
ABSTRACT

Title of Dissertation: Dynamic Reconfiguration with Virtual Services

Daniel F. Savarese, Doctor of Philosophy, 2005

Dissertation directed by: Professor James M. Purtilo
Department of Computer Science

We present a new architecture (virtual services) and accompanying implementation

for dynamically adapting and reconfiguring the behavior of network services. Virtual

services are a compositional middleware system that transparently interposes itself

between a service and a client, overlaying new functionality with configurations of

modules organized into processing chains. Virtual services allow programmers and

system administrators to extend, modify, and reconfigure dynamically the behavior of

existing services for which source code, object code, and administrative control are not

available. Virtual service module processing chains are instantiated on a per connec-

tion or invocation basis, thereby enabling the reconfiguration of individual connections

to a service without affecting other connections to the same service.

To validate our architecture, we have implemented a virtual services software de-

velopment toolkit and middleware server. Our experiments demonstrate that virtual

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital Repository at the University of Maryland

https://core.ac.uk/display/56099358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

services can modularize concerns that cut across network services. We show that we

can reconfigure and enhance the security properties of services implemented as ei-

ther TCP client-server systems, such as an HTTP server, or as remotely invocable

objects, such as a Web service. We demonstrate that virtual services can reconfig-

ure the following security properties and abilities: authentication, access control, se-

crecy/encryption, connection monitoring, security breach detection, adaptive response

to security breaches, concurrent and dynamically mutable implementation of multiple

security policies for different clients.

Dynamic Reconfiguration with Virtual Services

by

Daniel F. Savarese

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Professor James M. Purtilo, Chair
Professor Michael Boyle
Professor Larry Davis
Professor Adam Porter
Professor Nick Roussopoulos

c© Copyright by
Daniel F. Savarese

2005

Preface

Advancements in computer science often are incremental. We improve on existing

ideas gradually in response to demands of the day. The work I present follows that

tradition.

This project is an outgrowth of research supported by the Office of Naval Research

in the project titled “Reestablishing Separability of Programming Concerns in Net-

centric Environments” at the University of Maryland. In the late 1980s, Jim Purtilo

developed the Polylith software bus [69]. Polylith enabled software written in different

languages to interconnect and execute on heterogeneous networked computers. The

concept was timely. The next decade saw a multitude of similar systems—such as

CORBA [79], DCOM [56], OpenDoc [4], and PDO [59]—compete for adoption.

Christine Hofmeister found Polylith’s software component packaging capabilities

provided an ideal platform for exploring dynamic software reconfiguration [37]. The

component orchestration performed in her work bears a similarity to today’s Web ser-

vice orchestration. Subsequently, Tae-Yung Kim applied source code transformations

to optimize configurations with CORD (Configuration-level Optimization of RPC-

based Distributed programs) [47].

Updating that previous work within the constraints imposed by today’s service-

oriented architectures (SOA), I have investigated the development of dynamically re-

configurable services. Some of the principles I have applied have emerged indepen-

dently in commercial systems such as J2EE servlet filters and Apple’s Mac OS X

ii

Automator component connecting application. Developer demand for the ability to

dynamically assemble and reconfigure software components is increasing. This work

advances by a small increment the techniques for satisfying that need.

iii

DEDICATION

For John Gannon.

iv

ACKNOWLEDGEMENTS

Thanks to Jim Purtilo for getting me to the finish line, John Gannon for
encouraging me to embark on the journey, Thomas Sterling for giving me
opportunities, and Nick Roussopoulos for helping me pick up where I left
off.

v

TABLE OF CONTENTS

List of Tables ix

List of Figures x

1 Background 1
1.1 Motivating Problem . 2
1.2 Difficulties . 6
1.3 Objectives . 7

2 Requirements 9
2.1 Evaluation Criteria . 9

2.1.1 Reconfigurability . 10
2.1.2 Dynamism . 11
2.1.3 Loose Coupling . 12
2.1.4 Transparency . 13
2.1.5 Flexibility . 14
2.1.6 Persistence . 15
2.1.7 Programmability . 15
2.1.8 Usability . 16
2.1.9 Efficiency . 17

3 Methodology 18
3.1 Implementation Plan . 18

3.1.1 Managed Object Infrastructure 18
3.1.2 Modules as Units of Reconfiguration 19
3.1.3 Transparent Mediation Strategies 20

3.2 Evaluation Plan . 21
3.3 Limitations . 22

vi

4 System Architecture 24
4.1 System Components . 24

4.1.1 Virtual Service Modules . 25
4.1.2 Module Processing Chains 29
4.1.3 Virtual Services . 30
4.1.4 Virtual Service Context . 32
4.1.5 Virtual Service Containers 32
4.1.6 The Virtual Service Agent 34

4.2 Architectural Challenges . 35
4.2.1 Service Mapping . 35
4.2.2 Reflection-based Management 37
4.2.3 Concurrency Control . 37
4.2.4 Configurations and Reconfiguration 38

5 Implementation 41
5.1 Application Layer Virtualization . 42
5.2 Transport Layer Virtualization . 44
5.3 Module Processing . 46
5.4 Serialization of Configurations . 47
5.5 Application Programming Interface 48

5.5.1 Module API . 49
5.5.2 Module Chain API . 50
5.5.3 Virtual Service API, Containers and Agents 52

6 Applications 54
6.1 Non-security Applications . 54

6.1.1 Manual Reconfiguration . 55
6.1.2 TCP Forwarding and Zero-downtime Upgrades 58
6.1.3 Logging . 60
6.1.4 Dynamic Instrumentation . 62
6.1.5 Filtering . 63
6.1.6 Proxying . 64
6.1.7 Component Migration . 66

6.2 Dynamically Reconfigurable Security 67
6.2.1 Authentication . 68
6.2.2 Connection Restriction . 70
6.2.3 Request Screening . 71
6.2.4 Encryption . 71
6.2.5 Traffic Monitoring and Adaptive Response 72

vii

6.2.6 Software Fuses . 73

7 Experiments 74
7.1 Module Complexity . 74
7.2 Performance . 78

7.2.1 Test Plan . 79
7.2.2 Measurements . 80

7.3 Autonomic Self-Defense . 84
7.3.1 Adaptive Response . 86
7.3.2 Self-reconfiguration as Exploit Countermeasure 87

7.4 Summary of Results . 91

8 Related Work 93
8.1 Adaptive Middleware . 93
8.2 Aspect-oriented Systems . 95
8.3 Compositional Systems . 97
8.4 Dynamic Software Updating . 97
8.5 Active Systems . 99
8.6 Database Queries as Mobile Code 100
8.7 Service Orchestration . 101
8.8 Static and Dynamic Reconfiguration 102
8.9 Miscellaneous Customization Systems 103

9 Conclusion 105
9.1 Future Work . 108
9.2 Contributions . 109

A Self-Servicing Messages and Cooperative Aspects 111
A.1 Software Evolution and Aspect-Oriented Programming 112

A.1.1 Software Maintenance and Evolution 112
A.1.2 Separation of Concerns . 113
A.1.3 Cooperative Aspects . 119

A.2 Self-servicing Messages . 125
A.3 SOAP Binding of SSM and Cooperative Aspects 129
A.4 Observations . 133

Glossary 138

Bibliography 140

viii

LIST OF TABLES

7.1 Module complexity . 75
7.2 Satisfaction of requirements . 92

ix

LIST OF FIGURES

4.1 Virtual service module . 26
4.2 Virtual service module interface. 27
4.3 Module configuration interface . 28
4.4 Module processing chain . 29
4.5 Virtual service . 31
4.6 Virtual service container . 33
4.7 Virtual service agent . 34

5.1 Application layer virtualization. 43
5.2 Fully transparent transport layer virtualization on Linux. 45
5.3 Virtual service module external interface. 50
5.4 Module chain external interface. 51

6.1 Zero-downtime service upgrade . 59
6.2 Logging module . 61
6.3 HTTP header filtering module . 63
6.4 Proxy virtual service . 65

7.1 Cyclomatic complexity of module methods 77
7.2 Service load generation . 80
7.3 Virtual service load generation . 81
7.4 Reply rate vs. connection rate . 82
7.5 Response time vs. connection rate 83
7.6 Adaptive behavior . 86
7.7 HTTP Attack. 87

A.1 A crosscutting concern . 115
A.2 A refactored concern . 116
A.3 A simple aspect . 118
A.4 Logging with aspects . 121
A.5 Logging with cooperative aspects . 123
A.6 Self-servicing message structure . 126

x

A.7 Cooperative aspect DTD . 130
A.8 Instance of SSM and cooperative aspects SOAP binding 136
A.9 Instance of SSM and cooperative aspects SOAP binding (continued) . 137

xi

Chapter 1

Background

One morning, I started my day with the unpleasant experience of finding my mail

server under attack by hundreds of zombie hosts spreading a new variant of the My-

Doom virus. The threat to my server was not caused by the virus itself, which was

inert data as far as the mail server was concerned. Instead, the threat was a denial of

service caused by hundreds of concurrent connections to the server, overloading the

server and consuming costly bandwidth. I was losing money by the second.

Although my mail server (a recent version of sendmail) supported the ability to

throttle back the rate at which incoming connections arrived, it did not support the

ability to limit the total number of concurrent connections from a single source. Many

of the zombie connections originated from the same hosts, but firewalling them off

was not an acceptable option because those hosts were also sources of legitimate mail.

How could I keep my mail server running to accept legitimate email but at the same

time limit the flow of virus-laden email?

Ideally, I could have dynamically reconfigured the security policy of the mail

server, setting it to limit the number of connections from a single source. Without dy-

namic reconfiguration, I would have had to have become familiar with the mail server

source code (which was available in this case), modify it to suit my needs, shut down

1

the mail server, and start the customized version. Tearing down a service for reconfig-

uration has the disadvantage of reducing availability. Modifying source code requires

access to the source, which is not always available, and is both time-consuming and

application-specific. On the fly reconfiguration where a service is oblivious to the

reconfiguration system overcomes those disadvantages.

For my mail server scenario, it is not detrimental to limit any given source to a

single connection. Most mail relays batch delivery of mail to a given domain, there-

fore maintaining at most one connection to a given mail server at any given time. This

policy buys enough time to analyze the source of the unwanted email and take addi-

tional corrective action. Using virtual services, I was able to quickly implement the

new policy without tearing down my mail server or engaging in application-specific

source code customization.

Virtual services provide a means to reconfigure services dynamically with zero

down time. They interpose themselves transparently between a service and a client,

overlaying new functionality with configurations of modules organized into processing

chains. In the above example, I was able to write a virtual service module that would

detect an excess of incoming connections from a single source, reactively shut down

the excess connections, block further excess connections, and optionally deny all fur-

ther connections from the source if the connection rate exceeded a specific threshold.

The rest of this chapter summarizes the motivating problem behind the develop-

ment of virtual services and the difficulties involved.

1.1 Motivating Problem

Most software development tools provide programming language and runtime envi-

ronments for developing portions of applications for which source code or linkable

2

objects are available at compilation or run time. However, it is common to develop

enterprise applications for which some source code and linkable objects are not avail-

able to software developers. This situation arises when network services are integrated

into a program’s flow of control, such as when invoking a Web service. For example, a

supply chain management application may have to invoke a supplier’s inventory status

Web service that is outside of the control of the client. Even intranet services under an

organization’s control will not provide source code or linkable objects when acquired

from a third-party vendor.

Writing programs that rely on network services presents a unique challenge be-

cause services are shared between multiple applications. Each application may have

different requirements that necessitate specialization of service behavior. If the spe-

cialization is performed by modifying the service, then the change may conflict with

the requirements of another application. If the specialization is performed by modify-

ing the application, the change cannot be reused by other applications that may share

the same requirement.

Object-oriented programming offers inheritance and polymorphism as vehicles for

specializing application component behavior. Aspect-oriented programming (AOP)

provides both the ability to modularize behavior that cuts across program components

and the ability to insert and remove behavior from program components while the

components remain oblivious to the change. Therefore, AOP provides not only a form

of modularization, but also a program extension and reconfiguration facility. Yet, the

mechanisms offered by OOP and AOP for behavior specialization and reconfiguration

cannot be applied to network services.

The need to specialize service behavior and modularize cross-service behavior may

be driven by client application requirements, such as when you write a program that

3

uses one or more network services. These needs may also be driven by the service

itself, such as when a system administrator or software development team deploys a

service and requires it to do something it does not already do. In either scenario, there

may be a need to perform different specializations for different invocations of the same

service.

Even when cross-service behavior modularization is not required, concurrent mod-

ularization of different behaviors for multiple connections may be required. This re-

quirement is the equivalent of selectively applying different aspects to the same object

depending on the caller or other environmental condition. Given all of these require-

ments, we not only want to be able to customize legacy services but also we want to

be able to build a service from scratch so that it can be reconfigured dynamically on a

global or per-connection basis.

Conventional AOP tools excel at extending and modularizing program behavior

when the internal structure of program components are known, which usually requires

access to either source code or linkable objects and a published API. It is difficult to

apply these tools to customize services or to modularize cross-service behavior in the

following situations that motivate our work:

• service source code is available, but it is difficult to customize directly or differ-

ent and potentially conflicting customizations are required by different applica-

tions;

• only linkable objects are available but their internal structure is unknown;

• no source code or linkable objects are available, but administrative control is

available;

• no source code, linkable objects, or administrative control is available.

4

Especiallly important is the limitation where you do not or cannot understand the in-

ternal structure of a program component. In that case, it is not possible to specify join

points in a useful manner. Even when annotated methods are used, the annotations

need to be published in order to operate on them.

The abstract scenarios described so far are driven by real-world requirements. For

example, the CTO of an application service provider discussed with the author his

need to customize the behavior of an IMAP server so that when certain IMAP transac-

tions occurred, custom code and database transactions would be executed. The IMAP

server did not support user customization. Even though source code was available, it

was deemed impractical to maintain a forked version of the source code because the

required changes were substantial and the vendor was unwilling to add extensibility

features suggested by the customer. Applying advice at pointcuts defined in terms of

service protocol commands was deemed the most flexible and maintainable solution

because it could be used with any IMAP server and was insensitive to changes to the

service source code. No product exists with that functionality, but virtual services can

do the job.

We have come to recognize that behavior specialization and crosscutting behavior

modularization are required not only by programmers, but also by system adminis-

trators who need to reconfigure deployed services that do not provide reconfiguration

mechanisms. Furthermore, both programmers and system administrators require the

ability to reconfigure services dynamically in response to changing environmental con-

ditions or application requirements. Tearing down a service for reconfiguration is often

undesirable.

In order to meet the above requirements, we have created a software development

framework that provides all of the primitive functionality necessary to satisfy the re-

5

quirements. We envision that programmers will want to build higher level tools on

top of the framework for specific application domains. However, the framework by

itself is sufficient for programmers and system administrators to dynamically recon-

figure legacy services. Our approach is based on the concept of a virtual service, which

mediates the conversation between a client and a service.

Virtual services share features with compositional systems because they are limited

to modifying the behavior surrounding a service invocation and cannot alter the flow

of control within the service itself. We have found that virtual services can modularize

behavior that cuts across services, reconfigure the behavior of legacy services, and be

used to build dynamically reconfigurable services. They are applicable when direct

modification of a service is either not possible or inefficient (for example, when the

same modification needs to be applied to multiple services).

Although conceived originally as a dynamic reconfiguration facility, virtual ser-

vices are related to aspect-oriented software development research because they can

modularize crosscutting behavior in situations where existing approaches are difficult

to apply. By mediating a client-server conversation, pointcuts and advice can be de-

fined and applied dynamically without source code or knowledge of the internal struc-

ture of a service.

1.2 Difficulties

Dynamic reconfiguration is challenging because it changes a program or set of pro-

grams during execution. Static reconfiguration does not have to cope with the complex-

ity of altering a program’s structure while it is running. Virtual services, unlike other

reconfiguration methods, allow per-connection reconfiguration. Therefore, they have

to deal with the additional difficulty of reconfiguring a service for one client without

6

disrupting the configuration of the service for other clients. Simultaneously supporting

multiple configurations of a service for different clients requires careful management

of execution state and concurrency control. The layering of service modules in the

service’s communication path runs the risk of degrading service responsiveness if not

implemented effeciently. Security considerations add further complications because

reconfiguration capabilities must be restricted to authorized entities. The entire system

must be exposed through an API that can be leveraged by intelligent programs and

humans to dynamically reconfigure service behavior.

Some challenges we don’t tackle, but they remain for certain classes of high level

tools. Service modules previously unknown to the system can be loaded dynamically

and connected to other modules. Therefore, metadata must be associated with modules

for an intelligent reconfigurator to be able to discern, for example, that two different

modules provide the same functionality. Versioning of modules is necessary so that a

defective module may be reverted to an earlier working version when virtual services

are applied to areas such as self-healing software.

1.3 Objectives

Our goal is to implement a programming framework and middleware system for recon-

figuring legacy services and building inherently reconfigurable services. We endeavor

to show that:

1. arbitrary network services can be customized and reconfigured to meet application-

specific requirements without administrative control of the service or access to

source code;

7

2. inherently reconfigurable services can be built using the same framework for

reconfiguring legacy services;

3. service configurations can be reconfigured dynamically without stopping the ser-

vice or client applications;

4. service configurations can be shared concurrently between multiple applications;

5. and behavior that cuts across services can be modularized into configuration

elements for reuse.

We expand on these goals in Chapter 2, presenting specific requirements our sys-

tem must meet in order to satisfy our objectives.

8

Chapter 2

Requirements

To date, software reconfiguration systems have required either access to source code or

administrative control of the software. For example, CORD [48, 50, 49, 47] transforms

the source code of RPC-based distributed programs to generate optimal topological

configurations for communication. Without source code—or, at the minimum, object

files that can be rewritten—reconfigurable software must support a configuration or ex-

tension mechanism such as configuration files or plugins. For example, you can recon-

figure the Apache HTTPD Web server by editing a configuration file and notifying the

server via a signal to reread the configuration. Also, you can extend Apache HTTPD

via dynamically loaded modules. Such a configuration system is application-specific

because it can be used only to configure Apache HTTPD. Furthermore, reconfiguration

requires administrative control of the software.

2.1 Evaluation Criteria

Our principal objective has been to devise an architecture and construct an accom-

panying implementation to enable services to be reconfigured without administrative

control of the service or access to its source code. In order to meet that objective, a

number of subsidiary requirements must be satisfied. We discuss these requirements

9

in terms of the following characteristics our system must exhibit:

• reconfigurabilty

• dynamism

• loose coupling

• transparency

• flexibility

• persistence

• programmability

• usability

• efficiency

2.1.1 Reconfigurability

Hofmeister and Purtilo [38] identified three types of reconfiguration required by soft-

ware developers: module implementation changes, structural changes, and geometry

changes. Module implementation changes affect individual program components. Re-

placing or modifying a module is an implementation change. Structural (also called

topological) changes affect the flow of control between modules. Removing a module,

inserting a module, and changing the order of execution of modules are all structural

changes. Geometry changes affect the logical mapping of program structure onto a

physical execution environment. Changing the location of execution of a module is a

geometry change.

10

Our architecture must support all three types of reconfiguration, with the limita-

tion that geometry changes cannot be applied to legacy services. However, geometry

changes can be applied to configuration elements and services built using our frame-

work.

2.1.2 Dynamism

Software reconfiguration is most often a static activity. A program is stopped, recon-

figured, and restarted. Reconfiguration can take the form of recoding the program,

modifying configuration files, applying a patch, or some other means. Services, in par-

ticular, often use a static reconfiguration model that requires complete administrative

control over the service. Even service-hosting applications that permit runtime config-

uration changes, like the Apache HTTPD Web server, must be shut down entirely for

upgrades.

Services cannot tolerate excessive down time because it causes dependent appli-

cations to cease to function. Therefore, static reconfiguration must be performed in-

frequently to avoid down time. However, infrequent reconfiguration precludes the

implementation of adaptive behavior. An adaptive program that reconfigures itself in

response to changing environmental conditions must be able to perform reconfigura-

tions at any given time. Therefore, we require that our system allow reconfigurations

to be performed dynamically at arbitrary points in time while a service is running. The

service must not be decommissioned to be reconfigured and existing service connec-

tions must not be disrupted during a reconfiguration.

11

2.1.3 Loose Coupling

Although many programs can be reconfigured dynamically to varying degrees, their re-

configuration systems are application-specific and cannot be used by other programs.

For example, Apache HTTPD can dynamically load modules to change its behav-

ior, but those modules cannot be used by other Web servers. When the value of an

application-specific configuration system is recognized widely, software developers

will sometimes agree on a standard for configuring a class of applications. For ex-

ample, Web browser developers have agreed on standards for implementing plugins

so that the same plugins can be used in different Web browsers without maintaining

separate versions for each browser.

Still, even in instances where a configuration standard is adopted, the coupling

between application and configuration system is very tight. A host application must

embed a plugin or module container that is able to load and configure application be-

havior specializations at run time. The configuration system source code becomes tied

directly to the application source code. Therefore, it becomes difficult to reuse the

same configuration system with different applications. At best, the configuration sys-

tem is encapsulated in a library that can be linked into different applications without

requiring each application to implement its own version of a configuration standard.

In this situation, configurations cannot be shared concurrently between different appli-

cations or be implemented in a manner that takes into consideration the behavior of

multiple applications.

Our reconfiguration architecture must be sufficiently decoupled from an applica-

tion that configurations may be shared between disparate applications. Each applica-

tion should not be required to embed its own instance of the reconfiguration system.

We impose this requirement specifically because we wish to reconfigure legacy ser-

12

vices that are not inherently reconfigurable. If our reconfiguration mechanisms are not

sufficiently decoupled from the services they affect, then source code modifications

would have to be made to the services and client programs. Making such source code

modifications would defeat one of our principal goals, which is to enable the special-

ization of behavior in the absence of source code.

2.1.4 Transparency

Customarily, reconfiguration is an overt act. For example, the FlashEd Web server [35]

implements a maintenance command interface that allows an external application to

connect to the server and issue software updating commands. Software similar to

FlashEd is aware that it is being reconfigured and implements application-specific

support for being updated. The reconfiguration is application-specific because data

and control structures specific to the program can be updated.

Not only must our architecture support application-independent configurations, but

also it must allow a service to be reconfigured without its knowledge. Services must be

completely oblivious to reconfigurations unless they themselves initiate a reconfigura-

tion. Because we do not operate on the internal structure of a service, we do not claim

to maintain the obliviousness property [29] so often mentioned in the AOP literature.

It can be argued that obliviousness guarantees you can tamper with the implementa-

tion of a component without its knowledge. We do not allow the implementation of a

component to be changed because we are concerned with situations where the internal

structure of a service is unknown and inaccessible.

However, we do impose a requirement of transparency, which is related to obliv-

iousness. The reconfiguration system must be transparent to the client and service.

There exist different levels of transparency which we discuss in Chapter 5. In general,

13

we require that a client be able to access a reconfigurable service without having to

perform any special actions. To the client, accessing a reconfigurable service should

be indistiguishable from acessing a non-reconfigurable service. Likewise, a service

should perceive client accesses in the same way, regardless of whether or not the ser-

vice has been customized with our reconfiguration system.

2.1.5 Flexibility

Flexibility is a measure of how capable a system is at coping with a wide variety of

situations. For example, an application-sepcific configuration file is inflexible because

it can be used to configure only a single application. In order to be both practical and

generally applicable, a reconfiguration system must be flexible.

Our reconfiguration architecture must be flexible enough to reconfigure arbitrary

network services independent of their application-layer communication protocools. It

should be possible to reconfigure a network service to meet application-specific re-

quirements without administrative control of the service or access to its source code.

Not only should it be possible to specialize the behavior of legacy services, but also

it should be possible to implement inherently reconfigurable services using our re-

configuration framework. It should be possible to reconfigure a service dynamically

without stopping the service or client applications. Service configurations should be

concurrently shareable between multiple applications. It should be possible to perform

reconfigurations on a per-connection basis. Behavior of a client as well as a service

should be reconfigurable in appropriate contexts. For example, client functionality can

be enhanced through reconfigurable proxies.

14

2.1.6 Persistence

Component configurations can be either ephemeral or persistent. Ephemeral configu-

rations exist only during the lifetime of a program. They have to be reconstructed from

scratch the next time the program is started. Persistent configurations survive program

termination and can be restored immediately when a program resumes.

A useful and practical reconfiguration system must implement persistent configu-

rations. Otherwise, configurations cannot be applied to different services and be dy-

namically removed and restored. We require our reconfiguration system to implement

the saving and loading of configurations to secondary storage. The ability to save a

configuration allows specific configurations to be reinstantiated at will. For example,

you may have created a connection logger configuration for debugging purposes that

you can reinstantiate whenever you want to investigate a problem with a service. It

should be possible to create multiple instances of the same configuration. Persistent

configurations can be used to facilitate the assembly of complex configurations from

simpler configurations. Finally, the serialization required to save configurations can be

used to migrate configurations from one location to another.

2.1.7 Programmability

Static reconfiguration systems rely on configuration files, hard-coded program instruc-

tions, and other mechanisms that can be implemented while a program is not running.

