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Abstract

Recently, research concerning the navigation of Autonomous Surface Vehicles (ASVs) has been
increasing. However, a big scale implementation of these vessels is still held back by a plethora of
challenges such as multi-object tracking.

Tracking systems are a key technology for many technical applications in areas such as surveil-
lance, medicine, automation, robotics and autonomous driving. Although well studied, object
tracking remains a complex problem due to its many influencing factors like the choosing of a
model to define objects as landmarks and which parameters should be tracked, as well as the type
of data from where information is taken. In order to better understand the possible areas of im-
provement, a brief study of current multi-object tracking methods and implementations is made.
Regarding generic object tracking, the main challenges such as occlusion, identity switches and
view-point variation were identified. Furthermore, investigation of strategies currently developed
for tracking in maritime scenarios brought attention for several additional challenges that impair
vision-based solutions such as water reflection, harsh illumination scenarios. Additionally, the
inherent surface vibrations cause sway on the on-board sensors.

This dissertation presents the development of a full-scale detection and tracking model with
an image-based CNN object detector trained trough transfer learning and a tracking module with
two distinct sub-modules for association and trajectory prediction. The tracking model is designed
work on-board the SENSE ASV, being able to detect multiple vessels in the field-of-view of the
installed camera and tracing their position over time while resorting to its sensors, namely the
camera and LiDAR, for feature extraction.

To train the detector module through transfer learning and for testing and evaluating the de-
veloped tracking model, data was collected with the SENSE ASV by sailing through two nearby
ports: Leixões and Viana do Castelo and recording video frames through its on-board cameras,
along LiDAR. GPS and IMU data. Images were extracted from the collected data, composing a
manually annotated dataset with 9 classes of different vessels, along with data from other open-
source maritime datasets.

The developed model, while having its limitations while tracking vessels whose extracted
features fail to accurately describe the it, was somewhat successful at tracking in scenarios where
the tracking module is consistently fed accurate detections. Examples of the tracking performance
can be visualised in the video package provided at the end of this document.

Keywords: object tracking, ASV, object detection
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“If you cannot understand why someone did something, look at the consequences and infer the
motivation.”

Jordan Bernt Peterson
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Chapter 1

Introduction

1.1 Context

Looking at the current state of the road vehicles industry, one can speculate a bright future for

autonomous driving. American companies such as Ford, General Motors, Waymo and the chinese

Baidu have already tested millions of kilometers on the road1, while Tesla is already enjoying

success in the industry, delivering over a million vehicles with level 2 of autonomous driving2.

A natural step would be to mirror the success of cars into ships. Considering the possibility of

having autonomous vessels fully capable of handling the shipping business worldwide, a quick

and logical thinking leads to savings in personnel costs. However, there is a need to make sure it is

a viable option regarding regulations, in order to motivate investment and technological advance

in the field.

A manned ship will always have a chance of sinking or simply having an accident due to

human failure, while an unmanned one can ideally be unsinkable under normal conditions. Recent

studies show grounding, collision, negligence and human error among the top five reasons why

ships sink3. Figure 1.1 illustrates the main causes of fatal passenger vessel accidents. While

the monitoring of ASVs still requires a human, the use of autonomous ships would have a direct

impact on the presented statistics, decreasing errors attributed to human failure.

The relatively recent foundering of the Costa Concordia shows that even ships that are consid-

ered masterpieces of modern technology can be involved in disastrous accidents. Incidents such

as the one referred motivate development of technology in the maritime industry, namely in the

development of autonomous vessels. ASVs need regulations to operate safely and, although some

regulatory aspects for manned ships may be compatible with unmanned ones, there is a need for

specific international regulations taking into account the unique characteristics of unmanned ships.

There have been recent efforts into developing such regulations by the International Maritime Or-

ganization (IMO) such as the Strategic Plan (2018-2023), which has a key strategic direction to

1Intelligent Mobility Xperience – 5 top autonomous vehicle companies to watch in 2020
2Number of Tesla vehicles delivered worldwide from 4th quarter 2015 to 3rd quarter 2020
3Marine Insight – Why Ships Sink - 10 Major Reasons

1

https://www.intelligent-mobility-xperience.com/5-top-autonomous-vehicle-companies-to-watch-in-2020-a-958065/
https://www.statista.com/statistics/502208/tesla-quarterly-vehicle-deliveries/
https://www.marineinsight.com/naval-architecture/why-ships-sink-10-major-reasons
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Figure 1.1: Causes of fatal passenger vessel accidents 1966-2015, by number of accidents on the
left and by fatalities on the right (BMPVA database) [1].

"integrate new and advancing technologies in the regulatory framework" 4. In 2017, following

a proposal by a number of member states, IMO’s Maritime Safety Committee (MSC) agreed to

include the issue of marine autonomous surface ships on its agenda5.

Table 1.1: Analysis of a voyage estimate, based on 1980 prices, for a typical 60 000 Dead-weight
Tonnage (DWT) modern bulk carrier with a 16 knot service speed [2].

Items Percentage of total costs

Fuel oil 29.6
Lubricating oil 0.9

Engine maintenance 1.2
Hull maintenance 3.9

Crew Costs 24.2
General administration 0.4

Insurance 7.6
Capital cost (depreciation, interest charges, etc.) 28.2

From an economic standpoint, research indicates that crew costs represent 24.2% of the costs

in ship operations (see table 1.1). The constituents of the voyage estimate can vary by 10% owing

to price changes and will differ according to the type and age of the ship and country of registration.

For example, a passenger vessel will have a larger crew than a cargo ship, so crew costs will

account for a greater proportion of the total [2]. The fact that no crew is required for an ASV

brings risks for the ship in case of accident or hardware failure at sea. A good example would be

a fire aboard the ship that could not only ruin the cargo but also break the hardware needed for

4IMO’s Strategic Plan
5MSC, 98th session

https://www.imo.org/en/About/strategy/Pages/default.aspx
https://www.imo.org/en/MediaCentre/MeetingSummaries/Pages/MSC-98th-session.aspx
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the ship’s navigation or monitoring, without a crew to put out the fire. A possible solution for this

issue should incur prevention to avoid and/or mitigate the chances of having such accidents. It

is also viable to develop standard procedures for the monitoring crew, in case of an unexpected

event, such as allowing remote control to some degree. Crew costs aren’t the only expenses that

can be reduced with ASVs. Tracking systems often rely on information received from proximity

sensors, motion detectors and optical sensors, mapping locations of different objects around the

vehicle. Besides automated travelling, benefits such as fuel economy can be achieved by predicting

object behaviours and choosing optimal routes to avoid fuel waste with speeding and braking, and

insurance costs by reducing the risk of accident. The demand for renewable sources of energy,

namely at sea, creates the need for cost-effective solutions capable of handling thorough tasks

such as maintenance. Autonomous Vehicles are considered the prone solution to carry out said

tasks in these harsh environments [3].

Regarding fuel economy, the National Renewable Energy Laboratory (NREL) partnered with

Volvo to measure real world fuel consumption of autonomous vehicles versus manually operated

cars6. The researchers found using adaptive cruise control resulted in a 5% to 7% drop in fuel

consumption. Since cruise control means adapting the vehicle’s speed regarding the surrounding

objects, similar benefits can be assumed with object tracking inputs. Insurance costs also depend

on the vehicle’s safety features7. A higher level of autonomy in a vehicle translates into more

security features which should reduce insurance prices.

1.2 Motivation

An Autonomous Surface Vehicle (ASV) is a vehicle with the ability to move and orient itself

in an unknown and possibly hostile environment, with resource to on-board sensors in order to

gain understanding of its spatial awareness, while being controlled by algorithms to make all

the maneuver operations autonomous, ranging from collision-free navigation to the take-off and

docking sequence.

Tracking systems are a key technology for many technical applications in areas such as surveil-

lance, medicine, automation, robotics and autonomous driving. Although well studied, object

tracking remains a complex problem due to its many influencing factors like the choosing of a

model to define objects as landmarks and which parameters should be tracked, as well as the type

of data from where information is taken. In order to better understand the possible areas of im-

provement, a brief study of current multi-object tracking methods and implementations has been

made. The critical aspects to look for when developing such a system are:

• Object characteristics;

• Accurate placement of trackers in objects;

• Object tracking despite distractions such as occlusions and changes in illumination;
6Measuring Real-World Fuel Economy in Autonomous Cars
7Lower Your Car Insurance Premiums

https://www.machinedesign.com/community/article/21838012/measuring-realworld-fuel-economy-in-autonomous-cars
https://www.allstate.com/tr/car-insurance/how-to-lower-car-insurance-premiums.aspx
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• Algorithm speed and autonomy.

The tracking challenge differs depending on the environment and the type of objects detected.

As such, reliable characterization of the environment obtained in real-time is essential to the ex-

ecution of many tasks such as mapping and obstacle avoidance. In the context of ASVs, it is

important to know what each detected object might be to determine their possible range of move-

ment and to predict where they might be going. Different objects may also constitute different

behaviours, so their individual characteristics (such as shape and size) should also be studied.

Regarding the second item, the use of an array of different sensors to detect objects accurately

in different scenarios is a common approach. Combining such varied information into a precise

detector is a challenge that needs addressing to avoid the misinterpretation of data. Additionally,

the maritime environment renders a layer of additional challenges such as a possibly clustered

scenery and harsh illumination conditions (i.e. water reflection causing mirroring and overexpo-

sure effects, fog, lack of artificial illumination for night-time operations). The instability of the

surface also causes vibrations, swaying on the on-board sensors. With these conditions, detection

and tracking of dim or small targets on the water is very challenging. Figure 1.2 highlights some

of these queries.

Foggy scenario. Low-light scenario.

Overexposed scenario. Water mirroring scenario.

Figure 1.2: Examples of harsh maritime scenarios that raise difficulty during detection and subse-
quent tracking.

The complexity of maritime object tracking requires a multi-versed solution capable of an-

swering multiple questions. Which and how many objects need to be simultaneously tracked?

Which sensors can be used to collect relevant information for detecting and tracking objects?
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How will the collected information be processed? The challenge within the scope of this disserta-

tion is to provide a tracking system capable of aiding the self-navigation of the autonomouS vEssel

for multi-domaiN inSpection and maintEnance (SENSE) ASV [4]. Moving objects ranging from

small boats to bigger ships, or even buoys, need to be tracked with enough precision to avoid col-

lisions. As the testing scenario is often occupied by dozens of boats, the developed system should

run in a machine capable of tracking those which are close enough to threaten a possible collision.

