
ABSTRACT

The performance characteristics of modern DRAM memory systems are impacted

by two primary attributes: device datarate and row cycle time. Modern DRAM device dat-

arates and row cycle times are scaling at different rates with each successive generation of

DRAM devices. As a result, the performance characteristics of modern DRAM memory

systems are becoming more difficult to evaluate at the same time that they are increasingly

limiting the performance of modern computer systems. In this work, a performance evalua-

tion framework that enables abstract performance analysis of DRAM memory systems is

presented. The performance evaluation framework enables the performance characteriza-

tion of memory systems while fully accounting for the effects of datarates, row cycle

times, protocol overheads, device power constraints, and memory system organizations.

This dissertation utilizes the described evaluation framework to examine the perfor-

mance impact of the number of banks per DRAM device, the effects of relatively static

DRAM row cycle times and increasing DRAM device datarates, power limitation con-

straints, and data burst lengths in future generations of DRAM devices. Simulation results

obtained in the analysis provide insights into DRAM memory system performance charac-

teristics including, but not limited to the following observations.

Title of dissertation:

Dissertation directed by:

MODERN DRAM MEMORY SYSTEMS:
PERFORMANCE ANALYSIS AND A HIGH
PERFORMANCE, POWER-CONSTRAINED
DRAM SCHEDULING ALGORITHM

David Tawei Wang, Doctor of Philosophy, 2005

Associate Professor Bruce L. Jacob
Department of Electrical and Computer Engineer-
ing, and Institute for Advanced Computer Studies

• The performance benefit of having a 16 banks over 8 banks increases with increasing

datarate. The average performance benefit reaches 18% at 1 Gbps for both open-page

and close-page systems.

• Close-page systems are greatly limited by DRAM device power constraints, while

open-page systems are less sensitive to DRAM device power constraints.

• Increasing burst lengths of future DRAM devices can adversely impact cache-limited

processors despite the increasing bandwidth. Performance losses of greater than 50%

are observed.

Finally, This dissertation also present a unique rank hopping DRAM command-

scheduling algorithm designed to alleviate the bandwidth constraints in DDR2 and future

DDRx SDRAM memory systems. The proposed rank hopping scheduling algorithm sched-

ules DRAM transactions and command sequences to avoid the power limiting constraints

and amortizes the rank-to-rank switching overhead. Execution based simulations show that

some workloads are able to fully utilize the additional bandwidth and significant perfor-

mance improvements are observed across a range of workloads.

MODERN DRAM MEMORY SYSTEMS: PERFORMANCE ANALYSIS
AND SCHEDULING ALGORITHM

by

David Tawei Wang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2005

Advisory Committee:

Associate Professor Bruce L. Jacob, Chair
Associate Professor Shuvra S. Bhattacharyya
Associate Professor Tsung Chin
Associate Professor Donald Yeung
Associate Professor Charles B. Silio Jr.

© Copyright by

David Tawei Wang

2005

DRAM Memory Systems Performance Analysis i

Table of Contents

CHAPTER 1 Introduction ... 1

 1.1 Problem Description ... 2

 1.2 Contributions and Significance .. 4

 1.3 Organization of Dissertation ... 6

CHAPTER 2 DRAM Device: Basic Circuits and Architecture . 7

 2.1 Introduction: ... 7

 2.2 DRAM Device Organization .. 8

 2.3 DRAM Storage Cells .. 11
 2.3.1 Cell capacitance, Leakage and Refresh - - - - - - - - - - - - - - - - - 11

 2.4 DRAM Array Structures ... 13

 2.5 Differential Sense Amplifier .. 15
 2.5.1 Functionality of Sense Amplifiers in DRAM Devices - - - - - - - - 15
 2.5.2 Circuit Diagram of a Basic Sense Amplifier - - - - - - - - - - - - - - 16
 2.5.3 Basic Sense Amplifier Operation - 18
 2.5.4 Voltage Waveform of Basic Sense Amplifier Operation - - - - - - - 20
 2.5.5 Writing into DRAM Array - 22

 2.6 DRAM Device Control Logic .. 23
 2.6.1 Mode Register Based Programmability - - - - - - - - - - - - - - - - - 25

 2.7 DRAM Device Configuration .. 26
 2.7.1 Device Configuration Trade-offs - 27

 2.8 Data I/O .. 29
 2.8.1 Burst Lengths and Burst Ordering - 29
 2.8.2 N-bit Prefetch - 30

 2.9 DRAM Device Packaging .. 32

 2.10 A 256 Mbit SDRAM Device .. 34
 2.10.1 SDRAM Device Block Diagram - 34
 2.10.2 Pin Assignment and Functionality - 35

 2.11 Process Technology and Scaling Considerations 37
 2.11.1 Cost Considerations - 37
 2.11.2 DRAM-versus-Logic Optimized Process Technologies - - - - - - - 38

CHAPTER 3 DRAM Memory System Organization 41

 3.1 Conventional Memory system .. 41

 3.2 Basic Nomenclature .. 43
 3.2.1 Channel - 44
 3.2.2 Rank - 48

Memory Systems: Cache, DRAM, Disk ii

TABLE OF CONTENTS

 3.2.3 Bank - 49
 3.2.4 Row - 50
 3.2.5 Column - 51
 3.2.6 Memory System Organization: An Example - - - - - - - - - - - - - - 52

 3.3 Memory Modules ... 53
 3.3.1 Single In-line Memory Module (SIMM) - - - - - - - - - - - - - - - - - 55
 3.3.2 Dual In-line Memory Module (DIMM) - - - - - - - - - - - - - - - - - - 56
 3.3.3 Registered Memory Module - 57
 3.3.4 Memory Module Organization - 59
 3.3.5 Serial Presence Detect (SPD) - 60

 3.4 Memory System Topology ... 61
 3.4.1 Direct RDRAM System Topology - 62

CHAPTER 4 DRAM Memory Access Protocol 64

 4.1 Basic DRAM Commands: .. 65
 4.1.1 Generic DRAM Command Format - 67
 4.1.2 Summary of Timing Parameters - 69
 4.1.3 Row Access Command - 70
 4.1.4 Column Read Command - 71
 4.1.5 Column Write Command - 72
 4.1.6 Precharge Command - 73
 4.1.7 Refresh Command - 74
 4.1.8 A Read Cycle - 77
 4.1.9 Complex Commands - 78

 4.2 DRAM Command Interactions ... 81
 4.2.1 Consecutive Reads to Same Rank - 82
 4.2.2 Consecutive Reads to Different Rows of Same Bank - - - - - - - - - 83
 4.2.3 Consecutive Reads to Different Banks: Bank Conflict - - - - - - - - 86
 4.2.4 Consecutive Read Requests to Different Ranks - - - - - - - - - - - - 88
 4.2.5 Consecutive Write Requests: Open Banks - - - - - - - - - - - - - - - - 89
 4.2.6 Consecutive Write Requests: Bank Conflicts - - - - - - - - - - - - - - 90
 4.2.7 Write Request Following Read Request: Open Banks - - - - - - - - 92
 4.2.8 Write Following Read: Same Bank, Conflict, Best Case - - - - - - 93
 4.2.9 Write Following Read: Different Banks, Conflict, Best Case - - - 94
 4.2.10 Read Following Write to Same Rank, Open Banks - - - - - - - - - - 95
 4.2.11 Read Following Write to Different Ranks, Open Banks - - - - - - - 96
 4.2.12 Read Following Write to Same Bank, Bank Conflict - - - - - - - - - 97
 4.2.13 Read Following Write: Different Banks Same Rank, Conflict: Best Case 98

 4.3 Minimum Scheduling Distances ... 100

 4.4 Additional Constraints: Power .. 102
 4.4.1 tRRD: Row to Row (activation) Delay - - - - - - - - - - - - - - - - - - 104
 4.4.2 tFAW: Four Bank Activation Window - - - - - - - - - - - - - - - - - - - 105

 4.5 DDR2 SDRAM Protocol .. 107
 4.5.1 DDR2 SDRAM Memory System Basics - - - - - - - - - - - - - - - - - 107
 4.5.2 Typical Parameter Values - 108

Memory Systems: Cache, DRAM, Disk iii

TABLE OF CONTENTS

 4.6 Summary ... 110

CHAPTER 5 DRAM Memory Controller 112

 5.1 Primary Functions ... 112

 5.2 Row-buffer Management Policy .. 114
 5.2.1 Open-Page Row-buffer Management Policy - - - - - - - - - - - - - - 114
 5.2.2 Close-Page Row-Buffer Management Policy - - - - - - - - - - - - - - 115

 5.3 Address Mapping Scheme .. 117
 5.3.1 System Organization Variable Definition - - - - - - - - - - - - - - - - 117
 5.3.2 Available Parallelism in DRAM System Organization - - - - - - - - 118
 5.3.3 Baseline Address Mapping Schemes - - - - - - - - - - - - - - - - - - - 121
 5.3.4 Parallelism versus Expansion Capability - - - - - - - - - - - - - - - - 123
 5.3.5 Bank Address Aliasing (stride collision) - - - - - - - - - - - - - - - - - 124

 5.4 Memory Transaction and DRAM Command Ordering Schemes 129
 5.4.1 Write Caching - 130
 5.4.2 DRAM-Bank-Centric Request Queuing Organization - - - - - - - - 131
 5.4.3 Feedback Directed Scheduling - 133

CHAPTER 6 Performance Analysis Methodology: Request Access
Distances: 134

 6.1 Motivation .. 134
 6.1.1 DRAM Device Scaling Considerations - - - - - - - - - - - - - - - - - - 135
 6.1.2 Execution Based Analytical Framework - - - - - - - - - - - - - - - - - 136

 6.1.3 Trace Based Analytical Framework - 138
 6.1.4 Trace Based versus Execution Based Analytical Framework - - - 138

 6.2 The Request Access Distance Framework 140
 6.2.1 Computing DRAM Protocol Overhead - - - - - - - - - - - - - - - - - - 141
 6.2.2 Computing Row Cycle Time Constraints - - - - - - - - - - - - - - - - 142
 6.2.3 Computing tFAW Constraints - 146
 6.2.4 DRAM Memory System Bandwidth Efficiency Computation - - - 149
 6.2.5 System Configuration - 149

 6.3 Impact of Refresh ... 151

 6.4 Applied Examples ... 153
 6.4.1 Close-Page System Example - 153
 6.4.2 Open-Page System Example - 154

CHAPTER 7 DRAM Memory System Performance Analysis: Results 156

 7.1 Introduction .. 156
 7.1.1 Workloads - 157

 7.2 Close-page System Performance Analysis 158
 7.2.1 System Configuration Assumptions - 158
 7.2.2 Workload Characteristics: 164.gzip - 160

Memory Systems: Cache, DRAM, Disk iv

TABLE OF CONTENTS

 7.2.3 tFAW Limitations in Close-page Systems: All Workloads - - - - - - 163
 7.2.4 Bank Comparison: 8 versus 16: All Workloads - - - - - - - - - - - - 164
 7.2.5 Burst Length Impact: SPEC Workloads - - - - - - - - - - - - - - - - - 166
 7.2.6 Queue Depth Analysis - 170

 7.3 Open-page System Performance Analysis 172
 7.3.1 System Configuration Assumptions - 172
 7.3.2 Address Mapping - 173
 7.3.3 Average of All Workloads - 174
 7.3.4 Workload Characteristics: 164.gzip - 176
 7.3.5 Workload Characteristics: 255.vortex - - - - - - - - - - - - - - - - - - 177
 7.3.6 tFAW Limitations in Open-page System: All Workloads - - - - - - 179
 7.3.7 Configuration Comparison: 1R8B vs. 2R8B vs. 1R16B vs. 2R16B 180

 7.4 DRAM Performance Analysis Summary 182

CHAPTER 8 Power-Constrained DDRx Scheduling Algorithm 183

 8.1 Introduction .. 183

 8.2 Background Information ... 185
 8.2.1 Row Buffer Management Policy - 185
 8.2.2 Timing Parameters - 186
 8.2.3 Bank Activation Window Limited Memory System - - - - - - - - - - 186
 8.2.4 Consecutive Commands to Different Ranks: Data Bus Synchronization 187

 8.3 Proposed Rank Hopping Scheduling Algorithm 190

 8.4 Experimental Methodology .. 193
 8.4.1 Simulation Framework - 193
 8.4.2 System Configuration - 197
 8.4.3 Address Mapping and Row Buffer Management Policy - - - - - - - 197
 8.4.4 Structural Enhancement to Bus Interface Unit - - - - - - - - - - - - - 198
 8.4.5 Write Sweeping - 199
 8.4.6 Transaction Ordering Policy - 201
 8.4.7 Workloads - 203

 8.5 Simulation Results .. 204
 8.5.1 Improvement in Sustained Bandwidth - - - - - - - - - - - - - - - - - - 204
 8.5.2 Workload Speedups - 205
 8.5.3 Memory Access Latency Distribution - - - - - - - - - - - - - - - - - - - 206

 8.6 Quick Summary of the Rank Hopping Algorithm 210

CHAPTER 9 Concluding Remarks 212

 9.1 Summary and Contributions ... 212

 9.2 Limitations .. 214

 9.3 Related Work .. 215

 9.4 Future Work .. 216

Memory Systems: Cache, DRAM, Disk v

TABLE OF CONTENTS

APPENDIX A Workload Descriptions 217

 A.1 Trace Fundamentals .. 217

 A.2 Description of Workloads ... 219
 A.2.1 164.gzip: C Compression - 220
 A.2.2 176.gcc: C Programming Language Compiler - - - - - - - - - - - - 221
 A.2.3 197.parser: C Word Processing - 222
 A.2.4 255.vortex: C Object-oriented Database - - - - - - - - - - - - - - - - 223
 A.2.5 172.mgrid: Fortran 77 Multi-grid Solver: 3D Potential Field - - 224
 A.2.6 178.galgel: Fortran 90 Computational Fluid Dynamics - - - - - - 225
 A.2.7 179.art (SPEC CPU 2000 FP Suite) - - - - - - - - - - - - - - - - - - - 226
 A.2.8 183.equake: C Seismic Wave Propagation Simulation - - - - - - - 227
 A.2.9 188.ammp: C Computational Chemistry - - - - - - - - - - - - - - - - - 228
 A.2.10 JMark 2.0 - AWT, CPU and Complex Arithmetic - - - - - - - - - - - 229
 A.2.11 3DWinbench - CPU - 230
 A.2.12 SETI@Home - 3 Segments - 231
 A.2.13 Quake 3 - 5 Segments - 232

APPENDIX B Glossary of Terminology 234

Bibliography .. 236

1

CHAPTER 1 Introduction

Performance of modern computer systems have seen dramatic improvements in the past

thirty years due to advancements in silicon process technology. The advancements in silicon

process technology have enabled the number of transistors on a single chip to roughly

doubled every two years as suggested by Moore’s Law. As a corollary to Moore’s Law,

processor performance has also doubled roughly every two years in the same time period

due to a combination of the larger transistor budget and the increased switching speed of

those transistors. However, increases in processor performance did not lead to comparable

increases in performance of computer systems for all types of applications. The reason that

increases in processor performance did not lead directly to comparable increases in

computer system performance is that computer system performance is fundamentally

constrained by the interaction between the processor and memory elements. Moreover, in

contrast to the rapid improvements in processor performance, memory system performance

has seen only relatively modest improvements in the past thirty years. The result of the

imbalance in performance scaling trends between processor and memory is that modern

computer systems are increasingly constrained by the performance of memory systems; in

particular, the performance of DRAM based memory systems. The work in this dissertation

is dedicated to the investigation of DRAM memory system performance characteristics, and

the result of the investigation is then used to evaluate and support the design of future

DRAM devices.

