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 To maintain a competitive edge, companies today must be able to 

efficiently allocate resources to optimally commit and fulfill requested orders.  As 

such, order processing and resource allocation models have become increasingly 

sophisticated to handle the complexity of these decisions.  In our research, we 

introduce a model that integrates production scheduling, material allocation, 

delivery scheduling, as well as functions involving commitment of forecast demand 

for configure-to-order (CTO) and assemble-to-order (ATO) business environments.  

The model is formulated as a Mixed Integer Program (MIP) and seeks to maximize 

revenue by trading off commitment of higher profit forecast orders with the 

production and delivery schedule of lower profit accepted orders.  Our model is 
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particularly useful for testing different policies relating to order commitment, 

delivery mode selection and resource allocation.   
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1. Introduction 

In today’s customer-driven marketplace, companies are held to higher 

standards and expectations in the management of their supply chain.  Industry 

leaders are using supply chain expertise as a main selling point in their business 

models – Amazon.com woos customers with a seemingly endless supply of 

merchandise options, almost all of which are available for immediate shipping (see 

Bachelder  2004, Andel 2000) and Dell offers customizable product configurations 

shipped direct with next-to-nothing lead times (see Buderi 2001).  Supply chain 

management capabilities relate to how well a company can procure supplies, 

manage inventory, schedule production, package products, deliver orders and 

process customer requests, among other functions.  Successful ATO/CTO facilities 

use highly developed models for scheduling and planning their supply chain.  By 

using an ATP mechanism in the planning model, the production scheduling can be 

linked to the order promising function.  Essentially, the ATP capability first 

determines whether capacity exists to fulfill the incoming order request, and then 

determines the corresponding due date and quantity that can be promised for 

accepted orders.  By associating the order commitment process with the production 

resource allocation, better decisions can be made for ATO/CTO companies. 

An area of increased focus is the definition of the commitment policy in the 

ATP model for incoming orders, which is especially relevant for companies with 

greater demand than capacity.  The standard policy in place at many facilities is 
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that of a First-come, First-served commitment policy.  Customer orders are 

accepted in the sequence in which they arrive until all capacity has been allocated, 

at which point any additional incoming orders are denied.  This policy promises 

fairness to the customer, but in practice does not favor loyal customers and more 

importantly, does not capitalize on the greater potential revenue of some orders 

over others.  Two contemporary policies for commitment include methodology to 

discriminate between new orders based on the principles of revenue management.  

The first policy uses the concept of customer channels in the commitment decision 

process.  This is standard with many service industries today (e.g. for an airline, a 

fraction of the capacity (seats) is reserved for potential late-booking, higher revenue 

passengers (see Smith et al, 1992)).  The second policy is similar, but bases the 

commitment decisions on the relative profit margin of the incoming orders.  Thus, 

resources are reserved for the orders with the greatest contribution to overall 

revenue first.     

These commitment policies lead directly into the issue of trying to balance 

reservation of capacity for accepted orders and for forecast demand.  Once orders 

have been committed, the manufacturer cannot renege on the order simply because 

a higher profit order came in.  Within the advanced ATP model, consideration can 

be given to future demand of orders so that capacity can be reserved accordingly.  

An additional way to add flexibility to the reservation of resources is to allow some 

orders to be delivered late, for a penalty.  This creates additional capacity for the 

commitment of higher profit orders.  Due date violations are not desirable, but their 
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use can help mitigate the loss of profits due to order rejection in certain situations.  

A new strategy is to consider trading off delivery mode and schedule with the 

production schedule.  In this approach, the company can delay production of some 

lower profit orders so that capacity can be allocated to higher profit demand.  

Instead of delivering the orders late, the company can upgrade the delivery mode so 

that the order arrives to the customer by the requested date.  Any extra 

transportation fees would be balanced by the extra profits.     

We can see that the need exists for a comprehensive model that integrates 

the order and demand promising functions with resource reservation analysis.  The 

development of such a model would enable full analysis of any new policies for 

commitment and delivery scheduling.     

1.1. Research Objectives 

The first objective of this thesis is to develop an integrated model for order 

promising and resource allocation that trades off production efficiency and delivery 

scheduling.  To accomplish this, we must first define the general business scenario.  

Next, we determine the policies and goals of our system and formulate it as a 

mixed integer program.  Our motivation is twofold – we want to create an enhanced 

model that considers profit contributions in the commitment decisions of demand 

and resource allocation, and we want the model to balance the production schedule 

with the delivery schedule and mode choice for orders.   

After developing the model, our next objective is to prove its capabilities in 

order assignment and production planning.  We want to show that our model can be 
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used as a powerful decision support system for supply chain managers.  This is 

done through examples of how policies can be tested and analysis of the results.  

As part of this objective, we want to show the power of using a spreadsheet-based 

front end model.  The goal is to prove that it can efficiently handle problems of 

standard size and is sufficiently simple to understand and use, by even non-

modelers.   

1.2. Organization of Thesis 

In Chapter One, the research objectives are introduced, including 

background on the research problem, and a summary of our research contributions.  

This is followed by a summary of research in this area, through a comprehensive 

literature review focusing on resource planning, ATP mechanisms and order 

promising, revenue management, and the use of decision support systems in 

production planning.  

Chapter Two provides a general overview of the optimization model that we 

developed.  The model is explained from a business-perspective, including 

information regarding the manufacturing setup, product definition, and other 

aspects of the model.  The major decisions, assumptions, policies, and performance 

measures of the model are addressed.  Finally, the chapter presents the 

mathematical formulation of the model.  All parameters, indexes and decision 

variables are defined for the mixed integer program.  Additionally, the objective 

function and constraints are given, with a detailed text description of each. 
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In Chapter Three, we cover the implementation of the model.  Discussion of 

the software selection, capability and integration is provided.  This is followed by a 

brief discussion of the model specifications, including computational analysis.  

Finally, we address the area of input data for the model; essentially, how data was 

developed to run the various trials. 

The next section, Chapter Four, delves into the analysis of the model.  To 

begin, the process of model verification is described.  This is followed by the 

sensitivity analysis, in which the model capabilities are explored by varying 

parameters and business scenarios.  The results of these tests are analyzed fully.  

Next, we discuss the various experiments that were conducted.  We provide a 

discussion of how the experiment affects the model, in terms of any changes in 

business policies that alter the model formulation.  Each experiment’s purpose is 

discussed, followed by a review of the results.   

Finally, in Chapter Five, we summarize the results and findings of our 

research.  We also present areas for future research.   

1.3. Literature Review 

Four areas of research that are closely related to our research are: resource 

planning (forecast-based and resource allocation), ATP mechanisms and order 

promising, revenue management (including resource booking based on due date), 

and use of optimization-based decision support systems in production planning. 
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1.3.1. Planning Models  

Understandably, the bulk of early research in this area focuses on effective 

methods for production planning, scheduling, and inventory control.  Johnson and 

Montgomery (1974) were among the first to develop generic mixed integer models 

for these applications.  With the increased growth of configure-to-order (CTO) and 

make-to-order (MTO) production settings, more sophisticated analysis models or 

tools are needed to handle the complexity of resource allocation, production 

scheduling, and order assignment.  McClelland (1988) focuses on using the Master 

Production Schedule (MPS) in order management models.  In practice, the MPS is 

developed from the aggregate production plan, inventory stock, and accepted orders.  

The selection of an appropriate MPS system can lead to more efficient capacity and 

material allocation, resulting in an increase in service performance measures 

(including the ability to keep a higher fraction of order due date promises).    

The Available-to-Promise (ATP) model evolved from these earlier models.  

Fundamentally, the ATP mechanism links various production and delivery 

resources and order processing; it determines order promising (both due date and 

quantity) and order fulfillment (production scheduling) based on resource 

availability.  Vollman, Berri, and Whybank (1997) provide a comprehensive 

overview of conventional ATP models in their book.   

Much of the recent research of ATP focuses on enhancements to the 

standard ATP system in regards to order promising capabilities.  Greene (2001) 

stresses the importance of ATP systems in which current demand, production 
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problems and supply constraints are kept visible.  He further discusses the need for 

new technology to determine optimal promise dates for fulfillment efficiencies and 

profitable-to-promise (PTP) outcomes.  Taylor and Plenert (1999) generate a 

heuristic called Finite Capacity Planning, in which the production schedule is 

analyzed to identify unused capacity.  This in turn enables more realistic setting of 

order promise dates for customer orders.  Hariharan and Zipkin (1995) research 

new methods to improve how inventory is modeled.  Specifically, they analyze 

how advance information of customer orders affects inventory policies.  Their 

stochastic model focuses on procurement efficiency over resource utilization.       

Dhaenens-Flipo and Finke (1999) created a model that includes analysis of 

multiple factories and multiple products over a rolling timeframe.  They enhance 

the traditional model by studying both the production and distribution functions in 

the creation of production schedules.  The resulting schedule is based on 

minimization of holding costs, production costs, changeover costs, and 

transportation costs. 

Chen, Zhao and Ball (2001) introduce an optimization-based ATP model 

that takes into account the current status of the production system and can 

dynamically allocate and reallocate material and capacity.  Thus, the profitability of 

orders can be traded off.  Their MIP model enables such features as order splitting, 

model decomposition and resource expedition/de-expedition.  It determines both 

the quantity and due date quotes for orders.  Our model uses this model as its 

foundation. 

 7



 

1.3.2. Order Promising 

Order promising is complex because of the general lack of inventory in an 

ATP MTO/CTO environment.  In response, several papers have been written which 

focus solely on due date scheduling models.  The models can be divided into two 

groups – those with exogenous due dates and those with endogenous due dates.  

Exogenous due dates refer to those settings in which the customer determines the 

due date.  Endogenous due dates refer to those settings in which the manufacturer 

supplies the due date to the customer (see Cheng and Gupta (1989) for a detailed 

survey).  In endogenous settings, the manufacturer must trade off offering short 

lead times of delivery quotes (potentially increasing customer demand) and 

meeting those due dates reliably (failure to do so results in customer 

dissatisfaction). 

Hegedus and Hopp (2001) focus on due date quoting in a make-to-order 

environment in which the customer requests a specific due date.  The manufacturer 

can then accept the due date or provide an alternative later date.  Chatterjee, 

Slotnick and Sobel (2001) develop a profit maximization model with endogenous 

due date assignments.  In their model, the customer can accept or reject the 

potential due date (“balking”).  Additionally, they allow orders to be delivered late 

(for a cost).  See also Hopp and Roof Sturgis (2000) and Hopp and Sturgis (2001) 

for additional endogenous due date setting models.  

Moses, et al (2004) introduce a model which has real-time promising of 

order due dates, applicable to make-to-order environments.  The model considers 
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availability of resources, order specifics, and existing commitments to orders that 

arrived earlier.  The order arrival rate is stochastic, and orders can be delivered late.  

Moodie and Bobrowski (1999) merged the two classifications of due dates.  In their 

model, the customer and manufacturer negotiate the due date and the price of an 

order.   

Our model is a blend of the exogenous and endogenous due date policies.  

While the customer chooses the due date for an order, he must select from a set of 

available dates provided by the manufacturer, each with an associated cost.  The 

model then determines if it will reserve resources for this demand, based on the 

production schedule and profit margin contribution of the order.  Additionally, the 

model can deliver orders late for a penalty.  

1.3.3. Revenue Management 

Further enhancements to the order assignment model involve the 

consideration of profits.  No longer are manufacturers determining the production 

scheduling and due date assignments based solely on resource capacity or customer 

service levels.  In the situation where demand is much greater than supply, the 

manufacturer must reject some of the incoming orders.  By using revenue 

management policies, the overall profits can be maximized by selectively choosing 

which orders to accept (compared to a first-come, first-served basis).  

Kirche, Kadipasaoglu, and Khumawala (2005) describe this new model of 

‘profitable-to-promise’ order management.  In an MTO environment, both capacity 

and profitability are considered.  Specifically, they study which costs are relevant 
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and how they should be considered in the decision process.  Much of the research 

scope is on using Activity-based Costing (ABC) with Theory of Constraints (TOC) 

methodology.  They develop an MIP model to determine order commitment.  Each 

order is evaluated in terms of profitability to determine if it should be accepted or 

rejected.  Orders that are accepted must be delivered on-time; a penalty applies 

when orders are rejected.   

Balakrishnan, Sridharan, and Patterson (1996) apply a decision theory-

based approach to revenue management of order assignment.  They develop a 

capacity allocation policy for discrimination of two demand classes of products 

(varied profit margins).  Akkan (1997) develops heuristics to minimize the cost of 

rejecting orders.  He focuses on reserving future capacity for arriving orders using 

finite-capacity scheduling-based production planning, where the goal is to 

minimize contribution lost from rejecting orders.  He aims to satisfy customer 

demand by allocating resources so that revenue and profitability are optimized.  

Barut and Sridharan (2005) study demand-capacity management policy in an order-

driven production system.  They develop a heuristic for dynamic capacity 

allocation procedure that discriminates between incoming orders based on relative 

profit margins.  They use decision tree analysis to determine whether an incoming 

order should be accepted or rejected.  With their policy, the model tends to reject 

all large quantity orders of the lower profit margins at the beginning of the model, 

in anticipation of higher profit demand (which may or may not come in).  Clearly, 
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with this greedy policy, the model is likely to reject all low profit orders in a 

scenario of tight capacity.   

Our model uses revenue management in a similar fashion as these models – 

incoming orders are evaluated based on profit margins.  When the capacity is 

limited, resources are allocated to high profit demand first.  The model seeks to 

maximize overall revenue, and as such, favors higher profit margin orders over 

lower profit margin orders. 

1.3.4. Optimization-based DSS for Production Planning 

We next shift our attention to the review of literature discussing decision 

support systems (DSS) for production planning.  Plenert (1992) provides a general 

survey of the uses of DSS in manufacturing, including applications in forecasting, 

aggregate production scheduling, finished goods distribution, MPS, MRP, and 

capacity planning. 

We are interested specifically with the use of spreadsheet-based DSS in 

which an optimization model is used for the analysis.  Traditionally, supply chain 

DSS’s were designed by information systems groups, and used by modeling 

experts.  We can see a noticeable shift in this trend – managers today are much 

closer to the decision process and are more likely to need a DSS in their daily job 

functions.  As such, models have been developed using Excel or other spreadsheet 

software.  These models can be run efficiently by the users, and serve as valuable 

DSS.  See Coles and Rowley (1996) and Troutt (2005).    

 11



 

Smith (2003) adds additional insight into the benefits of spreadsheet models 

for analyzing logistics and supply chain issues.  Namely, they allow analysis from 

different perspectives and can be modified and enhanced easily.  In most cases, an 

integrated spreadsheet model consists of the baseline model (current / as-is state), 

the new scenario, and the analysis section to compare the alternatives.  

Sophisticated software packages are not always needed; spreadsheet models can 

provide the appropriate level of detailed analysis and realistic/workable solutions.  

As proof, see papers by Butler and Dyer (1999), Katok and Ott (2000), and 

LeBlanc et al (2004) for examples of practical DSS involving spreadsheet modeling 

using optimization programs.   

We chose to use a spreadsheet application for the front end of our model 

and an optimization solver at the back end due to the past successes in similar 

applications. 
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2. Optimization Model 

In this chapter, we provide an overview of the business application of the 

model.  We then define how the model encompasses the various business settings 

of the MTO/CTO environment in its analysis.  Finally, we give the model 

formulation.  

2.1. Overview of Business Application of Model 

In our research, we set out to create a model that would serve two major 

functions: order promising and resource scheduling (booking), including both 

assembly and transportation resources for current accepted orders and future higher 

profit demand.  By integrating these two areas, we generate not only an order 

promising plan, but also the assembly and delivery schedule optimally.  

Furthermore, our model allocates resources by considering two types of demand – 

those orders that have been committed, and those orders that are forecast for the 

future.  Thus, it determines when capacity should be reserved for high profit 

forecast demand, thereby shifting the production schedule of lower profit 

committed orders.  In addition to production capacity, the model also determines 

the allocation of transportation resources, by determining the schedule and mode 

for delivery of each order.  As such, the model trades off production and delivery 

schedules of accepted low profit margin orders with higher profit margin demand.  
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Undoubtedly, the model’s power lies in determining the scheduling of production 

and delivery of both accepted orders and forecast demand.  

The model we developed is for companies with an ATO/CTO business 

setting, and it analyzes the supply chain from order processing through production, 

assembly and delivery to the customer.  Using a Mixed Integer Programming (MIP) 

model, we determine commitment levels for both committed orders and forecast 

demand.  Furthermore, the detailed product assembly schedule and inventory levels 

at each factory are determined based on the committed orders and demand.  

Additionally, the inventory levels and merging schedules are established for the 

merging centers.  Finally, the model determines the delivery schedule and mode for 

each order for transport to the customer.  The following diagram provides a 

pictorial of the model application and the major decisions. 
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Figure 2.1: Overview of the Major Decisions in Supply Chain included in Model 
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2.1.1. Products 

In the supply chains of the ATO/CTO facilities used for our business 
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company.  Each Kitting SKU has a related Bill of Materials (BOM) that details the 

parts needed for assembly.  These BOMs are fixed for each Kitting SKU.  The 

following diagram provides an overview of how the Kitting and Merging SKUs are 

defined.    

        Factory                                            Merging Center 

BOM – kSKU1 
Part 1: (1) 

 

Figure 1.2: Definition of Kitting and Merging SKUs  
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Finally, each Kitting SKU and Merging SKU has an associated profit 

margin.  The profit margins for each product are further categorized by the service 

level affiliated with each order, as described later in more detail.   

