
Citation: Novović, K.; Jovčić, B.
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Abstract: Acinetobacter baumannii is recognized as a clinically significant pathogen causing a wide
spectrum of nosocomial infections. Colistin was considered a last-resort antibiotic for the treatment of
infections caused by multidrug-resistant A. baumannii. Since the reintroduction of colistin, a number
of mechanisms of colistin resistance in A. baumannii have been reported, including complete loss of
LPS by inactivation of the biosynthetic pathway, modifications of target LPS driven by the addition
of phosphoethanolamine (PEtN) moieties to lipid A mediated by the chromosomal pmrCAB operon
and eptA gene-encoded enzymes or plasmid-encoded mcr genes and efflux of colistin from the cell.
In addition to resistance to colistin, widespread heteroresistance is another feature of A. baumannii
that leads to colistin treatment failure. This review aims to present a critical assessment of relevant
published (>50 experimental papers) up-to-date knowledge on the molecular mechanisms of colistin
resistance in A. baumannii with a detailed review of implicated mutations and the global distribution
of colistin-resistant strains.

Keywords: Acinetobacter baumannii; colistin resistance; lpx; pmr; mcr; LPS; lipid A; phosphoethanolamine
transferase; epidemiology

1. Introduction

Colistin (polymyxin E) is a nonribosomally synthesized polycationic peptide that be-
longs to the class of polymyxin antibiotics, of which only two are used clinically: polymyxin
B and colistin [1]. Colistin was introduced into clinical practice in the 1950s, but its use in
human medicine was mainly limited to the treatment of pulmonary infections caused by
multidrug-resistant (MDR) Gram-negative pathogens in patients with cystic fibrosis due to
nephrotoxicity and neurotoxicity [2,3]. However, the widespread use of colistin in animal
feed production has been maintained in developing countries and poses a major public
health risk [4]. The rise of MDR, extensively drug-resistant (XDR), and pan drug-resistant
(PDR) strains of Gram-negative bacteria has sparked interest in the revival of antibiotics,
such as colistin, which can be used as a last resort [5–7].

Colistin is a mixture of the cyclic decapeptide colistin A and B with a fatty acid chain
(6-methyl-octanoic acid in colistin A or 6-methyl-heptanoic acid in colistin B) linked by
an alpha-amide bond. The amphiphilic surfaces of colistin, which allow detergent-like
activity on bacterial membranes, are formed by the N-terminal fatty acyl chain, D-Leu-Leu
(hydrophobic), and three cationic amino acids (hydrophilic) [8,9]. Two forms, colistin
sulfate for oral administration and colistimethate sodium for parenteral formulations, are
currently commercially available.

Colistin is positively charged, therefore, it interacts electrostatically with the negatively
charged phosphate groups of lipid A, the lipopolysaccharide (LPS) component of Gram-
negative bacilli outer membrane [10]. After the initial interaction, colistin displaces the
divalent calcium and magnesium cations that affect the three-dimensional structure of
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LPS. In the next step, colistin inserts its hydrophobic terminal acyl fatty chain, leading to
disruption and permeabilization of the outer membrane. When permeabilization occurs,
colistin penetrates the outer membrane and alters the integrity of the phospholipid bilayer
of the inner membrane, causing intracellular material to leak out and leading to cell
death [11] (Figure 1A). Therefore, colistin is considered a bactericidal antibiotic.
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Figure 1. Schematic representation of the mode of action of colistin in susceptible cells (A) and
the molecular mechanisms of resistance to colistin in resistant cells (B). A—Colistin causes lysis of
susceptible cells due to induced disruption of the outer and inner membranes. Initial interactions
between the positively charged moiety of colistin and the negatively charged phosphate groups of
lipid A of LPS lead to the displacement of calcium and magnesium cations affecting the LPS structure.
In the next step, the hydrophobic acyl fatty chain of colistin penetrates the outer membrane leading
to its permeabilization. As a result of permeabilization, colistin penetrates the inner membrane and
alters it integrity, leading to leakage of intracellular material and cell death. B—Resistance to colistin
arises through several common mechanisms. 1. As a result of PEtN moiety addition to lipid A
(mutations and overexpression of pmrCAB, eptA, or presence of plasmid-mediated mcr genes), the
overall charge of the outer membrane changes so that colistin can no longer interact with lipid A of
LPS. 2. Inactivation of the LPS biosynthetic pathway results in the absence of LPS, the target molecule
for colistin. 3. Overexpression of specific efflux pumps leads to efficient extrusion of colistin, resulting
in resistance.

This review aims to provide a comprehensive insight into the clinical significance of
A. baumannii, the molecular mechanisms of colistin resistance, and the epidemiology of
colistin-resistant strains, as well as an overview of recent advances in the field.

