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Resumo

As  tecnologias  usadas  em  analisadores  hematológicos  padrão  e  de  última

geração  não  atingem  a  acessibilidade  necessária  para  atender  às  necessidades

globais de saúde pública e veterinária. O problema está no foco atual da investigação,

que dá prioridade a dispositivos para uso laboratorial, com componentes volumosos e

dispendiosos,  o  que  impossibilita  a  sua  aplicação  em  ambiente  doméstico  ou  no

campo. Isto limita bastante o alcance benéfico e potencial do hemograma completo.

O objetivo desta tese é mostrar  como a microscopia hiperespetral  pode ser

usada  para  melhorar  um  dispositivo  point-of-care (PoC)  de  espetroscopia  sem

reagentes,  que  usa  inteligência-artificial  para  obter  parâmetros  de  hemograma

completo. Esfregaços de sangue foram analisados ao microscópio e os seus espetros

obtidos. Com esses espetros, foi feita uma análise de componentes principais, onde

três grupos distintos puderam ser facilmente identificados: cães saudáveis, cães com

infeção e cães com anemia e infeção – mostrando assim uma alta capacidade de

separação de amostras intrínseca ao método. Previsões quantitativas para eritrócitos,

hemoglobina e hematócrito foram feitas, comparando com um analisador hematológico

de veterinária padrão (Mindray BC-5000 Vet) tanto para o dispositivo PoC como para o

método  microscópico.  Os  coeficientes  de  determinação  (R2)  e  os  erros  absolutos

médios percentuais  (MAPE) foram calculados.  Ambos os métodos mostraram forte

concordância  entre  si  e  em  relação  ao  analisador  padrão,  com  o  PoC  (R2~0,9;

MAPE~6%) apresentando melhor desempenho que o método microscópico (R2~0,85;

MAPE~10%).  A visão detalhada da amostra no método microscópico permite uma

melhor separação das amostras, enquanto que o maior volume de sangue analisado

no dispositivo PoC produz resultados quantitativos melhores. Isto mostra que existe

simultaneamente equivalência e complementaridade entre os dois métodos, propondo

que sejam utilizados em conjunto para o desenvolvimento da tecnologia.

Identificaram-se falhas no método do microscópio: baixa representatividade da

amostra e dependência dos resultados com a qualidade do esfregaço. Aumentar a

área analisada e automatizar a formação do esfregaço foram sugeridos como soluções

para esses problemas. Para trabalho futuro, foi proposto estudar a relação entre os

nível microscópico e o macroscópico, a fim de criar um mapa que permita o uso da

separabilidade superior do método do microscópio pelo dispositivo PoC.

Palavras-chave:  [Hematologia,  Quimiometria,  Hemograma Completo,  Espetroscopia,

Inteligência-Artificial, Saúde, Veterinária, Microscopia Hiperspetral, Point-of-Care]
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Abstract

Standard and state-of-art  hematology analyzer technology fail  to achieve the

accessibility requirements to fulfill the global needs of health care and veterinary. The

problem  is  rooted  in  the  current  focus  of  research  development,  that  prioritizes

benchtop devices for laboratory use, often with bulky parts and expensive components,

creating  a  gap  for  in-house  and  in-field  applications,  which  massively  restricts  the

benefits and potential of the complete blood count test. 

The aim of this thesis is to explore the capabilities of hyperspectral microscopy

and how they can be used to improve a reagentless spectroscopy point-of-care (PoC)

device that uses artificial intelligence to obtain complete blood count parameters. Blood

smears were analysed under the microscope and their spectral behaviour acquired.

From these spectra, a principal  component analysis  was done,  where three distinct

groups  could  be  easily  identified:  healthy  dogs,  dogs  with  infection  and  dogs  with

anemia and infection – thus showing a high sample differentiation capability intrinsic to

the method. Quantitative predictions for red blood cells,  hemoglobin and hematocrit

were done, comparing back to a standard veterinary hematology device (Mindray BC-

5000 Vet) for both the PoC device and the microscope method. The coefficients of

determination (R2) and mean absolute percentage errors (MAPE) were calculated. Both

methods showed strong agreement between each other and in respect to the standard

analyzer,  with  the PoC (R2~0.9;  MAPE~6%) having  a  better  performance then the

microscope  method  (R2~0.85;  MAPE~10%).  The  detailed  sample  view  on  the

microscope method allows for better sample separation, while the bigger blood volume

analysed in the PoC device yields better quantitative results. This shows that there’s

simultaneously an equivalence and complementarity to these methods, advocating for

their cooperative use to the development of the technology. 

Flaws in the microscope method were identified: low sample representativeness

and  results  dependence  on  blood  smear  quality.  Increase  in  analysed  area  and

automation  of  smear  formation  were  suggested  as  solutions  to  these  problems,

respectively. For future work, it was proposed studying the relationship between the

microscopic and macroscopic levels, in order to create a map that allows the use of the

heightened separability of the microscope method by the PoC device. 

Keywords:  [Hematology,  Chemometrics,  Complete  Blood  Count,  Spectroscopy,

Artificial-Intelligence,  Health  Care,  Veterinary,  Hyperspectral  Microscopy,  Point-of-

Care]
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1. Introduction

1.1. Background of the study

With increasing exposure to high levels of stress, pollutants, carcinogens and

overall  poor  health  habits,  healthcare  is  a  growing  concern  among  individuals  in

developed countries [1]. The lack of resources, exacerbated by overpopulation, climatic

changes  and  pollution,  make  healthcare  of  paramount  importance  for  developing

countries too, as inaccessibility to medical equipment and disease predisposition are a

reality  [2].  Thankfully,  due  to  the  development  of  technology,  devices  have  been

growing more accurate and attainable,  allowing  for  tests  that  asses various  health

conditions in no time and with actionable results. Having accessibility as one of the

main driving forces of technology development, smaller and cheaper devices became

the focus of  researchers,  in  order  to  provide  answers  to  the in-house  and  in-field

scenarios. Some reach further, developing wearable devices [3]. Portability and price,

as well  as connectivity by medical Internet-of-Things (IoT) networks, allow for close

follow-ups, constant monitoring of people with chronic diseases and widespread health

check-ups in regions with insufficient health resources [4]. Many tests that were once

lab exclusive, are now available, almost in the literal sense, in the palm of our hands,

as Point-of-Care (PoC) technology starts to emerge. 

Despite of all the progress made in different technologies to bring healthcare

closer to the general public, small steps have been taken towards accessibility in the

hematology  analyzer  technology  used  in  complete  blood  count  (CBC)  tests.  Most

advances focus on bench top designs with little  to no portability  and expensive  [5]

components, making them unfeasible for in-house and in-field applications  [6][7][8][9]

[10]. CBC tests can help diagnose anemia, infections, blood cancers, immune system

diseases, side effects to drugs and a big number of other pathologies, making it the

most requested laboratory test in hospitals and a mandatory tool in healthcare [11]. 

In the veterinary area, a similar necessity for Point-of-Care technology (PoCT)

can be noticed.  With globalization and urbanization rising, the trade of animals and

animal products is increasing, as is their exposure to zoonotic diseases, due to greater

contact with other animals and humans. Rapid and wide-ranging spread of emerging

diseases  could  have  catastrophic  effects  on  people,  animals  and  the  economy.

Traditional  laboratory-based  testing  is  usually  laborious  and  expensive,  requiring
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deeply  trained  personnel  and  convoluted  work  logistics.  By  introducing  PoCTs  in

veterinary, costs could be greatly reduced and time-efficiency increased. 

Veterinary shares most of the same benefits of hematology analyzer technology

as human healthcare does, with the CBC test being of undeniable importance in the

area.  It  too  faces  the  same  ongoing  inconveniences,  with  current  and  state-of-art

technology not fulfilling the desired accessibility characteristics. However, the situation

is aggravated, as most emerging technologies focus their applicability on human blood.

This is contradictory, since most research starts on animal trials, on account of animal

blood samples,  namely dogs and cats,  being easier  to  come,  with less health and

ethical complications involved. In this sense, both veterinary and human developments

on the applications of this technology could be suffering a setback. 

