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Abstract:  

The genetic basis of adaptive traits has rarely been used to predict future vulnerability of 

populations to climate change. We show that light versus dark seasonal pelage in white-tailed 

jackrabbits (Lepus townsendii) tracks snow cover and is primarily determined by genetic 

variation at Endothelin Receptor B (EDNRB), Corin Serine Peptidase (CORIN), and Agouti 5 

Signaling Protein (ASIP). Winter color variation was associated with deeply divergent alleles at 

these genes, reflecting selection on both ancestral and introgressed variation. Forecasted 

reductions in snow cover are likely to induce widespread camouflage mismatch. However, 

simulated populations with variation for darker winter pelage are predicted to adapt rapidly, 

providing a trait-based genetic framework to facilitate evolutionary rescue. These discoveries 10 

demonstrate how the genetic basis of climate change adaptation can inform conservation. 

 

One-Sentence Summary: Future adaptation to snow cover depends on standing genetic 

variation for winter camouflage in white-tailed jackrabbits.
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Preservation of genetic diversity is a primary goal of conservation biology (1), reflecting the 

critical role that genetic variation plays in promoting rapid adaptation to environmental change 

(2, 3). While there has been progress in dissecting the genetic basis of adaptation in some species 

(4–6), rarely has such information been used to guide the conservation of populations (7, 8). 

These shortcomings reflect the difficulties of genetic mapping in natural populations (9) and 5 

using genotype-to-phenotype maps to facilitate adaptive responses (7).  

Circannual shifts in morphology, physiology, and behavior cued by changes in 

photoperiod allow many species to buffer the challenges of seasonal environments (10). Seasonal 

molts to winter-white pelage and plumage have evolved in at least five animal families to 

maintain crypsis in snow-covered environments (11). Winter coloration has been directly tied to 10 

survival in snowshoe hares (12, 13) and several species appear vulnerable to camouflage 

mismatch caused by global snow cover declines (14–18). We examined how snow cover 

variation has shaped the evolution and future adaptive potential of winter camouflage in white-

tailed jackrabbits (Lepus townsendii), a North American species undergoing widespread 

population declines (19).  15 

  

Winter coat color tracks variation in snow cover across the white-tailed jackrabbit range     

Winter coat color varies from brown to white across the white-tailed jackrabbit distribution (11, 

20). We used 1312 georeferenced records to estimate a species distribution model (Fig. 1 and 

Fig. S1 and S2A) (21), and used climate covariates and 196 museum specimens with mostly 20 

white or brown pelage to build a probabilistic model of winter coloration across the range (Fig. 

1A, Tables S1 and S2). 
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Consistent with previous work (11), the probability of an animal having white pelage increased 

with snow cover duration and a correlate of snow seasonality (mean diurnal temperature range) 

and decreased with an index of snow transience (isothermality; Table S1). Our model predicted a 

mosaic of winter-white or -brown populations separated by zones of intermediate coat color 

probabilities. We found a steep winter color gradient between the Rocky Mountains and the 5 

Great Plains of Colorado (Fig. 1C), which included a previously described population with 

continuous coat color variation (20).  

 

The genetic basis of winter coat color 

To dissect the genetic basis of winter color variation, we sequenced (62.5; Table S3, Data S1 10 

and S2) and assembled a white-tailed jackrabbit genome (48.03 Mb scaffold N50; Table S3). We 

also sequenced 74 genomes from the coat color polymorphic zone in Colorado (Fig. 1C) to low 

coverage (~1.8; Table S4), of which seven genomes were also re-sequenced to moderate 

coverage (~12.2; Data S1 and Table S6). Analysis of 239,834 unlinked single-nucleotide 

polymorphisms (SNPs) showed weak population structure partitioned across two genetic clusters 15 

not broadly coincident with coat color variation (Fig. S3E; between-cluster weighted fixation 

index, FST = 0.036). Spectrophotometric analysis of six dorsal regions (Fig. S4) uncovered 

considerable variation in dorsal brightness, hue, and contrast (n=61, 51% variance PC1; Fig. S4, 

5A and 5D), variegation (14.6% variance PC2; Fig. S4, 5B and 5E), and mottling (7.5% variance 

PC3; Fig. S4, 5C and 5F). White versus brown categories used in our binary phenotypic model 20 