2.1.2. Factories 

In the business scenario for the model, multiple factories each with 

associated daily production capacity are considered.  These factories assemble the 

Kitting SKUs.  As mentioned earlier, each Kitting SKU has an affiliated BOM that 

details the parts needed for assembly.  The factories receive daily shipments of the 

needed parts, that are then stored as inventory until used in production.  Ideally, the 

inventory levels of parts are kept low by accurately forecasting the level of parts 

needed for each day of production. The stock of parts shipped to each factory on a 

daily basis is variable, to account for differences in each factory’s capabilities. 

2.1.3. Merging Centers 

As part of the supply chain, our research assumes that the assembled Kitting 

SKUs are transferred to a merging center, where they then are packed with any 

associated Merging SKUs to complete each order and are delivered to the customer.  

In this business scenario, multiple merging centers are used, thereby saving final 

shipping costs of orders to customers due to the larger network of distribution 

points.  The merging centers serve customers based on geographic proximity; when 

an order comes in, it is assigned to the closest merging center.     
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2.1.4. Transportation Modes for Order Delivery 

One important decision in the model is the shipment choice for each 

promised order; essentially how and when an order will be shipped from the 

merging center to the customer.  In our model, an order can be delivered to the 

customer via one of three transportation modes, depending on the urgency required 

and the associated costs for each delivery type.  The mode refers to the 

transportation type, such as 1-Day Air or 3-Day Ground.  Each mode has a related 

lead time for delivery.  Additionally, it has a flat fixed fee per order as well as a 

variable fee based on the order volume.  

2.1.5. Orders and Demand 

As mentioned earlier, the model deals with two classes of orders: those that 

have already been committed, and those that are forecast for the future.  In the 

terminology used for this model, orders represent actual customer requests with a 

particular configuration of products, a desired quantity, the requested service level 

and the location.  The forecast demand, meanwhile, is a prediction of orders that 

will come in the following day.  Like orders, each forecast demand has a product 

configuration, predicted quantity and service level.  However, no geographic 

location is assigned for demand forecasts since this is specified for the whole 

supply chain.    

For the model, we use aggregate values for the orders and forecast demand.  

Thus, each particular order represents all the orders of that specific configuration 

and location.     
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2.2. Performance Measures 

As discussed earlier, the model determines the order commitment quantity 

and corresponding assembly schedule and the delivery schedule.  These decisions 

are made with the overall goal to maximize total profits.  Hence, the objective 

function is broken down into three major parts: revenue, costs and due date 

violation penalties.  Each of these can be weighted to reflect the goals of the 

company.  For instance, some companies might want to avoid delivering orders late 

whenever possible.  By giving the due date violation a higher weight, the model 

seeks to minimize that term (as it is negative) to maximize the overall revenue.   

The first term of the objective function is the revenue associated with the 

orders and committed demand.  The profit for each SKU is defined as the profit 

margin, or the amount the company would net after production costs, material costs 

and other associated overhead costs.  These profits are calculated upon delivery; as 

such, orders that are not delivered within the model time frame (in the case of 

extremely late orders) do not have associated profits.  The profit margins vary for 

each product and each of the service levels available with each product.  However, 

each product has the same profit margin regardless of whether it is associated with 

an order or a forecast demand order.  Higher weights can be assigned to the profits 

of orders over demand to reflect a preference of known orders and revenue over 

uncertain demand revenue.   

The second term of the objective function is comprised of the delivery costs 

of orders and committed demand.  In the pricing model used, the profit margin of a 

 19



 

SKU is based solely on the service level chosen by the customer.  And, with the 

new policy (to be discussed in the section), transportation modes are not directly 

associated with service levels.  As such, they must be considered separately.  We 

can see how this enables the model to trade-off delayed production with a faster 

delivery (more expensive delivery costs) while reserving production for higher 

profit margin demand (resulting in a net gain, assuming the added profits from the 

demand are greater than the extra delivery costs for the expedited shipping).   

The final term in the objective function is the due date violation, which is a 

penalty assessed for late delivery of orders.  Obviously, a penalty must be imposed 

when orders are delivered after their assigned date.  If not, the model would accept 

all future demand and deliver all orders by the least expensive, and thereby slower, 

mode, resulting in excessively late orders.  This penalty value can be altered 

depending on the importance the company places with on-time deliveries.  Some 

companies have policies in which late deliveries are unacceptable, while others will 

allow it in those cases where the extra profits justify the delay.     

2.3. Business Policies 

We next define two important policies used in our modeled business 

scenario. 

2.3.1. Service Levels 

A major area of exploration involves the concept of service levels.  When 

an order is placed, the customer chooses a desired service level, rather than 
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transportation mode.  This service level corresponds to the lead time from the time 

the order is placed until the time it arrives to the customer.  With this policy, the 

manufacturing company can determine when to ship the order and by what mode to 

optimize its production schedule, and ultimately, its revenue.   

This policy contrasts the typical policy in place at most companies today, in 

which the customer knows the date the product will be ready for shipment, and 

simply chooses the transportation mode (henceforth referred to as the ‘standard 

policy’).  With this policy, the company has limited flexibility in the production 

schedule because the order must be ready to ship by the set date.  Additionally, it 

has no flexibility in choosing the transportation mode; it simply ships by the 

customer-requested mode.       

 In our business scenario, the user is able to set the number of service levels 

available to the customer.  For example, the company can offer three service levels 

– Gold, Silver or Bronze.  Each service level then has an associated lead time (the 

days from order placement until arrival at the customer).  The premium service 

levels will have shorter lead times, but will have higher associated costs.  Thus, the 

customer must trade off the extra costs for faster delivery in choosing the desired 

service level.   

The model tests this new policy to determine its effect on profits and 

commitment levels.  For instance, with the standard policy a customer can select 2-

Day delivery, at a predetermined cost (given a production lead time of three days 

for an arrival date five days out).  With the new policy, the comparable service 

 21



 

level for the customer might be Silver, which corresponds to a five day lead time.  

The company could then opt to produce and ship the order by any mode and date, 

as long as the order arrives on the fifth day.       

With both policies, the customer would receive the order on the specified 

day, five days from when the order was placed.  However, the interesting aspect of 

the new policy is that the company can choose to produce the order later than 

normal and ship via 1-Day shipping, if perhaps a higher profit margin order comes 

in with immediate production needs.  Due to other demand, it might be 

advantageous to delay production and ship by a faster mode.  The added shipping 

costs would be offset by the additional revenue gained from fulfilling additional 

demand with higher profit margins.  The following diagram illustrates this new 

service level concept. 
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Standard policy: customer chooses mode for order delivery 

 

Figure 2.2: Service Level Overview 
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2.3.2. Commitment 

In our business case, the accepted orders are input to the model.  In most 

cases, this would correspond to data from the order processing system.  These 

orders have already been accepted and must be delivered to the customer.  However, 

our model might schedule orders to be delivered late for a due date violation 

penalty.  This would occur in the case of limited capacity and resources, or in the 

case when the production is delayed to fulfill higher profit margin demand orders.   

Each order can be split and delivered in separate shipments to the customer, 

as long as the deliveries all arrive on the same day.  The number of acceptable 

splits must be specified in the data input to the model.  

A major part of the model is in determining the commitment of forecast 

demand.  The model decides when resources (production capacity and materials) 

should be reserved for future demand.  When beneficial, the model will accept and 

reserve capacity for future demand, especially in the case of high profit 

configurations.  This lead-time setting enables the company to dedicate a portion of 

capacity to the more valuable future orders.  

Because the values for demand are aggregate figures, the commitment level 

is modeled as a percentage.  Thus, a demand can be 40% accepted, for example.  

This should not be misconstrued as a policy that partial orders are accepted (e.g. 

only a certain quantity of the full requested amount is fulfilled).   Rather, because 

the values are aggregate, it merely represents the case that some future orders are 

not committed, while some are committed fully.  This policy is tested later in one 
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of the experiments of the model.  The model does not allow for future demand to be 

committed if it cannot be delivered on-time.  Due date violations are only 

associated with orders.    

2.4. Assumptions 

In the course of translating the business scenario into the model, a number 

of assumptions were made.  It was necessary to trade-off simplification of certain 

areas to create a model that could run efficiently.  Certainly, the model could be 

enhanced to include additional features if desired.  

When considering production, the model determines the production 

schedule for each factory, but does not further specify a particular assembly line or 

exact hour for production.  It is assumed that each factory uses a more powerful 

scheduling system which could take into account the nuances of the factory, such 

as available workers, machine down-time, etc.  We simply input an overall daily 

production capacity for the factory in our model.  Finally, we ignore the production 

costs for assembly of each product.  We assume that each factory has the same cost 

to build each product.  Since we are dealing with the profit margins of each product 

when calculating the revenue, the manufacturing costs have already been accounted 

for.      

We ignore the inventory costs to store parts, Kitting SKUs, and Merging 

SKUs at the factories and merging centers.  As the model tries to minimize the 

overall timeframe between order placement and order arrival, few products will be 
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stored in inventory for extended amounts of time. We also assume that the 

transportation modes do not have associated lot size minimums or maximums.  

Our model is not a rolling time model; it only considers orders and demand 

for the given day.  So, orders from the previous day are not re-evaluated as far as 

production scheduling is concerned.  Additionally, forecast demand for two days in 

the future is not considered when reserving capacity.  The values provided to the 

model for resources should reflect this, and should correspond to the fraction of 

capacity available on each particular day for new orders/demand.   

An additional assumption is in the treatment of forecast demand that 

resources are not reserved for.  In practice, if demand is not reserved at a certain 

product and service level configuration, a portion of that demand would shift to 

another service level.  For instance, if a forecast order for a product at the Gold 

service level cannot be reserved, a high fraction of that demand would then move to 

the next available service level.  Our model does not account for this demand – in 

this sense, we assume that this demand is lost entirely if it cannot be committed.     

Finally, the model uses simplified pricing schemes for profit margins and 

transportation costs.  The formulation of these terms is discussed later in the section 

on data creation.  Additionally, the demand forecasting module is fairly simplified; 

the purpose of the model is not to accurately predict demand levels, but rather to 

analyze resources given a demand. 
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2.5. Model Formulation 

The problem was formulated as a mixed integer program.  The formulation, 

including all given parameters, decision variables, objective function and 

constraints is detailed below: 

Time periods in model horizon
 Customer order

 = Forecast demand
Service level
 Transportation mode
 SKUs of kitting and merging
Kitting parts (for assembly of Kitting SKUs at 

Indices
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d
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=
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,
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=

=
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'  Weight given for profits in objective function
''  Weight given for costs in objective function
'''  Weight given for due date violation in objective function
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 Profit from order 
 Profit from reserved demand 

 Cost of delivery for order 
 Cost of delivery for reserved demand 

 Due date violation penalty costs
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3. Model Implementation 

This chapter provides information as to how the model was implemented.  

We describe the system architecture, including the use of Excel and Xpress for the 

model.  We then cover the aspect of data formulation and creation.  Finally, we 

conclude with a discussion of the specifications of the model, as far as 

computational time and size is concerned.   

3.1. System Architecture Design 

When designing the system architecture for the model implementation, we 

wanted to balance two contradictory goals – selecting optimization software 

powerful enough to solve the MIP with thousands of variables, and choosing a 

simple, flexible setup designed for our target user.  We intended for the main users 

of the model to be business managers, production schedulers, sales groups, etc., 

who may not necessarily be versed in technical programming.  Consequently, we 

wanted a system that would be intuitive for users to learn quickly, yet could handle 

the complexity of the model.   

We decided to implement the model using a combination of Xpress-MP 

callable solver and Microsoft Excel.  This combination results in maximum ease of 

understanding and flexibility for the end users, while still maintaining the strength 

of the model.  The front-end of the model is through Excel and the back-end 

processing is done by Xpress.  While perhaps lesser known than CPLEX, Xpress is 
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gaining use for production scheduling, logistics and e-commerce applications.  This 

optimization package is equipped to solve extremely large MIP models within 

reasonable computational time.  Additionally, it can easily connect to Excel to 

transfer data and results.  In fact, once we formulate the model in Xpress, users can 

call and run the model completely within Excel.  Thus, the model can be used 

easily and even modified by someone with little to no programming or formulation 

experience.  

To set up the model, we first translated the mathematical model formulation 

into Mosel code in Xpress.  This file is compiled and stored as a binary model 

(BIM).  Within Excel, we set up data tables to store the input to the model (order 

and demand details, plus parameters like transportation costs, BOMs, production 

capacities, etc.).  When the user initiates the model in Excel, a VB macro (which 

uses the Xpress-MP-callable libraries) runs the model using Xpress, and retrieves 

the results for analysis in Excel.  The following diagram shows the technical setup 

of the model. 

EXCEL 

 

Figure 3.1: High-level System Architecture 

Input Data 

Results 

Xpress 
BIM: 
Compiled 
Binary 
Model  

ODBC Connection 
VBA: XPRM library User 
SQL 
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3.2. Software Implementation 

3.2.1. Use of Xpress 

Xpress-MP is a commercial software package developed by Dash 

Optimization, and was chosen due to its ability to efficiently handle the integer 

program and the high volume of decision variables.  Xpress-MP is a suite of 

optimization tools that include optimizer algorithms, the IVE visual development 

environment and Mosel, a modeling and optimization environment and language.   

The optimizer algorithms include simplex (both primal and dual), the 

Newton barrier optimizer, and a branch-and-bound framework used for mixed 

integer programming problems (MIP).  The MIP optimizer was used to solve our 

model.  It uses a sophisticated branch-and-bound algorithm to quickly identify 

solutions; the cutting plane strategies involve flow covers, GUB covers, lift and 

project, cliques, flow paths, and Gomory fractional cuts.  The MIP presolve 

algorithm preprocesses the problem to reduce the size and to cut down on the final 

solving time.  Searches can be customized for breadth-first, depth-first or best-first.   

Xpress-IVE is an integrated modeling and optimization development 

environment for Windows.  It incorporates the Mosel program editor, compiler, and 

execution environment. 

Mosel is the programming language used within Xpress.  It was created to 

be as close to the algebraic formulation as possible, which leads to generally 
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understandable code.  Our Mosel code of the model formulation is provided in 

Appendix A. 

Once we formulated the model in Mosel, we compiled it into a BIM file.  

When the model is executed, this file is passed to the MIP Optimizer to solve.  The 

following diagram gives the setup within Xpress 

Xpress-MP Suite 

IVE MIP Optimizer 
 • Pre-solve 

algorithm Mosel 
Formulation 
of model

User 
• Use of cutting 

plane strategies  
• Branch-and-

bound 
framework Results 

 

Figure 3.2: Details of Xpress-MP Suite 

3.2.2. Use of Excel 

We chose to use Excel for data management and results analysis for our 

model.  Undoubtedly, we could have chosen a more powerful database tool.  

However, the data relationships in Excel are more transparent to the user; plus, the 

data is formatted and displayed for quick updates and analysis.  Additionally, the 

data structure for our model is not so complex as to warrant the use of Oracle, 

Access or another database system.   

Obviously, one major drawback with using Excel is the limitation on model 

size.  However, in our trial runs of the model we were able to store the necessary 
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data without any loss of clarity and without any computational issues within Excel.   

Clearly, if a user intends to use the model for actual day-to-day production setting 

and order promising, a more robust database would be needed.  However, for the 

purposes of analyzing general trends and testing policies, Excel is more than 

sufficient.    

The input data for the model is thus stored in tables within an Excel 

spreadsheet.  The user must provide the initial parameters to define the model 

scenario, as well as provide data for the orders and demand.  First, the index 

parameters must be specified.  These indexes specify the identifiers for the other 

model data parameters.  Additionally, they are the indexes for the decision 

variables of the model.  The tables identify the valid entries for each index.  These 

entries are of string format.  For instance, for service levels, the valid entries could 

be Gold, Silver and Bronze.  The following table details the model indexes.  

 Indexes 

Factories 
Merging Centers 
Kitting Parts 
Kitting SKUs 
Merging SKUs 
Transportation Modes 
Service Levels 
Time Periods 

Table 3.1: Model Indexes 

Next, the user must specify the parameter values.  These tables contain all 

the data setup values for the model.  These can be changed from one run to the next 

run to test different scenarios.  And, because the tables are in Excel, the values can 
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be derived easily from formulas.  For instance, transportation costs are based on a 

formula for pricing, calculated from information in a separate spreadsheet tab.  For 

each of these tables, the subsequent data is of type real.  As an example, the initial 

inventory of kSKU1 = 20 at Factory A, 30 at Factory B, etc.  The following table 

specifies the parameter tables in Excel. 

Parameter Uses Index(es) 

Initial inventory of kSKUs at 
factories 

kSKUs, Factories 

BOMs kSKUs, Parts 
Initial inventory of parts Parts, Factories 
Part stock  Parts, Factories, Time 
mSKU stock mSKUs, Merging 

Centers, Time 
Lead time from factories to merging 
centers 

Factories, Merging 
Centers 

Initial inventory of mSKUs mSKUs, Merging 
Centers 

Service Level lead time Service Levels 
Transportation mode lead time from 
Merging Centers to customer 

Transportation modes 

Transportation mode fixed costs Transportation modes 
Transportation mode variable costs Transportation modes 
Profit margins SKUs, Service Levels 

 Table 3.2: Parameters and Associated Indexes 

Finally, the user must provide information regarding orders and demand.  

The following diagram specifies the required data.   

