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Abstract

Living organisms often display shape morphing capabilities allowing them to efficiently perform
tasks that are fundamental for survival. Understanding the way biological activity is exploited to
perform shape changes has a deep impact both on natural sciences and technology, often through a
process of reverse engineering. In this thesis, we examine four instances of shape morphing both in
synthetic and natural, active structures. In the first Chapter, we analyze the transient shaping of a
linear poroelastic plate and investigate how mechanical parameters, strains, and stresses influence
the swelling dynamics. We obtain an approximate analytical solution for the case of stress-free
evolutions and investigate the effect of stresses in the case of an axisymmetric plate. We show that
compressive stresses promote faster swelling with respect to the stress-free case, and vice-versa. In
the the second Chapter, we address the question of devising efficient morphing strategies for the
attainment of specific shape changes in active structures. We set up an optimal control problem
which selects, among the activation patterns producing a prescribed shape change, the one mini-
mizing an objective functional, designed to quantify the complexity of the activation. We provide
analytical insights for the case of affine shape changes and, with the aid of numerics, we explore
the outcome of different objective functionals in a more general context. Chapter 3 is devoted to
the study of active reconfigurations in axons, slender cylindrical structures of neurons, which are
responsible for the transmission of electro-chemical signals. Axons are able to actively regulate
their thickness trough a contractile coating, named cortex, surrounding the cytoplasm (axoplasm).
Here, we develop a continuum model describing the interplay between the cortex contractility
and the axoplasm elastic response inherited by a network of microtubules. The validity of our
modelling assumptions are supported by an excellent match between numerical simulations and
experiments. Finally, in the last Chapter, we develop a teleological model to interpret leaves mor-
phogenesis by accounting for the simultaneous growth of both the venation pattern and the blade.
Inspired by previous works in the relevant literature, we develop a continuum model by which
leaves growth is driven by a gradient flow maximizing the net power absorbed by the leaf. The
numerical solution of the ensuing equations provides preliminary results showing some qualita-
tive agreement with features of existing leaves.

vii
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Introduction

Shape transformations are ubiquitous in nature as they are exploited by living organisms to sustain
fundamental aspects of life [Gray, 1953, Childress, 1981, Darwin and Darwin, 1896] . These shape
changes are typically driven by the energy that the very special architecture of biological tissues
is able to extract from the surroundings. This feature is commonly referred to as internal activity,
a concept which has recently extended to designate those materials that are capable of drawing
non-mechanical energy from the environment, and to convert it into mechanical one. These spe-
cial properties have been recently exploited to design a new generation of materials whose activity
pattern can be programmed in space and time, so that shape changes can be attained in a control-
lable manner. These properties have implications on the emerging field of soft robotics, where soft
active materials are employed in the design of novel actuation and sensing devices, often draw-
ing inspiration from nature [Sareh et al., 2013, Noselli et al., 2019, Ford et al., 2019, Riccobelli et al.,
2020, Cicconofri et al., 2020, Liu et al., 2021]. Besides its scientific relevance per se, it is then clear that
a deeper understanding of how nature exploits activity has a strong impact on technology through
a process of reverse engineering. Moreover, understanding the role of activity in the definition of
the mechanical properties and morphology of biological tissues has important implications on the
study of pathological conditions [Dobyns et al., 1993, Lang et al., 2017, Datar et al., 2019, Riccobelli
and Bevilacqua, 2020, Riccobelli, 2021].

In the present thesis, we explore four instances of shape morphing in active structures, namely,
the transient shaping of thin hydrogel plates, the optimal morphing of planar shapes, the active
regulation of axons configuration, and finally the growth of leaves. For the last topic, the discussion
is limited to preliminary results and future perspectives.

Many studies focused on the morphing of thin active plates and shells due to their capability
to attain large shape transitions [Klein et al., 2007, Efrati et al., 2009, Ambulo et al., 2017, Aharoni
et al., 2018, Agostiniani et al., 2019, Lucantonio and DeSimone, 2020]. While their equilibrium
configurations have been extensively explored, very little is known about the transient processes
involved in such active reconfigurations, apart from mainly experimental reports that recently
appeared [Nojoomi et al., 2018, Guseinov et al., 2020, Damioli et al., 2022] (see Fig. 1). Hence,
a deeper understanding of these aspects from the theoretical viewpoint is necessary to enhance
shape control in time and to develop novel, bioinspired actuation and sensing strategies. Here,
we contribute to this point by focusing on the transient morphing of hydrogel plates (Chapter 1).
Hydrogels are among the most commonly used active materials for programming complex shape
changes, along with liquid crystal elastomers and electroactive polymers, thanks to their ability
to isotropically swell (or shrink) as a consequence of solvent absorption (or release) in response
to an external stimulus (a change in the chemical potential of the environmnent). We analyze the
transient morphing of a linear poroelastic plate model of Kirchhoff type by showing how mechan-
ical parameters, strains and stresses influence the swelling dynamics. Due to the linearity of the
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Figure 1: Active hydrogel plates designed to achieve axisymmetric equilibrium configurations exhibit non-
axisymmetric transient shapes at early times due to faster swelling at the rims. Lateral solvent fluxes induces com-
pressive stresses that trigger buckling. (adapted from [Damioli et al., 2022])

model, the in-plane strain dynamics is fully decoupled from that of the curvature. In particular,
the chemical potential at the top and bottom face of the plate can be chosen so as to select any of
the admissible evolutions of in-plane strain and curvature. On the other hand, we show that sol-
vent diffusion cannot be decoupled from strain evolution except from some degenerate cases. For
the case of stress-free evolutions, we obtain an approximate analytical solution revealing an expo-
nential decay in time for the in-plane and out-of-plane displacement fields depending on the ratio
between the Lamé moduli. As a final step, we investigate the effect of stresses on the swelling dy-
namics. In particular, we compute a semi-analytical solution for the case of a circular plate loaded
with axisymmetric boundary conditions for the chemical potential. We show that compressive
stresses promote faster swelling with respect to the stress-free case and vice-versa.

As already mentioned, programming a shape transformation of an active structure requires ei-
ther the control of the spatial distribution of the material architecture or of the external stimuli trig-
gering the active response [Jeon et al., 2017, Nojoomi et al., 2018, Aharoni et al., 2018, Andrini et al.,
2020, Guseinov et al., 2020, Leronni and Bardella, 2021]. For instance, in hydrogels, the amount of
swelling can be controlled by locally prescribing the degree of polymerization of the matrix [Hong
et al., 2008, Chester and Anand, 2010, Lucantonio et al., 2013]. Regarding liquid crystal elastomers,
temperature-driven molecular reorientations cause active strains along mutually orthogonal di-
rections that can be encoded in the material during fabrication [Warner and Terentjev, 2003, Sawa
et al., 2010]. In practice, each active material features a specific active mechanism whose conve-
nience in applications strongly depends on the desired shape change. Then, a relevant and timely
question is to devise new strategies and tools for identifying the active mechanism that is most
efficient for the attainment of a specific shape change. In Chapter 2, we address this question by
setting an optimal control problem that selects, among the activation patterns producing a pre-
scribed shape change, the one minimizing an objective functional (see Fig. 2). In the following we
will refer to it as the complexity functional, since it is designed to quantify the complexity of the
activation pattern. As regards the description of activity, differently from previous works on the
topic ([Glinnel and Herzog, 2016, Lucantonio and DeSimone, 2020, Ortigosa et al., 2021]), we do
not restrict the study to a specific material architecture and adopt the target metric [Efrati et al.,
2013] as its unifying descriptor. The intent is to develop a design tool that applies to a broad set of
materials, and may inspire new efficient morphing strategies. We first focus on the case of shape
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Figure 2: Example of an extreme shape change, result of the optimal control problem

changes attainable through an affine map (i.e. affine shape changes), for which we characterize
analytically some of the optimal solutions, thus providing insight into the problem. Indeed, affine
shape changes always guarantee the existence of a spatially homogeneous activation pattern (i.e. a
uniform target metric) as an admissible competitor of the optimal control problem. We investi-
gate the optimality of these competitors in Section 2.4 of Chapter 2 and summarize the results in
Proposition 3. We test our finding numerically by discretizing the optimal control problem with
finite elements, showing perfect agreement with the theoretical predictions. Finally, we discuss
non-affine shape changes by investigating the bending of a rectangular block and analyzing the
impact on the optimal solutions of different complexity functionals. Some of them are chosen to
demonstrate the compatibility of our approach with some classes of existing materials, such as
hydrogels and nematic elastomers. Interestingly, the optimal solutions often feature a non-trivial
stress pattern, which turns out to be functional to the reduction of the complexity of the activation.
In our opinion, the relevance of the presented case study is twofold. On the one hand, it shows
that the appropriate choice of a complexity functional leads to the optimal design of target metrics
compatible with a specific material class. On the other hand, it highlights that our computational
tool may be employed to devise novel morphing strategies or material architectures, where stresses
promote a reduction in the complexity of the controls.

As a third instance of morphing in active structures, Chapter 3 focuses on the mechanisms
regulating the active reconfigurations of axons, slender cylindrical structures of neurons whose
purpose is the transmission of electro-chemical signals to neighbouring cells. Axons comprise a cy-
toplasmic core, called axoplams, and a surrounding coating named cortex. The axoplasm inherits
elastic properties mainly from the presence of a bundle of crosslinked microtubles, contributing to
the structural integrity of the axon. The cortex, instead, is made of F-actin filaments interconnected
by Myosin II molecular motors, whose coordinated activity is able to generate active contractions
along the hoop and axial directions. The interplay between the microtubule network and the cor-
tical actomyosin machinery aims at maintaining the cylindrical shape of the axon [Ouyang et al.,
2013]. Indeed, microtubles disruption or contractility issues in the cortex have shown to lead to
degeneration of the axon’s shape (such as axonal beading see Fig. 3), which is a hallmark of several
pathological conditions, such as Alzheimer’s and Parkinson’s diseases [Stokin et al., 2005, Taglia-
ferro and Burke, 2016, Riccobelli, 2021]. Moreover, mature axons are capable of adaptively change
their diameter to properly enhance signal transmission [Costa et al., 2018]. Therefore, unveiling
the mechanism underlying cortical contraction is of the utmost importance to understand how
axons maintain their structural stability and to prevent their degeneration. Currently, the compre-
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Figure 3: Example of axonal beading (adapted from [Datar et al., 2019])

hension of these mechanisms is still largely unknown. In [Fan et al., 2017], the authors advance
the hypothesis of a coupling between active cortical stretches along the hoop and axial directions,
whose combined action may produce compression of the axoplasm, thus reducing its diameter.
However, the nature of such a coupling and the logic behind active contractility are still unclear.
In the present work, we investigate this aspect by proposing a continuum description of the axon.
We model active cortical contractility through the multiplicative decomposition of the deformation
gradient and, following the approach of [DiCarlo and Quiligotti, 2002], we prescribe an evolution
law for the active strains that drives the system toward a homeostatic stress state. Such a stress
state is achieved when a suitable linear combination of the components of the Mandel stress is
constant. Moreover, differently from previous work in the literature [Dehghany et al., 2020], we
propose a coupling of the hoop and axial active stretches through the Mandel stress tensor. Such
a coupling spontaneously emerges from the Coleman-Noll procedure that we adopt for deducing
a thermodynamically consistent set of equations. We first focus on the stability analysis of ax-
isymmetric solutions, under the simplifying assumption in which both axoplasm and cortex are
incompressible. We show the existence of a unique stable equilibrium representing the homeostatic
state of the system. We then analyze, with the aid of numerics, a more detailed model in which
compressibility of both axoplasm and cortex is accounted for. We calibrate the model parame-
ters to replicate some of the experiments reported in [Fan et al., 2017], where the authors measure
changes in the axon’s radius as a consequence of an imposed axial stretch and of the delivery of
drugs damaging the axoplasm and the cortex. The numerical results show excellent agreement
with the experiments. This supports the theoretical assumptions we made for the derivation of
the model, namely, the nature of the coupling between hoop and axial active stretches and the
existence of a feedback regulation mechanism driving the axon toward a homeostatic stress state.

Unveiling the mechanisms behind growth processes in biological structures is crucial for the
understanding of organ morphogenesis and plasticity, the latter intended as the capacity of living
organisms to adapt themselves in response to changes of the environmental conditions. In Chap-
ter 4, we focus on the growth of leaves, which are often considered as a prototypical example of
solid active tissue. Leaves are complex systems interacting with the environment through the ex-
change of mass and energy. They are responsible for photosynthetic processes, which allow the
plant to synthesize nutrients for sustaining life. Because of their importance, leaves have been
subject to intense evolutionary pressures making them highly efficient at carrying out their tasks.
We study the growth of leaves following a teleological approach (see [Murray, 1926]), according to
which natural phenomena are explained in terms of the purpose they serve, rather then the accu-
rate description of the physics behind them. More specifically, we are interested in modelling the
growth of the leaf blade and the corresponding venation pattern for sap transport. Such a problem
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Figure 4: Example of positive allometric growth in a tabacum leaf. The black marker dots in the younger leaf (on
the left) do not maintain a uniform distribution in the older leaf (on the right) thus indicating a non uniform growth
pattern (the red arrows are there to track the position of a single marker). Moreover growth pattern exhibits a polarity
by which, growth rate are more intense at the base of the leaf rather than at its tip. This is an instance of basipetal
growth. (Adapted from [Das Gupta and Nath, 2015])

was first addressed in [Xia, 2007] using a discrete teleological model, where new leaf’s cells are
generated only if the revenue they produce through light absorption is greater than transport cost
needed to reach them with nutrients. In the present work, we embrace this principle and embed it
into a continuum framework as a way to overcome some of the inherent limitations of the model
presented in [Xia, 2007], which does not describe the bulk growth pattern leading to the final shape
of the leaf. In fact, as reported in [Das Gupta and Nath, 2015], leafs often show an allometric growth,
namely, the growth rate is non-homogeneous throughout the leaf blade and exhibits spatial po-
larity. Hence, in order to deal with allometric growth, we develop a continuum model describing
the evolution of the leaf blade using a growth map (also referred to as fate map in the biological
literature). Moreover, inspired by [Lu and Hu, 2022], we model the formation of veins through a
phase field approach based on the introduction of a conductance field. The evolution of the growth
map and the conductance is ruled by a gradient flow of the net power absorbed by the leaf. This
quantity is given by the difference between the light energy absorbed by the leaf blade and the
energy cost for the transport of nutrients. Given the complexity of the gradient flow equations, we
solve them using the finite element method. While preliminary, the numerical results show how
growth arises as the result of a non-trivial interplay between the expansion of the blade and the
formation of the veins. Further developments are discussed in the end of Chapter 4.
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Chapter 1

A theoretical study on the transient
morphing of linear poroelastic plates

1.1 Introduction

Understanding the way natural systems control and exploit shape changes to achieve biological
functions is currently the subject of intense research [Goriely and Ben Amar, 2005, Armon et al.,
2011, Arroyo and DeSimone, 2014, Pezzulla et al., 2018, Noselli et al., 2019, Cicconofri et al., 2020].
In material science and technology, this investigation has inspired the realization of synthetic repli-
cas of natural shape morphing mechanisms using smart materials, such as polymer gels, liquid
crystal elastomers, shape memory and electroactive polymers. Particular attention has been de-
voted to slender or thin structures, such as plates and shells, since these can attain large shape
transitions as a result of their energetic preference for bending over in-plane stretching. In this
context, a general theory explaining how active in-plane strains can induce shape changes was de-
veloped by Sharon and coworkers, who first introduced the concept of non-Euclidean plates [Klein
et al., 2007, Efrati et al., 2009]. This theory, which is based on the subtle interplay between plate
metric and curvature, has often been applied to explore the equilibrium configurations of swelling
hydrogels and liquid crystal elastomers [Ambulo et al., 2017, Aharoni et al., 2018, Agostiniani et al.,
2019, Lucantonio and DeSimone, 2020]. However, very little is known about the transient processes
involved in the morphing of slender structures, apart from mainly experimental reports that have
only recently appeared [Nojoomi et al., 2018, Guseinov et al., 2020, Damioli et al., 2022]. Hence,
a deeper understanding of these aspects from the theoretical viewpoint is necessary to enhance
shape control in time and to develop novel, bioinspired actuation and sensing strategies.

In this work, we focus on the transient shape morphing of poroelastic plates made of swelling
gels. Despite geometric non-linearities play a crucial role in determining the configurations of
active plates, we employ a linearized theory that is amenable to explicit analytical treatments,
thus allowing for deeper insight into the physics of transient morphing. Moreover, we choose
to consider a homogeneous plate subject to a prescribed distribution of the chemical potential at
the boundary. This problem may be relevant in applications involving thin membranes at the
interface between fluids or, more generally, exposed to heterogeneities of the fluid environment.
This approach is alternative to considering plates with heterogeneous material properties (in-plane
or across the thickness) subject to a homogeneous chemical potential at the boundary.

The Chapter is organized as follows. Section 1.2 is devoted to a short review of the theory of
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8 CHAPTER 1. TRANSIENT MORPHING OF LINEAR POROELASTIC PLATES

nonlinear transport in porous media. In Section 1.3, we derive the linear plate model through a
formal dimension-reduction procedure and set the initial-boundary value problem corresponding
to the free-shaping of a gel plate immersed in a solvent bath. In Section 1.4, we discuss the general
properties of the solution to such a problem, namely, uniqueness and dependence on boundary
data. In Section 1.5, we analyze a special class of solutions that we refer to as stress-free, since they
are characterized by null stress resultants along the thickness. In particular, we derive conditions
on the boundary chemical potential leading to stress-free evolutions and fully characterize the real-
izable shapes, both in terms of in-plane strain and curvature. We obtain accurate, explicit formulas
for the time courses of these quantities and of chemical potential. Finally, in Section 1.6 we exploit
a semi-analytical approach to study the problem in which elasticity and solvent transport are fully-
coupled. This analysis is carried out with reference to a circular plate, in order to evaluate the effect
of stresses on the dynamics of swelling.

1.2 A short review of nonlinear fluid transport in porous media

Following [Lucantonio et al., 2013, Miehe et al., 2015], we consider the solid-fluid mixture as a
homogenized medium allowing for a mass flux of the liquid phase (solvent)!. The reference con-
figuration of the body is identified with a regular region B of the Euclidean space E?, and it is
subjected to a motion described by a map f : B x Z — E? assigning to each material point X € B
and time ¢ € Z a place x € E3. We will denote with B; the image, trough f, of B and with
T = {(x,t) such that z € B;,t € I} the trajectory.

Balance laws Let us first formulate the mass balance for the fluid phase by introducing a spatial
field ¢s : T — R™ for the concentration of solvent. Specifically, ¢; assigns to each place z and time
t the number of moles per unit current volume. Then, the number of solvent moles in a part of the
body P; C B; is given by

M(t) :/ cs, Pe=f(P,1).
Py
In order to formulate a diffusion equation for c;, we introduce the spatial flux h, representing the

flow rate of solvent moles per unit surface. If we assume that no internal sources are present, the
mass balance reads

M(t) = —/w h, - m, (1.1)

where m denotes the outward unit normal to 0P;. Equation (1.1) can be easily pulled back onto
the reference configuration leading to
/é:—/ h- n, (1.2)
P oP

where ¢ = Jey,, ¢y = ¢s 0 f and h = JF'h,,, h,, = h, o f are the material descriptions of the
concentration and the solvent flux, respectively. Finally, equation (1.2) can then be localized into

¢ =—Divhon B. (1.3)

LA different approach based on mixture theories is also possible. For a discussion on the differences between the two
approaches see [Tomassetti, 2022].
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As a next step, we introduce the force balance. Let us denote by b(X,¢) the body forces on
B and by S(X,t) the first Piola-Kirchhoff stress tensor. Then, according to the standard theory of
continuum mechanics (see [Gurtin, 1982]), the force balance reads

DivS =bon 5. (1.4)

We remark that, since the times scales of solvent diffusion are much larger than inertial ones,
the body forces b only account for non-inertial loads, namely, we considered an over-damped
dynamics.

Constitutive relations In addition to the balance laws, we need to specify the material response
of the body by prescribing the constitutive relations for the stress tensor and the flux. To deduce
thermodynamically consistent relations we employ the Coleman-Noll procedure, relying on the
dissipation inequality. Following [Gurtin et al., 2010], we write the dissipation inequality by re-
quiring the total free energy rate to be less than or equal to the loads power, F, plus the energy
flow due to solvent transport, ). Consequently, if we denote with ® the free energy density per
unit volume, the dissipation inequality reads

d
dt/P@gFW, (1.5)

f:/Pb-f'Jr/aPt.f,

which, thanks to the balance law in Eq. (1.4), can be rewritten as

where, by definition

]-":/PS-F. (1.6)

On the other hand, the energy flow ) is assumed to be characterized through the chemical poten-

tial u(X,t) as
Y= _/ ,U/h 'n,
oP

which, thanks to the balance law in Eq. (1.3), can be rewritten as

yZ/p(uc'—h-Vu). (1.7)

Then, by substituting Egs. (1.6), (1.7) into Eq. (1.5) and assuming ® to be a function of F, ¢, and V.,
we can write the local dissipation inequality as
(Op® —S)-F + 0y, ® - Vi + (0D — p) - é+h-Vu <O0. (1.8)

Since Eq. (1.8) is assumed to hold for each admissible continuation of the processes, we deduce
that the energy density ® cannot depend on Vu and that the following constitutive relations hold

S =0p®, u=0.9. (1.9)

The above equation also implies that both 1 and S depend only on the pair (F,¢) . Then, equa-
tion (1.8) reduces to h- V. < 0 namely, to a compatibility condition for the constitutive relations for
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h indicating that solvent diffusion is the only irreversible phenomenon of the system. Following
[Miehe et al., 2015], an admissible constitutive assumption for h is given by

h = aVu(p*(F7c7 VM)7 (110)

representing a generalized Darcy’s law. The function ¢* is referred to as (Dual) dissipation potential
and is typically assumed to be convex with respect to V1 so as to satisfy h- Vi < 0. As a final con-
sideration we remark that, in order to satisfy material indifference both h and S (and consequently
®) must depend on F trough the Cauchy-green strain tensor C.

Summarizing, the set of equations for the fluid transport in porous media is then constituted
by Egs. (1.3), (1.4), (1.9) and (1.10) to be solved with suitable initial conditions and the following
boundary conditions

p=pxondB,, h-n=h,ondby,
f = feondBy, Sn = t,.on 0;. (1.11)

1.2.1 Variational principle

The equations for fluid transport in porous media already introduced can be recast in a variational
form, specifically, they arise as the Euler equations of a canonical rate of energy functional, as shown
in the following.

Let us first consider the rate of free energy

F(f.0) = [ (@p0-F 1 0.0-0),
B
and rewrite it as a function of f and h by means of Eq. (1.3), namely

Z(f,h) = /B(aF@ -F — 0.9 - Divh). (1.12)

We will refer to .% as the canonical rate of free energy functional. We remark that Eq. (1.12) is mean-
ingful only when coupled with the mass balance equation (1.3), which thus plays the role of a
constraint. In addition, let us define the canonical dissipation density as the Legendre transforma-
tion of the dual dissipation potential in Eq. (1.12), namely

Qp(hv F, C) = Sgp{g ~h— 90*(57 F, x)}

The canonical dissipation potential functional is then defined as

P(h) = /B o

Finally we define the external load functional as

,@e"t(f,h)_/Bb-f—i—/%tt-f—/%#u*hn. (1.13)
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fd; Cd

e
B

Figure 1.1: Representation of the dry, reference, and actual configurations (Adapted from [Lucantonio et al., 2013])

The set of equations introduced in Section 1.2 can then characterized through a variational problem
involving the so called rate potential, which is defined as

II(f,h) := .Z(f,h) + 2(h) — 22°(f,h). (1.14)

Specifically, besides the mass balance in Eq. (1.3), the mass flux and the deformation rate at the
given state (f, c) are determined as solutions of the following variational problem

in II(f,h
ue‘znhnevh (f’ )’

where

Va={uec HB):u=00n0B,}, Vh={heHY(B):h-n=h,ondBy}.

1.2.2 Hydrogels

Hydrogels are colloids constituted by a network of cross-linked polymeric filaments dispersed in
water. The polymeric network confers the material an elastic behavior, while the migration of the
solvent through the network is responsible for the swelling properties of the mixture [Doi, 2009].
Hydrogels can modeled within the framework of fluid transport in porous media and thus can be
described through the equations discussed in the previous Subsection. Here, we specialize that
theory to the case of hydrogels.

It is generally assumed that both the solid and liquid phase, are separately incompressible.
Mathematically, this translates into a volume constraint that must be added to the model formulated
in the previous Subsection. In order to properly define such a constraint, we first need to define
the physical state of the gel corresponding to the reference configuration B. Let us introduce the
so called dry configuration of the gel, denoted with By, characterized by absence of solvent. The
reference state B is then defined as the steady state attained by By through a free swelling process
described by the map fy : B4 — B. As regards the notation for fields defined on the configuration
Bg4, denoting with f a deformation of B, we write: fq = f o fo, Fq = Vafq, Ja = det Fyq, Fg = V fo,
Jo = det Fg and cq = Jyc, the latter denoting the concentration of solvent per unit dry volume (see
Fig. 1.1).

The previously announced volume constraint, arising from the separate incompressibility of
the solid and liquid phase, can then be stated as

Ja =14 Qcq, (1.15)
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where (2 is the solvent molar volume.

As for the free energy density, we first define it on the dry configuration as the sum of two
contributions: the first one regards the solid phase, which is treated as an incompressible isotropic
rubber, and the second accounts for polymer-solvent interactions, and is known as mixing energy.
Then, the total free energy density per unit dry volume can be written as

1 RT
(I)d(Fd,Cd) = iGd(Fd -Fq — 3) + ﬁh(cd)' (1.16)
A common choice for the mixing term £ is the Flory-Rehner free energy

QCd
)X

ch
1+ Qcy

h(cq) = Qcqlog <

where G = NkgT is the shear modulus, NV the number of polymeric chains per unit dry volume, kp
the Boltzmann constant, 7" the temperature, R the universal gas constant and x the dimensionless
measure of the enthalpy of mixing.

