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Abstract

In the past decades, the field of time series forecasting has been growing at an unprecedented
pace. Such an event is due to the growing interest in this area, but, more importantly, to the fact
that with the evolution of the modern world, time series data is widely available in all domains.

One of the fundamental steps of any forecasting method is mining important information on
the time series being predicted. These features are used to estimate which time points should
be used to reduce the error of the prediction task. However, most methods fall into a common
issue, good data is bounded to observations recent in time; e.g. when someone is predicting the
weather for tomorrow, this person will, most likely, think about the recent days and how the
meteorology was in the last year or few years, though, the weather of the past few days might be
more similar to what happened in decades or even centuries ago.

A new area that maps time series into complex networks and finds new characteristics of
the data by calculating topological measures of the graphs has been receiving increasing interest
from the research community. In such a way that in recent years forecasting algorithms based on
these complex network mappings were developed.

The core of the present work is based on the use of network science to solve the limitations
of most forecasting methods described above. To do so, firstly there is a description of the
basic concepts used in this thesis. Then, a taxonomy of the field of "Forecasting via network
science" is provided. Through it, it is possible to conclude that the methods developed until now
make predictions by either using linear regressions between the last observation and its most
similar neighbours or by computing embeddings of the graph to enrich the information given to
a forecasting method already available.

Since none of these strategies solves the issue of temporal distance a novel implementation of a
window encoding strategy is proposed. With this algorithm, it is possible to calculate topological
features based on subgraphs of the series which can be used to make predictions. Also, the code
that was developed to achieve this end is available in the networktsf package, as well as all other
methods developed in the present thesis.

Having defined a way to characterize time series through the analysis of complex networks,
the next step taken was to analyse which size of windows should be used, and which subgraphs
and topological features capture the time series patterns the best. In order to make this study,
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the correlation of these topological features computed for all observations in multiple time series
with well-known time series patterns was computed. In the end, it was shown that these measures
are worth exploring for windows of size ranging from half the period to two times its value.

A new similarity algorithm based on the most relevant topological features found in the study
described above was implemented. This algorithm allows calculating the coincidence similarity
between any observation and all time points before it. To do so, the method uses the vector
encoding strategy proposed in this work to compare the recent patterns of each observation.

The culmination of this thesis is the introduction of the Forecasting based on Networks
Similarities, FbNS, prediction algorithm. This method finally solves the issue of not using good
but old data, because it has no time restrictions. In fact, the used time points can be very far
in the past if they are similar to the last observation before the prediction. This similarity is
calculated with the similarity algorithm developed, which already uses the other implementations
of this work and the knowledge gathered from the provided analysis. In the end, it is shown that
the FbNS model can be used to generate good forecasts and that it actually uses old data to
enhance its performance.

Keywords: Time Series, Time Series Forecasting, Similarity, Complex Networks, Character-
ization, Topological Features, Encoding, Embedding, Pattern Recognition
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Resumo

Nas últimas décadas, a área da previsão de séries temporais tem vindo a crescer a um ritmo
sem precedentes. Tal desenvolvimento deve-se ao crescente interesse neste ramo, mas, acima de
tudo, ao facto de que, com a evolução do mundo moderno, as séries temporais estão amplamente
disponíveis em todos os domínios.

Uma das etapas fundamentais de qualquer método de previsão é a recolha de informações
importantes sobre a série temporal que está a ser prevista. Por sua vez, essas variáveis são
utilizadas para estimar quais as observações que devem ser usadas para reduzir o erro na tarefa
de previsão. Apesar disso, a maioria dos métodos têm um problema comum: bons dados estão
vinculados a observações recentes no tempo; e.g., quando alguém está a prever a meteorologia
para o dia seguinte, essa previsão será provavelmente baseada nos últimos dias e, quanto muito,
na meteorologia do ano anterior ou dos últimos anos; no entanto, o clima dos últimos dias poderá
ser mais semelhante ao de algumas décadas, ou mesmo séculos, atrás.

Uma nova área que mapeia séries temporais em redes complexas e encontra novas caracter-
ísticas dos dados através do cálculo de métricas topológicas dos grafos, tem vindo a crescer na
comunidade científica. De tal forma que, nos últimos anos, foram desenvolvidos algoritmos de
previsão baseados nestes mapeamentos em redes complexas.

O foco do presente trabalho é o uso da ciência de redes para resolver as limitações da maioria
dos métodos de previsão descritos acima. Para tal, primeiramente, é feita uma descrição dos
conceitos básicos utilizados nesta tese. De seguida, é fornecida uma taxonomia do campo de
"Previsão via ciência de rede". Deste modo, é possível concluir que os métodos desenvolvidos até
agora fazem previsões através de regressões lineares entre a última observação e os seus vizinhos
mais semelhantes ou ao encontrar embeddings do grafo para enriquecer a informação dada a um
método de previsão já disponível.

Uma vez que nenhuma dessas estratégias resolve a questão da distância temporal, é proposta
a implementação de uma nova estratégia window encoding. Com este algoritmo, é possível
calcular características topológicas, tendo por base subgrafos da série, que podem ser usados para
fazer previsões. O código que foi desenvolvido para atingir este fim está disponível no pacote
networktsf, assim como todos os restantes métodos desenvolvidos na presente tese.

Após a definição de uma forma de caracterizar séries temporais, através da análise de redes
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complexas, o passo seguinte foi analisar qual o tamanho de janela que deveria ser utilizado, e
quais os subgrafos e as características topológicas que capturam melhor os padrões das séries
temporais. Para elaborar tal estudo, foi calculada a correlação dessas variáveis topológicas de
todas as observações em múltiplas séries temporais, com padrões bem conhecidos das mesmas.
Em consequência, mostrou-se que vale a pena explorar essas medidas para janelas cujo tamanho
varia entre metade do período e duas vezes o seu valor.

Posteriormente, foi implementado um novo algoritmo de similaridade, baseado nas carac-
terísticas topológicas mais relevantes encontradas no estudo descrito acima. Este algoritmo
permite calcular a semelhança entre qualquer observação e todos as anteriores a esta. Para isso,
o método utiliza vector encoding, proposto neste trabalho para comparar os padrões recentes de
cada observação.

O culminar deste estudo é a introdução do algoritmo de previsão Forecasting based on Networks
Similarities, FbNS. Este método resolve o problema de não usar apenas dados relevantes, mas
também antigos, dado que não tem restrições de tempo. Efetivamente, as observações utilizadas
podem estar muito distantes no passado se forem semelhantes à última observação antes da
previsão. Esta similaridade é calculada recorrendo ao similarity finder, que já utiliza as demais
implementações deste trabalho e o conhecimento obtido a partir das análises fornecidas. Por fim,
é demonstrado que o modelo FbNS pode ser usado para gerar boas previsões e que, de facto,
utiliza dados antigos para melhorar o seu desempenho.

Palavras-chave: Séries Temporais, Previsão de Séries Temporais, Similaridade, Redes
Complexas, Caracterização, Variáveis Topológicas, Encoding, Embedding, Reconhecimento de
Padrões
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Chapter 1

Introduction

The time series forecasting field has been gathering interest in all domains, in fact, this area can
be considered to be almost as old as humanity, since even the Homo erectus needed to predict
where it was best to hunt. In recent years the need to make better forecasts increased at an
unparalleled speed, this is due to the evolution of biomedical devices which have very precise
measurements; the growing interest in data science by companies; the internet of things; and
many other areas. With this in mind, the scientific community developed many forecasting
algorithms, ranging from autoregressive models, like the ARIMA, to modern methodologies like
deep learning. All these methods share a common step while being fitted: mining features from
the time series.

Network Science is a recent area that is being well recognized for its capability of describing a
wide range of systems in nature and society. The impact of this field has been so enormous, that
in the past decade a new domain connecting network science to time series was introduced. With
the evolution of this conciliation, some authors have shown that besides analysing characteristics
of the series through the topological measures gathered from complex networks mapped from the
time series, network science can also be used to develop forecasting models.

1.1 Goal and Contributions

Even though many of the forecasting models available are able to generate great predictions with
minimal errors, most of them are limited by recent data. It is true, that when the models are
being fitted the entire dataset is used to estimate the parameters of the algorithm, yet, usually,
when making predictions, only recent observations are used to forecast.

The main goal of this thesis is to present a solution to the problem previously described by
using the new domain connecting time series forecasting to network science. With the purpose of
achieving this goal, this work is divided into three main components: the characterization
of observations by computing topological features and finding which ones make a better
representation of the data; using these topological measures to find similar observations; the
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2 Chapter 1. Introduction

combination of the findings of the previous chapters to create a forecasting algorithm not bounded
by time.

The main contributions of the work described in this thesis are the following:

1. A taxonomy of the field of time series forecasting via network science is purposed

2. An implementation of a window encoding strategy is presented. This algorithm allows
computing topological features of the subgraphs of size m ending at the desired observation

3. The degree, average shortest path length, harmonic centrality and betweenness topological
features computed with the purposed encoding strategy is then analysed for different
windows sizes, different mappings and compared between each other.

4. Both the window encoding and the study of the topological features are then used to build
a similarity algorithm that computes the coincidence similarity between all observations
and their past.

5. The combination of all algorithms developed and the studies made with them lead to
the creation of a powerful new forecasting method, the Forecasting based on Networks
Simmilarities (FbNS), which is not limited by the common issue of many forecasting
models.

6. Network time series forecasting, networktsf, is a python library that has three main
modules:

Mappings : Visibility mappings explained in section 2.3

Network Features :

• Window Encoding (section 4.1)
• Pipeline that collects topological features from a selected mapping method.
• Similarity Finder (section 5.1)

Forecasting Models :

• Enriched ARIMA model (section 6.3);
• Forecasting based on Networks Similarities (section 6.1).

1.2 Organization

This thesis is structured into seven major chapters. A brief description of each one of them is
now provided.

Chapter 1 - Introduction. Provides an introduction to the research area, the goals and
contributions, as well as the organization of the thesis.



1.2. Organization 3

Chapter 2 - Basic Concepts. Introduces time series and complex networks terminology.
Furthermore, the main methods of time series to complex networks mapping that will be
used in the present work are briefly described.

Chapter 3 - Complex Networks and Time Series Forecasting. Presents a summary of
the prediction algorithms developed in this novel field. A taxonomy of the area is also
proposed.

Chapter 4 - Topological Characterization of Observations. A window encoding strategy
to compute topological features based on their past is proposed. Then a study of the
usefulness of this implementation is made with an extensive analysis of the window size,
mapping methods and features that represent multiple time series in the best way possible.

Chapter 5 - Topological Similarity between Observations. Presents a novel similarity
detection algorithm that makes use of the findings of the previous chapters. The method
allows finding correlated observations based on the patterns of their past.

Chapter 6 - Forecasting based on Networks Similarities. The culmination of the developed
work. The FbNS method is proposed to solve the issue of recent time dependency. Also,
an analysis of the performance of the model in multiple time series is provided.

Chapter 7 - Conclusions. Discusses the research done and summarizes the contributions
done.





Chapter 2

Basic Concepts

The necessary notation for the remaining thesis about time series, complex networks, forecasting
models, and existing methods to map time series into complex networks is explained in this
chapter.

2.1 Time Series

A time series Y = (y1, . . . , yT ) is an ordered sequence of random variables {Yt}t, that are
collected from measurements observed at uniformly spaced instants [8], t. The time series’
principal characteristic is the dependence among its observations, which, although extremely
interesting, limits the applicability of conventional statistical methods that assume independent
and identically distributed (i.i.d) observations. To solve this problem, time series analysis
provides methods that describe the characteristics of the data with the objective of forecasting
and simulation [3], always taking into consideration the time correlations.

The study of univariate time series is immensely relevant; however, it is often necessary to
include several other variables measured over time, Yi,t, i = 1, 2, . . . m, that may be correlated.
For instance, the blood glucose levels and the amount of insulin of a patient need to be analysed
jointly over time. Yt = [Y1,t, Y2,t, . . . , Ym,t]

′ is the usual representation of multivariate time series,
where ′ is the transpose operator and Yi,t is the i-th component time series (a random variable
for each i and t).

Similar to univariate time series, the principal characteristic of the multivariate case is that
its observations are correlated; yet, in the latter, there is not only serial dependence within each
component series Yi,t, but also interdependence between the different components Yi,t and Yj,s,
when i ≠ j, regardless of whether the time s and t are the same or not. Although the theory of
univariate time series extends naturally to the multivariate case, new issues need to be considered
and even fundamental concepts must be re-defined [32].
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6 Chapter 2. Basic Concepts

2.1.1 Stochastic Processes and Measures of Dependence

A stochastic process is a sequence of random variables indexed by time t, and, since time series are
sequences of N successive observations, they are regarded as finite realizations of such processes.
From this definition, arises that a time series can be described by the joint distribution function
F (c1, . . . , cn) = P (yt1 ≤ c1, . . . ., ytn ≤ cn), which can only be easily obtained in the particular
case of jointly Gaussian random variables.

Stochastic processes’ characteristics allow describing the serial correlation of time series data.
Since each time step is composed of a random variable, it is possible to define a mean function
that corresponds to the mean of the random variable of each instant

µt = E(yt) (2.1)

in which E denotes the expected value operator.

Although very useful, the mean function is not able to represent the dependence between
the random variables. In this sense, other measures that lead to a better understanding of the
correlation between observations have to be defined. One of which is the second-moment product,
autocovariance function, and is defined as

γy(s, t) = cov(ys, yt) = E[(ys − µs)(yt − µt)] (2.2)

for all s and t.

The autocovariance measures the linear dependence between two points on the same series
observed at different times [28], leading to the conclusion that, for s = t, the autocovariance
reduces to the variance of the random variable yt, since

γy(t, t) = E[(yt − µt)2] = var(yt). (2.3)

In order to study the main characteristic of time series, the serial correlation between
observations, the autocorrelation function (ACF) was defined, and it is written as follows

ρy(s, t) = γy(s, t)√
γy(s, s)γy(t, t)

. (2.4)

It is worth noticing that ρy(s, t) ∈ [−1, 1], thus, when |ρy(s, t)| = 1, ys and yt are perfectly
correlated, and, if ρy(s, t) = 0, the pair is perfectly uncorrelated. Hence, as correlation measures
a linear relationship between two variables, autocorrelation measures the linear relationship
between lagged values of a time series [16].

