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Abstract 

In general, products applied to the skin have great difficulties in crossing the outermost layer 

of the epidermis, the stratum corneum. Due to this limitation, there has been an increase in 

research in order to improve the cutaneous penetrability/permeability of drugs and active 

ingredients, being the use of lipid nanoparticles one of the most promising strategies. 

As sustainability is a growing concern, the use of by-products, particularly from the food 

industry, is essential, which results in a decrease of tons of waste in the ecosystem. As an 

example, currently, the food industry uses only the passion fruit pulp, being discarded seeds 

and peel. In this sense, the present work consisted in the use of passion fruit seeds 

(Passiflora edulis) from Madeira Island to extract the oil used in the production of lipid 

nanoparticles, specifically nanostructured lipid carriers (NLC), with the objective of 

developing formulations for cutaneous application, with antioxidant and skin depigmentant 

effect. Passion fruit oil has an antioxidant effect due to the presence of polyphenols, such 

as piceatannol and resveratrol. In this work, the extracts obtained by the ultrasound method 

showed significant amounts of piceatannol and resveratrol when compared with a 

commercial oil used as a reference. The NLC prepared with Precirol® ATO5, as a solid 

lipid, and passion fruit oil from Madeira Island, as a liquid lipid, showed good physical and 

chemical characteristics. In addition, these nanoparticles showed greater tyrosinase 

inhibitory activity, in relation to the free oil, and good skin penetration, observed by scanning 

confocal microscopy. 

The hydrogel developed from the NLCs, after gelation with Carbopol® 940, showed good 

stability over one year of storage and promoted the permeation of the active ingredient 

(piceatannol) in the viable epidermis, which is the target layer for the so-called antioxidant 

and depigmenting action. 

The formulations developed in this work, obtained from a by-product of the Madeira Island 

food industry, can be considered safe because they do not present any cytotoxicity, in 

addition to presenting good stability over one year of storage. In fact, from a sustainable 

point of view, this new application of passion fruit seeds oil can be a strategy for reusing 

this by-product by the cosmetic industry. 

Keywords: passion fruit oil, lipid nanoparticles, piceatannol, antioxidant, depigmenting 

agents.  
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Resumo 

De um modo geral, os produtos aplicados na pele apresentam grandes dificuldades em 

atravessar a camada mais externa da epiderme, o estrato córneo. Devido a esta limitação, 

tem havido uma crescente investigação no sentido de aumentar a 

penetrabilidade/permeabilidade cutânea de fármacos e ingredientes ativos, sendo a 

utilização de nanopartículas lipídicas uma das estratégias mais promissoras. 

Sendo a sustentabilidade uma preocupação crescente, é fundamental a utilização de 

subprodutos, nomeadamente da indústria alimentar, o que acarreta uma diminuição de 

toneladas de lixo no ecossistema. Como exemplo, atualmente, a indústria alimentar utiliza 

apenas a polpa do maracujá, sendo descartadas as sementes e a casca. Neste sentido, o 

presente trabalho consistiu no aproveitamento das sementes de maracujá (Passiflora 

edulis) da Ilha da Madeira para a extração do óleo utilizado na produção de nanopartículas 

lipídicas, especificamente vetores lipídicos nanoestruturados (NLC), com o objetivo de 

desenvolver formulações para aplicação cutânea, com efeito antioxidante e 

despigmentante da pele. O óleo de maracujá apresenta efeito antioxidante devido à 

presença de polifenóis, como o piceatannol e o resveratrol. Neste trabalho, os extratos 

obtidos pelo método de ultrassons apresentaram quantidades significativas de piceatannol 

e resveratrol quando comparados com um óleo comercial usado como referência. As NLCs 

preparadas com Precirol® ATO5, como lípido sólido, e óleo de maracujá da Ilha da 

Madeira, como lípido líquido, apresentaram boas características físicas e químicas. Além 

disso, as nanopartículas apresentaram maior atividade inibitória da tirosinase, em relação 

ao óleo livre, e boa penetração cutânea, observada por microscopia confocal de 

varrimento. 

O hidrogel desenvolvido a partir das NLCs, após gelificação com Carbopol® 940, 

apresentou boa estabilidade ao longo de um ano de armazenamento e promoveu a 

permeação do ingrediente ativo (piceatannol) na epiderme viável, que é a camada alvo 

para a designada ação antioxidante e despigmentante. 

As formulações desenvolvidas neste trabalho, obtidas a partir de um subproduto da 

indústria alimentar da Ilha da Madeira, podem ser consideradas seguras por não 

apresentarem qualquer citotoxicidade, além de apresentarem boa estabilidade ao longo de 

um ano de armazenamento. De facto, do ponto de vista sustentável, esta nova aplicação 

do óleo de sementes de maracujá pode ser uma forma de reaproveitamento deste 

subproduto pela indústria cosmética. 

Palavras-chave: óleo de maracujá, nanopartículas lipídicas, piceatannol, antioxidante, 

agentes despigmentantes.  
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Aims and Organization of the Thesis 

Develop and characterize lipid nanocarriers (NLC) containing passion fruit (Passiflora 

edulis) seeds oil proceeding from by-products of the food industry from Madeira Island and 

preparation of hydrogels based on NLC, intended to exert an antioxidant and depigmenting 

action on the skin. 

 

Specific objectives 

- Extraction of oil from passion fruit seeds using several methods and solvents, in a 

sustainable and efficient manner. 

- Evaluation of the antioxidant activity of passion fruit seeds oil. 

- Qualitative and quantitative determination of piceatannol and resveratrol content in 

passion fruit seeds oil by HPLC. 

- Preparation of nanostructured lipid carriers (NLC), using passion fruit oil as the liquid lipid. 

- Evaluation of the physical-chemical characteristics and cytotoxicity of the developed lipid 

nanocarriers. 

- Preparation and characterization of NLC-based hydrogels. 

- Study of the tyrosinase inhibition effect of the developed formulations. 

- Evaluation of the stability of the developed formulations after one year of storage. 

 

This thesis is organized in seven chapters. The list of chapters is below: 

- Chapter 1 includes the theoretical part about the structure of human skin and 

penetrability, antioxidant and skin whitening activity, lipid nanoparticles, passion fruit 

(Passiflora edulis) characteristics and sustainability. 

- Chapter 2 describes some aspects related to piceatannol and its benefits on the 

skin, such as depigmenting, antioxidant, anti-aging, cutaneous wound-healing and 

anti-acne activity. 

- Chapter 3 compares the Soxhlet and ultrasound extraction methods for the 

sustainable extraction of passion fruit oil using different extraction solvents. 

Antioxidant activity tests, DPPH and ABTS, were performed in the oils produced and 

compared with a commercial passion fruit oil. 
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- Chapter 4 describes the quantitative and qualitative determination of piceatannol 

and resveratrol in passion fruit extracts produced by Soxhlet and ultrasound 

methods, using Reverse Phase High-Performance Liquid Chromatography (RP-

HPLC), and a comparison with a commercial passion fruit oil. 

- Chapter 5 describes two techniques of preparation of nanostructured lipid carriers 

(NLC), namely HighPressure Homogenization (HPH) and ultrasonication, using 

different solid lipids. For the characterization of NLC, accelerated stability tests, 

particle size, zeta potential, PDI, pH analysis, in vitro occlusion test and irritability 

test using HET-CAM, were performed. 

- Chapter 6 involves the development and characterization of NLC and NLC-based 

Carbopol® 940 hydrogels. It also involves long-term stability studies:  morphology, 

encapsulation efficiency, particle size analysis, polydispersity index analysis, zeta 

potential, pH measurement, colour analysis, rheological studies, and texture 

analysis. In addition, in vitro occlusion tests, ex vivo skin penetration study with 

Confocal laser scanning microscopy (CLSM), tyrosinase inhibition activity, in vitro 

skin permeation experiments and in vitro cytotoxicity studies, were also described. 

- Chapter 7 presents the main conclusions resulting from the studies carried out in 

this thesis and refers to the future perspectives. 
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General Introduction 
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General Introduction 

 

1. Human Skin 

1.1. Structure and Function 

The skin is the largest organ of the human body and performs several important and 

essential physiological functions such as homeostasis, sensory perception, as well as a 

barrier function against physical agents, chemicals, free radicals, microorganisms and 

ultraviolet radiation (UV). It also has thermoregulatory and endocrine functions (1,2) and is 

a source of vitamin D after sun exposure (3). 

The layers of the epidermis can be defined according to their position, state of cells 

differentiation and morphology. In anatomical terms, it is possible to distinguish three layers 

of skin, namely epidermis, dermis and hypodermis (Figure 1). The deepest layer, 

hypodermis, is composed essentially of adipocytes and connective tissue, maintains the 

union between the dermis and the other tissues, serves as a protection against mechanical 

shock and provides also isolation against cold and heat. The dermis is an internal layer that 

is subdivided in reticular layer and papillary layer and has nervous, capillaries, sweat and 

sebaceous glands, as well as hair follicles. In the dermis we also find elastic fibers and 

collagen, as well as lymphatic vessels (4). 

 

Figure 1. Skin layers representation: epidermis, dermis and hypodermis. Adapted 
from a template of ChemDraw® Professional 15.0. 

 



 

30 

 

The epidermis is characterized for being in constant renewal and for not having any 

vascularization. It can be organized in several layers: stratum basal (germinativum), stratum 

spinosum, stratum granulosum, stratum lucidum and stratum corneum (Figure 2). In the 

epidermis can be found the keratinocytes, but also other cells such as melanocytes, Merkel 

cells and Langerhans cells (5). Merkel cells are related to the sensory nerves of the skin 

and Langerhans cells serve as an immunological barrier of the epidermis. Keratinocytes 

represent around 90% of the cells in the epidermis and are formed in the basal layer, 

migrating to the surface of the skin and undergoing various differentiations. Besides, it is 

the epidermis, mainly the stratum corneum, the most superficial layer, which plays an 

important role on the skin barrier function. The stratum corneum consists of corneocytes, a 

stacked of dead cells surrounded by free fatty acids, ceramides, phospholipids and 

cholesterol. Due to the lipid composition, the water permeability of the stratum corneum is 

decreased, so the barrier function is limited to the lipid composition and water content in the 

skin. In addition, the stratum corneum has a very important role in the regulation of 

transepidermal water loss (TEWL) (6,7). 

 

Figure 2. Dermis and layers of the Epidermis: Stratum basale, Stratum spinosum, 
Stratum granulosum, Stratum lucidum and Stratum corneum. Adapted from a 
template of ChemDraw® Professional 15.0. 
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1.2. Skin Permeability 

The transport of the active substances through the skin can be carried out in three ways 

(Figure 3): intercellular lipid route between corneocytes, intracellular (transcellular) route 

through corneocytes and lipids or transfollicular route (8). 

 

 

Figure 3. Skin penetration pathways: Intercellular, Transcellular and Transfollicular. 
Adapted from a template of Biorender®. 

 

A very important factor in the development of cutaneous or transdermal formulations is their 

ability to cross the stratum corneum in an acceptable amount to have the expected effect 

at the desired site. Normally small substances (˂500 Da), soluble in water and with lipophilic 

character can diffuse through the stratum corneum, however, there are rare substances 

that have these characteristics and their permeation tends to be low, so it is advisable that 

these substances have high activity to achieve the desired effect (9–11). 

The effectiveness of a cutaneous product depends on the release of the active substance 

of the formulation, (either in gel form, cream among others), its diffusion through the different 

skin layers and finally the activity at the desired location (12). Different strategies can be 

implemented to avoid the limitations on the low cutaneous penetration of active substances. 

Chemical penetration enhancers (CPE) can be effective as well as techniques such as 

iontophoresis and use of microneedles (13,14). More recently, lipid nanostructured systems 

have been used for these purposes (15,16). 
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1.3. Antioxidant activity 

The skin aging is due to different factors and causes, which can be internal or external. The 

most common internal causes are biological age, which can affect the efficiency of cellular 

functions and skin structure. There are many external causes that affect skin aging, such 

as climate damage, smoking, pollution, solar radiation, although the most important is 

oxidative stress (17,18).  

The oxidative stress on the skin is mainly produced by reactive oxygen species (ROS). 

These substances are extremely reactive and are formed mainly in the transport chain of 

electrons found in mitochondria during aerobic metabolism. In this process, the organism 

uses molecular oxygen to obtain energy. However, around 5% of this oxygen reacts to the 

formation of ROS. The most common substances are free radicals such as superoxide 

anion, hydroxyl and peroxyl, although there are other active oxygen species that are not 

radicals such as hydrogen peroxide or singlet oxygen (17,19). 

In normal circumstances, the organism has different mechanisms for the control of these 

reactive substances, including enzymes (for example peroxyredoxin and glutathione 

peroxidase, which convert hydrogen peroxide into water), and antioxidants. These latter are 

substances that react with ROS to form more stable compounds, avoiding oxidative 

damage. We can distinguish 2 groups of antioxidants, the endogens (produced by the same 

organism) and the exogenous. As exogenous antioxidants we can mention vitamins C and 

E, carotenoids and phenolic compounds (20,21).  

Even in adverse situations, these protection processes are overcome, producing cellular 

damages that increase the aging process. In oxidative damage, dysfunction of mitochondria 

also occurs, changes in intracellular communication, as well as rupture of the extracellular 

matrix. The exogenous antioxidants can be added to a topical formulation to prevent 

oxidative stress problems (22,23).  

In the cosmetics industry, anti-aging products are one of the main targets, since people are 

not only concerned about health, but also about appearance. Regarding anti-aging 

products, antioxidants can be considered innovative skin ingredients (19). 

Much of the damage that occurs to the skin, such as oxidative stress, is related to UV 

radiation and the presence of free radicals, so the presence of antioxidant compounds is 

important for maintaining healthy skin. In addition, the reactive species are responsible for 

the increase in melanogenesis, however the presence of antioxidants would help to 

decrease melanogenesis and eliminate these reactive species (24).  Some antioxidants, 

such as vitamin E and C, also inhibiting tyrosinase and preventing polymerization oxidative 
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of some melanin intermediates. Consequently, many antioxidants are used as skin 

whitening agents (25). 

 

1.4. Skin whitening agents 

The different colour tones of the skin mainly occur due to alterations in the distribution of 

melanin in the body, but also include other factors such as the content of carotenoids and 

water and oxygenation of haemoglobin in capillary vessels. The melanin pigment is 

synthesized in the basal layer of the epidermis and then absorbed by the keratinocytes of 

the epidermis (26).  

The etiology of melasma is not completely define, but sun exposure can induce the 

formation of melasma, which is a hyperpigmentation that usually occurs in the frontal and 

malar areas of the face, in women of fertile age and individuals with Fitzpatrick's phototype 

IV and V. In addition to exposure to ultraviolet radiation, the genetic predisposition, the use 

of oral contraceptives, phototoxic drugs and thyroid dysfunctions can affect the appearance 

of melasmas (27–29). 

In Table 1 are identified the main active ingredients used as topical therapies for 

hyperpigmentation. Hydroquinone (1,4‐dihydroxybenzen) is a melanin synthesis inhibitor 

and one of the most used in the world, which can be used alone or in association with other 

depigmenting agents. Several studies have proven its depigmentation activity in vivo and in 

vitro, however, this substance presents several adverse reactions, namely skin irritation, 

acne, allergic skin reaction and photosensitization, ochronosis and possible mutagenicity to 

mammalian cells. As it presents a low degradability and high toxicity, can be classified as a 

powerful pollutant of the environment, including water (30–34). In addition, hydroquinone is 

classified by ECHA (European Chemicals Agency) as category 2 carcinogenicity 

(suspected human carcinogen) and was also included in the Community Evolutionary 

Action Plan (CoRAP). In the European Union, skin whitening products containing 

hydroquinone or retinoic acid are regulated as medicines and not as cosmetics (35,36). 
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Table 1:Active ingredients commonly used for cutaneous hyperpigmentation disorders. 

Active 
ingredients 

Structure Usual 
Dosage 

(%) 

Possible mode 
of action 

Advantages Disadvantages Ref. 

Arbutin 

 

10-20 Competitively 
inhibition 

tyrosinase 
activity 

Safer, good 
photostability 

Low effectiveness. (37,38) 

Azelaic acid 

 

4- 20 Melanin 
inhibition 

 

Well-tolerated and 
safe 

Moderate inhibitory effect 
and local irritation. 

(32,39–
41) 

Glycolic acid 

 

5- 30 Skin turnover 
acceleration 

 

 Burning, epidermolysis and 
desquamation. 

(37,42) 

Hydroquinone 

 

2-10 Competitively 
inhibition 
tyrosinase 
activity 

 

Good efficacy Use only at night; skin 
irritation and  
photosensitization, bone 
marrow toxicity; 
hypersensitivity appearance 
of brown spots on the skin, 
being called ochronosis, 
mutagenic and carcinogenic 
potential. 

(30–
32,43–
45) 
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Kojic acid 

 

1-4 Tyrosinase 
inhibition 

It does not cause 
skin irritation nor 
photosensibility 
and it can be used 
during daytime 

Irritant contact dermatitis; 
Pregnant restriction and 
children under 12 years of 
age restriction. 

(46–48) 

Retinoic 

 

0.025-
0.1 

Tyrosinase 
transcription 

Improved efficacy Most commonly erythema 
and hypopigmentation. 

(49,50) 

Vitamin C 

 

1-5 Product 
reduction and 
ROS 
scavengers 

 Low stability and skin 
penetration difficulty. 

(29,37) 
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It is estimated that around 15 % of the world population uses skin whitening products, being 

China and India, respectively, the countries that most use it. With this great demand for skin 

lightening products, it becomes necessary the research for new products, being the natural 

ones the most required, because until now the existing skin whitening products present 

many adverse reactions or are not very effective and have a long treatment period. 

There are several natural extracts that show efficacy as depigmenting or whitening agents. 