Static elements like docks, walls or coast can be avoided with IMU and GPS information that

feeds the system with precise location and orientation of the own vessel. Their static nature rejects

the demand for complex tracking and, as such, those fall outside the ambit of this work.

1.3 Objectives

The main purpose of this dissertation is to ultimately produce a system able to detect and track

objects (i.e. other moving vessels) for an ASV, enabling it to self navigate towards an end-point

without accidents. The integration of the results in an ASV is expected to validate the system

in a simulated scenario and, later, in a real environment. Information will be gathered from the

ASV’s different sensors, such as Global Positioning System (GPS), Inertial Measurement Unit

(IMU), Light Detection And Ranging (LiDAR) and visual cameras, in order to detect, identify and

continuously track the multiple objects resorting to object-oriented programming and machine

learning.

Starting from this process of data acquisition, this thesis aims to:

• Collect a testing dataset, with the aid of a 3D simulation environment, based on data cap-

tured by the camera and LiDAR incorporated in the ASV. A dataset composed of diverse

environments, with different vessel models and structures is ideal for better translation of

real-life possible scenarios;

• Develop and implement a detection and tracking system for multiple objects;

• Integrate the developed work in a real ASV with the goal of testing the system in an authentic

environment under conditions provided by INESC TEC (Institute for Systems and Computer

Engineering, Technology and Science).

1.4 Scientific Contributions

This work originated an article presented at the OCEANS Conference 2021: San Diego – Porto:

• D. F. Duarte, M. I. Pereira and A. M. Pinto, "Multiple Vessel Detection and Tracking in

Harsh Maritime Environments," OCEANS 2021: San Diego – Porto, 2021 [5].



6 Introduction

1.5 Document Structure

In addition to this introductory chapter 1, the present document contains four other chapters.

Chapter 2 proffers the research done regarding the state of the art. Section 2.1 includes generic

definitions regarding the field of object tracking such as Convolutional Neural Networks, Kalman

Filter and the Hungarian Algorithm. Section 2.2 focuses on real-time object detection methods

and section 2.3 portrays several state-of-the-art models for multiple object tracking. Section 2.4

focuses on the detection and tracking models regarding ASVs. Concluding this chapter, section

2.5 provides an overview of the most relevant analysed methods and challenges to address in the

field.

Chapter 3 provides a more detailed characterization of the problem, presenting a thorough

description of the implemented tracking system. Section 3.2 entails the work done in assembling

a maritime dataset used for training the detection module and developing the tracking module,

while sections 3.3 and 3.4 further describe the development process of the detection and tracking

modules respectively. The analysis of the obtained results for each module is detailed in chapter

4.

Finally, chapter 5 provides a conclusion to this work, elaborating on the future work opportu-

nities derived from the developed work and describing some of the challenges along the process.



Chapter 2

State of the Art

The information gathered in the previous chapter demonstrates the convenience of autonomous

navigation in the context of surface vehicles. In order to carry out the work in the context of this

dissertation, an extensive study of subjects such as Object Detection and Tracking is essential for

an assiduous understanding of concepts and current working methods. The following section will

describe the results of the research on state-of-the-art models of object tracking.

2.1 Introduction to Object Tracking

Traditionally, object tracking was implemented using continuous object detection, starting with

traditional computer vision methods in the late 90s. These approaches utilized classic feature

detection algorithms like SIFT [6] and SURF [7] combined with machine learning algorithms

like k-Nearest Neighbors (k-NN) [8] or Support-Vector Networks (SVN) [9] for classification.

However, in certain conditions where detection would fail for a few frames, the tracked objects

would be lost. Detection depends heavily on what the sensors can perceive, but what happens

when they are occluded? Some of the major challenges for detection that need to be addressed

separately in order to achieve successful tracing are listed below.

• Occlusion - The object in question is partially or completely obstructed.

• Identity Switches - After two objects cross each other, how to know which one is which?

• View-point Variation - An object may look very different when looked at from a different

side. Identifying such objects would be very difficult relying solely on visual detection.

• Complex object shapes or motion.

• Scene illumination Variation.

In addition to the classification provided by a detector, a robust tracking module must retain

information about each object, such as their location, trajectory prediction and pose estimation,

allowing the algorithm to discern similar objects with the same classification in the same frame,

and to solve the aforementioned challenges.

7
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Figure 2.1 represents the block diagram of a typical Multiple Object Tracking (MOT) model

which includes a tracking module responsible for handling predictions and producing position

estimates for occluded objects, segmenting each detected object.

Figure 2.1: Block diagram of a typical Multiple Object Tracking model.

Currently, trackers such as TrackR-CNN [10] and Tracktor++[11] are popular models with

state-of-the-art tracking accuracy while models such as ROLO [12] introduce lighter processing

methods providing balance between tracking accuracy and execution speed. Furthermore, in the

context of ASVs, object detection and tracking have a real-time execution requirement in order

to compute the driving instructions and successfully navigate without accidents. The following

subsections: 2.1.1 to 2.1.3 will summarize fundamental concepts regarding the basis of detection

and tracking architectures. The object detection topic, which in itself is a preliminary stage for

object tracking, is covered next, in section 2.2. Lastly, sections 2.3 and 2.4 will resume the methods

implemented in the most popular state-of-the-art tracking models, with a hefty focus on real-time

solutions.

2.1.1 Convolutional Neural Networks

CNNs are a type of artificial neural networks designed to take advantage of structures in images

(or similar content) and 3D data. Their first successful use was to recognise handwritten digits, by

LeCun et al. in 1990. The network, LeNet [13], consisted of five layers: two convolutional layers

followed by a pooling layer and a fully connected layer, as shown in figure 2.2. Convolutional

Neural Networks evolved into much more complex natures but the general structure of alternating

convolutional and pooling layers, followed by fully connected layers, remains.

Figure 2.2: Basic structure of a CNN [14].

The convolution layer is the core building block of a CNN, carrying the main portion of the

network’s computational load. This layer performs a dot product between the set of learnable
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parameters (the kernel) and the restricted portion of the receptive field. This produces a two-

dimensional representation of the image, the activation map. The pooling layer replaces the output

of the network at certain locations by deriving a summary statistic of the nearby outputs. A pooling

operation is processed after convolution layers, decreasing the required amount of computation

and weights while keeping the object recognizable regardless of where it appears on the frame.

Fully connected layers have a weight associated with each pair of input and output. Their output

is computed as the inner product of the weights and the input. These weights have to be learned,

and since the number of weights is proportional to the number of inputs and outputs, the number

of parameters quickly grows.

2.1.2 Kalman Filter

In 1960, Kalman [15] presented a theory to optimally estimate the state of a linear dynamical

system, showing that the estimation minimises the mean of the squared error, given that the noise

is normally distributed. The Kalman filter computes the optimal state estimate by recursively

combining previous estimates with new observations. It consists of two phases: prediction, where

the optimal state is processed prior to observing; and update, where the posterior state is computed

after observing. Additionally, it calculated the prior and posterior estimate error covariance.

Several applications of the Kalman filter have been implemented in different computer vision

areas, namely in trajectory prediction and correction of tracked objects.

2.1.3 Hungarian Algorithm

Multiple Object Tracking introduces an assignment problem. The goal is to find which detection

corresponds to which object based on the predictions from the previous step, or alternatively, if a

detection represents a new object. By comparison of the Euclidean distance between a detected

object in two adjacent frames, the Hungarian algorithm is a viable method to do the linking process

between identified objects by finding the optimal matching solution that minimizes the Euclidean

distance in the assignment matrices [16].

2.2 Object Detection

Generic object detectors are mainly divided into one-stage and two-stage detectors. With one-stage

methods, the output can be obtained after one CNN operation, obtaining both locations (bounding-

box coordinates) and classifications (class probabilities) at once. This method was made popular

by successful real-time models such as You Only Look Once (YOLO) [17], Single Shot MultiBox

Detector (SSD) [18] and RetinaNet [19].

Two-stage detectors consist of a region proposal based framework which is a two-step process:

initially it gives a coarse scan of the whole image, generating proposals, and then focuses on

each of those regions of interest, classifying each one into different object categories [20]. This

architecture was popularized by models such as OverFeat [21] and R-CNN [22]. The latter has
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been improved through FasterR-CNN [23] and Mask R-CNN [24], making the current state-of-

the-art in accuracy for object detection on MSCOCO [25], a dataset designed by Microsoft for

object recognition with a collection of images containing common objects in their natural context

that would be easily recognized by a child. The subjects performance is benchmarked by different

measurements of mean Average Precision (mAP).

With this type of detectors, since the high score region proposals obtained from the first-

stage CNN are fed to the second stage CNN for a final prediction, the inference time is equal

to Ttotal = Tone +mTtwo, where m represents the number of region proposals with a confidence

score higher than a certain threshold. For real-time object detection, the inference time cannot be

variable over time so live detectors use mostly one-stage methods.

Figure 2.3 provides a block diagram of both one-stage and two-stage detectors.

Figure 2.3: Block diagram of two-stage and one-stage detectors [26].

2.2.1 Real-time Object Detection

An algorithm that stands out in real-time object detection is YOLOv4 [26], an improvement of the

original YOLO [17]. YOLOv4’s different approaches have three top ten placements (including

current second place). while the original YOLOv4, without extra training data, is still 36th 1.

Considering the need for real-time object detection, the model YOLOv4-CSP-P7 [27] is first.

YOLO uses the characteristics of a single image to predict multiple boxes, each containing

one object. The original model, introduced in 2017 by J. Redmon et al., consists in the following

procedure (see figure 2.4):

• Division of the input image into a S×S grid. If the center of an object falls into a grid cell,

that grid cell is responsible for detecting that object;

• Each grid cell predicts B bounding boxes and confidence scores for those boxes. These

confidence scores reflect how confident the model is that the box contains an object and

how accurate it thinks the box is. Confidence is defined as Ob ject ∗ IoU : if no object exists

in the cell, the confidence score should be zero, otherwise the score should be equal to the

intersection over union between the predicted box and the ground truth;

1Browsing State-of-the-Art in Object Detection

https://paperswithcode.com/task/object-detection
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• Each grid cell also predicts C conditional class probabilities. These probabilities are con-

ditioned on the grid cell containing an object. There is only one set of class probabilities

predicted per grid cell, regardless of the number of boxes B;

• Multiplying the conditional class probabilities (C) and the individual box confidence pre-

dictions (B) gives the class specific confidence scores for each box. These scores determine

both the probability of that class appearing in the box and how accurately the predicted box

contains the object.

Figure 2.4: YOLO’s visual representation [17].

