
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

A Tool for Large-Scale Workflow
Control in Edge-based Industry 4.0

Applications

Rui Pedro de Oliveira Reis

Master in Electrical and Computer Engineering

Supervisor: Pedro Miguel Salgueiro Santos

Co-Supervisor: Luís Miguel Pinho de Almeida

February 28, 2023

© Rui Reis, 2023

A Tool for Large-Scale Workflow Control in Edge-based
Industry 4.0 Applications

Rui Pedro de Oliveira Reis

Master in Electrical and Computer Engineering

Approved in oral examination by the committee:

Chair: Paulo José Lopes Machado Portugal

External Examiner: Sérgio Ivan Lopes

Supervisor: Pedro Miguel Salgueiro dos Santos

Co-Supervisor: Luís Miguel Pinho de Almeida

February 28, 2023

Abstract

The Industry 4.0 is a set of fundamental changes of the industrial and logistical processes
enabled by data computing, e.g., 5G, IoT, Machine Learning, among others. In order to intertwine
the devices managed in the workflow, a tool for large-scale workflow control is necessary. This
shall control device connection, monitoring and management of the services used in workflows.
The main focus is to create a tool to enable the large scale interaction between devices while
having a GUI (Graphical User Interface) to change the parameters of the deployed workflows.

To be able to implement such workflow, this thesis makes a theoretical background study to
know where similar types of frameworks have been applied, in order to create a scalable tool.
After knowing how the studied IoT frameworks perform, a comparison is made to decide which
one better suits the matter in hands.

Afterwards a description of the system takes place. In order to understand how the tool runs
an explanation of how developed tool is done. It is necessary to understand how it communicates
with the chosen framework, how to navigate in its interface and what is the functionalities that it
provides.

Then the tool is validated and tested. The tool is validated once all the listed functionalities
are tested and working. The tests that were done were about the time responses of the tool. How
long it took to update all the information related to each device that is linked with the tool.

In conclusion it is presented some possible future works to improve the robustness of the
developed large scale control tool.

Keywords: Edge, Industry 4.0, IoT, large-scale, workflow.

i

ii

Resumo

A Indústria 4.0 é um conjunto de mudanças fundamentais permitidas pela computação de
dados dos processos logísticos e industriais, e.g., 5G, IoT, Machine Learning, entre outros. De
forma a ligar todos os dispositivos geridos na workflow, é necessária uma ferramenta de controlo de
workflows em larga escala. Isto deverá controlar as conexões dos dispositivos e monitorizar e gerir
os serviços nas workflows. O foco principal é criar uma ferramenta que possibilita a interação em
larga escala entre dispositivos com a disposição de uma interface gráfica para mudar os parâmetros
das workflows como se desejar.

Para a implementar tal workflow, esta tese faz um estudo teórico para saber que tipos de
plataformas já foram usados e aplicados em situações idênticas, de forma a criar uma ferramenta
de controlo em larga escala. Depois de saber a performance das plataformas de IoT estudadas, é
feita uma comparação para decidir qual se adequa melhor para este problema.

Seguidamente a descrição do sistema é feita. De forma a entender como a ferramenta corre,
uma explicação sobre a ferramenta desenvolvida é feita. É necessário entender como esta co-
munica com a plataforma escolhida, como navegar na sua interface e que funcionalidades esta
providenciam.

Depois a ferramente é validada e testada. A ferramenta é validada assim que todas as fun-
cionalidades listadas forem testadas e funcionarem. Os testes que foram feitos foram em relação
do tempo de resposta da ferramenta. Quanto tempo demoraria esta a atualizar toda a informação
relacionada com cada dispositivo ligado à ferramenta.

Em conclusão, são apresendas algumas possíveis melhorias, de forma a tornar a ferramenta de
controlo em larga escala mais robusta

Keywords:Edge, Indústria 4.0, IoT, escala, workflow.

iii

iv

Acknowledgements

To my teachers and supervisors Pedro Santos and Luís Almeida for giving me this opportunity
to work under their wing. Specially professor Pedro Santos, that helped me a lot throughout the
development of this dissertation, over the course of the year.

To my parents, without them I wouldn’t be where I am. They helped me with everything I
needed, did not matter if it was economical or emotional problems, there were always there for
me.

To my brother and cousins that I have grown with and followed me on this journey.
To my grandmother Erminda, who raised me to become the person that I am today.
To all my friends, who always helped me with whatever I needed and made me laugh so much

throughout my life.
Thank you very much!

Rui Reis

v

vi

“Be not afraid of greatness. Some are born great, some achieve greatness,
and others have greatness thrust upon them.”

William Shakespeare

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation and goals . 2
1.3 Structure . 2

2 Related Work and Background 3
2.1 Industry 4.0 . 3

2.1.1 Characteristics of Industry 4.0 . 4
2.1.2 SCADA . 5
2.1.3 Examples of Industry 4.0 Use-cases . 6

2.2 Industrial Frameworks . 7
2.2.1 Arrowhead . 7
2.2.2 AUTOSAR . 11
2.2.3 BaSys . 12
2.2.4 FIWARE . 13
2.2.5 Node-RED . 14
2.2.6 Kubernetes . 15
2.2.7 Discussion . 17

2.3 ML Workflows . 18
2.3.1 Introduction to Machine Learning . 18
2.3.2 Overview of Machine Learning flows 19
2.3.3 Applications in the MIRAI examples 20

2.4 Visualization Technologies . 21
2.4.1 Java Spring Boot . 21
2.4.2 Grafana . 23

2.5 State-of-the-Art: Application of Integration Frameworks 24
2.5.1 Industrial Predictive Maintenance Application 24
2.5.2 Integrating an Electric Vehicle Supply Equipment 25
2.5.3 Smart Cities . 26
2.5.4 Node-RED in Industrial Environment 26

3 System Implementation 29
3.1 Large-Scale Edge Management Tool (LEM tool) 29

3.1.1 Goal . 29
3.1.2 List of Functionalities . 29
3.1.3 User Interface . 30
3.1.4 Integration with other Frameworks . 32

3.2 Architecture & System components . 32

ix

x CONTENTS

3.2.1 Classes Description . 34
3.2.2 Information Model . 36
3.2.3 Monitoring Functionality . 38
3.2.4 Update Functionality . 39
3.2.5 Deploy Functionality . 40
3.2.6 Edit Functionality . 41
3.2.7 Delete Functionality . 43
3.2.8 Control Functionality . 44

3.3 Interface with Node-RED . 46
3.3.1 Communicating with Node-RED . 46
3.3.2 Limitations of Node-RED . 48
3.3.3 Monitor Node-RED flows . 49

4 Validation 53
4.1 Integration of the pipelines developed by MIRAI 53

4.1.1 Flow Description . 53
4.1.2 Integration with LEM tool . 54

4.2 Validation of Deploy and Delete Functionalities 55
4.3 Monitoring - Update Time of Flow Status . 58

4.3.1 Local Setup Results . 58
4.3.2 Remote Setup Results . 63

5 Conclusion 67
5.1 Future Work . 68

A Response Times Tables 69
A.1 Local Results per Flows . 69

A.1.1 1 Flow on n Devices . 69
A.1.2 5 Flow on n Devices . 71
A.1.3 10 Flows on n Devices . 73
A.1.4 15 Flows on n Devices . 75
A.1.5 20 Flows on n Devices . 77

A.2 Local Results per Devices . 79
A.2.1 Flows on 1 Device . 79
A.2.2 Flows on 4 Devices . 81

A.3 Remote Results per Devices . 82
A.3.1 Flows on 1 Device . 82
A.3.2 Flows on 4 Devices . 86

B Traffic Capture 91

List of Figures

2.1 Possible Industry 4.0 workflow adapted from [5] 4
2.2 Arrowhead local cloud architecture adapted from [3] 7
2.3 Core Systems of Arrowhead Framework adapted from [9] 9
2.4 Cloud service workflow adapted from [3] . 10
2.5 AUTOSAR classic platform architecture adapted from [14] 11
2.6 AUTOSAR adaptive platform architecture adapted from [15] 12
2.7 BaSys functional block diagram adapted from [8] 13
2.8 FIWARE architecture adapted from [19] . 14
2.9 Node-Red architecture adapted from [24] . 15
2.10 Kubernetes architecture adapted from [27] . 16
2.11 Machine learning methods adapted from [29] 19
2.12 Standard ML workflow adapted from [31] . 19
2.13 Java Spring architecture adapted from [37] . 22
2.14 Grafana charts adapted from [38] . 23
2.15 Arrowhead cloud architecture in the article [39] 24
2.16 EVSE’s station controller in article [40] . 25
2.17 System’s architecture from [22] . 27

3.1 Graphical User Interface Web based . 30
3.2 Deploy tab in GUI . 31
3.3 Deploy tab in GUI - Delete Option . 31
3.4 Deploy tab in GUI - Edit Option . 32
3.5 Control tab in GUI . 32
3.6 System’s Architecture . 33
3.7 UML class diagram . 35
3.8 Database UML Diagram . 36
3.9 Database Table Relations . 38
3.10 UML Monitoring Sequence . 39
3.11 UML Update Sequence . 39
3.12 UML Deploy Device Sequence . 40
3.13 UML Deploy Flow Sequence . 41
3.14 UML Edit Device Sequence . 42
3.15 UML Edit Flow Sequence . 42
3.16 UML Delete Flow Sequence . 43
3.17 UML Delete Device Sequence . 44
3.18 UML Control Sequence . 45
3.19 Node-RED API Methods . 46
3.20 Small example of JSON code . 47

xi

xii LIST OF FIGURES

3.21 URL for POST method . 47
3.22 Response from Node-RED . 47
3.23 URL for PUT method . 48
3.24 GET method for JSON string of all existing flows 48
3.25 GET method for JSON string of a specific flow 48
3.26 Node-RED Node ID . 49
3.27 URL with the last time the service was executed 49
3.28 Set of nodes . 49
3.29 URL with the flow status . 50
3.30 Information contained in the timer Template node 50

4.1 ML model pipeline developed by MIRAI . 54
4.2 Adapted pipeline for monitoring . 55
4.3 Raspberry Pi Setup . 55
4.4 Node-RED response to Deploy . 56
4.5 Node-RED response to Delete . 56
4.6 Node-RED response to Update . 57
4.7 Interface response to Edit . 57
4.8 Interface response to Stop . 57
4.9 Interface response to Start . 57
4.10 Interface response to Device Disassociation . 58
4.11 NTP Status in device . 58
4.12 local Setup . 59
4.13 Local Setup - Multiple Devices with 1 Flow . 59
4.14 Local Setup - Multiple Devices with 5 Flows 60
4.15 Local Setup - Multiple Devices with 10 Flows 60
4.16 Local Setup - Multiple Devices with 15 Flows 61
4.17 Local Setup - Multiple Devices with 20 Flows 61
4.18 Local Setup - 1 Device with Multiple Flows . 62
4.19 Local Setup - 4 Devices with Multiple Flows 62
4.20 Remote Setup . 63
4.21 Remote Setup - 1 Device with Multiple Flows 64
4.22 Remote Setup - 4 Devices with Multiple Flows 64

List of Tables

2.1 Accessibility (from [8]) . 18

3.1 Example of data in Devices Table . 37
3.2 Example of data in Nodes Table . 37
3.3 Table of Services . 37
3.4 Example of data in Flows table . 37

A.1 Local Setup - Response Time 1 Flow with 1 Device 69
A.2 Local Setup - Response Time 1 Flow with 2 Devices 70
A.3 Local Setup - Response Time 1 Flow with 3 Devices 70
A.4 Local Setup - Response Time 1 Flow with 4 Devices 71
A.5 Local Setup - Response Time 5 Flows with 1 Device 71
A.6 Local Setup - Response Time 5 Flows with 2 Devices 72
A.7 Local Setup - Response Time 5 Flows with 3 Devices 72
A.8 Local Setup - Response Time 5 Flows with 4 Devices 73
A.9 Local Setup - Response Time 10 Flows with 1 Device 73
A.10 Local Setup - Response Time 10 Flows with 2 Devices 74
A.11 Local Setup - Response Time 10 Flows with 3 Devices 74
A.12 Local Setup - Response Time 10 Flows with 4 Devices 75
A.13 Local Setup - Response Time 15 Flows with 1 Device 75
A.14 Local Setup - Response Time 15 Flows with 2 Devices 76
A.15 Local Setup - Response Time 15 Flows with 3 Devices 76
A.16 Local Setup - Response Time 15 Flows with 4 Devices 77
A.17 Local Setup - Response Time 20 Flows with 1 Device 77
A.18 Local Setup - Response Time 20 Flows with 2 Devices 78
A.19 Local Setup - Response Time 20 Flows with 3 Devices 78
A.20 Local Setup - Response Time 20 Flows with 4 Devices 79
A.21 Local Setup - Response Time 1 Device with 2 Flows 79
A.22 Local Setup - Response Time 1 Device with 3 Flows 80
A.23 Local Setup - Response Time 1 Device with 4 Flows 80
A.24 Local Setup - Response Time 4 Device with 2 Flows 81
A.25 Local Setup - Response Time 4 Device with 3 Flows 81
A.26 Local Setup - Response Time 4 Device with 4 Flows 82
A.27 Remote Setup - Response Time 1 Device with 1 Flow 82
A.28 Remote Setup - Response Time 1 Device with 2 Flows 83
A.29 Remote Setup - Response Time 1 Device with 3 Flows 83
A.30 Remote Setup - Response Time 1 Device with 4 Flows 84
A.31 Remote Setup - Response Time 1 Device with 5 Flows 84

xiii

xiv LIST OF TABLES

A.32 Remote Setup - Response Time 1 Device with 10 Flows 85
A.33 Remote Setup - Response Time 1 Device with 15 Flows 85
A.34 Remote Setup - Response Time 1 Device with 20 Flows 86
A.35 Remote Setup - Response Time 4 Devices with 1 Flow 86
A.36 Remote Setup - Response Time 4 Devices with 2 Flows 87
A.37 Remote Setup - Response Time 4 Devices with 3 Flows 87
A.38 Remote Setup - Response Time 4 Devices with 4 Flows 88
A.39 Remote Setup - Response Time 4 Devices with 5 Flows 88
A.40 Remote Setup - Response Time 4 Devices with 10 Flows 89
A.41 Remote Setup - Response Time 4 Devices with 15 Flows 89
A.42 Remote Setup - Response Time 4 Devices with 20 Flows 90

xv

xvi ABBREVIATIONS

Abbreviations

AH Arrowhead
AI Artificial Intelligence
AOP Aspect Oriented Programming
API Application Programming Interface
AUTOSAR Automotive Open System Architecture
BaSys Basic System
BSW Basic Software
CAN Controller Area Network
CB Context Broker
CBGE Context Broker Generic Enabler
CPS Cyber-Physical Systems
CSV Comma-Separated Values
DDoS Distributed Denial of Service
DI Dependency Injection
DNS-SD Domain Name System - Service Discovery
ECU Electronic Control Unit
ETSI European Telecommunications Standardization Institute
EVSE Electric Vehicles Supply Equipment
GE Generic Enabler
GSD Global Service Discovery
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IBM International Business Machines Corporation
ICN Inter-Cloud Negotiation
ICT Information and Communications Technology
IIoT Industrial Internet of Things
IoC Inversion of Control
IoT Internet of Things
IoS Internet of Service
IT Information Technology
J2EE Java 2 Platform, Enterprise Edition
JPA Java Persistence API
JSON JavaScript Object Notation
KPI Key Performance Indicator
LD Linked Data
LEM Large-Scale Edge Management
LIN Local Interconnect Network
MES Manufacturing Execution System
ML Machine Learning
MQTT Message Queuing Telemetry Transport
MVC Model-View-Controller
NGSI Next Generation Service Interface

ABBREVIATIONS xvii

NTP Network Time Protocol
PDM Predictive Maintenance
PID Proportional–Integral–Derivative
PLC Programmable Logic Controller
QoS Quality of Service
REST Representational State Transfer
REST WS Restfull WebServices
RTDB Real-time Database
RTE Runtime Environment
SCADA Supervisory Control and Data Acquisition
SOA Service-Oriented Architecture
SoS System of Systems
SSH Secure Shell
TCP/IP Transmission Control Protocol/Internet Protocol
URL Uniform Resource Locators
VFB Virtual Function Bus
VM Virtual Machine
VPN Virtual Private Network

Chapter 1

Introduction

This introductory section presents a brief contextualization. In section 1.1 there is a contextu-

alization on where the project is based, with a brief explanation related to distributed Industry 4.0

applications. In the section 1.2, there is a brief explanation, to know why there was the need to

come up with this project and also the main goals. The structure of this report will be explained in

the section 1.3.

1.1 Context

Since the beginning of this century, there has been a keen interest in using Internet of Things

(IoT) applications to leverage on cloud infrastructures to attack storage and computational limita-

tions as well as constraints at the end and edge nodes. Although this is the most common approach,

there are many problems associated to it, because edge devices have limited communication capa-

bilities. This originates a new problem, due to cost constraints or bandwidth limitations, which is

the data storage in the network. These limitations might lead to important data discarding [1].

The birth of end and edge nodes with improved computational and storage abilities enabled

the performance of highly resource demanding computations of systems. This is done locally at

the edge, only requiring the cloud backend to communicate, store and process results from mul-

tiple edge devices. Furthermore, the increase of computation capabilities made the collaboration

of neighbouring edge devices possible, supporting each other with their available computational

resources before unloading them to the cloud backend.

This greatly supported the development of Distributed Artificial Intelligence (AI) technologies.

Although local AI platforms are good for this matter, they are typically based on high performance

hardware, with expensive and high-power consuming processors [2]. A way to support AI tech-

nologies is the use of embedded computing devices in a parallel and distributed architecture, to

overcome many of the difficulties mentioned above. By using these embedded systems, the com-

putation and storage can be located near the data source, surpassing the bandwidth and latency

1

2 Introduction

problems. In case there is a failure point, the tasks can be done by a free neighbour edge device,

making the workflow robust.

1.2 Motivation and goals

This thesis was born from the need to create a framework or leverage from existing solutions

in order to answer all problems that MIRAI project [1] is a part of. MIRAI is a research group

that focuses on AI approach for edge devices and it has set their minds on five main uses cases

provided by owners of companies from three different countries, Belgium, Portugal and Turkey.

These itemized cases cover the domains of renewable energy management, Internet provisioning

for households, road traffic management, water consumption management and continuous auto

configuration of Industrial Controllers at Edge for the dyeing of textiles [1].

The main issue is that currently there is no suitable framework up to meet all use case re-

quirements. With this in mind, MIRAI project aims to build a framework that can horizontally

distribute applications among the edge devices, in addition to the vertical computing of a cloud.

In order for that to happen, this thesis was born, where a framework must be created or leveraged

from existing options to suit these expectations.

The goal to this project is to develop a tool to monitor and control multiple devices where

you can deploy sets of flows in a large scale. This tool will be in charge of multiple connected

devices, setting up workflows that will run ML modules. In order to manage and provide reports

of the operations performances there is the need to develop an User Interface to complement the

backend operations and give the user the opportunity to easily monitor, control and deploy flows

or devices at his own will.

1.3 Structure

This preparation for thesis is divided into four chapters. The first one 1 being the this current

one where it includes the motivation for this thesis as well its goals.

The second chapter 2 is dedicated to the related work and background, including a brief expla-

nation of the theme where the thesis is settled as well as the components that can be used to reach

the goals. A study about where this type of related work as been applied is done as well.

The third chapter 3 talks about the developed tool, its architecture and its components and how

it integrates with the framework deployed in the target devices.

The fourth chapter 4 talks about the integration of the tool with the services developed by

MIRAI and how it behaves, in order to obtain results and validate its development.

The fifth and final chapter 5 presents the conclusions, possible improvements to the tool and

future works.

Chapter 2

Related Work and Background

IoT has been growing faster and faster, playing an important role in our daily lives in terms of

industry. Currently the number of connected devices has already surpassed the world population

and new device integration approaches are being introduced with a higher frequency [3]. The IoT

adoption has reached the industry domain, and it has been massively growing in this area. It has

been coined Industrial IoT and is often presented as part of Industry 4.0. It enables to connect

multiple different devices where these share data between each other.

Many frameworks have been presented in order to manage the link between IoT devices. A

particular challenge is the management of data for Machine Learning workflows. ML techniques

are necessary to optimize many industrial processes, to achieve the removal of a big percentage of

human interaction in the workflow.

This chapter in divided in four main section. In section 2.1 it is provided a background to

where this thesis will be settled upon. In the section 2.2, there is done a study of multiple IoT

frameworks and a comparison between them, to understand which framework should be used for

this task ahead. In the section 2.3 it is done a study about machine learning algorithms as well

as its workflows. In the section 2.4 there will be a theoretical background based on three visual

frameworks that can possibly be integrated as the GUI in the project. In the section 2.5 it is done a

bibliographical study about similar projects and why and how they implemented these frameworks

and for what purposes.

2.1 Industry 4.0

Industry 4.0, of which Industrial Internet of Things (IIoT) is part of, has a set goal of facili-

tating better performance, lower costs and higher quality in many fields of industry. In order to

achieve Industry 4.0 there needs to be an integration of multiple components and systems col-

laborating towards a common purpose, such as Cyber-physical systems (CPS), IoT, cloud and

cognitive computing.

3

4 Related Work and Background

2.1.1 Characteristics of Industry 4.0

At the creation of an Industry 4.0 system, some aspects have to be considered: the system must

possess interoperability, technical assistance, information transparency and decentralized decision

making [4]. With all these aspect together, it is possible to allow advanced manufacturing hard-

ware and sophisticated software to collaborate effectively to optimize operations and automate

manufacturing processes offering advanced capabilities like automation of tasks customable and

adaptive devices and machines, reduction of human interaction with machines via digital sensors,

controls and automated decisions, improvement of measurement and monitoring procedures, col-

lection and storage of real-time data across various areas of a manufacturing plant, introduction

of intelligent algorithms, easy integration of different technology models in the manufacturing

industry, among others.

UI

UI

Sensor

Sensor

Raw Materials

Customer
Production Order

Quality Control

Optimization

Manufacturing

Product

Inventory

Data Base

Data Base

Data Base

Figure 2.1: Possible Industry 4.0 workflow adapted from [5]

The Industry 4.0 success is mainly acquired from the revolutionary hardware and software

technology innovations (figure 2.1 shows a possible workflow). This is enabled due to the collec-

tive advancements in various Information and Communications Technology (ICT) fields like:

1. IIoT to allow the connection between multiple manufacturing devices and machines in a

network;

2. Internet of Service (IoS) to allow Internet to provide services for manufacturing related

systems and organizations;

3. Manufacturing CPS to make useful interactions between cyber world and physical world

easier;

4. Cloud manufacturing to allow scalable computation, data storage and smart services on

demand;

2.1 Industry 4.0 5

5. Fog manufacturing to have real-time control and low latency support;

6. Manufacturing data analysis for intelligent decision making according to the gathered data.

In order to create an Industry 4.0 framework there are some design principles that must be

followed. These principles answer to the main requirements imposed by an IIoT application and

they are interoperability (the ability to connect and communicate with multiple different de-

vices), service oriented (ability to present manufacturing process functions as a set of services),

decentralization (ability of systems to make their own decisions), real-time capability (ability

to collect and analyze data instantaneously), modularity (ability of flexible changing, expanding

and enhancing singular modules to correspond new requirements existing in processes or build

new ones) and virtualization (ability to monitor processes by making virtual copies that can be

used to simulate and measure environments) [4], [5].

