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Abstract

In the settings of various AdS/CFT dual pairs, we use results from supersymmetric localiza-

tion to gain insights into the physics of asymptotically-AdS, BPS black holes in 5 dimensions,

and near-BPS black holes in 4 dimensions.

We first begin with BPS black holes embedded in the known examples of AdS5/CFT4

dualities. Using the Bethe Ansatz formulation, we compute the superconformal index at large

N with arbitrary chemical potentials for all charges and angular momenta, for general N = 1

four-dimensional conformal theories with a holographic dual. We conjecture and bring some

evidence that a particular universal contribution to the sum over Bethe vacua dominates the

index at large N . For N = 4 SYM, this contribution correctly leads to the entropy of BPS

Kerr-Newman black holes in AdS5 × S5 for arbitrary values of the conserved charges, thus

completing the microscopic derivation of their microstates. We also consider theories dual

to AdS5 × SE5, where SE5 is a Sasaki-Einstein manifold. We first check our results against

the so-called universal black hole. We then explicitly construct the near-horizon geometry

of BPS Kerr-Newman black holes in AdS5 × T 1,1, charged under the baryonic symmetry

of the conifold theory and with equal angular momenta. We compute the entropy of these

black holes using the attractor mechanism and find complete agreement with field theory

predictions.

Next, we consider the 3d Chern-Simons matter theory that is holographically dual to

massive Type IIA string theory on AdS4 × S6. By Kaluza-Klein reducing on S2 with a

background that is dual to the asymptotics of static dyonic BPS black holes in AdS4, we

construct a N = 2 supersymmetric gauged quantum mechanics whose ground-state degener-

acy reproduces the entropy of BPS black holes. We expect its low-lying spectrum to contain

information about near-extremal horizons. Interestingly, the model has a large number of

statistically-distributed couplings, reminiscent of SYK models.
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Introduction

The central objects which are studied in this thesis are black holes. Black holes are inter-

esting because they are where our ignorance about gravity is sharply focused into various

puzzles and paradoxes. The most famous of these is the black hole information paradox [1],

which exposes an apparent incompatibility between gravity and quantum mechanics. In

the following, we will instead focus on two other puzzles brought forward by black holes:

the statistical mechanical interpretation of black hole entropy, and the thermodynamics of

near-extremal black holes.

Microstate counting for supersymmetric black holes

Within the framework of classical gravity, the laws of black hole thermodynamics discovered

by Bekenstein, Hawking and others [2,3] are rather mysterious. They are exactly analogous

to the usual laws of thermodynamics obeyed by a system in thermal equilibrium, but the

corresponding microscopic degrees of freedom are obscure, especially in light of “no-hair

theorems” [4,5] stating that black hole solutions in classical gravity are completely specified

by just a handful of quantum numbers. Given these limitations, it is natural to suppose that

a microscopic description of black holes which gives a statistical mechanical interpretation

for black hole thermodynamics must come from a quantum theory of gravity.

In particular, we know due to Bekenstein and Hawking [6,7] that black holes carry entropy

proportional to the area of their horizons

S =
Area

4
(1)

in natural units. A theory of quantum gravity must account for this entropy as S = logW

where W is the number of microstates of the black hole. This has become a standard

yardstick to measure the success of any candidate theory of quantum gravity.

String theory has been incredibly successful in this regard. For supersymmetric (BPS)

asymptotically-flat black holes in string theory, their study was initiated by the seminal

work by Strominger and Vafa [8], which managed to account for their entropy at large

charges through the asymptotic degeneracy of D-brane bound states. Beyond the large

charge limit and the area formula (1), the microscopic counting was found to agree with the

macroscopic entropy up to great precision after incorporating higher-derivative corrections

in supergravity [9–15]. The relevant technology is reviewed in [16] and [17], with more
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references therein.

For asymptotically anti-de-Sitter (AdS) BPS black holes, string theory also provides a

natural set-up to account for their entropy, which is the AdS/CFT correspondence [18, 19].

This will be our main focus. In its strongest form, the conjecture states that various string

theories (or M theory) on AdSd ×M , where M is some compact manifold, are defined non-

perturbatively by a superconformal field theory (SCFT) living on the boundary of AdSd. In

this set-up, the BPS black hole is described by BPS states of the SCFT, whose degeneracy

can be checked against the Bekenstein-Hawking formula. In the best-understood example

of AdS3/CFT2, this check was performed for BTZ black holes [20,21] in a generic quantum

gravity theory on AdS3 [22, 23].

In the developments described thus far, for the purpose of reproducing the area formula

(1), the microscopic counting almost always boils down to computing the spectrum of a

2-dimensional CFT at large charges. For that, it is sufficient to know the central charge

of the CFT and use Cardy’s formula [24]. In higher-dimensional strongly-coupled CFTs,

it is much more difficult to access the asymptotics of the spectrum, and this was limiting

progress for some time. More recently, as supersymmetric localization [25–27] made it possi-

ble to compute various supersymmetric indices of higher dimensional SCFTs, the program of

microstate counting was extended to higher dimensional BPS black holes. Further advances

began with the analysis of static dyonic BPS black holes in AdS4, whose states are counted

by the topologically twisted index [28] of the dual field theory. Firstly, the entropy of static

dyonic BPS black holes in M-theory on AdS4 × S7 was reproduced using the topologically

twisted index of the dual ABJM theory [29,30]. This was followed by a similar computation

for static dyonic BPS black holes in massive Type IIA string theory on AdS4 × S6 [31–33],

and generalized to include rotation in [34]1. We shall return to this example later in the next

section when we introduce the work [39].

For black holes in AdS5, there was a puzzle which has stood for some time. The holo-

graphic description of electrically-charged and rotating (Kerr-Newman) BPS black holes in

Type IIB string theory on AdS5 × S5 is in terms of 1/16 BPS states of the dual four-

dimensional N = 4 super-Yang-Mills (SYM) boundary theory on S3. These states are

counted (with sign) by the superconformal index [40–42], and one would expect that the

contribution from black holes saturates the index at large N . However, the large N compu-

tation of the superconformal index performed in [41] gave a result of order one, while the

entropy for the black holes is of order N2, suggesting a large cancellation between bosonic

and fermionic BPS states. Recently, this puzzle was resolved in [43–45] by realizing that

the computation of [41] is only valid for real fugacities, and that allowing the fugacities to

1The microstate counting for rotating non-magnetically charged black holes in AdS4 was performed

in [35–37]. See the review [38] for a more complete list of references.
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be complex obstructs cancellations between states due to the same I-extremization prin-

ciple found in [29, 30]. Using two different technical approaches, the works [44, 45] found

that the superconformal index with complex fugacities does indeed capture the entropy of

Kerr-Newman BPS black holes in AdS5 × S5.

Our work [46] is an extension of these results to Kerr-Newman black holes in Type IIB

on AdS5 × SE5 without using the Cardy limit as in [44] or specializing to equal angular

momenta, as in [45,47]. This work will be presented in Chapter 1.

A quantum mechanics for near-BPS magnetic horizons

Ever since the beginning of AdS/CFT, there has always been an interest to find AdS2/CFT1

dualities [18, 48] because many black holes have near-horizon geometries which contain an

AdS2 factor, and therefore such dualities would provide access to the quantum properties

of black holes, including their spectrum. Resolving the spectrum of near-BPS black holes is

important because thermodynamics breaks down for very-near-BPS black holes according to

their classical spectrum, where emitting a single quantum of Hawking radiation can change

the temperature of the black hole by a substantial amount [49]. Therefore quantum gravity

effects must play an important role.

However, it quickly became apparent in [48] that backreaction from any excitation would

destroy an AdS2 geometry, and thus the dual CFT1 can only describe the ground states of the

extremal (BPS) black hole. Following some years of inactivity, there has been a breakthrough

recently when it was realized that a useful way to think about the near-horizon limit of black

holes is to account for a leading order backreaction, leading to JT gravity [50–53]. The study

of JT gravity has led to significant progress on the information paradox due to the model’s

solvability at the quantum level [54, 55]. At the same time, a dual quantum mechanical

description was found in the SYK model [56–58], which was of independent interest to the

condensed matter and quantum computing communities. This is sometimes referred to as a

near-AdS2/near-CFT1 duality.

Similar methods were then applied to the JT gravity theories obtained via the dimensional

reductions of specific asymptotically-flat and asymptotically-AdS5 black holes in [59–62],

where it was possible to compute the density of states of near-extremal and near-BPS black

holes. Although there have been attempts such as [63], open questions remain about what

is the SYK-like quantum mechanical dual that can reproduce the low energy dynamics and

spectra of these works [59–61]. The same dimensional reduction can be performed around

static magnetically-charged BPS black holes in massive Type IIA string theory on AdS4×S6

like in [64], to obtain an effective theory of 2d gravity. Although a universal JT sector was
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found, it is unclear whether the near-extremal spectrum will be captured by the JT sector due

to the presence of relevant deformations coming from the matter sector. It is also unclear

whether the spectrum of operators found in [64] can be reproduced by a dual quantum

mechanics. The relevant deformations suggest that the dual quantum mechanics might be

significantly different from SYK.

In our work [39], we propose such a candidate quantum mechanics. The static dyonic

black holes in massive Type IIA that we are interested in [65–67] interpolate between the

AdS4 vacuum and an AdS2×S2 near-horizon geometry. This suggests a natural holographic

interpretation for the solution as a RG flow across dimensions. To be precise, we have the

dual 3d N = 2 SU(N)k Chern-Simons-matter theory [68]2 placed on S2 with a topological

twist, flowing to a superconformal quantum mechanics. The topological twist is present due

to the magnetic charges of the black hole. To obtain the superconformal quantum mechanics

at the endpoint of the RG flow, we reduce the dual 3d field theory on S2 in the presence of the

topological twist 3. The resulting quantum mechanics has a Witten index that reproduces

the Bekenstein-Hawking entropy of the BPS black holes at large N , and we expect that

its near-BPS spectrum should coincide with the spectrum of near-BPS black holes. This

work [39] will be presented in Chapter 2.

2The theory has three adjoint chiral multiplets and a superpotential. It is essentially the 4d N = 4 SU(N)

super-Yang-Mills theory reduced to 3d and deformed by an N = 2 Chern-Simons term.
3The background is dual to the black-hole chemical potentials, or charges, depending on the ensemble.
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Chapter 1

Superconformal indices at large N and

the entropy of AdS5 × SE5 black holes

The family of AdS5 × S5 supersymmetric black holes found in [69–73] depends on three

charges Qa associated with the Cartan subgroup of the internal isometry SO(6), and two

angular momenta Ji in AdS5, subject to a non-linear constraint.1 The entropy can be written

as the value at the critical point (i.e., as a Legendre transform) of the function [76]

S(Xa, τ, σ) = −iπN2 X1X2X3

τ σ
− 2πi

(
3∑

a=1

XaQa + τJ1 + σJ2

)
(1.0.1)

with the constraint X1 + X2 + X3 − τ − σ = ±1, where N is the number of colors of the

dual 4d N = 4 SU(N) SYM theory. The same entropy function can also be obtained by

computing the zero-temperature limit of the on-shell action of a class of supersymmetric

but non-extremal complexified Euclidean black holes [43, 77]. The two constraints with ±
sign lead to the same value for the entropy, which is real precisely when the non-linear

constraint on the black hole charges is imposed. The parameters Xa, τ and σ are chemical

potentials for the conserved charges Qa and Ji and can also be identified with the parameters

the superconformal index depends on. With this identification, we expect that the entropy

S(Qa, J1, J2) is just the constrained Legendre transform of log I(Xa, τ, σ), where I(Xa, τ, σ)

is the superconformal index.

Up to the work we present in this thesis, the entropy of AdS5 × S5 Kerr-Newman black

holes has been derived from the superconformal index and shown to be in agreement with

(1.0.1) only in particular limits. In [44], the entropy was derived for large black holes (whose

size is much larger than the AdS radius) using a Cardy limit of the superconformal index

where Im(Xa), τ, σ � 1. In [45], the entropy was instead derived in the large N limit in

the case of black holes with equal angular momenta, J1 = J2.2 The large N limit has been

evaluated by writing the index as a sum over Bethe vacua [79], an approach that has been

successful for AdS black holes in many other contexts.

1Supersymmetric hairy black holes depending on all charges have been recently found in [74,75], but their

entropy seems to be parametrically smaller in the range of parameters where our considerations apply.
2The same result has been later reproduced with a different approach in [78].

5



One of the purposes of our work is to extend the derivation of [45] to the case of unequal

angular momenta, thus providing a large N microscopic counting of the microstates of BPS

Kerr-Newman black holes in AdS5×S5 for arbitrary values of the conserved charges. We will

make use of the Bethe Ansatz formulation of the superconformal index derived for τ = σ

in [80] and generalized to unequal angular chemical potentials in [79]. This formulation

allows us to write the index as a sum over the solutions to a set of Bethe Ansatz Equations

(BAEs) — whose explicit form and solutions have been studied in [45, 81–85] — and over

some auxiliary integer parameters mi. We expect that, in the large N limit, one particular

solution dominates the sum.3 We will show that the “basic solution” to the BAEs, already

used in [45], correctly reproduces the entropy of black holes in the form (1.0.1) for a choice of

integers mi. We stress that our result comes from a single contribution to the index, which is

an infinite sum. Such a contribution might not be the dominant one — and so our estimate

of the index might be incorrect — in some regions of the space of chemical potentials. It is

known from the analysis in [45] that when the charges become smaller than a given threshold,

new solutions take over and dominate the asymptotic behavior of the index. This suggests

the existence of a rich structure where other black holes might also contribute. However, we

conjecture and we will bring some evidence that the contribution of the basic solution is the

dominant one in the region of the space of chemical potentials corresponding to sufficiently

large charges.

We will also extend the large N computation of the index to a general class of supercon-

formal theories dual to AdS5×SE5, where SE5 is a five-dimensional Sasaki-Einstein manifold.

The analysis for J1 = J2 was already performed in [83]. For toric holographic quiver gauge

theories, we find a prediction for the entropy of black holes in AdS5×SE5 in the form of the

entropy function

S(Xa, τ, σ) = −iπN
2

6

D∑
a,b,c

Cabc
XaXbXc

τ σ
− 2πi

(
D∑
a=1

XaQa + τJ1 + σJ2

)
, (1.0.2)

with the constraint
∑D

a=1Xa − τ − σ = ±1, in terms of chemical potentials Xa for a basis

of independent R-symmetries Ra. The coefficients CabcN
2 = 1

4
TrRaRbRc are the ’t Hooft

anomaly coefficients for this basis of R-symmetries. The form of the entropy function (1.0.2)

was conjectured in [86] and reproduced for various toric models in the special case τ = σ

in [83]. We will give a general derivation, valid for all toric quivers and even more. We will

also show that both constraints in (1.0.2), which lead to the same value for the entropy,

naturally arise from the index in different regions of the space of chemical potentials. The

function (1.0.2) was also derived in the Cardy limit in [87].

3It is argued in [84] that there exist families of continuous solutions. This does not affect our argument

provided the corresponding contribution to the index is subleading.
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In the last subsection of the chapter we will provide some evidence that (1.0.2) cor-

rectly reproduces the entropy of black holes in AdS5× SE5. We first check that our formula

correctly reproduce the entropy of the universal black hole that arises as a solution in five-

dimensional minimal gauged supergravity, and, as such, can be embedded in any AdS5×SE5

compactification. It corresponds to a black hole with electric charges aligned with the exact

R-symmetry of the dual superconformal field theory and with arbitrary angular momenta

J1 and J2. Since the solution is universal, the computation can be reduced to that of N = 4

SYM and it is almost trivial. More interesting are black holes with general electric charges.

Unfortunately, to the best of our knowledge, there are no available such black hole solutions

in compactifications based on Sasaki-Einstein manifolds SE5 other than S5. To overcome

this obstacle, we will explicitly construct the near-horizon geometry of supersymmetric black

holes in AdS5×T 1,1 with equal angular momenta and charged under the baryonic symmetry

of the dual Klebanov-Witten theory [88]. Luckily, the background AdS5×T 1,1 admits a con-

sistent truncation to a five-dimensional gauged supergravity containing the massless gauge

field associated to the baryonic symmetry [89–91]. We then use the strategy suggested in [76]:

a rotating black hole in five dimensions with J1 = J2 can be dimensionally reduced along the

Hopf fiber of the horizon three-sphere to a static solution of four-dimensional N = 2 gauged

supergravity. We will explicitly solve the BPS equations [92–94] for the horizon of static

black holes with the appropriate electric and magnetic charges in N = 2 gauge supergravity

in four dimensions. The main complication is the presence of hypermultiplets. By solving

the hyperino equations at the horizon, we will be able to recast all other supersymmetric

conditions as a set of attractor equations, and we will show that these are equivalent to

the extremization of (1.0.2) for the Klebanov-Witten theory with τ = σ. This provides a

highly non-trivial check of our result, and the conjecture that the basic solution to the BAEs

dominates the index.

This chapter is organized as follows. In Section 1.1 we review the setting introduced

in [45] and we evaluate the large N contribution of the “basic solution” to the BAEs to the

index for generic angular fugacities. We show that it correctly captures the semiclassical

Bekenstein-Hawking entropy of BPS black holes in AdS5 × S5. In Section 1.2 we discuss

the generalization of this result to general toric quiver theories and find agreement with the

entropy function prediction (1.0.2) in certain corners of the space of chemical potentials.

In Section 1.3 we discuss the particular case of the universal black hole, which can be

embedded in all string and M-theory supersymmetric compactifications with an AdS5 factor.

In Section 1.4 we match formula (1.0.2) with the entropy of a supersymmetric black hole in

AdS5 × T 1,1, whose near-horizon geometry we explicitly construct. Technical computations

as well as some review material can be found in Appendices A to E.
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1.1 The index of N = 4 SYM at large N

We are interested in evaluating the large N limit of the superconformal index of 4d N = 1

holographic theories. We will consider in this section the simplest example, namely N = 4

SU(N) SYM. The superconformal index counts (with sign) the 1/16 BPS states of the theory

on R× S3 that preserve one complex supercharge Q. These states are characterized by two

angular momenta J1,2 on S3 and three R-charges for U(1)3 ⊂ SO(6)R. We write N = 4

SYM in N = 1 notation in terms of a vector multiplet and three chiral multiplets ΦI and

introduce a symmetric basis of R-symmetry generators R1,2,3 such that RI assigns R-charge

2 to ΦI and zero to ΦJ with J 6= I. The index is defined by the trace [40,41]

I(p, q, v1, v2) = Tr (−1)F e−β{Q,Q
†} pJ1+ r

2 qJ2+ r
2 vq11 vq22 , (1.1.1)

in terms of two flavor generators q1,2 = 1
2
(R1,2 −R3) commuting with Q, and the R-charge

r = 1
3
(R1 + R2 + R3). Notice that (−1)F = e2πiJ1,2 = eiπR1,2,3 . Here p, q, vI with I = 1, 2

are complex fugacities associated to the various quantum numbers, while the corresponding

chemical potentials τ, σ, ξI are defined by

p = e2πiτ , q = e2πiσ , vI = e2πiξI . (1.1.2)

The index is well-defined for |p|, |q| < 1.

It is convenient to redefine the flavor chemical potentials in terms of

∆I = ξI +
τ + σ

3
for I = 1, 2 . (1.1.3)

It is also convenient to introduce an auxiliary chemical potential ∆3 such that

τ + σ −∆1 −∆2 −∆3 ∈ 2Z + 1 , (1.1.4)

and use the corresponding fugacities

yI = e2πi∆I . (1.1.5)

The index then takes the more transparent form

I = TrBPS p
J1 qJ2 y

R1/2
1 y

R2/2
2 y

R3/2
3 . (1.1.6)

It shows that the constrained fugacities p, q, yI with I = 1, 2, 3 are associated to the angular

momenta J1,2 and the charges QI ≡ 1
2
RI .

Our starting point is the so-called Bethe Ansatz formulation of the superconformal index

[79, 80]. The special case that the two angular chemical potentials are equal, τ = σ, was

already studied in [45] (see also [84]). Here we take them unequal. The formula of [79] can
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be applied when the ratio between the two angular chemical potentials is a rational number.4

We thus set

τ = aω , σ = bω with Imω > 0 (1.1.7)

and with a, b ∈ N coprime positive integers. We call H = {ω | Imω > 0} the upper half-

plane. We then have the fugacities

h = e2πiω , p = ha = e2πiτ , q = hb = e2πiσ with |h|, |p|, |q| < 1 . (1.1.8)

The formula in [79] allows us to write the superconformal index as a sum over the solutions

to a set of Bethe Ansatz Equations (BAEs). Explicitly, the index reads

I = κN
∑

û∈BAE

ZtotH
−1
∣∣∣
û
. (1.1.9)

The expressions of κN , H and Ztot for a generic N = 1 theory are given in [79]. Here, we

specialize them to N = 4 SU(N) SYM. The quantity

κN =
1

N !

(
(p; p)∞ (q; q)∞ Γ̃(∆1; τ, σ) Γ̃(∆2; τ, σ)

Γ̃(∆1 + ∆2; τ, σ)

)N−1

(1.1.10)

is a prefactor written in terms of the elliptic gamma function Γ̃ and the Pochhammer symbol:

Γ̃(u; τ, σ) ≡ Γ(z; p, q) =
∞∏

m,n=0

1− pm+1qn+1/z

1− pmqnz
, (z; q)∞ =

∞∏
n=0

(1− zqn) , (1.1.11)

where z = e2πiu. The sum in (1.1.9) is over the solution set to the following BAEs:5

1 = Qi(u; ∆, ω) ≡ e2πi(λ+3
∑
j uij)

N∏
j=1

θ0

(
uji + ∆1;ω

)
θ0

(
uji + ∆2;ω

)
θ0

(
uji −∆1 −∆2;ω

)
θ0

(
uij + ∆1;ω

)
θ0

(
uij + ∆2;ω

)
θ0

(
uij −∆1 −∆2;ω

)
(1.1.12)

written in terms of uij = ui − uj with i, j = 1, . . . , N and the theta function

θ0(u;ω) = (z;h)∞(h/z;h)∞ . (1.1.13)

The unknowns are the “complexified SU(N) holonomies”, which are expressed here in terms

of U(N) holonomies ui further constrained by

N∑
i=1

ui = 0 (mod Z) , (1.1.14)

4This might sound like a strong limitation. However, the index (1.1.6) is invariant under integer shifts of

τ and σ compatible with (1.1.4). As proven in [79], the set of complex number pairs {τ, σ} ∈ H2 (two copies

of the upper half-plane) whose ratio becomes a (real) rational number after some integer shifts of τ and σ,

is dense in H2. Thus, by continuity, the formula of [79] fixes the large N limit of the superconformal index

for generic complex chemical potentials.
5The Bethe operators Qi should not be confused with the charges QI introduced before.
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as well as a “Lagrange multiplier” λ. The SU(N) holonomies are to be identified with the first

N−1 variables ui=1,...,N−1. As unknowns in the BAEs, they are subject to the identifications

ui ∼ ui + 1 ∼ ui + ω , (1.1.15)

meaning that each one of them naturally lives on a torus of modular parameter ω. Instead,

the last holonomy uN is determined by the constraint (1.1.14). The relation between SU(N)

and U(N) holonomies will be further clarified in Appendix A.2. The prescription in (1.1.9) is

to sum over all the inequivalent solutions on the torus [79]. The function H is the Jacobian

H = det

[
1

2πi

∂(Q1, . . . , QN)

∂(u1, . . . , uN−1, λ)

]
. (1.1.16)

Finally, the function Ztot is the following sum over a set of integers mi = 1, . . . , ab:

Ztot =
ab∑

{mi}=1

Z
(
u−mω; τ, σ

)
, (1.1.17)

where Z, for N = 4 SU(N) SYM, reads

Z =
N∏

i,j=1
i 6=j

Γ̃(uij + ∆1; τ, σ) Γ̃(uij + ∆2; τ, σ)

Γ̃(uij + ∆1 + ∆2; τ, σ) Γ̃(uij; τ, σ)
. (1.1.18)

The sum in (1.1.17) freely varies over the first N − 1 integers mi=1,...,N−1 as indicated, while

mN is determined by the constraint

N∑
i=1

mi = 0 . (1.1.19)

More details can be found in [45,79]. In the following, when a double sum starts from 1 we

will leave it implicit.

1.1.1 The building block

We will show that one particular contribution to the sums in (1.1.9) and (1.1.17) alone

reproduces the entropy function of [76] and therefore it captures the Bekenstein-Hawking

entropy of BPS black holes in AdS5×S5. To that aim, we are interested in the contribution

from the so-called “basic solution” to the BAEs [45,81,82], namely

ui =
N − i
N

ω + u , uij ≡ ui − uj =
j − i
N

ω , λ =
N − 1

2
. (1.1.20)

Here u is fixed by enforcing the constraint (1.1.14). We also consider the contribution from

a particular choice for the integers {mj}:

mj ∈ {1, . . . , ab} such that mj = j mod ab . (1.1.21)
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Note that this choice for {mj} does not satisfy the constraint (1.1.19). Nevertheless, we

show in Appendix A.2 that this does not affect the contribution to leading order in N , in

the sense that changing the single entry mN has a subleading effect.

Now, the crucial technical point is to evaluate the following basic building block:

Ψ =
N∑
i 6=j

log Γ̃

(
∆ + ω

j − i
N

+ ω
(
mj −mi

)
; aω, bω

)
(1.1.22)

for N → ∞. Here ∆ plays the role of an electric chemical potential. In order to simplify

the discussion, we assume that N is a multiple of ab, i.e., we take N = abÑ . As we show

in Appendix A.3 this assumption can be removed without affecting the leading behavior at

large N .

We make use of the following identity [95]:

Γ̃(u; τ, σ) =
a−1∏
r=0

b−1∏
s=0

Γ̃
(
u+

(
rτ + sσ

)
; aτ, bσ

)
(1.1.23)

for any τ, σ ∈ H and any a, b ∈ N. This is immediate to prove exploiting the infinite product

expression of Γ̃. Now, exchanging a↔ b and r ↔ s in the formula, and then setting τ → aω,

σ → bω, we obtain the formula of [96]:

Γ̃(u; aω, bω) =
a−1∏
r=0

b−1∏
s=0

Γ̃
(
u+

(
as+ br

)
ω; abω, abω

)
. (1.1.24)

Going back to Ψ, we can thus write

Ψ =
a−1∑
r=0

b−1∑
s=0

N∑
i 6=j

log Γ̃

(
∆ + ω

j − i
N

+ ω
(
mj −mi + as+ br

)
; abω, abω

)
. (1.1.25)

Let us set i = γab+ c, j = δab+ d with γ, δ = 0, . . . , Ñ − 1 and c, d = 1, . . . , ab. Then

Ψ =
a−1∑
r=0

b−1∑
s=0

Ñ−1∑
γ,δ=0

ab∑
c,d=1︸ ︷︷ ︸

s.t. i 6=j

log Γ̃

(
∆ + ω

δ − γ
Ñ

+ ω
d− c
N

+ ω
(
d− c+ as+ br

)
; abω, abω

)
.

(1.1.26)

We will now perform two simplifications, and prove in Appendix A.1 that their effect is of

subleading order at large N . More precisely, Ψ is of order N2 while the two simplifications

modify it at most at order N if Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
, or at most at order N logN if

∆ = 0. First, we substitute the condition i 6= j with the condition γ 6= δ in the summation.

Second and more importantly, we drop the term ω(d − c)/N in the argument. We then
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redefine c→ ab− c, d→ d+ 1, γ → γ − 1, δ → δ − 1 and obtain

Ψ '
a−1∑
r=0

b−1∑
s=0

Ñ∑
γ 6=δ

ab−1∑
c,d=0

log Γ̃

(
∆ + ω

δ − γ
Ñ

+ ω
(
d+ c+ 1− ab+ as+ br

)
; abω, abω

)
(1.1.27)

where ' means equality at leading order in N . At this point we can resum over c, d using

(1.1.23) (with τ, σ → ω and a, b→ ab):

Ψ '
a−1∑
r=0

b−1∑
s=0

Ñ∑
γ 6=δ

log Γ̃

(
∆ + ω

δ − γ
Ñ

+ ω
(
1− ab+ as+ br

)
;ω, ω

)
. (1.1.28)

We recall the large N limit computed in [45]:

N∑
i 6=j

log Γ̃

(
∆ + ω

j − i
N

;ω, ω

)
= −πiN2 B3

(
[∆]′ω − ω

)
3ω2

+O(N) (1.1.29)

valid for Im
(
∆/ω

)
6∈ Z× Im

(
1/ω

)
. Here B3(x) is a Bernoulli polynomial:

B3(x) = x
(
x− 1

2

)(
x− 1

)
. (1.1.30)

It has the property that B3(1− x) = −B3(x). The function [∆]′ω was defined in [45] in the

following way:

[∆]′ω =

{
z

∣∣∣∣ z = ∆ mod 1 , 0 > Im
( z
ω

)
> Im

( 1

ω

)}
. (1.1.31)

This function is only defined for Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
, it is continuous in each open

connected domain, and it is periodic by construction under ∆→ ∆ + 1. In the following we

will also use the function [∆]ω = [∆]′ω − 1,

[∆]ω =

{
z

∣∣∣∣ z = ∆ mod 1 , Im
(
− 1

ω

)
> Im

( z
ω

)
> 0

}
. (1.1.32)

The functions [∆]ω and [∆]′ω are the mod 1 reductions of ∆ to the fundamental strips shown

in Figure 1.1. Then we use the following formula:

1

ab

a−1∑
r=0

b−1∑
s=0

B3

(
x+ ω(as+ br − ab)

)
=

= B3

(
x− a+ b

2
ω

)
+

2a2b2 − a2 − b2

4
ω2B1

(
x− a+ b

2
ω

)
, (1.1.33)

where B1(x) = x− 1
2

is another Bernoulli polynomial — and B1(1− x) = −B1(x). Thus

Ψ = −πiN2
B3

(
[∆]′ω − τ+σ

2

)
3τσ

− πiN2

12

(
2ab− a

b
− b

a

)
B1

(
[∆]′ω − τ+σ

2

)
+O(N) (1.1.34)
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0

ω

−1

1

ω − 1

ω + 1

Figure 1.1: Fundamental strips for [∆]ω and [∆]′ω. The function [∆]ω is the restriction of ∆

mod 1 to the region Im(−1/ω) > Im(∆/ω) > 0 (in yellow, on the left), while [∆]′ω is the

restriction of ∆ mod 1 to the region 0 > Im(∆/ω) > Im(1/ω) (in blue, on the right).

for Im
(
∆/ω

)
6∈ Z × Im

(
1/ω

)
. As a check, notice that

[
τ + σ − ∆

]′
ω

= τ + σ + 1 − [∆]′ω.

From the properties of B1,3(x) noticed above, it follows

Ψ(τ + σ −∆) = −Ψ(∆) (1.1.35)

at leading order in N . This is in accordance with the inversion formula of the elliptic gamma

function:

Γ̃(u; τ, σ) = 1/Γ̃(τ + σ − u; τ, σ) . (1.1.36)

The case ∆ = 0 requires some care, because [0]ω is undefined. Taking the limit of Ψ as

∆→ 0 from the left or the right, one obtains two values that differ by an imaginary quantity.

The limit from the right corresponds to taking [∆]′ω → 0 in (1.1.34), while the limit from

the left corresponds to [∆]ω → 0 (i.e., [∆]′ω → 1). The difference is

Ψ
∣∣∣
[∆]′ω→0

−Ψ
∣∣∣
[∆]ω→0

=
iπN2

6

(
3 + ab+

a

b
+
b

a

)
. (1.1.37)

Since Ψ is in any case ambiguous by shifts of 2πi because it is a logarithm, only the remainder

modulo 2πi is meaningful but this is an order 1 quantity which can be neglected. In fact

it turns out that, with N = abÑ , the quantity on the right-hand-side of (1.1.37) is always

an integer multiple of iπÑ , and so its exponential is a sign. We should also notice that, for

∆ = 0, our approximation gets corrections at order N logN .

1.1.2 The index and the entropy function

We are now ready to put all the ingredients together. Our working assumption is that, in the

large N limit, the index (1.1.9) is dominated by the basic solution (1.1.20) and the choice of

integers (1.1.21). Some evidence that the basic solution dominates the index for τ = σ has

been given in [45] (see also [84]).

The leading contribution to (1.1.9) originates from Ztot that can be evaluated using

(1.1.34). Indeed, the term κN is manifestly sub-leading. That the contribution of H is also

13



subleading follows from the analysis in [45] for τ = σ, since H only depends on the solutions

to the BAEs and not explicitly on τ and σ. The large N limit of the index at leading order

is then

log I = Ψ(∆1) + Ψ(∆2)−Ψ(∆1 + ∆2)−Ψ(0) , (1.1.38)

where the definition of the last term has an ambiguity of order 1.

Recall that in (1.1.4) we introduced the auxiliary chemical potential ∆3. Notice in par-

ticular that the chemical potentials are defined modulo 1. Using the basic properties

[∆ + 1]ω = [∆]ω , [∆ + ω]ω = [∆]ω + ω , [−∆]ω = −[∆]ω − 1 , (1.1.39)

we find

[∆3]ω = τ + σ − 1− [∆1 + ∆2]ω . (1.1.40)

It follows from the definition of the function [∆]ω that [∆1 + ∆2]ω = [∆1]ω + [∆2]ω +n where

n = 0 or n = 1. The result then breaks into two cases.

If [∆1 + ∆2]ω = [∆1]ω + [∆2]ω then

[∆1]ω + [∆2]ω + [∆3]ω − τ − σ = −1 , (1.1.41)

and, using (1.1.38) and (1.1.34),

log I = −πiN2 [∆1]ω [∆2]ω
(
τ + σ − 1− [∆1]ω − [∆2]ω

)
τ σ

= −iπN2 [∆1]ω [∆2]ω [∆3]ω
τ σ

.

(1.1.42)

To obtain this formula we used Ψ(0) = Ψ
∣∣
[∆]ω→0

. Notice that the contributions from B1

cancel out. As we will see in Section 1.2, this is a consequence of the relation a = c among

the two four-dimensional central charges in the large N limit.

If [∆1 + ∆2]ω = [∆1]ω + [∆2]ω + 1, namely [∆1 + ∆2]′ω = [∆1]′ω + [∆2]′ω, then

[∆1]′ω + [∆2]′ω + [∆3]′ω − τ − σ = 1 , (1.1.43)

and

log I = −πiN2 [∆1]′ω [∆2]′ω
(
τ + σ + 1− [∆1]′ω − [∆2]′ω

)
τ σ

= −iπN2 [∆1]′ω [∆2]′ω [∆3]′ω
τ σ

.

(1.1.44)

This time we used Ψ(0) = Ψ
∣∣
[∆]′ω→0

.

As in [45], we can extract the entropy of the dual black holes by taking the Legendre

transform of the logarithm of the index. The precise identification of the charges associated
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with the chemical potentials follows from (1.1.6). The prediction for the entropy can then

be combined into two constrained entropy functions

S±(XI , τ, σ,Λ) = −iπN2 X1X2X3

τ σ
− 2πi

(
3∑
I=1

XIQI + τJ1 + σJ2

)

− 2πiΛ

(
X1 +X2 +X3 − τ − σ ± 1

)
, (1.1.45)

where we used a neutral variableXI to denote either [∆I ]ω or [∆I ]
′
ω, we introduced a Lagrange

multiplier Λ to enforce the constraint, and we recall that QI = 1
2
RI . This completes our

derivation of the entropy of supersymmetric black holes in AdS5 × S5 for general angular

momenta and electric charges. The expression (1.1.45) represents indeed the two entropy

functions derived in [76], where it was shown that the (constrained) extremization of (1.1.45)

reproduces the entropy of a black hole of angular momenta J1 and J2 and charges QI . The

two results correspond to the two entropy functions that reproduce the same black hole

entropy, and are associated to two Euclidean complex solutions that regularize the black

hole horizon [43].

1.2 The index of quiver theories with a holographic

dual

We want to generalize the large N computation of the superconformal index to theories

dual to AdS5× SE5 compactifications, where SE5 is a five-dimensional Sasaki-Einstein man-

ifold. We can write general formulæ with very few assumptions. We consider 4d N = 1

theories with SU(N) gauge groups as well as adjoint and bi-fundamental chiral multiplet

fields. To cancel gauge anomalies, the total number of fields transforming in the fundamen-

tal representation of a group must be the same as the number of anti-fundamentals. We also

require equality of the conformal central charges c = a in the large N limit, as dictated by

holography. Our analysis extends the results found in [83] for equal angular momenta.

We then assume that in the large N limit, as for N = 4 SYM, the leading contribution

to the superconformal index comes from the basic solution and the choice of integers {mi}
discussed in (1.1.21). As already shown in [83,85], the basic solution to the BAEs for N = 4

SYM [45,81,82] can easily be extended to quiver gauge theories by setting

uαβij ≡ uαi − u
β
j =

j − i
N

ω α, β = 1, . . . , G , (1.2.1)

where α, β run over the various gauge groups in the theory and G is the number of gauge

groups. Similarly, we choose the integers

mα
j ∈ {1, . . . , ab} such that mα

j = j mod ab . (1.2.2)
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Notice in particular that neither uαβij nor mα
j depend on α, β. As for N = 4 SYM, the

contribution of the determinant H to the Bethe Ansatz expansion (1.1.9) is subleading [83].

Using the general expressions given in [79] and following the logic of Section 1.1, it is

easy to write the large N limit of the leading contribution to the superconformal index of a

holographic theory, with adjoint and bi-fundamental chiral fields. We find

log I =
N∑
i 6=j

[∑
Iαβ

log Γ̃
(
uαβij −ω

(
mα
i −m

β
j

)
+∆Iαβ ; τ, σ

)
−

G∑
α=1

log Γ̃
(
uααij −ω

(
mα
i −m

β
j

)
; τ, σ

)]
(1.2.3)

where zαi = e2πiuαi are the gauge fugacities, uαi represent the basic solution (1.2.1) and mα
i

are given in (1.2.2). The sum over Iαβ is over all adjoint (if α = β) and bi-fundamental

(if α 6= β) chiral multiplets in the theory. The second sum is the contribution of vector

multiplets. When no confusion is possible, we will keep the gauge group indices implicit and

just write ∆Iαβ ≡ ∆I . In the previous formula,

∆I = ξI + rI
τ + σ

2
, (1.2.4)

where rI is the exact R-charge of the field and ξI are the flavor chemical potentials. The

R-charges satisfy ∑
I∈W

rI = 2 (1.2.5)

for each superpotential term W in the Lagrangian. In this notation, the index W runs over

the monomials in the superpotential, while I ∈ W indicates all chiral fields appearing in a

given monomial. Using that each superpotential term must be invariant under the flavor

symmetries, but chemical potentials are only defined up to integers, we also require∑
I∈W

ξI = nW for some nW ∈ Z . (1.2.6)

The values nW ≡ n0 = ±1 have been used in [97, 98] to study the Cardy limit. As a

consequence of the previous formulæ, for each superpotential term we have∑
I∈W

∆I = τ + σ + nW . (1.2.7)

Hence, we stress that the chemical potentials ∆I are not independent. Notice that the

expression (1.2.3) correctly reduces to the one for N = 4 SYM, Eqn. (1.1.18), once we use

the definition (1.1.4) as well as the inversion formula for the elliptic gamma function (1.1.36).

We also need to use the exact R-charges rI = 2/3 of the chiral fields ΦI .
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Applying (1.1.34), we can evaluate the large N limit of (1.2.3) and obtain

log I ' −πiN
2

3τσ

∑
I

[
B3

(
[∆I ]ω + 1− τ+σ

2

)
+
τσ

4

(
2ab− a

b
− b

a

)
B1

(
[∆I ]ω + 1− τ+σ

2

)]
+
πiGN2

3τσ

[
B3

(
1− τ+σ

2

)
+
τσ

4

(
2ab− a

b
− b

a

)
B1

(
1− τ+σ

2

)]
. (1.2.8)

The corrections are of order N logN or smaller. The formula is obtained by summing

(1.1.34) for each chiral multiplet, as well as (1.1.34) with [∆]ω → 0 (and opposite sign) for

each vector multiplet. We stress that (1.2.8) comes from a single contribution — in the Bethe

Ansatz expansion — to the index. Such a contribution might not be the dominant one, and

so our estimate of the index might be incorrect, in some regions of the space of chemical

potentials. However, we conjecture and we will bring some evidence that this contribution

always captures the semiclassical Bekenstein-Hawking entropy of BPS black holes.

Due to the presence of the brackets [∆I ]ω, the expression (1.2.8) assumes different analytic

forms in different regions of the space of chemical potentials ∆I . There are two regions where

the expression greatly simplifies. They correspond to the natural generalization of the two

regions for N = 4 SYM discussed in Section 1.1.2 and are expected to lead to the correct

black hole entropy. In particular, they smoothly reduce to the results obtained in the Cardy

limit [87,97,98] and match the previous analysis done for equal angular momenta [83]. The

first region corresponds to chemical potentials ∆I satisfying∑
I∈W

[∆I ]ω = τ + σ − 1 . (1.2.9)

As we will discuss later, many models — in particular all toric ones — exhibit a corner in

the space of chemical potentials where this constraint is satisfied. We can define the rescaled

variables

∆̂I = 2
[∆I ]ω

τ + σ − 1
(1.2.10)

which, under the assumption (1.2.9), satisfy∑
I∈W

∆̂I = 2 (1.2.11)

and can be interpreted as an assignment of R-charges to the chiral fields in the theory. In

terms of ∆̂I the contributions in (1.2.8) combine into

log I ' −πiN
2

24

(τ + σ − 1)3

τσ

[∑
I

(
∆̂I − 1

)3
+G

]
(1.2.12)

+
πiN2

24

(τ + σ − 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))[∑
I

(
∆̂I − 1

)
+G

]
.
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Introducing the charge operator R(∆̂) of R-charges parametrized by ∆̂I and indicating with

Tr the sum over all fermions in the theory, we can also write

log I ' −πi
24

[
(τ + σ − 1)3

τσ
TrR(∆̂)3 − (τ + σ − 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))
TrR(∆̂)

]
,

(1.2.13)

valid at leading order in N .

In the large N limit, theories with a holographic dual satisfy c = a. Using standard

formulæ for the central charges a and c in terms of the fermion R-charges [99], one finds

TrR = O(1) and a = 9
32

TrR3 +O(1) from which we obtain the final expression

log I ' −4πi

27

(τ + σ − 1)3

τσ
a(∆̂) , (1.2.14)

where

a =
9

32
N2

(∑
I

(
∆̂I − 1

)3
+G

)
(1.2.15)

at leading order in N . The result (1.2.14) was conjectured in [86] — see Eqn. (A.7). It is

also compatible with the Cardy limit performed in [97,98].

We can find an analogous result in a second region of chemical potentials where∑
I∈W

[∆I ]
′
ω = τ + σ + 1 , (1.2.16)

written in terms of the primed bracket [∆]′ω = [∆]ω+1. As discussed at the end of Section 1.1,

the contribution of vector multiplets can be written, up to subleading terms, as minus the

contribution of a chiral multiplet with [∆I ]
′
ω → 0. After defining another set of normalised

R-charges,

∆̂′I = 2
[∆I ]

′
ω

τ + σ + 1
(1.2.17)

which satisfy ∑
I∈W

∆̂′I = 2 (1.2.18)

under the assumption (1.2.16), we can rewrite the index as

log I ' −πi
24

[
(τ + σ + 1)3

τσ
TrR(∆̂′)3 − (τ + σ + 1)

τσ

(
1− τσ

(
2ab− a

b
− b

a

))
TrR(∆̂′)

]
(1.2.19)

at leading order in N . This reduces to the simple expression

log I ' −4πi

27

(τ + σ + 1)3

τσ
a(∆̂′) (1.2.20)

for holographic theories.
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Field r QF1 QF2 QB R1 R2 R3 R4

A1
1
2

1 0 1 2 0 0 0

A2
1
2
−1 0 1 0 2 0 0

B1
1
2

0 1 −1 0 0 2 0

B2
1
2

0 −1 −1 0 0 0 2

Table 1.1: Charges of chiral multiplets in the Klebanov-Witten theory, under the maximal

torus of the global symmetry U(1)R×SU(2)F1 ×SU(2)F2 ×U(1)B. In the table we indicate

two useful basis. Notice that r and RI are R-charges, while QF1,2 and QB are flavor charges.