In the case of multivariate time series, the concepts of autocorrelation and autocovariance
still apply for representing dependence within each component series Yi,t. Nevertheless, the
interdependence between the different components Yi,t and Yj,s is not captured. The cross-
covariance and cross-correlation functions serve exactly for that purpose.
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The cross-covariance between two series Yi,t and Yj,s is

γYi,Yj (s, t) = E[(Yi,s − µYi,s)(Yj,t − µYj,t)]. (2.5)

And the cross-correlation (CCF)

ρYi,Yj (s, t) =
γYi,Yj (s, t)√

γYi(s, s)γYj (t, t)
. (2.6)

Both functions can easily be re-defined for the case of the m series. In this situation, a
covariance matrix is defined as

ΓY (s, t) =


γY1(s, t) γY1,Y2(s, t) . . . γY1,Ym(s, t)

γY2,Y1(s, t) γY2(s, t) . . . γY2,Ym(s, t)
...

...
...

...
γYm,Y1(s, t) γYm,Y2(s, t) . . . γYm(s, t)

 (2.7)

in which, when i = j, γYi(s, t) is the autocovariance function for the i-th component process; and
when i ̸= j, γYi,Yj (s, t) is the cross-covariance function between component series Yi and Yj [32].

The following matrix is especially helpful, as it captures the dependence within and between
components. Also, it is clear that the same idea can be applied to create a correlation matrix

PY (s, t) =


ρY1(s, t) ρY1,Y2(s, t) . . . ρY1,Ym(s, t)

ρY2,Y1(s, t) ρY2(s, t) . . . ρY2,Ym(s, t)
...

...
...

...
ρYm,Y1(s, t) ρYm,Y2(s, t) . . . ρYm(s, t)

 . (2.8)

A particular case of stochastic processes is obtained when the process is in a state of statistical
equilibrium [28]. In the case of time series, this type of behaviour is represented by regularity
over time, which leads to the notion of stationarity.

Time series can either be strictly or weakly stationary. The first defines a series for which
the probabilist behaviour is not affected by shifting all the times by any integer amount h,

P{yt1 ≤ c1, . . . , ytk
≤ ck} = P{yt1+h ≤ c1, . . . , ytk+h ≤ ck} (2.9)

for all k = 1, 2, . . ., all time points t1, t2, . . . , tk, all numbers c1, c2, . . . , ck, and all time shifts
h = 0, ±1, ±2, . . ..

As the name suggests, this definition is too strict, given that the whole probabilistic structure
of the process must only depend on time differences. A weakly stationary time series is derived
from the same concept, but is less restrictive since it only imposes conditions on the first two
moments of the series, such that:

(i) the mean value function, µt, is constant and does not depend on time t;



8 Chapter 2. Basic Concepts

(ii) the autocovariance function, γy(s, t), depends on s and t only through their difference
h = |s − t|.

Herewith, the mean of each random variable of a weakly stationary series writes as follows

µt = µ. (2.10)

Also, the corollary of the second statement is that the autocovariance function of such series
does not depend on the time argument t, considering that

γy(t + h, t) = E[(yt+h − µ)(yt − µ)]
= E[(yh − µ)(y0 − µ)]
= γy(h, 0). (2.11)

Consequently, the autocorrelation function of a stationary time series will be written as

ρy(h) = γy(t + h, t)√
γy(t + h, t + h)γy(t, t)

= γy(h)
γy(0) . (2.12)

Henceforth, a time series is stationary when its first two momentums (mean, variance) are
constant over time, implying that correlation only depends on the time lag between observations.

When considering multivariate analysis, two time series are considered to be jointly sta-
tionary if:

(i) they are each stationary;

(ii) the cross-covariance is a function only of lag h [28].

The same concept applies to m series, and the correlation matrix would be written as

PY (h) =


ρY1(h) ρY1,Y2(h) . . . ρY1,Ym(h)

ρY2,Y1(h) ρY2(h) . . . ρY2,Ym(h)
...

...
...

...
ρYm,Y1(h) ρYm,Y2(h) . . . ρYm(h)

 (2.13)

where ρYi(h) is the autocorrelation function of the i-th component stationary time series; and
the cross-correlation [28]

ρYi,Yj (h) =
γYi,Yj (s, t)√
γYi(0)γYj (0)

. (2.14)

In conclusion, m series are said to be jointly stationary when all of them are stationary
and the cross-covariances are constant over time, which entails that the autocorrelations and
cross-correlations only depend on the time lag h.
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2.1.2 Time Series Patterns

Stationary is of utmost importance for many forecasting models. However, most real-life processes’
first two momentums (mean, variance) are not constant over time. Usually, time series are
characterized by three fundamental patterns [16]:

Seasonality This pattern occurs when a time series presents similar characteristics between
observations separated by a fixed amount of lags. Plus, univariate sequences may have
more than one seasonal pattern.

Trend When the oscillation between consequent observations corresponds to an increase or
decrease for a long time, the time series may present a trend, which does not need to be
linear, and sometimes it may "change direction” (when it goes from an increasing trend to
a decreasing trend or vice-versa).

Cycles Fluctuations that occur at a none fixed frequency are interpreted as cycles that usually
happen due to external conditions.

Besides these characteristics, a series may also present changes in the variance, which makes
those series very difficult to predict. Solving this problem passes by normalizing the series values
by performing a Box-Cox transformation [2].

Performing a decomposition of the time series in the three main patterns described above
results in distinct processes, one representing the trend, another one the seasonality and the
third is the random component of the series. The classical additive approach of this process
follows the steps below:

1. The trend-cycle, T̂t, patterns are computed by using a Moving Average [15].

2. Then, the trend-cycle is removed from the series yt − T̂t.

3. Finally, computing the mean value for each season in the detrended series, while replicating
each value for all seasons across the entire series, results in the seasonal component Ŝt.

4. In the end, the residuals are calculated by subtracting the estimated seasonal and trend-cycle
components: R̂t = yt − T̂t − Ŝt.

The classical multiplicative decomposition is similar, except that the subtractions are replaced
by divisions. The results of the application of this method are seen in figure 2.1, and the series
used is the Monthly Milk Production by cow [5], which presents clear seasonal characteristics, as
well as trend-cycle ones.
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Figure 2.1: A classical additive decomposition of the Monthly Milk production by cow series.

2.1.3 Time Series Forecasting

The measures presented in subsection 2.1.1 and the patterns presented in the previous subsection
help express the current and past values of a time series, so that future values can be predicted.
Forecasting is one of the most important topics of time series analysis, especially because it
has countless applications across several fields [3], by being a great aid to effective and efficient
planning [16].

From the statistical perspective, the aim of forecasting is to predict YT +h, while knowing
YT = (y1, . . . , yT ), even if Y represents a multivariate time series. The forecast horizon, T + h,
highly depends on the field of study, and influences the predictability of the event. For instance,
if one is trying to forecast the weather for tomorrow, there is a high chance of making a good
prediction. On the other hand, when trying to forecast it for the following year, it is very likely
to make a bad prediction. This concept of predictability is of great importance in the context of
time series forecasting and depends on several factors, including the characteristics of the process
and the goal of the prediction.

In order to reach the necessities of the modern world in terms of time series forecasting,
several algorithms were introduced in the past decades. These methods are divided into two
categories: parametric and nonparametric.

In a classic model (parametric) the goal of the algorithm is to estimate the parameters of the
probability distribution assumed for the time series data [10]. Furthermore, this set of methods
is either linear or nonlinear. Essentially, the first ones are models for which the conditional
mean is a linear function of past time series values. Whilst, nonlinear algorithms focus on using
nonlinear parametric forms to provide better forecasts in series that present changes in their



2.1. Time Series 11

characteristics across time, like the presence of different regimes (where the mean, variance and
autocorrelation depend on the regime) [9]. The following list presents a brief description of some
popular forecasting methods:

AutoRegressive Model (AR) A time series can be described by this type of model when it
satisfies the following equation

yt =
p∑

i=1
ϕiyt−i + ϵt

(1 −
p∑

i=1
ϕiB

i)yt = ϵt

Φ(B)yt = ϵt (2.15)

where B represents the backshift operator, Byt = yt−1, p is the number of autoregressive
terms, and ϵt is a white noise process.

AutoRegressive Moving Average (ARMA) This method is described by a combination of
AR and Moving Average (MA) processes. As such, a stationary time series, yt, is an ARMA
process of order (p, q) if it satisfies the equation:

yt =
p∑

i=1
ϕiyt−i +

q∑
i=1

θiϵt−i + ϵt(
1 −

p∑
i=1

ϕiB
i

)
yt = (1 +

q∑
i=1

θiB
i)ϵt

Φ(B)yt = Θ(B)ϵt (2.16)

where the white noise ϵt is usually a Gaussian process, ϕi, i = 1, . . . , p are constants such
that Φ(z) = 1 −

∑p
i=1 ϕiz

i ̸= 0 for |z| ≤ 1, and θi, i = 1, . . . , q are constants such that
Θ(z) = 1 +∑q

i=1 θiz
i ̸= 0 for |z| ≤ 1.

AutoRegressive Integrated Moving Average (ARIMA) A nonstationary time series, xt,
but whose dth-difference yt = ∇dxt is stationary, may be described by a ARMA(p, q)
process:

Φ(B)yt = Θ(B)ϵt

Φ(B)yt(1 − B)dxt = Θ(B)ϵt (2.17)

Thus, the ARIMA(p, d, q) algorithm generalizes ARMA(p, q) models, making it very useful
to predict series that present trend-cycle patterns, without seasonality.

Seasonal AutoRegressive Integrated Moving Average (SARIMA) In the context of time
series that present both trend and seasonal patterns, ARIMA processes are insufficient to
describe the sequences. Adding seasonal terms to the ARIMA models is written as follows:

ARIMA(p, d, q)(P, D, Q)m (2.18)
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where m is the seasonal period, and the upper case notation corresponds to seasonal parts
of the model, which consist of terms that are similar to the non-seasonal components of
the model but involve backshifts of the seasonal period.

The scientific community developed other linear models, or even non linear. Besides that,
non-parametric methods like regression models, deep learning, and machine learning models are
becoming a standard in this field as well. In the present work, the SARIMA model is used to
produce forecasts and compare them with the developed methods, since it is one of the most used
prediction algorithms and usually establishes a good baseline in terms of the results obtained.
Moreover, this type of model can be used with exogenous regressors by forcing the model to be a
linear regression:

yt = β0 +
n∑

i=1
βixi,t + ηt

ηt = ARIMA(p, d, q)(P, D, Q)m (2.19)

where xi is the ith exogenous variable.

Every model described above has multiple parameters that are estimated through Maximum
Likelihood Estimation, which is similar to the least squares estimates that would be obtained
by minimizing:

N∑
t=1

ϵ2
t (2.20)

ϵt = yj − ŷt (2.21)

where ŷ is the prediction of the model, and ϵt the residuals.

Another important step to find the best possible model is to select the best hyperparameters
of the regressor (e.g in the context of the SARIMA: (p,d,q), (P,D,Q) are the hyperparameters).
This task is not that simple, as the number of possible models is endless. As such, several
approaches have been developed to find the best model automatically. The Auto-Arima method
is the same as an ARIMA or SARIMA algorithm, though, the hyperparameters are selected by
computing an information criterion of each model obtained by a specific order, and choosing the
model that minimizes its value [18].

Analysing the performance of a model is a necessary step in order to understand if it is able
to describe the series the model was fitted on. To do so, several metrics have been introduced,
namely, the Mean Absolute Percentage Error, Mean Squared Error, or the Mean Absolute Scaled
Error. In the present thesis, the models will be compared by computing the Root Mean Squared
Error (RMSE) and the Mean Absolute Error (MAE):
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RMSE =

√√√√ 1
N

N∑
j=1

(yj − ŷt)2 (2.22)

MAE = 1
N

N∑
j=1

|yj − ŷt| (2.23)

2.2 Complex Networks

The branch of mathematics dedicated to studying the properties of the interactions between
elements of a complex system is called graph theory. In this area, networks (or graphs), G, are
used to make a graphical representation of the problem, where the elements are represented by
nodes (or vertices), V (G), and their interactions by links (or edges), E(G). Therefore, graphs are
ordered pairs of nodes and edges, G = (V (G), E(G)). Also, the number of nodes (or size of the
graph) is represented by |V (G)|, and the number of links by |E(G)|.

(a) Undirected weighted graph (b) Directed graph

Figure 2.2: A representation of (a) a simple directed graph and (b) a simple undirected weighted
graph.

The networks shown in Figure 2.2 are defined as simple since they do not contain multiple
links (two or more links connecting the same pair of nodes) or any self-loops (a link connecting a
node to itself).

In Figure 2.2a, the node v0 is a neighbour of the node v1 given that they are connected by
a link. This means that two nodes vi and vj are neighbours if (vi, vj) ∈ E(G). Moreover, the
graph also is a weighted graph, since each link (vi, vj) has an associated weight wi,j .

One of the fundamental differences between Figures 2.2a and 2.2b is the fact that graph 2.2a
is an undirected graph while 2.2b is a digraph. This means that in second graph each link has a
source and target node, so the edges are directed.
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Figure 2.2 is a graphical representation of the networks. Even so, another possible way of
presenting graphs is through their adjacency matrix, GAdj , where:

GAdj [i][j] =


1 if (vi, vj) ∈ E(G) ∧ G is unweighted
wi,j if (vi, vj) ∈ E(G) ∧ G is weighted
0 otherwise

(2.24)

Accordingly, the adjacency matrix is a mathematical way of representing the network while
preserving its properties. Although these matrices are hugely useful to perform calculations,
they are not as helpful for quickly visualizing fundamental features of the graph, like its paths,
connectivity or the properties of subgraphs of the original network.

A path is a sequence of nodes in which each consecutive pair of nodes in the sequence is
connected by a link.

The connectivity studies the paths between nodes in the entire network. Two nodes are
said to be connected if a path exists between them, while the graph is defined as connected if
there is a path between every pair of nodes. This property is extremely practical to partition the
nodes in non-overlapping subsets of connected nodes known as connected components [4], since
there are no paths between distinct components.

A subgraph SGk of size k of a graph G is a graph with k nodes in which V (SGk) ⊆ V (G)
and E(SGk) ⊆ E(G).

