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Interactive exploration of multidimensional data sets is challenging because: (1) it is 

difficult to comprehend patterns in more than three dimensions, and (2) current 

systems are often a patchwork of graphical and statistical methods leaving many 

researchers uncertain about how to explore their data in an orderly manner.   

This dissertation offers a set of principles and a novel rank-by-feature framework 

that could enable users to better understand multidimensional and multivariate data 

by systematically studying distributions in one (1D) or two dimensions (2D), and then 

discovering relationships, clusters, gaps, outliers, and other features.  Users of this 

rank-by-feature framework can view graphical presentations (histograms, boxplots, 

and scatterplots), and then choose a feature detection criterion to rank 1D or 2D axis-

parallel projections.  By combining information visualization techniques (overview, 

coordination, and dynamic query) with summaries and statistical methods, users can 

  



systematically examine the most important 1D and 2D axis-parallel projections.  This 

research provides a number of valuable contributions: 

• Graphics, Ranking, and Interaction for Discovery (GRID) principles– a set of 

principles for exploratory analysis of multidimensional data, which are  

summarized as: (1) study 1D, study 2D, then find features (2) ranking guides 

insight, statistics confirm.  GRID principles help users organize their 

discovery process in an orderly manner so as to produce more thorough 

analyses and extract deeper insights in any multidimensional data application. 

• Rank-by-feature framework - a user interface framework based on the GRID 

principles. Interactive information visualization techniques are combined with 

statistical methods and data mining algorithms to enable users to orderly 

examine multidimensional data sets using 1D and 2D projections. 

• The design and implementation of the Hierarchical Clustering Explorer (HCE), 

an information visualization tool available at www.cs.umd.edu/hcil/hce.  HCE 

implements the rank-by-feature framework and supports interactive 

exploration of hierarchical clustering results to reveal one of the important 

features – clusters. 

• Validation through case studies and user surveys: Case studies with motivated 

experts in three research fields and a user survey via emails to a wide range of 

HCE users demonstrated the efficacy of HCE and the rank-by-feature 

framework.  These studies also revealed potential improvement opportunities 

in terms of design and implementation. 
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Chapter 1  

Introduction 

Technology advances in many research areas have resulted in easy and efficient 

generation of observational data sets, most of which are multidimensional or 

multivariate.  The most important task for researchers is to extract valuable insights 

from those (often large) data sets.  New disciplines like data mining have been getting 

more attention from researchers as they are meant to effectively support such tasks.  

When researchers have to analyze a new observational data set, they first try to learn 

what the data set looks like - descriptive modeling.  Among other analysis methods 

for descriptive modeling, cluster analysis is most widely used to describe the entire 

data set by suggesting natural groups in the data set.  Even though clustering 

algorithms produce useful clustering results, the cognitive understanding of the result 

is often not good enough to guide discovery since the result is statically represented in 

most cases, as is common in data mining applications.  

Information visualization techniques can help solve this problem. Cognition of 

the clustering results can be amplified by dynamic queries and interactive visual 

representation methods, and understanding of the clustering results is transformed to 

another important data mining task - exploratory data analysis.  Interactive 

information visualization techniques enable users to effectively explore clustering 

results and help them find the informative clusters that lead to insights.   
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Besides having a good descriptive model of multidimensional data sets, another 

challenging task is to identify important features or patterns hidden in the 

multidimensional space.  I use the term, “feature,” in a broader sense.  What I mean 

by a “feature” is not only a dimension (or a variable) but also any interesting 

characteristics (e.g. clusters, gaps, outliers, and relationships between dimensions) of 

the data set.  Dealing with multidimensionality has been challenging to researchers in 

many disciplines due to the difficulty in comprehending more than three dimensions 

to discover relationships, outliers, clusters, and gaps.  This difficulty is so well 

recognized that it has a provocative name: “the curse of high dimensionality.” 

One of the commonly used methods to cope with multidimensionality is to use 

low-dimensional projections.  Since human eyes and minds are effective in 

understanding one-dimensional (1D) histograms, two-dimensional (2D) scatterplots, 

and three-dimensional (3D) scatterplots, these representations are often used as a 

starting point.  Users can begin by understanding the meaning of each dimension 

(since names can help dramatically, they should be readily accessible) and by 

examining the range and distribution (normal, uniform, erratic, etc.) of values in a 

histogram.  Then experienced analysts suggest applying an orderly process to note 

exceptional features such as outliers, gaps, or clusters.   

Next, users can explore two-dimensional relationships by studying 2D 

scatterplots and again use an orderly process to note exceptional features.  Since 

computer displays are intrinsically two-dimensional, collections of 2D projections 
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have been widely used as representations of the original multidimensional data.  This 

is imperfect since some features may be hidden, but at least users can understand 

what they are seeing and come away with some insights.   

Advocates of 3D scatterplots argue that since the natural world is three 

dimensional, users can readily grasp 3D representations.  However, there is a 

substantial empirical evidence that for multidimensional ordinal data (rather than 3D 

real objects such as chairs or skeletons), users struggle with occlusion and the 

cognitive burden of navigation as they try to find desired viewpoints.  Advocates of 

higher dimensional displays have demonstrated attractive possibilities, but their 

strategies are still difficult to grasp for most users.   

Preliminary studies on multidimensional data analysis led us to design and 

implement an interactive visualization tool, Hierarchical Clustering Explorer (HCE) 

(available at www.cs.umd.edu/hcil/hce) [74].  HCE supports interactive exploration 

of hierarchical clustering results to enable users to build a good description of their 

data sets.  Through years of experience with HCE users dealing with 

multidimensional data sets, the two basic statistical principles [62] for exploratory 

data analysis were extended to encompass the interactive visualizations and user 

interactions, and presented our orderly principles for interactive multidimensional 

data exploration - Graphics, Ranking, and Interaction for Discovery (GRID) 

principles.  GRID principles have been implemented into HCE as the rank-by-feature 

framework. 
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Chapter 2 covers related work and Chapter 3 introduces the Hierarchical 

Clustering Explorer and explains interactive exploration of hierarchical clustering 

results.  Chapter 4 makes the case for the GRID principles and the rank-by-feature 

framework for axis-parallel 1D and 2D projections.  Potentially interesting ranking 

criteria and transformations are also discussed in Chapter 4.  Application examples of 

the rank-by-feature framework are presented in Chapter 5.  Chapter 6 explains data 

structures and implementation details of HCE.  Chapter 7 summarizes the evaluation 

results of the rank-by-feature framework and HCE.  This dissertation concludes with 

possible future work and contributions in Chapter 8. 
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Chapter 2   

Related Work 

Since the focus of this dissertation is interactive exploration of multidimensional data 

sets using low dimensional projections, this chapter introduces work using projection 

methods in related fields.   

2.1 Two Dimensional Projection Techniques 

Two-dimensional projections have been utilized in many visualization tools and 

graphical statistics tools for multidimensional data analysis.  Projection techniques 

such as principal components analysis (PCA) [39], multidimensional scaling (MDS) 

[84], Sammon's mapping [69], and parallel coordinates [43]  are used to find 

informative two-dimensional projections of multidimensional data sets.  Self-

organizing maps (SOM) [49] can also be thought of as a projection technique.  

Taking a look at only a single projection for a multidimensional data set is not enough 

to discover all the interesting features in the original data since any projection may 

obscure some features  [28].  Thus it is inevitable for users to scrutinize a series of 

projections to reveal the features of the data set.  

Since two-dimensional presentations offer ample power while maintaining 

comprehensibility, many variations have been proposed.  I distinguish the three 

categories of two-dimensional presentations by the way axes are composed:  
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(1) Non axis-parallel projection methods use a (linear/nonlinear) combination of 

two or more dimensions for an axis of the projection plane.  Principal component 

analysis (PCA) is a well-established technique in this category.  

(2) Axis-parallel projection methods use existing dimensions as axes of the 

projection plane.  One of the existing dimensions is selected as the horizontal 

axis, and another as the vertical axis, to make a familiar and comprehensible 

presentation.  Sometimes, other dimensions can be mapped as color, size, length, 

angle, etc.  

(3) Novel methods use axes that are not directly derived from any combination of 

dimensions.  For example, the parallel coordinate presentation is a powerful 

concept in which dimensions are aligned sequentially and presented 

perpendicular to a horizontal axis [43].  Recent survey of multidimensional 

visualization techniques belonging to the category (3) is found in [26]. 

2.1.1 Non-axis-parallel Projection Methods 

Projection methods in the category (1), non-axis-parallel, were developed by 

statisticians.  The idea of projection pursuit [29] is to find the most interesting low-

dimensional projections to identify interesting features in a multidimensional data set.  

An automatic projection method known as the grand tour [6] , is a method for 

viewing multidimensional data via orthogonal projection onto a sequence of two-

dimensional subspaces.  It changes the viewing direction, generating a movie-like 
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animation that makes a complete search of the original space.  However, it might take 

several hours to complete a reasonably complete visual search even in four 

dimensions [40].  An exhaustive visual search is out of the question as the number of 

dimensions grows. 

Friedman and Tukey devised a method to automate the task of projection pursuit 

[28].  They defined interesting projections as ones deviating from the normal 

distribution, and provided a numerical index to indicate the interestingness of the 

projection.  When an interesting projection is found, the features on the projection are 

extracted and projection pursuit is continued until there is no remaining feature found.  

XGobi [19] or GGobi [80] (Figure 2.1) is a widely-used graphical tool that 

implemented both grand tour and projection pursuit, but not the ranking that I propose.   

 

Figure 2.1 GGobi (www.ggobi.org) 
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There are clustering methods that utilize a series of low-dimensional projections 

in category (1).  Among them, HD-Eye system (Figure 2.2) by Hinneburg et al. [37] 

implements an interactive divisive hierarchical clustering algorithm built on a 

partitioning clustering algorithm, or OptiGrid [36].  They show projections using 

glyphs, color or curve-based density displays to users so that users can visually 

determine low-dimensional projections where well-separated clusters are and then 

define separators on the projections. 

 

Figure 2.2 HD-Eye [37] 
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These automatic projection pursuit methods have made impressive gains in the 

problem of multidimensional data analysis, but they have limitations.  One of the 

most important problems is the difficulty in interpreting the solutions from the 

automatic projection pursuit.  Since the axes are the linear combination of the 

variables (or dimensions) of the original data, it is hard to determine what the 

projection actually means to users.  Conversely, this is one of the reasons that axis-

parallel projections (projection methods in category (2)) are used in many 

multidimensional analysis tools [34, 79, 87]. 

2.1.2 Axis-parallel Projection Methods 

Projection methods in the category (2), axis-parallel, have been applied by 

researchers in machine learning, data mining, and information visualization.  In 

machine learning and data mining, ample research has been conducted to address the 

problems of using projections.  Most work focuses on the detection of dimensions 

that are most useful for a certain application, for example, supervised classification.  

In this area, the term “feature selection” is a process that chooses an optimal subset of 

features according to a certain criterion [57], where a feature simply means a 

dimension.  Basically, the goal is to find a good subset of dimensions (or features) 

that contribute to the construction of a good classifier.   

Unsupervised feature selection methods are also studied in close relation with 

unsupervised clustering algorithms.  In this case, the goal is to find an optimal subset 
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of features with which clusters are well identified [2, 3, 34, 35].  In pattern 

recognition, researchers want to find a subset of dimensions with which they can 

better detect specific patterns in a data set.   

In subspace-based clustering analysis, researchers want to find projections where 

it is easy to naturally partition the data set.  There are clustering algorithms based on 

axis-parallel projections of the multidimensional data.  CLIQUE [3] partitions low-

dimensional subspaces into regular hyper-rectangles.  It finds all dense units in each 

k-dimensional subspace using the dense units in (k-1)-dimensional subspaces, and 

then connects these axis-parallel dense units to build a “maximal” set of connected 

dense units which will be reported in disjunctive normal form.  PROCLUS [2] does 

not partition subdimensions but instead finds a set of k-medoids drawn from different 

clusters, together with appropriate sets of dimensions for each medoid.  Then it 

assigns the data items to the medoids through a single pass over the database. 

2.2 Evaluation of 2D Projections  

In early 1980’s, Tukey who was one of the prominent statisticians who foresaw the 

utility of computers in exploratory data analysis envisioned a concept of 

“scagnostics” (a special case of “cognostics” – computer guiding diagnostics) [85].  

With high dimensional data, it is necessary to use computers to evaluate the relative 

interest of different scatterplots, or the relative importance of showing them and sort 

out such scatterplots for human analyses.  He emphasized the need for better ideas on 
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“what to compute” and “how” as well as “why.” He proposed several scagnostic 

indices such as the projection-pursuit clottedness and the difference between classical 

correlation coefficient and robust correlation.  I brought his concept to reality with the 

rank-by-feature framework in the Hierarchical Clustering Explorer where I create 

interface controls, design practical displays, and implement more ranking ideas.   

There are also some research tools and commercial products for helping users 

find more informative visualizations.  Spotfire [79] has a guidance tool called “View 

Tip” (Figure 2.3) for rapid assessment of potentially interesting scatterplots, which 

shows an ordered list of all possible scatterplots from the one with highest correlation 

to the one with lowest correlation.   

 

Figure 2.3 View Tip in Spotfire 

Michael Friendly's Corrgram (Figure 2.4) [30] uses a color and shape coded 

scatterplot matrix display [86] to show correlations between variables.  Variables are 
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permuted so that correlated variables are positioned adjacently.  Guo et al. [34, 35] 

also evaluated all possible axis-parallel 2D projections according to the maximum 

conditional entropy to identify ones that are most useful to find clusters.  They 

visualized the entropy values in a matrix display called the entropy matrix [58] that is 

also a color coded scatterplot matrix (Figure 2.5).  My dissertation research takes 

these nascent ideas with the goal of developing a potent framework for discovery.  

 

Figure 2.4 Corrgram [30] 
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Figure 2.5 GeoVista Studio [58] 

2.3 Arrangement of Dimensions  

In the information visualization field, about 30 years ago, Jacques Bertin presented a 

visualization method called the Permutation Matrix [10].  It is a reorderable matrix 

where a numerical value in each cell is represented as a graphical object whose size is 

proportional to the numerical value, and where users can rearrange rows and columns 

to get more homogeneous structures.  This idea seems trivial, but it is a powerful way 

to observe meaningful patterns after rearranging the order of the data presentation.   

Since then, other researchers have also tried to optimally arrange dimensions so 

that similar or correlated dimensions are put close to each other.  This helps users find 

interesting patterns in multidimensional data [5, 30, 89].  Yang et al. [89] proposed 

innovative dimension ordering methods implemented in XmdvTool [87] (Figure 2.6) 
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to improve the effectiveness of visualization techniques including the scatterplot 

matrix display and the parallel coordinates view in category (3).  They rearrange 

dimensions within a single display according to similarities between dimensions or 

relative importance defined by users.   

 

Figure 2.6 Scatterplot Matrix in XmdvTool [87] 

The rank-by-feature framework idea is to rank all dimensions or all pairs of 

dimensions whose visualization contains desired features.  Since my work provides a 

framework where statistical tools and algorithmic methods can be incorporated into 

the analysis process as ranking criteria, I think my work contributes to the advance of 

information visualization systems by bridging the analytic gaps that were recently 

discussed by Amar and Stasko [4]. 
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2.4 Discussion 

This survey of research related to understanding multidimensional data sets shows the 

broad range of problems.  Various visualization techniques for multidimensional data 

illustrated different perspectives that should be considered to facilitate visual 

understanding of the data.  The difficulty in appreciating multiple dimensions has 

made researchers in different disciplines develop various methods to visualize 

multidimensional data sets.  Although there are software tools for exploring and 

understanding multidimensional data sets [19, 79, 87], the utility of interactive 

interaction techniques has not been thoroughly explored.  

Data mining and database research have suggested that clustering is a useful 

descriptive feature to reveal what the data looks like and what its characteristics are.  

In this sense, the visualization of multidimensional data clustering result has been an 

important area of multidimensional data visualization, where algorithmic work and 

visualization techniques can be combined to aid users to explore and understand the 

data sets.  Among other clustering algorithms, the traditional hierarchical 

agglomerative algorithm is qualitatively effective [24], and furthermore the visual 

representation of the clustering result (or dendrogram) is so intuitive and easy to 

understand that many researchers utilize it for understanding their data sets and 

presenting the result [24, 74].  Although Spotfire and some other tools provide tools 

for visualizing dendrograms, further work is necessary to incorporate interactive 

exploration methods into the understanding of the hierarchical clustering results. 
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Finding interesting axis-parallel two-dimensional projections has been an 

important task for identifying useful features of the original multidimensional data set.  

Most work for finding interesting 2D projections has focused on detecting 2D 

projections well suited for partitioning data.  Most of them have one specific 

definition of what an “interesting” projection is.  The definition of “interestingness” 

can be different from user to user, or from application to application.  For example, if 

users are interested in inferring why a group of items are clustered together in a 

hierarchical clustering, the most interesting projection would be the one that best 

separates the group from others.  However, if users are seeking functional 

relationships between dimensions, the most interesting projection would be the one 

where all items are aligned on the diagonal. 

Combining interactive tools with the powerful data mining approaches especially 

clustering analysis is essential to help users effectively explore and understand 

multidimensional data sets, but at the same time it presents several challenges.  The 

design of the interactive interface for such tools should deal with the issues about how 

to naturally integrate dynamic interaction techniques into the exploration process, and 

how to effectively provide sufficient contextual explanation about the analysis result 

(for example, in case of cluster analysis, why they are clustered together).  

Furthermore, it might be difficult to implement interactive visualization systems that 

practically combine the rapid, incremental updates of visualization with the 

computational requirements of data mining. 
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Chapter 3   

Hierarchical Clustering Explorer 

The Hierarchical Clustering Explorer (HCE) [74] was originally developed for 

interactive visualization of hierarchical clustering results of multidimensional data 

sets.  It has been used by a variety of users who want to “see” their data set, “find” 

interesting patterns, and “build” a descriptive model.  This chapter describes HCE as 

a visualization tool for understanding multidimensional data sets through interactive 

exploration of hierarchical clustering results using dynamic queries and coordination 

among multiple views.  Multivariate data is accommodated by normalization or 

transformation to produce multidimensional data.  Principles and a framework for 

systematic exploration of multidimensional data sets to find interesting features 

beyond clusters will be described in Chapter 4. 

3.1 Hierarchical Clustering and Dendrogram Display 

One of the requirements of good clustering algorithms is the ability to determine the 

number of natural clusters in the data set.  However, most existing clustering 

algorithms ask users to specify the number of clusters that they want to generate.  

This requirement makes clustering algorithms perform unnecessary merges or splits, 

which produce unnatural clusters.  Furthermore, the natural number of clusters is 

mostly dependent on users’ preferences or applications.  A possible solution to this 

problem is to use the hierarchical agglomerative clustering (HAC) algorithm [45] and 
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allow users to control parameters to determine the proper number of clusters.  Unlike 

most clustering algorithms, HAC generates a hierarchical structure of clusters instead 

of sets of clusters.  

The HAC algorithm [45] is summarized as follows.  Let's assume that we want to 

cluster n data items, and we have n*(n-1)/2 similarity (or distance) values between 

every possible pair of n data items: 

1. Initially, each data item occupies a cluster by itself.  So there are n clusters at 

the beginning. 

2. Find one pair of clusters whose similarity value is the highest, and make the 

pair a new cluster. 

3. Update the similarity values between the new cluster and the remaining 

clusters. 

4. Steps 2 and 3 are applied n-1 times before there remains only one cluster of 

size n.  

There are many possible choices in updating the similarity values in step 3.  

Among them, most common ones are complete-linkage, average-linkage, and single-

linkage.  Complete-linkage sets the similarity values between the new cluster and the 

remaining clusters to be the minimum of similarities between each member of the 

new cluster and the rest.  Average-linkage uses average similarity value as a new 

similarity values.  Single-linkage takes the maximum. 
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Hierarchical clustering results are usually represented as dendrograms. A 

dendrogram is a binary tree, in which each data item corresponds to a terminal node 

of the binary tree and the distance from the root to a subtree indicates the similarity of 

the subtree – highly similar nodes or subtrees have joining points that are farther from 

the root.   For example, in Figure 3.1, the Euclidean distance between A and D is the 

smallest among all possible pairs, they are merged together as a subtree and the 

height of the subtree is very short because they are very similar in terms of the 

similarity/distance measure.  On the other hand, B and E are not so close to each other, 

the height of the corresponding subtree is much taller because they are not so similar.  

AA

A D

C

B

E

DD CC BB EE
 

Figure 3.1 Hierarchical agglomerative clustering and dendrogram.  Five data points 

(A, B, C, D, E) on a 2D plane are clustered, and the dendrogram (a binary tree) on the 

right side shows the clustering result by using Single-linkage and Euclidean distance.  

The height of each subtree represents the distance between the two children. 

3.2 Color Mosaic Displays for Multidimensional Data Sets 

Multidimensional data sets are usually represented in a table where a row represents 

an item and a column represents a variable (or a dimension).  For example, Figure 
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3.2(a) shows a small multidimensional data set (77 rows and 13 columns) about 

nutrition information of breakfast cereals.  Each row is a cereal, and each column is a 

nutrition component.  A graphical representation of this data set is to color-code each 

value in the table according to a color mapping scheme.  This graphical representation 

of a table is called “Color Mosaic.”  There are other names for the representation such 

as heat map and patchgrid.   

A usual way to show a color mosaic is to maintain the same layout of the original 

table and just color-code each cell (Figure 3.2(b)).  Even though this vertical layout is 

a natural representation, HCE uses a transposed layout (Figure 3.2(c)) by default to 

show more items in a limited screen space.  Since the width of a computer screen is 

usually bigger than the height and multidimensional data sets usually have many 

more rows than columns, the horizontal layout can accommodate more items on a 

screen.  
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(a) cereal data set (b) vertical color mosaic 

 
(c) horizontal color mosaic 

Figure 3.2 Color mosaic displays for a multidimensional data set.  In (a) and (b), each 

row is a cereal while each column is a cereal in (c).  The default layout in HCE is (c).
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When researchers want to identify hot spots and understand the distribution of 

data, they can examine the color mosaic.  In general, a dendrogram is displayed with 

a color mosaic at the leaves (Figure 3.3(a)).  The arrangement of rows and columns of 

the color mosaic display is changed according to the clustering result.  The graphical 

pattern of the underlying data is shown by coloring each tile on the basis of the 

numerical value corresponding to the tile.  The color mapping is specified by a color 

mapping control using a histogram for all numerical values in the data set (Figure 

3.3(b)).  By default, in HCE, a high value has a bright red color and a low value has 

bright green color.  The middle value has a black color.  The vertical red line specifies 

the value above which all values are mapped to the brightest red color, and the 

vertical green line specifies the value below which all values are mapped the brightest 

green color.  As a value gets closer to the middle value between the green and the red 

lines, the color becomes darker.  A right click on a vertical color line shows a color-

selection dialog box to allow users to use a different set of colors for color mapping. 

User controls over the color mapping are necessary to enable users to see subtle 

differences in the ranges of interest.  For skewed data distributions, this is essential to 

avoid a situation where a large part of screen is filled with all green or red, indicating 

that most of the values are near extremes.  Users can change the color mapping for 

color mosaic display by dragging the red and green vertical line over the histogram to 

adjusting the range of color stripe displayed (Figure 3.3(b)).  Users can instantly see 

the result of new color mapping on the color mosaic display, so that they can identify 

the proper color mapping for the data set.   
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(a) color mosaic attached to dendrogram (b) color mapping 

Figure 3.3 A color mosaic display attached to a dendrogram visualizes a hierarchical 

clustering result of the cereal data set.  The arrangements of rows and columns are 

changed according to the clustering result. Users can change the color mapping for 

the color mosaic by dragging vertical color lines (green or red) on a histogram. 

3.3 Visualization of Hierarchical Clustering Results 

HCE users begin by performing a hierarchical agglomerative clustering and build a 

dendrogram with a color mosaic display underneath.  Then they start with an 

overview to see the entire data set and to reveal the distribution of values and locate 

hot spots.  With the minimum similarity bar, users can interactively adjust a 

parameter (minimum similarity) to find the most natural number of clusters.  Another 

dynamic control, the detail cutoff bar allows users to reduce clutter from too much 

detail by aggregating leaf nodes by the average vector.  Next they can see how the 

hierarchical clusters are presented in other familiar and easy-to-understand views 

such as 1-dimensional histograms and 2-dimensional scatterplots.  The coordination 

between the overview color mosaic and those views is bi-directional, that is, users can 

select a group of items in a view and see where they fall in other views. 
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3.3.1 Overview in a Limited Screen Space 

Overviews are important because they enable researchers to identify hot spots and 

understand the distribution of data.  However, there are significant screen limitations 

when visualizing large data sets on commonly used displays that are 1600 pixels wide.  

Even limiting each item to a single pixel means that, for data sets larger than 1600 

points, the corresponding dendrogram (and color mosaic) does not fit in a single 

screen.  To accommodate large data sets, HCE provides a compressed overview by 

replacing leaves with average values of adjacent leaves.  This view shows the entire 

hierarchy at the cost of some lost detail at the leaves (Figure 3.4(a)).  A second 

overview allocates several pixels per item, but requires scrolling to view all items 

(Figure 3.4(b)).  In this scrolling overview, users can adjust the level of detail shown 

in the overview by adjusting the range slider attached below the dendrogram view to 

change the item widths and viewing range.  With either overview, HCE users can 

click on a cluster and view the detailed information at the bottom of the display, 

which also includes the item names. 
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(a) Compressed overview of 12422 items 

(b) Overview with zoom and scroll.  Only a few hundred items are shown. 