As an example, the effect of methanolic extract of jambu (Acmella oleracea) on the 

tyrosinase enzyme was evaluated. In this study it was possible to verify a strong in vitro 

inhibitory effect of the tyrosinase enzyme due to the large amount of spilanthol in the extract, 

proving to be a possible topical depigmenting alternative (51). 

Recently, an in vitro study was carried out, evaluating the potential inhibitory effects of 

Annona squamosa leaf extract on melanogenesis using murine B16F10 melanoma cells. In 

this study it was demonstrated that β-sitosterol is one of the phytochemical compounds that 

was in greater quantity in the extract and that this has a strong inhibitory effect of tyrosinase 

in B16F10 cells (52).  

Another plant extract that has demonstrated skin whitening activity is aloe vera.  The aloe 

vera extract presents several phytochemicals like aloesin and b-sitosterol, among others 

(53–55). 

It has been reported that green tea (Camellia sinensis) presents very strong antioxidant and 

antimelanogenic activity, on mushroom tyrosinase activity in vitro, in B16F10 melanoma 

cells and in vivo. This extract presents a competitive tyrosinase inhibitor effect due to the 

presence of several catechins, among which epicatechin-3-gallate, epigallocatechin-3-

gallate and galocatechin-3-gallate (31,56–58).  

In order to improve the stability and effectiveness of these extracts, different types of 

nanoparticles, mainly lipid nanoparticles, have been used for their encapsulation. 

 

 Lipid Nanoparticles  

There are several types of nanocarriers and due to this variety the right choice regarding 

the desired characteristics such as good stability, bioavailability and release characteristics, 

becomes a fundamental step. Lipid nanoparticles began to be used in the 1990s to overlap 

the problems presented by traditional colloid systems, being initially developed in the form 

of solid lipid nanoparticles (SLN), and only later nanostructured lipid carriers (NLC) were 

developed (59,60). Regarding the dimensions, these nanoparticles have between 0.1 and 

1000 nm (61). The SLN are made with a solid lipid (0.1 - 30% w/w), an aqueous medium 
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and surfactants. NLCs, in addition to the solid lipid, contain a liquid lipid in their composition. 

Due to their composition, lipid nanoparticles are considered biocompatible and 

biodegradable (60). 

Lipid nanoparticles present several advantages such as increased chemical stability of 

encapsulated substances, especially those that are sensitive to light, hydrolysis and 

oxidation, protecting them against degradation. They also promote a prolonged release of 

active substances and increase their occlusive properties when applied to the skin, due to 

their reduced size which allows greater contact with the superficial junctions of the 

corneocytes (62,63). 

NLC have some advantages over SLN, such as encapsulation of high amounts of active 

substances, as well as a longer encapsulation time of active substances inside them during 

storage. These advantages may be due to the rearrangement of the NLC components, due 

to the fact that in its formulations there are solid and liquid lipids, leading to the formation of 

imperfect crystals, unlike SLN which have a relatively perfect crystalline structure, according 

to Figure 4 (64,65). 

 

Figure 4. Lipid Nanoparticles: SLN and NLC. Adapted from Pardeike et al. (60). 

 

As can be seen in Table 2, in the literature can be found several plant extracts used as 

liquid lipids in the composition of NLC. 
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Table 2: Examples of solid lipids and plant extracts used as liquid lipids in the 
composition of NLCs. 

Liquid lipid Solid Lipid Ref. 

Centella (Centella asiatica) extract Stearic acid (66) 

Clove (Syzygium aromaticum) oil Carnauba wax and beeswax (67) 

Grape (Vitis vinifera) seed oil, St. 
John’swort oil (Hypericum perforatum) 
and sea buckthorn (Hippophae 
rhamnoides) oil 

Cetyl palmitate and glyceryl 
stearate 

(68) 

Hibiscus (Hibiscus sabdariffa) oil Hydrogenated coco-Glycerides (69) 

Marigold (Tagetes erecta Linn) flower 
extract 

Glyceryl monostearate and 
stearic acid 

(70) 

Marigold (Tagetes patula) oil Glycerol monostearate and 
Cetyl palmitate 

(71) 

Melaleuca (Melaleuca alternifolia) oil Cetyl palmitate (72) 

Parsley (Ridolfia segetum (L.) Moris) oil Glyceryl palmitostearate  

Pomegranate (Punica granatum) seeds 
oil 

Propolis wax and beeswax (73) 

Pterodon pubescens fruit oil Glyceryl palmitostearate (74) 

Pumpkin (Cucurbita pepo) seed oil Glyceryl palmitostearate (75) 

Sunflower (Helianthus annuus), sweet 
almond (Prunus dulcis), olive (Olea 
europea) and coconut (Cocos nucifera) 

Lauric acid, myristic acid, 
palmitic acid and stearic acid 

(76) 

Tumeric (Curcuma longa) oil Glyceryl behenate (77) 

Virgin olive (Olea europea) oil Hydrogenated palm oil (78) 

 

As NLCs have low viscosity, it is important to increase their viscosity to improve the time of 

contact with the skin when used topically. One of the strategies to achieve this goal is the 

incorporation of NLC in a hydrogel, obtaining a semi-solid system designated 

nanostructured lipid carrier-based hydrogel (79).  

For example, recent articles have demonstrated the use of Carbopol® 940 as a gelling agent 

to improve the viscosity of NLC dispersions (80–83). Carbopol® 940 is a cross-linked 
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polyacrylate acid polymer widely used in hydrogels preparation because it has the capacity 

to form gels in aqueous solution after neutralization. Besides improving the rheological 

characteristics of the formulations, it has good optical clarity, low price and high 

effectiveness. In addition, it is compatible with several products used in the pharmaceutical, 

cosmetics and food industries (84,85). 

 

 Passiflora edulis 

There are more than 500 species belonging to the Passiflora genus, being the most used 

the purple passion fruit (Passiflora edulis f. Sims), Passiflora incarnate L and the yellow 

passion fruit (P. edulis f. flavicarpa). However, Passiflora edulis is not included in any 

Pharmacopoeia, while the other well-known species, Passiflora incarnata L., is officially 

included in the French and German Pharmacopoeia, the Homeopathic Pharmacopoeia of 

the United States of America and the British Herbal Compendium. The species belonging 

to this genus are climbing plants, usually found in Tropical and subtropical regions, including 

Brazil, Peru, India, Australia, China and Madeira Island, a region belonging to Portugal 

(86,87). 

The passion fruit has been used for many years in traditional medicine as a sedative for 

anxiety disorder. The main responsible for this effect is the passiflorin, found in the leaves 

of the passion fruit (88–91). In addition to its medicinal use, passion fruit is widely used in 

the food industry. Once the production of passion fruit is intended predominantly for the 

production of juice, only the pulp is used and the seeds are discarded. Since each passion 

fruit has around 200 seeds inside, this means that large quantities of waste are discarded 

into nature.  Adding value to these by-products of the food industry is of great interest in the 

scientific, environmental and economic point of view, because these residues can have 

properties that can be useful for the pharmaceutical, cosmetic and food industries (92,93).  

The purple passion fruit from Madeira Island (Figure 5) is a product that has great interest 

and economic potential with an average annual production of 140 tons. This passion fruit 

presents good adaptability to the edaphoclimatic conditions of Madeira Island (average 

temperature of 25 ºC, precipitation 1300 mm, sandy soil with pH 6-7.5) (94). Therefore, this 

plant has few studies in the literature in comparison with other highly studied passion fruits, 

such as the yellow passion fruit from Brazil. 

 



 

40 

 

 

Figure 5. Passiflora edulis fruit: peel, pulp and seeds. 

 

There has been increasing interest in passion fruit seeds, since they can contain large 

quantities of polyphenols, with various properties such as antioxidant, anti-inflammatory, 

anti-aging, anti-cancer, among others. Among the main polyphenols found in passion fruit 

seeds are piceatannol, resveratrol, quercetin, luteolin, gallic acid and rutin, but it is known 

that these seeds can also contain large amounts of unsaturated fatty acids, vitamin C and 

vitamin E (95–100). 

 

 Valorisation of food waste and by-products 

Sustainability is based on environmental, economic and social dimensions, and has the 

objective of satisfying its own needs in the present moment, but without harming the future. 

In the last few decades, there has been an increase in the number of articles related to food 

industry by-products or waste. Table 3 presents recent research on food waste valorisation 

and consequent application. 
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Table 3: Recently published articles related to food wastes and their pharmaceutical 
or cosmetic application. 

Food waste 
materials 

Biological activities Ref. 

Avocado seed Antioxidant properties and antimicrobial activity (101) 

Chestnut shells Anti-aging effect (102) 

Coffee Silverskin Antioxidant activity (103) 

Macadamia skin Antioxidant properties (104) 

Orange peel Antibacterial and anti-inflammatory properties (105) 

Passiflora edulis peel Reduction in lipid peroxidation in the kidneys (106) 

Pistachio green hull Antioxidant and antimicrobial activity (107) 

Pomegranate peel Antimicrobial activity (108) 

Soybean residue 
(okara) 

Strong antioxidant and anti-inflammatory effects. (109) 

Spent coffee grounds Skin anti-aging and skin whitening (110) 

 

Currently worldwide we are experiencing a problem in the management of food waste 

because most of the food waste goes to landfills, to the compost or serve as animal feed. It 

is estimated that one third of the world's food is currently wasted (111,112). Meanwhile in 

2015, it was suggested in the "Circular Economy Action Plan" by the Commission in the 

European Parliament, the use of food waste and consequent reinjection into the economy. 

As well, the United Nations (UN) 2030 Agenda for Sustainable Development, appeal to the 

importance and urgency of the topic. Thus, the reutilization of food waste is of extreme 

importance, as it affects the ecological, social, economic, and health means (113).  

In March 2020, once again the European Commission revealed the importance of the 

circular economy, reinforcing on the sustainability of the reuse of food waste, thus creating 

"A new Circular Economy Action Plan for a cleaner and more competitive Europe" (114).  

Due to the current situation, with an increase in consumption and the limited amount of 

resources, it is necessary to seek more sustainable alternatives that reduce the impact on 

the environment, in addition to boosting the local economy by bringing the food industry 

closer to the pharmaceutical and cosmetics industries. 
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Abstract 

The skin is the largest organ of the human body and has several functions such as barrier 

against external agents, the maintenance of temperature and homeostatic functions. Skin 

aging is a natural process that can be influenced by environmental factors, intrinsic skin 

factors and lifestyle. UV light plays an important role in skin aging, and can cause spots, 

requiring the use of depigmenting agents. Nowadays there is a great demand for ingredients 

that prevent skin aging, with natural agents occupying a promising position. Among the 

natural agents, polyphenols, such as resveratrol and piceatannol, found in grapes, passion 

fruits and other fruits, have a huge relevance. Great benefits of piceatannol have been 

reported, so thus this work focuses specifically on a review of the literature regarding the 

application of this polyphenol in skin care products. This polyphenol can be used in a 

wound-healing, or as anti-aging, antioxidant, anti-acne and skin whitening, among other 

effects. 

 

Keywords:  piceatannol, antioxidant, skin, polyphenol 
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 Introduction 

Over the years our skin structure changes, the epidermal layer becomes thinner, wrinkles 

and spots may appear and there is a major trans epidermal water loss, especially in elderly 

individuals, resulting in dryness (xerosis). In addition, there is a reduction in skin elasticity, 

with decreased collagen and elastin. Nowadays there is a great demand for agents that 

prevent skin aging and skin darkening, and the natural compounds occupy a promising 

position (1).  

Piceatannol (3,3',4',5-trans-tetrahydroxystilbene) (Figure 1) is a stilbenoid compound and a 

resveratrol analogue (2).  

 

 

Figure 1. Piceatannol structure. 

 

A search was performed in PubMed from 2010 to 2019 concerning piceatannol and 

resveratrol (Figure 2). It is possible to verify a growing interest in these phenolic compounds 

of natural origin. Only 473 articles about piceatannol and 10986 about resveratrol were 

reported in the literature over the study time. It is possible to verify a much lower number of 

articles about piceatannol than resveratrol. It is less studied but displays a wide spectrum 

of biological activity and some studies reveal better activity than resveratrol (2,3).   
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Figure 2. Number of articles published in PubMed about piceatannol and resveratrol 
from 2010 to 2019. 

 

 Natural sources of piceatannol 

Piceatannol can be found mainly in grapes. However, there are already studies that report 

the presence of piceatannol in passion fruit, white tea and rhubarb, among others. As 

showed in Table 1, in some species, piceatannol can be found in seeds, while in other 

plants it can found in leaves or rhizomes.  

Regarding the piceatannol extraction from plants, there are some methods described in 

literature, such as ultrasound, Soxhlet, maceration, microwave, supercritical fluid extraction. 

The extraction time, the solvent used and the temperature employed are some of the 

characteristics that must be taken into consideration in the selection of the piceatannol 

extraction method from the plant. 

 

 

 

 

 

 

 



 

59 

 

 

Table 1: Natural source of Piceatannol and extraction method. 

Natural source Extraction Method References 

Blueberries (Vaccinium 
berries) 

Frozen berries were mixed 
with 3 volumes of methanol: acetone: water: 
formic acid (40:40:20:0.1), kept for 30 min, 
and ground in a Virtis homogenizer for 2 
min. 

(4) 

Euphorbia lagascae 
seeds 

The air-dried powdered seeds were 
extracted twice with n-hexane at room 
temperature. 
 

(5) 

Grape stems Methanolic extracts using Ultrasound 
Assisted Extraction. 
 

(6) 

Grapevine Vitis vinifera Dissolved in Methanol. 
 

(7) 

Lophatherum gracile 
stem and leaves 

95% ethanol at a temperature of 80 °C 
under reflux. 
 

(8) 

Moscato bianco grapes Methanol extract using Ultra-Turrax. 
 

(9) 

Passion fruit (Passiflora 
edulis) seeds 

The ground seeds were extracted with 70% 
acetone 3 times, with shaking. 
 

(10) 

Passion fruit (Passiflora 
edulis) seeds 

Extraction with an organic solvent. 
 
 

(11) 

Passion fruit (Passiflora 
edulis) seeds and seed 

cake 

Supercritical fluid Extraction and 
Ultrasound. 
 
 

(12) 

Polygonum cuspidatum     
roots 

Crude MeOH extract. 
 
 

(13) 

Rhubarb (Rhei undulati 
rhizome) 

The dried rhizome was extracted with 
methanol at room temperature for 24 hrs. 

(14) 

The sim fruit 
(Rhodomyrtus 

tomentosa) 

The powdered freeze-dried fruit was mixed 
with acetone: water: acetic acid (50:49:1; 
v/v/v) and shaken for one hour at 37 °C. 

(15) 

 

 Skin benefits of piceatannol 

Piceatannol has several beneficial effects on the skin, namely skin whitening, antioxidant, 

anti-aging, cutaneous wound-healing and anti-acne activity, it presents anti-allergic effect, 

and potential anti-cancer properties, probably due to its ability to suppress the proliferation 

of a wide variety of tumor cells, including leukemia, lymphoma; breast and lung cancers 

(3,16–18). 
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3.1. Skin whitening activity 

Human skin color originates from the outermost layer of the skin, the epidermis, where the 

pigment-producing cells, melanocytes, are localized to produce melanin. The distribution 

pattern of synthesized melanin by the melanocytes determines the actual color of the skin. 

Melanin is formed by a process called melanogenesis through a combination of 

enzymatically catalyzed and chemical reactions. The biosynthetic pathway of 

melanogenesis has been elucidated, where two types of melanin are synthesized within 

melanosomes: eumelanin and pheomelanin (19). 

Although melanin has mainly a photoprotective function, excess melanin production or 

abnormal distribution can cause irregular hyperpigmentation of the skin. Exposure to some 

drugs and chemicals, as well as the existence of certain diseases, can result in 

hyperpigmentation (20). For this reason, there is a high demand for melanogenesis 

inhibitors which allowed to reduce or prevent these hyperpigmental disorders. 

The skin whitening agents appeared in the 60s of the 20th century with the discovery of 

hydroquinone to treat freckles, melasmas, senile lentigo, among others (21). As the 

treatment of melasmas is prolonged, the use of hydroquinone has its drawbacks, as it has 

various adverse effects, such as irritation and loss of skin elasticity, contact dermatitis, nail 

pigmentation, sweat with bad odor, as well as possible mutagenicity and carcinogenicity 

(22).  

The studies regarding natural products have increased significantly, including natural 

depigmenting agents (23–27). Some researchers compared the effect of piceatannol and 

resveratrol, extracted from passion fruit seeds, on melanogenesis and collagen synthesis 

using cultivated human melanoma and fibroblast cells. It was verified that there was a 

significant increase in melanin synthesis inhibition, as well as an increase in collagen 

production in the samples tested with piceatannol and resveratrol, showing that piceatannol 

was superior to resveratrol in both cases, possibly due to the structure of the piceatannol, 

which presents one more hydroxyl group than resveratrol. (10). 

The in vitro effect of passion fruit extract using human MNT-1 melanoma cells and human 

SF-TY fibroblast cells was studied for the inhibition of melanogenesis and the promotion of 

collagen synthesis. It was demonstrated, due to the presence of polyphenols like 

piceatannol, resveratrol and sircusin B in passion fruit seeds extract, that there was a strong 

inhibition of melanin synthesis, as well as an increased collagen synthesis (28). 
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3.2. Antioxidant activity  

Antioxidants are regarded as promising agents that reduce skin oxidative stress. In recent 

years, naturally occurring compounds, such as phenolic acids, flavonoids, and high 

molecular weight polyphenols have gained considerable attention as beneficial protective 

agents. In vitro antioxidant activity of piceatannol in human fibroblast cells was investigated. 

It was demonstrated that piceatannol has strong antioxidant activity even at low 

concentrations and has a certain cytoprotective capacity (29). 