2.2.1 Topological Features

Network science helps capture the patterns of interactions between the parts of a system, for
instance, made through visualization for graphs up to a few hundreds or thousands of nodes,
and for networks that are relatively sparse, meaning that the number of edges is quite small [25].
The capture of these patterns can also occur by using topological measures of the networks.
The majority of these features can be labeled as local or global measures, i.e., those related to
individual nodes or links, or those related to the graph as a whole. In this thesis, we are focused
on local metrics, and a global measure based on the average number of links between any two
nodes in a graph.

The Average Shortest Path Length is denoted by d̄, the arithmetic mean of the shortest
paths (d) among all pairs of nodes:

d̄ = 1
n(n − 1)

n∑
i

n∑
j ̸=i

d(i, j) (2.25)

Where the path length is the number of links, or the sum of the links weights if the graph is
weighted, in a path between any two nodes in the same component [1].
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The concept of centrality addresses the question, “What are the most important or central
nodes in a network?” [25]. Answering this question leads to the development of several centrality
measures that define importance differently, meaning that the combination of multiple centrality
measures can help describe the network patterns in a richer and more useful way.

The simplest centrality measure, the degree, k(i), of a node vi, is equal to its number of
neighbours. In the context of digraphs, this metric is extended by calculating both the number
of edges that originate in the given node, in-degree, kin(i), and the number of links ending in
that node, out-degree, kout(i). Besides, if the graph is weighted, the weight of each connection
that the node belongs to is taken into account. Mathematically, the weighted degree, kw(i), of
a vertex is calculated by summing the weights of its edges:

kw(i) =
|V (G)|∑

j=1
wi,j . (2.26)

The degree is a very practical measure to capture important nodes in the network, though,
vertices may be influential without having many neighbors. One example of such nodes is the
ones that work as a bridge between two connected components. This situation is exemplified in
the graph from Figure 2.3, since the node in the middle of the graph is very important to the
global features of the network, but its degree is smaller than the degree of its neighbors.

(a) Node degrees (b) Node betweenness centrality’s

Figure 2.3: A representation of (a) a simple graph with the degree of each node and (b) the same
network, but with the non-normalized betweenness centrality of each node.

One way to capture the importance of such nodes is by calculating how many shortest paths
between two other nodes in the network pass through the given node. This concept led to the
definition of a centrality measure called betweenness centrality, calculated as follows:

bc(i) =
∑
j<k

gj,k(i)
gj,k

(2.27)

where gj,k is the number of shortest paths connecting the node j to k, and gj,k(i) the number
where i is on.
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The bc(i) is usually normalized by the number of pairs of vertices, excluding the vertex itself:

bc
′(i) = bc(i)

(n − 1)(n − 2)/2 (2.28)

Another noteworthy centrality measure is the harmonic centrality, which gives more
importance to nodes close to vertices with high degree, independently of the number of neighbours
or how between "others" they are. This metric is based on the length of the average shortest
path between a node and all other nodes in the network:

hc(i) =
∑

d(i,j)<∞,j ̸=i

1
d(i, j) (2.29)

hc
′(i) = hc(i)

(n − 1) (2.30)

All of this measures, including the Average Shortest Path Length, help getting a fuller picture
of the graph or node they are computed on. Other metrics could be used to achieve the same
purpose, or even to give another perspective, however in this thesis the topological measures
studied are the ones described above.

2.3 Time Series Mappings

In the last decade several network-based time series analysis approaches have been proposed.
These approaches are based on the mapping of univariate and multivariate time series to the
network domain, namely in single layer or multiple layer networks [30]. The mappings proposed
in the literature are essentially based on concepts of visibility, transition probability, proximity,
time series models and statistics [30]. So far, the biggest focus has been on approaches to mapping
univariate time series into single layer structure.

Visibility mappings establish connections between observations (nodes in the graph) of the
time series using visibility lines (with or without restrictions). The transition mappings are based
on the transition probabilities between states/partitions defined by dividing the time space in a
set of temporal states (or dividing the series support/observations into partitions) that will be
the vertices of the network. Proximity mappings establish connections using measures of distance
or similarity between observations (or states), which become network vertices.

2.3.1 Natural Visibility Graphs

Lacasa and co-authors [20] proposed the first method based upon the concept of visibility: the
natural visibility graph (NVG), or simply visibility graph (VG). This method stands on the
idea that each observation of the time series is seen as a vertical bar with a height equal to the
numerical value of the observation, and that these vertical bars are laid in a landscape, where
the top of a bar is visible from the tops of other bars. Each node in the graph corresponds to a
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time stamp t of the time series, so the nodes are serially ordered. Two nodes are connected if
there is a line of visibility between the corresponding data bars that are not intercepted. This
idea is illustrated in Figure 2.4a.

(a) Toy time series (b) NVG

Figure 2.4: In (a), a plot of a toy time series is presented, and, in (b), the respective graph,
generated by the natural visibility graph algorithm. The color lines in the time series plot
represent the visibility lines (and hence the edges of the graph) between the observations.
Adapted from: [30]

Formally, the set of nodes {vi} of an NVG is numbered sequentially in time and two nodes,
vi and vj , are connected (have visibility) if any other observation, (tk, Yk) with ti < tk < tj ,
satisfies:

Yk < Yj + (Yi − Yj)(tj − tk)
(tj − ti)

. (2.31)

Visibility graphs are connected at all times, since each node vi has visibility for at least
its neighbors vi−1 and vi+1. Besides, they are always undirected. Nonetheless, a direction can
be defined considering the direction of the time axis or the series values. The network is also
invariant under affine transformations of the data [20], because the visibility criterion is invariant
under rescheduling of both the horizontal and vertical axis, as well as in vector translations, that
is, each transformation Y ′ = aY + b, for a ∈ R and b ∈ R, leads to the same NVG.

2.3.2 Directed Visibility Graphs

Given that time has a natural direction, the directed natural visibility graphs, DNVG, can be
derived by defining an NVG with edges that follow the time direction (vi, vj), i < j, or the node
with a larger value (vi, vj), yi < yj . (the series direction). Note that the adjacency matrix
is not a symmetric matrix. An example of the representation of this algorithm is illustrated in
Figure 2.5.
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(a) Toy time series

(b) DNVG

Figure 2.5: Illustrative example of directed natural visibility algorithm and corresponding out-
degree (k(i)out), in-degree (k(i)in) and degree (k(i)). In (a), a plot of a toy time series is
presented, and, in (b), the network that is generated by the directed natural visibility algorithm.
The color-directed lines represent the directed visibility lines between the observations.
Modified from: [30]

This version of VGs was used to propose a set of rigorous statistical tests for time series
irreversibility 1 [7].

2.3.3 Weighted Visibility Graphs

The method proposed by Supriya and co-authors [31] is a fairly simple modification to the
traditional NVG algorithm, and it considers the NVG edges as directed and weighted. For a
given time series, the corresponding weighted visibility graph (WVG) (or weighted directed
visibility graph, WDVG) is built as follows: a directed NVG is constructed as described above,
and a weight, wi,j , equal to the view angle between the observations (ti, Yi) and (tj , Yj) in time
series, is assigned to the edge that connects the corresponding nodes. The angle is given by:

αi,j = tan−1
(

Yj − Yi

tj − ti

)
, i < j. (2.32)

It should be kept in mind that Equation (2.32) allows the attribution of not only positive
weights but also negative weights to the edges of the WVG. However, the analysis of networks
with negative weights is more complex, as standard methods and techniques do not apply
straightforwardly [19], and, therefore, it is less common.

The problem of using negative weights is too big to ignore. As such other authors proposed
other metrics, like the absolute value of the angle or distances between the nodes in the time
series space. The inverse of this distances is also used in some studies with the goal of giving

1A stationary time series is reversible if {Y1, . . . , YT } and {YT , . . . , Y1} have the same joint probability
distributions.
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more value to the edges between close observations. As such, besides the view angle, other
measures can be considered for the weight of the edges of an NVG, namely:

• Vertical distance: ei,j = |Yj − Yi|

• Inverse vertical distance ei,j = 1/|Yj − Yi|

• Euclidean distance: wi,j =
√

(tj − ti)2 + (Yj − Yi)2

• Inverse of Euclidean distance: wi,j = 1/
√

(tj − ti)2 + (Yj − Yi)2





Chapter 3

Complex Networks and Time Series
Forecasting

The field of forecasting dates goes back to thousands of years when ancient civilizations observed
natural patterns to anticipate the future; e.g. storms at the sea were predicted by observing
an abundance of seagulls taking refuge inland, and nomads would travel from one place to
another accordingly to the seasons because they foresaw that certain locations would have more
resources at a given time. More recently, forecasting is required in all kinds of areas, and with
the technological advances of the last decades, as well as the adoption of the Internet of Things,
time series data is widely available in all domains.

Due to the heterogeneity of available data and the growing interest in predicting future events,
new problems arise. Forecasting accurately depends not only on how well we understand the
factors that contribute to the event being forecasted or the amount of data available [16] but
also on the methods used. Since traditional prediction algorithms have some limitations, new
approaches that combine multiple areas are being developed.

In recent years, the field that connects network science to time series forecasting is starting to
captivate the scientific community. This field, although recently founded, seems to be promising,
as several approaches for time series analysis based on network science methodologies lead to
great results. For instance, Lacasa and co-authors ([20]) showed that NVGs inherit several
properties of the time series. Visibility graphs were used to study energy dissipation rates in
three-dimensional turbulence [22], financial time series [34], heart rate variability [26], and sleep
stages [37].

Despite very few studies having been done in this field, it is already possible to establish
connections between past works. In this chapter, we provide a conceptual division of the
forecasting methods that use network science, which encompasses all available algorithms in
the literature until now. The proposed taxonomy divides the models accordingly to the space,
network, or time series, in which the predictions are made. In figure 3.1, the diagram that
represents the conceptual division is depicted, and, even though existing forecasting methods via
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Network science only use visibility graphs mappings, the proposed high-level taxonomy does not
specify that, since other mappings could be applied.

Figure 3.1: Taxonomy of algorithms for time series forecasting that use complex networks.

The most noticeable affinity between the prediction algorithms developed in this area is the
fact that the first step of all of them is to map the time series into a complex network. Then,
most methods make predictions in the network space by making use of similarity between nodes
and the geometrical properties of the graph; while in a recent study [13], the predictions are
made by combining information obtained through the graph with modern time series forecasting
approaches. The authors of the algorithms in question only implemented them with univariate
time series and one-step ahead forecasts. However, once a prediction is made, all methods in the
literature map the new forecast into the network space and repeat the process if the goal is to
predict more than one-step ahead.

A more comprehensive description of the groups presented in the proposed taxonomy is given
in the following sections.

3.1 Forecasting in the Network Space

For the first time in the literature, in 2017, Zhang and co-authors [35] used complex networks for
time series forecasting, which did not only provide reasonable forecasts but also incited other
authors to develop similar methods that follow the same principles.
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Zhang and co-authors´ algorithm consists of two phases:

1. Firstly the time series is mapped into a complex network using a VG; then, the similarity
between the last known node, N , and all previous (N − 1) nodes, is calculated based on a
local random walk; finally, the node M with maximum similarity to node N is selected to
make an initial one-step ahead prediction defined as

ŷN+1 = yN − yM

N − M
+ yN (3.1)

where yM is the value of the observation of the node M and tM is the time of that
observation.

2. The second phase generates the final prediction by making a weighted sum of the initial
forecast and the value of the last known node, in which the weights of each value are
calculated based on fuzzy rules.

The first stage of Zhang’s method was the stepping stone for all algorithms encompassed in
this branch of the taxonomy (figure 3.1). Most of them follow the same sequence of steps and
take advantage of the geometric properties of the VG by calculating the slope between nodes to
generate predictions.

Mao and co-authors [24] implemented the same steps in their algorithm, but replaced the
similarity measure with a novel one that led to a slightly improved performance. Besides that,
those authors also made a weighted sum between the result of the slope equation (3.1) and the
value of the last known node, though, in this case, the weights were calculated based on the
distance between the last known node and the most similar node used to calculate the slope.

Liu and co-authors [23] developed an algorithm that instead of selecting the most similar
node, the prediction is made by doing a weighted sum of all slopes (3.1) between the K most
similar node and the last known node, where the weights are the relative similarities of that set

yt+1 =
k∑

r=1

Vr∑k
j=1 Vj

(
yt − yr

t − tr
Nyt

)
(3.2)

and where Vx = V t
Nx represents the stationary distribution of the probability transfer matrix, a

measure of similarity obtained by customization of the Markov chain.

In [36], Zhao and co-authors propose a slightly different approach. In this method, the final
forecast is given by making a weighted sum of the slopes between the last known node and all
nodes connected/visible to it,

yt+1 =
tl∑

i=tf

wi

2

(
yt − yr

t − tr
+ 2yt

)
(3.3)

where wi is a measure of similarity that takes into consideration the degree of each node and the
temporal distance between nodes, defined as

wi =
d(t∗

i )
t−ti∑tl

j=tf

d(t∗
j )

t−tj

(3.4)
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where d(t∗
i ) is the degree of node t∗

i , tf is the time of the first node visible to the node of time t,
and tl is the time of the last node having visibility relation with that node.

3.2 Forecasting with Graph Embeddings

Up until the method developed by Huang et al. [13] was released, all prediction algorithms that
use complex networks made predictions in the network space and followed similar steps to the
ones explained in the previous section. Huang’s algorithm takes advantage of the properties of
the VG distinctly from the methods that belong to the other branch of the taxonomy. In this
case, the focus is not to use the complex network to make link prediction. Instead, the goal of
mapping the time series with a VG is to collect information from the data, which, otherwise,
would be hugely hard to collect. Then, this information can be used by time series forecasting
methods to generate forecasts that have a better description of the data.

Huang’s method introduces the concept of NV-encoding, which extracts the local motif
information of the whole series by using a moving-window strategy. This information is determined
by the degree sequence of the VG (the degree of the corresponding node of the time point in the
complex network) with some extra conditions. The natural visibility encoding of the observation
yi of the time series is written as

nvyi =
j=tl∑
j=tf

j ̸=i

δi,j , δi,j =
{

1 if yi ≥ yj ∧ Ai,j = 1
0 otherwise

(3.5)

As stated by Huang et al., "The global motif information was already embedded in the time
series itself. Thus, conducting NV-encoding on the whole time series would lack necessity.". As
such, a moving-window strategy with windows of arbitrary size, sizew, was developed. The
NV-enconding is now calculated iteratively, from i = 0 to i = N , where each network originated
from the NVG of the time series is formed by the observations yi, . . . , yi+sizew .