The popularity and success of YOLO granted continuous work on the model, with updated

versions such as YOLOv2 in 2016 [28] and YOLOv3 in 2018 [29] being introduced, both with

novel strategies such as batch normalization, anchor boxes, multi-scale training (YOLOv2) and

multi-label classification (YOLOv3) to improve both accuracy and speed.

The most recent, YOLOv4 [26], developed by Chien-Yao Wang et al. in 2020, is the basis of

the current state-of-the-art real time object detectors. It uses the CSPDARKNET53 [26] neural net-

work as backbone and the influence of state-of-the-art “Bag-of-Freebies” and “Bag-of-Specials”

object detection methods during detector training, making it now more efficient and suitable for

single GPU training. Figure 2.5 compares the current YOLOv4 with other state-of-the-art object

detectors as well as the previous iteration, YOLOv3.

The model YOLOv4-CSP-P7 [27] by Wang et al. adds model scaling to the previous iteration

with CSPNet, effectively cutting down 40% of computation of the backbone, increasing speed.

It executes the Real-Time Object Detection benchmark with a mean AP score of 55.4 and ex-

ecution time of 16 frames per second while not using extra training data 2. Table 2.1 includes a

2Real-Time Object Detection on COCO

https://paperswithcode.com/sota/real-time-object-detection-on-coco
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Figure 2.5: YOLOv4 testing under COCO benchmarks [26].

direct comparison of state-of-the-art object detectors, listing in bold the top two candidates of each

comparing measurement.

Table 2.1: Comparison of state-of-the-art object detectors [27].

Method Backbone Size FPS AP AP50 AP75 APS APM APL

EfficientDet-D0 [30] EfficientNet-B0 [31] 512 97* 34.6% 53.0% 37.1% 12.4% 39.0% 52.7%
YOLOv4-CSP CD53s 512 97/93* 46.2% 64.8% 50.2% 24.6% 50.4% 61.9%
EfficientDet-D1 [30] EfficientNet-B1 [31] 640 74* 40.5% 59.1% 43.7% 18.3% 45.0% 57.5%
YOLOv4-CSP CD53s 640 73/70* 47.5% 66.2% 51.7% 28.2% 51.2% 59.8%
YOLOv3-SPP [29] D53 [29] 608 73 36.2% 60.6% 38.2% 20.6% 37.4% 46.1%
YOLOv3-SPP ours D53 [29] 608 73 42.9% 62.4% 46.6% 25.9% 45.7% 52.4%
PP-YOLO [32] R50-vd-DCN [32] 608 73 45.2% 65.2% 49.9% 26.6% 47.8% 57.2%
YOLOv4 [26] CD53 [26] 608 62 43.5% 65.7% 47.3% 26.7% 46.7% 53.3%
YOLOv4 ours CD53 [26] 608 62 45.5% 64.1% 49.5% 27.0% 49.0% 56.7%

1 FPS value with * means overall latency, which include model inference and post-processing.
2 APs value with bold font means the value is higher than all method which has higher FPS.

2.3 Real-time Object Tracking

Regarding multiple object tracking, MOTChallenge [33] provides a framework for fair evaluation

of multiple people tracking algorithms, including challenges with subsets of data for specific tasks

such as 3D tracking. The models are ranked using many evaluation measures, the most relevant

ones being 3:

• MOTA - Multi-Object Tracking Accuracy. This measure combines three error sources: false

positives, missed targets and identity switches.
3MOTA, IDF1 and MOTP are subject to standard deviation, represented by (± std_dev).
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• IDF1 - The ratio of correctly identified detections over the average number of ground-truth

and computed detections.

• MOTP - Multi-Object Tracking Precision. The misalignment between the annotated and the

predicted bounding boxes.

• FN - The total number of false negatives (missed targets).

• Hz - Processing speed (in frames per second excluding the detector) on the benchmark. The

frequency is provided by the authors and not officially evaluated by the MOTChallenge.

With ASVs, it is important to consider solutions with online methods (i.e. the solution is

immediately available with each incoming frame and cannot be changed at any later time) in order

to track in real life scenarios.

From the MOT20 Benchkmark Statistics 4, the three models with the highest reported process-

ing speeds are GMPHD_Rd20 [34], Surveily and SORT20 [35].

GMPHD_Rd20

Baisa et al. developed in 2020 a tracking-by-detection model [34] that uses a Gaussian Mixture

Probability Hypothesis Density (GM-PHD) filter with deeply learned CNN features to achieve

linear complexity with the number of objects and observations and a real-time tracker able to

track multiple targets in video sequences. This is achieved by integration of spatio-temporal and

visual similarities obtained from bounding boxes of objects and their CNN appearance features

at the update step of the GM-PHD filter and at the target labelling stage, which is done with the

Hungarian Algorithm. A block diagram of the GMPHD_Rd20 model is displayed in figure 2.6.

According to the authors, the GM-PHD filter is robust to false positives but very susceptible to

miss-detections, being the original PHD filter designed for radar tracking applications where the

observations collected could contain numerous false alarms with very few miss-detections. To

counterbalance this characteristic, additional unassigned tracks predictions were included after

the association step and deeply learned CNN appearance representations were used to re-identify

lost objects, consistently labeling them.

A MOTA score of 44.7±20.07 with run-time of 25.2 Hz was achieved in the MOT20 bench-

mark, making it the most accurate online tracker with a run-time over 10 Hz. This result was

achieved running on a single core 3GHz machine.

SORT

The original Simple Online and Realtime Tracking (SORT) [35], developed by Bewley et al. in

2016, aims at efficient and reliable handling of the common frame-to-frame associations while

exploiting recent advances in visual object detection to solve edge cases and detection errors.

4MMOT20 - Results & Criteria

https://motchallenge.net/results/MOT20/
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Figure 2.6: GMPHD_Rd20 Block Diagram [34].

A CNN based detector is used to improve accuracy while the minimalistic approach of using

a combination of familiar techniques, such as the Kalman Filter and the Hungarian algorithm to

predict and associate data respectively, ensures both efficiency and reliability for online tracking.

For the estimation model, when a detection is associated to a target, the detected bounding box

is used to update the target state where the velocity components are predicted with a Kalman filter

framework. If no detection is associated to the target, its state is predicted without correction using

a linear velocity model. When objects enter and leave the image, unique identities are created or

destroyed accordingly.

Any detection with an overlap lower than IoUmin signifies the existence of an untracked object.

The tracker is initialised using the geometry of the bounding box with the velocity set to zero and

the covariance of the velocity component is initialised with large values, reflecting the uncertainty

of an unobserved velocity. The new tracker then undergoes a period where the target needs to

be associated with detections to accumulate enough evidence in order to prevent tracking of false

positives. Tracks are terminated if they are not detected for TLost frames. Should an old object

reappear, tracking resumes under a new identity.

The presented methodology was able to achieve decently accurate results while being faster

than other state-of-the-art trackers. A score of 42.7±18.6 with run-time of 57.3 Hz was achieved

in the MOT20 benchmark making it the fastest registered online tracker with a run-time over 10

Hz. This was achieved running on a quad-core 2.5GHz machine.

However, with SORT, the association metric with the Kalman Filter is only accurate when

state estimation uncertainty is low. Occlusions which drastically increase uncertainty return a

relatively high number of identity switches. DeepSORT [36], by Wojke et al., attempts to correct
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the issue by replacing the association metric with a more informed feature vector that combines

motion and appearance information. The feature vector is obtained applying a CNN to compute

bounding box appearance descriptors for the type of objects intended to track. The latter model

is able to track objects through longer periods of occlusions, effectively reducing the number of

identity switches by 45% while achieving overall competitive performance at high frame rates. An

exemplary output of DeepSORT object tracking is illustrated in figure 2.7.

Figure 2.7: Exemplary output of DeepSORT on the MOT challenge dataset in a common tracking
situation with frequent occlusion [36].

2.4 Object Tracking in the Context of ASVs

This section presents the research done for object tracking regarding ASVs. Considering the multi-

modal approach to tracking developed in this work, a study has been made about different tracking

models using different kinds of sensors typically available in an ASV such as cameras, LiDARs,

AIS, GPS and IMUs.

2.4.1 Radar-based Tracking

In 2019, Freire et al. [37] published their model for obstacle avoidance combining a radar for

shore detection, and an Automatic Identification System (AIS) to relay information regarding the

locations of the bigger vessels that have an AIS transceiver, while using LiDAR to detect smaller

vessels and debris. GPS and IMU data are relied on for extraction of the own ship’s position and

orientation.

For aggregation, considering that a full radar turn was of approximately two seconds, con-

ventional methods such as K-means and DBScan [38], which during testing had execution times

larger than the radar turn period, were not feasible. Instead, an algorithm that uses the same

concept of DBScan but instead processes data scan-line by scan-line with an additional logic for

evaluating the end of a cluster was proposed. This strategy revolves around the use of a timeout

mechanism to periodically check if the difference between the current time and the time of the last
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aggregation was bigger than a certain threshold. If so, the clustered data should have an adequate

size to not be considered noise. Similarly, if the segment detections were bigger than two seconds,

a timeout was applied, publishing every single point belonging to that cluster to the classification

node.

The implemented classification node took a set of object measures, such as its centroid and

weighted centroid, to form an elliptical model. Given that an ellipse is a 2D representation of a

Gaussian distribution, the mean, variance and covariance values from the cluster’s points charac-

terize the object. The ellipse parameters were matched with the bounding box parameters: if the

obstacle is an ideal ellipse inscribed within the rectangle and both parameters are similar enough,

then the obstacle is classified as a vessel, otherwise, part of the shoreline. Segments which are

approximately straight lines are merged to define the shoreline.

For tracking, firstly a Matching Filter was applied to receive object information from the object

classification node. The weighted centroid, size and orientation of the objects were compared

and, since the targets to be tracked had slow system dynamics, the Kalman filter could be used

to accurately predict and track their trajectories. Figure 2.8 illustrates the results of the shore

detection and the Kalman filter tracking techniques.

Figure 2.8: Output of the Kalman filter simulation tracking (left) and shoreline extraction algo-
rithm (right). The image on the left plots the trajectory of two targets with their real trajectory
traced with green and red lines respectively, the measured trajectories in blue and blue dots re-
spectively, and finally, the estimated trajectories represented in black, closely following the real
lines [37].