(Fig. 1) consistently partitioned continuous color variation along PC1 (Fig. S4B). Genome-wide 

association tests between 5,557,716 SNPs and PC1 of the spectrophotometric data revealed 

significant associations robust to population structure on two scaffolds, each containing one gene 

involved in melanogenesis (Fig. 2 and Fig. S6). 
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One association centered on Corin Serine Peptidase (CORIN; Fig. 2B; P = 7.26  10-16), 

a serine peptidase expressed in hair follicles that acts as a downstream suppressor of the Agouti 

Signaling Protein (ASIP) (22). Loss-of-function mutations in CORIN have been associated with 

enlarged pheomelanin bands and lighter pelage in tigers (23) and mice (24). The other 

association centered on the Endothelin Receptor B (EDNRB, Fig. 2D; P = 3.31  10-22), a G-5 

protein coupled receptor essential to developmental migration and differentiation of melanocyte 

precursors (25, 26). EDNRB mutations cause white piebald spotting due to absence of 

melanocytes (27). For both genes, top associated variants were non-coding, consistent with a 

regulatory basis of seasonal camouflage variation.  

We also performed association tests on all 74 jackrabbits, binning color as white or 10 

brown, and found two additional associations. One overlapped a non-coding region (P = 1.29  

10-14; Fig. S6B and S7) near genes from the alpha-2-macroglobulin gene family, which have 

been linked to reproduction (28–30), and may reflect a correlated seasonal trait. The other 

overlapped ASIP (P = 1.38  10-14; Fig. 6B), a well-known signaling protein that shifts 

melanogenesis to lighter phaeomelanin production or inhibits pigment production (31). ASIP has 15 

been associated with discrete winter coat color polymorphisms in snowshoe and mountain hares 

(6, 32).  

We next used mass spectrometry to generate high confidence genotypes for 59 

jackrabbits with spectrophotometric data at 34 linked SNPs (average within-gene r2 > 0.93) 

across CORIN (n=13), EDNRB (n=9), and ASIP (n=12) (Fig. S8; Data S1 and S3). CORIN (P = 20 

6.82 x 10-9) and EDNRB (P = 7.73 x 10-12) alleles remained strongly associated with PC1 (Tables 

S7 and S8), showing largely additive (Fig. 2C, E; all P > 0.05, dominance deviation test; Tables 

S9, and S10) and independent effects (P > 0.05; Fig. 2F, Fig. S9; Table S11). ASIP was not 

associated when including the other genes as covariates (Tables S7 and S8), but we detected 
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epistatic interactions between the top associated SNPs at ASIP and CORIN (P < 0.05; Table 

S11), consistent with known molecular interactions between these genes (22). A linear model of 

the top associated SNPs from each gene explained 65% of phenotypic variation (model D, Table 

S12). While a precise estimate of effect sizes awaits more sampling, winter camouflage in white-

tailed jackrabbits appears to be primarily determined by large-effect additive genetic variation at 5 

CORIN and EDNRB, with a minor contribution of ASIP.  

 

Multigenic winter camouflage adaptation is shaped by selection on ancient genetic 

polymorphisms and gene flow between species 

Genome-wide comparisons among white-tailed jackrabbit genomes revealed increased scaled 10 

absolute genetic divergence between winter-white and winter-brown associated alleles of 

CORIN, EDNRB, and ASIP (Z-score ≥ 3; Fig.3A and Fig. S10), indicating that seasonal 

camouflage variation did not arise from recent mutations in white-tailed jackrabbits. To examine 

the history of these genes, we combined white-tailed jackrabbit genomes with 10 new and 19 

previously published (6, 32–36) genomes (~7.5 – 33.5; Table S6) from nine other Lepus 15 

species, including four showing seasonal camouflage (Data S1). Genome-wide analysis clustered 

white-tailed jackrabbits with three other color-changing species (Fig. 3B; Fig. S11; Table S13). 

CORIN, EDNRB, and ASIP showed discordant local genealogies whereby winter-brown alleles 

from white-tailed jackrabbits grouped with black-tailed jackrabbits, a winter-brown species, 

while winter-white alleles grouped with closely related winter-white species (Fig. 3B and Fig. 20 

S12). The estimated divergence time between the white and brown haplotypes exceeded three 

million years (myr) at all three genes [EDNRB = 4.2 myr (95% HPD 3.3-5.0 myr); CORIN = 3.3 

myr (95% HPD 2.9-4.3 myr); ASIP = 3.1 myr (95% HPD 2.4-3.7 myr); Fig. S13], suggesting a 

common ancestor near the onset of Lepus diversification (37). Deep phylogenetic discordance at 
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each gene could reflect gene flow from another species (38). Consistent with this, divergence 

across an ~88 kb interval overlapping ASIP was reduced between black-tailed jackrabbits and the 

white-tailed jackrabbit brown allele relative to simulated expectations (Fig. 3C, Fig. S14B-C and 

