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Abstract 

Direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent planar jets are 

utilized to assess the distortion similarity (DSIM) model, recently developed by Ferreira et al. (P. 

O. Ferreira, F. T. Pinho, C. B. Silva, Large-eddy simulations of forced isotropic turbulence with 

viscoelastic fluids described by the FENE-P model. Phys. Fluids, 28 125104, 2016.) to describe 

the subgrid scale contribution to the distortion in the viscoelastic constitutive model known as 

FENE-P for homogeneous isotropic turbulence, in the simulation of turbulent viscoelastic planar 

jets. Both a-priori and a-posteriori tests of the DSIM model are performed, and show that the 

several assumptions used in the development of the DSIM model hold well in inhomogeneous 

wall-free turbulent viscoelastic flows e.g. i) the scale similarity of the subgrid-scale (SGS) polymer 

stretching, and ii) the local equilibrium of the elastic energy production and dissipation. The DSIM 

model for the SGS polymer stretching term, together with the dynamic Smagorinsky model for the 

SGS term in the momentum equation is able to reproduce well the flow structures and the classical 

one point statistics of turbulent viscoelastic planar jets, and the model should be equally able to 

simulate other free shear flows of viscoelastic fluids e.g. wakes and mixing layers. 

A semi-analytical solution is also proposed for the laminar planar jet flow of viscoelastic FENE-P 

fluids. This semi-analytical solution not only helped validate the DNS code, but it also provided a 

tool to understand the corresponding laminar flow characteristics such as the laws of the decay of 

the centerline velocity and of the growth of the jet half-width and to ascertain the effects of the 

viscoelasticity upon the flow characteristics, before facing with the complexity of the studying the 

corresponding turbulent flow. The solution is obtained by performing an order of magnitude 

analysis and ensuing simplifications of the governing equations. Although we get inspiration from 

Olagunju’s solution (D. O. Olagunju, Local similarity solutions for boundary layer flow of a 

FENE-P fluid, Appl. Math. Comput., 173, 593–602, 2006a, D. O. Olagunju, A self-similar solution 

for forced convection boundary layer flow of a FENE-P fluid, Appl. Math. Lett., 19, 432–436, 

2006b.) for viscoelastic boundary layer flow, the performance of both the present solution and 

Olagunju’s solution are assessed by comparing them with the results of RheoFoam module of the 

freeware OpenFoam code (F. Pimenta, M. Alves, Stabilization of an open-source finite-volume 

solver for viscoelastic fluid flows, J. Non-Newt. Fluid Mech., 239, 85 – 104, 2017, F. Pimenta, M. 

A. Alves, RheoTool, https://github.com/fppimenta/rheoTool, (2016)).  
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This type of semi-analytical solution is also extended to two other classical laminar flows of 

viscoelastic fluids, namely the boundary layer and mixing layer flows, due to their wide range of 

scientific and industrial applications. It is observed that, at low elasticity levels, in all 

aforementioned flows the kinematic quantities collapse on the corresponding Newtonian flow 

curves, with the polymer characteristics exhibiting an asymptotic behavior if adequately 

normalized. However, with increasing levels of elasticity the semi-analytical solutions deviate 

from the asymptote curves. Through these semi-analytical solutions, we provide an extensive set 

of results, including profiles of polymer conformation and stress tensor components, laws of decay 

for peak stresses under low elasticity conditions and their location as well as the streamwise 

variations of boundary and mixing layer thicknesses as well as displacement and momentum 

thicknesses for both boundary and mixing layer flows.  



vi 

 

Resumo 

Simulação numérica direta (DNS) e de grandes escalas de turbulência (LES) de jatos planos, em 

regime turbulento, são utilizadas para avaliar o desempenho do modelo de semelhança de distorção 

(DSIM), recentemente desenvolvido por Ferreira et al. (P. O. Ferreira, F. T. Pinho, C. B. Silva, 

Large-eddy simulations of forced isotropic turbulence with viscoelastic fluids described by the 

FENE-P model. Phys. Fluids, 28 125104, 2016.) para descrever a contribuição residual do termo 

da distorção da equação constitutiva do fluido viscoelástico, conhecido como modelo FENE-P, em 

turbulência homogénea e isotrópica, aplicada agora à simulação de escoamentos de fluidos 

viscoelásticos em jatos planos. São realizados quer testes a priori quer a posteriori do modelo 

DSIM, dos quais se conclui que as hipóteses fundamentais que lhe são inerentes se mantêm válidas 

para escoamentos turbulentos, não-homogéneos e não-confinados de fluidos viscoelásticos. Essas 

hipóteses são: (i) a semelhança de escalas da contribuição residual (SGS) da extensão polimérica 

e (ii) o equilíbrio local entre produção e dissipação de energia elástica. O modelo DSIM para a 

contribuição residual da extensão polimérica, juntamente com o modelo dinâmico de Smagorinsky 

aplicado às tensões residuais da equação da quantidade de movimento, permitem reproduzir a 

estrutura do escoamento e as estatísticas clássicas locais de jatos viscoelásticos planos em regime 

turbulento. Espera-se que o modelo também seja capaz de simular outros escoamentos de corte 

sem efeitos de parede de fluidos viscoelásticos, de que são exemplo as esteiras e camadas de 

mistura. 

Uma solução semi-analítica é ainda proposta para o escoamento laminar de jatos planos de fluidos 

descritos pelo modelo FENE-P. Esta solução foi usada na validação do código para DNS, mas 

também revelou-se uma ferramenta essencial para a compreensão das características intrínsecas 

do respetivo escoamento, tais como as leis de decaimento da velocidade axial, de crescimento da 

espessura do jato, e ainda da contribuição da viscoelasticidade para a sua dinâmica, antes de se 

enveredar pelo estudo do jato em regime turbulento. A solução é obtida através de uma análise de 

ordem de grandeza dos termos das equações governativas e sua simplificação para escoamento de 

corte de baixa espessura. Apesar de inspirada na solução de Olagunju (D. O. Olagunju, Local 

similarity solutions for boundary layer flow of a FENE-P fluid, Appl. Math. Comput., 173, 593–

602, 2006a, D. O. Olagunju, A self-similar solution for forced convection boundary layer flow of 

a FENE-P fluid, Appl. Math. Lett., 19, 432–436, 2006b) para escoamento de camada limite de 
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fluidos viscoelásticos, a solução obtida não é idêntica à que se obteria a partir dos seus 

pressupostos. Assim, os desempenhos da solução do jato e da solução de Olagunju para jatos foram 

comparados com resultados de simulação numérica para as equações completas obtidos com o 

módulo RheoFoam da aplicação gratuita de mecânica de fluidos computacional OpenFOAM (F. 

Pimenta, M. Alves, Stabilization of an open-source finite-volume solver for viscoelastic fluid 

flows, J. Non-Newt. Fluid Mech., 239, 85 – 104, 2017, F. Pimenta, M. A. Alves, RheoTool, 

https://github.com/fppimenta/rheoTool, (2016)). 

Este tipo de solução semi-analítica é ainda estendida a dois escoamentos laminares clássicos de 

fluidos viscoelásticos, nomeadamente os escoamentos de camada limite e de camada de mistura, 

dadas as suas inúmeras aplicações científicas e industriais. Nestes escoamentos, para baixos níveis 

de elasticidade, as quantidades cinemáticas avaliadas registam uma evolução newtoniana e as 

características poliméricas apresentam um comportamento assintótico se normalizadas de forma 

adequada. No entanto, com o aumento da elasticidade do escoamento as soluções semi-analíticas 

afastam-se das curvas assíntotas. Para as soluções propostas apresentamos um vasto leque de 

resultados, incluindo perfis das componentes dos tensores de conformação polimérica e das 

tensões, leis de decaimento para picos de tensão em escoamentos a baixa elasticidade, as suas 

localizações, variações axiais da espessura das camadas limite e de mistura, e espessuras de 

deslocamento e de quantidade de movimento. 
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2.7× 103 ≤ 𝑅𝑒𝑥 ≤ 3 × 10
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Figure 4. 10 The location of peak values of the stress tensor components for various 

rheological properties: (b)𝜏𝑦𝑦
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, (d) 𝜏𝑥𝑦. 
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𝑝 ) to solvent 

stress (𝜏𝑖𝑗
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Figure 4. 12 Transverse profiles normalized components of the conformation tensor: 

(a) 𝐶𝑥𝑦, (b)𝐶𝑦𝑦, (c) 𝐶𝑧𝑧,(d) 𝐶𝑥𝑥, for various rheological properties. Lines 

are a guide to the eye. 
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Figure 4. 13 Transverse profiles of normalized total shear stress 𝜏𝑥𝑦 for various 

rheological properties. 
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Figure 5. 1 Schematics of the planar laminar jet flow and half-width jet definition. 

The z-coordinate is normal to the plane. 
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Figure 5. 3 Comparison between different solutions for the transverse profiles of 
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phenomenon).The dotted line indicates the effect of adding the stress 

diffusivity to the spectral representation (plotted by Vaithianathan et al 
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I've made the most important discovery of my life. It's only in the 

mysterious equation of love that any logical reasons can be found. I'm 

only here tonight because of you. You're the only reason I am...you're all 

my reasons. 

 

- John Nash 

(June 13, 1928 – May 23, 2015)  

An American mathematician 
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Chapter 1 : General introduction 

1.1.Motivation 

In 1949 Toms [1] found that adding a small number of long-chain polymeric molecules, such as 

polyethylene oxide (PEO), into Newtonian fluids induces severe drag reduction (DR), of up to 

80%, in turbulent pipe flow, which also naturally leads to a concomitant reduction in heat transfer. 

Since then the use of viscoelastic fluids has been proposed in several industrial applications, in 

order of benefit from drag and heat transfer reductions under turbulent flow conditions such as in 

heating and cooling systems [2], transport of oil in pipelines and drilling wells in oil and gas 

industries [3]. The increment of the flow rate associated with drag reduction in sewage systems 

during floods [4]. Other fields of application include also the design of ships and submarines, since 

drag reduction leads to more efficient energy use [5], increasing the mixing rates in microfluidics 

[6] and biofluid [7,8] application due to the onset of viscoelastic instabilities, and reducing energy 

consumption rate in irrigation systems and in percolation through the soil [9]. Finally, some 

applications are encountered also in medicine during surgery, when blood analogs containing 

polymer are used [10,11].  

Consequently, there has been considerable effort and competition for developing physical models 

as well as numerical techniques to precisely estimate the properties of viscoelastic turbulent flows. 

There are three main approaches to deal with  the numerical calcualtion of turbulent flows namely 

the direct numerical Simulation (DNS) of the basic governing equaitons, the solution of the 

Reynolds-averaged Navier-Stokes equations (RANS) (for newtonian fluids), and finally large-

eddy simulations (LES). However due to the high computational cost of DNS, RANS and LES 

approaches are preferred for engineering applications. Regarding turbulent flows of viscoelastic 

fluids, it is worth mentioning that the most common available turbulence models of viscoelastic 

fluids have been developed based on RANS and they have been calibrated for wall flows. 

However, RANS suffers from several well-known constraints in engineering applications such as 

when dealing with unsteady and transient flows, separation or rotation, among others, therefore, 

LES has been increasingly adopted due to its accuracy, acceptable computational cost, and 

capability of dealing with some of RANS shortcomings. 
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To overcome the shortcoming of the existing turbulence models for viscoelastic fluids and develop 

a proper LES model, the fundamental approach is to start studying and developing turbulence 

models for homogeneous isotropic turbulence (HIT), which was the topic of interest of earlier 

investigations [12-15]. However, the effects of both in-homogeneities and wall proximity are 

absent in HIT. Therefore, the next step is to study the effect of turbulent flow in-homogeneities in 

the absent of wall, a topic also correctly under way by our colleagues at Laboratory of Fluid 

Simulation in Energy and Fluids (LASEF) research group [16]. In this thesis, we pursue the road 

map by developing LES model for wall-free turbulent flow of viscoelastic fluid to consider the 

effect of turbulent flow in-homogeneity. For this purpose the planar jet flow is selected as a flow 

of interest, however the mixing layer and wake flows are other alternatives that can also be used 

for this goal.  

Before studying planar turbulent jet flow of viscoelastic fluids and to develop any turbulent 

models, it is necessary to validate the code used for DNS and LES, which can be done by 

comparing their predictions with those using to RheoFoam module of the freeware OpenFoam 

code [17,18] as well as those from other solutions such as a semi-analytical solution for the 

corresponding laminar flow. For that purpose and by getting inspiration from Olagunju solution 

for boundary layer flow of FENE-P fluid [19,20], an approximate similarity solution is proposed 

for the laminar planar jet flow of viscoelastic fluid described by the same viscoelastic constitutive 

equation. Furthermore, since the laminar jet solution was developed on the basis of a set of 

simplified governing equations that are also valid for laminar boundary layer and mixing layer 

flows, semi-analytical solutions are also obtained for these flows, to be used the future studies and 

turbulent code validations. These semi-analytical solutions are appropriate tools to study and fully 

understand the effects of viscoelasticity on the corresponding laminar flow characteristics before 

dealing with the complexity of the study of their turbulent flows counterparts. 

It is important at this stage to clarify that the main interest lies with dilute polymer solutions and 

that a rheological constitutive equation able to describe their main rheological behavior needs to 

be adopted for the purpose of this investigation. As will be explained and justified later, the model 

adopted is the finitely extensible non-linear elastic model with Peterlin’s approximation, denoted 

henceforth as the FENE-P model. 
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1.2.Objectives 

As a natural consequence of the motivation and background in the field and general objective, 

more specific objectives of this thesis are:  

1) Proposing an approximate similarity solution for planar jet FENE-P fluid to verify the direct 

numerical simulation code for planar jet turbulent flow of FENE-P fluids; 

2) Numerical simulation of laminar planar jet FENE-P fluid by utilizing RheoFoam to verify the 

corresponding DNS code; 

3) Developing the post-processing tools for investigation of turbulent planar jet flows of FENE-

P fluids; 

4) Performing detailed DNS investigations of turbulent planar jet flows of FENE-P fluids as a 

function of the relevant dimensionless numbers (Weissenberg number, maximum polymer 

extensibility, and viscosity ratio) in order to understand its physics; 

5) Doing a-priori tests on extracted data of turbulent planar jet flow of FENE-P fluids, which is 

required for developing LES closure of viscoelastic fluids; 

6) Extending the distortion similarity model (DSIM) to use in in-homogenous wall-free turbulent 

flow and then, by performing a-posteriori tests, assessing the model performance through 

simulation of turbulent planar jets flow; 

7) Proposing a semi-analytical solution for laminar boundary layer flow of viscoelastic fluids, 

studying the effects of viscoelasticity on flow properties, while verifying the results with 

RheoFoam to better establish its limits of validity;   

8) Suggesting an approximate similarity solution for laminar mixing layer flow of FENE-P fluids 

and investigating its flow characteristics.  
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1.3.Thesis organization 

This thesis is divided in four main parts and organized as follows. 

 

Part I: After explaining the main motivation of the present study in chapter I, chapter II discusses 

the main theory and the necessary background. We start with introducing Newtonian and non-

Newtonian fluids and then popular constitutive equations used for describing dilute polymer 

solution with special attention paid to the FENE-P model by discussing its pros and cons. 

Afterward, the main characteristics of turbulent flow, the main numerical approaches to deal with 

the numerical simulation of turbulent flows, as well as their limits, are briefly discussed. 

Viscoelastic turbulent flows is discussed next, by explaining the main proposed theories which 

shed light on the mechanisms of drag reduction phenomena. Subsequently, we explain what the 

main requirements are to develop a proper LES model for turbulent flows of non-Newtonian fluids 

and we review the available turbulent models for the corresponding flows fluids as well as their 

constrains. 

 

Part II: In this part, the three classical laminar flows of viscoelastic fluid described by FENE-P 

model are investigated. This includes the derivation of the simplified form of the governing 

equations, the discussion of the numerical schemes used to solve them, and a comprehensive 

investigation and discussion of the results. An approximate similarity solution for laminar 

boundary layer flow FENE-P fluids is explained in chapter III, while chapters IV and V deal with 

the laminar planar mixing layer and jet flows respectively.  

 

Part III: This part starts with section VI where after briefly describing the numerical method used 

in the DNS/LES code and in the RheoFoam module of OpenFoam, the planar jet turbulent flow 

viscoelastic fluid code is verified via the corresponding an approximate similarity solution and 

RheoFoam toolbox. Afterward, in Section VII, the main requirement for developing an SGS model 

for non-Newtonian fluids are explained. Chapter VII also performs the a-priori tests on statistical 

data extracted from the direct numerical simulation of viscoelastic fluids of Guimarães et al. [16] 
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and gets inspiration from Masoudian et al. [21] and Ferreira et al. [12] to assess the validity of the 

hypotheses needed to develop an LES model. In particular scale-similarity of the subgrid-scale 

polymer stretching and local equilibrium of the polymeric elastic energy and statistically stationary 

flow are assessed. Then the performance of the extended distortion similarity model (DSIM) 

implemented into the DNS/LES code is assessed, by carrying out a-posteriori tests. Furthermore, 

two turbulence models for the subgrid scale stress in the momentum equation, such as the 

Smagorinsky and the dynamic Smagorinsky models, are considered and their performances on 

instantaneous and statistical turbulent planar jet flow features are analyzed. At the end of section 

VII, the self-similar theory of viscoelastic turbulent planar jet flow proposed by Guimarães et al. 

[16] and the energy spectrum of the corresponding turbulent flow are also studied. 

 

Part IV: Chapter VIII summarizes the main conclusions of the present thesis and proposes some 

topics proposal for future investigation in this area. 
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“I came to realize that exaggerated concern about what others are 

doing can be foolish. It can paralyze effort, and stifle a good idea. One 

finds that in the history of science almost every problem has been 

worked out by someone else. This should not discourage anyone from 

pursuing his own path.” 

 

-Theodore von Kármán 

(11 May 1881 – 6 May 1963)  

A Hungarian-American mathematician, aerospace engineer.
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Chapter 2 : Theory and background 

2.1. Newtonian and non-Newtonian fluids 

In Cambridge dictionary, fluid is defined as a substance that flows and is not solid [22], however, 

in scientific point of view fluid is defined as a material which cannot endure any shear stress 

applied to it and it continually deforms under that shear force [23,24]. Generally speaking, fluids 

are categorized in two main subcategories, Newtonian and non-Newtonian fluids, according to the 

relation between the stress and rate of deformation tensors. In Newtonian fluids, stress and rate of 

strain have a linear relation, meaning that imposing forces are linearly proportional to deformation 

rate, so due to the constant proportionality, the viscosity is constant and does not depend on strain 

rate [23,24]. However, non-Newtonian fluids do not obey the Newtonian law of viscosity, but 

instead follow a wide range of other relations of quasi-linear or non-linear nature between those 

two tensors or their derivatives. non-Newtonian fluids exhibit linear, quasilinear or non-linear 

between stress and rate of deformation [25,26]. Besides pure viscous non-Newtonian fluids, there 

are some types of non-Newtonian fluids which exhibit viscous and elastic behavior under shear 

flow, for example they may exhibit time-dependence of their properties, even when forced under 

stationary conditions, memory effects or the appearance of normal stresses in flows in which there 

is only a steady nonzero shear deformation. Such behavior is characteristic of viscoelasticity 

[25,26]. The viscoelastic effects can be obtained by adding small amount of long-chain polymeric 

molecules to an otherwise Newtonian solvent.  

 

2.1.1. The constitutive equation of viscoelastic fluid 

Despite of Newtonian fluids only required a single rheological constitutive equation to describe its 

characteristics, non-Newtonian fluids are characterized by a wide range of behaviors which 

described by a variety of rheological constitutive equations [27,28]. There are several debates 

about selecting a proper constitutive equation to describe the dilute polymer solutions [12,29]. One 

of the simplest is the Oldroyd-B model, a constitute equation for viscoelastic fluids named after 

James G. Oldroyd, a British mathematician and rheologist [30,31]. Although the Oldroyd-B model 

provide acceptable results for shear flow of viscoelastic fluid at low or moderate shear rate, 
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polymer molecules in the solution can infinitely extend at high strain rate, therefore in Oldroyd-B 

model may cause some unphysical results which is not correct.  

Another popular constitutive equation used to describe dilute long-chained polymer solutions is 

the finitely extensible nonlinear elastic (FENE) model developed based on kinetic theory. Warner 

[32] was the first who used the FENE model. In the FENE model, polymers are described by beads 

connected with each other by a nonlinear spring. FENE model needs to perform a statistical 

average of dumbbells at each location in order to determine the polymer stress and therefore the 

model does not contain a closed-form constitutive equation for the polymer stress. Note that 

comparing to Oldroyd-B model, the extensibility of polymer molecule is finite in FENE model 

therefore it provides better physical results. Several versions of FENE models have been extended 

from the original version. There are various discussions about the proper FENE model in the 

literature, as discussed in follows.  

Zhou and Akhavan [33] illustrated that if bead-spring parameters are selected properly, FENE 

dumbbell is appropriate model for simulating turbulent transient elongational flow. The most 

common used two-bead dumbbells closure of the FENE type model are the FENE-CR model 

which was introduced by Chilcott and Rallison [34] and the FENE-P model suggested by Peterlin 

[35]. FENE-CR model uses the Peterlin approximation, without considering the shear rate 

dependence of viscosity, it is utilized to describe Boger fluids1 [36], However, FENE-P fluid has 

the minimum number of ingredients needed to describe the rheology of dilute polymer solutions, 

namely memory effects, shear-thinning of the shear viscosity and bounded elastic stresses. 

Furthermore, regarding FENE-P model, Zhou and Akhavan [33] also showed that the FENE-P 

dumbbell is a suitable constitute equation for steady state flow, but its accuracy decreases 

considerably if it is utilized for transient elongational flows. 

Regarding other similar models of the FENE type, Zhou and Akhavan [33] concluded that FENE-

LS closure proposed by Lielens et al. [37] and multi-mode models such as FENE-PM [38] and the 

adaptive length-scale model (FENE-ALS) proposed by Ghosh et al. [39] are appropriate models if 

a more sophisticated model than FENE-P is required. The main differnce of FENE-L and its 

simplified version FENE-LS with FENE-P is that they consider both the average dumbbell 

 
1 -Boger fluid is a type of dilute polymer solution which is so dilute that its viscosity variation with shear rate is 

negligible. 
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configuration and its dispersion [37]. The decoupled  distribution takes to the account by utilizing 

an extra scalar parameter and its evolution equation. Furthermore, in contrast to FENE-P model 

which developed based on Gaussian configuration distribution function, FENE-L and FENE-LS 

used Dirac/tail L-shaped distrobution and two-Dirac length distribution functions, 

respectively[37]. FENE-ALS model [39], developed based on Kramers chain since Ghosh et al. 

[39] noticed that it can capture the features of dilute polyer solution of fast varying extensional 

flow better than FENE dumbbell model, the model also required an evolution equation for 

representing the adaptive length scale that varies according to the kinematical history.  

It should be noted that utilizing sophisticated models does not guarantee to considerably improve 

the results accuracy because in some cases such as the study of hysteretic behavior of dilute 

polymer solutions in extensional flow there is no significant difference in the accuracy of FENE-

P and FENE-L, while the computational cost and complexity of FENE-L model are clearly 

distinguishable [40]. Because FENE-P is one of the lowest computaional cost and simplest 

constitutive equations in this type of family and can describe the main features of the rheology of 

dilute polymer solutions [25,26,35], it has been utilized in many studies of turbulent viscoelastic 

fluid flows [13,14,28,41]. As a result, in the present study FENE-P model is also utilized to 

describe the viscoelastic behavior of flow.  

 

2.1.2.The governing equations for flows of FENE-P fluids 

The governing equations for incompressible fluids are written next in indicial notation. The 

conservation of mass is  

𝜕𝑢𝑘
𝜕𝑥𝑘

= 0, 
(2- 1) 

𝜌 (
𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

) = −
𝜕𝑃

𝜕𝑥𝑖
+
𝜕𝜏𝑖𝑗

𝜕𝑥𝑘
, 

(2- 2) 

where 𝑢𝑖 is the velocity vector, P is the pressure and 𝜌 is the fluid density. The fluid extra stress 

𝜏𝑖𝑗 is given as the sum 

𝜏𝑖𝑗 = 𝜏𝑖𝑗
𝑠 + 𝜏𝑖𝑗

𝑝 . (2- 3) 
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of the Newtonian solvent stress (𝜏𝑖𝑗
s ) and a polymer contribution (𝜏𝑖𝑗

p
). The solvent stress is 

𝜏𝑖𝑗
𝑠 =  2𝜌𝜐𝑠𝑆𝑖𝑗,   (2- 4) 

The polymer stress contribution (𝜏𝑖𝑗
p

) is given by the FENE-P model [26,35] as 

𝑆𝑖𝑗 =
1

2
(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
). 

(2- 5) 

The zero-shear rate viscosity (𝜐0) is the sum of solvent and polymer kinematic viscosities  

𝜐0 = 𝜐𝑠 + 𝜐𝑝. (2- 6) 

The ratio of the solvent kinematic viscosity to the solution viscosity at zero shear-rate is defined 

as 

𝛽𝑠 =
𝜐𝑠

𝜐𝑠 + 𝜐𝑝
=
𝜐𝑠
𝜐0
. (2- 7) 

The FENE-P model is used to describe the rheology of dilute polymer solution, in the FENE-P 

model ensemble of molecules are represented by dumbbells, which are pairs of beads connected 

by massless nonlinear springs, as it is shown in (Figure 2. 1).  

 

Figure 2. 1- The schematic of dumbbells in FENE-P model 

The polymer stress contribution (𝜏𝑖𝑗
p

) is given by the FENE-P model [26,27] as: 

𝜏𝑖𝑗
𝑝 = 

𝜌𝜐𝑝

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐿)𝛿𝑖𝑗], (2- 8) 

where 𝜈p is the zero-shear rate polymer kinematic viscosity coefficient, 𝜆 is the longest relaxation 

time of the polymer molecules, 𝛿𝑖𝑗 is the identity tensor and 𝐶𝑖𝑗 is the dimensionless conformation 

tensor. This tensor expresses the orientation and stretch of the model polymer dumbbell at each 
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flow point (cf. [26]) and needs to be given by an adequate evolution equation. The conformation 

tensor is defined as  

𝐶𝑖𝑗 =
〈𝑟𝑖𝑟𝑗〉

〈𝑅2〉0
 

(2- 9) 

where  𝑟𝑖 is the end-to-end vector connecting the two beads of the dumbbells, is then normalized 

by the square of its equilibrium radius 〈𝑅2〉0. Finally, 𝑓(𝐶𝑘𝑘) is the Peterlin function, a scalar 

function of the trace of the conformation tensor and 𝑓(𝐿) is usually its equilibrium value (value at 

rest) that depends on the square of the maximum normalized dumbbell extensibility. There are 

several variants of the FENE-P model, that differ in the Peterlin function used, of which we single 

out the following three, which give essentially identical responses provided 𝐿2 ≫ 3.   

𝑓(𝐶𝑘𝑘) =
𝐿2

𝐿2 − 𝐶𝑘𝑘
 and 𝑓(𝐿) =

𝐿2

𝐿2 − 3
 

(2-10a) 

𝑓(𝐶𝑘𝑘) =
𝐿2

𝐿2 − 𝐶𝑘𝑘
 and 𝑓(𝐿) = 1 

(2-10b) 

𝑓(𝐶𝑘𝑘) =
𝐿2 − 3

𝐿2 − 𝐶𝑘𝑘
 and 𝑓(𝐿) = 1. (2- 10c) 

In Eq. (2-10) L is the maximum dumbbell extensibility and 𝐶𝑘𝑘 is the trace of the conformation 

tensor. The form of Eq. (2-10a) is the original, modified to Eq. (2-10b) by Bird et al. [26] as 

discussed in Beris and Edwards [42]. The functions in Eq. (2- 10c) have been used first by 

Vaithianathan and Collins (2003) [43] and since then have been used extensively in investigations 

of turbulent flows of polymer solutions[13,16,44, 45]. Even though the formulation to be presented 

is general and independent of the model, the final numerical results pertain to the last set of 

functions, except in Section 6.2.3, where our numerical data are compared with Olagunju's results 

[19], and we use the same set of functions that he relied upon, Eq. (2-10b). Regardless of the set 

of functions, the evolution equation for the dimensionless conformation tensor is 

𝜕𝐶𝑖𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
= 𝐶𝑗𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

+ 𝐶𝑖𝑘
𝜕𝑢𝑗

𝜕𝑥𝑘
−
1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐿)𝛿𝑖𝑗]. 

(2- 11) 

a differential equation of hyperbolic type. The first and second terms on the left-hand-side 

represent time variation and advective transport of elastic energy, whereas on the right-hand-side 

the first and second terms represent distortion and dissipation of elastic energy, respectively. 
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In the following after discussing the characteristics turbulent flows, we briefly review the main 

studies on both laminar and turbulent viscoelastic fluid. 

 

2.2.Turbulent flow 

Turbulent flows can be found in countless situations in nature, such as in a flowing river, rising 

smoke from chimney or many industrial processes. There is no unique definition for turbulent 

flow, however there are some common characteristics that are well described in the literature. 

Turbulent flow is a complex time-dependent, three-dimensional, rotational flow which its flow 

properties such as velocity and pressure vary in a chaotic-like manner. Turbulent flows are 

characterized by strong irregularity, high dissipation of energy, intense mixing and diffusivity and 

the existence of a broad range of scales of motion. The study of turbulent flows leads better 

understanding of its natural processes and turbulent flow characteristics which requires for 

optimum design of system in the industries [46]. 

 

Figure 2. 2- The variation of velocity in time for turbulent steady mean flow, mean velocity is 

depicted by 𝑢 and the velocity fluctuation by  𝑢′(𝑡), therefore 𝑢(𝑡) = 𝑢 + 𝑢′(𝑡). 

Since chaotic behavior is the nature of turbulent flow, it is easily understood by observing for 

instance the flow velocity variation at specific points inside the flow, as displayed in Figure 2. 2. 

As shown, the velocity fluctuations are chaotic and irregular, but the flow is statistically steady. 

For studying statistically steady turbulent flows, the ergodic hypothesis is utilized. The ergodic 

hypothesis explains that the time averaged of physical quantities are equal to their statistical 

quantities, the ensemble average, in a very long observation [47]. The idea of using ergodic 
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hypothesis considerably decreases the complexity and the volume of required information for 

studying the turbulent flow and limit the number of physical and statistical quantities [48]. 

 

Figure 2. 3- Energy distribution at various scales of flow according to Kolmogorov hypothesis, 

and the comparison of DNS, LES and RANS  

The existence of a broad range of scales is one of the fundamental features of turbulent flow. The 

large-scales size are related to the flow geometry and boundary conditions. In regard to the small 

scales and the whole range of scales, Richardson [49] in 1922 elaborated on how energy transfer 

takes place (by inviscid processes) from mean flow to the smallest scales in which viscosity plays 

the dominate role and dissipates the energy. He summarized his idea on a poem “Big whorls have 

little whorls, that feed on their velocity, And little whorls have lesser whorls, And so on to 

viscosity, (in the molecular sense)”. In 1949, Onsager [50] called this concept “energy cascade”. 

Figure 2. 3 explains the Richardson-Kolmogorov hypothesis according to the wave number space 

is shown here by (𝜅). 
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Earlier in 1941, Kolmogorov [51] proposed his theory about turbulent flow, which is based on 

three hypotheses. The first one is local isotropy of small scale, which says that the small scales are 

statistically isotropic in high Reynolds number flows, (in the wave number space 𝜅𝐸𝐼 < 𝜅 , the 

subscript of EI stand for inertial range). The second hypothesis, also called the first similarity 

hypothesis, states that in high Reynolds number flows, the small-scale statistics are universal and 

only specified by kinematic viscosity and the rate of energy dissipation 𝜅𝐷𝐼 < 𝜅, the subscript of 

DI stand for dissipation range. The third hypothesis is called the second similarity hypothesis, 

states that in high Reynolds number flows, there is an intermediate range of scales between the 

large and small scales, which is called Taylor micro-scales. These scales are universal and are 

specified only by the rate of energy dissipation but are independent of kinematic viscosity. This 

intermediate range is called the inertial range in which the energy spectrum of the cascade of 

energy is a function of the wave number (𝜅) and characterized by a slope of -5/3 in log-log 

coordinates, the equation is valid in the subrange of 𝜅𝐸𝐼 < 𝜅 < 𝜅𝐷𝐼 or in the other word in the 

inertial subrange (Figure 2. 3). This power law relation is one of the important features of turbulent 

flow [46].  

Obukhov (1941) [46][52] presented a formula for the Kolmogorov hypothesis in the spectral space. 

If the wave number is expressed by 𝜅 =
2𝜋

𝑙
  in which l is the characteristic length scale and the 

turbulent kinetic energy is also obtained from the integral of E(𝜅) the whole range of wavenumber 

space 

𝐾 = ∫ 𝐸(𝜅)
∞

0

𝑑𝜅, 
(2- 12) 

where E(𝜅) quantifies the amount of energy at the specific eddy size l or its wave number 𝜅  

𝐸(𝜅) = 𝐶𝑘 휀𝑠

2
3𝜅−

5
3. 

(2- 13) 

in which dissipation rate is denoted by 휀𝑠 and 𝐶𝑘 is the universal Kolmogorov constant. Eq. (2- 

13) is well known as the -5/3 power law equation and was presented by Obukhov[46],[52]. 

 

2.2.1.Numerical simulation of turbulent flows 

Beside experimental studies, by increasing the computing capacity of modern computers, the study 

of turbulent flow by utilizing numerical simulation has gained much attention due to its 
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advantages, such as greatly reducing the cost and time of new designs, performing study when 

carrying out experimental studies are impossible or dangerous, and providing unlimited level of 

detail with very good accuracy.   

There are three main approaches to deal with the numerical simulation of turbulent flow. Direct 

numerical simulation (DNS) is a straightforward numerical technique to study turbulent flow in 

which no turbulence modeling is utilized. The first attempt to apply DNS method was performed 

by Orszag and Patterson for numerical simulations of three-dimensional homogeneous isotropic 

turbulence in 1972 [53]. Although DNS is the most accurate method, it has some constrains. 

Increasing the Reynolds number (Re) broadens the scales of motion range. To capture all range of 

motion scales in turbulent flow, DNS requires very fine computational meshes and time steps, the 

number of grids points is of the order 𝑂𝑅𝑒9/4 for adequate three-dimensional simulation [48], in 

addition, the large memory storage requirements, so DNS is considered as a very expensive 

technique which is not sufficiently fast and cheap for engineering type calculations [54]. 

The numerical simulation of engineering flows under turbulent flow conditions relies on the use 

of Reynolds-averaging the governing equations (RANS) proposed by Reynolds [55], which 

remains a primary approach for engineering application, due to rather simple implementation 

algorithm, beside low or reasonable computational cost. It is based on the Reynolds decomposition 

of the physical variables and subsequent. It introduces unknowns which need to be modelled for a 

closed problem. Dealing with the unsteady and transient flow, flow with separation, and rotation 

and flow faced with strong curvature are the main constraints of the many RANS models. Although 

RANS models may predict the mean properties of the many flows, many important characteristics 

of the flow, such as the dominating flow frequencies, cannot be estimated [48,12]. Due to 

overcome the shortcomings of RANS and DNS, there is a middle ground solution, is cost-effective 

comparing with DNS and more accurate comparing with RANS, is called Large eddy simulation 

(LES). 