Using kinematic relations, Eq. (1.15) can be rewritten as

J=1+4Qc, (1.17)

which, substituted into Eq. (1.3) together with the identity / = JF~ " . F for the derivative of J,
leads to the following mass balance equation

JE T F
Q
Moreover, substitution of Eq. (1.17) into Eq. (1.16) leads to an effective elastic energy, (I)Elo) (F), for the

solid skeleton. With the newly defined effective energy, the dissipation inequality (1.5), together
with Eq. (1.6), (1.7) and the constraint (1.17), specializes into

= —Divh. (1.18)

Qk@m—%ﬂTT—S-F—hNMSO, (1.19)

where () = @éo) /Jo is the effective elastic energy per unit reference volume. The Colemann-Noll
procedure applied to Eq. (1.19) produces the following constitutive equation

S = 9pd ) — pJFT, (1.20)

where p = 1/ is known in literature as the pore pressure. Finally, concerning the constitutive
assumption for h, it is assumed a standard Fick’s law which is trivially compatible with the ther-
modynamical restriction h - Vi < 0, namely

h=-DVy, (1.21)

where D = D(F, ¢) is a positive semi-definite symmetric tensor known as mobility tensor. Hence
the final set of equations for hydrogels is constituted by Egs. (1.4), (1.18), (1.20), (1.21) together with
the boundary conditions in Eq. (1.11).

Similarly to the compressible case, the problem can be recast in a variational form (see [Miehe
et al., 2015]). In order to include the incompressibility constraint, the rate potential must by aug-
mented by means of a Lagrange multiplier A as follows:

I(f,h,A) := Z(f,A) + Z(h) — 2°(f,h), (1.22)



1.2. REVIEW OF NONLINEAR FLUID TRANSPORT IN POROUS MEDIA 13

where the augmented rate of free energy and the dissipation potential are defined as

-1
F(f A) = / (aFcp(O) F— AQ 'JFT.F+Div h)) . o(h) = DTM,
B

respectively. As before, the stationarity conditions of Eq. (1.22) with respect to ( f.h, A) coincide
with Egs. (1.4), (1.18), (1.20), (1.21) and in addition force the identity A = p.

1.2.3 The linearized equations

Here we synthesize the linearization performed in [Lucantonio and Nardinocchi, 2012] on the
highly nonlinear equations for hydrogels, derived in the previous section. Such a linearization is
made around an equilibrium configuration of the gel. We conveniently assume such an equilib-
rium to be described by the map fy previously introduced, so that B is the reference configuration.
In the case of a hydrogel in absence of external bulk and surface body forces, immersed into a
solvent bath, the equilibrium configurations can be shown to be a stress free state featured by a
homogeneous spherical deformation gradient Fy = A\oI and a chemical potential pip homogeneous
throughout B. The linearized equations are then

divT =bon B,

%trE = —divhon B, (1.23)

where T is the incremental stress field, h is the incremental solvent flux and E = SymVu, u being
the displacement field. The above equations are coupled with the boundary conditions

Tn =t,ondB;, u=u,onodby,,
—h-n=h,ondByn, p=p.onodb,.

As for the constitutive laws, we get the usual Fick’s law for h, namely
h=-DVy, (1.24)

where 11 denotes the increment of chemical potential with respect to the equilibrium state 1. Con-
cerning T, we write following expression

T = 2GE + Atr(E)I — %I,

where

RT J() - 2X(J0 - 1)
—d A= G+
o O TR

with Jo = A} denoting the Jacobian of Fy. Similarly to its nonlinear counterpart, the linearized
model can be shown to emerge from a variational principle for the minimization of a mixed rate
potential II; often referred to as Rayleighian. The linearized version of Eq. (1.22) then reads

I, (i, h, A) = /B

op®” - Vi + p(h) — A (trg + div h)

+ / sh - n, (1.25)
OB,
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Uz €3
€3 u = uzey —+ ﬁ

€1 i
€) )

! ﬂ u

o

Figure 1.2: Domain B of a plate. We illustrate the orthonormal reference frame {e;}, the Cartesian coordinates x and
x3 for points in B, and the displacement u decomposed into the in-plane part, O, and the transverse one, us.

where <I>§0) is the linearized effective free energy density and ¢ is the dual dissipation potential.

They read
D 'h-h

0" (B) = 2GE + A(©E)?,  o(h) = —

respectively. We finally remark that, the stationarity of the problem (1.25) leads to a mixed weak
formulation of problem (1.23) and, as for the nonlinear case, to the identification of the Lagrange
multiplier A with the chemical potential .

1.3 Dimensional reduction of linear poroelastic plates

In this Section, we perform a dimensional reduction to derive the isotropic linear poroelastic plate
model that we will employ for the study of transient swelling processes. The system of evolution
equations for Kirchhoff linear poroelastic plates was first derived by Taber in [Taber, 1992] starting
from the three-dimensional setting, see [Biot, 1941], and later justified in [Marciniak-Czochra and
Mikeli¢, 2015, Paroni and Tomassetti, 2018]. Here we propose an alternative derivation, following
a formal asymptotic expansion approach inspired by [Miara, 1994].

In the linear approximation, the referential and current configurations merge in to one and con-
sequently they become indistinguishable. We then chose to denote points and vectors by adopting
the spatial notation. Let (e1, €2, €3) be an orthonormal base for R3, and let B = wx (—h/2,h/2) C R?
be the reference configuration of the plate in its initial equilibrium state. Here, w C R? represents
the mid-surface of the plate, whereas h denotes its thickness. We write (X, z3) € B for the position
vector of a point of the plate, such that X = (z1,22) € wand z3 € (—h/2, h/2) are the in-plane and
the transverse Cartesian coordinates, respectively. As for the top and bottom surfaces of the plate,
these are denoted by wy = w x {h/2} and by w_ = w x {—h/2} (see Fig. 1.2).

Let us then consider the system of equations in (1.23), coupled with the Fick’s law in Eq. (1.24)
with isotropic mobility tensor

D = DI,

where D > 0. Moreover we assume that no bulk loads are present (i.e. b = 0) and equip the system
with the following boundary conditions:
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u=0 ondBy= 0wy x [-% 2],
Tn=0 ondBy=0B)\ 0By, (1.26)
= ps onoB, = 0B,

where Ow, C dw. Hence, the plate is supposed to be clamped on a portion of its boundary and
subjected to null tractions on the remaining part. Moreover, we assume it to be immersed into
a solvent bath and therefore, to be subject to Dirichlet boundary conditions for the chemical po-
tential, namely p = p. on 9B. We remark that clamping the plate is necessary for deriving a set
of well posed mathematical equations with a unique solution. However, as usual in mechanical
problems, as long as infinitesimal rigid displacements are ruled out, also the traction free problem
is well posed, as shown in the following sections.
Finally, we prescribe the following set of initial conditions

1l|t=0 =0, h\t:O =0, M|t:0 = 0.

For the purpose of dimensional reduction, we find it convenient to work with the system of
equations (1.23) written in weak form. In particular, we adopt a mixed weak formulation which
has the advantage of having the Dirichlet boundary conditions for j directly embedded in the
equations and not in the functional spaces. Indeed, as we will see, this allows for an easier handling
of the boundary conditions for ;. The mixed weak formulation reads: find u € V,(B), h € 14,(B)
and p € V,(B) such that

1 . _ v
/B(QGE + Atr(E)I) - Vv — a /BMle (v)=0 Vv e VuB),
/ udiv () — / Nh - = / b -1 b € Va(B), (1.27)
B B oB
/ Bydiv (w)ep = / —Qdiv (h)¢ Vo € V,(B).
B B

Due to the formal nature of present dimensional reduction, no attempt is made to rigorously define
the functional spaces involved. It is then enough to characterize them as follows:

Vu(B) = {vsmooths.tv|sps, =0}, Vy(B)={smoothonB}, V,(B)={smoothon B}.

The purpose of dimensional reduction is to find an asymptotic regime for the problem in
Eq. (1.27) in the limit when the thickness of the plate, &, is very small. We notice that, in Eq. (1.27),
the domain B depends on h, which is unsuitable for making calculations. Hence, we nondimen-
sionalize the problem by rescaling it into a fixed domain independent on h. Specifically, we will
define the following nondimensional quantities

3 t ’ H p_ua / h

h o MEaa YT M= Gane

where 7 = h?/DQ?(\ +2G) and / is a characteristic length of w. The domain on which the rescaled

equations are defined is B/ = w’ x [—3, 3] where &' is the rescaled counterpart of w, formally
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w’ = w/f%. Moreover, it will be useful to extend the notation already used for position vectors,
and distinguish between in-plane quantities (denoted by a superposed hat) and transverse ones
(labeled with a subscript “3”). In particular we define

o 8 L, & 8 A,(c‘?@)

~
di == + ) = 7 + a 79 v = a7 a7
VT ox] " ol 022 | Oz 0x'” 0,

and y R X
o = (u’l,ug), h = ( ’l,h’Q), E(W) = SymV'w.

To lighten up the notation, we drop the * symbol so that, from now on, bold symbols will denote
in-plane vectors and tensors, and differential operators will refer to their in-plane counterpart.
Moreover, unless specified, we will always write the equations in the rescaled domain so that all
the primes can be dropped and no confusion should arise.

Then, the equations in (1.27), recast in non-dimensional form, read: find u € Vy(B), uz €
V3(B), h € Vi(B), hs € V2(B) and p € V,,(B) such that

5/ nVus - Vus + / (trE(u) — nu) d3vs + ndsu - Vos+ (1.28a)
B B

1
+€/(1 + 277)6321383113 =0 Vuse€ VL?(B)’
B

s/ (trE(u) — nu) trE(v) 4+ 2nE(u) - E(v)+
B

1
+/ OsustrE(v) + nVus - O3v + - / nosu-dsv =0 Vv e Vy(B), (1.28b)
B B
1 1+2 1 14+2
- + n(b@tﬁgm + / + nattrE(u)qﬁ—i—
e Js N € JB
—/ @O3hs + e/ divhgp =0 V¢ € V,(B), (1.28¢)
B B
5(/,udiv1[)—/h-¢—/ ,u*1p~n>—0 Vip € Vi (B), (1.28d)
B B oB
/ p3)3 — 6/ h33 —/ pabsng =0 Vb3 € Vi2(B), (1.28e)
B B w4+ Uw—
where we have defined the dimensionless groups
G __n
77 )\ I £ = f’

and the functional spaces

V3(B) := {v3 smooth s.t v3|ps, =0},  Vu(B) := {v smooth s.t v|sz, = 0},

u

Vi3(B) := {13 smoothon B},  Vy(B) := {13 smooth on B}.
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As a side remark, observe that the third integral in Eq. (1.28e) is performed on w Uw_ rather than
on 9B since ng =0on IB \ (wy Uw_).

In order to carry out the dimensional reduction, we rely upon the procedure proposed in [Mi-
ara, 1994]. First, we expand the unknowns in power of £, namely

u= zk:ekuk, h= zk:akhk, ug = zk:akulg, hs = zk:skhlg, = z};gk,u,k, (1.29)

substitute the expansions into the rescaled equations (1.28a)-(1.28e) and equate equal powers in .
The procedure then allows to automatically detect the appropriate scalings for the driving forces
that governs the evolution of the system. In our case, the are no mechanical loads and so what
drives the system out of equilibrium is the presence of a fixed chemical potential on 0B. Indeed,
the role of s, as a forcing term has already been established when introducing the loads power
Pext in Eq. (1.13). Following [Miara, 1994], the proper scalings for the loads are chosen so as to
guarantee the solvability of the reduced equations, without any restrictions on the form of the
loads themselves. In other words, we start by fixing an order of magnitude for p., namely . =
s”ugn) and select n € Z such that ug") appears in system of equations with lowest order in . We
then check if the solvability conditions for such a system are met without any restrictions on the

form of the function ug"). If the answer is negative, we restart the whole procedure by choosing

s = e"“uﬁ”“) and iterate until no restrictions are required for p.. As regards essential boundary
conditions (in our case, the clamping condition u = 0 on 9B,), we impose them on the lowest order
term of the expansion in Eq. (1.29) which, according to the asymptotic procedure, is not identically
zero. The details of the procedure are reported in the following.

We will frequently make use of the following proposition (see [Miara, 1994]):
Proposition 1. Let u be a smooth function such that [ udsvdz =0 Vv € V(B) = {v smooth s.t v|op, =
0}, then u = 0.
Step 1 O(%)
At this order, the only non trivial equations are Eq. (1.28c) and Eq. (1.28e), namely

/w@@:owem@,
B

/ p P ang = 0 Vi € VE(B),
w4+Uw—

from which we get respectively
Dy03uy = 0, (1.30)

,u5f2) =0 on wyUw_. (1.31)

Equation (1.31) is to be considered as a compatibility condition for the solution of the system, at
this order in ¢. Indeed, the only way to solve the problem is to choose as boundary conditions
[y = 25 u£_2) = 0. However, our goal, is to build a model whose solvability is independent on

the choice of the function 1. Hence, we try with a different magnitude for ;. and redo the whole
procedure accordingly. It is evident that choosing 1. = En/,l,in) with n < —2 would lead to the
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same conclusions, requiring null chemical potential on the boundary. Hence we try p, = ,u(_l)
and observe that, with this new choice, no compatibility issues arise at this order since Eq. (1.31) is
trivially satisfied.

Step 2 O(2)

We first remark that, in absence of further information, u® and ug are the first non zero terms of the
asymptotic expansion and so, according to the procedure previously illustrated, must be endowed
with the clamping conditions u’ € V(B) and u§ € V2 (B).

Equation (1.28a) a this order leads to the following weak problem: find u9 € V;3(B) so that

/ (1 +2n)d3uldsv3 =0 Yoz € V2(B). (1.32)
B

The above equation, thanks to proposition (1), gives u(z1, z2, x3) = 3 (w1, x2) with 4§ € V3(B).
Notice that, since uJ is independent on z3, equation (1.30) becomes automatically satisfied. Here,
we seize the opportunity to introduce a useful notation by which, from now on, a superposed bar
will designate functions independent on the transverse coordinate x3.

Similarly, equation (1.28b) at this order amounts to searching for u’ € V,(B) so that

/ O5u’ - 95v =0 Vv € Vu(B), (1.33)
B

0 0

which again implies u’ = @’ for some @

(1.28¢c), we have

€ Vu(B), independent on 3. As regards equation

/ ¢ (Osus + trE(u°)) =0 Vo € V. (1.34)
B
Finally, equation (1.28e) leads to
/ uVang =0 Vs € V3(B), (1.35)
w+Uw—
which again implies the compatibility condition qu“ = 0 on wy Uw_. The same considerations

made at the previous step are valid and consequently we need to redo the procedure with the new

assumption fi, = uio). We remark that, a physical interpretations can be given to these compatibility

conditions: a plate of thickness ¢ can not withstand loads with magnitudes s, = E% ,u,(fQ) and . =

% ,u(fl) since, in the limit when ¢ — 0, the plate is too thin to react to such loads and reach an
equilibrium state.

Step 3 O(1)

By exploiting the information gathered at previous order, we can write the equations for the dis-
placement at O(1) as follows

/ (1 + 21)03uid3v3 = — / (trE(a°) — nu°) dsvs Vs € V2 (B), (1.36)
B B

/ dsul - Pzv = / Vay - 3v Vv € Vyu(B), (1.37)
B B



1.3. DIMENSIONAL REDUCTION OF POROELASTIC PLATES 19

/ ¢ <1 _:72?781563’&% + ! Eznattl"E(ul) + 83hg> =0 V¢ € Vu(B), (1.38)
B

/B 100 = / 1O gans Vi € V3(B). (1.39)
w4 Uw-—

In order to derive solvability conditions for the above equations, let us test Eq. (1.39) with 13 €
C2°(B) and get

/ 1100313 = 0 Vapg € C°(B),
wylUw

which, after integration by parts, implies ;. = ji° for some ii° € V,,(B),independent on z3. Conse-
quently, Eq. (1.39) leads to

/ﬂoa?ﬂb:s —/ 1 pany Vs € V2 (B), (1.40)
B w4 Uw_—
which tested with functions 3 independent on 3 gives
(0) _ 773
[ s =0 v e B, (1.41)
wyrUw_—

where Vi3(B) = {¢5 € V2(B) s.t 313 = 0}. If we denote with ;" and y; the values of p, on w™
and w~, respectively, then Eq. (1.41) can be rewritten as

[ i gt [0 ang =0 v € (B, (1.42)
Wi

w—

Finally, we observe that Eq. (1.42) can be rewritten as

/ (O = Oy = 0 Wy € VP (W),

where V;3(w) = {13 smooth on w} and, with a little abuse of notation, ,uio)i denotes the values of

fix |+ projected onto the mid-plane w. Hence, the above equation implies the following compati-
bility condition
u£0)+ — ,u&o)_ =0onw. (1.43)
As for the physical meaning of the above equation, we notice that, having MSPH % ,ufko)f generates
a bending moment deflecting the plate perpendicular to the mid-plane w. Hence, the condition
in Eq. (1.43) assert that, in the limit when ¢ — 0, a plate of thickness ¢ cannot withstand a bend-
ing moment with intensity of order £" since it is too thin for contrasting the external loads with
some internal reaction. The only way to reach equilibrium is in absence of such external bending
moment.
As usual, our aim is to chose an asymptotic regime where no restrictions on the loads are

0

required. So let us try with ., = e, ’. Equation (1.40) becomes

/BM053¢3 =0 Y3 € VE(B),
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which trivially implies 1° = 0. Hence, equations (1.36) and (1.37) lead to

u' = al — z3Vval, (1.44)

ntrE(ﬁO), (1.45)

reproducing the classical Kirchhoff-Love kinematics for linear plates [Timoshenko et al., 1959].
Finally, Eq. (1.38) trivially localizes into

1427

(0:03u3 + OptrE(ul)) + 93h3 = 0. (1.46)

Step 4 O(¢)

Exploiting the results at previous steps, the equations in (1.28) at order O(¢) are:

/(1 + 2n)d3u3d3v3 = —/ (trE(u') — nu') dsv3 Vs € V2 (B), (1.47)
B B

/ ndsu® - zv = —/ trE(a)trE(v) + 2nE(@°) - E(v)+
B B

- / D3uitrB(v) + nVu} - 83v Vv € Vu(B), (1.48)
B

/ (1 Tnat@wé - 83h:1»,> ¢= —/ (1 T”attrE(ﬁO) — div h0> ¢ Vo e Vu(B), (1.49)
5 B

/ —h’ . =0 Vap € Vi(B). (1.50)
B

/B—hg% + utdgibs = / iV ipang Vs € Ve (B). (1.51)
w4+ Uw—

Notice that we have omitted the equation coming from Eq. (1.28b) and Eq. (1.28c¢) since they won't
play any role in the following considerations.

From Eq. (1.47) we get

nut

(1+2n)

Moreover, consider equation (1.51), integrate it by parts and obtain the following variational equa-
tion

Dsu3 = — trE(u') + (1.52)

1427

/ — (h + sp') 3 = / () — uhysns Vs € V2,
5

w+Uw,
which upon localization gives
{ hg = —03ut  on B,

1.53
ul = u&l) on w4 Uw_. ( )
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If now we plug Egs. (1.52), (1.53) and (1.44) into Eq. (1.38) we obtain
Oppt — Osgpt = —2 (O trE(u') + wgc'?ttrK(ﬂg)) , (1.54)

where we have defined K(vs) := —VVus as the linearized curvature of the mid-surface of the
plate.

Let us now consider Eq. (1.48) and test it for v € V(B) = {v € V4(B) s.t 3v = 0}. We get
/ trE(a")trE(v) + 2nE(@°) - E(v) 4+ &3uitrtE(v) = 0 Vv € V4 (B).
B

Then, substitute Eq. (1.45) into the above equation, integrate along x3 and obtain the following
variational problem: find @’ € V(w) such that

/w 1 in2ntrE(u°)trE(v) +20E(’) - B(v) =0 W € Va(w),

where Vy(w) := {v smooth on w s.t v|s,, = 0}. However, by testing with v = @, it is immediate
to see that the above equation is uniquely solved by the trivial solution a® = 0. Because of this fact,
we deduce from Eq. (1.45) that u} = @} and consequently that Eq. (1.34) gets trivially satisfied. As
for Eq. (1.50), we trivially get h" = 0.

We finally remark that, as a consequence of the calculations above, u” = 0, and hence u
becomes the lowest order term in the asymptotic expansion which a priori is different from zero.
Hence, we impose the clamping conditions u! € V,(B). Notice that, thanks to the condition
uj € V2(B) and the characterization of u! expressed in Eq. (1.44), the boundary conditions on u!
transfer to @' and @) thus leading to

0 1

ﬁ1:0, Vﬂ%-nzOon@Bu.
The above conditions must then be embedded into the functional spaces as follows
al e Vu(B), @ e V3(B):={veV3B)s.tVus-n|s, =0}

Step 5 O(c?)

As it will be clear at the end of the section, the only relevant equations at this order are the ones
coming from Eq. (1.28b) and Eq. (1.28d), namely

/ (trE(ul) + O3u3 — 77,ul) trE(v) + 2nE(u') - E(v) + 7 (Vu3 + 05u®) - 935v Vv € Vu(B), (1.55)
B

/,ﬂdmp—/hl-u;_/ pMapn Y € Vi(B). (1.56)
B B oB

Now, test Eq. (1.55) for v € V4(B) and get

/ (trE(u') + Dzu3 — n,ul) trE(v) + 2nE(u') - E(v) Vv € V4 (B).
B
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Then, substitute equations (1.52) and (1.44) into the above one and integrate along the variable 3.
We obtain the following variational problem: find @' € V(w) such that

2n 2 _1 B
/w<1+277trE(u) 1+2nN“ trE(v) + 2nE(@') - E(v) =0 ¥v € Vy(w), (1.57)

where we have defined: IV, j = f_l{% pldrs. Then plug Eq. (1.57) into Eq. (1.55) and get the follow-

ing equation that will be useful in the last step

2n —1 2n -0 2 1 1
— trE trK — — N trE
/B< T+ 2n rE(a’) + 1+2nx3 rK(a3) 1+277(M w) | trE(v)+

—n (2E(u') — 223K (1)) - E(v) + n (Vuj + 95u?) - 935v =0 Vv € Vu(B). (1.58)

Finally, Eq. (1.56) leads, after integration by parts, to h' = —Vu! together with the condition
1, TUw™
pr=pi ondB\ (wrUw™).

Step 6 O(?)
Equation (1.28a) leads to
/ (1+ 2n)0zu3 + trE(u?) — 77#3) O3v3 + / n (Vu% + (93u3) “Vus =0 Yoz € V3(B), (1.59)
B B
which tested upon functions in V2 (B) = {v3 € V2(B) s.t d3v3 = 0} leads to
/ (Vu3 + 0su®) - Vg = 0 Yoz € V(B). (1.60)
B

Now plug Eq. (1.60) into Eq. (1.58) and test the resulting equation for functions of the form v =
—x3Vn3 with ns € V3(B) N V3(B) (notice that such a v belongs toV,(B)). We get

| (- K@) + o 2 NY) K () +

—2nz3K(a}) - K(nz) = 0 Vs € VI(B) NV (B).

Finally, integrate the above equation on z3 and rename 73 with v3 to obtain the following varia-
tional problem: Find @ € V;3(w) so that

/ 1 2 trK (@) — 2’ M} trK(v3)+2—nK(a0).K(v3):0 Yoz € Vi3 (w) (1.61)
L\ 121+ 27 3 142 1273 uen

where: V3(w) := {v € smooth on w s.t Vuvs|g,, = 0} and Mﬁ = fi{%

ulxg dxs.

In light of the derived equations, we finally remark that the boundary conditions for ;1 on
9B\ (wh Uw™) cannot in general be met unless some very peculiar y. is chosen. The mathematical
reason for this can be understood by looking at equations (1.57), (1.61) and (1.54) according to
which, boundary conditions on w* U w™ are sufficient to uniquely determine x on B. Physically,
we expect the presence a boundary layer on 9B \ (w" Uw™) that our reduced model is not able to

capture.
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The final equations The set of equations for the Kirchhoff poroelastic plate is composed of
Egs. (1.57), (1.61) and (1.54), expressing the balance of forces, moments and mass, respectively.
They can be conveniently recast in a more compact and expressive way as follows. As regards the
balance of forces and moments we get, upon localization, the following equations defined on w:

divN =0, divdivM =0, (1.62)

where the tensors N and M are the dimensionless force and moment resultants along the thickness,
respectively. They are related to the in-plane strain E = SymVu and curvature K = —VVugs
tensors via the constitutive equations?

n
N=CE- 1 N,I 1.
CE - 15Nl (1.63a)
M = cCK — 2 1 (1.63b)
=& 1 T 277 pl . .
where N, and M, read
1 1
N, = / 21 pdzs, M, = / 21 pasdes (1.64)
2 2

while C = IXI + ﬁl ® I is the symmetric, positive definite elasticity tensor. In the following
Sections we will consider a free standing plate so that no clamping conditions are imposed at the
boundary. The traction-free boundary conditions, naturally arising from localization of Eq. (1.57)
and Eq. (1.61), can then be written as

Nn=0, Mn-n=0, divM-n+VMn-t)-t=0 onw,

where, n and t are the unit normal and tangent to dw, respectively. As for the balance of solvent
mass, localization of Eq. (1.54) leads to the following equation defined on B

O — O3z = —2 (OptrE 4 3¢ 04trK) . (1.65)

We will consider a plate immersed into a solvent bath, and so, as already anticipated, Dirichlet
boundary conditions are imposed on the top and bottom faces of the plate, namely u = u; (resp.
p = py)onwt (resp. w™). As for the initial conditions, we assume zero chemical potential and
displacement. We will refer to the set of equations (1.62)-(1.65) and corresponding initial and
boundary conditions as the Fully Coupled Problem (FCP). For later use, we also recast the weak
form of the equations in the following way: find t! € Vy(w), 4§ € V3(w) and u € V,,(B) so that

/ CE(u) -E(v) = . an / NtrE(v) Vv e Vy(w), (1.66a)
. / CK (us) - K (v3) = 1lfgn / MK (vs)  Vos € V3(w), (1.66b)
/ O + O3pudsp = —/ 2 (OptrE(u) + x3e0itrK(us)) ¢ Vu € Vl?ir(B), (1.66¢)

where VI (B) = {¢ € V,(B) s.t. ¢ = 0on w*}.