2.4.2 Visual-based Tracking

River Navigation

In order to provide a solution for river navigation when the GPS signal may be lost or blocked

by thick and high canopy, Tan et al. [39] developed a system capable of detecting obstacles using

a digital camera. The author concluded that even though IR and ultraviolet sensors are more

common in autonomous robot navigation systems, the water environment brightness characteristic

would be better captured by a digital camera.
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For this model, each captured frame is converted to a gray-scale image, to which is applied

a threshold filter to separate objects from water. A morphology operation is used to remove im-

perfections introduced during segmentation and a Canny filter algorithm is applied for accurate

edge detection. Lastly, Hough Transform is used to detect the shoreline and to draw a straight line

defining the boundary.

The GPS location is obtained from a GPS module and the latitude and longitude coordinates

are plotted by using Google Earth. Figure 2.9 shows simulation results of shoreline tracking,

confirming the efficiency of the simple implementation.

Figure 2.9: Simulation results of shoreline detection constrained Hough Transform [39].

Monocular Vision

In 2015, Cho et al. presented a vision-based real-time detection and tracking system [40] used

to track a surface ship using a monocular camera in order to improve observability in congested

waters with small boats. So as to minimize the typical noise of an inland water environment (e.g.,

reflections and glints of light from the water surface, ship wakes), computer vision techniques

were tested. Feature Accelerated Segment Test (FAST) [41] was applied to extract the relative

bearing and range measurements of a target ship from camera images. The measurements were

processed using a filter based on the Extended Kalman Filter (EKF) to estimate the trajectories of

detected targets with a Continuous White Noise Acceleration (CWNA) model.

Since the speed and maneuvering of the own ship caused observability issues, two approaches

were taken to solve the problem. First, the own ship moves in a zigzag motion to ensure sufficient

observability. Second, the range information from the horizon is used to improve the overall

performance of the tracking filter, helping in prevention of an excessive divergence.

The tracking algorithm is comprised of five steps, as shown and described in figure 2.10.

Firstly, the optical camera is used for searching the target ship. Once the target is detected, a way-

point is assigned and the way-point tracking step is initiated. Feature detection is used to ensure

the target ship is the one being tracked. This is a necessary step due to noise inherent in the water

environment.
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Figure 2.10: Strategy of a tracking target ship [40].

To reduce the noise inherent from water environments, image filtering algorithms were ap-

plied. Assuming that a ship or object must appear under the horizon line in the frame, the Region

of Interest (RoI) for the search of a target ship is confined below the horizon, allowing for compu-

tation efficiency and faster detections. Once the RoI is defined, the feature from the FAST corner

detector is applied to find salient target features in the image. While navigating towards the target,

whenever the uncertainty level µL is higher than a predefined threshold γT , the ship changes to

a zigzag motion until the uncertainty becomes lower than the threshold and then the ship keeps

tracking but following the target in a straight line.

To enhance the accuracy of the tracking module, relative bearing and range measurements were

taken from the frames. These measurements were determined using feature points of the target

ship projected on the image plane considering the camera geometry and the relative coordinates in

the own ship’s reference frame, with the relative bearing measurement being proportional to the

pixel distance from the center point of the target to the vertical line that is perpendicular to the

horizon while passing through the center of the image. To find the central point of each feature

extracted in the detection region, DBScan [38] was used. The relative range measurement is

determined by the vertical pixel distance from the horizon to the lowest feature point of the target

ship within the detection region. Figure 2.11 helps visualise the measurements taken.

In order to collect the own ship’s position, speed, and heading angle, measurements were taken

with GPS and IMU modules installed in the vessel.

Tracking By Detection Model (M3C)

Despite state-of-the-art object detection and tracking for generic objects having recently demon-

strated impressive performances, Qiao et al. deemed them inadequate for the complicated mar-
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Figure 2.11: Camera geometry and coordinate systems [40].

itime environment and proposed a novel tracking by detection framework combining multi-model

and multi-cue (M3C) techniques to re-identify vessels during tracking [42]. The overall architec-

ture is detailed in figure 2.12.

Figure 2.12: The architecture of the proposed M3C tracking by detection pipeline [42].

It uses a YOLOv3 [29] based detector to obtain the bounding box and class of the objects by

looking at the input each frame of the video input only once. When feeding this model a 608×608

pixel image, it can conduct three different scale predictions.

To compute the maneuvering prediction of a surrounding vessel, the estimation of the matching

probability of each candidate model at the next moment based on the vessel’s historical trajectory

is calculated, while considering the ego vessel’s posture via recurrent neural networks.

The kinematic behaviour of maritime vessels is predefined by three common kinds of mo-

tion maneuvers: constant velocity (CV), constant acceleration (CA) and curvilinear motion (CM),

which are fed to a Kalman filter to predict the target vessel’s motion state. This multi-modular ap-

proach is used to solve the problem of unstable tracking of a maneuvering target in the traditional

single-model Kalman trackers applied in more popular scenarios such as tracking people.
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The data association procedure has a hybrid affinity model based on multi-cues to evaluate

the similarity between the detected vessels and existing tracklets, containing both long-term cues

(appearance) and short-term ones cues (motion measurements and the dynamic attitude of ego

vessel, such as pitch and roll). Adaptive association gate of appearance is used to confirm the

validation of measurements before the data association algorithm is carried out.

Experiments have demonstrated its efficiency and robustness while still achieving real-time

performance. Table 2.2 compares the model’s performance with other popular tracking models.

Table 2.2: Quantitative evaluation of different trackers on two maritime datasets [42].

Dataset Tracker MOTA↑ MOTP↑ MT↑ ML↓ IDS↓ PFS↑

SMD (onshore)
+ PETS 2016

MDP 30.3% 71.3% 13.2% 38.4% 426 1
SORT 59.8% 79.6% 25.4% 22.7% 631 56
KCF 70.3% 80.2% 37.8% 22.3% 382 25
POI 66.1% 79.5% 34.6% 20.8% 453 10

M3C (Ours) 72.8% 80.4% 37.4% 21.2% 254 20

SMD (onboard)
DeepSORT 60.4% 79.1% 32.8% 18.2% 56 36

MOTDT 57.6% 70.9% 34.2% 28.7% 49 23
M3C (Ours) 63.4% 74.6% 26.2% 17.9% 34 16

2.5 Critical Review

This section contains a short overview of the researched material concerning the state-of-the-art

methods described in this chapter. Regarding generic object tracking, the main challenges such as

occlusion, identity switches and view-point variation were identified. Furthermore, investigation

of strategies currently developed for tracking in maritime scenarios brought attention for several

additional challenges that impair vision-based solutions such as water reflection, harsh illumina-

tion scenarios. Additionally, the inherent surface vibrations cause sway on the on-board sensors.

The subject of tracking, while popular and widely researched in aerial and terrestrial environ-

ments, hasn’t yet seen similar growth for the maritime scene. As such, popular state-of-the-art

tracking models that adopt mainly machine learning techniques for detection and re-identification

of targets, which depend heavily on the availability of wide datasets to achieve their potential,

won’t see similar success on this maritime area with scarcer data. The biggest open datasets (i.e.

ImageNet [43], PASCAL VOC [44] and MSCOCO [25]) contain over a million multi-purposed

images but only one class related to a maritime scenario (boat) which translates into a bundle of

only hundreds of actually usable annotated images. Vessels have can have different shapes and

sizes. A row-boat is completely different from a cargo-ship so extracting features from those im-

ages without proper reclassification would be a very difficult task. There is a lack of sufficient

work in gathering large amounts of annotated data for this context.

Generic object detection and classification are well covered topics with two main frameworks.

As a preliminary sub-process of tracking, only the single-stage regression models are viable due
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to their real-time application. Of those, YOLOv4 [26] stands out as the method with the best

performance.

For the tracking algorithm itself, the problem can be separated in three parts: assignment

or re-identification, trajectory prediction and positional update. The researched methods relied

mostly on the Kalman filter to estimate the target’s position, with varying motion equations. Qiao

et al. demonstrated a multi-modal approach with three different kinetic states that showed a lot

of promise, emerging as the better performing tracking model in maritime environments. The re-

identification part is handled differently depending on the sensors utilized. The current state-of-

the-art trackers, DeepSORT [36] and GMPHD_Rd20 [34], rely on the Hungarian algorithim while

M3C [42] adopts a multi-cue approach with both visual and motion information to minimize the

issues encountered with the state-of-the-art trackers in maritime scenarios due to impaired vision.

Comparatively the work of Freire et al., using LiDAR technology to classify clusters through an

elliptical model, resorting to a matching algorithm, established an effective method to deal with

the previously mentioned unreliable visual conditions of an unmanned vessel in the middle of the

sea.

Despite the results being quite impressive in the referenced approaches, the tracking topic re-

mains quite unexplored. The state-of-the-art trackers aren’t designed to account for the challeng-

ing seafaring environment as they rely on camera images for object detection, making association

difficult when the observer is affected by rippling or water reflection. Alternatively, the maritime

approaches tend to address specific scenarios. The work by Tan et al. [39] focuses on shoreline

navigation, not addressing traffic tracking. Cho et al. worked on a tracking system with the goal of

following a specific target [40], while the work of Qiao et al. is indeed successful at general track-

ing performance but the developed model for predicting the target’s kinematic behaviour heavily

depends on the observer being stationary [42].



22 State of the Art



Chapter 3

A Multi-Modal Multi-Object Detection
and Tracking System

3.1 Introduction

This work proposes to develop a tracking model to work on-board the SENSE ASV which detects

multiple vessels in the field-of-view of the installed camera and tracks their position over time

while resorting to its sensors, namely the camera and LiDAR, for feature extraction. This vessel is

1.5m long, 1m wide and approximately 1.5m tall. With payload it can weigh up to 75kg. Its rep-

resentative model, developed by INESC TEC can be visualized in figure 3.1. A Gazebo simulated

model is used for developing software to collect data from each sensor.

Figure 3.1: Picture of INESC TEC’s SENSE ASV and its representative model on the Gazebo
simulator.

The SENSE ASV is equipped with a 3D LiDAR, a pair of stereo cameras, an IMU and a GPS.

The spatial configuration of the described sensors is illustrated in figure 3.2 and the most relevant

specifications from each of the sensors are as follows [45]:

• Camera - Mako G-125 - Frame Rate: 30Hz, Resolution: 1292× 964, Field of View: 80°

horizontal;

• LiDAR - VLP-16 - Frame Rate: 4Hz, Range: 100m, Range Accuracy: 0.03m, Field of View:

360° horizontal and 30° vertical;

23
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• IMU - MTi-30Xsens - Frame Rate: 200Hz, Angular Accuracy: 0.2°/0.5°;

• GPS - Swift Navigation - Frame Rate: 20Hz, L1/L2 RTK, Accuracy: 0.01m horizontal,

0.015m vertical.