Figure 3.4 Overviews of hierarchical clustering results 

3.3.2 Minimum Similarity Bar 

One of the key components in HCE is the minimum similarity bar.  By dragging 

down the bar whose y-coordinate determines the minimum similarity threshold, users 

can filter out the less similar elements.  In this way, users can easily find the clusters 

of elements that are tight enough to satisfy the threshold.  To prevent users from 

losing global context during dynamic filtering, the entire dendrogram structure is 

shown on the background, and users can highlight the position of a cluster in the 
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original data set by just clicking on the cluster.  Figure 3.5 shows the process of 

cluster discovery using the minimum similarity bar. 

 

Figure 3.5 Minimum similarity bar: The y coordinate of the bar determines the 

minimum similarity value.  Users can drag down the bar to filter out items that are 

distant from a cluster.  The minimum similarity values changed from 0.36 to 0.764 in 

this example to separate 1 large cluster into 13 small clusters. 

Let’s assume that a hierarchical clustering algorithm was performed on a data set, 

.  The final result would be a binary tree T, where each branch  is 

a cluster ,  and  is the left and right child in the branch  

respectively.   is the intra-cluster similarity of .  Let 

 be the minimum similarity value defined as 
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The first and second conditions are to control the number of clusters by 

excluding less similar clusters.  The third condition is to exclude clusters with only 

one element that are not generally meaningful in terms of cluster quality.  The fourth 

condition is trivial from the third condition. 

3.3.3 Detail Cutoff Bar 

Having an overview is as important as obtaining enough detail.  It reveals the overall 

patterns of the whole data set, which guides users to the next search direction.  One of 

the generally accepted visualization schemes is to start with an overview, and then 

allow users to dynamically access detail information [76].  It is important to keep 

providing an overview of the entire data set, while allowing detailed analysis of a 

selected part. 
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Figure 3.6 Detail cutoff bar:  Users can adjust the level of detail by dragging up with 

the detail cutoff bar.  All the subtrees below the bar are rendered using the average of 

leaf node values belonging to the subtree.  This bar makes it possible to concentrate 

on more global structures. 

In HCE, users can adjust the level of detail by dragging up the detail cutoff bar, 

another dynamic filtering bar of HCE (Figure 3.6).  Let be the current y-coordinate 

of the minimum similarity bar, and  be that of the detail cutoff bar.  Let  be a 

cluster in that is the current cluster set defined by .  For , 

define  as follows. 
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Then, each cluster  is rendered using the average vector of leaf node elements 

as shown in Figure 3.6.  In this way, users can hide the detail below the detail cutoff 

bar so that they can concentrate on more global structure of the original data.  

Especially for a large dendrogram, this bar helps users visually figure out the overall 

patterns of data values and structures of the clusters satisfying current minimum 

similarity threshold.  Once users find an interesting cluster in the adjusted 

dendrogram, they can dig into enough detail by dragging down the bar again. 

iC

3.3.4 Clustering Results Comparison 

One troubling component of clustering analysis is that there is no perfect clustering 

algorithm.  There are different ways to compute distances between items in a 

multidimensional data set (Euclidean, correlation coefficient, Manhattan distance, 

etc.).  Moreover, there are different ways to compute the similarity values between 

groups of items, called linkage (average, complete, single, etc.).   

Therefore, researchers need some mechanism to examine and compare two 

clustering results.  HCE enables users to view results of two hierarchical clustering 

algorithms on the screen at once (Figure 3.7).  Users can see the mapping of each 

item between the two different clustering results by double-clicking on a specific 

cluster.  The selected cluster will highlight in yellow and lines from each item in that 

cluster will be drawn to their position in the second clustering result.  If they find 
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some items that are mapped to different clusters, they can examine the items more 

carefully to understand what made the difference. 

30  



 

Figure 3.7 Cluster comparisons: Users can see the mapping of each item between the 

two different clustering results by double-clicking a specific cluster.  The selected 

cluster will be highlighted in yellow and lines from each item in that cluster will be 

drawn to their position in the second clustering result.  As mouse moves on a color 

mosaic, a black line will show the mapping between the item under cursor and the 

corresponding item by connecting the two items. 
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This strategy is tedious and the criss-crossing lines can be confusing, but this is a 

first step in giving users tools to address the complex nature of such comparisons.  

Showing relationships between non-proximal items is a basic problem in information 

visualization research.  Color-coding, blinking, and drawing lines are the three basic 

methods, but each has its problems.  HCE already uses color-coding heavily and 

blinking would add distraction to an already complex display, so drawing lines was 

our best alternative.  Biology research partners are excited to have this capability and 

spend hours probing the clusters to see which genes have switched into other clusters 

by use of an alternate clustering algorithm.  Munzner et al. [63] addressed a similar 

problem and presented a scalable tree comparison method, but further improvement 

in developing metrics for measuring similarity and tools to highlight important 

changes would be necessary. 

Another possible verification method is to select a subset of the dimensions (or 

variables), and do the clustering on the reduced set.  It is easier to verify the 

correctness of a clustering method in lower dimensions than in higher dimensions.  

HCE users can use a dialog box to select a subset of the dimensions to take part in the 

clustering.  The resulting color mosaic has a white space between the selected 

dimensions and the others (Figure 3.8).  Users can concentrate their inspection on the 

selected dimensions and see the clusters more clearly in the scatterplot.  The capacity 

to redo the clustering using different dimensions helps users gain an understanding of 

the relationships among dimensions and helps identify which dimensions have a 

strong effect on the outcomes. 
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Figure 3.8 Clustering on a reduced set: Users can select a subset of the dimensions 

(columns in the data set), and do the clustering only on the subset to verify the 

clustering results.  The horizontal white line between dimensions in the dendrogram 

view separates the 9 selected dimensions (upper) and the 5 others (lower).  Users can 

concentrate their inspection on the selected (upper) part and see the clusters more 

clearly in the scatterplot. 

3.3.5 Clustering Result Evaluation by F-measure 

Visual inspection of clustering results is an intuitive and powerful tool for users to 

evaluate the results [73].  However, as the number of items gets bigger, it becomes 
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more difficult to evaluate the clustering results only by using visual representation.  

Therefore, it is necessary to use reasonable clustering evaluation measures in addition 

to visual inspection. 

There are two kinds of clustering result evaluation measures, internal and 

external.  The former is for the case where users are not aware of the correct 

clustering.  It compares the clusters using internal measures such as distance matrix 

without any external knowledge.  The latter is for the case where users already know 

the correct classes of their samples.  In the case study with human and mouse samples 

[72], researchers already knew the correct class labels of samples, and thus used 

external measures.  Possible external measures include purity, entropy, and F-

measures.  Among them, F-measures [68] have been used as an external clustering 

result evaluation measure in many studies across many fields including information 

retrieval and text-mining [18, 52, 53].  Furthermore the F-measure has been 

successfully applied to hierarchical clustering results [52]. 

I applied the F-measure to the entire hierarchical structure of clustering results 

and also to the set of clusters determined by the minimum similarity threshold in HCE.  

Let , … , , … ,  be the right clusters according to the target biological 

variable.  Let , … , , … ,  be the clusters from the hierarchical clustering 

results.  In computing the F-measure, each cluster is considered as a query and each 

class (or each correct cluster) is considered the correct answer of the query.  The F-

1RC iRC nRC

1C jC mC
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measure of a correct cluster (or a class)  and an actual cluster is defined as 

follows: 
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The precision values and recall values  are defined by the 

information retrieval concepts.  The F-measure of a class  is given by 

),( jiP ),( jiR

iRC

),(max)(
1

jiFiF
m

j=
= . 

Finally, the F-measure of the entire clustering result is given by  
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The F-measure score is between 0 and 1.  The higher the F-measure score is, the 

better the clustering result is.  When I calculate the F-measure for the entire cluster 

hierarchy, for each external class I traverse the hierarchy recursively and consider 

each subtree as a cluster.  Then the F-measure for an external class is the maximum of 

F-measures for all subtrees. 

As users drag the minimum similarity bar, a line graph of F-measure score is 

superimposed on the dendrogram display so that they can easily see the global pattern 

of F-measure scores right on the clustering result.  At the same time, each array name 
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is color-coded according to its predefined class so that users can assess the quality of 

clustering from the visual representation as well as from the numerical F-measure 

scores. 

3.3.6 Clustering Quality Improvement by Weighting 

In some cases like Affymetrix GeneChip experiments, researchers have not only a 

numerical value (detection signal value) but also its significance measure for the 

value (detection p-value).  In these cases, the quality of the unsupervised hierarchical 

clustering can be improved by using the significant value for a more meaningful 

distance calculation between items.   

In [72], this idea was applied to the unsupervised clustering result of Affymetrix 

GeneChip data.  The detection p-values was incorporated into an unsupervised 

clustering algorithm as weights for signal values instead of filtering based on 

present/absent calls.  It would give greater potential sensitivity by considering all 

probe sets in an analysis without a cost of poor signal-noise ratio by involving 

confidence factor in the clustering process.  There are many possible similarity 

measures for unsupervised clustering methods, and it is also possible to develop a 

weight measure for most similarity measures.  For example, a weighted Pearson 

correlation coefficient can be derived as follows from the Pearson correlation 

coefficient that has been widely used in the microarray analysis.  Let  

and  be the vectors representing two arrays to be compared, and let 

),...,( 1 nxxx =
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))(),...,(()( 1 nxpxpxp =  and ))(),...,(()( 1 nypypyp =  be the vectors representing p-

values for x  and  respectively.  Then the weighted Pearson correlation coefficient 

is given by   
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By using this weighted distance measure, the clustering result was improved in 

the case study with human muscle biopsies and mouse lung samples [72].  Other 

similarity measures such as Euclidean distance, Manhattan distance, and cosine 

coefficient can be extended to their weighted versions in a similar way. 

3.4 Interaction with Parallel Coordinates View 

Many microarray experiments measure gene expression over time [14, 91].  

Researchers would like to group genes with similar expression profiles or find 

interesting time-varying patterns in the data set by performing a cluster analysis.  

Another way to identify genes with profiles similar to known genes is to directly 

search for the genes by specifying the expected pattern of a known gene.  When 

researchers have some domain knowledge such as the expected pattern of a 

previously characterized gene, researchers can try to find genes similar to that pattern.  

Since it is not easy to specify the expected pattern at a single try, they have to conduct 
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a series of searches.  Therefore, they need an interactive visual analysis tool that 

allows easy modification of the expected pattern and rapid update of the search result. 

Clustering and direct profile search can complement each other.  Since there is 

no perfect clustering algorithm right for all data sets and applications, direct profile 

search could be used to validate the clustering result by projecting the search result 

onto the clustering result view.  Conversely, a clustering result could be used to 

validate the profile search by projecting the cluster result on the profile view.  

Therefore, coordination between a clustering result and a direct search result makes 

the identification process more valid and effective. 

‘Profile Search’ in the Spotfire DecisionSite (www.spotfire.com) calculates the 

similarity to a search pattern (so called 'master profile') for all items in the data set 

and adds the result as a new column to the data set.  The built-in profile editor makes 

it possible to edit the search pattern, but the editor view is separate from the profile 

chart view where all matching profiles are shown, so users need to switch between 

two views to try a series of queries.  The modification of master profile in the profile 

editor view is interactive, but search results are not updated dynamically as the master 

profile changes. 

TimeSearcher [38] supports interactive querying and exploration of time-series 

data.  Users can specify interactive timeboxes over the time-varying patterns, and get 

back the profiles that pass though all the timeboxes.  Users can drag and drop an item 

from the data set into the query window to create a query with a separate timebox for 
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each time point over the item in the data set.  Each timebox at each time point can be 

modified to change the query. 

HCE 3.0 reproduces Spotfire’s and TimeSearcher’s basic functions with a novel 

interface, the parallel coordinates view powered by a direct-manipulation search, that 

allows rapid creation and modification of desired profiles using novel visual 

metaphors.  Key design concepts are: 

(1) interactive specification of a search pattern on the information space: Users 

can submit their queries simply by mouse drags over the search space rather than 

using a separate query specification window. 

(2) dynamic query control: Users can get query results instantaneously as they 

change the search pattern, similarity function, or similarity threshold. 

(3) sequential query refinement: Users can keep the current query results as a 

new narrowed search space for subsequent queries. 

The parallel coordinates view consists of three parts (Figure 3.9): the information 

space where input profiles are drawn and queries are specified, the range slider to 

specify similarity thresholds, and a set of controls to specify query parameters.  Users 

specify a search pattern by simple mouse drags.  As they drag the mouse over the 

information space, the intersection points of mouse cursor and vertical time lines 

define control points.  Existing control points, if any, at the intersecting vertical time 

lines are updated to reflect the dragging.  A search pattern is a set of line segments 
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connecting the contiguous control points specified.  Users choose a search method 

and a similarity measure on the control panel.  They can change the current search 

pattern by dragging a control point, by dragging a line segment vertically or 

horizontally, or by adding or removing control points.  All modifications are done by 

mouse clicks or drags, and the results are updated instantaneously.  This integration 

of the spaces where the data is shown and where the search pattern is composed 

reduces users' cognitive load by removing the overhead of context switching between 

two different spaces. 

 

Figure 3.9 Parallel coordinates view: Layout of the parallel coordinates view and an 

example of model-based query on the mouse muscle regeneration data.  The data 

silhouette (the gray shadow) represents the coverage of all expression profiles (also 

known as ‘data envelope’ in TimeSearcher).  The bold red line is a search pattern 

specified by users’ mouse drags.  Thin regular solid lines are the result of the current 

query that satisfies the given similarity threshold.  The data set shown is a temporal 

gene expression profile on the mouse muscle regeneration [91]. 

40  



Incremental query processing enables rapid updates (within 100 ms) so that 

dynamic query control is possible for most microarray data sets.  The easy and fast 

search for interesting patterns enables researchers to attempt multiple queries in a 

short period of time to get important insights into the underlying data set. 

In the parallel coordinates view, users can submit a new query over the current 

query result.  If users click the “Pin This Result” button after submitting a query, the 

query result becomes a new narrowed search space (Figure 3.9).  I call this “pinning.”  

Pinning enables sequential query refinement, which makes it easy to find target 

patterns without losing the focus of the current analysis process.  If users click on a 

cluster in the dendrogram view, all items in the cluster are shown in the parallel 

coordinates view.  By pinning this result, users can limit the search to the cluster to 

isolate more specific patterns in the cluster. 

Genes included in the search result are highlighted in the dendrogram view.  

Conversely, if users click on a cluster in the dendrogram view, profiles of the genes in 

that cluster are shown in the parallel coordinates view so that users can see the 

patterns of genes in a different view other than color mosaic.  Through the 

coordination between the parallel coordinates view and the dendrogram view, users 

can easily see the representative patterns of clusters and compare patterns between 

clusters.  Since queries done in the parallel coordinates view identify genes with a 

similar profile, the search results should be consistent with clustering results if the 

same similarity function is used.  In this regard, the parallel coordinates view helps 
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researchers validate the clustering results by applying their domain knowledge 

through direct-manipulation searches. 

In the parallel coordinates view, users can run a text search (called search-by-

name query) by typing in a text string to find items whose name or description 

contains the string.  Moreover, two different types of direct-manipulation queries are 

possible in the parallel coordinates view: model-based queries and ceiling-and-floor 

queries. 

3.4.1 Model-based Queries 

Users can specify a model pattern (or a search pattern) simply by mouse drags as 

shown in Figure 3.9, and select a distance/similarity measure among three different 

ones and assign the similarity/distance threshold values.  All profiles satisfying the 

similarity/distance threshold range will be rapidly shown in the information space.  

The three different measures are ‘Pearson correlation coefficient’, ‘Euclidean 

distance’, and ‘absolute distance from each control point.’  The first measure is useful 

when the up-down trends of profiles are more important than the magnitudes, while 

the second and the third measures are useful when the actual magnitudes are more 

important.  When users know the name of a biologically relevant gene, they can 

perform a text-based search first by entering a name or a description of the gene 

(Figure 3.11).  Then they can choose one of the matching genes and make them a 

model pattern by right-clicking on the pattern and selecting “Make it a model 
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pattern.” They can adjust or delete some control points based on their domain 

knowledge.  Finally, they adjust the similarity thresholds to get the satisfying results 

and project those results onto other views. 

3.4.2 Ceiling-and-Floor Queries 

Ceilings and floors are novel visual metaphors to specify value ranges using direct 

manipulation.  A ceiling imposes upper bounds and a floor imposes lower bounds on 

the corresponding time points.  Users can define ceilings and floors on the 

information space so that only the profiles between ceilings and floors are shown as a 

result (Figure 3.10).  Users can specify a ceiling by dragging with the left mouse 

button depressed and a floor by dragging with the right mouse button depressed.  

They can change ceilings and floors with mouse actions in the same way as they do 

for changing search patterns in model-based queries.  This type of query is useful 

when users know the up-down patterns and the appropriate value ranges at the 

corresponding time points of the target profiles.  Compared to model-based queries, 

ceiling-and-floor queries allow users to specify separate bounds for each control point. 
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Figure 3.10 An example of the ceiling-and-floor query.  Bold line segments above the 

profiles define ceilings, and bold line segments below profiles define floors.  Profiles 

below ceilings and above floors at the time points where ceilings or floors are defined 

are shown as a result.  Users can move a line segment or a control point of ceilings or 

floors to modify current query.  The highlighted region gives users informative visual 

feedbacks of the current query.  The data set shown is a temporal gene expression 

profile on the mouse muscle regeneration [91]. 

3.4.3 Search-by-Name Query 

Users can type in a string to find items whose name or description contains the string 

(Figure 3.11).  Searches are done either incrementally or not.  By default, a search is 

performed when users click on the “FindIt!” button.  When the “Incremental Search” 

checkbox is checked, a search is done incrementally.  For example, when users type 

“m,” only the items containing “m” in their name will be shown.  As users type in “u”, 

the result will be updated to show the items whose names have the substring “mu”. 
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Figure 3.11 An example of the search-by-name query. 

A good combination of a search-by-name query and a model-based query is to 

search an item, or a gene, using the search-by-name query and then make one of the 

search results a model pattern by a right mouse click and select “Make it a model 

pattern.”  By revising the new model pattern and threshold values, users can easily 

find a group of items similar to a known item.  Interactive coordination with the 

dendrogram view will also enable users to check whether the items are in the same or 

similar cluster. 

3.4.4 Coordination Example 

Researchers performed a microarray experiment to generate a gene expression profile 

data set that indicates relative levels of expression for each of these genes (> 12000) 

in murine muscle samples [91].  They measured expression levels at 27 time points to 

find genes that are biologically relevant to the muscle regeneration process.  They 

already know that MyoD is a gene that is the most relevant to muscle regeneration.  

They run the hierarchical clustering with the data set, and identify a relevant cluster 

that peaks at day 3.  In the parallel coordinates view, they search MyoD using search-
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by-name query, then make it a model pattern to perform a model-based query.  They 

modify the model pattern to emphasize the peak at day 3 and then adjust the 

similarity thresholds to get the search result that mostly overlaps with the relevant day 

3 cluster (Figure 3.12 & Figure 3.13).  Finally, they confirm through other biological 

experiments that 2 genes (Cdh15 and Stam) in the overlapped result set are novel 

downstream targets of MyoD. 

 

Figure 3.12 Run a search-by-name query with MyoD to find 5 genes whose names 

contain MyoD, and the 5 genes are projected onto the current clustering result 

visualization shown by triangles under the color mosaic.  Select a gene (myogenic 

differentiation 1) and make it a model pattern for next query. 
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Figure 3.13 Modify the model pattern to emphasize the peak at day 3 (notice the bold 

red line), and run a model-based query to find a small set of candidate genes.  The 

updated search result will be highlighted in the dendrogram view and other views. 

3.5 Interaction with Tabular and Hierarchy Views 

Interactive visualization techniques combined with cluster analysis help researchers 

discover meaningful groups in their data sets.  A direct-manipulation search 

coordinated with clustering result visualization facilitates insight into the clustering 

result and data set.  Further improvement is possible if there is another well-

understood and meaningful knowledge structure for the same data set.  For example, 

when marketers perform a cluster analysis on the customer transaction data, they 

discover customer groups based on purchasing patterns.  If they have another 

knowledge structure on the data such as customer preferences or demographic 

information, they can acquire more insight into the clustering results by projecting the 

additional information onto the clustering results.   In this market analysis example, if 

a geographic hierarchy of states, counties, and cities were available, it might be 

possible to discover that purchasers of expensive toys reside in large southern cities.  

They are likely to be older grandparents in retirement communities.   
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This section explains two interactive components in HCE (the tabular view and 

the gene ontology view) as means to coordinate clustering results with external 

domain knowledge.  This section continues with the genomic data case study. 

3.5.1 Tabular View 

In recent decades, biological knowledge has been accumulated in public genomic 

databases (GenBank, LocusLink, FlyBase, MGI, and so on) and it will increase 

rapidly in the future [9].  These databases are useful sources of external domain 

knowledge with which biologists gain insights into their data sets and clustering 

results.  Biologists frequently utilize those databases to obtain information about 

genomic instances that they are interested in.  However, those databases are so 

diverse that researchers have difficulties in identifying relevant information from the 

databases and combining them. 

HCE 3.0 implements a tabular view (Figure 3.14) as a hub of database 

annotations where users can see annotations extracted from those databases for items 

in the data set.  Each row represents an item and each column represents an 

annotation from an external knowledge source.  Users can specify a URL for each 

column to link a web database so that they can look up the database for a cell on the 

column.  The tabular view is coordinated with other views such as the dendrogram, 

hierarchy, scatterplot, and histogram views.  If users select a group of items in other 

views, rows of the selected items are highlighted in the tabular view.  By looking at 
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the annotations for the selected items in the table view and looking them up in the 

corresponding databases, users can gain more insights into the items from the domain 

knowledge in the databases.  Conversely, if users select a bunch of rows in the tabular 

view, the selected items are also highlighted in other views.  For example, after 

sorting by a column and selecting rows with the same value on the column, users can 

easily verify how closely those items group together in the dendrogram view. 

Researchers can do annotation either by using one or more of the public genomic 

databases or by using annotation files provided by gene chip makers.  For example, 

Affymetrix provides annotation files for all their GeneChips, and users can easily 

import an annotation file and combine it with the data set. 
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Figure 3.14 Tabular view: Each row has annotations for a gene.  Each column 

represents an annotation from an external database.  All of 12422 genes are in the 

tabular view, and there are 28 annotation columns.  When users select a cluster of 113 

genes in the dendrogram view, the annotation information for those genes is 

highlighted in the tabular view.  The Affymetrix U74Av2 chip annotation file 

downloaded from www.affymetrix.com was imported and combined with the data set.  

The data set shown is a temporal gene expression profile on mouse muscle 

regeneration [91]. 
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If web databases are available for the data set, users can specify a URL template 

for each column to link the column to a web database so that they can look it up for a 

cell on the column.  If users right-click on a column header, an input dialog box 

(Figure 3.15) pops up, where they can enter a URL template for the column.  “%s” is 

used to indicate the place where the search term is replaced.  A right-click on a cell 

and then selection of a value in the cell will open up the corresponding web database 

on the default web browser.  User can get additional information about the value on 

the web browser. 

  

Figure 3.15 Input dialog box to enter a URL template 

3.5.2 Hierarchy View: Gene Ontology Browser 

One of the major reasons that biologists cannot efficiently utilize the abundant 

knowledge in public genomic databases is the lack of a shared controlled vocabulary.  

The Gene Ontology (GO) project [32] is a collaborative effort to build consistent 

descriptions of gene products in different databases.  The GO collaborators have been 

developing three ontologies - structured, controlled vocabularies with which gene 

products are described in terms of their associated biological processes, molecular 

functions, and cellular components in a species-independent manner. 
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The good news is that Gene Ontology (GO) annotation is a widely accepted, 

well-understood and meaningful knowledge structure for gene expression data.  GO 

annotations of genes in a cluster or a direct manipulation search result might reveal a 

clue as to why the genes are grouped together.  With the GO annotation, researchers 

can easily recognize the biological process, molecular function, and cellular 

component that genes in a cluster are associated with.  Furthermore, it is possible to 

test a hypothesis that an unknown gene might have biological roles that are the same 

as or similar to those of the known genes in the same cluster.  Interactive coordination 

with the GO annotation enables researchers to upgrade their insights by combining 

generally accepted knowledge from other researchers.   

The bad news is that GO annotation is stored in a large DAG (directed acyclic 

graph) which makes it difficult to examine the annotation and to further integrate with 

other data sets such as microarray experiment data.  There are many tools listed at 

www.geneontology.org such as MAPPFinder [21], and GoMiner [90] that integrate 

microarray experiment data with GO annotation.  In those tools, users can input a 

criterion for a significant gene-expression change or a list of interesting genes, and 

then relevant GO terms are identified and shown in a tree structure or a DAG display.  

HCE 3.0 integrates the three ontologies – molecular function, biological process, and 

cellular component into the process of understanding clusters and patterns in gene 

expression profile data.  The ontologies are shown in a hierarchical structure as in 

Figure 3.16. 
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Figure 3.16 HCE 3.0 with gene ontology browser on:  Users can select a cluster in the 

dendrogram view (at the top left corner), which is highlighted with a rectangle.  113 

genes in the selected cluster are shown in the gene list control at the bottom right 

corner.  All paths to the selected GO terms (associated with ‘myogenin’) are shown 

with a flag-shape icon in the ontology tree control at the bottom left corner.  The data 

set shown is in vivo murine muscle regeneration expression profiling data using 

Affymetrix U74Av2 (12,488 probe sets) chips measured in 27 time points. 

