory architectures. Unlike shared memory described above,

distributed memory uses a collection of independent memory units that synchronize using a

network, primarily found in supercomputers. It means that each core or node has a memory

space of its own and does not require locks like shared memory.

However, synchronization is still required to distribute the computation and collect re-

sults, and that is done through message passing. OpenMPI provides API calls such as

MPI Send and MPI Recv to allow communication between computation nodes. Unlike

OpenMP, each computational unit has to send its results to a master and manually compile

and aggregate the final result.

Global communication primitives are carried out on all processes belonging to the same
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communication group. By default, once MPI got initialized, all processes belong to the same

group of communication called MPI COMM WORLD.

Typically, for maximum performance, to each CPU core will be assigned just a single

MPI process.

To perform MPI parallelization, we divided the input binaries in the SEVN code into

partitions, similarly to what we did for OpenMP, but now considering the total number of

MPI processes:

Bin Per MPI =
Total number of binaries

Number of MPI procs
(2.9)

Then the number of binaries is compared with the size of the adaptive chunk.

Bin to do = min (Bin Per MPI− Bin Done,Adaptive Chunk) (2.10)

An important aspect that it is worth noting is that here the adaptive chunk method must

constrain the binaries to evolve per MPI process (“Bin per MPI”) because, as already men-

tioned, each MPI process has its own memory copy of the binaries. Thus, if the number of

binaries per MPI process requires more memory than is available on the device, then the

evolution of objects by each MPI process happens in a loop. Specifically, depending on the

available memory, increasing the number of MPI processes results in a decreased chunk size

and, consequently, in a decreased speed-up (e.g., too few binaries per MPI process, see figure

3.1).

The main part of the code with MPI implementation is in the Appendix A.5. The results

of our MPI implementation are presented in the following chapter (Sec. 3.2).
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Chapter 3

Results

3.1 Adaptive data loading

The formula 2.1 for calculating the adaptive chunk size assumes that the consumed memory

scales linearly with the number of binaries. Figure 1.3 shows that this is a reasonable

assumption.

Figure 3.1 shows the relative size of a chunk and the percentage of memory consumed

in the process of calculations as the function of the maximum available memory. The figure

shows that as the number of available memory increases, the adaptive chunk size grows

linearly for 2.5 and 5 million binaries. For 1 million binaries, the size of the chunk saturates

when we use 60 percent of available memory. Saturation happens because the node’s memory

has sufficient capacity to simultaneously store the entire set of binary systems (see figure

1.3). For 1 million of binaries, the size of an adaptive chunk for 4 MPI processes is exactly

four times smaller than that for 1 MPI process. It happens because 4 MPI processes use in

four times more available memory to store in the memory vector with objects.

The right side of figure 3.1 shows that the amount of physical RAM used for calculations

differs from the maximum value of memory specified. For threshold values below 60%,

the actual memory consumption is roughly 10% higher. This occurs because the SEVN
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Figure 3.1: The relative size of a chunk (on the left) and the percentage of memory consumed
during the run of SEVN (on the right) as the function of the maximum available memory (62
GB). We obtained the dependencies for 1 (solid lines) and 4 (dashed lines) MPI processes
and for 1 (blue lines), 2.5 (green lines), and 5 (orange lines) million binaries.

code, initial data, and libraries take up about 10% of total RAM. The simulation’s memory

consumption stabilizes at approximately 70% at a threshold value greater than 60% for 1

million binaries because such simulations cannot use more memory.

Figure 3.1 shows that the larger the set of binary systems to simulate, the smaller the

maximum percentage of memory we can use for simulations themselves. It happens because

a more extensive set of binaries require more memory to hold the results in the RAM (see

formula 2.4). The figure also shows that consumed memory is a few percent less than total

memory. The available memory is always less than the total memory due to the need to

keep the operating system CentOS and the Slurm Workload Manager in the memory.

3.2 OpenMP Scalability - Single Node

Figure 3.2 shows the calculation time, and speed-up of the parallelized version of the SEVN

code on a single node of the Ulysses computing cluster at SISSA (see Table 2.1), as a function

of the adopted CPUs and for different total numbers of evolved binaries. We show the results

of both the OpenMP and the MPI parallelizations.