Figure 3.2: An example of the moving-window encoding strategy for the NV-encoding. Extracted
from [13].
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Figure 3.2 is an example of the application of the moving-window encoding with a time series
of size 4 and windows of size 3. The final result is a vector composed of the encodings of each
window, which leads to a vector of size (N − sizew + 1) × sizew. Since N = 4 and sizew = 3,
the length of the NV-encoded series is 6.

Figure 3.3: The architecture of Huang et al. framework. Extracted from [13]

This difference between the sizes of the input time series and the outcome of the NV-encoding
leads to the necessity of a pre-processing step so that both series can be used with the same
size. Huang et al. opted to use a CNN to reshape both series and combine them to generate
predictions, something that can be done with any prediction model, as observed in Figure 3.3.

The NV-encoding can be seen as a graph embedding, in which the entire graph is encoded
into a single vector, the NV-encoded series. This concept can be extended to other properties
collected from the network, graph embedding methods, or even by generating a vector for each
node or edge instead of one vector for the entire graph.





Chapter 4

Topological Characterization of Obser-
vations

One of the basic steps in a forecasting task is doing an exploratory analysis of the data [16].
Usually, this is done by finding consistent patterns like trends, seasonality, outliers, and changes
in the variance of the time series. Tools like lag and seasonal plots, decomposition methods, and
hypothesis tests are widely used to infer these characteristics.

As stated in Chapter 3, topological features of VGs can be used to characterize the time
series while capturing several properties of the data, something that is explored by the algorithms
described in Sections 3.1 and 3.2. However, these methods are only focused on the topological
features used in the algorithms (e.g.: degree sequence by Huang’s method [13]). This Chapter
describes our implementation of a window strategy (Figure 3.2), which allows collecting both
local and global topological features of the subgraphs formed in each window. Furthermore, an
analysis of centrality measures collected with the window encoding for different types of VGs is
presented.

4.1 Window Encoding

The characterization of time series through global topological features in its networks has already
been proven to be a great tool for several analyses, like clustering [29]. Though, using the
topology of the graphs for forecasting requires collecting such measures for each observation
while considering only its past. This condition already implies that each metric is going to be
calculated in a subgraph mapped from time points before the one being studied:

SG(vi) = G[v0, . . . , vi]. (4.1)

Moreover, these variables are only valuable if they are comparable between them. In this
sense, the size of the subgraphs in which the features are computed should be the same. For
instance, the maximum possible degree of the node vi in a subgraph that only contains nodes
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that precede it, is smaller than the maximum degree of a node Vj in the same condition, where
j > i. This is because the subgraph to which vj belongs to has more j − i nodes than the network
ending in vi.

The conditions described above lead us to define our own window encoding, in which each
observation, i, of the time series is described by a topological feature of the subgraph of size m

ending at i:

SGm(vi) = G[vi−(m+1), . . . , vi]. (4.2)

In order to have a complete and flexible way of characterizing observations, we defined three
encoding strategies:

Global Encoding : Features are computed for the subgraph as a whole

TFm(vi) = TF (SGm(vi)) (4.3)

where TF is any global topological feature.

Local Encoding : Local measure, tf , for a single vertex in the subgraph (4.2) it

tfm(vi, j) = tf(SGm(vi))j (4.4)

where j ∈ [i − (m + 1), i].

Vector Encoding : Local topological feature for all nodes in the network

−→
tf m(vi) = [tf(vi, i − (m + 1)), . . . , tf(vi, i)]. (4.5)

This way, it is possible to capture the global information of a subgraph of size m ending at each
observation, i; the local measures of an interesting node in the network; or even the topological
pattern which precedes i in m time points. An example of the application of the window encoding
in a NVG with 5 nodes, where the features collected are the average degree of each subgraph, the
degree sequence and the degree of the last node for each observation, is presented in Table 4.1.

Node (i) k̄3(vi)
−→
k 3(vi) k3(vi, i)

0 - - -
1 - - -
2 - - -
3 2.5 [3, 2, 3, 2] 2
4 1.5 [1, 2, 2, 1] 1
5 2 [1, 3, 2, 2] 1

Table 4.1: Window degree encoding of size 3 on a NVG with 6 nodes
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Since no implementation is found online for this sort of the explained procedure, as mentioned
in chapter 1 two modules of the networktsf library were developed to solve this issue:

Mappings : Visibility mappings implemented with the divide & conquer algorithm proposed in
Lan et al. [21]. The module allows computing 15 different types of VGs:

• NVG;

• DNVG, where the edges in the graph follow the natural direction of time, or of the
series values, the node with the highest value between the two connected nodes;

• WNVG, where the weight of the edges can be the angle between the two observations,
the euclidean or vertical distance between them (or the inverse);

• DWNVG, any combination of the DNVG with the WNVG.

Network Features : Encodings of observations through the topological features of the network
generated by a mapping method in the module Mappings:

• Window Encoding 4.1 which accepts any networkx [11] algorithm to compute global
or local measures;

• Pipeline that maps a time series into a complex network with one of the methods in the
package, and then computes as many window encodings as wished for all observations.

• ...

Figure 4.1: Schematic diagram for the window encoding
.

Figure 4.1 is a representation of our window encoding strategy implementation. This strategy
allows computing any topological feature available in networkx for each observation, while
considering only the subgraph that contains the past m time points before each one of the
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observation. The process is dependent on other classes in the library, like the mappings, as well as
three widely known packages, numpy [12], pandas [33] and networkx. Besides that, the mapping
methods have a plotting function that produces a visualization of the graph by using plotly [17]
to reproduce interactive plots.

4.2 Empirical Study

The conditions applied to the window encoding allow the calculation of topological features that
can be used for forecasting. However, using this strategy implies choosing the size of the window,
something that needs to be done wisely, as it should be based on the context of the series, the
measures being collected, and the mapping method selected. On top of that, topological features
may represent different patterns, depending on the mapping and the series under analysis. To
address this question, we studied the correlation between the encodings and four time series
patterns: seasonality, Ŝt; and trend T̂t; moving average of order 3, 3 − MA; first-order difference,
∇1 (subsection 2.1.2).

This study is divided into three different stages: selecting the size, m, of the window encoding;
choosing the best VG mapping for each topological feature; and comparing the features between
themselves. In order to do such an analysis, we computed the average correlation between the
topological features and the patterns of 35 time series:

1. FJ Glucose Values Self-collected 15-minutely glucose values from a device used by people
with type-1 diabetes.

2. Monthly Milk production by cow [5]

3. Monthly Air Passengers in the USA [3]

4. Quarterly beer production in Australia (Australian Bureau of Statistics. Cat.
8301.0.55.001.)

5. Total monthly wine sales in Australia [14]

6. Quarterly production of woollen yarn in Australia [14]

7. 29 monthly or quarterly series from the M2 Dataset

4.2.1 Window Size Analysis

Selecting the size of the window to perform the encoding is of uttermost importance, as topological
features vary with the length of the subgraph they are computed on, and the time series patterns
may be impossible to identify in smaller samples of the data. With this in mind, the degree and
the harmonic centrality of the last node in each subgraph, km(i), the betweenness centrality of

https://forecasters.org/resources/time-series-data/m2-competition/
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the observation in the middle of the window, bcm(i − m
2 ), as well as the average shortest path

length of each subgraph, D(i), are computed for the NVGs mapped from each series. Then
we calculated the average correlation between these measures and the time series patterns for
window sizes ranging from a quarter to two times the period of the series, m ∈ [P/4, 2P ]. The
results of the study, for each topological feature computed, are presented in the tables below.

m/P ρ(km(i), 3-MA) ρ(km(i), ∇1) ρ(km(i), Ŝ) ρ(km(i), T̂ )
0.25 -0.048 0.671 0.198 0.017
0.33 -0.037 0.690 0.206 0.006
0.42 -0.034 0.702 0.230 -0.009
0.50 -0.012 0.645 0.230 -0.009
0.58 0.012 0.721 0.276 -0.009
0.67 0.033 0.722 0.293 -0.007
0.75 0.044 0.674 0.327 -0.004
0.83 0.070 0.718 0.345 -0.007
0.92 0.097 0.716 0.367 0.002
1.00 0.082 0.682 0.412 -0.009
1.08 0.100 0.715 0.412 -0.019
1.17 0.096 0.715 0.407 -0.027
1.25 0.086 0.685 0.406 -0.012
1.33 0.106 0.713 0.394 -0.021
1.42 0.113 0.717 0.397 -0.014
1.50 0.093 0.690 0.406 -0.007
1.58 0.120 0.714 0.395 -0.009
1.67 0.117 0.712 0.397 -0.019
1.75 0.097 0.690 0.405 -0.012
1.83 0.131 0.710 0.390 0.002
1.92 0.131 0.707 0.391 -0.006
2.00 0.114 0.687 0.416 -0.002

Table 4.2: Mean correlation between the degree, km(i), and time series patterns

Based on Table 4.2 it is possible to realize that km(i) is highly correlated with the first order
difference of the series, given that the degree of a node in a NVG is bigger for local maximums
and smaller for minimums, which is translated into a variable susceptible to local variations.
Moreover, this topological feature can also capture seasonality, something that can be explained
by the fact that the maximum values of each period of the series are mapped into the nodes with
more visibility to other nodes before them.

It is worth noticing that the first order difference is always captured, regardless of the window.
The correlation with seasonality is better detected for m > P

2 , though, the maximum value is
obtained for windows of the same size as the period, stabilizing for bigger lengths. Considering
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this, it seems that selecting m = P is a safe choice to represent time series patterns such as the
ones seasonality and local variations.

m/P ρ(Dm(i), 3-MA) ρ(Dm(i), ∇1) ρ(Dm(i), Ŝ) ρ(Dm(i), T̂ )
0.25 0.037 -0.527 -0.167 0.001
0.33 0.007 -0.356 -0.059 -0.000
0.42 -0.022 -0.389 -0.140 -0.001
0.50 -0.054 -0.374 -0.193 -0.004
0.58 -0.125 -0.293 -0.248 0.003
0.67 -0.182 -0.285 -0.272 -0.004
0.75 -0.181 -0.316 -0.368 -0.017
0.83 -0.251 -0.193 -0.354 -0.019
0.92 -0.297 -0.188 -0.379 -0.028
1.00 -0.249 -0.266 -0.522 -0.032
1.08 -0.283 -0.039 -0.380 -0.028
1.17 -0.215 -0.038 -0.289 -0.019
1.25 -0.137 -0.107 -0.233 -0.026
1.33 -0.095 -0.008 -0.095 -0.012
1.42 -0.048 -0.048 -0.045 -0.014
1.50 -0.038 -0.128 -0.013 -0.032
1.58 -0.031 -0.086 -0.006 -0.028
1.67 -0.060 -0.104 -0.025 -0.034
1.75 -0.106 -0.191 -0.123 -0.052
1.83 -0.148 -0.116 -0.149 -0.044
1.92 -0.204 -0.118 -0.215 -0.042
2.00 -0.206 -0.194 -0.384 -0.051

Table 4.3: Mean correlation between the avg. shortest path length, Dm(i), and time series
patterns

The average shortest path length of a graph is always going to be smaller for networks with
nodes that are linked to many other nodes, and bigger when the number of edges is smaller. In
the context of the global encoding applied to VGs, the subgraphs that end in a maximum of the
series have a smaller value of D since the visibility of that node to the past m observations is
big, and, consequently, most shorter paths pass trough that vertex to reach others in fewer steps.
Therefore, we expected this measure to be a good representation of the inverse of the seasonality,
as it is corroborated by the correlation values in table 4.3. Besides the seasonality, the feature is
also negatively correlated to the first-order difference and the moving average of order 3.

In this case, small changes in the window size lead to many different patterns being captured.
For instance, if the window size is equal to the period, the feature is highly correlated to the
seasonality, first-order difference and 3 − MA; yet, if the length of the subgraph is half the
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period, the correlation with any of the patterns being studied, expcept for ∇1, is much smaller.
In fact, the window lengths that are worth exploring with this measure range in the interval
m ∈ [P/2, P ], as well as 2P , and, once again, selecting a size equal to the period is a safe option
to capture multiple patterns with this global topological feature.

m/P ρ(hcm(i), 3-MA) ρ(hcm(i), ∇1) ρ(hcm(i), Ŝ) ρ(hcm(i), T̂ )
0.25 -0.052 0.672 0.197 0.012
0.33 -0.041 0.687 0.199 0.003
0.42 -0.033 0.702 0.227 -0.007
0.50 -0.007 0.645 0.237 -0.005
0.58 0.020 0.717 0.289 -0.009
0.67 0.048 0.716 0.312 -0.009
0.75 0.063 0.669 0.353 -0.003
0.83 0.098 0.706 0.380 -0.010
0.92 0.134 0.702 0.408 -0.001
1.00 0.116 0.673 0.464 -0.008
1.08 0.148 0.686 0.462 -0.021
1.17 0.141 0.685 0.452 -0.032
1.25 0.119 0.661 0.447 -0.015
1.33 0.139 0.680 0.426 -0.029
1.42 0.143 0.683 0.419 -0.020
1.50 0.119 0.662 0.421 -0.006
1.58 0.147 0.677 0.409 -0.014
1.67 0.146 0.674 0.411 -0.023
1.75 0.126 0.660 0.424 -0.011
1.83 0.165 0.667 0.415 -0.006
1.92 0.174 0.665 0.426 -0.015
2.00 0.151 0.657 0.464 -0.006

Table 4.4: Mean correlation between the harmonic centrality, hcm(i), and time series patterns

Another way of analyzing the influence of a node in the network is by inferring how close it
is to the center of the graph. Translating this into VGs results in attributing more relevance
to observations near the maximums of the series. This way, harmonic centrality is a measure
closely related to the degree but shifted one lag into the future. Actually, as presented in table
4.4, the values of correlations with the time series patterns are very similar to the ones obtained
for the degree. Nonetheless, this feature can capture the seasonality and the local variations of
the series, and since it is another way of studying the centrality of nodes, it is a feature worth
taking into consideration, as well as the degree.

