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Abstract: We consider deformations of a differential system with Poincaré rank 1 at infinity and Fuch-
sian singularity at zero along a stratum of a coalescence locus. We give necessary and sufficient conditions
for the deformation to be strongly isomonodromic, both as an explicit Pfaffian system (integrable de-
formation) and as a non linear system of PDEs on the residue matrix A at the Fuchsian singularity.
This construction is complementary to that of [13]. For the specific system here considered, the results
generalize those of [26], by giving up the generic conditions, and those of [3], by giving up the Lidskii
generic assumption. The importance of the case here considered originates form its applications in the
study of strata of Dubrovin-Frobenius manifolds and F-manifolds.
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(k)
i
i,j € {1,...,n}. We can partition A, into s? blocks of dimension p, x py, where a,b = 1,....s
and p; + ... + ps = n. The block labelled by a, b, of dimension p, x p, will be denoted by Afj)b].

Notation. For an n x n matrix Ay, we denote the matrix entries by either (Ay);; or A;.”, where



1 Introduction

In the work [13], and in the related [12, 19, 20, 21, 22], we have studied an n x n matrix
differential system of the shape (1.1) below, with an irregular singularity at z = oo and a
Fuchsian one at z = 0, with leading term at oo given by a diagonal matrix A = diag(A1, ..., An),
whose eigenvalues A = (Ay, ..., A,,) vary in a polydisc of C™. The polydisc contains a coalescence
locus, where some eigenvalues merge, namely \; — A\ — 0 for some 1 < j # k < n. For
this system, we have proved that a monodromy preserving deformation theory can be well
defined (in an analytic way) with constant monodromy data on the whole polydisc, including
the coalescence locus. This result, which generalizes the theory of Jimbo, Miwa and Ueno [26],
is possible if the vanishing conditions A;;(A) — 0 hold when \; — Ay — 0.
In this paper, we consider an n-dimensional differential system

Y _ <A+A()\)>Y, A=\, ) eD e C¥, (1.1)

dz 2
where D is a polydisc and

A= )\lel @--- @)\SI s o= diag()\l, ceey )\1,)\2, ceey )\2, cee ,)\S, ceey )\s)
—_ ) —

p1 p2 DPs
I,,; = pj-dimensional identity matrix, pj+---+ps =n.

We can think of A as the parameters varying within a stratum of a coalescence locus, specified
by pi,...,ps- We would like to establish the full isomonodromy deformation theory within this
stratum.

The deformation considered here is complementary to that of [13], because it occurs within
the prefixed stratum, while in [13] the deformation takes place in a domain containing the
coalescence set, the latter being included in the range of deformation under specific vanishing
conditions on A. The problem of the present paper is therefore different from [13]: here A will
be any matrix and we do not suppose that the entries of A corresponding to equal eigenvalues
of A are zero. The deformation theory that we will develop cannot be deduced either from [13]
or [26]. This theory is realized in an important geometric setting, namely at the nilpotent locus
of a Dubrovin-Frobenius manifold [16], called caustic [24]. This application will be discussed in
Section 9, for the type of caustics geometrically described in [28].

In the sequel, it will be convenient to partition A into blocks Ay; j1, 4,7 = 1, ..., s, of dimension
pi X pj, inherited from A. We will work in the following analytic setting.

Assumption 1.

o The polydisc D is sufficiently small so that, as A varies in D, the Stokes rays defined in
(1.2) below do not cross the half-lines argz = 7 + kmw, k € Z, where 7 € R is fized, and
called an admissible direction.

e A(X) is holomorphic in D.



The Stokes rays in the assumption are the rays in the universal covering R of C\{0, 0}
defined by
%(()\z — )\])Z) =0, %(()\z — )\])Z) <0, zeR. (1.2)

In this paper, we establish the necessary and sufficient conditions for (1.1) to be strongly
isomonodromic on the polydisc D. The notion of “strong isomonodromy” is implicit in the sem-
inal paper [26], meaning that all essential monodromy data (monodromy exponents, connection
matrices, Stokes matrices, see Definition 6.1) are independent of A\. The adjective “strong” was
introduced in [19], to point out that a system may just be “weakly” isomonodromic, namely
with constant monodromy matrices, but with possibly non-constant essential monodromy data.

In the isomonodromy theory of [26], several assumptions are made to assure that the differ-
ential system is generic (the deformation is called admissible). In case of (1.1), the eigenvalues
of A are not allowed to differ by integers (so A is in particular diagonalizable), and A has
pairwise distinct eigenvalues.

In the paper [3], the isomonodromy deformation theory has been extended to rational con-
nection with both Fuchsian and irregular singularities of any Poincaré rank, without several of
the assumtions of [26]. The residue matrices at the Fuchsian singularities are not subject to
restrictions, while the leading matrix at an irregular singularity can have any Jordan form, but
with a prefized Jordan type A[*A52 ... A\}f (in a notation due to Arnol’d [2]). For example, in
case of (1.1), the Jordan type is prefixed to be

Al AT A2 A A A (1.3)
—_ [
p1 P2 Ps

Besides the prefixed Jordan type, another important assumption of [3] is that the next sub-
leading matrix (in our case A) at an irregular singularity must be Lidskii generic, according to
definition 2.1 in [3]. In our case, this means that each diagonal block of A (with block partition
inherited from A) must have distinct and nonzero eigenvalues. Theorem 5.3 of [3] states that
the deformation is isomonodromic (preserving a set of monodromy data, which include the
Stokes matrices) if and only if a class of fundamental matrix solutions satisfy a certain Pfaffian
system. This result generalizes theorem 3.1 of [26]. Moreover, [3] studies the generalization of
the isomonodromic 7-function.

Remark 1.1. Given a differential system % = 2(z, \)Y such that the deformation A does not

satisfying some admissibility conditions of [26], by generalization of [26] we mean: find necessary
and sufficient conditions ensuring that all essential monodromy data (strong isomonodromy) of
the differential system are constant. These conditions are of the type: constant data if and only
if all the canonical solutions satisfy a Pfaffian system dY = wY’, with a very specific w (such as
(1.4) below); or if and only if the coefficients in 20(z, A) satisfy certain non linear PDEs, called
isomonodromy deformation equations (like the equations (1.6) below).

As mentioned in the beginning, an extension of the isomonodromy deformation theory has
been achieved in [13] for a system such as (1.1) when the Jordan type of the leading matrix A
changes within a polydisc of C". In [13], A is any, while

A = diag(A1, ...y An)



has n eigenvalues A = (A1,..., \,,) varying in a polydisc containing a coalescence locus where
Aj = A for some j # k. The extension of [13] can be done under the condition that the entries
Aj ()\)—>Of01" )\j—Ak—>0.

In this paper, the deformation parameters A = (A1,...,As) are assumed to vary inside a
stratum of the coalescence locus, namely A has s < n eigenvalues varying in the polydisc D
specified before. In this sense, the Jordan type (1.3) of A is fixed, as in [3]. Nevertheless, we
drop any assumption on A, and we do not assume Lidskii generic conditions.

We mention that in [11] isomondormy deformations are defined for a system of type (1.1),
with coefficients in the Lie algebra of an arbitrary complex algebraic group G. In the specific
case we consider here the coefficients are n x n complex matrices, so that G = GL,(C). In
this case, the assumptions of [11] require that A is diagonal' with a prefixed Jordan type (1.3),
invariant by the deformation A, and the corresponding diagonal blocks of A are zero. It is to
be noticed that the assumption Ay ) = 0, Vk = 1,..., s implies that theorem 3.3. and remark
3.3 of [11] for G = GL,(C) are immediately deducible from the main theorem of [13], starting
from A = diag(\1, ..., A,) and considering the coalescence

ALy An) — A1 A A2 Ao A ).
[N — [ ——

p1 p2 Ps

In the present paper, no assumptions on the diagonal blocks Ay ;1 will be made, so that our
results are not deducible from or reducible to theorem 3.3. and remark 3.3 of [11] (which, as
said, are obtainable from the results of [13], which are complementary to the present paper). It
is also to be mentioned that the notion of isomonodromy in definition 3.2 of [11] requires that
only the Stokes matrices are constant, while here we require constancy of a more stringent set
of monodromy data, including the monodromy exponents and the central connection matrix.

Isomonodromic deformation equations preserving G-valued Stokes matrices were first de-
fined in [4] for meromorphic connections on principal G-bundles, with G a complex reductive
group. The leading term at an irregular singularity is assumed to be regular semisimple in the
Lie algebras g. In case G = GL(n,C) and g = Mat(n,C), this means that its Jordan form
has a single Jordan block for each eigenvalue, and in particular this implies pairwise distinct
eigenvalues in the diagonalizable case. A generalization of this assumption was then given in
[7], where the Jordan type is fixed (no further coalescences allowed).

Results

Our goal is a the generalization of [26], in the sense of Remark 1.1, for system (1.1).

The main results of the paper are Theorems 6.1 and 6.2. Preliminarily to them, in Theorem
3.1 some results in the weakly isomonodromic case are given: system (1.1) is weakly isomon-
odromic with an isomonodromic fundamental matrix solution in Levelt form at z = 0 if and
only if the latter satisfies a Pfaffian system whose A-components are holomorphic in C x D. In
this case, the monodromy exponents at z = 0 are constant. This fact is mainly based on [34].

Theorem 6.1 states that system (1.1) is strongly isomonodromic if and only if a fundamental
matrix solution at z = 0 in Levelt form and the canonical solutions at z = o0 (defined in the

'[11] requires that A is diagonalizable, so one can work in the base where it is diagonal.



paper) all satisfy the integrable Pfaffian system

dY=[< )de( 30 )d)\j]Y, (1.4)

with

where E,, := 0A/0); is the matrix with blocks E[(fjb)] — Gujbiylyy, for a,bj = 1,..,s (all

entries are zero, except for diagonal block ij), the matrices w;(A) are holomorphic in C x D
and univocally given in formula (6.2), while the block-diagonal matrix 7 = 71 ® - - ® T
is holomorphic invertible in I and reduces to Jordan form the block-diagonal part of A(\),
namely

TeON) M Ap g (N) Te(A) = Ji. (1.5)

The second part of Theorem 6.1 also says that in the strong isomonodromic case, A satisfies
the non-linear system

Z A)dA;, Al (1.6)
The above (1.6) predicts that the block—dlagonal part

Ap @ @ Afs g

is constant. In particular, it has a constant Jordan form J1@®- - -@Js. This fact is not immediately
obvious and will be proved in the paper. It implies that isomonodromy deformations with
constant T = 7Ty are always allowed, and in such case

All the other possible isomonodromic deformations are obtained with
TO) = ToB(),
for any B(\) = B1(\) @ --- @ B,(N) satisfying
[Br(A),J,] =0, k=1,...s.
Therefore, for a given Ag at A = Ag € D, let Tg be the block-diagonal matrix such that
76*1 . (AE??l]@...@AES?S]) To=® @ J,.

Then, there are several possible strong isomonodromy deformations A(\), having the same
constant block-diagonal part AEl)l] @ @ AES)S], but different off-diagonal blocks Ay j1()),
1 < i # j < s, obeying equation (1. 6) with the different possible choices of T(\) = ToB(\).
These different deformations are related by a A-dependent gauge transformation, as will be

explained after Theorem 6.1.



In the 3-dimensional case, when the only non-trivial case is A = diag(A1, A2, A\2) (up to
permutations), the above freedom in the coefficients @; implies the existence of the particular
isomonodromy deformation with constant A and non constant 7()\), and conversely of the
deformation with non constant A(\) and constant 7. Since a gauge transformation can reduce
to constant A, the 3-dimensional case is rigid. See Section 7 for details. The first non-trivial
case occurs for n = 4 and s = 3. Already in simplified situations, we will show in Section 8
that the isomonodromic problem is at least as transcendental as a Painlevé equation.

Remark 1.2 (Important Remark). That strong isomonodromy deformations of (1.1) exist
with constant 7, and that they can always be reached by a gauge transformation, does not at
all mean that these deformations are trivial. Indeed, even in case 7T is constant, A = A(A) is
in general a highly non trivial and highly transcendental matrix function, which must satisfy
the extremely difficult system (1.6) with the &;(A) = w;j(A). Only in case n = 3 (and s = 1,2)
one can reduce to the deformations with constant A, but starting form n > 4, solutions to the
deformation equations (1.6) are transcendental. See Section 8 for a 4-dimensional example.

Theorem 6.2 is the converse to the second part of Theorem 6.1. It says that system (1.1) is
strongly isomonodromic if A is not partially resonant (Definition 4.1) and satisfies the Frobenius
integrable system (1.6), with

@j(A) = w;j(A) + D;(N),
where the D; = D({) @ - DY) - are holomorphic block-diagonal matrices, arbitrary? except

) Ry ) [s,5]
for the differential constraint

0;Dy — 0Dj = [Dj(N), Dr(N)],
which is required by the integrability of (1.6). Hence,

dT = (Y D;(N)d);)T.

is integrable. It admits holomorphic fundamental matrix solutions 7(A\) = 71 @ - -- @ T5 such
that (1.5) holds.

The above theorems 6.1 and 6.2 generalize to the non-generic case (1.1) the strategy and
the results of [26].

Remark 1.3. As a corollary, if A has pairwise distinct eigenvalues, (1.1) is strongly isomon-
odromic if and only if (1.6) holds with @;(A) = w;j(A) + D;(X), with D;j(\) diagonal satisfying
0jDy — 0xD; = 0 (here j,k = 1,...,n). In this case T (\) above is any diagonal matrix.

An important application of the isomonodromy deformation theory here developed will
be given in Section 9 for the caustic of a semisimple Dubrovin-Frobenius manifold M [16,
17] of dimension n. The caustic is a hypersurface K < M of codimension 1, such that the
multiplication defined on the tangent bundle is nilpotent. Following [24] and [28], a generic
point of I has a neighbourhood in M were local coordinates (t1,t2,us, ..., u,) are defined,

280 the case D; = 0 for all j = 1, ..., s is possible.



such that K corresponds to t2 = 0 and the vector 0/dtsa|y,—o is nilpotent. The flat sections of
the Dubrovin deformed connection (defined in Section 9), expressed in these coordinates and
restricted at the caustic, are solutions of a Pfaffian system exactly of the type (1.4) (see system
(9.27)), with deformation parameters given by the coordinates (1, us, ..., u,) on K. It has non
trivial 7 depending on the flat metric defined of M, and
A = diag( t1,t1 , ug, ..., Uy ).
S~ Y
n—2 distinct
Its z-component is always strongly isomonodromic in the sense described in this paper. Indeed,
we will show that in case of a caustic the deformation equations (1.6), concretely realized by
system (9.28), are sufficient conditions for strong isomonodromy. The results are summarized
in Proposition 9.1 and Remark 9.4. Moreover, the deformation theory developed in this paper

allows us to predict some properties of the caustic (see Corollary 9.1 and point 3) of Remark
9.3).