Piceatannol has a very strong antioxidant activity, being similar to the antioxidant activity of 

ascorbic acid and superior than its analogue resveratrol (3,7,30,31). Piceatannol is more 

active than resveratrol due to the presence of an additional hydroxyl group at 3’ position. 

The presence of an extra hydroxyl group in piceatannol makes it reactive and a more potent 

antioxidant when compared to resveratrol (3). 

Studies using HaCaT-type human keratinocyte cell lines have also been performed, proving 

the antioxidant effect of piceatannol (32). 

 Some researchers described the antioxidant effect of some polyphenols, including 

piceatannol, resveratrol and quercetin, using a porcine skin membrane-covered oxygen 

electrode (SCOE), an in vitro model to identify reactive oxygen species (ROS). The study 

was based on ROS reactions that occur in the skin after topical application of piceatannol 

and other polyphenols, showing a great decrease in ROS effects (33). 

 

3.3. Anti-aging activity 

A study was performed in Japan with women using capsules containing passion fruit seeds 

extract, rich in piceatannol (5 mg).  The study was conducted for 8 weeks and several 

measurements were made on the skin of women's cheeks, such as viscoelasticity and 

transepidermal water loss (TEWL). It was shown a significant increase in skin hydration in 

the users of the extract in relation to the placebo. About the TEWL, there was a decrease 

in the group of those who used the passion fruit extract. Finally, the study concluded that 

due to the high antioxidant activity of piceatannol and increase of the collagen synthesis, 

skin hydration can be improved, preventing skin aging (34). 
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3.4. Cutaneous Wound-healing activity 

As aforementioned, the skin has the capacity to act as a natural barrier against external 

agents. Skin damage over a large area of the body can cause serious health problems and 

even death. Wound healing is a natural and complex process involving several physiological 

factors such as anti-inflammatory, antioxidant and antimicrobial activities, participating in 

this process several growth factors, such as the vascular endothelial growth factor (VEGF), 

the cytokines and several hormones. Annually, many people suffer skin injuries, such as 

burns and ulcers caused by diabetes mellitus or pressure, having to make use of wound-

healing agents (23,35,36). 

Studies using grape seeds extract, rich in resveratrol and piceatannol, when tested in vitro 

on HaCaT keratinocyte cells, demonstrated wound-healing activity. This possibly occurred 

due to the large amounts of antioxidants in the extract (37). In vitro tests were also 

performed with 293T cells demonstrating the effect of polyphenols, including piceatannol, 

on inhibition of endothelial migration during wound-healing assays (38). 

 

3.5. Anti-acne properties 

Piceatannol can also be used against Propionibacterium acnes (P. acnes). Acne vulgaris 

affects many people mainly in adolescence, and around 85% of the population presents this 

dermatosis (39,40). One of the bacteria belonging to the human face microbiota is P. acnes, 

gram-positive anaerobic bacteria, which is responsible for acnes vulgaris. Certain cases of 

acne can be considered serious, causing inflammatory problems, scars and psychosocial 

problems, so it is necessary to use isotretinoin in the treatment. Due to the serious side 

effects of isotretinoin, it is necessary to investigate new natural products to treat acne 

effectively and safely (41). 

A study was conducted for 28 days, with seventeen volunteers with acne, at an average 

age of 17 years, being applied to the face of a group, twice a day, a gel with berries 

(Rhodomyrtus tomentosa), and in the other group a placebo gel was applied. The berries 

extract had organic acids, rhodomirtone, piceatannol (500 ppm) and other polyphenols. 

After the study, it was verified in the volunteers who used the gel with the natural extract a 

significant decrease in acne symptoms, as well as a decrease in papules and black spots 

(39). 

 Some researchers reported the comparison of the in vitro anti-acne activity of purple 

passion fruit extract (Passiflora edulis Sims var. edulis) with clindamycin and erythromycin, 

two antibiotics that are widely used to treat acne. The extract was obtained from passion 



 

63 

 

fruit seeds by maceration, containing a large amount of piceatannol. As a result, the passion 

fruit extract showed the same results as the other two antibiotics used, showing a great 

inhibitory effect of P. acnes (42). 

Recent studies have also shown that piceatannol inhibited the proliferation of human 

keratinocyte cells (HaCaT cell line) induced by P. acnes and no in vitro cytotoxicity was 

observed in this cell line (43). 
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 Conclusions 

This review allows to demonstrate in vitro and in vivo the potential of piceatannol, a 

polyphenol that can be found naturally in some fruits, such as passion fruit and grapes.   

Studies indicate that piceatannol presents a strong antioxidant activity, even superior to its 

resveratrol analogue, possibly due to the fact that piceatannol has one more hydroxyl group 

than resveratrol. In addition, it can be used topically due to its wound healing, anti-acne and 

skin whitening properties. 

Besides few phytochemical investigations on piceatannol, it was verified that there is much 

less research on the cutaneous application of piceatannol. It would therefore be an 

interesting research topic.  
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CHAPTER 3 

  

Optimization of extraction parameters on the antioxidant activity of passion fruit 

waste 
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Abstract 

The aims of this study were to compare the effectiveness of Soxhlet and ultrasound 

extraction methods for obtaining Passiflora edulis seeds oil from Madeira Island and to 

evaluate its antioxidant capacity. The effects of two different extraction methods (Soxhlet, 

ultrasound) and four solvents (acetone, isopropanol, ethanol, and hexane) were 

investigated in terms of the efficiency of the extraction process. The in vitro antioxidant 

properties were determined using DPPH (2,2-diphenyl-1-picryl-hidrazil) and ABTS (2,2'-

azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) methods. In spite of the great efficiency of 

the Soxhlet method, the results of this study demonstrated that the extraction by ultrasound, 

using ethanol as biosolvent, allowed obtaining an oil with higher antioxidant activity. 

 

Key-words: Passion fruit, antioxidant activity, extraction methods, piceatannol, natural 

product. 
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1. Introduction 

The genus Passiflora includes over 500 species (1). Purple passion fruit (Passiflora edulis 

Sims var. edulis) is a tropical climbing plant, belonging to the Dicotyledonous class and 

Passifloreaceae family (2). The seeds of P. edulis from Madeira Island are yet to be studied. 

Currently, only the pulp is used for producing fruit juice. Skin and seeds are not used in the 

food industry, being considered as waste (3). However, the seeds of passion fruit have been 

widely used in cosmetic industries due to their antioxidant properties, inhibition of melanin 

synthesis, and induction of endothelial nitric oxide synthase (4).  

Passion fruit contains many beneficial phytochemicals for the skin, such as polyphenolic 

compounds (piceatannol and resveratrol (Figure 1)), carotenoid and ascorbic acid (5). 

Piceatannol (3,3’,4’,5-trans-tetrahydroxystilbene) is a polyphenolic compound abundant in 

the seeds of passion fruit (P. edulis) (6) that can be converted to resveratrol and exhibits 

strong anticancer activity in tumor cells (7). The aim of this study was to compare the 

antioxidant activity of passion fruit seeds (from Madeira Island) extracts obtained by Soxhlet 

and ultrasound using different solvents (acetone, ethanol, isopropanol, hexane). 

 

 

 

Figure 1. The two polyphenolic compounds: Piceatannol (a) and Resveratrol (b). 
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2. Materials and Methods 

2.1. Materials 

Passion fruit seeds were obtained as a by-product of a food industry from Madeira Island. 

A commercial passion fruit seeds oil was also purchased from Akoma (UK), for comparison 

with the oil obtained by extraction of the above mentioned by-products obtained from the 

food industry. Isopropanol was purchased from Emsure Merck (Germany), Acetone from 

Fisher Chemical (UK), and Ethanol, n-Hexane, ABTS and DPPH from Sigma Aldrich (UK). 

 

2.2. Methods 

2.2.1. Soxhlet extraction 

The Soxhlet method was selected as a conventional extraction technique. For each 

extraction, 10 g of passion fruit seeds from Madeira Island were packed in porous cellulose 

filter thimble and inserted in the Soxhlet extractor. Thereafter, 250 ml of the solvent (Ethanol, 

Acetone, Isopropanol or n-Hexane) were added and the system was heated until boiling. 

Reflux was kept for 8 h, then the extraction solvent was eliminated in a rotary vacuum 

evaporator (Buchi, Switzerland) and the extract was weighed to constant value. The Soxhlet 

extraction temperature was kept constant five degrees above the boiling point of the solvent 

in all assays. The assays were conducted in triplicate. 

 

2.2.2. Ultrasound extraction  

The ultrasound extraction was performed in an ultrasonic bath (35 kHz/80 W) (Bandelin 

Sonorex RK100h, Germany) at room temperature. A preliminary study was carried out to 

choose the best extraction time (5, 10, 15, 30, 60 and 120 min) using a 1:4 (m/v) solid 

(seeds) to solvent ratio. Then, the mixture was filtered by a vacuum system. Thereafter, the 

solvent was removed using a rotary vacuum evaporator (Buchi, Switzerland). The results 

were the mean of three replications. 

 

2.2.3. Extraction yield  

For each extraction experiment, the yield was calculated according to Equation (1), in which 

me is the weight of the total extract and ms is the weight of the seeds that were used in the 

process: 

𝑌𝑖𝑒𝑙𝑑 (%) =
𝑚𝑒

𝑚𝑠
 𝑥 100  Eq. (1) 
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2.2.4. Antioxidant activity 

The in vitro antioxidant activity of the passion fruit seeds oil was determined using the DPPH 

(2,2-diphenyl-1-picryl-hidrazil) method and ABTS (2,2'-azino-bis-(3- ethylbenzthiazoline-6-

sulfonic acid) assay. DPPH is known as a stable free radical in solution which possesses a 

characteristic maximum absorption at 515 nm in ethanol (8,9). The DPPH assay was 

performed according to the method of Brand-Williams et al. (10) with some modifications. 

Quartz cuvettes (1 cm) were used for absorbance measurements. Ethyl acetate was used 

to dissolve the DPPH as reported by Espin et al. (11).  

The Antioxidant Activity (AA) was calculated graphically (Equation 2) by plotting the 

percentage of remaining DPPH·, estimated according to a standard curve, against sample 

concentrations (10, 25, 50, 75 and 100 mg/mL). TE is Trolox equivalent antioxidant activity 

and the results were expressed in μmol Trolox equivalents (TE)/ 100g oil: 

 

𝐴𝐴 (%) =
Abs (DPPH + ethyl acetate) − Abs (sample)

Abs (DPPH + ethyl acetate)
 𝑥 100  Eq. (2) 

 

In specification, the ABTS assay is based on the generation of a blue/green ABTS that can 

be reduced by antioxidants (12). The antioxidant capacity assay was carried out using a 

UV-VIS Spectrophotometer mini 1240 (Shimadzu, Japan) using the improved ABTS method 

as described by Re et al. (13).  

The stock solution containing ABTS (7 mM) and potassium persulfate (2.450 mM) was kept 

at room temperature for 16 h in a light protection vessel. Before use, the solution was diluted 

in ethanol to obtain an absorbance of 0.700 ± 0.200 at 750 nm using a UV-VIS 

Spectrophotometer mini 1240 (Shimadzu). In the assay, 20 μL of samples were mixed with 

the ABTS solution (180 μL), individually. The absorbance at 750 nm was determined after 

6 min of mixing using the microplate reader. The ability to scavenge ABTS was calculated. 

Ascorbic acid standard solution in 80% ethanol was prepared and assayed under the same 

conditions. The absorbance of the resulting oxidized solution was compared to that of 

ascorbic acid standard solutions. The % inhibition can be calculated with the formula below 

(Equation 3). All determinations were performed in triplicate and the results were expressed 

as μmol ascorbic acid equivalent/100 g oil. A calibration curve was made in the range of 

0.02 to 0.50 mg/mL. 

 % 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
Abs (ABTS + ethanol) − Abs (ABTS sample)

Abs (ABTS +ethanol)
 𝑥 100 Eq. (3) 
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2.2.5. Data Analysis 

The influence of the extraction method (Soxhlet and Ultrasound) and the use of different 

solvents (acetone, ethanol, isopropanol, n-hexane) on extraction yield of passion fruit seeds 

oil, as well as Antioxidant activities of oils by DPPH and ABTS methods were evaluated by 

Levene`s test for homogeneity of variances and one-way analysis of variance with IBM 

SPSS Statistic 25® software package. Tukey`s test was used for post hoc comparisons. 

Significance was tested at the 0.05 level of probability. 
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3. Results and Discussion 

Since the highest oil extraction yield was obtained at 60 min of ultrasonication, the studies 

were followed by using this time of extraction. Similar results were obtained in studies with 

passion fruit, pomegranate, and pumpkin seeds oil (14,15). 

The Soxhlet method allowed obtaining a high production of passion fruit seeds oil. As shown 

in Figure 2, using the ultrasound method, ethanol was the solvent that showed the best 

results (22.95%), followed by acetone (11.46%). The extraction with isopropanol (9.72%) 

and n-hexane (10.47%) was lower than with the other solvents. The extraction yield using 

the Soxhlet method with acetone (34.54%) was higher than with ethanol (33.84%), 

isopropanol (28.52%) and n-hexane (24.39%). The values of the yield of passion fruit seeds 

oil using the ultrasound and Soxhlet methods were compared with the analysis of variance. 

Therefore, it can be concluded that there are no statistically significant differences between 

the two methods (p<0.05). The Tukey`s test showed that, for the ultrasound method, there 

were significant differences between the ethanol and the other solvents. For the Soxhlet 

method, there were no significant differences between the use of ethanol and acetone, and 

between isopropanol and n-hexane.  

 

 

Figure 2. Extraction yield of passion fruit seeds oil using Soxhlet and Ultrasound methods. 

 

Thus, one of the main advantages of using the ultrasound method is that it may provide 

higher selectivity. Furthermore, it significantly reduces sample processing time because the 

ultrasound time is relatively short (60 min) as compared with the 8 h required in the Soxhlet 

extraction method. A general overview of the results indicates that the ultrasound method 

is faster, more efficient and more selective for polyphenols than the Soxhlet method as 

verified by other researchers (16).  
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It can be seen (Figure 3) that the commercial oil showed lower antioxidant activity as 

compared with the PFS oils obtained from Madeira Island using the ultrasound method. For 

example, in Figure 4, the sample obtained with ethanol using the ultrasound method 

exhibited the strongest anti-radical inhibition (300 μmol/100g oil), which was 50-fold higher 

than that obtained with n-hexane (6 μmol/100g oil).  

 

 

Figure 3. Antioxidant activities of PFS oil obtained using Soxhlet and Ultrasound extraction 
methods, based on their abilities to scavenge DPPH free radicals. 

 

Through the statistical analysis, it was verified that regarding the antioxidant activity 

obtained with DPPH, there were significant differences between the commercial oil and 

samples obtained from the Soxhlet and ultrasound methods. Similar results were obtained 

in other studies with the ultrasound method (17).  

By comparing the results shown in Figures 3 and 4, in general, it can be seen that PFS oils 

obtained with the ultrasound method showed higher values of Trolox Equivalent Antioxidant 

Capacity and Ascorbic Acid Equivalent Antioxidant Capacity. In vitro antioxidant activity 

assessed by the free radical scavenging activity (DPPH) method for PFS oil obtained by the 

ultrasound method using acetone provided better results than those obtained using the 

Soxhlet method. 
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Figure 4. Ascorbic acid equivalent from PFS oil found in Soxhlet and ultrasound extraction 
with ABTS. 

 

There were statistically significant differences between values of the antioxidant activity 

obtained using the ABTS method among the studied oils (p< 0.05).  

On the other hand, the lower antioxidant activity observed in the samples obtained using 

the Soxhlet extraction method may be partially caused by thermal degradation due to the 

high temperatures and long extraction times used in this method. Thus, the longer extraction 

times and the temperature employed in this technique possibly increased yields, but the 

occurrence of thermal degradation reduced the concentration of important compounds in 

the final sample (16,18). 
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4. Conclusions 

In spite of the great efficiency of Soxhlet, the results of this study demonstrated that the 

extraction by ultrasound using ethanol and acetone allowed obtaining an oil with greater 

antioxidant activity. These suggest the possibility of green production using ultrasound 

technology on pilot and industrial scales in cosmetic industry or pharmaceutical industries. 

Therefore, further analysis of the chemical composition of passion fruit seeds oil needs to 

be carried out in order to identify other compounds with antioxidant properties. 
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Abstract 

Recently, studies on the by-products from the food industry, such as passion fruit seeds, 

have significantly increased, as these can have an added value, due to their properties, 

such as potential antioxidant activity. This study was conducted to determine the presence 

of piceatannol and resveratrol in various extracts of passion fruit (Passiflora edulis) seeds 

from Madeira Island and a commercial passion fruit oil was used as reference. The 

commercial oil and the extracts that were obtained by traditional Soxhlet method with 

ethanol and acetone did not reveal the presence of the two stilbenes, piceatannol and 

resveratrol. However, the extracts that were obtained by the ultrasound method showed 

significant amounts of piceatannol and resveratrol when compared with the commercial oil. 

The presence of these compounds indicates that this oil could have potential application in 

cosmetic and pharmaceutical industries, due to their proven antioxidant and anti-aging 

properties. 

 

Keywords: stilbenes; Passiflora edulis; by-products; piceatannol; resveratrol 
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1. Introduction 

Madeira Island is a Portuguese territory that is located in the Atlantic Ocean, which has a 

temperate tropical climate, which allows for the cultivation of various species of passion 

fruit. The purple passion fruit (Passiflora edulis) is one of the species used in the production 

of juices by the food industry. Only the passion fruit pulp is used in the production of the 

juice, and the discarded seeds generate thousands of tons of waste every year (1–3). The 

generation of waste has high costs in its treatment and, based on this, the use of this waste 

in other processes that can produce value-added products results in great interest for the 

society and scientific community (4–6). 

