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Abstract

Glaucoma has been a leading and rapidly growing disease in recent years. This disease affects
the eye’s optic nerve, causing total loss of vision. It is one of the leading causes of blindness
worldwide and is characterized by degeneration associated with the death of Retinal Ganglion
Cells (RGCs). Detecting it at a very early stage is essential for effective prevention. Since the
manual process of making this detection has to be done for each image, it can be time-consuming.
To improve Glaucoma detection, automated methods have been developed to make this detection
so that detection can be made by these models and only confirmed by medical specialists. One of
the big problems with these automatic systems is the lack of explainability in the decisions that
have been made. Moreover, this ends up holding people back in their acceptance. A possible
solution to bring us this explainability is using models based on examples. However, this process
brings another problem: privacy, which is present in the biometric data of retinal images. This
dissertation then intends to use GANs to make an example generation that serves as an explanation,
but at the same time, that does not imply the privacy of the images. We will use two datasets, one
with complete retinal images and the other with images of the optic disc area. The images of the
optic disc were cut according to the masks provided in each dataset, and then the two datasets
will be prepared with a resize to 256x256. During the DCGAN training, two optimizers will be
used, one without differential privacy and one with differential privacy. Next, two algorithms will
be used to evaluate the similarity between the original images and the images generated for both
datasets, the alghoritms are CosineSimilarity and Pairwise. We will also use two algorithms for a
quantitative evaluation: the Inception Score (IS) and the Fréchet Inception Distance (FID). Finally,
the RetinaQualEvaluator model will be used to evaluate the quality of the generated images and
a Glaucoma Classifier will be used to confirm that the images with more significant similarity
have the same quality and the same Glaucoma evaluation. After training and image generation,
the results obtained, have very balanced values, and the generated images are very similar to the
original images. There is a small decrease when referring to the complete retinal images, it may
be because they have a lot of detail and also have enough black area in the images, interfering
negatively in the learning of the algorithms. In relation to the images from the optic disc area, this
does not happen anymore, thus obtaining better results.

Keywords: retinography, biometric data, obfuscation, privacy preserving, image generation, XAI,
GAN, DCGAN

i



Resumo

O glaucoma tem sido uma doença líder e em rápido crescimento nos últimos anos. Esta doença
afecta o nervo óptico do olho, causando a perda total da visão. É uma das principais causas da
cegueira a nível mundial e é caracterizada pela degeneração associada à morte das células Gan-
glionares da Retina (RGCs). A sua deteção num estado muito precoce é essencial para conseguir
ser feita uma prevenção eficaz. Uma vez que o processo manual para fazer esta deteção tem de ser
feita a cada imagem de forma individual e pode ser algo demorado. Para melhorar este processo,
foram desenvolvidos métodos automáticos para fazer esta deteção, deste modo a deteção pode ser
feita por estes modelos e apenas confirmada por médicos especialistas. Um dos grandes proble-
mas destes sistemas automáticos é a falta de explicabilidade nas decisões que foram tomadas. E
isto acaba por retrair as pessoas na sua aceitação. Uma possível solução para nos trazer esta ex-
plicabilidade, é usarmos modelos que sejam baseados em exemplos, mas este processo traz outro
problema que é o da privacidade, que está presente nos dados biométricos das imagens da retina.
Esta dissertação pretende então fazer uso de GANs para fazer uma geração de exemplos que sir-
vam de explicação, mas ao mesmo tempo que não impliquem a privacidade das imagens. Vão ser
usados dois datasets, um com imagens completas da retina e o outro com imagens da área do disco
óptico. As imagens do disco óptico foram recortadas de acordo com as máscaras fornecidas em
cada dataset, e depois os dois conjuntos de dados foram preparados com um redimensionamento
para 256x256. Durante o treino da DCGAN, serão utilizados dois optimizadores, um sem privaci-
dade diferencial e outro com privacidade diferencial. Em seguida, serão utilizados dois algoritmos
para avaliar a semelhança entre as imagens originais e as imagens geradas para ambos os conjuntos
de dados, os algoritmos são o CosineSimilarity e o Pairwise. Utilizaremos também dois algorit-
mos para uma avaliação quantitativa: o Inception Score (IS) e o Fréchet Inception Distance (FID).
Finalmente, o modelo RetinaQualEvaluator será utilizado para avaliar a qualidade das imagens
geradas e um Classificador de Glaucoma será utilizado para validar que as imagens com maior
similiaridade têm a mesma qualidade e a mesma avaliação de Glaucoma. Após o treino e geração
de imagens, os resultados obtidos, tem valores bastante equilibrados, e as imagens geradas são
muito parecidas com as imagens originais. Havendo uma pequena descida quando nos referimos
as imagens completas da retina, poderá ser por terem muito detalhe e também ter bastante área
preta nas imagens, interferindo negativamente na aprendizagem dos algoritmos. Em relação as
imagens da zona do disco ótico, isso já não acontece obtendo assim melhores resultados.

Keywords: retinography, biometric data, obfuscation, privacy preserving, image generation, XAI,
GAN, DCGAN
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Chapter 1

Introduction

1.1 Context

Glaucoma has been a leading and rapidly growing disease in recent years. This disease affects

the eye’s optic nerve, causing complete loss of vision. It is one of the leading causes of blindness

worldwide [15] and is characterized by degeneration associated with the death of Retinal Gan-

glion Cells (RGCs). Being able to detect this disease at an early stage is essential to get timely

treatment, avoiding irreversible damage, such as vision loss. Typically the analysis of the images

is done one by one manually by medical specialists. However, the manual screening of glaucoma

has several disadvantages. First, the high number of images that need reporting, results in a signif-

icant burden for clinicians. Second, the variability between specialists means that the same image

analysed by different specialists may have a different result. Finally, the high costs associated to

this process as hospitals need to have someone to analyze the images one by one, and the process

is time-consuming. Because these problems exist, the development of automatic processes for

glaucoma screening, with the purpose of providing a second opinion, has been an ongoing field of

research. These processes are not intended to replace doctors because the final opinion is always

from the specialists. However, most of the analysis would be done automatically and reducing

errors caused by fatigue, improving diagnostic accuracy, reducing inter-reader and intra-reader

variability, and, of course, automating the screening process. Currently there are already some

commercial solutions such as the Yanbao application and RetinaLyze.

1.2 Motivation

Despite the promising results with deep learning techniques, one of the main problems is the lack

of explainability of these methods, which leads to not all people accepting them readily. There

are several XAI techniques (Local interpretable model-agnostic explanations (LIME), Layer-wise

relevance propagation (LRP), Grad-CAM, ExMatchina, etc.). However, one crucial technique is to

1



Introduction 2

show examples of similar patients to justify the decision, and we have the example of ExMatchina,

which generates explainability based on examples. However, since the retina has unique biometric

data, this brings a privacy problem since other patients’ data will be shown which may allow for

their identification. Thus it is crucial to develop methods that can generate examples that can

justify a decision without allowing the identification of the patient while maintaining all other

characteristics of the image.

1.3 Goals

The goals of this project are:

• The development of a Deep Convolutional Generative Adversarial Network (DCGAN) for

high-quality retinal fundus imaging that does not allow the identification of the patient while

maintaining the properties that lead to disease detection.

• Validation of the generated images through quantitative metrics.

• Development and validation of a framework for the retrieval of anonymized artificial exam-

ples for the explanation of an automatic glaucoma screening decision support system.

1.4 Document structure

In addition to this chapter, the preparation of the dissertation consists of five more chapters. In

Chapter 2, an introduction is made about the eye and its anatomy, talking about the various parts

that constitute it and its functioning, and the ocular pathologies, with a particular focus on Glau-

coma. Also, this chapter introduces a section on retinal imaging and in which datasets we can

obtain images, and at the end of the chapter is discussed some XAI methodes. In Chapter 3, the

state of the art on artificial image generation and GANs is discussed, with a focus on artificial

image generation solutions in fundus imaging. Chapter 4, contains the data preparation done on

the images, the settings used to train the DCGAN, loss functions, and optimizers. It also explained

how features were extracted from the pictures to measure similarity. Chapter 5, contains the met-

rics used to compare the training of two DCGANs, one without differential privacy, and one with.