Some further remarks

The integrability conditions of a Pfaffian system (1.4) with given @;(X) = w;(A) of the specific
form (6.2) are the non-linear “deformation equations” (1.6) and their compatibility conditions.
This is an elementary computation and is not new (see also the proof of part II of Theorem 6.1
here). For distinct eigenvalues these deformation equations are a particular case of the JMMS
equations introduced in [25] (in particular section 4 and the appendix A. See also [23]), while
in case of repeated eigenvalues, but no further coalescences, (1.4) and (1.6) fit into the more
general deformations equations studied in [6] (see also [7]).

The purpose of the present paper is not to give deformations equations (integrability con-
ditions) for a Pfaffian system, but to derive the Pfaffian system (1.4) as the necessary and
sufficient condition for all the essential monodromy data of (1.1) to be constant; (1.6) is conse-
quently the integrability condition of (1.4). Moreover, in case there are no partial resonances,
we show that (1.6) is also a sufficient condition for all the essential monodromy data to be
constant. This, in the spirit of Remark 1.1.

To conclude, we make two more general comments. The first is that the main difficulty to
generalize [26] to non generic cases (in the sense of Remark 1.1) is to find a suitable canonical
representations for a class of fundamental matrix solutions (like the Levelt form at a Fuchsian
singularity and the solutions having a canonical asymptotics in Stokes sectors), and to deal with
the change of those representations when the Jordan type of the leading matrix at an irregular
singularity changes, namely some eigenvalues merge. To our knowledge, this is an extremely
difficult problem, which is far from being solved. In the literature, we either find attempts to
deal with coalescences of eigenvalues with a change of Jordan type, but with suitable analyticity
and semisimplicity assumptions, such as in the work [13], or the Jordan types are fixed such as
in [3] and in the present paper.

The second comment — which in a sense expands Remark 1.1 — is that there are two ap-
proaches in order to describe, from the analytic viewpoint, the isomonodromy deformations of

a differential system
dy

- =AY, (1.7)



where 2(z,\) is rational in z and analytic in a domain of A (such as D here). One approach
starts by proving the existence of fundamental matrix solutions of (1.7), holomorphic in the
deformation parameters (under certain assumptions) in the A-domain, and characterized by a
certain canonical form, such as Levelt form at Fuchsian singularities and canonical asymptotics
at irregular ones. Then, one must show that these solutions satisfy a Pfaffian system

dY = wY, (1.8)

with a specific w(z, A), possibly determined by 2((z, A), if and only if the deformation is isomon-
odromic, namely preserves a certain class of monodromy data (such as monodromy matrices or
essential monodromy data of the above mentioned solutions). This is the approach approach
of [26] and the approach we mainly follow in our paper.

The other approach starts by assuming that we are given a Pfaffian system (1.8), satisfying
the Frobenius integrability condition dw = w A w, and such that the dz component of w gives
a differential system (1.7), namely

w(z, A) \ fed = A(z, N)dz.
This implies that the monodromy matrices of a fundamental matrix solution Y'(z, \) of (1.8)
are constant, so that system (1.7) is weakly isomonodromic. Then, this approach proceeds
by showing if, depending on the specific w(z, A), the Pfaffian system admits fundamental ma-
trix solutions with a canonical structure, whose corresponding essential monodromy data are
constant. This is, for example, the approach of [8, 9, 10, 34].

Acknowledgments. I thank P. Boalch for several useful remarks and for pointing out some
references. The author is member of the European Union’s H2020 research and innovation
programme under the Marie Skilodowska-Curie grant No. 778010 IPaDEGAN. He is also a
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2 Preliminaries

It is a standard result [33, 1] that, for each fixed A, system (1.1) admits a fundamental solution
with Levelt form?® at z = 0:

YO(z,0) = GO PO (2,0) P 7N, (2.1)
JO ZpO) | g0 L0 _ g0) . RO, (2.2)

where: w©
VO (z,A) =1+ Z F,EO)()\)zk is convergent for finite |z|; (2.3)

k=1

3This is an improper Levelt form, obtained by a permutation Y — Y P, P a suitable permutation matrix,
from a proper Levelt form (5.8) of Section 5.



the matrix J(O()\) is a Jordan form of A()); the eigenvalues p1(\),--- , pn(A) of A(N) are
uniquely decomposed as

pi(A) = d;o) + pg-o)()\), with 0 < %pg-o) < 1 and d§0) € Z;

and

diag(S©)) = diag(pgo), o p®), DO = diag(d&o), oy dO),

n

The matrix R(® is nilpotent, with entries
(RO (X))ij # 0 only if pi(A) — j(A) € N\{0}.

The invertible matrix G(©) puts A in Jordan form. In general, the dependence of Y on X is
not holomorphic in D.

Assumption 2. A()\) is holomorphically similar to a Jordan form JO(X) in D, namely there
is GO = GO (\) holomorphically invertible in D such that

JON) = cON)TAN) GO0,

The matrix A()) is said to be resonant at A € D if there exist i # j € {1,...,n} such that
pi(A) — pi(A) € Z\{0}. If the eigenvalues do not depend on A in D, we simply say that A is
resonant.

If there are no resonances, Assumption 2 guarantees that Y(O)(z,)\) can be taken holo-
morphic on R x ID. Otherwise, in addition to Assumption 2 we need to require that if
pi(A) — pi(N) = €5 € Z\{0} for some A, then the resonance persists all over D, namely

pi(N) — 1j(A) = b € Z\{0} ¥ Ae D, (2.4)

Then, holomorphy of (2.1) follows from its standard formal computation (see [33]). The reason
for (2.4) is that if it does not hold, then R(®)()\) may have an extremely wild behaviour in .

3 Weak isomonodromic deformations

Lemma 3.1 (Isospectrality). Let A(X\) be holomorphic on D. If (1.1) has for each A € D a
fundamental matriz solution Y (z; \) whose monodromy

Y(2;A) — Y (22 \) = Y (2 \) M,

is the same for all X\ € D (i.e. the monodromy matriz M is constant), then the eigenvalues
of A(N\) are constant on D. In particular, (2.4) holds in case of resonances. If moreover
Assumption 2 holds, then a Levelt form Y ©) s holomorphic on R x D.

Notice that in Lemma 3.1 it is not assumed that Y (z; \) depends holomorphically on A.



Proof. There exists for each A an invertible connection matrix C'(\) such that
Y(zA) = YO )CN) = GONTO (2, 1)L N LON ().

By assumption, M = C()\)*leQ’”L(O)()‘) C'()\) does not depend on A, so the eigenvalues ,05»0) of
©) , (0

i TP

It follows that both the integers d§-0) and the eigenvalues j1; are constant. Clearly, (2.4) holds,

so that holomorphy follows from the formal computation (see [33]) of (2.1) and (2.3). O

L©) are constant. Since A()\) is holomorphic, its eigenvalues p;(\) = are continuous.

Definition 3.1. System (1.1) is weakly isomonodromic in D if there exists a fundamental
matriz solution Y(z, \) depending holomorphically on (z,)\) € R x D, with \-independent
momnodromy matriz M, defined by

yhol(z, \) — Yoz MM, 2 — ze?™,

Proposition 3.1. Let A(\) be holomorphic in D. System (1.1) is weakly isomonodromic in D
if and only if it is the z-component of an integrable Pfaffian system

dY =w(z,\)Y, w(z,A) = <A + A> dz +
z

wj(z, \)dA;. (3.1)
j=1
with w(z, \) holomorphic in C\{0,00} x D, satisfying the integrability condition

dw = w A w.

The proof is standard.

Theorem 3.1. Let A(\) be holomorphic in D. System (1.1) is weakly isomonodromic in D
with holomorphic fundamental matriz solution Y1 coinciding with a fundamental solution in
Levelt form Y © | if and only

the coefficients w;(z, \) are holomorphic in C x D.

In this case, the following facts hold.
e DO gnd LO gre constant, or equivalenlty J© and R© are constant.

e A()) is holomorphically similar to J©) through a fundamental matriz solution GO (\) of

S
dG = > w;(0,A)d); G.
j=1



The matrices wj(z, A) in Theorem 3.1 may have isolated singularity in z = c0. The require-
ment Y = V() is equivalent to the requirement that Y = Y(© (| for C constant invertible
matrix.

Assumption 2 is not explicitly written in the statement of Theorem 3.1. If (1.1) is weakly
isomonodromic in D and we assume that there is a holomorphic fundamental matrix solution
in Levelt form Y(?), then Assumption 2 is a necessary condition, so it is automatically assumed
by requiring that Y(©) is holomorphic. Conversely, if the coefficients w;(z,A) are holomorphic
in C x D, then it follows from Proposition 3.2 below that A(\) is holomorphically similar to
J© namely Assumption 2 is satisfied.

Theorem 3.1 holds also for

Cg Az, 1), A(zt) = A+ ZA@& o)

t:=(\a), A=\, ,X)eDcC’ aceC.

where one deformation parameter is the pole z = a. In this case, (3.1) is replaced by

s

w(z,t) = Az, t)dz + Z (z,t)d\; + (wo(z,t) _ A > da. (3.3)

zZ—a

The coefficients w;(z,A) and wy(z,t) are holomorphic in C x D. We stress that the above
holds for any A(t), including the non-diagonalizable and resonant cases. Moreover, G(O)(t) is a
fundamental matrix solution of

dG = (Z wj(a,t)dA; + wo(a,t)da + go(t)da) G, (3.4)
=1
with
=GO (K" + [FY. 101+ RY) (GO). (3.5)

Here, FI(O) appears in the Taylor expansion (2.3), J©) in (2.2), and Rgo) is the first term in the
decomposition of R©) = " R , Where

(Réo))ij # 0 only if y; — p; = £ € N\{0}.

Notice that (3.4) is linear, because Fl(o) and Rgo) are obtained by the standard formal compu-
tation yielding (2.1), which is done using the differential system dY /dz = (G©)~191(z,t)GO)Y,
after the gauge transformation Y = GOY, Explicit computation shows that G cancels in
(3.5), namely ¢ is only determined by 2(z, ).

Expressions (3.3), (3.4), (3.5) can be obtained following the same steps of the proofs of Propositions
3.2 and 3.3 below. Just notice that for example in (3.8) one has

(0) _p©
(Z —a)

w=d(GOYO) . (GOYOH-T L GOy (GOYOH~1g,

11



0)

0 D9 + (2= a)?”" LO(z — a)~'

zZ—a

el ()

(GOY©)~1gq,

Then use the definitions of the monodromy exponents (2.2), which imply that

DO ¢ (2 - a)D(O)L(O)(z - a)fD(O) =JO 4 Z R§O)(z —a)t.
{=1

3.1 Proof of Theorem 3.1

Theorem 3.1 follows from Propositions 3.2 and 3.3 below. These propositions apply also to
system (3.2), with form (3.3) and (3.4).

By its definition D is locally constant on subsets of D. It may have jump discontinuities
on D, so that dD© is not well defined. We will sometimes write dD® = 0 with abuse of
notation when we want to indicate that D(©) is constant on the whole D.

Proposition 3.2. Let A(\) be holomorphic in D and let (1.1) be the z-component of an inte-
grable Pfaffian system (3.1) whose coefficients w;(z, ) are holomorphic in C x D.
Then, there is a fundamental matriz solution Y ©)(z, \) of (3.1) in Levelt form (2.1), with

dD©® = dL® =0,  or equivalently dJ© =dR® =0 onD. (3.6)

Moreover, the matriz A(X) is holomorphically similar to JO) through a fundamental matriz
solution GO (\) of

dG = Y w;(0,\)dA; G.
j=1

Proof. Proposition 3.2 is a particular case of the main results of [34] on fundamental matrix
solutions of Pfaffian systems at a logarithmic (Fuchsian) singularity. O

The converse of the above is the following

Proposition 3.3. Let A(\) be holomorphic in D and let Assumption 2 hold.

a) Suppose that (1.1) is weakly isomonodromic. If there is a fundamental matriz solution of
(3.1) in Levelt form Y ) (2, \), then the coefficients w;(z,\) of (3.1) are holomorphic in C x D
and (3.6) holds.

b) Conwversely, if system (1.1) has a fundamental solution YO (z,\) in Levelt form (2.1)
such that (3.6) holds, then the system is weakly isomonodromic, and the corresponding Pfaffian
system (3.1) has coefficients w;(z, X) holomorphic in C x D.
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In both cases a) and b), GO)(N) is a fundamental matriz solution of

dG = Y w;(0,\)d); G.
j=1

Proof. a) Being (1.1) weakly isomonodromic, there is an isomonodromic Y°!(z, \), with con-
stant monodromy matrix M, satisfying (3.1). By Lemma 3.1, a solution Y (2, \) of (1.1)
exists holomorphic in R x D, with

DO constant.

By the assumption in a), Y(?) also satisfies (3.1). Being solutions of (1.1), Y and Y(© are
related by a holomorphic connection matrix C(\):

vPl(z,A) = YOz, \)C ().
Since both dY! = wYho!l and dY(© = wY © hold, then
dC = 0.

Let us rewrite

YElz \) = YO (2, 0)C = GONYO (2, 1)L £
LOMN :=ct LOW) .
Since dM = d(exp{27iL(")}) = 0 by assumption, we have d£(®) = 0, and then
dL©® —o.
Therefore, we find
w=dy . (yPh)=t = gy @ . (v~ (3.7)

DO) 4 2D 1(0),-D®

z

= d(GOY ). (GOYyOH-1 4 GOy (©) (GOYO—1g, (3.8)

Now, the definition of D© and L(© implies that D©) + 2P @ L0),=D® 4 holomorphic at z = 0
and

lim (D) + O L), =Dy _ 5 0), (3.9)
so that AlN
w=dGO . (GO 4 reg(z,\) + ((z> + regy (2, A)) dz.
Here

reg(z,A) = O(z), for z — 0

13



is a 1-form in dz and d\q, ..., d\s, holomorphic in C x . Moreover, reg;(z, A) is a holomorphic
matrix in C x D with behaviour

reg;(z,\) = O(1), for z — 0.

