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The Alternating-Direction-Implicit Finite-Difference Time-Domain method is 

used to analyze the on-chip Metal-Insulator-Semiconductor-Metal interconnects by 

solving Maxwell’s equations in time domain. This method is efficient in solving 

problems with fine geometries much smaller than the shortest wavelength of interest. 

The iteration algorithm is evaluated thoroughly with respects to stability, numerical 

dispersion, grid size, time-step size etc..  

The dielectric quasi-TEM mode, the slow wave mode, and the skin-effect 

mode of the MISM structure are all analyzed. We find that semiconductors can 

readily operate from the slow wave mode, to the transition region, to the skin effect 

mode in state of art technology. This thesis shows that the silicon substrate losses and 

the metal line losses can be modeled with high resolution. Signal dispersion and 

attenuation over a wide range of doping densities and operating frequencies is 



  

discussed. Accurate prediction of interconnect losses is critical for high-frequency 

design with highly constrained timing requirements. 
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Chapter 1: Introduction 

1.1 Background 

In modern integrated circuit (IC) designs, circuit elements continue to shrink 

in size while operating frequencies continue to increase. Main processor chips can be 

as large as 2cm×2cm in size with tens of millions of transistors. Digital clock rates 

are reaching 4 GHz and are predicted to continue increasing in the near future by the 

National Technology Roadmap for Semiconductors. Seven wiring layers have been 

fabricated with 0.3 µm minimum widths [1]. The small cross section of the metal 

interconnects will introduce line resistances as high as 1000-3000 Ω/cm, even for 

copper wires that have higher conductivity than aluminum wires. Global 

interconnections such as clock lines, data buses (32-128 bits wide), and control lines 

are of the order of 20-50K nets on one chip, and it will reach more than 100K 

connections in the future [1].  

In the high-frequency range, propagation delay (This is the signal traveling 

time.) is comparable to signal transition times (This is the signal rising and falling 

time.), and wire length is comparable to wavelength of the signal. Parasitic circuit 

parameters will directly impact power loss and signal integrity of the circuit as well as 

degrade the performance of the circuit. Since interconnects play an important role in 

transporting power and data in the circuit,  accurately determining the parasitic circuit 

parameters and predicting their effect is important in radio frequency (RF) and 

microwave integrated circuits (IC’s) as well as digital IC’s. 
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Extensive experimental, analytical and numerical research in analyzing the 

characteristics of interconnects began in the late 1960’s and include various 

investigations ranging from off-chip PCB interconnections to on-chip interconnects 

[2]-[8].  The consensus is on-chip interconnects are faster, denser and more reliable 

than off-chip ones. These are important factors in the trend of higher integration 

levels in the IC industry. Thus, this work will focus particularly on on-chip 

interconnects. Also, the numerical simulation method used in this work is 

investigated in detail in Chapter three.  

In 1967, Guckel analyzed interconnections using a parallel-plate waveguide 

structure with a two-layer (Si-SiO2) loading medium while ignoring fringing fields 

[2]. His work shows at the lowest-frequency interval, the majority current 

perpendicular to the propagation direction is conduction current, not displacement 

current. This means propagation resembles diffusion (conductive loss) because of loss 

in the dielectric layer. In the next frequency range, the phase velocity of the 

fundamental mode is controlled by the ratio of dielectric to semiconductor thickness. 

The velocity is very low for a typical interconnection. On the one hand, people can 

use this characteristic to design the delay line; on the other hand, people are making 

efforts to reduce the unwanted signal delay as much as possible. In the highest 

frequency range, the skin effect and the dielectric loss behavior describe the 

propagation behavior, and a high phase velocity shows up. His work will be briefly 

reviewed and a discussion of the physical phenomena will occur in Chapter four. 

In 1971, Hasegawa published his classical paper defining three fundamental 

propagation modes (the quasi-TEM mode, the slow-wave mode, and the skin-effect 
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mode) for the MIS structure [3]. The slow-wave mode was found to propagate within 

the resistivity-frequency range suited for monolithic circuit technology back at that 

time. The analytical analysis is similar to Guckel’s work [2] and it still ignores the 

fringing effect. However, in his measurements of test structures, the effect of the 

width of microstrip line is analyzed for the case of slow-wave mode. The analysis is 

performed through equivalent circuits based on low-frequency approximations and is 

thus limited by accuracy. 

After Hasegawa’s classical work, several papers have been published based 

on the numerical full-wave or quasi-TEM analyses [3]-[8]. The emphasis of the work 

is often on extracting the frequency dependent parameters R(f), C(f), L(f), G(f) [9]-

[11]. These parameters can then be used in available CAD circuit design simulators 

(eg. SPICE) to get instant results of the interconnect effect. Thus, it accelerates the 

chip design process. 

These works all show the progress in the investigation of on-chip 

interconnects characteristics. They have focused on propagation modes, crosstalk, 

substrate dispersion and loss in various ways [2]-[12]. However, in order to either 

simplify the electromagnetic formulation in the analytical derivation, or shrink the 

calculation model size, computer storage and processing overhead in the numerical 

method, these works either assume the thickness of the metal to be zero and make the 

quasi-TEM assumptions, or ignore the fringing effect of the interconnects. In 

addition, for the frequencies used nowadays, interconnects with lossy substrate will 

operate in the skin effect mode and transition region (This is the region between the 
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well defined three modes, which will be discussed in Chapter four). Little work has 

been published in this research area.   

Crosstalk on coupled microstrip lines is another important topic in the 

problem of signal integrity. Closed-Form derivations [11], Quasi-Analytical analysis 

[12], Finite-Difference Time-Domain (FDTD) method [13], Spectral Domain 

approach (SDA) [14]-16] etc. have been used in crosstalk analysis. However, all these 

works have the same assumptions as the MIS structure analysis.  A brief introduction 

of these numerical method is given in Chapter two. 

Global on-chip interconnects modeling also shows progress. The 

Multiconductor Transmission Line Methodology (MTL) [17], The Statistical model 

[18] etc, have shown examples of global on-chip interconnect design. However this 

problem is more complicated than simple interconnect structures, so more 

assumptions and more simplifications have to be made. The discussion of the global 

on-chip interconnects modeling is beyond the work of this thesis. 

1.2 Motivations of the Work 

 Previous research shows that the analytical method, as well as some numerical 

modeling methods (Spectral domain method [14]-[16], Transmission line matrix 

method [19], etc. These methods are discussed in Chapter two.) require numerous 

assumptions to simplify the model. The assumptions sacrifice the accuracy of the 

analysis.  The FDTD method has its advantages in solving Maxwell Equations. But as 

the density of elements on-chip increases, operating frequency increases, and signal 

rising-falling time decreases. Because of the stability problem inherent in the FDTD 



 

 5 
 

algorithm, the simulation model increases dramatically and the simulation time 

becomes very long. These limitations will be explained in Chapter two. 

 In 1999, Namiki presented the Alternating-Direction-Implicit Finite-

Difference Time-Domain (ADI-FDTD) method [20]. This method has overcome the 

stability limitations in the FDTD algorithm. It does not have the conflict of time step 

and grid size that appears in the conventional FDTD method.  Using this method, 

numerous signal propagating problems in the time-domain can be solved. 

 In this work, a 3-D ADI-FDTD solver is built and is used to analyze various 

transmission line characteristic problems, such as dispersion in the substrate, substrate 

loss and signal attenuation. The definition and analysis of these can be found in 

Chapter four. 

 During the study of various physical problems with the ADI-FDTD solver, we 

found sometimes the method will blow up, and numerical reflections on the boundary 

may occur occasionally. This stimulates us to investigate the factors affecting the 

stability and accuracy of the numerical method. The introduction of numerical 

algorithms as well as the evaluation of numerical behaviors can be found in Chpater 

two and three. 

1.3 Thesis Structures 

In Chapter two, numerical methods used in electromagnetic analysis are 

reviewed. The conventional FDTD method, which is the foundation of the ADI-

FDTD method used in this thesis, is explained in detail with discussions on the 

numerical stability, dispersion and other concerns. 
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The derivation of the ADI-FDTD algorithm is presented in Chapter 3. The 

theoretical stability and numerical dispersion analysis of the ADI-FDTD method is 

discussed mathematically. The practical choice of time-step, grid-size is also 

discussed. The flow chart of the algorithm is demonstrated. 

In Chapter 4, we performed the highly efficient unconditionally stable ADI-

FDTD method on a classical Metal-Insulator-Silicon-Metal (MISM) structure. We 

first benchmark the ADI-FDTD method by comparing the numerical result obtained 

from the ADI-FDTD method to the experimental data published in the literature. The 

numerical result is also compared with the analytical analysis. Then, we further 

present the advantages of our analysis. In particular, we are able to show the detailed 

field distribution in the thin skin-depth layer in the metal and in the silicon substrate. 

This has not been published in the literature so it helps to explain the important 

phenomena, such as energy flow, conductor loss and semiconductor loss.  

 A summary and future works are given at the end of the thesis.  
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Chapter 2: Physical and Numerical Method in Interconnects 

Analysis 

 Signal propagation along on-chip interconnects is a complicated wave 

propagation problem. In order to solve Maxwell’s equations, researchers have 

developed closed form and analytical solutions. With the progress in digital 

computer, numerical solutions such as finite difference (FD) method, finite element 

method (FEM) and integral equation formulations are becoming popular. We will 

have a brief review of selected numerical method uses in interconnects analysis, and 

discuss the Finite-Difference Time-Domain (FDTD) method in detail. 

2.1 Physical Model of the Interconnects 

 Different physical models with various assumptions and simplifications have 

been performed in the Metal-Insulator-Silicon-Metal (MISM) interconnects study. 

According to [21], physical models are divided into four main categories: analytical 

or empirical lumped circuit models, parallel-plate waveguide models, planar multi-

layered multi-conductor transmission line models, and combined electromagnetic and 

device simulation models.  

The first physical model is the analytical lumped circuit model. In general, 

analytical lumped circuit models will provide fast calculation and instant insight to 

the performance of interconnects. However, they are restricted to certain simplified 

situations. The lumped-capacitance model assumes that signal rise/fall times are 

much larger than signal propagation time. However, this assumption is not true for 

modern high-speed VLSI. Figure 1 gives the performance enhancement of 
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interconnects as the technology advances [22]. The MOSFET switching delay is 

approximately equal to the signal rise/fall time. The interconnect RC response time is 

the propagation delay of interconnect. It is the time needed for a signal to travel from 

one point on the interconnect to another. The term “RC” comes from the lumped 

equivalent circuit model of interconnect. Under the 100nm technology, the time that 

takes the signal to travel along the interconnect (the propagation delay) is larger than 

the MOSFET switching delay (signal rise/fall times). Thus, the interconnect can no 

longer be viewed as a lumped model. The transmission line effect of the interconnect 

has to be taken into account.  

 

Figure 1 Example of interconnects performance improvement with technology. Switching 
delay, interconnect RC response time are major aspects we are interested here [22]. 

 

Hasegawa and Seki [23] have shown that using lumped-capacitance models 

for interconnections is not applicable if switching times are less than 100 ps, which is 

almost always the case for present IC industries. In conclusion, the first physical 

model of interconnects is inapplicable on long interconnects in modern IC’s. 
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The second physical model is the parallel-plate waveguide model.  Parallel-

plate waveguide models study the MISM structure by ignoring the fringing effect and 

assuming the metal line has infinite width. This problem can be solved by solving 

Maxwell’s equations in each region while satisfying the boundary conditions on the 

interface. The propagation constants can be resolved from this method and the 

electric field and magnetic field can also be obtained. Based on this method, Guckel 

[2] and Hasegawa [3] proposed the foundation of the three fundamental propagation 

modes (the quasi-TEM mode, the slow-wave mode, and the skin-effect mode) theory 

in interconnects research area. However, this method requires regular structures to 

derive the solutions. It might not be available to decompose complicated line 

structures into regular regions, which makes it inapplicable. Also, for complicated 

structures with regular regions, the analytical problems become more difficult to 

solve, and the detailed field distribution in different materials is very hard to obtain. 

Real on-chip interconnects usually have multi-conductor lines. The third 

physical model is the planar multi-layered multi-conductor transmission line 

model. This model is based on the full-wave analysis results and is found to best 

represent real on-chip interconnects structures. The different full-wave analysis 

includes the spectral domain analysis (SDA) method [15], the method of lines (MOL) 

[24], the transmission line matrix (TLM) method [25], the finite-difference time-

domain (FDTD) method [8], the finite element method (FEM) [5], and the boundary 

element method (BEM) [26] etc.. A short introduction of these full-wave analysis 

methods can be found in the next two sections.  
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The last physical model is to combine the electromagnetic and device 

simulation together and solve coupled electromagnetic and device equations at the 

same time. When the electromagnetic wave is propagating along the MISM structure, 

there are two mechanisms affecting the field and energy distribution: One is the 

attenuation effect arising from the energy dissipation; the other is the screening effect 

of the carriers in the semiconductor that prohibits the field from penetrating into the 

semiconductor. The first mechanism is described by Maxwell’s equations, while the 

second is described by the device transportation equations. This combined physical 

model allows the analysis to include carrier accumulation and depletion factors, 

screening effect of the carriers, and propagation properties of the electromagnetic 

waves along the MISM interconnects[27][30]. With this model, the interaction 

between the electromagnetic field and the movement of carriers in the semiconductor 

can be discovered. 

2.2 Numerical Method in Interconnects Analysis Overview 

Three major categories of numerical techniques are used in the 

electromagnetic analysis of MISM structures [21]:  The quasi-TEM analysis, the 

frequency-domain full-wave analysis and the time-domain full-wave analysis. 

2.2.1 Quasi-TEM analysis 

Quasi-TEM analysis simulates the wave propagating in the MISM structures 

as Transverse Electromagnetic (TEM) wave. This means we assume the transmission 

line system has two lossless conductors. Strictly speaking, the MISM structure can 

not support the TEM wave, because of its inherent dissipation of the structure. 
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However, according to different research reports [3], [28] and [29], if the longitudinal 

electric field is much less than the transverse electric field of the mode, the quasi-

TEM approximation is applicable. This is easy to understand. There are no 

longitudinal field components in an ideal TEM wave. Only transverse field 

components will exist. That is, only the field components perpendicular to the 

propagating direction are allowed in TEM wave. 

According to [29], the quasi-TEM analysis is valid to switching speeds of 7 ps 

in 1989. The upper bound is more stringent in today’s technique. In GHz frequency 

range, where interconnect radiates like an antenna, the effect of loss in the substrate is 

more and more important. The quasi-TEM assumption does not hold anymore, and 

the effect of the substrate loss has to be taken into account. 