The gene ontology hierarchy is a DAG, but I use a tree structure to show the 

hierarchy since tree structures are easier for users to understand and easier for 

developers to implement than DAGs.  Thus, a gene ontology term may appear several 

times in different branches, but the path from the root to a node is unique.  
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Coordination between the gene ontology browser and other views in HCE 3.0 is bi-

directional. 

 

Figure 3.17 Interaction in the gene ontology browser 

Figure 3.17 shows an example of interaction at the gene ontology browser.  Gene 

list control is populated with the selected genes and their GO information.  All GO 

terms and IDs associated with a gene will be shown below the gene name with 

indentation.  Users can select one gene ontology from the three ontologies (molecular 

function, biological process, and cellular component) using the combo box above the 

list control.  The number of the selected genes and the number of their associated GO 

terms are also shown right next to the combo box. 

All paths to the GO IDs selected in the gene list control are shown in the 

ontology tree control.  The selected GO IDs are highlighted in orange and with a red 

flag icon.  ‘I’ represents ‘IS-A’ relationship and ‘P’ represents ‘PART-OF’ 

relationship.  Each node has a number within parentheses, which represents the 

number of genes that have the GO ID of the node or any descendants of the node 

(Figure 3.17).  When users click the “Load Ontology” button to look at the whole 
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gene ontology hierarchy, the number within parentheses represents the number of 

genes in the whole data set.  When users click the button, either “<-ALL” or “<-

Selected” to look at the selected part of hierarchy that is only for genes in the gene list 

control, the number within parenthesis represents the number of genes among the 

selected genes. 

Users can also search the current gene ontology either by a GO term (e.g., ‘cell 

cycle’) or by a GO ID (e.g., ‘GO:0007049’).  A right click on a GO node in the 

ontology tree control will highlight all genes associated with the node or its 

descendents in all other views. 

Users can download the latest gene ontology from the ftp server at Gene 

Ontology Consortium by clicking the “Get Latest Ontology” button.   Users can also 

load and combine an Affymetrix GeneChip Annotation file (“Annotation” button) if 

the data set is an Affymetrix microarray data set.  When users click the “<- All” 

button, all GO IDs in the gene ontology control in the Gene List Control are 

highlighted with orange color in the ontology tree control, where the node to which 

most GO IDs are mapped are highlighted in purple with a special icon like 

.  

3.6 Summary and Discussion 

The interactive exploration using dynamic query controls such as the minimum 

similarity bar and the detail cutoff bar enhanced users’ understanding of hierarchical 
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clustering results.  A variety of software packages also offers the hierarchical 

clustering.  Almost all of them just implement the algorithm and produce static 

displays of dendrograms, which include Cluster and TreeView [23], Mathematica 

[88], MATLAB [82], SAS [71], R [66], and GeneSpring [77].  Spotfire DecisionSite 

allows more interactions on the dendrogram than those static implementations do.  

Some of them offer more choices of linkage methods and distance measures than 

HCE does.  There are also web-based tools that offers the hierarchical clustering 

results, which include Expression Profiler [25], and NCBI GEO [8].  While a more 

limited number of clustering parameters are available in those web-based tools, web 

interfaces are certainly accessible to more people since there is no need to install any 

software.  A promising future direction could be to deploy interactive visualization 

tools such as HCE via the web.  There might be unique requirements for web-based 

interactive visualization tools.  

An issue that was not addressed in this dissertation on hierarchical clustering is 

the way dendrogram nodes are arranged in a dendrogram.  If there are n items, 2n-1 

linear orderings for a hierarchical clustering result are possible.  A different ordering 

could sometimes generate a significantly different visualization of a hierarchical 

clustering result.  HCE implements two heuristic methods for dendrogram nodes 

arrangement, and there are also other interesting ways to do that by using 

optimization techniques [7, 11] or a low-dimensional embedding [50]. 
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The tabular view and the hierarchy view enabled users to combine external 

knowledge with the clustering result so that further insights can be offered.  The 

profile search view equipped with direct manipulation search methods complemented 

the clustering result visualization in such a way that users’ domain knowledge was 

superimposed on the dendrogram view.  Coordination between clustering results and 

external domain knowledge, such as the Gene Ontology, is also being added to 

commercial software tools, such as Spotfire DecisionSite [79] and CoMotion [60].  I 

expanded on this important idea by allowing rapid multiple selections in secondary 

databases through tabular and hierarchical views.  More general data formats to 

represent external domain knowledge and more meaningful ways to evaluate and 

highlight an important subset of knowledge are necessary to yield deeper insights into 

underlying data sets. 
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Chapter 4  

Rank-by-Feature Framework 

Cluster analysis is the most widely used descriptive modeling technique - building a 

model to describe how the data is organized.  HCE enables interactive descriptive 

modeling by allowing interactive controls over the clustering results.  The hierarchy 

shown in the dendrogram and the linear presentation in the color mosaic help users 

reveal clusters that represent important patterns.  However, they can hide some 

aspects of the high dimensional nature (typically 4-100 dimensions) of the data.   

High-dimensional displays such as parallel coordinates [42, 43] and other novel 

techniques [46] could be useful but many users have difficulty comprehending these 

visualizations.  Even three-dimensional displays can be problematic because of the 

disorientation brought on by the cognitive burden of navigation [15, 17].  Two-

dimensional scatterplots are limited to two variables at a time for the x and y axes, but 

they are readily understood by most users.  Furthermore, without the distraction of 

operating the navigation controls, users can concentrate on the data.   

However, since one two-dimensional scatterplot cannot reveal the high 

dimensional aspect of a multidimensional data set, it is inevitable to examine a series 

of scatterplots.  This raises a problem of how to examine all those scatterplots 

efficiently.  Users can just wander around a bunch of scatterplots randomly find some 

interesting ones, but usually it is not the case especially when they are exploring a 
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high dimensional space.  In these cases, even the number of possible one-dimensional 

histograms is too big to traverse one by one.  Low dimensional projections such as 

scatterplots and histograms have been used in several research tools to investigate 

multidimensional data sets.  However, current systems often are a patchwork of 

graphical and statistical methods leaving many researchers uncertain about how to 

explore their data in an orderly manner.   

In this chapter, I address this problem and present the major contribution of this 

dissertation, a systematic framework - rank-by-feature framework that enables users 

to explore multidimensional data in an orderly manner using 1D and 2D projections.  

I generalize the ideas behind the rank-by-feature framework and present general 

principles for exploratory multidimensional data analysis. 

4.1 Three Categories of Two-Dimensional Presentations 

 I distinguished the three categories of two-dimensional presentations by the way axes 

are composed in Chapter 2: (1) Non axis-parallel projection methods, (2) Axis-

parallel projection methods, and (3) Novel methods use axes that are not directly 

derived from any combination of dimensions.   

Although presentations in category (1), non-axis-parallel, can show all possible 

2D projections of a multidimensional data set, they suffer from users’ difficulty in 

interpreting 2D projections whose axes are linear/nonlinear combination of two or 

more dimensions.  For example, even though users may find a strong linear 
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correlation on a projection where the horizontal axis is 3.7*body weight - 2.3*height 

and the vertical axis is waist size + 2.6*chest size, the finding is not so useful because 

it is difficult to understand the meaning of such projections. 

Techniques in category (2), axis-parallel, have a limitation that features can be 

detected in only the two selected dimensions.  However, since it is familiar and 

comprehensible for users to interpret the meaning of the projection, these projections 

have been widely used and implemented in visualization tools.  A problem with these 

category (2) presentations is how to deal with the large number of possible low-

dimensional projections.  If we have an m-dimensional data set, we can generate 

m*(m-1)/2 2D projections using the category (2) techniques.  I believe that my work 

offers an attractive solution to coping with the large numbers of low-dimensional 

projections and that it provides practical assistance in finding features in 

multidimensional data.   

Techniques in category (3) remain important, because many relationships and 

features are visible and meaningful only in higher dimensional presentations.  Our 

principles could be applied to support these techniques as well, but that subject is 

beyond this dissertation’s scope. 

There have been many commercial packages and research projects that utilize 

low-dimensional projections for exploratory data analysis, including spreadsheets, 

statistical packages, and information visualization tools.  However, users have to 

develop their own strategies to discover interesting projections and to display them.  I 
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believe that existing packages and projects, especially information visualization tools 

for exploratory data analysis, can be improved by enabling users to systematically 

examine low-dimensional projections. 

4.2 Overview and Implementation in HCE 

This dissertation presents a conceptual framework for interactive feature detection 

named rank-by-feature framework to address these issues.  In the rank-by-feature 

framework (the rank-by-feature interface for 2D scatterplots is shown at the bottom 

half of Figure 4.1), users can select an interesting ranking criterion, and then all 

possible axis-parallel projections of a multidimensional data set are ranked by the 

selected ranking criterion.  Available ranking criteria are explained in section 4.4.2 

and 4.5.2.  The ranking result is visually presented in a color-coded grid (“score 

overview”), as well as a tabular display (“ordered list”) where each row represents a 

projection and is color-coded by the ranking score.  With these presentations users 

can easily perceive the most interesting projections, and also grasp the overall ranking 

score distribution.  Users can manually browse projections by rapidly changing the 

dimension for an axis using the item slider attached to the corresponding axis of the 

projection view (histogram and boxplot for 1D, and scatterplot for 2D). 

For example, let’s assume that users analyze the US counties data set with 17 

demographical and economical statistics available for each county.  The data set can 

be thought of as a 17 dimensional data set.  Users can choose “Pearson correlation 
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coefficient” as a ranking criterion at the rank-by-feature framework if they are 

interested in linear relationships between dimensions.  Then, the rank-by-feature 

framework calculates “scores” (in this case, Pearson correlation coefficient) for all 

possible pairs of dimensions, and ranks all pairs according to there scores.  Users 

could easily identify that there is a negative correlation between poverty level and 

percentage of high school graduates after they skim through the score overview (a 

color-coded grid display at the lower left corner of Figure 4.1), where each cell 

represents the scatterplot for a pair of dimensions and it is color-coded by the score 

value for the scatterplot.  All possible pairs are also shown in the ordered list (a list 

control right next to the score overview at Figure 4.1) together with the numerical 

score values in a column.  The scatterplot is shown at the lower right corner of Figure 

4.1.  More details on the rank-by-feature framework are explained in this chapter.  

More details on application examples of the rank-by-feature framework with the US 

counties data set and a microarray data set are explained in Chapter 5. 
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Figure 4.1 The Hierarchical Clustering Explorer (HCE) with a US counties statistics 

data set.   

The rank-by-feature framework was implemented in our interactive exploration 

tool for multidimensional data, the Hierarchical Clustering Explorer (HCE) [74] 

(Figure 4.1) as two new tab windows (“Histogram Ordering” for 1D projections, and 

“Scatterplot Ordering” for 2D projections).  The interactively coordinated displays in 

HCE 3.0 include: dendrogram view, histogram views, scatterplot views, details view 

at the top, and 7 tabs (Color Mosaic, Table View, Histogram Ordering, Scatterplot 

Ordering, Profile Search, Gene Ontology, and K-means) at the bottom (Scatterplot 

Ordering tab is selected in the Figure 4.1) as shown in Figure 4.1.  The dendrogram 

view at the top left corner visualizes the hierarchical clustering result of a US counties 

statistics data set enabling users to interactively explore the clustering result.  Among 
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the seven tabs, Histogram Ordering and Scatterplot Ordering implement the rank-by-

feature framework interface for 1D and 2D respectively.  In Figure 4.1, two 

histograms and two scatterplots are selected through the rank-by-feature interfaces 

and are shown as separate child windows to the right of the dendrogram view.  Four 

selected US counties are listed in the top half of the details view and the statistics for 

one of the counties are shown at the bottom half.  A 2D scatterplot ordering result 

using “Pearson correlation coefficient” as the ranking criterion is shown in the 

Scatterplot Ordering tab.  Four counties that are poor and have a medium number of 

high school graduates are selected in the scatterplot browser and they are all 

highlighted in other views with triangles.  By using the rank-by-feature framework, 

users can easily find interesting histograms and scatterplots, and generate separate 

windows to visualize those plots.  All these plots are interactively coordinated with 

other views (e.g. dendrogram and color mosaic views, tabular view, parallel 

coordinate view) in HCE 3.0.  If users select a group of items in any view, they can 

see the selected items highlighted in all other views.  Thus, it is possible to 

comprehend the data from various perspectives to get more meaningful insights. 

4.3 GRID Principles 

A playful analogy may help clarify our goals [75].  Imagine you are dropped by 

parachute into an unfamiliar place – it could be a forest, prairie, or mountainous area.  

You could set out in a random direction to see what is nearby and then decide where 

to turn next.  Or you might go towards peaks or valleys.  You might notice interesting 
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rocks, turbulent streams, scented flowers, tall trees, attractive ferns, colorful birds, 

graceful impalas, and so on.  Wandering around might be greatly satisfying if you had 

no specific goals, but if you needed to survey the land to find your way to safety, 

catalog the plants to locate candidate pharmaceuticals, or develop a wildlife 

management strategy, you would need to be more systematic.  Of course, each 

profession that deals with the multi-faceted richness of natural landscapes has 

developed orderly strategies to guide novices, to ensure thorough analyses, to 

promote comprehensive and consistent reporting, and to facilitate cooperation among 

professionals.   

Our principles for exploratory analysis of multidimensional data sets have similar 

goals.  Instead of wandering, analysts should clarify their goals and use appropriate 

techniques to ensure a comprehensive analysis.  A good starting point is the set of 

principles put forth by Moore and McCabe, who recommended that statistical tools 

should (1) enable users to examine each dimension first and then explore 

relationships among dimensions, and (2) offer graphical displays first and then 

provide numerical summaries [62].  I extend Moore and McCabe’s principles to 

include ranking the projections to guide discovery of desired features, and realize this 

idea with overviews to see the range of possibilities and coordination to see multiple 

presentations.  An orderly process of exploration is vital, even though there will 

inevitably be excursions, iterations, and shifts of attention from details to overviews 

and back.   
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The rank-by-feature framework is especially potent for interactive feature 

detection in multidimensional data.  To promote comprehensibility, I concentrate on 

axis-parallel projections; however, the rank-by-feature framework can be used with 

general geometric projections.  Although 3D projections are sometimes useful to 

reveal hidden features, they suffer from occlusion and the disorientation brought on 

by the cognitive burden of navigation.  On the other hand, 2D projections are widely 

understood by users, allowing them to concentrate on the data itself rather than being 

distracted by navigation controls. 

Detecting interesting features in low dimensions (1D or 2D) by utilizing 

powerful human perceptual abilities is crucial to understand the original 

multidimensional data set.  Familiar graphical displays such as histograms, 

scatterplots, and other well-known 2D plots are effective to reveal features including 

basic summary statistics, and even unexpected features in the data set.  There are also 

many algorithmic or statistical techniques that are especially effective in low-

dimensional spaces.  While there have been many approaches utilizing such visual 

displays and low-dimensional techniques, most of them lack a systematic framework 

that organizes such functionalities to help analysts in their feature detection tasks. 

Our Graphics, Ranking, and Interaction for Discovery (GRID) principles are 

designed to enable users to better understand distributions in one (1D) or two 

dimensions (2D), and then discover relationships, clusters, gaps, outliers, and other 

features.  Users work by viewing graphical presentations (histograms, boxplots, and 
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scatterplots), and then choose a feature detection criterion to rank 1D or 2D axis-

parallel projections.  By combining information visualization techniques (overview, 

coordination, and dynamic query) with ranking, summaries and statistical methods 

users can systematically examine the most important 1D and 2D axis-parallel 

projections.  GRID principles are summarized as:  

(1) study 1D, study 2D, then find features  

(2) ranking guides insight, statistics confirm. 

 Abiding by these principles, the rank-by-feature framework has an interface for 

1D projections and a separate one for 2D projections.  Users can begin their 

exploration with the main graphical display - histograms for 1D and scatterplots for 

2D - and they can also study numerical summaries for more details. 

The rank-by-feature framework helps users systematically examine low-

dimensional (1D or 2D) projections to maximize the benefit of exploratory tools.  In 

this framework, users can select an interesting ranking criterion.  Users can rank low-

dimensional projections (1D or 2D) of the multidimensional data set according to the 

strength of the selected feature in the projection.  When there are many dimensions, 

the number of possible projections is too large to investigate by looking for 

interesting features.  The rank-by-feature framework relieves users from such burdens 

by recommending projections to users in an ordered manner defined by a ranking 
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criterion that users selected.  This framework has been implemented in our interactive 

visualization tool, HCE 3.0 (www.cs.umd.edu/hcil/hce/). 

4.4 1D Histogram Ordering 

Users begin the exploratory analysis of a multidimensional data set by scrutinizing 

each dimension (or variable) one by one.  Just looking at the distribution of values of 

a dimension gives them useful insight into the dimension.  The most familiar 

graphical display tools for 1D data are histograms and boxplots.  Histograms 

graphically reveal the scale and skewness of the data, the number of modes, gaps, and 

outliers in the data.  Boxplots are also excellent tools for understanding the 

distribution within a dimension.  They graphically show the five-number summary 

(the minimum, the first quartile, the median, the third quartile, and the maximum).  

These numbers provide users with an informative summary of a dimension’s center 

and spread, and they are the foundation of multidimensional data analysis for deriving 

a model for the data or for selecting dimensions for effective visualization.  

4.4.1 Graphical User Interface 

The main display for the rank-by-feature framework for 1D projections shows a 

combined histogram and boxplot (Figure 4.2).  The interface consists of four 

coordinated parts: control panel, score overview, ordered list, and histogram browser.  

Users can select a ranking criterion from a combo box in the control panel, and then 

they see the overview of scores for all dimensions in the score overview according to 
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the selected ranking criterion.  All dimensions are aligned from top to bottom in the 

original order, and each dimension is color-coded by the score value.  By default, 

cells of high value have bright blue green colors and cells of low value have bright 

brown colors.  The cell of middle value has the white color.  As a value gets closer to 

the middle value, the color intensity attenuates.  Users can change the colors for 

minimum, middle, and maximum values.  The color scale and mapping are shown at 

the top right corner of the overview (B).   

Users can easily see the overall pattern of the score distribution, and more 

importantly they can preattentively identify the dimension of the highest/lowest score 

in this overview.  Once they identify an interesting row on the score overview, they 

can just mouse over the row to view the numerical score value and the name of the 

dimension is shown in a tooltip window (Figure 4.2).  The mouseover event is also 

instantaneously relayed to the ordered list and the histogram browser, so that the 

corresponding list item is highlighted in the ordered list and the corresponding 

histogram and boxplot are shown in the histogram browser.  The score overview, the 

ordered list, and the histogram browser are interactively coordinated according to the 

change of the dimension in focus.  In other words, a change of dimension in focus in 

one of the three components leads to the instantaneous change of dimension in focus 

in the other two components.  
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Figure 4.2 Rank-by-feature framework interface for histograms (1D).  All 1D 

histograms are ordered according to the current ranking criterion (A) in the ordered 

list (C).  The score overview (B) shows an overview of scores of all histograms.  A 

mouseover event activates a cell in the score overview, highlights the corresponding 

item in the ordered list (C) and shows the corresponding histogram in the histogram 

browser (D) simultaneously.  A click on a cell at the score overview selects the cell 

and the selection is fixed until another click event occurs in the score overview or 

another selection event occurs in other views.  A selected histogram is shown in the 

histogram browser (D), where users can easily traverse histogram space by changing 

the dimension for the histogram using an item slider.  A boxplot is also displayed 

above the histogram to show the graphical summary of the distribution of the 

dimension.  (Data shown is from a gene expression data set from a melanoma study 

(3614 genes x 38 samples)). 

In the ordered list, users can see the numerical detail about the distribution of 

each dimension in an orderly manner.  The numerical detail includes the five-number 

summary of each dimension and the mean and the standard deviation.  The numerical 
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score values are also shown at the third column whose background is color-coded 

using the same color-mapping as in the score overview.   

While numerical summaries of distributions are very useful, sometimes they are 

misleading.  For example, when there are two peaks in a distribution, neither the 

median nor the mean explains the center of the distribution.  This is one of the cases 

for which a graphical representation of a distribution (e.g., a histogram) works better.  

In the histogram browser, users can see the visual representation of the distribution of 

a dimension at a time.  A boxplot is a good graphical representation of the five-

number summary, which together with a histogram provides an informative visual 

description of a dimension’s distribution.  It is possible to interactively change the 

dimension in focus just by dragging the item slider attached to the bottom of the 

histogram. 

4.4.2 Ordering Criteria 

Since different users may be interested in different features in the data sets, it is 

desirable to allow users to customize the available set of ranking criteria.  However, I 

have chosen the following ranking criteria that I think fundamental and common for 

histograms as a starting point, and I have implemented them in HCE 3.0: 

(1) Normality of the distribution (0 to inf): 
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Many statistical analysis methods such as t-test, ANOVA are based on the 

assumption that the data set is sampled from a Gaussian normal distribution.  

Therefore, it is useful to know the normality of the data set.  Since a distribution can 

be nonnormal due to many different reasons, there are at least ten statistical tests for 

normality including the Shapiro-Wilk and Kolmogorov-Smirnov tests.  The omnibus 

moments test for normality was used in the current implementation.  The test returns 

two values, skewness (s) and kurtosis (k).  Since s is 0 and k is 3 for a standard 

normal distribution, |s|+|k-3| is calculated to measure how the distribution deviates 

from the normal distribution and rank variables according to the measure.  Users can 

confirm the ranking result using the histogram browser to gain an understanding of 

how the distribution shape deviates from the familiar bell-shaped normal curve. 

(2) Uniformity of the distribution (0 to number of bins): 

For the uniformity test, an information-based measure called entropy was used.  

Given k bins in a histogram, the entropy of a histogram H is 
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=
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2log)( i is the probability that an item belongs to the i-

th bin.  High entropy means that values of the dimension are from a uniform 

distribution and the histogram for the dimension tends to be flat.  While knowing a 

distribution is uniform is helpful to understand the data set, it is sometimes more 

informative to know how far a distribution deviates from uniform distribution since a 

biased distribution sometimes reveals interesting outliers. 
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(3) The number of potential outliers (0 to n): 

To count outliers in a distribution, I used the 1.5*IQR (Interquartile range: the 

difference between the first quartile (Q1) and the third quartile (Q3)) criterion that is 

the basis of a rule of thumb in statistics for identifying suspected outliers [62].  An 

item of value d is considered as a suspected (mild) outlier if d > (Q3+1.5*IQR) or d < 

(Q1-1.5*IQR).  To get more restricted outliers (or extreme outliers), 3*IQR range can 

be used.  It is also possible to use an outlier detection algorithm developed in the data 

mining.  Outliers are one of the most important features not only as noisy signals to 

be filtered but also as a truly unusual response to a medical treatment worth further 

investigation or as an indicator of credit card fraud. 

(4) The number of unique values (0 to n): 

At the beginning of the data analysis, it is useful to know how many unique 

values are in the data.  Only small number of unique values in a large set may indicate 

problems in sampling or data collection or transcription.  Sometimes it may also 

indicate that the data is a categorical value or the data was quantized.  Special 

treatment may be necessary to deal with categorical or quantized variables. 

(5) Size of the biggest gap (0 to max range of dimensions): 

Gap is an important feature that can reveal separation of data items and modality 

of the distribution.  Let t be a tolerance value, n be the number of bins, and fmax be the 

maximum frequency.  I define a gap as a set of contiguous bins {bk} where bk (k=0 to 
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n) has less than t* fmax items.  The procedure sequentially visits each bin and merges 

the satisfying bins to form a bigger set of such bins.  It is a simple and fast procedure.  

Among all gaps in the data, histograms are ranked by the biggest gap size in each 

histogram.  Since equal-sized bins are used, the biggest gap contains the most bins 

satisfying the tolerance value t.    

For some of the ranking criteria for histogram ordering such as normality, there 

are many available statistical tests to choose from.  I envision that many researchers 

could contribute statistical tests that could be easily incorporated into the rank-by-

feature framework as plug-ins.  For example, since outlier detection is a rich research 

area, novel statistical tests or new data mining algorithms are likely to be proposed in 

the coming years, and they could be made available as plug-ins. 

4.5 2D Scatterplot Ordering 

According to our fundamental principles for improving exploration of 

multidimensional data, after scrutinizing 1D projections, it is natural to move on to 

2D projections where pair-wise relationships will be identified.  Relationships 

between two dimensions (or variables) are conveniently visualized in a scatterplot.  

The values of one dimension are aligned on the horizontal axis, and the values of the 

other dimension are aligned on the vertical axis.  Each data item in the data set is 

shown as a point in the scatterplot whose position is determined by the values at the 

two dimensions.  A scatterplot graphically reveals the form (e.g., linear or curved), 
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direction (e.g., positive or negative), and strength (e.g., weak or strong) of 

relationships between two dimensions.  It is also easy to identify outlying items in a 

scatterplot, but it can suffer from overplotting in which many items are densely 

packed in one area making it difficult to gauge the density. 

 

Figure 4.3 Rank-by-feature framework interface for scatterplots (2D).  All 2D 

scatterplots are ordered according to the current ordering criterion (A) in the ordered 

list (C).  Users can select multiple scatterplots at the same time and generate separate 

scatterplot windows to compare them in a screen.  The score overview (B) shows an 

overview of scores of all scatterplots.  A mouseover event activates a cell in the score 

overview, highlights the corresponding item in the ordered list (C) and shows the 

corresponding scatterplot in the scatterplot browser (D) simultaneously.  A click on a 

cell at the score overview selects the cell and the selection is fixed until another click 

event occurs in the score overview or another selection event occurs in other views.  