‘We conclude that

s

2 (2, \)d\j + <A(ZA) +reg1(z,)\)> dz,

where both reg;(z,A) and the matrices w;(z,A) are holomorphic in C x D, of order O(1) for
z — 0. In particular,

da©® . ( 2 (0, 2)

b) Suppose that dD©® = dL©® = 0, so that for z —> ze*™ the monodromy Y (© —
Y ©e2miL® ig constant. This implies that Lemma 3.1 holds, so that Y(O)(z, A) is holomorphic
in R x D. We prove that Y satisfies a Pfaffian system. We define

w(z,A) = dY Oz, \) - (YO(z, )7 !

This is single valued with respect to z, because the monodromy of Y(® is constant. The
structure of w(z, A) = wo(2, \)dz + 37_; wj(z, A)d); is computable from (2.1):

dy© . (yOy=t =

0 DO r(0),—D®
_ 4G . GO L GO0 . (GOPOY-1 4 GOPO) DO + 2V LO)

0)§(0)y-1
- ER)

A
—dGO . GO 4 reg(z, \) + (; + reg, (2, >\)> dz.

In the last step, we have used (2.3) and (3.9). Here reg(z, A\) stands for a matrix valued 1-form
in the dA;’s, holomorphic in C x D, and of order O(z) — 0 as z — 0, while reg; (2, A) is a matrix
holomorphic in C x D of order O(1) as z — 0 (and we know that it must be A). In conclusion,
we have found that

Z wj(z, \)dAj = = dGO . GO 4 reg(z, \),
7=1

and in particular dG(® . (G(0)~1 = 21w (0, A)d;. O

4 Canonical solutions of (1.1) at z = w

Let us partition A in blocks Ay, j1, 4,7 = 1,..., s, of dimension p; x pj, inherited from A. Let
TA) =TiA) @ BTN,

be a block diagonal matrix such that

TeON) " Ap (V) Te(N) = Je(A)  Jordan form, — k=1,..,s. (4.1)
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It has structure Tx(A) = TL2(\)Br(N), where T2(\) is a chosen matrix satisfying (4.1) and
B (N) is any matrix such that [By, Ji] = 0.

Assumption 3. Ap 11(A\) @ @ A[s 5()) s holomorphically reducible to Jordan form
JA) = (N @ @ Js(N).

This means that each Ti(\) is holomorphic on D, and so is each Ji(\).

We can arrange each Ji into hy < pi Jordan blocks Jl(k), e ,glz)

h=dP e eIl (4.2)

Each block Jj(k), 1 < j < hg, has dimension r; x rj, with r; > 1, r1 + -+ + 1y, = pi. Each J](-k)
has only one eigenvalue ,ug-k), with structure,

J;k)()\) = ug.k)(/\)j}j + Hr].7 L«j = r;j x r;j identity matrix,

H,=0ifr;=1,  H, = if rj > 2.

J

Note that ugk), vy ug? are not necessarily distinct. The decomposition ,ué.k) = d;k) + pgk), with

dg-k) eZ and 0 < ﬁ?pék) < 1, induces the decomposition

Jy=Dr+ S, k=1,..,s. (4.3)

where Dy, is diagonal with eigenvalues atd)

; and Sy is Jordan with eigenvalues p(»k). We let

J
D:=D1®---®Ds, S:=5®---®Ss sothat J=D+S.

If Assumption 3 holds, the gauge
Y(z,A) = TOW)X (2,

transforms system (1.1) into

J1 Apg Al
~ ~ A Jo o A
. (A + Am> R, A=Tlar= | TR (4.4)
dz Z : : . :
Asg) A2 s

We can then apply to (4.4) the computations of section 4.1 of [13], which allow to find formal
solutions of (1.1) depending holomorphically on A € D, with structure

Yr(z,A) =T(X) (I + i F}()\)z_j>zD(’\)zL(’\)eAz. (4.5)
j=1
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Here
L=0L1® - -@Ls, L := Sy + Ry, Ry, is nilpotent. (4.6)

Fach Ry has possibly non zero blocks
[RiJblock ap # 0 only it (\) = uP(A) =l e N\{O}, a#b=1,.... 7. (4.7)

The diagonal matrix D(\) is locally constant, from its very definition, and may have discrete
jumps as A varies in D. The computation of the Fi(\) and R = R; @ --- @ R, follows exactly
the procedure of proposition 4.1 of [13].

In case there are no resonances in Ay )(A), then Ri(A) = 0. If there are no resonances in
all the blocks Az, Yk = 1,..., s, then

R=0 = L) =S,

and
Yr(z,A) = T(N) (I + 2 Fj()\)zfj>zD()‘)zS()‘)eAZ =T\ (I + Z Fj()\)zfj)z‘]()‘)e/\z
=1 i=1

Then, by Assumption 3, Yr(z, A) depends holomorphically on .
In case of resonance of some Ay, ;()), a sufficient condition for the Fj(A)’s and L(A) to

depend holomorphically on X is that when it happens that u{" (A) — u{ (A) = £y, € N\{0} for
some value of )\, then the resonance persists all over D, namely

i) = 1P () = f, e N\{0} ¥ AeD. (4.8)
In this case, being D locally constant in D, Yz (2, A) locally depends holomorphically on A.

Definition 4.1. In the terminology introduced in [29], if there ewists k such that Ay, is
resonant, we say that A has a partial resonance.

A formal solution (4.5) with given 7, L, D and A is uniquely determined only if all the
matrices A[y,17(A), ..., Afs4 () are non-resonant (see corollary 4.1 of [13]).

Remark 4.1. In case A = diag(A1, ..., \,) has pairwise distinct eigenvalues, then
w . .
Yi(2,A) = T (T + Y Fy(n)z7 ) iaaehs,
j=1

and 7T (\) is an arbitrary invertible diagonal matrix. One can choose it to be the identity matrix.

Stokes Matrices

Consider an admissible direction 7 as in Assumption 1 and the following A-independent sectors
in R of central angular opening 7 + 26:

S: (t+w—-1)rm—d<argz<(r+vm)+6, veZ, 6>0.
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If Assumption 1 holds, there is a sufficiently small § such that S, n S,41 does not contain
Stokes rays as A varies in D. From [30], we know that to a prefixed formal solution (4.5) there
correspond actual solutions satisfying

Y, (2,A) = T, (2, A) 2PN L0 Az, (4.9)
Y (2,A) ~ T+ ) F;(\)z7, z2—o00iné,. (4.10)
j=1

For short, we will improperly write
Y (2,\) ~Yr(z,A), z—>00inS,.

They are uniquely determined by the above asymptiotic behaviour (as proved in theorem 6.2
of [13]). When Assumption 3 and (4.8) hold, they are holomorphic in R x D . In this case, the
holomorphic Stokes matrices S, ()\) are defined by

Yoi1(2,\) = Yo (2, VS, (V).

5 More on the Levelt form

This technical section can be skipped at first reading. It introduces details needed especially in
the proof in the Appendix. The reader not interested in the Appendix may just read the last
sentence of this section, starting with “In conclusion,...”.

Consider a N x N system Y’ = 2(2)Y, such that 2(z) has a Fuchsian singularity in 2z = a,
for a € C, or in z = 00. The residue matrix of A(z) at z = a (or z = o) has a Jordan form

J=L@ DI,

with
Jj = pilm; + Hp;, mi+...+my =N,
0 1
0 1
Hy, =0 ifm;=1,  Hpy, = if my > 2.
0 1
0

We can arrange the Jordan form so that the eigenvalues i, ..., yt of J have real parts forming
a non increasing sequence if z = a is the singularity:

R = Ry = -+ = Ry (5.1)
or a non decreasing sequence in case z = o0 is the singularity:

R < Rpop < -+ < Ry (5.2)
We also write pu; = pj + d;, with 0 < Rp; < 1 and d; € Z, and

J=D+S8,
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where D is the diagonal matrix of integers d;.
The differential system can be reduced to normal form by a standard procedure [33], and
this allows to find a fundamental matrix solution in Levelt form

Y(z) = G(¢)¢P¢t, (5.3)

where ( = z—a if a is the singularity, or { = z if o0 is the singularity. Here, G(() is holomorphic
at z = a (or at z = o0). In case the matrix coefficient 20(z) is holomorphic only in a sector
centered at the singularity, and admits there an asymptotic expansion, then G(¢) is holomorphic
in that sector, with asymptotic expansion there [33]. Moreover, the monodromy exponent L is

L=S+R,

where the matrix R is nilpotent and obtained by the formal computation of the normal form.

Consider the block partition of R inherited from J. For the singularity z = a, it possibly has
a non-trivial block in position (4, j), with 1 <4 # j <, if y; — p; = d; — d; > 1 is integer. For
the singularity z = o0, R possibly has a non-trivial block in position (j,¢) if p; —p; = di—d; > 1
is integer. It follows from the ordering (5.1) or (5.2) that R only has possibly non zero blocks
in the upper triangular part of its block partition (R is upper triangular if J is diagonal). The
diagonal blocks of R are zero (the diagonal is zero if J is diagonal).

Examples. The solution (2.1) is an example for a = 0. The solutions Y, (z, A) in (4.9) contains
the matrix factor T(A)Y, (2, \)zP™M 2L which is an example with ¢ = z and G(¢) holomorphic
at z = o in a sector S,: indeed, it is a fundamental solution in Levelt form for the Fuchsian
system (4.1) at z = oo of the paper [13].

Notice once more that, with the given ordering (5.1) or (5.2), for 1 < i < j < r we have
wi # pj and p; = p;j whenever p; — pj = d; — dj # 0 is a non-zero integer, and correspondingly
R possibly has a non-zero block in position (i,7). Therefore, possibly acting by a permutation
L — P~!LP if necessary (which means changing Y —— Y P by a permutation matrix P), we
can always do the above construction in such a way that L admits another partition into blocks

L=L1® --®Ly, with £ < r,

where each block L, is upper triangular, it has only one eigenvalue o, equal to some p; = p; = ...
from the set {p1,..., pr}, satisfying 0 < Ro, < 1, and o, # o, for 1 < p # ¢ < ¢, and the
corresponding diagonal matrix D of integer parts of the eigenvalues of J is split into blocks
D=D1® - -® Dy, with
Dq =diag(dq,1,dq72,....), q = 1,...,@,
where for each ¢ the integers form a non-increasing finite sequence
dq71 = dq72 = ...

in case the singularity is z = a; or a non-decreasing finite sequence

dq’1 < dq72 < ...
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in case z = o is the singularity. We can therefore rewrite
L=S+R, with S=5®---®Sy, R=R ® - --®Ry.

Each block L4, 1 < g < ¢, consists of sub-blocks, according to the structure (for some integer
kq):

S{q) 0 = =x =
Séq) 0 == =

Ly =5,+ Ry, Sq = ) , Ry = . , (5.4)
S}SZ) 0

(@)

where each matrix S;" is a Jordan matrix with the same eigenvalue o, on the diagonal and 1’s
on the second upper diagonal:

oq 1 0 O
o 1 0
S = t L= 1,2, kg
1
Oq

while in R, the 0 are zero diagonal blocks (corresponding to the blocks Si(q))

off-diagonal block which is possibly non zero (now the block partition of R, in (5.4) is inherited
from that of S;).

, and each * is an

One can also decompose the above L as
L=Y+ N, X diagonal and N nilpotent, (5.5)

with
YX=0i® - Doly, N=N D - DN,

Here I, ..., I, are identity matrices, each I, having the dimension of L,. It follows that
[X,N] =0. (5.6)

Therefore,

where

A:=D+X% (5.7)

is a diagonal matrix, whose eigenvalues are the eigenvalues of J. The above properties allow to
write

k
N
Z k— (Inz) ¥ finite sum,
where k depends on the order of nilpotency of N.
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In conclusion, a Levelt form (5.3) can be always chosen so that D and L (and so S and R)
satisfy the above properties (5.5), (5.6) and (5.7), namely

Y(¢) = G(O¢P¢E = g(o)¢r . (5.8)

This can always be achieved by a permutation matrix P, by changing a fundamental matrix
solution in Levelt form Y to another fundamental solution Y P with Levelt form having the
desired properties. In the Appendix, we will need the above choice of Levelt form.

Remark 5.1. In this section we have given the analytic construction of the “proper” Levelt
form, just starting from the analytic structure of fundamental solutions at a Fuchsian singularity.
For the geometric viewpoint, see [1].

6 Strong Isomonodromy Deformations

We define a central connection matrix Cy()) associated with Yy(z, A) in (4.9) with v = 0,
and with a fundamental solution Y (9 (z, \) in Levelt form (2.1) at z = 0, by

YVO(Z’ )‘) = Y(O) (Zv A)CO(A)

Notice that
Y,/(Z, )‘) = Y(O)(Za >‘) Co So---Sp-1.

Definition 6.1. Let Assumption 1 hold and let system (1.1) be weakly isomonodromic in D
with holomorphic fundamental matriz solution Y = YO in Levelt form, so that Theorem 3.1
holds, Assumption 2 is satisfied and the essential monodromy data

L(O), DO gre constant.

If also Assumption 3 holds, system (1.1) is said to be strongly isomonodromic on D when
also the remaining essential monodromy data are constant, namely

dS, =0, dL=0, D isconstant, dCy=0.

Remark 6.1. For a strongly isomonodromic system, the relations (4.8), if any, are satisfied by
definition, so that the fundamental matrices Y, (z, \) are holomorphic on R x D.

Theorem 6.1.

Part I. System (1.1) is strongly isomonodromic in D if and only if the fundamental matrix
solutions YO (2, \) and Y,/ (z, \) satisfy for every v € Z the integrable Pfaffian system (3.1) of
the specific form

dY = w(z, \YY, Wz, ) = (A + f) dz + Z (zEpj + aj(A))dAj, (6.1)
=1
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where

and w;j(A) has blocks

Afap)(A) (daj — db5)
Ao — A\ ’

()
“la,a]

(A) =0, W (X) = a£b=1,..s (6.2)

while

TA) =TiA) @ ®Ts(A)

is a holomorphic matriz reducing to Jordan form the diagonal blocks of A as in (4.1). Strong
isomonodromy deformations with constant T are allowed. In this case,

@j(A) = w;(A).

