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Causal Reasoning in Data

by Ana NOGUEIRA

Determining the cause for a particular event has been a case study for several researchers

over the years. Finding out why an event happens (its cause) signifies that, for example,

if we remove the cause from a system, we can stop the effect. If it is replicated, we can

then create a subsequent effect. The application areas for causal discovery methodologies

are immense, from its use in climate research to business and bio-medical, among many

other areas. For example, in the medical field, this type of causal analysis is quite relevant

in diagnosing certain diseases. If a patient has a specific set of symptoms, and a given

disease A is known for having the same symptoms the patient is experiencing, then it is

possible to infer this patient has, in fact, the disease A.

This thesis’s primary goal is to study how to extract causal relationships from data. Sev-

eral solutions attempt to answer this problem; however, many of these solutions are pri-

marily based on cross-sectional data, meaning that these algorithms are not prepared to

evolve. To achieve this goal, we analyzed the state of art methods and proposed four

different approaches.

Firstly, we analyzed the potential usage of association rules to infer causal relationships

from observational data. In this topic we proposed CRPA-UC, an association rules global

causal discovery methodology. Compared to other methods, the results suggested that

causal association rules uncover potential causal relationships in data more accurately.

As causal discovery methodologies are highly interpretable but perform poorly in pre-

diction problems, we analyzed the potential application of causal discovery in decision

trees to create a semi-causal approach that represents causal relationships but maintains
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a high predictive power. The results showed a resemblance with the traditional method’s

accuracy while creating significantly smaller trees.

Causal discovery methodologies can also be applied to other machine learning tasks, such

as feature engineering. Regarding this topic, we investigated the potential application

of causal discovery methods to generate new features that entail the supposed causal

information about the relations between a target variable and the remaining ones. The

results obtained show that, in the presented problems, the usage of these new features

positively impacts the classification algorithm’s performance.

Finally, we studied the potential conversion of cross-sectional causal methodologies to

be used in time-series data. We analyzed the potential application of such a method in

medical data (data comprised of static and time-series data, measured in irregular time

intervals). We designed and proposed a method to deal with this type of data. The results

showed that the method had a significant gain in terms of performance when compared

to other methods.

As causal discovery is a broad topic, so are the methods that apply it. While cross-

sectional Causal Bayesian Networks continue to be the norm for applying causal discov-

ery to problems, given their properties, they are not the only methods available. In this

thesis, we explored methodologies and techniques different from these traditional meth-

ods to infer causal relationships from data and demonstrated that, in certain situations,

they have better results than the Bayesian Networks.
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Raciocínio Causal em Dados

por Ana NOGUEIRA

Determinar a causa de um determinado evento tem sido caso de estudo para diversos

investigadores ao longo dos anos. Descobrir por que um evento acontece (a sua causa)

significa que, por exemplo, se removermos a causa de um sistema, podemos interromper

o efeito. Se a causa for replicada, podemos criar o subsequente efeito. As áreas de aplica-

ção da descoberta causal são imensas, desde o seu uso em investigação da área do clima,

até business e biomédica, entre muitas outras. Por exemplo, na área médica, este tipo de

análise causal é relevante no diagnóstico de determinadas doenças. Se um paciente tem

um conjunto específico de sintomas, e uma determinada doença A é conhecida por ter os

mesmos sintomas que o paciente está a sofrer, então é possível inferir que esse paciente

tem, de facto, a doença A.

O objetivo principal desta tese é estudar como extrair relações causais de dados. Várias

soluções tentam responder a este problema; no entanto, muitas dessas soluções são ba-

seadas principalmente em dados cross-sectional, o que significa que esses algoritmos não

estão preparados para evoluir ao longo do tempo. Para atingir esse objetivo, analisamos

o estado da arte e propusemos quatro abordagens diferentes.

Em primeiro lugar, analisamos o potencial uso de regras de associação para inferir rela-

ções causais a partir de dados observacionais. Neste tópico propusemos CRPA-UC, uma

metodologia de regras de associação que aplica descoberta causal global. Em comparação

com outros métodos, os resultados sugerem que as regras de associação causal descobrem

possíveis relações causais nos dados com mais precisão.
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Como as metodologias de descoberta causal são altamente interpretáveis, mas apresen-

tam baixo desempenho em problemas de previsão, analisamos a potencial aplicação de

descoberta causal em árvores de decisão para criar uma abordagem semi-causal que re-

presenta relações causais, mas mantém um alto poder preditivo. Os resultados demos-

traram uma semelhança com a precisão do método tradicional, mesmo tempo que cria

árvores significativamente menores.

As metodologias de descoberta causal também podem ser aplicadas a outras tarefas de

machine learing, como feature engineering. Em relação a este tópico, investigamos a poten-

cial aplicação de métodos de descoberta causal para gerar novas variáveis que represen-

tam as supostas informações causais sobre as relações entre uma variável alvo e as demais.

Os resultados obtidos demostram que, nos problemas apresentados, o uso desses novos

recursos tem um impacto positivo no desempenho do algoritmo de classificação.

Finalmente, estudamos a conversão potencial de metodologias causais utilizadas em da-

dos cross-sectional para poderem ser usados em dados séries temporais. Analisamos a

potencial aplicação de tal método em dados médicos (dados compostos por dados está-

ticos e de séries temporais, medidos em intervalos de tempo irregulares). Projetamos e

propusemos um método para lidar com este tipo de dados. Os resultados mostraram que

o método teve um ganho significativo em termos de desempenho quando comparado a

outros métodos.

Como a descoberta causal é um tópico amplo, os métodos que a aplicam também o são.

Embora as Redes Bayesianas Causais para dados cross-sectional continuem a ser a norma

para aplicar a descoberta causal, dadas suas propriedades, elas não são os únicos méto-

dos disponíveis. Nesta tese, exploramos metodologias e técnicas diferentes desses méto-

dos tradicionais para inferir relações causais a partir de dados e demonstramos que, em

determinadas situações, elas apresentam resultados melhores que as Redes Bayesianas.
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Chapter 1

Introduction

Determining the cause for a particular event has been a case study for several researchers

over the years. Finding out why an event happens (its cause) signifies that, for example,

removing the cause from a system can stop the effect from happening. If it is replicated,

we can then create a subsequent effect.

Humanity has always shown an interest in understanding how an event can cause an-

other. This curiosity led some well-known minds of the past, such as Descartes or Aristo-

tle, to make essential contributions to this matter [1, 2].

Recently, two authors stood out: Clive Granger and Judea Pearl. These authors distin-

guish themselves from many others for transposing the definition of causality, which was

restricted to philosophy, to the computational domain, thereby finding a way to quantify

causality through data [3, 4].

Nevertheless, what is the definition of causality? Causality is a connection between two

different events (cause and effect), which are temporally distant [5]. This temporal notion

of past and future is often one of the critical points in discovering the causes of a given

event.

Causality is much more than the study of mere correlation, being instead of the study

of the actions that take place between events, and from there, we can extract relevant

information about these events, more specifically if they have a cause-effect relationship

and hence use this information to prevent or even cause certain events. Besides studying

1
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the relations between events, causality is to be applied to, for example, variable selection

and classification, among others.

This type of study can also be applied to the most varied areas, such as climate research,

business, and bio-medical.

1.1 Motivation

The search for an explanation for certain events has been the human object of study since

the beginning. Finding an event’s causes makes the world a more understandable place.

Causality predicts the future based on the past and has the potential to alter or halt a

particular outcome. This temporal notion of past and future can often be a critical point

in discovering the causes of a given event and can be viewed as prior knowledge. Despite

that, since time can be viewed as background knowledge, there are some instances where

it is possible to surpass this and not use time (this can happen because time is unavailable).

This perception of temporality in the cause-effect relationship is evident in the medical

field: for example if a patient takes a medication. Then, after a short time, it begins to

show specific symptoms, it is possible to affirm with some degree of certainty that the

cause is the medication taken.

With that said, the motivation to study this topic is related to the fact that studying causal-

ity can be relevant to several problems (more specifically, the study of the causal relation-

ships inherent to the problem), for example, medical problems, since it may be possible to

find out what impact the changes can have on the system to study.

In addition, and with the technological advances witnessed in recent years, causality’s

study may be based on the study of cross-sectional data and time-series data that is con-

tinuously obtained. This data collection and modelling variability present a challenge, as

it is necessary to adapt existing models to deal with the continuous arrival of data to keep

the models updated.
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1.2 Objectives

This thesis’s primary goal is to study how causality can be extracted from data. Several

solutions attempt to answer this problem; however, many are primarily based on cross-

sectional models, meaning that these algorithms are not prepared to evolve.

To achieve this goal, we will investigate some techniques that can be applied to this prob-

lem:

1. Techniques designed to deal with causality in cross-sectional data;

2. Techniques that, although not prepared to deal with causality, can be adapted to

explore causal relationships;

3. Techniques that can be applied to different machine learning tasks, such as feature

engineering;

4. Techniques designed to deal with causality in time-series data and/or can be adapted

to deal with such data.

As study data, it can be divided into three different sets:

• Data sets associated with ground-truth models;

• Public data sets that have already been used in causally related tasks, hence have

proven causal relationships;

• Real-world data sets, associated with key problems, suitable for causal studies (for

example, medical data).

Finally, as application problem to analyse the application of causal discovery, we propose

medical data since it has the potential of having causal relationships [6] (and in some

cases, the existence of such causal relations is even proven), besides this, in some areas

of medicine, it is common to register data sequentially. Therefore it is possible to analyse

how the causal relations change over time. However, despite being an ideal case study,

the use of this type of data represents a challenge for the following reasons:

1. Clinical data is composed of thousands of constantly changing variables, and not all

of these variables are relevant to the event in question;



4 CAUSAL REASONING IN DATA

2. At any given time, the data available may not be the best to characterise the event

and/or might be missing;

3. The environment changes over time;

4. Clinical events must be detected as soon as possible to prevent further damage.

Other possible study cases can be analysed, such as climatology and palaeontology, which,

given their diversity, alone represent a challenge.

1.3 Research Questions

In this thesis, we try to answer the following research questions:

RQ.1 Is it possible to extract causal relationships from data? How?

In this question, we want to investigate existing approaches to studying causality in data,

such as the approaches derived from Judea Pearl’s idea (PC, FCI, among others [7]). Fur-

thermore, we intend to investigate other less common approaches, such as Causal Deci-

sion Trees or Causal Rules Discovery, which are adaptations of known algorithms to the

causal domain.

More specifically, we hypothesise that these algorithms may have better results than more

traditional methodologies since, besides causal mechanisms, they have other inherent

means that may help, for example, summarising the model, making it simpler to read

and interpret [8].

RQ.2 Is it possible to obtain more interpretable models by using causal discovery?

We want to study how causal discovery methodologies can improve the models’ inter-

pretability in this question. This is a recent and trendy topic, as users are increasingly

interested in understanding why the methods make confident decisions. Moreover, we

hypothesise that the usage of causal discovery methodologies in correlational methods

may increase their interpretability.
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RQ.3 In what other situations can we apply causality beyond causal discovery?

In this question, we want to study areas of machine learning where it is possible to ap-

ply causal discovery algorithms (for example, feature selection, feature engineering, and

classification).

More specifically, we hypothesise that by creating models in which the variables are

strongly related, it might be possible to create features that retain information on how

the variables relate to each other.

RQ.4 Can we create causal models from sequential data?

In this question, we intend to analyse how we can apply causal discovery in time-series

data, especially how the links between different variables will appear, disappear, and

change direction since the paradigm changes in this type of data. This issue is fascinating

and pertinent nowadays since we continuously generate data from a wide range of equip-

ment. Creating a single causal model is not feasible in these cases since the paradigm can

change over time. As a result, we may lose relevant information that can prevent, for

example, the bad administration of a particular medication.

More specifically, in this research question, we are interested in studying how a system

will change over time, especially how the links between different variables will appear,

disappear and change direction. We hypothesise that, with the application of causal dis-

covery in time-series data, it will be possible to create more accurate models that reflect

the system’s current state.

RQ.5 Are causal relationships helpful, and can they bring significant gains?

Finally, in this research question, we want to understand if studying the causal relation-

ships can help improve several machine learning tasks.

Moreover, we want to comprehend if variations in causal methodologies can help im-

prove prediction and interpretability when compared to both causal and non-causal ap-

proaches.

1.4 Research Contributions

This thesis can be divided into four phases, as described next.
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1.4.1 Causal rules with partial association an uncertainty coefficient

To answer the research questions RQ.1 and RQ.5, we studied the potential application of

association rule mining to uncover potential causal relationships in cross-sectional data

[9] (Chapter 3).

For this, we thoroughly analysed the current solutions, where a void was found regarding

global discovery using causal association rules in discrete observational data, as the avail-

able methods can only be used in local discovery for binary data. This led to the proposal

of CRPA-UC. Compared to other methods, the results suggested that causal association

rules more accurately uncover potential causal relationships in data.

Contributions

• Provide a causal association rule mining technique that can generate causal rules for

all the data sets’ variables;

• Can be applied in binary and non-binary discrete data.

1.4.2 Semi-causal decision trees

To answer research questions RQ.2 and RQ.5 regarding the usage of causal discovery in

methods not suited to infer such relationships, we analysed the potential application in

decision trees [10] (Chapter 4). Moreover, in this work, we also wanted to study the usage

of causal discovery to boost the interpretability of correlation-based methodologies.

We designed the semi-causal decision trees with this information, a tree-based method

that uses a customised statistical test that merges correlation and causality. The results

showed an unmistakable resemblance with the traditional method in accuracy while cre-

ating significantly smaller trees.

Contributions

• Empirical performance analysis of the different decision tree types (correlation-based,

causality-based and semi-causal-based).
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1.4.3 Empirical study of the application of causal discovery in feature genera-

tion

To answer research questions RQ.3 and RQ.5, we studied the application methodologies

to generate new features that entail the supposed causal information about the relations

between a target variable and the remaining ones [11] (Chapter 5). The results show that,

in the presented problems, the usage of these new features positively impacts Random

Forest’s performance.

Contributions

• Study of the impact of causal features on Random Forest’s performance. This anal-

ysis is made using experiences;

• The proposal of a framework to be used for the features’ generation.

1.4.4 Irregular Time-series PC

To answer research questions RQ.4 and RQ.5, we studied the potential PC’s transforma-

tion, from a cross-sectional method to a time-series method (Chapter 6). Irregular time-

series PC (ItsPC) models time by incorporating it into the variables’ values (instead of

creating new variables representing the stages in a particular timestamp). In addition to

reducing the number of nodes generated, this method can model time series in which

each variable is measured in a different time interval.

We analysed its potential implementation in ICU patients’ survival as an application. This

type of data comprises static and time-series data, measured in irregular intervals. The

results showed that the method had a significant gain in terms of performance compared

to other methods.

Contributions

• Provide a causal method that can deal with irregular time-series data;

• Empirical analysis of ItsPC’s usage in a real-world problem.
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1.5 Contributions to the Community

We created four resources that researchers and practitioners can use to learn about causal

discovery and inference’s most used mechanisms, with practical examples (these resources

are part of [12]):

• Practical guide: https://github.com/AnaRitaNogueira/Methods-and-Tools-for

-Causal-Discovery-and-Causal-Inference;

• Data sets used in causal related tasks: https://github.com/AnaRitaNogueira/Cau

sality-Repository-data-sets-;

• List of the more used software: https://github.com/AnaRitaNogueira/Causality

-Repository-software;

• List of current causal-related surveys: https://github.com/AnaRitaNogueira/-C

ausality-Repository-research-papers.

1.6 Publications

As part of the progress of this work, the following publications were submitted:

1.6.1 Journals

• Nogueira, A.R., Gama, J., & Ferreira, C.A. (2021). Causal discovery in machine

learning: Theories and applications. Journal of Dynamics & Games. https://ww

w.aimsciences.org/article/doi/10.3934/jdg.2021008;

• Nogueira, A.R., Ferreira, C.A. & Gama, J. Semi-causal decision trees. Prog Artif

Intell (2021). https://doi.org/10.1007/s13748-021-00262-2;

• Nogueira, A. R., Pugnana, A., Ruggieri, S., Pedreschi, D., & Gama, J. (2022). Meth-

ods and tools for causal discovery and causal inference. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, e1449;

• Nogueira, A.R., Ferreira, C.A. & Gama, J. Generalized Partial Association Approach

to Constraint-based Causal Discovery. In preparation.

https://github.com/AnaRitaNogueira/Methods-and-Tools-for-Causal-Discovery-and-Causal-Inference
https://github.com/AnaRitaNogueira/Methods-and-Tools-for-Causal-Discovery-and-Causal-Inference
https://github.com/AnaRitaNogueira/Causality-Repository-data-sets-
https://github.com/AnaRitaNogueira/Causality-Repository-data-sets-
https://github.com/AnaRitaNogueira/Causality-Repository-software
https://github.com/AnaRitaNogueira/Causality-Repository-software
https://github.com/AnaRitaNogueira/-Causality-Repository-research-papers
https://github.com/AnaRitaNogueira/-Causality-Repository-research-papers
https://www. aimsciences.org/article/doi/10.3934/jdg.2021008
https://www. aimsciences.org/article/doi/10.3934/jdg.2021008
https://doi.org/10.1007/s13748-021-00262-2
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1.6.2 Conferences

• Nogueira, A.R., Gama, J., & Ferreira, C.A. (2020, April). Improving Prediction

with Causal Probabilistic Variables. In International Symposium on Intelligent Data

Analysis (pp. 379-390). Springer, Cham;

• Costa, P., Nogueira, A.R., & Gama, J. (2021, September). Modelling Voting Behavior

During a General Election Campaign Using Dynamic Bayesian Networks. In EPIA

Conference on Artificial Intelligence (pp. 524-536). Springer, Cham.;

• Nogueira, A.R., Ferreira, C., Gama, J., & Pinto, A. (2021, September). Generalised

Partial Association in Causal Rules Discovery. In EPIA Conference on Artificial In-

telligence (pp. 485-497). Springer, Cham.;

• Nogueira, A. R., Ferreira, C. & Gama, J. Causal Temporal Nodes for in ICU Outcome

Prediction. Accepted at the EPIA 2022 conference.

• Teixeira, S., Nogueira, A. R. & Gama, J. Fairness analysis in causal models: An ap-

plication to public procurement. In preparation.

1.6.3 Proceedings

• Bifet, A., Berlingerio, M., Gama, J., Read, J., Nogueira, AR. (2020). Proceedings of

the 8th International Workshop on Big Data, IoT Streams and Heterogeneous Source

Mining: Algorithms, Systems, Programming Models and Applications co-located

with the 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

(KDD, 2019), Anchorage, Alaska, August 4 -8, 2019.

1.6.4 Communications

• A Full Causal Parallel Approach to Markov Blanket Variable Selection presented at

the INFORUM 18 conference;

• Predictive models using causal networks presented at the IDA 21 conference;

• Causal Reasoning in Data presented at the DSAA 2021 conference.
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1.7 Document Structure

The remaining document is divided into six different sections:

• Chapter 2 provides background explanations and key notions regarding causality;

• Chapter 3 presents Causal Rule Discovery with Partial Association and Uncertainty Co-

efficient (CRPA-UC), a causal association rules methodology;

• Chapter 4 presents the Semi-causal Trees (SC Tree), a decision tree method that merges

causality and correlation;

• Chapter 5 presents a framework to generate causal features from data;

• Chapter 6 presents the Irregular Time-series PC (ItsPC), an irregular time-series causal

method. Besides this, we also present its implementation to the problem of ICU

patients’ survival analysis;

• Finally, Chapter 7 presents the conclusions and future work.



Chapter 2

State of the Art

The search for causal relationships between events has been a case of study for several re-

searchers through the centuries. From its beginning in philosophy, going through physics

and celestial mechanics, humanity has always been interested in understanding and ex-

plaining its surroundings. More recently, the definition of causality went from a purely

philosophical term to a concept in statistics, machine learning and data mining.

Regarding these two last fields (machine learning and data mining), we have the defini-

tion of causal discovery as the study of the possible cause-and-effect relationships in data.

With that in mind, we can say that the focal point in investigating the causal relation-

ships is in their observation, meaning that, to discover potential causal relationships, it is

necessary to observe them first. Ideally, these observations are performed in a controlled

environment and through exhaustive testing so that we can isolate the desired behaviours

(these types of experiments are called Randomised Controlled Trials (RCTs)). Unfortu-

nately, this is not always possible, either because it is impossible to follow a particular

action during the necessary time to happen or because it is not ethical or even prohib-

ited. We must deal with the available information and draw conclusions from it in these

cases. In such cases, several authors advocate using observational data over RCTs data

[13] since it is a less expensive method for collecting data.

These causal relationships can be found through several methods, with the most com-

monly used algorithms being the Bayesian Networks (BN) [14]. However, there are ex-

ceptions: recently, several authors adapted well-known machine learning methods, such

11
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as Decision Trees (among others), into causal discovery methods (some of these methods

will be presented in more detail in the following sections).

The application of causality in the machine learning domain is not as trivial as it may

seem, since it is necessary to distinguish between cause [15] and correlation [16]. This

distinction is so important that there is even a very famous sentence in statistics that is

assumed to be an absolute truth. This sentence is: “correlation is not causation”. Cor-

relation is not the same as causation [17] because, although there might be a causal rela-

tionship when there is a strong correlation between events, two events occur sequentially

and always together does not mean that they have a cause-effect relationship. Mere cor-

relation does not give us enough information about the occurrence of the events. There

are several reasons why these correlations are similar to causality: omitted data and links

against established rules are some of them. Nevertheless, the fact that there is a correla-

tion between two events may give clues about the true relationship between these events.

The opposite idea (where there is causality exists correlation) is not necessarily correct

either. There are cases where there is a clear causal relationship between two events, but

there is no clear evidence of a correlation. This is the case of the Simpson Paradox [18].

This paradox is a statistical phenomenon in which the relation cause-effect can disappear

or be inverted depending on whether the data is studied as a whole or divided (for exam-

ple, separate the data by gender and study it separately). This means that if two variables

A and B are associated in a given data set, it does not mean we can extrapolate the same

relationship in any of its subsets.

There are two ways to deal with this paradox: proving the causal relationship is wrong or

denying the premise that the standard probability calculus governs this relationship.

The application areas for causal discovery are immense, from its use in climate research to

business and biomedical, among many other areas. For example, in the medical field, this

type of causal analysis is quite relevant in diagnosing certain diseases. For example, if a

patient has a set of symptoms, we can prove that this specific combination of symptoms

is caused by disease B and only by this disease can we infer that the patient has disease B.
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2.1 The evolution of causality

Causality is a concept that dates back to Ancient Greece, with one of the first known

definitions being attributed to Plato: “everything that becomes or changes must be so owing to

some cause” [19]. Later, this definition became the foundation of many other philosophers’

ideas.

Despite Plato being the one who first defined causality, a more in-depth study was per-

formed by Aristotle, who interpreted causality as a four-shaped concept: material cause,

formal cause, efficient cause, and final cause [2, 20].

In the middle ages, new ideas about causality rose. Aristotle’s interpretation of the matter

was reformulated to accommodate only two of the four original forms (efficient and final

cause) [21].