A selected scatterplot is shown in the scatterplot browser (D), where it is also easy to 

traverse scatterplot space by changing X or Y axis using item sliders on the horizontal 

or vertical axis.  (The data set shown is a demographic and health related statistics for 

3138 U.S. counties with 17 attributes.) 
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4.5.1 Graphical User Interface 

Scatterplots are used as the main display for the rank-by-feature framework interface 

for 2D projections.  Figure 4.3 shows the interactive interface design for the rank-by-

feature framework for 2D projections.  Analogous to the interface for 1D projections, 

the interface consists of four coordinated components: control panel, score overview, 

ordered list, and scatterplot browser.  Users select an ordering criterion in the control 

panel on the left, and then they see the complete ordering of all possible 2D 

projections according to the selected ordering criterion (Figure 4.3A).  The ordered 

list shows the result of ordering sorted by the ranking (or scores) with scores color-

coded on the background.  Users can click on any column header to sort the list by the 

column.  Users can easily find scatterplots of the highest/lowest score by changing the 

sort order to ascending or descending order of score (or rank).  It is also easy to 

examine the scores of all scatterplots with a certain variable for horizontal or vertical 

axis after sorting the list according to X or Y column by clicking the corresponding 

column header.  

Users cannot, however, see the overview of entire relationships between 

variables at a glance in the ordered list.  Overviews are important because they can 

show the whole distribution and reveal interesting parts of data.  I have implemented 

a new version of the score overview for 2D projections.  It is an m-by-m grid view 

where all dimensions are aligned in the rows and columns.  Each cell of the score 

overview represents a scatterplot whose horizontal and vertical axes are dimensions at 
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the corresponding column and row respectively.  Since this table is symmetric, I used 

only the lower-triangular part for showing scores and the diagonal cells for showing 

the dimension names as shown in Figure 4.3B.  Each cell is color-coded by its score 

value using the same mapping scheme as in 1D ordering.  As users move the mouse 

over a cell, the scatterplot corresponding to the cell is shown in the scatterplot 

browser simultaneously, and the corresponding item is highlighted in the ordered list 

(Figure 4.3C).  The score overview, ordered list, and scatterplot browser are 

interactively coordinated according to the change of the dimension in focus as in the 

1D interface. 

In the score overview, users can preattentively detect the highest/lowest scored 

combinations of dimensions thanks to the linear color-coding scheme and the 

intuitive grid display.  Sometimes, users can also easily find a dimension that is the 

least or most correlated to most of other dimensions by just locating a whole row or 

column where all cells are the mostly bright brown or bright blue green.  It is also 

possible to find an outlying scatterplot whose cell has distinctive color intensity 

compared to the rest of the same row or column.  After locating an interesting cell, 

users can click on the cell to select, and then they can scrutinize it on the scatterplot 

browser and on other tightly coordinated views in HCE 3.0. 

While the ordered list shows the numerical score values of relationships between 

two dimensions, the interactive scatterplot browser best displays the relationship 

graphically.  In the scatterplot browser, users can quickly take a look at scatterplots 
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by using item sliders attached to the scatterplot view.  Simply by dragging the vertical 

or horizontal item slider bar, users can change the dimension for the horizontal or 

vertical axis.  With the current version implemented in HCE 3.0, users can investigate 

multiple scatterplots at the same time.  They can select several scatterplots in the 

ordered list by clicking on them with the control key pressed.  Then, click “Make 

Views” button on the top of the ordered list, and each selected scatterplot is shown in 

a separate child window.  Users can select a group of items by dragging a rubber 

rectangle over a scatterplot, and the items within the rubber rectangle are highlighted 

in all other views.  On some scatterplots they might gather tightly together, while on 

other scatterplots they scatter around. 

4.5.2 Ordering Criteria 

Again interesting ranking criteria might be different from user to user, or from 

application to application.  I have chosen the following six ranking criteria that I think 

are fundamental and common for scatterplots, and I have implemented them in HCE.  

The first three criteria are useful to reveal statistical (linear or quadratic) relationships 

between two dimensions (or variables), and the next three are useful to find 

scatterplots of interesting distributions.  

(1) Correlation coefficient (-1 to 1):  

For the first criterion, I use Pearson's correlation coefficient (r) for a scatterplot 

(S) with n points defined as 
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Pearson’s r is a number between -1 and 1.  The sign tells us direction of the 

relationship and the magnitude tells us the strength of the linear relationship.  The 

magnitude of r increases as the points lie closer to the straight line.  Linear 

relationships are particularly important because straight line patterns are common and 

simple to understand.  Even though a strong correlation between two variables does 

not always mean that one variable causes the other, it can provide a good clue to a 

true cause, which could be another variable.  Moreover, dimensionality can be 

reduced by combining two strongly correlated dimensions, and visualization can be 

improved by juxtaposing correlated dimensions.  As a visual representation of the 

linear relationship between two variables, the line of best fit or the regression line is 

drawn over scatterplots. 

(2) Least square error for curvilinear regression (0 to 1) 

This criterion is to sort scatterplots in terms of least-square errors from the 

optimal quadratic curve fit so that users can easily isolate ones where all points are 

closely/loosely arranged along a quadratic curve.  Users are often interested to find 

nonlinear relationships in the data set in addition to linear relationships.  For example, 

economists might expect that there is a negative linear relationship between county 

income and poverty, which is easily confirmed by correlation ranking.  However, 
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they might be intrigued to discover that there is a quadratic relationship between the 

two, which can be easily revealed using this criterion. 

(3) Quadracity (0 to inf) 

If two variables show a strong linear relationship, they also produce small error 

for curvilinear regression because the linear relationship is a special case of the 

quadratic relationship, where the coefficient of the highest degree term (x2) is zero.  

To emphasize the real quadratic relationships, I add “Quadracity” criterion.  It ranks 

scatterplots according to the coefficient of the highest degree term, so that users can 

easily identify ones that are more quadratic than others.  Of course, the least square 

error criterion should be considered to find more meaningful quadratic relationships, 

but users can easily see the error by viewing the fitting curve and points at the 

scatterplot browser. 

(4) The number of potential outliers (0 to n) 

Even though there is a simple statistical rule of thumb for identifying suspected 

outliers in 1D, there is no simple counterpart for 2D cases.  Instead, there are many 

outlier detection algorithms developed by data mining and database researchers.  

Among them, distance-based outlier detection methods such as DB-out [48] define an 

object as an outlier if at least a fraction p of the objects in the data set are apart from 

the object more than at a distance greater than a threshold value.  Density-based 

outlier detection methods such as LOF-based method [12] define an object as an 
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outlier if the relative density in the local neighborhood of the object is less than a 

threshold, in other words the local outlier factor (LOF) of the object is greater than a 

threshold.  Since the LOF-based method is more flexible and dynamic in terms of the 

outlier definition and detection, I included the LOF-based method in the current 

implementation. 

(5) The number of items in the region of interest (0 to n) 

This criterion is the most interactive since it requires users to specify a 

(rectangular, elliptical, or free-formed) region of interest by dragging the mouse with 

the left button depressed on the scatterplot browser.  Then the algorithm uses the 

number of items in the region to order all scatterplots so that users can easily find 

ones with largest/smallest number of items in the given 2D region.  An interesting 

application of this ranking criterion is when users specify an upper left or lower right 

corner of the scatterplot.  Users can easily identify scatterplots where most/least items 

have low value for one variable (e.g. salary of a baseball player) and high value for 

the other variable (e.g. the batting average).  In this way, users can use this ranking 

criterion to learn properties of associations between variables.  

(6) Uniformity of scatterplots (0 to number of cells) 

For this criterion, I calculate the entropy in the same way as I did for histograms, 

but this time I divide the two-dimensional space into regular grid cells and then use 
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each cell as a bin.  For example, if I have generated k-by-k grid, the entropy of a 

scatterplot S is 
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2log)( , where pij is the probability that an item belongs 

to the cell at (i, j) of the grid. 

Since the more scattered a scatterplot is the greater the entropy is, scatterplots of 

high entropy are ranked high according to this ranking criteria.  

4.6 Transformations and Potential Ranking Criteria 

Users sometimes want to transform the variable to get a better result.  For example, 

log transformations convert exponential relationships to linear relationships, 

straighten skewed distributions, and reduce the variance.  If variables have differing 

ranges, then comparisons must be done carefully to prevent misleading results, e.g. a 

gap in a variable whose range is 0~1000 is not usually comparable to a gap in a 

variable whose range is 2~6.  Therefore transformations, such as standardization to 

common scales, are helpful to ensure that ranking results are useful.  In the current 

rank-by-feature framework, users can perform five transformations (natural log, 

standardization, normalization to the first column or to the median, and linear scaling 

to a certain range) over each column or row of the data set when loading the data set.  

Then when they use the rank-by-feature framework, the transformation results will 

apply to the transformed values.  An improvement to the rank-by-feature framework 
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would allow users to apply transformations during their analyses, not only at the data 

loading time.  More transformations, such as polynomial or sinusoidal functions, 

would also be useful. 

I have implemented only a small fraction of possible ranking criteria in the 

current implementation.  Among the many useful ranking criteria, I suggest three 

interesting and potent ones. 

4.6.1 Modality 

If a distribution is normal, there should be one peak in a histogram.  But sometimes 

there are several peaks.  In those cases, different analysis methods (such as sinusoidal 

fitting) should be applied to the variable, or the variable should be partitioned to 

separate each peak (bell-shaped curve).  In this sense, the modality is also an 

important feature.  One possible score for the detection of multi-modality could be the 

change of sign of the first derivative of the histogram curve.  If there is one peak, 

there should be no change at the sign of the first derivative.  If there are two peaks, 

the sign should change once. 

4.6.2 Outlierness 

The number of outliers can be one of the informative features that contribute to 

making a better sense of underlying data sets.  However, sometimes “outlierness,” the 

strength of the outliers in a projection is more informative feature than the number of 
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outliers.  The strongest outlier by itself can be a very important signal to users, and at 

the same time the axes of the projection where the outlier turns out to be a strong 

outlier can also be informative features because variables for those axes can give an 

explanation of the outlier’s strength.  One possible score for the outlierness could be 

the maximum value of the local outlier factor (LOF) on a projection. 

4.6.3 Gaps in 2D 

As we already saw in the 1D ordering cases, gaps are an informative feature in the 

data set.  Several researchers in other fields also have studied related problems such 

as the largest empty rectangle problem [16, 22] and the hole detection [56].  The 

largest empty rectangle problem is defined as follows: Given a 2D rectangular space 

and points inside it, find the largest axis-parallel subrectangle that lies within the 

rectangle and contains no points inside it.  The hole detection problem is to find 

informative empty regions in a multidimensional space.  The time complexity of the 

current implementations prevents exploratory data analysis.  A more rapid algorithm 

could use the grid-based approach that was effective in the uniformity criteria.  The 

projection plane can be divided into a relatively small number of grid cells (say 100 

by 100), so that it becomes easy to find the biggest gap, similar to the method used 

for ranking 1D histogram gaps. 
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4.7 Dealing with Categorical Data 

4.7.1 Ranking by Association 

Variables in multidimensional data sets are usually distinguished into two categories: 

categorical and quantitative.  Categorical variables are also called nominal variables. 

Their values are elements of a bounded discrete set.  For example, ‘type of songs’ is a 

categorical variable since all possible values can be drawn from an enumerated set, 

{rock, jazz, pop, hip-hop, R&B, classical, others}.  If the set has only two elements, 

those variables are called binary.  Quantitative variables can be further distinguished 

into ordinal and continuous, and there are more specific distinctions in the continuous 

variables.  Until the previous section, HCE only deals with quantitative variables.  

Categorical variables require different treatments.  If we can encode categorical 

values as integer values and treat them as quantitative values, for example, rock=1, 

jazz=2 and so on, then we can calculate for example Pearson correlation coefficient 

between a continuous variable and a categorical variable.  But the result is 

meaningless because Pearson correlation coefficient measure is applicable only to 

quantitative variables pairs.  

When we examine relationships between a pair of variables (categorical or 

quantitative), we have to consider more general relationships other than correlation 

coefficient.  Correlation coefficient is one of many possible associations between 

variables.  One of the most famous statistical methods to measure associations 

between two categorical variables is the chi-square statistic.  Any non-categorical 
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variables can be transformed to categorical variables by binning or quantizing the 

values.  Thus, it is now possible to measure associations between categorical and 

quantitative variables.  Since the term “association” means dependency in statistics, 

chi-square statistic is a measure of dependency between two variables. 

Let’s assume that we measure an association between two variables, x and y.  x 

has n bins (or categories) {xbi| i=1..n} and y has m bins (or categories) {ybj| j=1..m}.  

Then the chi-square statistic is calculated as follows: 
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i and ybj. 

Like other statistics, the chi-square statistic also returns a p-value which 

represents the significance of an association.  Smaller p-values mean greater 

significance.  While the chi-square statistic and p-value confirms that there is some 

association, the nature or the strength of association is not revealed by the test statistic.  

The nature of association can be identified by investigating visual displays or through 

other ranking criteria such as “number of items in ROI.”  There are several methods 

to evaluate the strength of associations.  Mutual information measure from 

information theory can be a good candidate, or other statistic like Cramer’s V and 

Contingency coefficient C can also be another good choice [65].  Score overview can 

be improved by visualizing more than one measure at the same time.  For example, 
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each cell is color-coded by the significance of association, and size-coded by the 

strength of association, or vice versa.    Figure 4.4 shows an improved score overview 

for ranking by association.  The strength of association is coded by color in (a), (b), 

and (c).  The existing score overview (a) is improved by introducing the significance 

measure for area coding.  

   
(a) color only: Contingency coefficient C 

(b) color : Contingency coefficient C  
      size : Chi-square p-value  

(c) color : Mutual information 
      size : Chi-square p-value 

Figure 4.4 Score overview revised for ranking by association (77 cereals data set). 

The bigger the rectangle is, the more significant the association is. 
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  According to Mackinlay [59], color saturation is more perceptually accurate to 

represent ordinal data types than area is.  Thus, the ranking measure (strength of 

association for Figure 4.4) is better coded by color saturation, and confidence 

measure (significance of association for Figure 4.4) is better coded by size.  Users can 

better identify more meaningful (or significant) and interesting scatterplots in (b) or 

(c) than in (a).  Many associations look strong in (a), but not all of them are 

statistically significant.  The significance information is not available in (a), but after 

size-coding the significance information, less significant associations get less 

attention due to the smaller size, so significant strong associations are more clearly 

recognized. 

Similar coding scheme can be applied to other ranking criteria.  For example, 

least square error measure can be incorporated as significance measure for the 

quadracity ranking criterion.  Figure 4.5 more clearly reveals interesting and 

important scatterplots than Figure 5.1 (c) and (d). 

88  



 

Figure 4.5 Revised score overview for quadracity ranking criterion 

4.7.2 Ranking by Cluster Similarity 

A row clustering result of a multidimensional data set can add a new categorical 

variable, or cluster labels (eg. cluster1, cluster 2, and so on).  The new variable can 

take part in the ranking by association to identify other variables that have strong 

dependence with the variable.  Sometimes researchers categorize not only rows (or 

items) but also columns (or variables).  For example, microarray projects usually 

include more than two different phenotypes of samples (e.g. types of cancers and 

patient categories), and each sample is represented as a column in a data set.  Then 

the phenotype information can be thought of as a category to stratify columns. The 

stratification partitions original data sets into two or more smaller data sets each of 

which has only a part of the columns with the same phenotype.  Then each partition 

can be fed into the clustering algorithm to generate separate clustering results.  By 
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comparing those clustering results, biologist might find an interesting group of genes 

that are similarly or differentially expressed in different groups of homogeneous 

samples.  Suppose two clustering results (CR1 and CR2) have been produced with 

two separate subsets of columns. A heuristic similarity measure is used to compare 

two clusters each of which is from CR1={CR1i|i=0..n} and CR2={CR2j|j=1..m}:  
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Other measures such as correlation between average patterns of two clusters or 

the F-measure discussed in section 3.3.5 can be another possible choice.  The rank-

by-feature framework can be easily extended to include these cluster similarity 

measures.  In this case, the score overview should change to show measures between 

clusters instead of those between variables.  The scatterplot browser should also 

change to display relationships between clusters instead of those between variables.  

Figure 4.6 shows the structure of two rank-by-feature user interface components for 

ranking by cluster similarity.  In the score overview (a), each row or column 

represents a cluster in a clustering result.  Each cell is color-coded by a cluster 

similarity measure like the equation (5.1).  Similar cluster pairs can be preattentively 

identified in this display.  In the scatterplot (b), each vertical or horizontal line 

represents an item in two clusters respectively.  An intersection point has a blue 
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square if the vertical item and the horizontal item are the same.  The fraction of 

vertical or horizontal lines with a blue dot visualizes the similarity between two 

clusters.  Linear alignment of blue dots on the scatterplot view tells us how similar the 

orders of items are in the two selected clusters.  
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Figure 4.6 Score overview and scatterplot display for cluster similarity ranking 

This new ranking criterion was applied to a biological data set on spinal cord 

injuries [20].  A group of biologists studied molecular mechanisms of spinal cord 

degeneration and repair. They analyzed spinal cord above thoracic vertebrae T9 at 

various time points up to 28 days post injury.  Mild, moderate and severe injury was 

examined.  In this section, I selected two categories of injury samples; 10 control 

samples and 12 severe injury samples, and I ran the hierarchical clustering algorithm 

with the two different sets of samples to generate two dendrograms in two separate 

tab windows.  Since the two dendrogram views are coordinated with each other and 

other views, users can click on a cluster in a dendrogram view and then the items in 
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the cluster are highlighted with orange triangles in all other views including the other 

dendrogram view (Figure 4.7).  Just by looking at where the orange triangles appear 

in the other dendrogram view, users can notice how items in a cluster are grouped in 

the other clustering result.   

 

Figure 4.7 Interaction for cluster comparisons. A click on a cluster on a dendrogram 

highlights items in the cluster on both dendrograms with orange triangles.  When 

users select the “Cluster Similarity” ranking criterion in the scatterplot ordering, a 

modeless dialog box opens, and users can drag the target-shaped icon over a 

dendrogram to pick a clustering result to compare. 

The ranking by cluster similarity facilitates this task by providing an overview of 

similarity measures for all possible pairs of clusters in the two clustering results.    

When users select the “Cluster Similarity” ranking criterion from the scatterplot 
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ordering tab, a modeless dialog box pops up (Figure 4.7) and users can drag and drop 

the target-shaped icon on dendrogram view tabs to choose two dendrograms to 

compare.  The ranking result by cluster similarity ranking function is shown in Figure 

4.8.  Each cell of the score overview represents a pair of clusters.  A mouseover event 

on the overview highlights the corresponding clusters in the selected dendrograms.  

The revised scatterplot view shows the overview of mapping of items between two 

clustering results. 
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Figure 4.8 An example of ranking by cluster similarity with a spinal cord injuries data 

set [20] where there are two categories by severity of injuries.  The left dendrogram 

shows a clustering result with control samples, and the right dendrogram shows one 

with severe injuries samples. When users select a pair of clusters on the score 

overview, the selected clusters are highlighted with a yellow rectangle in the 

dendrogram view. 

4.8 Discussion 

One of the important goals researchers want to achieve through interactive 

exploration of multidimensional data sets is to find interesting useful features (or 
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structures) in the data sets.  There can be two different kinds of features: global and 

local.  In this dissertation, a feature is local if it exists only in either a subset of 

dimensions or a subset of all items in the data set. Otherwise it is global.  As already 

mentioned in introduction (Chapter 1), I used the term, feature, in a broader sense to 

mean not only a dimension (or a variable) but also any interesting characteristics of 

the data set.  Figure 4.9 shows the flow of feature detection task in HCE.  Clustering 

or profile search reveal interesting groups in the data set, which leads to global 

features.  If they are conducted using a subset of a data set or a subset of dimensions, 

those groups are local features.  1D or 2D ordering in the rank-by-feature framework 

can identify interesting dimensions or pairs of dimensions, which correspond to 

global features.  If researchers identify a group of items in a histogram or scatterplot, 

that group can be a local feature.  The distinction between local and global features is 

not clear sometimes.  A feature once considered local can turn out to be a global 

feature later.  The distinction however can help understand the task flow of HCE. 
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 Figure 4.9 Feature detection task flow in HCE.  Users open a multidimensional data 

set in HCE.  After filtering and normalization, interactive tools in HCE enable users 

to find patters and models in the data set.  

Dealing with missing values is an important task in data analysis applications.  

Improperly manipulated missing values can ruin analysis results and visualization.  

For example, if missing values are replaced by 0, the correlation coefficient for a 

scatterplot can be influenced by these missing values.  In HCE, each value has its 

own weight flag.  The weight flag is set to -1 for all missing values.  Thus, missing 

values can be easily excluded from analysis processes such as clustering, profile 
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search, and rankings.  All those analysis processes use scoring functions such as 

Pearson's correlation coefficient and Euclidean distance.  Input parameters to a 

scoring function can be modified in two different ways: (1) only the values that are 

not missing are passed to the scoring function, (2) weight flag vectors are passed to 

the function as well as the values.  The former requires an extra filtering operation but 

it is a good choice in cases where it is difficult to change the function prototype.  The 

latter does not involve any extra filtering operation, so it is applicable when the 

modification of a function prototype is possible.  For example, the function prototype 

of the routine to calculate Pearson's correlation in HCE is  

double Pearson(float *x, float *xWeights, float *y, float 

*yWeights)  

 

In future implementations, I might consider using various functions available in 

external statistical software packages such as R, Excel, SAS, and so on.  In that case, 

the first method can be used, or it is possible to implement a wrapper function that 

has the prototype as in the second method and performs a filtering operation.  

4.9  Conclusion 

The take-away message from the natural landscape analogy in section 4.3 is that 

guiding principles can produce an orderly and comprehensive strategy with clear 

goals.  Even when researchers are doing exploratory data analysis, they are more 

likely to make valuable insights if they have some notion of what they are looking for.   
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I believe that the proposed strategy for multidimensional data exploration with 

room for iteration and rapid shifts of attention enables novices and experts to make 

discoveries more reliably.  The Graphics, Ranking and Interaction for Discovery 

(GRID) principles are:  

(1) study 1D, study 2D, then find features  

(2) ranking guides insight, statistics confirm. 

The rank-by-feature framework enables users to apply a systematic approach to 

understanding the dimensions and finding important features using axis-parallel 1D 

and 2D projections of multidimensional data sets.  Users begin by selecting a ranking 

criterion and then can see the ranking for all 1D or 2D projections.  They can select 

high or low ranked projections and view them rapidly, or sweep through a group of 

projections in an orderly manner.  The score overview provides a visual summary that 

helps users identify extreme values of criteria such as correlation coefficients or 

uniformity measures.  Information visualization principles and techniques such as 

dynamic query by item sliders, combined with traditional graphical displays such as 

histograms, boxplots, and scatterplots play a major role in the rank-by-feature 

framework.   

As future work, various statistical tools and data mining algorithms, including 

ones presented in section 4.6, can be incorporated into our rank-by-feature framework 

as new ranking criteria.  Just as geologists, naturalists, and botanists depend on many 
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kinds of maps, compasses, binoculars, or Global Positioning Systems, dozens of 

criteria seem useful in our projects.  It seems likely that specialized criteria will be 

developed by experts in knowledge domains such as genomics, demographics, and 

finance.  Other directions for future work include extending the rank-by-feature 

framework to accommodate 3D projections. 

The concepts in the rank-by-feature framework and the current user interface 

might be difficult for many data analysts to master.  However, our experience with a 

dozen biologists in gene expression data analysis tasks is giving us a better 

understanding of what training methods to use.  Of particular importance is the 

development of meaningful examples based on comprehensible data sets that 

demonstrate the power of each ranking criterion.  Screen space is a scarce resource in 

these information abundant interfaces, so higher resolution displays (I use 3800 x 

2480 pixel display whenever possible) or multiple displays are helpful, as are 

efficient screen management strategies. 

I hope the potent concepts in the rank-by-feature framework will be implemented 

by others with varied interfaces for spreadsheets, statistical packages, or information 

visualization tools.  I believe that the GRID principles and the rank-by-feature 

framework will effectively guide users to understand dimensions, identify 

relationships, and discover interesting features. 
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Chapter 5   

Application Examples 

5.1 U.S. Counties Data Set 

In this section, I show an application example of the rank-by-feature framework with 

a collection of county information data set.  The data set has 3139 rows (U.S. 

counties) and 17 columns (attributes).  17 attributes are explained in Table 5.1. 
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Variable Name Description 

HomeValue2000 median value of owner-occupied housing value, 2000 

Income1999 per capita money income, 1999 

Poverty1999 percent below poverty level, 1999 

PopDensity2000 population, 2000 

PopChange population percent change, 4/1/2000~7/1/2001 

Prcnt65+ population 65 years old and over, 2000 

Below18 person under 18 years old, 2000 

PrcntFemale2000 percent of female persons, 2000 

PrcntHSgrads2000 percent of high school graduates age 25+, 2000 

PrcntCollege2000 percent of college graduates or higher age 25+, 2000 

Unemployed person unemployed, 1999 

PrcntBelow18 percent under 18 years old, 2000 

LifeExpectancy life expectancy, 1997 

FarmAcres farm land (acres), 1997 

LungCancer lung cancer mortality rate per 100,000, 1997 

ColonCancer colon cancer rate per 100,000, 1997 

BreastCancer breast cancer per 100,000 white female, 1994~1997 

Table 5.1 Metadata for the U.S. counties data set 

Users first select the “Uniformity” for 1D ranking, and can preattentively identify 

the three dimensions (“population,” “percent under 18 years old,” and “person 
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unemployed”) that have low values in the score overview as shown in Figure 5.1(a).  

