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Abstract: We consider deformations of a differential system with Poincaré rank 1 at infinity and Fuch-
sian singularity at zero along a stratum of a coalescence locus. We give necessary and sufficient conditions
for the deformation to be strongly isomonodromic, both as an explicit Pfaffian system (integrable de-
formation) and as a non linear system of PDEs on the residue matrix A at the Fuchsian singularity.
This construction is complementary to that of [13]. For the specific system here considered, the results
generalize those of [26], by giving up the generic conditions, and those of [3], by giving up the Lidskii
generic assumption. The importance of the case here considered originates form its applications in the
study of strata of Dubrovin-Frobenius manifolds and F -manifolds.
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Notation. For an nˆn matrix Ak, we denote the matrix entries by either pAkqij or A
pkq
ij , where

i, j P t1, ..., nu. We can partition Ak into s2 blocks of dimension pa ˆ pb, where a, b “ 1, ..., s
and p1` ...` ps “ n. The block labelled by a, b, of dimension paˆ pb will be denoted by Apkq

ra,bs.
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1 Introduction

In the work [13], and in the related [12, 19, 20, 21, 22], we have studied an n ˆ n matrix
differential system of the shape (1.1) below, with an irregular singularity at z “ 8 and a
Fuchsian one at z “ 0, with leading term at 8 given by a diagonal matrix Λ “ diagpλ1, ..., λnq,
whose eigenvalues λ “ pλ1, ..., λnq vary in a polydisc of Cn. The polydisc contains a coalescence
locus, where some eigenvalues merge, namely λj ´ λk Ñ 0 for some 1 ď j ‰ k ď n. For
this system, we have proved that a monodromy preserving deformation theory can be well
defined (in an analytic way) with constant monodromy data on the whole polydisc, including
the coalescence locus. This result, which generalizes the theory of Jimbo, Miwa and Ueno [26],
is possible if the vanishing conditions Ajkpλq Ñ 0 hold when λj ´ λk Ñ 0.

In this paper, we consider an n-dimensional differential system

dY

dz
“

ˆ

Λ` Apλq

z

˙

Y, λ “ pλ1, ¨ ¨ ¨ , λsq P D Ă Cs, (1.1)

where D is a polydisc and

Λ “ λ1Ip1 ‘ ¨ ¨ ¨ ‘ λsIps :“ diagpλ1, ..., λ1
looomooon

p1

, λ2, ..., λ2
looomooon

p2

, ¨ ¨ ¨ , λs, ..., λs
looomooon

ps

q

Ipj “ pj-dimensional identity matrix, p1 ` ¨ ¨ ¨ ` ps “ n.

We can think of λ as the parameters varying within a stratum of a coalescence locus, specified
by p1, ..., ps. We would like to establish the full isomonodromy deformation theory within this
stratum.

The deformation considered here is complementary to that of [13], because it occurs within
the prefixed stratum, while in [13] the deformation takes place in a domain containing the
coalescence set, the latter being included in the range of deformation under specific vanishing
conditions on A. The problem of the present paper is therefore different from [13]: here A will
be any matrix and we do not suppose that the entries of A corresponding to equal eigenvalues
of Λ are zero. The deformation theory that we will develop cannot be deduced either from [13]
or [26]. This theory is realized in an important geometric setting, namely at the nilpotent locus
of a Dubrovin-Frobenius manifold [16], called caustic [24]. This application will be discussed in
Section 9, for the type of caustics geometrically described in [28].

In the sequel, it will be convenient to partition A into blocks Ari,js, i, j “ 1, ..., s, of dimension
pi ˆ pj , inherited from Λ. We will work in the following analytic setting.

Assumption 1.

• The polydisc D is sufficiently small so that, as λ varies in D, the Stokes rays defined in
(1.2) below do not cross the half-lines arg z “ τ ` kπ, k P Z, where τ P R is fixed, and
called an admissible direction.

• Apλq is holomorphic in D.
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The Stokes rays in the assumption are the rays in the universal covering R of Czt0,8u
defined by

<ppλi ´ λjqzq “ 0, =ppλi ´ λjqzq ă 0, z P R. (1.2)

In this paper, we establish the necessary and sufficient conditions for (1.1) to be strongly
isomonodromic on the polydisc D. The notion of “strong isomonodromy” is implicit in the sem-
inal paper [26], meaning that all essential monodromy data (monodromy exponents, connection
matrices, Stokes matrices, see Definition 6.1) are independent of λ. The adjective “strong” was
introduced in [19], to point out that a system may just be “weakly” isomonodromic, namely
with constant monodromy matrices, but with possibly non-constant essential monodromy data.

In the isomonodromy theory of [26], several assumptions are made to assure that the differ-
ential system is generic (the deformation is called admissible). In case of (1.1), the eigenvalues
of A are not allowed to differ by integers (so A is in particular diagonalizable), and Λ has
pairwise distinct eigenvalues.

In the paper [3], the isomonodromy deformation theory has been extended to rational con-
nection with both Fuchsian and irregular singularities of any Poincaré rank, without several of
the assumtions of [26]. The residue matrices at the Fuchsian singularities are not subject to
restrictions, while the leading matrix at an irregular singularity can have any Jordan form, but
with a prefixed Jordan type λn1

1 λn2
2 . . . λnKK (in a notation due to Arnol’d [2]). For example, in

case of (1.1), the Jordan type is prefixed to be

λ1 . . . λ1
looomooon

p1

λ2 . . . λ2
looomooon

p2

. . . λs . . . λs
looomooon

ps

. (1.3)

Besides the prefixed Jordan type, another important assumption of [3] is that the next sub-
leading matrix (in our case A) at an irregular singularity must be Lidskii generic, according to
definition 2.1 in [3]. In our case, this means that each diagonal block of A (with block partition
inherited from Λ) must have distinct and nonzero eigenvalues. Theorem 5.3 of [3] states that
the deformation is isomonodromic (preserving a set of monodromy data, which include the
Stokes matrices) if and only if a class of fundamental matrix solutions satisfy a certain Pfaffian
system. This result generalizes theorem 3.1 of [26]. Moreover, [3] studies the generalization of
the isomonodromic τ -function.

Remark 1.1. Given a differential system dY
dz “ Apz, λqY such that the deformation λ does not

satisfying some admissibility conditions of [26], by generalization of [26] we mean: find necessary
and sufficient conditions ensuring that all essential monodromy data (strong isomonodromy) of
the differential system are constant. These conditions are of the type: constant data if and only
if all the canonical solutions satisfy a Pfaffian system dY “ ωY , with a very specific ω (such as
(1.4) below); or if and only if the coefficients in Apz, λq satisfy certain non linear PDEs, called
isomonodromy deformation equations (like the equations (1.6) below).

As mentioned in the beginning, an extension of the isomonodromy deformation theory has
been achieved in [13] for a system such as (1.1) when the Jordan type of the leading matrix Λ
changes within a polydisc of Cn. In [13], A is any, while

Λ “ diagpλ1, ..., λnq
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has n eigenvalues λ “ pλ1, ..., λnq varying in a polydisc containing a coalescence locus where
λj “ λk for some j ‰ k. The extension of [13] can be done under the condition that the entries
Ajkpλq Ñ 0 for λj ´ λk Ñ 0.

In this paper, the deformation parameters λ “ pλ1, ..., λsq are assumed to vary inside a
stratum of the coalescence locus, namely Λ has s ă n eigenvalues varying in the polydisc D
specified before. In this sense, the Jordan type (1.3) of Λ is fixed, as in [3]. Nevertheless, we
drop any assumption on A, and we do not assume Lidskii generic conditions.

We mention that in [11] isomondormy deformations are defined for a system of type (1.1),
with coefficients in the Lie algebra of an arbitrary complex algebraic group G. In the specific
case we consider here the coefficients are n ˆ n complex matrices, so that G “ GLnpCq. In
this case, the assumptions of [11] require that Λ is diagonal1 with a prefixed Jordan type (1.3),
invariant by the deformation λ, and the corresponding diagonal blocks of A are zero. It is to
be noticed that the assumption Ark,ks “ 0, @k “ 1, ..., s implies that theorem 3.3. and remark
3.3 of [11] for G “ GLnpCq are immediately deducible from the main theorem of [13], starting
from Λ “ diagpλ̃1, ..., λ̃nq and considering the coalescence

pλ̃1, ..., λ̃nq ÞÝÑ pλ1 . . . λ1
looomooon

p1

λ2 . . . λ2
looomooon

p2

. . . λs . . . λs
looomooon

ps

q.

In the present paper, no assumptions on the diagonal blocks Ark,ks will be made, so that our
results are not deducible from or reducible to theorem 3.3. and remark 3.3 of [11] (which, as
said, are obtainable from the results of [13], which are complementary to the present paper). It
is also to be mentioned that the notion of isomonodromy in definition 3.2 of [11] requires that
only the Stokes matrices are constant, while here we require constancy of a more stringent set
of monodromy data, including the monodromy exponents and the central connection matrix.

Isomonodromic deformation equations preserving G-valued Stokes matrices were first de-
fined in [4] for meromorphic connections on principal G-bundles, with G a complex reductive
group. The leading term at an irregular singularity is assumed to be regular semisimple in the
Lie algebras g. In case G “ GLpn,Cq and g “ Matpn,Cq, this means that its Jordan form
has a single Jordan block for each eigenvalue, and in particular this implies pairwise distinct
eigenvalues in the diagonalizable case. A generalization of this assumption was then given in
[7], where the Jordan type is fixed (no further coalescences allowed).

Results

Our goal is a the generalization of [26], in the sense of Remark 1.1, for system (1.1).

The main results of the paper are Theorems 6.1 and 6.2. Preliminarily to them, in Theorem
3.1 some results in the weakly isomonodromic case are given: system (1.1) is weakly isomon-
odromic with an isomonodromic fundamental matrix solution in Levelt form at z “ 0 if and
only if the latter satisfies a Pfaffian system whose λ-components are holomorphic in CˆD. In
this case, the monodromy exponents at z “ 0 are constant. This fact is mainly based on [34].

Theorem 6.1 states that system (1.1) is strongly isomonodromic if and only if a fundamental
matrix solution at z “ 0 in Levelt form and the canonical solutions at z “ 8 (defined in the

1[11] requires that Λ is diagonalizable, so one can work in the base where it is diagonal.

4



paper) all satisfy the integrable Pfaffian system

dY “

«

´

Λ` A

z

¯

dz `
s
ÿ

j“1

´

zEpj ` rωjpλq
¯

dλj

ff

Y, (1.4)

with
rωjpλq “ ωjpλq `

BT pλq
Bλj

¨ T pλq´1,

where Epj :“ BΛ{Bλj is the matrix with blocks Eppjq
ra,bs “ δajδbjIpj , for a, b, j “ 1, ..., s (all

entries are zero, except for diagonal block Ipj ), the matrices ωjpλq are holomorphic in C ˆ D
and univocally given in formula (6.2), while the block-diagonal matrix T “ T1 ‘ ¨ ¨ ¨ ‘ Ts
is holomorphic invertible in D and reduces to Jordan form the block-diagonal part of Apλq,
namely

Tkpλq´1Ark,kspλq Tkpλq “ Jk. (1.5)

The second part of Theorem 6.1 also says that in the strong isomonodromic case, A satisfies
the non-linear system

dA “
“

n
ÿ

j“1
rωjpλqdλj , A

‰

. (1.6)

The above (1.6) predicts that the block-diagonal part

Ar1,1s ‘ ¨ ¨ ¨ ‘Ars,ss

is constant. In particular, it has a constant Jordan form J1‘¨ ¨ ¨‘Js. This fact is not immediately
obvious and will be proved in the paper. It implies that isomonodromy deformations with
constant T “ T0 are always allowed, and in such case

rωjpλq “ ωjpλq.

All the other possible isomonodromic deformations are obtained with

T pλq “ T0Bpλq,

for any Bpλq “ B1pλq ‘ ¨ ¨ ¨ ‘Bspλq satisfying

rBkpλq, Jks “ 0, k “ 1, ..., s.

Therefore, for a given A0 at λ “ λ0 P D, let T0 be the block-diagonal matrix such that

T ´1
0 ¨

`

A
p0q
r1,1s ‘ ¨ ¨ ¨ ‘A

p0q
rs,ss

˘

¨ T0 “ J1 ‘ ¨ ¨ ¨ ‘ Js.

Then, there are several possible strong isomonodromy deformations Apλq, having the same
constant block-diagonal part Ap0q

r1,1s ‘ ¨ ¨ ¨ ‘ A
p0q
rs,ss, but different off-diagonal blocks Ari,jspλq,

1 ď i ‰ j ď s, obeying equation (1.6) with the different possible choices of T pλq “ T0Bpλq.
These different deformations are related by a λ-dependent gauge transformation, as will be
explained after Theorem 6.1.
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In the 3-dimensional case, when the only non-trivial case is Λ “ diagpλ1, λ2, λ2q (up to
permutations), the above freedom in the coefficients rωj implies the existence of the particular
isomonodromy deformation with constant A and non constant T pλq, and conversely of the
deformation with non constant Apλq and constant T . Since a gauge transformation can reduce
to constant A, the 3-dimensional case is rigid. See Section 7 for details. The first non-trivial
case occurs for n “ 4 and s “ 3. Already in simplified situations, we will show in Section 8
that the isomonodromic problem is at least as transcendental as a Painlevé equation.

Remark 1.2 (Important Remark). That strong isomonodromy deformations of (1.1) exist
with constant T , and that they can always be reached by a gauge transformation, does not at
all mean that these deformations are trivial. Indeed, even in case T is constant, A “ Apλq is
in general a highly non trivial and highly transcendental matrix function, which must satisfy
the extremely difficult system (1.6) with the rωjpλq “ ωjpλq. Only in case n “ 3 (and s “ 1, 2)
one can reduce to the deformations with constant A, but starting form n ě 4, solutions to the
deformation equations (1.6) are transcendental. See Section 8 for a 4-dimensional example.

Theorem 6.2 is the converse to the second part of Theorem 6.1. It says that system (1.1) is
strongly isomonodromic if A is not partially resonant (Definition 4.1) and satisfies the Frobenius
integrable system (1.6), with

rωjpλq “ ωjpλq `Djpλq,

where the Dj “ Dpjqr1,1s ‘ ¨ ¨ ¨ ‘D
pjq
rs,ss are holomorphic block-diagonal matrices, arbitrary2 except

for the differential constraint

BjDk ´ BkDj “ rDjpλq, Dkpλqs,

which is required by the integrability of (1.6). Hence,

dT “
`

ÿ

j

Djpλqdλj
˘

T.

is integrable. It admits holomorphic fundamental matrix solutions T pλq “ T1 ‘ ¨ ¨ ¨ ‘ Ts such
that (1.5) holds.

The above theorems 6.1 and 6.2 generalize to the non-generic case (1.1) the strategy and
the results of [26].

Remark 1.3. As a corollary, if Λ has pairwise distinct eigenvalues, (1.1) is strongly isomon-
odromic if and only if (1.6) holds with rωjpλq “ ωjpλq ` Djpλq, with Djpλq diagonal satisfying
BjDk ´ BkDj “ 0 (here j, k “ 1, ..., n). In this case T pλq above is any diagonal matrix.

An important application of the isomonodromy deformation theory here developed will
be given in Section 9 for the caustic of a semisimple Dubrovin-Frobenius manifold M [16,
17] of dimension n. The caustic is a hypersurface K Ă M of codimension 1, such that the
multiplication defined on the tangent bundle is nilpotent. Following [24] and [28], a generic
point of K has a neighbourhood in M were local coordinates pt1, t2, u3, ..., unq are defined,

2So the case Dj “ 0 for all j “ 1, ..., s is possible.
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such that K corresponds to t2 “ 0 and the vector B{Bt2|t2“0 is nilpotent. The flat sections of
the Dubrovin deformed connection (defined in Section 9), expressed in these coordinates and
restricted at the caustic, are solutions of a Pfaffian system exactly of the type (1.4) (see system
(9.27)), with deformation parameters given by the coordinates pt1, u3, ..., unq on K. It has non
trivial T depending on the flat metric defined of M , and

Λ :“ diagp t1, t1
loomoon

, u3, ..., un
looomooon

n´2 distinct

q.

Its z-component is always strongly isomonodromic in the sense described in this paper. Indeed,
we will show that in case of a caustic the deformation equations (1.6), concretely realized by
system (9.28), are sufficient conditions for strong isomonodromy. The results are summarized
in Proposition 9.1 and Remark 9.4. Moreover, the deformation theory developed in this paper
allows us to predict some properties of the caustic (see Corollary 9.1 and point 3) of Remark
9.3).

Some further remarks

The integrability conditions of a Pfaffian system (1.4) with given rωjpλq “ ωjpλq of the specific
form (6.2) are the non-linear “deformation equations” (1.6) and their compatibility conditions.
This is an elementary computation and is not new (see also the proof of part II of Theorem 6.1
here). For distinct eigenvalues these deformation equations are a particular case of the JMMS
equations introduced in [25] (in particular section 4 and the appendix A. See also [23]), while
in case of repeated eigenvalues, but no further coalescences, (1.4) and (1.6) fit into the more
general deformations equations studied in [6] (see also [7]).

The purpose of the present paper is not to give deformations equations (integrability con-
ditions) for a Pfaffian system, but to derive the Pfaffian system (1.4) as the necessary and
sufficient condition for all the essential monodromy data of (1.1) to be constant; (1.6) is conse-
quently the integrability condition of (1.4). Moreover, in case there are no partial resonances,
we show that (1.6) is also a sufficient condition for all the essential monodromy data to be
constant. This, in the spirit of Remark 1.1.

To conclude, we make two more general comments. The first is that the main difficulty to
generalize [26] to non generic cases (in the sense of Remark 1.1) is to find a suitable canonical
representations for a class of fundamental matrix solutions (like the Levelt form at a Fuchsian
singularity and the solutions having a canonical asymptotics in Stokes sectors), and to deal with
the change of those representations when the Jordan type of the leading matrix at an irregular
singularity changes, namely some eigenvalues merge. To our knowledge, this is an extremely
difficult problem, which is far from being solved. In the literature, we either find attempts to
deal with coalescences of eigenvalues with a change of Jordan type, but with suitable analyticity
and semisimplicity assumptions, such as in the work [13], or the Jordan types are fixed such as
in [3] and in the present paper.

The second comment – which in a sense expands Remark 1.1 – is that there are two ap-
proaches in order to describe, from the analytic viewpoint, the isomonodromy deformations of
a differential system

dY

dz
“ Apz, λqY, (1.7)
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where Apz, λq is rational in z and analytic in a domain of λ (such as D here). One approach
starts by proving the existence of fundamental matrix solutions of (1.7), holomorphic in the
deformation parameters (under certain assumptions) in the λ-domain, and characterized by a
certain canonical form, such as Levelt form at Fuchsian singularities and canonical asymptotics
at irregular ones. Then, one must show that these solutions satisfy a Pfaffian system

dY “ ωY, (1.8)

with a specific ωpz, λq, possibly determined by Apz, λq, if and only if the deformation is isomon-
odromic, namely preserves a certain class of monodromy data (such as monodromy matrices or
essential monodromy data of the above mentioned solutions). This is the approach approach
of [26] and the approach we mainly follow in our paper.

The other approach starts by assuming that we are given a Pfaffian system (1.8), satisfying
the Frobenius integrability condition dω “ ω ^ ω, and such that the dz component of ω gives
a differential system (1.7), namely

ωpz, λq
ˇ

ˇ

ˇ

λ fixed
“ Apz, λqdz.

This implies that the monodromy matrices of a fundamental matrix solution Y pz, λq of (1.8)
are constant, so that system (1.7) is weakly isomonodromic. Then, this approach proceeds
by showing if, depending on the specific ωpz, λq, the Pfaffian system admits fundamental ma-
trix solutions with a canonical structure, whose corresponding essential monodromy data are
constant. This is, for example, the approach of [8, 9, 10, 34].