In the 18th century, philosophers proposed a more empirical view of causality. However,

at this time, philosophers only partially agreed on the concept, rejecting other ideas: while

Hume [22] defended that the idea of causal necessity was obtained by observing the con-

junction of certain events and that in the human mind, this was associated with causal

necessity between events, Locke [23], and Newton [24] defended that causality does not

involve a necessary connection.

In more recent years, causality went trough a shift, going from a purely philosophical ab-

stract concept to a more precise and quantified one, combining statistics, machine learn-

ing, data mining and several other quantitative disciplines to search for potential cause-

effect relationships in observational data [25]. In these fields, it is seen as an influence for

events production, and where a cause is responsible for creating an effect, being the sec-

ond a consequence of the first’s occurrence. For instance, if we consider two events A and

B, where B is a consequence of A, A is required for B to exist, but the opposite is invalid.

Therefore this subject’s study implies understanding how different events interact.

Causality can be further divided into causal discovery and causal inference, with the first

being in charge of analyzing and generating models that represent the data’s relation-

ships and the latter studying the potential effects occurring when there are changes in the

system [26].
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These causal models can be defined as "mathematical models representing causal rela-

tionships within an individual system or population" [27], with causal relationships rep-

resented in them entailing:

1. The variables’ probabilistic (in)dependences;

2. The intervention’s effect;

3. Or hypothetical interventions, such as counterfactual claims.

These models can be seen from several different perspectives. For example, Rubin [28]

proposed a causal inference model for randomized and non-randomized studies. In a

randomized study, the treatment’s causal effect in a study object (unit) is the difference

between the variables’ post-exposure if the treatment (Yt(u)) is applied and the response

variable if the control (Yc(u)) is employed (see math formula (2.1)).

Yt(u)−Yc(u) (2.1)

In non-randomized studies, post-exposure responses cannot be measured. To deal with

this, Rubin defined the treatment’s causal effect as the measured control’s and treatment’s

expected (E) causal effect T in the set of all units:

E(Yt −Yc) = T (2.2)

Simultaneously, Clive Granger proposed the granger causality test, a statistical test for

time-series data that uses past events to infer present and future events.

In 1988, Pearl proposed the Bayesian Networks [14]. Conventionally, these networks rep-

resent probability distributions. Nevertheless, in some cases, the depicted relationships

can be perceived as causal [29]. Being a graphical representation of conditional probabilis-

tic dependencies, these graphs have a particularity of not having cycles (it is impossible

to start on a node and return to this same node in a sequence) and are called DAG.
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TABLE 2.1: Excerpt from the Abalone cross-sectional dataset

Sex Length Diameter Height Whole weight Shucked weight Viscera weight Shell weight Rings

M 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15

M 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7

F 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9

M 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10

I 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7

I 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8

F 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20

F 0.545 0.425 0.125 0.768 0.294 0.1495 0.26 16

2.2 Cross-sectional Methodologies

Cross-sectional causal relationship search has been one of the most researched topics in

causal discovery. Cross-sectional data is described as the collection of observations of

several subjects simultaneously, thus disregarding time as a variable. This data type can

be continuous, discrete, binary, or text. An excerpt is shown in Table 2.1. The Abalone data

set is a collection of physical features used to characterize and differentiate each specimen.

In this data set, each entry represents a different animal.

Definition 2.1 (Cross-sectional data). Observation of subjects at one point or period of time,

or for which the analysis has no regard to differences in time among the observations [30].

Despite being the most commonly used and the most developed algorithms, cross-sectional

data has a significant downside. Because it represents a snapshot of a moment in time,

causal precedence does not apply (A causes B if A happens before B). An extra step is

needed to infer the relationship’s direction. Various methods exist, covering all types of

variables (binary, discrete, continuous, and mixed).

The following sections present several methods to deal with such data and the most com-

mon evaluation metrics available.

2.2.1 Causal Bayesian Networks

A particular case of the Bayesian Networks is the Causal Bayesian Networks [31]. In these

Bayesian Networks, the nodes represent the studied variables and the edges the causal

relationships between them. In these graphs, the directionality of the edges represents

the direction of the causal relationship, i.e. in a causal graph, a relationship X → Y means

that X causes Y (an example of a graph can be seen in Figure 2.1 ).
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FIGURE 2.1: Example of a graph

Nomenclatures

Before presenting the most commonly used causal Bayesian Networks, several concepts

need to be comprehended. Therefore, we introduce some of the main causal models,

starting with the necessary graph’s background. They are a powerful tool to represent the

relationships across variables in a system visually.

A graph G = (V, E) is defined by a set of nodes V and a set of edges E ⊆ {({U, V}, M) |U, V ∈

V, U ̸= V, M ∈ M}, where M is a set of labels. In particular, an edge can be directed,

undirected, or bi-directed, graphically represented as U → V or V → U, U − V, and

U ↔ V, with U and V being adjacent. The E or edge relationship is a partial function,

meaning that no more than one label can be assigned to the adjacent nodes. A graph G is

considered as directed if all the edges contained in it are directed. On the other hand, if

each edge can be either directed or undirected, it is considered as a pattern.

A node U ∈ V is a parent of another node V ∈ N (considered to be U’s child) if U → N ∈

E . In this context, we formulate Pa(N) as the set of parents of N, and Ch(U) as the set of

children of U.

A (acyclic) path in G is a sequence of vertices N1, ..., Nn such that an edge ({Vj, Vj+1}, Mj)

between two vertices is in E , for j = 1, ..., n− 1. If all the edges are directed as Vj → Vj+1,

the path is a directed path. In these cases, the node V1 is an ancestor of Vn, while Vn is

a descendant of V1. The set of all the ancestors of N is denoted as An(V) while the set

of descendants is drafted as De(V). At this moment it is important to understand that

V ∈ An(V) and V ∈ De(V). A direct graph is called a DAG if there is no directed cycle,

i.e., no pair of vertices V ̸= U with a directed path from V to U and from U to V.

DAGs were adopted by Judea Pearl [14] as a graphical representation for the constrained

joint probability distribution of a set of random variables.
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If we consider i random variables X = (R1, ..., Rp) with a joint distribution P(X), being

P(Xi|S) the marginal distribution of Xi conditional to S ⊆ X.

Definition 2.2. Given a DAG G = (X, E), the random variables X are a Bayesian network

concerning G if:

P(X) = ∏
X∈X

P(X|Pa(X)) (2.3)

Bayesian networks are graphical representations of probabilistic relationships among vari-

ables, the nodes a representation of these variables and the edges the conditional depen-

dencies between these variables. It is worth noting that such a representation is advanta-

geous, as it allows the model to represent how the variables interact. For instance, let us

consider an example of a survival problem where T is a binary variable of treatment (re-

ceived the treatment/did not receive the treatment) and Y the outcome (recovered/died),

such that T → Y if we acknowledge the existence of a third confounding variable U (the

patient has a certain disease or not), such that U → T and U → Y. This information can

be represented through the DAG shown in Figure 2.2.

T Y

U

FIGURE 2.2: DAG representation: U is a confounder of T and Y

The factorisation formula (2.3) is equivalent for DAGs [32] to the Markov condition, that

states that a variable is conditionally independent (⊥⊥ ) of its nondescendents, given its

parents.

Definition 2.3 (Markov Condition). Given a DAG G = (X, E), the random variables X

satisfy the Markov Condition if for every X ∈ X, X ⊥⊥ X\(De(X) ∪ Pa(X))|Pa(X) [7].

The Markov Condition is insufficient to remove all conditional (in)dependencies in a

Bayesian network. As a consequence, the d-separation is needed. Let us first introduce

the notion of a blocking set.
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Definition 2.4 (Blocking set). A path V1, . . . , Vn in a DAG G is blocked by a set of nodes Z

(not containing neither V1 nor Vn) if there exists a node Vk in the path such that one of the

following conditions hold [4]:

(i) Vk is a non-collider, i.e. Vk−1 → Vk → Vk+1 or Vk−1 ← Vk ← Vk+1 or Vk−1 ← Vk →

Vk+1, and Vk ∈ Z;

(ii) Vk is a collider, i.e., Vk−1 → Vk ← Vk+1, and De(Vk) ∩ Z = ∅, i.e., neither Vk nor any

of its descendants is in Z.

Definition 2.5 (d-separation). In a DAG G, we say that two sets of nodes L and M are d-

separated by a third set of nodes Z, where L, M and Z are pairwise disjoint, if Z is blocking

all the paths between nodes in L and M. This is denoted as [7]: L ⊥⊥G M|Z.

For example, if a variable Y d-separates X and Z, the respective generated graphical rep-

resentation will be similar to Figure 2.3.

X Y Z

FIGURE 2.3: Sample DAG: Y d-separates X and Z

The Markov condition can be further extended to the whole DAG by factorizing once

again the (2.3) formula, transforming it into the Global Markov Condition [32].

Definition 2.6 (Global Markov Condition). Given a DAG G = (X, E), the random variables

X satisfy the Global Markov Condition if for every pairwise disjoint L, M, Z ⊆ X, if L ⊥⊥G
M|Z then L ⊥⊥ M|Z [33].

The Faithfulness assumption reverses the direction shown above so that the graph’s con-

ditionally independent variables are d-separated.

Definition 2.7 (Faithfulness). Given a DAG G = (X, E), the random variables X satisfy

the Faithfulness assumption if for every pairwise disjoint L, M, Z ⊆ X, if L ⊥⊥ M|Z then

L ⊥⊥G M|Z [7].

Finally, Causal Sufficiency assumption describes that all the common causes of a pair of

variables must be measured. Despite this assumption being commonly applied by most

causal models, it cannot always be satisfied due to hidden variables in the system. To deal

with this, some methods incorporate these latent variables into the system.
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Definition 2.8 (Causal Sufficiency). For a pair of observed variables X and Y, all their

common causes must also be observed in the data (and modelled in a graph G) [7].

Although Bayesian networks model the edges as conditional probabilities (condition on

observing), these probabilities do not necessarily represent causal effects (known as in-

terventions), intuitively, a variable S has a causal effect on T if through manipulation

S can change the T’s distribution. Because of this, Causal Bayesian network are de-

signed to account for do-interventions: P(X|do(W = w)) = ∏X∈X\W P(X|Pa(X))1W=w.

The do-operator, represented as do(W = w) and proposed by Judea Pearl [34], repre-

sents the symbolic operation of changing the definition W to the constant value w de-

fined a priori (atomic intervention). It is important to note that intervention distributions

P(X|do(W = w) are not always equivalent to conditional distributions P(X|W = w)

counterparts.

Common Implementations

As was previously mentioned, causal Bayesian Networks must fulfil certain assumptions.

These assumptions are Causal sufficiency, Causal Markov condition and Faithfulness.

Typically, a causal discovery algorithm is composed of three stages [35]: creating a skele-

ton that connects the variables with undirected edges, searching for v-structures (X→ Y

← Z) and orientation of all the possible edges.

In the first stage (skeleton’s creation), two different approaches can be implemented de-

pending on the situation. The first approach (global approach) builds an undirected graph

with all the variables by applying independence tests. Typically the algorithm starts with

a fully connected undirected graph and, in each iteration, some edges are removed if both

variables are deemed independent from each other by an independence test (first tests on

all variables with one conditional variable, then two conditional variables, and so on). For

the second approach, the local approach, the algorithm searches these skeletons locally for

one or more variables. Usually, the selected nodes are adjacent nodes or Markov Blanket*

of the studied variable(s). Next, the algorithm aggregates all local skeletons into a global

skeleton [36]. The first approach is usually used in relatively small data sets (number of

variables), and the second one is when we have data sets with a large number of variables.

*set of variables that protects a given node from the remaining network. This protection makes the
knowledge that the node receives restricted to this shield that the node’s father constitutes, children and
parents of the children (the so-called spouse nodes).
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In the second stage (search for v-structures), its objective is to find connections that can

be transformed into a V-like structure. To generate a v-structure, a triple of nodes such

that there are two connections of type X→ Y and Z→ Y and that there is no connection

between X and Z must exist. If this proposition holds, the edge can be direct as X →

Z ← Y. This process of finding v-structures is performed by applying the d-separation

assumption.

Finally, in the third step, the remaining undirected edges are oriented. This can be per-

formed in three different forms [35]:

1. Using a set of established rules that instruct the algorithm on how to orient the edges

employing specific patterns;

2. Using experimental data to orient the edges by manipulating the variables and ob-

taining the statistical association;

3. Using a mixture of both the previous approaches (orient the edges with the first

method and then use the second method to orient the remaining undirected edges).

Depending on the causal algorithm’s construction, it can be classified as either constraint-

based or score-based. This classification is usually applied to Bayesian-like methods, but

it can be extrapolated to other methods, provided they have a similar structure.

Constraint-based algorithms

Constraint-based algorithms employ independence tests to identify a set of edge constraints

for the graph using observational data, e.g., using the G-square (G2) test [7]. Further rules

then determine the direction of the found relationships. In exceptional cases, the rule

phase is skipped to create undirected graphs. These graphs are usually local, meaning

they only convey a particular node’s (undirected) relationships.

Perhaps the most known constraint-based causal discovery algorithm is Peter and Clark

(PC) (named after its authors, Peter and Clark) [7]. It relies upon the faithfulness assump-

tion to create the models, meaning that all independencies must obey the d-separation

criterion. Like most constraint-based methods, this methodology consists of two phases:

searching for (in)dependencies (also called skeleton* phase) and orienting dependencies.

*A skeleton is a graph with only undirected edges.
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Algorithm 2.1: PC algorithm
Input: complete undirected graph G’
Output: Completed partially directed acyclic graph

1 i = 0;
2 repeat
3 for each X ∈ X do
4 for each Y ∈ ADJX do
5 Test whether ∃S ⊆ ADJX − {Y} with |S| = i and (X ⊥⊥Y|S);
6 if this set exists then
7 Make SXY = S;
8 Remove X – Y from G’;

9 i = i + 1;
10 until |ADJX| ≤ i, ∀X;

11 for all pair of non-adjacent variables X and Y with a common neighbour Z do

12 if Z /∈ SXY then

13 replace the links X – Z – Y by X → Z ← Y;

14 Direct the remaining undirected edges with the following rules:

15 • If X−Y and direct path between X and Y then X → Y;

16 • If X−Y and Y → Z then X → Y;

The algorithm (the pseudo-code can be seen in Algorithm 2.1) starts with a fully connected

undirected graph in the first phase. For each pair of adjacent variables A and B, it tests

if the conditional independence A ⊥⊥ B|C for a set C of variables all adjacent to A (or,

equivalently, all adjacent to B). Tests start with C = ∅ (unconditional independence) and

iterate over sets of increasing size. If conditional independence holds, the undirected edge

between A and B is removed.

The orientation phase applies several rules to direct edges [7]:

1. Consider variables A, B, C such that A− B− C, namely A and B, B and C are adja-

cent, but A and C are not adjacent, i.e, it holds in the skeleton phase that A ⊥⊥C|D

for some D. If B /∈ D, we orient the edges as A→ B← C. The triple A, B, C is called

a v-structure;

2. If there is a directed edge A→ B, and B and C are adjacent (B− C), but A and C are

not adjacent, then B− C is oriented as B→ C;
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3. If there is a direct path between A and B and an undirected edge between A and B,

orient A− B as A→ B.

PC-stable [37] tackles a known problem inherent to PC known as order dependence. PC

output depends on the order the variables are analyzed in the skeleton phase. This means

that, if we have a order1(V) = {A, B, C, D, E} and order2(V) = {A, D, B, E, C}, the result-

ing skeletons will not be the same. PC-stable tackles this by saving discarded nodes in a

separate list instead of removing them immediately at each iteration. The saved nodes are

only removed permanently in the next iteration. This way, removing edges is no longer

affected by the order of the independence tests at an iteration.

Another variant is the conservative PC. After creating the skeleton, this algorithm tests

every potential v-structure X − Y − Z by checking if X ⊥⊥ Z|N where N includes all the

neighbours of X and Z. If Y is not in all the separating sets or there are no variables in the

set, X − Y − Z is marked as ambiguous, and it is not directed. On the other hand, if Y is

not in any separating set, the method continues as PC.

Although PC (and its variants) is a powerful tool to uncover causal relationships, it does

not scale to high dimensional data. For example, in the PC-select (sometimes called PC-

simple) method [38], the second phase is removed, and the conditional independence

test is only applied to a target variable. Furthermore, the output is an undirected graph

because the method does not include an orientation phase.

Another strategy to tackle high dimensional data is to search for causal relations only

locally to a target variable. The Min-Max Parents and Children (MMPC) [39] adopts

this approach using a Min-Max heuristic as a conditional independence test.

Although PC is considered a benchmark algorithm for this type of data, it assumes causal

sufficiency (Definition 2.8), meaning that it does not allow for open systems (systems

with latent variables). For cases where the causal assumption cannot be fulfilled, Fast

Causal Inference (FCI) can be used [40]. This method applies the same phases of PC: the

skeleton and orientation phases. First, FCI applies a conditional independence test to

find all the potential causal relationships in the skeleton phase. It is in the second phase

that FCI differs the most from PC: instead of assuming that a relationship must have a

direction [41], the method tests possible d-separations X ⊥⊥Y|Z in the skeleton. If there

is at least a variable in Z that d-separates the edge, then it is removed. After this, FCI
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applies several rules to direct the edges [42]. FCI also differs from PC in the way it

represents relationships. Instead of two types of relationships (→ and −), FCI’s current

implementations have four:

• X → Y that represents X causes Y;

• X ↔ Y that represents that there are unmeasured confounders from both variables;

• X◦ → Y that represents either X causes Y or there are unmeasured confounders

from both variables;

• X ◦−◦Y can represent: (1) X causes Y, (2) Y causes X, (3) there is unmeasured con-

founders from both variables, (4) X causes Y and there are unmeasured confounders

from both variables or (5) Y causes X and there are unmeasured confounders from

both variables.

The Anytime Fast Causal Inference (Anytime FCI) is a slight modification of FCI that

restricts the maximum number of variables in the separation set used to perform the con-

ditional independence tests to a user-defined threshold.

The Adaptive Anytime FCI Fast Causal Inference (Adaptive Anytime FCI) [43] is simi-

lar to Anytime FCI in the sense that it restrains the number of variables in the separation

set. The critical difference is that, instead of the user defining this maximum, it is calcu-

lated by the algorithm, using K = maxi(|adj(C1, Xi)| − 1), where C1 represents the initial

skeleton, Xi a vertice of C1 and adj represents the list of adjacencies from Xi in C1.

FCI and its variants can benefit from data preparation according to the Joint Causal In-

ference (JCI) [44] approach. This method extracts the context from several datasets, thus

creating a pooled dataset where a traditional causal discovery method can be applied.

This allows the generated model to encapsulate information about the variables and the

system from where these variables were measured. It is essential to understand that JCI

is not a causal discovery method but a tool to prepare the data for it. The authors advo-

cate its use with any causal discovery method but suggest using FCI specifically (hence

FCI-JCI).

The Really Fast Causal Inference (RFCI) [43] is another FCI-like method that performs

an additional test to the conditional independences before the v-structures phase: in this

extra phase, the algorithm checks every unshielded triplet X − Y − Z and examines X ⊥
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⊥Y|Z and Y ⊥⊥Z|X. If this holds and Y is not in the separating set of X and Z, then this

triplet is directed as X → Y ← Z.

The Really Fast Causal Inference with Bayesian Score Constraints (RFCI-BSC) [45]

is a modification of RFCI, in which the Bayesian Scores Constraints (BSC) is used as a

conditional independence test.

Score-based algorithms

Score-based algorithms assign a relevance score to candidate graphs through some adjust-

ment measures, such as the Bayesian Information Criterion (BIC). However, these al-

gorithms are computationally expensive since they have to enumerate (and score) every

possible graph among the given variables. In addition, greedy heuristics are applied to

restrict the number of candidates.

The Greedy Equivalence Search (GES) [46] is a score Bayesian-based method. It scales to

high-dimensional data since it does not consider all existing patterns. This algorithm first

adds new edges between two nodes X and Y, if these nodes are non-adjacent and there

is no neighbour of Y that is not adjacent to X. Besides this, it also directs every edge of

neighbour T of Y and not adjacent to X as T → Y. Secondly, the method removes the best

link in each iteration using the following criteria: it deletes every edge X − Y or X → Y

if there is a subset of neighbours of Y, Z that is adjacent to X. Besides, the algorithm

transforms all edges Z−Y as Z → Y and all edges X− Z as X → Z.

The Greedy Interventional Equivalence Search (GIES) [47] is an improvement of GES.

Besides adding and removing edges, this method has a third phase. The algorithm elon-

gates the DAG sequence in this phase by continuously modifying the original graph

without altering the graph’s skeleton. This new graph has the same number of edges and

can be transformed into the original one by only changing one arrow.

The Fast Greedy Equivalence Search (FGS or FGES) [48] is another modification of GES

that uses parallelisation to optimise the algorithm’s runtime.

The Greedy Fast Causal Inference (GFCI) [49] is a combination between the FGES and

FCI. In this new method, both algorithms’ skeleton and orientation phases are used: first,

the skeleton phase of FGES is applied to the data, and then FCI is used to perfect the

skeleton. The same happens in the orientation phase: initially, the algorithm accesses all
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the directed edges using FGES. This information is given to FCI, so it can use to correct

the edges’ direction further.

2.2.2 Causal Neural Networks

The Causal Neural Networks ( CNNs) [50] are an algorithm that adapts a neural network

to perform causal discovery. This is done by altering the feedforward phase to be more like

a Bayesian Network, hence representing causal relationships. Furthermore, the CNNs

are structured to represent the input variables as output and vice-versa. Accordingly, it

can represent causes in the input layer and effects in the output layer. In Figure 2.4 an

example of a CNN is presented.

FIGURE 2.4: Example of a CNN with one hidden layer (source [50])

The algorithm splits the input and output features ( Input layer input Features (FI) and

Output layer input Features (FO) in Figure 2.4) between input and output layers with ge-

netic algorithms, thus creating an optimal causal structure. To deal with hidden variables,

the algorithm applies a second method, called forward-backward propagation that mixes the

forward propagation theory with the Rumelhart et al. [51] backpropagation. The input

features are inserted in the FI and the FO’s output layers in this sub-algorithm. The

unknown features of the input features are inserted in the Target outputs from the In-

put layer (TI) and have as initial value their mean bias. The output unknown features

are inferred by applying a forward propagation (this step is repeated until a termination

condition is met), and all the values are updated using backward propagation.
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2.2.3 Association Rule Mining

Association rule mining is inserted in the field of data mining/machine learning and the

algorithms that fall into this category create i f ⇒ then rules. Related to association rule

mining, there are a set of measures that measure the effectiveness of a rule: support, which

measures the historical data support (how much the data supports the proposed rule) the

rule has, confidence, which measures how confident the algorithm is in the rule, and lift,

which is the ratio between confidence and support.

One of the best-known association rules algorithms is the apriori, proposed by Agrawal

and Srikant [52] since several authors have applied it in their research.

