
Mathematics Area - PhD course in

Mathematical Analysis, Modelling, and Applications

Ensembles of affine-control systems
with applications to Deep Learning

Candidate:
Alessandro Scagliotti

Advisor:
Prof. Andrei Agrachev

Academic Year 2021-22



Ensembles of affine-control systems with

applications to Deep Learning

Alessandro Scagliotti



Abstract

This thesis is devoted to the study of optimal control problems of ensembles of
dynamical systems, where the dynamics has an affine dependence in the controls.
By means of Γ-convergence arguments, we manage to approximate infinite ensem-
bles with a sequence of growing-in-size finite ensembles. The advantage of this
approach is that, under a suitable change of the states space, finite ensembles of
control systems can be treated as a single control system. Motivated by this fact,
in the first part of the thesis we formulate a gradient flow equation on the space
of admissible controls related to single optimal control problems with end-point
cost. Then, this is applied to the case of finite ensembles, where it is used to de-
rive an implementable algorithm for the numerical resolution of ensemble optimal
control problems. We also consider an iterative method based on the Pontryagin
Maximum Principle. Finally, in the last part of the thesis, we formulate the task
of the interpolation of a diffeomorphism with a Deep Neural Network as an en-
semble optimal control problem. Therefore, we can take advantage the algorithms
developed before to train the network.
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Introduction

The central topic of this thesis is the optimal control of ensembles of dynamical
systems. An ensemble of control systems is a parametrized family of controlled
ODEs of the form {

ẋθ(s) = Gθ(xθ(s), u(s)) a.e. in [0, T ],

xθ(0) = xθ0,
(I.1)

where θ ∈ Θ ⊂ Rd is the parameter of the ensemble, u : [0, T ]→ Rk is the control,
and, for every θ ∈ Θ, Gθ : Rn × Rk → Rn is the function that prescribes the
dynamics of the corresponding system. The peculiarity of this kind of problems is
that the elements of the ensemble are simultaneously driven by the same control
u. This framework is particularly suitable for modeling real-world control systems
affected by data uncertainty (see, e.g., [44]), or the problem of controlling a large
number of particles by means of a signal (see [16]). Also from the theoretical
viewpoint there is currently an active research interest on this topic. For instance,
the problem of the controllability of ensembles of linear equations has been recently
investigated in [25]. In [6] it was proved a generalization of the Chow–Rashevskii
theorem for ensembles of linear-control systems. In [36, 37] ensembles were studied
in the framework of nuclear magnetic resonance spectroscopy. Moreover, as regards
ensembles in quantum control, we report the contributions [12, 13], and we recall
the recent works [10, 20].

In the present thesis we focus on a particular instance of (I.1), corresponding
to the case in which the dynamics has an affine dependence on the controls. More
precisely, we consider ensembles with the following expression:{

ẋθ(t) = F θ
0 (xθ(s)) + F θ(xθ(s))u(s) a.e. in [0, 1],

xθ(0) = xθ0,
(I.2)

where θ ∈ Θ ⊂ Rd varies in a compact set, and, for every θ ∈ Θ, the vector
field F θ

0 : Rn → Rn represents the drift, while the matrix-valued application F θ =
(F θ

1 , . . . , F
θ
k ) : Rn → Rn×k collects the controlled fields. We set U := L2([0, 1],Rk)

as the space of admissible controls, and, for every θ ∈ Θ , the curve xθu : [0, 1] →
Rn denotes the trajectory of (I.2) corresponding to the parameter θ and to the
control u ∈ U . We are interested in the optimal control problem related to the
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6 INTRODUCTION

minimization of a functional F∞ : U → R+ of the form

F∞(u) :=

∫
Θ

a(xθu(1), θ) dµ(θ) +
β

2
||u||2L2 (I.3)

for every u ∈ U , where a : Rn × Θ → R+ is a non-negative continuous function,
while µ is a Borel probability measures on Θ, and finally β > 0 is a constant that
tunes the L2-squared regularization. When the support of the probability measure
µ is not reduced to a finite set of points, the minimization of the functional F∞ is
often intractable in practical situations, since a single evaluation of F∞ potentially
requires the resolution of an infinite number of Cauchy problems (I.2). Therefore,
it is natural to try to replace µ with a sequence of probability measures (µN)N∈N
such that each of them charges a subset of Θ of cardinality N , and such that
µN ⇀∗ µ as N →∞. Then, we can consider the sequence of functionals (FN)N∈N
defined as

FN(u) :=

∫
Θ

a(xθu(1), θ) dµN(θ) +
β

2
||u||2L2 (I.4)

for every u ∈ U and for every N ∈ N. One of the goals of the present thesis is
to study in which sense the functionals defined in (I.4) approximate the cost F∞.
It turns out that, when considering the restrictions to bounded subsets of U , the
sequence (FN)N∈N is Γ-convergent to F∞ with respect to the weak topology of L2.
Moreover, if for every N ∈ N we choose ûN ∈ arg minU FN , standard facts in the
theory of Γ-convergence ensure that the sequence (ûN)N∈N is weakly pre-compact
and that each of its limiting points is a minimizer of the original functional F∞
defined in (I.3). What is more surprising is that, owing to the peculiar form of
the cost (I.3), it turns out that (ûN)N∈N is also pre-compact with respect to the
L2-strong topology. All these facts concerning ensembles of affine-control system
are discussed in the paper [47].

We observe that the problem of minimizing the functional FN defined in (I.4)
is equivalent to the resolution of a single optimal control problem in RnN . For this
reason, in the first part of the thesis we first study the gradient flow associated to a
single optimal control problem with end-point cost. More precisely, given a base-
point x0 ∈ Rn, for every u ∈ U we consider the absolutely continuous trajectory
xu : [0, 1]→ Rn that solves the linear-control system{

ẋu(s) = F (xu(s))u(s) for a.e. s ∈ [0, 1],

xu(0) = x0,
(I.5)

where F = (F1, . . . , Fk) : Rn → Rn×k prescribes the controlled fields. For every
β > 0 and x0 ∈ Rn, we define the functional F : U → R+ as follows:

F(u) := a(xu(1)) +
β

2
||u||2L2 , (I.6)

where a : Rn → R+ is a non-negative C1-regular function, and xu : [0, 1] → Rn

is the solution of (I.5) corresponding to the control u ∈ U . Here we investigate
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the gradient flow induced by the functional F on the Hilbert space U , i.e., the
evolution equation

∂tUt = −G[Ut], (I.7)

where G : U → U is the vector field on the Hilbert space U that represents the
differential dF : U → U∗ through the Riesz’s isometry, i.e., G[u] is defined as the
only element of U such that the identity

〈G[u], v〉L2 = duF(v) (I.8)

holds for every v ∈ U . It turns out that (I.7) can be treated as an infinite-
dimensional ODE, and we prove that, for every initial datum U0 = u0, it admits
a unique continuously differentiable solution U : [0,+∞) → U . Then we focus
on the asymptotic behavior of the curves that solve (I.7). The main result of this
part states that, if the application F : Rn → Rn×k that defines the linear-control
system (I.5) is real-analytic as well as the function a : Rn → R+ that provides the
end-point term in (I.6), then, for every u0 ∈ H1([0, 1],Rk) ⊂ U , the curve t 7→ Ut
that solves the gradient flow equation (I.7) with initial datum U0 = u0 satisfies

lim
t→+∞

||Ut − û||L2 = 0, (I.9)

where û ∈ U is a critical point for F . The key-ingredient for this convergence is the
establishment of the Lojasiewicz-Simon inequality for the functional F : U → R+,
under the assumption that F : Rn → Rn×k and a : Rn → R+ are real-analytic.
This family of inequalities was first introduced by Lojasiewicz in [38] for real-
analytic functions defined on a finite-dimensional domain. The generalization of
this result to real-analytic functionals defined on a Hilbert space was proposed by
Simon in [49], and since then it has revealed to be an invaluable tool to study
convergence properties of evolution equations (see the survey paper [22]). Follow-
ing this approach, the Lojasiewicz-Simon inequality for the functional Fβ is the
cornerstone for the convergence result (I.9). In this regards, another important
observation lies in the fact that the Sobolev space Hm([0, 1],Rk) is invariant for
the gradient flow (I.7). Moreover, we obtain that, when the Cauchy datum belongs
to Hm([0, 1],Rk), the curve t 7→ Ut that solves (I.7) is bounded in the Hm-norm.
The results of this part are contained in [46]. We stress the fact that the case
of an affine-control system can be easily reconducted to a linear-control system
by artificially adding a new component u0 in the control variable u = (u1, . . . , uk)
with constant value u0 ≡ 1. Finally, we report that the gradient flow equation (I.7)
is used to formulate an algorithm for the numerical minimization of functionals
FN : U → R+, related to the optimal control of finite ensembles.

In the last part of the thesis we formulate the problem of training a Deep
Neural Network as an ensemble optimal control problem, and we apply the results
obtained in the previous parts. Indeed, in [26] and [29] it was independently
observed that some particular Deep Learning architectures (called ResNets) can
be interpreted as discretizations of control systems. Since then, there has been
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an increasing interest in the interplay between control theory and Deep Learning,
with the aim of providing a solid mathematical explanation to the success of such
algorithms in solving practical tasks. For more details, see [14, 18, 35, 51]. The
problem that we study is related to an observations-driven reconstruction of a
diffeomorphism Ψ : Rn → Rn diffeotopic to the identity. The starting points are
some recent theoretical results obtained in [7, 8] that guarantee that under suitable
assumptions the flows generated by linear-control systems can approximate in C0-
norm on compact sets any diffeomorphism obtained as a flow of a non-autonomous
vector field. Our task is to derive an implementable procedure to provide such an
approximation. Namely, we consider an ensemble of evaluation points {xj0}j=1,...,N

sampled from a probability measure µ supported on a compact set of Rn, and we
record the action of Ψ on such training points, i.e., (xj0,Ψ(xj0))j=1,...,N . Then, we
consider the following ensemble of linear-control systems, namely{

ẋju(s) = F (xju(s))u(s) for a.e. s ∈ [0, 1],

xju(0) = xj0,
j = 1, . . . , N, (I.10)

with the cost FN : U → R+ defined as

FN(u) :=
1

N

N∑
j=1

a(xju(1)−Ψ(xj0)) +
β

2
||u||2L2 , (I.11)

where a : Rn → R+ is a non-negative loss function such that a(0) = 0 and
a(y) > 0 if y 6= 0. The first term in (I.11) aims at achieving a good interpolation
of the observations, while the regularization term penalizes the L2-norm of the
controls. If ûN ∈ arg minU FN , then we use ΦûN : Rn → Rn as approximation of
Ψ, where Φu : x0 7→ xu(1) is the flow associated to the linear-control system (I.10)
and corresponding to the admissible control u ∈ U . We observe that (I.10) is a
particular instance of (I.2), where the drift vector field F0 ≡ 0 and the controlled
fields are the same for every j = 1, . . . , N . For this reason, in virtue of the Γ-
convergence result for general ensembles of affine-control systems, we deduce that
the minimization of (I.11) is converging as N → ∞ to the limiting problem of
minimizing the functional F∞ : U → R+ given by

F∞(u) :=

∫
K

a(Φu(x)−Ψ(x)) dµ(x) +
β

2
||u||2L2 , (I.12)

where µ is the probability measure used to sample the observation points. Taking
advantage of two algorithms developed in the thesis for the numerical resolution
of generic ensemble optimal control problems, we deduce two training procedures
for the ResNet obtained by discretizing (I.10). The results discussed in this part
are detailed in [48].

We now briefly describe the content of each capter.
In Chapter 1 we establish some preliminary results for single linear-control sys-
tems. In particular, we focus on the properties of the trajectories and of the
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end-point mapping, for which we investigate the first and second-order variation.
In Chapter 2 we study the gradient flow induced by the functional (I.6) on the
Hilbert space U . We establish existence and uniqueness of the solutions of the
evolution equation (I.7), and we prove the convergence of the trajectories with
Sobolev-regular initial datum by means of the Lojasiewicz-Simon inequality.
In Chapter 3 we consider optimal control problems involving ensembles of affine-
control systems. The main result is the reduction to finite ensembles via Γ-
convergence. This fact holds with cost functionals that have a slightly more general
form than (I.3), namely

F∞(u) :=

∫
Θ

∫ 1

0

a(s, xθu(s), θ) dν(s)dµ(θ) +
β

2
||u||2L2 ,

where ν is a Borel probability measure on [0, 1]. We obtain (I.3) when we set
ν = δs=1. When the cost has the form (I.3), after using a simple argument to
reduce an affine-control system to a linear-control one, we derive the gradient
flow equation for finite ensembles. Finally we propose and test two numerical
methods for the optimal control of finite ensembles. The former is based on a
finite elements projection of the gradient flow (I.7), the latter on the Pontryagin
Maximum Principle.
In Chapter 4 we model the Deep Learning reconstruction of a diffeomorphism as an
ensemble optimal control problem, and we apply the results obtained in Chapter 3.
As a matter of fact, from the discretization of the linear-control system we obtain
a ResNet, that we can train by means of the algorithms developed before. Finally,
we test the methods on a practical example.





CHAPTER 1

General results for linear-control systems

In this chapter we establish some preliminary technical results for linear-control
systems that will be of use throughout the thesis. In particular, given a base-point
x0 ∈ Rn, we study the first and the second variation of the mapping Ps : u 7→ xu(s),
where xu : [0, 1] → Rn is the trajectory of a linear-control system corresponding
to an admissible control u and with initial point x0.

1.1. Setting and framework

In this chapter we consider control systems on Rn with linear dependence in
the control variable u ∈ Rk, i.e., of the form

ẋ = F (x)u, (1.1.1)

where F : Rn → Rn×k is a Lipschitz-continuous function. We use the notation Fi
for i = 1, . . . , k to indicate the vector fields on Rn obtained by taking the columns
of F , and we denote by L > 0 the Lipschitz constant of these vector fields, i.e., we
set

L := sup
i=1,...,k

sup
x,y∈Rn

|Fi(x)− Fi(y)|2
|x− y|2

. (1.1.2)

We immediately observe that (1.1.2) implies that the vector fields F1, . . . , Fk have
sub-linear growth, i.e., there exists C > 0 such that

sup
i=1,...,k

|Fi(x)| ≤ C(|x|2 + 1) (1.1.3)

for every x ∈ Rn. Moreover, for every i = 1, . . . , k, if Fi is differentiable at y ∈ Rn,
then from (1.1.2) we deduce that ∣∣∣∣∂Fi(y)

∂x

∣∣∣∣
2

≤ L. (1.1.4)

We define U := L2([0, 1],Rk) as the space of admissible controls, and we endow U
with the usual Hilbert space structure, induced by the scalar product

〈u, v〉L2 =

∫ 1

0

〈u(s), v(s)〉Rk ds. (1.1.5)

11



12 1. GENERAL RESULTS FOR LINEAR-CONTROL SYSTEMS

Given x0 ∈ Rn, for every u ∈ U , let xu : [0, 1] → Rn be the absolutely continuous
curve that solves the following Cauchy problem:{

ẋu(s) = F (xu(s))u(s) for a.e. s ∈ [0, 1],

xu(0) = x0.
(1.1.6)

We recall that, under the condition (1.1.2), the existence and uniqueness of the
solution of (1.1.6) is guaranteed by Carathéodory Theorem (see, e.g, [30, Theorem
5.3]). We insist on the fact that in Section 1.2 and Section 1.3 the Cauchy datum
x0 ∈ Rn is assumed to be assigned. On the other hand, in Section 1.4 we study
some properties of the flows induced by the control system (1.1.1), and therefore
we shall consider different solutions of (1.1.6) as the Cauchy datum x0 varies in
Rn.

Before proceeding, in Subsection 1.1.1 we recall some results concerning Sobolev
spaces in one-dimensional domains. Then, in Section 1.2 and Section 1.3 we in-
vestigate the properties of the solutions of (1.1.6).

1.1.1. Sobolev spaces in one dimension. In this subsection we recall some
results for one-dimensional Sobolev spaces. Since in this Thesis we work only in
Hilbert spaces, we shall restrict our attention to the Sobolev exponent p = 2,
i.e., we shall state the results for the Sobolev spaces Hm := Wm,2 with m ≥ 1.
For a complete discussion on the topic, the reader is referred to [15, Chapter 8].
Throughout the Thesis we use the convention H0 := L2.

For every integer d ≥ 1, given a compact interval [a, b] ⊂ R, let C∞c ([a, b],Rd)
be the set of the C∞-regular functions with compact support in [a, b]. For every
φ ∈ C∞c ([a, b],Rd), we use the symbol φ(`) to denote the `-th derivative of the
function φ : [a, b] → Rd. For every m ≥ 1, the function u ∈ L2([a, b],Rd) belongs
to the Sobolev space Hm([a, b],Rd) if and only if, for every integer 1 ≤ ` ≤ m there
exists u(`) ∈ L2([a, b],Rd) such that the following identity holds∫ b

a

〈u(s), φ(`)(s)〉Rd ds = (−1)`
∫ b

a

〈u(`)(s), φ(s)〉Rd ds

for every φ ∈ C∞c ([a, b],Rd). If u ∈ Hm([a, b],Rd), then for every integer 1 ≤ ` ≤ m
u(`) denotes the `-th Sobolev derivative of u. We recall that, for every m ≥ 1,
Hm([a, b],Rd) is a Hilbert space (see, e.g., [15, Proposition 8.1]) when it is equipped
with the norm || · ||Hm induced by the scalar product

〈u, v〉Hm := 〈u, v〉L2 +
m∑
`=1

∫ b

a

〈u(`)(s), v(`)(s)〉Rd ds.

We observe that, for every m2 > m1 ≥ 0, we have

||u||Hm1 ≤ ||u||Hm2 (1.1.7)

for every u ∈ Hm2([a, b],Rl), i.e., the inclusion Hm2([a, b],Rd) ↪→ Hm1([a, b],Rd)
is continuous. We recall that a linear and continuous application T : E1 → E2
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between two Banach spaces E1, E2 is compact if, for every bounded set B ⊂ E1,
the image T (B) is pre-compact with respect to the strong topology of E2. In the
following result we list three compact inclusions.

Theorem 1.1.1. For every m ≥ 1, the following inclusions are compact:

Hm([a, b],Rd) ↪→ L2([a, b],Rd), (1.1.8)

Hm([a, b],Rd) ↪→ C0([a, b],Rd), (1.1.9)

Hm([a, b],Rd) ↪→ Hm−1([a, b],Rd), (1.1.10)

Proof. When m = 1, (1.1.8)-(1.1.9) descend directly from [15, Theorem 8.8].
In the case m ≥ 2, in virtue of (1.1.7), the inclusion Hm([a, b],Rd) ↪→ H1([a, b],Rd)
is continuous. Recalling that the composition of a linear continuous operator with
a linear compact one is still compact (see, e.g., [15, Proposition 6.3]), we deduce
that (1.1.8)-(1.1.9) holds also for m ≥ 2.

When m = 1, (1.1.10) reduces to (1.1.8). For m ≥ 2, (1.1.10) is proved by
induction on m, using (1.1.8) and observing that u ∈ Hm([a, b],Rd) implies that
u(1) ∈ Hm−1([a, b],Rd). �

Finally, we recall the notion of weak convergence. For every m ≥ 0 (we set
H0 := L2), if (un)n≥1 is a sequence in Hm([a, b],Rd) and u ∈ Hm([a, b],Rd), then
the sequence (un)n≥1 weakly converges to u if and only if

lim
n→∞
〈v, un〉Hm = 〈v, u〉Hm

for every v ∈ Hm([a, b],Rd), and we write un ⇀Hm u as n→∞. For every m ≥ 1,
if un ⇀Hm u as n→∞, then we have

||u||Hm ≤ lim inf
m→∞

||un||Hm . (1.1.11)

Finally, in view of the compact inclusion (1.1.10) and of [15, Remark 6.2], for
every m ≥ 1, if a sequence (un)n≥1 in Hm([a, b],Rd) satisfies un ⇀Hm u as n→∞,
then

lim
n→∞

||un − u||Hm−1 = 0.

We conclude this part with the following fact concerning the space H1([a, b],Rd).

Proposition 1.1.2. Let u : [a, b] → Rd be a function in H1([a, b],Rd). Then,
u is Hölder-continuous with exponent 1

2
, namely

|u(t1)− u(t2)|2 ≤ ||u(1)||L2|t1 − t2|
1
2

for every t1, t2 ∈ [a, b].
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Proof. The fact that u ∈ H1([a, b],Rd) implies that it is absolutely continuous
(see, e.g., [15, Theorem 8.2]). Thus, using the Cauchy-Schwartz inequality, we
deduce that

|u(t1)− u(t2)|2 ≤
∫ t2

t1

|u(1)(τ)|2 dτ ≤
(∫ t2

t1

|u(1)(τ)|22 dτ
) 1

2

|t1 − t2|
1
2

for every t1, t2 ∈ [a, b], and this implies the thesis. �

1.2. First-order properties of trajectories of linear-control systems

In this subsection we investigate basic properties of the solutions of (1.1.6),
with a particular focus on the relation between the admissible control u ∈ U and
the corresponding trajectory xu. We start by stating a version of the Grönwall-
Bellman inequality, that will be widely used later.

Lemma 1.2.1 (Grönwall-Bellman Inequality). Let f : [a, b] → R+ be a non-
negative continuous function and let us assume that there exists a constant α > 0
and a non-negative function β ∈ L1([a, b],R+) such that

f(s) ≤ α +

∫ s

a

β(τ)f(τ) dτ

for every s ∈ [a, b]. Then, for every s ∈ [a, b] the following inequality holds:

f(s) ≤ αe||β||L1 . (1.2.1)

Proof. This statement follows as a particular case of [27, Theorem 5.1]. �

We recall that, for every u ∈ U := L2([0, 1],Rk) the following inequality holds:

||u||L1 =

∫ 1

0

k∑
i=1

|ui(s)| ds ≤
√
k

√√√√∫ 1

0

k∑
i=1

|ui(s)|2 ds =
√
k||u||L2 . (1.2.2)

We first show that, for every admissible control u ∈ U , the corresponding solu-
tion of (1.1.6) is bounded in the C0-norm. In our framework, given a continuous
function f : [0, 1]→ Rn, we set

||f ||C0 := sup
s∈[0,1]

|f(s)|2.

Lemma 1.2.2. Let u ∈ U be an admissible control, and let xu : [0, 1] → Rn be
the solution of the Cauchy problem (1.1.6) corresponding to the control u. Then,
the following inequality holds:

||xu||C0 ≤
(
|x0|2 +

√
kC||u||L2

)
e
√
kC||u||L2 , (1.2.3)

where C > 0 is the constant of sub-linear growth prescribed by (1.1.3).
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Proof. Rewriting (1.1.6) in the integral form, we obtain the following inequal-
ity

|xu(s)|2 ≤ |x0|2 +

∫ s

0

k∑
i=1

(
|Fi(xu(τ))|2|ui(τ)|

)
dτ

for every s ∈ [0, 1]. Then, using (1.1.3), we deduce that

|xu(s)|2 ≤ |x0|2 + C||u||L1 + C

∫ s

0

|u(τ)|1|xu(τ)|2 dτ.

Finally, the thesis follows from Lemma 1.2.1 and (1.2.2). �

In the following proposition we prove that the solution of the Cauchy problem
(1.1.6) has a continuous dependence on the admissible control.

Proposition 1.2.3. Let us consider u, v ∈ U and let xu, xu+v : [0, 1] → Rn

be the solutions of the Cauchy problem (1.1.6) corresponding, respectively, to the
controls u and u + v. Then, for every R > 0 there exists LR > 0 such that the
inequality

||xu+v − xu||C0 ≤ LR||v||L2 (1.2.4)

holds for every u, v ∈ U such that ||u||L2 , ||v||L2 ≤ R.

Proof. Using the fact that xu and xu+v are solutions of (1.1.6), for every
s ∈ [0, 1] we have that

|xu+v(s)− xu(s)|2 ≤
∫ s

0

k∑
i=1

(
|Fi(xu+v(τ))|2|vi(τ)|

)
dτ

+

∫ s

0

k∑
i=1

(
|Fi(xu+v(τ))− Fi(xu(τ)|2|ui(τ)|

)
dτ.

Recalling that ||v||L2 ≤ R, in virtue of Lemma 1.2.2, we obtain that there exists
CR > 0 such that

sup
τ∈[0,1]

sup
i=1,...,k

|Fi(xu+v(τ))|2 ≤ CR.

Hence, using (1.2.2), we deduce that∫ s

0

k∑
i=1

(
|Fi(xu+v(τ))|2|vi(τ)|

)
dτ ≤ CR

√
k||v||L2 . (1.2.5)

On the other hand, from the Lipschitz-continuity condition (1.1.2) it follows that

|Fi(xu+v(τ))− Fi(xu(τ)|2 ≤ L|xu+v(τ)− xu(τ)|2 (1.2.6)

for every i = 1, . . . , k and for every τ ∈ [0, 1]. Using (1.2.5) and (1.2.6), we deduce
that

|xu+v(s)− xu(s)|2 ≤ CR
√
k||v||L2 + L

∫ s

0

|u(τ)|1|xu+v(τ)− xu(τ)|2 dτ, (1.2.7)
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for every s ∈ [0, 1]. By applying Lemma 1.2.1 to (1.2.7), we obtain that

|xu+v(s)− xu(s)|2 ≤ eL||u||L1CR
√
k||v||L2 ,

for every s ∈ [0, 1]. Recalling (1.2.2) and setting

LR := eL
√
kRCR

√
k,

we prove (1.2.4). �

The previous result shows that the map u 7→ xu is Lipschitz-continuous when
restricted to any bounded set of the space of admissible controls U . We remark
that Proposition 1.2.3 holds under the sole assumption that the controlled vector
fields F1, . . . , Fk : Rn → Rn are Lipschitz-continuous. In the next result, by
requiring that the controlled vector fields are C1-regular, we compute the first order
variation of the solution of (1.1.6) resulting from a perturbation in the control.

Proposition 1.2.4. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are C1-regular. For every u, v ∈ U , for every ε ∈ (0, 1],
let xu, xu+εv : [0, 1]→ Rn be the solutions of (1.1.6) corresponding, respectively, to
the admissible controls u and u+ εv. Then, we have that

||xu+εv − xu − εyvu||C0 = o(ε) as ε→ 0, (1.2.8)

where yvu : [0, 1]→ Rn is the solution of the following affine system:

ẏvu(s) = F (xu(s))v(s) +

(
k∑
i=1

ui(s)
∂Fi(xu(s))

∂x

)
yvu(s) (1.2.9)

for a.e. s ∈ [0, 1], and with yvu(0) = 0.

Proof. Setting R := ||u||L2 + ||v||L2 , we observe that ||u+εv||L2 ≤ R for every
ε ∈ (0, 1]. Owing to Lemma 1.2.2, we deduce that there exists a compact KR ⊂ Rn

such that xu(s), xu+εv(s) ∈ KR for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Using
the fact that F1, . . . , Fk are assumed to be C1-regular, we deduce that there exists
a non-decreasing function δ : [0,+∞)→ [0,+∞) with δ(0) = limr→0 δ(r) = 0 and
a constant C > 0 such that the following inequality is satisfied∣∣∣∣Fi(x2)− Fi(x1)− ∂Fi(x1)

∂x
(x2 − x1)

∣∣∣∣
2

≤ Cδ(|x1 − x2|2)|x1 − x2|2 (1.2.10)

for every i = 1, . . . , k and for every x1, x2 ∈ KR. Let us consider the non-
autonomous affine system (1.2.9). In virtue of Carathéodory Theorem (see [30,
Theorem 5.3]), we deduce that the system (1.2.9) admits a unique absolutely con-
tinuous solution yvu : [0, 1]→ Rn. For every s ∈ [0, 1], let us define

ξ(s) := xu+εv(s)− xu(s)− εyvu(s). (1.2.11)
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Therefore, in view of (1.1.6) and (1.2.9), for a.e. s ∈ [0, 1] we compute

|ξ̇(s)|2 ≤ε
k∑
i=1

|Fi(xu+εv(s))− Fi(xu(s))|2|vi(s)|

+
k∑
i=1

∣∣∣∣Fi(xu+εv(s))− Fi(xu(s))− ε
∂Fi(xu(s))

∂x
yvu(s)

∣∣∣∣
2

|ui(s)|

On one hand, using Proposition 1.2.3 and the Lipschitz-continuity assumption
(1.1.2), we deduce that there exists L′ > 0 such that

ε

k∑
i=1

|Fi(xu+εv(s))− Fi(xu(s))|2 ≤ L′||v||L2ε2 (1.2.12)

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. On the other hand, for every i =
1, . . . , n, combining Proposition 1.2.3, the inequality (1.2.10) and the estimate of
the norm of the Jacobian (1.1.4), we obtain that there exists L′′ > 0 such that∣∣∣∣∣Fi(xu+εv(s))−Fi(xu(s))− ε

∂Fi(xu(s))

∂x
yvu(s)

∣∣∣∣∣
2

≤

∣∣∣∣∣Fi(xu+εv(s))− Fi(xu(s))−
∂Fi(xu(s))

∂x

(
xu+εv(s)− xu(s)

)∣∣∣∣∣
2

+

∣∣∣∣∣∂Fi(xu(s))∂x

(
xu+εv(s)− xu(s)− εyvu(s)

)∣∣∣∣∣
2

≤ C
[
δ(L′′||v||L2ε)L′′||v||L2ε

]
+ L|ξ(s)|2.

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Combining the last inequality and
(1.2.12), it follows that

|ξ̇(s)|2 ≤ LRε
2 + LR|u(s)|1δ(LRε)ε+ L|u(s)|1|ξ(s)|2 (1.2.13)

for a.e. s ∈ [0, 1] and for every ε ∈ (0, 1], where we set LR := max{L′, L′′}||v||L2 .
Finally, recalling that |ξ(0)|2 = |xu+εv(0)−xu(0)−εyvu(0)|2 = 0 for every ε ∈ (0, 1],
we have that

|ξ(s)|2 ≤
∫ s

0

|ξ̇(τ)|2 dτ ≤ LRε
2 + LR||u||L1δ(LRε)ε+ L

∫ s

0

|u(τ)|1|ξ(τ)|2 dτ,

for every s ∈ [0, 1] and for every ε ∈ (0, 1]. Using Lemma 1.2.1 and (1.2.11), we
deduce (1.2.8). �
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Let us assume that F1, . . . , Fk are C1-regular. For every admissible control
u ∈ U , let us define Au ∈ L2([0, 1],Rn×n) as

Au(s) :=
k∑
i=1

(
ui(s)

∂Fi(xu(s))

∂x

)
(1.2.14)

for a.e. s ∈ [0, 1]. For every u ∈ U , let us introduce the absolutely continuous
curve Mu : [0, 1] → Rn×n, defined as the solution of the following linear Cauchy
problem: {

Ṁu(s) = Au(s)Mu(s) for a.e. s ∈ [0, 1],

Mu(0) = Id.
(1.2.15)

The existence and uniqueness of the solution of (1.2.15) descends once again from
the Carathéodory Theorem. We can prove the following result.

Lemma 1.2.5. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are C1-regular. For every admissible control u ∈ U , let
Mu : [0, 1] → Rn×n be the solution of the Cauchy problem (1.2.15). Then, for
every s ∈ [0, 1], Mu(s) is invertible, and the following estimates hold:

|Mu(s)|2 ≤ Cu, |M−1
u (s)|2 ≤ Cu, (1.2.16)

where

Cu = e
√
kL||u||L2 .

Proof. Let us consider the absolutely continuous curve Nu : [0, 1] → Rn×n

that solves {
Ṅu(s) = −Nu(s)Au(s) for a.e. s ∈ [0, 1],

Nu(0) = Id.
(1.2.17)

The existence and uniqueness of the solution of (1.2.17) is guaranteed by Carathéodory
Theorem. Recalling the Leibniz rule for Sobolev functions (see, e.g., [15, Corol-
lary 8.10]), a simple computation shows that the identity Nu(s)Mu(s) = Id holds
for every s ∈ [0, 1]. This proves that Mu(s) is invertible and that Nu(s) = M−1

u (s)
for every s ∈ [0, 1]. In order to prove the bound on the norm of the matrix Mu(s),
we shall study |Mu(s)z|2, for z ∈ Rn. Using (1.2.15), we deduce that

|Mu(s)z|2 ≤ |z|2 +

∫ s

0

|Au(τ)|2|Mu(τ)z|2 dτ

≤ |z|2 + L

∫ s

0

|u(s)|1|Mu(τ)z|2 dτ,

where we used (1.1.4). Using Lemma 1.2.1, and recalling (1.2.2), we obtain that
the inequality (1.2.16) holds for Mu(s), for every s ∈ [0, 1]. Using (1.2.17) and
applying the same argument, it is possible to prove that (1.2.16) holds as well for
Nu(s) = M−1

u (s), for every s ∈ [0, 1]. �
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Using the curve Mu : [0, 1] → Rn×n defined by (1.2.15), we can rewrite the
solution of the affine system (1.2.9) for the first-order variation of the trajectory.
Indeed, for every u, v ∈ U , a direct computation shows that the function yvu :
[0, 1]→ Rn that solves (1.2.9) can be expressed as

yvu(s) =

∫ s

0

Mu(s)M
−1
u (τ)F (xu(τ))v(τ) dτ (1.2.18)

for every s ∈ [0, 1]. Using (1.2.18) we can prove an estimate of the norm of yvu.