2Recall that, according to the asymptotic expansion in Eq. (1.29), we have the following relations: u = eal, us = @l
and p = ep’
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1.4 Properties of the solution

In this Section, we discuss the properties of the solution to the FCP. First, it is easy to check that
the dimensional reduction illustrated above can be performed, with almost identical steps, even
in the case of a free standing plate. The only difference is that the solution of the final equations is
unique only up to infinitesimal isometries, as shown in the following

Proposition 2. Assume a smooth solution (u,u,us) to (FCP) exists. Then p is unique, while u and us
are unique up to an infinitesimal rigid displacement ( i.e. if (pu,u’,uf) is another solution for (FCP) then
(W', u}) = (u,u3) +a+bA (x,x3) for some a,b € R3).

Proof. Let (1, u® u{"), (1®,u®, u) be two solutions of (FCP) and define the new variables
(o, uz) == (O, u® ulY) = (1@, u® u{?). Then by linearity (11, u, us) solves again (FCP) with
boundary conditions u; = p; = 0 and everywhere null initial conditions. Consider Eq. (1.65) and
integrate it in time:

t
— / Og3p(T)dr = =2(trE + z3etrK). (1.67)
0

Multiply Eq. (1.67) by 1 and integrate on B = w x [—%, %]

/Bu(t)Q—/B <u(t) /Otaggu(T)(h') :Q/WMM(t)trK(t)+Nu(t)trE(t). (1.68)

Now observe that
/B <u(t) /0 t 833u(r)d7> = — / (83M(t) / t agﬂ(f)d7> (1.69)
R

Substitute Eq. (1.69) into Eq. (1.68) and integrate in time in the interval .7 = [0, ¢]:

1/ 2
/ 1 —I—/ = </ 83,u(7')d7') =2 M, (t)trK(t) + N, (t)trE(t) > 0. (1.70)
Bx.7 B 2 0 wX T
Test Eq. (1.66a) and Eq. (1.66b), on the solutions u and wu3:

n
CE-E=— /NtrE 1.71a
/w 1+2771 w g ( )

€ n
— K-K=- M, trK. 1.71b
Q/M(C 1+2771/w o ( )

Finally, sum Eq. (1.71) with Eq. (1.72), integrate over .7 and get the chain of inequalities

05/ <CE~E+€/ CK K =
wxX T 12 wxX T

_ ) r
T it2m < - MuOUK @)+ Nu(t)t E(t)> <0, (1.72)
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where the inequality on the right follows from the positive definiteness of C, while the one
on the left follows from Eq. (1.70). Hence, Eq. (1.72) becomes an equality and from Eq. (1.70) we

deduce that 1 = 0. This fact implies that N, = M, = 0, which forces the conditions E = 0
and K = 0. Null strain and null curvature imply that the solution (u, u3) is an infinitesimal rigid
displacement (see [Ciarlet et al., 2008]). O

Let us now consider another property that follows from the linearity of the model. Define
pm = (uf + py)/2 and pg = (uf — py)/2, then the solution is such that

where &[] and 2[-] are two linear operators.

To prove this result, observe that u = u, + pg and that u; = u, — pg. Hence, by the
linearity of the governing equations, the solution ¢» = (i, E, K) can be written as the sum of 1), =
(tte, Ec, K¢) and 1 = (o, Eo, K,), which are two solutions of FCP but with boundary conditions
for the chemical potential replaced by uf = pum, and uf = =+ pg, respectively. We claim that
e is such that K. = 0 and g, is an even function of 3. Indeed, one may observe that the list
Ve = (fle, Be, —K¢), with [ie(x,23,t) = pe(x, —x3,t), is a solution corresponding to uE = fim.
Uniqueness of the solution implies that ). = 1), so that the claim follows. Likewise, by considering
the list ¥, = (fio, —Eo, Ky), With ji,(x, x3,t) = —pue(x, —x3,t), one can prove that 1, is such that
E, = 0 and y, is an odd function of z3. Hence, E = E, + E, = E. = Z[ ;] and K = K, + K, =
K, = 2| p4)- The linearity of Z[-] and of 2[] follows from that of the governing equations.

The result of Eq. (1.73) reveals that the dynamics of the in-plane strain and curvature can be
made independent through a suitable choice of the boundary conditions on the chemical potential.
This means that p and i can be chosen so as to select any of the admissible evolutions of in-plane
strain and curvature corresponding to given values of u,, and p4, respectively. Consequently,
there is no mutual influence between strain and curvature dynamics, a feature of interest in the
context of the shape control of thin plates. However, we remark that this decoupled response is not
expected to occur in the context of non-linear theories. First, metric and curvature are independent
entities only in the linear approximation. Indeed it is well known from classical results of the
differential geometry of surfaces that, changes in the plate metric may induce changes in curvature.
More in general, we observe that the result in Eq. (1.73) strongly rely upon three main ingredients:
uniqueness of the solution, linearity and symmetry of the equations. Whenever one of them is
missing, such in the case of nonlinear bifurcating mechanical models, we may expect a non trivial
interplay between planar and transverse deformations.

Coupling between solvent diffusion and strain We finally discuss how curvature and strains
are coupled with the diffusion dynamics. In particular, we investigate whether it is possible to
have a non trivial evolution of the chemical potential, which is independent from the one of the
strains. According to Eq. (1.65), given the null initial conditions for the displacement field, we
have that, the only case where the diffusion process decouples from the deformation of the plate,
is when both trE and trK vanishes throughout the evolution. We remark that, the former is the
incremental areal increase 0 A, while latter represents the incremental mean curvature of the plate
0H, namely

0A =trE, 6H = trK.
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Hence, the problem reformulates into finding non trivial solutions by which the plate deforms
preserving its zero mean curvature and its area. It is easy to show that such solutions do not exists,
and the argument leading to that conclusion entirely relies on mechanical considerations. Indeed,
consider the weak formulation in equations (1.66a)-(1.66b) and test it on the solution u, u3

Ui
CE-E = /NtrE,
/w 1+2nJ, i

12
5/(CK-K: 7 /MutrK.
w L+2n J,

From the above equation we immediately see that if trK = trE = 0 then, due to the positive
definiteness of C, both E and K vanishes and so, up to infinitesimal isometries, u and u3 also do.
This means that the evolution of 1 is necessarily coupled to the curvature and the planar metric of
the plate trough 6 H and A, respectively. Moreover we have shown that not every shape can be
reached by the system, in particular, area-preserving shape changes are forbidden, and the only
shapes with zero mean curvature are the flat ones.

Summarizing, we can conclude that, on the one hand, the process of in-plane swelling is to-
tally decoupled from transverse deflection, as we already pointed out the possibility of separately
control the evolution of u and u3 (at least in the linear approximation). On the other hand, the
diffusion process is always coupled with deformations of the plate as we showed that the two
phenomena decouples only when u and u3 are zero for every time.

1.5 Analysis of the Stress-Free Problem

We now focus on a special class of solutions to the FCP such that N = 0 and M = 0. We will refer
to this problem as the Stress Free Problem (SFP). From the constitutive equations (1.63) we obtain

_ 129
~ e(3+2n)

U I

E = N, K
3+2p "

M,I, (1.74)

)

so that in-plane strain and curvature are determined by the thickness resultants of the chemical
potential. Along with Eq. (1.65) and the corresponding boundary conditions on the chemical po-
tential, Eq. (1.74) constitute the SFP. Clearly, (1.74) fulfills the boundary conditions on tractions.

Next we derive a general representation for the solution of the SFP. First, we substitute (1.74)
into (1.65) to obtain an integro-differential equation for

48 1/2 4 1/2
Oyt — Daaps = —3+an3/1/2 Oy 2dz — 3+”277 /1/2 Aypudz . (1.75)

Eq. (1.75) may be solved analytically in the Laplace domain in the case of step chemical potential
at the boundary, namely pf = [fim(x) + jig(x)]H (t), with H(t) the Heaviside step function. This
approach was also used by Taber [Taber, 1992] and the details of the derivation are reported in
Appendix (A). Denoting by a superposed hat the Laplace transform and by s the Laplace complex
variable, the solution for generic boundary conditions on the chemical potential reads

(%, 3, 8) = fim (X, 8)0e (23, 5) + sfia(x, 8)0(w3, ) . (1.76)
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where 7. and 7, are the Laplace transforms of the solutions corresponding to i = 1/s and
fif = £1/s, respectively, see Eq. (A.6). Consequently, by plugging Eq. (1.76) into the transforms of
Eq. (1.74), we obtain

~ A~ A~ ~

B(x, 5) = 5iim(x, 5)fu(s)1,  K(x,5) = siialx, 5) fic()1, (1.77)
where )
P M z . _ 21
Jels) = 3+ 2n /—é De(z, 8)dz = 5[34/s(1 + 2n) coth(y/s/2) — 8]’ (1.782)

D=

se[n(2s — 8y/scoth(y/s/2) + 16) + s] '
Clearly, to recover the displacement fields u and u3 by integration of Egs. (1.77), the following
compatibility conditions as given by Ciarlet in [Ciarlet et al., 2008] must be satisfied

s 12y . _
fx(s) = “G+2y) /% Uo(z,t)2zdz =

911 Fay + 009 By — 2012F12 =0, (1.79a)
OsK11 — 91 Ko1 =0, (1.79b)
82K12 — 81R22 =0. (1.79C)

These are necessary conditions that become also sufficient in case w is a simply connected domain.
Interestingly, these conditions lead to restrictions on the spatial dependence of the boundary chem-
ical potential, such that Au,, = 0 and Vyg = 0. By recalling the definitions of u,, and p4, we
readily obtain u} = ¢ and p; = ¢ + ¢, for some harmonic function ¢ with ¢ a constant. We notice
that, since harmonic functions are C*°, non-smooth boundary conditions necessarily lead to an
evolution in the presence of stress.
In the time domain, Eq. (1.77) gives the following representation formula for the evolution of
the strains
E = (Ot * f£)T, K = (Ohpa* f) 1, (1.80)

with “+” denoting the time convolution. In contrast with the FCP, from Eq.(1.80) we deduce that an
emerging feature of these solutions is the local dependence on boundary conditions. Further since
pq must be independent of the in-plane coordinates, stress free solutions can only have spatially
homogeneous curvature i.e. they are spherical caps. Consequently, in the case of time independent
boundary conditions K(t) = fiqfk(t)I, such that integration yields the transverse displacement
field u3(x,t) = fafw (t)[x[*/2.

Additionally, stress-free conditions allow to exploit heterogeneous in-plane strains to realize
any planar shape for the mid-plane. This result relies on the conformal nature of the plane pro-
jection p : x — x + u of the immersion of the mid-surface and follows from the Riemann mapping
theorem [Nehari, 1952]. To show that the map p is conformal, it is sufficient to notice that the strains
in Eq. (1.74) are spherical. Hence, within the context of the present linear theory, the plate may be
morphed in any time-dependent family of spherical shapes with given geometry of the mid-plane
by superposing swelling induced bending to planar deformations.

1.5.1 Approximate solution for step boundary conditions

In general, we notice that recovering the solution of Eq. (1.76) in the time domain is not feasible,
so that a numerical approach is needed. However, in the following we propose an approximate
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Figure 1.3: Comparison between approximate expressions (dashed lines) and solutions computed numerically by the
inverse Laplace transform (solid lines) for the chemical potential (a) at times t = {0.001,0.005,0.02,0.1,1} for
fm = 1and fiqg = 0.5, the time-dependent components of the strain (b), and of the curvature (c). For all plots,
1 = 0.5, 200 spatial eigenfunctions were used to produce the plots in (a), and ¢ = 0.1 was chosen for the plot in (c).

o = 324, By _ 96C, Dy
1T w2 (n? — By)(3+ 21) T = w2 (0 = 4Dy) (3 + 2n)
s = 372(1 4 2n)(n® — B,) — 324,n%n S 372(1 4 2n)(n® — 4D,;) — 24C,n*n
e 72(n? — By)(3 + 2n) " 72 (n? —4Dy)(3 + 2n)
A - On+3 B - 2m+3
T34+ (24 32/72) T 341 (24 32/72)
__ 6n+3 Do 2+3
T3+ n(24+24/72) T3+ n(2+24/72)

Table 1.1: Definitions of the coefficients oy, Yn,n, Pnn> On,y a0d Ay, By, Cy, Dy, for the approximate solutions of
(1.82)-(1.83).

solution that admits an explicit representation in time for the case of step boundary conditions.
To this aim, it is crucial to manipulate the terms 7, and 7,. First, let us observe that the following
series expansions hold

= 4
5732 tanh 2 :
tanh(v/s/2) nzl 72(2n — 1)2[s + n2(2n — 1)2]’ (1.81a)
> 4

32 coth(v/5/2) = —+23 - o R (1.81b)
n=1
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Figure 1.4: Plots for chemical potential (a), incremental volume change (b) and spherical part of the in-plane stress (c)
at times t = {0.001,0.005,0.02,0.1,1}, for by, = 1, fig = 0, and n = 0.5. Dashed lines in (a) correspond to the
solution in the pure diffusion case (n = 0).

By taking the first term in each sum, substituting these expressions in Eq. (1.76), and performing
the inverse Laplace transform we arrive at

¢2 1 — 2 (9 —1)272
— Pm Z 2n i 1 (QZn—l,ne Byt + P2n—1,n€ (2n=1)%n t) +

— 2 _ 2 _ 2.2
+ 2% Z ﬁ (’7271,776 ADym7t + UQn,ne (2n)%m t) ) (182)
n=1

where s = fin, + 2[i423 is the steady-state solution and the coefficients are reported in Table 1.1.
Interestingly, although solvent transport is coupled with elasticity, the evolution in time is char-
acterized by decaying exponentials, as it is typical of diffusive processes. In general, this feature
may not hold true in the FCP case. To estimate the accuracy of the approximation, we compared
it with the inverse Laplace transform of Eq. (1.76) for the case of fi,, = 1, fig = 0.5, computed
numerically using the Euler’s algorithm [Abate and Whitt, 2006]. The comparison is reported in
Fig. 1.3a for t = {0.001,0.005,0.02,0.1, 1} and shows good agreement, apart from early times. In
the initial transient, the chemical potential profile exhibits boundary layers near x3 = 41/2 that
surround an almost flat region with negative values. As expected, the solution attains steady-state
at large times.

Similarly, approximate expressions can be obtained for the time-dependent components of
strain and curvature, namely

n 8 —B, 7%t
~ 1—-A,— n 1.
Te 3+ 2n < 2 > ’ (1.83a)
127 1 4 _4p,r2t
~ - —-C d 1.83b
Us e(3 4 2n) (6 2 ¢ ’ ( )

where, again, the coefficients are defined in Table 1.1. Since fg and fx are proportional to the
thickness resultants of the chemical potential (see Eq. (1.78)), formulas in Eq. (1.83) well approxi-
mate the numerical solution (Fig. 1.3b-1.3c). Notice that Eq. (1.83) do not satisfy initial conditions
because of the poor accuracy of the approximation at short times (insets of Fig. 1.3b-1.3¢c). In prac-
tice, Eq. (1.83a) may be fitted to data from free-swelling experiments (uf = const) to identify the
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n

Figure 1.5: Plots of B,, (solid blue line) and D, (dashed red line) as functions of 1.

material parameters from 7 and 7. In passing, from Egs. (1.82)-(1.83) we notice that the parameter
n influences the rate at which the steady-state is attained through the quantities B, and D,,, whose
dependencies on 7 are depicted in Fig. (1.5).

We now focus on the distributions of strains and stresses along the thickness during the tran-
sient in relation to the profiles of the chemical potential. It is convenient to consider the effect of
fim, separately from that of ziy, which we set to zero. As already observed and more explicitly il-
lustrated in Fig. 1.4a, p attains negative values in the central region at early times. Physically, this
behavior follows from the undrained response of the plate core, since swelling is initially localized
at the top and bottom faces of the plate. Indeed, from Egs. (1.44) and (1.52) we can reconstruct the

incremental volume change ( as
Ui

1+2n

whose plot is reported in Fig. 1.4b. Clearly, under undrained conditions ({ = 0) and upon swelling
(trE > 0), the chemical potential is negative.

Finally, we can recover the spherical component o of the in-plane stress from the three-dimensional
constitutive equations Egs. (1.52) together with the reduced kinematics of the plate model and no-
tice that regions that swell first are compressed, while the core is initially under tension (Fig. 1.4c).

(=

(2trE + p) (1.84)

1.5.2 The pure diffusion regime of  — 0

In this section, we consider the limiting regime where  — 0 as concerns the time evolution of
chemical potential, strain and curvature. As for the chemical potential, Eq. (1.75) shows that in
such limit ;1 obeys a pure diffusion equation, such that the coupling with elasticity is suppressed.
The solution of this equation may be obtained using separation of variables as

WUpPD = s — umz 23:_11)63 (2n—1)* Z ¢2n o—dn?n?t (1.85)

Of course, Eq. (1.85) may also be recovered as the inverse Laplace transform of the limit of Eq. (1.76).
Upon swelling, the comparison of Eq. (1.85) with the solution for = 0.5 in Fig. 1.4a shows that the
chemical potential never attains negative values in the pure diffusion regime, as expected from the
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Figure 1.6: Effect of stresses on the swelling dynamics for n = 0.5. (a) Time differences Atg, (solid blue line) and At,,
(dashed red line) as functions of the radial coordinate. The purple line represents the trace of N at equilibrium. The
crossover point of Aty = At,, corresponds to the location where trIN, vanishes. (b) Normalized time-rate of trE as a
function of time, for r = {0, 2/3,0.9}. (c) Steady-state profiles of trE in the fully coupled case (solid blue line) and in
the stress-free case (dashed red line).

properties of the solutions of the pure diffusion equation. In practice, for a gel plate the limitn — 0
can be achieved in dry conditions, where A — co. Consequently, the characteristic time 7 vanishes,
such that diffusion is instantaneous. Moreover, strains and curvature also vanish, because of the
stress-free relations Eq. (1.74). This feature is conserved by the approximations in Eq. (1.83).

1.6 Effect of stresses on the swelling dynamics: An example

To assess how stresses affect the dynamics of swelling in general, we now study a problem where
boundary conditions do not allow for a stress-free solution. For simplicity, we consider a circular
plate of unit (dimensionless) radius subject to axisymmetric chemical potential: /i = fi,,(r), where
r is the radial coordinate. Given the symmetry of both geometry and boundary conditions, the
deformation is characterized by the radial displacement field u(r,t). The chemical potential that
solves Eq. (1.65) admits the representation in Eq. (A.2), as for the stress-free case. Passing to the
Laplace domain and using the result of Eq. (A.5) into the constitutive equation (1.63a) we obtain
N in polar components as

o 2402+ A) . 14+nA- n_ (HBm

N, = £ By — ( D), 1.86
" 14+ 2n T+1+217 o 1+2n\ s * (1.862)

« 24n2+A) , 1+4+nA.- n fom,

Ny = E E, — (447 1)) , 1.86b
o 1429 9+1+277 "142p\ s + ( )

where E, = di/dr and Fy = 4/r are the strain components. Then, substitution of (1.86) into the
equilibrium equation

dN, N, — N,
+ ) (1.87)
dr r
leads to
24 1da @ 7 d /fim
cuw e v S (Em o p 1.88
dr?2  rdr r? 2—1—77(2+A)dr< s T >’ (188)
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which can be solved along with the boundary conditions N,.(1) = 0 and @(0) = 0 to obtain

~ i] " ,U/m
= —+D +
] [ ( T /0 ( . >pdp

n(l+2n)r 1 fim
"B+ AR+ 02+ A) /0 (5+D) o

We remark that the solution (1.89) depends on the chemical potential also through the function D,
see Appendix A.

For the purpose of the present study, we choose the simple case of fi,,(r) = 1 —r. By exploiting
the final value theorem for the Laplace transform, the steady-state radial displacement field is
obtained as

(1.89)

n(5 +4n) N2

= — ’ 1.90
T +mB+2n)  6(1+n) (190

such that (54 4n)

N+ 4n n
trE; = — , 1.91
T3 B2 20+ (190
and the constitutive relations yield

trNy = — ! il (1.92)

+ r
3(1+n)  2(1+n)
Wg observe that trN; vanishes at r = 2/3, a feature that also holds during the transient, since
trN(2/3,s) = 0. Finally, we report the spherical part of the in-plane strain under steady-state as
obtained by assuming stress-free conditions

2n 2n

3+2n 3425
We remark that the strain field in Eq. (1.93) corresponds to the target metric from the theory of
non-Euclidean plates [Efrati et al., 2009] and is not compatible in general. With these expressions
at hand, we proceed to discuss how the presence of membrane stresses influences the swelling
dynamics. As an average measure of swelling rate, we define the time ¢g(r) needed for trE to
reach its steady state value trE; within a tolerance of 0.1%. We notice that such a measure is
conveniently a constant, tg s, which only depends on 7 for any stress-free problem, as it may
be deduced from the expressions for fg(t), see Section 1.5. Analogously, we introduce ¢,(r) for
N,. In Fig. 1.6a we report results for Atg = tg/tgsr — 1, along with the steady state value trN,
of the spherical membrane stress. We notice that compressive (tensile) stresses promote faster
(slower) swelling with respect to the stress-free case. This remarkable feature may be explained
by considering the time evolution of the quantities trE and N,, which are related to trIN via the
constitutive equation Eq. (1.63a). Let us consider the inner region of the disk, where trN < 0.
Then, by taking the trace and the time derivative of Eq. (1.63a), we can show that the time-rate
of trE is smaller than that of N,. Further, it is possible to show that the only choice consistent
with the governing equations is that strain rates are smaller under compression with respect to
the stress-free case, as confirmed by numerical results in Fig. 1.6b. With this, from Eq. (1.65), we
deduce that the time rate of IV, is larger than that in stress-free conditions, so that IV, attains the
steady state faster (At, < 0), as shown in Fig. 1.6a. Despite strain rates are smaller in the inner
region, swelling is faster (Atg < 0), since trE; is smaller than in the stress-free case, because of
compressive stresses (Fig. 1.6¢c). A similar reasoning leads to the interpretation of the results for
the region of the disk under tension.

trE, g5 = (1.93)
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1.7 Conclusions

In this work, we have derived a linear poroelastic plate model for polymer gels to investigate their
transient response to an external stimulus. First, we have studied a stress-free problem that has
allowed us to obtain explicit, approximate solutions for the time evolutions of chemical potential,
in-plane strain and curvature. Then, we have presented a problem where elasticity and solvent
transport are fully-coupled, namely, the planar swelling of a circular plate, which we have solved
using a semi-analytical approach. We have found that tensile (compressive) membrane stresses
delay (accelerate) swelling. Even though such an example concerns a specific choice of geometry
and boundary conditions, our results highlight the impact of stresses on the dynamics of swelling
and, hence, on the evolution of shape in thin poroelastic plates. Given the theoretical nature of
the present study, we also plan to carry out experiments to validate our conclusions. The linear
theory is applicable whenever perturbations of the external chemical potential induce small strains
and displacements with respect to the initial, equilibrium configuration. However, we expect the
present theory to be valid even for moderate strains (~ 10%) [Tanaka and Fillmore, 1979, Yamaue
and Doi, 2004] in planar, stress-free evolutions or, more generally, far from bifurcations induced
by the interplay between in-plane metric changes and curvature. Future works will be devoted to
generalizing our findings, as well as extending the model to the non-linear regime.



34

CHAPTER 1. TRANSIENT MORPHING OF LINEAR POROELASTIC PLATES



Chapter 2

Optimal design of planar shapes with
active materials

2.1 Introduction

Designing new strategies based on active materials for the functional, morphing of bodies into
prescribed shapes is currently the subject of intense research having implications in a number of
engineering and related fields [Jeon et al., 2017, Nojoomi et al., 2018, Aharoni et al., 2018, Andrini
et al., 2020, Guseinov et al., 2020, Leronni and Bardella, 2021]. In particular, soft robotics makes
broad use of smart materials (e.g., polymer gels, liquid crystal elastomers, electroactive polymers)
for actuation and sensing, often by drawing inspiration from natural systems [Sareh et al., 2013,
Ford et al., 2019, Noselli et al., 2019, Riccobelli et al., 2020, Cicconofri et al., 2020, Liu et al., 2021].
Indeed, these systems frequently exploit the internal activity of biological tissues and structures to
induce the shape changes that are necessary to sustain life [Gray, 1953, Childress, 1981]. Besides
its practical relevance, the study of shape-shifting materials is also interesting from a theoretical
perspective, as it brings new challenges lying at the interface among differential geometry, analysis
and mechanics [Efrati et al., 2009, Efrati et al., 2013, Arroyo and DeSimone, 2014, Goriely, 2017, van
Rees et al., 2017, Agostiniani et al., 2019].

Typically, programming equilibrium shape transformations in active structures requires the
spatial control of either the material architecture or the external stimulus that triggers the active
response. In practice, the active mechanism driving such transformations varies significantly de-
pending on the material. For example, polymer gels swell (or shrink) isotropically in response to
changes in the environmental conditions [Hong et al., 2008, Chester and Anand, 2010, Lucantonio
etal., 2013]. As another example, liquid crystal elastomers exhibit distinct active stretches in mutu-
ally orthogonal directions as a consequence of temperature-driven, molecular re-orientation [Warner
and Terentjev, 2003, Sawa et al., 2010]. Then, a relevant and timely question is to devise a criterion
for the identification of the active mechanism that is most effective for the attainment of a target
shape change. This is the focus of the present study, where such a criterion is based on a notion of
“complexity” that accounts for both the magnitude and the spatial variations of the controls. In the
present context, the controls correspond to the target metric [Efrati et al., 2013], which we adopt as
a unifying descriptor of the diverse active mechanisms, irrespective of the physics behind them.
Our approach differs from previous studies on the topic [Giinnel and Herzog, 2016, Lucantonio
and DeSimone, 2020, Ortigosa et al., 2021], as they were restricted to specific material architectures.

35
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To determine the optimal target metric field for a prescribed shape change, we introduce an opti-
mal control problem based on an objective functional that comprises the complexity of the controls
and a penalty term accounting for the distance between the actual and the target shapes. We re-
strict the study to the active planar morphing of hyperelastic bodies in the plain-strain regime and
in the absence of external forces. Due to the complexity of the non-linear optimization problem,
we devise and apply a computational approach for the study of generic shape changes. However,
the case of affine shape changes is also amenable to analytical treatments.

We remark that our approach to tackle shape morphing problems is alternative to those avail-
able in the relevant literature. Indeed, its applicability is not restricted to a specific material class
or active mechanism. Rather, it may be exploited to identify new efficient solutions to shape mor-
phing problems and for the accurate design of active systems.