We see that the code calculation time decreases by one order of magnitude when using
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Figure 3.2: The SEVN code calculation time and speed-up for the different number of
OpenMP threads (or used CPUs). Calculations performed on Ulysses, regular2 partition.
The solid orange lines show the results for 100 thousand binaries, and the solid blue line for
1 million binaries. The dashed grey line is perfect speed-up.

only the OpenMP interface. The speed-up of the SEVN code when using MPI is quite close

to the values of perfect speed-up. When using OpenMP, the speed-up saturates at 16 used

CPUs and it gives a maximum speed-up of 10x on a single node.

The reason why the OpenMP version of the SEVN code stops scaling for a number of

threads larger than 16 might be ascribed to false-sharing. Most high-performance processors

insert a cache buffer between slow memory and the high-speed registers of the CPU. Access-

ing a memory location causes a slice of actual memory (a cache line) containing the memory

location requested to be copied into the cache. Each update of an individual element of a

cache line coming from different threads marks the line as invalid, and threads are forced to

fetch a more recent copy of the line from memory, even though the element accessed has not

been modified. As a result, there will be an increase in interconnect traffic and overhead.

Also, while the cache-line update is in progress, access to the elements in the line is inhib-

ited. If this occurs frequently, the performance and scalability of an OpenMP application

will suffer significantly. This probably happens in our code since all the OpenMP threads

access simultaneously the same C++ vector, which is shared among the threads.

If the issue is false-sharing, then the code needs to be restructured, especially when it
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Figure 3.3: The SEVN code calculation time and speed-up for the different number of MPI
processes (or used CPUs). Calculations performed on Ulysses, regular2 partition. The
solid orange lines show the results for 100 thousand binaries, and the solid blue line for 1
million binaries. The dashed grey line is perfect speed-up.

comes to storing and accessing data. As a follow-up project, we will investigate whether it

is worth restructuring the code for better OpenMP performance, or simply do a complete

porting on, for example, GPUs, though the latter is beyond the scope of this thesis.

3.3 MPI Scalability - Single Node

Figure 3.3 shows the calculation time, and speed-up of the parallelized version of the SEVN

code on a single node of the Ulysses computing cluster at SISSA (see Table 2.1), as a function

of the adopted CPUs and for different total numbers of evolved binaries. We show the results

of the MPI parallelizations on a single node.

The SEVN code calculation time decreases by a factor 25 when using only the MPI

version of the code. The speed-up of the SEVN code when using MPI is quite close to the

values of perfect speed-up. When using OpenMP, the speed-up saturates at 16 used CPUs

and it gives a maximum speed-up of 10x on a single node.
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Figure 3.4: CPU efficiency (on the left) and memory consumption (on the right) for 1 million
of input binaries for different amount of processors units (CPUs), used during the run.

3.4 CPU Efficiency and Memory Consumption

Successful parallelization of code requires efficient use of both processing power (CPUs) and

memory. Figure 1.3 shows that simulations of a million binary systems with serial SEVN

code use all the available node memory on the Ulysses, regular2 partition. We performed

calculations using the parallelized SEVN code to check whether we had reached our mission.

In Figure 3.4, we show the CPU efficiency and the memory consumption for one million

input binaries. We can see that CPU efficiency grows almost linear with the number of

threads or MPI processes. This outcome is consistent with our expectations, as we utilize

more available CPUs while increasing the number of MPI processes or threads.

Memory consumption increases when using only the MPI interface, while for OpenMP, it

remains constant. It happens for obvious reasons: With the OpenMP interfaces, processes

share memory and access an array of binary systems. With the MPI interface, all processes

copy and allocate memory for the entire array of binary systems. Memory usage grows

linearly without the adaptive chunk implementation. For a larger number of systems or

employed CPUs, all available memory will be used for calculations.
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3.5 Hybrid Parallelization - MPI + OpenMP

We have many possible implementations of hybrid parallelization. To choose the best com-

bination, we need to consider all the advantages and pitfalls of using OpenMP and MPI

interfaces.