Lemma 1.2.6. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C1-regular. Let us consider u, v ∈ U , and let yvu : [0, 1]→ Rn

be the solution of the affine system (1.2.9) with yvu(0) = 0. Then, for every R > 0
there exists CR > 0 such that the following inequality holds

|yvu(s)|2 ≤ CR||v||L2 (1.2.19)

for every s ∈ [0, 1] and for every u ∈ U satisfying ||u||L2 ≤ R.

Proof. In virtue of (1.2.18), we have that

|yvu(s)|2 ≤
∫ s

0

∣∣Mu(s)M
−1
u (τ)F (xu(τ))v(τ)

∣∣ dτ.
Using (1.2.16), (1.2.3) and (1.1.3), we deduce that there exists C ′R > 0 such that

|yvu(s)|2 ≤ C ′R

∫ s

0

|v(s)|1 dτ,

for every s ∈ [0, 1]. Combining this with (1.2.2), we deduce the thesis. �

Let us introduce the end-point map associated to the control system (1.1.6).
For every s ∈ [0, 1], let us consider the map Ps : U → Rn defined as

Ps : u 7→ Ps(u) := xu(s), (1.2.20)

where xu : [0, 1] → Rn is the solution of (1.1.6) corresponding to the admissible
control u ∈ U . Using the results obtained before, it follows that the end-point
map is differentiable.

Proposition 1.2.7. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are C1-regular. For every s ∈ [0, 1], let Ps : U → Rn

be the end-point map defined by (1.2.20). Then, for every u ∈ U , Ps is Gateaux
differentiable at u, and the differential DuPs = (DuP

1
s , . . . , DuP

n
s ) : U → Rn is a

linear and continuous operator. Moreover, using the Riesz’s isometry, for every
u ∈ U and for every s ∈ [0, 1], every component of the differential DuPs can be
represented as follows:

DuP
j
s (v) =

∫ 1

0

〈
gjs,u(τ), v(τ)

〉
Rk dτ, (1.2.21)
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where, for every j = 1, . . . , n, the function gjs,u : [0, 1]→ Rk is defined as

gjs,u(τ) =


(

(ej)TMu(s)M
−1
u (τ)F (xu(τ))

)T
τ ∈ [0, s],

0 τ ∈ (s, 1],
(1.2.22)

where the column vector ej is the j-th element of the standard basis {e1, . . . , en}
of Rn.

Proof. For every s ∈ [0, 1], Proposition 1.2.4 guarantees that the end-point
map Ps : U → Rn is Gateaux differentiable at every point u ∈ U . In particular,
for every u, v ∈ U and for every s ∈ [0, 1] the following identity holds:

DuPs(v) = yvu(s). (1.2.23)

Moreover, (1.2.18) shows that the differential DuPs : U → Rn is linear, and
Lemma 1.2.6 implies that it is continuous. The representation follows as well
from (1.2.18). �

Remark 1.2.1. In the previous proof we used Lemma 1.2.6 to deduce for
every u ∈ U the continuity of the linear operator DuPs : U → Rn. Actually,
Lemma 1.2.6 is slightly more informative, since it implies that for every R > 0
there exists CR > 0 such that

|DuPs(v)|2 ≤ CR||v||L2 (1.2.24)

for every v ∈ U and for every u ∈ U such that ||u||L2 ≤ R. As a matter of fact,
we deduce that

||gjs,u||L2 ≤ CR (1.2.25)

for every j = 1, . . . , n, for every s ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R.

Remark 1.2.2. It is interesting to observe that, for every s ∈ (0, 1] and for
every u ∈ U , the function gjs,u : [0, 1] → Rk that provides the representation the
j-th component of DuPs is absolutely continuous on the interval [0, s], being the
product of absolutely continuous matrix-valued curves. Indeed, on one hand, the
application τ 7→ F (xu(τ)) is absolutely continuous, being the composition of a
C1-regular function with the absolutely continuous curve τ 7→ xu(τ) (see, e.g.,
[15, Corollary 8.11]). On the other hand, τ 7→M−1

u (τ) is absolutely continuous as
well, since it solves (1.2.17).

We now prove that for every s ∈ [0, 1] the differential of the end-point map,
i.e. u 7→ DuPs, is Lipschitz-continuous on the bounded subsets of U . This re-
sult requires further regularity assumptions on the controlled vector fields. We
first establish an auxiliary result concerning the matrix-valued curve that solves
(1.2.15).

Lemma 1.2.8. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular. For every u,w ∈ U , let Mu,Mu+w : [0, 1] →
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Rn×n be the solutions of (1.2.15) corresponding to the admissible controls u and
u+w, respectively. Then, for every R > 0 there exists LR > 0 such that, for every
u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, we have

|Mu+w(s)−Mu(s)|2 ≤ LR||w||L2 , (1.2.26)

and
|M−1

u+w(s)−M−1
u (s)|2 ≤ LR||w||L2 (1.2.27)

for every s ∈ [0, 1].

Proof. Let us consider R > 0, and let u,w ∈ U be with ||u||L2 , ||w||L2 ≤ R.
We observe that Lemma 1.2.2 implies that there exists a compact setKR ⊂ Rn such
that xu(s), xu+w(s) ∈ KR for every s ∈ [0, 1]. The hypothesis that F1, . . . , Fk are
C2-regular implies that there exists L′R > 0 such that ∂F1

∂x
, . . . , ∂Fk

∂x
are Lipschitz-

continuous in KR with constant L′R. From (1.2.15), we have that

|Ṁu+w(s)− Ṁu(s)|2 = |Au+w(s)Mu+w(s)− Au(s)Mu(s)|2, (1.2.28)

for a.e. s ∈ [0, 1]. In particular, for a.e. s ∈ [0, 1], we can compute

|Au+w(s)− Au(s)|2 ≤
k∑
i=1

∣∣∣∣∂Fi(xu+w(s))

∂x
− ∂Fi(xu(s))

∂x

∣∣∣∣
2

|ui(s)|

+
k∑
i=1

∣∣∣∣∂Fi(xu+w(s))

∂x

∣∣∣∣
2

|wi(s)|,

and using Proposition 1.2.3, the Lipschitz continuity of ∂F1

∂x
, . . . , ∂Fk

∂x
and (1.1.4),

we obtain that there exists L′′R > 0 such that

|Au+w(s)− Au(s)|2 ≤ L′′R||w||L2|u(s)|1 + L|w(s)|1, (1.2.29)

for a.e. s ∈ [0, 1]. Using once again (1.1.4), we have that

|Au(s)|2 ≤ L|u(s)|1, (1.2.30)

for a.e. s ∈ [0, 1]. Combining (1.2.29)-(1.2.30) with the triangular inequality at
the right-hand side of (1.2.28), we deduce that

|Ṁu+w(s)− Ṁu(s)|2 ≤C ′R
(
L′′R||w||L2 |u(s)|1 + L|w(s)|1

)
+ L|u(s)|1|Mu+w(s)−Mu(s)|2,

for a.e. s ∈ [0, 1], where we used Lemma 1.2.5 to deduce that there exists C ′R > 0
such that |Mu+w(s)| ≤ C ′R for every s ∈ [0, 1]. Recalling that the Cauchy datum
of (1.2.15) prescribes Mu+w(0) = Mu(0) = Id, the last inequality yields

|Mu+w(s)−Mu(s)|2 ≤
∫ s

0

|Ṁu+w(τ)− Ṁu(τ)|2 dτ

≤ C ′′R||w||L2 + L

∫ s

0

|u(s)|1|Mu+w(τ)−Mu(τ)|2 dτ,
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for every s ∈ [0, 1], where we used (1.2.2) and where C ′′R > 0 is a constant depending
only on R. Finally, Lemma 1.2.1 implies the first inequality of the thesis. Recalling
that s 7→ M−1

u (s) and s 7→ M−1
u+w(s) are absolutely continuous curves that solve

(1.2.17), repeating verbatim the same argument as above, we deduce the second
inequality of the thesis. �

We are now in position to prove the regularity result on the differential of the
end-point map.

Proposition 1.2.9. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are C2-regular. Then, for every R > 0 there exists LR > 0
such that, for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, the following inequality
holds

|Du+wPs(v)−DuPs(v)|2 ≤ LR||w||L2||v||L2 (1.2.31)

for every s ∈ [0, 1] and for every v ∈ U .

Proof. In virtue of Proposition 1.2.7, it is sufficient to prove that there exists
LR > 0 such that

||gjs,u+w − gjs,u||L2 ≤ LR||w||L2 (1.2.32)

for every j = 1, . . . , n and for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R,
where gjs,u+w, g

j
s,u are defined as in (1.2.22). Let us consider u,w ∈ U satisfying

||u||L2 , ||w||L2 ≤ R. The inequality (1.2.32) will in turn follow if we show that
there exists a constant LR > 0 such that

|Mu+w(s)M−1
u+w(τ)F (xu+w(τ))−Mu(s)M

−1
u (τ)F (xu(τ))|2 ≤ LR||w||L2 , (1.2.33)

for every s ∈ [0, 1], for every τ ∈ [0, s] and for every u,w ∈ U that satisfy
||u||L2 , ||w||L2 ≤ R. Owing to Proposition 1.2.3 and (1.1.2), it follows that there
exists L′R > 0 such that

|F (xu+w(s))− F (xu(s))|2 ≤ L′R||w||L2 , (1.2.34)

for every s ∈ [0, 1] and for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Using the
triangular inequality in (1.2.33), we compute

|Mu+w(s)M−1
u+w(τ)F (xu+w(τ))−Mu(s)M

−1
u (τ)F (xu(τ))|2

≤ |Mu+w(s)−Mu(s)|2|M−1
u+w(τ)|2|F (xu+w(τ))|2

+ |Mu(s)|2|M−1
u+w(τ)−M−1

u (τ)|2|F (xu+w(τ))|2
+ |Mu(s)|2|M−1

u (τ)|2|F (xu+w(τ))− F (xu(τ))|2

for every s ∈ [0, 1] and for every τ ∈ [0, s]. Using (1.2.34), Lemma 1.2.5 and
Lemma 1.2.8 in the last inequality, we deduce that (1.2.33) holds. This concludes
the proof. �
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1.3. Second-order differential of the end-point map

In this subsection we study the second-order variation of the end-point map
Ps : U → Rn defined in (1.2.20). The main results reported here will be stated
in the case s = 1, which corresponds to the final evolution instant of the control
system (1.1.6). However, they can be extended (with minor adjustments) also in
the case s ∈ (0, 1). Similarly as done in Section 1.2, we show that, under proper
regularity assumptions on the controlled vector fields F1, . . . , Fk, the end-point
map P1 : U → Rn is C2-regular. Therefore, for every u ∈ U we can consider
the second differential D2

uP1 : U × U → Rn, which turns out to be a bilinear and
symmetric operator. For every ν ∈ Rn, we provide a representation of the bilinear
form ν ·D2

uP1 : U×U → R, and we prove that it is a compact self-adjoint operator.
Before proceeding, we introduce some notations. We define V := L2([0, 1],Rn),

and we equip it with the usual Hilbert space structure. In order to avoid confusion,
in the present section we denote with || · ||U and || · ||V the norms of the Hilbert
spaces U and V , respectively. We use a similar convention for the respective scalar
products, too. Moreover, given an application R : U → V , for every u ∈ U we use
the notation R[u] ∈ V to denote the image of u through R. Then, for s ∈ [0, 1], we
write R[u](s) ∈ Rn to refer to the value of (a representative of) the function R[u]
at the point s. More generally, we adopt this convention for every function-valued
operator.

It is convenient to introduce a linear operator that will be useful to derive the
expression of the second differential of the end-point map. Assuming that the
controlled fields F1, . . . , Fk are C1-regular, for every u ∈ U we define Lu : U → V
as follows:

Lu[v](s) := yvu(s) (1.3.1)

for every s ∈ [0, 1], where yvu : [0, 1] → Rn is the curve introduced in Proposi-
tion 1.2.4 that solves the affine system (1.2.9). Recalling (1.2.18), we have that
the identity

Lu[v](s) =

∫ s

0

Mu(s)M
−1
u (τ)F (xu(τ))v(τ) dτ (1.3.2)

holds for every s ∈ [0, 1] and for every v ∈ U , and this shows that Lu is a linear
operator. Moreover, using the standard Hilbert space structure of U and of V ,
for every u ∈ U we can introduce the adjoint of Lu, namely the linear operator
L∗u : V → U that satisfies

〈L∗u[w], v〉U = 〈Lu[v], w〉V (1.3.3)

for every v ∈ U and w ∈ V .

Remark 1.3.1. We recall a result in functional analysis concerning the norm
of the adjoint of a bounded linear operator. For further details, see [15, Re-
mark 2.16]. Given two Banach spaces E1, E2, let L (E1, E2) be the Banach space
of the bounded linear operators from E1 to E2, equipped with the norm induced
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by E1 and E2. Let E∗1 , E
∗
2 be the dual spaces of E1, E2, respectively, and let

L (E∗2 , E
∗
1) be defined as above. Therefore, if A ∈ L (E1, E2), then the adjoint

operator satisfies A∗ ∈ L (E∗2 , E
∗
1), and the following identity holds:

||A∗||L (E∗2 ,E
∗
1 ) = ||A||L (E1,E2).

If E1, E2 are Hilbert spaces, using the Riesz’s isometry it is possible to write A∗

as an element of L (E2, E1), and the identity of the norms is still satisfied.

We now show that Lu and L∗u are bounded and compact operators.

Lemma 1.3.1. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C1-regular. Then, for every u ∈ U , the linear operators
Lu : U → V and L∗u : V → U defined, respectively, by (1.3.1) and (1.3.3) are
bounded and compact.

Proof. It is sufficient to prove the statement for the operator Lu : U → V .
Indeed, if Lu is bounded and compact, then L∗u : V → U is as well. Indeed, the
boundedness of the adjoint descends from Remark 1.3.1, while the compactness
from [15, Theorem 6.4]). Using Lemma 1.2.6 we obtain that, for every u ∈ U ,
there exists C > 0 such that the following inequality holds

||Lu[v]||C0 ≤ C||v||U , (1.3.4)

for every v ∈ U . Recalling the continuous inclusion C0([0, 1],Rn) ↪→ V , we deduce
that Lu is a continuous linear operator. In view of Theorem 1.1.1, in order to
prove that Lu is compact, it is sufficient to prove that, for every u ∈ U , there
exists C ′ > 0 such that

||Lu[v]||H1 ≤ C ′||v||U (1.3.5)

for every v ∈ U . However, from the definition of Lu[v] given in (1.3.1), it follows
that

d

ds
Lu[v](s) = ẏvu(s)

for a.e. s ∈ [0, 1]. Therefore, from (1.2.9) and Lemma 1.2.6, we deduce that (1.3.5)
holds. �

In the next result we study the local Lipschitz-continuity of the correspondence
u 7→ Lu.

Lemma 1.3.2. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular. Then, for every R > 0 there exists LR > 0 such
that

||Lu+w[v]− Lu[v]||V ≤ LR||w||U ||v||U (1.3.6)

for every v ∈ U and for every u,w ∈ U such that ||u||U , ||w||U ≤ R.
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Proof. Recalling the continuous inclusion C0([0, 1],Rn) ↪→ V , it is sufficient
to prove that for every R > 0 there exists LR > 0 such that, for every s ∈ [0, 1],
the following inequality is satisfied

|Lu+w[v](s)− Lu[v](s)|2 ≤ LR||w||U ||v||U (1.3.7)

for every v ∈ U and for every u,w ∈ U such that ||u||U , ||w||U ≤ R. On the other
hand, (1.3.2) implies that

|Lu+w[v](s)− Lu[v](s)|2

≤
∫ s

0

|Mu+w(s)M−1
u+w(τ)F (xu+w(τ))−Mu(s)M

−1
u (τ)F (xu(τ))|2|v(τ)|2 dτ.

However, using Proposition 1.2.3, Lemma 1.2.5 and Lemma 1.2.8, we obtain that
there exists L′R > 0 such that

|Mu+w(s)M−1
u+w(τ)F (xu+w(τ))−Mu(s)M

−1
u (τ)F (xu(τ))|2 ≤ L′R||w||U

for every s, τ ∈ [0, 1] and for every u,w ∈ U such that ||u||U , ||w||U ≤ R. Combining
the last two inequalities, we deduce that (1.3.7) holds. �

Remark 1.3.2. From Lemma 1.3.2 and Remark 1.3.1 it follows that the cor-
respondence u 7→ L∗u is as well Lipschitz-continuous on the bounded sets of U .

If the vector fields F1, . . . , Fk are C2-regular, we write ∂2F1

∂x2
, . . . , ∂

2Fk
∂x2

to de-
note their second differential. In the next result we investigate the second-order
variation of the solutions produced by the control system (1.1.6).

Proposition 1.3.3. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are C2-regular. For every u, v, w ∈ U , for every ε ∈ (0, 1],
let yvu, y

v
u+εw : [0, 1]→ Rn be the solutions of (1.2.9) corresponding to the first-order

variation v and to the admissible controls u and u + εw, respectively. Therefore,
we have that

sup
||v||L2≤1

||yvu+εw − yvu − εzv,wu ||C0 = o(ε) as ε→ 0, (1.3.8)

where zv,wu : [0, 1]→ Rn is the solution of the following affine system:

żv,wu (s) =
k∑
i=1

[
vi(s)

∂Fi(xu(s))

∂x
ywu (s) + wi(s)

∂Fi(xu(s))

∂x
yvu(s)

]
(1.3.9)

+
k∑
i=1

ui(s)
∂2Fi(xu(s))

∂x2
(yvu(s), y

w
u (s)) (1.3.10)

+
k∑
i=1

ui(s)
∂Fi(xu(s))

∂x
zv,wu (s) (1.3.11)
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with zv,wu (0) = 0, and where yvu, y
w
u : [0, 1] → Rn are the solutions of (1.2.9)

corresponding to the admissible control u and to the first-order variations v and
w, respectively.

Proof. The proof of this result follows using the same kind of techniques and
computations as in the proof of Proposition 1.2.4. �

Remark 1.3.3. Similarly as done in (1.2.18) for the first-order variation, we
can express the solution of the affine system (1.3.9)-(1.3.11) through an integral
formula. Indeed, for every u, v, w ∈ U , for every s ∈ [0, 1] we have that

zv,wu (s) =

∫ s

0

Mu(s)M
−1
u (τ)

(
k∑
i=1

vi(τ)
∂Fi(xu(τ))

∂x
Lu[w](τ) (1.3.12)

+
k∑
i=1

wi(τ)
∂Fi(xu(τ))

∂x
Lu[v](τ) (1.3.13)

+
k∑
i=1

ui(τ)
∂2Fi(xu(τ))

∂x2
(Lu[v](τ),Lu[w](τ))

)
dτ,

(1.3.14)

where we used the linear operator Lu : U → V defined in (1.3.1). From the
previous expression it follows that, for every u, v, w ∈ U , the roles of v and w are
interchangeable, i.e., for every s ∈ [0, 1] we have that zv,wu (s) = zw,vu (s). Moreover,
we observe that, for every s ∈ [0, 1] and for every u ∈ U , zv,wu (s) is bilinear with
respect to v and w.

We are now in position to introduce the second differential of the end-point map
Ps : U → Rn defined in (1.2.20). In view of the applications in the forthcoming
sections, we shall focus on the case s = 1, i.e., we consider the map P1 : U → Rn.
Before proceeding, for every u ∈ U we define the symmetric and bilinear map
Bu : U × U → Rn as follows

Bu(v, w) := zv,wu (1). (1.3.15)

Proposition 1.3.4. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are C2-regular. Let P1 : U → Rn be the end-point map
defined by (1.2.20), and, for every u ∈ U , let DuP1 : U → Rn be its differential.
Then, the correspondence u 7→ DuP1 is Gateaux differentiable at every u ∈ U ,
namely

lim
ε→0

sup
||v||L2≤1

∣∣∣∣Du+εwP1(v)−DuP1(v)

ε
− Bu(v, w)

∣∣∣∣
2

= 0, (1.3.16)

where Bu : U × U → Rn is the bilinear, symmetric and bounded operator defined
in (1.3.15).
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Proof. In view of (1.2.23), for every u, v, w ∈ U and for every ε ∈ (0, 1],
we have that DuP1(v) = yvu(1) and Du+εwP1(v) = yvu+εw(1). Therefore, (1.3.16)
follows directly from (1.3.8) and from (1.3.15). The symmetry and the bilinearity
of Bu : U × U → Rn descend from the observations in Remark 1.3.3. Finally, we
have to show that, for every u ∈ U , there exists C > 0 such that

|Bu(v, w)|2 ≤ C||v||L2 ||w||L2

for every v, w ∈ U . Recalling (1.3.15) and the integral expression (1.3.12)-(1.3.14),
the last inequality follows from the estimate (1.3.4), from Lemma 1.2.5, from
Proposition 1.2.2 and from the C2-regularity of F1, . . . , Fk. �

In view of the previous result, for every u ∈ U , we use D2
uP1 : U × U → Rn to

denote the second differential of the end-point map P1 : U → Rn. Moreover, for
every u, v, w ∈ U we have the following identities:

D2
uP1(v, w) = Bu(v, w) = zv,wu (1). (1.3.17)

Remark 1.3.4. It is possible to prove that the correspondence u 7→ D2
uP1 is

continuous. In particular, under the further assumption that the controlled vector
fields F1, . . . , Fk are C3-regular, the application u 7→ D2

uP1 is Lipschitz-continuous
on the bounded subsets of U . Indeed, taking into account (1.3.17) and (1.3.12)-
(1.3.14), this fact follows from Lemma 1.2.8, from Lemma 1.3.2 and from the
regularity of F1, . . . , Fk.

For every ν ∈ Rn and for every u ∈ U , we can consider the bilinear form
ν ·D2

uP1 : U × U → R, which is defined as

ν ·D2
uP1(v, w) := 〈ν,D2

uP1(v, w)〉Rn . (1.3.18)

We conclude this section by showing that, using the scalar product of U , the bilin-
ear form defined in (1.3.18) can be represented as a self-adjoint compact operator.
Before proceeding, it is convenient to introduce two auxiliary linear operators. In
this part we assume that the vector fields F1, . . . , Fk are C2-regular. For every
u ∈ U let us consider the application Mν

u : U → V defined as follows:

Mν
u[v](τ) :=

(
Mu(1)M−1

u (τ)
k∑
i=1

vi(τ)
∂Fi(xu(τ))

∂x

)T

ν (1.3.19)

for a.e. τ ∈ [0, 1], where xu : [0, 1]→ Rn is the solution of (1.1.6) and Mu : [0, 1]→
Rn×n is defined in (1.2.15). We recall that, for every i = 1, . . . , k and for every

y ∈ Rn, ∂2Fi(y)
∂x2

: Rn × Rn → Rn is a symmetric and bilinear function. Hence,
for every i = 1, . . . , k, for every u ∈ U and for every τ ∈ [0, 1], we have that the
application

(η1, η2) 7→ νTMu(1)M−1
u (τ)

∂2Fi(xu(τ))

∂x2
(η1, η2)
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is a symmetric and bilinear form on Rn. Therefore, for every i = 1, . . . , k, for every
u ∈ U and for every τ ∈ [0, 1], we introduce the symmetric matrix Sν,iu (τ) ∈ Rn×n

that satisfies the identity

〈Sν,iu (τ)η1, η2〉Rn = νTMu(1)M−1
u (τ)

∂2Fi(xu(τ))

∂x2
(η1, η2)

for every η1, η2 ∈ Rn. We define the linear operator Sνu : C0([0, 1],Rn) → V as
follows:

Sνu [v](τ) :=
k∑
i=1

ui(τ)Sν,iu (τ)v(τ) (1.3.20)

for every v ∈ C0([0, 1],Rn) and for a.e. τ ∈ [0, 1].
In the next result we prove that the linear operators introduced above are both

continuous.

Lemma 1.3.5. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular. Therefore, for every u ∈ U and for every ν ∈ Rn

the linear operators Mν
u : U → V and Sνu : C0([0, 1],Rn)→ V defined, respectively,

in (1.3.19) and (1.3.20) are continuous.

Proof. Let us start with Mν
u : U → V . Using Lemma 1.2.5 and (1.1.4), we

immediately deduce that there exists C1 > 0 such that

||Mν
u[v]||V ≤ C1||v||U

for every v ∈ U . As regards Sν : C0([0, 1],Rn)→ V , from (1.3.20) we deduce that∣∣Sνu [v](τ)
∣∣
2
≤

(
k∑
i=1

|ui(τ)||Sν,iu (τ)|2

)
||v||C0

for every v ∈ U and for a.e. τ ∈ [0, 1]. Moreover, from Lemma 1.2.5, from
Lemma 1.2.2 and the regularity of F1, . . . , Fk, we deduce that there exists C ′ > 0
such that

|Sν,iu (τ)|2 ≤ C ′

for every τ ∈ [0, 1]. Combining the last two inequalities and recalling that u ∈
U = L2([0, 1],Rk), we deduce that the linear operator Sνu : C0([0, 1],Rn) → V is
continuous. �

We are now in position to represent the bilinear form ν · D2
uP1 : U × U → R

through the scalar product of U . Indeed, recalling (1.3.18) and (1.3.17), from
(1.3.12)-(1.3.14) for every u ∈ U we obtain that

ν ·D2
uP1(v, w) = 〈Mν

u [v],Lu[w]〉V + 〈Mν
u [w],Lu[v]〉V + 〈SνuLu[v],Lu[w]〉V

= 〈L∗uMν
u [v], w〉U + 〈(Mν

u)
∗Lu[v], w〉U + 〈L∗uSνuLu[v], w〉U

for every v, w ∈ U , where (Mν
u)
∗ : V → U is the adjoint of the linear operator

Mν
u : U → V . Recalling Remark 1.3.1, we have that (Mν

u)
∗ is a bounded linear
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operator. This shows that the bilinear form ν·D2
uP1 : U×U → R can be represented

by the linear operator N ν
u : U → U , i.e.,

ν ·D2
uP1(v, w) = 〈N ν

u [v], w〉U (1.3.21)

for every v, w ∈ U , where

N ν
u := L∗uMν

u + (Mν
u)
∗Lu + L∗uSνuLu. (1.3.22)

We conclude this section by proving that N ν
u : U → U is a bounded, compact and

self-adjoint operator.

Proposition 1.3.6. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are C2-regular. For every u ∈ U and for every ν ∈ Rn,
let N ν

u : U → U be the linear operator that represents the bilinear form ν ·D2
uP1 :

U × U → R through the identity (1.3.21). Then N ν
u is continuous, compact and

self-adjoint.

Proof. We observe that the term L∗uMν
u + (Mν

u)
∗Lu at the right-hand side

of (1.3.22) is continuous, since it is obtained as the sum and the composition of
continuous linear operators, as shown in Lemma 1.3.1 and Lemma 1.3.5. Moreover,
it is also compact, since both Lu and L∗u are, in virtue of Lemma 1.3.1. Finally,
the fact that L∗uMν

u + (Mν
u)
∗Lu is self-adjoint is immediate. Let us consider the

last term at the right-hand side of (1.3.22), i.e., L∗uSνuLu. We first observe that
SνuLu : U → V is continuous, owing to Lemma 1.3.5 and the inequality (1.3.4).
Recalling that L∗u : V → U is compact, the composition L∗uSνuLu : U → U is
compact as well. Once again, the operator is clearly self-adjoint. �

1.4. Stability of trajectories with weakly convergent controls

We conclude this chapter by proving that the solutions of (1.1.6) corresponding
to weakly convergent controls are C0-convergent. Namely, we consider x0 ∈ Rn

and a L2-weakly convergent sequence of controls (um)m≥1 ⊂ U , and we study
the convergence of the trajectories (xm)m≥1, where, for every m ≥ 1, the curve
xm : [0, 1] → Rn is the solution of the Cauchy problem (1.1.6) corresponding to
the admissible control um and satisfying xm(0) = x0.

Proposition 1.4.1. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) satisfy the Lipschitz-continuity condition (1.1.2). Let
(um)m≥1 ⊂ U be a sequence such that um ⇀L2 u∞ as m → ∞. For every m ∈
N∪{∞}, let xm : [0, 1]→ Rn be the solution of (1.1.6) corresponding to the control
um. Then, we have that

lim
m→∞

||xm − x∞||C0 = 0.

Proof. Being the sequence (um)m≥1 weakly convergent, we deduce that there
exists R > 0 such that ||um||L2 ≤ R for every m ≥ 1. The estimate established in
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Lemma 1.2.2 implies that there exists CR > 0 such that

||xm||C0 ≤ CR, (1.4.1)

for every m ≥ 1. Moreover, using the sub-linear growth inequality (1.1.3), we have
that there exists C > 0 such that

|ẋm(s)|2 ≤
k∑
i=1

|Fi(xm(s)|2|ujm(s)| ≤ C(1 + CR)
k∑
i=1

|uim(s)|,

for a.e. s ∈ [0, 1]. Then, recalling that ||um||L2 ≤ R for every m ≥ 1, we deduce
that

||ẋm||L2 ≤ C(1 + CR)kR (1.4.2)

for every m ≥ 1. Combining (1.4.1) and (1.4.2), we obtain that the sequence
(xm)m≥1 is pre-compact with respect to the weak topology of H1([0, 1],Rn). Our
goal is to prove that the set of the H1-weak limiting points of the sequence (xm)m≥1

coincides with {x∞}, i.e., that the whole sequence xm ⇀H1 x∞ as m → ∞. Let
x̂ ∈ H1([0, 1],Rn) be any H1-weak limiting point of the sequence (xm)m≥1, and
let (xm`)`≥1 be a sub-sequence such that xm` ⇀H1 x̂ as ` → ∞. Recalling (1.1.9)
in Theorem 1.1.1, we have that the inclusion H1([0, 1],Rn) ↪→ C0([0, 1],Rn) is
compact, and this implies that

xm` →C0 x̂ (1.4.3)

as ` → ∞. From (1.4.3) and the assumption (1.1.2), for every i = 1, . . . , k it
follows that

||Fi(xml)− Fi(x̂)||C0 → 0 (1.4.4)

as ` → ∞. Let us consider a smooth and compactly supported test function
φ ∈ C∞c ([0, 1],Rn). Therefore, recalling that xm` is the solution of the Cauchy
problem (1.1.6) corresponding to the control um` ∈ U , we have that∫ 1

0

xm`(s) · φ̇(s) ds = −
k∑
i=1

∫ 1

0

(Fi(xm`(s)) · φ(s))ujm`(s) ds

for every ` ≥ 1. Thus, passing to the limit as `→∞ in the previous identity, we
obtain ∫ 1

0

x̂(s) · φ̇(s) ds = −
k∑
i=1

∫ 1

0

(Fi(x̂(s)) · φ(s))uj∞(s) ds. (1.4.5)

Indeed, the convergence of the right-hand side is guaranteed by (1.4.3). On the
other hand, for every j = 1, . . . , k, from (1.4.4) we deduce the strong convergence
Fi(xm`) ·φ→L2 Fi(x̂) ·φ as `→∞, while ujm` ⇀L2 uj∞ as `→∞ by the hypothesis.
Finally, observing that (1.4.3) gives x̂(0) = x0, we deduce that{

˙̂x(s) = F (x̂(s))u∞(s), for a.e. s ∈ [0, 1],

x̂(0) = x0,
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that implies x̂ ≡ x∞. This argument shows that xm ⇀H1 x∞ as m→∞. Finally,
the thesis follows using again the compact inclusion (1.1.9). �





CHAPTER 2

Gradient flow for optimal control problems with end-point
cost

In this chapter we study the gradient flows associated to optimal control prob-
lems of linear-control systems with end-point cost and with a L2-squared penal-
ization on the controls. In particular, we shall derive the gradient field induced
by F on the its domain, i.e., the Hilbert space U , and we show that the gradient
flow equation is well posed. The main result of the Chapter is Theorem 2.5.3,
where we prove a convergence result for the trajectories of the gradient flow with
Sobolev-regular initial datum.

2.1. Existence of minimizers

Using the same notations as in Chapter 1, let xu : [0, 1]→ Rn be the solution
of the Cauchy problem{

ẋu(s) = F (xu(s))u(s) for a.e. s ∈ [0, 1],

xu(0) = x0,
(2.1.1)

where F = (F1, . . . , Fk) : Rn → Rn×k satisfies the Lipschitz-continuity condition
(1.1.2), x0 ∈ Rn is prescribed, and u ∈ U := L2([0, 1],Rk). In the present chapter
we study the functional F : U → R+ defined for every u ∈ U as follows:

F(u) := a(xu(1)) +
β

2
||u||2L2 , (2.1.2)

where a : Rn → R+ is a non-negative C1-regular function, β > 0 is a positive
constant, and xu : [0, 1] → Rn is the solution of (2.1.1) corresponding to the
control u.

We first address the question of the existence of minimizers of the functional
F : U → R+ defined in (2.1.2).

Proposition 2.1.1. Let us assume that the vector fields F1, . . . , Fk defining
the control system (2.1.1) satisfy the Lipschitz-continuity condition (1.1.2), and
let F : U → R+ be the functional defined in (2.1.2). Then there exists û ∈ U such
that

F(û) = inf
u∈U
F(u).