Dynamic reconfiguration requires that configurations change while a program is run-

ning. Some programs that are able to reconfigure themselves at run time limit their

reconfiguration mechanisms for use only by themselves. The reconfiguration mecha-

nisms are accessible only internally. For example, a load balancer may change its load

balancing strategy in response to changing conditions, but will not allow the policy to

15

be changed dynamically by a system administrator.

For dynamic reconfiguration to be useful, we believe it must be exposed to exter-

nal entitites. Humans and programs alike should be able to inspect and modify con-

figurations. We require our reconfiguration system to be programmable. That is, the

reconfiguration mechanisms must be exposed for external use as a programming API.

Doing so enables tools to be built to inspect and modify configurations, allowing both

manual and automatic reconfiguration at run time. Also, programmability enables the

construction of inherently reconfigurable services. Such services can self-reconfigure,

adapting to changing conditions.

2.1.8 Usability

Many research systems demonstrate features that are useful in theory, but are not prac-

tical to use as implemented. For the concepts explored in a research system to be

useful, they must be usable. Although we do not pretend to be constructing a commer-

cial quality software system, we do require it to be usable.

Usability encompasses a number of characteristics, many of which are subjective.

Ease of use is one such characteristic. In his dissertation on dynamic software updat-

ing, Michael Hicks defines ease of use with respect to software updating as the clear

separation between the process of update development and the process of software de-

velopment [35]. The problem of dynamic software reconfiguration is related to, but not

the same as, that of dynamic software updating. Our previously defined requirements

of loose coupling and transparency already satisfy Hick’s ease of use metric. We allow

services to be developed completely independent from configuration elements.

Although it is difficult to quantify usability, we provide a few additional require-

ments to define our usability goal. Programmers should not have to write an inordinate

16

amount of code to implement a behavior specialization. System administrators should

be able to inspect and modify configurations. It should be possible to develop tools

to perform manual and automatic reconfigurations—this is provided for by our pro-

grammability requirement. In addition, it should be possible to test configurations

without tearing down a service.

2.1.9 Efficiency

Efficiency goes hand in hand with usability. No matter how easy it is to use a software

system, the system is not practical to use if it is not efficient. Specifically, if the exe-

cution time and resource consumption of a reconfiguration system eclipse those of the

services it mediates, it becomes impractical. Efficiency is difficult to quantify. A large

overhead may be acceptable in some situations and completely unacceptable in others.

For example, a service that processes a few connections per second can tolerate greater

overhead than a service that must scale to thousands of connections per second.

Instead of defining an absolute measure of efficiency, we impose a requirement

of efficiency relative to the performance of a mediated service. We require that our

reconfiguration system not interfere with the operation of a service to the degree that

the service is no longer able to be used in the same capacity. Therefore, if a service

processes 100 connections per second, the reconfiguration system must not prevent

the service from meeting that performance goal. Deviations of up to 10% may be ac-

ceptable depending on the specific situation. We do not consider the execution and

resource overhead of configuration elements because those are, in principle, program

extensions. We require only that the performance cost of the reconfiguration system—

with no configured customizations—not adversely impact the performance of the me-

diated service.

17

Chapter 3

Methodology

Existing reconfiguration systems satisfy some of the requirements we specified in

Chapter 2, but do not meet all of the objectives we described in Section 1.3. Most

importantly, other systems have not achieved our objective to enable services to be

reconfigured without administrative control of the service or access to its source code.

It is this objective that most distinguishes our research from that of others. In order

to achieve all of our objectives and to satisfy our requirements, we followed a plan of

implementation and a plan of evaluation which we describe in this chapter along with

a discussion of the limitations of our approach.

3.1 Implementation Plan

Before one can contemplate implementation, one must design the system to be imple-

mented. We detail our design in Chapter 4, but discuss design decisions as part of our

plan of implementation.

3.1.1 Managed Object Infrastructure

A number of approaches can be used to implement dynamic reconfiguration. Some

systems will save state, implement modifications, and restore state after the modifica-

18

tions have been made. Others rewrite binary images of functions, inserting instructions

at the beginning of a function and providing a mechanism called a trampoline function

that allows the original function to be called if necessary [12]. This form of intercep-

tion is akin to before and after advice in aspect-oriented programming. Still others use

dynamic linking to discover function bindings at run time.

None of these methods are suitable for our purposes. Our loose coupling requirement—

driven by our need to reconfigure services that may not be under our control—demands

we avoid methods that require access to the service source, binary, or runtime image.

Instead, we choose to intercept service invocations over the network and build a recon-

figuration system inside the middleware performing the interceptions.

The reconfiguration middleware must allow for reconfigurations to be performed

by external clients. In order to accomodate this need, we choose to use managed ob-

jects, which selectively expose state monitoring and modifying operations. Managed

objects can be dynamically loaded and their exposed attributes and operations can be

dynamically discovered. These properties will form the basis for our dynamic recon-

figuration framework. We choose to use the Java Management Extensions (JMX) [87]

to implement our managed objects because it saves us from developing our own man-

agement framework and because it allows us to use Java’s dynamic class loading and

reflection.

3.1.2 Modules as Units of Reconfiguration

One of our objectives is to be able to specialize the behavior of services. To do so,

we have to define a unit that encapsulates behavioral changes. Our restriction to inter-

cepting service invocations forces upon us a compositional model of behavior special-

ization. Therefore, our behavioral units must be organized in such a fashion that one

19

can be invoked after another. Reconfigurations can be achieved by reorganizing the

behavioral units and their order of execution.

The behavioral unit we have chosen is a virtual service module, discussed further

in Chapter 4. In terms of implementation, a module is a collection of classes with a

configuration entry point in a managed object. Modules may be configured with the

management operations they expose. Collections of modules organized in chains may

then be used to assemble configurations (see Section 4.1.2).

Our plan of implementation begins with implementing an API framework for cre-

ating modules and module chains within an application. Later, we add management

and serialization capabilities.

3.1.3 Transparent Mediation Strategies

After implementing the basic reconfiguration mechanisms of modules and module

chains, it is necessary to create containers to house them. Also, they must be linked to

the services they will reconfigure. Our requirement of transparency (see Section 2.1.4)

leads us to identify two types of transparent mediation: application layer and trans-

port layer. We describe in detail the implementation of the two forms of transparent

mediation in Chapter 5.

We will implement only application layer mediation at the outset. After having a

fully working system using application layer mediation, we will implement transport

layer mediation. Our design allows us to implement containers for different mediation

strategies without rewriting other parts of the system.

20

3.2 Evaluation Plan

A complaint put forward by Michael Hicks in his dissertation on dynamic software

updating [35] is that research systems often do not validate their concepts on realistic

applications. He goes on to apply his software updating system to a Web server. We

share the concern that the concepts explored by a research system should be shown

to translate to applications that might be used in commercial computing. However,

the notion of a realistic application is difficult to quantify objectively. A basic file-

serving Web server can be implemented in a couple hundred lines of code, as we have

done [75]. The software may work flawlessly and be useful, yet not be representative

of what an end user expects from that class of software. To avoid that problem, Hicks

validated his software updating system by porting to his framework an existing Web

server already used in production.

The problem we are solving is different from the software updating problem. We

do not need to port existing production software to our framework. In fact, that is

exactly the situation we are trying to avoid. We want to provide a means to modify the

behavior of services without modifying the service source code. Therefore, in order to

validate our system, we must show that we can reconfigure production services outside

of our control. A convincing test of this ability is to reconfigure publicly accessible

Internet services that are used daily by thousands of users. For example, as we discuss

later in Chapter 6 and Chapter 7, we have implemented a reconfigurable HTTP proxy

that allows us to attach our reconfiguration system to any Web service in addition to

providing a means to reconfigure the behavior of a service client, such as the Microsoft

Internet Explorer or Mozilla Firefox Web browsers.

Our system evaluation process will consist of verifying the requirements specified

in Chapter 2 are met in situations we believe are reflective of production use. The

21

following list summarizes our evaluation activities:

1. Implement a variety of modules using the reconfiguration framework to demon-

strate flexibility of the system (see Chapter 6). Instead of concentrating on a

single application, we show the system can be applied to a number of different

applications.

2. Measure the effort required to implement reconfiguration modules (see Chap-

ter 7). A system that requires too much effort to use is not practical.

3. Apply multiple configurations to different classes of Internet services, some un-

der our control and others not (see Chapter 7).

4. Implement a self-reconfiguring service (see Chapter 7) to evaluate all pieces of

system working together in a single application.

5. Measure performance (see Section 7.2) overhead of reconfiguration system against

an unmediated service.

3.3 Limitations

Our implementation will be limited by a few factors. First, we are confining our imple-

mentation to the Java platform. Even though we can mediate arbitrary services, virtual

service modules must be implemented in Java. Second, the deployment of fully trans-

parent virtual services requires administrative privileges on the host running the recon-

figuration middleware. Administrative privileges are not required on the host running

the virtualized service unless the middleware system and service are co-located. This

restriction emerges because we use packet interception to achieve full transparency

(see Section 5.2. As a general rule, operating systems allow packet interception only

22

to processes with special privileges. Third, we do not dedicate much effort to develop-

ing a commercial-quality manual reconfiguration tool. To do so would redirect much

effort to user interface development. As a result, our manual reconfiguration tool does

not reflect the ease of use that can be attained.

23

Chapter 4

System Architecture

Virtual services are a compositional middleware system that transparently interposes

itself between a service and a client, overlaying new functionality with configurations

of modules organized into processing chains. Virtual services allow programmers and

system administrators to extend, modify, and reconfigure dynamically the behavior

of existing services for which source code, object code, and possibly administrative

control are not available. The basis for introducing new behavior is the same as when

overriding a virtual method or applying before, after, or around advice. Instead of

wrapping a method call with custom code, a virtual service mediates a network service

invocation or client-server conversation.

4.1 System Components

Virtual services are organized in terms of modules assembled into chains. Data flows

through the module chains in the form of messages that can be modified or reacted to

in an arbitrary manner. By default, three module chains are defined for all TCP-based

virtual services: ACCEPT, INCOMING, and OUTGOING. The ACCEPT chain me-

diates the acceptance of a TCP connection and transfers control to the INCOMING

chain upon acceptance. The INCOMING chain processes data flowing into the virtual

24

service before forwarding it (or deciding not to) to the virtualized service. The OUT-

GOING chain processes data flowing out of the virtualized service before forwarding

it (or deciding not to) to the client. Any number of additional chains can be added

along with modules that fork control to a specific chain.

Ultimately, a service receives a set of inputs and returns a set of outputs, all of

which flow through the virtual service modules. In this way, arbitrary behavior can

be introduced by virtual service modules. Because module chains can be reconfigured

on the fly, virtual services can change their behavior dynamically, adapting to their

environment as it changes. Furthermore, virtual service modules themselves can be

services, allowing you to build fully reconfigurable services in addition to being able

to extend, modify, and reconfigure dynamically the behavior of existing services for

which you have no administrative control or source code.

Every module, module chain, virtual service, and virtual service container is con-

figurable by modifying dynamically exposed properties and operations. These can

be accessed through an API or a configuration client application. The state of every

module, module chain, virtual service, and virtual service container can be serialized,

enabling you to save and restore the configuration of virtual services.

4.1.1 Virtual Service Modules

Virtual service modules form the base unit of reconfiguration in the virtual services

architecture. A module corresponds roughly to overriding a virtual method and taking

some action before or after delegating the call to the method in the base class. Virtual

service modules are also similar to advice in aspect-oriented programming. However,

their orientation toward modifying service behavior and enabling dynamic reconfig-

uration sets them apart from similar mechanisms. Virtual service modules are not a

25

language-based behavior specialization construct such as virtual methods and advice.

Instead, they are fully managed objects that expose properties and operations to con-

figuration management clients.

Modules operate in two different modes: as units of execution in a module pro-

cessing chain and as independently configurable objects. It is as execution units that

modules specialize service behavior. It is as configurable objects that the precise na-

ture of their behavior specialization can be defined. First we discuss their role as units

of execution, followed by their configurable nature.

Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

Figure 4.1: Virtual service module. A virtual service module operates on a shared
context.

Modules operate on a shared context that is passed to them when invoked (see

Figure 4.1). The context provides access to a tuple space through which modules can

discover properties of their execution environment—such as the IP address of a service

client—and through which they can communicate with other modules. Section 4.1.4

explains the virtual service context in more detail.

A module has no mandated dependencies on other modules in the same chain,

although multiple modules may choose to coordinate with each other to implement

complex behaviors. Specifically, a module need not be compatible with the inputs and

outputs of adjacent modules. This property differs significantly from strictly compo-

sitional frameworks, overcoming their limitation of being able to couple together only

with elements with compatible parameters and return values.

Modules follow a well-defined life-cycle, defined by the interface specified in Fig-

26

ure 4.2. A module is activated by an invocation of the mediate method. The module

may query and store results in the tuple space provided by the context, but is not re-

quired to access the context at all. For example, a timing module may merely store

timing results to be accessed out of band via its management interface.

public interface VirtualServiceModule {

public void mediate(VirtualServiceContext context);

public VirtualServiceModule replicate();

public void dispose(VirtualServiceContext context);

}

Figure 4.2: Virtual service module interface. A virtual service module performs
three operations during its life cycle: mediation, replication, and disposal.

In order to provide both per-connection and cross-connection behavior, modules

fall into two classes: unique instances and replicas. When a configuration is associ-

ated with a connection, module chains are replicated to create a unique module execu-

tion context for that connection. A module instance may be shared between chains, in

which case replication produces a reference to the instance. If not shared, replication

creates a new module instance that clones all of the properties of the template module

instance. We distinguish between the two cases not only to allow cross-connection

behavior to be implemented, but also to allow resource optimization. Modules that

do not maintain internal state can be shared between execution contexts without con-

currency control worries. Therefore, system memory can be conserved by avoiding

duplicate instantiations. A module’s replicate method governs whether a shared or

unique instance is created when a chain is replicated.

27

When a connection is terminated, the virtual service context allocated to the con-

nection is closed. Modules are notified of the closing of the service context with the

dispose method. Notification of context closings gives modules an opportunity to re-

lease or update resources allocated for a specific connection. For example, a module

that enforces a security policy limiting the number of active connections to a service

must know when connections terminate in order to update its connection count.

Figure 4.3: Module configuration interface. Every virtual service module exports
properties and operations through a configuration management interface.

In their second mode of operation, modules are fully configurable managed ob-

jects. They are managed objects because the virtual service agent keeps track of every

module instance and every module instance exports a management interface through

28

the virtual service agent. They are fully configurable because the module management

interface exposes arbitrary properties and methods for modification. A reconfiguration

client can automatically derive a module’s configurable properties using reflection (see

Figure 4.3). The module displayed in the figure is an HTTP header filter. Its behav-

ior can be customized through its exposed properties and methods. For example, the

set of substitutions it performs on HTTP headers can be configured by modifying its

substitutions property.

4.1.2 Module Processing Chains

Even though modules are themselves configurable, they are not alone a sufficiently

flexible construct for general reconfiguration. If a module were to be the sole basis

of configuration, it would be as monolithic as the service being virtualized: only cus-

tomizable to the extent provided by its management interface. Instead, modules are

intended to provide discrete units of functionality that can be organized into complex

behavior specializations.

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

Figure 4.4: Module processing chain. Module processing chains group modules to-
gether in a specific execution order.

Module processing chains group modules together into a specific execution order

(see Figure 4.4). Modules function much like continuations [82, 36] when chained

together. It is within a module’s power to determine the currently executing chain

from the context and reconfigure it. Therefore, a module may change the execution

flow of a chain while the chain itself is executing.

29

Module chains are instantiated on a per-connection basis. Per-connection instanti-

ation ensures individual connections can be reconfigured without affecting other con-

nections. Cross-connection reconfiguration can be implemented by using shared mod-

ules or individually reconfiguring all active chains. The configuration of all future

connections can be altered by reconfiguring the template module chains associated

with a virtual service instance. When an incoming connection attempt is made, the

template module chains are replicated to create the connection context.

4.1.3 Virtual Services

At the architectural level, a virtual service is a container for module chains. It is the

combination of module chains and their constituent modules that define the virtual ser-

vice configuration. The modules and chains contained by a virtual service are template

instances that are replicated to create an execution context for new client connections.

Although a virtual service can house an arbitrary number of module chains, the nature

of network services demands that three predefined chains be implemented: ACCEPT,

INCOMING, and OUTGOING (see Figure 4.5).

Services, whether based on TCP/IP or higher-level remote method invocation, de-

fine three basic operations. First a connection is established with the service. The

service may decide whether or not to allow the connection to continue. In the case of

a TCP server, the connection may simply be closed. In the case of a distributed object

framework, the service component may throw an exception if the invocation attempt is

refused. This process of establishing a connection is regulated by the ACCEPT mod-

ule processing chain. At the time of the connection attempt, the ACCEPT chain is

executed, dictating the manner in which the connection is established.

The second phase of a service invocation is the transmission of a client request or

30

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Figure 4.5: Virtual service. A virtual service is a container for module chains.

invocation parameters to the service. Once a connection is established, the flow of data

to the service is regulated by the INCOMING chain. Modules in the INCOMING chain

may perform functions such as adapting parameters to a different calling interface, data

validation, or logging.

The third phase of a service invocation is the transmission of service return val-

ues to the caller. The flow of data from the service is regulated by the OUTGOING

chain. Modules in the OUTGOING chain may perform functions analogous to those

performed by the INCOMING chain.

A minimal virtual service is a simple mediator, acting as a function wrapper for

network services.

31

4.1.4 Virtual Service Context

When a connection to a service is attempted, an execution context for the virtual ser-

vice connection is created. This virtual service context stores the replicated module

chains associated with the connection. Also, it provides a tuple space that can be

shared between modules for communication. Finally, the context provides access to

the virtual service and connection specific information, such as the connection source

and data stream.

A virtual service context is valid only as long as the connection associated with it

remains open. Likewise, a connection may remain open only as long as a context re-

mains valid. A module may invalidate a context by closing it, thereby short-circuiting

the module processing chain and causing the connection to be closed. Once the context

is closed, all objects unique to the context, including modules and module chains, are

disposed. Disposal frees all resources consumed by the objects. At the minimum, they

are deregistered from the virtual service agent, but modules may implement additional

actions in their dispose method.

4.1.5 Virtual Service Containers

A virtual service itself does not listen for incoming connections. Instead, it must be

bound to a port in a virtual service container (see Figure 4.6). A port is an abstraction

that maps connection requests to virtual services. For TCP services, it corresponds to

a TCP port. For Web services it corresponds to a WSDL port type and operation [18].

For remote method invocations it corresponds to an object and method pair. An im-

plementation is not required to allow a virtual service instance to be bound to more

than one port, but is permitted to do so. Binding virtual services to multiple ports may

require additional concurrency controls.

32

P
o

rt A

P
o

rt B

V
irtu

a
l S

e
rv

ic
e

 C
o

n
ta

in
e
r

V
irtu

a
l S

e
rv

ic
e

A
C

C
E

P
T

 C
h

a
in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

IN
C

O
M

IN
G

 C
h

a
in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

O
U

T
G

O
IN

G
 C

h
a

in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

C
o
n

n
e
c
tio

n

F
ro

m
 C

lie
n
t

T
o
 S

e
rv

ic
e

F
ro

m
 S

e
rv

ic
e

T
o
 C

lie
n
t

V
irtu

a
l S

e
rv

ic
e

A
C

C
E

P
T

 C
h

a
in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

IN
C

O
M

IN
G

 C
h

a
in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

O
U

T
G

O
IN

G
 C

h
a

in

V
irtu

a
l S

e
rv

ic
e

M
o

d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o
d
u

le

V
irtu

a
l S

e
rv

ic
e

C
o

n
te

x
t

V
irtu

a
l S

e
rv

ic
e

C
o
n
te

x
t

V
irtu

a
l S

e
rv

ic
e

M
o

d
u
le

V
irtu

a
l S

e
rv

ic
e

C
o
n

te
x
t

C
o
n

n
e
c
tio

n

F
ro

m
 C

lie
n
t

T
o
 S

e
rv

ic
e

F
ro

m
 S

e
rv

ic
e

T
o
 C

lie
n
t

Figure 4.6: Virtual service container. A virtual service container maintains bindings
of virtual services to ports and manages the context of incoming connections.

Virtual service containers listen for incoming connections and map them to virtual

service bindings. When a connection arrives, the container creates a virtual service

context, replicating module chains as required. Execution of the ACCEPT chain is

initiated by the container, but it may be executed asynchronously. In addition, the

container initializes the necessary objects to process the INCOMING and OUTGO-

ING chains. Containers should implement asynchronous processing methods to avoid

blocking the flow of data through services. A performance-oriented implementation

will use a combination of non-blocking I/O and thread pools.

A virtual service container is a managed object and exports the ability to dynam-

ically add and remove virtual service bindings. How to handle existing connections

on removal of a virtual service is implementation dependent. However, it is recom-

mended that existing connections be allowed to persist, although the existing module

processing chains need not be executed.

33

4.1.6 The Virtual Service Agent

Every component of the virtual services architecture is a managed object. Managed ob-

jects expose selected innards for out of band manipulation. For example, as a module

processing chain executes, it is possible to inspect and change the modules it contains

and their properties without halting the processing. Managed objects must be regis-

tered with a management agent that ensures only selected operations are exposed for

management. This management agent is called the virtual service agent.

Port A

Port B

Virtual Service Container

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Port A

Port B

Virtual Service Container

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Port A

Port B

Virtual Service Container

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Virtual Service

ACCEPT Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

INCOMING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

OUTGOING Chain

Virtual Service

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Connection

From Client To Service

From ServiceTo Client

Virtual Service

Agent

Management

Interface

Management

Request

Virtual Service Middleware

Application Server

Figure 4.7: Virtual service agent. The virtual service agent keeps track of all managed
objects in addition to saving and loading of configurations.

The virtual service agent sits between management clients and managed objects

(see Figure 4.7), but does not participate in any aspect of the data flow between service

clients and virtual services. Even though it maintains a reference to every managed

34

object, it executes asynchronously from the objects.

The virtual service middleware server is essentially a single thread running a virtual

service agent that awaits management requests. Modules, chains, virtual services, and

containers can all be instantiated in a decoupled manner through the agent. They can

then be dynamically assembled into desired configurations. The agent is responsible

for handling the serialization and deserialization of configurations. This save/restore

functionality is exported through the agent’s management interface.

4.2 Architectural Challenges

A variety of complications present themselves when translating the virtual service ar-

chitecture components into an implementation. On the surface, the concepts appear

rather simple. Modules are assembled into chains which are housed in a virtual ser-

vice. The virtual services are themselves grouped into a virtual service container that

maps port connections to virtual services. A virtual service agent keeps track of all of

the resulting objects. These apparently simple components interact in complex man-

ners that make implementation of virtual services a difficult endeavor.

4.2.1 Service Mapping

Thus far, we have not discussed how a virtual service is mapped to a virtualized ser-

vice. This correspondence is implementation dependent. The virtual service architec-

ture defines how client connections become associated with module processing chains.

Therefore, module processing chains can be used to implement a service. In fact, we

envision that natively reconfigurable services will be built as a set of virtual service

modules layered around a core service module. There is evidence of a move toward

an application-specific version of this architecture in the 2.0 version of the Apache

35

HTTPD server and the addition of servlet filters to the Java servlet specification.

Still, virtual services are not application-specific and are intended to enable legacy

services to be reconfigured. The final step of linking the INCOMING chain to the

input of a virtualized service and the OUTGOING chain to the output of a virtualized

service may be handled by either a virtual service module or a virtual service container.

In the case of application layer virtualization (see Section 5.1), a shared forwarding

module handles the data flow between virtual service and virtualized service. In the

case of transport layer virtualization (see Section 5.2), the virtual service container

handles the data flow. In the first case, the client connects to the container, which

hands off control of the connection to the module processing chains. In the second

case, the client believes it is connecting to the virtualized service, while the container

transparenty mediates the connection by intercepting TCP packets.

Virtual service mappings may be one to one, many to one, one to many, or many

to many. The one to one scenario is the most common. The many to one scenario oc-

curs when you want to provide different forms of behavior specialization for different

clients. By mapping different virtual services to the same service, different function-

ality can be provided on different ports even though they share the same underlying

service. The one to many scenario is typical of proxies, such as an HTTP proxy. It

occurs when the client determines the real service destination. For an HTTP proxy, the

destination is determined at the application layer from the HTTP client headers. For

transparent proxies, the destination is determined from the IP and TCP packet head-

ers. The many to many scenario is a combination of the one to many and many to one

scenarios.

36

4.2.2 Reflection-based Management

Every system component is a managed object, but the exported properties and meth-

ods of managed objects are discovered at run time. That limits the implementation

alternatives to languages that support reflection. We have chosen to implement our

research prototype using Java, but it could just as easily been implemented using the

.NET framework.

The registration and deregistration of objects presents a potential performance bot-

tleneck. However, these activities occur at restricted points in time that do not dom-

inate the overall lifespan of a connection. Registration activities occur at connection

establishment when module processing chains are replicated as well as whenever a

dynamic reconfiguration is performed. Deregistration occurs when a virtual service

context is closed. The rest of the time, while a connection is active, the only interac-

tion with the management interface is from out of band management clients inspecting

live configurations. Therefore, management overhead should have no more than a

minimal impact on performance.