Within the association rule mining, we have a special case: causal association rule mining.

In this category of association rules algorithms, the interest is not in searching for rules

{attribute = value} ⇒ {attribute = value}, but instead {attibute} ⇒ {attribute}. The

change from the original association rule’s definition is because, in this type of algorithm,

the objective is to find “hypothesized causal relationships around a given target” [53] and not

between attributes’ values. This is evident given the definition of causal rule: “Association

rule x → z is a causal rule if there exists a significant partial association between variables X and

Z” [53]. This means that, unlike the traditional association rules, these algorithms define

the rules by the partial association between the Right-hand Side (RHS) and the Left-hand

Side (LHS).

One example of this association rules approach is the work of Jin et al. [54]: Causal Rule

Discovery with Partial Association (CR-PA). This algorithm searches for potential causal

rules for a target variable through independence tests’ application: Chi-square (χ2) and

the Cochran-Mantel-Haenszel (CMH) [55] (see Appendix A). The χ2 test is applied so that

it is possible to determine if two variables are related to each other. If they are not, apply-

ing the second independence test is unnecessary. The CMH is applied to the variables

selected in this phase. This test is applied to contingency tables of type K ×2× 2.

The authors of CR-PA have also proposed a similar algorithm: Causal Rule Discovery

with Cohort Studies (CR-CS) [56]. This approach exchanges the independence tests for

retrospective cohort studies (odds ratio) to find causal rules. To create these cohort stud-

ies, the algorithm selects two types of samples (exposure samples and control samples)

and tries to match them so that the distribution of the control variables of the two groups
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is as similar as possible. The association of two variables is defined by a support threshold

and a minimum odds ratio.

2.2.4 Causal Decision Trees

Although originally, causal discovery in machine learning was applied in Bayesian Net-

works [57], in more recent years, several authors applied the same processes to other

algorithms with good results. This is the case of the Causal Decision Tree (CDT) pro-

posed by Li et al. [8]. This algorithm uses the traditional Decision Trees and alters them

so that the created tree represents the causal relationships between each variable and the

outcome variable. The authors proposed two different variants: CDT-PS and CDT-SPS.

The first approach ( CDT-PS) uses K × 2× 2 contingency tables (called in this approach

perfect stratification) to apply the CMH with one degree of freedom for each variable in

each split, to understand whether the variables are causally related with the target node.

Then, it orders them by the test’s value (in this case, the authors use the test’s critical value

instead of its p-value) and select the variable with the highest partial association. If the

CMH test value is higher than a stipulated significance level, this variable will be a new

node in the tree. If the value is lower, the algorithm stops the splitting in that sub-tree.

In the second approach ( CDT-SPS), the authors substitute the 2× 2× J tables by propen-

sity scores. In this case, the propensity scores are calculated through logistic regression

to the set of attributes correlated with the target to measure each variable’s importance.

After this, the CMH test is applied to the previous step result, being the chosen variable

the one with the highest value.

2.2.5 Evaluation Metrics

Several metrics are used to evaluate causal discovery methodologies. These metrics are

usually called pattern metrics as they search for common patterns between the ground-

truth model that explains the data (or from which the data was generated) and the model

generated by the method. Since the ground truth model is generally represented in

network form ( DAGs, for example), these metrics are also related to network metrics.

Despite this restriction, some models generated by non-Bayesian methods can be trans-

formed into networks as long as the generated model is a rule-like model (such as associ-

ation rule models) and given that all the generated relationships are simple (for example,
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rules such as {A, B} → {C} are not allowed). Table 2.2 reports a collection of pattern

metrics [58, 59].

TABLE 2.2: Pattern metrics used for cross-sectional causal discovery methods

Metric Description

Missing edges
Number of edges that are present in the origi-
nal model but not in the generated one

Extra edges
Number of edges that are present in the gener-
ated model but not in the original one

Incorrect Adjacencies (undirected edges)
Number of undirected edges that are present
in the generated model but not in the original
one

Correct directed edges
Number directed edges present in the gener-
ated model that were correctly directed

Incorrect directed edges
Number directed edges present in the gener-
ated model that were incorrectly directed

Structural Hamming Distance (SHD)
Sum of missing edges, extras edges and incor-
rectly directed edges

Structural Intervention Distance (SID)

For each pair X and Y checks whether the
parents of X in the generated model are a valid
adjustment set [4] in the true model. If it is, it is
counted as a correct procedure. If it is not, it is
counted as a mistake

Adjacency Precision Adj Precision = correctly predicted adjacenciesa

predicted adjacenciesb

Adjacency Recall Adj Recall = correctly predicted adjacencies
true adjacenciesc

Arrowhead Precision Arrhd Precision = correctly predicted arrowheadsd

predicted arrowheadse

Arrowhead Recall Arrhd Recall = correctly predicted arrowheads

true arrowheadsf

a number of undirected edges present in both the generated model and the original one.
b all the edges found in the predicted model.
c all the edges found in the original model.
d number of directed edges present in both the generated model and the original one.
e all the directed edges in the predicted model.
f all the directed edges found in the original model.

Whenever a ground-truth model is unavailable, causal discovery methods can be evalu-

ated regarding their performance in classification or regression tasks. In these cases, the

traditional classification performance metrics are adopted [60].
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2.2.6 Software Tools

The three most known tools/libraries for causal discovery in cross-sectional data are:

pcalg, bnlearn and Tetrad.

Beginning with pcalg [61], this package has implemented several causal methods, such as

PC (original, conservative and stable versions), GES, GIES, Greedy DAG Search (GDS),

aggregative greedy equivalence search (AGES), FCI (original, Anytime FCI, Adaptive

Anytime FCI and FCI-JCI, FCI+ and RFCI ). Depending on the type of data used, this

package offers default conditional independence tests for binary (G2 test), discrete (G2

test) and continuous (Fisher’s z-transformation) data. Moreover, it is possible to adapt

other conditional dependence tests in this framework. For score-based methods (such as

GES), pcalg includes the ℓ0-penalised Gaussian maximum likelihood estimator for both

discrete and continuous data.

bnlearn is a widely known and used R package [62]. This package provides an implemen-

tation for PC stable and MMPC, and it is possible to accommodate discrete, continuous

and mixed data by changing the conditional independence test. bnlearn implements sev-

eral conditional independence tests. For discrete data, bnlearn has the following tests

available: mutual information (information-theoretic distance measure), shrinkage esti-

mator for the mutual information [63] and Pearson’s χ2 (classical version for contingency

tables). For continuous data, Pearson’s linear correlation, Fisher’s Z (transformation of the

linear correlation with asymptotic normal distribution), mutual information (information-

theoretic distance measure) and shrinkage estimator for the mutual information [64] are

available. Finally, mutual information (information-theoretic distance measure)is avail-

able for mixed data.

Finally, Tetrad [65] is one of the most complete graphical tools for cross-sectional causal

discovery. This tool implements the following methods: FCI, RFCI-BSC, FGES, GFCI,

PC, and RFCI. Tetrad ’s methods can be applied in continuous, discrete, and mixed data

by choosing the correspondent independence tests/score methods. For constraint-based

algorithms, Tetrad also implements the following conditional independence tests. For dis-

crete data, the conditional Gaussian test, χ2 test, degenerate Gaussian likelihood ratio

test, G2 test, and probabilistic test are available. For continuous data, Tetrad presents the

following tests: conditional correlation independence, conditional gaussian test, degen-

erate Gaussian likelihood ratio test, fisher Z test and kernel conditional independence.



30 CAUSAL REASONING IN DATA

TABLE 2.3: Overview of software and methods for causal discovery in observational data

Software
Data Type of Algorithm

Categorical
Data

Continuous
Data

Mixed
Data

Causal
Sufficiency Contraint-based Score-based Non-Bayesian

bnlearn MMPC ✓ ✓ ✓ ✓ ✓

PC ✓ ✓ ✓ ✓ ✓

pcalg AGES ✓ ✓ ✓ ✓ ✓

FCI ✓ ✓ ✓ ✓

FCI-JCI ✓ ✓ ✓ ✓

Anytime FCI ✓ ✓ ✓ ✓

Adaptative Anytime FCI ✓ ✓ ✓ ✓

FCI+ ✓ ✓ ✓ ✓

GDS ✓ ✓ ✓ ✓ ✓

GES ✓ ✓ ✓ ✓ ✓

GIES ✓ ✓ ✓ ✓ ✓

LINGAM ✓ ✓ ✓ ✓

PC ✓ ✓ ✓ ✓ ✓

CPC ✓ ✓ ✓ ✓ ✓

PC Select (PC simple) ✓ ✓ ✓ ✓ ✓

RFCI ✓ ✓ ✓ ✓

Tetrad PC and PCStable ✓ ✓ ✓ ✓ ✓

CPC and CPCStable ✓ ✓ ✓ ✓ ✓

PcMax ✓ ✓ ✓ ✓ ✓

FGES/FGES-MB ✓ ✓ ✓ ✓ ✓

IMaGES ✓ ✓ ✓ ✓

FCI ✓ ✓ ✓ ✓

RFCI/RFCI-BSC ✓ ✓ ✓ ✓

GFCI ✓ ✓ ✓ ✓

MBFS ✓ ✓ ✓ ✓ ✓

GLASSO ✓ ✓ ✓ ✓

FOFC ✓ ✓ ✓ ✓ ✓

FTFC ✓ ✓ ✓

LiNGAM ✓ ✓ ✓ ✓

Finally, the following tests are available for mixed data: conditional gaussian test and

degenerate Gaussian likelihood ratio test. For score-based causal algorithms, Tetrad also

offers several scoring methods. For discrete data, Tetrad offers the following tests: BDeu

score, BIC score, conditional gaussian BIC score and degenerate gaussian BIC score. For

continuous data, Tetrad has CCI-score, extended BIC (EBIC) score, conditional gaussian

BIC score and degenerate gaussian BIC score. Finally, conditional gaussian BIC score and

degenerate gaussian BIC score are available for mixed data.

A summary overview of these frameworks can be found in Table 2.3.

2.2.7 Applications

As cross-sectional causal discovery is one of the most developed sub-areas, many authors

chose this method to apply to their problems.
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This is the case of Miley et al. [66], who used GFCI to identify treatments to early

schizophrenia patients. This study proved that the generated model found relationships

supported by an early data analysis.

A different application can be seen in the work of Shen et al. [67] where the authors

analyze the usage of FCI, FGS or FGES and Structural equation modeling (SEM) to access

their ability to discover the underlying structure in data collected by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). In their study, the authors found that both FCI

and FGS or FGES outperformed SEM, which is not a causal discovery methodology.

Finally, another related work belongs to Afrianto et al. [68]. In this work, the authors

analyzed the usage of PC and GES in three different clinical data sets: Heart Disease,

Diabetes, and Hepatitis*.

2.3 Time-series data Methodologies

Time-series data can be seen as a sequence of observations about a single subject multiple

times.

Definition 2.9 (Time-series data). Observations about a single subject at multiple points or

periods of time, indexes in time order. We write Xt for the observation of random variable

X at time t [69].

This type of data is characterized by the fact that they are collected in adjacent time peri-

ods, and there may be a correlation between distinct observations. Data collected contin-

uously usually does not fall under the assumptions of conventional statistical methods,

thus requiring different methods and tools. These types of data are univariate (only one

variable is measured) or multivariate (multiple variables are measured), and the variables

can be continuous, discrete, binary, or text, among other types, as seen in Table 2.4.

In recent years, the search for causal relationships among variables in time-series data has

seen an exponential increase in interest, with sequential data collection becoming a com-

mon practice. Causal discovery from this type of data can overcome the problems found

in cross-sectional data. Furthermore, since there is a time component, we can assume

causal precedence: events in the present cannot cause events in the past. Thus, when

*these three data sets are available on kaggle.com

kaggle.com
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TABLE 2.4: Excerpt from the Air Quality time-series dataset

Date Time
CO

(GT)
PT08.S1
(CO)

NMHC
(GT)

C6H6
(GT)

PT08.S2
(NMHC)

NOx
(GT)

PT08.S3
(NOx)

NO2
(GT)

PT08.S4
(NO2)

PT08.S5
(O3)

T RH AH

10/03/2004 18.00.00 2.6 1360 150 11.9 1046 166 1056 113 1692 1268 13.6 48.9 0.7578

10/03/2004 19.00.00 2 1292 112 9.4 955 103 1174 92 1559 972 13.3 47.7 0.7255

10/03/2004 20.00.00 2.2 1402 88 9 939 131 1140 114 1555 1074 11.9 54 0.7502

10/03/2004 21.00.00 2.2 1376 80 9.2 948 172 1092 122 1584 1203 11 60 0.7867

10/03/2004 22.00.00 1.6 1272 51 6.5 836 131 1205 116 1490 1110 11.2 59.6 0.7888

10/03/2004 23.00.00 1.2 1197 38 4.7 750 89 1337 96 1393 949 11.2 59.2 0.7848

11/03/2004 00.00.00 1.2 1185 31 3.6 690 62 1462 77 1333 733 11.3 56.8 0.7603

faced with an identified (undirected) dependence, it is safe to assume the relationship’s

direction as past→ f uture.

Several methods are specifically designed to solve the task of finding causal relationships

in sequential observational data. One of the most known frameworks is the Granger

causality, proposed by Granger [3]. Intuitively, X Granger-causes Y if predicting Y based

on its past observations and the past observations of X perform better than predicting Y

based on its past only. Mathematically, this relationship can be formalized by testing that

in the auto-regression:

Yt =
m

∑
j=1

ajYt−j +
m

∑
j=1

bjXt−j + εt (2.4)

the coefficients bj’s are statistically significant.

In this equation, m represents the model order or the maximum number of lags to be used,

aj’s and bj’s are the contributions of the delayed observation of Y and X respectively.

More recent approaches include time-series Fast Causal Inference (tsFCI) [70], which is

an adaptation of FCI for time-series data. This method uses sliding windows to transform

the original time series into different subsets of consecutive timestamps, disregarding the

time component in each subset and treating them as cross-sectional. The method cre-

ates a model for each subset of data using the models from previous timestamps as prior

knowledge. Besides this, if a relationship disappears from the model mt, this relation will

be disregarded in the latter timestamps.

The PCMCI [71] is a causal graphical method designed to deal with linear and non-linear

time series. This algorithm is divided into two phases corresponding to a different condi-

tional independence test: the PC1 and MCI phases. First, in the PC1 phase, the algorithm

applies the conditional independence strategy implemented by PC (skeleton phase) to

uncover potential dependencies between each variable in a specific timestamp and all the
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other variables in all the previous timestamps, e.g., Xt ⊥⊥ Yt−1|Z,Xt ⊥⊥ Yt−2|Z, among

others, where t is the specific timestamp. Next, the method applies the MCI (momen-

tary conditional independence) test [71] further to determine causal relationships between

variables in different timestamps while taking into account auto-correlation and incorrect

edge detections.

PCMCI+ [72] is an extension of PCMCI, which admits the existence of contemporane-

ous links (a causal relationship between variables in the same timestamp). Because of

this, PCMCI+ divides the skeleton search by type of relationships, namely, lagged and

contemporaneous relationships are found separately.

LPCMCI [73] is yet another PCMCI extension specifically designed to deal with latent

variables. This method uses an FCI-like approach to represent the latent variables that

are present in the relationships.

Time-series data is a particular case of longitudinal data (Definition 2.10) [74, Chapter 1].

Definition 2.10 (Longitudinal data). Observations about several subjects at multiple points

or periods of time, indexes in time order, and subject [75].

This type of data is characterized by collecting information about the same individual

at different points in time. This means that, for each subject in a dataset, a set of time-

series variables characterizes him. The variables in longitudinal data can be continuous,

discrete, binary, and text, among other types, as seen in Table 2.5.

TABLE 2.5: Excerpt from the National Footprint Accounts 2018 longitudinal dataset

country

ISO
alpha-

3
code

UN
region

UN
subregion year record

crop
land

grazing
land

forest
land

fishing
ground

built
up

land
carbon total

Percapita
GDP
(2010
USD)

population

Armenia ARM Asia Western Asia 1992 BiocapPerCap 0.16 0.14 0.08 0.01 0.03 0 0.43 949.03 3449000
Armenia ARM Asia Western Asia 1992 BiocapTotGHA 555812.97 465763.33 289190.66 47320.22 116139.60 0 1474226.80 949.03 3449000

... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
Armenia ARM Asia Western Asia 2014 EFProdPerCap 0.35 0.17 0.20 0.0006 0.062 0.62 1.40 3827.34 3006000
Armenia ARM Asia Western Asia 2014 EFProdTotGHA 1062873.66 516394.76 595089.72 1692.15 185046.34 1856992.85 4218089.49 3827.34 3006000

Afghanistan AFG Asia Southern Asia 1961 BiocapPerCap 0.54 0.68 0.07 0 0.03 0 1.32 9165000
Afghanistan AFG Asia Southern Asia 1961 BiocapTotGHA 4990784.71 6212850.07 654431.08 0 272261.57 0 12130327.43 9165000

... ... ... ... ... ... ... ... ... ... ... ... ...
Afghanistan AFG Asia Southern Asia 2014 EFProdPerCap 0.25 0.18 0.06 4.86× 10−5 0.05 0.11 0.65 610.24 31628000
Afghanistan AFG Asia Southern Asia 2014 EFProdTotGHA 7960359.55 5704672.32 1920868.33 1536.006 1458818.88 3372775.04 20419030.13 610.24 31628000

2.3.1 Evaluation Metrics

The pattern metrics presented in Section 2.2.5 can also be applied to time-series methods if

there is a ground-truth model that represents the causal relationships present in the data.
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Table 2.6 shows a set of performance metrics specific of time-series data [76], to be used

when this information is not available.

The accuracy is a metric used to evaluate classification models and can be defined as the

fraction of correct predictions made by the model. Usually, this measure takes values

between 0 and 1.

The mean and median errors are metrics that encapsulate the fraction of times the model

got some response wrong. This error can be calculated in several ways, the simplest one

1− accuracy. These metrics can be valued between 0 and 1.

The euclidean distance [77] is another symmetric metric that calculates the distance between

two time series −→x and −→y (the predicted and the ground-truth). This metric is usually

used for regression problems. This metric is valued between 0 and a maximum possible

discrepancy, which needs to be calculated [78].

The longest common subsequence [79] is an asymmetric metric that measures the number

of correct predictions in sequence and reports the highest number. This metric is usually

used in regression problems since it uses the euclidean distance to calculate the difference

between the predictions and ground truth. This is performed by reducing the difference

to 0 or 1 depending on the distance. They are considered equal if the Euclidean distance

between two values is smaller than a defined threshold. Hence the distance is 0. On the

other hand, if the difference is higher than the threshold, then the distance is 1.

The Edit Distance with real penalty [80] is another distance metric that reports the number

of edits that are needed to transform the series of predictions into the ground truth. This

metric can be valued between 0 and ∞.

Finally, the Dynamic Time Warping [81] is a distance metric that calculates the difference

between two-time series, taking into account the potential differences in measurement

in the timestamps (for example, different frequencies). This is done by comparing each

timestamp t from one time series with t + 1, t + 2 and so on from the second time series.

Concerning metrics for evaluating causal methods for longitudinal data, there are two

options. First, the evaluation metrics presented in Section 2.2.5 can be applied if there is a

ground-truth structure to compare. Second, since time-series data is a particular type of

longitudinal data, the evaluation metrics presented in this section can also be applied.
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TABLE 2.6: Pattern metrics used in causal discovery from time-series data.

Metric Description

Accuracy
TruePositive+TrueNegative

TruePositive+FalsePositive+FalseNegative+TrueNegative

Mean/Median Error

Measures the differences between the pre-
dicted and ground truth. In this category, we
can have all the variances of mean and median
measures (root, squared, etc.)

Longest Common SubSequence
Measures the size of the longest sequence of
events in a time-series model

Edit Distance with Real Penalty
Measure the number of changes to transform
one series into another, with a user-defined
penalty

Euclidean Distance

Measures the distance between each step of the
series
dE(
−→x ,−→y ) =

√
(−→x −−→y )(−→x −−→y )′

Dynamic Time Warping

Measures the distance between two sequences.
Being a sequence of a set of time points, the
distance between each point is measured using
the euclidean distance

2.3.2 Software Tools

Several libraries are offered in different programming languages to solve the task of find-

ing causal relationships in time-series data.

lmtest [82] is an R package known mainly by its implementation of the Granger causality,

as well as the data set ChickEgg.

NlinTS [83] is another R package. Similarly to lmtest, this package implements a version

of the Granger causality. Besides this, NlinTS implements a non-linear version of this test.

Tetrad, the tool presented in Section 2.2.6, has also implementations for several methods

that deal with time-series data, including TsFCI, FASK and TsGFCI.

Tigramite [84] is a Python framework for causal discovery in time-series data. This tool

implements three different causal discovery methods (PCMCI, PCMCI+ and LPCMCI)

and the following conditional independence test (all these tests can be used together with
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TABLE 2.7: Overview of software and methods for causal discovery in time series data

Software
Data Type of Algorithm

Categorical
Data

Continuous
Data

Mixed
Data

Time-series
data

Causal
Sufficiency

Contraint-
based

Score-based Non-Bayesian

Tetrad TsFCI ✓ ✓ ✓ ✓ ✓

TsGFCI ✓ ✓ ✓ ✓ ✓

TsIMaGES ✓ ✓ ✓ ✓ ✓

MultiFASK ✓ ✓

Tigramite PCMCI ✓ ✓

PCMCI+ ✓ ✓

LPCMCI ✓ ✓

NlinTS ✓ ✓ ✓

lmtest ✓ ✓ ✓

the causal discovery methods): ParCorr [85], GPDC / GPDCtorch [86], CMIknn [87] and

CMIsymb [87].

Unlike the previous data types, to the best of our knowledge, there is no tool currently

available to deal specifically with longitudinal data. However, a few theoretical frame-

works have been proposed for this data type. One such framework is the Causal Infer-

ence over Mixtures (CIM) [88]. This method infers the causal structure by creating a mix-

ture of DAGs using the Global Markov Condition (Definition 2.6). Explicitly designed for

longitudinal medical data, it allows for cycles. Besides this, it applies the skeleton phase

of [37]. The orientation phase proposed by the authors is similar to FCI.

These libraries can be overviewed in Table 2.7.

2.3.3 Applications

Although time-series causal discovery is not a subject as developed as cross-sectional

causal discovery, many authors still used the proposed methods in their research.

This is the case of [89], where the authors compared Granger causality and transfer en-

tropy in oscillation diagnosis. This work found that, while transfer entropy seems more

accurate than Granger causality, this method was easy to automate and interpret.

Another Granger causality application is the work from Troster et al. [90], where the au-

thors analyze the potential causal relationship between renewable energy consumption,

oil prices, and economic activity in the United States from 1989 to 2016. In this analysis,
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the authors found relationships between energy consumption and economic growth as

well as between oil prices and economic growth and oil prices and energy consumption.

A different work was proposed by Krich et al. [91], where the authors used PCMCI+

to infer the decoupling between photosynthesis and transpiration in trees at high tem-

peratures was already identified through experimental analysis. The results pinpointed

several critical issues in some ecosystems.