OpenMP: The advantage of using only the OpenMP interface is the ease of use, and the

data is not replicated as the number of threads increases. The latter is a major benefit for

the SEVN code, which has high memory pressure. The major disadvantages are the reduced

speed-up on a single node and the inability to perform parallelization on multiple nodes.

MPI: The main advantage of using MPI is increased performance, if a single process is

assigned to a single CPU core, and the possibility to scale on multi-node computing clusters.

Also, MPI is a good candidate for perfectly load-balanced applications. The main problem

of MPI is memory consumption because each MPI process replicates the data. Specifically,

if we start increasing the number of MPI processes, at some point, the adaptive data loading

mechanism will force the chunk of binaries to a very small value, resulting in a compromised

speed-up (see also Fig. 3.1)

Thus, with a hybrid parallelization strategy we might try to take full advantage of both

OpenMP and MPI implementations. The hybrid approach will take the main advantage

of MPI in terms of scaling performance across multiple nodes and the main advantage of

OpenMP in terms of reducing memory pressure.

The optimal implementation of hybrid parallelization on a single node is an outer loop

with an MPI interface and an inner loop with OpenMP. It is necessary to understand how

to choose the optimal number of OpenMP threads per MPI process and the number of MPI

processes per node.

So we tried the following combinations:

• 1 MPI process per socket, i.e. 2 MPI processes per node on Ulysses,

• 2 MPI process per socket, i.e. 4 MPI processes per node on Ulysses,
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Figure 3.5: The calculation time (on the left) and speed-up (on the right) depending on the
number of processors (CPUs) used. We obtained the results for 100 thousand binary star
systems. During the calculation, we used 2, 4, and 8 MPI processes and a different number
of threads. The dashed grey line is perfect speed up.

• 4 MPI processes per socket, i.e. 8 MPI processes per node on Ulysses.

We varied the number of threads for each combination from one to the maximum possible

number. Figure 3.5 shows the calculation time and speed up depending on the number of

CPUs used on a single node of the Ulysses cluster using 100 thousand binary star systems.

We get the slowest calculations when using 2 MPI processes per node. When using 4 and 8

MPI processes per node, we get approximately the same calculation time/speed-up. Given

that 4 MPI processes use half as much memory as 8 MPI, we get the following optimal

configuration of processes for the current version of the SEVN code on Ulysses: 2 MPI

process per socket (i.e., 4 per node) and 16 OpenMP threads, i.e. total of 64 “processors”, as

in the x-axis of Fig. 3.5. Such a combination of MPI and OpenMP processes is favorable for

large statistical sample simulations. As we stated above, a smaller number of MPI processes

significantly softens the memory requirements and increases the size of the adaptive chunk.

3.6 Multi-node parallelization

Figure 3.6 shows the calculation time and speed-up of the SEVN code when using multiple

nodes on the Ulysses cluster, regular2 partition. We run the parallelized SEVN code on
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Figure 3.6: The calculation time (on the left) and speed-up (on the right) depending on
the number of processors (CPUs) used. The solid blue lines show the results using the
MPI interface on multiple nodes. The solid orange lines show the results using hybrid
parallelization ( both the OpenMP and MPI interface). We used 16 OpenMP threads and
4 MPI processes per node for hybrid parallelization. The dashed grey line is perfect speed
up.

up to four compute nodes for 1 and 10 million binaries. The speed-up of the SEVN code with

hybrid approach on one node (up to 64 CPUs) is about 25x for 1 and 10 million binaries. On

four Ulysses compute nodes, with hybrid parallelization, we get a speed-up of about 100x.

The speed-up on multi-nodes is about 40 percent of a perfect speed-up:

Speed-upp ∼ 0.4× Speed-up1 × p (3.1)

where p is a number of the node.