4.2.3 Concurrency Control

Even the most simple implementation of virtual services must at the minimum support

concurrent access to managed objects because management requests are handled in

a thread of control separate from connection processing. More performance-oriented

implementations will possess additional threads of control that separate virtual service

containers, connection admissions, module processing, and other tasks. The bottom

line is that every system component may be subjected to concurrent access.

Modules intended to be shared must protect the consistency of their internal state

against concurrent access. Unique modules need not concern themselves with concur-

37

rent execution. The only guarantee imposed by the architecure is that a given module

processing chain can be executed by only on thread at a time. However, an INCOM-

ING module processing chain may execute concurrent with its corresponding OUT-

GOING chain, but this behavior is not required. Modules may be added to or removed

from chains at any time, virtual services may be bound to and unbound from ports at

any time, and so on. A major challenge of implementing virtual services lies in the

concurrency management required to ensure that reconfigurations that occur during

execution do not leave a virtual service in an inconsistent state. Overcoming this chal-

lenge provides the benefit of zero-downtime reconfiguration. A service does not have

to be decommissioned in order to alter its behavior.

4.2.4 Configurations and Reconfiguration

A side effect of every system component being a managed object is that every module,

chain, virtual service, and container is configurable. That leaves open the question of

what constitutes a configuration. Behavior specialization is achieved through chains

of virtual service modules. Reconfiguration involves either rearranging the modules

in a chain or changing the properties of the modules. Therefore, when we talk about

reconfiguration, we usually refer to the behavior changes made by modifying modules

and module chains. However, module and module chain configurations can be reused

in different virtual services, which themselves can be used in different virtual service

containers. A particular binding of a virtual service to a port is a configuration. The

serialized form of each component is a configuration and any changes to that serializa-

tion are reconfigurations.

We discuss in more detail in Section 5.4 how configurations are saved and re-

stored. But a quick summary is that modules form the base level of configuration.

38

Each module can be serialized and deserialized independentently. From these module

configurations, module chain configurations can be created. From the module chain

configurations, virtual service configurations are created, and so on. High level config-

urations are constructed by assembling low level configurations. This approach maxi-

mizes reuse, by allowing, for example, module configurations to be defined once and

incorporated into multiple virtual service configurations. These configurations serve

as templates for instantiating system components. Therefore a single configuration

may be instantiated many times. You could take a virtual service configuration and

instantiate it multiple times with different port bindings. For example, a virtual service

configured with intrusion detection modules could be instantiated and bound for an

HTTP service, an SMTP service, and a Web service.

Per-connection Reconfiguration

A single instance of a virtual service defines the configuration for all incoming con-

nections to its bound ports. The module chains are replicated at the time of connec-

tion, creating new configuration instances for each connection. Changes to the virtual

service configuration do not affect existing connections except for shared modules.

This enables the flexibility to perform fine-grained configuration changes on a per-

connection basis.

Multi-connection Reconfiguration

The downside of per-connection reconfiguration is that multi-connection reconfigura-

tion becomes more involved. Although the most common use cases will likely be to

reconfigure a single connection or the virtual service template configuration for future

connections, there will be times when all active connections must be reconfigured in

39

the same manner in addition to future connections. The architecture does not provide

any special support for multi-connection reconfiguration. It is up to the reconfiguration

client to individually reconfigure each connection. An implementation could support

the batching of reconfiguration requests. In other words, a virtual service agent could

provide a special management function for applying a reconfiguration to multiple con-

nections as a single transaction. Doing so requires additional attention to concurrency

control.

40

Chapter 5

Implementation

In Chapter 4 we presented a general virtual services architecture that can be imple-

mented in multiple ways. In this chapter we discuss our implementation of the archi-

tecture, including two different implementations of virtual service containers.

One of the principal implementation decisions of any software project revolves

around the choice of programming languages and platforms. Given our desire to im-

plement dynamic reconfiguration—where a program can change its structure at run

time—we decided to implement our prototype using Java. Java is widely used and

supports reflection. Although Java reflection is awkward to use when compared to

other languages such as LISP, its widespread adoption and rich set of enterprise APIs

make it an attractive choice. The ability to drop down to native code when necessary

using JNI is also useful. Although Microsoft .NET provides comparable facilities to

Java, it is not available on as many platforms. Given our need to support efficient net-

work I/O, we restricted ourselves to J2SE 1.4 or later, which supports non-blocking I/O

in its java.nio and java.nio.channels packages. Finally, we used the Java Management

Extensions (JMX) to expose system components for reconfiguration.

The idea of interposing an object or process between a caller and a callee is not

new. In nondistributed programming the intermediary is called an an adapter, proxy,

41

or wrapper. In distributed or network programming it is called a proxy or mediator.

In both cases, the technique allows the behavior of the target object to be customized

through composition. Virtual services interpose themselves between a client and ser-

vice to enable modifications of service or, in some cases, client behavior.

A virtual service can be linked to a client and a service in multiple ways determined

by its container. We have implemented two approaches that serve different purposes.

The first is application layer virtualization, whereby a virtual service mediates sepa-

rate connections between a client and itself and itself and a service. The second is a

transport layer virtualization, whereby a single connection exists between a client and

a service and a virtual service intercepts transport layer packets between the two.

5.1 Application Layer Virtualization

Application layer virtualization is not fully transparent, but requires no special priv-

ileges to deploy. It requires the client to connect to the virtual service as though it

were the virtualized service. The virtual service container or a virtual service mod-

ule opens a connection to the virtualized service and links the two connections to the

virtual service’s INCOMING and OUTGOING chains. Therefore, application layer

virtualization is not fully transparent because the real service perceives all virtualized

client connections as originating from the virtual service.

The ability to deploy application layer virtualization without administrative priv-

ileges makes it ideal for satisfying service customization requirements an enterprise

development team may face. Such a development team can deploy a virtual service

container to host virtual services that mediate multiple virtualized services.

We implemented application layer virtualization as a virtual service container and

a supporting virtual service module. The virtual service container handles incoming

42

Client

Connect

Virtual

Service

ACCEPT

Chain

Virtualized

Service

Virtual

Service

INCOMING

Chain

Virtualized

Service

Client

Send

Virtual

Service

OUTGOING

Chain

Client

Receive

Figure 5.1: Application layer virtualization. Application layer virtualization is not
fully transparent because the real service perceives all virtualized client connections as
originating from the virtual service.

connections and the processing of the ACCEPT chain (see Figure 5.1). The module

handles connection forwarding to and from the virtualized service and the processing

of INCOMING and OUTGOING chains. The forwarding module is shared by multiple

virtual services in order to reduce the thread count. However, we can turn a one-to-one

virtual to virtualized service mapping into a one-to-many proxy by swapping a virtual

service’s forwarding module with an application layer proxy module.

Application layer virtualization has a couple of disadvantages. First, a client con-

nection must be accepted before the accept chain can be processed. Ideally, the accept

chain should be processed before connection establishment completes. Second, the

client and service are not completely oblivious to the presence of the virtual service.

The virtual service must be published in lieu of the virtualized service. Also, the virtu-

alized service cannot distinguish between different virtual service clients based on the

43

source, which appears to be the virtual service.

5.2 Transport Layer Virtualization

Transport layer virtualization is a fully transparent alternative to application layer vir-

tualization. It requires administrative privileges on the deployment host because it

intercepts IP packets between a client and server, transparently altering the conversa-

tion as necessary. This technique may seem very low level, but it is the network service

equivalent of intercepting method calls. The virtual service container must be placed

on the packet route between the client and service where it can intercept packets. Un-

like application layer virtualization, transport layer virtualization is platform-specific.

We have implemented transport layer virtualization by interfacing with the Linux 2.4

kernel’s netfilter/iptables firewall and packet filtering framework. However, equivalent

implementations are possible for other operating systems.

Transport layer virtualization is fully transparent because the virtualized service

perceives all client connections as originating from the client. Implementing transport

layer virtualization on Linux requires the consideration of three cases that govern how

TCP/IP packets are routed to a virtual service (see Figure 5.2). The source of a service

connection and the deployment location of the virtual service container in relation

to the virtualized service both dictate how a packet travels through the Linux netfilter

tables and reaches the virtual service container. Unlike application layer virtualization,

the transport layer virtual service container processes all predefined module chains.

A separate module for one-to-many proxy virtualization is not required because the

container itself acts as a transparent proxy.

The advantages of transport layer virtualization over application layer virtualiza-

tion are several. ACCEPT chain processing can be performed before a connection is

44

Virtualized Service

iptables

FORWARD

iptables

INPUT

iptables

OUTPUT

Virtual Services INCOMING Chain

iptables

INPUT

Externally or

Internally

Generated

Client Packet

iptables

FORWARD

Virtual Service OUTGOING Chain

Service Packet

for Internal or

External Client

Service Packet

for Internal

Client

Service Packet

for External

Client

iptables

OUTPUT

Internally

Generated

Client Packet

Externally

Generated

Client Packet

Case 1: Service and

Virtual Service Colocated
Case 2: External Service

and External Client

Case 3: External Service

and Internal Client

Figure 5.2: Fully transparent transport layer virtualization on Linux. Implement-
ing transport layer virtualization requires the consideration of three cases that govern
how TCP/IP packets are routed to a virtual service. Transpart layer virtualization is
fully transparent because the real service perceives all virtualized client connections as
originating from the client.

fully established. Virtualized services perceive connections as being established by

the client and not the virtual service. This transparency is important because it al-

lows service access controls to co-exist with the virtual service access controls. Also,

a virtual service can be deployed and decommissioned without imposing any special

requirements on the client or service.

45

5.3 Module Processing

Our implementation of service virtualization is sufficiently low-level that it may leave

the reader wondering how it relates to behavior modularization. After all, connection

forwarding and packet interception normally fall under the purview of network systems

and not software engineering research. We ask the reader to consider that service

virtualization is the mechanism by which we introduce our service customizations to a

client server conversation. It is the equivalent of the source code or object file rewriting

performed by many AOP tools.

Once a virtual service container is positioned between a client and a service, new

behavior can be introduced dynamically by inserting virtual service modules into the

predefined module chains or adding new module chains. Modules are executed in a

synchronous fashion when a service is invoked. However, modules for different service

invocations may be processed concurrently by different worker threads. Any module in

a chain may decide to terminate or alter the processing of a chain by closing the virtual

service context or dynamically reconfiguring the module chain. Allowing modules to

affect their environment enables us to implement adaptive behavior. A module can

react to an environmental change, in some sense implementing dynamically defined

pointcuts and advice. For example, an access control module in the ACCEPT chain

may choose to attach an intrusion detection module to the INCOMING chain of a

connection based on the source while rejecting other connections outright and leaving

alone trusted connections.

Modules are, in general, oblivious to the container in which they reside. However,

a container can make available container-specific contextual information. This infor-

mation allows new join points to be defined. For example, should one desire, a network

security application may define join points for specific types of IP packets. More com-

46

monly, a protocol adapting module will define join points based on the application

layer protocol. In addition to the default join points surrounding a service invocation,

byte stream protocols may define join points in terms of protocol commands, such as

the HTTP GET and PUT methods.

5.4 Serialization of Configurations

Implementing persistent configurations proved to be rather simple, despite its apparent

complexity. Persistence requires that the state of a configuration be saved, with the

ability to restore it at a later time. To do so requires the marshalling or serialization

of objects. Many different serialization mechanisms are offered by the Java platform.

We could have used a binary serialization format such as that offered by Java object

serialization. We chose not to use a binary representation because it is not human

readable and would have required the development of special tools to edit stored con-

figurations. Technically, regardless of the serialization format, a stored configuration

can be edited by loading it with the manual reconfiguration tool, reconfiguring it, and

then saving it again. However, it can be extremely useful for debugging, development,

and maintenance purposes to be able to make quick changes with a text editor.

Given our desire for a human-readable serialization format, we narrowed down

our choices to XML serialization alternatives. We were uncomfortable with the idea

of creating a custom configuration DTD or XML schema because it would not be

able to accommodate all of the different attributes of that could be programmed into

virtual service modules. Autogenerated schemas would require a module developer

to go through extra steps to make a module serializable, at the minimum requiring

the execution of a schema generating tool on every module. If every module had a

serialization schema associated with it, the system would become complex enough

47

to facilitate the introduction of errors. For example, if a module were to be updated

without regenerating the serialization schema, a future serialization attempt would fail.

Our requirements called for a serialization mechanism that dynamically deter-

mined the structure of live objects and was resilient to changes in those object in-

terfaces. For example, changes in the evolution of a module should not make prior

saved configurations fail to load. Ideally, what we wanted was a system that would

dynamically assemble a configuration in the same way a programmer would by writ-

ing code to an API. However, we needed this to be done without prior knowledge of

the API. Saved configurations would in essence be a set of instructions for how to

assemble a configuration. It just so happens that the JavaBeans long-term persistence

API works in exactly the way we required. Given that all of our managed objects are

required to be JavaBeans, implementing serialization did not require any extra work on

our part. We merely use the JavaBeans persistence API. However, we emphasize that

any persistence mechanism can be plugged in to the system at a future date, should the

current approach be found to be deficient in some manner.

The virtual service agent manages serialization and deserializtion of configura-

tions. As mentioned in Section 4.2.4, all managed objects can be serialized and de-

serialized. The virtual service agent can save and restore individual modules, chains,

virtual services, and virtual service containers. By allowing the configuration of each

system component to be saved individually or collectively, it becoms possible to reuse

configurations in the development of more complex configurations.

5.5 Application Programming Interface

In Section 2.1.7, we specified a requirement that our system be programmable. We

defined programmability as exposing reconfiguration mechanisms for external use as

48

an application programming interface. In developing virtual services, we have in fact

created three APIs. The first API is that which we use to build the virtual services

infrastructure. It is an internal API. Should someone want to build an internally recon-

figurable program without using virtual services middleware, he can use the internal

API. The internal API also is used to develop virtual service modules. The second

API is the external manifestation of the internal API. This is the API that makes it

possible for a reconfiguration tool to remotely reconfigure module chains, load and

save configurations, and access module-specific operations. The third API consists of

the dynamically discovered interfaces presented by virtual service modules. We can

consider this a subset of the second, but it is defined by the virtual service module de-

veloper. We will discuss the second API, that which makes our system programmable.

5.5.1 Module API

In Section 4.1.1, we presented the interface that defines the life cycle of a virtual

service module. That interface is part of the internal API. The external API of a

virtual service module reduces to two property querying methods (see Figure 5.3)

that external agents require in order to make reconfiguration decisions. To determine

whether or not to share a module between chains, external agents must know whether

or not a module is a replica and if it creates unique replicas. The isReplica and

getCreatesUniqueReplicas methods provide this information.

All additional properties and operations exposed to external reconfiguration agents

are defined by a module’s implementation. This flexibility allows arbitrary configu-

ration dimensions to be implemented as modules. Still, this flexibility can be abused.

The primary mechanism for reconfiguration should be the rearrangement of modules

in module chains. Domain-specific reconfiguration applications may want to provide a

49

public interface VirtualServiceModuleMBean {

public boolean isReplica();

public boolean getCreatesUniqueReplicas();

}

Figure 5.3: Virtual service module external interface. A virtual service module
exports its replica status and replica-creating ability.

rich set of module-specific configuration abilities where the semantics are well known

and predefined. In the general case, the semantics of module operations cannot be

understood by programs even though they can be discovered dynamically. The pro-

grammer or system administrator will understand the semantics. Therefore, auto-

reconfiguring or self-reconfiguring applications cannot make effective use of opera-

tions specific to modules that are unknown until run time. For example, our socket

logging module exports a connect method that allows it to attach to a logging client.

The semantics of the method are known to reconfiguration clients, but not necessarily

to the virtual service. The flexibility afforded is that modules with different seman-

tics can co-exist even though only specific reconfiguration clients understand how to

use them. A single configuration can provide multiple behavorial specializations, even

though all service clients and reconfiguration clients are not aware of them. For exam-

ple, a reconfiguration client benefits from the logging module even though the service

client is completely unaware of it.

5.5.2 Module Chain API

Module processing chains are containers for virtual service modules. They export only

the methods that allow modules to be inserted and removed (see Figure 5.4).

50

public interface VirtualServiceModuleChainMBean {

public boolean add(ObjectName module);

public void add(int index, ObjectName module);

public ObjectName getModuleName(int index);

public ObjectName[] getModuleNames();

public boolean remove(ObjectName module);

public ObjectName removeModule(int index);

public ObjectName set(int index, ObjectName module);

}

Figure 5.4: Module chain external interface. A module chain exports only the meth-
ods that make it act as a module container.

Managed objects cannot be referenced directly outside of the virtual service mid-

dleware. Instead, they are referenced indirectly by an object name that reduces to a

character string. The ObjectName parameters and return values are converted to and

from strings during network transport. The module chain API is quite simple, but

could be enhanced to simplify some common operations. For example, reconfigura-

tion clients often have to change the position of a module in a chain. Currently, that is

a two step operation. First the module must be removed and then it must be inserted at

a new position. That approach requires two instances of interprocess communication,

usually over the network, instead of one. An atomic move operation is a likely future

API enhancement.

51

5.5.3 Virtual Service API, Containers and Agents

Modules and module chains directly export methods that are used by reconfiguration

clients. When a reconfiguration module removes a module from a chain, it does so

by invoking the chain’s remove method. Originally, we felt that all remote configu-

ration operations should be mediated by the virtual service agent, delegating to sub-

component internal APIs. However, that required too many special-purpose methods

be added to the virtual service agent. At the time of this writing, the API is in a

transitional state from having the virtual service agent manage all reconfiguration op-

erations, to allowing subcomponents to manage reconfiguration operations regulated

by their internal API.

We started out with the virtual service agent regulating all reconfiguration opera-

tions because it is responsible for creating and disposing of all managed objects and

their metadata. As such, it maintains a mapping between all object names and their

corresponding objects. The virtual service agent also is responsible for saving and

restoring configurations. All remote configuration operations refer to managed objects

by name instead of reference. Therefore, it seemed at first a better design to let the

arbiter of name to object mappings to also arbitrate access to those objects. Otherwise,

some managed objects would have to be able to reference the virtual service agent to

notify it of specific events in the object life cycle. For example, a module chain must

notify the agent when a module is removed so that the module’s reference count may

be decremented. A replicated module instance that is not contained by a module must

be disposed. In practice, at the expense of complicating the internal API, the external

API was simplified by reducing the virtual service agent’s responsibilities.

The virtual service interface looks much like that of a module chain, except that it

contains module chains instead of modules. Chains are indexed by keys. For example,

52

public ModuleChain removeChain(String key);

will remove a module chain from a virtual service. The external API for virtual ser-

vices is actually defined in a separate interface called ModuleChainContainer that

serves as both an internal and external API.

Virtual service containers manage client connections and associate them with vir-

tual services. They provide methods for binding virtual services to ports. At the current

stage of development, the external API for binding virtual services resides in the virtual

service agent. For example,

public void addVirtualService(ObjectName container,
String bindAddr, int port, ObjectName vserv)

throws IOException;

adds a virtual service to a container with a particular network address and port binding.

The binding specification needs to be abstracted better, to allow for bindings that do

not correspond to the TCP/IP model. However, the current system suffices for our

purposes.

Configurations can be saved by associating a name with the configuration and spec-

ifying the object name to save:

public void saveConfiguration(ObjectName mbean,
String configName)

throws IOException;

Similarly, configurations can be loaded by specifying the configuration name. Config-

urations may also be migrated to other virtual service agents by specifying the object

name of the loaded configuration and the URL of the virtual service agent:

public ObjectName migrate(ObjectName obj, String url)
throws Exception;

53

Chapter 6

Applications

The primary use of virtual services is to implement dynamically reconfigurable appli-

cations. The only way to evaluate the efficacy of virtual services in that capacity is to

use them in that capacity. By implementing dynamically reconfigurable applications

with virtual services, we can establish if the requirements specified in Chapter 2 have

been met by our implementation of virtual services. If the requirements are met, then

virtual services will have been shown to be a useful vehicle for dynamic reconfigura-

tion. This chapter describes dynamically reconfigurable applications we have imple-

mented with virtual services and Chapter 7 evaluates them in terms of the requirements

they demonstrate. We categorize the applications into non-security applications and

security applications.

6.1 Non-security Applications

Reconfiguration can implement functional or non-functional changes to a program or

set of cooperating programs. For example, the addition of logging capability to a

service is a functional change. The change adds a new capability. The redistribution

of application components across computational nodes to improve performance is a

non-functional change. The change does not add, remove, or alter capabilities.

54

Using Hofmeister and Purtilo’s reconfiguration taxonomy [38], implementation,

structural, and geometric reconfigurations can all implement non-functional changes.

However, only implementation and structural changes can implement functional changes.

Geometry dictates only where components execute and does not affect behavior.

Our applications emphasize implementation and structural reconfigurations, al-

though we also support geometric reconfiguration. They fall into both functional

and non-functional categories. Many of the modules used by the configurations are

domain-independent. That is, they can be applied to any service, regardless of the ap-

plication domain. The rest are domain-specific. For example, a connection data stream

filter is domain-independent, but an HTTP header filter is domain-specific, having been

optimized to process only HTTP request and response headers.

6.1.1 Manual Reconfiguration

We have previously established requirements that a dynamic reconfiguration system

should expose reconfiguration through a programming API and should allow manual

reconfiguration. Programmatic access to reconfiguration is required in order to imple-

ment adaptive algorithms that reconfigure a system based on changing conditions. It is

required also to allow tools to be built to inspect and modify a running system. Manual

reconfiguration must be supported so that a human can make behavioral modifcations

using existing modules without writing any code.

We support reconfiguration of implementation, structure, and geometry through

API primitives. The API is discussed in Chapter 5. Using the reconfiguration API,

it is possible to build manual reconfiguration tools. Such tools can be tailored to

domain-specific requirements. For example, you could use virtual services to build

a zero-downtime service upgrade facility and provide a tool that exposed only the re-

55

configuration operations required for that application. The tool might only allow you

to specify the address of the upgraded service instance and automatically schedule the

decomissioning of the old service for you.

We have built a general purpose reconfiguration tool that exposes most API ele-

ments to a user. The purpose of the tool, previously depicted in Figure 4.3, was to

facilitate the development of test cases and to experiment with dynamic reconfigura-

tion. Before creating the tool, every virtual service deployment had to be hand coded

to the API. With the tool, it was no longer necessary to write code to assemble config-

urations. All you had to do was tie together modules into the chains of a virtual service

and add the virtual service to a container. After saving the configuration, you could

create one or more instances of it by loading it.

Our configuration tool does not have all of the drag and drop ease of use con-

veniences of a commercial product, but it gets the job done. Our focus is dynamic

reconfiguration, not GUI-building, so we will summarize the manual reconfiguration

capabilities of the tool without detailing how to use the GUI.

Inspection

The reconfiguration tool allows you to connect to any virtual service agent by speci-

fying a URL. Security is layered on top by the management API—in our case JMX.

Once the connection is established, the agent can be queried for information about any

module, chain, virtual service, active context, or container, as well as the agent itself.

Saved configurations also can be examined. When a managed object is selected, a

form is dynamically generated that lists all of the properties and operations exposed

by the object. This dynamic inspection enables you to monitor the state of every active

connection to a virtual service.

56

Reconfiguration

The exposed properties and methods of an object can be altered or invoked. Properties

may be read-only or read/writable. Only read/writable properties may be modified.

Individual modules can be configured by changing their properties or invoking state-

altering methods. Implementation changes can be enacted by loading new modules

and inserting them into module chains. Structural changes can be achieved by adding,

removing, or rearranging modules in module chains. Geometry changes can be made

by specifying the URL of another virtual service agent to which a managed object

should migrate.

Persistence

Virtual service agents maintain a configuration store that can be accessed through the

reconfiguration tool. After you instantiate a number of modules and assemble them

into a virtual service configuration, you can save the entire configuration or a subset

thereof to the configuration store. There is no reason the tool could not be imple-

mented to store configurations locally, but then those configurations could not be ac-

cessed by other tools running on other computers. Each configuration can be loaded

manually. By saving a virtual service container configuration while it is active, you

make it possible to deploy instantly a collection of virtual services. We believe system

administrators will find the save and load feature to be essential.

Summary

The manual reconfiguration tool makes it possible to perform manually all of the tasks

that are possible to implement by writing a program with the reconfiguration API. We

have found the tool to be an enormous time saver. Even though usability enhancements

57

can be made to make the tool take less time to use, it takes far less time to implement

experiments by dynamically creating, testing, saving, and loading configurations than

it does to write programs that have to be modified and recompiled. The time difference

is at least 10:1. The reconfiguration tool has not only validated the reconfiguration

API, but also it has met our requirement that dynamic reconfiguration be possible by

humans without writing programs.