2.2.2 Frequency-Domain Full-Wave analysis 

The frequency-domain full-wave analysis solves the variations of the original 

Maxwell’s equations. For example, the time-harmonic Maxwell’s equations, the 

Helmholtz wave equations, and the integral equations derived from the wave 

equations using the Green’s function. The first two lead to differential methods, such 

as the finite difference method (FD) [30] or the finite element method (FEM) [5]. The 

third one yields integral equation methods, such as the boundary element method 

(BEM) [26] or the spectral domain analysis (SDA) [14]-[16] method.  

The Spectral Domain Approach (SDA) [14]-[16] applies the Green’s 

function in the Fourier transform domain (This is also known as spectral domain). 

The Green’s function has a much simpler form in the spectral domain than in the 

space domain, which makes the SDA method very efficient. 
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Some advantages of the SDA method are [16]: 

• Multi-layer, multi-conductor structures are easily modeled. 

• Since it is a frequency-domain method, it can be used for all the 

frequency dependent conductivities, and all the frequencies. 

• It is fast and efficient for planar and quasi-planar guiding structures. 

Some disadvantages of the SDA method are [16]: 

• This method bases on the Green’s function. For a general 

configuration or inhomogeneous material, the Green’s function may 

not exist. 

The Finite Difference (FD) method approximates Maxwell’s differential 

equations with the finite differences. It comes from the Taylor’s expansion of the 

partial differential equations. The Finite Difference (FD) method is easy to 

implement, but it is best suitable for simple boundary problems. The curved boundary 

is generally approximated by a staircased approximation and will introduce extra 

errors in addition to the finite difference discretization error. Fortunately, in general 

the boundary of the MISM structure can be simulated exactly with proper 

arrangement of the mesh in Cartesian coordinates. 

The Finite Element Method (FEM) can also be applied to study the 

performance of the MISM interconnects [5]. In FEM, the simulation domain is first 

discretized into small element, then, each element is mapped into a standard element 

with a local coordination. Fields are expressed in the form of interpolation functions 

in each local element. All the local elements are assembled together with proper 

boundary conditions to form an algebraic system.  
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Some advantages of the finite element method for wave problems are [26]: 

• Complex geometries are easily modeled (eg. The curved boundaries). 

• Boundary conditions are implicit. 

• Nonhomogeneous materials are easily accommodated. 

• The coefficient matrix is banded, sparse, symmetric, and positive 

definite. 

Some disadvantages of the finite element method are [26]: 

• It is difficult to represent open boundaries. 

• The unknowns must be solved for throughout the whole domain even 

if the solution is required only at a few points. 

Both the FEM and FD methods use a differential approach, which requires a 

large number of meshes to implement the absorbing boundary condition for the 

unbounded problems. 

The Boundary Element Method (BEM) is an integral method based on 

Green’s theorem. Maxwell’s equations are transformed into integral equations on the 

boundaries of the simulation domain. To implement this method, only the mesh on 

the interface of the material is necessary. 

Some advantages of the BEM for wave applications are [26]:  

• BEM method can model the open boundary problem with less mesh. 

• Numerical accuracy is generally greater than that of the FEM. 

• BEM can easily model curved boundaries.  

• The unknowns are only on the boundaries, and it’s efficient to solve 

the problem. 
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Some disadvantages of the BEM are [26]: 

• It is not convenient to represent nonlinear or non-homogeneous 

materials [17]. 

• The coefficient matrix is full and is not guaranteed to be positive 

definite. 

2.2.3 Time-Domain Full-Wave analysis 

The time-domain full-wave analysis is preferred if a transient analysis is 

desired. There are two widely used time-domain full-wave analysis method: The 

finite-difference time-domain (FDTD) method and the time-domain Transmission 

Line (Matrix) Modelling (TLM) method [31].  

Transmission Line (Matrix) Modelling (TLM) method solves 

electromagnetic wave problems in the time domain. It approximates the exact 

solution by discretizing the solution domain into a network of transmission lines. The 

voltage and current on the nodes of the transmission line network provide the 

information of the electric and magnetic fields. At one time-step, voltage pulses first 

incident upon each transmission-line. According to the scattering matrix determined 

by the Maxwell’s equations, these pulses will be scattered to produce a new set of 

pulses. These new pulses will incident on adjacent nodes at the next time-step. The 

major advantage of the TLM method is the capability of studying the transient 

responses and its simplicity in implementation. 

The Finite-Difference Time-Domain (FDTD) method solves the original 

Maxwell’s curl equations in the time domain. The traditional FDTD method is 

computationally expensive and has the difficulty to handle frequency-dependent 
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interactions such as material dispersion and metal skin effects [21]. In the next two 

sections in this chapter, we will review the FDTD in detail, since it acts as the 

foundation of the ADI-FDTD method applied in the MISM analysis. It is especially 

worth mentioning here that the FDTD method needs to be implemented with caution 

to avoid numerical instability. The reason will be explained in section 2.4.2. 

2.3 Maxwell Equations and Yee’s Cell 

2.3.1 Maxwell’s Equations for the FDTD method 

 Among the various numerical methods mentioned in the previous section, the 

Finite-Difference Time-Domain (FDTD) method is found to be very attractive in 

solving Maxwell’s equations of the electromagnetic problems. It is the basis of the 

Alternating-Direction-Implicit Finite-Difference Time-Domain (ADI-FDTD) method. 

Thus, we will spend a few sections here to introduce this method.  

Generally speaking, FDTD is simple and flexible. Since it is a time-domain 

method, when the excitation is a narrow pulse with a large bandwidth, one single run 

of the simulation can provide information over a large bandwidth. The basis of the 

FDTD algorithm is the two Maxwell curl equations in derivative form in the time 

domain. By means of central difference, these equations are expressed in linear 

forms. With the introduction of Yee’s grid, the FDTD matches Maxwell’s equations 

in space and time very well, and the implementation is very straight forward. It is 

well suited to computing responses to a continuous wave or single-frequency 

excitation, and particularly well suited to computing transient responses. 
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  We introduce the FDTD method from the differential form of Maxwell’s 

equations introduced by James Clark Maxwell in 1873. Maxwell’s equations are 

shown below (2-1)-(2-4).  

Ampere’s Law 

eJ
t
DH

v
r

v
+

∂
∂

=×∇                                                    (2-1)  

Faraday’s Law 

mJ
t
BE

v
v

v
−

∂
∂

−=×∇                                                  (2-2) 

Gauss’s Law for the electric field: 

ρ=⋅∇ D
v

                                                             (2-3) 

Gauss’s Law for the magnetic field (No isolated magnetic charge): 

0=⋅∇ B
v

                                                             (2-4) 

Here, E
v

is the electric field vector (V/m); D
v

is the electric flux density vector 

(C/m); H
v

is the magnetic field vector (A/m); B
v

 is the magnetic flux density vector 

(Web/m2); eJ
v

 is the electric conduction current density (A/m2); and mJ
v

 is the 

equivalent magnetic conduction current density (V/m2).   

In linear and isotropic materials (i.e. materials having field-independent, 

frequency-independent, and direction-independent electric and magnetic properties), 

the constitutive relations are: 

ED
vv

ε=                                                               (2-5) 

HB
vv

µ=                                                              (2-6) 

Here, ε  is the electric permittivity (F/m), and µ is the magnetic permeability 

(H/m). The equivalent electric current eJ
v

, and the equivalent magnetic current mJ
v
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refer to the electric and magnetic losses separately. The dissipation of electromagnetic 

fields will convert into heat energy. 

EJ e
vv

σ=                                                              (2-7) 

HJ m
vv

ρ ′=                                                            (2-8) 

Here, σ  is the electric conductivity (S/m), and ρ ′  is an equivalent magnetic 

resistivity (Ω/m).  It is easy to show that only considering the two curl equations in 

Maxwell’s equations is sufficient. Furthermore, the two divergence equations for 

Gauss’s Law need not be explicitly enforced. Substituting (2-5) - (2-8) into (2-2) - (2-

1), we have 

HE
t

H vv
v

µ
ρ

µ
′

−×∇−=
∂
∂ 1                                              (2-9) 

EH
t
E vv

ε
σ

ε
−×∇=

∂
∂ 1                                                 (2-10) 

Writing out the vector components of the above curl equations yields the 

following six coupled scalar equations in the three-dimensional Cartesian coordinate 

system:  









′−

∂
∂

−
∂

∂
=

∂
∂

x
zyx H

y
E

z
E

t
H

ρ
µ
1                                    (2-11a) 








 ′−
∂
∂

−
∂
∂

=
∂

∂
y

xzy H
z

E
x

E
t

H
ρ

µ
1                                    (2-11b) 









′−

∂

∂
−

∂
∂

=
∂
∂

z
yxz H

x
E

y
E

t
H

ρ
µ
1                                     (2-11c) 









−

∂

∂
−

∂
∂

=
∂
∂

x
yzx E

z
H

y
H

t
E

σ
ε
1                                     (2-12a) 









−

∂
∂

−
∂
∂

=
∂

∂
y

zxy E
x

H
z

H
t

E
σ

ε
1                                     (2-12b) 
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







−

∂
∂

−
∂

∂
=

∂
∂

z
xyz E

y
H

x
H

t
E

σ
ε
1                                     (2-12c) 

This system of six coupled partial differential equations forms the basis of the 

FDTD numerical algorithm in three-dimensions. Two-dimensional and one-

dimensional formulations can be easily derived according to (2-11) and (2-12) by 

letting the corresponding dimensions go to infinity. 

2.3.2 Yee’s cell and the formulas of the FDTD method 

In 1966, Kane Yee originated a set of finite-difference equations for the time-

dependent Maxwell’s curl equations for a lossless system [32].  We will show the 

three-dimension formulas of the Finite-Difference Time-Domain methods based on 

the Yee’s grid (Figure 2).  

 
Figure 2 Yee’s Cell for programming convenience 
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To begin our development, consider a one-dimension Maxwell’s equation for 

lossless media (2-11b): 

x
E

t
H zy

∂
∂

=
∂

∂

µ
1                                                    (2-13) 

From the classical definition of a derivative, we have 

x
E

t
H z

t

y

t ∆
∆

=
∆

∆

→∆→∆
limlim

00

1
µ

                                    (2-14) 

 From Figure 3, we note that in the limit a continuous and an exact solution to 

(2-14) is obtained at the point (x, t). It is important to note that at this point, Maxwell’s 

equations do not directly yield electric and magnetic field values, but rather relate the 

rate of change between electric and magnetic field values. 

 

 

 
Figure 3 Space-time graphical interpretation of a one-dimensional component of 
Maxwell’s equations and its discretization.  (Originated by Eric Thiele, quoted in [33]). 

 

We then apply the central differences to relate the derivatives of the 

neighboring discrete fields. The subscription i is for space, and superscript n  is for 
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time. Any field component u as a function of space and time evaluated at a discrete 

point in the space lattice and at a discrete point in time is denoted as 

n
iutnxiu =∆∆ ),(                                                 (2-15) 

So now (2-14) becomes 

( )n
i

n
i

n
i

n
i EE

x
tHH 2/12/1

2/12/1
−+

−+ −
∆
∆

+=
µ

,                         (2-16) 

This implies that we can solve for 2/1+n
iH  if we know the value for H at the 

same spatial point but at t∆ earlier in time, and the value of E  at spatial points 2/x∆±  

away from ix  and 2/t∆  earlier in time. 

It is thus natural to extend this idea into a three dimensional case. The 

arrangement of E field and H field components on the Yee’s cell is shown in Figure 

2. In three-dimensions , the time and space notation is  

n
kjiutnzkyjxiu ,,),,,( =∆∆∆∆                                     (2-17) 

At time step n, the Maxwell’s curl equation (2-11a) on lattice point 

( )zkyjxi ∆+∆+∆ )2/1(,)2/1(,  can be discretized into (2-18a). Similarly, the curl 

equation (2-11b) on lattice point ( )zkyjxi ∆+∆∆+ )2/1(,,)2/1(  can be discretized 

into (2-18b), and (2-11c) on lattice point ( )zkyjxi ∆∆+∆+ ,)2/1(,)2/1(  can be 

discretized into (2-18c). 
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     (2-18a) 



 

 21 
 



























⋅′−
∆

−
−

∆

−

=
∆

−

++++

+++

+++

++

−
++

+
++

n
kjiykji

n
kjix

n
kjix

n
kjiz

n
kjiz

kji

n
kjiy

n
kjiy

H
z

EE
x

EE

t
HH

2/1,,2/12/1,,2/1

,,2/11,,2/1

2/1,,2/1,,1

2/1,,2/1

2/1
2/1,,2/1

2/1
2/1,,2/1

|

||

||

1||

ρ
µ

    (2-18b) 





























⋅′−
∆

−
−

∆

−

=
∆

−

++++

+++

+++

++

−
++

+
++

n
kjizkji

n
kjiy

n
kjiy

n
kjix

n
kjix

kji

n
kjiz

n
kjiz

H
x

EE

y
EE

t
HH

,2/1,2/1,2/1,2/1

,2/1,,2/1,1

,,2/1,1,2/1

,2/1,2/1

2/1
,2/1,2/1

2/1
,2/1,2/1

|

||

||

1||

ρ
µ

     (2-18c) 

At time step n+1/2, the Maxwell’s curl equation (2-12a) on lattice point 

( )zkyjxi ∆∆∆+ ,,)2/1(  can be discretized into (2-19a). Similarly, the curl equation (2-

12b) on lattice point ( )zkyjxi ∆∆+∆ ,)2/1(,  can be discretized into (2-19b), and (2-12c) 

on lattice point ( )zkyjxi ∆+∆∆ )2/1(,,  can be discretized into (2-19c). 
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 According to Yee [32], E field is always calculated on time-step n,n+1, etc; H 

field is always calculated on time-step n+1/2, n+3/2, etc.  In (2-18), the magnetic field 

terms on the right hand side are nH ’s, which are not stored in computer memory.  