The speed-up of the SEVN code with pure MPI (up to 64 CPUs) is also about 25x on

one node and about 75x on four nodes for 1 million binaries. For 10 million binary systems,

we could not perform calculations with a sufficiently large number of MPI processes per

regular2 node. Figure 3.7 shows the dependence of the percentage of memory used only for

simulations (excluding used memory for storing input data and results) as a function of the

number of MPI processes per node. Due to the extensive memory usage for storing input

data by each MPI process, even with 10 MPI processes per regular2 node, no memory

is left for simulations. At the same time, hybrid parallelization uses the same amount of
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Figure 3.7: The dependence of the percentage of memory used only for simulations as a
function of the number of MPI processes per node.

memory for simulations when scaling calculations across multiple nodes. We can optimize

hybrid parallelization for a bigger sample of binary systems by reducing the number of MPI

processes per node. For example, we can use 1 MPI process and 64 threads instead of 4

MPI and 16 threads for a hundred million binary systems.

Hybrid parallelization gives approximately the same computation time and acceleration

as pure MPI, but it uses significantly less memory. Therefore, hybrid parallelization has a

more promising potential for very large statistical population samples.
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Chapter 4

Conclusions

In this thesis, we have focused on a preliminary optimization of the SEVN code, prepara-

tory for implementing our new CE prescriptions. We found that the SEVN code requires

significant optimization to evolve large samples of objects with different initial parameters

since such simulations require a significant amount of memory and time (see figure 1.3).

Thus, we optimized SEVN to run very large samples of binary systems in a reasonable

amount of time and with low memory consumption. To do that, we parallelized the SEVN

code on both single computing nodes (through OpenMP) and multi-node supercomputers

(through MPI).

In order to mitigate the memory requirements of the computing device, we implemented

a new method which we refer to as adaptive data loading. Adaptive loading divides the

entire initial set of objects into chunks of sufficient size to avoid filling the system’s available

memory.

We tested our parallel implementations on the Ulysses computing cluster at SISSA. We

used the OpenMP interface to speed up and optimize simulations on a single node and

achieved a maximum speed-up of 10x. We used the MPI interface to scale computations

across multiple compute nodes and improve the speed-up. On a single node, we got a

speed-up of 25x with only MPI, while on four compute nodes, we get a speed-up of about
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75x.

However, a large number of MPI processes on one node significantly increase memory re-

quirements. Therefore, we used hybrid parallelization to take full advantage of OpenMP and

MPI parallelization. As a result, we found that, on the Ulysses computing cluster, the best

hybrid combination for one node is 2 MPI processes per socket, and the number of threads

is equal to the number of cores on one socket. This combination provides approximately 25x

speed-up per compute node and a speed-up of about 100x on four compute nodes.Hybrid

parallelization gives a slightly better computation time and speed-up than pure MPI, but

more importantly, it uses significantly less memory.

Our main task of parallelization and code optimization is to evolve with SEVN large

statistical samples of binaries, which may contain up to 109 objects. However, in this case,

we meet another issue related to loading the input files containing all the initial conditions

of all stars and storing the obtained results. The problem is that such files will be heavy and

require a large amount of memory. From figure 2.2 it is apparent that the regular2 partition

on Ulysses will not have enough memory to simulate all binaries, even using just one MPI

process. Thus, in the future, we will need to modify the SEVN data-loading method to take

into account this aspect.

A future optimization of the SEVN code will also be to port the code, or part of it,

on (multiple) graphics processing units (GPUs). The strategy might be very advantageous

when SEVN is used in combination of massively GPU-parallel stellar dynamics codes (e.g.,

ISTEDDAS [160]), but it requires a profound restructuring of the SEVN code and the GPU-

porting must be carefully investigated.
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List of abbreviations

GR – General Relativity

GW - Gravitational Waves

BH – Black Hole

NS – Neutron Star

SN – Supernova

WR – Wolf-Rayet

WDs – White Dwarfs

BBHs – Binary Black Holes

BNSs – Binaries of Neutron Stars

sGRBs – short Gamma-Ray-Bursts

CO – carbon-oxygen

MS – Main Sequence

TAMS – The Terminal-Age Main Sequence

ZAMS – Zero-Age Main Sequence

HG – Hertzsprung Gap

GB – Giant Branch CHeB – Core-Helium Burning

AGB – Asymptotic Giant Branch

LIGO – Laser Interferometer Gravitational-wave Observatory

KAGRA – Kamioka Gravitational Wave Detector

ET – Einstein Telescope
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CE – Cosmic Explorer