It is mentioned in the literature that the purple passion fruit seeds oil has antioxidant, anti-

inflammatory, and skin lightening, among others (7–9). The oil is rich in stilbenes, vitamins, 

and catechin. It is described in the literature the presence of piceatannol and resveratrol in 

passion fruit from Japan and Brazil (10). 

Several studies highlight the efficiency of resveratrol due to its antioxidant activity, anti-

aging potential, neuroprotective, and anti-cancer properties, particularly in cases of 

leukemia, and in cancers of the breast and colon (11–19). 

The benefits of piceatannol have not been studied as extensively as in the case of 

resveratrol (20). Piceatannol (3,30,40,5-trans-tetrahydroxystilbene) is a polyphenolic 

compound that has been found in some plants, including grapes, passion fruit, white tea, 

rhubarb, peanuts, berries, and some mushroom species (10,21,22). 

Stilbenes are compounds that are considered phytoalexins, because they protect plants 

against fungi and toxins. The presence of an additional hydroxyl group in the piceatannol 

structure gives it greater antioxidant activity when compared to its prodrug, resveratrol 

(21,23). Piceatannol also promotes collagen production, preventing skin damage and 

inhibiting melanin synthesis (24). 

Yokozawa and Kim studies (25) have shown that piceatannol has a better inhibitory activity 

of the tyrosinase enzyme, as well as decreases melanin production, better than resveratrol 

and kojic acid, a potent skin whitening agent. 

In previous studies, we evaluated the antioxidant activity of passion fruit seeds extracts, 

which were obtained by two methods, Soxhlet and Ultrasound, using various solvents. 

Extracts that were obtained by both methods using ethanol and acetone were chosen, since 

they showed the highest antioxidant capacity (8). 

In view of the abundance of passion fruit waste as by-products in Portugal, sustainable 

management of these by-products is necessary. In this context, the objective of this work 



 

88 

 

was to identify and quantify stilbenes, piceatannol, and resveratrol, by High Performance 

Liquid Chromatography (HPLC), in Passiflora edulis seeds oil from Madeira Island and 

compare with commercial passion fruit seeds oil, in order to evaluate the potential of these 

antioxidant compounds for further applications by the pharmaceutical and cosmetic 

industries. 
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2. Results and Discussion  

2.1. Standard Samples 

Using the RP-HPLC method, piceatannol and resveratrol peaks were detected with 

retention times of 35.66 and 36.40 min., respectively. Figure 1 shows the chromatograms 

and UV spectra of piceatannol and resveratrol. The identification of both stilbenes was 

confirmed with this HPLC-DAD. Two calibration curves, one for piceatannol and the other 

for resveratrol, were obtained with R2 = 0.999 and R2 = 0.996, respectively. 

 

 

Figure 1. High-performance liquid chromatography with diode array detection (HPLC-
DAD) chromatograms of the standard solutions: (a) piceatannol; (b) resveratrol. UV 
spectra of the standard solutions: (c) piceatannol; and (d) resveratrol. 

 

2.2. Soxhlet Extraction 

There was no evidence of the presence of piceatannol and resveratrol in both extracts that 

were obtained by the Soxhlet method. The chromatograms showed unknown peaks, 

although some of the peaks obtained the same retention time, they did not absorb at the 

same UV wavelength as piceatannol and resveratrol. Because piceatannol and resveratrol 

are sensitive to high temperatures, these compounds may have been degraded during the 

eight-hour extraction of the Soxhlet method. Although the Soxhlet is a method with excellent 
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extraction performance, in the case of polyphenols, due to the solvent heating at boiling 

temperatures for several hours, the degradation of phenolic compounds might occur (26). 

Similar results have recently been described by Viganó and collaborators (27). The study 

described by these authors demonstrated that the amount of piceatannol in the extracts of 

passion fruit bagasse obtained by the Soxhlet method was lower than the amount of this 

stilbene in the extracts that were obtained by maceration and extraction by pressurized 

liquid (PLE). 

 

2.3. Ultrasound Extraction 

The HPLC-DAD method allowed for separating piceatannol and resveratrol in a single run, 

as can be seen in the Figure 2. In HPLC chromatograms two peaks were identified as 

piceatannol and resveratrol by comparison of the ultraviolet (UV) spectra and retention time. 

There are no significant differences regarding the amounts of piceatannol in the samples 

obtained with ethanol and acetone, according to Figure 3. However, there is a higher 

amount of resveratrol in samples extracted with acetone. When comparing the amount of 

piceatannol and resveratrol found in the extracts, it was verified that the extracts obtained 

using ethanol showed small differences of stilbenes content, whereas in the case of extracts 

that were obtained with acetone, the amount of resveratrol was significantly higher than the 

amount of piceatannol. These results corroborate other previous studies, in which the 

amount of resveratrol was higher than the amount of piceatannol found in plants (28–30). 

Some authors showed that the amount of resveratrol in grapes was approximately four 

times higher than that of piceatannol (0.78 µg/g and 3.18 µg/g, respectively) (31). 

Ultrasound extraction is a widely used method, since it is low cost, simple, and generally 

presents better results than conventional extraction methods (32). This improvement in 

efficiency might be justified, because ultrasound is based on the energy of sound waves, 

promoting a good penetration of the solvent into the sample, thus increasing the contact 

surface as well as the acoustic cavitation produced, facilitating the release of contents 

(33,34). 

A general overview of the results that were obtained by other authors allows for concluding 

that the ultrasound method is faster, more efficient, and more selective for polyphenols than 

the Soxhlet method (35). 

A recent study investigated and quantified the polyphenol content in Passiflora subpeltata 

pulp from India by UPHLC-MS analysis. Significant amounts of epicatechin, ferulic acid, 

and protocatechuic acid were detected (36). Rimando and collaborators detected up to 422 
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ng/g of piceatannol in species of blueberries from Mississippi, North Carolina. Significant 

amounts of resveratrol were also found in this fruit (37). 

 

Figure 2. HPLC-DAD chromatograms (320 nm) of the extract obtained by the ultrasound 
method with ethanol (a) and with acetone (b). Number 1 and 2 corresponds to piceatannol 
and resveratrol, respectively. The UV spectra of piceatannol (red) and resveratrol (blue) 
detected on ethanol (c) and acetone (d) extracts. 
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Figure 3. Piceatannol and resveratrol content (µg/mL) in ethanol and acetone extracts 
obtained with ultrasound method. Results are expressed as Mean ± SD. Statistical 
comparisons were made using one-way ANOVA, followed by the Tukey’s multiple 
comparisons test. Values significantly different from piceatannol (**** p < 0.05). 

 

1.3. Commercial Oil 

In Figure 4, it can be observed that the commercial passion fruit oil had no piceatannol or 

resveratrol. However, there were other unknown peaks. 

 

Figure 4. Chromatograms of the commercial passion fruit oil. 

 

In a previous study, the same commercial oil presented lower antioxidant activity in relation 

to the extracts that were obtained by ultrasound using acetone and ethanol as solvents. 

This activity was determined while using DPPH (2,2-diphenyl-1-picryl-hidrazil) and ABTS 

(2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) methods [8]. Despite obtaining 
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antioxidant activity, it might be due to the presence of many other compounds of the passion 

fruit oil, such as vitamin C and gallic acid. 
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3. Materials and Methods 

3.1. Samples Preparation 

Passion fruit seeds were obtained from the food industry of Madeira Island. These seeds 

were then dried in a stove and, after that, the extracts were prepared. These extracts were 

prepared according to Krambeck and collaborators (8). The extracts were prepared using 

ethanol and acetone, with two preparation methods: Soxhlet and ultrasound. 

 

3.2. Chemicals and Standards 

Piceatannol and resveratrol standards, as well as ethanol and formic acid, were obtained 

from Sigma Aldrich (London, UK). Acetone was purchased from Fisher Chemical 

(Loughborough, UK). Methanol was purchased from VWR Chemicals (Vila Nova de Gaia, 

PT).  

The stock solutions containing 1mg/mL of piceatannol and the same concentration for 

resveratrol in ethanol were prepared. All the solutions were stored at −4°C. Subsequently, 

for the calibration curve, standard solutions with concentrations ranging from 1.25–20 

µg/mL for piceatannol and 0.625–35 µg/mL for resveratrol were prepared. 

 

3.3. Methods 

The flow diagram for the extraction of the two stilbenes, piceatannol and resveratrol, can be 

seen in Figure 5. Briefly, after preparing the extracts, these were compared with a 

commercial oil from Akoma (London, UK), regarding the content of the stilbenes studied 

through HPLC analysis. In addition to determining the presence of stilbenes, the content of 

these elements in the extracts were also quantified.  
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Figure 5. Flow diagram for the extraction and separation by HPLC of piceatannol and 
resveratrol. 

 

For the extracts that were obtained by Soxhlet, each selected solvent was heated to its 

boiling point, and the reflux was maintained for eight hours. For the extracts that were 

obtained by ultrasound, an ultrasound bath (35 kHz/80 W) (Sonorex RK100h, Bandelin, 

Germany) was used. The extraction time was 60 min at room temperature. At the end of all 

tests, the solvents were removed while using a rotary vacuum evaporator R-300 (Buchi, 

Flawil, Switzerland). 

 

3.3.1. Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) 

RP-HPLC was carried out with some modifications, according to Lai and collaborators (38), 

for the simultaneous determination of two polyphenols: piceatannol and resveratrol. 

Analyses were carried out using a high-performance liquid chromatography (HPLC)Waters 
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2690 Separations Module, with photodiode array detector (PDA-Waters 996), and a 20 µL 

aliquot of the extract was injected onto a Waters ACE Equivalence C18 column (250 × 4.6 

mm i.d.; 5 µm particle size). The mobile phases consisted of (A) water with 0.1% formic acid 

and (B) methanol with 0.1% formic acid. The total run time was 46 min., being 0–10 min., 

0–15% B; 10–20 min., 15% B; 20–30 min., 15–35% B; 30–35 min., 35–100% B; 35–40 min., 

100% B; 40–41 min., 100–0% B; 41–46 min., 0% B. All the measurements were carried out 

at a flow rate of 0.8 mL/min., using a wavelength of 320nm. Peaks corresponding to 

piceatannol and resveratrol were analyzed by comparison with the retention times and UV 

spectra of their respective standard solutions and then quantified through calibration curves. 

The results were expressed in µg/mL oil. All of the analyses were carried out in triplicate. 

 

3.4. Statistical Analysis 

The results were statistically evaluated by one-way analysis of variance (ANOVA), in which 

significant differences at the 5% level were analyzed by the Tukey’s test. SPSS Software 

(Version statistic 26, IBM SPSS, Chicago, IL, USA) was used for the statistical analysis in 

this study. 
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4. Conclusions 

In this study, resveratrol and piceatannol were not detected either in the extracts of by-

products of Passiflora edulis that were obtained by the Soxhlet method or in the commercial 

oil.  

Extracts obtained by the ultrasound method using ethanol or acetone showed significant 

amounts of stilbenes such as piceatannol and resveratrol. Passion fruit by-products can be 

used in cosmetic and pharmaceutical industries having an added value, in addition to 

reducing the environmental pollution, avoiding the burning or landfill of waste. 

The obtained results also suggest the possibility of production of Passiflora edulis seeds oil 

with green solvents and the potential interest of this product to industries, as it represents 

a low-cost ingredient. 
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CHAPTER 5 

 

Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin 

application 
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Abstract 

Nanostructured lipid carriers (NLC) have been studied for over 20 years, constituting the 

second generation of lipid nanoparticles. These nanosystems were introduced to overcome 

the drawbacks of solid lipid nanoparticles (SLN). Passion fruit seeds oil have a high 

antioxidant potential and also skin whitening properties. The objectives of this work were to 

prepare NLC by two methods (ultrasonication and High pressure homogenization) using 

different solid lipids (Glyceryl Distearate, Glyceryl Dibehenate and Cetyl Palmitate) and 

passion fruit seeds oil as liquid lipid. The nanoparticles prepared with glyceryl distearate, 

using the ultrasonication method showed better characteristics, since these nanosystems 

presented smaller particle sizes and polydispersity index, and higher zeta potential. Besides 

that, these nanoparticles showed a high occlusion factor and non-irritant potential in HET-

CAM assay. Based on the results obtained, it may be suggested that the prepared NLCs 

can be applied to the face, since they did not cause any irritation, and represent a potential 

strategy for further use in topical formulations with antioxidant activity. 

 

Keywords: Nanostructured lipid carriers; Passiflora edulis; HET-CAM; Oil; Antioxidant; 

Nanoparticles; Polyphenols; By-product 
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 Introduction 

Nanostructured lipid carriers (NLC) constitute the second generation of lipid nanoparticles 

and these were introduced to overcome the drawbacks presented by Solid lipid 

nanoparticles (SLN). One of the differences between SLN and NLC is that NCL have a 

nanostructured matrix capable of increasing encapsulation capacity, as well as preventing 

the expulsion of the active substance during storage. Another difference is that NLC are 

composed of solid lipids and liquid lipids, whereas SLN are only composed of solid lipids 

(1–4). NLC have been proposed as nanocarriers for various drugs and cosmetic ingredients 

since 2005 (5). 

According to the method employed, the active substances can be encapsulated in 

nanoparticles in different ways. Briefly, there are several methods of obtaining 

nanoparticles, such as high pressure homogenization, ultrasonication, coacervation, spray-

drying, among others (6–8). 

Nowadays, the interest on vegetable extracts and phytochemicals has increased 

considerably, as evidenced by the large number of scientific articles (9–15). However, there 

are few articles describing passion fruit seeds oil from Madeira Island in cosmetic 

formulations. 

Madeira Island has a particular climate which favors the cultivation of tropical plants such 

as passion fruit (Passiflora edulis). Only the pulp is used by the food industry, and the seeds 

are discarded (16). From this by-product, it is possible to extract an oil rich in polyphenols, 

such as resveratrol (trans 3,4′,5-trihydroxystilbene) and piceatannol (trans 3,4,3′,5′-

tetrahydroxystilbene) (17,18). 

Piceatannol, as a resveratrol metabolite, is a stilbene that shows better antioxidant activity 

than resveratrol, which could be due to the additional hydroxyl group (19,20). Stilbenes are 

naturally produced in some plants like grapes, passion fruits, green tea and others (21,22). 

Piceatannol can inhibit the melanin synthesis, prevent and treat skin cancer (melanoma), 

has anti-inflammatory and antioxidant properties, promotes collagen production, and 

prevents UV damage (16,23–26). 

Despite the interesting properties of polyphenols, their use has several disadvantages such 

as low solubility, bioavailability and stability. In this study, NLC have been proposed to load 

extracts of Passiflora edulis seeds in order to improve the bioavailability of the above 

mentioned polyphenols and to increase the chemical stability of actives sensitive to light 

oxidation and hydrolysis. The objectives of this work were to prepare NLC by two methods 

(Ultrasonication and High pressure homogenization) using different solid lipids and using 

passion fruit seeds oil as liquid lipid. Then, to compare the nanoparticles produced by both 



 

108 

 

methods regarding their particle size, zeta potential, polydispersity- index (PDI), pH, 

occlusion potential and irritant properties. 

 

  



 

109 

 

 Materials and methods 

2.1. Materials 

Tween® 80 (polysorbate 80) was supplied from Acofarma (Spain). Glyceryl distearate 

(Precirol® ATO5), Glyceryl dibehenate (Compritol® 888 ATO) and Cetyl Palmitate were a 

kind gift from Gattefossé (France). Cetrimide® was purchased from José M. Vaz Pereira, 

SA (Portugal). The ultrapure water was obtained from a Direct-Q® Ultrapure Water Systems 

Merck (Germany). 

Passion fruit seeds oil (Passiflora edulis) used in this study was previously prepared by 

ultrasound according to Krambeck et al. (17). In a previous study, stilbenes such as 

piceatannol and resveratrol were identified and quantified in Passiflora edulis seeds oil, by 

HPLC (18). 

 

2.2. Methods 

2.2.1. NLC preparation 

NLCs (NLCP, NLCC, NLCEE) composition is shown in Table 1. As solid lipids were used 

three lipids, Glyceryl distearate (Melting range 50–60 °C), Glyceryl Dibehenate (Melting 

range 65–77 °C) and Cetyl Palmitate (Melting point 54 °C) were used as solid lipids, while 

passion fruit seeds oil was used as liquid lipid in all formulations. The NLCs were prepared 

by two methods: ultrasonication (UL) and high pressure homogenization (HPH). 

In both methods, the lipids were heated at 10 °C above the melting point of the solid lipid. 

Then the water phase was heated at the same temperature and added to the lipid phase 

under vigorous stirring using Ultra-Turrax (T25D, IKA, Germany), at 8500 rpm for 5 min, 

and a pre-emulsion was formed. From this step, the methods differed. For the ultrasound 

method, the obtained pre-emulsion was subjected to the action of a 6mm ultrasound probe 

(Sonics Vibra-Cell VCX130, USA), with an amplitude of 70 % for 15 min. Then, the hot 

dispersion was cooled in an ice bath for 30 min to generate NLC. For the hot HPH method, 

the pre-emulsion was subjected to two cycles, using a Pressure Cell Homogenizer 

(Stansted SPCH-10, UK) with a pressure of 500 bar, and a temperature of 70 ± 0.5 °C. All 

the samples were prepared in triplicate. 

 

 

 

 



 

110 

 

Table 1: Composition (%, w/w) of NLCs containing Passion fruit seeds oil. 

Formulations 

Ingredients (%, w/w) 

Glyceryl 

distearate 

Glyceryl 

Dibehenate 

Cetyl 

Palmitate 

Tween® 

80 

Passion 

fruit Oil 

Cetrimide® Purified 

water 

NLCP 7.0 _ - 2.5 3.0 0.1 87.4 

NLCC _ 7.0 - 2.5 3.0 0.1 87.4 

NLCE _ - 7.0 2.5 3.0 0.1 87.4 

 

2.2.2. Particle-size, polydispersity-index (PDI) and zeta-potential (ZP) 

One of the most important parameters regarding the physical stability of lipid nanoparticles 

is the zeta potential. A lower value, both negative and positive, means that the formulation 

is more unstable (27). Other important tests are particle size measurement and PDI 

evaluation. The stability of NLC depends on the nature of the oily phase and the balance of 

the emulsifiers at the oil/water interface. A reduction in the particle size of NLC can increase 

stability, viscosity and translucency. To provide prolonged stability, the PDI values should 

be 0.1−0.25. Values above 0.5 indicate polydisperse size populations with low physical 

stability (28,29). 