Table S14). By contrast, the white allele showed normal levels of divergence to other winter-

white hares (Fig. 3D and Fig. S14D). Black- and white-tailed jackrabbits occupy similar prairie 5 

habitats with overlapping ranges and show substantial genome-wide introgression (D-statistic = 

0.19, P << 0.0001; 4% admixture, P << 0.0001). The persistence of introgressed alleles, a binary 

association (Fig. S6B), and a central role in color evolution (31) suggest that ASIP contributes to 

a component of color variation not captured by our measurements. This is the third instance of 

introgression at ASIP contributing to winter camouflage in hares (Fig. 3B) (6, 32), suggesting 10 

that some genes may be evolutionary hotspots for adaptive introgression (39).  

The evolutionary processes shaping variation at CORIN and EDRNB were less clear. 

Divergence (dxy) between black-tailed jackrabbits and the brown-associated intervals of both 

genes were not unusually shallow (Fig. 3C), as expected with recent introgression. However, 

closer inspection revealed local phylogenetic variation consistent with ancient gene flow (Fig. 15 

S14). While the causative mutations remain unknown, top associated SNPs at both genes fell 

outside putative introgression tracts. These patterns suggest a history of recombination among 

ancient color alleles at CORIN and EDRNB, likely maintained by long-term spatially varying 

selection (40). Collectively, these findings indicate that multigenic winter camouflage adaptation 

(Fig. 1), shaped by selection on standing and introgressed variation (Fig. 3), has long been 20 

important to white-tailed jackrabbit survival.  

 

Future climate change vulnerability and adaptive potential of seasonal camouflage 

variation 
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Seasonal snow cover is predicted to decline over the next century (41), which may reduce the 

adaptive value of winter-white coats (11). To understand how jackrabbit camouflage might 

evolve in response to climate change, we forecasted winter coat color probabilities for the year 

2080 based on correlates of snow residence time, seasonality, and transience (Figs. S2D-F, 4A). 

We used forecasts under a high CO2 emissions scenario (RCP8.5) to model challenging, though 5 

not unlikely (42), conditions jackrabbits may experience in the future. Under this model, winter-

brown coats (P(brown) ≥ 0.8) will be strongly favored across much of the southern (USA) range 

(~49% at P(brown) ≥ 0.8 in 2080; Fig. S2B, E, F), a 3.1-fold increase over historical conditions 

(16% at P(brown) ≥ 0.8). While the rate of mismatch will depend on which emissions scenario 

transpires, future reductions in snow cover are likely to induce widespread camouflage mismatch 10 

(Fig. 4A) given strong correlations of forecasted parameters across emission scenarios (21). 

Previous work proposed that standing variation for seasonal camouflage could promote 

rapid evolutionary rescue in species threatened by diminished snow cover (11). To understand if 

the genetic basis of camouflage inferred from Colorado populations may facilitate evolutionary 

rescue more broadly, we sequenced 69 additional white-tailed jackrabbit genomes from across 15 

the range (~2.1; Table S5). Although winter phenotypes were mostly unknown for these 

samples, we found low genetic structure (FST = 0.020 Colorado versus North Dakota; Fig. S15) 

and color-associated polymorphisms outside of Colorado at all three genes (Fig. S15). Moreover, 

the presence of white alleles at the three genes was positively correlated with snow cover 

duration across the range (r = 0.33-0.46, p < 0.05; Fig. S16). Therefore, multigenic color-20 

associated variation appears functionally relevant and broadly shared across the range.  

Next, we simulated the capacity for populations with the largest forecasted mismatch 

(ΔP(brown) = 0.75) to adapt to changes in snow cover. Focusing on large-effect variation at CORIN 

and EDRNB, we found that populations without winter-brown alleles trended towards extinction, 
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while populations with winter-brown alleles could adapt rapidly. Evolutionary rescue was likely 

even under a high-emissions scenario and when adaptive winter-brown alleles were initially rare 

(Fig. 4B, Fig. S17 and S18). However, the efficacy of selection depended on genetic dominance. 

Fully recessive winter-brown variation, as found in other hares (6, 32), was associated with 

slower responses and larger population declines (Fig. 4B and Fig. S18). Thus, the capacity for 5 

evolutionary rescue to buffer against future population declines in this and other species 

confronted by seasonal mismatch (11) will depend on local demography, the genetic architecture 

of adaptive traits, and frequencies of adaptive alleles (3).  