This means the distribution of values of these dimensions is biased to a small range as 

shown in Figure 5.2(d).  The county with the extreme value (highlighted in red at the 

right most bin of the histogram) on all three low-scored dimensions is “Los Angeles, 

CA.”  In the histogram for “percent of high school graduates” that has a high score 

(Figure 5.2(a)), LA is mapped to a bin below the first quartile on the histogram (also 

highlighted in red), which means there are relatively lower percentage of high school 

graduates in LA. 
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(a) Uniformity (b) Correlation 

  
(c) Quadracity (d) Quadracity (in gray scale) 

Figure 5.1 The score overviews for U.S. counties data.  Bright blue green indicates 

high value and bright brown indicates low value.  White is assigned to the value in 

the middle.  When the value varies from negative to positive, white is assigned to the 

value 0 as in (b).  Users who have color deficiencies or who desire different color 

palettes for their monitors/projectors can change color settings by right clicking on 

the color scale bar and choosing different colors (d). 
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(a) 6.7 (b) 6.1 

  
(c) 4.5 (d) 1.5 

LA 
LA

LA
LA

Figure 5.2 Four selected histograms ranging from high uniformity (a) to low 

uniformity (d).  The bar for Los Angeles, CA (LA) is highlighted in red in each figure.  

In (d) the distribution is concentrated on the far left and LA appears as an outlier at 

the far right. 

Figure 5.3 shows 4 histograms ranked by the biggest gap size.  Gap detection 

was performed with standardized values (i.e. in this case all dimensions are 

transformed to a distribution whose mean is 0 and the standard deviation is 1).  As 

discussed in section 4.6 (opening paragraph), the gap ranking criterion is affected by 

whether the original or transformed values are used for ranking.  Ranking 

computations based on the original values (values before transformation), produce a 

different ranking result since the range of the values may change due to the 
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transformation.  The biggest gap is highlighted as a peach rectangle on each 

histogram.  The bar to the right of the gap on (a) is for Los Angeles, CA, which 

confirms the previous ranking result (Figure 5.2(d)).  The bar to the right of the gap 

on (b) is for Coconino, AZ, which means that Coconino County has exceptionally 

broad farm lands. 

  
(a) 21.0 (b) 5.77 

  
(c) 0.38 (d) 0.24 

Figure 5.3 Four selected histograms ranging from big gap (a) to small gap (d).  Gap 

detection was performed after standardizing each variable.  The biggest gap is 

highlighted as a peach rectangle on each histogram.  The bar to the right of the gap on 

(a) is for LA, and the bar to the right of the gap on (b) is for Coconino, AZ. 
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Next, if users move on to the rank-by-feature framework for 2D projections, they 

can choose “Correlation coefficient” as the ranking criterion.  And again they 

preattentively identify three very bright blue green cells and two very bright brown 

cells in the score overview (Figure 5.1(b)).  The scatterplot for one of the high-scored 

cells is shown in Figure 5.4(a), where LA is highlighted with an orange triangle in a 

circle at the top right corner.  Interestingly, the three bright cells are composed by the 

three dimensions that have very low scores in 1D ranking by “Uniformity.”  LA is 

also a distinctive outlier in all three high scored scatterplots.  Users can confirm a 

trivial relationship between poverty and income, i.e. poor counties have less income 

(Figure 5.4(c)). The scatterplot for one of the two bright brown cells is shown in 

Figure 5.4(d), revealing that counties with high percentages of high school graduates 

are particularly free from poverty. 
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(a) 0.96 (b) 0.77 

  
(c) -0.69 (d) -0.71 

Figure 5.4 Four selected scatterplots ordered by correlation coefficient.  The line of 

best fit is drawn as a blue line. 

User can then run the ranking by quadracity to identify strong quadratic 

relationships, producing 4 interesting scatterplots.  Figure 5.5 (a) and (d) show weak 

quadratic relationships.  It is interesting to know that they showed strong linear 

relationships according to the correlation coefficient ranking, but each pair of 

variables in (a) and (d) actually have some weak quadratic relationship.  (b) and (c) 

show almost no quadracity.  The fitting errors should be considered by looking into 

the regression curve and points distribution before confirming the relationships. 
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(a) 0.2 (b) 0.07 

  
(c) -0.02 (d) -0.17 

Figure 5.5 Quadracity (The coefficient of x2 term).  The regression curve is drawn as 

a blue parabola. 

Figure 5.6 shows the ranking result using the LOF-based outlier detection 

method.  Since the current implementation does not take into account the number of 

items mapped to the same coordinate, the result is not so accurate, but it still makes 

sense at most cases.  In this ranking result, while it is interesting to know which one 

has the most outliers, sometimes strong outliers can be found on a scatterplot with the 

fewest outliers.  Future implementations of “outlierness” could play a better role for 

this case, for example, Figure 5.6(d) has one strong outlier, Union, FL, where there 

are a distinctively large number of lung cancer cases and the county is relatively poor. 
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(a) 14 (b) 12 

  
(c) 6 (d) 1 

Figure 5.6 The number of outliers.  Outliers whose LOF is greater than (minimum 

LOF + maximum LOF)/2 are highlighted as triangles. 

The rank-by-feature framework is to HCE users what maps are to the explorer of 

unknown areas.  It helps users get some idea about where to turn for the next step of 

their exploratory analysis of a multidimensional data set.  The rank-by-feature 

framework in HCE 3.0 can handle much larger data sets with many more dimensions 

than this application example.  More columns with environmental, educational, 

demographic, and medical statistics can be added to this example data set to discover 

interesting relationships among attributes across many knowledge domains. 
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5.2 Microarray Data Set 

Microarray technology is actively used these days to study gene products.  Biologists 

take samples and hybridize them in gene chips (or microarrays) to measure the 

activity of several thousands to tens of thousands of genes.  A microarray data set 

consists of tens or hundreds of microarray chip measurements, so microarray data sets 

are usually multidimensional.  In this section, I show an application example of the 

rank-by-feature framework with a microarray data set.  A group of biologists in the 

Children’s National Medical Center injected a toxic material to a murine muscle to 

examine the muscle regeneration process.  They took samples from the area where a 

toxin was injected at 27 different time points and measured the activities of about 

12,000 genes. 

The biologists start exploring the data set by looking at all 1D projections (or 

histograms).  They can quickly browse all histograms by dragging the item slider in 

the histogram browser.  They easily get to know that all dimensions have a similar 

distribution that looks like Figure 5.7.  In an attempt to rank histograms by the size of 

the biggest gap, the sample taken at the 16th day (labeled 16D in Figure 5.7) has the 

biggest gap.  Then, users can select the bar to the right of the gap and learn that the 

gene name belonging to the bar is “Troponin T3.” Troponin T3 is related to the 

muscle contraction.  Using the profile search tab in HCE, it turns out that Troponin 

T3 shows a temporal pattern almost opposite to a candidate gene (MyoD) that is well-

known to be related to the muscle regeneration process.  This may indicate that 
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further examination of Troponin T3 is warranted to understand how it is related to the 

muscle regeneration process. 

         

Figure 5.7 The ranking result by the size of the biggest gap.  The score overview and 

the top ranked histogram. 

Users move on to the scatterplot ordering tab and try a ranking by correlation 

coefficient since it is one of the most fundamental and important binary relationships.  

Figure 5.8 shows the score overview and two scatterplots.  The time points are 

arranged in the sequential order from left to right and from top to bottom in the score 

overview.  By the triangle-shaped blue green squares group (highlighted with a black 

triangle) in the middle of the overview, users can preattentively perceive that most of 

time points in the middle are highly correlated to each other as shown in the 

scatterplot next to the score overview.  Similarly, by the rectangular brown squares 

group (highlighted with a black rectangle) at the bottom left corner of the score 

overview, it is easy to know that day 1 (1D) through day 4 (4D) samples do not 

correlate to the time points at the end (day 16 through day 40).  At the same time the 
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brown stripe (highlighted with a black rectangle) at the first column shows that the 

day 1 through day 4 samples are not correlated to the beginning time point.  

           

Figure 5.8 The ranking result by correlation coefficient.  The score overview and the 

top- and bottom-ranked scatterplots. 

The rank-by-feature framework saves biostatisticians a significant amount of 

time to explore the data set by providing efficient graphical summaries and by 

enabling them to interactively traverse numerous low-dimensional projections.  The 

rank-by-feature framework sometimes leads users to unexpected finding such as 

distinctive outliers. 

5.3 Summary and Discussion 

In spite of their limitations, low-dimensional projections are useful tools for users to 

understand multidimensional data sets.  Since 3D projections have the problem of the 

cognitive burdens of occlusion and navigation controls, I concentrate on 1D and 2D 

projections.  Since the axis-parallel projections are much more easily interpreted by 
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users compared to arbitrary 1D or 2D projections, I concentrate on axis-parallel 1D 

and 2D projections. 

The rank-by-feature framework supports comprehensive exploration of these 

axis-parallel projections.  Interactive interfaces for the rank-by-feature framework 

were designed for 1D and 2D projections.  There are four coordinated components in 

each interface: control panel, score overview, ordered list, and histogram/scatterplot 

browser.  Users choose a ranking criterion at the control panel, and then they can 

examine the ranked result using the remaining three coordinated components.  The 

score overview enables users to preattentively spot distinctively high and low ranked 

projections due to the consistent layout and linear color-mapping, and it also helps 

users grasp the overall pattern of the score distribution.  While the ordered list 

provides users with the numerical summary of each projection, the browser enables 

users to interactively examine the graphical representation of each projection (the 

combination of histogram and boxplot for a 1D projection, and scatterplot for a 2D 

projection).  The item slider attached to histogram/scatterplot display facilitates the 

exploration by allowing the rapid change of the dimension in focus. 

When implementing or selecting a new ranking criterion for the rank-by-feature 

framework, implementers should strive to limit the time complexity of ranking 

criterion.  If there are n data items in m-dimensional space, the score function of a 2D 

projection is calculated m*(m-1)/2 times.  If the time complexity of the score function 

is O(n), the total time complexity will be O(nm2).  Reasonable response time can be 
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achieved if there are efficient algorithms for computing scores for a ranking criterion.  

Otherwise, it is necessary to develop a quickly-computable approximate measure in 

order to cut down the processing time.  A grid cell based approach can reduce the 

response time by running the algorithm on a smaller number of cells instead of actual 

data points.  Table 5.2 shows the amount of CPU time (in seconds) to complete 2D 

rankings for four data sets of various sizes (# of items by # of dimensions) with our 

current implementation on an Intel Pentium 4 PC (2.53GHz CPU, 1GB memory) 

running Windows XP Professional operating system. 

Criterion 

Size 

(row x column) 

Correlation 

Curvilinear 

regression & 

Quadracity 

Uniformity 

Number of 

outliers 

(LOF) 

3138 x 17 .05 .2 .2 4.1

3614 x 38 .1  .8 1.6 39.0

11704 x 105 2.6 17.4 38.6 810.2

22283 x 105 4.9 33.1 72.5 1660.0

Table 5.2 Performance analysis result of ranking criteria (in seconds) 

In terms of scalability, the score overview is certainly better than the scatterplot 

matrix where a small thumbnail of the actual scatterplot is shown in each cell.  

However, when there are many dimensions, the score overview will become so 

crowded that it will be difficult to view and to read the labels.  Since the screen space 

should be shared with other views, the score overview becomes unacceptably 
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overcrowded in a general PC environment (with 1280x1024 screen resolutions or 

less) when the dimensionality is greater than about 130.  In that case, a filtering or 

grouping mechanism will be necessary.  A range slider to the right side of the score 

overview might control the upper and lower bound of scores displayed.  If the score 

of a cell does not satisfy the thresholds, the cell will be grayed out.  If an entire row or 

column is grayed out, the row or column can be filtered out so that remaining rows 

and columns will occupy more screen space.  Implementers can also utilize the 

dimension clustering result that is in HCE to rank clusters of dimensions instead of 

individual dimensions. 

Although this chapter showed only two application examples, the rank-by-feature 

framework can be applied to diverse data sets in various areas (e.g. such as economics, 

sociology, and meteorology) where features of diverse attributes and relationships 

among them could lead to meaningful interesting knowledge discoveries.  More such 

applications of the rank-by-feature framework will be presented in section 7.1.  Since 

users from a different discipline might have a different set of research interests, it 

could be an important future direction to enable users to customize the set of ranking 

criteria.  Since the implementation of all those ranking criteria in HCE is almost 

impossible and inefficient, a better future direction would be a seamless linkage of 

HCE to other well-known tools where meaningful ranking criteria for corresponding 

users are available.  When such a linkage is not feasible, many researchers could 

contribute their own ranking criteria as plug-ins for the rank-by-feature framework.  
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Chapter 6  

HCE Implementation 

I have developed HCE since the fall of 2001.  Version 1.0 was released in April 2002, 

where interactive visualization of hierarchical clustering results was possible by 

dynamic queries and coordination.  Version 2.0 was released in January 2003 after 

fixing bugs and naively implementing the rank-by-feature framework for 2D 

scatterplots. The parallel coordinates view with interactive searches was also included 

in the version.  Version 3.0 was released in December 2004 after implementing a 

more complete rank-by-feature framework (1D and 2D), tabular view, and so on.   

HCE was implemented as a stand-alone PC application based on the document-

view architecture [51] using Microsoft Visual C++ 6.0 and the Microsoft Foundation 

Class (MFC) library.  The document-view architecture is a variant of the 

Model/View/Controller (MVC) architecture [13] that was the central concept behind 

the Smalltalk-80 user interface.  Most modern GUI interfaces such as Macintosh and 

Microsoft Windows are all based on this MVC architecture.  There are three 

explicitly separated objects in the MVC architecture - model, view and controller.  

The view object is responsible for the graphical or textual representation of the model 

object.  The controller object accepts and interprets mouse or keyboard inputs from 

users and informs other two objects of the changes.  The model object handles the 
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behavior and data of the application domain, informs the view object of its state 

changes, and handles the stage change request from the controller object. 

In the document-view architecture, the document object is the counterpart for the 

model object in the MVC architecture, and the view object is the counterpart for both 

the view object and the controller object in the MVC architecture.  Both architectures 

separate data from the view of the data.  One of the advantages of these architectures 

is that it is possible to have multiple views of the same data.  Furthermore, interactive 

coordination among multiple views can be effectively implemented using the 

architectures. 

To accommodate multiple-window coordination, HCE was designed as a MDI 

(multiple-document interface) application. MDI applications can maintain multiple 

forms in a single container form. As the name implies, MDI applications can handle 

and display multiple documents at the same time, with each view of a document 

displayed in its own window.  Even though HCE is an MDI application, I modified 

the MDI framework so that HCE can handle and display only one document at a time. 

Views of the current document (a multidimensional data set) can be displayed in 

separate child forms, and the document-view architecture can support the basic 

coordination among views.  A child form that contains a view of a document is an 

instance of CMDIChildFrame class. Child forms are shown within the MDI 

workspace of the MDI parent frame window.  A minimized child form is shown at the 

bottom of the work space.  
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6.1 Overall User Interface Structure of HCE 

The overall screen layout of HCE 3.0 is shown in Figure 6.1.  MDI parent frame 

window holds three components: MDI workspace and two control bars.  Dendrogram 

view, histogram, and scatterplot are displayed in the MDI workspace. Users can 

minimize but cannot close the dendrogram view since it is the main view of HCE and 

shows meta data and overview.  Two control bars hold a tab control.   

 

Figure 6.1 Overall Screen Layout of HCE 3.0 

The control bar at the bottom has seven tab items: Color Mosaic, Tabular View 

(section 3.5.1), Histogram Ordering (section 4.4), Scatterplot Ordering (section 4.5), 

Profile Search (section 3.4), Gene Ontology (section 3.5.2), K-means Clustering.  All 

CControlBar for 
Dynamic Control, 
Detail-on-demand 

MDI workspace for 
CMDIChildFrame windows 
 
 

 
CControlBar for  
Color Mosaic, Tabular View, Histogram Ordering, Scatterplot Ordering, 
Profile Search, Gene Ontology, K-means Clustering 
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views except color mosaic and K-means clustering in this bottom control bar were 

discussed in previous chapters or will be discussed later in detail.  Each of them is a 

CFormView derived class.  The other two are general CView derived classes.  

Color mosaic view shows the entire data set in a traditional scrollable view with 

scrollbars, but it superimposes a column clustering result over the color mosaic 

display and allows users to dynamically explore the clustering result using a 

minimum similarity bar.  The main dendrogram view and the color mosaic view are 

coordinated to each other in the event of cluster selections.  Users can switch between 

the two views so that the more important or interesting clustering result appears on 

the main dendrogram view.  For example, if users are more interested in the column 

clustering result, they can see the column clustering result on the main dendrogram 

view and the row clustering result on the color mosaic view by switching the default 

views.  

The control bar on the right has two tabs: Dynamic Control and Detail-on-

demand.  The dynamic control tab allows users to change the color mapping for 

dendrogram views, scatterplot views and profile search.  Users can also change 

options or parameters for the main dendrogram view.  The detail-on-demand tab 

shows the selected items as well as details of the item of focus. 
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6.2 Multiple Views Coordination 

HCE uses UpdateAllViews method provided by the MFC library to implement 

multiple view coordination.  When users change the status of the current document on 

a view through an event, UpdateAllViews function is called from the view to notify 

the change to all other views that are attached to the current document.  OnUpdate 

member function for each attached view is called upon receipt of the update message. 

Extra information on the change that was made by the sender of the update message 

can be also propagated to all other views as parameters to optimize the proceeding 

update operations. 

Figure 6.2 shows interaction relationships among major display components in 

HCE 3.0.  All interactions are coordinated via the following events: 

• Mouse move events dynamically highlight the item under mouse cursor on the 

dendrogram view, parallel coordinates view and tabular view. The corresponding 

item is highlighted on all other views of the current document. 

• Mouse drag events dynamically select items in various ways on various views. 

Rubber rectangle selections are allowed in the dendrogram view, scatterplot view, 

histogram view, and tabular view.  Selected items are highlighted on all views of 

the current document with indicators of the same color. 
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• Different types of coordination via special selection and filtering methods using 

dynamic queries are allowed in the dendrogram and parallel coordinates views, 

which were already explained in previous sections. 

 

Figure 6.2 Simplified interaction diagram of HCE 3.0 

One of the problems using multiple views (or windows) is that it is necessary to 

manage many windows in a limited screen space.  At run time, the MDI workspace 

(Figure 6.1) of HCE can be crowded with many child frames.  Scarce screen space 

must be allocated to many displays rather than one, and user attention must shift back 

and forth rapidly.  Minimizing the distance between displays, avoiding overlaps and 

making updates rapid all contribute to improved human performance.  To partially 

address this problem, HCE implements a customized window arrangement method in 

addition to the default methods provided by application framework.  The new 

arrangement method tries to allocate more than half of the screen to the main 
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dendrogram view while other views such as histograms and scatterplots share the 

remaining space.  If it does not work, the main dendrogram view takes part in the 

arrangement process as a regular window like other windows.  There are two 

constraints: 

1. There can be several columns of windows but each column can only have 

two or three rows of windows.  

2. Columns with two rows occupy three fifths of the width of MDI workspace, 

and columns with three rows occupy two fifths of the width of MDI 

workspace. 

This windows management strategy needs further improvements, but it is 

certainly better than the two default methods, cascade and tile, since it allocates more 

screen space to the more important view and it maintains better aspect ratios.  The 

current GUIs do not take enough advantage of the remarkable human visual 

perceptual skills and large high resolution computer displays such as 3840x2400.  

Some recent work such as Elastic Windows [47], GroupBar [78], and QuickSpace 

[41] suggested appealing mechanisms for more efficient windows management.  As 

the screen resolution becomes higher, the tiled layout together with operations on a 

well-organized group of windows to rapidly rearrange windows will decrease users’ 

cognitive load.   
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6.3 Document-View Architecture in HCE 

A simplified UML diagram in Figure 6.3 shows important classes in HCE 3.0.    

CMyForest is a generic class that maintains data structures for the current document.  

The CHCEDoc class generates and holds CMyForest class instances and all attached 

views access CMyForest class instances and visualize them in their own way.  

CHCEView is a CView-derived class and it implements the main dendrogram view.  

The diagram shows a bidirectional interaction between CHCEView and CMyForest 

since CMyForest class maintains the dendrogram structure and CHCEView not only 

visualizes but also updates the structure. CHCEEntireView is also a CView-derived 

class, implementing the Color Mosaic view where dendrograms can also be shown 

over the color mosaic view.  CHCEKmeansView is also a CView-derived class, which 

visualizes Kmeans clustering results. CTrendInfo is a CFormView-derived class and it 

contains CTrendView which implements Profile Search function.  Each item or 

profile is represented as an instance of CPolyLine.  CActiveIndexSet class maintains 

the set of active items for incremental query refinement.   
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Figure 6.3 Simplified UML class diagram of HCE 

CHistogramInfo and CVisualGuide are CFormView-derived classes.  They are 

the two classes for the rank-by-feature framework (Chapter 4), which implement 

histogram ordering and scatterplot ordering respectively.  CDetailOnDemand is a 

CFormView-derived class, which implements detail-on-demand feature of HCE.  It 

shows the list of selected items and the detailed information of the item under the 

cursor while the mouse moves. COntologyInfo class is for Gene Ontology 

visualization.  It is a CFormView-derived class and it parses the gene ontology data 

files and builds and maintains internal gene ontology hierarchies.  CDataTableView is 

also a CFormView-derived class, which shows the raw data sets in a list control at the 

Tabular View (section 3.5.1).   
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If any view changes the status of the current document, the change is actually 

reflected in CMyForest instances of the current document, and update messages are 

sent out to all attached views by calling UpdateAllViews API function as explained in 

section 6.2. 

6.4 Input File Format 

An important requirement for HCE input files is that the very first column should 

have unique identifiers.  It could be name of items, or users can fill the column by 

integer values from 1 to n.  Users can add one special row that has field type 

information as shown in Figure 6.4.  The first column of the row for field types 

should be “fieldtype.” Available types are STRING, CATEGORICAL, INTEGER, 

and REAL.   

 

Figure 6.4 Breakfast cereal data set 

Integer values should be between –2147483648 and 2147483647.  Real values 

should be between -3.402823466e+38 and 3.402823466e+38, the decimal exponent 

should be between -37 and 38.  If there is no field type row in an input file, all 

125  



columns are assumed to have REAL-type values (floating point numbers).  Many 

sample data files are available at www.cs.umd.edu/hcil/hce. 

6.5 Filtering and Transformation 

After selecting an input file, the preview dialog box (Figure 6.5) will show up.  Users 

can see the first ten rows of the input file and check if the file is in the right format.  

Users can also perform some data filtering and transformation in this dialog box. 
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Figure 6.5 Dialog box for preview, filtering, and transformation 

6.5.1 Present Call Filtering 

This filtering is applicable only when the data set is an Affymetrix microarray data.  

There are two outputs from the Affymetrix noise calculations; one is the continuous p 

value assignment and the other is a simple “present/absent” threshold.  When the 

probe set detection p value reaches a certain level of significance (less than 0.04 in 

the default setting as shown in Figure 6.5), the probe set is assigned a “present” call, 
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while all those probe sets with less robust signal/noise ratios are assigned an “absent” 

call.  This enables the use of a “present call” threshold noise filter.  Default setting is 

a “10% present call” noise filter.  This means that any specific probe set was required 

to show at least 3 “present” assignments in the 25 microarrays in the project (>10% 

“present” calls).  All profiles that do not satisfy the requirement will be filtered out 

when users click "Filter it!" button. 

6.5.2 Standard Deviation-based Filtering 

Users can filter out rows based on the standard deviation.  The idea is to filter out data 

items (or genes) that are relatively stable across the samples or time points.  Rows (or 

genes) will be filtered out if their standard deviations considering all columns, or 

samples, are less than a threshold.  The default threshold is 1. 

6.5.3 Log Transformation 

Users sometimes want to transform the variable to get a better result.  For example, 

log transformations convert exponential relationships to linear relationships, 

straighten skewed distributions, and reduce the variance. This transformation is 

sometimes useful when the data set is ratio data, for example, the ratio of red/green 

intensities for cDNA array.  
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6.5.4 Normalization 

Users can normalize the input data either row-by-row or column-by-column, and four 

normalization methods are available in HCE 3.0 (Table 6.1).  

Normalization  

Method 
Description 

σ
mx −  

Values will be standardized, i.e. calculate the deviation from the 

mean and then divide the deviation by the standard deviation.  After 

standardization, each row (, or column) will have the same mean (0) 

and the same standard deviation (1). 

control
x  

Simply divide values by the value at the first column or row.  In 

other words, control is always the first column or row for HCE3. 

median
x  Simply divide values by the median. 

rescale to a 

new range 

Linearly transform each row or each column to a new range of 

values.  For example, after rescaling to the range 0 to 1, the 

minimum value becomes 0, the maximum value becomes 1, and 

values in between are linearly transformed to values between 0 and 

1.  

Table 6.1 Normalization methods in HCE 3.0 
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If columns in an input file (like the cereal data file shown in section 6.4) have 

different range of values, column-by-column normalization is recommended.  This 

normalization makes the color mapping clearer and makes columns comparable to 

each other.  If values in all columns are already directly comparable, row-by-row 

normalization is recommended.  For example, in Affymetrix projects each column 

(chip or sample) is usually normalized by probe set signal algorithms, so values in 

different columns are directly comparable.  In such cases, row-by-row normalization 

improves the color mapping and accelerates the row clustering process.  The choice 

of normalization direction (column-by-column or row-by-row) will deeply influence 

the clustering results and other results.  There is an option to choose to use either 

normalized values or original values in most visualization components in HCE such 

as Table View, Histogram Ordering, and Scatterplot Ordering. 