Particle size and PDI of nanoparticles were analyzed by Dynamic Light Scattering (DLS), 

using the ZetaPALS Particle Sizing Software, (Brookhaven Instruments,USA) and zeta 

potential analyzer (ZetaPALS, Brookhaven Instruments, USA). 

 

2.2.3. Accelerated stability 

It is necessary to carry out stability tests in a short period of time, in order to predict any 

changes that may occur in the formulations during its storage. Physical stability can be 

assessed in an accelerated manner by centrifugation (mechanical stress), and the volume 

of supernatant obtained can be related to the stability of heterogeneous. 

systems. If a colloidal dispersion of lipid nanoparticles changes after the accelerated 

stability test by centrifugation (formation of precipitates, occurrence of phase separation, 

coalescence, among others) it means that probably will not be stable during storage and 

should be discarded (30). 

To evaluate the accelerated stability, 5 mL of each NLC dispersion were submitted to two 

cycles of centrifugation, during 30 min at 3500 rpm, using a centrifuge (Eppendorf, AG 5804 

Germany). The formulations were observed after centrifugation regarding their appearance, 
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phase separation, sedimentation or any change, which may be predictive of sample 

instability. This test was performed in triplicate for each NLC formulation. 

 

2.2.4. pH analysis 

Topically applied NLCs should have an intermediate pH value, neither too acidic nor too 

basic, in order to avoid adverse effects (4). The pH was determined using the pHmeter 

(Crison Basic 20, Spain) Measurements were carried out in triplicate. 

 

2.2.5. In vitro occlusion test 

Lipid nanoparticles are able to adhere to the surface of the skin, leading to the formation of 

a film that exerts an occlusive effect. The in vitro occlusion factor was determined by the 

Vringer method (31). In 100 mL beakers were added 40 mL of water, and covered with filter 

paper. Under the filter paper were applied 200 mg of each of the 

prepared NLCs. Beakers covered with filter paper with no sample, were considered as 

reference. The determination of the mass of each of the beakers was performed at zero 

time, and at the end of 24 h and 48 h of incubation in an incubator at 34 °C with 50–55 % 

of relative humidity. Every experiment was carried out in triplicate. The occlusion factor was 

calculated using the Eq. (1). 

 

𝐹 =
𝐴−𝐵

𝐴
∗ 100        Eq. (1) 

 

Where A is water loss without sample and B is water loss with sample (NLC). The occlusion 

factor scale ranges from 0 to 100 and the closer values to 100 indicate higher occlusion of 

the sample (32). 

 

2.2.6. Irritant potential assay 

The irritant potential assay or Hen’s Egg Test-Chorioallantoic Membrane (HET-CAM) assay 

was performed as described in the Interagency Coordinating Committee on the Validation 

of Alternative Methods (ICCVAM). Fertile Broiler chicken eggs were used to perform the 

test HET-CAM. The eggs were rotated in an Egg incubator (YZ56S, HT-56S, China) at 

38±0.5 °C for 8 days. On the 9th day the rotation was stopped and the test was performed. 

After opening the eggs (performed with a tiny drill Dremel®), 0.3 ml of each formulation was 
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added and the eggs chorioallantoic membrane was directly visualized by a CAM Nikon 

D7000 (Japan) with AF-S Micro Nikkon 40mm 1:2.8 G lens for 5 min. A 0.9 % NaCl solution 

was used as negative control and a 0.1 N NaOH solution as positive control. The irritant 

potential on the chorioallantoic membrane was assessed and the irritation scored (0–21). It 

was considered non-irritant if the score was between 0 and 0.9 and severe irritant with 

values above 9 (33,34).  

 

2.2.7. Statistical analysis 

Statistical analysis were carried out by IBM SPSS Statistics26 (SPSS IBM, Japan). The 

tests utilized were the Levene as Test of Homogeneity of variances, then the one-way 

ANOVA and Tukey and Duncan as post hoc tests. All the results are mean values ± 

standard deviation (SD) of at least three samples. The level of significance was 95 % (p < 

0.05). 
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 Results and discussion 

3.1. Particle-size, polydispersity-index (PDI), and zeta-potential measurements 

In Table 2 are presented the results of particle size, polydispersity index and zeta potential 

of different NLC formulations. 

 

Table 2: The particle size, Zeta potential and Polydispersity Index (PDI) of different 
NLC formulations. The results are expressed as mean ± SD (n=5). 

Formulation 

Particle size (nm) Zeta Potential (mV) PDI 

HPH UL HPH UL HPH UL 

NLCP 156.0±1.3 140.2±2.8 -30.20±1.40 -33.78±0.68 0.27±002 0.17±0.01 

NLCC 249.0±1.8 259.7±3.7 -25.07±1.06 -21.76±1.12 0.347±0.03 0.39±0.03 

NLCE 469.0±2.0 570.0±2.6 -23.03±0.75 -16.80±2.60 0.44±0.09 0.49±0.02 

 

The NLCs prepared with glyceryl distearate as solid lipid using ultrasonication (NLCP_UL) 

and high pressure homogenization (NLCP_HPH) presented smaller particle sizes in 

comparison with the other formulations prepared by the same methods. It can also be 

observed that the ZP was higher in the formulations prepared with glyceryl distearate. ZP 

obtained for NLCP were above −30 mV, indicating that this formulation may have good 

physical stability. Besides, the polydispersity index of the NLCP prepared with both methods 

was lower than 0.20 showing that this NLCs can be considered homogeneous regarding 

their particle size. 

NLCs prepared with cetyl palmitate (NLCE), using both methods, showed larger particle 

sizes and PDI, and lower ZP, suggesting that with this solid lipid it was not possible to obtain 

lipid nanoparticles with good physical characteristics and stability. 

In a study of Puglia and collaborators (35), NLCs and nanoemulsions with UV-filters were 

compared. In this study, octyl methocycinnamate loaded NLCs with Compritol® 888 ATO 

as solid lipid and Miglyol® 812 as liquid lipid, prepared by ultrasonication presented particle 

sizes greater than 200 nm (318.8±25.4 nm) and mean PDI values of 0.25±0.02. However, 

the unloaded NLC studied had particle sizes of 250.6±10 nm and PDI values of 0.29±0.04. 

These results were similar to those obtained in our study for NLCs prepared with Compritol® 

888 ATO. 
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3.2. Accelerated stability 

NLCP and NLCC formulations obtained by both methods, ultrasonication and HPH, showed 

no visible modification, phase separation or sedimentation. However, phase separation was 

observed in the formulation prepared with cetyl palmitate obtained by ultrasonication and 

HPH. NLCs prepared with cetyl palmitate (NLCE) were eliminated from this study due to 

their low stability. 

 

3.3. pH analysis 

As can be seen in Figure 1, all the formulations studied showed pH values between 5.33 

and 5.89, which is in accordance with what is described in the literature about the suitable 

pH of products for skin application. There were significant differences between the samples, 

and NLCP_UL showed the highest pH values. 

 

 

Figure 1. pH values of NLCP and NLCC prepared by HPH and UL. 

 

3.4. In vitro occlusion test 

According to the results related to the in vitro occlusion factor (Figures 2 and 3), it was 

possible to verify significant differences between the samples. NLC prepared with glyceryl 

distearate by ultrasonication (NLCP_UL) presents the higher values of the occlusion factor. 

NLCC showed the lowest values of the occlusion factor.  
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Figure 2. Occlusion factor (F) for NLCP and NLCC prepared by high pressure 
homogenization (NLCP_HPH and NLCC_HPH) and ultrasonication methods (NLCP_UL 
and NLCC_UL) at 24 h. 

 

 

Figure 3. Occlusion factor (F) for NLCP and NLCC prepared by high pressure 
homogenization (NLCP_HPH and NLCC_HPH) and ultrasonication methods (NLCP_UL 
and NLCC_UL) at 48 h. 

 

Similar results of occlusion factor were obtained in studies regarding NLC with clotrimazole 

prepared by the hot high pressure homogenization technique (5). 
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Lipid nanoparticles applied to the skin induce the formation of a lipid film that results in an 

increase of the occlusive effect, thus reducing the transepidermal water loss (TEWL) (1). 

Previous studies (29) confirm that the occlusion factor is inversely proportional to the 

particle size, that is, the smaller the particle size the greater the occlusive effect. In addition, 

the use of lipids with a low melting point in the preparation of nanoparticles results in a 

higher occlusion in the skin (36). Golmohammadzadeh and co-workers (37) also observed 

that the occlusion factor depends on the size of the particles. Besides, according to 

Teeranachaideekul and co-workers (38), NLCs with high content of liquid lipids presented 

less occlusive effect. 

 

3.5. Irritant potential assay 

To evaluate the irritant potential of the formulation NLCP_UL, the Hen’s Egg Test-

Chorioallantoic Membrane (HET-CAM) assay was performed. The HET-CAM is a simple 

and reliable test, which reduces animal suffering. It is one of the oldest alternative methods 

to the Draize test. Through the observation of changes that occur in the chorioallantoic 

membrane of the eggs after being exposed to formulations for 5 min, the irritant potential of 

the compounds is evaluated. This assay evaluates the appearance vascular lysis (blood 

vessel disintegration), coagulation (intra- and extra- vascular protein denaturation) and 

haemorrhage (bleeding from the vessels) (34,39–41). 

According to Figure 4, NLC containing passion fruit seeds oil (NLCP_UL) had no irritant 

potential after the study time (5 min), thus obtaining a value of 0, similar to the negative 

control (NaCl 0.9 %). The positive control (NaOH 0.1 N) presented a score of 20, being 

possible to verify coagulation, lysis and haemorrhage. 
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Figure 4. Results of the HET-CAM test. A, C e E= before treatment with NaCl 0.9%, NaOH 
0.1N and NLCP_UL respectively. B, D and F= after 5min with NaCl 0.9%, NaOH 0.1N and 
NLCP_UL. 

 

Several studies used HET-CAM assay to evaluate the irritant potential of formulations. 

Felippi and co-workers (42) showed that nanoparticles with a blend of Retinyl palmitate; 

Linum usitatissinum Seed Oil, Vitis vinifera Seed Oil and Ubiquinone were non-irritant and 

the nanoparticles suspension did not cause any lysis, coagulation or haemorrhage. 

 

  



 

118 

 

 Conclusions and future prospects 

In this study it was verified that it is possible to obtain lipid nanoparticles containing passion 

fruit seeds oil as liquid lipid and glyceryl distearate as solid lipid, with good characteristics 

for skin administration. These nanostructured lipid carriers showed suitable particle size and 

pH for cutaneous application, as well as absence of irritation potential proven by the HET-

CAM test. 

This study also showed that nanoparticles containing passion fruit seeds oil and cetyl 

palmitate are not suitable due to their high particle size and eventual physical instability 

demonstrated by the test of accelerated stability. 

In future studies the nanoparticles with passion fruit seeds oil and glyceryl distearate should 

be incorporated in a semisolid formulation to improve their skin application. 
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CHAPTER 6 

 

Design and characterization of Nanostructured lipid carriers (NLC) and 

Nanostructured lipid carrier-based hydrogels containing Passiflora edulis seeds oil 
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Abstract 

 This study aims to design and characterize Nanostructured lipid carriers (NLC) and 

Nanostructured lipid carrier-based hydrogels with Passiflora edulis seeds oil, a by-product 

from Madeira Island food industry. NLC were prepared by the ultrasonication technique, 

using passion fruit seeds oil as a liquid lipid and glyceryl distearate as a solid lipid. These 

NLC were then gelled with Poly (acrylic acid). Long-term stability studies were conducted 

with NLC and NLC-based hydrogels stored for 12 months. The following tests were 

performed: morphology, encapsulation efficiency, particle size analysis, polydispersity 

index analysis, zeta potential, pH measurement, color analysis, viscosity studies, texture 

analysis, in vitro occlusion test, ex vivo skin penetration study, tyrosinase inhibition activity, 

in vitro skin permeation experiments and in vitro cytotoxicity studies. The developed NLC 

had spherical shape and narrow particle sizes distribution with mean sizes in the range of 

150 nm and PDI below 0.3, Zeta potential values around −30 mV and high Encapsulation 

efficiency. The tyrosinase inhibitory activity and skin retention of the nanoparticles was 

superior to that of the non-encapsulated oil. The developed formulations did not show 

cytotoxicity towards HaCaT cells and presented suitable viscosity and texture properties for 

skin application, proving to be good candidates as depigmenting agent. 

 

 

KEYWORDS: Nanostructured lipid carriers; Passion fruit oil; nanoparticles; hydrogels; 

tyrosinase. 
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 Introduction  

Over the years, the skin acquires spots, wrinkles and other effects of exposure to solar 

radiation. In this sense, the search for treatments to attenuate these effects is increasingly 

desired. Nowadays, there is an increased concern about skin pigmentation disorders. One 

of the causes of skin colour disorders are dyschromia, which can be darker spots, so-called 

hypercromia, or lighter spots (hypocromia). Hypercromia, is related to several factors such 

as genetics, hormonal changes, exposure to solar radiation, use of some drugs, aging, 

among others. These factors are responsible for the increase in melanogenesis, that is, the 

synthesis of melanin that occurs in melanosomes by the melanocyte found in the deeper 

layers of epidermis (1). 

The highest incidence of melasmas occurs in women with Fitzpatrick skin types IV and V 

and usually in the center of the face. It is a disease that affects women's quality of life and 

which is difficult to treat. There are several products that can be used for skin whitening; 

however, most of them have no success, several adverse reactions or contraindications, 

namely for pregnant women (2,3). The most popular depigmentants are hydroquinone (1, 

4‐dihydroxybenzene) and kojic acid (5‐hydroxy‐2‐(hydroxymethyl) 4‐pyrone) (4,5). 

However, there is an interest in studies of natural depigmentants (6) like stilbenes, in 

particular piceatannol, due to few studies on this when compared to resveratrol (7). 

Piceatannol is a resveratrol analogue, which has strong antioxidant activity and can be 

found naturally in grapes, passion fruits, peanuts, sugar cane, some berries and other plants 

(8–10). Some studies have shown the presence of considerable amounts of piceatannol in 

the oil of purple passion fruit (Passiflora edulis) seeds from Madeira Island, Portugal (11). 

Nanocarriers have been a worldwide trend, especially nanostructured lipid carriers (NLC).  

NLC have great benefits in their use, such as increased therapeutic effect, increased 

cutaneous hydration, greater stability of the encapsulated active ingredients, among others. 

A mixture of solid lipids and liquid lipids, plus surfactant(s), are used in the preparation of 

NLC (12–14). 

In this study, passion fruit seeds obtained as by-products of the food industry from Madeira 

Island, Portugal, were used. This industry uses only the pulp of the passion fruit in the 

production of juices, and tons of seeds are discarded annually. Thus, the objective of this 

work was to develop and characterize NLC containing passion fruit seeds oil (NLCP), which 

were later transformed into a nanoemulgel (NLCP_GEL), to increase the consistency of the 

final formulation and, therefore, its physical stability. The preparations were characterized 

regarding the morphological aspect (Cryo-SEM), encapsulation efficacy, hydrodynamic 

particle size, zeta potential, polydispersity index, pH, color, viscosity tests, texture, in vitro 
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occlusion, ex vivo skin penetration study with confocal laser scanning microscopy (CLSM), 

in vitro penetration and retention in the skin, tyrosinase inhibition activity, and in vitro 

cytotoxicity (resazurin reduction, neutral red uptake and sulforhodamine B assays). 
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 Materials and methods 

2.1. Materials 

Glyceryl distearate (Precirol® ATO5) was received as a gift from Gattefossé (France). 

Tween® 80 (polysorbate 80) was purchased from Acofarma (Spain). 

Alkyltrimethylammonium bromide (Cetrimide®) and Poly (acrylic acid) (Carbopol® 940) were 

acquired from José Vaz Pereira, SA (Portugal). Piceatannol, resveratrol, tyrosinase from 

mushroom, L-tyrosine, rhodamine B, ethanol and acetonitrile were purchased from Sigma-

Aldrich (Germany). Triethanolamine was obtained from Merck (Germany). Passion fruit 

seeds were a by-product of the food industry from the Madeira Island, Portugal, and an oil 

was extracted from these seeds as described by previous studies (11). 

Dulbecco’s modified eagle’s medium (DMEM) with 4.5 g/L glucose and GlutaMAX™, fetal 

bovine serum (FBS), 0.25% trypsin/1 mM EDTA, antibiotic (10,000 U/mL penicillin, 10,000 

µg/mL streptomycin) and phosphate buffer solution with or without calcium and magnesium 

[PBS (+/+) or PBS (-/-), respectively] were obtained from GibcoTM (Thermo Fisher 

Scientific, Alfagene, Portugal). Resazurin (REZ), neutral red (NR) solution, sulforhodamine 

B (SRB), Triton™ X-100 detergent solution and Trizma® base were obtained from Sigma-

Aldrich (Germany). All the reagents used were of analytical grade or of the highest grade 

available. 