Acknowledgments. I thank P. Boalch for several useful remarks and for pointing out some
references. The author is member of the European Union’s H2020 research and innovation
programme under the Marie Skłlodowska-Curie grant No. 778010 IPaDEGAN. He is also a
member of the Project ’Mathematical Methods in Non Linear Physics’ (MMNLP), Commissione
Scientifica Nazionale 4 - Fisica Teorica (CNS4) of the Istituto Nazionale di Fisica Nucleare
(INFN).

2 Preliminaries

It is a standard result [33, 1] that, for each fixed λ, system (1.1) admits a fundamental solution
with Levelt form3 at z “ 0:

Y p0qpz, λq :“ Gp0qpλqpY p0qpz, λqzD
p0q
zL

p0qpλq, (2.1)

J p0q “ Dp0q ` Sp0q, Lp0q “ Sp0q `Rp0q, (2.2)

where:
pY p0qpz, λq “ I `

8
ÿ

k“1
F
p0q
k pλqzk is convergent for finite |z|; (2.3)

3This is an improper Levelt form, obtained by a permutation Y ÞÑ Y P , P a suitable permutation matrix,
from a proper Levelt form (5.8) of Section 5.
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the matrix J p0pλq is a Jordan form of Apλq; the eigenvalues µ1pλq, ¨ ¨ ¨ , µnpλq of Apλq are
uniquely decomposed as

µjpλq “ d
p0q
j ` ρ

p0q
j pλq, with 0 ď <ρp0qj ă 1 and dp0qj P Z;

and
diagpSp0qq “ diagpρp0q1 , ..., ρp0qn q, Dp0q “ diagpdp0q1 , ..., dp0qn q.

The matrix Rp0q is nilpotent, with entries

pRp0qpλqqij ‰ 0 only if µipλq ´ µjpλq P Nzt0u.

The invertible matrix Gp0q puts A in Jordan form. In general, the dependence of Y p0q on λ is
not holomorphic in D.

Assumption 2. Apλq is holomorphically similar to a Jordan form J p0pλq in D, namely there
is Gp0q “ Gp0qpλq holomorphically invertible in D such that

J p0qpλq “ Gp0qpλq´1Apλq Gp0qpλq.

The matrix Apλq is said to be resonant at λ P D if there exist i ‰ j P t1, ..., nu such that
µipλq ´ µjpλq P Zzt0u. If the eigenvalues do not depend on λ in D, we simply say that A is
resonant.

If there are no resonances, Assumption 2 guarantees that Y p0qpz, λq can be taken holo-
morphic on R ˆ D. Otherwise, in addition to Assumption 2 we need to require that if
µipλq ´ µjpλq “ `ij P Zzt0u for some λ, then the resonance persists all over D, namely

µipλq ´ µjpλq “ `ij P Zzt0u @ λ P D. (2.4)

Then, holomorphy of (2.1) follows from its standard formal computation (see [33]). The reason
for (2.4) is that if it does not hold, then Rp0qpλq may have an extremely wild behaviour in λ.

3 Weak isomonodromic deformations

Lemma 3.1 (Isospectrality). Let Apλq be holomorphic on D. If (1.1) has for each λ P D a
fundamental matrix solution Y pz;λq whose monodromy

Y pz;λq ÞÝÑ Y pze2πi;λq “ Y pz;λqM,

is the same for all λ P D (i.e. the monodromy matrix M is constant), then the eigenvalues
of Apλq are constant on D. In particular, (2.4) holds in case of resonances. If moreover
Assumption 2 holds, then a Levelt form Y p0q is holomorphic on Rˆ D.

Notice that in Lemma 3.1 it is not assumed that Y pz;λq depends holomorphically on λ.
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Proof. There exists for each λ an invertible connection matrix Cpλq such that

Y pz;λq “ Y p0qpz, λqCpλq “ Gp0qpλqpY p0qpz, λqzD
p0qpλqzL

p0qpλqCpλq.

By assumption, M “ Cpλq´1e2πiLp0qpλq Cpλq does not depend on λ, so the eigenvalues ρp0qj of
Lp0q are constant. Since Apλq is holomorphic, its eigenvalues µjpλq “ d

p0q
j `ρ

p0q
j are continuous.

It follows that both the integers dp0qj and the eigenvalues µj are constant. Clearly, (2.4) holds,
so that holomorphy follows from the formal computation (see [33]) of (2.1) and (2.3).

Definition 3.1. System (1.1) is weakly isomonodromic in D if there exists a fundamental
matrix solution Y holpz, λq depending holomorphically on pz, λq P R ˆ D, with λ-independent
monodromy matrix M , defined by

Y holpz, λq ÞÝÑ Y holpz, λqM, z ÞÝÑ ze2πi.

Proposition 3.1. Let Apλq be holomorphic in D. System (1.1) is weakly isomonodromic in D
if and only if it is the z-component of an integrable Pfaffian system

dY “ ωpz, λqY, ωpz, λq “

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1
ωjpz, λqdλj . (3.1)

with ωpz, λq holomorphic in Czt0,8u ˆ D, satisfying the integrability condition

dω “ ω ^ ω.

The proof is standard.

Theorem 3.1. Let Apλq be holomorphic in D. System (1.1) is weakly isomonodromic in D
with holomorphic fundamental matrix solution Y hol coinciding with a fundamental solution in
Levelt form Y p0q, if and only

the coefficients ωjpz, λq are holomorphic in Cˆ D.

In this case, the following facts hold.

• Dp0q and Lp0q are constant, or equivalenlty J p0q and Rp0q are constant.

• Apλq is holomorphically similar to J p0q through a fundamental matrix solution Gp0qpλq of

dG “
s
ÿ

j“1
ωjp0, λqdλj G.

10



The matrices ωjpz, λq in Theorem 3.1 may have isolated singularity in z “ 8. The require-
ment Y hol “ Y p0q is equivalent to the requirement that Y hol “ Y p0qC, for C constant invertible
matrix.

Assumption 2 is not explicitly written in the statement of Theorem 3.1. If (1.1) is weakly
isomonodromic in D and we assume that there is a holomorphic fundamental matrix solution
in Levelt form Y p0q, then Assumption 2 is a necessary condition, so it is automatically assumed
by requiring that Y p0q is holomorphic. Conversely, if the coefficients ωjpz, λq are holomorphic
in C ˆ D, then it follows from Proposition 3.2 below that Apλq is holomorphically similar to
J p0q, namely Assumption 2 is satisfied.

Theorem 3.1 holds also for

dY

dz
“ Apz, tqY, Apz, tq :“ Λ` Aptq

z ´ a

t :“ pλ, aq, λ “ pλ1, ¨ ¨ ¨ , λsq P D Ă Cs, a P C.
(3.2)

where one deformation parameter is the pole z “ a. In this case, (3.1) is replaced by

ωpz, tq “ Apz, tqdz `
s
ÿ

j“1
ωjpz, tqdλj `

ˆ

ω0pz, tq ´
Aptq

z ´ a

˙

da. (3.3)

The coefficients ωjpz, λq and ω0pz, tq are holomorphic in C ˆ D. We stress that the above
holds for any Aptq, including the non-diagonalizable and resonant cases. Moreover, Gp0qptq is a
fundamental matrix solution of

dG “

˜

s
ÿ

j“1
ωjpa, tqdλj ` ω0pa, tqda` ϕptqda

¸

G, (3.4)

with
ϕ “ Gp0q

´

F
p0q
1 ` rF

p0q
1 , J p0qs `R

p0q
1

¯

pGp0qq´1. (3.5)

Here, F p0q1 appears in the Taylor expansion (2.3), J p0q in (2.2), and Rp0q1 is the first term in the
decomposition of Rp0q “

řm
`“1R

p0q
` , where

pR
p0q
` qij ‰ 0 only if µi ´ µj “ ` P Nzt0u.

Notice that (3.4) is linear, because F p0q1 and Rp0q1 are obtained by the standard formal compu-
tation yielding (2.1), which is done using the differential system drY {dz “ pGp0qq´1Apz, tqGp0q rY ,
after the gauge transformation Y “ Gp0q rY . Explicit computation shows that Gp0q cancels in
(3.5), namely ϕ is only determined by Apz, tq.

Expressions (3.3), (3.4), (3.5) can be obtained following the same steps of the proofs of Propositions
3.2 and 3.3 below. Just notice that for example in (3.8) one has

ω “ dpGp0q pY p0qq ¨ pGp0q pY p0qq´1 `Gp0q pY p0q
Dp0q ` pz ´ aqD

p0q
Lp0qpz ´ aq´D

p0q

pz ´ aq
pGp0q pY p0qq´1dz

11



´Gp0q pY p0q
Dp0q ` pz ´ aqD

p0q
Lp0qpz ´ aq´D

p0q

z ´ a
pGp0q pY p0qq´1da.

Then use the definitions of the monodromy exponents (2.2), which imply that

Dp0q ` pz ´ aqD
p0q
Lp0qpz ´ aq´D

p0q
“ J p0q `

m
ÿ

`“1
R
p0q
` pz ´ aq

`.

3.1 Proof of Theorem 3.1

Theorem 3.1 follows from Propositions 3.2 and 3.3 below. These propositions apply also to
system (3.2), with form (3.3) and (3.4).

By its definition Dp0q is locally constant on subsets of D. It may have jump discontinuities
on D, so that dDp0q is not well defined. We will sometimes write dDp0q “ 0 with abuse of
notation when we want to indicate that Dp0q is constant on the whole D.

Proposition 3.2. Let Apλq be holomorphic in D and let (1.1) be the z-component of an inte-
grable Pfaffian system (3.1) whose coefficients ωjpz, λq are holomorphic in Cˆ D.
Then, there is a fundamental matrix solution Y p0qpz, λq of (3.1) in Levelt form (2.1), with

dDp0q “ dLp0q “ 0, or equivalently dJ p0q “ dRp0q “ 0 on D. (3.6)

Moreover, the matrix Apλq is holomorphically similar to J p0q through a fundamental matrix
solution Gp0qpλq of

dG “
s
ÿ

j“1
ωjp0, λqdλj G.

Proof. Proposition 3.2 is a particular case of the main results of [34] on fundamental matrix
solutions of Pfaffian systems at a logarithmic (Fuchsian) singularity.

The converse of the above is the following

Proposition 3.3. Let Apλq be holomorphic in D and let Assumption 2 hold.

a) Suppose that (1.1) is weakly isomonodromic. If there is a fundamental matrix solution of
(3.1) in Levelt form Y p0qpz, λq, then the coefficients ωjpz, λq of (3.1) are holomorphic in CˆD
and (3.6) holds.

b) Conversely, if system (1.1) has a fundamental solution Y p0qpz, λq in Levelt form (2.1)
such that (3.6) holds, then the system is weakly isomonodromic, and the corresponding Pfaffian
system (3.1) has coefficients ωjpz, λq holomorphic in Cˆ D.

12



In both cases a) and b), Gp0qpλq is a fundamental matrix solution of

dG “
s
ÿ

j“1
ωjp0, λqdλj G.

Proof. a) Being (1.1) weakly isomonodromic, there is an isomonodromic Y holpz, λq, with con-
stant monodromy matrix M , satisfying (3.1). By Lemma 3.1, a solution Y p0qpz, λq of (1.1)
exists holomorphic in Rˆ D, with

Dp0q constant.

By the assumption in a), Y p0q also satisfies (3.1). Being solutions of (1.1), Y hol and Y p0q are
related by a holomorphic connection matrix Cpλq:

Y holpz, λq “ Y p0qpz, λqCpλq.

Since both dY hol “ ωY hol and dY p0q “ ωY p0q hold, then

dC “ 0.

Let us rewrite
Y holpz, λq “ Y p0qpz, λqC “ Gp0qpλqpY p0qpz, λqzD

p0q
CzLp0q ,

Lp0qpλq :“ C´1 Lp0qpλq C.

Since dM “ dpexpt2πiLp0quq “ 0 by assumption, we have dLp0q “ 0, and then

dLp0q “ 0.

Therefore, we find

ω “ dY hol ¨ pY holq´1 “ dpY p0q ¨ pY p0qq´1q (3.7)

“ dpGp0q pY p0qq ¨ pGp0q pY p0qq´1 `Gp0q pY p0q
Dp0q ` zD

p0q
Lp0qz´D

p0q

z
pGp0q pY p0qq´1dz (3.8)

Now, the definition of Dp0q and Lp0q implies that Dp0q`zDp0qLp0qz´Dp0q is holomorphic at z “ 0
and

lim
zÑ0

pDp0q ` zD
p0q
Lp0qz´D

p0q
q “ J p0q, (3.9)

so that
ω “ dGp0q ¨ pGp0qq´1 ` regpz, λq `

ˆ

Apλq

z
` reg1pz, λq

˙

dz.

Here
regpz, λq “ Opzq, for z Ñ 0

13



is a 1-form in dz and dλ1, ..., dλs, holomorphic in CˆD. Moreover, reg1pz, λq is a holomorphic
matrix in Cˆ D with behaviour

reg1pz, λq “ Op1q, for z Ñ 0.

We conclude that
ω “

s
ÿ

j“1
ωjpz, λqdλj `

ˆ

Apλq

z
` reg1pz, λq

˙

dz,

where both reg1pz, λq and the matrices ωjpz, λq are holomorphic in C ˆ D, of order Op1q for
z Ñ 0. In particular,

dGp0q ¨ pGp0qq´1 “
s
ÿ

j“1
ωjp0, zqdλj .

b) Suppose that dDp0q “ dLp0q “ 0, so that for z ÞÝÑ ze2πi the monodromy Y p0q ÞÝÑ

Y p0qe2πiLp0q is constant. This implies that Lemma 3.1 holds, so that Y p0qpz, λq is holomorphic
in Rˆ D. We prove that Y p0q satisfies a Pfaffian system. We define

ωpz, λq :“ dY p0qpz, λq ¨ pY p0qpz, λqq´1.

This is single valued with respect to z, because the monodromy of Y p0q is constant. The
structure of ωpz, λq “ ω0pz, λqdz `

řs
j“1 ωjpz, λqdλj is computable from (2.1):

dY p0q ¨ pY p0qq´1 “

“ dGp0q ¨Gp0q `Gp0qdpY p0q ¨ pGp0q pY p0qq´1 `Gp0q pY p0q
Dp0q ` zD

p0q
Lp0qz´D

p0q

z
pGp0q pY p0qq´1

“ dGp0q ¨Gp0q ` regpz, λq `
ˆ

A1
z
` reg1pz, λq

˙

dz.

In the last step, we have used (2.3) and (3.9). Here regpz, λq stands for a matrix valued 1-form
in the dλj ’s, holomorphic in CˆD, and of order Opzq Ñ 0 as z Ñ 0, while reg1pz, λq is a matrix
holomorphic in CˆD of order Op1q as z Ñ 0 (and we know that it must be Λ). In conclusion,
we have found that

s
ÿ

j“1
ωjpz, λqdλj :“ dGp0q ¨Gp0q ` regpz, λq,

and in particular dGp0q ¨ pGp0qq´1 “
řs
j“1 ωjp0, λqdλj .

4 Canonical solutions of (1.1) at z “ 8

Let us partition A in blocks Ari,js, i, j “ 1, ..., s, of dimension pi ˆ pj , inherited from Λ. Let

T pλq “ T1pλq ‘ ¨ ¨ ¨ ‘ Tspλq,

be a block diagonal matrix such that

Tkpλq´1Ark,kspλq Tkpλq “ Jkpλq Jordan form, k “ 1, ..., s. (4.1)

14



It has structure Tkpλq “ T 0
k pλqBkpλq, where T 0

k pλq is a chosen matrix satisfying (4.1) and
Bkpλq is any matrix such that rBk, Jks “ 0.

Assumption 3. Ar1,1spλq ‘ ¨ ¨ ¨ ‘Ars,sspλq is holomorphically reducible to Jordan form

Jpλq “ J1pλq ‘ ¨ ¨ ¨ ‘ Jspλq.

This means that each Tkpλq is holomorphic on D, and so is each Jkpλq.

We can arrange each Jk into hk ď pk Jordan blocks J pkq1 , ..., J pkqhk

Jk “ J
pkq
1 ‘ ¨ ¨ ¨ ‘ J

pkq
hk
. (4.2)

Each block J pkqj , 1 ď j ď hk, has dimension rj ˆ rj , with rj ě 1, r1 ` ¨ ¨ ¨ ` rhk “ pk. Each J
pkq
j

has only one eigenvalue µpkqj , with structure,

J
pkq
j pλq “ µ

pkq
j pλqIrj `Hrj , Irj “ rj ˆ rj identity matrix,

Hrj “ 0 if rj “ 1, Hrj “

»

—

—

—

—

—

–

0 1
0 1

. . .
. . .

0 1
0

fi

ffi

ffi

ffi

ffi

ffi

fl

if rj ě 2.

Note that µpkq1 , ..., µpkqhk are not necessarily distinct. The decomposition µpkqj “ d
pkq
j ` ρ

pkq
j , with

d
pkq
j P Z and 0 ď <ρpkqj ă 1, induces the decomposition

Jk “ Dk ` Sk, k “ 1, ..., s. (4.3)

where Dk is diagonal with eigenvalues dpkqj and Sk is Jordan with eigenvalues ρpkqj . We let

D :“ D1 ‘ ¨ ¨ ¨ ‘Ds, S :“ S1 ‘ ¨ ¨ ¨ ‘ Ss so that J “ D ` S.

If Assumption 3 holds, the gauge

Y pz, λq “ T pλq pXpz, λq

transforms system (1.1) into

d pX

dz
“

ˆ

Λ` Apλq
z

˙

pX, A :“ T ´1AT ”

¨

˚

˚

˚

˝

J1 Ar1,2s ¨ ¨ ¨ Ar1,ss
Ar2,1s J2 ¨ ¨ ¨ Ar2,ss
...

...
. . .

...
Ars,1s Ars,2s ¨ ¨ ¨ Js

˛

‹

‹

‹

‚

(4.4)

We can then apply to (4.4) the computations of section 4.1 of [13], which allow to find formal
solutions of (1.1) depending holomorphically on λ P D, with structure

YF pz, λq “ T pλq
´

I `
8
ÿ

j“1
Fjpλqz

´j
¯

zDpλqzLpλqeΛz. (4.5)
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Here
L :“ L1 ‘ ¨ ¨ ¨ ‘ Ls, Lk :“ Sk `Rk, Rk is nilpotent. (4.6)

Each Rk has possibly non zero blocks

rRksblock a,b ‰ 0 only if µ
pkq
b pλq ´ µ

pkq
a pλq “ `ba P Nzt0u, a ‰ b “ 1, ..., hk. (4.7)

The diagonal matrix Dpλq is locally constant, from its very definition, and may have discrete
jumps as λ varies in D. The computation of the Fkpλq and R “ R1 ‘ ¨ ¨ ¨ ‘ Rs follows exactly
the procedure of proposition 4.1 of [13].

In case there are no resonances in Ark,kspλq, then Rkpλq “ 0. If there are no resonances in
all the blocks Ark,ks, @k “ 1, ..., s, then

R “ 0 ùñ Lpλq “ Spλq,

and

YF pz, λq “ T pλq
´

I `
8
ÿ

j“1
Fjpλqz

´j
¯

zDpλqzSpλqeΛz “ T pλq
´

I `
8
ÿ

j“1
Fjpλqz

´j
¯

zJpλqeΛz

Then, by Assumption 3, YF pz, λq depends holomorphically on λ.
In case of resonance of some Ark,kspλq, a sufficient condition for the Fjpλq’s and Lpλq to

depend holomorphically on λ is that when it happens that µpkqb pλq ´ µ
pkq
a pλq “ `ba P Nzt0u for

some value of λ, then the resonance persists all over D, namely

µ
pkq
b pλq ´ µ

pkq
a pλq “ `ba P Nzt0u @ λ P D. (4.8)

In this case, being D locally constant in D, YF pz, λq locally depends holomorphically on λ.

Definition 4.1. In the terminology introduced in [29], if there exists k such that Ark,ks is
resonant, we say that A has a partial resonance.

A formal solution (4.5) with given T , L, D and Λ is uniquely determined only if all the
matrices Ar1,1spλq, . . . , Ars,sspλq are non-resonant (see corollary 4.1 of [13]).