6.1.2 TCP Forwarding and Zero-downtime Upgrades

The most basic application of a virtual service is simple connection forwarding. Con-

nection forwarding is a building block on top of which functionality enhancing mod-

ules can be layered, yet by itself it has a few applications. A simple, yet useful appli-

cation is to perform zero-downtime service upgrades. The idea is to never expose a

service directly to clients. Instead you interpose a connection-forwarding virtual ser-

vice between the client and the service. When you perform a service upgrade, you

start up the new version without tearing down the old version. Once the new version is

running, you reconfigure the virtual service to direct new client connections to the new

version while preserving existing connections to the old version. Once the last client

connection forwarded to the old version terminates, you can tear down the old version.

At no point is service disrupted.

TCP-based virtual services are hosted inside of one or more TCP virtual service

containers. A virtual service container manages incoming connections on behalf of

virtual services and directs them to the proper virtual service. This design is efficient

because a single container can multiplex connections to different virtual services with-

out requiring the creation of a new thread for every connection. TCP virtual services

register themselves with a container based on port number. A single service can be

58

bound to multiple ports if desired.

Client Old Service

Virtual Service

Client Upgraded Service

Pre-Upgrade

Connection

Post-Upgrade

Connection

Figure 6.1: Zero-downtime service upgrade. Zero-downtime service upgrades can
be performed by dynamically changing the connection forwarding performed by a
virtual service.

Once an incoming connection is detected by the virtual service container, it hands

off the connection to a virtual service’s ACCEPT chain. For simple connection for-

warding, the ACCEPT chain contains a forwarder module (TCPConnectionForwarder)

that sets up the execution context for the INCOMING and OUTGOING chains. The

TCPConnectionForwarder module can be configured with the host and port number

to forward the connection. Every ACCEPT chain terminates with a pivot module that

establishes a connection to a real service, processes the INCOMING chain, forwards

the resulting data to the real service, reads the returning data, and processes the OUT-

GOING chain, forwarding the result to the client. In our connection forwarding imple-

mentation, this pivot module is an active object (TCPForwardingService) that manages

multiple connection contexts asynchronously. By keeping the pivot module separate

from the forwarding module, it is possible to reuse a single pivot module instance in

the ACCEPT chains of other virtual services.

For basic connection forwarding, only the ACCEPT chain comes into play. If the

INCOMING and OUTGOING chains are empty, the pivot module copies data to and

59

from the real service without alteration.

Basic forwarding is the foundation of all virtual services that mediate for legacy

services. It implements our transparency requirement. Clients behave as though they

are communicating with a real service and services behave as though they are commu-

nicating with a real client. Both remain oblivious to the presence of a virtual service

between them. As discussed in Chapter 5, we provide two levels of transparency:

application layer and transport layer. Application layer transparency is not fully trans-

parent because the real service has no knowledge of the client’s IP address and other

connection-related metadata. We implement application layer transparency by estab-

lishing separate trasport level connections between the client and the virtual service

and between the virtual service and the virtualized service. Transport layer trans-

parency is fully transparent because the client and service establish a single connection

between each other while the virtual service inspects and rewrites packets exchanged

between the two.

6.1.3 Logging

Some virtual service modules, such as modules that manipulate HTTP, are protocol-

specific and can be used with only services that use that protocol. Other modules

are generic and can be used with any service and be placed anywhere within a chain.

These modules embody structural concerns that are called aspects in aspect-oriented

programming. Logging is one such aspect.

A logging module does nothing but send data that passes through it—or informa-

tion about that data—to one or more destinations, such as a file or a network socket.

Logging modules can be placed at any point along an INCOMING or OUTGOING

chain as well as multiple points. You can monitor the execution of processing chains

60

by placing a logging module before and after every module in a chain. Logging is use-

ful not only for monitoring purposes but also for debugging. By dynamically attaching

a logging module to an active connection to a virtual service, you can discover if a

client or service is sending malformed protocol commands.

Virtual Service

Module

Virtual Service

Context
Logging

Module

Virtual Service

Context
Virtual Service

Module

Virtual Service

Context

Virtual Service

Context

Logging Client

L
o

g
 D

a
ta

Figure 6.2: Logging module. Logging modules report on the connection data stream
out of band to logging clients.

Logging modules demonstrate one of the key design features to keep in mind when

implementing modules. Module chains are replicated for each connection, but the

modules themselves may be shared between chains or create new copies of themselves

when a chain is replicated. Performance is usually the prime factor in determining

whether a module creates a copy or returns a reference to itself when it is replicated.

If a module instance can be shared, it reduces the memory and execution overhead of

allocating a new object. However, modules that preserve internal state associated with

a connection cannot be shared unless they protect the state from being destroyed as

a result of concurrent access. In those cases, it is more efficient to replicate a sepa-

rate module instance per connection than to implement concurrency control and per-

connection data structures.

Logging modules, in general, do not preserve state. Therefore they can be shared

between connections or replicated. If you want to perform logging on a per-connection

61

basis, you can configure a logger to create a separate copy per connection. If you want

to log all traffic from all connections, you can configure the logger to be shared. When

you dynamically add a logger to an existing connection, the issue doesn’t arise because

module chains are replicated from the virtual service by the virtual service container

after processing the ACCEPT chain. That is, unless you want to attach the same logger

instance to another chain.

We have implemented a simple file logging module (FileLogger) and a network

logger (SocketLogger) that attaches to a TCP socket. The file logger logs all data it sees

to a file on the server that can be configured. SocketLogger can be made to connect

to any number of network ports and asynchronously copy all data it sees to every

connection. Our configuration tool includes a logging client that uses the management

API to automatically invoke the connect method of a SocketLogger module instance

whose name is provided. By using the SocketLogger, we have been able to discover

and debug problems in other modules, such as the HTTP Proxy module.

6.1.4 Dynamic Instrumentation

Logging is a special case of dynamic instrumentation. Using the same approach as in

Figure 6.2, you can add timing and profiling features to a virtual service. Dynamic

instrumentation is useful mostly for analyzing the performance of virtual services. For

example, you can insert timing modules at arbitrary points to measure the execution

overhead of different parts of the module processing pipeline. Even though you can use

traditional profiling tools to do the same, they require you to either compile the code

with profiling enabled or to run the code with a profiler. Traditional profiling tools

also provide different types of profiling information, some of which is not replicable

with instrumentation modules. At the same time, instrumentation modules enable the

62

gathering of statistics not possible with profilers. For example, you can instrument

the connection stream to count the number of packets that match a specific pattern or

calculate the average number of bytes transferred per connection. In effect, you can

instrument connection-specific aspects of the virtualized service. Furthermore, instru-

mentation modules can be added on a per-connection basis, so that a single connection

is profiled instead of all of them. Also, they can be inserted and removed dynamically

as desired.

6.1.5 Filtering

Filtering modules embody concerns that cut across services. However, some filters—

such as an HTTP header anonymizer—will be protocol-specific while others—such

as a virus detector—will not. Filters are a powerful compositional tool for adding

functionality to a service. For example, a Web browser on a mobile phone or a PDA

does not need to receive large images (or any images at all). Converting Web data to

a format customized to a specific user agent is commonly called transcoding. If you

do not have a Web server with transcoding ability, you could use a virtual service to

provide the functionality.

Virtual Service

Module

Virtual Service

Context
Filtering

Module

Virtual Service

Module

Virtual Service

Context

User-Agent: Mozilla/5.0

(X11; U; Linux i686; en-

US; rv:1.7) Gecko/

20040630 Firefox/0.9.1
User-Agent: Mozilla/5.0

Figure 6.3: HTTP header filtering module. Filtering modules, such as this HTTP
header filter, transform the content of the connection data stream.

To demonstrate filtering, we implemented an HTTP header filtering module (HTTP-

HeaderFilter) that can be configured to transform HTTP headers. The interesting

63

aspect of this module is that when it is placed in the INCOMING chain, it is actu-

ally changing the behavior of the client and not the service. Most, if not all, Web

browsers reveal information that users may prefer to remain private, whether it’s the

Web browser and OS version in the User-Agent header, the contents of the Referer

field, or a cookie. A filter module can rewrite or expunge this information.

We have written a generic HTTP header filter that can be configured with regular

expression substitutions that transform or remove headers according to user desires.

A common use is to strip the OS version information (see Figure 6.3). A similar

module can filter out cookies based on the source. Although browsers have recently

enhanced their privacy features and allow users to reject cookies based on host and

domain names, they do not allow you to reject cookies based on pattern matching. For

example, many online advertising providers deliver cookies and images from hosts that

match the regular expression ads?.+. By using a virtual service as an HTTP proxy, you

can populate it with a variety of modules that enhance the privacy capabilities of one

or more browsers, filtering out images, cookies, plugins, popups, and so on.

6.1.6 Proxying

Straight connection forwarding is a case where a virtual service stands in for a single

real service. Virtual services can also stand in for many real services of the same

type, as is done by proxy servers. A proxy performs a one to many mapping of client

to service connections (see Figure 6.4). A proxy can perform a variety of functions

such as load balancing requests across services or caching network resources. Virtual

service modules and chains are flexible enough to implement proxy services such as

an HTTP proxy that dynamically determines the real service to mediate based on the

contents of the client request.

64

Proxy Virtual

Service

Virtualized

Service

Virtualized

Service

Virtualized

Service

Client

Figure 6.4: Proxy virtual service. Proxy virtual services perform a one to many
mapping of client to service connections.

Our HTTP proxy implementation is divided into two modules. First, the mod-

ules in the TCP connection forwarding ACCEPT chain are replaced with a TCP proxy

module (TCPProxyService). The TCP proxy module sets up the execution context for

the INCOMING chain and adds some resource cleanup logic not required for straight

connection forwarding. When a client connection is closed, all of the connections to

multiple services on behalf of that connection need to be closed as well. The second

module (HTTPProxy) is placed in the INCOMING chain and establishes proxy con-

nections based on the client requests. Therefore, unlike straight TCP forwarding, the

module must interpret HTTP requests and extract the host information from the URL,

transform the request by stripping headers intended for the proxy, and establish a prox-

ied connection. By subclassing the HTTPRequestModule and using the virtual service

API framework, the code to do all that is at most 50 lines.

Dedicated proxy modules are not required when transport layer virtualization is

used (see Chapter 5.2) because the virtual service container itself is a transparent proxy.

65

Therefore, virtual service modules can operate directly on the client to service connec-

tion data stream without having to establish connections to dynamically determined

virtualized services. Still, it is not always possible for a user to deploy transport layer

virtualization. The ability to implement proxy modules meets our requirement to sup-

port one to many mappings.

In addition, our proxy implementation validates our requirement that it be possible

to implement services with virtual service modules. A proxy is itself a service. A

proxy virtual service is inherently able to be reconfigured dynamically because it is

composed of virtual service module chains. Page caching, header filtering, and content

blocking can all be added or removed dynamically by inserting and removing modules.

6.1.7 Component Migration

In Chapter 2, we established a requirement to support geometric reconfiguration. This

form of reconfiguration requires that application components be able to change their

physical location. The virtual service API’s migration primitive (see Chapter 5) en-

ables component migration. Any module, chain, virtual service, or container can be

serialized and reinstantiated at another virtual service agent.

A common motivation for migrating components is to balance a workload across

a set of CPUs. However, this is not a common requirement in service-oriented ap-

plication development because services tend to run on dedicated servers as opposed

to shared workstations or other environments where there is competition for compu-

tational resources. Nonetheless, peer-to-peer computing, grid computing, and even

straightforward server mainenance offer opportunities to benefit from component mi-

gration. For example, the maintenance of physical computing resources often requires

downtime for hardware upgrades. In the same way connection forwarding allows vir-

66

tual services to perform zero-downtime service upgrades (see Section 6.1.2), compo-

nent migration enables zero-downtime server upgrades. Before an upgrade, a service

can be migrated to another host.

We have validated the ability to migrate services by building access to migration

into our manual reconfiguration tool (see Section 6.1.1). Using the manual recon-

figuration tool, we have been able to relocate virtual service containers that contain

multiple virtual services from one server to another. A limitation of component mi-

gration is that any entity that wants to continue to access a migrated component must

be updated as to its new location. This limitation can be overcome by virtualizing the

addressing of components through a naming service or another virtual service.

6.2 Dynamically Reconfigurable Security

Although virtual services are intended to be a general-purpose framework for building

dynamically reconfigurable services and customizing legacy services, they are partic-

ularly well-suited for implementing a special class of crosscutting security concerns.

Services share many of the same general security requirements, regardless of their ap-

plication domain. These include authentication requirements, secrecy requirements,

and access control requirements. These and other security requirements—though not

all—can be implemented in a general fashion that can be reused by multiple applica-

tions. Pluggable authentication modules (PAM) and TCP wrappers are examples of

implementing orthogonal security requirements as reusable shared libraries.

In a similar fashion, virtual services can implement security requirements so that

they can be reused by multiple services. A great number of legacy services implement

their own custom security configuration systems. This monolithic approach requires

system administrators to become familiar with the configuration mechanisms of every

67

service they deploy. The move toward application servers that act as service containers,

such as servlet engines, has consolidated some of these configuration mechanisms.

But many services are not hosted in application servers and application servers do not

always support the kinds of security features one desires.

Virtual services can extend security capabilities when they are lacking in a service

and provide a basis for implementing reusable security policies. However, some of

these capabilities depend on the ability to establish a secure connection between the

virtual service and the virtualized service and to restrict connections to the virtualized

service from sources other than the virtual service.

6.2.1 Authentication

Authentication requires that the identity of a client accessing a service be determined.

After authentication, access permissions can be established. Many services do not im-

plement authentication or implement an authentication system that does not integrate

with an existing authentication infrastructure. Layering authentication on top of a ser-

vice using virtual services allows you to implement a single authentication system for

all of your services and add authentication to services that do not support it.

You can enhance the functionality of an existing service by adding modules to the

INCOMING and OUTGOING chains of a TCP connection forwarding virtual service.

We have implemented an HTTP authentication module (HTTPAuthenticator) that will

protect an arbitrary Web server with a user name and password. HTTP servers are

embedded in devices like printers and many different kinds of software to provide

management capabilities. The security provided by these embedded HTTP servers

isn’t always what an administrator would like. By exposing the management services

only through a virtual service, you can add additional authentication and encryption

68

capabilities. Our HTTPAuthenticator demonstrates this concept.

You can bind an embedded HTTP server to the localhost interface to avoid expos-

ing it to the network at large. Or you can protect the port it runs on with a firewall.

Then you can run a virtual service on the same machine (or in the case of a printer,

attach the printer only to the machine running the virtual service through a dedicated

switch or network cable on a separate physical network interface) and forward connec-

tions to the real service. The virtual service is configured as per the TCP forwarding

scenario (see Section 6.1.2), with the difference that the HTTPAuthenticator module is

added to the INCOMING chain.

Modules that change the behavior of a TCP service by manipulating the application

protocol data must understand the application layer protocol. Virtual service modules

for distributed objects such as SOAP-based Web services and RMI only have to under-

stand the message format (e.g., SOAP). The HTTP protocol is very simple, consisting

of a set of headers followed by a body. Therefore we were able to write an abstract

module for processing HTTP requests (HTTPRequestModule) that is subclassed by

HTTPAuthenticator and other modules that modify the behavior of HTTP services.

HTTPRequestModule keeps track of the start and end of a request as well as its

different sections (headers and body), delegating the processing of sections to virtual

methods implemented by subclasses. The HTTP authentication module intercepts data

from the INCOMING chain and does not forward it on down the chain until proper

authentication credentials are supplied. It queues an HTTP authentication challenge

for the OUTGOING chain that is sent back to the client. If authentication fails, an

HTML page reporting the failure is queued for delivery via the OUTGOING chain.

Even though HTTPAuthenticator implements HTTP Basic authorization and can be

configured to use only a single user name and password, it can be extended to use

69

different authentication schemes and integrate with a password file, NIS, LDAP, or

some other authentication database to validate a user.

6.2.2 Connection Restriction

Restricting connection establishment is one of the most fundamental forms of access

control available to network services. It is implemented most often in the form of

host-based access control. Firewalls are often used to block connections from entire

networks. Before the advent of firewalls, libraries and programs like TCP wrappers

afforded host-based access restriction. There are other criteria upon which connections

can be restricted. For example, the rate of incoming connections from a particular

source or the total number of connections from a particular source may be constrained.

Connection restriction is a security concern that cuts across multiple services. The

same configuration that restricts connections for one service can be applied to another

service without alteration. To demonstrate this ability, we have implemented connec-

tion blocking modules that deny incoming connections based on specific criteria.

Two of the connection blocking modules restrict access based on the source of

the connection, replicating the functionality provided by TCP wrappers and personal

firewalls. The first module blocks hosts based on a set of regular expressions that are

matched against the source IP address and canonical host name. The other reproduces

TCP wrappers by matching against network addresses and netmasks. Both can be

configured to accept on a match instead of reject, thereby providing TCP wrappers

hosts.allow functionality in addition to hosts.deny. Placing them at the front of the

ACCEPT chain gives you instant TCP wrappers host-based connection screening.

70

6.2.3 Request Screening

Whereas restricting connections enhances the security properties of a service, screen-

ing requests enforces security policies for clients. Requests that an organization does

not want to leave the local network can be blocked based on application layer content.

For example, you may want to protect against leaking information through URLs em-

bedded in HTML mail. We have implemented a module that blocks HTTP requests

based on pattern matches (regular expressions again) in the HTTP headers. That way

you can configure the module with patterns such as:

ˆHost: (?:ad|stats|pagead.|ads[ˆ\.]+)\.\S+

and block attempts to download content from hosts that serve advertisements or have

user tracking/traffic monitoring links. You can also add patterns that match personal in-

formation you don’t want to be transmitted, such as credit card numbers. This module

can be added to an HTTP proxy virtual service, providing transparent request screen-

ing.

6.2.4 Encryption

Encryption attempts to ensure the secrecy of communication. A third party observing

the conversation between two other parties should not be able to decipher its content.

A service may need to be reconfigured with new encryption methods if a client does

not support the same encryption scheme, if the ciphers used by the service have been

broken, or if the service does not support encryption, among other reasons. Virtual

services can layer encryption on top of existing services, but for it to be useful a se-

cure link must be maintained between the virtual service and the virtualized service.

This can be achieved by co-locating the virtual service with the virtualized service

71

and communicating via the localhost interface or by maintaining separate encrypted

connections between the client and virtual service and between the virtual service and

the virtualized service. As a proof of concept, we have implemented a module that

accepts SSL connections. By linking a virtual service to a virtualized service over the

localhost interface, you can add encryption support to a service that does not already

support encryption.

6.2.5 Traffic Monitoring and Adaptive Response

One of the challenges of network security is to detect exploit attempts and react to

them. Many security products perform passive monitoring and delegate reaction to

human administrators. Therefore, an exploit may succeed by the time a human is

notified and able to take remedial action. Virtual services provide a foundation upon

which exploit detection and adaptive response can be added to services. The idea is

to make it possible to build services and adapt existing services to be able to defend

themselves against exploit attempts.

To demonstrate monitoring and response, we implemented an abstract pattern match-

ing module that invokes an action when any of a set of patterns is found. Exploit detec-

tion is a prerequisite to response. The pattern matching module can be configured to

detect viruses, known attack patterns, buffer overflow attempts, and so on. Subclasses

of the module may choose to associate different actions with different patterns. We

subclassed the module and implemented a reactive connection blocker. When any of a

set of patterns is found in the stream (either input or output depending on which mod-

ule chain an instance is inserted into), the module attaches a netmask blocker module

to the head of the virtual service’s ACCEPT chain (if one already doesn’t exist) and

adds the source IP address to the blocker module’s netmask list and closes the current

72

connection. Therefore, you could use the module to dynamically block hosts that are

attacking your Web server or sending you virus attachments. This scenario validates

that modules can dynamically reconfigure module chains in response to changing con-

ditions.

6.2.6 Software Fuses

Software fuse is a term that appears to have been coined by George Candea [14] in

2004. He observed that Internet services are vulnerable to unexpected inputs, which

he divides into the three classes:

• unexpected size,

• unexpected content,

• and unexpected rate of arrival.

Candea proposes that software can be secured with a software fuse that detects unex-

pected input and filters it out. When we first heard of the concept, we realized software

fuses were a special case of virtual services and that software fuses reinvented a solu-

tion we had already devised. Virtual services are an obvious vehicle for implementing

software fuses for network services. Connection blocking, request screening, exploit

detection and response, are all examples of software fuses. When an input-related ex-

ploit or bug is detected in a service, that service can be patched quickly with a virtual

service module until a proper patch is supplied by a vendor. Software fuses highlight

the breadth of application of virtual services and validate that virtual services are a suf-

ficiently general architecture to implement many forms of behavior specialization.

73

Chapter 7

Experiments

The applications we have built using virtual services (see Chapter 6) meet all of the

requirements—to varying degrees—that we specified in Chapter 2. Some of the re-

quirements are functional, some are qualitative, and others are quantiative. In this

chapter, we evaluate our success by conducting experiments that test the degree to

which our requirements have been met.

7.1 Module Complexity

The most subjective of our requirements is that our system be usable. One way to

characterize usability is by measuring the amount of effort required to implement vir-

tual service modules. The ideal way to measure the required effort would be to study

a large group of programmers of varying skill levels and evaluating how each imple-

ments a set of assigned modules. However, the resources to perform such a study are

not available to us. Nonetheless, it is possible to approximate the effort required to

implement virtual service modules by measuring the complexity of the modules we

have implemented throughout the course of our research.

Many metrics have been developed for analyzing source code, focusing on mea-

suring complexity and maintainability. The less complex the code, the easier it is to

74

understand, and therefore the easier it is to implement and maintain. Despite their

simplicity, two early metrics reliably indicate the complexity of modular source code

units. These metrics are lines of code and cyclomatic complexity [55]. Lines of code

can be counted in different ways, but all methods provide similar results. For our pur-

poses, we will count non-commenting source statements (NCSS). Lines of code gives

a rough measure of difficulty of implementation.

Cyclomatic complexity measures the number of independent paths through a unit

of code. The more branch points in a code unit, the greater its cyclomatic complex-

ity. Experience with the metric has established that a cyclomatic complexity num-

ber (CCN) of 10 or less indicates a unit of code is simple. Between 11 and 20 the

complexity is considered moderate, and greater than 20 is considered overly complex.

Cyclomatic complexity was used originally to measure the complexity of procedural

programs, but can be applied to object-oriented programming as a measure of method

complexity.

Number of
Modules

Average
Methods Per
Module

Average
NCSS Per
Module

Average
NCSS Per
Method

Average CCN
Per Method

18 11.00 54.94 4.31 1.82

Table 7.1: Module complexity. NCSS is the number of Non-commenting Source
Statements and CCN is the Cyclomatic Complexity Number.

Table 7.1 summarizes the results of our complexity measurements. For the 18

virtual service modules we implemented in the course of developing the applications

described in Chapter 6, we measured the average number of methods per module, the

average number of non-commenting source statements per module and per method,

as well as the average cyclomatic complexity per method. We have omitted the JMX

MBean interface declarations for each module from the measurements because they

75

artificially reduce the complexity measurements. For example, interface methods have

no bodies and therefore reduce both NCSS and CCN counts per method.

The average module contains 11 methods. Most of these methods are setter and

getter methods required to configure a module’s properties. A module with P prop-

erties will produce 2P methods for setting and retrieving its properties. Each module

will also contain the 3 lifecycle methods required by the virtual service module inter-

face (see Section 4.1.1). Therefore, most of a module’s methods are accounted for by

properties and lifecycle methods, leaving a few support methods.

The average NCSS value per module is not large. Fifty-five lines of code represents

a day’s effort for a competent programmer—even when the additional overhead of im-

plemeting unit tests is considered—because much of it is consumed by the boilerplate

of member variable declarations, constructors, and setter and getter methods. In our

experience, no module required more than a day to implement. The maximum NCSS

value was 90, the minimum was 10, and the median was 52. Taken in conjunction

with the average method length of 4.31 lines, it is clear virtual service modules do not

require a lot of time to implement.

The average cyclomatic complexity per method of 1.82 also qualifies virtual ser-

vice modules as having low implementation complexity. However, averages can ob-

scure the data distribution. For example, short setter and getter methods drive down

the CCN, hiding the higher CCN of the requisite mediate method. To account for this

phenomenon, we have plotted the distribution of methods with respect to CCN in Fig-

ure 7.1. The distribution reveals that all but two methods have a CCN less than 10. 140

of the methods (69% of the total methods) have a CCN of 1 and 23 of them (or 11%)

have a CCN of 2.

The two methods with a CCN of greater than 10 occurred in modules that process

76

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

Nu
m

be
r o

f M
et

ho
ds

 w
ith

 C
CN

Cyclomatic Complexity Number (CCN)

Figure 7.1: Cyclomatic complexity of module methods.

HTTP requests. The highest CCN of 15 occured in an abstract module that is sub-

classed by HTTP request processing modules. Its mediate method must differentiate

between the header and body of a request, buffer incomplete requests until complete,

differentiate between HTTP request methods, and delegate request processing to ab-

stract methods. Although the method could be simplified by refactoring some of its

functionality into separate methods, the tasks it must perform remain considerable. By

keeping the complexity in an abstract module, the implementation of other modules is

simplified because the functionality is reused.