Large eddy simulation (LES) is an intermediate approach between DNS and RANS, introduced by 

Smagorinsky in the 1960s for simulation of atmospheric flows [56] and then utilized by Deardorff 

in 1970s [57]. Since then several sub-grid scale (SGS) models were developed to address model 

shortcomings [48].  In LES the large scales are estimated explicitly and the small scales, called 

SGS, are split by implementing low-pass filtering on the Navier–Stokes equations required to be 



18 

 

modeled. The computational cost of LES is considerably lower than DNS. In addition, in principle, 

proposing a model only for isotropic small scales may be easier and more accurate than the RANS 

models which should cover all range of scales of motion, as shown Figure 2. 3. comprehensive 

review of LES approach can be found in [58-60].  

 

2.3.Viscoelastic turbulent flow in dilute polymer solutions  

Since observation of the drag reduction phenomenon by Toms [1], various numerical and 

experimental studies have been performed to explain its mechanisms by proposing several 

theories. One of the main theories is based on the enhance of the extensional viscosity explained 

by Lumley [61], Procaccia et al. [62], it is explained that the high shear rate of some regions such 

as buffer layer causes the stretching of coiled polymer and increase the extensional viscosity effect. 

This procedure would weaken turbulent fluctuations and suppress the small eddies, thicken the 

viscous sublayer and accordingly causes the onset of drag reduction. Furthermore, Lumley states 

that the polymer relaxing time should be larger than the flow time scale in order to onset of the 

drag reduction. The schematic of coiled and stretched configuration of polymer due to shear rare 

are shown in Figure 2. 4.  

 

Figure 2. 4- Schematic of coiled and stretched polymer configuration in shear flow. Polymer 

stretch is characterized by the change in ri, which is the end-to-end vector of the molecule. [63] 

However, the Lumley theory was criticized by some observation in which the polymer was injected 

at the center on the pipe where is far away for being affected by wall. Those observation lead to 

another theory discussed by McComb and Rabie [64], Bewersdorff [65], Tabor and de Gennes 

[66], De Gennes [67] is called elastic theory which described that the wall effect on turbulence 
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structure are negligible and the small scale of turbulence only affected by elasticity. The theory 

states that the stretched polymer molecules stored some amount of elastic energy, when the 

quantity of this accumulated energy become equivalent to kinetic energy in the buffer layer region 

causes the onset of DR. The consequence of this procedure is suppressing the small scale of 

motion, thickening of  buffer layer region and finally DR phenomenon [66,67]. As discussed, the 

major contradiction of both theories comes from the how energy transfer to polymer and then in 

which range of scale the phenomenon occurs. The other conflict is about energy spectrum 

prediction, in which Lumley explained that existence of polymer increase the energy dissipation 

rate, while de Gennes mentioned that there should be a truncation in the kinetic energy cascade of 

turbulence when the kinetic energy convert into elastic energy stored in the polymer. The former 

explanation is supported by experimental [68,69]and numerical studies [70-73].  

Recently, Xi et al. [74] proposed new theory extended from Tabor and de Gennes study [66] called 

energy flux balance theory. They explained that the onset of DR occurs when elastic energy flux 

increase by decreasing the scale length causes gradually weaken of kinetic energy transfer to small 

scale of motions via energy cascade procedure and consequently dampen the small scale of motion. 

They clarified the influence of elasticity on turbulence in the inertial range, in where the elastic 

energy flux and the turbulence energy cascade are in balance which is called elastic length scale. 

Li et al. [75] proposed another theory based on some observation of friction DR on DNS of 

turbulent channel flows of dilute polymer solutions. They noticed the time scale of vortex which 

are close to the wall play key role in onset of DR. They observed that the near-wall vortexes 

transfer their energy to the polymers and then polymers give back the energy to the high-speed 

streak. This procedure known as upwash and downwash phenomenon. To elucidate this procedure, 

they introduced the effective Deborah number as the ratio of polymer relaxation time to the time 

scale of fluctuations in the streamwise and near-wall vortexes. They stated that this ratio remains 

at O(1) in all range of DR from the onset of DR until the upper limit of DR known as the maximum 

drag reduction (MDR) asymptote. Increasing the elastic forces cause the stabilization of 

streamwise vortexes close to the wall, leading to longer and slower rotation of them. This 

phenomenon highlights that there is a balance between elastic forces and the mean rotation speed 

of streamwise and close to the wall vortices which clarify the Reynolds stress production and 

upwash and downwash phenomenon. They also showed that by increasing DR the ratio of the 
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fluctuation time scale of streamwise vortices to the vorticity rotation time scale decrease. It was 

also stated that the maximum drag reduction phenomenon happens when these two mentioned time 

scales become nearly equal. 

Li and Graham [76,77] proposed another theory to shed light on DR phenomenon. They declared 

that the time intervals, which is called the turbulence hibernation phenomenon, has an important 

role in the maximum drag reduction phenomenon. They observed that the turbulence hibernation 

is assisted by viscoelasticity effect which prevents the occurrence of active turbulence. Although 

at low elasticity level the mean time scale of active turbulence period is constant, this time period 

reduces considerably above certain level of elasticity and consequently the time duration of 

hibernation increase. Generally speaking, active turbulence causes polymer molecules are 

stretched significantly which leads to suppressing the turbulence and convert the flow to a very 

weakly turbulent hibernating regime. However, in the time of hibernation the polymer molecules 

are not under the considerable stress, so they are somehow relaxed similar to an equilibrium 

condition. When hibernation is terminated by the initiation of new turbulent fluctuations, the flow 

regime is changed to active turbulence which starts to stretch the polymer molecules again and the 

whole procedure is replicated. 

 

2.3.1.Turbulent models for viscoelastic fluid 

As briefly explained earlier, there are three main approaches to deal with the 

numerical simulation of turbulent flow, DNS, RANS, and LES. Comparing to DNS of Newtonian 

flows the computational cost of DNS of turbulent viscoelastic flows is higher an account of the 

additional of variables and governing equations and the numerical limitations they impose. In 

addition, there are some available RANS models for viscoelastic fluids in turbulent flows [78-82], 

however they were developed based on wall-turbulent flow due to the extensive industrial 

applications and also suffer from well-known RANS limitations which explained earlier, therefore 

they are not consider in the review section of the present study. On account of mentioned 

constrains, LES is also considered as a proper approach to utilize for turbulent flows of viscoelastic 

fluids. Regarding to turbulent flow of viscoelastic fluid, the advantages of numerical simulation 

over experimental studies can be summarized as follows: detail study of velocity field, solvent and 

Reynolds stress, and polymer stress components determining the mean orientation of the polymer 
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molecules, which can elucidate the mechanisms of drag reduction phenomena from low versus 

high DR. Numerical simulation is a more convenient approach to study the effect viscoelasticity 

considered by of the ratio between the polymer viscosity and the solution zero-shear rate viscosity, 

is comparable with polymer concentration quantity 𝛽𝑝, the maximum dumbbell extensibility L, 

and the longest relaxation time of the polymer molecules 𝜆. 

To develop a proper LES model, it is required to fully understand the main role of SGS model in 

the dynamic of the turbulent flow. The main role of SGS model is representing the kinetic energy 

transfer between grid-scales (GS), and sub-grid scales [46,83]. The Richardson-Kolmogorov 

energy cascade concept is behind many successful SGS models for turbulent Newtonian fluids 

since it explains the interscale interaction motion scale in Newtonian turbulent flows very well 

[54,46, 83], however, care should be taken in implementing it into non-Newtonian turbulent flow 

due to the complex SGS interactions with the fluid rheology which may cause difficult conditions.  

In the HIT, It was observed that the interaction of turbulent strcuture with the fluid elasticity may 

change the energy distribution of motion scales. This energy variation is more apparent and 

significant in the inertio-elastic turbulence, which is called to a regime of viscoelastic turbulent 

flow in which polymer relaxation time is larger than the turbulence time scales and the shear time 

scales of the gradient imposed by the wall [13,14]. In some studies, it was observed that the 

polymer additives dissipate the main portion of the transferred energy from the large to the small 

scales which may lead to establishment of second energy cascade known as a polymer-induced 

energy cascade [12,13,14,28]. This polymer-induced energy cascade can compete with the 

classical energy cascade [13,14,29, 41]. These complex interaction of GS/SGS/viscoelastic fluid 

interactions play a vital role in the dynamics of turbulent flow of viscoelastic fluids, so it must be 

considered in any future SGS model. There are only a few studies about SGS model for turbulent 

flows of non-Newtonian fluids highlighted as follows. 

Ohta et al. [84] performed several DNS and LES in turbulent channel flow for various types of 

purely viscous non-Newtonian fluids based on power law and Casson model. Since they wanted 

to study the deviation of the turbulence structures of non-Newtonian fluid from Newtonian fluid 

in a region near a wall, the main portion of their study focused on low-Reynolds-number wall 

turbulence of non-Newtonian fluids, but due to the purely viscous nature these type of flows are 

close to turbulent Newtonian fluids. The model was developed by considering the effect of variable 
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viscosity into the Smagorinsky model for Newtonian fluid. They proposed an extended 

Smagorinsky model, with a modification on the filter width based on the results of non-Newtonian 

turbulent channel flow. They stated that their LES and DNS results were consistent and can 

precisely estimate mean velocity profiles and SGS stress in shear-thinning and shear-thickening 

flows.  

Thais et al. [85] proposed the first SGS model for temporal large eddy simulations (TLES) for 

viscoelastic fluid flows based on the FENE-P constitutive equation. Their SGS model was based 

on a temporal approximate deconvolution method (TADM) for both the SGS terms of the 

Newtonian and polymer stresses in the momentum and conformation tensor equations. The model 

was calibrated with wall-flow and utilized in turbulent channel flow. The TLES model was stable 

and it could reduce computational time considerably comparing with DNS, and the calculated 

percentage of DR prediction was in good agreement with DNS. However, the model has some 

drawbacks. First of all, the model is only active near the wall in where the level of SGS activity is 

known to be lower than in wall-free or high Reynolds number flows so it is hard to assess the 

performance of SGS model comparing with wall-free or high Reynolds number flows. In addition, 

the model is very complicated to implement as well as the proposed SGS model was developed 

only based on mathematical properties which make it hard to input physical properties of turbulent 

flow in it. Viscoelastic interactions in small scales play a vital role in the dynamics of turbulent 

non-Newtonian fluids, so the effect of GS/SGS/viscoelastic fluid interactions must be considered 

in any future SGS model. 

Wang et al. [15] used the SGS model of Thais for forced homogeneous isotropic turbulence (FHIT) 

of FENE-P fluids at moderate Taylor Reynolds number. They studied the influence of polymer 

additives on some important flow properties such as strain, vorticity, drag reduction (DR) in the 

wall-free flow. They reported that the presence of polymers prevents the small-scale vortex 

structures and small-scale intermittency, which cause turbulence suppression comparing with 

turbulent Newtonian fluids. They did not recognize any significant difference in the self-similarity 

scaling law between so-called modified  Kolmogorov scaling law of turbulent flow of viscoelastic 

fluid and Kolmogorov scale of turbulent flow of Newtonian fluid in their simulations. 

Li et al., [86] utilized the idea of temporal SGS model of Thais [85] to filter the constitutive 

equation of a simplified version of the multi-mode FENE-P model based on multiple relaxation 
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times to study DR in viscoelastic turbulent channel flow. The main aim of their research was to 

reduce the computational cost of the traditional multi-mode model while keeping its good 

computational accuracy. They stated that the new model describes the real physical process much 

better than the conventional model. Because their new model considers more parameters, it is more 

adaptable to utilize for wider applications comparing with the single-mode FENE-P model which 

consider single relaxation time. Furthermore, they could calculate the viscosity of the polymer 

solution more accurately than the single mode FENE-P model especially in large shear rates. 

However, they could not capture the shear-thickening of the surfactant solution. They also reported 

that the SGS model had a good performance in the simulation of viscoelastic turbulent channel 

flow, and they could predict some turbulent properties such as DR rate, the quadrant analysis2 of 

Reynolds shear stress, and the contributions of shear stresses on turbulent frictional resistance 

accurately.  

Masoudian et al. [21] performed DNS of turbulent channel viscoelastic fluids described by FENE-

P. They performed an a-priori test to analyse and evaluate the effect of the polymer additives on 

the subgrid-scale (SGS) energy in the filtered momentum and FENE-P constitutive equations. 

They observed a considerable reduction in the SGS stresses and energy in the viscoelastic turbulent 

flow comparing with the Newtonian turbulent flow. Then by analyzing the terms that are 

responsible for kinetic energy transfer between grid-scale (GS) and SGS energy, they observed 

that forward scatter events are considerably reduced due to the existence of polymers. They 

showed that the ratio of the shear stress component of momentum equation to its strain rate 

decreases in turbulent viscoelastic fluids comparing with turbulent Newtonian fluids, however its 

overall shape and behavior remains proportional to that for Newtonian fluids. Then by filtering the 

DNS fields and analysing the new terms which comes from the filtered governing equations of 

FENE-P fluids, they identified and ignored the negligible terms such as the subgrid-scale of 

conformation advection tensor and determined the terms which require SGS closures such as 

subgrid-scale of polymer stretching tensor. 

Ferreira et al. [12] proposed a new (SGS) model for isotropic homogeneous turbulence of 

viscoelastic fluids described by FENE-P which is called distortion similarity model (DSIM). The 

 
2- The quadrant analysis is a method of analysising and determining whether two different random variables are 

correlated by plotting their joint probability density function. 
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model was developed based on two main hypotheses: the self-similarity of the polymer stretching 

terms, and the global equilibrium of the trace of conformation tensor. The classical Smagorinsky 

model was implemented for the SGS term of the momentum equation. They assessed the 

performance of the DSIM closure by comparing with DNS of forced homogeneous isotropic 

turbulence by utilizing a priori tests. The proposed DSIM model was simple to implement with 

acceptable computational cost. Their analysis showed that the subgrid-scale polymer stretching 

term is the only term that requires an SGS closure while all the other SGS terms in the 

conformation tensor are negligible. They reported that their LES model could estimate the global 

flow properties, as the SDR, the flow structures, the kinetic energy spectra accurately.  

 

2.3.2.Turbulent planar jet flow 

As mentioned, the main objective of the present study is to develop LES models for in-

homogeneous and wall-free flow of FENE-P fluids, for this reason, the planar jet flow is selected 

in the present study. Since planar jet flow are categorized as a shear free flow it can provide a 

facility to better assessment of the SGS model performance, without facing with the problem that 

exists in the presence of solid walls. Figure 2. 5 shows the quantity of Reynolds stress is very low 

near the wall and increase by increasing the distance from the wall. The planar jet flow lets us 

investigate the effect of inhomogeneities on the SGS model performance as well.  

 
Figure 2. 5- The normal variation of viscous and Reynolds stress normalized by total stress, for 

two Reynolds numbers, dashed lines, Re = 5,600; solid lines, Re = 13,750  [46].  
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In fluid dynamics, a shear layer is a region of flow in which there are significant velocity gradients. 

When this layer occurs between two different flows streams and away from walls it defines what 

is called a free shear layer. A planar jet is a type of free shear layer flow. In a jet, a stream of high 

momentum fluid intrudes into another fluid of low or null momentum at the corresponding. A 

Cartesian coordinate of system is used in the present work, the main flow direction (streamwise 

direction) is x, the planar jet spreads in the normal direction (y) and the mean velocity is null in 

the third direction, also called neutral or spanwise direction (often the z-direction). Accordingly, 

on the mean, the turbulent planar jet flow can be regarded as a two-dimensional flow, in which the 

global structure of the flow is independent of Reynolds number for high enough Reynolds numbers 

[46]. The jet half-width is defined as the transverse distance between the centerline to the location 

where the local streamwise mean velocity equals half the local centerline velocity on the centreline 

and the co-flow velocity as it is shown in Figure 2. 6(a).  

Turbulent planar jet can be divided into three main sub-regions, as illustrated on Figure 2. 6 (b): 

potential core is the first region, called to the region between the two up and down shear layers 

close to the jet inlet, developed by large velocity gradient of inlet flow and quiescent outside this 

region. The next region is transition region in which flow goes through transition process and 

convert to fully developed turbulent flow. The last region is self-similarity region, the main 

features of turbulent jet flow are observed in this region, in which if velocity and other scalar 

properties are being properly scaled, they can be collapsed and show self-similar behavior.  

 
(a) 

 
(b) 

Figure 2. 6- The schematic of turbulent planar region 
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2.3.3.Roadmap 

To develop the LES model, the starting point is to extend the distortion similarity model – DSIM 

which was proposed by Ferreira et al. [12] into planar jet FENE-P fluids to assess its performance 

and check whether its satisfying or not. The model may need some modification or calibration to 

be implemented properly. Furthermore, developing LES model required to extract data of 

corresponding DNS code which need to validate at first. This requirement can be fulfilled by 

comparing the DNS results with RheoFoam toolbox and semi-analytical solution. In addition, due 

to the wide range of industrial and academic applications of laminar flow, proposing semi-

analytical solution will also provide a facility to study the effect of viscoelasticity on the 

corresponding laminar flow characteristics.  

 

2.4.The laminar boundary layer type flow of viscoelastic fluid 

In this section, some earlier studies of laminar non-Newtonian fluids with special attention on 

viscoelastic fluid studies are reviewed briefly.  

 

2.4.1.The planar jet flow  

In fluid dynamics, a shear layer is a region of flow in which there are significant velocity gradients. 

When this layer occurs between two different flows streams and away from walls it defines what 

is called a free shear layer. Planar jet flow is a type of the classical wall-free shear flows. In a jet 

flow, a stream of high momentum fluid intrudes into another fluid of low or null momentum at the 

corresponding. The earliest investigations of jet flows of viscoelastic fluids concerned turbulent 

flow conditions and were experimental, aimed at understanding the behavior of polymer solutions 

in wall-free turbulence and to contrast with the provocative effects of polymers in wall turbulence. 

However, the use of intrusive methods, as in the Pitot tube experiments of White [87], did not 

allow the proper assessment of the viscoelastic effects. It was with the advent of optical methods, 

such as the laser-Doppler anemometer, that the first reliable experiments detailing the flow field 

with viscoelastic fluids took place with Barker [88], Berman and Tan [89] and Koziol and 

Glowacki [90], whereas Usui and Sano [91] relied on particle tracking. All dealt with the turbulent 
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axisymmetric jet, easier to construct, and generally speaking reported the suppression of small 

eddies and the enhancement of coherent structures, leading to a delay in jet spreading relative to 

the corresponding turbulent Newtonian jet. This qualitatively agreed with early findings on other 

viscoelastic turbulent free shear flows, such as the mixing layer flows of polymer solutions by 

Kwade [92] and Hibberd et al. [93], amongst others. 

As far as we are aware of the corresponding laminar viscoelastic jet flow has not been studied and 

there is a similar absence of data for the planar jet. Our interest in the planar jet flow of viscoelastic 

fluids is related to the extension of the previous direct numerical simulations (DNS) of forced 

homogeneous isotropic turbulence of polymer solutions [13],[14], to numerical studies of turbulent 

flow in wall-free turbulence with the same fluids. In such endeavor, the laminar viscoelastic planar 

jet solution is an essential tool not only to help understand some of the viscoelastic planar jet flow 

characteristics, but also as a set of data for validation of the DNS code under controlled conditions.  

 

2.4.2.The boundary layer flow  

Boundary layer flows are ubiquitous in industrial and natural flows in such a variety of conditions 

that more than 100 years after the seminal work of Prandtl [94] it continues to be the source of 

relevant research, as in [95-97]. The topic has been far less investigated for fluids of non-

Newtonian rheology and in particular when they exhibit viscoelastic characteristics. One exception 

though is the particular case of the fully-developed pipe or channel flow, the study of drag 

reduction by Toms in 1949 [1], fostered a wealth of experimental [61,98], theoretical[99,100] and 

numerical [101] research that continues up to this day. This particular topic has been the subject 

of many reviews, and one of the latest by White and Mungal [63].  

The fundamental boundary layer flow over a flat plate remains less investigated for viscoelastic 

fluids and is the one topic of interest in this work, which focus on laminar flow conditions. 

Srivastasa [102] and Rajeswari and Rathna [103] proposed approximate solutions by utilizing the 

Kármán-Pohlhausen method [104,105] to study the boundary layer flows of second order 

incompressible Rivlin–Ericksen fluids in the vicinity of a stagnation point. Later and inspired by 

Prandtl's boundary layer theory, Beard and Walters [106] proposed a similarity solution for 

boundary layer flows of viscoelastic Oldroyd-B fluids near a stagnation point and reported that 
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increasing the elasticity increases the velocity inside the boundary-layer and also enhances the 

stress on the wall. In 1982, Rajagopal et al. [107] studied Falkner-Skan flows of homogenous 

incompressible second order fluids and concluded that this type of solution requires not only a 

large Reynolds number (Re), a dimensionless parameter which describes the ratio of inertial to 

viscous force in a flow, but also that 𝑅𝑒/𝑊𝑖 ≫ 1 , where Wi is the Weissenberg number, the ratio 

between elastic and viscous forces. In contrast with Newtonian fluids, which follow a single 

rheological constitutive equation, non-Newtonian fluids are characterized by a wide range of 

behaviors and this may be accompanied by a variety of rheological constitutive equations [25]. 

Early constitutive models, as used in the above works, were essentially derived from continuum 

mechanics, which described in an incomplete form some of the relevant non-Newtonian fluid 

properties (Rivlin-Eriksen and second order fluids may not be even valid on account of the large 

deformation rates encountered in boundary layer flows). The advent of structural or kinetic-theory 

based constitutive models has resulted in better qualitative, and in some cases quantitative, 

descriptions of the rheology of real fluids [108]. A well-known example of the former is the 

successful description of the rheology of some polymer melts by the Phan-Thien-Tanner model 

[109,110]. Paradoxically, the description of dilute polymer solutions has remained more elusive, 

but one of the simplest constitutive equations that is able to describe their main rheological 

features, and has been abundantly used in recent research [45,13], is the model known as FENE-P 

[26] (acronym for "finitely extensible nonlinear elastic" model with Peterlin’s closure [35]), as 

discussed earlier.  

In regards to the boundary layer flow of FENE-P fluids, Olagunju [19,20] proposed an 

approximate similarity solution in contrast to the Newtonian case for which there is a global self-

similar solution [111]. Olagunju called it a local self-similar solution, because it still depends on 

two independent spatial variables, the streamwise coordinate and the Newtonian similarity 

variable, as will be discussed in Section 4. In his works, Olagunju only provided information on 

the profiles of velocity and on the law of variation for the friction coefficient. No information is 

given on other relevant quantities such as the laws of variation of the boundary layer, displacement 

and momentum thicknesses, on the profiles of the polymer stress contribution, and on the effects 

of maximum polymer extensibility (L2) and polymer concentration (𝛽𝑝) (although his solution 

contained L2 and 𝛽𝑝, he did not explore their effects). In addition, Olagunju ignored non-negligible 

elastic contributions to the rheological constitutive equation, which did not affect significantly the 
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velocity profiles, but certainly do affect the polymer stresses as was found for the laminar planar 

jet flows of viscoelastic FENE-P fluids by Parvar et al. [112,113]. In particular, Parvar et al. [112] 

showed that an Olagunju type of solution of the planar jet is unable to properly estimate the normal 

streamwise component of the polymer conformation tensor (𝐶𝑥𝑥) at very low Wi and also the 

normal transverse component (𝐶𝑦𝑦) in the whole range of Wi. Bearing in mind that the wall in a 

boundary layer flow imposes significantly higher rates of deformation, and consequently higher 

elastic stresses, than exist in a planar jet (for similar characteristic fluid velocities), the extent of 

Olagunju's polymer stress simplifications [19] needs to be assessed, while also providing the 

missing information on boundary layer flow characteristics. This sets the stage for the present 

work, in which we provide a different and more complete solution to the boundary layer flow over 

a flat plate at zero pressure gradient for FENE-P fluids.  

Since mixing layer can also be described through boundary layer-type equations [23,24], in the 

present study we also decided to extend the theory of boundary layer flows to observe the effect 

of viscoelasticity on mixing layer flows properties.  

 

2.4.3.The mixing layer flow  

The mixing layer flow is one of the three canonical wall-free shear flows (the others being the free 

jet and wake flows), which are relevant to our understanding of modern fluid mechanics in addition 

to being present in many natural and industrial flows. As described below, there is a wealth of 

literature on steady laminar mixing layer flows of incompressible and compressible Newtonian 

fluids, but our concern is the behavior of viscoelastic solutions. 

As discussed, the boundary layer theory of Prandtl [94] allowed the similarity solution of the planar 

boundary layer flow by Blasius [111], and those ideas and methods were subsequently applied to 

the wall-free shear flows of Newtonian fluids. The simplified governing equations, benefitting 

from boundary layer approximations, are the same for both flows, each flow obeying specific 

boundary conditions. For the laminar steady flow between parallel streams, or laminar mixing 

layer flow, Lessen [114] and Chapman [115] were among the first to obtain the solution, the former 

for incompressible fluids, the latter for compressible fluids, but including the incompressible case 

as a limit case. Lessen [114]  investigated the stability of the mixing layer flow, following Kuethe 
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and Von Kármán [116] by assuming the velocity profiles to be continuous functions in the 

streamwise and normal directions, but they neither presented profiles nor the corresponding 

numerical values, just indicated how they could be obtained. In contrast, Chapman [115] presented 

profiles at various Mach numbers, including the incompressible flow case (zero Mach number). 

Tabulated data were listed by Lock [117], who provided the full solution through an extension of 

Lessen’s work to parallel streams of fluids with different properties. Other developments 

considered the case of a non-uniform velocity incompressible fluid stream meeting fluid at rest by 

Nash [118], while Ting [119] and Klemp and Acrivos [120] further extended the compressible 

Newtonian mixing layer flow analysis.  

Although laminar Newtonian mixing layer flows have been investigated extensively, for the 

corresponding non-Newtonian flows the literature is scarcer, in particular when fluids of interest 

are viscoelastic fluids. However there are some studies regarding effect of viscoelasticity on 

stability/instability of mixing later flow [121, 122, 123]which is out of scope of the present thesis. 
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“There is nothing that can be said by mathematical symbols and 

relations which cannot also be said by words. The converse, however, is 

false. Much that can be and is said by words cannot successfully be put 

into equations, because it is nonsense.” 

 

 

-Clifford Truesdell 

(February 18, 1919 – January 14, 2000)  

An American mathematician, natural philosopher.
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Chapter 3: The laminar boundary layer flow of viscoelastic FENE-P fluids 

3.1. Flow problem 

The laminar planar flat plate flow is sketched in Figure 1. A uniform free stream velocity (U∞) 

flows over a thin immobile semi-infinite flat plate of length 𝓛 at zero incidence and a streamwise 

null pressure gradient is imposed outside the boundary layer, the thickness of which is denoted by 

𝛿. The origin of the coordinate system is at the plate leading edge, with x, y denoting the streamwise 

and transverse coordinates, respectively. At the wall the no-slip boundary condition is imposed, 

and the fluid velocity increases with wall distance across the boundary layer approaching 

asymptotically the free-stream value. To define the boundary layer thickness the criterion of local 

streamwise velocity equal to 99% of the free stream velocity is used [23,24]. 

 

 

Figure 3. 1- Schematics of the flat plate flow with definition of boundary layer thickness 

and coordinate system.  

 

3.2. Momentum equation  

We follow the standard procedure for boundary layer analysis (cf. [23,24]): we start by making 

the governing equations dimensionless prior to simplifying them through an order of magnitude 

analysis. In this process, we follow on the steps of the analysis performed by Parvar et al.[112,113] 

for the planar jet flow of FENE-P fluids. To normalise the equations, the length of the domain (ℒ) 
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and free-stream velocity (U∞) are used as characteristic length and velocity scales. The Reynolds 

number (𝑅𝑒ℒ) is defined by  

𝑅𝑒ℒ =
𝑈∞ℒ

𝜈0
, (3- 1) 

where 𝜐0 is the zero-shear rate kinematic viscosity of the solution (𝜈0 = 𝜈s + 𝜈p). We define the 

ratio between the polymer viscosity and the solution zero-shear rate viscosity, 𝛽p, 

𝛽p =
𝜈p

𝜈s + 𝜈p

=
𝜈p

𝜈0
, (3- 2) 

which is proportional to the polymer concentration. The Weissenberg number (𝑊𝑖ℒ) is 

𝑊𝑖ℒ =
𝜆𝑈∞
ℒ
, (3- 3) 

The following normalized lengths and velocities (denoted with *) are defined to ensure that their 

dimensionless derivatives in the continuity equation are at most of the order of unity (in particular 

ℒ >> 𝛿)  

𝑥∗ =
𝑥

ℒ
, 𝑦∗ =

𝑦

𝛿
, 𝑢∗ =

𝑢

𝑈∞
 , 𝑣∗ =

𝑣ℒ

𝑈∞𝛿
  , 𝑝∗ =

𝑃

𝜌𝑈∞
2. (3-4) 

Back-substitution into the continuity equation leads to 

𝑈∞
ℒ
(
𝜕𝑢∗

𝜕𝑥∗
+
𝜕𝑣∗

𝜕𝑦∗
) = 0. (3-5) 

The normalized x-momentum equation divided by 𝜌 becomes:  

𝑈∞
2

ℒ
(𝑢∗

𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
) = −

𝑈∞
2

ℒ

𝜕𝑃∗

𝜕𝑥∗
+ 𝜐s𝑈∞ (

1

ℒ2
𝜕2𝑢∗

𝜕𝑥∗2
+
1

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2
) 

+
𝜐p

𝜆
(
1

ℒ

𝜕([𝑓(𝐶𝑘𝑘)𝐶𝑥𝑥 − 𝑓(𝐿)])

𝜕𝑥∗
+
1

𝛿

𝜕([𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦])

𝜕𝑦∗
), 

(3-6) 

which simplifies to  

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗

𝜕𝑢∗

𝜕𝑦∗
 = −

𝜕𝑃∗

𝜕𝑥∗
+
(1 − 𝛽p)

𝑅𝑒ℒ

ℒ2

𝛿2
(
𝛿2

ℒ2
𝜕2𝑢∗

𝜕𝑥∗2
+
𝜕2𝑢∗

𝜕𝑦∗2
) (3-7) 
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+
𝛽p

𝑊𝑖ℒ𝑅𝑒ℒ

ℒ

𝛿
(
𝛿

ℒ

𝜕[𝑓(𝐶𝑘𝑘)𝐶𝑥𝑥 − 1]

𝜕𝑥∗
+
𝜕[𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦]

𝜕𝑦∗
 ), 

As in Parvar et al.[112,113] for the planar jet, the following relations are valid: 
(1−𝛽p)

𝑅𝑒ℒ
(
ℒ

𝛿
)
2 𝜕2𝑢∗

𝜕𝑦∗2
≫

(1−𝛽p)

𝑅𝑒ℒ

𝜕2𝑢∗

𝜕𝑥∗2
 and 

𝛽p

𝑊𝑖ℒ𝑅𝑒ℒ
(
ℒ

𝛿
)
𝜕([𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦])

𝜕𝑦∗
≫

𝛽p

𝑊𝑖ℒ𝑅𝑒ℒ

𝜕([𝑓(𝐶𝑘𝑘)𝐶𝑥𝑥−𝑓(𝐿)])

𝜕𝑥∗
, since ℒ 𝛿⁄ ≫ 1. Also, as 

argued by Olagunju [19,20], the leading coefficients of 
𝜕2𝑢∗

𝜕𝑦∗2
 and 

𝜕([𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦])

𝜕𝑦∗
 must be of O(1) for 

the polymer and solvent stresses to be of the same order of magnitude, otherwise the velocity field 

would be indistinguishable from that of the Newtonian solution. At high enough Reynolds 

numbers and since the solution is dilute (1 − 𝛽p~1), we have 

(ℒ/𝛿)2

𝑅𝑒ℒ
= 𝑂(1) → 𝛿 = 𝑂 (𝑅𝑒ℒ

−
1
2ℒ) →

𝛿

ℒ
≈ 𝑅𝑒ℒ

−
1
2, (3-8) 

which indicates the classical boundary layer proportionality, and  

𝛽p

𝑊𝑖ℒ𝑅𝑒ℒ
(
ℒ

𝛿
) = 𝑂(1)  or   𝑊𝑖ℒ = 𝑂 (𝛽p𝑅𝑒ℒ

−
1
2) . (3-9) 

Eq. (3-9) implies small values of 𝑊𝑖ℒ, for which it can be shown from the constitutive equation 

that 𝐶𝑥𝑦 ≈ 𝜆𝐶𝑦𝑦 𝜕𝑢 𝜕𝑦⁄ . However, the simplified momentum equation can still be used at higher 

values of 𝑊𝑖ℒ, when 𝐶𝑥𝑦 increases significantly, provided the shear stress terms dominate over the 

neglected streamwise gradient of the polymer normal stress. 

The order of magnitude analysis of the y-momentum equation leads to 𝜕𝑃∗ 𝜕𝑦∗⁄ = 0. Since the 

present analysis is directed to a flat plat boundary layer 𝜕𝑃∗ 𝜕𝑥∗⁄ = 0, the pressure is constant in 

the entire flow domain and the y-momentum equation is no longer needed. 

We proceed with the dimensional form of the simplified x-momentum equation 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
 = 𝜈s

𝜕2𝑢

𝜕𝑦2
+
𝜈p

𝜆

𝜕(𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦)

𝜕𝑦
. (3-10) 

Without the pressure, the y-momentum equation is no longer needed. Through the introduction of 

the stream function 𝜓, continuity is enforced and only the x-momentum equation needs to be 

solved. The stream function 𝜓 is defined as  
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𝑢 =
𝜕𝜓 

𝜕𝑦
, 𝑣 = −

𝜕𝜓 

𝜕𝑥
 . (3-11) 

Back-substituting into the x-momentum equation leads to 

(
𝜕𝜓 

𝜕𝑦
) (
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
) = 𝜈s (

𝜕3𝜓

𝜕𝑦3
) +

𝜈p

𝜆

𝜕(𝑓(𝐶𝑘𝑘)𝐶xy)

𝜕𝑦
. (3-12) 

To solve this equation we need the variations of 𝐶𝑥𝑦 and 𝑓(𝐶𝑘𝑘) in order to obtain a closed form 

solution. The stream function and all components of the conformation tensor depend 

simultaneously on x and y, but the use of the approximate similarity transformation discussed 

below will compact the solution. 

 

3.3. Conformation tensor equation  

3.3.1. The present solution 

Under steady state conditions (2- 11) simplifies to  

𝑢𝑘
𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
= 𝐶𝑗𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

+ 𝐶𝑖𝑘
𝜕𝑢𝑗

𝜕𝑥𝑘
−
1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐿)𝛿𝑖𝑗]. (3-13) 

 

In flows with high shear rates the distortion and dissipation contributions are usually the relevant 

quantities and the order of magnitude analysis of Parvar et al.[112,113] for the planar jet also 

showed it to be the case, with the advective term being negligible by comparison. In boundary 

layer flows the wall imposes a more severe shear condition than exists in a jet, so the arguments 

put forward by Parvar et al. [112] remain valid leading to the same simplified equations. 

