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This thesis is concerned with the problem related to data storage and management. A large

storage server consists of several hundreds of disks. To balance the load across disks, the system

computes data layouts that are typically adjusted according to the workload. As workloads change

over time, the system recomputes the data layout, and rearranges the data items according to the

new layout. We identify the problem of computing an efficient data migration plan that converts

an initial layout to a target layout.

We define the data migration problem as follows: for each item, there are a set of disks that

have the item (sources) and a set of disks that want to receive the item (destinations). We want to

migrate the data items from the sources to destinations. The crucial constraint is that each disk

can participate in only one transfer at a time. The most common objective has been to minimize

the makespan, which is the time when we finish all the migrations. The problem is NP-hard,

and we develop polynomial time algorithms with constant factor approximation guarantees and

several other heuristic algorithms. We present the performance evaluation of the different methods

through an experimental study.

We also consider the data migration problem to minimize the sum of completion times over

all migration jobs or storage devices. Minimizing the sum of completion times of jobs is one of

the most common objectives in scheduling literature. On the other hand, since a storage device

may run inefficiently while the device is involved in migrations, another interesting objective is to

minimize the sum of completion times over all storage devices. We present hardness results and

constant factor approximation algorithms for these objectives.
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In addition, we consider the case when we have a heterogeneous collection of machines. We

assume that heterogeneity is modeled by a non-uniform speed of the sending machine. For the

basic problem of multicasting and broadcasting in the model, we show that Fastest Node First

scheme gives a approximation ratio of 1.5 for minimizing the makespan. We also prove that there

is a polynomial time approximation scheme.
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Chapter 1

Introduction

1.1. Data Migration Problem

A large storage server consists of several hundreds of disks, connected using a dedicated

network, called a Storage Area Network. Those disks may be used to store multimedia files in

video-on-demand servers, or search indexes in search engine clusters, for example. Disks typically

have constraints on storage as well as the number of clients that can access data from a single

disk simultaneously. For example, suppose that the system consists of disks which have 36 GB of

storage capacity and can support a transfer rate of 20 MB/s (load capacity). When we consider

MPEG-2 movies of 100 mins each with bandwidth requirement of 4 Mbps, the disk can store 12

movies and support 40 streams.

The ability to match resources with demand through layout affects the performance of a

storage system. When we deal with bandwidth intensive applications, e.g., video-on-demand, the

demand for popular items can be very high and therefore, the system needs to replicate the data

items on several different disks. For example, as shown in Figure 1.1, popular items such as data A

and D have several copies stored on different disks. Replication is a common approach to handle

high demand and also provides fault tolerance. Therefore, in the layout we compute how many

copies of each item we need as well as a mapping that specifies the precise subset of items that each

disk needs to store. Given demand for each data item, it is NP-hard to find a specific data layout

pattern to maximize the total utilization where utilization refers to the number of clients assigned

to a disk that contains the data they want. Several approximation algorithms have been developed

for this problem [55, 56, 57, 28, 40]. The goal is to have the system automatically respond to

changes in demand patterns and to recompute data layouts. Such systems and their applications

1
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Figure 1.1: Each disk has a storage capacity which is the number of items it can store, and a load

capacity which is the number of clients it can serve at any point of time. Each data item has

different popularity.

are described and studied in, e.g., [21, 26, 63] and references given therein.

Over time as the demand for data changes, the system needs to create new data layouts.

We are interested in the problem of computing a data migration plan for the set of disks to convert

an initial layout to a target layout. An example is shown in Figure 1.2. The system may run

inefficiently until migrations are finished since the data layout may not be able to meet the current

demand for data. In addition, the system needs to use a significant amount of bandwidth for data

migration, which may also degrade the performance of the system. Therefore, it is important to

find a migration schedule that can be done as quickly as possible.

1.2. Models and Definitions

In the data migration problem, we have disks and data items. Given an initial and target

layout, we can compute Si (source set) and Di (destination set) for each item i. We define Si to

be a subset of disks that have item i initially. Di is defined to be a subset of disks that want to

receive item i. In other words, all disks in Di have item i in the target layout, but not in the initial

layout. See Figure 1.3 for an example. Our goal is to convert the initial layout to the target layout

2



Data Migration

Old Data Access Pattern New Data Access Pattern

GE

A
D
G

C
B F
D

Data  A
C

Data  A

H

C
B

H

C

H
G
E

Figure 1.2: An example of the data migration problem

2 4 1 2 1 3

1 3 4 1 3 1 2 4

Target Layout

Initial Layout
S1={2,3} D1={1}

S2={1,2} D2={3}

S3={3} D3={1,2}

S4={1} D4={3}

disk 1 disk 2 disk 3

Figure 1.3: An initial and target layout, and their corresponding Si’s and Di’s

as quickly as possible.

We assume that the underlying network is fully connected. In other words, any pair of disks

in the system can communicate with each other directly. In general, it is reasonable to assume that

multiple transfers can occur in parallel between pairs of disks, e.g., when these disks are attached to

different nodes of a distributed system (as would be typical, e.g., in a large-scale storage system).

One crucial constraint is that each disk can participate in the transfer of only one item —

either as a sender or as a receiver. The model is one of the most widely used in all the work related

to data migration. This assumption is reasonable as trying to transfer multiple distinct pieces of

data simultaneously from the same disk is likely to result in transfer inefficiencies and trying to

transfer the same piece of data to multiple other disks would place special requirements on the

communication medium, e.g., network multicasting capabilities (which is not typical).

Therefore, we assume that any set of transfers can take place at the same time as long as

each disk is used as a sender or a receiver (but not both) for only one item. This model best

3



captures the connection of parallel storage devices that are connected on a network and is most

appropriate for our application.

There can be other constraints in communication networks. Consider the case where the

storage network connecting the disks has the limited switching capacity. We call this a bounded

bandwidth model. In this model, we can allow only a bounded number of transfers to take place at

any given time.

Each transfer may be associated with its length, which is the time required to migrate the

data item from its source to destination. The time required for a transfer may vary depending on

the size of files, or the speed of machines that are involved in the transfer. One special case of

interest is when data items have the same size (these could be data blocks, or files) and machines

are homogeneous, in which case all transfers have the same length.

Several different objectives can be considered in data migration. The most common objective

in data migration is to minimize the makespan, that is, the time to finish all the migration jobs.

More formally, the makespan is defined to be maxj Cj where Cj is the completion time of migration

job j. We also consider the sum of completion times over all transfers (
∑

j Cj) or over all storage

devices (
∑

d Cd) where Cd is the time when disk d finishes all migration jobs that it is involved in.

Finally, we do not allow indirect transfers, in which an item can be sent to a disk other than

the target disk temporarily. In other words, a data item can be sent only to disks that desire it

and the total number of data transfers performed is thus the minimum possible.

1.3. Contributions

We first consider data migration with cloning. The problem generalizes previous work by

Coffman et al. [22] and Hall et al. [29] where they addressed only the data movement problem.

They assumed that the transfer graph G = (V, E) is given, where each vertex in V represents a

disk in the system and an edge (u, v) represents a move operation from u to v or vice versa. So for

example, one cannot create extra copies of any data item, but can just change which disks they

are stored on.

4



However, to handle high demand for popular objects, new copies will have to be dynamically

created and stored on different disks. This means that we crucially need the ability to have a “copy”

operation in addition to “move” operations. In fact, one of the crucial lower bounds used in the

previous work on data migration [22, 29] is based on a degree property of the transfer graph. For

example, if the degree of a node is ∆, then this is a lower bound on the number of rounds that

are required, since in each round at most one transfer operation involving this node may be done.

For copying operations, clearly this lower bound is not valid. For example, suppose we have a

single copy of a data item on a disk and we wish to create ∆ copies of this data item on ∆ distinct

disks. Using the transfer graph approach, we could specify a “copy” operation from the source

disk to each of the ∆ disks. Note that this would take at least ∆ rounds. However, by using newly

created copies as additional sources we can create ∆ copies in dlog(∆+1)e rounds, as in the classic

problem of broadcasting by using newly created copies as sources for the data object (essentially

each copy spawns a new copy in each round).

The problems we study can also be considered as generalizations of the gossiping and broad-

casting problems. These two problems have been the subject of extensive study [45, 33, 37, 11,

12, 38, 19, 23] as they play an important role in the design of communication protocols in various

kinds of networks. The gossip problem is defined as follows: given n individuals, each individual

has an item of gossip that they wish to communicate to everyone else. In the broadcast problem,

one individual needs to convey an item of gossip to every other individual. Our results are the

first work that relate broadcasting and gossiping with the data migration problem. The basic

generalizations we are interested in are (i) an item of gossip may be known to several individuals,

(ii) several items of gossip may be known to an individual, and (iii) each item of gossip needs to

be communicated to only a subset of individuals.

For the data migration problem with cloning to minimize the makespan, we develop a 9.5

approximation1 algorithm. This is the first approximation algorithm for this problem. While two

of the lower bounds we used are quite simple, we develop a new lower bound using network flows,
1A c-approximation algorithm for a minimization problem is a polynomial time algorithm that yields a solution

with cost at most c times the optimal.

5



and use this in the algorithm (without this lower bound, the best bound we can obtain is a O(log n)

factor). For the case where the limited number of transfers can take place at a time (which we call

the bounded bandwidth model), we can also obtain a constant factor approximation algorithm,

using the constant factor approximation algorithm for the problem without bandwidth constraint.

Moreover, we explore a few simple heuristics for data migration with cloning. Some of these

algorithms cannot provide constant approximation guarantees, while for some of the algorithms no

approximation guarantee is known. We conduct an extensive study to compare the performance

of these data migration algorithms under different changes in user access patterns.

We also identify the correspondence problem, of which solution can have a significant impact

on the overall solution for data migration. Data layout algorithms (such as the ones in [55, 56,

57, 40, 28]) take as input a demand distribution for a set of data objects and output a grouping

L1′ , L2′ , . . . LN ′ as a desired data layout pattern on disks 1′, 2′, . . . , N ′. (The current layout is

assumed to be L1, L2 . . . LN .) Note that we do not need the data corresponding to the set of items

L1′ to be on (the original) disk 1. The algorithm simply requires that a new grouping be obtained

where the items in set L1′ be grouped together on a disk. Therefore, given the initial and final

layout sets, we need to compute a correspondence between them, which specifies which disk needs

to store the set of items Li′ . We show that a good solution to the correspondence problem can

improve the performance of the data migration algorithms by a factor of 4.4 in our experiments,

relative to a bad solution.

We also consider objectives other than the makespan — the sum of completion times over

all storage devices or data migration jobs. For these objectives, we obtain constant factor ap-

proximations for the case when the transfer graph for data migration is given (in other words,

|Si| = |Di| = for all i). We first consider the problem of minimizing the sum of weighted com-

pletion times over all storage devices. This problem was first suggested by Coffman et al. [22].

In a system where storage devices can be free to do other tasks as soon as their own migrations

are complete, minimizing the sum of completion times over all storage devices is an interesting

objective since the performance of a device is degraded while it is involved in the migration. We

6



show that the problem is NP-hard by reduction from the Chromatic Index problem [36]. We for-

mulate the problem as an integer program and develop an approximation algorithm based on LP

relaxation. We have a simple algorithm that gives a 3-approximation when job lengths are all the

same. Recently, Gandhi et al. [24] proved that the analysis of our algorithm for unit job lengths is

tight. In other words, there are examples in which the total completion time over all devices, using

our algorithm, is 3 times the optimal. When job lengths are arbitrary integers, a more involved

algorithm gives a 9-approximation.

To minimize the total completion time over all transfers, we have a 10-approximation al-

gorithm when the lengths of edges are arbitrary integers, which improves a 12-approximation

algorithm presented by Halldórsson et al. [32].

For the problems mentioned above, we assumed that machines in the system are homo-

geneous. However, in a system where machines are put together over time, they tend to have

different capabilities and this leads to a heterogenous collection of machines rather than a homo-

geneous collection. We consider a special case of data migration in this model — the broadcast

problem. In the broadcast problem, a source disk (or processor) has one message to be sent to all

other disks. In other words, |Si| = 1 and Di includes all the disks (other than the source) in the

system. Broadcast is one of the fundamental operations that are used in such clusters of machines.

In addition broadcast is used as a primitive in many parallel algorithms.

In our work, we consider a simple model and algorithm for heterogenous network proposed by

Banikazemi et al. [3]. In this model, heterogeneity among processors is modeled by a non-uniform

speed of the sending processor. A heterogenous cluster is defined as a collection of processors

p0, p1, p2, . . . , pn in which each processor is capable of communicating with any other processor.

Each processor has a transmission time which is the time required to send a message to any other

processor in the cluster. Thus the time required for the communication is a function of only the

sender. Each processor may send messages to other processors in order, and each processor may

receive only one message at a time.

A commonly used method to find a broadcast schedule is referred to as the “Fastest Node

7



First” (FNF) technique [3]. This works as follows: in each iteration, the algorithm chooses a sender

from the set of processors that have received the message (set S) and a receiver from the set of

processors that have not yet received the message (set R). The algorithm then picks the sender

s ∈ S so that s can finish the transmission as early as possible, and chooses the receiver r ∈ R

as the processor with the minimum transmission time in R. Then r is moved from R to S and

the algorithm continues. The intuition here is that sending the message to fast processors first

is a more effective way to quickly propagate the message. This technique is very effective and

easy to implement. In practice it works extremely well (using simulations) and in fact frequently

finds optimal solutions as well [3]. However, there are situations when this method fails to find an

optimal solution.

We show that FNF has a performance ratio of at most 1.5 when compared to the optimal so-

lution for minimizing broadcast time. To prove this, we make use of the fact that the FNF heuristic

actually produces an optimal solution for the problem of minimizing the sum of completion times2.

We also prove that there is a polynomial time approximation scheme (PTAS) for minimizing the

broadcast time, and show that if there is a constant number of different transmission speeds, then

there is a polynomial time algorithm for minimizing the broadcast time. In addition, we extend

the above results to the problem of multicasting, where some other nodes not in the multicast

group can be used to improve the broadcast time.

1.4. Outline of Thesis

In Chapter 2, we discuss the previous work on the data migration problem and other related

work.

In Chapter 3 – 5, we present the results for data migration with cloning. For this problem, we

assume that there can be several copies of an item and the objective is to minimize the makespan.

In Chapter 3, we describe a 9.5-approximation algorithm for the problem. We also present some

variants of the approximation algorithm and several simple heuristics. In Chapter 4, we formulate
2It was shown in the paper by Hall et al. [30]. In Chapter 7, we provide a simpler proof for the problem.
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the correspondence problem and describe several algorithms for the correspondence problem. The

experimental results are presented in Chapter 5.

In Chapter 6, we consider objectives other than the makespan. For this problem, we assume

that we are given a transfer graph (that is, we only consider move operations). We first discuss

the results to minimize the total completion time over all storage devices. We show that the

problem is NP-hard, and present a 3-approximation algorithm for unit transfer lengths and a 9-

approximation algorithm for arbitrary transfer lengths. We also consider the total completion time

over all transfers and present a 10-approximation algorithm for arbitrary transfer lengths.

In Chapter 7, we discuss the broadcasting problem in heterogenous networks. We prove

that FNF gives 1.5-approximation to minimize the broadcast time and also develop a polynomial

time approximation scheme. We show that the results can be applied in multicast.

Finally, we conclude our results and suggest future work in Chapter 8.
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Chapter 2

Related Work

In this chapter, we describe the previous work in data migration. We also present other

work that are related to the data migration problem.

2.1. Previous Work in Data Migration

Coffman et al. [22] introduced the data migration problem to minimize the makespan of

the migration schedule, i.e., the time by which all migrations are finished. In their work, they

assumed that the transfer graph G = (V, E) is given where each vertex v ∈ V represents a storage

device and each edge e = (u, v) corresponds to a transfer that has to be done from u to v, or

vice versa. When transfer lengths are arbitrary integers, they showed that greedy algorithms yield

a 2-approximation. In the special case where all the transfer have the same length, it is exactly

the problem of finding the chromatic index of multi-graphs. The chromatic index is the smallest

number χ′ of colors required to color the edges of a graph G so that adjacent edges are colored

differently. The problem is NP-hard, and several approximation algorithms have been developed

[27, 34, 53, 18]. The current best known result is the algorithm using 1.1χ′+0.8 colors [53]1, which

in turn yields the same approximation guarantee for the data migration with unit transfer lengths.

Coffman et al. [22] also presented complexity results and algorithms for various restricted cases of

transfer graphs (e.g., bipartite graphs, trees, paths and cycles).