 

Towards a framework for prioritizing and facilitating conservation efforts   10 

Optimism that standing variation could enable evolutionary rescue in the face of camouflage 

mismatch is tempered by widespread population declines in white-tailed jackrabbits caused by 

habitat alteration, extermination, shifts in predator communities, and climate change (19) 

coupled with the emerging threat of rabbit hemorrhagic disease virus (43). Using regional 

conservation assessments (19), we found that populations predicted to harbor winter-brown 15 

variation (P(brown) ≥ 0.8) have disproportionally experienced local declines or extirpations 

(Pearson’s 2 test P value = 2.2 x 10-16; Cramér’s V = 0.31; Fig. 4B and Fig. S2C). Given these 

threats, our predictive map of climate-induced camouflage mismatch (Fig. 4A) provides an initial 

framework for prioritizing conservation efforts. Adaptive potential may be enhanced through 

local management actions aimed at reducing anthropogenic stressors and promoting connectivity 20 

between populations harboring critical winter-brown variation. Our findings also enable 

quantification of color-associated variation in vulnerable populations using any DNA source 

without knowledge of winter phenotypes. In the absence of connectivity or standing variation, 
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our simulations suggest that local adaptation could be accelerated by modest amounts of human-

assisted gene flow to mismatched populations (44). 

 Safeguarding the adaptive potential of populations is central for conservation  (1), yet the 

genetic basis of adaptation is rarely incorporated into applied conservation planning (11, 45). 

Landscape genomic approaches have proven useful for uncovering adaptive genetic variation 5 

and climate change vulnerability without knowledge of phenotypes  (46, 47). Our results show 

why a deeper understanding of the genetic basis of adaptive traits may also be needed to predict 

future responses of populations threatened by climate change and how such insights may be 

applied to facilitate evolutionary rescue.   

 10 
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Fig. 1. Winter coat color variation in white-tailed jackrabbits. (A) Probability of winter-brown 

coats across the modeled white-tailed jackrabbit distribution. (B) Representative winter coat color 15 

variation (Photo credit: Denver Museum of Nature & Science). (C) Sampling locations used for 

association mapping across Colorado, scaled by sample size.  

 

Fig. 2. The genetic basis of winter coat color variation. (A) Genome-wide associations (-log10 

P values; 5,557,716 SNPs) with winter coat color (inset: dorsal photos ordered by PC1) of 61 20 

jackrabbits (dashed line, Bonferroni-corrected P=0.05). Local associations, gene structures, and 

dorsal reflectance across assayed diploid genotypes (BB=homozygous brown; BW=heterozygous; 
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WW=homozygous white) for CORIN (B, C) and EDNRB (D, E). Significant associations are 

highlighted in dark blue (Bonferroni-corrected P  0.05). (F) Dorsal images of specimens with 

double homozygous or heterozygous CORIN and EDNRB genotypes. 

 

Fig. 3. Evolution of winter coat color variation. (A) Scaled absolute genetic divergence (RND) 5 

in 20-kb sliding windows (dots, 2-kb step size) between one homozygous winter-white and winter-

brown genome. Association intervals are gray, orange dots are windows of elevated divergence 

(RND Z-score ≥ 3), and gaps represent missing data in the reference assembly. (B) Phylogenies of 

CORIN, EDNRB and ASIP (associated intervals) differed from the multispecies coalescent tree 

(43,430 50-kb windows, Fig. S11). (*) denotes species where winter pelage variation has 10 

previously been associated with introgression (6, 33). Branches with bootstrap support <80 are 

labeled. Empirical and simulated distributions of genetic divergence (dxy) genome-wide, for 

CORIN, EDNRB, and ASIP between white-tailed jackrabbits and (C) black-tailed jackrabbits or 

(D) Arctic hares. 

 15 

Fig. 4. Adaptation to future climate-induced mismatch. (A) Predicted phenotypic mismatch 

(ΔP(brown)) in 2080 using RCP8.5 forecasts of snow residence time, mean diurnal temperature 

range, and isothermality (inset: predicted probability shifts towards winter-brown across the USA 

range). (B) Simulated size trajectories of populations (30 replicates; line = averages, ribbons = 

95% quantiles) experiencing future camouflage mismatch (ΔP(brown) = 0.75) shown as a proportion 20 

of the population ceiling (dotted line) assuming standing variation of additive (left panel) or 

recessive (right panel) brown alleles at CORIN and EDNRB. 
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