In industrial context, one concept is important. The term pipeline of flow refers to the sequence

of steps and/or infrastructure required to one or more transformation from raw materials to a

finished product. The terms can be used interchangeably, although sometimes pipeline may refer

more to the infrastructure and flow to an instance of use of a pipeline, in which specific materials or

data flow through the pipeline. Examples of pipelines/flows are a production line of automobiles,

in which every station transforms its input into something that grows in a vehicle. Pipelines and

flows exist equally in software-based applications, such as video editing or machine learning.

2.1.2 SCADA

SCADA systems were made to monitor and control industrial and critical infrastructure func-

tions, like the ones mentioned in 2.1.3. It is not a full control system but rather a supervisory one.

This is a software package that is placed above the hardware and it is interfaced via PLCs. This

system usually controls plants that may have thousands of inputs/outputs channels [6].

SCADA products are multi-task and based upon RTDB (real-time database) that are located

in one or multiple servers. Data acquisition is the servers’ domain and these are responsible for

handling a set of parameters which they are usually connected to. SCADA has two types of

communications which are internal or to devices.

The internal communication is server-client or server-server and it’s generally done in a

publish-subscriber manner or event-trigger and uses the protocol TCP/IP (Transmission Control

Protocol/Internet Protocol) for communication [7].

In the devices communication there is a controller polling rate done by the data servers and

defined by the user. This polling rate can differ depending on the parameters. The controllers

respond to these polls and they pass the requested parameters to the data servers. A very common

approach is the use of data stamps so it is easier to track when this data was polled. If the controller

and communication protocol allow the request of unsolicited data, the products will support it.

SCADA is scalable, which means it can track multiple devices at will. The products achieve

scalability by having multiple data servers connected to multiple controllers. Each data server is

responsible for handling a sub-set of process variables and it possesses their own configuration.

6 Related Work and Background

2.1.3 Examples of Industry 4.0 Use-cases

Since the goal of this project is motivated by the MIRAI examples, there is the need to know

a bit about them. They are in total five use cases and they are applied in different fields [1].

• Distributed energy assets have been increasing in the past years and electricity production

has become increasingly oscillating. For example the solar panels need to be able to adapt

faster than ever, in order to obtain the most energy resource. The solution that needs to be

implemented in the Distributed Renewable Energy Systems use case is the management

of solar and wind assets, by monitoring, report and improve their performance as well as

organizing their maintenance. Thanks to MIRAI, the aim is to provide optimised control of

the renewable energy plant assets as well as provide real-time monitoring of the status.

• Since Distributed Denial of Service (DDoS) attacks are one of the main problems related to

availability and security of internet providers,NOS (a Portuguese telecommunication com-

pany) has made a partnership with MIRAI to come up with a solution for this problem. The

solution of the Secure Internet Provisioning use case is to identify malicious traffic, dif-

ferentiate it from the normal one and block it. By the use of ML modules and framework

deployment is it possible to reach this goal.

• Road accidents are a problem in a daily basis. Stress can cause a driver to be distracted,

making him propitious to have an accident. By the use of sensors for traffic monitoring as

well as the use of cameras, it is possible to forecast if a driver is dangerous on not in that

moment. MIRAI’s goal in Traffic Management use case, is to treat the data received by

the pedal sensors and cameras in order to know if a driver is suited to be driving at that time.

• Water leakage problems greatly affect houses if the leakage is not detected rapidly. What

MIRAI is set to do in Water Management use case, is to monitor and control water’s flow

in order to prevent or quickly detect a leakage to avoid building damages.

• In the textile field, the dyeing process takes five to twelve hours depending on many pro-

cess parameters such as desired colour, fabrics, chemicals, among others. Since Propor-

tional–Integral–Derivative (PID) parameters are tuned by technicians according to their ex-

perience during the installation of the dyeing machine, it is hard to control the used re-

sources, such as energy, steam, water, chemical, dye and time. In Continuous Auto Con-
figuration of Industrial Controllers at Edge use case, MIRAI needs to tune the PID ac-

cording to the output of the AI algorithm working on the process controllers, which are the

IoT devices operating at the edge.

2.2 Industrial Frameworks 7

2.2 Industrial Frameworks

To develop a tool for large scale workflow control, there is the need to look into the most

suitable framework for this work that can be ran in edge devices. The criteria used to select the

framework is based on the following steps [8].

i) The industrial character and focus on the Industry 4.0 objectives;

ii) The provisioning of architectural and technical solutions for industrial contexts beyond in-

dividual IoT solutions;

iii) The targeting of System of Systems (SoS) applications based on the IoT;

iv) The reputation of the consortia members and support from the large projects;

v) Their future potential and emergence;

vi) The marked evolution from the cloud to the edge.

We now review six selected frameworks for system integration and management.

2.2.1 Arrowhead

Arrowhead (AH) framework is based on a Service-Oriented Architecture (SOA). Its goal is to

offer automation capabilities, like security, real-time control and engineering simplicity without

disabling IIoT and device data sharing at the service level.

Figure 2.2: Arrowhead local cloud architecture adapted from [3]

This framework consists of local clouds, devices, services and systems. The local cloud is an

important concept to designate the communication and a computational environment capable of

8 Related Work and Background

providing main services for the development of automation tasks in a safe way. The figure 2.2

demonstrates an Arrowhead architecture.

AH framework’s goal is to overcome the existing problem of system and device diversity

by granting a common infrastructure with standard interfaces for services’ provision, in order to

reach full interoperability. A key point in the IoT scenario is the interoperability between different

systems and devices, to attain a high number of connected devices. This number has already

surpassed the world population [3].

There are three mandatory core systems, which are the Service Registry, Orchestration System

and Authorization System [9].

The Service Registry, as the name says, provides registration capabilities and works as a stor-

age unit. It saves all the information related to the registry, like the service description, communi-

cation protocols, interfaces, among others. It’s also in charge of looking up services requested by

other services. This lookup operation uses a Domain Name System - Service Discovery (DNS-SD)

protocol [10].

The Orchestration System is responsible for the coordination of the services’ interoperability

throughout the framework. Once a request by the consumer is made, this system needs to answer

it with the available services on the Service Registry. The Orchestrator selects the best service

producer that meets what is needed by the request. It is also in charge of load balancing and fault

tolerance on the side of the service producer.

The Authorization System manages the correct flow of the services by granting rights and

permissions for that to happen.

2.2 Industrial Frameworks 9

Service
Registry

Orchestration
System

Authorization
System

Event Handler QoS
Manager

System
Configuration Store

Gatekeeper
System Gateway

Plant Description
System Translator System Historian

(Logger)
Workflow

Choreographer Workflow Executor

Application
System 1

Application
System 2

Application
System X

Mandatory Core Systems

Supporting System

Local Cloud Specific Systems

Figure 2.3: Core Systems of Arrowhead Framework adapted from [9]

In the AH local cloud there are a number of optional supporting services. These are the Event

Handler, Quality of Service (QoS) Manager, System Configuration Store, Gatekeeper System,

Gateway System, Plant Description System, Translator System, Historian (Logger), Workflow

Choreographer and Workflow executor [9]. The two main supporting services are the Gatekeeper
System and the Gateway System. Although they are not mandatory, these two are often deployed

because they are in charge of the communication between different local clouds.

It is the Gatekeeper System responsibility to manage the control information for the inter-

cloud communication in the orchestration processes but it isn’t directly in charge of the data flow

between consumer and producer. This system contains two services. The Global Service Discov-

ery (GSD) that locates the best fitting service in the nearby clouds and the Inter-Cloud Negotiation

(ICN) that is responsible for the establishment of a mutual trusted connection between the two

different local clouds. This system works side by side with the Orchestration Systems of both

local clouds.

The Gateway System works as a mediator between the producer and the consumer by estab-

lishing and managing a session between them. It creates a connection (where all the traffic will

flow) between the producers and consumer.

10 Related Work and Background

The Event Handler is required to circulate status and event information, the Workflow Chore-
ographer is necessary to trigger the next step in the process execution and the Plant Description
System is to keep track of SoS or plant related metadata [11]–[13].

The Arrowhead framework service is defined as what is exchanged between producer and

consumer, the flow of exchange can be observed in the figure 2.4.

Service
Registry

Orchestration
System

Authorization
System

Service ConsumerService Provider

Lookup Authorize

RequestPublish

Service

1

5

3 4

2

Figure 2.4: Cloud service workflow adapted from [3]

As you can see in the figure 2.4, the flow can be explained in five steps.

In the first step, the service provider by publishing the metadata, which contains information

about the producer endpoint, authorization information, protocols, service interface, among others,

in the Service Registry, becomes accessible to all Arrowhead users.

In the second step, sends information about itself and which type of service he wants to

consume to the Orchestration System.

In the third step, the Orchestration System send the information requested by the consumer

to the Service Registry and tries to provide a service lookup.

In the fourth step, the Orchestration System queries the Authorization System to see if he

consumer has the rights to use the service provided.

Last but not least, in the fifth step, if the request by the service consumer matches with at least

one registered service on the Service Registry and it has the rights to use it, the Authorization Sys-

tem permits the exchange and the Orchestration System provides the service lookup information

to the consumer. The information contained is the same as the one provided in the metadata from

the Service Provider to the Service Registry. The Service Consumer can now start making use of

the available service.

Once all these steps are met, the flow between producer and consumer is performed in a point-

to-point topology, the Arrowhead Framework is no longer involved.

2.2 Industrial Frameworks 11

2.2.2 AUTOSAR

Automotive Open System Architecture (AUTOSAR) is a framework divided in multiple lay-

ers for intelligent mobility, providing standards for Electronic Control Units (ECUs). The spec-

ifications of AUTOSAR differ from other high-level oriented frameworks [8]. This framework

application scope is automotive ECUs, with a great interaction with hardware, connected to the

vehicle networks such as Controller Area Network (CAN), Local Interconnect Network (LIN) and

Ethernet and they are run in microcontrollers with real-time features. AUTOSAR has two different

types of platforms, the adaptive one and the classic one.

The AUTOSAR classic platform architecture has three different software layers that are run

on a microcontroller: the Application, Runtime Environment (RTE) and Basic Software (BSW).

The Application layer is mostly hardware independent. The commucation in the framework is

done between software components and the access to BSW is via RTE (full interface for appli-

cations). The BSW is separated in three major layers and complex drivers which are ECU and

microcontroller abstractions and Services. Infrastructure for the system, memory and communi-

cation services are functional groups of the Service layer.

Application Layer

Runetime Environment

Onboard
Device

Abstraction

Micontroller
Drivers

Memory
Service

Crypto
Services

Off Board
Communication

Services

Communication
Services

I/O Hardware
Abstraction

Complex
Drivers

Memory
Hardware

Abstraction

Memory
Drivers

Crypto
Hardware

Abstraction

Crypto Drivers

Wireless
Communication
HW Abstraction

Wireless
Communication

Drivers

Communication
Hardware

Abstraction

Communication
Drivers I/O Drivers

Microcontroller

Service Systems

Figure 2.5: AUTOSAR classic platform architecture adapted from [14]

AUTOSAR introduced an harmonized methodology approach for the development of auto-

motive software to complement its software architecture [14]. This was required by the need to

overcome collaboration difficulties between different parties involved in automotive projects. This

methodology defines the dependencies of multiple activities on products and it supports them by

using its tools.

AUTOSAR adaptive platform implements the AUTOSAR Runtime for Adaptive Applications,

where two types of interfaces are available which are services and Application Programming In-

terfaces (API). This plaftorm is subsists of functional clusters that are grouped in services. These

clusters assemble functionalities of the adaptive platform, define clustering of requirements spec-

ification and describe the behavior of the software from the point of view of the application and

the network.

12 Related Work and Background

User Application

Persistency

Core types

Communication
Management

RESTful Time
Synchronization Diagnostics State

Management

Platform
Health

Management

Execution
Management

Log & Trace

Identity Acess
Management

Network
Management

Cryptography

(Virtual) Machine/Container/Hardware

Operating System Interface

Update and
Configuration
Management

Figure 2.6: AUTOSAR adaptive platform architecture adapted from [15]

AUTOSAR extends the aleady existing methodology in order to have a common approach for

both classic and adaptive platforms [15].

2.2.3 BaSys

In the present time, manufacturing facilities are designed for the mass production of identical

assets. Although manufacturing systems have a certain flexible, these usually come associated

with high cost. In order to fight that, there was a developed a researched project called BaSys 4.0,

which is the development of basic systems in the Industry 4.0.

Basys 4.0 defines a reference architecture for production systems that allows the transition to

Industry 4.0. To implement this concept Basic System (BaSys) created the open source platform

known as Eclipse BaSyx that is handled in Java, C++ and C# [16].

BaSys design was founded on three central pillars which are the creation of a structured RTE,

process planning and the use of digital twins [8]. A digital twin is a virtual model designed to

accurately reflect a physical object [5].

One of the major goals of BaSys 4.0 for Industry 4.0 is to address the shifting of production

processes. In attempt to fight this problem a new concept has emerged known as changeable

production. The idea of this concept is to address unplanned changes of production processes, such

as unaware steps that are required for the development of a product that were not known before

the creation of the production line. Changeable production enables manufacturing of different

products, dynamically add and remove production resources and device capabilities, change of

devices for another compatible one and moving of software components. BaSyx components are

divided in four levels [17].

2.2 Industrial Frameworks 13

1. Field level that consists of automation devices, sensors and actuators without the use of a

specific BaSys conforming interface.

2. Device level offers a conforming interface to BaSys 4.0 by the use of automation devices.

3. Middleware level reuses Industry 4.0 components that implement necessary generic capabil-

ities for the production lines. A good example of these capabilities are registry and discovery

services, Asset Administration Shell providers and protocol gateways.

4. Plant level contains high level plant components to manage, monitor and optimize the pro-

duction.

Vendor-specific

Interface

Compatibility
layer

Legacy
Application

wrapper

BaSys-
conformal

Application

BaSys 4.0 API

BaSys 4.0 Runtime and services

BaSys 4.0 HW and OS Abstraction Layer

Hardware and Operating System

Figure 2.7: BaSys functional block diagram adapted from [8]

Connectivity between the shopfloor (end-to-end digitization of production) and the Informa-

tion Technology (IT), changeable production processes, great deal of data analysis of production

processes and prognostic maintenance are some of the components that BaSys provide to imple-

ment in Industry 4.0 [17]. The functional block diagram of BaSys can be seen in the figure 2.7.

2.2.4 FIWARE

FIWARE is an open source platform and it offers basic modules to develop and create IoT

applications. By combining various open source modules it enables its use in various sectors. This

platform has a growing community which means it will be continuously improved [18]. The only

mandatory component of any FIWARE platform is a Context Broker Generic Enabler (CBGE),

supplying a cornerstone function necessary in any smart application, such as information man-

agement, update performing and granting acess to data. FIWARE Context Broker (CB) exports

NGSI that is used for the integration of components to update or consume context information. FI-

WARE NGSI API specifications have evolved, now aligning with European Telecommunications

14 Related Work and Background

Standardization Institute ETSI NGSI-LD standard (European Telecommunications Standardiza-

tion Institute Next Generation Service Interface-Linked Data) [19].

Context, Processing,
Analysis, Visualization

Core Context Management
(Context Broker)

Interface to IoT, Robotics and
third party systems

D
ep

lo
ym

en
t t

oo
ls

D
at

a/
A

PI
 M

an
ag

em
en

t
Pu

bl
ic

at
io

n
M

on
et

iz
at

io
n

Figure 2.8: FIWARE architecture adapted from [19]

FIWARE CB is the main component in charge of gathering, managing and processing contex-

tual information and it enables the systems to perform updates and access the context state. The

interactions between CB and the additional platform components are done by the NGSI restful

API [8]. FIWARE GE has its eyes set on dealing with three main topics [19].

Interfacing with the IoT, robots and third-party systems, to capture updates and translate

required actuation on the context information.

Context data/API management, publication and monetization, supporting the usage con-

trol and granting the opportunity to earn some extra income from part of the managed context

data.

Process, analysis and virtualization of context information by implementing an expected

smart behaviour on the application and assisting the end user in making smart decisions.

Some of the FIWARE (architecture can be seen in figure 2.8) domains are inserted in smart

energy, Wilma module (smart plants) and Green routing [8], [20], [21].

2.2.5 Node-RED

Node-RED is an open source development tool that is flow oriented and it was developed by

IBM (International Business Machines Corporation) Emerging Technology for the integration of

IoT devices, online services and APIs [22]. It’s JavaScript based, built on a Node.js platform,

providing a browser interface for flow editing. It has multiple node options that are represented

by different icons. The browser interface gives two options to the user. This tool allows the

developers to create flows for data processing, controlling services or event triggered alarms at

will, by connecting input and processing nodes to output nodes [23].The runtime supports inter-

node and inter-flow communication which allows the possibility of having multiple flows running

at the same time communicating between themselves. Node-red architecture can be seen in the

following figure 2.9.

2.2 Industrial Frameworks 15

Flow

Node

Node

Node

Node
global
context

message

flow
context

Node-RED

Node.js

Flow

Figure 2.9: Node-Red architecture adapted from [24]

A node is a reactive Node.js application that is triggered by receiving a message on an input

port and sends the results of its computations to an output. Each node has an unique ID, this means

that two nodes cannot have the same identification.

A set of connected nodes is known as a flow. You either build the flow from scratch by drag-

ging, dropping and wiring the nodes, making a flow, or by importing a JavaScript code containing

the flow information. These flows are stored using JSON (JavaScript Object Notation).

Contexts provide a shared communication channel between the multiple different nodes with-

out the use of explicit messages that pass through a flow. This means that the visible wiring

between nodes in the user interface is a partly depicted information that exists in a flow. Node-

RED defines three scope levels for the contexts. The node, the flow and the global. The node

scope possesses information only visible to the node that sets the value. The flow scope possesses

information visible to all nodes in the flow where the value is set. The global allows all nodes in

any flow to have access to that value. Using a global scope is good in case there is a flow moni-

toring the input values from a sensor and there is another flow updating its status. This is the best

way of sharing information of a certain set of values [24].

In terms of security, this tool relies on the user. This means that Node-RED platform needs

to be ran on a trusted network, ensuring that the data is processed in an user controlled envi-

ronment. The official documentation includes security patterns that include basic authentication

mechanisms responsible for the access to the existing nodes and wires [24],[25].

This framework enables multi instances creation. This means that it is possible to create

multiple instances of Node-RED in the same device by the use of multiples ports.

2.2.6 Kubernetes

Kubernetes is an orchestrator that oversees containerized applications. These are applications

that are run in containers. A container is a form of operation system virtualization. Kubernetes

enables the configuring and deployment of applications while automatically managing their life-

cycles, storage and service discovery [26]. Its clusters primarily consist of sets of nodes (Master

16 Related Work and Background

and Worker). The Master contains the API and it is responsible of the authentication and autho-

rization on an operation level.

Kubernetes is based on seven components. Etcd, API server, Scheduler, Controller Manager,

container runtime, Kubelet and Kubernetes Proxy [27]. Its architecture can be seen in the figure

2.10.

Woker Node Woker Node Woker Node

Master Node

Etcd API server Scheduler

Controller Manager

Kubernetes Proxy Kubernetes Proxy

Container
runtime Kubelet

Kubernetes Proxy

KubeletKubelet Container
runtime

Container
runtime

Figure 2.10: Kubernetes architecture adapted from [27]

As it can be seen in the figure, Master node is consisted of Etcd, API server, Scheduler

and Controller Manager and Worker node consists of container runtime, Kubelet and Kubernetes

Proxy. The Master components are in charge of automating tasks in charge of the management of

the deployed application instances’ life-cycle, these instances are known as Pods [28].

Etcd is a key value storage. It stores the organized data that can be used by each node in the

group. It’s a high access key that can be passed on among the various groups and can only be open

by the API server due to the its sensitive data.

The API server updates an interface. So it’s required the use of different instruments and

libraries to communicate with it. This API uses Kubeconfig to make the GUI reactive.

The Scheduler is an administration in charge of handling the existing tasks. It tracks the

burden of the workload usage and it disperses into multiple hubs if necessary until the end of the

task.

The Controller Manager is a non-ending loop in charge of controlling the system. This

controller watches the status of the cluster through the API server and if required makes changes

to attain the desired state.

The Container runtime is the component responsible for the running the containers in the

system. This is where the applications will be ran.

Kubelet is a running agent in each node of the cluster. It ensures that the containers are running

in a node. It makes sure that the specifications of a Pod are running and its status is good.

2.2 Industrial Frameworks 17

Kubernetes Proxy that runs in every node and helps the outer host in getting access to the

administrations. It maintains all the network rules on the nodes. These rules allow network com-

munication from networks inside or outside the cluster to the Pods.

2.2.7 Discussion

After a study done in [8], it is possible to make a comparison between all four mentioned

frameworks. This study was made based their features and functional principles and it can be

divided in five key characteristics: real-time features, runtime features, centralized/distributed

approach, hardware requirements and QoS.

Arrowhead, AUTOSAR Node-RED and Kurbernetes present real-time behaviour, making

them a good option in this key. The same can’t be said about FIWARE: although it has fast

responses, it does not support real-time behaviour. BaSys considers real-time no longer essential

at the process level, so instead of having this kind of behaviour, it uses Programmable Logic

Controllers (PLC) to control the real-time production steps.

All the frameworks mentioned above have runtime features. Arrowhead and Kubernetes
possess runtime functionalities the orchestration system is capable of providing dynamic orches-

tration and authorization in runtime patterns. It also has more systems capable of working in run-

time such as Event Handler and Data Manager. AUTOSAR has the RTE layer, that is in charge

of the communication between software components and their scheduling, and it is one of its key

components. It can also trace errors and dynamically link services and clients in runtime. BaSys
also possesses a RTE Virtual Function Bus (VFB). The runtime and service layer can provide sets

of services in order to manage functional components as well as run hardware independent code.

FIWARE has some features that includes runtime monitoring attributes of the object store and can

add a security runtime component to verify obedience with the data sharing policies. Node-RED
does not possess an orchestrator.