The Chapter is structured as follows. In Section 2.2 we provide a short review of elasticity
with distortions. In Section 2.3 we state the constrained optimal control problem. We introduce
the objective functional, whose minimization is subject to mechanical equilibrium. Section 2.4 is
devoted to the analysis of affine shape changes, for which we obtain explicit conditions of opti-
mality. These are verified in Section 2.5 by means of numerical computations, then extended to
the study of more complex shape transitions. We present results for the prototypical shape change
of the planar active bending of a block for distinct choices of the complexity functional. Finally,
we demonstrate that the proposed approach is applicable to complex shape changes. Section 2.6
closes the Chapter.

2.2 Short review of elasticity with distortions

We devote this Section to a short review of the concept of target metric mentioned in the intro-
duction and, more in general, of the theory of hyperelasticity with distortions. Such a theory first
originated with the intent of modeling plasticity of solids [Bilby et al., 1955, Kroner, 1959, Lee,
1969] and was later extended to growth phenomena in soft matter and active materials [Kondau-
rov and Nikitin, 1987, Taber and Perucchio, 2000, Nardinocchi and Teresi, 2007, Riccobelli and
Ambrosi, 2019]. Abstracting from the specific application, distortions theory aims at modelling
deformation processes which are not entirely ascribable to mechanical work performed onto the
body. Examples of phenomena included in such a theory are thermal distortions, swelling defor-
mations in porous media, and growth processes. In all these cases, the deformation is the result of
a subtle interplay between the accretive forces (e.g. thermal diffusion, solvent diffusion and growth
phenomena) and the hyper-elastic response of the body.

Historically, the theory that was first developed relied on the so called multiplicative decompo-
sition of the deformation gradient. In such a theory, it is assumed that only a “part” of the actual
deformation gradient F, denoted by F, contributes to the accumulation of elastic energy since the
remaining part of it, denoted by Fy, is supposed to draw energy from a non-mechanical external
source. The tensor field Fy is then called distortion and it acts on material fibers accounting for
non-elastic phenomena. It is crucial to observe that distortions are in general not curl-free. Hence,
Fy is not the gradient of a deformation map, namely, is not compatible. This fact implies that, in
general, the distortion cannot coincide with the actual deformation gradient F. Then, hyperelastic-
ity comes into play by selecting, through an energy minimization principle, the elastic tensor field
F. which restores compatibility and contributes to F according to the following multiplicative
decomposition
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F =Vf

Figure 2.1: Commutative diagram relating the reference configuration B, actual configuration f(B) and virtual con-
figuration (depicted with a red dashed line).

F = F.Fy, (2.1)

where tensor fields F. and F are required to be invertible and with positive determinant.

It is customary to introduce an energy density ¢y = 1o(Fe) per unit relaxed volume. Indeed,
as explained by the diagram of Fig. 2.1, we can distinguish between the reference configuration
B prior to the intervention of F, the actual configuration By = f(B), and a relaxed (or virtual
configuration) identified by the action of Fy on material elements of 5. Hence, as can be deduced
from the diagram in Fig. 2.1, the energy density per unit reference volume, written in terms of the
actual deformation F, reads

W(F) = Jovo(FFy ),

where Jy = det Fy.

The multiplicative decomposition of the gradient has strong connections with the theory of
non-Euclidean mechanics, recently introduced in [Efrati et al., 2009, Efrati et al., 2013], according
to which the elastic energy is written as a function of the Cauchy-Green metric tensor C and the so
called target metric tensor C. The former provides a measure of the local distances between points
in the actual configuration, while the latter locally sets the rest distances, namely the distances
for which the elastic energy is null. Hence, the energy density is constructed so that it becomes
zero only when the actual distances coincide with the rest ones, namely when C = C. However
C may be not the pull-back of a deformation map, that is it may not be compatible. Hence, in
general, a discrepancy between the two metric tensor must be present, giving rise to a non trivial
stress distribution inside the body. The similarities between such a theory and the multiplicative
decomposition of the deformation gradient become apparent when comparing the role of C and
Fy, both describing the natural state of system prescribed by distortions. Likewise, the discrepancy
arising between the two metric tensors is completely analogous to that arising between F and F\,
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quantified by F.. Hence, given an energy density ¢y = 1(C, C) per unit relaxed volume (in this
case identified by the action of C on material fibers) we can write the energy per unit reference
volume as

w(ca C) = J0¢O(Ca C)

For the purpose of this Section we leave the balance law and the energetic description of phenom-
ena determining F (or C) unspecified and simply assume the distortion field to be assigned as a
datum. An extension of the present theory by means of an additional balance law for the accretive
forces, regulating the time evolution of distortions, will be employed in the next Chapter.

2.3 Shape optimization problem

We study the planar shape morphing of a cylindrical body B C R? whose normal cross-section
is denoted by w C R2. Specifically, we assume plane strain conditions such that the morphing
problem consists in devising a strategy to bring the boundary 0w = I' with unit normal n close
to a target planar curve I’ with unit normal m, see Fig. 2.2. Further, we assume that the body is
traction-free and that it is made of an active material, which allows to realize shape changes by the
local control of the natural state through active strains or distortions.

Let f : w — R? denote the planar part of the deformation, which maps a material point X € w
into the corresponding place z in the current configuration. By adopting a standard notation for
related kinematic quantities, we write: F = Vf, C = F'Fand J = detF. Finally, we introduce an
orthonormal reference frame (e, 2, e3), with e; and e; lying in w.

TN

)

Figure 2.2: Kinematics of the shape optimization problem. Here, w is the cross-section of the cylindrical body, which
undergoes a deformation denoted by f : w — R?, X — f(X) = x. We also highlight its boundary T and the
corresponding target curve I, with outer unit normals n and m, respectively.

2.3.1 Mechanics

We characterize the material response by an elastic strain energy density per unit reference volume
in B depending on the actual metric (the three-dimensional right Cauchy-Green strain) and the
target metric, which sets the natural state of the system [Efrati et al., 2009, Sharon and Efrati,
2010, Efrati et al., 2013, Nardinocchi et al., 2013]. Consistently with the plane strain hypothesis, we
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assume that the target metric does not induce out-of-plane strains, i.e. only its in-plane components
are non-trivial and invariant along the axis of the cylindrical body. Hence, we introduce a plane
elastic energy density ¢(C, C) such that 1)(C, C) = 0 and Dc#(C, C) = 0, with C the plane target
metric.

We recall that the boundary I' is traction-free, so that the deformation of w is only induced by
active strains. Hence, the balance of forces in weak form reads:

/S(F,C)-Vuzo VueT;V, feV, 2.2)

where S = O is the plane part of the first Piola-Kirchhoff stress, V = {f : w — R? | detF >
0 in w} is the space of plane deformations and 77V = {u : w — R?} its tangent space at f'.

2.3.2 The objective functional

As anticipated, we are interested in solving a shape optimization problem where we control the
(plane) target metric C so that I' deforms into a prescribed target curve I'. Clearly, given a defor-
mation sending I into T, it would be sufficient to choose the controls C = C to obtain a stress-free
solution for the problem. In practice, the target metric C may be either encoded in an active mate-
rial during fabrication or controlled through the spatial patterning of an external stimulus [Klein
et al., 2007, Sawa et al., 2010, Jeon et al., 2017, Nojoomi et al., 2018, Aharoni et al., 2018, Andrini
et al., 2020]. In principle, the pointwise stress-free solution may result in complex material archi-
tectures or stimuli. Hence, a more interesting problem consists in finding the optimal target metric
C deforming T into I’ while minimizing a complexity functional C(C), for which we consider the
following form:

c(©) = ‘wl, / \(C.VE), 2.3)

where y : PSym, x Ling — R is a (dimensionless) density function (G,Z) — x(G,Z). No-
tice that the dependence of the complexity density on both the target metric and its gradient
expresses the cost associated to the magnitude and to the spatial variations of the controls, re-
spectively. Moreover, we require the complexity to be isotropic in the sense that x(C,VC) =
x(QCQT,V(QCQ™) 0 Q") VQ € Orth™, so that two active distortions that share the principal
stretches but differ by a rotation of their principal directions have the same complexity?. Finally,
we assume that x(G, ) has a minimum in = = 0 for every G, so that D=x(G, 0) = 0.

In our approach, we relax the constraint of satisfying the target shape exactly, to allow for a
broader set of optimal solutions. Specifically, we combine C(C) with a penalty term accounting for
the distance between the actual, f(I"), and the target, T, shapes into the objective functional for the
optimization problem. As concerns the notion of distance between curves, we choose the Hausdorff

'"Throughout the rest of the Chapter and the entire Thesis, we will deliberately be sloppy when we adopt terms like
“manifold” and “tangent space” and refer them to infinite dimensional spaces. Indeed, no attempt is made to rigorously
asses the structure behind these sets. In particular the term “tangent space” simply refers to the notion of “admissible
variations”. Nevertheless, we found this notation very evocative and effective, and useful to perform formal calculations
(see [Otto, 2001])

*Here the composition of the third order tensor (a; ® a2 ® as) with the second order tensor (b; ® b) reads (a1 ®
az ®as) o (b1 ® b2) = (a3 - b1)(a1 ® a2 ® ba).
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distance [Delfour and Zolésio, 2011]

dH(Fl,Fg):max{sup inf |X —Y|, sup 1nf | X — Y|} (2.4)
Xel, Y€l Xelp Y

where I'y, 'y are closed curves in R2.
In conclusion, the optimization problem reads:

_min  {C(C) + aadp (f(T),1)} s.t./S(F,C)-Vu:O VueTyV, feV, (25)
CeN,feV w

where N = {C : w — PSym,} and the parameter aq is a positive constant used to tune the relative
weight of the distance penalty term. Observe that the solution to the constrained optimization
problem, i.e., the optimal target metric, is insensitive to roto-translations of the target shape, be-
cause the deformation that satisfies the balance of forces is defined up to such isometries.

2.4 On the optimality of affine shape changes

The aim of this section is to explore the optimality of target metrics that allow to obtain shape
changes attainable by homogeneous deformations. These transformations are clearly relevant in ap-
plications for their simplicity and are amenable to analytical treatments. In particular, we seek a
solution of the optimization problem that allows to satisfy the target shape exactly, such that (2.5)
becomes
min {C(C)} s.t. / S(F,C)-Vu=0 VYueTyV, feM, (2.6)
CeN w
where M = {f € V : dy(f(T),T') = 0} is the space of deformations mapping I into I exactly. We
can think of (2.6) as the asymptotic limit of (2.5) for aq — oc.

Let C be the actual metric associated to the affine deformation f such that f(I') = . Then
the homogeneous target metric C = C is the unique absolute minimizer of the elastic energy, so
that the shape change (', I') can be achieved in the absence of stress. It remains to verify whether
this stress-free solution minimizes the complexity functional. To this aim, we provide a result that
allows to characterize affine shape changes for which homogeneous target metrics are optimal.

Proposition 3. Let f be an affine map sending T into T', with C the associated right Cauchy-Green strain,
and assume an isotropic complexity density function x. Then the homogeneous target metric C = C isa
stationary point of the problem (2.6) if and only if at least one of the following conditions holds:

(i) the outward normal n to the reference boundary I is an eigenvector of C everywhere on T';
(ii) the eigenvalues \? of C and the eigenvalues yu; of dgx(C, 0) are such that N2y — N3 =

Since C € PSym,, condition (i) implies that an affine shape change attained via a homogeneous
target metric C = C is optimal whenever w is the union of rectangles oriented along the eigenvec-
tors of C. Moreover, we anticipate that such a condition holds for any isotropic complexity density
function Y, irrespective of its specific form. On the other hand, affine deformations for which con-
dition (ii) holds are optimal independently of the reference shape I', but the existence of solutions
to that condition depends on the specific choice of x. As detailed in the following, the proof of the
proposition above is divided into three main steps.
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Step 1: Stationarity conditions of problem (2.6) We seek optimal solutions to the problem (2.6)
by determining the stationary points of the Lagrangian

2(C, f.m) = C(C) — / FX(C,C)-Vn, (C.f.m)eNxMxTV, @.7)

where 7 is a Lagrange multiplier and X is the plane part of the second Piola-Kirchhoff stress tensor.
We proceed by characterizing the tangent spaces to N and M. We have that TgN = {V : w —
Syms,} and that, following [Fuchs et al., 2009], TYM = {v : w — R? | v|r = Pa, Va € 11}, where
P=1I-(F "n®F "n)/[F "n|? is the tangent projector to T'and V; = {a : ' — R?}. Hence,
tangent vectors to M preserve (incrementally) the shape of the boundary since their restriction to
[ is tangent to I'. It is convenient to introduce the following notation for the Gateaux derivative of
C with respect to C:

1
DCC[V]:M/VCC~V+ /N V, VeTgN, (2.8)

@l

where VeC = dgx — Div(d=x) € Sym, and N = d=x[n] € Sym,3. With this definition, the
derivative of the Lagrangian with respect to the target metric may be computed as

D¢ Tl / Vel — (DeX) [FTVn]) V+— ] /N V=0, VVeTgN. (2.9)
Hence, localization of the above equation leads to
Vel — (DeX)T[F'Vnl =0 inw, N=0 onT, (2.10)
where we used the fact that VC and (DgX)T[M] € Sym, ¥M € Ling, the latter following from
(DeX)TM]- W = (DgX)[W]-M = 0-M = 0 for every W € Skwy and for every M € Lins.

We next observe that Dc¥ € Sym, and that DcX[M] € Sym, VM € Liny, so that the derivative
of the Lagrangian with respect to the deformation reads

D] = (vnz + 2F(DCE)[FTV77]) Vv=0, VYveT;M. 2.11)

| | Ju
Upon introducing the definition of A := Vi + 2F(DcX)[F' V), equation (2.11) yields
/An-v—/DivA-v:O, VveTliM, (2.12)
r w
which, thanks to the characterization of the tangent space to ), is equivalent to

/DivA-sz, VveCr(w) CTrM, /An-Pa:O, Vaec Ir, (2.13)
w r

leading to
DivA=0 inw, PAn=0 onTl. (2.14)

3Recall that the divergence of a third order tensor field = is defined by DivE - A = Div (E"A) for any constant
A € Liny, where the transpose operation reads as a - =ETA = Ea- A for any constant A € Liny and a € R2. Then,
DivE- A +Z- VA = Div (2" A) where A is a second order tensor field.
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Finally, the derivative of the Lagrangian with respect to 7 trivially provides equation (2.2) of
mechanical equilibrium. Hence, stationary points of the Lagrangian (2.7) are triplets (C, f,n) €
N x M x TyV satisfying:

Vel — (DeX)TFTVn =0 inw, N=0 onl, (2.15a)
DivA =0 inw, PAn=0 onl, (2.15b)
DivFYX =0 inuw, F¥Xn=0 onT. (2.15¢)

Step 2: Homogeneous stress-free stationary points Affine shape changes of homogeneous met-
ric C achieved by the target metric C = C are stress-free. Under this condition, the problem of
equations (2.15) simplifies to that of determining the pair (f,n) € M x T4V such that:

Vel — (DeX)TFTVn =0 inw, N=0 onl, (2.16a)
DivA =0 inw, PAn=0 onl, (2.16b)

with A = 2F(Dc )[FTVn]. These set of equations can be further simplified by recalling that

3(C) := ¥(C,C) = 0V C € PSym,, which trivially implies DgX(C)[U] = 0 VU € Sym,. This
condition, along with the minor symmetries* of D¢ and DX provides

DeX(C,C) = —DcX(C,C). (2.17)

Using this result and the major symmetry of DcX, from the first of equations (2.16a) we obtain
A = —2F V&C, which is homogeneous and thus trivially satisfies the first of equations (2.16b).
By recalling that d=x(C,0) = 0, the second of equations (2.16a) is satisfied, while the second of
equations (2.16b) becomes:

PFogx(C,00n=0 onT, (2.18)

where we have exploited the definition of VgC. Observe that this result is independent of the
specific choices for the elastic energy density and for the complexity functional.

Step 3: Specialization to isotropic complexity We now assume the complexity functional to be
isotropic, so that a representation theorem for isotropic scalar functions [Gurtin, 1982] dictates that
X(G, ) = p(HFa), where £ is the list of principal invariants of G. It then follows that

9cx(C,0) = 1 (Ie) I+ p2(Fe)C ", (2.19)

with 1 and 9 scalar functions of the list of principal invariants of C. Hence dgx(C, 0) € Sym,
and shares its eigenvectors v; with the target metric C. Denoting by \? the eigenvalues of C = C
and by p; those of g x(C, 0), we write C = >, M?(v; ® v;) and dg x(C,0) = 3, ui(v; ® v;). Also,
by the polar decomposition theorem F = RU, with U = ). \j(v; ® v;) and R € Orth™, such that
equation (2.18) can be recast as

> wk(vi - m)?
PF 0 x(C,0)n = Z Aipi(vi o) — zk: = )QAi_l(vi ‘n) pRv;=0 onT, (2.20)
: k Vk -n
k

‘Indeed DgX[W] = DcEZ[W] = 0V W ¢ Skwa.
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which, since the eigenvectors v; are mutually orthogonal, finally leads to
> wk(vi - m)?
k
> A (vi-m)?
k

fori = {1, 2}. The equation above is trivially satisfied whenever the outward normal n to the refer-
ence boundary I' is an eigenvector of the target metric everywhere on I', a result that corresponds
to condition (i) of Proposition 3. Differently, equation (2.21) reduces to

Aifti (Vi - ) A Hvi-n)=0 onT, (2.21)

A — Mp2 =0, (2.22)

which coincides with condition (ii) of Proposition 3.

2.5 Numerical approximation of optimal target metrics

Besides the study of affine shape changes, we are interested in determining the optimal target
metrics for generic transformations and in exploring the role of mechanical stresses in the ensuing
morphing strategies. To this aim, we solve the optimization problem (2.5) numerically. Specifi-
cally, we use a gradient-based method implemented in the SNOPT library [Alt, 1990, Gill et al.,
2005] within the finite element software COMSOL Multiphysics. Since the Hausdorff distance
does not admit in general a shape derivative, we adopt its smooth approximation dg as proposed
in [Charpiat et al., 2005]:

dpr(T1,T2) = (((d(, N E)E, dC DR (2.23)

where d(-, -) denotes the Euclidean distance in R? and
- 1 1 (6(a1)+6(a
(Nf = (F,/Fwof> . {a,a9)? =671 (W) . (2.24)

Here ¢(¢) = ¢*(£), with ¢ a smooth, positive, strictly decreasing function, p(¢) = &7, 6(¢) =
&7, while «, 3, v are positive constants controlling the accuracy of the approximation, such that

d~H(I‘1, Iy) Q’Bifm dm(I'1,Ty), for any pair of curves I'; and I';. Following [Charpiat et al., 2005],
in our simulations we set « = 3 = 4, v = 2, and ¢(¢) = exp[—£2/(20?%)]/V2r0? with o a small pa-
rameter that we choose of the order of the mesh size on I" and I'. Hence, the optimization problem
becomes that of (2.5) with dg replaced by dy and we consider it to be solved with sufficient accu-
racy provided that d < ¢, with £ a characteristic length scale later specified. As for the material
response, we choose a plane-strain, compressible neo-Hookean energy density [Nardinocchi et al.,
2013] such that
- JG [ A1 J JN . o5 (T

P(C,C) = Ty [C -C —2log <J> — 2] + > log (J> : (2.25)
In the equation above, J = (det C)/2, while G and A denote the first and the second Lamé mod-
uli, respectively. In the numerical implementation of the model, we choose the volumetric and
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deviatoric components of the target metric as optimization variables, to guarantee the positive
definiteness of C by setting the constraint J > 0, thus preventing the gradient-based solver to
explore unfeasible controls.

In the following sections, we first benchmark our computational model against the theoret-
ical result of Proposition 3 related to affine shape changes characterized by homogeneous tar-
get metrics and compute the numerical solution in cases where homogeneous target metrics are
not optimal. Then, we study more complex shape changes and compare the numerical solutions
obtained with different complexity functionals, which allow to select notable activation patterns
(e.g., conformal target metrics) that are relevant in applications. We remark that numerical results
are reported in dimensionless form, with stress measures normalized by the shear modulus G and
spatial coordinates rescaled by the relevant characteristic length ¢.

2.5.1 Affine shape changes: Optimality of homogeneous target metrics

For the numerical study of affine shape changes and to test for their optimality under the condi-
tions of Proposition 3, we introduce the following isotropic complexity functional

C(C) = 1/ (a0C — 1P + 4, VCP) | (2.26)

jwl o

where a. and a, are positive constants. In the simulations, we set the parameter aq > (ac /¢, ag/(3),
such that the actual shape, f(I'), approximates the target shape, I', with sufficient accuracy. We
observe that, with the choice of (2.26), the eigenvalues of 0g x(C,0) are p; = ac()\l2 — 1), so that the
only feasible solution to equation (2.22) reads \; = /1 — A2 and requires that \; < 1 fori = {1,2}.
This solution, which fulfills condition (ii) of Proposition 3, will be explored later in this section.

We first consider the transformation of a square having edge length / into a rectangle having
edges of length A/ and ¢, with the basis vectors (e, e2) aligned along the edges of the reference
square (Fig. 2.3a). Clearly, this shape change can be achieved without stress by a uniaxial stretch
such that the actual and the target metrics are homogeneous and both equal to C™* = A2 e; ® e +
ez ® ey. According to condition (i) of Proposition 3, this affine shape change is optimal, since the
outward normal to the reference domain is an eigenvector of C,s everywhere on I'. This conclusion
is supported by the numerical results shown in Figs. 2.3a-d, which were obtained by setting C =
C = C"™ as the initial condition for the optimization procedure. Indeed, the discrepancy between
the components of C" and of the (computed) optimal target metric are negligible (Figs. 2.3b-d), so
as the norm of the (dimensionless) Cauchy stress (Fig. 2.3a).

We next study the transformation of a circle of radius /¢ into an ellipse of semi-axes A\ and
¢ (Fig. 2.3e). While this transformation could be obtained by the target metric C" of the previ-
ous case, this is not optimal for a circular domain since the conditions of Proposition 3 are not
met. Indeed, we notice that the optimal target metric is not uniform (Figs. 2.3f-h) and it dif-
fers from the actual metric, such that the solution to the optimization problem is characterized
by a non-homogeneous stress field (Fig. 2.3e). A similar result holds for the case of a square
domain with edge length ¢ morphing into a parallelogram of height and basis ¢ (Figs. 2.4a-d).
Here, the homogeneous shear deformation corresponding to the (actual and target) metric C° =
I+v(e; ®es+e2®er) + 2 ex ® ey is not optimal. We argue that the two cases just discussed are
instances of how stresses can be exploited to reduce the complexity of the controls or the material
architecture. However, in this regard, it is important to remark that the heterogeneity of the opti-
mal solutions is a purely geometrical fact, hence it is not subordinate to the presence of stresses.
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Figure 2.3: Optimal solutions for the transformation of a square into a rectangle and of a circle into an ellipse. Notice
that these shape changes can be achieved through the same uniaxial stretch of actual and target metric equal to C™° =
Me®e+esRes, wzth A = 1.3. For both the cases, we report the norm of the ( dzmenszonless) Cauchy stress and the
components of C — C™. As predzcted by the theoretical results of Proposition 3, C = C = C" is the optimal solution
for the square domain (a-d). This is not the case of the circular domain, for which the optimal target metric is neither
uniform nor corresponding to the actual metric, such that a state of stress characterizes the solution (e-h). Numerical
results were obtained for G/A = 1 and with the following sets of parameters: a. = 2 x 1072, ag/¢* = 2 x 1074,
aql = 10 for the square and a. = 2 x 1071, ag /0> = 2 x 1073, aql = 1 for the circle.

Indeed, for the two cases depicted in Fig. 2.3e and in Fig. 2.4a, homogeneous target metrics are
not optimal even among the restricted set of stress-free metrics, as it can be shown by studying the

following variational problem

i (C(C)} @27
for which detailed calculations are reported in Appendix B. We also remark that the optimality of
homogeneous target metrics, corresponding to affine shape changes, is not an intrinsic propetry of
the specific controls. It rather depends on the shape and on the orientation of the reference domain.
As an example, we show that C is optimal when its eigenvectors are aligned with the outward
normal to the boundary of the reference domain (Figs. 2.4e-h).

Finally, we consider the interesting case of a square having edge length ¢ morphing into a
rhombus having edges of length ¢/1/2, with the edges of the reference square oriented at /4
with the basis vectors (e, ez), see Fig. 2.5a. It is immediate to verify that such transformation
can be achieved by the biaxial stretch such that the actual and target metrics both correspond to
c = (1—-2?)e; ® e + A? e ® eo. While condition (i) of Proposition 3 is not met, condition (ii) is,
as discussed at the beginning of the present section. Consequently, the homogeneous (actual and
target) metric C™is optimal, as verified by the numerical results (Figs. 2.5a-d).

In concluding this section, it is interesting to comment about the strategy by which the com-
plexity functional (2.26) is minimized in cases where the optimal target metric is not homogeneous.
In general, the optimal solution is achieved through a subtle interplay between the target metric
components, hence it is intrinsically multi-dimensional. This behaviour may be appreciated by
exploring, for instance, the computational results reported in Figs. 2.3f-h, where a decrease, with
respect to the initial condition, of the target metric component C}; is accompanied by an increase
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Figure 2.4: Optimal solutions for the transformation of a square into a parallelogram and of a square, with edges
aligned along the eigenvectors of C, into a rectangle. Both shape changes can be achieved through the simple shear
of actual and target metric equal to C =1+ (e ® ey + e @er) +72ex @ ey, with vy = tan(w/9) For both
the cases, we report the norm of the (dimensionless) Cauchy stress and the components of C — Cs. Consistent with
the theoretical results of Proposition 3, C = C = C’ is not the optimal solution for the fist case (a-d), in which the
optimal target metric is neither uniform nor corresponding to the actual metric, such that a state of stress characterizes
the solution. Instead, the optimality of C is confirmed by the numerical results in the second case (e-f) since condition
(i) of Proposition 3 is met. Numerical results were obtained for G/A = 1 and with the following sets of parameters:
ac=2x 1071, ag/0? =2 x 1073, aql = 1 for the first case and a. = 2 x 1072, ag/0*> = 2 x 10™*, aql = 6 for the
second case.

of the component C; and by the emergence of Cy2. Clearly, such a strategy could not be exploited
in a one-dimensional setting, for which the homogeneous solution is always optimal. Indeed, let
us consider the one-dimensional counterpart of the optimization problem (2.27):

1
]{Iél]\l}{/o x(C, C”)} , (2.28)

where M = {f(X) : (0,1) = R | f(0) = 0, f(1) = 6, f/ > 0in (0,1)} is the set of admissible
deformations, C' = (f’)? is the associated (scalar-valued) metric, and a prime denotes differen-
tiation with respect to the spatial coordinate X. In this simplified case, the tangent space Ty M
trivially coincide with functions vanishing at the boundary. Hence, starting with the analog of
(B.2) in the present one-dimensional setting, it is immediate to conclude that the linear deforma-
tion f(X) = dX is always optimal.