The CCN of 12 occurs in an HTTP authentication module and results mainly from

having to parse the request header, decode and validate account information, and gen-

erate a response in case of failure. The conditional logic associated with these tasks

77

increases the branching factor and consequently the cyclomatic complexity. In general,

protocol handling modules will require the most effort to implement, but they need be

implemented only once and would be provided as standard modules by the vendor if

virtual services were a commercial product.

One should keep in mind that the complexity of a given module depends on the

ability of the implementor to create simple designs. It is probable that a module imple-

menting a particular function will have the same complexity as if the same functional-

ity were added to a service using some other means, such as direct source code modi-

fication, when implemented by the same person. However, the purpose of measuring

complexity is to determine if virtual services impose an additional level of complexity

beyond the norm. We believe our results show they do not, even though we have not

compared them to a baseline measurement. Furthermore, it is important to remember

that one of the motivating usage scenarios for virtual services is when you do not have

the ability to make direct source code modifications to a service. Should you have

the ability to make direct source code modifications, you still have to become famil-

iar with the source code structure. The functionality changes you make to the service

will likely be specific to the service code and not readily applicable to another service’s

code. In other words, if you want to apply the same customization to multiple services,

you have to implement it multiple times. Using virtual services, you implement a sin-

gle virtual service module that you can reuse by dynamically applying it to multiple

services.

7.2 Performance

The most quantifiable requirement we have specified is that virtual services be ef-

ficienct. Efficiency is a relative term in so far as it bears on the application being

78

evaluated. For example, an intranet service for a company of 100 employees need not

be able to satisfy the same peak throughput requirements as an intranet service for a

company with 40,000 employees. In general, our desire is for virtual services mid-

dleware to not degrade the performance of a mediated legacy service. However, some

amount of performance degredation is unavoidable. Therefore, we seek to measure the

performance limits of our virtual services implementation and characterize the factors

impacting performance. We must stress that our implementation is a research proto-

type which is not necessarily reflective of the performance that can be achieved with

virtual services. We offer our measurements as a lower bound on performance.

7.2.1 Test Plan

A number of different performance metrics can be used to characterize the behavior of

distributed programs. Given that one of our primary goals is to specialize the behav-

ior of network services, the measurement we care about most is the overhead virtual

services add to a service invocation. In other words, we would like requests made to

a virtualized service to be processed in the same amount of time as requests made to

an unvirtualized service. Initial tests showed that the performance of individual re-

quests to a virtualized service was indistinguishable from that of requests made to an

unvirtualized service. Therefore, we chose to examine the scaling properties of vir-

tual services. Most enterprise services—and Web services in particular—must serve

multiple concurrent requests. If the number of requests per unit time they can serve

degrades below a minimum threshold, the services become unusable.

To quantify the inherent impact of virtual services on service scaling, we designed

a straightforward load generating test. First we measured the number of requests per

second a service can respond to under steadily increasing load (see Figure 7.2). Then

79

Load Generator

Load Generator

Load Generator

Service

Figure 7.2: Service load generation. Service load is generated by multiple clients
issuing concurrent service requests.

we measured the same data for requests directed to a virtual service mediating the

service used in the first test (see Figure 7.3). We used a pass-through virtual service

for our tests because we are interested in the performance overhead contributed by the

virtual service runtime system, not the overhead of specific behavior specializations.

7.2.2 Measurements

We used the httperf [57] HTTP performance measurement tool to generate service

requests and collect performance statistics. We used the Apache HTTPD server version

2.0.52 as our test service, running on a Dell PowerEdge 2450 with dual 733 MHz

Pentium III processors. Two PC workstations were sufficient to generate enough load

to saturate the 100 Mbps Ethernet network we used for testing. In order to minimize the

effects of packet fragmentation, we limited service requests and responses to 1 kilobyte

in size with a connection timeout of 5 seconds.

Figure 7.4 shows the results of our measurements. We measured four separate

80

Load Generator

Load Generator

Load Generator

Virtual Service Service

Figure 7.3: Virtual service load generation. Load generators direct their requests to
the virtual service instead of the service proper.

scenarios. Our baseline is the performance of an unvirtualized service. Next, we mea-

sured the performance of application layer and transport layer virtualization. These

measurements followed the setup from Figure 7.3. Finally, we implemented an in-

herently reconfigurable service to act as an HTTP server, running the measurements

according to Figure 7.2. This last measurement allows us to separate out the medi-

ation overhead caused by connection establishment from the virtual service runtime

overhead. We do not show all data points once a saturation point is reached in order to

keep the graph readable, given the overlap of the data points.

The precise numbers are not exceedingly clear from the graph, but the raw data

shows that both application layer and transport layer virtualization saturate at 300 con-

nections per second. After that, they drop down to a reply rate of 250 per second.

In contrast, the unvirtualized service saturates at just over 1000 connections per sec-

ond. Therefore, our implementation incurs a 75% performance hit. Our inherently

reconfigurable service saturates at 400 connections per second, which is still a 60%

81

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Re
pl

y
ra

te
 (r

ep
lie

s/
se

c)

Connection rate (connections/sec)

Unvirtualized Service
Application Layer Virtualization

Transport Layer Virtualization
Inherently Reconfigurable Service

Figure 7.4: Reply rate vs. connection rate.

difference. Therefore, connection establishment for mediation accounts for at most a

15% performance degradation. The remaining 60% is caused by our virtual services

runtime system.

Figure 7.5 plots the average response time per request. This data gives insight

into the differences between virtualization scenarios. The reply throughput for all of

the virtualization scenarios suffers from not being able to keep up with the incoming

requests. Therefore, they all exhibit similar behavior. Incoming requests queue up

and eventually the client times out and the middleware server runs out of file descrip-

tors. The response time, however, shows that transport layer virtualization is more

responsive than application layer virtualization, even after saturation. The inherently

reconfigurable service is more responsive than the application layer virtualization after

82

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Re
sp

on
se

 ti
m

e
(m

illi
se

co
nd

s)

Connection rate (connections/sec)

Unvirtualized Service
Application Layer Virtualization

Transport Layer Virtualization
Inherently Reconfigurable Service

Figure 7.5: Response time vs. connection rate.

saturation. However, just before saturation, its response time is worse. This happens

because the inherently reconfigurable service is slower than the native service at satis-

fying requests. But after saturation, the application layer virtualization must contend

with network congestion and connection timeouts that do not affect the inherently re-

configurable service. We can conclude that transport layer virtualization has the least

impact on responsiveness.

The source of overhead for application layer virtualization lies in connection estab-

lishment and data copying. Transport layer virtualization does not establish a separate

service connection, but still must replicate module chains, which contributes to the

connection establishment overhead for application layer virtualization. Also, transport

layer virtualization requires the rewriting of packets (e.g., tracking virtual sequence

83

numbers and recomputing checksums). Some of these operations, such as packet

rewriting, could be optimized by implementing them in C instead of Java.

Despite there being obvious sources of performance overhead, the overall degra-

dation of peak connection rate is fundamentally a result of an insufficiently optimized

implementation rather than intrinsic to the architecture. Our initial implementation

focused on functionality instead of performance. Connections were handled syn-

chronously and the peak connection rate was under 50 connectionss per second. We

never intended for connections to be handled synchronously, but implemented it that

way to facilitate building the rest of the system built with the intention of revisiting

connection handling. After we changed connection handling at the application layer

to use non-blocking connections and separated connection acceptance and connec-

tion processing into separate threads, we achieved the performance results we have

described in this section.

Given the prototype-status of our system, we needed to show that we could provide

the desired functionality and that the system would be usable. The peak connection rate

of 250 to 300 connections per second is clearly usable commercially in an enterprise

computing environment. Still, it falls short of our goal of not deviating significantly

from the performance of the mediated service. Therefore, we consider our efficiency

requirement to have been partially achieved. Our implementation is efficient enough

to be usable in a real-world setting, but it is not as efficient as we believe it should and

can be.

7.3 Autonomic Self-Defense

Despite all of the research into reconfigurable systems that has been conducted over

the past two decades, few commercial applications have emerged that take advantage

84

of dynamic reconfiguration. Before a new set of techniques can take root, there must

be a demand for it. We have seen dynamically embedded objects and plugins become

standard means of dynamic program extension. Web browsers and word processors

alike can load modules dynamically that supply new functionality. A Web browser can

be turned into a streaming media player and a word processor can be taught to mark

up XML douments using a specific schema.

These program extension capabilities were developed in response to an increas-

ingly networked computing infrastructure. When new content types were encountered,

separate programs had to be started to process them. By developing a plugin system

coupled with dynamic content type negotiation, a program could dynamically deter-

mine the type of content and the plugin required to process it. The plugin could then

be launched as part of the already running program.

Dynamic loading of plugins is a primitive form of dynamic adaptation. A program

responds to a change in its environment by enhancing its capabilities. The need for

more complex forms of dynamic adaptation is upon us. Soon, a new class of appli-

cations will emerge that dynamically reconfigure themselves in reponse to changes in

their environment. Already, early forms of self-healing programs have been deployed.

These programs detect errors in themselves as they run and repair the problems.

Virtual services enable a critical form of self-reconfiguration: autonomic self-

defense. Programs with autonomic self-defense systems can detect securty threats

and reconfigure themselves to defend against them. Not only do virtual services en-

able you to build services with autonomic self-defense systems, but also they allow

you to graft an autonomic self-defense system onto legacy services that lack the ability

to reconfigure themselves. The frequency of occurence of network viruses, worms,

spam, denial of service attacks, and threats yet unknown have done nothing but in-

85

crease every year. The ability to detect and respond to security threats may be the most

important application of dynamic reconfiguration over the next five years.

7.3.1 Adaptive Response

Figure 7.6: Adaptive behavior. Adaptive programs can self-reconfigure in response
to changing environmental conditions.

Figure 7.6 depicts the basic steps required for adaptive behavior, such as that ex-

hibited by autonomic self-defense. First, an environmental change must be detected.

In the case of self-defense, a security attack must be detected. Second, the change must

be analyzed. Whereas detection is akin to the operation of biological sensory organs,

analysis is akin to the interpretation of sensory input by the brain. Third, the analysis

produces a response. Useful responses require the ability for a program to dynamically

change its behavior.

Virtual services provide a framework for implementing detection and response

modules. Although the analysis component is also implemented as a virtual service

module, the virtual service framework does not provide any special support for ana-

lyzing threats. The programmer must implement the requisite logic. The virtual ser-

vices framework supports the detection process via the virtual service context and data

flow through module chains. The dynamic reconfiguration capacity of virtual services

supplies the infrastructure to implement dynamic adaptive responses.

86

7.3.2 Self-reconfiguration as Exploit Countermeasure

In Chapter 6, we described a variety of different applications of virtual services that

we have implemented. Those applications demonstrated the flexibility and general

purpose nature of virtual services. Here, we experimentally verify the ability of vir-

tual services to enhance legacy services with an autonomic self-defense system. Our

experiment consists of adding autonomic self-defense to Web services running in the

Apache Tomcat application server. Apache Tomcat has limited security capabilities,

but is a popular Java application server for both development and deployment. The

autonomic self-defense system executes as a virtual service deployed according to the

scenario from Figure 6.1.

208.179.215.130 - - [25/Oct/2004:16:11:32 -0400] "GET /iisadmpwd/..%c1%c1..%c1%c1
..%c1%c1..%c1%c1..%c1%c1../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 253
208.179.215.130 - - [25/Oct/2004:16:11:32 -0400] "GET /iisadmpwd/..%c0%qf..%c0%qf
..%c0%qf..%c0%qf..%c0%qf../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226
208.179.215.130 - - [25/Oct/2004:16:11:32 -0400] "GET /iisadmpwd/..%c1%8s..%c1%8s
..%c1%8s..%c1%8s..%c1%8s../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226
208.179.215.130 - - [25/Oct/2004:16:11:32 -0400] "GET /iisadmpwd/..%c1%9c..%c1%9c
..%c1%9c..%c1%9c..%c1%9c../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 253
208.179.215.130 - - [25/Oct/2004:16:11:32 -0400] "GET /iisadmpwd/..%c1%pc..%c1%pc
..%c1%pc..%c1%pc..%c1%pc../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226
208.179.215.130 - - [25/Oct/2004:16:11:33 -0400] "GET /iisadmpwd/..%c1%1c..%c1%1c
..%c1%1c..%c1%1c..%c1%1c../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 253
208.179.215.130 - - [25/Oct/2004:16:11:33 -0400] "GET /iisadmpwd/..%c0%2f..%c0%2f
..%c0%2f..%c0%2f..%c0%2f../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 253
208.179.215.130 - - [25/Oct/2004:16:11:33 -0400] "GET /iisadmpwd/..%e0%80%af..%e0
%80%af..%e0%80%af..%e0%80%af..%e0%80%af../winnt/system32/cmd.exe?/c+dir+c:\\+/OG
HTTP/1.0" 404 258
208.179.215.130 - - [25/Oct/2004:16:11:33 -0400] "GET /_vti_bin/..%c0%af..%c0%af..
%c0%af..%c0%af..%c0%af../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 252
208.179.215.130 - - [25/Oct/2004:16:11:33 -0400] "GET /_vti_bin/..%c0%9v..%c0%9v..
%c0%9v..%c0%9v..%c0%9v../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226
208.179.215.130 - - [25/Oct/2004:16:11:34 -0400] "GET /_vti_bin/..%c1%c1..%c1%c1..
%c1%c1..%c1%c1..%c1%c1../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 404 252
208.179.215.130 - - [25/Oct/2004:16:11:34 -0400] "GET /_vti_bin/..%c0%qf..%c0%qf..
%c0%qf..%c0%qf..%c0%qf../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226
208.179.215.130 - - [25/Oct/2004:16:11:34 -0400] "GET /_vti_bin/..%c1%8s..%c1%8s..
%c1%8s..%c1%8s..%c1%8s../winnt/system32/cmd.exe?/c+dir+c:\\+/OG HTTP/1.0" 400 226

Figure 7.7: HTTP Attack. Attacks on services often conform to readily identifiable
patterns.

87

Intrusion detection systems (IDS) are based largely on identifying known patterns

of attack. Three of the most common types of patterns are:

1. byte sequences in the data stream matching a known attack sequence,

2. byte sequences in the data stream exceeding a protocol-limited length (i.e., buffer

overflow attempts),

3. and arrival of requests or data at an abnormal rate.

The first type of pattern is detected by examining requests and searching their contents

for known attack byte sequences. The second type of pattern is detected by examining

requests and ensuring that their component elements do not exceed allowable sizes.

The third type of pattern is detected by monitoring the arrival of requests and data over

time. Both abnormally high and abnormally low rates can represent attacks. For exam-

ple, connections that transmit data at a very low rate—or not at all—enable additional

connections to build up, creating a denial of service by consuming all incoming ports.

As described in Chapter 6, we have developed a variety of intrusion detection mod-

ules. Alternatively, we could have developed virtual service modules that interfaced

with existing intrusion detection systems. Each of the detection modules we imple-

mented can detect one of the three primary classes of intrusion patterns. We use those

modules in our experimental validation of autonomic self-defense.

Figure 7.7 contains a partial log of requests recorded during an attack on an HTTP

server. The attack exhibits three characteristics that are detectable patterns. First,

each request attempts to exploit a Microsoft Internet Information Server bug, causing

the shell cmd.exe to be executed. Second, the requests arrive at a fast rate, with

multiple requests being made every second. Third, each request originates from the

same host. We can detect the attack by searching for the cmd.exe string in a request.

88

We can detect the excessive request rate by monitoring how fast requests arrive from

a single host. After detecting an exploit, we can add the host to a database of banned

IP addresses and deny connections from hosts in the database. Another attack we have

logged consists of excessively long GET requests.

Our byte sequence pattern detecting module serves to detect attacks containing

recognizable content signatures. In or experiment, we configured the byte-pattern de-

tecting module to identify any HTTP GET request containing the string .exe. The

application server being protected has no need to execute files ending with that file ex-

tension. We also included patterns matching other popular executable file extensions

such as .bat and .cmd. Additional patterns can be confgured manually while the sys-

tem is running. In theory, one could implement an algorithm to identify new attack

byte sequences and as a response, dynamically configure the byte-pattern detection

module with new patterns. However, that is itself a difficult research problem. For the

experiment, we left byte sequence pattern configuration as a manual task, requiring a

system administrator to enter new patterns with our dynamic reconfiguration tool.

We implemented the analysis component of the autonomic self-defense system

as a rather simple module. An analysis module must examine the data provided by

detection modules and implement a response. The implementation of sophisticated

analysis algorithms is the subject of artificial intelligence research outside the scope

of our work. The object of our experiment is to validate that virtual services provide

a framework for implementing autonomic self-defense. Therefore, it is sufficient to

show that analysis modules can be implemented, rather than implementing a sophis-

ticated analysis algorithm. The success of our expriment rests on demonstrating the

ability to implement responses that dynamically reconfigure the system.

Our analysis module interprets positive matches by detection modules as real at-

89

tacks. It is concerned only with identifying the type of attack and developing an ap-

propriate response for that attack. The module is designed to respond to HTTP attacks

and would not be suitable for defending against SMTP attacks, even though the de-

tection modules can be configured to match patterns for arbitrary protocols. When an

attack is detected, the module could simply close the connection and add the host to

the database of banned hosts. Then, it could ensure a connection blocking module is

installed to block all future connections from banned hosts.

Immediately blocking connections is not always the best approach to dealing with

HTTP attacks. When an attacker receives an HTTP error or a closed connection, it

will continue to attempt further variations of the attack. For example, the log from

Figure 7.7 shows the attacker did not stop just because it received an HTTP 400 or

404 error. Sometimes, fooling the attacker into believing its attack has succeeded will

make it stop. This works because attacks are usually automated with scripts that look

for certain responses to determine the success of the attack.

The strategy applied by our analysis module is to quarantine a connection for obser-

vation before terminating it. It uses the dynamic reconfiguration capability of virtual

services to enact the quarantine. When an attack byte-pattern is detected, the analysis

module responds by attaching a logging module to the connection. The logging mod-

ule stores a trace of the connection traffic for later inspection by a human. The analysis

module then replaces the service forwarding module with an HTTP positive response

module that does nothing but return positive replies to HTTP requests. A timeout mod-

ule is also attached to the connection. Should the attacker maintain open the HTTP

connection, this module will close the connection after a specified time period. We set

this time to one minute. The objective is to continue monitoring the connection for a

time before closing the connection. Finally, if not already present, a connection block-

90

ing module is attached to the head of the ACCEPT chain for the virtual service. The

attacking host is added to the banned host database, allowing the connection blocking

module to block all future connections from that host. We deployed this virtual service

“in the wild” for two weeks on a production server that receives 20,000 hits a week.

During that time period, we observed no degradation in performance (i.e., the hit rate

did not decline) with the result of detecting and defending against 451 attacks. Ad-

mittedly, 20,000 hits a week is a low volume of traffic which—given the performance

data from Section 7.2—would not trigger a decline in performance.

The self-defense strategy we implemented executes structural and implementation

changes. It does not execute topological changes. As an additional test of topological

change, we subclassed the analysis module and had it migrate the virtual service to

another host when the connection rate exceeded a set threshold. For testing purposes,

we set a threshold of 100 connections per second and used httperf [57] to generate a

test load to trigger the migration. The connection rate was detected by a connection

rate monitoring module placed on the ACCEPT chain. Although this test successfully

demonstrated that a virtual service can flee from one location to another to evade at-

tacks or replicate itself to handle increased load, an attacker using a host name instead

of an IP address as a target will readily find the new location after the service naming

directory is updated. In theory, mobility can be an effective defense tactic. In practice,

it does not benefit publicly deployed services. Only services deployed without a public

advertisment of their names can benefit.

7.4 Summary of Results

Our experimental validation of virtual services has consisted primarily of verifying

that our system exhibits certain properties. The results of our evaluation are listed

91

Requirement Type Satisfied
reconfigurabilty functional Yes
dynamism functional Yes
loose coupling qualitative Yes
transparency qualitative Yes
flexibility qualitative Yes
persistence functional Yes
programmability functional Yes
usability qualitative Yes
efficiency quantiative Partially

Table 7.2: Satisfaction of requirements.

in Table 7.2. Our autonomic self-defense application demonstrated reconfigurability,

dynamism, loose coupling, transparency, persistence, programmability, and usability.

Reconfigurability and dynamism were applied during the defense response, which dy-

namically reconfigures a connection made by an attacker. Loose coupling and trans-

parency were applied by showing we could attach an autonomic self-defense system to

a service lacking that capability. Persistence was demonstrated by the manual config-

uration tool—which allows us to save the configuration used for the experiment—and

by the topological reconfiguration experiment—which serialized the configuration and

transmitted it to another location where it was reinstantiated. Programmability and

usability were applied when we implemented the virtual service modules. The appli-

cations from Chapter 6 coupled with the autonomic self-defense experiment demon-

strated flexibility. Efficiency is the only characteristic that we did not fully achieve.

Our measurements from Section 7.2 showed performance degradation at high connec-

tion rates, but the ability to function without degradation at connection rates usable

for many production applications. Therefore, our efficiency goal was only partially

achieved.

92

Chapter 8

Related Work

Modification of the behavior of distributed components through language-based meth-

ods, such as inheritance or aspect-oriented programming, requires access to the source

code of the original component, or at the minimum an object file or library. Such

methods require compilation and linking phases that create a new object that is then

deployed. In the absence of object hotswapping capability, these steps mandate that

a service be terminated and restarted with the new modifications applied. Further-

more, administrative control of the service is required in order to apply the changes.

Virtual services are a non-invasive mechanism for reconfiguring services. Unlike

most language-based reconfiguration methods, the affected service is unaware of the

changes applied to it. Aspect-oriented methods share this property, but still require

access to code and administrative control. Virtual services are related to a variety of

research systems that touch on any or all of dynamic reconfiguration, service compo-

sition, or distributed aspects.

8.1 Adaptive Middleware

Virtual services are similar to both reflective and adaptive middleware. Reflective mid-

dleware requires the middleware system to expose its internal structure to an applica-

93

tion. Adaptive middleware [92, 5, 41] is a superset of reflective middleware and refers

to middleware systems that allow applications or services to dynamically adapt the be-

havior of the middleware system based on application-specific requirements. Unlike

virtual services, adaptive middleware systems do not allow the dynamic installation of

application-defined customizations. Adaptive middleware allows only the orchestra-

tion of components that form part of the middleware system. For example, the Dynam-

icTAO [51] ORB monitors applications and dynamically reconfigures itself based on

changing conditions, such as changing bandwidth or security requirements as a mobile

client changes location. Some systems [41, 78] provide domain-specific services in-

side of the middleware that can be tailored based on pre-defined sets of policies. Still,

adaptive middleware does not allow the dynamic introduction of application-defined

customizations. Adaptive middleware focuses on allowing the customization of non-

functional requirements such as quality of service and security policies. This is done

by componentizing the middleware service itself and either allowing the application

to choose which components to use or automatically change components based on

application-monitoring. The range of customizations is limited to the pre-defined mid-

dleware component palette satisfying anticipated requirements. Therefore adaptive

middleware does not fully allow services to adapt to unanticipated application-specific

requirements. Virtual services allow the dynamic injection of arbitrary functionality

by a program or human. Also, unlike adaptive middleware, services that are reconfig-

ured need not be implemented using the middleware framework. Legacy services can

be reconfigured with virtual services, but not with adaptive middleware.

Virtual services can be used to reconfigure existing services, but they also allow

you to develop reconfigurable services. A service can be implemented from the start

as one or more virtual service modules. Implementing a service using a virtual service

94

framework provides greater reconfiguration flexibility than is possible when adapting

an existing service.

8.2 Aspect-oriented Systems

Custom functionality can be built for service-based applications by composing Web

services. AOP4BPEL [17] is an extension to the BPEL workflow language that enables

one to specify behavior that cuts across Web services. For example, process auditing

can be defined to occur at specific pointcuts. AOP4BPEL is a workflow language

whereas virtual services are an application framework and middleware system. Thus,

they serve different purposes, despite sharing the ability to modularize cross-service

concerns.

The DJcutter language [61] defines a remote pointcut construct that can define the

network locations where advice should be applied. Although DJcutter can implement

some of the same functionality as virtual services, it cannot apply advice to arbitrary

legacy services. We believe DJcutter is an example of the kind of aspect-oriented

front-end that can use virtual services as a compilation target. The QuO toolkit [26]

is a CORBA-based framework that includes an Aspect Specification Language (ASL)

defining join points for distributed objects. ASL advice can be conditionally executed

based on contract regions that may be satisfied before or after a remote method in-

vocation. Virtual services do not specify a front-end aspect language, but conditional

execution can be implemented with virtual service modules and chains.

Virtual services typically execute in a separate process and memory space from the

services they mediate. Most AOP tools, such as AspectJ [45] and HyperJ [65], weave

advice that executes in the same process as the code it alters. It is not required that

virtual services execute in a separate process. For example, reconfiguration support

95

using virtual service modules can be built into an application server. Doing so would

restrict virtual services to reconfiguring services running in the same application server.

Virtual service modules can be viewed as a reusable unit of advice. Module bound-

aries, occurring inside of module chains, are a form of joint point internal to the virtual

service runtime system. Service connection instances are a new form of join point we

do not believe has been considered previously. When dealing with remote method in-

vocations, a connection is conceptually the same as a method call. In the general case,

a connection can persist for multiple transactions during a client-server conversation.