Therefore, upon this brief delineation, it’s imperative that the CBC test becomes

available ubiquitously, regardless of country development and socioeconomic status of

the patients.  New technology  for  hematology analyzers  needs  to  be researched in

order  to  achieve  the  desired  costs  and  portability,  without  trading  accuracy  and

relevance.  The  same efforts  should  be put  into  the veterinary  field,  as  this  brings

benefits across multiple planes. Only this way, the CBC’s benefit can achieve it’s full

reach. 

1.2. Base work

As an answer to the technology gaps pointed out in the previous subchapter,

Martins et al. introduced a “Point-of-care Vis-SWNIR spectroscopy” device, designed to

acquire spectra of bodily fluids, in particular, whole-blood [12][13][14][15]. Self-learning

artificial intelligence (SLAI) is then used to search for systematic and stable covariance

between  blood  composition  and  spectral  features  in  order  to  unscramble  the

information and identify and quantify blood constituents. 

The  device  uses  reusable  plug-in  capsules  with  mirrored  ends  in  order  to

maximize the optic path in blood. It only takes a small amount of it (< 10μL) to be able

to  acquire  the  spectrum  of  the  whole-blood  sample,  which  allows  for  fingerprick

sampling (or earprick in animals). All controls and displays can be accessed through

the  Internet  of  Things  (IoT)  interface,  which  can  be  opened  on  the  computer  or

smartphone. So far, algorithm implementation is dependent of an external computer,

but future improvements intend to embed the analysis process in the internal computer
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Figure 1: Schematic representation of the PoC approach. A minimal amount of blood can be used, allowing for ear prick

or venipuncture sampling. Utilizing the plug-in reusable capsules, whole-blood spectra can be acquired in no time. 

of the device. A power LED is used as a source of light and a 7-core optical fiber is

responsible  of  transmittance  of  light  and  collection  of  the  spectrum,  which  is  then

acquired by a miniaturized spectrometer.  A small  single-board computer is  used to

administrate all  the tasks and a battery supplies energy for all  components. Due to

these features, the device is highly portable and the acquisition process exceptionally

simple. The components are relatively inexpensive as well, with the reusable capsules

being the biggest investment. 

To fit the highly interferant nature of blood spectral data, a SLAI method was

developed, overcoming the gaps of state-of-art chemometrics algorithms. This method,

called Covariance Mode (CovM) search, searches for groups of samples in the feature

space that contain the same interference information characteristics, that is, samples

whose  correlation  between  spectral  features  and  composition  have  the  same

covariance eigenvector; a covariance mode. These CovMs have stable covariance and

represent  the  correlated  variability  between  certain  spectral  feature  and  certain

combination  of  compositional  variables.  With  this  information,  precise  quantitative

measurements can be done on unknown samples, by finding which covariance mode

(or combination of modes) best fits the sample in the feature space. 
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Table 1: Performance parameters from previous work.

RBC (1012/L)
Dog / Cat

Hgb (g/dL)
Dog / Cat

HCT (%)
Dog / Cat

WBC (109/L)
Dog

PLT (109/L)
Dog

R 0.94 / 0.98 0.95 / 0.99 0.93 / 0.98 0.88 0.84

SE 0.54 / 0.56 12.86 / 5.72 4.43 / 2.36 6.92 61.2

LV 1 / 1 1 / 1-2 1-2 /1-2 1 1-3

MAPE 6.4 / 5.7 7.1 / 4.1 4.4 / 1.7 25.4 24.7

R-Pearson correlation coefficient of Measured vs Predicted plot; SE-Standard error of regression; LV-Number of latent
variables that correlate the compositional variable to spectral variability; MAPE-Mean absolute percentage error. Data
acquired from [13][14][16]

So far, only experiments with dog and cat blood have been made, and over a

partial number of CBC parameters, namely: hemoglobin (Hgb), red blood cells (RBC)

count,  hematocrit  (HTC),  white  blood  cells  (WBC)  count  and  platelet  (PLT)  count.

Throughout  all  these parameters,  SLAI  has shown strong correlation  and accuracy

relative to measurements done by standard hematology analyzers, outperforming, at

the same time, all of the most commonly used state-of-art chemometrics methods. In

table  1,  some  of  the  performance  parameters  obtained  in  previous  works  are

summarized. 

1.3. Relevance

One limitation of most chemometrics algorithms, with no exception to the one

here presented, is that right predictions within the sample population don’t necessarily

mean causality. For this technology to become successful in analysing a broad range

of  unknown  samples,  it’s  important  to  rule  out  sampling-biased  correlation  among

compositional variables and find true causality with spectra characteristics. Hence, in

this  thesis,  I  search  deeper  the  causality  between  constituent  concentration  and

spectral  features  of  dog  whole-blood,  by  exploring  this  same  relationship  on  a

macroscopic  level.  The  SLAI  algorithm  was  applied  to  spectra  of  blood  smears

obtained by microscope. By getting a closer look of the constituents, it’s possible to

better amplify and isolate their contribution to the spectra and understand how their

interference translates to the macroscopic  level.  This  is crucial  to validate previous

results,  as  it  is  to  improve  the  predictions,  by  teaching  the  algorithm  to  search

preferable principal components and covariance modes. By working with animal blood,

the adaptation capabilities and versatility of the device are demonstrated, with direct

pay-off for the veterinary field. 
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On a global standpoint,  a truly portable and inexpensive PoC device, that is

able of obtaining accurate and actionable information, is of utmost importance to reach

CBC’s true potential and fulfil  public health’s and veterinary necessities. The use of

spectroscopy  allows  for  miniaturized  and  cheap  components  with  low  energy

consumption (batteries  can  be used  to  feed  the system)  and  simplified  acquisition

process (robust inner works and user-friendly interaction). Computing resources can

then be focused on implementing AI within the device itself and the development of an

IoT platform to further improve portability and user-friendliness. It’s reagent-less nature

and small amount of blood needed enable reusability of the plug-in capsules, cutting

the  costs  additionally,  and  simplify  the  sample  preparation  process  (no  extensive

training would be needed to use the device). This technology could be applied in in-

house scenarios, enabling periodic checks on chronic diseased or bedridden patients.

It could be easily transported to areas with shortage of medical resources in order to

assess the health state of the population. On these premisses, primary care, nursing

and  epidemic  control  would  all  benefit  greatly  from  this  technology.  Some  of  the

concepts  could  even  be  extended  to  wearable  technology,  with  smartwatches  or

smartphones serving as host devices to attachable gadgets that sample and acquire

the  spectral  data,  which  is  then  analysed  by  the  former,  further  increasing  the

closeness of healthcare. Regarding veterinary, this technology could help prevent the

mass spread of diseases among livestock by keeping close track on animal health in a

time-efficient and non-expensive manner, which in turn is a great advantage for human

health  and  the  economy.  Our  closest  friends  would  also  benefit  from  these

technologies,  since the expenses  of  pet  care  would  be cut  down and the process

facilitated to lessen suffering and inconvenience.  

As for  my self-benefit,  the work here developed,  due to it’s  multidisciplinary

nature, taught me valuable things that have a carry over to other research projects and

applications. Spectroscopy is a widely used technique across multiple areas within and

outside the field of medical physics. The same is true with artificial-intelligence, being

more and more present in recent technologies. Therefore, by working with them, I got a

better  understanding  of  their  combined  potential  and  possible  applications,  which

translates  in  an easier  “get  used to”  in  future works.  Working with  blood  open my

horizons  to  the  area  of  hematology;  it’s  extensive  diagnostic  abilities,  current

technologies and their deficiencies. I am now familiarized with laboratory techniques to

prepare and analyse blood samples,  as well  as recognizing how different  diseases

manifest themselves through blood hemogram parameters. Working together with Prof.

Rui Martins, as my supervisor, and Luís Monteiro, as my thesis colleague, showed me
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the  importance of  communication,  trust  and individual  and  collective  work  within  a

team. I’m therefore wiser and better prepared for the future.