In the remainder of this section we will interpret the general results (1.2.14) and (1.2.20)

and provide examples. In particular, we will show that both regions (1.2.9) and (1.2.16)

in the space of chemical potentials always exist in toric quiver gauge theories. We will

also see that the two expressions (1.2.14) and (1.2.20) lead to the very same result for the

semiclassical entropy of dual black holes, generalizing what happens for N = 4 SYM.

1.2.1 Example: the conifold

We start with the example of the Klebanov-Witten theory dual to AdS5 × T 1,1, the near-

horizon limit of a set of N D3-branes sitting at a conifold singularity [88]. This example was

already studied for equal angular momenta in [83] and our results are consistent with those

found there when we set τ = σ.

The theory has gauge group SU(N) × SU(N), bi-fundamental chiral multiplets A1, A2

transforming in the representation (N,N) and B1, B2 transforming in the representation

(N,N), and a superpotential

W = Tr
(
A1B1A2B2 − A1B2A2B1

)
. (1.2.21)

The global symmetry of the theory is U(1)R × SU(2)F1 × SU(2)F2 × U(1)B, where the first

factor is the superconformal R-symmetry with charge r, while the other three factors are

flavor symmetries. The charge assignments of chiral multiplets under the maximal torus are

in Table 1.1. The index is defined as

I = Tr (−1)F e−β{Q,Q
†} pJ1+r/2 qJ2+r/2 v

QF1
F1

v
QF2
F2

vQBB . (1.2.22)

It is convenient to introduce an alternative basis of R-charges RI with I = 1, 2, 3, 4, such

that each of them assigns R-charge 2 to one of the chiral multiplets and zero to the other

ones. Correspondingly, we associate a variable ∆I to each chiral multiplet. Notice that
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(−1)F = e2πiJ1,2 = eπiR1,2,3,4 . According to (1.2.4) and up to integer ambiguities, the variables

∆I are related to the chemical potentials for the charges in Table 1.1 by

∆1 = ξF1 + ξB +
τ + σ

4
, ∆3 = ξF2 − ξB +

τ + σ

4
,

∆2 = −ξF1 + ξB +
τ + σ

4
, ∆4 = −ξF2 − ξB +

τ + σ

4
+ (2Z + 1) .

(1.2.23)

Then, the constraint (1.2.7) reads

∆1 + ∆2 + ∆3 + ∆4 = τ + σ + nW (1.2.24)

and the index takes the more transparent form

I = TrBPS p
J1 qJ2 y

R1/2
1 y

R2/2
2 y

R3/2
3 y

R4/2
4 . (1.2.25)

This shows that ∆I are the chemical potentials associated to the charges QI ≡ RI/2.

We select three independent variables, say ∆1,∆2 and ∆3. Then, using (1.1.39) we find

that

[∆4]ω = τ + σ − 1− [∆1 + ∆2 + ∆3]ω . (1.2.26)

In general there are three possible cases:

[∆1 + ∆2 + ∆3]ω = [∆1]ω + [∆2]ω + [∆3]ω + n with n = 0, 1, 2 (1.2.27)

that we call Case I, II and III, respectively.6

Case I corresponds to the corner of moduli space (1.2.9) where

[∆1]ω + [∆2]ω + [∆3]ω + [∆4]ω = τ + σ − 1 . (1.2.28)

In this corner, we can use (1.2.14). One can explicitly compute, at leading order in N ,

TrR(∆̂)3 = N2

(
2 +

4∑
I=1

(
∆̂I − 1

)3
)

= 3N2
(

∆̂1∆̂2∆̂3 + ∆̂1∆̂2∆̂4 + ∆̂1∆̂3∆̂4 + ∆̂2∆̂3∆̂4

)
(1.2.29)

imposing
∑4

I=1 ∆̂I = 2. Using (1.2.10), we can write the index (1.2.14) as

log I ' −πiN
2

τσ

(
[∆1]ω[∆2]ω[∆3]ω + [∆1]ω[∆2]ω[∆4]ω + [∆1]ω[∆3]ω[∆4]ω + [∆2]ω[∆3]ω[∆4]ω

)
(1.2.30)

with the constraint (1.2.28).7

6For the sake of comparison, the notation is the same as in [83].
7For toric models, discussed in detail in Section 1.2.2, we can compute the index using formula (1.2.52).

The ’t Hooft coefficients are expressed in terms of toric data as Cabc =
∣∣det{va, vb, vc}

∣∣, where va are the

integer vectors defining the toric fan [100]. For the conifold: v1 = (1, 0, 0), v2 = (1, 1, 0), v3 = (1, 1, 1) , v4 =

(1, 0, 1) and thus C123 = C124 = C134 = C234 = 1 (and symmetrizations), recovering the expression above.
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Case III corresponds to the corner of moduli space (1.2.16). Indeed

[∆1]′ω + [∆2]′ω + [∆3]′ω + [∆4]′ω = τ + σ + 1 . (1.2.31)

In this corner, we can use (1.2.20) and (1.2.17) and find

log I ' −πiN
2

τσ

(
[∆1]′ω[∆2]′ω[∆3]′ω + [∆1]′ω[∆2]′ω[∆4]′ω + [∆1]′ω[∆3]′ω[∆4]′ω + [∆2]′ω[∆3]′ω[∆4]′ω

)
(1.2.32)

with the constraint (1.2.31).

The entropy, which is the logarithm of the number of states, is given by the Legendre

transform of the index, i.e., by the critical value of the entropy function

S = −πiN
2

τσ

(
X1X2X3 +X1X2X4 +X1X3X4 +X2X3X4

)
− 2πi

(
τJ1 + σJ2 +

4∑
I=1

XIQI

)
− 2πiΛ

( 4∑
I=1

XI − τ − σ ± 1

)
.

(1.2.33)

Here the variables XI stand for [∆I ]ω or [∆I ]
′
ω depending on whether we are in case I or III,

respectively, and the ± sign is chosen accordingly. One can check that the two signs lead to

the same entropy. We will give a general argument in Section 1.2.3.

In Section 1.4 we will compare the field theory result (1.2.33) with the entropy of black

holes in AdS5 × T 1,1, in the special case that J1 = J2 ≡ J and the SU(2)F1 × SU(2)F2

symmetry is unbroken. To that purpose, let us specialize the index to the case that τ = σ

and ξF1 = ξF2 = 0, which corresponds to X1 = X2 and X3 = X4. It is then useful to define

the new variables

XR = X1 +X3 , XB =
X1 −X3

2
, (1.2.34)

associated to R-symmetry and baryonic symmetry, respectively. The entropy function takes

the simplified form

S = −πiN
2

2τ 2
XR

(
X2
R− 4X2

B

)
− 2πi

(
2τJ +XR r+XBQB

)
− 2πiΛ

(
2XR− 2τ ± 1

)
. (1.2.35)

1.2.2 Example: toric models

In this section we consider the gauge theory dual to an AdS5 × SE5 geometry, where SE5 is

a toric Sasaki-Einstein manifold. The theory lives on a stack of N D3-branes sitting at the

toric Calabi-Yau singularity C(SE5) obtained by taking the cone over SE5 [88, 101]. There

is a general construction to extract gauge theory data from the geometry of the Calabi-

Yau singularity [102–105]. The main complication compared to the C3 and the conifold

cases is that there is no one-to-one correspondence between bi-fundamental fields ΦI (and
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associated variables ∆I) and R-symmetries Ra. However, we will argue in general that there

always exist two corners of the space of chemical potentials where (1.2.9) and (1.2.16) are

satisfied and the results (1.2.14) and (1.2.20) are valid. There are also other corners that

should be analyzed separately for every specific model. Our findings are consistent with the

case-by-case analysis performed in [83] for equal angular momenta.

We first need to understand how to write the trial central charges a(∆̂) and a(∆̂′) that

enter in the expressions (1.2.14) and (1.2.20). Since the quantities ∆̂I and ∆̂′I satisfy the

constraints (1.2.11), they can be interpreted as a set of trial R-charges for the chiral fields in

the quiver. In the toric case, we can find an efficient parametrization of the trial R-charges

of fields using the data of the toric diagram. Let us review how this is done.

A toric Calabi-Yau threefold singularity can be specified by a fan, i.e., a convex cone in

R3 defined by D integer vectors va = (1, ~va) lying on a plane. The restrictions ~va of those

vectors to the plane define a regular convex polygon with integer vertices called the toric

diagram. In the list {va} we should include all integer vectors such that ~va is along the

perimeter of the polygon, i.e., we should include all integer points along the edges of the

toric diagram. Moreover, we take the points ~va to be ordered in a counterclockwise fashion.

The number of vectors in the fan is associated with the total rank of the global symmetry

of the dual field theory [104]: for a toric model with D vectors in the fan (including integer

points along the edges of the toric diagram) there is a flavor symmetry of rank D−1, besides

the R-symmetry U(1)R.8 This allows us to parametrize flavor and R-symmetries in terms

of variables associated with the vertices of (and integer points along) the toric diagram. In

particular, the possible R-charges of fields in a toric theory can be parametrized using D

variables δa satisfying the constraint

D∑
a=1

δa = 2 , (1.2.36)

and the corresponding R-charge can be written as

R(δ) =
D∑
a=1

δa
2
Ra (1.2.37)

in terms of a basis {Ra}. This is done as follows [106]. In a minimal toric phase,9 the

theory contains a number G of gauge group factors SU(N) equal to twice the area of the

8The distinction between R- and flavor symmetries changes in the case of extended supersymmetry.
9There are many different quiver theories that describe the same IR SCFT. They are called “phases”, and

are related by Seiberg dualities. The toric phases are the quiver theories where all gauge groups are SU(N)

with the same rank N . It turns out that all toric phases have the same number G of gauge groups, but

have different matter content. The “minimal” phases correspond to the quivers with the smallest number of

chiral fields. There could be one or more minimal toric phases, for a given IR SCFT.
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toric diagram. Moreover, defining the vectors ~wa = ~va+1 − ~va lying in the plane (we identify

indices modulo D, so that, for example, ~vD+1 ≡ ~v1), for each pair (a, b) such that ~wa can

be rotated counterclockwise into ~wb in the plane with an angle smaller than π, there are

precisely10 det{~wa, ~wb} bi-fundamental chiral fields Φab with R-charge

R[Φab] = δa+1 + δa+2 + . . .+ δb . (1.2.38)

Interestingly, for all toric models the trial central charge a(δ) is a homogeneous function of

degree three at large N :

a(δ) =
9

32
TrR(δ)3 =

9N2

64

D∑
a,b,c=1

Cabc δa δb δc . (1.2.39)

Here N2Cabc = 1
4

TrRaRbRc are the ’t Hooft anomaly coefficients, which can be read from

the toric data through Cabc =
∣∣det{va, vb, vc}

∣∣ [100]. Another important property of toric

models that we will use in the following is that the constraints∑
I∈W

R[ΦI ] = 2 , (1.2.40)

that must be satisfied for each monomial term W in the superpotential, always reduce to

(1.2.36). Indeed, it follows from tiling techniques [102–106] that the R-charges R[ΦI ], I ∈ W ,

of the chiral fields entering in a superpotential monomial W correspond to a partition of the

D elementary R-charges {δ1, . . . , δD} into sums of the form (1.2.38), with each δa entering

in just one R[ΦI ].

We can similarly parametrize the chemical potentials ∆[Φ] entering the superconformal

index in terms of D basic quantities ∆a, a = 1, . . . , D. For the chiral fields Φab we have

∆[Φab] = ∆a+1 + ∆a+2 + . . .+ ∆b . (1.2.41)

The conditions ∑
I∈W

∆[ΦI ] = τ + σ + nW , (1.2.42)

to be imposed for each monomial term W in the superpotential (and where nW is the same

for all monomial terms), are then equivalent to

D∑
a=1

∆a = τ + σ + nW . (1.2.43)

Independently of the value of nW , we have

[∆D]ω = τ + σ − 1−
[∑D−1

a=1
∆a

]
ω

. (1.2.44)

10The condition on the angle guarantees that the formula for the number of fields gives a non-negative

integer.
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In general [∑D−1

a=1
∆a

]
ω

=
D−1∑
a=1

[∆a]ω + n (1.2.45)

where n = 0, . . . , D − 2, thus dividing the space of parameters into D − 1 regions.

Two regions are particularly important for our analysis. The region n = 0 corresponds

to
D∑
a=1

[∆a]ω = τ + σ − 1 , (1.2.46)

while n = D − 2 corresponds to

D∑
a=1

[∆a]
′
ω = τ + σ + 1 . (1.2.47)

We can argue that the two regions (1.2.46) and (1.2.47) are always realized somewhere in the

space of parameters. For example, we can choose one elementary variable, say ∆1, to live in

the fundamental strip Im(−1/ω) > Im
(
∆1/ω

)
> 0 (see Fig. 1.1) and slightly on the right of

the vertical line passing through τ + σ− 1, while all the other ∆a to live in the fundamental

strip and slightly on the left of the vertical line passing through zero. One easily verifies that

they can be arranged to satisfy (1.2.46). A similar construction gives parameters satisfying

(1.2.47). We now argue that (1.2.46) and (1.2.47) imply (1.2.9) and (1.2.16), respectively.

We start noticing that

D∑
a=1

[∆a]ω = τ + σ − 1 ⇒ Im
(

1

ω

∑D

a=1
[∆a]ω

)
= Im

(
− 1

ω

)
. (1.2.48)

Since each of the [∆a]ω lives in the fundamental strip Im(−1/ω) > Im
(
[∆a]ω/ω

)
> 0, the

previous equation implies that Im(−1/ω) > Im
(∑

a∈S[∆a]ω/ω
)
> 0 for any proper subset S

of the indices {1, . . . , D}. Thus (1.2.46) implies that[∑
a∈S

∆a

]
ω

=
∑

a∈S
[∆a]ω (1.2.49)

for any proper subset S ( {1, . . . , D}. This implies that all charges in (1.2.41) split, in the

sense that
[
∆a+1 + . . .+ ∆b

]
ω

= [∆a+1]ω + . . .+ [∆b]ω. At this point, since all
[
∆[ΦI ]

]
ω

split

and each ∆a enters precisely once in every superpotential constraint, the condition (1.2.9) is

a consequence of (1.2.46).11 A similar argument shows that (1.2.47) implies (1.2.16). Notice

11There is an alternative algorithm that produces potentials ∆I satisfying (1.2.9). Choose a perfect

matching pα of the dimer model of the theory [104]. It divides the chiral fields into two groups: those

ΦP appearing in the perfect matching, and those ΦNP not doing so. Choose the potentials ∆NP to be

in the fundamental strip and slightly on the left of the origin. Each superpotential term W contains one

and only one of the fields ΦP (by definition of perfect matching): choose the corresponding ∆P to be in

the fundamental strip and slightly on the right of the point τ + σ − 1, in such a way that (1.2.9) for that

particular W is satisfied. The drawback of this construction is that it does not tell us what the independent

variables ∆a are.
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that the region specified by (1.2.9) can be larger than (1.2.46) and, similarly, the region

specified by (1.2.16) can be larger than (1.2.47). This, in particular, happens for Calabi-Yau

cones with codimension-one orbifold singularities. This is the case of the models SPP and

dP4 discussed in [83].12 For all the cones without orbifold singularities that we checked, the

two regions (1.2.9) and (1.2.46) coincide. It would be interesting to see if this is a general

result.

We are now ready to evaluate the index. Consider region (1.2.9) first. Since the chemical

potentials [∆I ]ω split, the rescaled quantities

∆̂a = 2
[∆a]ω

τ + σ − 1
with

D∑
a=1

∆̂a = 2 (1.2.50)

provide a parametrization of the R-charges of chiral fields in the quiver in the sense discussed

above. Using the general formula (1.2.39) we can then write

a(∆̂) =
9N2

64

D∑
a,b,c=1

Cabc ∆̂a ∆̂b ∆̂c . (1.2.51)

Plugging it into (1.2.14) and re-expressing the result in terms of the chemical potentials

[∆a]ω, we find the large N limit of the superconformal index in region (1.2.9):

log I ' −πiN2

D∑
a,b,c=1

Cabc
6

[∆a]ω[∆b]ω[∆c]ω
τσ

,

D∑
a=1

[∆a]ω = τ + σ − 1 . (1.2.52)

A similar argument shows that, in region (1.2.16),

log I ' −πiN2

D∑
a,b,c=1

Cabc
6

[∆a]
′
ω[∆b]

′
ω[∆c]

′
ω

τσ
,

D∑
a=1

[∆a]
′
ω = τ + σ + 1 . (1.2.53)

We will show in the next section that both (1.2.52) and (1.2.53) lead to the same entropy.

12Models with codimension-one orbifold singularities are characterized by toric diagrams where at least

one vector ~va lies in the interior of an edge. The parameters δa associated with integer points lying in the

interior of an edge of the polygon enter in the parametrization (1.2.38) of the R-charges of chiral fields, but

no elementary field carries precisely charge δa. In order to recover the region (1.2.9), we can require the

following. Construct a set M by grouping the points {1, . . . , D} along the toric diagram in the following

way: Break each edge in two pieces at a non-integer point, and then for each vertex form a group (that will

be an element of M) that contains the vertex itself and all other integer points (if any) along the two pieces

of edges on the two sides. (In the absence of orbifold singularity, M necessarily coincides with {1, . . . , D}.)
Then require that the sums split over the groups in M for every proper subgroup S′ ( M , and for every

possible choice of M . This region is typically larger than (1.2.46).
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1.2.3 The entropy function

For toric holographic quivers, we have found two different expressions, (1.2.52) and (1.2.53),

for the large N limit of the superconformal index that are valid in two different regions in

the space of chemical potentials. The two expressions differ only for the constraint and give

rise to the very same entropy. This generalizes an observation made in [43] for N = 4 SYM

and holds for general quivers.

To show that, we define two entropy functions

S± = −πiN2

D∑
a,b,c=1

Cabc
6

XaXbXc

τσ
− 2πi

(
τJ1 + σJ2 +

D∑
a=1

XaQa

)

− 2πiΛ

( D∑
a=1

Xa − τ − σ ± 1

)
, (1.2.54)

where Λ is a Lagrange multiplier and we used neutral variables Xa to denote either [∆a]ω

or [∆a]
′
ω. Each of the electric charges Qa ≡ Ra/2 is defined in terms of an R-charge Ra

that assigns charge 2 to all chiral multiplets Φab such that δa appears in the decomposition

(1.2.38), and zero to all the other ones. The ’t Hooft anomaly coefficients are defined by

CabcN
2 =

1

4
TrRaRbRc . (1.2.55)

Above, S+ is the prediction for the entropy of the dual black hole based on the superconformal

index in the region of parameters (1.2.9) while S− in the region (1.2.16). The form of the

entropy function (1.2.54) was first conjectured in [86].

Observe that, since S± ± 2πiΛ are homogeneous functions of degree one in (Xa, τ, σ),

the values of the functions S±(Xa, τ, σ,Λ) at the critical point are related to the Lagrange

multiplier by

S±
∣∣
crit

= ∓2πiΛ . (1.2.56)

Observe also that, if Qa, Ji are real (as charges should be), then the two functions are related

by S+(Xa, τ, σ,Λ) = S−
(
−Xa,−τ ,−σ,Λ

)
. Hence, if (Xa, τ, σ,Λ) is a critical point of S+,

then
(
−Xa,−τ ,−σ,Λ

)
is a critical point of S− with critical value

S−
∣∣
crit

= S+

∣∣
crit

. (1.2.57)

For arbitrary and general real charges Qa and Ji, the critical value of S+ is not real. For

N = 4 SYM, however, it becomes real and equal to the entropy when imposing the non-

linear constraint on conserved charges that characterizes supersymmetric black holes [43,76].

The same phenomenon was already observed in AdS4 in [30]. We expect the same to be true

for general black holes in Sasaki-Einstein compactifications. Even if this were wrong and S+
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were not real, it would still makes sense to identify the entropy with ReS+. In all cases,

we see from (1.2.57) that both constraints in (1.2.54) lead to the very same result for the

entropy.

The entropy functions (1.2.54) give our general result for the entropy of black holes in

AdS5 × SE5. We derived it for toric quiver gauge theories, but the very same argument

can be extended to a class of more general non-toric quivers. In particular, the expression

(1.2.54) only depends on the ’t Hooft anomaly coefficients Cabc for a basis of R-symmetries

and, as such, we expect that it is the correct result for generic holographic quiver theories.

1.3 The universal rotating black hole

In this section we discuss the case of the universal rotating black hole which has electric

charge aligned with the exact R-symmetry of the theory. The black hole arises as a solution

of minimal gauged supergravity in five dimensions and, as such, it can be embedded in any

AdS5 × SE5 compactification of type IIB and, more generally, in any AdS5 solution of type

II or M theory.13 Due to its universal character, most of the analysis is identical to the one

for AdS5 × S5. It is however interesting to see how the details work.

The universal black hole in AdS5 was found in [72] in minimal gauged supergravity in

five dimensions. It has charge Q under the graviphoton and angular momenta J1 and J2 in

AdS5.14 The entropy can be compactly written as [107]

S(Q, J) = 2π
√

3Q2 − 2a(J1 + J2) (1.3.1)

where we introduced the quantity

a =
π`3

5

8G
(5)
N

, (1.3.2)

where G
(5)
N is the five-dimensional Newton constant and `5 is the radius of AdS5. The

conserved charges must satisfy the nonlinear constraint

8Q3 + 6aQ2 − 6a(J1 + J2)Q− 2aJ1J2 − 4a2(J1 + J2) = 0 (1.3.3)

for the BPS black hole to have a smooth horizon.

Consider now the uplift of the universal black hole to AdS5×SE5, where SE5 is a Sasaki-

Einstein manifold. In such an embedding, the standard holographic dictionary identifies a

13It is believed and checked in many cases that the effective theory for all such compactifications can be

consistently truncated to minimal gauged supergravity.
14To compare with the notations of [72]: Qthere = −

√
3gQhere and G

(5)
N = 1, `5 = 1/g.
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with the central charge of the dual CFT4. The black hole carries angular momenta J1 and

J2 and an electric charge aligned with the exact R-symmetry of the dual CFT4. We need to

check that its entropy is reproduced by our result (1.2.14) (the same result can be similarly

obtained using (1.2.20) instead). It is convenient to parametrize the chemical potentials as

∆a =
τ + σ − 1

2

(
∆̂(0)
a + δ̂a

)
, (1.3.4)

where ∆̂
(0)
a is the exact superconformal R-symmetry of the dual CFT4 while δ̂a parametrize

a basis of flavor symmetries. These quantities satisfy

D∑
a=1

∆̂(0)
a = 2 ,

D∑
a=1

δ̂a = 0 . (1.3.5)

The entropy of the universal black hole is given by the Legendre transform of (1.2.14). Using

(1.2.46) we can write the entropy function as

S = −4πi

27

(τ + σ − 1)3

τσ
a
(

∆̂(0) + δ̂
)
− 2πi

(
(τ + σ − 1)Q+ τJ1 + σJ2

)
, (1.3.6)

where we introduced a charge Q = 1
2

∑D
a=1 ∆̂

(0)
a Qa in the direction of the exact R-symmetry,

and set all other charges to zero. We need to extremize the function S with respect to

τ , σ and δ̂a subject to the constraint (1.3.5). By a-maximization, since ∆̂
(0)
a is the exact

R-symmetry, the function is extremized at δ̂a = 0. We can then restrict the entropy function

to

S = −4πia

27

(τ + σ − 1)3

τσ
− 2πi

(
(τ + σ − 1)Q+ τJ1 + σJ2

)
, (1.3.7)

where a ≡ a
(
∆̂(0)

)
is the central charge of the CFT4, or, introducing a Lagrange multiplier

Λ,

S = −4πia
∆3

τσ
− 2πi

(
3∆Q+ τJ1 + σJ2

)
− 2πiΛ

(
3∆− τ − σ + 1

)
. (1.3.8)

If we set a = aN=4 = 1
4
N2, the function (1.3.8) becomes identical to the entropy function of

N = 4 SYM for equal charges Q1 = Q2 = Q3 ≡ Q, which is known to correctly reproduce

(1.3.1) [76]. An analytic derivation of (1.3.1) and (1.3.3) for N = 4 SYM is explicitly

discussed in [43] and for equal angular momenta in [45]. The charge constraint (1.3.3) is

obtained as the requirement that the extremum of S be real.

At this point, the result for the universal black hole simply follows from the homogeneity

properties of (1.3.8):

S(Q, J1, J2) =
a

aN=4

SN=4

(aN=4

a
Q,

aN=4

a
J1,

aN=4

a
J2

)
. (1.3.9)

It is then immediate to derive the relations (1.3.1) and (1.3.3), thus completing our derivation.
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1.4 AdS5 Kerr-Newman black holes in T 1,1

We would like to compare the entropy function we obtained in Section 1.2 from the large

N limit of the superconformal index of generic (toric) quiver gauge theories, with the

Bekenstein-Hawking entropy of BPS black holes in the corresponding 5d gauged super-

gravities. In particular, the setup we would like to analyze is that of type IIB supergravity

on asymptotically AdS5 × SE5 spacetimes, where SE5 is a toric Sasaki-Einstein manifold,15

reduced and truncated to a 5d N = 2 gauged supergravity on AdS5. Unfortunately, with

the exception of the case of S5 truncated to the so-called 5d STU model, and the case of any

SE5 truncated to minimal N = 2 gauged supergravity (that we analyzed in Section 1.3), all

other known consistent truncations are to gauged supergravities with hypermultiplets (be-

sides vector multiplets), and no supersymmetric black hole solutions have been constructed

in such theories to date.

The strategy we propose to perform a test of our field theory results is as in [76]. We

assume that a 5d BPS rotating black hole solution exists. Such a solution has the topology

of a fibration of AdS2 over S3 (the three-sphere being the topology of the event horizon), and

thus we can reduce it along the Hopf fiber of S3. This gives a (putative) 4d BPS rotating

black hole solution, with the same entropy.16 The reduction generates an extra vector field

A0, corresponding to the isometry along the Hopf fiber. The 4d black hole has one unit

of magnetic charge under A0, corresponding to the first Chern class of the Hopf fibration.

Calling J1 and J2 the 5d angular momenta along two orthogonal planes, the quantity J1 +J2

appears in 4d as the electric charge under A0, while J1−J2 becomes the angular momentum

of the 4d black hole. Constructing such a 4d rotating black hole solution is still a difficult

task, and an attractor mechanism is not known in general.17 However, if we restrict to 5d

black holes with two equal angular momenta J1 = J2 (so that the isometry of the squashed

S3 is enhanced from U(1)2 to U(1) × SU(2)), then the 4d black hole is static: in this case

we can determine its entropy by exploiting the attractor mechanism in the near-horizon

geometry [92–94], without actually constructing the whole solution.

The simplest non-trivial example is when SE5 is T 1,1, the base of the conifold Calabi-

Yau threefold, whose holographic dual is the Klebanov-Witten gauge theory [88]. We already

presented the field theory analysis in Section 1.2.1. On the other hand, starting from 10d type

IIB supergravity on T 1,1, we can exploit a consistent truncation that preserves SU(2)2×U(1)

isometry, down to a 5d N = 2 gauged supergravity with the graviton multiplet, two vector

15More precisely, the cone over SE5 is a toric Calabi-Yau threefold.
16The 4d solution has an exotic asymptotic behavior, that follows from the reduction of AdS5 [108].

Nonetheless, it has a regular extremal horizon, whose area determines the entropy.
17There are however some general results for theories with vector multiplets [109,110].
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multiplets and two hypermultiplets. This is the second truncation presented in Section 7

of [89] (see also [90,91]). On the AdS5 vacuum, one vector multiplet (sometimes called “Betti

multiplet”) is massless and is associated to the baryonic symmetry, while the other vector

multiplet is massive.

Hence, with the simplification that J1 = J2 and only the R-symmetry and baryonic

symmetry charges are turned on (while the SU(2)2 isometry of T 1,1 is unbroken), we will

be able to match the Legendre transform of the superconformal index at large N with the

extremization problem that comes from the attractor mechanism in supergravity. It follows

that the bulk and boundary computations of the entropy exactly match.

1.4.1 Reduction from 5d to 4d and the attractor mechanism

A 5d N = 2 Abelian gauged supergravity with nV vector multiplets and nH hypermultiplets

— whose main building blocks we summarize in Appendix B — is specified by the following

data [111–113]:

1. A very special real manifold SM of real dimension nV , specified by a symmetric tensor

of Chern-Simons couplings CIJK with I, J,K = 1, . . . , nV + 1. The coordinates are ΦI

with the cubic constraint

V(Φ) ≡ 1

6
CIJKΦIΦJΦK = 1 . (1.4.1)

2. A quaternionic-Kähler manifold QM of real dimension 4nH with coordinates qu.

3. A set of nV + 1 Killing vectors kuI (that could be linearly dependent, or vanish) on

QM, compatible with the quaternionic-Kähler structure, representing the isometries

to be gauged by the vector fields AI . Each Killing vector comes equipped with a triplet

of moment maps ~PI .
18

On the other hand, a 4d N = 2 Abelian gauged supergravity with nV + 1 vector multiplets

and nH hypermultiplets — that we summarize in Appendix C — is specified by the following

data (see for instance [114,115]):

1. A special Kähler manifold KM of complex dimension nV + 1, with coordinates zI and

I = 1, . . . , nV +1. We will work in a duality frame in which the geometry is specified by

holomorphic sections XΛ(z), with Λ = 0, . . . , nV + 1, and a holomorphic prepotential

F (X), homogeneous of degree two.

18If nH = 0, instead, one has to specify nV Fayet-Iliopoulos parameters ζI , not all vanishing.

30



2. A quaternionic-Kähler manifold QM of real dimension 4nH with coordinates qu.

3. In duality frames in which all gaugings are purely electric, a set of nV + 2 Killing

vectors kuΛ (that could be linearly dependent, or vanish) on QM, compatible with the

quaternionic-Kähler structure, representing the isometries to be electrically gauged by

the vector fields AΛ. Each Killing vector comes equipped with a triplet of moment

maps ~PΛ (see footnote 18).

We reduce the 5d theory on a circle, that will eventually be the Hopf fiber of S3. Following

[76,116–120] we use the ansatz

ds2
(5) = e2φ̃ds2

(4) + e−4φ̃
(
dy − A0

(4)

)2

ΦI = −e2φ̃ Im zI .
(1.4.2)

Here y is the direction of the circular fiber, that we take with range 4π/g in terms of the

coupling g = `−1
5 inversely proportional to the AdS5 radius `5, therefore the size of the circle

is e−2φ̃ 4π/g. Because of the constraint V(Φ) = 1 in (1.4.1), the field φ̃ is redundant and can

be eliminated with e−6φ̃ = −V(Im zI). On the other hand, A0
(4) is the Kaluza-Klein vector.

As noted in [76, 121], a Scherk-Schwarz twist for the gravitino as in [119] is necessary to

satisfy the BPS conditions in 4d. We prefer to work in a gauge in which all bosonic fields are

periodic around the circle, but there are flat gauge connections ξI turned on along y. This

corresponds to the ansatz

AI(5) = AI(4) + Re zI
(
dy − A0

(4)

)
+ ξIdy , (1.4.3)

together with no y-dependence for any field. Notice that this ansatz is invariant under the

redefinitions

zI → zI + δξI , AI(4) → AI(4) + δξIA0
(4) , ξI → ξI − δξI (1.4.4)

where δξI are real parameters. We will fix this redundancy below. The reduction of the 5d

theory can be found in Appendix D. The resulting 4d data in terms of 5d ones are as follows.

1. The special Kähler manifold in 4d is described by the prepotential

F (X) =
1

6
CIJK

X̌IX̌JX̌K

X0
with X̌I = XI + ξIX0 . (1.4.5)

The holomorphic sections XΛ can be used as homogeneous coordinates, and the phys-

ical scalars are identified with the special coordinates zI = XI/X0.

2. The quaternionic-Kähler manifold in 4d is the same as in 5d.
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3. The 4d Killing vectors kuI are inherited from 5d, while the additional Killing vector is

ku0 = ξIkuI ⇒ ~P0 = ξI ~PI , (1.4.6)

and is gauged by the Kaluza-Klein vector field A0
(4).

Next, we study the attractor equations for the near-horizon limit of 4d BPS static black

hole solutions [92–94]. Our goal is to use the BPS equations to fix the VEVs in massive

vector multiplets and hypermultiplets, and be left with an extremization principle for the

scalars in massless vector multiplets, similarly to [31, 32]. We consider the near-horizon

geometry AdS2 × S2:

ds2
near-horizon = − r2

L2
A

dt2 +
L2

A

r2
dr2 + L2

S ds
2
S2 , (1.4.7)

where LA and LS are the radii of AdS2 and S2, respectively. Electric and magnetic charges

are defined as appropriate integrals over S2 in the near-horizon region, respectively:

qΛ =
g

4π

∫
S2

16πG
(4)
N

δS4d

δFΛ
, pΛ =

g

4π

∫
S2

FΛ . (1.4.8)

Here G
(4)
N is the 4d Newton constant, related to the 5d one by

4π

G
(5)
N g

=
1

G
(4)
N

, (1.4.9)

while S4d is the 4d supergravity action. The 4d black holes we are interested in have both

electric and magnetic charges. The magnetic charge p0 = 1 is equal to the first Chern

class of the Hopf fibration. On the other hand, we fix the redundancy (1.4.4) by setting

the remaining magnetic charges to zero. In Appendix E we compute the relation of the 5d

charges QI and angular momentum J measured at infinity, with the 4d charges measured at

the horizon. We should be careful that only massless vector fields are associated to conserved

charges. We indicate as BIJ the matrix of linear redefinitions such that BIJAJµ are the 5d

mass eigenstates in the AdS5 vacuum, and we take the index T to run only over the massless

vectors BT
JA

J
µ. The corresponding conserved charges are QT ≡ QJ(B−1)JT. We find

p0 = 1 , q0 = 4G
(4)
N g2J +

1

3
CIJKξ

IξJξK ,

pI = 0 , qT = 4G
(4)
N g2QT +

1

2
CTJKξ

JξK ,
(1.4.10)

where J1 = J2 ≡ J , while the “non-conserved charges” qJ 6=T will be fixed by the equations

of motion. Notice that the conserved charges QT are the same, but possibly in a different

basis, as the charges Qa introduced in Sections 1.2.2 and 1.2.3.19

19Similarly, the restriction of CIJK to CTJK with curly indices is the same, but possibly in a different

basis, as the ’t Hooft anomaly coefficients Cabc previously defined.
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Using a symplectic covariant notation, electric and magnetic charges form a symplectic

vector

Q = (pΛ, qΛ) . (1.4.11)

One also defines
~P = (0, ~PΛ) , ~Q = 〈 ~P ,Q〉 , (1.4.12)

where vectors are triplets and 〈V,W 〉 = VΛW
Λ−V ΛWΛ is the symplectic-invariant antisym-

metric form.

To find covariantly-constant spinors, we impose the following twisting ansatz:

εi = − ~Q · ~σ j
i Γt̂r̂εj , (1.4.13)

whose square gives ~Q· ~Q = 1. Here Γt̂r̂ is the antisymmetric product of two gamma matrices

with flat indices t̂ and r̂. We choose a gauge in which Q1 = Q2 = 0 and

Q3 = −1 (1.4.14)

at the horizon, as in [31].

The remaining BPS conditions are in general complicated, but they simplify at the hori-

zon [92–94]. First, Maxwell’s equations give

Kuhuv〈Kv,Q〉 = 0 , (1.4.15)

where we defined

Ku = (0, kuΛ) (1.4.16)

because we work in a duality frame with purely electric gaugings. In fact, (1.4.15) in this

case is equivalent to

pΛkuΛ = 0 (1.4.17)

that must hold in the full solution simply because of spherical symmetry (see Appendix E).

Second, vanishing of the hyperino variation implies

〈Ku,V〉 = 0 , (1.4.18)

where V(z, z̄) = eK/2(XΛ, FΛ) is the covariantly-holomorphic section defined in (C.0.3) and

FΛ = ∂ΛF (X). Third, we have the attractor equations20

∂

∂zI

(
Z
L

)
= 0 ,

Z
L

= 2ig2L2
S , (1.4.19)

where the derivatives are with respect to the physical scalars zI and we defined

Z = 〈Q,V〉 , L = 〈P3,V〉 . (1.4.20)

The equation on the right in (1.4.19) determines LS, and thus the horizon area.

20There is an extra factor of 2 in front of L2
S compared to [30, 31, 114] due to the different normalization

of kinetic terms in the Lagrangian (C.0.2): this is noticed footnote 4 of [119] and in footnote 10 of [76].
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1.4.2 Example: the conifold

We apply the general strategy to the case of the conifold. We start with the 5d N = 2

gauged supergravity with nV = 2 vector multiplets and nH = 2 hypermultiplets constructed

in Section 7 of [89] (called the “second model” in that paper), obtained from a consistent

reduction of 10d type IIB supergravity on T 1,1 that preserves the SU(2)2 × U(1) isometry.

In Appendix B.1 we have recast its action as in the general formalism, and in Appendix D.1

we have reduced it down to 4d N = 2 gauged supergravity. We are now ready to look for

BPS near-horizon black hole solutions.

Using (B.1.6) and (B.1.7), the conditions (1.4.14) and (1.4.17) take the form:{
P 3

0 = −1

ku0 = 0
⇒ bΩ

1,2 = cΩ
1,2 = 0 , ξ1 = −ξ2 = −1

3
, (1.4.21)

where bΩ
1,2, c

Ω
1,2, a, φ, C0, u are the scalar fields in hypermultiplets. In fact, since (1.4.17) must

hold in the whole solution, so (1.4.21) does. Using the form (B.1.7) of the moment maps,

this is consistent with Q1 = Q2 = 0. The hyperino condition (1.4.18) then gives

X1 +X2 = 0 (1.4.22)

at the horizon, where XΛ are the holomorphic sections. The fields C0 and φ are not fixed

by the equations of motion. However, together they form the axiodilaton of type IIB su-

pergravity and are thus fixed by the boundary conditions that set them in terms of the

complexified gauge coupling of the boundary theory. As apparent from the expression of ku2
in (B.1.6), a is a Stückelberg field that breaks an Abelian gauge symmetry and is eaten up

as the corresponding gauge field becomes massive via Higgs mechanism.

The remaining BPS conditions are the attractor equations (1.4.19). Given CIJK in

(B.1.2), the prepotential is

F (X) =
X̌1
(
(X̌2)2 − (X̌3)2

)
X0

where X̌I = XI + ξIX0 . (1.4.23)

Using special coordinates zI = XI/X0 as well as homogeneity of the prepotential F (X), one

can easily show that the two equations in (1.4.19) are equivalent to

∂Λ

[
e−K/2

(
Z(X)− 2ig2L2

S L(X)
)]

= 0 , (1.4.24)

where the derivatives are with respect to independent sections XΛ. In these equations LS

should be regarded as one of the unknowns. Notice that (1.4.19) or (1.4.24) give, in general,

isolated solutions in terms of (zI , LS), however the sections XΛ are only fixed up to the

“gauge” redundancy (related to Kähler transformations on KM) XΛ → efXΛ. In order to
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remove the redundancy, we choose to fix L(X) to a constant, which can elegantly be imposed

by taking a derivative of the square bracket in (1.4.24) with respect to L2
S as well. More

precisely, expanding Z and L using (B.1.7), we consider the following set of equations:

∂Λ

[
X1
(
(X2)2 − (X3)2

)
(X0)2

+ q̂ΛX
Λ − 2ig2L2

S

(
3X1 −X0 − 2e−4u(X1 +X2)− α

)]
= 0

∂

∂L2
S

[
X1
(
(X2)2 − (X3)2

)
(X0)2

+ q̂ΛX
Λ − 2ig2L2

S

(
3X1 −X0 − 2e−4u(X1 +X2)− α

)]
= 0

(1.4.25)

where

q̂I = qI −
1

2
CIJKξ

JξK , q̂0 = q0 −
1

3
CIJKξ

IξJξK . (1.4.26)

The first line is the same as (1.4.24), except for the addition of the constant α that does not

affect the equations. The second line fixes the gauge L = α. Notice that (1.4.22) should be

imposed after solving (1.4.25).

From the point of view of AdS/CFT, only massless vector fields correspond to symmetries

of the boundary theory and only their charges are conserved and fixed by the boundary

conditions. On the contrary, the “charges” under massive vector fields are not conserved,

and their radial profile should be determined by the equations of motion. The spectrum

of the 5d supergravity under consideration around its supersymmetric AdS5 vacuum was

computed in [89] and we report it in our conventions in (B.1.9). In the basis

AR ≡ A1 − 2A2 , A3 , AW ≡ A1 + A2 ,

kR ≡ 1
3
(k1 − k2) , k3 , kW ≡ 1

3
(2k1 + k2) ,

(1.4.27)

it turns out that AR (corresponding to the R-symmetry) and A3 are massless, while AW is

massive because of Higgs mechanism eating up the Stückelberg field a. In (1.4.27) we have

indicated also the Killing vectors of the corresponding gauged isometries. On the black hole

background the mass eigenstates may change (because the gauge kinetic functions have a

non-trivial radial profile), however the fact that

kR = k3 = 0 (1.4.28)

everywhere — which follows from (1.4.21) — guarantees that there is no hypermultiplet

source in the 5d Maxwell equations (E.0.3) and thus the Page charges QR and Q3 are

conserved (while QW is not).

Indeed, the variation in (1.4.25) with respect to X2 gives the complex equation

2
X1X2

(X0)2
+ q̂2 + 4ig2L2

S e
−4u = 0 (1.4.29)
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that fixes u and the “non-conserved charge” q2 in terms of the sections and LS. We can then

use the hyperino condition (1.4.22) to eliminate X2 as well. Notice that the second condition

in (1.4.21) implies that in 5d we cannot turn on a “flat connection” for AW along the circle.

We are left with the unknowns X0, X1, X3, L2
S. One can check that, when (1.4.22) and

(1.4.29) are in place, the remaining equations in (1.4.25) are equivalent to the conditions of

extremization of the function

S = β

[
X1
(
(X1)2 − (X3)2

)
(X0)2

+ q̂0X
0 + 3q̂RX

1 + q̂3X
3 − 2ig2L2

S

(
3X1 −X0 − α

)]
(1.4.30)

with respect to the variables X0, X1, X3, L2
S. Here β is a constant included for later conve-

nience, while q̂R is the charge with respect to the massless vector AR:

q̂R =
q̂1 − q̂2

3
=

g

4π

∫
S2

16πG
(4)
N

δS4d

δFR
− 1

6

(
C1JK − C2JK

)
ξJξK = 4g2G

(4)
N QR . (1.4.31)

It is encouraging that we find an extremization problem in which only conserved charges

appear. Since S is homogeneous in XΛ of degree 1 except for the term involving α, it follows

that S
∣∣
crit

= 2iαβg2L2
S at the critical point. With the choice

αβ =
π

2iG
(4)
N g2

(1.4.32)

we obtain that S
∣∣
crit

is the black hole entropy:

S
∣∣
crit

=
4πL2

S

4G
(4)
N

= SBH , (1.4.33)

and therefore S is the entropy function. Using (1.4.10) and (1.4.26) we can express the 4d

charges q̂0, q̂T computed at the horizon in terms of the 5d black hole charges J , QT computed

at infinity:

S =
1

α

[
π

2iG
(4)
N g2

(X1)3 −X1(X3)2

(X0)2
− 2πi

(
JX0 + 3QRX

1 +Q3X
3
)

− 2πiΛ
(

3X1 −X0 − α
)]

, (1.4.34)

where we redefined the Lagrange multiplier L2
S = 2iG

(4)
N Λ for convenience.

It remains to spell out the AdS/CFT dictionary between gravity and field theory charges.

