

ABSTRACT

Title: A GUIDED SIMULATION METHODOLOGY
FOR DYNAMIC PROBABILISTIC RISK
ASSESSMENT OF COMPLEX SYSTEMS

 YUNWEI HU
Doctor of Philosophy, 2005

Directed By: Dr. Ali Mosleh
Reliability Engineering Program
Department of Mechanical Engineering

Probabilistic risk assessment (PRA) is a systematic process of examining how

engineered systems work to ensure safety. With the growth of the size of the dynamic

systems and the complexity of the interactions between hardware, software, and

humans, it is extremely difficult to enumerate the risky scenarios by the traditional

PRA methods. Over the past 15 years, a host of DPRA methods have been proposed

to serve as supplemental tools to traditional PRA to deal with complex dynamic

systems. A new dynamic probabilistic risk assessment framework is proposed in this

dissertation. In this framework a new exploration strategy is employed. The

engineering knowledge of the system is explicitly used to guide the simulation to

achieve higher efficiency and accuracy. The engineering knowledge is reflected in the

“Planner” which is responsible for generating plans as a high level map to guide the

simulation. A scheduler is responsible for guiding the simulation by controlling the

timing and occurrence of the random events. During the simulation the possible

random events are proposed to the scheduler at branch points. The scheduler decides

which events are to be simulated. Scheduler would favor the events with higher

values. The value of a proposed event depends on the information gain from

exploring that scenario, and the importance factor of the scenario. The information

gain is measured by the information entropy, and the importance factor is based on

the engineering judgment. The simulation results are recorded and grouped for later

studies. The planner may “learn” from the simulation results, and update the plan to

guide further simulation.

SIMPRA is the software package which implements the new methodology. It

provides the users with a friendly interface and a rich DPRA library to aid in the

construction of the simulation model. The engineering knowledge can be input into

the Planner, which would generate a plan automatically. The scheduler would guide

the simulation according to the plan. The simulation generates many accident event

sequences and estimates of the end state probabilities.

A GUIDED SIMULATION METHODOLOGY FOR DYNAMIC PROBABILISTIC

RISK ASSESSMENT OF COMPLEX SYSTEMS

By

Yunwei Hu

Dissertation submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

2005

Advisory Committee:

Professor Ali Mosleh, Chair

Professor Dave Akin

Professor Michel Cukier

Professor Mohammad Modarres

Professor Carol Smidts

Dr. Michael Stamatelatos

© Copyright by

Yunwei Hu

2005

ii

 Dedication

To my family.

iii

Acknowledgements

I wish to express my sincere gratitude to Dr. Ali Mosleh for his support, patience,

and encouragement throughout my graduate studies. Without his immense help in

guiding my research and this dissertation would have been impossible.

I owe special thanks to the contributions of Dr. Frank Greon for his tremendous

help during the research, as a colleague and as a friend.

I am fortunate to have been able to work on this project with a talented and

dedicated team of UMD researchers consisting of Dr. Frank Greon, Thiago Pirest,

Dongfeng Zhu, and Hamed Nejad.

I would like to thank Professor Michel Cukier, Professor Mohammad Modarres,

Professor Carol Smidts, Professor Dave Akin and Dr. Michael Stamatelatos for

agreeing to be on my committee.

Thanks to my wife, Xiang, for supporting me with love and understanding. My

parents receive my deepest gratitude and love for their dedication and support.

iv

Table of Contents

Dedication ... ii

Acknowledgements.. iii

Table of Contents... iv

List of Tables ... xi

List of Figures ... xii

List of Figures ... xii

1. Introduction... 1

1.1 Statement of Problem.. 1

1.2 Approach... 3

1.3 Major Achievements... 4

1.4 Outline of this Dissertation ... 7

2. Overview of Dynamic Probabilistic Risk Assessment ... 9

2.1 Brief history background of PRA ... 9

2.2 Why DPRA is Necessary .. 10

2.3 Methodologies for DPRA ... 13

2.3.1 Development of DPRA... 13

2.3.2 Theory of Probability Dynamics... 14

2.3.3 Graphical Models.. 16

v

2.3.4 Discrete Dynamic Event Tree:.. 18

2.3.5 Monte Carlo Simulation.. 20

2.3.6 Discrete Event Simulation .. 22

2.3.7 Improvements to Simulation Methods.. 23

2.4 Summary ... 28

3. DPRA as Exploration of Event Sequence Space .. 29

3.1 Introduction... 29

3.2 Characterization of the Dynamic PRA Process .. 32

3.2.1 Basic Terminology.. 32

3.2.2 Event Sequences vs. Scenarios ... 36

3.3 Exploration of the Event Sequence Space .. 39

3.3.1 Systematic Exploration ... 41

3.3.2 Random Exploration ... 44

4. Enhanced DPRA Framework.. 48

4.1 Problem Statement .. 48

4.2 Adaptive Exploration .. 49

4.2.1 Traditional Exploration Strategy... 49

4.2.2 Bayesian Adaptive Exploration .. 50

4.3 Outline of a New DPRA Methodology... 52

4.3.1 The Framework... 52

vi

4.3.2 Key Elements .. 55

4.4 Implementation of the Planner of DPRA Simulations................................ 57

4.5 Implementation of the Scheduler of DPRA Simulations............................ 58

4.6 Interactions Between Planner and Scheduler.. 60

4.6.1 Load Plan into Scheduler .. 60

4.6.2 Update Plan Based on Simulation Result ... 61

5. Scheduler Algorithms ... 64

5.1 Problem Definition.. 64

5.2 Scheduler Overview.. 66

5.3 Representation of the Plan in Scheduler ... 68

5.4 Branch Point Generation for Stochastic Events.. 71

5.4.1 Probability-based Branch Point Generation.. 72

5.4.2 Time-based branch generation.. 75

5.4.3 Branching Point Generation for Demand Based Event 76

5.5 Scheduling Algorithm Based on Value... 77

5.5.1 Entropy as Measure of Information .. 78

5.5.2 Expected Entropy Gain Through Experiment..................................... 83

5.5.3 Principle of Evaluating the Value of Exploring a Scenario................ 90

5.5.4 Algorithm for Evaluating the Value of Proposed Event..................... 91

5.5.5 Exploration of Branches ... 93

vii

5.6 Event Sequence Quantification... 94

5.7 Estimator of End State Probabilities ... 101

5.8 Simple Test Case... 102

5.8.1 The plan. ... 103

5.8.2 End State Probability Estimates.. 104

5.8.3 Distribution of Sequences ... 106

5.8.4 The Impact of Importance Factor ... 107

6. Introduction to SIMPRA... 109

6.1 Overview... 109

6.1.1 Framework of SIMPRA.. 109

6.1.2 Object-Oriented Paradigm .. 110

6.2 Planner .. 114

6.3 Scheduler... 117

6.3.1 Functions of Scheduler ... 117

6.3.2 Systematic Exploration ... 118

6.4 Structure of the Simulation Model.. 121

6.4.1 Simulation Model.. 121

6.4.2 Interactions between Planner, Scheduler and Simulation Model 123

6.5 Simulation Model Building .. 124

6.5.1 The Library to Build the Simulation Model: 125

viii

6.5.2 Running the Simulation: ... 131

6.5.3 Hardware Component Failure Modeling .. 133

6.5.4 Event Notification... 135

6.5.5 System State Block ... 136

6.5.6 End State Notification... 138

6.5.7 Human Behavior Modeling... 139

6.5.8 Software Modeling.. 142

7. Application I – Hold Up Tank .. 145

7.1 Introduction... 145

7.1.1 Outline of the Holdup Tank .. 145

7.1.2 Dynamic Feature of the Holdup Tank Problem................................ 147

7.2 Case I .. 149

7.2.1 Problem Statement .. 149

7.2.2 Analysis in Previous Work ... 150

7.2.3 Simulation with SIMPRA... 153

7.2.4 Scenario Analysis.. 155

7.3 Case II ... 158

7.3.1 Problem Statement .. 158

7.3.2 Scenario Analysis.. 159

7.3.3 Simulation with SIMPRA... 163

ix

7.4 Comparison between SIMPRA results and other approaches: 165

8. Application II - Satellite Telecommunication Example 167

8.1 Introduction... 167

8.2 Scheduler/Simulator side .. 171

8.3 Result Analysis ... 173

8.3.1 End State Probability Estimation .. 173

8.3.2 Allocation of samples over the planed scenarios.............................. 174

9. Application II - Space Shuttle Ascent Phase .. 175

9.1 Summary of the Shuttle Ascent Phase:... 175

9.2 Building Then Simulation Model ... 179

9.2.1 Software Model... 185

9.2.2 Crew Behavior Model... 186

9.3 Analysis Results:... 189

9.3.1 Exploration Methods... 189

9.3.2 Event Sequences ... 191

9.3.3 End State Probabilities Estimation.. 193

9.3.4 Allocation of Event Sequences ... 194

9.4 Conclusion .. 196

10. Summary and Future Research ... 198

10.1 Summary of Research Results .. 198

x

10.1.1 Overview... 198

10.1.2 Comparison with Others’ Work.. 201

10.2 Future Research .. 202

10.2.1 Planner .. 202

10.2.2 Multi-level Modeling.. 203

10.2.3 Human Modeling and Software Modeling 204

Appendices.. 205

Appendix A. Graphical Representation in DPRA .. 205

Appendix B: Application of Dynamic Fault Tree Simulation 212

xi

List of Tables

TABLE 3-1 COMPARISON OF EVENT SEQUENCES AND SCENARIOS ... 39

TABLE 5-1 EXPECTED INFORMATION GAIN OF BETA PRIOR... 89

TABLE 5-2 EXPECTED INFORMATION GAIN FOR A DIRICHLET DISTRIBUTION 89

TABLE 5-3 DISTRIBUTION OF EVENT SEQUENCES .. 107

TABLE 5-4 DISTRIBUTION OF EVENT SEQUENCES .. 108

TABLE 6-1 EXAMPLES OF THE ELEMENTS OF SIMPRA LIBRARY... 125

TABLE 6-2 DYNAMIC FAULT TREE... 128

TABLE 6-3 DYNAMIC FAULT TREE IMPLEMENTED IN SIMPRA ... 130

TABLE 6-4 PARAMETERS USED IN CASE II ... 158

TABLE 6-5 PLAN FOR CASE II .. 164

TABLE 8-1 COMPONENT FUNCTIONALITY MATRIX .. 169

TABLE 8-2 PLAN FOR TELECOM SYSTEM... 170

TABLE 9-1 MISSION ABORT PROCEDURES RULES .. 188

TABLE 9-2 PLAN FOR SHUTTLE MODEL ... 190

xii

List of Figures

FIGURE 2.3.1 A DISCRETE DYNAMIC EVENT TREE .. 19

FIGURE 3.2.1 ILLUSTRATION OF DPRA TERMINOLOGY ... 36

FIGURE 3.3.1 AN EVENT SEQUENCE IN THE PROBABILISTIC EVENT SEQUENCE SPACE............................. 40

FIGURE 3.3.2 ILLUSTRATION OF SYSTEMATIC EXPLORATION... 44

FIGURE 3.3.3 ILLUSTRATION OF RANDOM EXPLORATION .. 45

FIGURE 4.2.1 ADAPTIVE LEARNING ... 50

FIGURE4.3.1 PROPOSED ENHANCED USAGE OF THE INFORMATION IN THE DPRA EXPLORATION. 54

FIGURE 4.3.2 FRAMEWORK OF THE NEW MODEL BASED DPRA PLATFORM.. 56

FIGURE 5.2.1 THE SCHEDULER FRAMEWORK... 67

FIGURE 5.3.1 SYSTEM EVOLUTION... 71

FIGURE 5.4.1: CONSTRUCTION OF INTERVALS.. 74

FIGURE 5.4.2 CONVERSION FROM U ΔP TO H(TK). .. 75

FIGURE 5.4.3 EXAMPLE OF GENERATED BRANCH POINT TIMES WITHIN EACH INTERVAL 75

FIGURE 5.4.4 ILLUSTRATION OF THE BRANCHING POINTS.. 76

FIGURE 5.5.1 STATES OF UNCERTAINTY ABOUT THE OUTCOME OF A SCENARIO. 79

FIGURE 5.5.2 INFORMATION MEASURE AS A FUNCTION OF BETA DISTRIBUTION..................................... 83

FIGURE 5.5.3 EXPECTED INFORMATION GAIN FOR EXPERIMENT WITH A BETA PRIOR 88

FIGURE 5.5.4 CHOOSING BRANCH BASED ON VALUE... 94

FIGURE 5.6.1: EXAMPLE OF SCENARIO QUANTIFICATION. .. 100

FIGURE 5.8.1 FAULT TREE A SIMPLE TEST CASE ... 103

FIGURE 5.8.2 THE ESTIMATION OF THE PROBABILITY OF SYSTEM FAILURE... 105

FIGURE 6.1.1 FRAMEWORK OF SIMPRA.. 110

FIGURE 6.2.1 COMPONENT TREE.. 115

FIGURE 6.2.2 STATE RELATIONSHIP DIAGRAM EDITOR ... 116

xiii

FIGURE 6.3.1 PARTIAL SYSTEMATIC SEARCH ... 120

FIGURE 6.4.1 THE INTERACTION BETWEEN THE DISCRETE MODEL AND CONTINUOUS MODEL. 122

FIGURE 6.5.1 SIMPRA LIBRARY ... 126

FIGURE 6.5.2 SIMPRA NAVIGATOR .. 131

FIGURE 6.5.3 RUNTIME GUI .. 132

FIGURE 6.5.4 END STATE DISPLAY .. 133

FIGURE 6.5.5 A TYPICAL HARDWARE RUNTIME FAILURE BLOCK ... 134

FIGURE 6.5.6 EVENT NOTIFICATION BLOCK .. 135

FIGURE 6.5.7 EXAMPLE OF HARDWARE STATE LOGIC ... 137

FIGURE 6.5.8 END STATE BLOCK ... 138

FIGURE 6.5.9 HIGH LEVEL VIEW OF THE IDAC RESPONSE MODEL (MOSLEH & CHANG, 2004) 140

FIGURE 6.5.10 THE BBN FRAMEWORK .. 142

FIGURE 7.1.1 HOLDUP TANK SYSTEM LAYOUT... 146

FIGURE 7.1.2 LAYOUT OF THE SIMULATION MODEL OF HOLDUP TANK .. 148

FIGURE 7.2.1 A TYPICAL HISTORY OF TANK LEVEL EVOLUTION... 150

FIGURE 7.2.2 OTHERS WORK ... 153

FIGURE 7.2.3 PROBABILITY ESTIMATE FROM SIMPRA.. 155

FIGURE 7.2.4 ACCIDENT SCENARIOS TRIGGERED BY PUMP2 FAILURE... 156

FIGURE 7.3.1 ESD OF THE HOLDUP TANK, ADAPTED FROM (SIU, 1994).. 159

FIGURE 7.3.2 SCENARIOS OF CASE II ... 160

FIGURE 7.3.3 ACCIDENT SCENARIO UNDER DIFFERENT CONTROL LAWS .. 162

FIGURE 7.3.4 ALLOCATION OF EVENT SEQUENCES AMONG PLANS ... 164

FIGURE 8.1.1 STATE TRANSITION GRAPH .. 168

FIGURE 8.2.1 STATE DIAGRAM .. 172

FIGURE 8.3.1 ESTIMATION OF PROBABILITY OF DEGRADED (LEFT) AND FAILED (RIGHT) SYSTEM....... 173

FIGURE 8.3.2 AN EXAMPLE OF THE ALLOCATION OF EVENT SEQUENCES AMONG PLAN. 174

FIGURE 9.1.1 FIGURE SPACE SHUTTLE INTACT ABORT. ... 176

xiv

FIGURE 9.2.1 SPACE SHUTTLE EXAMPLE SIMULATION MODEL.. 179

FIGURE 9.2.2 HARDWARE SIMULATION MODULE. ... 180

FIGURE 9.2.3 SSME MODULE .. 181

FIGURE 9.2.4 HEIGHT VS. TIME FOR SPACE SHUTTLE... 182

FIGURE 9.2.5 RUNTIME FAILURE SUBSYSTEM (INSIDE EACH COMPONENT MODULE) 183

FIGURE 9.2.6 FAULT TREE OF SSME SHUT DOWN... 184

FIGURE 9.2.7 STATEFLOW® MODEL OF SHUTTLE GNC SOFTWARE ... 185

FIGURE 9.3.1 ESTIMATION OF THE PROBABILITY OF LOVC... 194

FIGURE 9.3.2 ALLOCATION OF EVENT SEQUENCES .. 195

1

1. Introduction

1.1 Statement of Problem

Probabilistic risk assessment (PRA) is a systematic process of examining how

engineered systems work to ensure safety. As the name suggests, this process is

quantitative. Probabilities of events with potentially adverse consequences are

calculated, as are the magnitudes of the consequences. Probabilistic risk assessment

aims at estimating the probability of reaching a particular intermediate condition, or

an undesirable end state, as well as the manner in which an event or a combination of

events can cause or increase the chance of a particular undesirable end state being

reached. The risk of such events is defined as the combination of the event

probabilities and their consequences. Information on this risk and the failures that

contribute the most to the risk level are of great value to the public, the regulatory

agency, and the owner and operators of the system or facility.

In past three decades, through extensive studies conducted on nuclear weapons,

nuclear reactors, and other hazardous processes, the PRA methods, particularly those

for the assessment of the risks of low probability, high consequence accidents have

evolved to a highly sophisticated level. The well-established PRA techniques

integrate various reliability modeling tools, such as fault trees and event trees

2

numerically quantify the risks. The PRA methods typically rely on the risk analyst to

identify the risk scenarios.

With the growth of the size of the dynamic systems and the complexity of the

interactions between hardware, software, and humans, it is extremely difficult to

enumerate the risky scenarios by the traditional ET/FT methods. Dynamic systems

can be defined as “systems whose responses to initial perturbations evolve over time

as system components interact with each other and with the environment.” (Siu 1994)

Although, almost any real system is dynamic, here we use the word “dynamic” to

emphasize the importance of timing and interactions. Over the past 15 years, a host of

DPRA methods have been proposed to serve as supplemental tools to traditional PRA

in such circumstances.

Simulation methods are often used to solve the DPRA problems. Due to the high

reliability of many real systems, such methods are intrinsically rare event simulations.

It is widely recognized that brutal force Monte Carlo simulation is highly inefficient

and may result in generating a lot of histories without any information gain (Labeau,

Smidts, & Swaminathan, 2000). A high efficiency simulation engine is often

essential to treat realistic systems. Many of the techniques introduced in the DPRA

literature focus on increasing efficiency through preset results and approximations.

The practical applications to large systems are limited and mostly case-dependent. To

the best of the author's knowledge, there is no generic platform for DPRA.

3

Acknowledging the problems, the objective of this research is to develop an

integrated framework for general-purpose dynamic probabilistic risk analysis (DPRA),

and an efficient model-based simulation engine for risk assessment of complex

systems of hardware, software, and human elements.

1.2 Approach

The approach taken is essentially based on use of simulation models. It provides

an environment for modeling and risk assessment of complex dynamic systems

consisting of the software, hardware, and human. In order to efficiently cover the

enormously large space of possible scenarios, a guided simulation process has been

formulated that will avoid the slow convergence, which is common in the Monte

Carlo simulations.

The dynamic PRA problem is interpreted as an exploration of the space of the

possible event sequences to gain risk information.

Simulation methods have been widely used in dynamic PRA. Objective of the

simulation is to understand the behaviors of the system under a variety of conditions,

especially those leading to risky scenarios, and to provide insight into those behaviors

to engineers/analysts. The simulation is probabilistic by its nature. Unlike most of the

biased Monte Carlo methods in literature, which aim at finding an optimal sampling

function, while disregarding the structure of the system under investigation, we

4

actively employ the engineering knowledge on the system through a plan as a high

level guide of the simulation. The simulation is then directed according the plan

toward scenarios which may are more likely to give us insight of the system

vulnerabilities. The simulation can be interpreted as an exploration of space of

possible event sequences. The exploration is similar to the exploration of a tree with

many branches. The value of each branch is evaluated based on the expected

information gain from that branch, while the information gain is measure by the

Shannon information entropy. The branches with higher values are more likely to be

explored.

To implement and test this methodology the Simulation-based probabilistic risk

assessment (SIM-PRA), a general-purpose software package is developed. SIMPRA

is applied to different models to demonstrate its capabilities for performing risk

analysis on large complex dynamic systems during design and during mission.

1.3 Major Achievements

This research has proposed, developed and demonstrated the use of a new dynamic

PRA framework is proposed. The core method is a new exploration strategy is

employed. The engineering knowledge of the system is explicitly used to guide the

simulation to achieve higher efficiency and accuracy. The engineering knowledge is

reflected in the “Planner” which is responsible for generating plans as a high level

5

map to guide the simulation. A scheduler is developed to guide the simulation by

controlling the timing and occurrence of the random events. During the simulation the

possible random events are proposed to the scheduler at branch points. The scheduler

decides which events are to be simulated. Scheduler would favor events with higher

values. Value here is measure of how much we want to simulate a specific event. The

value of a proposed event depends on the information gain from exploring that

scenario, and the importance of the scenario. The information gain is measured by the

information entropy, and the importance factor is based on the engineering judgment.

In another word, the scheduler would favor the events which are expected to provide

more information, more important by engineering judgment, and brings the system

closer towards the scenarios of interest. The simulation results are recorded and

grouped for later studies. The planner may “learn” from the simulation results, and

update the plan to guide further simulation.

SIMPRA is the software package which implements the new framework. It

provides the user with a friendly interface and a rich DPRA library to aid in the

construction of the simulation model. User can input the engineering knowledge to

the Planner, and the Planner would generate a plan automatically, according to which

the simulation would be guided by the Scheduler. The simulation generates many

accident event sequences and estimates of their end state probabilities.

SIMPRA has been applied to different systems to demonstrate its capability. A

6

small 2-out-of-3 system is analyzed, which demonstrates that simulation results

converge to the analytical solution very quickly. It shows that the software is capable

of guiding the simulation to efficiently generate risk scenarios and the probability

estimates.

SIMPRA is applied to several larger, more complex systems. A hold-up tank

example which has been investigated by many authors is reconstructed in SIMPRA. It

is demonstrated that with guided simulation strategy SIMPRA not only provides an

estimate of the system end state probabilities efficiently, but also makes it easier for

the risk analysts to investigate the accident scenarios and find system vulnerabilities.

A satellite telecommunication system is also studied by SIMPRA when the

system is still under design. With an abstract model of the system, SIMPRA generates

possible accident sequences of the system and give a probability estimate the system

failure and degradation.

A simulation of Space Shuttle mission in the ascent phase was also constructed in

SIMPRA. The simulation model is an integrated one of hardware, software and

human crew. It is very complex and highly interactive. The hardware failure, software

malfunction and human error all contribute the accident scenarios.

The research on the new DPRA methodology is a team work. Some of my

colleagues work on the planner, software modeling and human modeling. My

contribution to this research includes the framework, the implementation of the

7

scheduler, building the simulation library block, constructing the hardware simulation

block and integrating the software platform.

1.4 Outline of this Dissertation

The outline of this dissertation is as follows. Chapter 2 reviews dynamic PRA

literature. With a short introduction of the history and recent developments in DPRA,

a host of DPRA methods are reviewed regarding their advantages and limitations.

Special attention is paid to discrete dynamic event tree (DDET) and simulation

methods.

In Chapter 3, we interpret the DPRA problem as an exploration of the event

sequences space. The DDET and Monte Carlo simulation introduced in chapter 2

represent two different exploration strategies: systematic and random exploration.

Instead of focusing on obtaining a numerical result, we approach the problem of

exploring the unknown space efficiently. Some of the terminology used throughout

the dissertation is explained in this chapter.

In Chapter 4, we propose a new DPRA framework, which employs a new

exploration strategy. In this framework, the knowledge of the system is explicitly

used to guide the simulation to achieve higher efficiency. The knowledge is reflected

in the “Planner” which is responsible for generating plans as a high level map to

guide simulation. A scheduler is responsible for guiding the simulation toward the

8

scenarios, which may generate more information about the system.

The algorithm of scheduler is introduced in Chapter 5. During the simulation, the

scheduler checks the status of the simulation and guides the simulation toward the

scenarios of interest. The scheduler is also required to maintain a balance between the

different scenarios.

In Chapter 6, we introduce SIM-PRA, the software package which implements

the guided simulation methodology. It is a generic-purpose risk assessment platform,

developed in Matlab and Java.

In Chapter 7, 8 and 9, we apply our methodology to solve the DPRA problems of

three different models. The first one is the holdup tank problem in Chapter 7, which

has been discussed frequently in the DPRA literatures. In Chapter 8, SIMPRA is

applied to a satellite telecommunication system which is still under design. An

abstract model is built, and accidents sequences and numerical estimation of the end

state probabilities are generated. Another example is a hypothetical model of a space

shuttle ascent phase. In the model, we observe complex interactions, between human,

software, and hardware. The SIM-PRA very efficiently produces a model to depict

the system and performs the risk analysis. With these two examples, we have shown

the capability of our methodology and its difference from previous works.

9

2. Overview of Dynamic Probabilistic Risk Assessment

2.1 Brief history background of PRA

Probabilistic Risk Assessment (PRA), which is also called Quantitative Risk

Analysis, has been applied to large complex systems for more than thirty years. The

first full scale application of PRA methods was the Reactor Safety Study WASH-

1400 (NRC, 1975).

The PRA methods have also been used in other industry sectors and military.

After extensive review of NASA safety policy following the Challenger accident in

1986, NASA instituted a number of programs for quantitative risk analysis. An

example is the risk assessment of Space Shuttle program (Fragola, 1995). Office of

Safety and Mission Assurance at NASA headquarters published several handbooks to

enhance the PRA expertise at NASA (Stamatelatos et al., 2002).

In some areas, PRA techniques are part the regulatory framework. In situations

where risk management is critical to mission success, the PRA methods are

increasingly playing an important support role for management decision making and

regulatory agencies.

PRA tries to answer the three questions posed in (Kaplan & Garrick, 1981), which

10

can be represented as the set of triplets < si, fi, pi >: “scenarios – frequencies –

consequences”.

The classical PRA approach involves the construction of separate models

describing the system vulnerabilities and risks, which is often performed by the risk

analysts. Models are typically built in the form of fault trees and event trees, which

are graphical representations of Boolean expressions describing the combinations of

so-called basic events leading to system failure. Basic events typically represent the

failure of some components or subsystems. The level of resolution in these models,

e.g., the extent to which events are decomposed into the contributing basic events, is

driven by the PRA objectives, as well as the availability of data to quantify the basic

events(Mosleh & Bier, 1992). The knowledge required to solve the ET/FT is basic

probability calculation, and commercial software packages are available to construct

fault trees and conduct the computation.

2.2 Why DPRA is Necessary

PRA methodology has been successfully applied in different projects, but it has

been recognized that it is hard to characterize some complex dynamical systems by

solely applying such techniques as Event Tree/ Fault Tree analysis. Event trees or

fault trees are implementations of logic. Primarily, the Boolean logic-based models

are limited in terms of their capability to specify the timing of events or even the

11

order in which events occur. It is also difficult to model the dependency of the

probability or rate of occurrence of events on scenarios or time.

In a Boolean logic based model, even with the “dynamic” expansions, it is the risk

analysts who identify the interactions between the different parts of the system and

their influence on the system safety. In a dynamic system such task is far from trivial.

In the fault tree analysis, an often used unstated assumption is that when the cut

set occurs, the top event occurs simultaneously. In most cases, this assumption is

legitimate, but in a dynamic system, especially when there are complex interactions

between the hardware-software-human, the sojourn time or response time must be

taken into account explicitly. This is illustrated in (Cojazzi, 1996).

Apart from the time-dependent analysis, leaving the system dynamics out of the

picture is considered to be oversimplified in some cases. (Devooght, 1998) The event

tree analysis can display the correct failure logic of dynamic systems, but due to

ignoring the role of process variables explicitly, it cannot determine the distribution

of time to an undesirable state. Event tree is basically a pictorial representation of

Boolean logic, so the only way event tree can take the process variable into account is

by discretizing the process variables ranges. When we need detail process variables or

when the number of variables increases, the event tree may grow unmanageable.

Without a physical model the event tree analysis has to involve subjective judgment

of the interaction between variables. As a result the assessment of the probability to

12

achieve the absorbing state may be inaccurate. The stochastic process induced by the

random hardware/software failures, coupled with the system dynamics and/or human

intervention would possibly trigger other significant failures in the system.