2

 1.1 Problem Description

Computer system performance is increasingly limited by the performance of DRAM

based memory systems due to the fact that the rate of DRAM memory system performance

increase has lagged the rate of processor performance increase in the past thirty years. One

reason that DRAM memory system performance has consistently lagged processor

performance is that DRAM memory systems typically consist of one or more chips that are

designed and manufactured separately from the processor, and the performance of the

interconnected multi-chip DRAM memory system is difficulty to scale to achieve higher

datarate and lower access latency. One apparent solution to the problem of access latencies

introduced by system level interconnects between processors and memory systems is to

integrate the memory system with the processor onto the same silicon die. However, in the

case of the integrated memory system, the size of the silicon die limits the storage capacity

of the memory system, and that capacity cannot be configured by the end user as needed for

different operating environments. Moreover, the die area used by the memory system could

have been used by performance enhancing features or more processor cores. In essence, the

integration of processor and memory system onto the same silicon die is currently a viable

solution for only a limited subset of high performance systems. As a result, high

performance processors are keeping silicon die area for use by logic transistors, and memory

transistors for main memory are still constructed separately from the processor chip. For

example, high performance processors such as Intel’s Itanium and Pentium processors,

AMD’s Opteron processor, and IBM’s Power5 processors are all moving toward multi-core

designs or already contain multiple processor cores per chip, and the study of the memory

system as a separate entity will continue to have great relevance for the foreseeable future.

3

A second reason that the rate of increase of DRAM memory system performance has

lagged the rate of increase of processor performance is that while high performance

processors are specialized parts and typically command high price premiums, standard

DRAM devices are commodity items that can be freely purchased from multiple vendors.

The commodity nature of standard DRAM devices means that DRAM device manufacturers

are extraordinarily sensitive to manufacturing costs, and only features that provide

substantial performance benefits for minimal cost increments are considered in each new

generation of standard DRAM devices. However, there is great difficulty in the

determination of performance impact for different performance enhancing features proposed

for each new generation of DRAM devices, and that difficulty arises from the fact DRAM

memory system performance depends on a large number of independent variables such as

workload characteristics of memory access rate and request sequence, memory system

architecture, and memory system configuration. As a result, system architects and design

engineers will often disagree as to the impact of various performance enhancing features,

since that performance impact depends on the configuration of specific systems.

Presently, DRAM device datarates are increasing with each new generation of DRAM

devices at the rate of 100% every three years, and DRAM row cycle times are decreasing at

a rate of approximately 7% per year[22]. The collective trends are increasing the ratio of row

cycle times to the duration of data bursts on the data bus. As a result, to maintain a given

utilization rate of memory system bandwidth, more requests must be issued to the DRAM

memory system in parallel for each successive generations of higher data rate DRAM

devices. Collectively, these trends form the larger picture that while DRAM based memory

system performance are increasingly limiting system performance, it is becoming more

4

difficult to maintain efficiency in each successive generations of higher data rate DRAM

devices. Moreover, system architects and design engineers often disagree as to the

desirability of various proposed DRAM device and system enhancements designed to

increase DRAM memory system performance. With these considerations forming the

background, the work in this dissertation is devoted to the creation of a common basis that

system architects and design engineers can use to quantify the impact of various proposed

performance enhancing features in modern DRAM devices, subjected to different

workloads, system architecture and system configurations.

 1.2 Contributions and Significance

The contribution of this dissertation is three-fold. Specifically, The contributions are the

following:

• We create a parameterized and abstract DRAM memory access protocol. With proper

definition of timing parameters, the DRAM memory access protocol accurately models

DRAM device and system level interactions of SDRAM, DDR SDRAM, DDR2 SDRAM

and DDR3 SDRAM memory access protocols. The creation of the abstract DRAM memory

access protocol ensures that the analytical work performed for one memory system retains

context for direct comparison against another memory systems. i.e. comparisons of an

SDRAM memory system against a DDR2 SDRAM memory system.

• We derive a set of mathematical equations that establish the relationship between DRAM

memory system configuration, timing parameters and the maximum achievable bandwidth.

The formalized methodology is then utilized to examine the performance of future DRAM

5

memory systems given different DRAM system configurations, device data rates, row cycle

times, DRAM device power limitations, rank-to-rank data bus turnaround overheads, read-

and-write data bus turnaround overheads, cache line burst lengths, and the number of banks

in a given DRAM device.

• We create a DRAM transaction and command scheduling algorithm that groups row

activation commands and column access commands separately to ensure that maximum

bandwidth can be maintained despite the existence of constraints such as data bus

synchronization overhead in DDR, DDR2 and DDR3 SDRAM memory systems and

mechanisms that limit peak power in DDR2 and DDR3 memory systems.

To aid the evaluations of performance and manufacturing cost trade-offs in modern

DRAM devices, the work in this dissertation proceeds through a detailed examination of

modern DRAM memory systems, starting from a description of modern DRAM devices and

ending with the introduction of a high performance, power-constrained DRAM transaction

and command scheduling algorithm. We believe that the performance evaluation

methodology can contribute directly to the evaluation process of future DRAM device and

memory system cost-performance trade-offs. We also believe that the DRAM transaction

and command scheduling algorithm can contribute directly to the design of future high

performance memory systems that must support high request rate access patterns with low

spatial locality.

6

 1.3 Organization of Dissertation

In this dissertation, the DRAM memory system is methodically examined from the

transistor level to the system level. In this first chapter, a brief introduction to the dissertation

is given. In Chapter 2, basic DRAM device architecture is described, and important details

of DRAM device operations are examined in depth. In Chapter 3, typical DRAM based

memory system topology and system architectures are described. The details provided in

Chapters 2 and 3 are then used to create a generic DRAM memory access protocol in

Chapter 4. The generic DRAM memory access protocol methodically examines the

interactions between DRAM commands in a DRAM memory system. Then, from the

description of the generic DRAM access protocol, a table of minimum scheduling distances

between combinations of DRAM commands is summarized as table 4.3. Chapter 5 then

examines DRAM controller designs and address mapping policies. The table of minimum

scheduling distances is then used to form the foundation of a formalized methodology for

the computation of maximum DRAM system bandwidth, hereafter referred to as the

Request Access Distance methodology. The Request Access Distance methodology for the

computation of maximum DRAM system bandwidth is formally defined in Chapter 6. In

Chapter 7, results from studies based on the use of the Request Access Distance

methodology are presented and analyzed. In Chapter 8, a unique rank-hopping memory

scheduling algorithm is proposed and studied. The algorithm is designed to alleviate various

constraints imposed upon high datarate DDRx SDRAM devices. Chapter 9 summarizes this

work with concluding remarks. Finally, in Appendix A, the workloads used in the

investigation of maximum DRAM system bandwidth in Chapter 7 are described in detail,

and a glossary of terminology is enclosed in Appendix B.

7

CHAPTER 2 DRAM Device: Basic
Circuits and Architecture

 2.1 Introduction:

To facilitate the study of DRAM based memory systems, this chapter describes basic

circuits and architecture of DRAM devices. For all practical purposes, it is impossible to

provide a complete overview as well as an in depth coverage on the topic of DRAM circuits

and architecture in a single chapter. The limited goal in this chapter is to provide a broad

overview of functionalities of circuits and common functional blocks in DRAM devices

sufficient to provide a basic understanding of internal circuits and architecture of modern

DRAM devices. With the understanding of the fundamentals of DRAM device operations in

place, more advanced discussions of architectural trade-offs at the DRAM device and

system level would then be possible.

This chapter begins the examination of modern DRAM devices with the description of a

basic fast page mode (FPM) DRAM device. Various components such as DRAM storage

cells, DRAM array structure, voltage sense amplifiers, control logic and decoders are then

examined separately.

8

 2.2 DRAM Device Organization

Figure 2.1 illustrates the organization and structure of a Fast Page Mode (FPM) DRAM

device. Internally, the array of DRAM storage cells in Figure 2.1 is organized as 4096 rows,

1024 columns per row, and 16 bits of data per column. In this device, each time a row access

occurs, a 12 bit address is placed on the address bus and the row address strobe (RAS) is

asserted by an external memory controller. Inside the DRAM device, the address on the

address bus is buffered by the row address buffer, then sent to the row decoder. The row

address decoder then accepts the 12 bit address and selects one of 4096 rows of storage cells.

The data values contained in the selected row of storage cells are then sensed and

maintained in the array of sense amplifiers. Each row of DRAM cells in this chip consists of

1024 columns and each column is 16 bits wide. That is, a 16 bit wide column is the basic

Figure 2.1: 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16).

addr

row

bus

address
buffer

ro
w

d

ec
o

d
er

sense amp array

column
decoder

data in
buffer

DRAM
Array

I/O gating

ro
w

 s
el

ec
t

12

10

409612

refresh
counter

refresh
controller

12

10

1024

1024
x 16

16

16

16
o

ff
 c

h
ip

 I/
O

12

no. 1 clock
generator

no. 2 clock
generator

WE#

CASL#
CASH#

RAS#

CAS#

column
address
buffer

data out
buffer

16
16

4096 rows
1024 columns
16 bits per col.

DRAM
Device

9

addressable unit of memory in this device, and each column access that follows the row

access would ordinarily read or write 16 bits of data from the same row of DRAM. The FPM

DRAM device does allow each 8 bit half of the 16 bit column to be accessed independently

through the use of separate column access strobe high (CASH) and column access strobe

low (CASL) signals. The way that a column access is engaged is similar to the row access in

that the memory controller would place a 10 bit address on the address bus, but then assert

the appropriate column access strobe (CAS#) signals. Internally, the DRAM chip then

takes the 10 bit column address, decodes it and uses it to select one column out of 1024

columns. The data for that column is then placed onto the data bus or overwritten with data

from the data bus depending on the write enable (WE) signal.

All DRAM devices, from the FPM DRAM device to modern DDRx* SDRAM devices,

possess similar basic organizations. All DRAM devices have one or more arrays of DRAM

cells organized into a number of rows and columns, with a column being the smallest unit of

addressable memory on that device. All DRAM devices also have some logic circuits that

control the timing and sequence how the device operates. In the case of the FPM DRAM

device shown in Figure 2.1, the chip has internal clock generators as well as a built-in

refresh controller. In most cases, the DRAM device itself controls the relative timing of the

sequence of events for a given action. The FPM DRAM device also keeps the address of the

next row that needs to be refreshed, so when the memory controller asserts a new refresh

command to the DRAM device, the row address to be refreshed can be loaded from the

internal refresh counter rather than having to load a separate row address from the off chip

address bus. Also, pin usage has always been restrictive on DRAM devices. As a result,

*. DDRx denotes DDR, DDR2, and variants of future DDRx SDRAM devices

10

modern DRAM devices move data onto and off of the device through a set of bi-directional

input-output pins connected to the system. Finally, advanced DRAM devices such as

ESDRAM, Direct RDRAM and RLDRAM have evolved to include more logic circuitry and

functionality on chip, such as row caches or write buffers that allow for read-around-write

functionality. These circuitry improve performance but add to the die cost of the DRAM

device. As a result, they are not found in standard DRAM devices. However, these

performance enhancing features may prove to be necessary elements in future high datarate

DRAM devices.

11

 2.3 DRAM Storage Cells

Figure 2.2 shows a circuit diagram of the basic one transistor, one capacitor (1T1C) cell

structure used in modern DRAM devices as the basic storage unit. In the structure illustrated

in Figure 2.2, when the access transistor is turned on by applying a voltage on the gate of the

access transistor, a voltage representing the data value may be placed onto the bitline and

used to charge the storage capacitor. The storage capacitor then retains the stored charge for

a limited period of time after the voltage on the wordline is removed and the access

transistor is turned off. However, due to leakage currents through the access transistor, the

electrical charge stored in the storage capacitor gradually dissipates. As a result, before the

stored charge decays to indistinguishable values, data stored in DRAM cells must be

periodically read-out and written back in a process known as refresh. Otherwise, the stored

electrical charge will gradually leak away and the value stored in the capacitor will no longer

be resolvable after some time.

 2.3.1 Cell capacitance, Leakage and Refresh

In a 90 nm process technology optimized for the manufacturing of DRAM devices, the

capacitance of a DRAM storage cell in a typical DRAM device is on the order of 30 fF, and

the leakage current of the DRAM access transistor is on the order of 1 fA [23]. With the cell

access
transistor

storage
capacitor

wordline

bitline

Gate

Figure 2.2: Basic 1T1C DRAM Cell Structure.

12

capacitance of 30 fF and leakage current of 1 fA, a typical DRAM cell can retain the state of

the stored data for hundreds of milliseconds. That is, hundreds of milliseconds after data is

written, the electrical charge of a DRAM cell will still resolve to the stored digital value by

the differential sense amplifier. Some cells in a typical DRAM device can even hold the

stored data value for upwards of several seconds. However, a reliable memory systems must

be designed in such a manner that not a single bit of data would be lost due to charge

leakage. The result of this requirement means that every single DRAM cell in a given device

must be refreshed at least once before any single bit in the entire device would lose its stored

charge due to leakage. In most modern DRAM memory systems, the storage cells in

standard DRAM devices are typically refreshed once every 32 or 64 ms. In some cases

where DRAM cells have low capacitance storage capacitors or high leakage currents

through the access transistor, the time period between refresh intervals must be reduced to

ensure reliable data retention.

13

 2.4 DRAM Array Structures

In DRAM devices, large numbers of DRAM cells are grouped together to form DRAM

array structures. Figure 2.3 illustrates a single bank of DRAM storage cells where a row

address is sent to the row decoder, and the row decoder selects one row of cells. A row of

cells is formed from one or more wordlines that are driven concurrently to activate one cell

on each one of thousands of bitlines. There may be hundreds of cells connected to the same

bitline, but only one cell will place its stored charge from its storage capacitor on the bitline

at any one time. The resulting voltage on the bitline is then resolved into a digital value by a

differential sense amplifier. Figure 2.3 illustrates an abstract DRAM array in a top down

view, and it also abstractly illustrates the size of a cell in the array. The size of a unit cell in

Figure 2.3 is 8 F2. In the context of DRAM cell size, “F” is a process independent metric

that denotes the smallest feature size in a given process technology. In a 90 nm process

technology, F is literally 90 nm, and an area of 8 F2 translates to 64800 nm2 in the 90nm

process. The cross sectional area of a DRAM storage cell is expected to scale linearly with

respect to the process generation, maintaining the 6~8 F2 cell size in each generation.

Figure 2.3: Top Down view of DRAM array.

bitline storage
capacitorcontact

wordline

unit
cell

bitline
sense amp array

DRAM
Array

I/O gating
ro

w
 s

el
ec

t

1024
x 16

bitline

w
o

rd
lin

e

14

In modern DRAM devices, the capacitance of a storage capacitor is far smaller than the

capacitance of the bitline. Typically, the capacitance of a storage capacitor is one-tenth of the

capacitance of the long bitline that is connected to hundreds of other cells. The relative

capacitance values create the scenario that when the small charge contained in a cell is

placed on the bitline, the resulting voltage on the bitline is small and difficult to measure in

an absolute sense. In DRAM devices, the voltage sensing problem is resolved through the

use of a differential sense amplifier that compares the voltage of the bitline to a reference

voltage. In the following section, the functionality of the differential sense amplifier is

examined in some detail.