It also includes the results of the image quality and glaucoma classifier algorithms. The image

quality algorithm was only used on the complete retinal images, while the glaucoma classifier was

used on the pictures of the optic disc area. Finally, in Chapter 6 the conclusions of this MSc thesis

are described.



Chapter 2

Glaucoma and Retinal Imaging

In this chapter, a general review of the eye is described. This review includes a brief description of

the eye and its anatomy, and some existing eye diseases are presented, focusing on glaucoma. Then

we have a section dedicated to imaging modalities and a summary of automatic image analysis to

detect diseases.

2.1 The Eye

2.1.1 Anatomy

The human eye is a sensory organ that reacts to visible light and is the organ that allows us to see.

It is part of the sensory nervous system. The human body includes five senses: sight, touch, smell,

taste, and hearing. All these senses are directly related to other parts of the human body. The eye

is connected to the brain and depends on it for their interpretation of what we see, in figure 2.1 as

an example of the anatomy of the eye.

The eye is an extremely complex organ with multiple components that serve specific functions:

• Choroid This layer contains blood vessels that line the back of the eye and is situated

between the retina (the light-sensitive inner layer) and the sclera (the white outer wall of the

eye).

• Ciliary Body This structure contains muscle, and its location is behind the iris, which fo-

cuses on the lens.

• Cornea Is the clear front part of the eye allows light to focus and transmit (i.e., clarity and

sharpness) into the eye. Corrective laser surgery alters the cornea by changing its focus.

• Macula Is part of the retina and contains special light-sensitive cells. These cells allow us to

see fine details clearly in the center of our visual field. Their deterioration usually increases

as we get older (age-related macular degeneration, or ARMD).

3



Glaucoma and Retinal Imaging 4

Figure 2.1: Eye anatomy. Image from [28]

• Fovea Is the center of the macula that allows us to have clear vision.

• Iris It can be identified by being the colored part of the eye. Its function is to help regulate

the amount of light entering the eye. The iris closes and opens the pupil to let in less or

more light, respectively. When exposed to very bright lights, it lets in less light, and when

it is exposed to dim lights, it lets in more light.

• Lens The light rays hitting the retina are controlled by the lens. It is transparent and can be

replaced if necessary. As we get older, the lens becomes more and more degraded, which

leads to the need to wear reading glasses. There are intraocular lenses that are used to

replace lenses clouded by cataracts.

• Optic Nerve Is made up of more than a million nerve fibers that transport visual messages

from the retina to the brain. (In order for us to see, the eyes have to be connected to the

brain, and there has to be light.) What we see is controlled by the brain, which interprets

the images. The retina sees images upside down, but the brain flips the images right side

up. This inversion of the images we see is similar to a camera’s mirror. One of the eye

conditions related to the optic nerve is Glaucoma.

• Pupil Is the dark part that lies in the middle of the iris. The pupil adjusts to the amount of

light by changing its size (shrinks in bright light and increases in dim light). This opening

and closing of light in the eye resemble the opening in most 35 mm cameras, allowing more

or less light to enter.
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• Retina is the nerve layer that lines the back of the eye. The retina senses light and creates

electrical impulses that are sent through the optic nerve to the brain.

• Sclera Is the white outer layer of the eye, which surrounds the iris.

• Choroid Is the transparent and gelatinous substance that fills the central cavity of the eye.

2.1.1.1 Functioning of the eye

The way we see depends on the transfer of light. Light passes through the cornea at the front of

the eye to the lens. In conjunction with the cornea, the lens helps focus the light rays on the retina

located at the back of the eye. The retina cells absorb and convert the light into electrochemical

impulses, which are transferred along the optic nerve reaching the brain. The operation of the eye

is very similar to a camera. The shutter of a camera can close or open, depending on the amount

of light needed to expose the film on the back of the camera. The eye works in the same way.

The iris and pupil control the amount of light to be let into the back of the eye. The pupils grow

when it is too dark, letting in more light. The lens of a camera can focus on objects far and near

with the help of mirrors and other mechanical devices. The eye contains a retina that contains

three cells that convert light energy into electrical energy. The rods respond to low light intensi-

ties contributing to the understanding of low resolution black and white images. In contrast, the

cones respond to high light intensities contributing to the understanding of high-resolution color

images. The photosensitive ganglion cells respond to all light intensities, controlling the amount

of light reaching the retina, regulating and suppressing the hormone melatonin, and triggering the

circadian rhythm.

2.1.2 Ocular Diseases

Due to the complexity and sensitivity of the ocular anatomy and function, several diseases can

afflict the eye, having an impact on vision. These can be divided into refractive diseases and

non-refractive.

Some of the most common ocular diseases are:

• Refractive diseases: are the most frequent eye problems. This diseases occurs between

ages 40–50 years and refer to a set where there is an inadequate focusing of the images

on the retina. Typically can be corrected by eyeglasses, contact lenses, or surgery. Some

refractive diseases are Myopia, Hyperopia, Astigmatism, Presbyopia (or tired eyes).

• Age-Related Macular Degeneration (AMD): is an eye disorder associated with aging and

damages sharp and central vision. Central vision is needed to see objects in everyday tasks

such as reading and driving. AMD affects the macula, the retina’s central part that allows

the eye to see fine details. There are two forms of AMD: wet and dry.

• Cataract: remains a leading cause of visual impairment worldwide. Although 90 percent of

cases of this disease worldwide are referred to developing countries, its social, physical, and
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economic impact remains substantial in the developed world. Cataracts are a more common

disease in older people than in younger people. Surgery is often effective in restoring vision.

However, it has high costs in Europe and other western countries. [35].

• Diabetic Retinopathy: is a major cause of preventable visual impairment and blindness

in the European Region. Although most European countries have some prophylactic eye

examinations for DR, they are not organized according to the principles of screening in

medicine [24]. This developing disease is characterized by damage to the retina’s blood

vessels and to the light-sensitive tissue at the back of the eye that is necessary for good

vision. DR evolves in four stages, mild nonproliferative Retinopathy (microaneurysms),

moderate nonproliferative Retinopathy (blockage in some retinal vessels), severe nonprolif-

erative Retinopathy (more vessels are blocked, leading to deprivation of the retina’s blood

supply leading to the growth of new blood vessels), and proliferative Retinopathy (most

advanced stage). Diabetic Retinopathy usually affects both eyes.

• Glaucoma: is a disease that can damage the eye’s optic nerve, resulting in loss of vision.

Glaucoma happens when the fluid pressure inside the eye slowly increases. However, recent

results confirm that it can also happen with normal fluid pressure inside the eye.

2.2 Imaging Modalities

Retinal imaging has undergone a revolution over the last 50 years to understand the eye in both

health and disease. There have been significant improvements both in hardware and software. We

have lasers, optics, and software for image analysis in hardware. Some optical imaging modal-

ities such as Fundus Photography, Molecular Imaging (MI), PhotoAcoustic Microscopy (PAM),

Scanning Laser Ophthalmoscopy (SLO), Fundus AutoFluorescence (FAF), Optical Coherence To-

mography (OCT), and OCT Angiography (OCTA). These modalities have allowed us to visualize

the pathophysiology of the retina better and have also had a major impact on medical research.

These improvements in technology have resulted in earlier detection of disease, more accurate

diagnosis, and better management of numerous diseases [31].

• Fundus Photography consists of photographing the back of an eye. The cameras used for

this purpose consist of an intricate microscope connected to a camera with flash. The main

structures present in a fundus photograph are the central and peripheral retina, optic disc,

and macula. Fundus photography can be performed with colored filters or specialized dyes,

including fluorescein and indocyanine green. The technology and models for this type of

imaging have evolved quite rapidly over the last century. The equipment used to photograph

the retinal fundus is quite sophisticated, and its production is quite complex because it has

to meet clinical standards. Only a few manufacturers have that capability.

• MI techniques allow visualization of molecular processes and functional changes in living

animals and humans before morphological changes occur at cellular and tissue levels. It
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requires high-resolution imaging, sensitive instrument detection, specific imaging agents,

and endogenous molecular probes or exogenous contrast agents that link the imaging signal

to a molecular probe or event.

• PAM Is obtained through optical excitation and ultrasonic detection. A short pulse laser

illuminates and excites a target tissue, thereby inducing ultrasonic pressure waves due to

specific optical absorption. The ultrasonic transducer focuses on the tissue surface recording

ultrasonic signals, generating an image.