2.4 Remarks

As presented in Chapter 1, this thesis aims to study how researchers can apply causal

discovery methodologies to cross-sectional and time-series observational data. To do such

a task, we analyzed and divided these methods according to the data type they can be

applied to.

Most proposed methods can be classified as (Causal) Bayesian Networks regarding cross-

sectional causal discovery algorithms. These methods can be further divided into constraint-

based and score-based, depending on the tests they implement to retrieve causal relation-

ships from data. Despite being very versatile, these methods still rely on developing new

statistical tests to improve further. Moreover, they cannot be applied to all data set types

(for example, data sets with continuous + discrete/binary data).

Although Causal Bayesian Networks continue to be the norm in cross-sectional causal

discovery, more recently, some authors have proposed altering correlation-based meth-

ods, such as Association Rules or Decision Trees, to be able to handle causal relationships.

However, despite maintaining the key features from the original methods, the currently

proposed approaches have two significant disadvantages: first, they naively assume the

relationships as variable→ target, and second, they can only be used in binary data.

Regarding time-series causal discovery methods, this is a subject not as developed as

the previous one, with the most known methodology being the Granger Causality. Even

though some successful time-series methodologies have been developed, one disadvan-

tage found in these methods is that most publicly available algorithms can only deal with

time-series data, not longitudinal data.





Chapter 3

Generalized Partial Association in

Causal Rules Discovery

Causal discovery aims to study the possible cause-and-effect relationships between vari-

ables in a data set [56]. These causal relationships can be found through several methods,

with the most commonly applied algorithms based on Bayesian networks. Despite being

the most widely used algorithms for searching for causal relationships in observational

data, more and more causal discovery algorithms that do not fall into this category have

appeared in recent years.

In this chapter we aim at answering RQ.1 and RQ.5 (Section 1.3): Is it possible to extract

causal relationships from data? How? and Are causal relationships helpful, and can they bring

significant gains?. We started by studying the potential usage of association rules to infer

causal relationships from cross-sectional observational data to answer these questions.

Association Rule Mining (ARM) is a technique used to find correlations between vari-

ables in data [92]. Within the association rules algorithms, a subcategory known as causal

association rules applies independence tests to determine if there is a causal relationship

between two or more variables [53]. Approaches like these have the advantage of being

able to create causal hypotheses when dealing with large amounts of data [54]. There

are already a few approaches that combine association rule mining and causal discovery.

However, they have some restrains/limitations as they can only be applied to a niche type

of data (binary) and employ a naive approach to direct rules.

39
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To deal with these limitations, we propose CRPA-UC. This approach applies the GCMH

test (conditional independence teest designed to infer dependences in discrete data; see

Appendix A), combined with the χ2 so that it is possible to apply this method in any

discrete data set. Finally, and since both independence tests are symmetrical, we propose

using the UC (Appendix B) [93] that will act as an orientation method. We also provide an

extensive evaluation of this approach using several public data sets, where the proposed

approach outperforms the state-of-the-art method (in this case, PC [94]).

3.1 Problem

As stated previously, the current causal association rules CR-PA and CR-CS, presented in

Section 2.2.3) have several limitations that restrain their usage to a few potential cases:

1. It is only possible to apply these algorithms to binary data sets;

2. Only to one variable (local structure discovery) [95];

3. They assume a naive approach as an orientation method since they assume that all

the rules are variable⇒ target, which is not always true.

These limitations mean that it is not possible to apply these algorithms to, for exam-

ple, non-binary discrete data. This data can be binary (gender), or it can encode stages

({normal, risk, f ailure}).This fact implies the need to binarise the data to generate such

causal association rules, leading to a data set size increase and, consequently, a run-time

increase.

Another critical issue presented by previous methodologies is that it is impossible to infer

causal direction [96]. With these methodologies, it is only possible to create and evaluate

the undirected relations of the variables with a chosen target, implying the necessity of

having a clear idea of what variable is the target to apply these methodologies. However,

in some instances, the entire environment’s study (and evaluation) is the objective and

not a specific outcome. In such cases, these approaches cannot be applied.

Data

To analyze and solve this problem, throughout the following sections, we will use pub-

licly available datasets and networks, as shown in Figure 3.1 and Table 3.1.
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TABLE 3.1: Data set description

Data set
Number of

examples

Number of

attributes

Number of

classes

1 asiaa 10000 8 0 (44%) 1 (56%)

2 cancera 10000 5 0 (1%) 1 (99%)

3 coronary b 1841 6 0 (86%) 1 (14%)

4 earthquakea 10000 5 0 (2%) 1 (98%)

5 GMBc 5000 5 0 (62%) 1 (38%)

6 lucasd 2000 12 0 (28%) 1 (72%)

7 monicae 6367 12 0 (55%) 1 (45%)

8 mux6b 128 7 0 (50%) 1 (50%)

9 PreSexf 1036 4 0 (77%) 1 (23%)

10 sachsa 10000 11 0 (60%) 1 (26%) 2 (13%)

11 surveya 10000 5 0(56%) 1(28%) 2(16%)

12 titanice 1316 4 0 (62%) 1 (38%)

13 youth risk 2008e 500 5 0 (40%) 1 (59%)
a https://www.bnlearn.com/
b https://www.openml.org
c https://cran.r-project.org/web/packages/pcalg/index.html
d http://www.causality.inf.ethz.ch/data/LUCAS.html
e https://vincentarelbundock.github.io/Rdatasets/articles/data

.html
f https://cran.r-project.org/web/packages/vcd/index.html

This data was gathered from several public databases and are publicly available for usage.

The datasets asia, cancer and sachs, presented in Table 3.1, were randomly generated using

the networks present in Figure 3.1. The lucas dataset is a public dataset that provides both

the generated data and the correspondent network.

https://www.bnlearn.com/
https://www.openml.org
https://cran.r-project.org/web/packages/pcalg/index.html
http://www.causality.inf.ethz.ch/data/LUCAS.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://cran.r-project.org/web/packages/vcd/index.html
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(A) asia (B) cancer (C) sachs

(D) lucas

FIGURE 3.1: Networks description

3.2 Causal Association Rules With Partial Association and Un-

certainty Coefficient

In this section, we present CRPA-UC, a causal association rules algorithm. This approach

can be used for both binary and non-binary discrete data. As conditional independence

tests, it applies two tests: χ2 and GCMH. Besides this, and since it is a global structure

causal discovery algorithm, to direct the dependencies found by the conditional indepen-

dence tests accordingly, the UC (see Appendix B) is applied. It is important to note that

in this approach, testing a pair {A,B} and {B,A} will produce the same result. Hence each

pair of variables is only tested once.

CRPA-UC (Algorithm 3.1) starts by searching, for each variable, for frequent itemsets

(s1, a) (with user-defined support) in which they are present and selects every variable a

that meets this criterion. This pruning is performed because the objective is to generate
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Algorithm 3.1: Causal Rules with Partial Association and Uncertainty Coefficient:
CRPA-UC
Input: Let D be a data set with a set of variables S = {s1, s2, ..., sn}. Let α be the

significance level for the conditional independence tests and ct the
correspondent critical value. Let msupp be the minimum support. Let ucoef be
the minimum accepted coefficient.

Output: R, a set of cause rules
1 for each variable s1 in D do
2 Search for frequent itemsets in D containing s1, with support higher than msupp,

and save them in F
3 for each pair {s1, s2} in F, with distribution d = dist(s1, s2) do
4 if χ2(d) ≥ ct verifies then
5 if GeneralisedCMH(d) ≥ ct verifies then
6 Verify {s1, s2} direction using the uncertainty coefficient (UC)
7 if the coefficient is higher than ucoef then
8 Save rule in R

9 return R

rules representing the data’s frequent behaviours. These relations can be discarded since

rare items only generate more infrequent supersets.

Next, CRPA-UC applies the χ2 test (line 4). It defines that two variables are associated

if the value resulting from the test is greater than or equal to its critical value ct, with

significance level α. If the two variables are not dependent, the second and third tests are

ignored. In this case, χ2 acts as a pre-processing method, in a way that GCMH is more

computationally demanding and if the algorithm determines apriori that two variables are

not related, there is no need to apply it.

In line 5, to variables selected by χ2, the GCMH test is applied. This test checks if two

variables remain dependent, given the other variables’ influence.

After determining all the potential partial associations, the UC is applied to determine

the associations’ direction (lines 7 and 8). The direction is obtained by testing both options

(A ⇒ B and B ⇒ A), with the selected option being the one with the highest coefficient

(for the sake of consistency, the chosen value must also be higher than a minimum user-

defined coefficient).

An Illustrative Example

To explain in more detail how this approach works, we will use as an example a data set*

*The data set is available in https://tinyurl.com/gitbub

https://tinyurl.com/gitbub
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with three discrete variables (A, B and C), with 10 000 instance and values comprehended

in {0, 1, 2}. This data set can be represented as B← A→ C, meaning that A is a common

cause of B and C. In this example, we will set the minimum support and α as 1 % (being the

correspondent critical value 6.64 for one degree of freedom), and the minimum accepted

coefficient as 0.60.

As we are looking for causal rules for all variables in the data set (in this case, A, B and

C), this algorithm will have three iterations: one to search for A’s rules, another to find

B’s rules and a third for C’s rules. Since both GCMH test and χ2 tests are symmetric,

searching for the direction of the relation between A and B (when A is the target), and B

and A (when B is the target) will have the same result (i.e. we will have A⇒ B or B⇒ A

duplicated). To solve this results’ duplication, the already tested variables are discarded.

A is tested with B and C, B is only tested with C and C is not tested at all (as mentioned

in the previous section).

We will start with variable A: in the first phase, the algorithm looks for the frequent item-

sets in which the variable A is present. The method does not remove any variables since

the minimum support is 100 (number o f instances× support). Furthermore, both B and C

have higher support (4039 and 3653 respectively) and therefore are not removed.

In the second phase (line 3 in the algorithm), the χ2 test is applied. In this case, the value

obtained for B and C are 1104.83 and 2758.66 respectively. Since we set α as 1 % (with the

correspondent critical being 6.64), this means that there is a (still undirected) dependence

between B, C and A. Because of this, these two variables are selected for the next step:

the GCMH test. The values obtained from this test are: 985.30 for A-B and 2690.41 for

A-C. Since they are both higher than the critical value, this means that again B and C are

associated with A.

TABLE 3.2: UC for variable A

Variable A⇒ Variable Variable⇒ A
B 0.70 0.60
C 0.78 0.70

Finally, the UC is applied to B and C. As we can see in Table 3.2, the rules A ⇒ B and

A ⇒ C are selected since the coefficient in both of these rules is the highest and is higher

than the minimum acceptable coefficient.



3. GENERALIZED PARTIAL ASSOCIATION IN CAUSAL RULES DISCOVERY 45

After the discovery of A’s rules, the same process is repeated for B. First, the algorithm

looks for frequent itemsets with variable B and scores the variables accordingly. In this

case, and as stated before, the algorithm ignores variable A and only tests variable C.

Being that this variable has the support of 3863 is not removed. After that, the first test

is applied between variables B and C, and the correspondent value is 106.46, meaning

that these two variables are dependent. This means that this variable is selected to be

tested with the GCMH test, which returns the value 4.21. Since this value is inferior to

the critical value (6.64) so B and C are independent.

Since there are no variables to test with C (since after testing, the variables are removed),

the algorithm ends with the following rules: A ⇒ B and A ⇒ C.

3.3 Experimental Setup

To evaluate the proposed approach and make a comparative study, we draft the follow-

ing experimental setup: first, we access the algorithm’s performance in terms of patterns

generated. To do that we employ the pattern metrics presented in Chapter 2, Section 2.2.5.

We have selected four public networks presented in Figure 3.1 in Section 3.1 to test this

approach. As stated before, for asia, cancer and sachs datasets these networks were used to

generate random data that represents the relationship in the networks (details about the

number of instances can be seen in Table 3.1). The lucas dataset source website provided

both the network and data.

Second, we demonstrate another side of the causal discovery: prediction. To do that,

and since all the rules are simple and there are no cycles between them, we converted

each rule generated by CRPA-UC into an edge of the equivalent network. This time, we

compared the proposed approaches with PC using 10-fold cross-validation in the dataset

group presented in Table 3.1 in Section 3.1.

Since PC produces a partially directed acyclic graph (PDAG), to be able to use the models

for prediction, these models were extended to directed acyclic graphs (DAG)[97].

A sensitivity analysis was performed to choose the optimal parameters for the approaches

presented in the following sections. This analysis consisted of obtaining the error (1 -

accuracy) for the presented data sets (by dividing them into 70 % train, 30 % test). In the
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case of PC, this test was repeated for significance levels 1 % and 5 %. In the case of CRPA-

UC, the combination of significance level (1 % and 5 %), minimum support (1 % and 5 %)

and uncertainty coefficient (0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70 and 0.80) were tested.

These tests concluded that the algorithm’s error in the three data sets did not change much

when the parameters were changed. For this reason, for all the data sets, we selected

a significance level and minimum support of 1 % and a minimum accepted coefficient

of 0.60 (since this coefficient represents the strength of the relation, with this value we

can find relationships that are moderately strong and avoid the weak ones). For easier

comparison, in the tests presented in the following sections, only simple rules (A ⇒ B)

will be considered for CRPA-UC.

3.4 Results

Next, we evaluate the proposed approach by studying first the rules generated by the

proposed approach and accessing their quality. Secondly, we study the application of

CRPA-UC in prediction problems.

These algorithms’ performance was compared in terms of error rate (Table 3.4). This com-

parison was performed using the PC algorithm as a reference. The performance of CRPA-

UC in each data set was compared to the reference using the Wilcoxon signed ranked-test.

The sign +/− indicates that the algorithm is significantly better/worse than the refer-

ence with a p-value of less than 5 %. Besides this, the algorithms are also compared in

terms of the average and geometric mean of the errors, average ranks, average error ra-

tio, win/losses, significant win/losses (number of times that the reference was better or

worse than the algorithm, using signed ranked-test) and the Wilcoxon signed ranked-test.

For the Wilcoxon signed ranked-test, we also consider a p-value of 5 %.

3.4.1 Pattern Metrics Evaluation

As stated before, first, we assess the validity of rules generated by CRPA-UC and the

overall quality of the generated models. We compared this methodology with PC, used

as a baseline, in four publicly available datasets. As for evaluation metrics, in these tests

the metrics presented in Chapter 2, Section 2.2.5 were employed.
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TABLE 3.3: Pattern Metrics for Asia (8 edges), Cancer (4 edges), Sachs (17 edges) and
Lucas (12 edges) data set

Dataset Sachs Cancer Asia Lucas

Algorithm PC CRPAUC PC CRPAUC PC CRPAUC PC CRPAUC

Missing Edges 7 2 0 0 3 4 0 0

Extra Edges 0 0 0 0 0 1 0 1

Correct Adjacencies 10 15 4 4 5 4 12 12

Incorrect Adjacencies 0 0 0 0 0 1 0 1

Correct Directed Edges 0 10 2 2 2 2 7 9

Incorrect Directed Edges 10 5 2 2 3 2 5 3

SHD 17 7 2 2 6 7 5 4

SID 60 54 10 10 30 33 41 38

If we analyze Table 3.3, we can see that, in general, CRPA-UC tends to have more edges

that are correctly directed when compared with PC and fewer misdirected edges. How-

ever, despite this, our approach tends to have more extra relations than PC (except in the

case of sachs data set).

FIGURE 3.2: True networks and graphs generated by PC and CRPA-UC for data set Sachs

If we analyze Figure 3.2, which represents the comparison of the networks generated by

PC and CRPA-UC with the true network for data set sachs, we can see that PC did not

direct any edges and found a lower number of edges, when compared with CRPA-UC,

that directed almost every edge it found correctly. This difference can be explained by the

fact that these algorithms apply different independence tests (PC usually applies the G2,

which is similar to χ2), which means that in theory, they can obtain different dependen-

cies. The orientation method is also different: PC applies a set of orientation rules [94],
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whereas CRPA-UC applies a coefficient that explains how a variable can predict another,

and that is why it transmits more information about the relationship, such as its strength.

Besides this, if we analyze the data itself, we can see that asia, cancer and lucas data sets

are binary. At the same time, sachs has non-binary categorical data (three categories per

variable). From this, we can conclude that both approaches work similarly in binary data,

while CRPA-UC appears to find more correct relations than PC in non-binary data. This

number of correct relationships might happen because it is impossible to presume any

order in the binary data sets. In sachs’s case, the change in category is intrinsically con-

nected with the changes in other variables (for example, if one gene takes the value of

high, another gene can go low) [98].

Analysing now the two measures also presented in Table 3.3 ( SHD and SID), it is possible

to see that CRPA-UC in general has a better performance than PC (only having worse

performance in asia data set).

3.4.2 Prediction

As the predictive ability of an algorithm is essential to determine its ability to solve prob-

lems, we also analyzed the proposed method in several predictive problems, using the

datasets presented in Table 3.1.

If we analyze Table 3.4, it is possible to see that, in general, the CRPA-UC has a better

performance than PC since the value obtained in the Wilcoxon test is 0.008 73 or 0.873 %

(less than the p-value of 5 %), which means that the difference between the performance

is significant. This difference can also be seen in the values of the average and geomet-

ric ranks. More specifically, if we look at the average ranks, we can see that CRPA-UC

has lower ranks (on average) than PC (1.077 against 1.769). The result obtained in these

tests reinforces what was demonstrated in the previous section: the combination of in-

dependence test-orientation method has a beneficial impact on performance. This fact can

be explained in two ways: first, by the difference in the way G2 and GCMH calculate

the dependencies. While G2 is based on the log-likelihood-ratio, GCMH is a generalisa-

tion of the McNemar test [99]. This can explain the difference in the found relationships.

Second, we use an orientation method that, besides orienting the relationships, can also

find dependence between the variables (eliminating the weaker relations) to obtain more

information about them.
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TABLE 3.4: Error rates of PC and CRPA-UC in classification problems

Data set PC CRPA-UC

1 asia 15.18 ± 1.47 15.18 ± 1.47

2 cancer 1.05 ± 0.28 1.00 ± 0.25

3 coronary 14.13 ± 2.43 14.13 ± 2.43

4 earthquake 0.77 ± 0.33 0.67 ± 0.33

5 gmb 37.34 ± 4.92 + 26.50 ± 5.07

6 lucas 20.02 ± 3.38 18.15 ± 4.02

7 monica 44.48 ± 3.35 + 14.50 ± 0.67

8 mux6 61.86 ± 9.66 + 45.26 ± 14.94

9 pre sex 24.64 ± 3.90 23.84 ± 3.32

10 sachs 39.61 ± 1.23 + 34.49 ± 1.34

11 survey 43.95 ± 0.91 44.17 ± 1.12

12 titanic 24.16 ± 7.28 22.64 ± 3.45

13 youth risk 2009 40.80 ± 7.07 40.40 ± 6.31

Average Mean 25.385 20.602

Geometric Mean 17.594 14.709

Average Ranks 1.769 1.077

Average Error Ratio 1 0.842

Wicoxon test 0.00872

Win/Losses 10/1

Significant win/losses 4/0

3.5 Summary

Causality has become an increasingly studied topic in machine learning/data mining.

Although Bayesian networks are among the favourite algorithms for applying causal dis-

covery in observational data, more and more causal discovery algorithms have appeared

that do not fall into this category in recent years.

One example is the causal rule discovery algorithms. There are already a few approaches

that combine causality with association rules. However, these methods have some disad-

vantages: they can only be used for local structure discovery in binary data and apply a

naive approach as orientation method.
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This work proposes a global causal association discovery algorithm for binary and non-

binary discrete data: CRPA-UC. In this method, we apply a combination of two indepen-

dence tests, as well as the UC as a direct method. We compared this approach with PC in

the experiments using public data sets. From these results, we can conclude that applying

a more powerful independence test with an orientation method gives information about

the variables’ dependency and positively impacts the method’s performance.



Chapter 4

Semi-Causal Decision Trees

Most classification algorithms use correlation analysis to make decisions with satisfac-

tory results. This correlation can be understood as a statistical association between two

random variables and can be very advantageous for classification algorithms since it un-

covers the predictive relationship between variables.

Although correlation is an essential predictive clue, the information retrieved often does

not make sense by real-world standards. However, despite this lack of human rationality,

these relations can be evidence of a stronger type of relations: causal relationships.

Causality, more specifically, causal discovery, is the field that combines machine learn-

ing, data mining and statistics to search for potential cause-effect relationships in obser-

vational data [25]. The application of causal discovery in the various tasks of machine

learning can be a challenge, both at the level of the causal process application itself and

at the sampling process to generate the observed data [41]. Despite this, causal discovery

has been the study focus of several researchers over the years, given its importance and

the potential impact that the causal relationships’ discovery between events can have in

the problem-solving, namely at an interpretability level since this type of analysis can po-

tentially uncover the underlying relationships between the variables, thus being possible

to explain and sustain decisions more easily.

With that said, it is crucial to understand the difference between cause and correlation. As

stated in Chapter 2, correlation is not the same as causation because, although there might

exist a causal relationship when there is a strong correlation between events, the fact that

51
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two events happen sequentially and always together does not mean that they have a

cause-effect relationship, thus not providing enough information about the occurrence of

events. There are several reasons why these correlations are similar to causality, such as

data and links that go against established rules. Nevertheless, correlation is still important

in finding the true relationship between events.

In real-world problems, the data is a mixture of causal and correlation relationships [100].

However, traditional causal and correlations models usually ignore the other types of

relationships since it is possible to have causal relationships without correlation and vice-

versa. This fact can lead to a loss in the interpretability in correlation-based models’ inter-

pretability, and prediction power, in causal based models (sometimes, correlation-based

classification algorithms have better results than causal discovery algorithms, even in data

with clear causal relationships [101]).

In this chapter, we aim to answer RQ.2 and RQ.5: Is it possible to obtain more interpretable

models by using causal discovery? and Are causal relationships helpful, and can they bring sig-

nificant gains? To answer these questions, we start by studying the potential usage of

decision trees to infer causal relationships from cross-sectional observational data.

Decision trees are a notorious type of algorithm, widely used for most problem-solving

tasks. The generated models are easily understandable since the models’ information is

presented in a tree-like structure. Despite this, the trees’ presented information is based

on correlation metrics, meaning that found relationships may not make sense for the user

(for example, the number of Nicolas Cage movies influences the number of deaths in

swimming-pools*). To deal with this problem, Li et al. [8] proposed the Causal Decision

Trees, introducing causal discovery to split the data, thus creating trees in where all the

non-leaf nodes present a causal relationship with the outcome. However, this method

ended up losing some predictive power [102].