2. Clinical Significance of Acinetobacter baumannii

A. baumannii is recognized as a clinically significant pathogen causing a wide spectrum
of nosocomial infections, especially in vulnerable patient groups [12]. These groups include
intensive care unit (ICU) patients, patients with prolonged hospitalization in long-term care
facilities, patients undergoing surgeries, central vascular catheterization, tracheostomy, and
enteral hemorrhage, and low birth weight neonates [13–17]. The literature data on nosoco-
mial A. baumannii infections are mainly based on reports of outbreaks [18]. These outbreaks
are usually due to contamination from common sources or cross-infection, and frequent
serial or overlapping outbreaks could be observed once A. baumannii was introduced into a
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clinical setting with a single strain dominating each outbreak [19–21]. Community-acquired
A. baumannii infections are less common (mainly pneumonia and bacteremia) and have
a more severe course than nosocomial infections and are generally considered fulminant.
These infections occur mainly in elderly male patients in association with alcoholism, di-
abetes renal disease, and chronic obstructive pulmonary disease [22–24]. Mortality rates
associated with A. baumannii infections vary considerably depending on concomitant dis-
eases, length of hospital stay, demographic characteristics, and antibiotic susceptibility of
the strains causing the infection, generally ranging from 12 to 50% [19,25–28]. Of particular
importance is the difficulty in distinguishing A. baumannii colonization from infection. The
recognized risk factors for infection were age, total number of hospitalized wards, absolute
neutrophil count, and C-reactive protein (CRP) [29].

Bacteria of the genus Acinetobacter are considered ubiquitous microorganisms, obtained
from various environments, including soil, rivers, and wastewaters. Although A. baumannii
reservoirs have been reported in the environment outside hospitals [30], the natural habitats
of clinically relevant strains remain unclear [31].

A. baumannii possesses extraordinary plasticity that allows it to adapt to a variety
of living conditions, enabling its success as a nosocomial pathogen [32]. The ability of
A. baumannii to adapt to the challenges of the hospital environment is considered to be the
major factor in its pathogenicity. In addition, the strain-dependent differential regulation
of virulence genes, the large number of transcriptional regulators compared to other
Acinetobacter species, and the synergy of multiple genes encoding virulence factors are
thought to contribute to the virulence potential of A. baumannii [32–34].

A burning issue in the biology of A. baumannii is the global spread of MDR strains.
The increase in MDR strains is driven by both intrinsic and acquired antibiotic resis-
tance mechanisms. Strains of A. baumannii are capable of upregulating intrinsic mech-
anisms of antibiotic resistance, which, in conjunction with the acquisition of new resis-
tance genes through horizontal gene transfer, contributes to the spread and diversity of
the A. baumannii resistome. A variety of intrinsic resistance mechanisms of A. baumannii,
such as beta-lactamases, multiple drug efflux pumps, changes in membrane-associated
proteins, ribosomal methylation, and enzymes that recognize multiple antimicrobials as
substrates, have been described previously [35].

In addition to intrinsic resistance, gene flow and horizontal transfer have been shown
to be another important driver of antibiotic resistance genes in A. baumannii [36]. These
processes resulted in observable, significant variation in the resistome within different
lineages, and antibiotic resistance was shaped by phylogeny, resulting in what has been
termed an open resistome [36].

A. baumannii is considered intrinsically resistant to penicillins and cephalosporins [37].
The resistance of A. baumannii to beta-lactams is significant because penicillins, cephalosporins,
carbapenems, and monobactams are the first-line therapeutics for the treatment of infections
caused by A. baumannii. Inherent in all A. baumannii are chromosomally encoded cephalospori-
nases (formerly blaAmpC, now referred to Acinetobacter-derived cephalosporinase, ADC).
Insertion of ISAba1 or ISAba125 sequences upstream of genes encoding ADC cephalosporinase
induces its overexpression by providing stronger promoters [38–40]. The ADC enzymes
may confer extended-spectrum resistance to beta-lactams [41–43]. In addition, covalent mod-
ification (dephosphorylation) of ADC enzymes could alter their substrate specificity and
lead to imipenem resistance [44]. Several other beta-lactamases, such as extended-spectrum
beta-lactamases (ESBLs) (including TEM, SHV, CTX-M, PER, VEB, and GES), metallo-beta-
lactamases (MBLs) (including IMP, VIM, GIM, and NDM), and oxacillinases (OXAs) (in-
cluding OXA-23-like, OXA-24-like, OXA-51-like, and OXA-58-like) are commonly found in
A. baumanni clinical isolates [45,46]. Resistance to beta-lactams could result from changes
in the permeability of the cell to the antibiotic, usually due to changes in outer mem-
brane proteins such as CarO, OmpA, and Omp33-36 porins [47–50]. It has been found
that overexpression of the AdeABC efflux pump synergistically with the aforementioned
beta-lactamases in A. baumannii leads to carbapenem and cephalosporin resistance [51,52].
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Colistin is considered one of the last therapeutic options for the treatment of MDR
A. baumannii infections and is used as rescue therapy for severe infections. Colistin resis-
tance poses a greater risk of excess patient mortality [53,54]. The published data show that
the prevalence of colistin resistance is higher in Southeast Asia and Eastern Mediterranean
countries than in other regions of the world, with an overall value of 11.2% (Germany 0.2%,
United Kingdom 2.3%, India 8.2%, China 11.8%, and Lebanon 17.5%) [55].