LISA – Laser Interferometer Space Antenna

SNR – Signal-to-Noise ratio

PISNe – Pair Instability Supernova

PPISNe – Pulsational Pair-Instability Supernova

EOS – Equation Of State

CHE - Chemical Homogeneous Evolution

CE – Common Envelope

CEE – Common Envelope Evolution

RLO – Roche-lobe overflow

HR diagram – Hertzsprung-Russell Diagramm

MSE – Mean Squared Error

BEC – the Bonn Evolutionary Code

MESA – the Modules for Experiments in Stellar Astrophysics

BPSs – Binary Population-Synthesis

SEVN – Stellar Evolution N-body
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Appendix A

Modifications of SEVN code

A.1 Checking the memory status

#ifndef SEVN_SEVNMEM_H

#define SEVN_SEVNMEM_H

#include <iostream>

#include <fstream>

#include <vector>

#include <string>

#include <sstream>

#include <lookup_and_phases.h>

#include <utilities.h>

#include <mpi.h>

using namespace Lookup;

class SevnMemory{
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class memory_element{

public:

memory_element(){

_ncalls = 0;

_mem_cumulative = 0.0;

}

void begin(const double value){

_start = value;

_hasstarted = true;

_hascompleted = false;

}

void end(const double value){

_end = value;

if(!_hasstarted) {exit(1);} //TODO please return an error here....

section is closing but has not started

//_consumed = (selfproc) ? _end - _start : _start - _end; //depending

if I am checking memory available or memory allocated by the

process

_consumed = _end - _start;

_hasstarted = false;

_ncalls++;

_mem_cumulative += _consumed;

_mem_avg = _mem_cumulative/_ncalls;
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_hascompleted = true;

}

double perstep(){return _consumed;}

double average(){return _mem_avg;}

bool hascompleted(){return _hascompleted;}

private:

double _start, _end, _consumed;

double _mem_cumulative, _mem_avg;

bool _hasstarted, _hascompleted;

long _ncalls;

};

public:

SevnMemory(Lookup::MemoryConversion _output = _megabytes) : output(_output){}

void begin(std::string section_id){

auto it = memorymap.find(section_id);

if (it != memorymap.end()) {

memorymap[section_id]->begin(read_entry());

return;

}

memorymap.insert(std::make_pair(section_id, new memory_element()));

memorymap[section_id]->begin(read_entry());
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return;

}

void end(std::string section_id){

auto it = memorymap.find(section_id);

if (it == memorymap.end()) { exit(1); } //TODO please return an error

here: not in map

memorymap[section_id]->end(read_entry());

return;

}

double mem_available(){

return read_entry("MemAvailable", "/proc/meminfo");

}

double sevn_memory(){

return read_entry();

}

double get(std::string section_id){
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auto it = memorymap.find(section_id);

if (it == memorymap.end()) { exit(1); } //TODO please return an error

here: not in map

return memorymap[section_id]->perstep();

}

void dump(){

std::string unit;

if (output == _megabytes) unit = "MB";

else if (output == _gigabytes) unit = "GB";

else if (output == _bytes) unit = "B";

else if (output == _kilobytes) unit = "kB";

else if (output == _terabytes) unit = "TB";

else exit(1); //TODO please return a proper error here.... unknown

output string

std::cout << std::endl;

std::cout << "*********************************" << std::endl;

std::cout << " SEVN total allocated memory = " << sevn_memory() << "

" << unit << std::endl;

std::cout << " System remaining memory = " << mem_available() << " "

<< unit << std::endl;

for (auto const &x : memorymap) {

if (x.second->hascompleted()) {

std::cout << " Section [" << x.first << "]" << std::endl;

std::cout << std::scientific << std::setprecision(4) << "

-------------- Memory addition (step) = ["
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<< x.second->perstep() << "] " << unit

<< std::endl;

std::cout << "*********************************" << std::endl;

}

}

return;