Figure 3.2: Visual representation of the SENSE ASV referentials for the camera and LiDAR
sensors.

The data used for testing and evaluating the developed tracking model was collected during

organised CRAS maritime missions in which the SENSE ASV was navigated around traffic in

the Leixões and Viana ports, recording the camera and LiDAR information for further use. This

recorded footage of about 100 minutes can be reproduced in real-time in the ROS environment,

providing a simulation of a real testing scenario. Figure 3.3 pictures the data collection mission in

the Leixões port. A similar procedure was put in practice during the Viana data collection mission.

The developed tracking model consists of two primary modules. A detection module, re-

sponsible for handling the connection between camera and LiDAR information by identifying and

classifying vessels in the camera’s field-of-view and retrieving their respective 3D location from

the LiDAR point cloud. For each single frame, a combination of 3D LiDAR distance measuring

and camera vision must be sufficient for detecting and classifying each moving object. Traditional

methods rely on hand-crafted features and probabilistic models. The advances in deep learning

bypass this step, extracting important characteristics directly from the input [46]. Therefore, this

step shall be handled by a detection module which employs a CNN based approach. Subsequently,

the tracking module handles the tracing of the position of each detected object with two distinct

sub-modules working in tandem. The association sub-module handles comparison and associa-

tion of all identified objects in the current detection frame with their previous instances. To cover

scenarios where previously detected objects are out of frame or undetected in the present frame

(occlusions), a prediction sub-module maps and updates their position over time. A summary of

the employed strategy is illustrated by figure 3.4.
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(a) Hardware setup. (b) Data collection stage.

(c) LiDAR captured frame. (d) Camera captured frame.

Figure 3.3: Pictures taken of the Leixões mission. Figures (c) and (d) display the collected data
visualized through RViz software.

Figure 3.4: Block Diagram of object tracking in the context of ASVs.

3.2 Datasets and Annotation

In order to apply a CNN based approach in the proposed solution, firstly, an extensive dataset of

marine vessels will be collected. This dataset shall include an amount of images with multiple

boats and ships of different categories, that is suitable to train the detector module through transfer

learning techniques. However, data concerning maritime objects with ground-truth and proper

classification is not widely available. This section describes the gathering process of open datasets

regarding maritime vessels, including manual annotation of images and footage gathering from

the real testing scenario. The resulting dataset, contains 9044 images and their respective 21170

annotations, it is made available in the Datasense@CRAS repository [47]. Listed below are the
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aforementioned datasets from which information was collected:

• The SeaShips Dataset, published by Shao et al. [48], contains a set of annotated real-world

images covering six common ship types (ore carrier, bulk cargo carrier, general cargo ship,

container ship, fishing boat, and passenger ship), designed for training and evaluating ship

object detection algorithms. A sample version with 7000 of the 31455 claimed images is

available in the author’s website;

• The Singapore Maritime Dataset [49] provides on-shore and on-board recorded videos with

matrix files of the bounding boxes of each object in every frame of all provided videos.

The detector module requires a dataset composed of images and, as such, in order to use

the Singapore dataset, frames were extracted each n seconds from On-Shore videos and a

text file with the classification and bounding box of each object in the frame was generated,

totalling 914 annotated images.

• On the Kaggle website, Clorichel released in 2018 a dataset of about 1,500 pictures of

boats classified in 9 categories1. Only pictures were used, excluding images that don’t

represent real scenarios (i.e vector-arts, boat renders). The Kaggle dataset doesn’t come with

annotations, hence, the photographed objects have to be manually identified and classified;

• The aforementioned datasets provide images of different boats in different scenarios. How-

ever, to better represent the future testing scenario, the SENSE ASV sailed through two

nearby ports: Leixões and Viana do Castelo, recording video frames through its on-board

cameras, along LiDAR. GPS and IMU data. The processes of frame extraction and object

identification provided around 200 annotated images.

An example of the gathered images can be visualized in figure 3.5.

3.2.1 Object Identification and Classification

The annotations for the Kaggle dataset and the collected data from the Leixões and Viana do

Castelo missions with the SENSE ASV were taken through the open-source software LabelImg2,

available on github. Each vessel was delimited by a bounding box and categorized, as demon-

strated in figure 3.6.

Labels were organised in 9 categories (ore carrier, bulk carrier, container ship, ferry boat,

sail boat, fishing boat, small boat, uncategorized), grouping up some less represented categories

from the previous datasets with similar characteristics (i.e. kayaks, gondolas are under small boat;

buoys and surf/paddle boards which aren’t boats get the uncategorized label). Annotations taken

for the images in 3.5 can be viewed in 3.7.

The annotations were exported to XML files with information about every object in a single

image, structure is detailed in 3.8. For the machine learning process, these annotations were

1Boat types recognition: About 1,500 pictures of boats classified in 9 categories
2Tzutalin. LabelImg. Git code (2015). Free software: MIT license

https://www.kaggle.com/clorichel/boat-types-recognition/version/1
https://github.com/tzutalin/labelImg
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Figure 3.5: Examples of pictures that compose the collected dataset.

Figure 3.6: Framework of LabelImg loaded with an annotated image containing multiple objects.
The green dots highlight the corners of the bounding boxes. On the right-sided panel, each anno-
tated object is defined by its label.
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Figure 3.7: Examples of annotations from the collected dataset.

converted to the YOLO Darknet Text format which replaces text labels with numerical identifiers

and normalizes the bounding box coordinates within the range [0,1], making them easier to work

with after scaling or stretching images.

Figure 3.8: UML Class Diagram of a Pascal/VOC XML annotation file structure.

3.3 Detection Module

The main goal of this module is to accurately detect any maritime vessel. For this, two different

training exercises will take place. The first is a binary classification method where the area inside
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any bounding box is classified as a boat while the rest of the image isn’t an boat. This attempts

to train the neural network with general characteristics common in every maritime vehicle. The

second exercise classifies every different type of vessel (i.e. sail boat, row boat, kayak, gondola).

With binary classification, detections are expected to be more more reliable due to simplification.

However, the advantage of having more information about the detected objects aids the association

sub-module of the tracking module. With sufficient data, the more complex multi-class training

would likely wield similar precision, proving to be a more suitable choice for a tracking scenario.

As such, the accuracy of both training exercises should be measured in order to determine whether

the drop in accuracy is significant enough to consider the binary classification method.

Lastly, LiDAR-based processing is implemented to enhance accuracy, purging false detections

by projecting the 3D point cloud into each image frame and removing every bounding box whose

object wouldn’t fit a real detection. This step is accomplished by counting the amount of projected

points inside the region of interest and determining whether the cloud is dense enough to be con-

sidered an object. LiDARs can be used during the day or night as they are a light emitting method,

hence, not reliant on ambient light sources. Their ability to collect data in scenarios with poor

lighting and without geometrical distortions makes them a very good complement for cameras.

3.3.1 Transfer Learning of the Detection Module

The scarcity of annotated maritime datasets for object detection and classification deemed unfeasi-

ble a performance comparison among popular object detectors with open-source implementations.

However, state-of-the-art real-time object detectors such as YOLOv4 [26] have already proven

to be effective in land vehicles detection as they come with pre-trained weights from extensive

datasets containing popular categories. With transfer learning, the detector can be trained for dif-

ferent and more specific scenarios [50] [51]. In short, this technique reuses a pre-trained model

on a new problem. The machine takes advantage of the knowledge gained from a previous task

to improve generalization about another. This method has been popularized in deep learning as it

can train deep neural networks with comparatively little data [52]. Figure 3.9 illustrates a simple

block diagram of the transfer learning technique employed in this scenario.

Traditional augmentation techniques such as image rotation, flipping, distortion and mirroring

are very effective in increasing the accuracy of classification tasks [53]. These techniques were

applied during the learning process. With the purpose of minimizing the exposure issues created

by the maritime environment, another image augmentation step was included, applying custom

image filters such as histogram correction and sharpening. Figure 3.10 illustrates this process.

To suit the dataset to the training process, the acquired images from the Datasense@CRAS,

detailed in 3.2 were split into three factions: training, validation and testing data. This allocation

process must be carefully designed, especially for small datasets, to make sure that enough data

is assigned to the training phase, allowing the algorithm to learn. The validation and test datasets

cannot be too small either or they would not be fully representative of the collected data [54].

According to previous machine learning training exercises executed with similarly small datasets,

a split of 90% of the available dataset was set aside for training purposes, from which 80% is
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Figure 3.9: Block Diagram of the applied Transfer Learning technique.

used for the actual training process while 20% remains for validation, corresponding to 72% and

18% of the entire dataset, respectively. The remaining 10% are then used for testing the model

after training, with novelty data to which the network hasn’t been exposed before [55]. This split

allocation process involved randomized selection of the images, to ensure that most conditions are

equally represented in each data fraction. Figure 3.11 illustrates the structure of this dataset.

Optimisation of the Training Process

Optimisers are computational methods to update the weights of a neural network during a training

instance. These algorithms update the parameters of a network through back-propagation to min-

imize the value of the loss function, finding the optimised value of the weights that produce the

most accurate predictions. Three different optimisers were considered to train the network of the

detector: Adadelta, Adam and Stochastic Gradient Descent (SGD). Each optimiser has different

parameters, the most relevant one being the update rule. Table 3.1 sums up the update rules of the

three selected optimisers:

Figure 3.10: Visual comparison of one of the applied filters to the original frame. The objects
in the image are better exposed and contain more defined edges, allowing the detector to better
identify their shape and colours.
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Figure 3.11: Diagram of the folder structure and dataset split where 10% belong to testing purposes
while the remaining 90% are split between training, 80%, and validation, 20%.

Table 3.1: Update rule for the three optimisers.

optimiser Update Rule

Adadelta [56] wt+1 = wt − RMS[∆w]t−1
RMS[g]t

gt

Adam [57] wt+1 = wt − lrm̂t√
v̂t+ε1

SGD [58] wt+1 = wt − lrgt

where lr represents the learning rate, gt the gradient of the loss function, mt the moving average

of the gradient, vt the squared gradient. The wt and wt+1 values are the weights in the t− th and

the t− th+1 iterations, respectively.

Different optimisers work best with different values of the learning rate and it is often neces-

sary to experiment with several ones. The methodology employed to select the optimiser relates

to the work of Pereira et al. in 2020 [55].

3.3.2 Camera and LiDAR 3D Position

Autonomous systems require a complete and accurate 3D perception of its surroundings to oper-

ate [59]. To acquire an image output containing the relative distance of every nearby object, an

approach capable of fusing the information from the camera and LiDAR present in the ASV is

required. A few aspects to keep in mind are:

• The camera topic provides a stream of 2D images while the LiDAR topic feeds a stream of

3D point clouds. As such, the 3D point clouds must be converted to 2D points before being

masked into the camera image.