AUTOSAR, BaSys and FIWARE have flexible and expandable systems but they are central-

ized. Arrowhead framework has a distributed system where all functionalities and main services

are distributed among different core systems instead of having an unique middleware. This frame-

work uses different local clouds and it is capable of communicating securely with each other.

Kuberntes is ran in containers which provides a great large-scale workflow control. Node-RED
can be deployed in multiple devices but needs something on the top of the architecture to that

controls in which devices it is working.

In terms of hardware requirements AUTOSAR was designed to fit the resource constraints

of the devices and Arrowhead can be deployed in a large range of devices, the same goes for

Kubernetes and Node-RED. FIWARE and BaSys require a certain amount of computational

power, which imposes restrictions in small devices.

Arrowhead provides a QoS manager core system, AUTOSAR has an Ethernet driver that is

support by QoS, FIWARE possesses a defined networking block that presents QoS, BaSys does

not have any tool that provides QoS, which means it has to ensure QoS from other protocols.

18 Related Work and Background

Table 2.1: Accessibility (from [8])

Specification Code Tutorial Examples Orchestrator
Arrowhead Easy Easy Medium Easy Yes
AUTOSAR Easy Difficult Medium Medium Yes
BaSys Difficult - - Medium Yes
FIWARE Easy Easy Easy Easy Yes
Kubernetes - - - - Yes
Node-RED - - - - No

Analysing all the information mentioned above in the table 2.1, Arrowhead and Node-RED
are the most suitable frameworks for this project. Although FIWARE presents the best results

in the table, it requires a high computational power, making this framework, not suitable. Even

though there is not much information about Node-RED in terms of accessibility, the ML modules

developed under MIRAI project were conceived in this framework and since this one does not

have an orchestrator, it makes it suitable for the project.

2.3 ML Workflows

Looking at the MIRAI project, if we look deep into the five use cases, ML techniques are used

among all of them, in data forecast (power values output data forecast), cybersecurity (detection

of anomalies), traffic management (object detection for collision prevention), faster water leakage

detection (detection of anomalies) and dye machine operations (parameter estimation from his-

torical data) [1]. Machine learning techniques play a pivotal role in Industry 4.0 due to their fast

responses are adaptive environment to multiple sets of data.

2.3.1 Introduction to Machine Learning

ML is an artificial intelligence technique that trains machines, helping them learn from their

experience, adapting to the situation, by using different algorithms for their training. It does

not need human assistance nor complicated mathematical equations and it can work in dynamic

networks.

ML techniques are grouped in supervised, unsupervised and reinforcement and they can be

applied in multiple situations. As you can see in the figure 2.11 shows different machine learning

algorithms [29].

2.3 ML Workflows 19

Machine Learning
(IoT)

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Classification Regression

Figure 2.11: Machine learning methods adapted from [29]

Supervised learning the output is classified based on the input, by using a data set for training

the algorithm. This method can perform as classification or regression. In Classification learning,

the ML output identifies the class to which inputs belong to. Regression learning refers to where

the output of the learning is a real or continuous value depending on the input variables.

In Unsupervised learning, there is no output for the given input variables. A big portion of

the data is unlabeled, so the system tries to find out the similarities among this data set classing

them into different groups as clusters.

Reinforcement learning allows the machine to learn from interactions with the environment

by performing actions to maximize the feedback. There are no predefined actions in any particular

task while the machine uses trial and error methods, where they obtain an answer with a positive

or negative reinforcement.

2.3.2 Overview of Machine Learning flows

A typical ML workflow consists of six different steps, which are: data gathering, cleaning and

pre-processing data, representing data, machine learning modules, learners and model evaluation

[30].

Cleaning and
Preprocessing

Training Data

Features
extraction

ML trained
model Predictions

Input data

Figure 2.12: Standard ML workflow adapted from [31]

20 Related Work and Background

In data gathering there needs to be a dataset entry that will be trained. This gathering can be

done with a direct input or can be fetched from databases (normally happens when working with

a cloud). After obtaining the dataset, this vector of values needs for be cleaned and pre-processed.

In this step there are four points (known as the "four V’s") that are considered crucial in big data

workflows and they are relevant in machine learning methodologies [31].

1. Volume is the amount of available data;

2. Variety is known as the diversification of data in form and meaning;

3. Veracity, is the understanding of the uncertainties linked with each data point;

4. Velocity, is how fast the data needs to be generated and treated (not a problem in workflows

that don’t require real-time features).

Data has to be clean and homogeneous before being used. A way for that to happen is to detect

possible errors or inconsistent data points and removing from for the dataset training. Without this

step it would be harder to build an accurate predictor via machine learning. Once the that is

clean and homogeneous there is the need to encode the data into a set of specific variables that

will be manipulated by the ML algorithm. Normally this data is in a raw format and needs to

be converted into a suitable format for a learning procedure. The data is transformed and passes

through a rescaling, normalization or binarization procedure in order to bring it to a state where

the algorithm can easily parse the information. The effect of the pre-processing of data needs to

be studied carefully because some algorithms can deploy better results without or with excessive

pre-processing.

After representing the data, there is the need to apply the ML models mentioned in the section

2.3.1. The following step is the use of learners, this is a crucial step because each learner plays

a key role in the accuracy of the prediction. In the evaluation model, there is a study to check if

the predictions have a good performance. After the training of the dataset, there is usually given a

subset for tests to check if the output values correspond to the expected ones.

In the figure 2.12 it is possible to observe a standard ML workflow that is used for the imple-

mentation of ML modules.

2.3.3 Applications in the MIRAI examples

In MIRAI there is the need to apply ML workflows in order to obtain better results for each

use case [1]. In the Distributed Renewable Energy Systems use case, there is the need for ML

techniques for forecasting values. In terms of solar energy, looking at the irradiation behaviour it is

possible to extract the higher amounts of power/energy at peak times [32]. By predicting the best

time to withdraw energy, it is possible to arrange a schedule, wasting less sources and extending the

lifetime of the station. These modules can be applied in many other types of renewable energies,

such as wind, biomass, wave, among others.

2.4 Visualization Technologies 21

In the second use case, Secure Internet Provisioning, ML techniques can be used to identify

malicious internet traffic, in order to prevent attacks from unknown sources. Looking at the band-

width feature, there are minor differences between normal and malicious traffic. By using a ML

model it is possible to detect these minor differences [33].

In the third use case, Traffic Management, with help ML techniques it is possible to predict

the future movement of vulnerable road users based on their trajectory. By using video based

motion classifiers it is possible to evaluate the physical state of motion when starting or stopping

a car [34]. With this in mind, it will be possible to predict the area that will have higher traffic

intensity.

In the fourth use case, Water Management, there is the need to use ML models to detect

leakages as soon as possible. At the moment, the leakage detection is based on a statistical analysis

and it is only possible to reach a high accuracy after three hours. With the use of a device with

long lifetime running a ML trained model, it is possible to detect a water leakage directly without

the need to send all data on a high temporal resolution [1], [35].

In the last use case, Continuous Auto Configuration of Industrial Controllers at Edge, the

use of ML techniques will needed to provide resource efficient deployment. These algorithms

will be in permanently updating themselves and accounting the constraints, like insufficient steam

sources [1].

2.4 Visualization Technologies

A GUI is an interface that displays the data of a system. It makes an application practical, easy

and efficient to use [36]. This section has information about three possible frameworks that can be

used as a GUI for this project. In 2.4.1 introduces Java Spring Boot, in 2.1.2 introduces SCADA

(Supervisory Control and Data Acquisition) and in 2.4.2 introduces Grafana.

2.4.1 Java Spring Boot

Spring Framework is based in Java/J2EE (Java 2 Platform, Enterprise Edition) and it is an

application development framework. It is one of the most popular Java frameworks with a 30% of

share usage. This framework possesses features that enable an efficient development from simple

web to complex enterprise applications. It has four main concepts which are, IoC (Inversion of

Control), DI (Dependency Injection), AOP (Aspect Oriented Programming) and JPA (Java Persis-

tence API) [37]. Spring framework can be seen in the figure 2.13.

IoC is a general concept where the control of the flow is made by external sources instead of

being controlled by the programmer. As the name says the control is inverted.

The DI is a key concept in Spring and in Google Guice. This concept is a pattern in a form of

IoC.

The improvement of modularity and the structure of code is the concept that AOP is based on.

The JPA is in control of the database. This concept maps the object state to the database

columns and issues the queries across the objects.

22 Related Work and Background

MessagingInstrumentationAspectsAOP

TEST

JBDC

Data Access / Integration

ORM

OXM JMS

Transactions

WebSocket

WEB

Servlet

Web Portlet

Core Container

Beans Core Context SpEL

Figure 2.13: Java Spring architecture adapted from [37]

There are many important modules such as Data Access and Core Container, but if the need

is the development of a web application the Web module becomes the most important one. This

module consists of 4 modules, Web, WebSocket, Portlet and Servlet. In the Servlet it is contained

the definition of the two most used concepts in the current days which are the MVC (Model-View-

Controller) and the REST WS (Restfull WebServices).

The Spring Web flow and MVC are two powerful web frameworks that allow the develop-

ment of multi-layered applications. The Spring MVC is built on DispatcherServlet and passes the

requests to the @Controller that is based on a @RequestMapping annotations. The Spring Web

Flow builds reusable web controller modules complementing Spring MVC by containing rich page

navigation rules.

The REST WS is an architecture that provides interoperability between the computer systems

on the internet. It is one of the most used techniques for data provisioning to multiple types of

data consumers. The REST WS is supported by the Spring framework and its class annotation

is @RestController. In order to gain access to the methods that provide functionalities it is re-

quired to use an unique @RequestMapping annotation. The ResponseEntity class can be used as a

method and it results in an entire set of HTTP status code, body and headers. It possesses multiple

constructors that carry the information sent as a HTTP Response.

The Spring Boot was designed to simplify the development of a Spring application. It has

four main concepts. The Automatic configuration, the Dependencies starter, the Command-Line-

Interpreter and the Actuator.

The Automatic Configuration configures the applications as standard Spring applications.

The Dependencies starter automatically integrates the dependencies that are needed for the project.

2.4 Visualization Technologies 23

The Command-Line-Interpreter allows the application to be controlled through the console. The

Actuator provides information about the events that happen inside the application.

This framework provides tons of getting started examples for the development of applications

and allows the user to select between two types of projects. Either Gradle or Maven.

2.4.2 Grafana

Grafana is a tool that allows the user to visualize multiple series of data chronologically. It

possesses a graphical overview of the collected and generated data and highlights the most impor-

tant data, known as KPIs (Key Performance Indicators). Some of the KPIs that are included in

Grafana are latency, user data rates of up and downlinks communications, among others [38].

This software provides some advantages which are:

• Flexible quick graphs with multiple options;

• Dynamic and reusable dashboards;

• Greatly extensible, enabling the use of many dashboards and plugins that are available in

the official library;

• Enables collaboration by allowing the data and dashboards to be exchanged between teams.

These advantages procide the user with a very useful application that allow efficient manage-

ment of data and services, providing a global knowledge of the situation.

Additionally, Grafana possesses multiple dashboard representations, some can be seen in the

figure 2.14

Grafana Dashboards

Graph

Gauge

Text

Dashboard List

Node Graph

Time Series

Bar Gauge

Heatmap

News

Plugin List

Stat

Table

Alert List

Logs

AJAX

Figure 2.14: Grafana charts adapted from [38]

24 Related Work and Background

2.5 State-of-the-Art: Application of Integration Frameworks

During the course of the years, there has been a great number of applications in the industry

that require the use of IoT frameworks and ML solutions. In this section, we will focus on the

use of the Arrowhead and Node-RED frameworks since these are the two that show most potential

for utilization in the MIRAI project, as explained in the section 2.2.7. Arrowhead has greatly ex-

panded in this area and can be applied in multiple fields to facilitate the production of components

or to just monitor tasks [3]. Node-RED has become widespread and is being used in the indus-

try area, this is because this programming tool is flow-based and is great for automation systems

management [22].

2.5.1 Industrial Predictive Maintenance Application

The article [39] mentions that EUREKA-ITEA has developed a project called "A Smart Pre-

dictive Maintenance Approach based on Cyber Physical Systems" with the objective of acquiring

manufacturing data to provide diagnosis and prognostic information making the feasible technol-

ogy financially viable. The project improves overall equipment effectiveness of the manufacturing

industry by making use of low cost sensors in order to produce a cost efficient Predictive Mainte-

nance (PDM) model. A primary technique used in PDM is data science (analysis and modelling

of measurement data) and when this is combined with the knowledge domain, it is possible to

acquire automatic and reliable diagnostics, mechanisms of failure detection and supported deci-

sion making. In order to reach this goal, it is required to deploy an IoT framework, that’s where

Arrowhead comes to play.

ARROWHEAD CLOUD

Service
Registry

Orchestration
System Authorization

System

Partner Gateway

Data Display

Gateway, Processing &
analytics

REST API
(Data Storage)MIMOSA

database

Partners

Maintenance
Service

O&M
Analytics

Figure 2.15: Arrowhead cloud architecture in the article [39]

2.5 State-of-the-Art: Application of Integration Frameworks 25

This project makes use of two IoT frameworks, MIMOSA, to deploy data models in the edge

devices and in the cloud, and Arrowhead for delivery of services (architecture can be seen in 2.15).

Since Arrowhead enables interoperability between different devices while providing features like

QoS and security, it is a good framework for this case. The nodes of the edge devices are used

to capture and provide data as a producer, while providing data acquisition services that measure

vibration acceleration from the bearing. After this data is obtained, they are stored in a local

MIMOSA database that has previously been filled with metadata. The data consumer is a separate

node in the local cloud, that receives data with JSON Representational State Transfer (REST) API.

After the data analysis the information is available to be monitored in a GUI.

Also the use of ML techniques were used in this project to help predicting results of mainte-

nance by estimating the possible future failures of the system.

2.5.2 Integrating an Electric Vehicle Supply Equipment

The biggest challenge of electric vehicle initiatives is the overcoming of electrical energy

storage barriers. Batteries energy density is not still high enough to compete with fossil fuels, that

is why charging and supplementary maintenance issues in the electric mobility. Electric Vehicles

Supply Equipment (EVSE) have physical access to the electric vehicles and can also communicate

with service providers of ICT systems. EVSEs are organized into networks and accessed remotely.

They need to operate in a service oriented way due to the stakeholders request. One of the biggest

tasks is to create a dynamic and trusted infrastructure of charging stations and managing centers

that allows information exchange ICTs [40]. EVSE are important endpoints of an electrical grid,

that produces and stores energy locally, because their energy consumption is controllable.

Arrowhead is a framework that is suited for this problems mentioned above because it can

be a networking platform of electric mobility. The local cloud concept and the service oriented

architecture allows safe and dynamic networking for the electric mobility domain. In this case

Arrowhead is used to control a charging station.

Station Controller Board

Charge
Controller

Board

Energy
Meter

Charge Point

Power Electronics

E in

E to EV

Web service
module

Energy metering
module

Arrowhead module

SC Software

Figure 2.16: EVSE’s station controller in article [40]

26 Related Work and Background

A charging station consists of power electronics, an energy meter, a charge controller board

and a station controller board. The charger’s information related to the charging transactions is

sent to the Arrowhead cloud in form of a web service. This framework is in charge of controlling

the energy in the charging station, by controlling the data about power consumption. Arrowhead

in this case is used to provide services that the Open Charge Point Protocol does not possess.

2.5.3 Smart Cities

Smart cities are composed by a multiple number of different companies’ systems and managed

by different operators. A great challenge is the efficient integration of all these systems into one

but with new technologies a this collaboration can be reached. This collaboration can be enabled

by a SOA due to its interoperability services. Since Arrowhead possesses a SOA it is an IoT

framework that suits the job.

In this article [41] in order to deploy a smart city they separate the smart city concept into three

systems: Street light, car heating and system integration.

For the street light system an Arrowhead interface was developed for light controllers, allow-

ing the integration of the street light system into the Arrowhead network. The light control system

acts as a service producer. Each street light can be monitored and controlled via a RESTful inter-

face. The light controller publishes its endpoints in the Arrowhead Service Registry in order to be

discovered and consumed by other devices in the same network. Uses the authorisation system to

verify if the consumer is allowed to use the services. The orchestration system is not used because

the light controller does not need to consume any application producer services.

The car heating system only uses service registry and authorisation system as well. The au-

thorisation system is used to verify if the consumer is allowed to use engine block heaters. The

service registry system is used to publish the endpoint of the heater controller in order to be dis-

covered by other systems in the Arrowhead network. The Arrowhead service interface can be used

for requesting energy consumption data and providing external information like for example the

temperature outside.

The integration system is what we call a system of systems. This will integrate the car heating

and street light systems into a network of systems with additional sensors and control. These

sensors can monitor, the outdoor temperature and the brightness level, and will be used to integrate

both systems. The integration control can define the brightness level on each street light which

means the energy consumption is controlled. In terms of the car heating system, the control of the

outdoor temperature value is used to optimize the engine block heating time to save up energy.

2.5.4 Node-RED in Industrial Environment

There is the need of storing a huge amount of data collected by smart devices. For industrial

systems, the use of relational SQL data storage has been the main solution until now. The problem

with big data means that it is not possible to store such amount of data in small database systems,

unless there is a major investment in the infrastructure. In order to avoid this problem, the use

2.5 State-of-the-Art: Application of Integration Frameworks 27

of a Cloud to store data is a good possibility, which is a good cost efficient method that does not

need a big hardware investment. There’s a lot of cloud hosting services on the market designed

to rent as much space required. Another important feature that cloud systems possess is their

scalability. Since companies in the industrial environment are disinclined to see their data outside

of the factory, it affects the spread of this technology in the industry. Even this being said, the

spread of IIoT helps a lot in the growth of cloud services, due to the fact that these devices can

easily be connected to cloud systems which already provide data analysis and visual platforms in

order to control the stored data.

The developed application can monitor a general factory machine and environment using

Node-RED. It uses multiple sensors to store the machine’s operating data, such as speed, sta-

tus, hours of work, and the changes in the environment, such as temperature, humidity, among

others. The system’s architecture can be seen in the figure 2.17.

MQTT-BROKER Node-RED

Cassandra

Interface

Insert/Select

Ins
ert

/Se
lec

t

Sub/PubSub/Pub

Sensors

Sensors

Sensors

Sub/Pub

Sub/Pub

Sub/P
ub

Figure 2.17: System’s architecture from [22]

The interface displays the data in real-time via a MQTT (Message Queuing Telemetry Trans-

port) broker and stored in a Cassandra database. With the use of the Node-RED dashboard, a

simple interface was created to provide a visual aid to the user.

To have a good amount of IoT sensor data, it was used a python code to generate industrial

machine and environment values to simulate the use of sensors. With the use of the MQTT broker

it was possible to manage the data, generating a code that not only publishes but also receives the

real-time data.

In conclusion, the Node-RED framework can be used to develop an IIoT applications proto-

type as well as fetching and displaying data via the MQTT broker.

28 Related Work and Background

Chapter 3

System Implementation

This chapter contextualizes the developed project. The section 3.1 provides a general overview

of the developed tool (its goal, a list of its functionalities and the user interface). The section

3.2 presents the project’s architecture as well as its components, how they are linked between

them and a detailed explanation of the system’s functionalities. The section 3.3 presents all the

considerations needed when working with Node-RED as well as an insight of how the framework

operates.

3.1 Large-Scale Edge Management Tool (LEM tool)

The development of the tool is required to meet all expectations that MIRAI has, in order to

address all the use cases mentioned in the section 2.1.3. For this, the tool needs to monitor, deploy

and control multiple devices that will be running ML algorithms previously developed by MIRAI.

The system needs to be able to communicate with a large number of devices at a quite fast pace,

with the minimum delay possible.

3.1.1 Goal

The goal of this tool is to control a large number of devices, independently of which framework

is currently running, all devices. For this, the system needs to be adaptable when receiving data in

order to accept any type of framework that will be running in the devices. Theoretically speaking

this is a good aim, but this dissertation will focus on only one framework. This is due to the fact

that MIRAI only developed pipelines in Node-RED.

3.1.2 List of Functionalities

The developed tool possesses multiple functionalities responsible for the good behaviour of

the LEM tool. These are the following:

29

30 System Implementation

• Monitoring;

• Deploy Devices;

• Deploy Flows;

• Device Control (Start);

• Device Control (Stop);

• Delete Devices;

• Delete Flows;

• Edit Devices;

• Edit Flows;

• Information Update;

The explanation of all of these functionalities can be seen in detail in the section 3.2.

3.1.3 User Interface

The User Interface displays all the information regarding the LEM tool. This means if the

user wants deploy, control or just check all the information from any device, he can do it in here.

It also provides the options delete and edit flows or devices.

This interface is coded in Java Spring Boot. Java Spring Boot also has default functions

that communicate directly with the database, allowing information exchange from the interface to

the database. This choice was done taking in consideration that the Core system and the HTTP

connections were being coded in Java. This component provides a web based interface as you can

see in the figure 3.1.

Figure 3.1: Graphical User Interface Web based

3.1 Large-Scale Edge Management Tool (LEM tool) 31

As it can be seen in the figure above 3.1, the interface has three tabs. Monitoring, Deploy and

Control.

The Monitoring tab, allows the user to select between three tables what type of information

he wants to see. The tables that are shown here are the ones previously explained in the section

3.2.1.4.

The Deploy tab provides two options for the user. Either create a new flow on an edge device

or associate a device to the system.

The flow creation allows the user to choose any name for the flow, select in which device it

wants to be deployed, which type of service wants the device to run and in which port will this

flow run.

The device association just needs the name that the user wants to give to the device and the

associated URL (Uniform Resource Locators). The deploy tab can be seen in the figure 3.2.

Figure 3.2: Deploy tab in GUI

As it can be seen, this tab also provides two other options, the delete and edit. In the delete

option, it is possible to either delete a flow from a device or simply delete the device association

from the system. In the edit option it is possible to replace the names of any created flow as well

as their service and edit the name of a device. In the figure 3.3 it can be seen the delete option’s

page and in the figure 3.4 edit’s page.

Figure 3.3: Deploy tab in GUI - Delete Option

32 System Implementation

Figure 3.4: Deploy tab in GUI - Edit Option

In the Control tab, it is possible to start or stop any instance of Node-RED at will on any

associated device. All it needs to be done is select the device, the port where the instance wants to

be run or is currently running and what control option it’s wanted. The figure 3.5 show the control

page in the GUI.

Figure 3.5: Control tab in GUI

3.1.4 Integration with other Frameworks

This tool was developed in a general overview to be ran no matter what framework is running

in the devices. In order to use any framework at choice, there is somethings that need be taken

into consideration.

The LEM tool currently communicates with the devices using a HTTP protocol to access

certain endpoints in order to fetch required information, such as the timestamp of when the service

was last executed as well as the status of the device.