3. Molecular Mechanisms of Colistin Resistance in A. baumannii

Colistin, as a positively charged peptide, exerts its antibacterial effect via electrostatic
interactions with negatively charged lipid A, a component of LPS [56]. Accordingly,
two main mechanisms of colistin resistance have been described in A. baumannii: the
complete loss or modifications of the target LPS, leading to abolishing or reducing its
negative charge [57]. The complete loss of LPS results from inactivation of the first three
genes of the lipid A biosynthetic pathway (lpxA, lpxC, and lpxD genes) [58], whereas the
modification of LPS occurs through the addition of phosphoethanolamine (PEtN) moieties
to lipid A by the pmrCAB operon-encoded enzymes [59]. Although 4-amino-4-deoxy-
L-arabinose (L-Ara4N) modification of LPS has been described as a more common and
effective colistin resistance mechanism compared to PEtN LPS modification in diverse
Gram-negative pathogens (Salmonella enterica, Klebsiella pneumoniae, Escherichia coli, and
Pseudomonas aeruginosa), it was absent in A. baumannii [57]. In addition to chromosome-
mediated mechanisms, plasmid-mediated colistin resistance encoded by mcr genes has
been recognized as a major driver of rapid dissemination by horizontal gene transfer among
pathogenic Gram-negative bacteria, including A. baumannii [60] (Figure 1B).

3.1. Loss of LPS Structure

The first observation that LPS deficiency causes colistin resistance in A. baumannii was
made by Moffat and coauthors [58]. Laboratory-induced colistin-resistant A. baumannii
derivatives contained mutations in one of the first three lipid A biosynthetic genes (lpxA, lpxC,
or lpxD) (Figure 1B). Although, these mutations ranged from single nucleotide mutations to
large deletions (up to 445 nucleotides), they all resulted in complete loss of LPS. Moreover,
disruption of the lpxD gene by insertion of an IS element similar to the ISX03 element (IS4
family) was described in a colistin-resistant clinical isolate [58]. Shortly thereafter, the same
team found that ISAba11 inactivated the lpxC and lpxA genes in colistin-resistant derivatives
of A. baumannii ATCC19606 [61]. In subsequent studies, the insertion of ISAba1 or ISAba11
within the lpxC gene was described as a common event in colistin-resistant A. baumannii.
As the disruption of the lpxC gene occurred in the same region (321–420 nt) in different
isolates, it was suggested that this region might represent a hot spot for the integration
of ISs [61–68]. Colistin resistance in A. baumannii has also been associated with various
nucleotide substitutions, deletions, and insertions in all three lipid A biosynthetic genes
(lpxA, lpxC, or lpxD) that cause frameshifts or result in truncated proteins that impair lipid
A biosynthesis. While the described mutational events in the lpxA gene are not site-specific,
non-synonymous mutations in the lpxC (P30L or S, N287D) and lpxD (E117K) genes were
previously found to be present in colistin-resistant isolates from different origins [58,69–74].
Although the amino acid substitutions N287D (lpxC) and E117K (lpxD) were detected in
both colistin-susceptible and colistin-resistant isolates, it is possible that these alterations in
combination with a mutation in the pmrCAB operon have a synergistic effect leading to colistin
resistance [69–74]. In addition, the downregulation of lpxACD expression has been observed in
some colistin-resistant A. baumannii isolates, leading to decreased LPS production [68,73–76].

At the time when LPS deficiency was described as the mechanism causing colistin resis-
tance in A. baumannii, this discovery was surprising because LPS biosynthesis was thought
to be essential for the viability of Gram-negative bacteria [77]. So far, survival without LPS
has been described only in a few species, such as Neisseria meningitidis, Moraxella catarrhalis,
and two Acinetobacter species (A. baumannii and A. nosocomialis) [78–80]. Although this
mechanism ensures a high level of colistin resistance [58,61,65], the frequency of mutations
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in the lpxACD is lower compared to changes in the pmrCAB operon in colistin-resistant
A. baumannii clinical isolates [66,81,82]. The proposed explanation for the lower prevalence
of LPS-deficient colistin-resistant mutants in clinical settings could be the significant nega-
tive impact of LPS loss on fitness and virulence, as well as the susceptibility of these isolates
to various antibiotics and disinfectants. This was supported by the findings that the lpx mu-
tants grew more slowly compared to the parental wild-type strains in vitro [64,66,68,81,83],
while in vitro and in vivo competition tests showed significant fitness costs of colistin
resistance [81]. Determination of the pathogenicity of the lpx mutants also revealed lower
cytotoxicity (A549 human alveolar epithelial cells) and attenuated virulence of these strains
in the animal models (Caenorhabditis elegans, Galleria mellonella, and mouse) compared to
wild-type or even pmrB mutants [63,66,81]. As expected, the absence of LPS on the cell
surface resulted in weak stimulation of neutrophils and, consequently, lower production of
reactive oxygen species (ROS) and pro-inflammatory cytokines [66,83]. Nevertheless, the
lpx mutants were more prone to killing mediated by neutrophils compared to the wild type
since they were more susceptible to neutrophil-secreted lysozyme [83]. Moreover, reduced
virulence of LPS-deficient A. baumannii in the host could also be explained by reduced
biofilm formation, surface motility, as well as poor growth under iron limitation [66,83].
Finally, another disadvantage of LPS loss for the bacterial cell is evident in the increased
susceptibility to various clinically used antibiotics, especially antibiotics used in the therapy
of A. baumannii infections (ceftazidime, imipenem, meropenem, tigecycline, ciprofloxacin,
amikacin, and rifampin), and various disinfectants (phenol-based disinfectants, quater-
nary ammonium disinfectants, sodium dodecyl sulfate, benzalkonium, chlorhexidine,
deoxycholate, and ethanol) [58,63–66,68,83].