The first-order difference is highly correlated with the feature for both small and big windows;
yet, the seasonality is only captured for window sizes above half the period. As mentioned, the
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correlations are very close to the ones obtained in the degree, the maximum correlation with Ŝt

is obtained for m = P , but, in this case, the values obtained for the seasonality cease to increase
for lengths bigger than the period until m = 2P . Selecting a window with the same length as
the period of the time series is still the best choice to take the best out of this feature.

m/P ρ(bcm(i − m
2 ), 3-MA) ρ(bcm(i − m

2 ), ∇1) ρ(bcm(i − m
2 ), Ŝ) ρ(bcm(i − m

2 ), T̂ )
0.25 -0.028 -0.019 -0.036 0.004
0.33 -0.048 -0.008 -0.033 -0.013
0.42 -0.024 0.098 0.100 -0.010
0.50 -0.015 -0.023 0.072 0.007
0.58 -0.036 -0.133 -0.180 0.012
0.67 -0.055 -0.140 -0.190 -0.001
0.75 -0.087 -0.059 -0.153 -0.003
0.83 -0.098 -0.016 -0.123 0.008
0.92 -0.093 0.002 -0.097 0.010
1.00 -0.085 -0.051 -0.155 0.011
1.08 -0.084 0.015 -0.088 -0.001
1.17 -0.075 0.014 -0.083 0.002
1.25 -0.034 0.006 -0.117 -0.006
1.33 -0.033 0.032 -0.100 -0.004
1.42 0.014 0.054 0.023 0.008
1.50 0.005 0.027 0.008 -0.003
1.58 0.057 0.033 0.103 -0.010
1.67 0.058 0.035 0.101 -0.007
1.75 0.132 0.053 0.120 -0.008
1.83 0.178 0.056 0.073 0.001
1.92 0.134 0.205 0.481 0.000
2.00 0.097 0.162 0.487 -0.010

Table 4.5: Mean correlation between the betweenness centrality, bcm(i − m
2 ), and time series

patterns

Measuring how many shortest paths pass through a node is extremely useful to understand
how important a node is in terms of graph connectivity. The betweenness of a node is precisely
that, but, when considering the conditions of the window encoding, the first and last observations
of each subgraph are not between anything. Table 4.5 shows the correlation between the
betweenness centrality of the node in the middle of each window and the patterns of the series.
Despite having selected this node as an example, all vertexes except the first and the last of the
window could be selected.

Such a choice makes this feature the one that varies the most with the size of the window.
Thus, for a window where m ≈ P , that ends at the maximum value of each period, it is probable
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that the observation in the middle of it is near the minimum of the period, which means that
fewer shortest paths pass through that node. Consequently, the value of betweenness centrality is
smaller, and, therefore, negatively correlated to the seasonality. On the other hand, for a window
where m ≈ 2P , ending at the maximum value of each period results in a high correlation with
the seasonality.

Selecting a window size near two times the period, leads to a small correlation with all
patterns except the trend, while subgraphs of length equal to the period result in negative
correlations. These patterns are way better captured in both of these cases than with other sizes.
Hence, for bcm(i − m

2 ), the lengths that seem to result best are m = P ∨ m = 2P .

The study made for each topological feature allows an understanding of which window sizes
are appropriate to capture interesting patterns in the series. Window sizes that are smaller than
half the period lead to low correlations with the patterns. Based on the conclusions written for
each feature, we will use m = P in the remainder of this study. Yet, the size of the window
should be studied for each context, at least in the range:

m ∈ [P/2, 2P ]. (4.6)

4.2.2 Mapping Methods Analysis

Since all topological features computed in subsection 4.2.1 were obtained for NVGs, in this part
of the investigation we study the influence of attributing weight and/or a direction to the edges
in the network by inspecting how it changes the correlations between the measures and the time
series patterns. Thus, in this subsection, we present the correlation between the same encodings
and the patterns studied for all mapping methods possible to compute with the networktsf
library.

The mappings names presented in the tables are shortened in order to fit the page, as such,
the weights are represented by: a, the angle between observations; ed and ie the euclidean
distance and the inverse; d and id the vertical distance and the inverse. The direction can follow
the natural sequence of time, t, or the highest value between the two connected nodes, s.

Mapping ρ(kP (i), 3-MA) ρ(kP (i), ∇1) ρ(kP (i), Ŝ) ρ(kP (i), T̂ )
NVG 0.082 0.682 0.412 -0.009

WNVG (W: a) 0.215 0.644 0.543 0.047
WNVG (W: ed) 0.226 0.553 0.321 0.162
WNVG (W: ie) -0.118 0.114 0.066 -0.136
WNVG (W: id) -0.108 0.135 0.094 -0.133
WNVG (W: d) 0.239 0.562 0.320 0.175

Table 4.6: Mean correlation between the degree, kP (i), and time series patterns for different
mappings
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From table 4.6, it is possible to conclude that calculating kP (i) in distinct VGs leads to
highly different results in terms of the patterns captured by the feature. The local variations of
the time series are better captured in the NVG, which means the degree of the nodes in this
mapping is more susceptible to the noise of the data. All weighted networks, except the ones
with weights that represent the inverse of the distance, result in high correlations between kP (i)
and the first order difference, as well as with the seasonality, and a small correlation with the
moving average of order 3. Besides that, the trend is somewhat captured when the weights
correspond to distances and the rest of the patterns are also represented by this feature. This is
particularly interesting since the measure can be used to analyze different nuances of the time
series simultaneously.

Mapping ρ(kin
P (i), 3-MA) ρ(kin

P (i), ∇1) ρ(kin
P (i), Ŝ) ρ(kin

P (i), T̂ )
DNVG (D: s) 0.151 0.678 0.511 0.009
DNVG (D: t) 0.082 0.682 0.412 -0.009

DWNVG (W: a; D: s) 0.189 0.715 0.511 0.047
DWNVG (W: a; D: t) 0.215 0.644 0.543 0.047
DWNVG (W: ed; D: s) 0.262 0.634 0.476 0.123
DWNVG (W: ed; D: t) 0.226 0.553 0.321 0.162
DWNVG (W: ie; D: s) -0.074 0.195 0.128 -0.112
DWNVG (W: ie; D: t) -0.118 0.114 0.066 -0.136
DWNVG (W: id; D: s) -0.078 0.146 0.123 -0.117
DWNVG (W: id; D: t) -0.108 0.135 0.094 -0.133
DWNVG (W: d; D: s) 0.274 0.642 0.476 0.135
DWNVG (W: d; D: t) 0.239 0.562 0.320 0.175

(a) Mean correlation between kin
P (i) and time series patterns for different mappings

Mapping ρ(kout
P (i), 3-MA) ρ(kout

P (i), ∇1) ρ(kout
P (i), Ŝ) ρ(kout

P (i), T̂ )
DNVG (D: s) -0.185 -0.162 -0.404 -0.020

DWNVG (W: a; D: s) 0.170 0.183 0.418 -0.003
DWNVG (W: ed; D: s) -0.096 -0.312 -0.490 0.122
DWNVG (W: ie; D: s) -0.078 0.012 -0.030 -0.065
DWNVG (W: id; D: s) -0.068 0.062 -0.011 -0.062
DWNVG (W: d; D: s) -0.085 -0.318 -0.490 0.140

(b) Mean correlation between kout
P (i) and time series patterns for different mappings

Table 4.7: In and out degree correlation with time series patterns for directed VGs

Calculating the degree for directed networks results in collecting two new features, in-degree,
and out-degree, therefore the tables in 4.7 show the correlation between these metrics and the
patterns of the series. It must be pointed out that kout

P (i) is zero for VGs with edges directed by
time, which is obvious since the last node of each subgraph corresponds to the most recent one
for each window. Also, computing kin

P (i) in networks with links following the direction of time is
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the same as doing it with an NVG because i is only linked to past observations in the windows
being studied.

Combining the in and out degree seems to lead to a better description of the series when
compared to only using the degree, something that can be concluded by the results in the three
tables above. Mappings with links that follow the time direction are not worth exploring in the
context of this feature because of the reasons mentioned in the previous paragraph, however, the
correlation of the degrees and the patterns of the series for networks with edges that point to the
highest value between the two connected nodes are very promising. For these mappings, kin

P (i)
captures the seasonality and local variations, as well as the 3 − MA if the weight of the edges
corresponds to the vertical distance of the series; while kout

P (i) is negatively correlated to the
seasonality and the first order difference, and positively correlated to the trend.

In conclusion, calculating both of these features for a DWNVG(W: y distance; D: series)
allows distinguishing between minimums and maximums of the series more easily, as well as
capturing other relevant patterns of the data. On the other hand, using the angle between
observations as the weight of the links makes this encoding not useful to represent the trend,
and the combination of both features is redundant since the in-degree gives a better picture of
the patterns that are also captured by the out-degree.

Even though WNVGs (W: angle) can be used to compute the degree, most topological
features algorithms can not deal with negative weights. With this mind tables 4.8 to 4.10 only
present correlations for NVGs and WNVGs, where the weight represents distances.

Mapping ρ(DP (i), 3-MA) ρ(DP (i), ∇1) ρ(DP (i), Ŝ) ρ(DP (i), T̂ )
DNVG (D: s) 0.117 0.132 0.441 -0.073
DNVG (D: t) -0.234 -0.249 -0.499 -0.031

DWNVG (W: ed; D: s) 0.507 0.178 0.337 0.410
DWNVG (W: ed; D: t) 0.217 -0.026 -0.376 0.452
DWNVG (W: ie; D: s) -0.148 -0.023 0.131 -0.211
DWNVG (W: ie; D: t) -0.203 -0.115 -0.033 -0.224
DWNVG (W: id; D: s) -0.149 -0.024 0.145 -0.219
DWNVG (W: id; D: t) -0.225 -0.097 -0.047 -0.245
DWNVG (W: d; D: s) 0.512 0.178 0.337 0.415
DWNVG (W: d; D: t) 0.221 -0.026 -0.376 0.456

NVG -0.249 -0.266 -0.522 -0.032
WNVG (W: ed) 0.217 -0.026 -0.376 0.452
WNVG (W: ie) -0.345 -0.164 -0.183 -0.310
WNVG (W: id) -0.337 -0.141 -0.178 -0.302
WNVG (W: d) 0.221 -0.026 -0.376 0.456

Table 4.8: Mean correlation between the avg. shortest path length, DP (i), and time series
patterns for different mappings
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Changing the direction and weight of the network results in very different average shortest
path lengths. The fact that this metric is negatively correlated to the seasonality when computed
for all undirected or time-directed VGs, and positively correlated to all other mappings is a good
case in point. The influence of using the distance as the weight is very clear since the correlation
with 3 − MA is significantly higher in such cases. Also, the trend is far better expressed in this
situation.

With this in mind, calculating DP (i) for a WNVG (W: y distance) and combining it with
the in-degree and out-degree of a DWNVG(W: y distance; D: series) gives a richer description of
the series.

Mapping ρ(hcP (i), 3-MA) ρ(hcP (i), ∇1) ρ(hcP (i), Ŝ) ρ(hcP (i), T̂ )
DNVG (D: s) 0.162 0.651 0.549 -0.008
DNVG (D: t) 0.113 0.672 0.453 -0.006

DWNVG (W: ed; D: s) -0.078 0.191 0.160 -0.128
DWNVG (W: ed; D: t) -0.165 0.049 0.057 -0.192
DWNVG (W: ie; D: s) 0.285 0.644 0.506 0.129
DWNVG (W: ie; D: t) 0.275 0.388 0.185 0.264
DWNVG (W: id; D: s) 0.297 0.651 0.506 0.141
DWNVG (W: id; D: t) 0.289 0.397 0.185 0.278
DWNVG (W: d; D: s) -0.082 0.155 0.154 -0.132
DWNVG (W: d; D: t) -0.141 0.110 0.085 -0.175

NVG 0.116 0.673 0.464 -0.008
WNVG (W: ed) -0.165 0.049 0.057 -0.192
WNVG (W: ie) 0.254 0.393 0.164 0.255
WNVG (W: id) 0.268 0.402 0.163 0.270
WNVG (W: d) -0.141 0.110 0.085 -0.175

Table 4.9: Mean correlation between the harmonic centrality, hcP (i), and time series patterns
for different mappings

Table 4.9 shows the same conclusion as the previous section on the comparison between the
degree and the harmonic centrality. Nonetheless, computing the hcP (i) in WVGs where the
weight is the distance, results in low correlations with all patterns. Then, this feature can be
useful to capture other phenomenons of the series that are not represented by the other encodings
above.

Seasonality is always negatively represented by the betweenness centrality, except for networks
with edges that follow the positive direction of the values. This can be explained by the fact that,
for these types of VGs, none of the nodes work as a connector between components, i.e., local
maximums have many in-links but few out-links, and the inverse happens for minimums, which
means that when accounting for this type of direction no node is between a lot of other vertexes.
Table 4.10 shows that the patterns captured by bcP (i − m

2 ) in a WNVG (W: y distance) lead to
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an encoding that is not able to capture any pattern, thus, with the same purpose as the harmonic
centrality, this feature can be used to represent other non-classical characteristics of the series.

Mapping ρ(bcP , 3-MA) ρ(bcP , ∇1) ρ(bcP , Ŝ) ρ(bcP , T̂ )
DNVG (D: s) 0.001 0.013 0.059 -0.023
DNVG (D: t) -0.079 -0.026 -0.135 0.003

DWNVG (W: ed; D: s) -0.002 0.027 0.065 -0.029
DWNVG (W: ed; D: t) -0.080 -0.027 -0.135 0.002
DWNVG (W: ie; D: s) -0.001 0.010 0.049 -0.023
DWNVG (W: ie; D: t) -0.074 -0.029 -0.124 0.002
DWNVG (W: id; D: s) -0.002 0.011 0.050 -0.025
DWNVG (W: id; D: t) -0.077 -0.029 -0.123 -0.001
DWNVG (W: d; D: s) 0.048 0.070 0.152 -0.029
DWNVG (W: d; D: t) -0.100 -0.032 -0.184 0.003

NVG -0.085 -0.051 -0.155 0.011
WNVG (W: ed) -0.080 -0.027 -0.135 0.002
WNVG (W: ie) -0.080 -0.046 -0.154 0.023
WNVG (W: id) -0.088 -0.047 -0.146 0.013
WNVG (W: d) -0.084 -0.026 -0.150 -0.002

Table 4.10: Mean correlation between the betweenness centrality, bcP (i − m
2 ), and time series

patterns for different mappings

Not surprisingly, computing the encodings for different mappings led to distinct descriptions
of the series’ patterns. The features collected from WVGs where the weights correspond to the
inverse of a distance or the angle, do not seem to be very relevant in the context of the time series
components analyzed. Additionally, the conditions of the window encoding imply that using a
DNVG where the edges follow the direction of time is redundant, since the way the features
are calculated already takes time into consideration. All other methods to convert time series
to complex networks produce encodings worth exploring, and the combination of the different
features collected for similar graphs can originate a fuller representation of the time series.