1.4. Automated hematology

Prior to 1950, blood counts were done manually using a hemocytometer and a

microscope.  Not  only  this  methods was very time-consuming and laborious,  it  was

susceptible to great inaccuracies due to sample preparation and human perception. In

1953, Wallace H. Coulter patented the Coulter principle, which gave rise to the first

commercially available counting instrument by 1956. With the first whole-blood bench

top automated analyzer being introduced in 1968, a new era of hematology was born:

the automated hematology [17]. Since then, big improvements were made to refine this

technology:  the  introduction  of  flow  cytometry  allowed  for  5-part  differentials;

embedded  automated  colorimetric  tests  made  possible  to  measure  hemoglobin

concentratioin;  the  use  of  fluorescent  analysis  increased  the  accuracy  of  the

differentials; improvements in computational powered automated the process further by

flagging certain conditions upon cell  analysis.  Nowadays, an automated hematology

analyzer  is  a  quintessential  device  for  any  medical  analysis  laboratory,  as  the

information it provides is of great value for healthcare. Consequently, researches keep

pushing technology forward by either trying to improve on standard technology or by

creating new one to replace it. A short review on current and state-of-art technology is

presented next, in order to get up to date with the automated hematology situation and

give context to the reasons that motivated the chain of work that led to this thesis. 

1.4.1. Complete Blood Count (CBC)

The complete blood count is the most commonly performed test in hospitals. It

allows to count and differentiate the various types of cells contained in blood, as well as

measure  chemical  and  physical  parameters  related  to  them.  With  this  knowledge,

health professionals can then assess the general health condition and infer about the

nutritional  state  of  patients.  Most  importantly,  this  test  is  essential  for  diagnosing

anemia, infections, allergies, immunodeficiencies, blood cancers (eg. Leukemia), acute

hemorrhagic  states  and  monitoring  side  effects  of  certain  drugs,  which  makes  it

essential in the healthcare picture [11]. 

For the cell counts, in blood, we have red blood cells (RBC), platelets (PLT) and

white blood cells (WBC), with the last ones splitting into 5 different types: neutrophils
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(NEU),  eosinophils  (EOS),  basophils  (BAS),  monocytes  (MON)  and  lymphocytes

(LYM).  As  for  the  chemical  parameters,  a  CBC  measures  the  hemoglobin

concentration  (Hgb),  the  mean  corpuscular  hemoglobin  (MCH),  that  is,  the  mean

hemoglobin per RBC, and procalcitonin concentration (PCT).  There are also physical

parameters that can be measured, related to the size and distribution of cells in the

blood, like the mean corpuscular volume (MCV), red cell distribution width (RDW) and

hematocrit (HCT).  

1.4.2 Current Technology

Nowadays,  a  standard  hematology  analyzer  condenses  different  types  of

techniques  in  a  single  automated  machine  to  measure  the  desired  parameters.

Commonly,  these  techniques  are:  flow  cytometry,  for  counting  and  differentiating

WBCs, the Coulter principle, to count and determine the volume of RBCs and PLTs,

and a colorimetric test, to measure Hgb concentration [18][19][20][21]. 

Figure  2: Working principles of flow cytometry.  Cell morphology and complexity dictate scattering and fluorescence

patterns, allowing for the distinction of different cells.



FCUP
Performance validation of an AI spectroscopy hematology device through hyperspectral microscopy

8

-  Flow Cytometry: It consists of 3 main components: fluidics, optics and electronics.

The fluidics  system consists  of  a sheath fluid  that  is  pressurized and running in  a

laminar flow around the sample fluid. When they join together, the sheath fluid delivers

and focuses the sample in a way that a single file of cells is created, enabling them to

be analyzed one by one. The optical system consists of lasers, that interact with the

cells producing scattering and fluorescence, and optical collectors, like photomultiplier

tubes or photodiodes,  to capture the scattered and fluorescent radiation.  When the

sample  reaches  the  intersection  with  the  laser,  also  known  as  interrogation  point,

forward  scattering,  side  scattering  and  fluorescence  is  produced.  The  amount  of

forward scattering is proportional  to the size of the cell,  with bigger cells producing

more of it. On the other hand, side scattering is proportional to shape and internal cell

complexity,  with  more  complex  cells  producing  more  side  scattering  due  to  more

interactions with its organelles. The presence of fluorophores, either endogenous or

exogenous, can be used to collect further information on cell  structure, helping with

differentiation. The electronics are then responsible for collecting and processing all the

data, identifying different groups of scattering and fluorescence patterns and labeling

them as a specific cell based on that.

-  Coulter Principle: In a Coulter counter, a tube with a small hole is immersed in an

electrolyte solution with suspended non-conducting particles. One electrode is placed

inside the tube and other on the outside, creating a current path through the orifice

when a voltage is applied. A pump is used to suck the solution from inside the tube,

making  the  particles  pass  through  the  hole.  When  a  particle  crosses  the  hole,  it

displaces its volume in electrolyte solution, increasing the impedance of the electrical

path by an amount proportional to that volume. That change creates a pulse in current

or  voltage,  depending  on  the  set-up,  which  can  be  used  to  count  the  number  of

particles passing through and their volume. Controlling the flow of solution that is being

pumped,  the  concentration  of  particles  from  the  sample  can  be  determined.  This

principle found great success in the hematology field and it’s still the standard method

for counting RBCs and PLTs. 

- Colorimetric test: In this test, hemoglobin is diluted in a reagent solution to create a

hemoglobin compound that is color stable and strictly obeys Beer-Lambert’s law. The

absorbance of the solution is then compared to a known standard solution from which

the hemoglobin concentration can be determined. 

These methods form the standard basis of modern hematology analysis. 
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With the automation and optimization of these techniques, it’s possible to merge

them  in  a  single  self-operating  hematology  analyzer,  allowing  for  decision-making

information in a matter of minutes. Studies report satisfying intra-assay coefficients of

variation  (CV)  of  1-6%  across  most  parameters  for  the  most  common  brands  of

hematology analyzers [22]. For inter-assay CVs, parameters like RBC, Hgb, HCT, MCV

Figure  3: Working principles of a Coulter counter. The displacement of electrolyte volume by the cell when passing

through the aperture results in a sudden increase in current path impedance. Each impedance peak and respective

shape is used to count and differentiate cells based on size. 

Figure 4: Working principles of colorimetric tests. A color stable hemoglobin derivative is obtained by chemical reaction.

Through the BLL law, its absorbance can be compared with a standard solution to obtain its concentration. 
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also show good agreement, with around 4% for all of them. Yet, they’re not without

flaws. WBC count and differentials and PLT count were reported to disagree between

brands up to 11% and 19%, respectively  [23][24]!  With these parameters being of

paramount importance on evaluating immune system response and stroke risk, manual

tests for evaluating them have to be used to confirm these results, which increases

significantly  the  time  needed  for  results.  Abnormal  or  immature  cells  are  also  not

identifiable by most of these machines (some recent models have flagging capabilities

to identify them) [6].

 However, the real downside of this technology is that, the limiting factors in

speed and convenience for this test is not the analysis itself, but rather the logistics

surrounding it,  mainly the collection of blood samples through venipuncture and the

need of a dedicated lab to analyze them. As an example, in a pediatric or veterinary

setting,  fear  and  involuntary  movements  can  make the collection  of  blood  through

venipuncture difficult for the healthcare professional and uncomfortable for the patient.

For  bedridden  patients,  the  sampling  would  have  to  be  done  at  home  and  then

processed back in the lab, increasing the wait time for the results, or by moving the

patient  to  the  hospital/clinic  for  the  test,  something  that  is  very  inconvenient  and

strenuous for them. Also, in developing countries, some areas don’t have quick access

to hospitals or labs, or often face themselves with facilities under stress, due to the

overflowing of patients, making it impossible to have results on actionable time. 

With these inconveniences in hand, how is the current research and state-of-art

technology trying to deal with them?

1.4.3. State-of-art

In  order  to  push  technology  further,  researchers  have  to  choose  between

building on existing methods and their known advantages, or coming up with new ones,

with different assets of their own. Whichever the case is, the aim is always to improve

aspects like accuracy, time consumption, accessibility, user-friendliness, convenience

or workflow. From my review on the forefront of hematology analyzer technology, there

are four main branches being intensively researched as of today: Microscopic image

analysis by computer vision, microfluidics or lab-on-a-chip (LOC) technology, improved

standard methods and limited parameter devices. 