Additionally, by substituting the velocities as defined through the stream function in Eq. (3-11), 

the simplified evolution equations for the non-zero components of the conformation tensor are 

rewritten as:  

−2(𝐶𝑥𝑥
𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝐶𝑥𝑦

𝜕2𝜓

𝜕𝑦2
) +

1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑥𝑥 − 𝑓(𝐿)] = 0, (3-14) 

2(𝐶𝑦𝑥
𝜕2𝜓

𝜕𝑥2
+ 𝐶𝑦𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
) +

1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑦𝑦 − 𝑓(𝐿)] = 0, (3-15) 



37 

 

1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑧𝑧 − 𝑓(𝐿)] = 0, (3-16) 

−𝐶𝑦𝑦
𝜕2𝜓

𝜕𝑦2
+ 𝐶𝑥𝑥

𝜕2𝜓

𝜕𝑥2
+
1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑥𝑦] = 0, (3-17) 

These equations can be further simplified by considering ∂𝜓/∂y >> ∂𝜓/∂x and that outside very 

low Weissenberg number flows, the normal components of 𝐶𝑖𝑗 are higher than the shear 

components (at rest 𝐶𝑥𝑥 = 𝐶𝑦𝑦 = 𝐶𝑧𝑧 = 1 and 𝐶𝑖𝑗 (𝑖≠𝑗)=0). Hence, we keep cross derivative terms 

when multiplying normal components of 𝐶𝑖𝑗 leading to  

−2𝜆𝐶𝑥𝑥
𝜕2𝜓

𝜕𝑥𝜕𝑦
− 2𝜆𝐶𝑥𝑦

𝜕2𝜓

𝜕𝑦2
+ 𝑓(𝐶𝑘𝑘)𝐶𝑥𝑥 = 𝑓(𝐿), 

 

(3-18) 

2𝜆𝐶yy
𝜕2𝜓

𝜕𝑥𝜕𝑦
+ 𝑓(𝐶𝑘𝑘)𝐶yy = 𝑓(𝐿), (3-19) 

𝑓(𝐶𝑘𝑘)𝐶𝑧𝑧 = 𝑓(𝐿), (3-20) 

−𝜆𝐶yy
𝜕2𝜓

𝜕𝑦2
+ 𝑓(𝐶𝑘𝑘)𝐶xy = 0. (3-21) 

The underlined terms in the equations for 𝐶𝑥𝑥 and 𝐶𝑦𝑦 are new, i.e., they are not present in 

Olagunju’s solution [19,20], but through Peterlin’s function they affect the other components of 

𝐶𝑖𝑗. However, since their effect on the polymer shear stress is weaker than on normal stresses, the 

impact on the velocity profiles will be weak as will be shown later.  

Further manipulation of Eqs. (3-18)–(3-21) provides the following final expressions for the 

conformation tensor components  

𝐶𝑥𝑥 =
𝑓(𝐿) + 2𝜆𝐶𝑥𝑦

𝜕2𝜓
𝜕𝑦2

(𝑓(𝐶𝑘𝑘) − 2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

)
= 𝑓(𝐿)

𝑓(𝐶𝑘𝑘) (2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘)) + 2𝜆
2 (
𝜕2𝜓
𝜕𝑦2

)
2

𝑓(𝐶𝑘𝑘) (𝑓(𝐶𝑘𝑘)
2 − (2𝜆

𝜕2𝜓
𝜕𝑥𝜕𝑦

)
2

)  

, (3-22) 

𝐶𝑦𝑦 =
𝑓(𝐿)

(2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘))  

, 
(3-23) 

𝐶𝑧𝑧 =
𝑓(𝐿)

𝑓(𝐶𝑘𝑘)
, (3-24) 
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𝐶𝑥𝑦 =
𝜆𝐶𝑦𝑦

𝜕2𝜓
𝜕𝑦2

𝑓(𝐶𝑘𝑘)
=

𝜆𝑓(𝐿)
𝜕2𝜓
𝜕𝑦2

𝑓(𝐶𝑘𝑘) (𝑓(𝐶𝑘𝑘) + 2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

)
 . (3-25) 

In this set of coupled algebraic equations, 𝐶𝑖𝑗 depends on the flow characteristics, via the stream 

function, other 𝐶𝑖𝑗 components and its trace through the Peterlin function. The determination of 

the Peterlin function, defined in Eq. (2- 10c) is rather elaborate, as explained next. From the three 

normal components above, the trace 𝐶𝑘𝑘 is given by 

𝐶𝑘𝑘 = 𝑓(𝐿)
3𝑓(𝐶𝑘𝑘)

2 + 2𝜆2 (
𝜕2𝜓
𝜕𝑦2

)
2

− 4𝜆2 (
𝜕2𝜓
𝜕𝑥𝜕𝑦

)
2

𝑓(𝐶𝑘𝑘) (𝑓(𝐶𝑘𝑘)2 − 4𝜆2 (
𝜕2𝜓
𝜕𝑥𝜕𝑦

)
2

)

 . (3-26) 

Next we introduce variables consistent with the self-similar Newtonian thin boundary layer 

solution [23,24], and in dimensionless form for generality. Here, the following variables 𝜂 and 

function 𝐺(𝜂, 𝑥) are utilized [23,24]: 

𝜂 = √
𝑈∞
2𝜈0

𝑦

𝑥
1
2⁄
, 𝐺(𝜂, 𝑥) =

𝜓

√2𝑈∞𝜈0𝑥
1
2⁄
, 

 

(3-27) 

The streamwise and normal velocities are recovered from their definitions, as  

𝑢 = 𝑈∞𝐺
′(𝜂, 𝑥), (3-28) 

𝑣 = √
𝜈0𝑈∞
2𝑥

(𝜂𝐺′(𝜂, 𝑥) − 𝐺(𝜂, 𝑥)). (3-29) 

where the prime indicates derivative in order to 𝜂. For the corresponding Newtonian flow these 

variables allow for a self-similar solution and function 𝐺(𝜂) only depends on 𝜂. This is not the 

case for the FENE-P fluid, even if other powers of x and y are tried, a finding that Olagunju [19,20] 

had previously arrived at and as investigated by Parvar et al. [112] for the planar jet. Therefore, 

the solution remains two-dimensional, with 𝐺(𝜂, 𝑥) depending on both 𝜂 and 𝑥, and this variable 

transformation does not simplify it unless further assumptions are introduced. This we do here by 

considering that streamwise variations of 𝐺(𝜂, 𝑥) are negligible, i.e., henceforth 𝜕𝐺(𝜂, 𝑥) 𝜕𝑥⁄ ≈

0, allowing us to obtain what is here called an approximate similarity solution. As we shall see this 

assumption still leads to a very good description of the velocity field, while allowing for a much 
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simpler solution [124-129]. Without it we would end up with a far more complicated set of 

equations bringing little advantage over the numerical solution of the full set of original governing 

equations. 

The Peterlin function 𝑓(𝐶𝑘𝑘) also depends on 𝜂 and 𝑥, as shown below, and for mathematical 

clarity henceforth we use  

𝐾(𝜂, 𝑥) = 𝑓(𝐶𝑘𝑘). (3-30) 

but note that it is not necessary to invoke the above simplifying assumption for this quantity. 

Substitution of all expressions into Eq. (2- 10c) leads to the following third order algebraic 

equation for 𝐾(𝜂, 𝑥)   

𝐾3 + C0𝐾
2 + C1(𝜂𝐺

′′)2𝐾 + C2𝐺
′′2 + C3(𝜂𝐺

′′)2 = 0 (3-31) 

with dimensionless coefficients 

𝐶0 = (
3𝐼 − 3𝑓(𝐿) − 𝐿2

𝐿2
),  

𝐶1 = −𝜆
2𝑈∞

2𝑥−2 = −𝑊𝑖𝑥
2,  

C2 = −
𝜆2𝑓(𝐿)𝑈∞

3

𝜈0𝐿2
𝑥−1 = −

𝑓(𝐿)𝑅𝑒𝑥𝑊𝑖𝑥
2

𝐿2
,  

𝐶3 =
𝜆2(𝐿2 + 𝑓(𝐿) − 3𝐼)𝑈∞

2

𝐿2
𝑥−2 =

(𝐿2 + 𝑓(𝐿) − 3𝐼)𝑊𝑖𝑥
2

𝐿2
. 

(3-32) 

Here, 𝐼 = 1 if the Peterlin functions are given by Eq. (2- 10c) and 𝐼 = 0 otherwise. Coefficients 

𝐶1 to 𝐶3 in Eq. (3-32) depend on x, hence this shows why K depends on both η and x and it is not 

possible to get a full self-similar solution as for Newtonian fluids.  

Regarding the x-momentum equation, by substituting 𝐶𝑥𝑦 (from Eq. (3-25)) into Eq. (3-10), 

𝜕𝜓 

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
) = 𝜈s

𝜕3𝜓

𝜕𝑦3
 

+𝜈p𝑓(𝐿)

(

 
 2𝜆

𝜕2𝜓
𝜕𝑥𝜕𝑦

𝜕3𝜓
𝜕𝑦3

+ 𝑓(𝐶𝑘𝑘)
𝜕3𝜓
𝜕𝑦3

− 2𝜆
𝜕3𝜓
𝜕𝑥𝜕𝑦2

𝜕2𝜓
𝜕𝑦2

−
𝜕𝑓(𝐶𝑘𝑘) 
𝜕𝑦

𝜕2𝜓
𝜕𝑦2

(2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘))

2

)

 
 
 . 

(3-33) 

together with variables 𝜂 and 𝐺 in Eq. (3-33) and algebraic manipulation, it becomes  
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−𝐺𝐺′′ = (1 − 𝛽p)𝐺
′′′ + 𝛽p𝑓(𝐿) (

𝐶4𝐺
′′2 + 𝐾𝐺′′′ − 𝐾′𝐺′′

(𝐾 − 𝐶4𝜂𝐺′′)2
), (3-34) 

with 

𝐶4 = 𝜆𝑈∞𝑥
−1 = −𝑊𝑖𝑥. (3-35) 

Again, the dependence on x in addition to the dependence on 𝜂 is clear and this equation also 

involves the first derivative of K relative to 𝜂, which is obtained from Eq. (3-31) and is given by  

𝐾′ = −
(2𝐶5(𝐶1𝐾 + 𝐶3) + 2𝐺

′′𝐺′′′(𝐶2 + 𝜂
2(𝐶1𝐾 + 𝐶3)))

𝐶6
 (3-36) 

with 

𝐶5 = 𝜂𝐺
′′2, 𝐶6 = (3𝐾

2 + 2𝐶0𝐾 + 𝐶1(𝜂𝐺
′′)2). (3-37) 

Upon back-substitution of 𝐾′ of Eq. (3-36) into Eq. (3-34), further mathematical manipulation 

leads to the following final form of the momentum equation cast in terms of 𝐺(𝜂, 𝑥) 

𝐺′′′ = −
𝐺𝐺′′ + 𝛽p𝑓(𝐿)𝐺

′′ (𝐶4𝐶6𝐺
′′ + 2𝐶5(𝐶1𝐾 + 𝐶3))

(𝐾 − 𝐶4𝜂𝐺′′)2𝐶6

((1 − 𝛽p) + 𝛽p𝑓(𝐿)
(𝐶6𝐾 + 2𝐺′′

2(𝐶2 + 𝜂2(𝐶1𝐾 + 𝐶3)))

(𝐾 − 𝐶4𝜂𝐺
′′)2𝐶6

)

. 
(3-38) 

The numerical solution of Eqs. (3-31) and (3-38) is discussed in Section 3.4 and its results 

presented in Section 3.5.  

 

3.3.2. Olagunju’s solution 

Olagunju’s solution for this same flow relied on further assumptions[19,20], in particular, terms 

of the conformation tensor equation were neglected that our order of magnitude analysis hinted to 

be relevant. However, since the effect of neglected terms on the polymer shear stress is weaker 

than on normal stresses, the impact of those differences on the velocity field will also be weak, as 

shown later. Specifically, instead of using Eqs. (3-18) to (3-21) to determine the conformation 

tensor, Olagunju used Eqs. (3-39) to (3-42): 

−2𝜆𝐶xy
𝜕2𝜓

𝜕𝑦2
+ [𝑓(𝐶𝑘𝑘)𝐶xx − 𝑓(𝐿)] = 0, (3-39) 
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1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶yy − 𝑓(𝐿)] = 0, (3-40) 

1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶zz − 𝑓(𝐿)] = 0,  (3-41) 

−𝜆𝐶yy
𝜕2𝜓

𝜕𝑦2
+ [𝑓(𝐶𝑘𝑘)𝐶xy] = 0. (3-42) 

Comparing both sets of equations shows terms missing in the equations for 𝐶𝑥𝑥 and 𝐶𝑦𝑦, which 

affects the other components of 𝐶𝑖𝑗 through the Peterlin function. The momentum equation is the 

same as ours.   

 

3.4. Numerical solution of the governing equations 

The set of simplified governing equations presented in Section 3.3 can only be solved numerically, 

as described below. Since we assumed 𝜕𝐺(𝜂, 𝑥) 𝜕𝑥⁄ ≈ 0, each set is composed of an ordinary 

third-order differential equation on 𝐺(𝜂) and an algebraic cubic equation for 𝐾(𝜂, 𝑥).  

To solve each set, the third-order differential equation is converted to a system of ordinary first-

order differential equations with the following transformations, 𝐺1 =
𝑑2𝐺

𝑑𝜂2
, 𝐺2 =

𝑑𝐺

𝑑𝜂
 and 𝐺3 = 𝐺, or 

alternatively written as  

 

𝑑𝐺1
𝑑𝜂

= 𝐺′′′, (3-43) 

𝑑𝐺2
𝑑𝜂

= 𝐺1, (3-44) 

𝑑𝐺3
𝑑𝜂

= 𝐺2. (3-45) 

The cubic equation is solved first, with the Cardan-Tartaglia formula [130,131]. Its correct solution 

must be real-valued, all the normal components of 𝐶𝑖𝑗  are positive and 3 ≤ 𝐶𝑘𝑘 ≤ 𝐿
2. Then, the 

system of differential equations is solved numerically by a fourth-order Runge–Kutta method 

coupled with a shooting technique to match the unknown boundary conditions[132,133]. The 

boundary conditions for the laminar flat plate boundary layer flow are [23,24]: 

𝐺′(∞) → 1, 𝐺(0) = 𝐺′(0) = 0. (3-46) 
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3.5. Results and discussion 

3.5.1. Validation: Newtonian fluids 

The governing equations for the boundary layer flow of the viscoelastic fluid reduce to those for a 

Newtonian flat plate flow for 𝛽p = 0 and this is used to verify the solution [23]. Through 

asymptotic analysis White [23] verified that at 𝜂 = 10 the flow characteristics are very close to 

boundary conditions at infinity, therefore the same condition is used here. We define the local 

Reynolds 𝑅𝑒𝑥 as per Eq. (3- 1) with x instead of ℒ. We considered a maximum Rex =1×105, a flow 

condition for which the Blasius solution remains valid [111] and below the critical condition for 

laminar-turbulent transition (𝑅𝑒𝑥,𝑐𝑟 = 5×105) for Newtonian fluids.  

 

 

 (a)   

 

(b) 

Figure 3. 2- Characteristics of the Newtonian laminar boundary layer flow: a) Variation of 𝐺, 𝐺′ 
and 𝐺" with 𝜂; b) Variation with Rex of the normalized boundary layer thickness (𝛿 𝑥⁄ ), 

displacement thickness (𝛿∗ 𝑥⁄ ) and momentum thickness (𝜃 𝑥⁄ ). Lines represent data from the 

present work and symbols represent data from the literature [111]. 

Figure 3. 2- (a) shows an excellent agreement between the numerical values of 𝐺, 𝐺′ and 𝐺′′ for 

the current solution and the literature. The plotted quantities are related to the velocity profiles u 

and v according to Eqs. (3-28) and (3-29).  

By considering Eqs. (3-27) and (3-28), the following characteristics of the boundary layer flow 

were also quantified:  
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- the boundary layer thickness (δ) based on the 99% of free stream velocity criterion (cf. Section 

3.1) is quantified by setting 𝐺′ = 0.99 giving 𝜂 = 3.4723 and consequently 

𝛿

𝑥
=
4.9105

√𝑅𝑒𝑥
, (3-47) 

- the displacement thickness (𝛿∗) is defined as  

𝛿∗ = ∫ (1 −
𝑢

𝑈∞
)𝑑𝑦

∞

0
= √

2𝜈0𝑥

𝑈∞
∫ (1 − 𝐺′)𝑑𝜂
∞

0
= 𝑥√

2

𝑅𝑒𝑥
lim
𝜂→∞

[𝜂 − 𝐺(𝜂, 𝑥)] , (3-48) 

leading to 
𝛿∗

𝑥
=
1.7208 

√𝑅𝑒𝑥
; 

- the momentum thickness (𝜃) is defined as 

𝜃 = ∫
𝑢

𝑈∞
(1 −

𝑢

𝑈∞
) 𝑑𝑦

∞

0
= √

2𝜈0𝑥

𝑈∞
∫ 𝐺′(1 − 𝐺′)𝑑𝜂
∞

0
= 𝑥√

2

𝑅𝑒𝑥
∫ 𝐺′(1 − 𝐺′)𝑑𝜂
∞

0
, (3-49) 

leading to 
𝜃

𝑥
=
0.664 

√𝑅𝑒𝑥
, and a shape factor 𝐻 = 𝛿∗ 𝜃⁄ = 2.591 is consistent with results from [23,46]. 

Furthermore, the local skin-friction coefficient 𝐶𝑓 for the Newtonian fluid is given by  

𝐶𝑓 = (
𝜏𝑥𝑦

1
2𝜌𝑈∞

2
)

𝑦=0

=
𝜈s
𝜕2𝜓
𝜕𝑦2

1
2 𝜌𝑈∞

2
 (3-50) 

The variations with 𝑅𝑒𝑥 of these four quantities are plotted in Figure 2-b) and the agreement is 

excellent with data from [23,24].  

 

3.5.2. Validation: FENE-P fluids 

We start with a comparison between our approximate similarity solution and the numerical 

solution of the full set of non-simplified governing equations using the RheoFoam toolbox of 

OpenFoam [17,18], and also with the approximate similarity solution of Olagunju [19,20]. 

Olagunju [19,20] only presented the velocity profiles and the law of variation for the friction 

coefficient, so we used his equations to extract other quantities.  

The RheoFoam simulation relied on the use of the high-order resolution scheme CUBISTA [134] 

for the advective terms in the momentum and conformation equations. The computational domain 
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had a length 1.2ℒ, divided into two blocks: block I upstream the plate leading edge was 0.2ℒ long 

and block II along the plate had a length of ℒ. The width of both blocks was set equal to 2ℒ. Within 

each block the non-uniform computational grid had 𝑁𝑥 ×𝑁𝑦 × 𝑁𝑧 cells for the 𝑥, 𝑦, 𝑧 directions, 

respectively as given in Table 3. 1 together with the expansion/contraction factors 𝑓𝑥 = ∆𝑥
𝑖+1 ∆𝑥

𝑖⁄  

and 𝑓𝑦 = ∆𝑦
𝑖+1 ∆𝑦

𝑖⁄  and ratios of mesh size over boundary layer thickness at some locations. This 

mesh was selected after an assessment of mesh independence using four grids. Differences 

between the results of this grid and those obtained in a grid with twice the number of cells in each 

direction is below 0.05%.  

Table 3. 1-Characteristics of the meshes used in the RheoFoam calculations for validation. The 

values of ∆𝑥 and ∆𝑦 are at the cells nearest the wall. 

Block 𝑁𝑥 𝑁𝑦 𝑁𝑧 𝑓𝑥 𝑓𝑦 ∆𝑥𝑥=0
𝛿𝑥=ℒ

,
∆𝑦𝑥=0
𝛿𝑥=ℒ

 
∆𝑥𝑥=ℒ
𝛿𝑥=ℒ

 

I 20 600 1 0.886 1.0088 - - 

II 200 600 1 1.0116 1.0088 0.0439,0.003 0.439 

On the inlet boundary a uniform velocity was imposed, on the outlet boundary a zero gradient 

condition was set for all quantities and no slip was imposed at the wall. At the boundary upstream 

the wall (block I) symmetry conditions were set. At the boundary opposite the wall, far from the 

boundary layer, free stream velocity conditions were imposed, both in blocks I and II.  

  
(a) (b) 

Figure 3. 3- Comparison between normalized transverse velocity profiles at 
𝑥

ℒ
= 0.4 for 𝛽p =

0.1, 𝐿2 = 900, Rex=2×104 and Wix= 0.1 from present and Olagunju solutions, and from 

RheoFoam: (a) 
𝑢

𝑈∞
; (b) 

𝑣

𝑈∞
√𝑅𝑒𝑥 .  
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The simulation was carried out for the Peterlin function of Eq. (2- 10c) with 𝛽p = 0.1 and 𝐿2 =

900 and the results shown pertain to 𝑥 ℒ⁄ = 0.2, where the local Reynolds and Weissenberg 

numbers are Rex=2×104 and Wix= 0.1, respectively (the local Weissenberg number 𝑊𝑖𝑥 is defined 

as per equation (3- 3) with x instead of ℒ). 

Figure 3. 3 compares the normalized transverse profiles of streamwise and wall-normal velocities 

obtained in RheoFoam and with the present and Olagunju’s semi-analytical solutions showing 

excellent agreement, as shown through the zooms in Figure 3. 3. Olagunju's solution very slightly 

over-predicts 𝑢 𝑈∞⁄  and (𝑣 𝑈∞⁄ )√𝑅𝑒𝑥.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. 4- Comparison between transverse profiles of the conformation tensor components 

obtained with RheoFoam and present and Olagunju solutions at 
𝑥

ℒ
= 0.4 for 𝛽p=0.1, 𝐿2 = 900, 

Rex=2×104 and Wix= 0.1: (a) 𝐶𝑥𝑦, (b)𝐶𝑦𝑦, (c)𝐶𝑧𝑧,(d)𝐶𝑥𝑥, Lines are a guide to the eye. 

The corresponding transverse profiles of the conformation tensor components (𝐶𝑥𝑦, 𝐶𝑦𝑦, 𝐶𝑧𝑧, 𝐶𝑥𝑥) 

are plotted in Figure 3. 4 and again there is a very good agreement between the results of the 

present work and of the RheoFoam simulation. However, Olagunju’s solution shows various 
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differences relative to our solution and RheoFoam predictions: it over-predicts 𝐶𝑥𝑦 near the wall 

and, regardless of 𝑊𝑖𝑥, it always predicts the maximum 𝐶𝑥𝑦 to occur at the wall, whereas both the 

current solution and RheoFoam show that the maximum 𝐶𝑥𝑦 occurs at a slight distance from wall, 

with this offset increasing with 𝑊𝑖𝑥.  

Simultaneously, Olagunju's solution over-predicts the wall peak of 𝐶𝑥𝑥 in Figure 3. 4 (d), whereas 

in regards to 𝐶𝑦𝑦 and 𝐶𝑧𝑧, Figure 3. 4 (b) and (c) show that it is qualitatively incorrect even if the 

numerical values are not too different from 1, as they should be. As a matter of fact, the peak value 

of 𝐶𝑦𝑦 away from the wall, and the local minimum positive value at the wall are not captured 

qualitatively by Olagunju's solution, which always predicts a wall peak value, whereas for 𝐶𝑧𝑧 

Figure 3. 4 (c) Olagunju's values are in excess of 1, whereas the correct value is below 1. As stated 

earlier, the differences between both solutions come from the simplifications in the conformation 

equations for 𝐶𝑥𝑥 and 𝐶𝑦𝑦 carried to the other components via the Peterlin function 𝑓(𝐶𝑘𝑘) and 

they increase substantially with 𝑊𝑖𝑥. In contrast, at lower Wi, such as 𝑊𝑖𝑥=0.005, velocity and 

conformation tensor profiles of both semi-analytical solutions collapse, so they are not shown for 

conciseness. 

It is worth comparing the computational cost of the semi-analytical solutions and of the Rheofoam 

simulation. The latter was performed by a computer equipped with an Intel Xeon E5 processor 

with 12MB L3 cache and Turbo Boost up to 3.9GHz, with parallel processing using its 6 computer 

cores. The computational time was 4.5 hours, however for the semi-analytical solutions the same 

computer took about one second.  

 

3.5.3.The boundary layer flow of FENE-P fluids 

The solution presented and discussed here pertains to the Peterlin function of Eq. (2- 10c) and we 

vary the Reynolds and Weissenberg numbers as well as 𝛽p and 𝐿2. The local Reynolds 𝑅𝑒𝑥 and 

Weissenberg numbers 𝑊𝑖𝑥, their values at the end of the plate (𝑅𝑒ℒ  and 𝑊𝑖ℒ) are also used.  

It should be noted that for low and moderate Wi numbers only the results of the proposed semi-

analytical solution are presented, however for large Wi numbers, we also show the results were 

obtained from RheoFoam simulation. The |RheoFoam simulations were performed in a rectangular 
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computational domain similar to that described in Section 6.2 and Table 3. 1. Two simulations 

were performed with Rheofoam at 𝑅𝑒ℒ = 1 × 10
5, with 𝛽p=0.1 and a very high 𝑊𝑖ℒ = 0.2 and 

𝑊𝑖ℒ = 1.0 using 𝐿2 = 900, and their results are compared with those of the derived semi-

analytical solution. It is also worth to mention that for larger than presented Wi numbers in 

RheoFoam simulations we faced with numerical instabilities.  

 

3.5.3.1. Flow field    

Figure 3. 5 (a) and Figure 3. 6 (a) show transverse profiles of normalized streamwise and normal 

velocity as a function of the independent dimensionless numbers obtained from preset solution. 

By normalizing with the boundary-layer thickness, and with the local Reynolds number for the 

wall-normal velocity, the profiles at low elasticity levels tend to collapse on the Newtonian 

profiles, but by increasing elasticity the profiles progressively deviate from the Newtonian 

asymptote thus showing their approximate similarity nature. The deviation is small for the 

streamwise velocity profile, which is pinned at the wall and at the edge of the boundary layer in 

this normalization. For the transverse velocity, in general there is a progressive decrease with 

elasticity as the boundary layer edge is approached, so that the dimensionless wall-normal velocity 

can be 10% smaller than the Newtonian value under certain conditions of high elasticity.   

 
(a) 

 
(b) 

Figure 3. 5- Normalized transverse (
𝑢

𝑈∞
) velocity profile for various rheological properties:(a) 

from present BL theory ,Dashed lines are a guide to the eye, (b) from present BL theory 

(dashdotted lines) and RheoFoam (solid lines) for βp=0.1, 𝐿2 = 900, 𝑅𝑒𝑥 = 2 × 10
4. 
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Figure 3. 5  (b) and Figure 3. 6 (b) display the comparison of the normalised transverse velocity 

profiles (𝑢/𝑈∞) and (𝑣/𝑈∞)√𝑅𝑒𝑥 at location, 𝑥/ℒ = 0.2. Even at large Wi numbers (note that 

𝑊𝑖𝑥 = (ℒ/𝑥)(𝑊𝑖ℒ) the present solution can still predict well these profiles. It is also observed 

that the results accuracy increases as we move downstream (such profiles are not shown for 

conciseness), because 𝑊𝑖𝑥 decreases, but this is also due to the normalisation with 𝛿. In fact, the 

variation of 𝛿 ℒ⁄  along the plate is shown in Figure 3. 8. 

 
(a) 

 
(b) 

Figure 3. 6- Normalized transverse (
𝑣

𝑈∞
√𝑅𝑒𝑥) velocity profile for various rheological 

properties:(a) from present solution, Dashed lines are a guide to the eye, (b) from present 

solution (dashdotted lines) and RheoFoam (solid lines) for βp=0.1, 𝐿2 = 900, 𝑅𝑒𝑥 = 2 × 10
4. 

The local skin-friction coefficient 𝐶𝑓 for the FENE-P fluid is given by  

𝐶𝑓 = (
𝜏𝑥𝑦

1
2𝜌𝑈∞

2
)

𝑦=0

=

𝜈s
𝜕2𝜓
𝜕𝑦2

+
𝜈p𝑓(𝐿)

𝜕2𝜓
𝜕𝑦2

(2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘))  

1
2𝜌𝑈∞

2
 

(3-51) 

with 
𝜕2𝜓

𝜕𝑥𝜕𝑦
(y = 0) = −

𝑈𝑥−1

2
(𝜂(0)𝐺′′(0, 𝑥) ) = 0 , thus leading to  

 𝐶𝑓 = (
𝜏𝑥𝑦

1

2
𝜌𝑈∞

2)
𝑦=0

= √
2

𝑅𝑒ℒ
(1 − 𝛽p +

𝛽p𝑓(𝐿)

𝐾(0,𝑥)
)𝐺′′(0, 𝑥). (3-52) 
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The streamwise variations of the friction factor (𝐶𝑓) and of the normalized boundary layer 

thickness (𝛿 𝑥⁄ ) are plotted in Figure 3. 7 and Figure 3. 8, respectively. As for the laminar planar 

jet previously investigated [112,113], when elasticity effects are weak (low 𝑊𝑖ℒ, low 𝛽p, high L) 

both quantities follow closely the corresponding Newtonian results, but as Wi and 𝛽p increase or 

L decreases, the boundary layer thickness and the skin friction coefficient decrease on account of 

the stronger shear-thinning nature of the shear viscosity accompanying those changes of the 

independent dimensionless numbers. The semi-analytical solution can predict the friction factor 

(𝐶𝑓) with very good accuracy at all range of large Wi numbers, but the deviation of predicted 

boundary layer thickness (𝛿 𝑥⁄ ) is below 2% at large Wi numbers as shown Figure 3. 7 (b) and 

Figure 3. 8 (b).  

 
(a) 

 
(b) 

Figure 3. 7- Streamwise variation of 𝐶𝑓  as a function of flow and fluid characteristics. Dashed 

lines are a guide to the eye. (a) the present work result (b) from present solution (dashdotted 

lines) and RheoFoam (solid lines) for βp=0.1, 𝐿2 = 900. 
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(a) 

 
(b) 

Figure 3. 8- Streamwise variation of the normalized boundary layer thickness (𝛿 𝑥⁄ )  as a 

function of flow and fluid characteristics. Dashed lines are a guide to the eye. (a) the present 

work result (b) from present solution (dashdotted lines) and RheoFoam (solid lines) for βp=0.1, 

𝐿2 = 900. 

Before presenting more results, one critical point needs to be clarified. That point concerns the 

characteristic length used in the definition of the Weissenberg number, a problem that has 

similarities with the definition of the Reynolds number in classical boundary layer theory and that 

has implications on the interpretation of what are low or high Wi flows. We use a distance 

measured from the plate leading edge (the local distance (𝑥) or the full length of the plate, ℒ) as 

this makes the definition of Wi (and of Re) independent of the solution. However, from a physical 

point of view it makes more sense to use the boundary layer thickness in the ratio of time scales, 

since the flow is dominated by shear (except at very large Wi where extensional effects may 

become important as explained above). The problem is that 𝛿 is part of the solution and it is always 

difficult to know a priori what the value of 𝑊𝑖𝛿 will be. For instance, in the present study we use 

the range 0.01 < 𝑊𝑖𝑥<5.0, as shown in in Figure 3. 9(a), these range corresponds to 0.3<

𝑊𝑖𝛿<150, shown in Figure 3. 9.(b). In conclusion, these values of 𝑊𝑖𝛿 are hardly low values of 

elasticity and the highest values of Wi used in the paper are large enough to study the effects of 

high elasticity on the boundary layer flow, even if quantified as 𝑊𝑖𝑥.  
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(a) 

 
(b) 

Figure 3. 9- Streamwise variation of 𝑊𝑖  as a function of flow and fluid characteristics. Dashed 

lines are a guide to the eye. (a) 𝑊𝑖𝑥 (b) 𝑊𝑖𝛿. 

Figure 3. 10 and Figure 3. 11 show the corresponding streamwise variations of the dimensionless 

displacement and momentum thicknesses. Again, at low elasticity levels both quantities follow 

closely the corresponding Newtonian laws, however by increasing the elasticity level 𝛿∗ 𝑥⁄  and 

𝜃 𝑥⁄  decrease on account of the fuller velocity profiles associated with the shear-thinning of the 

shear viscosity. The accuracy of predicting both 𝛿∗ 𝑥⁄  and 𝜃 𝑥⁄  are very good even at very large 

Wi numbers 

 
(a) 

 
(b) 

Figure 3. 10- Streamwise variation of the dimensionless displacement thickness (𝛿∗ 𝑥⁄ ) as a 

function of flow and fluid characteristics. Dashed lines are a guide to the eye. (a) the present 

work result (b) comparison with RheoFoam at large Wi. 
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(a) 

 
(b) 

Figure 3. 11- Streamwise variation of the dimensionless momentum thickness (𝜃 𝑥⁄ ) as a 

function of flow and fluid characteristics. Legend as in Fig. 9. Dashed lines are a guide to the 

eye. (a) the present work result (b) comparison with RheoFoam at large Wi. 

Figure 3. 12 shows the variation of so-called shape or flatness factor (𝐻 = 𝛿∗ 𝜃⁄ ) as a function of 

flow and fluid characteristics. As expected 𝐻 > 1 and has a constant value for flows with 

vanishing elasticity, but as 𝑊𝑖ℒ , 𝛽𝑝 and L increase H decreases and varies non-linearly along the 

plate, but always tending to the Newtonian value as 𝑅𝑒𝑥 increases.  

 

Figure 3. 12- Streamwise variation of the shape factor H as a function of flow and fluid 

characteristics. Dashed lines are a guide to the eye. 
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3.5.3.2. Conformation and stress tensors 

We can plot the streamwise variation of local quantities in two different ways: (i) mimicking a 

specific boundary layer flow, 𝑅𝑒ℒ  and 𝑊𝑖ℒ are fixed for each flow condition and at each 𝑥 ℒ⁄  the 

data pertain to different local values of 𝑅𝑒𝑥 and 𝑊𝑖𝑥 since 𝑅𝑒𝑥~𝑥 and 𝑊𝑖𝑥~𝑥
−1; (ii) alternatively, 

one may compare physical quantities at the same local values of 𝑅𝑒𝑥 and 𝑊𝑖𝑥, but then, at each 

𝑥 ℒ⁄ , data correspond to different 𝑅𝑒ℒ  and 𝑊𝑖ℒ. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. 13- Streamwise variation of local peak values of the polymer stress and total shear stress 

for various flow conditions: (a)𝜏𝑥𝑥
p

, (b)𝜏𝑦𝑦
p

, (c)𝜏𝑥𝑦
p

, (d)𝜏𝑥𝑦. Data are normalised by the 

corresponding stress at 𝑥 ℒ⁄ = 0.2. Lines are a guide to the eye; the solid line is the low elasticity 

asymptote. 
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Figure 3. 13 (a)-(d) shows the streamwise decrease of the peak values of the polymer stress 

components and of the total shear stress, normalized by the corresponding peak values at 

𝑥/ℒ =0.2. For viscoelastic fluids, the local Weissenberg number increases as the leading edge is 

approached, therefore the boundary layer theory is not valid between the leading edge, where its 

assumptions do not hold even for Newtonian fluids, and some location downstream where the local 

Weissenberg number is still excessively high. For values of 𝑊𝑖ℒ below 0.002 the local value of 

𝑊𝑖𝑥 at 𝑥/ℒ =0.2 is within the range of validity of the boundary layer theory assumptions hence 

we chose the peak stress values at this location for stress normalization. 