Part I1. If system (1.1) is strongly isomonodromic in D, then

0A ~ .
Ey = [@;(u),A], j=1,..,s. (6.3)
In particular,
aA[l,l] . aA[Q’Q] o (9A[S,s] . O
ox 0\ oo

and so the block-diagonal part of A and the Jordan forms Jy in (4.1) are constant on D.

For a strong isomonodromy deformation, PART II says that A ;1@ -@® A[ 4 is constant,
so it can be reduced to Jordan form by a constant block-diagonal matrix To. If T = T1®---® T
is another matrix satisfying (4.1), but not constant, then it has the structure

TO)=ToB),  BO) = BN @ @B,(\), with  [B;(N), ;] = 0.

The isomonodromic fundamental matrix solutions Y, (z, A) which satisfy the Pfaffian system
(6.1) have structure (4.9) with constant 7 = 7y if and only if system (6.1) is of the specific
form with coefficients @;(A) = w;(N).

In other words, if a differential system

ay A

—_— = <A0 + 0> Y

dz z
is given at A = Ao, where Ay has repeated eigenvalues, then it can have different isomonodromy
deformations (6.1), differing by the specific };; @;(A)dA;, namely by the specific T(A). For
all these deformations, the diagonal blocks are constant and equal to those of Ay, but the
off-diagonal blocks of A(\) are different for different deformations, satisfying different systems
(6.3), with different® matrix coefficients &; depending on the choice of 7()).

4This allows, in case n = 3 and s = 2, to have isomonodromy deformations with constant A, see Section 7.
For n > 4, it is not possible to reach a constant A by a gauge transformation, see Remark 1.2.

21



Two isomonodromy deformations with different 7 are related by a gauge transformation.
Suppose that Y satisfies (6.1) with matrices A(\) and &;(\) = w;(\) + ;T - T, where wj is
n (6.2). Consider the gauge transformation

Y =TT '\ Y,

where T is another matrix Jordanizing the block-diagonal part of A(\). Then, Y satisfies a
system (6.1) of the form

dy = (A + f) dz+ ) (zEpj +o§j)d)\j +dT - T
j=1
where 5 5 5 - 5
AN =T (TP ANT)T 0;(AN) =T (T rw;(NT)T (6.4)

Notice that &; is the same as in definition (6.2) with A replaced by A (the block-diagonal parts
of A and A are the same).

Remark 6.2. Suppose that we have a deformation with &; = w; for all j. Then the dependence
of Y, on \is
Yi(2,A) =T Yi(z:ha — ALy ooy As — A1) 2020 2

Indeed, formula (6.2) implies that

s 0A
dwih) =0, = ZT 0, = A=A —A,.... s —A1).
] =

Moreover, let us write (4.9) as

Yy (z,\) = H,(2,\)el*  with H, :=TY,zPz"

Then ‘91{;)\8 = %If” M+ H, - zEpjeAZ. Since Y, satisfies (6.1) with @; = wj, we also have

afé’:@ = (2Ep, + w;j(N\))H,er*. Thus,

0H, ° 0H
oV = 2[Ep,, H)] + w;(NH,, = Z

so that H, = H,(z; A2 — A1, ..., \s — A\1). Notice also that 2”2z commutes with E,. and that in
the strong isomonodromic case d7 = dD = dL = 0, so that we also obtain

oY, N N s
Y =2[E,.,Y,] +w;(\)Y,, = ;

59

This concludes.

stk skok ok ok ook ko skok ok ok ok ok
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Proof of Theorem 6.1. Let system (1.1) be strongly isomonodromic in D (Definition 6.1), so that
yhol — y(©) in Levelt form is holomorphic, and by Assumption 3 all the Y; are holomorphic.
Thus, we can take differentials. We define

=dy©@ (v~ — gy, (Yot = Ay, - (V)7 Z.
w(za)‘) d ( ) dC(O):Od 0 ( 0) all dSV:Od ( ) ) Vv e

This is single valued for the counter-clockwise loop z — ze?™, because the monodromy e2miL®
of Y and the monodromy e27L (SZ,SZ,H)_l of Y, are constant. Its singularities may only be

located at z = 0,00. We find the structure of w at z = 0 and z = o0 respectively.

Structure at z = 0. Let us decompose the differential as d = d, + dy, the former being the
component on dz, the latter on dAy, ..., d\s. Firstly, we compute

)D(O) + DO [,,~DO
z

A
B (z + reg, (z, A)> dz,  regi(z,A) =0(1), z—0,

LY . (Y©)1 Z GO g $O (P01 4 GO (GOTO) 14,

where we have used (3.9). Here, reg;(z,\) is holomorphic for z € C and A € D. Then, we
compute

d\ YO . (y (01 - GO (GO 4 GO g,y O L (Y O0)=1(G0))-1
dD(0) =dL(0) =0

= d\GO - (GO) 4 reg(z, N), reg(z,\) = O(z) - 0, z—0,
where reg(z, \) is holomorphic for z € C and A € D.
Structure at z = co. Firstly, we compute
4., Y, L =Td.Y, - Y, ' T 1+
(e o e R e

z

Due to the block structure of D and L and diagonality of A, we have 2Pzl A 2= F2=P = A,
while by (4.3), (4.6), (4.7) we have (D + 2PLz"P)/z = J/z + O(2?). Hence,

d.y, Y, = (A—i—l"’é’g(z_l,)\))dz, fe\)’g(z_l,)\) =0 (i) -0, z— o,

being 18g(1/z, \) analytic for z € C\{0} and X € D. Then, we compute

Y, Yy = T T Td\Y, - Y, T 4+ 2. TY, 2P2ldht27P(TY,) L

As before, from the diagonality of dA we receive zP2EdAz~L2=P = dA, so that
d\Y, Y, b =d\T - T + zdA + T[Fi,dA]T ' +reg (271, N),
where reg (271, A) is a 1-form in dy, ..., d\,, analytic for z € C\{0} and X € D, with behaviour

m/\g(z_l,)\) =O(1> -0, z— o0,

z
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Notice that dA = E, d\ + --- + E, d\;. By Liouville theorem and the above behaviours at
z = 0,00 we conclude that

A : . oT
W= (A + Z) dz + ;(zEpj +[TRT B, + v Y. (6.5)

It remains to show that [T Fi(A)T 1, Ep,] equals (6.2). The computations of section 4.1 of [13],
Proposition 4,1, yield the off-diagonal blocks

1<i#j<s. (6.6)

They suffice to evaluate [T FyT 1, E,.], since the diagonal blocks do not contribute. From the
definition of A in (4.4) and (6.6) we receive
T ATy

n _ %
Frigi = PYREDY

- _ 1) 1 _ ,]
(TEAT 1)[1'7]'] - ﬁF[i,j]T b= ’ N

Using the last formula, we conclude that
Afap)(A) (Oak — k)
)\a - )\b ’

It remains to show that isomonodromy deformations with constant 7 are possible. This
will be proved after Lemma 6.1.

a # b.

[TFl()‘)T_17 Epk][a,a] =0, [TFl ()‘)T_lv Epk][a,b] =

e Conversely, we assume that all the fundamental matrices YO and Y, v € Z, of system
(1.1) also satisfy

dy = [(A + f) dz + 2 (2Ep, + 200 ) axs v

with holomorphic &;(\) and A(X). In particular, this means that dY'(©) . (Y(©)~! and aY; - Y,
depend homomorphically on A.

Since w has Fuchsian singularity at z = 0, by Proposition 3.2 we know that indeed it has
holomorphic solution Y in Levelt form, and®

D(O), LO  are constant.

The fact that dCy = dS, = 0 is straightforward. Indeed, since all fundamental solutions
satisfy dY = wY, we have

dYy41-Y, ), =dY, Y, <= dS,=0.

5This can also be seen directly by taking

d)\Y(O) . (Y(O))—l _ dA(G(O)f/(O)) . (G(O)}’}(O))—l_f_

ko (0)\k
+(G<0>Y(O))(dA(O) nz+ 22" Z d(]\;d ) (In z)* ziN(O)zfA(O))(Gm)Y(O))*l.
k=1 :

Since w does not contain terms in In z, it follows that dA©® = gN© = 0, so that D© and L are constant.
Here, A® and N are the analogous of A and N in (5.5).
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dYp - Yyt =dy© . (vt —  4cy =o.

Finally, we show that D and L are constant. Recall from Section 5 that we can write
Y, = TY, 222N, with diagonal A and nilpotent N. By assumption

N (2Ey, + 3 (N)dN; = dyY, - Y, =dT - T+ Td\Y, - ¥, ' T+
j=1

k
+TY, <lnz dA + z Z kl lnz _Nz_A) (TY,) '+

+ 2 TY,dA(TY,)™ 1.

Since logarithmic terms cannot occur, necessarily dA = dN = 0, so that D and L are constant.
From the dominant terms at z = oo in the above computation we receive

5\ = [TRT . E ]+—TT—

e PART II. Suppose the system is strongly isomonodromic. By PART I, the matrices Y(©) and
Y ®) solve a Pfaffian system dY = wY where w has structure

w= (A + f) dz 1 Y (2B, + 3,00,
j=1

We write for short
w = Z Yo (x)dz?, (20,21, ..., 2%) == (2, A1, .0, ).

Thus, w is integrable, i.e. dw = w A w, which explicitly is

0 0
T% 0500 = aig +paps a#B=01,.,s (6.7)
{1,

For f=0and a=je ,s}, (6.7) is

ai (A + A) + (A + f) (ZEpj +5j(>\)> - aﬁz(ZEpf “T’j()‘)) * (ZEpj +aj()\)) <A i f> '

Expanding, we see that the equality is true if and only if the coefficients of z~! and 2° are
respectively equal, namely

0A ~
87/\]' = [wj(A)7A]7 (68)
[A, &5 (N)] = [Ep;, A]- (6.9)

The equations (6.9) have general solution

~ . ~ Afap)(A) (0aj — 0b;)
[wj()‘)]block a0 ATDItTary, [wj()\)]block ab = [o.0] py— )\Jb 2, a#b=1,..s.
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Thus,

5,00 = () + Dy (), (6.10)
where w;(A) is (6.2), while D;()) is an arbitrary block-diagonal matrix, which in our case must
be

oT 1
D= 2T,
Y T

The integrability condition (6.7) for « = k, § = j, with j # ke {1,...,s} is

0 ~ ~ ~ o
a—Ak(zEpj + wj()\)> + (zEpj + wj()\)> (zEp,C + wk()\)> = the same with j, k exchanged

This is true if and only if

[Epj7ajk()\)] = [Epkﬂaj()‘)L (6'11)
agj)\(:) + (,TJJ<)\)(::)]€(/\) = aggi\(j/\) + (:)]g(/\)(:}j()\), 1<y # k <s. (6.12)

The equalities (6.11) are automatically satisfied® by (6.10) and (6.2), while (6.12) implies the
Frobenius integrability of (6.8). Notice that the block-diagonal part of (6.12) is (see Lemma
6.2 for details)

0Dr(N)
N

dD;(N)
Ok

+D;(N)Di(N) =

+Dk(A)DJ()\)7 Jk=1 s,

and admits in particular the holomorphic solution D; = 07 /d); - T~* for some holomorphic
TN =Ti(AN)@---@Ts(N), in accordance with the required structure (6.5), which necessarily
holds in case of strong isomonodromic deformations. ‘

Let A[j 1) denote as usual a diagonal-block of A, and let Dfi?k] be a diagonal-block of Dj,
k =1,...,s. The block diagonal part of (6.8) now reduces to

Y

- [D(”H,A[k,k]], k=1,.. 5. (6.13)

SFirst, notice that each D; commutes with A and each E,,, so that
[Aa (:1]()\)] = [Epij]a [EPJ7U~J]€()\)] = [EPINLDJ'(A)]’ 1 g.] #k < S,
are equivalent to
(A wj(N] = [Ep, AL [Epyywr(N)] = [Ep,wi(V)], 1<i#k<s
Then, we show that
[Aij ()‘)] = [E:Dij]v and [Epjvwk()‘)] = [Epkawj ()‘)]7 1<j#k<s

Indeed, the [A,w;(A)] = [Ep,, A] imply that the matrices w; are as in (6.2). Substituting (6.2) we obtain the
blocks
k k j j
<[Ep_7~:wk] - [Epk’wj]) b j“wfa,)b] - wéa,)b]éjb - 6’““”Ei?b] + wfi?b](;’“b

Alab)

“ NN (5ja(5ka — kb)) — 06 (0ka — Okb) — Oka(dja — 0jb) + Okb(dja — jb)) =0.
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If D = 0, namely 7 is constant, the above implies constancy of the block diagonal part of A.
If 7 is not constant, we need the following technical Lemma, proved in the Appendix.

Lemma 6.1. Let T = 71 ® --- ® T be a matriz yielding a Jordan form J = J1 @ - - @
Jg =T} (A[Ll] @D A[S,s]>7', where each Jy is as in (4.2). If the deformation is strongly
isomonodromic, then

[T1dT,J] =0.