First, the gauge group ranks in field theory are determined by (see Appendix E.1)

N2 =
8π

27G
(5)
N g3

=
2

27G
(4)
N g2

. (1.4.35)
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This is in agreement with (1.3.2) using a = 27
64
N2 for the Klebanov-Witten theory. Second,

the angular momentum J is the same in gravity and in field theory. Third, the electric

charges are identified as

r = 2QR , QB =
4

3
Q3 . (1.4.36)

This is determined as follows. From (B.0.36) we infer that the gravitino components have

charge QR = ±1
2
. In the boundary field theory, the corresponding operators are of the

schematic form Tr(FµνΓ
νλ) (where F is a field strength and λ a gaugino) and have charge

r = ±1 under U(1)R. We deduce the first relation in (1.4.36). Obtaining the second

relation is more subtle because no supergravity field is charged under A3: what is charged

are massive particles obtained from D3-branes wrapped on the 3-cycle of T 1,1, corresponding

to dibaryon operators AN1,2 or BN
1,2 in field theory. The 5d supergravity gauge field A3 comes

from the reduction of the Ramond-Ramond field strength FRR
5 of 10d type IIB supergravity

on T 1,1. Therefore, from the 10d flux quantization condition we can deduce the 5d charge

quantization condition 4Q3/3N ∈ Z (see the details in Appendix E.1). In field theory

the dibaryon operators have charge QB = ±N , implying the second relation in (1.4.36).

Alternatively, we could compare the Chern-Simons terms restricted to massless vector fields

in the 5d Lagrangian with the ’t Hooft anomalies of the boundary theory. Taking into

account the ’t Hooft anomalies Tr(r3) = 3
2
N2 and Tr(rQ2

B) = −2N2 at leading order in N ,

the restriction of the 5d Chern-Simons action in (B.0.2) to AW → 0 matches the general

expression

SCS =
g3

24π2

∫
Tr(QaQbQc)F

a ∧ F b ∧ Ac (1.4.37)

after setting AR → 2Ar and A3 → 4
3
AB. These correspond to (1.4.36).

Rewriting the entropy function (1.4.34) in terms of field theory charges, we find

S =
1

α

[
−27πiN2

4

(X1)3 −X1(X3)2

(X0)2
− 2πi

(
JX0 +

3

2
rX1 +

3

4
QBX

3

)

− 2πiΛ
(

3X1 −X0 − α
)]

. (1.4.38)

This exactly matches the entropy function (1.2.35) we found in field theory from the large

N limit of the superconformal index of the Klebanov-Witten theory, after the change of

coordinates X0 → 2ατ , X1 → 2αXR/3, X3 → 4αXB/3.
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Chapter 2

A quantum mechanics for magnetic

horizons

We are interested in static dyonic near-BPS black holes embedded in massive Type IIA

string theory on S6, which is dual to a 3d N = 2 SU(N)k Chern-Simons-matter theory [68].

We find an effective quantum mechanics by reducing the dual 3d field theory on S2, with a

specific background that corresponds to the black-hole asymptotics.

More specifically, the entropy of static magnetically-charged BPS black holes in AdS4 is

captured by the topologically twisted (TT) index [28, 122] of the dual 3d boundary theory

[29, 30, 33, 123–126], see in particular [31, 32] for the specific example in massive Type IIA

studied here. In the Lagrangian formulation, the TT index is the Euclidean partition function

of the theory on S2×S1, in the presence of a supersymmetric background that holographically

reflects the asymptotics of the BPS black hole. The background can be thought of as

a topological twist on S2 that preserves two supercharges, or equivalently as an external

magnetic flux for the R-symmetry. One observes that the TT index takes the form of the

Witten index of a quantum mechanics, obtained by reducing the 3d theory on S2 with the

twisted background. Up to exponentially small corrections at large N , the index is the

grand-canonical partition function for the BPS ground states of that quantum mechanics.

In other words, the ground states of that quantum mechanics are the microstates of a BPS

black hole with given charges, and one expects the excited states to describe near-extremal

black holes. The goal of this work is to construct such a quantum mechanics.

The procedure we outlined has a technical complication: the formula for the TT index

— schematically in (2.1.1) — has an infinite sum over gauge fluxes on S2. For each term

in the sum, one obtains a different quantum mechanics upon reduction. Thus it appears

that, even at finite N , one has to deal with a quantum mechanical model with an infinite

number of sectors, on which we do not have good control.1 Nevertheless, in the large N

limit we expect one sector to dominate the entropy2 and thus to contribute the majority of

1This is partially due to the fact that the reduction is in the grand-canonical ensemble for the electric

charges (though it is microcanonical for the magnetic charges), with fixed chemical potentials. Therefore,

the states of all BPS and near-BPS black holes are mixed up together.
2We are grateful to Juan M. Maldacena for suggesting this possibility to us years ago.
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the states. We determine such a sector by performing a saddle-point evaluation of the index

in the sum over fluxes. This gives us an N = 2 supersymmetric gauged quantum mechanics

with a finite number of fields (at finite N).

The resulting N = 2 supersymmetric QM, that we exhibit in Section 2.3, has some

interesting features. The gauge group is U(1)N , while the number of fields scales as N
7
3 .

There is an SU(2) global symmetry, dual to the isometry of the S2 black-hole horizon. More

importantly, there is a large number of couplings among the fields, expressed in terms of

Clebsh-Gordan coefficients (they arise in the reduction from the overlap of Landau-level

wave-functions on S2). Therefore, although the quantum mechanics is specific and well

defined, at large N the couplings can be approximated by random variables following a

statistical distribution. This makes us hopeful that the IR dynamics might have some traits

in common with supersymmetric SYK models [127]. The idea of obtaining a supersymmetric

QM with fixed, but statistically distributed, couplings in order to describe near-extremal

horizons already appeared in [128] in the context of asymptotically-flat black holes in string

theory.

In the large N saddle-point evaluation of the TT index, we noticed that there is actually

a series of saddle points — one of which dominates the large N expansion. These saddle

points are labelled by shifts of the chemical potentials by 2π, and likely correspond to a series

of complex supergravity solutions with the very same boundary conditions, as in [129,130].

The chapter is organized as follows. In Section 2.1 we re-examine the large N limit of the

TT index by performing a saddle-point approximation both in the integration variables as

well as in the sum over fluxes. This analysis already appeared recently in [34]. Section 2.2,

which is the most technical one, is devoted to the dimensional reduction of the 3d theory on

S2 in the presence of gauge magnetic fluxes. This reduction involves a judicious choice of

gauge fixing. In Section 2.3 we exhibit the effective N = 2 supersymmetric gauged quantum

mechanics; the hurried reader who is only interested in the final result can directly jump

there. Finally, in Section 2.4 we comment on which type of classical and quantum corrections

to our analysis one might expect. Many technical details are collected in Appendices F to J.

2.1 Saddle-point approach to the TT index

We begin by re-examining the evaluation of the TT index of 3d N = 2 gauge theories at large

N . The localization formula for the index found in [28] involves a sum over gauge fluxes m on

S2, as well as a contour integral in the space of complexified gauge connections u on S1. At

large N , we apply a saddle-point approximation both to the integral over u as well as to the

sum over fluxes, treated as a continuous variable m. The idea to compute a supersymmetric
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index in this way was put forward, for instance, in [35, 131] (see also [34, 132, 133]).3 The

upshot is to identify a specific gauge flux sector that dominates the index and, via holography,

the BPS black-hole entropy. In Section 2.2 we will use that flux sector to perform a reduction

of the 3d theory on S2 down to a quantum mechanics.

The analysis in this and the following sections is performed in a specific (and simple)

model, presented in Section 2.1.2. This choice is made for the sake of concreteness, but other

theories (for instance ABJM [134]) could be studied in a similar way.

2.1.1 The basic idea

We are interested in the topologically twisted index [28] of the theory, because this quantity

is known to reproduce the entropy of a class of BPS AdS4 dyonic black holes [31,32]. Using

the notation of [31], this index can be written schematically as

IS2×S1 =
1

|W|
∑
m∈Γh

∮
C

N∏
i=1

dui

2π
emV

′(u) + Ω(u) . (2.1.1)

Here |W| is the order of the Weyl group, Γh is the co-root lattice, N is the rank of the gauge

group, and C is an appropriate integration contour for the complexified Cartan-subalgebra-

valued holonomies {ui} ∈ hC/2πΓh. Let us outline three different approaches to this expres-

sion at large N .

1. The approach developed in [28] was to resum over m, schematically

IS2×S1 =
1

|W|

∮
C

N∏
i=1

dui

2π

eΩ(u)

1− eV ′(u)
, (2.1.2)

then determine the positions ū of the poles by solving the “Bethe Ansatz Equations”

(BAEs)

eV
′(ū) = 1 , (2.1.3)

and finally take the residues

IBAE
S2×S1 =

1

|W |
∑

ū∈BAE

eΩ(ū)

iN V ′′(ū)
. (2.1.4)

2. Alternatively, we can evaluate both the sum over m and the integral over u in (2.1.1) in

the saddle-point approximation, treating m as a continuous variable. The simultaneous

3In particular, the evaluation of the (refined) TT index of the specific model studied here, through a

saddle-point approximation of the sum over fluxes has recently already appeared in [34].
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saddle-point equations for m and u are, schematically:{
0 = V ′(ū)

0 = m̄V ′′(ū) + Ω′(ū) .
(2.1.5)

Taking into account that V ′(u) in (2.1.1) is defined up to integer shifts by 2πi, the first

set of equations is exactly the set of BAEs, while the second set of equations uniquely

fixes m̄ in terms of ū. The Jacobian at the saddle point is

J3d(m, u) = det

(
0 V ′′(u)

V ′′(u) mV ′′′(u) + Ω′′(u)

)
= −

(
V ′′(u)

)2
. (2.1.6)

Therefore, in the saddle-point approximation:

Isaddle
S2×S1 '

1

|W|
∑

ū∈saddles

eΩ(ū)

√
J3d

=
1

|W|
∑

ū∈BAEs

eΩ(ū)

iN V ′′(ū)
. (2.1.7)

This method gives exactly the same answer as the previous method.

3. A more rough approximation is to fix m in (2.1.1) to the value determined by the

equations (2.1.5),

Ifix m̄
S2×S1 ' IS1 ≡ 1

|W|

∮
C

N∏
i=1

dui

2π
em̄V

′(u) + Ω(u) , (2.1.8)

and then solve the integral in u in the saddle-point approximation. The saddle-point

equations are m̄V ′′(u) + Ω′(u) = 0, therefore all solutions ū of (2.1.5) are also saddle

points of (2.1.8). Assuming that there are no other solutions, we find

IS1 ' 1

|W|
∑

ū∈BAEs

eΩ(ū)

√
J1d

. (2.1.9)

The Jacobian in this case is J1d = m̄V ′′′(ū)+Ω′′(ū) = V ′′
(

Ω′

V ′′

)′
(ū) and is different from

before, however as long as the Jacobian is subleading with respect to the exponential

contribution, this approach captures the leading behavior.

In our setup we will find a series of saddle points (ū, m̄), and the expression IS1 in (2.1.8)

evaluated on the dominant one will turn out to be the Witten index of an effective quantum

mechanics we will construct. In order to do that, we will first have to find the saddle-point

flux m̄, and then reduce the 3d theory on S2 in the presence of such a flux.
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2.1.2 The model

We consider the AdS/CFT pair discovered in [68], that was used in [31,32] to study certain

magnetic black holes in massive type IIA on AdS4×S6 [65–67]. The field theory is a 3dN = 2

Chern-Simons-matter theory with gauge group SU(N)k, coupled to three chiral multiplets

Φa=1,2,3 in the adjoint representation. We can simplify the computation by considering a

U(N)k gauge theory, with no sources for the new topological symmetry. No field is charged

under U(1) ⊂ U(N) and thus the only effect of this is to introduce a decoupled sector, whose

Hilbert space on Σg consists of kg states. This is just one state in the case of S2. The theory

has a superpotential

W = λ3d Tr Φ1 [Φ2,Φ3] . (2.1.10)

The global symmetry is SU(3) × U(1)R. We parametrize its Cartan subalgebra with three

R-charges Ra, characterized by the charge assignment Ra(Φb) = 2δab. We choose the Cartan

generators of the flavor symmetry to be q1,2 = (R1,2 − R3)/2. In this basis, all fields have

integer global charges. Notice that eiπRa = (−1)F for a = 1, 2, 3.

To study AdS4 BPS dyonic black holes, we place the theory on4 S2 × R using a topo-

logical twist on S2, so that one complex supercharge is preserved [135]. This is precisely

the background of the topologically twisted index in [28]. In other words, there is a back-

ground gauge field AR corresponding to an R-symmetry that is equal and opposite to the

spin connection when acting on the top component of the supersymmetry parameter ε:

1

2π

∫
S2

dAR = −1 . (2.1.11)

The R-symmetry used for the twist must have integer charge assignments, and a generic

such R-charge can be written as qR = R3 − n1q1 − n2q2 for n1,2 ∈ Z. Note that
∑

a(qR)a = 2

and the superpotential correctly has R-charge 2. Under these inequivalent twists, the scalar

component of Φa experiences a flux na = (qR)a
∫
S2

dAR
2π

= −(R3)a + n1(q1)a + n2(q2)a. This

formula provides a definition of n3 ≡ −2− n1− n2. Thus, twisting by a generic R-symmetry

with integer charge assignments is the same as twisting with respect to R3 and simultaneously

turning on background gauge fields A1,2 coupled to the flavor charges q1,2 with

1

2π

∫
S2

dA1,2 = n1,2 . (2.1.12)

The theory that we are considering has a UV Lagrangian consisting of various building

blocks which are individually supersymmetric off-shell. The vector multiplet V (in Wess-

Zumino gauge) contains the adjoint-valued fields (σ, λ, λ, Aµ, D), where σ is a dynamical

real scalar field and D a real auxiliary field. We consider a supersymmetrized Chern-Simons

4One could also study the theory on a Riemann surface Σg [122,124], but here we will focus on the sphere.
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Lagrangian for it, but we also add the super-Yang-Mills Lagrangian as a regulator. The

chiral multiplets Φa contain the adjoint-valued fields (Φa,Ψa, Fa), for which we consider the

kinetic Lagrangian and the superpotential term. These Lagrangians, in Lorentzian signature

and Wess-Zumino gauge, are:

LYM =
1

2e2
3d

Tr

[
−1

2
FµνF

µν −DµσD
µσ +D2 − iλ

(
D/ − σ

)
λ

]
, (2.1.13)

LCS =
k

4π
Tr

[
−εµνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
− iλλ− 2Dσ

]
,

Lchiral = −DµΦ†aD
µΦa − Φ†a

(
σ2 +D

)
Φa + F †aFa − iΨa

(
D/ + σ

)
Ψa + iΨaλΦa + iΦ†aλΨa ,

LW =
∂W

∂Φa

Fa +
1

2

∂2W

∂Φa∂Φb

Ψc
b Ψa + c.c. ,

where we used the convention Ψc ≡ iσ1Ψ∗ for the conjugated spinor. The superpotential must

be a gauge-invariant holomorphic function of R-charge 2. The supersymmetry variations

preserved by these Lagrangians are in Appendix G.

In order to obtain a microscopic description of the black-hole entropy, one counts the

ground states of this theory. It is convenient to work in the grand-canonical ensemble,

in which one introduces a set of chemical potentials ∆a, a = 1, 2 for each flavor Cartan

generator. Like the fluxes, it is useful to introduce a third chemical potential ∆3, constrained

because of supersymmetry [30], such that

∆1 + ∆2 + ∆3 ∈ 2πZ . (2.1.14)

All chemical potentials are only defined modulo 2π. Computing the thermal partition func-

tion is hard because the theory is strongly coupled in the IR, therefore one can start from a

quantity protected by supersymmetry: the topologically twisted index

I3d(n,∆) = Tr (−1)F e−βH eiqa∆a , (2.1.15)

where F is the Fermion number, H the Hamiltonian on the sphere S2 in the presence of

the magnetic fluxes (2.1.11)-(2.1.12), and the trace is over the Hilbert space of states. This

quantity only gets contributions from the ground states of the theory. It was argued in [29],

exploiting the su(1, 1|1) superconformal symmetry algebra expected to emerge from the

AdS2 × S2 near-horizon region in gravity, that the BPS states of a pure single-center black

hole have constant statistics (−1)F in each charge sector, meaning that the index gets non-

interfering contributions (at least at leading order in N) and can account for the black-hole

entropy.5

5This expectation was confirmed for rotating black holes in AdS5 in [61].
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The TT index (2.1.15) can be computed exactly using supersymmetric-localization tech-

niques [28, 122], and for the model considered here one obtains [31, 32]:

I3d(n,∆) =
(−1)N

N !

3∏
a=1

y
N2(na+1)/2
a

(1− ya)N(na+1)

∑
m∈Γh

∮
JK

N∏
i=1

dzi
2πizi

zkmii ×

×
N∏
i 6=j

(
1− zi

zj

) 3∏
a=1

N∏
i 6=j

(
zi − yazj
zj − yazi

)mi(
1− ya

zi
zj

)−na−1

. (2.1.16)

Here zi ≡ eiui and ya ≡ ei∆a . This expression can be conveniently compiled into the same

form as (2.1.1):

I3d(n,∆) =
1

N !

∑
m∈Γh

∮
JK

(
N∏
i=1

dui
2π

)
e
∑
i miV

′
i (u,∆) + Ω(u,n,∆) . (2.1.17)

The two functions appearing in the exponent are

N∑
i=1

miV
′
i (u,∆) =

N∑
i=1

mi

{
ikui +

N∑
j=1

3∑
a=1

[
Li1

(
ei(uji−∆a)

)
−Li1

(
ei(uji+∆a)

)]
+ iπ

(
N − 2ni

)}
,

(2.1.18)

and

Ω(u, n,∆) =
3∑

a=1

(1 + na)
N∑
i,j

Li1

(
ei(uij+∆a)

)
−

N∑
i 6=j

Li1
(
eiuij

)
+ i

N2

2

3∑
a=1

(1 + na)∆a + πi(2M +N) , (2.1.19)

where uji = uj − ui whilst ni and M are integer ambiguities. The JK integration contour is

the so-called Jeffrey-Kirwan residue [136]. We used the polylogarithm function

Li1(z) = − log(1− z) , (2.1.20)

while more properties are in Appendix F.2.

2.1.3 The large N limit

To obtain the saddle-point equations, we first formulate (2.1.17) in a large N continuum

description as in [29, 31, 137], and subsequently take functional derivatives. The Weyl sym-

metry permuting the discrete Cartan-subalgebra index i can be used to order the holonomies

ui such that Imui increases with i. The discrete index i is then substituted with a continuous

44



variable t ∈ [t−, t+], after which u and the flux m become functions of t. The reparametriza-

tion symmetry in t is fixed by identifying, up to normalization, t with Imu(t):

u(t) = Nα
(
it+ v(t)

)
. (2.1.21)

This introduces the density

ρ(t) ≡ 1

N

di

dt
, (2.1.22)

in terms of which any sum will be replaced by an integral:
∑

i → N
∫
dt ρ(t). The density ρ

must be real, positive, and integrate to 1 in the defining range.

We perform the large N computation in Appendix F. In (F.0.11) and (F.0.12) we find:∫
dtmV ′ = ikN

∫
dt ρmu+ iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2
+O

(
mN2−3α

)
,

Ω = −N2−α f+(n,∆)

∫
dt

ρ2

1− iv̇
+O

(
N2−2α

)
,

(2.1.23)

where we introduced the functions

G(∆) =
3∑

a=1

g+(∆a) , f+(n,∆) = −
3∑

a=1

(1 + na)
(
g′+(∆a)− g′+(0)

)
, (2.1.24)

and

g+(∆) =
1

6
∆3 − π

2
∆2 +

π2

3
∆ . (2.1.25)

The entire exponent in the integrand of (2.1.17) is the functional:

V = ikN1+α

∫
dt ρm (it+ v) + iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2
+

−N2−α f+(n,∆)

∫
dt

ρ2

1− iv̇
+N2−α µ

(∫
dt ρ− 1

)
, (2.1.26)

where we added a Lagrange multiplier µ to enforce the normalization of ρ. For the terms in

V to compete, we need α = 1
3

and m ∝ N
1
3 .

To find the saddle-point configurations at large N , we extremize V with respect to ρ, v,

m and µ. After some massaging, the saddle-point equations are:

0 =
d

dt

[
2G

m ρ

1− iv̇
−N

1
3µ (it+ v)

]
+ 2iN

1
3f+ ρ , (2.1.27)

0 = ρm− 2iG

k

d

dt

[
ṁ ρ2

(1− iv̇)3

]
+
f+

G
ρu , (2.1.28)

0 =
d

dt

[
k (it+ v)2 − 4iG

ρ

1− iv̇

]
, (2.1.29)
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together with
∫
dt ρ = 1. One can check that the functional V is invariant under reparametri-

zations of t that preserve the scaling ansatz (2.1.21) for the holonomies. Such reparametriza-

tions act as:
t = t(t′) , v(t) = i

[
t′ − t(t′)

]
+ v′(t′) ,

ρ(t) =

(
dt(t′)

dt′

)−1

ρ′(t′) , m(t) = m′(t′) .
(2.1.30)

Notice in particular that v′ becomes complex after the transformation.

As we review in Appendix F.1, the equations (2.1.27)–(2.1.29) can be solved, yielding:

u(t) =

(
3NG

k

) 1
3

t , m(t) =

(
N

9kG2

) 1
3

f+ t , ρ(t) =
3

4

(
1− t2

)
, t ∈ [−1, 1] . (2.1.31)

This solution is obtained after making use of the reparametrization symmetry, so in particular

v(t) is complex. The value of the functional V at the saddle point for ρ, v and m — which

reproduces the logarithm of the index at leading order — is

V = −iN
5
3

5

(
9k

G(∆)

) 1
3

f+(n,∆) . (2.1.32)

If
∑

a ∆a = 2π, the two functions G and f+ take the particularly simple form

G(∆) =
1

2
∆1∆2∆3 , f+(n,∆) = −1

2
∆1∆2∆3

3∑
a=1

na
∆a

. (2.1.33)

In this case, the saddle-point value of the logarithm of the index is

V =
iN

5
3

5

(
9k

4

) 1
3 (

∆1∆2∆3

) 2
3

3∑
a=1

na
∆a

. (2.1.34)

When the ∆a’s are real this expression matches the result of [31], which reproduces the

black-hole entropy upon performing a Legendre transform.

As mentioned above, the chemical potentials ∆a are defined modulo 2π. The expression

for V in (2.1.32), however, is not periodic under ∆a → ∆a + 2π. This means that we have

actually found an infinite number of saddle points, parametrized by the shifts.6 This suggests

that — as in AdS3 [129] and AdS5 [130] — there might be an infinite number of complex BPS

black-hole-like supergravity solutions dual to the semiclassical expansion of the TT index.

This issue deserves more study.

6In general, only a subset of the complex saddle points contribute to the contour integral: which ones do

(depending on the contour) should be determined with steepest descent.
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2.2 KK reduction on a flux background

The next step is to perform a Kaluza-Klein (KK) reduction of the 3d N = 2 gauge theory

on the sphere S2, in the presence of the flux background m (2.1.31), determined as the

saddle point of the TT index. By keeping only the light modes, we will obtain a 1d quantum

mechanical model which we expect to be dual to the horizon degrees of freedom of the dyonic

AdS4 black holes we are interested in. This section is rather technical, and the reader only

interested in the final result can directly jump to Section 2.3.

Here we will first show how the full twisted theory can be seen as a gaugedN = 2 quantum

mechanics. Afterwards, we will introduce the background of the reduction and review the

standard procedure to fix the 3d gauge group down to the 1d gauge group. We will then

explain why complications arise when computing the KK spectrum of the vector multiplet,

and how they can be resolved by a further modification of the gauge-fixing Lagrangian.

Lastly, we will exhibit the KK spectra of the vector and chiral multiplets.

2.2.1 Decomposing 3d multiplets into 1d multiplets

After the topological twist, the theory exactly fits into the framework of a gauged N = 2

quantum mechanics, and we perform various changes of variables in this section to make

it explicit. A similar discussion can be found in [138]. We give a brief review of 1d N =

2 supersymmetry in Appendix I. Although it is adapated from [139], it also presents in

Appendix I.5 and I.6 new supersymmetric Lagrangians peculiar to our 3d theory.

We shall write the supersymmetry transformations in terms of anticommuting generators

Q and Q, with the understanding that generators should be multiplied by a complex anti-

commuting parameter to produce a generic supersymmetry transformation. With ε = (1, 0)T,

Q is obtained from Q̃3d while Q is obtained from Q3d in (G.0.1) and (G.0.2). Note that Q and

Q are related by Hermitian conjugation, that is (QX) = (−1)F QX . The supersymmetry

algebra is

Q2 = Q
2

= 0 , {Q,Q} = i
[
∂t − δgauge(At + σ)

]
, (2.2.1)

where δgauge(α) is a gauge tranformation with parameter α. We will use frame fields e1
µ, e1̄

µ on

S2, which we introduce in Appendix H, and write differential forms on S2 with flat indices

1, 1̄. From now on, X will denote the Hermitian conjugate of X (since Dirac conjugates

are no longer present anyway). After this rewriting, the supersymmetry variations and

supersymmetric Lagrangians are as described below.
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Vector multiplet. In Wess-Zumino gauge, the 3d vector multiplet consists of the gauge

field Aµ, a real scalar σ, a real auxiliary scalar D, and a Dirac spinor λ. The bosonic

components are R-neutral while λ has R-charge −1. We decompose λ in components as

λ =

(
−Λt

Λ1̄

)
, (2.2.2)

and redefine D with a shift

D′ = D − 2iF11̄ . (2.2.3)

Now, Λ1̄ has R-charge −1 whereas Λt has R-charge +1. These field redefinitions have trivial

Jacobian. Under the supercharges preserved by the twist, the supersymmetry variations

of the vector multiplet split into 2 sets of variations. The first set (Hermitian conjugate

relations being implied) is:

QAt = −Qσ = − i
2

Λt , QΛt = −Dtσ − iD ,

QD = −1

2
(Dt − iσ) Λt , QΛt = 0 .

(2.2.4)

These coincide with the supersymmetry variations (I.4.1) of a 1d U(N) vector multiplet in

Wess-Zumino gauge. Note that here the fields and gauge transformations are also functions

on S2. The second set is:

QA1̄ =
1

2
Λ1̄ , QA1̄ = 0 , QΛ1̄ = 0 , QΛ1̄ = 2i

(
∂tA1̄ −D1̄(At + σ)

)
. (2.2.5)

These coincide with the supersymmetry variations (I.4.3) of a chiral multiplet
(
A1̄,

1
2
Λ1̄

)
in

Wess-Zumino gauge, provided that the corresponding superfields

Ξ1̄,h = A1̄ +
θ

2
Λ1̄ −

i

2
θθ̄ ∂tA1̄ , Ξ1,h̄ ≡ Ξ1̄,h = A1 −

θ̄

2
Λ1 +

i

2
θθ̄ ∂tA1 (2.2.6)

satisfying DΞ1̄,h = DΞ1,h̄ = 0, transform as connections under super-gauge transformations:

Ξ1̄,h → h
(
Ξ1̄,h + i∂1̄

)
h−1 , Ξ1,h̄ → h

−1(
Ξ1,h̄ + i∂1

)
h , (2.2.7)

with h = eχ and Dχ = 0. We indicated as Λ1 the complex conjugate to Λ1̄.

The Yang-Mills Lagrangian is composed of two pieces, independently supersymmetric:

2e2
3d LYM = Tr

[
4|Ft1̄|2 + 4iDF11̄ − 4|D1̄σ|2 + iΛ1(Dt + iσ)Λ1̄ + 2ΛtD1Λ1̄ − 2Λ1D1̄Λt

]
+ Tr

[
(Dtσ)2 +D2 + iΛt(Dt − iσ)Λt

]
. (2.2.8)

Note that 2e2
3d LYM = QQTr

[
−4iA1∂tA1̄ + 4i(At − σ)F11̄

]
+ QQTr

[
−ΛtΛt

]
, so both terms

are exact. The first piece is the appropriate kinetic term for a chiral transforming as a
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connection and its superspace expression is in (I.6.1). The second piece is the standard 1d

gauge-kinetic term (I.5.6). Likewise, the Chern-Simons Lagrangian splits into two pieces

which are separately supersymmetric:

4π

k
LCS = Tr

[
4iA1∂tA1̄ − 4i(At + σ)F11̄ + Λ1 Λ1̄

]
+ Tr

[
ΛtΛt − 2Dσ

]
. (2.2.9)

The superspace expression of the first piece is given in (I.6.9), whereas the second piece

matches (I.5.9).

Chiral multiplet. A 3d chiral multiplet consists of a complex scalar φ, a Dirac spinor Ψ

and a complex auxiliary field f . We split Ψ into components as

Ψ = −i
(
ψ

η

)
. (2.2.10)

Their R-charges are R(ψ) = R(η) = R(φ) − 1. Under the supercharges preserved by the

twist, the supersymmetry variations of the 3d chiral multiplet can also be organized into two

sets. The first set (Hermitian conjugate relations are again implicit) is:

Qφ = ψ , Qφ = 0 , Qψ = 0 , Qψ = i(Dt − iσ)φ . (2.2.11)

They coincide with the supersymmetry variations (I.4.3) of a 1d chiral multiplet (φ, ψ) in

Wess-Zumino gauge , with corresponding superfield Φh = φ+ θψ − i
2
θθ̄ ∂tφ. The second is:

Qη = −f , Qη = −2D1̄φ , Qf = 0 , Qf = −i(Dt − iσ)η − 2D1̄ψ + iΛ1̄φ .

(2.2.12)

They match the variations (I.4.5) of a 1d Fermi multiplet (η, f) in Wess-Zumino gauge,

whose corresponding superfield

Yh = η − θf + 2θ̄D1̄φ+ θθ̄
(
− i

2
∂tη − 2D1̄ψ + iΛ1̄φ

)
(2.2.13)

satisfies

DYh = E
(
Φh,Ξ1̄,h

)
= −2

(
∂1̄ − iΞ1̄,h

)
Φh . (2.2.14)

Here ∂1̄ contains the background U(1)R connection. In the language of 1d supersymmetry,

there is an E-term superpotential for Yh. After the shift (2.2.3), the kinetic term of a 3d

chiral multiplet also splits into two separately supersymmetric pieces, i.e., the kinetic terms

of the 1d chiral (I.5.10) and of the 1d Fermi (I.5.13):

Lchiral =
[
|Dtφ|2 − |σφ|2 − φDφ+ iψ(Dt + iσ)ψ − iψΛtφ+ iφΛtψ

]
(2.2.15)

+
[
iη(Dt − iσ)η + ff − |2D1̄φ|2 − 2ψD1η + 2ηD1̄ψ − iηΛ1̄φ+ iφΛ1η

]
.
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Note that Lchiral = QQ
(
−iφ(Dt + iσ)φ

)
+QQ

(
−ηη

)
, so both terms are exact.

The superpotential terms can be written as LW = −Q
(
ηa

∂W
∂φa

)
+Q

(
ηa

∂W
∂φa

)
, which in the

language of 1d supersymmetry are J terms for the Fermi multiplets ηa with Ja = − ∂W
∂φa

.

Supersymmetry of the first term under Q, and of the second term under Q, are obvious.

When Q acts on the first term we get, up to a total time derivative,

QQ

(
ηa
∂W

∂φa

)
= −2Q

(
D1̄φa

∂W

∂φa

)
= −2Q(∂1̄W ) = −2∂1̄QW , (2.2.16)

which is another total derivative. Thus the superpotential terms are (Q + Q)-exact. The

supersymmetric Chern-Simons Lagrangian is the only piece that is not exact under any

supercharge.

2.2.2 Reduction background

As mentioned at the beginning of this section, we want to reduce the theory in the presence

of background fluxes for the global symmetries. In particular, we turn on a (negative) unit

flux for the R-symmetry qR. Since it is a background for a non-dynamical field, it can be

off-shell without any consequences. The presence of this background, under which the chiral

multiplets are differently charged, generically breaks the SU(3) flavor symmetry down to its

diagonal subgroup U(1)2
F . We also single out a configuration of fluxes for the dynamical

gauge fields:

F11 =
im

4R2
, where m is a constant in the Cartan subalgebra. (2.2.17)

The choice of m will eventually be the one dictated by the saddle-point approximation to

the topologically twisted index, discussed in Section 2.1. Since F11̄ couples to the auxiliary

field D in (2.2.8) like a FI parameter, the D-term equation for supersymmetric vacua is:

2i

e2
3d

F11̄ +
∑
a

[φa, φa]−
k

2π
σ = 0 . (2.2.18)

The background should satisfy the D-term equation in order to be supersymmetric, and it

is simplest to turn on a background for σ to cancel the background flux. This falls into the

class of “topological” vacua discussed in [140]. Moreover, since At+σ appears in the algebra

(2.2.1), we also find it appropriate to turn on a background for At, opposite to that of σ, so

that the background of At + σ is zero. This ensures that BPS states have zero energy even

before projecting onto gauge singlets. Thus, the background we use for the reduction is:

F11 =
im

4R2
, σ = − m

2mkR2
, At =

m

2mkR2
, where mk ≡

k e2
3d

2π
. (2.2.19)
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One can check that all the equations of motion are satisfied on this background, except for

that of At + σ, unless m = 0. Consequently, when expanding the action, there will be a

Lagrangian term linear in At + σ, that is

Tr

(
km

4πR2
(At + σ)

)
. (2.2.20)

In other words, background fluxes produce a background electric charge in the presence of

Chern-Simons terms. As we will discuss later, the presence of this linear term is crucial and

it is the main source of complications when computing the vector multiplet spectrum.

We parametrize the Lie algebra su(N) by N × N matrices Eij (i, j = 1, . . . , N) which

have a single nonzero entry 1 in row i and column j: (Eij)kl = δikδjl. Elements with i = j

are a basis for the Cartan subalgebra, while those with i 6= j correspond to roots with root

vector (αij)k = δki − δkj. The commutation relations in this basis are

[Eij, Ekl] = δjkEil − δilEkj . (2.2.21)

Note also that Eij = Eji and

TrEijEkl = δjkδil , TrEij[Ekl, Emn] = δjkδlmδni − δilδjmδkn . (2.2.22)

We write the expansion of adjoint fields in this basis as X = X ijEij. Note that X
ij

= Xji.

The Cartan components will sometimes be written as X i ≡ X ii for simplicity.

In the presence of global and gauge fluxes, the Lie algebra components of various fields

in the vector multiplet and chiral multiplets are U(1)spin sections with different monopole

charges q (see Appendix H for details). A field χq(t, θ, ϕ) with monopole charge q can then

be expanded in a complete set of monopole harmonics Yq,l,m(θ, ϕ), and the time-dependent

expansion coefficients χq,l,m(t) are the 1d fields after the reduction:

χq(t, θ, ϕ) =
∑
l≥|q|

∑
|m|≤l

χq,l,m(t) Yq,l,m(θ, ϕ) . (2.2.23)

Defining the quantities

qij ≡
mi −mj

2
, qaij ≡

mi −mj + na
2

, (2.2.24)

the monopole charges of the fields and their charges under the global symmetries of the

theory are summarized in Table 2.1.

We assume that mi 6= mj, ∀ i 6= j, since this is true for the saddle-point flux, and thus

qij 6= 0 for i 6= j. Given a Hermitian adjoint field X = X ijEij = X in a vector multiplet (i.e.,

At, σ, D), its components satisfy Xji = X ij. We parametrize the off-diagonal components in

terms of complex fieldsX ij with ij such that qij > 0. For complex adjoint fields Y = Y ijEij in
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VM σij, Aijt , D
ij Λij

t Aij
1̄

Aij1 Λij
1̄

Λ
ij

1

q qij qij qij + 1 qij − 1 qij + 1 qij − 1

qR 0 1 0 0 −1 1

q1 0 0 0 0 0 0

q2 0 0 0 0 0 0

CM φija ψija ηija f ija

q qaij qaij qaij + 1 qaij + 1

qR −na −na − 1 −na − 1 −na − 2

q1 δ1a − δ3a δ1a − δ3a δ1a − δ3a δ1a − δ3a

q2 δ2a − δ3a δ2a − δ3a δ2a − δ3a δ2a − δ3a

Table 2.1: Monopole and global charges of all fields. The R-charge is qR, while q1,2 are flavor

charges. Above: modes from 3d vector multiplets. The modes are defined for pairs i, j such

that qij > 0. Below: modes from 3d chiral multiplets, defined for any ij. In both cases, the

modes are in SU(2) representations with l ≥ |q| and l = q mod 1.

vector multiplets (i.e., A1̄, A1, Λ1̄, Λ1), we initially parametrize the off-diagonal components

in terms of complex fields Y ij, Y
ij

with ij such that qij > 0. For complex adjoint fields in

chiral multiplets, instead, we simply use all components Y ij.

The flux breaks the gauge group U(N) to its maximal torus U(1)N , and the 1d gauge

group will consequently be U(1)N . Indeed, the generators of 1d gauge transformations have

to be constant on S2. However the components εij of the gauge-transformation parameter

have monopole charges qij, and since l ≥ |qij|, only those in the Cartan subalgebra have an

l = 0 mode which is constant on S2.

2.2.3 Partial gauge fixing

In order to reduce to a gauged quantum mechanics, we need to fix the 3d gauge group to the

unbroken 1d gauge group, consisting of time-dependent transformations that are constant

on S2. A systematic procedure to achieve that is presented in Appendix J and we refer the

reader to [141] for more details. We choose the Coulomb gauge with gauge-fixing function

Ggf =
2√
ξ

(
DB

1 A1̄ +DB
1̄ A1

)
. (2.2.25)

One can check that it leaves the 1d gauge group unfixed. The covariant derivatives above

only contain the spin connection and monopole background. In general, for any Ggf, the
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gauge-fixing procedure adds the following terms to the Lagrangian:

1

e2
3d

Tr

[
b2

2
+ b
(
Ggf − {c̃, c}

)
+ i c̃ δgauge(c)Ggf +

1

2
{c̃, c}2

]
. (2.2.26)

Here c and c̃ are independent Grassmann scalars, while b is a bosonic auxiliary field. Impor-

tantly, all of them are valued in the part of the gauge algebra that is broken by Ggf, and do

not contain modes in the residual gauge algebra. In the following, a subscript r will indicate

a restriction to the residual gauge algebra, and a subscript f a restriction to the complement

containing fixed (or broken) gauge generators.7 We define a BRST supercharge s as:

sX = δgauge(c)X , sc =
i

2
{c, c}f , sc̃ = ib , sb = δgauge(R) c̃ , R ≡ −1

2
{c, c}r .

(2.2.27)

One can check that

s2 = i δgauge(R) , sR = 0 . (2.2.28)

This allows us to define an s-cohomology on invariants of the residual gauge group. The

terms produced by gauge fixing can then be written in a BRST-exact form:

(2.2.26) =
1

e2
3d

sTr c̃

(
−i Ggf −

i

2
b+

i

2
{c̃, c}

)
≡ sΨgf . (2.2.29)

We defined Ψgf as the function in parentheses. We note that there is still complete freedom

in specifying the inner product in the ghost sector, i.e., the Hermiticity properties of c and

c̃. In order for the theory to be unitary and have a consistent Hamiltonian formulation [142],

one needs that c and c̃ are Hermitian, so that s is a real supercharge and (2.2.26) is real.

With this choice, (2.2.26) is invariant under a ghost-number symmetry valued in R∗, which

acts as:

c 7→ eα c , c̃ 7→ e−α c̃ , s 7→ eα s , (2.2.30)

with α ∈ R. We say that c has ghost number ng = 1 and c̃ has ng = −1. Physical observables

are identified with the s-cohomology at ng = 0, since external states must be gauge-invariant

and cannot contain ghosts. Since c, c̃, and b are Hermitian, they are neutral under U(1)R,

and (2.2.26) is invariant under U(1)R, since Ggf is R-neutral.

2.2.4 Supersymmetrized gauge fixing

As anticipated, the linear term (2.2.20) causes complications in the computation of the

KK spectrum of the vector multiplet, and the following discussion aims to explain why.

The standard Faddeev-Popov gauge-fixing procedure we just reviewed generically breaks

7In the Coulomb gauge (2.2.25), r contains diagonal transformations with l = 0, while f contains diagonal

transformations with l > 0 as well as all off-diagonal transformations.
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the supersymmetries that were defined on the original action because of the presence of the

BRST-exact term sΨgf, which might not be supersymmetric. Considering a supercharge

Q, and assuming that it does not act on the fields in the gauge-fixing complex, the trans-

formation of sΨgf is −sQΨgf. When computing s-closed (i.e., gauge-invariant) quantities,

this is harmless because the potentially violating term is s-exact, and it does not affect the

result. For example, supersymmetric Ward identities can be derived for any observable in

the theory, since their correlators do not depend on s-exact terms.

However, the spectrum of the Chern-Simons-matter theory around a monopole back-

ground is not gauge-invariant, because the quadratic action is not invariant under linearized

BRST transformations.8 This can be seen from the presence of the linear term (2.2.20). Its

BRST variation is 1
4πR2 Tr

(
ikm [c, At + σ]

)
, and it must cancel with the linearized BRST

variation of the quadratic action, which is then nonzero. Consequently, there is no guar-

antee that the spectrum will be supersymmetric, because it is computed from a quadratic

action that is not s-closed, and therefore s-exact terms violating supersymmetry cannot be

neglected.

A way to resolve this issue takes inspiration from [26]. In addition to adding sΨgf to

gauge-fix our path-integral, we can further add QΨgf. The real supercharge Q acts as

Q = Q + Q on physical fields, and we choose its action on the gauge-fixing complex such

that δ ≡ (s+Q) closes on symmetries and unfixed gauge transformations. We will show that

the further addition of QΨgf does not change the expectation value of any (possibly non-

supersymmetric) operator O with ghost number ng ≤ 0. In particular, physical observables

with ng = 0 are not affected. At this point, we have added δΨgf to the original action. The

real supercharge δ is explicitly preserved because our choice that δ2 contains symmetries

and unfixed gauge transformations implies δ2Ψgf = 0. With this procedure, the number of

preserved supercharges has not changed; while the gauge-fixed action with sΨgf is invariant

under s, the gauge-fixed action with δΨgf is invariant under δ. Its usefulness for computing

the spectrum lies in the fact that At + σ can be redefined by shifting with a quadratic

combination of ghosts such that δ(A′t + σ′) = 0, making the linear term (2.2.20) δ-closed.

By extension, the quadratic action which is modified by the shift is also δ-closed, and its

spectrum is supersymmetric.

In order for δΨgf = (s +Q)Ψgf to be invariant under δ, δ2 should only contain residual

gauge transformations and possibly other symmetries of Ψgf. This condition constrains how

Q can act on fields in the gauge-fixing complex. The supersymmetry transformations of

the physical fields X under Q are given in (2.2.4)-(2.2.5) and (2.2.11)-(2.2.12). Without

8Although the BRST transformations are non-linear in the fields, to have a gauge-invariant spectrum, it

would be enough that the quadratic action be invariant under the linearized transformations.
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specifying how Q acts on the fields Y in the gauge-fixing complex, we find:

Q2X = {Q,Q}X = i
[
∂t − δgauge(At + σ)

]
X , {Q, s}X = δgauge

(
Qc
)
X ,

δ2X = i
[
∂t − δgauge

(
At + σ + iQc−R

)]
X .

(2.2.31)

If we want δ to close on time translations and residual gauge transformations, the only

possibility is to set Qc = i(At + σ)f. Hence, physical fields satisfy the algebra:

δ2X = i
[
∂t − δgauge

(
At,r + σr −R

)]
X . (2.2.32)

Having fixed Qc, we find that c also satisfies (2.2.32) and specifically

Q2c = 0 , {Q, s}c = i
[
∂t − δgauge(At,r + σr)

]
c , (2.2.33)

which imply (2.2.32). For uniformity, we demand that (2.2.33) is satisfied on all fields Y

in the gauge-fixing complex. Setting Qc̃ = 0 for simplicity, we find that this fixes Qb and,

altogether, Q acts on the fields in the gauge-fixing complex as:

Q c = i(At + σ)f , Q c̃ = 0 , Q b =
[
∂t − δgauge(At,r + σr)

]
c̃ . (2.2.34)

Given Ψgf that we defined in (2.2.29), we can now determine

QΨgf =
1

e2
3d

Tr

[
i c̃QGgf +

i

2
c̃
(
Dt − iσ

)
c̃

]
, (2.2.35)

where σ acts in the adjoint representation (namely, σc̃ stands for [σ, c̃ ] in matrix notation).