For all components, the normalized data plotted in Figure 3. 13 follow equations of the form, 

log
10

|𝜏𝑖𝑗
𝑝
|
𝑚𝑎𝑥

|𝜏
𝑖𝑗
𝑝
|
𝑚𝑎𝑥@

𝑥
ℒ=0.2

= 𝑚 log
10
[(
𝑥

ℒ
)
1 2⁄

] − 𝑏.  (1) 

which are also shown as lines. At low elasticity levels the normalized peak stress curves tend to 

an asymptote, which is indicated in each plot as a solid line. 

The low elasticity asymptotic decay rate of 𝜏𝑥𝑥
p

 is twice as fast as for the shear stresses, because in 

this limit 𝜏𝑥𝑥
p
∝ (𝜕𝑢 𝜕𝑦⁄ )2, whereas the polymer shear stress varies linearly with 𝜕𝑢 𝜕𝑦⁄  as does 

the Newtonian solvent shear stress, and consequently the total shear stress 𝜏𝑥𝑦. The transverse 

normal stress 𝜏𝑦𝑦
p

 is much smaller than 𝜏𝑥𝑥
p

 and the rate of decay of its local peak depends on the 

streamwise variations of 𝜕𝑣 𝜕𝑦⁄  and 𝐶𝑦𝑦. Further manipulation of Eqs. (3-27) to (3-29) shows that 

the streamwise variations of 𝜕𝑣 𝜕𝑦⁄  and 𝜕𝑢 𝜕𝑦⁄  are related, but the quantities involved are very 

small and simple order of magnitude arguments are unable to explain the rate of decay shown in 

Figure 3. 13 (b) that only accurate numerical calculations can provide.  
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Figure 3. 14- Streamwise variation of the ratio of wall polymer shear stress (𝜏𝑥𝑦

p
) to wall solvent 

shear stress (𝜏𝑥𝑦
s ). Lines are a guide to the eye; the solid line is the low elasticity asymptote. 

  

At low elasticity, the linear dependence of both shear stresses on 𝜕𝑢 𝜕𝑦⁄  is equivalent to having a 

constant ratio for 𝜏𝑥𝑦
p
/𝜏𝑥𝑦
s  equal to the ratio of viscosity coefficients 𝜈p 𝜈s⁄ = 1 9⁄  for 𝛽p = 0.1 

and 𝜈p 𝜈s⁄ = 1 for 𝛽p = 0.5, as shown in Figure 3. 14. On account of shear-thinning effects, as Wi 

increases there is a decrease in the stress ratio 𝜏𝑥𝑦
p
/𝜏𝑥𝑦
s  and in the decay rates for all stresses shown.  

The ratios of local maximum polymer over local maximum solvent stresses (𝜏𝑖𝑗
p

max
/𝜏𝑖𝑗
s

max
) show 

similar behaviors for the shear and wall-normal components. At low elasticity levels the maximum 

shear stresses are at the wall so the behavior is that of Figure 3. 15, but as elasticity increases the 

peak polymer shear stress moves away from the wall to the near wall vicinity, where the 

corresponding conformation tensor component peaks, and the ratio 𝜏𝑥𝑦
p

max
/𝜏𝑥𝑦
s
max

 decreases 

below 𝜈p 𝜈s⁄ . In regards to 𝜏𝑦𝑦
p

 and 𝜏𝑦𝑦
s  their maxima are offset from the wall, where under low 

shear rate conditions they essentially depend linearly on 𝜕𝑣 𝜕𝑦⁄  hence their ratio is also equal to 

the ratio of viscosity coefficients 𝜈p 𝜈s⁄ , cf. Figure 3. 15-(a). However, 𝜏𝑥𝑥
p

 and 𝜏𝑥𝑥
s  behave 

differently as depicted in Figure 3. 15-(b): whereas 𝜏𝑥𝑥
s  is purely viscous and depends only on the 

small value of 𝜕𝑢 𝜕𝑥⁄ , being negative, the polymer stress 𝜏𝑥𝑥
p

 exhibits the nearly quadratic 

dependence on the large values of 𝜕𝑢 𝜕𝑦⁄  and is positive, therefore the ratio |𝜏𝑥𝑥
p
|
max
/|𝜏𝑥𝑥

s |max 

takes on large values even in the limit of small elasticity and increases with 𝑊𝑖ℒ or 𝛽p and in 

inverse proportion to 𝐿2.  
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(a) 

 
(b) 

Figure 3. 15- Streamwise variation of ratios between local maximum polymer (𝜏𝑖𝑗
p
) over local 

maximum solvent stresses (𝜏𝑖𝑗
s ) : (a) 𝜏𝑦𝑦

p

max
/𝜏𝑦𝑦
s
max

, (b) |𝜏𝑥𝑥
p
|
max
/|𝜏𝑥𝑥

s |max. Lines are a guide to 

the eye; the solid line is the low elasticity asymptote. 

By increasing the elasticity level, the ratio of streamwise polymer stress to polymer shear stress 

(
𝜏𝑥𝑥
p

𝜏𝑥𝑦
p ) increases. The ratio reach to approximately 𝜏𝑥𝑥

p
/𝜏𝑥𝑦
p
= 100 at very large 𝑊𝑖ℒ = 1, therefore 

at large 𝑊𝑖ℒ the normal streamwise stress become dominate polymer stress meaning that (𝜏𝑥𝑥
p
≫

𝜏𝑥𝑦
p

) as shown in Figure 3. 16. Regarding to the influence of these polymer stresses on momentum 

equation, as mentioned earlier the streamwise derivation of 𝜏𝑥𝑥
p

 (
𝜕𝜏𝑥𝑥
p

𝜕𝑥
) and normal derivation 𝜏𝑥𝑦

p
 

(
𝜕𝜏𝑥𝑦
p

𝜕𝑦
) affect the momentum equation. Therefore, the streamwise variation of |

𝜕𝜏𝑥𝑥
p

𝜕𝑥
|
max

/

(|
𝜕𝜏𝑥𝑦
S

𝜕𝑦
|
max

+ |
𝜕𝜏𝑥𝑦
p

𝜕𝑦
|
max
) for different Wi number are shown in Figure 3. 17. Generally speaking, if 

|
𝜕𝜏𝑥𝑥
p

𝜕𝑥
|
max

/(|
𝜕𝜏𝑥𝑦
S

𝜕𝑦
|
max

+ |
𝜕𝜏𝑥𝑦
p

𝜕𝑦
|
max
) < 0.05 our proposed semi-analytical solution can precisely 

predicts all flow properties, however above this criterion the accuracy of predicted polymer 

stresses reduce, but the solution can still predict velocity profiles and velocity relevant properties 

such as boundary layer, displacement, and momentum thicknesses with acceptable accuracy. 
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Figure 3. 16- Streamwise variation of the ratio 

of polymer normal stress (𝜏𝑥𝑥
p
) to solvent shear 

stress (𝜏𝑥𝑦
p
) on the flat plate surface. Lines are 

a guide to the eye; the solid line is the low 

elasticity asymptote. 

Figure 3. 17- Streamwise variation of the ratio 

of |
𝜕𝜏𝑥𝑥
p

𝜕𝑥
|
max

/(|
𝜕𝜏𝑥𝑦
S

𝜕𝑦
|
max

+ |
𝜕𝜏𝑥𝑦
p

𝜕𝑦
|
max
) . Lines 

are a guide to the eye; the solid line is the low 

elasticity asymptote. 

Figure 3. 18 plots the variation across the boundary layer of 𝜏𝑥𝑦
p
/𝜏𝑥𝑦
s  at some representative 

locations, as given through the values of 𝑅𝑒𝑥 and 𝑊𝑖𝑥, showing that there are shear-thinning 

effects, and suggesting that the peak polymer stress values may occur at some distance from the 

wall. As the edge of the boundary layer is approached and the shear rates decrease this stress ratio 

approaches the viscosity coefficient ratio 𝜈p 𝜈s⁄ = 𝛽p (1 − 𝛽p)⁄ . Note however, that the variation 

of the total shear stress across the boundary layer is monotonic, with peak values at the wall (such 

profiles are not shown for conciseness).  

 

 

 

  

Figure 3. 18- Variation across the boundary layer of 𝜏𝑥𝑦
p
/𝜏𝑥𝑦
s . Lines are a guide to the eye; the 

solid line is the low elasticity asymptote. 
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At this stage it is important to remember that the approximate similarity nature of the solution is 

introduced by the conformation equations. Transverse profiles of conformation tensor component 

quantities, normalised by the corresponding local absolute peak values, are plotted in Figure 3. 19 

(a)-(d) for a wide range of conditions at two different locations (expressed through the values of 

𝑅𝑒𝑥 and 𝑊𝑖𝑥).  

 
(a) 

 
(b)  

 
(c) 

 
(d) 

Figure 3. 19- Transverse profiles of conformation tensor component quantities normalised by their 

corresponding absolute local peak values for various flow conditions: (a) 𝐶𝑥𝑦, (b) 𝐶𝑦𝑦 −

1, (c) 𝐶𝑧𝑧 − 1(d)𝐶𝑥𝑥 − 1. Lines are a guide to the eye; the solid line is the low elasticity asymptote. 

As expected, at low elasticity 𝑊𝑖𝑥 ≤ 0.005 the profiles collapse on asymptotic curves (solid lines); 

for increasing levels of viscoelasticity the profiles progressively deviate from the asymptotes and 

an approximate similarity behavior sets in. The normalised profiles of 𝐶𝑥𝑦, 𝐶𝑧𝑧 − 1 and 𝐶𝑥𝑥 − 1 

all exhibit their large variations taking place further away from the wall than in their asymptotic 

curves, and for the shear component the location of the peak value also moves away from the wall. 
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𝐶𝑦𝑦 is always positive, but the large variations of the normalised profiles of 𝐶𝑦𝑦 − 1 are a 

consequence of the ratio involving very small numbers due to very small variations of 𝐶𝑦𝑦 around 

1. At the wall 𝐶𝑦𝑦 < 1 hence the negative values plotted. In addition, whereas at low elasticity 

levels the maximum 𝐶𝑦𝑦 − 1 > 0 and occurs away from the wall, at high elasticity levels the 

maximum difference 𝐶𝑦𝑦 − 1 < 0 and occurs at the wall, therefore the normalised profiles equal 

+1 and -1 at those specific locations, respectively. When viscoelasticity is not weak, Figure 3. 19 

shows some degree of variation in terms of the normalized conformation tensor quantities due 

again to the amplification of small values in the ratio and also to the approximate nature of the 

similarity. 

To assess the accuracy of the predicted polymer stresses via semi-analytical solution at large Wi 

number, the transverse profiles of the conformation tensor components 𝐶𝑥𝑦, 𝐶𝑦𝑦, 𝐶𝑧𝑧 , 𝐶𝑥𝑥 are 

plotted and compared with RheoFoam results at two different location (a) at 
𝑥

ℒ
= 0.2 and (b) 

𝑥

ℒ
=

1.0 as shown in Figure 3. 20. The deviations of the conformation tensor components of the semi-

analytical solution in relation to the predicted Rheofoam simulations are now very clear especially 

at 
𝑥

ℒ
= 0.2 (𝑊𝑖𝑥 = 1.0 and 5.0 ) and the discrepancies exist off to the wall. This deviation is 

associated with the appearance of large peak values of 𝐶𝑖𝑗 off the wall, which are rather pronounced 

and associated with changes in concavity in the transverse profiles. In contrast, the "well-behaved" 

semi-analytical solution is unable to follow these high Weissenberg number strong variations in 

𝐶𝑖𝑗 on account of the imposed boundary layer simplifications. Such large local maxima are even 

observed to exist for the spanwise normal stresses. Again, ongoing downstream (decreasing 𝑊𝑖𝑥) 

the differences are reduced and at 𝑊𝑖𝑥 = 0.2 and 1.0 (𝑥 ℒ⁄ = 1.0) the match is better for lower 

𝑊𝑖𝑥. 
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(a) 

 
(b) 

Figure 3. 20- Comparison between transverse profiles of conformation tensor components 

𝐶𝑥𝑦, 𝐶𝑦𝑦, 𝐶𝑧𝑧, 𝐶𝑥𝑥 from present BL theory (dashdotted lines) and RheoFoam (solid lines) for 

βp=0.1, 𝐿2 = 900, 𝑅𝑒ℒ = 1 × 10
5  and 𝑊𝑖ℒ = 0.2 𝑎𝑛𝑑 1 at: (a)  

𝑥

ℒ
= 0.2, (b)

𝑥

ℒ
= 1.0. 

Next, Figure 3. 21 plots transverse profiles of 𝜏𝑦𝑦
p

 and 𝜏𝑥𝑦 = 𝜏𝑥𝑦
s + 𝜏𝑥𝑦

p
, normalised by the 

corresponding local peak values, to show better the asymptotic behavior under conditions of weak 
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viscoelasticity. Indeed, the plot of the total shear stress seems to be universal, but the zoom at the 

inset shows the existence of small differences. These differences are small because the 

approximate nature of the viscoelastic solution comes through the constitutive equation, i.e., 

through the polymer stress not through the momentum equation or the solvent stress. Both shear 

stresses are essentially determined by the magnitude of the shear rate 𝜕𝑢 𝜕𝑦⁄ , and the solvent stress 

partially compensates for the variations of the polymer shear stress, so that the total stress profile 

has a near-universal shape. In Figure 3. 5 and Figure 3. 6 we also observed that the profile of 

normalized streamwise velocity is very weakly dependent on flow conditions showing a near-

universal behavior.  

Contrasting with the large variations in normalised 𝐶𝑦𝑦 − 1 shown in Figure 3. 19-(d), the 

corresponding normalised 𝜏𝑦𝑦
p
/|𝜏𝑦𝑦

p
|
max

 in Figure 3. 21-(a) presents a significantly better behavior 

because the small variations of (𝐶𝑦𝑦 − 1) are partially compensated by the small variations in 

𝑓(𝐶𝑘𝑘) leading to a better behaved stress (note that 𝜏𝑦𝑦
p
= 𝑓(𝐶𝑘𝑘)(𝐶𝑦𝑦 − 1)).  

 
(a) 

 
(b) 

Figure 3. 21- Transverse profiles of stress normalised by their local peak value for several flow 

conditions: (a) |𝜏𝑦𝑦
p
|/|𝜏𝑦𝑦

p
|
max

 and (b) 𝜏𝑥𝑦 𝜏𝑥𝑦max
⁄ . Lines are a guide to the eye; the solid line 

is the low elasticity asymptote. 

For all flow conditions investigated, the peak values of 𝜏𝑥𝑥
p

 and of the total shear stress 𝜏𝑥𝑦 are at 

the wall. For the polymer shear stress, under weak elasticity conditions the peak value occurs at 

the wall and then progressively deviates away from the wall as elasticity and shear-thinning further 

increases. The location of the peak values and its variation as a function of flow conditions are 
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plotted in Figure 3. 22 (a)-(b) for 𝜏𝑦𝑦
p

 and 𝜏𝑥𝑦
p

, respectively, including the equations for the 

asymptotic locations. 

 
(a)  

 
(b) 

Figure 3. 22- Location of peak values of some stress components: (a)𝜏𝑦𝑦
p

, (b)𝜏𝑥𝑦
p

. Lines are a guide 

to the eye; the solid line is the low elasticity asymptote.  

The streamwise variation of the polymer wall shear stress (𝜏𝑥𝑦
p
) is plotted in Figure 3. 23, 

confirming the findings from the transverse profiles. The low elasticity asymptote is also plotted 

for polymer shear stress.   

 
Figure 3. 23- Decay law for the polymer wall shear stress (𝜏𝑥𝑦

p
) normalized by its value at 

𝑥

ℒ
= 0.2. 

Lines are a guide to the eye; the solid line is the low elasticity asymptote.  
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“One good test is worth a thousand expert opinions.” 

 

-Wernher Von Braun 

(March 23, 1912 – June 16, 1977)  

A German–American aerospace engineer and space architect. 

 

 

“There is no such thing as an unsolvable problem.” 

 

-Sergei Korolev 

(January 12 1907 – 14 January 1966)  

A lead Soviet rocket engineer and spacecraft designer. 
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Chapter 4: The laminar mixing layer flow of viscoelastic FENE-P fluids 

 

4.1. Flow problem 

The schematic of laminar mixing layer flow is shown in Figure 1: two parallel streams with 

different uniform velocities 𝑈1 and 𝑈2 (𝑈1 > 𝑈2) meet at 𝑥 = 0, downstream a very thin 

frictionless plate called splitter plate (existing at 𝑥 < 0). The interacting streams form the mixing 

layer, and the transverse coordinate is 𝑦. Viscous effect smoothens the velocity discontinuity and 

at some distance downstream the plate trailing edge the flow characteristics no longer depend on 

the plate characteristics (naturally, a real plate is not frictionless). For high enough Reynolds 

numbers, the boundary layer approximations are valid in the mixing layer flow. Since the two 

parallel streams remain uniform and constant far from the mixing layer, the streamwise pressure 

gradient is null (𝜕𝑝 𝜕𝑥⁄ = 0) in the free stream flows.  

 

Figure 4. 1.The schematics of the mixing layer flow and mixing layer thickness definition. 

The z-coordinate is normal to the plane.  

To define mixing layer thickness (𝛿), we get inspiration from Pope [46], in which it is required to 

define two local velocities shown by 𝑈𝛼 with 𝛼 = 0.01 and 0.99 as follows 

𝑈𝛼 = 𝑈2 + 𝛼(𝑈1 − 𝑈2)  (4- 1) 
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according to lower and upper free stream velocities respectively. Therefore, the developing mixing 

layer thickness (𝛿) is defined as the transverse distance between the locations of the corresponding 

local velocities shown by (𝑦𝛼) where, i.e.  

𝛿(𝑥) = 𝑦0.99 − 𝑦0.01 (4- 2) 

As shown in Figure 4. 1. 

 

4.2. Governing equations & numerical solution 

The governing equation of mixing layer flow are analogous to boundary layer flow Eqs. (3-31) 

and (3-38), even approximate similarity variables (3-28) are the same, however the difference 

comes from boundary condition of the problem,  Defining the free-stream velocity ratio (𝛾) as  

𝛾 =
𝑈2

𝑈1
  (4- 3) 

the boundary conditions for the laminar mixing layer flow are [23,24]: 

𝐺′(+∞) → 1, 𝐺′(−∞) → 𝛾 ,  (4- 4) 

𝐺′′(+∞) = 𝐺′′(−∞) = 0. (4- 5) 

The boundary conditions at infinity are essentially verified at 𝜂 = ±10 as discussed below, it is 

verified for (𝛾 = 0.5), however for lower value of 𝛾, a larger domain size is required. The solution 

of the mixing layer flow equations is not unique ([119][120]) and shifts in the transverse direction 

(through 𝜂). We used an iterative procedure to find the place where 𝐺 = 0, then the solution is 

shifted to the origin (𝜂 = 0). This procedure is repeated until the origin stops shifting (typically 5 

to 6 iterations), so it is equivalent to forcing the following extra boundary condition  

𝐺(0) = 0. (4- 6) 

By considering these boundary conditions, the simplified governing equations are numerically 

solved as explained in Section 3.4. 
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4.3. Results and discussion 

4.3.1. Verification: Newtonian fluids 

Setting 𝛽p = 0, the governing equations for the viscoelastic fluid reduce to those for a Newtonian 

mixing layer flow which is used to verify the present solution [23]. Through asymptotic analysis, 

we found that infinity conditions are already achieved at 𝜂 = ±10 for 𝛾 = 0.5, so the same 

conditions are considered here. It is worth mentioning that to choose an adequate Reynolds 

number, two conditions should be satisfied: (1) the Reynolds number should be high enough for 

the thin layer approximations to be valid [23] and (2) it should be below the critical condition for 

laminar-turbulent transition. As explained by Dimotakis [135] this critical Reynolds number for a 

planar mixing layer is 1×104  if based on the mixing layer thickness (𝛿). Therefore, the maximum 

Reynolds number which is considered in the present study is 𝑅𝑒𝛿 =
𝑈1𝛿

𝜈0
= 1 × 103. Furthermore, 

for presenting the results, the local Reynolds number (𝑅𝑒𝑥) defined as 

𝑅𝑒𝑥 =
𝑈1𝑥

𝜈0
 (4- 7) 

is used, where x is the streamwise distance from the trailing edge of the splitter plate. It is also 

worth mentioning that in this paper, the Reynolds number at the maximum distance from the 

trailing edge of the splitter plate, denoted 𝑅𝑒ℒ , is also used for data normalization purposes.  

 
(a) 

 
(b) 

Figure 4. 2. Characteristics of the steady laminar mixing layer flow of Newtonian fluids in the 

self-similar region for 𝛾 =  0.5: a) profiles of  𝑢 𝑈1⁄  versus 𝑦/𝛿 at Rex=2000; b) variation of 

𝛿 𝑥⁄ , 𝛿∗ 𝑥⁄  and 𝜃 𝑥⁄  with Rex.  
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Figure 4. 2 (a) shows good agreement between the computed profiles of streamwise velocity given 

by Eq. (3-28) and normalized by the upper free stream velocity (𝑈1), for 𝛾 =  0.5, and the 

literature[117]. The streamwise variation of other global characteristics of the laminar mixing layer 

flow are plotted in Figure 4. 2 (b) and compare well with the literature [23,24]. They are the mixing 

layer thickness (δ), defined in Eq. (4- 2), the displacement (𝛿∗) thickness as defined in: 

𝛿∗ = ∫ (1 −
𝑢

𝑈1
) 𝑑𝑦

+∞

−∞
= (∫ (1 −

𝑢

𝑈1
)𝑑𝑦

0

−∞
+ ∫ (1 −

𝑢

𝑈1
) 𝑑𝑦

+∞

0
), (4- 8) 

and the momentum (𝜃) thickness given by: 

𝜃 = ∫
𝑢

𝑈1
(1 −

𝑢

𝑈1
) 𝑑𝑦

+∞

−∞
= (∫

𝑢

𝑈1
(1 −

𝑢

𝑈1
)𝑑𝑦

0

−∞
+ ∫

𝑢

𝑈1
(1 −

𝑢

𝑈1
) 𝑑𝑦

+∞

0
). (4- 9) 

From our semi-analytical solution, and for 𝛾 =  0.5, the following relations were found for the 

three characteristic thicknesses: 
𝛿

𝑥
=

7.69

√𝑅𝑒𝑥
, 
𝛿∗

𝑥
=

4.94 

√𝑅𝑒𝑥
 and 

𝜃

𝑥
=

2.71 

√𝑅𝑒𝑥
. From the latter two a shape 

factor (𝐻 ≡ 𝛿∗ 𝜃⁄ ) of 1.8284 was obtained for 𝛾 = 0.5, again in good agreement with the literature. 

 

4.3.2.FENE-P fluids 

In this section, only the third set of Peterlin functions f(Ckk), described by Eq. (2- 10c) is used to 

obtain the numerical results. The keep the ratio of free stream velocities constant at 𝛾 = 0.5 and 

the local Weissenberg number 𝑊𝑖𝑥  

𝑊𝑖𝑥 =
𝜆𝑈1
𝑥

 (4- 10) 

is also used to present results. 

 

4.3.3.Velocity field and mixing layer thickness  

The dependence of the normalized transverse profiles of streamwise and normal velocities on fluid 

characteristics, at two different locations in the self-similar region, are shown in Figure 4. 3 (a)-

(b). By normalizing the transverse coordinate with the mixing-layer thickness, and with the 

Reynolds number for the normal velocity, quasi-unique profiles are obtained for u and 𝑣 at low 
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elasticity level. These low elasticity profiles coincide with the Newtonian profiles. However, by 

enhancing the elasticity level, small deviations from the low elasticity limit start to be observed in 

both velocity profiles thus showing the approximate nature of the similarity solution. These 

deviations are of the same magnitude as those seen for a planar laminar jet by Parvar et al. [112, 

113] and less intense than seen in a boundary layer by Parvar et al.[136], where the presence of 

the plate wall imposes a more severe flow restriction.   

  

(a) (b) 

Figure 4. 3. Normalized transverse velocity profiles at 𝑅𝑒𝑥 = 2000 and 8000 as a function of 

Reynold number, Weissenberg number, viscosity ratio and dumbbell extensibility for 𝛾 = 0.5: 

(a) 𝑢 𝑈1⁄ , (b) 𝑣√𝑅𝑒𝑥 𝑈1⁄  . 

Figure 4. 4 shows the streamwise variation of the centerline velocity of the mixing layer (𝑢𝑐 𝑈1⁄ ) 

as a function of the independent dimensionless numbers, some calculated at 𝑥 = ℒ. At low 

elasticity level, the velocity profiles collapse onto a single constant value identical to the velocity 

for a Newtonian fluid, 𝑢𝑐 𝑈1⁄ = 0.7652 for 𝛾 = 0.5. Increasing the elasticity level increases the 

centerline velocity and makes it depend on x, so that the profile is no longer constant, but increases 

towards the splitter plate because locally flow elasticity is increasing on moving upstream on 

account of higher shear rates. However, these effects are small and for the tested cases the 

deviations are less than 1%. 
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The streamwise variation of the normalized mixing layer thickness (𝛿 𝑥⁄ ) is plotted in Figure 4. 5 

as a function of 𝑊𝑖ℒ, 𝛽p and L. At low Weissenberg numbers 𝛿 𝑥⁄  collapses to the Newtonian flow 

variation, as previously observed in the planar jet [112,113] and flat plate flow [136], but by 

increasing 𝑊𝑖ℒ, 𝛽p, or decreasing L, the mixing layer thickness decreases.  

 

 

 

Figure 4. 4. Streamwise variation of 

normalised mixing layer centerline velocity 

(𝑢𝑐 𝑈1⁄ ) under various flow conditions for 

𝛾 = 0.5. The solid line shows the Newtonian 

data 𝑢𝑐 𝑈1⁄ =0.7652.  

Figure 4. 5. Streamwise variation of the 

normalised boundary layer thickness (𝛿 𝑥⁄ )  
under various flow conditions for 𝛾 = 0.5. 

The inset plots profiles for 2.7× 103 ≤
𝑅𝑒𝑥 ≤ 3 × 10

3. 

The corresponding streamwise variations of the displacement (𝛿∗ 𝑥⁄ ) and momentum (𝜃 𝑥⁄ ) 

thicknesses are presented in Figure 4. 6 and Figure 4. 7. As expected, when the elasticity level is 

weak, both profiles follow closely the corresponding Newtonian laws, however by increasing the 

elasticity level both the dimensionless displacement thickness (𝛿∗ 𝑥⁄ ) and the dimensionless 

momentum thickness (𝜃 𝑥⁄ ) decrease.  
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Figure 4. 6. Streamwise variation of the 

normalised displacement thickness (𝛿∗ 𝑥⁄ )  
under various flow conditions for 𝛾 = 0.5. 

The inset plots profiles for 2.7× 103 ≤
𝑅𝑒𝑥 ≤ 3 × 10

3. 

Figure 4. 7. Streamwise variation of the 

normalised momentum thickness (𝜃 𝑥⁄ ) 
under various flow conditions for 𝛾 = 0.5. 

The inset plots profiles for 2.7× 103 ≤
𝑅𝑒𝑥 ≤ 3 × 10

3. 

The ratio between these two thicknesses defines the shape factor that is plotted in Figure 4. 8. 

Again, at low elasticity levels the behavior collapses with the Newtonian value (𝐻=1.8284) and 

increases at higher flow elasticity. Notice that for all quantities on moving downstream the local 

value of Weissenberg number decreases and the curves approach the low elasticity asymptote. 

 

Figure 4. 8. Streamwise variation of the shape factor H for γ = 0.5 as a function of 

dimensionless flow and fluid characteristics. 
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4.3.4.Conformation and stress tensor 

Next, the corresponding profiles of the conformation and stress tensor quantities are presented and 

discussed. Figure 4. 9 (a)-(d) plot the streamwise variations of the maximum value of the polymer 

stress components normalised by its corresponding value at 𝑥 ℒ⁄ =0.2.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. 9. Streamwise variation of normalized peak values of the stress tensor components 

for various rheological properties: (a)𝜏𝑥𝑥
p

, (b)𝜏𝑦𝑦
p

, (c)𝜏𝑥𝑦
p

, (d) 𝜏𝑥𝑦. 

 

The profiles exhibit linear variations in log-log coordinates, according to Eq.(4- 11), and a low 

elasticity asymptote, with the rates of decay of 𝜏𝑥𝑥
p

 and 𝜏𝑦𝑦
p

 being equal to 2 and twice as fast as 

for the polymer (𝜏𝑥𝑦
p

) and total (𝜏𝑥𝑦) shear stresses. 
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log10
|𝜏𝑖𝑗
p
|
𝑚𝑎𝑥

|𝜏
𝑖𝑗
p
|
𝑚𝑎𝑥@

𝑥
ℒ
=0.2

= 𝑚 log10 [(
𝑥

ℒ
)
1 2⁄

] − 𝑏. (4- 11) 

Figure 4. 10 (a)-(b) show the location of the maximum stress tensor 𝜏𝑦𝑦
p

 and 𝜏𝑥𝑦 for various flow 

conditions. The peak values of 𝜏𝑥𝑦 always occur at the centerline of mixing layer in all range 

elasticity level. Furthermore, the maximum of 𝜏𝑦𝑦
p

 occur always far from the centerline and this 

distance from the centerline increase in the streamwise direction. It worth mentioning that the peak 

values of 𝜏𝑥𝑥
p

 and 𝜏𝑥𝑦
p

 occurs very close to the centerline, however such profiles are not shown for 

conciseness. 

 
(a) 

 
(b) 

Figure 4. 10. The location of peak values of the stress tensor components for various rheological 

properties: (b)𝜏𝑦𝑦
p

, (d) 𝜏𝑥𝑦. 

The ratio of maximum polymer over maximum solvent stress (
|𝜏𝑖𝑗
p
|
𝑚𝑎𝑥

|𝜏𝑖𝑗
s |
𝑚𝑎𝑥

) is shown in Figure 4. 11. 

At low elasticity levels, these ratios are constant and equate to the ratio of viscosities 𝜈p 𝜈s⁄ =

𝛽p/(1 − 𝛽p) =
1

9
 and 1 for 𝛽p = 0.1 and 0.5, respectively, because those stresses are essentially 

determined by the flow shear rate (in a rather complex way for the yy component). As flow 

elasticity increases this stress ratio decreases on account of shear-thinning behavior. However, the 

ratio 
|𝜏𝑥𝑥
p
|
𝑚𝑎𝑥

|𝜏𝑥𝑥
s |𝑚𝑎𝑥

 behaves differently, being always above 1 and tending to increase significantly with 

elasticity since the numerator depends on the shear rate and the denominator depends on the normal 

strain rate. 
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(a) 

 

(b) 

 

(c) 

  

(d) 

Figure 4. 11. The streamwise variation of the ratio of polymer stress (𝜏𝑖𝑗
p
) to solvent stress (𝜏𝑖𝑗

s ) 

at the mixing layer flow (a)|𝜏𝑥𝑦
p
|
𝑚𝑎𝑥

/|𝜏𝑥𝑦
s |

𝑚𝑎𝑥
 (b)|𝜏𝑦𝑦

p
|
𝑚𝑎𝑥

/|𝜏𝑦𝑦
s |

𝑚𝑎𝑥
, (c) |𝜏𝑥𝑥

p
|
𝑚𝑎𝑥

/|𝜏𝑥𝑥
s |𝑚𝑎𝑥,(d) 

legend. 

Figure 4. 12 (a)-(d) show the approximate self-similar behavior of conformation tensor 

components at low elasticity, which deviates from those of low elasticity curves at higher Wi 

numbers. The data is normalised by the corresponding local maximum values and covers a wide 

range of flow conditions pertaining to two different locations (𝑅𝑒𝑥). 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4. 12. Transverse profiles normalized components of the conformation tensor: (a) 

𝐶𝑥𝑦, (b)𝐶𝑦𝑦, (c) 𝐶𝑧𝑧,(d) 𝐶𝑥𝑥, for various rheological properties. Lines are a guide to the eye. 

Figure 4. 13 shows the transverse variation of the total shear stress 𝜏𝑥𝑦 normalized by 

corresponding peak values. Similar to conformation tensor components profiles, at low 

viscoelasticity levels, an approximate similarity behavior is observed, while increasing the levels 

of viscoelasticity lead the profiles to slightly deviate from the asymptote. The deviation is small, 

however, because some of the variation in the polymer stress component is taken by the 
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corresponding solvent stress, i.e., the total stress behaves almost as if it has approximate similarity 

nature of the solution. 

 

Figure 4. 13. Transverse profiles of normalized total shear stress 𝜏𝑥𝑦 for various rheological 

properties. 
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“In the middle of difficulty lies opportunity. Imagination is everything. It 
is the preview of life's coming attractions.” 

 

 

-Albert Einstein 

(14 March 1879 – 18 April 1955)  

A German theoretical physicist 

 

 



77 

 

Chapter 5: The laminar planar jet flow of viscoelastic FENE-P fluids 

5.1. Flow problem 

The laminar planar jet flow is sketched in Figure 5. 1. A uniform velocity (U) jet of width D exits 

a nozzle entering a sea of the same fluid, which is at rest. The edge of the central potential core 

becomes subject to viscous diffusion and as the jet evolves in the streamwise direction (x) it 

entrains fluid from the outer potential flow region, while maintaining constant the total momentum 

[23,24]. The jet spread in the transverse direction (y) is quantified by the streamwise increase in 

jet half-width (𝛿), which is defined as the transverse distance from the centerline to the location 

where the local streamwise velocity equals 1% (0.01) of the local centerline streamwise velocity 

(Uc), as indicated in Figure 5. 1[23].  

 

Figure 5. 1.Schematics of the planar laminar jet flow and half-width jet definition. The z-

coordinate is normal to the plane.  

 

5.2. Governing equations 

The momentum equation is discussed in section (2.2), however planar jet flow required different 

similarity variable which is explained as follows. Before dealing with mathematical procedure of 

deriving governing equation it is worth to mention that since from an application point of view the 

nozzle width (D) is a more useful length scale than the jet length, the approximate similarity 
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transformations already relied on the use of D and henceforth Re and Wi numbers are re-defined 

on the basis of the nozzle width to be  

𝑅𝑒 =
𝑈𝐷

𝜐0
, 

(5- 1) 

and 

𝑊𝑖 =
𝜆𝑈

𝐷
 . 

(5- 2) 

 

5.2.1. The general solution 

Next we introduce the approximate similarity transformations consistent with the underlying thin 

layer approximation used previously for Newtonian fluids [23,24], but for generality we work 

instead with dimensionless quantities. The approximate similarity variables are such that upon 

substitution the partial differential equations should reduce to ordinary differential equations 

(ODE). However, for the planar jet flow of FENE-P fluids no matter the numerical values of the 

exponents n, m and p of the similarity transformations 𝜂 ∝ 𝑦𝑛𝑥𝑚 and 𝐺(𝜂, 𝑥) ∝ 𝑥𝑝𝜓 could 

provide differential equations that depended exclusively on 𝜂 as had also been found for the 

boundary layer flow of the same fluids by Olagunju [19,20] (note that each type of laminar flow 

has its unique type of similarity variable). Therefore, our decision to work with approximate 

similarity transformations adapted from those of Newtonian planar jet flow, since they provide an 

similarity solution in the limit of vanishing polymer additive concentration. Here, the approximate 

similarity variable 𝜂 and function 𝐺(𝜂, 𝑥) are defined as 

𝜂 =
𝐷
1
6⁄

3
√
𝑈

𝜈0

𝑦

𝑥
2
3⁄
 and 𝐺(𝜂, 𝑥) =

𝜓

√𝜈0𝑈𝐷
1
3𝑥
1
3⁄

, (5- 3) 

where D is the nozzle width shown in Figure 5. 1. The velocity profiles are computed from  

𝑢 =
𝑈𝐷

1
3

3
𝑥−

1
3𝐺′(𝜂, 𝑥), (5- 4) 

𝑣 = −

√𝜈0𝑈𝐷
1
3

3
𝑥−

2
3(𝐺(𝜂, 𝑥) − 2𝜂𝐺′(𝜂, 𝑥)), 

(5- 5) 
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where the prime indicates derivative in order to 𝜂. Similar to boundary layer flow to reduce the 

level of complexity, it is assumed that the streamwise derivatives of similarly functions 𝐺(𝜂, 𝑥), is 

assumed to be very small 
𝜕𝐺(𝜂,𝑥)

𝜕𝑥
≈ 0 and it is neglected in deriving the governing equation. 