Hall et al. [29] considered two interesting variants of the data migration problem. Given a

transfer graph G with unit transfer lengths, they considered the cases (i) when the bypass nodes2

are used to improve the performance of a data migration, and (ii) when there are space constraints,
1The additive term was improved to 0.7 by Caprara et al. [18]
2A bypass node is a node that is not the target of a move operation, but used as an intermediate holding point

for a data item.
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e.g., each disk has only one spare unit of storage. They showed that data migration can be done in

2d∆/2e rounds with at most n/3 bypass nodes, or at most 3d∆/2e rounds without bypass nodes,

where ∆ is the maximum degree of nodes in the transfer graph and n is the number of nodes.

With space constraints, they developed an algorithm that takes at most 4d∆/4e rounds with at

most n/3 bypass nodes, or at most 6d∆/4e rounds without bypass nodes.

On the other hand, to handle high demand for popular objects, several copies will have to

be dynamically created and stored on different disks. The data migration problem with cloning is

the most general problem of interest where data item i can have several copies in a specified source

subset Si of disks, and needs to be moved to a destination subset Di.

2.2. Gossiping and Broadcasting

The problems of Gossiping and Broadcasting have been the subject of extensive study

[45, 33, 37, 11, 12, 38, 19, 23]. These play an important role in the design of communication

protocols in various kinds of networks. The gossip problem is defined as follows: there are n indi-

viduals and each individual has an item of gossip that they wish to communicate to everyone else.

Communication is typically done in rounds, where in each round an individual may communicate

with at most one other individual. Some communication models allow for the full exchange of all

items of gossip known to each individual in a single round. Other models allow the sending of only

one item of gossip from one to the other (half-duplex) or allow each individual to send an item to

the individual they are communicating with in this round (full-duplex). In addition, there may

be a communication graph whose edges indicate which pairs of individuals are allowed to com-

municate directly in each round. (In the classic gossip problem, also called the telephone model,

communication may take place between any pair of individuals; in other words, the communication

graph is the complete graph.) In the broadcast problem, one individual needs to convey an item of

gossip to every other individual. The two parameters typically used to evaluate the algorithms for

this problem are: the number of communication rounds, and the total number of telephone calls

placed.
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Data migration with cloning is a generalization of the above mentioned gossiping and broad-

casting problems. The basic generalizations we are interested in are (i) an item of gossip may be

known to several individuals, (ii) several items of gossip may be known to an individual, and (iii)

each item of gossip needs to be communicated to only a subset of individuals.

The paper by Liben-Nowell [48] considers a generalization of gossiping and broadcasting,

which is exactly the data migration problem with restrictions that each disk contains at most one

source item and each item has at most one source. However, the model that he uses is different

than the one that we use. In his model, in each telephone call, a pair of users can exchange all the

items of gossip that they know. The objective is to simply minimize the total number of phone

calls required to convey item i of gossip to set Di of users. In our case, since each item of gossip

is a data item that might take considerable time to transfer between two disks, we cannot assume

that an arbitrary number of data items can be exchanged in a single round. Several other papers

use the same telephone call model [2, 17, 35, 38, 60].

Other related problems that have been studied are the set-to-set gossiping problem [47, 54]

where we are given two possibly intersecting sets A and B of gossipers and the goal is to minimize

the number of calls required to inform all gossipers in A of all the gossip known to members in

B. Liben-Nowell [48] generalizes this work by defining for each gossiper i the set of relevant gossip

that they need to learn.

Several special cases of the data migration problem with cloning have been studied where

each data item has only one copy initially, and developed algorithms with better performance

guarantees [42]. One special case studied in the paper is the Multi-source multicast problem, when

∆ data items, each having only one copy, are stored in ∆ different disks, and data item i needs

to be sent to a specified subset Di of disks. This problem is shown to be NP-hard by a reduction

from a restricted version of 3SAT. Using a simplified version of 9.5-approximation algorithm for

the general problem, a polynomial-time algorithm with approximation ratio of 4 was developed

and it was further improved to 3+o(1). Allowing bypass nodes, the approximation ratio of 3 could

be obtained. Another special case is the Multi-source broadcast problem, which is the same as
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the Multi-source multicast problem except that all disks demand all items, i.e., Di is all the disks

minus its source. A polynomial-time algorithm using at most 3 more rounds than the optimal was

developed for this problem. The last special case studied is the Single-source multicast problem,

when ∆ data items, each having only one copy, are all stored on the same disk, and data item i

needs to be sent to a specified subset Di of disks. There is a polynomial-time algorithm using at

most ∆ more rounds than the optimal.

2.3. Minimizing Total Completion Time

Minimizing the sum of weighted job completion times is one of the most common measures

in the scheduling literature since it can reflect the priorities of jobs. The problem of minimizing

the total edge completion time leads to a special case of the sum (multi-)coloring problem [4, 9, 6,

46, 52, 7]. The sum coloring problem is defined as follows. Let G = (V, E) be an undirected graph,

possibly with vertex weights. A coloring of a graph is an assignment φ : V → N of positive integers

to the vertices so that different colors are assigned to adjacent vertices. The objective is to minimize

the total sum of colors assigned to the vertices. When each vertex requires multiple colors, it is

called the sum multi-coloring problem. Given a transfer graph G for the data migration problem,

minimizing the total edge completion time is reduced to the sum coloring of the line graph3 of G

(the sum multi-coloring if edges have different lengths). Bar-Noy et al. [4] proved that the sum

coloring of line graphs is NP-hard and any greedy coloring gives a 2-approximation. For the sum

multi-coloring of line graphs, we give a 10-approximation, using an LP-based algorithm. This

improves the previous bound of 12 by Halldórsson et al. [32]. The general idea of their algorithm

is to have edges wait for some time before it is actually processed and waiting times are chosen

based on job lengths. Very recently, Gandhi et al. [25] further improved the bound to 7.683.

In a system where storage devices can be free to do other tasks as soon as their own migra-

tions are complete, minimizing the sum of completion times over all storage devices is interesting
3The line graph of G has a vertex corresponding to each edge of G, and there is an edge between two vertices in

the line graph if the corresponding edges are incident on a common vertex in G.
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since the performance of a device is degraded while it is involved in migrations. This problem

was first suggested in the paper by Coffman et al. [22]. We present a simple algorithm that gives

a 3-approximation when job lengths are all the same. When job lengths are arbitrary integers,

a more involved algorithm gives a 9-approximation. Recently, Gandhi et al. [24] proved that the

analysis of our algorithm for unit job lengths is tight. They also improved the bound to 5.055 for

arbitrary integer lengths. They choose the wait function based on linear programming relaxation

given in this thesis and obtain the schedule by having edges wait before it is actually processed

(the idea of wait function was first used in the paper by Halldórsson et al. [32] for minimizing the

job completion time).

2.4. Heterogenous Networks

Various models for heterogenous environments have been proposed in the literature. One

general model is the one proposed by Bar-Noy et al. [5] where the communication costs between

links are not uniform. In addition, the sender may engage in another communication before the

current one is complete. An approximation factor with a guarantee of O(log k) is given for the

operation of performing a multicast. Other popular models in the theory literature generally

assume an underlying communication graph, with the property that only nodes adjacent in this

graph may communicate.

Broadcasting efficiently is an essential operation and many works are devoted to this (see

[54, 33, 39, 8, 14] and references therein). In addition, for emergency notification an understanding

of how to perform broadcast quickly is essential.

Most of the algorithmic (theoretical) work done on such problems is of little interest to

practitioners, because the approximation algorithms tend to be fairly complex and slow, thus

defeating the purpose of performing broadcast quickly. On the other hand, a simple model and

algorithm was proposed by Banikazemi et al. [3]. In this model, heterogeneity among processors

is modeled by a non-uniform speed of the sending processor. A heterogenous cluster is defined as

a collection of processors p1, p2, . . . , pn in which each processor is capable of communicating with
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any other processor. Each processor has a transmission time which is the time required to send

a message to any other processor in the cluster. Thus the time required for the communication

is a function of only the sender. Each processor may send messages to other processors in order,

and each processor may be receiving only one message at a time. It was shown that minimizing

broadcast time in this model is NP-hard [30].

A commonly used method to find a broadcast tree is referred to as the “Fastest Node First”

(FNF) technique [3]. FNF scheme works as follows: In each iteration, the algorithm chooses a

sender from the set of processors that have received the message (set S) and a receiver from the

set of processors that have not yet received the message (set R). The algorithm then picks the

sender s ∈ S so that s can finish the transmission as early as possible, and chooses the receiver

r ∈ R as the processor with the minimum transmission time in R. Then r is moved from R to

S and the algorithm continues. The intuition is that sending the message to fast processors first

is a more effective way to propagate the message quickly. This technique is very effective and

easy to implement. In practice it works extremely well (using simulations) and in fact frequently

finds optimal solutions as well [3]. However, there are situations when this method fails to find an

optimal solution.

It was shown that FNF minimizes the sum of completion times [30] and also gives 2-

approximation for minimum broadcast time [49, 50, 51]. Liu [50] also showed that if there are only

two classes of processors, then FNF produces an optimal solution. In addition, if the transmission

time of every slower processor is a multiple of the transmission time of every faster processor, then

again the FNF heuristic produces an optimal solution. So for example, if the transmission time of

the fastest processor is 1 and the transmission time of all other processors are powers of 2, then

the algorithm produces an optimal solution.
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2.5. Other Related Work

Our algorithms make use of known results on edge coloring of multi-graphs. Given a graph

G with max degree ∆G and multiplicity4 µ, the following results are known (see Bondy-Murty [15]

for example). Let χ′ be the edge chromatic number of G.

Theorem 2.5.1: (Vizing [62]) If G has no self-loops then χ′ ≤ ∆G + µ.

Theorem 2.5.2: (Shannon [58]) If G has no self-loops then χ′ ≤ b 3
2∆Gc.

4The multiplicity of a graph is defined as the maximum number of edges that appear between a pair of vertices.
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Chapter 3

Data Migration with Cloning

We develop several algorithms for data migration with cloning. We first present a polynomial

time algorithm that gives approximation gurauntee of 9.5. We then describe two simple heuristices.

Finally we consider the bandwith limited model where only a limited number of transfers can

take place at any point of time. For this model, we also develop constant factor approximation

algorithms.

3.1. Motivation

In the previous work in the data migration problem [22, 29], they assumed that we are given

a transfer graph G = (V, E) where each node v ∈ V represents a storage device and each edge

e ∈ E corresponds to a transfer that has to be done from u to v or vice versa. In other words,

they addressed only the data movement problem. (So for example, one cannot create extra copies

of any data item, but can just change which disks they are stored on.)

On the other hand, to handle high demand for popular objects, new copies will have to be

dynamically created and stored on different disks. This means that we crucially need the ability to

have a “copy” operation in addition to “move” operations. In fact, one of the crucial lower bounds

used in the work on data migration [29] is based on a degree property of the transfer graph. For

example, if the degree of a node is ∆, then this is a lower bound on the number of rounds that are

required, since in each round at most one transfer operation involving this node may be done. For

copying operations, clearly this lower bound is not valid. For example, suppose we have a single

copy of a data item on a disk. Suppose we wish to create ∆ copies of this data item on ∆ distinct

disks. Using the transfer graph approach, we could specify a “copy” operation from the source

disk to each of the ∆ disks. Notice that this would take at least ∆ rounds. However, by using
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newly created copies as additional sources we can create ∆ copies in dlog(∆ + 1)e rounds, as in

the classic problem of broadcasting by using newly created copies as sources for the data object

(essentially each copy spawns a new copy in each round).

In our work, we assume that we are given an initial and target layout. Note that since there

may be several copies of a data item, there can be several possible transfer graphs and an optimal

transfer graph cannot be computed directly.

The problem is NP-hard by reduction from edge coloring and we develop a polynomial-

time 9.5-approximation algorithm, which will be presented in the following section. For all our

algorithms, we move data only to disks that need the data. Thus we do not use bypass nodes. The

total number of data transfers performed is thus the minimum possible.

We use the same communication model as in the work by Hall et al. [29, 1] where the disks

may communicate on any matching; in other words, the underlying communication graph allows

for communication between any pair of devices via a matching (a switched storage network with

unbounded backplane bandwidth). Later we will also discuss a restricted model where the devices

may communicate on a matching, but the size of the matching is constrained (we call this the

bounded-bandwidth model).

3.2. 9.5-approximation algorithm

Recall that Si denotes a subset of disks that have item i initially. Di is defined to be a

subset of disks that want to receive item i. In other words, all disks in Di have item i in the target

layout, but not in the initial layout.

Define βj as |{i|j ∈ Di}|, i.e., the number of different sets Di, that a disk j belongs to. We

then define β as maxj=1...N βj . In other words, β is an upper bound on the number of items a disk

may need. Note that β is a lower bound on the optimal number of rounds, since the disk i that

attains the maximum, needs at least β rounds to receive all the items j such that i ∈ Dj , since it

can receive at most one item in each round.

Moreover, we may assume that Di 6= ∅ and Di ∩ Si = ∅ (we simply define the destination
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Figure 3.1: (a) An example of choosing Gi in Step 2(a) where ∆ = 6 and β = 3.

(b) transfer graph constructed in Step 2(c). Disks marked as black do not receive some data items

and will be taken care of in Step 3.

set Di as the set of disks that need item i and do not currently have it).

Since the algorithm is somewhat complex, we first give a high level description of the al-

gorithm and then discuss the various steps in the following lemmas. Dealing with multiple data

items sharing common disks causes some difficulty.

Algorithm Data Migration.

1. For an item i decide a unique source si ∈ Si so that α = maxj=1,...,N (|{i|j = si}| + βj) is

minimized. In other words, α is the maximum number of items that a disk may be a source

(si) or destination for. Note that α is also a lower bound on the optimal number of rounds.

In Lemma 3.2.1 we will show how we can find a source for each item.

2. Find a transfer graph for items that have |Di| ≥ β as follows.

(a) We first compute a disjoint collection of subsets Gi, i = 1 . . .∆. Moreover, Gi ⊆ Di and

|Gi| = b |Di|
β c. Figure 3.1(a) shows an example of choosing Gi. (In Lemma 3.2.2, we will

show how such Gi’s can be obtained.)

(b) We have each item i sent to the set Gi as shown in Lemma 3.2.5.

(c) We create a transfer graph as follows. Each disk is a node in the graph. We add directed
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edges from disks in Gi to (β− 1)b |Di|
β c disks in Di \Gi such that the out-degree of each

node in Gi is at most β−1 and the in-degree of each node in Di\Gi from Gi is 1. Figure

3.1(b) shows an example of the transfer graph constructed in this step. We redefine Di

as the set of |Di \Gi| − (β− 1)b |Di|
β c disks which do not receive item i so that they can

be taken care of in Step 3. Note that the redefined set Di has size < β.

3. Find a transfer graph for items such that |Di| < β as follows.

(a) For each item i, find a new source s′i in Di. A disk j can be a source s′i for several items

as long as
∑

i∈Ij
|Di| ≤ 2β − 1 where Ij is a set of items for which j is a new source.

See Lemma 3.2.7 for the details of this step.

(b) Send each item i from si to s′i.

(c) Create a transfer graph. We add a directed edge from the new source of item i to all

disks in Di \ {s′i}. Lemma 3.2.9 will show that the out-degree of a disk does not exceed

2β − 4.

4. We now find an edge coloring of the transfer graph obtained by merging two transfer graphs

in Step 2(c) and 3(c). The number of colors used is an upper bound on the number of rounds

required to ensure that each disk in Dj gets item j. In Lemma 3.2.10 we derive an upper

bound on the number of required colors.

Lemma 3.2.1: We can find a source si ∈ Si for each item i so that maxj=1,...,N (|{i|j = si}|+ βj)

is minimized, using a flow network.

Proof: We create a flow network with a source s and a sink t as shown in Figure 3.2. We have

two set of nodes corresponding to disks and items. Add directed edges from s to nodes for items

and also directed edges from item i to disk j if j ∈ Si. The capacities of all those edges are one.

Finally we add an edge from the node corresponding to disk j to t with capacity α− βj . We want

to find the minimum α so that the maximum flow of the network is ∆. We can do this by checking

if there is a flow of ∆ with α starting from maxβj and increasing by one until it is satisfied. If

there is outgoing flow from item i to disk j, then we set j as si. 2
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Figure 3.2: Flow network to find α

Lemma 3.2.2: There is a way to choose disjoint sets Gi for each i = 1 . . .∆, such that |Gi| =

b |Di|
β c and Gi ⊆ Di.

Proof: First note that the total size of the sets Gi is at most N .

∑

i

|Gi| ≤
∑

i

|Di|
β

=
1
β

∑

i

|Di|.

Note that
∑

i |Di| is at most βN by definition of β. This proves the upper bound of N on the

total size of all the sets Gi.