For this reason, we propose a semi-causal hybrid approach that takes advantage of the

correlation’s predictive power and the causal discovery’s interpretability potential to im-

prove the performance of Decision Trees in discrete data. This is done by defining a new

data splitting score method that merges the information gain/gain ratio approach usually

*https://www.nationalgeographic.com/science/phenomena/2015/09/11/nick-cage-movies-vs-d

rownings-and-more-strange-but-spurious-correlations/

https://www.nationalgeographic.com/science/phenomena/2015/09/11/nick-cage-movies-vs-drownings-and-more-strange-but-spurious-correlations/
https://www.nationalgeographic.com/science/phenomena/2015/09/11/nick-cage-movies-vs-drownings-and-more-strange-but-spurious-correlations/
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used in Decision Trees with a simple causal discovery approach ( GCMH and the Uncer-

tainty Coefficient as a directional method) that detects and scores potential causal rela-

tionships. With this approach, we intend to create more concise trees than the traditional

decision trees that are easily understandable for the average human being but are not so

small that it is impossible to obtain accurate predictions. We also want to assure that the

algorithm prioritises variables that are causes of the target, securing that the higher nodes

in the tree are causally related to the outcome. Furthermore, the correlation component

(gain ratio) is applied in every split to achieve and maintain predictive power throughout

the tree’s construction. This means that every choice made by the algorithm is based on

strong causal relationships between strongly correlated variables. Finally, this splitting

score has the advantage of guaranteeing that, if at any moment, the causal relationships

are missing from that split due to data division, if there is a strong correlation between

the variables, the algorithm will still split by the highest correlation, thus assuring that it

is possible to find causal relationships in further splits.

Ultimately, the goal is to create a tree with strong causal and correlational relationships in

the top tree nodes but also allow the tree to further split, even without causal relationships

in a given division, assuring:

1. if possible, find more causal relationships in further splits;

2. the tree is not prematurely ended because there are no causal relationships.

4.1 Problem

As stated previously, the current causal decision trees methodologies CDT-PS and CDT-

SPS, presented in Section 2.2.4 have several limitations that restrain their usage to few

potential cases. These methods do not assure that the variables chosen are, in fact, the

causes of the outcome and not the other way around. In practice, this means that when

upon a potential causal undirected relationship between two variables A and T (A− T)

found by the conditional independence test, the algorithm naively always chooses the

relationship’s direction as A → T, which is not always true. Besides, this method can

only be used in binary data sets.

Finally, and as mentioned before, these methods lose predictive power due to creating too

concise trees. As it is known, the number of causal relationships typically found in a data



54 CAUSAL REASONING IN DATA

TABLE 4.1: Binary data set description

Data set
Number of

examples

Number of

attributes

Number of

classes

1 asia 10000 8 0 (44%) 1 (56%)

2 corrala 160 7 0 (56%) 1 (44%)

3 earthquake 10000 5 0 (2%) 1 (98%)

4 GMB 5000 5 0 (62%) 1 (38%)

5 lucas 2000 12 0 (28%) 1 (72%)

6 mux6 128 7 0 (50%) 1 (50%)

7 PreSex 1036 4 0 (77%) 1 (23%)

8 threeOf9a 512 10 0 (54%) 1 (46%)

9 Titanic* 2201 7 0 (68%) 1 (32%)

10 xd6a 973 10 0 (67%) 1 (33%)
a https://www.openml.org

set is lower than the number of correlational relationships. In some instances, the small

size of the trees is so extreme that there is only one non-leaf node and two leave nodes

(T1 ← A → T2). In practice, this might be because, despite several causal relationships

present in the data, the target only has a causal relationship with one variable, or the split

translates into a perfect separation of the target’s values. This means that, for achieving

accurate results, a balance in the tree size (not too small that the results are too random

and not too big that is difficult to understand) is needed.

Data

To analyse and solve this problem, throughout the following sections, we will use publicly

available datasets as shown in Table 4.1 and Table 4.2. This data was gathered from several

public databases and are publicly available for usage.

4.2 Methodology

Decision Trees are a well-known algorithm, widely used for various problem-solving

tasks, for imitating human reasoning, and thus being easily understandable. In this al-

gorithm, the leaves represent the learned classes, and the branches represent the con-

junctions of characteristics of that class. This algorithm is a classification approach that

*This data set is provided with CDT Weka jar file as an example (nugget.unisa.edu.au/jiuyong/)

https://www.openml.org
nugget.unisa.edu.au/jiuyong/
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TABLE 4.2: Non-binary data set description

Data set
Number of

examples

Number of

attributes

Number of

classes

1 medparb 1495 9 0 (66%) 1 (34%)

2 monica 6367 12 0 (55%) 1 (45%)

3 respiratoryb 555 5 0 (51%) 1 (49%)

4 sachs 10000 11 0 (60%) 1 (26%) 2 (13%)

5 titanic 1316 4 0 (62%) 1 (38%)
b https://vincentarelbundock.github.io/Rdatasets/articles/

data.html

chooses the optimal solution at each stage, meaning it decides at each iteration which is

the best solution for that iteration. This solution predicts new nodes for the tree until it

cannot predict a better solution than the previous one.

To decide which is the optimal variable to split in the tree, decision trees use the In-

formation Gain (IG) to rank the attributes according to the information gained from the

attribute’s value. It is obtained by the difference between the expected information or

entropy E(P) of the target variable P before splitting and the weighted entropy after split-

ting the data by the attribute values of A (4.1) (D represents the data set, N represents the

number of classes and v each of A’s value) [103, 104].

E(Y) = −
N

∑
i=1

yi log2(yi)

IG(Y, A) = E(P)− ∑
v∈A

|Dv|
|D| × E(Yv)

(4.1)

Since IG can be biased towards variables with a larger number of distinct values, some

decision trees’ versions like J48 (on which our approach is based) use a modified version

of this metric, called information gain ratio (4.3).

IV(S) = −
N

∑
j=1

|Sj|
S
× log2

|Sj|
S

(4.2)

IGR(S) =
IG(S)
IV(S)

(4.3)

This ratio corrects the IG obtained for a variable using the intrinsic information of the split

(also called intrinsic value) [105], which is the representation of the potential information

generated if we split a data set in N partitions (4.2).

https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
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Although this metric can quantify how much information can be obtained by each vari-

able, thus maximising the information gained in each tree’s split, it does not give any

information about the potential causal relationships between the variables that, in con-

junction with this correlational information [106], might boost its interpretability.

This section presents a new approach that merges information about potential causal re-

lationships between the variables with the information gained from them: SC Tree.

In this modified version of Decision Trees, in each split, besides calculating each variable’s

potential gain of information, it also tests if there is a potential causal relationship between

them and the target variable. This is done by applying a causal discovery methodology

that searches for potential causal relationships between the variables.

4.2.1 Local Causal Discovery Module

As explained previously, the proposed methodology takes advantage of the potential

causal relationships found in the data to create the model. The discovery of these relation-

ships is made in every split with the available data at that moment. This causal module

searches for potential causal relations variable → class (being class the target variable)

and uses the measured dependence output as an input to calculate the best attribute to

split.

At this moment, and before going into more detail about the module, some key definitions

must be reminded, such as what is a (potential) causal relationship and how it is possible

to measure them. By causal relationship, we comprehend the relation between different

events, in which one is identified as the cause of the other. This means that, in theory, if

the first event occurs, we can also expect the second to occur. On the contrary, if the first

event does not occur, it is expectable that the second does not occur also.

Generally, a causal algorithm can be classified as a local or global discovery algorithm,

depending on its purpose and mechanism applied to find relationships.

Although there is not a well-defined answer for this distinction between causal algo-

rithms, we can define a global causal discovery algorithm (also known as global structure
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discovery) as an algorithm that tries to search for all the existing potential causal relation-

ships between several variables [107]. This type of algorithm is usually used to study the

general causal interactions in a given system.

As for local causal discovery algorithms (also called local structure discovery), their ob-

jective is only to find causal relationships for a specific variable instead of all the variables

[107]. This algorithm is mainly used in two specific cases, such as problems with high

dimensional data or feature selection problems.

Besides only searching for causal relationships with a target variable, local causal discov-

ery differs from global causal discovery in another aspect. Typically local causal discovery

algorithms return only undirected causal relationships, i.e., they find relationships but do

not give any information about the direction of those relationships. In contrast, global

causal discovery algorithms perform an extra step to find the direction of these relation-

ships.

Arguably, in machine learning, the most common form found in the literature to mea-

sure if a relation is causal or not is through conditional independence tests [41]. State

of the art global causal algorithms such as PC, FCI, among others [94] apply these tests

to undercover which variables are independent of which, hence remaining the potential

dependent ones.

As causal relations tend to be maintained in the presence of others’ influence, these con-

ditional independence tests verify whether the potential relations are maintained when

one, two, or several variables influence their values (thus not sustaining the claim that

they are causally related).

Several conditional independence tests can be applied, but the most commonly used for

discrete data are χ2 and G2 [94]. Although both of these methods are Chi-squared based

independence tests and are widely used for being independent of order, there are several

limitations. For example, in χ2 case, by merely testing if two variables are dependent on

each other only using the information from these two variables, it is not possible to say for

sure if they are causally dependent (since, in general, a causal relationship remains, even

when other factors are influencing the relationship, i.e. if we have three variables A, B and

C, we can only say that A and B are causally related if this relation is maintained when C

also influences it) [54, 108]. Although G2 solved this problem by inserting the influence
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of other variables in the dependence calculation, it seems to be sensitive to sample size

[109, 110], meaning that it does not detect well relationships in small data sets.

Some tests search for this type of association, called partial association (statistical measure

to find conditional independence in controlled experiments [111]). One example is the

GCMH.

As mentioned earlier, despite conditional independence tests being a vital component to

finding potential causal relations, it is important to note that these tests do not direct the

potential dependences, i.e., if A is the potential cause of B or vice versa, they only hint that

there is a relationship. As stated in Chapter 2, this orientation can be done by using a set

of established rules, by using experimental data to orient the edges or by using a mixture

of both the previous approaches.

Returning our focus to the proposed module, although it can be classified as a local causal

discovery since it searches for causal relationships for a specific variable, it is a crucial dif-

ference closer to the global causal discovery algorithms. Instead of searching and return-

ing the indirect causal relationships, this module directs all causal relationships found

using an asymmetric dependence measure and returns only the causes of the target vari-

able (variable → target) and the respective coefficient (Algorithm 4.1)*. With this extra

orientation step, we assure that the chosen variables are the ones that influence our target

directly (they cause it) and not only (causally) related to the target, like, for example, the

CDT that choose any variable that is related to it, without verifying if it is its cause or if

its caused by it.

In this module, we propose the usage of the GCMH test instead of the traditional χ2 or

G2 regularly used in literature because it mitigates the problems presented previously.

Besides this fact, the GCMH test can also be used in both binary and non-binary discrete

data. As an orientation method, we propose the UC, which measures how dependent

two variables are, with the values of this coefficient between 0 and 1. Since this coefficient

is asymmetric, it is possible to determine the direction of the dependence by comparing

the obtained value for A → B and B → A, choosing the direction of the most significant

dependency.

*it is important to note that from now on causal sufficiency and faithfulness are assumed
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Algorithm 4.1: CAUSALM: module for finding potential causal relationships and re-
spective UCs
Input: Let D be a data set with a set of variables S = {s1, s2, ..., sn} and a target

variable t. Let α be the significance level for the conditional independence
tests and ct the correspondent critical value. Let ucoef be the minimum
accepted coefficient.

Output: R, list of all causal relationships and respective UCs
1 for each pair of variables {s, t} in D, with distribution d = dist(s, t) do
2 if Generalised_CMH(d) ≥ ct verifies then
3 Verify s→ t and t→ s directions using the uncertainty coefficient (UC)
4 if the coefficient of s→ t is higher than t→ s and ucoef then
5 Save s and the respective coefficient in R

6 return R

To find all possible causal relationships with the target variable, the causal module (Al-

gorithm 4.1) starts by applying the independence test to all variables (with a level of sig-

nificance defined a priori) to determine what are the possible relationships between these

and the target (line 2). To all the chosen variables (that is, they are partially associated

with the target), the UC is applied. This is done, by testing both variable → target and

target → variable. Suppose variable → target is the one with the highest coefficient,

and its coefficient is higher than a user-defined minimum coefficient (to assure that only

strong dependencies are chosen). The variable and respective coefficient are saved (this

value will be used later in the variables’ importance calculation).

4.2.2 Revisiting SC Trees

Returning now our attention to the proposed algorithm, its operation is similar to the

traditional decision trees in that it applies a divide and conquer methodology to build the

tree, as we can see in Algorithm 4.2.

The main difference between the traditional method and the proposed method lies in

the way the attributes’ importance is calculated: instead of using only the value of IG

as a measure of importance, in this algorithm, we propose the use of the sum of IG

with the uncertainty coefficient (if there is a causal relationship), with defined weights

(denominated in this work as semi-causal information gain or SCIG) in the information

gain ratio’s calculation (denominated in this work as semi-causal information gain ratio

or SCIGR).
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Algorithm 4.2: SCT: Semi-Causal Tree
Input: Let D be a data set with a set of variables S = {s1, s2, ..., sn} and a target

variable t
Output: Tree

1 Tree = {}
2 if D is pure OR other stop criteria is met then
3 return Tree
4 Map all the potential causal relationships in D with the t using CAUSALM
5 for all attribute a in D do
6 Compute criteria of semi-causal gain ratio if we split on a (4.5)

7 abest = Best attribute according to the above-computed criteria (an attribute that
maximises the gain ratio)

8 Tree = Create a decision node that tests abest in the root
9 Dv= Induced subsets from D based on abest

10 for all Dv do
11 Treev= SCT(Dv)
12 Attach Treev to the correspondent branch of the Tree

SCIG(X) =


(β× IGX) + (θ ×UCX) i f GCMHX < α UCX ≥ uccoe f

IGX otherwise

(4.4)

SCIGR(X) =
SCIG(X)

IV(X)
(4.5)

Therefore, and as we can see in Algorithm 4.2, in each split, the algorithm begins by

searching all potential relationships with the target (line 5). This information is then used

to calculate the semi-causal information gain ratio (4.5) of each variable, then choosing

the one with the highest value.

It is important to note that the first statement of (4.4) is only used in the gain ratio calcula-

tion if and only if there is evidence of a (strong) causal relationship between the target and

the current variable, that is given first and foremost by the GCMH test (Algorithm 4.1),

that is responsible for accessing if there is a causal dependence between a variable and the

target. Only after this causal dependence is established is the UC applied only to assure

that the relationship is strong and that the direction is the desired one (variable→ target).

If the equation’s condition does not hold, only the IG (the second statement) is used in

the gain ratio calculation.



4. SEMI-CAUSAL DECISION TREES 61

This process of choosing the optimal variable and splitting by it is repeated until the stop

criteria are met. For example, in SC Tree, the default criteria used to stop the creation of

the tree is the following: there is no attribute with a positive IG ratio, or the minimum

number of instances per leaf was met [112].

4.3 Experimental Setup

To evaluate the proposed approach and make a comparative study, the following config-

uration of experiments was designed:

• First, we investigate how alterations in the proposed IG formula (4.4) influence the

outcome. We compared the different alterations using 10-fold cross validation, in

several public data sets (Table 4.1 and Table 4.2);

• Second, we compare the proposed approach with other causal and non-causal de-

cision tree based approaches ( CDT, explained in detail in Section 2.2.4, and J48),

using 10-fold cross validation, in several binary public data sets (Table 4.2);

• Finally, we compared the proposed approach with the current state of the art causal

discovery method, PC [94], using 10-fold cross validation, in several public data sets

(Table 4.1 and Table 4.2).

A sensitivity analysis was performed to choose the optimal parameters for the approach

presented in the following sections. This analysis consisted of obtaining the error (1 -

accuracy) for the presented data sets (by dividing them into 70 % train, 30 % test). In the

case of of the proposed approach this test was repeated for significance levels (1 % and

5 %) and UC (0.50, 0.60, 0.70 and 0.80). These tests concluded that the algorithms’ errors

in the data sets did not change significantly when the parameters were changed. For this

reason, for all the data sets, we select and present a significance level of 5 % and UC of

0.60. Furthermore, so that the tree’s growth is not restricted, we set the minimum number

of instances per leaf node as 2.

As for the baselines ( CDT, PC and J48), for CDT* the default setting proposed by the

authors (maximum height of the decision tree of 5 and performing pruning). For J48†

*we used the WEKA jar file provided by the authors to compare with our methodology
†we used the WEKA implementation
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we use pruning confidence of 0.25 and the minimum number of instances per leaf of 2.

Finally, for PC, we use a 5 % significance level.

4.4 Results

Our proposed algorithm’s performance is compared with several baselines in terms of

error rate, tree size, and the average number of causal relationships found in the follow-

ing sections. In addition, the performance of SC Tree in each data set was compared to

the baselines using the Wilcoxon signed ranked-test. The sign +/− indicates that the al-

gorithm is significantly better/worse than the reference with a p-value of less than 5 %.

Besides this, the algorithms are also compared in terms of the average and geometric

mean of the errors, average ranks, average error ratio, win/losses, significant win/losses

(number of times that the reference was better or worse than the algorithm, using signed

ranked-test) and the Wilcoxon signed ranked-test. For the Wilcoxon signed ranked-test,

we also consider a p-value of 5 %.

4.4.1 SC Tree’s possible configurations

In the previous section, we presented the optimal values for the causal module (optimal

α and optimal minimum UC). In this section, we present a thorough investigation of

how different configurations of weights in (4.4) influence the overall performance (by

influencing the value obtained in (4.5)) of the proposed methodology.

To test its performance, we propose the following configurations for weights β and θ:

1. β = 1 and θ = 1: this configuration will be our reference, since it gives equal weights

to IG and UC;

2. β = 2 and θ = 1: in this configuration we give more importance to the IG than the

UC;

3. β = 1 and θ = 2: in this configuration we give more importance to the UC than the

IG;

4. β = 0 and θ = 1: this configuration differs from the previous since it uses only

causal information if available, i.e., if in a split there is at least one causal relationship

the method uses that information to do the split; if there is no causal relationship
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available, then it uses the IG. This configuration is presented in (4.6), where cr(X, T)

represents the list of all causal relationships detected in that split.

SMCIG(X) =


UCX i f ∃X.cr(X, T) GCMHX < α UCX ≥ uccoe f

IGX otherwise

(4.6)

We compared these configurations in terms of error rate (Table 4.3). For this comparison,

we used the metric presented in Section 4.3.

TABLE 4.3: Error rates of SC Tree in several configurations

Data set
SC Tree

(IG + uc)

SC Tree

((2× IG) + uc)

SC Tree

(IG + (2× uc))
SC Mixed Tree

1 asia 14.60 ± 1.42 14.60 ± 1.42 14.60 ± 1.42 14.60 ± 1.42

2 corral 2.50 ± 4.37 2.50 ± 4.37 2.50 ± 4.37 2.50 ± 4.37

3 earthquake 0.23 ± 0.11 0.23 ± 0.11 0.23 ± 0.11 0.23 ± 0.11

4 GMB 15.00 ± 1.77 15.00 ± 1.77 14.98 ± 1.73 14.98 ± 1.73

5 lucas 14.50 ± 1.35 14.50 ± 1.35 14.50 ± 1.35 14.50 ± 1.35

6 medpar 32.84 ± 4.30 32.84 ± 4.30 32.84 ± 4.30 32.84 ± 4.30

7 monica 14.42 ± 1.99 14.42 ± 1.99 14.42 ± 1.99 14.42 ± 1.99

8 mux6 19.55 ± 12.91 18.72 ± 13.94 21.22 ± 12.37 28.21 ± 8.68

9 PreSex 21.52 ± 3.77 21.52 ± 3.77 21.52 ± 3.77 21.52 ± 3.77

10 respiratory 39.62 ± 3.57 39.62 ± 3.57 39.62 ± 3.57 39.62 ± 3.57

11 sachs 22.20 ± 1.65 22.20 ± 1.65 22.20 ± 1.65 22.20 ± 1.65

12 threeOf9 2.55 ± 2.46 2.55 ± 2.46 2.55 ± 2.46 2.55 ± 2.46

13 titanic 20.82 ± 4.06 20.82 ± 4.06 20.82 ± 4.06 20.82 ± 4.06

14 Titanic 21.86 ± 3.85 21.86 ± 3.85 21.86 ± 3.85 21.86 ± 3.85

15 xd6 0.31 ± 0.50 0.31 ± 0.50 0.31 ± 0.5 0.31 ± 0.50

Average Mean 16.19 16.11 16.28 16.74

Geometric Mean 8.66 8.63 8.70 8.87

Average Ranks 1.13 1.20 1.20 1.13

Average Error Ratio 1 0.99 1 1.03

Wicoxon test 1 1 1

Win/Losses 1/0 1/1 1/1

Significant Win/Losses 0/0 0/0 0/0

As it is possible to spot in Table 4.3 the different configurations are relatively similar, with

configuration 2 (β = 2 and θ = 1) being the best (in terms of average mean error rate)

and configuration four being the worst. Despite being more explicable, this difference

shows that purely causal approaches or approaches that privilege causal relationships do
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not perform as well on classification problems as algorithms that privilege correlation.

Although the results are different, this difference is not significant.

For this reason, in the following sections, we will use configuration one since it gives

equal importance to both measures, not privileging one over the other.

4.4.2 Comparing Decision Tree Approaches

To understand whether the mixture between correlation and causality would improve the

performance while maintaining causal coherence, we compared the proposed approach

with three decision tree-like approaches CDT-PS, CDT-SPS and J48.

As it was explained in Section 2.2.4, CDTs can only be used in binary data. Although

the proposed methodology can be used in both binary and non-binary discrete data, for

the sake of consistency, in this section we will only compare SC Tree with both CDT

approaches using binary data sets. We compared the proposed approach in terms of er-

ror rate in several binary discrete data sets (Table 4.2). For this comparison we used the

metrics presented in Section 4.4 and used SC Tree as reference.

TABLE 4.4: Error rates for SC Tree, CDT-PS, CDT-SPS and J48

Dataset SC Tree CDT-PS CDT-SPS J48

1 asia 14.60 ± 1.42 - 15.58 ± 1.65 - 33.55 ± 15.25 14.59 ± 1.42

2 corral 2.50 ± 4.37 - 43.13 ± 18.03 - 40.00 ± 18.45 1.25 ± 3.95

3 earthquake 0.23 ± 0.11 - 1.44 ± 0.37 - 2.45 ± 1.86 0.24 ± 0.14

4 GMB 15.00 ± 1.77 - 19.91 ± 4.83 15.18 ± 1.99 15.06 ± 1.95

5 lucas 14.50 ± 1.35 15.30 ± 4.31 15.30 ± 4.31 13.86 ± 1.38

6 mux6 19.55 ± 12.91 - 52.31 ± 8.54 - 54.68 ± 10.09 10.38 ± 10.34

7 PreSex 21.52 ± 3.77 - 23.26 ± 4.58 - 23.26 ± 4.58 22.49 ± 4.37

8 threeOf9 2.55 ± 2.46 - 23.83 ± 4.01 - 24.42 ± 3.96 2.93 ± 2.10

9 Titanic 21.86 ± 3.85 - 26.61 ± 6.46 - 26.61 ± 6.46 20.94 ± 3.74

10 xd6 0.31 ± 0.50 - 15.31 ± 4.66 - 15.93 ± 2.82 0.21 ± 0.43

Average Mean 11.26 23.67 25.14 10.20

Geometric Mean 5.16 17.95 19.96 4.40

Average Ranks 1.60 3.20 3.50 1.40

Average Error Ratio 1 9.07 9.71 0.89

Wicoxon test 0.002 0.002 0.375

Win/Losses 10 0 0/10 6/4

Significant Win/Losses 9 0 0/8 0/0
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As it is possible to see in Table 4.4, in general, the proposed approach has better per-

formance than the causal decision tree algorithms, since the values obtained from the

Wilcoxon test are 0.002 for both ( CDT-PS) and ( CDT-SPS). This means that there is a sig-

nificant positive difference between the errors of the three methods (the p-value is lower

than the stipulated p-value of 5 %). This difference can also be spotted in the average and

geometric ranks’ values, especially in the average error ratios. The proposed approach

has a significantly lower rank than the other methods.