3.2. PEtN Modification of LPS Structure
3.2.1. PmrCAB and EptA

The modification of LPS is a commonly described mechanism for acquired colistin re-
sistance in Gram-negative bacilli. In A. baumannii, PetN is added to the 4′-phosphate or
1-phosphate group of lipid A, reducing the negative charge of this LPS component and the
binding affinity of colistin [57] (Figure 1B). This type of colistin resistance is predominantly
mediated by mutations in genes encoding the PmrAB two-component system, resulting in
the overexpression of the phosphoethanolamine transferase PmrC [84] (Figure 1B). The most
common and diverse amino acid changes associated with colistin resistance in A. baumannii
were detected in the PmrB protein (Table 1). Since Adams et al. [59] observed that muta-
tions in the pmrB gene can cause high colistin resistance (MIC greater than 128 µg/mL) in
laboratory-induced A. baumannii derivatives, numerous studies have described the presence
of altered PmrB proteins in colistin-resistant clinical isolates or in vitro-derived derivatives
of A. baumannii (Table 1). Although these nonsynonymous mutations were detected in all
domains of PmrB, the greatest number were located in the histidine kinase A (HisKA) domain
(predominantly at positions 226, 227, 232, 233, 235, and 263) (Table 1), which is responsible
for autophosphorylation and the transfer of the phosphoryl group to the PmrA response
regulator [85]. Accordingly, pmrB mutations could lead to the constitutive activation of PmrA,
resulting in increased expression of the pmrCAB and resistance to colistin [59]. In addition,
previous studies reported frequent amino acid substitutions of PmrB at position 170 (P to
Y, L, Q, or S) (Table 1) and 315 (G to D, S, or V) in colistin-resistant isolates [68,70,76,84,86].
Although Oikonomou and coauthors [69] described the PmrB mutations (A138T, A226V, and
A444V) repeated in colistin-resistant A. baumannii [70,72–74,76,84–91] as not responsible for
colistin resistance, the involvement of A138T and A226V in this phenomenon should not
be excluded. Indeed, the amino acid change at position 226 (A to V) in PmrB alone or in
combination with A138T enabled high colistin resistance (64 or 128 and 256, respectively) in
the tested isolates [84,88]. The amino acid substitutions within the receiver domain (REC) of
the PmrA response regulator have also been described in A. baumannii as resistant to colistin
(E8D, D10N, M12I, K, or V, I13M, or S, A14V, I18T, L20F, G54E, A80V, D82G, P102H, or R,
F105L) [59,68,69,72,84,86,89,90,92–98]. Some of the PmrA mutations alone (G54E) or in combi-
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nation with mutations in other genes (P102R) can confer significantly high colistin resistance
to A. baumannii (>256 µg/mL or 512 µg/mL) [97,98]. To date, little data are available on the
relationship between PmrC amino acid changes and colistin resistance. A comparison of PmrC
amino acid sequences between colistin-susceptible and colistin-resistant isolates revealed rare
changes and mostly at different positions [65,69,72–76,84,89,95,97]. In the study conducted
by Nurtop and coauthors [72], the two most commonly described mutations in the pmrC
gene (resulting in I42V and L150F) were found to be associated with an increased expression
of the pmrA and pmrC genes and, consequently, colistin resistance. The PmrC substitution
R109H, detected in colistin-resistant A. baumannii isolates in two previous studies [69,72], was
associated with colistin resistance along with a mutation in the pmrA gene [69]. In addition,
it was observed that the PmrC alteration R125P in combination with changes within the
PmrB protein had a synergistic effect on colistin resistance in A. baumannii [97]. In summary,
mutations in the pmrCAB locus are recognized as gain-of-function mutations because they
lead to PmrC overexpression and PEtN modification of lipid A, which, in turn, results in
colistin resistance [84,99]. In addition to increased expression of PmrC as a mechanism of
colistin resistance in A. baumannii [65,72,73,75,76,84,85,88,92,97,98,100], the upregulation of
the pmrA and pmrB genes was found in some colistin-resistant isolates [59,71,96,101,102],
but to a much lesser extent [68,72,73,75,76,84,92,98]. Although this observation is to be ex-
pected as these genes are part of the same operon as the pmrC gene (pmrCAB), there are cases
where no correlation was found between PmrAB and PmrC overexpression [72,73,76]. In
addition, Lesho and coauthors [92] noted the overexpression of another pmrC homolog (eptA,
ethanolamine phosphotransferase A) in some colistin-resistant A. baumannii isolates. Detailed
analysis revealed that the gene encoding for EptA was detected only in isolates belonging
to the international clone 2 (IC2), was found in ≥3 copies in a single isolate, and was distant
from the pmrCAB operon in A. baumannii genomes [88,90,92]. Although the presence of the
eptA gene in the bacterial genome alone does not confer resistance to colistin, the integration
of ISAba1 upstream of the eptA gene could lead to increased expression of this enzyme [88]
(Figure 1B). In contrast, Gerson et al. [100] found the presence of ISAba1 upstream of the
eptA gene in colistin-susceptible and colistin-resistant counterparts, but only in isolates with
mutations in the eptA gene (R127L) and ISAba1 (A→T in position 1091) was overexpression of
EptA detected. Interestingly, a previous study showed that disruption of the gene encoding
the global regulator H-NS by ISAba125 causes high colistin resistance in A. baumannii through
increased expression of the eptA gene in this mutant strain [103].