33
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Proof. We prove the existence of minimizers by means of the direct method
of calculus of variations (see, e.g., [24, Theorem 3.15]). Equipping U with the
weak topology, it is sufficient to prove that the sub-levels of F are pre-compact,
and that it is sequentially lower semi-continuous. For every M ≥ 0 we have

{u ∈ U | F(u) ≤M} ⊂ {u ∈ U | ||u||2L2 ≤ 2M/β},

where we used the fact that the end-point cost a : Rn → R+ is non-negative.
The last inclusion shows the pre-compactness of the sub-levels of F . As regards
the lower semi-continuity, let us consider a sequence (um)m∈N ⊂ U such that
um ⇀L2 u∞. For every m ∈ N ∪ {∞}, let xm : [0, 1] → Rn be the solution of
(2.1.1) corresponding to the admissible control um. Using Proposition 1.4.1, we
deduce the convergence of the terminal points of the trajectories, namely that
xm(1)→ x∞(1) as m→∞. In virtue
of the end-point cost a : Rn → R+, we obtain that

lim
m→∞

a(xm(1)) = a(x∞(1)). (2.1.3)

Recalling that the L2-norm is lower semi-continuous with respect to the weak
convergence, we have

F(u∞) ≤ lim inf
m→∞

F(um),

and this concludes the proof. �

As well as in the finite-dimensional case, the study of the gradient flow induced
by F on its domain is motivated by the problem of finding a minimizer. In the
next section we detail the derivation of the gradient field, and we prove that the
gradient flow equation is well-posed.

2.2. Gradient flow: well-posedness and global definition

We consider the functional F : U → R+ defined as in (2.1.2). In this section
we want to study the gradient flow induced by the functional F on the Hilbert
space U . In particular, we establish a result that guarantees existence, uniqueness
and global definition of the solutions of the gradient flow equation associated to
F . In this section we adopt the approach of the monograph [33], where the theory
of ODEs in Banach spaces is developed.

We start from the notion of differentiable curve in U . We stress that in the
present Thesis the time variable t is exclusively employed for curves taking values
in U . In particular, we recall that we use s ∈ [0, 1] to denote the time variable only
in the control system (1.1.6) and in the related objects (e.g., admissible controls,
controlled trajectories, etc.). Given a curve U : (a, b) → U , we say that it is
(strongly) differentiable at t0 ∈ (a, b) if there exists u ∈ U such that

lim
t→t0

∣∣∣∣∣∣∣∣Ut − Ut0t− t0
− u
∣∣∣∣∣∣∣∣
L2

= 0. (2.2.1)
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In this case, we use the notation ∂tUt0 := u. In the present section we study the
well-posedness in U of the evolution equation{

∂tUt = −G[Ut],

U0 = u0,
(2.2.2)

where G : U → U is the representation of the differential dF : U → U∗ through
the Riesz isomorphism, i.e.,

〈G[u], v〉L2 = duF(v) (2.2.3)

for every u, v ∈ U . More precisely, for every initial datum u0 ∈ U we prove that
there exists a curve t 7→ Ut that solves (2.2.2), that it is unique and that it is
defined for every t ≥ 0.

We first show that duF can be actually represented as an element of U , for
every u ∈ U . We immediately observe that this problem reduces to study the
differential of the end-point cost, i.e., the functional E : U → R+, defined as

E(u) := a(xu(1)), (2.2.4)

where xu : [0, 1] → Rn is the solution of (1.1.6) corresponding to the admissible
control u ∈ U .

Lemma 2.2.1. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C1-regular, as well as the function a : Rn → R+ designing
the end-point cost. Then the functional E : U → R+ is Gateaux differentiable
at every u ∈ U . Moreover, using the Riesz’s isomorphism, for every u ∈ U the
differential duE : U → R can be represented as follows:

duE(v) =

∫ 1

0

n∑
j=1

(
∂a(xu(1))

∂xj
〈gj1,u(τ), v(τ)〉Rk

)
dτ (2.2.5)

for every v ∈ U , where, for every j = 1, . . . , n, the function gj1,u ∈ U is defined as
in (1.2.22).

Proof. We observe that the functional E : U → R+ is defined as the compo-
sition

E = a ◦ P1,

where P1 : U → Rn is the end-point map defined in (1.2.20). Proposition 1.2.4
guarantees that the end-point map P1 is Gateaux differentiable at every u ∈ U .
Recalling that a : Rn → R+ is assumed to be C1, we deduce that, for every u ∈ U ,
E is Gateaux differentiable at u and that, for every v ∈ U , the following identity
holds:

duE(v) =
n∑
j=1

∂a(xu(1))

∂xj
DuP

j
1 (v), (2.2.6)

where xu : [0, 1]→ Rn is the solution of (1.1.6) corresponding to the control u ∈ U .
Recalling that DuP

1
1 , . . . , DuP

n
1 : U → R are linear and continuous functionals for
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every u ∈ U (see Proposition 1.2.7), from (2.2.6) we deduce that duE : U → R is
as well. Finally, from (1.2.21) we obtain (2.2.5). �

Remark 2.2.1. Similarly as done in Remark 1.2.1, we can provide a uniform
estimate of the norm of duE when u varies on a bounded set. Indeed, recalling
Lemma 1.2.2 and the fact that a : Rn → R+ is C1-regular, for every R > 0 there
exists C ′R > 0 such that ∣∣∣∣∂a(xu(1))

∂xj

∣∣∣∣ ≤ C ′R

for every j = 1, . . . , n and for every u ∈ U such that ||u||L2 ≤ R. Combining the
last inequality with (2.2.6) and (1.2.24), we deduce that there exists CR > 0 such
that for every ||u||L2 ≤ R the estimate

|duE(v)|2 ≤ CR||v||L2 (2.2.7)

holds for every v ∈ U .

Remark 2.2.2. We observe that, for every u, v ∈ U , we can rewrite (2.2.5) as
follows

duE(v) =

∫ 1

0

〈
F T (xu(τ))λTu (τ), v(τ)

〉
Rk dτ, (2.2.8)

where λu : [0, 1] → (Rn)∗ is an absolutely continuous curve defined for every
s ∈ [0, 1] by the relation

λu(s) := ∇a(xu(1)) ·Mu(1)M−1
u (s), (2.2.9)

where Mu : [0, 1] → Rn×n is defined as in (1.2.15), and ∇a(xu(1)) is understood
as a row vector. Recalling that s 7→ M−1

u (s) solves (1.2.17), it turns out that
s 7→ λu(s) is the solution of the following linear Cauchy problem:λ̇u(s) = −λu(s)

k∑
i=1

(
ui(s)∂Fi(xu(s))

∂x

)
for a.e. s ∈ [0, 1],

λu(1) = ∇a(xu(1)).

(2.2.10)

Finally, (2.2.8) implies that, for every u ∈ U , we can represent duE with the
function hu : [0, 1]→ Rk defined as

hu(s) := F T (xu(s))λ
T
u (s) (2.2.11)

for a.e. s ∈ [0, 1]. We observe that (2.2.7) and the Riesz’s isometry imply that for
every R > 0 there exists CR > 0 such that

||hu||L2 ≤ CR (2.2.12)

for every u ∈ U such that ||u||L2 ≤ R. We further underline that the representation
hu : [0, 1]→ Rk of the differential duE is actually absolutely continuous, similarly
as observed in Remark 1.2.2 for the representations of the components of the
differential of the end-point map.
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Under the assumption that the controlled vector fields F1, . . . , Fk and the func-
tion a : Rn → R+ are C2-regular, we can show that the differential u 7→ duE is
Lipschitz-continuous on bounded sets.

Lemma 2.2.2. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular, as well as the function a : Rn → R+ designing
the end-point cost. Then, for every R > 0 there exists LR > 0 such that

||hu+w − hu||L2 ≤ LR||w||L2 (2.2.13)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R, where hu+w, hu are the represen-
tations, respectively, of du+wE and duE provided by (2.2.11).

Proof. Let us consider R > 0. In virtue of (2.2.5), it is sufficient to prove
that there exists LR > 0 such that∣∣∣∣∣∣∣∣∂a(xu+w(1))

∂xj
gj1,u+w −

∂a(xu(1))

∂xj
gj1,u

∣∣∣∣∣∣∣∣
L2

≤ LR||w||L2 (2.2.14)

for every j = 1, . . . , n and for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R.
Lemma 1.2.2 implies that there exists a compact set KR ⊂ Rn depending only on
R such that xu(1), xu+w(1) ∈ KR for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R.
Recalling that a : Rn → R+ is assumed to be C2-regular, we deduce that there
exists L′R > 0 such that∣∣∣∣∂a(y1)

∂xj
− ∂a(y2)

∂xj

∣∣∣∣
2

≤ L′R|y1 − y2|2

for every y1, y2 ∈ KR. Moreover, combining the previous inequality with (1.2.4),
we deduce that there exists L1

R > 0 such that∣∣∣∣∂a(xu+w(1))

∂xj
− ∂a(xu(1))

∂xj

∣∣∣∣
2

≤ L1
R||w||L2 (2.2.15)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. On the other hand, using (1.2.32),
we have that there exists L2

R > 0 such that∣∣∣∣gj1,u+w − g
j
1,u

∣∣∣∣
L2 ≤ L2

R||w||L2 (2.2.16)

for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Combining (2.2.15) and (2.2.16),
and recalling (1.2.25), the triangular inequality yields (2.2.14). �

Remark 2.2.3. In Lemma 2.2.1 we have computed the Gateaux differential
duE of the functional E : U → R. The continuity of the map u 7→ duE implies
that the Gateaux differential coincides with the Fréchet differential (see, e.g., [9,
Theorem 1.9]).

Using Lemma 2.2.1 and Remark 2.2.2, we can provide an expression for the
representation map G : U → U defined in (2.2.3). Indeed, we have that

G[u] = hu + βu, (2.2.17)
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where hu : [0, 1] → Rk is defined in (2.2.11). Before proving that the solution of
the gradient flow (2.2.2) exists and is globally defined, we report the statement
of a local existence and uniqueness result for the solution of ODEs in infinite-
dimensional spaces.

Theorem 2.2.3. Let (E, || · ||E) be a Banach space, and, for every u0 ∈ E and
R > 0, let BR(u0) be the set

BR(u0) := {u ∈ E : ||u− u0||E ≤ R}.

Let K : E → E be a continuous map such that

(i) ||K[u]||E ≤M for every u ∈ BR(u0);
(ii) ||K[u1]−K[u2]||E ≤ L||u1 − u2||E for every u1, u2 ∈ BR(u0).

For every t0 ∈ R, let us consider the following Cauchy problem:{
∂tUt = K[Ut],

Ut0 = u0.
(2.2.18)

Then, setting α := R
M

, the equation (2.2.18) admits a unique and continuously
differentiable solution t 7→ Ut, which is defined for every t ∈ I := [t0 − α, t0 + α]
and satisfies Ut ∈ BR(u0) for every t ∈ I.

Proof. This result descends directly from [33, Theorem 5.1.1]. �

In the following result we show that, whenever it exists, any solution of (2.2.2)
is bounded with respect to the L2-norm.

Lemma 2.2.4. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular, as well as the function a : Rn → R+ designing
the end-point cost. For every initial datum u0 ∈ U , let U : [0, α)→ U be a contin-
uously differentiable solution of the Cauchy problem (2.2.2). Therefore, for every
R > 0 there exists CR > 0 such that, if ||u0||L2 ≤ R, then

||Ut||L2 ≤ CR

for every t ∈ [0, α).

Proof. Recalling (2.2.2) and using the fact that both F : U → R+ and t 7→ Ut
are differentiable, we observe that

d

dt
F(Ut) = dUtF(∂tUt) = 〈G[Ut], ∂tUt〉L2 = −||∂tUt||2L2 ≤ 0 (2.2.19)

for every t ∈ [0, α), and this immediately implies that

F(Ut) ≤ F(U0)

for every t ∈ [0, α). Moreover, from the definition of the functional F given
in (2.1.2) and recalling that the end-point term is non-negative, it follows that
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1
2
||u||2L2 ≤ F(u)/β for every u ∈ U . Therefore, combining these facts, if ||u0||L2 ≤
R, we deduce that

1

2
||Ut||2L2 ≤

1

β
sup

||u0||L2≤R
F(u0) ≤ 1

2β
R2 +

1

β
sup

||u0||L2≤R
a(xu0(1))

for every t ∈ [0, α). Finally, using Lemma 1.2.2 and the continuity of a : Rn → R+,
we deduce the thesis. �

We are now in position to prove that the gradient flow equation (2.2.2) admits
a unique and globally defined solution.

Theorem 2.2.5. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are C2-regular, as well as the function a : Rn → R+ de-
signing the end-point cost. For every u0 ∈ U , let us consider the Cauchy problem
(2.2.2) with initial datum U0 = u0. Then, (2.2.2) admits a unique, globally defined
and continuously differentiable solution U : [0,+∞)→ U .

Proof. Let us fix the initial datum u0 ∈ U , and let us set R := ||u0||L2 . Let
CR > 0 be the constant provided by Lemma 2.2.4. Let us introduce R′ := CR + 1
and let us consider

BR′(0) := {u ∈ U : ||u||L2 ≤ R′}.
We observe that, for every ū ∈ U such that ||ū||L2 ≤ CR, we have that

B1(ū) ⊂ BR′(0), (2.2.20)

where B1(ū) := {u ∈ U : ||u − ū||L2 ≤ 1}. Recalling that the vector field that
generates the gradient flow (2.2.2) has the form G[u] = hu + βu for every u ∈ U ,
from (2.2.12) we deduce that there exists MR′ > 0 such that

||G[u]||L2 ≤MR′ (2.2.21)

for every u ∈ BR′(0). On the other hand, Lemma 2.2.2 implies that there exists
LR′ > 0 such that

||G[u1]− G[u2]||L2 ≤ LR′ ||u1 − u2||L2 (2.2.22)

for every u1, u2 ∈ BR′(0). Recalling the inclusion (2.2.20), (2.2.21)-(2.2.22) guar-
antee that the hypotheses of Theorem 2.2.3 are satisfied in the ball B1(ū), for
every ū satisfying ||ū||L2 ≤ CR. This implies that, for every t0 ∈ R, the evolution
equation {

∂tUt = −G[Ut],

Ut0 = ū,
(2.2.23)

admits a unique and continuously differentiable solution defined in the interval
[t0 − α, t0 + α], where we set α := 1

MR′
. In particular, if we choose t0 = 0 and

ū = u0 in (2.2.23), we deduce that the gradient flow equation (2.2.2) with initial
datum U0 = u0 admits a unique and continuously differentiable solution t 7→ Ut
defined in the interval [0, α]. We shall now prove that we can extend this local
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solution to every positive time. In virtue of Lemma 2.2.4, we obtain that the local
solution t 7→ Ut satisfies

||Ut||L2 ≤ CR (2.2.24)

for every t ∈ [0, α]. Therefore, if we set t0 = α
2

and ū = Uα
2

in (2.2.23), recalling
that, if ||ū||L2 ≤ CR, then (2.2.23) admits a unique solution defined in [t0−α, t0+α],
it turns out that the curve t 7→ Ut that solves (2.2.2) with Cauchy datum U0 = u0

can be uniquely defined for every t ∈ [0, 3
2
α]. Since Lemma 2.2.4 guarantees that

(2.2.24) holds whenever the solution t 7→ Ut exists, we can repeat recursively the
argument and we can extend the domain of the solution to the whole half-line
[0,+∞). �

We observe that Theorem 2.2.3 suggests that the solution of the gradient flow
equation (2.2.2) could be defined also for negative times. In the following result
we investigate this fact.

Corollary 2.2.6. Under the same assumptions of Theorem 2.2.5, for every
R2 > R1 > 0, there exists α > 0 such that, if ||u0||L2 ≤ R1, then the solution
t 7→ Ut of the Cauchy problem (2.2.2) with initial datum U0 = u0 is defined for
every t ∈ [−α,+∞). Moreover, ||Ut||L2 ≤ R2 for every t ∈ [−α, 0].

Proof. The fact that the solutions are defined for every positive time descends
from Theorem 2.2.5. Recalling the expression of G : U → U provided by (2.2.17),
from (2.2.12) it follows that, for every R2 > 0, there exists MR2 such that

||G[u]||L2 ≤MR2

for every u ∈ BR2(0) := {u ∈ U : ||u||L2 ≤ R2}. On the other hand, in virtue of
Lemma 2.2.2, we deduce that there exists LR2 such that

||G[u1]− G[u2]||L2 ≤ LR2||u1 − u2||L2

for every u1, u2 ∈ BR2(0). We further observe that, for every u0 ∈ U such that
||u0||L2 ≤ R1, we have the inclusion BR(u0) := {u ∈ U : ||u− u0|| ≤ R} ⊂ BR2(0),
where we set R := R2 − R1. Therefore, the previous inequalities guarantee that
the hypotheses of Theorem 2.2.3 are satisfied in BR(u0), whenever ||u0||L2 ≤ R1.
Finally, in virtue of Theorem 2.2.3 and the inclusion BR(u0) ⊂ BR2(0), we obtain
the thesis with

α =
R2 −R1

MR2

.

�

2.3. Pre-compactness of gradient flow trajectories

In Section 2.2 we considered the F : U → R+ defined in (2.1.2) and we proved
that the gradient flow equation (2.2.2) induced on U by F admits a unique solution
U : [0,+∞) → U , for every Cauchy datum U0 = u0 ∈ U . The aim of the present
section is to investigate the pre-compactness in U of the gradient flow trajectories
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t 7→ Ut. In order to do that, we first show that, under suitable regularity assump-
tions on the vector fields F1, . . . , Fk and on the function a : Rn → R+, for every
t ≥ 0 the value of the solution Ut ∈ U has the same Sobolev regularity as the initial
datum u0. The key-fact is that, when F1, . . . , Fk are Cr-regular with r ≥ 2 and
a : Rn → R+ is of class C2, the map G : Hm([0, 1],Rk)→ Hm([0, 1],Rk) is locally
Lipschitz continuous, for every non-negative integer m ≤ r − 1. This implies that
the gradient flow equation (2.2.2) can be studied as an evolution equation in the
Hilbert space Hm([0, 1],Rk).

The following result concerns the curve λu : [0, 1]→ (Rn)∗ defined in (2.2.9).

Lemma 2.3.1. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are C2-regular, as well as the function a : Rn → R+ designing
the end-point cost. For every R > 0, there exists CR > 0 such that, for every
u ∈ U satisfying ||u||L2 ≤ R, the following inequality holds

||λu||C0 ≤ CR, (2.3.1)

where the curve λu : [0, 1] → (Rn)∗ is defined as in (2.2.9). Moreover, for every
R > 0, there exists LR > 0 such that, for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤
R, for the corresponding curves λu, λu+w : [0, 1] → (Rn)∗ the following inequality
holds:

||λu+w − λu||C0 ≤ LR||w||L2 . (2.3.2)

Proof. Recalling the definition of λu given in (2.2.9), we have that

|λu(s)|2 ≤ |∇a(xu(1))|2|Mu(1)|2|M−1
u (s)|2

for every s ∈ [0, 1], where xu : [0, 1] → Rn is solution of (1.1.6) corresponding
to the control u ∈ U . Lemma 1.2.2 implies that there exists C ′R > 0 such that
|∇a(xu(1))|2 ≤ C ′R for every u ∈ U such that ||u||L2 ≤ R. Combining this with
(1.2.16), we deduce (2.3.1).

To prove (2.3.2) we first observe that the C2-regularity of a : Rn → R+ and
Proposition 1.2.3 imply that, for every R > 0, there exists L′R > 0 such that

|∇a(xu+w(1))−∇a(xu(1))|2 ≤ L′R||w||L2

for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R. Therefore, recalling (1.2.16) and
(1.2.26)-(1.2.27), we deduce (2.3.2) by applying the triangular inequality to the
identity

|λu+w(s)−λu(s)|2 = |∇a(xu+w(1)) ·Mu+w(1)M−1
u+w(s)−∇a(xu(1)) ·Mu(1)M−1

u (s)|2

for every s ∈ [0, 1]. �

We recall the notion of Lie bracket of vector fields. Let G1, G2 : Rn → Rn

be two vector fields such that G1 ∈ Cr1(Rn,Rn) and G2 ∈ Cr2(Rn,Rn), with
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r1, r2 ≥ 1, and let us set r := min(r1, r2). Then the Lie bracket of G1 and G2 is
the vector field [G1, G2] : Rn → Rn defined as follows:

[G1, G2](y) =
∂G2(y)

∂x
G1(y)− ∂G1(y)

∂x
G2(y).

We observe that [G1, G2] ∈ Cr−1(Rn,Rn). In the following result we establish some
estimates for vector fields obtained via iterated Lie brackets.

Lemma 2.3.2. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are Cm-regular, with m ≥ 2. For every compact K ⊂ Rn, there
exist C > 0 and L > 0 such that, for every j1, . . . , jm = 1, . . . , k, the vector field

G := [Fjm , [. . . , [Fj3 , [Fj2 , Fj1 ]] . . .] : Rn → Rn

satisfies the following inequalities:

|G(x)|2 ≤ C (2.3.3)

for every x ∈ K, and

|G(x)−G(y)|2 ≤ L|x− y|2 (2.3.4)

for every x, y ∈ K.

Proof. The thesis follows immediately from the fact that the vector field G
is C1-regular. �

The next result is the cornerstone this section. It concerns the regularity of the
function hu : [0, 1] → Rk introduced in (2.2.11). We recall that, for every u ∈ U ,
hu is the representation of the differential duE through the scalar product of U ,
where the functional E : U → R+ is defined as in (2.2.4). We recall the convention
H0([0, 1],Rk) = L2([0, 1],Rk) = U .

Lemma 2.3.3. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are Cr-regular with r ≥ 2, and that the function a : Rn → R+

designing the end-point cost is C2-regular. For every u ∈ U , let hu : [0, 1]→ Rk be
the representation of the differential duE : U → R provided by (2.2.11). For every
integer 1 ≤ m ≤ r − 1, if u ∈ Hm−1([0, 1],Rk) ⊂ U , then hu ∈ Hm([0, 1],Rk).

Moreover, for every integer 1 ≤ m ≤ r−1, for every R > 0 there exist Cm
R > 0

and LmR > 0 such that

||hu||Hm ≤ Cm
R (2.3.5)

for every u ∈ Hm−1([0, 1],Rk) such that ||u||Hm−1 ≤ R, and

||hu+w − hu||Hm ≤ LmR ||w||Hm−1 (2.3.6)

for every u,w ∈ Hm−1([0, 1],Rk) such that ||u||Hm−1 , ||w||Hm−1 ≤ R.

Proof. It is sufficient to prove the thesis in the case m = r − 1, for every
integer r ≥ 2. When r = 2,m = 1, we have to prove that, for every u ∈ U , the
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function hu : [0, 1] → Rk is in H1. Recalling (2.2.11), we have that, for every
j = 1, . . . , k, the j-th component of hu is given by the product

hju(s) = λu(s) · Fj(xu(s))

for every s ∈ [0, 1], where λu : [0, 1] → (Rn)∗ was defined in (2.2.9). Since both
s 7→ λu(s) and s 7→ Fj(xu(s)) are in H1, then their product is in H1 as well (see,
e.g., [15, Corollary 8.10]). Therefore, since λu : [0, 1] → (Rn)∗ solves (2.2.10), we
can compute

ḣju(s) = λu(s) ·
k∑
i=1

[Fi, Fj]xu(s)u
i(s) (2.3.7)

for every j = 1, . . . , k and for a.e. s ∈ [0, 1]. In virtue of (2.3.1), (1.2.3) and
(2.3.3), for every R > 0, there exists C ′R > 0 such that

|ḣju(s)| ≤ C ′R|u(s)|1
for a.e. s ∈ [0, 1], for every j = 1, . . . , k and for every u ∈ U such that ||u||L2 ≤ R.
Recalling (1.2.2), we deduce that

||ḣju||L2 ≤
√
kC ′R||u||L2 (2.3.8)

for every j = 1, . . . , k and for every u ∈ U such that ||u||L2 ≤ R. Finally, using
(2.2.12), we obtain that (2.3.5) holds for r = 2,m = 1. To prove (2.3.6), we observe
that, for every j = 1, . . . , k and for every u,w ∈ U we have

|ḣju+w(s)− ḣju(s)| ≤ |λu+w(s)− λu(s)|2
k∑
i=1

∣∣∣[Fi, Fj]xu+w(s)

∣∣∣
2
|ui(s) + wi(s)|

+ |λu(s)|2
k∑
i=1

∣∣∣[Fi, Fj]xu+w(s) − [Fi, Fj]xu(s)

∣∣∣
2
|ui(s) + wi(s)|

+ |λu(s)|2
k∑
i=1

∣∣∣[Fi, Fj]xu(s)

∣∣∣
2
|wi(s)|

for a.e. s ∈ [0, 1]. In virtue of Lemma 2.3.1, Lemma 1.2.2, Proposition 1.2.3 and
Lemma 2.3.2, for every R > 0 there exist L′R > 0 and C ′′R > 0 such that for every
j = 1, . . . , k the inequality

|ḣju+w(s)− ḣju(s)| ≤ L′R||w||L2|u(s) + w(s)|1 + C ′′R|w(s)|1
holds for a.e. s ∈ [0, 1] and for every u,w ∈ U satisfying ||u||L2 , ||w||L2 ≤ R. Using
(1.2.2), the previous inequality implies that there exists L′′R > 0 such that

||ḣju+w − ḣju||L2 ≤ L′′R||w||L2 (2.3.9)

for every u,w ∈ U such that ||u||L2 , ||w||L2 ≤ R. Recalling (2.2.13), we conclude
that (2.3.6) holds for r = 2,m = 1.
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For r = 3,m = 2, we have to prove that, for every u ∈ H1([0, 1],Rk), the func-

tion hu belongs to H2([0, 1],Rk). This follows if we show that ḣu ∈ H1([0, 1],Rk)
for for every u ∈ H1([0, 1],Rk). Using the identity (2.3.7), we deduce that, when-

ever u ∈ H1([0, 1],Rk), ḣju is the product of three H1-regular functions, for every

j = 1, . . . , k. Therefore, using again [15, Corollary 8.10], we deduce that ḣju is
H1-regular as well. From (2.3.7), for every j = 1, . . . , k we have that

ḧju(s) = λu(s) ·
k∑

i1,i2=1

[Fi2 , [Fi1 , Fj]]xu(s)u
i1(s)ui2(s) + λu(s) ·

k∑
i1=1

[Fi1 , Fj]xu(s)u̇
i1(s)

for a.e. s ∈ [0, 1]. Using Lemma 2.3.1, Lemma 1.2.2, Lemma 2.3.2, and recalling
Theorem 1.1.1, we obtain that, for every R > 0 there exist C ′R, C

′′
R > 0 such that

||ḧju(s)||L2 ≤ C ′R + C ′′R||u̇(s)||L2 (2.3.10)

for a.e. s ∈ [0, 1], for every j = 1, . . . , k and for every u ∈ H1([0, 1],Rk) such that
||u||H1 ≤ R. Therefore, combining (2.2.12), (2.3.8) and (2.3.10), the inequality
(2.3.5) follows for the case r = 3,m = 2. In view of (2.2.13) and (2.3.9), in order
to prove (2.3.6) for r = 3,m = 2 it is sufficient to show that, for every R > 0 there
exists L′R > 0 such that

||ḧju+w − ḧju||L2 ≤ L′R||w||H1 (2.3.11)

for every u,w ∈ H1([0, 1],Rk) such that ||u||H1 , ||w||H1 ≤ R. The inequality
(2.3.11) can be deduced with an argument based on the triangular inequality,
similarly as done in the case r = 2,m = 1.

The same strategy works for every r ≥ 4. �

The main consequence of Lemma 2.3.3 is that, when the map G : U → U defined
in (2.2.17) is restricted to Hm([0, 1],Rk), the restriction G : Hm([0, 1],Rk) →
Hm([0, 1],Rk) is bounded and Lipschitz continuous on bounded sets.

Proposition 2.3.4. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are Cr-regular with r ≥ 2, and that the function a : Rn → R
designing the end-point cost is C2-regular. For every β > 0, let G : U → U be the
representation map defined in (2.2.3). Then, for every integer 1 ≤ m ≤ r − 1, we
have that

G(Hm([0, 1],Rk)) ⊂ Hm([0, 1],Rk).

Moreover, for every integer 1 ≤ m ≤ r−1 and for every R > 0 there exists Cm
R > 0

such that
||G[u]||Hm ≤ Cm

R (2.3.12)

for every u ∈ Hm([0, 1],Rk) such that ||u||Hm ≤ R, and there exists LmR > 0 such
that

||G[u+ w]− G[u]||Hm ≤ LmR ||w||Hm (2.3.13)

for every u,w ∈ Hm([0, 1],Rk) such that ||u||Hm , ||w||Hm ≤ R.
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Proof. Recalling that for every u ∈ U we have

G[u] = hu + βu,

the thesis follows directly from Lemma 2.3.3. �

Proposition 2.3.4 suggests that, when the vector fields F1, . . . , Fk are Cr-regular
with r ≥ 2, we can restrict the gradient flow equation (2.2.2) to the Hilbert spaces
Hm([0, 1],Rk), for every integer 1 ≤ m ≤ r − 1. Namely, for every integer 1 ≤
m ≤ r− 1, we shall introduce the application Gm : Hm([0, 1],Rk)→ Hm([0, 1],Rk)
defined as the restriction of G : U → U to Hm, i.e.,

Gm := G|Hm . (2.3.14)

For every integer m ≥ 1, given a curve U : (a, b) → Hm([0, 1],Rk), we say that it
is (strongly) differentiable at t0 ∈ (a, b) if there exists u ∈ Hm([0, 1],Rk) such that

lim
t→t0

∣∣∣∣∣∣∣∣Ut − Ut0t− t0
− u
∣∣∣∣∣∣∣∣
Hm

= 0. (2.3.15)

In this case, we use the notation ∂tUt0 := u. For every ` = 1, . . . ,m and for

every t ∈ (a, b), we shall write U
(`)
t ∈ Hm−`([0, 1],Rk) to denote the `-th Sobolev

derivative of the function Ut : s 7→ Ut(s), i.e.,∫ 1

0

〈Ut(s), φ(`)(s)〉Rk ds = (−1)`
∫ 1

0

〈U (`)
t (s), φ(s)〉Rk ds

for every φ ∈ C∞c ([0, 1],Rk). It is important to observe that, for every order of
derivation ` = 1, . . . ,m, (2.3.15) implies that

lim
t→t0

∣∣∣∣∣
∣∣∣∣∣U

(`)
t − U

(`)
t0

t− t0
− u(`)

∣∣∣∣∣
∣∣∣∣∣
L2

= 0,

and we use the notation ∂tU
(`)
t0 := u(`). In particular, for every ` = 1, . . . ,m, it

follows that

d

dt
||U (`)

t ||2L2 = 2

∫ 1

0

〈∂tU (`)
t (s), U

(`)
t (s)〉Rk ds = 2〈∂tU (`)

t , U
(`)
t 〉L2 . (2.3.16)

In the next result we study the following evolution equation{
∂tUt = −Gm[Ut],

U0 = u0,
(2.3.17)

with u0 ∈ Hm([0, 1],Rk), and where Gm : Hm([0, 1],Rk)→ Hm([0, 1],Rk) is defined
as in (2.3.14). Before establishing the existence, uniqueness and global definition
result for the Cauchy problem (2.3.17), we study the evolution of the semi-norms

||U (`)
t ||L2 for ` = 1, . . . ,m along its solutions.
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Lemma 2.3.5. Let us assume that the vector fields F1, . . . , Fk defining the con-
trol system (1.1.6) are Cr-regular with r ≥ 2, and that the function a : Rn → R+

designing the end-point cost is C2-regular. For every integer 1 ≤ m ≤ r − 1 and
for every inital datum u0 ∈ Hm([0, 1],Rk), let U : [0, α) → Hm([0, 1],Rk) be a
continuously differentiable solution of the Cauchy problem (2.3.17). Therefore, for
every R > 0 there exists CR > 0 such that, if ||u0||Hm ≤ R, then

||Ut||Hm ≤ CR (2.3.18)

for every t ∈ [0, α).

Proof. It is sufficient to prove the statement in the case r ≥ 2,m = r − 1.
We shall use an induction argument on r.

Let us consider the case r = 2,m = 1. We observe that if U : [0, α) →
H1([0, 1],Rk) is a solution of (2.3.17) with m = 1, then it solves as well the
Cauchy problem (2.2.2) in U . Therefore, recalling that ||u0||L2 ≤ ||u0||H1 , in virtue
of Lemma 2.2.4, for every R > 0 there exists C ′R > 0 such that, if ||u0||H1 ≤ R, we
have that

||Ut||L2 ≤ C ′R (2.3.19)

for every t ∈ [0, α). Hence it is sufficient to provide an upper bound to the semi-

norm ||U (1)
t ||L2 . From (2.3.16) and from the fact that t 7→ Ut solves (2.3.17) for

m = 1, it follows that

d

dt
||U (1)

t ||2L2 = 2〈∂tU (1)
t , U

(1)
t 〉L2 = −2

∫ 1

0

〈
βU

(1)
t (s) + h

(1)
Ut

(s), U
(1)
t (s)

〉
Rk
ds

≤ −2β||U (1)
t ||2L2 + 2||h(1)

Ut
||L2||U (1)

t ||L2

≤ −β||U (1)
t ||2L2 +

1

β
||h(1)

Ut
||2L2

for every t ∈ [0, α), where hUt : [0, 1] → Rk is the absolutely continuous curve

defined in (2.2.11), and h
(1)
Ut

is its Sobolev derivative. Combining (2.3.19) with
(2.3.5), we obtain that there exists C1

R > 0 such that

d

dt
||U (1)

t ||2L2 ≤ −β||U (1)
t ||2L2 +

1

β
C1
R

for every t ∈ [0, α). This implies that

||U (1)
t ||L2 ≤ max

{
||U (1)

0 ||L2 ,
1

β

√
C1
R

}
for every t ∈ [0, α). This proves the thesis in the case r = 2,m = 1.