15

 2.5 Differential Sense Amplifier

In DRAM devices, the functionality of resolving small electrical charges stored in

storage capacitors into digital values is performed by a differential sense amplifier. In

essence, the differential sense amplifier takes the voltages from a pair of bitlines as input,

senses the difference in voltage levels between the bitline pairs and amplifies the difference

to one extreme or the other.

 2.5.1 Functionality of Sense Amplifiers in DRAM Devices

Sense amplifiers in modern DRAM devices perform three different functions. The first

function that sense amplifiers perform in a DRAM device is to sense the minute change in

voltage that occurs when an access transistor is turned on and a storage capacitor places its

charge on the bitline. The sense amplifier compares the voltage on that bitline against a

reference voltage as provided on a separate bitline and amplifies the voltage differential to

the extreme so that the storage value can be resolved as a digital one or a zero. This role of

the sense amplifier is its primary role in DRAM devices, as it senses minute voltage

differentials and amplifies them to represent the digital value.

The second function of sense amplifiers in a modern DRAM device is that sense

amplifiers also restores the value of a cell after the voltage on the bitline is sensed and

amplified. The act of turning on the access transistor allows a storage capacitor to share its

stored charge with the bitline. However, the process of sharing the stored value from a

storage cell discharges the storage cell. After the process of charge sharing occurs, the

voltage level within the storage cell would be roughly equal to the voltage on the bitline, and

this voltage level cannot be used for another read operation. As a result, after the sensing and

16

amplification operation, the sense amplifier must also restore the amplified voltage vale to

the storage cell.

The third and somewhat surprising function of sense amplifiers in a modern DRAM

device is that arrays of sense amplifiers also act as temporary data storage. That is, after data

values contained in storage cells are sensed and amplified, the sense amplifiers continue to

drive the sensed data values until the DRAM array is precharged and readied for another

access. In this manner, data in the same row of cells can be accessed by reading them from

the sense amplifier without repeated row accesses to the cells themselves. In this role, the

array of sense amplifiers effectively acts as a row buffer that caches an entire row of data. As

a result, an array of sense amplifiers is also referred to as a row buffer. Row buffer

management policies in essence control operations of the sense amplifiers. Different row

buffer management policies dictate whether an array of sense amplifiers will retain the data

for an indefinite period of time*, or will discharge it immediately after data has been restored

to the storage cells. Active sense amplifiers consume additional current above quiescent

power levels, and effective management of sense amplifier operation is an important task for

systems seeking optimal trade off points between power and performance.

 2.5.2 Circuit Diagram of a Basic Sense Amplifier

Figure 2.4 shows the circuit diagram of a basic sense amplifier. Complex sense

amplifiers in modern DRAM devices contain the basic elements shown in Figure 2.4 as well

as additional circuit elements for array isolation, careful balance of the sense amplifier

structure, and faster sensing capability. In the basic sense amplifier circuit diagram shown in

Figure 2.4, the equalization (EQ) signal line controls the voltage equalization circuit. The

*. Indefinitely long until mandatory refresh cycle kicks in.

17

functionality of this circuit is to ensure that the voltages on the bitline pairs are as closely

matched to each other as possible. Since the differential sense amplifier is designed to

amplify the voltage differential between the bitline pairs, any voltage imbalance that exists

on the bitline pairs prior to the activation of the access transistors would degrade the

effectiveness of the sense amplifier.

The heart of the sense amplifier is the set of 4 cross-connected transistors, labelled as the

sensing circuit in Figure 2.4. The sensing circuit is essentially a bi-stable circuit, designed to

drive the bitline pairs to complementary voltage extremes, depending on the respective

voltages on the bitlines at the time the SAN and SAP sensing signals are activated. After the

assertion of the SAN and SAP, the bitlines are driven to the full voltage levels. The column

select line (CSL) then turns on the output transistors and allows the fully driven voltage to

reach the output and be read out of the DRAM device. At the same time, the access

transistor for the accessed cell remains open, and the fully driven voltage on the bitline now

re-charges the storage capacitor. In case of a write operation, the input write drivers provide

a larger current to overdrive the sense amplifiers and the bitline voltage. The open cell

would then be overwritten by the new data values asserted by the input write drivers.

Figure 2.4: Basic sense amplifier circuit diagram.

Bitline

Bitline
EQ CSL

output

output

sensing
circuit

SAPSAN

voltage
eq. circuit

input
write driver

input
write driver

Wordlines

Vcc
2

WE

18

 2.5.3 Basic Sense Amplifier Operation

Figure 2.5 shows four different phases in the sensing operations of a differential sense

amplifier. In Figure 2.5, the operations of a sense amplifiers is labelled as phases zero, one,

two and three. The reason that the precharge phase is labelled as phase zero is because the

Figure 2.5: Illustrated diagrams of sense amplifier operation. Read(1) example.

Bitline

Bitline
EQ CSL

output

output

sensing
circuit

voltage
eq. circuit input

write driver

input
write driver

Wordlines

Vcc
2

WE
Vref

11

0 1

Vref

Bitline

Bitline
EQ CSL

output

output

sensing
circuit

SAPSAN

voltage
eq. circuit

input
write driver

input
write driver

WE

11

0 1

Vref
+

Vref

Vref

Vref
+

Vref

Bitline

Bitline
EQ CSL

output

output

sensing
circuit

SAPSAN

voltage
eq. circuit

input
write driver

input
write driver

WE

1

0 1

Vref

Vref
+ 1

0

Bitline

Bitline
EQ CSL

output

output

sensing
circuit

voltage
eq. circuit

input
write driver

input
write driver

WE

1

0 1

1

0

1Vref
+

Precharge

Access

Sense

Restore

0

1

2

3

0 1

1

0

19

precharge phase is typically considered as a separate operation from a row access operation.

That is, while the Precharge phase is a prerequisite for the subsequent phases of a row

access operation, it is typically performed separately from the row access. On the other

hand, Access, Sense, and Restore are three different phases that are performed atomically in

sequence for any row access operation.

Phase zero in Figure 2.5 is labelled as Precharge, and it illustrates that before the

process of reading data from a DRAM array can begin, the bitlines in a DRAM array is

precharged to a reference voltage, Vref. In many modern DRAM devices, Vcc/2, the voltage

half way between the power supply voltage and ground, is used as the reference voltage. In

Figure 2.5, the equalization circuit is activated, and the bitlines are precharged to Vref.

Phase one in Figure 2.5 is labelled as (cell) Access, and it illustrates that as a voltage is

applied to the right most wordline, that wordline is overdriven to a voltage that is at least Vt

above Vcc
*. The voltage on the wordline activates the access transistors, and the charge in

the storage cell is discharged onto the bitline. In this case, since the voltage in the storage

cell was a high voltage value that represented a digital value of “1” , the voltage on the bitline

increases from Vref to Vref
+. As the voltage on the bitline changes, the higher voltage on the

bitline begins to affect operations of the cross connected sensing circuit. In the case

illustrated in Figure 2.5, the slightly higher voltage on the bitline begins to drive the lower

NFet to be more conductive than the upper NFet. Conversely, the minute voltage difference

drives the lower PFet to be less conductive than the upper PFet. The bitline voltage thus

biases the sensing circuit and readies it for the sensing phase.

*. The maximum voltage that can be placed across the access transistor is Vgs - Vt. (Vt is the threshold voltage of the
access transistor, Vgs is the gate-source voltage on the access transistor) By overdriving the wordline voltage to Vcc +
Vt, the storage capacitor could be charged to full voltage (maximum of Vcc) by the sense amplifier in the restore
phase of the sensing operation. The higher-than-Vcc wordline voltage is generated by additional level-shifting voltage
pumping circuitry not examined in this text.

20

Phase two in Figure 2.5 is labelled Sense, and it illustrates that as the minute voltage

differences drives a bias into the cross connected sensing circuit, SAN, the DRAM device’s

Nsense amplifier control signal, turns on and drives the voltage on the lower bitline down* .

Figure 2.5 shows that as SAN turns on, the more conductive lower NFet allows SAN to

drive the lower bitline down in voltage from Vref to ground. Similarly, SAP, the Psense

amplifier control signal drives the bitline to a fully restored voltage value that represents the

digital value of “1” . The SAN and SAP control signals thus collectively force the bi-stable

sense amplifier circuit to be driven to the respective maximum or minimum voltages.

Finally, phase three of Figure 2.5 is labelled as Restore, and it illustrates that after the

bitlines are driven to the respective maximum or minimum voltage values, the overdriven

wordline remains active and the fully driven bitline voltage now restores the charge in the

storage capacitor through the access transistor. At the same time, the voltage value on the

bitline can be driven out of the sense amplifier circuit to provide the requested data. In this

manner, the contents of a DRAM row can be accessed and driven out of the DRAM device

concurrently with the data restoration process.

 2.5.4 Voltage Waveform of Basic Sense Amplifier Operation

Figure 2.6 shows the voltage waveforms for the bitline and selected control signals

illustrated in Figure 2.5. The four phases labelled in Figure 2.6 corresponds to the four

phases illustrated in Figure 2.5. Figure 2.6 shows that before a row access operation, the

bitline is precharged, and the voltage on the bitline is set to the reference voltage, Vref. In

phase one, the wordline voltage is overdriven to at least Vt above Vcc, and the DRAM cell

*. In modern DRAM devices, the timing and shape of the SAN and SAP control signals are of great importance in
defining the accuracy and latency of the sensing operation. However, for the sake of brevity, this text assumes that the
timing and shape of these important signals are optimally generated by the control logic.

21

discharges the content of the cell onto the bitline and raises the voltage from Vref to Vref
+. In

phase two, the sense control signals SAN and SAP are activated in quick succession and

drives the voltage on the bitline to the full voltage. The voltage on the bitline then restores

the charge in the DRAM cells in phase three.

Figure 2.6 illustrates the relationship between two important timing parameters: tRCD

and tRAS. Although the relative durations of tRCD and tRAS are not drawn to scale, Figure 2.6

shows that after time tRCD, the sensing operation is complete, and the data can be read out

through the DRAM device’s data I/O after that time. However, after time period of tRCD

from the beginning of the activation process, data has yet to be restored to the DRAM cells.

Figure 2.6 shows that after time period of tRAS from the beginning of the activation process,

the data restore operation is assumed to be complete, and the DRAM device is ready to

accept a precharge command that will complete the entire row cycle process after time

period of tRP.

Figure 2.6: Simplified sense amplifier voltage waveform. Read(1) example.

Bitline
CSL

wordline

SAN

SAP
Vcc

Vcc/2

Vcc+Vt

10 2 3

Access Sense

Gnd

Restore

(Vref)

tRCD

tRAS

Precharge

tRP

Precharge

22

 2.5.5 Writing into DRAM Array

Figure 2.7 shows a simplified timing characteristic for the case of a write command. As

part of the row activation command, data is automatically restored from the sense amplifiers

to DRAM cells. However, in the case of a write command in commodity DRAM devices,

data written by the memory controller is buffered by the I/O buffer of the DRAM device and

used to overwrite the sense amplifiers and DRAM cells* . In this case, the restore phase may

be extended by the write recovery phase. Similar to the relative timing described in Figure

2.6, the addition of a column write command simply means that a precharge command

cannot be issued until after the correct data values have been restored to the DRAM cells.

The time period required for write data to overdrive the sense amplifiers and through written

to the DRAM cells is referred to as the write recovery time, denoted as tWR in Figure 2.7.

*. Some DRAM devices such as Direct RDRAM devices have write buffers. Data isn’t driven directly into the DRAM
array by the data I/O circuitry in that case, but the write mechanism into the DRAM array remains the same when the
write buffer commits the data into the DRAM array prior to a precharge operation.

Figure 2.7: Row activation followed by column write into DRAM array.

Access Sense Restore

tRCD

Precharge
Write Recovery

tWR
tRP

Write

Bitline

Bitline
CSL

output

output

sensing
circuit SAPSAN

input
write driver

input
write driver

WE

1

0 1

0

0

23

 2.6 DRAM Device Control Logic

All DRAM devices contain some basic logic control circuitry to direct the movement of

data onto, within, and off of the DRAM devices. Essentially, some control logic must exist

on DRAM devices that accepts externally asserted signal and control, then orchestrates an

appropriately timed sequences of internal control signals to direct the movement of data. As

an example, previous discussion on sense amplifier operations hinted to the complexity of

the intricate timing sequence in the assertion of the wordline voltage followed by assertion

of the SAN and SAP sense amplifier control signals, followed yet again by the column

select signal. The sequence of timed control signals are generated by the control logic on

DRAM devices.

addr

row

bus

address
buffer

12

10

refresh
counter

refresh
controller

12

12

no. 1 clock
generator

no. 2 clock
generator

WE#

CASL#

CASH#

RAS#

column
address
buffer

10

12

data in
buffer

data out
buffer

Figure 2.8: Control logic for 32 Mbit FPM DRAM device.

24

Figure 2.8 shows the control logic that generates and controls the timing and sequence of

signals for the sensing and movement of data on the FPM DRAM device illustrated in

Figure 2.1. The control logic on the FPM DRAM device asynchronously accepts external

signal control and generates the sequence of internal control signals for the FPM DRAM

device. The external interface to the control logic on the FPM DRAM device is simple and

straightforward, consisting of essentially 3 signals: row access strobe (RAS), column

access strobe (CAS), and write enable (WE). The FPM DRAM device described in Figure

3.21 is a device with a 16 bit wide data bus, and the use of separate CASL and CASH

signals allow the DRAM devices to control each half of the 16 bit wide data bus separately.

In FPM DRAM devices, the controller to FPM DRAM device interface is an

asynchronous interface, and the memory controller directly controls the timing of the

movement of data inside the FPM DRAM device. In early generations of DRAM devices

such as FPM DRAM devices, the direct control of the internal circuitry of the DRAM device

by the external memory controller and the asynchronous nature of the device interface

means that the DRAM device could not be well pipelined, and new commands to the

DRAM device may not be initiated until the movement of data for the previous command is

completed* . The asynchronous nature of the interface means that system design engineers

can implement different memory controller that operated at different frequencies, and

designers of the memory controller are solely responsible to ensure that the controller can

correctly control different DRAM devices from different DRAM device and module

manufacturers, possibly with subtle timing variations.

*. For every rule, there are exceptions to the rule. Pipeline burst EDO devices were designed to have some limited
pipelining capability with an implicit clocking scheme.

25

 2.6.1 Mode Register Based Programmability

Modern DRAM devices are controlled by synchronous statemachines whose behavior

depends on the input values of the command signals as well as the values contained in the

programmable mode register in the control logic. Figure 2.9 shows that in an SDRAM

device, the mode register contains three fields: CAS latency, burst type, and burst length.

Depending on the value of the CAS latency field in the mode register, the DRAM devices

returns data two or three cycles after the assertion of the column read command. The value

of the burst type determines the ordering of how the SDRAM device returns data, and the

burst length field determines the number of columns that a SDRAM device will return to the

memory controller with a single column read command. SDRAM devices can be

programmed to return 1, 2, 4, 8 columns, or an entire row. Direct RDRAM devices and

DDRx SDRAM devices contain more mode registers that control ever larger set of

programmable operations including, but not limited to: different operating modes for power

conservation, electrical termination calibration modes, self test modes, and write recovery

duration.