We now show how to find the sets Gi. As shown in Figure 3.3, we create a flow network

with a source s and sink t. In addition we have two sets of vertices U and W . The first set U has

∆ nodes, each corresponding to an item. The set W has N nodes, each corresponding to a disk in

the system. We add directed edges from s to each node in U , such that the edge (s, i) has capacity

b |Di|
β c. We also add directed edges with infinite capacity from node i ∈ U to j ∈ W if j ∈ Di. We

add unit capacity edges from nodes in W to t. We find a max-flow from s to t in this network. The

min-cut in this network is obtained by simply selecting the outgoing edges from s. We can find a

fractional flow of this value as follows: saturate all the outgoing edges from s. From each node i

there are |Di| edges to nodes in W . Suppose λi = b |Di|
β c. Send 1

β units of flow along λiβ outgoing

edges from i. Note that since λiβ ≤ |Di| this can be done. Observe that the total incoming flow

to a vertex in W is at most 1 since there are at most β incoming edges, each carrying at most

1
β units of flow. An integral max flow in this network will correspond to |Gi| units of flow going

from s to i, and from i to a subset of vertices in Di before reaching t. The vertices to which i has
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Figure 3.3: Flow network to find Gi

non-zero flow will form the set Gi. 2

For Step 2(b), the simple solution would be to broadcast the data to each group Gi from

the chosen source, since the groups are disjoint. The only thing we have to be careful of is that

the sources for many data items are shared. However, this broadcast takes at least maxi log |Gi|

rounds. Unfortunately, we cannot argue that this is a valid lower bound since even though Di

is large, if Si is large, then there could be a solution using O(1) rounds. This would give us an

O(log N) approximation guarantee. The method described below, develops stronger lower bounds

for this situation.

Let M be the number of steps required to send all items i to all disks in Gi in an optimal

schedule of Step 2(b). To find a lower bound for M , we construct the following flow network Fm

(parameterized by an integer m) as shown in Figure 3.4. We have a source s and two sets of nodes

U and V . U has N ·m nodes xjk(j = 1 . . .N, k = 1 . . . m). V has ∆ nodes yi(i = 1 . . .∆) and yi

has demand |Gi|. There is an edge eijk from xjk to yi and its capacity cijk is 2m−k if a disk j has

item i initially. There are edges from s to nodes xjk in U with capacity 2m−k.

Lemma 3.2.3: If m′ be the smallest number such that we can construct a solution of Fm′ that

satisfies all demands |Gi|, then M ≥ m′.

Proof: Suppose that M < m′. Given an optimal schedule of Step 2(b), we can construct a solution

of the flow network FM as follows. If a disk j sends item i to a disk in Gi at round t ≤ M , which

makes f copies in Gi subsequently, we send a flow f from xjt to yi. Note that f cannot be more
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Figure 3.4: An example of constructing Fm where ∆ = 6

than 2M−t and therefore, it does not violate the capacity constraint. Since all disks in Gi receive

item i after M rounds with this schedule, the corresponding flow satisfies all demands |Gi|. This

is a contradiction to the assumption that m′ is the smallest number to satisfy all demands |Gi|. 2

In the solution of the flow network Fm′ , a node xjk may send flow to several nodes. But

since in our schedule, a disk can copy only one item to a disk at a round, the solution of the flow

in Fm′ may not correspond to a valid schedule.

Lemma 3.2.4: Given a solution of Fm′ , we can convert it to a solution satisfying the following

properties.

• node xjk sends flow to at most one node in V .

• the solution satisfies at least |Gi| − 2m′−1 demands for each item i.

Proof: First, we define a variable zijk for an edge from xjk to yi and set zijk = fijk/cijk where fijk

is the flow through eijk in solution Fm′ . We substitute nodes yil(l = 1 . . . b
∑

j,k zijkc) for each node

yi in V . We distribute edges having nonzero flow to yi as follows. Sort edges in non-increasing

order of their capacities. Assign edges to yi1 until the sum of z values of assigned edges is greater

than or equal to one. If the sum is greater than one, we split the last edge (denote as eij′k′) into

eij′k′1 and eij′k′2 . Assign eij′k′1 to yi1 and define zij′k′1 so that the sum of z values of edges assigned
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to yi1 is exactly one. Set zij′k′2 = zij′k′ − zij′k′1 . We repeat this so that for all nodes yil, the sums

of z values of the assigned edges are one. Let Eil be the set of edges assigned to yil and cmax
il (cmin

il )

be the maximum (minimum) capacity of the edges in Eil. In addition, we denote the edges not

assigned to yil(l = 1 . . . b
∑

j,k zijkc) as Eil′ and the maximum capacity of edges in Eil′ as cmax
il′

where l′ is b
∑

j,k zijkc+ 1.

In the resulting bipartite graph with U and V ′ = {yil}, z makes a fractional matching which

matches all vertices in V ′, but not necessarily all vertices in U . Therefore, we can find an integral

matching that matches all vertices in V ′ and the matching satisfies the first property in the lemma.

Now we merge nodes yil into yi. Then each yi matches exactly b
∑

j,k zijkc edges. We prove

that the sum of capacities of edges matched to yi is at least |Gi|−cmax where cmax is the maximum

capacity of edges, using an analysis similar to that in Shmoys-Tardos [59]. The sum of capacities

of edges matched to yi is at least

b
∑

j,k
zijkc∑

l=1

cmin
il ≥

b
∑

j,k
zijkc+1∑

l=2

cmax
il

≥
b
∑

j,k
zijkc+1∑

l=1

cmax
il − cmax

i1

≥
b
∑

j,k
zijkc+1∑

l=1

∑

eijk∈Eil

cijkzijk − cmax
i1

≥
b
∑

j,k
zijkc+1∑

l=1

∑

eijk∈Eil

fijk − cmax
i1

≥ |Gi| − cmax.

Since cmax ≤ 2m′−1, the second property can be satisfied by setting flow through eijk as cijk if

eijk is matched. 2

Lemma 3.2.5: Step 2(b) can be done in α + 2m′ + 1 rounds.

Proof: We can do this with the following schedule. First we choose min(b
∑

j,k zijkc+1, |Gi|) disks

in Gi and denote those disks as Hi. Disk j sends item i to a disk in Hi if edge eijk is matched

for some k. If |Hi| > b
∑

j,k zijkc, there is one disk in Hi which cannot receive item i. The disk
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receives item i from si. Then the maximum degree of a disk is at most m′ +α and the multiplicity

is 2 since the out-degree of disk j is at most m′ + α− βj and the in-degree is at most min(βj , 1).

Therefore, it can be done in m′ + α + 2 rounds.

Now |Hi| nodes in Gi have item i. Since |Gi|/|Hi| ≤ 2m′−1, we can make all disks in Gi

have item i in additional m′ − 1 rounds. 2

Lemma 3.2.7 will show how Step 3(a) works. The lemma uses the following result from

Shmoys-Tardos [59].

Theorem 3.2.6: (Shmoys-Tardos [59]) We are given a collection of jobs J , each of which is to

be assigned to exactly one machine among the set M; if job j ∈ J is assigned to machine i ∈M,

then it requires pij units of processing time, and incurs a cost cij . Suppose that there exists a

fractional solution (that is, a job can be assigned fractionally to machines) with makespan P and

total cost C. Then in polynomial time we can find a schedule with makespan P + max pij and

total cost C.

Lemma 3.2.7: For each item i we wish to choose a source disk s′i from Di. Let Ij be the set of

items for which disk j is chosen as a source. There is a way to choose the sources such that the

following properties hold

• If i ∈ Ij then j ∈ Di.

•
∑

i∈Ij
|Di| ≤ 2β − 1.

Proof: We use Theorem 3.2.6 for this step. For example, we can create an instance of the problem

of scheduling machines with costs. Items correspond to jobs and disks correspond to machines. For

each item i we define a cost function as follows. C(i, j) = 1 if and only if j ∈ Di, otherwise it is a

large constant. Processing time of job i (corresponding to item i) is |Di| (uniform processing time

on all machines). Using Theorem 3.2.6 [59], the scheduling algorithm finds a schedule that assigns

each job (item) to a machine (disk) to minimize the makespan. They show that the makespan is at

most the makespan in a fractional solution plus the processing time of the largest job. Moreover,

the cost of their solution is at most the cost of the optimal solution, namely the number of items.
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We cannot assign an item (job) to a disk (machine) if the disk is not in the destination set for the

item.

In our case, it is easy to see that the maximum processing time of any job is β − 1. We

will argue that there is a fractional solution with makespan β. It thus follows that by defining

Ij to be the set of items (jobs) assigned to disk (machine) j, the result follows. The fractional

solution is obtained by assigning each job fractionally to each machine by setting the assignment

variable for job i on machine j to 1
|Di| if j ∈ Di then the job is fully assigned fractionally and

the fractional load on each machine is at most β. This also gives us a way of finding a fractional

solution efficiently. 2

Lemma 3.2.8: Step 3(b) can be done in b 3
2αc rounds.

Proof: Since disk j can be s′i in Step 3(a) only if j ∈ Di, |Ij | ≤ βj . Therefore, a disk j may need to

send α − βj items, and receive βj items. That means the maximum degree is α and this transfer

can make a multi-graph. Given a multi-graph with maximum degree ∆G, we can find an edge

coloring using b 3
2∆Gc colors (see Theorem 2.5.2 [58]) and the lemma follows. 2

Lemma 3.2.9: The maximum out-degree of a disk in the transfer graph in Step 3(c) is at most

2β − 4.

Proof: If disk j is a new source for k items (in other words, |Ij | = k), then the out-degree of disk

j is
∑

i∈Ij
|Di \ {s′i}| =

∑
i∈Ij

|Di| − k.

It is easy to see that the lemma is true for k ≥ 3 since
∑

i∈Ij
|Di| ≤ 2β − 1. For k = 1, the

lemma is also true since
∑

i∈Ij
|Di| ≤ β − 1 and β ≥ 2 (otherwise, these is no set with size less

than β). For k = 2,
∑

i∈Ij
|Di| ≤ 2β − 2 and therefore, we have the lemma. 2

Figure 3.5 shows an example of migrations in Step 3.

Lemma 3.2.10: The number of colors we need for the final transfer graph in Step 4 is (4β− 5)+

(β + 2).

Proof: The out-degree of a disk j can be at most 3β−5 (β−1 in Step 2 and 2β−4 in Step 3). The

in-degree is at most β by definition. We claim that the multiplicity of the final transfer graph is
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Figure 3.5: An example of Step 3 where α = 4 and β = 4. (a) migration from si to s′i (b)

migration from s′i to Di \ {s′i}.

β +2. Consider all the edges added in Step 2, we will show the multiplicity induced by these edges

is 2. Since all Gi’s are disjoint and each disk in Gi sends only item i to disks in Di \Gi, for any

pair of disks j1 and j2, there can be at most one edge in each direction. Now consider all the edges

added in Step 3, if there is an edge between disk j1 and disk j2, no matter which disk is the sender,

both disks belong to Di for some i. Thus, there are at most β edges between j1 and j2 since a disk

can belongs to at most β different Di’s. Therefore, the result follows by Theorem 2.5.1. 2

Theorem 3.2.11: The total number of rounds required for the data migration is at most α +

2m′ + b 3
2αc+ 5β − 2.

Proof: We need α+2m′+1 rounds for Step 2(b) by Lemma 3.2.5 and b 3
2αc rounds for Step 3(b) by

Lemma 3.2.8. Migration according to the coloring of the final transfer graph needs (4β−5)+(β+2)

by Lemma 3.2.10. Therefore, we have the theorem. 2

Corollary 3.2.12: Our algorithm is 9.5-approximation for the data migration problem.

Proof: Since α, β, m′ are lower bounds for the problem, the corollary follows. 2

Theorem 3.2.13: The Data Migration Problem (with cloning) is NP -hard.
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Proof: We give a simple reduction from the problem of edge coloring a simple graph with the

smallest number of colors (which is known to be NP -hard [36]). Given a graph G = (V, E), we

create an instance of a data migration problem with V as disks. For each edge ei = (u, v) in the

graph, we create a new item i, where Si is {u} and Di is {v}. It is not difficult to see that the

minimum number of colors required in the edge coloring instance is the same as the minimum

number of rounds in the corresponding data migration instance. 2

3.2.1. A Bad Example

Here we give an example when our data migration algorithm does not perform very well.

Consider the problem where there are ∆ source disks, each disk having a separate item; in addition,

there are ∆− 1 destination disks, each disk requests all ∆ items. Thus N is equal to 2∆− 1, ∆ is

equal to β, and |Di|, the number of disks requesting item i, is equal to β− 1 for all i. In Step 3 of

our data migration algorithm, we need to find ∆ new sources s′i but we have only ∆−1 destination

disks. At least one disk d has to be a new source for two items. Therefore step 3(b) takes at least

2 rounds. In disk d, each item in d has to be sent to the remaining ∆ − 2 destination disks. The

out-degree is exactly 2∆− 4. The in-degree is ∆− 2. So, we have a node of degree 3∆− 6 in the

transfer graph, and the total number of rounds is at least 3∆− 4. The optimal strategy is to have

∆− 1 of ∆ source disks sending items to destination disks in a round-robin fashion. This method

only takes ∆ rounds. Therefore, our algorithm cannot perform better than (3− ε)-approximation.

3.2.2. 9.5-approximation Algorithm Variants

The 9.5-approximation algorithm for data migration (denoted by KKW (Basic)) uses several

complicated components to achieve the constant factor approximation guarantee. We consider

simpler variants of these components. The variants may not give good theoretical bounds, but are

simpler to implement. Some of them give better performance.

(a) in Step 2(a) (Choose representatives) we find the minimum integer m such that there exist

disjoint sets Gi of size b |Di|
m c. The value of m should be between β̄ =

∑N
i=1

βi

N and β.
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(b) in Step 2(b) (Send to representatives) we use a simple doubling method to satisfy all requests

in Gi. Since all groups are disjoint, it takes maxi log |Gi| rounds.

(c) in Step 3 (Small destination sets) we do not find a new source s′i. Instead si sends item i

to Di directly for small sets. We try to find a schedule which minimizes the maximum total

degree of disks in the final transfer graph in Step 4.

(d) in Step 3(a) (Find new sources in small sets) when we find a new source s′i, Sis can be

candidates as well as Dis. If s′i ∈ Si, then we can save some rounds to send item i from si

to s′i.

The worst-case time complexity of all of the algorithms resulting from these variants, except for

variant (c), is O((n2 + ∆)n2β log (n2+∆)2

n2β ). The worst-case time complexity of variant (c), which

does not find new sources s′i, is O((n + ∆)n∆log (n+∆)2

n∆ log ∆).

3.3. Heuristics

In this section, we consider several heuristic-based data migration algorithms. Some of these

algorithms cannot provide constant approximation guarantees, while for some of the algorithms no

approximation guarantee is known. However, we found that the heuristics give better approximate

solutions than 9.5-approximation algorithms for most of inputs in the experiments. We will discuss

the experimental results of these algorithms in Chapter 5.

3.3.1. Edge Coloring Based Heuristic

In this heuristic, we first create a transfer graph so that the maximum degree of a node is

minimized, and then find a schedule using edge coloring on the transfer graph.

1. Since a disk can get the same item from different source disks, we want to select source disks

so that the maximum degree of a node is minimized. We can do this by using a flow network.

We build a flow network with a source s and a sink t. In addition we have two sets of nodes

corresponding to items and source disks. We add edges from s to node i with capacity |Di|
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for all item i, and edges from source disks j to t with capacity c− βj . Finally, we add edges

from item i to source disk j if j ∈ Si. Suppose c′ is the minimum c such that, for all i, the

amount of flow from s to i is the same as its capacity. Such c′ can be obtained by binary

search and solving a network flow problem in each iteration. Let f∗(i, j) be the flow value

from item i to source disk j when c′ is obtained.

2. We build a transfer graph as follows. Each disk is a node in the graph. For each source disk

j having item i initially, we put f∗(i, j) directed edges from disk j to f∗(i, j) different disks

in Di, meaning that source disk j would send item i to f∗(i, j) disks in Di. From the flow

network, we know that
∑

j∈Si
f∗(i, j) = |Di| for all i. Thus, all destination disks are served.

Moreover, each source disk j serves at most c′ − βj disks, and receives βj items from other

disks. The total degree of each source disk in the transfer graph is at most c′.

3. Find an edge coloring of the transfer graph (which may be a multigraph) to obtain a valid

schedule [15], and the number of colors used is an upper bound on the total number of rounds.

The worst-case time complexity here is O((n + ∆)nβ log (n+∆)2

nβ + n2β2).

Note that the edgecoloring-based heuristic does not make use of newly created copies of

items. Therefore, in case when for some item i, source set Si is small and Di is very big, the

heuristic may not perform very well since it does not use cloning while migration.

3.3.2. Matching Based Heuristic

We develop another heuristic based on maximum matching.

1. Build a undirected graph as follows. Each disk is a node in the graph. There is an edge

between u and v if u ∈ Si and v ∈ Di or vice versa.

2. Find a maximum matching on this graph. This takes one round to send items in the matched

pairs.

3. We update the Si’s and Di’s. If disk v received item i, then v should be removed from Di

and added to Si. Then v can be used as a source for item i in the next round.
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4. If we have not satisfied all demands (there are some non-empty Di’s), go to Step 1.