Let us prove the induction step. We shall prove the thesis in the case r,m =
r − 1. Let U : [0, α) → Hm([0, 1],Rk) be a solution of (2.3.17) with m = r − 1.
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We observe that t 7→ Ut solves as well{
∂tUt = −Gm−1[Ut],

U0 = u0.

Using the inductive hypothesis and that ||u0||Hm−1 ≤ ||u0||Hm , for every R > 0
there exists C ′R > 0 such that, if ||u0||Hm ≤ R, we have that

||Ut||Hm−1 ≤ C ′R (2.3.20)

for every t ∈ [0, α). Hence it is sufficient to provide an upper bound to the semi-

norm ||U (m)
t ||L2 . Recalling (2.3.16) the same computation as before yields

d

dt
||U (m)

t ||2L2 ≤ −β||U (m)
t ||2L2 +

1

β
||h(m)

Ut
||2L2

for every t ∈ [0, α). Combining (2.3.20) with (2.3.5), we obtain that there exists
C1
R > 0 such that

d

dt
||U (m)

t ||2L2 ≤ −β||U (m)
t ||2L2 +

1

β
C1
R

for every t ∈ [0, α). This yields (2.3.18) for the inductive case r,m = r − 1. �

We are now in position to prove that the Cauchy problem (2.3.17) admits a
unique and globally defined solution. The proof of the following result follows the
lines of the proof of Theorem 2.2.5.

Theorem 2.3.6. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are Cr-regular with r ≥ 2, and that the function a : Rn → R+

designing the end-point cost is C2-regular. Then, for every integer 1 ≤ m ≤
r − 1 and for every inital datum u0 ∈ Hm([0, 1],Rk), the evolution equation
(2.3.17) admits a unique, globally defined and continuously differentiable solution
U : [0,+∞)→ Hm([0, 1],Rk). Moreover, there exists Cu0 > 0 such that

||Ut||Hm ≤ Cu0 (2.3.21)

for every t ∈ [0,+∞).

Proof. It is sufficient to prove the statement in the case r ≥ 2,m = r− 1. In
virtue of Lemma 2.3.5 and Proposition 2.3.4, the global existence of the solution
of (2.3.17) follows from a verbatim repetition of the argument of the proof of
Theorem 2.2.5. Finally, (2.3.21) descends directly from Lemma 2.3.5. �

Remark 2.3.1. We insist on the fact that, under the regularity assumptions
of Theorem 2.3.6, if the initial datum u0 is Hm-Sobolev regular with m ≤ r − 1,
then the solution U : [0,+∞) → U of (2.2.2) does coincide with the solution of
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(2.3.17). In other words, let us assume that the hypotheses of Theorem 2.3.6 are
met, and let us consider the evolution equation{

∂tUt = −G[Ut],

U0 = u0,
(2.3.22)

where u0 ∈ Hm([0, 1],Rk), with m ≤ r − 1. Owing to Theorem 2.2.5, it follows
that (2.3.22) admits a unique solution U : [0,+∞) → U . We claim that t 7→ Ut
solves as well the evolution equation{

∂tUt = −Gm[Ut],

U0 = u0.
(2.3.23)

Indeed, Theorem 2.3.6 implies that (2.3.23) admits a unique solution Ũ : [0,+∞)→
Hm([0, 1],Rk). Moreover, any solution of (2.3.23) is also a solution of (2.3.22),
therefore we must have Ut = Ũt for every t ≥ 0 by the uniqueness of the solution
of (2.3.22). Hence, it follows that, if the controlled vector fields F1, . . . , Fk and the
function a : Rn → R+ are regular enough, then for every t ∈ [0,+∞) each point
of the gradient flow trajectory Ut solving (2.3.22) has the same Sobolev regularity
as the initial datum.

We now prove a pre-compactness result for the gradient flow trajectories. We
recall that we use the convention H0 = L2.

Corollary 2.3.7. Under the same assumptions of Theorem 2.3.6, let us con-
sider u0 ∈ Hm([0, 1],Rk) with the integer m satisfying 1 ≤ m ≤ r − 1. Let
U : [0,+∞)→ U be the solution of the Cauchy problem (2.2.2) with initial condi-
tion U0 = u0. Then the trajectory {Ut : t ≥ 0} is pre-compact in Hm−1([0, 1],Rk).

Proof. As observed in Remark 2.3.1, we have that the solution U : [0,+∞)→
U of (2.2.2) satisfies Ut ∈ Hm([0, 1],Rk) for every t ≥ 0, and that it solves (2.3.17)
as well. In virtue of Theorem 1.1.1, the inclusion Hm([0, 1],Rk) ↪→ Hm−1([0, 1],Rk)
is compact for every integer m ≥ 1, therefore from (2.3.21) we deduce the thesis.

�

2.4. Lojasiewicz-Simon inequality

In this section we show that, when the controlled vector fields F1, . . . , Fk and
the function a : Rn → R+ are real-analytic, then the functional F : U → R+

satisfies the Lojasiewicz-Simon inequality. This fact will be of crucial importance
for the convergence proof of the next section.

The first result on the Lojasiewicz inequality dates back to 1963, when in [38]
Lojasiewicz proved that, if f : Rd → R is a real-analytic function, then for every
x ∈ Rd there exist γ ∈ (1, 2], C > 0 and r > 0 such that

|f(y)− f(x)| ≤ C|∇f(y)|γ2 (2.4.1)
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for every y ∈ Rd satisfying |y − r|2 < r. This kind of inequalities are ubiquitous
in several branches of Mathematics. For example, as suggested by Lojasiewicz in
[38], (2.4.1) can be employed to study the convergence of the solutions of

ẋ = −∇f(x).

Another important application can be found in [42], where Polyak studied the
convergence of the gradient descent algorithm for strongly convex functions us-
ing a particular instance of (2.4.1), which is sometimes called Polyak-Lojasiewicz
inequality. In [49], Simon extended (2.4.1) to real-analytic functionals defined
on Hilbert spaces, and he employed it to establish convergence results for evolu-
tion equations. For further details, see also the lecture notes [50]. The infinite-
dimensional version of (2.4.1) is often called Lojasiewicz-Simon inequality. For a
complete survey on the topic, we refer the reader to the paper [22].

In this section we prove that for every β > 0 the functional F : U → R+

defined in (2.1.2) satisfies the Lojasiewicz-Simon inequality. We first show that,
when the function a : Rn → R+ involved in the definition of the end-point cost
(2.2.4) and the controlled vector fields F1, . . . , Fk are real-analytic, the functional
F : U → R+ is real-analytic as well, for every β > 0. We recall the notion of
real-analytic application defined on a Banach space. For an introduction to the
subject, see, for example, [54].

Definition 1. Let E1, E2 be Banach spaces, and let us consider an application
T : E1 → E2. The function T is said to be real-analytic at e0 ∈ E1 if for
every N ≥ 1 there exists a continuous and symmetric multi-linear application
lN ∈ L ((E1)N , E2) and if there exists r > 0 such that, for every e ∈ E1 satisfying
||e− e0||E1 < r, we have

∞∑
N=1

||lN ||L ((E1)N ,E2) ||e− e0||NE1
< +∞

and

T (e)− T (e0) =
∞∑
N=1

lN(e− e0)N ,

where, for every N ≥ 1, we set lN(e − e0)N := lN(e − e0, . . . , e − e0). Finally,
T : E1 → E2 is real-analytic on E1 if it is real-analytic at every e0 ∈ E1.

In the next result we provide the conditions that guarantee that F : U → R is
real-analytic.

Proposition 2.4.1. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are real-analytic, as well as the function a : Rn → R+

designing the end-point cost (2.2.4). Therefore, for every β > 0, the functional
F : U → R+ defined in (2.1.2) is real-analytic.



50 2. GRADIENT FLOW FOR OPTIMAL CONTROL PROBLEMS WITH END-POINT COST

Proof. Since F(u) = E(u) + β
2
||u||2L2 for every u ∈ U , the proof reduces to

show that the end-point cost E : U → R+ is real-analytic. Recalling the definition
of E given in (2.2.4) and the end-point map P1 : U → Rn introduced in (1.2.20),
we have that the former can be expressed as the composition

E = a ◦ P1.

In the proof of [5, Proposition 8.5] it is shown that P1 is smooth as soon as
F1, . . . , Fk are C∞-regular, and the expression of the Taylor expansion of P1 at
every u ∈ U is provided. In [3, Proposition 2.1] it is proved that, when a : Rn → R+

and the controlled vector fields are real-analytic, the Taylor series of a ◦ P1 is
actually convergent. �

The previous result implies that the differential dF : U → U∗ is real-analytic.

Corollary 2.4.2. Under the same assumptions as in Proposition 2.4.1, for
every β > 0 the differential dF : U → U∗ is real-analytic.

Proof. Owing to Proposition 2.4.1, the functional F : U → R+ is real-
analytic. Using this fact, the thesis follows from [54, Theorem 2, p.1078]. �

Another key-step in view of the Lojasiewicz-Simon inequality is the study of
the Hessian of the functional F : U → R+. In our framework, the Hessian of F at
a point u ∈ U is the bounded linear operator HessuF : U → U that satisfies the
identity:

〈HessuF [v], w〉L2 = d2
uF(v, w) (2.4.2)

for every v, w ∈ U , where d2
uF : U × U → R is the second differential of F at

the point u. In the next proposition we prove that, for every u ∈ U , HessuF has
finite-dimensional kernel. We stress the fact that, unlike the other results of the
present section, we do not have to assume that F1, . . . , Fk and a : Rn → R+ are
real-analytic to study the kernel of HessuF .

Proposition 2.4.3. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are C2-regular, as well as the function a : Rn → R+

defining the end-point cost (2.2.4). For every u ∈ U , let HessuF : U → U be the
linear operator that represents the second differential d2

uF : U × U → R through
the identity (2.4.2). Then, the kernel of HessuF is finite-dimensional.

Proof. For every u ∈ U we have that

d2
uF(v, w) = d2

uE(v, w) + β〈v, w〉L2

for every v, w ∈ U . Therefore, we are reduced to study the second differential of
the end-point cost E : U → R+. Recalling its definition in (2.2.4) and applying
the chain-rule, we obtain that

d2
uE(v, w) =

[
DuP1(v)

]T∇2a(xu(1))
[
DuP1(w)

]
+
(
∇a(xu(1))

)T ·D2
uP1(v, w),

(2.4.3)
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where P1 : U → Rn is the end-point map defined in (1.2.20), and where the curve
xu : [0, 1] → Rn is the solution of (1.1.6) corresponding to the control u ∈ U .
We recall that, for every y ∈ Rn, we understand ∇a(y) as a row vector. Let

us set νu :=
(
∇a(xu(1))

)T
and Hu := ∇2a(xu(1)), where Hu : Rn → Rn is the

self-adjoint linear operator associated to the Hessian of a : Rn → R+ at the point
xu(1). Therefore we can write

d2
uE(v, w) = 〈

(
DuP

∗
1 ◦Hu ◦DuP1

)
[v], w〉L2 + νu ·D2

uP1(v, w) (2.4.4)

for every v, w ∈ U , where DuP
∗
1 : Rn → U is the adjoint of the differential DuP1 :

U → Rn. Moreover, recalling the definition of the linear operator N ν
u : U → U

given in (1.3.21), we have that

νu ·D2
uP1(v, w) = 〈N νu

u [v], w〉L2

for every v, w ∈ U . Therefore, we obtain

d2
uE(v, w) = 〈HessuE [v], w〉L2 (2.4.5)

for every v, w ∈ U , where HessuE : U → U is the linear operator that satisfies the
identity:

HessuE = DuP
∗
1 ◦Hu ◦DuP1 +N νu

u .

We observe that HessuE is a self-adjoint compact operator. Indeed, Nνu
u is self-

adjoint and compact in virtue of Proposition 1.3.6, while DuP
∗
1 ◦ Hu ◦ DuP1 has

finite-rank and it self-adjoint as well. Combining (2.4.3) and (2.4.5), we deduce
that

HessuF = HessuE + βId, (2.4.6)

where Id : U → U is the identity. Finally, using the Fredholm alternative (see, e.g.,
[15, Theorem 6.6]), we deduce that the kernel of HessuF is finite-dimensional. �

We are now in position to prove that the functional F : U → R+ satisfies the
Lojasiewicz-Simon inequality.

Theorem 2.4.4. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are real-analytic, as well as the function a : Rn → R+

defining end-point cost (2.2.4). For every β > 0 and for every u ∈ U , there exist
r > 0, C > 0 and γ ∈ (1, 2] such that

|F(v)−F(u)| ≤ C||dvF||γU∗ (2.4.7)

for every v ∈ U such that ||v − u||L2 < r.

Proof. If u ∈ U is not a critical point for F , i.e., duF 6= 0, then there exists
r1 > 0 and κ > 0 such that

||dvF||2U∗ ≥ κ

for every v ∈ U satisfying ||v − u||L2 < r1. On the other hand, by the continuity
of F , we deduce that there exists r2 > 0 such that

|F(v)−F(u)| ≤ κ
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for every v ∈ U satisfying ||v − u||L2 < r2. Combining the previous inequalities
and taking r := min{r1, r2}, we deduce that, when duF 6= 0, (2.4.7) holds with
γ = 2.

The inequality (2.4.7) in the case duF = 0 follows from [22, Corollary 3.11].
We shall now verify the assumptions of this result. First of all, [22, Hypothesis 3.2]
is satisfied, being U an Hilbert space. Moreover, [22, Hypothesis 3.4] follows by
choosing W = U∗. In addition, we recall that dF : U → U∗ is real-analytic in
virtue of Corollary 2.4.2, and that HessuF has finite-dimensional kernel owing to
Proposition 2.4.3. These facts imply that the conditions (1)–(4) of [22, Corol-
lary 3.11] are verified if we set X = U and Y = U∗. �

2.5. Convergence of the gradient flow

In this section we show that the gradient flow trajectory U : [0 +∞) → U
that solves (2.2.2) is convergent to a critical point of the functional F : U → R,
provided that the Cauchy datum U0 = u0 satisfies u0 ∈ H1([0, 1],Rk) ⊂ U . The
Lojasiewicz-Simon inequality established in Theorem 2.4.4 will play a crucial role
in the proof of the convergence result. Indeed, we use this inequality to show
that the trajectories with Sobolev-regular initial datum have finite length. This
approach was first proposed in [38] in the finite-dimensional framework, and in
[49] for evolution PDEs. In order to satisfy the assumptions of Theorem 2.4.4, we
need to assume throughout the section that the controlled vector fields F1, . . . , Fk
and the function a : Rn → R+ are real-analytic.

We first recall the notion of the Riemann integral of a curve that takes values
in U . For general statements and further details, we refer the reader to [33,
Section 1.3]. Let us consider a continuous curve V : [a, b] → U . Therefore, using
[33, Theorem 1.3.1], we can define

∫ b

a

Vt dt := lim
n→∞

1

n

n−1∑
k=0

V b−a
n
k.

We immediately observe that the following inequality holds:∣∣∣∣∣∣∣∣∫ b

a

Vt dt

∣∣∣∣∣∣∣∣
L2

≤
∫ b

a

||Vt||L2 dt. (2.5.1)

Moreover, [33, Theorem 1.3.4] guarantees that, if the curve V : [a, b] → U is
continuously differentiable, then we have:

Vb − Va =

∫ b

a

∂tVθ dθ, (2.5.2)
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where ∂tVθ is the derivative of the curve t 7→ Vt defined as in (2.2.1) and computed
at the instant θ ∈ [a, b]. Finally, combining (2.5.2) and (2.5.1), we deduce that

||Vb − Va||L2 ≤
∫ b

a

||∂tVθ||L2 dθ. (2.5.3)

We refer to the quantity at the right-hand side of (2.5.3) as the length of the
continuously differentiable curve V : [a, b]→ U .

Let U : [0,+∞)→ U be the solution of the gradient flow equation (2.2.2) with
initial datum u0 ∈ U . We say that u∞ ∈ U is a limiting point for the curve t 7→ Ut
if there exists a sequence (tj)j≥1 such that tj → +∞ and ||Utj − u∞||L2 → 0 as
j → ∞. In the next result we study the length of t 7→ Ut in a neighborhood of a
limiting point.

Proposition 2.5.1. Let us assume that the vector fields F1, . . . , Fk defining
the control system (1.1.6) are real-analytic, as well as the function a : Rn → R+

designing the end-point cost. Let U : [0,+∞) → U be the solution of the Cauchy
problem (2.2.2) with initial datum U0 = u0, and let u∞ ∈ U be any of its limiting
points. Then there exists r > 0 such that the portion of the curve that lies in
Br(u∞) has finite length, i.e., ∫

I
||∂tUθ||L2 dθ <∞, (2.5.4)

where I := {t ≥ 0 : Ut ∈ Br(u∞)}, and Br(u∞) := {u ∈ U : ||u− u∞||L2 < r}.

Proof. Let u∞ ∈ U be a limiting point of t 7→ Ut, and let (t̄j)j≥1 be a sequence
such that t̄j → +∞ and ||Ut̄j−u∞||L2 → 0 as j →∞. The same computation as in
(2.2.19) implies that the functional F : U → R+ is decreasing along the trajectory
t 7→ Ut, i.e.,

F(Ut′) ≤ F(Ut) (2.5.5)

for every t′ ≥ t ≥ 0. In addition, using the continuity of F , it follows that
F(Ut̄j)→ F(u∞) as j →∞. Combining these facts, we have that

F(Ut)−F(u∞) ≥ 0 (2.5.6)

for every t ≥ 0. Moreover, owing to Theorem 2.4.4, we deduce that there exist
C > 0, γ ∈ (1, 2] and r > 0 such that

|F(v)−F(u∞)| ≤ 1

C
||dvF||γU∗ (2.5.7)

for every v ∈ Br(u∞). Let t1 ≥ 0 be the infimum of the instants such that
Ut ∈ Br(u∞), i.e.,

t1 := inf
t≥0
{Ut ∈ Br(u∞)}.

We observe that the set where we take the infimum is nonempty, in virtue of the
convergence ||Ut̄j − u∞||L2 → 0 as j → ∞. Then, there exists t′1 ∈ (t1,+∞] such
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that Ut ∈ Br(u∞) for every t ∈ (t1, t
′
1), and we take the supremum t′1 > t1 such

that the previous condition is satisfied, i.e.,

t′1 := sup
t′>t1

{Ut ∈ Br(u∞),∀t ∈ (t1, t
′)}.

If t′1 <∞, we set

t2 := inf
t≥t′1
{Ut ∈ Br(u∞)},

and

t′2 := sup
t′>t2

{Ut ∈ Br(u∞),∀t ∈ (t2, t
′)}.

We repeat this procedure (which terminates in a finite number of steps if and only
if there exits t̄ > 0 such that Ut ∈ Br(u∞) for every t ≥ t̄), and we obtain a family

of intervals {(tj, t′j)}j=1,...,N , where N ∈ N∪{∞}. We observe that
⋃N
j=1(tj, t

′
j) = I,

where we set I := {t ≥ 0 : Ut ∈ Br(u∞)}.
Without loss of generality, we may assume that I is a set of infinite Lebesgue

measure. Indeed, if this is not the case, we would have the thesis:∫
I
||∂tUθ||L2 dθ =

∫
I
||G[Uθ]||L2 dθ <∞,

since ||G[u]||L2 is bounded on the bounded subsets of U , as shown in (2.2.21).
Therefore, we focus on the case when the Lebesgue measure of I is infinite. Let
us introduce the following sequence:

τ0 = t1, τ1 = t′1, τ2 = τ1 + (t′2 − t2), . . . , τj = τj−1 + (t′j − tj), . . . , (2.5.8)

where t1, t
′
1, . . . are the extremes of the intervals {(tj, t′j)}j=1,...,N constructed above.

Finally, we define the function σ : [τ0,+∞)→ [τ0,+∞) as follows:

σ(t) :=


t if τ0 ≤ t < τ1,

t− τ1 + t2 if τ1 ≤ t < τ2,

t− τ2 + t3 if τ2 ≤ t < τ3,

· · · · · ·

(2.5.9)

We observe that σ : [τ0,+∞) → [τ0,+∞) is piecewise affine and it is monotone
increasing. In particular, we have that

σ(τj) = tj+1 ≥ t′j = lim
t→τ−j

σ(t). (2.5.10)

Moreover, from (2.5.8) and from the definition of the intervals {(tj, t′j)}j≥1, it
follows that

Uσ(t) ∈ Br(u∞) (2.5.11)

for every t ∈ [τ0,+∞). Let us define the function g : [τ0,+∞)→ R+ as follows:

g(t) := F(Uσ(t))−F(u∞), (2.5.12)
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where we used (2.5.6) to deduce that g is always non-negative. From (2.5.9), we
obtain that the restriction g|(τj ,τj+1) is C1-regular, for every j ≥ 0. Therefore, using
the fact that σ̇|(τj ,τj+1) ≡ 1, we compute

ġ(t) =
d

dt

(
F(Uσ(t))−F(u∞)

)
= −dUσ(t)F

(
G[Uσ(t)]

)
for every t ∈ (τj, τj+1) and for every j ≥ 0. Recalling that G : U → U is the Riesz’s
representation of the differential dF : U → U∗, it follows that

ġ(t) = −||dUσ(t)F||
2
U∗ (2.5.13)

for every t ∈ (τj, τj+1) and for every j ≥ 0. Moreover, owing to the Lojasiewicz-
Simon inequality (2.5.7), from (2.5.11) we deduce that

ġ(t) ≤ −Cg
2
γ (t) (2.5.14)

for every t ∈ (τj, τj+1) and for every j ≥ 0. Let h : [τ0,∞) → [0,+∞) be the
solution of the Cauchy problem

ḣ = −Ch
2
γ , h(τ0) = g(τ0), (2.5.15)

whose expression is

h(t) =


(
h(τ0)1− 2

γ + (2−γ)C
γ

(t− τ0)
)−1− 2γ−2

2−γ
if γ ∈ (1, 2),

h(τ0)e−Ct if γ = 2,

for every t ∈ [τ0,∞). Using the fact that g|(τ0,τ1) is C1-regular, in view of (2.5.14),
we deduce that

g(t) ≤ h(t), (2.5.16)

for every t ∈ [τ0, τ1). We shall now prove that the previous inequality holds for
every t ∈ [τ0,+∞) using an inductive argument. Let us assume that (2.5.16) holds
in the interval [τ0, τj), with j ≥ 1. From the definition of g, combining (2.5.5) and
(2.5.10), we obtain that

g(τj) ≤ lim
t→τ−j

g(t) ≤ lim
t→τ−j

h(t) = h(τj). (2.5.17)

Using that the restriction g|(τj ,τj+1) is C1-regular, in virtue of (2.5.14), (2.5.15)
and (2.5.17) , we extend the the inequality (2.5.16) to the interval [τ0, τj+1). This
shows that (2.5.16) is satisfied for every t ∈ [τ0,+∞).

We now prove that the portion of the trajectory that lies in Br(u∞) is finite.
We observe that∫

I
||∂tUθ||L2 dθ =

∫
I
||G(Uθ)||L2 dθ =

∫
I
||dUθF||U∗ dθ, (2.5.18)

where we recall that I =
⋃N
j=1(tj, t

′
j). For every j ≥ 1, in the interval (tj, t

′
j) we use

the change of variable θ = σ(ϑ), where σ is defined in (2.5.9). Using (2.5.8) and
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(2.5.9), we observe that σ−1{(tj, t′j)} = (τj−1, τj) and that σ̇|(τj−1,τj) ≡ 1. These
facts yield∫ t′j

tj

||dUθF||U∗ dθ =

∫ τj

τj−1

||dUσ(ϑ)F||U∗ dϑ =

∫ τj

τj−1

√
−ġ(ϑ) dϑ (2.5.19)

for every j ≥ 1, where we used (2.5.13) in the last identity. Therefore, combining
(2.5.18) and (2.5.19), we deduce that∫

I
||∂tUθ||L2 dθ =

∫ +∞

τ0

√
−ġ(ϑ) dϑ. (2.5.20)

Then the thesis reduces to prove that the quantity at the right-hand side of (2.5.20)
is finite. Let δ > 0 be a positive quantity whose value will be specified later. From
the Cauchy-Schwarz inequality, it follows that∫ +∞

τ0

√
−ġ(ϑ) dϑ ≤

(∫ ∞
τ0

−ġ(ϑ)ϑ1+δ dϑ

) 1
2
(∫ ∞

τ0

ϑ−1−δ dϑ

) 1
2

. (2.5.21)

On the other hand, for every j ≥ 1, using the integration by parts on each interval
(τ0, τ1), . . . , (τj−1, τj), we have that∫ τj

τ0

−ġ(ϑ)ϑ1+δ dϑ =

j∑
i=1

(
τ 1+δ
i−1 g(τi−1)− τ 1+δ

i g(τ−i ) + (1 + δ)

∫ τi

τi−1

g(ϑ)ϑδ dϑ

)
≤ τ 1+δ

0 g(τ0)− τ 1+δ
j g(τ−j ) + (1 + δ)

∫ τj

τ0

h(ϑ)ϑδ dϑ

≤ τ 1+δ
0 g(τ0) + (1 + δ)

∫ τj

τ0

h(ϑ)ϑδ dϑ,

where we introduced the notation g(τ−i ) := limϑ→τ−i
g(ϑ), and we used the first

inequality of (2.5.17) and the fact that g is always non-negative. Finally, if the
exponent γ in (2.5.7) satisfies γ = 2, we can choose any positive δ > 0. On
the other hand, if γ ∈ (1, 2), we choose δ such that 0 < δ < 2γ−2

2−γ . This choice

guarantees that that

lim
j→∞

∫ τj

τ0

−ġ(ϑ)ϑ1+δ dϑ =

∫ ∞
τ0

−ġ(ϑ)ϑ1+δ dϑ <∞,

and therefore, in virtue of (2.5.21) and (2.5.20), we deduce the thesis. �

In the following corollary we state an immediate (but important) consequence
of Proposition 2.5.1.

Corollary 2.5.2. Under the same assumptions as in Proposition 2.5.1, let
the curve U : [0,+∞) → U be the solution of the Cauchy problem (2.2.2) with
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initial datum U0 = u0. If u∞ ∈ U is a limiting point for the curve t 7→ Ut, then
the whole solution converges to u∞ as t→∞, i.e.,

lim
t→∞
||Ut − u∞||L2 = 0.

Moreover, the length of the whole solution is finite.

Proof. We prove the statement by contradiction. Let us assume that t 7→ Ut
is not converging to u∞ as t→∞. Let Br(u∞) be the neighborhood of u∞ given
by Proposition 2.5.1. Diminishing r > 0 if necessary, we can find two sequences
{tj}j≥0 and {t′j}j≥0 such that for every j ≥ 0 the following conditions hold:

• tj < t′j < tj+1;
• ||Utj − u∞||L2 ≤ r

4
;

• r
2
≤ ||Ut′j − u∞||L2 ≤ r;

• Ut ∈ Br(u∞) for every t ∈ (tj, t
′
j).

We observe that
⋃∞
j=1(tj, t

′
j) ⊂ I, where I := {t ≥ 0 : Ut ∈ Br(u∞)}. Moreover

the inequality (2.5.3) and the previous conditions imply that∫ t′j

tj

||∂tUθ||U dθ ≥ ||Ut′k − Utk ||U ≥
r

4

for every j ≥ 0. However, this contradicts (2.5.4). Therefore, we deduce that
||Ut − u∞||U → 0 as t→∞. In particular, this means that there exists t̄ ≥ 0 such
that Ut ∈ Br(u∞) for every t ≥ t̄. This in turn implies that the whole trajectory
has finite length, since ∫ t̄

0

||∂tUθ||L2 dθ < +∞.

�

We observe that in Corollary 2.5.2 we need to assume a priori that the solution
of the Cauchy problem (2.2.2) admits a limiting point. However, for a general
initial datum u0 ∈ U we cannot prove that this is actually the case. On the
other hand, if we assume more regularity on the Cauchy datum u0, we can use the
compactness results proved in Section 2.3. We recall the notation H0([0, 1],Rk) :=
U .

Theorem 2.5.3. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are real-analytic, as well as the function a : Rn → R+

designing the end-point cost. Let U : [0,+∞) → U be the solution of the Cauchy
problem (2.2.2) with initial datum U0 = u0, and let m ≥ 1 be an integer such that
u0 belongs to Hm([0, 1],Rk). Then there exists u∞ ∈ Hm([0, 1],Rk) such that

lim
t→∞
||Ut − u∞||Hm−1 = 0. (2.5.22)
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Proof. Let us consider u0 ∈ Hm([0, 1],Rk) and let U : [0,+∞) → U be
the solution of (2.2.2) satisfying U0 = u0. Owing to Theorem 2.3.6, we have
that Ut ∈ Hm([0, 1],Rk) for every t ≥ 0, and that the trajectory {Ut : t ≥ 0}
is bounded in Hm([0, 1],Rk). In addition, from Corollary 2.3.7, we deduce that
{Ut : t ≥ 0} is pre-compact with respect to the strong topology of Hm−1([0, 1],Rk).
Therefore, there exist u∞ ∈ Hm−1([0, 1],Rk) and a sequence (tj)j≥1 such that we
have tj → +∞ and ||Utj − u∞||Hm−1 → 0 as j → ∞. In particular, this implies
that ||Utj − u∞||L2 → 0 as j → ∞. In virtue of Corollary 2.5.2, we deduce that
||Ut − u∞||L2 → 0 as t→ +∞. Using again the pre-compactness of the trajectory
{Ut : t ≥ 0} with respect to the strong topology of Hm−1([0, 1],Rk), the previous
convergence implies that ||Ut − u∞||Hm−1 → 0 as t→ +∞.

To conclude, we have to show that u∞ ∈ Hm([0, 1],Rk). Owing to the compact
inclusion (1.1.10) in Theorem 1.1.1, and recalling that the trajectory {Ut : t ≥ 0} is
pre-compact with respect to the weak topology of Hm([0, 1],Rk), the convergence
(2.5.22) guarantees that u∞ ∈ Hm([0, 1],Rk) and that Ut ⇀Hm u∞ as t→ +∞. �

In the next result we study the regularity of the limiting points of the gradient
flow trajectories.

Theorem 2.5.4. Let us assume that the vector fields F1, . . . , Fk defining the
control system (1.1.6) are real-analytic, as well as the function a : Rn → R+

designing the end-point cost. Let U : [0,+∞) → U be the solution of the Cauchy
problem (2.2.2) with initial datum U0 = u0, and let u∞ ∈ U be any of its limiting
points. Then u∞ is a critical point for the functional F , i.e., du∞F = 0. Moreover,
u∞ ∈ Hm([0, 1],Rk) for every integer m ≥ 1.

Proof. By Corollary 2.5.2, we have that the solution t 7→ Ut converges to
u∞ as t → +∞ with respect to the strong topology of U . Let us consider the
radius r > 0 prescribed by Proposition 2.5.1. If du∞F 6= 0, taking a smaller r > 0
if necessary, we have that there exists ε > 0 such that ||duF||U∗ ≥ ε for every
u ∈ Br(u∞). Recalling that ||Ut − u∞||U → 0 as t → +∞, then there exists
t̄ ≥ 0 such that Ut ∈ Br(u∞) and for every t ≥ t̄. On the other hand, this fact
implies that ||∂tUt||U = ||dUtF||U∗ ≥ ε for every t ≥ t̄, but this contradicts (2.5.4),
i.e., the fact that the length of the trajectory is finite. Therefore, we deduce that
du∞F = 0. As regards the regularity of u∞, we observe that du∞F = 0 implies
that G[u∞] = 0, which in turn gives

u∞ = − 1

β
hu∞ ,

where the function hu∞ : [0, 1]→ Rk is defined as in (2.2.11). Owing to Lemma 2.3.3,
we deduce that the right-hand side of the previous equality has regularity Hm+1

whenever u∞ ∈ Hm, for every integer m ≥ 0. Using a bootstrapping argument,
this implies that u∞ ∈ Hm([0, 1],Rk), for every integer m ≥ 1. �
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Remark 2.5.1. We can give a further characterization of the critical points of
the functional F . Let û be such that dûF = 0. Therefore, as seen in the proof of
Theorem 2.5.4, we have that the identity

û(s) = − 1

β
hû(s)

is satisfied for every s ∈ [0, 1]. Recalling the definition of hû : [0, 1]→ Rk given in
(2.2.11), we observe that the previous relation yields

û(s) = arg max
u∈Rk

{
−λû(s)F (xû(s))u−

β

2
|u|22
}
, (2.5.23)

where xû : [0, 1]→ Rn solves{
ẋû(s) = F (xû(s))û(s) for a.e. s ∈ [0, 1],

xû(0) = x0,
(2.5.24)

and λû : [0, 1]→ (Rn)∗ satisfiesλ̇û(s) = −λû(s)
k∑
i=1

(
ûi(s)∂Fi(xû(s))

∂x

)
for a.e. s ∈ [0, 1],

λû(1) = ∇a(xû(1)).

(2.5.25)

Recalling the Pontryagin Maximum Principle (see, e.g., [4, Theorem 12.10]), from
(2.5.23)-(2.5.25) we deduce that the curve xû : [0, 1]→ Rn is a normal Pontryagin
extremal for the following optimal control problem:

minu∈U
{
a(xu(1)) + β

2
||u||2L2

}
,

subject to

{
ẋu = F (xu)u,

xu(0) = x0.