Remark 4.1. In case Λ “ diagpλ1, ..., λnq has pairwise distinct eigenvalues, then

YF pz, λq “ T pλq
´

I `
8
ÿ

j“1
Fjpλqz

´j
¯

zdiagpApλqqeΛz,

and T pλq is an arbitrary invertible diagonal matrix. One can choose it to be the identity matrix.

Stokes Matrices

Consider an admissible direction τ as in Assumption 1 and the following λ-independent sectors
in R of central angular opening π ` 2δ:

Sν : pτ ` pν ´ 1qπq ´ δ ă arg z ă pτ ` νπq ` δ, ν P Z, δ ą 0.
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If Assumption 1 holds, there is a sufficiently small δ such that Sν X Sν`1 does not contain
Stokes rays as λ varies in D. From [30], we know that to a prefixed formal solution (4.5) there
correspond actual solutions satisfying

Yνpz, λq “ T pλqpYνpz, λqzDpλqzLpλqeΛz, (4.9)

pYνpz, λq „ I `
8
ÿ

j“1
Fjpλqz

´j , z Ñ8 in Sν . (4.10)

For short, we will improperly write

Yνpz, λq „ YF pz, λq, z Ñ8 in Sν .

They are uniquely determined by the above asymptiotic behaviour (as proved in theorem 6.2
of [13]). When Assumption 3 and (4.8) hold, they are holomorphic in RˆD . In this case, the
holomorphic Stokes matrices Sνpλq are defined by

Yν`1pz, λq “ Yνpz, λqSνpλq.

5 More on the Levelt form

This technical section can be skipped at first reading. It introduces details needed especially in
the proof in the Appendix. The reader not interested in the Appendix may just read the last
sentence of this section, starting with “In conclusion,...”.

Consider a N ˆN system Y 1 “ ApzqY , such that Apzq has a Fuchsian singularity in z “ a,
for a P C, or in z “ 8. The residue matrix of Apzq at z “ a (or z “ 8) has a Jordan form

J “ J1 ‘ ¨ ¨ ¨ ‘ Jr,

with
Jj “ µjImj `Hmj , m1 ` ...`mr “ N,

Hmj
“ 0 if mj “ 1, Hmj

“

»

—

—

—

—

—

–

0 1
0 1

. . .
. . .

0 1
0

fi

ffi

ffi

ffi

ffi

ffi

fl

if mj ě 2.

We can arrange the Jordan form so that the eigenvalues µ1, ..., µr of J have real parts forming
a non increasing sequence if z “ a is the singularity:

<µ1 ě <µ2 ě ¨ ¨ ¨ ě <µr; (5.1)

or a non decreasing sequence in case z “ 8 is the singularity:

<µ1 ď <µ2 ď ¨ ¨ ¨ ď <µr. (5.2)

We also write µj “ ρj ` dj , with 0 ď <ρi ă 1 and dj P Z, and

J “ D ` S,
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where D is the diagonal matrix of integers dj .
The differential system can be reduced to normal form by a standard procedure [33], and

this allows to find a fundamental matrix solution in Levelt form

Y pzq “ GpζqζDζL, (5.3)

where ζ “ z´a if a is the singularity, or ζ “ z if 8 is the singularity. Here, Gpζq is holomorphic
at z “ a (or at z “ 8). In case the matrix coefficient Apzq is holomorphic only in a sector
centered at the singularity, and admits there an asymptotic expansion, then Gpζq is holomorphic
in that sector, with asymptotic expansion there [33]. Moreover, the monodromy exponent L is

L “ S `R,

where the matrix R is nilpotent and obtained by the formal computation of the normal form.
Consider the block partition of R inherited from J . For the singularity z “ a, it possibly has

a non-trivial block in position pi, jq, with 1 ď i ‰ j ď r, if µi ´ µj “ di ´ dj ě 1 is integer. For
the singularity z “ 8, R possibly has a non-trivial block in position pj, iq if µi´µj “ di´dj ě 1
is integer. It follows from the ordering (5.1) or (5.2) that R only has possibly non zero blocks
in the upper triangular part of its block partition (R is upper triangular if J is diagonal). The
diagonal blocks of R are zero (the diagonal is zero if J is diagonal).

Examples. The solution (2.1) is an example for a “ 0. The solutions Yνpz, λq in (4.9) contains
the matrix factor T pλqpYνpz, λqzDpλqzLpλq, which is an example with ζ “ z and Gpζq holomorphic
at z “ 8 in a sector Sν : indeed, it is a fundamental solution in Levelt form for the Fuchsian
system (4.1) at z “ 8 of the paper [13].

Notice once more that, with the given ordering (5.1) or (5.2), for 1 ď i ă j ď r we have
µi ‰ µj and ρi “ ρj whenever µi ´ µj ” di ´ dj ‰ 0 is a non-zero integer, and correspondingly
R possibly has a non-zero block in position pi, jq. Therefore, possibly acting by a permutation
L ÞÝÑ P´1LP if necessary (which means changing Y ÞÝÑ Y P by a permutation matrix P ), we
can always do the above construction in such a way that L admits another partition into blocks

L “ L1 ‘ ¨ ¨ ¨ ‘ L`, with ` ď r,

where each block Lq is upper triangular, it has only one eigenvalue σq equal to some ρi “ ρj “ ...

from the set tρ1, ..., ρru, satisfying 0 ď <σq ă 1, and σp ‰ σq for 1 ď p ‰ q ď `, and the
corresponding diagonal matrix D of integer parts of the eigenvalues of J is split into blocks
D “ D1 ‘ ¨ ¨ ¨ ‘D`, with

Dq “ diagpdq,1, dq,2, ....q, q “ 1, ..., `,

where for each q the integers form a non-increasing finite sequence

dq,1 ě dq,2 ě ...

in case the singularity is z “ a; or a non-decreasing finite sequence

dq,1 ď dq,2 ď ...
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in case z “ 8 is the singularity. We can therefore rewrite

L “ S `R, with S “ S1 ‘ ¨ ¨ ¨ ‘ S`, R “ R1 ‘ ¨ ¨ ¨ ‘R`.

Each block Lq, 1 ď q ď `, consists of sub-blocks, according to the structure (for some integer
kq):

Lq “ Sq `Rq, Sq “

¨

˚

˚

˚

˚

˝

S
pqq
1

S
pqq
2

. . .

S
pqq
κq

˛

‹

‹

‹

‹

‚

, Rq “

¨

˚

˚

˚

˝

0 ˚ ˚ ˚

0 ˚ ˚

. . . ˚

0

˛

‹

‹

‹

‚

, (5.4)

where each matrix Spqqi is a Jordan matrix with the same eigenvalue σq on the diagonal and 1’s
on the second upper diagonal:

S
pqq
i “

¨

˚

˚

˚

˝

σq 1 0 0
σq 1 0

. . . 1
σq

˛

‹

‹

‹

‚

, i “ 1, 2, ..., kq;

while in Rq the 0 are zero diagonal blocks (corresponding to the blocks Spqqi ), and each ˚ is an
off-diagonal block which is possibly non zero (now the block partition of Rq in (5.4) is inherited
from that of Sq).

One can also decompose the above L as

L “ Σ`N, Σ diagonal and N nilpotent, (5.5)

with
Σ “ σ1I1 ‘ ¨ ¨ ¨ ‘ σ`I`, N “ N1 ‘ ¨ ¨ ¨ ‘N`.

Here I1, ..., I` are identity matrices, each Iq having the dimension of Lq. It follows that

rΣ, N s “ 0. (5.6)

Therefore,
zDzL “ zDzΣzN “ z∆zN ,

where
∆ :“ D ` Σ (5.7)

is a diagonal matrix, whose eigenvalues are the eigenvalues of J . The above properties allow to
write

z∆zN “ z∆
k
ÿ

k“1

Nk

k! pln zq
k finite sum,

where k depends on the order of nilpotency of N .
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In conclusion, a Levelt form (5.3) can be always chosen so that D and L (and so S and R)
satisfy the above properties (5.5), (5.6) and (5.7), namely

Y pζq “ GpζqζDζL “ Gpζqζ∆ζN . (5.8)

This can always be achieved by a permutation matrix P , by changing a fundamental matrix
solution in Levelt form Y to another fundamental solution Y P with Levelt form having the
desired properties. In the Appendix, we will need the above choice of Levelt form.

Remark 5.1. In this section we have given the analytic construction of the “proper” Levelt
form, just starting from the analytic structure of fundamental solutions at a Fuchsian singularity.
For the geometric viewpoint, see [1].

6 Strong Isomonodromy Deformations

We define a central connection matrix C0pλq associated with Y0pz, λq in (4.9) with ν “ 0,
and with a fundamental solution Y p0qpz, λq in Levelt form (2.1) at z “ 0, by

Y0pz, λq “ Y p0qpz, λqC0pλq.

Notice that
Yνpz, λq “ Y p0qpz, λq C0 S0 ¨ ¨ ¨ Sν´1.

Definition 6.1. Let Assumption 1 hold and let system (1.1) be weakly isomonodromic in D
with holomorphic fundamental matrix solution Y hol “ Y p0q in Levelt form, so that Theorem 3.1
holds, Assumption 2 is satisfied and the essential monodromy data

Lp0q, Dp0q are constant.

If also Assumption 3 holds, system (1.1) is said to be strongly isomonodromic on D when
also the remaining essential monodromy data are constant, namely

dSν “ 0, dL “ 0, D is constant , dC0 “ 0.

Remark 6.1. For a strongly isomonodromic system, the relations (4.8), if any, are satisfied by
definition, so that the fundamental matrices Yνpz, λq are holomorphic on Rˆ D.

Theorem 6.1.
Part I. System (1.1) is strongly isomonodromic in D if and only if the fundamental matrix
solutions Y p0qpz, λq and Yνpz, λq satisfy for every ν P Z the integrable Pfaffian system (3.1) of
the specific form

dY “ ωpz, λqY, ωpz, λq “

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1

´

zEpj ` rωjpλq
¯

dλj , (6.1)
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where
rωjpλq “ ωjpλq `

BT pλq
Bλj

¨ T pλq´1,

and ωjpλq has blocks

ω
pjq
ra,aspλq “ 0, ω

pjq
ra,bspλq “

Ara,bspλq pδaj ´ δbjq

λa ´ λb
, a ‰ b “ 1, ..., s, (6.2)

while
T pλq “ T1pλq ‘ ¨ ¨ ¨ ‘ Tspλq

is a holomorphic matrix reducing to Jordan form the diagonal blocks of A as in (4.1). Strong
isomonodromy deformations with constant T are allowed. In this case,

rωjpλq “ ωjpλq.

Part II. If system (1.1) is strongly isomonodromic in D, then

BA

Bλj
“ rrωjpuq, As, j “ 1, ..., s. (6.3)

In particular,
BAr1,1s
Bλ

“
BAr2,2s
Bλ

¨ ¨ ¨ “
BArs,ss
Bλ

“ 0,

and so the block-diagonal part of A and the Jordan forms Jk in (4.1) are constant on D.

For a strong isomonodromy deformation, PART II says that Ar1,1s‘ ¨ ¨ ¨ ‘Ars,ss is constant,
so it can be reduced to Jordan form by a constant block-diagonal matrix T0. If T “ T1‘¨ ¨ ¨‘Ts
is another matrix satisfying (4.1), but not constant, then it has the structure

T pλq “ T0Bpλq, Bpλq “ B1pλq ‘ ¨ ¨ ¨ ‘Bspλq, with rBjpλq, Jjs “ 0.

The isomonodromic fundamental matrix solutions Yνpz, λq which satisfy the Pfaffian system
(6.1) have structure (4.9) with constant T “ T0 if and only if system (6.1) is of the specific
form with coefficients rωjpλq “ ωjpλq.

In other words, if a differential system
dY

dz
“

ˆ

Λ0 `
A0
z

˙

Y

is given at λ “ λ0, where Λ0 has repeated eigenvalues, then it can have different isomonodromy
deformations (6.1), differing by the specific

ř

j rωjpλqdλj , namely by the specific T pλq. For
all these deformations, the diagonal blocks are constant and equal to those of A0, but the
off-diagonal blocks of Apλq are different for different deformations, satisfying different systems
(6.3), with different4 matrix coefficients rωj depending on the choice of T pλq.

4This allows, in case n “ 3 and s “ 2, to have isomonodromy deformations with constant A, see Section 7.
For n ě 4, it is not possible to reach a constant A by a gauge transformation, see Remark 1.2.
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Two isomonodromy deformations with different T are related by a gauge transformation.
Suppose that Y satisfies (6.1) with matrices Apλq and rωjpλq “ ωjpλq ` BjT ¨ T ´1, where ωj is
in (6.2). Consider the gauge transformation

Y “ T pλqqT ´1pλq qY ,

where qT is another matrix Jordanizing the block-diagonal part of Apλq. Then, qY satisfies a
system (6.1) of the form

dqY “

«˜

Λ`
qA

z

¸

dz `
s
ÿ

j“1

´

zEpj ` qωj

¯

dλj ` dqT ¨ qT ´1

ff

qY .

where
qApλq :“ qT

`

T ´1ApλqT
˘

qT ´1, qωjpλq “ qT
`

T ´1ωjpλqT
˘

qT ´1. (6.4)

Notice that qωj is the same as in definition (6.2) with A replaced by qA (the block-diagonal parts
of A and qA are the same).

Remark 6.2. Suppose that we have a deformation with rωj “ ωj for all j. Then the dependence
of Yν on λ is

Yνpz, λq “ T pYνpz;λ2 ´ λ1, ..., λs ´ λ1q z
DzL eΛz.

Indeed, formula (6.2) implies that

s
ÿ

j“1
ωjpλq “ 0, ùñ

s
ÿ

j“1

BA

Bλj
“ 0, ùñ A “ Apλ2 ´ λ1, ..., λs ´ λ1q.

Moreover, let us write (4.9) as

Yνpz, λq “ Hνpz, λqe
Λz with Hν :“ T pYνz

DzL.

Then BHνeΛz

Bλj
“ BHν

Bλj
eΛz ` Hν ¨ zEpje

Λz. Since Yν satisfies (6.1) with rωj “ ωj , we also have
BHνeΛz

Bλj
“ pzEpj ` ωjpλqqHνe

Λz. Thus,

BHν

Bλj
“ zrEpj , Hνs ` ωjpλqHν , ùñ

s
ÿ

j“1

BHν

Bλj
“ 0,

so that Hν “ Hνpz;λ2´λ1, ..., λs´λ1q. Notice also that zDzL commutes with Epj and that in
the strong isomonodromic case dT “ dD “ dL “ 0, so that we also obtain

BpYν
Bλj

“ zrEpj ,
pYνs ` ωjpλqpYν , ùñ

s
ÿ

j“1

BpYν
Bλj

“ 0,

This concludes.

**********************
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Proof of Theorem 6.1. Let system (1.1) be strongly isomonodromic in D (Definition 6.1), so that
Y hol “ Y p0q in Levelt form is holomorphic, and by Assumption 3 all the Yν are holomorphic.
Thus, we can take differentials. We define

ωpz, λq :“ dY p0q ¨ pY p0qq´1 “
dCp0q“0

dY0 ¨ pY0q
´1 “

all dSν“0
dYν ¨ pYνq

´1, @ν P Z.

This is single valued for the counter-clockwise loop z ÞÑ ze2πi, because the monodromy e2πiLp0q

of Y p0q and the monodromy e2πiL`SνSν`1
˘´1 of Yν are constant. Its singularities may only be

located at z “ 0,8. We find the structure of ω at z “ 0 and z “ 8 respectively.

Structure at z “ 0. Let us decompose the differential as d “ dz ` dλ, the former being the
component on dz, the latter on dλ1, ..., dλs. Firstly, we compute

dzY
p0q ¨ pY p0qq´1 “ Gp0qdz pY

p0q ¨ ppY p0qq´1 `Gp0q pY p0q
Dp0q ` zD

p0q
Lz´D

p0q

z
pGp0q pY p0qq´1dz

“

ˆ

A

z
` reg1pz, λq

˙

dz, reg1pz, λq “ Op1q, z Ñ 0,

where we have used (3.9). Here, reg1pz, λq is holomorphic for z P C and λ P D. Then, we
compute

dλY
p0q ¨ pY p0qq´1 “

dDp0q“dLp0q“0
dλG

p0q ¨ pGp0qq´1 `Gp0qdλ pY
p0q ¨ ppY p0qq´1pGp0qq´1

“ dλG
p0q ¨ pGp0qq´1 ` regpz, λq, regpz, λq “ Opzq Ñ 0, z Ñ 0,

where regpz, λq is holomorphic for z P C and λ P D.

Structure at z “ 8. Firstly, we compute

dzYν ¨ Y
´1
ν “T dz pYν ¨ pY ´1

ν T ´1`

`

´

T pYν
D ` zDLz´D

z
pY ´1
ν T ´1 ` T pYν z

DzL Λ z´Lz´D pY ´1
ν T ´1

¯

dz.

Due to the block structure of D and L and diagonality of Λ, we have zDzL Λ z´Lz´D “ Λ,
while by (4.3), (4.6), (4.7) we have pD ` zDLz´Dq{z “ J{z `Opz´2q. Hence,

dzYν ¨ Y
´1
ν “

´

Λ` Ăreg
`

z´1, λ
˘

¯

dz, Ăreg
`

z´1, λ
˘

“ O

ˆ

1
z

˙

Ñ 0, z Ñ8,

being Ăregp1{z, λq analytic for z P Czt0u and λ P D. Then, we compute

dλYν ¨ Y
´1
ν “

dD“dL“0
dλT ¨ T ´1 ` T dλ pYν ¨ Y ´1

ν T ´1 ` z ¨ T pYν z
DzLdΛz´Lz´DpT pYνq

´1.

As before, from the diagonality of dΛ we receive zDzLdΛz´Lz´D “ dΛ, so that

dλYν ¨ Y
´1
ν “ dλT ¨ T ` zdΛ` T rF1, dΛsT ´1 ` xreg

`

z´1, λ
˘

,

where xreg
`

z´1, λ
˘

is a 1-form in dλ1, ..., dλn, analytic for z P Czt0u and λ P D, with behaviour

xreg
`

z´1, λ
˘

“ O

ˆ

1
z

˙

Ñ 0, z Ñ8,
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Notice that dΛ “ Ep1dλ1 ` ¨ ¨ ¨ ` Epsdλs. By Liouville theorem and the above behaviours at
z “ 0,8 we conclude that

ω “

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1

´

zEpj ` rT F1T ´1, Epj s `
BT
Bλj
T ´1

¯

dλj . (6.5)

It remains to show that rT F1pλqT ´1, Epj s equals (6.2). The computations of section 4.1 of [13],
Proposition 4,1, yield the off-diagonal blocks

F
p1q
ri,js “

Ari,js
λj ´ λi

, 1 ď i ‰ j ď s. (6.6)

They suffice to evaluate rT F1T ´1, Epj s, since the diagonal blocks do not contribute. From the
definition of A in (4.4) and (6.6) we receive

F
p1q
ri,js “

T ´1
i Ari,jsTj
λj ´ λi

ùñ pT F1T ´1qri,js “ TiF
p1q
ri,jsT

´1
j “

Ari,js
λj ´ λi

.

Using the last formula, we conclude that

rT F1pλqT ´1, Epksra,as “ 0, rT F1pλqT ´1, Epksra,bs “
Ara,bspλq pδak ´ δbkq

λa ´ λb
, a ‰ b.

It remains to show that isomonodromy deformations with constant T are possible. This
will be proved after Lemma 6.1.

‚ Conversely, we assume that all the fundamental matrices Y p0q and Yν , ν P Z, of system
(1.1) also satisfy

dY “
”

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1

´

zEpj ` rωjpλq
¯

dλj

ı

Y,

with holomorphic rωjpλq and Apλq. In particular, this means that dY p0q ¨ pY p0qq´1 and dYν ¨Y ´1
ν

depend homomorphically on λ.
Since ω has Fuchsian singularity at z “ 0, by Proposition 3.2 we know that indeed it has

holomorphic solution Y p0q in Levelt form, and5

Dp0q, Lp0q are constant.

The fact that dC0 “ dSν “ 0 is straightforward. Indeed, since all fundamental solutions
satisfy dY “ ωY , we have

dYν`1 ¨ Y
´1
ν`1 “ dYν ¨ Y

´1
ν ðñ dSν “ 0.