 

 40



 

 

Figure 3.3: Required Data for Orders and Demand 

Excel was also used to present the results of the model to the user.  The data 

is presented in simple tables, detailing the most important decision variables 

(demand commitment percent, shipping schedule, production schedules, etc.).  

Using the analysis functionality of Excel, the user can summarize quickly the 

results of the model and analyze the trends.   

3.2.3. Interaction of Xpress and Excel  

As we have mentioned, once the formulation has been generated in Xpress, 

the model can be run entirely from Excel.  To facilitate this, a connection must be 

established so that data can be passed back and forth effectively.  In Excel, we 

programmed a module using Visual Basic for Applications (VBA) that would call 

the Xpress solver to import and solve the model.  We added the appropriate Xpress 

module to the VB project (XPRM) and added the library xprmvb.dll to the correct 
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directory.  This enabled the Mosel VB interface to allow the Mosel runtime and 

compiler libraries to be called from within VBA code. 

The VB code loads the BIM file (compiled model formulation) into Mosel 

and then executes the model.  The results are then pulled back into preset tables in 

Excel using VB scripting.  The elements of each requested decision variable can be 

retrieved individually, or can be summed or otherwise manipulated for analysis in 

Excel.  Finally, a log file is also generated to detail any issues during execution.  A 

portion of the VB code used to run the model is included in Appendix B. 

On the Xpress side, commands must be added to the Mosel formulation to 

establish the connection.  First, we marked the Excel workbook as a Data Source 

(DSN) within our computer’s ODBC settings.  Next, we added the ODBC I/O 

driver (mmodbc) to the Mosel code to allow access to external data sources.  The 

input data values are accessed by Xpress through a series of SQL statements.  

Within Excel, we defined each data table as a named range.  These data ranges are 

then pulled and used to fill the associated data arrays in the BIM.  The following 

diagram presents an overview of the interaction.   
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Figure 3.4: Interaction of Excel and Xpress 
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$550 
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VB 
… 
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…  
SQLdisconnect 
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3.3. Data Setup 

The following sections detail the data setup for the model.  We first discuss 

the selected size of the model (number of indexes and orders/demand).  Then, we 

describe how data was formulated and generated for our trial runs.  

3.3.1. Model Size 

For our analysis of the model, we wanted a model that was large enough to 

provide sufficient results, yet not so large as to become overburdened in 

computational time.  When we were setting the parameter size, we were careful to 

keep the size in check.  We chose to analyze two factories and three merging 

centers.  Thus, we could study differences resulting in production shortages at one 

factory to see how production shifts.  It was important to have one more merging 

center than factory to analyze how the model divided finished products amongst the 

merging centers.   

We chose to represent five product families in our base setup - three Kitting 

SKU product families and two Merging SKU product families.  The Kitting SKUs 

are assembled from an array of 10 parts.  Some of the parts are shared, while some 

are unique to each Kitting SKU.  This variety enabled testing on the differences due 

to profit margins and shared resources between the product families.  

Additionally, the orders could be shipped to the customer by one of three 

transportation modes.  A rush mode was setup, with the highest cost, as well as two 

slower modes with corresponding costs.  Finally, we chose to have three service 
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levels, which would provide adequate differences in expected delivery dates and 

profit margins.   

The number of incoming orders and forecast demand is based on the 

number of Merging SKUs, Kitting SKUs, merging centers and service levels.  For 

our analysis purposes, each order/demand has a configuration of a single product.  

Each order is designated a merging center, based on the geographic proximity to 

the customer.  Although forecast demand is not specified for a geographic region, 

we estimate the fraction served by each merging center to generate an assignment.  

Additionally, each order/demand has an associated Service Level.  So, to analyze 

all the various combinations, we need 45 orders and 45 demands (3 * 3 * (2+3)).  

The following table provides details of the model size. 

Parameters Dataset Size 

Factories 2 
Merging Centers 3 
Service Levels 3 
Kitting SKUs 3 
Kitting Parts 10 
Merging SKUs 2 
Transportation Modes 3 
Orders 45 
Demand 45 

Table 3.3: Dataset Size of Parameters 

3.3.2. Data Generation for Experiments 

Unfortunately, we did not have any real production data to use during our 

model runs.  However, we generated data that mimicked actual data so that our 

analysis and conclusions would be accurate.   
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Perhaps the most complex aspect of data creation was developing the 

pricing scheme for shipping costs and profit margins.  Each shipping mode has its 

own related costs.  For each mode, there is a fixed cost associated with the 

shipment and a variable cost based on the size of the order.  Clearly, the actual 

shipping cost for a product is dependent on size, weight and exact distance between 

the customer and the merging center.  We simplified the pricing considerably so as 

not to overly complicate the model.  We assumed each product was roughly the 

same size/weight.  For our model analysis, we assumed the products were 

computers, and then analyzed the posted prices from a website of a leading 

computer company to estimate the shipping prices.  We collected a set of data for 

similarly sized/priced products at different quantities for each of the corresponding 

transportation modes (1-Day Air, 2-Day Air, and 3-Day Ground).  Next, we 

performed regression analysis to determine a simplified formula that could be used 

for our model.  The first term is for the fixed costs, and the second term is added in 

for each additional quantity in the shipment.  The resulting formulas are shown in 

the following table.  

Transportation Mode Shipping Costs Formula 

1-Day Air 135.99 + 167.00 * (Qty – 1) 
2-Day Air 110.00 + 123.25 * (Qty – 1) 
3-Day Ground 81.33 + 103.42 * (Qty – 1) 

Table 3.4: Formulation of Shipping Costs per Transportation Mode 

These formulas represent the shipping price charged for each shipping 

mode.  However, we assumed that the company marked up the actual shipping 

costs by a percentage to increase revenue.  We needed the actual cost the company 
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incurs for shipping the product for our model.  Hence, we reduced these values by a 

margin to get the revised formulas used in the model, which are presented in the 

following table. 

Transportation Mode Revised Shipping Costs Formula 

1-Day Air 90.66 + 111.34 * (Qty – 1) 
2-Day Air 74.00 + 82.17 * (Qty – 1) 
3-Day Ground 54.22 + 68.94 * (Qty – 1) 

Table 3.5: Revised Formulation of Shipping Costs per Transportation Mode 

 The following graph provides an overview of the actual costs per 

transportation mode, across varying quantities.  Our model assumed the average 

shipment size is 10 products (based on data from a leading computer manufacturer), 

so the aggregate order and demand values are divided into shipments of 10 

products, or fraction thereof, for delivery to the customer.   
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Figure 3.5: Graph of Shipping Costs per Transportation Mode 
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 Our next task was to create formulas to use for the pricing of each product 

at the various service levels.  We needed a formula to generate the profit margin of 

each service level for the different SKUs.  We assigned approximate list prices for 

each of our products, which would correspond to the sales price the customer 

would pay for the product.  This price does not include shipping.  These prices 

were set so that the average was roughly $1,000, with some variety in the prices to 

differentiate the products.  Now, for our model, we needed to translate the list price 

to the cost of the product to determine the profit margin for each product.  The first 

step was to determine the cost of the product before the markup to the customer.  

We assumed a markup of 25%.     

 Our model differs from the standard policy at most companies in that the 

customer selects the service level for the product and pays a combined list price, 

which includes both the product and the shipping.  When developing our pricing 

model, we needed to account for this.  Essentially, the profit margin for a given 

product and service level combines the product profit margin and the shipping 

profit margin.  Recall earlier that we assume the customer is also charged a markup 

on the shipping costs.  

 We associated each service level with a comparable shipping mode to 

determine the corresponding shipping profit margins.  Therefore, instead of 

choosing 1-Day Air as the shipping mode, the customer would choose the ‘Gold’ 

service level, and so on for each of the service levels and modes.  Thus, we equate 

the profit margin on 1-Day Air to the Gold service level in the pricing scheme.   
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 Finally, we assume that the company can add an extra premium for the 

higher service levels.  We set these premiums at 5% for Gold, 2% for Silver, and 

0% for Bronze.  The following table details how the profit margins were set.  

 kSKU1 kSKU2 kSKU3 mSKU1 mSKU2 
Standard sales price  
(does not include shipping) 999.00 1,539.00 799.00 750.00 849.00 

Product markup 25% 25% 25% 25% 25% 
Product profit  199.80 307.80 159.80 150.00 169.80 
Service Level markup 5% 5% 5% 5% 5% 
Service Level profit 239.76 369.36 191.76 180.00 203.76 
1-Day Air shipping cost 90.66 90.66 90.66 90.66 90.66 
Shipping markup 50% 50% 50% 50% 50% 
Shipping profit 45.33 45.33 45.33 45.33 45.33 
Total Profit Margin 285.09 414.69 237.09 225.33 249.09 
Gold Service Level 
sales price 1,174.95 1,736.55 966.95 915.99 1,018.95

 
G 
O 
L 
D 

Standard sales price, 
incl. 1-Day Air shipping 1,134.99 1,674.99 934.99 885.99 984.99 

Product markup 25% 25% 25% 25% 25% 
Product profit  199.80 307.80 159.80 150.00 169.80 
Service Level markup 2% 2% 2% 2% 2% 
Service Level profit 15.98 24.62 12.78 12.00 13.58 
2-Day Air shipping cost 74.00 74.00 74.00 74.00 74.00 
Shipping markup 50% 50% 50% 50% 50% 
Shipping profit 37.00 37.00 37.00 37.00 37.00 
Total Profit Margin 252.78 369.42 209.58 199.00 220.38 
Silver Service Level 
sales price 1,125.98 1,674.62 922.78 873.00 973.58 

S 
I 
L 
V 
E 
R 

Standard sales price, 
incl. 2-Day Air shipping 1,110.00 1,650.00 910.00 861.00 960.00 

Product markup 25% 25% 25% 25% 25% 
Product profit 199.80 307.80 159.80 150.00 169.80 
Service Level markup 0% 0% 0% 0% 0% 
Service Level profit 0.00 0.00 0.00 0.00 0.00 
3-Day shipping cost 54.22 54.22 54.22 54.22 54.22 
Shipping markup 50% 50% 50% 50% 50% 
Shipping profit 27.11 27.11 27.11 27.11 27.11 
Total Profit Margin 226.91 334.91 186.91 177.11 196.91 
Bronze Service Level 
sales price 1,080.33 1,620.33 880.33 831.33 930.33 

B 
R 
O 
N 
Z 
E 

Standard sales price, 
incl. 3-Day shipping 1,080.33 1,620.33 880.33 831.33 930.33 

Table 3.6: Formulation of Profit Margins 
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 The following chart breaks down the profit margins for each service level 

and SKU.  We can see that Kitting SKU2 has the highest profit margins, followed 

by Kitting SKU1.     
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Figure 3.6: Chart of Profit Margins per SKU and Service Level 

We next describe the final parameter values that we set for the model, 

including initial inventory levels and various lead times.  The inventory levels were 

set arbitrarily, but mainly reflected the fact that limited inventory would be carried 

from day to day.  We next set the lead time for production and shipping from each 

factory to each merging center.  We simplified the transfer system and assumed that 

if the factory and merging center are located at the same site, the lead time is one 

day, which includes the time to assemble the product and the time to transfer to the 

merging center.  If the factory and merging center are not co-located, then the lead 

time is set at two days.  Finally, we choose the service level lead times.  The 

minimum production/transfer to merging center is one day.  Furthermore, the 

fastest delivery method is 1-Day Air, so the quickest arrival date to the customer 
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would be on Day 3 (Day 1: production/transfer, Day 2: ship from merging center, 

Day 3: arrive at customer).  So, we set the Gold service level (premium) at 3 days, 

Silver at 5 days and Bronze at 7 days.   

3.3.3. Generation of Data 

To test each business scenario of the model, several trials must be executed 

for each run.  By having the values for certain parameters fluctuate from trial to 

trial, we can see how the model acts generally in each scenario.  To facilitate this, 

we set up a program in Visual Basic to randomize certain parameters.  

First, we had to decide which factors to randomize, and which to keep at 

constant values throughout all trials.  We kept the model size the same, so that 

subsequent comparable analysis could be performed (e.g.: we did not vary the 

number of factories which would create a profound effect on the results of the 

model).  We chose to vary the following parameter values: 

• Order quantity 

• Demand quantity 

• Production capacity at the factories 

• Incoming supply of kitting parts at the factories 

• Incoming supply of Merging SKUs at the merging centers 

For each parameter, the values are randomized so that they are uniformly 

distributed over a range.  In the general business scenario we are modeling, the 

lump sum quantity of requested products for demand and orders is roughly 

equivalent to the capacity needed to fulfill all orders and demand.  Thus, to capture 

this setting, we made certain parameters dependent on the value of other parameters.   
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We started with the order quantity, an independent value.  We set the range 

at 550 to 700 units per order of each product and service level.  This value would 

then be divided among the orders of that product/service level for each of the three 

merging center assignments, depending on the set distribution schedule.  Next, we 

looked at the demand quantity.  The purpose of this model is not to predict demand, 

and as such, we used a simple setting that assumed the quantity for incoming 

demand would be roughly the same as the known orders.  We expanded the range 

slightly, and randomized the demand quantity between 500 and 800 units per 

demand of a certain product and service level.  Like the order quantity, this would 

then be distributed among demand forecasts for the three merging centers.    

We next considered the production capacity values.  We wanted capacity to 

be approximately equal to the total production needed to fulfill all orders and 

demand.  As such, we summed the order and demand quantities and divided by the 

number of factories to get the capacity needed at each factory.  This assumes each 

factory will share production equally.  Our model timeframe spans 10 days; 

however, it is not a rolling model, so it is only concerned with the orders and 

demand that come in on the first day of the model.  To account for this in the 

production, we can divide the capacity of each factory by the number of days in the 

model.  This evenly distributes capacity across the entire model timeframe, which 

is not quite what we are after.  By doing this, the factories will not have enough 

capacity in the first few days of the model to meet the demand and orders, given 

that the associated service level lead times range from three days to seven days.  
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We need to distribute most of the capacity to the first few days of the model so that 

demand can be satisfied.  In essence, the model timeframe is set at 10 days to 

account for the delivery of the products; the purpose is not to spread production 

across the entire model evenly.  Consequently, we multiply our daily factory 

capacity by a production factor to increase the value.  This can be set anywhere 

from 1.5 to 3, depending on the level of capacity shortage or surplus desired.  

Finally, the resulting production capacity values are randomized by +/- 150 

capacity units. 

We next set the kitting part stock value.  Recall that this is the daily supply 

of parts used in production of the Kitting SKUs.  Each part can have a different 

inventory level.  To simplify matters slightly, we kept the daily stock levels 

uniform across the model timeframe.  Our goal was to set the levels of the part 

stocks to match the needed capacity to fulfill all demand/orders.  For each part, we 

first checked the Kitting SKU BOM’s to determine the quantity used in each 

product.  We used this to estimate the total quantity of each part needed to fulfill 

the requested demand/orders for Kitting SKUs.  For example, given that we have 

three Kitting SKUs, if Part1 is used in both Kitting SKU1 and Kitting SKU3 and 

the total demand/orders of Kitting SKUs is 12,000 units, then to get the quantity of 

Part1, we multiply 12,000 by 2/3, resulting in 8,000 units of Part1 needed.  Now, 

similar to the production capacity, this is divided by the number of factories and the 

number of days in the model timeframe.  To account for production occurring in 

the earlier time stages of the model, we multiply this by a kSKU factor to get the 
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final value of each part.  To finish, we vary this by +/- 50 units to randomize the 

resulting values of parts.     

Finally, we need to set the values for the Merging SKU stock.  This is done 

in a similar fashion as setting the part stock values.  We first calculate the total 

Merging SKU quantity for orders/demand.  We then divide this by the number of 

merging centers and the number of days in the model.  Finally, we multiply this 

value by an mSKU factor to adjust upwards the daily value.  Now, since the 

merging will occur after production, this factor should be set slightly lower than the 

Production and kSKU factors.  This value is then varied by +/- 100 units to 

randomize.   

The table below summarizes the formulation of each of these parameters. 

Parameter Value Random 
Range 

Order Quantity 
(product/ser. level) 

Average = 650 +/- 100 

Demand Quantity 
(product/ser. level) 

Average = 650 +/- 150 

Production 
Capacity  
(per day, factory) ∗ ∗

∑Requested kSKUs
Days  # Factories Production Factor

 
+/- 150 

Stock of Parts 
(per day, part, 
factory) 

Parts Needed (based on kSKUs requested, BOMs)
Days  # Factories * kSKU Factor∗

∑

 

+/- 50 

Stock of mSKUs 
(per day, mSKU,  
merging center) 

Requested mSKUs
Days  # M. Centers  # mSKUs mSKU Factor∗ ∗ ∗

∑  
+/- 100 

Table 3.7: Formulation of Parameter Values 
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3.4. Model Specifications 

This section provides the specifications of the problem solution.  The model 

is solved efficiently within Xpress, especially considering the large size of the 

dataset in the model.  The average solution time is usually less than a minute, 

although some scenarios require longer solving time.   

We first analyze the model specifications for the base setup of the model, 

using the data size discussed in the previous section.  This base model has over 

8,000 decision variables; 2,700 of which are restricted as binary variables.  As part 

of the solution process, the model is first preprocessed (or presolved) to tighten 

constraints and remove any redundancies.  The following table specifies the size of 

the problem matrix in both instances.  The preprocessing stage cut the number of 

rows (constraints) and columns (decision variables) by almost half.     