These connections may originate from different applications. Connections from each

application may need to be treated differently.

The ability to apply advice selectively, in the form of modules, to different service

connections makes a connection a form of join point. A pointcut can be defined across

multiple connections based on appropriate criteria. For example, if you wanted to

log all transactions originating from a specific network you could define a pointcut

comprising all connections whose sources match a particular network block number

and netmask. Additional join points may be domain-specific. For example, many IETF

protocols issue text commands and expect numerical return codes indicating varying

levels of success or failure. The commands, return codes, and request headers are all

join points where advice can be inserted. Unlike a program join point, that defines

where code is inserted into a program, a protocol join point defines when code should

be executed. The virtual service context is sufficient to identify protocol join points.

A protocol adapter module is sufficient to control the execution of modules or module

chains at pointcuts. Virtual services do not impose a syntax for defining AOP structures

such as pointcuts. This is an area that requires further research.

96

8.3 Compositional Systems

Attempts have been made to facilitate the evolution of service-based distributed ap-

plications by applying composition. The Stanford Paths Framework [42, 44, 43],

the Berkeley Ninja Paths Architecture [33, 16], and the Object Infrastructure Frame-

work [28] (OIF) all allow applications to compose multiple services into application

components. The Paths Framework and Ninja are limited in that they offer only a

pipe/filter framework where the inputs and outputs of services are chained together

to create new functionality, analogous to piping Unix commands together. The em-

phasis is on making it easier to build distributed applications—going so far as to pro-

pose zero-code service composition [44]—rather than on customizing services to meet

application-specific requirements. OIF is more akin to composition filters [10, 2] and

aspect-oriented programming, allowing service communications to be intercepted and

pre- or post-processed by dynamic injectors (the name given to communication inter-

cepting objects). Virtual services are related to these systems because they incorporate

a form of compositional programming. Stil, only OIF allows an application to dynam-

ically inject custom concerns into a distributed system.

8.4 Dynamic Software Updating

Dynamic software updating changes the instructions to be executed by a program while

the program itself is running. This field of research solves a problem that overlaps with,

but is not identical to, dynamic reconfiguration. Dynamic reconfiguration can reorga-

nize the components of a program, which is, in a sense, a form of software updatinig.

However, reconfiguration typically operates on coarse grained program elements—

components or modules. Dynamic software updating can operate on as fine a grain as

97

the single machine instruction level. Dynamic software updating is applied primarily

to perform so-called hot fixes, where corrective patches or functionality upgrades are

applied to a program while it is running.

Dynamically loaded libraries or dynamic shared objects are used by many desktop

and server applications to dynamically plug in and unplug functionality. Operating

systems support the dynamic insertion and removal of functionality through mecha-

nisms such as Linux kernel modules. These forms of software updating rely on a well-

defined API that provides hooks inside of a program to allow the loading of program

extensions.

DynInst [13] is a recently developed API for dynamically instrumenting running

code. It allows a running program to be patched, primarily to insert instrumentation,

but also it can insert updated code. However, DynInst uses trampolines and therefore

does not remove the code it updates. Instead, it redirects to the new code calls to the

old code.

Popcorn is a type-safe C-like language, which supports dynamic updating when

combined with the typed assembly language and the DLpop library [35]. Dynamically

updatable Popcorn programs must be written specifically to be updatable. Updates can

be performed only at predefined safe points of execution. Arbitrary programs cannot

be customized and instead must be ported to use the Popcorn language and DLpop

library.

The Java Virtual Machine Tool Interface [88] and its predecessor, the Java Vir-

tual Machine Debug Interface [83], incorporate the ability to dynamically replace Java

classes while a program is running. This feature was derived from the PJama [24]

system, now known as HotSwap [25]. Classes are redefined in HotSwap by accessing

an API exposed by the JVM. Currently executing methods of replaced class instances

98

are allowed to complete. New method invocations use the updated class.

The key difference between dynamic software updating systems and virtual ser-

vices is that dynamic software upating operates inside a shared process and memory

space. Virtual services operate on disjoint process and memory spaces linked together

via message passing. Dynamic software updating and virtual services are related be-

cause the virtual services middleware allows a coarse grained form of dynamic soft-

ware updating. Virtual service modules can be replaced and rearranged. However, the

purpose of this form of updating is to specialize the behavior of a service in a disjoint

process and memory space, where direct modifications cannot be made. Dynamic soft-

ware updating systems may be a superior way to implement the dynamically updatable

aspects of virtual services middleware, but they do not incorporate the concept of re-

configuration nor can they be used to alter the behavior of programs inaccessible to the

programmer.

8.5 Active Systems

Several methods have been proposed for customizing service-oriented network appli-

cations, but in the late 1990s much effort was concentrated on enhancing the delivery

of content by caching data closer to the so-called edges of the network [6]. These

techniques do little to benefit distributed applications that coordinate computation and

consume data at multiple network locations. A number of systems using dynamically

determined program instructions have been proposed or implemented to support this

class of application. These include Active Messages [54], Active Services [3], Active

Networks [95, 11], Active Caches [15], and Active Names [90]. Active Messages are

geared toward message passing parallel computers rather than network applications.

Active Messages encode control information at the head of a message that addresses

99

user-level instructions that extract and process the message in accordance with an on-

going computation. This approach allows expensive buffering and blocking in protocol

stacks to be bypassed, and when implemented in hardware, has improved performance

of some applications by as much as an order of magnitude [93]. Active Services al-

low applications to inject application-specific functionality into network elements that

operate only on application-level data.

Active Networks allow arbitrary code to manipulate packets flowing through a net-

work. Active Caches can be considered a specific instance of an Active Service, that

allows content caching behavior to be customized with server-supplied code. Active

Names focus on providing dynamically configurable name resolution mechanisms and

might also qualify as a type of Active Service. Active Networks operate at the network

layer (e.g., operating on packets inside routers) while Active Services operate at the

application protocol layer, able to and often required to execute on a server or cluster

(e.g., a streaming media gateway). All of these “active” systems share the ability to

alter computational behavior through dynamically determined instruction sequences.

8.6 Database Queries as Mobile Code

Rodrı́guez and Roussopoulos have applied a dynamic customization technique to op-

timize the performance of applications that rely on heterogeneous distributed data

sources in the MOCHA self-extensible database middleware system [71, 72, 73]. In

MOCHA, data transfers are reduced by identifying data-inflating and data-reducing

operations. Data inflating operations are performed at the data consumer and data-

reducing operations are performed at the data producer so that the total data sent over

the network is minimized. Query plans attempt to minimize the cumulative volume

reduction factor of query operators, where the volume reduction factor V RF for an

100

operator Ω over an input relation R is defined as:

V RF(Ω) =
V DT
V DA (0 <= V RF(Ω) < ∞) (8.1)

where VDT is the total data volume that would be transmitted after applying Ω to R

and V DA is the total data volume originally present in R. If V RF is less than 1 the

operator is data-reducing and if it is greater than 1, it is data-inflating. The cumulative

volume reduction factor of a query plan is defined as:

CVRF =
∑n

r=1 ∑m
o=1 VDT (Rr,Ωo)

∑n
r=1 VDA(Rr)

(8.2)

MOCHA is able to optimize a query plan and the communication necessary to

execute it by shipping advanced data types or custom query operators to remote data

sources as required. Using computational resources at or near the data source to exe-

cute data-reducing operations makes it possible to avoid transferring data unnecessar-

ily. It also makes it possible to implement application-specific functionality that would

be impractical given the size of the data that would have to be transferred if performed

at a central location. This local operator execution technique is especially useful in

image and other multimedia processing applications that often require the entire data

set, which can range from megabytes to gigabytes in size.

8.7 Service Orchestration

During the course of our research, Web service standards—such as BPML [40] and

WSCI [8]—have emerged to orchestrate services into distributed applications. A Web

service can simultaneously participate in multiple orchestrations comprising different

applications. These orchestrations are a form of configuration because they define

service call sequences and the flow of data through those sequences. Redefining an or-

chestration is a form of reconfiguration. Web service application servers are starting to

101

incorporate the ability to dynamically define and redefine service orchestrations. Web

service orchestration is not as flexible a means to implement dynamic reconfiguration

as virtual services because all participating services must understand appropriate Web

service standards. At the minimum, Web service adapters must be written to wrap ex-

isting services with an XML-messaging interface. Virtual services do not impose such

a requirement.

8.8 Static and Dynamic Reconfiguration

The goal of configurable distributed systems [48, 50, 27, 77, 20, 52] is to allow changes

to be made to an application without requiring invasive manual source code changes—

although automated source code transformations may be made by a configuration com-

piler. The motivations for configuring an application are varied. Modifications may

change an application’s functionality, extend its functionality, or optimize its perfor-

mance. Dynamic software patching, security policy configuration, and resource us-

age optimization are just a few examples. The end result of configurability is that

software becomes less costly to maintain and evolve. Configurable systems fall into

two main categories: statically configurable and dynamically configurable. Statically

configurable systems must be configured before execution. Dynamically configurable

systems may be configured at run time.

The virtual services middleware applies some of the concepts found in statically

configurable systems such as CORD (Configuration-level Optimization for RPC-based

Distributed programs) [48]. CORD allows a programmer to specify interconnections

between modules using the Polylith module interconnection language (MIL) [69].

CORD translates an MIL description and transforms RPC calls in source code to gen-

erate an RPC-based distributed application optimized for the configuration defined by

102

the MIL. Virtual services differ from CORD in two ways. First, only the virtual ser-

vices middleware and services implemented with the virtual services middleware can

be subjected to module reconfigurations. Second, virtual services do not perform static

source code transformations. Instead, they allow dynamic changes to be made to mod-

ule bindings.

Virtual services bear some similarity to the Kea operating system kernel [91]. Kea

allows configuration changes based on service composition, permits the migration of

services, and optimizes co-located service invocation. However, these services are

operating system components that operate in virtual address spaces called domains.

Service placement is associated with domains instead of physically distributed exe-

cution contexts. Virtual services orchestration may bear an architectural similarity to

Kea, but they solve a very different problem, mediating physically distributed services

executing in disjoint address spaces and communicating via messages transmitted over

a network.

8.9 Miscellaneous Customization Systems

Distributed objects [79, 56, 22], Grid computing [30, 31], peer-to-peer (P2P) sys-

tems [19, 85], and most recently so-called Web services [86, 67], have been applied

to different cross-sections of wide-area distributed computing. Distributed objects and

their predecessor, the remote procedure call, are applied largely to developing cus-

tom applications and coarse-grained services for enterprise networks. Grid computing

focuses on computational resource sharing in multi-institutional virtual organizations

for science and engineering applications. P2P systems have found greatest success in

narrow consumer application segments, such as file-sharing, but are starting to be used

on corporate networks. Web services, primarily motivated by business-to-business

103

(B2B) applications, attempt to create a consistent framework for Internet application

construction built on top of a foundation of XML and HTTP. The growth in the use

of services as application components has made it essential to be able to reconfgure

services to meet application-specific requirements.

As application requirements have become more dynamically variable, a variety

of systems have been devised for dynamically adding functionality to an application.

Dynamically loaded libraries or dynamic shared objects are used by many desktop and

server applications to dynamically plug in and unplug functionality. Operating sys-

tems support the dynamic insertion and removal of functionality through mechanisms

such as Linux kernel modules. Embedded scripting engines, such as those provided

by Perl and TCL, have been used to implement dynamic application behavior changes.

COM+ interceptors [56] and CORBA interceptors [79] approximate some of the cus-

tomization possibilities enabled by aspect-oriented systems. It can even be said that

mobile agents customize services because their autonomous nature allows them to uti-

lize computational and data resources in a task-specific manner. It is unlikely that the

dynamic satisfaction of application-specific requirements can ever be fully general-

ized. We believe that virtual services offer a solution for use cases that have not yet

been addressed by other approaches.

104

Chapter 9

Conclusion

We have described a new virtual services architecture for dynamically adapting and

reconfiguring the behavior of network services. Virtual services are an API framework

and middleware system for building dynamically reconfigurable services. Although

their objective is to enable dynamic reconfiguration, they also can modularize behav-

ior that cuts across services. The flexibility offered by virtual service containers and

modules is offset by the cumbersome nature of using an API to define configurations

instead of language-intrinsic mechanisms. However, reconfiguration clients can make

the system easy to use. For example, system administrators can use pre-written mod-

ules to dynamically reconfigure deployed systems using a graphical reconfiguration

client.

We evaluated this architecture by implementing a virtual services software devel-

opment toolkit and middleware server. Using this prototype implementation of the

virtual services architecture, we implemented a wide variety of applications based on

virtual service modules. These applications demonstrated that virtual services allow

programmers and system administrators to extend, modify, and reconfigure dynami-

cally the behavior of existing services for which source code, object code, and admin-

istrative control are not available. Our experiments demonstrated that virtual services

105

can modularize concerns that cut across network services. We verified we could re-

configure and enhance the following security properties of services, including authen-

tication, access control, secrecy/encryption, connection monitoring, security breach

detection, and adaptive response to security breaches.

Finally, we verified virtual services satisfied the set of requirements necessary to

both specialize the behavior of legacy services and allow that behavior to be reconfig-

ured dynamically:

reconfigurabilty Virtual services implement reconfigurability by first mediating con-

nections to legacy services, enabling behavior customizations to be inserted with

virtual service modules. Secondly, module chains can be rearranged, changing

the sequence of modules executed during a service invocation. It is the ability to

reassemble modules that effects reconfiguration.

dynamism Reconfigurtion with virtual services is dynamic because both the service

being configured and the virtual services middleware continue executing while

reconfigurations are performed. There is no need to tear down or save the state

of a service to reconfigure it.

loose coupling Virtual service reconfiguration is loosely coupled because reconfigu-

rations can be performed for processes executing in disjoint process and memory

address spaces.

transparency We have implemented two virtual service containers that implement

different levels of transparency. Application layer mediation is not fully trans-

parent because the mediated service perceives the virtual services middleware as

being the client. Transport layer mediation is fully transparent, operating at the

106

network packet level, because the service and client have no way of detecting

the presence of the virtual services middleware.

flexibility Our system is flexible because it can be used both to specialize and recon-

figure behavior of both legacy services as well as to build inherently reconfig-

urable services. Configurations can be shared concurrently between multiple

applications, yet they can be reconfigured on a per-connection basis.

persistence Each element of a virtual service configuration can be serialized to sec-

ondary storage or transmitted over a network. Lower level configurations (e.g.,

individual module state) can be combined into higher level configuratons. At

the lowest level, the configuration of an individual module can be saved and re-

stored. At the highest level, a virtual service container and the configurations of

all of the virtual services it contaiins can be saved and restored together.

programmability Reconfiguration can be accessed via a programming API. The re-

configuration tools and validating applications all exercise this API. In general,

users of the system will write virtual service modules to implement behavior

specializations.

usability We have measured the usability of our system in terms of estimated effort

to implement virtual service modules. We found the virtual service modules

we implemented had both low cyclomatic complexity and lines of code. These

results indicate implementing virtual service modules is not difficult.

efficiency We measured the performance of our prototype implementation of virtual

services and found it to be efficient enough for practical use, but not sufficiently

efficient to avoid performance degradation at high client connection rates. We

107

believe the performance gap can be overcome in a non-prototype implementa-

tion.

9.1 Future Work

Virtual services provide a research platform for studying dynamically reconfigurable

applicatons. We summarize some of the research we would like to explore in the future

using virtual services.

Virtual services can modularize concerns that cut across services. Therefore, they

can be used to implement dynamic aspect-oriented distributed systems. We anticipate

building domain-specific adapters that define structured join points so that we may

experiment with using virtual services as a compilation target for a distributed aspect

language.

We would like to explore the integration of virtual service concepts into applica-

tion servers. Integrating virtual services into applications servers will standardize the

implementation of inherently reconfigurable services and facilitate geometric recon-

figuration, which requires services or subsets of services to migrate from one location

to another.

The reconfiguration framework could be made more loosely coupled to support dis-

tributed module chains. Reimplementing module execution with a purely event-based

system should make reconfiguration both more flexible and more powerful. Modules

could subscribe to events, making inter-module communication cleaner.

108

9.2 Contributions

Our work improves on previous reconfiguration and mediation systems by combin-

ing abilities not previously found together. For example, dynamic software updating

systems cannot alter the behavior of legacy services and network mediators are not re-

configurable. The contributions of our work relate to the design, implementation, and

evaluation of our virtual services framework:

1. We have developed the first middleware system that can both reconfigure its own

behavior and that of legacy services. Our virtual services middleware can cus-

tomize and reconfigure arbitrary network services to meet application-specific

requirements without administrative control of the service or access to source

code.

2. We have designed an architecture that modularizes concerns that cut across dis-

tributed services. The design incorporates the single concept of a virtual service

module as the basis for behavior specialization and reconfiguration, whereas

other systems rely on separate mechanisms for each task. Our experiments indi-

cate that virtual service modules do not impose an unusual level of programming

effort to implement.

3. We have shown that inherently reconfigurable services can be built using the

same framework as that used for reconfiguring legacy services.

4. We have shown that services can be reconfigured dynamically without stopping

the service or client applications.

5. We have shown that service configurations can be shared concurrently between

multiple applications.

109

6. We have shown that behavior that cuts across services can be modularized into

configuration elements for reuse.

7. We have implemented numerous real-world applications demonstrating the general-

purpose nature of dynamic reconfiguration with virtual services. Among these

are security applications and a dynamic reconfiguration tool that can be used to

manually inspect and modify configurations.

8. We have implemented two different forms of transparent mediation and demon-

strated that full transparency is achievable when performing application-layer

behavior specializations by manipulating network-layer messages.

110

Appendix A

Self-Servicing Messages and Cooperative Aspects

When presenting research findings, it can be enlightening to present the ideas that

were discarded on the road to discovery. In the process of developing virtual services,

some concepts were discarded that we feel may be useful in a different context. We

present that preliminary work here because it establishes the limitations of applying

aspect-oriented programming as a model for customizing distributed programs where

the internal structure of distributed components is unknown. The establishment of

these limitations is in itself a useful research result.

At the outset of our research, we developed the concepts of a self-servicing mes-

sage (SSM) and a cooperative aspect. We ultimately abandoned the concepts because

they did not meet all of our requirements and because industry was moving rapidly to

incorporate similar concepts into industry standards and tools. We found the SSM and

cooperative aspect model deficient because it required services to export join points

where advice could be applied by clients. Exporting join points requires the service

developer to expose the internal structure of a service, making it impossible to use the

technique to reconfigure legacy services, services for which source code is not avail-

able, and services over which programmers do not have administrative control. Still,

cooperative aspects can be used in situations where one has complete control of a ser-

111

vice. During the course of our research, features akin to cooperative aspects started to

appear in commercial and open source application servers, proving the practicality of

the concept while obviating the relevance of the research. What follows is a summary

of that research.

A.1 Software Evolution and Aspect-Oriented Programming

The challenges presented by distributed services go beyond simply performance and

extend into the realm of software maintenance and evolution. It is becoming com-

mon to create distributed applications that rely on data and computational resources

outside of the control of a single software development team or that of the applica-

tions’ users. From Grids, to peer-to-peer systems, to Web services, the demarcation

lines between application, application component, and service are being blurred. As

distributed applications rely more on network components outside of their control to

provide significant parts of their functionality, they lose the ability to optimize perfor-

mance and customize behavior based on unanticipated application-specific needs. It

is the unanticipated requirements that surface during the lifetime of deployed software

that shape the evolution of software.

A.1.1 Software Maintenance and Evolution

The terms software maintenance and software evolution are often used interchange-

ably, but a distinction can be made where software maintenance refers to the collection

of post-release activities required to keep a system functioning; and software evolution

refers to the specific tasks of implementing and revalidating changes to a system with-

out knowing in advance how user requirements will evolve [9]. Software maintenance

activities have been categorized into three groups: corrective, adaptive, and perfec-

112

tive (also known as enhancements) [89, 39]. Software evolution is concerned primar-

ily with enhancements and can be further subcategorized based on software function

types [7]. It has been estimated that 80% of the total work involved on a software sys-

tem throughout its lifetime is spent on software maintenance activities [70]. More than

50% of that maintenance work is dedicated to enhancements [62, 21]. Clearly, the evo-

lutionary requirements of distributed applications cannot be ignored when considering

the performance benefits of application-specific customizations.

The inherent separation of control between service components and service clients

makes software evolution difficult and suboptimal. Services and their clients evolve in-

dependent of one another when not maintained by the same development group. Even

for intra-organizational systems, it is rare that the same developers will design and im-

plement both service components and their many potential client applications. This is

especially true today, when it is common for any application on a network to export

services to another in a peer-to-peer fashion. The separation of software maintenance

responsibilities and the disparity of evolutionary requirements between different ap-

plications indicate a need for mechanisms that allow arbitrary client applications to

dynamically enhance (or customize) services to meet their requirements. We propose

a general method for accomplishing this goal in Section A.1.3, but first establish the

rationale for the approach in Section A.1.2.

A.1.2 Separation of Concerns

Software evolution, by its very nature, involves the modification and creation of source

code. The organization of programs over time has been driven by the engineering

desire to make their initial assembly and subsequent modification both efficient (at-

tempting to minimize time and resources committed to the work) and correct. These

113

considerations have led to systems of dividing programs into units that facilitate reuse

and extension: functions, procedures, structures, modules, objects, and methods. Each

organizational system provides a different way of decomposing aspects of a program

into separately maintainable units [66]. The criteria for performing these decomposi-

tions are called concerns and the decomposition of software into units that focus on a

particular concept or goal is referred to as a separation of concerns [23, 65].

The separation of concerns is at the heart of developing maintainable and reusable

software, but no fully generalized method of separating concerns has been devised.

Nor is it likely that one can be devised. Different concerns lend themselves to differ-

ent techniques, which has led to a rich variety of programming language constructs.

Each new development in programming language design does not supplant previous

developments and instead adds to them because the previous developments are better

suited to handling certain types of concerns. For example, object-oriented program-

ming (OOP) did not abolish procedures. Still, just as procedures are ill-suited to ex-

press concerns better handled by inheritance, the constructs of OOP are ill-equipped

to express concerns that cut across class hierarchies [46, 10, 1]. These so-called cross-

cutting concerns have motivated the development of a class of techniques now called

Aspect-Oriented Programming (AOP) [46].

The principal tools for separating concerns in OOP are classes, for encapsulating

behavior in the form of member variables and methods, and inheritance, for express-

ing polymorphic behavior. An oft-used technique for separating concerns common to

multiple classes is to refactor them closer to the root of the class hierarchy, or in the

case of classes in different hierarchies, to create an abstract superclass encapsulating

the concerns as a result of the refactoring [63, 64]. Figures A.1 and A.2 demonstrate

an application of refactoring. In Figure A.1, the classes PositivePoint and Negative-

114

package unrefactored;
public class Point {

private int x, y;

public void setX(int x) {
this.x = x;

}

public void setY(int y) {
this.y = y;

}
}

package unrefactored;
public class PositivePoint extends Point {

public void setX(int x) {
if(x < 0)

throw new IllegalArgumentException();
super.setX(x);

}

public void setY(int y) {
if(y < 0)

throw new IllegalArgumentException();
super.setY(y);

}
}

package unrefactored;
public class NegativePoint extends Point {

public void setX(int x) {
if(x > 0)

throw new IllegalArgumentException();
super.setX(x);

}

public void setY(int y) {
if(y > 0)

throw new IllegalArgumentException();
super.setY(y);

}
}

Figure A.1: A crosscutting concern. Both the PositivePoint and NegativePoint setter
methods have preconditions that can be refactored.

Point have value-restricting preconditions that must be met before their values can be

modified. This bounds checking can be generalized and refactored into the Point par-

ent class as shown in Figure A.2. This refactoring is desirable because it concentrates

a concern that was once scattered across multiple classes into a single class, making

future maintenance tasks less prone to error.

The scattering of common code across program units is called tangling [46]. Refac-

toring helps untangle code, but has its limitations. For example, the refactoring in

Figure A.2 now forces every Point instance to perform bounds checking even though

each instance may not require it. To work around this inefficiency, a new class can

be inserted into the hierarchy between Point and Positive/NegativePoint that performs

bounds checking. But then the complexity of the system would be increased. Further-

115

package refactored;
public class Point {

private int x, y;
private int minX, maxX;
private int minY, maxY;

public Point() {
setX(0); setY(0);
setXBounds(Integer.MIN_VALUE, Integer.MAX_VALUE);
setYBounds(Integer.MIN_VALUE, Integer.MAX_VALUE);

}

protected void setXBounds(int minX, int maxX) {
this.minX = minX;
this.maxX = maxX;

}

protected void setYBounds(int minY, int maxY) {
this.minY = minY;
this.maxY = maxY;

}

public void setX(int x) {
if(x < minX || x > maxX)

throw new IllegalArgumentException();
this.x = x;

}

public void setY(int y) {
if(y < minY || y > maxY)

throw new IllegalArgumentException();
this.y = y;

}
}

package refactored;
public class PositivePoint extends Point {

public PositivePoint() {
setXBounds(0, Integer.MAX_VALUE);

}
}

package refactored;
public class NegativePoint extends Point {

public NegativePoint() {
setXBounds(Integer.MIN_VALUE, 0);

}
}

Figure A.2: A refactored concern. The bounds checking from Figure A.1 has been
refactored up the inheritance tree into the Point class.

more, the bounds definition for each class of Point is still scattered. This scattering is

acceptable for some situations, but not when different bounds must be enforced on a

per-instance basis or used only as a temporary feature for use in testing during the de-

velopment cycle. Furthermore, the member variables of Point had to be made private

to avoid their modification without going through a setter method and specific bounds

can be bypassed through the bounds setting methods. These subtleties impose an extra

level of care that must be taken during the maintenance process. Even the most simple

object-oriented code can present maintenance challenges.