• SLO was first described in 1981. It makes use of a monochromatic laser with low power

and is a microscopic confocal scanning technique to collect an image of the retina and optic

nerve head. These images have a higher contrast when compared to photographs taken with

more generic cameras, as they can reduce the effect of light scattering.

• FAF imaging is a non-invasive imaging modality. The primary sources are lipofuscin

(LF) granules accumulated in the cells of the Retinal Pigment Epithelium (RPE). When

accumulated excessively in the RPE cells, Lipofuscin granules are classified as a common

pathogenic pathway in numerous retinal diseases. The significance of changes in FAF imag-

ing can be further addressed by assessing the corresponding retinal sensitivity and response

to stimuli. Severe damage to the RPE corresponds to areas of diminished autofluorescence.

• OCT was introduced to ophthalmology in 1991 and since then has had an excellent uptake

in the ophthalmology field. Since the eye is optically accessible to visible and near-infrared

light, it allows a relatively good combination of appropriate tissue penetration depth and

axial resolution.

• OCTA is a new, noninvasive imaging technique based on OCT imaging that allows for

visualizing the retinal and choroidal microvasculature without the injection of exogenous

dyes. OCTA is a method of visualizing vasculature enhanced from the signal (intensity

and/or phase) change caused by erythrocyte movement that arises from multiple B-scans

performed at the same position. B-scans are two-dimensional images generated from several

one-dimensional images. OCTA images are essentially motion-contrast images. Various

algorithms have been developed for OCTA devices.

2.3 Glaucoma

Glaucoma is a major disease that has seen a considerable increase in recent years. Glaucoma

affects the optic nerve of the eye. It is a disease that is usually asymptomatic in the early stages and

can cause blindness, or severe vision loss, if not diagnosed and treated in a timely and appropriate

manner. It is one of the leading causes of blindness worldwide and is characterized by degeneration

associated with the death of Retinal Ganglion Cells (RGCs). Detection at an early stage of this

disease is essential to decrease the risk of permanent vision loss. It can usually be classified into
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Figure 2.2: There are two retinal images in this picture: the left side has glaucoma, and the right
side has no glaucoma. Image from [11]

primary open-angle Glaucoma (POA-G) and closed-angle Glaucoma (AC-G). POA-G accounts

for about 90 percent of cases with this disease and is known as the most common type [11].

• POA-G: It is caused by the slow obstruction of the channels through which the fluid pressure

inside the eye is drained, increasing eye pressure. It has a wide and open angle between the

iris and cornea, develops slowly, is a condition that has no cure, and symptoms and damage

are hardly detectable.

• AC-G: Glaucoma with this form has a problem that affects the eye’s drainage angle. This

means that the iris is too close to the trabecular meshwork. This disease causes the drainage

angle to become blocked, which causes fluid to remain inside the eye.

• Normal-Tension Glaucoma (NTG): NTG is characterized by damage to the optic nerve

and vision loss despite intraocular pressure not being elevated above the average level. It is

also known to result from poor blood flow to the optic nerve. It is associated with various

conditions, including migraines, Raynaud’s disease, and sleep apnea.

• Congenital glaucoma: It is a form of Glaucoma that occurs in infants and very young chil-

dren due to abnormal eye drainage angle development. Symptoms of congenital Glaucoma

often include light sensitivity, watery eyes, or a tendency to keep the eyes closed. The eyes

may also appear larger than usual and have cloudy corneas.

• Secondary glaucoma: May be caused by an eye injury, inflammation, certain drugs such as

steroids, and advanced cataract cases or diabetes. The type of treatment will depend on the

underlying cause but usually includes medication, laser surgery, or conventional surgery.

2.3.1 Detection/Diagnosis of Glaucoma

To diagnose glaucoma, first, the retinal images are captured with the appropriate equipment. Then

the images have to be analyzed one by one or several health professionals. Cup to disc ratio
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from retinal fundus images is an essential procedure for glaucoma detection, this can be seen

in figure 2.3. This process can be time-consuming, and errors can occur, such as not detecting

where it exists or where it does not exist. Not to take away the merit of the health professionals,

this detection process can be aided with automatic procedures. In the end, the final opinion will

always be of the responsible professional. The development of automatic processes for glaucoma

screening, has been an ongoing field of research, because automatic detection is util to help doctors

detect this disease [26].

Figure 2.3: Optic disc with normal cup and increased cup caused by glaucoma: (A,B) Non-
Glaucoma; (C,D) Glaucoma. Image from [41]

2.4 Automatic Retinal Imaging Analysis

Healthcare professionals usually have to analyze a massive collection of data from different body

structures during their work routine, which is a tiring and challenging task with a high degree of

associated responsibility. With this in mind, Computer-aided diagnosis (CAD) systems have been

widely developed during the last decades to help these professionals. As the name suggests, these

systems assist professionals in interpreting medical images and other types of data, providing "sec-

ond opinions", allowing a faster patient triage, and sometimes acting as end-to-end solutions for

an initial diagnosis of several conditions. Therefore, these systems’ main goals consist of reducing
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the burdens caused by the intense workload of a healthcare professional, reducing errors caused by

fatigue, improving diagnostic accuracy, and reducing inter-reader and intra-reader variability. Au-

tomating the screening process, allowing massive screenings for Glaucoma that were not possible

before. The recent growth in the development of these systems can be justified by the successive

improvements in machine learning/deep learning and computer vision fields in combination with

the increasing availability of biomedical data [12].

Currently, AI in Ophthalmology is mainly focused on improving disease classification and

supporting decision-making when treating ophthalmic diseases such as DR, AMD and Glaucoma.

In the last couple of months, some implementations of the trending DL based Computer-aided

diagnosis (CAD) systems for Glaucoma diagnosis have already reached the product state and are

now available as commercial solutions.

An example is Yanbao. Yanbao App is expected to help users conveniently share high-quality

glaucoma screening services using the proposed glaucoma screening algorithm based on clinical

parameters. To the best of our knowledge, it is the first App specially designed for screening

glaucoma. The main advantages of Yanbao App are:

• The App has been developed for smartphones which can be conveniently used at any place

and at any time.

• Experiments on the public fundus database and real clinical data demonstrate that the App

has good detection and classification accuracy, described in table 2.1.

• Users feedback seems quite promising in terms of real-time testing and user experience.

That allows the user to upload a fundus image to a server where four types of feedback are gen-

erated, CDR analysis, NRR analysis, glaucoma confidence level, and doctor diagnosis. The first

three topics are reportedly returned in about 10 seconds, and the doctor’s analysis is dependent

on her experience that will interpret the images. In order to provide this feedback, the optic disc

is first localized and used to crop the full fundus image and obtain the ROI image. Then, joint

segmentation of the optic disc and cup are performed with an enhanced U-net, trained and tested

on the ORIGA dataset. These segmentations are then used to perform the CDR and NRR analysis

by calculating several morphological features. Afterwise, feature selection is accomplished, and

the selected features are used by an SVM classifier that outputs the glaucoma confidence level.

The performances are then evaluated once again on the ORIGA dataset.[21].

Classes Counts Predictions Accuracy
Glaucoma 240 183 0.7625
Non-Glaucoma 413 316 0.7651
All Patients 653 499 0.7642

Table 2.1: Yanbao App Accuracy [20]

Another example is Retinalize. Retinalize is a screening software that aids experts conduct

eye diseases screening, one of them being Glaucoma. The algorithm behind the system detects
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signs of eye diseases through fundus imaging analysis and can also be used as a clinical decision

support system.

The RetinaLyze System [19] aims to make eye exams affordable to the general public by re-

ducing the cost of each screening, the price, and the complexity of the equipment required to

be performed eye screenings. In addition, the new RetinaLyze Glaucoma algorithm allows eye

specialists, optometrists, and nurses to safely and efficiently perform glaucoma screenings. This

system automatically analyzes retinal images, can assess the risk of having Glaucoma, and quickly

gives a result. The process involves only the image from the fundus cameras, excluding the need

for a visual field analyzer or tonometer. Figure 2.4 shows a teaser image of the RetinaLyze Glau-

Figure 2.4: Teaser image of the RetinaLyze Glaucoma software at work. Image from [6]

coma software at work assesses the level of hemoglobin in the Optic Disc, which can be used to

measure damage to the Optic Nerve Head. It calculates the risk of having signs of Glaucoma. The

algorithm uses only fundus images as input but achieves similar performance as visual perimetry

and OCT screening methods.