 Initial Value Value after Presolve 
Rows 6,481 3,814 
Columns 8,272 4,145 
Non-zero Elements 29,713 15,184 

 Table 3.8: Model Size – Xpress Solver  

After the preprocessing phase, the mixed integer constraints are removed, 

and the subsequent Linear Program is solved using the Simplex (dual) method.  

This took 1,956 iterations.  The optimal solution to the LP relaxation is found in 

less than one computational second. 3 

In the next step of the solving process, the optimizer algorithm adds cuts to 

the problem (valid inequalities that cut off fractional solutions), thus drawing the 
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LP relaxation closer to the convex hull of integer solutions and improving the 

bound provided by the relaxation.  For our problem, 190 cuts were made (190 rows 

added to problem matrix).  Finally, a solution is found by using a branch-and-

bound algorithm.  The following graph shows the node search for the optimal 

solution.  The integer solution is found at Node 73 in 5 seconds of computational 

time.   

 

 

Figure 3.7: Branch and Bound Search to Identify MIP Solution 

 As we discovered during the experimental analysis, certain business 

scenarios of the model take considerably longer to solve in Xpress.  For instance, in 

the case where capacity resources are very scarce and the commitment of demand 

is binary, the optimizer needs several minutes to find an optimal integer solution.  

While the model size is the same as the base run, the constraints are much tighter, 

so the solution is harder to find.  The LP relaxation problem was solved in 2,506 

iterations of the dual Simplex method.  The optimizer added 174 cuts to the 

problem.  Finally, the problem was solved using branch-and-bound search 
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enumeration of 12,025 nodes.  The search found 8 feasible solutions before the 

optimal value was identified.  The following table gives the differences in the base 

run and this run of increased computational complexity.     

 Base Run Complex Run 
LP Relaxation 1,956 iterations 2,506 iterations 
Cuts 190 cuts 174 cuts 
Branch-and-Bound 73 nodes 

1 integer solution 
5 computational seconds 

12,025 nodes 
9 integer solutions found 
200 computational seconds 

 Table 3.9: Comparison of Computational Complexity of Two Runs  

Xpress enables customization of the cutting plane strategy, branch-and-

bound algorithm and other parameters in the solution process.  However, for even 

the most complex setup for our model, the problem was solved within minutes, so 

we did not experiment with these settings to search for computational 

improvements. 
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4. Study of Experiments  

In this chapter, we first discuss the verification process of the model.  Next, 

we go through the sensitivity analysis that we performed on the model.  Finally, we 

discuss the various experiments conducted – their purpose, their required updates to 

the model formulation/data, and their results.  

4.1. Verification of Model 

Before experiments were conducted, we verified the model to check that it 

was setup properly.  Verification is the process of ensuring that the model and all 

its components meet the requirements and specifications of the design.  The goal of 

the verification testing phase is to find all errors and fix the underlying causes. 

To verify the model, we conducted a series of tests to make sure it acted in 

the manner we intended.  We developed three scenarios for this testing.  Through 

the course of our verification testing, minor issues with the model formulation were 

discovered and fixed.  The tests were re-run to ensure the issues were resolved.  

Test 1: Verify flow of parts, Kitting SKUs, Merging SKUs  

For this test, we checked to make sure that the flow of parts and products 

was correct throughout the model timeframe.  An important aspect of this test was 

guaranteeing that the schedule of departures, transportation times and arrivals were 

calculated based on the correct lead time parameters.  Additionally, material 

conservation at each step of the supply chain was analyzed for accuracy.  This 
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meant checking that the production and inventory levels were correct, given the 

quantity shipped for orders, and so on.   

 For this scenario, we set an unlimited production capacity at the factories, 

and high levels of the supply of parts and Merging SKUs.  The initial inventories of 

finished Kitting SKUs were kept low to force production at the factories.   

 We analyzed the solution values to verify the results were as expected.  We 

calculated the expected inventory levels and production based on the order and 

demand shipments and verified material was moving appropriately at each factory 

and merging center.  In addition, we checked each order/demand arrival to ensure 

the quantity and date were correct.  We uncovered a slight issue with demand 

orders, in that they were all arriving one day after the expected date for the 

corresponding service level.  This was attributed to an error in the constraint for 

service level definition; this was fixed and re-tested to satisfaction. 

Test 2: Delayed Deliveries of Orders 

 In this test, we wanted to ensure that the model was correctly handling late 

deliveries for orders.  It should allow orders to be delivered late and should assess 

the correct due date violation penalty.  Additionally, we wanted to make sure the 

model was making the expected trade-offs between demand commitment and order 

scheduling.   

 For this scenario, we limited the production levels at the factories, and 

reduced the supply of kitting parts and Merging SKUs.  This would force some 

orders to be delivered late, and some demand to go uncommitted.  
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 After running the model, we checked the model to verify the scenario 

results.  The model correctly committed higher profit demand requests in exchange 

for delivering orders late.  However, one issue was uncovered in this test.  Orders 

that went undelivered for the entire model timeframe were not being assessed a due 

date penalty.  We added a term in the constraint for due date violation definition to 

account for undelivered orders to resolve this issue.   

Test 3: Calculation of Profits and Costs 

 In our final test, we wanted to verify that model was correctly calculating 

the profits and costs of each order and demand.  We needed to ensure that the 

correct profit margins were used for each product and service level.  Furthermore, 

the transportation costs should reflect the right fixed and variable costs for each 

shipping mode.  And again, we wanted to verify the due date violations were 

correct for all products and service levels. 

 We ran this trial and verified the results with our expectations.  No errors 

were found with the model formulation; each order had the proper values for profits, 

transportation costs and due date violation penalties.      

4.2. Sensitivity Analysis 

After the model had been verified using the generated data, we carried out 

various sensitivity analyses to test the capabilities of the model.  By running the 

model under different conditions to simulate various business scenarios, we 

observe the behavior and power of the model.   
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The first step was to create a base scenario of the model.  This is used as a 

benchmark to check performance and decisions of later iterations.  In subsequent 

runs, the majority of the data parameters have the same values as the base run, so 

that the impact of varying one or two parameters can be identified and analyzed.  

We tested scenarios such as variances in profit margins, reduced capacity, and part 

shortages.  The details of each test and the ensuing results are presented next.     

4.2.1. Base Setup of Model 

The base run of the model is intended to serve as a point of reference for 

future trials.  This run is based on the expected, or standard, business operating 

environment for a MTO/CTO company.  In this scenario, the resource availability, 

including both production capacity and parts, roughly matches the incoming orders 

and forecast demand.  As discussed earlier, these values are generated randomly 

within a set range, so in some trials there might be a slight shortage of resources, 

while other trials might result in a slight excess of resources.  This is done to mimic 

the uncertainty of production planning and demand forecasting.     

Next, we set up the formulation of critical data for the base trial, given the 

business scenario.  The following table provides the approximate range of values 

for the key parameters. 
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Parameter Approximate Range of Values 

Order Quantity 
(per order of product/service level) 

550 – 750 

Demand Quantity 
(per demand of product/service level) 

500 – 800 

Production Capacity  
(per day, per factory) 

1,000 – 1,350 

Stock of mSKUs 
(per day, per mSKU,  per merging 
center) 

85 – 250 

Stock of Parts 
(per day, per part, per factory) 

350 – 1200 

Profit Margins Gold Service Level: 5% 
Silver Service Level: 2% 
Bronze Service Level: 0% 

Objective Value Weights Order revenue: 0.5 
Order delivery costs: 0.5 
Demand revenue: 0.5 
Demand delivery costs: 0.5 
Due date violation penalty: 1.0 

Table 4.1: Range of Values for Parameters in Base Model 

Thirty trials were run to get a complete and accurate set of data to use for 

analysis of the base model.  Key results are detailed in the following table. 

Output Average Value 

Objective Function        1,225,632 
Profits     $ 4,291,330 
   Orders     $ 2,444,865 
   Demand     $ 1,846,465 
Costs     $ 1,787,663 
   Order Delivery        $ 996,839 
   Due Date Violations          $ 52,402 
   Demand Delivery        $ 738,423 
Demand Commitment              73.0% 
   Gold Service Level              48.7% 
   Silver Service Level              80.5% 
   Bronze Service Level              89.6% 
   kSKU1              87.0% 
   kSKU2              87.3% 
   kSKU3              89.6% 
   mSKU1              49.2% 
   mSKU2              58.4% 

Table 4.2: Results of Base Trial 
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We can see that a fair percentage of overall demand was accepted (73%).  

Within demand, a much higher percentage of lower service levels (Silver and 

Bronze) were committed, at 80.5% and 89.6%, respectively.  This makes sense in 

this scenario, as there is greater flexibility in production resources and shipping 

modes for orders with longer lead times.  For a shortened lead time, as with the 

Gold service level, fewer resources are available to share with demand, resulting in 

a lower commitment percentage (48.7%).  Although this figure might seem low for 

some companies, remember that it is based entirely on the level of resources 

provided as input for this base model.  Naturally, a company with higher 

availability of production resources would have higher commitment levels.   

As for orders, we can see that a limited number of orders are delivered late, 

resulting in a due date violation.  However, this number is relatively small, which 

makes sense considering that the resources were fairly balanced with the orders and 

demand.  

4.2.2. Sensitivity Analysis of Profit Margins 

In this test, we wanted to see how changing the profit margins would affect 

the overall commitment decisions.  Therefore, we kept the demand and order sizing 

the same, as well as the production capacity and stock of parts and Merging SKUs.  

The only parameter that was changed was the profit margin.  This table details the 

changes.  The profit margin includes the service level and product profit margin. 
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Parameter  Base Value New Value 

Gold Profit Margin 30% 45% 
Silver Profit Margin 27% 30% 
Bronze Profit Margin 25% 25% 

Table 4.3: Parameter Settings for Sensitivity Analysis of Profit Margins 

This scenario is useful to show the case in which a company can charge an 

extremely high markup for a first-class service level.  In some markets, the 

customers can be segmented as such and products with faster delivery can achieve 

a considerable premium over basic delivery.   

We expect that the model will change the allocation of resources in the base 

model to account for the additional profits that could be made from Gold service 

level products.  Consequently, the demand commitment for Gold products should 

increase, while the commitment for Bronze products might decrease.  Additionally, 

more orders might be delivered late to compensate for the shift in resource 

allocation.   

As with before, 30 trials were run in this test.  The results are detailed in the 

following table.  
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 Output Base Scenario: 
Average Values 

Inc. Profit Marg.: 
Average Values 

Difference 

Objective Function        1,225,632       1,607,658     31.2% 
Profits     $ 4,291,330   $  5,185,370     20.8% 
   Orders     $ 2,444,865   $  2,906,839     18.9% 
   Demand     $ 1,846,465   $  2,278,531     23.4% 
Costs     $ 1,787,663   $  1,890,781       5.8% 
   Order Delivery        $ 996,839   $  1,013,853       1.7% 
   Due Date Violations          $ 52,402        $  79,656     51.3% 
   Demand Delivery        $ 783,423      $  797,656       8.0% 
Demand Commitment              73.0%            76.9%       5.4% 
   Gold Service Level              48.7%            68.6%     40.9% 
   Silver Service Level              80.5%            78.5%      -2.5% 
   Bronze Service Level              89.6%            83.8%      -6.5% 
   kSKU1              87.0%            87.2%       0.2% 
   kSKU2              87.3%            87.3%       0.0% 
   kSKU3              83.0%            87.7%       5.7% 
   mSKU1              49.2%            56.1%     14.1% 
   mSKU2              58.4%            66.5%     13.8% 

Table 4.4: Results of Sensitivity Analysis of Profit Margins 

From Table 4.4, we can observe that as predicted, the commitment levels 

for the Gold service level products have increased by 40.9%, from 48.7% to 68.6%.  

The model re-allocates the capacity to include more production for the Gold 

products, increasing the overall profits.  In doing so, the commitment levels for the 

Silver and Bronze levels have dropped somewhat.  Additionally, the due date 

penalty jumped over 50% to account for the shift in allocation.  Clearly, the model 

will assign a late delivery to certain low profit orders if that means it then can 

accept other higher profit demand.  Additionally, the delivery costs for orders and 

forecast demand increased.  This indicates that the model delayed production and 

used alternate, faster delivery modes to ship out some orders.   

 65



 

While the profits also increased, this is due more to the fact that the 

company is earning much more for products with the Gold service level.  Although, 

we can see that the increase in profits for demand (23.4%) is slightly higher than 

the increase for orders (18.9%).  This can be explained due to the higher 

commitment level, overall, of the demand in this new model scenario. 

When we analyze the demand commitment classified by product, we can 

see insignificant changes for the Kitting SKU demand, with slightly higher 

increases for the Merging SKU demand.  Since the commitment levels for demand 

of Kitting SKUs were already relatively high (mid 80% range), this would indicate 

that the commitment simply shifted towards the Gold, from Silver and Bronze 

within each Kitting SKU demand.  Thus, the overall commitment for each 

demanded Kitting SKU would remain the same. 

As for the Merging SKUs, only about 50% of the demand was committed in 

the base model, which is comparatively lower.  As such, with the new increased 

profit margins, a higher level of total demand for each Merging SKU was reserved.  

This would indicate that the capacity from orders was shifted to account for the 

increase in demand acceptance.  

4.2.3. Sensitivity Analysis of Production Capacity 

We next wanted to test the sensitivity of the model relating to capacity.  

This would correspond to the scenario in which demand for a company’s products 

far outweighs the resources to meet demand.  For testing this, we kept the order and 

demand quantities the same, but severely reduced the production capacity and the 
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inventory-on-hand for parts and Merging SKUs, as seen in the following table.  The 

stock of Merging SKUs is not reduced as much as the production capacity and the 

stock of parts.  This is because the base model had fairly tight capacity for the 

Merging SKUs, and any greater of a reduction would cause an imbalance in the 

capacity shortage analysis.  

Parameter Reduced Capacity Scenario 

Order Quantity Same as base model 
Demand Quantity Same as base model 
Production Capacity  
(per day, per factory) 

50% of base model value 

Stock of mSKUs 
(per day, per mSKU, per merging 
center) 

66% of base model value 

Stock of Parts 
(per day, per part, per factory) 

50% of base model value 

Profit Margins Same as base model 

Table 4.5: Parameter Settings for Sensitivity Analysis of Production Capacity 

The general expectation is that the model will change commitment and 

resource allocation to favor those products with the highest profit margins.  We 

also expect due date violations to increase, and the overall commitment levels for 

demand to decrease.  This scenario was run over 10 trials.  The comparison of the 

results with the base scenario is detailed in the following table. 
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Output Base Scenario: 
Average Values 

Red. Capacity: 
Average Values 

Difference 

Objective Function        1,225,632          787,163     -35.8% 
Profits     $ 4,291,330   $  3,253,940     -24.2% 
   Orders     $ 2,444,865   $  2,379,792       -2.7% 
   Demand     $ 1,846,465      $  874,147     -52.7% 
Costs     $ 1,787,663   $  1,498,809     -16.2% 
   Order Delivery        $ 996,839      $  979,418       -1.7% 
   Due Date Violations          $ 52,402      $  180,804     245.0% 
   Demand Delivery        $ 738,423      $  338,587      -54.1% 
Demand Commitment              73.0%            34.1%      -53.3% 
   Gold Service Level              48.7%            12.2%      -74.9% 
   Silver Service Level              80.5%            27.8%      -65.5% 
   Bronze Service Level              89.6%            62.1%      -30.7% 
   kSKU1              87.0%            21.9%      -74.8% 
   kSKU2              87.3%            55.2%      -36.7% 
   kSKU3              83.0%            11.9%      -85.7% 
   mSKU1              49.2%            34.1%      -30.6% 
   mSKU2              58.4%            46.0%     -21.3% 

Table 4.6: Results of Sensitivity Analysis of Production Capacity 

The effects of reduced resources are clear.  The model was able only to 

commit 34.1% of demand, a drop of over 50% from the base scenario.  We can see 

large decreases in profits as well.  Tellingly, the due date violations increased by 

245%, which clearly indicates the shortage of resources all around. 

In comparing the demand commitment for the various service levels, we see 

that Gold decreased 74.9%, Silver 65.5%, and Bronze 30.7%.  This result is 

somewhat curious, because Gold products have the highest profit margins, yet 

suffer the greatest decrease in commitment.  However, we can surmise that given 

the extremely tight lead time with the Gold service level, the production resources 

and part inventory were so reduced they simply could not produce both the Gold 

service level orders and the Gold service level demand.  More flexibility later in the 
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model time frame enabled the model to adjust and re-allocate resources so that 

more of the demand could be accepted for the lower service levels.   

The interesting aspect of this sensitivity analysis is to see where the model 

shifted capacity and delivery schedules.  The commitment percentages for the 

various products all decreased, but not in comparable fashion.  If we look at the 

profit margins for each of the products, the ones with the higher profit margins 

decrease the least.  So, the model is making decisions to re-allocate capacity from 

lower profit margin products to those in which it can achieve a higher profit.  The 

table below shows the results based on profit margins of products. 