The developer needs to meet these requirements. If an endpoint is given to the tool, the system

can run multiple frameworks. Looking into the section 3.2, it is in the Controller class where

the connections to these endpoints are made. The Core class also needs access to the endpoints

in order to update the information on the system.

3.2 Architecture & System components

In order to develop such a tool for large scale control, the system was be divided into four

major parts. The Core, the Database, the Controller and the GUI. This system requires to

be scalable, this means that the tool can either control one or multiple devices at will.

The Core is in charge of updating all the tables from the database, as well as running the Java

Spring Boot Application, where the Controller and the GUI components are allocated.

3.2 Architecture & System components 33

The Database is there to store all the data. The database has multiple tables, such as flows,

devices and nodes. In these tables, all the information is saved in order to control the system.

The graphical user interface is where the user can monitor all the devices visually, as well as

deploy multiple devices or flows and control the Node-RED service in each device. It also has the

ability to edit certain information of the flows or devices and it allows the user to delete created

flows or associated devices.

The Controller is in charge of controlling the full system. It’s the only component that is

linked with all the others. This one fetches and updates data in the database, it updates the infor-

mation in the GUI and it is run in the Core component. It is also in charge of the communications

with the edge devices. It forces the deploy of a service and it can also delete the service from the

device, if the user decides to.

In the edge devices is where the services are running. The system is prepared to work with

multiple frameworks as long as the communication parameters between the MES and the edge

devices are the same.

In the figure 3.6 it is possible to see the architecture that was developed for the creation of the

tool.

GUI Database

LEM tool

Edge Device
(Node-RED)

Edge Device
(Node-RED)

Edge Device
(Node-RED)

*HTTP

Controller

Core

Figure 3.6: System’s Architecture

Even though the Core is the main component where the Java Spring Boot is ran, in order for

this to communicate with GUI, it needs the help of the Controller. The Controller can communicate

34 System Implementation

with the GUI, receiving the submits from it and accessing the database to display the information

in the interface.

3.2.1 Classes Description

The system is composed by fifteen classes. There are four entities, four repositories, one list

of services for the interface composed by all the repositories, one class to communicate with the

edge devices, two classes to control the Node-RED services, one class to control the system, one

class to generate IDs for the nodes in a new Node-RED flow and one class that runs the project.

The four Entity classes has a direct link with the database and these are:

• Flows Entity;

• Devices Entity;

• Nodes Entity;

• Services Entity;

The Entities are classes that contain parameters ready to accept the information of each field

from the database tables. The way these fetch information is via their repository that possesses

multiple functions to fetch or input information in each database table.

The GUIservices class is in charge of connecting and updating the database. The functions

inside this class are used by the Controller and Core classes. It has multiple functions that fetches

data.

The Http Connection class makes enables the connection between the MES and the edge

devices that run Node-RED. This class can POST, PUT and DELETE flows in a target device and

it is linked with the Json String class in order to generate new flows with different node IDs.

The classes commands and SSH Connection are in charge of starting and stopping the Node-

RED in the edge devices.

The Controller class is composed by multiple classes that allow the control of the system.

This class is in charge of updating all the information in the GUI as well as creating and modelling

the browser pages from the interface.

The Core class is where the system in ran. This class starts the GUI as well as updates the

database every ten seconds. This class creates multiple threads depending on how many devices

are connected to the system. As previously mentioned in the section 3.2.1.2, the number of threads

is proportional to the number of associated devices in the tool.

The UML class diagram can be seen in the figure 3.7.

3.2 Architecture & System components 35

NodeEntity

-NodesID : long
-NodesFlowID : String
-NodesNodeID : String

+set() : long / String
+get() : long / String

FlowEntity

-flowID : long
-flowName : String
-flowUpdateTime : String
-flowDeployTime : string
-noderedID : String
-flowService: String
-URLflowStatus : String
-URLflowInfo : String
-flowStatus : String
-flowInfo : String
-flowDevice : String

+set() : long / String
+get() : long / String

DeviceEntity

-devID : long
-devName : string
-devIP : string

+set() : long / string
+get() : long / string

Controller

+monitoring(Model) : modal
+control(Model) : modal
+deploy(Model) : modal
+delete(Model) : modal
+edit(Model) : modal

DeviceRepository

+findAll() : List<DeviceEntity>
+createOrUpdateDevice(DeviceEntity device) : DeviceEntity
+findbyID(long id) : DeviceEntity
+findDistinctDeviceName() : List<String>
+findDistinctIP : List<String>
+findQuery() : List<DeviceEntity>
+insertUpdate(String name, String IP) : void

GUIServices

+FlowListAll() : List<FlowEntity>
+FlowSave(FlowEntity flow) : void
+FlowGET(long FlowID) : FlowEntity
+FlowDistinctName() : List<String>
+FlowDistinctNodeRedID : List<String>
+findSpeficListFlow(String query) : List<FlowEntity>
+findDistinctFlowStatusURL() : List<String>
+findDistinctFlowdevName() : List<String>

+NodeListAll() : List<NodeEntity>
+NodeSave(NodeEntity node) : void
+NodeGET(long nodeID) : NodeEntity
+nodeDistinctNodeFlow() : List<String>
+findSpecificListNode(String query) : List<NodeEntity>
+NodeInsertUpdate(String flowid, String nodeid) : void

+DeviceListAll() : List<DeviceEntity>
+DeviceSave() : void
+DeviceGET(long DeviceID) : DeviceEntity
+deviceDistinctName() : List<String>
+deviceDistinctIP() : List<String>
+findSpecificListDevice(String query) : List<DeviceEntity>
+DeviceInsertUpdate(String name, String ip) : void

+ServiceListAll() : List<ServiceEntity>

NodeRepository

+findAll() : List<NodeEntity>
+createOrUpdateNode(NodeEntity node) : NodeEntity
+findbyID(long id) : NodeEntity
+findDistinctNodeFlow() : List<String>
+findQuery() : List<NodeEntity>
+insertUpdate(String flowid, String nodeid) : void

FlowRepository

+findAll() : List<FlowEntity>
+createOrUpdateNode(FlowEntity flow) : FlowEntity
+findbyID(long id) : FlowEntity
+findDistinctNodeRedID() : List<String>
+findDistinctFlowName() : List<String>
+findDistinctFlowStatusURL() : List<String>
+findDistinctFlowInfoURL() : List<String>
+findQuery() : List<FlowEntity>

Http_Connection

+Http_Connection(String url) : HttpUrlConnection
+POST(String url, String json) : String
+PUT (String url, String json) : String
+DELETE(String url) : void
+Random_id_generator(String id) : String
+Parser() : String

Json_Strings

+Json_Write(String mainID, String Flowname, String Service,
String id0, String id1, String id2, String id3, String id4,
String id5, String id6, String id7, String id8) : string

Commands

+start_nodeRed() : void
+shutdown_nodeRed() : void

1

1

1

1

1

1

1 1

1

111

1...*

1...*

1...*

Core

+update_db()
+GUI_Application()

* *

1

1

1

SHH_Connection

+Stop() : void
+Kill() : void
+Start() : void

1

1

ServiceEntity

-serID : long
-servName : string
-servDesc : string

+set() : long / string
+get() : long / string

ServiceRepository

+findAll() : List<ServiceEntity>

1...*

1

1

Figure 3.7: UML class diagram

3.2.1.1 GUI

The GUI is the component that is in charge of displaying all the information to the user. This

component is in charge of delivering a logical view in order to monitor, control and deploy all the

information more easily. It is the link that connects a user to the tool in a graphical way.

It allows information submits that can associate devices or create flows. It directly interacts

with the Controller component.

3.2.1.2 Core

The Core is where the GUI and Controller run. This component starts the interface and

updates all information of the database. Every ten seconds the system checks how many devices

are associated, creates a number of threads proportional to the number of devices and updates the

flow field with the live information.

The threads are created to speed up the devices’ updates so it doesn’t overwhelm the tool when

it’s controlling multiple flows at once. In every thread it’s made a connection to check the status

of each flow in each associated device. If this connection does not return a status code of 200,

it is considered that the flow is not running. The way the components work between each other

is described in the 3.2.4 section.

3.2.1.3 Controller

The Controller serves as a middle man between GUI and the DB. This component defines all

type of information that the GUI displays. It accepts the submit inputs from the interface and based

36 System Implementation

on the input it decides what type of information it will display, as well as creating new instances

in the DB when a flow or device is deployed.

This component is based on an event trigger approach. Every time a submit is made from the

GUI’s side, it starts a step of procedures depending on what was asked to do. The communica-

tions made by this component are explained in detail on multiple sections below that explain the

functionalities listed in 3.1.2.

3.2.1.4 Database

The DB stores all the information required to run the LEM tool . This information is fetch by

the class GUIservices and it is used by the Controller class. The Controller class takes this fetched

data and sends it to the GUI component, enabling the access to the information for the user.

3.2.2 Information Model

All the system’s information is stored in the database, in order to keep track of all flows’ status,

associated devices and nodes that exist in each flow.

This project’s database has three tables that are required to fully monitor the system. These

are the devices, flows, nodes and one auxiliary table, the services tables.

In the figure 3.8 it is possible to see the field description of each table.

Services

PK ID: SERIAL
 Type: Varchar
 Description: Varchar

Nodes

PK ID: SERIAL
 flowID: Varchar
 nodesID: Varchar

Devices

PK ID: SERIAL
 Name: Varchar
 IP: Varchar

Flows

PK ID: SERIAL
 Name: Varchar
 Device: Varchar
 LastTime: Varchar
 DeployTime: Varchar
 FlowID: Varchar
 Service: Varchar
 Port: Double
 Status: Varchar

1...*

1

1

11

1

Figure 3.8: Database UML Diagram

The table of devices is composed by the ID, the Name and the IP. An example of the

information inside this table can be seen in the table 3.1.

3.2 Architecture & System components 37

Table 3.1: Example of data in Devices Table

ID Name IP
1 Device A 162.154.107.151
2 Device D 151.103.123.145
3 Device B 174.192.143.128

In the table of nodes, the ID that has the same specifications as the ID field in the devices

table, the ID of a flow and the ID of all the nodes inside the flow. Looking into the table 3.2 it is

possible to see an example of a Nodes table.

Table 3.2: Example of data in Nodes Table

ID FlowID NodeID
1 51638b50621f7dd3 51638b50621f7dd3.PX1Cl
2 51638b50621f7dd3 51638b50621f7dd3.jTtEO
3 a9e8ccef72b284bc a9e8ccef72b284bc.JXhk1

The table of services has the ID field that is exactly the same format as the others, the type

that says which service it is and the description that describes the service. Looking into the table

3.3 there is a detailed version of the service table. This table should be editable, with the options

of adding or deleting services at will.

Table 3.3: Table of Services

ID Type Description
1 Preprocessing Filters the data, in order to select the correct one for training
2 Training Training is used to apply concepts such as denoising and segmentation
3 Evaluation Evaluation is used to see if the trained model is optimal or needs more training
4 Inference Inference is the trained model that will receive the input data and produce an output

The table of flows has the ID, the flow Name, the device name where the flow is running, the

deploy time, the last initialized service time (Last Update Time), the ID of the NodeRED which

is the same as the flowID of the table 3.2, the port, the status and the service. It is possible to see

an example of the table in 3.4.

Table 3.4: Example of data in Flows table

ID Name Dev DeployTime LastRunTime FlowID Service Port Status
1 Flow1 VM1 2023/01/12 17:50:03 2023/01/16 18:32:03 51638b Infer 1880 Dead
2 Flow2 VM2 2023/01/13 18:15:22 2023/01/16 18:32:34 40d721 Train 1881 Alive

The three tables that are required to fully monitor were created in order to create a decent

structure necessary for the good behaviour of the LEM tool. When a flow is created, it is necessary

to save its information in the flows and nodes table.

38 System Implementation

The flow name, device name, deploy time, flow ID, service and port are instantly saved in the

flows table. Once the service in the flow starts, it is necessary to save the execution time. The

status is constantly updated.

The nodes information is instantly saved in the nodes table upon creation. It is essential to

keep track of all the nodes ID, in order to check if the flow is properly deployed.

The devices information is saved in the devices table once a Name and IP attributed to a

machine.

In the figure 3.9 it is possible to see how the fields of each table are intertwined.

FLOWS

ID Name Device LastTime DeployTime FlowID Service Port Status

ID Type Description

Service

ID FlowID NodesID

Nodes

ID Name IP

Devices

Figure 3.9: Database Table Relations

These tables were created to track everything from the moment a device is added to the LEM

tool until the service is deployed and running in the edge device.

3.2.3 Monitoring Functionality

The way the components interact with each other differs depending on which GUI’s tab is

being used. In the Monitoring functionality 3.1, there are two communication sequence that

include all components in the system. One of them is updating the system every ten seconds and

the other is fetching and displaying the data in the web browser.

Taking a close look into the figure 3.10, it is possible to perceive how the data is displayed.

When the Monitoring tab is open, the Controller fetches all the information from the Database

and displays it in the interface. Once a submit button is pressed, the Controller fetches the data

chosen by the user and prints it also the in graphical interface.

3.2 Architecture & System components 39

:GUI :DB

Interface

:Controller

Controller Database

Send all retrieved data

Fetch Data

Retrieve Data

Submit to fetch certain data
Fetch submited data

Retrieve Data

Send retrieved data

Figure 3.10: UML Monitoring Sequence

3.2.4 Update Functionality

The updating sequence can be seen in the figure 3.11. In here there is a loop of every ten

seconds. The Core component fetches the number of existing devices in the system and then

creates the same number of threads. Each thread is responsible to update each device. These

threads check the status of Node-RED in the device and fetch the last time of when the service

was run. Once this information is attained, they update the Database.

loop

:Core :DB

Fetch number of devices

Updater

Retrieve n of devices
:Thread

new

:Thread
new

:Thread
new

:Devices

Target Devices

Check Status and last time executed

Check Status and last time executed

Check Status and last time
executed

Retrieve Status and last time executed
Update DB

Retrieve Status and last time
executed

Retrieve Status and last
time executed

Update DB

Update DB

Figure 3.11: UML Update Sequence

40 System Implementation

3.2.5 Deploy Functionality

In the Deploy functionality happens two sequence depending on what the user wants to deploy.

If it is a device deployment, the Controller, Database and GUI start a sequence, if it is a flow

deployment, the edge device is added to the equation.

3.2.5.1 Deploy Device Functionality

In the device deployment, once the user submits a name and URL in the GUI, the information

is sent to the Controller. This component communicates with the Database to check if a

device with the same name or same URL exists. If it doesn’t, it saves the information and sends a

deployment confirmation to the GUI, if it does, it sends a message saying that there is also a device

with the same name or same URL. This sequence can be seen in the figure 3.12.

frame

:GUI :DB

Input Device name and URL

User input

:Controller

Check if URL and name do not exist in the DB

Reply

[If doesn't exist]
Save device information

Deploy confirmation

Error message
[else]

Control Class Database

Figure 3.12: UML Deploy Device Sequence

3.2.5.2 Deploy Flow Functionality

In the flow deployment, the user submits the desired flow name, the service, the device where

he wants to deploy and the port of the device. Once this information is submitted, the controller

checks if this information already exists in the Database.

If it exists sends a message saying to swap the submitted data, if it doesn’t this component

checks the connection with the device.

If the connection is OK, POSTS a flow in the device and the Node-RED in the device replies

with the ID of the created flow. Then the Controller generates random IDs for each node in

the flow and sends a HTTP PUT into the device with the desired service flow. Once the device

replies with everything OK, the Controller saves the information in the Database and sends

a message to the GUI confirming the flow was correctly deployed.

3.2 Architecture & System components 41

If the connection with the device fails, the Controller sends a message saying the Node-

RED in the device is down. The sequence can be seen in the figure 3.13.

alt

alt

:GUI :DB

Input Flow name, Service, Device to deploy and its port

User input

:Controller

Check if flow name does not exist in the DB

Reply

[If doesn't exist]

[else]

:Device

Target Device

Check device's connection

Give connection response code

[If code == 200]
POST flow in device

Return flow ID

PUT flow in device

Reply
Save in DB

Deploy confirmation

Reply (Device unreachable)

Reply (already exists name)[else]

Control Class Database

Figure 3.13: UML Deploy Flow Sequence

3.2.6 Edit Functionality

In the edit functionality it is possible to either edit the flow or the device. The edit device has

the Controller, the GUI and the Database component communicating in a sequence. The

edit flow adds a new component in the sequence that is the edge device.

3.2.6.1 Edit Device Functionality

In the edit device the user select which device wants to edit, selects a new name and submits

this information. The GUI sends this data to the Controller, then the data associated to the

device is fetch from the Database and then updates the information with a new device name and

send the confirmation to the GUI. This sequence can be seen in the figure 3.14.

42 System Implementation

:GUI :DB

Interface

:Controller

Controller Database

Confirm edit

Select name

Submit
Fetch Flow data

Retrieve Data

Update Data

Figure 3.14: UML Edit Device Sequence

3.2.6.2 Edit Flow Functionality

The edit flow proceeds the same way at start. The new data is submitted from the GUI to the

Controller, the Controller fetches the information from that flow, checks the connection

with the device where this flow is deployed and if the connection is down sends a message to the

GUI warning the user that the service is down. If the connection is up, it edits the flow data in

the device, updates the information in the Database and sends the confirmation to the GUI. The

sequence can be seen in the figure 3.15.

alt

:GUI :DB

Interface

:Controller

Controller Database

Confirm edit

Select name
and service

Submit

:Device

Target Device

Fetch Flow data

Retrieve Data

Check Connection

Reply

Edit information in device

Reply

Update Data

Error message

if [Response == 200]

else

Figure 3.15: UML Edit Flow Sequence

3.2 Architecture & System components 43

3.2.7 Delete Functionality

Like the edit, the delete option can either dissociate a device or delete a flow. Both choices use

four components in their communicating sequence. The GUI, Controller, edge device and

Database. Both sequences are similar.

3.2.7.1 Delete Flow Functionality

In the flow one, it is selected a flow and once the information is submitted, the Controller

fetches the information associated to the chosen flow. Then it checks if the Node-RED in the

device is working fine. If it is, it sends a HTTP Delete into the device and receives a reply

confirming the delete and deletes the entry in the Database. The confirmation is redirected

to the GUI, so the user knows the flow was deleted. If the status of the device is not OK, the

GUI prints an error message warning the user. Check figure 3.16 in order to see the flow delete

sequence.

alt

:GUI

Select Flow

User Input

:Controller

Control Class

If [Response == 200]

Check Device Connection

Reply

Delete Flow

:Device

Target Device

Submit

Reply

Confirm Delete

:DB

Database

Delete database entries

Request data from the flow

Reply

else

Error Message

Figure 3.16: UML Delete Flow Sequence

44 System Implementation

3.2.7.2 Delete Device Functionality

In the device delete, the sequence is almost the same, the only difference is that the device

is deleted from the Database after deleting all existing flows inside it. It is possible to see the

sequence in the figure 3.17.

alt

:GUI

Select Device

User Input

:Controller

Control Class

If [Response == 200]

Check Device Connection

Reply

Delete all flows in device

:Device

Target Device

Submit

Reply

Confirm Delete

:DB

Database

Delete entries in database

Request data from the device

Reply

else

Error Message

Figure 3.17: UML Delete Device Sequence

3.2.8 Control Functionality

In the Control functionality, there is only one sequence. After the user selects the device, port

and control option (Start or Stop), submits it. The GUI communicates with the Controller and

this component has three options. If the service is already running and the user decides to start it,

it is print an error message in the GUI warning the user. The same goes if the service is down.

If the service is running and the user decides to stop it, the Controller sends a SSH (Secure

Shell) command to the device, killing the Node-RED process ID of that device. If the service is

stopped and the user decides to start it, it sends a SSH command starting the Node-RED. In figure

3.18 it is possible to see this sequence.

3.2 Architecture & System components 45

alt

:GUI

Select device, port

and option (Start/Stop)

User input

:Device

[If control == Start]

Start Command

[If control == Stop]

Target Device

Reply

Stop Command

Reply

[else]

:Controller

Control Class

Confirm Start

Confirm Stop

Error Message

Submit

Figure 3.18: UML Control Sequence

46 System Implementation

3.3 Interface with Node-RED

Node-RED possesses an API that allows the user to communicate with Node-RED using its

endpoints. The way to communicate with this application is by the use of HTTP protocol. It is

required to have the device URL and port before choosing the method and the endpoint.

In the figure 3.19 is it possible to see a list of all methods that the Node-RED API provides.

Endpoint Description
 /auth/loginGET

 /auth/tokenPOST

 /auth/revokePOST

 /settingsGET

 /flowsGET

/flowsPOST

 /flowPOST

 /flow/:idGET

 /flow/:idPUT

 /flow/:idDELETE

 /nodesGET

 /nodesPOST

 /nodes/:moduleGET

 /nodes/:modulePUT

 /nodes/:moduleDELETE

 /nodes/:module/:setGET

 /nodes/:module/:setPUT

Get the active authentication scheme

Exchange credentials for access token

Revoke an access token

Get the runtime settings

Set the active flow configuration

Add a flow to the active configuration

Get an individual flow configuration

Update an individual flow configuration

Delete an individual flow configuration

Get a list of the installed nodes

Install a new node module

Get a node module’s information

Enable/Disable a node module

Remove a node module

Get a node module set information

Enable/Disable a node set

Get the active flow configuration

Figure 3.19: Node-RED API Methods

3.3.1 Communicating with Node-RED

In order to deploy a flow there is the need to input JSON code using the endpoints previously

mentioned above. The Controller component possesses a class called JSON_strings that gen-

erates the necessary code to be posted in the endpoint once the generate flow button is submitted.

In the figure 3.20 it is possible to see the format of the JSON code required to generate the flow.

3.3 Interface with Node-RED 47

[
 {
 "id": "b6f84af62f886671",
 "type": "inject",
 "z": "a36b4a3b94c6d8c4",
 "name": "",
 "props": [
 {
 "p": "payload"
 },
 {
 "p": "topic",
 "vt": "str"
 }
],
 "repeat": "",
 "crontab": "",
 "once": false,
 "onceDelay": 0.1,
 "topic": "",
 "payload": "",
 "payloadType": "date",
 "x": 320,
 "y": 80,
 "wires": [
 []
]
 }
]

Figure 3.20: Small example of JSON code

When creating a flow, it is required to access the endpoint /flow with a POST method as in

figure 3.21.

 192.168.107.152 : 1880 / flow

Device URL EndpointPort

POST

Method

Figure 3.21: URL for POST method

If the POST is successful, this framework returns the ID of the created flow. The response can

be seen in the figure 3.22.

 {
 "id": "51638b50621f7dd3",
 }

Figure 3.22: Response from Node-RED

Once the LEM tool receives the ID of the flow, it uses a PUT method to inject the JSON code

containing all the details of the flow that the user desires to deploy. In the figure 3.23 it is possible

to see the endpoint that the user needs to access in order to deploy the flow properly.