More recently, the work of Leonardo et. al. [29] compare and evaluate the glaucoma classifi-

cation when syntetic images with different quality scores where used during the trainning process.

The methodology is based on transforming retinal fundus images to improve and degrade their

quality to increase training data and evaluate diagnosis, allowing a pipeline to reject samples with

lower image quality to avoid classifying these poor-quality images.

2.4.1 Public datasets

Given the need for large amounts of data in DL methods, a few datasets have been made publicly

avalable, allowing to develop automatic DL methods for glaucoma detection as well as many other

tasks. Some of the most relevant datasets in glaucoma screening (Table 2.2) are:
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• Retinal fundus images for glaucoma analysis (RIGA): A de-identified dataset of RIGA

was derived from three sources. The optic cup and disc boundaries for each image were

marked and annotated manually by six experienced ophthalmologists and included the cup

to disc (CDR) estimates. Six parameters were extracted and assessed (the disc area and

centroid, cup area and centroid, horizontal and vertical cup to disc ratios) among the oph-

thalmologists [7].

• RIM-ONE Release 1: The first version was published in 2011. The images are classified

in different subsets: Normal eye, Early glaucoma, Moderate glaucoma, Deep glaucoma and

Ocular hypertension [13].

• RIM-ONE Release 2: The images contain annotations of the optic disc boundary and a

label indicating the presence of Glaucoma in each fundus image. This release is classified

in two different subsets, Normal and Glaucoma, with or without suspicious [9]

• RIM-ONE Release 3: Two experts have segmented each image’s optic disc and optic cup

in ophthalmology to create the ground truth. The average segmentation is also available as

the reference segmentation or gold standard [14].

• Drishti-GS: The images are divided into two parts as 50 images are for the training and the

51 images are for the testing phase [11].

• ORIGA: Contains 650 retinal images annotated by trained professionals from Singapore

Eye Research Institute. A wide collection of image signs, critical for glaucoma diagnosis,

are annotated [44].

• iChallange: Is a dataset of 1200 fundus images with ground truth segmentations and clinical

glaucoma labels [34].

Name Number of images Number of ophthalmologists Year
RIM-ONE v1 [13] 169 - 2011
RIM-ONE v2 [9] 455 - 2014
Drishti-GS [11] 101 4 2014
RIM-ONE v3 [14] 159 2 2015
RIGA [7] 750 6 2018
ORIGA [44] 650 - 2010
iChallange [34] 1200 2 2018

Table 2.2: Datasets



Chapter 3

Towards Explainable
Privacy-preserving Glaucoma
Screening

This chapter will present the state of the art of XAI, GANs and future directions for the develop-

ment of the dissertation. It focuses on models that are targeted at retinal images.

3.1 Explainable Artificial Intelligence

Is an artificial intelligence that allows humans to interpret the results of a solution. This phe-

nomenon is due to a combination of factors, including concerns over security and privacy, poor

generalizability, trust and explainability issues, unfavorable end-user perceptions, and uncertain

economic value [33]. XAI can improve the user experience of a product or service by helping

end-users trust that the AI is making good decisions. It is AI in which humans can understand

the results of the solution. It contrasts with the "black box" concept in machine learning, where

even its designers cannot explain why an AI arrived at a specific decision. This way, XAI aims

to explain the decision have Glaucoma or not and unveil the information the actions are based

on. These characteristics make it possible to confirm existing knowledge to challenge existing

knowledge, and to generate new assumptions.

3.1.1 XAI Methods

LRP is one of the main algorithms that aim to explain networks that use the backpropagation

algorithm. LRP brings explainability to the prediction of a specific classifier at a given data point

by assigning "Relevant Values" (Ri) to essential components in the input, using the topology of

the trained model itself. It is used efficiently with images/videos and text where the predicted

output value is used to calculate the relevance value for the lower layer neurons. How much

more significant is the impact of a neuron in the forward, more significant is its relevance in

13
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the backward step. The relevance calculation follows the input where the neurons/features with

more relevance are higher values than the others. As a result, the essential input neurons can

be highlighted based on which final output layer is visualized. Figure 3.1 shows the flow of the

relevance value calculation. Improvements in LRP are an active area of research. [40].

Figure 3.1: LRP model

LIME is one of the most well-known methods for bringing explainability to any classification

model. It is considered inaccessible to human understanding because it is not concerned with

how the classifier works. It develops a simple, interpretable alternative model, such as a linear

regression model around each prediction between the input and corresponding output variables.

Using a simple model allows for a better interpretation of the behavior of the classification model

in proximity to the instance being predicted. It also tries to understand how the classification

model works by introducing noise into a data sample’s input variables and understanding how the

predictions are affected. Simply put, LIME first generates random noise in the original instance.

Second, it computes the similarity between the noises and the original instance. Third, it obtains

the predictions for the noises. Then, it chooses a set of noises with better similarity results and

calculates weights that represent the effectiveness of these noises on the original instance. A

weighted linear regression model is constructed once the noises, predictions, and weights are

calculated. The coefficients of this simple model will help explain how changes in the explanatory

variables affect the classification outcome for the instance that wishes to be explained. LIME

focuses on forming local substitution models to explain individual predictions. Therefore, it can

be applied to any DL model [40].

Grad-CAM It maps all the objects in the images to a class, which is used for detection. If

we have an image with several objects and only want to determine one of them, the other objects

will not be considered. This procedure for ignoring the remaining objects happens because each

object has a class defined. In Grad-CAM, the relevant image regions for the decision are identified

by using the gradient information flowing into the last convolution layer since this layer is the
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last one that retains spatial information. These maps were calculated in the classification network

(entitled GFI-C), and an illustration of the results with images from both classes can be found in

figure 3.2. The images are overlayed with the calculated Grad-CAM maps in the figure, and blue

tones indicate the area was not crucial to the classification. In contrast, redder tones indicate a

significant influence of that region for the final decision. By analyzing the images, it is noticeable

that the network looks to the same structures that ophthalmologists inspect, like the optic disc,

cup, and retinal vessels topology [32].

Figure 3.2: Grad-cam activation maps [39] of the GFI-C network

Methods based on examples In contrast to the above XAImethods, which map explanations

onto the input space, example-based explanations project explanations across the underlying train-

ing data or other representative prototype examples. As explanation-by-example frameworks gen-

erate a set of examples as an explanation, achieving explainability is more straightforward because

the examples obtained are very similar to the original ones. Generated examples are visualized in

the same way an input data instance is visualized. This style of explanation has received consider-

able attention in recent work.

While LIME or Grad-CAM methods are input-based methods, and these methods have to

try to understand the similarity between the input and the output, example-based explanations

provides the nearest matching data samples from the training dataset as representative examples.

These methods look very promising, and in the development of the dissertation, it will be these

example-based methods that we will be explore [27]. However, the retina has unique biometric

data, allowing their identification. Thus, it is crucial to develop methods that can generate exam-

ples that can justify a decision without allowing patient identification while maintaining all other

image characteristics.

3.1.2 Proposed approaches for Privacy-preserving Example-based Explanations

For the development of this dissertation, two approaches can be explored. First, obfuscation of the

private information will be considered. This would allow to retrieve examples from any dataset,
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Figure 3.3: Depiction of surveyed explanation methods for image, text, and ECG input. Image
from [27]

obfuscating the private data (contained in the vessel structure) while preserving the relevant clin-

ical information (mainly the optic disc), we are talking about methods like Blurring or Blocking,

these methods is presented in image 3.4. We can use several techniques in the blurring method,

Average Filter, Weighted Average Filter, or Gaussian Filter. This method typically reduces details

in the image, introducing some noise. Regarding blocking, it is more effective than blurring in

identifying the objects that are obfuscated. Blocking is a rather negative method since it creates a

conflict between the privacy of the image and the user experience. The final goal of this method

is to replace the part of the image that we want to obfuscate with an object with a single color to

hide the original image data completely.