5This can also be seen directly by taking

dλY
p0q
¨ pY p0qq´1

“ dλpG
p0q

pY p0qq ¨ pGp0q pY p0qq´1
`

`pGp0qY p0qq
´

d∆p0q ln z ` z∆p0q
k0
ÿ

k“1

dpN p0qqk

k! pln zqk z´N
p0q
z´∆p0q

¯

pGp0qY p0qq´1.

Since ω does not contain terms in ln z, it follows that d∆p0q
“ dN p0q “ 0, so that Dp0q and Lp0q are constant.

Here, ∆p0q and N p0q are the analogous of ∆ and N in (5.5).
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dY0 ¨ Y
´1

0 “ dY p0q ¨ pY p0qq´1 ðñ dC0 “ 0.

Finally, we show that D and L are constant. Recall from Section 5 that we can write
Yν “ T pYνz

∆zN , with diagonal ∆ and nilpotent N . By assumption
s
ÿ

j“1

`

zEpj ` rωjpλq
˘

dλj “ dλYν ¨ Y
´1
ν “ dT ¨ T ´1 ` T dλ pYν ¨ pY ´1

ν T ´1`

` T pYν

´

ln z d∆` z∆
k
ÿ

k“1

dNk

k! pln zq
k z´Nz´∆

¯

pT pYνq
´1`

` z ¨ T pYνdΛpT pYνq
´1.

Since logarithmic terms cannot occur, necessarily d∆ “ dN “ 0, so that D and L are constant.
From the dominant terms at z “ 8 in the above computation we receive

rωjpλq “ rT F1T ´1, Epj s `
BT
Bλj
T ´1.

‚ PART II. Suppose the system is strongly isomonodromic. By PART I, the matrices Y p0q and
Y pνq solve a Pfaffian system dY “ ωY where ω has structure

ω “

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1

´

zEpj ` rωjpλq
¯

dλj .

We write for short

ω “
s
ÿ

α“0
ϕαpxqdx

α, px0, x1, ..., xsq :“ pz, λ1, ..., λsq.

Thus, ω is integrable, i.e. dω “ ω ^ ω, which explicitly is

Bϕβ
Bxα

` ϕβϕα “
Bϕα
Bxβ

` ϕαϕβ, α ‰ β “ 0, 1, ..., s, (6.7)

For β “ 0 and α “ j P t1, ..., su, (6.7) is

B

Bλj

ˆ

Λ` A

z

˙

`

ˆ

Λ` A

z

˙

´

zEpj ` rωjpλq
¯

“
B

Bz

´

zEpj ` rωjpλq
¯

`

´

zEpj ` rωjpλq
¯

ˆ

Λ` A

z

˙

.

Expanding, we see that the equality is true if and only if the coefficients of z´1 and z0 are
respectively equal, namely

BA

Bλj
“ rrωjpλq, As, (6.8)

rΛ, rωjpλqs “ rEpj , As. (6.9)

The equations (6.9) have general solution

“

rωjpλq
‰

block a,a arbitrary,
“

rωjpλq
‰

block a,b “
Ara,bspλq pδaj ´ δbjq

λa ´ λb
, a ‰ b “ 1, ..., s.
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Thus,
rωjpλq “ ωjpλq `Djpλq, (6.10)

where ωjpλq is (6.2), while Djpλq is an arbitrary block-diagonal matrix, which in our case must
be

Dj “
BT
Bλj

¨ T ´1.

The integrability condition (6.7) for α “ k, β “ j, with j ‰ k P t1, ..., su is

B

Bλk

´

zEpj ` rωjpλq
¯

`

´

zEpj ` rωjpλq
¯´

zEpk ` rωkpλq
¯

“ the same with j, k exchanged

This is true if and only if

rEpj , rωkpλqs “ rEpk , rωjpλqs, (6.11)

Brωjpλq

Bλk
` rωjpλqrωkpλq “

Brωkpλq

Bλj
` rωkpλqrωjpλq, 1 ď j ‰ k ď s. (6.12)

The equalities (6.11) are automatically satisfied6 by (6.10) and (6.2), while (6.12) implies the
Frobenius integrability of (6.8). Notice that the block-diagonal part of (6.12) is (see Lemma
6.2 for details)

BDjpλq
Bλk

`DjpλqDkpλq “
BDkpλq
Bλj

`DkpλqDjpλq, j, k “ 1, ..., s,

and admits in particular the holomorphic solution Dj “ BT {Bλj ¨ T ´1 for some holomorphic
T pλq “ T1pλq ‘ ¨ ¨ ¨ ‘ Tspλq, in accordance with the required structure (6.5), which necessarily
holds in case of strong isomonodromic deformations.

Let Ark,ks denote as usual a diagonal-block of A, and let Dpjq
rk,ks be a diagonal-block of Dj ,

k “ 1, ..., s. The block diagonal part of (6.8) now reduces to

BArk,ks
Bλj

“ rDpjq
rk,ks, Ark,kss, k “ 1, ..., s. (6.13)

6First, notice that each Dj commutes with Λ and each Epk , so that

rΛ, rωjpλqs “ rEpj , As, rEpj , rωkpλqs “ rEpk , rωjpλqs, 1 ď j ‰ k ď s,

are equivalent to

rΛ, ωjpλqs “ rEpj , As, rEpj , ωkpλqs “ rEpk , ωjpλqs, 1 ď j ‰ k ď s.

Then, we show that

rΛ, ωjpλqs “ rEpj , As, ùñ rEpj , ωkpλqs “ rEpk , ωjpλqs, 1 ď j ‰ k ď s.

Indeed, the rΛ, ωjpλqs “ rEpj , As imply that the matrices ωj are as in (6.2). Substituting (6.2) we obtain the
blocks

´

rEpj , ωks ´ rEpk , ωjs
¯

ra,bs
“ δjaω

pkq
ra,bs ´ ω

pkq
ra,bsδjb ´ δkaω

pjq
ra,bs ` ω

pjq
ra,bsδkb

“
Ara,bs
λa ´ λb

´

δjapδka ´ δkbq ´ δjbpδka ´ δkbq ´ δkapδja ´ δjbq ` δkbpδja ´ δjbq
¯

“ 0.
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If D “ 0, namely T is constant, the above implies constancy of the block diagonal part of A.
If T is not constant, we need the following technical Lemma, proved in the Appendix.

Lemma 6.1. Let T “ T1 ‘ ¨ ¨ ¨ ‘ Ts be a matrix yielding a Jordan form J “ J1 ‘ ¨ ¨ ¨ ‘

Js “ T ´1
´

Ar1,1s ‘ ¨ ¨ ¨ ‘ Ars,ss

¯

T , where each Jk is as in (4.2). If the deformation is strongly
isomonodromic, then

“

T ´1dT , J
‰

“ 0.

In case of strong isomonodromic deformation, we have Dj “ BT {Bλj ¨ T ´1. Using Lemma
6.1 and (6.13), we prove that Ar1,1s, . . . , Ars,ss are constant. Indeed

BArk,ks
Bλj

“ rDpjq
rk,ks, Ark,kss

“
BTk
Bλj
T ´1
k Ark,ks ´Ark,ks

BTk
Bλj
T ´1
k

“
BTk
Bλj

JkT ´1
k ´ TkJk

´

T ´1
k

BTk
Bλj

¯

T ´1
k

“
Lemma 6.1

BTk
Bλj

JkT ´1
k ´ TkT ´1

k

BTk
Bλj

JkT ´1
k “ 0.

This proves PART II.
By the constancy of the diagonal blocks of A for a strong isomonodromy deformation, it

is possible to consider deformations with T constant. Conversely, if T is constant, so that all
Dj “ 0, then (6.13) implies that all the Ark,ks are constant.

It is convenient to point out from the proof above that
“

Λ, rωj
‰

“
“

Epj , A
‰

is equivalent to

rωjpλq “ ωjpλq `Djpλq (6.14)

where ωjpλq is (6.2) and

Dj “ Dpjqr1,1s ‘ ¨ ¨ ¨ ‘D
pjq
rs,ss arbitrary block-diagonal matrix. (6.15)

It is also convenient to state the following

Lemma 6.2. Assume that the matrices rωjpλq are defined by

rΛ, rωjs “ rEpj , As, j “ 1, ..., s,

so that they have structure (6.14). Let Bj :“ B
Bλj

. The following facts hold.
a) The system

Birωj ´ Bjrωi “ rrωi, rωjs, i, j “ 1, ..., s,

is equivalent to
$

&

%

Biωj ´ Bjωi “ rωi, ωjs ` rωi,Djs ` rDj , ωis block off-diagonal,

BiDj ´ BjDi “ rDi,Djs block diagonal.
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b) Assume moreover that

dA “
“

n
ÿ

j“1
rωjpλqdλj , A

‰

, (6.16)

then
$

&

%

Birωj ´ Bjrωi ´ rrωi, rωjs “ BiDj ´ BjDi ´ rDi,Djs,

Biωj ´ Bjωi ´
´

rωi, ωjs ` rωi,Djs ` rDj , ωis
¯

“ 0;

and
dAD “ rD, ADs,

where
ADpλq :“ Ar1,1spλq ‘ ¨ ¨ ¨ ‘Ars,sspλq (6.17)

Notice that part b) above implies that if (6.16) holds, then the system Birωj´Bjrωi “ rrωi, rωjs

is equivalent to BiDj ´ BjDi “ rDi,Djs, i, j “ 1, ..., s.

Proof. a) Given any matrix rωj , we can write it as rωj “ ωj `Dj , a sum of a block off-diagonal
term ωj + block diagonal term Dj . Then

Birωj ´ Bjrωi ´ rrωi, rωjs “

“

!

Biωj ´ Bjωi
looooomooooon

p˚1˚q

´

´

rωi, ωjs ` rωi,Djs ` rDj , ωis
looooooooooooooooomooooooooooooooooon

p˚2˚q

¯)

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

p‚q

`

!

BiDj ´ BjDi ´ rDi,Djs
looooooooooooomooooooooooooon

p˚3˚q

)

Clearly, p˚1˚q is block off-diagonal and p˚3˚q is block diagonal. It is easy to see that in p˚2˚q,
also rωi,Djs ` rDj , ωis is block off-diagonal. Indeed

rωi,Djsra,as “ ω
piq
ra,asD

pjq
ra,as ´D

pjq
ra,asω

piq
ra,as “

ω
piq
ra,as

“0
0.

If the matrices rωj are defined by rΛ, rωjpλqs “ rEpj , As for j “ 1, ..., s, namely if ωj is as in (6.2),
then the whole p‚q is block off-diagonal. Indeed,

rωi, ωjsra,as “
ÿ

b‰a

pω
piq
ra,bsω

pjq
rb,as ´ ω

pjq
ra,bsω

piq
rb,asq

“
p6.2q

ÿ

b‰a

Ara,bsArb,as
pλa ´ λbqpλb ´ λaq

ppδia ´ δibqpδjb ´ δjaq ´ pδja ´ δjbqpδib ´ δiaqq “ 0.

This proves a).
b) We consider the blocks of p‚q and substitute rωk “ ωk ` Dk as in (6.14). Then, where

derivatives of the blocks ωpkq
ra,bs occur, we express the ωpkq

ra,bs in terms of A using (6.2), and then
we re-substitute BkAra,bs “ rωk `Dk, Asra,bs. After a lengthy computation we receive

p‚q “ 0.
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This proves the first part of b). The blocks of (6.16) are

BAra,bs
Bλj

“

s
ÿ

c“1

´

ω
pjq
ra,csArc,bs ´Ara,csω

pjq
rc,bs

¯

`Dpjqa Ara,bs ´Ara,bsD
pjq
b .

For a “ b, the structure (6.2) implies that
s
ÿ

c“1

´

ω
pjq
ra,csArc,as ´Ara,csω

pjq
rc,as

¯

“ 0, ùñ
BAra,as
Bλj

“ rDpjqa , Ara,ass.

We state the converse of Part II of Theorem 6.1.

Theorem 6.2. Let A and rω1, ..., rω1 satisfy the system
“

Λ, rωj
‰

“
“

Epj , A
‰

, j “ 1, ..., s, pso that rωj “ ωj `Dj as in (6.14)q; (6.18)

dA “
“

n
ÿ

j“1
rωjpλqdλj , A

‰

; (6.19)

BiDj ´ BjDi “ rDi,Djs, 1 ď i ‰ j ď s; (6.20)

Then, the following facts hold.

1. System (6.19) is Frobenius integrable.

2. The connection

ωpz, λq “

ˆ

Λ` A

z

˙

dz `
s
ÿ

j“1

´

zEpj ` rωjpλq
¯

dλj . (6.21)

with matrices (6.2), (6.14) and (6.15) is Frobenius integrable. The Pfaffian system
dY “ ωY has a fundamental matrix solution Y p0qpz, λq in Levelt form (2.1), with constant
exponents as in (3.6).

3. Assumption 3 holds and ADpλq defined in (6.17) admits constant Jordan form

T ADT ´1 “ J ” J1 ‘ ¨ ¨ ¨ ‘ Js,

where T pλq is a holomorphic invertible matrix solution of the integrable Pfaffian system

dT “ DpλqT, (6.22)

where Dpλq :“
řn
j“1Djpλqdλj. Such a T pλq can be chosen block diagonal as J .

4. If there are no partial resonances (i.e. all the blocks Ark,ks, k “ 1, ..., s, are non-resonant),
then every Yνpz, λq in (4.9) with T as in point 3. satisfies

dYν “ ωpz, λqYν ,

so that system (1.1) is strongly isomonodromic.
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Remark 6.3. We can choose the solution D “ 0 of (6.20), and in this case T at point 3. is
constant.

Remark 6.4. In the proof of Theorem 6.2, we will see that for every ν P Z there exists a
holomorphic matrix valued one-form Kνpλq such that each Yνpz, λq in (4.9), with T as at point
2., satisfies the system

dYν “ ωpz, λqYν ` YνKνpλq;

If all the blocks Ark,ks, k “ 1, ..., s are non-resonant, then we will see that Kν “ 0.

Corollary 6.1. If Λ has pairwise distinct eigenvalues, system (1.1) is strongly isomonodromic
if and only if (6.18)-(6.19) are satisfied.

Proof of Corollary 6.1. At point 3. the non-resonance condition always holds if Λ has pairwise
distinct eigenvalues λ1, ..., λn, so that Ark,ks “ Akk, k “ 1, ..., n.

Proof of Theorem 6.2.

1. A computation gives

B2A

BλiBλj
´

B2A

BλjBλi
“
p6.19q

“

Birωj ´ Bjrωi ´ rrωi, rωjs, A
‰

, 1 ď i ‰ j ď s.

From Lemma 6.2, if (6.20) holds, we receive Birωj´Bjrωi´rrωi, rωjs “ 0, which is (6.12). Therefore
BiBjA´ BjBiA “ 0, so that (6.19) is integrable.

2. Equations (6.11) are automatically satisfied by the structure of the rωj as in (6.14). In
1. we have seen that (6.12) holds. Now, (6.11)-(6.12) and (6.18)-(6.19) are the Frobenius
integrability conditions of (6.21). The last statement at point 2. is proved by Proposition 3.2.

3. By (6.20), system (6.22) is integrable and admits a holomorphic fundamental matrix
solution, call it Tpλq. Any fundamental matrix solution is T pλq “ TpλqT0, for an invertible
constant matrix T0. Take any such T pλq. Using (6.22), we receive

dpT´1ADT q “ T´1
´

dAD ` rAD,Ds
¯

T.

By Lemma 6.2, dAD ` rAD,Ds “ 0. Consequently,

dpT´1ADT q “ 0.

So, T´1ADT is constant. Therefore, there is a choice of T0 such that

T ´1pλqADpλqT pλq “ J Jordan constant.

Since AD is block diagonal, we can take a block diagonal fundamental matrix solution Tpλq “

T1pλq ‘ ¨ ¨ ¨ ‘ Tspλq. Therefore, also T0 can be taken block diagonal, and so is T pλq.
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4. Since Assumption 3 holds by point 3. and J is constant, there are fundamental matrices
Yνpz, λq as in (4.9) satisfying

dYν
dz

“

ˆ

Λ` Apλq

z

˙

Yν ,

which are holomorphic in RpCzt0,8uq ˆ D. Therefore,

ϕνpz, λq :“ dλYν ´
s
ÿ

j“1

`

zEpj ` rωj
˘

dλj Yν ,

is well defined, where dλ is the differential w.r.t. λ1, ..., λs. Using dλBz “ Bzdλ and (6.19) we
obtain

Bϕν
Bz

“

ˆ

Λ` Apλq

z

˙

ϕν `
s
ÿ

j“1

´

“

A,Epj s ` rΛ, rωj
‰

¯

dλj Yν .

By (6.18), the above reduces to

Bϕν
Bz

“

ˆ

Λ` Apλq

z

˙

ϕν .

Therefore, there is on D a holomorphic matrix 1-form Kνpλq (not necessarily invertible) such
that

ϕν “ YνKν .

We rewrite (4.9) with the specific Levelt form as in Section 5:

Yνpz, λq “ T pλqpYνpz, λqz∆zNpλqeΛz.

From point 2. (constancy of J) we know already that ∆ is constant. Nevertheless, we will
indicate d∆ in the following, also if it is zero. We compute the structure of

Kν “ Y ´1
ν dλYν ´ Y

´1
ν

s
ÿ

j“1

`

zEpj ` rωj
˘

dλj Yν .

We have
Y ´1
ν dλYν “

“ e´Λz

¨

˝z´Nz´∆pT pYνq
´1dλpT pYνqz

∆zN ` z´Nd∆ ln z zN ` z´N
k
ÿ

k“1

dNk

k! pln zq
kzN ` zdΛ

˛

‚eΛz.

Notice that dΛ “
ř

j Epjdλj , so that

eΛzKνe
´Λz “z´Nz´∆

«

pT pYνq
´1

˜

dλpT pYνq ´
ÿ

j

pzEpj ` rωjqdλj T pYν

¸ff

z∆zN

` z´N

¨

˝d∆ ln z `
k
ÿ

k“1

dNk

k! pln zq
k

˛

‚zN `
ÿ

j

zEpjdλj .
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Notice that r∆, d∆s “ 0 (also in case d∆ ‰ 0, because ∆ is diagonal), and recall that r∆,Λs “
r∆, dΛs “ 0 and rN,Λs “ rN, dΛs “ 0, so that

z∆zNeΛzKνe
´Λzz´Nz´∆ “pT pYνq

´1

˜

dλpT pYνq ´
ÿ

j

pzEpj ` rωjqdλj T pYν

¸

`

` d∆ ln z ` z∆

¨

˝

k
ÿ

k“1

dNk

k! pln zq
k

˛

‚z´∆ `
ÿ

j

zEpjdλj .

The asymptotic expansion (4.10) holds in a sector Sν of amplitude greater than π. In such a
sector, we obtain

z∆zNeΛzKνe
´Λzz´Nz´∆ “´

ÿ

j

zEpjdλj ` T ´1dT ` T ´1

˜

ÿ

j

rT F1T ´1, Epj sdλj

¸

T `

´ T ´1

˜

ÿ

j

ωjdλj

¸

T ´ T ´1DT `
ÿ

j

zEpjdλj`

` d∆ ln z ` z∆

¨

˝

k
ÿ

k“1

dNk

k! pln zq
k

˛

‚z´∆ `O

ˆ

1
z

˙

.

In the computations in the proof of Theorem 6.1 we have seen that rT F1T ´1, Epj s “ ωj . By
point 2., dT “ DpλqT . Therefore

z∆zNeΛzKνe
´Λzz´Nz´∆ “ d∆ ln z ` z∆

¨

˝

k
ÿ

k“1

dNk

k! pln zq
k

˛

‚z´∆ `O

ˆ

1
z

˙

.

The off-diagonal blocks of the r.h.s. are of order Op1{zq, because N and ∆ are block-diagonal.
The l.h.s is

epλa´λbqz z∆azNra,asK
pνq
ra,bsz

´Nrb,bsz´∆b , a ‰ b “ 1, ..., s.