In case of strong isomonodromic deformation, we have D; = 07 /d\; - T~1. Using Lemma
6.1 and (6.13), we prove that A 1),. .., A[s 4 are constant. Indeed

OA [k k] ( ‘>

07%

0Tk
Tk Atk = A[k,k]aT’kal
é’T é’T

0Tk 1 5719

Lemma 6.1 6)\ Jkn 77€7;€ Jkn

This proves PART II.
By the constancy of the diagonal blocks of A for a strong isomonodromy deformation, it
is possible to consider deformations with 7 constant. Conversely, if 7 is constant, so that all

D; = 0, then (6.13) implies that all the Ay, ) are constant. O
It is convenient to point out from the proof above that [A, @J] [Ep],A] is equivalent to
@j(A) = wj(A) + D;(A) (6.14)
where w;(A) is (6.2) and
D; = DEJ? 1] @ P DE 5] arbitrary block-diagonal matrix. (6.15)

It is also convenient to state the following
Lemma 6.2. Assume that the matrices &;(\) are defined by
[A, @] = [Ep, A, j=1,..,5,

so that they have structure (6.14). Let 0 := %. The following facts hold.
a) The system
@wj —aj@- = [&i,&j], i,j = 1,...,8,

s equivalent to
Oiwj — Ojw; = [wi,wj] + [wi, Dj] + [Dj,w;i] block off-diagonal,

0iD; — 0;D; = |D;, Dy block diagonal.
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b) Assume moreover that

dA = [ &;(N)dA;, A, (6.16)
j=1
then
Oiwj — 0;0; — |4, @] = 0;Dj — 0;D; — [ Dy, Dy,
@iw]' — @-wi — ([wi,wj] + [wi,Dj] + [Dj,&]ﬂ) =0;
and
dAP = [D, AP,
where
AP(N) = Ap (V) @+ @ A (V) (6.17)

Notice that part b) above implies that if (6.16) holds, then the system 0;&; — 0;@; = [@;, ;]
is equivalent to @D] — @DZ = [Di,Dj], ’i,j = 1, vy S

Proof. a) Given any matrix w;, we can write it as @W; = w; + D;, a sum of a block off-diagonal
term w; + block diagonal term D;. Then

~

&-wj — 8]@1 — [Uvz,(:)j] =

= {@wj : 8jw3' —<[wi,wj] + [wi,ij] + [Dj,wiD} —i—{&ﬂ)j — ﬁjDi— [,Diypj]}
(%1%) (%2%) (#3%)

. v
ng

(*)
Clearly, (x1%) is block off-diagonal and (#3#) is block diagonal. It is easy to see that in (#2x),
also [w;, Dj| + [Dj,w;] is block off-diagonal. Indeed

0.

— o0 pl) ) @
[wi, Dj][a,a] = w[ D[tjz,a] —-D J w »

a,a] [a,a]“[a.a] ()
“la,a]

If the matrices &; are defined by [A,@;(A)] = [Ep,, A] for j = 1,..., s, namely if w; is as in (6.2),
then the whole (e) is block off-diagonal. Indeed,

GG IO
[wir0lfaal = 25 @lan @) ~ “lan@ha))
b#a

- At el (5. = 64) (650 = 510) — (Gra — 535) (625 — Gia)) =
. b;éa a a
This proves a).
b) We consider the blocks of (e) and substitute @y = wy + Dy as in (6.14). Then, where
E:)b] occur, we express the wff)b] in terms of A using (6.2), and then
we re-substitute dx Afgp) = [wi + D, A]ja,p)- After a lengthy computation we receive

derivatives of the blocks w

(o) = 0.
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This proves the first part of b). The blocks of (6.16) are

0Alap) _ N0 (00 () - ()
vl > (@A = Apaaelly) + PP Apagy — Apasy D5
c=1
For a = b, the structure (6.2) implies that
() G\ — [a.a] _
Z (w[cju,c]A[Cva] B A[%C]w[ia]) =0, a)\j = [DL(IJ)’ A[a,a]]'
c=1

We state the converse of Part II of Theorem 6.1.

Theorem 6.2. Let A and &, ...,&1 satisfy the system
[A,(T)j] = [Epj,A], j=1,...,s, (sothat @; = w; + D; as in (6.14));

dA = [ &;(N)dA;, Al;
j=1

0iD; — 0;D; = [D;,D;], 1<i#j<s;
Then, the following facts hold.
1. System (6.19) is Frobenius integrable.

2. The connection

Wiz, ) = (A + ‘j) dz + g(zEpj + 35 ) dy.

(6.18)

(6.19)

(6.20)

(6.21)

with matrices (6.2), (6.14) and (6.15) is Frobenius integrable. The Pfaffian system
dY = wY has a fundamental matriz solution YO (2, \) in Levelt form (2.1), with constant

exponents as in (3.6).

3. Assumption 3 holds and AP (\) defined in (6.17) admits constant Jordan form

TAPT l=J=J1@ - @Js,

where T () is a holomorphic invertible matrixz solution of the integrable Pfaffian system

dT = DT,

where D(A) := 377 Dj(A)dA;. Such a T(\) can be chosen block diagonal as J.

(6.22)

4. If there are no partial resonances (i.e. all the blocks A k=1,...,8, are non-resonant),

then every Y, (z,\) in (4.9) with T as in point 3. satisfies
dY, = w(z,\)Y,,

so that system (1.1) is strongly isomonodromic.
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Remark 6.3. We can choose the solution D = 0 of (6.20), and in this case 7 at point 3. is
constant.

Remark 6.4. In the proof of Theorem 6.2, we will see that for every v € Z there exists a
holomorphic matrix valued one-form K, (\) such that each Y, (z, A) in (4.9), with 7 as at point
2., satisfies the system

dY, = w(z, )Y, + Y, K,(\);

If all the blocks A k), k = 1,..., s are non-resonant, then we will see that K, = 0.

Corollary 6.1. If A has pairwise distinct eigenvalues, system (1.1) is strongly isomonodromic
if and only if (6.18)-(6.19) are satisfied.

Proof of Corollary 6.1. At point 3. the non-resonance condition always holds if A has pairwise
distinct eigenvalues Ay, ..., A, so that Ap, ) = Ak, K =1,...,n. O

Proof of Theorem 6.2.

1. A computation gives

%A %A
- = aiw'_ﬁ'\’i_ ~i7~'7A7 1< | < 8.
(7)\1‘(9)\]' (9/\](9)\, (6.19) [ i it [w w]] ] v y

From Lemma 6.2, if (6.20) holds, we receive 0,0, —0;&; — [@;, ;] = 0, which is (6.12). Therefore
0;0jA — 0;0;A = 0, so that (6.19) is integrable.

2. Equations (6.11) are automatically satisfied by the structure of the &; as in (6.14). In
1. we have seen that (6.12) holds. Now, (6.11)-(6.12) and (6.18)-(6.19) are the Frobenius
integrability conditions of (6.21). The last statement at point 2. is proved by Proposition 3.2.

3. By (6.20), system (6.22) is integrable and admits a holomorphic fundamental matrix
solution, call it T(A). Any fundamental matrix solution is T'(A\) = T(A\)Tp, for an invertible
constant matrix Tp. Take any such T'(\). Using (6.22), we receive

AT APT) = T~ (dAP + [AP, D])T.
By Lemma 6.2, dAP + [AP, D] = 0. Consequently,
d(T7*APT) = 0.
So, T~ YAPT is constant. Therefore, there is a choice of T such that
TYNAP(NT(A) =J  Jordan constant.

Since AP is block diagonal, we can take a block diagonal fundamental matrix solution T()\) =
TI(N) @ - @ FTs(N). Therefore, also Ty can be taken block diagonal, and so is T (\).
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4. Since Assumption 3 holds by point 3. and J is constant, there are fundamental matrices

Y, (z,A) as in (4.9) satisfying
ay _ <A+ AW) Y.,

dz z

which are holomorphic in R(C\{0,0}) x D. Therefore,
ou(2, ) 1= d\Yy, = Y (2B, + @5)d); Yo,
=1

is well defined, where d) is the differential w.r.t. Aq,...,A\s. Using d)0, = 0.d) and (6.19) we

obtain N
0Py A(X > ~
o (A * ) o +JZ_1([‘4’EPJ 03] ),

By (6.18), the above reduces to

0z z

20 _ <A+ A(A)) o

Therefore, there is on D a holomorphic matrix 1-form K, () (not necessarily invertible) such
that
v = YZIKI/'

We rewrite (4.9) with the specific Levelt form as in Section 5:
Y, (2,A) = T(A)Y, (2, )22 2NNtz

From point 2. (constancy of J) we know already that A is constant. Nevertheless, we will
indicate dA in the following, also if it is zero. We compute the structure of

S
K, =Y, 'd\Y, =Y, Y (2B, +&5)dA; Y.
j=1

We have
Y, ld,\Y, =

k
— e A (zNzA(TY) Y (TY) 222N 4+ 27 NdA Inz 2N+ 2~ Z kl lnz)kzNJrsz) et

Notice that dA =} ; Ej, dA;, so that

MK e N = NA [(T}Afy)l (dA(T}Af,,) = Y (2B, + ¥j)dA 7'17”)
J

dN
—_ lnz +22Ejd)\j.

—-N
dA1
+z nz-+ ol

i Mm
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Notice that [A,dA] = 0 (also in case dA # 0, because A is diagonal), and recall that [A, A] =
[A,dA] =0 and [N,A] = [N,dA] =0, so that

ANMN K, e M N A (7Y [ d ( Z (2Ep; +@j)dA; TY)
j

k
dNF
+dAInz+ 22 2 k— (Inz)k | 272 —i—ZzEpjd)\j.

The asymptotic expansion (4.10) holds in a sector S, of amplitude greater than 7. In such a
sector, we obtain

BN K e NN = N B, AN + TN T + T (Z[TFlTl, Epj]dxj> T+
J

J

—7! (Z wjdAj> T =T 'DT + ) 2E,,d)\;+
J J

k k
+dAInz+ 22 Zﬂ(lnz)k Z_A+O<1>.
= K z

In the computations in the proof of Theorem 6.1 we have seen that [T Fy7 !, Epj] = wj. By
point 2., dT = D(A)T. Therefore

N 1
2NN K e AN A Az + 22 Z —(Inz2)* |22+ 0 () .
= k! z

The off-diagonal blocks of the r.h.s. are of order O(1/z), because N and A are block-diagonal.

The Lh.s is
ePa=20)z zAazN[av“]K[(:)b]z_N[b’b]z_Ab, a#b=1,..s

)

Aa—Ap)z

Since e diverges exponentially in a subsector of S, while the r.h.s. does not, necessarily

K(V)b]zo, a#xb=1,..s

[a,

The diagonal blocks are

A ) A A . AN, a) A 1
z “zN[a»a]K[a,a]sz[avﬂ]z* “ =dA,Inz + 27 Z T’(lnz)k Zz 2+ 0 (z) )

k=1
Namely

2B V) ]z_A“ + zAa([N[ma], K ]] Inz+ terms in (Inz)" with r > 2)z7 % =

[a’a [a’a

=dA,Inz + zAa(dN[aﬂ] Inz+ terms in (Inz)", r = 2)z~ 2 + O(1/2).
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%60
K, .,

Figure 1: The structure of the sub-blocks K; of K [(:)a] corresponding to Ny, D, of figure 3 and
g = 04¢lq. They are split into sub-blocks.

Therefore, it is necessary that

zA“K[(;)a]z_A” =0(1/2). (6.23)

Recall that A = D + X. Proceeding as in the Appendix, we see that N[, ,] has diagonal block

structure, and correspondingly so has K [( )] Let for simplicity K := K, [( )] for a fixed a. Then
K=Ki® - ®Ky as in the Appendix. Since the integer diagonal entries in Dy, ¢ = 1, ..., £ are
an increasing sequence as in figure 3, each diagonal sub-block K, has structure as in ﬁgure 1.

In case of no resonance in A[, 4], then Dy = dyl; in figure 3, where d; is integer and I, is
an identity matrix of suitable dimension. Thus, the diagonal sub-blocks of (6.23) reduce to

K,=0(1/2), q=1,..L.

This implies that K, [(:L] = 0. O

7 The 3-dimensional case

Let n = 3. The isomonodromy problem of the case with no coalescences, namely A =
diag((A1, A2, A3), Ai # Aj, is highly transcendental. For example, for a certain class of ma-
trices A(A), the isomonodromy deformation equations (1.6) are equivalent to the sixth Painlevé
equation [23, 17, 27, 5, 15]. Coalescences of pairs of eigenvalues correspond to the fixed singu-
larities of the sixth Painlevé equation.

The opposite situation is the trivial case A = diag(A1, A1, A1). All the fundamental matrix
solutions of system (1.1) are

Y (z, M) = e24000C(A),  det C(A\;) # 0

The system is isomonodromic if and only if A is constant.
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The only non-trivial case we need to consider along a stratum of the coalescence locus is,
up to permutation,
A
01 ;\)2 8 + é Y. (71)
0 0 X ~

ay _
dz

The gauge ¥ = e*?Y and the change of variable ( = xz, where x := A\; — X9, yield

1 00
— = 00 O0J+—1]Y. (7.2)
0 00
Suppose that A is constant. Then the above admits fundamental matrix solutions with constant
essential monodromy data. Thus, the fundamental matrix solutions of the starting system also
have constant data, if x varies in a sufficiently small domain away from x = 0. Therefore, the
starting system is strongly isomonodromic.
We can obtain this result also from the point of view of Theorem 6.1. Since the diagonal

blocks App 1) = A11 and A o) are always constant in the isomonodromic case, we are allowed
to consider an isomonodromic deformation with

TA) =ToB(N), B(N) =B1(N) @ Ba(N), [B;(N),J;] =0, j=1,2,

where 7p is constant. We can also choose B(\) = B(A; — A\2). This implies that

oT B oT
YN
Moreover
1 0 A Az
w1 = )\1 — )\2 Agl 0 0 s Wo = —Ww1.
Az1 0 0

Since @y + @y = 0, the same arguments of Remark 6.2 imply that
A= A(x), T = A1 — Mg,

so that w; = w;(x). Therefore, the gauge Y = 7Y transforms the Pfaffian system (6.1) into

z 0 0
N A - d
dy = 00 0f|+= dZ+<ZE1+fD1($))d$ Y, &) =w(z)+ Tie)
000

z

where E; = diag(1,0,0). Its integrability condition (6.3) reduces to

e = [+ 57

T@)™, Al (7.3)
Now, a suitable choice of 7 (x) can be made such that

[wl(:v) + de)T(a:)—l , A] —0. (7.4)
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This choice of T is obtained by setting A = Ag constant, calculating by linear algebra a constant
To which Jordanizes Ag(i) ® AESLJ:
T ! (Ag(i) S AE(Q)?Q])% =1 ®Ja,

and the general B(z) such that [B;(z),J;] = 0. The so obtained T (z) = ToB(x) must be
substituted into (7.4), which can be solved as a system of differential equations for the entries

of B(x).