48 System Implementation

192.168.107.152 : 1880 / flow /51638b50621f7dd3

Device URL EndpointPort

PUT

Method Flow ID

Figure 3.23: URL for PUT method

If the user needs the JSON code of all flows, the URL for the HTTP GET method is in the

figure 3.24, but in order to attain the information of only one flow the URL is represented in 3.25.

192.168.107.152: 1880 / flows

Device URL EndpointPort

GET

Method

Figure 3.24: GET method for JSON string of all existing flows

192.168.107.152 : 1880 / flow / 51638b50621f7dd3

Device URL EndpointPort

GET

Method Flow ID

Figure 3.25: GET method for JSON string of a specific flow

3.3.2 Limitations of Node-RED

Even thought Node-RED is suited to work with flows, there are some limitations to it.

1. This framework does not allow the user to force a specific ID on a flow;

2. The debugger does not pass information outside the Node-RED;

3. It is not possible to import a new flow code if there is one already with the same ID on a

node;

4. If the PUT method is used incorrectly, the framework completely bugs and does not allow

the user to delete the bugged flow manually;

Since it is not possible to force an ID for a flow, the coder needs to take this point into consid-

eration. When using the method POST in the URL seen in the figure 3.21, the response from the

Node-RED is the random generated ID. By having this ID, it is now possible to generate random

IDs to all the nodes in the flow. The back end code takes the flow ID and adds five random char-

acters in front it for each node. Then it used the PUT method seen in the figure 3.23 to inject the

JSON code in Node-RED. The node ID structure can be seen in the figure 3.26.

3.3 Interface with Node-RED 49

51638b50621f7dd3.PX1Cl

FLOW ID Random
Generated ID

Figure 3.26: Node-RED Node ID

Each service has its own code that can be imported, but there is the need to tweak the JSON

string a bit, so it does not repeat any node ID, since the PUT methods does not check if the node

IDs already exist, to avoid the problem mentioned in the point four the limitations.

As mentioned, the debugger does not pass any type of information outside the framework.

There are two ways of retrieving the value of any variable of the Node-RED. Write the value into

a text file and store it in the device or convert all variables into global variables, to be accessible to

any flow and POST this variable in a new URL.

In this project, it was opted to use the POST way, in order to create flexibility in the commu-

nication. Even thought the goal of the project does not focus on the data that is being worked in

the flow, it was required to use this POST method to retrieve the time of when the service triggers.

Every time the executes, this timer is posted in an URL that can be seen in the figure 3.27.

192.168.107.152 : 1880 / 51638b50621f7dd3 / info

Device URL Flow IDPort Assigned
terminology

Figure 3.27: URL with the last time the service was executed

3.3.3 Monitor Node-RED flows

In order to monitor a flow with the LEM tool, the system requires two sets of three nodes

(figure 3.28). These nodes provide support by posting the data contained in the Template node

in a HTML page.

Once these two sets are deployed, the LEM tool uses a HTTP GET method in order to fetch

the data that is visible in the URLs. The URLs that need to be accessed can be seen in the figures

3.27 and 3.29.

Figure 3.28: Set of nodes

50 System Implementation

192.168.107.152 : 1880 /51638b50621f7dd3 / status

Device URL Assigned
Terminology

Port Flow ID

Figure 3.29: URL with the flow status

These sets are composed by two nodes that are responsible for the HTTP connection with the

browser page, which are the two on the edges, and one node that has the information which is the

one in the middle. The middle node is the Template which contains the information that wants

to be passed, in the figure 3.30 it can be seen what information is being passed in the URL/info

(looking closely, it is possible to see that the variable is global)

Figure 3.30: Information contained in the timer Template node

3.3 Interface with Node-RED 51

In order to know the time of execution and the status, these two sets need to exist in the flow,

otherwise the LEM tool does not track the execution time nor the status of the flow. Does not

really matter how another framework performs, as long it is possible to provide an access point to

their status and time of execution.

52 System Implementation

Chapter 4

Validation

This chapter aims to explain the results attained with the developed tool as well as their valida-

tion. The section 4.1.2 explains how the developed project integrates the ML pipelines developed

under the MIRAI project. The section 4.3 presents how the devices are managed as well as their

response time.

4.1 Integration of the pipelines developed by MIRAI

The pipeline developed by MIRAI captures the traffic in the network and decides if the traffic

is normal or not. In order to make this flow work it is required to have the following requisites in

the target device, Python2 with numpy library, Node-RED and Tstat installed.

4.1.1 Flow Description

The developed pipeline purpose is to capture network traffic and make decisions based on

machine learning models, explained in detail in [42]. The pipeline can be seen in the figure 4.1,

where it can be seen that is composed by fourteen nodes, which are:

• 5 Debuggers;

• 2 Execution;

• 1 Watch;

• 2 Function;

• 2 Inject;

• 2 Change.

53

54 Validation

The debuggers only exist for the user to look at the console while the flow is running in order

to get feedback in the Node-RED platform.

The Execution nodes are the most important ones, composed by the Tstat and the Python2

nodes. The Tstat calls the Tstat command to generate files that contain network traffic information

in CSV (comma-separated values) files. Each line in the file represents a network entry containing

features used in inference and training models.

The Python2 executes a python script that is reads line by line the traffic logs and runs a ML

training model outputting an inference that provides information to whether the traffic is malicious

or normal. An example of the output of this node can be seen in the figure B in the appendix.

The watch node is providing a path to where the traffic logs are allocated and checks if the

folder suffers changes, in this case the folder is at /tmp/tgen. If a new log file is created by Tstat, the

watch node will detect it. This value will be read by one of the function nodes (watch /tmp/tgen).

The function nodes are of different importance. One of them just converts the inference value

into a string, enabling the user to see the output in the Node-RED console. The other one watches
if there is any modification in the logs, filtering the changed information and passing it to the

python node.

The change nodes exist to kill the process and convert the time of execution into a global

variable.

The inject nodes release the command to run or stop the flow.

In the figure 4.1, it is possible to see the pipeline developed under the MIRAI project.

Figure 4.1: ML model pipeline developed by MIRAI

4.1.2 Integration with LEM tool

As previously mentioned in the section 3.3, in order to enable the monitoring of flows in the

devices by LEM tool is it required to implement the two sets of nodes.

In order to deploy this flow, it was required to fetch its JSON code, edit it, in order to cre-

ate random IDs for the flow and for each node and add the two sets of three nodes in order to

communicate with the flow via HTTP.

In the figure 4.2 it is possible to see the integration of the two sets in the pipeline developed

under the MIRAI project.

4.2 Validation of Deploy and Delete Functionalities 55

Figure 4.2: Adapted pipeline for monitoring

4.2 Validation of Deploy and Delete Functionalities

We validated the deployment and delete functionalities of a flow in a Raspberry.

The setup that was used was a laptop running the LEM tool and the target device was a

Raspberry Pi with Node-RED installed. Both devices were connected to the same network. In

figure 4.3 it is possible to see the used setup.

Personal PC
Local Router

Raspberry PI

Figure 4.3: Raspberry Pi Setup

In this target device all the functionalities associated with flows were validated. In the figure

4.4 it is possible to see the Node-RED response after the LEM tool forces a flow to be created in

its environment.

56 Validation

Figure 4.4: Node-RED response to Deploy

In the figure 4.5 shows the Node-RED response to a flow delete.

Figure 4.5: Node-RED response to Delete

The edit functionality response (figure 4.6) can be seen in the terminal as a flow has been

updated.

4.2 Validation of Deploy and Delete Functionalities 57

Figure 4.6: Node-RED response to Update

The Start and Stop functionalities, as well as the device delete/deploy are seen only in the

GUI as a response message, since the terminal does not give any type of response to these. In the

figures 4.7 - 4.10 it is possible to see the printed messages from the developed interface validating

the tool.

Figure 4.7: Interface response to Edit

Figure 4.8: Interface response to Stop

Figure 4.9: Interface response to Start

58 Validation

Figure 4.10: Interface response to Device Disassociation

With these tests it was possible to validate the LEM tool, since every functionality is working

without any problem and it was deployed on an edge device.

4.3 Monitoring - Update Time of Flow Status

These tests check how long it takes for the tool to update all devices’ information. In order to

test scalability, the tests go from one to four devices and from one to twenty flows per device. It is

required to have a NTP (Network Time Protocol) to sync both machines. The way to check if this

protocol is running is by using a command in the terminal called timedatectl. In the figure

4.11 it is possible to see the status of the protocol inside the device.

NTP Active

Figure 4.11: NTP Status in device

4.3.1 Local Setup Results

In this test the laptop with the server was using the same network, which allowed faster re-

sponses than the previous one. The laptop was connected via wireless to the local network and

communicated with a desktop which was connected to the same network via Ethernet. This target

device had four VMs running, simulating multiple devices. This setup can be seen in the figure

4.12.

4.3 Monitoring - Update Time of Flow Status 59

Personal PC
Local Router Local PC

4 Virtual Machines

Figure 4.12: local Setup

Impact of Multiple Devices

We evaluate the impact of having one or multiple devices has on the status collection time of

the LEM tool. In the figures from 4.13 to 4.17 it is possible to see the time differences.

Figure 4.13: Local Setup - Multiple Devices with 1 Flow

60 Validation

Figure 4.14: Local Setup - Multiple Devices with 5 Flows

Figure 4.15: Local Setup - Multiple Devices with 10 Flows

4.3 Monitoring - Update Time of Flow Status 61

Figure 4.16: Local Setup - Multiple Devices with 15 Flows

Figure 4.17: Local Setup - Multiple Devices with 20 Flows

The responses obtained from this test indicates that having one device or four can originate a

variety of outputs. It is clear that more flows lead to higher response time (observe medians across

Figures 4.13 to 4.17). This may be caused (or not) by higher load in the VM-hosting desktop; or

Network traffic volume becomes larger as more flows exist, leading to increased delay.

Interestingly enough, an increase in the number of devices may not necessarily lead to a higher

response due to the parallel thread approach of the LEM tool to probe the flow status in different

62 Validation

devices.

Impact of Number of Flows

The quantity of existing flows in a device causes an impact in the time response of the LEM

tool. If the device possesses multiple flows (figures 4.18 - 4.19) it increases the monitoring time

exponentially.

Figure 4.18: Local Setup - 1 Device with Multiple Flows

Figure 4.19: Local Setup - 4 Devices with Multiple Flows

4.3 Monitoring - Update Time of Flow Status 63

As it can be seen in the previous figures, there is a different impact whether you are using 10

or 15 flows. There is a huge leap in time response.

Comparing medians in Fig. 4.18 and Fig.4.19, we observe that the increase of number of

machines leads to some difference in response time, but with inferior impact than that of the

increase of flows.

4.3.2 Remote Setup Results

In this test, the server was located far from the devices with a more or less 24 Km distance

in a straight line. The laptop with where the LEM tool was running, was connected to the user’s

Remote internet, which connected to the local network via VPN (Virtual Private Network) to gain

access to the local computer which was connected via Ethernet. The target device was running

four VMs in order to simulate different devices. The setup can be seen in the figure 4.20.

Personal PC

Remote Router Local Router

Local PC

4 Virtual Machines

Figure 4.20: Remote Setup

The response time of the LEM tool with the increase of flows. It was tested for one and four

connected devices. Possible causes are the same as mentioned before (network traffic volume

becomes larger as more flows exist; more flows cause higher load in the VM-hosting desktop).

In figures 4.21 and 4.22 it is possible to see the response times with the increase of flows in

each device.

64 Validation

Figure 4.21: Remote Setup - 1 Device with Multiple Flows

Figure 4.22: Remote Setup - 4 Devices with Multiple Flows

Looking into the tables in the appendix A it is possible to see that the time responses of the

local and remote tests behave similar in the performed tests. The main difference is the time

4.3 Monitoring - Update Time of Flow Status 65

difference between these two, being the remote test the slowest one.

66 Validation

Chapter 5

Conclusion

The need of workflows in edge devices has grown deeply in the last few years in order to

avoid storage and computational issues. With this, the deployment of multiple IoT devices began

to take place in the industrial environment. Controlling and monitoring a low amount of devices

is easily done, but have a tool that is scalable, enabling the large scale control needs a lot of

testing. Therefore this dissertation was born, with the goal of building a large scale monitoring

and controlling tool of workflows in deployed edge devices.

MIRAI wants to solve some known problems (section 2.3.3 with the use of ML models. These

models are running in workflows that are deployed in edge devices. This is where the LEM tool

comes into play, to track all the workflows in each device associated to the system. This tool

provides some features such as monitoring, deploy and control of the devices and flows.

In the literature review it was possible to study the frameworks that could suit the development

of this tool was done. It was also possible to understand a bit more about how ML models work

and how the user of the developed tool could gain visual access to the controlling system. System

architecture and technological decisions were made, that provided the basis for the implementation

stage with Node-RED ending up to be the used framework.

Once the development of the LEM tool was completed, tests were performed. The tool ran in

a laptop while communicating with a Raspberry and a desktop that was simulating four different

computers with the use of VMs. The Raspberry was a nice choice to validate the tool. The local

setup as the graphs show, has fast responses with a low quantity of flows in each device, but if this

value is increased, the process becomes slower. For last the remote setup behaved similarly to the

local setup but was overall slower, this is due to the fact that both machines did not share the same

network.

67

68 Conclusion

5.1 Future Work

Even though the project was successfully implemented there is still space to grown. There are

some features that could be added to the tool to become more robust.

Auto pairing: Every time a device is associated with the LEM tool, the tool could be able

to read if there is already any type of flow deployed in the device and fetch the data, to start

monitoring.

Frameworks: Node-RED was the used framework for this project. It would be interesting to

see the tool controlling the edge devices while these were running different frameworks.

Enabling User: Adding a feature where the user decides to create a new service, write down

the required code on the tool and deploy it to the device.

Reactive Interface: It would be a great improvement to the tool to make the interface respon-

sive instead of having to refresh to see the updated information.

To conclude, this project still has a lot of things that can be improved to become a more solid

tool. Bear in mind, that anything added to the tool should be critically tested so it does not interfere

with what already exists.

Appendix A

Response Times Tables

A.1 Local Results per Flows

A.1.1 1 Flow on n Devices

Table A.1: Local Setup - Response Time 1 Flow with 1 Device

n Start time Stop time Response Time (ms)
1 2023-02-08 19:43:54.065 2023-02-08 19:43:54.102 37
2 2023-02-08 19:44:05.068 2023-02-08 19:44:05.106 38
3 2023-02-08 19:44:27.072 2023-02-08 19:44:27.136 64
4 2023-02-08 19:44:38.075 2023-02-08 19:44:38.101 26
5 2023-02-08 19:44:49.077 2023-02-08 19:44:49.101 24
6 2023-02-08 19:45:00.079 2023-02-08 19:45:00.111 32
7 2023-02-08 19:45:11.082 2023-02-08 19:45:11.118 36
8 2023-02-08 19:45:33.086 2023-02-08 19:45:33.123 37
9 2023-02-08 19:45:44.089 2023-02-08 19:45:44.121 32
10 2023-02-08 19:46:06.093 2023-02-08 19:46:06.119 26
11 2023-02-08 19:46:39.107 2023-02-08 19:46:39.134 27
12 2023-02-08 19:46:50.109 2023-02-08 19:46:50.154 45
13 2023-02-08 19:47:01.111 2023-02-08 19:47:01.146 35
14 2023-02-08 19:47:12113 2023-02-08 19:47:12.149 36

69

70 Response Times Tables

Table A.2: Local Setup - Response Time 1 Flow with 2 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 19:39:47.969 2023-02-08 19:39:48.021 52
2 2023-02-08 19:39:58.972 2023-02-08 19:39:59.024 52
3 2023-02-08 19:40:09.975 2023-02-08 19:40:10.035 60
4 2023-02-08 19:40:20.977 2023-02-08 19:40:21.015 38
5 2023-02-08 19:40:42.982 2023-02-08 19:40:43.020 38
6 2023-02-08 19:40:53.984 2023-02-08 19:40:54.035 51
7 2023-02-08 19:41:04.986 2023-02-08 19:41:05.023 37
8 2023-02-08 19:41:15.988 2023-02-08 19:41:16.024 36
9 2023-02-08 19:41:37.995 2023-02-08 19:41:38.049 54
10 2023-02-08 19:41:48.998 2023-02-08 19:41:49.034 36
11 2023-02-08 19:42:00.000 2023-02-08 19:42:00.047 47
12 2023-02-08 19:42:11.004 2023-02-08 19:42:11.059 55
13 2023-02-08 19:42:33.010 2023-02-08 19:42:33.060 50
14 2023-02-08 19:42:44.016 2023-02-08 19:42:44.053 37

Table A.3: Local Setup - Response Time 1 Flow with 3 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 19:34:42.345 2023-02-08 19:34:42.390 45
2 2023-02-08 19:34:53.349 2023-02-08 19:34:53.392 43
3 2023-02-08 19:35:04.353 2023-02-08 19:35:04.397 44
4 2023-02-08 19:35:15.356 2023-02-08 19:35:15.425 69
5 2023-02-08 19:35:37.366 2023-02-08 19:35:37.412 46
6 2023-02-08 19:35:48.371 2023-02-08 19:35:48.411 40
7 2023-02-08 19:35:59.375 2023-02-08 19:35:59.414 39
8 2023-02-08 19:36:10.380 2023-02-08 19:36:10.424 44
9 2023-02-08 19:36:32.395 2023-02-08 19:36:32.440 45
10 2023-02-08 19:36:43.398 2023-02-08 19:36:43.435 37
11 2023-02-08 19:36:54.400 2023-02-08 19:36:54.451 51
12 2023-02-08 19:37:05.410 2023-02-08 19:37:05.452 42
13 2023-02-08 19:37:16.414 2023-02-08 19:37:16.478 64
14 2023-02-08 19:37:38.422 2023-02-08 19:37:38.477 55

A.1 Local Results per Flows 71

Table A.4: Local Setup - Response Time 1 Flow with 4 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 16:14:43.448 2023-02-08 16:14:43.501 53
2 2023-02-08 16:15:14.454 2023-02-08 16:15:14.527 73
3 2023-02-08 16:15:45.460 2023-02-08 16:15:45.540 80
4 2023-02-08 16:16:16.463 2023-02-08 16:16:16.556 93
5 2023-02-08 16:16:47.467 2023-02-08 16:16:47.534 67
6 2023-02-08 16:17:49.482 2023-02-08 16:17:49.557 75
7 2023-02-08 16:18:20.484 2023-02-08 16:18:20.567 83
8 2023-02-08 16:18:51.491 2023-02-08 16:18:51.568 77
9 2023-02-08 16:19:22.496 2023-02-08 16:19:22.550 54
10 2023-02-08 16:19:53.499 2023-02-08 16:19:53.578 79
11 2023-02-08 16:20:24.508 2023-02-08 16:20:24.617 109
12 2023-02-08 16:22:28.592 2023-02-08 16:22:28.703 111
13 2023-02-08 16:23:30.635 2023-02-08 16:23:30.722 87
14 2023-02-08 16:24:01.647 2023-02-08 16:24:01.724 77

A.1.2 5 Flow on n Devices

Table A.5: Local Setup - Response Time 5 Flows with 1 Device

n Start time Stop time Response Time (ms)
1 2023-02-08 18:09:23.976 2023-02-08 18:09:24.133 157
2 2023-02-08 18:09:45.986 2023-02-08 18:09:46.131 145
3 2023-02-08 18:09:56.989 2023-02-08 18:09:57.145 156
4 2023-02-08 18:10:07.991 2023-02-08 18:10:08.172 181
5 2023-02-08 18:10:29.995 2023-02-08 18:10:30.152 157
6 2023-02-08 18:10:40.997 2023-02-08 18:10:41.160 163
7 2023-02-08 18:10:52.001 2023-02-08 18:10:52.188 187
8 2023-02-08 18:11:03.005 2023-02-08 18:11:03.132 127
9 2023-02-08 18:11:14.007 2023-02-08 18:11:14.165 158
10 2023-02-08 18:11:25.009 2023-02-08 18:11:25.133 124
11 2023-02-08 18:11:36.011 2023-02-08 18:11:36.147 136
12 2023-02-08 18:11:58.015 2023-02-08 18:11:58.176 161
13 2023-02-08 18:12:09.018 2023-02-08 18:12:09.200 182
14 2023-02-08 18:12:42.024 2023-02-08 18:12:42.179 155

72 Response Times Tables

Table A.6: Local Setup - Response Time 5 Flows with 2 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:02:12.785 2023-02-08 18:02:12.961 176
2 2023-02-08 18:02:23.787 2023-02-08 18:02:23.925 138
3 2023-02-08 18:02:34.791 2023-02-08 18:02:34.955 164
4 2023-02-08 18:02:45.794 2023-02-08 18:02:45.953 159
5 2023-02-08 18:02:56.797 2023-02-08 18:02:56.923 126
6 2023-02-08 18:03:07.799 2023-02-08 18:03:07.968 169
7 2023-02-08 18:03:18.801 2023-02-08 18:03:18.947 146
8 2023-02-08 18:03:29.803 2023-02-08 18:03:29.956 153
9 2023-02-08 18:03:40.806 2023-02-08 18:03:40.985 179
10 2023-02-08 18:03:51.808 2023-02-08 18:03:51.933 125
11 2023-02-08 18:04:02.814 2023-02-08 18:04:02.958 144
12 2023-02-08 18:04:13.818 2023-02-08 18:04:13.949 131
13 2023-02-08 18:04:46.823 2023-02-08 18:04:46.963 140
14 2023-02-08 18:04:57.825 2023-02-08 18:04:57.998 173

Table A.7: Local Setup - Response Time 5 Flows with 3 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 17:57:43.098 2023-02-08 17:57:43.285 187
2 2023-02-08 17:57:54.105 2023-02-08 17:57:54.293 188
3 2023-02-08 17:58:05.108 2023-02-08 17:58:05.288 180
4 2023-02-08 17:58:16.116 2023-02-08 17:58:16.299 183
5 2023-02-08 17:58:27.119 2023-02-08 17:58:27.267 148
6 2023-02-08 17:58:38.122 2023-02-08 17:58:38.304 182
7 2023-02-08 17:58:49.127 2023-02-08 17:58:49.303 176
8 2023-02-08 17:59:11.133 2023-02-08 17:59:11.284 151
9 2023-02-08 17:59:22.136 2023-02-08 17:59:22.322 186
10 2023-02-08 17:59:55.148 2023-02-08 17:59:55.314 166
11 2023-02-08 18:00:06.152 2023-02-08 18:00:06.336 184
12 2023-02-08 18:00:28.158 2023-02-08 18:00:28.350 192
13 2023-02-08 18:00:39.160 2023-02-08 18:00:39.303 143
14 2023-02-08 18:00:50.150 2023-02-08 18:00:50.300 150