We may assign weights to edges in Step 1 and then find a maximum-weight matching

in Step 2. For example, let b(i, v, w) be the benefit of sending item i from disk u ∈ Si to

disk v ∈ Di and it may be computed as log |Di|
|Si| . Then the weight w(u, v) is obtained as

max(maxi c(i, v, w), maxi c(i, w, v)) since if disk u and v are matched, we would like to send the

item with the greatest benefit, and either v or w can be the sender. We discuss more on how to

choose weights in Chapter 5.

This heuristic needs to compute a maximum (weighted) matching in each round. There-

fore, the worst-case time complexity is O(n
√

nβT ) for unweighted case and O(n2(β + log n)T ) for

weighted case where T is the number of rounds required for data migration.

3.4. Bounded Bandwidth Model

The following algorithm gives a constant factor approximation when at most C transfers

are allowed in each round. Let Ei be the transfers in i-th round in the algorithm for the general

model. Then we split each Ei into d|Ei|/Ce sets of size at most C and perform each set in a round.

Theorem 3.4.1: Given ρ-approximation algorithm for the model without bandwidth constraint,

we have a 1 + ρ(1− 1/C)-approximation algorithm for the bounded bandwidth model where C is

the maximum number of transfers allowed in a round.

Proof: Let us denote the number of rounds required in an optimal solution for the general model

and bounded bandwidth model as OPT and OPT ′, respectively. Also denote the number of rounds

in our algorithm as t and t′.

Note that since we move data only to disks that need the data, the total number of data

transfers performed in the algorithm is the minimum possible. Thus OPT ′ ≥
∑

i |Ei|/C. Also as

t ≤ ρOPT and OPT ≤ OPT ′, we have t ≤ ρOPT ′.

Therefore,

t′ =
t∑

i=1

d |Ei|
C

e
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≤
t∑

i=1

(
|Ei| − 1

C
+ 1)

=
1
C

t∑

i=0

|Ei|+ t(1− 1
C

)

≤ OPT ′ + ρOPT ′(1− 1
C

)

= (1 + ρ(1− 1
C

))OPT ′

2

Corollary 3.4.2: We have a 1 + 9.5(1 − 1/C)-approximation algorithm for the bounded

bandwidth model.

When we consider only move operations, we can obtain better bounds for the bounded

bandwidth model. Without space constraints, the problem can be reduced to edge-coloring multi-

graphs, which has a 1.1-approximation algorithm with an 0.7 additive term [53, 18].

Corollary 3.4.3: When we allow only move operations, we have a 1 + 1.1(1 − 1/C)-

approximation algorithm with an 0.7 additive term for the bounded bandwidth model.

With space constraints, the algorithm by Hall et al. [29] gives 3
∆G

d∆G

2 e-approximation.

Corollary 3.4.4: When we allow only move operations and there are space constraints, we

have a 1 + 3
∆G

d∆G

2 e(1− 1
C )-approximation algorithm for the bounded bandwidth model.

Using at most n/3 bypass nodes, Hall et al. [29] obtained algorithms which give 2
∆G

d∆G

2 e-

approximation without space constraints and 4
∆G

d∆G

4 e-approximation with space constraints. The

algorithms add one transfer for every odd cycle. Thus we have 4OPT ′/3 ≥
∑
|Ei|/C.

Theorem 3.4.5: When we allow only move operations and use at most n/3 bypass nodes, there is

a 4
3 + 2

∆G
d∆G

2 e(1− 1
C )-approximation algorithm without space constraints and 4

3 + 4
∆G

d∆G

4 e(1− 1
C )-

approximation algorithm with space constraints.

Proof: We use the same notations as in Theorem 3.4.1. Since 4OPT ′/3 ≥
∑
|Ei|/C, we have

t′ =
t∑

i=1

d |Ei|
C

e
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≤
t∑

i=1

(
|Ei| − 1

C
+ 1)

=
1
C

t∑

i=0

|Ei|+ t(1− 1
C

)

≤ 4
3
OPT ′ + ρOPT ′(1 − 1

C
)

= (
4
3

+ ρ(1− 1
C

))OPT ′

2
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Chapter 4

The Correspondence Problem

In this section, we formulate the correspondence problem, which can have a significant

impact on the performance of data migration. We present several algorithms for the problem. We

show that a good solution to the correspondence problem can improve the performance of the data

migration algorithms by a factor of 4.4 in our experiments, relative to a bad solution.

4.1. Motivation

Data layout algorithms (such as the ones in [55, 56, 57, 40, 28]) take as input a demand

distribution for a set of data objects and output a grouping L1′ , L2′ , . . . LN ′ as a desired data layout

pattern on disks 1′, 2′, . . . , N ′ (the current layout is assumed to be L1, L2 . . . LN ). Note that we

do not need the data corresponding to the set of items L1′ to be on (the original) disk 1. The

algorithm simply requires that a new grouping be obtained where the items in set L1′ be grouped

together on a disk. For instance, if L3 = L1′ then by simply “renaming” disk 3 as disk 1′ we have

obtained a disk with the set of items L1′ , assuming that these two disks are inter-changeable.

Consider the following example. In the first figure of Figure 4.1 we illustrate a situation

where we have 5 disks with the initial and final configurations as shown. By picking the correspon-

dence as shown, we end up with a situation where all the data on the first disk needs to be changed.

We have shown the possible edges that can be chosen in the transfer graph along with the labels

indicating the data items that we could choose to transfer from a source disk to a destination disk.

The final transfer graph shown in Figure 4.1 is a possible output of a data migration algorithm.

This will take 5 rounds since all the data being copied is coming to a single disk; that is, node 1

will have a high in-degree. Here item V can be obtained from tertiary storage or another device.

Clearly, this set of copy operations will be slow and will take many rounds.
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On the other hand, if we use the correspondence as shown by the dashed edges in the first

figure of Figure 4.2, we obtain a transfer graph where each disk needs only one new data item and

such a transfer can be achieved in two rounds in parallel (the set of transfers performed by the

data migration algorithm are shown in Figure 4.2).

Correspondence chosen based on matchings

1 2 3 4 5

2’ 3’ 4’ 5’1’

Initial Configuration

A, B, C, D, Z A, B, C, Y, Z A, B,X,Y,Z A, W,X,Y,ZV, W, X, Y, Z

Final Configuration

A, B, C, D, E A, B, C, D, Z A, B, C, Y, Z A, B,X,Y,Z A, W,X,Y,Z

FINAL TRANSFER GRAPH

3 421 5
Z

V

X

Y

W

Figure 4.1: Figure to illustrate how a bad correspondence can yield a poor solution for data

movement.

Initial Configuration

A, B, C, D, Z A, B, C, Y, Z A, B,X,Y,Z A, W,X,Y,ZV, W, X, Y, Z

Final Configuration

A, B, C, D, E A, B, C, D, Z A, B, C, Y, Z A, B,X,Y,Z A, W,X,Y,Z

Correspondence chosen based on matchings

1 2 3 4 5

1’ 2’ 3’ 4’5’

FINAL TRANSFER GRAPH

3 421 5
Z Y X W

V

Figure 4.2: Figure to illustrate how a good correspondence can yield significantly better solutions

for data movement.
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4.2. Problem Definition

Given the initial and final layout sets, we need to compute a perfect matching between

them. We create a bipartite graph G = (U, V, E) where U and V are the sets of disks with initial

and target layout, respectively. An edge is present between Li ∈ U and Lj′ ∈ V if disk i has the

same capabilities as disk j′. Each edge may have its weight and we find a perfect matching with

several different objectives. The detailed algorithms are described in the following section. Once

we find the solution in which Li corresponds to Lj′ if an edge between Li and Lj′ is matched, we

create an instance of data migration and invoke an algorithm to compute a migration schedule.

Note that we attempt to obtain a good schedule using this two-step approach, because both the

data placement problem and the data migration problem are NP-hard.

4.3. Algorithms

To match disks in the initial layout with disks in the target layout, we consider the following

algorithms, after creating a bipartite graph with two copies of disks.

4.3.1. Simple min max matching

The weight of edge between disk p in the initial layout and disk q in the target layout is

the number of new items that disk q needs to get from other disks (because disks p does not have

these items). Then our goal is to find a perfect matching that minimizes the maximum weight of

the edges in the matching. Effectively, this algorithm pairs disks in the initial layout with disks in

the target layout, such that the number of items a disk needs to receive is minimized.

4.3.2. Simple min sum matching

We use the same weight function as in Simple min max matching but find a minimum

weighted perfect matching. This method minimizes the total number of transfer operations.
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4.3.3. Complex min sum matching

We find a minimum weighted perfect matching with different weight function that takes the

ease of obtaining an item into account. Note that the larger the ratio of |Di| to |Si| is, the more

copying is required. Suppose disk p in the initial layout is matched with disk q in the target layout,

and let S be the set of items that disk q needs which are not on disk p. The weight corresponding

to matching these two disks is then
∑

i∈S max(log |Di|
|Si| , 1).

In the experiments (see Chapter 5), we compare the algorithms described above with simple

methods such as Direct Correspondence (disk i in the initial layout is always matched with disk

i in the target layout) and Random permutation. We found that using a matching-based corre-

spondence method can improve the performance of all data migration algorithms by a factor of 4.4

relative to choosing a bad correspondence. Moreover, we found that all matching-based correspon-

dence methods considered above are comparable to one another, while the Direct correspondence

method performs well only when the initial layout and the target layout are similar. Therefore

we believe matching-based methods should be used, even though the Direct correspondence and

the Random permutation methods run much faster than the matching-based methods. A more

detailed description of the results can be found in Section 5.2.1.
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Chapter 5

Experimental Study

In this section, we describe the experiments used to evaluate the performance of different

correspondence algorithms and different data migration algorithms, and present the results. There

are two central questions in which we are interested.

• Which correspondence algorithm should we use?

We described several correspondence algorithms in Section 4.3. We want to find which cor-

respondence algorithm should be used to improve the overall performance of data migration.

• How good are our data migration algorithms once we fix a certain correspon-

dence?

Even though we have bounds on the worst case performance of the algorithm, we would like

to find whether or not its performance is a lot better than the worst case bound (we do

not have any example showing that the bound is tight). In fact, it is possible that other

heuristics perform extremely well, even though they do not have good worst case bounds.

5.1. Experimental Framework

The framework of our experiments is as follows:

1. Create an initial layout: Run the sliding window algorithm [28], given the number of user

requests for each data object. Below we describe the distributions we use in generating user

requests. These distributions are completely specified once we fix the ordering of data objects

in order of decreasing demand.

2. Create a target layout: To obtain a target layout, we take one of the following approaches.
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(a) Shuffle the ranking of items. Generate a new demand for each item according to the

probabilities corresponding to the new ranking of that item. Run the sliding window

algorithm again with the new request demands to obtain a target layout.

i. Randomly promote 20% of the items. For each chosen item of rank i, we promote

it to rank 1 to i− 1, randomly.

ii. Promote the least popular item to the top, and demote all other items by one rank.

(b) Use other (than sliding window) methods to create a target layout. The motivation for

exploring these methods is (a) performance issues (as explained later) as well as (b)

that algorithms other than sliding window could perform well in creating layouts. The

methods considered here are as follows.

i. Rotation of items: Suppose we numbered the items in non-increasing order of the

number of copies in the initial layout. We make a sorted list of items of size k = b∆
50c,

and let the list be l1, l2, . . . , lk. Item li in the target layout will occupy the position

of item li+1 in the initial layout, while item lk in the target layout will occupy the

positions of item l1 in the initial layout. In other words, the number of copies of

items l1, . . . , lk−1 are decreased slightly, while the number of copies of item lk is

increased significantly.

ii. Enlarging Di for items with small Si: Repeat the following b∆
20c times. Pick an

item s randomly having only one copy in the current layout. For each item i that

has more than one copy in the current layout, there is a probability of 0.5 that item

i will randomly give up the space of one of its copies, and the space will be allocated

to item s in the new layout for the next iteration. In other words, if there are k

items having more than one copy at the beginning of this iteration, then item s is

expected to gain k
2 copies at the end of the iteration.

3. Find a correspondence: Run different correspondence algorithms given in Section 4.3 to

match a disk in the initial layout with a disk in the target layout. Now we can find the set

of source and destination disks for each item.
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4. Compute a migration schedule: Run different data migration algorithms, and record the

number of rounds needed to finish the migration.

5.1.1. User Request Distributions

We generate the number of requests for different data objects using Zipf distributions and

Geometric distributions. We note that few large-scale measurement studies exist for the applica-

tions of interest here (e.g., video-on-demand systems), and hence below we are considering several

potentially interesting distributions. Some of these correspond to existing measurement studies

(as noted below) and others we consider in order to explore the performance characteristics of

our algorithms and to further improve the understanding of such algorithms. For instance, a Zipf

distribution is often used for characterizing people’s preferences.

Zipf Distribution

The Zipf distribution is defined as follows [44]:

For all i = 1, . . . , M,Prob(request for movie i) = c
i1−θ and 0 ≤ θ ≤ 1

where c = 1
H1−θ

M

and H1−θ
M =

∑M
j=1

1
j1−θ

and θ determines the degree of skewness. For instance, θ = 1.0 corresponds to the uniform

distribution, whereas θ = 0.0 corresponds to the skewness in access patterns often attributed to

movies-on-demand type applications, e.g., similar to the measurements performed in [20]. We

assign θ to be 0 and 0.5 in our experiments below.

Geometric Distribution

We also tried Geometric Distributions in order to investigate how a more skewed distribution

affects the performance of the data migration algorithms. The distribution is defined as follows:

For all i = 1, . . . , M, Prob(request for movie i) = (1− p)i−1p and 0 < p < 1

where we use p set to 0.25 and 0.5 in our experiments below.
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5.1.2. Parameters and Layout Creation

We now describe the parameters used in the experiments. We ran a number of experiments

with 60 disks. For each correspondence method, user request distribution, and shuffling method,

we generated 20 inputs (i.e., 20 sets of initial and target layouts) for each set of parameters, and

ran different data migration algorithms on those instances. In the Zipf distribution, we used θ

values of 0 and 0.5, and in the Geometric distribution, we assigned p values of 0.25 and 0.5.

We tried three different pairs of settings for space and load capacities of disks, namely: (A)

15 and 40, (B) 30 and 35, and (C) 60 and 150. We obtained these numbers from the specifications

of modern SCSI hard drives. For example, a 72GB 15,000 rpm disk can support a sustained

transfer rate of 75MB/s with an average seek time of around 3.5ms. Considering MPEG-2 movies

of 2 hours each with encoding rates of 6Mbps, and assuming the transfer rate under parallel load

is 40% of the sustained rate, the disk can store 15 movies and support 40 streams. The space

capacity 30 and the load capacity 35 are obtained from using a 150GB 10,000 rpm disk with a

72MB/s sustained transfer rate. The space capacity 60 and the load capacity 150 are obtained

by assuming that movies are encoded using MPEG-4 format (instead of MPEG-2). So a disk is

capable of storing more movies and supporting more streams.

We show the results of 5 different layout creation schemes with different combinations of

methods and parameters to create the initial and target layouts. (I): Promoting the last item

to the top, Zipf distribution (θ = 0); (II): Promoting 20% of items, Zipf distribution (θ = 0);

(III): Promoting the last item to the top, Geometric distribution (p = 0.5); (IV): Initial layout

obtained from the Zipf distribution (θ = 0), target layout obtained from the method described in

Step 2(b)i in the beginning of Section 5.1 (rotation of items); and (V): Initial layout obtained from

the Zipf distribution (θ = 0), target layout obtained from the method described in Step 2(b)ii in

the beginning of Section 5.1 (enlarging Di for items with small Si).
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5.2. Results

In the tables we present the average for 20 inputs. Moreover, we present results of two

representative inputs individually, to illustrate the performance of the algorithms under the same

initial and target layouts. This presentation is motivated as follows. The absolute performance of

each run is largely a function of the differences between the initial and the target layouts (and this

is true for all algorithms). That is, a small difference is likely to result in relatively few rounds

needed for data migration, and a large difference is likely to result in relatively many rounds needed

for data migration. Since a goal of this study is to understand the relative performance differences

between the algorithms described above, i.e., given the same initial and target layouts, we believe

that presenting the data on a per run basis is more informative. That is, considering the average

alone somewhat obscures the characteristics of the different algorithms.

5.2.1. Different correspondence methods

We first investigate how different correspondence methods affect the performance of the

data migration algorithms. Figures 5.1 and 5.2 show the ratio of the number of rounds taken by

different data migration algorithms to the lower bounds, averaged over 20 inputs under parameter

setting (A). We observed that the simple min max matching (Section 4.3.1) always returns the

same matching as the simple min sum matching (Section 4.3.2) in all instances we tried. Moreover,

using a simpler weight function (Section 4.3.2) or a more involved one (Section 4.3.3) does not seem

to affect the behavior in any significant way (often these matchings are the same). Thus we only

present results using simple min max matching, and label this as matching-based correspondence

method.