- Computerized microscopic image analysis [7][9][10]: A fully automated microscope is

used to acquire highly magnified pictures of stained blood cells. Multiple wavelength

channels in brightfield and fluorescent microscopy allow for multispectral images of the
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cells,  extracting  both  chemical  and  morphological  information.   AI  image  analysis

algorithms are then applied to identify and quantify these cells based on their spectral

print  and  morphology.  Recent  evaluations  of  this  technology  report  high  accuracy

parameters,  great  flagging  capabilities,  no  need  of  additional  calibrations,  user-

friendliness,  due  to  automation,  and  high  potential  for  further  improvement,  by

implementation of better AI algorithms. However, the high costs of the components and

their  limited  miniaturization  capability  make  this  technology  impractical  for  patient-

owned and in-field scenarios. Also, accuracy depends highly on sample preparation, as

this technology can only successfully work with images of highly diluted stained blood

cells  in  a  monolayer.  This  makes  the  use  of  lab-on-a-chip  technology  almost  an

indispensable ally if user-friendliness and accuracy is to be achieved. 

- Lab-on-a-chip / Microfluidics: A lab-on-a-chip is device that integrates into a single

chip/cartridge multiple laboratory functions, using only small amounts of sample volume

(down to the picoliter). They’re made up of microchannels and small chambers that are

responsible  for  the  transportation,  mixing,  storing  and  preparation  of  samples  and

reagents without need of further manual intervention. They can also include electrodes,

valves,  pumps,  electronics,  electric  and/or  magnetic  fields,  etc.,  depending  on  the

desired  function.  The  increasing  trend  of  LOCs  in  technology  is  justified  by  their

seemingly endless functions and many advantages; high applicability in PoC or low

resource scenarios; use of very small sample and reagent volumes; user-friendly due

to automation; multiple analysis can take place in a single chip at the same time; low

fabrication  costs;  high  process  control;  no  need  to  house  or  washout  reagents  in

analysis equipments. The downside to this technology is that, with microfluidics, there

can be unexpected effects due to surface roughness and capillary effects on the sub-

milimetric scale, jeopardizing sample preparation and consequently the results. As for

availability, the majority of this technology is not yet ready for commercialization. Also,

LOCs are  rarely  used  on  their  own;  usually  they  are  only  responsible  for  sample

management;  all  acquisition and analysis  is made by external devices,  often bulky,

which reduces portability. Examples of state-of-art methods that use microfluidics are: 

- Viscoelastic flow cytometry [7][25][26]: It takes advantage of the overpowering

shear and wall lift forces that arise in viscoelastic fluids flowing through microchannels

to focus suspended particles in a single file or monolayer. 

- LOC Coulter counter [27][28][29]: LOC technology is applied to collapse all the

Coulter counter setup into a single chip. A focusing method (microfluidics, optical or

acoustic, usually) is used to focus the particles into a single file. Electrodes within the

microchannels are then used to pick up on the fluctuating impedance. 
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- Improved standard technology [6]: Brands and researchers reach for higher accuracy,

better flagging capabilities and extended number of measurable parameters within the

existing technology. With these improvements, new applications and diagnostics are

possible  using  only  hematology  analyzers.  Some  proposed  applications  are:  early

identification  of  marrow  regeneration,  prediction  of  total  platelet  recovery  after

chemotherapy and diagnosis and monitoring of microangiopathies. This brings major

benefits to the clinical setting, but doesn’t improve the accessibility gap, since these

devices are expensive and bulky.

- Limited parameter devices [30][31][32][33]: As the name suggests, limited parameter

devices are gadgets that measure a very small number of blood parameters, usually

one to three. Even though there are many of these devices being explored, usually for

hemoglobin measurement, the principles and methods used by each one are almost

exclusively developed by the corresponding research teams, giving rise to a vast array

of existing technologies. A strong point of these devices is that, most designs focus on

portability and user-friendliness, as they are intended for PoC applications. Also, the

restricted number of parameters measured heighten the potential for better accuracy,

due  to  there  being  more  degrees  of  freedom  to  achieve  parameter  specific

optimization. However, this is a disadvantage as well, since for a complete blood count,

multiple devices would be needed.

Figure 5: State-of-art technology. (Left) Cell complexity can be used for segmentation by computer vision algorithms in order

to differentiate and identify cells. In this case, different types of leucocytes are presented, showing different morphology and

inner structures.  (Right)  A microfluidics lab-on-a-chip cartridge with passive components.  Channels  conduct  the sample

through each chamber for mixing, filtering and analysis.
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Table A.1 in Attatchments compiles some of the existing state-of-art devices,

the technology they implement and some performance parameters.

From this review on current and state-of-art technology, it’s clear that there is in

fact a gap in PoC devices to act on in-house and in-field scenarios. Most designs, old

or new, focus mainly of bench top applications with expensive components, or cartridge

based  applications  that  are  either  dependent  of  bulky  external  devices,  or  have  a

limited amount of measurable parameters. 

To fix this issue, new concepts and methods must be explored in the field of

hematology  analyzer  technologies,  specifically  aiming  to  make  them  cheap  and

portable,  without  trading  for  accuracy  and  relevance.  Rui  Martins  proposed  using

spectroscopy  together  with  SLAI  to  achieve  that  goal,  developing  his  own  PoC

spectroscopy device and SLAI algorithm for whole-blood analysis. In this work, I extend

on  those  concepts  and  solidify  previous  results  by  applying  the  SLAI  algorithm to

spectra obtained by microscopy. 

1.5. Theoretical background

To fully understand the potential of the technology in hand and the relevance of

this work, it is first needed to comprehend the concepts behind it. What is the true aim

of point-of-care technology? How can spectroscopy and artificial intelligence fulfil that

aim? How can spectroscopy acquire the rich data contained in blood? How does AI

transform that data into valuable information? The answers to these questions are the

core of the method here developed and therefore it’s fundamental to shine some light

on them. I now go over some of the key theoretical concepts prevalent throughout all

the development of this thesis. 

1.5.1. Point-of-Care Technology 

Point-of-care  technologies  are  technologies  capable  of  giving  fast  and

actionable information at the time and place of care. Their use spans a multitude of

fields,  like  chemistry,  agriculture  and  geology,  but  it’s  in  healthcare  that  they  find

greater demand. They exclude the need of a dedicated lab and some, even the direct

intervention  of  a  healthcare  professional.  This  allows  for  closer  and more frequent

screenings, giving better understanding of patient health to act upon [34]. The implied
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portability of PoCTs facilitate the screening in low medical resourced areas too, which

is a crucial step for improving developing countries’ public health. 

In  primary  care,  the  need  to  improve quality  of  care,  health  outcomes  and

financial  feasibility is the main drive of PoCTs innovation.  For home care, the main

drivers  of  innovation  are  the  ability  for  self-management,  facilitated  home  nursing,

closer screenings for chronic diseases and allowing remote consultations with higher

diagnosing  abilities.  For  emergency  medical  services,  PoCTs  would  increase  the

number of possible tests on site and during transportation due to portability,  cutting

shorter assessment times and therefore increasing the chances of a better outcome.

PoCTs could also help control pandemic situations to a greater extent, as regular self-

screens would get individuals up to date on their health status avoiding further spread

of the disease.  

In livestock veterinary, animal-side tests to help control diseases and assess

overall  animal  health  are  greatly  desired,  in  particular,  for  remote or  impoverished

geographical regions, where lab-based tests would not be easily available,  implying

steep expenses and delayed results. For pet care, PoCTs promises to reduce testing

costs  and  animal  handling  and  suffering,  which  is  highly  sought  after  from  both

professionals and owners.

 Even though greater focus has been put in the development of PoCTs in recent

years, this concept is nothing new, as several devices capable of measuring vital signs,

or other health parameters, have already been marketed and are present in the daily

lives  of  many patients,  in  particular,  for  the  measurement  of  blood  glucose,  blood

pressure  and  heart  rate.  There  is  an  increasing  trend  to  try  to  combine  these

technologies with smartphones or smartwatches, in order to make the monitoring of

these parameters more accessible and comfortable. The demand and offer of wearable

technologies are exponentially rising, which reflects the approval by the population [35].