Since the Peterlin function depends on the approximate similarity variables, we next assume that 

it can be rewritten as  

𝐾(𝜂, 𝑥) = 𝑓(𝐶𝑘𝑘) . (5- 6) 

but note that it is not necessary to invoke the above simplifying assumption for this quantity.  

Using the approximate similarity variables, substitution of Eq. (5- 3) and (5- 6) into Eq. (2- 10c) 

leads to the following third order algebraic equation on 𝐾(𝜂, 𝑥) 

𝐾3 + 𝐶0𝐾
2 + 𝐶1(𝐺

′ + 2𝜂𝐺′′)2𝐾 + 𝐶2𝐺
′′2 + 𝐶3(𝐺

′ + 2𝜂𝐺′′)2 = 0, (5- 7) 

with dimensionless coefficients 

𝐶0 = (
3𝐼 − 3𝑓(𝐿) − 𝐿2

𝐿2
), 

C1 = −
4𝑈2𝐷

2
3𝜆2

81
𝑥−

8
3 = −

4𝑊𝑖𝑥
2

81
(
𝐷

𝑥
)

2
3
, 

C2 = −
2𝜆2𝑓(𝐿)𝑈3𝐷

81𝜐0𝐿2
𝑥−2 =

2𝑓(𝐿)𝑊𝑖𝑥
2𝑅𝑒

81𝐿2
, 

C3 =
4𝜆2(𝐿2 + 𝑓(𝐿) − 3𝐼)

𝐿2
𝑈2𝐷

2
3

81
𝑥−

8
3 =

4(𝐿2 + 𝑓(𝐿) − 3𝐼)𝑊𝑖𝑥
2

81𝐿2
(
𝐷

𝑥
)

2
3
. 

(5- 8) 

where 𝐼 = 1 if the Peterlin functions are given by Eq. (2- 10c) and 𝐼 = 0 otherwise. Since 

coefficients 𝐶0 to 𝐶3 in Eq. (5- 8) depend on x, the solution of K will depend on 𝜂, and x, i.e., there 

is no full self-similarity solution for the planar jet flow of viscoelastic fluids as assumed initially. 

As discussed earlier in the previous sections, Olagunju [19,20] had already concluded similarly 

for the boundary layer flow of the FENE-P fluid, but this absence of a full similarity solution does 

not preclude the existence of an approximate similarity solution for the FENE-P fluid, which is 

presented below.  

Regarding the momentum equation, by substituting 𝐶𝑥𝑦 (from Eq. (3-25)) into Eq. (3-12), 
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𝜕𝜓 

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
) = 𝜐𝑠

𝜕3𝜓

𝜕𝑦3
 

+𝜐𝑝𝑓(𝐿)

(

 
 2𝜆

𝜕2𝜓
𝜕𝑥𝜕𝑦

𝜕3𝜓
𝜕𝑦3

+ 𝑓(𝐶𝑘𝑘)
𝜕3𝜓
𝜕𝑦3

− 2𝜆
𝜕3𝜓
𝜕𝑥𝜕𝑦2

𝜕2𝜓
𝜕𝑦2

−
𝜕𝑓(𝐶𝑘𝑘) 
𝜕𝑦

𝜕2𝜓
𝜕𝑦2

(2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘))

2

)

 
 
 . 

(5- 9) 

and by utilizing the similarity variables in Eq. (5- 9), after some algebraic manipulation the 

momentum equation becomes  

−(𝐺′
2
+ 𝐺𝐺′′) = (1 − 𝛽𝑝)𝐺

′′′ + 𝛽𝑝𝑓(𝐿) (
𝐶4(3𝐺

′′2 − 𝐺′𝐺′′′) + 𝐾𝐺′′′ − 𝐾′𝐺′′

(𝐾 − 𝐶4𝐶5)2
) . (5- 10) 

with  

𝐶4 =
2𝜆𝑈𝐷

1
3𝑥−

4
3

9
=
2𝑊𝑖𝑥
9

(
𝐷

𝑥
)

1
3
, 

(5- 11) 

𝐶5 = (𝐺
′ + 2𝜂𝐺′′). (5- 12) 

Again, we observe a dependence on x in addition to the dependence on 𝜂. To obtain the final form 

of the momentum equation the derivative of K relative to 𝜂 is also required, as obtained from Eq.(5- 

7).  

𝐾′ = −
6𝐶5𝐺

′′(𝐶1𝐾 + 𝐶3) + 2(𝐶2𝐺
′′ + 2𝐶5𝜂(𝐶1𝐾 + 𝐶3))𝐺

′′′

𝐶6
  (5- 13) 

Then by substituting the derivative in Eq. (5- 13) into (5- 10), the final momentum equation (5- 

10) becomes the following differential equation on 𝐺(𝜂, 𝑥).  

𝐺′′′ = −
(𝐺′

2
+ 𝐺𝐺′′) + 𝛽𝑝𝑓(𝐿)3𝐺

′′2 (
2𝐶5(𝐶1𝐾 + 𝐶3) + 𝐶4𝐶6

(𝐾 − 𝐶4𝐶5)2𝐶6
)

((1 − 𝛽𝑝) + 𝛽𝑝𝑓(𝐿) (
2𝐺′′(𝐶2𝐺′′ + 2𝐶5𝜂(𝐶1𝐾 + 𝐶3)) + 𝐶6(𝐾 − 𝐶4𝐺′)

(𝐾 − 𝐶4𝐶5)2𝐶6
))

 (5- 14) 

with coefficient 

𝐶6 = (3𝐾
2 + 2𝐶0𝐾 + 𝐶1𝐶5

2). (5- 15) 
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As discussed previously, this equation shows G to depend on x in addition to its dependence on 𝜂, 

confirming the absence of a full self-similar solution for the planar jet flow, in contrast to the 

situation for Newtonian flow. Nevertheless, it is still possible to obtain a numerical solution to this 

so-called approximate similarity solution problem, via the numerical solution of Eqs. (5- 14) and 

(5- 7), which is done later. The numerical method used is described in Section 3.4 and the 

numerical results will be presented and discussed in Section 5.4, but prior to that there are two 

other simpler solutions we wish to discuss below, namely the delta solution and the Olagunju-type 

solution, both of which rely on invoking further assumptions in regard to the conformation tensor 

equations.  

 

5.2.2. Delta solutions 

The general approximate similarity solution can be simplified if the flow is limited to very low 

Weissenberg numbers, since in this limit the deviation from 1 of the two main normal components 

of 𝐶𝑖𝑗 is nearly symmetric and the third normal component (𝐶𝑧𝑧) remains essentially unaffected, 

i.e., by assuming that  

𝐶xx = 1 + ∆𝐶, (5- 16) 

𝐶yy = 1 − ∆𝐶, (5- 17) 

𝐶𝑧𝑧 = 1. (5- 18) 

Then, 𝐶xy is obtained from Eqs. (3-21) and (5- 17), i.e.  

𝐶xy = 𝜆(1 − ∆𝐶)
𝜕𝑢

𝜕𝑦
. (5- 19) 

and consequently 𝑓(𝐶𝑘𝑘) = 1. So, the constitutive equation now provides the solution for ∆C, but 

since we now have a single unknown (∆𝐶) rather than the original 𝐶xx and 𝐶yy unknowns, the 

algebraic equation for ∆𝐶 can be formed either from the 𝐶xx equation or from the 𝐶yy equation, 

i.e., there are two possible delta solutions. There are two possible delta solutions depending on the 

equation used to determine ∆C: the original equations for 𝐶𝑦𝑦 or for 𝐶𝑥𝑥. Below we present both, 

starting with 𝐶𝑦𝑦 and then 𝐶𝑥𝑥. The conformation tensor components for steady planar jet flows of 

FENE-P fluids at very low Weissenberg number can be approximated as in Eqs. (5- 16) to (5- 19) 
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and consequently 𝑓(𝐶𝑘𝑘) = 1. The approximate similarity variable 𝜂 and function 𝐺(𝜂, 𝑥) are the 

same as for the general solution, but the unknown function 𝐾(𝜂, 𝑥), needed to determine the 

conformation tensor, components is now defined as  

𝐾(𝜂, 𝑥) = ∆𝐶. (5- 20) 

1) To obtain the so-called Deltayy solution, we substitute eq. (5- 3) into Eq. (3-19) to get  

𝐾 =
𝐶7𝐶8 + (𝑓(𝐿) − 1)

𝐶7𝐶8 − 1
 , 

(5- 21) 

where 

𝐶7 =
2𝜆𝑈𝐷

1
3𝑥−

4
3

9
=
2𝑊𝑖𝑥
9

(
𝐷

𝑥
)

1
3
, 

𝐶8 = 𝐺
′ + 2𝜂𝐺′′. 

(5- 22) 

Using Eq. (5- 19) into Eq. (3-12) leads to the following form of the momentum equation 

𝜕𝜓 

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
) = (𝜐𝑠 + 𝜐𝑝(1 − ∆𝐶))

𝜕3𝜓

𝜕𝑦3
− 𝜐𝑝

𝜕∆𝐶

𝜕𝑦

𝜕2𝜓

𝜕𝑦2
 . 

(5- 23) 

which, after manipulation, becomes 

−(𝐺′
2
+ 𝐺𝐺′′) = (1 − 𝛽𝑝𝐾)𝐺

′′′ − 𝛽𝑝(𝐾
′𝐺′′). (5- 24) 

This equation needs the following derivative of K, determined from Eq. (5- 21) 

𝐾′ =
(𝐶7(3𝐺

′′ + 2𝜂𝐺′′′))(1 − 𝐾)

(𝐶7𝐶8 − 1)
. 

(5- 25) 

Back-substitution gives the final momentum equation that needs to be numerically solved  

𝐺′′′ =
−(𝐺′

2
+ 𝐺𝐺′′) + 𝛽𝑝

3𝐶7𝐺
′′2(1 − 𝐾)

(𝐶7𝐶8 − 1)

((1 − 𝛽𝑝𝐾) − 𝛽𝑝
2𝜂𝐶7𝐺′′(1 − 𝐾)
(𝐶7𝐶8 − 1)

)

. 

(5- 26) 

2) To obtain the other solution, called Deltaxx, we substitute Eq. (5- 3) into Eq. (3-18) to get  

𝐾 =
(𝑓(𝐿) − 1) − 𝐶9𝐶11 + 𝐶10𝐺

′′2

𝐶12
, 

(5- 27) 

where 
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𝐶9 =
2𝜆𝑈𝐷

1
3𝑥−

4
3

9
=
2𝑊𝑖𝑥
9

(
𝐷

𝑥
)

1
3
, 

𝐶10 =
2𝜆2𝑈3𝐷

81𝜐0
𝑥−2 =

2𝑊𝑖𝑥
2𝑅𝑒

81
, 

𝐶11 = 𝐺
′ + 2𝜂𝐺′′, 

𝐶12 = (𝐶9𝐶11 + 𝐶10𝐺
′′2 + 1). 

(5- 28) 

The momentum equations (5- 23) and (5- 24) remain the same, but the derivative of K is now 

given by 

𝐾′ = −
3𝐶9𝐺

′′(𝐾 + 1) + (2𝜂𝐶9(𝐾 + 1) + 2𝐶10𝐺
′′(𝐾 − 1))𝐺′′′

𝐶12
 

(5- 29) 

so that the final momentum equation that needs to be numerically solved is  

𝐺′′′ = −
(𝐺′

2
+ 𝐺𝐺′′) + 𝛽𝑝

3𝐶9𝐺
′′2(𝐾 + 1)
𝐶12

((1 − 𝛽𝑝𝐾) + 2𝛽𝑝𝐺′′
𝜂𝐶9(𝐾 + 1) + 𝐶10𝐺′′(𝐾 − 1)

𝐶12
)

. 

 (5- 30) 

The general solution is more accurate than either of the Delta solutions, but on the low elasticity 

limit they are essentially equivalent. However, as elasticity increases there is a progressive 

deviation away from the general solution, which is faster for the Deltaxx solution than for the 

Deltayy solution. This is so on account of the links between the various equations. The momentum 

equation involves the gradient of the polymer shear stress (so of 𝐶𝑥𝑦), which Eq. (3-21) shows to 

depend more on 𝐶𝑦𝑦 than on 𝐶𝑥𝑥. Since the Deltayy solution uses Eq. (3-19) to describe 𝐶𝑦𝑦 and to 

obtain Δ𝐶, the description of 𝐶𝑥𝑦 is more accurate in the Deltayy solution than in the Deltaxx 

solution. 

 

5.2.3. Olagunju’s type solution 

Olagunju’s type solution for the planar jet relies on further assumptions, as invoked by Olagunju 

[19,20] for the boundary layer flow of FENE-P fluids. In particular, it neglects terms that our order 

of magnitude analysis hinted to be relevant, that will affect the conformation tensor components 
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and consequently the polymer stress components, but have negligible effect on the velocity field, 

as shown in the Results Section. Instead of using the conformation tensor Eqs. (3-18) to (3-21) of 

the general solution, the conformation tensor equations, simplified following Olagunju’s 

hypothesis, are Eq. (3-39) to (3-42). The comparison between both sets shows that here some terms 

are missing in the equations for 𝐶𝑥𝑥, 𝐶𝑦𝑦 and 𝐶𝑥𝑦. The conformation tensor equations for steady 

planar jet flow of FENE-P fluids, invoking Olagunju  [19,20] assumptions, are Eqs. (3-39) to (3-

42), leading to   

𝐶xx =
2𝜆𝐶𝑥𝑦 (

𝜕2𝜓
𝜕𝑦2

) + 𝑓(𝐿)

𝑓(𝐶𝑘𝑘)
=
2𝜆2 (

𝜕2𝜓
𝜕𝑦2

)
2

+ 𝑓(𝐶𝑘𝑘)
2

𝑓(𝐶𝑘𝑘)3
 , 

(5- 31) 

𝐶yy = 𝐶zz =
𝑓(𝐿)

𝑓(𝐶𝑘𝑘)
  , (5- 32) 

𝐶xy =
𝜆𝐶yy

𝜕𝑢
𝜕𝑦

𝑓(𝐶𝑘𝑘)
=
𝜆𝑓(𝐿)

𝜕2𝜓
𝜕𝑦2

𝑓(𝐶𝑘𝑘)2
  . 

(5- 33) 

The trace of the conformation tensor takes the form  

𝐶𝑘𝑘 = 𝑓(𝐿)
2𝜆2 (

𝜕2𝜓
𝜕𝑦2

)
2

+ 3𝑓(𝐶𝑘𝑘)
2

𝑓(𝐶𝑘𝑘)3
  , 

(5- 34) 

and back-substituting into Eq. (2- 10c) provides 𝑓(𝐶𝑘𝑘). The approximate similarity variables are 

in Eq. (5- 3) and function 𝐾(𝜂, 𝑥) is now defined as 

𝐾(𝜂, 𝑥) =
1

𝑓(𝐶𝑘𝑘)
. 

(5- 35) 

After back-substitution the following algebraic cubic equation is obtained for 𝐾(𝜂, 𝑥)  

𝐶13𝐺
′′2𝐾3 + 𝐶14𝐾 + 𝐿

2 = 0  . (5- 36) 

with 

𝐶13 =
−2𝜆2𝑓(𝐿)𝑈3𝐷

81𝜐0𝑥2
=
−2𝑓(𝐿)𝑊𝑖𝑥

2𝑅𝑒

81
, 

 𝐶14 = (−3𝑓(𝐿) − 𝐿
2 + 3). 

(5- 37) 
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This is again an approxiamte similarity solution. The momentum equation is obtained by 

substituting 𝐶𝑥𝑦 (from Eq. (5- 33)) into Eq. (3-12) 

𝜕𝜓 

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
)

= 𝜐𝑠
𝜕3𝜓

𝜕𝑦3
+ 𝜐𝑝𝑓(𝐿) (

𝜕3𝜓

𝜕𝑦3
𝑓(𝐶𝑘𝑘) +

𝜕𝑓(𝐶𝑘𝑘)

𝜕𝑦

𝜕2𝜓

𝜕𝑦2
 ) . 

(5- 38) 

Substituting the approximate similarity variables (Eq. (5- 3) and (5- 35)) into Eq. (5- 38) and 

manipulating algebraically, leads to 

−(𝐺′
2
+ 𝐺𝐺′′) = (𝐺′′′ − 𝛽𝑝𝐺

′′′ + 𝛽𝑝𝑓(𝐿)𝐺
′′′𝐾 + 𝛽𝑝𝑓(𝐿)𝐾

′𝐺′′) . (5- 39) 

𝐾′ = 𝑑𝐾 𝑑𝜂⁄  is obtained from the derivative of (5- 36), as 

𝐾′ = −
2𝐶13𝐺

′′𝐺′′′𝐾3

3𝐶13𝐾2𝐺′′
2 + 𝐶14

. 
(5- 40) 

Upon back-substitution of 𝐾′ the final form of the momentum equation that needs to be solved 

numerically is   

𝐺′′′ =
−(𝐺′

2
+ 𝐺𝐺′′)

1 − 𝛽𝑝 + 𝛽𝑝𝑓(𝐿)𝐾 − 𝛽𝑝𝑓(𝐿)
2𝐶13𝐺′′

2𝐾3

𝐶14 + 3𝐶13𝐾2𝐺′′
2

. 
(5- 41) 

 

5.3. Numerical solution of the governing equations 

The three sets of simplified governing equations presented at the Section 5.2. provide three 

different solutions that can only be solved numerically and the method is described in section 3.4. 

It is worth mentioning that the boundary condition of jet flow is different from boundary layer and 

mixing layer flow.  The boundary conditions for laminar planar jet flow needed to solve the system 

of differential equations are: 

𝐺′(∓∞) → 0  , 𝐺(0) = 𝐺′′(0) = 0   (symmetry) (5- 42) 
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5.4. Results and discussion 
5.4.1. Verification: Newtonian fluids 

The governing equations for the FENE-P fluid reduce to those of a Newtonian planar jet if 𝛽𝑝 = 0 

and this is used to verify the solution [23,24], where a Reynolds number Re =100 is considered. 

Figure 5. 2 compares the current Newtonian solution for 𝐺′′, 𝐺′ and 𝐺 with the literature and shows 

the excellent agreement. These quantities are related to the velocity profiles u and v according to 

Eqs. (5- 4) and (5- 5). 

(a) 
 

(b) 

 
(c) 

Figure 5. 2. The variation of a) 𝐺", b) 𝐺′, c) 𝐺 with 𝜂 in the self-similar region for a Newtonian 

steady planar jet flow at Re= 100.  
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5.4.2.FENE-P fluids 

Since the FENE-P solution is not fully self-similar, a universal set of profiles is not obtained as for 

the Newtonian solution, rather a mixture of variables is required for a full description of the flow 

characteristics, and in particular for the polymer conformation and stress. Therefore, for easier 

understanding, all results are presented using the natural coordinates/variables and here we chose 

D as the reference length scale to normalize coordinates, even though this solution is sufficiently 

far from the inlet for the flow characteristics to be independent of D.  

 

5.4.2.1.Comparison of solutions 

We start by comparing the results of the three proposed self-similar solutions for the FENE-P jet; 

note that the delta approximation allows for two possible slightly different solutions presented in 

Section 5.2.2.  Profiles of the velocity and conformation tensor components are compared in Figure 

5. 3 to Figure 5. 5 for Wi=0.1 and 1, L=30, Re=100 and 𝛽𝑝 = 0.1. The various methods give 

essentially the same result as far as the dimensionless velocity profiles are concerned, as shown in 

Figure 5. 3, with a very slight under-prediction of 𝑢 𝑢𝑐⁄  at 𝑦 𝐷⁄ ≥ 4 for the Deltaxx solution that is 

also compensated by the corresponding 𝑣 𝑢𝑐⁄  profile through mass conservation (uc is the 

centerline velocity of the jet). A similar behavior is observed for the shear component of the 

conformation tensor (𝐶𝑥𝑦) in Figure 5. 4 (a) and Figure 5. 5 (a) for flows with Wi≤ 1, where the 

Deltaxx profile deviates very slightly again from the others (note the scaling used). Small 

differences appear as Wi becomes larger, but we do not show further data for conciseness.  

However, differences are more obvious for the normal components of the conformation tensor, 

even if they are small and observed only through zooming-in, as in Figure 5. 4 and Figure 5. 5 (b)-

(d). These plots show that Olagunju's method is unable to capture the transverse variations of 𝐶𝑦𝑦, 

but it does capture the shape of the profile of 𝐶𝑥𝑥, except at low Weissenberg numbers (for 

Wi=0.01, not shown, the difference in 𝐶𝑥𝑥 between Olagunju's method and the general method is 

larger than for Wi=0.1). In any case, the values of the normal components of the conformation 

tensor are close enough to 1 to make little difference on 𝑓(𝐶𝑘𝑘), hence the correct prediction of 

𝐶𝑥𝑦, and of corresponding shear stress (not shown here) and finally of the streamwise velocity 

profile. 
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(a) 

  

(b) 

Figure 5. 3. Comparison between different solutions for the transverse profiles of normalized 

streamwise (u/uc) velocity (a) and transverse (v/uc) velocity (b) at 
𝑥

𝐷
= 30. Left column is for 

Wi=0.1, right column for Wi=1.0. 

In contrast, both delta solutions capture well all components of the conformation tensor provided 

the Weissenberg number remains very low and, as expected, their predictions deteriorate as Wi 

increases as was already observed at Wi=0.1. The two alternatives are not equivalent though, with 

the Deltayy variant performing better than the Deltaxx variant. The prediction of the shear 

component (𝐶𝑥𝑦) remains reasonable even for the higher values of Wi, hence the good prediction 

of the velocity profiles at these Wi. 

 In conclusion, the general solution is the most appropriate for predicting accurately the velocity 

and stress profiles since it does not introduce excessive simplifications and in particular it is 
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capable to compute well all components of the conformation tensor over a wide range of Wi 

number. Therefore, it is used below to investigate in more detail the effects of rheology on flow 

characteristics and to obtain variation laws for the decay of the centerline velocity and for the jet 

spreading rate measured by its half-width, as well as to assess possible variation laws for the 

conformation tensor components. 

  

(a) (b) 

  

(c) (d) 

Figure 5. 4. Comparison between different solutions of the transverse profiles 𝐶𝑥𝑦 (a), 𝐶𝑥𝑥 

(b), 𝐶𝑦𝑦 (c) and 𝐶𝑧𝑧 (d) at 
𝑥

𝐷
= 30 (Wi=0.1) 
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(a) (b) 

  

(c) (d) 

Figure 5. 5. Comparison between different solutions of the transverse profiles of 𝐶𝑥𝑦 (a), 𝐶𝑥𝑥 

(b), 𝐶𝑦𝑦 (c) and 𝐶𝑧𝑧 (d) in the self-similar region at 
𝑥

𝐷
= 30 for Wi=1.0. 

 

5.4.2.2.Decay law for the centerline velocity and jet spreading rate 

Important laws for the planar jet are the relationships expressing the decay of the centerline 

velocity and the growth of the jet half-width. From the analytical solution, the normalized 

centerline velocity (𝑢𝑐 𝑈⁄ ) is given by  

𝑢𝑐

𝑈
=
1

3
(
𝑥

𝐷
)
−
1

3
𝐺′(0, 𝑥). 

(5- 43) 

The decay of the centerline velocity is plotted in Figure 5. 6 (a) for a wide range of conditions 

(different values of 𝐿2, 𝛽𝑝, Re and Wi) and an excellent collapse of data is observed, suggesting 
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that there is only dependence on Re, which is captured through an adequate normalization. 

However, this is not exactly true and there is a very weak dependence on fluid rheology that cannot 

be observed in Figure 5. 6. The velocity profiles, which are proportional to 𝐺′(𝜂, 𝑥), exhibit a local 

maximum at the centreline (𝜂 = 0) implying 𝐺′′(0, 𝑥) = 0, in addition 𝑓(𝐿) = 1 and 𝐾(0, 𝑥) ≃

1, therefore on the centreline Eq. (5- 14) simplifies to  

𝐺′′′ =
𝐺′
2
+ 𝐺𝐺′′

1 − 𝛽 +
𝛽𝑓(𝐿)
𝐾 − 𝐶4𝐺′

 
(5- 44) 

Inspection of the numerical data for the cases reported in Figure 6 shows that on the centreline the 

denominator of Eq. (5- 44) differs from 1 by less than 0.01% and for practical purposes Eq. (5- 

14) becomes identical to that for the centerline velocity of a Newtonian planar jet flow. 

Disregarding this very weak dependence, in Figure 5. 6 (b) the data is plotted differently to show 

the power law dependence on (𝑥 𝐷⁄ ) with a power law exponent of −1 3⁄  and slope of 0.3797. 

For practical purposes, this decay law can be considered to be universal and independent of flow 

and rheological properties.  

 

 

(a) 

 

(b) 

Figure 5. 6. Evolution of the jet centerline velocity for planar laminar jet flow: (a) decay with 

x/D; (b) variation with (x/D)(-1/3) for the same cases in (a). The solid line simultaneously pertains 

to the Newtonian data and the fitted linear equation with slope of 0.3797. 
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In Figure 5. 6 (b) the data is plotted differently to show the power law dependence on (𝑥 𝐷⁄ ) with 

a power law exponent of −1 3⁄  and slope of 0.3797. This decay law is universal and independent 

of flow and rheological properties.  

 

(a) 

 

(b) 

Figure 5. 7. Evolution of the jet half-width (𝛿) for planar laminar jet flow: (a) variation with 

x/D; (b) variation with (𝑥 𝐷⁄ )2/3 for the same cases in (a). In (b) the solid line simultaneously 

pertains to the Newtonian data and the corresponding fitted linear equation. Dashed lines are 

also fitted linear equations to some cases and a guide to the eye.  

The jet spreading rate, measured by the jet half-width (𝛿), as defined in Figure 5. 1, increases with 

the streamwise coordinate (𝑥), as the jet entrains surrounding fluid. According to Eqs. (5- 4) and 

(5- 5) this leads to 

𝛿

𝐷
=
𝑦0.01

𝐷
≡ 3√

𝜈0

𝐷𝑈
(
𝑥

𝐷
)
2 3⁄

𝜂0.01   where   𝐺′(𝜂0.01, 𝑥) = 0.01𝐺′(0, 𝑥). 
(5- 45) 

As shown in Figure 5. 7 (a) and (b), for flows with low elasticity, i.e. flows at low Wi, low 𝛽𝑝 and 

high L, the spreading rates of Newtonian and FENE-P jets are essentially the same, exhibiting a 

similar dependence on Re (proportional to 𝑅𝑒−2 3⁄ ) and on 𝑥 𝐷⁄  (proportional to (𝑥 𝐷⁄ )2 3⁄ ) as is 

clear from Figure 5. 7 (b), where the linear fit shows a slope of 11.9. Further inspection of Figure 

5. 7 (b) shows that on increasing elasticity effects, i.e., increasing Wi or 𝛽𝑝 or decreasing L, there 

is a reduction in the spreading rate together with an enhancement of the rate of variation of the 

spreading rate (the slope of the fitted linear law for the flow at Wi=5, Re=100, L= 10 is now 12.74). 

These are most likely associated with a reduction of the viscosity in the jet shear layers, where 
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entrainment occurs, on account of the prevailing shear rates there pertaining to the shear-thinning 

region of the FENE-P fluid, when increasing Wi. However, on going downstream the effects of Wi 

reduce because the local flow shear rates decrease as the jet spreads, therefore the local viscosity 

increases towards the low shear rate Newtonian plateau value while simultaneously the 

viscoelastic normal stresses decrease, i.e., in the far field the FENE-P flow tends to a Newtonian 

fluid behavior.  

To better understand these arguments it is useful to define the local Reynolds number (𝑅𝑒𝛿 ≡

𝑢𝑐𝛿 𝜐0⁄ ) and the local Weissenberg number (𝑊𝑖𝛿 ≡ 𝜆𝑢𝑐 𝛿⁄ ), given by Eqs. (5- 46) and (5- 47), 

respectively. These expressions clearly show that Reynolds number effects increase downstream, 

whereas Weissenberg number effects decrease. The latter predominate and this is well shown 

through the so-called viscoelastic Mach numbers. 

𝑅𝑒𝛿 ≡
𝑢𝑐𝛿

𝜐0
= √𝑅𝑒𝜂0.01𝐺′(0, 𝑥) (

𝑥

𝐷
)
1 3⁄

 
(5- 46) 

𝑊𝑖𝛿 ≡
𝜆𝑢𝑐
𝛿
 =
1

9
𝑊𝑖√𝑅𝑒

𝐺′(0, 𝑥)

𝜂0.01
(
𝑥

𝐷
)
−1

 
(5- 47) 

The mean flow viscoelastic Mach number (𝑀) is defined as (𝑀 ≡ √𝑅𝑒𝑊𝑖), but we are interested 

in the local viscoelastic Mach number (𝑀𝛿 ≡ √𝑅𝑒𝛿𝑊𝑖𝛿) given by 

𝑀𝛿 =
1

3
√𝑅𝑒𝑊𝑖𝐺′(0, 𝑥) (

𝑥

𝐷
)
−1 3⁄

⟶
𝑀𝛿

𝑀𝑅𝑒1 3⁄ = 0.3797 (
𝑥

𝐷
)
−1 3⁄

, 
(5- 48) 

where use was made of the universal fitted decay law of the centerline velocity. It is clear that 

viscoelastic effects are stronger at low x/D, and decay on going downstream. In this regard it is 

also important to note that Figure 5. 6 and Figure 5. 7 contain results for flows with 𝑀𝛿 > 1 and 

𝑀𝛿 < 1 and that 𝑀𝛿 → 0 data approach the low elasticity limit, in which the jet tends to behave as 

Newtonian.    

 

5.4.2.3.Velocity field 

In contrast to the Newtonian jet flow, which accepts a full similarity solution expressed through 

the single relationship between the similarity variables 𝜂 and 𝐺(𝜂), the FENE-P solution admits 

approximate similarity solution  due to the rheological constitutive equation, i.e., no single profile 
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is obtained for different fluid and flow characteristics. Figure 5. 8 (a)-(b) show transverse profiles 

of streamwise and normal dimensionless velocities at various locations and rheological properties, 

for Re=100. The velocities are normalized by the centerline velocity and the transverse coordinate 

is normalized by the jet half-width. 

Both parts of Figure 5. 8 show near collapse of all profiles for flows of "low" elasticity, with 

deviations from the Newtonian curve progressively increasing with elasticity. Elasticity effects are 

enhanced on going upstream (decreasing 𝑥 𝐷⁄ ), and more so when Wi or 𝛽𝑝 are increased or L 

decreased with all other quantities kept constant. Hence, it comes as no surprise that the profiles 

most distant from the Newtonian curves simultaneously have the highest Wi combined with the 

highest 𝛽𝑝, and the lowest L and are the closest to the inlet of those plotted, i.e. Wi=5.0, 𝛽𝑝 =

0.5, 𝐿 = 10 and 𝑥 𝐷⁄ = 10. The normal velocity component, plotted in Figure 5. 8 (b), is a more 

sensitive quantity, so these effects stand out more clearly. There is also a coupling effect of 

elasticity involving the Reynolds number as is clear from the expression for the local viscoelastic 

Mach number that depends on Re, i.e., elastic effects are enhanced if Re increases with all other 

quantities fixed. This will be more clearly shown when discussing the conformation tensor, in the 

next section. 

 
(a) 

 
 (b) 

Figure 5. 8. Transverse profiles of normalized velocity at Re =100 as a function of 𝑥 𝐷⁄ , 𝑊𝑖, 
𝛽𝑝 and L: (a) u/uc and (b) v/uc. Dashed lines are a guide to the eye.  

The streamwise velocity profile becomes fuller with elasticity, i.e., the region of higher 𝑢 𝑢𝑐⁄  

around the center plane is wider than for a lower elasticity jet and correspondingly the values of 
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𝑣 𝑢𝑐⁄  are lower in magnitude, meaning weaker entrainment, in agreement with the slower 

spreading rate and slower rates of decay already discussed.  

It is also interesting to compare profiles at 𝑥 𝐷⁄ = 10 and 40 for the most elastic cases, to see how 

quickly the impact of a decreasing local elasticity shifts the different fuller upstream profiles to a 

profile closer to the Newtonian profile, which coincides with the low elasticity limit behavior. 

Stronger viscoelastic effects could be shown by plotting profiles closer to the inlet, but we chose 

not to do so because lower values of 𝑥 𝐷⁄  would be unrealistic from a practical point of view. After 

all, in a real jet the nearly uniform inlet profile will take some distance for the potential flow core 

to vanish through molecular diffusion. 

In summary, even though the Newtonian profiles coincide with the low elasticity limit profile, the 

variation of the shape of the velocity profiles with any of Wi, 𝛽𝑝, 𝐿 and 𝑥 𝐷⁄  is not identical, since 

each of them impacts differently on fluid viscoelasticity.  

 

5.4.2.4.Conformation and stress tensors  

As the jet spreads on going downstream, the local flow deformation rates decrease and the polymer 

stresses decrease (as well as the Newtonian solvent stresses). Hence, prior to analyzing profiles of 

the conformation tensor, normalized by their peak values, we need to look at the decay laws for 

those peak values, which take place at jet shear layer.   

Of course, as elasticity effects decrease, polymer stresses decrease to purely viscous, and the 

corresponding profiles of 𝐶𝑖𝑗 asymptote to uniform profiles equal to their limit values at rest, i.e., 

𝐶𝑖𝑗 → 0 when i≠j and 𝐶𝑖𝑗 → 1 for i=j (on going downstream the rates of deformation are also 

decreasing). Nevertheless, there is a general decay law for the streamwise variation of the ratio 

between the peak values and the corresponding reference peak value at a fixed 𝑥 𝐷⁄ ; we chose as 

reference 𝑥 𝐷⁄ = 10. This is well shown in Figure 5. 9 and the decay laws are approximately of 

the form 

log
10

|𝐶𝑖𝑗−𝛿𝑖𝑗|𝑚𝑎𝑥
|𝐶𝑖𝑗−𝛿𝑖𝑗|𝑚𝑎𝑥@𝑥 𝐷⁄ =10

= 𝑚 log
10
[(
𝑥

𝐷
)
2 3⁄

] + 𝑏. 
(5- 49) 
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In Figure 5. 9 this low elasticity asymptotic behavior was obtained for jets having values of 𝑀 <

0.1, in particular for M=0.0194 (Wi=3.76 × 10−6), corresponding to values of 𝑀𝛿 = 0.01 and 

0.0156 at 𝑥 𝐷⁄  of 40 and 10, respectively (the case plotted has values of M and 𝑀𝛿 one order of 

magnitude higher (𝑊𝑖~𝑂(10−4))). For the 𝐶𝑥𝑦, 𝐶𝑦𝑦 and  𝐶𝑧𝑧 components the low elasticity 

asymptote is reached even for flows of M ≈ 1, but for 𝐶𝑥𝑥, the most sensitive component, it is 

necessary to have M≈0.01.  