Hence, collecting the contributions from (2.2.26) and (2.2.35), the supersymmetrized gauge-

fixing procedure requires us to add the following terms to the original Lagrangian:

δΨgf =
1

e2
3d

Tr

[
b2

2
+ b
(
Ggf − {c̃, c}

)
+ i c̃

(
δgauge(c) +Q

)
Ggf +

1

2
{c̃, c}2 +

i

2
c̃
(
Dt − iσ

)
c̃

]
.

(2.2.36)

With the choice that c and c̃ are Hermitian, δΨgf is real.

It is important to note (following [26]) that adding QΨgf to sΨgf does not change the

expectation value of any operators with ng ≤ 0, even if they are not invariant under Q.

In particular, it does not change physical observables. This can be shown explicitly for the

thermal partition function. We first integrate in an adjoint-valued auxiliary field a to rewrite

the quartic ghost interactions, after which the gauge-fixing action becomes:

δΨgf =
1

e2
3d

Tr

[
b2 − a2

2
+ bGgf + c̃

[
a+ b, c

]
+ ic̃

(
δgauge(c)+Q

)
Ggf +

i

2
c̃
(
Dt− iσ

)
c̃

]
. (2.2.37)

Note that a has both gauge-fixed and residual components. Since the full action is quadratic

in the Grassmann fields {Fphys, c, c̃ }, where Fphys is the set of physical fermions, we can
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formally perform the path integral over them, obtaining:

det

 S0|F,F 0 QΨgf|F,c̃
0 0 sΨgf|c,c̃

QΨgf|c̃,F sΨgf|c̃,c QΨgf|c̃,c̃

 ∼ det
(
sΨgf|c,c̃

)
det
(
S0|F,F

)
. (2.2.38)

All entries of the matrix on the l.h.s. are (possibly differential) operators involving the

bosons. This proves that the thermal partition function does not depend on the term QΨgf.

More generally, we prove that the expectation value of any operator O with ghost number

ng ≤ 0 is unchanged by the addition of QΨgf to the Lagrangian. The key property is that

QΨgh is the sum of two terms, of ghost number −1 and −2, respectively. Let 〈·〉s be the

path integral with sΨgf as gauge fixing, and let 〈·〉δ be the path integral with δΨgf as gauge

fixing. We have

〈O〉δ =
〈
O eiQΨgf

〉
s

= 〈O〉s +
∞∑
n=1

(i)n

n!

〈
O (QΨgf)

n
〉
s

= 〈O〉s . (2.2.39)

The last equality holds because ghost number is a symmetry of 〈·〉s, implying null expectation

value for any correlator that has ng 6= 0. Since O (QΨgf)
n has ng < 0, one concludes that

〈O (QΨgf)
n〉s = 0 for every n. For the restricted set of operators O with ng ≤ 0, one can

constrain 〈·〉δ using the symmetries of 〈·〉s. In particular, although both supersymmetry and

U(1)R are not symmetries of 〈·〉δ because QΨgf breaks them, their Ward identities can still

be used to constrain the correlators 〈O〉δ. This result will play a crucial role in Section 2.4.

We can now show how the linear Lagrangian term containing At + σ can be made

δ-invariant using a field redefinition. This is crucial in order to have a reliable and su-

persymmetric spectrum. The linear term (2.2.20) only contains modes (At + σ)r which are

constant on S2, due to the integral over S2. Since At,r + σr − R appears in (2.2.32) as a

central charge, δ(At,r + σr −R) = 0. Therefore, by redefining

A′t,r + σ′r = At,r + σr +
1

2
{c, c}r , (2.2.40)

the linear term (2.2.20) becomes (dropping the ′ on A′t,r + σ′r):

k

4πR2
Tr
(
m (At + σ)

)
+

mk

4R2e2
3d

Tr
(
c [m, c]

)
, (2.2.41)

where m is diagonal and mk was defined in (2.2.19). The first term is invariant under δ,

therefore after adding the second term to the quadratic action, the latter becomes invariant

under δ as well, and the spectrum has to be supersymmetric (i.e., δ-symmetric). Notice that

the newly shifted field At,r + σr is still Hermitian because c is Hermitian.
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2.2.5 Vector multiplet spectrum

We are now ready to compute the spectrum of the (gauge-fixed) vector multiplet action.

We start by considering the off-diagonal components. The Yang-Mills, Chern-Simons, and

gauge-fixing terms are expanded to quadratic order in fluctuations around (2.2.19). After

integrating out the auxiliary fields D and b, the independent components consist of 4 complex

bosons
(
Aij1 , A

ij
t , σ

ij, Aij
1̄

)
and 6 complex fermions

(
Λ
ij

1 ,Λ
ij
t ,Λ

ij

t , c
ij, c̃ ij,Λij

1̄

)
for every i 6= j

such that qij > 0.9 All components are then rescaled by a factor of e3d/R. Moreover Aij1 ,

Aij
1̄

get an extra factor of 1/
√

2, while Λij
1̄

, Λ
ij

1 , Λij
t , Λ

ij

t get an extra factor of
√

2. This is

to ensure that the standard 1d kinetic terms are canonically normalized. After expanding

in monopole harmonics according to Table 2.1 and integrating over S2, the quadratic action

for off-diagonal components in momentum space becomes:∫
dp

2π

∑
i,j | qij>0

∑
l, |m|≤l

(
Bij
l,m(p)MB B

ij
l,m(p) + F ij

l,m(p)MF F
ij
l,m(p)

)
(2.2.42)

where the vectors of bosonic and fermionic fields are, respectively,

Bij
l,m =

(
Aij1,l,m , A

ij
t,l,m , σ

ij
l,m , A

ij
1̄,l,m

)T
,

F ij
l,m =

(
Λ
ij

1,l,m , Λij
t,l,m , Λ

ij

t,l,m , c
ij
l,m , c̃

ij
l,m , Λij

1̄,l,m

)T
.

(2.2.43)

The operators acting on the bosonic and fermionic fields are:

MB =



p(p+mk + 2σ0)− ξ + 1

ξ

s2
−

2R2
−is−(p+mk + σ0)√

2R
−iσ0s−√

2R

1− ξ
ξ

s+s−
2R2

is−(p+mk + σ0)√
2R

s2
0

R2
+ σ2

0 σ0(p+ σ0) −is+(p−mk + σ0)√
2R

iσ0s−√
2R

σ0(p+ σ0) (p+ σ0)2 −m2
k −

s2
0

R2
−iσ0s+√

2R

1− ξ
ξ

s+s−
2R2

is+(p−mk + σ0)√
2R

iσ0s+√
2R

p(p−mk + 2σ0)− ξ + 1

ξ

s2
+

2R2


(2.2.44)

with

σ0 = − qij
mkR2

, s0 =
√
l(l + 1)− q2

ij , s± =
√
l(l + 1)− qij(qij ± 1) =

√
s2

0 ∓ qij
(2.2.45)

9We have chosen to write Aij1 = Aji
1̄

, Λ
ij

1 = Λji
1̄

and Λ
ij

t = Λjit .
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(notice that σ0, s0, and s± depend on ij) and

MF =



−p−mk − 2σ0 −s−
R

0 0 − is−√
2ξR

0

−s−
R

−p+mk 0 0 0 0

0 0 −p−mk 0 0 −s+

R

0 0 0
mkqij
R2

is2
0√
ξR2

0

is−√
2ξR

0 0 − is2
0√
ξR2

−p − is+√
2ξR

0 0 −s+

R
0

is+√
2ξR

−p+mk − 2σ0


. (2.2.46)

For l ≥ qij + 1, all modes exist and are massive. Moreover, the masses of the modes10 from

bosons and fermions are paired thanks to the δ-invariance of the action, and the ratio of

fermionic to bosonic determinants is 1. For l = qij, the modes of Aij
1̄

and Λij
1̄

do not exist

(see Table 2.1), so the rightmost column and the bottom row of the matrices MB, MF should

be removed. In this case, there is a massless fermionic mode while the other massive modes

are paired between bosons and fermions. The ratio of determinants is −p. For l = qij − 1

(this case takes place only if qij ≥ 1), modes only exist in Aij1 and Λ
ij

1 . The bosonic field Aij1
has a massless pole, and a massive pole that cancels with that of Λ

ij

1 .

The effective degrees of freedom at energies much smaller than mk and 1
R

are the massless

fermionic modes with l = qij and the massless modes in Aij1 with l = qij − 1 (if qij ≥ 1). The

identity of the massless fermionic modes is not immediately clear due to the off-diagonal

entries in (2.2.46). We can first rescale the fields cijl,m → Rcijl,m, so that they have the same

mass dimension as the other fermions. Defining the dimensionless ratio α = 1/(mkR) for

convenience, the fermionic kinetic operator above becomes:

MF

∣∣
l=qij

=



−p− (1− 2qijα
2)mk −

√
2qij αmk 0 0 −i

√
qij
ξ αmk

−
√

2qij αmk −p+mk 0 0 0

0 0 −p−mk 0 0

0 0 0 qijmk i
qij√
ξ
αmk

i
√

qij
ξ αmk 0 0 −i qij√

ξ
αmk −p


.

(2.2.47)

By introducing a kinetic term iε cij ∂tc
ij by hand for the fermion cij, the problem of finding

mass eigenstates is reduced to the usual problem of diagonalizing a mass matrix. Taking

ε → 0 at the end of the computation, we obtain the desired SL(5,C) transformation that

10The counting of modes works as follows. A complex field with 2-derivative kinetic term gives two modes,

with only 1-derivative kinetic term gives one mode, whereas with no kinetic term gives no modes.
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diagonalizes (2.2.47):

S =



− A−√
8q2
ijα

4ξ + A2
− +B2

−

− A+√
8q2
ijα

4ξ + A2
+ +B2

+

0 0
α√

ξ + qijα2 + 2q2
ijα

4

B−√
8q2
ijα

4ξ + A2
− +B2

−

B+√
8q2
ijα

4ξ + A2
+ +B2

+

0 0

√
2α2√

ξ + qijα2 + 2q2
ijα

4

0 0 1 0 0

− 2
√

2ξqijα
3√

8q2
ijα

4ξ + A2
− +B2

−

− 2
√

2ξqijα
3√

8q2
ijα

4ξ + A2
+ +B2

+

0 −i
√

ξ
qij

√
ξα√

ξ + qijα2 + 2q2
ijα

4

− i2
√

2qijα
2√

8q2
ijα

4ξ + A2
− +B2

−

− i2
√

2qijα
2√

8q2
ijα

4ξ + A2
+ +B2

+

0 0
i√

ξ + qijα2 + 2q2
ijα

4



,

(2.2.48)

where we have defined

A± =
√

2qijα

(
qijα

2 (1 + 2ξ)±
√
q2
ijα

4 (1 + 2ξ)2 + 4ξ(qijα2 + ξ)

)
B± = 2ξ + qijα

2 (1 + 2ξ)±
√
q2
ijα

4 (1 + 2ξ)2 + 4ξ(qijα2 + ξ) .

(2.2.49)

The resulting fermionic kinetic operator is

S†MF

∣∣
l=qij

S =


−p− λ+mk 0 0 0 0

0 −p− λ−mk 0 0 0

0 0 −p−mk 0 0

0 0 0 mk 0

0 0 0 0 −p

 (2.2.50)

with

λ± =
qij α

2 (1− 2ξ)±
√
q2
ij α

4(1 + 2ξ)2 + 4ξ
(
qij α2 + ξ

)
2ξ

. (2.2.51)

Each row of the matrix S expresses an original fermion in terms of the mass eigenstates. The

linear combinations are generically complicated, but they simplify in the physical regime of

interest. Since we want to reduce a Chern-Simons-matter theory on S2, and the Yang-Mills

term was only introduced to make propagating gauge degrees of freedom massive, we are

motivated to take mk � 1
R

or α→ 0. In this limit, the massless fermion at l = qij is −i
√
ξ c̃

(last row of S), and λ± → ±1.

The spectrum of the diagonal components can be analyzed in the same way and we will

be brief. One finds that every mode is massive for l > 0. After integrating out the l = 0

mode of the auxiliary fields Di, the quadratic Lagrangian (including the linear terms) for

the remaining diagonal l = 0 modes is:∑
i

{
kmi

(
Ait,0,0+σi0,0

)
+

4πR2

e2
3d

[
1

2

(
∂tσ

i
0,0

)2−1

2
m2
k

(
σi0,0
)2

+
1

2
Λ
i

t,0,0

(
i∂t+mk

)
Λi
t,0,0

]}
. (2.2.52)
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We observe that σi0,0 and Λi
t,0,0 have mass mk and should be integrated out at low energies

p � mk. Only the combination
(
Ait,0,0 + σi0,0

)
remains, which is a 1d gauge field for the

gauge group U(1)N .11

To summarize, we write the quadratic Lagrangian for the modes from the vector multiplet

that contain massless poles, including fermionic partners which are necessary for supersym-

metry. After having rescaled A1̄ and Λ1̄ by m
−1/2
k we have:

k
∑
i

mi (A
i
t + σi) +

∑
i 6=j

{
Θ(qij − 1)

∑
|m|≤qij−1

[
Aji

1̄,qij−1,m
i∂tA

ji
1̄,qij−1,m

+ Λji
1̄,qij−1,m

Λji
1̄,qij−1,m

+
1

mk

(∣∣∣∂tAji1̄,qij−1,m

∣∣∣2 + Λji
1̄,qij−1,m

i∂t Λji
1̄,qij−1,m

)]
+ Θ(qij)

∑
|m|≤qij

(
c̃ ijqij ,m i∂t c̃

ij
qij ,m

)}
(2.2.53)

where Θ(n) = 1 for n ≥ 0 and it vanishes otherwise. Here we have changed notation, and

used the fields
(
Aji

1̄
,Λji

1̄

)
in place of Aij1 , Λ

ij

1 because the former live in a chiral multiplet, see

(2.2.5), while the latter in an anti-chiral multiplet. Besides, notice that there are matching

degrees of freedom in Aji
1̄

and Λji
1̄

with mass mk, which should not be included in the effective

theory at energies p� mk. These modes are encoded in the term proportional to 1/mk and

can be integrated out by neglecting that kinetic term. The workings are explained in [143].

The quadratic Lagrangian for the massless modes is then:12

k
∑
i

mi (A
i
t + σi) +

∑
ij

{
Θ(qij − 1)

∑
|m|≤qij−1

(
Aji

1̄,qij−1,m
i∂tA

ji
1̄,qij−1,m

+

+ Λji
1̄,qij−1,m

Λji
1̄,qij−1,m

)
+ Θ(qij − 1

2
)
∑
|m|≤qij

c̃ ijqij ,m i∂t c̃
ij
qij ,m

}
. (2.2.54)

The bosons Aji
1̄

and the fermions c̃ ij have a 1-derivative action, while the fermions Λji
1̄

are

auxiliary.

2.2.6 Matter spectrum

To find the spectrum of modes coming from the 3d chiral multiplets, we expand the chiral

multiplet Lagrangian (2.2.15) to quadratic order in fluctuations around (2.2.19). All fields

in the chiral multiplet are rescaled by 1
R

. After expanding in monopole harmonics according

11In other words, in the language of Appendic I, we find that the superfield V − is massive, while Ω stays

light and enforces gauge-invariance.
12Using the assumption that qij 6= 0 for i 6= j, we have substituted Θ(qij) → Θ(qij − 1

2 ) in (2.2.53), and

consequently we have substituted
∑
i 6=j →

∑
ij .
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to Table 2.1 and integrating over S2, the quadratic action in momentum space is:

∫
dp

2π

∑
a

∑
i,j

∑
l, |m|≤l

{[
p(p+ 2σ0)−

s2
+,a

R2

]∣∣φija,l,m(p)
∣∣2 +

∣∣f ija,l,m(p)
∣∣2 +

+
(
ψija,l,m(p) , ηija,l,m(p)

)(−p− 2σ0
s+,a
R

s+,a
R

−p

)(
ψija,l,m(p)

ηija,l,m(p)

)}
(2.2.55)

where

σ0 = −qijα2mk ≡ −
mσ

2
, s±,a ≡

√
l(l + 1)− qaij(qaij ± 1) . (2.2.56)

For l ≥ |qaij| + 1, all modes exist (see Table 2.1) and are massive. Moreover, the masses of

bosons and fermions are paired and the ratio of determinants is 1. The modes with l = |qaij|
exist in all fields if qaij ≤ −1

2
, whereas they only exist in φija and ψija if qaij ≥ 0. In the

former case, all modes are massive. In the latter case, the field φija has a massless pole, and

a massive pole that cancels with that of ψija . Provided that qaij ≤ −1, there exist modes with

l = |qaij| − 1 = −qija − 1 in ηija and f ija , such that ηija is massless while f ija is auxiliary.

To summarize, the quadratic Lagrangian for modes which contain massless poles, and

that of their supersymmetry partners is∑
ij, a

{
Θ(qaij)

∑
|m|≤qaij

[
mij
σ

(
φija,qaij ,m i∂t φ

ij
a,qaij ,m

+ ψija,qaij ,m ψ
ij
a,qaij ,m

)
+
∣∣∣∂tφija,qaij ,m∣∣∣2 + (2.2.57)

+ ψija,qaij ,m i∂t ψ
ij
a,qaij ,m

]
+ Θ(−qaij − 1)

∑
|m|≤−qaij−1

(
ηija,−qaij−1,m i∂t η

ij
a,−qaij−1,m +

∣∣f ija,−qaij−1,m

∣∣2)} ,
where the i, j dependence of mσ was made explicit. At low energies p� mij

σ , the quadratic

kinetic term of φija,qaij ,m and the kinetic term of ψija,qaij ,m can again be neglected. Note that

qaij ≥ 0 does not exclude the possibility that i = j, in which case mij
σ = 0. We might also

have mij
σ → 0 as α → 0.13 In either case, all of φija,qaij ,m and ψija,qaij ,m would be classically

massless. However, quantum effects would still generically generate supersymmetric mass

terms like

mij
σ(q)

(
φija,qaij ,m i∂t φ

ij
a,qaij ,m

+ ψija,qaij ,m ψ
ij
a,qaij ,m

)
, (2.2.58)

whose superspace expression is (I.5.12). At scales p � mij
σ(q), the quadratic kinetic term of

φija,qaij ,m and the kinetic term of ψija,qaij ,m would still be negligible. Therefore, rescaling φija,qaij ,m

and ψija,qaij ,m by 1/(mij
σ )1/2 (including quantum corretions), the resulting quadratic effective

13Indeed mσ ∼ α2mk ∼ α/R, therefore its scaling is not fixed by the choices we already made.

61



Lagrangian is:∑
ij, a

[
Θ(qaij)

∑
|m|≤qaij

(
φija,qaij ,m i∂t φ

ij
a,qaij ,m

+ ψija,qaij ,m ψ
ij
a,qaij ,m

)
+ (2.2.59)

+ Θ(−qaij − 1)
∑

|m|≤−qaij−1

(
ηija,−qaij−1,m i∂t η

ij
a,−qaij−1,m +

∣∣f ija,−qaij−1,m

∣∣2)] .

2.3 The effective Quantum Mechanics

In this section we present the proposed low-energy quantum mechanical model, which is

the result of setting to zero all massive modes in the gauge-fixed 3d Lagrangian while only

keeping the light modes.

The gauge group is U(1)N and the vector multiplet only contains the gauge fields Ait+σi,

with i = 1, . . . , N .14 Their role is to impose Gauss’s law. Because of the Wilson line of

charges kmi, coming from the 3d Chern-Simons term, Gauss’s law projects onto a sector of

non-vanishing gauge charges.

The matter content consists of various chiral and Fermi multiplets X ij with charges +1

under U(1)i ⊂ U(1)N and −1 under U(1)j. They interact with the gauge fields via the

covariant derivative

D+
t X

ij =
(
∂t − i

(
Ait + σi − Ajt − σj

))
X ij . (2.3.1)

The matter content depends on the fluxes mi and na through the combinations qij and qaij
defined in (2.2.24). For every pair of indices ij, from the 3d vector multiplet we get the

following matter multiplets. If qij ≤ −1, there are 1d chiral multiplets Ξij
1̄,m

=
(
Aij

1̄,m
,Λij

1̄,m

)
in the SU(2) representation of highest weight l = −qij − 1. Otherwise, if qij ≥ 1

2
, there are

1d Fermi multiplets Cij
m =

(
c̃ ijm , g

ij
m

)
with l = qij. Here we introduce the auxiliary fields gijm,

even though they are not present in the 3d theory, in order to make off-shell supersymmetry

manifest. From the 3d chiral multiplet with flavor index a, we get 1d chiral multiplets Φij
a,m =(

φija,m, ψ
ij
a,m

)
with l = qaij if qaij ≥ 0, and otherwise 1d Fermi multiplets Y ija,m =

(
ηija,m, f

ij
a,m

)
with l = −qaij − 1 if qaij ≤ −1. We summarize this content in Table 2.2, where we also list

the representations and charges of each multiplet under the global symmetries SU(2), U(1)2
F

and U(1)R.

In addition to gauge-interactions, other interactions are specified by E and J superpo-

tentials. We have as many E and J functions as there are Fermi multiplets. For a given

Fermi multiplet η, E is in the same gauge and flavour representation as η, and its R-charge

14In Wess-Zumino gauge, the only non-vanishing component of the superfield V (or equivalently of Ω) is

At + σ. See Appendix I.3.
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Aij
1̄,m

c̃ ijm φija,m ηija,m

chiral Fermi chiral Fermi

existence: qij ≤ −1 qij ≥ 1
2

qaij ≥ 0 qaij ≤ −1

l |qij| − 1 qij qaij |qaij| − 1

R3 0 0 2δ3a 2δ3a − 1

q1 0 0 δ1a − δ3a δ1a − δ3a

q2 0 0 δ2a − δ3a δ2a − δ3a

Table 2.2: Matter multiplets (we indicate the bottom components) for indices ij and their

representations under the global symmetries. We label the SU(2) representation by the

highest weight l ∈ Z/2. The charges of the lowest components in each multiplet are indicated,

while their superpartners have R-charges R3 which are shifted by −1.

is R(η) + 1. On the contrary, J is in the dual gauge and flavor representation with respect

to η, and its R-charge is −R(η) + 1. We find that the E and J functions are zero for the

Fermi multiplets c̃ ijm . For the Fermi multiplets ηija,m, the E and J superpotentials are:

Eij
a,m = i

∑
k

[
Θ(qakj)

∑
|m′|≤qakj

ekj1d
√

2qakj+1 C
( |qik|−1 qakj |q

a
ij |−1

m−m′ m′ m

)
Aik1̄,m−m′ φ

kj
a,m′ (2.3.2)

−Θ(qaik)
∑
|m′|≤qaik

eik1d

√
2qaik+1 C

( |qkj |−1 qaik |q
a
ij |−1

m−m′ m′ m

)
φika,m′ A

kj
1̄,m−m′

]
,

J jia,−m = −
∑
b,c,k

εabc Θ(qbjk) Θ(qcki)× (2.3.3)

×
∑
|m′|≤qbjk
|m+m′|≤qcki

λjki1d

[
(2qbjk+1)(2qcki+1)

2|qaij |−1

] 1
2

(−1)
−qaij−1−m C

( qbjk qcki |qaij |−1

m′ −m−m′ −m

)
φjkb,m′ φ

ki
c,−m−m′ ,

where C
(
l l′ l′′

m m′ m′′

)
are the Clebsch-Gordan coefficients given in (H.0.20) and we defined

eij1d =
1

R
√
kmij

σ

, λijk1d =
λ3d

R
√

4πmij
σ m

jk
σ

. (2.3.4)

The sign (−1)−q
a
ij−1−m in the J-term is necessary for SU(2) invariance. Given that the term

Eij
a in (2.3.2) exists for qaij ≤ −1, the condition qakj ≥ 0 in the first line guarantees that Aij

1̄

and φkja both exist, and the condition qaik ≥ 0 in the second line guarantees that φika and Akj
1̄

both exist. Also, the term J jia in (2.3.3) exists for qaij ≤ −1, which is guaranteed by the two

conditions qbjk ≥ 0, qcki ≥ 0 on the r.h.s.. The E-term comes from the reduction of (2.2.14)

whereas the J-term from the reduction of the 3d superpotential (2.1.10). One can check, by
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substituting (H.0.22) and relabeling indices, that∑
ij, a

Θ
(
−qaij − 1

) ∑
|m|≤−qaij−1

Eij
a,m J

ji
a,−m = 0 , (2.3.5)

which is required for supersymmetry. The couplings e1d and λ1d are obtained by tree-level

matching.

The complete Lagrangian in terms of the E and J given above is:

LQM = k
∑
i

mi

(
Ait + σi

)
+
∑
ij

{
Θ(qij − 1)

∑
|m|≤qij−1

(
Aji

1̄,m
iD+

t A
ji
1̄,m

+ Λji
1̄,m

Λji
1̄,m

)
(2.3.6)

+ Θ(qij−1
2
)
∑
|m|≤qij

(
c̃ ijm iD+

t c̃
ij
m +

∣∣gijm∣∣2)+
∑
ij, a

{
Θ(qaij)

∑
|m|≤qaij

(
φija,m iD

+
t φ

ij
a,m + ψija,m ψ

ij
a,m

)
+ Θ(−qaij − 1)

∑
|m|≤−qaij−1

(
ηija,m iD

+
t η

ij
a,m +

∣∣f ija,m∣∣2 − ∣∣Eij
a,m

∣∣2 − ηija,mQEij
a,m −QE

ij
a,m η

ij
a,m

− f ija,mJ
ji
a,−m − J

ji
a,−m f ija,m − ηija,mQJ

ji
a,−m −QJ

ji
a,−m ηija,m

)}
,

where i, j = 1, . . . , N , while a = 1, 2, 3. Note that both bosons and fermions have 1-derivative

kinetic terms. The Lagrangian can be more compactly written in superspace:

LQM =

∫
dθdθ̄

{
k
∑
i

miV
i +
∑
ij

[
Θ(qij − 1)

∑
|m|≤qij−1

Ξji
1̄,m

Ξji
1̄,m

+ Θ(qij−1
2
)
∑
|m|≤qij

Cij
m C

ij
m

]

+
∑
ij, a

[
Θ(qaij)

∑
|m|≤qaij

Φij
a,m Φij

a,m + Θ(−qaij − 1)
∑

|m|≤−qaij−1

Y ija,m Y ija,m
]}

+
∑
ij, a

Θ(−qaij − 1)
∑
|m|≤qaij

{∫
dθ Y ija,m J

ji
a,−m(Φ) +

∫
dθ̄ Y ija,m J jia,−m(Φ)

}
. (2.3.7)

Here we promoted the scalar fields in J to be chiral superfields.

After gauge fixing by sΨgf, the observables of the 3d theory are the BRST-closed operators

which are invariant under the residual gauge symmetry, and have ghost number ng = 0. The

further addition of QΨgf to the Lagrangian does not modify their correlators, see (2.2.39).

When we go to the effective 1d description (2.3.6), the ghost field c is completely integrated

out. Any operator containing c̃ ijm should not be regarded as a physical observable, because it

will have ng < 0. For instance, one might have noticed that the Lagrangian (2.3.6) has a large

number of additional global U(1) symmetries that rotate each c̃ ijm independently. However,

their currents are not physical observables (because they are constructed with c̃ ijm ), and

indeed the symmetries act trivially on the sector of physical observables.15 They should not

15In view of holographic applications of the low-energy quantum mechanics, one should not expect the

extra symmetries to appear as gauge fields in AdS2.
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be regarded as emergent symmetries of the physical theory. On the other hand, all operators

constructed from the fields of the low-energy 1d description other than c̃ ijm and invariant

under U(1)N , are physical observables. This is because the BRST transformations of the

physical fields X are sX = δgauge(c)X, but c is massive and set to zero in the low-energy

description.

2.3.1 1-loop determinants and the Witten index

A simple check that we can perform of the proposed 1d quantum mechanics (2.3.7) is that

its Witten index matches the TT index of the 3d theory, at leading order at large N . This

ensures that its ground-state degeneracy reproduces the entropy of BPS black holes.

The Witten index of an N = 2 supersymmetric quantum mechanics is defined in exactly

the same way as the TT index in (2.1.15). In the Lagrangian formulation, the chemical

potentials ∆a are introduced as twisted boundary conditions on the fields. For a class of

these models, the Witten index has already been computed in [139] (see also [144,145]), and

it takes the form of a Jeffrey-Kirwan contour integral as in (2.1.16). We want to make sure

that the quantum mechanics (2.3.7) reproduces the integrand in (2.1.16) for the value of mi

singled out by the saddle-point approximation.

After fixing the 1d gauge ∂t
(
Ait + σi

)
= 0, the Wilson line gives a classical contribution

exp
(
i
∑

i kmiui
)
, where u is the constant mode of the Wick-rotated At + σ. The chirals Ξ1̄

and Fermi’s C coming from the 3d vector multiplet contribute to the 1-loop determinant as

ZΞ1̄
=
∏
i 6=j

(
ei uij/2

1− eiuij

)Θ(−qij−1) (−2qij−1)

, ZC =
∏
i 6=j

(
eiuij − 1

ei uij/2

)Θ(qij) (2qij+1)

, (2.3.8)

where uij = ui − uj. The exponents come from the 2l + 1 degeneracy in each SU(2) repre-

sentation of highest weight l, and the Θ functions ensure that nontrivial contributions only

enter when the multiplets exist. Recalling that qij 6= 0 for i 6= j, their product simplifies:

ZΞ1̄
ZC = (−1)

N(N−1)
2

∏
i 6=j

(
1− zi

zj

)
, (2.3.9)

where zi = eiui . The result above matches (up to an inconsequential sign) the 1-loop de-

terminant of a 3d vector multiplet given in [28] and appearing in (2.1.16).16 As opposed

16The 1-loop determinant of a Fermi multiplet has a sign ambiguity coming from the assignment of fermion

number to states in the fermionic Fock space. We have fixed this ambiguity in a specific way to get (2.3.9).

Additional signs might appear if a different convention is chosen. Notice, for example, the different choice

with respect to (2.3.10).
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to the indirect Higgsing argument which was used in [28], the result here provides an ex-

plicit derivation based on a careful gauge-fixing procedure. This computation shows that the

ghost multiplet Cij appearing in the quantum mechanics is needed to reproduce the correct

degeneracy of BPS states. Lastly, the chirals Φa and Fermis Ya coming from the 3d chiral

multiplets contribute to the 1-loop determinant as

ZΦa =
∏
i,j

(
ei(uij+∆a)/2

1− ei(uij+∆a)

)Θ(qaij) (2qaij+1)

, ZYa =
∏
i,j

(
1− ei(uij+∆a)

ei(uij+∆a)/2

)Θ(−qaij−1) (−2qaij−1)

.

(2.3.10)

Their product is

ZΦaZYa =
∏
i,j

(
ei(uij+∆a)/2

1− ei(uij+∆a)

)2qaij+1

=
y
N2(na+1)/2
a

(1− ya)N(na+1)

∏
i 6=j

(
zi − yazj
zj − yazi

)mi(
1− ya

zi
zj

)−na−1

.

(2.3.11)

The complete integrand is thus

Ztot = eik
∑
i miui ZΞZC

∏
a

ZΦa ZYa , (2.3.12)

matching the integrand in (2.1.16). This guarantees that a large N saddle-point computation

of the 3d TT index matches a saddle-point computation of the 1d Witten index.

2.4 Stability under quantum corrections

The gauge-fixing action δΨgf preserves the real supercharge δ, U(1)2
F , and SU(2). We first use

the δ invariance of the full action to show that the fermion c̃ijm only has gauge-interactions.

This allows us to focus on fields other than c̃ijm. Although the gauge fixing breaks Q, Q and

U(1)R, we will then give arguments for why they should be preserved in the effective action.

The key observation will be (2.2.39). Finally, we will use all the symmetries Q, Q, U(1)2
F ,

U(1)R and SU(2) to argue for the absence of various interactions.

2.4.1 Interactions involving c̃

Using the fermionic symmetry δ, we can argue that the part of the Lagrangian involving

the fermions c̃ ijm cannot be anything other than (2.3.6) at low energies. Let 〈·〉δ denote the

gauge-fixed path integral, as in (2.2.39). For i, j such that qij > 0, we consider the quantity〈
c̃ ijm (t)D+

t c̃
ij
m (t′)

〉
δ

=
〈
c̃ ijm (t) δbijm(t′)

〉
δ
−
〈
c̃ ijm (t) δgauge(R) c̃ ijm (t′)

〉
δ
≈
〈
c̃ ijm (t) δbijm(t′)

〉
δ
.

(2.4.1)
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Here bijm is the l = qij mode of the auxiliary field b in the gauge-fixing complex. In the first

equality we used (2.2.27) and (2.2.34). The approximate equality ≈ only holds in the IR

limit because the term that was discarded is a correlation function involving massive ghosts

c in R = −1
2
{c, c}r, which is exponentially suppressed at large t− t′. We continue using the

Leibniz rule on δ and the fact that δ-exact correlators vanish, to write〈
c̃ ijm (t) δbijm(t′)

〉
δ

= −
〈
δc̃ ijm (t) bijm(t′)

〉
δ

= i
〈
bijm(t) bijm(t′)

〉
δ
. (2.4.2)

The path integral over bijm is quadratic and can be done exactly, yielding〈
c̃ ijm (t)D+

t c̃
ij
m(t′)

〉
δ
≈ i
〈
bijm(t) bijm(t′)

〉
δ

= −δ(t− t′) + i
〈
OH(t)OH(t′)

〉
δ
≈ −δ(t− t′) , (2.4.3)

where

OH =

√
qij
ξR2

Aij1,qij ,m −
e3d

R
{c̃, c}ijl=qij ,m . (2.4.4)

The expression {c̃, c}ijl=qij ,m stands for the
(
l = qij,m

)
mode of {c̃, c}ij. Both terms inside OH

contain massive fields only, therefore
〈
OH(t)OH(t′)

〉
δ

is exponentially suppressed at large

distances and the approximation holds to increasing accuracy in the IR. Using only symmetry

arguments for δ, we have shown that c̃ ijm must satisfy the Schwinger-Dyson equation derived

from (2.3.6) in the IR limit. Any modification of (2.3.6) containing c̃ ijm would change the

Schwinger-Dyson equation, and can thus be excluded.

2.4.2 Presence of N = 2 supersymmetry and R-symmetry

Having taken care of c̃ ijm , we want to constrain the effective Lagrangian for the remaining

fields. Here we show that in the IR it must preserve 1d N = 2 supersymmetry and U(1)R,

even though these symmetries are broken by the gauge-fixing term δΨgf.

First, we show that the Ward identities for the supercharges Q and Q are satisfied on

correlators O constructed from 1d fields excluding c̃ ijm , which are modes of physical fields

in 3d. More precisely, we show that 〈QO〉δ ≈ 0 (and analogously for Q). As before,

approximate equalities ≈ hold in the IR limit. Firstly, since O is constructed from modes

of physical fields, it has ng = 0, and the same goes for QO. Then (2.2.39) tells us that

〈QO〉δ = 〈QO〉s. It remains to show that 〈QO〉s ≈ 0.

We then follow the standard procedure to derive a Ward identity. In the path integral

〈O〉s we perform a field redefinition X ′ = X + εQX on physical fields X in the form of

a supersymmetry transformation, while keeping the fields Y in the gauge-fixing complex

unchanged. Let Sph be the original action before gauge fixing. At first order in ε we get

〈O〉s =

∫
Dφ O ei(Sph+sΨgf) =

∫
Dφ

(
O + εQO

)
ei(Sph+sΨgf)−iε sQΨgf

= 〈O〉s + ε
(
〈QO〉s − i〈O sQΨgf〉s

)
+ . . .

(2.4.5)
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Suppose that O is fermionic so that 〈QO〉s ≈ 0 is a non-trivial statement. At order ε, that

equality implies

〈QO〉s = i〈O sQΨgf〉s = i
〈
(sO) (QΨgf)

〉
s

= i
〈(
δgauge(c)O

)
(QΨgf)

〉
s
≈ 0 . (2.4.6)

We used that
〈
s(OQΨgf)

〉
s

= 0 because the action Sph + sΨgf is s-closed. In the last step, c

is massive and therefore its correlators vanish in the IR. We can now use (2.2.39) to conclude

that 〈QO〉δ = 〈QO〉s ≈ 0.

The Ward identity for U(1)R can be derived with much less work. Any O built out of 1d

fields excluding c̃ ijm has ng = 0, and 〈O〉δ = 〈O〉s by (2.2.39). Since sΨgf is U(1)R invariant,

〈O〉s = 0 if O has nonzero R-charge. Therefore 〈O〉δ = 0 if O has nonzero R-charge.

Given the above Ward identities, any effective action in the IR should have 1d N = 2

supersymmetry and U(1)R symmetry. For U(1)R, we can see this in the following way (the

argument for supersymmetry is analogous). Formally, the exact effective action for the fields

in the quantum mechanics is given by

ei(S0+
∑
r 6=0 Sr) =

∫
DφH ei(Sph+δΨgf) , (2.4.7)

where Sr, r ∈ Z are pieces of the effective action with R-charge r, and φH are the massive

fields which are integrated out. Note that the U(1)R violating pieces Sr 6=0 can in principle be

generated because δΨgf breaks U(1)R. However, the presence of any Sr 6=0 would generically

violate the U(1)R Ward identity. Indeed, suppose Sr is present for some r 6= 0 and consider

an operator O with R-charge −r which is constructed out of the fields φL in the quantum

mechanics excluding c̃ ijm . The Ward identity tells us that 〈O〉δ = 0. However, computing

〈O〉δ directly gives:

〈O〉δ =

∫
DφL O ei(S0+Sr) =

∞∑
n=0

in

n!

∫
DφL O Snr eiS0 = i

∫
DφL O Sr eiS0 6= 0 . (2.4.8)

We used that S0 is U(1)R invariant, whileO andOSn≥2
r have nonzero R-charge. The operator

OSr has zero R-charge and its expectation value is generically nonzero.

2.4.3 Symmetry constraints

We can use U(1)R, Q, and Q, together with the other symmetries, to constrain the inter-

actions that could appear in the effective action. We work within the framework of [139]

(see also [146]), where the interactions in an N = 2 supersymmetric quantum mechanics are

specified by E and J functions, i.e., holomorphic functions of chiral superfields satisfying
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(2.3.5). The argument in Section 2.4.1 tells us that the E and J functions corresponding to

C must vanish in the IR:

Eij
C,m = 0 , J jiC,−m = 0 . (2.4.9)

Besides, C cannot appear in the E- and J-terms of the other Fermi multiplets Ya. Since it is

already true classically that DYa 6= 0 for every Ya, one expects that Ya’s cannot appear in

E or J functions, because quantum corrections would need to be finely tuned to make them

chiral. Therefore, E and J functions can only be holomorphic functions of Φa and Ξ1̄.

Let us neglect gauge charges and SU(2) invariance momentarily, and suppress the cor-

responding indices. To have the same U(1)2
F charges as Ya and R-charge R(Ya) + 1, the E

function corresponding to Ya must have the simple form

Ea ∼ Φa hE(Ξ1̄) , (2.4.10)

where hE is a holomorphic function. Fleshing out the gauge and SU(2) indices, we enforce

that Eij
a,m have the same gauge charges and be in the same SU(2) representation as Y ija,m.

Imposing those conditions on the constant term in hE, we get Eij
a,m ∼ Φij

a,m. However, such

a term is impossible because Y ija,m (and therefore Eij
a,m) exists when qaij ≤ −1, while Φij

a,m

exists when qaij ≥ 0. The two conditions are mutually exclusive.17 We remain with terms in

hE which are at least linear in Ξ1̄. Writing the first term explicitly, we find:

Eij
a,m =

∑
k

eija,k Θ(qakj)
∑
|m′|≤qakj

C
( |qik|−1 qakj |q

a
ij |−1

m−m′ m′ m

)
Ξik

1̄,m−m′ Φ
kj
a,m′

+
∑
k

ẽ ija,k Θ(qaik)
∑
|m′|≤qaik

C
( |qkj |−1 qaik |q

a
ij |−1

m−m′ m′ m

)
Φik
a,m′ Ξ

kj
1̄,m−m′ + . . .

(2.4.11)

The Θ functions are necessary to ensure that the fields Φa and Ξ1̄ exist with their corre-

sponding gauge charges. The Clebsch-Gordan coefficients project the product of Ξ1̄ and Φa

to the same SU(2) representation carried by Eij
a,m, i.e., l = |qaij| − 1. Finally, eija,k and ẽ ija,k

are free coefficients. Analogously, terms of the form Φa(Ξ1)n≥2 should contain a product of

n Clebsch-Gordan coefficients and balanced gauge indices.

When constraining the functions Ja corresponding to Ya, we again start with U(1)2
F and

U(1)R. Now, Ja must have the opposite U(1)2
F charges to Ya, and R-charge −R(Ya) + 1.

Thus Ja must have the form

Ja ∼ Φb Φc hJ(Ξ1̄) , (2.4.12)

where b and c are different flavor indices complementary to a. Again, hJ is a holomorphic

function. We should impose gauge and SU(2) invariance. Expanding hJ as a polynomial in

17Because of this, the chirals and Fermi’s in the quantum mechanics cannot gap each other out through a

dynamically generated E-term.
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Ξ1̄ and writing the first (constant) term explicitly, we have

J jia,−m =
∑
k

[
λjia,k√
2|qaij |−1

Θ(qbjk) Θ(qcki)
∑
|m′|≤qbjk
|m+m′|≤qcki

(−1)
−qaij−1−mC

( qbjk qcki |qaij |−1

m′ −m−m′ −m

)
Φjk
b,m′ Φ

ki
c,−m−m′

+
λ̃jia,k√
2|qaij |−1

Θ(qcjk) Θ(qbki)
∑
|m′|≤qcjk
|m+m′|≤qbki

(−1)
−qaij−1−mC

( qcjk qbki |qaij |−1

m′ −m−m′ −m

)
Φjk
c,m′ Φ

ki
b,−m−m′

]
+ ...

(2.4.13)

The indices b and c above are chosen such that εabc = 1, and the factor 1/
√

2|qija | − 1 was

added for later convenience. Similarly to the E function, there are two unfixed coefficients

λjia,k and λ̃jia,k. Terms of the form ΦbΦc(Ξ1̄)n≥1 should contain a product of n + 1 Clebsch-

Gordan coefficients and gauge indices should be balanced.

Lastly, supersymmetry requires (2.3.5). If we restrict Eij
a,m and J jia,−m to the terms written

explicitly in (2.4.11) and (2.4.13), this condition implies

eija,k λ
ji
a,l + ẽ lkc,i λ

kl
c,j = 0 if εabc = 1 and Θ(qakj) Θ(qbjl) Θ(qcli) = 1

eija,k λ̃
ji
a,l + ẽ lkb,i λ̃

kl
b,j = 0 if εabc = 1 and Θ(qakj) Θ(qcjl) Θ(qbli) = 1 .

(2.4.14)

Note that none of the indices above are summed over. The coefficients in (2.3.2) and (2.3.3)

that we found from the reduction satisfy these equations, but they might not be the unique

choice. The constraint (2.3.5) would also have to be enforced on terms with higher powers

of Ξ1̄, strongly constraining their coefficients.

From classical scaling arguments, we are not able to rule out the presence in (2.4.11)

and (2.4.13) of terms which have higher powers of Ξ1̄. They could be generated both at tree

and at loop level. It would be consistent to neglect those terms if Ξ1̄, which is classically

dimensionless, gained a positive anomalous dimension. This is indeed the case for classically

dimensionless fermions in SYK models such as [127], but it remains to be checked in the

theory discussed here.
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Chapter 3

Future directions

In our work on black hole microstate counting, a crucial ingredient was the Bethe ansatz

formula for the superconformal index [79, 80], which expresses the index as a sum over

solutions to a set of “Bethe ansatz equations” (BAEs). The BAEs were so named because

they bear a striking resemblance to the Bethe equations of an elliptic integrable system. This

is not a coincidence, since we expect that when 4d N = 1 theories are compactified on T 2 to

2d (2, 2) theories, their vacuum equations should match the Bethe ansatz equations of various

integrable systems [147]. This is an instance of the so-called Bethe/gauge correspondence.