Figure 2.9: Programmable mode register in an SDRAM device.

co
m

m
an

d
d

ec
o

d
e

control
logic

mode
register

12 11 10 9 8 7 6 5 4 3 2 1 0

Burst LengthCAS Latency

Burst Type

Burst Length = 1, 2, 4, 8, or Page mode

CAS Latency = 2, 3 (4, 5, etc. in special versions)

Burst Type = Sequential or Interleaved

address
register

addr
bus

CKE
CLK

WE#
CS#

CAS#
RAS#

1 - 2 - 3 - 4 - 5 - 6 - 7 - 0 1 - 0 - 3 - 2 - 5 - 4 - 7 - 6

0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 0 - 1 - 2 - 3 - 4 - 5 - 6 - 7

26

 2.7 DRAM Device Configuration

DRAM devices are classified by the number of data bits in each device, and that number

typically quadruples from generation to generation. For example, 64 Kbit devices were

followed by 256 Kbit devices, and those devices were in turn followed by 1 Mbit devices.

Recently, half generation devices that merely double the number of data bits of previous

generation devices have been used to facilitate smoother transitions between different

generations. As a result, 512 Mbit devices now exist along side 256 Mbit and 1 Gbit devices.

In a given generation, a DRAM device may be configured with different data bus widths

to facilitate its use in different applications. Table 2.1 shows three different configurations of

a 256 Mbit device. Table 2.1 shows that a 256 Mbit SDRAM device may be configured with

a 4 bit wide data bus, an 8 bit wide data bus or a 16 bit wide data bus. In the configuration

with a 4 bit wide data bus, an address provided to the SDRAM device to fetch a single

column of data will receive 4 bits of data, and there are 64 million separately addressable

locations in the device with the 4 bit data bus. The 256 Mbit SDRAM device with the 4 bit

wide data bus is thus referred to as the 64 Meg x4 device. Internally, the 64 Meg x4 device

consists of 4 bits of data per column, 2048 columns of data per row, 8192 rows per bank and

there are 4 banks in the device. Alternatively, a 256 Mbit SDRAM device with a 16 bit wide

Device configuration 64 Meg x 4 32 Meg x 8 16 Meg x 16

Number of banks 4 4 4

Number of rows 8192 8192 8192

Number of columns 2048 1024 512

Data bus width 4 8 16

TABLE 2.1: Three different configurations of 256 Mbit SDRAM device

27

data bus will have 16 bits of data per column, 512 columns per row, 8192 rows per bank, and

4 banks in the 16 Meg x16 device.

In a typical application, four 16 Meg x16 devices can be connected in parallel to form a

single rank of memory with a 64 bit wide data bus and 128 MB of storage. Alternatively,

sixteen 64 Meg x4 devices forms a single rank of memory with a 64 bit wide data bus and

512 MB of storage. DRAM memory system organizations are examined separately in a

following chapter.

 2.7.1 Device Configuration Trade-offs

In the 256 Mbit SDRAM device, the size of the row does not change in different

configurations, and the number of column per row simply decreases with wider data busses

specifying a larger number of bits per column. However, the constant row size between

different configurations of DRAM devices within the same DRAM device generation is not

a generalized trend that can be extended to different device generations. For example, table

2.2 shows different configurations of a 1 Gbit DDR2 SDRAM device where the number of

bits per row differs between the x8 configuration and the x16 configuration.

DDR2 SDRAM devices at the 1 Gbit and above densities have 8 banks of DRAM arrays

per device. In the x4 and x8 configuration of the 1 Gbit DDR2 SDRAM device, there are

16384 rows per bank and each row consists of 8192 bits. In the x16 configuration, there are

Device configuration 512 Meg x 4 256 Meg x 8 128 Meg x 16

Number of banks 8 8 8

Number of rows 16384 16384 8192

Number of columns 2048 1024 1024

Data bus width 4 8 16

TABLE 2.2: Three different configurations of 1 Gbit DDR2 SDRAM device

28

8192 rows and each row consists of 16384 bits. These different configurations lead to

different numbers of bits per bitline, different numbers of bits per row activation, and

different number of bits per column access. In turn, differences in the number of bits moved

per command lead to different power consumption and performance characteristics for

different configurations of the same device generation. For example, the 1 Gbit, x16 DDR2

SDRAM device is configured with 16384 bits per row, and each time a row is activated,

16384 DRAM cells are simultaneously discharged onto respective bitlines, sensed,

amplified then restored. The larger row size means that a 1 Gbit, x16 DDR2 SDRAM device

with 16384 bits per row consumes significantly more current per row activation than 1 Gbit

x4 and x8 configuration with 8192 bits per row. The differences in current consumption

characteristics in turn leads to difference in timing parameters designed to limit peak power

consumption characteristics of DRAM devices.

29

 2.8 Data I/O

 2.8.1 Burst Lengths and Burst Ordering

In SDRAM and DDRx SDRAM devices, a column read command moves a variable

number of columns. As illustrated in the section on the programmable mode register, an

SDRAM device can be programmed to return 1, 2, 4, or 8 columns of data as a single burst

that takes 1, 2, 4 or 8 cycles to complete. In contrast, a Direct RDRAM device returns a

single column of data with an 8 beat* burst. Figure 2.10 shows an 8 beat, 8 column read data

burst from an SDRAM device and an 8 beat, single column read data burst from a Direct

RDRAM device. The distinction between the 8 column burst of an SDRAM device and the

single column data burst of the Direct RDRAM device is that each column of the SDRAM

device is individually addressable, and given an a column address in the middle of an 8

column burst, the SDRAM device will re-order the burst to provide the data of the requested

address first. This capability is known as critical-word forwarding. For example, in an

SDRAM device programmed to provide a burst of 8 columns, a column read command with

a column address of 17 will result in the data burst of 8 columns of data with the address

sequence of 17-18-19-20-21-22-23-16 or 17-16-19-18-21-20-23-22, depending on the burst

type as defined in the programmable register. In contrast, each column of a Direct RDRAM

*. In DDRx and Direct RDRAM devices, two beats of data are transferred per clock cycle.

Figure 2.10: Burst lengths in DRAM devices.

ck

cmd

data

tCAS

1

Burst Length

Burst of 8 columns in SDRAM device

ck

2

1

ck#

cmd

data

tCAC

2

Burst of 1 columns in Direct RDRAM device

30

device consists of 128 bits of data, and each column access command moves 128 bits of data

in a burst of 8 contiguous beats in strict burst ordering. That is, differing from SDRAM and

DDRx SDRAM devices, Direct RDRAM devices support neither programmable burst

lengths nor different burst ordering.

 2.8.2 N-bit Prefetch

In SDRAM devices, each time a column read command is issued, the control logic

determines the duration and ordering of the data burst, and each column is moved separately

from the sense amplifiers through the I/O latches to the external data bus. However, the

separate control of each column limits the operating data rate of the DRAM device. As a

result, in successive generations of SDRAM, and DDRx SDRAM devices, successively

larger numbers of bits are moved in parallel from the sense amplifiers to the read latch, and

the data is then pipelined through a multiplexor to the external data bus.

Figure 2.11 illustrates the data I/O structure of a DDR SDRAM device. Figure 2.11

shows that given the width of the external data bus as N, 2N bits are moved from the sense

amplifiers to the read latch, the 2N bits are then pipelined through the multiplexors to the

external data bus. In DDR2 SDRAM devices, and the number of bits prefetched by the

Figure 2.11: Data I/O in DDR SDRAM device illustrating 2-bit prefetch.

DQS
generator

MUX
read
latch

write
FIFO
and
drivers

clk

drivers

receivers

DLL clk

input
registers

DQS

16
2

mask

data
32

32

16

16

16

4
2

16

16

16
16

16

2

2

External
data bus
N-bit width

Internal
data bus
2 N bit width

31

internal data bus is 4N. The N bit prefetch strategy in DDRx SDRAM devices means that

internal DRAM circuits can remain essentially unchanged between transitions from

SDRAM to DDRx SDRAM, but operating data-rate of DDRx SDRAM devices can be

increased to levels not possible with SDRAM devices. However, the downside of the N bit

prefetch architecture is that short bursts are no longer supported. For example, in DDR

SDRAM devices, a minimum burst length of 2 columns of data are accessed per column

read command, and in DDR2 SDRAM devices, a minimum burst length of 4 columns of

data are accessed per column read command. This trend is likely to continue in future

generations of DDR3 and DDR4 SDRAM devices, thus requiring longer data bursts for each

successive generations of higher data rate DRAM devices.

32

 2.9 DRAM Device Packaging

One difference between DRAM and logic devices is that most DRAM devices are

commodity items whereas logic devices such as processors and application specific

integrated circuits (ASIC) are typically specialized devices that are not commodity items.

The result of the commodity status for DRAM devices is that even more so than logic device

manufacturers, DRAM device manufacturers are extraordinarily sensitive to cost. One area

that reflects the cost sensitivity is the packaging technology utilized by DRAM devices.

Table 2.3 shows the expected pin count and relative costs from the 2002 International

Technology Roadmap for Semiconductors (ITRS) for high performance logic devices as

compared to memory devices. Table 2.3 shows the trend that memory chips such as DRAM

will continue to be manufactured with relatively lower cost packaging with lower pin count

and lower cost per pin.

2004 2007 2010 2013 2016

Semi Generation (nm) 90 65 45 32 22

High Perf. device pin count 2263 3012 4009 5335 7100

High Perf. device
cost (cents/pin)

1.88 1.61 1.68 1.44 1.22

Memory device pin count 48-160 48-160 62-208 81-270 105-351

Memory device pin cost
(cents/pin)

0.34 -1.39 0.27 - 0.84 0.22 - 0.34 0.19 - 0.39 0.19 - 0.33

TABLE 2.3: ITRS roadmap projections for package pin count and costs

33

Figure 2.12 shows 4 different packages used in previous and current generations of

DRAM devices. Early DRAM devices typically packaged in low pin count and low cost

Dual Inline Packages (DIP). Increases in DRAM device density and wider data bus widths

have required the use of the higher pincount and larger Small Outline J-lead (SOJ)

packages. DRAM devices then moved to Thin Small Outline Package (TSOP) in the late

1990’s. As DRAM device data rates increases to multiple hundreds of megabits per second,

Ball Grid Array (BGA) packages are needed to better control signal interconnects at the

package level.

Figure 2.12: DRAM device packages.

DIP SOJ TSOP

BGAPackaging Evolution

34

 2.10 A 256 Mbit SDRAM Device

Figure 2.13 shows the die photograph of a 256 Mbit SDRAM device. Figure 2.13 shows

that much of the surface area of the silicon die is dominated by the regular structures of the

DRAM arrays. In this case, roughly 70% of the silicon surface is used by the DRAM arrays,

and the rest of the area is taken up by I/O pads, sense amplifiers, decoders and the minimal

control logic. The SDRAM device shown in Figure 2.13 is manufactured on a DRAM

optimized 0.11um process with 3 layers of metal interconnects and 6 layers of poly silicon.

The SDRAM device is contained in a low cost 54 pin TSOP package. On a commodity

SDRAM device, 14 pins of the 54 pin package are used for power and ground, 16 pins are

used for the data bus, 15 pins are used for the address bus, 7 pins are used for the command

bus, and a single pin is used for the clock signal.

 2.10.1 SDRAM Device Block Diagram

Figure 2.14 shows a block diagram of the 256 Mbit SDRAM device. Figure 2.14 shows

that unlike the FPM DRAM device illustrated in Figure 2.1, the 256 Mbit SDRAM device

has 4 banks of DRAM arrays, each with its own array of sense amplifier, row decoders and

column decoders. Similar to the FPM device, the SDRAM device contains separate address

Figure 2.13: 256 Mbit SDRAM device from Micron.

35

registers that are used to control dataflow on the SDRAM device. In case of a row access

command, the address from the address register is forwarded to the row address latch and

decoder, and that address is used to activate the selected wordline. Data is then discharged

onto the bitlines and the sense amplifiers array senses, amplifies and holds the data until a

subsequent column access command either reads the data through the I/O gating out to the

data bus, or accepts write data from the data bus through the I/O gating, overwrites data in

the sense amplifier arrays, then overwrites data in the DRAM cells to the new values.

 2.10.2 Pin Assignment and Functionality

In an SDRAM device, commands are decoded on the rising edge of the clock signal

(CLK) if the chip select line (CS#) is active. The command is asserted by the DRAM

controller on the command bus, which consists of the write enable (WE#), column access

Figure 2.14: SDRAM Device Architecture with 4 Banks.

CKE

CLK

WE#

CS#

CAS#

RAS# co
m

m
an

d

d
ec

o
d

e

control

logic

mode

register

refresh

row
addr
mux row

address
register

addr

bank

column

I/O gating /

column
decoder

data out

data I/O
bus

address
counter

address
latch &
decoder

read data latch
write drivers

counter

row
address
latch &
decoder

row
address
latch &
decoder

row
address
latch &
decoder

sense amp array
sense amp array

sense amp array
sense amp array

control

column
decodercolumn

decodercolumn
decoder

register

data in
register

DRAM
Arrays

36

(CAS#), and row access (RAS#) signal lines. Although the signal lines have function-

specific names, they essentially form a command bus, allowing the SDRAM device to

recognize more commands without the use of additional signal lines. Table 2.4 shows the

command set of the SDRAM device and the signal combinations on the command bus.

Table 2.4 shows that as long as CS# is not selected, the SDRAM device ignores the signals

on the command bus. In the case that CS# is active on the rising edge of the clock, the

SDRAM device then decodes the combination of control signals on the command bus. For

example, the combination of an active low voltage value on RAS#, high voltage value on

CAS# and high voltage value on WE#, the SDRAM device recognizes that this combination

signifies a row activation command and begins the row activation process on the selected

bank and row address as provided on the address bus.

Another command allows the SDRAM device to load in new values for the mode

register from the address bus. That is, in case that CS#, RAS#, CAS# and WE# are all active

on the rising edge of the clock signal, the SDRAM device decodes the load mode register

command and loads the mode register from value presented on the address bus.

CS# RAS# CAS# WE# addr

command inhibit (nop) H X X X X

no operation (nop) L H H H X

active (activate row - RAS) L L H H addr

read (start read - CAS) L H L H addr

write (start write - CAS W) L H L L addr

burst terminate L H H L X

precharge L L H L **

auto refresh L L L H X

load mode register L L L L code

TABLE 2.4: SDRAM commands

** bank address, or
all banks (with a_10
assertion)

37

 2.11 Process Technology and Scaling Considerations

The 1T1C cell structure places specialized demands on the access transistor and the

storage capacitor. Specifically, the cross sectional area occupied by the 1T1C DRAM cell

structure must be small, leakage through the access transistor must be low, and the

capacitance of the storages capacitor must be large. The data retention time and data

integrity requirements provide the boundaries in the design of a DRAM cell. Different

DRAM devices can be designed to meet the demand of high performance or low cost

market. Presently, DRAM devices are manufactured on DRAM-optimized process

technologies whereas logic devices are typically manufactured on logic-optimized process

technologies. DRAM optimized process technologies can be used to fabricate logic circuits,

and logic optimized process technologies can also be used to fabricate DRAM circuits.

However, DRAM optimized process technologies have diverged substantially from logic

optimized process technologies in recent years. Consequently, it has become less

economically feasible to fabricate DRAM circuits in logic optimized process technology

and logic circuits fabricated in DRAM optimized process technology is much slower than

similar circuits in a logic optimized process technology. These trends have conspired to keep

logic and DRAM circuits separate in different devices.