Only the previous values of H at time step 
2
1

−n  are stored in memory. We could get 

a good estimation of this intermediate value by different approximations. For 

example, using the central difference at time-step n: 

2

||
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2/12/1 −+ +
=

nn
n HH

H  .                                       (2-20) 

Now (2-18a) becomes 
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We combine the coefficients of the field terms at the same space and same time step, 

and move the yet to be calculated value (unknown value) to the left hand side and the 

stored field terms (known) to the right hand side. This yields the following: 
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(2-21b) 

Normalizing the field on the left hand side yields 





















∆

−
−

∆

−





















′∆
+

∆

+





















′∆
+

′∆
−

=

+++

+++

++

++

++

−
++

++

++

++

+++
++

y
EE

z
EE

t

t

H
t

t

H

n
kjiz

n
kjiz

n
kjiy

n
kjiy

kji

kji

kji

n
kjix

kji

kji

kji

kjin
kjix

2/1,,2/1,1,

,2/1,1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1
2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,2/1
2/1,2/1,

||

||

2
1

|

2
1

2
1

|

ρ
µ

µ

ρ
µ

ρ
µ

 

  (2-21c) 

Similarly, we can reorganize the formulas for (2-19) with 
2
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In summary, we now have 





















∆

−
−

∆

−





















′∆
+

∆

+





















′∆
+

′∆
−

=

+++

+++

++

++

++

−
++

++

++

++

+++
++

y
EE

z
EE

t

t

H
t

t

H

n
kjiz

n
kjiz

n
kjiy

n
kjiy

kji

kji

kji

n
kjix

kji

kji

kji

kjin
kjix

2/1,,2/1,1,

,2/1,1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1
2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,

2/1,2/1,2/1
2/1,2/1,

||

||

2
1

|

2
1

2
1

|

ρ
µ

µ

ρ
µ

ρ
µ

 

   (2-22a) 



 

 24 
 





















∆

−
−

∆

−





















′∆
+

∆

+





















′∆
+

′∆
−

=

+++

+++

++

++

++

−
++

++

++

++

+++
++

z
EE

x
EE

t

t

H
t

t

H

n
kjix

n
kjix

n
kjiz

n
kjiz

kji

kji

kji

n
kjiy

kji

kji

kji

kjin
kjiy

,,2/11,,2/1

2/1,,2/1,,1

2/1,,2/1

2/1,,2/1

2/1,,2/1

2/1
2/1,,2/1

2/1,,2/1

2/1,,2/1

2/1,,2/1

2/1,,2/12/1
2/1,,2/1

||

||

2
1

|

2
1

2
1

|

ρ
µ

µ

ρ
µ

ρ
µ

 

   (2-22b) 





















∆

−
−

∆

−





















′∆
+

∆

+





















′∆
+

′∆
−

=

+++

+++

++

++

++

−
++

++

++

++

+++
++

x
EE

y
EE

t

t

H
t

t

H

n
kjiy

n
kjiy

n
kjix

n
kjix

kji

kji

kji

n
kjiz

kji

kji

kji

kjin
kjiz

,2/1,,2/1,1

,,2/1,1,2/1

,2/1,2/1

,2/1,2/1

,2/1,2/1

2/1
,2/1,2/1

,2/1,2/1

,2/1,2/1

,2/1,2/1

,2/1,2/12/1
,2/1,2/1

||

||

2
1

|

2
1

2
1

|

ρ
µ

µ

ρ
µ

ρ
µ

 

   (2-22c) 

 





















∆

−
−

∆

−





















∆
+

∆

+





















∆
+

∆
−

=
+

−+
+

++

+
−+

+
++

+

+

+
+

+

+

+

+

+
+

z
HH

y
HH

t

t

E
t

t

E
n

kjiy
n

kjiy

n
kjiz

n
kjiz

kji

kji

kjin
kjix

kji

kji

kji

kji

n
kjix 2/1

2/1,,2/1
2/1

2/1,,2/1

2/1
,2/1,2/1

2/1
,2/1,2/1

,,2/1

,,2/1

,,2/1
,,2/1

,,2/1

,,2/1

,,2/1

,,2/1

1
,,2/1

||

||

2
1

|

2
1

2
1

|

ε
σ
ε

ε
σ
ε

σ

 

       (2-23a) 





















∆

−
−

∆

−





















∆
+

∆

+





















∆
+

∆
−

=
+

+−
+

++

+
−+

+
++

+

+

+
+

+

+

+

+

+
+

x
HH

z
HH

t

t

E
t

t

E
n

kjiz
n

kjiz

n
kjix

n
kjix

kji

kji

kjin
kjiy

kji

kji

kji

kji

n
kjiy 2/1

,2/1,2/1
2/1

,2/1,2/1

2/1
2/1,2/1,

2/1
2/1,2/1,

,2/1,

,2/1,

,2/1,
,2/1,

,2/1,

,2/1,

,2/1,

,2/1,

1
,2/1,

||

||

2
1

|

2
1

2
1

|

ε
σ
ε

ε
σ
ε

σ

    

(2-23b) 



 

 25 
 





















∆

−
−

∆

−





















∆
+

∆

+





















∆
+

∆
−

=
+

+−
+

++

+
+−

+
++

+

+

+
+

+

+

+

+

+
+

y
HH

x
HH

t

t

E
t

t

E n
kjix

n
kjix

n
kjiy

n
kjiy

kji

kji

kjin
kjiz

kji

kji

kji

kji

n
kjiz 2/1

2/1,2/1,
2/1

2/1,2/1,

2/1
2/1,,2/1

2/1
2/1,,2/1

2/1,,

2/1,,

2/1,,
2/1,,

2/1,,

2/1,,

2/1,,

2/1,,

1
2/1,, ||

||

2
1

|

2
1

2
1

|

ε
σ
ε

ε
σ
ε

σ

    

(2-23c) 

Yee’s algorithm is one of the gridding methods of greatest use since its 

fundamental basis is so robust. The Yee algorithm is robust for the reasons that 

follow [33]. 

First, Yee’s algorithm is useful because it solves for both electric an magnetic 

fields in time and space using the coupled Maxwell’s curl equations rather than 

solving for the electric field alone (or the magnetic field alone) as with the wave 

equation. 

In addition, in Yee’s cell, every E
v

 field vector component is surrounded by 

four H
v

 field components, and every H
v

 field component is surrounded by four E
v

field 

components, as illustrated in Figure 2. This provides a simple picture of three-

dimensional space being filled by an interlinked array of Faraday’s Law and 

Ampere’s Law contours. The continuity of the tangential E
v

is naturally maintained 

across an interface of dissimilar materials if the interface is parallel to one of the grid 

coordinate axes (This is proven in section 2.4.4). The resulting finite-difference 

expressions for the space derivatives are central in nature (central-difference) and 

second-order accurate. 

Further, the Yee algorithm centers the E
v

 and H
v

 field vector components in 

time in what is termed as the leapfrog arrangement. This algorithm says: All the E
v

 

field computations in the three-dimensional space of interest are computed for a 

particular time point using the most recently computed H
v

 field data stored in the 
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computer memory; Then, all the H
v

 field computations in the three-dimensional space 

are computed using the E
v

 field data just computed and stored in memory. 

Finally, Yee’s algorithm is robust because no matrices are involved and no 

large systems of simultaneous equations need to be solved.  

The FDTD approach based on the Yee algorithm is a straightforward method. 

In summary, the time-stepping flowchart of the FDTD method is given in Figure 4. 

At time zero, all the E field and H field are set to zero. 
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Figure 4 Flowchart of FDTD time-stepping process 

 

Time stepping 
done?

Update 2/1| +n
xH  explicitly for all x, y, z 

Update 2/1| +n
yH  explicitly for all x, y, z 

      Update 2/1| +n
zH  explicitly for all x, y, z 

Update source conditions 

Update boundary conditions 

Update 1| +n
xE  explicitly for all x, y, z 

Update 1| +n
yE  explicitly for all x, y, z 

       Update 1| +n
zE  explicitly for all x, y, z 

Save data 

End Time-Stepping 

YES  t = tmax 

NO  t < tmax 

Start Time-Stepping (t = 0) 

tnt ∆+= )2/1(  

tnt ∆+= )1(  
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2.4 FDTD Concerns 

2.4.1 Cell size 

 The choice of cell size is very important in FDTD. It must be small enough to 

permit accurate results at the highest frequency of interest, and yet be large enough to 

keep resource requirements manageable.  

From the Fourier analysis we know that for a pulse of widthτ , the major 

portion of the frequency spectrum lies between zero and τ1=uf . The Nyquist 

sampling theorem would suggest that the cell size be less than 2uλ  in order for the 

spatial variation of the fields to be adequately sampled. However, the pulse also has 

the frequency content higher than uf  so that not only will the numerical dispersion 

(Waves with different frequencies may travel at different velocities in the 

computational lattice.) appear, but also the differential equations are themselves 

approximations (because the higher order terms in the Taylor expansion are ignored, 

except for the magic time steps where the finite difference is an exact solution). A 

general agreement is that the cell size should be smaller than 
10

uλ  in the material 

medium to obtain some desired accuracy and minimize the effects of the numerical 

dispersion. It has been proven that reducing the grid dispersion error to an acceptable 

level can be readily accomplished by reducing the cell size. People usually choose 

cell sizes smaller than  
20

uλ  if computational resources allow. The reason for this will 

be shown in the dispersion discussion in section 2.4.3. 

Another consideration in cell size is that the problem geometry must be 

accurately modeled. Thus, if the target problem has fine geometrical structures, the 
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cell size should be smaller than what is necessary to resolve the field within the fine 

structure. This cell size might be stricter than the frequency limit in some cases.  

2.4.2 Numerical Stability and Time Step Size 

Once the cell size is determined, the maximum size of the time step t∆  

immediately follows from the Courant condition. Let’s first consider a plane wave 

propagating through the one-dimensional FDTD grid. In one time step, any point on 

this wave can only propagate from one cell to its nearest neighbors. Trying to use 

even a slightly larger time step will quickly lead to numerical instability. On the other 

hand, we can do less than one cell in one time step, but it is not an optimum situation 

and will not lead to increased accuracy. Suppose our plane wave is propagating most 

rapidly between the FDTD grid (Figure 5). If the uniform grid size is h∆  and the time 

step is t∆ , then, the Courant Condition in the one-dimensional case is 

htv ∆≤∆ .                                                      (2-24) 

v  is the maximum velocity of propagation in that medium ( c in free space).  

 

Figure 5 Stability for the one-dimensional FDTD mesh [26] 

 

It is not hard to imagine the 2-D case, where the maximum propagating 

direction is perpendicular to the diagonal (Figure 6), and the Courant Condition is 

also (2-24). 

wave front 
∆h 
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Except here  
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Figure 6 Stability for the two-dimensional FDTD mesh [26] 

 

Similarly, the Courant Condition in 3-D is  

     

222
111

1

zyx
v

t

∆
+

∆
+

∆

≤∆  .                                 (2-27) 

 A rigorous derivation of the Courant Stability Condition can be found in [34]. 

The derivation is based on solving the eigenvalue problem. A mathematically strict 

derivation for the stability condition in the ADI-FDTD method will be skipped here 

to be succinct, but it is performed in the next chapter for completeness. It is worth 

mentioning that the derivation is focused on the Yee’s algorithm in Cartesian 

coordinates. A more generalized stability problem arises due to the interactions 

between the Yee’s algorithm and augmenting algorithms used to model the boundary 

wave front 

∆h 
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conditions, the variable and unstructured meshing, and the lossy, dispersive, 

nonlinear, and gain materials. 

Although in some complex problems, the exact stability criterion cannot be 

derived, a part analytical (or part empirical) upper bound on the time step can still be 

derived so that the numerical stability is maintained for many thousands of time steps, 

if not indefinitely. 

2.4.3 Numerical Dispersion 

 Another important issue to the Finite-Difference Time-Domain (FD-TD) 

numerical algorithm for Maxwell’s curl equations is the numerical dispersion. Waves 

with different frequencies may travel at different velocities in the computational 

lattice.  

 Numerical dispersion is different from physical dispersion. Physical 

dispersion is also called analog dispersion. Physical dispersion comes from the wave 

function directly. Numerical dispersion comes from the discretization and iteration 

formulas for the physical problem. Although to some extent, these two dispersions are 

the same (we can show that when the grid in space and the time steps in time go to 

zero, these two dispersions are the same.), generally speaking, they are different. 

 In order to derive the numerical dispersion relation, let’s assume a normalized 

region of lossless space where 1=µ , 1=ε , 0=σ , 0=′ρ , and 1=c . We can then write 

the two Maxwell’s curl equations in a compact form [34] 

t
VVj
∂
∂

=×∇
v

v
 ,                                                     (2-28) 

Here, EjHV
vvv

+= . 
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Suppose the vector-field traveling-wave expression is  

)
~~~

(
0,,| tnzKkyJkxIkjn

KJI
zyxeVV ∆−∆+∆+∆= ωvv

                                     (2-29) 

Substituting (2-29) into the Yee space-time central-differencing form of (2-

28), we have 
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 Here, x) , y) and z)  are unit vectors in the x-, y-, and z- directions. 

φθ sinsin
~~
kk x = , φθ cossin

~~
kk y = , θcos

~~
kk z = . The tilde on top of the k vectors refers to 

the numerical wave number, which differs from the physical wave number. We can 

look at (2-30) as a linear system where xV , yV  and zV  are the unknown vectors. In 

order to get a unique solution, the determinant of the above eigenvalue system should 

be zero, giving us 
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After denormalizing to a nonunity free space speed of light c , the general 

form of the numerical dispersion relation for the full vector-field Yee’s algorithm in 

three dimensions is  
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Solving k
~  in (2-32) will give us the numerical dispersion relationship. k

~ is a 

function of grid size, time-step size, frequency and propagating direction through the 

grid net. Because k
~  is different from the physical wavenumber k , the numerical 
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phase velocity of the wave also differs from physical velocity c (in free space), and it 

is defined as 

k
v p ~
~ ω

= .                                                  (2-33)  

The normalized phase velocity is (assuming in free space): 

k
k

k
c

kcc
v p

~~~
~

===
ωω                                       (2-34) 

The physical wavenumber is 
0

2
λ
π

=k , 0λ is the wave length in free space. If we 

use the normalized wave length 10 =λ , then  

kkk
k

c
v p

~
2

~
2

~
~

0 πλπ
=== .                                 (2-35) 

Thus, we can evaluate the numerical dispersion through studying the relation 

between k
~  and t∆ , θ , ϕ etc.. We introduce the so called Courant number here to 

relate dispersion study with stability limit (2-36). Because of the Courant stability 

condition (2-27), CFL  must be always equal or less than 1 in FDTD algorithm.  

222
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+
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∆=                                        (2-36) 

First, we show the numerical dispersion in a two-dimensional problem. In 

two-dimensions (for example, in the x-y plane), dispersion relation (2-32) reduces to 
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In (2-37), αcos
~~
kk x = , and αsin

~~
kk y = , where k

~  is the numerical wavenumber, 

and α  is the propagation angle with respect to the positive x-axis. We solve (2-37) 

over different grid size, time-step size and propagating direction for k
~ . The results 
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are in Figure 7. We compare high CFL  ( 19.0 ≈=CFL , Figure 7 (a)), medium CFL  

( 6.0=CFL , Figure 7 (b)), and low CFL  ( 1.0=CFL , Figure 7 (c)) for square cell 

( yx ∆=∆ ), and rectangular cell ( )yx ∆≠∆  with high CFL  ( 19.0 ≈=CFL , Figure 7 (d)).  