2.5.2 Non-affine shape changes

In this section, we extend the numerical study of optimal target metrics to generic transformations,
i.e., those shape changes which are not achievable through homogeneous deformations. In partic-
ular, we focus on the prototypical case of the planar bending of an active block, due to its relevance
in application (e.g., soft robotics, smart actuation). Taking the rectangular domain of length ¢ and
height h = ¢/3 as the reference configuration (Fig. 2.6a), the target shape T is chosen such that it
can be realized through the conformal deformation

f(X1,X2) =04+ (\/K) [exp(kX2/l) sin(k X1 /l) e1 + (exp(kX2/f) cos(kX1/¢) —1)ea2] , (2.29)
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Figure 2.5: Optimal solution for the transformation of a square, with edges oriented at /4 with respect to the basis
vectors (eq,ez), into a rhombus. Notice that this shape change can be achieved via the biaxial stretch of actual and

target metrics equal to c™ = (1—-X)e; ®e; + A2ey ® ey, with A\ = 0.5. This is the optimal solution, since the
eigenvalues of c” satisfy condition (ii) of Proposition 3 for the complexity functional of (2.26). We report (a) the

norm of the (dimensionless) Cauchy stress and (b-d) the components of C — C"*. Numerical results were obtained for
G/A = 1 and with the following set of parameters: a. = 2 x 1072, ag/? = 2 x 1073, aql = 10.

where o is the origin of the reference frame, « denotes the relative rotation (the amount of bending)
between the block edges at X; = +//2, whereas the dimensionless parameter A controls local
volume changes. Indeed, J¢ = A\ exp(2xkX3//), such that the associated conformal metric reads
C¢ = J°I, a particularly useful choice since it provides a compatible stress-free initial condition
for the optimization solver that exactly matches the target shape. In particular, we set x = 7/8
and A = 1.3 in equation (2.29) for the numerical simulations. In the following, we explore the
impact on optimal solutions of several complexity functional, some of them inspired by features
of existing active materials (e.g., polymer gels, liquid crystal elastomers). In particular, we will see
how stresses contribute to reduce the complexity of the controls.
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Figure 2.6: Optimal active bending of a block for the complexity functional C,. Prescribed shape change (a) for k = 7 /8
and X = 1.3 in equation (2.29) and dimensionless norm of the Cauchy stress |'T|. The dashed line in (a) denotes the
cut-line for the plots in (b) relative to the target metric components C1y (blue curve), Cao (red curve), Cho (purple
curve) and J¢ (yellow curve). In (c-e) the contour plots of the target metric components Cy1, Ca, and Caa. Notice
that the planar bending of the block is achieved by modulating only the axial strain along the vertical coordinate.
Numerical results were obtained for G /A = 1 and with the following set of parameters: az/¢? = 2 x 1073, aql = 10.

We first consider the minimal case where the complexity functional is just characterized by a
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term that penalizes the gradient of the controls, such that

Ci1(C) = le/agw(‘:\?. (2.30)

Relevant computational results are reported in Fig. 2.6 and comprise the norm of the Cauchy stress
tensor (Fig. 2.6a) and the three components of the optimal target metric (Fig. 2.6b-e), for which we
also provide plots along the cut-line of X; = 0. We notice that the target shape is accurately
attained, as f(T') and I" almost overlap. Moreover, optimal solution is characterized by the emer-
gence of stresses, which contribute to decrease the norm of the controls gradient, and is almost
invariant along the X;-coordinate, except for boundary layers that develop at the block extremi-
ties X1 = £//2 to satisfy the traction-free conditions. Finally, the (optimal) target metric compo-
nent C1; approaches J¢ from the conformal map (2.29), while C12 and Cs are essentially constant.
Clearly, this behavior is produced by the penalty term in eq. (2.30): as the reference domain devel-
ops mainly horizontally, its planar bending is achieved by modulating only the axial strain along
the vertical coordinate.
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Figure 2.7: Optimal active bending of a block for the complexity functional Co. Prescribed shape change (a) for k = 7 /8
and A = 1.3 in equation (2.29) and dimensionless norm of the Cauchy stress |T|. The dashed line in (a) denotes the cut-
line for the plots in (b) relative to the target metric components Cyy (blue curve), Cas (red curve), Cyo (purple curve)
and J¢ (yellow curve). In (c-e) the contour plots of the target metric components Ci1, Cia, and Caa. Notice that
the optimal target metric almost matches the conformal one, modulo discrepancies due to the emergence of mechanical
stress. Numerical results were obtained for G /A = 1 and with the following set of parameters: ag/¢? = 2 x 1074,
Aoy /0? =2 x 1071, aql = 10.

Inspired by polymer gels, active materials that typically swell or shrink isotropically in re-
sponse to an external stimulus [Lucantonio et al., 2013], we next consider a complexity functional
that penalizes the deviatoric part of the target metric, such that

_ 1 _ ~ dev
Cs(C) = M/ (agl VO + agey|C* ~ 12) . (2.31)
As intuitively clear, setting aqey > ag/¢? in (2.31) leads to an optimal target metric that is almost
conformal. This conclusion is supported by the results reported in Fig. 2.7, where the target metric
components C41 and Coo closely match (Fig. 2.7b), while the component (45 is almost zero apart
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from boundary layers, as already discussed. Hence, a hydrogel-like behaviour is captured by the
optimization procedure. However, the solution is characterized by stresses (Fig. 2.7a), such that
the optimal target metric C # C°.
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Figure 2.8: Optimal active bending of a block for the complexity functional C3. Prescribed shape change (a) for k = 7 /8
and A = 1.3 in equation (2.29) and dimensionless norm of the Cauchy stress |T|. The dashed line in (a) denotes the
cut-line for the plots in (b) relative to the target metric components Cyy (blue curve), Ca (red curve), Cyy (purple

curve), A2, (yellow curve) and N2, (green curve). In (c-e) the contour plots of the target metric components Chy,

Cla, and Css. Notice that the target metric eigenvalues are almost constant along the cut-line shown in (a). A bi-
layer structure naturally emerges from the optimization procedure as characterized by a region of sharp transition of
the target metric components that divides the reference domain into two halves. Numerical results were obtained for
G /A = 1 and with the following set of parameters: ag/¢* = 2 x 1074, a. /0> = 2 x 1071, aql = 20.

Finally, we study the interesting case where the complexity functional weights the gradient of
the maximum, A2, and of the minimum, A2 , eigenvalues of the target metric:

max/’ min”/

6(0) = o / (ag] VO + ao (VA2 + VA2 %)) . (232)

This choice is inspired by nematic elastomers, a class of active materials in which macroscopic
distorsions are caused by temperature-driven molecular re-orientation (nematic-to-isotropic tran-
sition) and are characterized by homogeneous active stretches in the direction parallel and orthog-
onal to the nematic director [Sawa et al., 2010]. By setting ae > a, in the numerical simulations,
the optimization procedure leads to the emergence of a bilayer structure (Fig. 2.8), i.e. the solution
is piecewise constant, except for a region of sharp transition that divides the reference domain into
two halves. This phenomenon is reminiscent of phase transitions where two or more phases are
separated by an interface. We argue that the transition region may converge to a discontinuity in
the limit of a; — 0. As in the cases previously discussed, the optimal solution is characterized
by stresses (Fig. 2.8a) and, as expected, the eigenvalues of the target metric are nearly constant
(Fig. 2.8b), while the target metric components Cy1 and Cyo swap their values about the sharp hor-
izontal interface centered at Xy = 0, see Fig. 2.8c and Fig. 2.8e. Consequently, the eigenvectors
of the target metric undergo a rotation of 7/2 within that interface, and such rotation is accompa-
nied by the occurrence of Cjy of sensible magnitude (Fig. 2.8d). Because of the symmetry of the
optimization problem about the vertical coordinate, the rotation of the eigenvectors of the target
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metric takes place in opposite directions on the two halves of the reference domain, such that no
rotation takes place at the center by continuity.
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Figure 2.9: Optimal solution exploiting C, as the complexity functional for the transformation of an ellipse into a
shape resembling a batman-like logo. Prescribed shape change (a) and dimensionless norm of the Cauchy stress |T|.
In (b-d) the contour plots of the optimal target metric components C1, Ch2, and Cao. Despite the presence of sharp
corners, the numerical procedure is capable to achieve the target shape with remarkable accuracy, thus confirming the
possibility to deal with extreme shape changes. Numerical results were obtained for G/A = 1 and with the following
set of parameters: ag /0> = 2 x 1074, aqf = 10.

To emphasize the applicability of the proposed approach in a more general context, we con-
clude this section by presenting the numerical results relevant for the shape change depicted in
Fig. 2.9a and concerning the morphing of an ellipse of semi-axes ¢ and //2 into a complex shape
resembling a batman-like logo. As for the test case just discussed, we report the magnitude of
the Cauchy stress (Fig. 2.9a) as well as the components of the optimal target metric (Fig. 2.9b-d),
where the optimality is intended in the sense of the complexity functional C;. Despite the presence
of sharp corners, the numerical procedure is capable to achieve the target shape with remarkable
accuracy, thus confirming the possibility to deal with extreme shape changes.

2.6 Conclusions

Motivated by the quest for effective solutions to shape morphing problems, we formulated a con-
strained optimal control problem for the determination of the optimal target metric field corre-
sponding to a prescribed shape change. We introduced an objective functional accounting for the
complexity of the controls and for the distance between the realized and the target shape. In par-
ticular, we explored the planar morphing of active elastic bodies under plane-strain conditions
and in the absence of external forces. For the special case of shape transformations achievable
via affine mappings, we derived explicit necessary and sufficient conditions for the optimality of
homogeneous target metrics. We verified our theoretical findings by means of numerical simula-
tions, later extended to the study of more complex shape changes. While providing evidence of
the applicability of our approach to generic shape transformations, we focused on the prototypical
case of the active planar bending of a block. In particular, we investigated the effect of different
complexity functionals on the optimal target metric. In our opinion, the relevance of the presented
case study is twofold. On the one hand, it shows that the appropriate choice of a complexity func-
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tional leads to the optimal design of target metrics compatible with a specific material class (e.g.,
polymer gels, nematic elastomers). On the other hand, it highlights that our computational tool
may be employed to devise novel morphing strategies or material architectures, where stresses
promote a reduction in the complexity of the controls. Finally, we envisage the applicability of
our approach to the study of biological systems, as it may contribute to gather insight into the
morphing strategies they adopt as a result of natural selection.
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Chapter 3

The effect of cortex contractility and
axoplasm integrity in the active
reconfigurations of axons

3.1 Introduction

Axons are fundamental structures of neurons whose purpose is the transmission of electro-chemical
signals to neighbouring cells. The inner part, called axoplasm, is the cytoplasm of axons and con-
tains several organelles and microtubules. The latter are cross-linked together forming a network
which gives the axoplasm an elastic behaviour. The axoplasm is surrounded by a coating, called
cortex, composed of F-actin filaments interconnected together by myosin II molecular motors and
spectrin. In particular, the F-actin cortex can actively contract thanks to the action of myosin II.
The interplay between the microtubule network and the cortical actomyosin machinery aims at
maintaining the cylindrical shape of the axon [Ouyang et al., 2013].

Many phenomena can alter such a delicate dynamic equilibrium. In particular, the disruption
of the elastic component of the axoplasm during stretch can lead to bulging along the axon, a pro-
cess called axonal beading or pearling that is a hallmark of neuronal damage [Lang et al., 2017, Datar
et al., 2019]. Indeed, axons can sustain large deformations, up to 100%, if the strain is slowly and
progressively imposed [Tang-Schomer et al., 2009]. Under such conditions, the elastic deformation
can even induce an axial growth of the axon thanks to the production of new microtubules [Bray,
1984, Zheng et al., 1991, Chada et al., 1997, Oliveri and Goriely, 2022]. Conversely, a rapid stretch
of the axon can lead to a damage of the cytoskeleton and to the depolymerisation of microtubules
[Tang-Schomer et al., 2009, Bain and Meaney, 2000].

Axonal beading has been observed as a consequence of several pathological conditions, such
as the Alzheimer’s [Stokin et al., 2005] and Parkinson’s diseases [Tagliaferro and Burke, 2016],
viral infections [Jacomy et al., 2006], and multiple sclerosis [Niki¢ et al., 2011]. There is increasing
evidence that all these conditions result in a structural damage of the cytoskeleton. Indeed, it has
been shown that axonal beading can be explained by a mechanical instability triggered by both the
reduction of axoplasm stiffness and the active contraction of the F-actin cortex [Riccobelli, 2021].
Therefore, unveiling the mechanism underlying cortical contraction is of the utmost importance to
understand how axons maintain their structural stability and to prevent their degeneration.

Experimental observations show that F-actin filaments are arranged in a geometrically regular
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pattern, forming circles spaced at a constant distance of 180 nm-190 nm along the axonal length,
interconnected by spectrin and myosin II [Xu et al., 2013]. Such a microstructural organisation
suggests that the F-actin cortex can generate an active tension in both the axial and the circum-
ferential direction. Recent experiments have linked hoop contractility to the self-regulation of the
axon diameter following an externally imposed axial stretch, microtubule depolymerisation or
myosin II disruption [Fan et al., 2017, Costa et al., 2020]. In these works, the authors suggest that
such changes may be induced by the compressive force exerted on the axoplasm by the active
contraction of the cortex [Fan et al., 2017]. Furthermore, an active diameter reduction is observed
when axons are axially stretched, suggesting a coupling between axial and hoop active tensions.
However, the nature of such a coupling is still not understood.

In this Chapter, we use tools of Continuum Mechanics to investigate the non-trivial coupling
of the axial and circumferential active contraction, showing that the cortex contractility induces a
compression of the axoplasm. The Chapter is organized as follows: in Section 3.2 we propose a con-
tinuum model of the axon exploiting the active strain approach and the Coleman-Noll procedure
to obtain evolution equations coupling the hoop and the axial active stretch. Under the simpli-
tying assumption of material incompressibility, in Section 3.3 we show that the above mentioned
equations reduce to a simple dynamical system that can be easily studied analytically. A more ap-
propriate compressible behavior is assumed in Section 3.4, where we numerically approximate the
mathematical model and we provide a quantitative comparison with experimental results. Finally,
in Section 3.4.6 we discuss the main outcomes of the present work together with some concluding
remarks.

3.2 Mathematical model

The aim of this Section is to construct a mathematical model of F-actin cortex contraction and to in-
vestigate the coupling between the axial and the circumferential contractility using the framework
of Continuum Mechanics.

3.2.1 Notation and kinematics

We model the axon as a continuum body with reference configuration
Q={X€eE|Re[0, R, © €0, 27], Z e R},

where R, O, Z are the Lagrangian cylindrical coordinates of X = Rcos©epr + RsinOeg + Zeyz
denoting the position vector of material points belonging to the three dimensional Euclidean space
E3. Due to the slenderness of the axon we assume the reference domain to be infinite along ez.

The axon is composed of an inner part 2o, and an outer coating €, representing the axoplasm
and the actomyosin cortex, respectively. More explicitly, we define

Qoa ={X € |0<R<R;},
QOc:{XGQO|RiSR§RO}7

where R; is the internal radius of the axoplasm.!

'Problems of this type, involving composite materials with cylindrical inclusions, have been extensively studied by
means of analytical solutions in [Christensen and Lo, 1979, Ogden, 1997].
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Figure 3.1: Representation of the multiplicative decomposition of the deformation gradient F = F,F,.

Let f : [to, t1]x Qo — E? denote the motion of )y, and f its corresponding position vector so that
x = f(¢, X) is the actual position vector of point X at time ¢. We denote by r, 6, z the coordinate of
x in a cylindrical reference frame where (é,, &g, €,) is the corresponding vector basis.

Let F = Vf be the deformation gradient. Since the cortex can actively contract, we exploit
the active strain approach [Ambrosi and Pezzuto, 2011, Giantesio et al., 2018], a method first de-
veloped for modeling muscle contraction [Kondaurov and Nikitin, 1987, Taber and Perucchio,
2000, Nardinocchi and Teresi, 2007, Riccobelli and Ambrosi, 2019] which has been recently ex-
ploited to model axonal contractility [Garcia-Grajales et al., 2017, Riccobelli, 2021]. More explicitly,
we assume a multiplicative decomposition of the deformation gradient into an active and an elastic
part

F =F.F,,

where F. and F, account for the elastic and the inelastic active distortion, respectively. The tensor
F, describes the contractility of the cortex and has to be constitutively prescribed (see Fig. 3.1). We
also denote by J, Je, and J, the determinants of the tensors F, F,, and F;, respectively, represent-
ing the local change of volume induced by the relative distortion field.

Given the micro-structural organisation of the cortex, it is reasonable to assume that

F,= 1 er ®er + apep ®eg +azez ey, (3.1)
aeaz
for X € Qg where ag and az are the active stretches along the circumferential and the axial
direction, respectively. In this way, the active strain tensor accounts for a pure remodelling of
the cortex [Epstein, 2015], i.e. J, = 1, without any volume modification (as would happen in
growth/resorption). The axoplasm is treated as a deformable body composed of a passive elastic
material, setting F, = Iin Q¢,, where I is the identity tensor.

3.2.2 Balance equations and boundary conditions

We follow the approach proposed in [DiCarlo and Quiligotti, 2002] to build a thermodynamically
consistent model of cortex contractility. The main idea is to postulate the existence of remodelling
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forces that drive the contraction of the cortex. Then, exploiting the Clausius-Duhem inequality,
we derive some constitutive restrictions for the expressions of such forces. This approach is also
known in Continuum Mechanics as the Coleman-Noll procedure [Coleman and Noll, 1974].

More explicitly, similarly to the modelling of growth [DiCarlo and Quiligotti, 2002], we pre-
scribe a balance between the remodelling stresses driving cortex contractility as follows:

3.2
BZ = OZ7 ( )

{B@ = Cog,
where Bg and By are the external remodelling stresses along the circumferential and the axial
direction, while Cg and C7 are the corresponding internal remodelling stresses.

As regards the balance of the linear momentum, in the absence of external body forces and
neglecting inertia we get

DivS =0, (3.3)

where S is the first Piola-Kirchhoff stress tensor and Div represents the divergence in material
coordinates. Equivalently, the balance of the linear momentum can be recast in the actual configu-
ration, that is

divT =0, (3.4)

where T = J~!SFT is the Cauchy stress tensor and div is the divergence operator in the actual
reference frame.

The balance equations are complemented by proper boundary and interface conditions. We
assume that the external boundary of the axon is free of traction, therefore

Sn=0 where R = R,, (3.5)

where n is the outward normal to 9. We also enforce the continuity of displacement and traction
at the interface between the cortex and the axoplasm, namely

lim u= lim u,
R—R~ R—RY
(3.6)
lim Sn= lim Sn.
R—R- R—R}

where n is the outward normal to the interface. To proceed, we must provide some constitutive
assumptions on the material.

3.2.3 Thermodynamics restrictions and Coleman-Noll procedure

In the following, we exploit the so-called Coleman-Noll [Coleman and Noll, 1974] procedure based
on the Clausius-Duhem inequality to deduce restrictions on the constitutive laws. This allows to
formulate the coupling between the active stretches ag and az in a thermodynamically consistent
manner.

Specifically, we postulate the existence of a strain energy density function ¢ and, following
[DiCarlo and Quiligotti, 2002], we write the Clausius-Duhem inequality

/QLS/S-F-I-/ {C@%—&—Czaz], (3.7)
P P PNQoc C) az
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where P is a subdomain of )y and the superposed dot denotes the time derivative. We remark
that the latter integral in the inequality (3.7), representing the power of the internal remodelling
forces, is performed on P N . since only the cortex can actively contract.

By the equipresence principle [Truesdell and Noll, 1965], we postulate that the constitutive
relations for ¢, Cg, Cz, and S depend on the same kinematical quantities. Here, we assume that

¢:¢(X, F,(lj,dj),
Cj :Cj(X, F,aj,dj),
S = S(X, F,aj,dj),

where j = O, Z.
Under such assumptions, we can rewrite (3.7), obtaining
[oev-s)be Y [ (go,u-c)Pa [ o <o, (38)
P =6, 7 PN0c a; PNQoc

which must hold for any admissible process [Coleman and Noll, 1974, Podio-Guidugli, 2019].
Thus, from the arbitrariness of F and d;, we obtain

S = 6F¢> adjw =0, (39)

where the first relation is the classical expression of the first Piola-Kirchhoff stress tensor of a hy-
perelastic material, while the second one states that the energy v is independent of ag and a .
We remark that the molecular motors can only generate an active contraction in the circum-
ferential and the axial directions. Therefore, ag must satisfy the unilateral constraint ag < 1, and
similarly for az. Considering the possible continuations on @, for j = ©, Z in (3.8), we can set 2

a

C; = a; aajlb—i-uchaf]: + 1y, (3.10)
J

where I'; is the reactive term enforcing the unilateral constraint a; < 1 playing the role of a La-
grange multiplier. More into detail, I'; satisfies the following relations:

Ii(a; —1) =0,
ila; =1) (3.11)
r;>o.
We observe that I'; is zero whenever a; # 1. Exploiting (3.2) and (3.10), we get
: aj
a; = Bi—a;04v—T;). 3.12
I e ( i — aj O0a; Y J) (3.12)

If the constraint is binding (i.e. a; = 1) with a; = 0, from (3.12) we get

|t:t0

Fj = Bj — aj aaji/),

?We stress that the restrictions on Ce and Cz depend on the power of the remodelling forces postulated in (3.7). For
an extensive discussion see [Goriely, 2017],§14. In addition we remark that the dissipative term in (3.10) is just one of
the admissibile choices compatible with the Clausius-Duhem inequality, see [Ambrosi and Guana, 2005].
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which holds whenever I'; > 0, namely when B; > a; 9,,1. Conversely, if B; < a; 04,1, from (3.12)
we observe that a;|,_, is negative, therefore leading to the detachment from the boundary of the
constraint a; < 1if a;|i—, = 1.

In summary, when a; = 1 the reactive term I'; is given by

Ij = max {0, Bj — a; 9,1} . (3.13)

We now specialise the evolution equation (3.12) enforcing the multiplicative decomposition of
the deformation gradient dictated by the active strain approach [Kondaurov and Nikitin, 1987,
Taber and Perucchio, 2000]. Let 1)y be the strain energy density of the passive material, we define
the active free energy density as

(X, F, ae, az) = ¢o(X, FF, ). (3.14)
With the newly defined energy density in the equation above, from (3.9) we get
S =0p. o F; 7. (3.15)
By using (3.14), we obtain
Oa; 1 = —M - (9, F2) F; ', withM = F] 9,70, (3.16)
where M denotes the Mandel stress tensor. Introducing the tensors

Iop =eg ®eg —er R ep,

I =ez®ez —ep®eg,
and combining the expression of F, given by (3.1) with (3.16), we get
aj 0,0 = —M - 1. (3.17)
Thus, substituting (3.17) into (3.12) and enforcing (3.13), we finally get

Y (B;+M-1,), ifaj<lorB;<-M-I,
a; = { HeTj (3.18)
0, otherwise,

where again j = O, Z.

The evolution equations (3.18) for ag and az can be used to provide a physical interpretation of
the external remodelling stress in (3.2). As for growth processes studied in [DiCarlo and Quiligotti,
2002, Ambrosi and Guana, 2005], Bg and Bz represent the external forces driving the active con-
traction of the cortex: when the linear combinations of the Mandel stress components M - Ig and
M - I are equal to —Bg and — By, respectively, the system is in chemo-mechanical equilibrium.
Therefore, Bg and By can be regarded as the equilibrium, or homeostatic, stresses towards which
the system is led.

Despite sharing many similarities with models for growing tissues developed in [Ambrosi and
Guana, 2005], there are some peculiarities. First, the active strain tensor is isochoric, namely J, = 1.
The effect of such a restriction is that the Mandel stress appears in (3.18) in place of the Eshelby
stress (see for instance equations (2.24) and (3.2) in [Ambrosi and Guana, 2005]). Secondly, F, is not
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a generic tensor with positive determinant but belongs to the subset described by (3.1). Thus, only
a particular combination of the Mandel stress components are involved in the evolution equations
(3.18).

A similar approach has been recently adopted by Dehghany et al. in [Dehghany et al., 2020] to
model F-actin contractility in axons. Compared with their work, inspired by the models of smooth
muscles developed by Stdlhand et al. [Stdlhand et al., 2011], our model considers a more general
active strain tensor where the active strains ag and az are initially decoupled and their coupling
is provided by the Coleman-Noll procedure instead of being prescribed a priori. In particular, the
assumption of a linear relationship between ag and az such as az = Sag can lead to problems in
the passive limit, since F, cannot be equal to the identity when 3 # 1. Furthermore, the approach
presented in this Section, based on the balance equations proposed by DiCarlo and Quiligotti in
[DiCarlo and Quiligotti, 2002], allows us to enlighten the key role of Mandel tensor in regulating
the homeostatic stress within the axon.

3.2.4 Variational characterization

The model already introduced exhibits a variational structure, in particular, the equations in (3.18)
are the gradient flow of an energy functional. In order to show it, let us first recast the free energy
density as follows
FF,' Q
U(F, ) = Yo(FF; ") onQo,,
¢0 (F) on QOC.

We then introduce the following energy functional

E(F,a5) = /Q U(F,a;) — ZB]‘XQOC loga; |,
0 J

where xq,, is the characteristic function of {2o.. Now, for every fixed a;, define f* as a stationary
point of &, namely

D:&(F*,a;)[Vv] = opV(F*,a;)-Vv=0, VYveTfV; feVy, (3.19)
Qo
where V; is the functional space for f and TV denotes its tangent space at the point f. Finally let
us define the energy functional £* and the density ¥* as

& (aj) = E(F* a5), ¥ (a;) = V(F",a),

respectively.