Compared to J48, the proposed approach is very similar to it in terms of performance

since the Wilcoxon test value is 0.375, meaning that, although the splitting method was

changed, these changes did not have a significant impact in SC Tree’s performance.

As it is possible to observe in Figure 4.1, that presents a critical difference diagram (using

the Nemenyi test with 5 % significance), comparing SC Tree, both CDT methods and J48,

the algorithm that presents the best performance is J48, since it is the algorithm that ap-

pears first in the diagram (the closer to 1 the algorithm is, the better it is the performance).

This algorithm is closely followed by SC Tree, that presents similar results to J48 (this

information is in line with what was presented in Table 4.4).

FIGURE 4.1: Critical difference diagram for SC Tree, CDT-PS, CDT-SPS and J48 (error
rate)

As tree-based algorithms, some important metrics to investigate are the tree size, number

of leaves, and depth ( since it entails how much information is present in a tree and how

interpretable a tree is for the average user) [113, 114]. This topic is closely related to

Occam’s razor, which states that one model should be preferred over another if the first

has a simpler structure than the second, as it will generalise better [115].

As causal approaches, it is expected that CDT-PS and CDT-SPS generate smaller and

more concise trees since the list from where they can retrieve relations is much smaller
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(when compared to correlation relationships) [8]. As for the proposed approach, since it

is a causal/correlation mixed approach that selects variables that are both strong causally

related and correlated with the target, it is expected that the tree size lies between the

CDT’s and J48.

As it is possible to see in Table 4.5, that presents the average size of the trees generated

for several binary data sets, using 10-fold cross-validation, in general, the pure causal

approaches ( CDT-PS and CDT-SPS) generate significantly smaller trees (with 0.002 in

the Wilcoxon test for both approaches) than the SC Tree, while J48 generates significantly

bigger trees than the proposed approach (0.002 in the Wilcoxon test). This same behaviour

can be spotted in Table 4.6 and Table 4.7, which entail the average depth and the average

number of leaves, respectively. In these tables, it is possible to see that CDT-PS and

CDT-SPS generate shallow trees with a reduced number of leaves (this difference being

significant when compared to SC Tree), while J48 creates deep trees with several leaves.

From these tables, we can assess that:

1. SC Tree creates bigger trees than the CDTs approaches, because it uses the IG

as information whenever there is no causal information. Moreover, the usage of

the semi-causal information ratio (4.5) leads to different splitting decisions, thus

creating trees that evolve differently (this will be shown in Section 4.4.2);

2. SC Tree creates smaller trees than J48 because it restrains the tree’s construction by

adding further splitting constraints to the process.

Finally, it is essential to note that, although the CDTs approaches created relatively small

and highly interpretable trees, this is done at the cost of giving almost no information

about the system.

While there appears to be a difference between them, if we compare all four approaches

using a critical difference diagram again, with significance level 5 % (Figure 4.2, Figure 4.3

and Figure 4.4). We can see that, while the difference in tree size is only significant when

we compare J48 with CDT-PS and CDT-SPS, there is a significant difference between

CDT-PS and SC Tree in both depth and number of leaves.
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TABLE 4.5: Average tree size for SC Tree, CDT-PS, CDT-SPS and J48

Dataset SC Tree CDT-PS CDT-SPS J48

1 asia 6.60 ± 0.80 + 3.00 ± 0 + 2.60 ± 1.84 7.00 ± 0

2 corral 12.40 ± 3.16 + 1.00 ± 0 + 1.40 ± 1.26 13.80 ± 2.53

3 earthquake 8.40 ± 3.13 + 3.00 ± 0 + 1.00 ± 0 - 12.00 ± 2.54

4 GMB 7.40 ± 1.26 + 3.00 ± 0 -11.60 ± 3.29 - 12.20 ± 1.69

5 lucas 18.20 ± 4.02 + 13.60 ± 4.43 + 13.60 ± 4.43 - 37.60 ± 5.08

6 mux6 23.20 ± 6.89 + 3.80 ± 2.86 + 3.00 ± 2.82 - 39.20 ± 5.20

7 PreSex 5.00 ± 0 + 1.00 ± 0 + 1.00 ± 0 5.20 ± 0.63

8 threeOf9 48.60 ± 3.37 + 22.20 ± 2.70 + 21.20 ± 1.99 - 55.80 ± 4.73

9 Titanic 8.60 ± 0.84 + 3.40 ± 2.80 + 3.40 ± 2.80 9.20 ± 0.60

10 xd6 61.00 ± 0 + 18.20 ± 1.93 + 17.20 ± 2.74 - 71.67 ± 2.90

Average Mean 19.94 7.22 7.60 26.37

Geometric Mean 13.92 4.25 4.29 18.2

Average Ranks 2.9 1.5 1.3 4

Average Error Ratio 1 0.36 0.44 1.34

Wicoxon test 0.002 0.002 0.002

Win/Losses 10/0 9/1 0/10

Significant Win/Losses 10/0 9/1 0/6

FIGURE 4.2: Critical difference diagram for SC Tree, CDT-PS, CDT-SPS and J48 (average
tree size)

Finally, as a semi-causal approach, it is crucial to understand how SC Tree performs in

finding (and using) causal relationships in its decisions. Because of that, we compared

the approach with CDT-PS and CDT-SPS in terms of average causal relationships found.

For both CDT approaches, since all the splits are done using causal information, the

number of causal relationships was retrieved using the following formula: tree size −

number o f leaves.

If analyse Table 4.8, that represents the average number of causal relationships found by
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TABLE 4.6: Average depth for SC Tree, CDT-PS, CDT-SPS and J48

Dataset SC Tree CDT-PS CDT-SPS J48

1 asia 3.20 ± 1.03 + 1.00 ± 0 0.70 ± 0.95 3.00 ± 0

2 corral 4.00 ± 0 + 0 ± 0 + 0.20 ± 0.63 4.00 ± 0

3 earthquake 3.60 ± 0.70 + 1.00 ± 0 + 0 ± 0 4.00 ± 0

4 GMB 3.40 ± 0.97 + 1.00 ± 0 + 3.00 ± 0 3.80 ± 0.42

5 lucas 6.0 ± 1.49 + 3.70 ± 0.95 3.60 ± 1.26 - 9.30 ± 0.67

6 mux6 4.60 ± 0.52 + 1.30 ± 1.49 + 1.00 ± 1.41 - 5.70 ± 0.48

7 PreSex 2.00 ± 0 + 0 ± 0 + 0 ± 0 2.10 ± 0.32

8 threeOf9 7.00 ± 0 + 4.00 ± 0 + 4.00 ± 0 - 7.90 ± 0.32

9 Titanic 2.80 ± 0.42 1.10 ± 1.20 1.10 ± 1.20 3.00 ± 0

10 xd6 7.00 ± 0 + 1.10 ± 1.20 1.10 ± 1.20 - 8.00 ± 0

Average Mean 4.36 1.17 1.76 5.08

Geometric Mean 4.05 0 0 4.56

Average Ranks 3.1 1.4 1.2 3.8

Wicoxon test 0.006 0.006 0.02

Win/Losses 10/0 10/0 1/8

Significant Win/Losses 10/0 6/0 0/4

FIGURE 4.3: Critical difference diagram for SC Tree, CDT-PS, CDT-SPS and J48 (average
depth)

the three approaches, we can see that, although the difference is not significant (0.1055 for

CDT-PS and 1 for CDT-SPS in the Wilcoxon test) SC Tree finds (and uses) more causal

relationships in its construction process than CDT-PS and CDT-SPS, finding more causal

relationships than these two methods in 8 and 7 of 10 data sets (respectively). This is since

the usage of the semi-causal gain ratio (4.5) enables the algorithm to find more causal

relationships. What this means is that, if a particular split, there is no causal relationship

available, the split is performed, using only the IG (4.4), enabling the algorithm to find

more causal relationships in further splits.
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TABLE 4.7: Average number of leaves for SC Tree, CDT-PS, CDT-SPS and J48

Dataset SC Tree CDT-PS CDT-SPS J48

1 asia 4.20 ± 1.03 +2 ± 0 + 1.70 ± 0.95 4 ± 0

2 corral 7.40 ± 1.26 + 1.00 ± 0 + 1.20 ± 0.63 7.40 ± 1.26

3 earthquake 7.50 ± 2.01 + 2.00 ± 0 + 1.00 ± 0 6.50 ± 1.27

4 GMB 5.40 ± 0.97 + 2.00 ± 0 6.30 ± 0.48 6.60 ± 0.84

5 lucas 9.60 ± 2.01 7.30 ± 2.21 7.30 ± 2.21 - 19.30 ± 2.54

6 mux6 12.10 ± 3.45 +2.3 ± 1.49 + 2.00 ± 1.41 - 21.10 ± 2.60

7 PreSex 3.00 ± 0 +1 ± 0 + 1.00 ± 0 3.10 ± 0.32

8 threeOf9 24.90 ± 1.69 + 11.60 ± 1.35 + 11.10 ± 0.99 - 28.40 ± 2.37

9 Titanic 4.80 ± 0.42 + 2.20 ± 1.40 + 2.20 ± 1.40 5.10 ± 0.32

10 xd6 31.00 ± 0 + 9.60 ± 0.97 + 8.90 ± 1.91 - 36.10 ± 1.45

Average Mean 10.99 4.1 4.27 13.76

Geometric Mean 8.34 2.83 2.89 9.83

Average Ranks 3.1 1.5 1.3 3.7

Wicoxon test 0.002 0.004 0.06

Win/Losses 10/0 10/0 2/7

Significant Win/Losses 9/0 8/0 0/4

FIGURE 4.4: Critical difference diagram for SC Tree, CDT-PS, CDT-SPS and J48 (average
number of leaves)

An Example

Despite this overall similarity with J48, SC Tree does not generate the same trees, as it is

possible to see in Figure 4.6a and Figure 4.6c that represent the trees generated by J48 and

SC Tree for data set GMB, represented by the network presented in Figure 4.5(the target

variable is V2), a causal data set available in pcalg*, a causal R package. In these figures,

it is visible that both approaches choose different variables at different levels and that SC

*https://cran.r-project.org/web/packages/pcalg/index.html

https://cran.r-project.org/web/packages/pcalg/index.html


70 CAUSAL REASONING IN DATA

TABLE 4.8: Average number of causal relationships found by SC Tree, CDT-PS and
CDT-SPS

Dataset SC Tree CDT-PS CDT-SPS

1 asia 1.20 ± 0.42 1.00 ± 0 - 0.80 ± 0.92

2 corral 4.00 ± 0 - 0 ± 0 - 0.20 ± 0.63

3 earthquake 3.90 ± 0.32 - 1.00 ± 0 - 0 ± 0

4 GMB 3.30 ± 0.48 - 1.00 ± 0 + 5.30 ± 0.82

5 lucas 7.90 ± 0.99 - 6.30 ± 2.21 - 6.30 ± 2.21

6 mux6 5.30 ± 0.48 1.40 ± 1.43 - 1.00 ± 1.41

7 PreSex 1.00 ± 0 0 ± 0 - 0 ± 0

8 threeOf9 8.00 ± 0 + 10.60 ± 1.35 + 10.10 ± 0.99

9 Titanic 2.00 ± 0 - 1.20 ± 1.40 - 1.20 ± 1.40

10 xd6 7.00 ± 0 +8.60 ± 0.97 + 8.30 ± 2.6

Average Mean 4.36 3.11 3.32

Average Rank 1.5 2 2.2

Wilcoxon test 0.1055 1

Win/Losses 2/8 3/7

Significant Wins/Losses 2/5 3/7

Tree generates a slightly smaller tree. If we take the root node as an example, we can see

why:

• In J48’s case, the values for IG and IG ratio for the variables are: 0.17 and 0.17 for

V1, 0.01 and 0.01 for V3, 0.005 and 0.01 for V4, and 0.28 and 0.29 for V5. In this case,

the chosen root node is V5;

• In SC Tree’s case, the IG values are the same (0.17, 0.01, 0.005 and 0.28). However,

since SC Tree uses (4.4) and (4.5) to calculate the variables importance, first it must

apply the causal module (Algorithm 4.1) to find which variables are causes of V2. V3

and V1 are excluded by this module (they are not causes fo V2) and because of that

in the semi-causal IG ratio’s calculation we only use their IG (and not UC + IG).

V3 was excluded because the module deemed that V2 is not dependent from this

variable (the value obtained from the GCMH was 2.19, with a p-value of 0.14, which

is higher than the stipulated p-value of 5 %). V1 was excluded because, although V2

and V1 are related, the direction of this relationship is V2 → V1, meaning that V2

is the cause of V1 (the UC value obtained for V1 → V1 was 0.84 and the value for
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V2→ V1 was 0.85). V4 and V5 are both causes of V2, with UC and semi-causal IG

values of 0.95 and 0.96, and 0.86 and 1.16. After the semi-causal IG ratio calculation

we obtain the following values: 2.13 for V4 (intrinsic value of 0.45) and 1.22 for V5

(intrinsic value of 0.95). This means that SC Tree selects V4 as its root.

FIGURE 4.5: GMB’s true network

While J48 and SC Tree are somewhat similar in terms of error rate but significantly dif-

ferent in terms of tree size, the CDT approaches ( CDT-PS and CDT-SPS) are both signifi-

cantly different from the proposed approach in terms of both error rate and tree size. This

difference could be attributed to two different factors:

1. The usage of the UC helped to restrain the selected relationships by only choosing

the variables that are direct causes of the class variable, and we are restraining the

tree in that the algorithm will only use variables that transmit information to the

target;

2. The usage of the UC, combined with the IG, gives extra information to the algo-

rithms, thus boosting the classification.

If we take Figure 4.6c (presented previously) and Figure 4.6b (that represents the tree

generated by CDT-PS) as example, it is possible to precisely what was stated previously:

while CDT selects V5 as root, since it is the variable with the highest value in the CMH

test (V5 = 1036/2.7× 10−277; V4 = 7.425/0.006 and V1 = 457.4/1.769× 10−101; V3 is

excluded because its p-value is higher than 5 %). While this is also true in part for SC

Tree, the UC deems V4 as the strongest cause (V4 = 0.95; V5 = 0.86 and V1 is ignored,

since the relationship’s direction is V2→ V1).
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(A) J48
(B)
CDT-PS

(C) SC Tree

FIGURE 4.6: Trees generated by (a) J48, (b) CDT-PS and (c) SC Tree for data set GMB

The tree generated by CDT has another particularity: it is only composed of one root node

and two leaf nodes. This happens because, although the algorithm finds relationships be-

tween V4, V1 and V2, the resulting tree appears to have matching leaves on opposite sides

of V5 (only ‘Yes’ on one side of the split and ‘No’ in the other). This means that all the splits

after V5 are meaningless and shall be removed. Since SC Tree chooses another variable

as root, it can split the tree further than CDT, thus obtaining better results.

From these results, we can make that SC Tree creates smaller and more interpretable trees

(since the approach uses the causal relationships found in the splitting) without losing

much accuracy.
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4.4.3 SC Tree as a possible Causal Discovery Tool

To understand how the proposed approach would perform as an overall semi-causal ap-

proach, we compared it with the current state of the art causal algorithm: PC. We com-

pared the proposed approach in terms of error rate in several discrete data sets (Table 4.1

and Table 4.2). For this comparison, we used the metrics presented in Section 4.4 and used

PC as a reference.

TABLE 4.9: Error rates for PC and SC Tree

Dataset PC SC Tree

1 asia 15.58 ± 1.68 + 14.60 ± 1.42

2 corral 6.25 ± 13.18 2.50 ± 4.37

3 earthquake 0.84 ± 0.18 + 0.23 ± 0.11

4 GMB 15.44 ± 1.61 + 15.00 ± 1.77

5 lucas 17.70 ± 1.38 + 14.50 ± 1.35

6 medpar 33.71 ± 3.95 32.84 ± 4.30

7 monica 43.74 ± 2.19 + 14.42 ± 1.99

8 mux6 52.31 ± 6.83 + 19.55 ± 12.91

9 PreSex 25.48 ± 5.59 + 21.52 ± 3.77

10 respiratory 44.68 ± 7.03 + 39.62 ± 3.57

11 sachs 39.61 ± 1.27 + 22.20 ± 1.65

12 threeOf9 46.50 ± 5.15 + 2.55 ± 2.46

13 titanic 22.65 ± 3.79 20.82 ± 4.02

14 Titanic 23.54 ± 4.38 21.86 ± 3.85

15 xd6 33.09 ± 3.71 + 0.31 ± 0.50

Average Mean 28.07 16.17

Geometric Mean 20.91 8.66

Average Ranks 2 1

Average Error Ratio 1 0.62

Wicoxon test 1.00× 10−4

Win/Losses 15/0

Significant Win/Losses 11/0

In Table 4.9, in general, SC Tree as a significantly better performance than PC, with a

value of 1× 10−4 in the Wilcoxon test. In all the data sets, SC Tree manages to have better
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results than PC, being these results significant in eleven out of fifteen data sets, having an

improvement of 11 % in average mean over the reference.

These results can be attributed to several factors:

• The conditional independence test: the application of the GCMH (in conjunction with

the UC, that functions as a double independence test), when compared to the G2,

used by PC has a positive impact in the discovery of the relationships;

• The application of a mixed causal/correlation approach: the IG’s usage in SC Tree leads to

an improvement in the overall accuracy since it uses correlation based information

about the relationship between the target and the variables (besides causal informa-

tion);

• The overall process: since decision trees and Bayesian networks implement different

processes, it is natural that they find different relationships and, consequently, have

different results.

As final a remark, we would like to point out that there was not much difference in run-

time since the processes implemented are similar (independence test + orientation phase).

4.5 Summary

Usually, classification algorithms apply correlation in decision-making, typically obtain-

ing satisfactory results. However, these algorithms’ models often do not make sense by

real-world standards, thus not being easily understandable to the typical user.

Causal discovery is the field that combines machine learning, data mining and statistics

to study the potential cause-effect relationships in observational data.

In real-world problems, the data can be a mixture of causal and correlation relationships,

so we hypothesise that we can benefit from the combination of both. For this reason, we

proposed SC Tree, a decision tree approach that applies a semi-causal technique to select

highly correlated features that are causally related to the target variable.

We compared the proposed approach with several causal and non-causal algorithms in

classification problems with discrete data. SC Tree performed better than the causal al-

gorithms, closely matching J48 results. From these results, we can conclude that applying
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a mixture between causality and correlation positively impacts the interpretability of the

trees without losing much predictive power.





Chapter 5

Improving Prediction with Causal

Probabilistic Variables

In regular classification problems, a set of data classified with a finite set of classes is used

as input so that a chosen classification algorithm can build a model that represents the

learning set’s behaviour. This classifier can have better or worse results, depending on

the data and how the algorithm handles it.

Nevertheless, in many problems, applying only machine learning algorithms may not be

the answer [116]. Instead, the use of feature engineering can be a way of improving these

algorithms’ performance.

Feature engineering is when new information is extracted from the available data to create

new features. These new features are related to the original variables, but also with the tar-

get variable, being a better representation of the knowledge embedded in the data, hence

helping the algorithms achieve more accurate results [116]. This type of solutions are usu-

ally problem-related, being that one solution might work in one particular problem but

not in the other. However, one particular characteristic is common to many classification

problems: causality.

In most observational data, there is the possibility causal relationships’ existing between

variables, especially in data related to medical problems (among others) [117, 118]. This

fact should be considered when selecting or creating new features since it can give clues

to which variables are the most important to the problem.
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In this chapter, we aim to answer RQ.3 and RQ.5 (Section 1.3): In what other situations can

we apply causality beyond causal discovery? and Are causal relationships helpful, and can they

bring significant gains? To answer these questions, we started by studying the potential

usage of causal discovery methodologies to create new features that represent the causal

relationships between a target variable and the other ones.

By definition, causality, more specifically causal discovery, relates to the search for possi-

ble cause-effect relationships between variables [5]. The application of causal discovery

in the various tasks of machine learning may be challenging, both at the causal process’s

level or the sampling process to generate the observed data [41]. Despite this, this subject

has been the focus of several researchers over the years, given the importance and poten-

tial impact of discovering causal relationships between events in problem-solving. In the

words of Judea Pearl: “while probabilities encode our beliefs about a static world, causality tells

us whether and how probabilities change when the world changes, be it by intervention or by an

act of imagination” [119]. Furthermore, by discovering causal relationships, it is possible

to uncover correlations and relations that explain how and why the variables behave the

way they do.

In this chapter, we propose a framework to create new features for discrete data sets (dis-

crete features + discrete target) based on the causal relationships uncovered in the data.

These attributes are created through the generation of a causal network, using a modified

version of PC [94], and posterior probabilistic analysis of the relationships between a tar-

get variable and the variables considered relevant. Two different methods can choose the

relevant variables: parents and children of the target and Markov blanket [120].

5.1 Problem

As stated before, feature engineering is an important part of machine learning, where raw

data is manipulated and transformed to improve a model’s prediction capability. New

features can be created using several techniques such as feature splitting, aggregation,

and one-hot encoding, among others, but tend to be more problem related than general.

Although most techniques are deemed as problem bound, one key element is common

to many of these problems: causality. The usage of features that represent the supposed

causal relationships between variables has several advantages:
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TABLE 5.1: Data set description

Data set
Number of

examples

Number of

attributes
Number of classes

breast cancera 286 10 0(70%) 1(30%)

cervicala 858 16 0(94%) 1(6%)

corralb 160 7 0(56%) 1(44%)

earthquake 10000 5 0(2%) 1(98%)

head injuryc 3121 11 0(92%) 1(8%)

lucas 2000 12 0(28%) 1(72%)

medpar 1495 9 0(66%) 1(34%)

mifemc 1275 10 0(25%) 1(75%)

qualitative bankruptcya 250 7 0(43%) 1(57%)

respiratory 555 5 0(51%) 1(49%)

survey 10000 6 0(56%) 1(28%) 2(16%)

titanic 1316 4 0(62%) 1(38%)

xd6 973 10 0(67%) 1(33%)
a https://archive.ics.uci.edu/ml/index.php
b https://www.openml.org
c https://vincentarelbundock.github.io/Rdatasets/articles/data.h

tml
d http://www.causality.inf.ethz.ch/data/LUCAS.html
e https://vincentarelbundock.github.io/Rdatasets/articles/data.h

tml
f https://cran.r-project.org/web/packages/vcd/index.html

1. Causal features can help to understand the data better, as they represent how the

system behaves naturally;

2. Causal features can help the models infer stronger relationships between variables,

as they represent those relationships;

3. Finally, causal features can help create more concise models since a single causal

variable represents one or more relationships.