Acknowledging such difficulties, a set of new methodologies were developed

under the name “Dynamic reliability” or “Dynamic PRA”. Because of the diverse

background of people working on this problem, it is sometimes hard to define the

term “dynamic reliability”. Nevertheless, it is accepted that the following table lists

the basic characteristics of dynamic reliability/PRA modeling: (Aldemir & Zio, 1998)

1. The dynamic phenomena have a strong influence on the system’s

response (e.g. the operation of control/protection devices upon

reaching assigned thresholds of the process variables values)

2. The hardware components failure behavior and on human operator

actions depends on the process dynamics.

3. The complex interactions between human operator actions and

hardware components influence the system’s response and failure

behavior.

4. There are a variety of degraded modes related to multiple failure

modes and the process dynamics.

The DPRA methodologies are not to replace the traditional PRA methods. The

13

dynamic methods are rather supplemental tools. With the DPRA tools, researchers

would understand clearly the limits of classical approaches, and determine when the

dynamic methods are needed.

2.3 Methodologies for DPRA

2.3.1 Development of DPRA

The analysis by (Amendola & Reina, 1981) explored the possibility of global

treatment of the dynamic PRA. Later the DYLAM and ADS implementations were

applied to treat DPRA problems in nuclear power plants and other areas (Chang, 1999;

Cojazzi, 1996; Hsueh & Mosleh, 1996; Nivolianitou, Amendola, & Reina, 1986).

Later, a more general mathematical framework was introduced for probabilistic

dynamics (Devooght & Smidts, 1992). Probabilistic dynamics theory interprets the

DPRA problems as problems equivalent to transport problems to be solved , for

example, by Monte Carlo simulation. Even though the theoretical framework is

sufficiently general but the complexity of numerical work to solve the equations is

daunting.

The wide acceptance of traditional ET/FT methods has led some authors to

propose extension to include some dynamic features in the FT framework. Others

have introduced different graphical tools to capture the dynamical features, some of

which have been use in applications. Examples are Petri Nets, Dynamic Flowgraph,

14

and Event Sequence Diagram. A detailed discussion of these techniques can be found

in Appendix A. For broader overview of the dynamic PRA methodology, there are

several nice review papers of the DPRA is available (Labeau, Smidts, &

Swaminathan, 2000; Siu, 1994).

2.3.2 Theory of Probability Dynamics

The mathematical formulation of the DPRA problem was first attempted by

Devooght1992, and later expanded (Devooght & Smidts, 1992, 1996; Izquierdo &

Labeau, 2004; Izquierdo, Melendez, & Devooght, 1996; Labeau, 1996).

In this framework the system configuration is indexed by an integer number i=1,

2, 3…n. This implies that the human software and hardware models are considered to

be multi-state components. The vector of process variables is denoted as x . The

evolution of the process vector in state i is deterministic and defined by a set of

differential equation:

 () () N
i xxxxf

dt
xd

ℜ∈== ,0, 0 (1)

The deterministic evolution may be interrupted by a random walk form one state to

another. The probability of that ()ix, will change to ()jx, per unit time

is ()xjip |→ , and the solution to equation (1) with initial condition 0x is ()0, xtg

The objective of Dynamic PRA is to find the probability density function ()tix ,,π ,

15

which denoted the likelihood of find system at point x and in state i at time t. The

distribution is normalized as

() 1,,
1

=⋅∑∫
=

ℜ
xdtix

i
n

α

π

In a Markovian framework, the Chapman-Kolmogorov equations give,

 () () ()[] () () () ()∑
≠

→=⋅+⋅+
∂

∂

ij
ii tixxjiptixxtixxfdiv

t
tix ,,|,,,,,, ππλππ

Where ()xiλ is the total transition rate out of state i, given x, such that

()∑
≠

→
ij

xjip |

Written in the integral formulation:

() () ()()
()()

() ()()
()()

()∑ ∫∫∫
≠

−− ∫
×−−⋅→+

∫
−=

−

ij

dsusgt

i

dsusg

i djueutgxudujipudeutgxiutix

t

ii

t

ii

ττπτδδππ

τ

λλ

,,,|,0,,,, 00

,

0

,

The integral formulations allow for a semi-Markov extension (Devooght & Smidts,

1996) and a unified treatment of transitions on demand and transitions in time.

Izquierdo et al. extend this theory to account for “stimulus” which may trigger

automatic or manual actions (Izquierdo & Labeau, 2004). They call it stimulus-driven

theory of probabilistic dynamics (SDTPD). The state space includes additional

extension: stimulus activation states are considered. A stimulus is either an order for

action from human or automatic control device, or the fulfillment of conditions that

trigger a stochastic event.

16

The closed form of analytical solutions has been attempted several times. Some

small systems with Markov assumption were solved (Cukier, 1991; Labeau, 1995;

Labeau et al., 2000). ESDs can provide semi-analytical solutions while reducing the

dimensionality of the problem by solving a sequence of integrals rather than a large

system of PDEs (Swaminathan & Smidts, 1999). For larger systems, the analytical

solution is hard to find. Discretization methods, such as Discrete Dynamic Event

Tree, or simulation based methods present great potential to solve the DPRA

problem.

2.3.3 Graphical Models

Graphs provide an intuitive representation of the system logic. To take advantage

of the fact the risk analysts are familiar with classical Event Tress/ Fault Tree

analysis, extended types of Fault Tree formalism have been proposed to address the

dynamic evolution of systems. Other graphical frameworks dealing with dynamic

systems which have been applied successfully in various engineering fields are

introduced into reliability/ risk analysis. Examples are Petri Nets, (Chatelet, Chabot,

& Dutuit, 1998; Dutuit, Chatelet, Signoret, & Thomas, 1997; Malhotra & Trivedi,

1995; Tombuyses, 1999; Vernez, Buchs, & Pierrehumbert, 2003; Volovoi, 2004),

Dynamic Flowgraph Methodology (DFM), (Houtermans, Apostolakis, Brombacher,

& Karydas, 2000, 2002; Kaufman, Bhide, & Johnson, 2000), GO-FLOW (Matsuoka,

17

2004; Matsuoka & Kobayashi, 1988)and Dynamic Event Sequence

Diagram(Swaminathan & Smidts, 1999, 1999, 1999).

The graphical representation often serves as an input scheme of a numerical or

mathematical procedure, e.g., Markov chain, which will be solved to obtain the

numerical estimate of the system. Sometimes the graphs can encode Markov or semi-

Markov processes. Petri Nets and GO-FLOW are examples which are modification of

state graph to account for the accident specific features. ESDs which emerged from

traditional PRA methods are also shown to be able to encode a Markov or semi-

Markov process.

All these techniques enhance the ability to deal with dynamic reliability/PRA

problem, but they also have their limitations. One common drawback of these

approaches is that due to exponential explosion of the state space, the graphs rapidly

grow unmanageable. Another limitation is that some graphical schemes rely on the

Markovian assumption, which may not hold in most real systems, and the Markovian

approximation may generate a distorted estimate.

This research would not follow this line of thought. One aim of this research is to

ease the burden of risk analysts to identify all possible risk scenarios, which is exactly

what is required by the graphical models. The intuitiveness of the graphical

representation is still appealing. In fact, graphical models are supplementary tools in

this study. For example, the planner (see Chapter 4) works partly based on knowledge

18

of the state transition diagrams. The graphical models used here, however, would not

be directly used to generate the underlying probabilistic model which would be

solved analytically or numerically.

2.3.4 Discrete Dynamic Event Tree:

Discrete Dynamic Event Trees (DDETs) are simulation methods implemented by

forward branching event trees, the branch points are restricted at discrete times only.

The knowledge of the physical system under study is contained in a numerical

simulation, written by the analyst. The components of the system are modeled in

terms of discrete states. All possible branches of the system evolution are tracked

systematically (Cojazzi, 1996; Hsueh & Mosleh, 1996; Nivolianitou et al., 1986). One

restriction of DDET is that the events (branches) only happen at predefined discrete

time intervals. It is assumed that if the appropriate time step is chosen, DDETs would

investigate all possible scenarios. It is a straightforward extension of the classical

event trees. The binary logic restriction of classical event trees is removed. The

construction of the tree is computerized. An example of DDET is given in Error!

Reference source not found.

The systematic branching would easily lead to such a huge number of sequences

that the management of the output Event Tree becomes awkward. Measures have

been taken to eliminate the explosion of branches. It can be done by increasing the

19

length of the time step, but this may be at the expense of the accuracy of the analysis.

A cut-off probability Plim was introduced in some implementations. The branches

with a probability lower than Plim would be discarded. (Amendola, 1988) suggested

that when the number of failures in a sequence exceeds a user-defined value, further

evolution along this sequence would be stopped. The determination of such

parameters is problem-dependent.

Figure 2.3.1 A Discrete Dynamic Event Tree

Implementations of DDETs include DYLAM,(Cacciabue, Carpignano, &

Vivalda, 1992; Cacciabue & Cojazzi, 1994; Cojazzi, 1996; Nivolianitou et al., 1986)

DETAM,(Siu, 1994) and ADS, (Hsueh & Mosleh, 1996), ADS-IDA, (Chang, 1999).

20

2.3.5 Monte Carlo Simulation

While DDETs require the events to occur at predefined discrete time only, the

Monte Carlo simulation approaches allow events to happen at any time. This avoids

the combinational explosion of DDETs. Monte Carlo methods is insensitive the

complexity and dimension of the system. Any modeling assumption could be

included, the non-fixed failure rate assumption, random delays, interaction between

components and process dynamics, etc. Dubi claimed that MC is the only practical

approach to solve the realistic systems (Dubi, 1998). Generally the MC methods

estimate the system safety or reliability directly, expressed in form of a probabilistic

distribution function ()tix ,,π .

The analog between Monte Carlo simulation for PRA and the transport problem is

often drawn, (Devooght & Smidts, 1992; Dubi, 1998; Smidts & Devooght, 1992). In

the Monte Carlo simulation framework, a system is defined as a collection of

components and state of the system is described by at least one real valued “system

functions” as the function of its state vector and possibly other relevant parameters.

The system function is defined on phase space (B; t), where state vector of the system

is defined as: B = (b1; b2; b3; . . . ; bn), and bi is the state of component i. The phase

space vector (B; t) indicates that the system entered the state vector B at time t. The

problem could be depicted as that of a “particle” moving in a phase space of states

21

and time. The behavior of systems is governed by an underlying transport equation.

The system transport kernel is the product of the free flight kernel and the

collision kernel: () () ()BBtCttBTtBtBK →×→=→ ';';',',' .

The free flight kernel ()ttBT →';' is defined as the probability density that a system

which entered state B’ at time t’ will have a next event at time t > t’. The collision

kernel, which is also called event kernel, ()BBtC →'; is defined as the probability

that upon an event at t in state B ′ the system will change its state into B .

Let { }B ′ be the set all state vector B ′ from which it is possible to transfer to B in

a single event. The event density

() () () () () τψδψ
τ

dtBtBKtBtBPtB
B

⋅→⋅+⋅= ∑∫
}'{

0 ,','',',

If we recall that for a system with n components, each of which has ki different

states, the dimension of the phase space would be∏
= ni

ik
.1

. If the order of events is

important, we will have to consider ∏
= ni

ikn
.1

! different situations. The state explosion

makes the analytical solution of the transport equation prohibitively difficult. The

Monte Carlo simulation is almost only feasible solution.

We note that here, the state vector is defined as finite set of discrete states of the

components, and that the continuous process variables were not considered. The

22

extension to account for continuous-time process variables can be found in many

literatures. (Labeau & Zio, 1998; Smidts & Devooght, 1992; Tombuyses, DeLuca, &

Smidts, 1998)

2.3.6 Discrete Event Simulation

Discrete Event Simulation is based on concept the concepts of state, events,

activities and processes (Carson, 2004). In strict definition of discrete event

simulation, the model state changes only at discrete times. Events represent the

instantaneous change of system state. When an event occurs, it may trigger new

events, activities and processes. Between events, the system is considered to be

deterministic. A process is a sequence of events, activities and other time delays

associated with one entity as it flows through a system.

Extension to treat continuous process variables is needed in most risk analysis

problems (Dang, 1998). It is considered the evolution between events is deterministic.

Like the Monte Carlo approach, this is implicit state-transition methodology, where

there is no need to enumerate the possible system states, and the possible transition

rates.

According to Siu, discrete event simulation has higher ability to deal with

arbitrary complex systems than Markov analysis, DDET, or analog Monte Carlo (Siu,

1994).

23

2.3.7 Improvements to Simulation Methods

Despite all its advantages, the Monte Carlo and discrete event simulation methods

display some drawbacks when applied to DPRA problems. When applied to dynamic

PRA, due to the high reliability of most systems, the required number of simulation

runs may become extremely large and impractical. Much research work has been

conducted on using biased sampling for rare event simulation. In rare event

simulation, great care must be taken to address the completeness of the search of

scenarios. Another drawback is that the simulation results are hard to analyze.

Various attempts have been made to tackle these problems. There are two classes of

methods to improve the simulation efficiency. One class aims at improving the

sampling efficiency, with the help of advanced biasing techniques. Thus we can get

statistically better result with fewer runs of simulations. The other class attempts to

accelerate the simulation speed, which will reduce the time consumption of the single

run the simulation.

1. Biasing Techniques

a. Importance Sampling

Importance sampling is a standard variance reduction technique of Monte Carlo

simulation. Consider the situation where we attempt to estimate:

(){ }XLΕ=l , where X is a random vector with independent components and the

24

sample functions. An unbiased estimator of l is: ()∑
=

=
N

i
iXL

N 1

1
l . This estimator is

sometimes referred to as crude Monte Carlo estimator.

Let ()yG be a cumulative distribution function such that () () ydygydG = , and

()yg is a PDF for ny ℜ∈ . The density function ()yg is called the importance

sampling biasing distribution. Rewrite the target function:

(){ } () () () ()
() () () ()

()∫∫
⎭
⎬
⎫

⎩
⎨
⎧

⋅Ε=⋅=⋅=Ε=
xg
xfxLxdxg

xg
xfxLxdxfxLXL gl

We can form the importance sampling estimator as: () ()i

N

i
i XWXL

N ∑=
⋅=

1

1
l ;

where () () ()xgxfxW = . Here we can see that ()yg should never be zero for any

value of x, if p(x) is positive. Mathematically, it implies that the support of g(.) must

include the support of f(.). However, there would only be a problem where L(x) is

nonzero and the ratio of f(.) and g(.) is infinity, thus the requirement is:

() ()LgportLfport ⋅⊂⋅ supsup

The likelihood ratio W(x) can be interpreted as a “correction factor” or “statistical

weight” necessitated by the change of measure from f to g. To minimize the variance

of the estimator, with respect to the pdf g, that is: () ()
()⎭⎬

⎫

⎩
⎨
⎧

Xg
XfXLgvarmin .

25

It has been shown that the minimizing g is given by: () () ()
() ()∫ ⋅

⋅
=

xdxfxL
xfxL

xg * .

If L(x)>0, then () () ()
l

xfxLxg ⋅
=* , whence () ()

() 0var =
⎭
⎬
⎫

⎩
⎨
⎧

Xg
XfXLg

The main difficulty of finding the optimal importance sampling is that knowledge

of g* implies knowledge of (){ }XLΕ=l , which is precisely the quantity we wish to

estimate. The fact that the analytical expression for the sample performance L is

unknown in most simulation may worsen the situation. The construction of g* is

complicated and time-consuming, especially when g* is a high-dimensional pdf.

The biasing techniques introduced later in this chapter can be viewed as

implementation of the importance sampling techniques. Only a few of biasing

techniques are reviewed here. More general discussion of variance reduction

techniques and rare event simulation can be found in (Bucklew, 2004; Rubinstein &

Melamed, 1998)

b. System-based vs. Component-based.

Labeau et al. (Labeau & Zio, 2002) compared the indirect Monte Carlo method

and direct MC methods. The system-based, indirect MC is derived from the transport

analogy we discussed above. First the next transition time for the whole system is

sampled, and the transition of system configuration is determined. New system

26

configurations can be analyzed and compared to a cut set. The component based,

direct Monte Carlo method samples the next transition time of every component, and

the earliest transition is chosen as the actual one.

Theoretically, if the individual components properties are known, the probability

distribution function of the next system transition can be deduced. The sampling from

such PDF is complex, especially when the system size grows larger, and the

exponential assumption for the individual components is lifted. In such cases, the CB

approach is more straightforward and allows for time dependencies and component

interactions. A special case where the component failure time pdfs are analytical

invertible is investigated, and the component based sampling turns out to be more

efficient.

c. Biasing Toward Top event

Marseguerra et al. have discussed the Monte Carlo methods to estimate the

reliability and availability of a complex system (Marseguerra & Zio, 1993). It is

recognized that in the analog Monte Carlo many simulated histories do not yield

much information. In order to improve the computational efficiency, they introduced

a new biasing technique, which aims at driving the system toward a cut set

configuration, which is more interesting but highly improbable. The concept of

‘distance’ between current system configuration and the ones pertaining to the cut-

27

sets was introduced to get a variance reduction technique. All possible transitions of

the system were classified according whether the transition would bring the system

closer or farther to the top-event (cut-sets). By doing this, the biasing techniques

favor not the failures, but the transitions which lead toward top event of the fault tree.

d. Exponential biasing vs. Uniform biasing

In (Marseguerra, Zio, & Cadini, 2002) the Biased Monte Carlo simulation of

time-dependent failure is discussed. It is shown that if biased sampling from

exponential failure rate may result in a distorted estimate if the sampling failure rate

is too high, on the other hand, if the sampling failure rate is too low, the result may

have large variance. Sampling from a uniform distribution can get a better

distribution throughout the mission time. They found that the sampling from a

discrete uniform distribution generates “extremely satisfactory” results. The

conclusion was drawn based on case studies of small-size problems. Whether the

conclusion still holds with larger systems needs further investigations.

2. Accelerating the Numerical Simulation

The computation of system dynamics is time-consuming. Simplified dynamics is

alternative to detailed numerical calculation. Trained artificial neural networks

provide a fast approximation of the system dynamics. Artificial Neural Networks is

able to model the non-linear system behavior with sufficient accuracy and substantial

28

reduction in computing time. However, the fact that there is no general way of

training an artificial neural network limits the application of this method. (Chatelet,

Zio, & Pasquet, 1998; Marseguerra, Masini, Zio, & Cojazzi, 2003; Marseguerra, Zio,

Devooght, & Labeau, 1998)

Another way is the memorization-based methods. This approach starts with

memorizing the system trajectories prior to simulation. This is achieved either by

computing a grid of disretized process variable space (Marseguerra & Zio, 1995), or

just memorizing the faultless trajectory. (Labeau & Zio, 1998)

2.4 Summary

The Dynamic Probabilistic Risk Assessment (DPRA) methodology has been evolving

in the last two decades. DPRA methodologies are capable of handling interactions

between components and the process variables, they provide more realistic modeling

of the dynamic systems for the purpose of risk analysis. There is a growing

recognition in the risk community of the potentials of these methods. Discrete

Dynamic Event Tree and Monte Carlo simulation are two classes of methods that

have been widely used. In next section we will focus on these two classes of methods,

and propose a new methodology for Dynamic Probabilistic Risk Assessment.

29

3. DPRA as Exploration of Event Sequence Space

3.1 Introduction

A primary goal of DPRA is to identify vulnerabilities of the system, which is

achieved by simulating a variety of sequences of events that are representative of all

possible behaviors of the real system. The event sequences typically share a single

initial condition, but are varied by introducing possible deviations. Such deviations,

which may happen at various times, may be caused by hardware and software

failures, as well as human actions. The set of simulated sequences is then analyzed to

gain insight into events leading to undesirable end states, and their likelihood.

In the problem setting, we assume we understand the rules (e.g. physical laws)

governing the system evolution, so that we can build a simulation model which

represents the behavior of the system under different circumstances. Due to the large

scale of realistic large systems and the complexity of their internal and external

interactions in the systems, we cannot predict the system evolution for sure, even

when we are equipped with a good understanding of all the underlying laws. The

simulation model, which includes hardware, human crew and software, is a

combination of deterministic and stochastic models. The deterministic (mathematical)

30

models are used to simulate the behavior of a system and physical processes taking

place within the system, as a function of time. The stochastic elements are typically

used to represent such events as the random failure of hardware systems and

instruments, as well as the uncertain actions of human operators.

The occurrence and timing of the random events are controlled by the simulation

program. In between the points of occurrence of these random events, the behavior of

the system is modeled by deterministic models describing the physical and other

processes taking place in the system.

Typical “stopping conditions”, i.e. absorbing states, for a sequence are mission

time or the attainment of some condition in the system. Based on the stopping

condition, the sequence of events can be classified as belonging to one of a set of

predefined end states, representing the type and severity of the outcome of the

particular event sequence. These end states are determined by the simulation model

based on the process variables and/or the component states. When the sequence is

completed, the analysis will continue by the simulation of another sequence.

The manner in which the event sequences to be simulated depends on the type of

DPRA method. The Discrete Dynamic Event Tree methods e.g. (Cojazzi, 1996;

Hsueh & Mosleh, 1996; Nivolianitou et al., 1986) systematically explore a large

number of scenarios by introducing, at set points in time, branch points whose

branches represent distinct courses of events, thus leading to distinct sequences of

31

events. The event sequences are usually explored using a depth first or breath first

approach, and the analysis terminates when all the event sequences are exhausted.

Error! Reference source not found. illustrates the structure of DDET.

In another class of methods, the Continuous Dynamic Event Tree (CDET)

methodology (Devooght & Smidts, 1992; Smidts, 1994), event sequences are

randomly explored in the space of all possible event sequences. The exact manner in

which sequences are generated varies. The analysis is terminated after a

predetermined number of scenarios, or when some statistical objective is met.

The CDET class of methods is typically used to obtain estimates of system failure

probabilities. Given that many of the stochastic elements in the system model

represent rare events, the applicability of these methods depends heavily on the use of

variance reduction techniques such as “importance sampling” (Campioni, Scardovelli,

& Vestrucci, 2005; Dubi & Gerstl, 1980; Labeau & Zio, 2001; Labeau & Zio, 2002;

Marseguerra & Zio, 1996; Marseguerra et al., 2002; Tombuyses et al., 1998).

The discussion of importance sampling techniques can be found in 2.3.7. In

principle, the quality of importance sampling depends heavily on the understanding

the problem. The zero variance is achieved when we understand the problem

perfectly. In literature the biasing techniques used for DPRA focus on simply

accelerating the failure at component level. One of the few, if not only, exceptions is

(Marseguerra & Zio, 1993).

32

3.2 Characterization of the Dynamic PRA Process

The previous section described dynamic PRA as the analysis of risks and

vulnerabilities by means of the simulation of many event sequences. The event

sequences are generated by controlling the occurrence, and timing of stochastic

elements in the model, such as hardware failure and human actions. In between the

points of occurrence of these random events, the behavior of the system is typically

modeled by the deterministic models. This description of the process applies to

Dynamic PRA frameworks such as (Acosta & Siu, 1993; Cojazzi, 1996; Devooght &

Smidts, 1992; Hsueh & Mosleh, 1996).

In this section, we present a characterization of Dynamic PRA that was developed

in order to support the development of DPRA algorithms.

3.2.1 Basic Terminology

We first consider some of the basic terminologies that will be used throughout the

discussion in this dissertation.

Model: an abstraction of the real-life system. Models are used to obtain

predictions of the behavior of real system, especially how one or more changes in

various aspects of the modeled system would affect the other aspects of the system.

Time: +ℜ=T

33

System Configuration: It is assumed that all the components in system have only

finite number of states. The system configuration, which is determined by the

component states, can be indexed by a positive integer NC = .

System Status: System status includes both continuous process variables, (a real

number vector X) and discrete system configuration (a positive integer i). It is

defined on NS n ×ℜ=

The process variables are governed by a set of deterministic equations

 () () N
i xxxxf

dt
xd

ℜ∈== ,0, 0 . These equations are implied by the model. The explicit

expression of the equations may not be available for all aspects of the system

behavior.

Event: following the convention of discrete event simulation, an event is defined

as an instantaneous occurrence that changes the system configuration (Carson, 2004).

There are two kinds of events. The event is defined as transition of system

configuration from state i to state j at time t. CC →:intδ

• Random Events are the events whose occurrences are depicted by a

stochastic model and can be controlled by the simulation environment.

Such events are not necessarily induced by the behavioral rules of the

simulation model. An example of random events is a time distributed

34

component failure modeled by the Weibull model.

• Deterministic Events are induced by the deterministic rules. An example

of deterministic events is that a threshold pressure or temperature is

reached.

Event Sequence: a system trajectory, generated by the simulation model. It

consists of a sequence of events, with deterministic behavior in between. Every event

sequence should be unique. It is an instance of the system status evolution through

time line. TES ×= intδ

Event Sequence Space: the set of all possible event sequences. The definition of

the event sequence space is implicit, i.e. follows from the definition of the simulation

model. Event sequences in an event sequence space are considered to be mutually

exclusive, even though they may partially overlap, since they are assumed to originate

from a single initial state of the system. }{ iESSP =

Sequence Generation: the process of simulating one or more event sequences,

equivalent to the, possibly random, drawing of realizations of event sequence from

the event sequence space.

Scheduling: the process of controlling the generation of event sequences. It is

done by deciding on the occurrence and timing of the random events in the model.

Branch Point: a point in the simulation of the system at which the occurrence of

35

a random event is considered by the algorithm controlling the simulation. Each

branch point will have two or more branches, corresponding to occurrence of possible

events.

Scenario: a simplified representation of a group of event sequences with some

common features. These features concern the (non-)occurrence, and possibly the

timing, of events. The sequences belonging to a scenario are therefore considered to

be similar, to the extent that they share the features implied by the scenario.

End State: a classification of the condition of the system at the end of an event

sequence. It is an absorbing state of the simulation. Within the context of (D)PRA,

end states are normally specified as one of the discrete end state types, which

typically indicate the severity of the condition.

Some of these concepts are illustrates in Error! Reference source not found.

36

Figure 3.2.1 Illustration of DPRA Terminology

3.2.2 Event Sequences vs. Scenarios

As part of our characterization of DPRA processes, a distinction is introduced

between event sequences and scenarios. An event sequence has been defined as a

system trajectory, possible within the behavioral rules of the executable simulation

model, consisting of a unique sequence of random events, with deterministic behavior

in between.

The term scenario is referred to as a group of event sequences with some common

features. These common features concern the (non-)occurrence, and possibly the

timing or time ordering, of events. The sequences belonging to a scenario are

37

therefore considered to be similar, to the extent that they share the features implied by

the definition of that scenario.

The difference between an event sequence and a scenario is therefore that the

scenario is not fully specific about the occurrence, timing, or time ordering of events

taking place during the event sequences, which allows for the grouping of the

sequences, as well as a simplification of their representation. In case a scenario is

defined solely based on the combination of event occurrence, ignoring all timing,

Boolean expressions can be used to describe it.

A last simplification of event sequence descriptions, as implemented by scenarios,

is the grouping of events that are considered equivalent. Particularly when redundant

system elements are considered, it may be sufficient to know that one of the

redundant systems encountered an event, e.g., a failure, whereas the particular system

that encountered the event is irrelevant. Leaving out the unnecessary details leads to a

simplification of the description.

Descriptions of scenarios involving the timing of events can be achieved using,

for instance, temporal logic (Shults & Kuipers., 1997). These types of expressions

allow combinations, or the sequences, of events to be described with their temporal

order and charateristics. These logics provide a formal basis for scenario specification.

Based on these logics, set operations can be defined over the space of event

sequences, which will be used in the development of exploration algorithms.

38

Note that dynamic PRA approaches do not always implement a clear separation

between event sequences and scenarios. For instance, Discrete Dynamic Event Trees,

mentioned in a previous section, consist of a collection of event sequences that are

represented in the form of a tree structure, reflecting the systematic fashion in which

the event sequences were generated. However, the event sequences are implicitly

taken as being representative of groups of event sequences. This is evidenced by the

fact that finite probabilities are assigned to the event sequences, even though the

probability of occurrence of individual event sequences is infinitely small. The

probability of a scenario, i.e. the combined probability of groups of event sequences,

can however assume finite values.

The removal of details regarding the occurrence and/or timing of events from

analysis is a common practice in the classical Probabilistic Risk Assessment

approach. First, the fault tree and event tree models used to represent the system

failure logic generally do not represent time. Second, cut-set analysis can be

interpreted as a way of finding the least specific description of combinations of events

that are expected to result in the failure or an end state of the system.

A distinction is however that in classical PRA applications, cut-sets are

specifically associated with a failure of the system. In contrast, no direct association

is assumed between scenarios and a particular end state. Scenarios are not necessarily

sufficiently specific to imply that all sequences would result in an identical end state.

39

Therefore, the end states of the event sequences belonging to a given scenario may

well be different.