There  are  several  working  principles  used  by  POCTs,  depending  on  the

parameters to be measured. However, there are common points between all of them:

the  components  that  make  up  the  system  must  be  miniaturizable  and  relatively

inexpensive; the device should be easy to use and the testing methods must be robust,

ensuring relevant  and reliable results.  For these reasons, two very commonly used

technologies are spectroscopy and artificial intelligence. 
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1.5.2. UV-Vis Spectroscopy

Spectroscopy  is  a  technique  used  to  study  the  absorption  and  emission  of

electromagnetic waves in matter to further characterize or identify analytes on their

spectral print. This is possible due to the property of atoms and molecules of having

energy states that  can be excited by radiation or  other forms of  energy,  producing

absorption  and emission  spectra that  are  unique to each chemical  species.  In  the

ultraviolet and visible range, the energy states excited in single atoms correspond to

electron transitions between orbitals. This creates spectra consisting of discrete spikes

that can be, for the most part, easily singled out [36]. However, for molecules, electron

orbital transitions can be accompanied by the excitation of molecular rotational and/or

vibrational energy states, that are very close together energetically.  This blends the

discrete excitation spikes into broad and continuous absorption or  emission bands,

creating continuous spectra that still allow for characterization and identification  [37],

but are prone to changes depending on many other variables. Figure 6 illustrates the

differences between atomic and molecular spectra. 

The  appeal  of  UV-Vis  spectroscopy  is  that  it  is  possible  to  find  a  linear

relationship  between  absorbance  and  analyte  concentration  for  most  solutions,

allowing for quantitative measurements: this is called the Beer-Lambert Law (BLL) [38].

As light crosses the sample, constituents interact with it by absorption or scattering,

enriching the spectrum with information about the molecular structure of constituents

and the composition of the sample. Due to the plentiful information contained in the

spectra and the correlation between spectral features and constituent concentration,

spectroscopy is one of the pillars in analytical chemistry, and it’s clear how this could

Figure  6: Comparison between an atomic spectrum and a molecular spectrum. (Left) Helium emission spectrum. The

individual peaks can be easily singled out, giving a print of the element. (Right) Hemoglobin absorption spectra in its

oxygenated (HbO2) and reduced (HbR) forms. The spectrum is a continuum across the wavelengths and spanning

multiple orders of magnitude. Instead of peaks there are bands. 
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be useful in blood cell counts as well, since blood constituents have distinct spectral

prints themselves, which in theory, should allow for their quantification. 

In spectroscopy,  4  main  components  can  be  identified:  the  light  source,  to

irradiate the sample, the light transfer system, on which light is carried from source to

detector, the detector, to collect and convert the light into spectra, and a computer, to

interpret and display the data. When it comes to the implementation of this technique

into PoCT, a few small and relatively cheap components are all that is needed. For the

light source, LEDs or laser diodes can be used due to their small proportions. For the

transfer  system,  it’s  very  common to  use  optical  fiber,  which  enables  bending  the

optical path into small areas. For the detector, micro spectrometers can be used; some

of them have dimensions comparable to a coin. As for the computer, most single-board

computers  (SBCs)  nowadays  have  more  than  enough  computational  power  to

administrate all the tasks required, including connecting to a IoT platform in order to

interpret, display and save the acquired information. 

1.5.3. Chemometrics

As mentioned in the previous chapter, one advantage of spectroscopy is that it

is possible to find a linear relationship between absorbance and analyte concentration

due to the BLL. With this relationship, quantitative measurements can be done, which

is highly desirable in analytical chemistry and could be very useful for hematology. For

a single analyte, the concentration can easily be determined by direct application of this

law.  For  solutions  with  just  a  few  known  components,  simple  multiple  component

quantitative analysis methods can be applied. These usually consist in the preparation

of  standard solutions  with  varying amounts of  the  analytes  and interferents.  These

standards are then to be used to calibrate the machines, that use systems of linear

equations  based  on  the  BLL,  to  determine  the  concentration  of  analytes  and

interferents  [39].  This  is  usually  enough  for  laboratory  prepared  samples,  where

separation  and  purification  techniques  can  be  used  to  reduce  the  number  of

constituents to a small number, allowing for all of them to be accounted in the models,

as well as in the preparation of standards. However, with complex solutions containing

a  large  amount  of  constituents,  like  most  biological  samples,  the  production  of

standards is nearly impossible, as separating the components and accounting for them

all is extremely laborious or even unachievable. This problem led to the development of

chemometrics. 
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Chemometrics  is  the  discipline  that  applies  mathematical,  statistical  and

computational  methods  to  the  analysis  of  chemical  data.  The  main  objective  of

chemometrics is to extract as much information as possible from the chemical data

obtained,  usually  by  finding  a  correlation  between  two  or  more  physico-chemical

properties of the sample; which for the work here presented are spectral features and

analyte  concentration.  What  separates  chemometric  methods  from  the  previously

mentioned methods is that, chemometrics doesn’t depend on a causal physical model

to understand effects and correlate identities. Instead, it revokes the need of causality

and finds correlation by pattern recognition, prediction and factorization [40][41]. Only

then is a model created to fit the results and give them causal meaning (otherwise they

would be of no value). 

The advantage to this approach is that all information contained in the data is

included in the analysis: the entire range of wavelengths of the spectra can be used;

it’s not needed to filter or separately account for interferents or impurities; even noisy

data can be dealt with and included. Chemometrics takes in raw mixed data and gives

back also raw mixed data, but in a format that can be better demystified. This way, it

can provide information that traditional methods simply cannot, as physical models will

oversimplify  the  complexity  of  the  sample  and of  the  processes involved.  This  fits

perfectly  with biological  samples,  since information about  a particular  constituent  is

present in different scales and distributed along the range of wavelengths. Also, most

interferents and inpurities are either unaccountable or simply unknown. In the end, all

the rich information contained in biological samples is preserved and used, allowing for

relevant and actionable results. 

However,  as  a  consequence  of  this  seemingly  miraculous  simplicity,

chemometrics faces itself  with some challenges that  are imperative  to overcome if

valuable results are to be attained.  To begin with, a good population representativity is

mandatory to exclude false correlations between variables. For that, sampling should

be large and differentiated enough so that all independent variables are presented as

such to the algorithm. Any falsely correlated variables would immediately devalue the

results, as there would be no guarantee that the method is actually able to identify and

quantify  at  least  one  of  those  variables.  Then,  there’s  the  fact  that  the  math,

programming  and  calibrations  involved  in  these  methods  are  considerably  more

complex  than  traditional  methods.  Even  though  there  are  multiple  standard

chemometrics  algorithms  being  extensively  used  in  the  field,  their  performance

depends noticeably with application. Ultimately, an application specific algorithm is to

be developed for ideal performance. This is usually the biggest challenge, specially for
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biological samples, as interferences are scattered throughout the entire spectra and in

multiple scales, requiring to be unscrambled. Lastly, the results obtained need to have

a causal interpretation or model for them to be validated and sound. No confidence can

be placed in the results if there’s no logical proof that the algorithm is in fact finding,

through correlation, a causal link between two identities. This is particularly essential in

the healthcare scenario,  as blindly  trusting patient  health on pattern recognizing or

statistical  algorithms  is  simply  not  acceptable.  This  can  be  aggravated  if  the  two

previous requisites are overlooked.

Chemometrics is often paired with AI, as many algorithms benefit amply from its

techniques,  for  example,  heuristics,  machine  learning,  machine  vision  and  artificial

neural networks. When it comes to implementing artificial intelligence, all that is needed

is a computer with enough computational power to be able to run the algorithms and

store the necessary data. With the ever increasing computational power of SBCs, most

are perfectly capable of AI, taking very little space and being relatively cheap, which

makes the integration of AI and chemometrics into PoC technology a favourable match.

1.5.4. Blood spectroscopy

Blood is a complex biological fluid permeated by valuable information about the

individual’s health status. Due to its large number of constituents and intricate chemical

interactions, it’s difficult  to create mathematical  models that relate different physico-

chemical  identities  to  each  other,  and  this  is  not  less  true  when  relating  spectral

features to constituents concentration. Analyte information is mixed together with that

of  interferents  through  multi-scaled  interferences  and  matrix  effects  distortions  that

span the entire considered wavelength range. The major challenge of implementing

spectroscopy in blood cell counts is then, to unscramble this information in a way that

quantitative predictions can be made. 