From the figures, we found that using a matching-based method is important and can affect

the performance of all algorithms by up to a factor of 4.4 in our experiments as compared to a bad

correspondence, using a Random permutation for example. Since Direct correspondence does not

perform as well as other weight-based matchings, this also suggests that a good correspondence

method is important. However, the performance of Direct correspondence was reasonable when
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Figure 5.1: The ratio of the number of rounds taken by the algorithms to the lower bound (28.1

rounds), averaged over 20 inputs, using parameter setting (A) and layout creation scheme (I)

(i.e., with 60 disks, space cap of 15, load cap of 40, promoting the last item to the top, and

user requests following the Zipf distribution (θ = 0)). The effect under different correspondence

methods is shown.

we promoted the popularity of one item. This can be explained by the fact that in this case sliding

window obtains a target layout which is fairly similar to the initial layout.

5.2.2. Different data migration algorithms

From the previous section it is reasonable to evaluate the performance of different data

migration algorithms using only the simple min max matching correspondence method. We now

compare the performance of different variants of our 9.5 approximation algorithm (KKW), which

was described in Section 3.2.2. The results are summarized in Figure 5.3. Consider algorithm

KKW (c) which modifies Step 3 (where we want to satisfy small Di); we found that sending

the items from Si to small Di directly using edge coloring, without using new sources s′i, is a

much better idea. Even though this makes the algorithm an O(∆) approximation algorithm, the
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Figure 5.2: The ratio of the number of rounds taken by the algorithms to the lower bound (6.0

rounds), averaged over 20 inputs, using parameter setting (A) and layout creation scheme (II)

(i.e., with 60 disks, space cap of 15, load cap of 40, promoting the last item to the top, and user

requests following the Geometric distribution (p = 0.5)). The effect under different correspondence

methods is shown.

performance is very good under both the Zipf and the Geometric distributions, since the sources

are not concentrated on one disk and only a few items require rapid doubling.

In addition, we thought that making the sets Gi slightly larger by using β was a better idea

(i.e., algorithm KKW (a) which modifies Step 2(a)). This reduces the average degree of nodes in

later steps such as in Step 2(c) and Step 3 where we send the item to disks in Di \Gi. However,

the experiments show that it usually performs slightly worse than the algorithm using β.

Consider algorithm KKW (d) which modifies Step 3(a) (where we identify new sources s′i):

we found that the performance of the variant that includes Si, in addition to Di, as candidates

for the new source s′i is mixed. Sometimes it is better than the basic KKW algorithm, but more

often it is worse.

Consider algorithm KKW (b) which modifies Step 2(b) (where we send the items from the

sources Si to Gi); we found that doing a simple broadcast is generally a better idea, as we can

see from the results for Parameter Setting (A), Instance 1 in Table 5.4 and for Parameter Setting

(A), Instance 1 in Table 5.5. Even though this makes the algorithm an O(log n) approximation
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Figure 5.3: The ratio of the number of rounds taken by the algorithms to the lower bound, averaged

over 20 inputs, using min max matching correspondence method and parameter setting (A), under

different layout creation schemes (see Section 5.1.2). Note that the order of the bars in each cluster

is the same as that in the legend.

algorithm, very rarely is the size of maxGi large. Under the input generated by Zipf and Geometric

distributions, the simple broadcast generally performs the same as the basic KKW algorithm since

the size of maxGi is very small.

Out of all the heuristics, the matching-based heuristics perform very well in practice. The

only cases where they perform extremely badly correspond to hand-crafted (by us) bad examples.

Suppose, for example, a set of ∆ disks are the sources for ∆ items (each disk has all ∆ items).

Suppose further that the destination disks also have size ∆ each and are disjoint. The results are

given in Figure 5.4 and Table 5.1. The KKW algorithm sends each of the items to one disk in

Di in the very first round. After that, a broadcast can be done in the destination sets as they

are disjoint, which takes O(log ∆) rounds in total. Therefore the ratio of the number of rounds

used to the lower bound remains a constant. The matching-based algorithm can take up to ∆

rounds, as it can focus on sending item i at each round by computing a perfect matching of size

∆ between the source disks and the destination disks for item i in each round. Since any perfect

matching costs the same weight in this case, the matching focuses on sending only one item in each
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round. We implemented a variant of the weighted matching heuristic to get around this problem

by adding a very small random weight to each edge in the graph. As we can see from Figure 5.4

and Table 5.1, although this variant does not perform as well as the KKW algorithm, it performs

much better than other matching-based data migration algorithms. Moreover, we ran this variant

with the inputs generated from Zipf and Geometric distributions, and we found that it frequently

takes the same number of rounds as the weighted matching heuristic. In some cases it performs

better than the weighted matching heuristic, while in a few cases its performance is worse.

Figure 5.4: The ratio of the number of rounds taken by the algorithms to the lower bound under

the worst case.

Given the performance of different data migration algorithms illustrated in Figure 5.3 and

in all the tables, the two matching-based heuristics are comparable. Matching-based heuristics

perform the best in general, followed by the edge-coloring heuristic, followed by the KKW algo-

rithms. The main reason why the edge-coloring heuristic performs better than the basic KKW

algorithm is that the input contains mostly move operations, i.e., the sizes of Si and Di are at most

2 for at least 80% of the items. The Zipf distribution does not provide enough cloning operations

for the KKW algorithm to show its true potential (the sizes of Gi are mostly zero, with one or two

items having sizes of 1 or 2). Under the Zipf distribution, since the sizes of most sets Gi are zero,

the data migration variant which sends items from Si directly to Di is essentially the same as the

coloring heuristic. Thus they have almost the same performance.
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Under different input parameters

In addition to the Zipf distribution, we tried the Geometric distribution because we would

like to investigate the performance of the algorithms under more skewed distributions where more

cloning of items is necessary. As we can see in Figure 5.2 and Table 5.4, we found that the

performance of the coloring heuristic is worse than the KKW algorithms, especially when p is

large (more skewed) or when the ratio of the load capacity to space capacity is high. However, the

matching-based heuristics still perform the best.

We also investigated the effect of a higher ratio of the load to space capacities on the

performance of different algorithms. We found the results to be qualitatively similar.

Moreover, in the Zipf distribution, we assigned different values to θ, which controls the

skewness of the distribution; specifically, we considered values of 0.0 and 0.5. We found that the

results are similar in both cases. While in the Geometric distribution, a higher value of p (0.5 vs

0.25) gives the KKW algorithms an advantage over coloring heuristic as more cloning is necessary.

Miscellaneous

Tables 5.5 and 5.6 show the performance of different algorithms using inputs where the target

layout is derived from the initial layout, as described in Step 2(b)i and Step 2(b)ii in Section 3.2.2.

Note that when the initial and target layouts are very similar, the data migration can be done

very quickly. The number of rounds taken is much fewer than the number of rounds taken using

inputs generated from running the sliding window algorithm again to create the target layout.

This illustrates that it may be worthwhile to consider developing an algorithm which takes in an

initial layout and the new access pattern, and then derives a target layout, with the optimization

of the data migration process in mind.

Tables 5.2 and 5.3 show the performance of different algorithms under two shuffling methods

described in Step 2(a) in Section 5.1. We found that the results are qualitatively similar.

We now consider the running time of the different data migration algorithms. Except for

the matching heuristics, all other algorithms’ running times are at most 3 CPU seconds and often
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less than 1 CPU second, on a Sun Fire V880 server. The running time of the matching heuristics

depends on the total number of items. It can be as high as 43 CPU seconds when the number of

items is around 3500, and it can be lower than 2 CPU seconds when the number of items is around

500.

We also collected the maximum space requirements for each disk needed to complete the

migration. Consider disk 3 in Figure 1.3 and suppose that another disk needs item 3 from disk

3. If disk 3 receives items 2 and 4 before sending out item 3, then its maximum temporary space

requirement is 4. However, since all data migration algorithms listed in this paper do not optimize

for the maximum temporary space requirement, in many instances, there exists a disk that needs

twice the original space requirements.

Final Conclusions

At the beginning of this chapter, we posed two major questions. For the correspondence

problem question, our experiments indicate that weighted matching is the best approach among

the ones we tried.

For the data migration problem question, our experiments indicate that the weighted match-

ing heuristic with some randomness does very well. This suggests that perhaps a variation of

matching can be used to obtain an O(1) approximation as well. Among all variants of the KKW

algorithm, letting Si send item i to Di directly for the small sets, i.e., variant (c), performs the

best. From the above described results we can conclude that under the Zipf and Geometric dis-

tributions, where cloning does not occur frequently, the weighted matching heuristic returns a

schedule which requires only a few rounds more than the optimal. In our experiments, all variants

of the KKW algorithm usually take no greater than 10 more rounds than the optimal, when a

good correspondence method is used.
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Table 5.1: The number of rounds taken by different data migration algorithms, when a set of ∆

disks are the sources for ∆ items (each disk has all ∆ items), and the destination disks also have

size ∆ each and are disjoint.

Number of items (∆): 20 30 40 60 80

Lower Bound 5 5 6 6 7

KKW (Basic) 10 9 12 12 14

KKW ((b) doubling) 6 6 7 7 8

KKW ((c) Si to Di) 10 9 12 12 14

KKW ((a) β̄, (c) Si to Di) 10 9 12 12 14

Edge Coloring 20 30 40 60 80

Matching 20 30 40 60 80

Weighted Matching 21 30 40 61 80

Random Weighted 6 10 13 23 34
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Table 5.2: The ratio of the number of rounds taken by the data migration algorithms to the lower

bounds, using min max matching correspondence method with layout creation scheme (I) (i.e.,

promoting the last item to the top, with user requests following the Zipf distribution (θ = 0)), and

under different parameter settings.

Parameter setting: (A) (B) (C)

Instance: 1 2 Ave 1 2 Ave 1 2 Ave

KKW (Basic) 1.233 1.233 1.238 1.130 1.104 1.122 1.055 1.108 1.096

KKW (b) 1.233 1.233 1.238 1.130 1.104 1.122 1.055 1.108 1.096

KKW (c) 1.000 1.033 1.053 1.000 1.000 1.006 1.000 1.092 1.044

KKW (a & c) 1.033 1.067 1.068 1.022 1.021 1.021 1.000 1.092 1.044

KKW (a, b & c) 1.033 1.067 1.068 1.022 1.021 1.021 1.000 1.092 1.044

KKW (d) 1.000 1.300 1.263 1.000 1.000 1.014 1.191 1.292 1.169

KKW (b & d) 1.133 1.167 1.281 1.022 1.021 1.037 1.191 1.292 1.170

Edge Coloring 1.000 1.033 1.053 1.000 1.000 1.006 1.000 1.092 1.044

Matching 1.000 1.000 1.011 1.000 1.000 1.000 1.000 1.031 1.009

Weighted Matching 1.000 1.000 1.007 1.000 1.000 1.000 1.000 1.015 1.006

Random Weighted 1.000 1.000 1.004 1.000 1.000 1.000 1.000 1.015 1.008

50



Table 5.3: The ratio of the number of rounds taken by the data migration algorithms to the lower

bounds, using min max matching correspondence method with layout creation scheme (II) (i.e.,

promoting 20% of items, with user requests following the Zipf distribution (θ = 0)), and under

different parameter settings.

Parameter setting: (A) (B) (C)

Instance: 1 2 Ave 1 2 Ave 1 2 Ave

KKW (Basic) 1.267 1.233 1.231 1.100 1.121 1.092 1.042 1.059 1.048

KKW (b) 1.267 1.233 1.231 1.100 1.121 1.092 1.042 1.059 1.048

KKW (c) 1.033 1.033 1.044 1.000 1.017 1.008 1.008 1.008 1.013

KKW (a & c) 1.067 1.300 1.092 1.000 1.017 1.008 1.008 1.008 1.013

KKW (a, b & c) 1.067 1.300 1.092 1.000 1.017 1.008 1.008 1.008 1.013

KKW (d) 1.367 1.167 1.252 1.167 1.207 1.149 1.203 1.263 1.201

KKW (b & d) 1.367 1.267 1.282 1.167 1.207 1.149 1.203 1.263 1.201

Edge Coloring 1.033 1.033 1.044 1.000 1.017 1.008 1.008 1.008 1.013

Matching 1.067 1.000 1.027 1.033 1.034 1.023 1.017 1.025 1.015

Weighted Matching 1.033 1.000 1.007 1.033 1.017 1.003 1.008 1.000 1.003

Random Weighted 1.000 1.000 1.003 1.000 1.017 1.002 1.000 1.000 1.000
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Table 5.4: The ratio of the number of rounds taken by the data migration algorithms to the

lower bounds, using min max matching correspondence method with layout creation scheme (III)

(i.e., promoting the last item to the top, with user requests following the Geometric distribution

(p = 0.5)), and under different parameter settings.

Parameter setting: (A) (B)

Instance: 1 2 Ave 1 2 Ave

KKW (Basic) 2.000 2.167 2.250 1.611 1.611 1.568

KKW (b) 1.875 2.167 2.167 1.611 1.611 1.568

KKW (c) 1.625 2.000 2.000 1.444 1.222 1.286

KKW (a & c) 1.750 2.000 2.050 1.333 1.333 1.296

KKW (a, b & c) 1.625 2.000 1.917 1.278 1.278 1.261

KKW (d) 1.750 2.333 2.433 1.722 1.500 1.533

KKW (b & d) 1.875 2.333 2.483 1.556 1.556 1.538

Edge Coloring 3.875 5.667 5.617 2.000 2.111 1.980

Matching 1.000 1.500 1.500 1.111 1.111 1.116

Weighted Matching 1.000 1.500 1.433 1.056 1.111 1.111

Random Weighted 1.000 1.333 1.367 1.056 1.056 1.010
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Table 5.5: The ratio of the number of rounds taken by the data migration algorithms to the lower

bounds, using min max matching correspondence method with layout creation scheme (IV) (i.e.,

target layout obtained from the method described in Step 2(b)i in Section 5.1 (rotation of items)),

and under different parameter settings.

Parameter setting: (A) (B) (C)

Instance: 1 2 Ave 1 2 Ave 1 2 Ave

KKW (Basic) 2.400 2.000 1.907 1.417 1.444 1.553 1.333 1.250 1.330

KKW (b) 2.200 2.000 1.889 1.417 1.444 1.553 1.333 1.250 1.330

KKW (c) 2.000 1.600 1.722 1.167 1.111 1.289 1.222 1.000 1.107

KKW (a & c) 1.800 2.000 1.704 1.250 1.333 1.408 1.222 1.083 1.170

KKW (a, b & c) 2.000 2.000 1.704 1.333 1.333 1.408 1.222 1.083 1.170

KKW (d) 2.400 2.400 1.963 1.333 1.444 1.513 1.556 1.083 1.348

KKW (b & d) 2.200 2.200 2.000 1.250 1.667 1.658 1.556 1.333 1.393

Edge Coloring 1.800 2.000 1.778 1.000 1.000 1.250 1.222 1.000 1.125

Matching 1.000 1.000 1.093 1.000 1.000 1.026 1.000 1.000 1.000

Weighted Matching 1.000 1.200 1.074 1.000 1.000 1.013 1.000 1.000 1.009

Random Weighted 1.000 1.200 1.056 1.000 1.000 1.013 1.000 1.000 1.009
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Table 5.6: The ratio of the number of rounds taken by the data migration algorithms to the lower

bounds, using min max matching correspondence method with layout creation scheme (V) (i.e.,

target layout obtained from the method described in Step 2(b)ii in Section 5.1 (enlarging Di for

items with small Si)), and under different parameter settings.

Parameter setting: (A) (B) (C)

Instance: 1 2 Ave 1 2 Ave 1 2 Ave

KKW (Basic) 1.000 1.333 1.333 1.000 1.000 1.114 1.167 1.000 1.140

KKW (b) 1.000 1.333 1.222 1.000 1.000 1.114 1.167 1.000 1.140

KKW (c) 1.000 1.333 1.296 1.000 1.000 1.086 1.000 1.000 1.093

KKW (a & c) 1.000 1.333 1.296 1.000 1.000 1.086 1.167 1.000 1.116

KKW (a, b & c) 1.000 1.333 1.185 1.000 1.000 1.086 1.167 1.000 1.093

KKW (d) 1.000 1.667 1.481 1.000 1.500 1.286 1.500 1.750 1.488

KKW (b & d) 1.000 1.667 1.481 1.000 1.500 1.286 1.667 1.750 1.512

Edge Coloring 1.000 1.000 1.148 1.000 1.000 1.057 1.000 1.000 1.047

Matching 1.000 1.000 1.111 1.000 1.000 1.029 1.000 1.000 1.047

Weighted Matching 1.000 1.000 1.111 1.000 1.000 1.029 1.000 1.000 1.047

Random Weighted 1.000 1.000 1.111 1.000 1.000 1.029 1.000 1.000 1.047
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Chapter 6

Minimizing Sum of Completion Times

In this chapter, we consider objectives other than the makespan — total completion time.