Example. We consider for simplicity matrices of the form

0 A Az
A= |4y 0 Ay
Az1r Az 0

In the isomonodromic case, Aog and Aso are constant, due to constancy of the diagonal blocks
of A. To simplify computations, we suppose that As3Ass # 0, so that the block Ap o is
diagonalizable, with eigenvalues ++/A32A23. Thus, the general form of T (x) is

10 0 alz) 0 0
A
T(l’) = {0 \/A2§%432 N \/A2§?:432 ' 0 b(l’) 0 (75)
0 1 1 0 0 c(x)
—. 7—0p;(rticular %‘(’x)

where TP i o particular choice for a constant matrix diagonalizing the block-diagonal
part of A. Equation (7.4) has solution

b(z) = boa’a(z), c(x) =cox Pa(x),  bo,co€ C\{0}, p:=~/A32As. (7.6)
With this choice of T (z), equation (7.3) becomes

dA
— =0 == A is constant. (7.7)
dr

Notice that this introduces the integration constants Ais, A3, As1, Az1. If instead we choose a

constant 7T, namely

1 0 0 ag 0 0
A A
T=To=|0 A2 Vi, | (0 b 0 constant, (7.8)
0 1 1 0 0 Co

then equation (7.3) has solution given by a non-constant A(x). Indeed, now A must satisfy

dA(z) 0 A fia(z) A2 A (2)
(@), A@)] = [~ A @) 0 0
— 232 Ay (z) 0 0

35



Since As3 and Ass are constant, the above is a linear system with Fuchsian singularity at z = 0,
with general solution
Ao

Ajo(x) = c1az? + coz™?, Ajz(x) = Tw(cl$p — o),

A
Agi(x) = c3z? + cqz™?, Azi(x) = —4 /A—zz(c?,xp —cqx™P).

Here, c1, ¢, c3,cq are the integration constants. It is a computation to check that the above
A(z) has structure

Ae) = To(T () AoT (2)) T

as predicted by the discussion leading to (6.4), where Ay is a constant, i.e. a solution of (7.7),
To is (7.8) and T (x) is (7.5) with the functions (7.6).

Remark 7.1. There is a precise correspondence, that we describe below, between constant
monodromy data of (7.1) and of (7.2). We consider the case when A is constant. This can always
be achieved by a gauge transformation, as explained before. In order to simplify computations,
we further assume that A is diagonalizable and non-resonant, so that (2.1) is

o0]
YO (z,0) = GO@) (1+ 3 FON:4) 7, g = diag(un, 2, s),
k=1

and assume that A o) is non-resonant (i.e £4/Asz2A23 not a half integer), so that (4.5) is
w . .
Yr(z,\) = T(x) (I + Z Fj()\)z—J>zdlag(Q P=p) Az
j=1

Take 7 (z) in (7.5), where TP — 70 has structure (7.8) and B(z) = diag(1,z?,27).
Then, dG = Z?Zl(wj + D;)d\;G in Theorem 3.1, reduces to

dG dT (z _ A
= (@) + d; )T (@) Ho= ~a.
so that
GOz) = GV27"”,  with constant G such that (GI)1AGY = J©),

Then, it is easy to check that the essential monodromy data of system (7.1) with the solutions
Y (©)(z, ), Yr(z,u) above and an admissible direction arg z = 7 are the same data of the system
(7.2) with admissible direction arg( = 7 + arg(A1 — A2), relative to the fundamental matrix
solutions

0 0

YO =GP (14 Y FOC)™, Ve(Q) = To(1+ Y By ) ¢Hnsl0r nmleCuline1.00),
k=1 j=1
0) 7

where the matrices F};, F}; are constant.
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8 A few words on the 4-dimensional case

The 3-dimensional case is rigid, namely one can reduce to a constant A. The first non-trivial
isomonodromic deformations occur with dimension 4, and are already highly transcendental.
Apart from the trivial situation when A ony has one eigenvalue and A is necessarily constant,
the cases we need to consider are (up to permutation)

Case (1): A =diag( A1, A1, A2, A3)
——

Case (2): A =diag(A, A1, A1, A2)
—_——

Case (3): A =diag(A, A\, A2, A\2)
e e

It can be proved analogously to the 3-dimensional case that cases (2) and (3) are rigid.
Heuristically, we can see this by the gauge transformation Y = e*?Y and the change of variable
¢ = (A2 — A1)z, which respectively yield in the two cases

~

dy A
- (diag(O, 0,1,1) + C) Y.

¢
Case (1) is non-trivial. Heuristically, we understand this by the gauge transformation ¥ =
eM?Y and the change of variable ¢ = (A3 — A1)z, which yield

dy A\ ~
— = | diag(0,0,0,1 +>Y and
e~ (102000, +

dy

dg
The matrix A(A\) must satisfy the isomonodromy deformation equations (1.6), which we show
below to be highly transcendental.

To simplify the treatment, we consider a case when A is much simpler than the general
situation. Up to a gauge transformation, we can assume that

. AN o A2 — A1
= | diag(0,0,x,1) + — | Y, T = .
( 8 ) C> A3 — A1

(8.1)

wj =wj forall j.
In general, for every n and s, we have seen in Section 6 that for an isomonodromic system
the relations [A,w;] = [Ep,, A], j = 1,...,;s, hold. This, together with our assumption that

wfi?k] =0,V1l<j,k<s, yields

Dwi=0, Y Awly = Apadu, YI<k(<s.
j=1 J=1

Hence, the isomonodromy deformation equations (1.6) imply

5 0A 5 0Ape
Z N =0, Z Aj ag\ 1 _ A[k’g]A[g’g] — A[k,k]A[k,Z]a V1<kl<s. (8.2)
j=197% j=1 J
Successively, we assume that
Aj=0 forallj=1,..s,
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so that (8.2) becomes

5 0A 5 8AW]
el A = 1<k l<s.
;1‘%’ 0, >\ 5y 0 Vv s

The above implies the functional dependence

A=A {AJ‘_M}H .
)\s*)\l j=2

In case (1), s = 3 and n = 4, the functional dependence reduces to

A= A(z), x—ii_ii

The deformation equations (1.6) reduce to

% = [@2, 4],
where @y = @o(x) is

02 @Ei)ﬂ 0

@ = ‘:’[(22,)1] 0 ‘DS,)?)] ’

0T @y O

and
(3] oo e [01]
@Ei)g] = A[;Q]v ‘3[(22,)1] = A[;l]’ @S,)s] = f[2,31]7 w[(:?,)z]

More explicitly, equations (8.4) are

dApg)  Apgidpz dApy _ Apygdps
de  1—z de x—1
J Ay Apgdpg Ay Apydpg
dz x ’ dx —x
dApz  Apadps dAp1) _ Apydpe
( dx z(l—x) dx z(zx —1)
where”
Ars _ | Au
A Ap Aoy |’
= [A31 A32], Ap,3] = Asa,
= [As1 As], Apz3) = Aus,

(8.4)

"Matrices are partitioned into the blocks inherited form A = diag(A1, A1, A2, Az) = Al @ \oli @ A3l
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Suppose now that A is skew-symmetric, so that we write it as

0 0 ¢1 ¢3 0 0 ¢1 93 B
A |0 0 @2 o] [0 0 @2 ¢4
00 0 ¢s 0 0 0 ¢s
00 0 O 00 0 O
Thus, system (8.5) becomes
(do1 _ 9395 dos _ d195
0 de (1 —x)’
QA2 _ Ga¢s d¢s _ 9205
de  1—21a’ dr  z(l—x)’
dos _ $1¢3 + P2¢4
dx x

If we further restrict to the simpler case ¢1 = ¢ and ¢3 = ¢4, we receive the three equations

dé1 _ ¢395 dos 195

de  1—1’ de  z(1—1x)’
dos 20103
dx r

Setting O := —ig5, Qo 1= V201, Q3 := i1/2¢3, the above system becomes

A0 Qs A2 005 d 0, 56
dx x de — 1—z’ dr  z(x—1) '

This system appears in [17, 18], where it is proved to be equivalent to the sixth Painlevé
equation® with parameters a € C, 3=~ =0, § = 1/2.

We conclude that already in the very simplified case with A skew-symmetric depending on
only three independent entries ¢1, ¢3, ¢5, the isomonodromy problem is as transcendental as
the Painlevé equations.

9 Example: the Caustic of a Dubrovin-Frobenius manifold in a
generic case

In this section, we give an important example where the theory of non generic isomonodromy
deformations along a stratum of a coalescence locus applies. It concerns the caustic of a semisim-
ple Dubrovin-Frobenius manifolds. The result of this section is to show that our Theorems 6.1
and 6.2 are realized at generic points of the caustic.

1 1 1 dy\?> [1 1 1 |dy

[§+y—1+y—w]<%) _[5+fc—1+y—x]%
yly—1)(y —=) z z—1 z(z —1)

T Ra 1) [“*5.172”@—1)2 5<y—x>2]

81n classical form

dzy

dy _1
dz? 2
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We cannot explain here the details of Dubrovin-Frobenius manifolds, introduced by B.
Dubrovin to give a geometrical formulation of 2-D topological field theories. The reader is
referred to [16, 17]. For the geometry of the caustic, we refer to [24, 31, 32] and in particular
to [28], in whose setting we will work.

In a Dubrovin-Frobenius manifold M of dimension n, the tangent spaces T),M at each point
p € M is a Frobenius algebra with multiplication o, analytically depending on p. If this algebra
is semisimple’ on an open dense subset of M, the manifold is called semisimple. The subset
K © M where o is not semisimple is called caustic. This is empty or a hypersurface [24]. A flat
metric 7 is defined'® on M, compatible with the product:

n(uovvw) = U(Ua’vo’w), (91)

for any vector fields u, v, w.

At semisimple points there is a basis of idempotent vector fields 71, ..., 7y, such that mom; =
d;jm, which are orthogonal with respect to . They commute, [m;, 7;] = 0, so that locally there
are coordinates u = (u1, ..., up) such that each m; = %ﬂ_ (with abuse of notation). They are
called canonical coordinates, being uniquely determined (up to permutation) as eigenvalues of a
multiplication operator Eo, where FE is a preferred global Euler vector field of weight 1. This is
a field satisfying Lieg(uov) — Lieg(u) ov —wo Lieg(v) = wow (in short notation, Lieg o = o)
and Lieg(n) = (2 — d)n, where d € C.

A sufficient condition for a point to be semisimple is that ug # up for all 1 < a # b < n.

A Frobenius manifold is essentially characterized by a “z-deformed” connection V defined
by Dubrovin [16] as follows

%ifv:: Z—ZvLEov—%ﬂ(v), Vuv i= Vyv + zu0 2, z € C* := C\{0}, (9.2)
on the vector bundle F*TM‘(C*XM — C* x M, where m : C* x M — M is the natural
projection, and w,v € (7*J)(C* x M). Here fi(v) := (1 — d/2)v — V,E, and V is the
Levi-Civita connection of 7.

Locally, at semisimple points where all the (uj,...,u,) are pairwise distinct, the flatness
(the zero curvature condition) of the above connection is an integrable Pfaffian system!'!, which

Dubrovin writes as

4y = [(U + VW)) dz + Zn] (2B; + Vj(u))duj] v, (9.3)

z izl

Here
U = diag(uy, ..., up),

9A point p € M is a semisimple if there are no nilpotent vectors v in T, M, namely no vectors such that
v = 0, for some integer m.

0We mean a symmetric non-degenerate bilinear form, non necessarily positive definite.

Tt is obtained considering the connection v acting on the cotangent bundle, by looking at flat coordinates ¢

satisfying Vdt = 0. System (9.3) is the representation of Vdf = 0 on the basis of normalized idempotents.
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is the matrix representing Fo both on the basis 7y, ..., 7, and on the normalized basis

T .
f] = 7‘77 n; = \/7](7[']‘,71']')7 J = 17"')”7
nj

(for a chosen sign of the square root), V' represents on the normalized basis the operator ji and
is skew-symmetric

E; = 0U /0u; has all zero entries except for 1 in position (j, j), and V; has entries

' . Sai — O
V3 (u) =0, VO (u) = V“b(“i (—]u,, W aib—1,.m. (9.4)

The above (9.3) is a particular case of (6.1) when all eigenvalues remain pairwise distinct, and
the matrices V; are the analogous of our w;. The integrability of (9.3) is

oV

— =[V,,V i=1,..,n 9.5

@u] [ VB ]7 J 9 s 10y ( )
which is a particular case of the isomonodromy deformation equations (6.19). By Corollary
6.1, they are necessary and sufficient conditions for the strong isomonodromy of the differential

& _ <U ; VW)) v, (9.6)

dz z

The local structure of the manifold can be explicitly constructed at semisimple points where
all the (uq,...,uy) are pairwise distinct, in terms of a fundamental matrix solution of (9.6) in
Levelt form at z = 0 (see [16, 17, 18]).

system

In [14], we have shown that the coalescence of a pair of canonical coordinates u, —u, — 0, for
some 1 < a # b < n, corresponds to a semisimple point of M if and only if lim,,, —y,—0 Vap(u) = 0
holomorphically.

In general, for a pair a # b € {1,...,n}, the condition V,(u) — 0 is not satisfied along
solutions of (9.5) when the corresponding u, — up — 0. Consequently, the entries of V' (u) may
have a branching at u, — up = 0, and may diverge along any direction u, — up — 0. Such
coalescences of canonical coordinates may not correspond to a point of the manifold. In case
they do, then the point must belong to the caustic.

Due to the singularity of V' (u) at coalescence points u, = uy , the canonical coordinates are
not the good ones to describe the manifold close to the caustic. The purpose of this section is to
show that in suitable local coordinates on M the flatness of the connection (9.2) is represented by
a Pfaffian system which, restricted to the caustic, is a system of type (6.1), satisfying Theorem
6.1, where A has repeated eigenvalues and T is non trivial. Moreover, the above mentioned local
coordinates, restricted at the caustic, are deformation parameters for a strong isomonodromy
deformation described by our Theorems 6.1 and 6.2. This purpose is realized in Proposition 9.1
and Remark 9.4 below.

A geometric study of the caustic of a Frobenius manifold has been done in [28], under the
assumptions that on an open dense subset of I there are are n — 1 idempotent vector fields,
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and the metric 7 is non-degenerate on K. These are the assumption we will also make here.
Such cases are realized in singularity theory, or equivalently for manifolds given by the orbit
space of Coxeter groups (see [28]).