Since epλa´λbqz diverges exponentially in a subsector of Sν , while the r.h.s. does not, necessarily

K
pνq
ra,bs “ 0, a ‰ b “ 1, ..., s.

The diagonal blocks are

z∆azNra,asK
pνq
ra,asz

´Nra,asz´∆a “ d∆a ln z ` z∆a

¨

˝

k
ÿ

k“1

dNk
ra,as

k! pln zqk
˛

‚z´∆a `O

ˆ

1
z

˙

.

Namely

z∆aK
pνq
ra,asz

´∆a ` z∆aprNra,as,K
pνq
ra,ass ln z ` terms in pln zqr with r ě 2qz´∆a “

“ d∆a ln z ` z∆apdNra,as ln z ` terms in pln zqr, r ě 2qz´∆a `Op1{zq.
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Figure 1: The structure of the sub-blocks Kq of Kpνq
ra,as corresponding to Nq, Dq of figure 3 and

Σq “ σqIq. They are split into sub-blocks.

Therefore, it is necessary that

z∆aK
pνq
ra,asz

´∆a “ Op1{zq. (6.23)

Recall that ∆ “ D ` Σ. Proceeding as in the Appendix, we see that Nra,as has diagonal block
structure, and correspondingly so has Kpνq

ra,as. Let for simplicity K :“ K
pνq
ra,as for a fixed a. Then

K “ K1‘ ¨ ¨ ¨ ‘K`, as in the Appendix. Since the integer diagonal entries in Dq, q “ 1, ..., ` are
an increasing sequence as in figure 3, each diagonal sub-block Kq has structure as in figure 1.

In case of no resonance in Ara,as, then Dq “ dqIq in figure 3, where dq is integer and Iq is
an identity matrix of suitable dimension. Thus, the diagonal sub-blocks of (6.23) reduce to

Kq “ Op1{zq, q “ 1, ..., `.

This implies that Kpνq
ra,as “ 0.

7 The 3-dimensional case

Let n “ 3. The isomonodromy problem of the case with no coalescences, namely Λ “

diagppλ1, λ2, λ3q, λi ‰ λj , is highly transcendental. For example, for a certain class of ma-
trices Apλq, the isomonodromy deformation equations (1.6) are equivalent to the sixth Painlevé
equation [23, 17, 27, 5, 15]. Coalescences of pairs of eigenvalues correspond to the fixed singu-
larities of the sixth Painlevé equation.

The opposite situation is the trivial case Λ “ diagpλ1, λ1, λ1q. All the fundamental matrix
solutions of system (1.1) are

Y pz, λ1q “ ezλ1zApλ1qCpλ1q, detCpλ1q ‰ 0.

The system is isomonodromic if and only if A is constant.
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The only non-trivial case we need to consider along a stratum of the coalescence locus is,
up to permutation,

dY

dz
“

¨

˝

¨

˝

λ1 0 0
0 λ2 0
0 0 λ2

˛

‚`
A

z

˛

‚Y. (7.1)

The gauge Y “ eλ2z rY and the change of variable ζ “ xz, where x :“ λ1 ´ λ2, yield

drY

dζ
“

¨

˝

¨

˝

1 0 0
0 0 0
0 0 0

˛

‚`
A

ζ

˛

‚
rY . (7.2)

Suppose that A is constant. Then the above admits fundamental matrix solutions with constant
essential monodromy data. Thus, the fundamental matrix solutions of the starting system also
have constant data, if x varies in a sufficiently small domain away from x “ 0. Therefore, the
starting system is strongly isomonodromic.

We can obtain this result also from the point of view of Theorem 6.1. Since the diagonal
blocks Ar1,1s ” A11 and Ar2,2s are always constant in the isomonodromic case, we are allowed
to consider an isomonodromic deformation with

T pλq “ T0Bpλq, Bpλq “ B1pλq ‘B2pλq, rBjpλq, Jjs “ 0, j “ 1, 2,

where T0 is constant. We can also choose Bpλq ” Bpλ1 ´ λ2q. This implies that

BT
Bλ2

“ ´
BT
Bλ1

.

Moreover

ω1 “
1

λ1 ´ λ2

¨

˝

0 A12 A13
A21 0 0
A31 0 0

˛

‚, ω2 “ ´ω1.

Since rω1 ` rω2 “ 0, the same arguments of Remark 6.2 imply that

A “ Apxq, x “ λ1 ´ λ2,

so that ωj “ ωjpxq. Therefore, the gauge Y “ eλ2z rY transforms the Pfaffian system (6.1) into

drY “

$

&

%

»

–

¨

˝

x 0 0
0 0 0
0 0 0

˛

‚`
A

z

fi

fl dz `
´

zE1 ` rω1pxq
¯

dx

,

.

-

rY , rω1pxq “ ω1pxq `
dT pxq
dx
T pxq´1,

where E1 “ diagp1, 0, 0q. Its integrability condition (6.3) reduces to

dA

dx
“

”

ω1pxq `
dT pxq
dx
T pxq´1 , A

ı

. (7.3)

Now, a suitable choice of T pxq can be made such that
”

ω1pxq `
dT pxq
dx
T pxq´1 , A

ı

“ 0. (7.4)
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This choice of T is obtained by setting A “ A0 constant, calculating by linear algebra a constant
T0 which Jordanizes Ap0q11 ‘A

p0q
r2,2s:

T ´1
0

`

A
p0q
11 ‘A

p0q
r2,2s

˘

T0 “ J1 ‘ J2,

and the general Bpxq such that rBjpxq, Jjs “ 0. The so obtained T pxq “ T0Bpxq must be
substituted into (7.4), which can be solved as a system of differential equations for the entries
of Bpxq.

Example. We consider for simplicity matrices of the form

A “

¨

˝

0 A12 A13
A21 0 A23
A31 A32 0

˛

‚.

In the isomonodromic case, A23 and A32 are constant, due to constancy of the diagonal blocks
of A. To simplify computations, we suppose that A23A32 ‰ 0, so that the block Ar2,2s is
diagonalizable, with eigenvalues ˘

?
A32A23. Thus, the general form of T pxq is

T pxq “

¨

˝

1 0 0
0 A23?

A23A32
´ A23?

A23A32
0 1 1

˛

‚

loooooooooooooooomoooooooooooooooon

“: T particular
0

¨

¨

˝

apxq 0 0
0 bpxq 0
0 0 cpxq

˛

‚

loooooooooooomoooooooooooon

Bpxq

, (7.5)

where T particular
0 is a particular choice for a constant matrix diagonalizing the block-diagonal

part of A. Equation (7.4) has solution

bpxq “ b0x
ρapxq, cpxq “ c0x

´ρapxq, b0, c0 P Czt0u, ρ :“
a

A32A23. (7.6)

With this choice of T pxq, equation (7.3) becomes

dA

dx
“ 0 ùñ A is constant. (7.7)

Notice that this introduces the integration constants A12, A13, A21, A31. If instead we choose a
constant T , namely

T “ T0 :“

¨

˝

1 0 0
0 A23?

A23A32
´ A23?

A23A32
0 1 1

˛

‚¨

¨

˝

a0 0 0
0 b0 0
0 0 c0

˛

‚ constant, (7.8)

then equation (7.3) has solution given by a non-constant Apxq. Indeed, now A must satisfy

dApxq

dx
“ rω1pxq, Apxqs ”

¨

˝

0 A32
x A13pxq

A23
x A12pxq

´A23
x A31pxq 0 0

´A32
x A21pxq 0 0

˛

‚.
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Since A23 and A32 are constant, the above is a linear system with Fuchsian singularity at x “ 0,
with general solution

A12pxq “ c1x
ρ ` c2x

´ρ, A13pxq “

c

A23
A32

pc1x
ρ ´ c2x

´ρq,

A21pxq “ c3x
ρ ` c4x

´ρ, A31pxq “ ´

c

A32
A23

pc3x
ρ ´ c4x

´ρq.

Here, c1, c2, c3, c4 are the integration constants. It is a computation to check that the above
Apxq has structure

Apxq “ T0
`

T ´1pxqA0T pxq
˘

T ´1
0 ,

as predicted by the discussion leading to (6.4), where A0 is a constant, i.e. a solution of (7.7),
T0 is (7.8) and T pxq is (7.5) with the functions (7.6).

Remark 7.1. There is a precise correspondence, that we describe below, between constant
monodromy data of (7.1) and of (7.2). We consider the case when A is constant. This can always
be achieved by a gauge transformation, as explained before. In order to simplify computations,
we further assume that A is diagonalizable and non-resonant, so that (2.1) is

Y p0qpz, λq “ Gp0qpxq
´

I `
8
ÿ

k“1
F
p0q
k pλqzk

¯

zJ
p0q
, J p0q “ diagpµ1, µ2, µ3q,

and assume that Ar2,2s is non-resonant (i.e ˘
?
A32A23 not a half integer), so that (4.5) is

YF pz, λq “ T pxq
´

I `
8
ÿ

j“1
Fjpλqz

´j
¯

zdiagp0, ρ,´ρqeΛz.

Take T pxq in (7.5), where T particular
0 “ T0 has structure (7.8) and Bpxq “ diagp1, xρ, x´ρq.

Then, dG “
ř2
j“1pωj `DjqdλjG in Theorem 3.1, reduces to

dG

dx
“

´

ω1pxq `
dT pxq
dx
T pxq´1

¯

G ”
A

x
G,

so that

Gp0qpxq “ G
p0q
0 xJ

p0q
, with constant Gp0q0 such that pGp0q0 q´1AG

p0q
0 “ J p0q.

Then, it is easy to check that the essential monodromy data of system (7.1) with the solutions
Y p0qpz, λq, YF pz, uq above and an admissible direction arg z “ τ are the same data of the system
(7.2) with admissible direction arg ζ “ τ ` argpλ1 ´ λ2q, relative to the fundamental matrix
solutions

rY p0qpζq “ G
p0q
0

´

I `
8
ÿ

k“1

rF
p0q
k ζk

¯

ζJ
p0q
, rYF pζq “ T0

´

I `
8
ÿ

j“1

rFjζ
´j
¯

ζdiagp0, ρ,´ρqeζ¨diagp1,0,0q,

where the matrices rF
p0q
k , rFj are constant.
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8 A few words on the 4-dimensional case

The 3-dimensional case is rigid, namely one can reduce to a constant A. The first non-trivial
isomonodromic deformations occur with dimension 4, and are already highly transcendental.
Apart from the trivial situation when Λ ony has one eigenvalue and A is necessarily constant,
the cases we need to consider are (up to permutation)

Case (1): Λ “ diagpλ1, λ1
loomoon

, λ2, λ3q

Case (2): Λ “ diagpλ1, λ1, λ1
loooomoooon

, λ2q

Case (3): Λ “ diagpλ1, λ1
loomoon

, λ2, λ2
loomoon

q

It can be proved analogously to the 3-dimensional case that cases (2) and (3) are rigid.
Heuristically, we can see this by the gauge transformation Y “ eλ1z rY and the change of variable
ζ “ pλ2 ´ λ1qz, which respectively yield in the two cases

drY

dζ
“

ˆ

diagp0, 0, 0, 1q ` A

ζ

˙

rY and drY

dζ
“

ˆ

diagp0, 0, 1, 1q ` A

ζ

˙

rY .

Case (1) is non-trivial. Heuristically, we understand this by the gauge transformation Y “
eλ1z rY and the change of variable ζ “ pλ3 ´ λ1qz, which yield

drY

dζ
“

ˆ

diagp0, 0, x, 1q ` A

ζ

˙

rY , x :“ λ2 ´ λ1
λ3 ´ λ1

. (8.1)

The matrix Apλq must satisfy the isomonodromy deformation equations (1.6), which we show
below to be highly transcendental.

To simplify the treatment, we consider a case when A is much simpler than the general
situation. Up to a gauge transformation, we can assume that

rωj “ ωj for all j.

In general, for every n and s, we have seen in Section 6 that for an isomonodromic system
the relations rΛ, ωjs “ rEpj , As, j “ 1, ..., s, hold. This, together with our assumption that
ω
pjq
rk,ks “ 0, @1 ď j, k ď s, yields

s
ÿ

j“1
ωj “ 0,

s
ÿ

j“1
λjω

pjq
rk,`s “ Ark,`sδk`, @1 ď k, ` ď s.

Hence, the isomonodromy deformation equations (1.6) imply
s
ÿ

j“1

BA

Bλj
“ 0,

s
ÿ

j“1
λj
BArk,`s
Bλj

“ Ark,`sAr`,`s ´Ark,ksArk,`s, @1 ď k, ` ď s. (8.2)

Successively, we assume that

Arj,js “ 0 for all j “ 1, ..., s,
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so that (8.2) becomes
s
ÿ

j“1

BA

Bλj
“ 0,

s
ÿ

j“1
λj
BArk,`s
Bλj

“ 0 @1 ď k, ` ď s. (8.3)

The above implies the functional dependence

A “ A

˜

"

λj ´ λ1
λs ´ λ1

*s´1

j“2

¸

.

In case (1), s “ 3 and n “ 4, the functional dependence reduces to

A “ Apxq, x “
λ2 ´ λ1
λ3 ´ λ1

.

The deformation equations (1.6) reduce to

dA

dx
“ rω̂2, As, (8.4)

where ω̂2 “ ω̂2pxq is

ω̂2 “

»

—

—

—

—

–

02 ω̂
p2q
r1,2s

~0

ω̂
p2q
r2,1s 0 ω̂

p2q
r2,3s

~0 T ω̂
p2q
r3,2s 0

fi

ffi

ffi

ffi

ffi

fl

,

and
~0 “

„

0
0



, ~0 T “ r0 0s, 02 :“
„

0 0
0 0



,

ω̂
p2q
r1,2s “

Ar1,2s
x

, ω̂
p2q
r2,1s “

Ar2,1s
x

, ω̂
p2q
r2,3s “

Ar2,3s
x´ 1 , ω̂

p2q
r3,2s “

Ar3,2s
x´ 1 ,

More explicitly, equations (8.4) are
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dAr1,2s
dx

“
Ar1,3sAr3,2s

1´ x ,
dAr2,1s
dx

“
Ar3,1sAr2,3s
x´ 1 ,

dAr2,3s
dx

“
Ar2,1sAr1,3s

x
,

dAr3,2s
dx

“
Ar3,1sAr1,2s

´x
,

dAr1,3s
dx

“
Ar1,2sAr2,3s
xp1´ xq ,

dAr3,1s
dx

“
Ar2,1sAr3,2s
xpx´ 1q

(8.5)

where7

Ar1,2s “

„

A13
A23



, Ar1,3s “

„

A14
A24



,

Ar2,1s “ rA31 A32s, Ar2,3s “ A34,

Ar3,1s “ rA41 A42s, Ar3,3s “ A43,

7Matrices are partitioned into the blocks inherited form Λ “ diagpλ1, λ1, λ2, λ3q “ λ1I2 ‘ λ2I1 ‘ λ3I1.
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Suppose now that A is skew-symmetric, so that we write it as

A “

¨

˚

˚

˝

0 0 φ1 φ3
0 0 φ2 φ4
0 0 0 φ5
0 0 0 0

˛

‹

‹

‚

´

¨

˚

˚

˝

0 0 φ1 φ3
0 0 φ2 φ4
0 0 0 φ5
0 0 0 0

˛

‹

‹

‚

T

.

Thus, system (8.5) becomes
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dφ1
dx

“
φ3φ5
1´ x,

dφ3
dx

“
φ1φ5

xp1´ xq ,

dφ2
dx

“
φ4φ5
1´ x,

dφ4
dx

“
φ2φ5

xp1´ xq ,

dφ5
dx

“ ´
φ1φ3 ` φ2φ4

x

If we further restrict to the simpler case φ1 “ φ2 and φ3 “ φ4, we receive the three equations
$

’

’

’

&

’

’

’

%

dφ1
dx

“
φ3φ5
1´ x,

dφ3
dx

“
φ1φ5

xp1´ xq ,

dφ5
dx

“ ´
2φ1φ3
x

.

Setting Ω1 :“ ´iφ5, Ω2 :“
?

2φ1, Ω3 :“ i
?

2φ3, the above system becomes
dΩ1
dx

“
Ω2Ω3
x

,
dΩ2
dx

“
Ω1Ω3
1´ x,

dΩ3
dx

“
Ω1Ω2

xpx´ 1q . (8.6)

This system appears in [17, 18], where it is proved to be equivalent to the sixth Painlevé
equation8 with parameters α P C, β “ γ “ 0, δ “ 1{2.

We conclude that already in the very simplified case with A skew-symmetric depending on
only three independent entries φ1, φ3, φ5, the isomonodromy problem is as transcendental as
the Painlevé equations.

9 Example: the Caustic of a Dubrovin-Frobenius manifold in a
generic case

In this section, we give an important example where the theory of non generic isomonodromy
deformations along a stratum of a coalescence locus applies. It concerns the caustic of a semisim-
ple Dubrovin-Frobenius manifolds. The result of this section is to show that our Theorems 6.1
and 6.2 are realized at generic points of the caustic.

8In classical form

d2y

dx2 “
1
2

„

1
y
`

1
y ´ 1 `

1
y ´ x

ˆ

dy

dx

˙2

´

„

1
x
`

1
x´ 1 `

1
y ´ x



dy

dx

`
ypy ´ 1qpy ´ xq
x2px´ 1q2

„

α` β
x

y2 ` γ
x´ 1
py ´ 1q2 ` δ

xpx´ 1q
py ´ xq2


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We cannot explain here the details of Dubrovin-Frobenius manifolds, introduced by B.
Dubrovin to give a geometrical formulation of 2-D topological field theories. The reader is
referred to [16, 17]. For the geometry of the caustic, we refer to [24, 31, 32] and in particular
to [28], in whose setting we will work.

In a Dubrovin-Frobenius manifoldM of dimension n, the tangent spaces TpM at each point
p PM is a Frobenius algebra with multiplication ˝, analytically depending on p. If this algebra
is semisimple9 on an open dense subset of M , the manifold is called semisimple. The subset
K ĂM where ˝ is not semisimple is called caustic. This is empty or a hypersurface [24]. A flat
metric η is defined10 on M , compatible with the product:

ηpu ˝ v,wq “ ηpu,v ˝wq, (9.1)

for any vector fields u,v,w.
At semisimple points there is a basis of idempotent vector fields π1, ..., πn, such that πi˝πj “

δijπ, which are orthogonal with respect to η. They commute, rπi, πjs “ 0, so that locally there
are coordinates u “ pu1, ..., unq such that each πj “

B
Buj

(with abuse of notation). They are
called canonical coordinates, being uniquely determined (up to permutation) as eigenvalues of a
multiplication operator E˝, where E is a preferred global Euler vector field of weight 1. This is
a field satisfying LieEpu ˝vq´LieEpuq ˝v´u ˝LieEpvq “ u ˝v (in short notation, LieE ˝ “ ˝)
and LieEpηq “ p2´ dqη, where d P C.

A sufficient condition for a point to be semisimple is that ua ‰ ub for all 1 ď a ‰ b ď n.

A Frobenius manifold is essentially characterized by a “z-deformed” connection r∇ defined
by Dubrovin [16] as follows

r∇ d
dz

v :“ Bv
Bz
` E ˝ v ´

1
z
µ̂pvq, r∇uv :“ ∇uv ` zu ˝ z, z P C˚ :“ Czt0u, (9.2)

on the vector bundle π˚TM
ˇ

ˇ

C˚ˆM ÝÑ C˚ ˆ M , where π : C˚ ˆ M ÝÑ M is the natural
projection, and u,v P pπ˚TM qpC˚ ˆ Mq. Here µ̂pvq :“ p1 ´ d{2qv ´ ∇vE, and ∇ is the
Levi-Civita connection of η.

Locally, at semisimple points where all the pu1, ..., unq are pairwise distinct, the flatness
(the zero curvature condition) of the above connection is an integrable Pfaffian system11, which
Dubrovin writes as

dY “

«

ˆ

U `
V puq

z

˙

dz `
n
ÿ

j“1

´

zEj ` Vjpuq
¯

duj

ff

Y , (9.3)

Here
U “ diagpu1, ..., unq,

9A point p P M is a semisimple if there are no nilpotent vectors v in TpM , namely no vectors such that
v˝m “ 0, for some integer m.