 

 

Figure 7 Numerical dispersion relationship of a TM wave. The x-axis is 
propagation direction. Different cell sizes, CFL numbers are compared. 

 
 Figure 7 (a)-(c) shows stronger dispersion when the wave is propagating along 

the grid ( ππα ,2,0= ) for square cells, and less dispersion when the wave is 

propagating towards the diagonal of the grid ( 4πα = ) for square cells. When the 

number of cells per wave length is increased (This means reducing cell size and 

increasing resolution), the dispersion along different directions is reduced significantly. 

The difference between different propagating directions in finer cell cases are smaller 

than that in coarser cell cases. This means, if the solution has dispersion, it is more 

uniformly distributed along different traveling direction for finer cells. We also find 
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dispersion is larger if the CFL number is smaller. In order to keep the dispersion small, 

we should choose the CFL number as large as possible (the maximum CFL is 1, 

according to (2-27)), and use smaller cells, as long as the simulation burden is bearable. 

Figure 7(d) shows dispersion for rectangular cells. We find the dispersion is minimized 

when the wave propagates along the direction of h∆  ( h∆  is defined in Figure 6).  

 Figure 7 also tells us the general convention of using at least 20 cells per 

wavelength will introduce very little numerical dispersion and higher accuracy if the 

iteration is not infinite. This explains why people will generally put at least 20 cells per 

wavelength in their geometry settings. 

 We now solve (2-34) with Newton Raphson method, and study the dispersion 

relation in a 3D scheme. Again, we discuss the dispersion with respect to propagating 

angle, cell size and CFL number. In 3D case, there are two angles: ϕ  is the angle in the 

x-y plane, and θ is the angle from z axis to the x-y plane (Figure 8).  

                
(a) (b) 
 

Figure 8 Dispersion surface definition   
(a) planes perpendicular to xy plane 
(b) cone suface plane with z as the axle 

 

 Figure 9 analyzes the dispersion on planes parallel to the z axis (Figure 8 (a)). 
o0=ϕ , o30=ϕ , o45=ϕ , o60=ϕ and o90=ϕ  planes are all perpendicular to x-y plane.  On 

these planes, waves propagating along different θ  have different phase velocities. 

Figure 10 shows dispersion of cubic cells ( zyx ∆=∆=∆ ) on cone surfaces (Figure 8(b)). 

The axle of these cones is the z axis. Radiuses of these cones vary with the value of θ . 

In both Figure 9 and 10, we vary the CFL number from 0.1 to 0.9. We perform similar 

investigation in Figure 11 and 12, except now the edge of the cell in one direction is 
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defined to be smaller than the rest two directions. We find again that the larger the CFL 

number, the less dispersion occurs. For cubic cells, the minimum dispersion occurs 

when the wave travels along the cubic diagonal direction. This can be viewed as we 

collapse the 3D problem into 1D. The equivalent CFL number along the cubic diagonal 

direction is larger than the equivalent CFL number along other directions. The 

minimum dispersion occurs when the CFL number is maximized. We are expecting 

that for non-cubic cells, the minimum dispersion occurs when the wave propagates 

perpendicular to the “lattice planes” with the shortest intervals. Along this direction, the 

collapsed 1D problem has the maximum CFL number. The “lattice plane” is a term we 

borrowed from the solid state physics. Here the primary lattice is the Yee’s cell (cubic, 

or non-cubic). This trend can be seen from Figure 11 and 12. A rigorous proof is our 

future work. 
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Figure 9 Numerical dispersion of cubic cells on planes 
perpendicular to x-y plane in 3D FDTD. Different propagation 
directions, CFL numbers are compared. 
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Figure 10 Numerical dispersion of cubic cells on cone surfaces 
with z as the axle in 3D FDTD. Different propagation directions, 
CFL numbers are compared. 
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Figure 11 Numerical dispersion of non-cubic cells on planes 
perpendicular to x-y plane in 3D FDTD. Different propagation 
directions, CFL numbers are compared. 
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Figure 12 Numerical dispersion of non-cubic cells on cone 
surfaces with z as the axle in 3D FDTD. Different propagation 
directions, CFL numbers are compared. 
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2.4.4 Boundary Conditions  

Our major interest in this thesis is to simulate the MISM structure, which is 

illustrated in Figure 21 in Chapter 4. We summarized the “boundary” of our problem 

in physical world as follows:  A ground metal plane is at the bottom of the substrate. 

This ground plane is assumed to be an ideal metal plane. This means, the tangential 

electric field on the surface of the ground plane is zero. On top of the MISM, the open 

air region exists. The excitation is added to one side of the metal line (we call this 

side the starting plane of the metal line). There is no reflections at the other end of the 

metal line (we call this end the ending plane of the metal line). This means the metal 

line has matched loads, or the metal line is infinitely long. The region to the left and 

right side of the metal line goes to infinity (open region).  

In numerical simulation, we have to build numerical formulas that can 

properly model the above physical boundaries.  

PEC boundary condition 

We will use the Perfect Electrical Conductor (PEC) boundary condition on the 

ideal ground metal plane. On the surface of this boundary, all the tangential electric 

fields are zeroes. Because the electric fields are located at the edge of the each Yee’s 

cell, we must put the cell edge at the boundary edge in order to implement this 

boundary condition. For example, if the bottom plane of the Yee’s cell is the ideal 

ground metal plane in Figure 2, then the bottom face is the surface where the PEC is 

located. Setting the tangential components of the electric field to be zero results in: 

0|||| ,2/1,1,2/1,,1,2/1,,2/1 ==== ++++++
n

kjiy
n

kjiy
n

kjix
n

kjix EEEE                (2-38) 
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ABC (Absorbing Boundary Conditions) 

In real world the chip is usually in an open region. However, the computation 

domain must have a limited size, since no computer can store and operate on infinity 

number of data. The FDTD simulation must be performed in a finite domain, which 

requires the truncation of the open region. We defined the finite simulation domain by 

putting one air plane on top of the MISM structure, four side walls on each side of the 

MISM structure, and one ground plane at the bottom of this structure. The boundary 

condition on the bottom ground plane is already discussed in the previous section. We 

will discuss the other five boundary planes here. 

If the computational domain is extended far from sources and scatterers, 

electromagnetic waves can be assumed to propagate outwards the boundary. Proper 

boundary conditions have to be added on the truncation plane to minimize the 

artificial reflections on the boundary. The Absorbing Boundary Conditions (ABC) 

will simulate the model as if there is no reflection on the truncation interface. This is 

useful in simulating the truncated open region or the guided-wave problems with 

matched termination loads. Therefore, ABC’s will be performed on the top air plane, 

the side walls and the ending plane of the metal line. A survey of different ABC’s can 

be found in [34]. Mur’s boundary condition [35] is one of the most popular ABC’s. 

The first order Mur’s boundary condition is very easy to implement and will achieve 

good accuracy. The second order Mur’s boundary condition is derived in uniform 

space and has larger spurious wave if the boundary has dielectric discontinuities [35]. 

Thus, we will use the first order Mur’s boundary condition in our concerns. 
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The FDTD method uses Yee’s cell as its fundamental components, where the 

electric field is always on the edge of the cell. Therefore, on each boundary plane, 

there exist only the tangential electric field components and the normal magnetic field 

components. 

From the wave equation, 
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According to Mur’s original work [35], we introduce the operators xD , yD  

and zD  to represent the inverse of the velocity along different coordinates. We can 

then split the wave equation into each x, y, and z directions:  
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(2-41) 

The plus and minus signs in each bracket demonstrate the wave is traveling 

along the negative or positive direction of the corresponding Cartesian axes. For 

example, 0=

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 represent an electric field propagating along the positive y 

direction; 0=

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y y
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represent an electric field propagating along the negative y 

direction. Considering the boundary at y=0, only the xE and zE field are on the 
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boundary according to the Yee’s cell (Figure 2). We will take xE  traveling toward the 

negative y direction as an example to derive the Mur’s first boundary condition. 
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Applying the first order Taylor’s expansion on the square root will give us the 

Mur’s first Boundary Condition: 
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This approximation is valid only when ( ) ( )22
zx cDcD +  is very small. If the 

wave incidents normally to the boundary (y=0 plane), the velocity in the x and z 

directions is much less than it in the y direction.  
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 (2-44a) is the Mur’s first boundary condition for xE  on y=0 plane.  

To implement (2-44a) in the FDTD scheme, we will perform the central 

difference at time step n+1/2, on lattice point ( )zkxi ∆∆+ ,2/1,)2/1( . 
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This gives the boundary condition for xE on the y=0 boundary: 
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Mur’s first boundaries conditions of other electric field components can be derived 

similarly. They are listed below. 

Boundary condition for zE on the y=0 boundary is: 
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Boundary condition for xE on the y=ny boundary is: 
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Boundary condition for zE on the y=ny boundary is: 
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Dielectric-Dielectric Interface 

If there are more than one materials in the simulation domain, from the 

Maxwell’s equations, the tangential component of the electric field and the normal 

component of the magnetic flux density must be continuous at the these interfaces. 

This is automatically satisfied with the use of Yee’s cell in our FDTD scheme as we 

mentioned in section 2.3.2. The reason is discussed below. 

Considering the kjixE ,,2/1| + in the middle of four Yee’s cells with different 

permittivity and conductivities, as illustrated in Figure 13. Loop C is the path used for 

the integrated form of Maxwell’s equation. The magnetic field pointing out in the 

middle of the interface of each cell goes exactly through loop C. 
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Figure 13 Dielectric-Dielectric Interface Implementation. 

 

The integrated Maxwell’s equation along loop C is: 
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Applying the central-difference equations to the above equation yields: 
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Here, kji ,,2/14321 +==== εεεεε , kji ,,2/14321 +==== σσσσσ . For uniform 

cells,
4224321

zyyzSSSS ∆∆
=

∆
⋅

∆
==== . After combining the coefficients of the same 

terms together, we have 
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(2-48) 

(2-48) the same as (2-23). This tells us if we define the permittivity and 

conductivity on the edge of each cell, the boundary condition on dielectric 

discontinuity is automatically satisfied in FDTD algorithm. If the permittivity and the 

conductivity are defined in the center of each cell, instead on the edge, then the 

equivalent permittivity and the conductivity on the edge is the average of those 

properties of the four adjacent cells that include this edge.  

The permeability of all the materials in our problem is assumed to be the same 

as in free space. Therefore, there is no permeability discontinuity in our simulation. 

However, it can be proven in a similar way that our FDTD formulas will guarantee 

the field continuity at the boundary of materials with different permeability. 

2.5 Summary  

 In this chapter, we reviewed the numerical methods used in interconnect 

analysis and the Finite-Difference Time-Domain (FD-TD) method. A standard flow 

chart of this conventional algorithm is introduced. Important numerical factors that 

strongly impact the stability and the accuracy of the algorithm, such as the choice of 



 

 48 
 

cell size, the numerical stability, dispersion properties and boundary conditions are 

discussed in detail. The conventional FD-TD algorithm is the ancestor of the 

Alternate-Direction-Implicit Finite-Difference Time-Domain (ADI-FDTD) method, 

which will be introduced in the next chapter. 
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Chapter 3: ADI-FDTD Method 

3.1 Background of the ADI-FDTD Method 

We have learned from Chapter 2 that the very simple FDTD method can 

model various problems. However, in real problems, the distance scale over which 

the key physical processes or the material/structural properties must be resolved can 

range over several orders of magnitude. FDTD is limited to electrically small 

structure problems. The constraints stay in two folds: the grid size must be small 

enough in comparison with the shortest wave length (the shortest wave length 

represents the highest frequency component in the modeling problem.) and the time 

step must be small enough to satisfy the Courant stability condition. FDTD is yet to 

be a computationally efficient method.  

To circumvent the Courant stability condition, various schemes of hybrid 

FDTD algorithm or higher order FDTD techniques have been presented. The hybrid 

FDTD method first calculates the problem region with coarse grids, recording the 

data on the interface of the region where we care more about the details. Then, we use 

these data on the interface as the boundary and use local mesh cells (sub grids or sub 

cells) to calculate the local field again and get the more accurate solution in the local 

region. In this method, we have to use the FDTD twice for the same problem. 

Considering that FDTD is a time iteration method, the hybrid FDTD method is less 

efficient. Also, the non-uniform cells will increase the truncation error of the finite-

difference approximation at the boundary of two domains whose cell sizes differ. 

This results in a significant calculation error in some problems [36]. Higher order 
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FDTD techniques use higher order Taylor’s expansions (instead of the standard 

second order accurate form) to discretize the partial differential equations. This can 

reduce the numerical dispersion [34]. For example, a much coarser grid can be used 

in the fourth-order accurate spatial central difference form to obtain less dispersion 

than the lower order FDTD with finer grids.  However, calculating the fourth-order 

difference is very difficult when there is more than one material in the computation 

region, which is true for almost all real physical problems. Also, the fourth-order 

FDTD has slightly degraded the Courant stability conditions. Thus the higher order 

FDTD is not a perfect solution to the space-time restrictions either [34]. 

Meanwhile, other time-domain methods have been investigated. Krumpholz 

and Katehi proposed the Multiresolution Time-Domain method (MRTD) to relax the 

constraint on grid size [37]. The spatial discretization resolution can reach as low as 

two grid points per wavelength, and still provide tolerable numerical dispersion. Liu 

has proposed the pseudo spectral time-domain (PSTD) method [38] which uses the 

fast Fourier transform (FFT) to express spatial derivatives. The PSTD method can 

also provide high accuracy with two grid points per wavelength. However, in both 

methods, the Courant stability condition still has to be satisfied. Moreover, in MRTD, 

the time-to-spatial step ratio is five times less than that of conventional FDTD 

[37][39]. The stability condition becomes more stringent. 

There has not been many attempts to relax or to remove the famous Courant 

stability condition. Implicit methods may eliminate the Courant condition induced in 

the explicit FDTD method. Unfortunately, a fully implicit scheme requires the 

solution of a large linear system of equations representing the full volume 
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discretization at each time step. Among these implicit techniques, the Alternating-

direction Implicit (ADI) method is widely used in solving fluid mechanics and heat 

transfer problems, which results in various unconditionally stable finite-difference 

formulations for parabolic questions since it was introduced in the mid 1950’s [40]-

[41]. In 1984, the alternating-direction-implicit (ADI) technique was first used on 

Yee’s grid to formulate an implicit FDTD scheme by Holland [39]. In that work, the 

finite-difference operator for 3D solution of Maxwell’s equations was factored into 

three operators with each operator being performed in respect to the Cartesian 

coordinate directions. In each FDTD iteration cycle, three implicit substep 

computations were required. It was never found to be completely stable without 

adding significant dielectric loss. In 1999, the ADI method was applied on Yee’s 

staggered grid in a 2D-TE wave problem [20].  The method is named the ADI-FDTD 

method. It shows great success in removing the Courant stability constraint and the 

selection of the time step used in this ADI-FDTD method only depends on problem 

accuracy [20].  