We claim that the system of equations in (3.18) is a gradient flow of &* in the variable a =
(ao,az) € V = Vg x Vyz, subject to the constraint 0 < a; < 1in Qq.. The latter can be conveniently
rephrased as log(a;) < 0.

To properly formulate the gradient flow we have to choose a scalar product for the variations
of a, namely, a scalar product for elements of the tangent space 7,V'. The subsequent calculations
will confirm that the proper choice for the scalar product is

1
(v, w) :McZTj/ —5UjWj,
g 0
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for every v, w € T,V. We remark that, the correct choice of a scalar product is typically dictated
by the existence of a dissipation mechanism. Indeed, our model features the following dissipation

power ¥
2(v) = ||ol* = (v,v).

Finally, in order to account for the unilateral constraint a; < 1 we introduce the following La-
grangian

L(aj, ¢5) = E(az) + Z/Q L'jXqq. loga;,
7 0

where the I';’s play the role of Lagrange multipliers.
At this point, we have introduced all the ingredients to properly formulate the gradient flow
for the evolution of a, which is defined as

a=-V.Z, (3.20)

where V,.Z denotes the variational gradient of % with respect to the scalar product (-, -). Accord-
ing to the representation theorem for linear functional in scalar product spaces, V,.Z is obtained
as the solution of the following variational equation

D, Zv] = (V. Z,v), YweTl,V V,ZeT,V. (3.21)

The variation of . reads

Do Z[v] Z/QO

(Da U*(a ]+
T; B;
= Z/ (8%\1/ (F*, a;)vj + Op W (F*, a5) - Do, F*[v;] + PX0e 29X vj)
Qo
1

F] XQOC B.] XQOC .
Vi — Uj
aj aj

a; aj
F'XQ . Bjixa.
—z/ R I
Qo a; a;

where in the third line we exploited the definition of f* through Eq. 3.19. Then, thanks to the above
equation, Eq. (3.21) becomes

1
E / -3 (a?aa]-\:[] + FjXQ()caj - BjXQOCaj) Uj
FRRAL

= / The (v, L) 0 Yo eTV Vo €T,V (3:22)
X Qo

aj

where (V,.Z); denote the projection of V,.Z onto the space V; (j = O, Z). Equation (3.22) can be
trivially solved, thus leading to

(VL) =

(4504, + Tjx00.a; — BjXQ.0;) - (3.23)
Tjle
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Substitution of Eq. (3.23) into Eq. (3.20) then leads to Eq. (3.18). Finally, the complete set of equa-
tions for the model is recovered once we add the condition in Eq. (3.19), which is nothing but the
weak form of the balance of linear momentum, and the Karush-Kuhn-Tucker conditions for the
unilateral constraint, namely

I'jloga; =0, I;>0. (3.24)

Notice that Eq. (3.24) is equivalent to Eq. (3.11).

3.2.5 Symmetry assumptions

Supported by the experimental evidence [Fan et al., 2017] that the changes of the axonal external
radius are invariant along ez, we assume the axon deformation to be axisymmetric, enforcing the
following simplified kinematics:

£(t, X) = r(t, R)é, + \Zé, (3.25)

with A € (0, +00) being the imposed axial stretch along Z. Thus, the deformation gradient reads

F= %ér(@e}g—l—%ég@e@—l—)\éz(@ez, (3.26)

where 7(t, R) = R + u(t, R) with u representing the radial displacement. Under the assumption
(3.25), the balance of the linear momentum (3.3) becomes the following scalar equation:

dSgrr | SrRr — See
= 3.27
iR + 7 0, (3.27)

where Srr and See are the radial and the hoop components of the first Piola-Kirchhoff stress
tensor, respectively. In terms of the Cauchy stress tensor the balance reads as:

dTrr + Ty — TGG _
dr r

0, (3.28)

where T, and Ty are the radial and hoop components of T. The balance of the linear momentum,
either in material or spatial coordinates, must be solved with respect to the radial displacement u
satisfying homogeneous Dirichlet boundary conditions (¢, 0) = 0 ensuring the continuity of the
deformation field along the Z axis. Enforcing (3.25), the boundary condition (3.5) reduces to the
scalar equation

Sl'~2R|F,¢:RO =0, (3.29)
or, equivalently, in the actual configuration
Lrrlpey, =0, (3.30)

where r, = r(t, R,). Equation (3.27) endowed with the above mentioned boundary condition
should be coupled with (3.18) to completely describe the dynamics of axons.
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3.3 Qualitative analysis: the incompressible case

In the following, we analyse more into detail the evolution equations (3.18) when the axon is
treated as an incompressible medium. Such a simplifying assumption allows us to provide an-
alytical predictions on the existence and stability of equilibrium solutions of (3.18).

To impose the incompressibility constraint, we require that

Jo=detFe =1 (3.31)

which, combined with the expression of the active strain tensor (3.1), implies that detF = 1 as
well. The enforcement of the incompressibility constraint can be done by introducing a Lagrange
multiplier p. Through standard steps, we get the following expressions for the Cauchy and the
Mandel stress tensors:

T =0p. o Fs —pl, M =F{ 9.0 — plL.

As a constitutive choice, we assume that both the cortex and the axoplasm are composed of
incompressible neo-Hookean materials, that is

Ha, R < Ri>

F.) =
1/)0( e) M, R Z R17

(3.32)

=

(Fe‘Fe_3)7 N:{

where 1, and pi are positive constants representing the shear moduli of the axoplasm and of the
cortex, respectively. Using the constitutive assumption (3.32), we get the following expression for
the Cauchy and the Mandel stress tensors:

T = uF.F! — I, M = uF!F, — pl. (3.33)

Looking for a radially symmetric solution in the form of (3.25) and using the incompressibility
constraint J = 1 we get

r(t, R) = R/VA
so that (3.26) becomes
1
F=— (6, ®Rep+€&Reg) +Ne,Rey. 3.34
7 ( R+ € ®ep) z (3.34)
Using the balance of the linear momentum (3.28), we get
p(r) = ki, 0<r<r, (3.35)
60z — 1) el
p(r) = ky + (9677 2) pe log(r) Py << T, (3.36)
agA

where r; = r(t, R;), while k; and k3 are constants to be determined exploiting the interface and the
boundary conditions (3.6) and (3.30), so that

_ Ha | Hc [log(ri) - 1Og(T0)] (aéGQZ - 1)
ki =—+ 3 ’
A agA
pe [afad +log(ro) — afad log(r, )]

a%/\ '

(3.37)

ko = (3.38)



3.3. QUALITATIVE ANALYSIS: THE INCOMPRESSIBLE CASE 63

The radial component of the Cauchy stress 7)., evaluated at the interface » = r; can be computed
by combining (3.33) — (3.38) as follows

e (a4@a2Z — 1) [log(rs) — 10g(7“o)]. (3.39)

Trr i) —
(T) )\ a26

Thus, by using the expression of the Mandel stress tensor (3.33) and (3.34), the evolution equa-
tions (3.18) reduce to the following dynamical system:

o (B®+Mc(1—a%a%))’

B HcTO )\CLQ@ (3.40)
. ag pe (X — agay) '
Qy = BZ + 2 9
HeTZ )\CLZ

where the first equation holds whenever ag < 1 or the right-hand side is negative, otherwise
ae = 0; analogously the latter holds if a; < 1 or the corresponding right-hand side is negative,
otherwise az; = 0.

3.3.1 Stability of the equilibria

Throughout the rest of the Chapter, we will focus on the case where Bg = Bz = B < 0 is spatially
constant, so that the external remodelling stresses are homogeneous and share the same value. As
we will show in the following, we require B to be negative so that the cortex actively contracts.
Moreover, since we are interested in the uniaxial stretch of the axon, we focus on the range A > 1.

We look for equilibrium solutions of (3.40), setting ag = az = 0. Subtracting the two equations,
we get

2
a =2, (3.41)

Substitution of (3.41) into the second equation of (3.40) implies that, to find the equilibria, we have
to prescribe
plaz) = pealy — BX*ay — A’ = 0. (3.42)

Recalling that B < 0 and A > 1, the function ¢ in (3.42) is strictly increasing and takes values of
opposite sign at the endpoints of the interval [0, 1] whenever

B 1-X
= . 3.43
He = A ( )
Hence, if such a condition is satisfied there exists a unique equilibrium solution (aeg, az). In par-
ticular, a is obtained from (3.42) and ae = az/\*/? is given by (3.41).

To evaluate the stability, we compute the Jacobian matrix of the system (3.40), obtaining

2aza%
e
J= 3 7 , (3.44)
2a'y a0
- Joo

ATy
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A

Figure 3.2: Homeostatic active stretches ag (solid lines) and az (dashed lines) plotted against the applied stretch .
The curves are obtained from (3.41), (3.42), and (3.46) by varying B/u. = —2,—-1.6,—1.2,—-0.8,—0.4.

with
Joo— a3 AB — pic(1 — 3a%ag)
11 — A,U,CT@CL% )
Jom — aZAB — (N3 — 3a%,a3)
2= MbeTZ0% '

A direct computation shows that, for all the admissible ag and az, trJ < 0 and detJ > 0, so that
the equilibrium solution (ae, az) is asymptotically stable.
On the other hand, if (3.43) does not hold, that is

pe — A

B _1-)¢
> (3.45)

we set az = 1, so that the first equation of (3.18) admits the equilibrium solution

1 B2 B
do = —=y| 1 5\ +4+— 3.46
V2 .Uc2: He ( )

which always lies in (0,1). Finally we need to check that B; + M -1z > 0,so thatay = lisa
stationary solution of (3.18). It can be easily verified that such a condition is equivalent to (3.45).
Moreover, such an equilibrium is always stable since the component Ji; of the Jacobian matrix
(3.44) is negative.

The existence of asymptotically stable equilibria of (3.18) implies that, depending on the initial
conditions, the system evolves towards the equilibrium points ag and az representing the home-
ostatic active stretches of the axon.

In Fig. (3.2) we show the stationary solutions ag and az against the applied stretch A, for differ-
ent values of B. Starting from the same value for A = 1, the two active stretches ag and az exhibit
opposite behaviours as A increases. On the one hand, ag decreases with ), leading to a stronger
contraction in the circumferential direction generated by the actin molecular motors. On the other
hand, a7 increases until it reaches 1.
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Figure 3.3: Monoparametric approach. (a) Homeostatic active stretch a versus the applied stretch X. The value of a is
computed by using (C.3). (b) Radial stress at the interface calculated from (3.49) for R;/R, = 0.8. In both cases, the
curves are obtained with B/u. = —2,—1.6,-1.2,—-0.8, —0.4.

We remark that, when az < 1, exploiting (3.39) the equilibrium radial Cauchy stress at the
interface r = r; can be written as

_ R
T,(r;) = Be log <R"> , (3.47)

which is independent of the applied stretch A\. Thus, as the axon is axially stretched the cortex
undergoes remodelling to maintain a constant compression of the axoplasm.
3.3.2 Monoparametric active stretch

In [Dehghany et al., 2020], the authors directly prescribe a coupling between ag and az, by assum-
ing a linear relation between the two active stretches. In our case, by enforcing ag = az = a we
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get
1
F,= geR@)eR—l—a(I—eR@eR). (348)

The corresponding evolution equation for the active stretch a can be obtained by repeating the
procedure exposed in Section 3.2. Similarly to the stability analysis performed in this Section, we
find a single asymptotically stable equilibrium, as detailed in C. At the equilibrium, the radial
stress at the interface is instead given by

=6
Tyr(ri) = MC(C;GQ D 10g <Zj> : (3.49)

As shown in Fig. 3.3a, we observe that a is an increasing function of the axial stretch A. Even-
tually, for large enough values of A, the axon behaves as a passive material when a reaches 1.
Differently, our approach predicts an opposite behaviour for the hoop active stretch, as reported
in Fig. (3.2). Such differences have important consequences on the stress distribution within the
axon. While in our model the compression of the axoplasm is independent of )\, as shown in equa-
tion (3.47), in the monoparametric approach the radial stress at the interface relaxes as we increase
A and, eventually, becomes zero, see Fig. 3.3b. This behaviour is the main drawback of such an
approach since, as we will show in the next Section, axons actively decrease their radius upon
stretching thanks to axoplasm compression.

3.4 Active regulation of axon diameter

In this Section, we investigate the role of cortex contractility in the active regulation of axon di-
ameter, performing a quantitative comparison of the model outcomes with some experimental
results. We use data from [Fan et al., 2017], where the authors perform experiments on embryonic
drosophila axons, measuring variations of the diameter as a consequence of chemo-mechanical
manipulations. In particular, some drugs are exploited to test the mechanical contribution of spe-
cific constituents: nocodazole is applied to depolymerise microtubules, while cytochalasin D is
used to disrupt F-actin. The effect of these drugs on the axon is depicted in Fig. 3.4. Axons are
then rapidly stretched and elongated by 20% of their initial length.

The authors also compare treated axons with some control cases to highlight the effect of each
drug on the axonal diameter.

First, we observe that we need to relax the simplifying assumptions of incompressibility made
in Section 3.3 to capture the effect of the active contractilty on the axon radius. Thus, we rely on
numerical simulations to obtain approximate solutions of the mathematical model. Second, we
need to enrich our model to describe the effect of the drugs on the mechanical response of the
axon.

3.4.1 Damage

Experimental evidence shows that the axon stiffness diminishes when exposed to nocodazole and
cytochalasin D [Ouyang et al., 2013]. We model the structural damage of the axon by introducing
a scalar field « : [to, t1] x Qo — [0, 1] describing the percentage of solid material depolymerised
by the action of the drug or during the stretch. The free energy for the damaged axon can then be
written as

W(F, a) = (1 — a)io(FF;), (3.50)
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Nocodazole Control Cytochalasin D

Figure 3.4: Effect of drugs on the axon structure: red lines represent actin filaments while blue circles indicate micro-
tubules. With respect to the control case (center), nocodazole depolymerises microtubules (left) leading to a reduction
of the axon diameter, while cytochalasin D reduces the number of the actin filaments (right) and the axon can expand.

where 1)y is the strain energy density of the passive, sound axon. Initially, the axon is not damaged
and therefore
a(t=0,X)=0.

When nocodazole is applied, the actin cortex is not affected and only the microtubule network
is damaged. Therefore, we propose the following simple phenomenological law for the damage of
the axoplasm, describing an exponential degradation:

00 (] _ —t/m .
a(t, X) = {O‘“( e, R<h (3.51)

0, R > R,

where a;° is a constant indicating the percentage of microtubules depolymerised in an infinite
amount of time, while 7, is a characteristic time for the action of nocodazole.

When cytochalasin D is applied, the contractility of the cortex is reduced and actin filaments are
depolymerised, thus damaging the elastic response of the cortex [Rotsch and Radmacher, 2000].
Therefore, similarly to nocodazole, we assume that the damage field « reads

a(t, = .
a(1— e_t/T“), R > R;,

C
where aZ° and 7. play the same role as a;° and 7, in (3.51). On the other hand, we postulate
that cytochalasin D also reduces the contractility of the actin cortex by modulating the homeostatic
stress in (3.2). Recalling that we are taking Bg = Bz = B, for the sake of simplicity, we also assume
that the contraction in the circumferential and axial direction share the same characteristic time,
namely 79 = 7z = 7 in (3.18). Here we postulate that the reduction of the external remodelling
stress due to damage reads
B(t, X) = (1 — a(t, X))? By,

where B denotes the homeostatic stress in the sound axon.

In the experiments in [Fan et al., 2017], Fan and co-authors observe that, when loads are re-
moved, the final radius is smaller than the initial one. The authors hypothesise that this phe-
nomenon is induced by a damage of the axoplasm. Indeed, a fast axial stretch can induce micro-
tubule depolymerisation [Tang-Schomer et al., 2009]. We model this phenomenon by introducing
an instantaneous damage in the axoplasm, increasing a(t, X) by adding a constant o5 for R < R;.
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Symbol Parameter description Range Value
R, Axon radius [1.45pm, 1.90uym]  1.5pm
R, — R; Cortex thickness [0.08 pm, 0.5 pm] 0.3 pm
Lhe Cortex shear modulus [0.1kPa, 10kPa] 1kPa
Ha Axoplasm shear modulus [0.1kPa, 10kPa] 1kPa
Ac Cortex I Lame’s coefficient [0.21 kPa, 4+o0] 100 kPa
A, Axoplasm I Lame’s coefficient [0, 0.29kPa| 0.1kPa
By Homeostatic stress — —1.6kPa
T Active contraction characteristic time ~ 10 min 11.7 min
Tn Nocodazole characteristic time [8.5min, 83.4min]  20min
Te Cytochalasin D characteristic time ~ 10 min 10 min
o Nocodazole damage — 0.65
al® Cytochalasin D damage — 0.9
s Stretch induced damage — 0.1/0.75

Table 3.1: Values of parameters involved in the model. Except for those calibrated in the present study (By, of°

s
a® and o), all the parameters were chosen within a suitable range of values given by experimental measurements
[Dennerll et al., 1989, Rotsch and Radmacher, 2000, Bernal et al., 2007, Liewald et al., 2014, Fan et al., 2017, Garcia-
Grajales et al., 2017, Zhang et al., 2017, Datar et al., 2019, Dehghany et al., 2020]. The stretch induced damage has
been set equal to 0.75 in the control case and when cytochalasin D is applied. In the case of nocodazole treated axons,
the parameter is decreased to 0.1 since the axoplasm is already damaged. With the exception of [Garcia-Grajales et al.,
2017], the cortex is frequently treated as an almost incompressible medium, thus we have chosen a high value for A..

3.4.2 Constitutive assumptions

For the sake of simplicity, we disregard any anisotropy induced by the orientation of microtubules
or actin filaments, assuming that both the axoplasm and the cortex are composed of a compressible
neo-Hookean material, that is

A
Yo(Fe) = & (Fe - Fe — 2log Je = ) + 5 (log Jo)*, (3.53)

where ;1 and A are the Lamé coefficients of the sound axon. The axoplasm and the cortex are
homogeneous, so that the Lamé coefficients are piecewise constant within the domain

Ha, R < Ri7 Aaa R < Riu
n = Ay =
M, R> Ri: AC7 R > Ri'

In the next Section, we propose a numerical scheme to discretise the model.

3.4.3 Initial conditions

In the experiments reported in [Fan et al., 2017], the axons are in their equilibrium state at the
initial instant of time. Thus, we set A = 1 and

al,_o =0,
u|t:0 = Uuo,
ael,—y = aeo,

azl,_o = azo,
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Figure 3.5: Unstretched axons (A = 1). Plots are reported for each treatment scenario: control (orange), nocodazole
(blue) and cytochalasin (green). (a) Comparison between the numerical result (continuous lines) and the experimental
data reported in [Fan et al., 2017] (dashed lines) for the evolution of external radius. The latter is normalised with
respect to ro, the radius of the axon at equilibrium. The shaded regions indicate error bar in standard deviation
relatively to the experimental data. (b) Plots of ae (continuous lines) and az (dashed lines) averaged over the cortex
sectional area. (c) Evolution of radial stress T, at the interface r = r;, normalised with respect to the undamaged
shear modulus of the cortex.

as initial conditions, where ug, ago, and az are the stationary solutions of (3.18) and (3.27). Such
equilibrium state has to be determined by means of numerical computations.

3.4.4 Numerical implementation

Here we detail the numerical implementation of the problem under the cylindrical symmetry as-
sumptions discussed in Section 3.2.5. We subdivide the interval [0, R,], representing the spatial
computational domain, into 500 elements. The time step of the simulations is At = 0.3 minutes.
Exploiting the finite element method, we approximate the radial displacement field u with con-
tinuous piece-wise linear functions while the active stretches ag and a are discretised by means
of piece-wise constant functions. At each time step we solve the balance of the linear momentum
(3.27) enforcing the boundary condition (3.29). Time integration of the evolution equations (3.18)
is performed by using an explicit Euler scheme. The numerical algorithm is implemented using
the Python library FEniCS [Alnzes et al., 2015], exploiting PETSc as linear algebra back-end.

3.4.5 Results of the simulations

In the following, we present and discuss the outcomes of the numerical simulations. First, we
analyse the effect of drugs in unstretched axons (i.e. A = 1). Then, in accordance with the experi-
mental procedure proposed in [Fan et al., 2017], we impose an elongation of the axon up to 20% of
its initial length (i.e. A = 1.2) and analyse its effect following a one-hour-long exposure to drugs.

The parameters used in the numerical model are fixed by either exploiting measures coming
from the existing literature or through a fitting of the experimental data. We refer to Table 3.1 for
details on the choice of the model parameters.
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Figure 3.6: Uniaxial stretch (A = 1.2). Plots are reported for each treatment scenario: control (orange), nocodazole
(blue) and cytochalasin (green). (a) Comparison between the numerical result (continuous lines) and the experimental
data reported in [Fan et al., 2017] (dashed lines) for the evolution of external radius. The latter is normalised with
respect to reg, the radius of the axon at t = 60 minutes, immediately after stretch. The shaded regions indicate error
bar in standard deviation relatively to the experimental data. (b) Plots of ae (continuous lines) and az (dashed lines)
averaged over the cortex sectional area. (c) Evolution of radial stress T, at the interface r = r;, normalised with
respect to the shear modulus of the sound cortex.

3.4.5.1 Effect of drugs on unstretched axons

First, we remark that untreated axons maintain the initial equilibrium state since they are not
damaged.

In all the cases, the active contraction of the cortex induces a compressive stress on the axo-
plasm. The depolymerisation of microtubules due to nocodazole leads to a reduction of the ra-
dius and modifies the cortical stress state. Interestingly, the cortex restores the target homeostatic
stress by progressively decreasing ae as shown in Fig. 3.5b, while the axial active stretch az does
not undergo significant variations. The increase in the circumferential contraction results into a
greater compression exerted by the cortex on the axoplasm (i.e. 7T}, at the interface is negative
and decreases, as shown in Fig. 3.5¢). In summary, the reduction of the axonal radius following
nocodazole exposure is due to the coupling between microtubule depolymerisation and the cir-
cumferential active contraction. The longitudinal active stretch instead features an imperceptible
deviation from the equilibrium configuration.

Finally, cytochalasin D is responsible for a disruption of actin filaments in the cortex and the
reduction of cortical homeostatic stress. As a consequence, both the active stretches ag and az
undergo a substantial increment which makes them close to 1 after one hour. In this case, the
axoplasm behaves as a nearly passive material and the stress is almost completely relaxed (see
Fig. 3.5¢).

3.4.5.2 Uniaxial stretch

Let us first consider the control case, i.e. the stretching of a sound axon without any applied
pharmacological treatment. The radius significantly reduces in time, as shown in Fig. 3.6a. This is
the result of cortex remodelling: while a7 increases to balance the tension due to the axial stretch,
ae diminishes, i.e. the active hoop contraction increases (see Fig. 3.6b). Such a microstructural
reorganisation increases axoplasm compression, as shown in Fig. 3.6c. The changes in the axon
diameter are amplified by the axoplasm damage induced by the fast stretch.
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Figure 3.7: Actual transverse section of the axon for A = 1 (top) and X\ = 1.2 (bottom) at t = 60 min and ¢t = 90 min,
respectively. In each transverse section, on the left we plot the dimensionless radial stress profile T,/ yic, while on the
right half we highlight the actual configurations of the axoplasm and of the cortex, represented as the blue and the red
areas, respectively.

The dynamics of axons undergoing uniaxial deformation after being exposed to nocodazole
is similar, even though the induced thinning is less pronounced compared with the control case.
We remark that axons treated with nocodazole are already damaged when stretch is performed,
therefore less microtubules are depolymerised as a result of the deformation, and the initial state is
closer to the final equilibrium state, as depicted in Fig. 3.6b. Instead, the evolution of az is almost
the same in both the cases. Qualitatively similar trends are also observed in Fig. 3.6c where we
plot the radial stress 7)., at the interface as a function of time: radius reduction is correlated with
an increased compression of the axoplasm.

Finally, let us consider the stretching of axons exposed to cytochalasin D. In Fig. 3.6a we see
that the radius is almost constant in time after the deformation. Indeed, as shown in Fig. 3.6,
both the active stretches are close or equal to 1, so that the cortex behaves as an almost passive
material. The constant diameter as the result of F-actin depolymerisation supports our conjecture:
the modification of the radius when the axon is stretched is induced by the active reorganisation
of the cortex that aims at maintaining a homeostatic stress state.

To better visualise how the stress profile influences axonal morphing, in Fig. 3.7 we show the
actual transverse section at the final instant of time. Here, we plot the nondimensionalised radial
stress 1}, / 1. We observe that thinning of axons appears to be correlated with cortex thickening.

3.4.6 Discussion and concluding remarks

In this work, we have constructed a mathematical model based on Continuum Mechanics to anal-
yse the active contraction of axonal cortex when subject to chemo-mechanical stimuli.
Modelling the axon as a continuum hyperelastic body, we have exploited the active strain ap-
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proach to describe cortex contractility. A thermodynamically consistent constitutive model has
been obtained by means of the Coleman-Noll procedure. The resulting system of differential equa-
tions regulating the time evolution of the hoop and axial components of the active stretch is the one
in (3.18). Such equations exhibit some peculiarities if compared with models of stress modulated
growth in biological tissues [DiCarlo and Quiligotti, 2002, Ambrosi and Guana, 2005]. Indeed, the
system evolves so that particular linear combinations of the Mandel stress tensor components re-
main constant. Thus, the axon reacts to external chemo-mechanical stimuli regulating the active
contraction to target a homeostatic stress state.

The qualitative behaviour of the axon is then assessed with analytical calculations under the
simplifying assumption of material incompressibility. In this context, the evolution equations re-
duce to the nonlinear dynamical system (3.40). Through a linear stability analysis, we have shown
the existence of a single asymptotically stable solution, representing the above mentioned homeo-
static state towards which the system evolves.

Then, using a more suitable compressible constitutive model, we have proposed a numerical
discretisation of the problem by means of the finite element method. We have investigated me-
chanical conditions corresponding to the experiments reported in [Fan et al., 2017], analyzing the
behaviour of the unstretched axon and its response to a subsequent uniaxial strain of the 20%.
Three pharmacological conditions are reproduced: a) control case, b) the disruption of F-actin fila-
ments when exposed to cytochalasin D and c) the depolymerisation of microtubules following the
application of nocodazole. In the model, the effect of the drugs is accounted for by introducing
a damage function that modifies the energy functional, as discussed in Section (3.4.1). Moreover,
since in the in vitro experiments the axons are pulled at a high strain rate [Fan et al., 2017], we
assume that microtubules are further damaged during the axial deformation [Tang-Schomer et al.,
2009].