For this objective, we assume that we are given a transfer graph. In other words, only move

operations are considered. We consider the sum of weighted completion times over all migration

jobs or storage devices. Minimizing the sum of job completion times is one of the most common

measures in the scheduling literature since it can reflect the priorities of jobs. On the other hand,

in a system where storage devices can be free to do other tasks as soon as their own migrations

are complete, minimizing the sum of completion times over all storage devices is an interesting

objective since the performance of a device is degraded while it is involved in migration.

6.1. Problem Definition

Given an initial and final layout of data on devices, we create the transfer graph G = (V, E),

where each vertex v ∈ V represents a storage device and each edge e = (u, v) ∈ E corresponds to a

migration that must be done from u to v. The crucial constraint is that each vertex can participate

in only one data transfer (either send or receive) in a round. Each edge e has its (integral) length

pe which represents the time required to migrate the data from its source to destination. The

completion time Ce of an edge e is the time when we finish scheduling the edge. The completion

time Cv of a vertex v is the time at which we finish scheduling all edges incident to it. That is,

Cv = maxe∈N(v) Ce where N(v) denotes all edges incident to v. Vertices and edges may have their

weights, which we denote as wv and we, respectively. Our objective is to find a schedule that

minimizes the sum of weighted completion times over all vertices in V (
∑

v wvCv) or all edges in

E (
∑

e weCe).

Figure 6.1(a) shows an example of a transfer graph where all weights of vertices are one and
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Figure 6.1: (a) An example of a migration plan (b) Constructing G′

a valid migration plan for it. In the example, the numbers beside the edges are the completion

times of edges. Then the completion times of vertices are 3, 2, 4, 2, 4 in order. Therefore, the

total completion time of all vertices is 15 and the total completion time of all edges is 13.

6.2. Algorithms for Total Vertex Completion Time

6.2.1. NP-hardness

We can prove that the problem of minimizing the total vertex completion time is NP-hard

when vertices have arbitrary weights even though all edges have the same lengths.

Theorem 6.2.1: The data migration problem to minimize the total weighted completion time

over all vertices is NP-hard if vertices have arbitrary weights, even when edge lengths are all the

same.

Proof: We prove this by reduction from the Chromatic Index problem [36]. The Chromatic Index

problem is the problem of finding the smallest number χ′(G) of colors required to color the edges

of a graph G so that adjacent edges are colored differently.

Given a simple graph G = (V, E), construct G′ = (V ′, E′) by adding dummy vertices and

edges as follows. Let d(v) be the degree of a vertex v and ∆ = maxv d(v). For each vertex v, add

∆ − d(v) dummy vertices and draw edges from v to them. We assign sufficiently large weights

wo (e.g., wo = ∆2|V |) to original vertices and one to all dummy vertices. Figure 6.1(b) shows an

example of how to construct G′. Note that χ′(G′) is exactly the same as χ′(G) since all dummy
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edges incident to v can take any remaining color that does not appear at v in an edge coloring of

G.

By Vizing’s theorem [62], χ′(G) is ∆ or ∆+1. Suppose that χ′(G) is ∆ (and thus χ′(G′) =

∆). The number of dummy vertices is at most (∆ − 1)|V | since each original vertex can have at

most ∆ − 1 dummy vertices. Therefore, the optimal solution to our problem for instance G′ is

at most wo∆|V | + ∆(∆ − 1)|V | (wo∆|V | for the original vertices and ∆(∆ − 1)|V | for dummy

vertices, assuming that the completion times of all vertices is ∆). Now consider the case when

χ′(G) is ∆ + 1. The completion times of the original vertices in G′ cannot be less than ∆ because

the degrees are ∆. Also there should be at least one vertex with the completion time no less than

∆ + 1. Thus the optimal solution to our problem should be at least wo∆(|V | − 1) + wo(∆ + 1) =

wo∆|V |+ wo = wo∆|V |+ ∆2|V |. This means that if we can find an optimal solution to minimize

the total weighted vertex completion time of G′, then we can decide if χ′(G) = ∆ or ∆ + 1. 2

6.2.2. Integer programming formulation

We first formulate the problem as an integer program, which draws on an IP formulation

given in [31] for single-machine scheduling problems.

We should schedule two types of jobs - edge jobs and vertex jobs. Edge jobs correspond to

edges e in the transfer graph G and take pe time units to finish. Edge jobs can be scheduled in

parallel as long as they are not adjacent. Vertex jobs correspond to vertices in G and take zero

units of time, but cannot be scheduled until all edge jobs incident to the vertex are finished. This

means that the completion time of a vertex job is the same as the last completion time of edges

incident to it.

We define two variables Cv and Ce, which represent the completion times for vertex v and

edge e, respectively. Let us denote the set of edges incident to v as N(v). Define p(S) to be

∑
e∈S pe and p(S2) to be

∑
e∈S p2

e for any set of edges S. Since we want to minimize the sum of

weighted completion times of all vertices, our objective function is

min
∑

v∈V

wv · Cv (6.1)
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subject to

∑

e∈S(v)

peCe ≥ p(S(v))2 + p(S(v)2)
2

for all v, S(v) ⊆ N(v) (6.2)

Cv ≥ Ce for all v, e where e ∈ N(v) (6.3)

Cv ≥ p(N(v)) for all v (6.4)

We have Constraints (6.2) because each edge job takes pe time and any edge jobs incident

to a vertex cannot be scheduled at the same time. Hall et al.used this type of constraint for single-

machine scheduling problems [31]. To derive Constraints (6.2), consider any ordering of edges in

S(v). If e ∈ S(v) is scheduled at ith order, set Ci = Ce and pi = pe. Then we have

|S(v)|∑

j=1

pj · Cj ≥
|S(v)|∑

j=1

pj(
j∑

k=1

pk)

=
|S(v)|∑

j=1

j∑

k=1

pjpk

=
(
∑

e∈S(v) pe)2 +
∑

e∈S(v) p2
e

2

Constraints (6.3) imply that a vertex job can be scheduled only after all edge jobs incident to the

vertex are scheduled. In fact, since vertex jobs take zero unit of time, the completion time of a

vertex is the same as the last completion time of all edges incident to it. We have constraints (6.4)

because the completion time of a vertex should be at least the sum of pe of all edges e ∈ N(v).

We relax the integrality constraints on Cv and Ce, and find an optimal solution of the LP.

Although the number of constraints of this LP is exponential, it is solvable in polynomial time via

the ellipsoid algorithm since there is a polynomial-time separation algorithm for the exponentially

large class of Constraints (6.2) [61].

Define C∗
v and C∗

e to be the completion time of v and e in an optimal solution of the LP.

For a vertex v and e ∈ N(v), let us define Se(v) as {e′|e′ ∈ N(v)
∧

C∗
e′ ≤ C∗

e }. In other words,

Se(v) is the set of edges that are incident to v and scheduled no later than e in the optimal LP

solution. Note that Se(v) includes the edge e itself. Constraints (6.2) give the following lemma.

This is a reformulation of Lemma 2.1 in [31] using our notation.
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Lemma 6.2.2: For e ∈ N(v), C∗
e ≥ p(Se(v))/2.

Proof: We have
∑

e′∈Se(v) pe′C
∗
e′ ≥ p(Se(v))2/2 by Constraints (6.2) and also

∑

e′∈Se(v)

pe′C
∗
e′ ≤ C∗

e

∑

e′∈Se(v)

pe′ ≤ C∗
e · p(Se(v)).

Combining two inequalities, we have the lemma. 2

6.2.3. When edges have unit lengths

In this subsection, we develop a constant approximation algorithm when edge lengths are

all the same. We construct our schedule based on an optimal schedule of LP, which we call Ordered

List Scheduling(OLS).

Algorithm OLS

1. Sort edges in non-decreasing order of their completion times in an optimal LP solution.

2. At each time t, we scan edges not yet scheduled in the sorted order and process an edge

e = (u, v) at t if no edge in Se(u) and Se(v) is assigned at time t.

We can prove that the algorithm OLS gives a 3-approximation. Let us define C̃e and C̃v to

be the completion time of e and v by OLS, respectively.

Lemma 6.2.3: For any e = (u, v), C̃e ≤ p(Se(u)) + p(Se(v))− pe .

Proof: If e is scheduled at time t, it means that at any time t′ < t, at least one edge in Se(u)
⋃

Se(v)

is scheduled (Otherwise, e should be scheduled at t′). This implies the lemma. 2

Theorem 6.2.4: Algorithm OLS gives a 3-approximation for the total vertex completion time

when edge lengths are all the same.

Proof: By Constraints (6.3) and Lemma 6.2.2,

C∗
v ≥ max

e∈N(v)
C∗

e ≥ max
e∈N(v)

p(Se(ue))/2
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pe1 = 8

pe2 = 5

pe3 = 7 pe4 = 3

pe5 = 20

v1
v5

v2

v3

v4

Figure 6.2: A counterexample to OLS for the case when edges have arbitrary job lengths.

where ue is the endpoint of e other than v.

Also by Lemma 6.2.3 and Constraints (6.4), we have

C̃v = max
e∈N(v)

C̃e

≤ max
e∈N(v)

(p(Se(ue)) + p(Se(v)))

≤ max
e∈N(v)

p(Se(ue)) + |N(v)|

≤ 2C∗
v + |N(v)|

≤ 3C∗
v .

2

Recently, Gandhi et al. [24] proved that the analysis of our algorithm for unit job lengths is tight.

They showed that there are examples in which the total vertex completion time using our algorithm

is 3 times the optimal.

6.2.4. When edges have arbitrary integer lengths

We now consider the case when the lengths of edge jobs are arbitrary integers. We present

a 9-approximation algorithm for minimizing the total completion time over all vertices.

Note that with arbitrary job lengths, algorithm OLS does not give an upperbound in Lemma

6.2.3. This is because in OLS we schedule any edge job if both endpoints are available. But if

the job has large job length, then it may delay other (short) jobs that should be scheduled earlier,
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considering their completion times in an optimal LP solution. Figure 6.2 shows an example. In

this example, the job lengths of edges are pe1 = 8, pe2 = 5, pe3 = 7, pe4 = 3, pe5 = 20 and weights

are all the same. An optimal LP solution of this instance is Ce1 = 13, Ce2 = 7.8, Ce3 = 10,

Ce4 = 3, Ce5 = 26 and Cv1 = 13, Cv2 = 12, Cv3 = 10, Cv4 = 26, Cv5 = 28. If we sort the edges

in non-decreasing order of their completion times, we have e4, e2, e3, e1, e5. In the algorithm OLS,

at time t = 3, e5 can be scheduled as both endpoints are available. But it prevents e1 from being

scheduled till t = 23 even though e5 does not belong to Se1(v5) (this cannot happen in the unit

job length case). Since p(Se1(v1)) + p(Se1(v5)) = 21, Lemma 6.2.3 does not hold.

To avoid this situation, we partition edges into subsets and schedule them in order. The

intuition behind this is that we want to prevent any extremely long job from delaying short jobs

that should be scheduled before it in an optimal solution. If we schedule an edge set A prior to a

set B, then it means that any edge e in A has less C∗
e than edges in B or it has short job length

in a sense. We call this algorithm Partitioned List Scheduling (PLS).

Algorithm PLS

1. We first partition edges in E into E′
1, E

′
2 . . . E′

k using the following recursive algorithm. Let

p(G) be maxv∈V p(N(v)) in G.

(a) Sort edges in non-decreasing order of C∗
e in an optimal LP solution.

(b) Initially G0 = G. We recursively split Gi−1 = (V, Ei−1) into Gi = (V, Ei) and G′
i =

(V, E′
i) as follows. Ei = ∅ in the beginning. Scan edges in Ei−1 in the sorted order and

add an edge e to Ei if p(Gi) ≤ p(Gi−1)/2 after adding e to Ei. Set E′
i = Ei−1 − Ei.

(c) We repeat this until Ek is empty.

2. We schedule edges by considering them in the order of E′
k, E′

k−1, · · · , E′
1. When scheduling

edges in E′
i, we use List Scheduling(LS), in which whenever two adjacent vertices become

available and there are any remaining edges between them, one of those edges is scheduled.
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Lemma 6.2.5: If an edge e = (u, v) belongs to E′
i, then C∗

e > p(Gi−1)/4.

Proof: We know that p(Se(u)) > p(Gi−1)/2 or p(Se(v)) > p(Gi−1)/2 since otherwise e should be

included in Ei. By Lemma 6.2.2, C∗
e ≥ p(Se(u))/2 and C∗

e ≥ p(Se(v))/2. The lemma follows. 2

Lemma 6.2.6: If an edge e = (u, v) belongs to E′
i, then C̃e ≤ 3p(Gi−1) where C̃e is the completion

time of edge e by Algorithm PLS.

Proof: We prove this by induction. Let NH(v) denote a set of edges incident to v in any graph

H . If e ∈ E′
k, then C̃e ≤ p(NG′

k
(u)) + p(NG′

k
(v)) ≤ 2p(G′

k) = 2p(Gk−1). Now we will prove that if

we can finish all edges in E′
k, E′

k−1, . . . , E
′
i+1 within 3p(Gi), then all edges in E′

k, E′
k−1, . . . , E

′
i can

be finished within 3p(Gi−1). To do this, it is enough to show that scheduling edges in E′
i needs at

most 3p(Gi−1)/2 additional time because 3p(Gi) + 3p(Gi−1)/2 ≤ 3p(Gi−1).

Consider an edge e = (u, v) belonging to E′
i. LS(G′

i) will complete e within p(NG′
i
(u)

⋃
NG′

i
(v)) ≤

p(NG′
i
(u)) + p(NG′

i
(v)) − pe time. Because e is not included in Ei, p(NGi(u)) + pe > p(Gi−1)/2

or p(NGi(v)) + pe > p(Gi−1)/2. Without loss of generality, let us assume that p(NGi(v)) + pe >

p(Gi−1)/2. Then

p(NG′
i
(u)) + p(NG′

i
(v))− pe < p(NG′

i
(u)) + p(NG′

i
(v)) + p(NGi(v)) − p(Gi−1)/2

= p(NG′
i
(u)) + p(NGi−1(v)) − p(Gi−1)/2

≤ p(NGi−1(u)) + p(NGi−1(v)) − p(Gi−1)/2

≤ 3p(Gi−1)/2.

This proves the lemma. 2

Theorem 6.2.7: Algorithm PLS gives us a 9-approximation for the total completion time of

vertices.

Proof: The completion time of a vertex v in our schedule is determined by the last scheduled

edge ev = (u, v) in N(v). Let ev be scheduled as a part of E′
i. To finish E′

k, E′
k−1, . . . , E

′
i+1,

we need at most 3p(Gi) ≤ 3p(Gi−1)/2. In addition, to schedule ev in E′
i, we need at most
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p(NG′
i
(u)) + p(NG′

i
(v)) − pe and it is less than p(NGi−1(u)) + p(NGi−1(v)) − p(Gi−1)/2 (see the

third line from the bottom of the proof for Lemma 6.2.6). Therefore,

C̃v = C̃ev

≤ 3p(Gi−1)/2 + p(NGi−1(u)) + p(NGi−1(v)) − p(Gi−1)/2

≤ 2p(Gi−1) + p(NGi−1(v))

< 8C∗
ev + p(N(v)) (by Lemma 6.2.5)

≤ 9C∗
v .

2

6.3. Algorithm for Total Edge Completion Time

In this section, we consider the total completion time over all transfer jobs.

Recall that Ce denotes the completion time of edge e, and for any set of edges S, p(S) =

∑
e∈S pe and p(S2) =

∑
e∈S p2

e. Then IP formulation for the problem is

min
∑

e∈E

we · Ce (6.5)

subject to (6.6)

∑

e∈S(v)

peCe ≥ p(S(v))2 + p(S(v)2)
2

for all v, S(v) ⊆ N(v) (6.7)

Even when the lengths of transfers are all the same, the problem is shown to be NP-hard by

Bar-Noy et al. [4]. They also show that any greedy algorithm gives a 2-approximation when the

lengths of transfers are all the same. For arbitrary transfer lengths, note that algorithm PLS gives

a 12-approximation since for each edge e in E′
i, the completion time is upperbounded by 3p(Gi−1)

and p(Gi−1) ≤ 4C∗
e . Here we present a 10-approximation algorithm by slightly modifying PLS.
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We modify Step 2 in PLS as follows.

Algorithm Modified PLS

1. Partition edges into E′
k, E′

k−1, · · · , E′
1 as in PLS

2. We schedule edges by considering them in the order of E′
k, E′

k−1, · · · , E′
1. When scheduling

edges in each E′
i, we compute two different schedules and choose the better of two solutions.