}

private:

double read_entry(std::string input_string = "VmRSS", std::string filename =

"/proc/self/status"){

in.close();

in.open(filename); //TODO this works only on Linux... for MacOS please

use the vm_stat command

for (;;) {

std::string line, value, token;

std::vector<std::string> tmp;

stream.clear();

getline(in, line);

stream.str(line);

if (in.eof()) {

in.close();

exit(1);
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}//TODO return a proper error here... critical... entry_string not

found

while (stream >> value) {

tmp.push_back(value);

stream.clear();

}

std::string delimiter = ":"; //remove the delimiter from the meminfo

entry

size_t pos = 0;

token = ((pos = tmp[0].find(delimiter)) != std::string::npos) ?

tmp[0].substr(0, pos) : tmp[0];

if (token == input_string) {

get_units(tmp);

in.close();

int exponent = units - output;

long pow2 = ((long) 1 << std::abs(exponent));

double memory_value = utilities::s2n<double>(tmp[1], __FILE__,

__LINE__);

return (exponent < 0) ? memory_value / pow2 : memory_value * pow2;

}

}

}

void get_units(std::vector<std::string> &tmp){
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if (tmp[2].find("kB") != std::string::npos || tmp[2].find("KB") !=

std::string::npos ||

tmp[2].find("kb") != std::string::npos)

units = _kilobytes;

else if (tmp[2].find("MB") != std::string::npos || tmp[2].find("mB") !=

std::string::npos ||

tmp[2].find("mb") != std::string::npos)

units = _megabytes;

else if (tmp[2].find("GB") != std::string::npos || tmp[2].find("gB") !=

std::string::npos ||

tmp[2].find("gb") != std::string::npos)

units = _gigabytes;

else if (tmp[2].find("B") != std::string::npos || tmp[2].find("b") !=

std::string::npos) units = _bytes;

else {

in.close();

std::cout << "Unit not recognized in proc meminfo [" << tmp[2] << "]"

<< std::endl;

exit(1);

} //TODO please return a critical error here.... unit not recognized in

/proc/meminfo

}

std::istringstream stream;

std::ifstream in;

Lookup::MemoryConversion units, output;
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typedef std::map<std::string, memory_element*> MEMPROFID;

MEMPROFID memorymap;

};

#endif //SEVN_SEVNMEM_H

A.2 Adaptive chunk implementation

template<typename T> long adapt_evolve_chunk(IO *sevnio) {

if(sevnio->svpar.get_num("ev_base_Nchunk") >=

sevnio->STARS_MATRIX.size()) return sevnio->STARS_MATRIX.size();

long base_chunk = (long)sevnio->svpar.get_num("ev_base_Nchunk");

double mem_perc_max = 1; //sevnio->svpar.get_num("ev_max_mem_perc");

std::cout << sevnio->svpar.get_num("ev_max_mem_perc") << " max perc " <<

mem_perc_max ;

double available = sevnio->svmem.mem_available();

double memory_target_max = mem_perc_max * available;

std::vector<std::unique_ptr<System>> systems;

size_t index = 0;

sevnio->svmem.begin("Load CHUNK stars");
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for (long i = 0; i < base_chunk ; i++) {

systems.emplace_back(new T(sevnio, sevnio->STARS_MATRIX[index],

index));

index++;

}

sevnio->svmem.end("Load CHUNK stars");

double memory_current = sevnio->svmem.get("Load CHUNK stars");

return (base_chunk * memory_target_max / memory_current);

}

A.3 SEVNomp class

#ifndef SEVN_SEVNOMP_H

#define SEVN_SEVNOMP_H

class SEVNomp{

public:

SEVNomp(int num_threads) : nthreads(num_threads){

evolving = new long int [nthreads];

previous = new long int [nthreads];

msg30 = new bool [nthreads];

timer = new double [nthreads];

start = new struct timespec [nthreads];

stop = new struct timespec [nthreads];

51



}

~SEVNomp(){

delete [] evolving;

delete [] previous;

delete [] msg30;

delete [] timer;

delete [] start;

delete [] stop;

}

inline long int get_start(int toevolve){

long int bin_per_thread = (long int)

(std::ceil(toevolve/(double)nthreads));

return(omp_get_thread_num()*bin_per_thread);

}

inline long int get_end(int toevolve){

long int bin_per_thread = (long int)