The numerical outcomes for each scenario described above are in excellent quantitative agree-
ment with the experimental results, as shown in Figs. (3.5)-(3.6). Indeed, the diameter progres-
sively increases when F-actin filaments are disrupted, while a decrease of the transverse section
area with respect to the control case is observed when microtubules are depolymerised. We have
shown that the diameter of axons is regulated by the compressive stress exerted on the axoplasm
by the cortex. Diameter reduction appears to be correlated with the thickening of the axonal cortex,
as reported in Fig. (3.7).

Our results support the hypothesis of a coupling between the axial and hoop active stretches
[Fan et al., 2017]. The cortex undergoes a microstructural reorganisation to modulate its stress
state and regulates axon diameter by compressing the axoplasm. The understanding of such a
mechanism may represent a preliminary step towards the comprehension of the physical causes
underlying axon morphological degeneration as a consequence of neurodegenerative diseases,
viral infections, and traumatic strain injuries.

Future efforts will be devoted to the analysis of such a system when subject to displacements
breaking the axial symmetry. Furthermore, it would interesting to study the effect of morphologi-
cal changes of the axon on its ability to transmit electro-chemical signals.



Chapter 4

A gradient flow approach to leaves
morphogenesis

4.1 Introduction

Unveiling the mechanisms behind growth processes in biological structures is crucial for the un-
derstanding of organ morphogenesis and plasticity. In this Chapter we focus on the growth of
leaves, which are often considered as a prototypical example of active tissues.

The accurate description of leaves growth must take into account many physical phenomena
ranging from the chemical processes happening at a cellular level to the mechanical phenomena
occurring at microscopic and macroscopic scales. Many works focused on reproducing the ex-
perimentally observed growth patterns through mathematical models describing how genes and
hormones control cellular proliferation and expansion [Kuchen et al., 2012, Kierzkowski et al.,
2019, Bhatia et al., 2021]. Here we study leaves growth from a different perspective and try to
justify it in terms of the purpose it serves, rather than in terms of its causes. In other words, we
give a teleological description of growth. In particular we embrace the common assumption by
which leaves maximize the benefit coming from light absorption. Indeed, leaves are fundamental
for plants, since they exploit light for the photosynthesis of the nutrients necessary for sustaining
life. Hence it is usually assumed that, due to their importance, leaves have been subject to intense
evolutionary pressures leading them to develop highly efficient strategies for carrying out their
tasks.

An example of highly optimized structure that can be found in leaves (but also in most of the
living systems) is the venation pattern for the transport of water and nutrients. Indeed, it is well
known that ramified networks can emerge as the solution of an Optimal Transport Problem [Xia,
2003, Oudet and Santambrogio, 2011, Facca, 2016, Tosi, 2018, Facca et al., 2021]. Hence it is believed
that biological networks like those constituting the circulatory system or leaves venation have been
singled out by Natural Selection as a means to efficiently transport nutrients in living organisms.
Many studies focused on these aspects either through a discrete or a continuous approach [Xia,
2007, Hu and Cai, 2013, Xia, 2015, Facca et al., 2018, Lu and Hu, 2022]. The great morphological
diversity of leaves is another instance of natural adaptation driven by evolutionary pressures.
Among the factors influencing the shape of leaves we mention structural compliance, thermal
dissipation, water availability, amount of light exposure of the blade and venation pattern [Kidner
and Umbreen, 2010, Shimoda and Nakata, 2012, Wright et al., 2017, Ding et al., 2020, Ronellenfitsch,

73
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2021].

In the present work, we derive a model for the growth of veins and of the leaf’s blade. Such a
problem was first addressed in [Xia, 2007] using a discrete teleological model, by which new leaf’s
cells are generated only if the revenue they produce through light absorption is greater than the
transport cost needed to reach them with nutrients. We embrace this principle and embed it into
a continuum framework as a way to overcome some of the inherent limitations of the model pre-
sented in [Xia, 2007], which does not describe the bulk growth pattern leading to the final shape of
the leaf. In fact, as reported in [Das Gupta and Nath, 2015], leafs often show an allometric growth,
namely, the growth rate is non-homogeneous throughout the leaf blade and exhibits spatial po-
larity. Hence, in order to deal with allometric growth, we develop a continuum model describing
the evolution of the leaf blade using a growth map. Moreover, inspired by [Lu and Hu, 2022],
we model the formation of veins through a phase-field approach based on the introduction of a
conductance field. In [Lu and Hu, 2022] the authors advance a criterion for describing growth
and plasticity in vein formation. In particular, they assume that the phase-field for the venation
pattern arises from the minimization of a suitable transport cost. Moreover, they postulate that the
growth process is governed by the L?-gradient flow of such a cost functional. Inspired by [Xia,
2007] and [Lu and Hu, 2022], we develop a model in which the growth map and the conductance
tield evolve according to a gradient flow aiming at maximizing the net power absorbed by the leaf.
This quantity is given by the difference between the light energy absorbed by the leaf blade and
the energy cost for the transport of nutrients.

In Section 4.2 we carry out the derivation of the model detailing the kinematics, the mass bal-
ance and the gradient flow equations ruling the growth of the leaf. In Section 4.3 we discuss the
numerical implementation of the equations and the outcome of preliminary simulations. Finally,
in Section 4.4 we summarize our findings and discuss future development and possible improve-
ments of the model.

4.2 Formulation of the model

4.2.1 Notation and kinematics

We model the leaf as a two dimensional body immersed in the two-dimensional Euclidean space.
We denote by B C R? the reference configuration of the leaf blade (see Fig. 4.1) and by T its
boundary. The latter is subdivided in to two complementary parts, I',, representing the petiole
and Ty, representing the leaf’s margin. The leaf growth is described by a motion f : B — R?
mapping material points X € B into the corresponding places z in R?, namely z = f(X,t). The
current configuration of the leaf at time ¢ is denoted by B; = f(B,t). We then indicate with the
symbol V the material gradient and with grad(-) the spatial one. Finally, by adopting a standard
notation for related kinematic quantities, we write: F = Vf, C = F'Fand J = det F.

We stress that, in the present model, f accounts for a growth process and is by no means
associated to an elastic energy density. Traditionally, growth is described through a multiplicative
decomposition of the deformation gradient into an elastic part and a growth one, the latter not nec-
essarily coinciding with the gradient of a map. In this framework, our choice of describing growth
with a map f is equivalent to assume that the growth tensor evolves preserving its compatibility,
and hence that no residual stresses are present. This simplifying assumption is motivated by the
fact that leaves, despite being thin two-dimensional structures, grow preserving a flat configura-
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Figure 4.1: Pictorial illustration of a leaf and its kinematics. Water absorbed by the roots enters the petiole and is
distributed, through a network of veins known as xilems (in blue), to every place of the leaf’s blade. Most of the
water evaporates (green arrow), while the remaining part takes part to photosynthetic processes necessitating of light
absorption (yellow arrow). Finally, the photosynthesized nutrients are sent back to the plant, as sap, through veins
called phloems (in red). Here, B is the reference configuration of the leaf, which undergoes a growth process encoded
by f: B — R? X — f(X) =z Wealso highlight its boundary T with outer unit normal n, decomposed into T,
representing the petiole and Iy, representing the leaf margin. Finally we denote with B, the actual configuration and
with T’y its boundary with outer unit normal m. Again, the actual boundary is decomposed into complementary parts
', and T, (notice that, since we do not model the growth of the petiole, we have f(I',t) =T')).

tion allowing them to optimize the exposure to light'. Indeed, it is well known from the theory
of thin plates ([Efrati et al., 2009, Sharon and Efrati, 2010, Efrati et al., 2013]) that non-compatible
growth processes are often responsible for the insurgence of highly curved configurations. Hence,
we found it an acceptable approximation to assume that leafs tend to growth in an almost compati-
ble way, thanks to some unidentified internal regulation mechanism. The nature of this regulation
mechanism is still object of debate ([Shahaf et al., 2021, al Mosleh and Mahadevan, 2022]). This
argument also motivates our choice to model the leaf as a body immersed in the two-dimensional
Euclidean space.

4.2.2 Mass balance

Leafs are complex systems interacting with the environment through the exchange of mass and
energy in order to grow and sustain their metabolic activity (see Fig. 4.1). Light energy is converted
into utilizable chemical energy through photosynthesis, a process necessitating of the supply of
water and carbon dioxide. Water enters leaves trough the petiole and reaches the cells through a
ramified system of veins known as xilems [Sack and Scoffoni, 2013]. Interestingly, almost 95% of

'In fact, it is believed that the optimal configuration for the leaf is the result of a trade-off between flatness and
structural compliance of the blade, as discussed in [Shimoda and Nakata, 2012]. Nevertheless, as a first approximation,
leafs are supposed to be essentially flat bodies.
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water evaporates in the atmosphere thanks to the opening of stomata, which are pores found in
the epidermis of leaves controlling the rate of gas exchange. Water evaporation is fundamental for
regulating the temperature of the leaf and it also acts as a driving force drawing water adsorbed
by the roots. Stomata also allow leaves to absorb the carbon dioxide dispersed in the atmosphere.
The outcome of photosynthesis is oxygen (expelled through stomata) and glucose, which the plant
exploits for sustaining its metabolism and for carbon fixation. Finally, sap (a mixture of water and
glucose) is distributed to the rest of the plant through a network of veins, parallel to xilems, called
phloems.

We consider the leaf as a homogenized porous medium constituted by a solid substratum per-
meated by two liquid phases: water and sap. For every P, regular subset of 13;, we denote by
M (P;) the mass of a part of the leaf. Then, the mass balance reads

d

&M(Pt) = —/ hy -m — hpp - m +/ (eco, — €0y, —€w) VP: C By, 4.1)
Pt OP: Py

where hy; is the water mass flux carried by the xilems, hyy, is the sap mass flux carried by the
phloems, eco, > 0 is the mass density rate for carbon dioxide absorption, whereas e,, > 0 and
eo, > 0 are the mass density rates for carbon dioxide absorption and water and oxygen evapora-
tion, respectively. As already mentioned, most of the water evaporates through the leaf blade so
that only a small percentage (between 3%-5%) is employed by the leaf for photosynthesis. Hence,
the stoichiometry of photosynthesis reactions allows us to assume that also the rates of carbon
dioxide absorption and oxygen release are small if compared to the total water uptake from the
roots. This also implies that the rate of glucose production, responsible for biomass accumula-
tion (i.e. time variations of M (7)), is small compared to water fluxes. Accordingly, we simplify
equation (4.1) by neglecting the contribution of CO;, O2 and mass change of the part P;. Hence,
equation (4.1) simplifies into

/ hxi-m—i—/ ew =0 VP, C B;. (42)
0Py P

Fluid transportin veins To model transport mediated by veins, we adopt the approach proposed
in [Lu and Hu, 2022]. First, we assume a Darcy’s law according to which h,; = —Aggrad(p),
where Ay is the spatial conductance tensor field (symmetric and positive definite) and p is the
water pressure. Then, we additively decompose As as follows

Ay =rI+ M.

The first term, I, describes the background diffusion of the tissue of the leaf and accounts for fluid
diffusion across cells membranes. The second one, M, typically much larger than the former,
accounts for fluid flow mediated by xilems. Hence, My can be though as a phase-field for the
description of veins and consequently is supposed to distribute in space according to a ramified
structure.

To simplify the analysis we assume M to be isotropic, namely, My = m?2I, so that the total
conductance can be written as Ag = agl, with as = r + mg . Then, exploiting the Darcy’s law, the
mass balance equation (4.2) becomes

/ asgrad(p) - m —/ ew=0 VP, CB. (4.3)
0Pt P
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Furthermore, the leaf’s margin is assumed impermeable and is thus endowed with zero flux
boundary conditions, while we impose homogeneous Dirichlet conditions for the pressure at the
petiole:

asgrad(p) - m=0onT!, p=0on Tp. (4.4)

Pull-back on B As already anticipated in the introduction, we are interested in modelling the
growth of the leaf’s blade and venation by deriving a set of evolution equations for f and ms. The
evolution of ms accounts for the transition between different cell types, namely from “vein type”
to “blade type” and vice-versa. Such a process can be assimilated to cellular differentiation. On the
other hand, f accounts for growth due to cell proliferation and expansion. It is then clear that vein
formation is influenced by both differentiation and growth. Therefore, a little care must be taken
when pulling back Eq. (4.3) in the reference domain, since one must establish how the evolution of
f affects the vein pattern encoded by ms. In other words, we must prescribe how ms is advected
by f. It appears that the process of cell division generates new cells of the same type of the mother
cell [Laguna et al., 2008]. Even more so, cell expansion does not alter the differentiated state of
cells. Hence, it is reasonable to describe the growth of “vein-type” tissue trough the advection of a
material field m(X, t) introduced for labeling and tracking material points, namely,

ms(x,t) = (mofil)(xﬂt)‘ (4.5)

In such a way, material elements grow preserving their value of m, hence preserving their tissue-
type attributes.

So, thanks to (4.5) and recalling that grad(p)m = F~' Vp, the balance in Eq. (4.3) in the referen-
tial form becomes

/ Jac—lvp.n—/Jewzo VP C B,
oP P

where a = r + m?. Upon localization, the above equation leads to

Div (JaC™'Vp) — Jeyw = 0 on B. (4.6)

As regards the boundary conditions in Eq. (4.4), they become

JaC™'Vp-n=0 onTlp, 47)
p=20 onI'p.
For later use, we also report the weak formulation of (4.6)-(4.7), which reads
/ JaF~TVp - FTV¢+ / Jewp =0 VpeV,={pstd=00nTp}. (4.8)
B B

4.2.3 The gain functional

As anticipated in the introduction, we adopt a teleological approach. In particular, inspired by [Xia,
2007], we postulate a growth process which aims at maximizing the net power gained by the leaf.
Such a gain, ¥, is given by the difference between .Z, the rate of light energy absorbed through the
blade, and %, the cost for transporting water from the petiole to every place of the leaf. Hence we
have
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Y=2-%. (4.9)
We simply model light absorption as

£ = Cr, (410)
Bt
where ¢y (z) is a scalar field accounting for the amount of light exposure to which the point x is
subjected.

As regards the cost for mass transport, we recall that the water flow in leaves is mediated by an
intricate network of veins. Larger veins offer a smaller hydrodynamic resistance to fluid flow but,
at the same time, they are responsible for a higher metabolism cost and for additional weight to
be supported by the leaf [Murray, 1926]. Hence, the dimension of veins is the result of a trade-off
that typically leads to the formation of hierarchical structures where few main large veins branch
out into smaller secondary veins, and so on in a fractal fashion. In the present work, following [Lu
and Hu, 2022] we represent the power expended by the leaf for transporting fluid as

€ = / (Calgrad(p)|® + o?|ms|*? + e|grad(ms)|?) , (4.11)
Bt

where v < 1. Regarding the first and second term, they account for the hydrodynamic dissipa-
tion and for the metabolic cost, respectively. They are scaled by factors (c? and o2, respectively)
weighting their they relative importance. Finally, the third term is added to regularize the model.
Observe that the hydrodynamic dissipation in Eq. (4.11) is only relative to fluid flow in xilems,
since all the other contribution are negligible, as detailed in Subsection 4.2.2.

So, according to Egs. (4.10), (4.11) and (4.9), the net gain reads

G = | [cr— (Caslgrad(p)]® + o®|mg[* + elgrad(ms)|?)]
B

which can be pulled-back in the reference configuration as
G(f,m) = / J [CL - <02a]F7TVp]2 + o?|m|* + €\F*TVm\2>] . (4.12)
B

We remark that in Eq. (4.12) the dependence of & on p is ruled out thanks to the mass balance
equation in Eq. (4.8). Also, p will be treated as a function of f and m throughout the rest of the
present Chapter.

4.2.4 A gradient flow description of leaves growth

On large scales, advection is energetically favorable with respect to diffusion, thus explaining why
natural selection has led plants to develop an efficient venation structure. Inspired by this fact,
the authors in [Lu and Hu, 2022] adopt the field m arising from the minimization of the cost
in Eq. (4.11) as the descriptor of veins. As shown in [Lu and Hu, 2022], the minimization of ¢
leads to the emergence of ramified structures, identified by regions where m is greater than a
certain threshold. The observed symmetry-breaking patterns of m are bifurcation points arising
from the lack of convexity of C ([Haskovec et al., 2015, Albi et al., 2016, Albi et al., 2017]). Besides
the characterization of the network structure, the authors also propose a mechanism for its growth
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by postulating an evolution for m based on a formal L?-gradient flow of 4. We extend such a
theory by modelling the growth of both the venation pattern and the leaf blade. We then postulate
that both the fields f and m evolve following a gradient flow aiming at maximizing the net gain
¢, subject to the constraint of the mass balance (4.8).

The variational problem As shown in Appendix D.1, the gradient flow can be formally char-
acterized through a variational principle for the rates of f and m. In particular, let f € V; =
{fsmoothon Bs.t. f =IdonTp}, m € Vy, = {m smooth on B}, and let M = V; x V,;, denote the
product “manifold” on which the pair (f, m) is defined. Moreover, let us consider a scalar product
(,-) for the elements of the “tangent space” T{,,)M = {(v,v)s.tv = 0onI,} and denote with
|| - || the norm it induces. Then, the evolution of (f,m) is given by

o f =
{ of =uy, (4.13)
atTn = HUm,
where u; and ., solves the following variational problem
1
(i) = _argmas {Dpgvis] = )P} (14)
(V,V)ET(f77n>M 2

Finally, the equations in (4.13) are coupled with the mass balance given by Egs. (4.6)-(4.7).

It is apparent from Eq. (4.14) that, besides the functional ¢, the choice of the norm || - || is
essential for determining the evolution for f and m. In addition, notice that ¢ depends on f only
through the domain B; = f(B,t). As a consequence of that, each value of ¢ can be attained by
infinitely many deformations f. The selection of the actual growth map f is determined by the
gradient flow, which in turn relies on the choice of the norm || - ||.

Norms and dissipation As seen in Subsection 3.2.4, the choice of the norm is typically dictated by
the presence of a dissipation mechanism. Specifically, we could identify the norm of the variations
appearing in equation (4.14) with the power dissipated by the evolving system. Denoting by &
such a dissipation, we write

vl = (vl (4.15)

In doing the identification in Eq. (4.15), a subtle but important remark should be made con-
cerning the dimensional consistency of Eq. (4.14). In Subsection 4.2.3, we introduced the gain
functional as the net power absorbed by the leaf. Hence, as long as we treat the variations v and
v as velocities, the term Dy ,,,%[v,v] appearing in Eq. (4.14) has the dimension of a power per unit
time, which is incompatible with the interpretation of || - || as a power. This apparent inconsistency
can be resolved by invoking the teleological nature of the model. Indeed, the optimality principle
underlying our model may be considered as the manifestation of a free energy whose minimizers
provide the equilibria of the system, and —%( f, m) may be acknowledged as the natural candidate
for it. In other words, an accurate description of the physics involved in leaf growth would lead
to a free energy ®(f, m) such that & = —¥ for every f and m. Hence, dimensional consistency in
Eq. (4.14) is restored once we give to —% the meaning of free energy.

Such an interpretation also allows to recast problem (4.14) in a form which is strongly reminis-
cent of the minimum energy dissipation principle, first introduced by Onsager [Onsager, 1931, Doi,
2011], namely
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1
(uf, ) =  argmin {Dﬁm‘I)[V, v+ =9, U]} ,
(VJ/)ET(f’m)M 2

where @ is the previously mentioned free energy (® = —%9).

Definition of the norms We construct the metric on 7 ,,) M as the sum of the two scalar prod-
ucts (-, ) r and (-, )., for the variations of f and m, respectively. Hence we define

((V7 V)? (whu)) = (V,W)f + (Vnu')m'

In [Lu and Hu, 2022] the authors employ an L?-gradient flow for the evolution of the conduc-
tance field. As anticipated, their model does not account for the evolution of the reference domain,
and so there is no ambiguity in deciding to which domain the L? norm must refer. On the contrary,
in our study we account for the deformation of B and develop the gradient flow by referring the
L?-norm to the current domain B; as the conductance field is naturally spatial. Hence, we define

(v, Wm = M (Vs Hs) L2(8,) = nm/B Vsts = Tm /B Jvp, (4.16)
t

where 7, is a viscosity-like coefficient.
Concerning the norm for variations of f we propose the following form

(v.w)y = 77f/

grad(v) - grad(w) = nf/ JVvC~!. Vw, (4.17)
Bt B

where, again, 7 is a viscosity-like coefficient. Here, we recall that Hv||?c = (v, V) is a norm thanks
to the Dirichlet conditions v = 0 on I'p. Such a norm is reminiscent of viscous dissipation in fluids
and its choice is motivated by the visco-plastic nature of plant tissues [Ali et al., 2014] and its
simplicity.

Penalty method for the constraint / > 0 We observe that equations (4.16) and (4.17) define
a scalar product provided that J > 0. However, despite being a tacit assumption, there is no
guarantee that the set of equations will spontaneously fulfill this condition. Instead of dealing
with the difficult task of exactly imposing the unilateral constraint J > 0, we adopt a penalty
approach by modifying the gain functional as follows

G - /B (7 e — (CalB TP + 0 + B TVmP)] - ()]

In particular we choose ( as

I -1? ifT<,
C(‘])_{o if J > 1,

such that tissue resorption is penalized through a scalar parameter ~ > 0.
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4.2.5 Properties of the solution

The evolution ruled by Eq. (4.13) enjoys the following property directly coming from the gradient
flow structure of the equations:

Proposition 4. The gain is nondecreasing along smooth solutions of (4.13), namely

d9
FT 1(8.f, 0ym)||?> > 0.

Proof. The stationarity of (4.14) reads
Df,mg[vay} = ((Uf,,um),(V,V)) V(V,l/) € T(f,m)M

Hence, we have that
d¥

E = Df,mg[atfa 8tm} = ((uf7 /~Lm)7 (atf7 3,5771)), (4.18)

and substitution of (4.13) into (4.18) leads to

A
S = Din10cf, 0] = |(Ouf. 0mm)|* = 0.

O]

The above Proposition implies that the evolution of the pair ( f, m) always points toward (local)
maxima of ¢, whenever they exist. Here, we do not provide a proof of the existence of maxima.
However, for the simplified one-dimensional case, we are able to provide an upper bound to ¢, as
stated in the Proposition of Appendix D.2. The estimate of ¢ that we provide, gives an indication
of how light gain and transport cost scale with the length of the leaf ¢;. In particular, Z ~ /¢;
while € ~ (7, where 0 = ??TJ;I and 0 < v < 1. Hence, ¢ grows with ¢; more rapidly than .
such that there exists a critical length ¢; beyond which the cost due to an increment in the leaf’s
length is not compensated by the corresponding revenue in terms of light absorption. While not
a rigorous proof, this scaling argument seems to explain the reason why leaves do not growth

beyond a certain amount and reach a steady state.

4.2.6 Derivation of the equations

In this subsection we detail the derivation of the gradient flow equations. The stationarity condi-
tions of Eq. (4.14) can be expressed as

Dy v, v] = ((ug, pim), (v,v))  V(v,v) € T(§mM. (4.19)

In passing notice that, according to the representation theorem for linear functionals in scalar prod-
uct spaces (i.e. Riesz theorem), equation (4.19) is nothing but the characterization of the functional



82 CHAPTER 4. A GRADIENT FLOW APPROACH TO LEAVES MORPHOGENESIS

gradient of ¢ with respect to the scalar product (-, -). To make equation (4.19) explicit, let us com-
pute the first variation of ¢, namely

D¢m9v,v] :/B <CL — Palql* - 0;2|m\27 - EIFTVm2> JE T . Vvt
- /B —2Jc*aDsq[v] - q — 2eJF TVm - (~F TVv'F TVm) (4.20)
- /B J (202m|q\21/ +2c%aDq[V] - q + 202 |m[P2my 4+ 2eFTVm - F_TVZ/)
— /B JC'(J)F~T . Vv,

where we defined q = F~ ' Vp, which, thanks to the mass balance equation, is treated as a function
of f and m. The mathematical structure of the problem allows to get rid of the derivatives D;q[v]
and D,,q[v], appearing in Eq (4.20), by simply differentiating the mass balance equation (4.8) as
follows:

Dim < /B JaF TVp-F V¢ + Jew¢> [v,v] =0, (4.21)

for every ¢ € V), and for every variation (f,m) € T(f,,)M. Through an explicit computation,
Eq. (4.21) becomes

/B(aq F V¢ +ewd)JF T . Vv + JaDq[v] - F"Vo+
—Jaq-F TUVIF V¢ +2Jmq-F "Vov + JaD,[v] - F~ TV = 0. (4.22)

Now, test Eq. (4.22) with ¢ = p € V}, and obtain

—2c* /B JaD¢q[v] - q = /B(QCQalqlz +2¢%ewp)JF T . Vv — 22 Ja(q@ F1q) - Vv, (4.23a)
—202/ JaD,q[v] - q = 4¢® Jm|q)?v. (4.23b)
B

We then observe that the left-hand-side in Eq. (4.23) also appear in Eq. (4.20). Hence substitution
of Eq. (4.23) into Eq. (4.20) leads to

D¢9v,v] = —/ Sa- Vv —I—/ J (2c2m|q\21/ —202|m|? " 2my — 2eF TVm - F_TVV) , (4.24)
B B

where we defined b = F~"Vm, and

Sa=—-J(t—2c%aq®q+2b@b)F T,
2
o
L= cr, + c*alq)? + 2% ewp — 7\m]2'7 —¢elb]? — k('(J).

By substituting Eq. (4.24) into Eq. (4.19) and integrating by parts we get a set of equations in the
unknowns ji,,, and uy. In particular s, satisfies
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(4.25)

m

1 2
[ = — {262m\qy2 — 2% M2 m + §Div (J01Vm)} on B,
n
JCI'Vm -n=0 onT.

Observe that the boundary conditions in Eq. (4.25), written in the spatial configuration, read
grad(m) - m = 0 on I'y. Hence they are standard Neumann Boundary conditions as the ones
prescribed in [Lu and Hu, 2022].

As for uy, we get the following set of equations

Div (anVqu_l +S,)=0 onB5,
(nfJVu;C ' +8S,)n=0  onTy, (4.26)
ur =20 on Fp.