The major spectral features of blood come from the hemoglobin contained in

red blood cells.  Hemoglobin,  in  particular  its  oxygenated derivative,  oxyhemoglobin

(HbO2),  is  the  overwhelming  absorber  in  blood  due  to  it’s  high  concentration  and

absorption peaks in the UV-Vis region. The remaining constituents will  overlap their

spectra to that of hemoglobin,  resulting in the final observed spectra. When two or

more  constituents  have  overlapping  absorption  bands,  they  cannot  be  individually

measured and are said to be interfering. For oxyhemoglobin, two interfering regions

can be identified: in the 400-450 nm region, its biggest interferent is bilirubin; in the
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525-580 nm region, it interferes with its derivatives. Nevertheless, this latter region is

the one  that  shows  biggest  variance  in  spectral  features  due  to  the overpowering

absorption  of  hemoglobin,  and  will  likely  be  the  one  picked  by  the  algorithms  to

correlate spectral variance to hemoglobin concentration, RBC counts and HCT.  

Figure  7: Hemoglobin interferents spectra. Hemoglobin derivatives have similar absorption peaks which makes them

highly interferent,  even at lower concentrations. The wide absorption peak of bilirubin also creates big interferences

throughout most of the lower portion of the visible range, making it extra hard to unscramble hemoglobin’s spectral

information.
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2. Materials and methods

2.1. Sampling and conditioning

Dog blood samples were collected at Centro Hospitalar Veterinário do Porto.

These  samples  resulted  from  daily  clinical  practice  and  were  taken  through

venipuncture of the jugular vein by qualified personnel. To guarantee blood integrity,

the samples were stored in K3-EDTA tubes, collected daily and analyzed on the same

day;  only  samples  with  less  than  8  hours  from  blood  extraction  were  analyzed.

Transportation was made in a thermal bag with a cold accumulator to preserve the

blood until it reached the lab for analysis. Before the spectra acquisition procedure, the

samples  were  carefully  homogenized  by  rocking  the  tube  gently  to  assure  the

representativeness of the blood drop extracted. 

A total of 145 dog blood samples were used in this study. This total was then

separated into two groups:  the training set  and the prediction  set.  The training set

consisted  of  85  samples,  while  the  prediction  set  consisted  of  60  samples.  This

separation was done based on sample collection order, which doesn’t jeopardize the

analysis validity due to the randomness of blood composition granted from daily clinical

practice. 

2.2. CBC parameters and benchmark

CBC  parameters  were  determined  by  the  veterinary  hematology  analyzer

Mindray BC-5000 Vet. This device uses flow cytometry combined with tri-angle laser

scatter and chemical dye for WBC differential count, electric impedance method for

RBC  and  PLT  counts  and  a  cyanide-free  colorimetric  method  for  hemoglobin

determination.

The CBC parameters of the training set were used by the algorithm to relate

spectral variability to composition variability. As for the parameters of the prediction set,

these were used to compare with the predictions made by the methods. 

2.3. Spectroscopy

-  PoC:  The  device  used  consists  of  a  Vis-SWNIR  PoC  spectrometer  prototype

controlled through an IoT interface. It uses a reusable plug-in capsule with a mirrored
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cap, to trap a blood drop (~5 μL) in a thin layer.  White light is then shone on it  to

acquire the whole blood spectrum. It contains a power LED of color temperature 4500

K  to  produce  the  white  light,  a  7-core  fiber,  with  the  6  outer  cores  used  for

transmittance and the inner core for collection, a spectrometer and a small computer to

manage all the commands fed through the IoT interface. To acquire the spectra, a 5 μL

blood drop was set on the glass inside the capsule using an automatic pipette. The

mirrored  cap  was  carefully  screwed  on  so  that  the  blood  drop  would  get  trapped

between the mirror and the glass and form a thin layer. The capsule was then coupled

to the PoC and the spectrum acquired. Through the IoT interface, integration time was

adjusted  and  new  acquisitions  were  made  until  the  spectrum  spanned  the  entire

detectable  range  on  the  intensity  axis  without  saturation.  The  spectrum  was  then

saved,  the  capsule  removed  from the  PoC and  the  mirrored  cap  unscrewed.  The

capsule’s parts were washed with deionized water, dripping to a solution of water and

bleach, and then dried off with paper, being ready to be used again on other samples.

The process was repeated until spectra from all samples were acquired. 

-  Microscope:  Zeiss Axio Vert A1 with the Axiocam 208 color camera. A neutral filter

was used on the LED and no filter was used after the objective. The numerical aperture

was set to maximum. Using an automatic pipette, a 5 μL blood drop was set in a glass

slide, proceeding to prepare the blood smear with the slide dragging method, trying to

maintain  similar  slide  angles  and  drag  speeds  to  assure  consistency  among  all

samples and restrict other variability sources. The blood smear was then positioned

under  the  microscope  and  a  representative  homogeneous  monolayer  region  was

searched. Once found, the spectra were acquired through the ocular by an optical fiber

connected to the spectrometer. A magnification of 200x with integration times of 130ms

were  used,  acquiring  3  consecutive  spectra.  LED  intensity  was  set  to  optimize

spectrum  signal/noise  ratio  inside  the  linearity  zone  of  the  spectrometer.  With  the

camera  and  using  the  Zeiss  Zen  3.5  microscopy  program,  the  same  region  was

photographed, adjusting the RGB histograms with the Min/Max option and the LED

intensity to avoid saturation. These steps were repeated until  all  the blood samples

were analyzed. After that, the slides were immersed in bleach and washed with water

afterwards. Before being used the next day, each slide was again cleaned with ethanol

to remove any remaining residue.
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2.4. Covariance Mode search 

To correlate spectral features with sample composition, a SLAI algorithm was

developed by Rui Martins: the Covariance Mode (CovM) search method. The method

works by performing the following steps:

i. Feature space optimization: An initial rough form of information unscrambling is done

by optimizing the feature space through selection of adequate features and transforms.

This allows to separate and identify groups with similar characteristics at the spectral

and compositional level based on their coordinates in the feature space.

ii.  Covariance  Mode search:  From the feature  space,  the  method  searches  a  pre-

determined number of neighbors of a given sample, creating groups and storing those

with high correlation and low number of latent variables. Covariance within these sub-

groups is then maximized by adding and removing samples until a stable covariance

group is  found.  This  sub-group  is  considered  a  covariance  mode when one latent

variable  is  sufficient  for  providing  a  small  standard  error.  This  is  repeated  for  all

samples  in  feature  space until  all  CoVMs are found.  At  this  point,  it’s  known how

spectral  features  and  composition  change  accordingly  for  each  group,  since  the

covariance eigenvectors is determined. Then, to predict the composition of an unknown

sample, interpolation of the covariance eigenvector of the most similar group is used. 

The  advantage  of  searching  for  CovMs  is  that,  by  finding  the  gradient  of

information between variable and spectral features, precise quantitative measurements

can be made. Also, due to the decomposition of the information to the feature space

and the equivalence  of  latent  structure  of  the  spectra  and  composition,  there  is  a

facilitated interpretation of interference. 

2.5. Qualitative test

The first step in this analysis is to check the ability of the microscopic method to

separate samples based on their composition. To do so, a basic principal components

analysis (PCA) was done, retaining only the two first main components. This separates

the samples based on spectral features. Consulting the CBC parameters, it’s possible

to understand if  this spectral separation is related to composition differences or not;

clustering of similarly composed samples indicate separation ability. Raw spectral data

and images of the analysed blood smears also provide valuable information to interpret

the results and so are also to be used. 



FCUP
Performance validation of an AI spectroscopy hematology device through hyperspectral microscopy

23

2.6. Quantitative test

The extent of the usefulness of hyperspectral microscopy to the development of

the  PoC device  lies  in  it’s  ability  (or  lack  of)  to  predict  CBC parameters  that  are

simultaneously comparable to standard technology and the PoC device.

With the PCA of the microscopic data working as an initial separation of the

samples, it’s then necessary to correlate microscopic spectral features to composition.

This is done by applying the CovM search algorithm to the training set and finding the

groups of stable covariance and single latent variable. After that, the algorithm is ready

to make predictions of the CBC parameters. Only hemoglobin related parameters were

acquired, that is, RBC, Hgb and HCT; minor parameters like WBC and PLT didn’t get

enough representativeness in the microscopic method to be able to get predictions of

them. The same process of prediction was done with the data acquired with the PoC

device. 