6.6 Hierarchical Agglomerative Clustering 

Hierarchical agglomerative clustering (HAC) [45] was summarized in section 3.1.  If 

we have n data items, we have n*(n-1)/2 similarity (or distance) values between every 

possible pair of n data items.  The time complexity of the current HAC 

implementation in HCE is O(n2m) where n is the number of items and m is the 

number of dimensions.  The space complexity is O(n2). 

The bottleneck of HAC is the distance/similarity matrix that should be calculated 

and maintained.  There is a tradeoff between memory requirement and speed.  To 

130  



maximize speed, it is necessary to keep the matrix on the main memory (RAM).  To 

minimize the memory requirement, each entry of the matrix should be calculated on 

the fly whenever necessary.  HCE was implemented to utilize the main memory as 

much as possible to speed up the clustering process.  Only the lower triangular part of 

the matrix is kept in the memory since the matrix is symmetric and the diagonal 

elements are all the same (0 for distance, 1 for similarity) to reduce the memory 

requirement.  As shown in Figure 6.6, the value and index of the current minimum of 

each row of the distance/similarity matrix are maintained to significantly reduce the 

time to find the pair of clusters with minimum distance in step 2.  This additional data 

structure reduces the time complexity of the naïve HAC implementation by n/2.    

 

Figure 6.6 Data structure for efficient finding of min pair in distance matrix 

Table 6.2 shows an experimental result on the time taken to complete the 

clustering of rows.  If the number of rows is larger than 45000, the clustering 

completion time is indefinite with the current implementation of HCE running on a 

Pentium 4 2.53GHz and 1GB memory PC because of the memory overhead for the 

intermediate distance matrix.  To overcome this limitation, it is necessary to develop 

an efficient mechanism to build and maintain the distance matrix through the 

clustering process. 
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Data set size Clustering time (in seconds)  

# of rows # of columns HCE Cluster [23] DecisionSite [79]

3138 17 4 21 1

3614 38 8 50 5

6211 27 16 117 10

12422 27 65 421 34

22690 40 226 * 385

22283 105 452 * 540

38305 6 430 * 124

Table 6.2 Clustering performance analysis. Time to finish clustering rows only.  HCE 

vsersion 2.0, Cluster version 2.11, and Sporfire DecisionSite version 8.1 were used.  * 

indicates that the program generated an exception.  The linkage method was average 

linkage and the distance measure was Pearson correlation coefficient. 

There are some ways to improve the speed and quality of HAC.  One of the 

interesting ways is to meaningfully partition the data set first and then run HAC with 

the partitions.  Partitioning is also possible in many different ways.  We could 

partition the data set using a graph-theoretic approach.  Or we could partition the data 

set by running another clustering algorithm such as self-organizing map based 

clustering that is much faster than HAC and sometimes produces a reasonably good 
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clustering result.  This could be a potential hybrid approach that combines HAC and 

non-hierarchical (but faster) clustering algorithms to get synergistic effects. 

6.7 Data Structures for Instant Updates 

To achieve rapid responses to users’ actions, hash and map data structures were 

extensively used because they enable constant time lookup of items, with only a small 

memory overhead.  In a dendrogram view, the ID of each terminal node and its 

horizontal position are saved into a map data structure so that selection markers can 

be positioned without any extensive traversal of the dendrogram and the IDs of the 

selected node in the dendrogram view can also be rapidly informed of to all other 

views attached to the same document.  Similarly, in the histogram view and 

scatterplot view, the position of each item within the view and the ID of the 

corresponding item are also maintained in a multimap data structure where multiple 

values can be mapped to the same key.  In the parallel coordinates view, incremental 

data structures where the active index set for intermediate query results is maintained 

are used to support rapid and incremental query update. 

Besides the clustering process, the most processor-intensive job is the 

dendrogram and color mosaic drawing because of the recursive structure of their 

drawing function.  Although a color bar (i.e. a column) of the color mosaic display 

has a one-to-one correspondence to a terminal node of the dendrogram display, I 

separate the drawing of the color mosaic from the drawing of the dendrogram 
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whenever possible.  In this way, the recursive dendrogram drawing can be done more 

quickly. 

In addition to the speed up due to the independent drawing, to avoid massive 

calls for redrawing graphics objects such as dendrograms and color mosaic, I tried to 

keep the DIB (device independent bitmap) of current views as much as possible, so 

views can be refreshed quickly without calling a series of GDI (Graphics Device 

Interface) functions or recursive functions.  For example, Figure 6.7 shows the 

OnDraw function for CHCEView, where DIB (m_pDib) is used instead of calling 

actual drawing function (Refresh) whenever it is available. 
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P

2

void CHCEView::OnDraw(CDC* pDC) 

{ 

     if (m_pDoc != NULL && m_pDoc->m_bForested) {  

     // if there is anything to draw 

  if (m_pDib) { // if DIB is valid 

 

   m_pDib->Draw(pDC,CPoint(0,0),m_szWindow); 

   if (m_bSingleSelFixed) { 

    HighlightSelBar(false); 

   } 

  } 

  else {  // if DIB is not valid 

   Refresh(true);  

  } 

     } 

     else { // if there is nothing to draw 

  CRect rect; 

  GetClientRect(rect); 

  int iW=rect.Width(), iH=rect.Height(); 

 

  pDC->BitBlt(0,0,iW,iH,NULL,0,0,WHITENESS); 

     } 
 } 

Figure 6.7 Rendering routine at OnDraw member function 

A reasonably interactive rapid update for every user input is possible on a 

entium 4 2.53GHz and 1GB memory PC with a data set of up to 12000(rows) x 

7(columns). 
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6.8 Summary and Discussion 

The current implementation of HCE enabled instantaneous updates for moderate to 

large data files without any special rendering hardware or any special rendering 

library.  However, advances in data generation techniques will definitely make it 

necessary to use those special devices to cope with much larger data sets.  OpenGL 

[64] or DirectX technology [61] could improve the rendering speed with most 

graphics cards.  Special graphics card should further speed up renderings. 

A special data structure in HCE for the intermediate distance matrix significantly 

speed up the hierarchical clustering compared to other tools like Cluster [23].  HCE 

also outperformed a decent commercial software to the extent that the number of 

rows was large just enough to fit in the main memory and the number of columns are 

relatively large (Table 6.2).  HCE, however, still depends on the operating system in 

terms of the virtual memory management, so the clustering process becomes 

indefinitely slow as the intermediate distance matrix grows to exhaust the available 

physical memory.  A special memory management routine is necessary to deal with 

data sets that need extensive external memory access for the distance matrix 

maintenance.      

While a heuristic windows arrangement method was implemented in HCE to 

facilitate multiple views coordination, improved windows arrangement strategies as 
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discussed in section 6.2 are necessary to efficiently utilize large high resolution 

displays so that users’ perceptual skills can be better exploited in HCE.  
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Chapter 7  

Evaluation 

Evaluating a user interface design or an interactive system can help identify usability 

problems and validate an innovative idea behind the system.  The first thing to do for 

evaluation is to decide what kind of evaluation methods to use.  Lieberman’s 

arguments against controlled experiments in his CHI 2003 Fringe session, “The 

Tyranny of Evaluation [55],” emphasize the inherent variability of human subjects 

and the number of variables to control [33].  A controlled experiment to compare 

HCE to other possible approaches is hard to design and conduct due to the novelty of 

HCE’s capabilities and the lack of comparable alternatives.  It is highly possible that 

interactive tools like HCE will outperform other static comparable tools.  Thus, even 

if such study were conducted, it would not be likely to produce meaningful insight 

from the study.  An alternative evaluation method is qualitative field tests, or case 

studies.  These evaluation methods also have their limitations.  Since one situation 

cannot be duplicated, the conductor may not get the same results in a different 

situation.  Even though participants may compare with their conventional tools, there 

might still be other tools that could outperform the tool being tested.  However, these 

evaluation methods are efficient to show the usefulness of a system in a real-world 

environment. 
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HCE was successfully used in two case studies with gene expression data.  We 

had proposed a general method of using HCE to identify the optimal signal/noise 

balance in Affymetrix gene chip data analyses.  HCE’s interactive features help 

researchers find the optimal combination of three variables (probe set signal 

algorithms, noise filtering methods, and clustering linkage methods) to maximize the 

effect of the desired biological variable on data interpretation [72, 73].  HCE was also 

used to analyze in vivo murine muscle regeneration expression profiling data using 

Affymetrix U74Av2 (12,488 probe sets) chips measured in 27 time points.  HCE’s 

visual analysis techniques and dynamic query controls played an important role in 

finding 13 novel downstream targets that are biologically relevant during myoblast 

differentiation [91].  Saraiya et al. [70] evaluated HCE with three other major 

microarray visualization tools, and HCE outperformed other tools with the Viral data 

set [31].  These case studies and a evaluation showed the overall usefulness of HCE, 

but the rank-by-feature framework was not evaluated in the studies. 

This chapter describes new evaluation results using case studies and a user 

survey with emphasis on the rank-by-feature framework.  I have conducted new case 

studies with five researchers in biology, statistics and meteorology.  Three case 

studies have been finished with valuable results, but two others have been terminated 

or indefinitely postponed because one researcher changed his jobs in the middle of 

study and the other’s expectation from the case study was not compatible with mine.  

Two case studies were done in the Hoffman Lab at the Children’s National Medical 
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Center.  One case study was done with a meteorologist at the University of Maryland, 

College Park.   

The objective of these case studies was to show the potentials and usefulness of 

HCE and the rank-by-feature framework in a real-world environment.  The main 

question that I hoped to answer with the case studies was “How do HCE and the rank-

by-feature framework change the way researchers explore their data sets?”  

Participating researchers have primarily used text-based analysis tools or tools that 

produce static visualization.  My case studies clearly show the usefulness of HCE and 

the rank-by-feature framework.  Case study results are summarized in section 7.1. 

Even though intensive case studies with a small number of subjects can show the 

usefulness of a system and idea, a larger scale user evaluation may help with more 

generalized results.  I analyzed the HCE download log and users’ comments, and 

designed a user survey (Appendix B).   About one third of the users who have 

downloaded HCE since April 2002 generously indicated their possible use of HCE in 

the download log.  Using that information, a user survey questionnaire was sent out 

via email to all users who downloaded HCE, totaling about 1500.  The user survey 

results are discussed in section 7.2. 

7.1 Case Studies 

One of the research labs that most intensively used HCE is the Hoffman Lab at the 

Children’s National Medical Center in Washington, DC.  I have been a member of the 
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bioinformatics team there and attended the biweekly team meeting for two years.  My 

major role in the lab was to be a consultant who helped researchers computationally 

analyze their data sets with HCE and sometimes other tools.  Researchers in the lab 

have been using HCE for Affymetrix GeneChip analysis since the summer of 2002.  I 

trained five bioinformatics researchers in the lab to be educators who can teach other 

researchers how to use HCE.  The lab director encouraged researchers to use HCE at 

the initial stage of their analysis where they have to get an idea on what their data set 

looks like and assess the quality of the raw data.  I had already conducted a successful 

case study with a researcher in the lab.  HCE’s interactive tools and coordination 

between the dendrogram view and the parallel coordinates view played an important 

role in finding 13 novel genes that are important for mouse muscle regeneration [91].  

Since it did not include the evaluation of the rank-by-feature framework, the case 

study will not be discussed in this section. 

7.1.1 Participants 

There were five participants: two molecular biologists (P1, P2), a statistician (P3), a 

biostatistician (P4), and a meteorologist (P5).  The two molecular biologists do not 

have more than basic statistical background and any experience with any statistical 

software other than Excel.  All of them are expert users of GeneSpring [77].  P3 is a 

pure statistician, who is an expert in SAS, and she has a modest biological 

background, but she is not an expert in any biology tools.  P4 has both intensive 

knowledge in biology and statistics, and he is an expert of GeneSpring and SAS.  P5 
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has some knowledge of basic statistics and a data analysis/visualization tool (IDL: 

Interactive Data Language) [67], and he is an expert in FORTRAN programming.   

Each participant has a unique data set and a distinctive analysis objective.  They 

had not used any interactive data exploration tool like HCE before, although they 

have their own favorite tools for the research and analysis, which are mostly text-

based and not interactive.  Among five participants, even though P2 liked to use 

HCE’s clustering features, P2’s expectation was too high for me to satisfy in terms of 

functionalities that HCE can provide.  This participant asked me to implement many 

functions that were not in HCE but in GeneSpring.  After two weeks, I decided to 

stop the study with this participant since the expectation from this case study is not 

compatible with my objective.  P4 was one of most interested participants, but 

unfortunately he left his job after one week of the case study.  Thus in this chapter I 

report the results from case studies with three participants (P1, P3, and P5). 

7.1.2 Methods and Goals 

The main methods of these case studies were participatory observations and 

interviews.  I not only observed and interviewed researchers, but also helped them use 

HCE and improved HCE according to their requirements.  It was a rapid interactive 

iteration process where important requests were implemented during the study period 

and then observations and interviews were conducted again using the improved 

system.   
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For each participant, I arranged a weekly meeting for 4-6 weekly individual 

meetings.  Although sessions were originally scheduled for thirty minutes, they 

usually lasted more than an hour because of prolonged discussion of problems and 

findings during the session.  At the first meeting, I intensively taught participants how 

to use HCE with many examples including small general data sets and large data sets 

of specific interest to the research.   After each meeting, participants were asked to 

use HCE in their everyday work.  Between sessions we communicated via email or 

phone conversations.  During the session, I sat by a participant and observed the 

participant using HCE, collected their implementation requests, and asked a series of 

questions to figure out the meaning of their findings and to examine their experience 

with HCE.  At the end of each case study, the researchers wrote a short final report on 

their experiences with HCE.  Interestingly some of them voluntarily sent me their 

report without any request.  In the report, they usually included screenshots to 

illustrate interesting findings, and noted comments on the findings. 

Case studies were focused on the evaluation of usefulness of HCE’s tools, 

especially the rank-by-feature framework. The observations and interviews were 

focused on the following aspects: 

• how does the score overview help users identify interesting projections 

• how does the histogram/scatterplot browser help users traverse projections 

• how does HCE improve the way users analyze multidimensional data sets 

• what are the most frequently used ranking criteria 

143  



• Identify possible improvements in HCE and the rank-by-feature framework 
 

The next three sections describe case studies with the molecular biologist, 

statistician, and meteorologist, respectively.  These studies are then discussed in 

section 7.1.6. 

7.1.3 Affymetrix Data Set with Three Cell Types 

A molecular biologist (P1) used one of the accepted animal models for acute lung 

injury to study inflammatory and immunological events occurring as a result of an 

LPS (lipopolysaccharide) injection which induces a systemic infection in a model 

system.  P1 performed an Affymetrix microarray project with 12 samples, 4 samples 

for each of 3 cell types (TH1, TH2, and Platelet) from mice.  TH stands for T-helper 

cell (immune cells).  TH1 cells are active in cellular immunity and TH2 cells are 

active in humoral immunity. Both mature from a common precursor TH cell. The 

balance of each type of TH cell present in the body seems to be important in 

determining the progression and outcome of various disease states.   

Mice were injected with LPS and sacrificed after 0, 24, and 48 hours.  P1 

monitored the gene expression of these peripheral blood cells.  Through an interactive 

optimization of signal-to-noise ratios in HCE [72], P1 decided to use the MBEI 

algorithm available in the dChip application [54] to calculate gene expression values 

from the Affymetrix CEL files.  The dChip program was also used to filter the 

complete gene list for those genes which were present in at least one TH1 sample, at 
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least one TH2 sample and at least one Platelet sample.  Expression values for this 

filtered gene list were then imported into HCE for further exploration with default 

normalization and default clustering parameters. 

 Histogram Ordering 

As most users do with HCE, P1 also tried the histogram ordering first after 

loading the data set and looking at the dendrogram view.  Among available ranking 

criteria, the “biggest gap” ranking held the most immediate interest for her.  She was 

intrigued by the fact that gaps reveal interesting outliers.  Figure 7.1 shows a ranking 

result by the size of the biggest gap.  The selected histogram clearly shows an 

outlying probe set in the sample (48_1_TH2), which was identified as having the 

second largest gap.  This probe set was similar to “A kinase (PRKA) anchor protein 

(yotiao) 9” which is a cytoplasmic/centriolar protein having protein-binding and 

kinase activity.  At first P1 wrote down the probe set id and input this into NetAffix in 

order to obtain ontological information.  But this process could have been facilitated 

if P1 had used the gene ontology tab and annotation function.  Although P1 had been 

instructed in the use of the gene ontology tab, she did not use it when it would have 

been beneficial.  After being reminded her of the function, she tried it and found it 

useful and efficient.  
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Figure 7.1 The biggest gap ranking result 

P1 investigated the behavior of this probe set in other histograms using the 

histogram browser and discovered that the expression of this same probe set was 

consistently low in all TH2 samples (and progressively more so with time) and that it 

was consistently at a higher expression level in TH1 and Platelet cells.  The behavior 

of a probe set like this is of interest to this project because TH1 and TH2 cells do not 

have very many unique cell markers, which makes it hard to identify and separate 

them from one another.  So any gene that is very differentially regulated is of 

potential interest as a distinct cell marker and worthy of follow-up investigation.  It is 

very important to have good cell markers for cell identification and separation 
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because the balance of TH1 and TH2 cells is thought to influence the progression 

(recovery or fatality) of the sepsis patient. 

Scatterplot Ordering  

P1 tried all ranking criteria in the order that they appear in the combobox.  With 

the very first ranking criterion, Pearson correlation coefficient, P1 noticed that 

relationships between samples of the same cell type were more highly correlated 

regardless of time point, which makes sense because the global pattern of gene 

expression would still be expected to be relatively cell specific and maintained from 

sample to sample.  Figure 7.2 is a screen shot of the ranking result.  She also noted 

that there was a fairly large degree of correlation between one of TH1 samples and 

Platelet samples (but not between the Platelet and TH2 samples).  This is interesting 

in the context of other microarray analysis that was performed on this data set in 

GeneSpring (Silicon Genetics, Redwood City, CA) in which certain genes were 

identified that may be involved in Platelet regulation of the TH1/TH2 balance.  This 

observation encourages further evaluation of the regulatory relationship between 

platelets and TH1 cells; this is a fairly general trend but may not have been noted with 

other analysis tools. 
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Figure 7.2 Scatterplot ordering result by correlation coefficient 

Contributions and Suggestions 

This case study with P1 showed that HCE informed the researcher’s overall 

analysis strategy and contributed to the analysis in a unique manner.  First of all, 

HCE’s unique framework using unsupervised clustering to enable researchers to 

decide which probe set interpretation method to choose for their Affymetrix projects 

[72] attracted her to start using HCE for their analysis.  There are several different 

Affymetrix probe set interpretation methods such as MAS5 [1], MBEI [54], RMA 

[44], and Probe Profiler.  It is very important to choose the most appropriate method 
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for a project because different methods produce different signal values which will be 

used in subsequent analyses.  Since probe set interpretation selection only requires 

sample (or column) clustering which is much faster than gene (or row) clustering, 

HCE is much faster than other programs at producing a sample dendrogram.  While 

looking into the sample clustering result and the F-measure (section 3.3.5), users 

usually explored the histogram ordering tab to understand distributions of samples.  

Then almost naturally, users move on to the scatterplot ordering tab to understand 

relationships between samples.  Of course, this natural work flow occurs more 

frequently as users become more proficient with the tool.  

Interactive coordination between the rank-by-feature framework and other 

displays such as the dendrogram view and the gene ontology view seems to enable 

users to draw more specific conclusions.  Dynamic queries available in the 

dendrogram view and the profile search view definitely allows more flexibility in 

clustering and profile searching (by drawing an expression pattern of interest) than 

many other programs.  

The layout of the main program interface makes the relationship between array 

samples much easier to interpret.  In other words, the dendrogram and heat map are 

displayed in such a way that makes similarities and differences between arrays easy 

to recognize. 

“There are several features that HCE offers that other programs do not with 

the most notable being the rank by feature functions. To my assessment, these 
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tools allow a relatively speedy overview of the shape of one’s data. I would 

therefore use these sorts of features at the beginning of my analysis to note any 

general trends that are taking place so that I can have those in mind as I execute 

my subsequent analyses.”  

“A great example of when this would have been helpful – I recently started 

analysis on a data set processed by someone else; the data was already loaded 

onto GeneSpring etc and as I was looking at specific lists of genes it eventually 

became apparent that there was something strange going on with several of my 

time points (which was strange because all of the quality control data for the 

samples looked fine) When I loaded the data into HCE – this strangeness was 

immediately apparent - some of my disease samples were behaving much more 

similarly to the controls than to the other disease samples. I would have saved a 

large amount of time if this data set had been loaded onto HCE to begin with and 

I had been able to notice that these samples had strange trends and should be 

carefully evaluated.” 

Given all of the above, HCE adds some steps/perspectives to P1’s analysis 

strategy rather than changing it all together.  By far, P1’s main analysis tools were 

dChip and GeneSpring (mostly because of their capability of comparing groups to 

find statistically significant differences in gene expression and GeneSpring’s ability 

to load in experiment parameters and save large numbers of gene lists which can be 

compared across projects), but through the rank-by-feature framework and the 
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interactive visualization techniques, HCE gives P1 additional important information 

that these programs can not.  P1 said she would definitely use HCE for future projects 

especially at the beginning of her analyses. 

The data set used in this case study is still being evaluated - so it will be a little 

while before P1 publishes anything.  At this point, the things P1 is following up on 

are genes with specific behavior patterns that P1 hope to confirm.  P1 did actively use 

HCE to determine which signal interpretation algorithm was the most reliable for this 

analysis, and that should eventually be published in the methods section of upcoming 

papers. 

7.1.4 FAMuSS Study Data Set 

P3 is the principal statistician for the Center for Genetic Medicine, Children’s 

National Medical Center.  Most of the data analysis P3 performs is epidemiological in 

nature and includes large, multi-center genetic association studies.  P3’s everyday 

analysis tool was SAS, and P3 had almost no experience in using interactive 

visualization tools like HCE before this case study.  I had two one-hour training 

sessions with P3.  Since P3 is an expert in statistics, it was much easier to explain the 

rank-by-feature framework to P3 than to any other participants.  While P3 neither 

analyze gene expression data nor uses the clustering abilities of HCE, P3 found HCE 

exceptionally useful for data exploration.  P3 works with several large data sets 

containing categorical and continuous, parametric and non-parametric data.  Most 
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data is collected prospectively, thus data exploration is a major part of P3’s ongoing 

data analysis duties.  HCE has been most useful for its efficient visualization ability 

and calculation of basic statistics. 

P3 loaded a multidimensional data set from the Functional single nucleotide 

polymorphisms Associated with Muscle Size and Strength (FAMuSS) Study [83].  

FAMuSS Study is a multicenter, NIH-funded program to examine the influence of 

gene polymorphisms on skeletal muscle size and strength before and after resistance 

exercise training.  About one thousand men and women, age 18-40 year, were 

enrolled by one of seven exercise physiology and kinesiology sites, and trained their 

nondominant arm for 12 weeks.  Skeletal muscle size (magnetic resonance imaging) 

and isometric and dynamic strength were measured before and after training.  This 

data set has about 150 variables including anthropomorphic data, muscle strength by 

maximum voluntary contraction (MVC), one repetition maximum (1RM), and muscle, 

bone and fat size by magnetic resonance imaging (MRI).  The complete list of 

variables is in Appendix C.  Some of the measurements were done for only a subset 

of participants, which means that there are many missing values in the data set.   

At the time I conducted this case study with P3, data collection was in active 

progress, and it is still going on as of March 2005.  This is a part of reason why there 

are as much as 40% of missing data.  Since this study was performed in an early stage 

of data analysis, most of the findings in this study were about quality of data sets and 
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confirmation of expected relationships.  As the data set becomes more complete, 

more interesting findings could be possible. 

Histogram Ordering 

“This feature is extremely useful to me as a statistician, mostly for data 

exploration.  It allows me to look at the distributions and test normality of all 

variables quickly and simultaneously. Additionally useful are the listings of 

outliers and numbers of unique values. Typically gaining this type of information 

using statistics packages is very time consuming, requiring an individual test 

and/or graph made for each variable.”   

As most HCE users do, P3 started to overview the clustering results on the 

dendrogram view after loading the data set.  However, unlike microarray researchers 

P3 did not spend much time examining clustering results. Rather, P3 tried the 

histogram ordering.  Normality criterion first attracted P3, and P3 found that several 

variables, such as baseline 1-RM strength, showed a bimodal distribution.  It is 

important to know this because subsequent statistical analyses might be influenced by 

that.  HCE also allowed P3 to see that there was a subject with a BMI (body mass 

index) of 2.0, an impossible number.  HCE also allowed P3 to make a list of suspect 

data points: (1) Several subjects with BMI>40, (2) Several subjects with a body 

mass>300 lbs, (3) A subjects with a height of 55 inches.  Follow-up examinations 

identified some data errors, and also confirm that some of the values were real 
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extreme ones.  These kinds of examinations are important for researchers to correct 

data collection errors or to identify extreme outliers.   