  Product Difference from 
Base Scenario 

Profit Margin            
(in relation to mSKU1) 

Kitting SKU1 -74.8% 127% 
Kitting SKU2 -36.7% 184% 
Kitting SKU3 -85.7% 105% 
Merging SKU1 -30.6% 100% 
Merging SKU2 -21.6% 111% 

Table 4.7: Profit Margin Results of Sensitivity Analysis of Production Capacity 

The profit margins are evaluated against the lowest profit margin product 

(Merging SKU1).  We can see that the profit margin for Kitting SKU2 is almost 

twice that of Merging SKU1.  This relationship holds across all service levels for 

the products (e.g.: Bronze service level profit margin for Kitting SKU1 is 127% of 

the Bronze service level profit margin for Merging SKU 1, and so forth).  Based on 

this data, it is clear to see how the model re-allocated resources.  When we compare 

the Kitting SKUs (which share common production capacity and parts), we can see 

that the model is allocating resources first for demand of higher profit margins.  
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Kitting SKU2, with the highest profit margin only dropped 36%, while the other 

two products dropped 75% and 85%, respectively.  Available production capacity 

and parts go toward the manufacturing of Kitting SKU2 first.  This is a 

considerable result – it shows that the model is allocating resources for the higher 

profit products under limited capacity situations.  It should be noted that the profit 

margins of Kitting SKU1 and Kitting SKU3 for the Gold Service Level are higher 

than the profit margin of Kitting SKU2 for the Bronze Service Level.  This helps 

explain why there is not a total shift away from these lower profit products.   

4.2.4. Sensitivity Analysis of Part Shortage (Unique Part) 

In this trial, we wanted to test the effect of a shortage of a part on overall 

commitment and resource scheduling.  We chose Part4, which is used solely in 

Kitting SKU2, and reduced the stock supply value by 50% from the base scenario.  

All other parameters, including order and demand quantities, production capacity 

and the stock of other parts, were kept at the same values as the base scenario.   

Because this part is used only in one product, we expect that particular 

product to have reduced commitment levels and increased due date violations for 

orders.  This scenario was run over 30 trials, and the data was collected below: 
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Output Base Scenario: 
Average Values 

Decreased 
Stock of a 
Unique Part 

Difference 

Objective Function        1,225,632       1,125,758       -8.1% 
Profits     $ 4,291,330   $  4,071,801       -5.1% 
   Orders     $ 2,444,865   $  2,444,865        0.0% 
   Demand     $ 1,846,465   $  1,626,936     -11.9% 
Costs     $ 1,787,663   $  1,717,131       -3.9% 
   Order Delivery        $ 996,839      $  966,237       -3.1% 
   Due Date Violations          $ 52,402      $  103,154      96.9% 
   Demand Delivery        $ 738,423      $  647,740     -12.3% 
Demand Commitment              73.0%            67.4%       -7.7% 
   Gold Service Level              48.7%            42.0%     -13.7% 
   Silver Service Level              80.5%            73.0%       -9.3% 
   Bronze Service Level              89.6%            87.0%       -2.9% 
   kSKU1              87.0%            87.2%        0.2% 
   kSKU2              87.3%            57.5%      -34.1% 
   kSKU3              83.0%            85.4%        2.8% 
   mSKU1              49.2%            49.2%        0.0% 
   mSKU2              58.4%            58.4%        0.0% 

Table 4.8: Results of Sensitivity Analysis of Part Shortage (Unique Part) 

 We can see that as predicted, the commitment of future demand for Kitting 

SKU2 is greatly reduced in this scenario (by 34%).  Additionally, the due date 

violations have almost doubled, which reflects that more orders involving Kitting 

SKU2 cannot be shipped in time with the reduced resources.   

When analyzing the service level commitments, there is a definite drop for 

the Gold service level (13.7%), and less profound drops for the other two service 

levels.  As demand cannot be delivered late, we can surmise that much of the 

demand involving Kitting SKU2 was not committed at all.  The drops are lower for 

the lower service levels, which indicates that with a longer planning horizon, the 

model can effectively distribute resources so that more demand can be met (through 

delaying production of orders of similar configurations and delivering orders late). 
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It is interesting to note the commitment for Kitting SKU1 and SKU3 

increased in the run (by 0.2% and 2.8%, respectively.  The shortage of the part 

limited the production of Kitting SKU2.  Therefore, the common resources 

(production capacity and other part availability) can be reallocated for production 

of Kitting SKU1 and SKU3.    

4.2.5. Sensitivity Analysis of Part Shortage (Common Part) 

This analysis is similar to the prior case.  However, in this version, the stock 

of the part that is reduced is one that is commonly shared across all Kitting SKUs.  

We kept the demand and order quantities the same as in the base scenario, as well 

as the production capacity and the stock quantities of other parts.  For Part3, we 

reduced the level of stock by 40%.  This part is on the BOM for all three Kitting 

SKUs. 

We expect that overall due date violations would increase and the demand 

commitment would be reduced somewhat.  The key aspect of this test is to analyze 

specifically how the profit margins of these products affect the commitment levels.  

As the part is used in all Kitting SKUs, we expect that the lower profit margin 

products will be reduced at greater levels than those products with higher profit 

margins.  We ran this scenario over 30 trials, and recorded the results in the below 

table. 
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Output Base Scenario: 
Average Values 

Decreased 
Stock of a 
Common Part 

Difference 

Objective Function        1,225,632       1,048,062       -14.5% 
Profits     $ 4,291,330   $  3,863,834       -10.0% 
   Orders     $ 2,444,865   $  2,444,865          0.0% 
   Demand     $ 1,846,465   $  1,418,970       -23.2% 
Costs     $ 1,787,663   $  1,004,692         -7.3% 
   Order Delivery        $ 996,839      $  1,004,692         -0.8% 
   Due Date Violations          $ 52,402      $  110,637       111.1% 
   Demand Delivery        $ 738,423      $  541,744        -26.6% 
Demand Commitment              73.0%            54.3%        -25.6% 
   Gold Service Level              48.7%            28.0%        -42.4% 
   Silver Service Level              80.5%            53.1%        -34.0% 
   Bronze Service Level              89.6%            81.7%          -8.8% 
   kSKU1              87.0%            56.0%        -35.6% 
   kSKU2              87.3%            87.3%          -0.0% 
   kSKU3              83.0%            19.9%        -76.0% 
   mSKU1              49.2%            49.2%           0.0% 
   mSKU2              58.4%            58.4%           0.0% 

Table 4.9: Results of Sensitivity Analysis of Part Shortage (Common Part) 

We can see that the overall demand commitment is reduced (by 25%) and 

the due date violations are substantially higher (111%) due to the part shortage of 

this common part.  The model cannot commit resources for all the forecast demand, 

so it must determine which demand should be committed.  Based on these results, it 

took capacity from some orders, as seen in the late deliveries.  More significant is 

that of the demand that was committed, the majority is for orders involving Kitting 

SKU2.  This product saw no effect of the reduced part stock, while Kitting SKU1 

and Kitting SKU3 were significantly reduced in commitment percentages (35% and 

76%, respectively).  These results make sense when we remember that Kitting 

SKU2 has a much higher profit margin than the other two products.  The following 
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table highlights the differences.  In this version, the value of profit margins is in 

terms of Kitting SKU2.   

  Product Difference from 
Base Scenario 

Profit Margin            
(in relation to kSKU 2) 

Kitting SKU1 -35.6% 69% 
Kitting SKU2   -0.0% 100% 
Kitting SKU3           -76.0% 57% 

Table 4.10: Profit Margin Results of Sensitivity Analysis of Part Shortage (Common Part) 

 The model was still able to meet the same level of demand for Kitting 

SKU2.  However, with the part shortage, the same levels could not be committed 

for the other two products.  Because Kitting SKU2 had the highest profit margin, 

resources were reserved for it first.  Next, it fulfilled demand for Kitting SKU1, 

then finally Kitting SKU3.  Some capacity is still reserved for these products, 

because the profit margins at the Gold level are slightly higher than those of Kitting 

SKU2 at a Bronze service level, and so on.  

4.3. Experiment 1: Commitment Policy 

In this experiment, we test the demand commitment policy.  In the base 

model, demand can be committed as a percentage, so 45% of a particular demand 

could be reserved.  Because the demand values are aggregate, this partial 

commitment corresponds to the scenario where the company could reserve 

resources to produce most of the requested demand of that product, but not the full 

expected demand.   

We now want to test the policy where the demand is either committed fully 

or not at all for a particular product configuration and service level.  In some cases, 
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this would be a more accurate measure of the demand resource planning for a 

company.  For instance, in the scenario in which a company conducts sales on-line, 

each business day, decisions must be made regarding which service levels should 

be offered for the various products.  If a company cannot commit to producing a 

certain product within the time frame of a premium service level, they would not 

even offer that option to the customers.  Our base model would allow some demand 

to be committed, which is unacceptable in this business scenario.  We are assuming 

here, of course, that the on-line sales system is incapable or not setup for real-time 

updates of product/service line availability throughout the day. 

The model can be modified easily to account for this new constraint.  

Instead of modeling the commitment of demand as a continuous variable between 0 

and 1, we now further constrain it as a binary variable.  No other constraints in the 

model need to be altered.  

Upon analysis of the base model setup, it is noted that the majority of 

demand is accepted at values either very close to 100% or very close to 0%.  Thus, 

the shift to 0% or 100% will not yield significant changes.  This new policy of all-

or-nothing commitment would have the greatest impact in a business scenario in 

which the majority of demand was committed at percentages of 25% to 75%.  So, 

in our test of the new policy, we reduced the capacity of part stock, production, and 

Merging SKUs each by 20% (by altering the kSKU Factor, Production Factor, and 

mSKU Factor in the data formulas) so that demand was reserved at varying levels 

(more so at least than the base setup).   
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Once the model has been updated, we run it with the same dataset size and 

values as the base model to gauge the results of this new constraint.  We expect that 

overall commitment of demand would be reduced, or possibly more orders would 

be delivered late to accommodate increased demand quantity commitment.  We ran 

the new model over 10 trials, and compared the results with the base setup of the 

model. 

Output Base Scenario: 
Average Values 

Exp. 1: Commit 
0 or 100% 

Difference 

Objective Function        1,037,306       1,034,643       -0.3% 
Profits     $ 3,946,268   $  3,961,333        0.4% 
   Orders     $ 2,412,416   $  2,412,416        0.0% 
   Demand     $ 1,533,852   $  1,548,917        1.0% 
Costs     $ 1,728,828   $  1,744,388        0.9% 
   Order Delivery        $ 978,375     $   977,906         0.0% 
   Due Date Violations        $ 142,827      $  147,659        3.4% 
   Demand Delivery        $ 607,626      $  618,824        1.8% 
Demand Commitment              59.1%            59.8%        1.2% 
   Gold Service Level              29.2%            29.0%       -0.7% 
   Silver Service Level              63.8%            66.0%        3.4% 
   Bronze Service Level              84.0%            84.2%        0.2% 
   kSKU1              71.8%            73.4%        2.2% 
   kSKU2              87.3%            86.8%       -0.6% 
   kSKU3              56.3%            58.1%        3.2% 
   mSKU1              30.3%            29.8%       -1.4% 
   mSKU2              50.5%            51.7%        2.3% 

Table 4.11: Results of Experiment 1: Commitment Policy 

Though the new policy does not yield highly significant changes, there are 

several interesting results.  The objective function of the model decreased by 0.3%.  

While the profits actually increased slightly with the new policy, the high cost of 

the due date violations outweighed any additional earnings.  The increase of profits 

looks to be related to the increase in reserved demand (1.2%).  It is possible that 
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much of the demand was pushed up to full commitment from a high fractional 

value of commitment.  However, we can see that this had a profound effect on the 

orders.  The due date violations increased by 3.4% to compensate for the additional 

resources consumed by demand.   

Since the same data was used in the trials, we can analyze the results to see 

specifically where the model made shifts with this new policy.  The following are 

the significant changes in the demand settings: 

Demand Details % Committed Effect on Orders 

ID: D16 
Gold Service Level 
222 of kSKU2 

Base: 4.5%

0-1: 0%

Comparable order delivery delayed 
slightly; added due date violation. 

ID: D35 
Silver Service Level 
279 of mSKU1 

Base: 40.5%

0-1: 0%

The new policy model (0-1 demand 
commitment) had reduced due date 
violations (27%) for Silver/Bronze 
Service Level of mSKU1 as more 
resources were available for orders 
since demand not reserved.   

ID: D36 
Bronze Service Level 
294 of mSKU1 

Base: 84.0%

0-1: 100%

See above.  Although additional 
demand was committed for mSKU1 for 
the Bronze Service Level, much more 
went uncommitted for the Silver 
Service Level, creating an overall 
effect of reduced due date violations 
for similar orders. 

ID: D43 
Gold Service Level 
255 of mSKU2 

Base: 71.8%

0-1: 100%

The new policy model (0-1 demand) 
had increased due date violations 
(116%) as well as increased delivery 
costs (7.6%) for Gold/Silver/Bronze 
orders of mSKU2 when the model 
committed 100% of this demand, 
rather than 71.8%. 

Table 4.12: Analysis of Effect on Orders for Commitment Policy Experiment 

  In conclusion, if a manufacturing facility has plentiful capacity and part 

inventory, the policy of reserving demand at 0 or 100% is insignificant.  However, 

in the scenarios in which capacity is limited, forcing the model to reserve all or 
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none of the demand will result in higher due date violation penalties and delivery 

costs for accepted orders.   

4.4. Experiment 2: Service Level Policy Analysis 

In this experiment, we test the very notion of using service levels for order 

delivery.  As we discussed earlier, the majority of companies use a policy in which 

the customer selects the desired shipment date and mode.  In our model, we have 

been testing the effects of allowing a customer to pick a service level, which 

corresponds to the arrival date of the product.  The manufacturer could then select 

the shipment mode and schedule that best fit its production needs.   

We want to see the effects of this new service level policy with the standard 

delivery setting policy.  To do this, we created a model that used the standard 

policy whereby the delivery mode and schedule is set by the customer.   

Our first step was to alter our model so that each service level now 

corresponds to a specific delivery mode for both demand and orders.  Therefore, 

the model does not make any decisions on how or when to ship each order.  The 

only flexibility in delivery is through delaying shipment and accepting a due date 

violation penalty.  The following changes were made to the model formulation: 

Indices - No Change
Parameters

 

 

 Transportation mode  for order l,k

Orders
Added :
om l k=
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,  Transportation mode  for demand l d

Forecast Demand
Added :
dm l d=

 

 
Costs No Change−  
 
Production/Merging/Delivery - No Change  
 
Inventory - No Change  
 

Orders/Demand - No Change
Decision Variables

 

 
Costs/Profits - No Change  
 
Production/Inventory - No Change  
 

Maximize Profit - No Change
Objective Function :

 

 
Subject to:
(1) Profits and Costs Definition - No Change

 

 

, , ,  for all , ,
                 Each order must be delivered by its associated delivery mode

k l t l k

(2) Order Delivery
Added :
     (2.7)     LO om k K l L t T≤ ∈ ∈ ∈

 

 

, , ,  for all , ,
                 Each demand must be delivered by its associated delivery mode

d l t l k

(3) Demand Delivery
Added :
     (3.6)     LD dm d D l L t T≤ ∈ ∈ ∈

 

 
(4) Material Conservation - No Changes  
 

We then set up the data for the model.  The Gold service level was 

associated with the fastest delivery mode (1-Day Air), the Silver with the next 
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fastest (2-Day Air) and the Bronze with the slowest delivery mode (3-Day Ground).  

All the other data values were generated exactly as with the base model.   

Next, we ran the model under the same scenario as the base model for 30 

trials.  We expect that since the model cannot determine the delivery schedule, 

perhaps more orders will be delivered late or some demand will go uncommitted.  

The following table outlines the results. 

Output Base Scenario: 
Average Values 

Exp. 2: Service 
Level = Del. Mode 

Difference 

Objective Function        1,225,632       1,156,759        -5.6% 
Profits     $ 4,291,330   $  4,282,665        -0.2% 
   Orders     $ 2,444,865   $  2,464,047         0.8% 
   Demand     $ 1,846,465   $  1,818,618        -1.5% 
Costs     $ 1,787,663   $  1,695,273        -5.2% 
   Order Delivery        $ 996,839     $   838,053      -15.9% 
   Due Date Violations    $ 52,402      $  273,874     422.6% 
   Demand Delivery   $ 738,423      $  583,346      -21.0% 
Profits – Del. Costs $2,503,667     $2,587,392         3.3% 
Demand Commitment              73.0%            72.3%       -0.9% 
   Gold Service Level              48.7%            49.1%        0.8% 
   Silver Service Level              80.5%            81.7%        1.5% 
   Bronze Service Level              89.6%            85.9%       -4.1% 
   kSKU1              87.0%            87.0%        0.0% 
   kSKU2              87.3%            87.3%        0.0% 
   kSKU3              83.0%            82.2%       -1.0% 
   mSKU1              49.2%            49.0%       -0.4% 
   mSKU2              58.4%            55.5%       -5.0% 

Table 4.13: Results of Experiment 2: Service Level Policy 

So, as expected, the profits from demand drop slightly, but of greater 

significance is the decrease of costs related to delivery.  The cost to deliver orders 

and demand has decreased (15.9% and 21.0%, respectively), which is intuitive.  

The model cannot delay production and then expedite delivery through a faster 

mode, which would increase the delivery costs, as is the case in the base model.  

 80



 

Thus, the delivery costs are reduced in this new model.  Also of note is the sharp 

increase in due date violations (422.6%).  Clearly, since the model has less 

flexibility in production scheduling and delivery, more orders are delivered late 

when higher profit margin demand is committed.   