The general expectation is that such a correspondence works for any 4d N = 1 theory.

However, given N = 4 SYM or any 4d holographic quiver gauge theory, the corresponding

elliptic integrable systems are unknown. Moreover, no-go theorems recently found in [148]

make it tricky to construct the integrable systems corresponding to chiral toric quivers, as

defined in [148]. It would be interesting to examine whether it is indeed possible to find

the corresponding integrable systems for holographic quiver gauge theories. Perhaps the

framework of integrable systems will give a new perspective on some properties of black hole

microstates.

When it came to checking the large N limit of the 4d superconformal index against the

Bekenstein-Hawking area formula, a limitation was the lack of known black hole solutions in

type IIB supergravity which have AdS5×SE5 asymptotics. In order to perform more thor-

ough and comprehensive tests of AdS/CFT, it would desirable to construct such solutions.

On the other hand, continuing from [39], we would like to compute the thermal partition

function of the quantum mechanics obtained via dimensional reduction. This would allow

us to extract the density of states for near-BPS black holes, which can be compared with

expectations from supergravity such as [64]. We expect that such a computation is possible

even though the theory is strongly coupled, due to simplifications at large N . In particular,

preliminary explorations have suggested that the coupling constants of the theory can be

replaced by gaussian random variables at leading order in N , in a way that is reminiscent of

SYK and similar toy models such as [128].
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Appendix A

Subleading effect of simplifications

A.1 Simplifications of the building block

We want to show that the terms neglected in passing from (1.1.26) to (1.1.27) are subleading

at large N . We will first analyze the effect of dropping the term ω(d − c)/N from the

arguments of the gamma functions, in all those terms with γ 6= δ. We will later estimate the

contribution from the terms with γ = δ that were discarded from the sum.

Defining

f(z) =
Ñ∑
γ 6=δ

log Γ̃

(
z + ω

δ − γ
Ñ

; abω, abω

)
, (A.1.1)

we want to show that ∣∣∣f(z + Cω/Ñ
)
− f(z)

∣∣∣ ≤ O(N logN) , (A.1.2)

where C = (d − c)/ab, z = ∆ + ω
(
d − c + as + br

)
and c, d = 1, . . . , ab, r = 0, . . . , a − 1,

s = 0, . . . , b− 1. Without loss of generality we can assume C > 0, because the case C < 0 is

analogous while C = 0 is trivial. As in [45], we discard the Stokes lines ∆ ∈ Z + Rω except

the point ∆ = 0, because the limit we compute would be singular along those lines anyway.

If ∆ is not on a Stokes line, then the restriction of f to a straight line in the complex plane

passing through the points z and z+ω is a C∞ complex function. In the case ∆ = 0, instead,

we consider the restriction of f to a straight closed segment from z to z + Cω/Ñ and one

can check that f is C∞ along that segment, because for δ 6= γ the segment, suitably shifted,

does not hit zeros nor poles of any of the gamma functions in (A.1.1) (in both cases, f is a

holomorphic function in a neighbourhood of the restricted domain). A complex analogue of

the Mean Value Theorem (MVT) then states that

Re
f
(
z + Cω/Ñ

)
− f(z)

ω
=
C

Ñ
Re f ′

(
z + c̄1ω/Ñ

)
Im

f
(
z + Cω/Ñ

)
− f(z)

ω
=
C

Ñ
Im f ′

(
z + c̄2ω/Ñ

) (A.1.3)
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with c̄1, c̄2 ∈ (0, C). Summing the absolute values, it follows the bound∣∣∣∣∣f
(
z + Cω/Ñ

)
− f(z)

ω

∣∣∣∣∣ ≤ 1

Ñ

(∣∣∣f ′(z + c̄1ω/Ñ
)∣∣∣+

∣∣∣f ′(z + c̄2ω/Ñ
)∣∣∣) (A.1.4)

where we used |C| ≤ 1− 1
ab
< 1. It is therefore sufficient to show that

1

Ñ

∣∣∣f ′(z + c̄ω/Ñ
)∣∣∣ ≤ O(N logN) (A.1.5)

for any c̄ ∈ (0, C). Notice that 0 < c̄ < 1− 1
ab

.

We reason as follows. For ∆ 6∈ Z + Rω, the arguments of the elliptic gamma functions

in (A.1.1) remain at an Ñ -independent distance from the zeros and poles, that in our case

are placed at the points

u0,i = (1 + i)ab ω , u∞,j = (1− j)ab ω for i, j ∈ Z≥1 . (A.1.6)

The orders of the zeros and poles are i and j respectively. The ratio
∣∣Γ̃′/Γ̃∣∣ is bounded on

the range of possible arguments, therefore

1

Ñ

∣∣∣f ′(z + c̄ω/Ñ
)∣∣∣ ≤ Ñ max

t∈[−ab, 3ab−a−b]

∣∣∣∣∣ Γ̃′
(
∆ + tω; abω, abω

)
Γ̃
(
∆ + tω; abω, abω

) ∣∣∣∣∣ = O(Ñ) . (A.1.7)

The case ∆ = 0 is more subtle since, as Ñ grows, the arguments of some of the gamma

functions can get increasingly close to zeros or poles instead of staying at an Ñ -independent

distance, and the Ñ -independent bound above does not apply. This happens when

z = ū0,i ∈ {u0,i, u0,i ± ω} or z = ū∞,j ∈ {u∞,j, u∞,j ± ω} . (A.1.8)

One can easily see that for ∆ = 0, z can range from (1− ab)ω to (3ab− a− b− 1)ω, so that

the problematic points we may approach are the simple zero at u0,1, the simple pole at u∞,1,

and the double pole at u∞,2.

We now introduce a few results for later use. For a meromorphic function g whose zeros

include {zi} of order {mi} and whose poles include {pj} of order {nj}, one can write

g(z) =

∏
i(z − zi)mi∏
j(z − pj)nj

s(z), (A.1.9)

where s(z) is meromorphic with zeros and poles at the remaining zeros and poles of g that

were not included in {zi} and {pj}. Taking the derivative of this expression and computing

g′/g, one finds
g′(z)

g(z)
=
∑
i

mi

z − zi
−
∑
j

nj
z − pj

+ h(z), (A.1.10)
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where h(z) = s′(z)/s(z) is meromorphic with simple poles at the remaining zeros and poles

of g that were not included in {zi} and {pj}. Therefore we can apply (A.1.10) to the

meromorphic function Γ̃ and say that

1

Ñ

∣∣∣f ′(z + c̄ω/Ñ
)∣∣∣ ≤ 1

Ñ

Ñ∑
γ 6=δ

∣∣∣∣∣ Γ̃′
(
z + uc̄γ,δ; abω, abω

)
Γ̃
(
z + uc̄γ,δ; abω, abω

) ∣∣∣∣∣
≤ 1

Ñ

Ñ∑
γ 6=δ

(
1

|z + uc̄γ,δ − 2abω|
+

1

|z + uc̄γ,δ|
+

2

|z + uc̄γ,δ + abω|

)
+ (Ñ − 1)K (A.1.11)

where we defined

uc̄γ,δ = ω
δ − γ + c̄

Ñ
, K = max

t∈[−ab, 3ab−a−b]

∣∣hΓ̃(tω)
∣∣ (A.1.12)

and hΓ̃ is the meromorphic function associated to Γ̃ in (A.1.10). We can bound its value with

an Ñ -independent quantity because it is holomorphic on the range of possible arguments. If

z 6= ū0,1, ū∞,1, ū∞,2, the outlying sums in (A.1.11) will be of order O(Ñ) since z + uc̄γ,δ will

be at least at a distance |ω| away from the zeros and poles. To complete our proof when

z = ū0,1, ū∞,1, ū∞,2, we now need to bound the quantities

Rx =
1

N

N∑
γ 6=δ

1∣∣x+ δ−γ+c̄
N

∣∣ with x = 0,±1 , (A.1.13)

where we wrote N in place of Ñ in order not to clutter the formulae. We recall that

0 < c̄ < 1 − 1/ab. Considering x = 0 first, we reparametrize the sum in terms of δ − γ so

that, after some manipulations, it becomes

R0 =
N−1∑
M=1

(
N −M
M + c̄

+
N −M
M − c̄

)
< 2

N−1∑
M=1

N −M
M − c̄

. (A.1.14)

The summand on the right is a positive decreasing function of M , therefore it can be bound

by its integral:

R0 <
2(N − 1)

1− c̄
+ 2

∫ N−1

1

N − x
x− c̄

dx = O(N logN) . (A.1.15)

To ensure convergence of sums and integrals it is crucial to recall that 1− c̄ > (ab)−1. In a

similar way, for x = +1 we can write

R1 =
N−1∑
M=1

(
N −M

N +M + c̄
+

N −M
N −M + c̄

)
<

N−1∑
M=1

2 = O(N) , (A.1.16)

while for x = −1 we can write

R−1 =
N−1∑
M=1

(
N −M

N −M − c̄
+

N −M
N +M − c̄

)
< 2

N−1∑
M=1

N −M
N −M − c̄

<
2(N − 1)

1− c̄
= O(N) .

(A.1.17)
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It remains to show that the terms we discarded from (1.1.26) when substituting the

condition i 6= j with the condition γ 6= δ give a subleading contribution. These are the

terms in (1.1.26) with γ = δ, whose total contribution is

Φ = Ñ
a−1∑
r=0

b−1∑
s=0

ab∑
c6=d

log Γ̃

(
∆ + ω

d− c
N

+ ω
(
d− c+ as+ br

)
; abω, abω

)
. (A.1.18)

We need to show that this is subleading in the large N limit. We will bound the absolute

value of the summand for all possible c 6= d, r, s and drop the sums since they give an overall

order O(1) factor. After choosing a branch of the logarithm, the phases of Γ̃ can clearly only

give an order Ñ contribution to (the imaginary part of) Φ.

For what concerns the absolute value of Γ̃, reasoning in a very similar way to the γ 6= δ

case discussed above, we see that if ∆ is not on a Stokes line then
∣∣log |Γ̃|

∣∣ is bounded above

by an N -independent quantity and thus Φ is of order O(N). When ∆ = 0, the argument

of Γ̃ can only approach zeros or poles if z = ω
(
d − c + as + br

)
∈ {u0,1, u∞,1, u∞,2}. Using

(A.1.9), we can write

log

∣∣∣∣Γ̃(z + ω
d− c
N

; abω, abω
)∣∣∣∣ = log

∣∣∣∣∣∣
(
z + ω d−c

N
− u0,1

)
sΓ̃

(
z + ω d−c

N

)
(
z + ω d−c

N
− u∞,1

) (
z + ω d−c

N
− u∞,2

)2

∣∣∣∣∣∣ (A.1.19)

where sΓ̃ is a function which is regular at u∞,1, u∞,2 and non-zero at u0,1. We can therefore

bound
∣∣log |sΓ̃|

∣∣ over its possible arguments with an N -independent constant, so that it con-

tributes to Φ at order O(N). When z = u0,1, u∞,1, u∞,2, only one of the factors multiplying

sΓ̃ is of order O(logN) while the other two do not approach zero and can be bounded by an

N -independent constant. Explicitly,

Ñ

∣∣∣∣∣log

∣∣∣∣Γ̃(z + ω
d− c
N

; abω, abω
)∣∣∣∣
∣∣∣∣∣ ≤ 2Ñ

∣∣∣∣∣log

∣∣∣∣ωd− cN

∣∣∣∣
∣∣∣∣∣+O(N) = O(N logN) . (A.1.20)

A.2 SU(N) vs. U(N) holonomies

In what follows, as it is done in Section 1.1 and Section 1.2, in order to parametrize the

SU(N) holonomies uSU we introduce U(N) holonomies uU, constrained by

N∑
i=1

uU
i = 0 . (A.2.1)

With the choice of bases for the Cartan subalgebras of SU(N) and U(N) required to write the

BA operators as in (1.1.12), the relation between the two sets of holonomies when expressing
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a generic element of the Cartan subalgebra of SU(N) is

uU
i = uSU

i for i 6= N , uU
N = −

N−1∑
j=1

uSU
j . (A.2.2)

Note that the holonomies are only defined modulo Z.

The SU(N) superconformal index defined by (1.1.9) contains a sum over {mSU
i } that

picks up (representatives of) solutions to the BAEs whose residue can contribute to the

index, as explained in [79] and made explicit in (1.1.17). Under a shift {mSU
i } of the SU(N)

holonomies, the U(N) holonomies shift by corresponding amounts given by

mU
i = mSU

i , mU
N = −

N−1∑
j=1

mSU
j . (A.2.3)

Given these identifications for the holonomies and shifts, the SU(N) quantities are always

equal to the first N−1 U(N) quantities, so that in the following we will drop the superscripts

SU and U, remembering that u1,...,N−1 and m1,...,N−1 are independent while uN and mN are

determined by (A.2.2) and (A.2.3), respectively.

One might then worry that the choice of {mj} given in (1.1.21) is not allowed, since the

last integer mN there does not satisfy (A.2.3). Specifically, let us choose

mj ∈ {1, . . . , ab} such that mj = j mod ab , for j = 1, . . . , N − 1 , (A.2.4)

so that mN is fixed by (A.2.3) to be a negative integer of O(N). To match with the choice in

(1.1.21), we want to replace this with mN = N mod ab and in {1, . . . , ab}. We will show that

this replacement does not affect the value of Z to leading order in N . This will be done in

two steps. We will first show that the function Z evaluated on a configuration {u1, . . . , uN}
which is obtained from the basic solution by shifting one or more variables ui by multiples of

2abω, is the same as Z evaluated on the basic solution. Using this property, Z is unaltered

if evaluated on the following shifted value of mN :

m̃N ∈ {1, . . . , 2ab} such that m̃N =

(
−

N−1∑
i=1

mi

)
mod 2ab . (A.2.5)

We will then show that the contribution to Z of the single holonomy uN is subleading,

provided m̃N ∈ {1, . . . , 2ab}. Therefore, choosing instead mN = N mod ab and in {1, . . . , ab}
as we did in (1.1.21) does not change Z at leading order in N . This completes the proof.

As shown in [79], when evaluated on solutions to the BAEs, the function Z for a general

semi-simple gauge group is invariant under independent shifts of any gauge holonomy by

abω. This is proven assuming that gauge and global symmetries are non-anomalous. In
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our case, this result only allows us to shift the ui’s while preserving the SU(N) constraint.

This property does not allow us to independently shift the last holonomy uN , since it is

always fixed by the SU(N) constraint. We now show that an independent shift of uN by a

multiple of abω of uN is also an invariance of Z for N = 4 SU(N) SYM, when this function

is evaluated on the basic solution. In order to prove this, one has to use the property

Γ̃
(
u+mabω, aω, bω

)
(A.2.6)

= (−e2πiu)−
ab
2
m2+a+b−1

2
m (e2πiω)−

ab
6
m3+

ab(a+b)
4

m2−a
2+b2+3ab−1

12
m θ0(u, ω)m Γ̃(u, aω, bω)

that was proven in [79], the fact that the U(N) BA operators are periodic modulo ω in the

ui’s, and the explicit form of the basic solution (1.1.20). Applying (A.2.6), we first have that∏
i 6=j

Γ̃
(
uij + ∆ +mabω(δiN − δjN); aω, bω

)
(A.2.7)

= e−πiabm
2(1+2∆)+2πi(a+b−1)m

∑
i uiN+πiab(a+b)m2ω

∏
i

θ0(uNi + ∆, ω)m

θ0(uiN + ∆;ω)m

∏
i 6=j

Γ̃(uij + ∆; aω, bω) ,

and so from (1.1.12), (1.1.18) and (1.1.20) one obtains

Z(ui +mabωδiN ; aω, bω,∆)

=
∏
i

(
θ0(uNi + ∆1, ω) θ0(uNi + ∆2, ω) θ0(uiN , ω) θ0(uiN + ∆1 + ∆2, ω)

θ0(uiN + ∆1, ω) θ0(uiN + ∆2, ω) θ0(uNi, ω) θ0(uNi + ∆1 + ∆2, ω)

)m
Z(ui; aω, bω,∆)

= (−1)m(N−1) e2πimλQ−mN (ui;ω,∆)Z(ui; aω, bω,∆)

= Z(ui; aω, bω,∆) . (A.2.8)

In the steps above we also used the theta function reflection property

θ0(u;ω) = −e2πiu θ0(−u;ω) . (A.2.9)

More generally, we can show that this shift invariance is true for quiver gauge theories,

when Z is evaluated on the basic solution and the chemical potentials uαN are shifted by a

multiple of 2abω simultaneously for all gauge groups SU(N)α. The steps are the same as in

(A.2.8). We should notice that the expression for any particular Lagrange multiplier λα is

more complicated than for N = 4 SYM, but the sum of all Lagrange multipliers is simple:

e2πi
∑G
α=1 λα = (−1)nχ(N−1) , (A.2.10)

where α runs over the G SU(N) gauge group factors and nχ is the number of chiral multiplets

in the theory. Performing these steps one obtains

Z
(
uαi + 2mabωδiN ; aω, bω,∆

)
(A.2.11)

=
e2πi2m

∑G
α=1 λα (−1)−2mG(N−1)+2mab(N−1)(nχ−G)(∏

αQ
α
N(uαi ;ω,∆)

)2m Z(uαi ; aω, bω,∆)

= (−1)2m(G−nχ)(ab+1)(N−1)Z(uai ; aω, bω,∆) = Z(uai ; aω, bω,∆) .
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We now proceed to show that the contribution to Z of a single holonomy ui is subleading,

provided that mi<N ∈ {1, . . . , ab} and mN ∈ {1, . . . , 2ab}. In the building block Ψ defined

in (1.1.22), the contribution of a single holonomy ui consists of the two terms

Φ±i ≡
N∑

j(6=i)

log Γ̃

(
z± ± ω

j − i
N

; abω, abω

)
, (A.2.12)

where we have defined

z± ≡ ∆± ω
(
mj −mi

)
+ ω

(
as+ br

)
. (A.2.13)

In particular, for the case i = N we will use the shift property just proven to substitute mN

with m̃N defined in (A.2.5).

We will now show that Φ±i is subleading. In the case i = N this will allow us to choose

m̃N as in (1.1.21). In order to do this we want to bound the absolute value of the summand

log Γ̃ in Φ±i . What follows will be completely analogous to the argument used to show that

(A.1.18) is subleading. After choosing a branch of the logarithm, the phases of Γ̃ can only

contribute at order O(N) to Φ±i . As before, we exclude Stokes lines and note that for ∆ 6= 0

we can bound
∣∣log |Γ̃|

∣∣ with an N -independent constant so that |Φ±i | = O(N). For ∆ = 0,

z± have the range

z± ∈ {−2ab+ 1, . . . , 4ab− a− b− 1}ω , (A.2.14)

and the argument of Γ̃ may approach zeros or poles when z± = ū0,1, ū0,2, ū∞,1, ū∞,2, ū∞,3,

which are defined in (A.1.8). If this is the case, further inspection is required. Using again

(A.1.9), we can write

log Γ̃

(
z± ± ω

j − i
N

; abω, abω

)
= log

[∏2
m=1

(
z± ± ω j−i

N
− u0,m

)m
sΓ̃

(
z± ± ω j−i

N

)∏3
n=1

(
z± ± ω j−i

N
− u∞,n

)n
]

(A.2.15)

where sΓ̃ is a function that is regular at u∞,1, u∞,2, u∞,3, and non-zero at u0,1, u0,2. This

allows us to bound
∣∣log |sΓ̃|

∣∣ with an N -independent constant, and its contribution to Φ±i is

of order O(N). When z± = ū0,1, ū0,2, ū∞,1, ū∞,2, ū∞,3 the logarithms of the other factors

are either bounded by an N -independent constant, or are of the form

N∑
j 6=i

∣∣∣∣∣log

∣∣∣∣x± j − i
N

∣∣∣∣
∣∣∣∣∣ ≤ (N − 1) logN , (A.2.16)

where x = 0,±1. Notice that the use of the shift property previously proved plays a major

role here. If we tried to apply this argument directly without first shifting mN , we would

have to consider a O(N) number of poles or zeros whose order is also O(N). This would lead

to a O(N3 logN) bound, which is useless. What we did shows that a single Φ±i is of order
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O(N logN) for any choice of the corresponding mi. In particular this allows us to choose

m̃N = N mod ab ∈ {1, . . . , ab} as we do in (1.1.21), without affecting the leading behavior

of the building block Ψ.

A.3 Generic N

Here we generalize the computation done in Section 1.1.1 and consider a generic N which is

not necessarily a multiple of ab. We will exploit many of the arguments in Section A.1. Let

N = abÑ + q, where q ∈ {0, . . . , ab− 1}. We need to examine the leading order contribution

of the building block

Ψ =
a−1∑
r=0

b−1∑
s=0

N∑
i 6=j

log Γ̃

(
∆ + ω

j − i
N

+ ω
(
mj −mi + as+ br

)
; abω, abω

)
. (A.3.1)

As shown in the final part of Section A.2, the contribution to the building block of a single

holonomy ui is subleading. Therefore the contribution of the last q holonomies uabÑ+1, . . . , uN

is also subleading and can be discarded. Now, the sum over i 6= j only goes up to abÑ , and

we can decompose the indices as in (1.1.26). Neglecting the γ = δ terms using the same

argument below (A.1.18), we get

Ψ '
a−1∑
r=0

b−1∑
s=0

Ñ−1∑
γ 6=δ=0

ab−1∑
c,d=0

log Γ̃

(
∆ + ω

δ − γ
Ñ + q

ab

+ ω
d− c
N

+ ω
(
d− c+ as+ br

)
; abω, abω

)
.

(A.3.2)

As in Section A.1, we want to drop ω(d−c)/N in the argument of the elliptic gamma function,

and we can use the same reasoning given there, with the minor change that (A.1.13) takes

the form

R̃x =
1

N + q
ab

N∑
γ 6=δ

1∣∣∣x+ δ−γ+c̄
N+q/ab

∣∣∣ , x = 0,±1 . (A.3.3)

The same bounds as for Rx can be used here, since one can show that

R̃0 = R0 , R̃±1 ≤ R±1 . (A.3.4)
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We can then use (1.1.23), as we did in Section 1.1.1, to change the moduli of the elliptic

gamma function from (abω, abω) to (ω, ω):

Ψ '
a−1∑
r=0

b−1∑
s=0

Ñ−1∑
γ 6=δ=0

ab−1∑
c,d=0

log Γ̃

(
∆ + ω

δ − γ
Ñ + q

ab

+ ω
(
d− c+ as+ br

)
; abω, abω

)

=
a−1∑
r=0

b−1∑
s=0

Ñ−1∑
γ 6=δ=0

log Γ̃

(
∆ + ω

δ − γ
Ñ + q

ab

+ ω
(
1− ab+ as+ br

)
;ω, ω

)

=
1

(ab)2

a−1∑
r=0

b−1∑
s=0

Ñ−1∑
γ 6=δ=0

ab−1∑
c,d=0

log Γ̃

(
∆ + ω

δ − γ
Ñ + q

ab

+ ω
(
1− ab+ as+ br

)
;ω, ω

)
.

(A.3.5)

In the last equality, to make future steps clearer, we added a sum over c, d even though

nothing depends on c and d.

Now in order to get the desired result we trace our steps backwards. First, we will

reintroduce the term ω(d − c)/N into the argument of the elliptic gamma functions. Then

we will add to the sum in (A.3.5) the γ = δ terms to form the sum over i 6= j up to abÑ .

Finally we will add terms containing the last q holonomies uabÑ+1, . . . , uN in order to build

the complete sum up to N . These are the exact same steps we just performed to express

Ψ as in (A.3.5) up to subleading terms, with the only difference being that the moduli of

Γ̃ are now (ω, ω) rather than (abω, abω). Therefore the same arguments can be used, with

only slight modifications involving the number and order of zeros and poles, but since these

are parametrized here by r and s that are N -independent, this is of no consequence. At this

point, Ψ at leading order is

Ψ ' 1

(ab)2

a−1∑
r=0

b−1∑
s=0

N∑
i 6=j

log Γ̃

(
∆ + ω

j − i
N

+ ω
(
1− ab+ as+ br

)
;ω, ω

)
, (A.3.6)

and using the result of [45] (that is our equation (1.1.29)) we obtain

Ψ ' − πiN2

3(aω)(bω)

1

ab

a−1∑
r=0

b−1∑
s=0

B3

(
[∆]′ω + ω

(
as+ br − ab

))
. (A.3.7)

Then, using the property of Bernoulli polynomials (1.1.33), we finally get (1.1.34).
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Appendix B

5d N = 2 Abelian gauged

supergravity

We report here the general form of 5d N = 2 Abelian gauged supergravity with nV vector

multiplets and nH hypermultiplets [111–113].1 The graviton multiplet contains a graviton, a

gravitino and a vector; each vector multiplet contains a vector, a gaugino and a real scalar;

each hypermultiplet contains four real scalars and a hyperino. All fermions are Dirac, but

can conveniently be doubled with a symplectic Majorana condition. We follow the notation

of [150]. We use indices

I, J,K = 1, . . . , nV + 1 , i, j = 1, . . . , nV , u, v = 1, . . . , 4nH (B.0.1)

for the gauge fields AIµ, for the scalars φi in vector multiplets, and for the scalars qu in

hypermultiplets, respectively. The data that define the theory are:

1. A very special real manifold SM of real dimension nV .

2. A quaternionic-Kähler manifold QM of real dimension 4nH .

3. A set of nV +1 Killing vectors on QM compatible with the quaternionic-Kähler struc-

ture (if nH = 0, nV + 1 FI parameters not all vanishing).

The Killing vectors could be linearly dependent or vanish.

The bosonic Lagrangian is given by

8πG
(5)
N e−1L5d =

Rs

2
− 1

2
Gij(φ) ∂µφ

i∂µφj − 1

2
huv(q)DµquDµqv −

1

4
GIJ(φ)F I

µνF
Jµν

+
e−1

48
CIJK ε

µνρσλ F I
µνF

J
ρσA

K
λ − g2V (φ, q) . (B.0.2)

Here G
(5)
N is the 5d Newton constant, e d5x is the spacetime volume form, Rs is the scalar

curvature, F I
µν is the field strength of AIµ, g is a coupling constant, and V is the scalar

potential. Let us explain the other terms.

1A more complete discussion was developed in [149].
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Very special geometry. The scalars φi are real coordinates on the very special real

manifold SM [151]. The latter is specified by the totally symmetric tensor CIJK (which,

controlling also the Chern-Simons couplings, should be suitably quantized) as the submani-

fold

SM =
{
V(Φ) ≡ 1

6
CIJK ΦIΦJΦK = 1

}
⊂ RnV +1 . (B.0.3)

Here ΦI are coordinates on RnV +1, and give rise to “sections” ΦI(φi) on SM. The metrics

GIJ and Gij for vector fields and vector multiplet scalar fields are

GIJ(φ) = −1

2

∂

∂ΦI

∂

∂ΦJ
logV

∣∣∣
V=1

, Gij(φ) = ∂iΦ
I ∂jΦ

J GIJ

∣∣∣
V=1

(B.0.4)

where ∂i ≡ ∂/∂φi. We recognize that G is the pull-back of G from RnV +1 to SM. From

(B.0.3) it immediately follows

CIJK ΦIΦJ∂iΦ
K
∣∣
V=1

= 0 . (B.0.5)

With a little bit of algebra one then obtains a more explicit expression for G:

GIJ = −1

2
CIJKΦK +

1

8
CIKLCJMNΦKΦLΦMΦN

∣∣∣
V=1

. (B.0.6)

It follows that the kinetic term for vector multiplet scalars can also be written as

− 1

2
Gij ∂µφi∂µφj =

1

4
CIJK ΦI∂µΦJ∂µΦK

∣∣∣
V=1

. (B.0.7)

One can define on SM the sections with lower indices:

ΦI ≡
2

3
GIJΦJ

∣∣∣
V=1

=
1

6
CIJKΦJΦK

∣∣∣
V=1

=
1

3

∂V
∂ΦI

∣∣∣
V=1

. (B.0.8)

With simple algebra one can show the following identities:

ΦIΦ
I = 1 , GIJ =

9

2
ΦIΦJ −

1

2
CIJKΦK ,

∂iΦI = −2

3
GIJ ∂iΦ

J , ΦI ∂iΦ
I = ΦI∂iΦI = 0 .

(B.0.9)

In particular, ∂iΦ
I for i = 1, . . . , nV are the tangent vectors to SM in RnV +1 while ΦI is a

1-form orthogonal to SM. Another identity (and similar ones obtained by lowering one or

both of the indices I, J with the metric G) is

Gij ∂iΦI∂jΦ
J = GIJ − 2

3
ΦIΦJ , (B.0.10)

where GIJ is the inverse of GIJ . To prove it, one observes that the tensor on the LHS is the

projector on SM, and then verifies that the expression on the RHS has the same property.
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When the manifold SM is a locally symmetric space, one can find a constant symmetric

tensor CIJK with upper indices such that [111]

CIPQCP (JK CLM)Q =
4

3
δI(J CKLM) . (B.0.11)

With some algebra, it follows that

ΦI =
3

2
GIJΦJ =

9

2
CIJKΦJΦK , GIJ = 2ΦIΦJ − 6CIJKΦK , (B.0.12)

as well as

CIJK =
1

8
GILGJM GKN CLMN . (B.0.13)

Quaternionic-Kähler geometry. The scalars qu are real coordinates on the quaternionic-

Kähler manifold QM with metric huv(q) [152]. For nH ≥ 2,2 this is a 4nH-dimensional Rie-

mannian manifold with holonomy SU(2)×Sp(nH)/Z2. To express this fact, it is convenient

to introduce local “vielbeins” f iA
u with i = 1, 2 (not to be confused with the index i of very

special geometry) in the fundamental of SU(2) and A = 1, . . . , 2nH in the fundamental of

Sp(nH), such that

huv = f iA
u f jB

v εijΩAB , (B.0.14)

where εij and ΩAB are the invariant tensors of SU(2) and Sp(nH), respectively. Regarding

(iA) as a composite index, the inverse of the matrix f iA
u is f u

iA = huvf jB
v εjiΩBA. One can

then construct a locally-defined triplet of almost complex structures

~J v
u ≡ (Jx) v

u = −if iA
u f v

jA (σx) ji (B.0.15)

where x = 1, 2, 3 is in the adjoint of SU(2) and ~σ are the Pauli matrices. The derived triplet

of almost symplectic forms is ~Juv = ~J t
u htv. They are antisymmetric, using that ~σ j

i εjk is

symmetric.3 The almost complex structures automatically satisfy the quaternion relation

(Jx) s
u (Jy) t

s = −δxyδtu + εxyz(Jz) t
u . (B.0.17)

The Levi-Civita connection takes values in su(2) × sp(nH). Calling ω i
uj and ρ A

uB the two

projections, respectively, they are determined by the requirement that f iA
u be covariantly

2The case nH = 1 is special because SU(2)2/Z2
∼= SO(4) and so the holonomy condition does not impose

any constraint on (orientable) Riemannian manifolds. However, supersymmetry requires (B.0.25) which we

can take as the definition of a quaternionic-Kähler manifold of dimension 4. A 4-dimensional space satisfying

(B.0.25) is Einstein with self-dual Weyl curvature.
3Using the fact that a 2× 2 matrix can be expanded in the basis {1, ~σ}, we also find

2f iA
u f v

jA = δvuδ
i
j + i ~J v

u · ~σ
i
j . (B.0.16)
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constant with respect to the full connection:

0 = ∇vf
iA

u + f jA
u ω i

vj + f iB
u ρ A

vB . (B.0.18)

We can alternate between the vector and bispinor notations of SU(2) with4

~ωu = −i ω j
ui ~σ

i
j , ω j

ui =
i

2
~ωu · ~σ j

i . (B.0.20)

The two connections are extracted from (B.0.18) through: ω j
ui δ

B
A+δji ρ

B
uA = −f w

iA ∇uf
jB

w .

From (B.0.18) it immediately follows

∇̃w
~J v
u ≡ ∇w

~J v
u + ~ωw × ~J v

u = 0 . (B.0.21)

In other words, ~J is covariantly constant with respect to its natural SU(2) connection ~ω.

From the integrability condition of (B.0.18) one also obtains (in bispinor and vector nota-

tion):

R s
uv t = R j

uvi f
s

jA f iA
t +R B

uvA f s
jB f jA

t = −1

2
~Ruv · ~J s

t +R B
uvA f s

jB f jA
t , (B.0.22)

where R s
uv t is the Riemann tensor of huv and we defined

R j
uvi ≡ 2∂[uω

j
v]i − 2ω

k
[u|i ω

j
v]k or ~Ruv ≡ 2∂[u~ωv] + ~ωu × ~ωv

R B
uvA ≡ 2∂[uρ

B
v]A − 2ρ

C
[u|A ρ

B
v]C .

(B.0.23)

In particular

R s
uv t

~J t
s = 2nH ~Ruv , (B.0.24)

i.e., the SU(2) field strength ~Ruv is the su(2) projection of the Riemann curvature.

One can prove [153] (see also [152,154]) that SU(2)× Sp(nH) holonomy manifolds with

nH ≥ 2 are automatically Einstein. In fact, they satisfy a stronger property: the Riemann

curvature is the sum of the Riemann tensor of HPnH and of a Weyl part,

Ruvst =
R

8nH(nH + 2)

(
hs[uhv]t + ~Juv · ~Jst − ~Js[u · ~Jv]t

)
+

+
(
f iA
u f jB

v εij
)(
f kC
s f `D

t εk`
)
WABCD . (B.0.25)

4The SU(2) connection satisfies εjmω n
um εni = ω j

ui , in particular ω j
uj = 0, and a similar condition is

satisfied by ρ. This follows from the properties of the Pauli matrices. In going between the vector and

bispinor notation one can use the identities

~σ m
n · ~σ j

i = δjnδ
m
i − εmjεni , ~σ j

i × ~σ
m
` = i

(
~σ m
i δj` − δ

m
i ~σ

j
`

)
. (B.0.19)
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The tensorWABCD is totally symmetric and controls the Weyl curvature, which is contained

in Sp(nH): it gives rise to a traceless (and thus Ricci flat) contribution to the Riemann

curvature. From that expression we obtain

Rvt =
R

4nH
hvt , ~Ruv =

R

4nH(nH + 2)
~Juv . (B.0.26)

The first equation shows that the manifold is Einstein. The second equation shows that the

SU(2) part of the curvature is completely fixed in terms of the triplet of complex structures.

The tensor WABCD expresses the freedom in the Sp(nH) part.

While quaternionic-Kähler manifolds can have any size, local supersymmetry requires5

λ ≡ R

4nH(nH + 2)
= −1 , (B.0.27)

fixing the scalar curvature [152]. Hence the manifold of hypermultiplet scalars is a non-trivial

quaternionic-Kähler manifold with negative scalar curvature.

Isometries and gauging. We consider gaugings of Abelian isometries of the quaternionic-

Kähler manifold QM by the vectors AIµ. The isometries are generated by (possibly vanishing

or linearly dependent) Killing vectors kuI (q) that also satisfy a quaternionic version of the

triholomorphic condition:

hw(u∇v)k
w
I = 0 , ~J w

u (∇wk
v
I )− (∇uk

w
I ) ~J v

w = λ ~J v
u × ~PI . (B.0.28)

The second equation expresses the fact that the derivative of each Killing vector commutes

with the triplet of complex structures, up to a rotation parametrized by the SU(2) sections
~PI . Notice that the LHS can be written, after lowering v, as 2∇̃[u

(
~Jv]sk

s
I

)
, therefore in the

hyper-Kähler case that λ = 0 and the SU(2) bundle is trivial, this reduces to the familiar

condition that the three symplectic forms ~Juv be preserved by the isometries. By taking the

cross product of the second equation in (B.0.28) with ~J u
v we obtain

2nHλ ~PI = ~J v
u ∇vk

u
I . (B.0.29)

This shows that on quaternionic Kähler manifolds, the sections ~PI are completely fixed in

terms of the Killing vectors. With a little bit of work6 we obtain

∇̃u
~PI = ~Juw k

w
I . (B.0.30)

5Had we chosen a canonical normalization for the action of hypermultiplet scalars, the scalar curvature

would be fixed in terms of the Planck mass to λ = −m−2
Pl [152]. This reproduces the fact that the manifold

of hypermultiplet scalars is hyper-Kähler in rigid supersymmetry.
6We take the derivative ∇̃ of (B.0.29), recalling that ~J is covariantly constant. From the algebraic Bianchi

identity we have Ruvst ~J
us = 1

2R
s

vt u
~J u
s = nH ~Rvt = nHλ ~Jvt. Then we use that the vectors are Killing, as

well as the properties of quaternionic-Kähler manifolds.
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This shows that ~PI are a triplet of moment maps for the action of kuI . Taking a derivative

and using that 2∇̃[u∇̃v]
~PI = ~Ruv × ~PI we get back the second equation in (B.0.28), showing

that the correction term on the RHS is unavoidable. The divergence of (B.0.30) gives

∇̃u∇̃u
~PI = −2nHλ~PI , (B.0.31)

showing that the moment maps are eigenfunctions of the Laplacian.

Finally, let us consider for the moment the general case that the Killing vectors might

form a non-Abelian group:

[kI , kJ ]u = 2ks[I∇sk
u
J ] = f K

IJ kuK , (B.0.32)

where on the LHS is the Lie bracket and f K
IJ are the structure constants. Multiplying

(B.0.28) by ∇vk
u
J and using (B.0.29), and then exploiting the derivative ∇w of (B.0.32), we

obtain

kuI ~Juv k
v
J = f K

IJ
~PK + λ ~PI × ~PJ . (B.0.33)

This is called the equivariance relation. In the Abelian case we just set f to zero. In the

special case nH = 0 that there are no hypermultiplets, all Killing vectors vanish and the only

remnant of the quaternionic-Kähler structure is the condition ~PI × ~PJ = 0. The solution, up

to SU(2) rotations, is P x
I = δx3ζI where ζI are the so-called Fayet-Iliopoulos (FI) parameters,

which in this case are extra parameters one needs to specify.

We now have all the ingredients to write the covariant derivative

Dµqu = ∂µq
u + g AIµk

u
I , (B.0.34)

as well as the scalar potential

V = P x
I P

x
J

(
1

2
Gij∂iΦI∂jΦ

J − 2

3
ΦIΦJ

)
+

1

2
huv k

u
I k

v
J ΦIΦJ

= P x
I P

x
J

(
1

2
GIJ − ΦIΦJ

)
+

1

2
huv k

u
I k

v
J ΦIΦJ

(B.0.35)

that couples the scalars on SM and QM. To go to the second line we used (B.0.10).

The covariant derivative of the supersymmetry parameter εSUSY
i (subject to symplectic-

Majorana condition, with i = 1, 2) is

Dµε
SUSY
i =

(
∇µδ

j
i −

i

2
~Vµ · ~σ j

i

)
εSUSY
j (B.0.36)

with connection

~Vµ = Dµqu ~ωu − g AIµ~rI and ~rI = kuI ~ωu − λ ~PI ,
= ∂µq

u ~ωu + gλAIµ
~PI

(B.0.37)
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where λ is the constant (B.0.27). Under gauge transformations7

δqu = g αIkuI , δAIµ = −∂µαI (B.0.38)

with parameters αI , using (B.0.26), (B.0.30) and (B.0.33) one can show that ~Vµ transforms

as an SU(2) connection:

δ~Vµ = ∂µ~Λ + ~Vµ × ~Λ with ~Λ = g αI~rI . (B.0.39)

Therefore, Dµε
SUSY
i is covariant if εSUSY

i transforms as

δεSUSY
i =

i

2
~Λ · ~σ j

i ε
SUSY
j . (B.0.40)

B.1 Conifold truncation in the general framework

Here we embed the consistent truncation of type IIB supergravity on T 1,1 to a 5d N = 2

gauged supergravity with a so-called “Betti multiplet”, described in Section 7 of [89] (called

the “second model” in that paper), in the general framework. The model has nV = 2 and

nH = 2. We identify the fields

φi =

(
u+ v

w

)
CF

, ΦI =

 e−4(u+v)/3

−e2(u+v)/3 cosh 2w

−e2(u+v)/3 sinh 2w


CF

, AI =

A

aJ1
aΦ

1


CF

, qu =



bΩ
1

bΩ
2

cΩ
1

cΩ
2

a

φ

C0

u


CF

(B.1.1)

where “CF” indicates the notation of [89]. The scalar fields bΩ, cΩ are complex and we used

z1 = Re(z), z2 = Im(z) to indicate their real and imaginary parts, while u, v, w, a, φ, C0 are

real. The hypermultiplet scalars C0 and φ together form the type IIB axiodilaton C0 + ie−φ.

Then we identify the Chern-Simons couplings

C122 = −C133 = 2 (B.1.2)

and symmetric permutations thereof, while all other components vanish, and the very special

geometry of SO(1, 1)× SO(1, 1):

Gij =

(
4/3 0

0 4

)
, GIJ = e−

4
3

(u+v)


1
2
e4(u+v) 0 0

0 cosh(4w) − sinh(4w)

0 − sinh(4w) cosh(4w)

 . (B.1.3)

7The covariant derivative transforms as δDµqu = g αIDµkuI .
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The tensor CIJK has non-vanishing components C122 = −C133 = 1/2 and permutations.

The quaternionic-Kähler manifold is SO(4,2)
SO(4)×SO(2)

. Its metric is

huvdq
udqv = e−4u−φdbΩdbΩ + e−4u+φ

(
dcΩ − C0db

Ω
)(
dcΩ − C0dbΩ

)
+

1

2
e−8u

(
2da+ Re

(
bΩdcΩ − cΩdbΩ

))2

+
1

2
dφ2 +

1

2
e2φdC2

0 + 8du2 .
(B.1.4)

In this normalization R = −32 and thus λ = −1. The SU(2) connection is

ω1 − iω2 = e−2u−φ/2dbΩ + i e−2u+φ/2
(
dcΩ − C0db

Ω
)

ω3 =
1

2
e−4u

(
2da+ Re

(
bΩdcΩ − cΩdbΩ

))
− 1

2
eφdC0 .

(B.1.5)

Finally, we identify the Killing vectors

k1 = 3

(
−bΩ

2

∂

∂bΩ
1

+ bΩ
1

∂

∂bΩ
2

− cΩ
2

∂

∂cΩ
1

+ cΩ
1

∂

∂cΩ
2

)
+ 2

∂

∂a
, k2 = 2

∂

∂a
, k3 = 0 (B.1.6)

and the corresponding moment maps

P x
1 =

3eφ/2−2u(cΩ
1 − C0b

Ω
1 + e−φbΩ

2 )

3eφ/2−2u(C0b
Ω
2 − cΩ

2 + e−φbΩ
1 )

3− e−4u(2 + 3bΩ
2 c

Ω
1 − 3bΩ

1 c
Ω
2 )

 , P x
2 =

 0

0

−2e−4u

 , P x
3 = 0 . (B.1.7)

The SU(2) connection and the moment maps were given in [91] and can be translated into the

notation of [89] (up to a conventional minus sign in the gauge fields) using the identifications

φi =

(
−3u3

u2

)
HLS

, AI =


A1

k11 − k12

2
k11 + k12

2


HLS

, qu =

(
2Re b1

0, 2 Im b1
0, 2Re b2

0, 2 Im b2
0,
k

2
, φ, a, u1

)T

HLS

(B.1.8)

where “HLS” indicates the notation of [91].

The theory has a supersymmetric AdS5 vacuum at u = v = w = bΩ = cΩ = 0 and

any value of a, C0, φ (in particular, the axiodilaton can take any value). The potential is

V
∣∣
AdS

= −6 leading to AdS radius `5 = g−1. The spectrum therein was computed in [89]

(see its Table 2). We are particularly interested in the spectrum of vector fields and the

Killing vectors they couple to:

AR ≡ A1 − 2A2 , A3 : m2 = 0 , AW ≡ A1 + A2 : m2 = 24g2 .

kR = 1
3
(k1 − k2) , k3 kW = 1

3
(2k1 + k2)

(B.1.9)
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The vector AW acquires a mass by Higgs mechanism, eating the Stückelberg scalar a. The

mass eigenstates are

BIJAJµ where B =

1 −2 0

0 0 1

1 1 0

 (B.1.10)

is the matrix that diagonalizes them (see also Appendix E).