4.2.3 Topological Features Comparison

As mentioned in 4.2.2, the topological features studied complement each other regarding the
patterns they capture. Even so, different measures can represent the same depending on the
type of VG each one is computed on, making the combination of these encodings superfluous.
One way to avoid this is to use the same weight in the WVGs each feature is calculated for.

This subsection compares the in and out-degree of a DWNVG (D: series; W: y distance),
with the other features obtained from a similar but undirected graph. The decision of selecting
these mappings was based on the previous analysis, which demonstrates that computing the
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encodings for these networks originates differences between the patterns each feature expresses.
In addition, in this section, it is shown an example of the measures computed for a time series.

Although the correlations with the time series characteristics were already studied in this
chapter, the way it was done was solely based on its average for each metric. A more detailed
view of the distribution of the correlations and their absolute values is displayed in the box plots
of figure 4.2.

(a) Box-plot of absolute correlations between topological features and patterns

(b) Box-plot of correlations between topological features and patterns

Figure 4.2: Comparison between topological features
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The distributions of the absolute correlations allow an understanding of which patterns are
better represented by each one of the topological measures studied. With the help of figure 4.2a,
it is possible to conclude that the trend is not expressed by the majority of the features. In fact,
this is a consequence of setting the window encoding size to be equal to the period because the
trend is not as notable between observations of the same subgraph. The exception is when the
variance of the series is not constant; if this is the case, the average shortest path length can
represent this trait of the data, something that can be seen by the absolute correlations with
T and 3 − MA. Figure 4.2b upholds this statement, while also adding more information, for
instance, the fact that these topological features are usually positively correlated with the trend,
but negatively with the third-order moving average.

Clearly, the seasonality is the better represented pattern by four out of five encodings. Such
a statement is not surprising, as the observations separated by one period will likely originate
nodes with similar topological properties. Therefore, seasonality is captured by the repetition of
the same values for each feature. It is important to note that this trait of the series is either
positively or negatively correlated with each measure, independently of the series.

One pattern that is mostly portrayed by the in-degree is the local variations of the series.
As stated, being too correlated to the first-order difference may produce an encoding that
resembles the noise of the time series. Nonetheless, having features positively correlated and
others negatively correlated is helpful to distinguish between local minimums or maximums and
further values. Thereby, analyzing the series with the in and out degree, the average shortest
path length, and the betweenness centrality allow inferring which node corresponds to each
situation explained above.

The harmonic centrality is the only encoding that is not very much correlated to any component
of the series investigated. However, in the previous subsection, it was already mentioned that
this is not necessarily damaging, considering the encoding may capture other characteristics of
the data.

4.3 Example of Application

Figure 4.3 is an example of a visual representation of the complex network obtained by mapping
the average monthly production of milk per cow series with an NVG. A window encoding with
size m = 12 was used to calculate the in-degree of the last observation (size of nodes) and the
average shortest path length of the subgraph (color of nodes) for each window. Plots for the
other time series studied can be found in the appendix A (figures A.2 to A.5).
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Figure 4.3: NVG of the monthly production of milk per cow

Just by doing a quick analysis of the image, it is clear that the topological features capture some
important patterns: the average shortest path, D12(i), resembles the inverse of the seasonality;
while the in-degree, kin

12(i), is bigger for time points that represent local maximums of the series,
and smaller for observations that present a negative variation with the value of the previous time
point.

A more detailed evaluation of how each encoding considered in this subsection varies for each
observation is available in the plots below for the same time series as above. Images A.7 to A.10
show the same charts but for each one of the other series.

(a) kin
P (i) of a

DWNVG (w = d, d = s)
(b) kout

P (i) of a
DWNVG (w = d, d = s)

(c) DP (i) of a
WNVG (w = d)

(d) hcP (i) of a
WNVG (w = d)

(e) bcP (i − P
2 ) of a

WNVG (w = d)

Figure 4.4: Topological features encoded from monthly production of milk per cow series
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In this example, it is quite evident that all five topological features are influenced by the
seasonality of the series they were calculated for. Curiously, none of the encodings echos the
trend. Yet, the maximums of the harmonic centrality (that can almost be considered outliers)
match the changes in this pattern. Moreover, the lag of size P between the maximums of the
in and out-degree represents the local variations of the series. Lastly, since there is no change
in the variance of the series, the 3 − MA is only correlated with the trend, and, as such, the
topological measures can not correlate to a none-existing component of the series.

4.4 Summary

In summary, when using WNVGs where the weight is the vertical distance between the values of
the series, some conclusions were drawn. Firstly, the trend and the 3 − MA are expressed by the
out-degree and the average shortest path length. Also, it was verified that all patterns except
hcP (i) are able to describe the seasonality. Besides, a positive variation among consecutive
observations originates a bigger in-degree of the later node, while a negative one does the same
for the out-degree. Finally, harmonic centrality can be seen as another way of describing the
centrality of each node. Hence, combining these topological measures computed with the window
encoding can provide a good characterization of the observations.

Each one of the topological features explored can represent slightly different characteristics of
the data, something that can be induced by the plots in the appendix A and the figures in 4.2b.
It is tremendously useful to know this, for the reason that it shows the adaptability of encodings
to the most relevant traits of the series. For instance, the air passenger series A.2 has increasing
variance, something that is represented by the average shortest path length computed with the
window encoding A.7c.

In the end, this investigation reveals that both local and global topologies of complex networks
mapped from time series can provide a great tool to characterize each observation in the sequence.
The description provided can be used to find similar data points and/or outliers, explore hidden
nuances, or enhance the knowledge that forecasting models can pick up from the series.

With all of this in mind, one can wonder if these features can somehow be used to characterize
entire past events in a way that can be compared to other time periods. One way to achieve this
is by using a vector encoding 4.5 instead of a global or local one, because, this way, all nodes in
each subgraph will be characterized similarly to the last one. A thorough examination of this
solution is brought off in chapter 5.





Chapter 5

Topological Similarity between Obser-
vations

Time Series forecasting is strongly supported by the analysis of the data, specially by studying
the relationship between observations (subsection 2.1.3). The classical approach to do this is by
computing the ACF, which presents the correlation between lagged values. One problem behind
this methodology is that two similar observations but very distinct from the others in the series
would not have much influence on the values of the autocorrelation function.

The empirical study in chapter 4 demonstrates another way of computing the correlation of
time pairs by comparing the topological features calculated with the window encoding strategy
for different types of VGs. If these measures are treated as a node embedding, meaning that
each time point corresponds to a vector of local and global encodings, a pair of observations can
be compared by finding the similarity between the vectors.

Even though this strategy seems to be promising, it may be hard to distinguish between local
maximums and observation values bigger than their preceding. An example of this situation is
displayed below. The plot shows a sample of the NVG obtained for the monthly production
of milk per cow series. The two yellow nodes (01/03/1975 and 01/01/1971) are topologically
similar, and the table presents the embedding for these two vertexes (each feature is normalized
between zero and one).

01/01/1971 01/03/1975
kin

12(i) 0.21 0.31
kout

12 (i) 0.35 0.34
D12(i) 0.60 0.34
hc12(i) 0.11 0.10

bc12(i − 6) 0.39 0.36

Table 5.1: Two topological similar observations of the monthly production of milk per cow series

45
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Following the methodology proposed above, the next step is computing the similarity between
the nodes. Since this corresponds to comparing two vectors of single time points, one good metric
to evaluate how alike they are is the cosine similarity [6]. Therefore, this function can be used to
find the most similar previous node of any vertex:

S(−→y (t), −→y (t − n)) = cos(θ) =
∑

i yt(i)yt−n(i)
|−→y (t)||−→y (t − n)| , where n ∈]0, t]. (5.1)

In fact, this procedure discovers that the most similar time point to 01/03/1975 is 01/01/1971,
with a similarity value of 95%. The problem with this result is that the first observation is a
local maximum, while the latter one is not. While it is true that the two vectors are significantly
alike, given that the seasonality of this series is so well-defined, the distance between all node
embeddings is always small.

The present chapter, presents a solution to this predicament, which focuses on the description
of the subgraph of each window to characterize each observation. Furthermore, an analysis of
this approach through the application in real time series is made available.

5.1 Visibility Networks Subgraphs Similarity

Chapter 4 study was entirely based on four local encodings computed for one observation in
each window and a global measure to describe each subgraph as a whole. Undoubtedly, all
nodes of each network carry some information from the graph, specially the last one. Still, the
topologies of a specific node do not allow characterizing a graph completely and the fact that,
for seasonal series, windows are almost identical between themselves: their topological structures
expressed by global measures are quite similar. Besides, both local and global encodings do not
take advantage of the time sequence inherent to VGs.

In the summary of the previous chapter, it is possible to find a suggestion of a way to
characterize past events by computing the vector encoding of each local feature, instead of doing
it for just one node in each window. The advantages of describing observations by portraying
the subgraph of size m ending in each of them are:

Topological patterns : Rather than attributing the entire importance of each feature to a
single time point, topological measures of all nodes in the window are in their vector;

Resistant to extreme values : Values on extremes of the range of each feature have a big
influence on the average of the local encodings of those observations, while the vector
encoding corresponds only to one entry;

Time direction : Vector order is governed by the natural order of time, allowing to compare
the vectors entry by entry, while considering the sequence of the time series;

Time distance : The combination of the three perks already described enables the consideration
of the time distance between extreme values, and repetition of the same measure.



5.1. Visibility Networks Subgraphs Similarity 47

Figure 5.1 is an example of the vector encoding for each local topological measure analysed
in subsection 4.2.3, computed for the time series on the left.

i
−→
k in

3 (i)
−→
k out

3 (i) Dm(i)
−→
hc3(i)

−→
bc3(i)

3 [0, 2, 1, 0] [1, 0, 1, 1] 1.7 [1.8, 2.5, 2.5, 1.8] [0, 0.7, 0.7, 0]
4 [1, 1, 1, 0] [0, 1, 1, 1] 1.7 [1.8, 2.5, 2.5, 1.8] [0, 0.7, 0.7, 0]
5 [2, 1, 0, 1] [0, 1, 2, 1] 1.0 [2.5, 2.0, 2.5, 2.0] [0, 1.0, 0, 0.2]
6 [1, 0, 2, 0] [0, 2, 0, 1] 1.0 [2.0, 2.5, 2.0, 2.5] [0.6, 0, 0.9, 0]
7 [0, 2, 0, 3] [1, 1, 3, 0] 1.5 [2.0, 3.0, 2.0, 2.0] [0, 0.8, 0, 0]

Figure 5.1: Portrait of the subgraphs of the windows of size 3 obtained from the time series on
the left

The benefits of vector encoding are represented in the table above. For instance, if all features
were computed for the first node in each window, the 3rd and the 6th observation would be
considered almost identical, even though the second one corresponds to a minimum and the first
to a value preceding another minimum.

−→e m(i) = [kin
m (i), kout

m (i), Dm(i), hcm(i), bcm(i)]
S(−→e 3(6), −→e 3(3)) = 95%
S(−→e 3(6), −→e 3(4)) = 95%

On the contrary, comparing the topological patterns entry by entry between these time
points, which implies that the comparison considers the time direction and distance, shows
that they are quite different from each other, and that actually the most similar observation to
the 6th is the 4th, both corresponding to minimums of the series. Also, the betweenness centrality
is always zero for the first and last observation in each window, so, considering the two elements
of the vector is irrelevant. Removing them results in the following similarity scores:

−→e m(i) = c(−→k in
m(i), Dm(i), −→

hcm(i), −→
bcm(i))

S(−→e 3(6), −→e 3(3)) = 78%
S(−→e 3(6), −→e 3(4)) = 90%

where, for simplicity, −→
bcm(i) = [bcm(i, 1), . . . , bcm(i, m − 1)] and c(−→x , −→y ) is the concatenations

of the two vectors.

Still, the similarity between the 3rd and 6th node is high due to the limits of the cosine
similarity, which does not consider the magnitude of the compared vectors. Another possible
similarity measure is the Coincidence Similarity:

"The coincidence similarity, consisting of a combination of the Jaccard and interiority
indices (...) has been found to allow particularly complete and strict quantification
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of similarity, presenting enhanced performance in important tasks such as pattern
recognition (...)"

Luciano da F.Costa [6]

which is calculated by the following equations:

sx = sign(x) = x

|x|
(5.2)

sxy = sign(xy) = sign(x) sign(y) = sxsy (5.3)

J(x⃗, y⃗) =
∑

i sxiyi min {sxixi, syiyi}∑
i max {sxixi, syiyi}

(5.4)

CS(x⃗, y⃗) =
∑

i min {sxixi, syiyi}
min {

∑
i sxixi,

∑
i∈S syiyi}

s1(x⃗, y⃗) (5.5)

Using the coincidence index instead of the cosine leads to very distinct results:

CS(−→e 3(6), −→e 3(3)) = 36%
CS(−→e 3(6), −→e 3(4)) = 54%

Instantly, it is possible to realize that the two values are considerably smaller than the ones
obtained before. This is absolutely reasonable since the 4 observations in the window ending
at the 6th time point are composed of two local minimums in the 4th and 2nd positions, a local
maximum in the 3rd position, and one value in a downwards trend in the first. In contrast, the
subgraph ending at the 3rd node has two vertexes in a declining tendency, the maximum of the
series and one value preceding a maximum. As such, it is not plausible to attribute a similarity
score so high as the cosine when the two patterns are so different. Even the similarity between
the 6th and the 4th observations should not be as high as 90%, because the subgraphs are still
distinct from one another in a way that should be captured by the similarity score. Furthermore,
the gap between the two similarity scores is greater than the one obtained before, which shows
that the coincidence index can enhance the spread of the distribution of the indexes.