The net profits (excluding due date violations) actually increased in the 

model when the standard service level policy was used.  Upon closer inspection, 

this can be attributed to the high costs of the due date violation.  In the base run of 

the model, the objective function weights are equal for the order costs and profits 

and the demand costs and profits.  The penalty for due date violations is double the 

weight of these other four factors.  We can see how this results in the model 

seeking specifically to set the production to minimize these penalties wherever 

possible.  We ran these trials again, but this time set the due date violation equal to 

the other weights of the objective function.   
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Output Base Scenario: 
Average Values 

Exp. 2: Service 
Level = Del. Mode 

Difference 

Objective Function          1,345,615       1,156,759        -2.9% 
Profits       $ 4,457,979   $  4,473,106         0.3% 
   Orders       $ 2,449,015   $  2,449,015         0.0% 
   Demand       $ 2,008,964   $  2,024,090         0.8% 
Costs       $ 1,628,816   $  1,693,720         4.0% 
   Order Delivery         $  792,975     $   834,571         5.2% 
   Due Date Violations         $  315,275      $  378,600       20.1% 
   Demand Delivery         $  678,203      $  669,849        -1.2% 
Profits – Del. Costs       $ 2,829,163     $2,779,386        -1.8% 
Demand Commitment                80.3%            80.8%         0.7% 
   Gold Service Level              62.8%            65.2%         3.8% 
   Silver Service Level              87.6%            89.3%         1.9% 
   Bronze Service Level              90.3%            87.8%        -2.7% 
   kSKU 1              87.2%            87.2%         0.0% 
   kSKU 2              87.3%            87.2%        -0.1% 
   kSKU 3              89.2%            89.2%         0.0% 
   mSKU 1              65.6%            67.8%         3.3% 
   mSKU 2              72.2%            72.9%         1.1% 

Table 4.14: Results of Experiment 2: Service Level Policy (Equal Objective Weights) 

In this run, the difference in regards to due date violation is not as 

pronounced.  The penalty increased 20.1%, as compared to 422% in the earlier run.  

We can see that when due date violations are not weighted as heavily, the model 

will deliver more orders late in exchange for accepting additional demand or 

choosing a less expensive delivery mode for the base run.  In this case, the delivery 

costs actually increased using the model with the standard delivery policy.  We 

surmise that the model was able to shift delivery from some of the faster (and more 

expensive) modes to slower modes, in cases where production could be completed 

earlier.   
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4.5. Experiment 3: Re-pointing of Merging 

Center 

In this experiment, we test the policy relating to merging center re-

assignment.  In the base model, incoming orders are assigned to the closest merging 

center based on their geographic location.  We want to measure the effects when 

the model actually determines the merging center to serve the customer.  

  We expect that the new model will align orders to the closest merging 

centers in the majority of cases.  However, for the scenario that production capacity 

is severely limited, it might make sense to produce and merge the order at another 

merging center and then ship from there to the customer.  In this case, the shipping 

time would be longer, but it might outweigh delays in production.  This concept of 

re-assigning order/demand scheduling is defined as re-pointing. 

Implementing this new policy requires modification of several parameters, 

decision variables and constraints in the model.  A new parameter was created for 

the order/demand location (e.g.: East, Midwest, South, etc.).  As input to the model, 

the travel distance from each of these locations to the various merging centers must 

be specified.  This is then added to the delivery time for a specific mode to get the 

overall lead time for shipment from a merging center to the customer location.  In 

cases where the merging center assigned is the closest center, no additional time is 

added.  
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The following is the updated formulation of the model; the numbering 

scheme of the constraints has not changed for this experiment, but updates were 

made in the formulation of certain constraints, as marked below. 

:
 Order location

Indices
Added
c =

Parameters

 

 

,

:
 Location  of order c k

Orders
Changed
ol c k=

 

 

,

:
 Location  of demand c d

Forecast Demand
Changed
dl c d=

 

 
Costs No Change−  
 

,  Lead time to transfer from merging center  to customer location c m

Production/Merging/Delivery
Added :
ll m c=

 

 
Inventory - No Change  
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. , ,

, , ,

 Delivery status for order  by transportation mode  from merging
                  center  in time period ;

 Deli

=

=

k l m t

d l m t

Orders/Demand
Changed (added parameter m) :
LO k l

m t binary
LD

Decision Variables

, , ,

very status for demand  by transportation mode  from merging
                  center  in time period ;

 Delivery quantity for order  by transportation mode  from merging
          

=k l m t

d l
m t binary

QO k l

, , ,

, , ,

        center  in time period 
 Delivery quantity for demand  by transportation mode  from mering 

                  center  in time period 
 Arrival quantity for order  by tr

=

=

d l m t

k l m t

m t
QD d l

m t
AO k ansportation mode  from merging 
                  center  in time period 

l
m t

 

 
Costs/Profits - No Change  
 
Production/Inventory - No Changes  
 

Maximize Profit - No Changes
Objective Function :
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, , . , ,

, , ,
 for all 

Order profits are dependent on the particular

Subject to:

kk i k i os k l m t

i I l L m M t T

(1) Profits and Costs Definition
     (1.1)     Change to :

                 H oc x QO k K

                 
∈ ∈ ∈ ∈

= ⋅ ⋅ ∈∑
configuration of the order,

                 the profit margin and the quantity of the order that was delivered during 
                 the model timeframe

d

     (1.2)     No Change :

                 E = , ,  for all  

                 Demand profits are dependent on the particular configuration of the 
                 demand, the profit margin and quantity reserved 

di d i ds d d

i I
dc x dq D d D

     (1.3)    

∈

⋅ ⋅ ⋅ ∈∑

( ), , , , , ,

, ,
(1/ )  for all  

Order delivery costs are based on the fixed costs of each committed 
                 order as well as the varia

k l k l m t l k l m t

l L m M t T

 Change to :

CO u ao QO v QO k K

                 
∈ ∈ ∈

= ⋅ ⋅ + ⋅ ∈∑

( ), , , , , ,

, ,

ble costs related to order quantity 

(1/ )  for all 

Demand delivery costs are based on the fixed 

d l d l m t l d l m t

l L m M t T

     (1.4)     Change to :

                 CD u ao QD v QD d D

                 
∈ ∈ ∈

= ⋅ ⋅ + ⋅ ∈∑

( ) , , ,

,1

costs as well as the 
                 variable costs related to each delivery quantity

                         

k

kos

t
k os k l m t

l L m Mt sl

     (1.5)     Change to :

                 DD t sl AO
∈ ∈= +

⎛ ⎞
= − ⋅ +⎜ ⎟

⎝ ⎠
∑ ∑

( )( ) , , ,

, ,
    for all 

                 Due date violation is the number of days past the requested service level
                 due date that that an order arri

kl os k k l m t

l L m M t T
t Max sm sl oq AO k K

∈ ∈ ∈

⎛ ⎞
+ − ⋅ − ∈⎜ ⎟

⎝ ⎠
∑

ves, including order quantities that are not 
                 delivered at all within the model timeframe
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, , ,

, ,
 for all 

                 Orders must be delivered within allowable number of delivery splits

k l m t

l L m M t T

(2) Order Delivery
     (2.1)     Change to :

LO y k K

     (2.2)     Change to :
             

∈ ∈ ∈

≤ ∈∑

, , , , , ,  for all , , ,
                 The delivery quantity each day (by each method) must be less than 
                 the requested amount 

k l m t k k l m t    QO oq LO k K l L m M t T

     (2.3)     Change to :
   

≤ ⋅ ∈ ∈ ∈ ∈

, , , , , ,  for all , , ,
                 An order status is considered delivered by a certain transportation 
                 method only if an actual quantity is deli

k l m t k l m t              LO QO k K l L m M t T≤ ∈ ∈ ∈ ∈

, , ,

, ,

vered to the customer

 for all 

                The total amount delivered cannot be more than the requested amount

k l m t k

l L m M t T

     (2.4)     Change to :
QO oq k K

     (2.5)     Change to :

         

∈ ∈ ∈

≤ ∈∑

,. . ,  for all , , ,
                 The arrival of an order is dependent on the ship date of the order plus 
                 the delivery lead time of the s

kl ol mk,l,m,t k l m t sm ll        QO AO k K l L m M t T+ += ∈ ∈ ∈ ∈

,

hipping mode plus the lead time from the
                 merging center to the customer region

0 for all , , , |
                

kk,l,t l ol m

     (2.6)     Change to :

                 AO k K l L m M t T t sm ll= ∈ ∈ ∈ ∈ ≤ +
 The arrival of an order cannot occur in the beginning of the model, 

                 within the lead time for the specified delivery method
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, , ,

, ,

, , ,

1 for all 

                 Demand must be delivered in the same shipment (no splits)

( )
d

d l m t

l L m M t T

l dl m d l

(3) Demand Delivery
     (3.1)     Change to :

LD d D

     (3.2)     Change to :

t sm ll LD

∈ ∈ ∈

≤ ∈

+ + ⋅

∑

,

, ,

, , , , , ,

 for all 

                 Demand must be delivered within allowable service level date

 for all , , ,
                 The

m t d

l L m M t T

d l m t d d l m t

sl d D

     (3.3)     Change to :
QD dq LD d D l L m M t T

∈ ∈ ∈

≤ ∈

≤ ⋅ ∈ ∈ ∈ ∈

∑

, , ,

, ,

 delivery quantity cannot be more than the requested amount

 for all 

                 Demand must be delivered if resources are reserved

d d l m t

l L m M t T

     (3.4)     Change to :
D LD d D

     (3.5)   

∈ ∈ ∈

≤ ∈∑

, , ,

, ,
 for all 

                When resources are reserved for demand, the quantity delivered must 
                equal the percent reserved of demand

d l m t d d

l L m M t T

  Change to :
QD dq D d D

∈ ∈ ∈

= ⋅ ∈∑
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,

, ,

, , , , , , , , ,

| , | 1

     

                        

f m

f m m k

m i t m,i,t-1 f m i t sf i k k l m t

f F flt t l L k K ol

(4) Material Conservation 
     (4.1) - (4.6) :  No Change

(4.7)     Change to :

                 ZK = ZK + N oc QO−

∈ < ∈ ∈ =

− ⋅∑ ∑

,

, , , ,

, | 1

           for all , ,

Inventory of kitting SKUs at each merging center is the previous day's 
                 inventory plus the quantity tran

m d

i d d l m t

l L d D dl

dc QD m M i KI t T

                 
∈ ∈ =

− ⋅ ∈ ∈ ∈∑

sferred in from each factory (accounting
                 for the transfer lead time), less the quantity shipped to customers

 

,

,

, , , , 1 , , , , , ,

, | 1

, , , ,

, | 1

                                  for all 

i k

i d

m i t m i t m i t i k k l m t

l L k K ol

i d d l m t

l L d D dl

     (4.8)    No Change

     (4.9)     Change to :
                 ZM ZM pm oc QO

dc QD  m M

−

∈ ∈ =

∈ ∈ =

= + − ⋅

− ⋅ ∈

∑

∑ , ,

                 Inventory of merging SKUs at merging centers is the previous day's 
                 inventory combined with daily stock supply, less amount shipped for
                 orders

i MI t T∈ ∈

 and demand

 

 

In the experimental run, incoming orders are categorized by their 

geographic regions: East, Midwest and West.  The closest merging centers are A, B, 

and C, respectively.  In cases where a Merging SKU order is shipped from a 

merging center further away from the customer than its geographically-closest 

merging center, an additional lead time needs to be added to the delivery schedule.  

The following diagram details this scenario.  
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Figure 4.1: Lead Times from Merging Centers to Customer Regions 

We ran 30 trials and compared the results to our base model.   

Output Base Scenario: 
Average Values 

Exp. 3: No 
Affiliated 
Merging Center 

Difference 

Objective Function        1,225,632       1,235,565       0.8% 
Profits     $ 4,291,330   $  4,311,950       0.5% 
   Orders     $ 2,444,865   $  2,448,917       0.2% 
   Demand     $ 1,846,465   $  1,863,033       0.9% 
Costs     $ 1,787,663   $  1,799,045       0.6% 
   Order Delivery        $ 996,839      $  999,143       0.2% 
   Due Date Violations          $ 52,402      $  41,775    -20.3% 
   Demand Delivery        $ 738,423      $  758,128       2.7% 
Demand Commitment              73.0%            73.9%       1.3% 
   Gold Service Level              48.7%            46.2%      -5.2% 
   Silver Service Level              80.5%            81.8%       1.7% 
   Bronze Service Level              89.6%            93.5%       4.4% 
   kSKU1              87.0%            87.0%       0.0% 
   kSKU2              87.3%            87.8%       0.6% 
   kSKU3              83.0%            83.0%       0.0% 
   mSKU1              49.2%            50.3%       2.3% 
   mSKU2              58.4%            61.6%       5.5% 

Table 4.15: Results of Experiment 3: Merging Center Re-Pointing 

West              Midwest                           East 

MC A 

MC B
MC C 

+ 2 days 

+ 1 day + 1 day 

+ 1 day + 1 day 

+ 2 days 

 90



 

We can see that in general, the commitment levels and profits had 

insignificant changes with the new policy.  Due date violation penalties, however, 

were down 20.3% from the base model.  This would indicate that in cases where 

production capacity was limited, rather than manufacture an order late and deliver 

late, the order was shifted to another merging center.  In addition, we can see that in 

the case of Merging SKUs, which are dependent only on inventory at the merging 

centers, reservations for demand increased by 2.3% and 5.5%.  We can attribute 

this to the added flexibility in essentially transshipping Merging SKUs from one 

merging center to another to fulfill additional demand.    

We next took a closer look at the results to study where the model re-

pointed orders from one merging center to another.  We studied in-depth a trial in 

which the data was identical for the base model and the new model and compared 

the results, as seen in the following tables. 
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Base Exp. 3 Diff. Base Exp. 3 Diff. Result 
Parameters Order Results Demand Results 

kSKU1: Net $281,327 $278,252 -1.1% $262,333 $262,333 -0.1% 
   Profits $504,090 $504,090 0.0% $455,747 $455,747 0.0% 
   Del. Costs $215,998 $215,998 0.0% $193,134 $193,414 0.1% 
   DD Penalty $6,765 $9,840 45.5% - - - 
kSKU2: Net $554,974 $556,969 0.4% $410,344 $413,119 0.7% 

   Profits $800,554 $800,554 0.0% $584,675 $588,822 0.7% 
   Del. Costs $233,760 $232,560 -0.5% $174,331 $175,702 0.8% 
   DD Penalty $11,820 $11,025 -6.7% - - - 
kSKU3: Net $205,954 $206,538 0.3% $166,529 $165,251 -0.8% 

   Profits $428,194 $428,194 0.0% $350,317 $347,947 -0.7% 
   Del. Costs $215,519 $218,115 1.2% $183,788 $182,696 -0.6% 
   DD Penalty $6,720 $3,540 -47.3% - - - 
mSKU1: Net $199,409 $202,436 1.5% $153,172 $162,739 6.2% 
   Profits $401,090 $401,090 0.0% $258,764 $290,287 12.2% 
   Del. Costs $195,261 $195,309 0.0% $105,592 $127,548 20.8% 
   DD Penalty $6,420 $3,345 -47.9% - - - 
mSKU2: Net $219,543 $224,083 2.1% $24,105 $14,636 -39.3% 
   Profits $439,591 $441,166 0.4% $51,640 $32,884 -36.3% 
   Del. Costs $198,508 $203,734 2.6% $27,535 $18,248 -33.7% 
   DD Penalty $21,540 $13,350 -38.0% - - - 

Table 4.16: Comparison of Results by SKU and Order/Demand  

Result Parameters Base Exp. 3 Difference 

ORDERS    
  Total Net Profits   $1,461,206   $1,468,277 0.5% 
  Total Profits   $2,573,518   $2,575,094 0.1% 
  Total Del. Costs   $1,059,047   $1,065,716 0.6% 
  Total DD Penalty        $53,265        $41,100 -22.8% 
DEMAND  
  Total Net Profits $1,016,762 $1,018,078 0.1% 
  Total Profits $1,701,143 $1,715,686 0.9% 
  Total Del. Costs $684,381 $697,607 1.9% 
ORDERS + DEMAND  
  Total Net Profits $2,477,969 $2,486,355 0.3% 
  Total Profits $4,274,662 $4,290,779 0.4% 
  Total Del. Costs $1,743,428 $1,763,324 1.1% 
  Total DD Penalty $53,265 $41,100 -22.8% 

Table 4.17: Summarized Results of Merging Center Re-Pointing 
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Based on these results, we can conclude that the profits increase when the 

model can determine the merging center.  Additionally, the new policy results in a 

sharp decline in due date penalty violation (22.8%).     

The Kitting SKUs share both parts and production capacity, so the shifts are 

harder to pinpoint.  The Merging SKUs however, have unique stock supplies, and 

can be studied with greater ease.  We analyzed the 18 orders and forecast demand 

of mSKU1 to see where shifts occurred.  The table below explains the major 

differences; any that are not mentioned do not shift merging centers, commitment 

levels or major shipping schedule differences (involving due date violations).  