• As evidenced by figure 3.2, the two sensors aren’t placed in the exact same spot, meaning

that their point-of-view differs. The LiDAR point clouds require a translation operation to

match both LiDAR and camera referentials.

• It is imperative that data from the same specific time-frame is collected. For that, synchro-

nized reading of both inputs must be attained.

Data obtained through a LiDAR is also susceptible to environmental conditions. Tidal waves

and wind cause constant bobbing of the ASV which can result in a very noisy point cloud [60]. An
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effective approach is to crop the point cloud with a Region of Interest (RoI) that matches the field-

of-view of the camera, while stabilizing the disturbances caused by the environmental conditions

with GPS and IMU data. The point-of-view difference between sensors is handled by calculating

the transform function that carries the relationship between the camera referential and the LiDAR

referential, applying the transformation to the 3D point cloud. A comparison of both original and

transformed point clouds is displayed in figure 3.12.

Figure 3.12: 3D plot of the point cloud through the software Rviz. The red dots represent the
original point cloud from the LiDAR frame, the white dots illustrate the camera frame point cloud.

Lastly, to project the 3D point cloud into 2D coordinates, the intrinsic matrix K is applied.

It contains the parameters of the camera and is used to apply the same translation and rota-

tion between the camera’s axis and the image plane by transforming 3D camera coordinates,

P3D = (x,y,z) into 2D homogeneous pixel coordinates P2D = (w,h). This perspective projection is

modeled by the ideal pinhole camera, illustrated below in figure 3.13.

Figure 3.13: Pinhole camera model representation [61].

The center of the camera (pinhole) is represented by point C. An image plane is projected at a

distance defined as the focal length, f = ( fx, fy), measured through the perpendicular line relative

to the plane that passes through the pinhole. This line is the principal axis, Z. The intersection

between the image plane and the principal axis defines the principal point, p = (x0,y0). These

parameters are divulged in the intrinsic matrix, presented in 3.1 (parameterized by Hartley and
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Zisserman [61]). Resorting to the similar triangles created by the intersection of the principal axis

with the ray that projects the point onto the image, such as the one represented in figure 3.13, the

transformation from a IR3 coordinate space to a IR2 space can be computed using the equations

presented in 3.2 and 3.3 [61]:

 fx γ cx

0 fy cy

0 0 1

= α

p2D
u

P2D
v

1

 (3.1)

P2D
u =

fx ·P3D
x

P3D
z

+ cx (3.2)

p2D
v =

fy ·P3D
y

P3D
z

+ cy (3.3)

where P2D is the projected point in pixels, P3D the point belonging to the point cloud, fx and

fy are representing the focal length and cx,cy are the distances from the origin to the principal

point. The camera on-board the ASV has a 1292× 964 pixel resolution. As such, the pixel

values computed above must be filtered, discarding any pixel outside of the image frame (the RoI).

Finally, to represent the depth of each 3D point in the reconstructed image, the pixel intensity is

normalized according to equation 3.4 [62]:

Iblue = 255 ·
P3D

z −Dmin

Dmax−Dmin
(3.4)

where Iblue is the value of the intensity given to the blue component of the RGB pixel, P3D
z

expresses the Z coordinate of the 3D point (frontal distance to the ASV), and Dmax, Dmin represent

the maximum and minimum depth values of the points present in the cloud, respectively. This

application is presented in figure 3.14.

(a) Third person view. (b) First person view.

Figure 3.14: 3D point cloud projection onto a 2D plane. The image (a) illustrates the 3D graphical
simulation while the image (b) shows the point-of-view of the on-board camera. The colored dots
are the 3D to 2D projected LiDAR points.
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3.4 Tracking Module

In order to tackle the challenges listed in 2, the approach to the tracking module is composed of

two different sub-modules: an object association module and a prediction module. For the as-

sociation module, two lists of objects are considered. The first list, denominated detected list,

corresponds to the objects detected at the current frame, in short the output of the detector module.

For each of these objects, information about the class, 3D relative location to the observer, bound-

ing box and predominant color, is extracted. The second list, or tracked list contains every object

which was detected in previous frames. A distance matrix is then computed by calculating the

euclidean distance between each element from the detected list and older objects from the tracked

list, determining whether a detected object corresponds to the present instance of a tracked object

or not. The prediction module resorts to motion equations and a Kalman Filter to estimate the

position of each object for the next frame. This module predicts the position of each object in the

future, allowing for its re-identification during occlusions.

3.4.1 Association Algorithm

The main goal of the association is to match objects detected in the current frame with their re-

spective tracked instances, creating a new tracking instance whenever the association is determined

impossible. The computed Euclidian distance measures the proximity or similarity between two

objects. A number of measurements and detection characteristics can qualify to distinguish differ-

ent objects, enabling an association of an object based on its similar features across frames. Such

measurements are enunciated below:

• LiDAR 3D location - With the data fusion in 3.3.2, the same RoI generated by the object

detector can be applied to the resulting data fusion map to select the points from the LiDAR

point cloud belonging to the object. Their computed average distance introduces a three-

dimensional position feature complementary to the two-dimensional bounding box location,

adding a depth component which allows the tracker to distinguish similar objects passing

through each other based on their 3D location history;

• Vessel Classification - As described in 3.2, the dataset used for training of the detector mod-

ule has nine distinguished classes. This class information is used as input for the tracking

module, reducing the amount of computations by restricting comparisons to objects with the

same class label;

• Predominant Color - By averaging the (R,G,B) value of each pixel in the RoI of an ob-

ject it is also possible to determine the predominant color value of a detected object, en-

abling comparisons according to the object’s color characteristic. The average RGB value

is converted to the Hue, Saturation, Value (HSV) colour space to have a single value (hue)

determining the dominant colour type instead of the three values for each color channel,

simplifying associations;
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• Bounding Box Aspect Ratio - Each detected object is represented by a rectangular bound-

ing box which comes with the respective image RoI. This rectangle should be proportionate

between frames of the same object, hence, another metric used to compare objects in dif-

ferent frames is the aspect ratio of their bounding boxes: Boxheight
Boxwidth

. The metric is useful to

distinguish nearby objects with overlapping boxes.

The listed features describe the state vector of each object, Xk = [Px,Py,Pz,Ch,Br], where P

is the 3D location computed by the LiDAR RoI centroid, Ch the hue value of the object’s RoI

average color and Br the object’s bounding box ratio. To secure temporal persistence, for each

tracked object, a vector of up to a maximum of ten Xk instances is stored. The metric used to

compare each element from the detected list with the elements from the tracking list accounts on

the distance between their respective state vectors. While the state of a detected object depends

solely on the measurements at the current frame, for a tracked object the state vector depends on

measurements between frame k and previous measurements from k−n, as depicted in algorithm 1.

With this, a distance matrix with the distances between every detected object in frame k and the

tracked objects from frames k−n is created.

Algorithm 1 Association Distance Metric comparing each detected element at frame k with each
element of the tracking list during k−n

Ensure: Xkavg← [0,0,0,0,0]
Ensure: Xkdetection← [Px,Py,Pz,Ch,Br]

if ClassDetection ̸=ClassTracking then
Distance←−1

end if
for n = 0;n < Xk−n.size();n++ do

Xkavg+= Xk−n
2n+2

end for
Xkavg+= Xk

2n+1

Xkavg+= LatestPredictionVector
2

Distance← |det(Xkdetection×Xkavg)|

The flowchart in figure 3.15 exemplifies a scenario of the process behind the association mod-

ule, considering a list of detected objects A,B,C,(...),M and tracked objects 1,2,3,(...),n from

which objects A and 2 are compared.

3.4.2 Prediction Algorithm

The Kalman Filter estimates the state of a system at time k, xk, using the Kalman model true state

equation 3.5, paired with the measurement model zk that relates the state and the measurement at

the current step 3.6.

xk = Axk−1 +Buk−1 +wk−1 (3.5)
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Figure 3.15: Flowchart with the general mindset for associating detected objects with previously
tracked objects.

zk = Hxk + vk (3.6)

where:

• An×n is the state transition matrix, relating the previous time step k−1 to the current state k;

• Bn×m is a control input matrix applied to the optional control input uk−1;

• Hm×n is a transformation matrix that transforms the state into the measurement domain;

• wk and vk represent the process noise vector with covariance Qn×n and the measurement

noise vector with covariance Rm×m, respectively.

Whenever a new tracking instance is computed, the Kalman filter enters the prediction state

for each object, where the next position is predicted, along with its associated covariance error,

described by equations 3.7 and 3.8, respectively:

x̂−k = Ax̂k−1 +Buk−1 (3.7)
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P−k = APk−1AT +Q (3.8)

where:

• x̂−k and P−k represent the a priori state estimate and error covariance matrix, respectively;

• x̂k−1 is the previous estimated state or a posteriori state;

If the tracked object is associated with a detection in the current frame, the Kalman filter

enters its update stage in which the Kalman gain, displayed in 3.9, is computed. The measurement

estimate calculation is updated relating the previous measurement estimate, the Kalman gain and

the current frame measurement, as presented in 3.10, while the error covariance is determined

through 3.11.

Kk = P−k HT (HP−k HT +R)−1 (3.9)

x̂k = x̂−k +Kk(zk−Hx̂−k ) (3.10)

Pk = (I−KkH)P−k (3.11)

where I is the identity matrix and K is the Kalman Gain.

Almost all maneuvering target tracking methods are model based, in that they assume that the

target motions and observations can be mathematically modelled with sufficient accuracy [63].

Based on kinematic equation 3.12, the relation between the position x and velocity ẋ of a moving

object can be determined as the following:

xk = xk−1 + ẋk−1∆t (3.12)

Since the state vector xk contains the position and velocity, the system can be modelled ac-

cording to equation 3.13.

xk =

[
xk

ẋk

]
=

[
1 ∆t

0 1

][
xk−1

ẋk−1

]
(3.13)

For this tracking scenario the input coordinates are 3D, hence, the Kalman matrices were

designed as shown in 3.14:
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A =


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0 1 0 0 ∆t 0
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σ
2
a (3.14)

where σa is the tuning magnitude of standard deviation of the acceleration and σx,σy,σz are

the variances of the measurement noise, which were all set to 1e−4 after experimentation.

3.4.3 Operation of the Tracking Module

The previous sections described the metrics and methods used to associate tracked objects to their

new appearances and to predict the objects’ behaviour. This section intends to clarify the whole

tracking operation by describing the communication between the different tracking sub-modules.