CHAPTER 3

Ensembles of affine-control systems

In this chapter we consider the problem of the optimal control of an ensemble
of affine-control systems. After introducing the notations and the framework, we
study the properties of the trajectories of the controlled ensembles, and we prove
the well-posedness of the minimization problem in exam. Then we establish a
Γ-convergence result that allows us to substitute the original (and usually infinite)
ensemble with a sequence of finite increasing-in-size sub-ensembles of control sys-
tems. The solutions of the optimal control problems involving these sub-ensembles
provide approximations in the L2-strong topology of the minimizers of the original
problem. Using the results of Chapter 2, we derive the gradient field induced by
the optimal control problems related to the sub-ensembles. Moreover, in the case
of finite sub-ensembles, we can address the minimization of the related cost by
means of some numerical schemes. In particular, we propose an algorithm that
consists in a subspace projection of the induced gradient field, and we consider
an iterative method based on the Pontryagin Maximum Principle. Finally, we
perform some numerical experiments.

3.1. Framework and Assumptions

In this chapter we study ensembles of control systems in Rn with affine de-
pendence in the control variable u ∈ Rk. More precisely, given a compact set
Θ embedded into a finite-dimensional Euclidean space, for every θ ∈ Θ we are
assigned an affine-control system of the form{

ẋθ(s) = F θ
0 (xθ(s)) + F θ(xθ(s))u(s),

xθ(0) = xθ0,
(3.1.1)

where for every θ ∈ Θ we require that F θ
0 : Rn → Rn and F θ : Rn → Rn×k are

Lipschitz-continuous applications. We stress the fact that the control u : [0, 1] →
Rk does not depend on θ, so that it is the same for every control system of the
ensemble. Let us introduce F0 : Rn × Θ → Rn and F : Rn × Θ → Rn×k defined
respectively as

F0(x, θ) := F θ
0 (x) and F (x, θ) := F θ(x)

61
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for every (x, θ) ∈ Rn × Θ. We assume that F0 and F are Lipschitz-continuous
mappings, i.e., that there exists a constant L > 0 such that

|F0(x1, θ1)− F0(x2, θ2)|2 ≤ L
(
|x1 − x2|2 + |θ1 − θ2|2

)
(3.1.2)

and

sup
i=1,...,k

|Fi(x1, θ1)− Fi(x2, θ2)|2 ≤ L
(
|x1 − x2|2 + |θ1 − θ2|2

)
(3.1.3)

for every (x1, θ1), (x2, θ2) ∈ Rn×Θ. In (3.1.3) we used Fi(x, θ) to denote the vector
obtained by taking the ith column of the matrix F (x, θ), for every i = 1, . . . , k.
Similarly, for every θ ∈ Θ we shall use F θ

i : Rn → Rn to denote the vector
field corresponding to the ith column of the matrix-valued application F θ : Rn →
Rn×k. We observe that (3.1.2)-(3.1.3) imply that the vector fields F θ

0 , F
θ
1 , . . . , F

θ
k

are uniformly Lipschitz-continuous as θ varies in Θ. Another consequence of the
Lipschitz-continuity conditions (3.1.2)-(3.1.3) is that the vector fields constituting
the affine-control system (3.1.1) have sub-linear growth, uniformly with respect to
the dependence on θ. Namely, we have that there exists a constant C > 0 such
that

sup
θ∈Θ
|F θ

0 (x)|2 ≤ C
(
|x|2 + 1) (3.1.4)

and

sup
θ∈Θ

sup
i=1,...,k

|F θ
i (x)|2 ≤ C

(
|x|2 + 1) (3.1.5)

for every x ∈ Rn. Finally, let us consider the application x0 : Θ → Rn that
prescribes the initial state of (3.1.1), i.e.,

x0(θ) := xθ0 (3.1.6)

for every θ ∈ Θ. We assume that x0 is continuous. As a matter of fact, we deduce
that there exists a constant C ′ > 0 such that

sup
θ∈Θ
|x0(θ)|2 ≤ C ′. (3.1.7)

Using the same notations as in the previous chapters, we set U := L2([0, 1],Rk)
as the space of admissible controls, and we equip it with the usual Hilbert space
structure given by the scalar product (1.1.5). For every u ∈ U and θ ∈ Θ, the curve
xθu : [0, 1]→ Rn denotes the solution of the Cauchy problem (3.1.1) corresponding
to the system identified by θ and to the admissible control u. We recall that, for
every u ∈ U and θ ∈ Θ, the existence and uniqueness of the solution of (3.1.1)
is guaranteed by the Carathéodory Theorem (see, e.g., [30, Theorem 5.3]). Given
u ∈ U , we describe the evolution of the ensemble of control systems (3.1.1) through
the mapping Xu : [0, 1]×Θ→ Rn defined as follows:

Xu(s, θ) := xθu(s) (3.1.8)
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for every (s, θ) ∈ [0, 1] × Θ. In other words, for every u ∈ U the application Xu

collects the trajectories of the ensemble of control systems (3.1.1). We study the
properties of the mapping Xu in the next section.

3.2. Trajectories of the controlled ensemble

We devote the present subsection to establish some auxiliary properties of the
mapping Xu : [0, 1]×Θ→ Rn, which has been defined in (3.1.8) for every u ∈ U .
We first prove that for every u ∈ U the mapping Xu : [0, 1]×Θ→ Rn is bounded.

Lemma 3.2.1. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application
defined in (3.1.8) collecting the trajectories of the ensemble of control systems
(3.1.1). Therefore, for every R > 0 there exists CR > 0 such that, if ||u||L2 ≤ R,
then

|Xu(s, θ)|2 ≤ CR, (3.2.1)

for every (s, θ) ∈ [0, 1]×Θ.

Proof. The thesis follows from a verbatim repetition of the argument in the
proof of Lemma 1.2.2 �

In the next result we show that the trajectories of the ensemble are Hölder-
continuous, uniformly with respect to the parameter θ ∈ Θ.

Lemma 3.2.2. For every u ∈ U , let Xu : [0, 1] × Θ → Rn be the application
defined in (3.1.8) collecting the trajectories of the ensemble of control systems
(3.1.1). Therefore, for every R > 0 there exists LR > 0 such that, if ||u||L2 ≤ R,
then

|Xu(s1, θ)−Xu(s2, θ)|2 ≤ LR|s1 − s2|
1
2 (3.2.2)

for every s1, s2 ∈ [0, 1] and for every θ ∈ Θ.

Proof. Owing to Proposition 1.1.2 and recalling that Xu(s, θ) = xθu(s) for
every (s, θ) ∈ [0, 1] × Θ by (3.1.8), we observe that the thesis will follow if we
prove that there exists a bounded subset of H1 that includes the trajectories
{xθu : [0, 1] → Rn}θ∈Θ of (3.1.1) for every admissible control u ∈ U satisfying
||u||L2 ≤ R. From Lemma 3.2.1 we obtain that for every R > 0 there exists
CR > 0 such that

|xθu(s)| ≤ CR (3.2.3)

for every s ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R. In virtue of
Lemma 3.2.1 and the sub-linear inequalities (3.1.4)-(3.1.5), we deduce that for
every R > 0 there exists C ′R > 0 such that

sup
θ∈Θ
|F θ

0 (xθu(s))| ≤ C ′R, sup
θ∈Θ

sup
i=1,...,k

|F θ
i (xθu(s))| ≤ C ′R

for every s ∈ [0, 1] and for every u ∈ U such that ||u||L2 ≤ R. Therefore, we have
that

|ẋθu(s)|2 ≤ C ′R(1 + |u(s)|1) (3.2.4)
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for every s ∈ [0, 1], for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R.
Combining (3.2.4) and (3.2.3), we deduce that there exists C ′′R > 0 such that

||xθu||H1 ≤ C ′′R

for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R. The last inequality and
Proposition 1.1.2 imply that

|xθu(s1)− xθu(s2)|2 ≤ LR|s1 − s2|
1
2

for every s1, s2 ∈ [0, 1], for every θ ∈ Θ and for every u ∈ U such that ||u||L2 ≤ R,
where we set LR :=

√
C ′′R. This establishes (3.2.2). �

We shall now prove that, when the control u varies in a bounded subset of
U , the corresponding functions Xu : [0, 1] × Θ → Rn that captures the evolution
of the ensemble of control systems (3.1.1) are uniformly equi-continuous on their
domain. Before proceeding, we introduce the modulus of continuity of the function
x0 : Θ→ Rn defined in (3.1.6). Indeed, since x0 : Θ→ Rn is a continuous function
defined on a compact domain, it is uniformly continuous, i.e., there exists a non-
decreasing function ω : R+ → R+ satisfying 0 = ω(0) = limr→0+ ω(r) and such
that

|x0(θ1)− x0(θ1)|2 ≤ ω(|θ1 − θ2|2) (3.2.5)

for every θ1, θ2 ∈ Θ.

Proposition 3.2.3. For every u ∈ U , let Xu : [0, 1]×Θ→ Rn be the applica-
tion defined in (3.1.8) collecting the trajectories of the ensemble of control systems
(3.1.1). Therefore, for every R > 0 there exists LR > 0 and ωR : R+ → R+ such
that, if ||u||L2 ≤ R, then

|Xu(s1, θ1)−Xu(s2, θ2)|2 ≤ LR|s1 − s2|
1
2 + ωR(|θ1 − θ2|2) (3.2.6)

for every (s1, θ1), (s2, θ2) ∈ [0, 1] × Θ, where ωR is a non-decreasing function that
satisfies ω(0) = limr→0+ ωR(r) = 0.

Proof. We observe that by the triangular inequality we have

|Xu(s1, θ1)−Xu(s2, θ2)|2 ≤ |Xu(s1, θ1)−Xu(s2, θ1)|2 + |Xu(s2, θ1)−Xu(s2, θ2)|2
(3.2.7)

for every (s1, θ1), (s2, θ2) ∈ [0, 1] × Θ and for every u ∈ U . Moreover, from
Lemma 3.2.2 it follows that there exists LR > 0 such that

|Xu(s1, θ1)−Xu(s2, θ1)|2 ≤ LR|s1 − s2|
1
2 (3.2.8)

for every (s1, θ1), (s2, θ2) ∈ [0, 1] × Θ and for every u ∈ U satisfying ||u||L2 ≤ R.
Thus, we are left to study the second term at the right-hand side of (3.2.7). First,
we introduce the function ωR : R+ → R+ defined as follows:

ωR(r) := eL(1+
√
kR)
(
ω(r) + L(1 +

√
kR)r

)
,
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where ω : R+ → R+ is a modulus of continuity for the mapping x0 : Θ → Rn

(see (3.2.5)). Using Grönwall Lemma and similar computations as in the proof of
Proposition 1.2.3, we deduce that

|Xu(s, θ1)−Xu(s, θ2)|2 = |xθ1u (s)− xθ2u (s)|2 ≤ ωR(|θ1 − θ2|2), (3.2.9)

for every s ∈ [0, 1], for every θ1, θ2 ∈ Θ and for every u ∈ U with ||u||L2 ≤ R.
Finally, combining (3.2.7), (3.2.8) and (3.2.9), we obtain the thesis (3.2.6). �

We now investigate the evolution of the ensemble of control systems (3.1.1)
when we consider a sequence of L2-weakly convergent admissible controls. In view
of the next auxiliary result, we introduce some notations. For every θ ∈ Θ, we
define F̃ θ : Rn → Rn×(k+1) as follows:

F̃ θ(x) := (F θ
0 (x), F θ(x)), (3.2.10)

for every x ∈ Rn, i.e., we add the column F θ
0 (x) to the n × k matrix F θ(x).

Similarly, for every u ∈ U = L2([0, 1],Rk), we consider the extended control ũ ∈
Ũ := L2([0, 1],Rk+1) defined as

ũ(s) = (1, u(s))T (3.2.11)

for every s ∈ [0, 1], i.e., we add the component u0 = 1 to the column-vector u(s).

Lemma 3.2.4. Let us consider a sequence of admissible controls (um)m∈N ⊂ U
such that um ⇀L2 u∞ as m→∞. For every m ∈ N∪{∞} and for every θ ∈ Θ, let
xθm : [0, 1]→ Rn be the solution of (3.1.1) corresponding to the ensemble parameter
θ and to the admissible control um. Therefore, for every s ∈ [0, 1] and for every
θ ∈ Θ, we have

lim
m→∞

xθm(s) = xθ∞(s). (3.2.12)

Proof. Let us fix θ ∈ Θ. By means of the matrix-valued function F̃ : Rn →
Rn×(k+1) and the extended control ũ : [0, 1]→ Rk+1 defined in (3.2.10) and (3.2.11)
respectively, we can equivalently rewrite the affine-control system (3.1.1) corre-
sponding to θ as follows: {

ẋθ = F̃ θ(xθ)ũ,

xθ(0) = xθ0,
(3.2.13)

for every u ∈ U . In other words, any solution xθu : [0, 1] → Rn of (3.1.1) corre-
sponding to the admissible control u ∈ U is in turn a solution of the linear-control
system (3.2.13) corresponding to the extended control ũ ∈ Ũ . On the other hand,
the convergence um ⇀L2 u∞ as m→∞ implies the convergence of the respective
extended controls, i.e., ũm ⇀L2 ũ∞ as m→∞. Therefore, (xθm)m∈N is the sequence
of solutions of the linear-control system (3.2.13) corresponding to the L2-weakly
convergent sequence of controls (ũm)m∈N. Moreover, xθ∞ is the solution of (3.2.13)
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associated to the weak-limiting control ũ∞. Using Proposition 1.4.1, we deduce
that

lim
m→∞

||xθm − xθ∞||C0 = 0,

which, in particular, implies (3.2.12). �

We are now in position to prove the main result of the present subsection.

Theorem 3.2.5. Let us consider a sequence of admissible controls (um)m∈N ⊂
U such that um ⇀L2 u∞ as m→∞. For every m ∈ N∪{∞}, let Xm : [0, 1]×Θ→
Rn be the application defined in (3.1.8) that collects the trajectories of the ensemble
of control systems (3.1.1) corresponding to the admissible control um. Therefore,
we have that

lim
m→∞

sup
(s,θ)∈[0,1]×Θ

|Xm(s, θ)−X∞(s, θ)|2 = 0. (3.2.14)

Proof. Let us consider a L2-weakly convergent sequence (um)m∈N ⊂ U such
that um ⇀L2 u∞ as m→∞. We immediately deduce that there exists R > 0 such
that

||um||L2 ≤ R, ∀m ∈ N ∪ {∞}.
Thus, in virtue of Proposition 3.2.3, we deduce that the sequence of mappings
{Xm : [0, 1] × Θ → Rn}m∈N is uniformly equi-continuous, while Lemma 3.2.1
guarantees that it is uniformly equi-bounded. Therefore, applying the Ascoli-
Arzelà Theorem (see, e.g., [15, Theorem 4.25]), we deduce that the family (Xm)m∈N
is pre-compact with respect to the strong topology of the Banach space C0([0, 1]×
Θ,Rn). Finally, Lemma 3.2.4 implies that

lim
m→∞

Xm(s, θ) = X∞(s, θ)

for every (s, θ) ∈ [0, 1]×Θ. In particular, we deduce that the set of limiting points
of the pre-compact sequence (Xm)m∈N is reduced to the single-element set {X∞}.
This proves (3.2.14). �

Remark 3.2.1. Theorem 3.2.5 is the cornerstone of the theoretical results pre-
sented in this chapter. Indeed, the fact fact that the trajectories of the ensemble
(3.1.1) are uniformly convergent when the corresponding controls are L2-weakly
convergent is used both to prove the existence of optimal controls (see Theo-
rem 3.4.2) and to establish the Γ-convergence result (see Theorem 3.5.3). We
stress that the fact that the systems in the ensemble (3.1) have affine dependence
in the controls is crucial for the proof of Theorem 3.2.5.

3.3. Gradient field for affine-control systems with end-point cost

In this section we generalize to the case of affine-control systems some of the
results obtained in Chapter 2 in the framework of linear-control systems with end-
point cost. As we shall see, the strategy that we pursue consists in embedding
the affine-control system into a larger linear-control system, similarly as done in



3.3. GRADIENT FIELD FOR AFFINE-CONTROL SYSTEMS WITH END-POINT COST 67

the proof of Lemma 3.2.4. Therefore, we can exploit a consistent part of the
machinery developed in Chapter 2 to cover the present case. Let us consider a
single affine-control system on Rn of the form{

ẋ(s) = F0(x(s)) + F (x(s))u(s), for a.e. s ∈ [0, 1],

x(0) = x0,
(3.3.1)

where F0 : Rn → Rn and F : Rn → Rn×k are C2-regular applications that design
the affine-control system, and u ∈ U = L2([0, 1],Rk) is the control. We introduce
the functional J : U → R+ defined on the space of admissible controls as follows:

J (u) := a(xu(1)) +
β

2
||u||2L2 (3.3.2)

for every u ∈ U , where a : Rn → R+ is a C2-regular function and β > 0 a positive
parameter. After proving that the functional J is differentiable, we provide the
expression of the mapping G : U → U that, for every u ∈ U represents the
differential duJ : U → R.

Before proceeding, it is convenient to introduce the linear-control system in
which we embed (3.3.1). Similarly as done in (3.2.10), let F̃ : Rn → Rn×(k+1) be
the function defined as

F̃ (x) := (F0(x), F (x)) (3.3.3)

for every x ∈ Rn. If we define the extended space of admissible controls as Ũ :=
L2([0, 1],Rk+1), we may consider the following linear-control system{

ẋ(s) = F̃ (x(s))ũ(s) for a.e. s ∈ [0, 1],

x(0) = x0,
(3.3.4)

where ũ ∈ Ũ . We observe that we can recover the affine system (3.3.1) by restrict-
ing the set of admissible controls in (3.3.4) to the image of the affine embedding
i : U → Ũ defined as

i[u] :=

(
1
u

)
. (3.3.5)

We introduce the extended cost functional J̃ : Ũ → R+ as

J̃ (ũ) := a(xũ(1)) +
β

2
||ũ||2L2 (3.3.6)

for every ũ ∈ Ũ , where xũ : [0, 1] → Rn is the absolutely continuous solution of
(3.3.4) corresponding to the control ũ. To avoid confusion, in the present subsec-
tion we denote by 〈·, ·〉U and 〈·, ·〉Ũ the scalar products in U and Ũ , respectively.
In the next result we prove that the functional J : U → R+ defined in (3.3.2) is
differentiable.
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Proposition 3.3.1. Let us assume that F0 : Rn → Rn and F : Rn → Rn×k

are C1-regular, as well as the function a : Rn → R+ designing the end-point cost.
Then the functionals J : U → R+ and J̃ : Ũ → R+ defined, respectively, in (3.3.2)
and in (3.3.6) are Gateaux differentiable at every point of their respective domains.

Proof. We observe that the functional J : U → R+ satisfies the following
identity:

J (u) = J̃ (i(u))− β

2
(3.3.7)

for every u ∈ U , where i : U → Ũ is the affine embedding reported in (3.3.5). Since
i : U → Ũ is analytic, the proof reduces to show that the functional J̃ : Ũ → R+

is Gateaux differentiable. This is actually the case, since ũ 7→ β
2
||ũ||L2 is smooth,

while the first term at the right-hand side of (3.3.6) (i.e., the end-point cost) is
Gateaux differentiable owing to Lemma 2.2.1. �

By differentiation of the identity (3.3.7) we deduce that

duJ (v) = di[u]J̃
(
i#[v]

)
(3.3.8)

for every u, v ∈ U , where we have introduced the linear inclusion i# : U → Ũ
defined as

i#[v] :=

(
0
v

)
(3.3.9)

for every v ∈ U . In virtue of Proposition 3.3.1, we can consider the vector field
G : U → U that represents the differential of the functional J : U → R+. Namely,
for every u ∈ U , let G[u] be the unique element of U such that

〈G[u], v〉U = duJ (v) (3.3.10)

for every v ∈ U . Similarly, let us denote with G̃ : Ũ → Ũ the vector field such that

〈G̃[ũ], ṽ〉Ũ = dũJ̃ (ṽ) (3.3.11)

for every ũ, ṽ ∈ Ũ . In Chapter 2 it was derived the expression of the vector field
G̃ associated to the linear-control system (3.3.4) and to the cost (3.3.6). In the
next result we use it in order to obtain the expression of G. We use the notation
F (x)T to denote the matrix in Rk×n obtained by the transposition of the matrix
F (x) ∈ Rn×k, for every x ∈ Rn. The analogue convention holds for F̃ (x)T , for
every x ∈ Rn.

Theorem 3.3.2. Let us assume that F0 : Rn → Rn and F : Rn → Rn×k are
C1-regular, as well as the function a : Rn → R+ designing the end-point cost. Let
G : U → U be the gradient vector field on U that satisfies (3.3.10). Then, for every
u ∈ U we have

G[u](s) = F (xu(s))
TλTu (s) + βu(s) (3.3.12)
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for a.e. s ∈ [0, 1], where xu : [0, 1] → Rn is the solution of (3.3.1) corresponding
to the control u, and λu : [0, 1] → (Rn)∗ is the absolutely continuous curve of
covectors that solves{

λ̇u(s) = −λu(s)
(
∂F0(xu(s))

∂x
+
∑k

i=1 ui(s)
∂Fi(xu(s))

∂x

)
a.e. in [0, 1],

λu(1) = ∇a(xu(1)).
(3.3.13)

Remark 3.3.1. As done in Chapter 2, we understand the elements of (Rn)∗ as
row-vectors. Therefore, for every s ∈ [0, 1], λu(s) should be read as a row-vector.
This should be considered to give sense to (3.3.13).

Proof of Theorem 3.3.2. In virtue of (3.3.8), from the definitions (3.3.10)
and (3.3.11) we deduce that

〈G[u], v〉U = 〈G̃[i[u]], i#[v]〉Ũ = 〈πG̃[i[u]], v〉U (3.3.14)

for every u, v ∈ U , where G̃ : Ũ → Ũ is the gradient vector field corresponding to
the functional J̃ : Ũ → R+, and π : Ũ → U is the linear application

π :

ṽ0
...
ṽk

 7→
ṽ1

...
ṽk

 (3.3.15)

for every ṽ ∈ Ũ . Therefore, we can rewrite (3.3.14) as

G = π ◦ G̃ ◦ i, (3.3.16)

where i and π are defined, respectively, in (3.3.5) and in (3.3.15). This implies
that we can deduce the expression of G from the one of G̃. In particular, from
Remark 2.2.2 it follows that for every ũ ∈ Ũ we have

G̃[ũ](s) = F̃ (xũ(s))
TλTũ (s) + βũ(s) (3.3.17)

for a.e. s ∈ [0, 1], where xũ : [0, 1] → Rn is the solution of (3.3.4) corresponding
to the control ũ, and λũ : [0, 1] → (Rn)∗ is the absolutely continuous curve of
covectors that solves{

λ̇ũ(s) = −λũ(s)
∑k

i=0

(
ũi(s)

∂F̃i(xũ(s))
∂x

)
for a.e. s ∈ [0, 1],

λũ(1) = ∇a(xũ(1)).
(3.3.18)

We stress the fact that the summation index in (3.3.18) starts from 0. Then, the
thesis follows immediately from (3.3.16)-(3.3.18). �

Remark 3.3.2. The identity (3.3.16) implies that the gradient field G : U → U
is at least as regular as G̃ : Ũ → Ũ . In particular, under the further assumption that
F0 : Rn → Rn, F : Rn → Rn×k and a : Rn → R+ are C2-regular, from Lemma 2.2.2
it follows that G̃ : Ũ → Ũ is Lipschitz-continuous on the bounded sets of Ũ . As a
matter of fact, we deduce that, under the same regularity hypotheses, G : U → U
is Lipschitz-continuous on the bounded sets of U .
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3.4. Optimal control of ensembles

In this section we formulate a minimization problem for the ensemble of affine-
control systems (3.1.1). Namely, let us consider a non-negative continuous map-
ping a : [0, 1]×Rn×Θ→ R+, a positive real number β > 0 and a Borel probability
measure ν on the time interval [0, 1]. Therefore, for every θ ∈ Θ we can study the
following optimal control problem:∫ 1

0

a(s, xθu(s), θ) dν(s) +
β

2
||u||2L2 → min, (3.4.1)

where the curve xθu : [0, 1] → Rn is the solution of (3.1.1) corresponding to the
parameter θ ∈ Θ and to the admissible control u ∈ U . We recall that the ensemble
of control systems (3.1.1) is aimed at modeling our partial knowledge of the data of
the controlled dynamical system. Therefore, it is natural to assume that the space
of parameters Θ is endowed with a Borel probability measure µ that quantifies
this uncertainty. In view of this fact, we can formulate an optimal control problem
for the ensemble of control systems (3.1.1) as follows:∫

Θ

∫ 1

0

a(s, xθu(s), θ) dν(s) dµ(θ) +
β

2
||u||2L2 → min . (3.4.2)

The minimization problem (3.4.2) is obtained by averaging out the parameters
θ ∈ Θ in the optimal control problem (3.4.1) by means of the probability measure
µ.

In this section we study the variational problem (3.4.2), and we prove that it
admits a solution. Before proceeding, we introduce the functional F∞ : U → R+

associated to the minimization problem (3.4.2). For every admissible control u ∈
U , we set

F∞(u) :=

∫
Θ

∫ 1

0

a(s, xθu(s), θ) dν(s) dµ(θ) +
β

2
||u||2L2 . (3.4.3)

We first prove an auxiliary lemma regarding the integral cost in (3.4.2).

Lemma 3.4.1. Let us consider a sequence of admissible controls (um)m∈N ⊂ U
such that um ⇀L2 u∞ as m→∞. For every m ∈ N∪{∞}, let Ym : [0, 1]×Θ→ R+

be defined as follows:

Ym(s, θ) := a(s,Xm(s, θ), θ), (3.4.4)

where Xm : [0, 1] × Θ → Rn is the application defined in (3.1.8) corresponding to
the admissible control um. Then, we have that

lim
m→∞

sup
(s,θ)∈[0,1]×Θ

|Ym(s, θ)− Y∞(s, θ)| = 0. (3.4.5)

Proof. Since the sequence (um)m∈N is weakly convergent, it follows that there
exists R > 0 such that ||um||L2 ≤ R for every m ∈ N ∪ {∞}. For every m ∈ N ∪
{∞}, let Xm : [0, 1]×Θ→ Rn be the application defined in (3.1.8) corresponding
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to the control um. In virtue of Lemma 3.2.1, we deduce that there exists a compact
set K ⊂ Rn such that

Xm(s, θ) ∈ K
for every (s, θ) ∈ [0, 1]×Θ and for every m ∈ N∪{∞}. Recalling that the function
a : [0, 1]×Rn×Θ→ R+ that defines the integral term in (3.4.3) is assumed to be
continuous, it follows that the restriction

ã := a|[0,1]×K×Θ

is uniformly continuous. In addition, Theorem 3.2.5 guarantees that Xm →C0 X∞
as m→∞. Therefore, observing that

Ym(s, θ) = ã(s,Xm(s, θ), θ) (3.4.6)

for every (s, θ) ∈ [0, 1] × Θ and for every m ∈ N ∪ {∞}, we deduce that (3.4.5)
holds. �

We are now in position to prove that (3.4.2) admits a solution.

Theorem 3.4.2. Let F∞ : U → R+ be the functional defined in (3.4.3). Then,
there exists û ∈ U such that

F∞(û) = inf
U
F∞.

Proof. We establish the thesis by means of the direct method of calculus of
variations (see, e.g., [24, Theorem 1.15]). Namely, we show that the functional
F∞ is coercive and lower semi-continuous with respect to the weak topology of
L2. We first address the coercivity, i.e., we prove that the sub-level sets of the
functional F∞ are L2-weakly pre-compact. To see that, it is sufficient to observe
that for every M ≥ 0 we have

{u ∈ U : F∞(u) ≤M} ⊂ {u ∈ U : ||u||2L2 ≤ 2M/β},
where we used the fact that the first term at the right-hand side of (3.4.3) is
non-negative. To study the lower semi-continuity, let us consider a sequence of
admissible controls (um)m∈N ⊂ U such that um ⇀L2 u∞ as m → ∞. Using
the family of applications (Ym)m∈N∪{∞} defined as in (3.4.4), we observe that the
integral term at the right-hand side of (3.4.3) can be rewritten as follows∫

Θ

∫ 1

0

a(s, xθum(s), θ) dν(s) dµ(θ) =

∫
Θ

∫ 1

0

Ym(s, θ) dν(s) dµ(θ)

for every m ∈ N ∪ {∞}. Moreover, the uniform convergence Ym →C0 Y∞ as
m → ∞ provided by Lemma 3.4.1 implies in particular the convergence of the
integral term at the right-hand side of (3.4.3):

lim
m→∞

∫
Θ

∫ 1

0

a(s, xum(s)θ, θ) dν(s) dµ(θ) =

∫
Θ

∫ 1

0

a(s, xu∞(s)θ, θ) dν(s) dµ(θ).

(3.4.7)
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Finally, combining (1.1.11) with (3.4.7), we deduce that

F∞(u∞) ≤ lim inf
m→∞

F∞(um).

This proves that the functional F∞ is lower semi-continuous, and therefore we
obtain the thesis. �

Remark 3.4.1. The constant β > 0 in (3.4.3) is aimed at balancing the effect
of the squared L2-norm regularization and of the integral term. This fact can be
crucial in some cases, relevant for applications. Indeed, let us assume that, for
every ε > 0, there exists uε ∈ U such that∫

Θ

∫ 1

0

a(s, xθuε(s), θ) dν(s) dµ(θ) ≤ ε

2
.

Then, let us set

β =
ε

||uε||2L2

,

and let û ∈ U be a minimizer for the functional F∞ : U → R+ defined as in (3.4.3).
Therefore, we have that∫

Θ

∫ 1

0

a(s, xθû(s), θ) dν(s) dµ(θ) ≤ F∞(û) ≤ F∞(uε) ≤ ε.

In particular, this means that, when the constant β > 0 is chosen small enough,
the integral cost achieved by the minimizers of F∞ can be made arbitrarily small.

3.5. Reduction to finite ensembles via Γ-convergence

The existence result in Theorem 3.4.2 guarantees that the set of the solutions
of the minimization problem (3.4.2) is nonempty. However, if the support of the
probability measure µ is not contained in a fine subset of the space of parameters
Θ, the problem (3.4.2) involves the resolution of an infinite number of Cauchy
problems. Therefore, a natural attempt to make the ensemble optimal control
problem (3.4.2) tractable consists in approximating µ with a probability measure
µ̄ that charges a finite number of elements of Θ. Therefore, if µ and µ̄ are close
in some appropriate sense, we may expect that the solutions of the minimization
problem involving µ̄ provide approximations of the minimizers of the original en-
semble optimal control problem (3.4.2). This argument can be made rigorous by
means of the tools of Γ-convergence. We briefly recall below this notion. For a
thorough introduction to this topic we refer the reader to the textbook [24].

Definition 2. Let (X , d) be a metric space, and for every N ≥ 1 let FN :
X → R∪{+∞} be a functional defined over X. The sequence (FN)N≥1 is said to
Γ-converge to a functional F∞ : X → R∪{+∞} if the following conditions holds:
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• liminf condition: for every sequence (uN)N≥1 ⊂ X such that uN →X u as
N →∞ the following inequality holds

F∞(u) ≤ lim inf
N→∞

FN(uN); (3.5.1)

• limsup condition: for every x ∈ X there exists a sequence (uN)N≥1 ⊂ X
such that uN →X u as N → ∞ and such that the following inequality
holds:

F∞(u) ≥ lim sup
N→∞

FN(uN). (3.5.2)

If the conditions listed above are satisfied, then we write FN →Γ F∞ as N →∞.

The importance of the Γ-convergence is due to the fact that it relates the
minimizers of the functionals (FN)N≥1 to the minimizers of the limiting functional
F∞. Namely, under the hypothesis that the functionals of the sequence (FN)N≥1

are equi-coercive, if ûN ∈ arg minFN for every N ≥ 1, then the sequence (ûN)N≥1

is pre-compact in X , and any of its limiting points is a minimizer for F∞ (see
[24, Corollary 7.20]). In other words, the problem of minimizing F∞ can be
approximated by the minimization of FN , when N is sufficiently large. We report
that a similar approach was undertaken in [41], where the authors considered
general ensembles of control systems (not only affine in the controls), and it was
proved that the averaged approximations of the cost functional in exam are Γ-
convergent to the original objective with respect to the strong topology of L2.
We insist on the fact that our result is not reduced to a particular case of the one
studied in [41]. Indeed, on one hand, by means of the strong topology in [41] it was
possible to establish Γ-convergence for more general ensembles of control systems,
and not only under the affine-control dynamics (3.1.1). On the other hand, in the
general situation considered in [41] the functionals of the approximating sequence
are not equi-coercive (often neither coercive) in the L2-strong topology, and proving
that the minimizers of the approximating functionals are (up to subsequences)
convergent could be a challenging task. However, in the case of affine-control
systems we manage to prove Γ-convergence even if the space of admissible controls
U is equipped with the weak topology.

We now focus on the ensemble optimal control problem (3.4.2) studied in Sec-
tion 3.4 and on the functional F∞ : U → R+ defined in (3.4.3). As done in the
proof of Theorem 3.4.2, it is convenient to equip the space of admissible controls
U := L2([0, 1],Rk) with the weak topology. However, Definition 2 requires the
domain X where the limiting and the approximating functionals are defined to be
a metric space. Unfortunately, the weak topology of L2 is metrizable only when
restricted to bounded sets (see, e.g., [15, Remark 3.3 and Theorem 3.29]). In the
next lemma we see how we should choose the restriction without losing any of the
minimizers of F∞.
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Lemma 3.5.1. Let F∞ : U → R+ be the functional defined in (3.4.3). There-
fore, there exists ρ > 0 such that, if û ∈ U satisfies F∞(û) = infU F∞, then

||û||L2 ≤ ρ. (3.5.3)

Proof. Let us consider the control ū ≡ 0. If û ∈ U is a minimizer for the
functional F∞, then we have F∞(û) ≤ F∞(ū). Moreover, recalling that the
function a : [0, 1] × Rn × Θ → R+ that designs the integral cost in (3.4.2) is
non-negative, we deduce that

β

2
||û||2L2 ≤ F∞(û) ≤ F∞(ū).