As we will see, the uncertainty about the end states of sequences belonging to a

scenario will play an important role in the specification of rules for the exploration of

the event sequence space. The term ‘outcome’ will therefore be used to distinguish

between the end state of an event sequence, and the variation of end states of

sequences belonging to a scenario.

Table 3-1 Comparison of Event Sequences and Scenarios

 Event Sequence Scenario

Detail of Representation Complete detail Less specific

‘Consequence’ Uniquely defined end state Possibly uncertain outcome

Probability Not Defined Defined

3.3 Exploration of the Event Sequence Space

As defined in a previous section, an event sequence space is the set of all possible

event sequences. Each sequence then represents a unique combination of timing and

occurrence of the events. This way it is possible to conceive of many, if not an

infinite number of, event sequences originating from a single starting condition.

Figure 3.3.1 illustrates the concept of event sequence in a probabilistic event

40

sequence space.

The process of generating event sequences by simulation can be viewed as an

exploration of the event sequence space. The objective is to identify how the

sequences lead to an undesirable end state, as well as an estimate of the probability

that such sequences be realized.

High Probability

Medium Probability

Low Probability

Time

r

x
(xo, ro)

(xt, rt)

Figure 3.3.1 An event sequence in the probabilistic event sequence space.

At the start of the exploration, we know the behavioral rules of the physical

processes, the software logic, and the operators that make up the system, as well as

the starting system condition from which the simulation of sequences is initiated

(boundary conditions and initial conditions). The actual specification of sequences

then takes place by varying the occurrence and timing of the random events in the

model. Doing so is the responsibility of a separate element in the simulation

41

environment that is referred to as the scheduler, consistent with the terminology used

in the ADS and DYLAM DPRA environments (Hsueh & Mosleh, 1996).

The exploration/scheduling algorithm, which is separated from the numerical

simulation model, decides how the event sequences are generated, generally by

controlling the occurrence of the random events in the model.

Simply taking all combinations of all possible events may not give the correct

extent of event sequence space, as the event sequence space is constrained by the

behavioral rules of the physical processes, the software logic, and the operators’

actions. These constraints determine if and when certain events, or combinations of

events, can take place.

A combinatorial approach towards the scheduling of the simulation, analogue to

the combinatorial design of experiments (Mason, Gunst, & Hess, 2003), is therefore

not directly possible, as many combinations of events are rendered impossible by the

rules that model the actual behavior of the system, and the possibility of particular

combinations of events can not be anticipated in advance in many cases.

Instead, current DPRA frameworks largely rely on two strategies that will be

referred to as systematic and random exploration.

3.3.1 Systematic Exploration

Systematic exploration is implemented by frameworks such as ADS and

42

DYLAM. The systematic approach operates by considering, at discrete points during

the simulation, which events could possibly happen at that point in time, and to

systematically explore, i.e., simulate, each of those options. The result of this

strategy, which is typically implemented using a depth-first traversal of the event

sequences, is a tree structure corresponding to the repeated branching of the event

sequences, which is referred to as the Discrete Dynamic Event Tree (DDET).

While this approach has the advantage that shared sections of the event sequences

only need to be simulated once, it is computationally demanding since the repeated

branching of sequences leads to a combinatorial explosion of the number of

sequences. Stopping the exploration before it is complete, after the generation of a

predetermined number of sequences, or predetermined amount of computation time,

would leave part of the sequence space untouched by the exploration.

The combinatorial explosion is typically counteracted by limiting the number of

time points at which branching of the sequences can occur, as well as by stopping the

simulation of sequences as soon as their likelihood of occurrence falls below a preset

threshold value. It is known that these control measures introduce a bias in the risk

estimates, i.e. sequence probabilities. (Smidts & Devooght, 1992).

The discretization of the event sequence space may affect the credibility of the

results in other ways as well. By discretizing the event sequence space, single event

sequences are taken as representative of entire groups of event sequences. For

43

example, a sequence involving the occurrence of an event at a predetermined point in

time is taken as representative of any sequence involving the occurrence of the event

sometime during an interval. While this does lead to a reduction of the computational

load by allowing reuse of simulated segments, it affects the ability to identify

vulnerabilities of the system, since it does not allow the sensitivity to small changes

in the sequences, such as the timing of events, to be identified. This while, depending

on the type of system, the end state of an event sequence may be highly sensitive to

the particulars of the sequence, an analogy to one of the basic concepts behind Chaos

Theory. The discretization of the sequence space makes it hard to detect such

sensitivities.

In the implementation of systematic explorations (DYLAM, DETAM, ADS), the

discrete time points at which the branching may take place is predefined, and in many

cases, by fixed time step. There is always a trade off between precision and

computation cost when setting the time points. Too many branching time points

would not only increase the computational cost but also make the resulting DDET too

large to manage. Situation may grow more difficult, if the simulated mission time is

long. In the cases where automatic control and safety devices are ubiquitous and in

critical situations the response time would be crucial, a predefined time step may be

inadequate.

44

3.3.2 Random Exploration

Random Exploration is an alternative strategy and is less sensitive to

combinatorial explosion. It does not involve the discretization of the event sequence

space. This type of exploration consists of Monte Carlo experiments in which event

sequences are randomly generated by randomly deciding on the occurrence and

timing of events.

Time

0

FES

1

2

3

4
5

6

8

9

7

SES

FES

FES

AWD

AWD

SES

SES

A: Systematic Exploration

Figure 3.3.2 Illustration of Systematic Exploration

45

Time

FES FES

SES

AWD

FES

FES

B: Random Exploration

4

3

2

1
5

Figure 3.3.3 Illustration of Random Exploration

Events are allowed to take place at any time and not just at predetermined points

as is the case in systematic search. The exploration can in principle be stopped after

any numbers of generated sequences, even though a higher number of sequences will

generally improve the statistical quality of the results, e.g. reduce the variance in

probability estimates.

DPRA approaches based on a random exploration strategy (Dubi, 1998; Labeau,

1996; Smidts & Devooght, 1992) typically apply variance reduction techniques such

as importance sampling (Campioni et al., 2005; Labeau & Zio, 2001; Labeau, 1998;

Labeau & Zio, 2002; Marseguerra & Zio, 2000; Marseguerra et al., 2002). These

techniques usually rely on forcing the simulation of component-level failures, based

46

on the understanding that component-level failures will typically bring the system

itself closer to a failure. As long as system-level failures of a system can indeed be

interpreted as a combination of component-level failures, and component-level

failures are by nature a rare occurrence, the acceleration of component-level failures

will result in an increase in the number of sequences ending in system failure. This in

turn may help improve the system failure probability estimates.

It is recognized that the biasing techniques have to be designed with great care.

(Marseguerra et al., 2002) showed that poorly designed biasing technique may lead to

distorted estimate. If the system has several competing failure modes, and /or the

system is non-coherent, the biasing toward component failure strategy should be

designed with even greater care. Marseguerra et al. attempted to take the fault tree

into account (Marseguerra & Zio, 1993). Instead of simple favoring component

failure, they tried to favor the events leading to a cut-set of the fault tree.

The random exploration approach is less equipped however to support another

objective of the DPRA process, namely the identification of vulnerabilities in the

system that could bring the system to an undesirable state. In a random exploration

sequences are generated largely independent of each other: each time a new sequence

is generated, it is done without consideration of sequences that have already been

generated. Consequently, the sequences can not easily be organized in a structure like

the discrete dynamic event tree.

47

The storage of details on the nature of the generated sequences is therefore not

practical, and generally does not take place. This makes it hard to perform such tasks

as the identification of classes of events with a major contribution to system risk.

48

4. Enhanced DPRA Framework

4.1 Problem Statement

As discussed in chapter 3, DPRA problem can be interpreted as exploration of the

space of event sequences to discover the system vulnerabilities and provide an

estimate of the likelihood, if possible. In the realistic high reliability system, risk

scenarios are rare, and the exploration scheme may spend a lot of time in the areas

which do not give the risk analysts much insight into what may lead to undesirable

conditions. The exploration strategy should be able to avoid such areas where provide

little information (efficiency). The effort should also be distributed fairly between all

risk scenarios (fairness). Spending most of the effort in one scenario and leaving

other scenarios unexplored or explored only few times is undesirable. At the same

time, we want the exploration to be able to cover all possible scenarios

(completeness). No scenario should be left unexplored. The event sequences space is

infinitively large in most cases. The practical objective is then to explore all

representative scenarios, not all event sequences.

49

4.2 Adaptive Exploration

4.2.1 Traditional Exploration Strategy

The DPRA methods which we have discussed so far largely rely on mechanistic

procedures such as systematic exploration and Monte Carlo experiments, where

exploration are controlled according to preset rules. Little or no effort has been made

to take into account the impact of events, or of combinations of events, in the context

of the system’s behavior.

It is acknowledged that not all parts of the event sequences space have the same

importance from risk perspective. It is natural that we want to guide our simulation

toward the parts which represent higher priority. DDET does not take this into

account. Most biased Monte Carlo simulation tried this on a component level, based

on the belief that the component failures would more likely lead to risk scenarios. The

knowledge of the system, which is obtained by traditional PRA and reliability

analysis, is seldom taken into account. One of the few exceptions is in (Marseguerra

& Zio, 1993) where Marseguerra et al tried to drive the system towards the more

interesting but highly improbable cut set configurations.

An active understanding of the meaning of observed behaviors and significance of

control actions, as well as a dynamic adjustment of exploration strategies is a

promising alternative to current strategies. So far it has not been discussed in

50

literature.

4.2.2 Bayesian Adaptive Exploration

Human brain behaves in an adaptive and self-adjusting way. We learn from

experience incrementally, make decisions and adjust questions through the learning

process. In the DPRA settings, what has been learned from past data could be used to

alter the exploration strategy of future to more efficiently address the questions of

interest. A general framework of adaptive learning procedure is depicted in Figure

4.2.1.

Figure 4.2.1 Adaptive Learning

The theories of experimental design have recognized that the use of partial

knowledge can improve the design of experiments (Chaloner & Verinelli, 1995). The

Bayesian experimental design is motivated by Bayesian decision theory and the fact

that there is always information available prior to the experiment. The optimal design

is made under uncertainty by enumerating the possible actions, and the possible

outcomes, of which we are uncertain. Lindley introduced the idea of using

51

information as utility, while the information is quantified using information

theory(Shannon, 1948). A utility U(o,a) is assigned to action a if the outcome turns

out to be o. The available information, I, implies the probability of observing

outcome o, p(o|I), then the expected utility associated with action a is

() () ()∑
=

⋅=Ε
n

i
i aoUIopaU

i
1

,| , where n is the number of all possible outcomes and

()∑
=

=
n

i
Iop

i
1

1| . The optimal action is the one that maximizes the expected utility. A

more formal way to express the framework can be found in (Chaloner & Verinelli,

1995; Lindley, 1972).

Inspired by the achievement of the Bayesian experimental design, and Bayesian

adaptive exploration (Loredo, 2003), we believe similar procedure would help us in

developing a new exploration strategy. Examples of such application are:

• The use of prior knowledge or expectations regarding the system’s

capabilities and behavior, and the source of such knowledge includes

design documentations, such as requirements and specifications.

• The use of knowledge gained during the testing/ simulation itself, i.e., the

results of test cases already performed, based on which the priorities

during the remainder of the exploration can be dynamically adjusted.

• The use of knowledge regarding generic system vulnerabilities, such as

52

types of functions or operations that are more likely to introduce system

failures.

These types of knowledge are therefore applied to actively and continuously

decide on the priorities of running different types of test cases, to a large extent based

on a sense of the extent of knowledge that can be gained by each of those test cases.

It is believed that the efficiency of DPRA procedures can be improved through

the application of methods and techniques that duplicate or resemble this prioritizing

behavior. The efficiency improvement would be achieved by making the exploration

of the space of possible sequences more directed, and increasing the chance that the

simulation of an event sequence is useful and provides insight into the behavior of the

system.

4.3 Outline of a New DPRA Methodology

4.3.1 The Framework

Based on the view of DPRA simulations as an exploration process, it is believed

that the DPRA can benefit from the incorporation of enhanced rules for the

scheduling of sequence simulations. Here, scheduling is defined as the process of

controlling the input to the simulation model, in order to stimulate the desired types

of scenarios.

53

The new framework will replace the brute-force random and systematic

exploration approaches with dynamic exploration rules modeled after the rules

applied by an adaptive scheduler.

The enhancement would largely invoke two types of knowledge. First, the

scheduling of sequences should take into account prior knowledge about the behavior

of the system, which may include both system-specific information, such as the

design of the system, as well as generally applicable information about the system or

its elements. The experience of similar systems, near-miss incidents previously

observed, common vulnerabilities of similar systems, are examples of this type of

knowledge. Traditional Event Tree/ Fault Tree analysis normally try to capture such

prior knowledge. Due to their highly abstract nature, ET/FT analysis is often

inadequate to model complex dynamic behavior of the system. However such models

and knowledge they embody could still serve as a guide of the simulation.

The simulation model includes some of the rules which dictate the system

evolution. Such rules may be initially abstract, and it is possible to refine the model to

represent a better understanding of the rules later. We shall bear in mind that the level

of abstraction can evolve in time, when we obtain a better understanding the system,

or at a later stage of the system development. Correspondingly, we should be able to

have a more detailed model. The scheduling rules should also take this into account.

The second type of knowledge is what obtained from the generated event

54

sequences during the simulation. The results obtained from the simulated sequences

should be applied to, adaptively, modify the focus of the exploration. In Figure4.3.1,

the inclusion of the new sources of information is indicated by the highlighted arrows.

Figure4.3.1 Proposed enhanced usage of the information in the DPRA exploration.

Therefore the new framework emphasizes the capability of the simulation to be

adaptive and self-adjusting, which is inspired by the analogy to human reasoning

process.

55

4.3.2 Key Elements

The internal structure of the new framework consists of:

• A planner that generates a plan which is an interpretation of the

knowledge of the system as an initial list of scenarios of interest. The plan

serves as a map for exploration.

• A “scheduler” that manages the exploration process, including saving the

system states, and restarting the simulation. The scheduler will guide the

simulation toward the plan generated by planner.

• A simulation model of the system.

• Output analysis, which analyzes the event sequences generated by the

simulation, and may update the plan if needed.

The knowledge of the system vulnerabilities can be expressed as a list of

scenarios which may lead to undesirable end states. Recalling the definition of

scenario, the scenario does not have to be complete event sequences. There is no

requirement that the list of scenarios would cover all the event sequence space. In

event tree analysis, the complete event sequences need to be laid out by the analyst,

and it is essential to accurately cover all the event sequence space with the event

trees. Fulfillment of this requirement of event tree relies on the expertise of the risk

analysts, which is hard to verify, especially when dealing with new systems where we

56

do not have much relevant experience.

Figure 4.3.2 Framework of the New Model Based DPRA Platform

By contrast, in the proposed DPRA framework, the scenarios listed in the plan

serve as a “guide” for the simulation. Due to the randomness of the simulation, it is

believed that with a large number of guided simulation stories, all event sequences of

interest would be touched. The “guide” is usually expected to be incomplete, even

incorrect, information on which part of the event sequences has a higher priority to be

explored.

The random elements of the simulation would be controlled by the scheduler. The

objective of scheduler is to distribute the simulation effort among different scenarios.

The scenario with high importance would be explored with higher priority, while all

57

other scenarios also have a chance to be simulated. Among the “important” scenarios,

we want the scheduler to guide the simulation efforts evenly. Simulation focused on

only one or few scenarios, leaving other important scenarios untouched, is

undesirable.

Among the desired properties the scenario exploration should:

• Maintain sufficient coverage of important scenarios

• Guide simulation toward areas of greatest uncertainty

• Continuously adjust priorities based on simulated results

• Avoid test areas known to definitely lead to a specific end state.

• Simulation should be able to cover all the event sequence space.

4.4 Implementation of the Planner of DPRA Simulations

If we think of the DPRA as an exploration of event sequence space, the plan is the

map to guide the exploration. In the map, the interesting scenarios are highlighted,

and we want our simulation to explore such scenarios more often. We want to explore

the whole map, and it is undesirable to miss any of the scenarios. As we are exploring

the event sequence space, we may find out that the map is inaccurate in some place,

or may miss some important scenarios. With these findings, it is possible for us to

58

update the map, and updating the map is one of the objectives of the exploration.

The plan is a list of scenarios toward which the risk analysts want to guide the

simulation. Planner collects useful knowledge about the contributors to different

classes of risk scenarios and generates the plan for the simulation. Planner gives

guidance to the scheduler on how to reach the end-states of interest. It also receives

some information from the simulator to update its knowledge. Finite State Machine

(FSM), and Qualitative Differential Equations among other techniques have been

used to generate the plans. The state transition diagram, if it is available, provides

very useful information to generate a plan. The regular FSM presentation is extended

so that the uncertain states and state transitions can be modeled as well. As stated

earlier, the scenarios generated in the plan do not have to be accurate or complete.

The simulation would update the knowledge of system, and in turn, may result in an

updated plan, which is more accurate and more complete.

The planning methodology is being developed in a companion research effort,

details of which are provided in (Mosleh et al., 2005).

4.5 Implementation of the Scheduler of DPRA Simulations

Aided by the plan the scheduler is responsible for guiding the simulation toward

the more interesting scenarios. The scheduler will load the plan from the plan file, and

store the plan in the scheduler. The scheduler will keep track of the simulation, and

59

guiding the simulation adaptively.

The simulation would propose the transitions (branches) to the scheduler

whenever it comes to a branching point. The scheduler then retrieves the information

of the proposed transitions, and decides which branch to explore. The exploration

command is sent back to the simulation, and the simulation model would execute the

command, and continue the simulation, until another branching point or end state is

reached.

The scheduler aims at maintaining a fair distribution among the interesting

scenarios, and at the same time, the scheduling is still random, and any transitions are

possible, thus ensure that no scenarios would be ruled out. The details of the

scheduler algorithm are in chapter 5.

The term “Scheduler” has been used in the implementations of DDET

methodology, such as DYLAM (Cojazzi, 1996) and ADS (Hsueh & Mosleh, 1996),

but the role of the scheduler is quite different in our framework. In DDET

implementations the scheduler directs the simulation to perform the systematic

traversal of all the possible branches, typically in a depth-first manner, and the

scheduler does not make decisions of choosing branches. In our new framework, the

scheduler not only is capable of performing the depth-first search as in the DDET, but

also adaptively guides the simulation toward the scenarios of interest. The latter part

is more important, and cannot be found in the “Scheduler” in DDET implementations.

60

4.6 Interactions Between Planner and Scheduler

4.6.1 Load Plan into Scheduler

At the beginning of each simulation, the scheduler will load the plan from the

plan file generated by the planner. The plan file is text file, while list the scenarios

line by line.

It is recognized before the simulation the knowledge of the system may be vague,

abstract, incomplete and even inaccurate. The purpose of the simulation is to enrich

the information of the system. Therefore, we cannot anticipate that the plan generated

by the planner would be complete, detailed, or accurate.

The planer works with an abstract model of the system. The level of abstraction is

usually not the same as the simulation model, as typically the plan captures

knowledge at a higher (more abstract) level. For example, the scenarios generated in

plan may include “engine failure”. In the simulation model, the engine is a complex

sub-system, and there is no single event “engine failure”. The “engine failure” would

be translated to one or more event sequences based on, for example, the fault tree

type of model of the engine failure. The detailed scenarios are used by the scheduler

to guide the simulation. The simulation model itself may be updated. We may get a

more accurate and more detailed model of the component, and as a result, the event

sequences corresponding to the same abstract scenario may change. This feature can

61

ease the burden of the planner. The plan generated from an abstract model does not

have to be changed. Instead, we update the knowledge base of event sequences

corresponding to each abstract scenario at different stage of modeling.

A database is maintained by the risk analysts to interpret the abstract scenarios

generated by planner. When the scheduler loads the plan, if there are such abstract

scenarios, the scheduler will query the database to get the detailed scenarios, and

generate a detailed plan, which can be used to direct the simulation.

4.6.2 Update Plan Based on Simulation Result

As we have seen in Figure 4.3.2, the plan will be updated from time to time.

There are several types of updating. The first type is automatic updating after

simulating a specific number of event sequences. The planner will check the

simulation results so far to determine how well the simulation is following the plan. If

some scenarios have been underrepresented, the planner would automatically set the

importance level of the specific scenarios to a higher level, which would in turn make

the scenarios more favorable by the scheduler. The purpose of this adjustment is to

maintain a exploration fairly distributed among different scenarios. This step may

happen more than once in the simulation.

A second type of updating needs analysts’ intervention. The result of simulation

may disagree with the plan, for example, some scenarios have remained untouched.

62

The discrepancy is highlighted for further investigations.

Several different things may contribute to the discrepancy. It may be that the

simulation model somewhat misrepresent the reality which make some scenarios

impossible in the simulation. Or it may be that the plan is inaccurate, and needs to be

modified. This is referred to as spurious scenarios in qualitative simulations (Berleant

& Kuipers, 1997; Kuipers., 1986; Shults & Kuipers., 1997). A typical source of this

situation is that some scenarios (paths) which appears in the state graphs are rendered

impossible by the constraint of the physical reality. The qualitative reasoning part of

the scheduler tries to identify such scenarios, and eliminate them from the plan. There

is no guarantee that all spurious scenarios would be identified and eliminated (Say &

Akin, 2003). Once there are such scenarios in the plan, no matter how hard the

scheduler tried, no event sequences could be generated in these scenarios, since the

simulation model is a representation of the physical reality. The output analysis may

find such scenarios, and refine the plan accordingly.

Another reason could be an ill-designed sampling procedure. If the sampling

distribution is heavily skewed, some scenario may never be sampled. In our

implantation, we carefully design the sampling method to make sure that all the

possible events have a chance to be sampled. The discussion of sampling is referred

to branch point generating in our approach.

In any of the above cases, with the detailed discrepancy in the generated event

63

sequences and the planned scenarios, it should be easy to detect the error, and fix it.

64

5. Scheduler Algorithms

This section describes the methodology and algorithms of the scheduling of

simulations. The objective is to develop the ability to adaptively schedule the

simulation of sequences such that the simulation effort is guided toward scenarios of

interest and is “fairly” distributed among the possible scenarios.

5.1 Problem Definition

We use the simulation to gain the knowledge of the evolution of the state of the

system over time. There are several random elements in the system, which we cannot

predict with 100% certainty. One kind of random events is that we cannot know for

sure what will happen at a specific time. For example, the backup system may fail to

start when there is a demand. We refer to this kind of random events as “demand-

based” in this dissertation. The random events also can be time-distributed. They can

occur within some time interval, but we do not know when. Sometimes the behavior

of such events is characterized by their rate, or probability, of occurrence, which may

be dependent on time as well as the state of the system. The occurrence of random

events can influence the evolution of the system’s state.

65

The occurrence of random events is controlled from outside the simulation model.

The responsible mechanism, referred to as the scheduler, guides the exploration of the

sequence space by controlling the occurrence of individual random events according

to some exploration strategy. The specification and implementation of the exploration

strategy is the topic of this chapter.

Suppose that we have a list of interesting scenarios, which we want to investigate

in detail. The objective of this study is to devise and implement a strategy for the

exploration of the event sequence space that allows us to adaptively schedule the

simulation of sequences such that the simulation is guided toward these scenarios and

the effort is fairly distributed among them.

The scenarios are represented in the form of a tree structure. In the simplest case,

these expressions specify the combination of single events, but more complex logic

structures are also considered. The scenarios are not necessarily mutually exclusive.

The solution to the scheduling problem can be subdivided into two problems.

First, the solution to the problem requires us to develop the ability to control the

occurrence of individual events in such a manner that simulated sequences belong to

a particular scenario. However, the repeated simulation of a single sequence

belonging to the scenario of interest does not help in the assessment of the outcome of

a scenario. The solution should therefore be able to ‘sample’ sequences randomly

from the set of sequences that constitute the scenario.

66

Secondly, a “fairness” criterion must be formalized, and a corresponding rule for

prioritization of the scenarios must be devised. The requirement that the scheduling

takes place in an adaptive manner means that the fairness criterion should consider

the results from sequences that have already been simulated. The scheduling

mechanism should thus routinely revise its scheduling priorities based on the latest

state of information.

5.2 Scheduler Overview

The scheduler is the procedure and software controlling the execution of a

simulation model, and more specifically, deciding on the occurrence of non-

deterministic events in the simulation model. The scheduler would accept a plan,

which consists of a set of scenarios. Each scenario consists of an abstraction of a

group of event sequences. Sequences are defined as specific realization of the

simulated timelines. The objective of the scheduler is to generate sequences according

with the plan and the defined importance levels.

67

Figure 5.2.1 The Scheduler Framework

As the simulation starts, the scheduler and simulation model is initialized. In the

68

initialization, the first branching points conditions is calculated, and passed to the

simulation model. Then the continuous-time (deterministic) simulation starts

calculating the system trajectory based on the initial conditions. Once any one of the

branching point conditions is reached, the simulation generates a branch point, which

means that there are at least two branches possible. Each branch represents a possible

stochastic event, for example, the occurrence and non-occurrence of a hardware

failure. Another example is the human operator action, when there is a stimulus for

the operator to take action, the operator may have several possible responses, each of

which is represented as a branch. Branches are proposed events to the scheduler. The

scheduler will check the current status of simulation, the plan, and previous

simulation results. Based on the exploration rules, the scheduler will decide which

branch to explore, and sends back the decision to simulation model. At the same time,

the system state, criteria for next branching point and/ or the deterministic simulation

model are all updated. This process is called “executing transition”. The simulation

resumes, until it reaches next branching point or absorbing (end) state.

5.3 Representation of the Plan in Scheduler

The Event Sequence Space is represented by a tree structure. Each branch of the

tree, which consists of a sequence of nodes, represents a scenario, which is a class of

event sequences. This representation derives from the plan. It is the way we anticipate

69

the system to behave. We may be more interested in some branches than others, based

what we have learned from previous experiences.

Each node represents a statement, of such types as

• Required event or events;

• Negation of some event or events;

• Events with time condition, e.g. happened in a specified time interval;

• Combination of several events.

The tree represents how the scenarios partially overlap. For instance, if two

scenarios both define event A as a required event, the node specifying this will be

shared by both scenarios.

The system evolution is depicted by the moving from one node to another. In

order to keep track of the current state of the simulation, each node has a “status”

variable, which is defined with respect to a single sequence, i.e., the status is reset at

the start of every sequence. The status is used to track the progress of the simulation

within the plan. So when the simulation reaches a certain stage in the plan that some

certain nodes are ready to be explored, such nodes are marked as ‘arrived at’. At that

time, when an event (or a combination of events) occurs that fulfills the requirement

set by the node, the status of the node becomes ‘occurred’, and the immediate

children nodes of that node becomes “arrived at”. At any stage of the simulation if

70

some nodes are no longer possible to explored, they are marked as “negated”. In this

way, the scheduler is able to track the simulation in the plan.

To illustrate how this scheme works, let us look at the following example. Figure

5.3.1 demonstrates how the status of each node is changed during the progress. Each

node is designated by a number. The nodes may have sub-nodes. The tree on the left

side illustrates the current state of system evolution:

1. Node 1 is marked as “occurred”,

2. The other branches which are inconsistent with the current system state are

“negated”; like node 2 and all the sub-nodes of node 2. By “inconsistent” we mean

that those nodes can no longer be satisfied given current system state.

3. The immediate sub-node of node 1 is “arrived”

4. The nodes of the deeper levels are “not occurred”.

Note that we assume that nodes 1_1, 1_2, and 1_3 are associated with the event a,

b, and c, respectively, which means, for example, if “event a” happens at this stage

then the node 1_1 occurs.

Then, we assume that “event a” happens. The new system state is described in the

tree on the right side of Figure 5.3.1. The occurrence of “event a” makes the node 1_1

status change to “occurred”. Consequently, the children nodes of 1_1 are “arrived”.

The nodes 1_2, and 1_3 are no longer available and become “negated”. From the

71

illustration we see how the system moved one step forward.

Figure 5.3.1 System Evolution

5.4 Branch Point Generation for Stochastic Events

We consider the rules for the generation of stochastic event sequence branch

points in this section. The rules for branch point generation could be either

probability-based or time-based.

72

5.4.1 Probability-based Branch Point Generation

This rule can be applied to events that occur with an intensity function h(t,x),

which may or may not be a function of time and the current state of the system.

The rule is applicable both to systematic search and random search event

sequence space exploration schemes. In case of a systematic search, the simulation

scheduler will, at each branch point, explore both branches corresponding to

occurrence and non-occurrence of the event. In case of random exploration, the

scheduler will (randomly) select one of the branches.