 2.11.1 Cost Considerations

Historically, manufacturing cost considerations have dominated the design of standard,

commodity DRAM devices. In the spring of 2003, a single 256 megabit DRAM device,

using roughly 45 mm2 of silicon die area on a 0.11um DRAM process had a selling price of

approximately $4 per chip. In contrast, a desktop Pentium 4 processor from Intel, using

38

roughly 130 mm2 of die area on a 0.13um logic process, had a selling price that ranged from

$80 to $600 in the comparable time frame. Although the respective selling prices were due

to the limited sources, non-commodity nature of processors and the pure commodity

economics of DRAM devices, the disparity does illustrate the level of price competition on

the sale of commodity DRAM devices. The result is that DRAM manufacturers are

singularly focused on the low cost aspect of DRAM devices. Any proposal to add additional

functionalities must then be weighed against the increase in die cost and possible increases

in selling price.

 2.11.2 DRAM-versus-Logic Optimized Process Technologies

One apparently inevitable trend in semiconductor manufacturing is the march toward

integration. As the semiconductor manufacturing industry dutifully fulfills Moore’s Law,

each doubling of transistors allow design engineers to pack more logic circuitry or more

DRAM storage cells onto a single piece of silicon. However, the semiconductor industry has

thus far generally resisted the integration of DRAM and logic onto the same silicon device

for various technical and economic reasons.

Figure 2.15 illustrates some technical issues that have prevented large scale integration

of logic circuitry with DRAM storage cells. Basically, logic optimized process technologies

have been designed for transistor performance while DRAM optimized process

technologies have been designed for low cost, error tolerance and leakage resistance. Figure

2.15 shows a typical logic based process technology with 7 or more layers of copper

interconnects while a typical DRAM optimized process technology has only 2 layers of

aluminum interconnects along with perhaps an additional layer of tungsten for local

39

interconnects. Moreover, a logic optimized process typically uses low K material for the

inter-layer dielectric while the DRAM optimized process uses the venerable SiO2. Figure

2.15 also shows that a DRAM optimized process would use 4 or more layers of polysilicon

to form the structures of a stacked capacitor (for those DRAM devices that use the stacked

capacitor structure), while the logic optimized process merely uses 2 or 3 layers of

polysilicon for local interconnects. Also, transistors in a logic optimized process are

typically tuned for high performance while transistors in a DRAM optimized process are

tuned singularly for low leakage characteristics. Finally, even the substrate of the

respectively optimized process technologies are diverging as logic optimized process

technologies move to depleted substrates and DRAM optimized process technologies

largely stays with bulk silicon.

The respective specializations of the differently optimized process technologies have

largely succeeded in preventing widespread integration of logic circuitry with DRAM

Figure 2.15: Comparison of DRAM Optimized Process versus Logic Optimized Process.

Metal Interconnections
7+ layers of Cu2 layers of Al

Inter-layer Dielectric low KSiO2

 layer of Tungsten

Polysilicon

2 or 3 layers:
local interconnect

4+ layers:
cell capacitance

Transistors
low Vt:

Drive current optimized
high Vt:

leakage optimized

Substrate

trench capacitors

BOX: Buried Oxide layer

Logic Optimized ProcessDRAM Optimized ProcessP
ro

ce
ss

 F
ro

n
t

E
n

d
P

ro
ce

ss
 B

ac
k

E
n

d

bulk silicon

40

storage cells. The use of a DRAM optimized process as the basis of integrating logic circuits

and DRAM storage cells lead to slow transistors with low drive currents connected to few

layers of metal interconnects and relatively high K SiO2 inter-layer dielectric. That is, logic

circuits implemented on a DRAM optimized process would be substantially larger as well as

slower than comparable circuits on a similar generation logic optimized process* .

Conversely, the use of a higher cost logic optimized process as the basis of integrating logic

circuits and DRAM storage cells lead to high performance but leaky transistors coupled with

DRAM cells with relatively lower capacitance, necessitating large DRAM cell structures

and high refresh rates.

In recent years, new hybrid process technologies have emerged to solve various

technical issues limiting the integration of logic circuits and DRAM storage cells. Typically,

the hybrid process starts with the foundation of a logic optimized process, then additional

layers are added to the process to create high capacitance DRAM storage cells. Also,

different types of transistors are made available for use as low leakage access transistors as

well as high drive current high performance logic transistors. However, hybrid process

technology then becomes more complex than a logic optimized process. As a result, hybrid

process technologies that enable seamless integration of logic and DRAM devices are

typically more expensive, and their use have thus far been limited to specialty niches that

require high performance processor and high performance and yet small DRAM memory

systems that are limited by the die size of a single logic device. Typically, the application has

been limited to high performance System-on-Chip (SOC) devices.

*. DRAM cell sizes in hybrid logic based process technologies are

41

CHAPTER 3 DRAM Memory System
Organization

In this chapter, basic terminologies and basic building blocks of DRAM memory

systems are described. While the previous chapter examined the operations of a single

DRAM device, this chapter examines the construction, organization and operation of

multiple DRAM devices in the context of a complete memory system. The goal of this

chapter is to cover the definition of basic terminologies sufficient to describe DRAM

memory system organizations and establish a common nomenclature for use throughout this

work. The performance analysis and DRAM scheduling algorithm in subsequent chapters

are described by using the basic terminology defined in this chapter.

 3.1 Conventional Memory system

Historically, the number of storage bits contained in a single DRAM device has been

inadequate to serve as the main memory for most computing platforms, with the exception

of specialty embedded systems. In the past few decades, the growth rate of DRAM device

storage capacity has roughly paralleled the growth rate of the size of memory systems for

desktop computers, workstations and servers. The parallel growth rates in DRAM device

storage capacity and DRAM memory system capacity have dictated system designs in that

multiple DRAM devices must be interconnected together to form larger memory systems for

most computing platforms. In this chapter, the organization of different multi-chip DRAM

42

memory systems and different interconnection strategies, deployed for cost and performance

concerns, are explored.

In Figure 3.1, multiple DRAM devices are interconnected together to form a single

memory system that is managed by a single memory controller. In modern computer

systems, one or more DRAM memory controllers (DMC) may be contained in the processor

package or integrated into a system controller that resides outside of the processor package.

Regardless of the location of the DRAM memory controller, the functionality of the DRAM

memory controller is to accept read and write requests to a given address in memory,

translate the request to one or more commands to the memory system, issue those

commands to the DRAM devices in the proper sequence and proper timing, and retrieve or

store data on behalf of the processor or I/O devices in the system.

Figure 3.1: Multiple DRAM devices connected to a processor through a memory controller.

Memory
Controller

Command
Sequence

Data

Row?Rank? Bank? Column?Channel?

43

 3.2 Basic Nomenclature

The organization of multiple DRAM devices into a memory system can impact the

performance of the memory system in terms of operating datarates, latency, and sustainable

bandwidth characteristics. It is therefore of great importance that the organization of

multiple DRAM devices into larger memory systems be examined in detail. However, the

problem that has hindered the examination of DRAM memory system organizations is the

lack of clearly defined nomenclature. Without a common basis of well defined

nomenclature, technical articles and datasheets often succeed in introducing confusion

rather than clarity to discussions on DRAM memory systems. In one particularly egregious

example, a technical datasheet for a system controller used the word bank in two bullet

items on the same page to mean two different things. In this datasheet, one bulleted item

trumpeted that the system controller can support 6 banks (of DRAM devices). Then, several

bulleted items later, the same datasheet states that the same system controller supports

SDRAM devices with 4 banks. In a second example that was nearly as egregious, an article

in a well respected technical journal examined the then new Intel i875P system controller,

and proceeded to discuss the performance advantage of the system controller due to the fact

that it could control two banks of DRAM devices.

In these two examples, the word bank was used to mean three different things. While the

meaning of the word bank can be inferred from context in each case, the overloading and

repeated use of the terminology introduces unnecessary confusion into discussions about

DRAM memory systems. In this section, the terminology of channel, rank, bank, row and

column is defined and all subsequent discussions in this work will conform to their usage as

defined in this chapter.

44

 3.2.1 Channel

Figure 3.2 shows three different system controllers with slightly different

configurations of the DRAM memory system. In Figure 3.2, each system controller has a

single DMC, and each DMC controls a single channel of memory. In the example labelled

as the typical system controller in Figure 3.2, the system controller controls a single 64 bit

wide channel. In modern DRAM memory systems, commodity non-ECC DRAM memory

modules are standardized with 64 bit wide data busses, and the 64 bit data bus width of the

memory module matches the data bus width of the typical personal computer system

controller. In the exampled labelled as Intel i875P system controller, the system controller

connects to a single channel of DRAM with a 128 bit wide data bus. However, since

commodity DRAM modules have 64 bit wide data busses, matching pairs of 64 bit wide

memory modules are required for Intel’s i875P system controller to operate with the 128 bit

wide data bus. The paired-memory-module configuration of Intel’s i875p system controller

is often referred to as a dual channel configuration. However, since there is only one

memory controller and both memory modules operate in parallel to store and retrieve data

through the 128 bit wide data bus, the paired-memory module configuration is in fact a 128

Figure 3.2: Systems with single memory controller and different data bus widths.

“Typical”
system controller

Intel i850
system controller

64
DDR

16
32

16 D-RDRAM

D-RDRAM

One DM C: One logical 32 bit wide channel

Intel i875P
system controller

64

DDR

DDR
128

64

Two “ physical channels” of 16 bit width

One DMC: One logical 64 bit wide channel

One “ physical channel” of 64 bit width

One DMC: One logical 128 bit wide channel

Two “ physical channels” of 64 bit wide busses

DMC

DMC

DMC

45

bit wide single channel memory system. Also, similar to SDRAM and DDR SDRAM

memory systems, standard Direct RDRAM memory modules are designed with 16 bit wide

data busses and system controllers such as the Intel i850 system controller use matched pairs

of Direct RDRAM memory modules to form a single 32 bit wide logical channel of

memory.

In contrast to system controllers that use a single DRAM memory controller to control

the entire memory system, Figure 3.3 shows that the Alpha EV7 processor and the Intel

i925x system controller each has two DRAM memory controllers that independently control

64 bit wide data busses*. The use of independent DRAM memory controllers can lead to

higher sustainable bandwidth characteristics since the narrower channels lead to longer data

bursts per cacheline request and the various inefficiencies dictated by DRAM access

protocols can be better amortized. As a result, newer system controllers are often designed

with multiple memory controllers despite the die cost of adding memory controllers.

Modern memory systems with one DRAM memory controller and multiple physical

channels of DRAM devices such as those illustrated in Figures 3.2 are typically designed

with the physical channels operating in lockstep with respect to each other. However, there

*. Ignoring additional bit widths used for error correction and cache directory in the case of the Alpha EV7 processor.

Figure 3.3: Systems with two independent memory controllers and two logical channels.

In
te

l i
92

5X
sy

st
em

 c
on

tr
ol

le
r

H
P

Q
 A

lp
ha

E

V
7

pr
oc

es
so

r

D-RDRAM

D-RDRAM

D-RDRAM

D-RDRAM

D-RDRAM

D-RDRAM

D-RDRAM

D-RDRAM

64

64

16

16

64

DDR2

DDR2

64

16

16

Two Channels: 64 bit wide per channel Two Channels: 64 bit wide per channel

DMC

DMC

DMC

DMC

46

are two variations to the single-controller-multiple-physical-channel configuration. One

variation of the single-controller-multiple-physical-channel configuration is that some

system controllers, such as the Intel i875P system controller, allow the use of mismatched

pairs of memory modules in the different physical channels. In such a case, the i875p system

controller operates in an asymmetric mode and independently controls the physical channels

of DRAM modules. However, since there is only one DRAM memory controller, the

multiple physical channels of mismatched memory modules cannot be accessed

concurrently, and only one channel of memory can be accessed at any given instance in

time. In the asymmetric configuration, the maximum system bandwidth is the maximum

bandwidth of a single physical channel.

A second variation of the single controller-multiple-physical-channel configuration can

be found in high performance FPM DRAM memory systems that were designed prior to the

emergence of DRAM devices that support consecutive-cycle data bursts. Figure 3.4

illustrates a sample timing diagram of a column access in an SDRAM memory system.

Figure 3.4 shows that an SDRAM device is able to return a burst of multiple columns of data

Figure 3.4: High performance DMC with 4 channels of interleaved FPM DRAM devices.

ck

cmd

data

tCAS

1

Burst Length

2

cas

data

tCAS

1

SDRAM memory bursts multiple

2

cas

data

1

2

cas

data

1

2

cas

data

1

2

columns of data (2) for each column
access command (1).

FPM DRAM returns one column of
 data (2) for each column access
command (1). Column accesses
cannot be pipelined. Solution: stagger

H
ig

h
pe

rf
or

m
an

ce
 s

ys
te

m
 c

on
tr

ol
le

r
of

ye
st

er
ye

ar
 w

it
h

in
te

rl
ea

ve
d

F
P

M
 D

R
A

M

64

DMC

FPM

64
FPM

64
FPM

64
FPM

column accesses to different physical
channels of FPM DRAM devices

47

for a single column access command. However, an FPM DRAM device supported neither

single-access-multiple-burst capability nor the ability to pipeline multiple column access

commands. As a result, FPM DRAM devices need multiple column accesses that cannot be

pipelined to retrieve the multiple columns of data for a given cacheline access.

One solution deployed to overcome the shortcomings of FPM DRAM devices is the use

of multiple FPM DRAM channels in a single memory system that operates in an interleaved

fashion. Figure 3.4 also shows how a sophisticated FPM DRAM memory system can send

multiple column accesses to different physical channels in such a manner so that the data for

the respective column accesses appear on the data bus in consecutive cycles. In this

configuration, the multiple FPM DRAM channels provided the sustained throughput

required in high performance workstations and servers before the appearance of modern

synchronous DRAM devices that can burst through multiple columns of data in consecutive

cycles.

48

 3.2.2 Rank

Figure 3.5 shows a memory system populated with 2 ranks of DRAM devices.

Essentially, a rank of memory is a “ bank” of one or more DRAM devices that operate in

lockstep in response to a given command. However, the word “ bank” is currently used by

DRAM device manufacturers to describe the number of independent DRAM arrays within

a DRAM device. To lessen the confusion associated with overloading the nomenclature,

the word rank is now used to denote a set of DRAM devices that operate in lockstep

fashion to commands in a memory system.

Figure 3.5 illustrates a configuration of two ranks of DRAM devices in a single channel

in a classical DRAM memory system topology. In the classical DRAM memory system

topology, the address and command busses are connected to every DRAM device in the

memory system, but the wide data bus is partitioned and connected to different sets of

DRAM devices within the system. The memory controller then uses chip-select signals to

select the appropriate rank of DRAM devices to respond to a given command.

Figure 3.5: Memory System with 2 ranks of DRAM devices.

DMC

address and command

data bus

data bus

data bus

data bus

16

16

16

16
chip select 0
chip select 1 Rank

Bank

49

 3.2.3 Bank

The word bank has been over used to mean a number of different things in the memory

system. As described previously, the word bank had been used to describe independent

memory arrays inside a DRAM device, a set of DRAM devices that collectively act in

response to commands, as well as different physical channels of memory. In this text, the

word bank is used strictly to denote an independent memory array inside a DRAM device.