Thus, to prove (3.5.3) it is sufficient to set ρ :=
√

2F∞(ū)/β. �

The previous result implies that the following inclusion holds

arg minF∞ ⊂ X ,
where we set

X := {u ∈ U : ||u||L2 ≤ ρ}, (3.5.4)

and where ρ > 0 is provided by Lemma 3.5.1. Since X is a closed ball of L2, the
weak topology induced on X is metrizable. Hence, we can restrict the functional
F∞ : U → R+ to X in order to construct an approximation in the sense of Γ-
convergence. With a slight abuse of notations, we shall continue to denote by
F∞ the functional restricted to X . As anticipated at the beginning of the present
section, the construction of the functionals (FN)N≥1 relies on the introduction of
a proper sequence of probability measures (µN)N≥1 on Θ that approximate the
probability measure µ prescribing the integral cost in (3.4.2). We first recall the
notion of weak convergence of probability measures. For further details, see, e.g.,
the textbook [21, Definition 3.5.1].

Definition 3. Let (µN)N≥1 be a sequence of Borel probability measures on
the compact set Θ. The sequence (µN)N≥1 is weakly convergent to the probability
measure µ as N →∞ if the following identity holds

lim
N→∞

∫
Θ

f(θ) dµN(θ) =

∫
Θ

f(θ) dµ(θ), (3.5.5)

for every function f ∈ C0(Θ,R). If the previous condition is satisfied, we write
µN ⇀∗ µ as N →∞.

For every N ≥ 1 we consider a subset {θ1, . . . , θN} ⊂ Θ and the probability
measure that charges uniformly these elements:

µN :=
1

N

N∑
j=1

δθj . (3.5.6)

We assume that the sequence (µN)N≥1 approximates the probability measure µ in
the weak sense, i.e., µN ⇀∗ µ as N → ∞. This can be achieved if, for example,
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(µN)N≥1 are empirical measures associated to independent samples of the proba-
bility measure µ. We are now in position to introduce the family of functionals
(FN)N≥1. For every N ≥ 1, let FN : X → R+ be defined as follows

FN(u) :=

∫
Θ

∫ 1

0

a(s, xθu(s), θ) dν(s)dµN(θ) +
β

2
||u||2L2 , (3.5.7)

where xθu : [0, 1]→ Rn denotes the solution on (3.1.1) corresponding to the param-
eter θ ∈ Θ and to the control u ∈ X . We observe that FN and F∞ have essentially
the same structure: the only difference is that the integral term of (3.4.3) involves
the measure µ, while (3.5.7) the measure µN . Before proceeding to the main result
of the section, we prove an auxiliary result.

Lemma 3.5.2. Let (µN)N≥1 be a sequence of probability measures on Θ such
that µN ⇀∗ µ as N → ∞, and let ν be a probability measure on [0, 1]. Then,
the sequence of the product probability measures (ν ⊗ µN)N≥1 on the product space
[0, 1]×Θ satisfies ν ⊗ µN ⇀∗ ν ⊗ µ as N →∞.

Proof. It is sufficient to prove that

lim
N→∞

∫
[0,1]×Θ

f(s, θ) d(ν ⊗ µN)(s, θ) =

∫
[0,1]×Θ

f(s, θ) d(ν ⊗ µ)(s, θ) (3.5.8)

for every f ∈ C0([0, 1]×Θ,R). In virtue of Fubini Theorem (see, e.g., [15, Theo-
rem 4.5]), for every f ∈ C0([0, 1]×Θ,R) we have∫

[0,1]×Θ

f(s, θ) d(ν ⊗ µN)(s, θ) =

∫
Θ

f̄(θ) dµN(θ) (3.5.9)

for every N ≥ 1, where f̄ : Θ → R is the continuous function defined as f̄(θ) :=∫ 1

0
f(s, θ) dν(s) for every θ ∈ Θ. Moreover, the hypothesis µN ⇀∗ µ as N → ∞

implies that

lim
N→∞

∫
Θ

f̄(θ)dµN(θ) =

∫
Θ

f̄(θ)dµ(θ) =

∫
[0,1]×Θ

f(s, θ) d(ν ⊗ µ)(s, θ) (3.5.10)

for every f ∈ C0([0, 1] × Θ,R), where we used again Fubini Theorem in the last
identity. Finally, combining (3.5.9) and (3.5.10) we obtain (3.5.8), and this con-
cludes the proof. �

We now show that the sequence of functionals (FN)N≥1 introduced in (3.5.7) is
Γ-convergent to the functional that defines the ensemble optimal control problem
(3.4.2).

Theorem 3.5.3. Let X ⊂ U be the set defined in (3.5.4), equipped with the weak
topology of L2. For every N ≥ 1, let FN : X → R+ be the functional introduced
in (3.5.7), and let F∞ : X → R+ be the restriction to X of the application defined
in (3.4.3). Then, we have FN →Γ F∞ as N →∞.



76 3. ENSEMBLES OF AFFINE-CONTROL SYSTEMS

Proof. We first establish the liminf condition. Let us consider a sequence of
controls (uN)N≥1 ⊂ X such that uN ⇀L2 u∞ as N →∞. As done in Lemma 3.4.1,
for every N ∈ N∪{∞} let us define the functions YN : [0, 1]×Θ→ R+ as follows:

YN(s, θ) := a(s,XN(s, θ), θ) (3.5.11)

for every (s, θ) ∈ [0, 1]×Θ, where, for every N ∈ N ∪ {∞}, XN : [0, 1]×Θ→ Rn

is the mapping introduced in (3.1.8) that describes the evolution of the ensemble
in correspondence of the admissible control uN . From (3.5.11) and the definition
of the functionals (FN)N≥1 in (3.5.7), we obtain that

FN(uN) =

∫
Θ

∫ 1

0

YN(s, θ) dν(s)dµN(θ) +
β

2
||uN ||2L2 (3.5.12)

for every N ∈ N. Moreover, we observe that the uniform convergence YN →C0 Y∞
as N →∞ guaranteed by Lemma 3.4.1 implies that

lim
N→∞

∫
Θ

∫ 1

0

|YN(s, θ)− Y∞(s, θ)| dν(s)dµN(θ) = 0. (3.5.13)

Therefore, using the triangular inequality and Lemma 3.5.2, from (3.5.13) we de-
duce that

lim
N→∞

∫
Θ

∫ 1

0

YN(s, θ) dν(s)dµN(θ) =

∫
Θ

∫ 1

0

Y∞(s, θ) dν(s)dµ(θ). (3.5.14)

Combining (3.5.12) with (3.5.14) and (1.1.11), we have that

F∞(u∞) ≤ lim inf
N→∞

FN(uN),

which concludes the first part of the proof.
We now establish the limsup condition. For every u ∈ X , let us consider the

constant sequence uN = u for every N ≥ 1. In virtue of Lemma 3.5.2, we have
that

lim
N→∞

∫
Θ

∫ 1

0

a(s,Xu(s, θ), θ) dν(s)dµN(θ) =

∫
Θ

∫ 1

0

a(s,Xu(s, θ), θ) dν(s)dµ(θ)

(3.5.15)
for every u ∈ X , where Xu : [0, 1] × Θ → Rn is defined as in (3.1.8). This fact
gives

F∞(u) = lim
N→∞

FN(u)

for every u ∈ X , and this shows that the limsup condition holds. �

Remark 3.5.1. We observe that Theorem 3.4.2 holds also for FN : X → R+

for every N ∈ N. Indeed, the domain X is itself sequentially weakly compact,
and the convergence (3.4.7) occurs also with the probability measure µN in place
of µ. Therefore, being the functional FN coercive and sequentially lower semi-
continuous with respect to the weak topology of L2, it admits a minimizer.
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The next result is a direct consequence of the Γ-convergence result established
in Theorem 3.5.3. Indeed, as anticipated before, the fact that the minimizers of the
functionals (FN)N∈N provide approximations of the minimizers of the limiting func-
tional F∞ is a well-established fact, as well as the convergence infX FN → infX F∞
as N →∞ (see [24, Corollary 7.20]). We stress the fact that, usually, the approx-
imation of the minimizers occurs in the topology that underlies the Γ-convergence
result. However, we can actually prove that, in this case, the approximation is
provided with respect to the strong topology of L2, and not just in the weak sense.

Corollary 3.5.4. Let X ⊂ U be the set defined in (3.5.4). For every N ≥ 1,
let FN : X → R+ be the functional introduced in (3.5.7) and let ûN ∈ X be any of
its minimizers. Finally, let F∞ : X → R+ be the restriction to X of the application
defined in (3.4.3). Therefore, we have

inf
X
F∞ = lim

N→∞
inf
X
FN . (3.5.16)

Moreover, the sequence (ûN)N∈N is pre-compact with respect to the strong topology
of L2, and any limiting point of this sequence is a minimizer of F∞.

Proof. Owing to Theorem 3.5.3, we have that FN →Γ F∞ as N → ∞ with
respect to the weak topology of L2. Therefore, from [24, Corollary 7.20] it follows
that (3.5.16) holds and that the sequence of minimizers (ûN)N∈N is pre-compact
with respect to the weak topology of L2, and its limiting points are minimizers of
F∞. To conclude we have to prove that it is pre-compact with respect to the strong
topology, too. Let us consider a subsequence (ûNj)j∈N such that ûNj ⇀L2 û∞ as
j → ∞. Using the fact that û∞ is a minimizer for F∞, as well as ûNj is for FNj
for every j ∈ N, from (3.5.16) it follows that

F∞(û∞) = lim
j→∞
FNj(ûNj). (3.5.17)

Moreover, with the same argument used in the proof of Theorem 3.5.3 to deduce
the identity (3.5.14), we obtain that∫

Θ

∫ 1

0

a(s, xθû∞(s), θ) dν(s)dµ(θ) = lim
j→∞

∫
Θ

∫ 1

0

a(s, xθûNj
(s), θ) dν(s)dµNj(θ).

(3.5.18)
Combining (3.5.17) and (3.5.18), and recalling the definitions (3.5.7) and (3.4.3)
of the functionals FN : X → R+ and F∞ : X → R+, we have that

β

2
||û∞||2L2 = lim

j→∞

β

2
||ûNj ||2L2 ,

which implies that ûNj →L2 û∞ as j → ∞. Since the argument holds for every
L2-weakly convergent subsequence of the sequence of minimizers (ûN)N∈N, this
concludes the proof. �
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3.6. Gradient field and Maximum Principle for finite ensembles

In Section 3.4 we formulated the minimization problem (3.4.2) for the ensem-
ble of control systems (3.1.1), and in Theorem 3.4.2 we showed that it admits
solutions by proving that the corresponding cost functional F∞ : U → R+ has
minimizers. However, the minimization of F∞ could potentially result in han-
dling simultaneously an infinite number of controlled dynamical systems. In this
regards, the Γ-convergence result obtained in Section 3.5 suggests that we can
replace the original functional cost F∞ with a sequence of functionals (FN)N∈N,
each of them involving a finite sample of the ensemble of control systems (3.1.1).
Moreover, Corollary 3.5.4 guarantees that the minimizers of (FN)N∈N are actually
convergent to minimizers of F∞, i.e., to solutions of (3.4.2). In the present section
we address the question of actually finding the minimizers of the approximating
functionals (FN)N∈N. Namely, starting from the result stated in Theorem 3.3.2
for a single affine-control system with end-point cost, we obtain the expression of
the gradient fields that the functionals (FN)N∈N induce on their domain. More-
over, we state the Pontryagin Maximum Principle for the optimal control problems
corresponding to the minimization of the functionals (FN)N∈N. Both the gradient
fields and the Maximum Principle will be used for the construction of the numerical
algorithms presented in the next section.

From now on, we specialize on the following particular form of the cost associ-
ated to the ensemble optimal control problem (3.4.2):

F∞(u) =

∫
Θ

a(xθu(1), θ) dµ(θ) +
β

2
||u||2L2 (3.6.1)

for every u ∈ U , where a : Rn × Θ→ R+ is a C1-regular function, and β > 0 is a
positive parameter that tunes the L2-regularization. We observe that (3.6.1) is a
particular instance of (3.4.3). Indeed, it corresponds to the case ν = δt=1, where
ν is the probability measure on the time interval [0, 1] that appears in the first
term at the right-hand side of (3.4.2). In other words, we assume that the integral
cost in (3.4.2) depends only on the final state of the trajectories of the ensemble.
For every N ∈ N, let the probability measure µN have the same expression as in
(3.5.6), i.e., it is a finite uniform convex combination of Dirac deltas centered at
{θ1, . . . , θN} ⊂ Θ. Therefore, for every N ∈ N, the functional FN : U → R+ that
we consider in place of (3.6.1) has the form

FN(u) =

∫
Θ

a(xθu(1), θ) dµN(θ) +
β

2
||u||2L2 =

1

N

N∑
j=1

a(xθju (1), θj) +
β

2
||u||2L2 (3.6.2)

for every u ∈ U .

Remark 3.6.1. In Section 3.5 for technical reasons we defined the functionals
(FN)N∈N on the domain X ⊂ U introduced in (3.5.4). However, the functionals
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(FN)N∈N and the corresponding gradient fields can be actually defined over the
whole space of admissible controls U .

At this point, it is convenient to approach the minimization of the functional
FN in the framework of optimal control problem in finite-dimensional Euclidean
spaces. For this purpose, we introduce some notations. For every N ∈ N, let
{θ1, . . . , θN} ⊂ Θ be the set of parameters charged by the discrete probability
measure µN . Then, we study the finite sub-ensemble of (3.1.1) corresponding
to the parameters {θ1, . . . , θN}. Namely, we consider the following affine-control
system on RnN :{

ẋu(s) = FN
0 (xu) + FN(xu)u(s), for a.e. t ∈ [0, 1],

xu(0) = x0,
(3.6.3)

where x = (x1, . . . , xN)T ∈ RnN , and FN
0 : RnN → RnN and FN : RnN → RnN×k

are applications defined as follows:

FN
0 (x) :=

 F θ1
0 (x1)

...

F θN
0 (xN)

 (3.6.4)

and

FN(x) :=

 F θ1(x1)
...

F θN (xN)

 =

 F θ1
1 (x1) . . . F θ1

k (x1)
...

...

F θN
1 (xN) . . . F θN

k (xN)

 (3.6.5)

for every x ∈ RnN . Finally, the initial value is set as x0 := (x0(θ1), . . . , x0(θN)),
where x0 : Θ→ Rn is the mapping defined (3.1.6) that prescribes the initial data
of the Cauchy problems of the ensemble (3.1.1). Moreover, we can introduce the
function aN : RnN → R+ defined as

aN(x) = aN((x1, . . . , xN)) :=
1

N

N∑
j=1

a(xj, θj), (3.6.6)

where a : Rn×Θ→ R+ is the function that designs the integral cost in (3.6.1). In
this framework, the functional FN : U → R+ can be rewritten as follows:

FN(u) = a(xu(1)) +
β

2
||u||2L2 (3.6.7)

for every u ∈ U , where xNu : [0, 1]→ RnN is the solution of (3.6.3) corresponding to
the admissible control u. In the next result we derive the expression of the vector
field GN : U → U that represents the differential of the functional FN , namely

〈GN [u], v〉U = duFN(v) (3.6.8)

for every u, v ∈ U .
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Theorem 3.6.1. Let us assume that for every θ ∈ Θ the functions x 7→ F0(x, θ)
and x 7→ F (x, θ) are C1-regular, as well as the function x 7→ a(x, θ) that defines the
end-point cost in (3.6.1). Let {θ1, . . . , θN} ⊂ Θ be the subset of parameters charged
by the measure µN that designs the integral cost in (3.6.2). Let FN : U → R+ be the
functional defined in (3.6.2). Then FN is Gateaux differentiable at every u ∈ U ,
and we define GN : U → U as the gradient vector field on U that satisfies (3.6.8).
Then, for every u ∈ U we have

GN [u](s) =
N∑
j=1

F θj(xθju (s))Tλj Tu (s) + βu(s) (3.6.9)

for a.e. s ∈ [0, 1], where for every j = 1, . . . , N the curve x
θj
u : [0, 1] → Rn is

the solution of (3.1.1) corresponding to the parameter θj and to the admissible
control u, and λju : [0, 1] → (Rn)∗ is the absolutely continuous curve of covectors
that solvesλ̇ju(s) = −λju(s)

(
∂F

θj
0 (x

θj
u (s))

∂x
+
∑k

i=1 ui(s)
∂F

θj
i (x

θj
u (s))

∂x

)
a.e. in [0, 1],

λju(1) = 1
N
∇a(x

θj
u (1), θj).

(3.6.10)

Remark 3.6.2. We use the convention that the elements of (Rn)∗ are row-
vectors. Therefore, for every j = 1, . . . , N and s ∈ [0, 1], λju(s) should be read as
a row-vector. This should be considered to give sense to (3.6.9) and (3.6.10). The
same observation holds for Theorem 3.6.2.

Proof of Theorem 3.6.1. As done in (3.6.3), we can equivalently rewrite
the sub-ensemble of control systems corresponding to the parameters {θ1, . . . , θN} ⊂
Θ as a single affine-control system in RnN . Moreover, the regularity hypotheses
guarantee that the functions FN

0 : RnN → RnN and FN : RnN → RnN×k defined in
(3.6.5) are C1-regular, as well as the function a : RnN → R+ introduced in (3.6.6).
Therefore, owing to Theorem 3.3.2, we obtain the expression for the gradient field
induced by the functional FN written in (3.6.7). Indeed, we deduce that

GN [u](s) = FN(xu(s))
TΛu(s) + βu(s) (3.6.11)

for a.e. s ∈ [0, 1] and for every u ∈ U , where xu : [0, 1] → RnN is the solution of
(3.6.3) corresponding to the control u, and Λu : [0, 1] → (RnN)∗ is the curve of
covectors that solves{

Λ̇u(s) = −Λu(s)
(
∂FN0 (xu(s))

∂x
+
∑k

i=1 ui(s)
∂FNi (xu(s))

∂x

)
for a.e. s ∈ [0, 1],

Λu(1) = ∇xa(xu(1)),

(3.6.12)
where FN

1 , . . . ,F
N
k : RnN → RnN denote the vector fields obtained by taking the

columns of the matrix-valued application FN : RnN → RnN×k. Moreover, if we
consider the curves of covectors λ1

u, . . . , λ
N
u : [0, 1] → (Rn)∗ that solve (3.6.10)

for j = 1, . . . , N , it turns out that the solution of (3.6.12) can be written as
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Λu(s) = (λ1
u(s), . . . , λ

N
u (s)) for every s ∈ [0, 1]. Finally, using this decoupling of

Λu, the identity (3.6.10) can be deduced from (3.6.11) using the expression of
FN

0 , . . . ,F
N
k . �

In the previous result we obtained the gradient field on U that represents the
differential of the functional FN : U → R+. We now establish the necessary
condition for an admissible control ûN ∈ U to be a minimizer of FN . This essen-
tially descends as a standard application of Pontryagin Maximum Principle. For
a complete survey on the topic, the reader is referred to the textbook [4].

Theorem 3.6.2. Under the same assumptions and notations of Theorem 3.6.1,
let ûN = (ûN,1, . . . , ûN,k) ∈ U be a minimizer of the functional FN : U → R+

defined as in (3.6.2). For every j = 1, . . . , N , let x
θj
ûN

: [0, 1]→ Rn be the solution
of (3.1.1) corresponding to the parameter θj ∈ Θ and to the optimal control ûN .

Then, for every j = 1, . . . , N there exists a curve of covectors λjûN : [0, 1]→ (Rn)∗

such thatλ̇jûN (s) = −λjûN (s)

(
∂F

θj
0 (x

θj
ûN

(s))

∂x
+
∑k

i=1 ûN,i(s)
∂F

θj
i (x

θj
ûN

(s))

∂x

)
a.e. in [0, 1],

λjûN (1) = 1
N
∇a(x

θj
ûN

(1), θj),

(3.6.13)
and such that

ûN(s) ∈ arg max
v∈Rk

{
N∑
j=1

(
−λjûN (s)F (x

θj
ûN

(s))v
)
− β

2
|v|22

}
(3.6.14)

for a.e. s ∈ [0, 1].

Proof. As done in the proof of Theorem 3.6.1, we observe that we can equiva-
lently consider the single affine-control system (3.6.3) in place of the sub-ensemble
of affine-control systems corresponding to the parameters {θ1, . . . , θN} ⊂ Θ. More-
over, if we rewrite the cost functional FN : U → R+ as in (3.6.7), we reduce to a
standard optimal control problem in RnN . Let ûN ∈ U be an optimal control for
this problem, and let xûN : [0, 1] → RnN be the solution of (3.6.3) corresponding
to ûN . Then, from the Pontryagin Maximum Principle (see, e.g., [4, Chapter 12]),
it follows that there exists α ∈ {0,−1} and ΛûN : [0, 1] → (RnN)∗ such that
(α,ΛûN (s)) 6= 0 for every s ∈ [0, 1] and such that{

Λ̇ûN (s) = −ΛûN (s)
(
∂FN0 (xûN (s))

∂x
+
∑k

i=1 ûN,i(s)
∂FNi (xûN (s))

∂x

)
a.e. in [0, 1],

ΛûN (1) = α∇xa(xûN (1)).

(3.6.15)
Moreover, for a.e. s ∈ [0, 1] the following condition holds

ûN(s) ∈ arg max
v∈Rk

{
ΛûN (s)

(
FN

0 (xûN (s)) + FN(xûN (s))v
)

+ α
β

2
|v|22
}
. (3.6.16)
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Since the differential equation (3.6.15) is linear, if α = 0 we have ΛûN (s) ≡ 0,
and this violates the condition (α,ΛûN (s)) 6= 0 for every s ∈ [0, 1]. Therefore
we deduce that α = −1. This shows that the optimal control problem in con-
sideration has no abnormal extremals. Moreover, if we consider the curves of
covectors λ1

ûN
, . . . , λNûN : [0, 1] → (Rn)∗ that solve (3.6.13) for j = 1, . . . , N , it

turns out that the solution of (3.6.15) corresponding to α = −1 can be written as
Λu(s) = (−λ1

ûN
(s), . . . ,−λNûN (s)) for every s ∈ [0, 1]. Finally, using this decoupling

of Λu, the condition (3.6.14) can be deduced from (3.6.16) using the expression of
FN

0 , . . . ,F
N
k , and observing that the term ΛûN (s)FN

0 (xûN (s)) in (3.6.16) does not
affect the minimizer. �

We recall that the Pontryagin Maximum Principle provides necessary condition
for minimality. An admissible control ū ∈ U is a (normal) Pontryagin extremal
for the optimal control problem related to the minimization of FN : U → R+ if
there exist λ1

ū, . . . , λ
N
ū : [0, 1]→ (Rn)∗ satisfying (3.6.13) and such that the relation

(3.6.14) holds.

Remark 3.6.3. Let ū ∈ U be a critical point for the functional FN : U → R+,
i.e., GN [ū] = 0. Therefore, from (3.6.9) it turns out that

ū(s) = − 1

β

N∑
j=1

F θj(x
θj
ū (s))Tλjū(s)

T

for a.e. s ∈ [0, 1], where for every j = 1, . . . , N the curve x
θj
ū : [0, 1] → Rn is

the trajectory of (3.1.1) corresponding to the parameter θj and to the control ū,

and λjū : [0, 1] → (Rn)∗ is the solution of (3.6.10). We observe that, for every
j = 1, . . . , N , λjū : [0, 1]→ (Rn)∗ solves as well (3.6.13), and that ū(s) satisfies

ūN(s) ∈ arg max
v∈Rk

{
N∑
j=1

(
−λj

ūN
(s)F (x

θj
ūN

(s))v
)
− β

2
|v|22

}
for a.e. s ∈ [0, 1]. This shows that any critical point of FN : U → R+ is a (normal)
Pontryagin extremal for the corresponding optimal control problem. Conversely,
an analogue argument shows that any Pontryagin extremal is a critical point for
the functional FN .

3.7. Numerical schemes for optimal control of ensembles

In this section we present two algorithms for the numerical resolution of the
problem of optimal control of ensembles. In Section 3.4 we formulated it as the
minimization of a proper functional F∞ : U → R+ introduced in (3.4.3) and
defined over the space of admissible controls. The Γ-convergence result obtained
in Section 3.5 allows us to consider the functionals (FN)N∈N to approximate F∞.
The advantage of this approach lies in the fact that any of the functionals (FN)N∈N
deals with a finite sub-ensemble of the original (in general, infinite) ensemble of
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control systems. Finally, in Section 3.6 we wrote for every N ∈ N the gradient
field induced on U by the functional FN : U → R+, and we derived the Pontryagin
Maximum Principle for the optimal control problem related to the minimization
of FN . We recall that in Section 3.6 we focused on the case of end-point costs, i.e.,
when the measure ν that appears in the first term at the right-hand side of (3.4.3)
and (3.5.7) satisfies ν = δs=1. In the present section we introduce two numerical
schemes starting from the results of Section 3.6. The first method consists in
the projection of the field GN : U → U induced by FN onto a finite-dimensional
subspace UM ⊂ U . The second one is based on the Pontryagin Maximum Principle
and it was first proposed in [45].

Before proceeding, we introduce the notations and the framework that are
shared by the two methods. Let us consider the interval [0, 1], i.e., the evolution
time horizon of the ensemble of controlled dynamical systems (3.1.1), and for
M ≥ 2 let us take the equi-spaced nodes {0, 1

M
, . . . , M−1

M
, 1}. Recalling that U :=

L2([0, 1],Rk), let us define the subspace UM ⊂ U as follows:

u ∈ UM ⇐⇒ u(s) =


u1 if 0 ≤ s < 1

M
...

uM if M−1
M
≤ s ≤ 1,

(3.7.1)

where u1, . . . , uM ∈ Rk. For every l = 1, . . . ,M , we shall write ul = (u1,l, . . . , uk,l)
to denote the components of ul ∈ Rk. Then, any element u ∈ UM will be repre-
sented by the following array:

u = (ui,l)
i=1,...,k
l=1,...,M . (3.7.2)

For every N ≥ 1, let µN be the discrete probability measure (3.5.6) on Θ that
approximates the probability measure µ involved in the definition of the functional
F∞ : U → R+ in (3.6.1). Let {θ1, . . . , θN} ⊂ Θ be the points charged by µN , and,

for every j = 1, . . . , N , let x
θj
u : [0, 1]→ Rn be the solution of (3.1.1) corresponding

to the parameter θj and to the control u. Then, for every j = 1, . . . , N and
l = 0, . . . ,M we define the array that collects the evaluation of the trajectories at
the time nodes:

(xjl )
j=1,...,N
l=0,...,M , xjl := xθju

(
l

M

)
. (3.7.3)

We observe that in (3.7.3) we dropped the reference to the control that generates
the trajectories. This is done to avoid hard notations, and in the following we hope
that it will be clear from the context the correspondence between trajectories and
control. Similarly, for every j = 1, . . . , N , let λju : [0, 1]→ (Rn)∗ be the solution of
(3.6.10), and let us introduce the corresponding array of the evaluations:

(λjl )
j=1,...,N
l=0,...,M , λjl := λju

(
l

M

)
. (3.7.4)
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3.7.1. Projected gradient field. In this subsection we describe a method for
the numerical minimization of the functional FN : U → R+ defined as in (3.6.2).
This algorithm consists in the projection of the gradient field GN : U → U derived
in (3.6.9) onto the finite-dimensional subspace UM ⊂ U defined as in (3.7.1). We
observe that we can explicitly compute the expression of the orthogonal projector
PM : U → UM . Indeed, we have

PM [u](s) =


M
∫ 1
M

0
u(s) ds if 0 ≤ s < 1

M
,

...

M
∫ 1
M−1
M

u(s) ds if M−1
M
≤ s ≤ 1,

(3.7.5)

for every u ∈ U . Thus, we can can define the projected field GNM : UM → UM as

GNM [u] := PM [GN [u]] (3.7.6)

for every u ∈ UM , and we end up with vector field on a finite-dimensional space.
At this point, in view of a numerical implementation of the method, it is relevant
to observe that the computation of GN [u] requires the knowledge of the trajectories
xθ1u , . . . , x

θN
u : [0, 1] → Rn and of the curves λ1

u, . . . , λ
N
u : [0, 1] → (Rn)∗. However,

during the execution of the algorithm, we have access only to the (approximated)
values of these functions at the time nodes {0, 1

M
, . . . , 1}. Therefore, we need to

adapt (3.7.6) in order to meet our needs. For every u ∈ UM , let us consider the

corresponding arrays (xjl )
j=1,...,N
l=0,...,M and (λjl )

j=1,...,N
l=0,...,M defined as in (3.7.3) and (3.7.4),

respectively. In practice, they can be computed using standard numerical schemes
for the approximation of ODEs. For every l = 1, . . . ,M , we use the approximation

M

∫ l
M

l−1
M

N∑
j=1

(
F θj(xθju (s))Tλju(s)

T
)

+ βu(s) dt

' 1

2

N∑
j=1

(
F θj(xjl−1)Tλj Tl−1 + F θj(xjl )

Tλj Tl

)
+ βul.

Then, for every u ∈ UM , after computing the corresponding arrays (xjl )
j=1,...,N
l=0,...,M

and (λjl )
j=1,...,N
l=0,...,M with a proper ODEs integrator scheme, we use the quantity ∆u =

(∆u1, . . . ,∆uM) ∈ UM to approximate GNM [u], where we set

∆ul :=
1

2

N∑
j=1

(
F θj(xjl−1)Tλj Tl−1 + F θj(xjl )

Tλj Tl

)
+ βul (3.7.7)

for every l = 1, . . . ,M . We are now in position to describe the Projected Gradient
Field algorithm. We report it in Algorithm 1.

Remark 3.7.1. We observe that the for loops at the lines 9–12 and 18–21
(corresponding, respectively, to the update of the curves of covectors and of the
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Algorithm 1: Projected Gradient Field

Data:

• {θ1, . . . θN} ⊂ Θ subset of parameters;

• F θ1
0 , . . . , F θN

0 : Rn → Rn drift fields;
• F θ1 , . . . , F θN : Rn → Rn×k controlled fields;
• (xj0)j=1,...,N = (xθ10 , . . . , x

θN
0 ) initial states of trajectories;

• a(·, θ1), . . . , a(·, θN) : Rn → R+ end-point costs, and β > 0.

Algorithm setting: M = dim UM , τ ∈ (0, 1), c ∈ (0, 1), γ > 0,
maxiter ≥ 1, u ∈ UM .

1 h← 1
M

;
2 for j = 1, . . . , N do // First computation of trajectories

3 Compute (xjl )l=1,...,M using (ul)l=1,...,M and xj0;
4 end

5 Cost← 1
N

∑N
j=1 a(xjM , θj) + β

2
||u||2L2 ;

6 flag← 1;
7 for r = 1, . . . ,maxiter do // Iterations of Projected Gradient

Field

8 if flag = 1 then // Update covectors only if necessary

9 for j = 1, . . . , N do // Backward computation of covectors

10 λjM ← 1
N
∇a(xjM , θj);

11 Compute (λjl )l=0,...,M−1 using (ul)l=1,...,M , (xjl )l=0,...,M and λjM ;
12 end
13 end
14 for l = 1, . . . ,M do // Compute ∆u using (3.7.7)

15 ∆ul ← 1
2

∑N
j=1

(
F θj(xjl−1)Tλj Tl−1 + F θj(xjl )

Tλj Tl

)
+ βul;

16 end
17 unew ← u− γ∆u;
18 for j = 1, . . . , N do // Forward computation of trajectories

19 xj,new
0 ← xj0;

20 Compute (xj,new
l )l=1,...,M using (unew

l )l=1,...,M and xj,new
0 ;

21 end

22 Costnew ← 1
N

∑N
j=1 a(xj,new

M , θj) + β
2
||unew||2L2 ;

23 if Cost ≥ Costnew + cγ||∆u||2L2 then // Backtracking for γ
24 u← unew, x← xnew;
25 Cost← Costnew;
26 flag← 1;
27 else
28 γ ← τγ;
29 flag← 0;
30 end
31 end
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trajectories) can be carried out in parallel with respect to the index j = 1, . . . , N .
This can be considered when dealing with large sub-ensembles of parameters.

Remark 3.7.2. The step-size γ > 0 for Algorithm 1 is set during the initializa-
tion of the method, and it is adaptively adjusted through the if clause at the lines
23–30 via the classical Armijo-Goldstein condition (see, e.g., [40, Section 1.2.3]).
We observe that, if the update of the control at the r-th iteration is rejected,
at the r + 1-th iteration it is not necessary to re-compute the array of covectors
(λjl )

j=1,...,N
l=0,...,M . In this regards, the if clause at the line 8 prevents this computation

in the case of rejection at the previous passage.

3.7.2. Iterative Maximum Principle. In this subsection we present a sec-
ond numerical method for the minimization of the functional FN : U → R+, based
on the Pontryagin Maximum Principle. The idea of using the Maximum Principle
to design approximation schemes for optimal control problems was well established
in the Russian literature (see [19] for a survey paper in English). In this subsec-
tion we adapt to our problem the method proposed in [45], which is in turn a
stabilization of one of the algorithms reported in [19].