Although this improvement is notable, considering both the in and out degree vectors is
redundant. The two measures are almost symmetrical to each other and the sum of their elements
is the same. Consequently, the differences between the two subgraphs will be doubly penalized by
the two identical features representing the degree. One option to deal with this problem would
be to calculate the degree in an undirected graph, but, considering the conclusions of chapter 4,
both the in-degree and the out-degree are more helpful to distinguish between local minimums
and maximums. Figure 4.2a demonstrates that the in-degree is more correlated with patterns
that are not well represented by other features than the out-degree, leading us to select this
measure rather than using both metrics or the degree.

With these changes the similarity between the observations being studied is now:

CS(−→e 3(6), −→e 3(3)) = 47%
CS(−→e 3(6), −→e 3(4)) = 60%
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Thus, the penalization of the differences in the degree component is smaller, resulting in higher
similarities, but still in a reasonable range.

Another possible refinement of this strategy is to standardize the elements of the vectors
based on the same components in other vectors. As an outcome of this pre-processing method,
the same entries across all vectors have now null mean and unit standard deviation. Though,
applying this step to a network as small as the one in figure 5.1 leads to poor results given that
the distribution is not based on enough values. In conclusion, standardizing the components of
the vectors only makes sense for time series with enough data, particularly because it is helpful
to not give more weight to one topological feature than others.

5.2 Similarity Finder

Finding the similarities scores between all observations and all previous time points in a time
series based on their topological historical patterns has many benefits for any type of analysis:

No temporal restrictions : The most similar observations may be from before the last seasonal
period or even very far in time;

Independent of seasonality : It is very much possible that one observation, i, is more similar
to time points not belonging to {i − nP}, where n ∈ Z+ ∧ n ≤ i

p and P is the period;

Pattern Recognition : Each time point is not only described by its position in the time series
but by itself and its m past observations;

Outside-the-box characterization : Each pattern is characterized by topological features
computed from VGs that represent classical time series characteristics and other hidden
traits of the data.

Based on the previous section’s strategy to compare observations based on their subgraphs of
size m, it is now feasible to implement the similarity finder algorithm represented above, which
can be mathematically described by the following equations for small time series:

−→
S tf

m(i) = [CS(tfm(i), tfm(0)), . . . , CS(tfm(i), tfm(t − 1))] (5.6)

−→
S G

m(i) =
−→
S

−→
k in

m (i) + −→
S D

m(i) + −→
S

−→
hc
m (i) + −→

S
−→
bc
m (i)

4 (5.7)

This methodology compares the different observations by calculating a global similarity score
based on the concatenation of the different vector encodings and the average shortest path length.
However, as demonstrated in the comparison between the features on subsection 4.2.3, some
topological features may be more important to describe specific time series than others. In light
of this conclusion, the similarity finder algorithm implemented allows computing a weighted
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average of the similarities between each topological feature:
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−→
S

−→
bc
m (i)

a + b + c + d
(5.8)

and (a, b, c, d) are parameters of the algorithm which represent the weights of the similarities
between each topological measure.

The schematic implementation of the similarity finder class available in the networktsf package
is presented in the figure below. This class has two main methods, fit_transform(series), where
all possible pairs of similarity indexes are calculated, and the transform(series2), where only the
pairs of the new observations are computed (series2 is a continuation of series).

Figure 5.2: Schematic diagram for the Similarity Finder
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Forecasting via Complex Networks

"Occasionally, old data will be less useful due to structural
changes in the system being forecast; then we may choose to
use only the most recent data. However, remember that good
statistical models will handle evolutionary changes in the
system; don’t throw away good data unnecessarily."

Hyndman, R.J., & Athanasopoulos, G. (2018) [16]

In the last decades, a plenitude of forecasting models was developed, and most provide great
forecasts when the time series being forecasted respects the assumptions of the methods. Many
of these algorithms use the autocovariance and autocorrelation functions for the estimation of
parameters, which carry the historical information of the time series. Anyhow, forecasting models
usually neglect relations between observations distant in time, in particular when such events are
very distinct from the rest of the series.

Based on the quote from Hyndman R.J et all [16], it is crucial for prediction models to not
discard good data. The problem with this statement regards the definition of "good data" since
some doubts may arise from it. Is it important to take into account data that is distant in time?
Are outliers worth considering? If the system is very different from a specific period, should the
model gather information from it to predict this distinct and more recent stage of the series?
The present study interprets "good data" as all observations in a time series, which is evidently a
bold assumption that can be justified by answering the questions above.

Data from a long time ago : Models should consider old observations because their future
may be similar to what is being predicted;

Outliers : Considering outliers is trickier. If they exist due to an error in the measurements,
then they should not be considered. However, if that is not the case, patterns before them
may help predict new outliers, and what happens afterward also helps to forecast what will
occur after a new one;
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Distinct Systems : Even if a new system is completely different from the past, the patterns in
the past may repeat once again. For instance, if there are cycles in the series, the series
may change its system from cycle to cycle.

In this regard, the next question would be "how?" (e.g. "How can a model consider all
observations to predict the future?"). In fact, most forecasting methods only consider the entire
time series for parameter estimation. One good example is any auto-regressive model in which
the parameters define which lags are going to be used to predict all observations, independently
of changes in the patterns (e.g. an ARIMA(1, 0, 0)(1, 0, 0)12 only considers observations yt−1,
yt−12 and yt−13 to estimate yt). In conclusion, the main goal of the present work is to answer
the "how?" question by finding an algorithm flexible enough to use any observation to predict
ahead of the most recent one in which the model was fitted.

A solution to the aforementioned question is provided in this chapter through the proposal of
a new forecasting method called Forecasting based on Networks’ Similarities (FbNS). Moreover,
an evaluation of this model’s performance is presented, while comparing it to baseline models.

6.1 Forecasting based on Networks Similarities

The two previous chapters already provide a hint to achieving this study’s primary objective.
By using the similarity finder algorithm (Chapter 5), it is possible to get similar time points to
the most recent observation based on the past topological patterns. In theory, such strategy
answers the "how?" question because, as mentioned in section 5.1, this methodology has no
temporal restrictions and is independent of seasonality, which means it is capable of
finding valuable observations to predict yt very far in time and outside {t−nP}, n ∈ Z+ ∧n ≤ t

P

(where P is the frequency). Additionally, the algorithm works by recognizing patterns with
an out-of-the-box characterization of each measurement in the time series, something that
can be extremely valuable given that, most likely, similar events have similar futures.

As such, this section introduces a novel time series prediction algorithm built on the principles
proposed in the present work. Its name, Forecasting based on Networks’ Similarities (FbNS),
arises from the core step of the algorithm, which is finding similar observations based on the
subgraphs of size m + 1 ending in them. The implementation of the FbNS was developed to
answer all the questions made in this chapter, leading to a flexible and easy class to use, available
in the forecasting module in the networktsf library. As per usual, this class only encompasses
two main methods: fit(time series) and predict(N), in which N is the number of steps ahead
desired to predict. Also, the practicality of the model can be justified by the fact that it has
only one hyperparameter: the size of the window, m, in which the topological features of each
observation are computed to calculate the similarity between themselves.
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FbNS first fitting step is to map the time series into two VGs, a WNVG and a DWNVG.
Both mappings edges weight is based on the vertical distance, and the directed graph edges point to
the node with higher value. Then, the window encoding strategy is used to compute the in-degree
vector in the directed network, while the average shortest path length, the harmonic centrality,
and the betweeness centrality vectors are calculated in the undirected graph. Subsequently, these
topological measures are used to calculate the similarity between all available time points for
each feature.

At this stage, the weighted average of the similarity scores must be calculated to generate
predictions. Nonetheless, observations with low similarity may not be helpful to produce a good
forecast. Given this, a limit to which time points are considered must be delineated based on the
each time point similarity distribution. FbNS selects the relevant observations, RO(t − 1), to
generate the forecast of yt by finding the time points with similarity scores to yt−1 above the
pth-quantile of the W

−→
S G

m(t − 1, a, b, c, d) (5.8) distribution:

WSG
m(t − 1, i, a, b, c, d) = W

−→
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m(t − 1, i) = WSG
m(t − 1, i, a, b, c, d) (6.2)

W
−→
S G
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m(t − 1, a, b, c, d) (6.3)

ROt−1 = {i} ∈ WSG
m(t − 1, i) > Q(p) −−→

WSG
m(t − 1) (6.4)

and, in the end, the forecast is simply a random walk with corrections:

yt(m, a, b, c, d, p) = yt−1 +
∑

i∈ROt−1

WSG
m(t − 1, i)∑

j∈ROt−1 WSG
m(t − 1, i)(yi+1 − yi) (6.5)

With these equations, it is possible to make predictions based on the subgraphs similarities.
However, this model would not be easy to use with so many hyperparameters. To solve this
issue, the implementation of the model estimates the weights of the similarities (a, b, c, d) and
p through a least squares estimation (subsection 2.1.3). This step is of utmost importance
because, as described in the previous chapter, some features may be more pertinent to describe
similar events than others in specific time series, and the definition of the p-quantile allows
finding all relevant observations that minimize the forecasting error.

At long last, FbNS can make predictions, yet, only one-step-ahead which is not useful for
most cases. Thus, the prediction method must be capable of predicting n steps ahead. To that
end, for each forecast, FbNS computes the similarity scores to all past observations (and forecasts
if n > 1). Then, it uses the estimated parameters to produce each forecast iteratively:

yt+(n−1) = yt+(n−2) +
∑

i∈ROt+(n−2)

WSG
m(t + (n − 2), i)∑

j∈ROt+(n−2)
WSG

m(t + (n − 2), i)(yi+1 − yi) (6.6)

where n ∈ Z+

One problem that may be hard for the model to solve is when the mean difference between
consecutive observations is changing. Series that present such characteristic have a non-normal
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distributions of their values. To solve this, FbNS performs a Shapiro-Wilk test [27] to verify
if the series follows a normal distribution, then, if it does not, a box-cox transformation [2] is
performed to normalize it.

All of these steps combined represent the fitting method of the FbNS, from which the
parameters necessary to make a one-step-ahead prediction are computed and saved in the model
class.

The schematic representation of the two methods is presented on the following page.

Figure 6.1: Schematic diagram for the fitting method of the FbNS
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Figure 6.2: Schematic diagram for the prediction method of the FbNS

6.2 Example of Application

Given that the proposed model is now defined, the next step is to check if it works. An example
of the applicability of the FbNS algorithm is presented in this section. To do so, the value of the
total monthly wine sales in the Australia series was divided into a train set between January
1980 and September 1992, and a test set with months ranging from October 1992 and August
1994. Cross-validation with one-step-ahead forecasts is displayed to analyse the model without
the accumulated error of previous predictions that occurs in multi-step forecasts. Afterwards,
the model was fitted in the train set and the predictions were generated for the following 24
months after the end of the training in order to compare with the test set.
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(a) FbNS One-step-ahead forecast

(b) Auto-Arima One-step-ahead forecast

Figure 6.3: One-step-ahead forecasts of the total monthly wine sales in Australia series

From the analysis of the plots in figure 6.3 it stands out that both models are a really good
fit for the series. Not only that, the one-step-ahead predictions made with the FbNS generate
better forecasts in the local minimums and maximums of each year, meaning that it is more
capable of capturing local variations; while the Auto-Arima model is much better in predicting
the minimums of each season. The mean absolute percentage error of the FbNS is 13%, yet the
Arima does a better job with an 8% MAPE.
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(a) FbNS 24-steps-ahead forecast

(b) Auto-Arima 24-steps-ahead forecast

Figure 6.4: 24-steps-ahead forecasts of the total monthly wine sales in Australia series

When making a 24-steps-ahead forecast the scenery is different. In fact, the performance
of the FbNS improves (its MAPE is now 9.6%), which can be verified by an even more stable
representation of the local variations, far better than the one obtained by the Auto-Arima. The
second method still has better performance (MAPE = 5.7%), something that arises from the
same problem as in the one-step-ahead forecast, the FbNS model is not able to capture the
minimums of each year as well as the Arima.

One point worth exploring is the local maximum that happens in August 1993, because since
1987 this month actually corresponds to a local minimum, but before that date, it used to be a
maximum. Obviously, the Auto-Arima model is not able to predict this variation similar to the
ones that happened at least 7 years before. In contrast, since the FbNS method has no temporal
restrictions and the topological patterns in 1993 are similar to the ones observed in 1986, the
model actually predicts that this month is a local maximum, which contradicts the tendency
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from more recent years. The main goal of building this model was to capture situations such as
this one. Hence, this example shows that it is possible to do so.

Besides the fit and predict methods, the FbNS also has a plot_diagnostic() function. This
diagnostic contains the similarity distributions for each feature and the estimated weight of each
of them to compute the global similarity distribution. Moreover, the estimated pth-quantile of
the weighted sum of the similarities distribution is presented in the histogram of this variable.

Figure 6.5: Similarity distributions of the FbNS model in the total monthly wine sales in Australia
series
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The diagnostic produced for wine series (Figure 6.5) demonstrates that most pairs of
observations are dissimilar, resulting in only considering the observations with similarity above
Q(93. 4%) −−→

WSZ
m(i) to predict i + 1. Another important analysis to make with these plots is the

study of the global similarity distribution. Ideally, this distribution would be bimodal, with the
first maximum near 0 and another one near 1. This is not the case for the wine series, since
the distribution is actually right-skewed, which is not so bad because, most likely, the valuable
time points are in the right tail. Probably, if the distribution was normal, the model would not
be able to make predictions. In this sense, paying attention to this diagnosis is fundamental to
understand if the model can be used to predict the series it was fitted in.

6.3 Experimental Studies

A further evaluation of the model performance is displayed in this chapter and compared with
the Auto-ARIMA results in multiple time series. This comparison is done by calculating the
mean absolute and root mean squared errors (MAE and RMSE) 2.1.3 for each model.

In addition, a regression with ARIMA errors is also included in the study. In this model
(kin(f)kout(f) AUTO-ARIMA), the regressors are the in-degree and out-degree computed for the
last node in each subgraph of size equal to the frequency of each series mapped with a DWNVG
(weight is the vertical distance between nodes and the edges point to the node with higher value).