Figure 3.4: Examples of blurring and block obfuscations. Image from [30]

Another very interesting and promising technique is to remove only the blood vessels from

the retinal images, which allows the obfuscation of detecting diseases such as Glaucoma not to be

compromised. There are already some developments in this technique. The process of these tech-

niques is represented in 3.6 and it works in the following way: at an early stage, we need to make
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a correct segmentation of the blood vessels based on the analysis of the connected components.

After having a successful detection, we need to fill the vessel regions with information that does

not allow the identification to create a vessel-free image 3.5 [16].

Figure 3.5: a Retinal Fundus RGB image, b Vessel removed RGB image. Image from [16]

3.2 Generative Adversarial Networks

GANs were first proposed in 2014 by Ian Goodfellow [18]. The Generative Models have gained

considerable attention in unsupervised learning via a new and practical framework called GAN

due to their outstanding data generation capability. These models are also known to do artificial

image generation. This generation is especially used in research since the use of real images turns

out to be a bit restricted, not being publicly available. Many GAN models have been proposed,

and several practical applications have emerged in various computer vision and machine learning

domains. Therefore, constant training is essential to achieve the best possible results. [25]. Given

a set of images, generative models aim at artificially generating new images by learning the dis-

tribution of the training data. Based on unsupervised learning, generative models generate data

from a vector of random numbers, called latent space. However, some models can generate im-

ages from other images. The learning phase of a generative model assures that the model creates

a correct sample based on the features of the training set. The generative process of data retains

value because it naturally expresses casual relations of the context of the data instead of just gen-

eralizing from mere correlations. If the training is made correctly and with the correct set, GANs

can generate very realistic data.

GANs simultaneously train two models: a generative model G that captures the data distri-

bution, and a discriminative model D that estimates the probability that a sample came from the
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Figure 3.6: Flow chart of the complete process of vessel segmentation. Image from [16]

training data rather than G. The training procedure for G is to maximize the probability of D mak-

ing a mistake. One of the most commonly used comparisons for GANs is a counterfeiter artist

and an art expert. G, the counterfeiter, tries to replicate an artist’s painting style by learning from

a completed artwork, and D, the art expert, classifies the forged artwork as looking real or fake.

Both G and D learn from this feedback, iteratively improving the quality of the paintings created

until D can no longer distinguish a real from a fake [18].

Generator model
The generative model (presented3.8) takes as input a random vector of fixed length and gen-

erates a sample within a respective domain. The input vector is drawn randomly using a Gaussian

distribution to create the generative process. After creation, the points in this multidimensional

vector space will correspond to points in the problem domain, creating a compressed represen-

tation of the data distribution. This vector space is a latent space or a vector space composed of

latent variables. Latent variables, or hidden variables, are essential to a domain but are not directly

observable. We often refer to latent variables, or a latent space, as a projection or compression of
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Figure 3.7: GAN representation [8]

the data distribution. A latent space provides compression or high-level concepts of the observed

raw data, such as the input data distribution. In the case of GANs, the generating model is applied

to points in a chosen latent space. New points extracted from the latent space can be provided

to the generating model as input and used to generate new and different output examples. After

creation, the generating model is maintained and used to generate new samples [17].

Figure 3.8: Training of a generator model [8]

Discriminator model
The discriminator model (presented in picture 3.9) uses the domain as input (real or generated)

and predicts a binary result of original or false (generated). The original example comes from the

training data set. The generating model produces the generated examples. The discriminating

model makes a typical (and well-understood) classification. After the training process, the dis-

criminator model is no longer used because we are interested in the generator model, which must

be well trained before the discriminator model be disabled. Sometimes the generator can be re-
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purposed once it has learned to effectively extract features from examples in the problem domain.

Some or all of the feature extraction layers can be used in transfer learning applications using the

same or similar input data. [36]

Figure 3.9: Training of a discriminator model [8]

3.2.1 Differential GANs

The generation of artificial images as examples can be considered. However, traditional GANs

that allow the generation of new artificial examples have been shown to memorise details from the

training dataset and thus reveal the identity of training data on generation. This has motivated the

field of differential privacy GANs. These techniques are standard to protect privacy in ML models,

trained with sensitive data. Differential privacy is a mathematical framework to define what level

of privacy preservation we want. These methods can provide very high privacy guarantees. Several

companies have adopted these methods as a standard in data protection. A flow of DP-CGAN is

in image 3.10.

Some proposed models focus on differential privacy, such as DP-CGAN, PATE-GAN. One of

the big problems with privacy is to be able to maintain it during the training process of the GANs.

It was in this sense that DP-CGAN was proposed. These models aim to achieve just that, to

preserve the privacy of conditional GANs using DL. Differential Privacy (DP) is a technique to

protect ML models’ privacy. Its procedure is to cut the norm of the gradient of the loss sum of

the discriminator’s real and fake data, and then Gaussian noise is added to the changing gradients.

DP-CGAN attempts to solve this problem of matching labels by still cutting the discriminator loss

gradient on real and fake data separately, allowing better control on the model’s sensitivity to real

data and allowing for matching in the labels [38].

Teacher-discriminators are trained to minimize the classification loss when classifying samples

as real samples or generated samples. During this step only the parameters of the teachers are

updates (and not the generator). The student discriminator is trained using noisy teacher-labelled
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Figure 3.10: The overview of approach to achieving differentially private GANs. Image from [22]

generated samples (the noise provides the DP guarantees). The student is trained to minimize

classification loss on this noisily labelled dataset, while the generator is trained to maximize the

student loss. Note that the teachers are not updated during this step, only the student and the

generator.

On the other hand we have Private Aggregation of Teacher Ensembles Private Aggregation

of Teacher Ensembles (PATE-GAN), images 3.11 and 3.12 indicate the iterative training proce-

dure carried out by PATE-GAN, the figures correspond to a single generator update. This model

modifies the functioning of normal GANs in order to guarantee privacy. The artificial data is pri-

vate as far as the original data is concerned. PATE-GANs differ in that the training process of

the discriminator has been modified to be differentially private by a modified version of the Pri-

vate Aggregation of Teacher Ensembles (PATE) framework. Post-processing will ensure that the

generator that is trained with the discriminator with differential privacy will also be differentially

private, so the data it generates will also be differentially private [43].

3.2.2 GANs directed to ophthalmology

There are several proposals for developing GANs that are targeted at the ophthalmology area. Will

be referred to DCGANs, RF-GANs, etc.

Some proposals use DCGANs, but these models do not consider privacy. For disease detec-

tion models such as Glaucoma, many images are needed so that the models can be trained more
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Figure 3.11: Block diagram of the training procedure for the teacher-discriminator during a single
generator iteration. Image from [43]

Figure 3.12: Block diagram of the training procedure for the student-discriminator and the gener-
ator. Image from [43]

efficiently, but the publicly available datasets are scarce. These models aim to combat this by gen-

erating artificial images with diseases or not but to be publicly available so that those who develop

detection models can have models trained with several cases. One of these cases is a proposal in

the document [37].

RF-GANs are based on GANs but focuses on the retinal fundus images. It is based on two

models, RF-GAN1 and RF-GAN2. Model 1 is used to generate retinal fundus images obtained

from software sources. The model is trained with the generated images and uses the training

results to obtain the structural and lesion masks. While model 2 summarizes the images using the

masks and disease classification labels. That is, scoring the images on how real they may appear,

verifying the effectiveness of model 1 [10].
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Figure 3.13: The pipeline of synthesizing retinal fundus image. Image from [10]
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Methods and Experiments

This chapter presents the entire flow for development of the experiments with DCGAN, used in

retinography imaging for artificial image generation. The methodology adopted and the objectives

of each test will be discussed in this chapter.

4.1 Data preparation

The data preparation was divided into two parts: complete retinal images were used, and images

with only the optic disc area were used. These images of the optic disc alone were extracted with

masks of that same area. This division allowed us to have two large datasets to train two models

to understand in which situations better results are achieved.

For complete retinal images, the Origa, Drishti, Riga and iChallenge datasets were used. All

images from these datasets were pre-prepared by applying a center crop followed by a resize to

256x256, some examples of images used during training 4.1, and for Optical disc area images, the

Origa, Acrima and iChallenge datasets were used. All images from these datasets were prepared

by cropping them according to the masks so that only the optical disc area was left. This was

achieved, because experts segmented each image with optical disc and optical cup areas and then

the same process was applied as before, a center crop followed by a resize to 256x256, some

examples of images used during training 4.2.