The points of K in the above dense subset of [28] correspond to the coalescence of two
canonical coordinates. Let p € K belong to this subset and, without loss in generality, suppose
that in a sufficiently small neighbourhood B < M of p the caustic K is reached when

up — ug — 0.

It has been shown in [28] that theorems 2.11 and 4.7 (classification of 2-dimensional F' manifolds)
of [24] allow to conclude that in a neighbourhood of p the germ of the manifold is (notations
are borrowed from and explained in [24])

(M,p) = (I2(m),p) x (A1,p) x -+ x (A1,p). (9.7)

N v
"

n—2 times

These means the following. Local coordinates

(t1,t2,ug, ..., Up) (9.8)

are defined in a sufficiently small neighbourhood B < M of p € K, with local basis of vector
fields

o _ _ 2
?tla at27 7:3_6’&37 "->7Tn_§Una
T, Iy (m) Cr-2

satisfying the multiplication table

o, 0 _90 9 0 _ 0 0 0 im0
oty Ot dt’ Ot Oty b Ot P 0t 59 integer
{ T O Ty :5ij772'7 (99)
P P 1,5 = 3.
kﬁTlom:é’TQOﬂj:O
The caustic B n K around p corresponds to
ty =0,

and 0/dt9 is nilpotent at B n K.
For points in B\K, the idempotents 71, ..., m, and pairwise distinct canonical coordinates
(uq, ..., up) are well defined. The Euler vector field and the unit of o on B\K are

n
0
E=2uj—, e=m +ma+ w3+ 4+ Ty
j=1 Ouy

When I n B is reached, then u; —ug — 0 and the good coordinates become (9.8), which include
U3, ...y Up. On the whole B, we can write [28]

0 2 0 0 0
E =t — + Z o L = — o 9.10
1at1+m2(%2+2uj L es g Em T (9.10)



so that a—fl = m + mo is well defined also at the caustic. Moreover, 71 + 72, 73, ..., T, are the
n—1 idempotents defined on K nB. Notice that Fo is diagonalizable on K n 3, with a repeated
eigenvalue t; = u; = ug and pairwise distinct eigenvalues us, ..., Uy,.

So far we have reviewed the local description of the manifold at a generic point of the
caustic, according to [28]. We now show that the flatness of the Dubrovin deformed connection
in the coordinates (9.8) is realized at the caustic by a strongly isomonodromic theory obeying
our Theorems 6.1 and 6.2.

Using the multiplication table (9.9), FEo is represented on the basis

0 0 j
= — == i=fi=—= 3 =3,
WIS Gy W T ey WIS g
by a matrix
u 0
U= 9.11
(O U) , (9.11)
where 5
~ t —tp!
U= 5 m , Un—o = diag(us, ..., up).
—ta 1
m

In B\K, let ¥ be a matrix such that
VYT~ = U = diag(uy, ug, . . ., un),

with normalization

T n
Ty = (n(wa,wﬁ)) . (9.12)
a,B=1
The eigenvalues uy, ug of U are immediately computed:
2 U +u
uy =t + *tgn/Q t = ! 27
m 2
) — y (9.13)
2 m m
Uy =11 — Etgn/ to = (Z(ul — UQ)> .

Since system (9.6) represents the z component of the deformed connection (9.2) on the basis
of normalized idempotents fi, ..., f,, in B\K, and U represents Fo on the basis wy, ..., w,, then
the gauge transformation

Y = VY,

gives a differential system representing the z-component of (9.2) on the basis wy, ..., wy,:

Y
a _ (u + V) Y, V:=9"'vy (9.14)
dz z

In other words, ¥ gives the change of basis
[ 0 0

Ea%?f&"'?fn] = [f11f27f3>"'7fn]\1j' (915)
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System (9.14) is expressed in the good coordinates (t1, t2, us, ..., uy). The manifold structure is
analytic at IC in these coordinates. Therefore, the coefficients of (9.14) analytically extend from
B\K to the whole B, and in particular V(t1, t2, us, ..., u,) must be well defined and holomorphic
also at the caustic t5 = 0.

The matrix ¥ diagonalizing U is partitioned into blocks as U:

( it(2—m)/4 it(m—Q)/4
5 V27 NP
& o ﬁtgz—m)m _ﬂtgm—z)m
U = LS V2 V2 (9.16)
0 In—2
1,9 = n — 2 dimensional identity matrix
a and b functions of (ty, ta, us, ..., uy,)

The condition (9.12) implies
m—=2
2

a® =g +1ty% 7, b =2 — 1y 2 1. (9.17)

(2 N . _ (2 0N _ _ (d 7
mi =0 ot oty ) m2 =1 ot oty ) 22 =1 oty Oty )

Notice that 711, 702 are well defined at to = 0, because so is the metric 7 and the manifold
structure is analytic in the coordinates (¢1,to, ug, ..., up).

m—2
2

where

By (9.16), U is not holomorphically diagonalizabe at to = 0 for m > 3, in accordance with
the fact that the change of coordinates (u1,ug; us,...,un) — (t1,t2; us,...,u,) is singular at
K as in (9.13). For m = 2, U is holomorphically diagonalizabe, which is an example of the
semisimple coalescence studied in [14].

Remark 9.1. By (9.1), (9.9) and the unit e in (9.10), we receive
mi =+ 172, flag = t5' 1. (9.18)

Let m > 3. The above (9.18) implies that 7722’152:0 = 0, and thus

ﬁ12’t2=0 # 07

otherwise the metric would be degenerate at to = 0, which cannot be by assumption. Now
let m = 2. In case 7712’@:0 = 0, then 7711‘@:0 = ﬁgg‘mzo # 0, otherwise the metric would be
degenerate at to = 0.

Let V[1,1) be the 2 x 2 upper left block of V. A lengthy but elementary computation proves
the implication

T ~ ~ _
v+vT=o, iVia(u) ( e Tty 2)
tm—2

— V[l,l] =

V=U"'V¥ and (9.17) My — T —f —72
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The above matrix has eigenvalues +iVi(u). As already explained, V[Ll], 12, N11, f22 are well

defined at to = 0, namely for u; = ug, as analytic functions of t1(= u; = u2), us, ..., u,. Hence,
the limit for u; — ug — 0 of Via(u) is well defined as an analytic function of ¢1,us, ..., u,. Let
Vig:= lim Vig(u) inB. (9.19)
u1—ugy—0

In principle, it depends holomorphically on t1, usg, ..., u,, but we will show that Via is constant.
Keeping the above discussion into account, in B n K we have

r ° ~
'V 12 0
Te( 0N o wes
M2 \—M1 —M2/ |,
Viall,—o =19 . S (9.20)
%P ma2 M1
T R R , m=2.
(VT2 =T \—Mm1 =2/, _g
Using (9.13) and the chain rule % = gg% + %% for k = 1,2, the du; components

(je{l,...,n}) of (9.3) become

o _ v Yy,

—— = [ 2V + BV +U (V) + Vh) (9.21)
oty —_— oty
(E1+E2)
Y m—2 m=2 ov
Y _(, ty? UHE —E)U +t,2 U1V — W) -0 — )Y, (9.22)
é’tg atQ
v
N _ (o Ew oV - qf—li)Y, j>3. (9.23)
Ej
with )
e
2t,? VY E —F)U=2 (1 0
In—2

By the same chain rule, it is easily seen that from the deformation equations (9.5) we receive

oV ov

— = ot Vo) — 01— 9.24
A ERURAGI A (9.29
oy [m=2 L ov

o RV T it 2
&[T w2 ). (9.29)
v o[ Lov ,

— = |V U — U — = 3. 2
o [ v, %,V}, j>3 (9.26)

The Pfaffian system given by (9.14) and (9.21)-(9.23) represents the flatness of the con-
nection (9.2) in the good coordinates (t1,t2, us,...,up) in B. All the coefficients must be
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holomorphic at to = 0 in these variables. The flatness of the connection (9.2) restricted at
B n K is then represented by (9.14), (9.21) and (9.23) restricted at ty = 0, namely

dy Vo -
E N (u‘m:o + 72 Y, u‘t2=0 = dlag(tl’tl; u3, ...,Un),
oYy _10¥ _
ot (Z(E1+E2)+V2‘t2=0_ v 1571t 0>Ya Vo i= UV + 1R) ¥,
-
oYy _, 0V ) _1
%z <2Ej+vj|t2=0_ E >Ya Jj=3, Vi =¥ V0.
L ¥ J lta=0
(9.27)

6751 atl
(9.28)
v
. vj—\rli V|, i=3
au] au] to=0

Proposition 9.1. The Pfaffian system (9.27), representing the flatness of the Dubrovin de-
formed connection (9.2) restricted at caustic K n B, is exactly a system of type (6.1), with

Ss=nNn— 17 P1 = 27 pP3=-""=DPn-1= 17 (Ah ---7)\n—1) = (t17u37 7“71)

and
A = diag(A, A1, A2y ey A1) = u\tgzo’ A(N) = V|t2:0 as in (9.20).
[
n—2 distinct
With the above identification, system (9.28) is exactly the isomonodromy deformation equations
(6.3).
The block-diagonal matriz T (X\) which reduces to Jordan form the block diagonal part An®

T()‘) = ’Tl(>\) @ diag(h2a ) hn71)¢ (929)
——
2x2
where T1(X) bringings the upper left 2 x 2 block Ap1y to Jordan form, while the other hy,
2 </l <n—1, are arbitrary scalar constants. In (9.27), one exactly has

ov oT 0w oT
_\11_17 - 7 —1 —\11_17 _vr 1 . > 3 9.30
Oty lta=0 8t1T ’ Oujlta=0 auJT ] ) ( )
and
V2’t2 = Wi Vj‘tQ = Wj—1, j=3,..,n.

The proof will be given after Remark 9.4. Notice that A()) := V| ty—o is holomorphic in
BN K, and B can be made sufficiently small so that Assumption 1 of the Introduction is satisfied.
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Remark 9.2. According to the block structure A = A\Is @ ()\211 DD )\n,lh), we have

Ep12E1+E27 Epj: J+1, 2<]<7’L—1,
and the matrix A must be partitioned into the following blocks. A 17 is a 2 x 2 block. Let
Jyk €{2,...,n —1}. Then, the Ap;) are 1 x 2 blocks; the A j are 2 x 1 blocks; the Ap; ;) =
Aji1 k41 are matrix entries (1 dimensional blocks!). The structure (9.29) is required by this
block decomposition to fulfil Theorem 6.1.

Proposition 9.1 not only tells us that the isomonodromy deformation theory developed in
this paper applies at the caustics, but also allow us to predict properties of the caustic itself,
as in the following

Corollary 9.1. The block V[1,1]|t2:0 is constant. In particular, 10/'12 = limy, —y, Vi2(u) defined

in (9.19) is constant, and 7711‘@:0 and 7712‘@:0 are constant.

Proof of Corollary 9.1. 1t follows from PART II of Theorem 6.1, which applies thanks to Propo-
sition 9.1, and from (9.20) . O

Remark 9.3 (on the value of V12) Remarkably, the value of the constant Vi5 can be written
explicitly:
i(m —2)

Vig =
12 o

(recall that m > 2). This result was first observed in [28], and can be proved in three ways.
1) It is proved in [28] by purely geometric arguments, starting from the decomposition (9.7).

2) It is rather laborious to show analytically that the isomonodromy deformation equations
(9.5) admit a solution V' (u) with the property that lim,,_,,—0 Vi2(u) exists finite, if and
only if this solution is such that in a neighbourhood of u; — us = 0

. w w
o h 1—0o k h 140 k
V12(U) - ? + Z bhk($3, ""'rn*l) .Z'2+( : + Z ahk‘('r:ia "'7$n71) .%‘2+( to) )
(h,k)#(0,0) (h,a)#(0,0)
where .
O'G(C, O<§RU<1’ szjilﬂ j:27"7n_17
Up — UL

and the functions apg(x3, ..., xn—1), bpg(x3, ..., x,—1) are analytic around p. Hence,
o /1o
Vi = 5 is constant.

Then, using again equations (9.5) one can prove that Vis = i(m — 2)/2m. This is more
laborious than the geometric proof of [28].
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3) Using the approach of this paper. We have seen that the coefficients of equations (9.22)
and (9.25) must be holomorphic at to = 0 in the variables (1, t2, us, ..., u,). We prove at
the end of this Section that

m—2 oV
ty? TNV — Vo)V — quaTQ,

is holomorphic at t; = 0 (as it must be) if and only if Viy = i(m — 2)/2m.

Remark 9.4 (On the strong isomonodromy at the caustic). From Remark 9.3 it follows
that 0 < %(10/12) < 1/2. Thus, V1 |t2:0 is non resonant, so that by Theorem 6.2 system (9.28)
is a necessary and sufficient condition for strong isomonodromy. Therefore, likewise the case of
semisimple points, also at the generic points of the caustic here considered, the Dubrovin flat
connection is realized by a strongly isomonodromic system.

Proof of Proposition 9.1. The z(E; + E3) and zE; terms in (9.27) correctly display E, =
E1+E2andEpj= i+, 2<j<n-—1
e First, we show that the matrices V;, j = 2,...,n, in (9.27) are
V2|t2:0 =w1()\), Vj|t2:0 Zijl()\), j =3,..‘,n.
with the structure (6.2). We start by computing Vs in B.