10We mean a symmetric non-degenerate bilinear form, non necessarily positive definite.
11It is obtained considering the connection r∇ acting on the cotangent bundle, by looking at flat coordinates rt

satisfying r∇drt “ 0. System (9.3) is the representation of r∇drt “ 0 on the basis of normalized idempotents.
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is the matrix representing E˝ both on the basis π1, ..., πn and on the normalized basis

fj :“ πj
ηj
, ηj :“

b

ηpπj , πjq, j “ 1, ..., n,

(for a chosen sign of the square root), V represents on the normalized basis the operator µ̂ and
is skew-symmetric

V T “ ´V,

Ej “ BU{Buj has all zero entries except for 1 in position pj, jq, and Vj has entries

V pjqaa puq “ 0, V
pjq
ab puq “

Vabpuq pδaj ´ δbjq

ua ´ ub
, a ‰ b “ 1, ..., n. (9.4)

The above (9.3) is a particular case of (6.1) when all eigenvalues remain pairwise distinct, and
the matrices Vj are the analogous of our ωj . The integrability of (9.3) is

BV

Buj
“ rVj , V s, j “ 1, ..., n, (9.5)

which is a particular case of the isomonodromy deformation equations (6.19). By Corollary
6.1, they are necessary and sufficient conditions for the strong isomonodromy of the differential
system

dY

dz
“

ˆ

U `
V puq

z

˙

Y . (9.6)

The local structure of the manifold can be explicitly constructed at semisimple points where
all the pu1, ..., unq are pairwise distinct, in terms of a fundamental matrix solution of (9.6) in
Levelt form at z “ 0 (see [16, 17, 18]).

In [14], we have shown that the coalescence of a pair of canonical coordinates ua´ub Ñ 0, for
some 1 ď a ‰ b ď n, corresponds to a semisimple point ofM if and only if limua´ubÑ0 Vabpuq “ 0
holomorphically.

In general, for a pair a ‰ b P t1, ..., nu, the condition Vabpuq Ñ 0 is not satisfied along
solutions of (9.5) when the corresponding ua ´ ub Ñ 0. Consequently, the entries of V puq may
have a branching at ua ´ ub “ 0, and may diverge along any direction ua ´ ub Ñ 0. Such
coalescences of canonical coordinates may not correspond to a point of the manifold. In case
they do, then the point must belong to the caustic.

Due to the singularity of V puq at coalescence points ua “ ub , the canonical coordinates are
not the good ones to describe the manifold close to the caustic. The purpose of this section is to
show that in suitable local coordinates onM the flatness of the connection (9.2) is represented by
a Pfaffian system which, restricted to the caustic, is a system of type (6.1), satisfying Theorem
6.1, where Λ has repeated eigenvalues and T is non trivial. Moreover, the above mentioned local
coordinates, restricted at the caustic, are deformation parameters for a strong isomonodromy
deformation described by our Theorems 6.1 and 6.2. This purpose is realized in Proposition 9.1
and Remark 9.4 below.

A geometric study of the caustic of a Frobenius manifold has been done in [28], under the
assumptions that on an open dense subset of K there are are n ´ 1 idempotent vector fields,

41



and the metric η is non-degenerate on K. These are the assumption we will also make here.
Such cases are realized in singularity theory, or equivalently for manifolds given by the orbit
space of Coxeter groups (see [28]).

The points of K in the above dense subset of [28] correspond to the coalescence of two
canonical coordinates. Let p P K belong to this subset and, without loss in generality, suppose
that in a sufficiently small neighbourhood B ĂM of p the caustic K is reached when

u1 ´ u2 Ñ 0.

It has been shown in [28] that theorems 2.11 and 4.7 (classification of 2-dimensional F manifolds)
of [24] allow to conclude that in a neighbourhood of p the germ of the manifold is (notations
are borrowed from and explained in [24])

pM,pq “ pI2pmq, pq ˆ pA1, pq ˆ ¨ ¨ ¨ ˆ pA1, pq
looooooooooooomooooooooooooon

n´2 times

. (9.7)

These means the following. Local coordinates

pt1, t2, u3, ..., unq (9.8)

are defined in a sufficiently small neighbourhood B Ă M of p P K, with local basis of vector
fields

B

Bt1
,

B

Bt2
looooomooooon

TpI2pmq

, π3 “
B

Bu3
, . . . , πn “

B

Bun
loooooooooooooooomoooooooooooooooon

Cn´2

,

satisfying the multiplication table
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

B

Bt1
˝
B

Bt1
“

B

Bt1
,

B

Bt1
˝
B

Bt2
“

B

Bt2
,

B

Bt2
˝
B

Bt2
“ tm´2

2
B

Bt1
,

πi ˝ πj “ δijπi,

B

Bt1
˝ πj “

B

Bt2
˝ πj “ 0

m ě 2, integer

i, j ě 3.
(9.9)

The caustic B XK around p corresponds to

t2 “ 0,

and B{Bt2 is nilpotent at B XK.
For points in BzK, the idempotents π1, ..., πn and pairwise distinct canonical coordinates

pu1, ..., unq are well defined. The Euler vector field and the unit of ˝ on BzK are

E “
n
ÿ

j“1
uj

B

Buj
, e “ π1 ` π2 ` π3 ` ¨ ¨ ¨ ` πn.

When KXB is reached, then u1´u2 Ñ 0 and the good coordinates become (9.8), which include
u3, ..., un. On the whole B, we can write [28]

E “ t1
B

Bt1
`

2
m
t2
B

Bt2
`

ÿ

jě3
uj

B

Buj
, e “

B

Bt1
` π3 ` ¨ ¨ ¨ ` πn, (9.10)
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so that B
Bt1
“ π1 ` π2 is well defined also at the caustic. Moreover, π1 ` π2, π3, ..., πn are the

n´1 idempotents defined on KXB. Notice that E˝ is diagonalizable on KXB, with a repeated
eigenvalue t1 ” u1 “ u2 and pairwise distinct eigenvalues u3, ..., un.

So far we have reviewed the local description of the manifold at a generic point of the
caustic, according to [28]. We now show that the flatness of the Dubrovin deformed connection
in the coordinates (9.8) is realized at the caustic by a strongly isomonodromic theory obeying
our Theorems 6.1 and 6.2.

Using the multiplication table (9.9), E˝ is represented on the basis

w1 :“ B

Bt1
, w2 :“ B

Bt2
, wj :“ fj “

πj
?
ηj

j ě 3,

by a matrix

U “
ˆ

pU 0
0 Un´2

˙

, (9.11)

where

pU “

¨

˚

˝

t1
2
m
tm´1
2

2
m
t2 t1

˛

‹

‚

, Un´2 “ diagpu3, . . . , unq.

In BzK, let Ψ be a matrix such that

ΨUΨ´1 “ U “ diagpu1, u2, . . . , unq,

with normalization
ΨTΨ “

´

ηpwα,wβq

¯n

α,β“1
. (9.12)

The eigenvalues u1, u2 of pU are immediately computed:
$

’

’

&

’

’

%

u1 “ t1 `
2
m
t
m{2
2

u2 “ t1 ´
2
m
t
m{2
2

ùñ

$

’

’

&

’

’

%

t1 “
u1 ` u2

2 ,

t2 “
´m

4 pu1 ´ u2q
¯2{m

.

(9.13)

Since system (9.6) represents the z component of the deformed connection (9.2) on the basis
of normalized idempotents f1, ..., fn in BzK, and U represents E˝ on the basis w1, ...,wn, then
the gauge transformation

Y “ ΨY,

gives a differential system representing the z-component of (9.2) on the basis w1, ...,wn:

dY

dz
“

ˆ

U ` V
z

˙

Y, V :“ Ψ´1VΨ (9.14)

In other words, Ψ gives the change of basis
”

B

Bt1
,
B

Bt2
, f3, . . . , fn

ı

“
“

f1, f2, f3, . . . , fn
‰

Ψ. (9.15)
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System (9.14) is expressed in the good coordinates pt1, t2, u3, ..., unq. The manifold structure is
analytic at K in these coordinates. Therefore, the coefficients of (9.14) analytically extend from
BzK to the whole B, and in particular Vpt1, t2, u3, ..., unq must be well defined and holomorphic
also at the caustic t2 “ 0.

The matrix Ψ diagonalizing U is partitioned into blocks as U :

Ψ “

ˆ

pΨ 0
0 In´2

˙

,

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pΨ “

¨

˚

˚

˝

a
?

2
t
p2´mq{4
2

a
?

2
t
pm´2q{4
2

ib
?

2
t
p2´mq{4
2 ´

ib
?

2
t
pm´2q{4
2

˛

‹

‹

‚

In´2 “ n´ 2 dimensional identity matrix

a and b functions of pt1, t2, u3, ..., unq

(9.16)

The condition (9.12) implies

a2 “ η̃12 ` t
m´2

2
2 η̃11, b2 “ η̃12 ´ t

m´2
2

2 η̃11. (9.17)

where
η̃11 :“ η

ˆ

B

Bt1
,
B

Bt1

˙

, η̃12 :“ η

ˆ

B

Bt1
,
B

Bt2

˙

, η̃22 :“ η

ˆ

B

Bt2
,
B

Bt2

˙

.

Notice that η̃11, η̃22 are well defined at t2 “ 0, because so is the metric η and the manifold
structure is analytic in the coordinates pt1, t2, u3, ..., unq.

By (9.16), U is not holomorphically diagonalizabe at t2 “ 0 for m ě 3, in accordance with
the fact that the change of coordinates pu1, u2; u3, ..., unq ÞÑ pt1, t2; u3, ..., unq is singular at
K as in (9.13). For m “ 2, U is holomorphically diagonalizabe, which is an example of the
semisimple coalescence studied in [14].

Remark 9.1. By (9.1), (9.9) and the unit e in (9.10), we receive

η̃11 “ η1 ` η2, η̃22 “ tm´2
2 η̃11. (9.18)

Let m ě 3. The above (9.18) implies that η̃22
ˇ

ˇ

t2“0 “ 0, and thus

η̃12
ˇ

ˇ

t2“0 ‰ 0,

otherwise the metric would be degenerate at t2 “ 0, which cannot be by assumption. Now
let m “ 2. In case η̃12

ˇ

ˇ

t2“0 “ 0, then η̃11
ˇ

ˇ

t2“0 “ η̃22
ˇ

ˇ

t2“0 ‰ 0, otherwise the metric would be
degenerate at t2 “ 0.

Let Vr1,1s be the 2ˆ 2 upper left block of V. A lengthy but elementary computation proves
the implication

$

&

%

V ` V T “ 0,

V “ Ψ´1VΨ and (9.17)
ùñ Vr1,1s “

iV12puq
b

η̃2
12 ´ η̃

2
11 t

m´2
2

˜

η̃12 η̃11 t
m´2
2

´η̃11 ´η̃12

¸

.
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The above matrix has eigenvalues ˘iV12puq. As already explained, Vr1,1s, η̃12, η̃11, η̃22 are well
defined at t2 “ 0, namely for u1 “ u2, as analytic functions of t1p” u1 “ u2q, u3, ..., un. Hence,
the limit for u1 ´ u2 Ñ 0 of V12puq is well defined as an analytic function of t1, u3, ..., un. Let

V̊12 :“ lim
u1´u2Ñ0

V12puq in B. (9.19)

In principle, it depends holomorphically on t1, u3, ..., un, but we will show that V̊12 is constant.
Keeping the above discussion into account, in B XK we have

Vr1,1s
ˇ

ˇ

t2“0 “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

iV̊12
a

η̃2
12

˜

η̃12 0

´η̃11 ´η̃12

¸ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

, m ě 3.

iV̊12
a

η̃2
12 ´ η̃

2
11

˜

η̃12 η̃11

´η̃11 ´η̃12

¸ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

, m “ 2.

(9.20)

Using (9.13) and the chain rule BY
Buk

“ BY
Bt1

Bt1
Buk

` BY
Bt2

Bt2
Buk

for k “ 1, 2, the duj components
(j P t1, ..., nu) of (9.3) become

BY

Bt1
“

¨

˚

˝

zΨ´1pE1 ` E2qΨ
looooooooomooooooooon

pE1`E2q

`Ψ´1pV1 ` V2qΨ´Ψ´1 BΨ
Bt1

˛

‹

‚

Y. (9.21)

BY

Bt2
“

ˆ

z t
m´2

2
2 Ψ´1pE1 ´ E2qΨ` t

m´2
2

2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ
Bt2

˙

Y, (9.22)

BY

Buj
“

´

zΨ´1EjΨ
looomooon

Ej

`Ψ´1VjΨ´Ψ´1 BΨ
Buj

¯

Y, j ě 3. (9.23)

with

z t
m´2

2
2 Ψ´1pE1 ´ E2qΨ “ z

¨

˝

0 tm´2
2

1 0
In´2

˛

‚.

By the same chain rule, it is easily seen that from the deformation equations (9.5) we receive

BV
Bt1

“

„

Ψ´1pV1 ` V2qΨ´Ψ´1 BΨ
Bt1

, V


, (9.24)

BV
Bt2

“

„

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ

Bt2
, V



, (9.25)

BV
Buj

“

„

Ψ´1VjΨ´Ψ´1 BΨ
Bt2

, V


, j ě 3. (9.26)

The Pfaffian system given by (9.14) and (9.21)-(9.23) represents the flatness of the con-
nection (9.2) in the good coordinates pt1, t2, u3, ..., unq in B. All the coefficients must be
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holomorphic at t2 “ 0 in these variables. The flatness of the connection (9.2) restricted at
B XK is then represented by (9.14), (9.21) and (9.23) restricted at t2 “ 0, namely

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

dY

dz
“

˜

U
ˇ

ˇ

t2“0 `
V
ˇ

ˇ

t2“0
z

¸

Y, U
ˇ

ˇ

t2“0 “ diagpt1, t1; u3, ..., unq,

BY

Bt1
“

˜

zpE1 ` E2q ` V2
ˇ

ˇ

t2“0 ´ Ψ´1 BΨ
Bt1

ˇ

ˇ

ˇ

ˇ

t2“0

¸

Y, V2 :“ Ψ´1pV1 ` V2qΨ,

BY

Buj
“

˜

zEj ` Vj
ˇ

ˇ

t2“0 ´ Ψ´1 BΨ
Buj

ˇ

ˇ

ˇ

ˇ

t2“0

¸

Y, j ě 3, Vj :“ Ψ´1VjΨ.

(9.27)
The deformation equation (9.24) and (9.26) become

$

’

’

’

’

’

&

’

’

’

’

’

%

BV
Bt1

“

«

V2 ´ Ψ´1 BΨ
Bt1

ˇ

ˇ

ˇ

ˇ

t2“0
, V

ff

,

BV
Buj

“

«

Vj ´ Ψ´1 BΨ
Buj

ˇ

ˇ

ˇ

ˇ

t2“0
, V

ff

, j ě 3.

(9.28)

Proposition 9.1. The Pfaffian system (9.27), representing the flatness of the Dubrovin de-
formed connection (9.2) restricted at caustic K X B, is exactly a system of type (6.1), with

s “ n´ 1, p1 “ 2, p3 “ ¨ ¨ ¨ “ pn´1 “ 1, pλ1, ..., λn´1q :“ pt1, u3, ..., unq.

and
Λ :“ diagpλ1, λ1, λ2, ..., λn´1

looooomooooon

n´2 distinct

q ” U
ˇ

ˇ

t2“0, Apλq :“ V
ˇ

ˇ

t2“0 as in (9.20).

With the above identification, system (9.28) is exactly the isomonodromy deformation equations
(6.3).

The block-diagonal matrix T pλq which reduces to Jordan form the block diagonal part Ar1,1s‘
A33 ‘ ¨ ¨ ¨ ‘Ann of Apλq is

T pλq “ T1pλq
loomoon

2ˆ2

‘ diagph2, ..., hn´1q, (9.29)

where T1pλq bringings the upper left 2 ˆ 2 block Ar1,1s to Jordan form, while the other h`,
2 ď ` ď n´ 1, are arbitrary scalar constants. In (9.27), one exactly has

´Ψ´1 BΨ
Bt1

ˇ

ˇ

ˇ

t2“0
“
BT
Bt1
T ´1, ´Ψ´1 BΨ

Buj

ˇ

ˇ

ˇ

t2“0
“
BT
Buj
T ´1, j ě 3, (9.30)

and
V2
ˇ

ˇ

t2
“ ω1, Vj

ˇ

ˇ

t2
“ ωj´1, j “ 3, ..., n.

The proof will be given after Remark 9.4. Notice that Apλq :“ V
ˇ

ˇ

t2“0 is holomorphic in
BXK, and B can be made sufficiently small so that Assumption 1 of the Introduction is satisfied.
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Remark 9.2. According to the block structure Λ “ λ1I2 ‘
`

λ2I1 ‘ ¨ ¨ ¨ ‘ λn´1I1
˘

, we have

Ep1 “ E1 ` E2, Epj “ Ej`1, 2 ď j ď n´ 1,

and the matrix A must be partitioned into the following blocks. Ar1,1s is a 2 ˆ 2 block. Let
j, k P t2, ..., n ´ 1u. Then, the Arj,1s are 1 ˆ 2 blocks; the Ar1,ks are 2 ˆ 1 blocks; the Arj,ks “
Aj`1,k`1 are matrix entries (1 dimensional blocks!). The structure (9.29) is required by this
block decomposition to fulfil Theorem 6.1.

Proposition 9.1 not only tells us that the isomonodromy deformation theory developed in
this paper applies at the caustics, but also allow us to predict properties of the caustic itself,
as in the following

Corollary 9.1. The block Vr1,1s
ˇ

ˇ

t2“0 is constant. In particular, V̊12 “ limu1´u2 V12puq defined
in (9.19) is constant, and η̃11

ˇ

ˇ

t2“0 and η̃12
ˇ

ˇ

t2“0 are constant.

Proof of Corollary 9.1. It follows from PART II of Theorem 6.1, which applies thanks to Propo-
sition 9.1, and from (9.20) .

Remark 9.3 (on the value of V̊12). Remarkably, the value of the constant V̊12 can be written
explicitly:

V̊12 “
ipm´ 2q

2m ,

(recall that m ě 2). This result was first observed in [28], and can be proved in three ways.

1) It is proved in [28] by purely geometric arguments, starting from the decomposition (9.7).

2) It is rather laborious to show analytically that the isomonodromy deformation equations
(9.5) admit a solution V puq with the property that limu2´u2Ñ0 V12puq exists finite, if and
only if this solution is such that in a neighbourhood of u1 ´ u2 “ 0

V12puq “
iσ

2 `
8
ÿ

ph,kq‰p0,0q
bhkpx3, ..., xn´1q x

h`p1´σqk
2 `

8
ÿ

ph,qq‰p0,0q
ahkpx3, ..., xn´1q x

h`p1`σqk
2 ,

where
σ P C, 0 ď <σ ă 1; xj “

uj ´ u1
un ´ u1

, j “ 2, ..., n´ 1,

and the functions ahkpx3, ..., xn´1q, bhkpx3, ..., xn´1q are analytic around p. Hence,

V̊12 “
iσ

2 is constant.

Then, using again equations (9.5) one can prove that V̊12 “ ipm ´ 2q{2m. This is more
laborious than the geometric proof of [28].
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3) Using the approach of this paper. We have seen that the coefficients of equations (9.22)
and (9.25) must be holomorphic at t2 “ 0 in the variables pt1, t2, u3, ..., unq. We prove at
the end of this Section that

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ

Bt2
,

is holomorphic at t2 “ 0 (as it must be) if and only if V̊12 “ ipm´ 2q{2m.
Remark 9.4 (On the strong isomonodromy at the caustic). From Remark 9.3 it follows
that 0 ď <pV̊12q ă 1{2. Thus, Vr1,1s

ˇ

ˇ

t2“0 is non resonant, so that by Theorem 6.2 system (9.28)
is a necessary and sufficient condition for strong isomonodromy. Therefore, likewise the case of
semisimple points, also at the generic points of the caustic here considered, the Dubrovin flat
connection is realized by a strongly isomonodromic system.