Demand/Order 
Details 

Base Results Exp. 3 Results 

ID: Demand 29 
Silver – Midwest 
197 of mSKU1 

Commitment: 0% Commitment: 100% 
Ship from MC A (East) 

ID: Demand 30 
Bronze – Midwest 
192 of mSKU1 

Commitment: 0% Commitment: 100% 
Ship from MC A (East) 

ID: Demand 31 
Gold – East 
232 of mSKU1 

Commitment: 100% 
Ship from MC A 

Commitment: 55% 
Ship from MC A (East) 

ID: Demand 34 
Gold – West 
309 of mSKU1 

Commitment: 51% 
Ship from MC C 

Commitment: 25.2% 
Ship from MC C (West) 

ID: Order 28 
Gold – Midwest 
188 of mSKU1 

Ship 188 from MC B 
 
$480 in due date penalties 

Ship 156 from MC B 
Ship 32 from MC C (West) 
$0 in due date penalties 

ID: Order 29 
Silver - Midwest 
224 of mSKU1 

Ship 224 from MC B 
 
$2,205 in due date penalties 

Ship 176 from MC B 
Ship 48 from MC C (West) 
$450 in due date penalties 

ID: Order 30 
Bronze – Midwest 
189 of mSKU1 

Ship 189 from MC B 
$3,600 in due date penalties 

Ship 189 from MC B 
$1,095 in due date penalties 

ID: Order 32 
Silver – East 
224 of mSKU1 

Ship 224 from MC A 
$0 in due date penalties 

Ship 224 from MC A 
$1,665 in due date penalties 

Table 4.18: Effect of Merging Center Re-pointing on Orders/Demand 
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From this table, we can see that the stock levels of mSKU1 were scarcest in 

the Midwest region.  Orders in the base trial have high associated due date penalties 

from this merging center ($480, $2,205, and $3600, for each respective service 

level).  Additionally, the forecast demand for this region is not committed at all for 

the Silver or Bronze service levels.   

However, when we alter the policy so that orders/demand can be fulfilled 

from any merging center, we can see that shifts have been made to alleviate the 

shortages in the Midwest.  The due date penalties for orders in the Midwest region 

have dramatically decreased (to $0, $450, and $1,095, respectively).  Additionally, 

more resources could be reserved from other merging centers to fulfill higher 

commitment of demand – up to 100% for the Silver and Bronze service levels.  

In some cases, the other two merging centers may have had surplus 

inventory of mSKU1 and could fulfill the extra demand without issue.  However, if 

the inventory levels at the other merging centers were more limited, than the model 

must make choices to determine which demand should be fulfilled and which 

orders should be shifted to later deliveries to fulfill higher profit margin demand.  

The following three graphs illustrate how resources were shifted to fulfill additional 

demand and schedule orders more efficiently. 
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Breakdown of Deliveries of mSKU1 from each Merging Center
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Figure 4.2: Chart of Delivery Quantities from each Merging Center 

Breakdown of Due Date Penalties for Orders of mSKU1
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Figure 4.3: Chart of Due Date Penalties per Merging Center 
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Breakdown of Deliveries of mSKU1 by Service Level
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Figure 4.4: Chart of Delivery Quantities per Service Level 

Contrary to our initial belief, the quantity of Gold service level 

orders/demand for mSKU1 that are delivered does not increase with the new policy.  

We would have expected that the model would seek to reserve resources for the 

higher profit margin service level.  However, if we analyze the results, we can see 

that the overall commitment of mSKU1 increased by 204 units, which is comprised 

of large increases of Bronze and Silver commitment levels, yet a decrease in the 

Gold service level commitment.  We gather that the additional profits from the 

Silver and Bronze commitment outweigh the profits lost with the decrease of Gold 

commitment.   
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4.6. Experiment 4: Re-pointing of Production 

Capacity  

In another kind of re-pointing, an order can be shifted from one factory to 

another for production, or from a scheduled production date to one at a later date.  

By re-assigning orders, the model can reserve that capacity for higher profit 

demand.  We chose to analyze the scenario in which the production capacity is 

reduced for one of the factories.  In the base model, there were two factories, 

Factory A in the East, and Factory B in the Midwest.  We reduce the production 

capacity at Factory A by 30% and check the results against the base model.   

We expect to see the capability of the model to shift production of orders 

from Factory A to Factory B.  Additionally, some of the orders originally produced 

at Factory A will be pushed to later delivery dates (for a penalty) and some of the 

demand will shift to uncommitted status.  We expect that these decisions will be 

made based on higher profit margins (based on SKU or service level). 

We ran the experiment over 10 trials and compared the results to the base 

run.  The results are presented in the following table. 
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Output Base Scenario: 
Average Values 

Exp. 4: Production 
Re-Pointing 

Difference

Objective Function                1,228,620 1,176,393 -4.4%
Profits $4,283,091 $4,147,757 -3.3%
   Orders $2,417,190 $2,417,190 0.0%
   Demand $1,865,900 $1,730,567 -7.8%
Costs $1,777,693 $1,734,301 -2.5%
   Order Delivery $981,731 $990,210 0.9%
   Due Date Violations $48,158 $60,671 20.6%
   Demand Delivery $747,804 $683,420 -9.4%
Demand Commitment 73.3% 67.3% -9.0%
   Gold Service Level 48.5% 38.2% -27.0%
   Silver Service Level 80.1% 72.4% -10.7%
   Bronze Service Level 91.2% 91.2% 0.0%
   kSKU1 87.0% 86.7% -0.4%
   kSKU2 87.4% 87.4% 0.0%
   kSKU3 84.2% 54.0% -55.9%
   mSKU1 48.9% 48.9% 0.0%
   mSKU2 56.9% 56.9% 0.0%

Table 4.19: Results of Experiment 4: Production Center Re-pointing 

The due date violations increased, which is reasonable considering that 

production capacity was limited in the re-pointing experiment.  There is a drastic 

decrease in the commitment of orders of Kitting SKU3, by 55.9%.  We expect this 

is due to the lower profit margin associated with this Kitting SKU.  To verify, we 

compared the results of a single trial from the base run with the experimental run to 

analyze the specific shifts made.  The results of this trial run are presented in the 

following table.   
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Output Base Scenario: 
Average Values 

Exp. 4: Production 
Re-Pointing 

Difference

Objective Function 1,284,321 1,248,867 -2.8%
Profits $4,504,115 $4,378,511 -2.9%
   Orders $2,442,899 $2,442,899 0.0%
   Demand $2,061,216 $1,935,612 -6.5%
Costs $1,887,489 $1,827,121 -3.3%
   Order Delivery $1,016,623 $1,012,910 -0.4%
   Due Date Violations $47,985 $53,655 10.6%
   Demand Delivery $822,881 $760,557 -8.2%
Demand Commitment 82.5% 76.8% -7.4%
   Gold Service Level 60.7% 52.8% -15.0%
   Silver Service Level 88.6% 80.1% -10.6%
   Bronze Service Level 100.0% 100.0% 0.0%
   kSKU1 86.6% 86.6% 0.0%
   kSKU2 86.7% 86.7% 0.0%
   kSKU3 77.6% 48.7% -59.2%
   mSKU1 71.6% 71.6% 0.0%
   mSKU2 89.4% 89.4% 0.0%

Table 4.20: Comparison of Results of Production Re-pointing for Single Trial (Same Data) 

To accurately study how decisions are made, we must determine the 

descending order of products based on profit margins.  We ignore mSKU1 and 

mSKU2, as they are not affected by the production shortage at Factory A.  The 

following table displays the sorted Kitting SKUs. 

Parameter Profit Margin 

kSKU2: Gold 414.69 
kSKU2: Silver 369.42 
kSKU2: Bronze 334.91 
kSKU1: Gold 285.09 
kSKU1: Silver 252.78 
kSKU3: Gold 237.09 
kSKU1: Bronze 226.91 
kSKU3: Silver 209.58 
kSKU3: Bronze 186.91 

Table 4.21: Kitting SKUs Sorted by Profit Margin 
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The profit margin of Kitting SKU2 is higher than all other products, for any 

service level.  Kitting SKU1 has the next highest profit margin.  Thus, we expect 

that capacity will be reserved first for kSKU2.  In looking at the results, we can see 

that this is true.  We compared the difference in revenues (profits less costs and due 

date penalties) for the orders and demand of each product and service level.  The 

following chart displays the results. 

 

Revenue Differences for Products/Service Levels
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Figure 4.5: Chart of Revenue Differences across the Product/Service Level Configurations 
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 We can see that the production is reserved first for the highest profit margin 

products.  The product-service level configurations with the smallest profit margins 

have the greatest differences in revenue.  Thus, the model has re-pointed capacity 

that was reserved for those lower profit margin orders/demand in the base run 

during this experiment.  The capacity is instead reserved for the higher profit 

margin products.  
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5. Conclusion 

In this thesis, we described a mixed integer programming model that 

integrates the order assignment function and the resource scheduling function for 

an assemble-to-order environment.  The model determines the optimal production 

schedule based on accepted orders and forecast demand.  It trades off resource 

reservation for demand and order delivery schedules based on profitability 

considerations.     

5.1. Summary of Results 

Our experiments proved the capability of the model to effectively trade off 

lower profit margin accepted orders with uncertain, higher profit future demand.  

The sensitivity analysis highlighted this capability in different scenarios.  When the 

profit margin of a particular configuration of SKU and service level is increased, 

the model re-allocates resources to commit this demand first.  Additionally, in the 

case where capacity was tight, the model effectively reserved demand for the 

higher profit margin products over the lower profit margin products.  

In our first experiment, we tested the policy of commitment level.  We 

showed that the manufacturer can increase revenues if it is able to reserve a portion 

of the aggregate demand for each configuration, rather than an all-or-nothing 

commitment policy.  
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Next, we proved that our policy for service levels is effective in maximizing 

revenue.  When the model chooses the delivery mode and schedule for orders 

(instead of the customer), the resource allocation becomes more flexible.  This is 

successful in increasing the commitment levels and reducing the due date violations, 

resulting in additional revenue over the standard policy.  

Finally, we showed that the policy in which orders are not assigned specific 

merging centers is useful.  Instead of aligning orders with merging centers based on 

geographic proximity alone, the model also considers capacity allocation.  This 

results in fewer uncommitted demand orders, and thus maximizes overall revenue. 

The experimental results also proved the usefulness of the spreadsheet-

based front end of the model.  We could quickly update any data parameter values 

and analyze the results of the model optimization with ease.   

5.2. Future Work 

There are several possible extensions of our research.  The most significant 

impact would be to enhance the model by considering a rolling execution mode.    

In its current state, the model only considers accepted orders and demand for a 

single run.  The rolling timeframe setup, however, would consider the previously 

promised orders and demand in setting the resource levels, providing a much more 

accurate depiction of the available resource capabilities. 

It would also be interesting to extend the model formulation to include the 

concept of carry-over demand.  This is defined as the percentage of uncommitted 

demand for a higher service level that will shift to a lower service level.  For 
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instance, if a company cannot reserve resources for orders of a particular SKU at 

the Gold service level, a decent percentage of those customers would find a lower 

service level (Silver) acceptable.  The model currently is formulated in a manner 

that does not account for any of this carry-over demand, which does not give an 

accurate representation of real-life.   

Additional policies relating to order promising and resource booking can be 

analyzed using this model.  An interesting policy study would be to analyze both 

the customer channel and profit margin of forecast demand when deciding whether 

to reserve capacity.  For instance, an order from a loyal corporate client might be 

given more weight than an order of the same configuration from a new client.  Not 

all ATO/CTO firms will be able to differentiate customers, but when applicable, 

this added feature would be beneficial in analyzing fully the intricacies involving 

demand reservation.   

Future research may also study the costing and pricing mechanisms of the 

model, in respect to the sales and marketing functions of the manufacturing.  

Experimentation can be conducted to determine if a new pricing scheme is effective 

using our model.  For instance, if the marketing team wanted to run a promotion 

offering a free service level upgrade for certain under-utilized product 

configurations, the model can be used a decision support system to determine the 

effects on revenue and commitment levels of this proposed policy.    
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Appendix A: Xpress Mosel Code 

The Mosel code used in the base setup of the model is provided below. 

 
model "Order Assignment and Resource Reservation" 
uses  "mmodbc","mmxprs" 
 
declarations 

SQLStr: string 
end-declarations 
  
setparam("XPRS_VERBOSE", true) 
setparam("XPRS_LOADNAMES", true) 
  
! Connect to the Excel spreadsheet 
SQLStr := 'DSN=[Name]; DBQ=[Name].xls' 
 
declarations    
NUM = 1..1    ! For arrays with just one value 
NT = 10 
T = 1..NT                 ! Time periods 
Tp1 = 0..NT              ! t+1 time period 
TL = 1..13   ! Time periods, plus lead time for    

delivery from last day of production  
avgSize = 10   ! Average SKUs per order is 10 
 
!Index Parameters 
coID: set of string         ! Customer orders 
dmdID: set of string  ! Forecast demand 
serLvls: set of string      ! Service levels 
transModes: set of string   ! The transportation modes    
kSKUs: set of string    ! SKUs that need kitting from parts 
mSKUs: set of string    ! SKUs that only need merging 
kParts: set of string   ! The kitting parts 
mCenters: set of string  ! The merging centers 
Factories: set of string  ! The factories for kitting 
SKUs: set of string   ! All SKUs = mSKUs + kSKUs 
 
!Order Parameters 
maxDelTimes: array(1..1) of real ! Number of times orders can be 

split for delivery 
ordCmit: array(coID) of integer     ! Commitment status of orders 
ordQty: array(coID) of integer      ! Order quantity 
ordSerLvl: array(coID) of string    ! Order service level 
ordCfg: array(SKUs,coID) of integer  ! Order configuration 
ordLoc: array(mCenters, coID) of integer  ! Order location 
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!Demand Parameters 
dmdQty: array(dmdID) of integer  ! Demand quantity 
dmdSerLvl: array(dmdID) of string  ! Demand service level 
dmdCfg: array(SKUs,dmdID) of integer ! Demand configuration 
dmdLoc: array(mCenters, dmdID) of integer ! Demand location 
       
!Cost Parameters 
wgtProfit: array(1..1) of real ! Weight of profits in obj. 
wgtCost: array(1..1) of real  ! Weight of costs in obj. 
wgtDueDate: array(1..1) of real ! Weight of due date violation 

in obj. 
tFixCost: array(transModes) of real ! Fixed transportation costs 
tVarCost: array(transModes) of real ! Variable transportation costs 
profitMgn: array(SKUs,serLvls) of real  ! Unit profit margin of 

each SKU under each service level 
 
!Production/Merging/Delivery Parameters 
bom: array(kSKUs,kParts) of integer    ! The bill of materials 

for SKUs 
prodCap: array(Factories,T) of integer    ! Production capacity 
prodLT: array(Factories,mCenters) of integer  ! Production lead 

time from factory to merging centers 
tLeadTime: array(transModes) of integer  ! Trans. lead times 
serDays: array(serLvls) of integer     ! Service level timeframe    
 
!Inventory Parameters 
KPAvil: array(Factories,kParts, T) of integer ! Kitting part stock 
initPartInv: array(Factories,kParts) of integer ! Initial  

inventory of parts at each factory 
initKSKUF: array(Factories, kSKUs) of integer  ! Initial inventory 

of kSKUs at each factory 
initKSKUM: array(mCenters,kSKUs) of integer ! Initial inventory 

of kSKUs at merging center 
initMSKU: array(mCenters,mSKUs) of integer ! Initial inventory 

of mSKUs at merging center 
mSKUAvil: array(mCenters, mSKUs, T) of integer    ! Availability of  
      merging parts 
      
end-declarations 
   
  
setparam("SQLndxcol", true)   ! Index reference values 
   
SQLconnect(SQLStr) 
SQLexecute("SELECT * FROM serLvlRng", serLvls) 
SQLexecute("SELECT * FROM mCenterRng", mCenters) 
SQLexecute("SELECT * FROM facRng", Factories) 
SQLexecute("SELECT * FROM kSKURng", kSKUs) 
SQLexecute("SELECT * FROM mSKURng", mSKUs) 
SQLexecute("SELECT * FROM kPartRng", kParts) 
SQLexecute("SELECT * FROM transModeRng", transModes) 
SQLexecute("SELECT * FROM ordIDRng", coID) 
SQLexecute("SELECT * FROM dmdIDRng", dmdID) 
SQLdisconnect 
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writeln(serLvls); writeln(mCenters); writeln(Factories);   
writeln(mSKUs); writeln(kParts; writeln(transModes); 
writeln(mCenters; writeln(kSKUs) 
!writeln(dmdID) 
   
finalize(coID); finalize(serLvls); finalize(transModes); 
finalize(dmdID); finalize(kSKUs); finalize(mSKUs); finalize(kParts); 
finalize(mCenters); finalize(Factories) 
 
SKUs:= kSKUs + mSKUs    ! Total SKUs for both kitting and merging 
finalize(SKUs) 
!writeln(SKUs);  
 
setparam("SQLndxcol", false) 
SQLconnect(SQLStr) 
SQLexecute("SELECT * FROM serDaysRng", [serDays]) 
SQLexecute("SELECT * FROM bomRng", [bom]) 
SQLexecute("SELECT * FROM tFixCostRng", [tFixCost]) 
SQLexecute("SELECT * FROM tVarCostRng", [tVarCost]) 
SQLexecute("SELECT * FROM transLTRng", [tLeadTime]) 
SQLexecute("SELECT * FROM prodLTRng", [prodLT]) 
SQLexecute("SELECT * FROM ordQtyRng", [ordQty]) 
SQLexecute("SELECT * FROM ordCfgRng", [ordCfg]) 
SQLexecute("SELECT * FROM ordLocRng", [ordLoc]) 
SQLexecute("SELECT * FROM ordSerLvlRng", [ordSerLvl]) 
SQLexecute("SELECT * FROM dmdQtyRng", [dmdQty]) 
SQLexecute("SELECT * FROM dmdCfgRng", [dmdCfg]) 
SQLexecute("SELECT * FROM dmdLocRng", [dmdLoc]) 
SQLexecute("SELECT * FROM dmdSerLvlRng", [dmdSerLvl]) 
SQLexecute("SELECT * FROM mSKUAvilRng", [mSKUAvil]) 
SQLexecute("SELECT * FROM partAvilRng", [KPAvil]) 
SQLexecute("SELECT * FROM prodCapRng", [prodCap]) 
SQLexecute("SELECT * FROM initMSKURng", [initMSKU]) 
SQLexecute("SELECT * FROM initPartRng", [initPartInv]) 
SQLexecute("SELECT * FROM profitMgnRng", [profitMgn]) 
SQLexecute("SELECT * FROM wgtCostRng", [wgtCost]) 
SQLexecute("SELECT * FROM wgtProfitRng", [wgtProfit]) 
SQLexecute("SELECT * FROM wgtDueDateRng", [wgtDueDate]) 
SQLexecute("SELECT * FROM maxDelTimesRng", [maxDelTimes]) 
SQLexecute("SELECT * FROM initKSKUFRng", [initKSKUF]) 
SQLexecute("SELECT * FROM initKSKUMRng", [initKSKUM]) 
SQLdisconnect 
   