Data

To analyse and solve this problem, throughout the following sections, we will use publicly

available datasets as shown in Table 5.1. This data was gathered from several public

databases and are publicly available for usage.

https://archive.ics.uci.edu/ml/index.php
https://www.openml.org
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
http://www.causality.inf.ethz.ch/data/LUCAS.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://vincentarelbundock.github.io/Rdatasets/articles/data.html
https://cran.r-project.org/web/packages/vcd/index.html


80 CAUSAL REASONING IN DATA

5.2 Framework

In many machine learning problems, the application of only classification algorithms

might not be the answer to obtaining satisfactory results [116]. Instead, the application

of feature engineering can be a way of improving such results. There are already several

methods to improve the overall algorithm’s performance through the attributes’ creation

or modification, but, to the best of our knowledge, none of them explores the potential

causal relationships between the target variable and the other variables.

The addition of these new inferred causal attributes may help improve the classification

algorithms’s performance since they encode the relationship between the target and the

other variables, thus feeding more information about the data set and its behaviour to the

model. Moreover, these features may also aid in the generated model’s interpretability

since they encode the underlying relationships between the variables, thus being possible

to explain more easily the decisions made by them.

This section presents a new framework to create new features using causal probabilities

retrieved from a model representing causal associations between variables. This frame-

work can be divided into four different phases:

1. Causal model’s creation (in this approach, we suggest the usage of a modified ver-

sion of PC);

2. Relevant variables’ identification. These variables are directly related to the target

variable:

• They are its parents and children;

• They belong to its Markov blanket (i.e. parents, children and spouses).

3. Inference of the probabilities associated with each pair {target variable, associated vari-

able};

4. Creation of the new features using these probabilities. The number of features

should be number o f associated variables× number o f classes.
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The framework starts by creating a full causal model representing the causal associations

between all the variables in the first step. This is done through the application of a mod-

ified version of PC [94]. In this modified version, the state of the art independence test

(usually χ2 or G2) is replaced by the GCMH. This test has the advantage (over χ2 and G2)

of adjusting for confounding factors [121].

It is important to note that, in some cases, PC cannot direct every edge. Hence it creates a

Completed Partially Directed Acyclic Graph (CPDAG). In those cases, we apply a method

to direct such edges. This method, proposed by Dor and Tarsi [122] searches recursively

for possible ways to direct undirected edges.

In the second step, the framework selects the relevant variables. We propose two ap-

proaches to select these attributes: parents and children and the Markov blanket.

In the parents and children (P-C) approach, as the name says, the variables selected are

the ones that, in the causal graph, have an edge directed to the target (parents) or from it

(children).

In the Markov blanket (MB) approach, both the target’s parents and children are selected,

as well as the nodes that have edges directed to the child nodes (also called spouse nodes).

It is important to note that the most common way to select the variables that influence the

target is through Markov Blanket (often used in causal feature selection methods [123]).

However, several authors proposed to use only parents and children, as these variables

can be considered to be the ones that influence the target the most, within its Markov

blanket [124–126].

In the third step, the framework infers a set of probabilities that representing the relevant

variables’ influence on the classes of the target: posterior probability distribution (5.1). In

these probabilistic queries, the objective is to find what the influence that evidence (partic-

ular values of the relevant variable) has on the value of the target [127]. This is performed

for all the values in each variable, and the resulting probability matrix is similar to Table

5.2.

P(Target = t|Attr = a) =
occurrencest∩a

ococcurrencesa
(5.1)

Finally, the new features are created and added to the data set in the fourth step. Each

new feature represents the probability of the relevant variables’ influence on a specific
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TABLE 5.2: Example of probabilities generated by the probability queries

Attr

0 1 2

Ta
rg

et 0 0.63 0.53 0.13

1 0.34 0.29 0.67

2 0.14 0.25 0.56

FIGURE 5.1: Example of the operation of the proposed framework

class, i.e., if we have, for example, a target variable with two classes ({0, 1}) and a relevant

variable Attr, two new features representing Attr’s influence in each class (each instance

of the feature represents Attr values’s influence on the class represented in that feature)

will be created.

An overview of the framework can be seen in Figure 5.1.
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An Illustrative Example

To explain in more detail how this approach works, we will use as an example a data

set with six discrete variables (A, B, C, D, E and F) with 5000 instances*. The values for

variables A,B,C, D, and E can be {0, 1, 2}, while F can have the values {0, 1}. For this

example, we will use variable B as the target.

As it was explained in the first step, the approach starts by generating the full network

with PC and GCMH. The generated network can be seen in Figure 5.2.

FIGURE 5.2: Example: network generated

After the full network’s creation, the relevant variables are selected. These variables can

be parents or children (P-C) ({A, E}) or the Markov blanket (MB) of B ({A, E, F}).

In the third step, the framework generates the chosen variables’ inference probabilities

(Table 5.3). Taking A=0 and B=0 as an example, the probabilities are obtained for each one

of the target values are calculated by dividing the number of times both A = 0 and B = 0

occur by the number of times A=0 occurs, or in other words, P(B = 0|A = 0) = 0.86.

TABLE 5.3: Probabilities generated for the Markov blanket variables. In parents and
children’s case, the probabilities for F are not generated.

A E F

0 1 2 0 1 2 0 1

Ta
rg

et 0 0.86 0.45 0.11 0.74 0.46 0.15 0.47 0.48

1 0.03 0.22 0.09 0.08 0.11 0.16 0.11 0.12

2 0.11 0.32 0.78 0.19 0.44 0.68 0.41 0.41

These probabilities are then added to the global data set. The resulting data set is similar

to Table 5.4. There is a difference between the number of new features created since the

*https://www.bnlearn.com/documentation/man/learning-test.html

https://www.bnlearn.com/documentation/man/learning-test.html
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number of generated features is equal to the product between the number of values in the

target and the number of relevant variables. Since the MB approach selects more variables

than P-C, the number of generated features will be higher (in theory). So, in the case of

P-C features, we have six new features, and in the case of MB, we generate nine new

features.

TABLE 5.4: Features generated with the probabilities for Markov blanket variables. In
parents and children’s case, the features related with F are not generated.

A B C D E F A & B=0 A & B=2 A & B=2 E & B=0 E & B=1 E & B=2 F & B=0 F & B=1 F & B=2

1 2 1 0 1 1 0.44 0.22 0.35 0.45 0.10 0.44 0.48 0.12 0.41

1 0 2 0 1 1 0.44 0.22 0.35 0.45 0.10 0.44 0.48 0.12 0.41

0 0 0 0 0 0 0.87 0.02 0.11 0.73 0.08 0.19 0.47 0.11 0.41

0 0 0 0 1 1 0.87 0.02 0.11 0.45 0.10 0.44 0.48 0.12 0.41

0 0 1 2 0 0 0.87 0.02 0.11 0.73 0.08 0.19 0.47 0.11 0.41

5.3 Experimental Setup

To evaluate the proposed approaches and make a comparative study, the following con-

figuration of experiments was designed: the performance of Random Forest, using the

original data, and the versions generated by the two proposed approaches were com-

pared.

This comparative analysis was made through 10-fold cross validation in several public

data sets (Table 5.1). For each fold, the two approaches are applied to the train set. Then,

the resulting conditional probabilities are used to create the new features for both the train

and test set (this ensures that no information about the classes in the test set is added to

the new features).

A sensitivity analysis was performed to choose the optimal parameters for the approaches

presented in the following sections. This analysis consisted of obtaining the error (1 -

accuracy) for the presented data sets (by dividing them into 70 % train, 30 % test). In the

case of PC, this test was repeated for significance levels 1 % and 5 %. In these tests, we

concluded that the error of the algorithms in the data sets did not change much when the

parameters were changed. For this reason, for all the data sets, we select and present a

significance level of 5 %.
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5.4 Results

Next, we evaluate the proposed approaches by studying their application in several pub-

lic data sets. As a classification algorithm, Random Forest was used.

The performance of this algorithm was compared in terms of error rate. This comparison

was performed using the No new features as a reference. The classification algorithm per-

formance, trained with causal features in each data set, compared to the reference using

the Wilcoxon signed ranked test. The sign +/− indicates that the algorithm is signifi-

cantly better/worse than the reference with a p-value of less than 5 %. Besides this, the

algorithms are also compared in terms of average and geometric mean of the errors, av-

erage ranks, average error ratio, win/losses, significant win/losses (number of times that

the reference was better or worse than the algorithm, using signed ranked-test) and the

Wilcoxon signed ranked-test. For the Wilcoxon signed ranked-test, we also consider a

p-value of 5 %.

Let’s analyse Table 5.5. It is possible to see that, in general, +Causal features P-C(the addi-

tion of features representing the conditional probability of parents and children features

on the target) has a better performance than No new features since the value obtained in

the Wilcoxon test is 0.0266 (less than the p-value of 5 %), which means that the difference

between the performance is significant. This difference can also be seen in the values of

the average and geometric ranks. More specifically, if we look at the average ranks, we

can see that +Causal features P-C has lower ranks (in average) than No new features (1.436

against 2.538).

If we now compare the second approach proposed (+Causal features MB) with the refer-

ence, we can see that there is a positive difference in the results (although not significant).

It is possible to see this difference, once again, in the average and geometric mean and the

average rank (1.538).

In Table 5.6, it is possible to see the AUC values for the three analysed approaches for the

lucas data set (this data set has been used in other causal-related tasks, and it’s known for

having causal relationships retrievable in the data ). The results presented in this table

were obtained by dividing this data set by train and test (70%/30%). The model scores

were then obtained for the test data.
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TABLE 5.5: Error rates of Random Forest for classification with causal features

Data set No new features
+Causal features

P-C

+Causal features

MB

1 breast cancer 28.60 ± 9.88 28.60 ± 7.49 28.00 ± 8.39

2 cervical 6.88 ± 1.51 6.65 ± 1.66 6.53 ± 1.49

3 corral 5.62 ± 5.47 +0.01 ± 0.10 +0.01 ± 0.10

4 earthquake 0.26 ± 0.14 0.20 ± 0.14 0.20 ± 0.14

5 head injury 7.08 ± 1.23 7.43 ± 0.83 7.05 ± 0.69

6 lucas 15.20 ± 2.02 14.50 ± 2.12 14.50 ± 2.12

7 medpar 32.70 ± 4.29 33.00 ± 3.91 34.10 ± 3.23

8 mifem 20.10 ± 4.28 20.00 ± 4.30 19.90 ± 3.63

9 qualitative bankruptcy 0.40 ± 1.26 0.01 ± 0.10 0.80 ± 2.53

10 respiratory 40.90 ± 6.79 40.20 ± 6.20 41.20 ± 6.90

11 survey 44.60 ± 2.26 44.40 ± 2.05 44.40 ± 2.05

12 titanic 21.40 ± 2.52 20.20 ± 2.19 20.50 ± 1.83

13 xd6 0.41 ± 0.72 0.10 ± 0.10 0.10 ± 0.10

Average Mean 17.242 16.562 16.715

Geometric Mean 7.161 2.889 4.039

Average Ranks 2.538 1.462 1.538

Average Error Ratio 1 0.764 0.914

Wicoxon test 0.0266 0.1465

Win/Losses 10/2 10/3

Significant win/losses 1/0 1/0

TABLE 5.6: AUC for Lucas data set

AUC

No new features 0.877

+Causal features P-C 0.887

+Causal features MB 0.889

In this table, it is possible to see that +Causal features MB has the highest area, meaning

that, in the data set with the causal probabilistic features that represent the relations be-

tween the target and its Markov blanket, Random Forest can distinguish better the classes

than with the data from the other approaches, thus having a better performance [104].

Although +Causal features MB was the best approach in terms of AUC, the other proposed



5. IMPROVING PREDICTION WITH CAUSAL PROBABILISTIC VARIABLES 87

approach +Causal features P-C also obtained an AUC higher than the reference.

Finally, from these results, we can conclude that there is evidence that applying causality

to the creation of new features can have a positive impact on the classification algorithm’s

performance.

5.5 Summary

The achievement of satisfactory results in a classification problem depends not only on

the chosen classifier but also on the processed data. One possible way to improve the

performance of classifiers is to apply feature engineering. In other words, use the origi-

nal data to infer new information, create new attributes, and alter others to obtain more

descriptive features. Furthermore, most of the proposed methodologies do not consider

the possible causal relationships in the data. This information can help create more accu-

rate models since we encode information about the interaction between variables in one

variable, thus reinforcing their importance.

In this chapter, we proposed a framework that uses causal discovery to create new fea-

tures based on posterior probabilistic analysis of the relationships between a target vari-

able and the variables considered relevant, being these variables the parents and children

of the Markov Blanket the target.

We compared the approaches with the original data in the experiments, using Random

Forest in public data sets. From these results, we can conclude that there is evidence that

the application of causality in the creation of new supposed probabilistic features may

positively impact the overall performance of the classification algorithm.





Chapter 6

Temporal Nodes Causal Discovery

for ICU Survival Analysis

In hospital and after discharge deaths in Intensive Care Units (ICUs) are unfortunate but

usual, given the severity of the condition under which many of them are admitted to these

wings. However, some recent studies show that one in five patients die even after being

discharged from the ICU from complications related to the admission, with some deaths

being called as “failure to rescue” [128]. Given this, it is crucial to promptly identify and

follow these cases closely so that, if possible, the outcome can be changed.

The diagnosis of a medical problem can be seen as the relationship between a disease and

the symptoms it induces. This notion of causal discovery (finding out what is causing

a set of symptoms) is implemented regularly in medicine, although not consciously or

through algorithms. The application of causal discovery in the medical field has been

debated over the years [129] since the application of this type of technique can help in the

fastest diagnosis of certain diseases.

However, working with medical data can be challenging since this type of data can be

composed of thousands of variables, measured only one time or in regular and irregular

intervals, depending on the exams performed. Primarily ICU data is characterised by

a high flow of information measured in different intervals, usually accompanied by the

length of patient’s stay as well as their outcome [130]. Moreover, this type of data usually

comprises patient data where, for each subject, there is a set of measurements, hence being

89
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considered a panel or longitudinal data. This heterogeneity in the sampled data raises the

need for specialised methodologies that:

1. Transform irregular multivariate time-series into stationary;

2. Somehow deal with them as irregular time-series.

In this chapter we aim at answering RQ.4 and RQ.5 (Section 1.3): Can we create causal

models from sequential data? and Are causal relationships helpful, and can they bring significant

gains? We started by studying the potential usage of causal discovery methodologies to

generate models for irregular multivariate time-series data.

Causal Bayesian networks are a type of Bayesian Network that captures supposed causal

relationships from observational data (data that represents a snapshot of a system) and

are known to be an explicable method since their graph-like appearance mimics human

decisions. This type of methodology can aid medical staff in performing simple decisions

more easily, as the everyday user can easily understand it. PC algorithm [94] is an ex-

ample of a Bayesian network specifically designed to ensure that every relationship can

be assumed as causal. Although Bayesian networks are traditional methods designed for

cross-sectional data, since they do not consider time, methods that deal with time have

emerged in more recent years. This is the case of the Dynamic Bayesian Networks (DBNs)

[131]. However, these methods have two significant restrictions: they can only be applied

in stationary time-series data.

This work aims to address the problem of ICU patients’ non-survival early detection

while maximising the data usage by taking advantage of the timing irregularity. To do

this, we propose the ItsPC, a causal Bayesian network-like approach that can model ir-

regular multivariate time-series data. This method models time by incorporating it into

the variables’ values (instead of creating new variables representing the stages in a par-

ticular timestamp). This method combines the time stamp of every instance during the

measured value for each temporal variable, thus creating instances that represent both

stage and time. To obtain a more accurate depiction of reality, every interval-value is ad-

justed according to the variables’ parents (obtained from the network). Hence it is based

on the parents’ delayed manifestation and not on the absolute time. In this method, ev-

ery variable represents a temporal change and every edge a causal, temporal relationship

between variables [132].
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6.1 Temporal Bayesian Networks

The Temporal node Bayesian Network (TnBN) [132] are an extension of the Bayesian

Networks, designed to deal with multivariate time-series data. Each node represents a

temporal change (based on their relationships) in this method, and each edge represents

a temporal relationship. This method first discretises all temporal variables, transforming

them into time intervals. Next, it applies the K2 Bayesian network to this new discretised

data set. After that, and using the information obtained from the model (such as the par-

ents of each temporal variable), the algorithm adjusts the intervals present in the temporal

variables and re-generates the model. However, this methodology has an issue: as tem-

poral variables, it only accepts the value that represents the moment where the value was

measured, for example, at what time the doctor saw dilated pupils, hence dealing with

them as binary variables, where each measurement details if something was measured or

not and at what moment was measured. This majorly restrains the number of potential

applications, especially in the medical domain, where variables can represent continuous

values, or discrete stages, always measured in different intervals of time, consequently

representing “hybrid variables” STAGE A [t1-t2] or [interval of continuous measure][t1-t2].

Besides this, the usage of K2 to create the Bayesian model does not ensure the existence

of causal relationships between variables (temporal or not), and that can be crucial to

identify what is causing changes in the system, as it is not prepared for such a task.

Tawfik and Neufeld [133] proposed a different approach. The Temporal Bayesian Net-

works (TBNs) are a Bayesian network designed to represent time by expressing the prob-

abilities as a function of time. This means that, arguably, if one variable depends on an-

other, this dependency represents a time interval between them. Unfortunately, despite

a simple and intuitive representation, this algorithm seems capable of representing time

through binary choices (is the dog out or not) instead of a multiple state variable (the dog

is in the garden, in the driveway or the house).

More similar to the proposed idea are the Irregular Time Bayesian Networks (ITBNs)

[134], designed to deal with irregular time-series. This approach generalises the DBNs

so that data can be sampled in different time intervals. Despite taking into account that

variables may be measured in irregular intervals, thus generating smaller networks when

compared with the DBNs, this method, like the DBNs, assumes that all variables are

measured at these intervals.
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Finally, it is important to note that none of these three approaches infers causal relation-

ships from the data.

6.2 Problem

In hospital and after discharge deaths are a well-known problem by ICU practitioners

[128]. Especially the death of discharged patients has been considered a problem, with

studies showing that potentially one in five patients dies after being discharged from the

hospital, with some of these deaths being considered preventable [135]. As some of these

cases are considered as a failure of assistance or “failure to rescue”, meaning that, given

awareness, they could be addressed and prevented, being their timely prediction a key to

saving lives [136].

This problem can also be seen from a cost perspective [137]. After the first discharge,

patients who need more care signify more costs for the hospital and the patient. Besides

this, the care needed may be more intensive than if the patient had been closely followed

after discharge or not been discharged.

Machine learning algorithms can be applied to ensure:

1. The timely patient assessment;

2. Cost reduction, as this type of methodologies can be more affordable than tradi-

tional approaches.

This is the case of the work presented by Garcia-Gallo et al. [138], where the authors

use a Stochastic Gradient Boosting methodology to model and predict one-year mortality

in critical patients diagnosed with sepsis. A different approach was taken by Chia et

al. [139], where the authors evaluated the usage of logistic regression, decision tree, and

Cox-Proportional Hazards to identify the feature that better help predict the patients’

outcomes.

Although there were significant advances in predicting ICU outcomes, none of these

studies indeed considered the underlying supposed causes of hospital and after discharge

deaths in ICU patients. Moreover, these studies do not consider the lack of regularity in

hospital records.
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Data

The physionet data set [140] is a subset of the MIMIC II, a data set with more than 25 000

patients admitted in the Boston’s Beth Israel Deaconess Medical Center’s ICU, from 2005

to 2008. This subset is composed by 12 000 patients (divided in train set [4000 patients],

test set [4000 patients] and scoring set [4000 patients]), that were followed during the first

48 hours of their stay in the ICU.

The raw data was cleaned and pre-processed. First, every variable was discretised accord-

ing to the literature. Next, all the variables whose stages were not defined in the literature

(for example, the patient’s height) were discretised using equal-frequency discretisation

with three bins. Next, all the variables with single values and with at least 50 % missing

data across all subjects were discarded. Finally, every patient with at least 50 % of missing

values across all variables was also removed.

The new data set is composed of 11 657 patients, split into train and test sets. The follow-

ing variables are present in the data:

• Patient identifier

• Measurement’s time

• Height

• Age

• Weight

• Alanine transaminase (ALP)

• Aspartate transaminase (AST)

• Alkaline phosphatase (ALP)

• Lactate

• Biliburin

• Respiration rate

• O2 saturation in haemoglobin (SaO2)

• Blood urea nitrogen (BUN)

• Creatinine

• Fractional inspired oxygen(FiO2)

• Glasgow Coma Scale (GCS)

• Glucose

• Bicarbonate (HCO3)

• Hematocrit (HCT)

• Heart rate (HR)

• Potassium (K)

• Magnesium (Mg)

• Mean blood pressure (invasive and

non-invasive) (MAP, NIMAP)

• Mechanical ventilation
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• Sodium (Na)

• Arterial blood gas (PaCO2, PaO2)

• Urine

• Temperature

• Blood pressure (invasive and non-

invasive diastolic blood pressure

and invasive and non-invasive sys-

tolic blood pressure)(DiasABP, NIDi-

asABP, NISysABP, SysABP)

• Haemoglobin saturation

• Platelets and Arterial pH

• Length of stay

• Survival

The target variable of this processed data set is the patient’s survival. It is a merge be-

tween the Survival and In Hospital Death variables present in the original data set. This

new variable represents whether a patient died in the hospital after the discharge with a

problem related to his first hospitalisation (DEATH AFTER DISCHARGE), if he died in

the hospital, whether he is still in the ICU or another hospital inpatient unit (IN HOSPI-

TAL DEATH) or is still alive (ALIVE) and is measured after the patients leave the ICU.

These classes are distributed as follows: 61.20 % (ALIVE), 15.51 % (IN HOSPITAL DEATH)

and 23.28 % (DEATH AFTER DISCHARGE).

Running example

A running example representing a patient admitted to the hospital ICU will be used to

explain better the proposed methodology and how it is applied to the data. Patient 134432

is a 70 years old male admitted to the surgical ICU. For easier identification, we will call

this patient John Doe. Mr Doe was followed for 48h during his stay in the ICU. During

this period, several tests were performed and recorded. Table 6.1 represents part of these

tests. This patient was hospitalised for three days and died in the hospital.