3-D ADI-FDTD was also developed both in the Cartesian coordinates and in 

the cylindrical coordinates [42]. Various boundary condition implementations have 

been applied on the ADI-FDTD method as well [40].  

3.2 ADI-FDTD Formulas and Flowchart 

We will present the conventional ADI-FDTD method in this section. The 

ADI-FDTD method comes directly from the conventional second order accurate 

FDTD method based on Yee’s cell. Because we are interested in on-chip interconnect 

problems, the conductivity should not be neglected. This means σ  in Maxwell’s 
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equations is not zero. However, the magnetic loss is not important and we can 

assume 0=′ρ . 

We start by deriving the ADI-FDTD from the FDTD method (2-18), (2-19). In 

FDTD method, we compute the field marching from time step n to n+1 in an explicit 

way. However, in ADI-FDTD method, we will break this one time step into two sub 

time steps: the first step is from n to n+1/2 and the second step is from  n+1/2 to n+1.  

In the other words, we will make the finite differences centered at n+1/4 in the first 

step and n+3/4 in the second step.  In the first half-step, the first partial derivative on 

the right hand side of (2-19) is replaced with an implicit difference approximation at  

the future n+1/2 time step while the second partial derivative on the right hand side is 

replaced with an explicit finite difference approximation of the known values at the 

previous n time step.  In the second half-step, the second partial derivative on the 

right hand side of (2-19) is replaced with an implicit difference approximation at the 

future n+1 time step while the first partial derivative on the right hand side is 

replaced with an explicit finite difference approximation of the known values at the 

previous n+1/2 time step. For example, for the partial differential equation of x 

component of the electric field: 
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The corresponding central difference form is  
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We will perform this on all six scalar Maxwell’s differential equations. The 

summary of the equations is shown below. 
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It is worth noting that the choice of implicit and explicit difference 

approximation in each sub time step is not unique. For example, in the first half-step, 

we can replace the second partial derivative on the right hand side with an implicit 

difference approximation at the future n+1/2 time step while the first partial 

derivative on the right hand side of (2-19) is replaced with explicit finite difference 

approximation using known values at the previous n time step. In the second half-

step, the first partial derivative on the right hand side of (2-19) is replaced with an 

implicit difference approximation at the future n+1 time step while the second partial 

derivative on the right hand side are replaced with an explicit finite difference 

approximation from known values at the previous n+1/2 time step.  In this way, we 

will get a set of iterations different from (3-4) and (3-5), but all the physical and 

numerical characteristics of these two iterations are similar. In this thesis, our 

discussion will focus on the iterations shown in (3-4) and (3-5). 

In the first half-step, in order to find the E field at the n+1/2 time step, we 

need to solve (3-4a). Substituting (3-4f) in (3-4a) allows cancellation of the unknown 

zH  terms at the future n+1/2 time step. After reorganizing the terms, we have: 
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(3-6a) 

The left hand side terms in (3-6a) are unknown xE  field vectors along the y 

direction. The right hand side terms in (3-6a) are the known field components 

calculated from and stored in the previous half-time-step. Now, the xE  field vectors 

along the y direction can be calculated by (3-6a).  

Similarly, substituting (3-4e) into (3-4b), (3-4d) into (3-4c), we have: 
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(3-6c) 

The yE  field vectors along the z direction can be calculated by (3-6b) and the 

zE  field vectors along the x direction can be calculated by (3-6c). Then, we will use 

(3-4d) - (3-4f) to update the H field at the n+1/2 time step explicitly. 

Similarly, in the second half time step, after substituting (3-5d) - (3-5f) into 

(3-5a) - (3-5c) accordingly, we have: 
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 (3-7c) 

Now, at the end of the )1( +n  time step, we can calculate the xE  field vectors 

along the z direction by (3-7a), the yE  field vectors along the x direction by (3-7b), 

and the zE  field vectors along the y direction by (3-7c). Then, we will update the H 

field at the )1( +n  time step with (3-5d)-(3-5f) explicitly. The above ADI-FDTD time-

stepping process is summarized in the flowchart in Figure 14.  
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Figure 14 Flowchart of the ADI-FDTD time-stepping process [40] 

 

Update 2/1| +n
xE  implicitly along y direction for all x, y, z (3-6a) 

Update 2/1| +n
yE  implicitly along z direction for all x, y, z (3-6b) 

Update 2/1| +n
zE  implicitly along x direction for all x, y, z (3-6c) 

Update 2/1| +n
xH  explicitly for all x, y, z (3-4d) 

Update 2/1| +n
yH  explicitly for all x, y, z (3-4e) 

               Update 2/1| +n
zH  explicitly for all x, y, z (3-4f) 

Sub-iteration #1 

Time stepping 
done?

Update source conditions 

End Time-Stepping 

YES  t = tmax 

NO  t < tmax 

Start Time-Stepping (t = 0) 

Update source conditions 

tnt ∆+= )2/1(  

 

Update 1| +n
xE  implicitly along z direction for all x, y, z (3-7a) 

Update 1| +n
yE  implicitly along x direction for all x, y, z (3-7b) 

Update 1| +n
zE  implicitly along y direction for all x, y, z (3-7c) 

Update 1| +n
xH  explicitly for all x, y, z (3-5d) 

Update 1| +n
yH  explicitly for all x, y, z (3-5e) 

                Update 1| +n
zH  explicitly for all x, y, z (3-5f) 

Sub-iteration #2 tnt ∆+= )1(  
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3.3 ADI-FDTD Concerns 

 Similar to the FDTD algorithm, numerical stability and numerical dispersion 

are important fundamental characteristics of the ADI-FDTD method. According to  

numerical stability analysis, we will find the proper relationship between the grid size 

and the time step size. Through numerical dispersion analysis, we will further clarify  

the factors that impact the accuracy of the ADI-FDTD algorithm. 

 However, the analysis of the numerical stability and the numerical dispersion 

relationship is much more complicated than the conventional FDTD method. This is 

because in the ADI-FDTD method, we have introduced the sub time-step and 

therefore, the non-physical intermediate field components. The research of stability 

and numerical dispersion in the ADI-FDTD method is still an open problem in many 

aspects. 

3.3.1 Cell size 

 Similar to the FDTD method, the first step in applying the ADI-FDTD method 

is to determine the proper cell size in the modeling problem.  

 FDTD algorithm could handle electrically small problems. In electrically 

small problems, the grid cell size that can effectively capture the transient wave 

propagating characteristics is much smaller than the minimum geometrical size of the 

component in the model.  

 ADI-FDTD is designed to simulate those problems with fine geometrical 

structure. The grid size is pinned to be much smaller than the grid size required by the 

wavelength. This is the electrically large problem. We will discuss the limitation of 
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time-step size in the next subsection, where we will also discuss the stability of the 

ADI-FDTD method. 

 The choice of cell size must satisfy two requirements simultaneously. First, it 

must be small enough to allow accurate results at the highest frequency of interest. 

Second, it must be able to resolve the finest geometrical structures of interest. As an 

additional requirement, the number of cells must not be too large in order to keep 

resource requirements manageable.  

 Similarly as in the FDTD method, people usually choose cell sizes smaller 

than  
20

uλ  if computational resources allow, where uλ  is the shortest wavelength of 

interest. The reason for this will be covered in section 3.3.3. 

3.3.2 Numerical Stability, Cell and Time Step Sizes 

ADI-FDTD is announced to be stable for any time-step sizes. However, at 

certain time-step sizes, the numerical results are noise-like and no wave travels. Thus, 

the ADI-FDTD method does have time-step size limitations.  

3.3.2.1 1D and 2D Stability Analysis using the von Neumann’s method 

The numerical stability analysis of the ADI-FDTD algorithm is first presented 

by Namiki when he introduced this algorithm in 1999 [20]. This analysis is performed 

in 2D ADI-FDTD scheme. Later on, Guilin Sun has performed the stability analysis 

based on the same method both in the 1-D and 2-D ADI-FDTD scheme [43]-[44].  

We introduce amplification factor in the iteration. The recursive process is 

stable when the amplification factor is equal or smaller than the unit value.  
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We will use the 2-D TE wave equations as an example. The field solution is 

defined as: 

)
~~

(
0

ykxkjn yxe += ξψψ                                              (3-8a) 

where 1−=j , xk
~ and yk

~ are numerical wave numbers. ξ  is the amplification 

factor. For each field component, we have 

)
~~

( ykxkjn
lAx

yxeE += ξψ                                            (3-8b) 

)
~~

( ykxkjn
lBy

yxeE += ξψ                                             (3-8c) 

)
~~

( ykxkjn
lBz

yxeH += ξψ                                            (3-8d) 

2,1=l , where 1=l  refers to the first half-time step, and 2=l  indicates the 

second half-time step. ψ is the amplitude of field components. 

Substituting (3-8b)-(3-8d) into the first half-time step of the 2-D TE mode 

ADI-FDTD equations will yield: 

( )( )
2

22

1 1

1111

x

yx

W

WWj

+

−++±
=ξ ,                                  (3-9a) 

And substituting (3-8b)-(3-8d) into the second half-time step of the 2-D TE 

mode ADI-FDTD equations will yield: 

( )( )
2

22

2 1

1111

y

yx

W

WWj

+

−++±
=ξ                                  (3-9b) 

Here 1−=j ; t∆ is the time step size; 








 ∆
∆
∆

=
2

~
sin

xk
x
tcW x

x , 











 ∆

∆
∆

=
2

~
sin

yk
y
tcW y

y ; 

x∆ , y∆ are spatial meshing sizes along the x  and y  axes; 
µε
1

=c is the free space 

velocity; µ and ε  are the permittivity and permeability of the material, respectively; 
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φcos
~~
kk x = , φsin

~~
kk y = , 22 ~~~

yx kkk +=  is the numerical wave phase constant; φ  is the 

travel direction with respect to the positive x  axis. 

For convenience, we rewrite the (3-9) in the phasor form: 

1
101

ϕξξ je±=                                                 (3-10a) 

2
202

ϕξξ je±=                                                (3-10b) 

where  

2

2

20
10 1

11

x

y

W

W

+

+
==

ξ
ξ ,                                         (3-10c) 

( )( ) 111tan 221
21 −++== −

yx WWϕϕ .                            (3-10d) 

Since 12010 == ξξξ , for one complete update cycle (including two sub-time 

steps), the overall magnitude of the amplification factor is unity. This indicates that 

there is no growth or dissipation in the ADI-FDTD algorithm. Thus the ADI-FDTD 

recursive process is stable and nondissipative. A closer observation shows that the 

amplification factors in two substeps are reciprocals. The amplitudes of them are 

plotting in Figure 15 [43]. Similar to FDTD method, we introduce Courant number in 

ADI-FDTD algorithm: 

222
111
zyx

tcCFL FDTDADIFDTDADI

∆
+

∆
+

∆
∆= −− .                     (3-11a) 

Recall that in Chapter 2, we defined the Courant number for the FDTD 

algorithm as 1111 222 ≤∆+∆+∆∆= zyxtcCFL FDTD . If CFL is set to achieve minimum 

dispersion (According to Chapter two, minimum dispersion happens at CFL=1, where 

the time step reaches its maximum value.), we have:  
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FDTD

FDTDADI
FDTDADIFDTDADI

t
t

zyx
tcCFL

max
222

111
∆

∆
=

∆
+

∆
+

∆
∆=

−
−−              (3-11b) 

We can use (3-11b) to compare ADI-FDTD method and traditional FDTD 

method conveniently.  

 

Figure 15 Magnitude of the amplification factor for Courant number 
equals 1 and 10 with 100 cells per wavelength [43]. 

 

Figure 15 tells us, when we use FDTDtmax∆ in ADI-FDTD (the optimized time step 

of FDTD), both amplification factors are close to one. The iteration is neither 

growing nor dissipating. Otherwise, in one sub-time step, the iteration is growing, and 

in the other sub-time step, the iteration is dissipating.  

It has been pointed out that the numerical dissipation and growth in the ADI-

FDTD sub time steps is the result of the unbalanced time splitting algorithm. Other 

investigation shows that in the balanced time splitting scheme of the Crank-Nicholson 
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method for the FDTD does not have the numerical growth or dissipation and it is not 

dissipative [45]. 

3.3.2.2 3D stability analysis with the amplification matrix method [46]. 

The stability analysis of the ADI-FDTD method is extended to 3-D system by 

Zheng with the amplification matrix method [47]. First, the two sub time-steps of 

recursive process in the ADI-FDTD are written in a compact matrix form (3-12): 

Step1 (from the n th to the )2/1( +n th time step)   

nn XPXM 1
2/1

1 =+                                                     (3-12a) 

Step2 (from the )2/1( +n th to the )1( +n th time step)  

2/1
2

1
2

++ = nn XPXM                                                  (3-12b) 

Here, ( )Tn
z

n
y

n
x

n
z

n
y

n
x

n HHHEEEX ,,,,,= . 2121 ,,, PPMM are coefficient matrices with 

their elements related to values of spatial and temporal steps. Since they are all sparse 

matrices, (3-12a), and (3-12b) can be solved explicitly by taking the inverse of the 

sparse matrix. The result is: 

nn XX Λ=+1                                                         (3-12c) 

where 1
1

12
1

2 PMPM −−=Λ .  

System (3-12) is stable only if the norm of the error of the solution in (3-12) is 

bounded. It has been proven that this occurs if the spectral radius of the iteration 

matrix Λ  is less or equal to unity, or the norm of the iteration matrix Λ is less or 

equal to a unity matrix.  

First, we will assume the field components in Maxwell’s equations in the 

spatial spectral domain is 
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)(
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,2/1,|                                     (3-13b) 

( )zkkyjkxikjn
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n
kjiz

zyxeEE ∆++∆+∆−
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~~~

2/1,,|                                       (3-13c) 
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zyxeHH ∆++∆++∆−
++ = )2/1(

~
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2/1,2/1,|                         (3-13d) 
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2/1,,2/1|                         (3-13e) 
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)2/1(
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,2/1,2/1|                          (3-13f) 

Substituting (3-13) into (3-6)-(3-7) can lead to (3-12) in the spatial spectral 

domain in terms of yxtkkk zyx ∆∆∆ ,,,
~

,
~

,
~ , and z∆ . The definition of kkkk zyx

~
,

~
,

~
,

~  is the 

same as it in section 2.4.3. 