(a) find a schedule using LS.

(b) find another schedule in which edges are performed in the reverse order of LS.

Lemma 6.3.1: Modified PLS finds a schedule in which
∑

e∈E′
i
weC̃e ≤

∑
e∈E′

i
we(9

4p(Gi−1) + pe)

for all i where C̃e is the completion time of e in our algorithm.

Proof: Edges in E′
i can be scheduled only after all edges in E′

j(j > i) are finished. We break C̃e

into two parts: the delay caused by finishing E′
j(j > i) and the delay after we start scheduling

edges in E′
i. The first part cannot be greater than 3

2p(Gi−1). Denote the second part as C̄e. Note

that C̄e is also upperbounded by 3
2p(Gi−1).

If
∑

e∈E′
i
weC̄e ≤

∑
e∈E′

i
we · 3

4p(Gi−1) in the schedule generated by LS, we are done since

∑
e∈E′

i
weC̃e ≤

∑
e∈E′

i
we(3

2p(Gi−1) + C̄e) ≤
∑

e∈E′
i
we · 9

4p(Gi−1). If not, consider the schedule

generated in the reverse order. In the schedule, if an edge e was scheduled from C̄e − pe to C̄e in

the given LS, we schedule e starting from 3
2p(Gi−1)− C̄e and finish at time 3

2p(Gi−1) − C̄e + pe.

Then the modified completion time of e is at most 3p(Gi−1)− C̄e + pe. Thus

∑

e∈E′
i

weC̃e ≤
∑

e∈E′
i

we(3p(Gi−1)− C̄e + pe)

=
∑

e∈E′
i

we(3p(Gi−1) + pe)−
∑

e∈E′
i

weC̄e

<
∑

e∈E′
i

we(3p(Gi−1) + pe)−
∑

e∈E′
i

we ·
3
4
p(Gi−1)

=
∑

e∈E′
i

we(
9
4
p(Gi−1) + pe).
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2

Theorem 6.3.2: This algorithm gives us a 10-approximation for the total completion time over

all edges.

Proof:

∑

e∈E

weC̃e =
∑

i

∑

e∈E′
i

weC̃e

≤
∑

i

∑

e∈E′
i

we(
9
4
p(Gi−1) + pe) (by Lemma 6.3.1)

<
∑

e∈E

we · 10C∗
e (by Lemma 6.2.5)

≤ 10 ·OPT.

2
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Chapter 7

Broadcasting in Heterogenous Networks

For the problems in the previous chapters, we assumed that machines in the system are

homogeneous. However, in a system where machines are put together over time, they tend to

have different capabilities and this leads to a heterogenous collection of machines rather than a

homogeneous collection. We consider a special case of data migration in this model — the broadcast

problem. In the broadcast problem, a source disk (or processor) has one message to be sent to all

other disks. In other words, |Si| = 1 and Di includes all the disks (other than the source) in the

system. Broadcast is one of the fundamental operations that are used in such clusters of machines.

In addition, broadcast is used as a primitive in many parallel algorithms.

7.1. Problem Definition

We are given a set of processor p0, p1, . . . , pn. There is one message to be broadcast from p0

to all other processors p1, p2, . . . , pn. Each processor pi can send a message to another processor

with transmission time ti once it has received the message. Each processor can be either sending

a message or receiving a message at any point of time. Without loss of generality, we assume that

t1 ≤ t2 ≤ . . . ≤ tn and t0 = 1.

We define the completion time of processor pi to be the time when pi has received the

message. Our objective is to find a schedule that minimizes Cmax = maxi ci where ci is the

completion time of processor pi. In other words, we want to find a schedule that minimizes the

time required to send the message to all the processors.

Our proof makes use of the following results from [3].

Theorem 7.1.1: [3] There exists an optimal broadcast tree in which all processors send messages

without delay.
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(a) FNF (b) Optimal Solution

Figure 7.1: An example that FNF does not produce an optimal solution. Transmission times of

processors are inside the circles. Times at which nodes receive a message are also shown.

Theorem 7.1.2: [3] There exists an optimal broadcast tree in which every processor has trans-

mission time no less than its parent.

7.2. Fastest Node First

A broadcast operation is implemented as a broadcast tree. Each node in the tree represents

a processor of the cluster. The root of the tree is the source of the original message. The children

of a node pi are the processors that receive the message from pi. The completion time of a node is

the time at which it completes receiving the message from its parent. The completion time of the

children of pi is ci + j · ti, where ci is the completion time of pi, ti is the transmission time of pi and

j is the child number. In other words, the first child of pi has a completion time of ci + ti (j = 1),

the second child has a completion time of ci + 2ti (j = 2) etc. See Figure 7.1 for an example.

A commonly used method to find a broadcast tree is referred to as the “Fastest Node First”

(FNF) technique [3]. This works as follows: In each iteration, the algorithm chooses a sender

from the set of processors that have received the message (set S) and a receiver from the set of

processors that have not yet received the message (set R). The algorithm then picks the sender

from s ∈ S so that s can finish the transmission as early as possible, and chooses the receiver

r ∈ R as the processor with the minimum transmission time in R. Then r is moved from R to S

and the algorithm continues. The intuition is that sending the message to fast processors first is
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Figure 7.2: Figure shows how to modify the schedule of T (s) and T (s′).

a more effective way to propagate the message quickly. This technique is very effective and easy

to implement. In practice it works extremely well (using simulations) and in fact frequently finds

optimal solutions as well [3]. However, there are situations when this method also fails to find an

optimal solution. A simple example is shown in Figure 7.1.

7.2.1. Minimizing the Sum of Completion Times

In this section, we show that the FNF scheme finds an optimal schedule to minimize the

sum of completion times of all the nodes, i.e., it minimizes Csum =
∑

i ci. This was originally

shown in the paper by Hall et al. [30] but here we provide a simpler proof for the problem.

Suppose that we are given an (optimal) schedule that minimizes the sum of completion

times and the sum of completion times is C. If there is a processor pi(i ≥ 1) whose completion

time is later than processor pj (i < j), i.e., ci > cj in the schedule, then we can find a modified

schedule such that processor pi(i ≥ 1) has completion time no later than processor pj and the sum

of completion times is no more than C.

Let us define a permutation π : {1, 2 . . . n} → {1, 2, . . . n}. Then any schedule can be

represented as an ordered list of processors (pπ(1), pπ(2), . . . , pπ(n)) by sorting in non-decreasing
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order of completion times (ties broken in accordance with their indices).

We first prove a lemma similar to Theorem 7.1.2 for sum of completion times. The proof is

the same as Theorem 7.1.2 [3]. We include the proof for the completeness.

Lemma 7.2.1: There exists a broadcast tree such that it minimizes the sum completion times

and for any processor pi other than p0, its children have the transmission times no less than pi.

Proof: We prove by contradiction. Suppose that in an optimal solution for sum of completion

times, there are processors pi and pj (i, j 6= 0) with ti < tj and pi is a child of pj . pi finishes

receiving the message at time ci and let P (ci) denote the processors that have finished receiving

the message by time ci.

We consider the following schedule only for processors in P (ci). The schedule is similar to

the original schedule but pi and pj are exchanged. Let pj finish receiving the message at time c′j

in the modified schedule. Clearly ci > c′j . It is easy to see that for the processors in P (ci) the

completion times are no later in the modified schedule, and therefore for the remaining processors

there also exists a schedule in which their completion times are no later than the original schedule.

Thus we have the lemma. 2

Lemma 7.2.2: Let (pπ(1), pπ(2), . . . , pπ(n)) be an optimal schedule for the problem with sum of

completion times C. Let s be the smallest index such that π(s) 6= s. Then we can find a schedule

with sum of completion times no more than C and i = π(i) for all 1 ≤ i ≤ s.

Proof: In the given optimal broadcast tree, let us call the node corresponding to processor pi as

node i. We denote the subtree rooted at node i as T (i). Consider subtrees T (s) and T (s′) where

s′ = π(s). We know that s cannot be an ancestor of s′ as cs′ ≤ cs. Also s′ cannot be an ancestor

of s as ts < ts′ by Lemma 7.2.1. Therefore, T (s) and T (s′) are disjoint.

Let node s have children x1, x2, . . . , xk and node s′ have y1, y2, . . . , yk′ as shown in Figure 7.2.

We change the schedule as follows. First we exchange s and s′. In other words, the modified

completion time of ps becomes cs′ and the completion time of ps′ becomes cs. Clearly, this does

not increase the sum of completion times. For all i (1 ≤ i ≤ max(k, k′)), we compare the size of
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subtree T (xi) and T (yi) and attach the bigger one to s and the smaller one to s′ as i-th child. (if

there does not exist a child, simply consider the size of the subtree as zero)

We can prove that this modification does not increase the sum of completion times. The

difference of the sum of completion times for subtree T (xi) and T (yi) depends on which parent

they are attached to. In case that |T (xi)| ≥ |T (yi)|, the completion times of processors in T (xi)

are decreased by cs − cs′ since the completion time of pxi is changed from cs + i · ts to cs′ + i · ts.

The completion times of processors in T (yi) are increased by cs − cs′ since the completion time of

pyi is changed from cs′ + i · ts′ to cs + i · ts′ . Therefore the difference is

(cs − cs′)(|T (yi)| − |T (xi)|) ≤ 0

In case that |T (xi)| < |T (yi)|, the completion times of processors in T (xi) are increased by

i · (ts′ − ts) because the completion of xi is modified from cs + i · ts to cs + i · ts′ . and the completion

times of processors in T (yi) are decreased by i · (ts′ − ts) because the completion of xi is modified

from cs′ + i · ts′ to cs′ + i · ts. Therefore the difference is

i · (ts′ − ts)(|T (xi)| − |T (yi)|) ≤ 0

Therefore we have the lemma. 2

By repeating the procedure in Lemma 7.2.2, we can find a schedule such that processors

receive the message in non-decreasing order of their transmission times and the sum of completion

times is no more than the optimal. We thus conclude:

Theorem 7.2.3: Algorithm FNF minimizes the sum of completion times.

In fact, we can prove even stronger result by applying the same procedure only to a subset

of processors pi (1 ≤ i ≤ k) for any k ≤ n.

Corollary 7.2.4: Algorithm FNF minimizes the sum of completion times over all proces-

sors pi (1 ≤ i ≤ k) for any k ≤ n.

Proof: We do the same procedure as in Lemma 7.2.2 except that we only count processors pi
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Figure 7.3: An example of Bar charts corresponding to the schedules created by the instance

specified in Figure 7.1.

(1 ≤ i ≤ k) when we compute the sizes of subtrees. 2

We will use this corollary in the next section to prove that the FNF scheme gives a 1.5-

approximation for minimizing broadcast time.

7.2.2. 1.5-approximation for Minimizing Broadcast Time

In this section, we prove that FNF scheme gives 1.5-approximation.

Let us consider the bar chart as shown in Figure 7.2.2 (a), where processors are listed in

non-decreasing order of transmission time in the horizontal line and each processor has a block

whose height corresponds to its completion time in a schedule (These two charts correspond to

the schedule created on the instance specified in Figure 7.1). We call these bars grey blocks. Each

processor pi can start sending messages as soon as it receives the message, and send to one processor

in each ti time unit. A white block corresponds to each message sent by pi. Therefore, the height

of a white block is the same as the transmission times of the corresponding processors.

Definition 1: We define the number of fractional blocks as the number of (fractional) messages

a processor can send by the given time. In other words, given a time T , the number of fractional

blocks of processor pi is (T − ci)/ti.

For example, the number of fractional blocks of p2 by time T is 2 in the FNF schedule (see Figure

7.2.2(a)).
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Definition 2: We define R(T ) as the rectangular region bounded by time 0 and T and including

processors from p0 to pbn/2c in the bar chart.

An example is shown in Figure 7.2.2(a).

We only include processors p0, p1, . . . pbn/2c in R(T ) because of the following lemma.

Lemma 7.2.5: There is an optimal schedule in which only the bn/2c fastest processors and the

source processor send messages, that is, processor pi(bn/2c + 1 ≤ i ≤ n) need not send any

messages.

Proof: We prove this by showing that there is an optimal broadcast tree in which every internal

node (except the source) has at least one child that is a leaf. Suppose an internal node s(6= p0)

does not have a leaf child. Then we move the processor which receives the message last in subtree

T (s) to a child of s. It is easy to see that this does not increase the makespan of the schedule by

Theorem 7.1.2. By repeatedly applying this modification to the given broadcast tree, we can find

an optimal broadcast tree satisfying the property. 2

Lemma 7.2.6: Algorithm FNF maximizes the number of fractional blocks in R(T ) for any T .

To prove this lemma, we first prove the following proposition.

Proposition 7.2.7:
∑m

i=1 ai/bi ≥
∑m

i=1 a′i/bi if
∑l

i=1 ai ≥
∑l

i=1 a′i for all 1 ≤ l ≤ m and

0 < bi ≤ bi+1 for all 1 ≤ i ≤ m− 1.

Proof: We will show that for all 1 ≤ l ≤ m

m∑

i=1

ai

bi
≥

l∑

i=1

a′i
bi

+
m∑

i=l+1

ai

bi
+

l∑

i=1

ai − a′i
bl

.

Then if we set l as m, we have the proposition as
∑m

i=1 ai ≥
∑m

i=1 a′i.

We prove this by induction. For l = 1, it is clearly true since

m∑

i=1

ai

bi
=

a′1
b1

+
m∑

i=2

ai

bi
+

a1 − a′1
b1

.

Suppose that it is true when l = k. Then

m∑

i=1

ai

bi
≥

k∑

i=1

a′i
bi

+
m∑

i=k+1

ai

bi
+

k∑

i=1

ai − a′i
bk
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≥
k∑

i=1

a′i
bi

+
m∑

i=k+1

ai

bi
+

k∑

i=1

ai − a′i
bk+1

=
k+1∑

i=1

a′i
bi

+
m∑

i=k+2

ai

bi
+

k+1∑

i=1

ai − a′i
bk+1

.

2

Proof of Lemma 7.2.6. Let us denote the completion time of pi in FNF and any other given

schedule as ci and c′i, respectively. We need to show that
∑bn/2c

i=0 (T − ci)/ti ≥
∑bn/2c

i=0 (T − c′i)/ti.

In fact, since c0 = c′0 = 0, it is enough to show that
∑bn/2c

i=1 (T − ci)/ti ≥
∑bn/2c

i=1 (T − c′i)/ti. Since

we have Proposition 7.2.7 and ti ≤ ti+1, it is enough to show that
∑l

i=1(T − ci) ≥
∑l

i=1(T − c′i)

for all 1 ≤ l ≤ bn/2c. This is true because
∑l

i=1 ci ≤
∑l

i=1 c′i for all 1 ≤ l ≤ bn/2c by Corollary

7.2.4. 2

Let the makespan of an optimal schedule and FNF be TOPT and TFNF , respectively. Then

we have the following lemma.

Lemma 7.2.8: The number of fractional blocks by FNF in R(TFNF ) is at most 3n/2.

Proof: If a processor receives the message from processor pi, then it can be mapped to a white

block of pi. To finish the schedule, we should send the message to n processors and therefore,

there are n white blocks in R(TFNF ). In addition, each processor pi(0 ≤ i ≤ bn/2c) may have a

fraction of block which is not finished by time TFNF . But at least one processor should have no

incomplete block since the makespan of FNF is TFNF . Thus the number of fractional blocks is at

most n + bn/2c ≤ 3n/2. 2

Theorem 7.2.9: There are at most n fractional blocks in R(2
3TFNF ) in any schedule.

Proof: It is enough to show that FNF can have at most n fractional blocks in R(2
3TFNF ) since FNF

maximizes the number of blocks by Lemma 7.2.6. By time 2
3TFNF , each processor can have only 2

3

of the number of blocks it has in R(TFNF ). Let fi be the number of fractional blocks of processor

pi in R(TFNF ) and f ′
i be the number of fractional blocks in R(2

3TFNF ). Since fi = TF NF−ci

ti
and

f ′
i =

2
3TF NF−ci

ti
, we have f ′

i ≤ 2
3 (TF NF− 3

2 ci

ti
) ≤ 2

3fi. Therefore, we have at most 2
3 · 3n/2 = n

fractional blocks in R(2
3TFNF ). 2
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Corollary 7.2.10: Algorithm FNF gives a 1.5-approximation.

Proof: Since we need to send the message to n processors in the optimal schedule, we should have

n blocks in R(TOPT ). It implies that TOPT ≥ 2
3TFNF . 2

When transmission times are in a small range, the FNF heuristic has a better bound.

Theorem 7.2.11: Suppose C′ = n/(2
∑bn/2c

i=1 1/ti) then the FNF heuristic finds a solution of cost

at most TOPT + C′.