The rule divides up each simulated scenario in a number of subsequent time

intervals, and generates one branch point in each of those intervals. The time intervals

are chosen in such a way that, assuming that the event has not yet occurred, the

conditional probability that the event takes place in a given interval is equal to ΔP. In

mathematical terms,

 1
1

1

Pr(' ')Pr(' | ')
Pr(')

k k
k k

k

t t tt t t t P
t t
−

−
−

< <
< > = = Δ

>

where t’k-1 and t’k are the bounds of the k-th time interval, t is the time of occurrence

of the event, and

 1 1Pr(' ') Pr(') Pr(')k k k kt t t t t t t− −< < = < − <

The time of the k-th branch point, tk, is chosen randomly within the k-th interval,

73

according to the system’s time-to-occurrence distribution. Let u be a sample from the

standard uniform distribution, then tk is defined by the equation

 ' 1
()

1
tk

t k
h d

u P e
τ τ

−
− ⋅∫⋅Δ = −

which corresponds to the probability of occurrence of the event between t’k-1 and tk.

The following is the algorithm that implements this rule. Let H(t) denote the

cumulative intensity at time t

0

() ()
t

H t h d
τ

τ τ
=

= ⋅∫

Then the time tk at which the k-th branch point is generated is given by

 1() (') ln(1)k kH t H t u P−= − − ⋅Δ

where

 (') ln(1)kH t k P= − ⋅ − Δ

The last of these equations illustrates the fact that the choice of a constant

conditional probability interval translates into a constant increment of the cumulative

intensity function at the start of each interval.

'

' 1
()

1
t k

t k
h d

e P
τ τ

−
− ⋅∫− = Δ

74

Figure 5.4.1 illustrates the construction of the intervals for ΔP = 0.1 and h(t) =

0.01. Since the intensity function h(t) is constant, the intervals are of equal width.

Figure 5.4.1: Construction of intervals.

The sampling of the branch point is illustrated in Figure 5.4.2. The horizontal axis

shows the cumulative intensity function; the vertical axis represents the conditional

probability of occurrence of the event. The example sample point u ΔP is converted

into a value of the cumulative intensity at which the branch point should be

generated. Note that for small values of ΔP, this conversion is approximately linear.

Figure 5.4.3 shows an example of generated branch point times, randomly chosen

within each interval.

75

H(t)

u ΔP

ΔP

H(t'_k-1) H(t_k) H(t'_k)
0

Figure 5.4.2 Conversion from u ΔP to H(tk).

10.5 21.1 31.6 42.1

Figure 5.4.3 Example of generated branch point times within each interval

For certain time-to-occurrence distributions, such as exponential and Weibull, the

value of tk can be determined as a function of H(tk). In other cases, for instance when

the intensity of occurrence depends on the physical conditions in the system, tk may

have to be determined through integration of h(t,x). In this case, the boundary points

t’i will depend on the particulars of the scenario being simulation.

In general, when the intensity function is not constant, branch points will be

spaced more densely when h(t,x), or simply h(t), assumes higher values.

5.4.2 Time-based branch generation

The rule can be applied to events that occur randomly in a specified time interval.

76

The time condition of the event is specified by the user/ modeler. The mission is

divided into several critical time intervals, during which the event may happen. The

rule will generate a random time point in each possible time interval.

H(t)

t
t
br1

t
br2

t
br3

Figure 5.4.4 Illustration of the branching points

The branching time point tbr is uniformly distributed in the time interval (tll, tul)

() llllulbr tttt +−⋅= α , where α is a uniform random number in (0,1).

This branching generation scheme is useful when there are specific time intervals

which are very critical to the mission, but are very short. Short in a sense that

generating a branch point in that interval using probability based scheme is almost

impossible.

5.4.3 Branching Point Generation for Demand Based Event

The stochastic behavior of a component may be described by the probability

distribution function of time-to-failure. There is another class of failures. The

77

probabilistic branching stochastic process has a set of outcomes, each with of a

probability of occurrence. The timing of the occurrence is not random; instead, the

outcomes at that point of time are random. The failures of standby components or

components starting on demand are examples of this class of stochastic behavior.

Human actions may be considered this way as well if we ignore the delay in human

reactions.

When system simulates this kind of behavior, possible outcomes are proposed to

the scheduler. It is not limited by binary branches. When there are more than two

possible outcomes, all possible outcomes are considered and proposed. The scheduler

treats the proposed events in the same manner as the time-to-failure events. The

branches generated represent different possible scenarios. There is no difference to

scheduler whether the branch is generated by time-to-failure events or probabilistic

branching events.

5.5 Scheduling Algorithm Based on Value

At a branch point, all the branches are proposed to scheduler. The value of a

branch is defined as the measure of how much we want to simulate that particular

branch. The scheduler will decide which branch to explore based on the values of all

possible branches. The value of each branch is evaluated based on several factors.

The section details the algorithm for calculating the value of branch.

78

5.5.1 Entropy as Measure of Information

One motivation for simulating the event sequences is to gain information, i.e., to

reduce the uncertainty about the end state of similar sequences also belonging to that

scenario.

If event sequences belonging to a particular scenario consistently result in a single

end state, the motivation to spend more simulation time on the simulation of that

scenario should decrease, as the expected added value of those simulations decreases.

This applies regardless of whether the consistently encountered end state is a

desirable or undesirable end state. We see, therefore, that we should favor the

simulation of scenarios with a variable rather than a consistent outcome.

A second contribution to the uncertainty is the lack of knowledge about the

scenario’s outcome and an understanding of the system behavior, as well as an

experience in the form of the observation of event sequences. Lacking either form of

knowledge about the scenario, its outcome is going to be inherently uncertain,

regardless of whether the system would behave in a consistent fashion were it

observed.

Figure 5.5.1 illustrates possible states of uncertainty about the outcome of a scenario.

For illustration purposes, we assume that event sequences end up in one of two end

states, even though the presence of more than two end state types is assumed in the

discussions in this dissertation. The horizontal axis in each chart represents the

79

probability p that a sequence belonging to the scenario results in the first of the end

states. The vertical axis in each chart represents the likelihood, or belief, of p being

the number. A Beta distribution with α=1, β=1 is a uniform distribution in (0,1). This

is non informative, which means the likelihood of the p being any number in (0,1) is

the same. The Beta distribution with α=26, β=26, yields a belief which the likelihood

of the p being 0.5 is much higher than any other number. The Beta distribution with

α=1, β= 51 represents a belief that p being close to 1.

Figure 5.5.1 States of uncertainty about the outcome of a scenario.

The uncertainty or rather the amount of information, represented by such

distributions can be measured using Shannon’s entropy measure (Lindley, 1956;

Shannon, 1948). Given a probability distribution over the measure, the negative

differential entropy measure is used, defined as

 (()) () ln ()I dπ θ π θ π θ θ= ⋅ ⋅∫

We note that the minus sign introduced by Shannon is not used here. In a

80

statistical sense, the maximum information is obtained when the probability

distribution is concentrated on a single value, i.e. a δ function. The information is

reduced when the PDF spreads. When Shannon introduced entropy, it is in the

communication engineering, which is the opposite case faced by us.

We now apply this entropy to measure the state of information about the outcome

of an event sequence belonging to a particular scenario S. We note that we will be

considering the uncertainty about the end state of a simulated sequence, i.e., the

probability distribution over the end states given that a sequence belonging to the

scenario is simulated, rather than a probability distribution based on the natural

frequencies of the event.

We initially consider that each sequence s in S ends in one of two end states. Let x

be our degree of belief that end state E will be reached, and let our belief regarding

this probability be described by a Beta distribution

 () ()
()βα

βαπ
βα

,
1,|

11

Be
xxx

−− −⋅
=

where 1α − and 1β − respectively represent the number of times that end states 1

and 2 are observed in a total of 2α β+ − sequences. Then the entropy measure is

equal to

 (| ,) (1) (() ()) (1) (() ()) ln (,)I x Beα β α ψ α ψ α β β ψ β ψ α β α β= − ⋅ − + + − ⋅ − + −

81

where, ()zψ is the digamma function,

'()() ln ()
()

d zz z
dz z

ψ Γ
= Γ =

Γ

which for integer arguments can be computed as (Abramowitz)

1

1

1()
m m

α

ψ α γ
−

=

= − +∑

such that

1 11

1 1

1 1 1() ()
m m mm m m

α β α βα

α

ψ α ψ α β
+ − + −−

= = =

− + = − = −∑ ∑ ∑

For large values of z, the digamma function can be approximated efficiently by

() () 2ln zzz −≈ψ .

In case of a Dirichlet distribution,

 1

1

1()
()

i

n
u

i
iZ u

π θ θ −

=

= ∏

()

1

1

()
()

n
ii

n
ii

u
Z u

u
=

=

Γ
=
Γ

∏
∑

which applies when more than two end states are possible for each sequence, the

entropy in this case is given by

82

1 0

((|)) ln () (1) ()
n n

i i i
i i

I u Z u u u uπ θ ψ ψ
= =

⎡ ⎤⎛ ⎞
= − + − ⋅ −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑

Figure 5.5.2 illustrates the information values for the Beta distribution. The figure

illustrates that for the uniform distribution (Be(θ|1,1)), the negative entropy is 0,

representing a state of ignorance about the outcome of the scenario. The plot shows

that as more sequences are simulated, the level of information about the outcome

generally increases, and should in fact be expected to increase.

The negative entropy increases the fast along the axes of the surface plot. This

indicates that the level of information about the outcome of an experiment increases

fast when the outcome is consistent. However, an inconsistent outcome after a series

of experiments with a consistent outcome can significantly reduce the information

measure, representing a loss of confidence and increase of uncertainty, which can

reasonably be expected in case of a surprise outcome. A surprise, or an outcome

contradict the previous held belief may decrease the prior confidence.

83

Figure 5.5.2 Information measure as a function of Beta distribution

5.5.2 Expected Entropy Gain Through Experiment

To calculate the value of a branch, we need to know the expected information we

expect to gain if we follow that specific branch. Since we use entropy as the measure

of uncertainty, it is natural to measure the expected information using entropy. The

exploration of a branch can be viewed as a stochastic experiment, which has a limited

number of possible outcomes.

Shannon introduced the idea that information is a statistical concept and proposed

using entropy as measure of information (Shannon, 1948). Lindley applied these

84

ideas to measure the information in an experiment rather than in a message (Lindley,

1956). The amount of information provide by experiment is measured by comparing

the knowledge before and after the experiment, while the measure of information is

given by Shannon’s entropy. The knowledge gained by an experiment can be

described by a Bayesian inference model. The knowledge before the experiment is

expressed by a prior distribution ()θπ 0 , where θ is the parameter we are interested

in, and Θ∈θ . The experiment results in an observation x. Then, the knowledge after

the experiment is ()x|θπ , according to the Bayes theorem:

() () () ()θπθθπθπ 00 || xpx ⋅= ; where ()θ|xp is the likelihood function.

The amount of information before the experiment, with respect to θ is

() ()[] θθπθπ∫ ⋅= dI 000 log

If we introduce the expectation operator θE , which denotes the expectation with

respect to θ , the equation is rewritten as:

()[][]θπθ 00 logEI = .

We note that the minus sign introduced by Shannon is not used here. In a

statistical sense, the maximum information is obtained when the probability

distribution is concentrated on a single value, i.e. a δ function. The information is

reduced when the PDF spreads. Shannon introduced entropy in the communication

85

engineering, which is the opposite case faced by us. The objective of communication

is to transmit a message, x, which is received as message, y. The concentration on

single value would allow no choice in his message, thus, no information transmitted.

Therefore, the scales in these two cases are reversed.

After an experiment is performed and the value x observed, the amount of

information is

() ()[] θθπθπ∫ ⋅= dxxI |log|1

While the prior knowledge ()θπ 0 , the amount of information provided by the

experiment ε, when the observation is x, is defined as:

()() 010 ,, IIxI −=θπε ,

Further, the average amount of information provide by the experiment ε, is

defined as:

()() ()[]010, IxIEI x −=θπε

In the exploration problem here, the branch is corresponding to the experiment ε

has n possible outcomes. We have the PDF of the outcomes 0π , either from the prior

knowledge, if we are at the start of the simulation, or the updated PDF with previous

simulation results. The equation above still applies here.

To better understand the concept of expected information, we apply the algorithm

86

to a special case. We are performing an experiment of examining the probability p of

getting a head from tossing a coin. The experiment has only two possible outcomes,

head or tail {H, T}. Before the experiment we have no information of the probability,

so our prior is a beta distribution between (0,1) () []1,0;10 ∈= ppπ . The likelihood of

getting result {n heads and m tails} is

() ()mn pp
n

mn
pEL −⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
= 1| , where ()

!!
!

mn
mn

n
mn

⋅
+

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

The posterior distribution would be () () ()
() ()∫ ⋅

⋅
=

p

dppELp
pELpEp

|
||

0

0

π
ππ .

Hence, we get, () () ()mn Pp
mn
nmEp −
⋅
++

= 1
!!

!1|π

We recognize that this is a beta distribution with 1,1 +=+= mn βα . The entropy

of Beta distribution is showed in Figure 5.5.2. In a more general case, if our prior

information is expressed as a Beta distribution () ()
()00

11

0 ,
1 00

βα
π

βα

B
ppp

−− −⋅
= , where

()βα ,B is the Beta function. The posterior when we get result {E=n heads and m

tails} is () ()
()mnB

ppp
mn

++
−⋅

=
−+−+

00

11

,
1 00

βα
π

βα

, which is the Beta distribution with

1,1 00 ++=++= mn ββαα .

Then, we calculate the expected information gain from next experiment, starting

87

our prior knowledge expressed as a beta distribution with 00 , ββαα == . The result

of the experiment would be either head or tail. We expect that we get a head with

probability
00

0

βα
α
+

=HL . The posterior distribution when result is a head is

() ()
()00

1

,1
1|

00

βα
π

βα

+
−⋅

=
−

B
ppHp .

Similarly, the posterior estimation when result is a tail is

() ()
()1,

1|
00

1 00

+
−⋅

=
−

βα
π

βα

B
ppTp .

The expected information gain is calculated based on the prior and posterior:

 ()() ()[] ()() ()() ()()pITpILHpILIxIEpI ppTpHx 0010 ||, ππππε −⋅+⋅=−=

Figure 5.5.3 is plot of the expected information for)50,1();50,1(00 ∈∈ βα (Note that

on that plot, the information gain is on log scale.)

From figure 5.5.3 we can see that the information gain at the beginning of the

experiment is high, and the information gain is decreasing. It is easy to understand

that when there is little prior information, few or even one experiment result can gain

us significant understanding, but when there are sufficient data already, single

experiment is not likely to change the perceived information.

88

Figure 5.5.3 Expected Information Gain for Experiment with a Beta Prior

We list four representative cases in Table 5-1. The first row shows the prior

information represented by a Beta distribution. The second row is the expected

information of a single experiment starting from such prior information. The case of

(1,1) represents non-informative prior, no experiments have been performed yet. It is

expected that one single experiment could gain much information. In other cases with

priors (6,6), (10,2) and (11,1), the prior information represents the information gain

after ten experiments, where the results are {5 heads and 5 tails}, { 9 heads, 1 tails}

and { 10 heads and no tails} respectively. We can see that (6,6) represent great

uncertainty, and the information gain from this case is much higher than (11,1) where

the experiment results are pretty consistent.

89

Table 5-1 Expected Information Gain of Beta Prior

Prior α, β (1,1) (6,6) (10,2) (11,1)

Expected Info 0.19 0.04 0.038 0.035

The case of multiple end states is studied in Table 5-2 Expected Information Gain.

A non-informative prior is assumed. The posterior PDF is a Dirichlet distribution (see

section 5.5.1). From the table we can find a clear pattern that the expected

information gain decreases with number of sequences, and outcome consistency. The

conclusion is an extension of the binary experiment case.

Table 5-2 Expected Information Gain for A Dirichlet Distribution

Previously Observed Outcomes, by end states

ES-1 ES-2 ES-3 Es-4

Expected
Information
Gain

0 0 0 0 0.3030

0 0 0 4 0.1578

0 0 2 2 0.1626

2 2 0 0 0.1626

1 1 1 1 0.1684

0 0 0 9 0.0974

0 2 3 4 0.1050

0 20 30 40 0.0151

90

5.5.3 Principle of Evaluating the Value of Exploring a Scenario

As designed earlier value of each scenario serves as a measure of how much we

want to simulate that specific scenario. The scheduler works by comparing the value

of all possible branches. The higher the value, the more likely the scheduler will favor

the branch. To generate the algorithm of evaluation, we summarize a set of principles:

• Value of a specific scenario should be consistent with how much

information is expected to be gained by simulating/exploring that

scenario.

• Value of a specific scenario should be consistent with the importance

level based on prior information or engineering experience.

• One scenario with high value will make the value of whole group of

scenarios high. A bunch of branches with low values, does not necessarily

add up.

• Value should be coherent with how close it brings the system towards

ending.

The expected information gain is one of the most important factors in the value of

a scenario. Apart from the expected information gain, previous experience with same

or similar systems is likely to give us a hint that some scenarios are more important

than others, and this piece of information can also influence the decision on how to

91

explore the event space. This type of information would be provided as the

“importance level” in the plan. The scenarios we are interested in may still have sub-

branches, so to evaluate the value we will have to take account of all the sub-

branches. If one of sub-branches has a high value, it will considerably increase our

interest in that branch. But if all the sub-branches have very low values, they do not

simply add up to a high value, i.e, increased interest in that specific branch.

5.5.4 Algorithm for Evaluating the Value of Proposed Event

The value of a proposed event is a function of the expected information gain,

impact factor and importance factor. The information gain evaluation algorithm

has been discussed in section 5.5.3. Importance factor is an engineering judgment of

how much we want to explore or avoid the scenarios. It is subjective and relies on the

expertise of the engineers and risk analysts. The importance of a scenario is

considered a function of

 Learning value: ability to provide new insights

 Engineering criticality: significance from engineering perspective

The engineering criticality is a measure of the perception by engineers/analysts

that particular scenarios are (not) of interest. It an event is expected to lead to severe

end states, the importance level would be high. Other knowledge involved in the

assessing of the importance factor includes knowledge of common vulnerabilities that

92

have been observed in similar systems. The risk analyst would assign an importance

level to each scenario in the plan.

The impact factor is an object measure of how close the transition would bring the

system towards an end state. It is a real number valued between 0 and 1. The

algorithm of calculating the impact factor is designed in the scheduler.

The value of each event proposed at the branch point is evaluated by evaluating

the value of any of the scenarios that are enabled by the proposed event. A value is

assigned to each scenario originates from the branch point. The evaluation follows the

steps:

i. The value of a proposed transition event depends on the value of the scenario

which it enables, and the evaluation of the scenario has been discussed in

5.5.3

ii. Multiply the raw value from step ii measure with the importance factor.

iii. We multiply the raw value deduced from step iii with the impact factor which

is based on whether the transition associate with the branch takes the system

closer to an end-state or not.

 If the event satisfies a node, which moves the system forward, the impact

factor is 1;

 If the event makes the system impossible to follow any interesting

93

scenarios, the factor is 0;

 If the event partially satisfies a node, the factor is between 0 and 1.

5.5.5 Exploration of Branches

Whenever a branching point is reached, the further exploration options are

proposed to the scheduler by the simulation model. The scheduler will decide which

branch to explore, and send the exploration command back to the simulation model.

The simulation model would execute the command.

In the scheduler, each option is like a branch. The scheduler will

i. Retrieve the information of each option; and

ii. Evaluate the value of each branch, as discussed in 5.5.4 and

iii. Choose the option using a Russian Roulette style algorithm, and

iv. Send the exploration command back to scheduler.

The scheduler will decide which branch to explore according to the value. The

higher value implies higher likelihood of the scenario being simulated. If the

scheduler simply choose the branch with highest value, it is likely that the simulation

would be locked in the scenarios listed in the plan. As we have stated earlier, the plan

is only a rough guide, and is not intended to be complete, or accurate. We do not want

the simulation to be locked in the scenarios in the plan. The scheduler should be

random to ensure that the scenarios which are not in the plan still have a chance to be

94

simulated. According to the algorithm, the probability of exploring a specific branch

is proportional to the value of that branch. This is similar to Russian Roulette

algorithm in (Marseguerra & Zio, 1993).

When there are n proposed branches, and the value of each branch is Vi’, the

value of the branches are normalized such that 1
1

=∑
=

n

i
iV , and the interval (0,1) is

divided into n subinterval accordingly. A uniform random number u is drawn from

(0,1) to determine the branch chosen, that is ith branch is chosen, if u fall into ith

subinterval. The process is illustrated in Figure 5.5.4.

Figure 5.5.4 Choosing Branch Based on Value

5.6 Event Sequence Quantification

The scheduler works in such a way as to explore the scenario we are interested in

more frequently. We force some stochastic events, such as hardware malfunction,

95

human errors, and software failures to happen more frequently, or in some cases, less

frequently compared to their natural frequencies or probabilities. In order to get

unbiased estimates of the quantities of interest, we take account of the modification

introduced through accumulation of proper weights.

The natural probability that the event occurs during any given interval is by

definition equal to ΔP. For demand-based event, the natural frequency of the event is

P. The demand-based and time-distributed events can be treated in the same manner,

the only difference is the notation of the natural frequency. In the following

discussion, we use the notation ΔP to represent the natural frequency. This is only for

convenience, and the procedure can be applied to both demand-based event, and time-

distributed event.

Since an event at tk is taken as representative for occurrence of the event

anywhere during the interval, the probability of occurrence of the event will be taken

as ΔP, and thus the probability of non-occurrence of the event as 1 – ΔP.

In case of a random search, the two branches originating from a branch point are

assumed to be visited with probability Q (occurrence of the event), and 1 – Q (non-

occurrence) respectively. Q can be used to control how often a particular branch is

visited during the simulations, regardless of the actual probability of the branch.

In order to correct for a possible discrepancy between Q and ΔP, and thus also (1

96

– Q) and (1 – ΔP), a weight factor must be applied to event sequences whenever a

branch point is encountered. If the probability of a branch is ΔP, and the probability

that the branch is generated equals Q, the probabilistic weight of the event sequence

following that particular branch should be adjusted (multiplied) by a factor

 Pw
Q
Δ

=

In case of a systematic exploration, both branches are visited. In this case, the

correction takes place by multiplying the branch weights by P or (1 – ΔP), depending

on the branch that is followed. These values are found by setting Q to 1 in the above

equation.

In the adaptive simulation, each time when a stochastic event is proposed to the

scheduler, the statistical weight affected by the scheduling command is kept by the

scheduler. The Q (probability that branch is explored) may vary each time. The

algorithm stays the same. When the propose event is a probabilistic branching event,

the actual probabilities (Pe) is associated with each possible outcomes, thus the

weight is
Q
pw e

i = .

By applying this weighting scheme to event sequences, the probability of the

corresponding scenarios can be computed. Let each generated event sequence belong

to one or more scenarios. Then the sum of weights of event sequences belonging to a

97

given scenario is taken as the weight of the scenario, denoted by WS

 ∑
∈

=
SSi

is
i

wW
:

 .

If the scenarios are mutually exclusive, meaning that each event sequence belongs

to exactly one scenario, the weights can be normalized into an estimated probability

distribution over those scenarios

 ˆ s
s

jj

WP
W

=
∑

In case of a random event sequence generation, ŝP converges towards the true

probability of the scenario as the number of simulated event sequences increases.

With each simulated event sequence, WS increases on average by

 ()S i i
i

W w q sΔ = ⋅∑

where

 si, i = 1,…,n is the set of all event sequences that make up scenario S.

 wi is the weight of sequence si, as defined above

 q(si) is the frequency at which sequence si is generated.

To prove that this weighting scheme allows us to compute the appropriate values

of event sequence frequencies, and thus scenario probabilities, we consider an event

sequence s that contributes to a scenario S. The sequence may involve the occurrence

98

and non-occurrence of any number of events Ai, i = 1,…,n.

The expected (average) weight contribution of this event sequence to S is defined

as

 s s sw q w= ⋅

where qs is the frequency at which s is generated, and ws is the weight that would be

assigned to s if it were generated. Furthermore, we define ps to be the true frequency

of s. We will show that

 s sw p=

For each event Ai, i = 1,…,n, s traverses zero or more intervals during which the

event is not generated, possibly followed by an interval during which the event does

take place.

Consider an interval I during which the event is simulated to not take place. By

definition, the probability that this is the case equals (1 – QI). Also by definition, the

true probability that the event would not occur is (1 – ΔPI). Therefore, the branch rule

modifies the frequency at which event sequences that involve the non-occurrence of

the event during I are generated according to

 1'
1

I
s s

I

Qq q
P

−
= ⋅

− Δ

99

The branch rule modifies the weight of such event sequences according to

 1'
1

I
s s

I

Pw w
Q

−Δ
= ⋅

−

Therefore, the expected weight contributions of the event sequences remain

constant

 ' 's s s sw q w q⋅ = ⋅

A similar argument can be made for intervals in which the event is simulated to

occur. We find therefore that the average weight contribution sw of an event

sequence is constant, and does not depend on the values of DP and Q.

Furthermore, we now that if for all intervals ΔPI = QI, the frequencies at which

event sequences are generated equal their true frequencies, and that ws = 1. We see

therefore that

 1s s sw q p⋅ = ⋅

and thus the expected weight contribution of an event sequence to a scenario must

equal the event sequence’s frequency.

In case of a systematic exploration, all sequences are generated, and thus qs = 1.

The frequency of an event sequence is known immediately after it is generated.

However, in order to obtain the scenario probabilities, all event sequences must be

100

simulated.

For an example of the weighting in case of a random search, see Figure 5.6.1. It

shows four mutually exclusive scenarios that, for convenience purposes, correspond

to the occurrence of the event during intervals 1, 2, 3, and 4. The ΔP for each scenario

is chosen as 0.1. The Q for each scenario is chosen as 0.2. The figure lists the actual

probabilities (Ps), the generation probabilities (Qs), the event sequence weight factors

(w), and the product of Qs and w.

 time ⎯⎯⎯⎯⎯⎯⎯⎯⎯→

ΔP = 0.1, Q = 0.2 ΔP = 0.1, Q = 0.2 ΔP = 0.1, Q = 0.2 ΔP = 0.1, Q = 0.2

 S1 S2 S3 S4

Ps 0.100 0.090 0.081 0.073

Qs 0.200 0.160 0.128 0.102

w 0.500 0.563 0.633 0.715

W Qs 0.100 0.090 0.081 0.081
Figure 5.6.1: Example of scenario quantification.

We consider the weight factor for the scenario S3, in which failure takes place

during the third interval. Due to the simplicity of the problem, we can compute the

probability of this scenario to be

 3Pr () (1 0.1) (1 0.1) 0.1 0.081P S = − ⋅ − ⋅ =

101

The probability that a randomly generated event sequence belongs to the scenario

is

 3Pr () (1 0.2) (1 0.2) 0.2 0.128Q S = − ⋅ − ⋅ =

The weight factor of any such event sequence is

 (1 0.1) (1 0.1) 0.1 0.633
(1 0.2) (1 0.2) 0.2

w − ⋅ − ⋅
= =

− ⋅ − ⋅

As the fraction of generated sequences belonging to S3 approaches 0.128, the

estimated probability
3ŜP approaches the scenario’s true probability

 0.128 0.633 0.081⋅ =

To summarize: let Pi be the probability associated with branch i originating from a

given branch point. Let Qi be the probability that the branch is explored. Then, the

weight w of any event sequence originating from that branch must be multiplied by a

factor Pi / Qi. The weight of a event sequence is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∏=

i

i

Q
Pw

In case of systematic exploration, Qi ≡ 1, and the normalization is not necessary,

since probabilities should by definition add up to 1.

5.7 Estimator of End State Probabilities

The simulation is guided toward the scenarios which are believed to provide more

102

information of the system vulnerability. This procedure is very similar to the

importance sampling of Monte Carlo simulation. Each event sequence generated

would have a statistical weight.

The estimator here is similar to the importance sampling estimator:

∑

∑

=

=

⋅
= N

i
i

N

i
ii

k

k

W

WL
p

1

1 ,

where pk is the probability of reach end state k, and the Wi is the statistical weight of

simulated event sequence i.

Lk
i is system state function. Lk

i = 1, if the end state of ith event sequence is k,

otherwise, Lk
i = 0. The system state function Li is equivalent to the system failure

function in (Campioni & Vestrucci, 2004), but the system state function here can

express multiple end state, and is not limited by the <success, failure> binary logic.

The statistical weight Wi depends on the way that the event sequence is generated.

The calculation has been discussed in 5.6.