 

2.2. Preparation of NLC 

The lipid nanoparticles were produced by the ultrasonication method according to 

Krambeck and co-workers (15). The dispersions of lipid nanoparticles (NLCP) were 

prepared by mixing solid lipid (glyceryl distearate) and liquid lipid (passion fruit seeds oil) in 

a ratio of 7:3 (w/w). Briefly, the oil phase and the aqueous phase containing a surfactant 

(polysorbate 80, 2.5%), a preservative (alkyltrimethylammonium bromide, 0.1%) and 87.4% 

of purified water were heated at 70 °C, then the aqueous phase was added the oily phase 

followed by constant stirring for 5 minutes at 8500 rpm using an Ultra-Turrax (T25D, IKA, 

Germany). Thereafter, the pre-emulsion formed was subjected to ultrasonication (Sonics 

Vibra-Cell VCX130, USA), using a 6 mm probe with 70% amplitude, for 15 minutes. Finally, 

the dispersion was cooled in an ice bath for approximately 30 minutes. This method allows 

to decrease the size of nanoparticles and also to improve their stability and uniformity (16). 
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2.3. NLC Characterization 

2.3.1. Organoleptic characteristics 

The organoleptic characteristics of NLCP were evaluated by visual and also olfactory 

perception. 

 

2.3.2. Encapsulation efficiency (EE) 

EE was evaluated according to the ultrafiltration-centrifugation method. For the purpose, 1 

mL of the NLCP dispersion was added in a test tube along with 4 mL of water.  After 

centrifugation the sample was filtered with filter paper and then 1 mL of the filtrate was 

removed, 4 mL of ethanol was added and submitted to centrifugation (Eppendorf Centrifuge 

AG 5804, Hamburg, Germany) at 3500 rpm, for 30 minutes. The sample was filtered with 

0.22 µm Millipore® filter and after that was analysed by High Performance Liquid 

Chromatography (HPLC).  

Piceatannol was used as a marker for the quantitative analysis of passion fruit seeds oil. 

The amount of free drug was detected in the supernatant and the amount of incorporated 

piceatannol was determined as a result of the initial drug minus the free drug. The 

encapsulation efficiency was calculated by the equation (1): 

 

𝐸𝐸 (%) =
𝑊 𝑖𝑛

𝑊 𝑎𝑙𝑙
∗ 100         Eq. (1) 

 

Where Wall was the weight of piceatannol in system, W in was the weight of entrapped 

piceatannol in supernatant after centrifugation of the dispersion. 

The amount of free piceatannol was evaluated in the supernatant by reversed phase HPLC 

(model CBM-20A, Shimadzu, Kyoto, Japan) equipped with a photodiode array UV-VIS 

detector (model SPD-M20A, Shimadzu, Kyoto, Japan) and using a Accucore™ Polar 

Premium HPLC C18 column (2.6 µm particle size; 150 x 4.6 mm i.d.). The injection was 

performed with a volume of 20 µL of aliquot. The mobile phase consisted of 30% acetonitrile 

and water with 0.1% formic acid. All of the measurements were carried out at a flow rate 

0.8 mL/min using a wavelength of 320 nm. Data were collected and processed by LC 

Realtime Analysis Program (Shimadzu, Kyoto, Japan). The amount of piceatannol 

incorporated in NLCP was determined having into account the initial amount of this 

compound minus its free amount evaluated in the supernatant. 
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2.3.3. Particle size analysis  

Particle size analysis was performed to ensure the presence of particles with colloidal sizes 

using a laser diffractometry (LD, Mastersizer® 3000E, Malvern, UK). All experiments were 

replicated five times and were taken on the day 0, 30, 60, 90, 180 and 365 after samples 

be stored at 4 °C and 25 °C.  

 

2.3.4. Zeta Potential (ζ, ZP) and polydispersity index (PDI)  

A Zeta Potential Analyser (ZetaPALS, Brookhaven Instruments, USA) was employed to 

measure the surface charge of particles and PDI of nanoparticles was analyzed by Dynamic 

Light Scattering (DLS), using the ZetaPALS Particle Sizing Software (Brookhaven 

Instruments, USA). A ζ potential above 30 mV or below 30 mV is required for electrostatic 

stabilization, avoiding agglomeration of particles (17). Both ZP and DPI were analyzed in 

samples stored at 4 °C and 25 °C, on day 0 and after 365 days of storage. All samples were 

diluted in Milli-Q® water to optimize signal strength. All experiments were replicated six 

times. 

 

2.3.5. Ex vivo skin penetration by Confocal laser scanning microscopy  

Confocal laser scanning microscopy (CLSM) has been widely used to visualize the 

distribution of dyes or fluorescent drugs incorporated into the skin and hair follicles after 

incorporation into nanostructured systems. It also provides valuable morphological 

information complementary to that obtained by conventional microscopy (18,19). 

CLSM was carried out to see the depth of penetration of the NLCs. To achieve this aim 

rhodamine-B dye loaded nanoparticles were prepared. Rhodamine-B solution (0.05%, w/v) 

in water was used as control. 

The ex vivo skin penetration test of ear pig was carried out using rhodamine-B to simulate 

the process of drug penetration into the skin, and the frozen section of the skin was 

observed by CLSM (Leica TC-SP2 Confocal System, Leica Microsystem Srl, Milan, Italy).  

CLSM was used to visualize the distribution and penetration depth of NLCP through the 

skin for 1, 2 and 24 hours. 
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2.3.6. Tyrosinase Inhibition Activity 

To estimate the tyrosinase inhibitory action of samples was used the method previously 

described by Gholamhoseinian and Razmi (20), with a minor modification. In the 96-well 

plate, a volume of 110 μL was used, being 50 μL PBS 50 mM (pH 6.5), 25 μL substrate (L-

tyrosine 1 mM), 25 μL NLCP, 10 μL mushroom tyrosinase aqueous solution (1000 units). 

After this, the plate was placed in the Epoch2 microplate reader (BioTeck Instruments, 

Vermont, USA). It was shaken for 2 minutes and the absorbance was measured at 492 nm, 

after 30 minutes at 25 °C. 

All experiments were done in triplicate. The percentage of inhibition of the tyrosinase 

enzyme activity was calculated using the following equation (2): 

 

I (%) =
(B1−B2)−(S1−S2)

(B1−B2)
∗ 100            Eq. (2) 

 

Where: I (%) is the percentage of inhibition of tyrosinase enzyme activity, B1 is the reference 

with enzyme (PBS, L-tyrosine and tyrosinase enzyme); B2 is the reference (phosphate 

buffer and L-tyrosine); S1 is the NLCP with the enzyme; S2 is the NLCP without enzyme. 

The higher the percentage of tyrosinase enzyme inhibition, the greater the whitening effect 

of the sample. 

 

2.3.7. In vitro Cytotoxicity studies 

The cytotoxicity of the NLCP and nanoparticles without the Passion fruit seeds oil (SLN) (0-

500 μg/mL) was evaluated in HaCaT cells, an immortalized human keratinocyte cell line, by 

the REZ reduction, neutral red NR uptake and SRB binding assays, 24 hours after 

exposure. The cells were routinely cultured in 75 cm2 flasks using DMEM with 4.5 g/L 

glucose and GlutaMAX™, supplemented with 10% heat inactivated FBS, 100 U/mL 

penicillin and 100 μg/mL streptomycin. HaCaT cells were maintained at 37 °C, in a 5% CO2 

- 95% air atmosphere, and the medium changed every 2 days. Cultures were passaged 

weekly by trypsinization (0.25% trypsin / 1 mM EDTA). For the cytotoxicity studies, the cells 

were seeded in 96 well plates at a density of 20,000 cells/well and exposed, 24 hours after 

seeding, to the NLC and SLN formulations (0-500 μg/mL). Triton™ X-100 (1%) was used 

as positive control. The cells used in all experiments were taken between the 40th and 50th 

passages. 
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2.3.7.1. Resazurin reduction assay 

The REZ reduction assay is based on the ability of living cells to reduce the oxidized blue 

REZ dye into a pink and fluorescent resorufin product. For that purpose, after the 24 hours 

exposure of HaCaT cells to the NLC and SLN formulations (0-500 μg/mL), the cell culture 

medium was removed, replaced by cell culture medium containing REZ (10 μg/mL), and 

the cells incubated for 90 minutes, at 37 °C, in a humidified 5% CO2 - 95% air atmosphere. 

The resorufin fluorescence was then read in a multiwell plate reader (PowerWaveX BioTek 

Instruments, Vermont, USA) at excitation and emission wavelengths of 560 nm and 590 

nm, respectively. The percentage of REZ reduction relatively to that of the control cells (0 

µg/mL) was used as the cytotoxicity measure. Six independent experiments were 

performed in triplicate. 

 

2.3.7.2. Neutral red uptake assay 

The NR uptake assay provides a quantitative estimation of the number of viable cells in 

culture, being based on the ability of living cells to incorporate and bind the supravital dye 

NR in the lysosomes (21–24). 

The NR uptake assay was performed as previously described (25). Briefly, 24 hours after 

exposure of HaCaT cells to the NLC and SLN formulations (0-500 μg/mL), the cell culture 

medium was removed, replaced by fresh cell culture medium containing NR (50 μg/mL), 

and the cells incubated for 90 minutes, at 37 °C, in a humidified 5% CO2 - 95% air 

atmosphere. The cell culture medium was then removed and the NR dye absorbed only by 

viable cells extracted [absolute ethanol/distilled water (1:1) with 5% acetic acid]. The NR 

absorbance was then measured at 540 nm in a multiwell plate reader (PowerWaveX BioTek 

Instruments, Vermont, USA). The percentage of NR uptake relatively to that of the control 

cells (0 µg/mL) was used as the cytotoxicity measure. Six independent experiments were 

performed in triplicate. 

 

2.3.7.3. Sulforhodamine-B binding assay 

The SRB binding assay provides an estimation of the total protein mass, which is related to 

cell number in culture, being based in the binding of the SRB dye to the basic amino acids 

of cellular proteins under mild acidic conditions. For that purpose, 24 hours after exposure 

of HaCaT cells to the NLC and SLN formulations (0-500 μg/mL), the cell culture medium 

was removed, the cells washed with PBS (+/+) and fixed overnight with a methanolic 

solution of 1% acetic acid (v/v), at -20 °C. The fixing medium was then removed and the 
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cells incubated with a 0.05% SRB solution (prepared in 1% acetic acid), at 37 °C, for 60 

minutes. The SRB solution was then removed, the cells washed with 1% acetic acid (v/v) 

to remove the unbound dye, and the bound SRB extracted with a Tris base solution (10 

mM, pH 10.5). The absorbance of the bound SRB was measured, at 540 nm, in a multiwell 

plate reader (PowerWaveX BioTek Instruments, Vermont, USA). The percentage of SRB 

binding relatively to that of the control cells (0 µg/mL) was used as the cytotoxicity measure. 

Six independent experiments were performed in triplicate. 

 

2.4. Preparation of NLC-based hydrogels 

One of the most important parameters for the acceptance of a topical product is its easy 

application, apart from the appearance and sensory characteristics conferred to the skin, 

such as shine, stickiness and amount of residue. However, lipid nanoparticle dispersions 

are liquid systems and do not have adequate consistency for application in the skin. Thus, 

their transformation in semisolid systems becomes fundamental so that their characteristics 

are the desirable. In addition to their ease of application, an increase in the physical stability 

of nanoparticles has been described in the literature, due to the decrease in the possibility 

of particles aggregation (26,27). Thus, a hydrogel based on NLC (NLCP_GEL) was 

developed. For the preparation of the NLCP-based hydrogel, 0.5% of Poly (acrylic acid) has 

been added to 99.5% of the NLCP colloidal dispersion which contains 10% of the lipid phase 

(7% Glyceryl distearate and 3% Passion fruit seeds oil) and subsequent neutralization with 

triethanolamine (TEA) for the gel formation. 

 

2.5. NLC-based hydrogels characterization 

2.5.1. Scanning electron cryomicroscopy (Cryo-SEM) 

The CRYO-SEM exam was performed using a high-resolution Scanning Electron 

Microscope with X-Ray Microanalysis and CryoSEM experimental facilities: (JEOL JSM 

6301F/ Oxford INCA Energy 350/ Gatan Alto 2500). The specimen was rapidly cooled 

(plunging it into sub-cooled nitrogen – slush nitrogen) and transferred under vacuum to the 

cold stage of the preparation chamber. The specimen was fractured, sublimated (‘etched’) 

for 120 s at -90 °C, and coated with Au/Pd by sputtering for 50s, with a 12 mA current. The 

sample was then transferred into the SEM chamber. The samples were studied at a 

temperature of -150 °C. The conditions in which images and spectrum were obtained are in 

the respective labels. NLCP and NLCP_GEL were visualized by this method. 
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2.5.2. pH measurement 

Formulations to be applied in the skin must have a compatible pH. Measurements were 

performed using a previously calibrated digital pHmeter (Basic 20 pHmeter, Crison 

Instruments SA, Spain). The pH of NLCP_GEL was evaluated after 0, 30, 60, 90, 180 and 

365 days of storage at 4 °C and 25 °C. All measurements were performed at room 

temperature and in triplicate. 

 

2.5.3. Color Analysis 

The color analysis aims to detect color changes resulting from any alteration occurring 

during the storage of the formulations. According to the literature, lipids undergo 

degradation processes resulting from oxidation reactions which may modify their coloring 

(28). This analysis was performed with the colorimeter Chroma Meter® CR-400 (Konica 

Minolta, Japan) and the color parameters L*a*b* were determined. 

The value of L* is an indication of luminosity, resulting from the amount of reflected light, 

which can vary from 0 (black) to 100 % (white). With the values of a* and b* the Chroma 

factor (C*) can be calculated, which reveals the color of the formulation through the following 

equation (3): 

 

𝐶 ∗= √𝑎 ∗2+ 𝑏 ∗2       Eq. (3) 

 

Where, C* is Chroma Factor, a* varies from red to green and b* varies from yellow to blue. 

The luminosity and Chroma Factor of NLCP_GEL stored at 4 °C and 25 °C were evaluated 

in triplicate after 0, 30, 60, 90, 180 and 365 days. 

 

2.5.4. Viscosity Test 

The study of the viscosity allows to estimate whether a formulation is suitable for cutaneous 

application, with the pseudoplastic behaviour with thixotropy being the most accepted, since 

a decrease in apparent viscosity occurs with an increase in the shear rate and with the time, 

respectively 29. Viscosity experiments were performed using a rotational viscometer 

Thermo HAAKE Viscotester VT 550 (Thermo Scientific, USA), with SV DIN coaxial cylinder 

sensor. This study consisted in determining the viscosities from 0.1 to 500 s-1 and from 500 

to 0.1 s-1, at a constant temperature of 20 °C. Rheological experiments were performed 

with NLCP_GEL after 0, 30, 60, 90, 180 and 365 days of storage at 4 °C and 25 °C. 
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2.5.5. Texture analysis 

The texture corresponds to the physical characteristics perceived by the sense of touch that 

are related to the deformation caused by a force and which are measured in terms of force, 

distance and time. In the development of preparations for topical application it is necessary 

to take into consideration certain attributes that contribute to the acceptance of the product 

and the improvement of its effectiveness. These attributes include mechanical properties 

such as adhesiveness and spreadability (30). Usually, for texture analysis the penetration 

test is performed, in which the probe penetrates the sample at a certain speed and at a 

predefined distance, then returning to a position at a distance above the predefined sample 

(31).  

In this study, the texture properties of the NLCP_GEL were performed with the Texture 

Analyser TA-XT2i (Stable Micro systems, UK), with a 25 mm diameter acrylic probe, a 

penetration distance of 5 mm, a test speed of 3 mm/s and the Trigger force of 0.049 N. On 

the graph of force versus distance, the positive peak force represents the firmness of the 

sample, and the negative area corresponds to the adhesiveness. This test was performed 

in NLC-based hydrogels after 0, 30, 60, 90, 180 and 365 days of storage at 4 °C and 25 °C. 

Measurements were performed in triplicate. 

 

2.5.6. In vitro occlusion test 

The in vitro occlusion property of NLCP and NLCP_GEL was evaluated using a previously 

reported method (32). For this test, 200 mg of each sample were weighed and spread on a 

filter paper placed over a beaker containing 40 mL of water.  As a control a beaker coated 

with filter paper but without any sample was used. The beakers were incubated at 34 °C, 

with 50-55% relative humidity. The initial weight of each beaker was determined, as well as 

the weights after 24 and 48 hours. The occlusion factor was calculated using the equation 

(4) and there is a scale from 0 to 100, where 100 corresponds to maximum occlusion. All 

determinations were made in triplicate. 

 

𝐹 =
𝐴−𝐵

𝐴
∗ 100                Eq. (4) 

 

Where A is the water loss of the control and B is the water loss corresponding to the beaker 

with the sample. 
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2.5.7. In vitro skin permeation study by Franz diffusion cell 

The test with the Franz diffusion cell was performed according to Scognamiglio and co-

workers (33) with some modifications. Pig ear skin was freshly obtained from a slaughter 

house in Porto, Portugal. The excised skin from pig ear was immersed in PBS (pH 7.4) at 

60 °C for 2 minutes. The thickness of the pig skin was 0.91 ± 0.12 mm. Franz diffusion cells 

with a diffusion area of 0.784 cm2, containing a receptor volume of 5 ml were used to study 

skin permeation in vitro. A phosphate buffer solution (PBS) pH 7.4 was used as the receptor 

medium. The agitation speed during the experiment time was 600 rpm and the diffusion 

system was coupled to a water bath at 37 °C. On the skin surface, being the dermis directed 

to the receiving solution, 2 g of the studied samples (NLCP, NLCP_GEL) and 0.06 g of 

Passiflora edulis seeds oil were applied (corresponding to a concentration of 9.85 µg/mL of 

piceatannol). At predefined times (0.5, 1, 2, 4, 6 and 24 h), 1 mL of the receiving solution 

was removed and, to keep the volume constant, 1 mL of PBS solution was added to the 

receiving compartment. The amount of piceatannol that permeates the skin was determined 

by HPLC. The calculations of the cumulative amount of piceatannol were corrected taking 

into account the dilution resulting from the replacement of the sample volume collected by 

the PBS solution. 