Figure 3.6 shows an SDRAM device with 4 banks. Modern DRAM devices contain

multiple banks so that multiple, independent accesses to different DRAM arrays can occur

in parallel. In this design, each bank of memory is an independent array that can be in

different phases of the row access cycle. Some common resources, such as the I/O gating

that allows access to the data pins must be shared between different banks. However, the

multi-bank architecture allows commands such as read requests to different banks to be

pipelined. Certain commands, such as refresh commands, can also be engaged in multiple

banks in parallel. In this manner, multiple banks can operate independently or

concurrently depending on the command.

data out
register

data in
register

Figure 3.6: SDRAM device with 4 banks of DRAM arrays internally.

CKE

CLK

WE#

CS#

CAS#

RAS# co
m

m
an

d

d
ec

o
d

e

control

logic

mode

register

refresh

row
addr
mux row

address
register

addr

bank

column

I/O gating /

column
decoder

data I/O
bus

address
counter

address
latch &
decoder

read data latch
write drivers

counter

row
address
latch &
decoder

row
address
latch &
decoder

row
address
latch &
decoder

sense amp array
sense amp array

sense amp array
sense amp array

control

column
decodercolumn

decodercolumn
decoder

DRAM
Array

Bank 0
Bank 1
Bank 2
Bank 3

50

 3.2.4 Row

In DRAM devices, a row is simply the group of storage cells that are activated in parallel

in response to a row activation command. In DRAM memory systems that utilize the

conventional system topology such as SDRAM, DDR SDRAM and DDR2 SDRAM

memory systems, multiple DRAM devices are typically connected in parallel as ranks of

memory. Figure 3.5 shows how DRAM device can be connected in parallel to form ranks of

memory devices. The effect of DRAM devices connected as ranks of DRAM devices that

operate in lockstep is that a row activation command will activate the addressed row in all

DRAM device of a given rank of memory. This arrangement means that the size of a row is

multiplied by the number of DRAM devices in a given rank, and a DRAM row spans across

the multiple DRAM devices of a given rank of memory.

A row is also sometimes referred to as a DRAM page, since a row activation command

in essence activates a page of memory. DRAM pages are typically several kilobytes in size,

and they are cached at the sense amplifiers until a subsequent precharge command is issued

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

Figure 3.7: DRAM devices with 4 banks, 8192 rows per bank, 512 columns per row, and
16 bits per column.

DRAM devices arranged in parallel in a given rank

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

one row spanning multiple DRAM devices

51

by the DRAM memory controller. Various schemes have been proposed to take advantage of

locality at the DRAM page level. However, one problem with the exploitation of locality at

the DRAM page level is that the size of the DRAM page depends on the configuration of the

DRAM device and the memory modules, rather than the architectural page size of the

processor.

 3.2.5 Column

In DRAM memory systems, a column of data is the smallest independently addressable

unit of memory. Figure 3.8 illustrates that in memory systems such as SDRAM and DDRx*

SDRAM memory systems with topology similar as to the memory system illustrated in

Figure 3.5, the size of a column of data is the same as the width of the data bus. In a Direct

RDRAM device, a column is defined as 16 bytes of data, and each read command accesses a

single column of data 16 bytes in length from each physical channel of Direct RDRAM

devices

In DDRx SDRAM memory systems, each column access command loads or stores

multiple columns of data depending on the programmed burst length. For example, in a

*. DDRx denotes DDR SDRAM and evolutionary DDR memory systems such as DDR2 and DDR3 SDRAM memory
systems, inclusively.

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

Figure 3.8: Classical DRAM system topology, width of data bus equals column size.

DRAM devices arranged in parallel in a given rank

SDRAM memory systems: width of data bus = column size

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

sense amp array
sense amp array

sense amp array
sense amp array

DRAM
Array

52

DDR2 DRAM device, each memory read command returns a minimum of 4 columns of

data. The distinction between a DDR2 device returning a minimum burst size of 4 columns

of data and a Direct RDRAM device returning a single column of data over 8 beats* is that

the DDR2 device accepts the address of a specific column, and returns the requested

columns in different orders depending on the programmed behavior of the DRAM device. In

this manner, each column is separately addressable. In contrast, Direct RDRAM devices do

not reorder data within a given burst, and a 16 byte burst from a single channel of Direct

RDRAM devices is transmitted in-order and treated as a single column of data.

 3.2.6 Memory System Organization: An Example

Figure 3.9 illustrates a DRAM memory system with 4 ranks of memory, each rank of

memory consists of 4 devices connected in parallel, each device has 4 banks of DRAM

arrays internally, each bank has 8192 rows, and each row has 512 columns of data. In a

*. A beat is simply a data-transition on the data bus. In SDRAM memory systems, there is one data-transition per clock
cycle, so one beat of data is transferred per clock cycle. In DDRx SDRAM memory systems, two data transfers can
occur in each clock cycle, so two beats of data is transferred per clock cycle. The use of the beat terminology avoids
overloading the word cycle in discussions regarding DDRx SDRAM memory systems.

Figure 3.9: Location of data in a DRAM memory system.

rank ID = 1bank ID = 1
row ID = 0x0B1D

column ID = 0x187

Memory System

53

DRAM based memory system, the DRAM controller accepts an address and breaks down

the address into separate addresses that point to the specific channel, rank, bank, row,

column where the data is contained.

Although Figure 3.9 illustrates a uniformly organized memory system, memory system

organizations of many computer systems are typically non-uniform. The reason that the

DRAM memory systems organizations in many computer systems are typically non-uniform

is because most computer systems are designed to allow end users to upgrade the capacity of

the memory system by inserting and removing commodity memory modules. To support

memory capacity upgrades by the end user, DRAM controllers have to be designed to

flexibly adopt to different configurations of DRAM devices and modules that the end user

could place into the computer system. This support is provided for through the use of

address range registers whose functionality is examined separately in the chapter on system

controllers.

 3.3 Memory Modules

Some earlier generations of computer systems allowed end users to increase memory

capacity by providing sockets on the system board where additional DRAM devices can be

inserted. Figure 3.10 illustrates a system board with sockets that allow end users to remove

and insert individual DRAM devices, usually contained in dual link packages (DIP). The

process of memory upgrade was cumbersome and difficult, as DRAM devices had to be

individually removed and inserted into each socket. Pins on the DRAM devices may be bent

and not visually detected as such. Defective DRAM chips were difficult to locate and

54

routing of sockets for a large memory system requires large surface areas on the system

board. The solution to the problems associated with memory upgradability was the creation

and use of memory modules.

Memory modules are essentially miniature system boards that hold a number of DRAM

devices so that groups of DRAM devices can be quickly and easily inserted and removed

from the system board. Memory modules provide an abstraction at the module interface so

that different manufacturers can manufacture memory upgrades for a given computer

system with different DRAM devices. DRAM memory modules also reduce the complexity

of the memory upgrade process. Instead of the removal and insertion of individual DRAM

chips, memory upgrades with modules containing multiple DRAM chips can be quickly and

easily inserted into and removed from a module socket. Over the years, memory modules

have themselves gradually evolved, obtained a level of sophistication, and now require

exacting specifications for compatibility between different systems.

Figure 3.10: An 80386sx system board with sockets for dual in-line package DRAM devices.

one rank of 18 DRAM devices,
each providing 1 bit wide data
bus.

55

 3.3.1 Single In-line Memory Module (SIMM)

In the late 1980’s and early 1990’s, the computer industry first standardized on the use of

30 pin Single In-line Memory Modules (SIMMs), then later moved to the use of 72 pin

SIMMs. SIMMs are referred to as single-inline due to the fact that the contacts on both sides

of the module are electrically identical. A 30 pin SIMM provides interconnects to 8 or 9 pins

on the data bus, as well as power, ground, address, command and chip select signal lines. A

72 pin SIMM increases the width of the data bus connection to 32 or 36 bits.

Figure 3.11 shows the two sides of a 30 pin SIMM. The DRAM devices on the SIMM in

Figure 3.11 consists of two 4 megabit and one 1 megabit DRAM devices. Collectively, these

DRAM devices provide a 9 bit wide data bus interface and 1 megabyte of parity protected

memory storage capacity. Typical computer systems in the early 1990’s used sets of four

matching 30 pin SIMMs similar to the one illustrated in Figure 3.11 to provide a 36 bit wide

memory interface to support parity checking by the memory controller.

Figure 3.11: A one megabyte 30 pin SIMM.

front side of 30 pin SIMM

back side of 30 pin SIMM

same electrical contact

56

 3.3.2 Dual In-line Memory Module (DIMM)

In the late 1990’s, as the personal computer industry transitioned from FPM/EDO

DRAM to SDRAM, 72 pin SIMMs were phased out in favor of dual in-line memory

modules (DIMMs). DIMMs are physically larger than SIMMs and provides a 64 or 72 bit

wide data bus interface. The difference between a SIMM and a DIMM is that contacts on

either side of the DIMM are electrically different. The electrically different contacts allow a

denser routing of electrical signals as well as close pairing of power and ground signals for

noise minimization.

Figure 3.12 illustrates a 128 MB PC3200 ECC DDR SDRAM DIMM with an

interesting configuration. Since ECC support required that this DIMM provide a 72 bit wide

data bus interface to the memory system, an odd number of DRAM devices is needed on the

memory module to create such an interface. Typically, for a 128 MB ECC DIMM, four 256

megabit DRAM device with 16 bit wide interface would be utilized along with a single 128

Figure 3.12: A 128 MB PC3200 ECC DDR SDRAM Dual In-line Memory Module.

front side of DIMM

back side of DIMM

electrically different contact

57

megabit DRAM device with 8 bit wide interface. Such a configuration would minimize cost,

but in this case, the manufacturer of the memory module chose to create the memory module

with five identical 256 megabit DRAM devices, each with a 16 bit data bus interface. The

result is an 80 bit data bus interface, but only 72 are used on the DIMM.

 3.3.3 Registered Memory Module

Memory modules of varying capacity and timing characteristics are needed to suite a

wide range of computers and upgrade options. High performance workstations and servers

typically require large memory capacity. The problem associated with large memory

capacity memory modules is that a large number of DRAM devices must be connected

together to create the large capacity memory module. Figure 3.13 shows a memory module

stacked with 2 ranks of 64 megabit SDRAM devices. On the memory module partially

shown in edge view in Figure 3.13, each rank consists of 18 DRAM devices and a total of 36

DRAM devices are connected together on the memory module to form a memory module

256 megabytes in capacity. The large number of DRAM devices creates a problem in that

the large number of DRAM devices presents a large loading factor on the various address,

command and data busses.

Registered memory modules alleviate the issue of electrical loading by large numbers of

DRAM devices in a large memory system through the use of registers that buffer the address

Figure 3.13: Edge view of a registered DIMM stacked with 2 ranks of DRAM devices in
TSOP package.

58

and control signals at the interface of the memory module. Figure 3.14 illustrates that

registered memory modules use registered latches at the interface of the memory module to

buffer the address and control signals. In this manner, the registers greatly reduce the

number of electrical loads that a memory controller must drive directly, and the signal

interconnects in the memory system are divided into two separate segments: between the

memory controller and the register, and between the register and DRAM devices. The

segmentation allows timing characteristics of the memory system to be optimized by

limiting the number of electrical loads as well as reducing the path lengths of the critical

control signals in individual segments of the memory system. However, the drawback to the

use of the registered latches on a memory module is that the buffering of the address and

control signals introduce delays into the memory access latency, and the cost of ensuring of

signal integrity in a large memory system is paid in terms of additional latency for all

memory transactions.

Figure 3.14: Registered latches buffer the address and command.
Also introduces additional latency into the DRAM access.

memory

address/
command

module

DRAM
devices

command/
address
register (latch)

59

 3.3.4 Memory Module Organization

Modern DRAM memory systems often support large varieties of memory modules to

give end users the flexibility of selecting and configuring to the desired memory capacity.

Since the price of DRAM devices fluctuate depending on the unpredictable commodity

market, one memory module organization may be less expensive to manufacture than

another organization at a given instance in time, while the reverse may be true at a different

instance in time. As a result, a memory system that supports different configurations of

memory modules allows end users the flexibility to purchase and use the most economically

organized memory module. However, one issue that memory system design engineers must

account for in providing the flexibility of memory system configuration to the end user is

that the flexibility translates into large combinations of memory modules that may be placed

into the memory system at a given instance in time. Moreover, multiple organizations often

exist for a given memory module capacity, and memory system design engineers must often

account for not only different combinations of memory modules of different capacities, but

also different modules of different organizations for a given capacity.

Table 3.1 shows that a 128 MB memory module can be constructed from a combination

of sixteen 64 Mbit DRAM devices, eight 128 Mbit DRAM devices, or four 256 Mbit

DRAM devices. Table 3.1 shows that the different memory module organizations not only

Capacity
device
density

number
of ranks

 devices
per rank

device
width

number
of banks

number
of rows

number of
columns

128 MB 64 Mbit 1 16 x4 4 4096 1024

128 MB 64 Mbit 2 8 x8 4 4096 512

128 MB 128 Mbit 1 8 x8 4 4096 1024

128 MB 256 Mbit 1 4 x16 4 8192 512

TABLE 3.1: Four different configurations for a 128 MB SDRAM memory module

60

use different number of DRAM devices, but also presents different numbers of rows and

columns to the memory controller. To access the memory on the memory module, the

DRAM controller must recognize and support the organization of the memory module

inserted by the end user into the memory system. In some cases, new generations of DRAM

devices can enable memory module organizations that a memory controller was not

designed to support, and incompatibility follows naturally.

 3.3.5 Serial Presence Detect (SPD)

Memory modules have gradually evolved as each generation of new memory modules

gains additional levels of sophistication and complexity. Table 3.1 showed that a DRAM

memory module can be organized as multiple ranks of DRAM devices on the same memory

module, each rank consisting of multiple DRAM devices and the memory module can have

differing numbers of rows and columns. What isn’t shown in table 3.1 is that each DRAM

memory module may in fact have different timing parameters, and the variability of the

DRAM modules in turn increases system level complexity that a memory system design

engineer must deal with.

Figure 3.15: The SPD stores memory module configuration information.

serial presence detect (SPD) Configuration Value (interpreted)

DRAM type DDR SDRAM

No. of row addresses 16384

No. of column addresses 1024

No. of banks 4

Data rate 400

Module type ECC

Cas latency 3

TABLE 3.2: Sample parameter values stored in SPD

61

To reduce the complexity and eliminate confusion involved in the memory upgrading

process, the solution adopted by the computer industry is to store the configuration

information of the memory module on a flash memory device whose content can be

retrieved by the memory controller as part of the system initialization process. In this

manner, the memory controller can obtain the configuration and timing parameters required

to optimally access data from DRAM devices on the memory module. Figure 3.15 shows

the image of a small flash memory device on a DIMM. The small flash memory device is

known as a Serial Presence Detect (SPD) device, and it stores parameter values that defines

the configuration and timing characteristics of the memory module. Table 3.2 also shows

some parameter values that are stored in the SPD.

 3.4 Memory System Topology

In Figure 3.16, a memory system where 16 DRAM devices are connected to a single

DRAM controller is shown. In Figure 3.16, the 16 DRAM devices are organized into four

separate ranks of memory. Although all 16 DRAM devices are connected to the same

Figure 3.16: Topology of a generic DRAM memory system.