The key-idea relies in iterative updates of the control through the resolution
of a maximization problem related to the condition (3.6.14). However, the sub-
stantial difference from Algorithm 1 consists in the fact that the controls and the
trajectories are computed simultaneously. More precisely, let us consider M ≥ 1
and let UM ⊂ U be the finite-dimensional subspace introduced in (3.7.1). Given

an initial guess u = (ul)l=1,...,M ∈ UM , let (xjl )
j=1,...,N
l=0,...,M and (λjl )

j=1,...,N
l=0,...,M be the cor-

responding arrays, defined as in (3.7.3) and (3.7.4), respectively. For l = 1, the
value of unew

1 (i.e., the updated value of control in the time interval [0, 1/M ]) is
computed using (xj0)j=1,...,N and (λj0)j=1,...,N as follows:

unew
1 = arg max

v∈Rk

{
N∑
j=1

(
−λj0 F θj(xj0)v

)
− β

2
|v|22 −

1

2γ
|v − u1|22

}
, (3.7.8)

where γ > 0 plays the role of the step-size of the update. From the value unew
1

just obtained and the initial conditions (xj0)j=1,...,N , we compute (xj1)j=1,...,N , i.e.,
the approximation of the trajectories at the time-node 1/M . At this point, us-
ing (xj1)j=1,...,N and (λj1)j=1,...,N , we calculate unew

2 with a maximization problem
analogue to (3.7.8). Finally, we sequentially repeat the same procedure for every
l = 2, . . . ,M . We report the scheme in Algorithm 2.

Remark 3.7.3. The maximization at line 17 can be solved directly at a very
low computational cost. Indeed, we have that

unew
l ← 1

1 + γβ

(
ul −

N∑
j=1

(
λj,corr
l F θj(xj,new

l−1 )
)T)
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Algorithm 2: Iterative Maximum Principle

Data:

• {θ1, . . . θN} ⊂ Θ subset of parameters;

• F θ1
0 , . . . , F θN

0 : Rn → Rn drift fields;
• F θ1 , . . . , F θN : Rn → Rn×k controlled fields;
• (xj0)j=1,...,N = (xθ10 , . . . , x

θN
0 ) initial states of trajectories;

• a(·, θ1), . . . , a(·, θN) : Rn → R+ end-point costs, and β > 0.

Algorithm setting: M = dim UM , τ ∈ (0, 1), γ > 0, maxiter ≥ 1,
u ∈ UM .

1 h← 1
M

;
2 for j = 1, . . . , N do // First computation of trajectories

3 Compute (xjl )l=1,...,M using (ul)l=1,...,M and xj0;
4 end

5 Cost← 1
N

∑N
j=1 a(xjM , θj) + β

2
||u||2L2 ;

6 flag← 1;
7 for r = 1, . . . ,maxiter do // Iterations of Iterative Maximum

Principle

8 if flag = 1 then // Update covectors only if necessary

9 for j = 1, . . . , N do // Backward computation of covectors

10 λjM ← 1
N
∇a(xjM , θj);

11 Compute (λjl )l=0,...,M−1 using (ul)l=1,...,M , (xjl )l=0,...,M and λjM ;
12 end
13 end

14 (xj,new
0 )j=1,...,N ← (xj0)j=1,...,N ;

15 (λj,corr
0 )j=1,...,N ← (λj0)j=1,...,N ;

16 for l = 1, . . . ,M do // Update of controls and trajectories

17 unew
l ←
arg maxv∈Rk

{∑N
j=1

(
−λj,corr

l−1 F θj(xj,new
l−1 )v

)
− β

2
|v|22 − 1

2γ
|v − ul|22

}
;

18 for j = 1, . . . , N do

19 Compute xj,new
l using xj,new

l−1 and unew
l ;

20 λj,corr
l ← λjl − 1

N
∇a(xjl , θj) + 1

N
∇a(xj,new

l , θj);
21 end
22 end

23 Costnew ← 1
N

∑N
j=1 a(xj,new

M , θj) + β
2
||unew||2L2 ;

24 if Cost > Costnew then // Backtracking for γ
25 u← unew, x← xnew;
26 Cost← Costnew;
27 flag← 1;
28 else
29 γ ← τγ;
30 flag← 0;
31 end
32 end
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for every l = 1, . . . ,M . This is essentially due to the fact that the systems of the
ensemble (3.1.1) have an affine dependence on the control.

Remark 3.7.4. As well as in Algorithm 1, in this case the computation of
(λjl )

j=1,...,N
l=0,...,M−1 can be carried out in parallel (see the for loop at the lines 9–12).

Unfortunately, this is no more true for the update of the trajectories, since in
Algorithm 2 the computation of (xj,new

l )j=1,...,N takes place immediately after ob-
taining unew

l , for every l = 1, . . . ,M (see lines 17–21).

Remark 3.7.5. At the line 20 of Algorithm 2 we introduce a correction for the
value of the covector. This feature is not present in the original scheme proposed
in [45], where the authors considered optimal control problems without end-point
cost.

Remark 3.7.6. Also in Algorithm 2 the step-size is adaptively adjust, and it
is reduced if, after the iteration, the value of the functional has not decreased. In
case of rejection of the update, it is not necessary to recompute (λjl )

j=1,...,N
l=0,...,M . This

is a common feature with Algorithm 1, as observed in Remark 3.7.2.

3.8. Numerical experiments

In this section we test the algorithms described in Section 3.7 on an optimal
control problem involving an ensemble of linear dynamical systems in R2. Namely,
given θmin < θmax ∈ R, let us set Θ := [θmin, θmax] ⊂ R, and let us consider the
ensemble of control systems{

ẋθu(s) = Aθxθu(s) + b1u1(s) + b2u2(s) a.e. in [0, 1],

xθu(0) = xθ0,
(3.8.1)

where θ 7→ xθ0 is a continuous function that prescribes the initial states, u =
(u1, u2)T ∈ U := L2([0, 1],R2), and, for every θ ∈ Θ, we have

Aθ :=

(
0 1
θ 0

)
, b1 :=

(
1
0

)
, b2 :=

(
0
1

)
. (3.8.2)

For every N ≥ 1 and for every subset of parameters {θ1, . . . , θN} ⊂ Θ, we represent
the corresponding sub-ensemble of (3.8.1) as an affine-control system on R2N , as
done in Section 3.6. More precisely, we consider{

ẋu(s) = ANxu(s) + b1u1(s) + b2u2(s) a.e. in [0, 1],

xu(0) = x0,
(3.8.3)

where AN ∈ R2N×2N and b1,b2 ∈ R2N are defined as follows:

AN :=

Aθ1 02×2
. . .

02×2
. . . 02×2

. . . 02×2 AθN

 , b1 :=

b1
...
b1

 , b2 :=

b2
...
b2

 . (3.8.4)
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Moreover, we observe that (3.8.1) can be interpreted as a control system in the
space C0(Θ,R2). Indeed, we can consider the control system

Xu,t = X0 +

∫ t

0

A[Xu,τ ] dτ +

∫ t

0

b1u1(τ) + b2u2(τ) dτ, t ∈ [0, 1], (3.8.5)

where A : C0(Θ,R2)→ C0(Θ,R2) is the bounded linear operator defined as

A[Y ](θ) := AθY (θ)

for every θ ∈ Θ and for every Y ∈ C0([0, 1],R2), and b1, b1 : Θ → R2 are defined
as

b1(θ) := b1, b2(θ) := b2

for every θ ∈ Θ, and finally X0 : Θ → R2 satisfies X0(θ) := xθ0 for every θ ∈ Θ.
The integrals in (3.8.5) should be understood in the Bochner sense, and, for every
u ∈ U , the existence and uniqueness of a continuous curve t 7→ Xu,t in C0(Θ,R2)
solving (3.8.5) descends from classical results in linear inhomogeneous ODEs in
Banach spaces (see, e.g., [23, Chapter 3]). In particular, from the uniqueness we
deduce that

Xu,s(θ) = xθu(s) (3.8.6)

for every u ∈ U , t ∈ [0, 1] and θ ∈ Θ, where xθu : [0, 1] → R2 is the solution of
(3.8.1) corresponding to the parameter θ and to the control u. We now prove some
controllability results for the control systems (3.8.3) and (3.8.5).

Proposition 3.8.1. For every N ≥ 1 and for every subset {θ1, . . . , θN} ⊂ Θ,
let us consider ytar ∈ R2N . Then, there exists a control ū ∈ U such that the
corresponding solution xū : [0, 1]→ R2N of (3.8.3) satisfies xū(1) = ytar.
Moreover, for every Ytar ∈ C0(Θ,R2) and for every ε > 0, there exists a control
uε ∈ U such that the curve s 7→ Xuε,s that solves (3.8.5) satisfies

||Y −Xuε,1||C0 ≤ ε.

Proof. We observe that the first part of the thesis follows if we prove the exact
controllability of the system (3.8.3). An elementary result in control theorey (see,
e.g., [4, Theorem 3.3]) ensures that the last condition is implied by the identity

span
{

(AN)r b1, (A
N)r b2| 0 ≤ r ≤ 2N − 1

}
= R2N .

A direct computation shows that this is actually the case.
As regards the second part of the thesis, owing to [53, Theorem 3.1.1] we have

that it is sufficient to prove that

span {Ar[b1],Ar[b2]| r ≥ 0}
C0

= C0(Θ,R2). (3.8.7)

We observe that

span {Ar[b1],Ar[b2]| r ≥ 0} = span

{(
θr

0

)
,

(
0
θr

)
| r ≥ 0

}
,
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therefore the identity (3.8.7) follows from the Weierstrass Theorem on polynomial
approximation. �

We now introduce the problem that we studied in the numerical simulations.
We set θmin = −1

2
, θmax = 1

2
, and we consider on Θ = [−1

2
, 1

2
] the probability

measure µ, distributed as a Beta(4, 4) centered at 0. Let us assume that the initial
data in (3.8.1) is not affected by the parameter θ, i.e, there exists x0 ∈ R2 such that
xθ0 = x0 for every θ ∈ Θ. We imagine that we want to steer the end-points of the
trajectories of (3.8.1) as close as possible to a target point ytar ∈ R2. Therefore,
we consider the functional F∞ : U → R+ defined as

F∞(u) :=

∫
Θ

|xθu(1)− ytar|22 dµ(θ) +
β

2
||u||2L2 (3.8.8)

for every u ∈ U . We observe that the second part of Proposition 3.8.1 implies that
we are in the situation described in Remark 3.4.1. Indeed, if we set Ytar(θ) := ytar

for every θ ∈ Θ, we have that for every ε > 0 there exists uε ∈ U such that∫
Θ

|xθuε(1)− ytar|22 dµ(θ) ≤ ||Xuε,1 − Ytar||C0 ≤ ε

2
,

where we used the identity (3.8.6). Therefore, in correspondence of small values of
β, we expect that the minimizers of (3.8.8) drive the end-point of the controlled
trajectories very close to ytar. In the simulations we considered β = 10−3. Finally,
we approximated the probability measure µ with the empirical distribution µN ,
obtained with N independent samplings of µ, using N = 300. Moreover, we
chose x0 = (0, 0)T and ytar = (−1,−1)T . We report below the results obtained
with Algorithm 1 and Algorithm 2, where we set M = 64. We observe that
performances of the two numerical methods are very similar, as regards both the
qualitative aspect of the controlled trajectories and the decay of the cost during
the execution.
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Figure 1. Controlled ensemble. On the left, we reported the opti-
mally controlled trajectories of the sub-ensemble of Θ obtained by
sampling N = 300 parameters. On the right, we tested the controls
obtained before on a new sub-ensemble of Θ, obtained by sampling
20 new parameters. As we can see, the trajectories belonging to the
testing sub-ensemble are correctly steered to the target point ytar =
(−1, 1)T .
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Figure 2. In the graph we reported the decay of the discrete cost
achieved by Algorithm 1 (Projected Gradient) and Algorithm 2 (It-
erative PMP). As we can see, the performances on this problem are
very similar.





CHAPTER 4

Linear-control systems and Deep Learning

In this chapter we propose a Deep Learning architecture to approximate dif-
feomorphisms diffeotopic to the identity. We consider a linear-control system and
we use the corresponding flow to approximate the action of a diffeomorphism on
a compact ensemble of points. Despite the simplicity of the control system, it has
been recently shown that a Universal Approximation Property holds (see Theo-
rem 4.3.3). We apply the tools developed in Chapter 3 to formulate the approx-
imation task as an ensemble optimal control problem. The discretization of the
problem naturally leads to a ResNet, i.e., a specific Deep Learning architecture.
Finally, we use Γ-convergence to provide an estimate of the expected generalization
error, and we perform some numerical experiments.

4.1. ResNets and control theory

Residual Neural Networks (ResNets) are particular instances of Deep Learn-
ing architectures and they were originally introduced in [32] in order to overcome
some issues related to the training process of traditional Deep Learning networks.
Indeed, it had been observed that, as the number of the layers in non-residual
architectures is increased, the learning of the parameters is affected by the vanish-
ing of the gradients (see, e.g., [11]) and the accuracy of the network gets rapidly
saturated (see [31]).

ResNets can be represented as the composition of non-linear mappings

Φ = ΦM ◦ . . . ◦ Φ1,

where M represents the depth of the Neural Network and, for every l = 1 . . .M ,
the building blocks Φl : Rn → Rn are of the form

Φl(x) = x+ σ(Wlx+ bl), (4.1.1)

where σ : Rn → Rn is a non-linear activation function that acts component-wise,
and Wl ∈ Rn×n and bl ∈ Rn are the parameters to be learned. In contrast, we
recall that in non-residual architectures Φ̄ = Φ̄M ◦ . . . ◦ Φ̄1, the building blocks
have usually the form

Φ̄l(x) = σ(Wlx+ bl)

for l = 1, . . . , N . In some recent contributions [26, 35, 29], ResNets have been
studied in the framework of mathematical control theory. The bridge between
ResNets and control theory was independently discovered in [26] and [29], where it

93
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was observed that each function Φ1, . . . ,ΦM defined as in (4.1.1) can be interpreted
as an Explicit Euler discretization of the control system

ẋ = σ(Wx+ b), (4.1.2)

where W and b are the control variables. Since then, control theory has been
fruitfully applied to the theoretical understanding of ResNets. In [51] a Univer-
sal Approximation result for the flow generated by (4.1.2) was established under
suitable assumptions on the activation function σ. In [35] and [14] the problem
of learning an unknown mapping was formulated as an Optimal Control problem,
and the Pontryagin Maximum Principle was employed in order to learn the optimal
parameters. In [18] it was consider the mean-field limit of (4.1.2), and it was pro-
posed a training algorithm based on the discretization of the necessary optimality
conditions for an optimal control problem in the space of probability measures.
The Maximum Principle for optimal control of probability measures was first in-
troduced in [43], and recently it has been independently rediscovered in [17]. In
this chapter, rather than using tools from control theory to study properties of
existing ResNets, we propose an architecture inspired by theoretical observations
on control systems with linear dependence in the control variables. As a matter
of fact, the building blocks of the ResNets that we shall construct depend linearly
in the parameters, namely they have the form

Φl(x) = x+G(x)ul,

where G : Rn → Rn×k is a non-linear function of the input, and ul ∈ Rk is the
vector of the parameters at the l-th layer. The starting points of our analysis are
the controllability results proved in [7, 8], where the authors considered a control
system of the form

ẋ = F (x)u =
k∑
i=1

Fi(x)ui, (4.1.3)

where F1, . . . , Fk are smooth and bounded vector fields on Rn, and u ∈ U :=
L2([0, 1],Rk) is the control. We immediately observe that (4.1.3) has a simpler
structure than (4.1.2), having linear dependence with respect to the control vari-
ables. Despite this apparent simplicity, the flows associated to (4.1.3) are capable
of interesting approximating results. Given a control u ∈ U , let Φu : Rn → Rn be
the flow obtained by evolving (4.1.3) on the time interval [0, 1] using the control
u. In [8] it was formulated a condition for the controlled vector fields F1, . . . , Fk
called Lie Algebra Strong Approximating Property. On one hand, this condition
guarantees exact controllability on finite ensembles, i.e., for every N ≥ 1, for ev-
ery {xj0}j=1,...,N ⊂ Rn such that j1 6= j2 =⇒ xj10 6= xj20 , and for every injective

mapping Ψ : Rn → Rn, there exists a control u ∈ U such that Φu(x
j
0) = Ψ(xj0) for

every j = 1, . . . , N . On the other hand, this property is also a sufficient condition
for a C0-approximate controllability result in the space of diffeomorphisms. More
precisely, given a diffeomorphism Ψ : Rn → Rn diffeotopic to the identity, and
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given a compact set K ⊂ Rn, for every ε > 0 there exists a control uε ∈ U such
that supK |Φuε(x) − Ψ(x)|2 ≤ ε. The aim of this chapter is to use the results
obtained in Chapter 3 to provide implementable algorithms for the approxima-
tion of diffeomorphisms diffeotopic to the identity. More precisely, we discretize
the control system (4.1.3) on the evolution interval [0, 1] using the Explicit Eu-
ler scheme and the uniformly distributed time-nodes {0, 1

M
, . . . , M−1

M
, 1}, and we

obtain the ResNet represented by the composition Φ = ΦM ◦ . . . ◦ Φ1, where, for
every l = 1, . . . ,M , Φl is of the form

xl = Φl(xl−1) = xl−1 + h
k∑
i=1

Fi(xl−1)ui,l, h =
1

M
, (4.1.4)

where x0 ∈ Rn represents an initial input of the network. In this construction, the
points (xl)l=0,...,M represent the approximations at the time-nodes { l

M
}l=0,...,M of

the trajectory xu : [0, 1]→ Rn that solves (4.1.3) with Cauchy datum xu(0) = x0.
We insist on the fact that in our discrete-time model we assume that the controls
are piecewise constant on the time intervals

{
[ l−1
M
, l
M

)
}
l=1,...,M

. For this reason,

when we derive a ResNet with M hidden layers, we deal with M building blocks
(i.e., Φ1, . . . ,ΦM) and with M k-dimensional parameters (ul)l=1,...,N = (ui,l)

i=1,...,k
l=1,...,M .

Moreover, when we evaluate the ResNet at a point x0 ∈ Rn, we end up with M+1
input/output variables (xl)l=0,...,M ⊂ Rn.

The chapter is organized as follows. In Section 4.2 we establish the notations
and we prove preliminary results regarding the flow generated by control system
(4.1.3). In Section 4.3 we recall some results contained in [7] and [8] concerning
exact and approximate controllability of ensembles. In Section 4.4 we explain why
the “null training error strategy” is not suitable for the approximation purpose,
and we outline the alternative strategy based on the resolution of an optimal
control problem. In Section 4.5 we prove a Γ-convergence result that holds when
the size M of the training dataset tends to infinity. As a byproduct, we obtain
the upper bound on the so called expected generalization error. In Section 4.6
we discretize the linear-control system (4.1.3) and we obtain the corresponding
ResNet, and we explain how the algorithms presented in Chapter 3 can be used
for the training of the network. Finally, in Section 4.7 we test numerically the
algorithms by approximating a diffeomorphism in the plane.

4.2. Notations and preliminary results

In this chapter we consider control systems of the form

ẋ = F (x)u =
k∑
i=1

Fi(x)ui, (4.2.1)

where the controlled vector fields (Fi)i=1,...,k satisfy the following assumption.
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Assumption 1. The vector fields F1, . . . , Fk are smooth and Lipschitz-continuous,
i.e., there exists C1 > 0 such that

sup
i=1,...,k

sup
x 6=y

|Fi(x)− Fi(y)|2
|x− y|2

≤ C1. (4.2.2)

The space of admissible controls is U := L2([0, 1],Rk), endowed with the usual
Hilbert space structure. Using Assumption 1, the classical Carathéodory Theorem
guarantees that, for every u ∈ U and for every x0 ∈ Rn, the Cauchy problem{

ẋ(s) =
∑l

i=1 Fi(x(s))ui(s),

x(0) = x0,
(4.2.3)

has a unique solution xu,x0 : [0, 1] → Rn. Hence, for every u ∈ U , we can define
the flow Φu : Rn → Rn as follows:

Φu : x0 7→ xu,x0(1), (4.2.4)

where xu,x0 solves (4.2.3). We recall that Φu is a diffeomorphism, since it is smooth
and invertible. We now prove an estimate of the Lipschitz constant of the flow
Φu : Rn → Rn for u ∈ U .

Lemma 4.2.1. For every admissible control u ∈ U , let Φu : Rn → Rn be corre-
sponding flow defined in (4.2.4). Then Φu is Lipschitz-continuous with constant

LΦu ≤ eC1

√
k||u||L2 , (4.2.5)

where C1 is the Lipschitz constant of the controlled fields F1, . . . , Fk.

Proof. The thesis follows from Grönwall Lemma and similar computations
as in the proof of Proposition 1.2.3. �

The next result regards the convergence of the flows (Φum)m≥1 corresponding
to a weakly convergent sequence (um)m≥1 ⊂ U .

Proposition 4.2.2. Given a sequence (um)m≥1 ⊂ U such that um ⇀L2 u as
m→∞ with respect to the weak topology of U , then the flows (Φum)m≥1 converge
to Φu uniformly on compact sets.

Proof. The thesis follows from the same argument as in the proof of Theo-
rem 3.2.5. Namely, Proposition 1.4.1 implies that (Φum)m≥1 is point-wise conver-
gent to Φu in Rn, while Lemma 4.2.1 and Ascoli-Arzelà Theorem guarantee the
C0 convergence on compact sets. �

4.3. Ensemble controllability

In this section we recall the most important results regarding the issue of
ensemble controllability. For the proofs and the statements in full generality we
refer the reader to [7] and [8]. We begin with the definition of ensemble in Rn. In
this section we will further assume that n > 1, which is the most interesting case.
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Definition 4. Given a compact set Θ ⊂ Rn, an ensemble of points in Rn is
an injective and continuous map γ : Θ → Rn. We denote by EΘ(Rn) the space of
ensembles.

Remark 4.3.1. If |Θ| = N < ∞, then an ensemble can be simply thought
as an injective map from {1, . . . , N} to Rn, or, equivalently, as an element of
(Rn)N \∆(N), where

∆(N) := {(x1, . . . , xN) ∈ (Rn)N : ∃j1 6= j2 s.t. xj1 = xj2}.

We define (Rn)(N) := (Rn)N \ ∆(N). Given a vector field F : Rn → Rn, we
define its N-fold vector field F (N) : (Rn)(N) → (Rn)(N) as F (N)(x1, . . . , xN) =
(F (x1), . . . , F (xN)), for every (x1, . . . , xN) ∈ (Rn)(N). Finally, we introduce the
notation EN(Rn) to denote the space of ensembles of Rn with N elements.

We give the notion of reachable ensemble.

Definition 5. The ensemble γ(·) ∈ EΘ(Rn) is reachable from the ensemble
α(·) ∈ EΘ(Rn) if there exists an admissible control u ∈ U such that its correspond-
ing flow Φu defined in (4.2.4) satisfies:

Φu(α(·)) = γ(·).
We can equivalently say that α(·) can be steered to γ(·).

Definition 6. Control system (4.2.1) is exactly controllable from α(·) ∈ EΘ(Rn)
if every γ(·) ∈ EΘ(Rn) is reachable from α(·). The system is globally exactly con-
trollable if it is exactly controllable from every α(·) ∈ EΘ(Rn).

We recall the definition of Lie algebra generated by a system of vector fields.
Given the vector fields F1, . . . , Fl, the linear space Lie(F1, . . . , Fk) is defined as

Lie(F1, . . . , Fk) := span{[Fis , [. . . , [Fi2 , Fi1 ] . . .]] : s ≥ 1, i1, . . . , is ∈ {1, . . . , k}},
(4.3.1)

where [F, F ′] denotes the Lie bracket between F, F ′, smooth vector fields of Rn.
In the case of finite ensembles, i.e., when |Θ| = N <∞, we can provide sufficient
condition for controllability. The proof reduces to the classical Chow-Rashevsky
theorem (see, e.g., the textbook [4]).

Theorem 4.3.1. Let F1, . . . , Fk be a system of vector fields on Rn. Given
N ≥ 1, if for every x(N) = (x1, . . . , xN) ∈ (Rn)(N) the system of M-fold vector

fields F
(N)
1 , . . . , F

(N)
k is bracket generating at x(N), i.e.,

Lie(F
(N)
1 , . . . , F

(N)
k )|x(N) = (Rn)N , (4.3.2)

then the control system (4.2.1) is globally exactly controllable on EN(Rn).

For a finite ensemble, the global exact controllability holds for a generic system
of vector fields.
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Proposition 4.3.2. For every k ≥ 2, N ≥ 1 and m sufficiently large, then
the k-tuples of vector fields (F1, . . . , Fk) ∈ (Vect(Rn))k such that system (4.2.1)
is globally exactly controllable on EN(Rn) is residual with respect to the Whitney
Cm-topology.

Proof. See [7, Theorem 3.2]. �

We recall that a set is said residual if it is the complement of a countable
union of nowhere dense sets. Proposition 4.3.2 means that, given any k-tuple
(F1, . . . , Fk) of vector fields, the corresponding control system (4.2.1) can be made
globally exactly controllable in EN(Rn) by means of an arbitrary small perturbation
of the fields F1, . . . , Fk in the Cm-topology.

When dealing with infinite ensembles, the notions of “exact reachable” and
“exact controllable” are too strong. However, they can be replaced by their re-
spective C0-approximate versions.

Definition 7. The ensemble γ(·) ∈ EΘ(Rn) is C0-approximately reachable
from the ensemble α(·) ∈ EΘ(Rn) if for every ε > 0 there exists an admissible
control u ∈ U such that its corresponding flow Φu defined in (4.2.4) satisfies:

sup
θ∈Θ
|Φu(α(θ))− γ(θ)|2 < ε. (4.3.3)

We can equivalently say that α(·) can be C0-approximately steered to γ(·).

Definition 8. Control system (4.2.1) is C0-approximately controllable from
α(·) ∈ EΘ(Rn) if every γ(·) ∈ EΘ(Rn) is C0-approximately reachable from α(·).
The system is globally C0-approximately controllable if it is C0-approximately con-
trollable from every α(·) ∈ EΘ(Rn).

Remark 4.3.2. Let us further assume that the compact set Θ ⊂ Rn has posi-
tive Lebesgue measure, and that it is equipped with a finite and positive measure
µ, absolutely continuous w.r.t. the Lebesgue measure. Then, the distance be-
tween the target ensemble γ(·) and the approximating ensemble Φu(α(·)) can be
quantified using the Lpµ-norm:

||Φu(α(·))− γ(·)||Lpµ =

(∫
Θ

|Φu(α(θ))− γ(θ)|p2 dµ(θ)

) 1
p

,

and we can equivalently formulate the notion of Lpµ-approximate controllability. In
general, given a non-negative continuous function a : Rn → R such that a(0) = 0,
we can express the approximation error as∫

Θ

a(Φu(α(θ))− γ(θ)) dµ(θ). (4.3.4)

In Section 4.5 we will consider an integral penalization term of this form. It is
important to observe that, if γ(·) is C0-approximately reachable from α(·), then
(4.3.4) can be made arbitrarily small.
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Before stating the next result we introduce some notations. Given a vector
field Z : Rn → Rn and a compact set K ⊂ Rn, we define

||Z||1,K := sup
x∈K

(
|Z(x)|2 +

n∑
i=1

|DxiZ(x)|2

)
.

Then we set

Lieδ1,K(F1, . . . , Fk) := {Z ∈ Lie(F1, . . . , Fk) : ||Z||1,K ≤ δ}.
We now formulate the assumption required for the approximability result.

Assumption 2. The system of vector fields F1, . . . , Fk satisfies the Lie algebra
strong approximating property, i.e., there exists m ≥ 1 such that, for every Cm-
regular vector field Y : Rn → Rn and for each compact set K ⊂ Rn there exists
δ > 0 such that

inf

{
sup
x∈K
|X(x)− Y (x)|2

∣∣∣X ∈ Lieδ1,K(F1, . . . , Fk)

}
= 0. (4.3.5)

The next result establishes a Universal Approximating Property for flows.

Theorem 4.3.3. Let Ψ : Rn → Rn be a diffeomorphism diffeotopic to the
identity. Let F1, . . . , Fk be a system of vector fields satisfying Assumptions 1 and 2.
Then for each compact set K ⊂ Rn and each ε > 0 there exists an admissible
control u ∈ U such that

sup
x∈K
|Ψ(x)− Φu(x)|2 ≤ ε, (4.3.6)

where Φu is the flow corresponding to the control u defined in (4.2.4).

Proof. See [8, Theorem 5.1]. �

We recall that Ψ : Rn → Rn is diffeotopic to the identity if and only if there
exists a family of diffeomorphisms (Ψs)s∈[0,1] smoothly depending on s such that
Ψ0 = Id and Ψ1 = Ψ. In this case, Ψ can be seen as the flow generated by the
non-autonomous vector field (s, x) 7→ Ys(x), where

Ys(x) :=
d

dε

∣∣∣∣
ε=0

Ψs+ε(x).

From Theorem 4.3.3 we can deduce a C0-approximate reachability result for infinite
ensembles.

Corollary 4.3.4. Let α(·), γ(·) ∈ EΘ(Rn) be diffeotopic, i.e., there exists a
diffeomorphism Ψ : Rn → Rn diffeotopic to the identity such that γ = Ψ ◦α. Then
γ(·) is C0-approximate reachable from α(·).

Remark 4.3.3. If a system of vector fields satisfies Assumption 2, then, for
every N ≥ 1 and for every x(N) ∈ (Rn)(N) Lie bracket generating condition (4.3.2)
is automatically satisfied (see [8, Theorem 4.3]). This means that Assumption 2
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guarantees global exact controllability in EN(Rn), and C0-approximate reachability
for infinite diffeotopic ensembles.

We conclude this section with the exhibition of a system of vector fields in Rn

meeting Assumptions 1 and 2.

Theorem 4.3.5. For every n > 1 and ν > 0, consider the vector fields in Rn

F̄i(x) :=
∂

∂xi
, F̄ ′i (x) := e−

1
2ν
|x|2 ∂

∂xi
, i = 1, . . . , n. (4.3.7)

Then the system F̄1, . . . , F̄n, F̄
′
1, . . . , F̄

′
n satisfies Assumptions 1 and 2.

Proof. See [8, Proposition 6.1]. �

Remark 4.3.4. If we consider the vector fields F̄1, . . . , F̄n, F̄
′
1, . . . , F̄

′
n defined

in (4.3.7), then Theorem 4.3.3 and Theorem 4.3.5 guarantee that the flows gen-
erated by the corresponding linear-control system can approximate on compact
sets diffeorphisms diffeotopic to the identity. From a theoretical viewpoint, this
approximation result cannot be strengthened by enlarging the family of controlled
vector fields, since the flows produced by any controlled dynamical system are
themselves diffeotopic to the identity. On the other hand, in view of the dis-
cretization of the dynamics and the consequent construction of the ResNet, it
could be useful to enrich the system of the controlled fields. As suggested by As-
sumption 2, the expressivity of the linear-control system is more directly related
to the space Lie(F1, . . . , Fk), rather than to the family F1, . . . , Fk itself. How-
ever, as we are going to see, “reproducing” the flow of a field that belongs to
Lie(F1, . . . , Fk) \ span{F1, . . . , Fk} can be expensive. Let us consider an evolution
step-size h ∈ (0, 1/4) and let us choose two of the controlled vector fields, say
F1, F2, and let us assume that [F1, F2] ∈ Lie(F1, . . . , Fk) \ span{F1, . . . , Fk}. Let
us denote by e±hFi : Rn → Rn, i = 1, 2 the flows obtained by evolving ±Fi, i = 1, 2
for an amount of time equal to h. Then, using for instance the computations in
[4, Subsection 2.4.7], for every x ∈ K compact we obtain that(

e−hF2 ◦ e−hF1 ◦ ehF2 ◦ ehF1
)

(x) = eh
2[F1,F2](x) + o(h2)

as h → 0. The previous computation shows that, in order to approximate the
effect of evolving the vector field [F1, F2] for an amount of time equal to h2, we
need tho evolve the fields ±Fi, i = 1, 2 for a total amount 4h. If h represents the
discretization step-size used to derive the ResNet (4.1.4) from the linear-control
system (4.2.1) on the interval [0, 1], then we have that h = 1

M
, where N is the

number of layers of the ResNet. The argument above suggests that we need to
use 4 layers of the network to “replicate” the effect of evolving [F1, F2] for the
amount of time h2 = 1

M2 (note that h2 � h when M � 1). This observation
provides an insight for the practical choice of the system of controlled fields. In first
place, the system F1, . . . , Fk should meet Assumption 2. If the ResNet obtained
from the discretization of the system does not seem to be expressive enough, it
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should be considered to enlarge the family of the controlled fields, for example by
including some elements of span{[Fi1 , Fi2 ] : i1, i2 ∈ {1, . . . , k}} (or, more generally,
of Lie(F1, . . . , Fk)). We insist on the fact that this procedure increases the width
of the network, since the larger is the number of fields in the control system, the
larger is the number of parameters per layer in the ResNet.

4.4. Approximation of diffeomorphisms: robust strategy

In this section we introduce the central problem of the chapter, i.e., the training
of control system (4.2.1) in order to approximate an unknown diffeomorphism
Ψ : Rn → Rn diffeotopic to the identity. A typical situation that may arise in
applications is that we want to approximate Ψ on a compact set K ⊂ Rn, having
observed the action of Ψ on a finite number of training points {x1

0, . . . , x
N
0 } ⊂ K.