Proof of Proposition 9.1. The zpE1 ` E2q and zEj terms in (9.27) correctly display Ep1 “

E1 ` E2 and Epj “ Ej`1, 2 ď j ď n´ 1.

‚ First, we show that the matrices Vj , j “ 2, ..., n, in (9.27) are

V2
ˇ

ˇ

t2“0 “ ω1pλq, Vj
ˇ

ˇ

t2“0 “ ωj´1pλq, j “ 3, ..., n.

with the structure (6.2). We start by computing V2 in B.

V2 “ Ψ´1pV1 ` V2qΨ “ Ψ´1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨
V1k

u1´uk
¨ ¨ ¨

0 0 ¨ ¨ ¨
V2k

u2´uk
¨ ¨ ¨

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Vk1
u1´uk

Vk2
u2´uk

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ψ

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0
0 0

pΨ´1

»

—

—

–

¨ ¨ ¨
V1k

u1 ´ uk
¨ ¨ ¨

¨ ¨ ¨
V2k

u2 ´ uk
¨ ¨ ¨

fi

ffi

ffi

fl

»

—

—

—

—

—

–

...
...

Vk1
u1 ´ uk

Vk2
u2 ´ uk

...
...

fi

ffi

ffi

ffi

ffi

ffi

fl

pΨ
0 ¨ ¨ ¨ 0 . . . 0
0 ¨ ¨ ¨ 0 . . . 0
0 ¨ ¨ ¨ 0 . . . 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

We want to take the limit for t2 Ñ 0, namely for u1 ´ u2 Ñ 0. We use (from (9.13) and
V “ ΨVΨ´1) the relations

u1 ´ u2 “
4
m
t
m{2
2 ,

$

’

’

’

&

’

’

’

%

V1k “
a
?

2

ˆ

t
2´m

4
2 V1k ` t

m´2
4

2 V2k

˙

V2k “
ib
?

2

ˆ

t
2´m

4
2 V1k ´ t

m´2
4

2 V2k

˙

k “ 3, ..., n,
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and receive

pΨ´1

»

—

—

–

¨ ¨ ¨
V1k

u1 ´ uk
¨ ¨ ¨

¨ ¨ ¨
V2k

u2 ´ uk
¨ ¨ ¨

fi

ffi

ffi

fl

“

¨

˚

˚

˚

˝

¨ ¨ ¨
V1k
2

u1 ` u2 ´ 2uk
pu1 ´ ukqpu2 ´ ukq

´
2 tm´1

2
mpu1 ´ ukqpu2 ´ ukq

V2k ¨ ¨ ¨

¨ ¨ ¨
V2k
2

u1 ` u2 ´ 2uk
pu1 ´ ukqpu2 ´ ukq

´
2 t2

mpu1 ´ ukqpu2 ´ ukq
V1k ¨ ¨ ¨

˛

‹

‹

‹

‚

ÝÑ
t2Ñ0, u1´u2Ñ0

¨

˚

˚

˚

˝

¨ ¨ ¨
V1k

ˇ

ˇ

t2“0
u1 ´ uk

¨ ¨ ¨

¨ ¨ ¨
V2k

ˇ

ˇ

t2“0
u1 ´ uk

¨ ¨ ¨

˛

‹

‹

‹

‚

”

¨

˚

˚

˝

¨ ¨ ¨
A1k

λ1 ´ λk´1
¨ ¨ ¨

¨ ¨ ¨
A2k

λ1 ´ λk´1
¨ ¨ ¨

˛

‹

‹

‚

, @ m ě 2.

In the last step we have used t1 “ u1 “ u2 at the caustic, the definition λ1 :“ t1, λk´1 :“ uk,
k “ 3, ..., n, and Apλq :“ V

ˇ

ˇ

t2“0. Successively, we use

$

’

’

’

&

’

’

’

%

Vk1 “
1

?
2 a

ˆ

t
2´m

4
2 Vk2 ` t

m´2
4

2 Vk1

˙

Vk2 “
i

?
2 b

ˆ

t
2´m

4
2 Vk2 ´ t

m´2
4

2 Vk1

˙

k “ 3, ..., n,

and find
»

—

—

—

—

—

–

...
...

Vk1
u1 ´ uk

Vk2
u2 ´ uk

...
...

fi

ffi

ffi

ffi

ffi

ffi

fl

pΨ “

“

¨

˚

˚

˚

˚

˚

˚

˝

...
...

Vk1
2

u1 ` u2 ´ 2uk
pu1 ´ ukqpu2 ´ ukq

´
2 t2 Vk2

mpu1 ´ ukqpu2 ´ ukq

Vk2
2

u1 ` u2 ´ 2uk
pu1 ´ ukqpu2 ´ ukq

´
2 tm´1

2 Vk1
mpu1 ´ ukqpu2 ´ ukq

...
...

˛

‹

‹

‹

‹

‹

‹

‚

ÝÑ
t2Ñ0, u1´u2Ñ0

¨

˚

˚

˚

˚

˚

˚

˝

...
...

Vk1
ˇ

ˇ

t2“0
u1 ´ uk

Vk2
ˇ

ˇ

t2“0
u1 ´ uk

...
...

˛

‹

‹

‹

‹

‹

‹

‚

”

¨

˚

˚

˚

˚

˚

˚

˝

...
...

Ak1
λ1 ´ λk´1

Ak2
λ1 ´ λk´1

...
...

˛

‹

‹

‹

‹

‹

‹

‚

, @ m ě 2.

Notice that the above computations confirm that V2 is holomorphic in a neighbourhood of
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t2 “ 0. In conclusion, we have found that

V2
ˇ

ˇ

t2“0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨
A1k

λ1 ´ λk´1
¨ ¨ ¨

0 0 ¨ ¨ ¨
A2k

λ1 ´ λk´1
¨ ¨ ¨

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Ak1
λ1 ´ λk´1

Ak2
λ1 ´ λk´1

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

The above is the correct form ω1pλq, corresponding to the left upper block diagpt1, t1q “ t1I2 ”

λ1I2 of Λ “ U
ˇ

ˇ

t2“0. Analogous computations confirm that the Vj are holomorphic in a neigh-
bourhood of t2 “ 0 and

Vj
ˇ

ˇ

t2“0 “

˜

Vrs
ˇ

ˇ

t2“0pδrj ´ δsjq

ur ´ us

¸n

r,s“1

“

ˆ

Arspλq pδr´1,j´1 ´ δs´1,j´1q

λr´1 ´ λs´1

˙n

r,s“1
, j ě 3.

which is the correct form of ωj´1pλq corresponding to the other 1-dimensional diagonal blocks
of Λ “ U

ˇ

ˇ

t2“0.
‚ Next, we check if in (9.27) the correct term BT pλq

Bλj
¨ T pλq´1 appears, namely we prove the

equalities (9.30), with T pλq ” T pt1, u3, ..., unq having structure (9.29). Observe that in B

Ψ´1 BΨ
Bt1

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

pΨ´1 B
pΨ
Bt1

0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0

...
...

0 0 0
...

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, Ψ´1 BΨ
Buj

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

pΨ´1 B
pΨ
Buj

0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0

...
...

0 0 0
...

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

, j ě 3, (9.31)

The h` are a priori arbitrary functions, because they reduce the 1-dimensional blocks Ar`,`s ”
V``1,``1

ˇ

ˇ

t2“0 to “diagonal form”! Corresponding to the 0 block in (9.31), equations (9.30) are
satisfied if the h` are non-zero arbitrary constants. T1 must reduce the block Ar1,1s “ Vr1,1s

ˇ

ˇ

t2“0
in (9.20) to Jordan (diagonal, in our case) form. Thus, we have to solve for T1 the system

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

BT1
Bt1
T ´1

1 “ ´pΨ´1 B
pΨ
Bt1

ˇ

ˇ

ˇ

t2“0

BT1
Buj
T ´1

1 “ ´pΨ´1 B
pΨ
Buj

ˇ

ˇ

ˇ

t2“0
, j ě 3,

T ´1
1 Vr1,1s

ˇ

ˇ

t2“0T1 “

ˆ

iV̊12 0
0 ´iV̊12

˙

“constraint”.

(9.32)
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The "known terms" pΨ´1 BpΨ
Bt1

ˇ

ˇ

t2“0, pΨ
´1 BpΨ
Buj

ˇ

ˇ

t2“0 in (9.32) all have the same structure. Indeed, let
ξ be one of the variables t1, u3, ..., un. Then, the corresponding "known term” is the value at
t2 “ 0 of

pΨ´1 B
pΨ
Bξ

“
p9.16q

1
2pη̃2

12 ´ t
m´2
2 η̃2

11q

¨

˚

˚

˝

η̃12
Bη̃12
Bξ

´ η̃11
Bη̃11
Bξ

tm´2
2 tm´2

2

ˆ

η̃12
Bη̃11
Bξ

´ η̃11
Bη̃12
Bξ

˙

η̃12
Bη̃11
Bξ

´ η̃11
Bη̃12
Bξ

η̃12
Bη̃12
Bξ

´ η̃11
Bη̃11
Bξ

tm´2
2

˛

‹

‹

‚

.

(9.33)
This is analytic in variables pt1, t2, u3, ..., unq in a neighbourhood of t2 “ 0.

Case m ě 3. In this case η̃12 ‰ 0 (see Remark 9.1), so that

pΨ´1 B
pΨ
Bξ

ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

“
1
2

¨

˚

˚

˝

1
η̃12

Bη̃12
Bξ

0
ˆ

1
η̃12

Bη̃11
Bξ

´
η̃11
η̃2

12

Bη̃12
Bξ

˙

1
η̃12

Bη̃12
Bξ

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

.

The general solution of (9.32) is then

T1 “

¨

˚

˚

˝

c1
?
η̃12

0

´
c1
2
η̃11

η̃
3{2
12

c2
?
η̃12

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

, c1, c2 P Czt0u. (9.34)

Case m “ 2. By Remark 9.3, Vr1,1s
ˇ

ˇ

t2“0 “ 0, so that we can take any solution of BT1
Bξ T

´1
1 “

´ pΨ´1 BpΨ
Bξ

ˇ

ˇ

ˇ

t2“0
. The general solution is, for an arbitrary constant invertible matrix C,

T1pt1, u3, ..., unq “ pΨ´1pt1, 0, u3, ..., unq C

“
p9.16q, p9.17q

1
?

2

¨

˚

˚

˝

1
?
η̃12 ` η̃11

´i
?
η̃12 ´ η̃11

1
?
η̃12 ` η̃11

i
?
η̃12 ´ η̃11

˛

‹

‹

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t2“0

¨ C.

Notice that if hypothetically V̊12 ‰ 0, then the choice of T1 which diagonalizes Vr1,1s
ˇ

ˇ

t2“0 in
(9.20) for m “ 2 is

C “

ˆ

α ˘iβ
˘iα β

˙

ùñ T1 ¨ V´1
r1,1s

ˇ

ˇ

t2“0 ¨ T1 “ diagp˘iV̊12, ¯ iV̊12q.

Proof of point 3) of Remark 9.3. The coefficients of equations (9.22) and (9.25) are holomor-
phic at t2 “ 0 in variables pt1, t2, u3, ..., unq if and only if so is the term

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ

Bt2
.
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We have

Ψ´1pV1 ´ V2qΨ “ Ψ´1

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 ´2V12
u2´u1

¨ ¨ ¨
V1k

u1´uk
¨ ¨ ¨

2V21
u1´u2

0 ¨ ¨ ¨
´V2k
u2´uk

¨ ¨ ¨

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Vk1
u1´uk

´Vk2
u2´uk

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Ψ

The analogous computations of the proof of Proposition 9.1 lead to

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ „

t2Ñ0

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Op1{t2q Optm´3
2 q ¨ ¨ ¨

A1k
λ1 ´ λk´1

¨ ¨ ¨

Op1{t2q Op1{t2q ¨ ¨ ¨
´A2k

λ1 ´ λk´1
¨ ¨ ¨

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Ak1
λ1 ´ λk´1

´Ak2
λ1 ´ λk´1

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

On the other hand, using (9.16) and (9.17) one finds

Ψ´1 BΨ
Bt2

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

pΨ´1 B
pΨ
Bt2

0 ¨ ¨ ¨ 0
0 ¨ ¨ ¨ 0

...
...

0 0 0
...

...

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

„
t2Ñ0

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Op1{t2q Optm´3
2 q ¨ ¨ ¨ 0 ¨ ¨ ¨

Op1{t2q Op1{t2q ¨ ¨ ¨ 0 ¨ ¨ ¨
...

... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0
...

... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

All The O terms are explicitly computed in terms of η̃11, η̃12, V12. From this, one sees that in

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ

Bt2
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the divergences holomorphically cancel if and only if V̊12 “ ipm´ 2q{2m, and in this case

t
m´2

2
2 Ψ´1pV1 ´ V2qΨ´Ψ´1 BΨ

Bt2

ˇ

ˇ

ˇ

ˇ

t2“0
“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 ¨ ¨ ¨
A1k

λ1 ´ λk´1
¨ ¨ ¨

0 0 ¨ ¨ ¨
´A2k

λ1 ´ λk´1
¨ ¨ ¨

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

Ak1
λ1 ´ λk´1

´Ak2
λ1 ´ λk´1

0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

...
... 0 ¨ ¨ ¨ 0 ¨ ¨ ¨ 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

In conclusion, Proposition 9.1 shows that the isomonodromy deformation theory devel-
oped in this paper, summarized in Theorems 6.1 and 6.2, applies to the caustic of a Dubrovin-
Frobenius manifold of the class studied in [28]. The representation of the Dubrovin flat connec-
tion on the basis B{Bt1, B{Bt2, π3, ..., πn, and restricted to the caustic, is exactly a Pfaffian system
of type (6.1), and the z-component is strongly isomonodromic (Remark 9.4). Moreover, the
isomonodromy deformation theory developed in this paper allows us to predict some properties
at the caustic, as Corollary 9.1 and Remark 9.3.

10 Appendix. Proof of Lemma 6.1

We consider the Jordan form J “ J1 ‘ ¨ ¨ ¨ ‘ Js of Ar1,1s ‘ ¨ ¨ ¨ ‘ Ars,ss and the corresponding
L “ L1 ‘ ¨ ¨ ¨ ‘ Ls. We prove that if the deformation is strongly isomonodromic, then

”

T ´1
k

BTk
Bλj

, Lk

ı

“

”

T ´1
k

BTk
Bλj

, Jk

ı

“ 0, @k “ 1, ..., s.

For a strong isomonodromy deformation, J and R, and equivalently D and L, are constant.
The factor zDzL in each

Yνpz, λq “ T pλqpYνpz, λqzDzLezΛ

corresponds to a fundamental solution in Levelt form for the system (4.1) of [13], which has a
Fuchsian singularity in z “ 8. Up to a permutation, we can always assume that the matrices
Yνpz, λq are taken so that zDzL satisfies the properties of Section 5 (to which we refer for
notations).12 Therefore, following Section 5, we can write

Yνpz, λq “ T pλqpYνpz, λq zD`ΣzNezΛ.

Step 1. First, we show that

rT pλq´1dT pλq, D ` Σs “ 0, (10.1)
12One can take a permutation matrix P , which does not change Λ because it permutes indexes inside the same

block, which yields T P pP´1
pYνP qz

P´1DP zP
´1LP ezΛ with the desired properties of Section 5.
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and
rT pλq´1dT pλq, N s “ 0. (10.2)

In order to prove (10.1)-(10.2), recall (4.9)-(4.10) and let

Yνpz, λq :“ Yνpz, λqT pλq´1, Dpλq :“ T pλqpD ` ΣqT pλq´1

pYνpz, λq :“ T pλqpYνpz, λqT pλq´1, Npλq :“ T pλqNT pλq´1

Then, we have

Yνpz, λq “ pYνpz, λq zDpλqzNpλqezΛ T pλq “ Yνpz, λq T pλq,

pYνpz, λq „ I `
8
ÿ

j“1
T pλqFjpλqT pλq´1 z´j , z Ñ8 in Sν .

Let dλ be the differential w.r.t. λ1, ..., λs. From (6.5),

s
ÿ

j“1

´

zEpj ` ωjpλq
¯

dλj ` dT ¨ T ´1 “ dλYνpz, λq ¨ Yνpz, λq
´1

The right hand-side is

dλYν ¨ Y´1
ν ` Yν dT ¨ T ´1Y´1

ν “

“ dλ pYν ¨ pY´1
ν ` pYν

8
ÿ

m“1

dpDmq

m! pln zqm z´D pY´1
ν ` pYνzD

k
ÿ

k“1

dpNkq

k! pln zqk z´Nz´D pY´1
ν `

`z pYνzDzNdΛz´Nz´D pY´1
ν ` pYνzDzNeΛzdT ¨ T ´1e´Λzz´Nz´D pY´1

ν

“ dλ pYν ¨ pY´1
ν

looooomooooon

Op1{zq

` pYν
8
ÿ

m“1

dpDmq

m! pln zqm z´D pY´1
ν ` pYνzD

k
ÿ

k“1

dpNkq

k! pln zqk z´Nz´D pY´1
ν `

`z pYνdΛ pY´1
ν ` pYνzDzNdT ¨ T ´1z´Nz´D pY´1

ν .