Aspect-oriented programming offers a means to isolate the bounds checking con-

cern without tangling code, but to discuss it requires a new terminology including join

points, pointcuts, advice, introductions, and aspects [45, 74]. A join point corresponds

to a point in a program that is being executed along with its execution context. For

example, the execution of a class method is a join point. A pointcut is a set of join

116

points. Advice defines code to execute at points of execution relative to a pointcut.

An introduction is a declaration that introduces new elements, such as methods and

member variables, to an existing type. This is also called reverse inheritance and can

be confusing because it allows class members to be declared outside of the containing

class. Even though it appears to violate object-oriented principles, it is a powerful way

of modularizing parts of a class that relate to a crosscutting concern. Finally, an aspect

is a container for a set of pointcuts, advice, and introductions.

Aspects are simply a new unit of modularization to be used in conjunction with

classes and other object-oriented constructs. In its most general form, AOP requires

a component programming language, one or more aspect languages, and one or more

aspect weavers for combining the components and aspects [53]. In practice, developer-

driven implementations such as AspectJ [45] and Hyper/J [65] extend a component

programming language to incorporate aspect constructs and provide a single aspect

weaver along with a runtime support library.

Figure A.3 contains an aspect definition written in the AspectJ [45] language that

accomplishes the same goal as the refactoring in Figure A.2. The pointcuts on lines 6

and 9 intercept all assignments to Point.x and Point.y member variables respectively.

The pointcut on line 12 composes the two previous pointcuts, intercepting all assign-

ments to Point.x or Point.y. The before advice on line 24 is applied before every x or y

assignment occurring inside a PositivePoint instance and enforces the bounds precon-

dition. The advice on line 30 does the same for NegativePoint. These advice definitions

eliminate the need for PositivePoint and NegativePoint to override setX() and setY()

in Figure A.1 or to modify the code for Point as was done in Figure A.2. For added

protection, the pointcuts on lines 15 and 19 refer to all places where an assignment

is made to x or y outside of setX() or setY(). The advice on line 39 ensures that any

117

1 package unrefactored;
2

import org.aspectj.lang.reflect.*;
4

aspect PointBounds {
6 pointcut setX(int x) :

set(int Point.x) && args(x);
8

pointcut setY(int y) :
10 set(int Point.y) && args(y);

12 pointcut setXorY(int n) :
setX(n) || setY(n);

14
pointcut illegalXAssignment() :

16 !withincode(void Point.setX(int)) &&
set(int Point.x);

18
pointcut illegalYAssignment() :

20 !withincode(void Point.setY(int)) &&
set(int Point.y);

22
// Ensure PostivePoint values are >= 0

24 before(int n) :
this(PositivePoint) && setXorY(n) {

26 if(n < 0)
throw new IllegalArgumentException();

28 }

30 // Ensure NegativePoint values are <= 0
before(int n) : this(NegativeePoint)

32 && setXorY(n) {
if(n > 0)

34 throw new IllegalArgumentException();
}

36
// Ensure value assignments occur

38 // only within setter methods
before() : illegalXAssignment() ||

40 illegalYAssignment() {
SourceLocation location;

42 String message;

44 location =
thisJoinPoint.getSourceLocation();

46 message = "Illegal assignment at" +
location.getFileName() + " " +

48 location.getLine();

50 throw
new IllegalAccessException(message);

52 }
}

Figure A.3: A simple aspect. The PointBounds aspect accomplishes the same goal as
the refactoring from Figure A.2, but does not require modification to the Point class
from Figure A.1 and enforces an additional restriction that Point value assignments
occur only within the Point setter methods.

such assignments are disallowed. Not only are the semantics of aspects more powerful

than those of inheritance and polymorphism for enforcing pre and postconditions, but

they allow a concern to be completely isolated inside of one program unit, rather than

scattered across multiple files. The PointBounds aspect, even though contrived for the

purpose of exposition, compartmentalizes all bounds checking code where it can be

more easily maintained. Removing bounds checking is a simple matter of compil-

ing without the aspect, rather than modifying classes or using conditional compilation

directives.

118

A.1.3 Cooperative Aspects

Although aspects have much to offer software development, they present difficulties

when applied to distributed service-based applications. Static aspect weaving requires

access to the source code for all program components. Access to component source

code is almost always not possible when working with distributed services or even

third-party libraries for non-distributed programs. Even if source is available, it is

necessary to redeploy a service after weaving. Client application developers and users

will not have the authorization or access to redeploy a service. Dynamic weaving

removes the need for source code and allows customizations to be made at runtime.

However, without a knowledge of the internal implementation structure of a service,

the types of pointcuts and advice that can be defined are limited. Finally, both dynamic

and static weaving present the problem that applying application-specific aspects to a

service may interfere with the behavior of the service when servicing other applications

with different requirements.

To resolve the aforementioned problems, we have established the following re-

quirements:

Requirement A.1.1 To customize the components of a distributed application with

aspects requires a system that enables service components to export a restricted view

into their internal structure.

Requirement A.1.2 Aspects must be allowed to be applied on a per-application ba-

sis, so that customizations applied by one application are not automatically visible to

another application.

Requirement A.1.3 In addition, a customizer must be allowed to advertise or share

119

its customizations so that other applications may choose to make use of the customiza-

tions.

Finer grained modification of service behavior than is possible with existing com-

position models can be achieved by meeting Requirement A.1.1. To meet this re-

quirement requires cooperation from a service component, which has led us to use

the term cooperative aspects for our approach. Requirement A.1.1 is important be-

cause it enables performance optimizations that would otherwise not be possible. For

example, a service that queries a database must forward the entire query result to an

application, possibly consuming a lot of bandwidth in the process. Middleware sys-

tems like MOCHA [72] provide their own custom dedicated infrastructure for execut-

ing database queries and pre/post-processing operations near the data source without

leveraging existing services, effectively requiring applications to deploy their own ser-

vices. If an existing service, such as an image retrieval service, supported Require-

ments A.1.1–A.1.3, a separate MOCHA-like infrastructure would not be necessary.

An application could, for example, install after advice to filter a retrieved image (e.g.,

scaling it to another resolution) before transmission over a network. Purely composi-

tional systems require the entire output to be copied to the next processing element of

the composition, which may be located not only in a different process space, but also

at a different network location.

Aspect languages require the application developer to have full knowledge of the

structure of a component in order to identify join points, define pointcuts, and apply

advice. Consider the example in Figure A.4. In this example, an aspect is defined to

log some information before and after every time Value.setValue() is invoked. In order

to do this, the existence of the setValue() method and its signature must be known a

priori. However, the Value class itself does not have any knowledge of the TraceValue

120

aspect. These characteristics work extremely well for non-distributed programs. Even

when working with third-party libraries that lack source code, if a dynamic weaver is

available and the library APIs are fully documented, it is possible to introduce advice

into a library component. The same is not true for distributed programs. A service

may be implemented in a language or for an architecture not compatible with a given

dynamic weaver. Even if it were compatible, its exported service interfaces do not map

directly to specific object methods.

package aop;

public class Value {
Object value;

public Value() {
setValue(null);

}

public void setValue(Object val) {
value = val;

}

public Object getValue() {
return value;

}

public static final void main(String[] args) {
Value v = new Value();
v.setValue("The Prisoner");
v.setValue("Number 6");

}
}

package aop;

aspect TraceValue {

pointcut traceSetValue(Value v, Object newValue) :
call(void Value.setValue(Object)) &&
target(v) && args(newValue);

Object around(Value v, Object newValue) :
traceSetValue(v, newValue)

{
Object result;

System.out.println("Current value: " + v.value);
System.out.println("New value: " + newValue);
result = proceed(v, newValue);
System.out.println("Assigned value: " + v.value);

return result;
}

}

Figure A.4: Logging with aspects. Aspect languages do not require components to
be aware of join points and advice.

A primitive AOP approach can be used to circumvent these issues. Dynamic

adapters, better known as dynamic proxies [76], can implement basic aspect-oriented

functions and are also related to reflective programming systems [94, 96]. An adapter

is a class that takes an object instance from class A and exposes interactions with it as

though it conformed to an interface defined by class B [32]. A proxy is similar to an

adapter, but instead of adapting two objects with different interfaces, it stands in for

121

an object, presenting the same interface, but performing additional operations before

or after forwarding method calls to the real object [32]. An adapter can also perform

additional operations in the process of forwarding method calls, making a proxy a spe-

cial case of an adapter. We will use the general term adapter from now on with the

understanding that it encompasses proxies.

The only difference between a static adapter and a dynamic adapter is that a dy-

namic adapter can be created at run time, adapting even classes that may not have been

known at compile time. Dynamic adapters are useful for inserting tracing, profiling,

and general debugging code into a program without modifying any of the affected

classes. This can be handled more elegantly with aspects, but is still a useful method

of isolating some crosscutting concerns. Dynamic adapters are also used to present

a local interface for a remote object (sometimes called remoting), as was commonly

done in Objective C programming in the NeXTSTEP operating system [58] and more

recently with .NET [67]. We use dynamic adapters to implement cooperative aspects.

Cooperative aspects turn remote procedure calls on their head. Instead of advertis-

ing a calling interface that is invoked by an application, a service advertises a set of

internal join points where an application may insert advice. Associated with each join

point is local context (e.g., a database cursor) that advice may access. In our imple-

mentation, join point advertisements take the form of a name and an object interface;

context takes the form of method parameters. Advice takes the form of a class or set of

classes provided by an application. A mapping then has to be provided from the join

point interface to the advice class methods. This mapping is used to create dynamic

adapters that the service component invokes at its exported join points.

Figure A.5 shows an example that does the same work as Figure A.4, but with co-

operative aspects. The example is of a non-distributed program, just to demonstrate the

122

public class Value {
Object value;

static {
Class[] beforeInterfaces =

new Class[] { Log.class };
Class[] afterInterfaces =

new Class[] { Log.class };
AspectManager.registerJoinPoint(

"Value.setValue.before", beforeInterfaces);
AspectManager.registerJoinPoint(

"Value.setValue.after", afterInterfaces);
}

public static interface Log {
public void log(Object curVal, Object newVal);

}

public Value() {
setValue(null);

}

public void setValue(Object val) {
Log advice =
(Log)JoinPoint.export("Value.setValue.before");
if(advice != null)

advice.log(value, val);
value = val;
advice =
(Log)JoinPoint.export("Value.setValue.after");
if(advice != null)

advice.log(value, val);
}
...

}

<?xml version="1.0" encoding="US-ASCII"?>
<ssm:InstallAspects
xmlns:ssm="http://schemas.savarese.org/ssm/">
<ssm:Aspect
uri="http://aspects.savarese.org/global/"
advice="trace.jar">
<ssm:Pointcut name="beforeSetValue">

<ssm:JoinPoint name="Value.setValue.before"/>
</ssm:Pointcut>
<ssm:Pointcut name="afterSetValue">

<ssm:JoinPoint name="Value.setValue.after"/>
</ssm:Pointcut>
<ssm:Advice class="cooperative.PrintBefore"

pointcut="beforeSetValue">
<ssm:MapMethod from="print" to="log"/>

</ssm:Advice>
<ssm:Advice class="cooperative.PrintAfter"

pointcut="afterSetValue">
<ssm:MapMethod from="print" to="log"/>

</ssm:Advice>
</ssm:Aspect>

</ssm:InstallAspects>

public class PrintBefore {
public void print(Object curVal, Object newVal) {
System.out.println("Current value: " + curVal);
System.out.println("New value: " + newVal);

}
}

public class PrintAfter {
public void print(Object curVal, Object newVal) {
System.out.println("Assigned value: " + curVal);

}
}

Figure A.5: Logging with cooperative aspects. Cooperative aspects require compo-
nents to explicitly export join points and advice invocation interfaces, but aspects can
be dynamically bound with an external representation.

concept; we discuss our implementation in more detail in Section A.3. The Value class

corresponds to a service component, the PrintBefore and PrintAfter classes are client

advice, and the XML listing is an aspect binding that defines pointcuts and advice

method mappings. Unlike a pure AOP implementation, we require a class framework

to support cooperative aspects. The service component join points must be named and

bound to object interfaces. Here, the Value class does this in a static initializer, but

in practice it would be done externally in a configuration file generated by a deploy-

123

ment tool. In addition, the service component must anticipate useful join points and

explicitly export them, obtaining an advice reference. The advice reference is used to

execute all advice registered by an application in a similar vein to the way OIF injec-

tors [28] are processed, except a continuation style is not used and the failure of one

unit of advice does not necessarily prevent another from executing. The need to antic-

ipate useful join points is both a weakness and a strength. It is a weakness because it is

impossible to completely anticipate every desirable join point, but this is no different

from developing generic programming libraries using templates or polymorphism. It

is also a weakness because an additional cooperative aspect framework is necessary

to implement advice execution and may complicate code. However, it is possible to

cleanly insert this support code using a static weaving aspect compiler such as As-

pectJ. It is a strength because the component has complete control over how much of

its structure it is willing to expose to a client.

Although intended primarily as a means of implementing application-specific cus-

tomizations, cooperative aspects are a more general model than service composition.

Service composition can be implemented with before and after advice. It can also

be implemented without requiring the service to use cooperative aspects by placing a

mediating or proxy component between the client and the service. The mediator inter-

cepts messages to and from the service, applying before advice prior to forwarding a

request to a service and applies after advice subsequent to receiving the result.

Cooperative aspects are an abstract concept not tied to any particular program-

ming language or implementation. Their defining characteristic is that a component

(a service component for our purposes) exports a set of join points that an application

may combine into pointcuts and to which it may apply advice. Our prototype im-

plementation happens to use Java-based dynamic adapters and an XML-based aspect

124

binding system, but an aspect language with a dynamic aspect weaver could also be

adapted to implement cooperative aspects. However, no implementations of dynamic

weavers suitable for our research purposes existed at the time and the creation of dy-

namic weavers and aspect languages was not the thrust of our research. When such

tools become available, it will be possible to modify our prototype to use the richer

semantics of an aspect language and more powerful dynamic customization features

of a dynamic aspect weaver. It should also be noted that advice need not execute in-

side of a service’s process address space. For efficiency, we implement advice as Java

byte-code, but advice can easily be a component in a separate address space or network

location accessed through message passing.

A.2 Self-servicing Messages

Cooperative aspects provide a programming model for applying customizations, but do

not define a mechanism for delivering customizations. We now present a mechanism

for transporting customizations that is orthogonal to the programming model.

An observation can be made, based on experiences with systems like MOCHA, Ac-

tive Networks, and Active Names, that optimal distribution of computation and move-

ment of data is very application-specific and can vary even throughout the lifetime of

an application. When you have complete control over the components of an applica-

tion, such as in parallel scientific codes running on Beowulf-class computers [80, 81],

you can optimize a program through direct code modification and recompilation. A

program of this type is customarily under the control of at most a handful of pro-

grammers who have the liberty of tuning data movement on all receiving and sending

ends of communication and also the luxury of optimizing for the characteristics of the

execution platform.

125

Applications such as those built on top of Web services or peer-to-peer networks

depend on program components that cannot be modified directly by the application

developer and therefore require a means to affect component behavior at run time in

order to meet custom requirements. For maximum flexibility, we believe that it should

be possible to affect behavior on as fine-grained a level as a per-message basis. This

requirement implies that communication between an application and its distributed

components must contain additional control information beyond a data payload and the

implicit service invocation metadata. In its most general form, this can be implemented

with self-servicing messages (SSM), as shown in Figure A.6.

Self-servicing Message

Message Body

Servicing Instructions

Figure A.6: Self-servicing message structure. A self-servicing message consists of
a message envelope containing a message body and optional servicing instructions,
mapping well to standard message formats such as SOAP with attachments.

A self-servicing message consists of a message envelope that contains a message

body and optional servicing instructions. The message envelope is merely a thin wrap-

per containing some metadata about its parts allowing the parts to be extracted cor-

rectly. The message body consists of the message that would normally be sent to a

service in the absence of self-servicing message support. In the simplest case, the

126

servicing instructions are empty, but they may contain follow-on message routing in-

formation interpreted by the message handler or arbitrary dynamic code. The servicing

instructions provide the means to customize the service’s behavior.

Self-servicing message support can be layered on top of any service by placing

a mediating component in front of the service. The mediator disassembles a mes-

sage, forwards the message body to the service, and obtains the result. It can execute

servicing instructions at multiple points before forwarding the message body, while

waiting for the result or after receiving it, depending on how the servicing instruc-

tions are designated. This approach allows existing Web services to be adapted to

use self-servicing messages without modifying the existing Web service infrastruc-

ture. For example, we have implemented our prototype for Java-based Web services

using servlets [84]. An SSM processing servlet can be made to intercept requests and

responses to other servlets or web applications. However, production implementations

may want to closely integrate with the application server and Web service container.

Even though servicing instructions can contain arbitrary executable code, the het-

erogeneous nature of service networks makes it impractical to support every possible

execution platform. Therefore, we have limited servicing instructions in our prototype

to XML and Java. XML is used for interpreted data, such as message routing infor-

mation, and Java is used for executable instructions. It is equally possible for an im-

plementation to support the Microsoft Common Language Runtime (CLR), arbitrary

scripting languages, and platform-specific code. Still, it is desirable to limit executable

content to a representation that can be verified with security managers, such as those

provided by Java’s security model, to limit the scope of activities available to untrusted

code. Even when only one code format is supported, service composition can be used

to bridge between incompatible systems. For example, a Java-based mediator could

127

interpose itself in front of a .NET service. This would introduce additional overhead

that would not be present if the mediator ran in the same application server as the Web

service, but it would provide compatibility.

Servicing instructions can be registered with a mediator or service for future use

by later messages which only contain a reference to the registered code. It would be

wasteful to send the same servicing instructions with multiple messages if the func-

tionality could be reused. The lifespan of servicing instructions can therefore exceed

that of an accompanying message body. Registering instructions involves assigning a

URI to the instructions by which they can be referenced as well as permissions defin-

ing who can make use of the instructions. For example, an application may customize

a Web service and publish that customization to the world as a new Web service. Al-

ternatively, an application may customize a Web service solely for its own use, using

a self-servicing message as a means of implementing distributed inheritance or even

distributed aspects. Impromptu overlay networks between services can even be created

by applications that have specific message routing requirements.

Just as servicing instructions may be registered, they can be unregistered when no

longer needed. Given that multiple applications may share the use of servicing instruc-

tions, a service must maintain a reference count that tracks how many applications are

using the instructions, only unregistering the instructions when the last application

requests it. Furthermore, a service may decide to proactively unregister servicing in-

structions under conditions of its own choosing, such as if they have not been used for

a period of time.

We can summarize the following requirements for self-servicing messages:

Requirement A.2.1 Self-servicing messages are language and transport independent.

Multiple language and transport bindings may be supported.

128

Requirement A.2.2 An SSM can affect service behavior on a per-message basis, but

may make references to the contents of other SSMs and have an indefinite lifespan.

Requirement A.2.3 An SSM may itself serve as a container for additional SSMs.

We describe a binding of SSM to SOAP and cooperative aspects used by our pro-

totype system in Section A.3.

A.3 SOAP Binding of SSM and Cooperative Aspects

Most Web services are, and will likely continue to be as more are deployed, a front end

to a database. The close relationship between Web services and databases is strong

enough that Microsoft has added Web service support to SQL Server, whereby the

database itself can act as an application server and automatically export stored proce-

dures as SOAP-accessible Web services. Direct access to a relational database gives

an application all the rich semantics and powerful flexibility of SQL. But not all data is

stored in an RDBMS and granting direct access to a database not only presents security

and system administration concerns, but also requires applications to understand the

database schema. Presenting a task-specific Web service interface facilitates both ap-

plication development and system maintenance. An examination of a list of publicly

accessible Web services at http://www.xmethods.com/ reveals that most of these ser-

vices provide simple data retrieval services. Examples include a stock quote service,

package tracker, weather reporter, whois service, ATM locator, and so on. The second

most common class of service appears to be computational services such as currency

converters, unit converters, address correctors, language translators, and mathemati-

cal calculators. It is not unreasonable to postulate that a common use cases will be

to retrieve data from a data retrieval service and feed it into a computational service.

129

Self-servicing messages and cooperative aspects can make such operations more effi-

cient. We now describe our prototype implementation followed by some preliminary

theoretical and experimental performance results.
<?xml version="1.0" encoding="US-ASCII"?>

<!ELEMENT InstallAspects (Aspect+)>

<!ELEMENT Aspect (Pointcut+ Advice+)>
<!ATTLIST Aspect

uri CDATA #REQUIRED
advice CDATA #REQUIRED>

<!ELEMENT Pointcut (JoinPoint+)>
<!ATTLIST Pointcut

name CDATA #REQUIRED>

<!ELEMENT JoinPoint EMPTY>
<!ATTLIST JoinPoint

name CDATA #REQUIRED>

<!ELEMENT Advice (MapMethod+)>
<!ATTLIST Advice

class CDATA #REQUIRED
pointcut CDATA #REQUIRED>

<!ELEMENT MapMethod EMPTY>
<!ATTLIST MapMethod

from CDATA #REQUIRED
to CDATA #REQUIRED>

<!ELEMENT UseAspects (AspectURI+)>
<!ELEMENT AspectURI (#PCDATA)>

<!ELEMENT UninstallAspects (AspectURI+)>

Figure A.7: Cooperative Aspect DTD.

We have implemented a prototype of SSM and cooperative aspects using Java,

XML, SOAP, and servlets. Our self-servicing message container is a SOAP message

package as defined by the “SOAP Messages with attachments” specification [34]. All

SSM support is overlayed in the SOAP header and SOAP attachments, so message

bodies for existing services can be preserved and SSM-enabled services can accept

both SSM messages and non-SSM messages. Servicing instructions are represented

as cooperative aspect advice and are stored as attachments. Cooperative aspects are

130

defined by the DTD in Figure A.7. Any number of aspects may be installed in any

number of services. The service where an aspect should be installed is indicated by

the SOAP actor attribute, which is added to the <InstallAspects> element. The SOAP

actor attribute, soap-env:actor is defined by the SOAP specification to indicate for

which SOAP node a SOAP header is intended.

Each aspect is assigned a unique URI by which it can be later referenced. This URI

is also associated with the advice container in the attachment so that the code for an

aspect may be identified and extracted from a message and used to process the message

and later messages requesting that aspect. The <UseAspects> element indicates which

aspects should be used for processing a message. Once an aspect is installed, it can be

used by other messages. Therefore not every message must supply its own advice and

not every message must be processed by advice it installs. Applications may want to

pre-install aspects at multiple services rather than include all of the aspects in their first

service requests. Aspects may also be explicitly uninstalled with <UninstallAspects>

or a service may choose to uninstall an aspect on its own based on an implementation-

specific aspect-caching policy.

Pointcuts for applying advice are defined as a set of join points. Join points may

only be composed with an OR operator. It is not yet clear if more complex composition

can be implemented or should be. Services export join points, which themselves may

act like pointcuts in that a join point name may be associated with multiple internal join

points. This makes an and operator unusable and without meaning unless we create

a dynamic weaving system. Negation can be supported in principle because it simply

indicates that the set of all join points except those listed should be chosen.

Join point names and advice interfaces are exported by the service. Ideally this

would be done in WSDL, but in the prototype the programmer must know these in

131

advance. Advice is implemented as a Java class, but in principle any language binding

could be supported. All of the code required by the Java class must be included in

an attached advice jar file to be installed. It is possible for a service to grant clients

access to classes loaded by different class loaders, but the default access is restricted to

the Java core APIs and the advice-provided classes. An advice class must implement

methods compatible with the interfaces required by all of the join points at which it

will be applied. A mapping between advice methods and join point interfaces must

be provided. These mappings are then dynamically applied using dynamic adapters

as described in Section A.1.3. The mappings require compatible methods, but a more

complex scheme allowing arbitrary mappings can be implemented.

Figures A.8 and A.9 list a sample SOAP-based self-servicing message, excluding

advice attachments. We have chosen to implement custom message routing as advice

rather than a built-in feature of SSM in order to keep the system as general as possible.

Routing advice could be made part of a standard client-accessible server-side library

to avoid having to install it for each application. The routing is implemented as a final

set of post-filtering after advice that modifies the message to contain only those parts

required for future message hops and forwards the message to the next service. The

<ssm:Route> block contains the routing instructions processed by the routing advice.