Each model was fitted in almost 4k time series, with different prediction horizons. These
sequences are divided into different datasets with categories that describe the field the observations
were collected from:

1. FJ Glucose Values:

• Category - Medicine
• Horizon - 24 steps

2. Other time series in section 6.3
(except M2 Dataset) (5 series)

• Category - Macro Economics
• Horizon - Twice the frequency

3. M1 Dataset (1001 series)

• Category - categories of M1-
competition

• Horizon - horizon from M1-
competition

4. M2 Dataset (29 series)

• Category - categories of M2-
competition

• Horizon - horizon from M2-
competition

5. M3 Dataset (2829 series)

• Category - categories of M3-
competition

• Horizon - horizon from M3-
competition

https://forecasters.org/resources/time-series-data/m-competition/
https://forecasters.org/resources/time-series-data/m2-competition/
https://forecasters.org/resources/time-series-data/m3-competition/
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In order to perform this experiment, the developed code uses parallel computing so that
each model fits and makes predictions for 16 series at the same time (the machine used has 16
processors). Then, the performance is compared in the following tables considering the dataset,
frequency and category.

Model Auto-Arima FbNS Auto-Arima (kin(f)kout(f))
Dataset
FJ Glucose 15 minutely (1 series) 48.2 58.6 49.9
M1 monthly (617 series) 1971.1 3340.2 2246.7
M1 quarterly (203 series) 1983.1 4639.5 2957.8
M1 yearly (177 series) 119067.2 136094.9 198662.9
M2 monthly (23 series) 89590.1 165924.2 104560.4
M2 quarterly (6 series) 33.2 31.5 36.6
M3 monthly (1428 series) 731.7 1173.9 728.7
M3 quarterly (756 series) 631.8 731.0 693.2
M3 yearly (645 series) 1502.8 3912.0 1694.8
air passengers monthly (1 series) 68.6 37.6 71.1
ausbeer quarterly (1 series) 5.8 17.7 6.3
monthly milk monthly (1 series) 7.8 14.4 8.4
wine monthly (1 series) 1411.9 1906.3 1604.7
wooly quarterly (1 series) 760.5 726.4 813.2

Table 6.1: Comparison between the average MAE for each dataset and frequency

Model Auto-Arima FbNS Auto-Arima (kin(f)kout(f))
Dataset
FJ Glucose 15 minutely (1 series) 54.2 65.9 56.4
M1 monthly (617 series) 2336.5 4039.2 2671.2
M1 quarterly (203 series) 2265.5 5386.9 3427.6
M1 yearly (177 series) 136695.6 151608.6 219643.9
M2 monthly (23 series) 111494.4 195456.0 129129.7
M2 quarterly (6 series) 37.0 34.8 40.3
M3 monthly (1428 series) 870.9 1419.7 878.0
M3 quarterly (756 series) 735.7 871.9 808.5
M3 yearly (645 series) 1706.2 5859.0 1939.7
air passengers monthly (1 series) 74.3 41.0 76.9
ausbeer quarterly (1 series) 7.1 20.6 8.4
monthly milk monthly (1 series) 9.6 16.8 11.0
wine monthly (1 series) 1968.9 2461.4 2101.8
wooly quarterly (1 series) 1028.5 948.5 1060.1

Table 6.2: Comparison between the average RMSE for each dataset and frequency
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Tables 6.1 and 6.2 demonstrate that the regression with ARIMA errors is very similar to the
Auto-Arima, and, in all datasets its RMSE is slightly bigger. With this analysis it is possible to
conclude that using the in-degree and out-degree in a regression model may add noise to the
method, therefore, its performance is worse than a simpler version.

The average MAE and RMSE for each dataset and frequency shows that the proposed model
is competitive enough to get better results than an Auto-Arima in some cases. In fact, FbNS
performs better in 1409 time series. However, the classical method is still a better forecasting
method for most time series studied. This observation is due to the assumptions of each model:
FbNS gives more importance to patterns similar to the ones observed in the past than recent
changes of the series. If the pattern is new but can be induced by the recent behaviour of
the sequence, FbNS won’t be able to predict it. On the other hand, an ARIMA model always
considers the most recent observations as the most important ones, providing stability to the
model.

Only computing the average of the errors makes this analysis susceptible to outliers. Figure
6.6 allows observing the distributions of the mean absolute error, for each model, dataset and
frequency.

Figure 6.6: Distribution of the MAE for each model, dataset and frequency
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The distributions above help comprehending the big differences in the average MAE shown
in table 6.1, which are due to outliers, especially in the results from the FbNS model. Actually,
when removing the outliers, the distributions are very similar. Therefore, the proposed algorithm
is clearly worth exploring, in particular, when the series might have repeating patterns from the
past.

Another interesting point of view is to evaluate the models for each category in the datasets.
Tables 6.3 and 6.4 present the average value of the errors of each model in each category.

Model Auto-Arima FbNS NV Auto Arima
Category
BIOLOGY (1 series) 7.8 14.4 8.4
DEMOGRAPHIC (554 series) 1152.2 1529.8 1273.3
FINANCE (279 series) 1337.0 1957.9 1377.6
INDUSTRY (755 series) 2623.9 6807.5 2901.6
MACRO (1054 series) 1600.6 8807.1 3590.2
MEDICINE (1 series) 48.2 58.6 49.9
MICRO (1154 series) 19593.5 16478.9 18631.6
OTHER (63 series) 751.2 1167.0 767.1

Table 6.3: Comparison between MAE’s for each category

Model Auto-Arima FbNS NV Auto Arima
Category
BIOLOGY (1 series) 9.6 16.8 11.0
DEMOGRAPHIC (554 series) 1332.8 1883.1 1485.6
FINANCE (279 series) 1511.9 2304.7 1573.3
INDUSTRY (755 series) 2946.6 7377.0 3260.9
MACRO (1054 series) 1937.5 9632.2 4382.4
MEDICINE (1 series) 54.2 65.9 56.4
MICRO (1154 series) 22690.0 19975.4 20707.2
OTHER (63 series) 903.5 1419.2 921.3

Table 6.4: Comparison between RMSE’s for each category

Analysing the results in both tables leads to similar conclusions from the ones made previously
(i.e. the scale of the errors is the same for all categories, which means that the FbNS is somewhat
similar in performance to the Auto-Arima). There is no clear difference between the two models,
though the FbNS ig globally better in micro economics series, while the Auto-Arima is superior
in all other categories.

It should be noted that the window size of the FbNS model was not adjusted to any series
(the frequency of each series was always selected as the window size), because the objective of
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this study was to show that the FbNS model was competitive enough, even when not searching
for its only hyperparameter. In contrast, the Auto-Arima model already does this for each series
it is fitted in.

With all this in mind, the study clearly shows that the proposed model is worth exploring.
Finding the optimal window size may also be an important task to get a better fit. Though, if
the series is not very much correlated to any event in the past, then a Auto-Arima is probably the
best choice out of these two; contrarily, when historical information is very important the FbNS
is a good candidate to generate good predictions. Furthermore, the results also support the use
of the similarity finder algorithm proposed in Chapter 5, since it finds similar observations based
on their past, which are used by the FbNS to make predictions.





Chapter 7

Conclusions

Most forecasting models ignore data far in time when making predictions, which is a limitation
because a pattern that may be happening or will happen in the future might be similar to one
distant in time. In the past decade, a new area that maps time series into complex networks
to mine their characteristics started gaining attention. Moreover, forecasting algorithms based
on these complex network mappings were developed in recent years and proved that this new
research topic can provide good tools to build useful forecasting methods. The work developed in
this thesis was focused on analysing the advantages of characterizing observations with topological
features collected from complex graphs, while trying to reduce the limitation of most forecasting
models described above.

This Chapter summarizes our main contributions and presents suggestions for future research
based on the work developed.

7.1 Main Contributions

Chapter 3 displays a taxonomy of the forecasting algorithms based on network science. This
contribution creates a global picture of the different algorithms previous authors developed.
Making this overview was an important stepping stone to materialize the present study.

The second contribution is a new implementation of a window encoding (section 4.1) strategy
that allows computing topological features in subgraphs of the series that can be used to forecast.
Then, this strategy was used to compute features for each observation in several time series, so
that they could be compared to the classical patterns of every sequence. In the end, the study
conducted to find the optimal window size and mapping method for each topological feature,
as well as the advantages of using these metrics to describe time series lead to the following
conclusions:
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• The study made in subsection 4.2.1 suggests that, for periodic series, the best window size
m is probably in the interval m ∈ [P/2, 2P ], where P is the period of the series.

• Most mapping methods result in interesting variables that represent several classic char-
acteristics of the time series they are computed for. When the features are computed in
graphs where the edges correspond to distances between observations their correlation with
the patterns in subsection 2.1.2 is higher.

• Lastly, the chapter closes by suggesting the use of the combination of in and out degree
computed for a directed weighted VG, in which the direction is the series and the weight is
vertical distance, and the average shortest path length, betweenness centrality and harmonic
centrality for the same, but undirected network.

One of the core implementations of this thesis is the similarity finder algorithm described
in Chapter 5. This methodology, supported by the vector encoding introduced in the window
encoding section (4.1), allows finding similar observations in a time series. This algorithm uses
the conclusions of Chapter 4, by combining the topological features suggested in order to describe
each observation. Then, the similarity between the vectors obtained is calculated with the
coincidence similarity metric [6].

Finally, the main goal of the present thesis was achieved by the combination of all contributions
made in this work. A novel forecasting model, FbNS, was introduced in Chapter 6. The window
encoding strategy was used to compute the vectors of the topological features suggested in chapter
4; then with these features, the similarity finder algorithm calculates the coincidence index to
compare patterns in the series; after all, the predictions are made based on the most similar
observations to the one being forecasted. The study of the performance of the FbNS shows that
the model is not limited by time distance, since in some cases the most similar patterns are from
distinct periods of the series. Also, the model performance proved that it can provide better
results than the Auto-Arima, even without finding the optimal window size.

In summary, this work addressed the common issue of neglecting old data in many forecasting
algorithms. To do so, complex network mappings were used to build a novel forecasting method,
FbNS, based on the similarity between the subgraphs topological patterns. Using the proposed
window encoding strategy, and features that proved capable of capturing important traits of the
series, was essential to make the present thesis possible.

7.2 Future Work

All objectives of this work were achieved, making it a good foundation for further developments.
While developing the algorithms proposed and testing them in distinct contexts, other studies
and improvements seemed to be appropriate to tackle some limitations of the methods and to
strengthen their analysis.
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Studying other topological features and mappings might give other perspectives that enrich
the characterization of the observations in a time series. Even though, section 6.3 is focused in
four topological features, other measures were tested before deciding the ones which would be
presented in this work. Nonetheless, the study made for other graph topologies was not as deep.
As such, understating the benefits of using other measures or other mappings would increase the
knowledge in this field.

Since the main goal of this thesis was to address some limitations of prediction algorithms,
all developments made were focused on time series forecasting. It is true that this subject
is particularly interesting nowadays, but other fields could benefit from the window encoding
strategy (4) and the similarity finder algorithm (5). Applying these methodologies for time
series analysis, clustering, outlier detection or even just to find if something very similar already
happened in the past, may help other fields grow (e.g. if data from a heartbeat sensor in a
patient shows an odd observation recently, and the doctor wants to know if it was the first time,
the similarity finder can help selecting time periods that may show the same behaviour).

In terms of further developments, the proposed forecasting method could benefit from an
evolution in the way it is predicting. One of the biggest limitations of the algorithm is that, most
of the times, it does not make use of recent changes in the flow of the series to generate better
forecasts. Exploring the combination of the FbNS with an autoregressive model (AR(p)) could
solve this.

Furthermore, FbNS does not consider the possible error of its predictions, which, when the
error is high for a certain prediction step, leads to a situation where all further forecasts carry that
error and their values are very far from the real ones. Adding an MA process to the prediction
algorithm, to model the errors, could make the method more stable.

Including exogenous variables as regressors of a method can be important depending on
the cross-correlation between the feature and the endogenous series. This method could be
easily applied to the developed model. Though, including these features in the similarity finder
algorithm would allow finding close correlated time points both in terms of the characteristics of
the time series itself, and the variables which may have influenced its behaviour.

The promising results obtained show that time series forecasting via complex networks has
the potential to really boost this field of study. Besides, all findings in this thesis may enrich
other fields, and help solving difficult problems across several subjects.
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Characterization of Observations us-
ing Topological Features

Figure A.1: NVG of the FJ Glucose Values
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Figure A.2: NVG of the monthly air passengers

Figure A.3: NVG of the quarterly beer production in Australia
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Figure A.4: NVG of the total monthly wine sales in Australia

Figure A.5: NVG of the quarterly production of woollen yarn in Australia
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Figure A.6: Topological features encoded from FJ Glucose Values series
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Figure A.7: Topological features encoded from monthly air passengers series
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Figure A.8: Topological features encoded from quarterly beer production in Australia series
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Figure A.9: Topological features encoded from total monthly wine sales in Australia series
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Figure A.10: Topological features encoded from quarterly production of woollen yarn in Australia
series
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Appendix B

Forecasting based on Networks Simil-
arities

(a) FbNS 24-steps-ahead forecast

(b) Auto-Arima 24-steps-ahead forecast

Figure B.1: 24-steps-ahead forecasts of the total monthly air passengers series
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Figure B.2: Similarity distributions of the FbNS model in the monthly air passengers
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(a) FbNS 24-steps-ahead forecast

(b) Auto-Arima 24-steps-ahead forecast

Figure B.3: 24-steps-ahead forecasts of the total quarterly beer production in Australia series
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Figure B.4: Similarity distributions of the FbNS model in the quarterly beer production in
Australia
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(a) FbNS 24-steps-ahead forecast

(b) Auto-Arima 24-steps-ahead forecast

Figure B.5: 24-steps-ahead forecasts of the total monthly production of milk per cow series
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Figure B.6: Similarity distributions of the FbNS model in the monthly production of milk per
cow
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(a) FbNS 24-steps-ahead forecast

(b) Auto-Arima 24-steps-ahead forecast

Figure B.7: 24-steps-ahead forecasts of the total quarterly production of woollen yarn in Australia
series
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Figure B.8: Similarity distributions of the FbNS model in the quarterly production of woollen
yarn in Australia
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