24
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Figure 4.1: Real complete retinal images

Figure 4.2: Real optical disc area images

4.2 Training configurations

Since two datasets were used, four models were also trained, one with the complete retinal images

and one with the images of the optic disc area. Although the images are different, the same settings

were applied for both models.The settings are:

• Batch size during training: 8

• Spatial size of training images: 256

• Learning rate for optimizers: 0.00001

• Number of training epochs: 2000

• Size of z latent vector (i.e. size of generator input): 100

To allow adding more diversity to the datasets, when loading the images into the model, some ran-

dom transformations were applied, such as flipping horizontally, flipping vertically, and rotations.

The Generator and Discriminator models were based on the models suggested by PyTorch

that appear in DCGan tutorials [5]. These models had to be adapted since they are prepared to

use images with a size of 64x64. In the training of models, the objective is to use images with

a size of 256x256. In the generator and the discriminator, two layers had to be added. In the

generator, initially, the suggested by PyTorch is used. In the end, a layer was added to contemplate
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the convolution from 64 to 128 and another from 128 to 256. In the discriminator, two layers were

added at the beginning to contemplate the convolution from 256 to 128 and another from 128 to

64. The image 4.3 shows the system architecture.

Figure 4.3: System architecture

Another change that had to be made was that when using a small batch size (8), the learning

rate also had to be decreased to 0.00001.

The training for both models was performed for 2000 epochs.

Usually, when training DCGANs, a metric must be defined to be met so that the algorithm is

not training indefinitely. However, these metrics are helpful when the goal is to generate images

very similar to the original ones. Although, in this case, the goal is to generate images that are

different from the original ones while maintaining relevant characteristics, therefore no metrics

are used so as not to influence the training. Consequently the 2000 epochs were defined as the

stopping method.

4.2.1 Loss Functions and Optimizers

With D and G setup, we can specify how they learn through the loss functions and optimizers. We

will use the Binary Cross Entropy loss (BCELoss) function which is defined in PyTorch as:

l(x,y) = L = {l1, · · · · · · lN}T (4.1)
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ln =− [yn.log(xn)+(1− yn) .log(1− xn)] (4.2)

Notice how this function provides the calculation of both log components in the objective

function (i.e. log(D(x))log(D(x)) and log(1−D(G(z)))log(1−D(G(z))) ). We can specify what

part of the BCE equation to use with the y input. This is accomplished in the training loop which

is coming up soon, but it is important to understand how we can choose which component we wish

to calculate just by changing y (i.e. GT labels).

Next, we define our real label as 0.9 and the fake label as 0. These labels will be used when

calculating the losses of D and G , and this is also the convention used in the original GAN paper.

In optimizers, we set up two independent optimizers, one without differential privacy and other

with differential privacy.

Without differential privacy are Adam optimizer with learning rate 0.00001 and Beta1 = 0.5.

For keeping track of the generator’s learning progression, we will generate a fixed batch of latent

vectors that are drawn from a Gaussian distribution (i.e. fixed_noise) . In the training loop, we

will periodically input this fixed_noise into G , and over the iterations we will see images form out

of the noise.

With differential privacy are BlurNN. BlurNN is a pytorch-based model privacy-preserving

module. This package extends optimizers in torch.optim by extra parameters for differential. The

extra parameters are: norm_bound is a gradient cliping bound and noise_scale is a gaussian noise

with standard deviation noise_scale * norm_bound is added to each clipped gradient privacy [1]

In training are used noise_scale = 0.5 and norm_bound = 0.

4.3 Privacy Validation

The feature extraction will be used to obtain a similarity scale between original and generated

images. Deep convolutional neural networks have led to a to many breakthroughs in image clas-

sification. Deep networks naturally integrate low/medium/high-level features and classifiers in

an end-to-end multi-layered fashion. The "levels" of features can be enriched by the number of

stacked layers (depth). Recent evidence shows that network depth and critical findings on the chal-

lenge are crucial. The ImageNet dataset explores "very deep" models, with a depth of sixteen to

thirty [23]. For PyTorch, a package is already available on GitHub called Image 2 Vec (img2vec)

[3]. This package includes many templates for extracting features from images. The model chosen

was ResNet-18 which allows us to extract 512 features from each image that. These features are

extracted from the avgpool layer. Each vector with 512 values identifies an image. The weights

used in the ResNet-18 neural network were from ImageNet (IMAGENET1K_V1). These weights

have excellent results.

After we extracted the features from each image, two methods were used to calculate the

similarity between the real and the generated images. These two methods are CosineSimilarity[2]

and PairwiseDistance[4]. These two methods are available in Pytorch.
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• CosineSimilarity Returns cosine similarity between x1 and x2, computed along dim. Cosi-

neSimilarity is defined by equation

similarity =
x1x2

max(x1∥2x2∥2,ε)

• PairwiseDistance Computes the pairwise distance between input vectors, or between columns

of input matrices. Distances are computed using p-norm, with constant eps added to avoid

division by zero if p is negative

dist(x,y) = ∥x−y+ ε ∗ e∥p

where e is the vector of ones and the p-norm is given by.

||x||p =

(
n

∑
i=1

|xi|p
)1/p

CosineSimilarity returns values between 0 and 1, and PairwiseDistance has no value restriction.

It calculates the differences between all positions of the vectors and does the summation. Both

methods have very positive results. Below are some of the results obtained and the respective

images to see the similarity.

4.4 Metrics

In this section, we will discuss metrics that can be used to evaluate the quality of generated images,

more specifically synthetic images, obtained by GAN models, in this case, DCGANs.

4.4.1 Inception Score

The inception score is the most widely used GAN performance metric in the literature. It uses a

pre-trained initialization network as the image classification model M to compute

IS = eEx∼pg [KL(pM (y|x)||pM (y))] (4.3)

where pM (y|x) is the label distribution of x that is predicted by the model M and pM (y) is

the marginal probability of pM (y|x) over the probability pg . A larger inception score will have

pM (y|x) close to a point mass and pM (y) close to uniform, which indicates that the inception net-

work is very confident that the image belongs to a particular ImageNet category and all categories

are equally represented. A larger Inception score suggests that the generative model has both high

quality and diversity [42]. To run this method, the used weights were IMAGENET1K_V1.
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4.4.2 Fréchet Inception Distance

Fréchet inception distance (FID) uses a feature space extracted from a set of generated image

samples by a specific layer of the inception network. Regarding the feature space as multivariate

Gaussian, the mean and covariance are estimated for both the generated data and real data. FID is

computed as FID(pr, pg) = ||µr −µg||22 +Tr(Σr +Σg −2(ΣrΣg)
1
2 )

A smaller FID indicates better GAN performance [42].

The FID Score algorithm was used for metrics purposes, and the results were obtained for

the complete retinal and optical disc area images. FID is a performance metric to evaluate the

similarity between two dataset of images. It is shown to correlate well to human evaluation of

image quality, and it is able to detect intra-class mode collapse.

4.5 Image quality (RetinaQualEvaluator)

Analysis and classification of retinal images to be possible and assertive, the images must have

excellent quality. This quality is not always possible due to several factors, including image clarity

(e.g., affected by poor camera focus or poor optics, saccadic eye movements during acquisition,

cataracts, macular edema); field definition (e.g., caused by patient orientation, insufficient pupil

size, or latent traces) since the image obtained must show the correct area of the retina with visible

optic disc and temporal arcades. And in the case of synthetic images, this problem of image

quality is very much present. The Retina Quality Evaluator (RetinaQualEvaluator) algorithm aims

to distinguish between the three mentioned image quality classes (Good, Usable, and Rejected).

An uncropped background image with a full FOV is required as input [29]. The accuracy of this

model is 0.894 as shown in 4.4.

Figure 4.4: Summary of the results for retinal image quality assessment.

4.6 Glaucoma CADx

This model is used to classify whether a retinal image has Glaucoma. This model was trained with

three different scenarios, adding different transformed sets to the original data: a) only enhanced
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quality images; b) improved and degraded quality images; and c) enhanced and degraded qual-

ity images, removing the transformed images classified as Rejected by the previously described

RetinaQualEducative Evaluator. This model had an accuracy of 0.931 as shown in 4.5.