5.8 Simple Test Case

A simple test case is constructed to test the efficiency of the new DPRA

methodology and scheduling algorithm. This test case is assuming that the system

103

consists three items which follow the Weibull failure rate. The system is built with

redundancy, i.e., if one of the items fails the system will still function as normal, but

if two or all the three items fail the system will fail. The figure below shows the fault

tree of the system.

A B C

Fail

2-out-of-3

Figure 5.8.1 Fault Tree a Simple Test Case

There are two different end states that we are interested i.e. failed or Success. In

this small system, we assume the components identically follows the Weibull failure

rate, whose α = 5000, and β = 2. The time span is 91 seconds. Thus, the reliability of

this 2-out-of-3 system is 0.997, and the probability of system failure with the time

span is p = 0.003115.

5.8.1 The plan.

The plan for this case is very simple. The combination of any two of the three

components would lead to the system failure. If only one or none component fails,

104

the system will still function as designed.

5.8.2 End State Probability Estimates.

One important objective of the simulation is to estimate the probability of

different scenarios accurately and quickly. The estimation is shown in the Figure

5.8.2. We can see the estimation converge to the real value. With the plan the

simulation estimation converges much faster than crude Monte Carlo simulation. If

there is no acceleration, the component failure would happen to would only about 10

times in 1000 event sequences generated. With such low simulation which may result

in interested scenario, it is hard to get the accurate estimation.

The Figure 5.8.2 shows after the simulation generates 1000 sequences, the

estimation is 0.00308, and the relative error is only 1.1%.

105

2.50E-03

2.70E-03

2.90E-03

3.10E-03

3.30E-03

3.50E-03

3.70E-03

3.90E-03

4.10E-03

4.30E-03

4.50E-03

4.70E-03

4.90E-03

1 62 123 184 245 306 367 428 489 550 611 672 733 794 855 916 977

Figure 5.8.2 The Estimation of the Probability of System Failure

At the first part of simulation we can see the estimation "jumps", that is due to the

fact the in the beginning we do not have many cases result in system failure, even

only one sequence which results in system failure may change the estimation

considerably. After about 100 event sequences, the scheduler adjusts the simulation

more efficiently, more effort was devoted to the exploration to the interested

scenarios, instead of repeating the scenario without any component failure over and

over again.

If we simulate the system in a non-biased Monte Carlo manner, the estimator of

the failure probability is:

106

()

n

xh
h

n

i
i

n

∑
== 1 ,

where () 1=ixh , when the system fails, otherwise, () 0=ixh

The variance of the ()ixh is p(1-p), where p is the system failure probability. The

1s (68% confidence) convergence envelop of the estimator is ()
n

pp −⋅ 1 . After1000

simulation runs, the 68% confidence envelop of the failure probability estimator

would be () 27.131.31
−±−=

−⋅
± ee

n
ppp , which implies a relative error of more

than 50%. The large variance is due to the fact the failure is rare under unbiased

simulation, and it is expected to observe only 3 failures in 1000 simulation runs.

This example shows that the guided simulation improved the efficiency and

accuracy considerably.

5.8.3 Distribution of Sequences

The table below shows the simulation result of a test case which set all the

scenarios in the plan with the same importance level. With these setting, the

scheduler will distribute the simulation effort according to the "value" of different

scenarios, favoring the scenarios with higher value, which is more likely to increase

out knowledge about the system.

107

From the table we can see, that the "two-component failure" scenario, which will

lead to system failure was acerbated with a very high magnitude, while the "one-

component failure" was also accelerated, but with a much lower magnitude. It is also

clear the "no component failure" scenario, which happens with the highest probability

was decelerated.

Table 5-3 Distribution of Event Sequences

 Number of
Cases

Percentage of
Occurrence

Probability of
Occurrence

Acceleration
Factor

Two Components Failure 486 48.6% 0.3% 162

One Component Failure 394 39.4% 9.2% 4.28

No Component Failure 120 12% 90.5% 0.133

Also, we notice that the acceleration factor for “two component failure” and “one

component failure” is very different. This cannot be achieved by simply accelerating

the component failure rate. This shows the capability of the scheduler to distribute the

event sequences “fairly” among scenarios.

5.8.4 The Impact of Importance Factor

The decision of which scenario to explore is not only based on the value of

scenario, but also the "importance" level. It is desirable to run the simulation with

higher importance set some specific scenarios, which the system analyst would be

interested.

108

If we change importance setting of "two-component failure" to "high" and "no

component failure" to "low", we would see the distribution of event sequences

summarized in the table below.

Table 5-4 Distribution of Event Sequences

 Number of
Cases

Percentage of
Occurrence

Probability of
Occurrence

Acceleration
Factor

Two Components Failure 572 57.20% 0.30% 190

One Component Failure 374 37.40% 9.20% 4.1

No Component Failure 54 5.4% 90.50% 0.0597

Compared to the results reported in Table 5-3, the scenarios with "high"

importance level were accelerated with an even higher acceleration factor, while the

low importance scenarios were decelerated more. This feature cannot be achieved by

biased Monte Carlo which simply accelerates the component failures. In that type of

Monte Carlo simulation, the event sequences distribution among scenarios is direct

result of acceleration at component level. Typically, the acceleration of one

component failure would result in the proportional acceleration in all related

scenarios.

109

6. Introduction to SIMPRA

6.1 Overview

6.1.1 Framework of SIMPRA

Simulation-based Probabilistic Risk Analysis (SIMPRA) is a software package

which implements the methodology proposed in Chapter 5. It is developed in Java

and MATLAB® / Simulink general purpose simulation environment. SIMPRA is a

general purpose PRA platform. It provides a DPRA library, with which the user can

easily build DPRA simulation models in Simulink.

SIMPRA is a software package implementing the methodology we proposed in

chapter 4 and 5. The key components of SIMPRA are:

 Planner

 Scheduler

 Simulation Model

 Output Analysis

The SIMPRA simulation model is built in MATLAB® / Simulink environment

and the Scheduler and Planner is developed in Java. Matlab can import the Java class

directly. During the course of the simulation, the simulation model would call

110

different methods of the scheduler class, to generate the branching points, and get

exploration commands from scheduler. Scheduler would control the occurrence and

timing of events at the branching points. The interactions between different blocks of

SIMPRA are depicted in Figure 6.1.1.

Figure 6.1.1 Framework of SIMPRA

6.1.2 Object-Oriented Paradigm

Object Oriented originally is a paradigm for writing programs. It has been widely

accepted and supported in programming practice and it has been also applied in other

areas. An object is an entity that holds both the descriptive attributes of the object as

111

well as defines its behavior. The simulation model consists of an integration of

objects. The components of the system are defined by instantiating of the objects.

We will borrow some concepts of object oriented paradigm in our modeling

procedure.

 Abstraction

An object is an abstraction of an entity in the real world. To deal with the

complexity of the real world, we form abstraction of the things in it. In object-

oriented paradigm, abstraction is the analysis that what a class knows (attributes) or

does (methods). The abstraction includes all the attributes and methods of interest to

the application, and the rest is ignored.

 Encapsulation

In the object-oriented world, the systems are modularized into classes, which, in

turn, are modularized into methods and attributes. Encapsulation is the design how

functionality is compartmentalized within system. The implication of encapsulation is

that the implementation can be built in any way and then later changes of the

implementation will not affect other parts of the system. The details of the

implementation of an item is hidden form the users of that items.

 Information Hiding

To make the applications maintainable, the access to data attributes and some

112

methods is restricted. If one class wants information of another class, it should have

to ask for it, not simply taking it. The purpose of information hiding is to make

certain details inaccessible so that they should not affect other parts of a system.

 Object-Oriented Simulation

In an OO modeling simulation paradigm, objects are constructed to represent real-

world entities that can interact with each other. The interactions are modeled as

communications, where “messages” are exchanged between different objects.

“Messages” here can represent the transfer of all kinds of entities, for example,

information, materials, or energy. When an object receives a message, the response

could be altering its internal state (i.e. the underlying behavior changes in a

fundamental way), altering its important characteristics (attributes), and/or generating

outbound messages to communicate its conditions to other objects in the model. The

way in which the object responds to messages depends on the message it receives, its

internal processes and on its internal state. One basic idea of object-oriented is

encapsulation, which means the behavior of a component or subsystem entirely are

enclosed within the confines of a self-contained object. The model of the entire

system is created by combining and connecting the object models, and enabling the

individual object models to communicate with one another in a way such that it

faithfully duplicates the behavior in the real-world system.

The modeling of the system begins with identifying the objects in the system and

113

the relationships between objects. Each component is embodied in an object model.

The object model represents a description of its behavior and its interaction with

outside world. The object’s information, events and actions are available to other

objects only through specified interface. This feature, referred to as “encapsulation”,

is one of the underlying principles of object oriented paradigm. It helps to minimize

the network when we are developing the model. Parts of the information is hidden,

the interface of each module is designed is such a way that as little as possible about

the inner working is revealed. As a result, the traffic between different parts of the

work is minimized.

The inheritance is another key feature of object-oriented. It enables the analyst to

declare an object whose common Attributes and methods are specified once, and

extends and specialize those attributes and methods into specific cases. A number of

objects are created and stored in the library. The objects in the library are reusable in

different applications. The scale of reusability may differ. Some of the objects are

universal, such as different failure modes, such as Weibull failure. These objects can

be reused in any applications. Some objects may be application oriented. The engine

of a space shuttle can also be an object, but only reusable in shuttle related

applications.

One of major challenge faced by risk analyst is that the complex interactions in

the system. With the graphical representation discussed in Appendix A, it is the

114

burden of the system analysts to identify all kinds of interactions and their possible

consequences. By contrast, in the object oriented simulation model the interactions

are depicted as the “messages” communicated between objects and the response to

the messages. There is virtually no limitations of what kind of interactions can be

modeled. All kinds of the interactions can be easily reproduced in the model. Another

benefit is that this approach frees the modeler from the burden of defining all possible

scenarios and/or generating the graph contains all the states of the system (as in state

transition graph).

6.2 Planner

Plan is a map to guide the exploration. The Planner is a module of SIMPRA to

generate such a map. Planner collects useful knowledge about the contributors to

different classes of risk scenarios and generates the roadmap for the simulation.

In using the Planner, the first step is for the users to construct an abstract model of

the system. The abstract model consists of a state transition diagram, a component

tree, and a functionality tree. The component tree is used to establish relationships among

various sub-systems and components involved in the system. A sub-component node can

further have sub-components. The functionality tree is used to establish the relationships

between the various sub-processes and functionalities associated with the system.

115

Figure 6.2.1 Component Tree

The component tree and functionality tree are used to define relationships between

components and their associated processes (see Figure 6.2.1). The state transition diagram

is used to draw the required state-relationship, associate them with the selected components

and functionalities from the component-functionality matrix, and then generate a plan (see

Figure 6.2.2).

Shows the names of the system,
sub-systems and components.
The node names must be named
as per the naming guideline.

“AND” or “OR” gates show the
logical relationship between a
sub-system and its components.

Popup Menu to add, modify and
delete nodes. In addition a drag
and drop implementation for
editing nodes is also provided.

116

Figure 6.2.2 State Relationship Diagram Editor

The component tree and functionality tree are stored in a database file. The planner would

query the database file while generating the plans.

The implementation of planner is a companion research of this dissertation, and the

details of can be found in (Mosleh et al., 2005)

117

6.3 Scheduler

6.3.1 Functions of Scheduler

The scheduler is an implementation of the scheduling algorithms introduced in

Chapter 5. The current implementation of the Scheduler consists of a set of Java

classes. The Scheduler is used to control the simulation model which is implemented

in Simulink, but the scheduler does not contain code that is specific to Simulink

models. If it is implemented in Matlab, the simulation model can call the Java class

directly by importing the archived jar file. There is no function for the Scheduler to

call the simulation model directly.

Core classes in current implementation are in the ‘scheduler’ package:

• Scheduler: provides interfacing with the simulation model

• MaxValueStrategy: implementation of the scheduling principles as discussed

in section 5.5 and the systematic traversal discussed in section 5.6.

• ScenarioNode: used to construct the tree structure which represents the

‘plan’, i.e., set of scenarios, the algorithm has been discussed in section 5.3.

• ScenarioNodeLogic: implementations of this interface represent the different

types of logical constructs in the scenario, also discussed in section 5.3.

118

The following scheduler functions would be called during simulation:

• Scheduler.getBranch(): Initialization; call the scheduler to get the branching

information of stochastic events , the algorithm is discussed in the section 5.4.

• Scheduler.proposeTransition(): When reaching a branch point, the

simulation model calls the scheduler for exploration command and updating the

branching information; the algorithm of scheduling has been discussed in section 5.5.

• Scheduler.Notify(): Event notification; the algorithm has been discussed in

section 5.7

• Scheduler.NotifyEndState(): When simulation reaching an end state; the

simulation model calls the scheduler to notify end state, and calculate the sequence

weight and the algorithm has been discussed in section 5.7.

All the interfaces between simulation model and scheduler class are encapsulated

in the DPRA library block. The users do not have to program the interface. They only

need to specify the stochastic parameters in the simulation model.

6.3.2 Systematic Exploration

SIMPRA also supports the systematic exploration strategy as in the Discrete

Dynamic Event Tree (DDET) methods. There are two types of systematic exploration

supported in SIMPRA. The first type is the full-scale systematic exploration. The

119

second type is the systematic search for specific events. The types of systematic

exploration are indicated in the plan.

Once a branch point is reached and branches are proposed to the Scheduler, the

Scheduler would explore all proposed branches. The exploration of event sequences

is managed in a depth-first manner, as in ADS. At the branch point, the current

system state at the branch point and all the branches are stored in a database, and the

first branch is executed and the simulation continues. When an end state is reached,

scheduler goes one step back to the previous branch point. If at least one branch still

remains to be explored, the scheduler would retrieve the state of the branch point to

re-initialize the simulation, and explore the new branch. The simulation is restarted

until another end state is reached. When all possible branches of that branch point

have been explored, the scheduler brings the simulator one step backwards, until the

dynamic tree exploration is completed.

As in ADS, there is a user-defined parameter Plim. If the probability of branch gets

lower the Plim, that branch is no longer simulated. The probabilities of such event

sequences are collected as “truncated” in the scheduler. We want to keep sum of the

truncated probabilities low; otherwise it may introduce significant error in the

estimator.

Another difference between systematic search supported by SIMPRA and the ADS

type DDET is that the branch point is generated randomly as we have discussed in

120

5.4, as opposed to only at the predefined points as in DYLAM or ADS.

If we are performing a full scale systematic search, the event sequences are generated

and explored in a systematic way. Users define the number of event sequences they

want to generate. The number of event sequences generated by the exploration of one

round is limited by the number branch point generated during the simulation, and may

be lower than the user defined number. The systematic search will go on for another

round until the number of event sequences is greater than that designated by the user.

Figure 6.3.1 Partial systematic search

Figure 6.3.1 illustrates an example of partial systematic search. The dashed lines

represent the branches not being explored. One node has been explored

systematically, which means, all possible branches originated from that node are

explored. The nodes before or following this node are still explored randomly. If the

partial type of systematic search is performed, only the branches proposed by the

designated events would be proposed systematically. The other branches would still

be explored randomly. The event sequences generated by a systematic search would

121

carry a statistical weight as the discussed in 5.6.

6.4 Structure of the Simulation Model

6.4.1 Simulation Model

SIMPRA relies on an executable model of the system, which emulates the system

behavior. Given the operational profile and adequate input, we assume that this model

would reproduce the behavior of the real system under the specific circumstances.

The model is an abstraction of the real system. The abstract level may change

during the course of the risk analysis. When we have better understanding of the

system, or at later stage of system development, we may replace the existing model

with a more detailed model.

In a typical DPRA problem, the system under investigation consists of discrete

component state and continuous process variables. The evolution of continuous

process variables are governed by the deterministic physical and logical laws.

Physical processes are described using mathematical expressions of such laws. The

components have discrete states, which represent a set of operational modes or

configurations. The component state may change from one state to another. This

change may be internally determined by the system logic and/or physical laws, or

described by statistical or probabilistic laws. The occurrence of discrete state

transition is defined as an event. The change of component state may in turn influence

122

the mathematical equations describing their behavior in each state. Examples of

stochastic events include component malfunction with time-to-failure following a

Weibull distribution. One example of deterministic event is the fuse in circuit melting

when the electrical current reaches a certain level.

Figure 6.4.1 The Interaction between the discrete model and Continuous model.

The model is a combination of both deterministic and stochastic models (Figure

6.4.1). The stochastic process dynamically interact with the continuous-time,

deterministic processes. The interactions between them consist of at least:

• The state of the discrete system determines the boundary conditions of the

continuous-time process;

• The continuous-time process, e.g. the system dynamics, such as pressure

or temperature, may affect the stochastic process, e.g. failure rate;

123

• The continuous-time process may generate events, which in turn change

the discrete state of the system.

The simulation model consists of hardware, software and human crew. Modeling

choices for hardware systems are well established in most cases.

The evolution of the model is traced by solving the continuous-time system in the

intervals between the discrete events generated by the discrete system. Whenever the

time for a scheduled event is reached, the continuous-time simulation is stopped, and

the corresponding event is executed. In some cases, the continuous-time system may

generate an event, e.g. one of the variables crosses a given threshold.

The scheduler only directs the behavior of the stochastic model. There is no direct

interaction between the scheduler and continuous-time deterministic model.

6.4.2 Interactions between Planner, Scheduler and Simulation Model

At the beginning of each simulation, the scheduler will load the plan from the

plan file generated by the planner. The plan file is a text file, where the scenarios of

interest are listed line by line.

As we have discussed in 4.6, the Planner may work at higher (more abstract)

level. The scenarios generated in the plan may include high level events which are not

directly represented in the simulation model. Such high level events would be

translated to one or more event sequences based on, e.g., the fault tree type of model

124

of the engine failure. The detailed scenarios are used by the scheduler to guide the

simulation. A database is maintained by the risk analysts to interpret the abstract

scenarios generated by planner. When the scheduler loads the plan, if there are such

abstract scenarios, the scheduler will query the database to get the detailed scenarios,

and generate a detailed plan, which can be used to direct the simulation.

Also we have discussed in 4.7 that the plan is updated from time to time during

the simulation. In the SIMPRA Navigator the user would specify the number of event

sequences of one updating interval, and number of updating rounds. The planner will

check the simulation results at the end each updating interval to determine how well

the simulation is following the plan. If some scenarios have been underrepresented,

the planner would automatically set the importance level of the specific scenarios to a

higher level, which would in turn make the scenarios more favorable by the

scheduler. The purpose of this adjustment is to maintain the exploration fairly

distributed among different scenarios.

6.5 Simulation Model Building

MATLAB® is a computer language for technical computing. Simulink, which is

a toolbox extension of MATLAB, is a software package for modeling, simulating,

and analyzing dynamic systems. An icon-driven interface is used to construct a block

diagram representation of a process. The process is composed of an input, the system,

125

and an output. A comprehensive block library of sinks, sources, linear and nonlinear

components, and connectors is provided. The modeling of the time-dependent

mathematical relationships among the system's inputs, states, and outputs is

constructed in the form of block diagram, with blocks representing functional

elements, and lines representing signals between those blocks.

6.5.1 The Library to Build the Simulation Model:

The SIMPRA provide a library for the analyst to build the DPRA model. The

basic elements required to build the DPRA are provided in the library as blocks.

Users can simply click and drag the blocks into the model they are building. The

blocks include different failure modes, interface with scheduler, and system logic.

The users can build such library blocks by themselves, or modify from the existing

library blocks. Table 6-1 lists some of the elements available in SIMRPA library.

Table 6-1 Examples of the Elements of SIMPRA Library

Logic Gate AND, OR, k-OUT-OF-n, if

Dynamic Fault Tree Gate Functional Dependency, Spare, Priority-AND

Failure Rate Weibull Failure Rate, Exponential Failure Rate

Failure Modes Time-distributed, demand-base, Repairable.

Specialized for SIMPRA Notify, End-State.

126

Figure 6.5.1 SIMPRA Library

The interface between the simulation model and the scheduler is encapsulated in

the library blocks. The user cannot see the interface and there is no need for the users

to program the interface at all. Only the parameters of the components need to be

specified.

Dynamic Fault Tree Library

Dynamic Fault tree Library is part of the DPRA library. Several dynamic fault

tree gates are implemented. A major disadvantage of traditional fault-tree analysis is

that it is incapable of capturing sequence dependencies in the system and still

allowing an analytic solution. Several new dynamic fault tree gates were designed to

model the sequence dependencies(Dugan, Bavuso, & Boyd, 1992). With these gates,

127

the fault tree is converted to a Markov chain, instead of the usual fault-tree solution

methods. The gates provide a compact way to represent certain sequence

dependencies. In a simulation environment, as we have discussed, there is no

limitation for modeling the dependency. All possible sequence timing dependencies

can be modeled explicitly. Reproducing the dynamic gates in the simulation

environment gives the users an easy and compact way to represent some frequently

seen types of dependencies, just as in the dynamic fault tree. The capability of model

dependencies and other dynamic features of SIMPRA are far beyond the dynamic

fault tree gates we list here. The Markov assumption in the Dynamic Fault Tree is

also lifted here. The gates in SIMPRA represent the same logic of the dynamic tree

gates, but they do not require Markov assumptions. Unlike the fault tree, which is

failure oriented, in SIMPRA the state of the component is typically success oriented.

In fault tree, including dynamic fault tree, when we say the output of a gate is true

implies failure events happen. While in SIMPRA, a positive number implies that the

component is working, and zero implies failure. The user can define specific numbers

to represent different degraded state. So in SIMPRA environment using the dynamic

tree gates may be a little confusing. The other Boolean logic gates should also receive

special care to make sure the logic is correct.

128

Table 6-2 Dynamic Fault Tree

Gate Illustration Description

Functional-
Dependency
Gates

The occurrence of some
trigger event causes other
dependent components to
become inaccessible or
unusable. The dependent
component events (failure) are
forced when trigger event
occurs.

Spare Gate Spares are components which
replace the primary unit, if the
primary unit fails. The output
is true if all the input events
happen.

Priority-
And Gate

The output of the gate is true if
both of the following
conditions are satisfied:
- Both A and B have occurred,
- A occurs before B.

i. Functional-Dependency Gates

In SIMPRA, a functional dependency gate has two inputs, the trigger event and

dependent event. They represent the working/failure state of components. If the first

input change from 1 to 0, which implies component failure, it is equivalent to “trigger

event occurs” in dynamic fault tree. The output is the state of the dependent

129

components. If trigger event occurs, the dependent components fail. The dependent

components may have other failure or degradation modes. The input of dependent

events may be multi-dimensional, and represent many components.

ii. Spare Gate

In SIMPRA, a spare gate has two inputs, the primary component and spare

component. They represent the working/failure state of components. Initially the

primary input is 1, meaning that the primary unit is working. The output is also 1. If

the first input change from 1 to 0, it implies that primary unit fails. If the spare unit

successfully replaces the primary unit, the output is the state of the spare unit,

otherwise the output is 0. The dynamic fault tree has three distinctive spare gates: hot,

warm, and cold. Different types of spare will be translated into quite different Markov

chains. In the simulation environment, the component failure behavior is the

characteristic of the component, whether it is before or after the activation. In

SIMPRA, the spare gate only represents the system configuration. There is no need

for separate gates of different spare types. The spare units can be cold, warm or hot.

The only different between these spare types is that they have different

failure/degradation behavior before it is activated. The system logic will not be

influenced by this, and it is represented by the same spare gate.

iii. Priority-And Gate

In SIMPRA, a Priority-And gate has two inputs, the priority component and

130

second component. They represent the working/failure state of components. Initially

both inputs are 1, meaning that the units are working. The output is also 1. If input

changes from 1 to 0, it implies that the corresponding unit fails. The output stands for

the system state. Only when both units fail and fail the exact order, the output will

change to 0 at the failure of the second component.

Table 6-3 Dynamic Fault Tree Implemented in SIMPRA

Gate Illustration

Functional-
Dependency
Gates

Spare Gate

Priority-
And Gate

131

6.5.2 Running the Simulation:

Figure 6.5.2 shows the SIMPRA Navigator. The names of parameters are self-

explaining. Users need to specify the parameters, number of event sequences, name

of the plan file, etc. Users can initiate the planner by clicking the “Generate Plan”

button. User can input the component tree, functionality tree and the state diagram as

we have discussed in 6.2.

Figure 6.5.2 SIMPRA Navigator

132

Clicking “Start Simulation” button would start the simulation. The simulation will

read the plan file and initialize the scheduler. A window will pop up at the beginning

the simulation (see Figure 6.5.3). It displays the simulation results dynamically. The

left upper window shows the estimate of end state probabilities. Right upper window

shows the details of generated event sequences. The lower part shows the how event

sequences distributed among the scenarios in the plan. We can see the expected

information gain and number of sequences already generated in each scenario.

Figure 6.5.3 Runtime GUI

The simulation result is stored in a text file, for later investigation. The probability

estimation plot and event sequences details are dynamical updated in a pop window.

When simulation finishes, we can see the result. The End State Display GUI

displays estimate of probability of the end states and the event sequences (see Figure

133

6.5.4). In addition to the above displaying capabilities the Display has a built in

filtering capability, which can be used to filter a sequence, or a set of sequences, e.g.

if the user is interested in displaying only sequences which have the expression

“AOG”. The user types in “AOG” on the text field provided and only sequences

which contain the term “AOG” are displayed.

Figure 6.5.4 End State Display

6.5.3 Hardware Component Failure Modeling

The hardware model is able to simulate the behavior the hardware, including random

134

events, especially the transitions of system state, such as hardware failure.

When we are building the simulation model, it is assumed that the hardware

components have a finite number of states, e.g. working, failed, degraded.

Furthermore, we assume that the transition from one state to another is instantaneous.

To implement the hardware failure in the model, we use the branching rules described

in the previous sections.

Figure 6.5.5 A Typical Hardware runtime failure block

In the figure above, the “Time” port is the input port of the module. The “Weibull

Failure Rate” and “Time Distributed Event” are blocks of the SIMPRA library. The

“Weibull Failure Rate” is an example of the failure rate calculation block, which is

responsible for calculating the failure rate the components. Such blocks may require

the input, such as time and working load to get the failure rate. The parameters of the

135

failure distribution will be input by the users. The “Time Distributed Event” block is

a branch generation block, which generates branch point according the rules we have

discussed in Chapter 5. Whenever a branching point is reached, this block will

communicate with the “scheduler”. The output of this block is the current state of the

component, designated by an integer.

6.5.4 Event Notification

Figure 6.5.6 Event Notification Block

Event state notification blocks monitor the occurrence of events that can not be

directly controlled, e.g., physical conditions, indirect failure of systems. This kind of

events may play an important role in the system’s dynamic evolution. For example, if

the pressure reaches a threshold, the wall of the tank may rupture. In such situations,

the plan would specify such events, and scheduler would thus monitor the

occurrences. In the simulation model, “Event State Notification” blocks notify the

scheduler whenever such events take place.

136

6.5.5 System State Block

The system consists of a number of components, which may interact with each other.

The hardware interacts with the other modules of the system, such as human and

software modules. The output of the state variable would be fed into other blocks or

modules of the model. The state of the components will influence the behavior of

corresponding components, such as thrust provided by main engine, which in turn

may result in the transition of the state of the system.

The State Logic Blocks determine the system or sub-system states by analyzing

the components states, using the logic operation gates, provided in standard Simulink

library or the SIMPRA block-set library, or user defined s-functions. The logic

operation gates provided in the Simulink standard library includes the Boolean

operations: AND gate, OR gate, NOT gate and etc. The SIMPRA block-set library

provides the k-out-of-n gate, which is more generic, and the Dynamic Fault Tree

gates, such as Priority-And, Spare, and Functional-Dependency Gates.

137

Figure 6.5.7 Example of Hardware State Logic

Note that although the gates in SIMPRA look like the fault tree gates, the logic is

slightly different than those in the fault trees. Fault trees are failure oriented. Our

simulation model is not limited to failure only. In a fault tree gate, if the output is

true, that means component failure. In SIMPRA, often the opposite is the case.

Typically, 0 implies failure, and 1 implies working. The state of the SIMPRA block is

not limited by binary states. The components can have multiple states defined by

users.

If the state logic requires more complex logic operations, such as time condition,

a user-defined s-function would be more appropriate. S-functions can be written in

different computer languages, including MATLAB®, C, C++, Ada, or FORTRAN. S-

functions can interact with Simulink equation solvers, in a very similar way that takes

138

place between the solvers and built-in Simulink blocks. User can implement

algorithms in an S-function. A customized user-interface can be obtained by writing

an S-function and placing its name in an S-Function block (available in the User-

Defined Functions block library).