To perform the skin retention test, after finishing the in vitro permeation study the pig ear 

skin was removed and cleaned. Then, 5 mL of Acetonitrile:Water (3:1) was added, shaken 

vigorously in an Ultra-Turrax for 5 minutes and then placed on ultrasound for 10 minutes for 

a complete rupture of the cells. Then it was filtered by a syringe with a Millipore® filter and 

the filtrate was analysed using the same HPLC method described above. 

 

2.6. Statistical analysis  

All statistical calculations were performed using the GraphPad Prism 6 for Windows 

(GraphPad Software, San Diego, CA, USA). For the cytotoxicity data, Two-way ANOVA 

was used to perform the statistical comparisons, followed by the Tukey's multiple 

comparisons test (for each formulation, for comparisons between concentrations) or by the 

Sidak's multiple comparisons test (at each concentration, for comparisons between 

formulations). Details of the performed statistical analysis are described in the figure 

legends. Differences were considered significant for p values lower than 0.05. 
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 Results and Discussion 

3.1. Organoleptic characteristics 

The organoleptic characteristics of NLCP were evaluated by visual and olfactory perception. 

As for appearance, all samples maintained their integrity, the initial appearance in storage 

conditions, no coalescence or phase separation occurred. With respect to color and odor, 

it could be seen that all samples, independent of the storage temperature, had the same 

color and no distinct odor. 

 

3.2. Encapsulation Efficiency (EE) 

Through the EE it was possible to verify the percentage of piceatannol inserted in the 

nanocarriers, namely NLCP. Encapsulation efficacy was found to be 94.91%. This value 

was obtained by calculating the amount of piceatannol present in the supernatant of the 

colloidal dispersion after filtration and centrifugation at 3500 rpm for 30 minutes. The main 

factors that influence the encapsulation efficiency are the concentration of the surfactant 

used and the lipids, as well as the solubility of the compounds in the oil phase. Previous 

studies have shown that active substances with high lipid solubility have relatively high EE, 

above 80% (34). 

 

3.3. Particle size analysis  

The particle size of NLCP was assessed on days 0, 30, 60, 90, 180 and 365 of storage at 

4 ºC and 25 ºC, as can be seen in Figure 1. 
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Figure 1. Particle size analysis of NLCP, measured on days 0, 30, 60, 90, 180 and 365 
(mean values, n=3) of storage at 4 and 25 °C. (**** p < 0.05. In all cases, p values < 0.05 
were considered significantly differents). 

 

The mean particle size of NLCP prepared with passion fruit oil and glyceryl distearate, 

maintained at 4 and 25 °C, slightly increased over 365 days of storage. However, after 365 

days samples stored at 25 °C showed a mean particle size of 158 nm, which is acceptable 

for NLC. These results are in accordance with those obtained by Averina and co-workers 

(35) with Siberian pine. 

 

3.4. Zeta Potential (ZP) and polydispersity index (PDI) 

In Table 1 it can be seen that NLCP stored at 4 and 25 °C presented ZP values between -

33.78 and -30.86 mV, which can contribute to an electrostatic stabilization of the 

nanoparticles.  These values may also suggest that the temperature difference did not have 

a considerable influence in the stability of the NLCP. According to the literature, ZP values 

between -30 and +30 mV are considered ideal for colloidal dispersions (17). Another 

conclusion is that after one year of storage at the two studied temperatures, NLCP remained 

stable predicting good long-term stability. 
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Table 1: Mean values of Zeta Potential (ZP) and polydispersity index (PDI) of NLC at 
0 and 365 days. 

 Time (days) 

Temperature 0  365 

 
ZP ± S.D 

(mV) 
PDI ± S.D  

ZP ± S.D 

(mV) 
PDI ± S.D 

4 °C -33.78±0.68 0.17±0.01  -31.10 ± 1.5 0.26 ± 0.07 

25 °C -33.78±0.68 0.17±0.01  -30.86 ± 1.9 0.28 ± 0.08 

 

It can also be seen that the PDI values of NLCP stored at both temperatures were below 

0.28, even after one year of storage, indicating a narrow and uniform size distribution. The 

polydispersity index (PDI) can indicate the homogeneity of the particle size, and the smaller 

its value, the more homogeneous is the particle size distribution. 

 

3.5. Ex vivo skin penetration by confocal laser scanning microscopy 

Confocal laser scanning microscopy was used to give some information about the depth 

and uniformity of the penetration of nanoparticles into pig ear skin. Thus, NLCP were 

marked with Rhodamine to improve the visualization of product distribution on the skin. 

These samples were compared with a rhodamine solution without NLCP. NLCP samples 

and Rhodamine solution can be observed in Figure 2 after 1, 2 and 24 hours with CLSM. 

Regardless of the time of study, it is possible to verify that NLCP have penetrated more 

than the rhodamine solution, which suggests an improvement in skin penetration with the 

use of nanoparticles.  
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Figure 2. Confocal microscopic images of pig skin: (a, b and c) Penetration of NLCP with 
Rhodamine applied on pig ear skin models at 1, 2 and 12 hours, respectively; (d, e and f) 
Penetration of Rhodamine solution applied on pig ear skin models at 1, 2 and 12 hours, 
respectively. 

 

In summary, the upper part of the skin is called the stratum corneum, with approximately 

10-20 µm. After the stratum corneum, we have the viable epidermis, where we find the 

keratinocytes and melanocytes. This layer measures approximately 80-100 µm. Some of 

the most important factors that influence skin penetration are particle size, hydrophobicity, 

pH, surface load, raw materials, viscosity, among others. However, NLC penetration can 

occur in two ways: intercellular and intrafolicular. Lipidic nanoparticles can penetrate faster 

through hair follicles than other routes (36).  

The CLSM images showed that NLCP have a higher accumulation in the skin. It can be 

seen in the images that after 24 hours of study, NLCP had an average penetration of 68.63 

µm, which means that they have penetrated up to the viable epidermis, and this result was 
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desirable, since it is intended that the product developed in this study has an effect on this 

layer. Cosmetic products must not penetrate to the deepest layers of the skin. Furthermore, 

cosmetics containing lipidic nanoparticles should release and retain their active ingredients 

in the surface layers of the skin. 

 

3.6. Tyrosinase Inhibition Activity  

The tyrosinase inhibition activity of passion fruit seeds oil was compared with the activity of 

NLCP. 

Figure 3 represents the percentage of tyrosinase inhibition obtained with passion fruit seeds 

oil and NLCP. There was a significant difference between the samples, with NLCP showing 

a higher tyrosinase inhibition compared to the oil. 

 

 

Figure 3. Tyrosinase inhibition activity of NLCP and Passion fruit seeds Oil. Data presented 
as mean ± SD (n=3). (* p < 0.05). In all cases, p values < 0.05 were considered significantly 
different. 

 

3.7. In vitro Cytotoxicity studies 

The cytotoxicity of the NLCP and SLN (0-500 μg/mL) was evaluated, 24 hours after 

exposure, by the REZ reduction, NR uptake and SRB binding assays. As can be seen in 

Figure 4, a slight but significant decrease in REZ reduction was detected for concentrations 

≥ 150 μg/mL, when compared to control cells (0 μg/mL). Indeed, REZ reduction significantly 

decreased to 90.6, 89.4, 81.5, 80.6, 79.2 and 77.3 %, when compared with control cells, 

after treatment with 150, 200, 250, 300, 400 and 500 μg/mL of NLCP, respectively. 
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Concerning the SLN formulation, REZ reduction significantly decreased to 90.1, 88.8, 79.6, 

79.0, 78.3 and 77.9 % of control cells, 24 hours after exposure to 150, 200, 250, 300, 400 

and 500 μg/mL, respectively. It is also important to mention the lack of significant differences 

in REZ reduction between the NLCP and SLN formulations, at each tested concentration 

(Figure 4). 

 

 

Figure 4. Cytotoxicity of the NLCP and SLN formulations towards HaCat cells, evaluated 
by the resazurin reduction assay 24 hours after exposure. Results are expressed as Mean 
± SD from 6 independent experiments, performed in triplicate. Statistical comparisons were 
made using Two-way ANOVA, followed by the Tukey's multiple comparisons test (for each 
formulation, for comparisons between concentrations) or by the Sidak's multiple 
comparisons test (at each concentration, for comparisons between formulations) (****p < 
0.0001 vs. 0 μg/mL, for each formulation). In all cases, p values < 0.05 were considered 
significantly different. 

 

A similar cytotoxicity profile was observed in the NR uptake assay, with a significant 

decrease in dye uptake being observed for concentrations ≥ 150 μg/mL, when compared to 

control cells (0 μg/mL) (Figure 5).  In fact, NR uptake significantly decreased to 92.8, 90.7, 

83.6, 83.2, 81.2 and 79.8 % of control cells, 24 hours after exposure to 150, 200, 250, 300, 

400 and 500 μg/mL NLCP, respectively, and to 92.0, 87.9, 80.1, 80.1, 79.3 and 77.8 %, 

after exposure to 150, 200, 250, 300, 400 and 500 μg/mL SLN, respectively. Again, no 
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significant differences were detected in the NR uptake between the two tested formulations, 

at each tested concentration. 

 

 

Figure 5. Cytotoxicity of the NLCP and SLN formulations towards HaCat cells, evaluated 
by the Neutral red uptake assay 24 hours after exposure. Results are expressed as Mean 
± SD from 6 independent experiences, performed in triplicate. Statistical comparisons were 
made using Two-way ANOVA, followed by the Tukey's multiple comparisons test (for each 
formulation, for comparisons between concentrations) or by the Sidak's multiple 
comparisons test (at each concentration, for comparisons between formulations) (****p < 
0.0001 vs. 0 μg/mL, for each formulation). In all cases, p values < 0.05 were considered 
significantly different. 

 

Lastly, and in accordance with the previous cytotoxicity assays, a significant reduction in 

SRB binding was detected 24 hours after exposure of HaCaT cells to concentrations ≥ 150 

μg/mL of the NLCP and SLN formulations, with no significant differences being detected 

between the two formulations, at each tested concentration (Figure 6). 
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Figure 6. Cytotoxicity of the NLCP and SLN formulations towards HaCat cells, evaluated 
by the SRB assay 24 hours after exposure. Results are expressed as Mean ± SD from 6 
independent experiences, performed in triplicate. Statistical comparisons were made using 
Two-way ANOVA, followed by the Tukey's multiple comparisons test (for each formulation, 
for comparisons between concentrations) or by the Sidak's multiple comparisons test (at 
each concentration, for comparisons between formulations) (****p < 0.0001 vs. 0 μg/mL, for 
each formulation). In all cases, p values < 0.05 were considered significantly different. 

 

3.8. Scanning electron cryomicroscopy (Cryo-SEM)  

In order to clarify the general morphology and internal structure of the NLC particles, Cryo-

SEM analyses were performed. Figure 7 (a) shows the typical structure of NLC, with an 

almost spherical shape and a smooth surface. Spherical particles can promote a prolonged 

release as well as being able to protect natural compounds (37), such as passion fruit oil. 

In Figure 7 (b) can be seen a typical network of hydrogels and the presence of NLC within 

this network, marked by green arrows, so we can suggest that the incorporation of NLC into 

the gel was effective. 
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Figure 7. Cryo-scanning electron microscopy images of the (a) NLCP and (b) NLCP_GEL 
(magnification 40.000×). 

 

3.9. pH measurement 

The pH value is an important parameter for monitoring the stability of samples, as changes 

may indicate the occurrence of chemical reactions that could compromise the quality of the 

final product. A decrease in pH values may be due to hydrolysis of the fatty acid esters that 

generate free fatty acids (38). 

In this study, no significant differences were observed regarding pH values of both samples 

stored at 4 and 25 ºC (Figure 8). It can be stated that NLCP_GEL, throughout the study 

period, showed pH values suitable for cutaneous application. 

a) b) 
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Figure 8. pH values of NLCP_GEL stored at 4 and 25 °C, over 365 days. 

 

3.10. Color analysis 

Regarding the analysis of the color of NLCP_GEL it can be seen that the luminosity (L*) of 

samples stored at 4 °C only had a small decrease throughout the study, although the 

Chroma Factor (C*) slight increased. However, there is no statistical difference, which 

means that the product maintained the white coloration throughout one year of study, 

suggesting that there was no lipid oxidation. It can also be inferred that the presence of 

passion fruit oil maintained the formulations stability, since it has antioxidant activity, due to 

the presence of phenolic compounds such as piceatannol and resveratrol. 

Color determination of NLCP_GEL stored at 4 °C and 25 °C are summarized in Figure 9. 
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Figure 9. Color determination of NLCP_GEL on days 0, 30, 60, 90, 180 and 365 of storage 
at 4 and 25 °C. a) Luminosity (L*) and b) Chroma Factor (C*). 

NLCP_GEL stored at 25 °C showed a higher variation of L* and C* values throughout the 

study, although visually it maintained the same color. 

 

3.11. Viscosity test 

NLC dispersions typically have low viscosity, which makes them difficult to apply, reducing 

skin retention. To facilitate the application of the product, and consequently increase its time 

of contact with the skin, the dispersions of NLC can be incorporated in semi-solid bases 

such as hydrogels (39). 

In both rheograms, the viscosity of the NLCP_GEL decreased with the increase in the shear 

rate, due to a rupture in the internal structure of the gel, so the molecules aligned in the 

direction of the flow, offering less resistance to it. Based on the graphs of Figure 10, we can 

suggest that the samples stored at 4 (Figure 10.a) and 25 °C (Figure 10.b) present a non-

Newtonian, rheofluidificant behaviour, since the apparent viscosity decreased with the 

increase of the shear rate.  The viscosity values and the rheological behaviour of samples 

stored at both temperatures remained unchanged over time. 

 

 

a) b) 
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Figure 10. Rheograms of NLCP_GEL after 0,30,60,90,180 and 365 days of storage, a) at 
4 °C (left) and b) at 25 °C (right). 

 

3.12. Texture Analysis 

The maximum force applied to obtain the deformation of the gels is known as firmness, and 

this property is a means of expressing the ease of application of the product to the skin (40). 

Through the analysis of Figure 11 it can be seen that samples stored at 4 and 25 °C 

presented a slight decrease of firmness. With the results, it is possible to suggest that the 

gel presents firmness values suitable for cutaneous application. 

 

 

Figure 11. Firmness (N) of NLCP_GEL after 0, 30, 60, 90, 180 and 365 days of storage at 
4 and 25 °C. 

 

a) b) 
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Adhesiveness is the work required to overcome the attractive forces between the sample 

surface and the probe surface. It is possible to observe in Figure 12 that the adhesiveness 

of NLCP_GEL stored at 25 °C increased after 60 days of storage.  

It can be seen that NLCP_GEL stored at 4 °C showed a constant adhesiveness for 365 

days, being more stable than NLCP_GEL stored at 25 °C. 

 

 

Figure 12. Adhesiveness (N.mm) of NLCP_GEL after 0, 30, 60, 90, 180 and 365 days of 
storage at 4 °C and 25 °C. 

 

3.13. In vitro occlusion test 

The occlusion of the skin can have some benefits. In addition to the soothing effect on 

wrinkles, occlusion can promote penetration of the active ingredients. When NLC are 

applied to the skin, these nanoparticles form a lipid film on the surface of the stratum 

corneum which causes an increase in the occlusive effect. Furthermore, the trans epidermal 

water loss (TEWL) decreases due to this increased occlusive effect, enhancing skin 

hydration even further (41,42).  

Figure 13 represents the graph of the occlusion factor (%) of NLCP and NLCP_GEL. There 

was a significant difference between the occlusion factor values of the two samples studied, 

after 24h and 48h at 34 ºC. The occlusion factor of NLCP_GEL was almost two-fold the 

obtained with NLCP. 
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Figure 13. Occlusion factor (F) for NLCP and NLCP_GEL after 24 and 48 hours at 34 ºC. 
(**** p< 0.05. In all cases, p values < 0.05 were considered significantly different). 

 

It can be concluded that NLC-based hydrogel greatly increases the occlusion factor, thus 

potentially increasing the hydration of the skin. The greater occlusion properties of NLCP-

gel comparing with NLCP was due to the high viscosity of the former, which has the ability 

to form a film that prevents water loss through evaporation. 

 

3.14. In vitro skin permeation by Franz diffusion cell 

Release rates and skin retention of samples were evaluated using Franz‐type diffusion 

cells, which are usually used for skin permeation assays, using pig ear skin as a membrane. 

Pig ear skin is widely used in these permeation studies since it is similar to human skin in 

terms of permeability and composition (43,44).  

Some studies have concluded that nanoparticles may not permeate as deeply into the skin, 

however they serve as a reservoir of the active substance in the upper layers of the skin 

(45,46). 

Skin retention of piceatannol released from NLCP, NLCP_GEL and Passiflora edulis seeds 

oil is shown in Figure 14. The best results were obtained with NLCP_GEL since it allowed 

to deliver a significantly higher (p <0.05) amount of piceatannol, followed by NLCP and 

seeds oil, respectively. Furthermore, NLCP_GEL presented adhesive properties that 

enhanced the contact time with the skin. 
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Figure 14. Skin retention of piceatannol (%) released from NLCP, NLCP_GEL and passion 
fruit seeds oil after 12 hours of permeation through the skin. Data represent the Mean ± SD 
(n = 3). (* p< 0.05. In all cases, p values < 0.05 were considered significantly different.) 

 

As expected, it was possible to verify that Piceatannol was mostly located in viable 

epidermis but did not permeate into the receptor fluid. Therefore, no systemic side effects 

should occur after the cutaneous application of the developed formulations. The 

administration of cutaneous products may have a topical or systemic action. For topical 

action products, such as cosmetics, a greater retention of the product in the skin is required, 

with little or no permeability in the skin (44,47). 