A.1 Local Results per Flows 73

Table A.8: Local Setup - Response Time 5 Flows with 4 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 17:53:02.050 2023-02-08 17:53:02.223 173
2 2023-02-08 17:53:35.089 2023-02-08 17:53:35.231 142
3 2023-02-08 17:53:46.095 2023-02-08 17:53:46.286 191
4 2023-02-08 17:53:57.115 2023-02-08 17:53:57.282 167
5 2023-02-08 17:54:08.118 2023-02-08 17:54:08.281 163
6 2023-02-08 17:54:19.123 2023-02-08 17:54:19.328 205
7 2023-02-08 17:54:30.127 2023-02-08 17:54:30.312 185
8 2023-02-08 17:54:41.132 2023-02-08 17:54:41.305 173
9 2023-02-08 17:54:52.147 2023-02-08 17:54:52.302 155
10 2023-02-08 17:55:14.153 2023-02-08 17:55:14.317 164
11 2023-02-08 17:55:25.157 2023-02-08 17:55:25.349 192
12 2023-02-08 17:55:36.161 2023-02-08 17:55:36.325 164
13 2023-02-08 17:55:58.180 2023-02-08 17:55:58.375 195
14 2023-02-08 17:56:09.182 2023-02-08 17:56:09.320 138

A.1.3 10 Flows on n Devices

Table A.9: Local Setup - Response Time 10 Flows with 1 Device

n Start time Stop time Response Time (ms)
1 2023-02-08 18:37:31.421 2023-02-08 18:37:31.689 268
2 2023-02-08 18:37:42.424 2023-02-08 18:37:42.672 248
3 2023-02-08 18:37:53.426 2023-02-08 18:37:53.667 241
4 2023-02-08 18:38:15.430 2023-02-08 18:38:15.666 236
5 2023-02-08 18:38:48.436 2023-02-08 18:38:48.715 279
6 2023-02-08 18:39:10.440 2023-02-08 18:39:10.720 280
7 2023-02-08 18:39:21.442 2023-02-08 18:39:21.688 246
8 2023-02-08 18:39:32.444 2023-02-08 18:39:32.693 249
9 2023-02-08 18:39:43.447 2023-02-08 18:39:43.687 240
10 2023-02-08 18:39:54.452 2023-02-08 18:39:54.708 256
11 2023-02-08 18:40:16.456 2023-02-08 18:40:16.690 234
12 2023-02-08 18:40:27.457 2023-02-08 18:40:27.687 230
13 2023-02-08 18:40:49.460 2023-02-08 18:40:49.680 220
14 2023-02-08 18:41:11.464 2023-02-08 18:41:11.699 235

74 Response Times Tables

Table A.10: Local Setup - Response Time 10 Flows with 2 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:32:52.958 2023-02-08 18:32:53.210 252
2 2023-02-08 18:33:14.962 2023-02-08 18:33:15.235 273
3 2023-02-08 18:33:36.967 2023-02-08 18:33:37.203 236
4 2023-02-08 18:33:47.981 2023-02-08 18:33:48.213 232
5 2023-02-08 18:33:58.989 2023-02-08 18:33:59.255 266
6 2023-02-08 18:34:09.991 2023-02-08 18:34:10.249 258
7 2023-02-08 18:34:20.993 2023-02-08 18:34:21.202 209
8 2023-02-08 18:34:54.012 2023-02-08 18:34:54.259 247
9 2023-02-08 18:35:16.015 2023-02-08 18:35:16.232 217
10 2023-02-08 18:35:27.017 2023-02-08 18:35:27.237 220
11 2023-02-08 18:35:38.019 2023-02-08 18:35:38.286 267
12 2023-02-08 18:35:49.021 2023-02-08 18:35:49.238 217
13 2023-02-08 18:36:00.022 2023-02-08 18:36:00.308 286
14 2023-02-08 18:36:11.023 2023-02-08 18:36:11.248 225

Table A.11: Local Setup - Response Time 10 Flows with 3 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:28:23.896 2023-02-08 18:28:24.219 323
2 2023-02-08 18:28:56.910 2023-02-08 18:28:57.161 251
3 2023-02-08 18:29:07.918 2023-02-08 18:29:08.207 289
4 2023-02-08 18:29:29.940 2023-02-08 18:29:30.215 275
5 2023-02-08 18:29:40.942 2023-02-08 18:29:41.193 251
6 2023-02-08 18:30:02.960 2023-02-08 18:30:03.226 266
7 2023-02-08 18:30:13.962 2023-02-08 18:30:14.205 243
8 2023-02-08 18:30:24.965 2023-02-08 18:30:25.219 254
9 2023-02-08 18:30:35.969 2023-02-08 18:30:36.188 219
10 2023-02-08 18:30:46.971 2023-02-08 18:30:47.195 224
11 2023-02-08 18:30:57.976 2023-02-08 18:30:58.191 215
12 2023-02-08 18:31:19.981 2023-02-08 18:31:20.223 242
13 2023-02-08 18:31:30.983 2023-02-08 18:31:31.176 193
14 2023-02-08 18:31:41.985 2023-02-08 18:31:42.197 212

A.1 Local Results per Flows 75

Table A.12: Local Setup - Response Time 10 Flows with 4 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:17:56.988 2023-02-08 18:17:57.211 223
2 2023-02-08 18:18:52.025 2023-02-08 18:18:52.264 239
3 2023-02-08 18:19:36.034 2023-02-08 18:19:36.184 150
4 2023-02-08 18:19:47.036 2023-02-08 18:19:47.217 181
5 2023-02-08 18:19:58.040 2023-02-08 18:19:58.205 165
6 2023-02-08 18:20:09.042 2023-02-08 18:20:09.197 155
7 2023-02-08 18:20:20.045 2023-02-08 18:20:20.212 167
8 2023-02-08 18:20:31.047 2023-02-08 18:20:31.244 197
9 2023-02-08 18:20:42.049 2023-02-08 18:20:42.233 184
10 2023-02-08 18:20:53.052 2023-02-08 18:20:53.264 212
11 2023-02-08 18:21:04.054 2023-02-08 18:21:04.223 169
12 2023-02-08 18:21:15.056 2023-02-08 18:21:15.216 160
13 2023-02-08 18:21:26.058 2023-02-08 18:21:26.244 186
14 2023-02-08 18:21:37.061 2023-02-08 18:21:37.262 201

A.1.4 15 Flows on n Devices

Table A.13: Local Setup - Response Time 15 Flows with 1 Device

n Start time Stop time Response Time (ms)
1 2023-02-08 18:58:55.227 2023-02-08 18:58:55.582 355
2 2023-02-08 18:59:17.231 2023-02-08 18:59:17.587 356
3 2023-02-08 18:59:39.236 2023-02-08 18:59:39.515 279
4 2023-02-08 18:59:50.238 2023-02-08 18:59:50.606 368
5 2023-02-08 19:00:01.240 2023-02-08 19:00:01.593 353
6 2023-02-08 19:00:12.242 2023-02-08 19:00:12.590 348
7 2023-02-08 19:00:23.244 2023-02-08 19:00:23.580 336
8 2023-02-08 19:00:34.245 2023-02-08 19:00:34.535 290
9 2023-02-08 19:00:45.247 2023-02-08 19:00:45.534 287
10 2023-02-08 19:00:56.249 2023-02-08 19:00:56.572 323
11 2023-02-08 19:01:07.253 2023-02-08 19:01:07.556 303
12 2023-02-08 19:01:18.255 2023-02-08 19:01:18.538 283
13 2023-02-08 19:01:29.256 2023-02-08 19:01:29.543 287
14 2023-02-08 19:01:40.258 2023-02-08 19:01:40.623 365

76 Response Times Tables

Table A.14: Local Setup - Response Time 15 Flows with 2 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:54:13.474 2023-02-08 18:54:13.827 353
2 2023-02-08 18:54:24.476 2023-02-08 18:54:24.829 353
3 2023-02-08 18:54:35.478 2023-02-08 18:54:35.834 356
4 2023-02-08 18:54:46.479 2023-02-08 18:54:46.779 300
5 2023-02-08 18:54:57.484 2023-02-08 18:54:57.791 307
6 2023-02-08 18:55:19.490 2023-02-08 18:55:19.847 357
7 2023-02-08 18:55:52.495 2023-02-08 18:55:52.823 328
8 2023-02-08 18:56:03.497 2023-02-08 18:56:03.872 375
9 2023-02-08 18:56:14.498 2023-02-08 18:56:14.787 289
10 2023-02-08 18:56:25.500 2023-02-08 18:56:25.802 302
11 2023-02-08 18:56:36.502 2023-02-08 18:56:36.830 328
12 2023-02-08 18:56:47.504 2023-02-08 18:56:47.819 315
13 2023-02-08 18:56:58.505 2023-02-08 18:56:58.792 287
14 2023-02-08 18:57:09.507 2023-02-08 18:57:09.795 288

Table A.15: Local Setup - Response Time 15 Flows with 3 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:49:12.906 2023-02-08 18:49:13.354 448
2 2023-02-08 18:49:23.909 2023-02-08 18:49:24.248 339
3 2023-02-08 18:49:34.912 2023-02-08 18:49:35.289 377
4 2023-02-08 18:49:45.915 2023-02-08 18:49:46.267 352
5 2023-02-08 18:49:56.922 2023-02-08 18:49:57.289 367
6 2023-02-08 18:50:18.927 2023-02-08 18:50:19.336 409
7 2023-02-08 18:50:29.930 2023-02-08 18:50:30.298 368
8 2023-02-08 18:50:51.947 2023-02-08 18:50:52.364 417
9 2023-02-08 18:51:02.949 2023-02-08 18:51:03.353 404
10 2023-02-08 18:51:13.951 2023-02-08 18:51:14.329 378
11 2023-02-08 18:51:24.953 2023-02-08 18:51:25.304 351
12 2023-02-08 18:51:46.956 2023-02-08 18:51:47.309 353
13 2023-02-08 18:51:57.960 2023-02-08 18:51:58.317 357
14 2023-02-08 18:52:08.965 2023-02-08 18:52:09.350 385

A.1 Local Results per Flows 77

Table A.16: Local Setup - Response Time 15 Flows with 4 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 18:44:34.852 2023-02-08 18:44:35.765 409
2 2023-02-08 18:44:56.963 2023-02-08 18:44:57.372 431
3 2023-02-08 18:45:18.992 2023-02-08 18:45:19.423 362
4 2023-02-08 18:45:52.008 2023-02-08 18:45:52.370 438
5 2023-02-08 18:46:03.010 2023-02-08 18:46:03.448 387
6 2023-02-08 18:46:14.018 2023-02-08 18:46:14.405 342
7 2023-02-08 18:46:25.020 2023-02-08 18:46:25.367 436
8 2023-02-08 18:46:36.026 2023-02-08 18:46:36.462 357
9 2023-02-08 18:46:47.033 2023-02-08 18:46:47.390 358
10 2023-02-08 18:47:09.041 2023-02-08 18:47:09.399 406
11 2023-02-08 18:47:20.044 2023-02-08 18:47:20.450 368
12 2023-02-08 18:47:31.047 2023-02-08 18:47:31.415 348
13 2023-02-08 18:47:42.051 2023-02-08 18:47:42.399 346
14 2023-02-08 18:47:53.054 2023-02-08 18:47:53.400 304

A.1.5 20 Flows on n Devices

Table A.17: Local Setup - Response Time 20 Flows with 1 Device

n Start time Stop time Response Time (ms)
1 2023-02-08 19:19:40.786 2023-02-08 19:19:41.206 420
2 2023-02-08 19:19:51.789 2023-02-08 19:19:52.224 435
3 2023-02-08 19:20:02.794 2023-02-08 19:20:03.268 474
4 2023-02-08 19:20:24.798 2023-02-08 19:20:25.242 444
5 2023-02-08 19:20:35.800 2023-02-08 19:20:36.162 362
6 2023-02-08 19:20:57.803 2023-02-08 19:20:58.320 517
7 2023-02-08 19:21:08.805 2023-02-08 19:21:09.276 471
8 2023-02-08 19:21:19.807 2023-02-08 19:21:20.274 467
9 2023-02-08 19:21:30.808 2023-02-08 19:21:31.243 435
10 2023-02-08 19:21:52.811 2023-02-08 19:21:53.166 355
11 2023-02-08 19:22:03.816 2023-02-08 19:22:04.241 425
12 2023-02-08 19:22:14.818 2023-02-08 19:22:15.188 370
13 2023-02-08 19:22:25.819 2023-02-08 19:22:26.251 432
14 2023-02-08 19:22:47.822 2023-02-08 19:22:48.171 349

78 Response Times Tables

Table A.18: Local Setup - Response Time 20 Flows with 2 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 19:15:15.256 2023-02-08 19:15:15.676 420
2 2023-02-08 19:15:48.264 2023-02-08 19:15:48.696 432
3 2023-02-08 19:15:59.267 2023-02-08 19:15:59.696 429
4 2023-02-08 19:16:21.280 2023-02-08 19:16:21.696 416
5 2023-02-08 19:16:32.282 2023-02-08 19:16:32.677 395
6 2023-02-08 19:16:43.284 2023-02-08 19:16:43.662 378
7 2023-02-08 19:16:54.285 2023-02-08 19:16:54.747 462
8 2023-02-08 19:17:05.287 2023-02-08 19:17:05.702 415
9 2023-02-08 19:17:16.288 2023-02-08 19:17:16.699 411
10 2023-02-08 19:17:27.290 2023-02-08 19:17:27.668 378
11 2023-02-08 19:17:38.291 2023-02-08 19:17:38.656 365
12 2023-02-08 19:17:49.293 2023-02-08 19:17:49.670 377
13 2023-02-08 19:18:00.294 2023-02-08 19:18:00.694 400
14 2023-02-08 19:18:11.296 2023-02-08 19:18:11.667 371

Table A.19: Local Setup - Response Time 20 Flows with 3 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 19:10:13.221 2023-02-08 19:10:13.780 559
2 2023-02-08 19:10:24.225 2023-02-08 19:10:24.702 477
3 2023-02-08 19:10:35.237 2023-02-08 19:10:35.715 478
4 2023-02-08 19:10:46.239 2023-02-08 19:10:46.721 482
5 2023-02-08 19:11:19.260 2023-02-08 19:11:19.651 391
6 2023-02-08 19:11:30.262 2023-02-08 19:11:30.700 438
7 2023-02-08 19:11:52.267 2023-02-08 19:11:52.749 482
8 2023-02-08 19:12:03.269 2023-02-08 19:12:03.781 512
9 2023-02-08 19:12:14.271 2023-02-08 19:12:14.730 459
10 2023-02-08 19:12:25.272 2023-02-08 19:12:25.694 422
11 2023-02-08 19:12:36.274 2023-02-08 19:12:36.664 390
12 2023-02-08 19:12:47.276 2023-02-08 19:12:47.778 502
13 2023-02-08 19:12:58.297 2023-02-08 19:12:58.716 419
14 2023-02-08 19:13:09.299 2023-02-08 19:13:09.845 546

A.2 Local Results per Devices 79

Table A.20: Local Setup - Response Time 20 Flows with 4 Devices

n Start time Stop time Response Time (ms)
1 2023-02-08 19:05:42.128 2023-02-08 19:05:43.645 517
2 2023-02-08 19:05:53.251 2023-02-08 19:05:53.826 575
3 2023-02-08 19:07:10.287 2023-02-08 19:07:10.726 439
4 2023-02-08 19:07:21.290 2023-02-08 19:07:21.810 520
5 2023-02-08 19:07:32.299 2023-02-08 19:07:32.862 563
6 2023-02-08 19:07:43.302 2023-02-08 19:07:43.897 595
7 2023-02-08 19:07:54.304 2023-02-08 19:07:54.713 409
8 2023-02-08 19:08:05.307 2023-02-08 19:08:05.848 541
9 2023-02-08 19:08:16.312 2023-02-08 19:08:16.754 442
10 2023-02-08 19:08:27.314 2023-02-08 19:08:27.718 404
11 2023-02-08 19:08:38.320 2023-02-08 19:08:38.763 443
12 2023-02-08 19:08:49.322 2023-02-08 19:08:49.674 352
13 2023-02-08 19:09:00.324 2023-02-08 19:09:00.751 427
14 2023-02-08 19:09:11.329 2023-02-08 19:09:11.881 552

A.2 Local Results per Devices

A.2.1 Flows on 1 Device

Table A.21: Local Setup - Response Time 1 Device with 2 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 17:06:23.816 2023-02-08 17:06:23.875 59
2 2023-02-08 17:06:34.818 2023-02-08 17:06:34.872 54
3 2023-02-08 17:06:45.82 2023-02-08 17:06:45.891 71
4 2023-02-08 17:06:56.822 2023-02-08 17:06:56.874 52
5 2023-02-08 17:07:07.825 2023-02-08 17:07:07.902 77
6 2023-02-08 17:07:18.826 2023-02-08 17:07:18.875 49
7 2023-02-08 17:07:29.828 2023-02-08 17:07:29.891 63
8 2023-02-08 17:07:40.831 2023-02-08 17:07:40.905 74
9 2023-02-08 17:08:13.836 2023-02-08 17:08:13.887 51
10 2023-02-08 17:08:24.838 2023-02-08 17:08:24.883 45
11 2023-02-08 17:08:35.841 2023-02-08 17:08:35.877 36
12 2023-02-08 17:08:57.844 2023-02-08 17:08:57.895 51
13 2023-02-08 17:09:19.852 2023-02-08 17:09:19.896 44
14 2023-02-08 17:09:30.853 2023-02-08 17:09:30.911 58

80 Response Times Tables

Table A.22: Local Setup - Response Time 1 Device with 3 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 17:26:16.957 2023-02-08 17:26:17.042 85
2 2023-02-08 17:26:38.962 2023-02-08 17:26:39.048 86
3 2023-02-08 17:26:49.964 2023-02-08 17:26:50.081 117
4 2023-02-08 17:27:00.967 2023-02-08 17:27:01.041 74
5 2023-02-08 17:27:11.969 2023-02-08 17:27:12.063 94
6 2023-02-08 17:27:22.971 2023-02-08 17:27:23.059 88
7 2023-02-08 17:27:33.973 2023-02-08 17:27:34.062 89
8 2023-02-08 17:27:44.975 2023-02-08 17:27:45.084 109
9 2023-02-08 17:27:55.977 2023-02-08 17:27:56.037 60
10 2023-02-08 17:28:17.982 2023-02-08 17:28:18.056 74
11 2023-02-08 17:28:28.984 2023-02-08 17:28:29.064 80
12 2023-02-08 17:28:50.987 2023-02-08 17:28:51.103 116
13 2023-02-08 17:29:23.994 2023-02-08 17:29:24.073 79
14 2023-02-08 17:29:34.996 2023-02-08 17:29:35.079 83

Table A.23: Local Setup - Response Time 1 Device with 4 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 17:46:25.671 2023-02-08 17:46:25.801 130
2 2023-02-08 17:46:47.677 2023-02-08 17:46:47.823 146
3 2023-02-08 17:46:58.679 2023-02-08 17:46:58.828 149
4 2023-02-08 17:47:20.686 2023-02-08 17:47:20.823 137
5 2023-02-08 17:47:31.689 2023-02-08 17:47:31.804 115
6 2023-02-08 17:47:42.693 2023-02-08 17:47:42.816 123
7 2023-02-08 17:48:04.698 2023-02-08 17:48:04.814 116
8 2023-02-08 17:48:15.700 2023-02-08 17:48:15.805 105
9 2023-02-08 17:48:26.702 2023-02-08 17:48:26.833 131
10 2023-02-08 17:48:37.705 2023-02-08 17:48:37.821 116
11 2023-02-08 17:48:48.708 2023-02-08 17:48:48.844 136
12 2023-02-08 17:49:21.714 2023-02-08 17:49:21.825 111
13 2023-02-08 17:49:43.718 2023-02-08 17:49:43.821 103
14 2023-02-08 17:49:54.720 2023-02-08 17:49:54.834 114

A.2 Local Results per Devices 81

A.2.2 Flows on 4 Devices

Table A.24: Local Setup - Response Time 4 Device with 2 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 16:32:48.810 2023-02-08 16:32:48.893 83
2 2023-02-08 16:33:09.814 2023-02-08 16:33:09.927 113
3 2023-02-08 16:33:51.823 2023-02-08 16:33:51.911 88
4 2023-02-08 16:34:33.842 2023-02-08 16:34:33.943 101
5 2023-02-08 16:34:54.850 2023-02-08 16:34:54.937 87
6 2023-02-08 16:35:15.855 2023-02-08 16:35:15.964 109
7 2023-02-08 16:35:57.883 2023-02-08 16:35:57.981 98
8 2023-02-08 16:36:39.893 2023-02-08 16:36:39.968 75
9 2023-02-08 16:37:42.912 2023-02-08 16:37:42.980 68
10 2023-02-08 16:38:45.920 2023-02-08 16:38:45.997 77
11 2023-02-08 16:41:33.975 2023-02-08 16:41:34.051 76
12 2023-02-08 16:41:54.978 2023-02-08 16:41:55.061 83
13 2023-02-08 16:43:18.994 2023-02-08 16:43:19.081 87
14 2023-02-08 16:44:01.008 2023-02-08 16:44:01.100 92

Table A.25: Local Setup - Response Time 4 Device with 3 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 17:11:48.308 2023-02-08 17:11:48.444 136
2 2023-02-08 17:11:59.312 2023-02-08 17:11:59.427 115
3 2023-02-08 17:12:10.331 2023-02-08 17:12:10.440 109
4 2023-02-08 17:12:21.336 2023-02-08 17:12:21.426 90
5 2023-02-08 17:12:32.339 2023-02-08 17:12:32.452 113
6 2023-02-08 17:12:43.342 2023-02-08 17:12:43.435 93
7 2023-02-08 17:12:54.347 2023-02-08 17:12:54.439 92
8 2023-02-08 17:13:27.367 2023-02-08 17:13:27.483 116
9 2023-02-08 17:14:00.389 2023-02-08 17:14:00.524 135
10 2023-02-08 17:14:22.406 2023-02-08 17:14:22.551 145
11 2023-02-08 17:14:33.412 2023-02-08 17:14:33.533 121
12 2023-02-08 17:14:44.424 2023-02-08 17:14:44.557 133
13 2023-02-08 17:14:55.428 2023-02-08 17:14:55.549 121
14 2023-02-08 17:15:06.430 2023-02-08 17:15:06.507 77