6.5.6 End State Notification

End state notifications cause the simulation of a sequence to stop when a predefined

condition is reached in the system. The simulated event sequence would be stored for

later study.

Figure 6.5.8 End State Block

The “End State Logic” block is an instance of “System State Logic” block. It may use

the logic operation gates and/or user-defined s-functions to determine whether an end

139

state is reached or not and which end state is reached. When an end state is reached,

the simulation is stopped, and the scheduler is notified. The scheduler will record the

event sequence of this round of simulation, and start the simulation again.

6.5.7 Human Behavior Modeling

The objective of the human model is to simulate human behavior and the

interaction between human and other parts of the system. The human model receives

system information as inputs, and outputs the human action.

The current human model is based on previous IDAC, ADS-IDAC model

(Mosleh & Chang, 2004). IDAC is a model of human error. IDAC uses a

representation of human behavior in information processing (I) problem

solving/decision making (D), and performing tasks (A), in order to develop an

explanation of the likely response of a crew (C).

The human model consists of two modules: the information processing behavior

module and the knowledge representation module. The information processing

behavior module simulates the information processing of the human crew. It

simulates that a given information processing strategy which action the human will

take and estimates the associated probabilities. An often used approach of cognition

modeling is by means of Performance Influencing Factors (PIFs) or Performance

Shaping Factors (Hollnagel, 1998). Human action is influenced by psychological

140

factors like stress, level of attention and time constraints. The human model estimates

the probability of possible human actions, based on the states and values of the PIFs.

Figure 6.5.9 High level view of the IDAC response model (Mosleh & Chang, 2004)

The knowledge representation module simulates the human knowledge base (i.e.,

memory). The individual gathers cues about the system’s status and searches his/her

memory to establish which action is most appropriate for the situation. However, the

way the memory is searched depends on the problem solving strategy adopted.

The memory is classified into long term memory and short term memory. The

knowledge base (long-term memory) is where all the knowledge and experiences

gathered during an individual’s life are stored. For example, an operator's long term

141

memory may contain the understanding of the functional characteristics of the system

and its underlying physical processes; guidelines on how to respond to accidents, and

expected response of system to perturbations, learned through training and operating

experience (Mosleh & Chang, 2004).

The quantity and quality of information accumulated in the long-term memory

reflects the level of experience and training of an individual. The knowledge base has

a great impact on how an individual will deal with threatening encounters. The

working memory (also called short-term memory), as the name suggests, decays

quickly. In addition, the capacity is very limited.

In many human reliability models, human error probability (HEPs) are calculated

as a function of PIFs, and one common assumption made is that the PIFs are

independent. For example, in one method, the HEP is assumed to be a function of the

weighed sum of the effects of the PIFs, by combining them in the linear formulation

of equation. Such assumption does reflect the reality. For example, stress cannot be

independent of task complexity or information load. Another negative aspect of these

techniques is that they don't provide any explicit description of how the PIFs

influence human performance.

The Bayesian Belief Network (BBN) approach is an alternative, and is used in

SIMPRA human models. It uses the PIFs to estimate the likelihood that a specific

cognitive behavior is going to take place in certain situations, as opposed to the

142

calculation of HEPs. All the PIFs are arranged in a Bayesian Belief Network (BBN),

where each node represents one PIF, and the connections between them represent

their affects in each other. Figure 6.5.10 shows an example of how BBN model the

relationship among PIFs.

Figure 6.5.10 The BBN framework

For details of human modeling, see (Mosleh et al., 2005)

6.5.8 Software Modeling

A significant number of system failures can be attributed to software malfunction.

It is thus imperative to take account of the software behavior and model the impact of

software on system evolution to correctly represent the risk scenarios. Research has

been conducted to integrate software contribution into traditional PRA framework

143

(Li, Li, Ghose, & Smidts, 2003; Li, Li, & Smidts, 2004, 2005). Past effort have

focused on the software testing (Li, 2004). In this research, we put the software in the

context of system dynamic evolution.

In the DPRA environment, we first construct an executable software model to

simulate the software behaviors. Different methodologies exist for software

modeling, including finite state charts (Harel, 1987), UML (Fowler & Scott, 1999),

pattern concept (Gamma, Helm, Johnson, & Vlissides, 1995). A broad categorization

divides these and other methods into those that are based on the data flow inside

software, and represent the software through decomposition of system into dataflow

diagrams that captures the successive transformations of system input into system

output, and those that model the procedural stages of the software, represented in the

form of states and transitions between these states, leading to some kind of finite state

chart. Finite State Machine (FSM) is chosen to build the software behavior model.

The analysts’ task is to build an executable software model and identify possible

software related initiating events. The simulation environment will explore the

scenario space based on the system model. The software risk and vulnerabilities will

be identified using the simulation results. The analyst no longer needs to study the

fault propagation and enumerate all the possible accident sequences.

The software behavior model is a combination of a deterministic model and

stochastic model. The deterministic model is used to simulate the behavior of the

144

software, as well as the interaction between the software and the other parts of the

system. The stochastic model represents the uncertain behavior of the software. The

software related failure modes can be identified in a similar way as in the traditional

PRA framework. The selected failure modes will be super imposed on the executable

behavior model as stochastic events, and are controlled by the simulation scheduler

during simulation based on the predefined rules to explore the risk scenarios space

following the selected initiating events.

145

7. Application I – Hold Up Tank

7.1 Introduction

Holdup tanks are widely used in different engineered systems, and actually the

control of liquid level in the tank is one of the oldest control problems. Variations of

holdup tank problem have been widely discussed in the dynamic PRA literatures.

Aldemir used a hypothetical holdup tank problem as an example for his dynamic

approach based on Markov chain to analyze process control systems dynamics

(Aldemir, 1987). In (Deoss & Siu, 1989) the same problem was studied using

DYMCAM (Dynamic Monte Carlo Availability Model). Later Siu studied the

problem to demonstrate different dynamic PRA methods (Siu, 1994). Cojazzi applied

DYLAM to study similar tank control risk analysis (Cojazzi, 1996). (Dutuit et al.,

1997) use Petri nets to study a similar problem with Markov assumptions.

7.1.1 Outline of the Holdup Tank

Figure 8.1.1 shows the layout of the simple tank system. The tank holds liquid

chemicals, and liquid level is regulated by the actions of the control loops. At time =

t0, the initial level of the tank is L0. Under nominal conditions Pump1 will pump in

146

the same amount of liquid as that flow out through the valve, and therefore the level

is maintained constant. If a failure of the components happens, the level of tank

changes, and the control system may intervene. The events when the tank level (L)

rises above a certain level (overflow), or falls below a certain level (dry-out), are

considered to be a system failure. The time-dependent probabilities of “overflow” and

“dry-out” are quantities of interest.

Figure 7.1.1 Holdup Tank System Layout

In all the following studies we have made these assumptions:

1) The pumps and the valve have separate level sensors.

2) The control units of pumps and valve are activated by the level signal.

The response is instantaneous, and the time delay is negligible.

147

3) Failures are not repairable.

4) The units are either On or Off.

5) The flow rate of the pumps and valve is constant when they are on.

7.1.2 Dynamic Feature of the Holdup Tank Problem

In the holdup tank problem, timing and order of failures are critical to system

safety. The accident initiated by the failure of the pump would be quite different from

the one initiated by the failure of the valve. The system control relies on the process

variables, so it would be oversimplifying the problem if we neglect the process

variables in the analysis.

Siu first analyzed the tank problem with traditional event tree methods (Siu, 1994).

This analysis showed that the event tree analysis can display the correct failure logic

of dynamic systems, but by ignoring the process variable, it cannot determine the

distribution of time to an undesirable state. The event tree is basically a Boolean logic,

so the only way event tree can take the process variable into account is by discretizing

the process variables ranges. When we need detail process variables or when the

number of variables increases, the event tree may grow unmanageable. Furthermore,

without a physical model the event tree analysis has to involve subjective judgment of

the interaction between variables. As a result the assessment of the probability of

arriving the end states may be inaccurate.

148

Cojazzi has reported that with long time constant, there would be a significant

difference between the results obtained from static fault tree methods and DYLAM.

In the following sections we will build several different simulation models with

additional assumptions. The simulation model is based the SIMPRA DPRA platform.

The user can set up the parameters in the model, which include the flow rates of

pumps and valve, the capacity of tank, the set points of the control system and other

parameters depicting the failure characteristics. A Weibull failure model is used of

the pumps and the valve to simulate the failure modes. We can set parameters and

slightly modify the model to model different systems in the following case studies.

Figure 7.1.2 Layout of the simulation model of Holdup Tank

149

7.2 Case I

7.2.1 Problem Statement

This case is a reproduction of case F in (Aldemir, 1987) and case 1 in (Cojazzi,

1996). Additional assumptions in this case are:

1) System set points and corresponding control laws shown in Table 3-1.

2) Flow rate of valve and Pump1 is 0.06 m/h, and for Pump2, 0.03m/h.

3) All failure rates are constant, in time. The failure rate for valve h320/11 =λ ,

pump1 is h219/12 =λ , and pump2, h175/13 =λ .

4) If the failure occurs, the unit works on the contrary to the control signal.

5) If the liquid level is greater than 3, the system fails by “overflow”, and if the

liquid level is less than -3, the system fails by “dry-out”.

Table 7.1 Control Laws as a Function of Liquid Level

Level Valve Pump1 Pump2

L≤ 1 Open On On

-1 ≤ L ≤ 1 Open On Off

L ≥ -1 Close Off Off

150

7.2.2 Analysis in Previous Work

In this case Pump 2 is not sufficient to restore the system to nominal state if the

valve “fails on” when Pump 1 “fails off” (dry-out), or when the Pump 1 “fail on”

when valve “fails off” (overflow). A further assumption was made in (Aldemir, 1987)

that no failure occurs following a component failure until the system enters a new

control region. Figure 8.2.1 illustrates two accident scenarios under this assumption. .

Figure 7.2.1 A Typical History of Tank Level Evolution

The two accident scenarios depicted in the figure are triggered by Pump1 failure

first or valve failure first:

i. The water level drops when Pump 1 fails off, while the valve is

still open. No other component failures occur until the valve closes

when the set point is reached. After that, if the valve fails (fails on),

the tank will dry out.

151

ii. The water level rises when the valve fails off, while Pump1 is still

on. No other component failures occur until Pump1 is turned off

when the set point is reached. After that, if the Pump1 fails (fails

on), the tank will overflow.

If we lift the assumption that no failure occurs following a component failure until

the system enters a new control region, there are several new scenarios:

i. Given Pump1 fails off, if valve fails when the liquid level is still

dropping (fails off), then the system is still under control. After that if

Pump2 fails, the tank overflows.

ii. Given Pump1 fails off first, if Pump2 fails (fails on) when the liquid

level is still dropping, it will take longer for the liquid level to reach the

set point to shut the valve. If the valve fails before the liquid level

reaches the set point (fails off), then the tank overflows.

iii. Given valve fails off first, if pump2 fails (fails on) when the liquid level

is still dropping, it will take less time for the liquid level to reach the

setting point to shut the valve. If the valve fails before the liquid level

reaches the set point (fails off), then the system still under control. After

that if pump2 fails, the tank overflow.

iv. Given valve fails off first, if Pump2 fails when the liquid level is still

152

rising (fails off), then the system still remains under control. After that if

Pump2 fails, the tank overflows.

We can see that if we remove the additional assumptions, even if Pump 1 fails

before valve fails, the tank may overflow instead of drying-out. If the valve fails off

before Pump 1 or 2 fails, it is impossible for the tank to dry-out. The time window for

any component to fail between one component failure and reaching another control

region is relatively short (about 20 hours) compared to the MTTF of the components

involved. Neglecting such scenarios would not lead to significant error.

With this assumption, an approximated solution is:

() () ()∫
′

⋅=′
t

pumpvalve dttRtftbeforedryoutyprobabilit
0

1__

() () ()∫
′

⋅=′
t

valvepump dttRtftbeforedryoutyprobabilit
0

1__

Note that the equation implies that when the cut-set occurs, the top event occurs

simultaneously. In this case, we must consider sequence. “Pump1 failure followed by

valve failure” is the cut-set leading to dry-out, while “valve failure followed by pump

1 failure” is the cut-set leading to overflow. We know, however, there is a time delay

for the top event to happen. If we are calculating asymptotic values of CDF for very

long mission times, we can neglect the time delay. In this case:

153

() () () 41.01 211
0

2
12 =+=−⋅⋅=∞ ∫

∞
−− λλλλ λλ dteeF tt

dryout (7.1)

() () () 59.01 212
0

1
21 =+=−⋅⋅=∞ ∫

∞
−− λλλλ λλ dteeF tt

overflow (7.2)

Equations 7.1 and 7.2 are used in (Aldemir, 1987) and (Cojazzi, 1996).

Figure 8.2.2 shows the result reported in (Aldemir, 1987) and (Cojazzi, 1996).

Figure 7.2.2 Others Work

7.2.3 Simulation with SIMPRA

A SIMPRA simulation model built with the same parameters used by others.

Because the mission time is much longer than the MTTF, it is assumed that at least

two components fail during the mission. We run the simulation with a simple plan

which numerates all possible event sequences:

 Pump 1 failure, valve failure

154

 Valve failure, pump1 failure

 Pump 1 failure, Pump 2 failure,.

 Valve failure, Pump 2 failure,

 Pump 2 failure, Pump 1 failure,

 Pump 2 failure, Valve failure,

 Pump 1 failure, valve failure Pump 2 failure.

 Valve failure, pump1 failure Pump 2 failure

 Pump 1 failure, Pump 2 failure, valve failure.

 Valve failure, Pump 2 failure, pump1 failure

 Pump 2 failure, Pump 1 failure, valve failure.

 Pump 2 failure, Valve failure, pump1 failure

The cumulative distribution functions of the overflow and dry-out are obtained

through SIMPRA. They are shown in Figure 8.2.3. The result agrees with the result

from DLYAM.

155

Figure 7.2.3 Probability estimate from SIMPRA

7.2.4 Scenario Analysis

The simulation estimate of overflow probability is higher than the result reported

in (Aldemir, 1987). So in this section, we analyze solution provide in (Aldemir, 1987)

and the simulation result in details.

The equations 7.1 and 7.2 imply that:

i. Dry-out is equivalent to the scenarios that Pump 1 fails before valve fails.

ii. Overflow is equivalent to the scenarios that valve fails before the Pump 1 fails.

An unstated assumption is that whether or when Pump 2 fails does not change the

end state of the system. This assumption is shown to be false through the SIMPRA

156

simulation, and in fact the solutions in equations 7.1 and 7.2 are not accurate. During

the simulation, we have seen scenarios contradictory to this assumption. Figure 7.2.5

is a pictorial summary of some scenarios we have observed in the simulation.

Figure 7.2.4 Accident Scenarios Triggered by Pump2 Failure

If we look into the scenarios more carefully, even with the assumption that no

failure occurs following a component failure until the system enters a new control

region, there are several scenarios neglected by Aledmir (Aldemir, 1987).

To summarize:

1) If Pump2 fails first (fail-on), Pump 1 will oscillate around the set point. The

tank may overflow or dry-out

157

a. Pump 1 fails before valve

i. If Pump 1 fails on, the tank will overflow definitely.

ii. If Pump 1 fails off, liquid level drops, the valve oscillates

around the set point.

• If valve fails on, tank will dry-out, and

• If valve fails off, tank will overflow.

b. Valve fails before Pump1 (valve fails off), the tank will overflow

definitely.

2) If Pump 1 fails first (fail-off), the liquid level drops, till the valve close at the

set point.

a. If the valve fails off before reaching the set point, then Pump 2

failure would lead to overflow.

b. If valve fails on, the tank will dry-out definitely.

c. If Pump 2 fails on, the valve oscillates around the set point.

• If valve fails on, tank will dry-out, and

• If valve fails off, tank will overflow.

3) If the valve fails first (fails close), tank overflows

We calculate the asymptotic probability of the overflow and dry-out by summing

158

the probabilities of all these scenarios.

() 31.0=∞dryoutF

() 69.0=∞overflowF

This analytical solution is very close the result reported in (Cojazzi, 1996) and

simulation result obtained by SIMPRA in 7.2.3.

7.3 Case II

7.3.1 Problem Statement

In previous cases, all the failures are considered to be randomly distributed in

time. In the present case, we consider failures on demand also. Possible unit states are

nominal on, off, failing to switch (either turn on or off), runtime failure, accidentally

turned on. Table 6-3 provide the list of stochastic failure models.

Table 6-4 Parameters Used in Case II

 Fail-off (Weibull) Fail-on (exponential) Fail to Switch

Pump1 α=500, β=2 λ = 0.001 P = 0.001

Pump2 α=500, β=2 λ = 0.001 P = 0.001

Valve α=500, β=2 λ = 0.001 P = 0.001

159

7.3.2 Scenario Analysis

This case was studied by Siu (Siu, 1994). An ESD is given in (Siu, 1994)

Figure 7.3.1 ESD of the holdup tank, adapted from (Siu, 1994)

160

The plan for SIMPRA is generated based on the ESD developed in (Siu, 1994).

The simulation generates many scenarios outside the ESDs by Siu. One scenario

which happens frequently outside the plan is depicted in the following figure.

Figure 7.3.2 Scenarios of Case II

One of failure scenario (left) goes like this:

1. Pump 1 failed at 7 sec, the valve is still open. (shown by the

downhill slope)

2. When the liquid level reaches 3 meters, which is the open/close

set point of the valve, and the valve successfully closes. The liquid level

becomes stable.

3. Pump 2 is accidentally turned on at 28 sec, the system becomes

unstable, Pump 2 is frequently turned on and off, and valve is frequently

opened and closed.

4. The valve fails 35.4 sec.

161

5. Tank dries-out.

This scenario is very similar to the one described by Siu as ESD 1-10-11-17. The

ESDs developed by Siu did mention the possibility of system becoming unstable. The

unstable system almost would definitely lead to component failure, because of the

frequent turn on/off operation. If this is ignored the resulting system reliability

estimate would be too optimistic. The real system design would surely avoid such

unstable situation; one easy way is to use relay control. These event sequences

resulted from our simulation show that the accidents scenarios we are studying are

more complex than those analyzed in (Siu, 1994), and system behavior is

significantly influenced by the control design.

Similar failure scenario is also described in Figure 7.3.2 (right).

The detailed accident event sequence goes like this:

1. Pump 2 is accidentally turned on at 18.5 sec. (shown by the uphill

slope)

2. When the liquid level reach 6, which is the higher turn off set point of

Pump1, the system becomes unstable. Pump 1 is frequently turned on and off.

3. Pump 1 failed to be turned off at 43.7 sec.

4. Tank overflows.

By using relay in the control system, the stability of the system would be

162

enhanced considerably. In Figure 8.3.4 the control relay is 0.5m. The valve /pump

switch on/off about every 10 minutes, instead of switching on/off constantly.

Figure 7.3.3 Accident Scenario Under Different Control Laws

These scenarios have not been discussed in (Siu, 1994). If we take a closer look at

the ESDs developed by Siu, the repetitive turning on/off of the valve or pump2 is not

expressed explicitly. A quasi-stable state is implicitly assumed. One explanation may

be that any real control systems would consider the stability all the time, and are more

sophisticated than the one we discussed here. Thus, the quasi-stable assumption is

legitimate. Even so, we have to admit the important role played by the control laws.

Apart from the reliability of the components, a good control law would improve the

system safety/availability considerably. The control systems always involve complex

feedback in the system and sophisticated algorithm, which is hard to be analyze

qualitatively in traditional PRA, but this can be analyze quantitatively in the DPRA

163

framework. We can determine the effect of different control laws on the system safety

and availability, as we have seen in the example.

7.3.3 Simulation with SIMPRA

The ESDs of (Siu 1994) were modified to account for the repetitive events such as

turn on/off the pumps or valve. With modified plans, 500 histories were simulated by

SIMPRA. Figure 7.3.4 shows how the generated event sequences are distributed

among the plans. As we can see the amount of event sequences generated distribute

relative fairly among the plans. The true probabilities of some of the plans are

extremely low. For example, the theoretical probability of scenario 5 is below 5e-4.

Because there are several competing failure modes, and these scenarios require that

the pumps and the valve to work properly for some cycles, before generating a failure,

simply increasing the likelihood of single component failure, (i.e., traditional

probability biasing) may miss this scenario.

The plan only includes the scenarios triggered by pump1 failure (Table 7-5).

Sometimes the risk analysts may want to analyze some specific accident scenarios,

and are not interested in the probabilistic estimate very much. They may list only the

scenarios they want to simulate in the plan. In this example, out of 500 event

sequences, about 466 event sequences are generated in the plan. About 7% of event

sequences are generated outside the plan.

164

Figure 7.3.4 Allocation of Event Sequences Among Plans

Table 6-5 Plan for Case II

1
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Pump2_F_On|ValveSwitch_f|END_0

2
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Pump2_F_On|REPEAT;ValveSwitch_s|END_0

3
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Pump2_F_On|REPEAT;ValveSwitch_s|Valve_F_Off|END_0

4
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Pump2_F_On|REPEAT;ValveSwitch_s|ValveSwitch_f|END_0

5
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Valve_F_On|Pump2Switch_s|Pump2_F_Off|END_0

6
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_s|
Valve_F_On|Pump2Switch_f|END_0

7
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_f|
Pump2Switch_s|NEGATE;AFTER;ALL|END_0

8
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_f|
Pump2Switch_s|Pump2_F_Off|END_0

9
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|ValveSwitch_f|
Pump2Switch_f|END_0

10
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Pump2_F_On|
REPEAT;ValveSwitch_s|END_0

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

165

11
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Pump2_F_On|
REPEAT;ValveSwitch_s|ValveSwitch_f|END_0

12
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Pump2_F_On|
REPEAT;ValveSwitch_s|Valve_F_Off|END_0

13
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Pump2_F_On|V
alveSwitch_f|END_0

14
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Pump2_F_On|V
alve_F_Off|END_0

15
k=2;Pump1Switch_s;ValveSwitch_s|Pump1_F_Off|Valve_F_Off|Pu
mp2_F_On|END_0

7.4 Comparison between SIMPRA results and other approaches:

The holdup tank is a relatively simple example. In Case 1 and 2, there are only a few

dynamic elements. The analysis compares the numerical results obtained from

SIMPRA with the analytical results and other dynamic reliability methods. The result

from SIMPRA and other methods compare satisfactorily.

In Case 3, the model is more realistic and the accident scenarios are much more

complex. A similar model has been studied by Siu. We start our simulation with a

plan generated from his ESDs. Our simulation results show that the ESDs are

simplified, and the real event sequences are more complex.

ESDs rely on the risk analysts to develop the accident scenario. This is true for

ET/FT- based methods. ET/FT is a Boolean logic representation of the system. The

mapping of scenarios into logic representations depends on engineering analysis,

166

determination of the interactions between different parts, identification of the

consequence of a random event, and determination of the severity of the

consequences associated with scenarios. Behind every logic model, there is another

body of modeling efforts.

In the simulation environment the underlying modeling effort is more explicit.

The accident scenarios are developed through simulation. In other word, the system

expresses itself through simulation.

In DYLAM, the system is updates at fixed time step. This limits the capability of

the DYLAM. It is very usual to find out that the system develops fairly slowly in one

stage but changing rapidly in another stage. We can see this in the holdup tank

example. In nominal conditions, the system is steady, but if some component fails,

the system evolution is very fast. In such cases using one fixed time step in the whole

procedure is not an appropriate choice. In SIMPRA, we have a discrete model

coupled with a continuous-time model. The time-step of the continuous-time is

adaptive.

167

8. Application II - Satellite Telecommunication Example

8.1 Introduction

In this chapter, a telecommunication system is analyzed in with SIMPRA. The

system is still under design. An abstract model is built to simulate the behavior the

system. In this example, a model that is only using logical and temporal relations in

its input functions is presented. This example is about a space craft that receives

commands from a ground station to collect data while orbiting a planet and sends the

data back for analysis. A comprehensive model of the ground station and the

spacecraft is built with the SIMPRA software.

In general, eight states are determined for the spacecraft: one initial state, five

transitional states and two failure states. It is assumed that space craft spends a fixed

amount of time in each state before moving to the next state except for

1) The standby state: The duration of time in that state is related to the commands

received from the ground station and

2) The "Failed" state. This is an absorbing state, and the system will remain in this

state till the end of simulation.

168

Figure 8.1.1 State Transition Graph

In this example, the transition input function includes a temporal function which

indicates the duration of stay in the first state and a logic that describes the actions

that need to be taken before transitions become activated. The Planner and the

Scheduler work at different levels of abstraction. In the Planner, the process is to send

data to the ground station, if all the components involved in the process are working,

then the process is going to be successful. This assumption is just for planner. The

detailed simulation will simulate the data generated from camera and simulate the

downlink data and analyze the quality of the data sent to the ground station and then

decide if the process was successful, failure, or degraded.

The Table 8-1 shows what subsystems and components are involved with which

169

functionalities. The table, for example, shows that “DownLink Data” has the

following relations:

• High Level: Computer AND Telecomm AND SpaceCraftBus AND RCS

AND Software

• Low Level: Clock AND Processor AND Transmitter AND Antenna AND

HKSensors AND Pointing AND Software

Table 8-1 Component Functionality Matrix

Components Downlink Data Collect Data Process Data Uplink Data

Camera ×

Computer × × × ×

Clock × × ×

Memory × × AND

Processor × × × ×

Telecomm × × × ×

Transmitter ×

Receiver × AND

Antenna × ×

SpaceCraftBus × × × ×

 HKSensors × × × ×

RCS × × ×

 Pointing × × ×

Software × × × ×

170

Table 8-2 Plan For Telecom System

Plan 1 STANDBY|RECEIVE_COMMAND|ANTENNA_F!L|END_0!L

Plan 2 STANDBY|RECEIVE_COMMAND|HOUSEKEEPING_F!L|END_0!L

Plan 3 STANDBY|RECEIVE_COMMAND|ANTENNA_D|END_0

Plan 4 STANDBY|RECEIVE_COMMAND|HOUSEKEEPING_D|END_0

Plan 5 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|CAMERA_F|E
ND_0

Plan 6 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|CAMERA_D|E
ND_0

Plan 7 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|HOUSEKEEPI
NG_F|END_0

Plan 8 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|HOUSEKEEPI
NG_D|END_0

Plan 9 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|HOUSEKEEPING_F|END_0

Plan 10 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|HOUSEKEEPING_D|END_0

Plan 11 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|DOWNLINK_DATA|ANTENNA_F|END_0

Plan 12 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|DOWNLINK_DATA|HOUSEKEEPING_F|END_0

Plan 13 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|DOWNLINK_DATA|ANTENNA_D|END_0

Plan 14 STANDBY|RECEIVE_COMMAND|COLLECT_DATA|PROCESS_DA
TA|DOWNLINK_DATA|HOUSEKEEPING_D|END_0

171

The modeling process for the components is simple. The assumption is that all of

the components have only two states: “Work” and “Fail” (without any repair). Logic

of the functional relations between the components and subsystems are provided by

the users so when it comes to low level modeling, those relations are already

provided. A library of subsystems and components as well as a library of

functionalities with importance measures can be kept as a knowledge base for

planning and simulation of different systems. To generate a list of scenarios that

might cause the system to fail, a model of the system should be generated. Then by

using the library of functionalities, transitions between the states of the system can be

defined and a plan for failing the system can automatically be generated. Table 8-2

lists the plan that is used to run the simulation. Based on the knowledge, the Planer

generates plans to take system from one state to another.

8.2 Scheduler/Simulator side

The satellite telecommunication example simulates the satellite communicating

with the ground station. The software model for the system includes the software on

spacecraft and software on ground. The software on the spacecraft is responsible for

receiving command, collecting data, processing data, downlink data. The software on

the ground station is responsible for generating new a plan, uplinking command and

172

receiving data from the spacecraft.

Different failure scenarios have been planed by the Planner. The failure may

involve a software or hardware malfunction. If the ground station detects that the data

transmitted from spacecraft is erroneous, a command would be issued that require the

spacecraft to switch to safe mode. By switching to safe mode, it is possible that the

spacecraft could recover. If the spacecraft fails to recover, thus no data are

transmitted to ground station, and this is considered to be a system failure. If the

spacecraft successfully recover, some data would still be transmitted to ground

station, even though maybe not as much as previously required, and this is considered

a degraded system.

Figure 8.2.1 State Diagram

173

8.3 Result Analysis

8.3.1 End State Probability Estimation

There are three different end states: Failed, Degraded and Success. We run the

simulation to generate 500 event sequences, and the estimation converges after about

400 event sequences. In this application, the system of interest is still under design.