These results are in accordance with the results obtained in the in vitro occlusion test, in 

which the NLCP_GEL sample showed greater occlusion than the NLCP. 
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 Conclusions 

The NLC developed in this study, which contained Passion fruit seeds oil (NLCP), a by-

product of the Madeira Island food industry, showed good physical and chemical 

characteristics throughout the storage. Besides, the nanoparticles showed an excellent 

piceatannol encapsulation efficiency and a higher tyrosinase inhibitory activity, compared 

to the free oil, suggesting a greater advantage of its incorporation. In addition, a good 

cutaneous penetration was observed by confocal laser scanning microscopy (CLSM). 

The NLC-based hydrogel (NLCP_GEL) developed from NLC containing passion fruits 

seeds oil (NLCP), showed good stability over 1 year of storage at 4 and 25 °C, showing no 

significant changes in pH, color, texture, and viscosity. The incorporation of passion fruit 

seeds oil in nanoparticles and their gelation with Poly (acrylic acid) allowed the permeation 

of the active ingredient studied (piceatannol) into the viable epidermis, which is the target 

layer for the designated antioxidant and depigmentant action. In addition, the hydrogel 

maintains greater contact with the skin. 

The cytotoxicity of the nanoparticles was also studied, revealing that the developed 

formulations are not cytotoxic to human immortalized keratinocytes, the HaCaT cells, for 

concentrations up to 100 µg/mL, as evaluated by the three different cytotoxicity assays 

performed (REZ reduction, NR uptake and SRB binding assays). Furthermore, the 

agreement between the cytotoxicity data obtained in all cell viability assays provides high 

confidence in the obtained results. The developed formulations obtained from a by-product 

of the food industry can thus be considered safe, as well as having good stability throughout 

a year of storage. Indeed, from a sustainable point of view, this new application of passion 

fruit seeds oil could provide a way to reuse this product as depigmenting agent by the 

cosmetic industry. 

As a future perspective, other tests may be performed for a more complete characterization 

of the systems developed in this study, namely in vivo efficacy studies. 

 

  



 

154 

 

References 

1.        Videira IF dos S, Moura DFL, Magina S. Mechanisms regulating melanogenesis. An 

Bras Dermatol. 2013;88: 76–83.  

2.  Ibrahim ZA, Gheida SF, El Maghraby GM, Farag ZE. Evaluation of the efficacy and 

safety of combinations of hydroquinone, glycolic acid, and hyaluronic acid in the treatment 

of melasma. J Cosmet Dermatol. 2015 Jun 1;14(2):113–23.  

3.  Taghavi F, Banihashemi M, Zabolinejad N, Salehi M, Jaafari MR, Marhamati H, et 

al. Comparison of therapeutic effects of conventional and liposomal form of 4% topical 

hydroquinone in patients with melasma. J Cosmet Dermatol. 2019 Jun 1;18(3):870–3.  

4.  Azzam OA, Leheta TM, Nagui NA, Shaarawy E, Hay RMA, Hilal RF. Different 

therapeutic modalities for treatment of melasma. J Cosmet Dermatol [Internet]. 2009 Dec 

1;8(4):275–81.  

5.  Ferreira Cestari T, Hassun K, Sittart A, De Lourdes Viegas M. A comparison of triple 

combination cream and hydroquinone 4% cream for the treatment of moderate to severe 

facial melasma. J Cosmet Dermatol [Internet]. 2007 Mar 1;6(1):36–9.  

6.  Berardesca E, Rigoni C, Cantù A, Cameli N, Tedeschi A, Italia DD, et al. 

Effectiveness of a new cosmetic treatment for melasma. J Cosmet Dermatol [Internet]. 2019 

Nov 20;n/a(n/a).  

7.  Yokozawa T, Kim YJ. Piceatannol Inhibits Melanogenesis by Its Antioxidative 

Actions. Biol Pharm Bull. 2007;30(11):2007–11.  

8.  Soleymani S, Iranpanah A, Najafi F, Belwal T, Ramola S, Abbasabadi Z, et al. 

Implications of grape extract and its nanoformulated bioactive agent resveratrol against skin 

disorders. Arch Dermatol Res. 2019;311(8):577–588.  

9.  Krambeck K, Santos D, Oliveira A, Pintado ME, Silva JB, Sousa Lobo JM, et al. 

Optimization of extraction parameters on the antioxidant activity of passion fruit waste. Acad 

J Med Plants. 2018;6(8):209–13.  

10.  Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, 

and piceatannol in Vaccinium berries. J Agric Food Chem. 2004;52(15):4713–9.  

11.  Krambeck K, Oliveira A, Santos D, Pintado MM, Baptista Silva J, Sousa Lobo JM, 

et al. Identification and Quantification of Stilbenes (Piceatannol and Resveratrol) in 

Passiflora edulis By-Products. Pharmaceuticals. 2020 Apr 20;13(4):73.  



 

155 

 

12.  Piazzini V, Lemmi B, D’Ambrosio M, Cinci L, Luceri C, Bilia AR, et al. Nanostructured 

lipid carriers as promising delivery systems for plant extracts: The case of silymarin. Appl 

Sci. 2018;8(7).  

13.  Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, et al. 

Novel Drug Delivery Systems for Loading of Natural Plant Extracts and Their Biomedical 

Applications. Int J Nanomedicine [Internet]. 2020 Apr 15;15:2439–83.  

14.  Fytianos G, Rahdar A, Kyzas GZ. Nanomaterials in cosmetics: Recent updates. 

Nanomaterials. 2020;10(5):1–16.  

15.  Krambeck K, Santos D, Otero-Espinar F, Sousa Lobo JM, Amaral MH. Lipid 

nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids 

Surf B Biointerfaces [Internet]. 2020;193:111057.  

16.  Pardeike J, Hommoss A, Müller RH. Lipid nanoparticles (SLN, NLC) in cosmetic and 

pharmaceutical dermal products. Int J Pharm. 2009 Jan 21;366(1–2):170–84.  

17.  Loo CH, Basri M, Ismail R, Lau HLN, Tejo BA, Kanthimathi MS, et al. Effect of 

compositions in nanostructured lipid carriers (NLC) on skin hydration and occlusion. Int J 

Nanomedicine. 2013;8:13–22.  

18.  Alvarez-Román R, Naik A, Kalia YN, Fessi H, Guy RH. Visualization of skin 

penetration using confocal laser scanning microscopy. Eur J Pharm Biopharm [Internet]. 

2004;58(2):301–16.  

19.  Zou Y, Celli A, Zhu H, Elmahdy A, Cao Y, Hui X, et al. Confocal laser scanning 

microscopy to estimate nanoparticles’ human skin penetration in vitro. Int J Nanomedicine. 

2017;12:8035–41.  

20.  Gholamhoseinian A, Razmi Z. Screening the methanolic extracts of some plants for 

tyrosinase inhibitory activity. Toxicol Environ Chem [Internet]. 2012 Feb 1;94(2):310–8.  

21.  Vilas-Boas V, Silva R, Nunes C, Reis S, Ferreira L, Vieira C, et al. Mechanisms of 

P-gp inhibition and effects on membrane fluidity of a new rifampicin derivative, 1, 8-

dibenzoyl-rifampicin. Toxicol Lett. 2013;220(3):259–66.  

22.  Arbo MD, Silva R, Barbosa DJ, da Silva DD, Rossato LG, Bastos M de L, et al. 

Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through 

mitochondrial impairment. Toxicol Lett [Internet]. 2014;229(1):178–89.  

23.  Silva R, Sousa E, Carmo H, Palmeira A, Barbosa DJ, Gameiro M, et al. Induction 

and activation of P-glycoprotein by dihydroxylated xanthones protect against the cytotoxicity 

of the P-glycoprotein substrate paraquat. Arch Toxicol. 2014;88(4):937–51.  



 

156 

 

24.  Silva R, Palmeira A, Carmo H, Barbosa DJ, Gameiro M, Gomes A, et al. P-

glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents 

paraquat cytotoxicity. Arch Toxicol. 2015;89(10):1783–800.  

25.  Vaz S, Silva R, Amaral MH, Martins E, Lobo JMS, Silva AC. Evaluation of the 

biocompatibility and skin hydration potential of vitamin E-loaded lipid nanosystems 

formulations: In vitro and human in vivo studies. Colloids Surf B Biointerfaces. 

2019;179:242–9.  

26.  Souto EB, Wissing SA, Barbosa CM, Müller RH. Evaluation of the physical stability 

of SLN and NLC before and after incorporation into hydrogel formulations. Eur J Pharm 

Biopharm. 2004;58(1):83–90.  

27.  Souto EB, Almeida AJ, Müller RH. Lipid Nanoparticles ( SLN ® , NLC ® ) for 

Cutaneous Drug Delivery : Structure , Protection and Skin Effects. J Biomed Nanotechnol. 

2007;3(4):317–31.  

28.  McClements DJ. Theoretical prediction of emulsion color. Adv Colloid Interface Sci. 

2002;97(1–3):63–89.  

29.  Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J 

Control Release [Internet]. 2009;136(2):88–98.  

30.  Hurler J, Engesland A, Poorahmary Kermany B, Škalko-Basnet N. Improved texture 

analysis for hydrogel characterization: Gel cohesiveness, adhesiveness, and hardness. J 

Appl Polym Sci [Internet]. 2012 Jul 5;125(1):180–8.  

31.  Rostami H, Nikoo AM, Rajabzadeh G, Niknia N, Salehi S. Development of cumin 

essential oil nanoemulsions and its emulsion filled hydrogels. Food Biosci. 2018;26:126–

32.  

32.  Wissing SA, Müller RH. The influence of the crystallinity of lipid nanoparticles on 

their occlusive properties. Int J Pharm. 2002;242(1):377–9.  

33.  Scognamiglio I, De Stefano D, Campani V, Mayol L, Carnuccio R, Fabbrocini G, et 

al. Nanocarriers for topical administration of resveratrol: A comparative study. Int J Pharm 

[Internet]. 2013;440(2):179–87.  

34.  Müller RH, Runge SA, Ravelli V, Thünemann AF, Mehnert W, Souto EB. 

Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical 

interactions and characterization of drug incorporation. Eur J Pharm Biopharm [Internet]. 

2008;68(3):535–44.  



 

157 

 

35.  Averina ES, Seewald G, Müller RH, Radnaeva LD, Popov D V. Nanostructured lipid 

carriers (NLC) on the basis of Siberian pine (Pinus sibirica) seed oil. Die Pharm Int J Pharm 

Sci. 2010;65(1):25–31.  

36.  Roberts MS, Mohammed Y, Pastore MN, Namjoshi S, Yousef S, Alinaghi A, et al. 

Topical and cutaneous delivery using nanosystems. J Control Release. 2017;247:86–105.  

37.  Silva Santos V, Badan Ribeiro AP, Andrade Santana MH. Solid lipid nanoparticles 

as carriers for lipophilic compounds for applications in foods. Food Res Int. 

2019;122(January):610–26.  

38.  Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, et al. 

Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in 

vivo assessments. J Nanobiotechnology. 2011;9(1):44.  

39.  Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the 

cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials [Internet]. 

2012;33(5):1607–17.  

40.  Jones DS, Lawlor MS, David Woolfson A. Examination of the flow rheological and 

textural properties of polymer gels composed of poly(methylvinylether‐co‐maleic anhydride) 

and poly(vinylpyrrolidone): Rheological and mathematical interpretation of textural 

parameters. J Pharm Sci [Internet]. 2002;91(9):2090–101.  

41.  Pardeike J, Schwabe K, Müller RH. Influence of nanostructured lipid carriers ( NLC 

) on the physical properties of the Cutanova Nanorepair Q10 cream and the in vivo skin 

hydration effect. Int J Pharm [Internet]. 2010;396(1–2):166–73.  

42.  Gad HA, Abd El-Rahman FAA, Hamdy GM. Chamomile oil loaded solid lipid 

nanoparticles: A naturally formulated remedy to enhance the wound healing. J Drug Deliv 

Sci Technol. 2019;50:329–38.  

43.  Eliza M, Sato O, Gomara F, Pontarolo R, Andreazza IF, Zaroni M. Permeação 

cutânea in vitro do ácido kójico. Rev Bras Ciências Farm. 2007;43(2):195–203.  

44.  Ghafourian T, Samaras EG, Brooks JD, Riviere JE. Validated models for predicting 

skin penetration from different vehicles. Eur J Pharm Sci [Internet]. 2010;41(5):612—616. 

Available from: https://doi.org/10.1016/j.ejps.2010.08.014 

45.  Ephrem E, Elaissari H, Greige-Gerges H. Improvement of skin whitening agents 

efficiency through encapsulation: Current state of knowledge. Int J Pharm. 2017 Jun;526(1–

2):50–68.  



 

158 

 

46.  López-García R, Ganem-Rondero A. Solid Lipid Nanoparticles (SLN) and 

Nanostructured Lipid Carriers (NLC): Occlusive Effect and Penetration Enhancement 

Ability. J Cosmet Dermatological Sci Appl. 2015;05(02):62–72.  

47.  Ahmad U, Ahmad Z, Khan AA, Akhtar J, Singh SP, Ahmad FJ. Strategies in 

Development and Delivery of Nanotechnology Based Cosmetic Products. Drug Res 

(Stuttg). 2018;68(10):545–52.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 7 

 

Conclusions and Future Perspectives 

  



 

 

 

 



 

161 

 

Conclusions and Future Perspectives 

Nowadays the choice of natural products for cosmetic use has increased, as well as the 

use of by-products of the food industry with added value, making the economy circulate. 

Therefore, it is interesting to use passion fruit waste, such as seeds, to obtain products with 

potential benefits for cutaneous application.  

Scientific studies indicate an extensive research related to the use of nanocarriers for the 

improvement of efficacy of formulations intended for skin application, being the lipid 

nanoparticles, specifically NLCs, the ideal candidates for these purposes. In addition, NLCs 

can increase the occlusion of the skin and prolong the release time of the active ingredients. 

Piceatannol is a stilbene, which can be found in some fruits like grapes and passion fruits. 

This compound has antioxidant, anti-acne, skin healing, anti-aging and skin whitening 

effects. In our research we could conclude that piceatannol is much less studied in 

comparison with its analogue, resveratrol. There are few published articles about its use in 

skin formulations.  

The first experimental chapter (chapter 3) describes the processes for obtaining passion 

fruit extracts from passion fruit seeds from Madeira Island using Soxhlet and ultrasound 

methods, and acetone, ethyl alcohol, isopropanol and n-hexane as solvents. These extracts 

were submitted to different tests to determine the antioxidant activity, namely DPPH and 

ABTS. The extracts obtained using ethanol and acetone as solvents had the highest results 

regarding the antioxidant activity, so these were chosen to continue the study. 

In chapter 4, we can conclude, from the HPLC analysis, that the extracts obtained using the 

Soxhlet method, did not present any of the stilbenes, piceatannol and resveratrol. The 

commercial passion fruit oil, used for comparison, also showed no evidence of the presence 

of piceatannol and resveratrol, which may suggest the presence of other antioxidant 

compounds such as gallic acid, vitamin C and E. However, the amount of piceatannol found 

in the extract obtained using ultrasounds with ethanol and acetone was practically the same, 

but the amount of resveratrol was higher in the extract obtained with acetone. The yield of 

the alcoholic extract was almost double that of the extract with acetone, as well as the 

antioxidant activity determined by the ABTS method, which was six times higher compared 

to the acetone extract. Therefore, passion fruit by-products can be used in cosmetic and 

pharmaceutical industries having an added value, in addition to reducing the environmental 

pollution, avoiding the burning or landfill of waste. The obtained results also suggest the 

possibility of production of Passiflora edulis seeds oil with green solvents and the potential 

interest of this product to industries, as it represents a low-cost ingredient. 
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In chapter 5, NLCs containing Glyceryl distearate (Precirol® ATO5) as the solid lipid, 

prepared by both methods, High pressure homogenization (HPH) and ultrasonication 

showed smaller particle sizes, higher occlusion factor and the pH was considered 

acceptable for cutaneous application. The HET-CAM irritation test performed on NLCs 

obtained with Glyceryl distearate, prepared by the ultrasonication method, revealed that 

these nanoparticles showed no sign of irritability and could be used in skin products, even 

in the eye contour area.  Besides, the cytotoxicity test revealed that these nanoparticles are 

not cytotoxic to HaCaT cells in the three different tests performed (resazurin reduction, 

Neutral red uptake and Sulforhodamine B assay), even in high concentrations. 

In chapter 6, NLCs containing Precirol® ATO5, as solid lipid, and Passion fruit seeds oil 

from Madeira Island, as liquid lipid, showed good physical and chemical characteristics 

throughout the storage. Besides, these nanoparticles showed a higher tyrosinase inhibitory 

activity, compared to the free oil, suggesting a greater advantage in its incorporation. In 

addition, a good cutaneous penetration of the developed nanoparticles was observed by 

Confocal laser scanning microscopy (CLSM). 

The NLC-based hydrogel developed from NLC containing passion fruits seeds oil, showed 

good stability over one year of storage at 4 °C and 25 °C, showing no significant changes 

in pH, colour, texture, and rheological behaviour. The incorporation of passion fruit seeds 

oil in nanoparticles and their subsequent gelation with Carbopol® 940 allowed the 

permeation of the active ingredient (piceatannol) into the viable epidermis, which is the 

target layer for the designated antioxidant and depigmenting action. In addition, the 

hydrogel allows to maintain a greater contact of the active ingredient with the skin. 

The developed formulations obtained from a by-product of the food industry of Madeira 

Island can be considered safe as they did not have any cytotoxicity, as well as having good 

stability throughout a year of storage. Indeed, from a sustainable point of view, this new 

application of passion fruit seeds oil may constitute a strategy to reuse this product as 

depigmentant agent by the cosmetic industry. 

In the future, in vivo studies, approved by the Ethics Committee of Faculty of Pharmacy, 

should be carried out in order to better assess the depigmenting efficacy of the formulations 

developed in this study. 