82 Response Times Tables

Table A.26: Local Setup - Response Time 4 Device with 4 Flows

n Start time Stop time Response Time (ms)
1 2023-02-08 17:32:40.839 2023-02-08 17:32:40.973 134
2 2023-02-08 17:33:02.851 2023-02-08 17:33:03.005 154
3 2023-02-08 17:33:13.855 2023-02-08 17:33:14.008 153
4 2023-02-08 17:33:24.859 2023-02-08 17:33:24.989 130
5 2023-02-08 17:33:46.876 2023-02-08 17:33:47.007 131
6 2023-02-08 17:33:57.898 2023-02-08 17:33:58.037 139
7 2023-02-08 17:34:30.910 2023-02-08 17:34:31.075 165
8 2023-02-08 17:35:03.937 2023-02-08 17:35:04.082 145
9 2023-02-08 17:35:14.943 2023-02-08 17:35:17.102 159
10 2023-02-08 17:35:25.948 2023-02-08 17:35:26.070 122
11 2023-02-08 17:35:36.952 2023-02-08 17:35:37.094 142
12 2023-02-08 17:35:47.957 2023-02-08 17:35:48.085 128
13 2023-02-08 17:36:09.967 2023-02-08 17:36:10.082 115
14 2023-02-08 17:36:20.970 2023-02-08 17:36:21.084 114

A.3 Remote Results per Devices

A.3.1 Flows on 1 Device

Table A.27: Remote Setup - Response Time 1 Device with 1 Flow

n Start time Stop time Response Time (ms)
1 2023-02-09 12:13:54.065 2023-02-09 12:13:54.122 57
2 2023-02-09 12:14:05.068 2023-02-09 12:14:05.126 58
3 2023-02-09 12:14:27.072 2023-02-09 12:14:27.156 84
4 2023-02-09 12:14:38.075 2023-02-09 12:14:38121 46
5 2023-02-09 12:14:49.077 2023-02-09 12:14:49.121 44
6 2023-02-09 12:15:00.079 2023-02-09 12:15:00.121 42
7 2023-02-09 12:15:11.082 2023-02-09 12:15:11.128 56
8 2023-02-09 12:15:33.086 2023-02-09 12:15:33.143 57
9 2023-02-09 12:15:44.089 2023-02-09 12:15:44.141 52
10 2023-02-09 12:16:06.093 2023-02-09 12:16:06.139 46
11 2023-02-09 12:16:39.107 2023-02-09 12:16:39.154 47
12 2023-02-09 12:16:50.109 2023-02-09 12:16:50.174 65
13 2023-02-09 12:17:01.111 2023-02-09 12:17:01.166 55
14 2023-02-09 12:17:12113 2023-02-09 12:17:12.169 56

A.3 Remote Results per Devices 83

Table A.28: Remote Setup - Response Time 1 Device with 2 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 11:06:23.816 2023-02-09 11:06:23.895 79
2 2023-02-09 11:06:34.818 2023-02-09 11:06:34.892 74
3 2023-02-09 11:06:45.82 2023-02-09 11:06:45.911 91
4 2023-02-09 11:06:56.822 2023-02-09 11:06:56.894 72
5 2023-02-09 11:07:07.825 2023-02-09 11:07:07.922 97
6 2023-02-09 11:07:18.826 2023-02-09 11:07:18.895 69
7 2023-02-09 11:07:29.828 2023-02-09 11:07:29.911 83
8 2023-02-09 11:07:40.831 2023-02-09 11:07:40.925 94
9 2023-02-09 11:08:13.836 2023-02-09 11:08:13.907 71
10 2023-02-09 11:08:24.838 2023-02-09 11:08:24.903 65
11 2023-02-09 11:08:35.841 2023-02-09 11:08:35.897 56
12 2023-02-09 11:08:57.844 2023-02-09 11:08:57.915 71
13 2023-02-09 11:09:19.852 2023-02-09 11:09:19.916 64
14 2023-02-09 11:09:30.853 2023-02-09 11:09:30.931 78

Table A.29: Remote Setup - Response Time 1 Device with 3 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 11:26:16.957 2023-02-09 11:26:17.072 115
2 2023-02-09 11:26:38.962 2023-02-09 11:26:39.078 116
3 2023-02-09 11:26:49.964 2023-02-09 11:26:50.111 147
4 2023-02-09 11:27:00.967 2023-02-09 11:27:01.071 104
5 2023-02-09 11:27:11.969 2023-02-09 11:27:12.093 124
6 2023-02-09 11:27:22.971 2023-02-09 11:27:23.089 118
7 2023-02-09 11:27:33.973 2023-02-09 11:27:34.092 119
8 2023-02-09 11:27:44.975 2023-02-09 11:27:45.114 139
9 2023-02-09 11:27:55.977 2023-02-09 11:27:56.067 90
10 2023-02-09 11:28:17.982 2023-02-09 11:28:18.086 104
11 2023-02-09 11:28:28.984 2023-02-09 11:28:29.094 110
12 2023-02-09 11:28:50.987 2023-02-09 11:28:51.133 146
13 2023-02-09 11:29:23.994 2023-02-09 11:29:24.103 109
14 2023-02-09 11:29:34.996 2023-02-09 11:29:35.109 113

84 Response Times Tables

Table A.30: Remote Setup - Response Time 1 Device with 4 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 11:46:25.671 2023-02-09 11:46:25.831 160
2 2023-02-09 11:46:47.677 2023-02-09 11:46:47.853 176
3 2023-02-09 11:46:58.679 2023-02-09 11:46:58.858 179
4 2023-02-09 11:47:20.686 2023-02-09 11:47:20.853 167
5 2023-02-09 11:47:31.689 2023-02-09 11:47:31.834 145
6 2023-02-09 11:47:42.693 2023-02-09 11:47:42.846 153
7 2023-02-09 11:48:04.698 2023-02-09 11:48:04.844 146
8 2023-02-09 11:48:15.700 2023-02-09 11:48:15.835 135
9 2023-02-09 11:48:26.702 2023-02-09 11:48:26.863 161
10 2023-02-09 11:48:37.705 2023-02-09 11:48:37.851 146
11 2023-02-09 11:48:48.708 2023-02-09 11:48:48.874 166
12 2023-02-09 11:49:21.714 2023-02-09 11:49:21.855 141
13 2023-02-09 11:49:43.718 2023-02-09 11:49:43.851 133
14 2023-02-09 11:49:54.720 2023-02-09 11:49:54.864 144

Table A.31: Remote Setup - Response Time 1 Device with 5 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 13:09:23.976 2023-02-09 13:09:24.173 197
2 2023-02-09 13:09:45.986 2023-02-09 13:09:46.171 185
3 2023-02-09 13:09:56.989 2023-02-09 13:09:57.185 196
4 2023-02-09 13:10:07.991 2023-02-09 13:10:08.212 221
5 2023-02-09 13:10:29.995 2023-02-09 13:10:30.192 197
6 2023-02-09 13:10:40.997 2023-02-09 13:10:41.200 203
7 2023-02-09 13:10:52.001 2023-02-09 13:10:52.228 227
8 2023-02-09 13:11:03.005 2023-02-09 13:11:03.172 167
9 2023-02-09 13:11:14.007 2023-02-09 13:11:14.205 198
10 2023-02-09 13:11:25.009 2023-02-09 13:11:25.173 164
11 2023-02-09 13:11:36.011 2023-02-09 13:11:36.187 176
12 2023-02-09 13:11:58.015 2023-02-09 13:11:58.216 201
13 2023-02-09 13:12:09.018 2023-02-09 13:12:09.240 222
14 2023-02-09 13:12:12.024 2023-02-09 13:12:12.219 195

A.3 Remote Results per Devices 85

Table A.32: Remote Setup - Response Time 1 Device with 10 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 13:37:31.421 2023-02-09 13:37:31.739 318
2 2023-02-09 13:37:42.424 2023-02-09 13:37:42.722 298
3 2023-02-09 13:37:53.426 2023-02-09 13:37:53.717 291
4 2023-02-09 13:38:15.430 2023-02-09 13:38:15.716 286
5 2023-02-09 13:38:48.436 2023-02-09 13:38:48.765 329
6 2023-02-09 13:39:10.440 2023-02-09 13:39:10.770 330
7 2023-02-09 13:39:21.442 2023-02-09 13:39:21.738 296
8 2023-02-09 13:39:32.444 2023-02-09 13:39:32.743 299
9 2023-02-09 13:39:43.447 2023-02-09 13:39:43.687 240
10 2023-02-09 13:39:54.452 2023-02-09 13:39:54.748 296
11 2023-02-09 13:40:16.456 2023-02-09 13:40:16.720 264
12 2023-02-09 13:40:27.457 2023-02-09 13:40:27.747 290
13 2023-02-09 13:40:49.460 2023-02-09 13:40:49.730 270
14 2023-02-09 13:41:11.464 2023-02-09 13:41:11.749 285

Table A.33: Remote Setup - Response Time 1 Device with 15 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 13:58:55.227 2023-02-09 13:58:55.642 415
2 2023-02-09 13:59:17.231 2023-02-09 13:59:17.647 416
3 2023-02-09 13:59:39.236 2023-02-09 13:59:39.575 339
4 2023-02-09 13:59:50.238 2023-02-09 13:59:50.666 428
5 2023-02-09 12:00:01.240 2023-02-09 12:00:01.653 413
6 2023-02-09 12:00:12.242 2023-02-09 12:00:12.650 408
7 2023-02-09 12:00:23.244 2023-02-09 12:00:23.640 396
8 2023-02-09 12:00:34.245 2023-02-09 12:00:34.595 350
9 2023-02-09 12:00:45.247 2023-02-09 12:00:45.594 347
10 2023-02-09 12:00:56.249 2023-02-09 12:00:56.632 383
11 2023-02-09 12:01:07.253 2023-02-09 12:01:07.616 363
12 2023-02-09 12:01:18.255 2023-02-09 12:01:18.598 343
13 2023-02-09 12:01:29.256 2023-02-09 12:01:29.603 347
14 2023-02-09 12:01:40.258 2023-02-09 12:01:40.683 425

86 Response Times Tables

Table A.34: Remote Setup - Response Time 1 Device with 20 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 12:19:40.786 2023-02-09 12:19:41.276 490
2 2023-02-09 12:19:51.789 2023-02-09 12:19:52.294 505
3 2023-02-09 12:20:02.794 2023-02-09 12:20:03.338 544
4 2023-02-09 12:20:24.798 2023-02-09 12:20:25.312 514
5 2023-02-09 12:20:35.800 2023-02-09 12:20:36.232 432
6 2023-02-09 12:20:57.803 2023-02-09 12:20:58.390 587
7 2023-02-09 12:21:08.805 2023-02-09 12:21:09.346 541
8 2023-02-09 12:21:19.807 2023-02-09 12:21:20.344 537
9 2023-02-09 12:21:30.808 2023-02-09 12:21:31.313 505
10 2023-02-09 12:21:52.811 2023-02-09 12:21:53.236 425
11 2023-02-09 12:22:03.816 2023-02-09 12:22:04.311 495
12 2023-02-09 12:22:14.818 2023-02-09 12:22:15.258 440
13 2023-02-09 12:22:25.819 2023-02-09 12:22:26.321 502
14 2023-02-09 12:22:47.822 2023-02-09 12:22:48.211 389

A.3.2 Flows on 4 Devices

Table A.35: Remote Setup - Response Time 4 Devices with 1 Flow

n Start time Stop time Response Time (ms)
1 2023-02-09 07:04:43.448 2023-02-09 07:04:43.506 58
2 2023-02-09 07:05:14.454 2023-02-09 07:05:14.532 78
3 2023-02-09 07:05:45.460 2023-02-09 07:05:45.545 85
4 2023-02-09 07:06:16.463 2023-02-09 07:06:16.561 98
5 2023-02-09 16:07:37.467 2023-02-09 16:07:37.539 72
6 2023-02-09 07:07:49.482 2023-02-09 07:07:49.562 80
7 2023-02-09 16:08:40.484 2023-02-09 16:08:40.572 88
8 2023-02-09 07:08:51.491 2023-02-09 07:08:51.573 82
9 2023-02-09 07:09:22.496 2023-02-09 07:09:22.555 59
10 2023-02-09 07:09:53.499 2023-02-09 07:09:53.583 84
11 2023-02-09 07:10:24.508 2023-02-09 07:10:24.622 114
12 2023-02-09 07:12:28.592 2023-02-09 07:12:28.708 116
13 2023-02-09 07:13:30.635 2023-02-09 07:13:30.727 92
14 2023-02-09 07:14:01.647 2023-02-09 07:14:01.729 82

A.3 Remote Results per Devices 87

Table A.36: Remote Setup - Response Time 4 Devices with 2 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 07:22:48.810 2023-02-09 07:22:48.913 93
2 2023-02-09 07:23:09.814 2023-02-09 07:23:09.947 123
3 2023-02-09 07:23:51.823 2023-02-09 07:23:51.931 98
4 2023-02-09 07:24:33.842 2023-02-09 07:24:33.963 111
5 2023-02-09 07:24:54.850 2023-02-09 07:24:54.957 97
6 2023-02-09 07:25:15.855 2023-02-09 07:25:15.984 119
7 2023-02-09 07:25:57.883 2023-02-09 07:25:58.001 108
8 2023-02-09 07:26:39.893 2023-02-09 07:26:39.988 85
9 2023-02-09 07:27:42.912 2023-02-09 07:27:43.00 78
10 2023-02-09 07:28:45.920 2023-02-09 07:28:46.017 87
11 2023-02-09 07:31:33.975 2023-02-09 07:31:34.071 86
12 2023-02-09 07:31:54.978 2023-02-09 07:31:55.081 93
13 2023-02-09 07:33:18.994 2023-02-09 07:33:19.101 97
14 2023-02-09 07:34:01.008 2023-02-09 07:34:01.120 102

Table A.37: Remote Setup - Response Time 4 Devices with 3 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 07:41:48.308 2023-02-09 07:41:48.464 156
2 2023-02-09 07:41:59.312 2023-02-09 07:41:59.447 135
3 2023-02-09 07:42:10.331 2023-02-09 07:42:10.460 129
4 2023-02-09 07:42:21.336 2023-02-09 07:42:21.446 110
5 2023-02-09 07:42:32.339 2023-02-09 07:42:32.472 133
6 2023-02-09 07:42:43.342 2023-02-09 07:42:43.455 113
7 2023-02-09 07:42:54.347 2023-02-09 07:42:54.459 112
8 2023-02-09 07:43:27.367 2023-02-09 07:43:27.503 136
9 2023-02-09 07:44:00.389 2023-02-09 07:44:00.544 155
10 2023-02-09 07:44:22.406 2023-02-09 07:44:22.571 165
11 2023-02-09 07:44:33.412 2023-02-09 07:44:33.553 141
12 2023-02-09 07:44:44.424 2023-02-09 07:44:44.577 153
13 2023-02-09 07:44:55.428 2023-02-09 07:44:55.569 141
14 2023-02-09 07:45:06.430 2023-02-09 07:45:06.527 97

88 Response Times Tables

Table A.38: Remote Setup - Response Time 4 Devices with 4 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 08:02:40.839 2023-02-09 08:02:40.993 154
2 2023-02-09 08:03:02.851 2023-02-09 08:03:03.025 174
3 2023-02-09 08:03:13.855 2023-02-09 08:03:14.028 173
4 2023-02-09 08:03:24.859 2023-02-09 08:03:25.019 150
5 2023-02-09 08:03:46.876 2023-02-09 08:03:47.027 151
6 2023-02-09 08:03:57.898 2023-02-09 08:03:58.057 159
7 2023-02-09 08:04:30.910 2023-02-09 08:04:31.095 185
8 2023-02-09 08:05:03.937 2023-02-09 08:05:04.102 165
9 2023-02-09 08:05:14.943 2023-02-09 08:05:17.122 179
10 2023-02-09 08:05:25.948 2023-02-09 08:05:26.090 142
11 2023-02-09 08:05:36.952 2023-02-09 08:05:37.104 162
12 2023-02-09 08:05:47.957 2023-02-09 08:05:48.105 148
13 2023-02-09 08:06:09.967 2023-02-09 08:06:10.102 135
14 2023-02-09 08:06:20.970 2023-02-09 08:06:21.104 134

Table A.39: Remote Setup - Response Time 4 Devices with 5 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 08:23:02.050 2023-02-09 08:23:02.263 213
2 2023-02-09 08:23:35.089 2023-02-09 08:23:35.271 182
3 2023-02-09 08:23:46.095 2023-02-09 08:23:46.326 231
4 2023-02-09 08:23:57.115 2023-02-09 08:23:57.322 207
5 2023-02-09 08:24:08.118 2023-02-09 08:24:08.321 203
6 2023-02-09 08:24:19.123 2023-02-09 08:24:19.368 245
7 2023-02-09 08:24:30.127 2023-02-09 08:24:30.352 225
8 2023-02-09 08:24:41.132 2023-02-09 08:24:41.345 213
9 2023-02-09 08:24:52.147 2023-02-09 08:24:52.342 195
10 2023-02-09 08:25:14.153 2023-02-09 08:25:14.357 204
11 2023-02-09 08:25:25.157 2023-02-09 08:25:25.389 232
12 2023-02-09 08:25:36.161 2023-02-09 08:25:36.365 204
13 2023-02-09 08:25:58.180 2023-02-09 08:25:58.415 235
14 2023-02-09 08:26:09.182 2023-02-09 08:26:09.360 178

A.3 Remote Results per Devices 89

Table A.40: Remote Setup - Response Time 4 Devices with 10 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 08:37:56.988 2023-02-09 08:37:57.261 273
2 2023-02-09 08:38:52.025 2023-02-09 08:38:52.314 289
3 2023-02-09 08:39:36.034 2023-02-09 08:39:36.234 200
4 2023-02-09 08:39:47.036 2023-02-09 08:39:47.267 231
5 2023-02-09 08:39:58.040 2023-02-09 08:39:58.255 215
6 2023-02-09 08:40:09.042 2023-02-09 08:40:09.247 205
7 2023-02-09 08:40:20.045 2023-02-09 08:40:20.262 217
8 2023-02-09 08:40:31.047 2023-02-09 08:40:31.294 247
9 2023-02-09 08:40:42.049 2023-02-09 08:40:42.283 234
10 2023-02-09 08:40:53.052 2023-02-09 08:40:53.314 262
11 2023-02-09 08:41:04.054 2023-02-09 08:41:04.273 219
12 2023-02-09 08:41:15.056 2023-02-09 08:41:15.266 210
13 2023-02-09 08:41:26.058 2023-02-09 08:41:26.294 236
14 2023-02-09 08:41:37.061 2023-02-09 08:41:37.312 251

Table A.41: Remote Setup - Response Time 4 Devices with 15 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 09:04:34.352 2023-02-09 09:04:35.865 513
2 2023-02-09 09:04:56.963 2023-02-09 09:04:57.472 509
3 2023-02-09 09:05:18.992 2023-02-09 09:05:19.523 531
4 2023-02-09 09:05:52.008 2023-02-09 09:05:52.470 462
5 2023-02-09 09:06:03.010 2023-02-09 09:06:03.548 538
6 2023-02-09 09:06:14.018 2023-02-09 09:06:14.505 442
7 2023-02-09 09:06:25.020 2023-02-09 09:06:25.567 547
8 2023-02-09 09:06:36.026 2023-02-09 09:06:36.562 536
9 2023-02-09 09:06:47.033 2023-02-09 09:06:47.590 557
10 2023-02-09 09:07:09.041 2023-02-09 09:07:09.599 558
11 2023-02-09 09:07:20.044 2023-02-09 09:07:20.550 506
12 2023-02-09 09:07:31.047 2023-02-09 09:07:31.515 468
13 2023-02-09 09:07:42.051 2023-02-09 09:07:42.599 548
14 2023-02-09 09:07:53.054 2023-02-09 09:07:53.500 446

90 Response Times Tables

Table A.42: Remote Setup - Response Time 4 Devices with 20 Flows

n Start time Stop time Response Time (ms)
1 2023-02-09 09:15:44.128 2023-02-09 09:15:44.751 623
2 2023-02-09 09:15:55.251 2023-02-09 09:15:55.889 638
3 2023-02-09 09:07:42.287 2023-02-09 09:07:42.7816 529
4 2023-02-09 09:17:19.290 2023-02-09 09:17:19.920 630
5 2023-02-09 09:08:10.299 2023-02-09 09:08:10.919 620
6 2023-02-09 09:17:47.302 2023-02-09 09:17:47.897 595
7 2023-02-09 09:08:24.304 2023-02-09 09:08:24.846 542
8 2023-02-09 09:18:05.307 2023-02-09 09:18:05.848 541
9 2023-02-09 09:08:36.312 2023-02-09 09:08:36.880 568
10 2023-02-09 09:08:47.314 2023-02-09 09:08:47.718 504
11 2023-02-09 09:18:38.320 2023-02-09 09:18:38.840 520
12 2023-02-09 09:18:49.322 2023-02-09 09:18:49.832 510
13 2023-02-09 09:19:00.324 2023-02-09 09:19:00.855 531
14 2023-02-09 09:19:11.329 2023-02-09 09:19:11.881 552

Appendix B

Traffic Capture

New traffic in log_tcp_complete.
7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 42899 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 912 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 39685 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 36863 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 916 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 924 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 49769 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 804 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 42037 is detected as NORMAL

91

92 Traffic Capture

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 56457 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 809 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 807 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 109.49.147.28, port: 49872 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 55993 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 836 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 36797 is detected as NORMAL
Traffic from ip: 192.168.254.254, port: 59401 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 840 is detected as NORMAL
Traffic from ip: 192.168.254.254, port: 869 is detected as NORMAL

7 Feb 14:55:27 - [info] [debug:d49b538b.f0f42]
Traffic from ip: 192.168.254.254, port: 54295 is detected as NORMAL

Bibliography

[1] A. Hristoskova, N. González-Deleito, S. Klein, et al., “An initial analysis of the short-

comings of conventional AI and the benefits of distributed AI approaches in industrial use

cases”, in Artificial Intelligence Applications and Innovations. AIAI 2021 IFIP WG 12.5 In-

ternational Workshops, I. Maglogiannis, J. Macintyre, and L. Iliadis, Eds., vol. 628, Series

Title: IFIP Advances in Information and Communication Technology, Cham: Springer In-

ternational Publishing, 2021, pp. 281–292, ISBN: 978-3-030-79156-8 978-3-030-79157-5.

DOI: 10.1007/978-3-030-79157-5_23. [Online]. Available: https://link.

springer.com/10.1007/978-3-030-79157-5_23 (visited on 01/03/2022).

[2] M. A. Talib, S. Majzoub, Q. Nasir, and D. Jamal, “A systematic literature review on hard-

ware implementation of artificial intelligence algorithms”, en, J Supercomput, vol. 77, no. 2,

pp. 1897–1938, Feb. 2021, ISSN: 0920-8542, 1573-0484. DOI: 10.1007/s11227-020-

03325-8. [Online]. Available: https://link.springer.com/10.1007/s11227-

020-03325-8 (visited on 02/09/2021).