6.3 Methodology

In this section, we present the Irregular time-series PC or ItsPC, a causal Bayesian network

for irregular multivariate time-series data, designed to deal with data that represents mea-

surements done at specific moments and repeated several times, hence being represented

by a value and a timestamp. The model creation process applied by this method can be

divided into six steps: state/timestamp conjunction, model generation, first redefinition
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TABLE 6.1: Mr. Doe’s medical tests

Time Age Gender Height ICUType BUN Creatinine GCS SaO2 Weight Length of stay Survival

0 SENIOR MALE 80 Surgical ICU NA NA NA NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

2.88 SENIOR MALE 80 Surgical ICU NA NA NA NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

3.02 SENIOR MALE 80 Surgical ICU NA NA NA NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

3.18 SENIOR MALE 80 Surgical ICU NA NA SEVERE NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

4.18 SENIOR MALE 80 Surgical ICU NA NA SEVERE NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

5.18 SENIOR MALE 80 Surgical ICU NA NA SEVERE NA [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

5.85 SENIOR MALE 80 Surgical ICU NA NA SEVERE NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

6.18 SENIOR MALE 80 Surgical ICU NA NA SEVERE NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

6.43 SENIOR MALE 80 Surgical ICU NA NA SEVERE NORMAL [171.5, 89.7) [ 1, 9) IN HOSPITAL DEATH

6.85 SENIOR MALE 80 Surgical ICU NA NA SEVERE NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

7.18 SENIOR MALE 80 Surgical ICU NA NA MILD NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

8.18 SENIOR MALE 80 Surgical ICU NA NA MILD NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

8.53 SENIOR MALE 80 Surgical ICU HIGH NORMAL MILD NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

9.18 SENIOR MALE 80 Surgical ICU HIGH NORMAL MILD NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

...

47.18 SENIOR MALE 80 Surgical ICU HIGH NORMAL SEVERE NORMAL [171.5, 189.7) [ 1, 9) IN HOSPITAL DEATH

FIGURE 6.1: Its PC pipeline

of state/timestamp conjunction, inexpressive intervals removal, second redefinition of

state/timestamp conjunction and optimal interval selection (Figure 6.1).

Initially, the algorithm starts by merging the temporal states with the respective times-

tamps (Figure 6.2, (1)). As shown in the running example (Table 6.1), the timestamp

is saved separately from the measured correspondent value. For each discrete variable

marked as varying over time, the algorithm divides the corresponding timestamps ac-

cording to their categories (Figure 6.2, (2)). For each category, the method discretises

the timestamps (Figure 6.2, (3)). In the presence of missing data, the unknown value is

replaced by the state UNK[min, max], where min and max represent the minimum and

maximum timestamp found in that specific variable. In the running example, Mr Doe is
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grouped with other patients to create the merged states (to ensure (1) the states are mean-

ingfully for the majority of the subjects and (2) the number of generated merged states is

low). The result for the GCS (Glasgow Coma Scale) is shown in Table 6.2.

FIGURE 6.2: First discretisation (example)

TABLE 6.2: Discretisation for Mr. Doe’s GCS measure

Time GCS
0 UNK[0,48]

2.88 UNK[0,48]
3.02 UNK[0,48]
3.18 SEVERE [3,23]
4.18 SEVERE [3,23]
5.18 SEVERE [3,23]
5.85 SEVERE [3,23]
6.18 SEVERE [3,23]
6.43 SEVERE [3,23]
6.85 SEVERE[ 3,23]
7.18 MILD [7,35]
8.18 MILD [7,35]
8.53 MILD [7,35]
9.18 MILD [7,35]

...
47.18 SEVERE [25,48]
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At this moment, and before we introduce the next step, it is essential to introduce the

definition of initial and final cross-sectional variables. As initial variables, we perceive

them as variables measured at the study’s beginning and not changing over time (for

example, age). In contrast, final variables are understood as variables measured only

once, but after all, the temporal variables (for example, if a patient survived or not).

After generating the data set, PC (Figure 6.3) is applied to create the first model. In this

case, the method treats all variables as cross-sectional. To ensure precedence in the model

(thus generating a model that genuinely represents time), no temporal variable can cause

initial variables, and no final variable can cause initial or temporal variables.

FIGURE 6.3: PC example model

After the network’s creation, the model is analysed to discover the parents of the tempo-

ral variables. This information is later used to redefine the temporal variables. In Step 3,

the Gaussian Mixture Models (GMM) creates new intervals for each partition based on

the parent’s information. These intervals are created by defining a n number of maximum

intervals by partition. With this n value, the algorithm creates 1 to n different time inter-

vals. Therefore, each partition, which represents a configuration of the parent nodes, has

n different intervals. It is important to note that the minimum and maximum timestamps

in each interval are given by each cluster’s minimum and maximum timestamps.

Returning to Mr Doe’s example, this patient (grouped with the other patients) has its

temporal variables redefined (it is important to note that for this redefinition, we used the

original states with no time associated), using the model generated in the previous step,
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more specifically the parents’ information. Using the GCS variable and its respective par-

ent ICUType (this variable is a initial variable that takes the values Surgical ICU, Medical

ICU, Cardiac Surgery Recovery Unit and Coronary Care Unit), the method splits GCS’ val-

ues and timestamps taking into account ICUType’s values. To these subsets, the GMM is

applied, resulting in the discretised timestamps presented in Table 6.3.

Before we move for the next step, it is important to note that from now on a partition

is considered as a combination between a value of the parent and a value of the child.

In Table 6.3 we have 4 different partitions (ICUType= SurgicalICU; GCS=SEVERE, ICU-

Type= SurgicalICU; GCS=MILD, ICUType= MedicalICU; GCS=SEVERE and ICUType=

MedicalICU; GCS=MILD).

TABLE 6.3: Redefinition of GCS values using the parent’s information (for simplicity,
only two states of GCS and ICUType are used)

ICUType
SurgicalICU

GCS
SEVERE

[3-48]
[3-25][29-48]
[3-16][17-24][29-48]

GCS
MILD

[7-24]
[7-12][14-24]
[7-8][10-12][14-24]

ICUType
MedicalICU

GCS
SEVERE

[18-35]
[18-21][23-35]
[18-21][23-26][30-35]

GCS
MILD

[7-44]
[7-30][31-44]
[7-24][26-29][30-44]

As the number of intervals in each partition can be high but not expressive, depending

on the number of parents and their values, a pruning method for removing inexpressive

intervals is applied (all intervals with less than β instances are removed):

β =
number o f instances in the interval

number o f parent nodes× 2
(6.1)

The partitions are then combined based on common child values (before discretisation)

For example, for GCS= SEVERE, the method combines the interval set from ICUType=

MedicalICU and ICUType= SurgicalICU. From these combination nine intervals set result:

• [3− 48][18− 35]

• [3− 48][18− 21][23− 35]
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• [3− 48][18− 21][23− 26][30− 35]

• [3− 25][29− 48][18− 35]

• [3− 25][29− 48][18− 21][23− 35]

• [3− 25][29− 48][18− 21][23− 26][30− 35]

• [3− 16][17− 24][29− 48][18− 35]

• [3− 16][17− 24][18− 21][23− 35]

• [3− 16][17− 24][18− 21][23− 26][30− 35]

Since many of these intervals overlap, a set of rules is used to combine them:

1. If one interval is contained in another (e.g. [18-35] is contained in [3-48]), the new

interval will be [minimum of the two, maximum of the two] ([3-48]);

2. If two intervals partially overlap, ([3-25] and [18-35]), two new intervals are created:

[first interval minimum, average of contained values)[average of contained values+unit, sec-

ond interval maximum] ([3-21.5][21.6-35]). This process is continuously updating the

intervals until all the intervals are adjusted. With this step, the method ultimately

tries to instantiate a child node as a delayed occurrence of the parent node and not

in absolute time.

After this, another pruning is performed: all partitions that have only one interval or

more than n intervals (user-defined) are removed. For example, this means that if we

have an adjusted set of intervals for variable V, with the intervals [1-12][12.1-43][45-56][67-

70][70.1-90], and n has the value 3, these will be discarded. This pruning ensures that all

accepted intervals have a broad representation in the data and are not the representation

of only a few examples. Finally, in Step 6, the method chooses the optimal intervals for

each temporal variable’s value. This selection is made by combining each of the potential

intervals’ sets for each variable’s values. Then, a model is created (with configurations

identical to the first model). These models are then evaluated using the Brier Skill Score,

a measure that calculates how precise a probability prediction in a model is (when com-

pared to a reference) and is given by (6.2) [141] (the higher the value, the more precise is
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the prediction).

BSS = 1− BS
BSre f BS =

1
n

n

∑
i=1

(1− Pi)
2 (6.2)

In this equation, n represents the number of unmeasured variables in the set, Pi repre-

sents the probability obtained from the unseen variables and BSre f represents the refer-

ence Brier Score (this value is obtained by calculating the probabilities for the same unseen

variables, with the model used in the previous steps). To determine Pi, a random subset

of nodes is selected and instantiated with random values based on the original data dis-

tribution. With these values, we predict the Pi, probability of the unmeasured variable i,

with the measured variables. It is important to note that the Brier Score formula used in

this methodology is not the original version (designed for any discrete data) but the bi-

nary version instead. We use this equation instead because the algorithm studies, for each

event, the probability of a particular value and not all values that the unseen variable can

take, hence being a binary true and false problem. Subsequently, the set intervals chosen

is the one that maximises the Brier Skill Score.

Steps 2 to 6 of Figure 6.1 are continually repeated until there are no changes to the model

or data set.

6.4 Experimental Setup

To evaluate the proposed approach and make a comparative study, the following config-

uration of experiments was designed: we compare the model generated by our approach

with a model generated by a DBN [131], in terms of performance (accuracy and F1-score).

To do this, we derived ten data sets from the original one, presented in Section 6.2, by ran-

domly sampling 70% of the patients for the train set and 30% for the test set. The results

were also compared using the Wilcoxon signed ranked-test.

Since the DBNs are a type of model that only deals with regular intervals of time, the data

set presented in Section 6.2 was transformed. To create this new data set, the mean times-

tamp interval (tmean), mean minimum timestamp (tmin) and mean maximum timestamp

(tmax) were calculated.

With this information, the original data set was transformed. This transformation was

done following a set of rules. These rules were:
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1. For each subject, the first and last time stamps were tmin and tmax;

2. All the timestamps are distanced exactly tmean;

3. Each new timestamp (for each subject) is filled with the nearest timestamp from the

original data. Suppose a particular subject does not have timestamps before the new

timestamp is measured. In that case, the values in the new timestamp entrance are

filled with missing values;

4. All timestamps from the original data set that is higher than the tmax are discarded.

The resulting data set is composed of 75 regular timestamps.

6.5 Results

To better understand how the algorithms perform in a general hospital situation, where

the system encapsulates patients from different services, thus with distinct diseases and

symptoms, we compared the DBNs and ItsPC (Table 6.4). If we analyse Table 6.4, which

represents the mean accuracy and F1-score by class and overall accuracy and F1-score, it

is possible to see that, in general, the proposed methodology has a better performance

than the baseline ( DBN).

TABLE 6.4: Results comparison

Accuracy F1-score

Dynamic Bayesian

Network
ItsPC

Dynamic Bayesian

Network
ItsPC

ALIVE 59.02 ± 0.70 + 68.10 ± 0.45 71.98 ± 0.17 + 78.31 ± 0.36

DEATH AFTER DISCHARGE 50.00 ± 0.03 + 75.27 ± 0.45 0.02 ± 0.06 + 24.08 ± 1.61

IN HOSPITAL DEATH 85.64 ± 0.21 86.43 ± 0.32 10.91 ± 11.71 + 33.65 ± 1.61

Overall 53.65 ± 0.40 + 64.82 ± 0.51 27.64 ± 3.91 + 45.35 ± 0.62

To further assess the significance of these discrepancies, the performance of ItsPC in each

test set was compared to the reference ( DBN) using the Wilcoxon signed ranked-test.

The sign +/− indicates that the algorithm is significantly better/worse than the reference

with a p-value of less than 5 %. As it is possible to observe in table Table 6.4, the difference

between the two methods is significant. Furthermore, considering the proposed practical

problem to assess if the patient will parish in the hospital or after being discharged, it is

possible to notice that ItsPC is more successful in detecting future dead cases than the
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baseline. Despite this, both methods demonstrate difficulty in accessing death after dis-

charge patients, which is expectable since, in theory, these patients are not that different

from those who survive.

FIGURE 6.4: Simplified model generated be ItsPC

FIGURE 6.5: Simplified model generated by DBN (all the other 2435 nodes not related
with Survival are omitted)

As a final note, it is essential to grasp that ItsPC generates significantly smaller models

than DBN (an average of 37 nodes and 30 edges versus 2438 nodes and 4873 edges).

Suppose we analyse Figure 6.4 and Figure 6.5, which represent the simplified versions

of the models generated by ItsPC and DBN (with only nodes around the Survival node),

respectively, we can see that there is a significant difference in size between the models.

This happens due to the fact of how the algorithms deal with temporal variables: while

DBN encapsulates time through the creation of new variables that represent each of the

temporal variables in each timestamp, ItsPC encodes time in the nodes themselves, thus

not creating more variables, instead of creating more states in each variable. This leads
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to smaller and more interpretable models. Moreover, ItsPC finds relationships between

a patient’s survival and non-temporal variables, for example, ICU type and age, while

DBN only finds relationships with temporal variables. This means that ItsPC’s model

can partially access the initial potential outcome with non-temporal information from the

first moment. From a partitioner’s perspective, having a clue right away about the future

outcome of a patient, as well as knowing what exams to be more focused on, means that,

for example, it is possible to recommend specific treatments that slow or even prevent the

potential outcome.

6.6 Summary

In hospital and after ICU discharge, deaths are usual, given the severity of the condition

under which many of them are admitted to these wings. Because of this, there is an urge

to identify and follow these cases closely.

Given their interpretable properties, as they mimic human decision-making, Bayesian

Networks, especially methods like PC, can aid in this problem. They can model the sup-

posed causal relationships present in the data.

As ICU data is usually composed of variables measured in varying time intervals, there

is a need for a method that can capture causal relationships in this type of data.

To solve this problem, we propose ItsPC, a causal discovery methodology that can model

causal relationships in irregular multivariate time-series data. The results found that It-

sPC creates smaller and more concise networks while maintaining the temporal proper-

ties that more accurately predict these cases.





Chapter 7

Conclusion

The study of causality is not in itself a new subject. However, there is still much to explore,

but this can be a challenge since determining if there is causality in the data passes by the

study and application of algorithms and the in-depth study of the problems and their

background.

The main objective of this thesis is to try to identify how we can extract causal data rela-

tionships. To achieve this objective, several research hypotheses were formulated: first,

we hypothesise that the usage of observational data, rather than experimental data, is pos-

sible since recent studies show that causal models can be created from observational data.

Second, we also hypothesise that causal discovery can be applied through non-Bayesian

causal algorithms, such as Causal Decision Trees, with better results. Third, we also hy-

pothesise that applying causality to select and create variables can be advantageous since

we are selecting and creating variables from the information of the relationships present

in the data. Finally, it is possible to create accurate causal models for sequential data.

We started by answering RQ.1: Is it possible to extract causal relationships from data? How?.

for this, we studied the potential usage of association rule mining to generate causal rules.

We implemented CRPA-UC, a causal association rules method that generates causal rules

for discrete cross-sectional observational data. This method uses the GCMH and χ2 as in-

dependence tests and the UC as an orientation method. With this algorithm we were able

to extract causal relationships that are fundamental to generate more accurate models. We

explored several cases and obtained gains of 79.40 %.

105
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After this, we studied the potential usage of a hybrid approach to improve the inter-

pretability of decision trees, trying to answer RQ.2: Is it possible to obtain more interpretable

methods by using causal discovery? Our objective in this research question was to identify

a mean to maintain the decision tree’s prediction properties (obtained through correla-

tion) but generate a model that represented the supposed causal relationships found in

the data. To do so, we proposed the SC Tree. This hybrid approach uses a custom in-

formation gain ratio equation that evaluates both the correlation between the target and

the other variables and identifies the causal relationships between variables. With this

algorithm we were able to extract causal relationships that are fundamental to generate

interpretable models, while maintaining a performance similar to a tradicional decision

trees. We explored a case and obtained gains of 80.06 % in binary data sets and 83.33 % in

overall discrete datasets.

To try to answer RQ.3: In what other situations can we apply causality beyond causal discov-

ery?, we proposed a framework that employs a causal discovery method (PC) to generate

new supposedly causal features (based on posterior probabilistic analysis) that represent

the causal relationships between a target variable and the variables considered relevant,

being these variables the parents and children of the Markov Blanket the target. With

this algorithm we were able to extract causal useful knowledge to generate more accurate

models. We explored several discrete data sets and obtained gains of 84 %.

Next, to analyse RQ.4: Can we create causal models from sequential data?, we studied the

practical case of ICU patients’ survival. As patient data is characterised by its irregu-

larity in measurements (mixture of static and temporal variables measures in regular or

irregular time intervals), we proposed ItsPC, a causal discovery methodology that deals

with this issue by modelling the variables as delayed occurrences instead of absolute ones,

thus finding causal relationships in irregular multivariate time-series data. With this algo-

rithm we were able to extract causal relationships that are fundamental to create models

that represent relationships as perceived by humans. We explored a case and obtained

gains of 64.82 %.

Finally, RQ.5 (Are causal relationships helpful, and can they bring significant gains?) was stud-

ied and developed through the proposed methodologies. In Chapter 3, CRPA-UC had

significantly better results than PC in several classification problems. In Chapter 4, SC
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Tree proved to have a performance similar to J48 while creating smaller and more inter-

pretable trees. Moreover, this methodology had significantly better results than CDT-PS,

CDT-SPS and PC in several classification problems. In Chapter 5, the causal relationships

found in the data helped improve the performance of Random Forest, and in Chapter 6,

ItsPC had significantly better results than the DBNs in predicting the patient’s survival.

As further research, we made available several resources used and created during the

elaboration of this thesis: a practical guide for researchers and practitioners that are just

entering the causality domain( https://github.com/AnaRitaNogueira/Methods-and

-Tools-for-Causal-Discovery-and-Causal-Inference), data sets commonly used

in causal related tasks (https://github.com/AnaRitaNogueira/Causality-Reposit

ory-data-sets-), list of currently available software (https://github.com/AnaRitaNo

gueira/Causality-Repository-software) and list of current causal related surveys(

https://github.com/AnaRitaNogueira/-Causality-Repository-research-papers).

7.1 Limitations and Future Work

The proposed methodologies have some limitations despite answering all the proposed

research questions. For example, these methodologies were designed to deal specifically

with discrete data. Nevertheless, they can arguably be altered to deal with continuous or

mixed data, as these solutions depend on the statistical tests developed for that specific

type of data.

In the future, in studying further potential adaptations of traditional prediction method-

ologies so that they can generate causal models. Moreover, we will also analyse these

methods and their potential modification to create models that represent both causality

and correlation. Finally, address the irregular time-series data problem by implementing

the same data transformation methodology in other causal discovery algorithms.

https://github.com/AnaRitaNogueira/Methods-and-Tools-for-Causal-Discovery-and-Causal-Inference
https://github.com/AnaRitaNogueira/Methods-and-Tools-for-Causal-Discovery-and-Causal-Inference
https://github.com/AnaRitaNogueira/Causality- Repository-data-sets-
https://github.com/AnaRitaNogueira/Causality- Repository-data-sets-
https://github.com/AnaRitaNogueira/Causality- Repository-software
https://github.com/AnaRitaNogueira/Causality- Repository-software
https://github.com/AnaRitaNogueira/-Causality- Repository-research-papers
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Appendices

A Cochran-Mantel-Haenszel test

The Cochran-Mantel-Haenszel (CMH) test [55] is a test of independence, which differs

from others like χ2, because it tests if the relationship between two variables is maintained

when influenced by the remaining variables, instead of only testing if two variables are

related. There are two distinct versions of this test: the binary version and its generalised

version [142], which can be used in every categorical data. The binary version is given by

(1).

CMH =
(|∑r

k=1
n11kn22k−n21kn12k

n..k
| − 1

2 )
2

∑r
k=1

n1.kn2.kn.1kn.2k
n2

..k(n..k−1)

(1)

In the previous equation, the values n represent the cells of contingency tables identical

to Table 1 (each cell of this table represent how many cases there are given the values of

the studied variables and their supposed confounders), being that n11k represents the first

cell in the first row of table k, n12k the second cell in the first row, n21k the first cell in the

second row and n22k the second cell in the second row, n1.k, n2.k, n.1k, n.2k and n..k represent

the sum of the cell in the first row, the sum of the cell in the second row, the sum of the

cell in the first column, the sum of the cell in the second column and the sum of all the

cells, of a table k.

As explained previously, this version of the CMH test can only be applied to binary data.

However, other categorical non-binary data in which the application of this type of algo-

rithms can be relevant. To those cases, the GCMH test is applied instead. This variant

was designed to be used in contingency tables of size I × J × K (instead of 2× 2× K, as

in the binary version) and is given by (2) [142]. In the equations previously presented, Bh
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represents the product of Kronecker between Ch and Rh (these values are obtained from

the partial contingency table, as showed in Table 2), Var the co-variance matrix, (nh−mh)

the difference between the observed and the expected and H0 as the null hypothesis.

QCMH = G′Var{G|H0}−1G Gh = Bh(nh −mh) G = ∑
h

Gh

Var{G|H0} = ∑
h

Var{Gh|H0} Bh = Ch
⊗

Rh.
(2)

TABLE 1: Example of a par-
tial contingency table used in
CMH test (in which ck =

{A = a1, B = b1})

ck = {A, B} C = c1 C = c2 Total

D = d1 n11k n12k n1.k

D = d2 n21k n22k n2.k

Total n.1k n.2k n..k

TABLE 2: Example of a partial contingency
table used in GCMH test (in which ch =

{A = a1, B = b1}

ch = {A, B} C = c1 C = c2 C = c3 ... C = cn Total

R = r1 n11h n12h n13h ... n1nh n1.h

R = r2 n21h n22h n23h ... n2nh n2.h

R = r3 n31h n32h n3nh ... n3nh n3.h

... ... ... ... ... ... ...

R = rn nn1h nn2h nn3h ... nnnh nn.h

Total n.1h n.2h n.3h ... n.nh n..h
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B Uncertainty Coefficient

The Uncertainty Coefficient ( UC) is as measure of entropy used for discrete variables,

that measures how much a variable x can explain a variable y and is given by the first

formula in (3) [143].

U(y|x) = H(y)− H(y|x)
H(y)

(3)

This dependence is obtained by combining the entropy from y (4) (H(y)) and the entropy

of y given x (H(y|x)). This coefficient has values comprehended between 0 and 1, being 0

the representation of no relation between the variables (x does not explain y) and 1 a full

relation (x completely explains y).

H(y) = −∑
j

pj ln pj H(y|x) = −∑
i,j

pij ln
pij

pi
(4)

This measure has already been used in causal discovery-related tasks. For example,

Zhang et al. [144] applied this dependence measure to test the conditional independence

of variables in the IC algorithm. In the work of Samothrakiset al. [145], the uncertainty

coefficient is used as an asymmetric dependence feature that is used to train two Gradient

Boosting Machines to detect a causal relationship between a pair of variables.

Given its asymmetric property, the uncertainty coefficient is a candidate to be used as an

orientation method since it can assign the dependence of the relationship orientation and

states its degree.
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