Although this idea is straightforward, the manipulation of the equations is not 

very handy. With the help of MAPLE, Zheng found eigenvalues of Λ  are [47]: 

121 == λλ                                                                 (3-14a) 

R
jSSR +−

==
22

43 λλ                                              (3-14b) 

R
jSSR −−

====
22

*
4

*
365 λλλλ                                  (3-14c) 

Here,  

( )( )( )222
zyx WWWR +++= µεµεµε                                     (3-14d) 

( )( )222332222222224 zyxxzzyyxzyx WWWWWWWWWWWWS ++++++= εµµεµεµεµε  (3-14e) 
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~
sin
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α

α
α
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It is easy to see that all eigenvalues in (3-14) are unity, which implies the 

spectral radius of the iteration matrix Λ  is unity. Thus the 3D ADI-FDTD method is 

stable. Also, because the stability is independent of the time step t∆ , the ADI-FDTD 

method is unconditionally stable, and is not restricted by the Courant limit. 

3.3.2.3 Stability Analysis with the Generalized ADI Formulation 

The stability analysis with the von Neumann’s method is hard to manipulate 

in the 3D ADI-FDTD scheme. Using the matrix method to realize the 3D ADI-FDTD 

case requires the help of computer to operate complicated matrix operations. Strictly 

speaking, the von Neumann method which based on the Fourier series applies only to 

linear difference equations with constant coefficients. Boundary conditions are also 

neglected in the von Neumann method, which applies only to initial value problems 

with periodic initial data. Our problem here satisfies these restrictions. For other 

problems, the von Neumann’s method may apply locally where the above restrictions 

satisfy; otherwise the method is not fully valid. In that case, the energy method may 

be applied, which is not trivial and beyond the discussion of this thesis [48].  

Darms also proved the stability of the ADI-FDTD algorithm with the 

Generalized ADI-FDTD formulation [49]. In his work, the ADI-FDTD iteration is 

reconstructed in a more compact form based on the idea of the operator splitting 

technology. However, since this compact formula can not be implemented in a 

numerical way directly, details of this derivation will not be discussed here. 
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3.3.3 Numerical Dispersion 

 The numerical dispersion error is one of the main error sources that directly 

affect the accuracy of any kind of the FDTD method. We must know the correct 

numerical dispersion relation in order to evaluate the performance of the method. 

 In the literature, the numerical dispersion of the ADI-FDTD method has been 

analyzed by the authors in [20][41][43][44][49][50]. Since the investigation of the 

numerical dispersion characteristics is very complicated, all the published works start 

from the simplest mathematical expression of the ADI-FDTD method. That is, they 

all assume the media is isotropic, lossless media, and the system is source free.  

During the evolution of the dispersion analysis, confusions occur in the academic 

area. An Ping Zhao proved that under the same isotropic assumptions, using the von 

Neumann’s method, the amplification matrix method or present the problem in the 

generalized ADI-FDTD formula, will all result in the same numerical dispersion 

relation, which paves the way for further understanding of the numerical dispersion in 

ADI-FDTD method [51]. Based on their summary and the original investigation on 

the dispersion relation, we will explain the dispersion relation of the ADI-FDTD 

method and adding our thought here.  

3.3.3.1 1D and 2D Dispersion Analysis using the von Neumann’s method 

Namiki’s original dispersion research assumes amplification factors in two 

sub-steps are equal [20], which leads to incorrect results. This is fixed by Sun 

[43][44], and is summarized here. From (3-9) and (3-10),  

)(
21

21 ϕϕωξξξ +∆ === jtj ee ,                                           (3-15) 
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where ξ  is the amplification factor of a full update cycle; fπω 2=  is the 

angular frequency and f  is the frequency. From (3-10d), 
221

t∆
==
ωϕϕ .  The phase of 

the amplification factor governs the numerical dispersion. Again, from (3-10d), the 

dispersion relation in a 2D TE ADI-FDTD scheme is 

)tantan(
2

tan 2
2

1
222222 ϕϕω

==++=





 ∆

yxyx WWWWt .                     (3-16) 

The above dispersion relation is valid for each individual sub time step, as 

well as the overall ADI-FDTD method.  

The numerical proof of (3-16) is not trivial. Namiki failed to provide the direct 

comparison between the theoretical results and the numerical experiments in his 

numerical dispersion investigation in the ADI-FDTD method [52].  Sun attempted to 

apply numerical experiments to verify the theoretical dispersion relation in (3-16). 

However, (3-16) is derived based on the plane wave assumption. In order to make a 

valid verification, Sun used the point source excitation in a very large computation 

domain (5000× 5000) [44]. Locating the observation point as far away as possible 

from the point source will make the accuracy of using a cylindrical wave to replace 

the plane wave as high as possible [53]. However, it is pointed out in [53] that the 

technology used by Sun [44] is not only rough, but also illogical. This left us another 

open topic in numerical dispersion problems.  

3.3.3.2 3D Dispersion Analysis with the amplification matrix method 

Corresponding to the section 3.3.2.2, Zheng also analyzed the numerical 

dispersion as a continuous work of stability studies [47]. Since the numerical 

dispersion describes the wave propagation characteristics, we will introduce the 
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angular frequency component tje ∆ω . We will use the results derived in (3-12) and (3-

14) directly from the previous section. Taking into account the angular frequency 

component tje ∆ω , field components are 

tnjn eEE ∆= ω
αα , tnjn eHH ∆= ω

αα , zyx ,,=α .                     (3-17) 

 A compact form is tnjn XeX ∆= ω , where ( )Tzyxzyx HHHEEEX ,,,,,= . (3-12) becomes 

( ) 0=Λ−∆ XIe tjω ,                                               (3-18) 

where I is a 66×  identity matrix. 

The determinant of the coefficient matrix must be zero in order to obtain the 

nontrivial solution of the field in (3-18). This gives  

0=Λ−∆ Ie tjω .                                            (3-19) 

Again, (3-19) is solved by MAPLE [47]. The results yield the dispersion relations of 

the 3D ADI-FDTD algorithm: 

( ) ( )( )
( ) ( ) ( )

( )
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2
2
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sin
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Stor

WWW

WWWWWWWWWWWW
t
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zyxxzzyyxzyx

=∆

+++

++++++
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ω

µεµεµε

εµµεµεµεµε
ω

   (3-20) 

where RS,  are defined in (3-14).   

 We perform the same method used in Chapter two to study the numerical 

dispersion in ADI-FDTD. In other words, we use Newton-Raphson method to solve 

(3-20) for numerical wavenumber k
~ . k

~ is a function of grid size, time-step size, 

frequency and propagating direction. The relation in (2-35) is also true here. 

For cubic cells, Figure 16 shows in both the AID-FDTD and traditional FDTD 

methods, the numerical phase velocity error reaches minimum at φ=45° (cubic 
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diagonal), and maximum at 0° and 90° (cubic edge). Note the time step used here is 

within the Courant limit, and the numerical dispersion of the ADI-FDTD (the upper 

graph) is very similar as the conventional FDTD (the lower graph). However, with 

the same cell size and time-step size, the ADI-FDTD has slightly larger dispersion 

than the traditional FDTD method in all directions.  

           

 

Figure 16 Numerical phase velocity versus wave propagation 
angle. ∆h=λ/20, ∆t=∆h/5c. Upper figure is with the ADI FDTD 
[47]; Lower figure is with the FDTD. 

 

Figure 17 studies dispersion of cubic cells ( zyx ∆=∆=∆ ) on cone surfaces in 

ADI-FDTD for larger time steps. Cone surface is defined in Figure 8 (b). Time-steps 
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used here is larger than the CFLFDTD limit, thus we can not compare it with its FDTD 

counterpart (FDTD is instable with the time steps used here.).  

From the study of numerical dispersion in FDTD, we believe the minimum 

dispersion occurs when the wave is propagating along the direction which has the 

shortest “lattice plane” intervals (section 2.4.3). We guess in ADI-FDTD, a similar 

numerical dispersion will occur. The result in Figure 17 shows partial support to this 

assumption. When the wave is propagating along the cubic diagonal, the minimum 

dispersion appears ( o74.54=θ curve in both plots). This thought is proposed for the 

first time to the best of our knowledge. Our future work in dispersion analysis will 

provide the strict mathematical derivation as well as numerical proof to this 

assumption. 

In ADI-FDTD method alone, when the time step is larger, the dispersion error 

is larger (In contrast, in FDTD, when the time step reaches maximum, the dispersion 

reaches minimum.). Thus, the selection of the time step depends on the accuracy of 

the modeling. Zheng mentioned in his work the time steps could be made up to four 

times larger than that of the conventional FDTD with acceptable accuracy when a 

spatial resolution 
20

~
10

λλδ = is used [47]. The time step suggested in his work is 

stricter than the one suggested in Sun’s work [44]. In [44], the time-step size is 

recommended to be chosen so that the resulting Courant number is much smaller than 

the mesh density, and satisfies the Nyquist sampling requirement at the same time 

( 2/NCFLADI << ). This is equivalent to say 
c

t
2
λ

<<∆ . The accuracy of the ADI-FDTD 

will increase with the finer grid size. The coarse grid errors are larger than the fine 
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mesh. We would pick the time step between these strict bound [47] and loose bound 

[44] as long as the error in the simulation is tolerable. 

 

 

Figure 17 Numerical phase velocity versus wave propagation angle with 
the ADI-FDTD grid with ∆h=λ/20. Upper graph: ∆t=∆h/c 
(CFLADI=sqrt(3)). Lower graph: ∆t=1.5 x ∆h /c (CFLADI=2.6). 

 
We will go one step further, and show more dispersion analysis than [47].  

Figure 18 analyzes the dispersion on planes parallel to the z axis. The 
o0=ϕ , o5.22=ϕ , o45=ϕ , o5.67=ϕ and o90=ϕ planes are all perpendicular to the x-y 

plane (Figure 8 (a)).  Here, the time-step is 2.6 times of the maximum time-step 

allowed in the FDTD method (CFLADI = 2.6). On these planes, waves propagating 

along different θ have different phase velocities. Figure 18 shows the dispersion is 
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larger when the time step is larger.  Because the symmetry in cubic cells, waves 

propagating along o5.22=ϕ  and o5.67=ϕ  directions have no difference in dispersion 

error. Waves propagating along  o0=ϕ  and o90=ϕ directions have no difference in 

dispersion error. This is again can be understood from the “lattice plane” idea.  This 

further explains numerical dispersion (phase error) strongly relates to the 

discretization of the continuous time-space domain.  

 

 
Figure 18 Numerical phase velocity versus wave propagation angle with 
the ADI-FDTD grid with ∆h=λ/20. Upper graph: ∆t=∆h/c (CFLADI=1.73). 
Lower graph: ∆t=1.5 x ∆h /c (CFLADI=2.6). 

 

 Now, we show the effect of non uniform grids on the numerical dispersion of 

ADI-FDTD method. Figure 19 studies the dispersion on the cone surface (Figure 8 
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(b)). Figure 20 studies the dispersion of the waves propagating on planes 

perpendicular to the x-y plane (Figure 8 (a)). In both Figure 19 and 20, we use a time-

step larger than the maximum allowed time step in the traditional FDTD (CFLADI >1). 

Cells in both analysis are not cubes ( x∆ , y∆ , z∆  are not equal).  Approximately the 

minimum dispersion occurs when the wave propagates perpendicular to the “lattice 

planes” with the shortest distance. 
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Figure 19 Numerical dispersion of non-cubic cells on the cone surface in 3D 
ADI-FDTD. Different cell sizes along different propagation directions are 
compared. 



 

 77 
 

 

 

 

 
Figure 20 Numerical dispersion of non-cubic cells on planes perpendicular 
to x-y plane in 3D ADI-FDTD. Different cell sizes along different 
propagation directions are compared. 
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3.3.3.3 Dispersion Analysis with the Generalized ADI Formulation 

 Darms also published the dispersion relation in his studies with the more 

compact generalized ADI formulation [49]. The result is 

( )
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ω
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        (3-21) 

From the trigonometric identity, it can be seen that (3-20) and (3-21) are 

equivalent to each other.   

3.3.3.4 Time-step size choosing 

 As we mentioned in section 3.3.1, although the ADI-FDTD is an 

unconditionally stable method, its time-step size is limited by the errors. Guilin Sun 

showed that at certain time-step sizes, the numerical results are noise-like and no 

wave travels. Hence, the ADI-FDTD method does have time-step size limitations. 

 Let’s take another look at the dispersion relationship (3-21). To demonstrate 

the limitation of the time-step, the higher dimensional ADI-FDTD can be collapsed 

into the one-dimensional case. Thus, the three-dimensional relation (3-21) can be 

rewritten as  







 ∆

=





 ∆

2
sin

2
tan 222 xst βω                                        (3-22) 

where s is the Courant Number CFLADI, defined in (3-11) (3-12). Although the ADI-

FDTD is stable for any time-step size, if the left hand side (LHS) of (3-22) is zero, 

then the phase constant β  must be zero, which means the numerical wave does not 
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propagate. This actually happens when π
ω

n
t
=

∆
2

1 . When the time step 
ω
πnt 2

1 =∆ , the 

numerical wave stops propagating. Another observation is that if 22

2
tan st

>





 ∆ω , then 

1
2

sin >





 ∆xβ , so β is a complex number ( ir jβββ += , 1−=j ), and the wave will 

decay in space. The extreme case is when 
2

)12(
2

πω
+=

∆ nt (and thus, 
ω
π)12(2 +=∆ nt ) , 

so the LHS is infinity, and the numerical wave will decay infinitely fast.  The reason 

is discovered here. Let’s rewrite (3-22) as  

2222

2
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2
sin Zstx
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
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 ∆
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

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
 ∆ ωβ                               (3-23) 

Without loss of generality, we assume  

χβ
==

∆ − )(sin
2

1 Zx .                                                 (3-24) 

If  1>Z , χ is a complex value, which implies β is a complex value. It is worth noting 

that Z  is a real number, not a complex number. The solution of χ  is  






 −+−= 21ln ZjZjχ .                                      (3-25) 

Because 1>Z , we can define 11~ 2 >−+= ZZZ . Then, the solution of χ  is:  

( )
( ) ( )( ) ( )( ) ( ) ( )
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ββ

χ
         (3-26) 

Recall that we have assumed the solution of the wave equation has the form of 

xjAe ∆− β . Thus, here we have 

( ) ( )( ) ( )ZjZxxjxjjxj eAeeAeAeAe irir
~arg2~ln2−∆∆−∆+−∆− === βββββ .                      (3-27) 
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Here, iβ is the attenuation constant and rβ is the phase constant. The first exponential 

term represents attenuation. It is easy to see that the larger the Z~ , and thus the larger 

the ratio of Zst
=






 ∆

2
tan ω , the faster the attenuation is. If the left term goes into 

infinity, the wave will attenuate infinitely fast. 