The predictions  done by both methods were then benchmarked against  the

Mindray BC-5000 Vet  analyzer  by doing a linear  regression in  the scatter  plot  and

calculating  the coefficient  of  determination  (R2)  and the mean absolute  percentage

error (MAPE). 
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3. Results and discussion

3.1. Qualitative test 

From the spectra obtained through microscopy, a principal component analysis

was done to try to identify clusters of spectra that share similar spectral information.

Figure  8  presents  the  results  from  the  PCA.  In  it,  three  distinct  clusters  can  be

identified. By analysing the CBC results it’s possible to trace back what each cluster

represents.  Table  2  shows  the  CBC  parameters  from  3  samples  picked,  one  per

cluster. The red cluster, containing most of the samples, represents dogs with CBC

parameters  inside  the  reference  range.  The  blue  cluster  represents  dogs  with  low

values of RBC, Hgb and HCT (Anemia) and high values of WBC (Infection). The green

cluster represents dogs with normal levels of RBC, Hgb and HCT, but high values of

WBC.  As for the outliers, it wasn’t possible to drop them in a specific category. They

were either samples with different blood composition who didn’t get a number of other

samples to reach enough representativeness, or were samples whose analysis were

compromised by blood integrity or smear quality. 

From this analysis, it’s possible to conclude already that the microscope method

has a very strong intrinsic ability to separate samples based on their composition. But

it’s important to understand where this heightened ability comes from.

Figure 8: Results from the principal component analysis. Its possible to identify 3 distinct clusters. Red cluster corresponds

to healthy dogs. Blue cluster to dogs with anemia and infections. Green cluster dogs with infections only.
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Table 2: Hemogram values of Red, Green and Blue clusters samples.

Sample
Number

RBC (1012/L) HGB (g/dL) HCT (%) WBC (109/L) PLT (109/L)

20 R 7.78 197 0.499 8.69 287

35 G 5.74 132 0.342 94.5 590

47 B 3.10 62 0.164 26.50 28

To further explore microscopy’s ability to qualitatively separate samples based

on  spectral  information  and  interpret  the  results  obtained,  one  sample  from  each

cluster  was  picked  and  their  spectra  and  microscopic  blood  smear  images  were

compared (figure 9). Healthy dog blood samples are characterized by densely packed

red blood cells and a reduced probability of finding a white blood cell in a randomly

picked area.  This is due to the extremely low proportion of WBCs to RBCs in non

infectious situations (1:1000).  That  is represented by the red spectra and image in

figure 9. For infectious cases, the increased count of WBCs makes it more likely to find

one in a randomly selected representative area on the blood smear, as it’s possible to

see in both blue and green framed images. If infection is the only condition present,

then no other major alterations are expected to be noticed in the blood smear; RBCs

still  behave  in  the  same  manner,  showing  high  density  and  homogeneity  in  their

distribution (green framed image). As for the spectral behaviour,  little to no change,

when  compared  to  healthy  dogs,  is  seen  in  the  region  of  hemoglobin’s  peak

absorbance  (around  525  to  580  nm).  However,  after  580  nm,  as  hemoglobin’s

absorbance  drops  significantly,  a  slight  drop  in  transmittance  can  be  seen  in  the

spectra of dogs with infection, due to the presence of WBCs. This is consistent with

previous results, that show that, even though WBC have higher absorbance in the UV

region, their spectral variability is better noticed in the higher wavelength region due to

less  interference  with  hemoglobin  [16].  As  for  anemia,  it  manifests  itself  by  a  low

density of RBCs, often forming clumps that create an inhomogeneous environment, as

it can clearly be seen in the blue framed image. The spectral changes of anemia are

pretty evident as well. With hemoglobin as the major absorber in blood, its reduction

results in an increase in transmitted light in the spectra as a whole, which widens and

pushes the spectra up. This effect is specially noticed around hemoglobin’s absorption

peaks (around 525 to 580 nm). These changes can be seen in the blue spectrum. 
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With  this  analysis,  it’s  possible  to  understand  that,  due  to  the  microscope

method’s  detailed  view of  the sample,  components manifest  themselves  in  a more

noticeable way, creating spectral variability that is perfectly noticed just by looking and

even  more  when  using  computers  and  algorithms  to  unscramble  this  information.

Therefore, it’s concluded that the method, not only is able to separate samples based

on their composition, it does so it with an intrinsically high capability. 

3.2. Quantitative test

Quantitative  predictions  can  further  strengthen  the  concept  of  whole-blood

spectra  having  all  the  necessary  information  for  composition  determination.  To

compare  each  method’s  capacity  in  quantifying  CBC  parameters,  the  SLAI  CoVM

search  algorithm  was  used  to  predict  the  values  of  RBC,  Hgb  and  HCT  on  the

prediction set and regress them to the measurements done with the Mindray BC-5000

Vet. This is presented in figure 10. Performance parameters from each regression line

are presented in table 3. The PoC method shows a strong correlation for all variable,

with R2~0.89 for RBC, R2~0.91 for Hgb and R2~0.93 for HCT. MAPE values were all

below the maximum total  error  of  10% for  these parameters,  as  stipulated  by  the

American Society for Veterinary Clinical Pathology  [42]. As with previous works, the

PoC method  shows good  predicability  of  CBC parameters.  As  for  the  microscopic

method, good correlation was obtained with  R2~0.86 for RBC, R2~0.84 for Hgb and

R2~0.88 for HCT. The MAPE values rounded the 10%. 

Figure 9: Spectra and microscopic image comparison for one sample in each cluster. Red – Healthy dogs; Blue – Dogs

with anemia and infection; Green – Dogs with infection. Blood from dogs with anemia have higher transmittance in the

range 525 to 580 nm. Dogs with infections have subtle spectral variability for wavelenghts over 580 nm. 
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Table 3: Performance parameters for PoC method and Microscope method.

Equipment Parameter RBC Hgb HCT

PoC
R2 0.8945 0.9141 0.9300

MAPE 9.62 4.76 4.24

Microscope
R2 0.8561 0.8350 0.8766

MAPE 9.10 10.37 9.70

These results show that, it’s possible to make quantitative predictions of major

blood constituents, with the microscopic method, that are comparable to both standard

technology and the PoC device in development. This also implies that the information

present at the microscopic level and the macroscopic level is equivalent and therefore

possible to correlate with each other. 

3.3. Complementarity 

Although  the  information  shared  between  the  microscopic  and  macroscopic

levels is equivalent, there are noticeable differences in the performance these levels

allow. To begin with, the PCA results obtained with the microscope method get a much

higher sample separation,  compared to a typical PCA score obtained with the PoC

method [13][14][16]. Then, it’s also seen that the quantitative predictions obtained with

Figure  10: Linear regression results by PoC method and Microscope method.  These quantitative predictions where

regressed against the values obtained by the Mindray BC-5000 Vet. Good correlation is shown from both methods
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the PoC device have higher accuracy than the microscope method. One last major

difference can be seen by analysing the raw spectra obtained by the two methods. 

In figure 11, the spectra obtained with the PoC device and with the microscope

are presented side by side. Their overall shape is evidently different, as this depends of

the light source spectrum characteristics of each device. However, what’s important to

realize is that, even though the constituents per sample are the same, the way the

sample as a whole shapes the spectra on each method is completely different. In the

microscopic spectra, it’s possible to notice separation among three different sample

groups, just like in the PCA. The same is not true for the PoC device, as most spectra

are very close together.

The microscopic method looks deep into the blood structure, reducing the light

interactions to a single monolayer of blood. This detailed view of the sample, makes

each constituent stand out to a greater degree, allowing to notice their presence in the

spectrum.  For  this  reason,  samples  can  be  separated almost  immediately  by  their

spectra and even more after a principal component analysis, or other type of features

separation and optimization. However, since this close up look of the sample covers a

very small area of the smear, there’s very low representativeness of the constituents.

This makes quantitative predictions inferior or sometimes even impossible, as it was

the case with WBCs. 