A negative correlation was found between PmrAB-related colistin resistance and the
fitness and virulence of A. baumannii in the host. The colistin-resistant A. baumannii isolates
showed lower fitness in vitro and in vivo and reduced virulence potential in animal models
of infection compared to their colistin-susceptible parental strains [62,92,93,104–108]. This
could be explained by the downregulation of metabolic and antioxidant proteins, virulent
porins OmpA and CarO, and the system responsible for biofilm formation in colistin-resistant
A. baumannii [107,109,110]. In addition, some studies reported a correlation between colistin re-
sistance and decreased biofilm formation ability [108,110]. In contrast to the initially reported
negative correlation, additional studies showed unchanged fitness [63,64,68,100,111,112] and
pathogenicity of colistin-resistant A. baumannii [63,81,100,111]. Interestingly, two studies de-
scribed the emergence of colistin resistance in A. baumannii isolated from patients exposed
to colistin therapy and the subsequent disappearance of this resistance after the discontin-
uation of colistin [111,113]. Durante-Mangoni and coauthors [111] observed that colistin-
resistant pmrB-mutated isolates were comparable to wild type in in vitro and in vivo assays,
whereas Snitkin et al. [113] hypothesized that resistant isolates were outcompeted by colistin-
susceptible isolates due to lower in vivo fitness costs. In addition, a comparison of five
longitudinal colistin-resistant A. baumannii isolates from the same patient indicated an in-
crease in growth rate as well as virulence in the mouse lung infection model during colistin
therapy [114]. Jones and coauthors [114] explained this phenomenon by more pronounced
resistance to ROS in late colistin-resistant isolates. Overall, these data suggest that no clear
conclusion can be made about the correlation of colistin resistance due to pmrAB mutations
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and biological costs in A. baumannii. Although some pmrAB mutations responsible for colistin
resistance initially appeared to be maladaptive to bacterial cells, prolonged exposure to the
selective agent (colistin) may have allowed the emergence of compensatory changes at dif-
ferent regulatory levels and remedied a deficit in fitness and virulence [63,104,113,114]. In
addition, in this type of research, the genetic background should be taken into account as the
results obtained from different isolates containing the same PmrB alteration P233S were differ-
ent [107,108,111,112]. The studies comparing the behavior of the pmrAB mutants with lpxACD
mutants have undoubtedly confirmed that the LPS modification causes lower fitness and
virulence costs than LPS deficiency [63,64,81]. Most studies that examined colistin-resistant
A. baumannii showed that PmrAB alterations had no significant impact on the antibiotic
resistance profile of these isolates [64,68,69,84,92,112]. Consistent with the above observations,
a systematic review concluded that LPS modification mediated by the pmrAB mutations is the
major in vivo mechanism of colistin resistance [82].

Table 1. Overview of PmrB sensor kinase mutations in colistin-resistant A. baumannii.

Domains Amino Acid Mutation Reference

TM1

L9_G12del [100]
T13N, T13A [59,113]

S14L [115,116]
S17R, S17G [63,76,92,100]
S17_F26dup [63]
I19F, I19del [76,112]

G21V [96]
F26fs [117]

A28V, A28T [97,100]

PD

A32_E35del [84]
T42P [97]
Q43L [88]
K45Q [97]
H54Y [97]
D64V [84]
F65L [97]
K67R [97]
T68N [74]
I76L [97]

A80V [84]
H86N [97]
L87F [115]
H89L [72]
L93F [97]
L94W [67]
E99Q [97]
F103L [76]
Q110E [97]
I112V [97]
Y116H [92]
P119L [86]
I121F * [101]
Q129L [87]

R134C, R134S [70,86,104]
A138T [69,72–74,85,87–89,91,116]
E140V [90]
A142V [85]

TM2

M145I, M145K [113,115]
L153F [97]

L160F, L160del [76,84]
I163F, I163N [72,76]
I164L, I164F [72,76]
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Table 1. Cont.