Single
Channel
SDRAM
Controller

Data Bus
Addr & Cmd

Chip (DIMM) Select

“ Mesh Topology”

rank 1 rank 2 rank 3rank 0

62

DRAM controller, different numbers of DRAM devices are connected to different networks

for the uni-directional address and command bus, the bi-directional data bus, and the uni-

directional chip select lines. In this topology, when a command is issued, electrical signals

on the address and command busses are sent to all 16 DRAM devices in the memory system,

but the separate chip-select signal selects a set of 4 DRAM devices in a single rank to

provide the data for a read command or receive the data for a write command. In this

topology, each DRAM device in a given rank of memory is also connected to a subset of the

width of the data bus along with three other DRAM devices in different ranks of memory

Memory system topology determines the signal path lengths and electrical loading

characteristics in the memory system. As a result, designers of modern high performance

DRAM memory systems must pay close attention to the topology and organizations of the

DRAM memory system. However, due to the evolutionary nature of the memory system,

the classic memory system topology described above and shown in Figure 3.16 has

remained essentially unchanged for Fast Page Mode DRAM (FPM), Synchronous DRAM

(SDRAM) and Dual Data Rate SDRAM (DDR) memory systems. Furthermore, variants of

the classical topology with fewer ranks are expected to be used for DDR2 and DDR3

memory systems.

 3.4.1 Direct RDRAM System Topology

One memory system with a system topology dramatically different from the classical

DRAM memory system topology is the Direct RDRAM memory system. In Figure 3.17, 4

Direct RDRAM devices are shown connected to a single Direct RDRAM memory

controller. Figure 3.17 shows that in a Direct RDRAM memory system, the DRAM devices

63

are connected to a well matched network of interconnects where the clocking network, the

data bus and the command busses are all path length matched by design. The benefit of the

well matched interconnection network is that signal skew is minimal by design and

electrical signalling rates in the Direct RDRAM memory system can be increased to higher

frequencies than a memory system with the classic memory system topology. Modern

DRAM systems with conventional multi-rank topology can also match the raw signalling

rates of a Direct RDRAM memory system. However, the drawback for these DRAM

systems is that idle cycles must be designed into the access protocol and devoted to system

level synchronization. As a result, even when pushed to comparable data rates, multi-rank

DRAM memory systems with classical system topologies are less efficient in terms of data

transported per cycle per pin.

The Direct RDRAM memory system can achieve higher efficiency in terms of data

transport per cycle per pin. However, in order to take advantage of the system topology and

enjoy the benefits of higher pin data rates and higher data transport efficiency, Direct

RDRAM memory devices are more complex than comparable DRAM memory devices that

use the classic memory system topology. In DRAM devices, complexity translates directly

to increased costs. As a result, the higher data transport efficiency of Direct RDRAM

memory systems has to be traded off against relatively higher DRAM device costs.

Figure 3.17: Topology of a generic Direct RDRAM memory system.

D-RDRAM
Controller

Data Bus

Row Cmd Bus

clock from master

Column Cmd Bus

rank 0
“Matched Topology”rank 2

D-RDRAM
device

clock to master

terminated at
end of channelD-RDRAM

device
D-RDRAM
device

D-RDRAM
device

rank 1 rank 3

64

CHAPTER 4 DRAM Memory Access
Protocol

The basic structures of DRAM devices and memory system organizations are described

in some detail in previous chapters. In this chapter, the DRAM memory access protocol is

examined in similar detail. A memory access protocol defines commands that a DRAM

memory controller uses to manage the movement of data on DRAM devices in the memory

system, and each memory system has a slightly different access protocol. The DRAM

memory access protocol described in this chapter can be broadly applied to modern memory

access protocols such as SDRAM, and DDRx SDRAM memory access protocols.

This chapter examines a generic DRAM memory access protocol by focusing on basic

DRAM commands common to all commodity DRAM devices. Modern DRAM devices

with additional logic circuitry, write buffers or cache require the use of additional commands

to manage data flow and device operations, on a given DRAM device, and those commands

are not covered in the examination of the generic DRAM access protocol.

65

 4.1 Basic DRAM Commands:

A detailed examination of any DRAM memory access protocol is a difficult and

complex task. The complexity of the task arises from the number of combinations of

commands in modern DRAM memory systems. Fortunately, a basic memory access

protocol can be modeled by accounting for a limited number of basic DRAM commands* .

In this section, five basic DRAM commands are described. The descriptions of the basic

*. Modern DRAM devices such as Direct RDRAM and DDR2 SDRAM devices support larger sets of commands.
However, most are used to manage the electrical characteristics of the DRAM devices, and only indirectly impacts
access latency and sustainable bandwidth characteristics of a DRAM memory system at a given operating frequency.

Figure 4.1: Command and data movement on generic SDRAM device.

CKE

CLK

WE#

CS#

CAS#

RAS# co
m

m
an

d

d
ec

o
d

e

control

logic

mode

register

refresh

row
addr
mux row

address
register

addr

bank

column

I/O gating /

column
decoder

data out

data I/O
bus

address
counter

address
latch &
decoder

read data latch
write drivers

counter

row
address
latch &
decoder

row
address
latch &
decoder

row
address
latch &
decoder

sense amp array
sense amp array

sense amp array
sense amp array

control

column
decodercolumn

decodercolumn
decoder

register

data in
register

DRAM
Arrays

2

3 4

1

1

command
transport and decode

in bank data
movement

in device data
movement

system data
transport1 2 3 4

1

66

commands form the foundation of the DRAM memory access protocol examined in this

chapter. The interaction of the basic DRAM commands are then used to determine the

latency response and sustainable bandwidth characteristics of DRAM memory systems in

this text.

Throughout this chapter, the SDRAM device illustrated in Figure 4.1 is used as a generic

DRAM device for the purposes of defining the basic memory access protocol. Figure 4.1

illustrates that different phases of operations occurs on the DRAM devices to facilitate the

movement of data for each command. The generic DRAM access protocol described in this

chapter is based on a resource usage model. That is, the generic DRAM access protocol

assumes that two different commands can be fully pipelined on a given DRAM device as

long as they do not require the use of a shared resource at the same time, and that there are

no additional constraints beyond the immediate resource sharing constraint* . Figure 4.1

illustrates four overlapped phases of operation for an abstract DRAM command. In phase

one, the command is transported through the address and command busses and decoded by

the DRAM device. In phase two, data is moved within a bank, either from the cells to the

sense amplifiers or from the sense amplifiers back into the DRAM arrays. In phase three, the

data is moved through the shared I/O gating, read latches and write drivers. In phase four,

read data is placed onto the data bus by the DRAM device or the memory controller. Since

the data bus may be connected to multiple ranks of memory, no two commands to different

ranks of memory can use the shared data bus at the same instance in time.

*. Additional constraint on the scheduling of DRAM commands may be the presence of timing parameters such as tRRD
and tFAW. These timing parameters are used to limit the maximum current draw of DRAM devices, so while the
resource on the DRAM device is not used, these timing parameters specify that the resource cannot be used until
sometime later to limit peak power consumption characteristics.

67

A DRAM access protocol indirectly defines the minimum timing constraints between

consecutive DRAM commands. In this chapter, the description of the DRAM memory

access protocol begins with the examination of individual DRAM commands and progresses

with the examination of combinations of DRAM commands. Power limitation constraints

are then described in some detail. The chapter concludes by correlating the generic DRAM

memory access protocol to a specific DRAM memory access protocol, the DDR2 SDRAM

memory access protocol.

 4.1.1 Generic DRAM Command Format

Figure 4.2 abstractly illustrates the progression of a generic DRAM command. In Figure

4.2, the time period that it takes to transport the command from the DRAM controller to the

DRAM device is illustrated and labelled as tCMD. Figure 4.2 also illustrates tparameter, a

generic timing parameter that measures the duration of “operation 1” . In this text, the timing

of operations is measured from the end of the command transport stage until the end of the

operation itself*. In cases where the duration of an operation limits the timing of command

issuance, tparameter then defines the minimum time that commands may be placed onto the

*. CAS commands excepted. tCAS denotes the beginning of the CAS command to the beginning of the data transport
phase. It is defined in this manner due to historical usage of the tCAS timing parameter. Also, the definition of the tCAS
command enables tCWD to be defined as zero rather than as a negative value in memory systems without a write
delay.

Figure 4.2: Different phase of an abstract DRAM commands in a generic DRAM
device.

operation 1

tparameter

cmd & addr bus
bank utilization
device utilization
data bus

cmd

tCMD

time
operation 2

operation 3

cmd

tparameter

68

command and address bus. As a result, tparameter also denotes the minimum time that must

pass between the start of two commands whose relative timing is limited by the duration of

an operation measured by tparameter.

DRAM commands are abstractly defined in this text, and the abstraction separates the

actions of each command from the timing specific nature of each action in specific DRAM

access protocols. That is, the abstraction enables the same set of DRAM command

interactions to be applied to different DRAM memory systems with different timing

parameter values. For example, the command transport time requires 1 clock cycle on

SDRAM and DDRx SDRAM memory systems and 4 clock cycles in Direct RDRAM

memory systems. By abstracting out protocol specifics timing characteristics, DRAM

commands can be described in abstract terms. The generic DRAM memory access protocol

in turn enables abstract performance analysis of DRAM memory systems, and the results of

the abstract analysis is then equally applicable to many different memory systems.

69

 4.1.2 Summary of Timing Parameters

The examination of the DRAM access protocol begins by careful definition of the

timing parameters. Table 4.1 summarizes the timing parameters used in the description of

the DRAM memory access protocol in this chapter. The timing parameters summarized in

table 4.1 is far from a complete set of timing parameters used in the description of a modern

memory access protocol. Nevertheless, the timing parameters describe here is a minimum

set of timing parameters whose use is sufficient to characterize and illustrate important

interactions in modern DRAM memory systems.

Parameter Description Illustration

tBurst
Data Burst duration. The time period that data burst occupies on the data bus.
Typically 4 or 8 beats of data. In DDR SDRAM, 4 beats of data occupies 2 cycles

Figure 4.4

tCAS
Column Access Strobe latency. Time interval between column access command and
data return by DRAM device(s). Also known as tCL.

Figure 4.4

tCMD
Command transport duration. Time period that a command occupies on the command
bus as it is transported from the DRAM controller to the DRAM devices

Figure 4.3

tCWD
Column Write Delay. Time interval between issuance of column write command and
placement of data on data bus by the DRAM controller.

Figure 4.5

tDQS
Data Strobe turnaround. Used in DDR and DDR2 SDRAM memory systems. Not used in
SDRAM or Direct RDRAM memory systems. 1 full cycle in DDR SDRAM

Figure 4.17

tFAW
Four (row) bank Activation Window. A rolling time frame in which a maximum of four
bank activation may be engaged. Limits peak current profile.

Figure 4.29

tRAS
Row Access Strobe. Time interval between row access command and data restoration in
DRAM array. After tRAS, DRAM bank could be precharged.

Figure 4.3

tRC
Row Cycle. Time interval between accesses to different rows in a given bank
tRC = tRAS + tRP

Figure 4.6

tRCD
Row to Column command Delay. Time interval between row access command and data
ready at sense amplifiers.

Figure 4.3

tRFC Refresh Cycle Time. Time interval between Refresh and Activation command Figure 4.7

tRRD
Row activation to Row activation Delay. Minimum time interval between two row
activation commands to same DRAM device. Limits peak current profile.

Figure 4.29

tRP
Row Precharge. Time interval that it takes for a DRAM array to be precharged and
readied for another row access.

Figure 4.6

tWR
Write Recovery time. Minimum time interval between end of write data burst and the start
of a precharge command. Allows sense amplifiers to restore data to cells

Figure 4.5

TABLE 4.1: Summary of timing parameters used in generic DRAM access protocol

70

 4.1.3 Row Access Command

Figure 4.3 abstractly illustrates the progression of a generic row access command, also

known as a row activation command. The purpose of a row access command is to move data

from the DRAM arrays to the sense amplifiers. Two timing parameters are associated with a

row access command: tRCD and tRAS. The time it takes for the row access command to move

data from the DRAM cell arrays to the sense amplifiers is known as the Row Column

(Command) Delay, tRCD. After tRCD, an entire row of data is held in the sense amplifiers. At

that time, a column read or write access commands can be engaged to move data between

the sense amplifiers and the memory controller through the data bus.

After tRCD time, data is available at the sense amplifiers, but not yet restored to the

DRAM cells. A row access command discharges the DRAM cells of the accessed row. As a

result, the row of data must be restored from the sense amplifiers back into the DRAM cells

before the sense amplifiers can be used to sense the data in a different row. The time it takes

for a row access command to discharge and restore data from the row of DRAM cells is

known as the Row Access Strobe latency or tRAS. After tRAS, the sense amplifiers are

assumed to have completed the data restoration process, and the DRAM array can be

precharged for another row access to the same bank.

Figure 4.3: Row Access command and timing.

1

data sense

3

Generic DRAM device (one rank)

address and
command bus d

ec
o

d
e

data bus

sense amplifiers

tRAS

data restored to DRAM cells

tRCD

cmd & addr bus
bank utilization
device utilization
data bus 2

addr & cmd

cmd

time

71

 4.1.4 Column Read Command

Figure 4.4 abstractly illustrates the progression of a column read command. A column

read command moves data from the array of sense amplifiers of a given bank to the memory

controller. There are two timing parameters associated with a column read command: tCAS

and tBurst. The time it takes for the DRAM device to place the requested data onto the data

bus after issuance of the column read command is known as the Column Access Strobe

Latency (tCAS, or tCL). After tCAS, the requested data is moved from the sense amplifiers

onto the data bus, then into the memory controller. Modern memory systems move data in

relatively short bursts, typically occupying 2, 4 or 8 beats on the data bus. To maintain

consistency in the description of the access protocol, the duration of the data burst is

described in terms of a time duration rather than the number of clock cycles. The data burst

duration is labelled in Figure 4.4 as tBurst.

Figure 4.4 shows that the column read command goes through 4 separate overlapping

phases. In phase one, the command is transported on the address and command bus then

decoded by the DRAM device. In phase two, the appropriate columns of data is retrieved

from the sense amplifier array of the selected bank and moved to the I/O gating. In phase

three, the data flows through the I/O gating and out to the data bus. In phase four, the data

occupies the data bus for time duration of tBurst.

Figure 4.4: Column Read command and timing.

21 3

Generic DRAM device(one rank)

address and
command bus d

ec
o

d
e

data bus

4

tBursttCAS

cmd & addr bus
bank utilization
device utilization
data bus

bank access

data burst
I/O gating

addr & cmd

cmd

time

72

 4.1.5 Column Write Command

Figure 4.5 abstractly illustrates the progression of a column write command. A column

write command moves data from the memory controller to the sense amplifiers of a given

bank. The column write command goes through a similar set of overlapped phases as the

column read command. However, due to the fact that the direction of the data movement

differs between a read command and a write command, the ordering of the phases is

reversed. In Figure 4.5, phase one shows that the column address and column write

command is placed on the address and command bus. In phase two, the data is placed on the

data bus by the memory controller. Then in phase three, the data flows through the I/O

gating, and in phase four, the data reaches the sense amplifiers in the appropriate bank. One

timing parameter associated with a column write command is tCWD, command write delay.

Column write delay is the delay between the time when the column write command is issued

and the write data moved onto the data bus by the memory controller. Different memory

access protocols have different settings for tCWD. Figure 4.5 shows that in SDRAM and

earlier DRAM devices, data for the write command is placed onto the data bus at the same

Figure 4.5: Column Write command and timing for SDRAM, DDR SDRAM and DDR2 SDRAM.