Finally, the combination of Eqs (4.26),(4.25) with Eq. (4.13), together with the mass balance in
Egs. (4.6),(4.7), allows to write the complete set of equations ruling the gradient flow evolution.
They read

NmOm = 2¢?m|q|? — 202|/m|*’~2m + £Div (JC™'Vm) on B,
1 (4.27a)
JCT'Vm-n=0 onl,
DivS =0 on B3,
S=8 JFC™' onB
2 11 ons, (4.27b)
Sn=0 on 'y,
f=1d only,
Div (JaC™'Vp) = Jey, on B,
JaC~'Vp-n=0 on 'y, (4.27¢)
p=0 onTp.
Concerning the initial conditions, we prescribe
m’t:() = myo, f‘t:O - Id7 p‘t:() =0. (428)

We also report the weak formulation of the equations in (4.27), which can be obtained by simply
combining Eq. (4.13) with Eq. (4.19). It reads as follows: find (f,m) € M and p € V), such that

2 2
/ N (Oym)v — 2¢2 Jm|q|*v + %J|m|2”’_2mu +2eJF TV -F TVy =0, (4.29a)
B
/ S Vv =0, (4.29Db)
B
/ JaF~ "Vp -F V¢ + Jewd =0, (4.29¢)
B

for every (v,v) € T(ymyM and ¢ € V},.
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Non-dimensional equations In the following, we non-dimensionalize the equations in (4.27) so
that to identify the relevant dimensionless groups describing the system. We consider the follow-
ing list of dimensionless variables

X
X*:i, f*:i m*:

ﬁ * p t*_ l S*_Sa
¢ ¢’ V' p ewl?/r gl T er]

where /¢ is a characteristic length of 3. With this choice, the non-dimensional form of Eqs. (4.27),
written in the current configuration, reads

NO;m* = 2Cm*|grad* (p*)|? — 2A|m*|?~2m* + 2EA*(m*) on B},
(4.30a)
grad*(m*) - m =0 onI'},
div*T* =0 on B},
T* = T} + grad*(u}) onB;, (430b)
T"m =0 on I't*,
f*=1Id on ',
div *(a*grad*(p*)) =1 on B},
a*grad*(p*) - m =0 on 't (4.30¢)

* tx
p*=0 oan,

where a* = 1+(m*)2, B* = B/¢? and A* denotes the (dimensionless) Laplacian operator computed
with respect to spatial coordinates. Finally, T* = SF'/.J is given by

T, = =" I+ 2Ca*grad”(p*) ® grad™(p*) — 2Egrad™(m*) ® grad®(m™), (4.31)
A
¥ =14 Ca*|grad*(p*)|? — 2Cp* — =|m*|*" — E|grad*(m™*)|> — K'(J). (4.32)
v
The dimensionless groups appearing in Eq. (4.30) are defined as follows

N:rnm’ C:62£263"’ A:a2?“7’ E_ ;tr ’ Ko B
Ny cLr crL 12193 cr,

Notice that, the equations in (4.30a) are formally identical to the ones derived in [Lu and Hu,
2022]. Indeed we recognize the so called activation term Cm*|grad*(p*)|?, the functional derivative
of the metabolic cost Ajm*|*Y~?m* and the diffusion term EA*(m*). The latter, besides acting as
a regularizing term, can be interpreted as the effect of random fluctuations (Brownian process) in
the network structure [Albi et al., 2017]. Moreover, the equations in (4.30b), for the evolution of
[, have a structure which is strongly reminiscent of the force balance equations of continua. The
symmetric tensor T} plays the role of an “active stress” balancing the “viscous” forces given by
grad®(u}), at least on a mathematical level. In the following, we will loosely speak about active
stress when referring to T. Finally, as already discussed, the term ¢’(.J) is simply introduced as a
penalty to prevent the system from evolving toward negative values of J.
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Figure 4.2: Sketch of the reference domains adopted in the numerical simulations. To each domain we associate a
reference length ¢ that will later be used to non-dimensionalize the equations. In particular in (a) and (b), { is defined
as the radius of the outer circle while in (c) we define { as the major semi-axis of the ellipse.

4.3 Numerical results

In this section we discuss the results coming form the numerical solution of the equations reported
in Egs. 4.29. These were implemented in weak form in the commercial software COMSOL Multi-
physics 4.6, and solved by means of the finite element method combined with a backward Euler
scheme for time integration.

We first consider the growth of a round leaf whose reference configuration is the annular do-
main depicted in Fig. 4.2a. Water coming from the roots enters the leaf through the inner circle,
namely the boundary I', representing the petiole. Instead, the outer circle I'y, represents the leaf’s
margin, which is impermeable and hence endowed with zero flux boundary conditions. As for
the initial conditions, we prescribe those reported in Eq. (4.28) with m homogeneous throughout
the domain. We let the simulation run until & reaches a steady state corresponding to the final
configuration of the leaf.

In Fig. 4.3 we report a sequence of snapshots at different times showing the evolution of the
leaf’s shape and of the venation pattern. Interestingly, the leaf grows preserving its circular shape
in the early phases, while it develops a lobed margin at equilibrium. The venation pattern, identi-
tied by the conductance phase field, visibly divides the leaf into circular sectors delimited by radial
strips of very low conductance. In particular, we see that the lobes are distributed so as to subtend
each of the circular sectors. We argue that lobes are formed because, at the interface between the
circular sectors, growth is not advantageous due to the presence of a very low conductance field.
Moreover, a closer look to the shape of the boundary reveals the presence of sub-lobes, i.e. minor
lobes within the main ones, matching the fractal-like structure of the veins. Remarkably, the equi-
librium shape of Fig. 4.3c somehow resembles the lobed leaf reported in Fig. 4.4, which exhibits a
similar arrangements of the veins in relation to the positioning of the lobes. Indeed, each lobe is
split into halves by a main rib.

As regards the growth pattern, in Fig. 4.5 we report the radial and circumferential stretches.
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Figure 4.3: Snapshots of the growth of a round leaf with annular reference domain (Fig. 4.2a) at different dimensionless
times (t* = t/7, with T = ny/cr). The time instant t* = 16.5 (c) can be considered as an approximation of the steady
state of the system. For each snapshot, we plot the dimensionless conductance field a* = a/r in logarithmic scale,
showing the emergence of a venation pattern. A closer look to the leaf’s margin reveals the presence of lobes and sub-
lobes arranged in a fractal-like manner. The reference domain is discretized with 24440 triangular elements, and the
simulations are performed with the following parameters: N = 1075,C = 125, A = 0.0126, E = 1078, K = 2 x 10%.
As for the initial conditions we take m{(X) = mo(X)//r = 0.1.
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Figure 4.4: Picture of a sample of Hydrocotyle vulgaris (also known as the marsh pennywort) exhibiting a round
lobed leaf. (Photo taken from the database Plants of the World Online).
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Figure 4.5: Plot of of the radial (a) and circumferential (b) stretches in logarithmic scale, at equilibrium.

In particular, the leaf shows an allometric pattern such that growth is larger in proximity of the
petiole, a fact persisting through the entire evolution of the leaf blade. As for the circumferential
stretch, we notice that veins deform less than the regions in between them. This trend is even more
pronounced during lobes formation. As a measure of growth anisotropy, we report in Fig. 4.6 (the
logarithm of) the ratio between the principal stretches, A1/)2. This quantity attains its maximum
near the petiole due to significantly large radial stretch. Apart from that, the other regions fea-
ture an anisotropy ratio close to one in the early phases in which the leaf preserves its circular
shape, Fig. 4.6a. Instead, during lobes formation, the anisotropy ratio increases in regions occu-
pied by veins, Fig. 4.6b. This aspect is compatible with the experimental measurements reported
in [Kierzkowski et al., 2019, Shahaf et al., 2021], where the authors report that growth anisotropy
mostly localizes on the main ribs. By filtering out large values of the radial stretch (see Fig. 4.7), we
finally observe that lobes formation is achieved by periodically enhancing and inhibiting growth
at the leaf margin. Again, this is in qualitative agreement with the measurements in [Kierzkowski
etal., 2019]. As regards the driving forces ruling the growth of the leat’s blade, we plot in Fig. 4.8a
the principal component of the active stress, T, together with streamlines tangent to its line of ac-
tion. On the regions occupied by veins, the active stress is negative (contractile), highly anisotropic,
and follows the direction of the veins. On the contrary, the active stress is almost isotropic and pos-
itive (extensile) throughout the blade. Indeed, on veins, the main contribution to the active stresses
is given by the term proportional to grad(p) ® grad(p) in Eq. (4.31), as confirmed by the plot of the
pressure gradient in Fig. 4.8b. There, we see that the pressure gradient is directed as the principal
eigenvector of T,. Instead, the isotropic part regulated by term ¢ in Eq. (4.32) dominates outside
the veins. The final shape of the leaf results form the balance between contractile “forces” in the
veins and extensile ones in the blade. We advance the hypothesis that lobes are formed due to an
excess of contractile, active stress at their interface.

Next, we extend the study by exploring the case of an annular reference domain with eccentric
inner rim, as depicted in Fig. 4.2b. We plot in Fig. 4.9a the leaf configuration at equilibrium. Despite
the lack of symmetry of the reference domain, the leaf evolves in order to restore the concentricity
of the petiole with respect to the leaf margin, thus leading to a shape that closely matches the one
in Fig. 4.3. This behavior may be explained by noticing that, among all the leaves with the same
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Figure 4.6: Plot of the ratio between the principal stretches A; and Ay in logarithmic scale at different dimensionless
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Figure 4.7: Plot of the radial stretch at equilibrium. Values of \, higher than 11.4 have been filtered out so that to

better appreciate the complex growth pattern.
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Figure 4.8: (a) Plot of —o7%, the principal component of T, at equilibrium together with streamlines tangent to its
corresponding eigenvector (inset). (b) Plot of the dimensionless pressure p* at equilibrium together with streamlines
tangent to its corresponding grad™ (p*) (inset).
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Figure 4.9: Steady state of the growth process starting from the reference domain in Fig. 4.2b. (a) Plot of the dimen-
sionless conductance field o* = a/r in logarithmic scale. (b) Plot of the radial stretch X, in logarithmic scale. The
reference domain is discretized with 24458 triangular elements, and the simulations are performed with the following
parameters: N = 1075,C = 125, A = 0.0126, E = 1078, K = 2 x 10%. As for the initial conditions we take
miy(X) = mo(X)/v/F = 0.1.
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Figure 4.10: Snapshots of the growth of an elliptic leaf starting from the reference domain in Fig. 4.2c at different
dimensionless times (t* = t/T, with T = ny/cr). For each snapshot, we plot the dimensionless conductance field

*

a* = a/r in logarithmic scale. The reference domain is with 25506 triangular elements, and the simulations are
performed with the following parameters: N = 107°,C = 125, A = 0.0126, E = 10~8, K = 2 x 10%. As for the initial
conditions we take m{(X) = mo(X)/+/r = 0.1.

blade area, the one having a centered petiole minimizes the maximum distance that water has to
cover to reach the margin. Because of that, a leaf with circular symmetry may feature a reduced
transport cost and thus a greater efficiency. Concerning the growth pattern, in Fig. 4.9 we report
the radial stretch. This shows an asymmetric distribution that justifies the evolution toward a leaf
with a centered petiole.

Finally, we consider the elliptic reference domain depicted in Fig. 4.2¢c, resembling a more nat-
ural leaf shape. Despite its different topology, the evolution process still tends toward a rounded
(orbicular) leaf’s shape, as shown in Fig. 4.10, where the blade extends backwards with respect to
the petiole. The shape reported at the final time in Fig. 4.10 shows some similarities with existing
leaves such as the one in Fig. 4.11. Differently from the simulations discussed above, the results
reported in Fig. 4.10f do not correspond to a steady state. Indeed, the gradient flow evolution has
been stopped as soon as the two rear tails of the leaf touched. Beyond this time, the tails overlap
and our model loose its validity since it does not account for leaf’s self-interactions. In a real leaf,
the two tails would sense the presence of each other and re-adjust their growth accordingly. We
hypothesize that the mutual shadowing of the tails could be the reason why leaves do not exhibit
large overlapping of the tails. As regards the growth pattern, in Fig. 4.12 we plot the principal
stretches along with their direction, noticing some substantial differences with respect to the case
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Figure 4.11: Picture of a sample of Viola odorata exhibiting a heart shaped leaf. (Photo taken from the database The
Bulgarian flora online)

reported in Fig. 4.5. In particular, growth exhibits large variations near the petiole: it is almost null
near the middle of the petiole and extremely pronounced at its extremities. Moreover, the allo-
metric pattern is inverted if compared to the case in Fig. 4.3, since growth rates at the petiole are
smaller than those far from it. Finally, in Fig. 4.13 we report the active stress, showing a interesting
difference with respect to that plotted in Fig.4.8. Specifically, the active stress (as well as the pres-
sure gradient) is not always tangential to the veins, as can be appreciated in Fig. 4.13. As detailed
in the next Section, the computational results from the last test case reveal some of the limitations
of the present model which will be the subject of future developments.
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Figure 4.12: Plot of of the principal stretch A1 (a) and Ay (b) in logarithmic scale at time t* = 2.35.
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Figure 4.13: (a) Plot of o7, the principal component of T, at time t* = 2.35 together with streamlines tangent to its
corresponding eigenvector (inset). (b) Plot of the dimensionless pressure p* at equilibrium together with streamlines
tangent to its corresponding grad™ (p*) (inset).

4.4 Conclusions

In this Chapter we developed a continuum formulation of the principle exposed in [Xia, 2007]
for leaf’s growth. In particular, we postulated that leaves evolve according to a gradient flow a
functional quantifying the net power gained by the leaf due to light absorption. The resulting set
of equations have been implemented in a finite element software and tested on reference domains
with different topologies showing some qualitative agreement with real leaves.

All the simulations discussed in Section 4.3 feature a growth pattern of the blade leading to
round, almost axisymmetric leaf shapes. Therefore, future investigations will point toward a more
exhaustive parametric study to explore the range of shapes that the model is able to reproduce.
In particular, special attention will be devoted to the role of water evaporation (ey) and light ab-
sorption (cz). As regards the former, this is prescribed as an external forcing term in the present
model. However, it is known that leaves are able to control the rate of evaporation through the
opening and closing of stomata to regulate water losses and prevent cavitation phenomena inside
the veins. Hence, one may consider extending the model by including a feedback mechanism sens-
ing water pressure for the active control of water evaporation. Moreover, to deal with interactions
between separate parts of the leaf the model could be extended to account for the mutual shadow-
ing between such interacting parts, thus regulating overlapping phenomena as those occurring in
the test case case of Fig. 4.10. As another step toward a model capable of reproducing a broader
range of shapes, we may consider the addition of irreversibility in the evolution of the conductance
field. Indeed, as reported in [Laguna et al., 2008], the process of cellular differentiation leading to
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vein formations is irreversible. Major developments will be devoted to combine the present model
with a mechanical description of the leaf. In fact, as discussed in [Laguna et al., 2008, Ali et al.,
2014, al Mosleh and Mahadevan, 2022], mechanical stresses play an important role in feedback
regulation mechanisms involved in leaves morphogenesis. Finally, we stress that, among the envi-
ronmental factors influencing the shape of leaves, our model only consider transport cost and light
absorption. Including other aspects like thermal dissipation [Kidner and Umbreen, 2010, Wright
et al., 2017], mechanical compliance [Shimoda and Nakata, 2012, Ronellenfitsch, 2021], and stom-
ata regulation [Ding et al., 2020] may lead to a greater variety of shapes.
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Appendix A

Method of solution for the poroelastic
plate equations

We follow the approach of [Taber, 1992] to solve for the poroelastic plate equations and assume
step loading as specified in Section 1.5. As for the governing equation (1.65), we formally identify
its RHS with a forcing term .# = 2 (trE + € 23trK) and write

O — Oz3p0 = —Op.F . (A1)
Then, we seek a solution to Eq. (A.1) in the form

M(Xa 3, t) = s (X, xS) + Z Ay (X7 t)¢n(x3)a (A.2)

n=1

where ps(X, 23) = fim(x) + 2[14(x)x3 is the steady-state solution, ¢, (x3) = sin[\,(z3 + 1/2)] are
the eigenfunctions of the pure diffusion equation corresponding to the eigenvalues \,, = nr, and
where

¢
A, =c,Gp + / Gn(t — 7)0andr, (A.3a)
0

1
G, = e_A?Lt, ap = —2/ (F + ps) dpndexs . (A.3b)

N

Observe that imposition of the initial condition x = 0 implies

1 _
Cn = _2/2 psPndzs = fia/ () even (A4)
-1 —fm/(nm) m odd.

We proceed by taking the Laplace transform of Eq. (A.2) and by computing the thickness resul-
tants N, and M, according to their definitions as

N, =" 4B+ D, M :%—cm&w, (A.5)
S S

where A, C, D, £ are defined in Table A.1. Combination of Eq. (A.5) with the Laplace transforms of
Eq. (1.63) and substitution into the Eq. (1.62) yields a problem for the displacement (4, u3), along
with the mechanical boundary conditions.
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165 o~ Gon_1 Glan
A_? 1(2n_1)2 71'22

2 i CQn—léQn—l £ — _i c2nG2n
2n —1 2 n

n=1 n=1

Table A.1: Expressions for the functions A, C, D, £

In the stress-free case, transformation of Eq. (A.2) accounting for Eq. (1.74) allows to express i
as in Eq. (1.76) with

) 1 169 >
l/e(.%'3, S) = g — < 77 SNH e) Z ¢2n 1G2n 1 (A6a)

o0

- 2x3 96n - 1 A
o(z3,s) = — 1+ ——sM,, —p2nGop, - A.6b
%o(3,5) s +< +3+277$ ”’);271%@ 2 ( )
Finally, Eq. (A.5) along with Eq. (1.74) allow to compute N, . and M,, , as

. 3+ 2n 1
Nyje=—— "1 (24D A7
poe 3+2n+2nA< + ) (A7)

- 34 2n 1
M,,= —+& . A7b
B2 (3 +2n) + 24nC (65 * > ( )




Appendix B

Optimal shape design in the space of
compatible metrics

Let us consider the following variational problem

min C(C). (B.1)

where M = {f € V : dy(f('),T) = 0}. To derive the stationarity conditions of the complexity
functional C, we compute its Gateaux derivative:

1 1
DsC|v] = DcC[VV'F+FTVv] —MszchvwrM/zFN-vV—o, Vv eT;M, (B2)
w r

where we recall that VcC = dgx — Div (0zx) € Sym, and N = d=x[n] € Sym,. Upon introducing
the definitions of A := —2F VC and B := 2F N, the equation above can be recast into

/DivA~v—/(An-v—Bn-@nv—i—E)t(Bt)-v):0, VveTrM, (B.3)
w r

where n and t denote the outward normal and the tangent unit vectors to I', respectively. Notice
that equation (B.3) is equivalent to

/DivA-V:O, VveCr(w) CTiM, (B.4)

such that
DivA=0 inw. (B.5)

Then, equation (B.3) becomes
/F(An—kf‘)t(Bt))-v—Bn-E)nv:O, VveTrM, (B.6)
which, upon localization, leads to
PAn+Po(Bt) =0, Bn=0 onl, (B.7)
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where we have exploited the arbitrariness of v and 9, v, and used the representation v|r = Pa for
some a € Vr.

Finally, consider the affine deformation of homogeneous gradient F sending I into T exactly.
Since A is homogeneous and B = 0, equation (B.5) and the second of equations (B.7) are trivially
satisfied, whereas the first of equations (B.7) provides again condition (2.18). Hence, the result of
Proposition 3 applies literally also in the stress-free context.



Appendix C

Monoparametric active stretch

In the following, we discuss the case of a single active stretch parameter, where the tensor F, is
given by (3.48). In such a case, the balance equations (3.2) for the remodelling stresses reduce to a
single equation, namely B = C. Writing the Clausius-Duhem inequality

fosfseeaf,
P P PNQo. @

and performing analogous computations to those in Section 3.2, we find

S = 8Fe¢0 F;T —prT,

a ~ (C.1)

2C = pet— —M-I+1,
a

where
I=eg®eg+ez®ey; —2er ®eg,

and I' is the reactive term enforcing the unilateral constraint a < 1. Similarly to (3.18), the evolution
equation for the active stretch reads

(QB—l—Mf)a, ifa<1or2B<—M-T,

0, otherwise.
Under the kinematic assumption (3.34), the differential equation (C.2)
admits an equilibrium a. Indeed we have an equilibrium solution with a < 1 if
p(a) = 2uca® — 2BXa* — pe (A3 +1) = 0. (C.3)

Since ¢(0) < 0, ¢'(a) > 0 for B < 0, and ¢(a) — 400 as a — +0oo, there exists one and only one
a > 0 such that ¢(a) = 0. Such a root is acceptable if @ < 1, and this holds whenever (1) > 0. It
is straightforward to prove the asymptotic stability of a. Otherwise, if ¢(1) < 0, then 2B + M - Tis
non-negative for a = 1 and the equilibrium solution is a = 1.

To compute the stress components, we need to explicitly obtain the expression for p. Setting
ap = az = ain (3.35) — (3.36), we get

p(r):/k\l, 0<r<m,
~ 6 — 1)l
p(r) = kg + (a )?'LLQC og(r)’ r <71 < ro.
a
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Enforcing the boundary and the interface conditions, (3.30) and (3.6) respectively, we find the two

constants
> Ha He (aﬁ - 1) [log(ri) - log<r0)]

BENTN = ’

and
~ He (a6 + 10g(ro) —af log(ro))

Aa?




Appendix D

Complements to Chapter 4

D.1 The gradient flow in the Euclidean space
Let us consider R", endowed with the standard Euclidean scalar product, and a function
fR*"—=R
x = f(x).

We define the gradient flow of f in the variable x as
%(t) = —VF(x(2).
The symbol V f denotes the gradient of f and is defined as the unique vector field satisfying
Dxf(x)[v]=Vf(x)-v Vv eR", (D.1)

where Dy f denotes the differential of f. Observe that, as apparent from Eq. (D.1), the definition of
V f depends on the choice of the scalar product: a scalar product different from the Euclidean one
induces a different notion of gradient, and hence a different evolution for x(t).

It is easy to see that f is always non-increasing along the trajectories x(t¢), indeed

S F(x(1)) = Duf (X)) = VF(x(0) % = VI (x(0)> < 0.

This implies that the gradient flow always points toward a local minimum point of f.
Gradient flows can also be characterized through the following variational problem:

x(t) = v(x(t)),
where .
v(x) = argmin {Dxf(x)[v] + 2\V\2} . (D.2)

v

This fact can be easily shown by exploiting Eq. (D.1). The role of the scalar product (and con-
sequently of the norm it induces) becomes even more explicit when looking at the variational
characterization in Eq. (D.2). We finally remark that gradient flows evolving toward maximum
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point, can be easily constructed by defining the evolution law x(t) = v(x(t)) with v solving the
variational problem

v

v(x) = argmax {Dxf(x) [v] — ;V‘Q} . (D.3)

The theory of gradient flows, as presented here, can be formally extended to the infinite dimensional
setting where the function f is substituted by a functional, defined on a scalar product space of
functions (see [Otto, 2001]). In Chapter 4, we are interested in a maximization problem and hence,
in a gradient flow characterized by a variational problem completely analogous to Eq. (D.3).

D.2 Upper bound for ¢ in the one-dimensional case

The one-dimensional counterpart of the problem introduced in Section 4.2 describes the growth of
an interval Z = [0, /] according to a growth map f : Z — R sending the reference configuration
7 into the actual one denoted by Z; = [0,¢;]. The derivation of the 1D equations follows from
straightforward substitution of two-dimensional operators with two-dimensional ones. For the
purposes of this section we simply report the definition of the gain functional and of state an
integral version of the mass balance equation. The form simply reads as follows

2
(0%
G =S —€= <cL —AEr+m?)p PP — —|m* — 5]m’|2> : (D.4)

T v
where the primes denote differentiation with respect to the spatial coordinate z. As regards the
mass balance, it reads

h(z) — h(y) = / ew Vx,y €L withx <y, (D.5)
s
where h is the mass flux which as usual we model through a Fick’s law given by h = —ap’ with
a=r+m?
It is then possible to prove the following upper bound for the gain functional

Proposition 5. For every 0 < v < 1, there exist two positive constants A and B such that

g(ﬁt,m) < Agt — BK?,

3y+1

for every m and ¢y, and for o = .

In particular 4 (£;, m) < 400 for every m and 4.

Proof. Leta > 0andletd := 2v/(14~). Then, thanks to Young inequality with conjugate exponents
q and ¢/, we obtain

1 115 1 s Youngineq. | 5 0%
67|oma2| lcazw| < :
v c® Ca,c q q

jaw|® =

Now let us choose ¢ = 2/4 (and consequently ¢’ = 525) then inequality in Eq. (D.6) becomes

2 ) a’ 2 2
gCa,c,aw‘ < —a’ +calwl7, (D.7)
Y
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1
where C, . = (ca”)?. Now, since 1 < v < 0 we can exploit the sub-additivity of g(u) = u” and
write

2 a?
§Caclawl’ < Cropot “ml® + Cafuf? (D)
where C, ., = %27”. So, thanks to Eq. (D.8) and recalling the definition of transport cost in

Eq. (D.4) we have that

2
*Cac
/. (G-

</ (S + a0 ) o < [ | (S + Cal @ + < () ) s = .

2
h(zx)]® — cm,a> dr = /I <5ca,c|ap'(x)|5 - CT,W> dz <

(D.9)
Moreover, from the mass balance in Eq. (D.5) that
h(0) — h(z) = ewz Vz €0, 4)].
In particular, since h(¢;) = 0 we have h(0) = ew/; and so we deduce
h(z) = ew(ly — x). (D.10)
Consequently, we have
5
BP =€l | 1 —al® = et
T T 1) + 1
So combining Eq. (D.9) with Eq. (D.10) we get
<5>/ 200 nl = 9, gt o (D.11)
= 7, 5 a,c T,Y,0 a,c (5((5 n 1) t r,y,ott- .

Finally, exploiting the definition of ¢ and Eq. (D.11) we get

)
e
G < (e + Crra)lt — 2004,05(5 w l)efﬂ = B(4y).

Let us now search for the maximum of § by imposing

d 2
£ =(cL +Crrya) — gca,ceévef =0.

If § > 0 then (¢;) has a maximum for

E* — i CL + C?",’Y,Oé ’
t ew %Ca7c )

and so ¥4 (¢;,m) < B(¢;) < +oo for every ¢; and m. O
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