Domains Amino Acid Mutation Reference

HAMP
domain

R165S [97]
P170Y, P170L, P170Q, P170S [65,67,84,96,97,107]

L178F [90]
K179M [97]

S183F, A183T * [76,101,116]
E184K, A184V * [65,101]

E185K [76]
P190S * [101]
T192I * [101]
Y194S [70]
P200L [91]

L208F, L208R [75,84,86]
F209fs [59]
E210D [97]
R211S [97]

HisKA

A224V [72]
A226V, A226T [69,76,84,86–88,90]

A227V [59,65,68,85,96,104,115,117]
Q228P * [101]
E229D [70,72,91]

R231L, R231T, R231I [68,84,95]
T232I, T232A [68,76,86,92,100]

P233T, P233S [59,62,68,72,84–86,88,98,107,111–
113,115,117]

T235I, T235N [63,68,84–86,98]
L239S [118]
N256I [84]
A262P [59]

R263H, R263C, R263G,
[62,68,72–76,84,86,92,113,118]R263S, R263L, R263P

Q265P, H265Y * [68,76,118]
H266Y, H266L [67,74,76]
L267W, L267F [73,86,88]

T269P [76,116]
Q270P [98]

L271F, L271R [86,113]
G272D [64]
L274W [88]

Q277H, Q277R, Q277K [84,86,88]

HATPase_c

N353Y [115]
P360Q [84,87,95]
H362N [97]
Y363F [97]
P377L [84]
F387Y [115]
S403F [115]
A408E [72]

R411del [59]
TM1, first transmembrane domain (aa 10–29); PD, periplasmic domain (aa 29–142); TM2, second transmembrane
domain (aa 142–164); HAMP domain, histidine kinases, adenylyl cyclases, methyl-binding proteins, and phos-
phatases (aa 145–214); HisKA, histidine kinase A domain (aa 218–280); HATPase_c, histidine kinase-like ATPase
(aa 326–437) [51]. * indicates referent amino acids differed from amino acid at the same position in the PmrB
protein of A. baumannii ATCC17978 (CP053098.1) [101,118].

3.2.2. Plasmid-Mediated Colistin Resistance

Since the first report of the phosphoethanolamine transferase-encoding mcr gene (mcr-1)
in E. coli in China [119], the presence of this gene and its variants has been demonstrated in
many Gram-negative bacteria distributed worldwide [60]. To date, ten different mcr gene
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families (mcr-1 to mcr-10) with more than 100 variants have been described in bacteria
isolated from animals, food, humans, and the environment [60,120]. In A. baumannii,
the mcr-1 and mcr-4.3 variants are most commonly detected (Figure 1B). The mcr-1 has
been reported in clinical isolates from Asia (Pakistan, Iraq, and China) and Africa (Egypt)
at sporadic frequency (n = 1–3) with the exception of samples collected from hospitals
in Iraq (up to 89) [121–126]. The earliest mcr-4.3-positive isolate of A. baumannii was
recovered from the cerebrospinal fluid of a patient with meningitis in Brazil in 2008 [127],
which preceded the mcr discovery by Lui and coauthors [119]. Subsequently, mcr-4.3 was
detected in pig feces from a slaughterhouse in China [128] and in isolates from the Czech
Republic [129,130]. The studies from the Czech Republic suggest that food imports from
Latin America (frozen turkey livers from Brazil) and Asia (frog legs from Vietnam) may
represent the primary route of transmission of mcr-carrying A. baumannii to Europe and thus
to European hospitals [129,130]. As some studies showed that the recombinant expression
of mcr-4.3 in E. coli did not alter colistin MIC [131,132], while another study indicated
that the heterologous expression of mcr-4.3 could ensure colistin resistance through LPS
modification in A. baumannii [127], it is not possible to draw a firm conclusion about its
role in colistin resistance. Moreover, a comparative analysis revealed that the mcr-4.3-
harbouring plasmids in A. baumannii share a common origin for this structure. It was
found that these plasmids are untypable and cannot be transferred to other bacteria by
conjugation or transformation [128–130]. Although mcr-1 and mcr-4.3 are predominant,
other mcr variants have also been described in clinical and environmental samples of
A. baumannii, as in a study from Iraq where the mcr-2 and mcr-3 genes were found. A
large number of these isolates carry a single mcr gene or a combination of different mcr
families (mcr-1, mcr-2, and mcr-3) [122]. Finally, it is important to highlight that most
of the mcr-carrying A. baumannii isolates are MDR [121,122,124–127], and there are few
antibiotic-susceptible isolates [128,129].