Figure 4.5: Classification performance of Glaucoma CADx results obtained on the test set using
fundus images.
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Results

5.1 Image generation

Image generation was done with the weights obtained after training the four models for complete

retinal images and images of the optic disc area only. Two without differential privacy and other

two with differential privacy.

5.1.1 Generated complete retinal images

Generated images of the model with complete retinal images can be seen on Figures 5.1 and 5.2.

The first is the result of training without differential privacy, while the second used differential pri-

vacy in training. The quality of the images could be better, but it is reasonable. Some images look

realistic and very representative of the original datasets. The biggest problem might be that the

images have a lot of black areas, which interferes a lot with training and learning. During training,

applied some random horizontal flip and vertical flip transformations to the original dataset images

to have more diversity. And as we can see in the first training image with differential privacy, it

was generated with two optical discs. The generated image looks realistic, but it doesn’t make any

sense anatomically.

31
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Figure 5.1: Generated Images without differential privacy

Figure 5.2: Generated Complete retinal images with differential privacy

5.1.2 Generated optical disc area images

Generated images of the model with optical disc area images can be seen on Figures 5.3 and 5.4.

The first is the result of training without differential privacy, while the second used differential

privacy in training. The quality of the images is quite good. There are quite a few images that

look very realistic and very representative of the original datasets. In this dataset, we don’t have

the problem of black areas on the images, which significantly improves training and learning.
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Figure 5.3: Generated Images without differential privacy

Figure 5.4: Generated images with differential privacy

5.2 Metrics

Result of used algorithms allows us to have a basis for understanding to what extent our generated

images are similar to the original ones.
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5.2.1 Inception Score

The Inception Score algorithm was used for metrics purposes, and the results were obtained for

the complete retinal images and optical disc area images. The results are in the table5.1. When we

look at the results of the entire retinal images, the average does not vary much, but the standard

deviation is quite different. It is up to 5 times lower compared to the original images’ results. In

these images, differential privacy had better results than not using it. Since the authentic images

have black areas and are very detailed, it affects the generation of the original images. Regarding

the images from the optical disc area, the scenario is different. The mean and the standard devia-

tion are closer to the values of the original images and do not vary as much. In these images, the

introduction of Differential privacy has worsened the results, although it is not a very significant

difference. Images generated from the optic disc area generally have better results than complete

retinal images.

Original images Generated images
Without DP With DP

Complete retinal images 1.613±0.168 1.456±0.031 1.683±0.063

Optical Disc area images 1.906±0.203 1.982±0.128 1.811±0.118
Table 5.1: Inception scrore to Complete retinal images and Optical Disc area images

5.2.2 Fréchet Inception Distance

The results are in the table 5.2. This method returns the result of the comparison between two

datasets. The original dataset was compared with the images generated without the use of dif-

ferential privacy and with the use of differential privacy. The difference is insignificant for the

full retinal images between the images generated using differential privacy and those generated

without differential privacy. For the images of the optic disc area, the scenario is inverted. The

use of differential privacy has higher values when compared with the use of differential privacy,

which means that when the method is without the use of differential privacy, we have better results.

Without DP With DP
Complete retinal images 113.746 109.370

Optical Disc area images 94.553 122.649
Table 5.2: FID scrore to Complete retinal images and Optical Disc area images
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5.3 Similarity

5.3.1 Complete retinal images

The following tables show the results of the CosineSimilarity and Pairwise algorithms to Com-

plete retinal images. The choice of images was made with those with more significant similarity

according to the algorithm and also to have diversity in the results because sometimes an image

can appear 4 or 5 times in a row with higher similarity. In the first two tables, we can see the

results of the CosineSimilarity algorithm, and in the last two, the results of the Pairwise algorithm.

What distinguishes these two pairs of tables is the use of differential privacy. The similarity level

obtained for each algorithm can be seen on both tables. There is also the result of the image quality

algorithm to see if the closest images can have the same image quality and the difference of quality

between each pair of images. The result of the images generated with differential privacy tends to

have worse image quality, and the distances between each pair of images are more significant.

Original
image

Generated
image

Distance Original
image qual-
ity

Generated
image qual-
ity

Difference

1 627 0.94384 Normal

(0.96459)

Normal

(1.36426)

0.39967

2 6 0.94126 Good

(0.37915)

Normal

(1.4723)

1.09315

3 102 0.92127 Normal

(1.38269)

Normal

(1.19586)

0.18682

4 449 0.88889 Rejected

(1.95263)

Normal

(1.05155)

0.90108

Table 5.3: Cosine Similarity Example pairs for full images without differential privacy
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Figure 5.5: Example of real(left)-generated(right) pair of images (first row of Table 5.3). Cosine
Similarity = 0.94384

Original
image

Generated
image

Distance Original
image qual-
ity

Generated
image qual-
ity

Difference

1 162 0.95741 Normal

(0.96729)

Normal

(1.2914)

0.3241

2 31 0.95471 Good

(0.00762)

Normal

(1.30408)

1.29646

3 490 0.95427 Normal

(0.98215)

Normal

(1.03966)

0.05751

4 307 0.95253 Normal

(0.6138)

Normal

(1.45136)

0.83757

Table 5.4: Cosine Similarity Example pairs for full images with differential privacy
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Figure 5.6: Example of real(left)-generated(right) pair of images (first row of Table 5.4). Cosine
Similarity = 0.95741

Original
image

Generated
image

Distance Original
image qual-
ity

Generated
image qual-
ity

Difference

1 627 128.37801 Normal

(0.96459)

Normal

(1.36426)

0.39967

2 304 133.81541 Normal

(1.02106)

Normal

(1.22763)

0.20657

3 193 193.35134 Normal

(0.91226)

Normal

(1.0051)

0.09283

4 129 223.42607 Rejected

(1.95197)

Normal

(0.99181)

0.96016

Table 5.5: Pairwise Example pairs for full images without differential privacy
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Figure 5.7: Example of real(left)-generated(right) pair of images (first row of Table 5.5). Pairwise
= 128.37801

Original
image

Generated
image

Distance Original
image qual-
ity

Generated
image qual-
ity

Difference

1 453 120.10165 Normal

(0.74973)

Normal

(1.0199)

0.27017

2 307 121.29808 Normal

(0.97319)

Normal

(1.45136)

0.47817

3 332 121.73177 Normal

(0.6138)

Rejected

(1.84479)

1.231

4 448 123.19652 Normal

(0.75526)

Normal

(1.05529)

0.30003

Table 5.6: Pairwise Example pairs for full images with differential privacy
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Figure 5.8: Example of real(left)-generated(right) pair of images (first row of Table 5.6). Pairwise
= 120.10165

5.3.2 Optical disc area images

The following tables show the results of the CosineSimilarity and Pairwise algorithms for disc

area images. The choice of images was made with those with higher similarity according to the

algorithm and also to have diversity in the results because sometimes an image can appear 4 or 5

times in a row with greater similarity. In the first two tables, we can see the results of the CosineS-

imilarity algorithm, and in the last two, the results of the Pairwise algorithm. What distinguishes

these two pairs of tables is the use of differential privacy. In all tables, you can see the level of sim-

ilarity obtained, depending on the algorithm. The result of the Glaucoma classification algorithm

is also presented to see if the closest images can have the same result of Glaucoma classification

and the difference in rates between each pair of images. The result of the images generated with

differential privacy tends to have worse image quality, and the distances between each pair of im-

ages are more significant.