89



Appendix C

4d N = 2 Abelian gauged

supergravity

We summarize the salient features of 4d N = 2 Abelian gauged supergravity with nV vector

multiplets and nH hypermultiplets, following [114,115,150]. The graviton multiplet contains

a graviton, two gravitini and a vector; each vector multiplet contains a vector, two gaugini

and a complex scalar; each hypermultiplet contains four real scalars and two hyperini (all

fermions can be taken Majorana). We use indices

Λ,Σ = 0, . . . , nV , i, j = 1, . . . , nV , u, v = 1, . . . , 4nH (C.0.1)

for the gauge fields AΛ
µ , for the complex scalars zi in vector multiplets, and for the real

scalars qu in hypermultiplets, respectively. The data that define the theory are:

1. A special Kähler manifold KM of complex dimension nV .

2. A quaternionic-Kähler manifold QM of real dimension 4nH .

3. A set of nV +1 Killing vectors on QM compatible with the quaternionic-Kähler struc-

ture (if nH = 0, nV + 1 FI parameters not all vanishing).

The Killing vectors could be linearly dependent or vanish.

It is always possible to find a duality frame in which all gaugings are purely electric. In

such frames the bosonic Lagrangian is

8πG
(4)
N e−1L4d =

Rs

2
− gī(z, z̄) ∂µz

i∂µz̄ ̄ − 1

2
huv(q)DµquDµqv

+
1

8
ImNΛΣ(z, z̄)FΛ

µνF
Σµν +

e−1

16
ReNΛΣ(z, z̄)FΛ

µνF
Σ
ρσε

µνρσ − g2V (z, z̄, q) . (C.0.2)

The notation is mostly as in Appendix B. Let us explain the other terms.

Special Kähler geometry. The scalars zi are complex coordinates on the special Kähler

manifold KM [115]. This is a Kähler-Hodge manifold — i.e., a Kähler manifold with Kähler
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potential K(z, z̄) and metric gī(z, z̄) = ∂i∂̄K as well as a line bundle (i.e., a holomorphic

vector bundle of rank 1) L such that its first Chern class coincides (up to a constant) with

the Kähler class ω = i∂∂̄K of the manifold1 — further endowed with a flat Sp(nV + 1,R)

symplectic bundle. The manifold comes equipped with a covariantly-holomorphic section of

the tensor product of the symplectic bundle with the U(1)-bundle U associated to L,

V =

(
LΛ

MΛ

)
such that

DiV ≡ ∂iV + 1
2
(∂iK)V

Dı̄V ≡ ∂ı̄V − 1
2
(∂ı̄K)V = 0 ,

(C.0.3)

obeying the constraints

〈V ,V〉 ≡ MΛL
Λ − LΛMΛ = −i (C.0.4)

and

〈V , DiV〉 = 0 , (C.0.5)

where we introduced the Sp-invariant antisymmetric form i〈 , 〉. Equivalently, there is a

holomorphic section of the tensor product of the symplectic bundle with L,2

v(z) = e−K/2 V ≡

(
XΛ

FΛ

)
such that

Div ≡ ∂iv + (∂iK) v

Dı̄v ≡ ∂ı̄v = 0 ,
(C.0.6)

in terms of which the constraint (C.0.4) reads

K = − log
(
i 〈v, v̄〉

)
= − log

[
2 Im

(
XΛFΛ

)]
, (C.0.7)

while the constraint (C.0.5) becomes 〈v,Div〉 = 〈v, ∂iv〉 = 0. From (C.0.3)–(C.0.5) it is easy

to prove the following properties (or equivalent ones written in terms of v):

〈DiV ,V〉 = 0 , D̄DiV = gī V , 〈DiV , D̄V〉 = i gī

〈DiV , DjV〉 = 0 , D[iDj]V = 0
(C.0.8)

from which the Kähler metric is extracted in a symplectic-invariant way.

The rescaling ofXΛ, FΛ under Kähler transformations suggests to useXΛ as homogeneous

coordinates on KM. It is always possible to find symplectic frames3 in which the Jacobian

matrix eλi(z) = ∂i
(
Xλ/X0

)
(with λ = 1, . . . , nV ) is invertible. Notice that

det
(
eλi
)

= (X0)nV +1 det
(
XΛ, ∂iX

Λ
)

= (X0)nV +1 det
(
XΛ, DiX

Λ
)

(C.0.9)

where the two square matrices on the right have size nV +1, therefore the matrix
(
XΛ, ∂iX

Λ
)

is invertible as well. Invertibility of the Jacobian ensures that we can use XΛ as homogeneous

1Because fermions are sections of the square root of L, the Kähler class of KM equal to the first Chern

class of L is required to be an even integer cohomology class.
2In particular, A = ∂K is the Chern connection on L. Moreover, DiV = eK/2Div and Dı̄V = eK/2Dı̄v.
3See [155] for examples of frames in which, instead, a prepotential does not exist.
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coordinates, and regard FΛ(X) as homogeneous functions of degree 1, namely XΣ∂ΣFΛ = FΛ.

From (C.0.5) and (C.0.8), written as 〈v, ∂iv〉 = 〈∂iv, ∂jv〉 = 0, one obtains the equations(
XΛ, ∂iX

Λ
)
∂[ΛFΣ]

(
XΣ, ∂jX

Σ
)

= 0 . (C.0.10)

Invertibility of the matrix implies ∂[ΛFΣ] = 0. Hence, in these frames, the sections FΛ

are the derivatives of a holomorphic homogeneous function F (X) of degree 2, called the

prepotential, namely FΛ = ∂ΛF . In such frames, the Kähler potential and thus the geometry

are completely specified by the prepotential. The coordinates ti ≡ X i/X0 with i = 1, . . . , nV

are called special coordinates.

The couplings of vector fields to the scalars zi are determined by the (nV + 1)× (nV + 1)

period matrix N , which is uniquely defined by the relations

MΛ = NΛΣ L
Σ , Dı̄MΛ = NΛΣDı̄L

Σ
. (C.0.11)

Explicitly, one needs to invert the matrix relation
(
FΛ, Dı̄FΛ

)
= NΛΣ

(
XΣ, Dı̄X

Σ)
. The

requirement that gī be positive definite guarantees that the rightmost matrix is invertible

[115]. Indeed, introducing the square matrix LΛ
I =

(
LΛ, Dı̄L

Λ
)

of size nV + 1, one can

rewrite the scalar products in (C.0.4), (C.0.5) and (C.0.8) as

LT
(
N −N T

)
L = 0 , L†

(
N −N †

)
L = −i diag

(
1, gī

)
. (C.0.12)

The first equation shows that NΛΣ is a symmetric matrix, given the invertibility of L. The

second equation then, assuming that gī is positive definite, proves that L is invertible and

that ImNΛΣ is negative definite. It also gives an expression for ImNΛΣ that, after taking

the inverse, reads

DiL
ΛD̄L

Σ
gī + L

Λ
LΣ = −1

2

((
ImN

)−1
)ΛΣ

. (C.0.13)

This relation, or the equivalent one in terms of the holomorphic section, will be used to

rewrite the scalar potential below. When a prepotential exists, N is obtained from

NΛΣ = FΛΣ + 2i
(ImFΛΓ)XΓ (ImFΣ∆)X∆

XΩ(ImFΩΨ)XΨ
, (C.0.14)

where FΛΣ = ∂Λ∂ΣF . In this expression N is manifestly symmetric.

Finally, one can define the tensor

C̃ijk = 〈DiDjV , DkV〉 = 〈V , DkDiDjV〉 . (C.0.15)

Using (C.0.3)–(C.0.8) and the fact that the metric is Kähler, one easily proves that C̃ijk is

totally symmetric and covariantly holomorphic, D¯̀C̃ijk = 0 where C̃ has twice the charge
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of V . One can prove that (V , DiV ,V , Dı̄V) pointwise form a basis for the symplectic bundle

[115], hence

DiDjV = i C̃ijkg
kk̄Dk̄V (C.0.16)

follows by taking the product of the LHS with the basis. Among other things, C̃ controls

the curvature tensor: Rı̄jk̄` = gjı̄g`k̄ + gjk̄g`ı̄− C̃j`mC̃ı̄k̄n̄gmn̄. In special coordinates the tensor

C̃ takes the particularly simple form

C̃ijk = eK ∂i∂j∂kF(t) with F(t) = (X0)−2F (X) (C.0.17)

and ti = X i/X0.

Hypermultiplets and gauging. The part of the action involving the hypermultiplets has

the same features as in the 5d case, summarized in Appendix B: the hypermultiplet scalars qu

(with u = 1, . . . , 4nH) are coordinates on a quaternionic-Kähler manifold QM with metric

huv(q). As before, we consider gauging of Abelian isometries of QM, generated by nV + 1

(possibly vanishing or linearly dependent) Killing vectors kuΛ(q) that must be compatible

with the quaternionic-Kähler structure, with associated triplets of moment maps ~PΛ(q). In

full generality one could consider both electric and magnetic gaugings, described by Killing

vectors kuΛ and kuΛ, respectively, and transforming as a vector under Sp(nV + 1,R) duality

transformations. It is always possible to find a duality frame in which all gaugings are purely

electric, and we will work in such a frame. Notice that there is no guarantee that in this

frame a prepotential exists.

The scalar potential is

V = 2P x
ΛP

x
Σ e
K
(
gīDiX

ΛD̄X
Σ − 3XΛX

Σ
)

+ 4 eKhuv k
u
Λk

v
ΣX

ΛX
Σ

= −P x
ΛP

x
Σ

((
ImN

)−1 ΛΣ
+ 8 eKXΛX

Σ
)

+ 4 eKhuv k
u
Λk

v
ΣX

ΛX
Σ
.

(C.0.18)

To go to the second line we used (C.0.13).

The covariant derivative of the supersymmetry parameter εSUSY
i (subject to symplectic-

Majorana condition, with i = 1, 2) is

Dµε
SUSY
i =

(
∇µδ

j
i −

i

2
Aµδji −

i

2
~Vµ · ~σ j

i

)
εSUSY
j (C.0.19)

with connections
~Vµ = ∂µq

u ~ωu + gλAIµ ~PI

Aµ =
i

2
λ
[
(∂αK)∂µz

α − (∂ᾱK)∂µz̄
ᾱ
]
.

(C.0.20)

Here ~Vµ is the SU(2) connection that descends from the quaternionic-Kähler manifold QM,

as in the 5d case (B.0.37). Instead Aµ descends from the connection on the U(1)-bundle U
on the special Kähler manifold KM.

93



Appendix D

Supergravity reduction with

background gauge fields

Following [119] we will now reduce, piece by piece, the bosonic Lagrangian (B.0.2) of 5d

N = 2 gauged supergravity down to 4d. We start in 5d with nV vector multiplets and nH

hypermultiplets. We use indices

I, J = 1, . . . , nV + 1 , Λ,Σ = 0, . . . , nV + 1 , u, v = 1, . . . , 4nH . (D.0.1)

We indicate the 5d vector fields as ÂIM (where M,N = 0, . . . , 4 are spacetime indices) and

parametrize the vector multiplet scalars in terms of sections ΦI subject to the cubic constraint

V(Φ) = 1 in (B.0.3). The hypermultiplet scalars are qu. We employ the rather standard

Kaluza-Klein reduction ansatz (1.4.2) and (1.4.3):

ĝMN =

(
e2φ̃gµν + e−4φ̃A0

µA
0
ν −e−4φ̃A0

µ

−e−4φ̃A0
ν e−4φ̃

)
, ĝMN =

(
e−2φ̃gµν e−2φ̃A0µ

e−2φ̃A0ν e4φ̃ + e−2φ̃A0
ρA

0ρ

)
,

e(5) = e2φ̃ e(4) , ΦI = −e2φ̃ zI2 , ÂIM =
(
AIµ − zI1A0

µ, z
I
1 + ξI

)
. (D.0.2)

The last coordinate, that we call y and whose range ∆y we leave generic for now, is compact-

ified on a circle of length e−2φ̃∆y, and no field depends on it. We indicated as ĝMN and e(5)

the 5d metric and the square root of its determinant, and as gµν and e(4) (with µ, ν = 0, . . . , 3

spacetime indices) their 4d counterparts. In 4d we end up with nV + 1 vector multiplets,

and we indicate as AΛ
µ the vector fields. The physical scalars in 4d vector multiplets are the

complex fields zi. With a useful abuse of notation, we utilize the very same index I for 5d

vector fields and 4d physical scalars, zI , because in 4d we have one more vector field than

in 5d. We also use the notation

zI1 ≡ Re zI , zI2 ≡ Im zI . (D.0.3)

Notice that the real scalar φ̃ can be eliminated with the 5d constraint,

e−6φ̃ = −V(z2) , (D.0.4)

then the scalars zI can be treated as independent. The real parameters ξI represent back-

ground gauge fields along the circle, therefore, up to a gauge transformation, this ansatz is

equivalent to a Scherk-Schwarz reduction.
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The reduction of the Einstein term gives

8πG
(4)
N L1 = e(5)

R̂s

2
= e(4)

[
Rs

2
− 3 ∂µφ̃ ∂

µφ̃− e−6φ̃

8
F 0
µνF

0µν

]
+ total derivatives . (D.0.5)

Here R̂s and Rs are the 5d and 4d Ricci scalars, respectively. The 4d and 5d Newton

constants are related by
1

G
(4)
N

=
∆y

G
(5)
N

. (D.0.6)

In the following, for clarity, we will omit the factor 8πG
(4)
N . The reduction of the kinetic term

of vector multiplet scalars gives

L2 = −e(5)
1

2
GIJ ĝ

MN∂MΦI∂NΦJ = e(4)

[
−e

4φ̃

2
GIJ∂µz

I
2∂

µzJ2 + 3 ∂µφ̃ ∂
µφ̃

]
. (D.0.7)

The last term exactly cancels the second term in L1, therefore

L1 + L2 = e(4)

[
Rs

2
− e4φ̃

2
GIJ ∂µz

I
2 ∂

µzJ2 −
e−6φ̃

8
F 0
µνF

0µν

]
. (D.0.8)

The reduction of the kinetic term of hypermultiplet scalars gives

L3 = −e(5)
1

2
huv ĝ

MND̂MquD̂Nqv

= e(4)

[
−1

2
huv DµquDµqv −

g2e6φ̃

2

(
ku0 + zI1k

u
I

)
huv
(
kv0 + zJ1 k

v
J

)]
.

(D.0.9)

Here D̂Mqu = ∂Mq
u + g ÂIMk

u
I is the 5d covariant derivative in (B.0.34), while

Dµqu = ∂µq
u + g AIµk

u
I + g A0

µ ξ
IkuI = ∂µq

u + g AΛ
µk

u
Λ (D.0.10)

is the 4d covariant derivative, and we defined the new Killing vector

ku0 ≡ ξIkuI . (D.0.11)

The reduction of the gauge kinetic term gives

L4 = −e(5)
1

4
GIJ F̂

I
MN F̂

JMN

= e(4)

[
−e
−2φ̃

4
GIJ

(
F I
µ − zI1F 0

µν

)(
F Jµν − zJ1F 0µν

)
− e4φ̃

2
GIJ ∂µz

I
1∂

µzJ1

]
,

(D.0.12)

where F̂MN and Fµν are the 5d and 4d field strengths, respectively. We used F̂ I
µ4 = ∂µz

I
1 and

F̂ I
µν = F I

µν − zI1F 0
µν + 2A0

[µ∂ν]z
I
1 .

In order to reduce the Chern-Simons term, we extend the geometry (1.4.2) to a 6d bulk

whose boundary is the original 5d space. A convenient way to do that is to complete the
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circle parametrized by y into a unit disk with radius ρ ∈ [0, 1]. We extend the 5d connections

ÂI in (1.4.3) to 6d connections ÃI as follows:

ÃI = AI + ξIA0 + ρ2(zI1 + ξI)
(
dy − A0

)
. (D.0.13)

We then write the Chern-Simons action term as∫
5d

L5 =

∫
5d

1

12
CIJK F̂

I ∧ F̂ J ∧ ÂK =

∫
6d

1

12
CIJK F̃

I ∧ F̃ J ∧ F̃K . (D.0.14)

Substituting F̃ I = dÃI and performing the integrals over dρ2 ∧ (dy−A0), we extract the 4d

reduced Lagrangian

L5 =
1

16
CIJKε

µνρσ

[(
zI1 + ξI

)
F J
µνF

K
ρσ −

(
zI1z

J
1 − ξIξJ

)
FK
µνF

0
ρσ +

zI1z
J
1 z

K
1 + ξIξJξK

3
F 0
µνF

0
ρσ

]
.

(D.0.15)

Notice that the contributions containing the ξI ’s are standard theta terms.

Finally, the reduction of the scalar potential gives

L6 = −e(5)g
2V = −e(4)g

2

[
P x
I P

x
J

(
e2φ̃

2
Gij∂iΦI∂jΦ

J − 2e6φ̃

3
zI2z

J
2

)
+
e6φ̃

2
huvk

u
I k

v
Jz

I
2z

J
2

]
.

(D.0.16)

We proceed now with recasting the various pieces of the action in the general form (C.0.2)

of 4d N = 2 gauged supergravity with nV + 1 vector multiplets and nH hypermultiplets.

The Einstein term receives its contribution from L1:

L ′
1 = e(4)

Rs

2
. (D.0.17)

The kinetic term of vector multiplet scalars gets contributions from L2 and L4:

L ′
2 = −e(4)

e4φ̃

2
GIJ

(
∂µz

I
2∂

µzJ2 + ∂µz
I
1∂

µzJ1

)
= −e(4) gIJ̄ ∂z

I∂µz̄J̄ , (D.0.18)

where we defined the Hermitian metric

gIJ̄ =
e4φ̃

2
GIJ̄ . (D.0.19)

The kinetic term of hypermultiplet scalars gets its contribution from L3,

L ′
3 = −e(4)

1

2
huv DµquDµqv , (D.0.20)

with the covariant derivative Dµ defined in (D.0.10)-(D.0.11). The gauge kinetic term re-

ceives contributions from L1 and L4:

L ′
4 = −e(4)

e−6φ̃

8

[
F 0
µνF

0µν + 4gIJ
(
F I
µν − zI1F 0

µν

)(
F Jµν − zJ1F 0µν

)]
= e(4)

1

8
ImNΛΣ F

Λ
µνF

Σµν

(D.0.21)
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where we defined the field-dependent matrix of gauge couplings

ImNΛΣ = −e−6φ̃

(
1 + 4gKLz

K
1 z

L
1 −4gKJz

K
1

−4gIKz
K
1 4gIJ

)
(D.0.22)

in which the indices Λ,Σ run over 0 and then the values of I, J . On the other hand, the

field-dependent theta terms are contained in L5:

L ′
5 = L5 =

1

16
ReNΛΣ ε

µνρσFΛ
µνF

Σ
ρσ (D.0.23)

where

ReNΛΣ =

(
1
3
CKLM

(
zK1 z

L
1 z

M
1 + ξKξLξM

)
−1

2
CJKL

(
zK1 z

L
1 − ξKξL

)
−1

2
CIKL

(
zK1 z

L
1 − ξKξL

)
CIJK

(
zK1 + ξK

) )
. (D.0.24)

It turns out that gIJ̄ and NΛΣ descend from the following prepotential:

F (X) =
1

6
CIJK

X̌IX̌JX̌K

X0
with X̌I ≡ XI + ξIX0

=
1

6
CIJK

XIXJXK

X0
+

1

2
CIJK

(
ξIXJXK + ξIξJXKX0 +

1

3
ξIξJξK(X0)2

)
.

(D.0.25)

The terms in parenthesis involving the ξI ’s only affect standard theta terms, which are topo-

logical and thus do not enter in the equations of motion. Indeed, using special coordinates

zI = XI/X0 and in the Kähler frame |X0|2 = 1, one derives the Kähler potential1

K = − log

(
1

6i
CIJK

(
zI − z̄I

)(
zJ − z̄J

)(
zK − z̄K

))
= − log

(
8 e−6φ̃

)
(D.0.26)

from which the Kähler metric (D.0.19) with (B.0.6) follows. On the other hand

FΛΣ =

(
1
3
CKLM

(
zKzLzM + ξKξLξM

)
−1

2
CJKM

(
zKzM − ξKξL

)
−1

2
CIKM

(
zKzM − ξKξL

)
CIJK

(
zK + ξK

) )
(D.0.27)

from which the matrix N in (D.0.22) and (D.0.24) follows. It might be useful

(X0)−2XΛ
(
ImFΛΣ

)
XΣ = 4CIJK

(
1
3
Im(zIzJzK)− 1

2
Im(zIzJ)Re(zK)

)
= −4

3
CIJKz

I
2z

J
2 z

K
2 = e−K = 8 e−6φ̃ ,

(D.0.28)

as well as
(
ImFIΣ

)
XΣ/X0 = i CIKMz

K
2 z

M
2 .

1The completely covariant expression for the Kähler potential is e−K = 8 |X0|2 e−6φ̃.
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Finally, the scalar potential gets contributions from L3 and L6:

L ′
6 = −e(4)g

2

[
P x
I P

x
J

(
e2φ̃

2
Gij∂iΦI∂jΦ

J − 2e6φ̃

3
zI2z

J
2

)
+

+
e6φ̃

2
huv

(
kuI k

v
Jz

I
2z

J
2 + (ku0 + zI1k

u
I )(kv0 + zJ1 k

v
J)
)]

= −e(4)g
2

[
−P x

ΛP
x
Σ

((
ImN )−1 ΛΣ + 8 eKXΛX

Σ
)

+ 4 eKhuvk
u
Λk

v
ΣX

ΛX
Σ
]
.

(D.0.29)

To manipulate the first line we used (B.0.10) as well as

((
ImN

)−1
)ΛΣ

+ 8 eKX(ΛXΣ) = −e6φ̃

(
0 0

0 1
4
gIJ − zI2zJ2

)
, (D.0.30)

which immediately follows from (D.0.22). Notice in particular that ~P0 drops out of the

potential and cannot be extracted from it, but it is still determined as ~P0 = ξI ~PI from

(D.0.11). The action L ′
6 exactly reproduces the potential in (C.0.18).

Summarizing, the compactification gives the following map from 5d to 4d data:

5d

nV vector multiplets

SM with CIJK

QM with huv(q)

gauging of kuI

reduction with ξI−−−−−−−−−−→
background fields

4d

nV + 1 vector multiplets

KM with F =
1

6
CIJK

X̌IX̌JX̌K

X0

QM with huv(q)

gauging of kuΛ =
(
ξJkuJ , k

u
I

)
(D.0.31)

where X̌I = XI + ξIX0.

D.1 Reduction of the conifold truncation

The reduction of the 5d conifold truncation described in Appendix B.1 gives a 4d supergravity

with the following data. The prepotential is

F =
X̌1
(
(X̌2)2 − (X̌3)2

)
X0

. (D.1.1)
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It induces the vector multiplet scalar metric

gIJ̄ =
1

2



1

2(z1
2)2

0 0

(z2
2)2 + (z3

2)2(
(z2

2)2 − (z3
2)2
)2 − 2 z2

2 z
3
2(

(z2
2)2 − (z3

2)2
)2

Symmetrized
(z2

2)2 + (z3
2)2(

(z2
2)2 − (z3

2)2
)2


(D.1.2)

that depends on zI2 , the theta terms (D.0.24) that depend on zI1 and ξI , while the gauge

coupling function ImNΛΣ takes a lengthier expression that depends on zI1 and zI2 and can

be easily derived from (D.0.22). Since in 5d k3 = 0, the 4d extra Killing vector is k0 =

ξ1k1 + ξ2k2.
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Appendix E

Black hole charges and their reduction

The electric black hole charges computed in [73] in our notation read

QT = − 1

8πG
(5)
N g

∫
S3
∞

GTJ ?5 F̂
J , (E.0.1)

where the integral is taken on the three-sphere at infinity, and are dimensionless. We recall

that only a subspace ÂT
µ of the vector fields are massless on the AdS5 vacuum, and the index

T runs over them. The massless vectors are such that the hypermultiplet scalars sit at a

fixed point of the gauged isometries, and are thus identified by the conditions

kuT(q) = 0 . (E.0.2)

Indeed, let BIJ be a matrix of linear redefinitions such that BIJÂJµ are mass eigenstates.

Such a matrix is characterized by BIJGJNkuNhuvk
v
L = λINBNL where λ is the diagonal matrix

of squared masses (in units of g2). The corresponding linear transformation of charges

is QI → QJ(B−1)JI , while the Killing vectors corresponding to the mass eigenstates are

kuJ(B−1)JI . Now consider a massless vector and let the index T be such that λTT = 0 (not

summed over T). Using non-degeneracy of the metrics GIJ and huv, one easily proves that

kuJ(B−1)JT = 0, which is (E.0.2).

Now, the equations of motion for the bosonic fields of 5d gauged supergravity that follow

from (B.0.2) are

d
(
GIJ ?5 F̂

J
)

=
1

4
CIJKF̂

J ∧ F̂K − g huv kuI ?5 D̂qv

R̂MN = GIJ

(
F̂ I
MP F̂

JP
N − 1

6
ĝMN F̂

I
PQF̂

JPQ

)
+ Gij ∂Mφi∂Nφj + huv D̂MquD̂Nqv +

2

3
ĝMN g

2V .

(E.0.3)

Notice that (E.0.2) is just the condition not to have a source in the T-th component of

Maxwell’s equation from the hypermultiplets. We can express the charges QT in terms of

integrals at the horizon [156] using the EOMs (E.0.3):

QT = − 1

8πG
(5)
N g

[∫
S3
r

GTJ ?5 F̂
J +

∫
S3
r×I[r,∞]

(
1

4
CTJK F̂

J ∧ F̂K − g huv kuT ?5 D̂qv
)]

. (E.0.4)
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The first term is an integral evaluated at radius r, that we will take to be the horizon

location. The second term is a correction, integrated on a cylinder S3 × I where I is the

interval from r to ∞, that leads to a Page charge. Assuming that the condition kuT(q) = 0

remains true also on the black hole background,1 the third term vanishes.

We can apply a similar manipulation to the angular momenta Ja=1,2. Given the spacetime

Killing vectors Ka ≡ KM
a ∂M , the angular momenta are defined in [73] as

Ja =
1

16πG
(5)
N

∫
S3
∞

?5 dKa (E.0.5)

where we have indicated with the same symbol Ka ≡ KaMdx
M the 1-forms dual to the

Killing vectors, and the integral is evaluated once again at infinity. One can show that the

Killing equation implies

d ?5 dK = 2R̂MNK
M ?5 dx

N . (E.0.6)

We can then use the EOMs (E.0.3) to replace the Ricci scalar R̂MN . We assume that S3

is invariant under the isometries generated by Ka, therefore, indicating as iK the interior

product, the integral of ĝMNK
M ?5 dx

N = iK(?51) vanishes. We also assume that iKdφ
i = 0.

We obtain

Ja =
1

16πG
(5)
N

[∫
S3
r

?5 dKa + 2

∫
S3×I

(
GIJ

(
iKaF̂

I
)
∧ ?5F̂

J + huv
(
iKaD̂qu

)
?5 D̂qv

]
. (E.0.7)

Now let us proceed and reduce the charges to 4d imposing the ansatz (D.0.2), in particular

ÂI = AI + ξIA0 + (zI1 + ξI)(dy − A0)

F̂ I = F I − zI1F 0 + dzI1 ∧ (dy − A0) ,
(E.0.8)

and performing the integrals along the circle. Notice that because of (D.0.6) and since the

horizon areas in 5d and 4d are related by Area(5) = ∆yArea(4), the black hole entropy is the

same in 5d and 4d. We find∫
S3

GIJ ?5 F̂
J = ∆y

∫
S2

e−2φ̃GIJ ?4

(
F J − zJ1F 0

)
CIJK

∫
S3×I

F̂ J ∧ F̂K = −∆y CIJK

∫
S2
r

(
2zJ1F

K − zJ1 zK1 F 0
)
.

(E.0.9)

In the second equality we used that zI1 → 0 at infinity. The electric charges are thus

QT =
1

g

∫
S2
r

δS4d

δF T
− 1

8πG
(4)
N g

CTJK

∫
S2
r

(
1

2
ξJFK +

1

4
ξJξKF 0

)
, (E.0.10)

1In the case of the conifold compactification discussed in Section 1.4.2, this assumption is true, see

(1.4.28). We expect the assumption to be true in all cases.
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where
δS4d

δFΛ
=

1

16πG
(4)
N

(
ImNΛΣ ?4 F

Σ + ReNΛΣF
Σ
)

(E.0.11)

are the derivatives of the action obtained from (C.0.2) with (D.0.22) and (D.0.24).

We define the 4d dimensionless magnetic charges as

pΛ =
g

4π

∫
S2

FΛ , (E.0.12)

where the integral can be done at any radius because of the Bianchi identities. On the other

hand, the first Chern class of the circle fibration — that we take to be the Hopf fibration of

S3 — is 1
∆y

∫
dA0 = 1. Thus, we obtain a properly quantized p0 = 1 if we set

∆y =
4π

g
. (E.0.13)

We will use this normalization from now on.

Let us now reduce the angular momentum. We consider the case J1 = J2, with J1,2

normalized such that they generate orbits of length 2π, and define J = (J1 + J2)/2. The

corresponding Killing vector and dual 1-form are

KM∂M =
∆y

4π

∂

∂y
=

1

g

∂

∂y
, KMdx

M =
1

g
e−4φ̃(dy − A0) . (E.0.14)

The first term in (E.0.7) gives∫
S3

?5 dK = −∆y

g

∫
S2

e−6φ̃ ?4 F
0 . (E.0.15)

To reduce the second term we use iKF̂
I = −1

g
dzI1 , integrate by parts, and use the EOMs

(E.0.3). To reduce the third term we use iKD̂qu =
(
zI1 + ξI

)
kuI and iω(? 1) = ? ω for a 1-form

ω. Eventually

J =
1

8πG
(4)
N g

{∫
S2
r

[
−1

2
e−6φ̃ ?4 F

0 + e−2φ̃GIJ z
I
1 ?4

(
F J − zJ1F 0

)
(E.0.16)

− CIJK
(

1

4
zI1z

J
1F

K − 1

6
zI1z

J
1 z

K
1 F

0

)]
+

∫
S2×I

?4 g k
u
0 huv Dqv

}

=
1

g

∫
S2
r

δS4d

δF 0
− 1

8πG
(4)
N g

[
CIJKξ

IξJ
∫
S2
r

(
1

4
FK +

1

6
ξKF 0

)
+

∫
S2×I

?4 g k
u
0 huv Dqv

]
.

The four-dimensional angular momentum of the black hole solution is proportional to J1−J2,

which vanishes in the case under consideration. This implies that we can impose spherical

symmetry on S2. The section Dqv is charged under the Abelian vector fields AΛ
µ , therefore
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the magnetic fluxes pΛ give rise to an effective spin s on S2. However, the spin spherical

harmonics [157, 158] have total angular momentum j ≥ |s|, which should vanish in order

to have a spherically-symmetric configuration. Since the Abelian symmetries are realized

non-linearly on Dqv as soon as kuΛ 6= 0, we obtain the condition

pΛkuΛ(q) = 0 (E.0.17)

for spherically-symmetric black hole solutions. Without loss of generality, in Section 1.4 we

have set pI = 0 which implies ku0 = 0. We then see that the last term in (E.0.16) vanishes.

The magnetic charges that appear in the attractor equations of [94], in our conventions,

are (E.0.12) while the electric charges are

qΛ =
g

4π

∫
S2
r

GΛ with GΛ = 16πG
(4)
N

δS4d

δFΛ
. (E.0.18)

Setting pI = 0, we obtain the following dictionary between 5d and 4d charges:

q0 = 4G
(4)
N g2 J +

1

3
CIJKξ

IξJξKp0

qT = 4G
(4)
N g2QT +

1

2
CTJK

1

2
ξJξKp0 .

(E.0.19)

E.1 Baryonic charge quantization in the conifold the-

ory

In order to fix the exact relation between the supergravity charge Q3 and the field theory

baryonic charge QB, we deduce the Dirac quantization condition satisfied by A3
µ from the

consistent reduction of [89].

The metric of T 1,1 is

ds2 =
1

6

∑
i=1,2

(
dθ2

i + sin2 θi dϕ
2
i

)
+ η2 with η = −1

3

(
dψ +

∑
i=1,2

cos θi dϕi

)
. (E.1.1)

We define the 2-forms2

J =
1

6

(
sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2

)
=

1

2
dη

Φ =
1

6

(
sin θ1 dθ1 ∧ dϕ1 − sin θ2 dθ2 ∧ dϕ2

)
.

(E.1.2)

The expansion of the 10d RR field strength FRR
5 in [89] around the AdS5 × T 1,1 vacuum

(where u = v = w = bΩ = cΩ = 0), keeping only the dependence on the gauge fields and the

2The 2-form J should not be confused with the angular momentum of the black hole.
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Stückelberg scalar a, in our conventions reads

FRR
5 = 4g ?5 1− 2g−1 (?5Da) ∧ (η − gÂ1)− g−2 (?5 dÂ

2) ∧ J + g−2 (?5 dÂ
3) ∧ Φ

− g−3 dÂ2 ∧ J ∧ (η − gÂ1)− g−3 dÂ3 ∧ Φ ∧ (η − gÂ1)

+ g−4 J ∧ J ∧
(
Da+ 2(η − gÂ1)

)
,

(E.1.3)

where ?5 is the Poincaré dual in AdS5 while Da = da + 2g(Â1 + Â2). Dirac’s quantization

condition reads
1

2
√
π κ10

∫
C5
FRR

5 ∈ Z (E.1.4)

for any closed 5-cycle C5. Here κ10 is the 10d gravitational coupling, related to the 5d Newton

constant by
Vol(T 1,1)

g5κ2
10

=
1

8πG
(5)
N

(E.1.5)

where Vol(T 1,1) = 16π3/27. Applying (E.1.4) to C5 = T 1,1 and imposing that there are N

units of 5-form flux, we recover (1.4.35). On the other hand, let us apply (E.1.4) to the

5-cycle X2 × S3, where X2 is the non-trivial 2-cycle of T 1,1 while S3 is a spatial 3-sphere in

AdS5. Using
∫
X2
J = 0 and

∫
X2

Φ = 4π/3 as well as (1.4.35), we obtain

1

2
√
π κ10

∫
X2×S3

FRR
5 =

1

6πG
(5)
N gN

∫
S3

(
?5 F̂

3 + F̂ 3 ∧ Â1
)

= − 4

3N
Q3 ∈ Z , (E.1.6)

where F̂ 3 = dÂ3. According to (E.0.3) and using (B.1.2) and (B.1.3), the combination in

parenthesis gives the Page charge Q3, which is conserved and quantized. Taking the 3-sphere

to spatial infinity, it coincides with the charge defined in (E.0.1).
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Appendix F

Large N limit of TT index

Let us start by studying (2.1.18), and in particular the terms involving the Li1 function,

whose definition and properties can be found in Section F.2. We first perform the sum over

j (that becomes an integral over t′), leaving the sum over i (that becomes an integral over

t) untouched.

The integral in t′ has to be broken in two parts, above and below t±∆ ≡ t±N−α Im ∆.

When Im(uji ∓∆) > 0 (for one of the two signs), we can use the series expansion (F.2.1).

This allows us to treat the integral above t±∆:∑
j

Θ
(
Im(uji ∓∆)

)
Li1

(
ei(uji∓∆)

)
→ N

∫
t±∆

dt′ρ(t′)
∞∑
`=1

1

`
ei`(u(t′)−u(t)∓∆)

≡ N
∞∑
`=1

e∓i`∆

`
IL,`[ρ](t,∆) . (F.0.1)

In Section F.3 we define and manipulate these integrals. Using (F.3.6), we write (F.0.1) as:

N1−α Li2

(
e∓i(Re ∆−v̇ Im ∆)

) ρ

1− iv̇
(F.0.2)

+N1−2α

[
Li3

(
e∓i(Re ∆−v̇ Im ∆)

)
± (Im ∆)(1− iv̇) Li2

(
e∓i(Re ∆−v̇ Im ∆)

)][ ρ̇

(1− iv̇)2
+

iρ v̈

(1− iv̇)3

]
+
i

2
N1−2α(Im ∆)2(1− iv̇)2 Li1

(
e∓i(Re ∆−v̇ Im ∆)

) ρ v̈

(1− iv̇)3
+O(N1−3α) .

When Im(uji ∓∆) < 0, the steps above are not applicable because the series expansion for

Li1 does not converge, but we can use (F.2.5) so that

Li1

(
ei(uji∓∆)

)
= Li1

(
ei(uij±∆)

)
− i
(
uji ∓∆− π

)
. (F.0.3)

Now the Li1 terms on the RHS can be analyzed in the same way as before using (F.3.7):∑
j

Θ
(
Im(uij ±∆)

)
Li1

(
ei(uij±∆)

)
→ N

∫ t±∆

dt′ ρ(t′)
∞∑
`=1

ei`(u(t)−u(t′)±∆)

`
= N

∞∑
`=1

e±i`∆

`
IU,`[ρ]

= N1−α Li2

(
e±i(Re ∆−v̇ Im ∆)

) ρ

1− iv̇

−N1−2α

[
Li3

(
e±i(Re ∆−v̇ Im ∆)

)
∓ (Im ∆)(1− iv̇) Li2

(
e±i(Re ∆−v̇ Im ∆)

)][ ρ̇

(1− iv̇)2
+

iρ v̈

(1− iv̇)3

]
− i

2
N1−2α(Im ∆)2(1− iv̇)2 Li1

(
e±i(Re ∆−v̇ Im ∆)

) ρ v̈

(1− iv̇)3
+O(N−3α) . (F.0.4)
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To obtain the full integral over t′, the contributions (F.0.2) and (F.0.4) with upper sign

must be summed with minus the ones with lower sign, and the result can be simplified using

(F.2.5). As in (2.1.18), we then integrate over t together with m(t), and sum over a = 1, 2, 3.

We obtain:

iN2−2α

∫
dt

im ρ2 v̈

(1− iv̇)3

3∑
a=1

(Im ∆a)
2(1− iv̇)2 g′′+

(
Re ∆a − v̇ Im ∆a

)
(F.0.5)

− iN2−2α

∫
dt m

d

dt

[
ρ2

(1− iv̇)2

] 3∑
a=1

[
g+

(
Re ∆a − v̇ Im ∆a

)
+ i (Im ∆a) (1− iv̇) g′+

(
Re ∆a − v̇ Im ∆a

)]
.

The function g+(u) is defined in (F.2.6). It remains to add the contribution from the second

term on the RHS of (F.0.3). We choose the integer ambiguities ni in (2.1.18) such that

π(N−2ni) = −
3∑

a=1

N∑
j=1

[
2π
(

Θ
(
Im(uij+∆a)

)
−Θ

(
Imuij

))
+2∆aΘ(Imuij)

]
+O(1) . (F.0.6)

The subleading O(1) term accounts for the possibility that N might be odd and we would

not be able to cancel it completely. The contributions from the second term on the RHS of

(F.0.3) and from (F.0.6) sum up to

i
∑
a,i,j

mi

[(
Θ
(
Im(uij + ∆a)

)
−Θ(Imuij)

)(
−uji + ∆a − π

)
+ (F.0.7)

+
(

Θ
(
Im(uij −∆a)

)
−Θ(Imuij)

)(
uji + ∆a − π

)]
= iN2

3∑
a=1

∑
+,−

∫
dtm(t) ρ(t)

∫ t±∆a

t

dt′ ρ(t′)
[
±Nα

(
it− it′ + v(t)− v(t′)

)
+ ∆a − π

]
.

In each integral we perform the change of variables t′ = t±N−α(Im ∆a)ε, obtaining:

(F.0.7) = iN2−α
3∑

a=1

∑
+,−

Im ∆a

∫
dtm(t) ρ(t)

∫ 1

0

dε× (F.0.8)

×
{
±ρ
(
t±N−α(Im ∆a)ε

)[
−i(Im ∆a)ε∓Nα v

(
t±N−α(Im ∆a)ε

)
±Nαv(t) + ∆a − π

]}
.

We expand ρ and v in Taylor series and keep only the terms at leading order. Then we

integrate in ε and use that g′′+(∆) = ∆− π. We obtain the expression:

(F.0.7) = iN2−2α

3∑
a=1

(Im ∆a)
2

∫
dtm

{
ρ ρ̇ g′′+

(
Re ∆a − v̇ Im ∆a

)
+ (F.0.9)

+ i
Im ∆a

6

d

dt

[
ρ2

(1− iv̇)2

]
(1− iv̇)3

}
+O(mN2−3α) .
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We sum (F.0.5) and (F.0.9). We notice that the various terms can be organized into the

Taylor series of g+(∆a) around the point Re(∆a)− v̇ Im(∆a), which has four terms because

g+ is a cubic polynomial. We obtain the compact expression

(F.0.5) + (F.0.9) = −iN2−2αG(∆)

∫
dtm

d

dt

[
ρ2

(1− iv̇)2

]
+O

(
mN2−3α, 1

)
, (F.0.10)

where G(∆) is the function defined in (2.1.24). It remains to add the first term on the RHS

of (2.1.18). We obtain the final expression:∫
dtmV ′ = ikN

∫
dt ρmu+ iN2−2αG(∆)

∫
dt

ṁ ρ2

(1− iv̇)2
+O

(
mN2−3α

)
. (F.0.11)

We apply the same steps to obtain the large N limit of (2.1.19). To avoid repetition, we

only present the result. We set the integer ambiguity M to N/2 +O(1). We obtain:

Ω = −N2−α f+(n,∆)

∫
dt

ρ2

1− iv̇
+O

(
N2−2α

)
, (F.0.12)

where the function f+(n,∆) is defined in (2.1.24).

F.1 Solutions to the saddle-point equations

In this Section we solve the saddle-point equations (2.1.27)–(2.1.29), in the original parametriza-

tion in which v(t) is a real function. Let us first solve (2.1.29). After integrating to

k (it+ v)2 +
4Gρ

i+ v̇
= A ∈ C , (F.1.1)

its real and imaginary parts give

4ρ = −
(
1 + v̇2

)
Im
[
G−1

(
A− k (it+ v)2

)]
, v̇ = −

Re
[
G−1

(
A− k(it+ v)2

)]
Im
[
G−1

(
A− k(it+ v)2

)] . (F.1.2)

We impose that ρ is integrable. This necessarily implies that ρ → 0 as t → ±∞, or that

ρ is defined on compact intervals where ρ is zero at the endpoints. At infinity, or at an

endpoint, ρ = 0 implies A − k (it + v)2 = 0. By considering real and imaginary parts, we

see that this equation cannot be satisfied as t → ±∞, and ρ must have compact support.