3.3. Other Mechanisms of Colistin Resistance

In addition to the aforementioned mechanisms of colistin resistance in A. baumannii,
expulsion of the antibiotic by efflux pump systems is another mechanism of importance
(Figure 1B). Lin and coauthors [133] demonstrated the contribution of the EmrAB efflux
system to colistin resistance in A. baumannii using the ∆emrB mutant (Figure 1B). In addition,
the upregulation of genes encoding protein components of efflux pumps (adeI, adeC, emrB,
mexB, and macAB) was shown in colistin-resistant strains [67]. In addition, an amino acid
substitution (N104M) in the gene encoding the toluene tolerance efflux pump (ttg2C) was
found to be associated with high-level colistin resistance [70]. Further evidence for the role
of efflux pumps in colistin resistance is the suppression of resistance in the presence of the
efflux pump inhibitor (EPI), cyanide-3-chlorophenylhydrazone (CCCP) [134].

Another mechanism of colistin resistance in A. baumannii is associated with certain
non-Lpx (lipo) proteins involved in the composition and maintenance of the outer mem-
brane (OM) (lpsB, lptD, vacJ, pldA, and A1S_0807) [99,135]. The study conducted by
Hood et al. [136] indicated that the loss of LpsB, a glycosyltransferase responsible for
LPS core synthesis, leads to increased susceptibility to colistin and cationic host defense
peptides, highlighting the role of this protein in A. baumannii virulence. Along with
changes in the pmr and lpx genes, single mutations in the lpsB gene (H181Y and *241K) of
colistin-resistant A. baumannii have been reported [108,137]. In addition, the final translo-
cation of LPS from the cytosol to OM could be disturbed by mutations in the lptD gene,
which has resulted in moderate polymyxin B resistance [138]. Colistin resistance of certain
A. baumannii isolates analyzed by Nhu and coauthors [70] was attributed, in whole or in
part, to amino acid substitutions of the OM lipoprotein VacJ (R166N and Q249T) and the
phospholipase PldA (T200T). As VacJ, part of the ABC transporter system, and PldA are
recognized as factors responsible for maintaining lipid asymmetry in OM, the proposed
mechanism of this type of colistin resistance is OM disorganization due to vacJ and pldA
mutations [70]. In addition, it has been observed that impaired lipid metabolism caused by
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a reduction in biotin synthesis could provide protection to A. baumannii during colistin ex-
posure [136]. Recent studies using modern technologies (whole genome sequencing, RNA
sequencing, and transposon-directed insertion site sequencing) have identified numerous
genes (Ab09_2943, ACICU_02910, ACICU_RS15345, A1S_1983, A1S_2024/ACICU_01043,
A1S_2027, A1S_2230/ACICU_02436, A1S_2443, A1S_2928, A1S_3026, aroP_3, baeR, benP,
betI_2, cho1, cobS, cobV, cysH, dcm, dnmT1, dtyMK, eno, filD, garK, glxK, hepA, iclR, lpsO,
mdh, miaA, mlaC, mlaD, mlaF, mutY, mpsT, pgaB, pheS, pssA, pstS, ptk, rsfS, shlB_1, sseA, tmk,
tst udg, ureC, and zndP) whose sequence or expression in colistin-resistant A. baumannii
was altered compared to colistin-susceptible strains [64,67,70,75,76,97,98,139]. The degree
of association of these candidate genes with colistin resistance in A. baumannii should be
confirmed experimentally in future studies.

3.4. Colistin Heteroresistance and Dependence

Antibiotic heteroresistance is defined as the presence of a resistant subpopulation
within a population susceptible to a given antibiotic [140]. Since the first report of colistin
heteroresistance in clinical isolates of A. baumannii from Australia [141], this phenomenon
has been described in many studies with prevalence ranging from 1.84 to 100% [142–144].
Hawley and coauthors [142] found a higher rate of heteroresistance in isolates from patients
treated with colistin, suggesting that previous colistin therapy may be a risk factor for
the induction of heteroresistance. Data indicating resistance stability within the surviving
subpopulation after cultivation under non-selective conditions were conflicting in different
studies, suggesting a possible species-specific dependence [140–142,145]. Interestingly,
Hong et al. [140] observed isolates that exhibited a heteroresistance phenotype only at
low antibiotic concentrations alongside the typical colistin-heteroresistant isolates that
emerged at exposure to high colistin concentrations. The previously described mechanisms
of colistin heteroresistance in A. baumannii are the same as those of colistin resistance
(LpxACD, PmrCAB, and efflux pumps) [73,140,143,145,146]. Amino acid changes in LpxC
(S186R) and LpxD (N148K and T289I) were associated with partial loss of LPS in heterore-
sistant strains [143], while another study showed upregulation of the pmrCAB operon in
combination with mutations in the pmrA and pmrB genes in resistant subpopulations of
A. baumannii [146]. The overexpression of efflux pumps and the synergistic effect of EPIs
and colistin against the resistant subpopulation of heteroresistant A. baumannii clearly
demonstrated the involvement of efflux pumps in this phenotype [143,145]. Of particular
concern is the fact that conventional susceptibility testing identifies heteroresistant isolates
as susceptible to colistin, resulting in colistin treatment failure [143]. As population analysis
profiling (PAP) is recognized as the gold standard for detecting heteroresistance, the intro-
duction of the mini-PAP method with colistin at >2 mg/L into clinical practice has been
recommended [147]. Moreover, the prevalence of heteroresistant isolates clearly exceeds
the occurrence of colistin-resistant A. baumannii [148]. Moreover, under selection pressure, a
resistant subpopulation of heteroresistant populations could become predominant and lead
to a resistant cell population [145]. Accordingly, isolates identified as colistin-heteroresistant
have been proposed for colistin-based combination therapy instead of colistin monother-
apy [144]. Although the phenomenon of colistin heteroresistance has been studied mainly
in A. baumannii of nosocomial origin, it has also been detected in samples from hospital
wastewaters [73,149].