The simulation model is very abstract. This application shows the capability of

SIMPRA to perform risk analysis at the design stage of the system. The risk analysts

may gain some insights of the failure scenarios. It is helpful for them to design

safety/reliability requirements and make improvements to the system safety and

reliability before it is too late. It is predictable that as the design refines, and detailed

information becomes available, the simulation model could be refined.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

4.00E-02

4.50E-02

5.00E-02

1 36 71 106 141 176 211 246 281 316 351 386 421 456 491
Figure 8.3.1 Estimation of Probability of Degraded (left) and Failed (right) System

174

8.3.2 Allocation of samples over the planed scenarios

In the plan (see table. 8-2), there are 14 different scenarios. The figure shows the

Number of sequences in each scenario.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 8.3.2 An example of the allocation of event sequences among plan.

It is clear that the simulation efforts were evenly distributed within the 14

scenarios. There are 413 event sequences out of 500 in the plan. There are 87 event

sequences end outside plan, which include the system success scenario.

175

9. Application II - Space Shuttle Ascent Phase

This section describes the application of SIMPRA DPRA platform to a simplified

model of the Space Shuttle mission in its ascent phase. In the application, we show

the basic modeling procedure and some of the capability of SIMPRA. A simulation

model of Space Shuttle was implemented, with simplified flight dynamics as well as

hardware, software and crew functions and failure events.

9.1 Summary of the Shuttle Ascent Phase:

In the Space Shuttle missions, the thrust required to reach orbit is provided by the

three Space Shuttle main Engines (SSMEs) and the two Solid Rocket Boosters

(SRBs). About 2 minutes after ignition, the two SRBs are separated from the External

Tank. The SSMEs continue working for about 8 minutes. They shut down just before

the orbiter is inserted into orbit. The external tank is then separated from the orbiter.

(NASA, 2000)

During launch and ascent, the guidance, navigation and control (GN&C) software

controls the three SSMEs and SRBs and other hardware to maintain the designed

trajectory.

176

If there is a failure that affects vehicle performance, abort may become necessary.

The objective of Space Shuttle launch abort is to safely recover the flight crew, the

orbiter and its payload.

Figure 9.1.1 Figure Space Shuttle Intact Abort.

There are four intact abort modes

- Abort to Orbit: The ATO mode is designed to allow the vehicle to achieve a

177

temporary orbit that is lower than the nominal orbit.

- Abort Once Around: The AOA is designed to allow the vehicle to fly once

around the Earth and make a normal entry and landing.

- Transatlantic Landing: The TAL mode is designed to permit an intact landing

on the other side of the Atlantic Ocean.

- Return to Launch Site: The RTLS mode involves flying downrange to

dissipate propellant and then turning around under power to return directly to a

landing at or near the launch site.

The types of events that lead to initiation of a mission abort can be classified as

failures of critical shuttle systems, such as life support system, that make the

successful completion of nominal mission impossible, and the shutdown or

degradation of engines, leading to a loss of thrust.

An abort mode is selected depending on the cause and timing of the failure which

causes the abort. The safest one is preferable. In cases where performance loss is the

only factor, the preferred modes would be ATO, AOA, TAL and RTLS, in that order.

The mode chosen is the highest one as long as it can be completed with the remaining

vehicle performance. In the case of some support system failures, the preferred mode

might be the one that will end the mission most quickly. In these cases, TAL or RTLS

might be preferable to AOA or ATO.

178

A simplified model of the shuttle ascent procedure was used in our simulation. In

our model, a 6-degree-of-freedom dynamic model is used to calculate the simplified

flight dynamics, such as altitude, velocity. More details can be found later in this

chapter.

The model incorporates several failure modes:

- SSME benign shutdown. The SSME may shutdown prematurely, but no major

damage to other components of the Shuttle. The thrust provided by remaining

engines may be inadequate for the shuttle to reach the desired orbit. This may

make the abort procedure necessary.

- SSME catastrophic failure. The engine fails and cause damage to other

component. This will lead to LOC/ LOV. The abort procedure is not an option

in this failure mode.

- Software failure, which will cause loss of thrust. This may also require the

crew to abort.

- Other failures, such as life support system failure. Life support system failure

may require early termination of flight.

179

9.2 Building Then Simulation Model

The simulation model was implemented using the library block provided by

SIMPRA. The highest layer of the model is shown in figure 9.2.1.

Figure 9.2.1 Space Shuttle Example Simulation Model

Hardware Module will simulate the hardware performance. Thrust and other

dynamics data are input to the Motion Block, where the system trajectory is

calculated. Human and Software Modules will control the system behavior, such as

ignition, abort, SSME separation, etc.

180

Figure 9.2.2 Hardware Simulation Module.

Hardware Module covers main engines, solid rocket boosters, life support

system, etc. The inputs are control commands, Shuttle state and time. The module

calculates the thrust, fuel consumption, Shuttle mass and other hardware behavior.

Three SSMEs and two SRBs provide the thrust. Life Support System is responsible

for maintaining the Shuttle cabin environment. The hardware is controlled by the

control software and crew.

181

Figure 9.2.3 SSME module

The SSME and SRB modules calculate the thrust they provides controlled by

software. The load of the engine may vary from 60% to 110%. The SRB and ET will

be separated when the fuel is consumed. SRB and SSME modules also calculate the

mass, which is needed to calculate flight dynamics.

The hardware dynamics is fed into the Shuttle Motion Block. Other input data of

the Motion Block include environment data, such as gravity. A 6-degree-freedom

model is used to calculate the shuttle dynamics.

The nominal trajectory is showed in Figure 9.2.4. This graph is also part of the

simulation model as one of the physical variables.

182

Figure 9.2.4 Height vs. Time for Space Shuttle

Failures of the components are modeled using the library block of the SIMPRA.

The occurrence and timing of failures are controlled by the Scheduler.

The failure behavior module is embedded in the component models, which will

generate branching points. The Weibull Failure Rate block calculates the failure

rate ()tλ , as a function of time and system state. This is a built-in library of SIMPRA,

and used can click and drag the block to the model, and specify the parameters. The

“Time Distributed Event” is another built-in SIMPRA library block. It generates the

branching points of time-distributed failures according to a set of rules.

183

Figure 9.2.5 Runtime Failure Subsystem (inside each component module)

In the simulation model, different failure modes of SSME are considered: the

main engine may either experience a benign shutdown or a catastrophic failure. By

“catastrophic failure” we mean that if the main engines fail this way, the Shuttle and

the crew will be lost. The benign shutdown may be triggered by different component

failures or degradation.

Common cause failures are also considered. One example of CCFs is that a sub-

component shared by different components. Figure 9.2.6 is the fault tree of this

example. We can see the component SSME_CCF is shared by all three SSMEs. This

type CCF sometimes is referred to as “shared equipment dependency” (Mosleh,

Rasmuson, & Marshall, 1998).

Another example is caused by the generic environment shared by different

184

components. For example one of the components of SSME, the failure rate depends

on the temperature, f(t) = g(temp, t). The identical components can be found in all

three SSMEs, and the temperature is almost the same. This type CCF sometimes is

referred to as “extrinsic environment dependency” (Mosleh et al., 1998).

Such CCF is not easy to model in the traditional fault tree analysis. In the

SIMPRA modeling environment all these are easy to be taken account of.

Figure 9.2.6 Fault Tree of SSME Shut Down

185

9.2.1 Software Model

Software model reads the flight dynamics and hardware state, and controls the

Shuttle ascent procedure, such as ignition, thrust of SRBs/ SSMEs, and ET/SRB

separation. The software is modeled by finite state machine, and implemented by

Stateflow®. The software may fail randomly. The stochastic model represents the

uncertain behavior of the software. The stochastic failure behavior is controlled by

the simulation Scheduler during simulation based on predefined rules

Figure 9.2.7 Stateflow® model of Shuttle GNC Software

The nominal operation of the software has several states: Mode 101, Mode 102,

Mode 103 and Mode 601, which represent different phases of the mission. During the

mission, the software would switch from one mode to another when the mission

186

advanced to next phase. At different phase of the mission the GNC software performs

different functions. For example, during first-stage ascent, the software operates in

major mode 102. The GNC software controls the SRBs and SSMEs. At the end of the

first stage, the SRBs are separated from the space shuttle orbiter, and software

automatically shifts to major mode 103. In the major mode 103 (second stage),

software calculates the required main engine steering commands to achieve preflight-

defined MECO conditions. During the mission, the software would switch from one

mode to another when the mission advanced to next phase. Different software modes

perform different functions. The software may fail to switch to new mode. Also the

software may fail during the mission. Failure here means that the output of the GNC

software is wrong, which is critical to the shuttle safety.

There are indications (alarms) to the crew when such failure happens. In such

situation, the crew would have to abort the mission, and initiate the abort procedure.

These aspects involved interaction between the software Module and Crew Behavior

Module of the simulation model.

9.2.2 Crew Behavior Model

If the hardware malfunctions, such as engine premature shutdown, the crew will

check the Shuttle state and decide whether to abort. There are indicators and alarms to

alert the crew of component failures. If there are hardware failures, the crew may feel

187

the unusual condition of the shuttle, even without indicators or alarms. If the crew

decides to abort the mission, they should choose the correct abort mode according the

rules shown in Table 8-1, and initiate the corresponding abort procedure. It is

assumed that human crew may make wrong decision. Also considered is that the

probability of a successful abort depends on the time when the abort is performed and

the type of abort.

An IDAC-based crew behavior model (Mosleh & Chang, 2004) is developed to

simulate the human crew action. The main idea behind the cognitive behavior model

is to use PIFs to estimate the probability that a specific behavior is going to take place

in a given situation. The cognitive model uses a Bayesian Belief Network (BBN) to

model the cause-effect relationship among the PIFs and how the PIFs influence

information processing behavior and decision making during an event.

Crew knowledge and experiences are stored in the IDAC model of human

knowledge base (long term memory). An operator's long term memory may contain

the functional and physical characteristics of the system and its underlying processes;

general guidelines on how to respond to accidents, knowledge of available options

and memorized procedures; and expected response of system to perturbations, learned

through training and operating experience (Mosleh & Chang, 2004). In preset

simulation example the rules and procedures for mission abort are stored in the

knowledge base.

188

The number and quality of information accumulated in the long-term memory

reflects the level of experience of an individual, and have a great impact on how an

individual will deal with threaten encountered.

Table 9-1 Mission Abort Procedures Rules

 LSS Failure SSME Failure Software Failure

MET = 0 seconds

(shuttle on ground)
Abort on ground Abort on ground Abort on ground

MET < 150 seconds RTLS RTLS RTLS

150 < MET < 220 s RTLS TAL TAL

220 < MET < 400 s TAL TAL TAL

MET > 400 seconds ATO ATO ATO

In the simulation, all indicators of flight dynamics and alarms for component

failures are fed into the crew model. Another type of system feedback modeled in the

crew model is abnormal vibrations caused by engine failure. This is a signal

independent of the indicator and alarms. In real system, much more information

would be displayed in the cockpit, and the mental burden of the astronauts would be

greater than what is simulated here. In the simulation, it is assumed that the crew may

neglect the alarms, and fail to detect the need to abort in time, or when they decide to

abort, they may choose an incorrect wrong abort model.

189

Human error is a contributor to many accidents, especially when we take account

of the fact that the shuttle crew works in a very disturbing and stressful environment.

The objective of the human model is to simulate the human behavior under such

conditions.

When there is a need to initiate abort procedure, the crew has to decide which

abort mode to initiate. The astronaut would search the knowledge base to find the

right abort mode. Because the astronaut is highly stressed, and the timing is important,

the astronaut may apply a limited search strategy. This means that the astronaut

would search only part of the knowledge base. The time for finding the answer is

shorter, but the likelihood of get a wrong answer is higher. Note that limited search

strategy does not necessarily produce a wrong answer and the reaction time when

applying this strategy is generally shorter.

9.3 Analysis Results:

9.3.1 Exploration Methods

Different exploration methods are applied to the Space Shuttle model. End state

probabilities were estimated using different methods:

• Planned Exploration:

• Unplanned Exploration:

190

The plan used for the planned exploration is generated by the SIMPRA planner

with the analysis of the state transition diagram of the Shuttle launch procedure.

Hardware failure, software malfunctions and human behavior are all considered in the

plan. The difference in timing of same type of failures may lead to different end state,

thus they may belong to different scenarios in the plan.

Table 9-2 Plan for Shuttle Model

Plan 1 Catostrophic|End_0

Plan 2 time(400;500)SSME|ABORT|End_0

Plan 3 time(220;400)SSME|ABORT|End_0

Plan 4 time(150;220)SSME|ABORT|End_1

Plan 5 time(6;150)SSME|ABORT|End_0

Plan 6 time(400;500)LSS|ABORT|End_0

Plan 7 time(220;400)LSS|ABORT|End_0

Plan 8 time(150;220)LSS|ABORT|End_0

Plan 9 time(6;150)LSS|ABORT|End_0

Plan 10 TIME(0;6);SW101_2|END_0

Plan 11 TIME(0;6);SSME|ABORT|END_0

Plan 12 TIME(0;6);LSS|ABORT|END_0

Plan 13 TIME(6;120);SW102|ABORT|END_0

Plan 14 Negate; ALL

The plan in table 9-2 is a high level abstract plan. For example SSME represent

the SSME benign shut down. The shuttle has three identical SSMEs, each of which is

a very complex component. In the simulation each SSME consists of many

191

components and failure modes. A fault tree analysis can interpret the “SSME shut

down” as a cut-set, or a combination of stochastic failure events. This piece of

information is stored in a database file. When scheduler loads the plan, the scheduler

would query the database file and generate the detailed plan to guide the simulation.

With the unplanned exploration strategy, the failure rates of components are

accelerated to achieve better estimation. The idea is very similar to the strategy used

by many practitioners of Monte Carlo simulation in PRA.

9.3.2 Event Sequences

The simulation generates a large number of event sequences. If no failures occur

during the mission time, the mission is achieved, and the end state is Success. We are

more interested in looking at the failure scenarios to find out what lead to accidents.

Table 9.2 records one event sequence generated by the simulation.

Table 9.2 A Recorded Event Sequence

The first line is the actual event sequence. We see consecutively two sub-

components of SSME3 fail, which lead to the main engine failure. This results in a

{ SSME3_1@93 , SSME3_3@146 , RTLS@149.1 , E-3@150 , }

[ES-3 , 2.6E-4 , 150.0]

Correct abortRTLS@150

192

benign engine shutdown. The engine fails at 146 seconds, and the crew initiates abort

procedure at 149.1 second.

The second line shows the end state, statistical weight of this sequence and the

end state time. ES_3 indicates that the end state is a successful abort. We find the

statistical weight is pretty low, which implies that this is a rare scenario.

The third line indicates that the crew response is correct.

Table 9-3 Another Recorded Event Sequence

Another example of recorded event sequences is given in table 9-2. The first line is

the actual event sequence. We see consecutively two sub-components of main engine

SSME2 and SSME3 fail. This does not lead to the main engine failure due to the

redundancy. The Life Support fails at 120 seconds, and the crew initiates abort

procedure at 124.3 second. We may notice that the crew has initiated the wrong abort

procedure, which is recoded in the third line. The wrong abort procedure leads to the

loss of vehicle and crew (LOVC) end state. This is recoded as ES_1 in the second

line. Again, the statistical weight is pretty low, which implies that this is a rare

{ SSME3_1@63 , SSME2_3@96 , LSS@120, ATO@124.3 , E-1@125 , }

[ES-1, 4.1E-4 , 124.3]

Wrong abortATO@125

193

scenario.

9.3.3 End State Probabilities Estimation

The simulation results of the three different exploration methods are summarized in

Table 8-4. The theoretical result is obtained through a Monte Carlo simulation with

10,000 histories.

Table 9-4 End State Probability Estimation

Theoretical Planned

500 samples
Not Planned
500 samples

LOVC 6.12E-3 6.3E-3 5.40E-3

Abort 6.55E-3 6.46E-3 7.1E-3

Success 0.987 0.987 0.988

The Planned exploration gets the estimation with a low relative error. But the

estimation generated by “not planned exploration” was rather poor.

Figure 9.3.1 shows the convergence of the estimate of probability of LOVC. It shows

that the estimate converge to the correct value roughly after 600 event sequences.

194

Figure 9.3.1 Estimation of the Probability of LOVC

9.3.4 Allocation of Event Sequences

The role of the plan is to specify the scenarios of interest, as a guide to the scheduler.

The scheduler will favor the scenarios listed in the plan. If there is no plan, the

scheduler will distribute the simulation effort randomly.

Table 8.5 listed different scenarios which are of interest to the system analyst.

These scenarios are rare due to the high reliability of the system. The scheduler

guides the simulation to explore these scenarios with high efficiency. Not much effort

is wasted in repeating event sequences where there is no component failures and

result in system success.

195

0

50

100

150

200

250

300

Plan
 1

Plan
 2

Plan 3
Plan 4

Plan
 5

Plan
 6

Plan 7
Plan 8

Plan 9

Plan
 10

Plan
 11

Plan 1
2

Plan
 13

Plan
 14

Outs
ide P

lan

PLANNED
UNPLANNED

Figure 9.3.2 Allocation of Event Sequences

The scheduler constantly guides the simulation towards scenarios in the plan. The

expected information gain is calculated at the end of the event sequence. In this

example all the scenarios have the same “importance level”, so the most important

contributor to the value of each branch is the expected information gain. The

Scheduler maintains the balance among scenarios by favoring branches with higher

values. The expected information gain does not only depends on the number

sequences already generated, but also depends on how consistently the end states

have been reached. For example, the catastrophic failure of SSME would always lead

to end state LOVC. The outcome of this event is certain. The expected information

gain from this scenario is low, and we do not want spend too much effort on simulate

196

this scenario. The scheduler does avoid the scenario (plan 1), as we can tell from

figure 9.3.2. “Plan 1” is the scenario least simulated.

If there is no plan, the scheduler decides on the exploration randomly. Many of

the event sequences ended in the scenarios outside the plan. Some of the scenarios

were left untouched.

The result shows that the scheduler with the plan successfully guides the

simulation and distributes the simulation effort fairly.

9.4 Conclusion

Even though the simulation model is only hypothetical and simplified, the

interactions between the different parts in the system are fairly complex. For example,

the human action depends on the PIFs and the information they receive. The PIFs

would be influenced by the history, current system status and environment. The

information the crew receive may be affected by the hardware and/or software failure.

The system is very sensitive to the timing and order of the random events. These

dynamic features cannot easily captured by traditional ET/FT methods. With this

model we show the capacity of SIMPRA to model hardware, software and human.

SIMPRA provides a platform to integrate different parts of the system in a single

simulation model.

Due to the high reliability of the system, we have to simulate the rare events with

197

limited computing cost. This is the major difficulty faced by Monte Carlo simulation.

The SIMPRA has an efficient algorithm to guide the simulation towards the scenarios

generate more information, and avoid spending much computing power on the event

sequences that do not provide much insight into the system vulnerability.

198

10. Summary and Future Research

10.1 Summary of Research Results

10.1.1 Overview

In this dissertation, we introduced a new Dynamic Probabilistic Risk Assessment

methodology. A general purpose DPRA platform implementing the methodology is

developed at University of Maryland.

In this dissertation, we interpret the DPRA problem as an exploration of the event

sequences space. The DDET and Monte Carlo simulation methods represent two

different exploration strategies: systematic and random exploration. Instead of

focusing on obtaining a numerical result, we approach the problem of exploring the

unknown space efficiently. Some of the terminology used throughout the dissertation

is explained in this chapter. These terms may be loosely defined and used in DPRA

literatures. We have clearly defined the terminology and it has been used in

consistence with the definitions, throughout this dissertation. We have particularly

stressed the difference between the terms scenarios and event sequences.

We propose a DPRA methodology, which employs a new exploration strategy. In

199

this framework, the knowledge of the system is explicitly used to guide the simulation

to achieve higher efficiency. A planner is responsible for generating plans as a high

level map to guide simulation. A scheduler is responsible for guiding the simulation

toward the scenarios, which may generate more information about the system. In

scheduler a tree structure is used to represent the scenarios we are interested in.

During the simulation, the scheduler checks the status of the simulation and guides

the simulation toward the scenarios of interest. The scheduler is also required to

maintain a balance between the different scenarios. When the scheduler decides the

path in which to guide the simulation, it compares the values of all possible options.

The scheduler always favors the branches with higher values; however, it is a random

process, and the one with the highest value is most likely to be picked, but not

always. The guided simulation will generate a lot of event sequences and our

knowledge of the system is updated. A new round of simulation may be required with

the updated plan.

. The SIM-PRA is a generic-purpose risk assessment software package which

implements the guided simulation methodology. It provides a rich library of DPRA

elements, with the help of which the users can easily design their own DPRA

simulation models. Some ideas of an object-oriented paradigm are used in the

implementation. The users only need to specify the failure characteristics of the

system. The scheduler will automatically guide the simulation based on the

200

information.

We apply our methodology to solve the DPRA problems of three different

models. The first one is the holdup tank problem, which has been discussed

frequently in the DPRA literatures. It is a relatively simple one. We solve the problem

using the assumptions made by other researchers, and compare our results with theirs.

We also provide a numerical and asymptotic solution. Our results agree with both the

numerical solution and the works of other researchers. After lifting some of the

assumptions we have made in this case, the situation becomes more complex. The

accident scenarios have been discussed in other literatures. Our simulation

demonstrates that the accident scenarios are highly dependent on the system

dynamics; the event sequences need to be analyzed with great care.

SIMPRA is applied to a satellite telecommunication system which is still under

design. An abstract model is built with SIMPRA. After analyzing the state transition

graph and the component functionality relations, a plan for the simulation is

generated. A number of accident event sequences were simulated, and an estimate of

the end state probabilities is achieved.

Another example is a hypothetical model of a space shuttle ascent phase. In the

model, we observe complex system interactions, between human, software, and

hardware. Apart from the hardware model, we built a human behavior model and a

software model based on the finite state machine. All parts of the system play

201

important roles in the evolution of the system. The system is tightly coupled. The

SIM-PRA very efficiently produces a model to depict the system and generate the

risk analysis. With these two examples, we have shown the capability of our

methodology and its difference from previous works.

10.1.2 Comparison with Others’ Work

Inspired by the analogy to human reasoning and learning, we propose a new

framework for dynamic PRA. In this new framework prior knowledge is actively

used and the simulation is guided adaptively by the Scheduler. The traditional PRA

methods, such as state transition diagram, and fault tree analysis, are still actively

applied in the new framework. Such methods are not used to develop and solve the

numerical or mathematical model directly, but to generate a plan which would be

high level map to guide the simulation. The simulation is carefully guided by the

scheduler to maximize the information gain from the simulation. The simulation is

guided toward scenarios which has higher potential to provide insight into the system

vulnerabilities.

The hybrid type of DDET and Monte Carlo is desired by many authors (Labeau et

al., 2000). This research is one of the attempts. The new exploration strategy used in

our approach is not purely random as in Monte Carlo simulation. Nor is it predefined

as in DDET approaches. The exploration strategy takes relevant prior information

202

into account to design the simulation rules. The systematic exploration strategy is also

supported in our framework. We can perform a DDET analysis just as the one

performed by ADS. Also we can perform a “partial" DDET analysis, where only the

designated events are explored systematically, while the remaining parts are explored

with the new exploration strategy we have proposed.

We have shown the capability of this methodology with the applications. When

dealing complex dynamical system, it detects system vulnerabilities and estimates the

probabilities of end states with high efficiency and accuracy.

10.2 Future Research

The new framework proposed in this dissertation still leaves many areas open for

future researches.

10.2.1 Planner

Planner is the software to gather the prior information before the simulation and

generate the plan to guide the simulation. It also updates the plans using the simulated

results. In the current Planner the prior information mainly comes from an abstract

model of the system under study. SIMPRA is able to construct such models and

generate the plans from the models.

Apart from the abstract model of the system, there are many other sources of

203

information, e.g., experience with the similar systems, general risk knowledge. The

qualitative reasoning is another powerful tool to refine the plan. How to integrate all

these information together constitutes a major challenge.

10.2.2 Multi-level Modeling

By definition, the simulation model is an abstraction of the real-life system. The

abstraction level is somewhat arbitrary. We want to want model to be as simple as

possible, but at the same time we do not want to miss any important details of the

system. We even can say that the model which best represent the system, is the

system itself. There is always trade-off between the details/precision and

computational cost.

For risk analysis purpose, we have to investigate the system behavior under

different circumstances. We believe that the most detailed model is not required

under all circumstances. There are circumstances under which the system evolution is

more stable, and a simplified model would be sufficient for the analysis purpose. If

we were able to develop an algorithm to determine which level of abstraction would

suffice the need, and adjust the simulation accordingly, we could predict a

considerable reduction in computation time without significant loss of precision.

The key issue is to identify the area where the risk-critical evolution is sensitive to

the dynamics, and a detailed precise model is required in such areas. Also we should

204

have the simulation model built in different levels, and we know the error range of

each level. Thus we can find the appropriate level to satisfy our simulation

requirement. This procedure should be done adaptively and automatically by the

Scheduler. The past simulations could provide important information on whether the

precession requirements are met, and thus whether to switch to a more detailed or

more simplified level under the same or similar circumstances.

The idea has been applied a small system. Application to larger scale systems is

still under development.

10.2.3 Human Modeling and Software Modeling

Human modeling and software modeling play a very important role in the system

risk analysis. The modeling of hardware is better understood compared to the one of

human and software. In highly coupled human-software-hardware systems the human

and software must be integrated into the PRA work.

The modeling of human or software behavior is still an open problem for future

research. The human model and software model used in SIMPRA applications

represent the state-of-art techniques. With the improvements in human and software

modeling, the integrated DPRA methodology introduced here would become even

more powerful.

205

Appendices

Appendix A. Graphical Representation in DPRA

Graphs provide an intuitive representation of the system logic. To perform

probabilistic risk analysis, one widely accepted way is to represent the system by

Fault tree analysis, and to represent the scenarios by Event Trees. In recent years,

efforts are made to grasp the dynamic characteristics and/or dynamic scenarios, which

are not explicitly expressed in classical FT/ET framework.

1. DFT

Due to the wide acceptance of the FTA, it is natural to extend the Fault Tree

Analysis to capture the dynamic characteristics of the systems.

Dugan et al introduced several dynamic Fault-Tree gates (Dugan1992). Static

fault tree is poor to deal with sequence dependency, fault and error recovery, use of

spare.

Four new gates are introduced, Functional dependency gate, Cold spare gate,

Priority-AND gate, and Sequence-enforcing gate.

206

Figure A.1 Special Gates of Dynamic Fault Tree

The dynamic fault tree can be automatically converted into a Markov model.

When the dimension of system grows, this conversion may generate a huge state

space. Efforts have been devoted to automatically separate the Fault-Tree into sub-

trees, which may be either static or dynamic, and the sub-trees would be solved using

different algorithms. Combinational methods, such as BDD would be used if the sub-

tree is static, and Markov-chain models would be used to solve the dynamic sub-tree.

Software packages, such as DITree and later Galileo are developed at the University

of Virginia to solve the Dynamic Fault tree model. (Dugan, Sullivan, & Coppit, 2000)

The model is automatically decomposed into independent sub-trees (Dugan, 2000).

To avoid the complexity of Markov model, several different approaches have been

proposed to solve the Dynamic Fault Tree (Amari, Dill, & Howald, 2003).

207

This type of DFT is widely used to solve phased-mission problems. The phased-

mission problem, which is characterized by the fact that the system structure, failure

and recovery processes, or success criteria can change with each phase, has been

investigate for more than two decades. Dugan proposed a unified framework to define

the separate phases using fault trees. (Dugan, 1991)The system is evaluated by

constructing and solving the resulting Markov model. The models for each phase are

combined into one model. Later on, more efforts were devoted to solve the PMS more

efficiently, several different algorithms were proposed: PMS-BDD, (Zang 1999)

GPMS-CPR (Xing & Dugan, 2002)(Xing2002), Modular approach, Ou2004. Most

methods are either combinational models or Markov-chain based models.

Cepin et al proposed a different kind of Dynamic Fault Tree to address the time

requirements in safety systems (Cepin & Mavko, 2002). House events, which could

be turn on or off at discrete time points, were introduced to the classic fault tree to

deal with the time requirements. A house event matrix represents the house events

being switched on and off through discrete time point.

The Dynamic Fault Trees are supported in several commercial fault tree software

packages, such as Relex, Sapphire, and FaultTree+. Both types of DFT extend the

functionality of the FTA to include some dynamic features, but neither of them is able

to deal with the full spectrum of dynamic characteristics. They rely on the Markov

assumption of the model. Complex dynamic interactions, such as the interaction

208

between component behavior and the process parameters are not captured by the DFT

methodology. They rely on the Markov assumption of the model.