 

(a)  

 

(b) 

 

(c) 

 

(d) 

Figure 5. 9. Decay laws for the jet shear layer peak values of conformation tensor components 

(normalized by the corresponding peak values at 𝑥 𝐷⁄ = 10): (a) 
|𝐶𝑥𝑦|𝑚𝑎𝑥

|𝐶𝑥𝑦|𝑚𝑎𝑥@𝑥 𝐷⁄ =10

 , (b) 

|𝐶𝑦𝑦−1|𝑚𝑎𝑥
|𝐶𝑦𝑦−1|𝑚𝑎𝑥@𝑥 𝐷⁄ =10

  , (c) 
|𝐶𝑧𝑧−1|𝑚𝑎𝑥

|𝐶𝑧𝑧−1|𝑚𝑎𝑥@𝑥 𝐷⁄ =10
, (d) 

|𝐶𝑥𝑥−1|𝑚𝑎𝑥

|𝐶𝑥𝑥−1|𝑚𝑎𝑥@𝑥 𝐷⁄ =10
  .  
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𝐶𝑧𝑧 is the component that approaches 1 the fastest, therefore its slope is the highest, as shown in 

Figure 5. 9 (c) (d). 𝐶𝑧𝑧 approached machine precision very quickly, hence we could not obtain 

reliable data for 𝑊𝑖 < 10−4. Note the identical asymptotes for 𝐶𝑥𝑥 and 𝐶𝑦𝑦. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5. 10. Streamwise variation of the ratio of polymer stress (𝜏𝑖𝑗
𝑝
) to solvent stress (𝜏𝑖𝑗

𝑠 ) at 

the centerline of jet: (a) xy; (b) yy; (c) 𝑥𝑥. 

The variation along the jet centerline of the ratio of polymer over solvent stresses |𝜏𝑖𝑗
𝑝 | |𝜏𝑖𝑗

𝑠 |⁄  is 

plotted in Figure 5. 10. At low elasticity and/or on going downstream, all components of this ratio 

asymptote to 𝜈𝑝 𝜈𝑠⁄ = 𝛽𝑝 (1 − 𝛽𝑝)⁄ , which is equal to 1/9 and 1 for 𝛽𝑝 of 0.1 and 0.5, respectively. 
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This clearly confirms that the elastic part of the polymer stress decreases faster than its viscous 

stress, therefore far from the inlet the jet tends to a Newtonian behavior. This is also observed to 

happen with the ratio of maximum stresses plotted in Figure 5. 11, with the ratio |𝜏𝑥𝑥
𝑝 | |𝜏𝑥𝑥

𝑠 |⁄  taking 

longer than the other component ratio to approach the asymptote 𝜈𝑝 𝜈𝑠⁄  when Wi≥ 0.01, 

because 𝜏𝑥𝑥
𝑝

 is the stress component with the highest elastic contribution. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. 11. Streamwise variation of the ratio of maximum polymer stress |𝜏𝑖𝑗
𝑝 |
𝑚𝑎𝑥

 to the 

maximum solvent stress |𝜏𝑖𝑗
𝑠 |
𝑚𝑎𝑥

: (a)𝑥𝑦; (b)𝑦𝑦; (c)𝑥𝑥. 

Using the peak values of 𝐶𝑖𝑗 for normalization, the transverse profiles of the conformation tensor 

are plotted in Figure 5. 12, which show again a collapse of profiles in the limit of low elasticity 

(for 𝐶𝑧𝑧 in Figure 5. 12(c) the two curves at 𝑊𝑖 ∼ 𝒪(10−6) were not plotted because data 

approached machine precision), which is independent of position and of flow and fluid parameters, 

i.e., in the low elasticity limit there is an approximate universal similarity behavior. Indeed, this 
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collapse is independent of L, since the dumbbells are weakly extended (𝐶𝑘𝑘 << 𝐿
2 as elasticity →

0), and also of 𝛽𝑝 since in the low elasticity limit the polymer stress contribution is essentially 

viscous rather than elastic and Re was kept constant. For local values of 𝑀𝛿 ≤ 0.1, we cannot 

visually distinguish the curves even if their values of 𝑀𝛿  are not identical. In any case, the plots 

include two collapsed curves at 𝑀𝛿 = 0.01, representative of low elasticity jets (cases with 𝑊𝑖 ∼

𝒪(10−6)). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. 12. Transverse profiles of the normalized conformation tensor components at Re=100: 

(a) 𝐶𝑥𝑦 |𝐶𝑥𝑦|𝑚𝑎𝑥⁄ , (b) (𝐶𝑦𝑦 − 1) (|𝐶𝑦𝑦 − 1|𝑚𝑎𝑥,𝑠𝑙)⁄ , (c) (𝐶𝑧𝑧 − 1) (|𝐶𝑧𝑧 − 1|𝑚𝑎𝑥,𝑠𝑙)⁄  and (d) 

(𝐶𝑥𝑥 − 1) (|𝐶𝑥𝑥 − 1|𝑚𝑎𝑥,𝑠𝑙)⁄ . Subscript "max,sl" refers to local maximum value at the jet shear 

layer.  
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As elasticity increases beyond the low elasticity limit, through any of the conditions identified 

previously, there is a progressive deviation of the transverse profiles away from the low elasticity 

asymptote, with 𝐶𝑦𝑦 and 𝐶𝑧𝑧 peaks shifting away from the centreline, 𝐶𝑥𝑥 peak moving towards 

the centreline and 𝐶𝑥𝑦 peak exhibiting a mixed behavior, but with very little variation. The sense 

of variation and its magnitude depend on the quantity that is varied. In all cases, as elasticity 

increases the approximate nature of similarity becomes clear, as expected. However, it is not 

essential to have profiles at the same location to see approximate similarity, what really matters is 

the value of the local viscoelastic Mach number, 𝑀𝛿, provided the values of L and of 𝛽𝑝 are 

identical. Indeed, the plots include two collapsed curves at 𝑀𝛿 = 11.52 representative of strongly 

elastic jets, one at 𝑥 𝐷⁄ =10 (Wi=1.984) and the other at 𝑥 𝐷⁄ =40 (Wi=5, other quantities equal). 

This is seen for all components, but 𝐶𝑥𝑥 is particularly sensitive as the most elastic component. 

The profiles of 𝐶𝑥𝑥 in Figure 5. 12(d) show another interesting feature: when elasticity effects 

increase, there seems to be a high elasticity asymptote. 

The location of the peak values of all components of the conformation tensor, plotted in Figure 5. 

9, are plotted in Figure 5. 13. As for the peak values of 𝐶𝑖𝑗 at low elasticity, for which there were 

asymptotes, the position of these peaks follow straight lines in the coordinates used and there is a 

single line in the limit of low elasticity, which is of type 

𝑦

𝐷
𝑅𝑒2 3⁄ = 𝑚(

𝑥

𝐷
)
2 3⁄

. 
(5- 50) 

Figure 5. 13 confirms what was said above in regards to the variation of the curves of 𝐶𝑖𝑗 (and its 

peak values) with elasticity, and regarding inertia, the dependence is identical to that of the jet 

half-width. In addition, the fitted low elasticity asymptotes are identical for 𝐶𝑥𝑥 and 𝐶𝑦𝑦, which is 

consistent with the asymptotic behavior of the corresponding peak values discussed in Figure 5. 

12, and confirms the righteousness of one of the assumptions inherent to the so-called Delta 

solutions. More surprising, since unexpected, is the identical low elasticity asymptote for 𝐶𝑥𝑦  and 

𝐶𝑧𝑧 . 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5. 13. Location of peak values of the conformation tensor components in the jet shear 

layer as a function of fluid and flow dimensionless numbers: (a)𝐶𝑥𝑦, (b) 𝐶𝑦𝑦, (c) 𝐶𝑧𝑧 , (d) 𝐶𝑥𝑥.  

The observation made in Figure 5. 12 (d) of what seemed to be a high elasticity asymptotic profile 

for normalized 𝐶𝑥𝑥 is mirrored here in an asymptote for the location of its peak values at high 

levels of elasticity as shown in Figure 5. 13 (d). This effect is not seen for the other components 

of 𝐶𝑖𝑗, therefore we did not fit an equation to this limit. 
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(a) 

 

(b) 

 

(c) 

Figure 5. 14. Decay laws for the center plane values of the normal components of the conformation 

tensor (normalized by the corresponding values at 𝑥 𝐷⁄ = 10): (a)𝐶𝑦𝑦, (b)𝐶𝑧𝑧, (c) 𝐶𝑥𝑥. 

The conformation tensor profiles in Figure 5. 12 have shown the existence of a second local peak 

value on the center plane, for the normal components of 𝐶𝑖𝑗. These also decrease on going 

downstream, and exhibit also a low elasticity asymptote like Eq. (5- 50), which is identical to the 

asymptotes of the first peak value except for 𝐶𝑧𝑧, as shown in the plots of Figure 5. 14. This 

different asymptote of 𝐶𝑧𝑧 could be a numerical artifact since the numerical values of this 

component decrease very quickly towards machine precision. The normalization in Figure 5. 14 is 

done with the corresponding center plane values at 𝑥 𝐷⁄ = 10. 
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In practical terms it is useful to define a criterion separating the flow conditions above which flow 

elasticity cannot be ignored from those that correspond to essentially a Newtonian behavior. For 

this purpose, the most sensitive quantities to the effects of elasticity are the shear (𝐶𝑥𝑦) and normal 

(𝐶𝑥𝑥) components of the conformation tensor. If we fix a criterion of 1% difference relative to the 

low elasticity asymptote, to accommodate the simultaneous variations of 𝑅𝑒 and 𝑊𝑖, the 1% 

difference criterion corresponds to 𝑀𝛿 ≤ 0.01. 
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Part III 

 

 

Turbulent Flow of Viscoelastic Fluid
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[To] mechanical progress there is apparently no end: for as in the past 
so in the future, each step in any direction will remove limits and bring 
in past barriers which have till then blocked the way in other directions; 
and so what for the time may appear to be a visible or practical limit 
will turn out to be but a bend in the road. 

 
-Osborne Reynolds 

(23 August 1842 – 21 February 1912)  

An English fluid dynamicist
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Chapter 6: The numerical methods of DNS/LES and validation 

6.1.Intorduction 

Two final comparisons of the planar jet flow solution are worth doing as they represent 

independent checks of the solution presented here as well as a validation of a code to be used in 

the investigation of turbulent planar jet flow: (1) the comparison with the results of numerical 

simulations carried out with the RheoFoam toolbox of OpenFoam [17,18], which implements the 

full governing equations for the FENE-P fluid, can be thought of as a validation of the semi-

analytical solution, even though care has to be exercised considering the different boundary 

conditions; (2) the comparison with the in-house DNS code to be used in our future investigations 

of turbulent planar jet flows acts as a second independent check of this semi-analytical solution, 

as well as a validation of the DNS code. This DNS code was modified from an existing code for 

Newtonian fluids in order to incorporate the viscoelastic FENE-P constitutive equation.  

 

6.2.Numerical methods of DNS/LES code 

The in-house three-dimensional direct numerical simulation (DNS) of Newtonian fluid been 

developed by Reis [137] and then Lopes [138] added some LES models for simulating turbulent 

Newtonian flow as well as some statistics modules and post-processing tools into the code. The 

code has been tested and verified by [137,138,139]. It uses a sixth-order compact differencing 

scheme [140] in the streamwise (x) direction and a pseudo-spectral method [141] in the normal (y) 

and spanwise (z) directions[138,137]. An explicit three-step third-order low-storage Runge-Kutta 

time-stepping scheme is utilized as temporal discretization.  

Recently, the code has been developed by Guimarães et al [16] for simulation of turbulent flow of 

FENE-P fluids.  Discontinuities in the polymer stress are the main difficulty of the numerical issue 

in implementing FENE-P model for direct numerical simulation polymer flow. That causes 

conformation tensor loses its symmetric positive definite or SPD features by calculating negative 

eigenvalues and finally lead the growth of Hadamard instabilities[142]. Several methods have been 

proposed to handle this problem. Sureshkumar and his colleague added artificial stress diffusivity 

to the right-hand side of the conformation tensor equation to avoid that problem [101,143]. 

However, utilizing artificial diffusivity in the numerical schemes may affect the fluctuation of 
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polymer stress. Some independent research has been analyzed the conformation tensor equations 

in 2001 until 2004 [43,144,145], they deduced that utilizing inappropriate numerical scheme to 

solve convective terms leads to producing negative eigenvalues and Hadamard instabilities. To 

prevent this issue, Vaithianathan and his coworkers used a different strategy[146]. They applied a 

specific mathematic technique to decompose conformation tensor. Although they reported that the 

computation is unconditionally stable, their numerical scheme does not calculate only positive 

eigenvalues. The negative eigenvalue set to zero in their numerical scheme to stabilize the 

computation, leading to dissatisfying the conservation law [146]. 

 
Figure 6. 1.The schematic of discontinuity (a shock) shown by a thick solid line. The 

computational grids are depicted by dots, and the ideal representitve of the discontinuty on the grid 

points are shown by thick dash line. Furthermore, The thin dashed line displays a spectral 

representation while no artificial stress diffusivity are utilized, with overshoots and undershoots 

(Gibbs phenomenon).The dotted line indicates the effect of adding the stress diffusivity to the 

spectral representation (plotted by Vaithianathan et al [146]). 

The other obstacle that causes by the discontinuity of polymer stress happens when the spectral 

method utilized to solve conformation tensor. That leads to generate Gibbs phenomenon [147] in 

the vicinity of discontinuity and produce negative eigenvalue [146]. The schematic both 

discontinuity and Gibbs problem are plot by Vaithianathan et al [146] and shown Figure 6. 1.   As 

a result of these constraints, spectral method and conventional high-order compact scheme are not 

the proper treatment for solving conformation tensor in adjacent to discontinuity. Yu and his 

colleague implemented the slope limiter to each component of the conformation tensor, but the 

method does not guarantee SPD condition of conformation tensor [145]. In 2006, Vaithianathan 

and Collins [43] utilized Kurganov and Tadmor or KT [148] numerical scheme to handle all 

mentioned issues. The KT scheme is a central difference, second-order accurate in physical space, 

and independent of the time step. The KT scheme calculates only positive eigenvalue and satisfies 
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the conservation law of conformation tensor. The KT scheme for the cartesian grid and physical 

domain is described in the following. Since the advection term (𝑢𝑘
𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
) of conformation tensor 

(Eq.(7- 9)) causes the formation of a sharp gradient in predicting Cij and then the growth of 

Hadamard instabilities, the KT scheme is treated this term as follows:   

𝑢𝑘
𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
= −
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(6- 1) 

where the convective flux term in each direction calculated by  
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which 𝛼 is the local velocity of information propagation from discontinuities at interfaces, it is 

calculated by  

𝛼
𝑖+
1
2
,𝑗,𝑘

𝑥 = |𝑢
𝑖+
1
2
,𝑗,𝑘
| (6- 5) 

𝛼
𝑖,𝑗+

1
2
,𝑘

𝑦
= |𝑣

𝑖,𝑗+
1
2
,𝑘
| (6- 6) 
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1
2
| (6- 7) 

The superscripts ‘±’ on the right-hand side in Eq. (6- 8)-(6- 10)determine values of the 

conformation tensor at the interface which obtained in the limit approaching the point of interest 

from the right (+) or left (−) side, respectively. As a result, second-order, piecewise, linear 

approximations are implemented to calculate the conformation tensor C. 
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 (6- 8) 
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To estimate the value of gradient following equations are used. 

(
𝜕𝐶

𝜕𝑥
)
𝑖,𝑗,𝑘

=

{
 
 

 
 

1

∆𝑥
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1
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 (6- 11) 

In this case, when two or more derivative approximations satisfy the condition, the derivative 

approximation is chosen which maximizes the minimum eigenvalue for two tensors. It should be 

mentioned that when none the derivative approximation satisfies the condition, the derivative 

approximation set to zero and the accuracy of scheme reduces to first order in space. Utilizing 

equation guarantee the positive value of eigenvalue and maintains SPD tensor while computing C+ 

and C-. 

Area-averaged velocities are required to finite volume update for C at the border of volume 

surrounding each grid point. Therefore, the following procedure was proposed by the authors: 
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where 𝑢
𝑖±
1

2
,𝑗,𝑘

, 𝑣
𝑖,𝑗±

1

2
,𝑘

and 𝑤
𝑖,𝑗,𝑘±

1

2

 are calculated the averaged velocities at the border of the 

volume surrounding at each grid point. In addition,�̂�(𝑘𝑥, 𝑘𝑦, 𝑘𝑧), 𝑣(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) and �̂�(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) 

are calculated the Fourier coefficients of velocities at each grid point. 



110 

 

It is very important to mention that the stability of this scheme does not influence by how polymer 

stress is computed, it means that the stress can be computed even with a high-order compact finite 

difference scheme [148]. Furthermore, the described procedure is utilized to solve the advection 

term of conformation tensor, and the other terms of conformation tensor are solved by central 

difference, second-order accurate in physical space scheme. For the inlet boundary condition, the 

analytical solution of laminar Couette flow of FENE-P fluid has been proposed by Pinho et al [78] 

is implemented and periodic boundary conditions has been utilized for lateral boundaries. For the 

verification, the DNS planar jet turbulent flow of FENE-P fluid has been tested and verified by 

Guimarães et al [16] and Parvar et al [112,113] which proposed semi-analytical solution for 

laminar planar jet flow of FENE-P fluid, as explained in section 5, and later extend to Boundary 

layer [136] and mixing layer flow [150] of FENE-P Fluid. 

It is worth to mention that, regarding the RheoFoam/OpenFoam simulation, a third order QUICK 

scheme with total variation diminishing (TVD) for time-stepping scheme is utilized. The scheme 

is called CUBISTA, which stands for Convergent and Universally Bounded Interpolation Scheme 

for the Treatment of Advection [134].  

 

6.3.The validation of DNS/LES code 

Identical computational domains of size 30 D × 30 D × 0.46875 D were used for the calculations 

with both codes, in the streamwise, transverse and spanwise directions, respectively. The grids 

used were also identical, with 512×512×8 control volumes in the corresponding directions. The 

Reynolds number was set at 𝑅𝑒 = 100 and 𝛽𝑝 = 0.1. The maximum molecule extensibility and 

Weissenberg number were fixed at L=30 and Wi= 0.5, respectively. A second DNS simulation 

(DNS2) was also carried out using a domain size of 60 D × 60 D × 0.9375 D in a mesh of 

1024×1024×16 control volumes to confirm the causes of differences observed in the transverse 

velocity profile. 
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(a) (b) 

Figure 6. 2.Normalized transverse velocity profiles at 𝑥 𝐷⁄ = 25, Wi=0.5, L=30, Re=100 

and 𝛽𝑝 = 0.1: (a) u/uc and (b) v/uc (the inset plots v/uc for 0 ≤ 𝑦 𝐷⁄  ≤ 30).  

Figure 6. 2 (a)-(b) compare the normalized transverse profiles of streamwise and normal velocities 

at 𝑥 𝐷⁄ = 25, where the computed profiles are already in the self-similar region. The streamwise 

velocity profiles of DNS, DNS2 and OpenFoam simulations are very close to the general solution 

profile, but there are differences in the profiles of the normal velocity away from the shear layers 

of the jet, because of the different boundary conditions. Whereas the general solution is entraining 

fluid from far away above (top) and below (bottom) the jet, therefore leading to a non-zero constant 

𝑣 far from the jet centerline, the DNS and OpenFoam codes rely on co-flow through the side wall, 

where the jet inlet is located, and entrain no fluid from the top (above) and bottom boundaries, 

therefore 𝑣 tends to zero far from the jet centerline (at those boundaries). Since the boundary 

conditions are identical for the two codes, the profiles of 𝑣 𝑢𝑐⁄  of the OpenFoam and DNS codes 

match well and do not show non-zero values far from the jet.  

The corresponding profiles of 𝐶𝑥𝑦 and 𝐶𝑥𝑥 in the self-similar region at 𝑥 𝐷⁄ = 25, are compared 

in Figure 6. 3 (a)-(b). The results of DNS are consistent with the general solution, and the 

RheoFoam results are only slightly underpredicted in comparison with those of the general 

solution, but agree better with the DNS data (notice the zoomed-in ordinate scaling). The 

corresponding profiles of 𝐶𝑦𝑦 and 𝐶𝑧𝑧 are plotted in Figure 6. 3 (c)-(d) showing again a very good 

agreement, with the small differences associated with the zoomed-in ordinate scaling used. The 

good comparison between the results of the RheoFoam and DNS codes also validate the 

implementation of the FENE-P equations onto the latter code. 
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(a) (b) 

  
(c) (d) 

Figure 6. 3.Normalized transverse profiles of 𝐶𝑖𝑗 at 𝑥 𝐷⁄ = 25 for Wi=0.5, L=30, Re=100 and 

𝛽𝑝 = 0.1 : (a) 𝐶𝑥𝑦, (b) 𝐶𝑥𝑥, (c) 𝐶𝑦𝑦, (d) 𝐶𝑧𝑧(d).  
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There must be no barriers to freedom of inquiry. There is no place for 
dogma in science. The scientist is free, and must be free to ask any 
question, to doubt any assertion, to seek for any evidence, to correct any 
errors. 

 
-J. Robert Oppenheimer 

(April 22, 1904 – February 18, 1967)  

An American theoretical physicist
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Chapter 7: LES of planar jet flow of viscoelastic FENE-P fluids  

7.1.Governing equation of turbulent viscoelastic fluid 

The governing equation of turbulent viscoelastic flow is discussed in the following. We started 

with explaining the filtering procedure which follows by filtered governing equations. Two LES 

models called classical Smagorisnky and Dynamic Smagorinsky, for modeling the solvent SGS 

stress term has been presented, afterwards, the procedure of deal with SGS in conformation tensor 

equations is explained. 

 

7.1.1.Filtered governing equations  

To obtain the governing equation for LES of viscoelastic fluids described by the FENE-P model 

one needs to filter the equations listed in the previous section, as described in detail in Masoudian 

et al. [21] and in Ferreira et al. [12], so that any flow variable  

𝜑(�⃗�, 𝑡), is split into the sum of a resolved (grid-scale - GS) 𝜑(�⃗�, 𝑡), and an unresolved (subgrid-

scale - SGS), contribution, 

𝜑(�⃗�, 𝑡) = 𝜑(�⃗�, 𝑡) + 𝜑′(�⃗�, 𝑡) (7- 1) 

Where the GS contribution is defined by a spatial low pass filtering operation,  

𝜑(�⃗�, 𝑡) = ∫ 𝜑(�⃗�′, 𝑡)
Ω

𝐺∆(�⃗� − �⃗�
′)𝑑�⃗�′, (7- 2) 

in which 𝐺∆ is the convolution kernel that determines the filter type, and ∆ is the filter width. In 

the present study, a classical top-hat (box) convolution filter is utilized to separate the resolved 

and unresolved scales of motion, which for a one-dimensional case reads, 

𝐺∆(𝑥) = {
1

∆
          if |𝑥| ≤

∆

2
0          otherwise

 (7- 3) 

The box filter is local in the physical space and non-local in the spectral space but the filtering 

operation is equivalent to a finite difference or finite volume discretization which are commonly 

used in LES of engineering applications [48]. By applying a low pass filter to the governing 

equations, the filtered continuity and momentum equations are obtained (Masoudian et al. [21] and 

in Ferreira et al. [12]), 
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𝜕𝑢𝑘
𝜕𝑥𝑘

, (7- 4) 

𝜕𝑢𝑖
𝜕𝑡
+ 𝑢𝑘

𝜕𝑢𝑖
𝜕𝑥𝑘

= −
1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ 𝜐𝑠

𝜕

𝜕𝑥𝑘
[2𝑠𝑖𝑗] +

𝜕𝜏𝑖𝑗
𝑠𝑔𝑠

𝜕𝑥𝑘
+
𝜕𝜏𝑖𝑗

𝑝

𝜕𝑥𝑘
, 

(7- 5) 

where 𝜏𝑖𝑗
sgs
= [𝑢𝑖𝑢𝑗 − 𝑢𝑖𝑢𝑗] is the SGS tensor and the last term on the RHS of Eq. (7- 5) is the 

filtered polymer stress contribution given by  

𝜏𝑖𝑗
p
= 

𝜌𝜐p

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐿)𝛿𝑖𝑗].  (7- 6) 

The Eq. (7- 6) can be re-written as a  

𝜏𝑖𝑗
p
= 

𝜌𝜐p

𝜆
[𝑓(𝐶�̅�𝑘)𝐶�̅�𝑗 + 𝜒𝑖𝑗 − 𝑓(𝐿)𝛿𝑖𝑗].  (7- 7) 

in which the SGS of the filtered 𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗, is defined as  

𝜒𝑖𝑗 = 𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐶�̅�𝑘)𝐶�̅�𝑗.  (7- 8) 

The filtered evolution equation for the conformation tensor is, 

𝜕𝐶𝑖𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
=
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐶𝑗𝑘 +
𝜕𝑢𝑗

𝜕𝑥𝑘
𝐶𝑖𝑘 −

1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝛿𝑖𝑗], (7- 9) 

where the last term on the LHS is the filtered advection of the conformation tensor, and the first 

two terms on the RHS are the filtered polymer stretching, whereas the last term on the RHS is the 

filtered polymer dissipation. Eq. (7- 9) can be re-written in a way that singles out the resolved and 

subgrid-scale quantities in the conformation tensor equation as discussed in Masoudian et al. [21] 

and Ferreira et al. [12], 

𝜕𝐶𝑖𝑗

𝜕𝑡
+ 𝑢𝑘

𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
=
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐶𝑗𝑘 +
𝜕𝑢𝑗

𝜕𝑥𝑘
𝐶𝑖𝑘 −

1

𝜆
[𝑓(𝐶�̅�𝑘)𝐶�̅�𝑗 + 𝜒𝑖𝑗 − 𝛿𝑖𝑗] − 𝜓𝑖𝑗 + 𝛾𝑖𝑗, (7- 10) 

with 𝜒𝑖𝑗 defined in Eq. (7- 8), and the unresolved (SGS) conformation advection tensor defined as 

𝜓𝑖𝑗 = 𝑢𝑘
𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝐶𝑖𝑗

𝜕𝑥𝑘
, 

and, 

(7- 11) 

𝛾𝑖𝑗 = [
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐶𝑗𝑘 −
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐶𝑗𝑘] + [
𝜕𝑢𝑗

𝜕𝑥𝑘
𝐶𝑖𝑘 −

𝜕𝑢𝑗

𝜕𝑥𝑘
𝐶𝑖𝑘], (7- 12) 
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Now, closures need to be developed for all SGS terms in all governing equations. In principle the 

SGS stress tensor in the momentum equation may be affected by fluid rheology. However, since 

this is the very first work developing models for LES of viscoelastic fluids in jets and 𝜏𝑖𝑗
sgs

 

quantifies inertial effects, as a first approximation we will consider that the closures developed for 

𝜏𝑖𝑗
sgs

 with Newtonian fluids remain valid and the effect of polymers on it is carried over through 

the filtered velocity and rate of deformation fields. The closures used for 𝜏𝑖𝑗
sgs

 are presented next. 

 

7.1.2.Smagorinsky model (Sm):  

In the present work the SGS stress tensor 𝜏𝑖𝑗
𝑠𝑔𝑠

 is modelled using two different models: the classical 

and the dynamic Smagorinsky models. Both models were previously implemented in the present 

code in the turbulent planar jet flow (for a Newtonian fluid) by Silva and al. [138,139].  

The Smagorinsky model was originally developed by Smagorinsky [56] and is based on an eddy 

viscosity given by,  

𝜈𝑡(𝑥, 𝑡) = (𝐶𝑠𝑚∆̅)
2(|𝑆̅(𝑥, 𝑡)|2)

1

2, (7- 13) 

where  |𝑆̅| = (2𝑆𝑖𝑗𝑆𝑖𝑗)
1/2

 is the filtered strain magnitude, and 𝑆𝑖𝑗 is the filtered rate-of-strain 

which is obtained by filtering Eq. (2- 5), 𝐶𝑠𝑚 is the Smagorinsky constant, and ∆̅ is the filter size 

calculated by ∆̅= (∆𝑥 × ∆𝑦 × ∆𝑧)
1

3 [48]. The main drawback of the classical Smagorinsky model 

is that it cannot consider backward energy transfer since it is only a dissipative model, the local 

equilibrium assumption is not valid and the model it is too dissipative. However, the Smagorinsky 

model is simple and very popular in the study of turbulent flow and has a very the low 

computational cost. In the present work, we take 𝐶𝑠𝑚 = 0.16 for the Smagorinsky constant 

[138,139]. This model, with the same value of 𝐶Sm, was used previously by Ferreira et al. [12] for 

FENE-P fluids in forced homogeneous isotropic turbulence, with very good results. 

 

7.1.3.Dynamic Smagorinsky model (Dyn):  

To deal with the limitations of the classical Smagorinsky closure, the dynamic Smagorinsky model 

was proposed by Germano et al [149]. Here, the eddy viscosity is still given by Equation (7- 13), 



117 

 

but with 𝐶Dyn instead of 𝐶Sm, where 𝐶Dyn is assumed to depend on time and space and computed 

by utilizing the Germano identity. As a result, the coefficient is now computed in the entire domain 

as 𝐶Dyn(𝑥, 𝑦, 𝑡) =
〈𝑀𝑖𝑗𝐿𝑖𝑗〉

〈𝑀𝑖𝑗𝑀𝑖𝑗〉
, where 〈 〉 represents an averaging in the homogenous flow direction, 

which in the present planar jet flow is the z-direction. The coefficient depends on the Leonard 

stress tensor, 

 (7- 14) 

obtained by applying a spatial test filter, of size equal to 2∆ and identified by the tilde, 

and on . 
(7- 15) 

For a test filter size equal to 2∆, the coefficient k is assumed to be 𝑘 = √5, |𝑆̅| is defined in the 

previous section and is the magnitude of the double filter sized of the large-scale 

strain rate tensor. To prevent the existence of numerical instabilities during the simulations due to 

excessively large negative values of coefficient 𝐶Dyn, a clipping procedure was implemented and 

𝐶Dyn ≥ 0 was imposed everywhere.  

 

7.2.A-priori tests: DNS of turbulent planar jet FENE-P fluid 

As in Ferreira et al. [12] we begin the present investigation by performing a-priori tests, by using 

here the DNS of turbulent viscoelastic planar jets carried out by Guimarães et al. [16]. The physical 

and computational parameters of these simulations are now described (more details are described 

in Guimarães et al. [16]).   

An hyperbolic tangent profile is used as an inlet condition for the mean inlet velocity profile [83], 

�̅�(𝑥 = 0, 𝑦) =
𝑈𝐽 + 𝑈∞

𝑖𝑛

2
+
𝑈𝐽 − 𝑈∞

𝑖𝑛

2
tanh [

𝐻

4𝜃
(1 −

2|𝑦|

𝐻
)], (7- 16) 

where again 𝑈𝐽 is the maximum mean streamwise velocity and 𝑈∞
𝑖𝑛 is the jet co-flow velocity, and 

for inlet condition for the FENE-P fluid we use the analytical solution of laminar couette flow of 

a FENE-P fluid proposed by Pinho et al. [78]. Periodic boundary conditions are used for the lateral 

boundaries (𝑦 and 𝑧 directions). In addition, the amplitude of noise for all inlet velocity 

fluctuations of DNS is set at 10% and the ratio between the inlet slot-width and momentum 

thickness is H/θ = 30 [139,16]. The Reynolds number (Re) is defined by, 
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 𝑅𝑒𝐻 =
(𝑈𝐽−𝑈∞

𝑖𝑛)𝐻

𝜐s
, (7- 17) 

where H is the inlet slot-width of the jet and 𝜐s is kinematic solvent viscosity. The global 

Weissenberg number is the ratio between the elastic and integral time scales, which for the 

turbulent jet is defined as,  

𝑊𝑖 =
𝜆(𝑈𝐽 −𝑈∞

𝑖𝑛)

𝐻
, (7- 18) 

where 𝜆 is the maximum relaxation time of the polymer molecules. In all simulations the Reynolds 

number was set equal to Re=3500, and the ratio of between the solvent and the total viscosity (𝛽s) 

is defined as 𝛽s =
𝜐s

𝜐s+𝜐p
=

𝜐s

𝜐0
 where the zero shear rate viscosity of the fluid (𝜐0) is the sum of 

solvent and polymer kinematic viscosities 𝜐0 = 𝜐s + 𝜐p, which was set to 𝛽s = 0.8. In all cases 

the computational domain length was equal to 18H and the size of the grid size was 512×512×128, 

in the streamwise, normal, and spanwise direction respectively The maximum extensibility of the 

dumbbell was imposed be equal to 𝐿2 = 104, while the relaxation time for FENE-P fluid flows 

were 𝜆 = 0.4, 0.8, and 1.2, leading to the global Weissenberg numbers equal to Wi = 1.1, 2.2, and 

3.3, respectively. A reference Newtonian DNS was also carried out for comparison and is denoted 

by an in the following discussion. The main physical and computational details of the DNS are 

summarized in Table 7. 1 (Guimarães et al. [16]).  

Table 7. 1. Summary of physical and computational parameters of the DNS used to perform a-

priori tests, extracted from Guimarães et al. [16]. 𝐴𝛿 , 𝐴𝑈𝑐 and 𝐴𝜎𝑐 are slopes of the laws of 

variation of jet width (𝛿), centerline velocity (𝑈𝑐) and centerline stress (𝜎𝑐) discussed later, 

Domain size 
𝐿𝑥×𝐿𝑦×𝐿𝑧

𝐻3
= 18 × 18 × 4.5. 

 Wi 𝜆 𝛽𝑠 𝐿 Grid points 𝐴𝛿  𝐴𝑈𝑐  𝐴𝜎𝑐 

DNSN 0 0 1.0 NA 512×512×128 0.110 0.21 NA 

DNS1.1 1.1 0.4 0.8 100 512×512×128 0.111 0.208 1.40 

DNS2.2 2.2 0.8 0.8 100 512×512×128 0.095 0.176 0.56 

DNS3.3 3.3 1.2 0.8 100 512×512×128 0.080 0.141 0.37 
 

The statistical data extracted from the DNS by Guimarães et al. [16] we initially used to analyze 

the order of magnitude of each terms from Eqs. (7- 10)-(7- 12), and to simplify the corresponding 

equations by proposing relevant hypothesis, named (H1)-(H6) and finally to introduce an LES 

closure. It is very important to mention that a-priori tests were performed on the available 
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instantaneous DNS data, provided by Guimarães et al. [16], which was very limited if we only 

consider one specific location , at specific (x, y), therefore we decided to perform the tests inside 

self-similarity region (10 ≤ 𝑥/𝐻 ≤ 18) at the centerline of jet (𝑦/𝐻 = 0) to extract more data for 

assessment of all hypothesis. 