In order for ρ to have two endpoints t± and be defined on the interval [t−, t+], A cannot be

on the positive real axis. Let A
1
2 be the square root whose imaginary part is positive. The

boundary conditions are

t± = ± k−
1
2 Im(A

1
2 ) , v(t±) = ± k−

1
2 Re(A

1
2 ) . (F.1.3)
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We then solve the equation for v̇ in (F.1.2) using (F.1.3) as boundary conditions. The

equation can be rewritten and integrated to

Im
[
G−1 (it+ v)

(
A− k

3
(it+ v)2

)]
= D , (F.1.4)

where D ∈ R is an integration constant. The boundary conditions (F.1.3) imply D = 0 and

Im
(
G−1A

3
2

)
= 0. Using a real constant B to parametrize the real part of G−1A

3
2 , we write

A = k (BG)
2
3 , B ∈ R , (F.1.5)

where k is included for convenience. It is important to keep in mind that there are 3 branches

for G
1
3 and the same branch is to be used in every expression. There is a triplet of solutions

at this point. The equation (F.1.4) can be written as

0 = Im
(
G−

1
3 (it+ v)

) [
3B

2
3 +

(
Im
(
G−

1
3 (it+ v)

))2

− 3
(
Re
(
G−

1
3 (it+ v)

))2
]
. (F.1.6)

The solutions obtained by setting to zero the square bracket lead to profiles for ρ with a

single zero, and so they have to be discarded. We remain with

Im
(
G−

1
3 (it+ v)

)
= 0 ⇒ v(t) =

ReG
1
3

ImG
1
3

t , (F.1.7)

which through (F.1.2) gives the following profile for ρ:

ρ(t) =
k

4
(
ImG

1
3

)3

[
B

2
3

(
ImG

1
3

)2 − t2
]
. (F.1.8)

Requiring that ρ > 0 within (t−, t+) imposes

ImG
1
3 > 0 , (F.1.9)

which restricts the branches we can take for G
1
3 . Requiring that

∫
dt ρ = 1 fixes B = 3/k

and the final result for u and ρ is:

u(t) = N
1
3

G
1
3

ImG
1
3

t , ρ(t) =
(9k)

1
3

4 ImG
1
3

− k

4
(
ImG

1
3

)3 t
2 , t± = ±

(
3

k

) 1
3

ImG
1
3 . (F.1.10)

Notice that if ∆a are real and G > 0, (F.1.9) fixes the branch of the cube root such that G
1
3

has phase e
2πi
3 , and the solutions for u, ρ reduce to those found in [31]. We can now solve

for m using (2.1.28). Inserting (F.1.10) for u and ρ, the former reduces to:

(
t2 − t2+

)
m̈ + 4t ṁ + 2m =

d2

dt2

[(
t2 − t2+

)
m
]

= −2
f+

G
u , (F.1.11)
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whose general solution is

m(t) = − 1(
t2 − t2+

) N 1
3f+

3G

G
1
3

ImG
1
3

(
t3 + Ct+D

)
, (F.1.12)

where C and D are integration constants. The requirement that m has compact image,

namely that it does not diverge at t = t±, fixes C = −t2+ and D = 0. This leads to the

simple solution

m(t) = − f+

3G
u(t) . (F.1.13)

One can then verify that (2.1.27) is automatically solved, with the following value of the

Lagrange multiplier:

µ = if+

(
k

3G

) 1
3

. (F.1.14)

The solution can be expressed more neatly by making use of the reparametrization symmetry

(2.1.30), performing the transformation t = (3/k)1/3(ImG1/3) t′. This brings the solution to

the form (2.1.31), in which primes have been omitted.

F.2 Polylogarithms

Polylogarithms are defined through their Taylor series around z = 0:

Lik(z) =
∑∞

`=1

z`

`k
, (F.2.1)

which is absolutely convergent for |z| < 1. This definition can be analytically continued to

the whole complex plane, with a branch cut on the real axis from z = 1 to z = ∞. In

particular Li1(z) = − log(1 − z), where the principal sheet defined by (F.2.1) is such that

Im log ∈ (−π, π). The functions Lik≥2 have an absolutely convergent series (F.2.1) on the

unit circle and are thus continuous at z = 1, while the functions Lik≤0 have a pole at z = 1

but no branch cut (in particular Li0(z) = z
1−z ). One can define the single-valued analytic

functions

Fk(u) = Lik
(
1− e−iu

)
(F.2.2)

defined by (F.2.1) in the domain
∣∣1−e−iu∣∣ < 1 with Reu ∈

(
−π

2
, π

2

)
(implying that Fk(0) = 0)

and by analytic continuation elsewhere. For instance F0(u) = eiu − 1 whereas F1(u) = iu.

Whenever the function is differentiable, we have

z ∂zLik(z) = Lik−1(z) (F.2.3)

or alternatively

− i ∂uLik(e
iu) = Lik−1(eiu) or ∂uFk(u) =

i

eiu − 1
Fk−1(u) . (F.2.4)
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The last relation allows one to define Fk(u) =
∫ u

0
i

eiw−1
Fk−1(w) which is single-valued because

the integrand is analytic with no poles. Polylogarithms satisfy the following identities:

Li0(eiu) + Li0(e−iu) = −g′′′+(u) = −1

Li1(eiu)− Li1(e−iu) = −ig′′+(u)

Li2(eiu) + Li2(e−iu) = g′+(u)

Li3(eiu)− Li3(e−iu) = ig+(u) ,

(F.2.5)

where

g+(u) =
1

6
u3 − π

2
u2 +

π2

3
u (F.2.6)

is the same function defined in (2.1.25). These relations are valid for Reu ∈ (0, 2π) and the

polylogarithms in their principal determination, and can then be extended to the whole com-

plex plane by analytic continuation (notice that the functions on the RHS are polynomials

with no branch cuts).

F.3 Large N integrals

Let us evaluate, at large N , the following integrals:

IL,`[ρ](t,∆) ≡
∫
t±∆

dt′ ρ(t′) ei`(u(t′)−u(t)) ,

IU,`[ρ](t,∆) ≡
∫ t±∆

dt′ ρ(t′) ei`(u(t)−u(t′)) ,

(F.3.1)

where u(t) = Nα
(
it+v(t)

)
and t±∆ ≡ t±N−α Im ∆ (the subscripts L and U stand for lower

and upper, respectively). We Taylor expand part of the integrand around t±∆:

IL,`[ρ](t,∆) = e−i`u(t)

∞∑
m=0

1

m!
∂mx

[
ρ(x) ei`N

αv(x)
]
x=t±∆

∫
t±∆

dt′ e−`N
αt′
(
t′ − t±∆

)m
. (F.3.2)

The integral on the RHS can be evaluated integrating by parts:∫
t±∆

dt′ e−`N
αt′
(
t′ − t±∆

)m
= −

m∑
k=0

m! (t+ − t±∆)k

k! (Nα`)m−k+1
e−`N

αt+ +
m!

(Nα`)m+1
e−`N

αt±∆ , (F.3.3)

where t+ is the upper limit of integration. The boundary terms at t+ can be neglected

because of an overall factor e−`N
α(t+−t±∆), which is exponentially suppressed, with respect

to the last term. This gives∫
t±∆

dt′ e−`N
αt′
(
t′ − t±∆

)m ' m!

(Nαl)m+1
e−`N

αt±∆ . (F.3.4)
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For the derivatives in (F.3.2), the terms up to NLO in the large N expansion are

∂m
[
ρ ei`N

αv
]
x=t±∆

= (F.3.5)

= ei`N
αv (i`Nα)m−1

(
i`Nα ρ v̇m +m ρ̇ v̇m−1 + m(m−1)

2
ρ v̇m−2 v̈ + . . .

)∣∣∣∣
x=t±∆

= ei`(N
αv± Im(∆)v̇)(i`Nα)m−1

[
i`Nα ρ v̇m +m ρ̇ v̇m−1 + m(m−1)

2
ρ v̇m−2 v̈ +

± i` Im(∆)
(
ρ̇ v̇m +mρ v̇m−1 v̈ ± 1

2
i` Im(∆) ρ v̇m v̈

)
+ . . .

]
.

In the last expression ρ and v are functions of t. Other contributions are subleading by

powers of N−α. Plugging this back in (F.3.2), we get

IL,`[ρ](t,∆) = e∓` Im(∆) (1−iv̇)

[
1

`Nα

ρ

1− iv̇
+ (F.3.6)

+
1

`2N2α

(
1± ` Im(∆) (1− iv̇)

)( ρ̇

(1− iv̇)2
+

i ρ v̈

(1− iv̇)3

)
+

1

2N2α
(Im ∆)2 i ρ v̈

1− iv̇

]
.

Repeating the same steps for the other integral we find

IU,`[ρ](t,∆) = e±` Im(∆) (1−iv̇)

[
1

`Nα

ρ

1− iv̇
(F.3.7)

− 1

`2N2α

(
1∓ ` Im(∆) (1− iv̇)

)( ρ̇

(1− iv̇)2
+

i ρ v̈

(1− iv̇)3

)
− 1

2N2α
(Im ∆)2 i ρ v̈

1− iv̇

]
.
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Appendix G

3d SUSY variations

In terms of a single Dirac spinor ε, the 3d supersymmetry transformations under which the

Lagrangians in (2.1.13) are invariant, for chiral and vector multiplets, respectively, are:

QΦ = 0 QΨ =
(
iγµDµΦ− iσΦ

)
ε Q̃Ψ = εcF

Q̃Φ = −εΨ Q̃Ψ = −ε
(
iγµDµΦ† + iΦ†σ

)
QΨ = −εcF †

QΦ† = Ψ ε QF = −εc
(
iγµDµΨ + iσΨ− iλΦ

)
Q̃F = 0

Q̃Φ† = 0 Q̃F † =
(
iDµΨγµ − iΨσ + iΦ†λ

)
εc QF † = 0

(G.0.1)

and

QAµ = − i
2
λγµε Qλ =

(
1

2
γµνFµν + iD − iγµDµσ

)
ε Q̃λ = 0

Q̃Aµ =
i

2
εγµλ Q̃λ = ε

(
1

2
γµνFµν + iD + iγµDµσ

)
Qλ = 0

Qσ = −1

2
λε QD = −1

2

(
Dµλγ

µ − σλ
)
ε

Q̃σ =
1

2
ελ Q̃D = −1

2
ε
(
γµDµλ− σλ

)
.

(G.0.2)
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Appendix H

Monopole spherical harmonics on S2

We use complex coordinates on S2 to perform the reduction. We define stereographic coor-

dinates

z = eiϕ tan
θ

2
for θ < π , v = e−iϕ cot

θ

2
for θ > 0 , (H.0.1)

related by v = 1/z, which exhibit S2 as CP1. The round metric with radius R is proportional

to the Fubini-Study metric, and the Lorentzian metric on S2 × R is

ds2 =
4R2

(1 + zz̄)2
dz dz̄ − dt2 ≡ g

1
2dz dz̄ − dt2 = e1e1̄ − (e3)2 , (H.0.2)

where we defined the vielbein

e3 = dt , e1 = g
1
4dz , e1̄ = g

1
4dz̄ . (H.0.3)

Here e1 and e1̄ are complex conjugates of each other and therefore any real p-form expressed

in this basis has components satisfying the reality property X∗1··· = X1̄···. Flat indices are

lowered and raised by the flat metric ηab with η11̄ = η1̄1 = 1
2
. The volume form has flat

components ε011̄ = i/2.

Let us now move to spinors. We choose the set of gamma matrices

γt =

(
i 0

0 −i

)
, γ1 =

(
0 0

1 0

)
, γ1̄ =

(
0 1

0 0

)
, (H.0.4)

satisfying {γa, γb} = 2ηab1. The generators of the Dirac representation are γab = 1
2
[γa, γb].

On S2×R the 3d Lorentz group SO(2, 1) is broken to the U(1) generated by γ11̄, and fields

are characterized by a spin that is the charge under this U(1). The spin connection, defined

by (ωab)µ = eaν
(
∂µe

ν
b + Γνµρe

ρ
b

)
, has non-zero components

(ω1
1)z = −(ω1̄

1̄)z = − z̄

1 + zz̄
, (ω1

1)z̄ = −(ω1̄
1̄)z̄ =

z

1 + zz̄
. (H.0.5)

The spinor covariant derivative (without gauge connections) Dµ

( ψ+

ψ−

)
≡ (Dµψ+, Dµψ−)T can

be written as

D = d− isω with ω = i
z̄ dz − z dz̄

1 + zz̄
= (cos θ − 1) dϕ (H.0.6)
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and s = ±1
2

is the spin. Note that 1
2π

∫
S2 dω = −2. The components ψ± are sections of

the U(1) bundles associated to the line bundles K± 1
2 ∼= O(∓1), where K is the canonical

bundle. A generic U(1) bundle is labelled by a half-integer monopole charge q, and has

covariant derivative D = d− iqa. To conform with the conventions of [158] for the monopole

harmonics, we write the connection as a half-integer multiple of a = −ω.

Similarly, the Levi-Civita connection on 1-forms is a U(1) connection when projected

onto the frame fields:

ez1∇µAz = (∂µ − iωµ)ez1Az ≡ DµA1 , ez̄1̄∇µAz̄ = (∂µ + iωµ)ez̄1̄Az̄ ≡ DµA1̄ . (H.0.7)

Thus A1 = ez1Az and A1̄ = ez̄1̄Az̄ are sections with q = −1 and q = +1, respectively. On the

other hand, DµA3 = ∂µA3 and thus A3 is a section of the trivial bundle, like a scalar. Defining

Da = eµaDµ, one finds (dA)ab = eµae
ν
b (∇µAν − ∇νAµ) = DaAb − DbAa. If, in addition, the

fields are in the adjoint representation of the gauge group and there is a background gauge

field with fluxes,

A =
1

2
miH

i a ⇒ 1

2π

∫
S2

dA = miH
i , (H.0.8)

then including this background in the covariant derivatives Dµ shifts the spin s→ s− α(m)
2

,

or equivalently q → q + α(m)
2

, where α are the roots.

The derivatives D1 and D1̄ raise and lower the spin by 1, respectively. This is opposite

in terms of the charge q. Their explicit expressions are

D
(q)
1 =

1

2R

(
(1 + zz̄) ∂z − qz̄

)
, D

(q)

1̄
=

1

2R

(
(1 + zz̄) ∂z̄ + qz

)
, (H.0.9)

where the superscript indicates the charge of the section they act on, whereas under complex

conjugation D
(q)
1 = D

(−q)
1̄

and D
(q)

1̄
= D

(−q)
1 . We define the operators

L+ = z2∂z + ∂z̄ − qz , L− = −z̄2∂z̄ − ∂z − qz̄ , Lz = z∂z − z̄∂z̄ − q , (H.0.10)

satisfying the su(2) algebra [Lz, L±] = ±L± and [L+, L−] = 2Lz. The covariant Laplacian is

−D2 ≡ L2 − q2 =
1

2
{L+, L−}+ L2

z − q2 = −
(
1 + zz̄

)2
∂z∂z̄ − q(1 + zz̄)Lz − q2

= − 1

sin θ
∂θ
(
sin θ ∂θ

)
+

1

sin2 θ

(
−i∂ϕ − q + q cos θ

)2
,

(H.0.11)

which can be diagonalized simultaneously with L2 and Lz. Its eigenfunctions are the

monopole spherical harmonics Yq,l,m with |m| ≤ l, that we choose to be orthonormal on

a S2 of radius 1: ∫
S2

√
g Yq,l,m Yq,l′,m′ = δl,l′ δm,m′ . (H.0.12)
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The highest harmonic with m = l, annihilated by L+, is

Yq,l,l(z, z̄) ∝ zl+q

(1 + zz̄)l
. (H.0.13)

Regularity at the poles implies l + q ∈ Z≥0 and l ≥ |q|.

The Laplacian can be written in terms of the derivatives as

−D2 = −4R2D1D1̄ + q = −4R2D1̄D1 − q = −2R2{D1, D1̄} . (H.0.14)

Besides, one can verify that

[D1, Lz] = [D1, L±] = [D1̄, Lz] = [D1̄, L±] = 0 . (H.0.15)

Therefore the derivatives acts as bundle-changing operators mapping Yq,m,l to Yq±1,m,l. The

exact relations can be derived integrating by parts the orthonormality conditions. For a

suitable choice of phases one finds [158,159]:

D
(q)
1 Yq,l,m = −s−(q, l)

2R
Yq−1,l,m with s−(q, l) =

[
l(l + 1)− q(q − 1)

] 1
2 ,

D
(q)

1̄
Yq,l,m =

s+(q, l)

2R
Yq+1,l,m with s+(q, l) =

[
l(l + 1)− q(q + 1)

] 1
2 .

(H.0.16)

Following the same conventions as in [159], the monopole harmonics satisfy

Yq,l,m = (−1)q+m Y−q,l,−m (H.0.17)

under complex conjugation.

Finally, the triple overlap of harmonics is given in terms of Wigner 3j-symbols:∫
dΩ Yq,l,mYq′,l′,m′Yq′′,l′′,m′′ =

= (−1)l+l
′+l′′
[

(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

] 1
2

(
l l′ l′′

q q′ q′′

)(
l l′ l′′

m m′ m′′

)
, (H.0.18)

or equivalently

Yq,l,m Yq′,l′,m′ = (H.0.19)∑
l′′

(−1)l+l
′+l′′+q′′+m′′

[
(2l + 1)(2l′ + 1)(2l′′ + 1)

4π

] 1
2

(
l l′ l′′

q q′ q′′

)(
l l′ l′′

m m′ m′′

)
Y−q′′,l′′,−m′′

The 3j-symbols are directly related to Clebsch-Gordan coefficients that decompose the an-

gular momentum state |l′′m′′〉 in terms of |l m l′m′〉 = |l m〉 ⊗ |l′m′〉:

C
(
l l′ l′′

m m′ m′′

)
≡ 〈l m l′m′| l′′m′′〉 = (−1)l−l

′+m′′
√

2l′′ + 1

(
l l′ l′′

m m′ −m′′

)
. (H.0.20)
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In particular, the Clebsh-Gordan coefficients are zero unless m+m′ = m′′,
∣∣m(i)

∣∣ ≤ l(i) with

m(i) = l(i) mod 1, and l(i) ≤ l(j) + l(k). The 3j-symbol is symmetric under even permutations

of its columns, and gains a sign (−1)l+l
′+l′′ under odd permutations. It also gains a sign

(−1)l+l
′+l′′ when one changes sign to m, m′ and m′′. This implies the following relations

among Clebsch-Gordan coefficients:

C
(
l′ l′′ l
m′ −m′′ −m

)
= (−1)l−l

′′+m′
[

2l + 1

2l′′ + 1

]1/2

C
(
l l′ l′′

m m′ m′′

)
,

C
(

l′′ l l′

−m′′ m −m′
)

= (−1)l
′′−l′+m

[
2l′ + 1

2l′′ + 1

]1/2

C
(
l l′ l′′

m m′ m′′

)
,

C
(
l′ l l′′

m′ m m′′

)
= (−1)l+l

′−l′′C
(
l l′ l′′

m m′ m′′

)
.

(H.0.21)

In the special case that l′′ = l + l′ ≡ L (and m+m′ = −m′′ ≡M as in the general case):(
l l′ L

m m′ −M

)
= (−1)l−l

′+M

[
1

2L+ 1

(
2L

L+M

)−1(
2l

l +m

)(
2l′

l′ +m′

)] 1
2

,

C
(
l l′ L
m m′ M

)
=

[(
2L

L+M

)−1(
2l

l +m

)(
2l′

l′ +m′

)] 1
2

.

(H.0.22)
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Appendix I

1d N = 2 superspace

We review here the 1d N = 2 superspace formalism, drawing from Appendix A of [139].

The N = 2 superspace in quantum mechanics, which we denote as R1|2, has coordinates

(t, θ, θ̄), where θ is a complex fermionic coordinate. A supersymmetry transformation is

δ = −εQ + εQ, where ε, ε are anticommuting parameters, and Q, Q are anticommuting

generators so that δ is commuting. Here Q and Q are defined as differential operators acting

on superfields:

Q ≡ ∂θ +
i

2
θ̄ ∂t , Q ≡ −∂θ̄ −

i

2
θ ∂t . (I.0.1)

They satisfy the algebra Q2 = Q
2

= 0 and {Q,Q} = −i∂t. Moreover, Q and Q anticommute

with another set of differential operators

D ≡ ∂θ −
i

2
θ̄ ∂t , D ≡ −∂θ̄ +

i

2
θ ∂t , (I.0.2)

which satisfy the algebra D2 = D
2

= 0 and {D,D} = i∂t. One has (DX) = (−1)FDX and

(DX) = (−1)FDX.

I.1 Matter multiplets

A chiral superfield Φh is defined by DΦh = 0. Gauge transformations act as

Φh → hΦh , h = eχ , χ : R1|2 → C⊗ r , Dχ = 0 , (I.1.1)

where r is some representation of the gauge group. DΦh = 0 implies that Φh and its complex

conjugate anti-chiral superfield Φh have expansions:

Φh = φ+ θψ − i

2
θθ̄ ∂tφ , Φh = φ− θ̄ ψ +

i

2
θθ̄ ∂tφ . (I.1.2)

Acting with (I.0.1) on Φh and Φh, we find the following supersymmetry variations:

Qφ = ψ , Qψ = 0 , Qφ = 0 , Qψ = i∂tφ . (I.1.3)

Suppose that Φa,h are a collection of bosonic chiral superfields. We can also have fermionic

Fermi superfields Yh, satisfying DYh = E(Φh) for some holomorphic function E(Φh), and
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transforming as Yh → hYh under some representation of the gauge group. DYh = E(Φh)

implies that Yh and its conjugate Yh have expansions:

Yh = η − θf − θ̄E(φ) + θθ̄
(
∂aE(φ)ψa − i

2
∂tη
)

= η − θf − θ̄E(Φ)− i
2
θθ̄∂tη ,

Yh = η − θ̄ f − θE(φ) + θθ̄
(
ψa∂aE(φ) + i

2
∂tη
)

= η − θ̄ f − θE(Φ) + i
2
θθ̄∂tη .

(I.1.4)

Acting with (I.0.1) gives the supersymmetry variations:

Qη = −f , Qf = 0 , Qη = E(φ) , Qf = −i∂tη + ∂aE(φ)ψa . (I.1.5)

I.2 Vector multiplet

We assume that the gauge group G is semi-simple (inclusion of U(1) factors is trivial) with

Lie algebra g. Denote the complexified algebra as gC = g⊗ C = g⊕R ig, with Killing form

given by the trace operation Tr. It admits a root space decomposition gC = hC ⊕α∈Φ Lα,

where hC is a Cartan subalgebra and Φ is the set of all roots. We can use the Chevalley

basis gC = spanC{H i=1,...,rkG, Eα | α ∈ Φ}, where i indexes a set of simple roots αi and H i

is defined in the following way:

∃! H i ∈ hC
∣∣ αi(h) = Tr(H ih) , ∀ h ∈ hC . (I.2.1)

The element Eα is also normalized so that TrEαE−α = 1. The compact real form is

g = spanR
{
iH i, Eα − E−α, i(Eα + E−α)

∣∣ α ∈ Φ+
}
, (I.2.2)

where Φ+ is the set of positive roots. Using the fact that Tr splits between each summand

in hC ⊕α∈Φ+ (Lα ⊕ L−α), and that Tr is positive definite on H i, it quickly follows that Tr is

negative (positive) definite on g (ig). Any Λ ∈ ig can be expressed with Λi, Λα
1 , Λα

2 ∈ R as

Λ =
∑

i
ΛiH i +

∑
α∈Φ+

[
Λα

1 (Eα + E−α) + Λα
2 i(E

α − E−α)
]

=
∑

i
ΛiH i +

∑
α∈Φ+

(
ΛαEα + ΛαE−α

)
, Λα ≡ Λα

1 + iΛα
2 .

(I.2.3)

Therefore, defining a formal Hermitian conjugation on elements of gC as H i ≡ H i, Eα ≡ E−α,

we can alternatively define ig as ig =
{

Λ ∈ gC
∣∣Λ = Λ

}
. A generic group element k = eiΛ

then satisfies k = e−iΛ = k−1. If G = U(N), this formal Hermitian conjugation becomes the

actual conjugate transpose on N ×N matrices.

To build gauge interactions, we introduce the independent superfields Ω and V −. Ω is

valued in gC, while V − is valued in ig, i.e., V − = V −. One can either use Ω alone, or include
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both Ω and V − in the theory. The crucial role played by Ω is to allow for gauge-covariant

chiral and Fermi conditions. Under gauge transformations, they transform as:

eΩ → k eΩ h−1 , V − → kV −k−1 + ik(∂tk
−1) ,

h = eχ , χ : R1|2 → gC , Dχ = 0 ,

k = eiΛ , Λ : R1|2 → ig , Λ = Λ .

(I.2.4)

Without loss of generality, V − can be expanded as

V − = At − σ − iθλ− iθ̄λ+ θθ̄D , (I.2.5)

where (At−σ, D) are valued in ig and λ is valued in gC. We now define the various ingredients

used to construct supersymmetric actions. The gauge-covariant superspace derivatives are

defined as

D ≡ e−Ω D eΩ , D ≡ eΩ D e−Ω , D−t ≡ ∂t − iV − , (I.2.6)

which, according to (I.2.4) and using Dh = Dh = 0, transform as

D → kDk−1 , D → kDk−1 , D−t → kD−t k−1 . (I.2.7)

They satisfy the algebra

D2 = D2
= 0 , {D,D} = i(∂t − iV +) ≡ iD+

t , (I.2.8)

where V + is an ig-valued superfield constructed out of Ω only:

V + ≡ D
[
eΩ
(
De−Ω

)]
+D

[
e−Ω
(
DeΩ

)]
+
{
eΩ
(
De−Ω

)
, e−Ω

(
DeΩ

)}
. (I.2.9)

If the gauge group is Abelian this simplifies to V + = −[D,D] Ω. As it was for D and

D, one has (DX) = (−1)F DX and (DX) = (−1)F DX. One can check that the gauge

transformation of V + is identical to that of V −:

V + → kV +k−1 + ik(∂tk
−1) , (I.2.10)

which is consistent with (I.2.7) and (I.2.8). We will also have occasion to use the field

strength superfield

Υ ≡ [D,D−t ] = −iDV − − ∂t
[
eΩ
(
De−Ω

)]
− i
[
eΩ
(
De−Ω

)
, V −

]
, (I.2.11)

which also transforms covariantly as Υ → kΥk−1. From the definition, it follows directly

that DΥ = 0.

Instead of Ω and V −, we can equivalently use two other superfields V and V −h defined as

eV ≡ eΩeΩ , V −h ≡ eΩ V −eΩ +
i

2
eΩ∂te

Ω − i

2

(
∂te

Ω
)
eΩ , V −h = V −h , (I.2.12)
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which only transform under the complexified gauge transformations as:

eV → h
−1
eV h−1 , V −h → h

−1
V −h h

−1 +
i

2
h
−1
eV ∂th

−1 − i

2

(
∂th
−1)

eV h−1 . (I.2.13)

Note that V is constructed solely out of Ω, while V −h is built out of both V − and Ω. In this

formulation, the theory might contain V only, or both V −h and V . Analogously to the above,

out of V and V −h we can construct

V +
h ≡

1

2
eVD

(
e−VDeV

)
+

1

2
D
(
eVDe−V

)
eV = eΩV +eΩ +

i

2
eΩ∂te

Ω − i

2

(
∂te

Ω
)
eΩ ,

Υh ≡ −i eVD
[
e−V

(
V −h +

i

2
∂te

V
)]

= eΩΥeΩ .
(I.2.14)

One can check that V +
h transforms in the same way as V −h , and Υh transforms in the same

way as eV . In an Abelian theory,

V +
h =

1

2
eV
(
DD −DD

)
V . (I.2.15)

When writing matter Lagrangians in terms of Φh and Yh which transform with chiral gauge

transformations h, it will be convenient to use V and V −h .

Given any chiral or Fermi superfield, one can define covariantly-chiral counterparts

Φk ≡ eΩ Φh , Yk ≡ eΩYh , DΦk = 0 , DYk = E(Φk) , (I.2.16)

which transform under the gauge group as Φk → kΦk and Yk → kYk. These fields are useful

when one is using Ω and V − to describe the vector multiplet.

I.3 Wess-Zumino gauge

We can expand Ω and the gauge-transformation parameters χ, Λ as:

Ω = Ω0 + θΩθ + θ̄Ωθ̄ + θθ̄Ωθθ̄ , χ = χ0 + θχθ −
i

2
θθ̄∂tχ0 , Λ = Λ0 + θΛθ − θ̄Λθ + θθ̄Λθθ̄ .

(I.3.1)

We show that, using gauge transformations, every component of Ω can be canceled except

for Ωθθ̄, and we can further set Ωθθ̄ = Ωθθ̄, i.e., Ωθθ̄ is valued in ig. We shall call this

component −1
2
(At + σ), where both At and σ are valued in ig. Due to the relative sign, this

is independent from (At − σ) in V −. In other words, we can bring Ω to the form

Ω = −1

2
θθ̄ (At + σ) , (I.3.2)

that we dub the Wess-Zumino gauge. First, we use the transformation χ = Ω0 − i
2
θθ̄∂tΩ0,

Λ = 0 to set Ω0 → 0, after which only transformations with χ0 = iΛ0 preserve Ω0 = 0
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and are allowed. Next, performing the transformation χ = θ(Ωθ + Ωθ̄), Λ = iθΩθ̄ + iθ̄Ωθ̄

sets Ωθ, Ωθ̄ → 0. Further transformation parameters cannot have θ or θ̄ components since

otherwise a nonzero Ωθ̄ would be generated. Lastly, we perform χ = 0, Λ = i
2
θθ̄(Ωθθ̄ −Ωθθ̄),

after which Ωθθ̄ → 1
2
(Ωθθ̄ + Ωθθ̄) is valued in ig. The residual gauge transformations are

χ = iΛ0 + 1
2
θθ̄∂tΛ0, Λ = Λ0, under which

At + σ → eiΛ0(At + σ)e−iΛ0 + i eiΛ0∂te
−iΛ0 . (I.3.3)

These are purely time-dependent gauge transformations, as expected. In this gauge, the

gauge-covariant superspace derivatives simplify to

D+
t = D+

t = ∂t − i(At + σ) , D = ∂θ −
i

2
θ̄D+

t , D = −∂θ̄ +
i

2
θD+

t , (I.3.4)

and

V + = At + σ , Υ = λ− θ
(
Dtσ + iD

)
− i

2
θθ̄D+

t λ . (I.3.5)

The action of supersymmetry on Ω, using (I.0.1), is δΩ = 1
2
εθ̄(At + σ) − 1

2
ε̄θ(At + σ)

and the Wess-Zumino gauge is not preserved. This can be compensated by an infinitesimal

gauge transformation with parameters

Λ =
i

2
εθ̄(At + σ) +

i

2
ε̄θ(At + σ) +O(ε2) , χ = −ε̄θ(At + σ) +O(ε2) . (I.3.6)

The supersymmetry transformations that preserve Wess-Zumino gauge are computed using δ

with the addition of the compensating gauge transformation above. For Ω, its variation under

the combined supersymmetry and gauge transformation is δΩ + iΛ−χ = 0 by construction.

The superfields Φk, Yk are only sensitive to the gauge transformations generated by Λ, and

not to those generated by χ. The addition of the Λ-transformation (I.3.6) to δ can be directly

absorbed into the supercharges:

QWZ ≡ ∂θ +
i

2
θ̄
[
∂t − δgauge(At + σ)

]
, QWZ ≡ −∂θ̄ −

i

2
θ
[
∂t − δgauge(At + σ)

]
. (I.3.7)

Note that δgauge(Λ) acts according to the gauge representation of each superfield, except for

V ±, on which δgauge(Λ)V ± = ∂tΛ− i[V ±,Λ]. The modified supercharges satisfy the algebra

Q2
WZ = Q

2

WZ = 0 , {QWZ, QWZ} = −i
[
∂t − δgauge(At + σ)

]
. (I.3.8)

I.4 Transformations in Wess-Zumino gauge

Acting with (I.3.7) on V ± and reading off the variations of each component, we find the

following supersymmetry variations (and their complex conjugate) for the vector multiplet:

QWZAt = −QWZ σ = − i
2
λ , QWZ λ = −Dtσ − iD ,

QWZD = −1

2
D+
t λ , QWZ λ = 0 .

(I.4.1)
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Note that QWZ(At + σ) = QWZ(At + σ) = 0, consistently with (I.3.8). In Wess-Zumino

gauge, Φk and its conjugate Φk have expansion:

Φk = φ+ θψ − i

2
θθ̄D+

t φ , Φk = φ− θ̄ ψ +
i

2
θθ̄D+

t φ . (I.4.2)

Acting with (I.3.7) on Φk we find the following supersymmetry variations:

QWZ φ = ψ , QWZ ψ = 0 , QWZ φ = 0 , QWZ ψ = iD+
t φ . (I.4.3)

Alternatively, we can obtain the same variations by acting with δ+χ = −εQWZ + ε̄ QWZ on

Φh, with χ given in (I.3.6). Analogously, Yk and its conjugate Yk have the expansions

Yk = η − θf − θ̄E(φ) + θθ̄
(
∂aE(φ)ψa − i

2
D+
t η
)

= η − θf − θ̄E(Φ)− i
2
θθ̄D+

t η

Yk = η − θ̄ f − θE(φ) + θθ̄
(
ψa∂aE(φ) + i

2
D+
t η
)

= η − θ̄ f − θE(Φ) + i
2
θθ̄D+

t η ,
(I.4.4)

and acting with (I.3.7) gives the supersymmetry variations:

QWZ η = −f , QWZ f = 0 , QWZ η = E(φ) , QWZ f = −iD+
t η + ∂aE(φ)ψa .

(I.4.5)

Again, we can obtain the same variations by acting with δ + χ on Yh.

I.5 Supersymmetric Lagrangians

As with the prototypical 4d N = 1 supersymmetry, there are two broad classes of super-

symmetric terms: D-terms and F-terms. Let X be a bosonic, gauge-invariant, real-valued

superfield with expansion

X = X0 + θXθ − θ̄ Xθ + θθ̄Xθθ̄ . (I.5.1)

Acting with Q and Q, we find that QXθθ̄ = − i
2
∂tXθ and QXθθ̄ = i

2
∂tXθ are total derivatives.

Moreover, QQX0 = Xθθ̄ up to a total derivative. Therefore,∫
dθdθ̄ X = −Xθθ̄ = QQ (−X0) (I.5.2)

is supersymmetric, and we call such terms D-terms. They are always Q and Q exact.

Conversely, suppose there is a term in the Lagrangian of the form QQ(−X0) where X0 is

real and gauge-invariant. If there is a real-valued superfield X with bottom component X0,

it must have the same expansion (I.5.1). Therefore (I.5.2) holds and this term can be written

as a D-term in superspace.
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Let Y be a fermionic, gauge-invariant, complex-valued chiral superfield, DY = DY = 0.

Its complex conjugate Y is anti-chiral and satisfies DY = 0. They have expansion:

Y = Y0 + θYθ −
i

2
θθ̄ ∂tY0 , Y = Y0 + θ̄ Yθ +

i

2
θθ̄ ∂tY0 . (I.5.3)

Acting with Q and Q on Y and Y , one finds that Yθ and Yθ are separately supersymmetric

up to total derivatives. Moreover, Yθ = QY0 and Yθ = −QY0. Therefore:∫
dθ Y +

∫
dθ̄ Y = Yθ + Yθ = QY0 −QY0 = (Q+Q)(Y0 − Y0) (I.5.4)

is supersymmetric, and we call such terms F-terms. They are always (Q+Q) exact.

We can now write the following supersymmetric Lagrangians, with component expres-

sions in Wess-Zumino gauge. In the gauge sector, if the theory only contains Ω or equivalently

V , the only term we can think of is a Wilson line in At + σ. For a U(1) gauge group, the

supersymmetric Wilson loop of charge q can be written as

exp

(
iq

∮
dt

∫
dθdθ̄ V

)
WZ
= exp

(
iq

∮
dt (At + σ)

)
. (I.5.5)

If both V − and Ω are present, we can write the following terms. The conventional gauge

kinetic term is

1

2e2
1d

∫
dθdθ̄ Tr ΥΥ =

1

2e2
1d

∫
dθdθ̄ Tr Υhe

−V Υhe
−V WZ

=
1

2e2
1d

Tr
[
(Dtσ)2 +D2 + iλD+

t λ
]
.

(I.5.6)

Note that the superfield V − − V + transforms covariantly, V − − V + → k (V − − V +) k−1,

under gauge transformations. For an adjoint-invariant form ζ : ig→ R, the Fayet-Iliopoulos

term is: ∫
dθdθ̄ ζ

(
V − − V +

)
=

∫
dθdθ̄ ζ

((
V −h − V

+
h

)
e−V

)
WZ
= −ζ(D) . (I.5.7)

If the gauge group is Abelian, V +
h e
−V = 1

2
(DD − DD)V becomes a total derivative under

the superspace integral. Therefore, FI terms for Abelian gauge groups can be written as∫
dθdθ̄ ζ

(
V −h e

−V ) . (I.5.8)

We can also write a mass term that gaps V − (or equivalently the gaugino and σ):

− 1

2

∫
dθdθ̄ Tr

(
V −−V +

)2
= −1

2

∫
dθdθ̄ Tr

((
V −h −V

+
h

)
e−V

)2 WZ
= Tr

(
λλ− 2σD

)
. (I.5.9)

Moving on to the matter sector, the conventional kinetic term for a chiral multiplet is:

i

∫
dθdθ̄ ΦkD−t Φk =

∫
dθdθ̄

(
i

2
Φh e

V ∂tΦh −
i

2
∂tΦh e

V Φh + Φh V
−
h Φh

WZ
= −φ

(
D2
t + σ2 +D

)
φ+ iψD−t ψ + iφλψ − iψ λφ ,

(I.5.10)
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where D−t ≡ ∂t − i(At − σ). It requires the presence of both V − and Ω. Alternatively, we

can write a kinetic term that couples to V + in place of V −, in which case only Ω (or V ) is

required:

i

∫
dθdθ̄ ΦkD+

t Φk =

∫
dθdθ̄

(
i

2
Φh e

V ∂tΦh −
i

2
∂tΦh e

V Φh + Φh V
+
h Φh

)
WZ
= D+

t φD
+
t φ+ iψD+

t ψ .

(I.5.11)

We can also write a term with a first order action for φ, and it only requires Ω:∫
dθdθ̄ ΦkΦk =

∫
dθdθ̄ Φh e

V Φh
WZ
= i φD+

t φ+ ψψ . (I.5.12)

The conventional kinetic term for a Fermi multiplet is∫
dθdθ̄ YkYk =

∫
dθdθ̄ YheVYh

WZ
= iηD+

t η + ff −
∣∣E(φ)

∣∣2 − η ∂aE(φ)ψa − ψa ∂aE(φ) η ,

(I.5.13)

and it only requires Ω. If present, terms in E(Φ) that are linear in the chiral superfields Φa

gives rise to mass terms which gap out the chiral and Fermi multiplets together. Quadratic

or higher-order terms in E(Φ) produce cubic or higher-order interactions. We shall call

them E-interactions. Suppose now that we have a collection of Fermi superfields Yi with

DYi = Ei(Φ). In addition to Ei, we associate another holomorphic function Ji(Φ) of the

chiral superfields to each Fermi such that EiJi (with repeated indices summed) is gauge-

invariant and EiJi = 0. Then Yi Ji(Φ) is a gauge-invariant fermionic chiral superfield. We

can therefore write the F-terms:∫
dθ Yi Ji(Φ) +

∫
dθ̄ Yi J i(Φ) = −fiJi(φ)− ηi ∂aJi(φ)ψa− f i J i(φ)−ψa ∂aJ i(φ) ηi . (I.5.14)

Note that because YiJi is gauge-invariant, Yi,hJi(Φh) = Yi,kJi(Φk). We will call interactions

that are constructed in this way J-interactions.

I.6 Twisted 3d Yang-Mills and Chern-Simons terms

In this subsection, we show how the parts of the topologically twisted 3d Yang-Mills and

Chern-Simons Lagrangians containing Ξ1̄ can be written in 1d superspace. The terms lie

slightly beyond the scope of the exposition above, because Ξ1̄ transforms as a connection on

S2 under gauge transformations, as reported in (2.2.7).

Yang-Mills. The first line in (2.2.8) can be written in superspace as:

Tr
[
4|Ft1̄|2 + 4iDF11̄ − 4|D1̄σ|2 + iΛ1(Dt + iσΛ1̄ + 2ΛtD1Λ1̄ − 2Λ1D1̄Λt

]
WZ
= 4i

∫
dθdθ̄ Tr

(
Ξ1,k ∂tΞ1̄,k −F11̄,k V

−
)
,

(I.6.1)
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where we defined the superfield

F11̄,k ≡ ∂1Ξ1̄,k − ∂1̄Ξ1,k − i
[
Ξ1,k,Ξ1̄,k

]
. (I.6.2)

Here F11̄,k transforms covariantly under super-gauge transformations as F11̄,k 7→ kF11̄,kk
−1.

Note that the superspace expression has the same form as a Chern-Simons term for super-

fields, with V − playing the role of the connection along t. Therefore, under finite gauge

transformations:

δgauge 4i

∫
dθdθ̄ Tr

(
Ξ1,k ∂tΞ1̄,k −F11̄,k V

−
)

= 2i

∫
dθdθ̄ Tr k−1∂tk

[
k−1∂1k, k

−1∂1̄k] ,

= 2iTr ∂t∂θ

(
k−1∂θ̄k

[
k−1∂1k, k

−1∂1̄k
])

+ cyclic . (I.6.3)

The omitted terms contain cyclic permutations of (t, 1, 1̄). This gauge variation looks like

a winding number for super-gauge transformations. Since we are taking derivatives of the

winding number density (albeit with respect to fermionic variables), a total derivative is

expected because the winding number is homotopy invariant.

Alternatively, we can use superfields which are only sensitive to complexified gauge trans-

formations. The superspace expression in (I.6.1) can then be written as

(I.6.1) = 4i

∫
dθdθ̄ Tr

(
Ξ1,h ∂tΞ1̄,h −F11̄,h e

−V V −h

)
, (I.6.4)

where total derivatives of the kind (I.6.3) have been neglected. One can check that (I.6.4) is

real and gauge-invariant up to total derivatives.

Chern-Simons. We now want to write the first piece of (2.2.9) in superspace. To do this,

we follow a similar procedure as in [160]. First, the fields X are extended to be functions

X̂ of an auxiliary coordinate y ∈ (0, 1) in an arbitrary way, except that they must fulfill

boundary conditions

X̂(θ, ϕ, t, y = 0) = 0 , X̂(θ, ϕ, t, y = 1) = X(θ, ϕ, t) . (I.6.5)

Extended quantities will be denoted with a hat. Given (I.6.5), we have:

LCS,Ξ

∣∣∣
WZ

= L̂CS,Ξ(y = 1)
∣∣∣
WZ

=

∫ 1

0

dy ∂yL̂CS,Ξ

∣∣∣
WZ

. (I.6.6)

Now, ∂yL̂CS,Ξ can be written in superspace as:

∂yL̂CS,Ξ

∣∣∣
WZ

= Tr
[
−4i∂y(Ât + σ̂)F̂11̄ + 4∂yÂ1

(
i∂tÂ1̄ − iD̂1̄(Ât + σ̂)

)
+ ∂yΛ̂1Λ̂1̄

+ 4∂yÂ1̄

(
−i∂tÂ1 + iD̂1(Ât + σ̂)

)
− ∂yΛ̂1̄Λ̂1

]
= 4∂y

∫
dθdθ̄ Tr

[
Ξ̂1,h Ξ̂1̄,h − iV̂

(
∂1Ξ̂1̄,h − ∂1̄Ξ̂1,h − i

[
Ξ̂1,h, Ξ̂1̄,h

])]
. (I.6.7)
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This superspace expression is only valid in Wess-Zumino gauge where V = −θθ̄(At+σ), and

it is not invariant under super-gauge transformations. Even so, we can take it as a starting

point for constructing the gauge-invariant completion. A gauge-invariant expression that

reduces to the above in Wess-Zumino gauge is

∂yL̂CS,Ξ = 4

∫
dθdθ̄ Tr

[
− i e−V̂ ∂y

(
eV̂
)
F̂11̄,h + Ξ̂1,h ∂yΞ̂1̄,h + ∂yΞ̂1,h Ξ̂1̄,h

]
. (I.6.8)

One can check that the first term is Hermitian, while the second and third terms are Her-

mitian conjugates of each other. Therefore

LCS,Ξ = Tr
[
4iA1∂tA1̄ − 4i(At + σ)F11̄ + Λ1Λ1̄

]
WZ
= 4

∫ 1

0

dy dθdθ̄ Tr
[
−i e−V̂ ∂y

(
eV̂
)
F̂11̄,h + Ξ̂1,h ∂yΞ̂1̄,h + ∂yΞ̂1,h Ξ̂1̄,h

]
.