2. GO-Flow

GO-FLOW was originally a success-oriented implementation of diagraph based

modeling methodology derived from the earlier GO methodology (Matsuoka &

Kobayashi, 1988). The GO-FLOW chart represents the system configuration and

functions as well as the failure. A number of operators representing different failure

modes, logic operators and signal generators are used to construct the chart. Signals,

which represent physical variables or time or any information, propagate through the

system of interest. The state of the system or components at any point in time is

determined algebraically through the logic gates and other operators. The NOT logic

gate and procedures to address common cause failures were later introduced into the

methodology. Later improvements make GO-FLOW able to treat the logic-loop and

maintenance activity (Matsuoka, 2004).

The generation of GO-FLOW chart and the follow-up computation has been

computerized. Matsuoka claimed it can be used to model phased mission more

compactly compared with ET/FT approach. It is shown that a complex phased

mission can be an analyzed with a single GO-FLOW model and the availability

function was obtained in one single run.

However, all the possible combinations should be laid out explicitly in GO-

209

FLOW charts, so it is difficult to represent some types of system configuration, such

as k-out-of-n system. Hierarchical charts are not available either, thus the problem of

combinational explosion is significant while dealing with large systems. Some

important information routinely provided by ET/FT, such as minimal cuts sets and

importance measures is not easily obtained in GO-FLOW model (Siu 1994). Also,

please note that GO-FLOW methodology can only be applied to treat constant failure

rate or repair rate.

3. Petri Nets

A Petri Net is a directed graph. There are two types of nodes: places and

transitions, and arcs that connect them. The abstract objects (tokens, drawn as bold

face dots) move in the nodes. Each place (denoted as circles) can store a non-negative

number of tokens. Transitions (denoted as rectangles) model activities changing the

state of the system. Transitions are allowed when the prediction for the activities is

fulfilled (enabled). A transition can fire and remove one or more tokens from the

input place and deposit the tokens to the output place. For more details about Petri

Nets, there are several textbooks or monograph available. (Bause & Kritzinger, 2002;

Schneeweiss, 1999, 2001)

Petri Nets are widely used in such fields as operational research, computer

network, software modeling, and flexible manufacturing systems. There were

proposed for reliability modeling in 1980s (Movaghar 1984). In (Schneeweiss 2001),

210

dynamic reliability/maintenance models are built with Petri Nets. (Dutuit 1997) used

the SPN to model two test cases and evaluate the safety characteristics using Monte

Carlo techniques. Volovoi et al. introduced aging token as means to model aging

(Volovoi, 2004), and claims that aging tokens improve the flexibility and clarity of

dependability (reliability and availability) modeling of aging systems. Hybrid Petri

Nets (Chatelet et al., 1998; Kermisch C., 2004) model impact of continuous process

variables on the firing of transitions based on the theory of probabilistic dynamics

(Labeau et al., 2000).

The variations of the Petri Nets formalisms and the lack a of unified standard may

lead to confusion and misunderstanding. The stochastic Petri Nets are hard to be

verified.

4. Event Sequence Diagram

ESD is a graphical representation of the success or failure scenarios. It shows the

path from an initiating event to the system end. ESDs can be used to document the

accidents and help the engineers to understand the accidents scenarios. In nuclear

industry, Pickard (Pickard, 1983) used ESDs to help construct event trees.

211

Figure A.2 Concept of Event Sequence Diagram

ESDs are extensively used in space industry to identify possible accident

scenarios. ((Swaminathan & Smidts, 1999 a, 1999 b) extended the ESD framework to

handle the temporal logic and process dynamics. The mathematical formulization to

set up the Markov or semi-Markov state transition equations is also provided.

QRAS® (Groen, Smidts, Mosleh, & Swaminathan, 2002) is a software package,

which provides an interactive tool to build ESDs, but the software is primarily a

classic (static) PRA tool.

ESD approach relies on the accurate description of sequences, which cannot be

performed automatically. The quality depends on the analysts. (Swaminathan &

Smidts, 1999) attempts to identify the missing scenarios by MC methods.

212

5. Dynamic Flow-graph Methodology

Garrett et al. introduced DFM to model software-driven embedded systems

(Garrett, Guarro, & Apostolakis, 1995). Later DFM has been used in nuclear, space

and other industries to analyze control systems.

The system models are developed in the light of the cause-effect relationships

between physical variables and timing characteristics. The DFM model is analyzed by

tracing backward the sequences of events through the model, i.e. deductively from

effect to cause to determine how the systems reach certain state. The result is timed

fault-trees, which take the form of the logic combinations of static trees relating

system parameters at different time. DFM based hazard analysis can be used to

identify system hazards, including the previous unknown failure modes, and thus

guide the hazard mitigation efforts. The use of multi-value logic is advantageous

compared to the binary nature of Fault Trees.

Labeau pointed out that the discretization of physical variables may produce large

multi-dimensional matrices and even discretization errors (Labeau et al., 2000). The

DFM is not capable of representing the stochastic characteristics.

Appendix B: Application of Dynamic Fault Tree Simulation

A small system is constructed in SIMPRA. It consists two components and a Priority-

213

AND gate as shown in Figure B.1.

Figure B.1 Application of Dynamic Fault Tree

The two components follow a Weibull failure rate where a1=400, b1=2 and

a2=500, b2=2. The analytical solution for this system is easy to get. Given the mission

time is 500s, we can calculate the system reliability analytically.

() ()[] 773.0)(500)(500
500

0
221 =−⋅= ∫ dttFFtfR

We run the simulation for 500 event sequences. The estimated R(500)’ = 0.781. The

relative error is 1%. The convergence of the estimator is shown figure B.2. We can

see that the simulation can predict the reliability of the system with satisfactory

precision.

214

Figure B.2 Reliability Estimate

215

Bibliography

Acosta, C., & Siu, N. (1993). Dynamic event trees in accident sequence analysis:
application to steam generator tube rupture. Reliability Engineering and
System Safety, 41, 135-154.

Aldemir, T. (1987). Computer-Assisted Markov Failure Modeling Of Process-Control
Systems. IEEE Transactions On Reliability, 36(1), 133-149.

Aldemir, T., & Zio, E. (1998). New Domain of Application: Discussion Group II.
Paper presented at the Fifth International Workshop on Dynamic Reliability:
Future Directions.

Amari, S., Dill, G., & Howald, E. (2003). A new approach to solve dynamic fault
trees. In Annual Reliability And Maintainability Symposium, 2003
Proceedings (pp. 374-379).

Amendola, A. (1988). Accident Sequence Dynamic Simulation Versus Event Trees.
Reliability Engineering & System Safety, 22(1-4), 3-25.

Amendola, A., & Reina, G. (1981). Event Sequences And Consequence Spectrum - A
Methodology For Probabilistic Transient Analysis. Nuclear Science And
Engineering, 77(3), 297-315.

Bause, F., & Kritzinger, P. S. (2002). Stochastic Petri Nets - An Introduction to the
Theory (2nd edition ed.): Vieweg Verlag.

Berleant, D., & Kuipers, B. (1997). Qualitative and quantitative simulation: bridging
the gap. Artificial Intelligence, 95(2), 215-255.

Bucklew, J. A. (2004). Introduction to Rare Event Simulation:Springer.
Cacciabue, P. C., Carpignano, A., & Vivalda, C. (1992). Expanding The Scope Of

Dylam Methodology To Study The Dynamic Reliability Of Complex-Systems
- The Case Of Chemical And Volume Control In Nuclear-Power-Plants.
Reliability Engineering & System Safety, 36(2), 127-136.

Cacciabue, P. C., & Cojazzi, G. (1994). A Human-Factors Methodology For Safety
Assessment Based On The Dylam Approach. Reliability Engineering &
System Safety, 45(1-2), 127-138.

Campioni, L., Scardovelli, R., & Vestrucci, P. (2005). Biased Monte Carlo
optimization: the basic approach. Reliability Engineering and System Safety,
87, 387-394.

Campioni, L., & Vestrucci, P. (2004). Monte Carlo importance sampling optimization
for system reliability applications. Annals Of Nuclear Energy, 31(9), 1005-

216

1025.
Carson, J. S. (2004). Introduction to Modeling and Simulation. Paper presented at the

Winter Simulation Conference.
Cepin, M., & Mavko, B. (2002). A dynamic fault tree. Reliability Engineering &

System Safety, 75(1), 83-91.
Chaloner, K., & Verinelli, I. (1995). Bayesian Experimental Design: A Review.

Statistical Science, 10(3), 273-304.
Chang, Y.-H. (1999). Cognitive Modeling and Dynamic Probabilistic Simulation of

Operating Crew Response to Complex System Accident (ADS-IDACrew).
University Of Maryland.

Chatelet, E., Chabot, J. L., & Dutuit, Y. (1998). Event Representation in Dynamic
Reliability Analysis Using Stochastic Petri Nets. Paper presented at the Fifth
International Workshop on Dynamic Reliability: Future Directions.

Chatelet, E., Zio, E., & Pasquet, S. (1998). The Use of Neural Networks in Reliability
Analysis of Dynamic Systems: An Overview. Paper presented at the Fifth
International Workshop on Dynamic Reliability: Future Directions.

Cojazzi, G. (1996). The DYLAM approach for the dynamic reliability analysis of
systems. Reliability Engineering & System Safety, 52(3), 279-296.

Cukier, M. (1991). Determination of the exit time from the safety domain of the state
space during an accidental transient. Unpublished Thesis, Université Libre de
Bruxelles.

Dang, V. (1998). Frameworks for Dynamic Risk Assessment and their Implications
for Operator Modeling. Paper presented at the Fifth International Workshop
on Dynamic Reliability: Future Directions.

Deoss, D. L., & Siu, N. (1989). A Simulation Model for Dynamic System Availability
Analysis:Massachusetts Institute of Technology.

Devooght, J. (1998). Dynamic Reliability: The Challenges Ahead. Paper presented at
the Fifth International Workshop on Dynamic Reliability: Future Directions,
Greenbelt, Maryland, U.S.A.

Devooght, J., & Smidts, C. (1992). Probabilistic Reactor Dynamics.1. The Theory Of
Continuous Event Trees. Nuclear Science And Engineering, 111(3), 229-240.

Devooght, J., & Smidts, C. (1992). Probabilistic Reactor Dynamics.3. A Framework
For Time-Dependent Interaction Between Operator And Reactor During A
Transient Involving Human Error. Nuclear Science And Engineering, 112(2),
101-113.

Devooght, J., & Smidts, C. (1996). Probabilistic dynamics as a tool for dynamic PSA.
Reliability Engineering & System Safety, 52(3), 185-196.

217

Dubi, A. (1998). Analytic approach & Monte Carlo methods for realistic systems
analysis. Mathematics And Computers In Simulation, 47(2-5), 243-269.

Dubi, A., & Gerstl, S. A. W. (1980). Application Of Biasing Techniques To The
Contribution Monte-Carlo Method. Nuclear Science And Engineering, 76(2),
198-217.

Dugan, J. B. (1991). Automated-Analysis Of Phased-Mission Reliability. Ieee
Transactions On Reliability, 40(1), 45-&.

Dugan, J. B. (2000). Galileo: A tool for dynamic fault tree analysis. In Computer
Performance Evaluation, Proceedings (Vol. 1786, pp. 328-331).

Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic Fault-Tree Models For
Fault-Tolerant Computer-Systems. Ieee Transactions On Reliability, 41(3),
363-377.

Dugan, J. B., Sullivan, K. J., & Coppit, D. (2000). Developing a low-cost high-quality
software tool for dynamic fault-tree analysis. Ieee Transactions On
Reliability, 49(1), 49-59.

Dutuit, Y., Chatelet, E., Signoret, J. P., & Thomas, P. (1997). Dependability
modelling and evaluation by using stochastic Petri nets: Application to two
test cases. Reliability Engineering & System Safety, 55(2), 117-124.

Fowler, M., & Scott, K. (1999). UML Distilled: A Brief Guide to the Standard Object
(Second Edition ed.): Addison Wesley.

Fragola, J. R. (1995). Probabilistic Risk Assessment of the Space Shuttle (No. SAIC
doc. no. SAICNY95-02-05). New York.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns: Elements
of reusable object orientated software (1st edition ed.): Addison-Wesley
Professional.

Garrett, C. J., Guarro, S. B., & Apostolakis, G. E. (1995). The Dynamic Flowgraph
Methodology For Assessing The Dependability Of Embedded Software
Systems. Ieee Transactions On Systems Man And Cybernetics, 25(5), 824-
840.

Groen, F. J., Smidts, C. S., Mosleh, A., & Swaminathan, S. (2002, Jan, 28-31). QRAS
- the Quantitative Risk Assessment System. Paper presented at the Reliability
and Maintainability Symposium, 2002. Proceedings. Annual.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8, 231-274.

Houtermans, M., Apostolakis, G., Brombacher, A., & Karydas, D. (2000).
Programmable electronic system design & verification utilizing DFM. In
Computer Safety, Reliability And Security, Proceedings (Vol. 1943, pp. 275-
285).

218

Houtermans, M., Apostolakis, G., Brombacher, A., & Karydas, D. (2002). The
dynamic flowgraph methodology as a safety analysis tool: programmable
electronic system design and verification. Safety Science, 40(9), 813-833.

Hsueh, K. S., & Mosleh, A. (1996). The development and application of the accident
dynamic simulator for dynamic probabilistic risk assessment of nuclear power
plants. Reliability Engineering & System Safety, 52(3), 297-314.

Izquierdo, J., & Labeau, P. E. (2004). The Stimulus-Driven Theory of Probabilistic
Dynamics as a Framework for Probabilistic Safety Assessment. Paper
presented at the Proceedings of the PSAM 7 – ESREL ﾒ 04 conference.

Izquierdo, J. M., Melendez, E., & Devooght, J. (1996). Relationship between
probabilistic dynamics and event trees. Reliability Engineering & System
Safety, 52(3), 197-209.

Kaplan, S., & Garrick, B. J. (1981). On the Quantitavive Definition of Risk. Risk
Analysis, 1, 11-27.

Kaufman, L. M., Bhide, S., & Johnson, B. W. (2000). Modeling of common-mode
failures in digital embedded systems. In Annual Reliability And
Maintainability Symposium - 2000 Proceedings (pp. 350-357).

Kermisch C., L. P. E., Lardeux E., Chabot J.L. (2004, June 13-18). Implementation of
hybrid Petri nets - Lessons learned from their application to a SMR unit.
Paper presented at the Proceeding of the 7th International Conference on
Probabilistic Safety assessment and Management, PSAM-7, Berlin, Germany.

Kuipers., B. J. (1986). Qualitative simulation. Artificial Intelligence, 29, 289-338.
Labeau, P.-E., & Zio, E. (2001). Biasing schemes in component-based and system-

based Monte Carlo algorithms in system engineering. Paper presented at the
Esrel 2001, Torino, Italy.

Labeau, P. E. (1995). A Method Of Benchmarking For 2-State Problems Of
Probabilistic Dynamics. Nuclear Science And Engineering, 119(3), 212-217.

Labeau, P. E. (1996). A Monte Carlo estimation of the marginal distributions in a
problem of probabilistic dynamics. Reliability Engineering & System Safety,
52(1), 65-75.

Labeau, P. E. (1996). Probabilistic dynamics: Estimation of generalized unreliability
through efficient Monte Carlo simulation. Annals Of Nuclear Energy, 23(17),
1355-1369.

Labeau, P. E. (1998). A survey on Monte Carlo estimation of small failure risks in
dynamic reliability. Aeu-International Journal Of Electronics And
Communications, 52(3), 205-211.

Labeau, P. E., Smidts, C., & Swaminathan, S. (2000). Dynamic reliability: towards an

219

integrated platform for probabilistic risk assessment. Reliability Engineering
& System Safety, 68(3), 219-254.

Labeau, P. E., & Zio, E. (1998). The cell-to-boundary method in the frame of
memorization-based Monte Carlo algorithms. A new computational
improvement in dynamic reliability. Mathematics And Computers In
Simulation, 47(2-5), 347-360.

Labeau, P. E., & Zio, E. (2002). Procedures of Monte Carlo transport simulation for
applications in system engineering. Reliability Engineering & System Safety,
77(3), 217-228.

Li, B. (2004). Integrating Software into PRA (Probabilistic Risk Assessment).
University of Maryland, College Park.

Li, B., Li, M., Ghose, S., & Smidts, C. (2003, Nov 17-20). Integrating Software Into
PRA. Paper presented at the Proceedings of ISSRE, Denver, Colorado.

Li, B., Li, M., & Smidts, C. (2004, June 14 - 18). Integrating Software into PRA: A
Test-Based Approach ﾔ. Paper presented at the Proceeding of the 7th
International Conference on Probabilistic Safety assessment and Management,
PSAM-7, Berlin, Germany.

Li, B., Li, M., & Smidts, C. (2005). Integrating Software into PRA: A Test-Based
Approach. Journal of Risk Analysis, in press.

Lindley, D. V. (1956). On the Measure of Information Provided by an Experiment.
Annals of Statistics, 27(4), 986-1005.

Lindley, D. V. (1972). Bayesian Statistics, A Review:Soc for Industrial & Applied
Math.

Loredo, T. J. (2003). Bayesian Adaptive Exploration. Paper presented at the Bayesian
Inference And Maximum Entropy Methods In Science And Engineering:23rd
International Workshop.

Malhotra, M., & Trivedi, K. S. (1995). Dependability Modeling Using Petri-Nets.
Ieee Transactions On Reliability, 44(3), 428-440.

Marseguerra, M., Masini, R., Zio, E., & Cojazzi, G. (2003). Variance decomposition-
based sensitivity analysis via neural networks. Reliability Engineering &
System Safety, 79(2), 229-238.

Marseguerra, M., & Zio, E. (1993). Nonlinear Monte Carlo Reliability Analysis With
Biasing Towards Top Event. Reliability Engineering & System Safety, 40(1),
31-42.

Marseguerra, M., & Zio, E. (1993). Nonlinear Monte Carlo reliability analysis with
biasing towards top event. Reliability Engineering and System Safety, 40, 31-
42.

220

Marseguerra, M., & Zio, E. (1995). The Cell-to-boundary method in Monte Carlo
based dynamic PSA. Reliability Engineering and System Safety, 48, 199-204.

Marseguerra, M., & Zio, E. (1996). Monte Carlo approach to PSA for dynamic
process systems. Reliability Engineering & System Safety, 52(3), 227-241.

Marseguerra, M., & Zio, E. (2000). Monte Carlo biasing in reliability calculations
with deterministic repair times. Annals Of Nuclear Energy, 27(7), 639-648.

Marseguerra, M., Zio, E., & Cadini, F. (2002). Biased Monte Carlo unavailability
analysis for systems with time-dependent failure rates. 76(1), 11-17.

Marseguerra, M., Zio, E., Devooght, J., & Labeau, P. E. (1998). A concept paper on
dynamic reliability via Monte Carlo simulation. Mathematics And Computers
In Simulation, 47(2-5), 371-382.

Mason, R. L., Gunst, R. F., & Hess, J. L. (2003). Statistical Design and Analysis of
Experiments: With Applications to Engineering and Science (Second edition
ed.).

Matsuoka, T. (2004). Improvement of the GO-FLOW Methodology. Paper presented
at the Proceedings of the PSAM 7 ESREL ﾒ 04 conferenceconference.

Matsuoka, T., & Kobayashi, M. (1988). GO-FLOW: A New Reliability Analysis
Methodology. Nuclear Science and Engineering, 98, 64-78.

Mosleh, A., & Bier, V. (1992). On Decomposition and Aggregation Error in
Estimation: Some Basic Principles and Examples. Risk Analysis, 12, 203-214.

Mosleh, A., & Chang, Y. H. (2004). Model-based human reliability analysis:
prospects and requirements. Reliability Engineering & System Safety, 83(2),
241-253.

Mosleh, A., Groen, F., Hu, Y., Pirest, T., Zhu, D., & Nejad, H. (2005). Simulation-
Based Probabilistic Risk Analysis; Report of Research Activities.

Mosleh, A., Rasmuson, D. M., & Marshall, F. M. (1998). Guidedlines on Modeling
Common-Cause Failures in Probabilistic Risk Assessment. In NUREG/CR-
5485 (Ed.).

NASA. (2000). Shuttle Reference Manual
http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/stsref-toc.html.

Nivolianitou, Z., Amendola, A., & Reina, G. (1986). Reliability-Analysis Of
Chemical Processes By The Dylam Approach. Reliability Engineering &
System Safety, 14(3), 163-182.

NRC. (1975). Reactor Safty Study: an Assessment of Accident Risks in US
Commercial Nuclear Power Plants. In N. R. Commission (Ed.).

Pickard. (1983). Seabrook station probabilistic safety assessment PLG-0300,
Prepared for Public Service Company of New Hampshire and Yankee Atomic

http://science.ksc.nasa.gov/shuttle/technology/sts-newsref/stsref-toc.html

221

Electric Company.Newport Beach, CA: Lowe and Garrick Inc.
Rubinstein, R. Y., & Melamed, B. (1998). Modern Simulation and Modeling:Wiley

Interscience.
Say, A. C. C., & Akin, H. L. (2003). Sound and complete qualitative simulation is

impossible. Artificial Intelligence, 149(2), 251 - 266.
Schneeweiss, W. G. (1999). Petri Nets for Reliability Modeling:Hagen/Germany:

LiLoLe Publishing.
Schneeweiss, W. G. (2001). Tutorial: Petri Nets as a Graphical Description Medium

for Many Reliability Scenarios. IEEE TRANSACTIONS ON RELIABILITY,
VOL. 50, NO. 2, 50(2), 159-164.

Shannon, C. (1948). Mathematical theory of communication. The Bell Labs Technical
Journal, 27, 379--457.

Shults, B., & Kuipers., B. (1997). Proving properties of continuous systems:
qualitative simulation and temporal logic. Artificial Intelligence Journal, 92,
91-129.

Siu, N. (1994). Risk Assessment For Dynamic-Systems - An Overview. Reliability
Engineering & System Safety, 43(1), 43-73.

Smidts, C. (1994). Probabilistic Dynamics - A Comparison Between Continuous
Event Trees And A Discrete-Event Tree Model. Reliability Engineering &
System Safety, 44(2), 189-206.

Smidts, C., & Devooght, J. (1992). Probabilistic reactor dynamics. II. A Monte Carlo
study of a fast reactor transient. Nuclear Science and Engineering, 111, 241-
256.

Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P., et
al. (2002). Probabilistic Risk Assessment Procedures Guide for NASA
Managers and Practitioners. In NASA (Ed.).

Swaminathan, S., & Smidts, C. (1999). The event sequence diagram framework for
dynamic probabilistic risk assessment. Reliability Engineering & System
Safety, 63(1), 73-90.

Swaminathan, S., & Smidts, C. (1999). Identification of missing scenarios in ESDs
using probabilistic dynamics. Reliability Engineering & System Safety, 66(3),
275-279.

Swaminathan, S., & Smidts, C. (1999). The mathematical formulation for the event
sequence diagram framework. Reliability Engineering & System Safety, 65(2),
103-118.

Tombuyses, B. (1999). Reduction of the Markovian system by the influence graph
method: error bound and reliability computation. Reliability Engineering &

222

System Safety, 63(1), 1-11.
Tombuyses, B., DeLuca, P. R., & Smidts, C. (1998). Backward Monte Carlo for

probabilistic dynamics. Mathematics And Computers In Simulation, 47(2-5),
493-505.

Vernez, D., Buchs, D., & Pierrehumbert, G. (2003). Perspectives in the use of
coloured Petri nets for risk analysis and accident modelling. Safety Science,
41(5), 445-463.

Volovoi, V. (2004). Modeling of system reliability Petri nets with aging tokens.
Reliability Engineering & System Safety, 84(2), 149-161.

Xing, L. D., & Dugan, J. B. (2002). Analysis of generalized phased-mission system
reliability, performance, and sensitivity. Ieee Transactions On Reliability,
51(2), 199-211.

	YUNWEI HU
	1.1 Statement of Problem
	1.2 Approach
	1.3 Major Achievements
	1.4 Outline of this Dissertation
	2.1 Brief history background of PRA
	2.2 Why DPRA is Necessary
	2.3 Methodologies for DPRA
	2.3.1 Development of DPRA
	2.3.2 Theory of Probability Dynamics
	2.3.3 Graphical Models
	2.3.4 Discrete Dynamic Event Tree:
	2.3.5 Monte Carlo Simulation
	2.3.6 Discrete Event Simulation
	2.3.7 Improvements to Simulation Methods
	2.4 Summary
	3.1 Introduction
	3.2 Characterization of the Dynamic PRA Process
	3.2.1 Basic Terminology
	3.2.2 Event Sequences vs. Scenarios

	3.3 Exploration of the Event Sequence Space
	3.3.1 Systematic Exploration
	3.3.2 Random Exploration

	4.1 Problem Statement
	4.2 Adaptive Exploration
	4.2.1 Traditional Exploration Strategy
	4.2.2 Bayesian Adaptive Exploration

	4.3 Outline of a New DPRA Methodology
	4.3.1 The Framework
	4.3.2 Key Elements

	4.4 Implementation of the Planner of DPRA Simulations
	4.5 Implementation of the Scheduler of DPRA Simulations
	4.6 Interactions Between Planner and Scheduler
	4.6.1 Load Plan into Scheduler
	4.6.2 Update Plan Based on Simulation Result

	5. Scheduler Algorithms
	5.1 Problem Definition
	5.2 Scheduler Overview
	5.3 Representation of the Plan in Scheduler
	5.4 Branch Point Generation for Stochastic Events
	5.4.1 Probability-based Branch Point Generation
	5.4.2 Time-based branch generation
	5.4.3 Branching Point Generation for Demand Based Event

	5.5 Scheduling Algorithm Based on Value
	5.5.1 Entropy as Measure of Information
	5.5.2 Expected Entropy Gain Through Experiment
	5.5.3 Principle of Evaluating the Value of Exploring a Scenario
	5.5.4 Algorithm for Evaluating the Value of Proposed Event
	5.5.5 Exploration of Branches

	5.6 Event Sequence Quantification
	5.7 Estimator of End State Probabilities
	5.8 Simple Test Case
	5.8.1 The plan.
	5.8.2 End State Probability Estimates.
	5.8.3 Distribution of Sequences
	5.8.4 The Impact of Importance Factor

	6. Introduction to SIMPRA
	6.1 Overview
	6.1.1 Framework of SIMPRA
	6.1.2 Object-Oriented Paradigm

	6.2 Planner
	6.3 Scheduler
	6.3.1 Functions of Scheduler
	6.3.2 Systematic Exploration

	6.4 Structure of the Simulation Model
	6.4.1 Simulation Model
	6.4.2 Interactions between Planner, Scheduler and Simulation Model

	6.5 Simulation Model Building
	6.5.1 The Library to Build the Simulation Model:
	Dynamic Fault Tree Library

	6.5.2 Running the Simulation:
	6.5.3 Hardware Component Failure Modeling
	6.5.4 Event Notification
	6.5.5 System State Block
	6.5.6 End State Notification
	6.5.7 Human Behavior Modeling
	6.5.8 Software Modeling

	
	7.1 Introduction
	7.1.1 Outline of the Holdup Tank
	7.1.2 Dynamic Feature of the Holdup Tank Problem

	7.2 Case I
	7.2.1 Problem Statement
	7.2.2 Analysis in Previous Work
	7.2.3 Simulation with SIMPRA
	7.2.4 Scenario Analysis

	7.3 Case II
	7.3.1 Problem Statement
	7.3.2 Scenario Analysis
	7.3.3 Simulation with SIMPRA

	7.4 Comparison between SIMPRA results and other approaches:

	8. Application II - Satellite Telecommunication Example
	8.1 Introduction
	8.2 Scheduler/Simulator side
	8.3 Result Analysis
	8.3.1 End State Probability Estimation
	8.3.2 Allocation of samples over the planed scenarios

	
	9. Application II - Space Shuttle Ascent Phase
	9.1 Summary of the Shuttle Ascent Phase:
	9.2 Building Then Simulation Model
	9.2.1 Software Model
	9.2.2 Crew Behavior Model

	9.3 Analysis Results:
	9.3.1 Exploration Methods
	9.3.2 Event Sequences
	9.3.3 End State Probabilities Estimation
	9.3.4 Allocation of Event Sequences

	9.4 Conclusion
	10.1 Summary of Research Results
	10.1.1 Overview
	10.1.2 Comparison with Others’ Work

	10.2 Future Research
	10.2.1 Planner
	10.2.2 Multi-level Modeling
	10.2.3 Human Modeling and Software Modeling

	Appendix A. Graphical Representation in DPRA
	Appendix B: Application of Dynamic Fault Tree Simulation