(std::ceil(toevolve/(double)nthreads));

return(std::min(bin_per_thread*(omp_get_thread_num() + 1), (long

int)toevolve));

}

inline void set_evolving(long int i){

evolving[omp_get_thread_num()] = i + start_system;

}

void set_completed() {
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evolving[omp_get_thread_num()] = -1; //not evolving anymore

#pragma omp single

{

for(int i = 0; i < omp_get_num_threads(); i++) {

timer[i] = 0.0;

clock_gettime(CLOCK_REALTIME, &start[i]);

}

for(int i = 0; i < omp_get_num_threads(); i++) {

previous[i] = evolving[i];

msg30[i] = false;

}

for (;;) {

int sum = 0;

for(int i = 0; i < omp_get_num_threads(); i++)

sum = (evolving[i] == -1) ? sum + 1 : sum;

if (sum == omp_get_num_threads()) break; //all threads have

finished their chunk... everything is fine

for(int i = 0; i < omp_get_num_threads(); i++){

if(timer[i] >= 60.0){

if(evolving[i] != -1 && previous[i] == evolving[i]){
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std::cout<<"Thread "<<i<<" is still(?) stalling

evolving system number "<<evolving[i]<<std::endl;

std::cout<<"Terminating execution"<<std::endl;

exit(1); //TODO return exception here with complete

message

}

else {

previous[i] = evolving[i];

msg30[i]=false;

timer[i] = 0.0; //reset timer... the core is just slow,

but it is not stalling

clock_gettime(CLOCK_REALTIME, &start[i]);

}

}

if (timer[i] >= 30.0) { ////30-second range to warn the user

about possible stalling

if(evolving[i] != -1){

if(evolving[i] == previous[i]) {

if(!msg30[i]) {

std::cout << "Thread " << i << " is probably

stalling evolving system number "

<< evolving[i] << std::endl;

msg30[i] = true;

}

}

else {

previous[i] = evolving[i];

msg30[i]=false;
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timer[i] = 0.0; //reset timer... the core is just

slow, but it is not stalling

clock_gettime(CLOCK_REALTIME, &start[i]);

}

}

}

clock_gettime(CLOCK_REALTIME, &stop[i]);

timer[i] = ((stop[i].tv_nsec - start[i].tv_nsec) < 0) ?

(stop[i].tv_sec - start[i].tv_sec - 1) + (1e9 +

stop[i].tv_nsec - start[i].tv_nsec) / 1.0e9 :

(stop[i].tv_sec - start[i].tv_sec) +

(stop[i].tv_nsec - start[i].tv_nsec) / 1.0e9;

}

}

}

#pragma omp barrier ////be sure that other threads wait for the master

}

void set_offset(long int offset){

start_system = offset;

return;

}

private:

int nthreads;
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long int *evolving;

long int *previous;

double *timer;

long int start_system;

bool *msg30;

struct timespec* start;

struct timespec* stop;

};

#endif //SEVN_SEVNOMP_H

A.4 OpenMP implementation

int evolve_list(EvolveFunctor* evolve_function,

std::vector<std::unique_ptr<System>>& systems, _UNUSED IO& sevnio,

SEVNomp *sevnomp, int Nevolve=-1){

SevnLogging svlog;

if (Nevolve==-1) Nevolve=systems.size();

unsigned Nfailed =0;

#pragma omp parallel num_threads(sevnio.nthreads) reduction(+: Nfailed)

{

long int omp_start = sevnomp->get_start(Nevolve);

long int omp_end = sevnomp->get_end(Nevolve);

for (long int i = omp_start; i < omp_end; i++) {
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sevnomp->set_evolving(i);

utilities::mtrand.seed(systems[i]->get_rseed());//Set random state

for riproducibility

T_BEGIN("Binary")

/****** EVOLVE ******/

if((*evolve_function)(systems[i])==EXIT_FAILURE)

Nfailed++;

T_END("Binary")

}

sevnomp->set_completed();

}

return Nfailed;

}

A.5 MPI implementation

#ifndef SEVN_EVOLVE_H

#define SEVN_EVOLVE_H
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#include <star.h>