The routing advice keeps track of nodes visited and yet to be visited inside of the

message. Additional statistics could be inserted for profiling purposes. We chose not

to use the Web Services Routing Protocol (WS-Routing) [60] in our prototype because

of its complexity, lack of adoption, and different goals and capabilities.

132

A.4 Observations

Self-servicing messages have the potential to offer functionality not currently avail-

able to wide-area applications, whether based on Web services, peer-to-peer protocols,

or Grid protocols. The concept of using dynamically loaded network transportable

code to redistribute computation is not new. The motivation for doing so has varied

from performance requirements to software maintenance concerns. Load balancing

and process migration, active networks, agent-based systems, applets, Web browser

plugins and scripting languages, are just a few instances of mobile code systems. Net-

work viruses and worms are now probably the best known examples of coordinated

computation (in the case of distributed denial of service attacks) using mobile code.

The immediate reaction to the use of mobile code in distributed systems is often that

the security concerns are too great for it ever to be used. Nonetheless, mobile code is

in common use every day on client systems. JavaScript, Flash, automatically down-

loadable codecs, ActiveX controls, and automatic software updates are all examples in

common use. The notion that code cannot be dynamically installed in servers needs

to be dispelled, especially when active networks already inject code into routers. The

use case that motivates the rejection of network loaded server-side code is one where

an arbitrary application installs code in a publicly accessible service. This represents

one extreme of applications. It also ignores that a service may be a peer and that peer-

to-peer networks are commonly used to exchange many types of content. The barriers

to accepting mobile code are mostly psychological, although technical challenges to

guaranteeing security do exist.

The desire to optimize network communication is as old as networks themselves.

Even early Internet application protocols, such as FTP [68], include communication

reducing support. FTP allows a client to initiate a site to site transfer that will transfer a

133

file directly from one server to another without requiring the client to first download the

file and re-upload it. This eliminates one potentially costly network communication,

akin to the effect of SSM-supported custom message routing. Even though network

bandwidth continues to grow, consumption of bandwidth is also growing. Therefore,

we feel there will always be a need to find ways of optimizing network communication.

Self-servicing messages provide a mechanism for applications to dynamically create

custom overlay networks.

The future Internet may well be a network where more programs are acting on

the behalf of humans than there are humans directly manipulating programs. If that

is the case, information retrieval, aggregation, and analysis will likely be the impetus.

However, using the Internet as a substrate for automated distributed information pro-

cessing is not likely to be successful if applications are limited to using rigid service

interfaces. The information processing needs of any given application will have unique

functionality and performance optimization requirements. It is impossible for services

to anticipate every possible application-specific requirement. Therefore, customiza-

tion support mechanisms will be required, be they cooperative aspects or some other

system.

It is difficult to anticipate how technology, and its incarnation in software, will

be used. For example, vendors first felt that Web services would be a means of cen-

tralizing application component maintenance and easing software updates. Microsoft

intended to centrally control all the data used by its My Services (formerly Hailstorm)

and charge users a subscription fee. This model of Web services was rejected by users

and now Microsoft is selling My Services servers to companies so that the companies

may themselves manage the data and services on their internal networks. Web services

are seeing greater deployment in the corporate enterprise and the B2B extranet, rather

134

than the public Internet. Rather than have SSM and cooperative aspects running on

a wide area network with all the associated security concerns, it may be far more ap-

propriate for them to serve as a method of separating concerns for LAN applications.

For example, one spell checking or dictionary service could reside on a LAN and be

accessed by multiple desktop client applications in different application-specific ways.

This would be an alternative to having a separate copy of spell checkers and dictionar-

ies on every desktop. Desktop applications do not take advantage of the potential for

distributing computation because they must be marketed to both home and business

users.

We cannot predict with any amount of certainty how software development will

change in the future. We would guess that software will become more centered around

networks and distributed computation will become more important. Software mainte-

nance concerns will continue to mandate componentization of functionality. In order

to maximize reuse of distributed components and optimize use of the network, we be-

lieve that unanticipated application-specific needs will have to be supported in some

manner. Self-servicing messages and cooperative aspects are a means for meeting this

goal.

135

<soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:ssm="http://schemas.savarese.org/ssm/"
xmlns:doc="http://schemas.savarse.org/doc/"
xmlns:trans="http://schemas.savarse.org/trans/">
<soap-env:Header>
<ssm:InstallAspects

soap-env:actor="http://www.w3.org/2001/12/soap-envelope/actor/next">
<ssm:Aspect uri="http://aspects.savarese.org/abstract/"
advice="abstract.jar">
<ssm:Pointcut name="Postfilter">

<ssm:JoinPoint name="Postfilter"/>
</ssm:Pointcut>
<ssm:Advice class="org.savarese.experimental.AbstractExtractor"

pointcut="Postfilter">
<ssm:MapMethod from="extract" to="filter"/>

</ssm:Advice>
<ssm:Advice class="org.savarese.ssm.servlet.RoutingAdvice"

pointcut="Postfilter">
<ssm:MapMethod from="route" to="filter"/>

</ssm:Advice>
</ssm:Aspect>

</ssm:InstallAspects>
<ssm:InstallAspects

soap-env:actor="http://gandalf.savarese.org/translator/">
<ssm:Aspect uri="http://aspects.savarese.org/translator/"

advice="routing.jar">
<ssm:Pointcut name="Postfilter">

<ssm:JoinPoint name="Postfilter"/>
</ssm:Pointcut>
<ssm:Advice class="org.savarese.ssm.servlet.RoutingAdvice"

pointcut="Postfilter">
<ssm:MapMethod from="route" to="filter"/>

</ssm:Advice>

Figure A.8: Instance of SSM and cooperative aspects SOAP binding. A SOAP-
based SSM includes aspect definitions overlayed with the service request and advice
included as a SOAP attachment (not shown). Custom routing is implemented as ad-
vice.

136

</ssm:Aspect>
</ssm:InstallAspects>
<ssm:UseAspects
soap-env:actor="http://www.w3.org/2001/12/soap-envelope/actor/next">
<ssm:AspectURI>http://aspects.savarese.org/abstract/
</ssm:AspectURI>

</ssm:UseAspects>
<ssm:UseAspects
soap-env:actor="http://gandalf.savarese.org/translator/">
<ssm:AspectURI>http://aspects.savarese.org/routing/
</ssm:AspectURI>

</ssm:UseAspects>
<ssm:Route
soap-env:actor="http://www.w3.org/2001/12/soap-envelope/actor/next">
<ssm:Visited/>
<ssm:Remaining>

<ssm:Node uri="http://gandalf.savarese.org/ssmtest/getdocument"
url="http://gandalf.savarese.org:8081/jaxm-provider/receiver/soaprp"/>

<ssm:Node uri="http://gandalf.savarese.org/ssmtest/translate"
url="http://yoda.savarese.org:8081/jaxm-provider/receiver/soaprp"/>
</ssm:Remaining>

</ssm:Route>
<ssm:Body

soap-env:actor="http://gandalf.savarese.org/translator/">
<trans:Translate source="english" target="spanish"

uri="http://ssm.savarese.org/abstract/"/>
</ssm:Body>

</soap-env:Header>
<soap-env:Body>

<GetDocument>
<filename>1.pdf</filename>

</GetDocument>
</soap-env:Body>

</soap-env:Envelope>

Figure A.9: Instance of SSM and cooperative aspects SOAP binding (continued).

137

Glossary

AOP aspect-oriented programming.

aspect-oriented programming a set of programming techniques that modularize into
a single location concerns that cut across multiple classes.

CCN cyclomatic complexity number. An approximate measure of code complexity.

DTD document type definition.

GUI graphical user interface.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IDS intrusion detection system.

IMAP Internet Message Access Protocol.

IP Internet Protocol.

J2SE Java 2 Standard Edition.

JMX Java Management Extensions. A Java API for creating objects that expose mon-
itoring and management operations to the network.

JNI Java Native Interface. A Java API for interfacing with platform-specific code
written in C or C++.

module processing chain a collection of virtual service modules tied together in a
specific execution order.

NCSS Non-commenting Source Statements. An approximate measure of code com-
plexity.

SSL Secure Sockets Layer.

138

TCP Transmission Control Protocol.

virtual service a service that transparently mediates between any number of clients
and any number of services, enabling dynamic behavioral customizations to be
made to either clients or services.

virtual service agent a management agent that handles the registration and deregis-
tration of managed objects as well as the saving and loading of configurations.

virtual service container a container for bindings of virtual services to ports. A vir-
tual service container listens for incoming connections and establishes the virtual
service context for a connection.

virtual service context an object representing the execution environment of a virtual
service and containing a shared tuple space for module communication.

virtual service module the basic unit for assembling virtual service configurations.
A virtual service module implements a discrete unit ofunctionality, analogous to
overriding a virtual method. Behavioral reconfiguration is achieved by assem-
bling modules into processing chains. A module in a chain need not operate on
the outputs of the immediately preceding module.

XML Extensible Markup Language.

zombie a computer that has been co-opted along with many others by a worm or virus
to engage in attacks on other computer systems.

139

BIBLIOGRAPHY

[1] M. Aksit and L. Bergmans. Software Architectures and Component Technology: The
State of the Art in Research and Practice, chapter Guidelines for Identifying Obstacles
when Composing Distributed Systems from Components. Kluwer Academic Publishers,
2001.

[2] M. Aksit, L. Bergmans, and B. Tekinerdogan. Software Architectures and Component
Technology: The State of the Art in Research and Practice, chapter Constructing Reusable
Components with Multiple Concerns Using Filters. Kluwer Academic Publishers, 2001.

[3] E. Amir, S. McCanne, and R. Katz. An active service framework and its application to
real-time multimedia transcoding. In Proceedings of the ACM SIGCOMM ’98 Conference
on Applications, technologies, architectures, and protocols for computer communication,
pages 178–179, Sept. 1998.

[4] Apple Computer, Inc. OpenDoc Programmer’s Guide for the Mac OS. Addison-Wesley,
Dec. 1995.

[5] J. Bacon and K. Moody. Towards open, secure, widely distributed services. Communica-
tions of the ACM, 45(6):59–64, June 2002.

[6] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm. World wide web caching
– the application level view of the internet. IEEE Communications Magazine, 35(6), June
1997.

[7] E. Barry, S. Slaughter, and C. F. Kemerer. An empirical analysis of software evolution
profiles and outcomes. In Proceedings of the 20th International Conference on Informa-
tion Systems, Charlotte, North Carolina, pages 453–458, 1999.

[8] BEA Systems, Intalio, SAP, and Sun Microsystems, Inc. Web Ser-
vices Choreography Interface 1.0 Specification. Technical report, 2002.
http://wwws.sun.com/software/xml/developers/wsci/wsci-spec-10.pdf.

[9] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: A roadmap. In
Proceedings of the Conference on the Future of Software Engineering, Limerick, Ireland,
pages 73–87, May 2000.

140

[10] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51–57, Oct. 2001.

[11] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Reasoning about active network
protocols. In Proceedings of the Sixth International Conference on Network Protocols,
Oct. 1998.

[12] D. Brubacher and G. Hunt. Detours: Binary interception of win32 functions. Technical
Report MSR-TR-98-33, Microsoft Corporation, Feb. 1999.

[13] B. R. Buck and J. K. Hollingsworth. An api for runtime code patching. ACM Transactions
on Programming Languages and Systems, 14(4):317–329, 2000.

[14] G. Candea. Predictable software—a shortcut to dependable computing. Technical re-
port, Stanford University, 2004. Submitted to 11th ACM SIGOPS European Workshop,
http://arxiv.org/abs/cs.OS/0403013.

[15] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents on the web. In
Proceedings of Middleware, 1998.

[16] S. Chandrasekaran, S. Madden, and M. Ionescu. Ninja paths: An architecture for com-
posing services over wide area networks. Computer Science Division, University of
California,Berkeley, http://ninja.cs.berkeley.edu/dist/papers/path.ps.gz.

[17] A. Charfi and M. Mezini. Aspect-oriented web service composition with AO4BPEL. In
L. J. Zhang, editor, Proceedings of the European Conference on Web Services ECOWS
2004, volume 3250 of LNCS, pages 168–182. Springer Verlag, 2004.

[18] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarna. Web Services Descrip-
tion Language (WSDL) 1.1. Technical Report NOTE-wsdl-20010315, W3C, Mar. 2001.
http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[19] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous in-
formation storage and retrieval system. In ICSI Workshop on Design Issues in Anonymity
and Unobservability, 1999.

[20] M. Clarke and G. Coulson. An architecture for dynamically extensible operating systems.
In Proceedings of the Fourth International Conference on Configurable Distributed Sys-
tems, pages 145–155, May 1998.

[21] S. Dekleva and N. Zvegintzov. Real maintenance statistics. Software Maintenance News,
9(2):6–9, 1991.

[22] L. G. DeMichiel, L. Ümit Yalçinalp, and S. Krishnan. Enterprise JavaBeans specification
version 2.0. Technical report, Sun Microsystems, Inc., 2000.

141

[23] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[24] M. Dmitriev. Safe Class and Data Evolution in Large and Long-Lived Java Applications.
PhD thesis, University of Glasgow, 2001.

[25] M. Dmitriev. Towards flexible and safe technology for runtime evolution of java lan-
guage applications. In Proceedings of the Workshop on Engineering Complex Object-
Oriented Systems for Evolution, in association with OOPSLA 2001 International Confer-
ence, Tampa Bay, Florida, Oct. 2001.

[26] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky. Building adaptive distributed
applications with middleware and aspects. In Proceedings of the 3rd International Con-
ference on Aspect-oriented Software Development, pages 66–73, 2004.

[27] P. Feiler and J. Li. Consistency in dynamic reconfiguration. In Proceedings of the
Fourth International Conference on Configurable Distributed Systems, pages 189–196,
May 1998.

[28] R. E. Filman, S. Barrett, D. D. Lee, and T. Linden. Inserting ilities by controlling com-
munications. Communications of the ACM, 45(1):116–121, Jan. 2002.

[29] R. E. Filman and D. P. Friedman. Aspect-oriented programming is quantification and
obliviousness. In International Workshop on Advanced Separation of Concerns at OOP-
SLA’00, 2000.

[30] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Interna-
tional Journal of Supercomputing Applications, 11(2):115–128, 1997.

[31] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, Nov. 1998.

[32] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[33] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer, D. Culler, N. Borisov, S. Czerwin-
ski, R. Gummadi, J. Hill, R. Katz, Z. Mao, S. Ross, and B. Zhao. The ninja architecture
for robust internet-scale systems and services. Computer Networks, Special Issue on
Pervasive Computing, 35(4):473–497, Mar. 2001.

[34] M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen. SOAP messages with at-
tachments. Technical Report NOTE-SOAP-attachments-20001211, W3C, Dec. 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211.

[35] M. Hicks. Dynamic Software Updating. PhD thesis, University of Pennsylvania, 2001.

[36] R. Hieb and R. K. Dybvig. Continuations and concurrency. In Second ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 128–136, 1990.

142

[37] C. R. Hofmeister. Dynamic Reconfiguration of Distributed Applications. PhD thesis,
University of Maryland College Park, 1993.

[38] C. R. Hofmeister and J. M. Purtilo. Dynamic reconfiguration of distributed systems.
In Proceedings of the 11th International Conference on Distributed Computing Systems,
pages 560–571, 1991.

[39] IEEE. IEEE standard for software maintenance. Technical report, IEEE, 1993.

[40] B. P. M. Initiative. Business Process Modeling Language Specification. Technical report,
Nov. 2002. http://www.bpmi.org/bpml-spec.esp.

[41] B. N. Jorgensen, E. Truyen, F. Matthijs, and W. Joosen. Customization of object request
brokers by application specific policies. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms and Open Distributed Processing (Middle-
ware2000), pages 144–163, Apr. 2000.

[42] E. Kiciman and A. Fox. Using dynamic mediation to integrate cots entities in a ubiq-
uitous computing environment. In Proceedings of the Second International Symposium
on Handheld and Ubiquitous Computing, Lecture Notes in Computer Science. Springer-
Verlag, Sept. 2000.

[43] E. Kiciman and A. Fox. Separation of concerns in networked service composition. In
Proceedings of the Workshop on Advanced Separations of Concerns in Software Engi-
neering at ICSE 2001, May 2001.

[44] E. Kiciman, L. Melloul, and A. Fox. Towards zero-code service composition. In Pro-
ceedings of the Eighth Workshop on Hot Topics in Operating Systems, May 2001.

[45] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. Getting
started with AspectJ. Communications of the ACM, 44(10):59–65, Oct. 2001.

[46] G. Kiczales, J. Lamping, A. Mendhekar, C. V. Lopes, C. Maeda, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of the 11th European Conference
on Object-Oriented Programming (ECOOP’97), Lecture Notes in Computer Science.
Springer-Verlag, June 1997.

[47] T. Kim. Toward Optimizing Distributed Programs Directed by Configurations. PhD
thesis, University of Maryland College Park, 1996.

[48] T.-H. Kim and J. M. Purtilo. Configuration-level optimization of rpc-based distributed
programs. In Proceedings of the 15th International Conference on Distributed Computing
Systems, May 1995.

[49] T.-H. Kim and J. M. Purtilo. Load balancing for parallel loops in workstation clusters. In
Proceedings of the 25th International Conference on Parallel Processing, Aug. 1996.

143

[50] T.-H. Kim and J. M. Purtilo. A source-level transformation framework for rpc-based
distributed programs. In Proceedings of the 5th IEEE International Symposium on High
Performance Distributed Computing, Aug. 1996.

[51] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhaes, and R. H. Campbell.
Monitoring, security, and dynamic configuration with the dynamicTAO reflective ORB.
In Proceedings of the IFIP/ACM International Conference on Distributed Systems Plat-
forms and Open Distributed Processing (Middleware2000), pages 121–143, Apr. 2000.

[52] M. C. Little and S. M. Wheater. Building configurable applications in java. In Proceed-
ings of the Fourth International Conference on Configurable Distributed Systems, pages
172–179, May 1998.

[53] C. V. Lopes and G. Kiczales. D: A language framework for distributed programming.
Technical Report SPL97010, Xerox PARC Research, 1997.

[54] A. M. Mainwaring and D. E. Culler. Active Message applications programming inter-
face and communications subsystem organization. Technical Report CSD-96-918, U.C.
Berkeley, Oct. 1996.

[55] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
2(4):308–320, 1976.

[56] Microsoft Corporation. DCOM technical overview. Technical report, Microsoft Corpo-
ration, 1996.

[57] D. Mosberger and T. Jin. httperf — a tool for measuring web server performance. In
First Workshop on Internet Server Performance, pages 59–67. ACM, June 1998.

[58] NeXT Computer, Inc. NeXTSTEP Development Tools and Techniques: Release 3.
Addison-Wesley, Sept. 1992.

[59] NeXT Computer, Inc. The NEXTSTEP/OpenStep object model. Technical report, NeXT
Computer, Inc., 1995.

[60] H. F. Nielsen and S. Thatte. Web services routing protocol. Technical report, Microsoft
Corporation, Oct. 2001. http://msdn.microsoft.com/library/en-us/dnglobspec/html/ws-
routing.asp.

[61] M. Nishizawa, S. Chiba, and M. Tatsubori. Remote pointcut — a language construct for
distributed aop. In Proceedings of the 3rd International Conference on Aspect-oriented
Software Development, pages 7–15, 2004.

[62] J. Nosek and P. Palvia. Software maintenance management: Changes in the last decade.
Journal of Software Maintenance, 2(3):157–174, 1990.

144

[63] W. F. Opdyke and R. E. Johnson. Refactoring: An aid in designing application frame-
works and evolving object-oriented systems. In Proceedings of 1990 Symposium on
Object-Oriented Programming Emphasizing Practical Applications, pages 145–161,
Sept. 1990.

[64] W. F. Opdyke and R. E. Johnson. Creating abstract superclasses by refactoring. In Pro-
ceedings of the 21st Annual Conference on Computer Science, pages 66–73, Feb. 1993.

[65] H. Ossher and P. Tarr. Using multidimensional separation of concerns to (re)shape evolv-
ing software. Communications of the ACM, 44(10):43–50, Oct. 2001.

[66] D. Parnas. On the criteria to be used in decomposing systems into modules. Communi-
cations of the ACM, 15(12):1053–1058, Dec. 1972.

[67] D. S. Platt and K. Ballinger. Introducing Microsoft .NET. Microsoft Press, May 2001.

[68] J. Postel and J. Reynolds. File Transfer Protocol (FTP). Technical Report RFC 959,
Internet Engineering Task Force, 1985.

[69] J. Purtilo. The polylith software bus. ACM Transactions on Programming Languages
and Systems, 16(1):151–174, Jan. 1994.

[70] D. J. Robson, K. H. Bennett, B. J. Cornelius, and M. Munro. Approaches to program
comprehension. The Journal of Systems and Software, 14(2):79–84, Feb. 1991.

[71] M. Rodrı́guez-Martinez and N. Roussopoulos. Automatic deployment of application-
specific metadata and code in mocha. In Proceedings of the 7th Conference on Extending
Database Technology, Konsatz, Germany, Mar. 2000.

[72] M. Rodrı́guez-Martinez and N. Roussopoulos. MOCHA: a self-extensible database mid-
dleware system for distributed data sources. In Proceedings of the 2000 ACM SIGMOD
International Conference on Management of Data, Dallas, Texas, May 2000.

[73] M. Rodrı́guez-Martinez, N. Roussopoulos, J. M. McGann, S. Keyley, V. Katz, Z. Song,
and J. Jaja. MOCHA: a database middleware system featuring automatic deployment of
application-specific functionality. In Proceedings of the 2000 ACM SIGMOD Interna-
tional Conference on Management of Data, Dallas, Texas, May 2000.

[74] D. F. Savarese. Aspect-oriented programming in Java. Java Pro, 5(11):91–95, Nov. 2001.

[75] D. F. Savarese. Buiild your own web server. Java Pro, 5(7), July 2001.

[76] D. F. Savarese. What dynamic proxies can do for you. Java Pro, 6(5):74–79, May 2002.

[77] L. Sha, R. Rajkumar, and M. Gagliardi. Evolving dependable real-time systems. In
Proceedings of the 1996 IEEE Aerospace Applications Conference, Feb. 1996.

145

[78] D. Sharp. Reducing avionics software cost through component-based product line devel-
opment. In Proceedings of the Software Technology Conference (Salt Lake City, UT, Apr.
1998.

[79] J. Siegel. CORBA Fundamentals and Programming. John Wiley & Sons, 1996.

[80] T. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computation. In Proceedings of the
1995 International Conference on Parallel Processing, pages 11–14, Aug. 1995.

[81] T. L. Sterling, J. Salmon, D. J. Becker, and D. F. Savarese. How to Build a Beowulf: A
Guide to the Implementation and Application of PC Clusters. MIT Press, May 1999.

[82] C. Strachley and C. P. Wadsworth. Continuations: A mathematical semantics for handling
full jumps. Technical Report PRG-11, Oxford University Computing Laboratory, 1974.

[83] Sun Microsystems. Java virtual machine debug interface specification. Technical report,
Sun Microsystems, Inc., 2001.

[84] Sun Microsystems, Inc. Java servlet specification version 2.3. Technical report, Sun
Microsystems, Inc., Aug. 2001.

[85] Sun Microsystems, Inc. JXTA v1.0 protocols specification. Technical report, Sun Mi-
crosystems, Inc., June 2001. http://spec.jxta.org/v1.0/JXTAProtocols.pdf.

[86] Sun Microsystems, Inc. Open Net Environment (ONE) software architecture: An open
architecture for interoperable, smart web services. Technical report, Sun Microsystems,
Inc., 2001.

[87] Sun Microsystems, Inc. Java management extensions instrumentation and agent specifi-
cation, v1.2. Technical report, Sun Microsystems, Inc., Oct. 2002.

[88] Sun Microsystems, Inc. Jvm tool interface version 1.0. Technical report, Sun Microsys-
tems, Inc., 2005.

[89] E. B. Swanson. The dimensions of software maintenance. In Proceedings of the Second
IEEE International Conference on Software Engineering, pages 492–497, 1976.

[90] A. Vahdat, M. Dahlin, T. Anderson, and A. Aggarwal. Active Names: Flexible location
and transport of wide-area resources. In Proceedings of the Second USENIX Symposium
on Internet Technologies and Systems, Oct. 1999.

[91] A. C. Veitch and N. C. Hutchinson. Dynamic service reconfiguration and migration in
the kea kernel. In Proceedings of the Fourth International Conference on Configurable
Distributed Systems, pages 156–163, May 1998.

146

[92] N. Venkataubramanian. Safe ’composability’ of middleware services. Communications
of the ACM, 45(6):49–52, June 2002.

[93] T. von Eiken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Messages: a
mechanism for integrated communication and computation. In Proceedings of the 19th
International Symposium on Computer Architecture, May 1992.

[94] T. Watanabe and A. Yonezawa. Reflection in an object-oriented concurrent language. In
Proceedings of the ACM Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 306–315, 1988.

[95] D. Wetherall, U. Legedza, and J. Guttag. Introducing new network services: Why and
how. IEEE Network Magazine, July 1998.

[96] Y. Yokote. The Aspertos reflective operating system: The concept and its implementa-
tion. In Proceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA), pages 414–434, 1992.

147