Another phenomenon observed in some colistin-susceptible A. baumannii isolates
exposed to colistin is colistin dependence. After exposure to colistin, a colistin-dependent
subpopulation of cells becomes dependent on this antibiotic for optimal growth [150].
Previous findings have suggested the colistin-dependent phenotype as a survival response
to colistin pressure and an intermediate stage between colistin susceptibility or heteroresis-
tance and even extreme resistance to colistin [65,150].
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4. Epidemiology of Colistin-Resistant A. baumannii

Data providing information on the epidemiology of colistin-resistant A. baumannii are
generally shown by MLST categorization (Oxford and Pasteur) of these isolates [151,152].
According to the less discriminating Pasteur scheme, colistin-resistant A. baumannii sequence
type (ST) 2 isolates are found to be most prevalent ST associated with colistin resistance in
A. baumannii and occur in all continents for which data are available (Europe, Asia, Africa, and
North and South America) [73–76,86,88–91,97,107,153–155] (Figure 2). In addition, ST1 was
detected in Europe and Africa [90,95,97,154,156], whereas other Pasteur STs occurred exclusively
in specific continents (Europe—ST195, ST345, ST490, ST492, ST537, ST632, ST636, ST745, ST1421,
and ST1816; Asia—ST1303; Africa—ST158 and ST570; North America—ST46 and ST94; South
America—ST15, ST25, ST79, and ST730) [74,76,86,88,89,92,97,116,128–130,157] (Figure 2). In
addition, ST1 has been transmitted both nosocomially [90,97], and by animals in Europe [95].
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MLST typing according to the Oxford scheme revealed that some STs of A. baumannii
resistant to colistin are distributed across different continents: ST92 (Asia and North Amer-
ica) [101,158], ST195 (Europe and Africa) [76,154], ST208 [76,86,90,97] and ST281 [75,86,97]
(Europe and North America), and ST451 (Europe, Asia, and North America) [86,90,97,139,158]
(Figure 2). Interestingly, ST208 has been suggested to be identical to ST92, with the typing
result depending on the sequencing performed (high-throughput or Sanger, respectively) [86].
This suggests a significant dissemination of colistin-resistant A. baumannii in Europe, Asia,
and North America. In Europe, the following STs have been reported in more than one study:
ST208 [76,90,97]; ST281 [75,97]; ST425 [76,90,97]; and ST436, ST451, and ST1567 [90,97]. How-
ever, in North America and South America, only a single ST, ST451 [86,158] and ST233 [96,157]
were detected, respectively. Additionally, some STs were detected only in single studies (ST113,
ST141, ST191, ST218, ST227, ST231, ST233, ST236, ST282, ST369, ST375, ST387, ST502, ST747,
ST944, ST1114, ST1557, ST1566, ST1633, ST1752, ST1809, ST1812, ST1837, ST1929, ST1962, and
ST2571) [76,86,96,97,102,117,127–129,139,154,157–160] (Figure 2).

The literature search revealed a lack of data on the epidemiology of colistin-resistant
A. baumannii STs in Australia and Oceania, pointing out the need for additional primary
research to fill the existing knowledge gap.

5. Conclusions

A. baumannii has become a significant nosocomial pathogen because of its adaptability
to healthcare settings, virulence characteristics, and ability to acquire antibiotic resistance.
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The increasing prevalence of MDR strains enhanced the use of colistin as rescue therapy,
leading to the rise in colistin-resistance strains worldwide. The diversity of the colistin
resistome in A. baumannii encompassing multiple mechanisms, including dissemination
through horizontal gene transfer, requires thorough investigations that will provide compre-
hensive knowledge of this emerging pathogen and provide insights into the mechanisms of
antibiotic resistance that will direct novel areas of research. Given the increasing prevalence
of colistin-resistant strains, a reassessment of current therapeutic approaches, including
alternatives to traditional antibiotics therapies, is strongly recommended. Promising results
have been shown in vitro for cefiderocol (a molecule with an innovative mode of action),
intravenous fosfomycin (in combination with cefiderocol), and combination therapy with
sulbactam–durlobactam [161–163].
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