 According to [44], we rewrite (3-22): 
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t
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ω

β .                                   (3-28) 

Here, β is a complex number, such that ir jβββ += .  

Let the real part and the imaginary part equal on both sides of (3-28), we have 
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( ) ( ) 0sinsinh =∆∆ xx ri ββ .                                      (3-29b) 

In (3-26b), either the hyperbolic sine is equal to zero or the sine is zero, or both. If 

st
<






 ∆

2
tan ω , the attenuation constant iβ is zero, the numerical wave travels without 

attenuation. When st
=






 ∆

2
tan ω , both ( )xi∆βsinh and ( )xi∆βsin  are zero, and the velocity 

limit is reached. If st
>






 ∆

2
tan ω , then ( )xi∆βsin  is zero, and a “faster than the light” 

numerical wave propagation could happen [44]. 

According to the Nyquist criterion 

2
λ

=∆h ,                                                        (3-30) 
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in one dimensional case, the Courant number (
h
tcs

∆
∆

= ) and the mush density (
h

N
∆

=
λ ) 

has the following relation: 

2
Ns = .                                                       (3-31) 

So, the maximum Courant number is
2
Ns = . For any

2
Ns > , which implies 

2
λ

>∆=∆ tch , will not be possible to recover the signal. This should be the upper limit 

of the time-step size. 

 In practice, for the accuracy purpose, the Courant number is usually much 

smaller than the mesh density. The time-step size should be chosen according to this 

agreement. 

3.4.4 Boundary Conditions 

The derivation of the PEC boundary condition, the Mur’s 1st order boundary 

conditions and the boundary conditions on the dielectric-dielectric interface is the 

same as the conventional FDTD method. The difference here is that in each sub-time 

step, we need to apply the boundary condition once. In each iteration, we perform the 

boundary condition twice. 

For example, in the first sub-time step of the n+1 th iteration, the PEC 

boundary condition on the z=k plane is: 

0|||| 2/1
,2/1,1

2/1
,2/1,

2/1
,1,2/1

2/1
,,2/1 ==== +

++
+
+

+
++

+
+

n
kjiy

n
kjiy

n
kjix

n
kjix EEEE                         (3-32a) 

The Mur’s 1st Absorbing Boundary condition for xE  on the y=0 boundary is: 
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The Mur’s 1st Absorbing Boundary condition for xE  on the y=ny boundary is: 
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The Mur’s 1st Absorbing Boundary condition for yE  on the z=0 boundary is: 
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The Mur’s 1st Absorbing Boundary condition for yE  on the z=nz boundary is: 
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The Mur’s 1st Absorbing Boundary condition for zE  on the x=0 boundary is: 
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The Mur’s 1st Absorbing Boundary condition for zE  on the x=nx boundary is: 
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In the second sub-time step of the n+1 th iteration, the PEC boundary 

condition on the z=k plane is: 
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The Mur’s 1st Absorbing Boundary condition for xE  on the z=0 boundary is: 
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The Mur’s 1st Absorbing Boundary condition for xE  on the z=nz boundary is: 
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The Mur’s 1st Absorbing Boundary condition for yE  on the x=0 boundary is: 
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The Mur’s 1st Absorbing Boundary condition for yE  on the x=nx boundary is: 
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The Mur’s 1st Absorbing Boundary condition for zE  on the y=0 boundary is: 

     ( )2/1
2/1,0,

1
2/1,1,

2/1
2/1,1,

1
2/1,0, ||

2/
2/|| +

+
+

+
+

+
+

+ −







∆+∆
∆−∆

+= n
kix

n
kiz

n
kiz

n
kiz EE

ytc
ytcEE                   (3-32m) 

The Mur’s 1st Absorbing Boundary condition for zE  on the y=ny boundary is: 
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Again, the boundary condition on the dielectric-dielectric interface is 

automatically satisfied. 

3.4 Summary 

 The numerical stability and dispersion discussed in this chapter are based on 

the simplest mathematic forms, namely, they are specified for the system with 

isotropic media. The von Neumann’s method, the amplification matrix method, and 

the generalized ADI formulation have been applied in studying the numerical stability 

and dispersion relations.  

 It has been proven with all these methods that for the isotropic, source free 

problem, in all 1-D, 2-D, and 3-D ADI-FDTD schemes, the ADI-FDTD is 

unconditionally stable.  

For anisotropic materials, although the idea of stability and dispersion analysis 

is straightforward, the matrix manipulation is beyond the scope of hand derivation. A 
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much simpler energy-based stability proof is found in the literature [35].  It is 

possible to use the energy-based method to obtain the stability and dispersion relation 

for anisotropic materials, which is left for future research. 
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Chapter 4: Study the MISM structure with the ADI-FDTD 

method 

4.1 Interconnect Model 

The metal-insulator-semiconductor-metal (MISM) plane interconnect is one 

of the most elementary components in the modern integrated circuits. This unit is a 

four layered structure, and it’s demonstrated in Figure 21. Figure 22 shows the side 

view of the MISM structure. This 2-D structure neglects the fringing effect of the 

metal line, and approximates the model to be a two-dimensional parallel plate wave 

guide. The earlier research has defined three fundamental propagation modes existed 

in this structure by solving wave equations [2] - [3]. 

 

Figure 21 The Metal-Insulator-Substrate-Metal (MISM) structure 

 
 
 

Substrate

Metal Line

Ground Plane (Metal Plane) 

Insulator



 

 86 
 

                    
Figure 22 Side view of the MISM structure. Z is the direction of propagation. h,  
b1, and b2 is the thickness of the metal layer, the SiO2 layer, and the silicon 
substrate, separately. 

 

4.2 Quasi-Analytical Analysis and 3-Mode Limits 

The MISM structure gives rise to a four layered boundary problem. In the 

quasi-analytical analysis, we neglect the metal thicknesses, and extend the line width 

to infinity. We use Perfectly Electric Conductor (PEC) boundary conditions for the 

top and bottom metal layers. The equations for the longitudinal and the transverse 

propagation constants have been derived previously [2], and are written below:  

'2
0

22
iii k εµγγ −=+    i=1,2                                          (4-1) 

0)tanh(
'

=∑
i

ii
i

i bγ
ε
γ    i=1,2,                                         (4-2) 

where γ1 and γ2 denote the transverse propagation constants (y direction) in SiO2  and 

Si layers, respectively, and γ is the longitudinal one (z direction).   Here, γ = α + jβ, 

where α is the attenuation constant (Np/m), and β is the phase constant (rad/m). k0 is 

the wave number in free space, and εi΄=εi+σi/(jωε0), i=1,2. ε0 and µ0 are the 

permittivity and permeability in the vacuum, respectively.  

        The attenuation constants and the phase constants are calculated from (4-1) 

and (4-2) using the Newton-Raphson method. They are the functions of both the 

conductivity and the frequency. A direct way to observe the relationship of 
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attenuation constants and phase constants between conductivity and frequency is to 

plot those constants on frequency-conductivity map (similar to the plot in [3] and 

[55]). However, in semiconductor problems, it is not proper to use conductivity as an 

evaluation factor. The reason is discussed below. 

 Conductivity describes the ability of moving free charge and forming 

conduction current (drift current) for a material. Drift current is the summation of all 

the charge carriers traveling along the same direction. For example, the drift current 

generated by free electrons is defined as: 

∑
=

=−=−=
n

i
ndi EnqnqvqvJ

1

µ                                            (4-3) 

Here, n is the number of electrons, q is electronic charge, v is drift velocity, 

nµ  is mobility of electron. Drift velocity is defined as 

Ev nd µ−= ,                                                        (4-4) 

Mobility µ describes how easily an electron moves in response to an applied electric 

field E. Unlike most metals, drift current in semiconductor materials is the joint 

contribution of the movement electrons and holes. The total drift current J  can be 

written as the sum of the electron current nJ  and hole current pJ : 

( )EpqnqJJJ pnpn µµ +=+= .                                        (4-5) 

n  is electron concentration, q is the hole concentration. nµ  is the electron mobility, 

and pµ  is the hole mobility.  For semiconductors, conductivity depends on the 

concentration and mobility of both electrons and holes: 

pn pqnq µµσ +=                                                      (4-6) 
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 Silicon is a typical semiconductor material used in the IC’s industry. Intrinsic 

silicon at room temperature acts like an insulator. The electrical conductivity of 

silicon is dominated by the type and concentration of the impurity atoms, or dopants. 

The number of dopants per unit volume is called doping density ( 3−cm ).  Conductivity 

of the semiconductor is influenced by multiple factors, such as doping density, 

temperature and mobility. Using conductivity as a single factor to evaluate 

semiconductor characteristics will hide the effect of these fundamental physical 

factors.   

Therefore, it is more reasonable to pick either mobility or doping density as 

the fundamental factor to evaluate semiconductor’s behavior. However, mobility of 

electrons and holes results from carriers scattering, which is influenced by 

temperature, doping density, semiconductor defects, etc.. It is also a complicated 

physical parameter. On the other hand, doping density is determined simply by the 

technology. Although the results of the phase and attenuation constants are solved 

from Maxwell’s equations, in which the conductivity is a standard variable, it is 

physically more logical to use doping density in the semiconductor context to discuss 

the solution. 

 Figure 23 illustrates the relation between dopant density (doping density) and 

resistivity (the inverse of conductivity) at 296 K from measurement [54].   It shows 

that the conductivity is approximately proportional to the doping density.   
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Figure 23 Dopant density versus resistivity at 296 K for silicon 
doped with phosphorus and with boron [54] 

 

One empirical expression describes the dependence of mobility on temperature and 

doping density [56]: 
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where 300/TTn =  with T measured in K (Kelvin), and N is the total doping density in 

silicon. (4-7) is useful up to doping densities of 1020 cm-3, and for temperatures between 

250 and 500 K [56]. 

From (4-6) and (4-7), we express conductivity as a function of doping density 

(4-8). We do not include the temperature effect is our work at present, thus T will be 

fixed at 300 K ( 1300/ == TTn ) in our analysis.  Use (4-8a) for n-type substrate, and 

(4-8b) for p-type substrate.  dN  and aN  are the doping density of phosphorus donors 

and boron acceptors (corresponds to n-type substrate and p-type substrate) separately. 

d
d

N
N

q 










×+
+= 1710698.01

125088σ                                        (4-8a) 

a
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N
N

q 
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








×+
+= 17103745.01

4073.54σ                                    (4-8b) 

 

  In Figure 24 and 25, the x axis is the doping density of the semiconductor. In 

Figure 24, three bold lines divide the map into 3 fundamental mode regions, between 

which is the transition region. The definitions of various characteristic frequencies 

can be found in [3]. The characteristic frequency for the skin-effect in the Si substrate 

is fδ=1/(2π)·2/(µ0σ2b2
2), the dielectric relaxation frequency in the Si substrate is 

fe=1/(2π)·σ2/(ε2ε0), and the characteristic frequency of slow-wave mode is f0=(fs
-

1+2/3·fδ-1)-1. fs=1/(2π)·σ2/(ε2ε0)·(b1/b2) is the relaxation frequency of the interfacial 

polarization. The location of these edge lines depends on both the geometrical factors 

(b1,b2), and the electrical factors (σ2,ε1,ε2).  σ  is defined in (4-8).  We used Figure 23 

to complete the conductivity-doping density mapping in Figure 24 and 25. 
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Figure 24 Contour of attenuation factor α (along propagation direction z) vs. substrate 
doping and wave frequency. MISM structure properties: b1=2µm, b2=200µm. The three 
bold lines divide the map into 3 regions of fundamental modes as marked. 

 
Figure 25 Contour of normalized phase constant β/(ω/c) (along propagation direction z) 
vs. substrate doping and wave frequency. MISM structure properties: b1=2µm, 
b2=200µm. The three bold lines divide the map into 3 regions of fundamental modes as 
marked. 
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 The physical understandings of those three fundamental propagation modes 

are interpreted as follows [3]:  

• Dielectric quasi-TEM mode: 

 When the product of the frequency and the resistivity (and thus the inverse of 

the doping density) of the Si-substrate is large to produce a small dielectric loss angle 

(
ρεπωε

σδ
f2
1tan ==  ), then the substrate performs like dielectric materials. The 

interconnect can be treated as a microstrip line lying on double layer dielectric 

materials (The Si-substrate layer and the Silicon-dioxide layer). At this region, the 

interconnects reach their dielectric limit. The fundamental mode would closely 

resemble to the TEM mode as long as the wavelength is much larger than the 

thickness of the double layer (This means the operation frequency is much less than 

the cutoff frequency of TM mode. Therefore, only TEM mode exists.). Both the 

transverse electric and the magnetic fields penetrate into the substrate and transmit at 

the velocity nearly equal to 
Si

c

ε
0 . 

• Skin-effect mode 

When the product of the frequency and the substrate conductivity (and thus 

the substrate doping-density) is large enough to yield a small penetration into the 

silicon (
µπσ

δ
fSi

Si
1

= ), the transmission line may be regarded as a microstrip line 

lying on an imperfect ground plane made of silicon. The substrate thus acts like a 

lossy conductor wall, and the interconnects reach their conductor limit. 

 



 

 93 
 

• Slow-wave mode 

When the frequency is not very high (comparable to the dielectric relaxation 

frequency fe, 
02 επε

σ

Si

Si
relaxationdielectricff ≡<< − ), and when the depth of the quasi-static 

field penetrating into the substrate is smaller than the skin depth ( 
Si

Si
f

h
µσπ

δ 1
≡<< ), 

another type of propagation exists. A slow-surface wave will propagate along the line. 

In this mode, there is visually no electric field in the substrate; the electric energy is 

stored in the SiO2 layer, while magnetic energy penetrates to the Si substrate region. 

Almost all the active power is transmitted through the SiO2 layer, but a large amount 

of reactive power is exchanged between two layers across the Si- SiO2 interface with 

the charge movement at the interface. At this range the silicon substrate behaves 

neither like the dielectric nor the conductor, and it is called the slow-wave region 

[2][3], because at this region, due to Maxwell-Wagner mechanism, when 21 bb << , 

there is a strong interfacial polarization, and 0Siε becomes very large, and the 

propagation speed of the wave becomes quite slower than in the free space according 

to 
0Si

cv
ε

= . The slowing down of the propagation velocity is the result of the energy 

transfer across the interface. 

Between these three modes on the frequency-doping density map, there exists 

transition regions, where the performance of interconnects are more complicated. At 

early stage, the on-chip interconnects mostly operates in the slow-wave mode region. 