We are looking for closures for tensor-based quantities appearing in Eqs. (7- 10)-(7- 12) and these 

will necessarily involve coefficients which can be independent of the component (isotropic) or not 

(anisotropic). Both types of coefficient will be investigated here through the a-priori testing, but 

when analysing the isotropic coefficients we will rely on a governing equation for the filtered trace 

of the conformation tensor, as was done previously by Ferreira et al. [12] for forced HIT. 

Additionally, for conciseness, when analysing some SGS terms we will also show plots involving 

the corresponding quantities from the filtered trace equation. The filtered evolution equation for 

the trace of the conformation tensor can be written as, 

𝜕𝐶�̅�𝑖
𝜕𝑡⏟
𝐶𝑡

+ �̅�𝑘
𝜕𝐶�̅�𝑖
𝜕𝑥𝑘⏟    
𝐶𝑎

= 2
𝜕�̅�𝑖
𝜕𝑥𝑘

𝐶�̅�𝑘
⏟    

𝐶𝑝

−
1

𝜆
[𝑓(𝐶𝑘𝑘)̅̅ ̅̅ ̅̅ ̅�̅�𝑖𝑖 + 𝜒𝑖𝑖⏟          

𝐶𝑑

− 𝛿𝑖𝑖] − 𝜓𝑖𝑖 + 𝛾𝑖𝑖 (7- 19) 

where 𝐶𝑡 and 𝐶𝑎 are the temporal and advection terms while 𝐶𝑝 and 𝐶𝑑 are the production and 

dissipation of the trace of the filtered conformation tensor components (𝐶�̅�𝑖), respectively. The two 

remaining terms on the RHS of Eq. (7- 19), 𝜒𝑖𝑖, 𝜓𝑖𝑖 and 𝛾𝑖𝑖, are the unknown subgrid-scale 

contributions from the sink, the advection and polymer stretching respectively.  

Next, a series of six hypothesis will be tested in order to develop the closures needed by the filtered 

governing constitutive equation. 

 

7.2.1.Sink of the filtered conformation tensor transport equation: hypothesis H1 

The first hypothesis (H1) deals with the filtered nonlinear conformation tensor term (𝜒𝑖𝑗) in the 

filtered conformation tensor evolution equation and in Eqs. (7- 6)-(7- 8) for the filtered polymer 

stress, which needs to be assessed in order to develop a LES closure [12,21]. The term can be 

decomposed as on the left side of the arrow in Eq. (7- 20), where the difference inside the 

parenthesis is the SGS contribution. The hypothesis is that the SGS term is very small and can be 
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neglected, therefore the filtered term equals the GS contribution as on the right-hand-side of the 

arrow in Eq. (7- 20).  

𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 = 𝑓(𝐶�̅�𝑘)𝐶�̅�𝑗 + (𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 − 𝑓(𝐶�̅�𝑘)�̅�𝑖𝑗⏟              
𝜒𝑖𝑗

) 

→ 𝑓(𝐶𝑘𝑘)𝐶𝑖𝑗 ≈ 𝑓(𝐶�̅�𝑘)𝐶�̅�𝑗   𝑜𝑟 𝜒𝑖𝑗 ≅ 0 

(7- 20) 

Note that in homogeneous flows and considering the filtering properties for a box filter one 

concludes that 𝑓(𝐶𝑘𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝑓(𝐶�̅�𝑘). Even though the jet flow is not homogeneous, this equality will 

still be assumed. 

Figure 7. 1 (a)-(c) show the joint probability density function (JPDF) of the cd = 𝑓(𝐶𝑘𝑘)𝐶𝑖𝑖 and 

CD =𝑓(𝐶𝑘𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝐶�̅�𝑖 in the viscoelastic turbulent planar jet flow for Wi = 1.1, 2.2, 3.3, and for a filter 

size equal to Δ Δ𝑥⁄ = 4  (for filter sizes Δ Δ𝑥⁄ = 2 and 8 similar results are observed). The two 

quantities are strongly correlated and the correlation coefficient is very close to 1, which means 

that the two quantities are closely matched. Note that the JPDF plotted involves the trace of the 

conformation tensor (𝐶𝑖𝑖), but hypothesis (H1) remains valid if the sink terms are assessed 

individually. These are not shown for conciseness. Masoudian et al. [21] and Ferreira et al. [12] 

reached similar results for turbulent channel flow and forced isotropic turbulence of FENE-P 

fluids, respectively. The results in Figure 7. 1 confirm the validity of assumption H1 for a free 

flow in the presence of mean shear. Therefore, this assumption is used henceforth in the present 

study.  
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(a) 

 
(b) 

 
(c) 

Figure 7. 1.Joint Probability density function (JPDF) of 𝑐𝑑 = 𝑓(𝐶𝑘𝑘)𝐶𝑖𝑖 and CD =𝑓(𝐶𝑘𝑘)̅̅ ̅̅ ̅̅ ̅̅ ̅𝐶�̅�𝑖 
normalised by their root-mean-square, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and filter size 

∆/∆x = 4, at the jet centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, lines are a guide to the eye. 

 

7.2.2.Subgrid-scale conformation tensor advection term: hypothesis H2 

The second hypothesis (H2) deals with the subgrid-scale advection and we analyse next the 

corresponding term for the trace of the filtered conformation tensor, denoted by 𝜓𝑖𝑖 using Eq. (7- 

11).  

Hypothesis H2 assumes that the SGS contribution of the advection from the filtered conformation 

tensor equation is negligible when compared with the resolved advection term. Figure 7. 2 (a)-(c) 

plots the variations of all terms of Eq. (7- 19) averaged in the homogeneous direction; as shown 

〈𝜓𝑖𝑖〉 is much smaller than the other quantities, and in particular smaller than 〈𝐶𝑎〉. In Figure 7. 2, 
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we consider data at an instant of time at specific (𝑥, 𝑦) points on the jet centerline, but within the 

self-similarity region. Each data point marked in the abscissa actually corresponds to the average 

of the 128 points in the homogeneous 𝑧- direction of the domain (at that value of (𝑥, 𝑦)), i.e., in 

contrast to the figures showing the joint PDFs we are not mixing data at all points. For clarity only 

data from 30 (𝑥, 𝑦) points are shown, but we observe a similar behavior when considering all 

points in that region. It is not shown here for conciseness, but hypothesis H2 remains valid when 

comparing individually 〈𝜓𝑖𝑗〉 with 〈𝐶𝑎𝑖𝑗〉.    

 
(a) 

 
(b) 

 
(c) 

 

 
 

(d) 

Figure 7. 2. The variation of the averaged in the homogeneous direction of Eq. (7- 10) terms for 

the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and legend (d) with filter size ∆/∆x = 4, at the jet centerline 

(y/H=0) of jet for 10 ≤ 𝑥/𝐻 ≤ 18 (see the top of (a) for the key of plotted quantities), lines are a 

guide to the eye. In the present figure, x-axis label “index” means the number of samples cases 

which obtained from DNS.  

 

Figure 7. 3(a)-(c) shows the probability density function (PDF) of 𝜓𝑖𝑖 and 𝛾𝑖𝑖 at the self-similar 

region of the turbulent viscoelastic jet for Wi = 1.1, 2.2, 3.3, respectively, for a filter size equal to 
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∆/∆x = 8. These confirm that locally, the quantities of 𝜓𝑖𝑖 ≪ 𝛾𝑖𝑖. As shown, the skewness of 𝛾𝑖𝑖 is 

also significantly more intense than that of 𝜓𝑖𝑖, so 〈𝛾𝑖𝑖〉𝑧−𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≠ 0, whereas 〈𝜓𝑖𝑖〉𝑧−𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 ≈

0. Masoudian et al. [21] and Ferreira et al. [12] also reported that 𝜓𝑖𝑖 is negligible in DNS of 

turbulent channel flows and forced isotropic turbulence of FENE-P fluids, respectively. Therefore, 

the comparison shows that the SGS of polymer stretching 𝛾𝑖𝑖, or 𝛾𝑖𝑗, cannot be ignored. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 3. PDF of the SGS of both advection of the trace of the conformation tensor and polymer 

stretching terms, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 8, at the jet 

centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, lines are a guide to the eye. 

 

It is also observed in Figure 7. 3 that by increasing Wi, not only the skewness of the polymer 

stretching SGS, but also the tendency of having negative quantities of it, both increase. The same 

behavior was observed and reported by Ferreira et al. [12] and interpreted there as a sign of the 

formation of the polymer induced energy cascade at larger Wi number, which was explained in 

detail by [14].  
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7.2.3.Scale-similarity of the subgrid-scale polymer stretching: hypothesis H3 

One of the main characteristics of turbulent flows is the existence of self-similarity in the inertial 

range of scales, which allows the computation of a given subgrid-scale quantity by assessing the 

same quantity defined at a nearby scale [151]. This assumption has been previously used in the 

development of many SGS models for Newtonian turbulent flows [60] and prompted Ferreira et 

al. [12] to develop the DSIM model for 𝛾𝑖𝑗 in Eq. (7- 12) in isotropic turbulence by applying this 

concept to the computation of the SGS polymer stretching term. It is important to assess this 

assumption in the present inhomogeneous flow configuration. Specifically, the self-similarity of 

subgrid-scales was originally proposed by Bardina [152], for the SGS stress tensor of the 

momentum equation. The model assumes that the SGS stress (for a Newtonian fluid) can be 

approximated by,  

, 
(7- 21) 

where C is a constant of order O(1), and ∆̃  is the width of the test filter, often taken as having of 

twice the width of the original filter. By applying this concept to the subgrid-scale polymer 

stretching term (𝛾𝑖𝑗 in Eq. (7- 12)) the subgrid-scale polymer stretching at the test filter width is,   

. (7- 22) 

By considering the self-similarity of the subgrid-scales computed at filter widths ∆ and ∆̃, (here 

we take ∆̃= 2∆) the SGS of polymer stretching tensor is calculated by,  

𝛾𝑖𝑗 = 𝐶𝛾𝐺𝑖𝑗 , (7- 23) 

where 𝐶𝛾 is a numerical coefficient that needs to be computed. This constitutes the assumption H3 

used by Ferreira et al. [12] in homogeneous turbulence.  

To assess this assumption in the turbulent jet flow configuration, Figure 7. 4 (a)-(c)) show the joint 

probability density functions (JPDFs) of the trace of the SGS polymer stretching terms 𝛾𝑖𝑖 and 𝐺𝑖𝑖 

with Wi = 1.1, 2.2 and 3.3 and for filter size ∆/∆x = 4 and 8.  

The two quantities are clearly correlated, and the correlation coefficient between 𝛾𝑖𝑖 and 𝐺𝑖𝑖 varies 

between 0.83 to 0.599, so of order 1,  depending on the filter size and Wi number. Specifically, the 

correlation coefficient decreases when increasing Wi and the filter size, which are similar to the 
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behavior and values described in Ferreira et al. [12]. The correlation coefficients and shape of the 

PDFs attest that the scale-similarity assumption (H3) is also valid for inhomogeneous free shear 

flows and can be used in the development of SGS closures. 

 
(a) 

 
(a) 

 
(b) 

 
(b) 

 
(c) 

 
(c) 

Figure 7. 4. JPDF between the trace of SGS polymer stretching terms 𝛾𝑖𝑖 and 𝐺𝑖𝑖 normalized by 

their root-mean-square, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 4 (left 

column) and ∆/∆x = 8 (right column), at the jet centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, lines are 

a guide to the eye. 
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The closure in Eq. (7- 21) has the same coefficient for all tensor components, i.e., it is an isotropic 

model, still to be determined. As in Ferreira et al. [12] we now investigate the possibility of using 

anisotropic model coefficients 𝐶𝛾𝑖𝑗, defined by a rewriting of assumption H3 as,  

𝛾𝑖𝑗 = 𝐶𝛾ij𝐺𝑖𝑗(no summation on i and j)  (7- 24) 

To investigate this need Figure 7. 5 and Figure 7. 6 show the JPDF between 𝐶𝛾11 =
𝛾11

𝒢11
 and 𝐶𝛾22 =

𝛾22

𝐺22
, and between 𝐶𝛾11 =

𝛾11

𝐺11
  and 𝐶𝛾12 =

𝛾12

𝐺12
 , respectively, for filter size ∆/∆x = 4.       

 
(a) 

 
(b) 

 
(c) 

Figure 7. 5. JPDF between the 𝐶𝛾11 and 𝐶𝛾22 (calculated from Eq. (7- 24)), for the DNS with 

Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 4, at the jet centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, 

lines are a guide to the eye. 

 

As in Ferreira et al. [12] for homogeneous turbulence, the figures clearly show that the correlation 

coefficients between 𝐶𝛾11 and 𝐶𝛾22 and between 𝐶𝛾11 and 𝐶𝛾12 are approximately zero, meaning 

that these quantities are statistically independent, which validates the assumption of using an 

isotropic 𝐶𝛾 in the DSIM SGS model, also for the inhomogeneous flow configuration used in the 
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present work. For other combinations of coefficients not shown, the correlation coefficient was 

equally very small. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 6. JPDF between the 𝐶𝛾11 and 𝐶𝛾12(calculated from Eq. (7- 24)), for the DNS with 

Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 4, at the jet centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, 

lines are a guide to the eye. 

 

7.2.4.Local equilibrium of the polymeric elastic energy and statistically stationary flow: hypothesis 

H4, H5 & H6 

We now investigate the hypothesis used by Ferreira et al. [12] to compute the model constant 𝐶𝛾, 

defined in Eq. (7- 24). By using Eq. (7- 19) and by employing the condition of statistical 

stationarity and homogeneity Ferreira et al. [12] arrived at the following expression, 

〈2
𝜕𝑢𝑖
𝜕𝑥𝑘

𝐶𝑖𝑘〉 = 〈
1

𝜆
[𝑓(𝐶𝑘𝑘)𝐶𝑖𝑖 − 𝛿𝑖𝑗]〉, (7- 25) 
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where the brackets <> denote an ensemble averaging operation which was performed in all three 

homogeneous directions in the homogeneous isotropic turbulence configuration of Ferreira et al. 

[12]. In such context, this expression represents the ‘global’ equilibrium of the resolved elastic 

energy i.e., in statistically stationary isotropic turbulence the elastic energy produced by the 

interaction between the polymer molecules and the turbulent velocity fluctuations is balanced by 

its transfer into the polymer molecules where it is stored as elastic energy, so that the total 

(resolved) elastic energy - which is proportional to 𝐶�̅�𝑘 = 𝐶�̅�𝑥 + 𝐶�̅�𝑦+𝐶�̅�𝑧 - remains constant. We 

denote this assumption as H4.  

It is important to clarify how this assumption can be used in the context of the present flow 

configuration, since it is clear that in turbulent jet flows, as well as in other inhomogeneous flow 

configurations, Eq. (7- 26) will not be exactly verified, and one needs to assess how this expression, 

or some sort of variant of it, can be used in order to extend the DSIM model into free shear flows.  

We start by noting that statistically stationarity in the far field (fully developed) region of the jet 

allows one to write also, 

〈
𝜕𝐶𝑖𝑖
𝜕𝑡
〉 = 0. (7- 26) 

(we denote this assumption by H5). The brackets still refer to averaging in the homogeneous 

direction, which in the present context is the z-direction. By averaging Eq. (7- 19) and considering 

a negligible 〈𝜓𝑖𝑖〉 (H2), together with the self-similarity assumption for the SGS polymer stretching 

term (H3), this equation can be written as,  

〈�̅�𝑘
𝜕𝐶�̅�𝑖
𝜕𝑥𝑘

〉 = 〈2
𝜕�̅�𝑖
𝜕𝑥𝑘

𝐶�̅�𝑘〉 − 〈
1

𝜆
[𝑓(𝐶𝑘𝑘)̅̅ ̅̅ ̅̅ ̅�̅�𝑖𝑖 − 𝛿𝑖𝑖]〉 − 〈𝐶𝛾𝐺𝑖𝑖〉 (7- 27) 

Notice that the term on the LHS of Eq. (7- 27) is the mean advection of the trace of the 

conformation tensor, which is rigorously zero in isotropic turbulence due to the homogeneity of 

the flow, but has to be retained in inhomogeneous turbulent flows, such as in turbulent viscoelastic 

jets. However, it is likely that this term is negligible compared to the other terms. Indeed, whereas 

the advection of 𝐶�̅�𝑖 is clearly associated with the largest scales of motion in the jet, the terms 

representing the production and dissipation of 𝐶�̅�𝑖 – the first and second terms on the RHS of Eq. 

(7- 27) - are governed by the smallest scales of the flow. We denote this assumption (neglecting 

the advection of 𝐶�̅�𝑖 ) by H6. We can therefore use an expression similar to the one used by Ferreira 
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et al. [12] for the determination of the model constant 𝐶𝛾, with only minor corrections related to 

the averaging procedure.  

By inserting all the aforementioned hypotheses into Eq. (7- 27) the model constant 𝐶𝛾 can be 

obtained from the following expression, 

 (7- 28) 

where the averaging procedure now consists on a spatial average carried out along the only flow 

direction where the flow is homogeneous (𝑧 - direction).  

 
(a) 

 
(b) 

 
(c) 

Figure 7. 7. JPDF functions between polymer stretching Cp and dissipation Cd terms of the trace 

of the filtered conformation tensor evolution equation, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) 

and filter size ∆/∆x = 4, at the jet centerline (y/H=0) for 10 ≤ 𝑥/𝐻 ≤ 18, lines are a guide to the 

eye. 
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Hypothesis H5 does not need to be assessed as it stems directly from the concept of statistical 

stationarity, whereas hypothesis H4 and H6 are somehow related and need to be assessed 

simultaneously.   

In order to assess the hypothesis H4-H6 dealing with local equilibrium assumption, Figure 7. 7 

shows the joint probability density functions (JPDFs) of the polymer stretching (Cp) and 

dissipation (Cd) of the trace of the conformation tensor defined in Eq.(7- 19), for Wi = 1.1 , 2.2, 

and 3.3 and filter size ∆/∆x = 4. The correlation coefficients between Cp and Cd are very high, with 

0.84, 0.79, and 0.71 for Wi = 1.1, 2.2, and 3.3, respectively, with ∆/∆x = 4. This confirms that, as 

in isotropic turbulence, Cp and Cd are in approximately local equilibrium, even though the 

correlation coefficient slightly decreases with increasing Wi numbers. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 8. PDF of the traces of subgrid-scale polymer strechting terms 𝛾𝑖𝑗 and 𝒢𝑖𝑗  normalised by 

their root-mean-square, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 4, at 

center line of jet for 10 ≤ 𝑥/𝐻 ≤ 18. 
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To complete the assessment of the H4-H6 assumptions, it is important to shown that the other 

terms of Eq. (7- 19) terms (Ct and Ca) are negligible in comparison with Cp and Cd terms. 

Figure 7. 8 shows the probability density function of all terms of Eq. (7- 19) (Ct, Ca, Cp and Cd) 

for ∆/∆x = 4 and Wi = 1.1, 2.2, and 3.3. The PDF of Ct and Ca are symmetric which explains why 

the local value of the sum of these quantities is approximately 0. Finally, Figure 7. 9 shows the 

joint probability density functions between temporal variation Ct and advection terms Ca of the 

trace of the conformation tensor, for Wi = 1.1, 2.2, and 3.3 and filter size ∆/∆x = 4. The correlation 

coefficient between Ct and Ca is equal to -0.95, -0.94, and -0.92 which finally confirms that all 

hypotheses H4, H5 and H6 are verified. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 9. JPDF functions between temporal Ct and advection Ca terms from the trace of the 

conformation tensor transport, for the DNS with Wi=1.1(a), 2.2(b), 3.3(c) and filter size ∆/∆x = 

4, at center line of jet for 10 ≤ 𝑥/𝐻 ≤ 18. 

To summarize, all the a-priori testes conducted in the reference DNS of turbulent viscoelastic jets 

clearly show that all the assumptions used by Ferreira et al. [12] in the development of the DSIM 
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model in isotropic turbulence are also valid in the present inhomogeneous free turbulent flow 

configuration, and are likely valid in other free shear flows of viscoelastic fluids such as wakes 

and mixing layers. In the next section we assess the combination of all closures through a-

posteriori (LES) tests.    

 

7.3.A-posteriori tests: LES of turbulent planar jet FENE-P fluid 

Several LES of turbulent planar jet flow of FENE-P fluid were performed with the various closures 

presented, including Smagorinsky and dynamic Smagorinsky for SGS term of momentum 

equation and the DSIM model for the SGS polymer stretching term in the conformation equation, 

and their results were assessed against the reference DNS of Guimarães et al. [16]. The results are 

discussed in this section, in what are typically called a-posteriori tests, confirming that the DSIM 

model, in its original formulation and in particular in combination with the dynamic Smagorinsky 

closure for the SGS stress, performs well in planar turbulent jets, and arguably the same should be 

true for other free shear flows. Incidentally, we did also some tests using the Vreman [157] and the 

shear improved Smagorinsky [158] closures for the SGS stress, but no advantages were observed 

relative to the dynamic Smagorinsky model, therefore for the sake of conciseness such results are 

neither presented nor those closures introduced.  

Table 7. 2. Summary of physical and computational features of LES used in the a-posteriori tests 

with Domain size 
𝐿𝑥×𝐿𝑦×𝐿𝑧

𝐻3
= 19.2 × 24 × 6. 

 Wi 𝜆 𝛽𝑠 𝐿 Grid points 𝐴𝛿  𝐴𝑈𝑐  𝐴𝜎𝑐 

LESN 0 0 1.0 NA 192×192×48 0.124 0.165 NA 

LES1.1 1.1 0.3 0.8 100 192×192×48 0.108 0.169 1.8 

LES2.2 2.2 0.6 0.8 100 192×192×48 0.090 0.156 0.63 

LES3.3 3.3 0.9 0.8 100 192×192×48 0.084 0.155 0.34 

LESNf 0 0 1.0 NA 256×256×64 0.124 0.180 NA 

LES1.1f 1.1 0.3 0.8 100 256×256×64 0.122 0.187 1.65 

LES2.2f 2.2 0.6 0.8 100 256×256×64 0.094 0.167 0.57 

LES3.3f 3.3 0.9 0.8 100 256×256×64 0.085 0.154 0.38 
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The LES were carried out with the same numerical code used in Guimarães et al. [16] and the 

physical and computational parameters are chosen as close as possible to those of the reference 

DNS, naturally using coarser grids than in the DNS. 

The amplitude of noise for all inlet velocity fluctuations was set at 10%, as in Guimarães et al. 

[16], however the ratio between the inlet slot-width and momentum thickness was set to H/θ = 15 

[16,139], to avoid the Gibbs phenomena that could arise with the coarser grids used in LES. In the 

following we use subscripts “N” (Newtonian fluid), “Sm” (Smagorinsky) and “Dyn” (dynamic 

Smagorinsky) to denote the various subgrid-scale stress closures used in the computation. 

Subscript “f” represents a second LES carried out using a finer grid. The main details of the 

simulations are summarized in Table 7. 2, where the reported values of 𝐴𝛿 , 𝐴𝑈𝑐 , 𝐴𝜎𝑐  were obtained 

using the dynamic Smagorinsky model. 

In all simulations and similarly to the DNS of Guimarães et al. [16], the Reynolds number was 

equal to Re=3500, and the ratio of the solvent to total viscosity, and the maximum dumbbell 

extensibility were equal to 𝛽 = 0.8 and 𝐿2 = 104, respectively. The domain size was 𝐿𝑥 =

19.2𝐻 , 𝐿𝑦 =24𝐻 in the streamwise and normal directions, and 𝐿𝑧 = 6𝐻 in the spanwise direction, 

for a ‘normal’ grid size with 192×192×48 grid points, and a ‘finer’ grid size with 256×256×64 

points. By considering 𝜆 = 0.3, 0.6, 0.9 s, the global Weissenberg number became equal to Wi = 

1.1, 2.2, 3.3.  

 

7.3.1.Instantaneous vorticity and trace of conformation tensor field 

Figure 7. 10 (a)-(d) show contours of instantaneous vorticity magnitude normalized by 

(𝑈𝐽 − 𝑈∞
𝑖𝑛)/𝐻 in the (x,y) plane of the turbulent planar jet obtained by LES for Newtonian and 

viscoelastic flows at Weissenberg numbers, Wi=1.1, 2.2, 3.3. These results were obtained in the 

finer grid (LESf) and used the dynamic Smagorinsky model.  

The Newtonian contours in Figure 7. 10 (a) are very similar to those shown in Guimarães et al. 

[16], for the same physical conditions. Kelvin-Helmholtz vortices emerge at about at x/H ≈ 4 for 

all simulations, and tend to break up into smaller-scale eddies after about x/H ≈ 6. By about 

x/H≈10-12 the flow seems to have attained the typical features of fully developed turbulence, with 

a clear display of many small-scale eddies without any preferential direction.  
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(a) Wi=0.0, |𝜔+|𝑚𝑎𝑥 = 9.15 

 
(b) Wi=1.1, |𝜔+|𝑚𝑎𝑥 = 7.65 

 
(c) Wi=2.2, |𝜔+|𝑚𝑎𝑥 = 4.98 

 
(d) Wi=3.3, |𝜔+|𝑚𝑎𝑥 = 4.55 

Figure 7. 10. Contours of instantaneous vorticity normalized by (𝑈𝐽 − 𝑈∞
in)/𝐻 at the middle plane 

of the domain (z=0) for (a) Newtonian and viscoelastic flows at Wi of (b) 1.1, (c) 2.2 and (d) 3.3. 

The results were obtained in the finer grid (LESf) using the dynamic Smagorinsky model. 
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As reported by Guimarães et al. [16] and the other extensive studies on turbulent viscoelastic fluids 

[153-156] the main effect of increasing the Wi number in the turbulent planar jet structure is i) a 

significant suppression of small-scale motions (compared to the Newtonian reference case), with 

a concomitant considerable reduction of the vorticity magnitude as observed by the range of values 

of |𝜔+| obtained, ii) the elongation of the eddy structures, and iii) a reduction of the jet spreading 

rate. All of these features are clearly shown in Figure 7. 10. 

The effect of polymers on the dampening of the vorticity magnitude can be well appreciated in 

these figures, Figure 7. 10, since by increasing the Wi number from Wi =0 (Newtonian) to 3.3 

causes the maximum vorticity magnitude to move from |𝜔+|max = 9.15 for the LES of the 

Newtonian fluid, into |𝜔+|𝑚𝑎𝑥 = 4.55 for the LES of FENE-P fluid, the coherent structures 

become more elongated and spread at a lower rate. Similar observation were reported in Guimarães 

et al. [16]. 

Figure 7. 11 shows contours of the trace of conformation tensor tr(C) which is proportional to the 

elastic energy stored by the stretched polymer molecules, for Wi= 1.1, 2.2, and 3.3, at the mid-

plane of the computational domain (z=0), and at the same instant of time of Figure 7. 10. To help 

the visualizations, the range of the color maps was taken to be much lower than maximum tr(C) 

for all cases. Maxima of tr(𝐶) occurs in the transitional region, and when approaching the far field 

tr(C) decreases. Similarly to other studies e.g. Valente at al. [13], Guimarães et al [16], it was 

observed that even for the most extreme scenario (Wi= 3.3), tr(C)max≈4500 in the fully developed 

turbulence region (at x/H≈14) corresponding to tr(C)max/L
2=0.45. However, inspection of the 

instantaneous fields show that the probability of having local values of tr(C)max/L
2 is very low, and 

generally those values remain tr(𝐶)max/𝐿
2  ≪ 1. 

 



136 

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 11. The contour of the trace of conformation tensor tr(C) for (a) Wi= 1.1, (b) 2.2, and (c) 

3.3 at the middle of the computational domain (z=0), and correspond to the same time of Figure 7. 

10 (b)-(d). The results were obtained in the finer grid (LESf) using the dynamic Smagorinsky 

model. 

 

7.3.2.Classical statistics 

In this section we analyze the statistical quantities obtained from the several LES carried out with 

the combined dynamic Smagorinsky and DSIM models, by comparing them with the statistics 

obtained in the reference DNS [16]. In some simulations the classical Smagorinsky model was 

also used. It is worth to mention that in this section whenever “mean” with the symbol of overbar 
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on the corresponding terms is used, it shows statistical quantities meaning that to obtain that 

quantity we perform both time average and spatial average in the homogenous direction. 

Guimarães et al. [16] showed that in turbulent viscoelastic jets the shear layer thickness 𝛿(𝑥) and 

the mean centerline velocity decay �̅�𝑐(𝑥), evolve as simple functions of the streamwise distance 

𝑥,  

𝛿(𝑥)

𝐻
= 𝐴𝛿 (

𝑥 − 𝑥0
𝐻

) (7- 29) 

and  

(
𝑈𝑐(𝑥)

𝑈𝐽
)

−2

= 𝐴𝑈𝑐 (
𝑥 − 𝑥0
𝐻

) 
(7- 30) 

where 𝐴𝛿  and 𝐴𝑈𝑐 are constants and 𝑥0 is the virtual jet origin, and that increasing the Wi number 

decreases both the shear layer thickness and the centerline velocity decay rates. Notice that because 

fluid viscoelasticity and the subgrid-scale models tend to delay the transition to turbulence, the 

comparison between the different models has to be focused on the analysis of the spreading and 

decay rates, as measured by 𝐴𝛿  and 𝐴𝑈𝑐, and not in the evolution of 𝛿(𝑥) and �̅�𝑐(𝑥) from the jet 

inlet.  

 
(a) 

  
(b) 

Figure 7. 12. Evolution of the shear layer thickness (a) and jet centerline velocity decay (b) in LES 

of turbulent planar jets of Newtonian and FENE-P fluids at Wi=1.1, 2.2, 3.3 and the spread rate 

lines for low and large Wi number obtained by DNS. Closures used were the dynamic Smagorinsky 

and DSIM models in the finer grid (LES1.1f, LES2.2f, and LES3.3f) and compared with the reference 

Newtonian case (LESNf). Dashed lines connecting symbols are a guide to the eye and the solid 

straight lines show the rate laws obtained by DNS.   



138 

 

Figure 7. 12 (a)-(b) show the streamwise variation of the jet half-width and centerline velocity 

decay, respectively, for the simulations carried out with the finer grid. The corresponding values 

of 𝐴𝛿  and 𝐴𝑈𝑐, in the region 9 ≤x/H≤ 18, are listed in Table 7. 1. The decay rates 𝐴𝛿  and 𝐴𝑈𝑐  for 

the Newtonian LES (LESNf) are within the ranges of 0.092≤𝐴𝛿≤0.118 and 0.093≤𝐴𝑈𝑐≤0.220, that 

have been reported in previous experimental [159-163] and numerical (DNS) [164] studies, for 

Newtonian turbulent jets. Regarding the viscoelastic LES and in agreement with the DNS of 

Guimarães et al. [16] the present LES show that increasing the Weissenberg number postpones the 

transition to fully developed turbulence and reduces the values of values 𝐴𝛿  and 𝐴𝑈𝑐 at high Wi. 

Indeed, up to Wi=1.1, the values of 𝐴𝛿  and 𝐴𝑈𝑐remain close to the Newtonian values, however, for 

Wi=2.2 and 3.3 both 𝐴𝛿  and 𝐴𝑈𝑐  are considerably reduced, while still obeying a linear scaling law 

with 𝐴𝛿 = 0.101, and 0.082, and 𝐴𝑈𝑐 = 0.171, and 0.160, respectively. Moreover, the results are 

qualitatively consistent with several experimental studies e.g. references [165-166]. 

  
(a) 

 
(b) 

 
(c) 

Figure 7. 13. Effect of the SGS stress model on the evolution of shear layer thickness in the 

streamwise direction for the turbulent planar jet flows of FENE-P fluid for different SGS stress 

closures at Wi of (a) 1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation 

tensor equation, and Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum 

equation. 
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To study the differences from the SGS model used to compute the SGS stresses, Figure 7. 13 and 

Figure 7. 14 show the spreading and velocity decay rates, respectively, obtained in the LES of the 

turbulent jet, using the classical Smagorinsky and the dynamic Smagorinsky models. It is clear 

that the dynamic Smagorinsky model performs better than the Smagorinsky closure, in particular 

for the finer grids. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. 14. The evolution of jet centerline velocity decay in streamwise direction-planar jet flow 

of FENE-P fluid for various combination of SGS and Wi=1.1(a), 2.2(b), 3.3(c). 

Figure 7. 15 (a-c) also analyzes the effect of the SGS stress closures on the transverse profiles of 

the normalized mean streamwise velocity by comparing these profiles at 𝑥/𝐻 = 12 with the results 

from the reference DNS. As expected the mean streamwise profiles collapse, which is consistent 

in the self-similar region of the flow, but with the dynamic Smagorinsky closure performing better 

than the classical Smagorinsky model (results closer to the DNS data of [16]). Moreover, in 

agreement with the DNS of Guimarães et al. [16] the effect of increasing Wi number on  𝑢/�̅�𝑐(𝑥) is 

negligible. 
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(a) 

 
(b) 

 
(c) 

Figure 7. 15. Effect of SGS stress model on the transverse profiles of streamwise mean velocity 

normalized by the centerline velocity at x/H=12 for Wi of (a) 1.1, (b) 2.2 and (c) 3.3. The DSIM 

closure is used in the conformation tensor equation, and Smagorinsky and dynamic Smagorinsky 

for SGS tensor of momentum equation.   

Figure 7. 16 until Figure 7. 18 (a)-(c) show the corresponding streamwise evolutions of the normal 

components of the Reynolds stress tensor on the centerline, here represented as root-mean-square 

(rms) of the velocity fluctuations √𝑢′2, √𝑣′2, and √𝑤′2 predicted by LES, and normalized by 

mean centerline velocity 𝑈𝑐(𝑥). The figures include data from the reference DNS (Guimarães et 

al. [16]). The rms of the velocity fluctuations of LES follow closely the corresponding DNS results, 

particularly when the combination of dynamic Smagorinsky and DSIM closures are used. For 

Wi≤1.1, the normal Reynolds stresses gradually increase along the transition region until a peak at 

the beginning of the self-similar region (x/H≈11), and further downstream their values slightly 

decrease as the flow attains the fully developed turbulent flow region. However, for Wi≥2.2 the 

magnitude of the Reynolds stresses decreases considerably, compared with the turbulent 

Newtonian jet. Generally speaking, as reported by Guimarães et al. [16] the role of the polymers 
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on the velocity fluctuations can be summarized as postponing the transition to turbulence and by 

reducing the Reynolds stresses in the self-similar region, due to a depletion of the small scales of 

motion caused by a preferential transfer of kinetic energy into the polymer molecules, instead of 

the classical multi-scale transfer into the solvent via the Richardson-Kolmogorov energy cascade. 

This tendency to the attenuation of the Reynolds stresses is also reproduced by the present LES, 

particularly for the combination of the dynamic Smagorinsky and the DSIM model.  