Original
image

Generated
image

Distance Original
glaucoma

Generated
glaucoma

Difference

1 115 0.93336 Glaucoma

(0.55552)

Glaucoma

(0.64043)

0.08491

2 130 0.93098 Glaucoma

(0.67133)

Glaucoma

(0.63962)

0.03171

3 261 0.93064 Non Glau-

coma

(0.38465)

Glaucoma

(0.57507)

0.19042

Table 5.7: Cosine Similarity Example pairs for optical disc images without differential privacy
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Figure 5.9: Example of real(left)-generated(right) pair of images (third row of Table 5.7). Cosine
Similarity = 0.93064

Original
image

Generated
image

Distance Original
glaucoma

Generated
glaucoma

Difference

1 238 0.93727 Glaucoma

(0.6032)

Glaucoma

(0.59223)

0.01098

2 140 0.9333 Glaucoma

(0.63826)

Glaucoma

(0.62611)

0.01215

3 607 0.93281 Glaucoma

(0.61952)

Glaucoma

(0.60145)

0.01807

4 606 0.92934 Glaucoma

(0.6278)

Glaucoma

(0.6243)

0.00349

Table 5.8: Cosine Similarity Example pairs for optical disc images with differential privacy

Figure 5.10: Example of real(left)-generated(right) pair of images (first row of Table 5.8). Cosine
Similarity = 0.93727
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Original
image

Generated
image

Distance Original
glaucoma

Generated
glaucoma

Difference

1 344 137.05790 Glaucoma

(0.65244)

Glaucoma

(0.64682)

0.00562

2 243 140.08910 Glaucoma

(0.65363)

Glaucoma

(0.68209)

0.02846

3 63 144.65698 Glaucoma

(0.62623)

Glaucoma

(0.68062)

0.05439

4 56 146.43518 Glaucoma

(0.64628)

Glaucoma

(0.53443)

0.11184

Table 5.9: Pairwise Example pairs for optical disc images without differential privacy

Figure 5.11: Example of real(left)-generated(right) pair of images (first row of Table 5.9). Pairwise
= 137.05790

Original
image

Generated
image

Distance Original
glaucoma

Generated
glaucoma

Difference

1 626 126.2094 Glaucoma

(0.65363)

Glaucoma

(0.62644)

0.02719

2 363 130.15157 Glaucoma

(0.65363)

Glaucoma

(0.57895)

0.07468

3 554 135.97733 Non Glau-

coma

(0.47561)

Glaucoma

(0.75713)

0.28152

4 496 137.51332 Glaucoma

(0.62623)

Glaucoma

(0.69772)

0.07149

Table 5.10: Pairwise Example pairs for optical disc images with differential privacy
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Figure 5.12: Example of real(left)-generated(right) pair of images (first row of Table 5.10). Pair-
wise = 126.2094

5.4 Image quality

For each original image, that is 2606 images, the five most similar images for each original image

were taken, making a total of 13030 comparisons. In these comparisons, the image quality algo-

rithm was applied. The image quality is composed of a scale with three values, Good, Normal,

and Rejected. The image quality program returns a value between 0 and 2, and to adapt to the

scale above it was defined that values between 0 and 0.5 is Good, between 0.5 and 1.5 is Normal

and 1.5 and 2 is Rejected. This analysis is only performed for complete retinal images.

In table 5.11 we can see the total number of images classified as Good, Normal, and Rejected.

Obtained these results for the original and generated images, both with and without differential

privacy. The introduction of differential privacy had a significant loss with the classification by

this method. Without differential privacy, although classified no images as good, many are classi-

fied as normal.

Original
images

Generated images

Without DP With DP
Good 3050 0 0

Normal 7015 11256 2936

Rejected 2965 1774 10094
Table 5.11: Total image quality cases

In table 5.12 we can see the number of matches for each pair of original images and generated

images with higher similarity and the same image quality result. The percentage of matches was

about 50% without differential privacy and about 35% with differential privacy, concluding that
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differential privacy negatively influences the quality of the generated images.

Without DP With DP
Number of images 6701 4625

Percentage 51,42748 35,49501
Table 5.12: Image quality matches

In table 5.13 we can see the mean and standard deviation of the sum of differences of the im-

age quality algorithm result for all pairs obtained with the highest similarity. That is, an original

image was rated 1.0, and the generated one was rated 1.5, which results in a difference of 0.5.

These values are for all our differences for the 13030 comparisons.

Without DP With DP
0,59074±0,40755 0,72238±0,54955
Table 5.13: Average and std: Complete retinal images

5.5 Glaucoma classification

For each original image, that is, 2926 images, the five most similar pictures for each original

image were taken, making a total of 14630 comparisons. The glaucoma classification algorithm

was applied to all the obtained comparisons in these comparisons. For each original picture, it was

classified whether it had glaucoma or not, and for the five most similar images as well. The results

obtained were as follows.

In table 5.14 we can see the total number of images classified as Glaucoma and Non-Glaucoma.

These results where obtained for the original and generated images, both with and without differ-

ential privacy. The introduction of differential privacy slightly increased the number of cases with

Non-Glaucoma compared to not using it, while without differential privacy, the values are very

close to the values of the original images. Overall the two methods are excellent.

Original images Generated images
Without DP With DP

Glaucoma 13950 14154 13221

Non-Glaucoma 680 476 1409
Table 5.14: Total glaucoma and non-glaucoma cases

In table 5.15 we can see the number of matches for each pair of original images and generated

images with higher similarity and the same result of the Glaucoma classification algorithm. The
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percentage of matches was about 92% without differential privacy and about 86% with differential

privacy, so it can be concluded that both methods are excellent.

Without DP With DP
Number of images 13518 12643

Percentage 92,39918 86,41832
Table 5.15: Glaucoma classificator matches

In table 5.16 we can see the mean and standard deviation of the sum of differences of the glau-

coma classification algorithm result for all pairs obtained with the highest similarity. That is, an

original image was rated 0.7, and the generated one was rated 0.63, which results in a difference

of 0.07. These values are for all our differences for the 14630 comparisons.

Without DP With DP
0.07174±0.05361 0,61277±0,06597
Table 5.16: Average and std: Optical disc area images
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Conclusions

The state of the art of deep learning models for automated Glaucoma classification systems has

been progressively improving. However, there are still significant limitations due to the quan-

tity and quality of available data, lack of knowledge about the decisions made by these models,

and also because the images themselves can contain the identity of the patients. This dissertation

aimed to investigate and develop the artificial generation of Retina Images when trained with sev-

eral datasets, introducing the feature of differential privacy. The ultimate goal is to generate retinal

images similar to the original images but manage to hide the patient’s identity by modifying the

blood vessels. The process began by understanding the need for the diagnosis of Glaucoma and

automatic analysis of retinography, followed by a review of the best datasets available. Second,

the state of the art of image generation and evaluation was reviewed and researched, focusing on

adverse generative networks and commonly used evaluation metrics. The contributions of this

thesis are based on the DCGAN development methodology to explore the potential of architec-

ture and evaluation methods to assess its performance successfully. The images intended to be

generated can be different from the original ones to be able to hide the identity of the patients.

The developed models achieved adequate performance, generating images capable of obtaining

a classification of Glaucoma or even analyzing the quality of images. Although the generation

was done with two groups of datasets, the images of the optical disc area achieved excellent re-

sults. In complete retinal images, there is a lot of detail and black zones that interfere a lot with

learning artificial intelligence algorithms. In addition to having two datasets, two optimizers were

also used, one without differential privacy and the other with differential privacy. But the op-

timizer with differential privacy brought us worse results, generating images with lower quality

and a lower percentage of success in classifying Glaucoma. This quality and classification were

made with original datasets and with the images generated with the models that do not use dif-

ferential privacy and the models that do. These two methods reflect what has been said before.

Metrics to calculate the similarity between the generated and original images were also extracted.

Some of the best similarity ratings even reflect a high similarity between the original and synthetic

images. To ensure a complete validation of the developed solutions, quantitative methods of eval-

uation were employed. The quantitative evaluation was ensured by the FID and IS. The results
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showed that these metrics, when combined, complement each other and provide a useful quantita-

tive evaluation of GANs. Nevertheless, these metrics are known to have limitations. Overall, the

development of this work was essential for understanding the needs and limitations of generative

models in retinal imaging applications with differential privacy. Did it in a structured way with

a thorough evaluation of the performance of the models. The architecture used, the DCGAN, al-

though it is already an established architecture, allowed a fast development, and has shown to be

efficient for developing a quality GAN capable of generating retinal images with enough similarity

with the original ones.

6.1 Future work

For the qualitative evaluation, a questionnaire was developed, and added several randomly dis-

tributed images, both original and synthetic images. For each image, there are two questions,

one about whether the image is real or generated, and another to classify the presence of Glau-

coma with the answers Normal, Suspect, and Not classifiable. This questionnaire was done in the

dissertation’s final phase, so there were no results.
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