0 0 m‘/_ﬁ
0 0 uQVf’Lk
Vo =01V + Q)T = 0! : S 0..0---0]|W
Ul‘/—#uk MV_% 0---0---0
0---0---0
Vi
S up —u
. 31 1V2kk
U — U,
Vi1 Via 3
up —up Uz — ug

We want to take the limit for to — 0, namely for u; —ugs — 0. We use (from (9.13) and
V = V¥~ the relations
m—2

a 2—m m—2
V1k=<t Vit ! V2k>
4 /2 ﬂ 2 2

Uy —uUg = —ty ', k=3,..,n,
m

ib [ 2, me2
Vzk=ﬁ ot Vig—ty* Vor
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and receive

Vik Vig w1 +ug — 2uy, 2 ¢t
e e o — Vok
g1 Uy — U _ (w1 — up)(uz — ) m(ur — ug)(uz — uk)
Voo Vor  u1 + uz — 2uy 2ty y
S 2k _ .
U2 — Uk 2 (up —ug)(ug —ur)  mup —ug)(ug — ug) !
% . LA
— Al — Ng—
N Ul Uk — 1 k—1 : Vom > 2.
to—0, up —us—0 VZk‘t 0 Aoy
= A L
Ul — Uk )\1 - )\k—l

In the last step we have used t; = w1 = uo at the caustic, the definition \; := t1, Ap_1 := ug,
k=3,..,n,and A()\) := V|1;2=0‘ Successively, we use

1 2—m m—2
Vi1 = <t2 4 Vo + ty 4 VM)

ﬁ a
k=3,..,n,
Vig = (tTV Y >
k2 V2 b 2 k2 2 k1
and find _ _
Vi ~
k1 Via 3 -
U] — U U2 — Uk
Vi ur + ug — 2uy 2 to Vi Ve  u1 + uz — 2uy, 215 Vi

2 (up —up)(ug —up)  muy —up)(ug —ug) 2 (ur —ug)(uz —up)  m(ur —up)(ug — up)

— = s .
to—0, u1—uz2—0 Ul — Ug up — Ug /\1 — /\k,1 )\1 — /\k,1

Notice that the above computations confirm that V5 is holomorphic in a neighbourhood of
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to = 0. In conclusion, we have found that

A

0 0 1k
Al — A1

A

0 0 %
Al — Mgt
V2|t2:0: : : 0---0---0
Ag1 Ak 0. 0.0

A= Ae—1 AL — Ao

0.-0---0

The above is the correct form wq (), corresponding to the left upper block diag(t1,t1) = t113 =
Ml of A=U ’ ty=0" Analogous computations confirm that the V; are holomorphic in a neigh-
bourhood of ¢t = 0 and

Vrs| — (67”'_55') " Ars)\ (57«_ i— —53_ i— " .
vij:( =00 ) :( () G151 = Fsr, 1>> L ass

Upr — Us S Ar—1— As—1 3

which is the correct form of w;_1(\) corresponding to the other 1-dimensional diagonal blocks
of A=U | 19=0"

e Next, we check if in (9.27) the correct term %/\(;‘) - T(\)~! appears, namely we prove the
equalities (9.30), with 7(\) = T (t1, us, ..., u,) having structure (9.29). Observe that in B

A_l(?\f! 0--- 0 A_la@ 0--- 0
il y-1-_=
oty 0--- 0 auj 0--- 0
oV oV
vl — = vl — = >3 9.31
atl : : I au‘] : : I ] ? ( )
0 0 0 0 0 0

The hy are a priori arbitrary functions, because they reduce the 1-dimensional blocks A, =
Vg+17g+1’t2:0 to “diagonal form”! Corresponding to the 0 block in (9.31), equations (9.30) are
satisfied if the hy are non-zero arbitrary constants. 7; must reduce the block Ap 17 = Vi 1 ‘ £9=0
in (9.20) to Jordan (diagonal, in our case) form. Thus, we have to solve for 7; the system

(0Ti._ .,  ~_ 00
il —_yp 1=
(%1 7-1 atl to=0
T, L 0U ,
o — g 1= > 3, 9.32
) (9uj7-1 uj Itz =0’ J ( )
iVis 0

T Vil = (

o “constraint”.
0 —iVio
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s 6\1'| s \Il_l ov | n (9.32) all have the same structure. Indeed, let
oty lt2=0 t

& be one of the variables 1, us, ...,un. Then the corresponding "known term” is the value at
t2 =0 of

The "known terms

_ Oim2 97)11 m-2 ym- 2< o 97712)

= t =
6100 1 M2"ge T M 5e M2"5¢ o€
0€ (0.16) 2(7ity — 153 if},) _ 57]11 _ 57712 _ 57]12 _ 0f1 g2
o Mo Tog M
(9.33)
This is analytic in variables (t1, t2, us, ..., u,) in a neighbourhood of ty = 0.
Case m > 3. In this case 712 # 0 (see Remark 9.1), so that
1 I 0
\’I\]_lag . 1 7712 ag
k|, o 2 <1 i M (97]12) 1 dme
e 0§ 7y 06 Mo 06 t9=0
The general solution of (9.32) is then
C~1 0
V2
,Tl = Cl 1711 o s C1,C2 € C\{O} (9.34)
~3/2 \/% .
2=0
Case m = 2. By Remark 9.3, V|1, |t = (, so that we can take any solution of 67’1 'Tl
— 9! 6? . The general solution is, for an arbitrary constant invertible matrix C|

7-1(751,U3,...,un) = \’I\ffl(tl,o,u?,, ,un) C

1 —1
B 1 Ve + M1 /e — T C
(9.16), (9.17) /2 1 i '

Ve i V2 — i/ =g
Notice that if hypothetically Via # 0, then the choice of 77 which diagonalizes V[1’1]| 1y—0 D
(9.20) for m = 2 is

+ : . o e
¢= <+(:oz _éﬁ> = T 111]| o i = diag(£iVia, FiVi2).

O]

Proof of point 3) of Remark 9.3. The coefficients of equations (9.22) and (9.25) are holomor-
phic at to = 0 in variables (¢1, t2, us, ..., uy) if and only if so is the term

m=2 ov
ty? UV - )T wl%

o1



We have

0 —2Vis ... Vi
Uo—u1 UL —Up
_2Voy 0 o =Vor
Ul —us U2 — UL
TV - ) =v! : S 0..0---0]|W
Vi —Vio . .
Ul —uUR  U2—Uk 0 0 0

0---0---0

The analogous computations of the proof of Proposition 9.1 lead to

- A
tm 3
O(1/t9) O(ty™?) SV
O(l/ty)  O(1/t) — Ao
i ’ A1 = Ag-1
m—2
me2 . |
N (Vl_VZ)\PtQ:O : : 0---0---0
Akl _Ak2
0---0---0
A1 — )\kfl AL — )\k,l
0---0---0
On the other hand, using (9.16) and (9.17) one finds
~ O(1/ty) O3 i Qe
a6 0 0 (1/t2) O~
Ots 0--- 0 O(1/ta) O(1/ts) N
Q .
\11_157 = S ~ : 0---0---0
Ota o to—0
oo 0 0 0 0--0--0
0---0--0

All The O terms are explicitly computed in terms of 711, 712, Vi2. From this, one sees that in

m=2 ov
@2vﬂm—wm—m457
to

52



the divergences holomorphically cancel if and only if Vi3 = i(m — 2)/2m, and in this case

0 0 o Aw
A1 — Ag—1
0 0 C_TAw
A1 — Ag—1
m=2 oV
ty2 UV — Vo) U — 0 187752 = f : 0---0---0
to=0
Ak —Ap2 0. 0.0
A= Ap—1 A= Apo
O---0---0

O

In conclusion, Proposition 9.1 shows that the isomonodromy deformation theory devel-
oped in this paper, summarized in Theorems 6.1 and 6.2, applies to the caustic of a Dubrovin-
Frobenius manifold of the class studied in [28]. The representation of the Dubrovin flat connec-
tion on the basis 0/0t, 0/0ta, 73, ..., T, and restricted to the caustic, is exactly a Pfaffian system
of type (6.1), and the z-component is strongly isomonodromic (Remark 9.4). Moreover, the
isomonodromy deformation theory developed in this paper allows us to predict some properties
at the caustic, as Corollary 9.1 and Remark 9.3.

10 Appendix. Proof of Lemma 6.1

We consider the Jordan form J = J1 @ ---® Js of A[Ll] ® D A[S’S] and the corresponding
L=L1&® - -&® Ls;. We prove that if the deformation is strongly isomonodromic, then

[Tk_l% | Lk] _ [Tk_l% 7 Jk] =0, Vk=1,..s.
j J

For a strong isomonodromy deformation, J and R, and equivalently D and L, are constant.
The factor zPz% in each
Y, (2,A) = T(NY, (2, \) 2P 2Le*?

corresponds to a fundamental solution in Levelt form for the system (4.1) of [13], which has a
Fuchsian singularity in z = c0. Up to a permutation, we can always assume that the matrices
Y, (2,\) are taken so that zPz% satisfies the properties of Section 5 (to which we refer for
notations).'? Therefore, following Section 5, we can write

Yy(z,A) = TAAY, (2, A) 2PN,
Step 1. First, we show that

[T\ YT (N, D+ %] =0, (10.1)

20ne can take a permutation matrix P, which does not change A because it permutes indexes inside the same
~ —1 —1
block, which yields TP(P~'Y, P)z" "PFzP "LFe*A with the desired properties of Section 5.
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and

[T(\) 1T (\),N] = 0. (10.2)
In order to prove (10.1)-(10.2), recall (4.9)-(4.10) and let
Vo(z,\) := Yy (2, VT(N) 7, D) :=TN(D+2)T(N) !
Vo (2, A) = T, (2, VTN, NA) := TANTA) ™

Then, we have

Y, (2, A) =Y, (2,A) 22NN T(A) = Y, (2, N) T(N),

Vo2 N) ~ T+ Y TWFNTN) 277, 2> 0ins,.

j=1
Let dy be the differential w.r.t. Ay, ..., \s. From (6.5),

S

3 (zEpj + wj(A))dAj AT T~V = dyY(2,0) - Yy (2, A) !
j=1

The right hand-side is

Yy -V, 4V, dT - T Y =

f o & T c o o A -
_ d}\yy . yy—l +, Z_ ( )(h’lZ)m Z—@yu—l _|_yVZ© kZl (k' )(h’lZ>k Z—fﬁz—ﬁyy—l_'_

+Zj>uz©zfﬁdAZ—‘ﬂZ—©§V—l +JA),,zgz(ﬁeAsz~T_le_Azz_mz_ng);l (103)

0

C o o & dOm C S A A
=\ -V, 1+, Z ( ' )(ln 2™ 2Py 4 Y, Z (k" )(ln 2)F TPy
W 1 m. =1 .

+zJAJl,dAJA/,jl +3,2°2.24T - T_lz_mz_©37171~
In the last step, we have used the fact that e** commutes with d7 - 71, © and 9, due to the

block structure. The absence of logarithmic singularities in >}%_, (2Ep; +w;(\))dA; +dT - 7!
requires that

a® = d(TOD + )TN 1) =0, dR=d(TONTN) ) =0 (10.4)
Since d(D + X) = dN = 0 for the strong isomonodromy deformation, the above conditions are
satisfied if and only if (10.1) and (10.2) respectively hold. In this way, also the last term in
(10.3), namely

Y, 22T - T—lz—‘ﬁz—@y;l = y,,zDJrZzNT_lde_Nz_D_Ey;l,
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Figure 2: Structure of the blocks Ly of L. Here, X, is diagonal and Ny is nilpotent

does not contain logarithmic singularities when (10.1)-(10.2) hold, because it reduces to
VAT - TP, =dT - T~ +0(1/2).

Notice that the above behaviour is in agreement with >3%_, (2Ep; + w;(A))dA; + dT - T-L
Notice that if J is diagonal, T(A\)(D + )T (A\)~! = T(\) J T(A\)~! in the first equation in
(10.4)

Step 2. The relations (10.1)-(10.2) can be written for the individual blocks inherited from
L=01® - @L;and T =T1 P -- DT, It suffices to consider a single block with label k.

As already explained, up to a Y, — Y, P given by a suitable permutation matrix P, we
assume that for each block Ly, k =1, ..., s, the Levelt structure explained in Section 5 applies.
See figure 2.

We consider the problem at the level of a single block with label k. In order to avoid a
proliferation of indices, from now on J, £, R, S, D, ¥ and N will respectively stand for .Ji,
Ly, Ry, Sk, Dy, X and Ni. We will take the label k only for 7, in order not to confuse it
with the full 7. To them, the structures of Section 5 apply. Now, we have L = L1 @ --- D Ly
for some ¢, and

YX=0li® - -®oly,

with eigenvalues o, (with real part in [0,1)). Hence, since D is diagonal, (10.1) for the block k&
of T71dT gives
[T P +35] =0 — Thi=TPao --a7®.

Now, D=D1® - ®Dy,and N = N7D---DN,. Notice that
[(E(k))*ldﬁ(k),Dq +3,]=0. (10.5)
Each V; (¢ = 1, ..., £) is upper triangular, it has zeros on the diagonal, and its diagonal blocks are

elementary Jordan sub-blocks with 1’s on the second upper diagonal, as in figure 3. Accordingly,

95



N D The same integer
q q

in a sub-block

01 d(,l /
019 " 0
0
g 0 dqddld
01 a
0 o 0 o
01 .
01 o’
0 °

Figure 3: The structure of the sub-blocks A, and D, of " and D (that is, of a certain N}, and
Dy,), corresponding to ¥, = o4l,.

D,, which is diagonal with a non decreasing sequence of integer eigenvalues, has sub-blocks with
the same eigenvalue corresponding to a Jordan sub-block in NV, as in figure 3.

The above facts and (10.5) imply that (E(k))_ldﬁ(k) is divided into sub-blocks as X, + Dy,
where the only non-zero sub-blocks are the block-diagonal part, as in Figure 4 .

If follows that [Tx(A\)"'dTx(\),N] = 0 (from (10.2)) reduces to
[(T9)~1aT®) Ny = 0, (10.6)

Let M, := (Ta)~LdT,™, and let M@

[ab] = M(g)a]5ab be a sub-block. From (10.6) we receive

[ b
(@) (9) (9) (@) _
M[a,a]N[a,b] - N M[b,b] =0.
In particular
MEQ) ]J\[[(Q)] . N[(q)]MEQ)

which means that M, commutes with the block-diagonal matrix ./\/'[(ﬁ)l] @J\/'[(QC{)Q] @ --ON, [(Zz] (=
Jordan matrix obtained from the diagonal sub-blocks of A in the left part of figure 3).

Now, observe that D, + X, + (N, [(ﬁ)l] G—)./\/'[gq’)Q] @) =T, Since M, also commutes with
D, + X4, we conclude that it commutes with J;, namely

(TN~ a1, 7,1 = 0.

Therefore,

[(Te)~'dTx, T] = 0.

Coming back to the original notations, the above is [(7T;) "'dTg, Ji] = 0. This is what we wanted
to prove. []
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(7;(/%) ) _1d7;("’)

d
q,3dq,3 0
0 s,

=
w

Figure 4: The sub-blocks-structure of the block (E(k))_ld’ﬁl(k).
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