Our aim is to formulate a strategy that is robust with respect to the size N of the
training dataset, and for which we can give upper bounds for the generalization
error. In order to obtain higher and higher degree of approximation, we may think
to triangulate the compact set K with an increasing number of nodes where we
can evaluate the unknown map Ψ. Using the language introduced in Section 4.3,
we have that, for every N ≥ 1, we may for instance understand a triangulation of
K with N nodes as an ensemble αN(·) ∈ EN(Rn). After evaluating Ψ in the nodes,
we obtain the target ensemble γN(·) ∈ EN(Rn) as γN(·) := Ψ(αN(·)).

4.4.1. Approximation via ensemble controllability. If the vector fields
F1, . . . , Fk that define control system (4.2.1) meet Assumptions 1 and 2, then
Theorem 4.3.1 and Remark 4.3.3 may suggest a first natural attempt to design an
approximation strategy. Indeed, for every N , we can exactly steer the ensemble
αN(·) to the ensemble γN(·) with an admissible control uN ∈ U . Hence, we can
choose the flow ΦuN defined in (4.2.4) as an approximation of Ψ on K, achieving a
null training error. Assume that, for every N ≥ 1, the corresponding triangulation
is a εN -approximation of the set K, i.e., for every y ∈ K there exists j̄ ∈ {1, . . . , N}
such that |y − xj̄,M0 |2 ≤ εN , where xj̄,N0 := αN(j̄). Then, for every y ∈ K, we can
give the following estimate for the generalization error:

|Ψ(y)− ΦuN (y)|2 ≤ |Ψ(y)−Ψ(xj̄,N0 )|2 + |ΦuN (xj̄,N0 )− ΦuN (y)|2
≤ LΨε

N + LΦ
uN
εN ,

where LΨ, LΦ
uN

are respectively the Lipschitz constants of Ψ and ΦuN . Assuming

(as it is natural to do) that εN → 0 as N → ∞, the strategy of achieving zero
training error works if, for example, the Lipschitz constants of the approximating
flows (ΦuN )N≥1 are bounded from above. This in turn would follow if the sequence
of controls (uN)N≥1 were bounded in L2-norm. However, as we are going to see in
the following proposition, in general this is not the case. Let us define

FlowsK(F1, . . . , Fk) := {Φu : u ∈ U},
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the space of flows restricted to K obtained via (4.2.4) with admissible controls, and
let Diff0

K(Rn) be the space of diffeomorphisms diffeotopic to the identity restricted
to K. Theorem 4.3.3 guarantees that, for every K ⊂ Rn,

FlowsK(F1, . . . , Fk)
C0

= Diff0
K(Rn).

Proposition 4.4.1. Given a diffeomorphism diffeotopic to the identity Ψ ∈
Diff0

K(Rn)\FlowsK(F1, . . . , Fk) and an approximating sequence of flows (Φum)m≥1 ⊂
FlowsK(F1, . . . , Fk) such that Φum →C0 Ψ on K as m→∞, then the sequence of
controls (um)m≥1 ⊂ U is unbounded in the L2-norm.

Proof. By contradiction, let (um)m≥1 be a bounded sequence in U . Then,
we can extract a subsequence (um`)`≥1 weakly convergent to u ∈ U . In virtue
of Proposition 4.2.2, we have that Φum`

→C0 Φu on K as ` → ∞. However,
since Φum →C0 Ψ on K, we deduce that Ψ = Φu on K, but this contradicts the
hypothesis Ψ ∈ Diff0

K(Rn) \ FlowsK(F1, . . . , Fk). �

The previous result sheds light on a weakness of the approximation strategy
described above. Indeed, the main drawback is that we have no bounds on the
norm of the controls (uN)N≥1, and therefore, even though the triangulation of K
is fine, we cannot give an a priori estimate of the testing error. We point out that,
in the different framework of simultaneous control of several systems, a similar
situation was described in [6].

4.4.2. Approximation via optimal control. In order to avoid the issues
described above, we propose a training strategy based on the solution of an ensem-
ble optimal control problem with a regularization term penalizing the L2-norm of
the control. Namely, given a set of training points {x1

0, . . . , x
N
0 } ⊂ K, we consider

the nonlinear functional FN : U → R defined as follows:

FN(u) :=
1

N

N∑
j=1

a(Φu(x
j
0)−Ψ(xj0)) +

β

2
||u||2L2 , (4.4.1)

where a : Rn → R is a smooth loss function such that a ≥ 0 and a(0) = 0, and
β > 0 is a fixed parameter. The functional FN is composed by two competing
terms: the first aims at achieving a low mean training error, while the second aims
at keeping bounded the L2-norm of the control. In this framework, it is worth
assuming that the compact set K is equipped with a Borel probability measure µ.
In this way, we can give higher weight to the regions in K where we need more
accuracy in the approximation. As done before, for every N ≥ 1 we understand
the training dataset as an ensemble αN(·) ∈ EN(Rn). Moreover, we associate to it
the discrete probability measure µN defined as

µN :=
1

N

N∑
j=1

δα(j), (4.4.2)
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and we can equivalently express the mean training error as

1

N

N∑
j=1

a(Φu(x
j
0)−Ψ(xj0)) =

∫
Rn
a(Φu(x)−Ψ(x)) dµN(x).

From now on, when considering datasets growing in size, we make the following
assumption on the sequence of probability measures (µN)N≥1.

Assumption 3. There exists a Borel probability measure µ supported in the
compact set K ⊂ Rn such that the sequence (µN)N≥1 is weakly convergent to µ,
i.e.,

lim
N→∞

∫
Rn
f(x) dµN =

∫
Rn
f(x) dµ, (4.4.3)

for every bounded continuous function f : Rn → R. Moreover, we ask that µN is
supported in K for every N ≥ 1.

Remark 4.4.1. The request of Assumption 3 is rather natural. Indeed, if
the elements of the ensembles αN(·) ∈ EN(Rn) are sampled using the probability
distribution µ associated to the compact set K, it follows from the law of large
numbers that (3.5.5) holds. On the other hand, since we ask that all the ensembles
are contained in the compact set K, we have that the sequence of probability
measures (µN)N≥1 is tight. Therefore, in virtue of Prokhorov Theorem, (µN)N≥1

is sequentially weakly pre-compact (for details see, e.g., [21]).

Remark 4.4.2. When K = int(K), if for every N αN(·) is a εN -approximation
of K such that εN → 0 as N →∞, then the corresponding sequence of probability
measures (µN)N≥1 is weakly convergent to µ = 1

L(K)
L|K , where L denotes the

Lebesgue measure in Rn.

We observe that the problem of minimizing the functional FN : U → R+

defined in (4.4.1) is strictly related to the resolution of an ensemble optimal control
problem, of the type studied in Chapter 3. More precisely, using the same notations
as in the previous chapter, we can consider the following ensemble of linear-control
systems in Rn: {

ẋθ(s) =
∑k

i=1 Fi(x
θ(s))ui(s), s ∈ [0, 1]

xθ(0) = ι(θ),
(4.4.4)

where ι : K → Rn is the inclusion of K into Rn. We observe that in (4.4.4)
the parameter θ ∈ K affects only the value of the Cauchy datum, but not the
controlled vector fields. In analogy with the discussion in the previous chapter, we
can rewrite the functional FN : U → R+ as follows:

FN(u) =

∫
K

ã(xθu(1), θ)dµN(θ) +
β

2
||u||2L2 , (4.4.5)
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where ã(x, θ) := a(x − ψ(ι(θ))) for every x ∈ Rn and θ ∈ K. Therefore, the
results proved in Chapter 3 for general ensembles of affine-control systems imply
immediately the following proposition.

Proposition 4.4.2. For every N ≥ 1 the functional FN : U → R defined in
(4.4.1) admits a minimizer. Moreover, if Assumption 3 is met, then there exists
Cβ > 0 such that, for every N ≥ 1, any minimizer ũN of FN satisfies the following
inequality:

||ũN ||L2 ≤ Cβ. (4.4.6)

Proof. The thesis follows as a particular case from Theorem 3.4.2 and from
Lemma 3.5.1. �

The previous result suggests as a training strategy to look for a minimizer of the
functional FN . In the next section we investigate the properties of the functionals
(FN)N≥1 using the tools of Γ-convergence.

4.5. Ensembles growing in size and Γ-convergence

In this section we study the limiting problem when the size of the training
dataset tends to infinity. The main fact is that a Γ-convergence result holds.
Roughly speaking, this means that increasing the size of the training dataset does
not make the problem harder, at least from a theoretical viewpoint. Even though
the problems studied in the present chapter are a direct applications of the tools
developed in Chapter 3, it is interesting to observe that the interplay between finite
and infinite ensembles is done in the opposite direction. Indeed, in Chapter 3 we
were assigned a problem involving an infinite ensemble of control systems, and we
used Γ-convergence to approximate them with optimal control problems of easier-
to-handle finite ensembles. On the other hand, in this case the problem of the
diffeomorphism approximation naturally involves a finite number of observations,
and we employ Γ-convergence to study the limiting case when the size of the
dataset goes to infinity.

For every N ≥ 1, let αN(·) ∈ EN(Rn) be an ensemble of points in the compact
set K ⊂ Rn, and let us consider the discrete probability measure µN defined in
(4.4.2). For every N ≥ 1 we consider the functional FN : U → R defined as
follows:

FN(u) :=

∫
Rn
a(Φu(x)−Ψ(x)) dµN(x) +

β

2
||u||2L2 . (4.5.1)

The tools of Γ-convergence requires the domain where the functionals are defined
to be equipped with a metrizable topology. Recalling that the weak topology of L2

is metrizable only on bounded sets, we need to properly restrict the functionals.
For every ρ > 0, we set

Uρ := {u ∈ U : ||u||L2 ≤ ρ}.
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Using Proposition 4.4.2 we can choose ρ = Cβ, so that

arg min
U
FN = arg min

Uρ
FN ,

for every N ≥ 1. With this choice we restrict the minimization problem to a
bounded subset of U , without losing any minimizer. As done in the previous
chapter, with a slight abuse of notations we still denote by FN the restriction of
FN to Uρ. Let us define the functional F∞ : U → R as follows:

F∞(u) :=

∫
Rn
a(Φu(x)−Ψ(x)) dµ(x) +

β

2
||u||2L2 , (4.5.2)

where the probability measure µ is the weak limit of the sequence (µN)N≥1. Using
the same argument as in the proof of Proposition 4.4.2, we can prove that F∞
attains minimum and that

arg min
U
F∞ = arg min

Uρ
F∞,

with ρ = Cβ. As before, we use F∞ to denote as well the restriction of F∞ to Uρ.
The following result follows as a particular case of the Theorem 3.5.3.

Theorem 4.5.1. Given ρ > 0, let us consider FN : Uρ → R with N ≥ 1.
Let F∞ : Uρ → R be the restriction to Uρ of the functional defined in (4.5.2). If
Assumption 3 holds, then the functionals (FN)N≥1 Γ-converge to F∞ as N →∞
with respect to the weak topology of U .

Proof. The Γ-convergence descends as a particular case of Theorem 3.5.3. �

Remark 4.5.1. Using the equi-coercivity of the functionals (FN)N≥1 and [24,
Corollary 7.20], we deduce that

lim
N→∞

min
Uρ
FN = min

Uρ
F∞, (4.5.3)

and that any cluster point ũ of a sequence of minimizers (ũN)N≥1 is a minimizer
of F∞. Let us assume that a sub-sequence ũNj ⇀ ũ as j → ∞. Using Proposi-
tion 4.2.2 and the Dominated Convergence Theorem we deduce that

lim
j→∞

∫
K

a(ΦũNj
(x)−Ψ(x)) dµNj(x) =

∫
K

a(Φũ(x)−Ψ(x)) dµ(x), (4.5.4)

where we stress that ũ is a minimizer of F∞. Combining (4.5.3) and (4.5.4) we
obtain that

lim
j→∞

β

2
||ũNj ||2L2 =

β

2
||ũ||2L2 .

Since ũNj ⇀ ũ as j → ∞, the previous equation implies that the subsequence
(ũNj)j≥1 converges to ũ also with respect to the strong topology of L2. This
argument shows that any sequence of minimizers (ũM)N≥1 is pre-compact with
respect to the strong topology of L2.
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We can establish an asymptotic upper bound for the mean training error. Let
us define

κβ := sup

{∫
K

a(Φũ(x)−Ψ(x)) dµ(x)

∣∣∣∣ũ ∈ arg min
U
F∞
}
. (4.5.5)

As suggested by the notation, the value of κβ highly depends on the positive
parameter β that tunes the L2-regularization. Given a sequence of minimizers
(ũN)N≥1 of the functionals (FN)N≥1, from (4.5.4) we deduce that

lim sup
N→∞

∫
K

a(ΦũN (x)−Ψ(x)) dµN(x) ≤ κβ. (4.5.6)

In the next result we show that under the hypotheses of Theorem 4.3.3 κβ can be
made arbitrarily small with a proper choice of β.

Proposition 4.5.2. Let κβ be defined as in (4.5.5). If the vector fields F1, . . . , Fk
that define control system (4.2.1) satisfy Assumption 1 and 2, then

lim
β→0+

κβ = 0. (4.5.7)

Proof. Let us fix ε > 0. Since a(0) = 0, there exists ρ > 0 such that

sup
Bρ(0)

a ≤ ε.

Using Theorem 4.3.3, we deduce that there exists a control û ∈ U such that

sup
x∈K
|Φû(x)−Ψ(x)|2 < ρ. (4.5.8)

This implies that ∫
K

a(Φû(x)−Ψ(x)) dµ(x) ≤ ε.

Let us set β̂ := 2ε
||û||2

L2
. For any β ≤ β̂, let F∞ be the functional defined in (4.5.2)

with tuning parameter β, and let ũ ∈ U be a minimizer of F . Then we have

F∞(ũ) ≤ F∞(û) ≤ ε+
β

2
||û||2L2 ≤ 2ε,

and this concludes the proof. �

4.5.1. An estimate of the generalization error. We now discuss an es-
timate of the expected generalization error based on the observation of the mean
training error, similar to the one established in [39] for the control system (4.1.2).
A similar estimate was obtained also in [18]. Assumption 3 implies that the
Wasserstein distance W1(µN , µ) → 0 as N → ∞ (for details, see [1, Proposi-
tion 7.1.5]). We recall that, if ν1, ν2 ∈ P(K) are Borel probability measures on K,
then

W1(ν1, ν2) := inf
π∈P(K×K)

{∫
K×K
|x− y|2 dπ(x, y)

∣∣∣π(·, K) = ν1, π(K, ·) = ν2

}
.
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For every N ≥ 1 let us introduce πN ∈ P(K ×K) such that πN(·, K) = µN and
πN(K, ·) = µ, and

W1(µN , µ) =

∫
K×K
|x− y|2 dπN(x, y).

Let us consider an admissible control u ∈ U , and let Φu : Rn → Rn be the corre-
sponding flow. If the testing samples are generated using the probability distribu-
tion µ, then the expected generalization error that we commit by approximating
Ψ : Rn → Rn with Φu is

Eµ[a(Φu(·)−Ψ(·))] =

∫
K

a(Φu(y)−Ψ(y)) dµ(y).

On the other hand, we recall that the corresponding training error is expressed by∫
K

a(Φu(x)−Ψ(x)) dµN(x).

Hence we can compute∣∣∣∣Eµ[a(Φu(·)−Ψ(·))]−
∫
K

a(Φu(x)−Ψ(x)) dµN(x)

∣∣∣∣
≤
∫
K×K
|a(Φu(y)−Ψ(y))− a(Φu(x)−Ψ(x))| dπN(x, y)

≤ La

∫
K×K
|Ψ(y)−Ψ(x)|+ |Φu(x)− Φu(y)| dπN(x, y).

Then for every N ≥ 1 we have∣∣∣∣Eµ[a(Φu(·)−Ψ(·))]−
∫
K

a(Φu(x)−Ψ(x)) dµN(x)

∣∣∣∣ ≤ La(LΨ + LΦu)W1(µN , µ),

where LΨ, LΦu and La are the Lipschitz constant, respectively, of Ψ, Φu and a.
The last inequality finally yields

Eµ[a(Φu(·)−Ψ(·))] ≤
∫
K

a(Φu(x)−Ψ(x)) dµN(x)+La(LΨ+LΦu)W1(µN , µ) (4.5.9)

for every N ≥ 1.

Remark 4.5.2. We observe that the estimate (4.5.9) does not involve any
testing dataset. In other words, in principle we can use (4.5.9) to provide an
upper bound to the expected generalization error, without the need of computing
the mismatch between Ψ and Φu on a testing dataset. In practice, while we can
directly measure the first quantity at the right-hand side of (4.5.9), the second term
could be challenging to estimate. Indeed, if on one hand we can easily approximate
the quantity LΦu (for instance by means of (4.2.5)), on the other hand we may have
no access to the distance W1(µN , µ). This is actually the case when the measure
µ used to sample the training dataset is unknown.
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In the case we consider the flow ΦûN corresponding to a minimizer ûN of the
functional FN we can further specify (4.5.9). Indeed, combining Proposition 4.4.2
and Lemma 4.2.1, we deduce that LΦũN

is uniformly bounded with respect to N

by a constant Lβ. Provided that N is large enough, from (4.5.9) and (4.5.6) we
obtain that

Eµ[a(ΦũN (·)−Ψ(·))] ≤ 2κβ + La(LΨ + Lβ)W1(µN , µ). (4.5.10)

The previous inequality shows how we can achieve an arbitrarily small expected
generalization error, provided that the vector fields F1, . . . , Fk of control system
(4.2.1) satisfy Assumption 2, and provided that the size of the training dataset
could be chosen arbitrarily large. First, using Proposition 4.5.2 we set the tuning
parameter β such that the quantity κβ is as small as desired. Then, we consider a
training dataset large enough to guarantee that the second term at the right-hand
side of (4.5.10) is of the same order of κβ.

Remark 4.5.3. Given ε > 0, Proposition 4.5.2 guarantees the existence of
β̂ > 0 such that κβ ≤ ε if β ≤ β̂. The expression of β̂ obtained in the proof of
Proposition 4.5.2 is given in terms of the norm of a control û ∈ U such that (4.5.8)
holds. In [7], where Theorem 4.3.3 is proved, it is explained the construction
of an admissible control whose flow approximate the target diffeomorphism with
assigned precision. However the control produced with this procedure is, in general,
far from having minimal L2-norm, and as a matter of fact the corresponding β̂
might be smaller than necessary. Unfortunately, at the moment, we can not provide
a more practical rule for the computation of β̂.

Remark 4.5.4. As observed in Remark 4.5.2 for (4.5.9), the estimate (4.5.10)
of the expected generalization error holds as well a priori with respect to the choice
of a testing dataset. Moreover, if the size M of the training dataset is assigned and
it cannot be enlarged, in principle one could choose the regularization parameter
β by minimizing the right-hand side of (4.5.10). However, in practice this may be
very complicated, since we have no direct access to the function β 7→ κβ.

4.6. Construction and training of the ResNet

A ResNet with M layers is an application Φ = ΦM ◦ . . .Φ1 defined as the
composition of parametric functions (called building blocks) Φl : Rn × Rk → Rn

with l = 1, . . . ,M . The building blocks have a precise structure, namely they are
of the form:

Φl(x) = x+G(x, ul), (4.6.1)

where G : Rn × Rk → Rn is assigned and, together with the number of layers M ,
constitutes the architecture of the network. As observed in [26, 29] the building
blocks (4.6.1) can be seen as an Explicit Euler discretization of the following control
system in Rn

ẋ(s) = G(x(s), u(s)), s ∈ [0,M ], (4.6.2)
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with discretization step-size h = 1. Of course, it is also possible to proceed in the
other way round, i.e., to work out an M -layer ResNet by discretizing a control
system on a time interval [0, T ], setting the step-size h = T

M
. The parameters

u1, . . . , uM ∈ Rk that appear in (4.6.1) should be properly adjusted during the so
called training phase of the ResNet, which consists in the resolution of a non-linear
minimization problem. The objective function that is minimized depends on the
task we are training the network for. For example, in the case of the problem of
diffeomorphisms approximation studied so far, we could consider

min
u1,...,uM∈Rk

{
1

N

N∑
j=1

a(Φu(xj0)−Ψ(xj0)) +
β

2

M∑
l=1

|ul|22

}
, (4.6.3)

where Φu : Rn → Rn is the map corresponding to the choices of parameters
u = (u1, . . . , uM) in the building blocks (4.6.1), and {x1

0, . . . , x
N
0 } is the ensemble

of points where Ψ : Rn → Rn is observed. The minimization problem (4.6.3) is
usually solved by applying the gradient method (or some of its variations) to the
parameters (u1, . . . , uM). For more details, we refer the reader to the textbook
[28]. On the other hand, the fact that ResNets are discretizations of control
systems paves the way for the use of numerical methods specifically developed for
optimal control problems, as done in some recent contributions (see [14, 18, 35]).
In particular, regarding the problem of the observations-based diffeomorphism
approximation, it can be formulated as an ensemble optimal control problem, as
explained in Section 4.4. Therefore, since the system that we consider is linear
in the controls, we can employ the numerical schemes introduced in Chapter 3.
Moreover, the algorithms introduced in Section 3.7 make both use of the Explicit
Euler scheme to discretize the control system. Therefore, if we consider the control
system (4.2.1) on the time horizon [0, 1] and we use as step-size h = 1

M
, then we

obtain a ResNet with building blocks

Φl(x) = x+ h

k∑
i=1

Fi(x)ul,i, h =
1

M
, (4.6.4)

for l = 1, . . . ,M . We insist on the fact that the building blocks (4.6.4) are linear
with respect to the parameters. This is an original feature in ResNets architectures,
and the main advantage is that it positively affects the amount of computations
in the training phase. In the next section we test on an example the training algo-
rithms obtained using Algorithm 1 and Algorithm 2, that were originally developed
for the resolution of more general ensemble optimal control problems.

4.7. Numerical experiments: learning a diffeomorphism

In this section we describe the numerical experiments involving the approxi-
mation of an unknown diffeomorphism by means of Algorithm 1 and Algorithm 2.
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We consider the following diffeomorphism Ψ̃ : R2 → R2:

Ψ̃(x) := x+

(
2x1e

x21−1

2x3
2

)
+

(
−4
−4.5

)
,

the rotation R : R2 → R2 centered at the origin and with angle π/3, and the
translation T : R2 → R2 prescribed by the vector (0.3, 0.2). Finally, we set

Ψ := Ψ̃ ◦ T ◦R. (4.7.1)

We generate the training dataset {x1, . . . , xM} with M = 900 points by construct-
ing a uniform grid in the square centered at the origin and with side of length
` = 1.5. In Figure 1 we report the training dataset and its image trough Ψ. We
have implemented the codes in Matlab and we have ran them on a laptop with 16
GB of RAM and a 6-core 2.20 GHz processor.

4.7.1. Diffeomorphism approximation: first attempt. Since we consider
R2 as ambient space, Theorem 4.3.3 and Theorem 4.3.5 guarantee that the linear-
control system associated to the fields

F1(x) :=
∂

∂x1

, F2(x) :=
∂

∂x2

,

F ′1(x) := e−
1
2ν
|x|2 ∂

∂x1

, F ′2(x) := e−
1
2ν
|x|2 ∂

∂x2

,

is capable of approximating on compact sets diffeomorphisms that are diffeotopic
to the identity. However, it looks natural to include in the set of the controlled
vector fields also the following ones:

G1
1(x) := x1

∂

∂x1

, G2
1(x) := x2

∂

∂x1

,

G1
2(x) := x1

∂

∂x2

, G2
2(x) := x2

∂

∂x2

.

Indeed, with this choice, we observe that the corresponding control system

ẋ =

(
u1

u2

)
+ e−

1
2ν
|x|2
(
u′1
u′2

)
+

(
u1

1 u2
1

u1
2 u2

2

)(
x1

x2

)
(4.7.2)

can reproduce exactly non-autonomous vector fields that are linear in the state
variables (x1, x2). Moreover, the discretization of the control system (4.7.2) on the
evolution interval [0, 1] with step-size h = 1

N
gives rise to a ResNet Φ = ΦN ◦. . .◦Φ1

with N layers, whose building blocks have the form:

Φk(x) = x+ h

[(
u1

u2

)
+ e−

1
2ν
|x|2
(
u′1
u′2

)
+

(
u1

1 u2
1

u1
2 u2

2

)(
x1

x2

)]
, (4.7.3)

and each of them has 8 parameters.
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Figure 1. On the left we report the grid of points {x1, . . . , xM}
where we have evaluated the diffeomorphism Ψ : R2 → R2 defined
as in (4.7.1). The picture on the right represents the transformation
of the training dataset through the diffeomorphism Ψ.

If we denote by µ the probability measure that charges uniformly the square and
if we set µN := 1

N

∑N
j=1 δxj , we obtain the following estimate

W1(µN , µ) ≤
√

2`

2
√
N
,

that can be used to compute the a priori estimate of the generalization error
provided by (4.5.9). We use the 1−Lipschitz loss function

a(x− y) :=
√

1 + (x1 − y1)2 + (x2 − y2)2 − 1,

and we look for a minimizer of

FN(u) :=
1

900

900∑
j=1

a(Φu(x
j)−Ψ(xj)) +

β

2
||u||2L2 , (4.7.4)

where β > 0 is the regularization hyper-parameter. In the training phase we
use the same dataset for Algorithm 1 and Algorithm 2, and in both cases the
initial guess of the control is u ≡ 0. Finally, the testing dataset has been gener-
ated by randomly sampling 300 points using µ, the uniform probability measure
on the square. The value of the hyper-parameter ν is set equal to 20. We first
try to approximate the diffeomorphism Ψ using h = 2−4, resulting in 16 inner
layers. Hence, recalling that each building-block (4.7.3) has 8 parameters, the
corresponding ResNet has in total 128 parameters. We have tested different val-
ues of β, and we set maxiter = 500. The results obtained by Algorithm 1 and
Algorithm 2 are reported in Table 1 and Table 2, respectively. We observe that
in both algorithms the Lipschitz constant of the produced diffeomorpism grows as
the hyper-parameter β gets smaller, consistently with the theoretical intuition. As
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β LΦu Training error Testing error
100 1.19 3.8785 3.8173

10−1 8.40 1.3143 1.2476
10−2 9.32 1.1991 1.1451
10−3 9.37 1.1852 1.1330
10−4 9.37 1.1839 1.1318

Table 1. ResNet 4.7.3, 16 layers, 128 parameters, Algorithm 1.
Running time ∼ 160 s.

β LΦu Training error Testing error
100 1.19 3.8749 3.8157

10−1 8.40 1.3084 1.2455
10−2 9.32 1.2014 1.1486
10−3 9.33 1.1898 1.1387
10−4 9.33 1.1898 1.1379

Table 2. ResNet 4.7.3, 16 layers, 128 parameters, Algorithm 2.
Running time ∼ 130 s.

regards the testing error, we observe that it always remains reasonably close to
the corresponding training error. We report in Figure 2 the image of the approx-
imation that achieves the best training and testing errors, namely Algorithm 1
with β = 10−4. As we may observe, the prediction is quite unsatisfactory, both
on the training and on the testing data-sets. Finally, we report that the formula
(4.5.9) correctly provides an upper bound to the testing error, even though it is
too pessimistic to be of practical use.

In order to improve the quality of the approximation, a natural attempt consists
in trying to increase the depth of the ResNet. Therefore, we have repeated the
experiments setting h = 2−5, that corresponds to 32 layers. Recalling that the
ResNet in exam has 8 parameters per layer, the architecture has globally 256
weights. The results are reported in Table 3 and Table 4. Unfortunately, despite
doubling the depth of the ResNet, we do not observe any relevant improvement
in the training nor in the testing error. Using the idea explained in Remark 4.3.4,
instead of further increase the number of the layers, we try to enlarge the family
of the controlled vector fields in the control system associated to the ResNet.

4.7.2. Diffeomorphism approximation: enlarged family of controlled
fields. Using the ideas expressed in Remark 4.3.4, we enrich the family of the
controlled fields. In particular, in addition to the fields considered above, we
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Figure 2. ResNet 4.7.3, 16 layers, Algorithm 1, β = 10−4. On the
top-left we reported the transformation of the initial grid through the
approximating diffeomorphism (red circles) and through the original
one (blue circles). On the top-right, we plotted the prediction on the
testing data-set provided by the approximating diffeomorphism (red
crosses) and the correct values obtained through the original trans-
formation (blue crosses). In both cases, the approximation obtained
is unsatisfactory. At bottom we plotted the decrease of the training
error and the testing error versus the number of iterations. Finally,
the curve in magenta represents the estimate of the generalization
error provided by (4.5.9).

include the following ones:

G1,1
1 := x2

1e
− 1

2ν
|x|2 ∂

∂x1

, G1,2
1 := x1x2e

− 1
2ν
|x|2 ∂

∂x1

, G2,2
1 := x2

2e
− 1

2ν
|x|2 ∂

∂x1

,

G1,1
2 := x2

1e
− 1

2ν
|x|2 ∂

∂x2

, G1,2
2 := x1x2e

− 1
2ν
|x|2 ∂

∂x2

, G2,2
2 := x2

2e
− 1

2ν
|x|2 ∂

∂x2

.
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β LΦu Training error Testing error
100 1.19 3.8779 3.8168

10−1 8.40 1.3074 1.2425
10−2 9.26 1.2015 1.1477
10−3 9.34 1.1860 1.1352
10−4 9.34 1.1842 1.1332

Table 3. ResNet 4.7.3, 32 layers, 256 parameters, Algorithm 1.
Running time ∼ 320 s.

β LΦu Training error Testing error
100 1.19 3.8739 3.8148

10−1 8.35 1.3085 1.2449
10−2 9.23 1.2075 1.1538
10−3 9.26 1.1931 1.1416
10−4 9.26 1.1918 1.1404

Table 4. ResNet 4.7.3, 32 layers, 256 parameters, Algorithm 2.
Running time ∼ 260 s.

Therefore, the resulting linear-control system on the time interval [0, 1] has the
form

ẋ =

(
u1

u2

)
+ e−

1
2ν
|x|2
(
u′1
u′2

)
+

(
u1

1 u2
1

u1
2 u2

2

)(
x1

x2

)
+ e−

1
2ν
|x|2
(
u1,1

1 x2
1 + u1,2

1 x1x2 + u2,2
1 x2

2

u1,1
2 x2

1 + u1,2
2 x1x2 + u2,2

2 x2
2

)
,

while the building blocks of the corresponding ResNet have the following expres-
sion:

Φk(x) = x+ h

[(
u1

u2

)
+ e−

1
2ν
|x|2
(
u′1
u′2

)
+

(
u1

1 u2
1

u1
2 u2

2

)(
x1

x2

)
(4.7.5)

+e−
1
2ν
|x|2
(
u1,1

1 x2
1 + u1,2

1 x1x2 + u2,2
1 x2

2

u1,1
2 x2

1 + u1,2
2 x1x2 + u2,2

2 x2
2

)]
(4.7.6)

for k = 1, . . . , N , where h = 1
N

is the discretization step-size and N is the number
of layers of the ResNet. We observe that each building block has 14 parameters.

As before, we set ν = 20, maxiter = 500 and we consider h = 2−4, resulting
in a ResNet with 16 layers and with total number of weights equal to 224. We
use the same training data-set as above, namely the grid of points and the corre-
sponding image trough Ψ depicted in Figure 1. We trained the network using both
Algorithm 1 and Algorithm 2. The results are collected in Table 5 and Table 6,
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β LΦu Training error Testing error
100 10.14 2.3791 2.3036

10−1 13.84 0.1809 0.2314
10−2 15.64 0.1290 0.1784
10−3 15.83 0.1254 0.1747
10−4 15.86 0.1257 0.1751

Table 5. ResNet 4.7.5-4.7.6, 16 layers, 224 parameters, Algo-
rithm 1. Running time ∼ 320 s.

β LΦu Training error Testing error
100 10.78 2.3638 2.3910

10−1 14.32 0.1921 0.2422
10−2 15.43 0.1887 0.2347
10−3 15.56 0.2260 0.2719
10−4 15.59 0.2127 0.2564

Table 6. ResNet 4.7.5-4.7.6, 16 layers, 224 parameters, Algo-
rithm 2. Running time ∼ 310 s.

respectively. Once again, we observe that the Lipschitz constant of the approxi-
mating diffeomorphisms grows as β is reduced. In this case, with both algorithms,
the training and testing errors are much lower if compared with the best case of
the ResNet 4.7.3. We insist on the fact that in the present case the ResNet 4.7.5-
4.7.6 has in total 224 parameters divided into 16 layers, and it overperforms the
ResNet 4.7.3 with 256 parameters divided into 32 layers. We report in Figure 3 the
approximation produced by Algorithm 1 with β = 10−3. In this case the approx-
imation provided is very satisfactory, and we observe that it is better in the area
where more observations are available. Finally, also in this case the estimate on
the expected generalization error (4.5.9) provides an upper bound for the testing
error, but at the current state it is too coarse to be of practical use.
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Figure 3. ResNet 4.7.5-4.7.6, 16 layers, Algorithm 1, β = 10−3.
On the top-left we reported the transformation of the initial grid
through the approximating diffeomorphism (red circles) and through
the original one (blue circles). On the top-right, we plotted the pre-
diction on the testing data-set provided by the approximating diffeo-
morphism (red crosses) and the correct values obtained through the
original transformation (blue crosses). In both cases, the approx-
imation obtained is good, and we observe that it is better where
we have more data density. At bottom we plotted the decrease of
the training error and the testing error versus the number of itera-
tions. Finally, the curve in magenta represents the estimate of the
generalization error provided by (4.5.9).
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