Each tracked object can be defined at frame k by its state vector Sk = [Px,Py,Pz,Ch,Br], how-

ever, this state vector has different components in the prediction module. As mentioned 3.4.2, the

Kalman model, 3.13, is based on the kinematic equation, 3.12, meaning that the Kalman state

vector is Xk = [Px,Py,Pz,Vx,Vy,Vz], with P being the position of the object and V its velocity. With

the notion that the Kalman filter prediction state is executed synchronously and having access

to the position differential, computing the object’s velocity is a trivial matter. The other compo-

nents of Sk are the vessel’s physical attributes determined by shape and colour. As those shouldn’t

change over time, there isn’t a need to predict their future state. These two components are taken

from the detection state, Dk, the vector containing the data for a single detection.

During a single cycle of the tracking module, n state vectors are created for n detections fed

from the detection module. These state vectors, Sk, contain the position vector from the LiDAR

projection and the object’s characteristics from the image detector. The prediction module updates

the position vector of each previously tracked object, feeding this information to the association

module which updates the object state with the predicted position and the previously detected

visual characteristics (predominant color and bounding box aspect ratio). This vector is called

Object State. Figure 3.16 depicts the described relationship.
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Additionally, the association module measures the Euclidean distance between the Object

State and the Detection State, matching the objects from the same class with the shortest distance,

as detailed in 3.4.1.

Figure 3.16: Block Diagram of the communication between the detection module and the tracking
module for one object.

The Object State is then fed into the prediction sub-module to correct its position using the

current detected position information, the Position Vector, and the position estimation from the

Kalman State. The predominant color and bounding box aspect ratio values are also updated to

match the detector information.

The implemented architecture reads the detections topic from the detection module and pub-

lishes a tracking topic with the contents of the tracking list for each tracking cycle (20ms). When-

ever the detections topic returns an empty list, the association sub-module isn’t called. The activity

diagram, figure 3.17, illustrates the whole tracking operation.
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Figure 3.17: Activity diagram of the tracking module. The ict process is executed in a single ROS
node.



Chapter 4

Results

4.1 Training of the Detection Module

The detection module was trained with the combined dataset exhibited in section 3.2. The per-

formance of the trained detector is then measured through its Mean Average Precision (mAP).

This section aims to expand on the training process results and the methodology used to measure

performance.

4.1.1 Detection Module Performance Metric

The metric used to compare the accuracy of the training exercises was the Mean Average Precision

(mAP). This metric calculates the mean of the precision metric (true positive detections over the

total positive detections value) for each class of objects in the dataset. In order to compare the

detections with the ground truth, the Intersection over Union (IoU) provides a quantitative score

based on how concurrent are the areas of the two bounding boxes. It computes the intersection

over the union of the two bounding boxes: the bounding box for the ground truth and the predicted

bounding box. This process is described in the following equations 4.1, 4.2, 4.3, 4.4 and 4.5.

T L =
[
max(dT Lx ,oT Lx) max(dT Ly ,oT Ly)

]
(4.1)

BR =
[
min(dBRx ,oBRx) min(dBRy ,oBRy)

]
(4.2)

Aintersection = (BRx−T Lx)∗ (BRy−T Ly) (4.3)

Aunion = Adbox +Aobox−Aintersection (4.4)

PIoU =
Aintersection

Aunion
(4.5)
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where T L and BR are the pixel coordinates of the two respective edges of the yellow box in 4.1,

which represents the intersection area between the detected object, d and the ground truth object

o, with n ∈ N, and A represents the areas, boxwidth ∗boxheight .

Figure 4.1: Visual demonstration of the IoU algorithm enunciated in 4.1 to 4.5. The green box
represents the ground truth, the yellow box represents the predicted area and the orange box rep-
resents the intersection area. If the yellow and green boxes completely overlap, the detection is
perfect and the IoU value is 1. When both boxes are completely separate, the orange box does not
exist, making the IoU = 0.

Defining an IoU threshold will provide a metric to classify the object detection in three ways:

1. False Negative (TN) - when a ground truth is present in the image but the model failed to

detect the object;

2. True Positive (TP) - if IoU ≥ threshold;

3. False Positive (FP) - if IoU < threshold.

The confidence score for each detected object is also considered, calculating the precision and

recall values for confidence intervals of 10%, according to equations 4.6 and 4.7, and including

ε = 1x10−6 in the numerator and denominator for linearity purposes and to avoid divisions by

zero respectively.

Precision =
T P

T P+FP
(4.6)

Recall =
T P

T P+FN
(4.7)

For each image, the algorithm will match each ground truth instance with the prediction with

the best candidate IoU score and count it as a TP until there aren’t any more possible matches

(i.e. there aren’t any more predictions with enough accuracy to satisfy the IoU threshold or every

object already has one associated prediction). The leftover ground truth are counted as FN while

the remaining predictions belong to the FP. This process is computed for each confidence interval
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and also for each class, resulting in a matrix of con f idence× class with the calculated precision

and recall values for each element.

The average precision for each class is then estimated by calculating the area under the plot

of the recall/precision graph for all confidence intervals, with the mean average precision being

the sum of the average precision for each class, divided by the number of classes, as depicted in

equation 4.8. Figure 4.2 better illustrates the average precision calculation.

Figure 4.2: Typical plot of the recall/precision values for each confidence iteration. The area below
the line is the average precision.

mAP =
∑

Classes
i=0 APi

Classes
(4.8)

Another popular performance comparison metric involves iterating the mAP for an interval of

IoU thresholds, typically iterations of 0.05@[0.5,1]. For this, the aforementioned algorithm is run

for each IoU threshold iteration, computing the weighted average, IoU_threshold×APclass, per

class before estimating the mAP.

4.1.2 Preliminary Training Results

A training exercise with the same conditions (batch size, image size, number of epochs) was made

for each optimiser, varying only the initial learning rate, lr0, and momentum parameters, each for 3

arbitrary values. The training results are then plotted and compared to determine which optimiser

works best for the provided dataset and which parameters potentiate the performance of the best

optimiser.

For the first training exercise, only the mAP with IoU of more than 50% was considered. For

the second and third exercises the mAP[.5:.95], which iterates the average of the mAP with IoU

bigger than 50% in intervals of 5%, is also included. Measurements of the mAP are displayed in

table 4.1. Overall, the Adam and Adadelta optimisers achieved consistent over 80% mAP@.5 with

learning rates of 0.001 and 0.1 respectively. With only one result (lr0= 0.05 and momentum= 0.8)

achieving similar performance, the SGD optimiser was deemed less fit for this specific training

scenario.
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Table 4.1: Measured mAP@.5 final results using the Adadelta, Adam and SGD optimisers. Best
results in bold.

Adadelta
Momentum

0.8 0.95 0.5

lr0
0.05 0.7249 0.7538 0.6611
0.001 0.0945 0.1388 0.0782
0.1 0.8309 0.824 0.8114

Adam
Momentum

0.8 0.95 0.5

lr0
0.05 1.010e-5 0.2769 4.510e-5
0.001 0.8498 0.8295 0.8165
0.1 0.1166 0.1033 4.170e-5

SGD
Momentum

0.8 0.95 0.5

lr0
0.05 0.8127 0.3363 0.7377
0.001 0.4025 0.6973 0.2738
0.1 0.3604 0.4150 0.4995

Out of a total of 27 training exercises, the top 2 of each optimiser are plotted in figure 4.3 (a).

Although the best result was achieved with the Adam optimiser with the parameters lr0 = 0.001

and momentum = 0.8, the top three results come very close. Furthermore, the training wasn’t

extensive enough to stale out the evolution curves. While the SGD optimiser is clearly inferior, it

is still hard to tell whether Adam or Adadelta would come out on top. To rule out the uncertainties,

a second training exercise was done, testing out the best lr0 and momentum combinations for each

of the top two results.

(a) Plotted mAP@.5 of all training exercises. (b) Plotted mAP@.5 of the two best results.

Figure 4.3: Mean Average Precision of detections with IoU over 0.5. The figure (a) includes every
10 epoch training exercise while the figure (b) has a comparison of the two best results (a), trained
for another 30 epochs.

Figure 4.3 (b) shows the results of 40 epochs of training. Adadelta ended up coming on top

after the 10th epoch, remaining superior through further stages. This excercise achieved a 17.5%

increase in mAP@.5 compared to the previous best Adadelta result, while managing a 14.9% boost

with the Adam optimiser. Both values, however, are awfully close with a less than 1% difference,
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Table 4.2: Mean Average Precision comparison with the state-of-the-art for a single boat class.

mAP @.5 mAP @ [.5 .95]
Pre-trained YOLOv4 0.812 0.643
Our model 0.998 0.928

meaning that there isn’t a significant difference between detections with both optimisers.

In order to better compare Adam and Adadelta, the evolution of the mAP[.5:.95] metric was

observed throughout the training process. This metric better exhibits the quality of the detections,

meaning that higher values point to detections with a higher IoU. Figure 4.4 (a) displays the

evolution of the mAP[.5:.95] metric over epochs, illustrating a 3.8% difference between the two

optimisers, having the Adadelta optimiser with momentum of 0.8 and lr0 = 0.1 achieve the best

result.

.
(a) Comparison between the optimal Adadelta and
Adam optimised configurations. (b) Densely trained Adadelta setting.

Figure 4.4: Evolution of the mAP[.5:.95] metric.

Furthermore, in order to explore the full potential of the Adadelta configuration, a third training

instance was done until the mAP@.5 evolution stabilized as depicted in figure 4.4. Through this

last training, the mAP@.5 values did not increase further than 1%. However, the mAP[.5:.95]

improved 16.9% over the last 40 epochs.

4.1.3 Transfer Learning Results

The open-source YOLOv4 detector includes a pre-trained model on the COCO dataset. This

model has been trained for 80 classes, one of them being boats. In order to fairly measure the

improvement with the transfer learning, the classes of the objects in the combined dataset were

suppressed so both models are tested for only one class of objects: boats. The results for this first

scenario are displayed in table 4.2, showing a 22.9% and 44.3% increase in the mAP with an IoU

threshold of 50% and the mAP@[.5 .95] respectively.
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With the previous results confirming the effectiveness of the transfer learning technique and

a clear improvement in boat detection compared to a multi-purposed state-of-the-art detector, an-

other training instance has been executed, for the collected dataset with its defined nine classes.

This resulted in a class mAP@[.5 .95] of 89.5%, achieving a detector capable of detecting and

classifying different kinds of maritime vessels while compromising 3.7% in average precision.