The rank-by-feature framework interface enabled P3 to perform such important 

tasks more naturally and quickly.  Those outliers could be removed to build a more 

general and accurate model.  For example, the size of the biggest gap ranking 

revealed the baseline blood pressure is an extreme outlier on the score overview.  It 

turned out that the format of the column (e.g., 120/80) for the variable could not be 

correctly processed in HCE.  After removing the column, P3 could get a more 

meaningful score overview.  For example, one of the top ranked histograms in Figure 

7.3(a) revealed an exceptionally large number of skin folds of left biceps, but actually 

the value was not consistent with other skin fold measurements.  Another top ranked 

item (Figure 7.3(b)) revealed an outlying item, which was not an error, but a real 

signal (a person who has an isometrically strong dominant arm).  These findings of 

outliers are very important because it could lead to either development of a better 

analysis model or identification of interesting genes that caused the exception. 
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(a) outlier as an incorrect data 

 
(b) outlier as a signal 

Figure 7.3 A histogram with a real exceptional item 

Scatterplot Ordering 

“I find this feature one of the most useful to statistical analysis.  By 

calculating scatter plots for every variable, it not only allows the comparison of 

the plots of all continuous variables in a pair-wise fashion, but also allows 

simultaneous calculation of correlation coefficients and assessments of both 
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linear and quadratic relationships.  Obtaining this information from a statistics 

package again can be extremely time consuming.  I could save sometimes a 

hundred pages of SAS text output.” 

In the scatterplot ordering, the most interesting ranking criterion was “correlation 

coefficient” as it was for many other users.  It turned out again that the linear 

correlation is one of the most interesting and important features that researchers want 

to detect as they start a multidimensional data analysis.  At first, P3 tried to verify that 

trivial correlations are actually there in the data set.  This task does not provide any 

new insight into the data set, but it is still important because researchers can confirm 

the validity of their data set.  Detecting a strange behavior in the middle of a data 

collection process could lead to data quality improvement by a possible change in the 

process. 

Several variables in this data set were known to be highly correlated, thus HCE 

allowed P3 to quickly confirm those correlations.  P3 identified a suspicious case in 

the data set, correlation between baseline and post-exercise height (Figure 7.4(a)). 

These two measures should not change, but a non-perfect correlation coefficient 

allowed P3 to pick out individuals whose height was measured differently at the two 

time points.  P3 could check other measurements for those individuals and might 

remove them from further analysis. 

P3 could also easily identify several strange perfect negative correlations 

between variables on the score overview (Figure 7.5 or Figure 7.7).  After quickly 
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checking the corresponding scatterplots on the scatterplot browser, P3 could easily 

conclude that those perfect negative correlations were due to missing values. All 

those scatterplots actually have only one valid item and all other items have missing 

values (Figure 7.4(b)).  Problems caused by missing values made me to improve the 

rank-by-feature framework in a way that ranking results could be less susceptible to 

missing values, which will be discussed later in this section. 

P3 could easily find groups of variables that have strong positive correlations.  

Score overview in Figure 7.5 or Figure 7.7 shows triangular or rectangular red areas, 

which represent that corresponding variables are highly correlated (one example at 

Figure 7.4(c)).  Those correlations include correlation between baseline and post-

exercise measurements of 1-RM strength, isometric strength, biceps cross-sectional 

area, and correlation between baseline and post-exercise weight. 

An interesting weak negative correlation between NDRM%CH and pre-NDRM-

max was also detected on the score overview.  This correlation might indicate that 1-

RM strength of non-dominant arm improves less after 12 weeks exercise as the 

baseline 1-RM max is bigger.  Simply speaking, 12 weeks exercise could make more 

positive changes to people who have a relatively weak arm. 

157  



  
(a) (b) 

  
(c) (d) 

Figure 7.4 Scatterplot ordering results with FAMuSS Study data set 

Contributions and Suggestions 

Overall, P3 was impressed by interactive visual feedback of HCE.  Since P3 had 

not really used the clustering feature before, P3 focused on other features that P3 

thought were extremely useful to her as a statistician for data exploration.  However, 

P3 also tried other feature such as color mosaic view and profile search, and found 
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them also useful to see the magnitude of missing data and to quickly pick out data 

points that seem unusual.   

P3 recommended a list of statistical tests that she wanted to have in the future 

version of HCE, which includes Student t-test, ANOVA, Chi square, and some non-

parametric tests.  When I first saw this list, I thought it might be worth implementing 

some of those.  But later, after I discussed with other statisticians, it turned out that a 

more efficient and general way to have those new ranking functions in future versions 

of HCE is to utilize pre-existing implementation in other packages and tools such as 

R, SAS, and Matlab.  There are a large number of commonly used statistical or 

numerical functions in those packages.  Thus, the linkage to those packages could 

greatly improve the usefulness of the rank-by-feature framework and HCE.  This 

could be another important future direction. 

Missing values caused HCE to crash when P3 tried ranking criteria such as 

correlation coefficient and least square error because missing values are all set to 0 in 

HCE, so the intermediate matrix for those ranking criteria became singular if an entire 

column is missing.  Another problem with missing values was that ranking results 

involving line or curve fittings could be distorted by the missing values as shown in 

the scatterplot at the bottom right corner of Figure 7.5.  The regression line is dragged 

down significantly due to many missing values for the Y-axis.  To solve this problem, 

which seemed to be important, I implemented a checkbox to enable users to choose 

whether they would exclude the missing values from the ranking function evaluation 
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or not.  This option significantly improved the ranking results for this case study data 

set.  For example, the fitting result for the same variable pairs shown in Figure 7.5 

was significantly improved by excluding missing values from the ranking function 

evaluation in Figure 7.6.  Compared to the score overview in Figure 7.5, the ranking 

result by the correlation coefficient criterion (Figure 7.7) was also significantly 

improved after excluding the missing values. 

 

Figure 7.5 FAMuSS Study data set in HCE 
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Figure 7.6 An improve fitting result with missing values excluded 

One important issue that came across in this case study was the problem of 

dealing with a large number of variables.  On a common monitor with resolution of 

1280x1024 (Figure 7.7), the score overview is so crowded that variable names are 

barely readable.  A high resolution monitor (e.g., 3840x2400) could solve this 

problem to some extent.  A zooming, filtering, or grouping function for the rank-by-

feature framework might also be an interesting and useful possibility for the future 

development especially when the number of variables is very large.  
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Figure 7.7 Correlation coefficient ranking with missing values excluded 

P3 used HCE to do most of her data exploration at the start of analysis, so HCE 

actually contributed to all of the papers that have come out of FAMuSS Study.  The 

most significant contribution was made to the paper on the finding of a strong 

association between AKT1 haplotypes and body composition in males, which was 

submitted to Science and is under review right now. 
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7.1.5 Aerosols, Clouds, and Precipitation  

A researcher (P5) in the meteorology department at the University of Maryland was 

interested in using HCE for his research projects.  After two demonstration sessions, 

P5 was convinced that his research could benefit from HCE, and agreed to participate 

in the case study.  P5 said that data clustering is not necessarily required in his 

research field, but he often needs to stratify the data.  P5 mostly used spreadsheet 

software such as Excel and Sigmaplot [81] to view correlation and distribution for 

some variables of importance.  P5 has also been learning and using IDL (Interactive 

Data Language) from Research System Inc [67]. IDL is a kind of programming 

language or programming environment similar to MATLAB [82], but it is popular in 

the research field of P5.  He has been learning IDL partially because he is familiar 

with FORTRAN and IDL has FORTRAN like statements for doing mathematical 

computations and allows FORTRAN formatting for output.   

Once P5 found some interesting measurement data, P5 began to collect relevant 

data from various sources – satellite image from different platforms, surface observed 

data, or aircraft measured data. Since these data are archived by different 

organizations (or countries) with various data formats, there is no standardized 

database (available on-line) for data collection, extraction, and check-up.  Thus, it 

usually takes a long time to prepare a data set that is clean enough to start a serious 

analysis. After checking with additional data, theoretical numerical simulations are 

made if necessary. 
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The data set for this case study was an in situ aerosol profiling data, which has 

2829 rows (time) and 23 columns (measurements).  The variables used for the 

analysis include amount and size of aerosols, and various meteorological conditions 

relevant to aerosols – cloud amount, wind, relative humidity, etc (Table 7.1).  The 

intended purpose of using HCE by P5 was to classify aerosols according to their types 

or meteorological conditions and to identify certain meteorological conditions that 

result in different relationships among the variables representing aerosol load and 

properties.  

Variable Name Description 

AOT_440 Aerosol optical depth (or thickness; AOT or AOD) measured at 

the wavelength of 440nm 

AOT_xxx AOT measured at wavelength xxx nm 

440-675Angstrom angstrom exponent calculated from AOD at 440nm and AOD at 

675nm 

FR_All  cloud fraction (ratio of area covered by clouds to total area of 

whole sky over the observing location) 

FR_Opaq  cloud fraction but only for optically opaque clouds 

FR_thin cloud fraction but only for optically thin (and normally high 

altitude) clouds 

Vapor_Pres partial pressure of water vapor 

W_Speed wind speed (unit m/s) 

W_Direction direction of wind (0-360degree) 
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RH relative humidity (0-100%; or fraction 0-1.0) 

Water (cm) total amount of water vapor (gas) throughout the column of 

atmosphere per unit area. In fact, the total amount of gas 

translated into a depth (in centimeter) of liquid water when all 

the water vapor is condensed at standard temperature and 

pressure.  

Temp temperature  

CN_AMBIENT number concentration of aerosols 

SUM00 cloud fraction for circumsolar region within angular distance 

between 10-20 degree from the direction of the solar beam 

SUM01 cloud fraction for circumsolar region within angular distance 

between 10-30 degree from the direction of the solar beam 

SUMxx defined similar to above, but with 10 degree increment in 

angular distance 

Table 7.1 Metadata for the aerosol data set  

Aerosols, very small particles (0.01~10 micrometer) suspended in the 

atmosphere in liquid or solid state, can modulate the climate of the earth by absorbing 

and reflecting solar and infrared radiation and by affecting genesis, life, and decay of 

clouds, thereby even affecting precipitation.  While properties of aerosols are diverse 

in terms of physical/optical/chemical properties, they can be categorized into several 

types.  Measuring types of aerosols in the atmosphere is important but very difficult 

due to its high spatial and temporal variability.  Analysis of air samples taken at the 

surface does not represent the entire atmosphere; therefore, indirect methods have 
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been used by measuring solar radiation at specific wavelengths. It is desired to 

identify the types of aerosols from available data or at least to classify data according 

to their similarity. 

Histogram Ordering 

P5 used the histogram ordering when he investigated the data set for the first 

time.  P5 tried all the ranking criteria, but he found the gap size ranking and the 

normality ranking most interesting.  From the normality ranking result, on the score 

overview P5 could preattentively notice that AOT_670 showed the least normal 

distribution (Figure 7.8).  On the histogram browser he realized that the data set has a 

bimodal distribution of AOT_670, and it also has several distinctive outliers, which 

were also easily noticeable in the ranking result by the biggest gap size.  

 

Figure 7.8 Bimodal distribution found in the aerosol data set 
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Unlike other case study participants, P5 wanted to move on to the scatterplot 

ordering after quickly trying the histogram ordering.  This was in part because he was 

much more interested in pair-wise relationships than individual distributions.  P5 was 

also special in terms of the way he used HCE.  He was interested in finding 

relationships not only with all data items but also with only some subset of items such 

as a cluster of items.  He liked to see the coordination between the dendrogram view 

and the rank-by-feature interface.  When he examined a ranking result, he selected 

many clusters one by one in the dendrogram view and saw how the items in the 

cluster are distributed in a histogram or a scatterplot.  

Scatterplot Ordering 

“The main utility of HCE in my study is to quickly view data histograms, 

relationships (e.g., correlation) between variables, and to stratify the data, if 

necessary. Since HCE does the jobs all at once, it is a very convenient tool for 

data quick-look.” 

Wind speed and wind direction, which are not expected to correlate to each other 

in general were viewed. But aerosol properties for a certain location may depend on 

wind direction and/or wind speed (especially when aerosol source regions are close). 

Two groups are found to be well-defined in terms of their wind-direction with similar 

magnitude of wind speed.  Aerosol optical depth and aerosol concentration number 

are measured at the surface (lower two panels; see the report for the terms) and it was 

found that relationship between the two are somewhat dependent on wind direction. 
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For this kind of analysis, it will be very helpful, if the multiple graphic windows (for 

scatter plots) can be viewed simultaneously. 

P5 accidentally saw a relationship between two variables, which was never 

examined before.  That was the quadracity between cloud fractions computed at two 

different circumsolar areas (Figure 7.9).  There is a specially designed camera that 

captures images of sky for the entire hemisphere.  From each the image, angular 

distance from the sun’s position to any pixels in the image can be computed.  

Researchers divided the image according to the angular distance from the sun. 

Circumsolar area stands for area with certain range of angular distance from the sun. 

Unlike other users, instead of being satisfied by the finding, P5 used the 

dendrogram view to further figure out which cluster contributed or broke-down the 

quadratic relationship.  P5 identified two clusters - one with well-defined quadracity 

(B in Figure 7.9) and the other with break-down of such quadracity (A in Figure 7.9).  

P5 did not stop here, instead he examined other relationships among aerosol-related 

parameters for the selected two clusters to check if it makes any difference.  P5 

finally found another interesting feature that the well-defined quadracity was involved 

in relatively low water vapor amount regardless of aerosol number concentration, 

whereas the break-down of quadracity was involved in low aerosol number 

concentration regardless of water vapor amount (two scatterplots at the bottom in 

Figure 7.9).  This interesting feature might improve the underlying model later after 

further investigation. 
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Figure 7.9 Quadracity found in the aerosol data set.  Score overview is at top right 

corner, where a big bright red cell is for SUM01 and SUM02. Size coding by 

complement of least square error and color coding by the score (coefficient of the 

highest term).  Two scatterplots at the top shows the qudraticity between SUM01 and 

SUM02. Left scatterplot highlights items in the cluster A, and right scatterplot 

highlights items in the cluster B.  Two scatterplots at the bottom shows distinctive 

distributions of two clusters on a 2D projection (CN_AMBIENT vs. WATER). 

At a weekly meeting where he explained his finding of the quadratic relationship, 

P5 complained that he could not see more than one scatterplot at the same time.  Even 

169  



though I had explained how to do it at the demonstration sessions, he forgot it.  If he 

had known it when he tried to identify the interesting quadracity, he could have done 

it much more efficiently by looking at two or more scatterplots at the same time.   

Contributions and Suggestions 

Many different types of units are used for meteorological data, some of them 

vary linearly, some vary logarithmically (or exponentially), and others vary sharply 

under certain conditions.  Normality is not always guaranteed and some types of data 

have multi-modality.  Therefore, when importing a data set including many different 

types of data, those may need to be scaled respectively, depending on the 

characteristics of each datum.  Thus, P5 suggested adding scaling functions to the 

rank-by-feature framework.  Users could scale each variable in the histogram 

ordering and rank variables after scaling, and the scaling result could affect the 

ranking in the scatterplot ordering.  Considering that many other users have suggested 

the similar idea, this functionality could improve usefulness of the rank-by-feature 

framework as well as other HCE tools. 

At the first demonstration session with P5, he asked for a function to customize 

color mapping in the score overview.  At the time, HCE only used green and red color 

coding by default, and users could not customize it.  He prefers a red-blue color 

scheme intermediated by white color, which has been widely used in the meteorology 

research field.  I accepted this request and implemented it in the next version of HCE, 

which was used for this case study.  Another suggestion by P5 related to color use in 
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HCE is the function of changing background color for each view in HCE, especially 

for scatterplot views.  

This case study also identified a potential future implementation possibility.  

Most multiple views coordination systems maintain only one set of selected items 

which are highlighted in all coordinated views.  If multiple sets of selected items are 

allowed, it could improve cognition of important patterns in some cases.  For example, 

if users could select two clusters to color each cluster differently in Figure 7.9, users 

might see the quadratic relationship more clearly in a single scatterplot view or two 

separate views.  Furthermore, if the intersection of sets of selected items is colored 

differently when the sets could be non-disjoint, users could visually scrutinize the 

interaction among those sets. 

A follow-up investigation into the quadracity between SUM01 and SUM02 

enabled P5 to figure out a possible case of it, which was related to the cloud detection 

algorithm that was used for the cloud amount measurement.   He hypothesized that 

the cloud detection algorithm might overestimate the amount of clouds at the inner 

circumsolar areas (SUM01) due to the difficulty in cloud detection near the sun.  This 

hypothesis needs to be validated through further investigations.  If the hypothesis is 

accepted, it might contribute to the development of a better cloud detection algorithm. 
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7.1.6 Discussion  

Month-long case studies with motivated users gave me a chance to look closely at 

how HCE and the rank-by-feature framework are used for real research projects.  It 

became clear that HCE and the rank-by-feature framework enable users to quickly 

examine the data sets.  GRID principles seemed to be naturally applied by most 

participants as if the principles had been accepted for a long time.  Interactive visual 

examinations often led to the identification of important unexpected patterns in the 

data set, which is important for data verification and hypothesis generation. 

Even though HCE is more stable than other research prototypes freely available, 

it had crashed several times over the course of the case studies.  Participants 

understanding and willingness to accept these problems enabled case studies to finish 

successfully with invaluable suggestions and improvements.  Regular meetings and 

prompt email communication were important means by which I could make the 

participants feel as if I were a research partners rather than merely using them as test 

subjects.  One of most difficult parts of these kind of case studies is that the developer 

of the tool needs to spend ample time to understand the data set and the underlying 

research problems that participants are interested in.  Without such understanding, it 

is not easy to make participants think of the conductor as a research partner.  Another 

difficult part was that sometimes a participant might forget what had been done in 

earlier meetings.  This is in part because the interval between meetings was too long.  

A better option could be a one-week intensive case study.  However, this option has 
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also its shortcomings.  Participants’ research might be distracted by frequent meetings, 

and important design suggestions from participants could not be promptly 

incorporated into the tool and the case study itself.   

Overall, although there were a couple of cases of early termination, case studies 

showed the efficacy of HCE and the underlying principles for the analyses of 

multidimensional data in a real-world environment.  Invaluable suggestions for 

improvement were also made by participants, which include: (1) color coding 

customization, (2) missing value handling in ranking functions, (3) scaling of each 

variable, (4) multiple selection sets, (5) potential ranking criteria including various 

important statistical tests, and (6) linkage to external statistical tools.  

7.2 HCE User Survey via Emails 

HCE has been freely distributed on the web at www.cs.umd.edu/hcil/hce for research 

or academic purposes.  As of February 2005, about 2451 downloads have been 

logged in the download log since I opened up the download page in April 2002.  As 

shown in Figure 7.10, more people download HCE as newer versions are released.  
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Figure 7.10 HCE Download Statistics (3/1/2005) 

People from all around the world downloaded HCE for various purposes.  The 

most popular uses are clustering, microarray data analysis, data mining/analysis, 

visualization, and interfaces. HCE is also being used for educational purposes such as 

teaching materials.  Other interesting users include social scientists, defense or 

security agencies, environmental or financial analysts.   It also has been licensed to a 

biotech company at New Zealand. 

When users download HCE from the HCE homepage at 

www.cs.umd.edu/hcil/hce, they are asked to fill in the registration form.  There is an 

optional field where users can write down possible usage of HCE.  Almost 30% of 

users placed a note on their possible usages even though the field was optional.  

Encouraged by this and plenty of email inquiries from HCE users, I decided to 

conduct an email user survey on the usage of the rank-by-feature framework and 

HCE.  After removing duplicated email addresses and roughly filtering invalid email 
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addresses, I sent out the user survey questionnaire (Appendix B) to about 1500 email 

addresses.  The questionnaire consists of 13 questions regarding HCE usage in 

general and the rank-by-feature framework.  Almost 40% of user survey emails were 

undelivered due to various reasons such as invalid email address and blocking by 

spam filters.  Finally, 83 users replied, which is around 9% of all users from whom 

the survey email was at least not bounced.  Among the 83 users, 25 users did not 

answer a majority of questions because they did not actually use HCE or just tried it 

for curiosity.  Thus, this section summarizes the answers of 57 users. 

7.2.1 HCE: Overall 

Most of the users are biologists, computer scientists, and statisticians, but physicists, 

business managers, sociologists, geographers, medical doctors, and others in various 

occupations also constitute the HCE user group.  Microarray data analysis and 

clustering analysis are the most popular uses of HCE.  Other usage of HCE includes 

visual data exploration and data analysis in general.  HCE is also used as a teaching 

material for information visualization and data mining classes. 
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Figure 7.11 How often did you use HCE when you used it most intensively? 

A large portion of users run HCE with their data set just to quickly examine a 

hierarchical clustering result when a data set is ready once a month or once a week 

(Figure 7.11).  Sometimes they just get a screen grab of the dendrogram.  

Interestingly, some users use HCE many times a day to explore the data set using 

various tools in HCE.  Most of these active users tend to think that HCE significantly 

improved the way they analyze data sets while most of less active users (once a 

month) think HCE somewhat less significantly improved it.  More users tried HCE 

with fairly large data sets than with small data sets (Figure 7.12).  This is partially 

because many users tried to analyze microarray data sets where there are commonly 

more than 10,000 rows, or sometimes around 40,000 rows.  Because the number of 

columns does not significantly affect the performance of most tools in HCE, I did not 

ask about the number of columns, but it is mostly from 10 through 150.  
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Figure 7.12 What is the maximum number of rows in data sets that you have loaded 

in HCE? 

Since HCE had become visible to users as a cluster visualization tool, most users 

used the dendrogram and color mosaic feature (Figure 7.13).  Even though the tabular 

view uses a list view control that is slightly improved from the standard windows list 

view control (section 3.5.1), many users found it useful for data exploration.  It is 

important to note that a very standard tabular display like a spreadsheet is still very 

useful and necessary for researchers to effectively examine their data set in addition 

to novel interactive displays such as the dendrogram and the parallel coordinates view.  

The rank-by-feature interfaces (histogram ordering and scatterplot ordering) were 

also used by many users although they are relatively new features available only in 

the  recent versions of HCE.  The gene ontology view is only useful to molecular 

biologists who are interested in gene ontology, so it is used by the smallest number of 

users.  Generalization of the gene ontology view to more general hierarchical 
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knowledge structures might greatly improve the usefulness of the view for more 

general users (e.g. sociologists, business analysts) other than biologists.  

49

25 24 25
22

7

0

10

20

30

40

50

60

dendrogram histogram
ordering

scatterplot
ordering

tabular view profile search gene ontology

 

Figure 7.13 Which features have you used? 

7.2.2  Rank-by-Feature Framework 

More users said it was easier (very easy or somewhat easy) to use the histogram 

ordering (53%, Figure 7.14) than the scatterplot ordering (46%, Figure 7.16).  This 

might be in part because relationships between variables are more difficult to 

appreciate than each individual variable alone.  According to users’ additional 

comments, it seems clear that users try the histogram ordering first and then the 

scatterplot ordering, which is consistent with the GRID principles (section 4.3). 
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The ranking criteria are more evenly useful in the histogram ordering than in the 

scatterplot ordering (Figure 7.15 & Figure 7.17).  Ranking criteria in the histogram 

ordering seems to be easier to understand than ones in the scatterplot.  The least 

square error and quadracity criteria in the scatterplot ordering are the most difficult 

for users to understand.  Explanations of ranking criteria shown in the rank-by-feature 

interface might be too short to make users understand the ranking criteria.  Context-

sensitive help or an online help page could encourage users to use such difficult but 

sometimes useful ranking criteria.   

In both orderings, the first ranking criterion, normality for the histogram ordering 

and correlation coefficient for the scatterplot ordering, is most popularly used.  

Considering that average HCE users are professionals who have some knowledge of 

statistics, the implication of the normality test may be well understood by most users.  

Other ranking criteria in the histogram ordering are also almost straightforward.  “The 

size of the biggest gap” ranking criterion is a novel concept, so it is least utilized even 

though the idea is very simple.  As shown in case studies, once users get the idea of 

the gap, it could become a very useful ranking criterion for outlier detection. 
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Figure 7.14 How easy was it to understand and use the histogram ordering? 
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Figure 7.15 What are the most useful ranking criteria in the histogram ordering? 

Correlation is a very important and well known linear association between two 

continuous variables.  Thus, after users decided to try the scatterplot ordering, they 

would at least try this first ranking criterion, correlation coefficient.  Most users find 
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the score overview is very useful to examine correlations between variables.  A 

participant commented that the complete overview of all possible pair-wise 

relationships prevent potential problems caused by missing some important 

relationships by chance.  Even though uniformity and the number of outliers are 2D 

versions of the same ranking criteria in the histogram ordering, users seemed to have 

some difficulty in applying them to 2D relationships.  No participant voted for the 

quadracity criterion.  Although a case study participant (P5) found it useful, but more 

work needs to be done before it becomes useful to more users.  
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Figure 7.16 How easy was it to understand and use the scatterplot ordering? 
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Figure 7.17 What are the most useful ranking criteria in the scatterplot ordering? 

7.2.3 Discussion 

About 96% of users said that HCE improved the way they analyze their data sets at 

least a little bit (Figure 7.18).  About 73 % of those users felt that HCE at least 

somewhat significantly improved their analysis practices.  A manager of corporate 

development at a company commented: 

“We performed clustering and - based on the HCE output - modified our 

specifications for a software product that we offer to non-profits.  Very direct 

link between the HCE usability and good cause!” 

Users’ additional comments indicate that interactive visual presentations and 

sustainable robustness of HCE get credit for that.  Together with appreciation for 
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making HCE available, users suggested several improvements: (1) some evaluation 

measures for unsupervised clustering results, (2) more clustering algorithms or other 

projection techniques such as SOM and PCA, (3) more import functions for 

clustering results by other clustering algorithms, and (4) more improved 

printing/saving functions.  
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Figure 7.18 Do you think HCE improved the way you analyze your data set? 

 A few users also expressed their concern over the point that some ranking 

criteria are difficult to understand without deep statistical backgrounds:   

“Overall, it's a daunting tool, and I found it hard as someone without deep 

statistical understanding to know how to use it. So my suggestion would be to 

provide either a detailed tutorial or a scaled-down set of interface options for 

people with simple needs.” 
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“I am not a mathematician and so am unfamiliar with most, if not all, the 

terminology used in the user guide.  I am clustering data, I don't really 

understand what all the analysis tools do as I only need the output from the 

clustering process.  I used most of the default settings.” 