(I.6.9)

If the gauge group is Abelian, (I.6.8) is a total derivative in y and the auxiliary coordinate

y can be eliminated to give

LCS,Ξ = 4

∫
dθdθ̄

[
Ξ1,h Ξ1̄,h − iV

(
∂1Ξ1̄,h − ∂1̄Ξ1,h

)
+

1

2
∂1V ∂1̄V

]
. (I.6.10)

For a non-Abelian gauge groups there is no compact expression for the integral in y, but we

can expand in powers of V . Choosing

Ξ̂1̄,h = y Ξ1̄,h , V̂ = y V , (I.6.11)

one obtains the following expression up to quadratic terms in V :

LCS,Ξ = 4

∫
dθdθ̄ Tr

[
Ξ1,h Ξ1̄,h − iV

(
∂1Ξ1̄,h − ∂1̄Ξ1,h − i

[
Ξ1,h, Ξ1̄,h

])
+

1

2

(
∂1V − i

[
Ξ1,h, V

])(
∂1̄V − i

[
Ξ1̄,h, V

])
+O(V 3)

]
. (I.6.12)
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Appendix J

Partial gauge fixing

In this appendix we follow [141] and review the general procedure for partial gauge fixing.

Let G be the infinite-dimensional group of gauge transformations, and {eA} a Hermitian

basis for its algebra g. Denote the structure constants of g as [eA, eB] = ifABC eC . The basis

{eA} is also chosen such that it is orthonormal under the inner product∫
Tr (eA eB) = δAB . (J.0.1)

Let R ⊂ G be a subgroup, which will be the group of residual gauge transformations after

partial gauge fixing. We call its algebra r ⊂ g (r stands for residual). We split the basis

as {eA} = {ei, ea}, where {ei} is a basis for r whereas {ea} is a basis for f ∼= g/r (f stands

for gauge-fixed). Since R is a subgroup, r is a subalgebra and [r, r] ⊂ r, or fija = 0. By

anti-symmetry of the structure constants this implies fiaj = 0, or [r, f] ⊂ f. In summary, the

algebra of g decomposes as

[ei, ej] = ifijk ek , [ei, ea] = ifiab eb , [ea, eb] = ifabi ei + ifabc ec . (J.0.2)

In particular, this implies that the ea’s transform under the adjoint action in a real orthogonal

representation of R, which we call Rf .

In order to fix G to R, we need to choose as many gauge-fixing conditions as there are

generators in f. In other words we need to choose gauge-fixing functions Ga
gf(X), where X

collectively denotes physical fields in the chiral and vector multiplets. Notice that Ga
gf(X)

should transform in Rf under R. This is true for all the gauge-fixing functions we can think

of. The first step in the gauge-fixing procedure is to integrate in an adjoint scalar Λ ∈ g, and

add
∫

1
2

Tr Λ2 to the action. Notice that Λ will have mass dimension [Λ] = 3/2. Since Λ is

completely decoupled from everything else, introducing it does not change the path integral.

We then insert 1 in the path integral, written as

1 = ∆(X,Λ)

∫
G
Dg

∏
a

δ
(
Ga

gf(X
g)− (Λg)a

)
, (J.0.3)

where superscripts (·)g denote a finite gauge transformation by g. Suppose that gX,Λ ∈ G
satisfies Ga

gf(X
gX,Λ) − (ΛgX,Λ)a = 0, then so does rgX,Λ for any r ∈ R, due to the covariant

transformations of Ga
gf and Λa under R. Therefore, R remains as the residual gauge group.
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Notice that it is necessary for Λ to transform under gauge transformations. This is different

from the standard Faddeev-Popov procedure, in which Λ is only integrated over at the very

last step. That would have been sufficient if the gauge were completely fixed (R = 0).

The slightly different procedure described here will produce extra interaction terms in the

ghost action. Now, as usual, the invariance of Dg ensures that the determinant ∆ is gauge-

invariant, and

∆(X,Λ)−1 = ∆(XgX,Λ ,ΛgX,Λ)−1 =

∫
G
Dg

∏
a

δ
(
Ga

gf(X
g·gX,Λ)− (Λg·gX,Λ)a

)
. (J.0.4)

Assuming no Gribov copies and writing g = 1 + εAeA, δA ≡ δgauge(eA), one can expand the

argument of the delta function to linear order in εA and obtain εb δb
[
Ggf(X

gX,Λ) − ΛgX,Λ
]a

.

The fact that the terms with εi disappear ensures that Vol(R) is factorized as an overall

factor in the Faddeev-Popov determinant:

∆(X,Λ) = det δb

[
Ga

gf(X
gX,Λ)− (ΛgX,Λ)a

]
/Vol(R) . (J.0.5)

The determinant can be shown to be well-defined on the coset RgX,Λ. Having determined

∆(X,Λ), inserting 1 in the path integral gives∫
DX DΛDg eiS(X)− i

2

∫
Tr Λ2

∆(X,Λ)
∏
a

δ
(
Ga

gf(X
g)− (Λg)a

)
. (J.0.6)

Undoing the gauge transformation in the delta function, the integral over the gauge group

factorizes and one gets∫
DX DΛ eiS(X)− i

2

∫
Tr Λ2

det
(
δbG

a
gf(X)− δbΛa

) ∏
a

δ
(
Ga

gf(X)− Λa
)
. (J.0.7)

By means of δbΛ
a = iΛA[eb, eA]a = −ΛAfbAa = −fabiΛi − fabcΛc we can explicitly write:

det
(
δbG

a
gf(X)− δbΛa

)
=

∫ (∏
a

Dc̃ aDca
)

exp
[
−c̃ a

(
δbG

a
gf(X) + fabiΛ

i + fabcΛ
c
)
cb
]
,

(J.0.8)

where we have introduced the Grassmann scalars ca, c̃ a. Note that they are valued in f and

not in g: modes corresponding to residual gauge transformations are not present. Also note

that by dimensional analysis, [ c̃ ] + [c] = [Ggf] = 3/2. Without loss of generality, we can take

[c] = 0, [ c̃ ] = 3/2. Integrating out Λi and imposing the delta functions for Λa, one gets the

action:

S(X) +

∫
Tr

[
−
G2

gf

2
+Ggf

{
c̃, c
}

+ i c̃ δgauge(c)Ggf +
1

2
{c̃, c}r{c̃, c}r

]
. (J.0.9)

This is equivalent to the following action with extra scalars ba integrated in:

S(X) +

∫
Tr

[
b2

2
+ b
(
Ggf − {c̃, c}

)
+ i c̃ δgauge(c)Ggf +

1

2
{c̃, c}2

]
. (J.0.10)
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Notice that ba have dimension [b] = 3/2. One should keep in mind that c, c̃, b only contain

modes in f. We will now rescale

Ggf → e−1
3d Ggf b → e−1

3d b , c → e−1
3d c , (J.0.11)

after which [Ggf] = 2 , [c] = 1
2
, and [b] = 2. The gauge-fixing action gains an overall

factor of 1/e2
3d. This is useful because the background Coulomb gauge Ggf = DB

i A
i/
√
ξ

(with ξ a positive dimensionless parameter) that we choose in the main text has dimension

[Ggf] = 2. This is true for many other standard gauge-fixing functions, such as the Lorenz

gauge ∂µA
µ/
√
ξ and the background Lorenz gauge DB

µA
µ/
√
ξ.

129



Bibliography

[1] S. W. Hawking, “Breakdown of Predictability in Gravitational Collapse,” Phys. Rev.

D 14 (1976) 2460–2473.

[2] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7 (1973) 2333–2346.

[3] J. M. Bardeen, B. Carter, and S. W. Hawking, “The Four laws of black hole

mechanics,” Commun. Math. Phys. 31 (1973) 161–170.

[4] W. Israel, “Event horizons in static vacuum space-times,” Phys. Rev. 164 (1967)

1776–1779.

[5] B. Carter, “Axisymmetric Black Hole Has Only Two Degrees of Freedom,” Phys.

Rev. Lett. 26 (1971) 331–333.

[6] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole physics,”

Phys. Rev. D 9 (1974) 3292–3300.

[7] S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43

(1975) 199–220.

[8] A. Strominger and C. Vafa, “Microscopic origin of the Bekenstein-Hawking entropy,”

Phys. Lett. B379 (1996) 99–104, arXiv:hep-th/9601029 [hep-th].

[9] R. Dijkgraaf, E. P. Verlinde, and H. L. Verlinde, “Counting dyons in N=4 string

theory,” Nucl. Phys. B 484 (1997) 543–561, arXiv:hep-th/9607026.

[10] H. Ooguri, A. Strominger, and C. Vafa, “Black hole attractors and the topological

string,” Phys. Rev. D 70 (2004) 106007, arXiv:hep-th/0405146.

[11] A. Dabholkar, F. Denef, G. W. Moore, and B. Pioline, “Exact and asymptotic

degeneracies of small black holes,” JHEP 08 (2005) 021, arXiv:hep-th/0502157.

[12] B. Pioline, “BPS black hole degeneracies and minimal automorphic representations,”

JHEP 08 (2005) 071, arXiv:hep-th/0506228.

[13] D. Shih, A. Strominger, and X. Yin, “Counting dyons in N=8 string theory,” JHEP

06 (2006) 037, arXiv:hep-th/0506151.

[14] J. R. David and A. Sen, “CHL Dyons and Statistical Entropy Function from D1-D5

System,” JHEP 11 (2006) 072, arXiv:hep-th/0605210.

130

http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.14.2460
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1103/PhysRev.164.1776
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevLett.26.331
http://dx.doi.org/10.1103/PhysRevD.9.3292
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1007/BF02345020
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://dx.doi.org/10.1016/S0550-3213(96)00640-2
http://arxiv.org/abs/hep-th/9607026
http://dx.doi.org/10.1103/PhysRevD.70.106007
http://arxiv.org/abs/hep-th/0405146
http://dx.doi.org/10.1088/1126-6708/2005/08/021
http://arxiv.org/abs/hep-th/0502157
http://dx.doi.org/10.1088/1126-6708/2005/08/071
http://arxiv.org/abs/hep-th/0506228
http://dx.doi.org/10.1088/1126-6708/2006/06/037
http://dx.doi.org/10.1088/1126-6708/2006/06/037
http://arxiv.org/abs/hep-th/0506151
http://dx.doi.org/10.1088/1126-6708/2006/11/072
http://arxiv.org/abs/hep-th/0605210


[15] A. Sen, “N=8 Dyon Partition Function and Walls of Marginal Stability,” JHEP 07

(2008) 118, arXiv:0803.1014 [hep-th].

[16] B. Pioline, “Lectures on black holes, topological strings and quantum attractors,”

Class. Quant. Grav. 23 (2006) S981, arXiv:hep-th/0607227.

[17] A. Sen, “Black Hole Entropy Function, Attractors and Precision Counting of

Microstates,” Gen. Rel. Grav. 40 (2008) 2249–2431, arXiv:0708.1270 [hep-th].

[18] J. M. Maldacena, “The Large N limit of superconformal field theories and

supergravity,” Int. J. Theor. Phys. 38 (1999) 1113–1133, arXiv:hep-th/9711200

[hep-th]. [Adv. Theor. Math. Phys.2,231(1998)].

[19] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field

theories, string theory and gravity,” Phys. Rept. 323 (2000) 183–386,

arXiv:hep-th/9905111 [hep-th].

[20] M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional

space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099.

[21] M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, “Geometry of the (2+1)

black hole,” Phys. Rev. D 48 (1993) 1506–1525, arXiv:gr-qc/9302012. [Erratum:

Phys.Rev.D 88, 069902 (2013)].

[22] A. Strominger, “Black hole entropy from near horizon microstates,” JHEP 02 (1998)

009, arXiv:hep-th/9712251.

[23] J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of

Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun.

Math. Phys. 104 (1986) 207–226.

[24] J. L. Cardy, “Operator Content of Two-Dimensional Conformally Invariant

Theories,” Nucl. Phys. B 270 (1986) 186–204.

[25] N. A. Nekrasov, “Seiberg-Witten prepotential from instanton counting,” Adv. Theor.

Math. Phys. 7 no. 5, (2003) 831–864, arXiv:hep-th/0206161.

[26] V. Pestun, “Localization of gauge theory on a four-sphere and supersymmetric

Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129, arXiv:0712.2824

[hep-th].

[27] V. Pestun et al., “Localization techniques in quantum field theories,” J. Phys. A 50

no. 44, (2017) 440301, arXiv:1608.02952 [hep-th].

131

http://dx.doi.org/10.1088/1126-6708/2008/07/118
http://dx.doi.org/10.1088/1126-6708/2008/07/118
http://arxiv.org/abs/0803.1014
http://dx.doi.org/10.1088/0264-9381/23/21/S05
http://arxiv.org/abs/hep-th/0607227
http://dx.doi.org/10.1007/s10714-008-0626-4
http://arxiv.org/abs/0708.1270
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1103/PhysRevD.48.1506
http://arxiv.org/abs/gr-qc/9302012
http://dx.doi.org/10.1088/1126-6708/1998/02/009
http://dx.doi.org/10.1088/1126-6708/1998/02/009
http://arxiv.org/abs/hep-th/9712251
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1007/BF01211590
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://dx.doi.org/10.1007/s00220-012-1485-0
http://arxiv.org/abs/0712.2824
http://arxiv.org/abs/0712.2824
http://dx.doi.org/10.1088/1751-8121/aa63c1
http://dx.doi.org/10.1088/1751-8121/aa63c1
http://arxiv.org/abs/1608.02952


[28] F. Benini and A. Zaffaroni, “A topologically twisted index for three-dimensional

supersymmetric theories,” JHEP 07 (2015) 127, arXiv:1504.03698 [hep-th].

[29] F. Benini, K. Hristov, and A. Zaffaroni, “Black hole microstates in AdS4 from

supersymmetric localization,” JHEP 05 (2016) 054, arXiv:1511.04085 [hep-th].

[30] F. Benini, K. Hristov, and A. Zaffaroni, “Exact microstate counting for dyonic black

holes in AdS4,” Phys. Lett. B771 (2017) 462–466, arXiv:1608.07294 [hep-th].

[31] F. Benini, H. Khachatryan, and P. Milan, “Black hole entropy in massive Type IIA,”

Class. Quant. Grav. 35 (2018) 035004, arXiv:1707.06886 [hep-th].

[32] S. M. Hosseini, K. Hristov, and A. Passias, “Holographic microstate counting for

AdS4 black holes in massive IIA supergravity,” JHEP 10 (2017) 190,

arXiv:1707.06884 [hep-th].

[33] F. Azzurli, N. Bobev, P. M. Crichigno, V. S. Min, and A. Zaffaroni, “A universal

counting of black hole microstates in AdS4,” JHEP 02 (2018) 054,

arXiv:1707.04257 [hep-th].

[34] S. M. Hosseini and A. Zaffaroni, “The large N limit of topologically twisted indices:

a direct approach,” arXiv:2209.09274 [hep-th].

[35] S. Choi, C. Hwang, and S. Kim, “Quantum vortices, M2-branes and black holes,”

arXiv:1908.02470 [hep-th].

[36] N. Bobev and P. M. Crichigno, “Universal spinning black holes and theories of

class R,” JHEP 12 (2019) 054, arXiv:1909.05873 [hep-th].

[37] F. Benini, D. Gang, and L. A. Pando Zayas, “Rotating Black Hole Entropy from

M5-branes,” JHEP 03 (2020) 057, arXiv:1909.11612 [hep-th].

[38] A. Zaffaroni, “Lectures on AdS Black Holes, Holography and Localization,”

arXiv:1902.07176 [hep-th].

[39] F. Benini, S. Soltani, and Z. Zhang, “A quantum mechanics for magnetic horizons,”

arXiv:2212.00672 [hep-th].

[40] C. Romelsberger, “Counting chiral primaries in N=1, d=4 superconformal field

theories,” Nucl. Phys. B747 (2006) 329–353, arXiv:hep-th/0510060 [hep-th].

[41] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju, “An Index for 4 dimensional

super conformal theories,” Commun. Math. Phys. 275 (2007) 209–254,

arXiv:hep-th/0510251 [hep-th].

132

http://dx.doi.org/10.1007/JHEP07(2015)127
http://arxiv.org/abs/1504.03698
http://dx.doi.org/10.1007/JHEP05(2016)054
http://arxiv.org/abs/1511.04085
http://dx.doi.org/10.1016/j.physletb.2017.05.076
http://arxiv.org/abs/1608.07294
http://dx.doi.org/10.1088/1361-6382/aa9f5b
http://arxiv.org/abs/1707.06886
http://dx.doi.org/10.1007/JHEP10(2017)190
http://arxiv.org/abs/1707.06884
http://dx.doi.org/10.1007/JHEP02(2018)054
http://arxiv.org/abs/1707.04257
http://arxiv.org/abs/2209.09274
http://arxiv.org/abs/1908.02470
http://dx.doi.org/10.1007/JHEP12(2019)054
http://arxiv.org/abs/1909.05873
http://dx.doi.org/10.1007/JHEP03(2020)057
http://arxiv.org/abs/1909.11612
http://arxiv.org/abs/1902.07176
http://arxiv.org/abs/2212.00672
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251


[42] J. Bhattacharya, S. Bhattacharyya, S. Minwalla, and S. Raju, “Indices for

Superconformal Field Theories in 3,5 and 6 Dimensions,” JHEP 02 (2008) 064,

arXiv:0801.1435 [hep-th].

[43] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, “Microscopic origin of the

Bekenstein-Hawking entropy of supersymmetric AdS5 black holes,” JHEP 10 (2019)

062, arXiv:1810.11442 [hep-th].

[44] S. Choi, J. Kim, S. Kim, and J. Nahmgoong, “Large AdS black holes from QFT,”

arXiv:1810.12067 [hep-th].

[45] F. Benini and P. Milan, “Black holes in 4d N=4 Super-Yang-Mills,” Phys. Rev. X 10

(2020) 021037, arXiv:1812.09613 [hep-th].

[46] F. Benini, E. Colombo, S. Soltani, A. Zaffaroni, and Z. Zhang, “Superconformal

indices at large N and the entropy of AdS5 × SE5 black holes,” Class. Quant. Grav.

37 no. 21, (2020) 215021, arXiv:2005.12308 [hep-th].

[47] A. González Lezcano and L. A. Pando Zayas, “Microstate counting via Bethe

Ansätze in the 4d N = 1 superconformal index,” JHEP 03 (2020) 088,

arXiv:1907.12841 [hep-th].

[48] J. M. Maldacena, J. Michelson, and A. Strominger, “Anti-de Sitter fragmentation,”

JHEP 02 (1999) 011, arXiv:hep-th/9812073 [hep-th].

[49] J. Preskill, P. Schwarz, A. D. Shapere, S. Trivedi, and F. Wilczek, “Limitations on

the statistical description of black holes,” Mod. Phys. Lett. A 6 (1991) 2353–2362.

[50] C. Teitelboim, “Gravitation and Hamiltonian Structure in Two Space-Time

Dimensions,” Phys. Lett. B 126 (1983) 41–45.

[51] R. Jackiw, “Lower Dimensional Gravity,” Nucl. Phys. B 252 (1985) 343–356.

[52] J. Maldacena, D. Stanford, and Z. Yang, “Conformal symmetry and its breaking in

two dimensional Nearly Anti-de-Sitter space,” PTEP 2016 no. 12, (2016) 12C104,

arXiv:1606.01857 [hep-th].

[53] P. Saad, S. H. Shenker, and D. Stanford, “JT gravity as a matrix integral,”

arXiv:1903.11115 [hep-th].

[54] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, “The

entropy of Hawking radiation,” Rev. Mod. Phys. 93 no. 3, (2021) 035002,

arXiv:2006.06872 [hep-th].

133

http://dx.doi.org/10.1088/1126-6708/2008/02/064
http://arxiv.org/abs/0801.1435
http://dx.doi.org/10.1007/JHEP10(2019)062
http://dx.doi.org/10.1007/JHEP10(2019)062
http://arxiv.org/abs/1810.11442
http://arxiv.org/abs/1810.12067
http://dx.doi.org/10.1103/PhysRevX.10.021037
http://dx.doi.org/10.1103/PhysRevX.10.021037
http://arxiv.org/abs/1812.09613
http://dx.doi.org/10.1088/1361-6382/abb39b
http://dx.doi.org/10.1088/1361-6382/abb39b
http://arxiv.org/abs/2005.12308
http://dx.doi.org/10.1007/JHEP03(2020)088
http://arxiv.org/abs/1907.12841
http://dx.doi.org/10.1088/1126-6708/1999/02/011
http://arxiv.org/abs/hep-th/9812073
http://dx.doi.org/10.1142/S0217732391002773
http://dx.doi.org/10.1016/0370-2693(83)90012-6
http://dx.doi.org/10.1016/0550-3213(85)90448-1
http://dx.doi.org/10.1093/ptep/ptw124
http://arxiv.org/abs/1606.01857
http://arxiv.org/abs/1903.11115
http://dx.doi.org/10.1103/RevModPhys.93.035002
http://arxiv.org/abs/2006.06872


[55] T. G. Mertens and G. J. Turiaci, “Solvable Models of Quantum Black Holes: A

Review on Jackiw-Teitelboim Gravity,” arXiv:2210.10846 [hep-th].

[56] S. Sachdev and J. Ye, “Gapless spin fluid ground state in a random, quantum

Heisenberg magnet,” Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030.

[57] A. Kitaev, “A simple model of quantum holography.” Talks at KITP, 7 April 2015

and 27 May 2015. http://online.kitp.ucsb.edu/online/entangled15/kitaev/

http://online.kitp.ucsb.edu/online/entangled15/kitaev2/.

[58] J. Maldacena and D. Stanford, “Remarks on the Sachdev-Ye-Kitaev model,” Phys.

Rev. D 94 no. 10, (2016) 106002, arXiv:1604.07818 [hep-th].

[59] L. V. Iliesiu and G. J. Turiaci, “The statistical mechanics of near-extremal black

holes,” JHEP 05 (2021) 145, arXiv:2003.02860 [hep-th].

[60] M. Heydeman, L. V. Iliesiu, G. J. Turiaci, and W. Zhao, “The statistical mechanics

of near-BPS black holes,” J. Phys. A 55 no. 1, (2022) 014004, arXiv:2011.01953

[hep-th].

[61] J. Boruch, M. T. Heydeman, L. V. Iliesiu, and G. J. Turiaci, “BPS and near-BPS

black holes in AdS5 and their spectrum in N=4 SYM,” arXiv:2203.01331

[hep-th].

[62] L. V. Iliesiu, S. Murthy, and G. J. Turiaci, “Revisiting the Logarithmic Corrections

to the Black Hole Entropy,” arXiv:2209.13608 [hep-th].

[63] M. Heydeman, G. J. Turiaci, and W. Zhao, “Phases of N = 2 Sachdev-Ye-Kitaev

models,” arXiv:2206.14900 [hep-th].

[64] A. Castro and E. Verheijden, “Near-AdS2 Spectroscopy: Classifying the Spectrum of

Operators and Interactions in N=2 4D Supergravity,” Universe 7 no. 12, (2021) 475,

arXiv:2110.04208 [hep-th].

[65] S. L. Cacciatori and D. Klemm, “Supersymmetric AdS4 black holes and attractors,”

JHEP 01 (2010) 085, arXiv:0911.4926 [hep-th].
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[85] A. González Lezcano and L. A. Pando Zayas, “Microstate counting via Bethe

Ansätze in the 4d N=1 superconformal index,” JHEP 03 (2020) 088,

arXiv:1907.12841v3 [hep-th].

[86] S. M. Hosseini, K. Hristov, and A. Zaffaroni, “A note on the entropy of rotating BPS

AdS7 × S4 black holes,” JHEP 05 (2018) 121, arXiv:1803.07568 [hep-th].

[87] A. Amariti, I. Garozzo, and G. Lo Monaco, “Entropy function from toric geometry,”

arXiv:1904.10009 [hep-th].

[88] I. R. Klebanov and E. Witten, “Superconformal field theory on three-branes at a

Calabi-Yau singularity,” Nucl. Phys. B536 (1998) 199–218, arXiv:hep-th/9807080

[hep-th].

[89] D. Cassani and A. F. Faedo, “A Supersymmetric consistent truncation for conifold

solutions,” Nucl. Phys. B843 (2011) 455–484, arXiv:1008.0883 [hep-th].

[90] I. Bena, G. Giecold, M. Grana, N. Halmagyi, and F. Orsi, “Supersymmetric

Consistent Truncations of IIB on T 1,1,” JHEP 04 (2011) 021, arXiv:1008.0983

[hep-th].

[91] N. Halmagyi, J. T. Liu, and P. Szepietowski, “On N=2 Truncations of IIB on T 1,1,”

JHEP 07 (2012) 098, arXiv:1111.6567 [hep-th].

[92] G. Dall’Agata and A. Gnecchi, “Flow equations and attractors for black holes in

N=2 U(1) gauged supergravity,” JHEP 03 (2011) 037, arXiv:1012.3756 [hep-th].

[93] N. Halmagyi, M. Petrini, and A. Zaffaroni, “BPS black holes in AdS4 from

M-theory,” JHEP 08 (2013) 124, arXiv:1305.0730 [hep-th].

136

http://dx.doi.org/10.1007/JHEP04(2017)014
http://arxiv.org/abs/1611.09374
http://arxiv.org/abs/1611.09374
http://dx.doi.org/10.1007/JHEP07(2018)018
http://arxiv.org/abs/1804.04592
http://dx.doi.org/10.1007/JHEP04(2020)091
http://arxiv.org/abs/1908.01737
http://dx.doi.org/10.1007/JHEP07(2020)073
http://arxiv.org/abs/1912.04169
http://arxiv.org/abs/1912.04169
http://dx.doi.org/10.1007/JHEP03(2020)088
http://arxiv.org/abs/1907.12841v3
http://dx.doi.org/10.1007/JHEP05(2018)121
http://arxiv.org/abs/1803.07568
http://arxiv.org/abs/1904.10009
http://dx.doi.org/10.1016/S0550-3213(98)00654-3
http://arxiv.org/abs/hep-th/9807080
http://arxiv.org/abs/hep-th/9807080
http://dx.doi.org/10.1016/j.nuclphysb.2010.10.010
http://arxiv.org/abs/1008.0883
http://dx.doi.org/10.1007/JHEP04(2011)021
http://arxiv.org/abs/1008.0983
http://arxiv.org/abs/1008.0983
http://dx.doi.org/10.1007/JHEP07(2012)098
http://arxiv.org/abs/1111.6567
http://dx.doi.org/10.1007/JHEP03(2011)037
http://arxiv.org/abs/1012.3756
http://dx.doi.org/10.1007/JHEP08(2013)124
http://arxiv.org/abs/1305.0730


[94] D. Klemm, N. Petri, and M. Rabbiosi, “Symplectically invariant flow equations for

N=2, D=4 gauged supergravity with hypermultiplets,” JHEP 04 (2016) 008,

arXiv:1602.01334 [hep-th].

[95] G. Felder and A. Varchenko, “Multiplication Formulas for the Elliptic Gamma

Function,” arXiv:math/0212155 [math.QA].

[96] G. Felder and A. Varchenko, “The elliptic gamma function and SL(3,Z) n Z3,” Adv.

Math. 156 (2000) 44–76, arXiv:math/9907061 [math.QA].

[97] J. Kim, S. Kim, and J. Song, “A 4d N=1 Cardy Formula,” JHEP 01 (2021) 025,

arXiv:1904.03455 [hep-th].

[98] A. Cabo-Bizet, D. Cassani, D. Martelli, and S. Murthy, “The asymptotic growth of

states of the 4d N=1 superconformal index,” JHEP 08 (2019) 120,

arXiv:1904.05865 [hep-th].

[99] D. Anselmi, D. Z. Freedman, M. T. Grisaru, and A. A. Johansen, “Nonperturbative

formulas for central functions of supersymmetric gauge theories,” Nucl. Phys. B526

(1998) 543–571, arXiv:hep-th/9708042 [hep-th].

[100] S. Benvenuti, L. A. Pando Zayas, and Y. Tachikawa, “Triangle anomalies from

Einstein manifolds,” Adv. Theor. Math. Phys. 10 (2006) 395–432,

arXiv:hep-th/0601054 [hep-th].

[101] D. R. Morrison and M. R. Plesser, “Nonspherical horizons. 1.,” Adv. Theor. Math.

Phys. 3 (1999) 1–81, arXiv:hep-th/9810201 [hep-th].

[102] A. Hanany and K. D. Kennaway, “Dimer models and toric diagrams,”

arXiv:hep-th/0503149 [hep-th].

[103] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht, “Brane dimers and

quiver gauge theories,” JHEP 01 (2006) 096, arXiv:hep-th/0504110 [hep-th].

[104] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, “Gauge

theories from toric geometry and brane tilings,” JHEP 01 (2006) 128,

arXiv:hep-th/0505211 [hep-th].

[105] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, “Dimer models from mirror

symmetry and quivering amoebae,” Adv. Theor. Math. Phys. 12 (2008) 489–545,

arXiv:hep-th/0511287 [hep-th].

137

http://dx.doi.org/10.1007/JHEP04(2016)008
http://arxiv.org/abs/1602.01334
http://arxiv.org/abs/math/0212155
http://dx.doi.org/10.1006/aima.2000.1951
http://dx.doi.org/10.1006/aima.2000.1951
http://arxiv.org/abs/math/9907061
http://dx.doi.org/10.1007/JHEP01(2021)025
http://arxiv.org/abs/1904.03455
http://dx.doi.org/10.1007/JHEP08(2019)120
http://arxiv.org/abs/1904.05865
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://dx.doi.org/10.1016/S0550-3213(98)00278-8
http://arxiv.org/abs/hep-th/9708042
http://dx.doi.org/10.4310/ATMP.2006.v10.n3.a4
http://arxiv.org/abs/hep-th/0601054
http://dx.doi.org/10.4310/ATMP.1999.v3.n1.a1
http://dx.doi.org/10.4310/ATMP.1999.v3.n1.a1
http://arxiv.org/abs/hep-th/9810201
http://arxiv.org/abs/hep-th/0503149
http://dx.doi.org/10.1088/1126-6708/2006/01/096
http://arxiv.org/abs/hep-th/0504110
http://dx.doi.org/10.1088/1126-6708/2006/01/128
http://arxiv.org/abs/hep-th/0505211
http://dx.doi.org/10.4310/ATMP.2008.v12.n3.a2
http://arxiv.org/abs/hep-th/0511287


[106] A. Butti and A. Zaffaroni, “R-charges from toric diagrams and the equivalence of

a-maximization and Z-minimization,” JHEP 11 (2005) 019, arXiv:hep-th/0506232

[hep-th].

[107] S. Kim and K.-M. Lee, “1/16-BPS Black Holes and Giant Gravitons in the

AdS5 × S5 Space,” JHEP 12 (2006) 077, arXiv:hep-th/0607085 [hep-th].

[108] K. Hristov, “Dimensional reduction of BPS attractors in AdS gauged supergravities,”

JHEP 12 (2014) 066, arXiv:1409.8504 [hep-th].

[109] K. Hristov, S. Katmadas, and C. Toldo, “Rotating attractors and BPS black holes in

AdS4,” JHEP 01 (2019) 199, arXiv:1811.00292 [hep-th].

[110] K. Hristov, S. Katmadas, and C. Toldo, “Matter-coupled supersymmetric

Kerr-Newman-AdS4 black holes,” Phys. Rev. D 100 (2019) 066016,

arXiv:1907.05192 [hep-th].

[111] M. Gunaydin, G. Sierra, and P. K. Townsend, “The Geometry of N=2

Maxwell-Einstein Supergravity and Jordan Algebras,” Nucl. Phys. B242 (1984)

244–268.

[112] M. Gunaydin, G. Sierra, and P. K. Townsend, “Gauging the d=5 Maxwell-Einstein

Supergravity Theories: More on Jordan Algebras,” Nucl. Phys. B253 (1985) 573.

[113] A. Ceresole and G. Dall’Agata, “General matter coupled N=2, D=5 gauged

supergravity,” Nucl. Phys. B585 (2000) 143–170, arXiv:hep-th/0004111 [hep-th].

[114] L. Andrianopoli, M. Bertolini, A. Ceresole, R. D’Auria, S. Ferrara, P. Fre, and

T. Magri, “N=2 supergravity and N=2 superYang-Mills theory on general scalar

manifolds: Symplectic covariance, gaugings and the momentum map,” J. Geom.

Phys. 23 (1997) 111–189, arXiv:hep-th/9605032 [hep-th].

[115] B. Craps, F. Roose, W. Troost, and A. Van Proeyen, “What is special Kahler

geometry?,” Nucl. Phys. B503 (1997) 565–613, arXiv:hep-th/9703082 [hep-th].

[116] L. Andrianopoli, S. Ferrara, and M. A. Lledo, “Scherk-Schwarz reduction of D=5

special and quaternionic geometry,” Class. Quant. Grav. 21 (2004) 4677–4696,

arXiv:hep-th/0405164 [hep-th].

[117] K. Behrndt, G. Lopes Cardoso, and S. Mahapatra, “Exploring the relation between

4D and 5D BPS solutions,” Nucl. Phys. B732 (2006) 200–223,

arXiv:hep-th/0506251 [hep-th].

138

http://dx.doi.org/10.1088/1126-6708/2005/11/019
http://arxiv.org/abs/hep-th/0506232
http://arxiv.org/abs/hep-th/0506232
http://dx.doi.org/10.1088/1126-6708/2006/12/077
http://arxiv.org/abs/hep-th/0607085
http://dx.doi.org/10.1007/JHEP12(2014)066
http://arxiv.org/abs/1409.8504
http://dx.doi.org/10.1007/JHEP01(2019)199
http://arxiv.org/abs/1811.00292
http://dx.doi.org/10.1103/PhysRevD.100.066016
http://arxiv.org/abs/1907.05192
http://dx.doi.org/10.1016/0550-3213(84)90142-1
http://dx.doi.org/10.1016/0550-3213(84)90142-1
http://dx.doi.org/10.1016/0550-3213(85)90547-4
http://dx.doi.org/10.1016/S0550-3213(00)00339-4
http://arxiv.org/abs/hep-th/0004111
http://dx.doi.org/10.1016/S0393-0440(97)00002-8
http://dx.doi.org/10.1016/S0393-0440(97)00002-8
http://arxiv.org/abs/hep-th/9605032
http://dx.doi.org/10.1016/S0550-3213(97)00408-2
http://arxiv.org/abs/hep-th/9703082
http://dx.doi.org/10.1088/0264-9381/21/19/013
http://arxiv.org/abs/hep-th/0405164
http://dx.doi.org/10.1016/j.nuclphysb.2005.10.026
http://arxiv.org/abs/hep-th/0506251


[118] G. Lopes Cardoso, J. M. Oberreuter, and J. Perz, “Entropy function for rotating

extremal black holes in very special geometry,” JHEP 05 (2007) 025,

arXiv:hep-th/0701176 [hep-th].

[119] H. Looyestijn, E. Plauschinn, and S. Vandoren, “New potentials from Scherk-Schwarz

reductions,” JHEP 12 (2010) 016, arXiv:1008.4286 [hep-th].

[120] D. Klemm, N. Petri, and M. Rabbiosi, “Black string first order flow in N=2, d=5

Abelian gauged supergravity,” JHEP 01 (2017) 106, arXiv:1610.07367 [hep-th].

[121] K. Hristov and A. Rota, “6d-5d-4d reduction of BPS attractors in flat gauged

supergravities,” Nucl. Phys. B 897 (2015) 213–228, arXiv:1410.5386 [hep-th].

[122] C. Closset and H. Kim, “Comments on twisted indices in 3d supersymmetric gauge

theories,” JHEP 08 (2016) 059, arXiv:1605.06531 [hep-th].

[123] S. M. Hosseini and A. Zaffaroni, “Large N matrix models for 3d N=2 theories:

twisted index, free energy and black holes,” JHEP 08 (2016) 064, arXiv:1604.03122

[hep-th].

[124] F. Benini and A. Zaffaroni, “Supersymmetric partition functions on Riemann

surfaces,” Proc. Symp. Pure Math. 96 (2017) 13–46, arXiv:1605.06120 [hep-th].

[125] J. T. Liu, L. A. Pando Zayas, V. Rathee, and W. Zhao, “Toward Microstate

Counting Beyond Large N in Localization and the Dual One-loop Quantum

Supergravity,” JHEP 01 (2018) 026, arXiv:1707.04197 [hep-th].

[126] I. Jeon and S. Lal, “Logarithmic Corrections to Entropy of Magnetically Charged

AdS4 Black Holes,” Phys. Lett. B 774 (2017) 41–45, arXiv:1707.04208 [hep-th].

[127] W. Fu, D. Gaiotto, J. Maldacena, and S. Sachdev, “Supersymmetric

Sachdev-Ye-Kitaev models,” Phys. Rev. D 95 no. 2, (2017) 026009,

arXiv:1610.08917 [hep-th]. [Addendum: Phys.Rev.D 95, 069904 (2017)].

[128] D. Anninos, T. Anous, and F. Denef, “Disordered Quivers and Cold Horizons,”

JHEP 12 (2016) 071, arXiv:1603.00453 [hep-th].

[129] R. Dijkgraaf, J. M. Maldacena, G. W. Moore, and E. P. Verlinde, “A Black hole

Farey tail,” arXiv:hep-th/0005003.

[130] O. Aharony, F. Benini, O. Mamroud, and P. Milan, “A gravity interpretation for the

Bethe Ansatz expansion of the N=4 SYM index,” arXiv:2104.13932 [hep-th].

[131] S. M. Hosseini, I. Yaakov, and A. Zaffaroni, “Topologically twisted indices in five

dimensions and holography,” JHEP 11 (2018) 119, arXiv:1808.06626 [hep-th].

139

http://dx.doi.org/10.1088/1126-6708/2007/05/025
http://arxiv.org/abs/hep-th/0701176
http://dx.doi.org/10.1007/JHEP12(2010)016
http://arxiv.org/abs/1008.4286
http://dx.doi.org/10.1007/JHEP01(2017)106
http://arxiv.org/abs/1610.07367
http://dx.doi.org/10.1016/j.nuclphysb.2015.05.023
http://arxiv.org/abs/1410.5386
http://dx.doi.org/10.1007/JHEP08(2016)059
http://arxiv.org/abs/1605.06531
http://dx.doi.org/10.1007/JHEP08(2016)064
http://arxiv.org/abs/1604.03122
http://arxiv.org/abs/1604.03122
http://dx.doi.org/10.1090/pspum/096
http://arxiv.org/abs/1605.06120
http://dx.doi.org/10.1007/JHEP01(2018)026
http://arxiv.org/abs/1707.04197
http://dx.doi.org/10.1016/j.physletb.2017.09.026
http://arxiv.org/abs/1707.04208
http://dx.doi.org/10.1103/PhysRevD.95.026009
http://arxiv.org/abs/1610.08917
http://dx.doi.org/10.1007/JHEP12(2016)071
http://arxiv.org/abs/1603.00453
http://arxiv.org/abs/hep-th/0005003
http://arxiv.org/abs/2104.13932
http://dx.doi.org/10.1007/JHEP11(2018)119
http://arxiv.org/abs/1808.06626


[132] D. Jain, “Notes on 5d Partition Functions - I,” arXiv:2106.15126 [hep-th].

[133] S. M. Hosseini, I. Yaakov, and A. Zaffaroni, “The joy of factorization at large N :

five-dimensional indices and AdS black holes,” JHEP 02 (2022) 097,

arXiv:2111.03069 [hep-th].

[134] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 10 (2008)

091, arXiv:0806.1218 [hep-th].

[135] J. M. Maldacena and C. Nunez, “Supergravity description of field theories on curved

manifolds and a no go theorem,” Int. J. Mod. Phys. A16 (2001) 822–855,

arXiv:hep-th/0007018 [hep-th]. [,182(2000)].

[136] L. C. Jeffrey and F. C. Kirwan, “Localization for nonabelian group actions,”

Topology 34 (1995) 291–327, arXiv:alg-geom/9307001.

[137] C. P. Herzog, I. R. Klebanov, S. S. Pufu, and T. Tesileanu, “Multi-Matrix Models

and Tri-Sasaki Einstein Spaces,” Phys. Rev. D83 (2011) 046001, arXiv:1011.5487

[hep-th].

[138] M. Bullimore, A. E. V. Ferrari, and H. Kim, “The 3d Twisted Index and

Wall-Crossing,” arXiv:1912.09591 [hep-th].

[139] K. Hori, H. Kim, and P. Yi, “Witten Index and Wall Crossing,” JHEP 01 (2015)

124, arXiv:1407.2567 [hep-th].

[140] K. Intriligator and N. Seiberg, “Aspects of 3d N=2 Chern-Simons-Matter Theories,”

JHEP 07 (2013) 079, arXiv:1305.1633 [hep-th].

[141] F. Ferrari, “Partial Gauge Fixing and Equivariant Cohomology,” Phys. Rev. D 89

no. 10, (2014) 105018, arXiv:1308.6802 [hep-th].

[142] T. Kugo and I. Ojima, “Manifestly Covariant Canonical Formulation of Yang-Mills

Field Theories. 1. The Case of Yang-Mills Fields of Higgs-Kibble Type in Landau

Gauge,” Prog. Theor. Phys. 60 (1978) 1869.

[143] G. V. Dunne, R. Jackiw, and C. A. Trugenberger, “Topological (Chern-Simons)

Quantum Mechanics,” Phys. Rev. D 41 (1990) 661.

[144] C. Hwang, J. Kim, S. Kim, and J. Park, “General instanton counting and 5d SCFT,”

JHEP 07 (2015) 063, arXiv:1406.6793 [hep-th]. [Addendum: JHEP 04, 094

(2016)].

140

http://arxiv.org/abs/2106.15126
http://dx.doi.org/10.1007/JHEP02(2022)097
http://arxiv.org/abs/2111.03069
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://dx.doi.org/10.1142/S0217751X01003935, 10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://dx.doi.org/10.1016/0040-9383(94)00028-J
http://arxiv.org/abs/alg-geom/9307001
http://dx.doi.org/10.1103/PhysRevD.83.046001
http://arxiv.org/abs/1011.5487
http://arxiv.org/abs/1011.5487
http://arxiv.org/abs/1912.09591
http://dx.doi.org/10.1007/JHEP01(2015)124
http://dx.doi.org/10.1007/JHEP01(2015)124
http://arxiv.org/abs/1407.2567
http://dx.doi.org/10.1007/JHEP07(2013)079
http://arxiv.org/abs/1305.1633
http://dx.doi.org/10.1103/PhysRevD.89.105018
http://dx.doi.org/10.1103/PhysRevD.89.105018
http://arxiv.org/abs/1308.6802
http://dx.doi.org/10.1143/PTP.60.1869
http://dx.doi.org/10.1103/PhysRevD.41.661
http://dx.doi.org/10.1007/JHEP07(2015)063
http://arxiv.org/abs/1406.6793


[145] C. Cordova and S.-H. Shao, “An Index Formula for Supersymmetric Quantum

Mechanics,” arXiv:1406.7853 [hep-th].

[146] E. Witten, “Phases of N=2 theories in two-dimensions,” Nucl. Phys. B 403 (1993)

159–222, arXiv:hep-th/9301042.

[147] N. A. Nekrasov and S. L. Shatashvili, “Supersymmetric vacua and Bethe ansatz,”

Nucl. Phys. B Proc. Suppl. 192-193 (2009) 91–112, arXiv:0901.4744 [hep-th].

[148] D. Galakhov, W. Li, and M. Yamazaki, “Gauge/Bethe correspondence from quiver

BPS algebras,” JHEP 11 (2022) 119, arXiv:2206.13340 [hep-th].

[149] E. Bergshoeff, S. Cucu, T. De Wit, J. Gheerardyn, R. Halbersma, S. Vandoren, and

A. Van Proeyen, “Superconformal N=2, D=5 matter with and without actions,”

JHEP 10 (2002) 045, arXiv:hep-th/0205230 [hep-th].

[150] D. Z. Freedman and A. Van Proeyen, Supergravity. Cambridge Univ. Press,

Cambridge, UK, 2012.

[151] B. de Wit and A. Van Proeyen, “Special geometry, cubic polynomials and

homogeneous quaternionic spaces,” Commun. Math. Phys. 149 (1992) 307–334,

arXiv:hep-th/9112027 [hep-th].

[152] J. Bagger and E. Witten, “Matter Couplings in N=2 Supergravity,” Nucl. Phys.

B222 (1983) 1–10.

[153] M. Berger, “Sur les groupes d’holonomie homogènes de variétés à connexion affine et
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