#include <binstar.h>

#include <IO.h>

#include <vector>

#include <omp.h>

#include <random>

#include <errhand.h>

#include <sevnlog.h>

#include <sevnomp.h>

#include <sevnmem.h>

#include <mpi.h>

using sevnstd::SevnLogging;

/**

* Evolve using chunk version with functor

* @tparam T It could be Binstar or Star

* @param evolve_function Pointer to functor derived from base class

EvolveFunctor

* @param Nchunk Number of systems to evolve in each chunk

* @param sevnio Instance of the IO class (the one linked to the binaries)

* @param systems Vector containing the systems to evolve.

* @param progress If true print progress information to the standard output

* @return Number of failed evolutions

* @Note The vector of systems is passed by reference and it is cleared if

not empty yet.

*/

template <typename T>
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inline int chunk_dispatcher(EvolveFunctor* evolve_function, IO& sevnio, bool

progress=true){

long Nchunk = adapt_evolve_chunk<T>(&sevnio);

SevnLogging sevnlog;

SEVNomp sevnomp(sevnio.nthreads);

/////////////////////////////////

int numprocs;

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

//Get the rank of this process in MPI_COMM_WORLD

int procid;

MPI_Comm_rank(MPI_COMM_WORLD, &procid);

/////////////////////////////////

std::cout<< " "<<Nchunk << " adaptive chunk "<< numprocs << "

numprocs "<< Nchunk/numprocs << " ";

Nchunk = Nchunk/numprocs;

/////////////////////////////////

std::vector<std::unique_ptr<System>> systems;

///Preliminary assignment

//Max size

long Ntot = sevnio.STARS_MATRIX.size();

long Tot_binaries = Ntot;

//Reserve space for systems

systems.reserve(Nchunk);
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///Cycle

if (progress)

std::cout<<"Evolving systems:"<<std::endl;

unsigned int Ndone=0;

size_t current_idx=0;

int Ntodo=0;

int Nfailed=0;

////////////////////////////////////////////////////////////////////////

unsigned int partition =std::ceil((double) Ntot /(double) numprocs);

/////////////////////////////////////////////////////////////////////////

Ntot = partition ;

current_idx = procid*partition;

Ntot = current_idx + Ntot > Tot_binaries ? Tot_binaries - current_idx:

Ntot;

while (Ndone<Ntot){

Ntodo = current_idx + Ntodo > Tot_binaries ? Tot_binaries -

current_idx : Ntot-Ndone;

//Assign Ntodo

Ntodo = std::min(Ntot-Ndone, Nchunk);

//Fill vector

sevnomp.set_offset(current_idx);

T_BEGIN("EmplaceBack")

for (size_t i = 0; i < (size_t) Ntodo; i++) {
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try{

systems.emplace_back(new T(&sevnio,

sevnio.STARS_MATRIX[current_idx], current_idx));

}

catch(sevnstd::sevnio_error& e){ //sevnio error contains

initialisation errors

sevnio.print_failed_initilisation_summary(current_idx);

sevnlog.error("Failed initilisation for System with

ID="+utilities::n2s(current_idx,__FILE__,__LINE__)+

" with

message:\n"+e.what(),__FILE__,__LINE__,sevnio.svpar.get_bool("initerror_stop"));

}

current_idx++;

}

T_END("EmplaceBack")

//Evolve and update Nfailed

Nfailed+=evolve_list(evolve_function, systems, sevnio, &sevnomp,

Ntodo);

//Clear

systems.clear();

//Update Ndone
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Ndone+=Ntodo;

// sevnmem.adapt_chunk(&Nchunk);

//TODO 1: Here we can estimate time needed to perform a chunk run and

estimate the time to the end

//TODO 2: Maybe Nfailed is not needed because svlog has already

static counters to warning, error and critical messages

if (progress){

std::cout<<"\r"<<Ndone<<"/"<<Ntot<<" (Nfailed:"<<Nfailed<<")";

std::cout<<std::flush;

}

}

if (progress)

std::cout<<std::endl;

return EXIT_SUCCESS;

}

}

#endif //SEVN_EVOLVE_H
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