At present day, interconnects have the trend to operate in the transition region and in 

the skin-effect region.   
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Provided with the detailed insight of the different propagation types of 

interconnects, we will use the numerical technique to investigate the wave dispersion, 

distortion, and substrate loss in the different modes, especially in the transition region 

and in the skin-effect mode. First, we will provide the benchmark of our numeric 

simulation. 

4.3 Validation of the Algorithm 

We used the experimental measurements of the propagation constant of a 

MISM structure from [3] as the accurate results. The properties of the MISM 

structure is: width = 1600µm, b1=1µm, b2 = 250µm, and substrate resistivity ρ2= 

85Ω·cm. The wave is propagating from the transition region to the dielectric quasi-

TEM mode in this structure when the frequency changes from hundreds of MHz to 4 

GHz according to the measurement.  

In order to obtain the frequency dependent effects (such as the dispersion) 

from the time-domain method, a popular method is to use a narrow pulse in the time 

domain as the excitation of the simulated problem, and then perform the Fourier’s 

analysis on the simulated results. A narrow pulse has abundant frequency 

components. With one run of the simulation, the whole frequency spectrum may be 

obtained, and it is very efficient.  However, this method should be done very 

carefully, because the frequency-domain parameter extraction using the Fourier’s 

transform is very sensitive to the tail of the time-domain responses. A small deviation 

in the time-domain results may lead to a large error in the frequency domain results.  

The ADI-FDTD application is performed on the physical model shown in 

Figure 22. In order to solve the problem in a finite region, proper boundary has to be 
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made to the simulation. The bottom plane is the metal ground plane in our structure. 

The ground plane is assumed to be lossless, so its conductivity is infinity. In our 

numerical simulation, the Perfect Electric Conductor (PEC) boundary condition is 

added on this ground plane. In a physical scenario, the metal line is excited at one end 

and propagating to the other end. We must eliminate the reflections at the end of the 

metal line, so that it is easy to extract the attenuation factor and the phase factor. This 

can be done by assuming the metal interconnect is long enough, so that during the 

interested observing time, the pulse did not reach the end of the metal line, and thus 

there’s no physical reflections happening. On the other hand, we don’t want the 

artificial reflections affect the accuracy of the simulation. This is obtained by putting 

the Mur’s 1st absorbing boundary condition [35] on the plane at the other end of the 

metal line. This treats the metal line as infinite long, which is the same as if the metal 

line has a matched load at the end. In reality, the region above the MISM structure is 

the open air region. Again, we will use the Mur’s 1st absorbing boundary condition to 

truncate the simulation domain, such that the exterior region (the region we truncated, 

and did not calculated in the simulation) and the interior region (the region we fully 

simulated) are matched. In this way, all the energy should go from the interior region 

to the exterior region freely without reflection. 

We carefully performed our simulation by exciting the system by a Gaussian 

pulse in the ADI-FDTD simulation at one end  

22 /)3(
0

ττ−−= t
yy eEE .                                              (4-9)  
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0yE  is the amplitude of the magnetic field at the starting end of the interconnect. 0yE  

points to negative y direction in Figure 22, and yE propagates along positive z 

direction as time goes by. We will use the normalized 0yE  in our simulation 

( mVEy /10 = ). The time constant τ is 100 ps, so the bandwidth is around 5GHz. The 

attenuation constant and the phase constant of the multilayered MIS structure is 

written into one variable ( ) ( ) ( )ωβωαωγ j+= .  This can be extracted from the ADI-

FDTD results in the time domain by the Fourier transform  

),(/),()(
refref

l zzElzzEe =+==− ωωωγ

,                             (4-10) 

where ),( zE ω is the Fourier transform of the electric field  in the substrate at position 

z along the metal line.   

Figure 26 plots the attenuation constant and the phase constant (by showing 

the normalized wavelength). Generally good agreement is observed in the ADI-

FDTD numerical calculation with the analytical analysis and the measurements. This 

result is more accurate compared to the one published in [26]. 
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Figure 26 Comparison among the analytical solution, the ADI-
FDTD solution, and the measurements, w=1600µm, b1=1µm, 
b2=250µm, ρ2=85Ω·cm. 

(a) attenuation constant;  (b) normalized wavelength. 
 

4.4 Numerical Analysis: Extracting Propagation Modes and  Constants  

We next use our ADI-FDTD simulator to analyze the structure in Figure 22. 

In contrast with the quasi-analytical approach, here we account for the thickness of 

the metal interconnect. The metal line is excited at one end; Mur’s 1st absorbing 

boundary condition [42] is applied on the open region, and the PEC boundary 

condition is added on the ground plane. We consider a MISM structure with h=1.8 

µm, b1=2 µm, b2=200 µm, and the metal conductivity to be σAl=3x107 S/m. A sharp 

Gaussian pulse with time constant τ = 8.83 ps (bandwidth is about 50 GHz) is used as 

the excitation waveform. 82 uninformed grids are laid out along the y direction with 

the minimum grid size of 0.1 µm inside the oxide and the metal layers; 29 grid points 
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in the y direction are laid out in the upper free space region; 240 uniform grid points 

are laid out along the z direction with ∆z=150 µm.  

For the traditional FDTD, ∆tFDTD must be less than 3.3x10-16 s to satisfy the 

CFL stability limit. In our simulation, the time step is ∆tADI-FDTD=2x10-13 s, which is 

an acceptable choice according to [44]. This helps to calculate the field distribution in 

the very thin silicon skin depth region in the skin-effect mode, and the field 

distribution in the metal layer in all three modes of propagation.  

From the ADI-FDTD solution we extract the attenuation factor and the phase 

factor, as a function of frequency and semiconductor doping. This is achieved by 

applying the Gaussian pulse in the time domain as described above, and then taking 

the Fourier transform. The propagation constants extracted from ADI-FDTD 

electromagnetic field time domain solutions are shown in Figure 27 for a  frequency 

range of 1 GHz to 50 GHz, and the substrate dopings of 8.9x1011 cm-3, 8.9x1016 cm-3 

and 6.9x1019 cm-3. The curve corresponding to a doping of 6.9x1019 cm-3 represents 

operation in the skin-effect mode. The curve corresponding to a doping of 8.9x1011 

cm-3 represents propagation in the dielectric quasi-TEM mode. The middle range 

curve, with doping of 8.9x1016 cm-3, reflects propagation ranging from the slow-wave 

mode to the transition mode, and then to the skin-effect mode as the frequency 

increases.  In the skin-effect mode, the loss is higher, and the phase velocity is 

relatively large, whereas in the dielectric quasi-TEM mode, they are both relatively 

small constant. The numerical results in each case also match the quasi-analytical 

calculations.   
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Figure 27 Propagation constant versus frequency and doping 
density for the quasi-analytical and ADI-FDTD numerical analysis. 
b1=2 µm, b2=200 µm. The lines with markers are the quasi-
analytical results, and the solid lines are the numerical results  
(a) attenuation constant;  (b) normalized wavelength. 

 

4.5 Numerical Analysis: Calculating Field Distributions in Mixed Dimensional 

Structures 

To further understand the energy flow and distribution in each mode, a 

comparison of the field distributions obtained from the ADI-FDTD full-wave results 

is made. In Figure 28 (a)-(c), the sine wave with the frequency of 60 GHz is excited 

on the MISM with doping = 1.0 x1020 cm-3, and the field is taken at t=40 ps. The skin-

effect mode field distribution is observed as expected.  In Figure 28 (d)-(f), a sine 

wave with frequency of 1 GHz is excited on the MISM structure with doping = 

8.9x1016 cm-3; the field is taken at t=1 ns, and the slow-wave mode field distribution 

is shown. In Figure 28 (g)-(i), a sine wave with frequency of 4 GHz is excited on the 
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MISM with doping = 1.8x1013 cm-3; the field is taken at t=0.6 ns, and the dielectric 

quasi-TEM field distribution is shown. The field is normalized to the field in the 

oxide layer in each of the 3 cases. In the last two modes, in order to show at least one 

period of the wave pattern, we elongated the interconnects to 60 mm, which is larger 

than their actual on-chip length. In the skin-effect mode, the field in the Si substrate is 

concentrated close to the SiO2-Si interface, with an equivalent skin-depth of 10 to 20 

µm; whereas in the dielectric quasi-TEM mode, the field penetrates through the Si 

substrate. This also proved that since in the skin-depth mode, the electric energy 

penetration is 5 to 10 times of the thickness of the SiO2 layer, the quasi-TEM 

approximation is not valid here. In the slow-wave mode, although the field extends all 

the way down to the substrate, its magnitude is orders less than the field in the SiO2 

layer. This implies that relatively little electric energy penetrates into the Si substrate. 

This verifies our first-insight to the energy transform in the slow-wave mode in our 

quasi-analytical analysis. The energy is propagating along the interface of the silicon-

substrate layer and the oxide layer. In our numerical simulation, we show that in the 

skin-effect mode, the field in the metal layer is concentrated close to the Al-SiO2 

interface with a skin depth of less than one micrometer (for the case considered here). 

In the other two modes, the field is distributed more evenly in the metal layer. In the 

substrate, the skin depth is larger.   
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Figure 28 Ey distribution in different layers in 3-mode 
  (a)-(c) skin-effect mode, h=1.8 µm, b1=2 µm, b2=200 µm, 

                            doping density = 1x1020 cm-3, t=40 ps, f=60 GHz; 
                               (d)-(g) slow-wave mode, h=1.8 µm, b1=2 µm, b2=200 µm, 
                                          doping density = 8.9x1016 cm-3, t=1 ns, f=1 GHz; 

        (h)-(i) dielectric quasi-TEM mode, h=1.8 µm, b1=1 µm, b2=250 µm, 
                                          doping density =1.8x1013 cm-3, t=0.6 ns, f=4 GHz. 
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4.6 Numerical discrepancies between the quasi 2-D analysis and the strict 3-D 

analysis of the MISM structure. 

This analysis is inspired when we were digging the fundamental 

characteristics of the MISM on-chip structure in 2-D and 3-D analysis. As mentioned 

in [44], the 3-D ADI-FDTD has the intendance to have a larger error than its 2-D 

counterpart, or the implicit Crank-Nicholson FDTD or the conventional FDTD. 

Let’s consider the four layered MISM structure with doping density 

n1=1018/cm3, and n2=1016/cm3. The excitation is a digital pulse with the width of 

10ps, and the rising and falling time of 2ps.  Figure 29 is the transient voltage at 

different locations along the metal line calculated from the two-dimensional 

waveguide model, which ignored the fringing effect of the metal.   

 

Figure 29 The transient digital signal propagating along the z direction. The 
result is from the two-dimensional waveguide model.   
 n1=1018/cm3, and n2=1016/cm3. b1=2 µm, and b2=200 µm. The metal 
height   is 1.8 µm. The observation points are at z=300 µm, and 600 µm 

 

 From Figure 29 we found that the substrate with the doping density of 

n2=1016/cm3 has higher loss than the substrate doping density of n1=1018/cm3. The 

further away from the signal, the higher the loss is for both doping densities. 



 

 103 
 

However, the magnitude of the voltage observed from the two-dimensional 

simulation appears to be smaller than the real case. A similar result is also found in 

[29]. This is due to the large dissipation of the two-dimensional parallel waveguide 

model. With finite width of the metal line, the field lines are confined under the metal 

line. Thus, the energy is mostly concentrated under the metal line, and less energy is 

dissipated to the other region. We can predict that with proper doping profiles in the 

silicon substrate, the electric field could be confined to a higher extend in the desired 

region, and thus less dispersion and energy loss would happen, and the wave might 

travel faster as well. This is part of the undergoing project in our on-chip 

interconnects analysis. 

4.7 Summary 

 In Chapter 4, we used the quasi-analytical analysis method to review the three 

fundamental propagation modes in the MISM structure, and define them on the 

frequency-substrate doping map for the first time. Then, we used the ADI-FDTD 

method to extract the frequency dependent parameters of the MISM interconnect 

successfully, which is proven by the experimental results in the literature. With the 

help of the ADI-FDTD method, not only the frequency dependent parameters of the 

slow-wave mode and the quasi-TEM mode can be extracted efficiently, but also the 

characteristic parameters in the transition region and in the skin-depth mode region 

can be obtained in a reasonable amount of calculation. The field distribution at a 

transient time is analyzed in detail, the energy transformation and the power loss in 

the substrate is also investigated. The metal line width effect is discussed and the 
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possible optimization of low dissipation interconnects is proposed by some novel 

design of the substrate doping profile. 
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Chapter 5:  Summary and Future Work 

5.1 Summary 

 In this thesis, we reviewed physical and numerical models for the on-chip 

interconnect MISM structure. The FDTD algorithm is briefly introduced, numerical 

concerns, such as stability, numerical dispersion, boundary conditions are discussed 

as foundations of ADI-FDTD method. 

ADI-FDTD method is a time domain numerical method, which has the 

advantages especially in electrically large problems. The algorithm is introduced in 

detail. Time-step, numerical dispersion, numerical stability and their physical 

meanings are discussed in detail.  

Finally, we applied the ADI-FDTD method to the on-chip MISM interconnect 

problem. We are able to solve the field distribution in the thin metal layer, and show 

skin-effect mode, as well as slow wave mode, quasi-TEM mode over wide frequency 

and semiconductor doping density range efficiently. The field distribution at a 

transient time is analyzed in detail, the energy transformation and the power loss in 

the substrate is also investigated. 

5.2 Future Work 

5.2.1 ADI-FDTD Algorithm improvement 

 From the discussion in this thesis, we realized although the ADI-FDTD 

method has the great advantages of removing the Courant Stability condition, and 

thus greatly increases the computational efficiency; it has its potential accuracy 
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weakness. Also, applying different boundary conditions and excitations will 

profoundly impact the accuracy, the dispersion and the computation simplicity of the 

algorithm itself. Detailed discussions of the truncation errors, the dispersions referred 

to lossy, anisotropic materials are yet to be provided.  All of these works are closely 

related to how well a physical problem could be simulated. 

5.2.2 Complicated Integrated Physical Models 

The real physical on-chip interconnects is far more complicated than a single 

MISM line, or some coupled MISM lines. The effect of the interaction mechanism 

between the electromagnetic field and the charged carriers in the semiconductor 

should also be taken into account in the analysis. [27] and [30] combine the 

semiconductor equations and Maxwell’s equations together to perform the Metal-

Insulator-Semiconductor Interconnects analysis on the device level. Research in [27] 

is performed with the equivalent circuit model. A full-wave analysis is still necessary 

to understand the detailed energy exchanges and field propagations. Also, on the real 

chip, there are signal lines, power lines, data lines, which make the accurate 

prediction of the coupling, crosstalk, power loss more difficult to obtain.  The 

statistical model might be combined with the ADI-FDTD full wave solver as well to 

make reasonable system level analysis on these problems.  
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