(10.3)

In the last step, we have used the fact that eΛz commutes with dT ¨ T ´1, D and N, due to the
block structure. The absence of logarithmic singularities in

řs
j“1pzEpj ` ωjpλqqdλj ` dT ¨ T ´1

requires that

dD “ d
´

T pλqpD ` ΣqT pλq´1
¯

“ 0, dN “ d
´

T pλqNT pλq´1
¯

“ 0 (10.4)

Since dpD ` Σq “ dN “ 0 for the strong isomonodromy deformation, the above conditions are
satisfied if and only if (10.1) and (10.2) respectively hold. In this way, also the last term in
(10.3), namely

pYνzDzNdT ¨ T ´1z´Nz´D pY´1
ν ” pYνzD`ΣzNT ´1dT z´Nz´D´Σ

pY´1
ν ,
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=<latexit sha1_base64="zk2dYsghTbH704BRSKjnE9LzMbQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBPKCZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38/99hMqzWPZMJME/YgOJQ85o8ZK9bt+seSW3QXIOvEyUoIMtX7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhrT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatypX5dqjayOPJwBudwCR7cQBUeoAZNYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5OFjNc=</latexit>

Lk<latexit sha1_base64="Xekil6+ETYrXGFdzgTgu5dAeuvw=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzYWFhEzBckR9jb7CVL9vaO3TkhHPkJNhaK2PqL7Pw3bpIrNPHBwOO9GWbmBYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Hbmt5+4NiJWDZwk3I/oUIlQMIpWerzvj/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/NT52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7QheMsvr5JWteJdVqoPV+VaI4+jAKdwBhfgwTXU4A7q0AQGQ3iGV3hzpPPivDsfi9Y1J585gT9wPn8AJ0iNxA==</latexit>

Lk
<latexit sha1_base64="Xekil6+ETYrXGFdzgTgu5dAeuvw=">AAAB6nicbVA9SwNBEJ3zM8avqKXNYhCswl0UtAzYWFhEzBckR9jb7CVL9vaO3TkhHPkJNhaK2PqL7Pw3bpIrNPHBwOO9GWbmBYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOwE1XArFmyhQ8k6iOY0CydvB+Hbmt5+4NiJWDZwk3I/oUIlQMIpWerzvj/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/NT52Sc6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjjZ0IlKXLFFovCVBKMyexvMhCaM5QTSyjTwt5K2IhqytCmU7QheMsvr5JWteJdVqoPV+VaI4+jAKdwBhfgwTXU4A7q0AQGQ3iGV3hzpPPivDsfi9Y1J585gT9wPn8AJ0iNxA==</latexit>

=<latexit sha1_base64="zk2dYsghTbH704BRSKjnE9LzMbQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBPKCZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38/99hMqzWPZMJME/YgOJQ85o8ZK9bt+seSW3QXIOvEyUoIMtX7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhrT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatypX5dqjayOPJwBudwCR7cQBUeoAZNYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5OFjNc=</latexit>

= ⌃ + N
<latexit sha1_base64="iBWrdOO6uLQ1UlT/nkCEU30Wv1g=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRZBEMpuFfQiFLx4kor9knYp2TTbhibZJckKZemv8OJBEa/+HG/+G9N2D9r6YODx3gwz84KYM21c99vJrayurW/kNwtb2zu7e8X9g6aOEkVog0Q8Uu0Aa8qZpA3DDKftWFEsAk5bwehm6reeqNIsknUzjqkv8ECykBFsrPR43X1gA4HP7nrFklt2Z0DLxMtICTLUesWvbj8iiaDSEI617nhubPwUK8MIp5NCN9E0xmSEB7RjqcSCaj+dHTxBJ1bpozBStqRBM/X3RIqF1mMR2E6BzVAvelPxP6+TmPDKT5mME0MlmS8KE45MhKbfoz5TlBg+tgQTxeytiAyxwsTYjAo2BG/x5WXSrJS983Ll/qJUrWdx5OEIjuEUPLiEKtxCDRpAQMAzvMKbo5wX5935mLfmnGzmEP7A+fwB+3uP7Q==</latexit> ⌃k

<latexit sha1_base64="WjEidk0Y1wI/PbT0yOliaL0zFvw=">AAAB73icbVBNSwMxEJ34WetX1aOXYBE8ld0q6LHgxWPFfkG7lGyabUOT7JpkhbL0T3jxoIhX/443/41puwdtfTDweG+GmXlhIrixnveN1tY3Nre2CzvF3b39g8PS0XHLxKmmrEljEetOSAwTXLGm5VawTqIZkaFg7XB8O/PbT0wbHquGnSQskGSoeMQpsU7q9B74UJL+uF8qexVvDrxK/JyUIUe9X/rqDWKaSqYsFcSYru8lNsiItpwKNi32UsMSQsdkyLqOKiKZCbL5vVN87pQBjmLtSlk8V39PZEQaM5Gh65TEjsyyNxP/87qpjW6CjKsktUzRxaIoFdjGePY8HnDNqBUTRwjV3N2K6YhoQq2LqOhC8JdfXiWtasW/rFTvr8q1Rh5HAU7hDC7Ah2uowR3UoQkUBDzDK7yhR/SC3tHHonUN5TMn8Afo8wfzJY/3</latexit>

=<latexit sha1_base64="zk2dYsghTbH704BRSKjnE9LzMbQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBPKCZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38/99hMqzWPZMJME/YgOJQ85o8ZK9bt+seSW3QXIOvEyUoIMtX7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhrT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatypX5dqjayOPJwBudwCR7cQBUeoAZNYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5OFjNc=</latexit>

=<latexit sha1_base64="zk2dYsghTbH704BRSKjnE9LzMbQ=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQS9CwIvHBPKCZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3sbm1vZPfLeztHxweFY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38/99hMqzWPZMJME/YgOJQ85o8ZK9bt+seSW3QXIOvEyUoIMtX7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhrT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatypX5dqjayOPJwBudwCR7cQBUeoAZNYIDwDK/w5jw6L86787FszTnZzCn8gfP5A5OFjNc=</latexit> Nk
<latexit sha1_base64="LBJofz+8cOQsH5uxvBRP5g+SJh4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeCF09SoV/QhrLZTtulu5uwuxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSS4sa777RQ2Nre2d4q7pb39g8Oj8vFJ24SxZthioQh1N6AGBVfYstwK7EYaqQwEdoLpXeZ3nlAbHqqmnUXoSzpWfMQZtZn0MJiWBuWKW3UXIOvEy0kFcjQG5a/+MGSxRGWZoMb0PDeyfkK15UzgvNSPDUaUTekYeylVVKLxk8Wtc3KRKkMyCnVaypKF+nsiodKYmQzSTkntxKx6mfif14vt6NZPuIpii4otF41iQWxIssfJkGtkVsxSQpnm6a2ETaimzKbxZCF4qy+vk3at6l1Va4/XlXozj6MIZ3AOl+DBDdThHhrQAgYTeIZXeHOk8+K8Ox/L1oKTz5zCHzifP198jdo=</latexit>

= ⌃k + Nk
<latexit sha1_base64="wL6lrGENbX50L4QJsg7Xfg4xOIM=">AAAB9HicbVBNS8NAEJ34WetX1aOXxSIIQkmqoBeh4MWTVOwXtCFstpt2yW4SdzeFEvo7vHhQxKs/xpv/xm2bg7Y+GHi8N8PMPD/hTGnb/rZWVtfWNzYLW8Xtnd29/dLBYUvFqSS0SWIey46PFeUsok3NNKedRFIsfE7bfng79dsjKhWLo4YeJ9QVeBCxgBGsjeTe9B7ZQGAvPL/3Qq9Utiv2DGiZODkpQ466V/rq9WOSChppwrFSXcdOtJthqRnhdFLspYommIR4QLuGRlhQ5Wazoyfo1Ch9FMTSVKTRTP09kWGh1Fj4plNgPVSL3lT8z+umOrh2MxYlqaYRmS8KUo50jKYJoD6TlGg+NgQTycytiAyxxESbnIomBGfx5WXSqlaci0r14bJca+RxFOAYTuAMHLiCGtxBHZpA4Ame4RXerJH1Yr1bH/PWFSufOYI/sD5/AALjkak=</latexit>

Figure 2: Structure of the blocks Lk of L. Here, Σk is diagonal and Nk is nilpotent

does not contain logarithmic singularities when (10.1)-(10.2) hold, because it reduces to

pYνdT ¨ T ´1
pY´1
ν “ dT ¨ T ´1 `Op1{zq.

Notice that the above behaviour is in agreement with
řs
j“1pzEpj ` ωjpλqqdλj ` dT ¨ T ´1.

Notice that if J is diagonal, T pλqpD ` ΣqT pλq´1 “ T pλq J T pλq´1 in the first equation in
(10.4)

Step 2. The relations (10.1)-(10.2) can be written for the individual blocks inherited from
L “ L1 ‘ ¨ ¨ ¨ ‘ Ls and T “ T1 ‘ ¨ ¨ ¨ ‘ Ts. It suffices to consider a single block with label k.

As already explained, up to a Yν ÞÝÑ YνP given by a suitable permutation matrix P , we
assume that for each block Lk, k “ 1, ..., s, the Levelt structure explained in Section 5 applies.
See figure 2.

We consider the problem at the level of a single block with label k. In order to avoid a
proliferation of indices, from now on J , L, R, S, D, Σ and N will respectively stand for Jk,
Lk, Rk, Sk, Dk, Σk and Nk. We will take the label k only for Tk, in order not to confuse it
with the full T . To them, the structures of Section 5 apply. Now, we have L “ L1 ‘ ¨ ¨ ¨ ‘ L`
for some `, and

Σ “ σ1I1 ‘ ¨ ¨ ¨ ‘ σ`I`,

with eigenvalues σq (with real part in r0, 1q). Hence, since D is diagonal, (10.1) for the block k
of T ´1dT gives

rT ´1
k dTk,D ` Σs “ 0 ùñ Tk “ T

pkq
1 ‘ ¨ ¨ ¨ ‘ T pkq` .

Now, D “ D1 ‘ ¨ ¨ ¨ ‘D`, and N “ N1 ‘ ¨ ¨ ¨ ‘N`. Notice that

rpT pkqq q´1dT pkqq ,Dq ` Σqs “ 0. (10.5)

EachNq (q “ 1, ..., `) is upper triangular, it has zeros on the diagonal, and its diagonal blocks are
elementary Jordan sub-blocks with 1’s on the second upper diagonal, as in figure 3. Accordingly,
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dq,1
<latexit sha1_base64="FGLt2BbC8fCjDuLEHRQtFiSh3mM=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WBPFYwX5Au5RsNtuGZpNtkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aWqSK0QSSXqh1gTTkTtGGY4bSdKIrjgNNWMLzJ/dYjVZpJ8WDGCfVj3BcsYgQbK7XDXjY69ybFXqnsVtwp0DLx5qQMc9R7pa9uKEkaU2EIx1p3PDcxfoaVYYTTSbGbappgMsR92rFU4JhqP5veO0GnVglRJJUtYdBU/T2R4VjrcRzYzhibgV70cvE/r5Oa6NrPmEhSQwWZLYpSjoxE+fMoZIoSw8eWYKKYvRWRAVaYGBtRHoK3+PIyaVYr3kWlen9Zrt0+zeIowDGcwBl4cAU1uIM6NIAAh2d4hTdn5Lw4787HrHXFmUd4BH/gfP4ATNyP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,4
<latexit sha1_base64="6kmDRf0gmlUkxBYhCq2D05JwQlU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qjEvDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHyrUj2Y=</latexit>

dq,4
<latexit sha1_base64="6kmDRf0gmlUkxBYhCq2D05JwQlU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qjEvDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHyrUj2Y=</latexit>

The same integer
<latexit sha1_base64="6w65KQqxqxUhOKIAjgoSWFttL6w=">AAAB/HicbVA9SwNBEJ3zM8avaEqbxSBYhbtYaBnQwjJCviA5wt5mkizZ2zt294QjxL9iY6GIrT/Ezn/jXnKFJj4YeLw3w8y8IBZcG9f9djY2t7Z3dgt7xf2Dw6Pj0slpW0eJYthikYhUN6AaBZfYMtwI7MYKaRgI7ATT28zvPKLSPJJNk8boh3Qs+Ygzaqw0KJWbEySahki4NDhGRUhxUKq4VXcBsk68nFQgR2NQ+uoPI5aEKA0TVOue58bGn1FlOBM4L/YTjTFlUzrGnqXSrtP+bHH8nFxYZUhGkbIlDVmovydmNNQ6DQPbGVIz0ateJv7n9RIzuvFnXMaJQcmWi0aJICYiWRJkyBUyI1JLKFPc3krYhCrKjM0rC8FbfXmdtGtV76pae6hV6nd5HAU4g3O4BA+uoQ730IAWMEjhGV7hzXlyXpx352PZuuHkM2X4A+fzB/gek6w=</latexit>

in a sub-block
<latexit sha1_base64="eaJhy17mynh+4oFjNCbZGO4dD60=">AAAB9XicbVDLSgNBEOz1GeMr6tHLYBC8GHbjQY8BPXiMYB6QrGF2MpsMmccyM6uEJf/hxYMiXv0Xb/6Nk2QPmljQUFR1090VJZwZ6/vf3srq2vrGZmGruL2zu7dfOjhsGpVqQhtEcaXbETaUM0kblllO24mmWESctqLR9dRvPVJtmJL3dpzQUOCBZDEj2DrpgUmEkUmj84grMuqVyn7FnwEtkyAnZchR75W+un1FUkGlJRwb0wn8xIYZ1pYRTifFbmpogskID2jHUYkFNWE2u3qCTp3SR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vgqzJhMUkslmS+KU46sQtMIUJ9pSiwfO4KJZu5WRIZYY2JdUEUXQrD48jJpVivBRaV6Vy3XbvI4CnAMJ3AGAVxCDW6hDg0goOEZXuHNe/JevHfvY9664uUzR/AH3ucPvAySBA==</latexit>

dq,1  dq,2  dq,3  ...
<latexit sha1_base64="PDxfBIibEc8ZKZYEDk1rwVmQheo=">AAACEHicbZC7TsMwFIadcivlFmBksahQGVCUtAOMlWCArUj0IrVVcByntepcajtIVdRHYOFVGGAAIVZGNl6AkWfATTqUll+y9Ok/5+j4/E7EqJCm+aXllpZXVtfy64WNza3tHX13ryHCmGNSxyELectBgjAakLqkkpFWxAnyHUaazuB8Um/eES5oGNzIUUS6PuoF1KMYSWXZesm1k+GJNe4wMoQpl2e4krFhGLZeNA0zFVwEawrFaunq++cpd1uz9c+OG+LYJ4HEDAnRtsxIdhPEJcWMjAudWJAI4QHqkbbCAPlEdJP0oDE8Uo4LvZCrF0iYurMTCfKFGPmO6vSR7Iv52sT8r9aOpXfWTWgQxZIEOFvkxQzKEE7SgS7lBEs2UoAwp+qvEPcRR1iqDAsqBGv+5EVolA2rYpSvVRoXIFMeHIBDcAwscAqq4BLUQB1gcA8ewQt41R60Z+1Ne89ac9p0Zh/8kfbxC1xXnzI=</latexit>

0
0

0
0

0
0

0

0
Dq

<latexit sha1_base64="UsJrpjKucGGXEYhlzMuoVfG4Xy8=">AAAB9HicbVDLSgMxFL1TX7W+qq7ETbAIrspMXdRlQRHdVegL2qFk0kwbmslMk0yhDP0ONy4UcevHuPMH3PsHZtoutPVA4HDOvdyT40WcKW3bn1ZmbX1jcyu7ndvZ3ds/yB8eNVQYS0LrJOShbHlYUc4ErWumOW1FkuLA47TpDa9TvzmmUrFQ1PQkom6A+4L5jGBtJLcTYD0gmCc30+6omy/YRXsGtEqcBSlUyvdft9+Nk2o3/9HphSQOqNCEY6Xajh1pN8FSM8LpNNeJFY0wGeI+bRsqcECVm8xCT9G5UXrID6V5QqOZ+nsjwYFSk8Azk2lIteyl4n9eO9b+lZswEcWaCjI/5Mcc6RClDaAek5RoPjEEE8lMVkQGWGKiTU85U4Kz/OVV0igVncti6cG0UYM5snAKZ3ABDpShAndQhToQGMEjPMOLNbaerFfrbT6asRY7x/AH1vsPeHmVnA==</latexit>

Nq
<latexit sha1_base64="7hbjROmNy1B7jKfD0w9H3qPvA68=">AAAB9HicbVDLSgMxFL1TX7W+qq7ETbAIrspMXdRlQRDdSIW+oB1KJs20oZnMNMkUytDvcONCEbd+jDt/wL1/YKbtQlsPBA7n3Ms9OV7EmdK2/Wll1tY3Nrey27md3b39g/zhUUOFsSS0TkIeypaHFeVM0LpmmtNWJCkOPE6b3vA69ZtjKhULRU1PIuoGuC+YzwjWRnI7AdYDgnlyP+2OuvmCXbRnQKvEWZBCpXz3dfPdOKl28x+dXkjigApNOFaq7diRdhMsNSOcTnOdWNEIkyHu07ahAgdUucks9BSdG6WH/FCaJzSaqb83EhwoNQk8M5mGVMteKv7ntWPtX7kJE1GsqSDzQ37MkQ5R2gDqMUmJ5hNDMJHMZEVkgCUm2vSUMyU4y19eJY1S0bkslh5MGzWYIwuncAYX4EAZKnALVagDgRE8wjO8WGPryXq13uajGWuxcwx/YL3/AIe/laY=</latexit>

Figure 3: The structure of the sub-blocks Nq and Dq of N and D (that is, of a certain Nk and
Dk), corresponding to Σq “ σqIq.

Dq, which is diagonal with a non decreasing sequence of integer eigenvalues, has sub-blocks with
the same eigenvalue corresponding to a Jordan sub-block in Nq, as in figure 3.

The above facts and (10.5) imply that pT pkqq q´1dT pkqq is divided into sub-blocks as Σq `Dq,
where the only non-zero sub-blocks are the block-diagonal part, as in Figure 4 .
If follows that rTkpλq´1dTkpλq,N s “ 0 (from (10.2)) reduces to

rpT pkqq q´1dT pkqq ,Nqs “ 0, (10.6)

LetMq :“ pT pkqq q´1dT pkqq , and letMpqq
ra,bs “M

pqq
ra,asδab be a sub-block. From (10.6) we receive

Mpqq
ra,asN

pqq
ra,bs ´N

pqq
ra,bsM

pqq
rb,bs “ 0.

In particular
Mpqq
ra,asN

pqq
ra,as ´N

pqq
ra,asM

pqq
ra,as “ 0,

which means thatMq commutes with the block-diagonal matrix N pqq
r1,1s‘N

pqq
r2,2s‘¨ ¨ ¨‘N

pqq
r`,`s (“

Jordan matrix obtained from the diagonal sub-blocks of Nq in the left part of figure 3).
Now, observe that Dq ` Σq ` pN pqqr1,1s ‘ N

pqq
r2,2s ‘ ¨ ¨ ¨ q “ Jq. Since Mq also commutes with

Dq ` Σq, we conclude that it commutes with Jq, namely

rpT pkqq q´1dT pkqq ,Jqs “ 0.

Therefore,
rpTkq´1dTk,J s “ 0.

Coming back to the original notations, the above is rpTkq´1dTk, Jks “ 0. This is what we wanted
to prove. l
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dq,1
<latexit sha1_base64="FGLt2BbC8fCjDuLEHRQtFiSh3mM=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WBPFYwX5Au5RsNtuGZpNtkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aWqSK0QSSXqh1gTTkTtGGY4bSdKIrjgNNWMLzJ/dYjVZpJ8WDGCfVj3BcsYgQbK7XDXjY69ybFXqnsVtwp0DLx5qQMc9R7pa9uKEkaU2EIx1p3PDcxfoaVYYTTSbGbappgMsR92rFU4JhqP5veO0GnVglRJJUtYdBU/T2R4VjrcRzYzhibgV70cvE/r5Oa6NrPmEhSQwWZLYpSjoxE+fMoZIoSw8eWYKKYvRWRAVaYGBtRHoK3+PIyaVYr3kWlen9Zrt0+zeIowDGcwBl4cAU1uIM6NIAAh2d4hTdn5Lw4787HrHXFmUd4BH/gfP4ATNyP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,2
<latexit sha1_base64="+DEpIHVTT1xXpOuRx19dGSmQd3c=">AAAB73icbVBNSwMxEJ31s9avqkcvwSJ4kLJbBT0WRPBYwX5Au5RsNtuGJtltkhXKUvA3ePGgiFf/jjf/jdm2B219MPB4b4aZeUHCmTau++2srK6tb2wWtorbO7t7+6WDw6aOU0Vog8Q8Vu0Aa8qZpA3DDKftRFEsAk5bwfAm91uPVGkWywczTqgvcF+yiBFsrNQOe9novDop9kplt+JOgZaJNydlmKPeK311w5ikgkpDONa647mJ8TOsDCOcTordVNMEkyHu046lEguq/Wx67wSdWiVEUaxsSYOm6u+JDAutxyKwnQKbgV70cvE/r5Oa6NrPmExSQyWZLYpSjkyM8udRyBQlho8twUQxeysiA6wwMTaiPARv8eVl0qxWvItK9f6yXLt9msVRgGM4gTPw4ApqcAd1aAABDs/wCm/OyHlx3p2PWeuKM4/wCP7A+fwBThWP5Q==</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,3
<latexit sha1_base64="q+Y2gkBFjz/+A3USuCmfvEhrDTo=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qj4vDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHylOj2U=</latexit>

dq,4
<latexit sha1_base64="6kmDRf0gmlUkxBYhCq2D05JwQlU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qjEvDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHyrUj2Y=</latexit>

dq,4
<latexit sha1_base64="6kmDRf0gmlUkxBYhCq2D05JwQlU=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBg5SkLeixoAePFewHtKFsNpt26WaT7m6EEvonvHhQxKt/x5v/xk2bg7Y+GHi8N8PMPC/mTGnb/rYKG5tb2zvF3dLe/sHhUfn4pKOiRBLaJhGPZM/DinImaFszzWkvlhSHHqddb3Kb+d0nKhWLxKOexdQN8UiwgBGsjdTzh+n0qjEvDcsVu2ovgNaJk5MK5GgNy18DPyJJSIUmHCvVd+xYuymWmhFO56VBomiMyQSPaN9QgUOq3HRx7xxdGMVHQSRNCY0W6u+JFIdKzULPdIZYj9Wql4n/ef1EBzduykScaCrIclGQcKQjlD2PfCYp0XxmCCaSmVsRGWOJiTYRZSE4qy+vk06t6tSrtYdGpXmXx1GEMziHS3DgGppwDy1oAwEOz/AKb9bUerHerY9la8HKZ07hD6zPHyrUj2Y=</latexit>

0
0

0
0

0
0

0

0
⌃q + Dq
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Figure 4: The sub-blocks-structure of the block pT pkqq q´1dT pkqq .
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