[3] R. Venanzi, F. Montori, P. Bellavista, and L. Foschini, “Industry 4.0 Solutions for Interop-

erability: A Use Case about Tools and Tool Chains in the Arrowhead Tools Project”, en, in

2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy:

IEEE, Sep. 2020, pp. 429–433, ISBN: 978-1-72816-997-2. DOI: 10.1109/SMARTCOMP50058.

2020.00089. [Online]. Available: https://ieeexplore.ieee.org/document/

9239681/ (visited on 01/04/2022).

[4] N. Mohamed and J. Al-Jaroodi, “Applying Blockchain in Industry 4.0 Applications”, en, in

2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC),

Las Vegas, NV, USA: IEEE, Jan. 2019, pp. 0852–0858, ISBN: 978-1-72810-554-3. DOI:

10.1109/CCWC.2019.8666558. [Online]. Available: https://ieeexplore.

ieee.org/document/8666558/ (visited on 02/18/2022).

[5] M. Batty, “Digital twins”, en, Environment and Planning B: Urban Analytics and City

Science, vol. 45, no. 5, pp. 817–820, Sep. 2018, ISSN: 2399-8083, 2399-8091. DOI: 10.

1177/2399808318796416. [Online]. Available: http://journals.sagepub.

com/doi/10.1177/2399808318796416 (visited on 02/16/2022).

[6] C. Queiroz, A. Mahmood, and Z. Tari, “SCADASim—A Framework for Building SCADA

Simulations”, en, IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 589–597, Dec. 2011, ISSN:

93

https://doi.org/10.1007/978-3-030-79157-5_23
https://link.springer.com/10.1007/978-3-030-79157-5_23
https://link.springer.com/10.1007/978-3-030-79157-5_23
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1007/s11227-020-03325-8
https://link.springer.com/10.1007/s11227-020-03325-8
https://link.springer.com/10.1007/s11227-020-03325-8
https://doi.org/10.1109/SMARTCOMP50058.2020.00089
https://doi.org/10.1109/SMARTCOMP50058.2020.00089
https://ieeexplore.ieee.org/document/9239681/
https://ieeexplore.ieee.org/document/9239681/
https://doi.org/10.1109/CCWC.2019.8666558
https://ieeexplore.ieee.org/document/8666558/
https://ieeexplore.ieee.org/document/8666558/
https://doi.org/10.1177/2399808318796416
https://doi.org/10.1177/2399808318796416
http://journals.sagepub.com/doi/10.1177/2399808318796416
http://journals.sagepub.com/doi/10.1177/2399808318796416

94 BIBLIOGRAPHY

1949-3053. DOI: 10 . 1109 / TSG . 2011 . 2162432. [Online]. Available: http : / /

ieeexplore.ieee.org/document/6009221/ (visited on 01/30/2023).

[7] A. Daneels and W.Salter, Mc1i01.pdf, en, 1999. (visited on 01/30/2023).

[8] C. Paniagua and J. Delsing, “Industrial Frameworks for Internet of Things: A Survey”,

en, IEEE Systems Journal, vol. 15, no. 1, pp. 1149–1159, Mar. 2021, ISSN: 1932-8184,

1937-9234, 2373-7816. DOI: 10.1109/JSYST.2020.2993323. [Online]. Available:

https://ieeexplore.ieee.org/document/9099983/ (visited on 01/04/2022).

[9] D. Kozma, P. Varga, and F. Larrinaga, “Data-driven Workflow Management by utilising

BPMN and CPN in IIoT Systems with the Arrowhead Framework”, en, in 2019 24th

IEEE International Conference on Emerging Technologies and Factory Automation (ETFA),

Zaragoza, Spain: IEEE, Sep. 2019, pp. 385–392, ISBN: 978-1-72810-303-7. DOI: 10 .

1109/ETFA.2019.8869501. [Online]. Available: https://ieeexplore.ieee.

org/document/8869501/ (visited on 02/04/2022).

[10] S. Cheshire and M. Krochmal, “DNS-Based Service Discovery”, en, RFC Editor, Tech.

Rep. RFC6763, Feb. 2013, RFC6763. DOI: 10.17487/rfc6763. [Online]. Available:

https://www.rfc-editor.org/info/rfc6763 (visited on 02/04/2022).

[11] C. Hegedus, P. Varga, and A. Franko, “Secure and trusted inter-cloud communications in

the arrowhead framework”, en, in 2018 IEEE Industrial Cyber-Physical Systems (ICPS),

St. Petersburg: IEEE, May 2018, pp. 755–760, ISBN: 978-1-5386-6531-2. DOI: 10.1109/

ICPHYS.2018.8390802. [Online]. Available: https://ieeexplore.ieee.org/

document/8390802/ (visited on 02/04/2022).

[12] P. Varga, D. Kozma, and C. Hegedus, “Data-Driven Workflow Execution in Service Ori-

ented IoT Architectures”, en, in 2018 IEEE 23rd International Conference on Emerg-

ing Technologies and Factory Automation (ETFA), Turin: IEEE, Sep. 2018, pp. 203–210,

ISBN: 978-1-5386-7108-5. DOI: 10.1109/ETFA.2018.8502665. [Online]. Available:

https://ieeexplore.ieee.org/document/8502665/ (visited on 02/04/2022).

[13] O. Carlsson, D. Vera, J. Delsing, B. Ahmad, and R. Harrison, “Plant descriptions for en-

gineering tool interoperability”, en, in 2016 IEEE 14th International Conference on In-

dustrial Informatics (INDIN), Poitiers, France: IEEE, Jul. 2016, pp. 730–735, ISBN: 978-

1-5090-2870-2. DOI: 10.1109/INDIN.2016.7819255. [Online]. Available: http:

//ieeexplore.ieee.org/document/7819255/ (visited on 02/04/2022).

[14] AUTOSAR classic platform, https://www.autosar.org/standards/classic-

platform/, Accessed: 2022-01-10.

[15] AUTOSAR adaptive platform, https://www.autosar.org/standards/adaptive-

platform/, Accessed: 2022-01-10.

[16] BaSys 4.0, https://www.basys40.de/, Accessed: 2022-01-14.

[17] BaSyx, https://wiki.eclipse.org/BaSyx, Accessed: 2022-01-14.

https://doi.org/10.1109/TSG.2011.2162432
http://ieeexplore.ieee.org/document/6009221/
http://ieeexplore.ieee.org/document/6009221/
https://doi.org/10.1109/JSYST.2020.2993323
https://ieeexplore.ieee.org/document/9099983/
https://doi.org/10.1109/ETFA.2019.8869501
https://doi.org/10.1109/ETFA.2019.8869501
https://ieeexplore.ieee.org/document/8869501/
https://ieeexplore.ieee.org/document/8869501/
https://doi.org/10.17487/rfc6763
https://www.rfc-editor.org/info/rfc6763
https://doi.org/10.1109/ICPHYS.2018.8390802
https://doi.org/10.1109/ICPHYS.2018.8390802
https://ieeexplore.ieee.org/document/8390802/
https://ieeexplore.ieee.org/document/8390802/
https://doi.org/10.1109/ETFA.2018.8502665
https://ieeexplore.ieee.org/document/8502665/
https://doi.org/10.1109/INDIN.2016.7819255
http://ieeexplore.ieee.org/document/7819255/
http://ieeexplore.ieee.org/document/7819255/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.autosar.org/standards/adaptive-platform/
https://www.basys40.de/
https://wiki.eclipse.org/BaSyx

BIBLIOGRAPHY 95

[18] J. Plattner and J. Oberzaucher, “A MULTI-SENSORY APPROACH TO ACQUIRE AND

PROCESS HEALTH AND LIFESTLYE INFORMATION”, en, p. 7, 2019.

[19] FIWARE, https://www.fiware.org/, Accessed: 2022-01-16.

[20] N. Kumar and D. P. Vidyarthi, “A Green Routing Algorithm for IoT-Enabled Software De-

fined Wireless Sensor Network”, en, IEEE Sensors J., vol. 18, no. 22, pp. 9449–9460, Nov.

2018, ISSN: 1530-437X, 1558-1748, 2379-9153. DOI: 10.1109/JSEN.2018.2869629.

[Online]. Available: https://ieeexplore.ieee.org/document/8458421/ (vis-

ited on 02/16/2022).

[21] L. Dantas, E. Cavalcante, and T. Batista, “A Development Environment for FIWARE-based

Internet of Things Applications”, en, in Proceedings of the 6th International Workshop on

Middleware and Applications for the Internet of Things - M4IoT ’19, Davis, CA, USA:

ACM Press, 2019, pp. 21–26, ISBN: 978-1-4503-7028-8. DOI: 10 . 1145 / 3366610 .

3368100. [Online]. Available: http : / / dl . acm . org / citation . cfm ? doid =

3366610.3368100 (visited on 02/16/2022).

[22] K. Ferencz and J. Domokos, “Using Node-RED platform in an industrial environment”, en,

[23] M. Lekic and G. Gardasevic, “IoT sensor integration to Node-RED platform”, en, in 2018

17th International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo: IEEE,

Mar. 2018, pp. 1–5, ISBN: 978-1-5386-4907-7. DOI: 10.1109/INFOTEH.2018.8345544.

[Online]. Available: https://ieeexplore.ieee.org/document/8345544/ (vis-

ited on 01/17/2023).

[24] M. M. Ahmadpanah, M. Balliu, D. Hedin, L. E. Olsson, and A. Sabelfeld, “Securing Node-

RED Applications”, en, in Protocols, Strands, and Logic, D. Dougherty, J. Meseguer, S. A.

Mödersheim, and P. Rowe, Eds., vol. 13066, Series Title: Lecture Notes in Computer Sci-

ence, Cham: Springer International Publishing, 2021, pp. 1–21, ISBN: 978-3-030-91630-5

978-3-030-91631-2. DOI: 10.1007/978-3-030-91631-2_1. [Online]. Available:

https://link.springer.com/10.1007/978-3-030-91631-2_1 (visited on

01/17/2023).

[25] Node-Red: Securing node-red. https : / / nodered . org / docs / user - guide /

runtime/securing-node-red/, Accessed: 2023-01-17.

[26] L. Larsson, W. Tärneberg, C. Klein, E. Elmroth, and M. Kihl, “Impact of etcd deployment

on Kubernetes, Istio, and application performance”, en, Softw Pract Exper, vol. 50, no. 10,

pp. 1986–2007, Oct. 2020, ISSN: 0038-0644, 1097-024X. DOI: 10.1002/spe.2885.

[Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/spe.

2885 (visited on 01/19/2023).

[27] N. Marathe, A. Gandhi, and J. M. Shah, “Docker Swarm and Kubernetes in Cloud Com-

puting Environment”, en, in 2019 3rd International Conference on Trends in Electronics

https://www.fiware.org/
https://doi.org/10.1109/JSEN.2018.2869629
https://ieeexplore.ieee.org/document/8458421/
https://doi.org/10.1145/3366610.3368100
https://doi.org/10.1145/3366610.3368100
http://dl.acm.org/citation.cfm?doid=3366610.3368100
http://dl.acm.org/citation.cfm?doid=3366610.3368100
https://doi.org/10.1109/INFOTEH.2018.8345544
https://ieeexplore.ieee.org/document/8345544/
https://doi.org/10.1007/978-3-030-91631-2_1
https://link.springer.com/10.1007/978-3-030-91631-2_1
https://nodered.org/docs/user-guide/runtime/securing-node-red/
https://nodered.org/docs/user-guide/runtime/securing-node-red/
https://doi.org/10.1002/spe.2885
https://onlinelibrary.wiley.com/doi/10.1002/spe.2885
https://onlinelibrary.wiley.com/doi/10.1002/spe.2885

96 BIBLIOGRAPHY

and Informatics (ICOEI), Tirunelveli, India: IEEE, Apr. 2019, pp. 179–184, ISBN: 978-1-

5386-9439-8. DOI: 10.1109/ICOEI.2019.8862654. [Online]. Available: https:

//ieeexplore.ieee.org/document/8862654/ (visited on 01/19/2023).

[28] P. Martin, “Kubernetes Resources”, in Kubernetes: Preparing for the CKA and CKAD Cer-

tifications, Berkeley, CA: Apress, 2021, pp. 19–22, ISBN: 978-1-4842-6494-2. DOI: 10.

1007/978-1-4842-6494-2_4. [Online]. Available: https://doi.org/10.1007/

978-1-4842-6494-2_4.

[29] S. M. Tahsien, H. Karimipour, and P. Spachos, “Machine learning based solutions for secu-

rity of Internet of Things (IoT): A survey”, en, Journal of Network and Computer Applica-

tions, vol. 161, p. 102 630, Jul. 2020, ISSN: 10848045. DOI: 10.1016/j.jnca.2020.

102630. [Online]. Available: https://linkinghub.elsevier.com/retrieve/

pii/S1084804520301041 (visited on 01/05/2022).

[30] D. Xin, L. Ma, S. Song, and A. Parameswaran, “How Developers Iterate on Machine Learn-

ing Workflows – A Survey of the Applied Machine Learning Literature”, en, arXiv:1803.10311

[cs, stat], May 2018, arXiv: 1803.10311. [Online]. Available: http://arxiv.org/

abs/1803.10311 (visited on 02/17/2022).

[31] S. Chibani and F.-X. Coudert, “Machine learning approaches for the prediction of materials

properties”, en, APL Materials, vol. 8, no. 8, p. 080 701, Aug. 2020, ISSN: 2166-532X. DOI:

10.1063/5.0018384. [Online]. Available: http://aip.scitation.org/doi/

10.1063/5.0018384 (visited on 02/17/2022).

[32] M. Pérez-Ortiz, S. Jiménez-Fernández, P. Gutiérrez, E. Alexandre, C. Hervás-Martínez,

and S. Salcedo-Sanz, “A Review of Classification Problems and Algorithms in Renewable

Energy Applications”, en, Energies, vol. 9, no. 8, p. 607, Aug. 2016, ISSN: 1996-1073.

DOI: 10.3390/en9080607. [Online]. Available: http://www.mdpi.com/1996-

1073/9/8/607 (visited on 02/17/2022).

[33] R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning DDoS Detection for Con-

sumer Internet of Things Devices”, en, in 2018 IEEE Security and Privacy Workshops

(SPW), San Francisco, CA: IEEE, May 2018, pp. 29–35, ISBN: 978-1-5386-8276-0. DOI:

10.1109/SPW.2018.00013. [Online]. Available: https://ieeexplore.ieee.

org/document/8424629/ (visited on 02/17/2022).

[34] S. K. Maurya and A. Choudhary, “Deep Learning based Vulnerable Road User Detection

and Collision Avoidance”, en, in 2018 IEEE International Conference on Vehicular Elec-

tronics and Safety (ICVES), Madrid: IEEE, Sep. 2018, pp. 1–6, ISBN: 978-1-5386-3543-8.

DOI: 10.1109/ICVES.2018.8519504. [Online]. Available: https://ieeexplore.

ieee.org/document/8519504/ (visited on 02/17/2022).

[35] Y. Liu, X. Ma, Y. Li, Y. Tie, Y. Zhang, and J. Gao, “Water Pipeline Leakage Detection

Based on Machine Learning and Wireless Sensor Networks”, en, Sensors, vol. 19, no. 23,

https://doi.org/10.1109/ICOEI.2019.8862654
https://ieeexplore.ieee.org/document/8862654/
https://ieeexplore.ieee.org/document/8862654/
https://doi.org/10.1007/978-1-4842-6494-2_4
https://doi.org/10.1007/978-1-4842-6494-2_4
https://doi.org/10.1007/978-1-4842-6494-2_4
https://doi.org/10.1007/978-1-4842-6494-2_4
https://doi.org/10.1016/j.jnca.2020.102630
https://doi.org/10.1016/j.jnca.2020.102630
https://linkinghub.elsevier.com/retrieve/pii/S1084804520301041
https://linkinghub.elsevier.com/retrieve/pii/S1084804520301041
http://arxiv.org/abs/1803.10311
http://arxiv.org/abs/1803.10311
https://doi.org/10.1063/5.0018384
http://aip.scitation.org/doi/10.1063/5.0018384
http://aip.scitation.org/doi/10.1063/5.0018384
https://doi.org/10.3390/en9080607
http://www.mdpi.com/1996-1073/9/8/607
http://www.mdpi.com/1996-1073/9/8/607
https://doi.org/10.1109/SPW.2018.00013
https://ieeexplore.ieee.org/document/8424629/
https://ieeexplore.ieee.org/document/8424629/
https://doi.org/10.1109/ICVES.2018.8519504
https://ieeexplore.ieee.org/document/8519504/
https://ieeexplore.ieee.org/document/8519504/

BIBLIOGRAPHY 97

p. 5086, Nov. 2019, ISSN: 1424-8220. DOI: 10.3390/s19235086. [Online]. Available:

https://www.mdpi.com/1424-8220/19/23/5086 (visited on 02/17/2022).

[36] B. J. Jansen, “The graphical user interface”, en, (visited on 01/29/2023).

[37] Ž. Jovanović, D. Jagodić, and D. Vujičić, “JAVA SPRING BOOT REST WEB SERVICE

INTEGRATION WITH JAVA ARTIFICIAL INTELLIGENCE WEKA FRAMEWORK”,

en, International Scientific Conference, 2017. (visited on 01/26/2023).

[38] E. Universitat Politècnica de València, “Universitat Politècnica de València”, en, ing.agua,

vol. 18, no. 1, p. ix, Sep. 2014, ISSN: 1886-4996, 1134-2196. DOI: 10 . 4995 / ia .

2014.3293. [Online]. Available: http://polipapers.upv.es/index.php/

IA/article/view/3293 (visited on 01/30/2023).

[39] B. Bulut, H. Burak Ketmen, A. S. Atalay, O. Herkiloglu, and R. Salokangas, “An Arrow-

head and Mimosa Based IoT Framework with an Industrial Predictive Maintenance Appli-

cation”, en, in 2021 International Conference on INnovations in Intelligent SysTems and

Applications (INISTA), Kocaeli, Turkey: IEEE, Aug. 2021, pp. 1–5, ISBN: 978-1-66543-

603-8. DOI: 10.1109/INISTA52262.2021.9548127. [Online]. Available: https:

//ieeexplore.ieee.org/document/9548127/ (visited on 02/18/2022).

[40] B. Peceli, G. Singler, Z. Theisz, C. Hegedus, P. Vargaz, and Z. Szepessy, “Integrating

an Electric Vehicle Supply Equipment with the Arrowhead framework”, en, in IECON

2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy:

IEEE, Oct. 2016, pp. 5271–5276, ISBN: 978-1-5090-3474-1. DOI: 10.1109/IECON.

2016.7793603. [Online]. Available: http://ieeexplore.ieee.org/document/

7793603/ (visited on 02/20/2022).

[41] J. Jokinen, T. Latvala, and J. L. Martinez Lastra, “Integrating smart city services using Ar-

rowhead framework”, en, in IECON 2016 - 42nd Annual Conference of the IEEE Industrial

Electronics Society, Florence: IEEE, Oct. 2016, pp. 5568–5573, ISBN: 978-1-5090-3474-1.

DOI: 10.1109/IECON.2016.7793708. [Online]. Available: https://ieeexplore.

ieee.org/document/7793708/ (visited on 02/21/2022).

[42] N. Schumacher, “Cloud/Edge Machine Learning for Privacy-Preserving Network Trace

Profiling”, en,

https://doi.org/10.3390/s19235086
https://www.mdpi.com/1424-8220/19/23/5086
https://doi.org/10.4995/ia.2014.3293
https://doi.org/10.4995/ia.2014.3293
http://polipapers.upv.es/index.php/IA/article/view/3293
http://polipapers.upv.es/index.php/IA/article/view/3293
https://doi.org/10.1109/INISTA52262.2021.9548127
https://ieeexplore.ieee.org/document/9548127/
https://ieeexplore.ieee.org/document/9548127/
https://doi.org/10.1109/IECON.2016.7793603
https://doi.org/10.1109/IECON.2016.7793603
http://ieeexplore.ieee.org/document/7793603/
http://ieeexplore.ieee.org/document/7793603/
https://doi.org/10.1109/IECON.2016.7793708
https://ieeexplore.ieee.org/document/7793708/
https://ieeexplore.ieee.org/document/7793708/

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Motivation and goals
	1.3 Structure

	2 Related Work and Background
	2.1 Industry 4.0
	2.1.1 Characteristics of Industry 4.0
	2.1.2 SCADA
	2.1.3 Examples of Industry 4.0 Use-cases

	2.2 Industrial Frameworks
	2.2.1 Arrowhead
	2.2.2 AUTOSAR
	2.2.3 BaSys
	2.2.4 FIWARE
	2.2.5 Node-RED
	2.2.6 Kubernetes
	2.2.7 Discussion

	2.3 ML Workflows
	2.3.1 Introduction to Machine Learning
	2.3.2 Overview of Machine Learning flows
	2.3.3 Applications in the MIRAI examples

	2.4 Visualization Technologies
	2.4.1 Java Spring Boot
	2.4.2 Grafana

	2.5 State-of-the-Art: Application of Integration Frameworks
	2.5.1 Industrial Predictive Maintenance Application
	2.5.2 Integrating an Electric Vehicle Supply Equipment
	2.5.3 Smart Cities
	2.5.4 Node-RED in Industrial Environment

	3 System Implementation
	3.1 Large-Scale Edge Management Tool (LEM tool)
	3.1.1 Goal
	3.1.2 List of Functionalities
	3.1.3 User Interface
	3.1.4 Integration with other Frameworks

	3.2 Architecture & System components
	3.2.1 Classes Description
	3.2.2 Information Model
	3.2.3 Monitoring Functionality
	3.2.4 Update Functionality
	3.2.5 Deploy Functionality
	3.2.6 Edit Functionality
	3.2.7 Delete Functionality
	3.2.8 Control Functionality

	3.3 Interface with Node-RED
	3.3.1 Communicating with Node-RED
	3.3.2 Limitations of Node-RED
	3.3.3 Monitor Node-RED flows

	4 Validation
	4.1 Integration of the pipelines developed by MIRAI
	4.1.1 Flow Description
	4.1.2 Integration with LEM tool

	4.2 Validation of Deploy and Delete Functionalities
	4.3 Monitoring - Update Time of Flow Status
	4.3.1 Local Setup Results
	4.3.2 Remote Setup Results

	5 Conclusion
	5.1 Future Work

	A Response Times Tables
	A.1 Local Results per Flows
	A.1.1 1 Flow on n Devices
	A.1.2 5 Flow on n Devices
	A.1.3 10 Flows on n Devices
	A.1.4 15 Flows on n Devices
	A.1.5 20 Flows on n Devices

	A.2 Local Results per Devices
	A.2.1 Flows on 1 Device
	A.2.2 Flows on 4 Devices

	A.3 Remote Results per Devices
	A.3.1 Flows on 1 Device
	A.3.2 Flows on 4 Devices

	B Traffic Capture