 
(a) 

 
(b) 

 
(c) 

Figure 7. 16. Effect of SGS stress model on the evolution of the root-mean square of the streamwise 

velocity fluctuations √𝑢′2 along the centerline, normalized by the centerline mean velocity 

(�̅�𝑐(𝑥)), for Wi of (a) 1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor 

equation and Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   
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(a) 

 
(b) 

 
(c) 

Figure 7. 17. Effect of SGS stress model on the evolution of the root-mean square of the streamwise 

velocity fluctuations √𝑣′2 along the centerline, normalized by the centerline mean velocity 

(�̅�𝑐(𝑥)), for Wi of (a) 1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor 

equation and Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   
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(a) 

 
(b) 

 
(c) 

Figure 7. 18. Effect of SGS stress model on the evolution of the root-mean square of the streamwise 

velocity fluctuations √𝑤′2 along the centerline, normalized by the centerline mean velocity 

(�̅�𝑐(𝑥)), for Wi of (a) 1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor 

equation and Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   

 

Figure 7. 19 until Figure 7. 21(a)-(c) show the corresponding effects, now on the transverse profiles 

of the rms of the velocity fluctuations  √𝑢′2 , √𝑣′2 , and √𝑤′2 predicted by LES. These are 

normalized by the centerline mean velocity �̅�𝑐(𝑥) and the reference DNS profiles are also shown. 

In the self-similar region (𝑥/𝐻 = 12) the rms profiles do not collapse as seen previously with the 

mean velocity profiles, but are close to the DNS profiles, in particular when relying on the dynamic 

Smagorinsky for the SGS stress. In all cases the DSIM closure was used for the SGS distortion in 

the constitutive equation.  
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(a) 

 
(b) 

 
(c) 

Figure 7. 19. Effect of SGS stress model on the mean profiles of the rms of the streamwise velocity 

fluctuations √𝑢′2, normalized by the centerline mean velocity �̅�𝑐(𝑥) at 𝑥/𝐻 = 12 for Wi of (a) 

1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor equation and 

Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   
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(a) 

 
(b) 

 
(c) 

Figure 7. 20. Effect of SGS stress model on the mean profiles of the rms of the streamwise velocity 

fluctuations √𝑣′2, normalized by the centerline mean velocity �̅�𝑐(𝑥) at 𝑥/𝐻 = 12 for Wi of (a) 

1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor equation and 

Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   
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(a) 

 
(b) 

 
(c) 

Figure 7. 21. Effect of SGS stress model on the mean profiles of the rms of the streamwise velocity 

fluctuations √𝑤′2, normalized by the centerline mean velocity �̅�𝑐(𝑥) at 𝑥/𝐻 = 12 for Wi of (a) 

1.1, (b) 2.2 and (c) 3.3. The DSIM closure is used in the conformation tensor equation and 

Smagorinsky and dynamic Smagorinsky for SGS tensor of momentum equation.   

 

7.4.Assessment of the self-similar theory of viscoelastic turbulent planar jets 

In this section we assess the performance of LES in the reproduction of the main theoretical results 

derived by Guimarães et al. [16] for the far field region of viscoelastic turbulent planar jets. In this 

theory Guimarães et al. [16]  considered Townsend’s hypothesis of self-preservation [167] together 

with the ideas put forward by Lumley [61] to describe the flow features of turbulent flows of 

viscoelastic fluids. In short, Lumley [61] defines characteristic velocity (𝑢∗) and length (𝑟∗) scales, 

defined as follows, 

𝑢∗ = √𝜆휀𝑠 (7- 31) 

𝑟∗ = √𝜆3휀𝑠 (7- 32) 
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where 휀𝑠 is the mean viscous dissipation rate of the solvent calculated by  

휀𝑠 = 2𝜐s𝑆𝑖𝑗
′ 𝑆𝑖𝑗

′  (7- 33) 

and 𝑆𝑖𝑗
′  is the fluctuating rate-of-strain tensor, obtained from, 

𝑆𝑖𝑗
′ =

1

2
(
𝜕𝑢𝑖

′

𝜕𝑥𝑗
+
𝜕𝑢𝑗

′

𝜕𝑥𝑖
). (7- 34) 

as mentioned, in this section, the symbol of overbar means both time average and spatial average 

in the homogenous direction. 

One of the results obtained by Guimarães et al [16] in the development of the theory of viscoelastic 

planar jets is the identification of the reference velocity and time scales that characterize the all the 

flow statistics in the self-similar far field region. In particular they found that the profiles of 

polymer stress all collapse into the same curve when normalized by 𝜌𝑈𝑐
3(𝑥)𝑟∗(𝑑𝛿(𝑥)/𝑑𝑥)/

(𝑢∗(𝑥)𝛿(𝑥)). They also showed that for sufficiently high Wi numbers these normalized profiles 

are Universal.  

Figure 7. 22 (a) shows the mean profiles of polymer stresses normalized as in Guimarães et al. 

[16], at x/H=12, for several Weissenberg numbers Wi. It is clear that the polymer stresses obtained 

from the present LES, using Dynamic Smagorinsky and the DSIM model, collapse into the same 

profile for the higher Weissenberg numbers, in agreement with the DNS and the theoretical results 

presented in Guimarães et al. [16].  

  
Figure 7. 22. Mean profiles of polymer shear 

stresses, normalized as in Guimarães et al. 

[16], for several Weissenberg numbers Wi at 

x/H=12, SGS stress closed by the dynamic 

Smagorinsky model.  

Figure 7. 23. Streamwise evolution of the 

maximum value of the mean polymer shear 

stresses, normalized as in Guimarães et al. 

[16], for several Weissenberg numbers, SGS 

stress closed by the dynamic Smagorinsky 

model. 
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Guimarães et al. [16] also derived the scaling of the decay of the maximum polymer stresses, which 

is described by the following relation, 

(
𝜎𝑐
𝑝(𝑥)

𝑊𝑖𝜌𝑈𝐽
2𝑑𝛿(𝑥)/𝑑𝑥

)

−2/5

= 𝐴𝜎𝑐 (
𝑥 − 𝑥0
𝐻

), (7- 35) 

where 𝐴𝜎𝑐 is a scaling factor. Figure 7. 23 shows the streamwise evolution of the normalized 

maximum polymer shear stresses obtained by LES, with the SGS stresses given by the dynamic 

Smagorinsky model. It is clear the present results also display the theoretical -5/2 scaling law in 

the self-similar far-field region, and thus agree with the turbulent viscoelastic jet theory [16]. 

Moreover, the constant 𝐴𝜎𝑐 decreases with increasing Wi numbers displaying values that are 

consistent with the DNS data of Guimarães et al. [16], particularly for the higher Wi numbers e.g. 

Wi≥2  (compare the values of this factor in Table 7. 1 and Table 7. 2). 

Finally, we assess also the proposed scaling relations for the Reynolds shear stress in viscoelastic 

turbulent planar jets. Guimarães et al. [16] ascertained that the Reynolds shear stress should be 

normalized as 𝑢′𝑣′ /(�̅�𝑐
2𝑑𝛿(𝑥)/𝑑𝑥) for similar values of the Deborah number,  

𝐷𝑒 =
𝜆

𝑡𝑐
 (7- 36) 

in order to obtain the corresponding self-similar profiles. In Eq. (7- 36) 𝑡𝑐 = 𝛿(𝑥)/𝑈𝑐(𝑥) is a 

convective time scale characteristic of the large energy-carrying eddies. 

Figure 7. 24 shows profiles of normalized Reynolds shear stresses for the present LES at a single 

location (x/H=12) and Wi=1.1, 2.2, and 3.3, (Figure 7. 24 (a)), and at different locations 

x/H=10,11,12, for Wi =2.2, 3.3 (Figure 7. 24 (b)), but which correspond to approximately the same 

Deborah numbers (De ≈ 1.0−1.3). Again, the profiles of the Reynolds stresses normalized as in 

Guimarães et al. [16] collapse into the same profile (Figure 7. 24-b), clearly indicating that the 

present LES recover the expected theoretical profiles observed in the reference DNS.  
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(a) 

 
(b) 

Figure 7. 24. Mean profiles of Reynolds shear stresses 𝑢′𝑣′ at x/H=12 for several De numbers 

normalized by (a) 𝑈𝑐
2 and by (b) 𝑈𝑐

2𝑑𝛿(𝑥)/𝑑𝑥.  

 

7.5.Energy spectrum 

The existence of polymer would introduce another subrange between inertial range (I) and viscous 

dissipation range (V) which is called elastic subrange (E). As shown in (Figure 7. 25) the polymer 

interaction with the flow scales of motion change the slope of energy spectrum for the wave larger 

than a wavenumber 𝑙𝑝~√휀𝑠𝜆3 is called the Lumley length scale, 𝜆 is polymer relaxation time. 

Fouxon and Lebedev [168] proposed the spectrum model for dilute polymer solution and 

Vonlanthen [169] verified it by experimental study. Vonlanthen [169] stated that the Lumley scale 

(𝑙𝑝) separates Elastic subrange from inertial cascade region, and the features of the Elastic 

subrange are determined by elastic properties of fluid and turbulent dissipation rate. The partial 

transferred kinetic energy from Inertial subrange converted into elastic energy and stored in the 

stretched polymer. Although some portion of the elastic energy is dissipated because of interaction 

of polymer with motion scale of flow explained by viscous drag effect on polymer configuration, 

the remained portion of elastic energy converted and transferred back to the turbulence kinetic 

energy. This feature called back reaction and is the main properties of Elastic subrange [169],[170]. 

As a result, the energy flux continuously decrease from higher toward lower wavenumbers. 

Fouxon and Lebedev [168] proposed that energy spectrum as a function of the wave number (κ) 

in elastic subrange follow a power-law with a slope of -3 in log-log coordinates, which is valid 

when elastic and kinetic forces are in equilibrium. They introduced following equation for energy 

spectrum variation inside the elastic subrange 
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𝐸(𝜅) = 𝐶𝑘 휀𝑠

2
3𝑙𝑝

5
3(𝑙𝑝𝜅)

−3. 
(7- 37) 

n which where 휀𝑠 is dissipation rate of Newtonian solvent defined by Eq. (7- 33). 

For final verification, energy spectra profiles in a specific locations of different simulations are 

plotted in Figure 7. 26 (a)-(c). 

 

Figure 7. 25. Energy spectrum of dilute polymer solution with three main subregions: (I)𝜅 <

1/𝑙𝑝, Kolmogorov’s inertial cascade; (E)1/𝑙𝑝 < 𝜅 < 1/η𝑝, Elastic subrange; (V) 𝜅 > 1/η𝑝, 

dissipation subrange is analogous to the Newtonian turbulent flow spectrum (broken line) [169]. 

In order to assess the performance of present LES closure, the detailed spectral energy behavior of 

the models is analyzed. Figure 7. 26 shows the kinetic energy spectra E(k) at Wi =1.1, 2.2, and 3.3, 

with combination of dynamic LES simulations and DSIM model while considering fine grids. As 

it is shown, the obtained energy spectra follow the -3 power law in all range of Wi numbers.    
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(a) 

 
(b) 

 
(c) 

Figure 7. 26. The comparison Kinetic energy spectrum for LES simulation with Wi=1.1(a), 2.2(b), 

3.3(c) at 
𝑥

𝐻
= 16.8. 
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Part IV 

 

 

Every story comes to an end
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Chapter 8: Closure 

8.1.Summary of main conclusions 

The main objective of this thesis was the development of an LES model for viscoelastic turbulent 

wall-free flows, therefore the DSIM model developed by Ferreira et al. [12] for LES of 

homogenous isotropic turbulent flow of viscoelastic fluid was extended and assessed for the first 

time in an inhomogeneous turbulent flow configuration. The flow analyzed was a turbulent planar 

jet, for which a reference DNS exists and a new theory has been recently developed to explain the 

flow statistics at the far field fully developed turbulent regime (Guimarães et al. [16]). The 

procedure consisted in classical a-priori tests, which are based on applying a box filter, with filter 

sizes ∆/∆x = 2, 4 and 8 to separate the resolved and unresolved/subgrid-scale components of the 

flow, using the reference DNS of viscoelastic turbulent planar jets carried out by Guimarães et al. 

[16].  

The analysis revisited all the assumptions previously used by Ferreira et al. [12] in isotropic 

turbulence, and considered their validity in turbulent viscoelastic free flows. It turned out that all 

those assumptions, and most notably the assumptions of i) scale similarity of the subgrid-scale 

polymer stretching terms, and of ii) the local equilibrium of the elastic energy production and 

dissipation, hold remarkably well in the present configuration.   

The DSIM model for the SGS polymer stretching term in the constitutive equation, together with 

the Smagorinsky and dynamic Smagorinsky models for the SGS stress in the momentum equation, 

were used to carry out LES of the same jets simulated in Guimarães et al. [16], although using 

much coarser grids. The model combining the dynamic Smagorinsky and DSIM closures gave the 

best results and demonstrated the ability to predict the flow structures and the classical one point 

statistics in the flow with reasonable accuracy. 

In studying the laminar planar jet flow of viscoelastic fluids, by using arguments of boundary layer 

type flow and an order of magnitude analysis of the governing equations, three sets of semi-

analytical solutions were obtained for steady laminar planar jet flow of FENE-P fluids, two of 

which are more restrictive. The more general solution was used to investigate in detail the 

dynamics of this laminar jet flow and was used for the purpose of validating the in-house DNS/LES 

code, as explained below. 
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The three sets of semi-analytical solutions predict essentially the same velocity fields but differ in 

their predictions of the viscoelastic stresses, with the general solution being able to compute all 

four components of the conformation tensor accurately provided the flow Weissenberg number is 

not too high. The accuracy of the delta method was found to deteriorate quickly with Weissenberg 

number, and Olagunju's type solution was unable to predict 𝐶𝑥𝑥 at very low Wi, but to properly 

calculate 𝐶𝑦𝑦 in the whole range of Wi. Using the general semi-analytical solution, the detailed 

study of the planar jet flow characteristics revealed that even though the far-field flow is 

approximately self-similar, at low levels of viscoelasticity all flow properties show approximately 

full self-similar behavior. However, as viscoelasticity becomes locally significant, the solution 

exhibits deviations from such low elasticity asymptotic behavior. This is the case at large values 

of Wi and 𝛽𝑝 and low levels of L, while simultaneously looking at regions close to the inlet, because 

as the jet evolves downstream, the magnitude of the rates of deformation decrease, the effect of 

fluid elasticity is weakened and the flow approaches a low Wi asymptote in which both stresses 

are proportional.  

In this condition, the ratio of polymer and solvent stress |𝜏𝑖𝑗
𝑝 | |𝜏𝑖𝑗

𝑠 |⁄  at the centerline of the jet 

approaches 𝜈𝑃 𝜈𝑠⁄ . For low viscoelastic Mach numbers 𝑀𝛿 ≤ 0.01) the flow is essentially viscous 

for practical purposes, with the most sensitive quantities (𝐶𝑥𝑥 and 𝐶𝑥𝑦) differing from the low 

elasticity limit by less than 1%. In addition, outside the low elasticity flow regime the approximate 

similarity nature of the flow has to be understood in a broad sense, i.e., adequately normalized 

profiles of viscoelastic flow at different locations remain self-similar if their local viscoelastic 

Mach numbers are identical, for the same values of L and 𝛽𝑏. The variations of the peak values of 

the non-zero components of the conformation tensor and their locations are also reported. Rather 

surprisingly, the decay law for the centerline velocity was found to be very weakly dependent on 

fluid rheology so that for practical purposes it is essentially identical to that for Newtonian fluids. 

Finally, the semi-analytical general solution compared well with results of numerical simulations 

of jet flow undertaken with OpenFoam, based on the RheoFoam toolbox. In addition, both 

compared well with the numerical simulations carried out with the in-house code used to perform 

the direct numerical simulation (DNS) and large eddy simulations (LES) of the planar jet flows of 

FENE-P fluids, thus validating the code used in the turbulent flow investigation. 
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The boundary layer flow of FENE-P fluids over a flat plate at zero pressure gradient, initially 

investigated by Olagunju [20], was revisited leading to a more accurate simplified set of 

conformation tensor equations that still allowed a semi-analytical solution to be obtained even if 

limited to low values of the Weissenberg number. Due to the fluid viscoelasticity this solution 

showed an approximate self-similar behavior, contrasting with the full similar behavior of the 

corresponding Newtonian problem. The current semi-analytical solution is more accurate than 

Olagunju's solution for the reasons exposed above for the planar jet flow, namely because the 

simplifications of the conformation equation were restrictive allowing for a better description of 

the polymer stress tensor. 

In addition, we provide a more extensive set of results of the flow characteristics than Olagunju 

did that include profiles of polymer stress and conformation tensor components, asymptotic laws 

of decay of peak stresses and conformation tensor components in the limit of low elasticity as well 

as laws for the location of such peak values. We also present results quantifying the boundary layer 

thickness as well as the displacement and momentum thicknesses. Even though the peak polymer 

shear stresses take place away from the wall, except in the low elasticity limit where the polymer 

and solvent shear stresses are proportional to each other, the peak of the total fluid shear stress is 

always at the wall. For large values of 𝑊𝑖𝑥 and 𝛽p,combined with low values of 𝐿2, one of the 

assumptions of the boundary layer theory starts to break down.  

As is well known the boundary layer theory is not valid in the vicinity of the plate leading edge, 

even for a Newtonian flow, but since 𝑊𝑖𝑥 ∝ 𝑥
−1 this region extends further downstream of the 

leading edge for viscoelastic fluids. In order to assess the shortcomings of the semi-analytical 

solution under these conditions, and in particular at large and very large Weissenberg numbers, we 

provide results from the numerical solution of the full set of complete (non-simplified) governing 

equations using the RheoFoam toolbox of OpenFoam in order to understand the boundary layer 

flow and to better define the range of validity of the semi-analytical solution. For large 

Weissenberg numbers the semi-analytical solution still approximates reasonably well the flow 

characteristics, but as the Weissenberg number further increases the transverse variation of the 

conformation tensor components become increasing complex, exhibiting changes in the concavity 

of the profiles that go together with the development of large peak values within the boundary 
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layer when shear rates are very large, that the accuracy of semi-analytical solution for predicting 

polymer stress decreases. 

The idea of presenting approximate similarity solutions for steady laminar viscoelastic flows was 

further extended to the mixing layer flow case in which boundary layer flow arguments are still 

valid. Hence, the same procedure was followed for the mixing layer flow of FENE-P fluids leading 

to a semi-analytical solution that is mathematically approximately self-similar. Again, under 

conditions of low elasticity, the normalised flow characteristics showed an approximately full self-

similar behavior with kinematic quantities collapsing on the corresponding Newtonian self-similar 

data and polymer-based quantities collapsing also onto single self-similar curves. Consequently, 

under these low elasticity flow conditions it was also observed that the ratio of polymer over 

solvent stresses (|𝜏𝑥𝑦
p
|/|𝜏𝑥𝑦

s | and |𝜏𝑦𝑦
p
|/|𝜏𝑦𝑦

s |) were equal to the ratio of polymer to solvent 

kinematic viscosities. As elasticity levels increase, by taking on larger values of Wix and 𝛽𝑝 and/or 

low values of L, there is a progressive deviation from the low Wi asymptote curves. This thesis 

also reports the variations of dimensionless mixing layer thickness (𝛿 𝑥⁄ ), displacement thickness 

(𝛿∗ 𝑥⁄ ) and momentum thickness (𝜃 𝑥⁄ ). At low elasticity they follow the corresponding 

Newtonian data, but on increasing elasticity levels a decrease of these quantities is observed. The 

variations of the peak values of the non-zero components of the conformation tensor and their 

spatial locations are also reported.  

It is important to realize that the more extensive work carried out for the approximate similar 

boundary layer flow solution, that allowed the definition of the range of flow conditions for its 

validity, will necessarily have an equivalent in both the approximate laminar planar jet and planar 

mixing layer flows. This means that the current approximate solutions for laminar flow are 

accurate provided the polymer normal stress term in the streamwise momentum equation remains 

negligible relative to the sum of the solvent and polymer shear stress terms in the same equation. 

However, as elasticity effects increase to high values, there will be a severe increase in the polymer 

normal stress and its streamwise gradient in the momentum equation and the correct flow behavior 

will need the full solution of the full set of governing equations. 
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8.2.Suggestion for future works 

The investigation in this thesis and the review of the literature has identified the need for further 

research in a number of topics that is discussed below. 

For turbulent viscoelastic fluid flows there is still the need to develop an LES model for wall flows, 

whether an extension of the DSIM model or a different one. This requires performing several DNS 

of, say, channel or pipe flow, over a range of Reynolds and Weissenberg numbers, maximum 

polymer extensibility and concentration to create a bank of data which will be utilized to perform 

a-priori and a-posteriority tests. Afterward the DSIM closure as well as several other perspective 

closure of the SGS stresses should be tested to assess their performance on simulating the FENE-

P turbulent wall-flow. The DSIM model may require some modification.  

Regarding the SGS stress in the momentum equation, all possible LES models such as 

Smagorinsky, dynamic Smagorinsky, Vreman, and shear improved Smagorinsky models, to name 

a few, should be considered to assess their performance in turbulent wall-flow simulation in 

conjunction with the closures for the SGS terms of the conformation equation. In the present jet 

flow investigation, for the SGS term of the polymer stretching of the conformation tensor equation, 

the isotropic DSIM closure was found to be an adequate option to utilize in LES, however, using 

anisotropic DSIM model for wall-flow may provide more accurate results, consequently both 

options should be studied. Furthermore, it was here observed that the SGS term of advection term 

of conformation tensor is much lower than SGS term of polymer stretching. This hypothesis must 

be carefully investigated for wall-flow and, if the hypothesis fails, the advection SGS term will 

need to be assessed and a closure proposed for the LES model. By getting inspiration from 

available LES closures, one can propose new SGS models for that term.   

As mentioned earlier, although the FENE-P constitutive equation has the minimum ingredients 

needed to describe the rheology of dilute polymer solutions, the model has its own constrains. 

Although FENE-P is the cheapest of FENE type models from the computational point of view and 

it is a proper model to study statistically steady state turbulent flows, which were the flows of 

interest in the present thesis, its accuracy decreases considerably if it is utilized for transient 

elongational flows. Therefore, another good approach is to use more accurate constitutive 

equations to better describe rheological properties of viscoelastic fluids. Considering the idea of 

Li et al., [86], utilizing the multi-mode FENE-P model would be a good start, since they stated that 
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the new model describes the real physical process much better than single mode FENE-P model. 

FENE-LS [48], FENE-PM [49], and FENE-ALS-C [50] are also appropriate models if a more 

elaborate model than FENE-P is required. It should be noted that implementing these two 

suggestions would increase the computational cost but may provide more accurate results. 

In regards to the laminar flow investigations of boundary layer type flows carried out in this thesis, 

we observed that the proposed approximate similarity solution deviate from RheoFoam results for 

very large Weissenberg numbers therefore the semi-analytical solution were unable to accurately 

describe those flows. Furthermore, by performing an order of magnitude analysis of conformation 

tensor and momentum equations for highly elastic flows, a set of very complex equations were 

obtained. Therefore, as a suggestion of future research the present contributions could be 

completed if Rheofoam toolbox is utilized to study the effect of larger elasticity on flow 

characteristics. In addition, one may try to see whether it is possible to obtain also a semi-analytical 

solution under flow conditions of predominance of the normal gradient of the normal polymer 

stress, bearing in mind that such effort may require considerable mathematical skills. 

The study of the transport phenomena, such as heat and mass, in these laminar and turbulent flows 

of viscoelastic fluids is another topic of interest. Of main interest in terms of industrial applications 

are conditions in which we have passive scalar transport to start with. For turbulent flow it will 

need the development of new closures for the corresponding terms in the governing equations and 

additional DNS simulations, for laminar flow, such endeavour can be carried out also with the use 

of a semi-analytical method, pursuing approximate similarity solutions limited to low Wi number 

and utilizing the Rheofoam toolbox of OpenFoam for large Wi number flows. Furthermore, the 

viscoelasticity effect on passive scalar transport in turbulent flow can be studied by the present 

developed DNS code. 

Further investigation can be carried out for both laminar and turbulent flows by considering 

pressure gradient effects on turbulence models and laminar flow solutions. In the case of turbulent 

wall flows of viscoelastic fluids the territory is uncharted also in terms of the effects of wall 

roughness. 
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Appendix 

A-Local non-similarity solution for boundary layer FENE-P Flow 

In the present study, an approximate similarity solution is proposed for laminar boundary layer 

FENE-P fluid. Although we saw the proposed solution depends on both 𝜂 and 𝑥, to reduce the 

level of complexity, it is assumed that the streamwise derivatives of similarly functions 𝐺(𝜂, 𝑥), is 

assumed to be very small 
𝜕𝐺(𝜂,𝑥)

𝜕𝑥
= 𝑄(𝜂, 𝑥) ≈ 0 and it is neglected in deriving the governing 

equation in approximate similarity approach. However, the general approach to deal with such this 

problem is non-similarity solution [124-129] in which the streamwise derivatives of similarly 

functions shown by 𝑄(𝜂, 𝑥) ≠ 0 should consider in deriving the governing equation. Again we 

introduce approximate similarity variables consistent with the thin boundary layer approximation 

for Newtonian fluids [23,24], and in dimensionless form for generality. Here, the following 

similarity variables 𝜂 and function 𝐺(𝜂) are utilized [23,24]:  

𝜂 = √
𝑈∞
2𝜈0

𝑦

𝑥
1
2⁄
, 𝐺(𝜂, 𝑥) =

𝜓

√2𝑈∞𝜈0𝑥
1
2⁄
, 

 

(A- 1) 

The streamwise and normal velocities are recovered from their definitions, as  

𝑢 = 𝑈∞𝐺
′(𝜂, 𝑥), (A- 2) 

𝑣 = √
𝜈0𝑈∞
2𝑥

(𝜂𝐺′(𝜂, 𝑥) − 𝐺(𝜂, 𝑥)). (A- 3) 

where the prime indicates derivative in order to 𝜂. We also consider that the Peterlin function takes 

the form  

𝐾(𝜂, 𝑥) = 𝑓(𝐶𝑘𝑘). 
(A- 4) 

Substitution of all expressions into Eq. (2- 10c) leads to the following third order algebraic 

equation for 𝐾(𝜂, 𝑥)   

𝐾3 + 𝐶0𝐾
2 + 𝐶1𝐶4𝐾 + 𝐶2𝐺

′′2 + 𝐶3𝐶4 = 0 (A- 5) 

with dimensionless coefficients 

𝐶0 = (
3𝐼 − 3𝑓(𝐿) − 𝐿2

𝐿2
),  

𝐶1 = −4𝜆
2𝑈2,  

(A- 6) 
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C2 = −
𝜆2𝑓(𝐿)𝑈∞

3

𝜈0𝐿2
𝑥−1 = −

𝑓(𝐿)𝑅𝑒𝑥𝑊𝑖𝑥
2

𝐿2
,  

𝐶3 =
4𝜆2(𝐿2 + 𝑓(𝐿) − 3𝐼)𝑈2

𝐿2
, 

𝐶4 = 𝑄
′2 − 𝑥−1𝜂𝑄′𝐺′′ +

𝑥−2𝜂2𝐺′′
2

4
. 

Here, 𝐼 = 1 if the Peterlin functions are given by Eq. (2- 10c) and 𝐼 = 0 otherwise. Coefficients 

𝐶1 to 𝐶4 in Eq. (A- 6) depend on x,𝜂 and 𝑄′, therefore the solution of K will depend on 𝜂 and x and 

also 𝑄′.  

Regarding the x-momentum equation, by substituting 𝐶𝑥𝑦 (from Eq. (3-25)) into Eq. (3-10), 

𝜕𝜓 

𝜕𝑦
(
𝜕2𝜓

𝜕𝑥𝜕𝑦
) − (

𝜕𝜓 

𝜕𝑥
) (
𝜕2𝜓

𝜕𝑦2
) = 𝜈s

𝜕3𝜓

𝜕𝑦3
 

+𝜈p𝑓(𝐿)

(

 
 2𝜆

𝜕2𝜓
𝜕𝑥𝜕𝑦

𝜕3𝜓
𝜕𝑦3

+ 𝑓(𝐶𝑘𝑘)
𝜕3𝜓
𝜕𝑦3

− 2𝜆
𝜕3𝜓
𝜕𝑥𝜕𝑦2

𝜕2𝜓
𝜕𝑦2

−
𝜕𝑓(𝐶𝑘𝑘) 
𝜕𝑦

𝜕2𝜓
𝜕𝑦2

(2𝜆
𝜕2𝜓
𝜕𝑥𝜕𝑦

+ 𝑓(𝐶𝑘𝑘))

2

)

 
 
 . 

(A- 7) 

together with the similarity variables in Eq. (A- 7) and algebraic manipulation, it becomes  

𝐺′𝑄′ − 𝑄𝐺′′ −
𝑥−1

2
𝐺′′𝐺 = (1 − 𝛽) 

𝑥−1

2
𝐺′′′ 

+𝛽𝑓(𝐿)
𝑥−1

2
(
−2𝜆𝑈𝑄′′𝐺′′ +𝑊𝑖𝑥𝐺′′

2
− 𝐾′𝐺′′

(2𝜆𝑈𝑄′ − 𝜂𝑊𝑖𝑥𝐺′′ + 𝑘)2
+

2𝜆𝑈𝑄′𝐺′′′ + 𝑘𝐺′′′

(2𝜆𝑈𝑄′ − 𝜂𝑊𝑖𝑥𝐺′′ + 𝑘)2
) 

(A- 8) 

again, the dependence on x in addition to the dependence on 𝜂,𝑄, 𝑄′, and 𝑄′′ is clear and this 

equation also involves the first derivative of K relative to 𝜂, which is obtained from Eq. (A- 5) and 

is given by  

𝐾′ = 

−

(𝐶1𝐾 + 𝐶3) (2𝑄
′′𝑄′ − 𝑥−1(𝑄′𝐺′′ + 𝜂𝑄′′𝐺′′ + 𝜂𝑄′𝐺′′′) +

𝑥−2

2 (𝜂𝐺′′
2
+ 𝜂2𝐺′′′𝐺′′))

𝐶5
 

−
2𝐶2𝐺

′′′𝐺′′

𝐶5
 

(A- 9) 

in which  
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C5 = 3𝐾
2 + 2C0𝐾 + C1𝐶4. (A- 10) 

Upon back-substitution of 𝐾′ of Eq. (A- 9) into Eq. (A- 8), further mathematical manipulation 

leads to the following final form of the momentum equation cast in terms of 𝐺(𝜂, 𝑥) 

𝐺′′′

=
2𝑥(𝐺′𝑄′ − 𝑄𝐺′′) − 𝐺𝐺′′

(1 − 𝛽) + 𝛽𝑓(𝐿) (
(2𝜆𝑈𝑄′ + 𝑘)𝐶5 + (𝐶1𝐾 + 𝐶3)𝜂𝐶6 + 2𝐶2𝐺

′′2

𝐶5(2𝜆𝑈𝑄
′ − 𝜂𝑊𝑖𝑥𝐺′′ + 𝑘)2

)

+

𝛽𝑓(𝐿) (
(2𝜆𝑈𝑄′′𝐺′′ −𝑊𝑖𝑥𝐺′′

2
)𝐶5 − (𝐶1𝐾 + 𝐶3)𝐺

′′(2𝑄′′𝑄′ − 𝑥−1𝜂𝑄′′𝐺′′ + 𝐶6)

(3𝐾2 + 2𝐶0𝐾 + 𝐶1𝐶4)(2𝜆𝑈𝑄
′ − 𝜂𝑊𝑖𝑥𝐺′′ + 𝑘)2

)

(1 − 𝛽) + 𝛽𝑓(𝐿) (
(2𝜆𝑈𝑄′ + 𝑘)𝐶5 + (𝐶1𝐾 + 𝐶3)𝜂𝐶6 + 2𝐶2𝐺

′′2

𝐶5(2𝜆𝑈𝑄
′ − 𝜂𝑊𝑖𝑥𝐺′′ + 𝑘)2

)

 

(A- 11) 

where 

𝐶6 =  
𝑥−2

2
𝜂𝐺′′

2
− 𝑥−1𝑄′𝐺′′. (A- 12) 

To solve the final governing Eq. (A- 11) which depends on 𝑄, 𝑄′, and 𝑄′′, it is required to derivate 

of the Eq. (A- 11) on streamwise direction (x) three times to have individual differential equations 

for 𝑄, 𝑄′, and 𝑄′′, now these four coupled differential equations must be solved. As you can see 

the complexity of the problem increase considerably. However, it is very interesting to mention 

that when we consider 𝑄(𝜂, 𝑥) ≈ 0, we will reach the same equation that we proposed in Eq. (3-

38). 
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 رویا شروع میشه همه چیز با داشتن یه
Beyond the Seas 

 پشت دریاه 
I’ll build a boat, I’ll set it afloat. I’ll get far away 

from this weird land, where there’s nobody in the 

woods of love, to wake up the heroes and the 

heroines. 

آب. به  خت  اندا خواهم  ساخت،  خواهم  آن  دور   قایقی  در  که  ریب،  غ خاک  این  از  شد  خواهم 

ر کند. در بیشه کسی نیست کههیچ  ی عشق، قهرمانان را بیدا
The boat is devoid of fishing nets and my heart does 

not covet any pearls. I will sail on. I will fall in love 

neither with the blue of the seas, nor with the 

mermaids that emerge, and cast their spell on the 

lonesome fishermen. 

و دل از آرزوی مروارید، هم خواهم بست، نه به نه به آبی چنان خواهم راند.قایق از تور تهی  ه دل 

درمی  به  خاک  سراز  که  پریانی  ماهیدریا  تنهایی  تابش  آن  در  و  میآرند،  سر گیران،  از  فسون  فشانند 

 گیسوهشان. 
I will sail on. I will sing,  “Far away one must get.  

Far away one must go.” The men of that city did not 

possess any myths. The women of that city were not 

as plentiful as grapes. No mirror reflected happiness 

over there. Even the puddles did not reflect the 

faintest light.  

شت.چناهم چنان خواهم راند.هم زن   ن خواهم خواند: »دور باید شد، دور. مرد آن شهر اساطیر ندا

، سرخوشیهیچ آیینه  ی انگور نبود.آن شهر به سرشاری یک خوشه چاله   ه را تکرار نکرد.ی تالاری

 آبی حتی، مشعلی را ننمود.  
Far away one must get. Far away one must go, sang 

softly the night. And now it’s high time the windows 

sang their songs. I will sail on, I will sing on. Beyond 

the seas, there’s a city where the windows look out 

on revelation. 

دور. شد،  باید  پنجره دور  نوبت  خواند،  را  سرودش  همهم هست.شب  خواند.  خواهم  چنان چنان 

 ه رو به تجلی باز است. شهری است که در آن پنجرهپشت دریاه   خواهم راند.

The roofs there house the doves that  contemplate 

the fountain of human intelligence. There’s a bough 

of knowledge in every child’s hand in the city. 

فوارهبام به  که  است  کبوترهیی  جای  میه  بشری  هوش  ساله نگرند.ی  ده  کودک  هر  شهر،  دست  ی 

 ی معرفتی است. شاخه
The people there look at a wall as they would 

contemplate a fire ablaze or a pleasant dream. Their 

soil can hear the music of your senses and the wind 

carries the sound of mythical birds. 

چ  چینه  یک  به  شهر  می مردم  لطیف.نان  خواب  یک  به  شعله،  یک  به  که  موسیقی   نگرند،  خاک، 

ی پر مرغان اساطیر میاحساس تو را می  آید در باد. شنود، و صدا
Beyond the seas, there’s a city where the sun is as 

wide as the eyes of dawn worshipers. The poets 

there are the inheritors of water, wisdom, and light. 

There’s a city beyond the seas! 

زه اندا به  خورشید  وسعت  آن  در  که  است،  شهری  دریاه  است.پشت  سحرخیزان  چشمان   ی 

ران وارث آب و خرد و روشنی  پشت دریاه شهری است! اند. شاع
One must build a boat.  
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