Proof: In the bar chart of an optimal solution, the number of fractional blocks we can have between

height TFNF and TOPT is t/t0+t/t1+. . .+t/tbn/2c where t = TFNF−TOPT . Since we have at least

n fractional blocks in R(TOPT ) and at most 3n/2 fractional blocks in R(TFNF ),
∑bn/2c

i=1 t/ti ≤ n/2.

Therefore TFNF − TOPT ≤ n/(2
∑bn/2c

i=1 1/ti). 2

Theorem 7.2.12: If the transmission times of the fastest bn/2c processors are in the range

[1 . . . C], then the FNF heuristic finds a solution of cost at most TOPT + C.

Proof: In the bar chart of an optimal schedule, let fi be the number of fractional blocks of processor

pi by time TOPT and gi be the number of complete blocks of processor pi by TOPT . In the bar

chart of FNF schedule, let f ′
i be the number of fractional blocks of processor pi by time TOPT .

Define g′i to be the number of complete blocks by time TOPT +C and we need to prove that

∑i=bn/2c
i=0 g′i ≥ n. For 1 ≤ i ≤ bn/2c, since ti ≤ C, we have g′i ≥ df ′

ie Therefore, the number of

complete blocks in R(TOPT + C) is

i=bn/2c∑

i=0

g′i ≥ g′0 +
i=bn/2c∑

i=1

df ′
ie ≥ g0 +

i=bn/2c∑

i=1

f ′
i

≥ g0 +
i=bn/2c∑

i=1

fi ≥ g0 +
i=bn/2c∑

i=1

gi.

The third inequality comes from the fact that FNF maximizes the number of fractional blocks in

R(T ) for any T and f0 = f ′
0.

We also have
∑i=bn/2c

i=0 gi ≥ n by definition of TOPT . Therefore, TFNF ≤ TOPT + C.

2
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Figure 7.4: A bad example of FNF. The number inside a node is the transmission time of the

processor and the number next to a node is the time it received the message. Black nodes are very

slow processors. At time 2n (the dotted line), the optimal solution finishes broadcasting but in

the FNF schedule, n
2 processors have not received the messages as yet.

7.2.3. Bad Example

Bhat et al. [14] gave an example and proved that the broadcast time by FNF can be 17
16

times the optimal in the example. In this section, we show that in fact, FNF gives the broadcast

time of 25
22 times the optimal on the same example.

Consider the example shown in Figure 7.4. We have the source with transmission time 1 and

2n processors with a very large transmission time. Also there are n processors with transmission

times n, n + 1, . . . , 2n− 1. In the optimal schedule, the source should send messages to processors

with transmission time 2n− 1, 2n− 2, . . . , n, respectively. In other words, at time i the node with

transmission time 2n − i receives the message from the source. Immediately after receiving the
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message, each of these processors send a message to one of the slow processors. The schedule

completes at time 2n.

In the FNF schedule, the source sends messages to processors with transmission time

n, n + 1, . . . , 2n− 1, respectively and again immediately after receiving the message, each of these

processors send a message to one of the slow processors. At time 2n, n
2 of the slow processors

have not yet received the message. After time 2n, processor with transmission time n + i− 1 will

send another message to a slow processor at time 2n + 3i− 2. At the same time, processor with

transmission time 3n
2 + i− 1 send a message at time 2n+2i− 1. The source sends a message every

time unit. Therefore, if t is the time needed to send messages to the remaining n
2 processors, then

we have

b t + 2
3

c+ b t + 1
2

c+ t ≥ n

2
.

Therefore, we need at least 3n
11 −

7
11 additional time. That means that the broadcast time of FNF

can be 25
22 times the optimal for large values of n.

7.3. Polynomial Time Algorithm for Constant Number of Different Transmission

Speeds

If there is a constant number of different transmission speeds, then we can find an optimal

schedule in polynomial time. Suppose we have k different transmission speeds (t1, . . . , tk) and there

are ni processors with transmission time ti. At the beginning, a processor with transmission time ts

has the message. Then the problem instance can be represented as < ts, (t1, n1), (t2, n2), . . . (tk, nk) >.

Using dynamic programming, we compute an optimal schedule as follows. If we select

a processor with transmission time ti as a recipient, then after time ts two processors (with

transmission time ts and ti) have the message. Therefore, the two new subproblems are <

ts, (t1, n′
1), . . . (tk, n′

k) > and < ti, (t1, n′′
1), . . . (tk, n′′

k) > where n′
j + n′′

j = nj for j 6= i and

n′
i + n′′

i = ni − 1. So we choose a recipient among k different transmission speeds and there

are at most (n1 + 1)(n2 + 1) . . . (nk + 1)(≤ nk) ways to split processors into two sets. We take the

solution that minimizes the maximum of two subproblems among all the possible choices. Since
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there are at most k ·nk possible subproblems, this can be done in polynomial time if k is constant.

7.4. Polynomial Time Approximation Scheme

We now describe a polynomial time approximation scheme for the problem of performing

broadcast in the minimum possible time. Unfortunately, the algorithm has a very high running

time when compared to the fastest node first heuristic.

We will assume that we know the broadcast time T of the optimal solution. Since t0 = 1, we

know that the minimum broadcast time T is between 1 and n, and we can try all possible values

of the form (1 + ε)j for some fixed ε > 0 and j = 1 . . . d log n
log(1+ε)e. In this guessing process we lose

a factor of (1 + ε).

Let ε′ > 0 be a fixed constant. We define a set of fast processors F as all processors whose

transmission time is at most ε′T . Formally, F = {pj |tj ≤ ε′T, 1 ≤ j ≤ n}. Let S be the set of

remaining (slow) processors. We partition S into collections of processors of similar transmissions

speeds. For i = 1 . . . k, define Si = {pj |ε′T (1 + ε′)i−1 < tj ≤ ε′T (1 + ε′)i, 1 ≤ j ≤ n} where k is

d log(1/ε′)
log(1+ε′)e. Since t1 ≤ t2 ≤ . . . ≤ tn, F = {p1, . . . , p|F |} and S = {p|F |+1, . . . pn}.

We first send messages to processors in F using FNF. We prove that there is a schedule

with broadcast time at most (1 + O(ε))T such that all processors in F receive the message first.

We then find a schedule for slow processors based on a dynamic programming approach.

Schedule for F We use the FNF heuristic to send the message to processors in set F . Assume

that the schedule for F has a broadcast time of TFNF . In this schedule every processor pj ∈ F

becomes idle at some time between TFNF − tj and TFNF .

We will prove that there is a schedule with broadcast time at most (1+O(ε))T such that all

processors in F receive the message first, and then send it to the slow processors. In an optimal

schedule, let P1 be the first |F | processors (except the source) which finish receiving the message

and T1 be the time when all processors in P1 finish receiving the message. The following lemma

relates TFNF with T1.
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Lemma 7.4.1: T1 ≥ TFNF − ε′T .

Proof: We prove this by contradiction. Consider a FNF schedule with set P1. If an optimal

schedule is able to have all processors in P1 finish receiving the message before TFNF − ε′T , then

FNF can finish sending the messages to P1 before time TFNF (by Corollary 7.2.12). Since set F

includes the fastest |F | processors, this means that FNF can finish broadcasting for F before time

TFNF ; it is a contradiction since TFNF is the earliest time that processors in F receive the message

in FNF . 2

At time T1 there can be some set of processors P2 which have received the message partially.

Note that |P2| ≤ |P1|+ 1 since every processor in P2 should receive the message from a processor

in P1 or from the source.

Lemma 7.4.2: There is a schedule in which all processors in F receive the message no later than

any processor in S and the makespan of the schedule is at most (1 + 4ε′)T .

Proof: The main idea behind the proof is to show that an optimal schedule can be modified to

have a certain form. Notice that by time T1 the optimal schedule can finish broadcasting for P1

and partially send the message to P2, and in additional time T −T1 the optimal schedule can finish

broadcasting for the remaining processors.

In FNF schedule, all processors in F have the message at time TFNF . Since |P1

⋃
P2| ≤

2|F | + 1 and any processor in F has speed at most ε′T , in additional 3ε′T time we can finish

broadcasting the message to P1

⋃
P2. Once we broadcast the message to P1

⋃
P2, we send the

message to the remaining processors as in the optimal solution.

The broadcast time of this schedule is at most TFNF + 3ε′T + T −T1 ≤ TFNF +3ε′T + T −

(TFNF − ε′T ) = (1 + 4ε′)T . 2

Create all possible trees of S: For the processors in S, we will produce a set S of labeled

trees T . A tree T is any possible tree with broadcast time at most T consisting of a subset of

processors in S. Then we label a node in the tree as i if the corresponding processor belongs to Si

(i = 1 . . . k). We prove that the number of different trees is constant.

78



Lemma 7.4.3: The size of S is constant for fixed ε′ > 0.

Proof: First consider the size of a tree T (that is, the number of processors in the tree). Let us

denote it as |T |. Since the transmission time of processors in S is greater than ε′T , we need at

least ε′T time units to double the number of processors that received the message. It means that

given a processor as a root of the tree, within time T we can have at most 21/ε′ processors receive

the message. Therfore, |T | ≤ 21/ε′ . Now each node in the tree can have different label i = 1 . . . k.

To obtain an upperbound of the number of different trees, given a tree T we transform it to a

complete binomial tree of size 21/ε′ by adding nodes labeled as 0. Then the number of different

trees is at most (k + 1)2
1/ε′

. 2

Attach T to F : Let the completion time of every processor pj ∈ F be cj . Each processor pj in

F sends a message to a processor in S every tj time unit. Therefore, a fast processor pj can send

messages to at most Xj = bT−cj

tj
c other processors. Let X =

∑
pj∈F Xj . Let us consider the time

xi of each sending point in X . We sort those xi in nondecreasing order and attach a tree from

S to each point (See Figure 7.5). Note that we can attach at most |X | trees of slow processors.

Clearly |X | ≤ n.

We check if an attachment is feasible, using dynamic programming. Recall that we partition

slow processors into a collection of processors S1, S2, . . . Sk(k = log(1/ε′)
log(1+ε′) ). Let si denote the number

of processors in set Si. We define a state s[j, n1, n2, . . . nk] (0 ≤ j ≤ |X |, 0 ≤ ni ≤ si) to be true

if there is a set of j trees in S that we can attach to first j sending points and the corresponding

schedule satifies the following two conditions: i) the schedule completes by time T and ii) exactly

ni processors in Si appear in j trees in total. Our goal is to find out whether s[j, s1, s2, . . . sk]

is true for some j, which means that there is a feasible schedule with makespan at most T . The

number of states is at most O(nk+1) since we need at most n trees (|X | ≤ n) and si ≤ n.

Now we prove that each state can be computed in constant time. Given s[j − 1, . . .],

we compute s[j, n1, n2, . . . nk] as follows. We try to attach all possible trees in S to xj . Then

s[j, n1, n2, . . . nk] is true if there exists a tree T ′ such that the makespan of T ′ is at most T − xj

and s[j − 1, n1 −m1, n2 − m1, . . . nk − mk] is true where T ′ has mi slow processors belonging to
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Figure 7.5: Attach trees for slow processors to fast processors

set Si. It can be checked in constant time since the size of S is constant (Lemma 7.4.3).

Theorem 7.4.4: Given a value T , if a broadcast tree with broadcast time T exists, then the above

algorithm will find a broadcast tree with broadcast time at most (1 + ε′)(1 + 4ε′)T .

Proof: Consider the best schedule among all schedules in which processors in F receive the message

first. By Lemma 7.4.2, the broadcast time of this schedule is at most (1 + 4ε′)T . We round up the

transmission time of pj in Si to ε′T (1+ε′)i where i is the smallest integer such that tj ≤ ε′(1+ε′)iT .

By this rounding, we increase the broadcast time by factor of at most 1 + ε′. Therefore, the

broadcast time of our schedule is at most (1 + ε′)(1 + 4ε′)T . 2

Theorem 7.4.5: The algorithm takes as input the transmission times of the n processors, and

constants ε, ε′ > 0. The algorithm finds a broadcast tree with broadcast time at most (1 + ε)(1 +

ε′)(1 + 4ε′)T in polynomial time.

Proof: We try the above algorithm for all possible value of the form T = (1 + ε)j for j =

1 . . . d log n
log(1+ε)e. This will increase the broadcast time by factor of at most 1 + ε. Therefore the

broadcast time of our schedule is at most (1 + ε)(1 + ε′)(1 + 4ε′)T .

80



For each given value (1 + ε)j , we find FNF schedule for processors in F (it takes at most

O(n log n)) and attach trees of slow processors to processors in F , using dynamic programming.

As we discussed earlier, the number of states is O(nk+1) and each state can be checked if it is

feasible in O((k + 1)2
1/ε′

) time, which is constant. Thus the running time of our algorithm is

O(d log n
log(1+ε)e(n log n + (k + 1)2

1/ε′+1 · nk+1) where k is d log(1/ε′)
log(1+ε′)e. 2

7.5. Multicast

A multicast operation involves only a subset of processors. By utilizing fast processors

which are not in the multicast group, we can reduce the multicasting time significantly. For

example, suppose that we have m processors with transmission time t1 and m more processors

with transmission time t2 where t1 < t2. Let we want to multicast a message to all processors with

transmission time t2. If we only use processors in the multicast group, it will take t2 · log m time.

But if we utilize processors with transmission time t1, we can finish the multicast in t1 · (log m+1).

Therefore, when t1 � t2, the speed-up is significant.

Theorem 7.5.1: Suppose that we have a ρ-approximation algorithm for broadcasting. Then we

can find a ρ-approximation algorithm for multicasting.

Proof: Note that if an optimal solution utilizes k processors not in the multicast group, then

those processors are the k fastest ones. Therefore, if we know how many processors participate in

multicasting, we can use our ρ-approximation algorithm for broadcasting. By trying all possible k

and taking the best one, we have ρ-approximation for multicasting. 2

Theorem 7.5.2: We have a polynomial time approximation scheme for multicasting.

Proof: The proof is similar to Theorem 7.5.1. We find approximation schemes with k fastest

processors not in the multicast group for all possible k, and take the best one.

2
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Chapter 8

Conclusion

We have considered the data migration problem, which is the problem of finding an ef-

ficient schedule to migrate data in a network. For data migration with cloning, we develop a

9.5-approximation algorithm to minimize the makespan. We also present some variants of the

approximation algorithm and several simple heuristics. We formulate the correspondence prob-

lem which can affect the performance of data migration, and describe several algorithms for the

problem. We conduct an extensive study to compare the performance of these correspondence and

data migration algorithms under different changes in user access patterns.

We consider objectives other than the makespan. For these objectives, we assume that we

are given a transfer graph (that is, we only consider move operations). For minimizing the total

completion times over all storage devices, we show that the problem is NP-hard, and present a

3-approximation algorithm for unit transfer lengths and a 9-approximation algorithm for arbitrary

transfer lengths. We also consider the total completion times over all transfers and present a

10-approximation algorithm for arbitrary transfer lengths.

We also studied the broadcasting problem in heterogenous networks. We prove that the

Fastest Node First(FNF) gives a 1.5-approximation to minimize the broadcast time, and also

develop a polynomial time approximation scheme. We show that the results can be applied to

multicast, where some other nodes not in the multicast group can be used to improve the broadcast

time.

Several questions still remain. Experimental results suggest that it may be worthwhile to

consider developing an algorithm that takes an initial layout and the new demand pattern, and then

derives a target layout, with the optimization of the data migration process in mind. Developing

these types of algorithms and evaluating their performance characteristics are part of our future
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efforts.

For minimizing the sum of completion times over all devices, Gandhi et al. [24] recently

proved that our analysis of OLS is tight when jobs require the same amount of time. However, it

is possible that other algorithms can be used to improve the approximation ratio of 3. When job

lengths are arbitrary integers, the current best results are a 5.055-approximation [24] for vertex

completion times and a 7.683-approximation [25] for job completion times. We do not know any

tight example of these bounds nor any results on hardness of approximation. We believe that the

current approximation ratio for arbitrary integer cases can be improved.

One interesting generalization of heterogeneity would be for the situation when clusters of

disks are connected in a wide area network. The time required to transfer one unit of data between

a pair of disks in different clusters may be an order of magnitude higher than the time required

to transfer data between a pair of disks in the same cluster. We obtained some results [43] for the

model in which the number of rounds required to transfer one unit of data between a pair of disks

in different clusters is a certain number of rounds, and one round is required to transfer one unit

of data between a pair of disks in the same cluster. It would be interesting to study the problem

when the time required to transfer a data item between a pair of disks in the same cluster depends

on the sending processor (as in the model used in Chapter 7), and/or the communication graph

between clusters is a general graph.

In practice, the metric of a good schedule may not simply be the completion time. For

example, the solution we have obtained performs the migration schedule ignoring the interference

with user traffic. The assumption may not be appropriate in modern computer environments,

where it is expected to guarantee a certain level of quality of service. It will be interesting to

investigate further constraints and metrics on data migration and develop efficient strategies that

can provide good performance.
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