This is actually a very difficult problem to address appropriately.  Even after a 

thorough live demonstration session, a couple of users still have a difficulty in 

understanding some ranking criteria.  Detailed tutorials could help users go through if 

they are motivated.  Otherwise it is not a general solution.  This problem is related to 

whether a tool is for a general audience or for specialized users.  The current version 

of HCE requires some statistical knowledge, which makes it a more sophisticated tool.  

Several users gave their domain specific suggestions.  Two biologists suggested 

adding a new distance measure (genetic distance for binary data) to the clustering 

dialog box.  The director of a computational linguistics program at a university who is 

using HCE with his student for document clustering gave a comment: 

“Actually, adding some language specific features would be quite simple and 

helpful for spreading this tool in even a wider community... :-).” 

This user survey certainly had its limitations.  First, even though users’ responses 

to the survey email were voluntary, there was still a danger that users who had been 

disappointed with HCE were less likely to participate.  If I, the conductor, had 

randomly selected participants, the result might have been different from the current 
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result.  However, it would have been difficult to compel the randomly selected users 

participate in the survey.  Second, the number of participants was limited.  If the 

survey had been conducted via a web page instead of emails, the turnout might have 

been better due to the better-preserved anonymity.  Third, a problem related to the 

design of the questionnaire meant that several respondents made only one selection 

on question 4 (Appendix B) even though it was a multiple-selection question.  That is 

why the number of users who voted for the histogram ordering/scatterplot ordering on 

question 4 is less than the number of users who answered questions 6 and 9.  To 

address these limitations of this email survey, an alternative medium for a user survey 

might be an HTML web page since anonymity might be better guaranteed than using 

emails.  However, since users need to click on a link in a survey invitation email to go 

to the HTML web page, this additional transition could discourage users to participate 

the user survey.  Each question should clearly express whether it is a single- or 

multiple-selection question.  More questions could be asked to further evaluate the 

rank-by-feature framework.   

In spite of the limitations, this user survey showed the usefulness of HCE and the 

rank-by-feature framework in terms of improving the way users analyze their data.  

The GRID principles seemed to be implicitly observed, but more work is necessary to 

encourage more users to smoothly advance from 1D study to 2D study.  More 

training materials and context sensitive help are necessary to help users understand 

the utility and implication of ranking criteria. 
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Chapter 8  

Future Work and Contributions 

8.1 Future Work 

Users’ comments, case studies, and email user survey suggested numerous possible 

future work.  Even though there are several interesting future works for the clustering 

results visualization in HCE such as incorporating new clustering algorithms other 

than the hierarchical clustering and integrating meaningful clustering result 

evaluation measures, I will concentrate on the possible future works for the rank-by-

feature framework in this chapter. 

8.1.1 Scaling-up 

Limited screen resolution and time complexity of ranking functions are two important 

factors that make it difficult to scale up the rank-by-feature framework.  Limited 

screen resolution makes it hard to visualize the score overview when there are more 

than a hundred variables.  By removing grid lines when there are too many cell on the 

overview, the visual overview is improved, but variable names on the score overview 

become too small to read.   

Zoom-and-pan could solve this problem by allowing users to zoom in to a certain 

part of score overview.  Filtering is another possible solution.  Users could filter out 

uninteresting variables by dynamically changing threshold score values.  If a cell does 
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not satisfy the threshold range, it is grayed out.  If an entire row or column is grayed 

out on the score overview, the entire row or column could be filtered out so that 

remaining cells could share more screen space.   

Another way to solve this problem is related to the coordination between the 

histogram ordering and the scatterplot ordering.  Users might select some 

uninteresting variables in the histogram ordering, and then users can exclude those 

variables from subsequent rankings both in the histogram ordering and in the 

scatterplot ordering.  This coordination between two user interface components could 

improve the usefulness of the rank-by-feature framework by providing an interactive 

way to cope with high dimensionality of data sets.   

Ranking groups of items rather than ranking individual items could also be a 

solution.  Since HCE already produces the column clustering result, the rank-by-

feature framework could utilize the clustering result in ranking.  To begin with, users 

could do ranking with clusters first.  Then users could choose a small number of 

representative variables in each cluster and perform a ranking with those selected 

small number of variables.   

When a ranking function’s time complexity is too big to run on large data sets, 

we could quantize the data set into a relatively small number of bins, and then run the 

ranking function on the bins instead of the raw data.  The approximate ranking result 

can be available promptly to users.  If users are interested in the result and want to see 

a more accurate result, they can try the original ranking algorithm.  Development of a 
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new version of the ranking algorithm that can deal with bins instead of individual 

items might not be easy for some ranking criteria such as LOF-based outlier ranking.  

The outlier detection algorithm has to be significantly changed to deal with bins.  The 

grid-based DB-out algorithm by Knorr [48] could be a possible alternative in this case.  

8.1.2 Integration with Other Tools 

There are two possible approaches to link HCE and other tools such as Excel, R, and 

WEKA [27]: (1) the rank-by-feature framework can be implemented as a plug-in for 

other tools like Excel, (2) statistical or numerical functions in those tools can be used 

as ranking criteria in the rank-by-feature framework.  Using the first approach, the 

rank-by-feature framework could improve the way data sets are examined in those 

tools.  The GRID principles could reach a more general audience through the succinct 

rank-by-feature framework user interface if it can be implemented in a general 

purpose spreadsheet like Excel.  The second approach could increase usefulness of 

the rank-by-feature framework in HCE and HCE itself thanks to the richer set of 

possible ranking criteria available in those tools. 

From the case studies and interviews with HCE uses, it turned out that 

spreadsheet programs such as Excel are widely used for data analysis.  The data 

analysis add-in in Excel provides researchers with several essential statistical 

functions such as T-test, ANOVA, F-test, correlation, regression, and so on.  Those 

statistical functions could be a useful set of ranking criteria for the rank-by-feature 
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framework. The rank-by-feature framework could be implemented as an add-in 

macro using Microsoft Visual Basic for Applications (VBA) as shown in the mockup 

at Figure 8.1.  Selection of a pair of variables or items in the rank-by-feature 

framework could make the corresponding columns or rows interactively highlighted 

in an Excel spreadsheet, and vice versa. 

 

Figure 8.1 Rank-by-feature framework as an Excel add-in (mockup) 

The second approach might be better when external tools have a richer set of 

useful and frequently used statistical or numerical functions, and the implementation 

of add-ins for those tools is problematic.  Those functions already available in other 
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useful tools can be a good set of ranking criteria in the rank-by-feature framework.  

This could dramatically save implementation efforts and also prevent potential 

problems of implementation errors.  Packages like R that are freely available and for 

which there is a strong user and developer community could be a better choice than 

expensive commercial packages.  R is `GNU S', a freely available language and 

environment for statistical computing and graphics which provides a wide variety of 

statistical and graphical techniques [66].  The R (D)COM Server package can be used 

to connect HCE with R by including Active X controls in the package.  A COM 

connection might be slower than using library function calls.  Linking to such tools 

could make HCE more useful and attract users to try interactive visualization tools 

like HCE. 

8.1.3 More Interaction in the Rank-by-Feature Framework 

Sometimes users see a small number of items with extreme values which significantly 

influence the score of a histogram or a scatterplot in the rank-by-feature framework.  

For example, two highly populated big counties like LA and Chicago seemed to 

dominate several ranking results such as normality, gap size, and uniformity in the 

histogram ordering.  Ranking by correlation coefficient and least square errors in the 

scatterplot ordering are also usually influenced by those outlying items.  In those 

cases, running the ranking again after removing those outlying items could generate a 

more robust result.  Users could select a group of items on a scatterplot or on a 
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histogram and temporarily remove them from the data set, and then run the ranking 

criterion with the new data set.   

There should be some consideration on whether the temporary removal of items 

would influence other views, for example, whether removal of items on the histogram 

view would make the scatterplot ordering run again or not.   If it propagates to the 

clustering result view, it would take some time to re-cluster a large data set after 

removal of those items.  It is important to have a way to adjust the range of 

coordination while implementing this filtering mechanism.  Similar consideration 

should also be taken when removing some uninteresting variables in the histogram 

ordering as discussed in section 8.1.1.  Sometimes it is necessary to coordinate the 

two rank-by-feature framework interfaces, but users might just want to restrict the 

change in the current framework interface.  For example, users might want to remove 

an outlying item for normality ranking in the histogram ordering to get more 

meaningful scores, but they might want to keep it for the scatterplot ordering.  

Filtering a small number of variables that have an exceptionally high or low score 

could also improve the score overview in terms of color mapping because a smaller 

range of score values could share the same color range after filtering. 

8.1.4 More Improvements on Ranking 

Section 4.7 explained two possible ranking criteria for categorical data, but more 

interesting ranking criteria and further consideration on how to deal with categorical 
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variables may be needed to address the issue more thoroughly.  ANOVA could be a 

meaningful ranking criterion to evaluate relationships between a categorical variable 

and a continuous variable.  Logistic regression or loglinear modeling methods [62] 

could generate potential ranking criteria when categorical variables are involved.  

Goodness-of-fit tests for these models could be potential ranking criteria for 

categorical variables.  A different binning strategy (or quantization strategy) could 

change the ranking result by association when both categorical and continuous 

variables are involved.   The traditional scatterplot display is not enough to show the 

relationships between two categorical variables or between a categorical variable and 

a continuous variable.  A significant change of the scatterplot browser might be 

necessary to properly show the relationships among variables if one is categorical. 

As more and more ranking functions are added to the rank-by-feature framework 

either through linking to external statistical packages or by new implementations, it 

becomes more desirable to customize ranking functions according to users' interests.  

Molecular biologists analyzing microarray data sets might need a different set of 

ranking functions than meteorologists analyzing satellite sensing data.  After carefully 

categorizing ranking criteria available in the system, the rank-by-feature framework 

could allow users to choose a set of ranking criteria in a certain category that users are 

most interested in. 

While I have demonstrated the rank-by-feature framework to various users, it is 

still not easy to make them understand the meaning of each ranking criterion.  
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Sometimes fairly experienced users could not understand the implication of a ranking 

result.  This underscores the importance of developing good training materials such as 

an easy-to-understand application example for each ranking criterion.  I started to 

compile such examples on the HCE webpage, and recently the application report 

project of the information visualization class at the University of Maryland has 

provided more interesting examples with various data sets.  These efforts could lead 

to a repository of interactive visual exploration examples for multidimensional data 

sets. 

8.1.5 Future Evaluations 

As revealed in my case studies, researchers in different fields usually have different 

research styles and they use different tools and methods.  Future case studies might 

benefit by involving users in other research fields such as business analysis and 

sociology.  In addition, it is important to find highly motivated users who could 

endure shortcomings of HCE encountered during the user study.  Regular meetings 

and timely communications are also important to make the participating researchers 

think of the case study conductor as their research partner not just as an observer.  To 

some extent, especially in the beginning, participants also benefit from understanding 

the conductor’s research as well as the tool.  A future user survey could lead to a 

better evaluation if an HTML web page based survey is conducted first and then 

email inquiries follow in cases where further investigation is necessary.  In this way, a 

better turnout could be expected, thus more general understanding could be possible.  
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A more in-depth understanding might be gained from personal interview of users or 

focus groups.   

8.2 Contributions 

In spite of the variety of data sets and the wide application domains where 

multidimensional data is extensively used, current software tools for 

multidimensional data sets are often patchworks of graphical and statistical methods 

leaving many researchers uncertain about how to explore their data in an orderly 

manner.   

This dissertation offers a set of principles and a novel rank-by-feature framework 

in an interactive visualization tool called HCE. Those principles and framework 

improve the way to analyze multidimensional data sets by enabling users to 

systematically examine 1D or 2D projections of the multidimensional data sets in an 

interactive visual environment where information visualization techniques and 

statistical methods complement each other.  Particular contributions include: 

• Graphics, Ranking, and Interaction for Discovery (GRID) principles– GRID 

principles extends an existing statistical strategy for exploratory analysis of 

multidimensional data by incorporating ranking strategies and interactive 

visualization techniques. GRID principles help users organize their discovery 

process in an orderly manner so as to produce more thorough analyses and 

extract deeper insights in any multidimensional data application 
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• Rank-by-feature framework: A user interface framework was built upon the 

GRID principles. Rank-by-feature framework integrates interactive 

information visualization techniques with statistical methods and data mining 

algorithms to enable users to orderly examine multidimensional data sets 

using 1D and 2D projections. 

• The Hierarchical Clustering Explorer (HCE) application: HCE implements the 

rank-by-feature framework based on the GRID principles and supports 

interactive exploration of hierarchical clustering results to reveal one of 

important features – clusters. 

• Validation through case studies and user surveys: Usefulness and the efficacy 

of HCE and the rank-by-feature framework have been demonstrated through 

three case studies in a real-world environment and through a user survey via 

emails.  Numerous insights and improvements to the design and 

implementation were identified through the case studies and an email survey. 

This research has revealed potential future work described in Chapter 4 and 

Chapter 8.  Some of the future work might require an improvement in the user 

interface and the software design.  Easy-to-follow teaching materials such as tutorials 

could attract more general users.  As a serious research tool for motivated experts, 

close collaboration with those users on getting suggestions and feedback will increase 

the potential of HCE for making the expert smarter.   
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Appendix A  

Informed Consent Form for Case Study 
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Appendix B  

HCE User Survey Questionnaire 

1. What is your job?   (for example, biologist, computer scientist, statistician)     
 
__________________________________________ 
 

2. What is the main purpose of your HCE use? 
(for example, microarray-related research, as teaching material) 
 
______________________________________________ 

 
3. How often did you use HCE when you used it most intensively? 

_ Once a month   _ Once a week    _ Once a day    _ Many times a day 
 

4. Which features have you used? 
___ dendrogram & mosaic         ___ histogram ordering 
___ scatterplot ordering   ___ tabular view 
___ profile search   ___ gene ontology 
 

5. What is the maximum number of rows in data sets that you have loaded in 
HCE? 
_ less than 100    _ less than 1000    _ less than 10,000    _ more than 10,000 

 
6. If you have tried histogram ordering, was it easy to understand and use? 

_ very easy  _ somewhat easy  _ neutral   _ somewhat hard _ very hard 
 

7. What are the most useful ranking criteria in the histogram ordering? 
___ Normality 
___ Uniformity 
___ The number of potential outliers 
___ The number of unique values 
___ Size of the biggest gap 
 

8. Are there important ranking criteria missing in the histogram ordering.  
__________________________________________________________ 
 
__________________________________________________________ 
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9. If you have tried scatterplot ordering, was it easy to understand and use? 
_ very easy  _ somewhat easy  _ neutral   _ somewhat hard _ very hard 
 

10. What are the most useful ranking criteria in the scatterplot ordering? 
___ Correlation coefficient 
___ Least square error for curvilinear regression 
___ Quadracity 
___ The number of potential outliers 
___ The number of items in the region of interest 
___ Uniformity of scatterplots 
 

11. Are there important ranking criteria missing in the scatterplot ordering? 
 

__________________________________________________________ 
 
__________________________________________________________ 
 

12. Do you think HCE improved the way you analyze your data set? 
_ significantly  _ somewhat significantly   _ a little bit   _ not at all 

 
13. Please give me any other comments or suggestions on HCE: 
 
      _________________________________________________________ 
 
      _________________________________________________________ 
 
      _________________________________________________________ 
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Appendix C  

FAMuSS Study Data Set Variable Description 

Variable Name Description 
Id subject ID number 
Status status of subject (0=complete; 1=dropout; 2=active/incomplete) 
Center study site 
Term term of recruitment (year-term where 1=spring; 2=summer; 3=fall) 
Gender gender 
Age age 
Race race 
Racedicot dichotomous race (0=Caucasian; 1=Non-Caucasian)  
Bi-ND-PRE pre biceps cross-sectional area (CSA) of non-dominant arm 
Bi-ND-POST post biceps cross-sectional area of non-dominant arm 
Bi_ND_Diff Difference in non-dominant arm biceps CSA 
Bi_ND%CH % change in non-dominant arm biceps CSA 
Bi-D-PRE pre biceps cross-sectional area of dominant arm 
Bi-D-POST post biceps cross-sectional area of dominant arm 
Bi_D_Diff Difference in dominant arm biceps CSA 
Bi_D%CH % change in dominant arm biceps CSA 
Hum-ND-PRE pre humerus cross-sectional area of non-dominant arm 
Hum-ND-POST post humerus cross-sectional area of non-dominant arm 
Hum_ND_Diff Difference in non-dominant arm humerus CSA 
Hum_ND%CH % change in non-dominant arm humerus CSA 
Hum-D-PRE pre humerus cross-sectional area of dominant arm 
Hum-D-POST post humerus cross-sectional area of dominant arm 
Hum_D_Diff Difference in dominant arm humerus CSA 
Hum_D%CH % change in dominant arm humerus CSA 
SF-ND-PRE pre sub-cutaneous fat cross-sectional area of non-dominant arm 
SF-ND-POST post sub-cutaneous fat cross-sectional area of non-dominant arm 
SF_ND_Diff Difference in non-dominant arm sub. fat CSA 
SF_ND%CH % change in non-dominant arm sub. fat CSA 
SF-D-PRE pre sub-cutaneous fat cross-sectional area of dominant arm 
SF-D-POST post sub-cutaneous fat cross-sectional area of dominant arm 
SF_D_Diff Difference in dominant arm sub. fat CSA 
SF_D%CH % change in dominant arm sub. fat CSA 
Tri-ND-PRE pre triceps cross-sectional area of non-dominant arm 
Tri-ND-POST post triceps cross-sectional area of non-dominant arm 
Tri_ND_Diff Difference in non-dominant arm triceps CSA 
Tri_ND%CH % change in non-dominant arm triceps CSA 
Tri-D-PRE pre triceps cross-sectional area of dominant arm 
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Tri-D-POST post triceps cross-sectional area of dominant arm 
Tri_D_Diff Difference in dominant arm triceps CSA 
Tri_D%CH % change in dominant arm triceps CSA 
WA-ND-PRE pre whole arm cross-sectional area of non-dominant arm 
WA-ND-POST post whole arm cross-sectional area of non-dominant arm 
WA_ND_Diff Difference in non-dominant arm whole arm CSA 
WA_ND%CH % change in non-dominant arm whole arm CSA 
WA-D-PRE pre whole arm cross-sectional area of dominant arm 
WA-D-POST post whole arm cross-sectional area of dominant arm 
WA_D_Diff Difference in dominant arm whole arm CSA 
WA_D%CH % change in dominant arm whole arm CSA 
Pre-NDRM-Max pre one repetition (1-RM) max of non-dominant arm 
Post-NDRM-
Max 

post 1-RM max of non-dominant arm 

NDRM-DIFF Difference in 1-RM strength on non-dominant arm 
NDRM%CH % change in 1-RM strength of non-dominant arm 
Pre-DRM-Max pre 1-RM max of dominant arm 
Post-DRM-Max post 1-RM max of dominant arm 
DRM-DIFF Difference in 1-RM strength on dominant arm 
DRM%CH % change in 1-RM strength of dominant arm 
Pre weight pre weight 
Pre height pre height 
Pre BMI   pre body mass index 
Pre BP pre blood pressure 
Pre HR pre heart rate 
Pre-SF-RBi1 pre exercise skin fold of right biceps – measurement #1 
Pre-SF-RBi2 pre exercise skin fold of right biceps – measurement #2 
Pre-SF-RBi3 pre exercise skin fold of right biceps – measurement #3 
Pre-RBi-AVG average of 3 pre right biceps skin fold measurements 
Pre-SF-RTri1 pre exercise skin fold of right triceps – measurement #1 
Pre-SF-RTri2 pre exercise skin fold of right triceps – measurement #2 
Pre-SF-RTri3 pre exercise skin fold of right triceps – measurement #3 
Pre-RTri-AVG average of 3 pre right triceps skin fold measurements 
Pre-SF-LBi1 pre exercise skin fold of left biceps – measurement #1 
Pre-SF-LBi2 pre exercise skin fold of left biceps – measurement #2 
Pre-SF-LBi3 pre exercise skin fold of left biceps – measurement #3 
Pre-LBi-AVG average of 3 pre left biceps skin fold measurements 
Pre-SF-LTri1 pre exercise skin fold of left triceps – measurement #1 
Pre-SF-LTri2 pre exercise skin fold of left triceps – measurement #2 
Pre-SF-LTri3 pre exercise skin fold of left triceps – measurement #3 
Pre-LTri-AVG average of 3 pre left triceps skin fold measurements 
Dom Arm dominant arm (R=right / L=left) 
Post weight post weight 
Post height post height 
Post BMI   post body mass index 
Post-SF-RBi1 Post exercise skin fold of right biceps – measurement #1 
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Post-SF-RBi2 Post exercise skin fold of right biceps – measurement #2 
Post-SF-RBi3 Post exercise skin fold of right biceps – measurement #3 
Post-RBi-AVG average of 3 post right biceps skin fold measurements 
Post-SF-RTri1 Post exercise skin fold of right triceps – measurement #1 
Post-SF-RTri2 Post exercise skin fold of right triceps – measurement #2 
Post-SF-RTri3 Post exercise skin fold of right triceps – measurement #3 
Post-RTri-AVG average of 3 post right triceps skin fold measurements 
Post-SF-LBi1 Post exercise skin fold of left biceps – measurement #1 
Post-SF-LBi2 Post exercise skin fold of left biceps – measurement #2 
Post-SF-LBi3 Post exercise skin fold of left biceps – measurement #3 
Post-LBi-AVG average of 3 post left biceps skin fold measurements 
Post-SF-LTri1 Post exercise skin fold of left triceps – measurement #1 
Post-SF-LTri2 Post exercise skin fold of left triceps – measurement #2 
Post-SF-LTri3 Post exercise skin fold of left triceps – measurement #3 
Post-LTri-AVG average of 3 post left triceps skin fold measurements 
V1-ND1 visit 1 isometric strength of non-dominant arm – measurement #1 
V1-ND2 visit 1 isometric strength of non-dominant arm – measurement #2 
V1-ND3 visit 1 isometric strength of non-dominant arm – measurement #3 
V1-ND-AVG visit 1 average isometric strength of non-dominant arm 
V2-ND1 visit 2 isometric strength of non-dominant arm – measurement #1 
V2-ND2 visit 2 isometric strength of non-dominant arm – measurement #2 
V2-ND3 visit 2 isometric strength of non-dominant arm – measurement #3 
V2-ND-AVG visit 2 average isometric strength of non-dominant arm 
V3-ND1 visit 3 isometric strength of non-dominant arm – measurement #1 
V3-ND2 visit 3 isometric strength of non-dominant arm – measurement #2 
V3-ND3 visit 3 isometric strength of non-dominant arm – measurement #3 
V3-ND-AVG visit 3 average isometric strength of non-dominant arm 
V23_ND_AVG average of isometric strength of non-dominant arm from visits #2 and #3 
V123_ND_AVG average of isometric strength of non-dominant arm from visits #1, #2 and 

#3 
Post-ND1 post isometric strength of non-dominant arm – measurement #1 
Post-ND2 post isometric strength of non-dominant arm – measurement #2 
Post-ND3 post isometric strength of non-dominant arm – measurement #3 
Post-ND-AVG average of post isometric strength measurements for non-dominant arm 
Post2-ND1 2nd post isometric strength of non-dominant arm – measurement #1 
Post2-ND2 2nd post isometric strength of non-dominant arm – measurement #2 
Post2-ND3 2nd post isometric strength of non-dominant arm – measurement #3 
Post2-ND-AVG average of 2nd post isometric strength measurements for non-dominant 

arm 
Post-ND-AVG average of 1st and 2nd post isometric measures 
ND23DIFF Difference in isometric strength of non-dominant arm (post average – pre 

average from visits 2 &3) 
ND23%CH % change in isometric strength of non-dominant arm 
V1-D1 visit 1 isometric strength of dominant arm – measurement #1 
V1-D2 visit 1 isometric strength of dominant arm – measurement #2 
V1-D3 visit 1 isometric strength of dominant arm – measurement #3 
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V1-D-AVG visit 1 average isometric strength of dominant arm 
V2-D1 visit 2 isometric strength of dominant arm – measurement #1 
V2-D2 visit 2 isometric strength of dominant arm – measurement #2 
V2-D3 visit 2 isometric strength of dominant arm – measurement #3 
V2-D-AVG visit 2 average isometric strength of dominant arm 
V3-D1 visit 3 isometric strength of dominant arm – measurement #1 
V3-D2 visit 3 isometric strength of dominant arm – measurement #2 
V3-D3 visit 3 isometric strength of dominant arm – measurement #3 
V3-D-AVG visit 3 average isometric strength of dominant arm 
V23_D_AVG average of isometric strength of dominant arm from visits #2 and #3 
V123_D_AVG average of isometric strength of dominant arm from visits #1, #2 and #3 
Post-D1 post isometric strength of dominant arm – measurement #1 
Post-D2 post isometric strength of dominant arm – measurement #2 
Post-D3 post isometric strength of dominant arm – measurement #3 
Post-D-AVG average of post isometric strength measurements for dominant arm 
Post2-D1 2D post isometric strength of dominant arm – measurement #1 
Post2-D2 2D post isometric strength of dominant arm – measurement #2 
Post2-D3 2D post isometric strength of dominant arm – measurement #3 
Post2-D-AVG average of 2D post isometric strength measurements for dominant arm 
Post-D-AVG average of 1st and 2nd post isometric measures 
D23DIFF Difference in isometric strength of dominant arm (post average – pre 

average from visits 2 &3) 
D23%CH % change in isometric strength of dominant arm 
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