On the other side, there’s the PoC device, which looks to a whole volume of

blood (even though small). Light interactions are high, making interferences and matrix

effects  dominate  the  spectral  behaviour,  scrambling  the  information  heavily.  This

makes both spectra and PCA scores very close together, with only subtle differences,

Figure 11: Comparison between PoC spectra and Microscope spectra. The same constituents manifest themselves in a

different manner for each method, due to their different views of the sample.
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and  therefore  hard  to  separate  with  simple  resources.  At  the  same  time,  the

generalized  view  of  the  sample  allows  for  a  very  good  representation  of  blood

composition. The spectra contains all  the information needed to quantify constituent

concentration. After that, is a matter of implementing the right algorithms to extract that

information and get accurate predictions. Optimizing the algorithms, however, is not a

simple task. 

This analysis leads to an important conclusion: the information obtained with the

microscope  method  and  with  the  Poc  device  is,  simultaneously,  equivalent  and

complementary,  advocating  for  their  cooperative  use  on  the  development  of  the

technology. 
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4. Recommendations
Knowledge is of no use if one cannot be critical about it and put it to use. It’s

important to look back to the thoughts, methods and results developed in this work and

reflect upon them. In this chapter,  suggestions of improvement and future work are

given, to push forward the capabilities of the technology here explored. 

4.1. Improvements 

The methodology of sample analysis used in the microscopic method is very

simple. Blood smears are made for each sample, a monolayer region is found and the

spectra of the constituents in a small area is obtained. But, this methodology has two

flaws that need to be solved in order to get past the proof of concept point and start

using hyperspectral microscopy in the development of the device. 

- Representativeness: Due to the small area of analysis, there’s low representativeness

of the blood components,  diminishing the quality of  the quantitative results or even

making it impossible to get any. A solution to this problem would be increasing the area

of analysis by creating either a mosaic image or a continuous analysis sweep of the

monolayer region of the smear. This would allow the inclusion of a greater count of

constituents  without  decreasing  the  detailed  view  that  the  method  gets.  Major

absorbing components would get better quantitative results and minor components like

WBCs and PLTs would be allowed a certain degree of predictability. 

- Blood smear quality: Blood smear quality can alter the results obtained, as it’s directly

linked  to  cell  ratios,  distribution  and  density,  light  interactions  and  other  factors

important to make the blood smear represent the whole sample and keep consistency

between samples. One way of dealing with this problem is by creating a blood smear

protocol and quality standard that can guarantee consistency from sample to sample.

This has the drawback of needing specialized personnel and resulting, certainly, in a

slower rate of analysis. Another way is by using microfluidics cartridges, like it’s already

being used by other state-of-art  devices,  to automatically  and consistently create a

monolayer of blood that can be then analysed. The drawback is, being expensive in

case a high number of samples are analysed.
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4.2. Future work 

To follow up on this work,  it  would be interesting and certainly  beneficial  to

study the relationship between the microscopic and macroscopic levels, developing a

model  that  allows  predicting  the  results  of  one  through the other.  By  creating  this

mapping, the PoC method could use the high detail of the microscopic method, in an

indirect  way,  to  facilitate  the  unscrambling  of  information.  This  will  subsequently

translate  into  a  greater  ease  for  the  SLAI  to  find  the  covariance  modes  and,

consequently,  to  make the best  quantitative  predictions,  as  there is  a  much better

isolation of the different spectral characteristics. At the same time, one will get to know

better the microscopic spectral behavior of the constituents, which would then make it

easier to give a causal interpretation to the results obtained at the macroscopic level.
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Conclusion
This research aimed to give a proof of concept on the analytical capabilities of

hyperspectral microscopy and how it can be used in the development of a reagent-less

point-of-care hematology device with the potential to fulfil the gaps of accessibility seen

in both standard and state-of-art tecnologies. 

From qualitative analysis of spectra from dog blood smears, obtained through

microscopy, it was seen that, on this level, spectral data has high detail information on

blood composition, allowing for a very strong differentiation between samples, unlike

previously seen by the PoC device. Quantitative results showed that both PoC and

microscopy methods are able to accurately predict major absorbing CBC parameters,

exhibiting  an equivalence  in  information between the microscopic  and macroscopic

levels. The better quantitative performance of the PoC method is credited to the more

extensive view it  has on the sample allowing for greater representativeness.  It  was

seen  therefore  that  the  methods  share  equivalent  but  complementary  information,

advocating for their combined use to develop the technology.

To tackle  the  methodology  problems with  the  microscopy method,  a  quality

standard for blood smears should be implemented. This could perhaps be achieved by

creating a smear formation protocol or by using microfluidics cartridges to create the

monolayer in an automated and consistent manner. As for the representativeness of

the analysed area, this could be solved by creating a mosaic picture or a continuous

analysis sweep in order to include a greater number of counts. 

For future work, the direct correlation between macroscopic and microscopic

spectra could be explored in order to develop a model that allows mapping the results

at one level to the other. This map could then be used to join the high differentiability of

the microscopic method to the high representativeness of the PoC device, resulting in

much better predictions of CBC parameters.

A truly portable and cheap device able to obtain accurate and actionable results

from a small amount of blood is paramount to reach the demands of healthcare and

veterinary on a global scale. That would translate in more frequent health check-ups for

chronically ill patients, easier assessment of health in low resource areas and a faster

action on combating the spread of diseases on humans and animals. Hyperspectral

microcopy in a shortcut to that objective and the beginning is this. 
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Attachment 1

State-of-Art Devices

Some of the most promising hematology PoC devices are presented next,  together

with their used technology and some performance parameters. 

A few notes to consider while consulting this table:

- The parameters summarized in this table have the purpose of comparison with the

device presented in this thesis, both to previous work or the one here developed. For

this reason, some values are rounded and only a restricted amount of parameters are

presented, corresponding to those tested so far by the team: RBC, Hgb, HCT, WBC,

PLT. For an extended list of performance parameters, it is advised the consultation of

the documents referenced for each device.

- Each research team or brand uses its own performance parameters and methods.

Therefore, the information here contained might no be directly comparable. For a better

understanding of the performance parameters meaning and the methodology used to

obtain them, the referenced documents should be consulted.

Table 4: Performance parameters of state-of-art devices.

HemoScreen [7]

Computer vision; AI; Viscoelastic flow cytometry; Disposable microfluidics cartridges

RBC Hgb HCT WBC PLT 

Correlation (r) 0.98 0.98 0.98 0.97 0.98

Slope (m) 0.953 0.977 1.009 0.813 1.085

CV (%) 2.83 3.06 3.19 7.36 6.73

Sight OLO [9]

Computer vision; AI; Disposable LOC cartridges; Passive process of blood monolayer
formation

RBC Hgb HCT WBC PLT 

Correlation (r) 0.99 0.99 0.98 0.997 0.98

Slope (m) 1.019 1.031 1.030 1.011 1.006

CV (%) 2.2 1.9 2.2 4.3 5.4
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Hilab [10]

Computer vision; AI; Disposable microfluidis cartridges

RBC Hgb HCT WBC PLT 

Accuracy (%) 99.3 99.1 98.7 98.0 99.8

Specificity (%) 93.0 99.7 96.3 93.5 99.9

Sensibility (%) 99.7 100.0 98.9 98.6 99.8

CV (%) 4.15 1.3 - 10.97 7.24

HemoCue Hb 801 [43]

Single parameter device; Spectroscopy; Absorption of HBG in whole-blood

RBC Hgb HCT WBC PLT 

Correlation (r2) - 0.92 - - -

Slope - 0.96 - - -

CV (%) - 1.0 - - -

HemoCue WBC [44]

Single parameter device; Computer vision; AI; Single use cartridges

RBC Hgb HCT WBC PLT 

Correlation (r2) - - - 0.991 -

Slope (b1) - - - 1.006 -

CV (%) - - - 5.4 -

PC100 [32]

Single Parameter Device; “patented optical imaging technology” 

RBC Hgb HCT WBC PLT 

Correlation (r) - - - - 0.98

Slope - - - - 1.002

Percentage
Difference in 95%

CI
- - - -

-4.82 to
1.31

CMOS [33]

Computer vision; AI; RBC, WBC and differential

RBC Hgb HCT WBC PLT 

Correlation (R2) 0.99 - - 0.92 -

Slope 0.943 - - 0.739 -
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