!writeln(serDays); writeln(bom); writeln(tFixCost); 
writeln(tVarCost); writeln(tLeadTime); writeln(prodLT); 
writeln(ordQty); writeln(ordCfg); writeln(ordLoc); 
writeln(ordSerLvl); writeln(ordCmit); writeln(Dmd); 
writeln(mSKUAvil); writeln(KPAvil); writeln(prodCap); 
writeln(mergeCap); writeln(initMSKU); writeln(initPartInv); 
writeln(profitMgn); writeln(wgtCost); writeln(wgtProfit); 
writeln(maxDelTimes); writeln(mergeCost); writeln(prodCost); 
writeln(initKSKUF); writeln(initKSKUM); writeln(dmdQty); 
writeln(dmdCfg); writeln(dmdLoc); writeln(dmdSerLvl) 
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declarations 
 
! Order/demand decision variables 
 
LT_SET: array(dmdID) of mpvar    
! Commitment % of demand 
 
ORD_DEL: array(coID,transModes,T) of mpvar  
! Delivery status of order by each trans. mode (0,1) 
 
DMD_DEL: array(dmdID,transModes,T) of mpvar     
! Delivery status of demand by each trans. mode (0,1) 
 
ORD_DQTY: array(coID,transModes,T) of mpvar     
! Delivery quantity of order 
 
DMD_DQTY: array(dmdID,transModes,T) of mpvar     
! Delivery quantity of demand 
 
ORD_AQTY: array(coID, transModes,TL) of mpvar    
! Arrival quantity of order 
   
! Cost/profit decision variables 
 
 ORD_PFT: array(coID) of mpvar     
! Profit from each order 
 
DMD_PFT: array(dmdID) of mpvar     
! Profit from each demand 
 
ORD_COST: array(coID) of mpvar     
! Cost for order delivery 
 
DMD_COST: array(dmdID) of mpvar    
! Cost for demand delivery 
 
DD_VIOLATION: array(coID) of mpvar   
! Due date violation costs 
   
! Production/inventory decision variables 
 
PROD_QTY: array(Factories,kSKUs,T) of mpvar      
! Production quantity 
 
TRANS_QTY: array(Factories, mCenters, kSKUs, T) of mpvar  
! Quantity of kSKUs transferred from factories to merging centers 
 
TRANS_ARR_QTY: array(Factories, mCenters, kSKUs, T) of mpvar  
! Arrival quantity of kSKUs 
 
PART_INV: array(Factories, kParts, Tp1) of mpvar    
! Inventory level of parts at factories 
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M_INV: array(mCenters,mSKUs,Tp1) of mpvar      
! Inventory level of mSKUs at merging centers 
 
K_INV_FAC: array(Factories, kSKUs, Tp1) of mpvar    
! Inventory level of kSKUs at factories 
 
K_INV_MC: array(mCenters, kSKUs, Tp1) of mpvar    
! Inventory level of kSKUs at merging centers 
   
end-declarations 
 
! Stop branch and bound when within certain level of best bound 
setparam("XPRS_MIPABSSTOP", 5) 
  
 
! Objective Function----------------------------------------------- 
PROFIT :=  wgtProfit(1) * sum(k in coID) ORD_PFT(k) +  

wgtProfit(1)) * sum(d in dmdID) DMD_PFT(d) – 
wgtCost(1) * (sum(k in coID) ORD_COST(k) + sum(d in dmdID)   
DMD_COST(d)) - wgtDueDate(1) * sum(k in coID) DD_VIOLATION(k) 

   
! Constraints------------------------------------------------------ 
! Profits and Cost Definition 
 
!1.1 Order profits depend on configuration, profit margin and 
delivered quantity 
 forall(k in coID)  
  ORD_PFT(k) = sum(i in SKUs, l in transModes, t in T)  

ordCfg(i,k) * profitMgn(i,ordSerLvl(k))*  
ORD_DQTY(k,l,t) 

 
!1.2 Demand profits depend on SKUs, profit margin and quantity for 
committed demand 
 forall(d in dmdID) 
  DMD_PFT(d) = sum(i in SKUs) 

dmdCfg(i,d) * profitMgn(i,dmdSerLvl(d)) * dmdQty(d) * 
LT_SET(d) 

 
!1.3 Order costs depend on fixed and variable costs of 
transportation method  
 forall (k in coID) 

ORD_COST(k) = sum(l in transModes, t in T)  
(tFixCost(l)*(1/avgSize)*ORD_DQTY(k,l,t) + 
tVarCost(l)*ORD_DQTY(k,l,t)) 

 
!1.4 Demand costs depend on fixed and variable costs of 
transportation method 
 forall (d in dmdID) 

DMD_COST(d) = sum(l in transModes, t in T)  
(tFixCost(l)*(1/avgSize)*DMD_DQTY(d,l,t) + 
tVarCost(l)*DMD_DQTY(d,l,t)) 
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!1.5 Due date violation for orders is the days late the order is, 
by the quantity late, plus the portion of an order not delivered 
within the timeframe 
 forall (k in coID) 

DD_VIOLATION(k) = sum(t in TL | t >= (serDays(ordSerLvl(k))))  
((t-serDays(ordSerLvl(k)))*sum(l in transModes) 
ORD_AQTY(k,l,t)) + (13-serDays(ordSerLvl(k))) * 
(ordQty(k) - sum(t in T, l in transModes) 
ORD_AQTY(k,l,t))  

       
! Order Delivery Definition 
!2.1 Orders must be delivered within maximum number of times  
 forall(k in coID)  

sum(l in transModes, t in T) ORD_DEL(k,l,t) <= sum(n in NUM)  
maxDelTimes(n) 

  
!2.2 Delivery quantity must be less than order commitment quantity 
 forall(k in coID,l in transModes, t in T)  
  ORD_DQTY(k,l,t) <= ordQty(k) * ORD_DEL(k,l,t) 
 
!2.3 Delivery status = 1 only if actual quantity is delivered 
 forall(k in coID,l in transModes, t in T)  
  ORD_DEL(k,l,t) <= ORD_DQTY(k,l,t) 
  
!2.4 Total amount of order delivered must be less than the 
requested amount 
 forall(k in coID) 
  sum(l in transModes, t in T) ORD_DQTY(k,l,t) <= ordQty(k) 
 
!2.5 Define the arrival day of order to customer 
 forall(k in coID, l in transModes, t in T) 
  ORD_DQTY(k,l,t) = ORD_AQTY(k,l,t+tLeadTime(l)) 
 
!2.6 Can't have any arrival qty, unless delivered 
 forall(k in coID, l in transModes, t in TL|t <= tLeadTime(l)) 
 ORD_AQTY(k,l,t) = 0 
 
! Demand Delivery Definition 
!3.1 Demand must be delivered at same time (no splitting) 
 forall(d in dmdID)   
    sum(l in transModes, t in T) DMD_DEL(d,l,t) <= 1 
 
!3.2 Demand must be delivered within due date (service level) 
 forall(d in dmdID)  
    sum(l in transModes, t in T) (t + tLeadTime(l))*DMD_DEL(d,l,t)  

<= serDays(dmdSerLvl(d)) 
 
!3.3 Daily delivery quantity must be less than total requested 
amount 
 forall(d in dmdID,l in transModes, t in T) 
  DMD_DQTY(d,l,t) <=dmdQty(d) * DMD_DEL(d,l,t) 
 
!3.4 Demand must be delivered if it is committed  
 forall(d in dmdID) 
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  LT_SET(d) <= sum(l in transModes, t in T) DMD_DEL(d,l,t) 
 
!3.5 Total amount delivered must equal the percent of demand 
committed 
 forall(d in dmdID)  
  sum(l in transModes, t in T)DMD_DQTY(d,l,t) = dmdQty(d) *  

LT_SET(d) 
 
! Material Conservation 
!4.1 Initial inventory of kitting parts at factory 
 forall(f in Factories, j in kParts) 
    PART_INV(f,j,0)=initPartInv(f,j) 
 
!4.2 Flow of kitting parts at factory 
 forall(f in Factories, j in kParts, t in T) 
    PART_INV(f,j,t) = PART_INV(f,j,t-1) + KPAvil(f,j,t) - sum(i in  

kSKUs) bom(i,j)*PROD_QTY(f,i,t) 
 
!4.3 Production must be within capacity for each factory 
 forall(f in Factories, t in T) 
  sum(i in kSKUs) PROD_QTY(f,i,t) <= prodCap(f,t) 
  
!4.4 Initial inventory of kitting SKUs at each factory 
 forall(f in Factories, i in kSKUs) 
  K_INV_FAC(f,i,0) = initKSKUF(f,i) 
   
!4.5 Flow of kitting SKUs at factory 
 forall(f in Factories, i in kSKUs, t in T) 
    K_INV_FAC(f,i,t) = K_INV_FAC(f,i,t-1) + PROD_QTY(f,i,t) - sum(m  

in mCenters)TRANS_QTY(f,m,i,t) 
     
!4.6 Initial inventory kitting SKUs at each merging center 
 forall(m in mCenters, i in kSKUs) 
  K_INV_MC(m,i,0) = initKSKUM(m,i) 
     
!4.7 Flow of kitting SKUs at merging center 
 forall(m in mCenters, i in kSKUs, t in T) 
  K_INV_MC(m,i,t) = K_INV_MC(m,i,t-1) +  
  sum(f in Factories | prodLT(f,m)<t) TRANS_QTY(f,m,i,t- 

prodLT(f,m)) - sum(l in transModes, k in coID | 
ordLoc(m,k)=1) ordCfg(i,k)*ORD_DQTY(k,l,t) -  
sum(l in transModes, d in dmdID | dmdLoc(m,d)=1) 
dmdCfg(i,d)*DMD_DQTY(d,l,t) 

 
!4.8 Initial inventory of merging SKUs at each merging center 
 forall(m in mCenters, i in mSKUs) 
  M_INV(m,i,0) = initMSKU(m,i) 
   
!4.9 Flow of merging SKUs at merging center 
 forall(m in mCenters, i in mSKUs, t in T) 
  M_INV(m,i,t) = M_INV(m,i,t-1) + mSKUAvil(m,i,t) -  

sum(k in coID, l in transModes | ordLoc(m,k)=1) 
ordCfg(i,k)* ORD_DQTY(k,l,t)- sum(l in transModes, d in 
dmdID | dmdLoc(m,d)=1) dmdCfg(i,d)*DMD_DQTY(d,l,t) 
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! Boundary Constraints--------------------------------------------  
! Define all variables as either continuous or binary 
 forall(d in dmdID) DMD_COST(d) is_continuous 
 forall(k in coID) ORD_COST(k) is_continuous 
 forall(d in dmdID) LT_SET(d) <=1 
 forall(d in dmdID) LT_SET(d) is_continuous 
 forall(d in dmdID, l in transModes, t in T) DMD_DEL(d,l,t)  

is_binary 
 forall(k in coID, l in transModes, t in T) ORD_DEL(k,l,t)  

is_binary 
 forall(d in dmdID, l in transModes, t in T) DMD_DQTY(d, l, t)  

is_continuous 
 forall(k in coID, l in transModes, t in T) ORD_DQTY(k,l,t)  

is_continuous 
forall(f in Factories, j in kParts, t in Tp1) PART_INV(f,j,t)  

is_continuous 
 forall(f in Factories, i in kSKUs, t in Tp1) K_INV_FAC(f,i,t)  

is_continuous 
 forall(m in mCenters, i in kSKUs, t in Tp1) K_INV_MC(m,i,t)  

is_continuous 
 forall(m in mCenters, i in mSKUs, t in Tp1) M_INV(m,i,t)  

is_continuous 
 forall(k in coID) ORD_PFT(k) is_continuous 
 forall(d in dmdID) DMD_PFT(d) is_continuous 
 forall(f in Factories, i in kSKUs, t in T)PROD_QTY(f,i,t)  

is_continuous  
 forall(f in Factories, m in mCenters, i in kSKUs, t in T)  

TRANS_QTY(f,m,i,t) is_continuous 
 forall(k in coID) DD_VIOLATION(k) is_continuous 
 
! Solve the problem 
 maximize(PROFIT) 
 
! Give solution values in Xpress:   
writeln("Obj:=", getobjval) 
 
forall (k in coID) writeln ("Due Date Violation:=(",k,") = ",  

getsol(DD_VIOLATION(k))) 
 
!forall (d in dmdID) writeln("Demand Costs(",d,") =",  

getsol(DMD_COST(d))) 
d-do 
!) 
 
end-model 
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Appendix B: Selected Excel VB Code 

Several modules were created in Visual Basic for the model in Excel.  Some 

of the more interesting/complex code has been included here.  

 

Subroutine to call Xpress solver and import results:  

Option Explicit 
 

Public Sub runOA_LTS_Base() 
 

Const ROOT = "C:\XpressMP\" 
Const SOURCE_PATH = ROOT & "[filename].mos"  
Const BIM_PATH = ROOT & "[filename].bim" 
Const XLS_PATH = ROOT & "[filename].xls"     
 
Dim nReturn As Integer 
Dim model As Long 
  
' Redirect the mosel stdout and stderr 
XPRMsetStream XPRMIO_OUT, ROOT & "log.txt" 
XPRMsetStream XPRMIO_ERR, ROOT & "err.txt" 

   
' Initialize mosel 
nReturn = XPRMinit 
   If XPRMinit() <> 0 Then 

MsgBox "Failed to initialize Mosel" 
Exit Sub 

   End If 
 

' Compile model source file to binary .bim file 
nReturn = XPRMcompmod("", SOURCE_PATH, BIM_PATH, "") 
   If nReturn <> 0 Then 

If nReturn = 1 Then 
MsgBox "Parsing phase has failed (syntax error or file     
access error)" 

    
   Exit Sub 
 
ElseIf nReturn = 2 Then 

MsgBox "Error in compilation phase (detection of a 
semantic error)" 
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Exit Sub 
 
ElseIf nReturn = 3 Then 
   MsgBox "Error writing the output file" 
    
   Exit Sub 
    
Else 
    MsgBox "Failed to compile mosel file" 
     
End If 

   End If 
   
   

' Load the binary model into mosel 
model = XPRMloadmod(BIM_PATH, "") 

     
' Execute the model 
Dim result As Long 
nReturn = XPRMrunmod(model, result, "DATA_XLS='" & XLS_PATH & "'")   
   If nReturn <> 0 Then 

      MsgBox "Error during execution of model" 
      Exit Sub 

   End If 
     

' Get solution results 
Dim i, f, j, k, l, t, s, d As Integer 
Dim index() As Long 
Dim handle As Variant 
Dim mpvar As Variant 
 
Const MAXDMD = 45 
Const MAXORDS = 45 
Const MAXTRANSMODE = 3 
Const MAXTIMES = 10 
{continue for other parameters} 

 
   ' Get objective value 
   Dim objval As Double 
   objval = XPRMgetobjval(model) 
   Worksheets("[Results Tab]").Cells([#],[#]) = objval 
 
   ' Get commitment value for demand 
   ' Request a handle to the "LT_SET" mpvar array 
   ' Iterate through the array, retrieving the values  
   Call XPRMfindident(model, "LT_SET", handle) 

ReDim index(0) 
For d = 1 To MAXDMD 

' Indexing array 
      index(0) = d 
       

' Retrieve an mpvar element from the Mosel vars array 
      Call XPRMgetarrval(handle, index, mpvar) 
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' Extract the solution value from the mpvar 
Worksheets("[Results Tab]").Cells([#], [#] + d - 1) = 
XPRMgetvsol(model, mpvar) 

Next 
 

   'Get order delivery quantity 
   Call XPRMfindident(model, "ORD_DQTY", handle) 

ReDim index(2) 
Dim count_k As Integer 
Dim count_t As Integer 
Dim tmpVal as Long 
count_t = 0 
count_k = 0 
For k = 1 To MAXORDS 

tmpVal = 0 
      For l = 1 To MAXTRANSMODE 
       For t = 1 To MAXTIMES 
             index(0) = k: index(1) = l: index(2) = t 
                 Call XPRMgetarrval(handle, index, mpvar) 
                 tmpVal = XPRMgetvsol(model, mpvar) 
               If tmpVal > .9 Then 

Worksheets("[ResultsTab]").Cells([#] 
+ count_t, [#] + count_k) = tmpVal 

                     
count_t = count_t + 3 

               
   End If 

         Next t 
        Next l 
        count_k = count_k + 1 
        count_t = 0 
    Next k 
   

   {Continue in similar fashion importing all desired results} 
 
    
         

End Sub 
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