Figure 4.5 shows the mAP[.5 .95] values per class.

Figure 4.5: Mean Average Precision per class, with 10 increments of 5% of the IoU threshold,
starting at 50%.

4.2 Object Tracking Performance

The basic idea behind multiple object tracking is to assign unique tracking ID’s to every object

presented in a frame and try to maintain the same ID in subsequent frames associating objects

across time. The research done for the state-of-the-art highlighted the MOT metrics as the primary

performance indicators when evaluating tracking algorithms 2.3. Such metrics would classify ob-

jects between frames, determining whether they are missed detections, false positives or mismatch

errors by comparing the results of the tracking algorithm with the ground truth information of a

testing scenario. The MOT performance indicators would not only provide an accurate and nu-

meric display of the tracking results, but also enable performance comparisons with other known

trackers whose open-source development is compatible with these tests.

With the developed multiple object tracking model, evaluating the performance through the

described metrics and comparing it to other trackers isn’t feasible due to the following reasons:



4.2 Object Tracking Performance 47

• The MOT metrics focus exclusively on the tracking performance with camera input. This

tracking model heavily depends on the LiDAR position information and discards any camera

detection without sufficient LiDAR data to measure the relative distance of the object to the

observer, considering those detections to be false positives from the detection module.

• Such metrics can only be computed when there is sufficient testing data with ground truth

information. The Singapore Maritime Dataset, studied in section 3.2, may provide video

with ground truth information but such information is also exclusively camera input, hence,

not useful as testing data for the developed tracking model. In order to work with this

tracker, both camera video frames and LiDAR point cloud frames need to be captured.

4.2.1 Tracking Results

The collected data from the aforementioned missions was vital for exhaustive testing of the de-

veloped tracking algorithm, however, not sufficient for proper measurement of the tracking per-

formance as the only method for obtaining ground truth would be similar to the one described in

section 3.2, which would not be feasible considering the amount of frames and time dedicated for

the development of this project. Without the ability to resort to the MOT performance metrics, the

performance can only be evaluated through footage observation, considering the objects with suf-

ficiently accurate detections and determining whether the tracking module is associating objects

between frames correctly or predicting their trajectory when the detections aren’t consistent.

For this, a simple visualization tool was built, drawing a bounding box around the tracked

objects and identifying each instance with a numerical tag. The box is colored according to the

object’s class, turning gray whenever the tracking isn’t active (the object wasn’t detected in the

current frame).

The considered metrics are as follows:

• Tracked Objects - Number of different objects tracked;

• Average Association Accuracy - The association accuracy of each object is measured by

counting the frames where the same tracking identifier is attributed to a detected object,

divided by the total number of frames where the object is visible in the footage. The average

association accuracy computes the sum of the association accuracy for each tracked object,

divided by the number of tracked objects;

• Best Performing Object - This metric displays the object with the highest association accu-

racy;

• Successful Re-associations - The number of occurrences where an object becomes inactive

due to not being detected at frame t (i.e occluded or outside of the field-of-view), being

correctly re-identified with the same tracking identifier when it is detected t +n;

• Lost Objects - Inactive objects that are re-identified with a different tracking identifier when

detected at a posterior frame.
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Table 4.3: Tracking performance results.

Video
Name

Tracked
Objects

Average Association
Accuracy (%)

Best Performing
Object [ID](%)

Successful
Re-Associations

Lost
Objects

leixoes_4 20 68,52 [11] 95,42 429 9

leixoes_5 38 42,89 [4] 76,31 519 20

leixoes_7 10 17,32 [9] 99,89 81 9

leixoes_8 11 40,64 [1] 81,49 25 11

leixoes_9 13 12,81 [4] 31,05 107 13

leixoes_12 27 10,74 [8] 46,44 183 27

leixoes_15 15 19,48 [1] 77,42 189 13

leixoes_16 38 36,00 [1] 83,30 1084 35

viana_1 26 22,99 [1] 73,91 106 24

viana_2 14 18,78 [2] 54,32 67 14

viana_3 37 23,86 [23] 49,05 282 35

viana_5 41 23,64 [6] 52,27 293 39

From the analysed data, a package of twelve videos recording the output of the tracking module

was assembled and made available 1. Table 4.3 displays the aforementioned metrics for each

recorded video.

As expected, whenever the tracking module is consistently fed accurate detections, the associ-

ation finds some degree of success, being able to successfully identify the same object throughout

the footage. Good examples of acceptable tracking performance can be viewed in object 1 from

leixoes_15 and object 9 from leixoes_7. The figure 4.6 displays multiple frames from leixoes_15

where object 1 is accurately tracked from different perspectives. The association task becomes

harder and less accurate when multiple objects of the same class are detected simultaneously.

Video leixoes_4 exemplifies association issues where the same tracking identifier is associated

with different vessels next to each other. Possible solutions to address this issue, such as using

IMU and GPS data to obtain the location and orientation of the observer or improving the predic-

tion sub-module by including bounding box coordinates in the Kalman filter model, are listed in

the following chapter.

Further analysis of the footage and the performance measurements, the developed tracking

module clearly has its limitations and large room for improvement. Poor detection performance

can greatly hinder the tracking performance. When the extracted features fail to accurately de-

1https://drive.google.com/drive/folders/1pYmqCzDDe_elRnT9nt8PrQC_VfUZvz4W?usp=
sharing

https://drive.google.com/drive/folders/1pYmqCzDDe_elRnT9nt8PrQC_VfUZvz4W?usp=sharing
https://drive.google.com/drive/folders/1pYmqCzDDe_elRnT9nt8PrQC_VfUZvz4W?usp=sharing
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(a) Initially detected from a rear perspective, while
cornering left.

(b) Successfully associated while concurrent with
another object.

(c) Successful association of the same vessel from a
left-sided perspective.

(d) Returned to a rear perspective, being tracked for
longer than 2 minutes.

Figure 4.6: Successful tracking of object 1 in video leixoes_15.

scribe the object, it can lead to wrong associations. Examples of poor detection performance are

given in figure 4.7. To circumvent this issue, a tracked object is deleted whenever the number

of inactive frames is bigger than the number of active frames (frames where it was identified in

the detector). This approach has the drawback of re-identifying not only the intended miss detec-

tions, but also some successful detections with poor confidence (i.e. out of 60 frames, only 2 have

accurate detections), as evidenced in figure 4.8.

Figure 4.7: Examples of poor detection performance evident in video leixoes_12, where rocks are
detected as SmallBoat and a flag pole as a SailBoat.



50 Results

Figure 4.8: Example of a failed re-identification from video leixoes_7 where the same SmallBoat
is associated with tracking identifiers 2 and 3.

4.2.2 Hardware Performance

Development of this tracking model focused on the ability to run in real-time while resorting to

hardware that can be installed on-board of an ASV in order to enable future real-world testing and

application. The bottleneck of the whole architecture regarding processing power happens during

the computation of the detections for each image frame. As such, the detection and tracking

modules run separately, allowing for the tracking algorithm to process asynchronous detections

and to be compatible with different faster detection modules. Each tracking instance, including the

execution of both prediction and associated modules, as described in figure 3.17, has an execution

time of 20ms or 50Hz per tracking instance, updating at least 100 objects simultaneously. For this

maritime application, such performance should be plentiful.

The hardware specs in which this model was tested are listed as follows:

• CPU - Intel Core i5-6300HQ 2.30GHz;

• GPU - nVidia Corporation GeForce GTX 960M - 2GB VRAM (of which 1900MB are used

for processing the detection module);

• RAM - 16GB (of which 300MB are used for processing the tracking module).
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Conclusions & Future Work

This dissertation proposes a complete tracking system for detecting different classes of maritime

vessels and tracing their trajectory over time with the aim of fulfilling an important requirement for

autonomous navigation at sea. The developed system encompasses an image-based CNN object

detector trained trough transfer learning and a tracking model with two distinct sub-modules for

association and trajectory prediction. The association sub-module measures the Euclidean distance

between feature vectors, associating the nearest candidates while the trajectory prediction is done

by resorting to state estimation of an object’s relative position coordinates with a Kalman filter.

The lack of available data for training of the detection module required time-consuming re-

search for usable maritime datasets. Within the scope of this dissertation, a maritime dataset is

collected to provide a maritime dataset with real-time images with nine different types of vessels

properly identified and classified, used for the transfer learning of the detector module. It involved

a re-classification of data from available online datasets and footage acquisition and manual an-

notation of vessels in thousands of pictures. With this, a clear improvement in boat detection

compared to a multi-purposed state-of-the-art detector, YOLO-v4, with a 22.9% and 44.3% in-

crease in the mAP with an IoU threshold of 50% and the mAP@[.5 .95] respectively.

Testing and development of the tracking module was done resorting to acquisition of data from

navigating the SENSE ASV around different vessels in the Leixões and Viana do Castelo ports.

Initially, this stage was thought to be done resorting to simulated data, considering the accessibility

to a well simulated environment of the SENSE ASV in the Gazebo simulator. However, populating

the simulated environment with distinct 3D models of different vessels wasn’t feasible. There were

issues and incompatibilities with the hardware used in development of this dissertation, failing to

produce a sufficient simulation. As such, the whole development stage had to be executed resorting

solely to the aforementioned acquired data in a real environment.

The tracking module was able to continuously track vessels in real-time whenever detections

are consistent and accurate, but future work is necessary to achieve a level tracking performance

suitable for fully autonomous navigation. Regardless, the developed system achieved good results

when the module is consistently fed accurate detections, being able to successfully identify the

same object throughout the footage.

51
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Furthermore, the lack of ground truth in the footage used for testing the tracking module

dismissed relevant comparisons with other tracking modules and further analysis which could aid

development as it isn’t possible to determine whether the trajectory prediction is correct without

real information about an object’s trajectory. Future work can be conducted, such as the following:

• Collection of a bigger maritime dataset with annotated images of maritime vessels enabling

further development of the detector module;

• Development of a complete 3D simulated environment with accurate simulations of differ-

ent vessels to conduct experimental tests of the developed system with different navigation

instructions, allowing for ground truth information vital for performance measurements of

the tracking module;

• Acquisition of data with ground-truth information for testing and further developing the

tracking module;

• Using IMU and GPS data to obtain the location and orientation of the observer. This step

would allow for determining the absolute location of the vessels to be tracked, minimizing

miss-associations where the relative location is heavily dependant on observer movement;

• Improving the detection module classification and location information through clustering

of the LiDAR to extract more features from objects such as shape and size;

• Improving the prediction sub-module by including bounding box coordinates in the Kalman

filter model.
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