41 3

Generic DRAM device (one rank)

address and
command bus d

ec
o

d
e

data bus

2

tBursttCWD

cmd & addr bus
bank utilization
device utilization
data bus

bank access

data burst
I/O gating

addr & cmd

cmd
data burst

cmd SDRAM

data burst

cmd DDR SDRAM

tCWD = 1 (full clock cycle)

tCWD = 0

data burst

cmd DDR2 SDRAM

tCWD = tCAS - 1 (full cycle)

time

tWR

73

time as the issuance of the column write command. In DDR SDRAM, write data is delayed

one full clock cycle, and in DDR2, the write delay is one cycle less than tCAS. Figure 4.5

also illustrates tWR, the write recovery time. The write recovery time denotes the time

between the end of the data burst and the completion of the movement of data into the

DRAM arrays.

 4.1.6 Precharge Command

Accessing data on a DRAM device data access is a two step process. A row access

command moves data from the DRAM cells to the array of sense amplifiers. The data

remains in the array of sense amplifiers for one or more column access commands to move

data to and from the DRAM devices to the DRAM controller. In this context, a precharge

command completes the sequence as it resets the array of sense amplifiers and the bitlines

and prepares the sense amplifiers for another row access command. Figure 4.6 illustrates the

progression of a precharge command. Figure 4.6 shows that in the first phase, the precharge

command is sent to the DRAM device, and in phase two, the selected bank is precharged.

Figure 4.6: Row precharge command and timing.

1 2

Generic DRAM device (one rank)

address and
command bus d

ec
o

d
e

data bus

sense amplifiers

tRC

tRPtRAS

Row access to same bank
(previous command)

cmd & addr bus
bank util ization
device utilization
data bus

bank precharge
cmd

time

74

The timing parameter associated with the (row) precharge command is tRP. The two

row-access related timing parameters, tRP and tRAS, can be combined to form tRC, the row

cycle time. The row cycle time of a given DRAM device denotes the speed at which the

DRAM device can bring data from the DRAM cell arrays into the sense amplifiers, restore

the data to the DRAM cells, then precharge the bitlines to the reference voltage level and

made ready for another row access command. The row cycle time is the fundamental

limitation to the speed at which data may be retrieved from different rows within the same

DRAM bank.

 4.1.7 Refresh Command

The word DRAM is an acronym that stands for Dynamic Random Access Memory. The

reason that the memory is referred as “dynamic” is that the electrical charge retained by the

storage capacitor gradually leaks out with the passage of time, and data stored in DRAM

cells must be occasionally read out and restored to full value. A DRAM refresh command

accomplishes the task of data readout and restoration to full value into the DRAM cells. As

long as the time interval between refresh commands is shorter than the worst case time

Figure 4.7: Row refresh timing.
Generic DRAM device (one rank)

address and
command bus d

ec
o

d
e

data bus

sense amplifiers

1 2

tRC

tRPtRAS

Row access to all banks all banks precharge
cmd

time tRFC

additional time
needed by
DRAM device
to recover from
current spike

(all bank refresh)

75

period in which data in storage cells deteriorate to indistinguishable values, DRAM refresh

commands can be used to overcome leaky DRAM cells and maintain functionality of the

DRAM storage system. The drawback to the refresh mechanism is that refresh commands

consume bank bandwidth and power. As a result, there are a number of different refresh

mechanisms used by different systems, some are designed to minimize controller

complexity while others are designed to minimize bandwidth impact.

Figure 4.7 illustrates a basic refresh command that allows the DRAM controller to send

a single refresh command to refresh one row in all banks. When a basic refresh command is

issued, the DRAM device takes a row address from an internal register, then sends the same

row address to all banks to be refreshed concurrently. As illustrated in Figure 4.7, the single

refresh command to all banks take one refresh cycle time to complete. Figure 4.7 also

illustrates that the refresh cycle time, tRFC, is at least equal to the row cycle time tRC, and in

many cases, much longer than tRC.

The refresh command illustrates one weakness of the resource usage model in that

according to the strict interpretation of the resource usage model, a DRAM controller should

be able to issue a refresh command to a DRAM device every row cycle time. However,

Figure 4.7 shows that the DRAM device can issue the basic refresh command only once

every refresh cycle time, and that refresh cycle time is longer than the row cycle time. The

reason that the resource usage model fails in this case is because the basic bank-concurrent

refresh cycle is power-limited, and the DRAM device needs more time for the current spike

induced by the concurrent refresh of all banks in a given DRAM device to settle before

another refresh or row activation command can be engaged.

76

In modern DRAM memory systems, depending on the refresh requirement of the

DRAM devices, the memory controller typically injects one row refresh command once

every 32 or 64 milliseconds for each row in a bank. That is, in a DRAM device with 8192

rows per bank and 64 ms refresh cycle requirement, 8192 refresh commands are issued

every 64 ms to a DRAM device to refresh one row in all banks concurrently. Depending on

the design of the memory controller, the 8192 refresh commands may be issued

consecutively or evenly distributed throughout the 64 ms time period.

Table 4.2 shows the general trend of refresh cycle times in DDR2 SDRAM devices. The

general trend illustrated in table 4.2 shows that with increasing DRAM device density, and

in combination with the desire to retain the per bit charge capacitance of DRAM storage

cells, it takes an increasing amount of current draw to refresh one row in all banks

concurrently, and the refresh cycle time increases in each successive generation of DRAM

devices. Fortunately, DRAM device design engineers and DRAM memory system design

engineers are actively exploring alternatives to the bank-concurrent refresh command. Some

advanced memory systems are designed in such a manner that the controller manually

injects row cycle reads to individual banks. The per-bank refresh scheme decreases the

bandwidth impact of refresh commands at the cost of increased complexity in the memory

controller.

Density
Bank
Count

Row Count
Row Size
(bits)

Row cycle
time (ns)

Refresh Cycle
time (ns)

256 Mbit (x8) 4 8192 8192 55 75

512 Mbit (x8) 4 16384 8192 55 105

1 Gbit (x8) 8 16384 8192 55 127.5

TABLE 4.2: Refresh cycle times of DDR2 SDRAM devices

77

 4.1.8 A Read Cycle

Figure 4.8 illustrates a read cycle in a generic DRAM memory system. In modern

DRAM devices, each row access command brings thousands of bits of data in parallel to the

array of sense amplifiers in a given bank. A subsequent column read command then brings

tens or hundreds of those bits of data through the data bus into the memory controller. For

applications that are likely to stream through memory, keeping thousands of bits of a given

row of data active at the sense amplifiers means that subsequent memory reads from the

same row do not have to incur the latency or energy cost of another row access. In contrast,

applications that are not likely to access data in adjacent locations favor memory systems

that immediately precharges the DRAM array and prepares the DRAM bank for another

access to a different row. In Figure 4.8, a sequence of commands in an abstract memory

system designed for applications that do not benefit from keeping rows of data in the sense

amplifiers for subsequent accesses is illustrated. In Figure 4.8, data is brought in from the

DRAM cells to the sense amplifiers by the row access command. After tRCD, data from the

requested row has been resolved by the sense amplifiers, and a subsequent column read

command can then be issued by the memory controller. After tCAS, the DRAM chip begins

Figure 4.8: One read cycle in a “ close-page” memory system.

tRCD

(tCL) tBurst

tRC

cmd & addr bus
bank utilization
device util ization
data bus

bank access

data burst
I/O gating

row act col read
data sense data restore

prec.
array precharge

row act

tCAS

tRP
tRAS

row access column read precharge

time

78

to return data on the data bus. Concurrent with the issuance of the column read command,

the memory device actively restores data from the sense amplifiers to the DRAM cells, and

after tRAS from the initial issuance of the row access command, the DRAM cells would be

ready for another row access. Collectively, memory systems that immediately precharges a

bank to prepare it for another access to a different row are known as close-page memory

systems. Memory systems that keep rows active at the sense-amplifiers are known as open-

page memory systems.

 4.1.9 Complex Commands

In the previous section, Figure 4.8 illustrated a read cycle in a generic DRAM memory

system by issuing three separate commands. As part of the evolution of DRAM devices and

architecture, some DRAM devices support commands that perform more complex series of

actions. Figure 4.9 shows the same sequence of DRAM commands that cycles through a

row and issues a single column read command as presented in Figure 4.8. However, the

simple column read command in Figure 4.8 was replaced with a compound column read

and precharge command. As the name implies, the column read and precharge command

combines a column read command and a precharge command into a single command. The

advantage of a column read and precharge command is that for memory systems that

Figure 4.9: One “ read cycle” with single column read and precharge command.

tRCD
(tCL) tBurst

tRC

cmd & addr bus
bank utilization
device utilization
data bus data burst

I/O gating

row act read & prec
data sense data restore

implicit precharge

array precharge
row act

tCAS

tRPtRAS

row access column read precharge

time

bank access

79

precharge the DRAM bank immediately after a read command, the complex command frees

the DRAM controller from having to keep track of the timing of the precharge command.

The DRAM controller in a system that utilizes the compound column read and precharge

command also gains from the fact that the controller can now place a different command on

the address and command bus that the separate precharge command would have otherwise

occupied. The complex command thus reduces the address and command bus bandwidth

requirement for a read cycle. Although the column read and precharge command illustrated

in Figure 4.9 delays the timing of the column read command to satisfy tRAS, the flexibility

and reduced address and command bus bandwidth can result in a net win for certain

bandwidth bound close-page DRAM memory systems despite the small increase in

additional hardware on the DRAM device.

Some DRAM devices support even more complex compound commands, such as a

command that performs all of the actions normally required in a DRAM read cycle. Figure

4.10 illustrates a read cycle in a specialized DRAM device that performs all of the actions of

a read cycle with a single read command. The specialized single read command further

simplifies controller design and allows the DRAM device to operate as an SRAM-like

Figure 4.10: One “ read cycle” with single do-it-all read command.

tRC

cmd & addr bus
bank utilization
device utilization
data bus

implicit precharge tRPtRAS

row access column read precharge

implicit column read

time

tRCD
(tCL) tBurst

data burst
I/O gating

data sense data restore array precharge
row act

tCAS

bank access
read-all

80

device. Memory systems that support the do-it-all single read commands are typically found

in high performance embedded systems.

One complex command supported by the DDR2 SDRAM memory system is the posted-

CAS command. The posted-CAS command is simply a delayed column access command.

Figure 4.11 abstractly illustrates a posted-CAS command. The posted CAS command is

simply an ordinary column access (read or write) command that can be issued to the DRAM

device before tRCD for the row activation command has been satisfied. The DRAM device

internally delays the action of the CAS command. The number of delay cycles for the

posted-CAS command is pre-programmed into the DRAM device. The advantage of the

posted-CAS command is that it allows a DRAM memory controller to issue the column

access command immediately after the row access command.

Aside from the complex read and delayed read commands, some DRAM devices also

support additional complex commands that are needed to manage specialized hardware

structures such as write buffers in ESDRAM and Direct RDRAM devices or channel buffers

in Virtual Channel DRAM devices.

Figure 4.11: Delayed column read command with posted CAS.

internally delayed
CAS command

tRCD

(tCL) tBurst

cmd & addr bus

bank utilization
device utilization
data bus

bank access

data burst
I/O gating

row act
col read

data sense data restore

tCAS

col read
internal command

tAL

81

 4.2 DRAM Command Interactions

In the previous section, basic DRAM commands were described in some detail. In this

section, the interactions between these previously described basic DRAM commands are

examined in similar detail. In this text, a resource usage model is used to model DRAM

command interactions. In the resource usage model, DRAM commands can be scheduled

consecutively subject to availability of shared on-chip resources such as sense amplifiers,

I/O gating buffers, and the availability of off-chip resources such as the command, address

and data busses. However, even with the availability of shared resources, secondary

considerations such as power limitation can prohibit commands from being scheduled

consecutively* .

This section examines read and write commands in a memory system with simplistic

open-page and close-page row buffer management policies. In a memory system that

implements the open-page row buffer management policy, once a row is opened for access,

the array of sense amplifiers continues to hold an entire row of data for subsequent column

read and write accesses to the same row. Open-page memory systems rely on workloads that

access memory with some degree of spatial locality so that multiple column accesses can be

performed to the same row and minimizes the number of DRAM row cycles. In an open-

page memory system, DRAM command sequence for a given request depends on the state

of the memory system, and the dynamic nature of the command sequences in open-page

memory systems means there are larger numbers of possible DRAM command interactions

and memory system state combinations in an open-page memory system than the number of

DRAM command interactions in a close-page memory system. The larger number of

*. i.e. tRRD and tFAW, examined separately.

82

command interactions and the dynamic nature of DRAM command sequences result in

more complex command interactions and a higher degree of difficulty in scheduling

command sequences in open-page memory systems. In the following sections, the large

number of possible DRAM command interactions for open-page memory systems are

examined in detail. The detailed examination of DRAM command combinations enables the

creation of a table that summarizes the minimum scheduling distances between DRAM

commands. The summary of minimum scheduling distances in turn enables performance

analysis of DRAM memory systems in this text.

 4.2.1 Consecutive Reads to Same Rank

In modern DRAM memory systems such as SDRAM, DDR SDRAM and Direct

RDRAM memory systems, read commands to the same open row of memory in the same

bank, rank and channel can be pipelined and scheduled consecutively subject to the

availability of the data bus. Figure 4.12 shows two read commands, labelled as read 0 and

read 1, pipelined consecutively. As illustrated in Figure 4.4, tCAS after a read command is

placed on to the command and address bus, the DRAM device begins to return data on the

Figure 4.12: Consecutive column read commands to same bank, rank and channel.

tBursttCAS

cmd & addr bus
bank “ i” utilization
rank “ m” utilization
data bus

row x open

data burst
I/O gating

read 0

data burst
I/O gating

read 1

tBurst

commands to same

tBursttCAS

cmd & addr bus
bank “ i” util ization

rank “ m” utilization
data bus

bank i open

data burst
I/O gating

read 0

bank j open

data burst
I/O gating

read 1

time

bank “ j” util ization

commands to different

open bank

open banks of same
rank. bank i != j

83

data bus. Since column read commands to the same open bank of the same rank can be

pipelined consecutively, and the limitation on the scheduling of these commands is the

duration of the data burst on the data bus, it follows that consecutive DRAM read commands

to the same row of the same bank of memory can be scheduled every tBurst time period.

Modern DRAM devices contain multiple banks inside a single rank of memory. In

modern memory systems such as SDRAM, Direct RDRAM and DDR SDRAM, read

commands to open rows in different banks within the same rank of memory can also be

pipelined consecutively. Similar to consecutive column read commands to the same bank of

the same rank of memory, DRAM column read commands can be scheduled to different

open banks within the same rank of memory once every tBurst time period. Figure 4.12 also

shows the scheduling of column read consecutive accesses to different open banks within

the same rank.

 4.2.2 Consecutive Reads to Different Rows of Same Bank

Modern DRAM devices are designed to hold an entire row of data in the array of sense

amplifiers for multiple column read or write accesses until a precharge command is issued

independently or as part of a column read and precharge command. As a result, consecutive

read commands to the same open bank can be issued and pipeline consecutively. However,

read commands to different rows within the same bank would incur the cost of an entire row

cycle time as the current DRAM array must be precharged and a different row activated by

the array of sense amplifiers.

84

Best Case Scenario:

Figure 4.13 illustrates the timing and command sequence of two consecutive read

requests to different rows within the same bank of memory array. In this sequence, the first

read command, labelled as read 0 is issued, the array of sense amplifiers must be precharged

before a different row to the same bank can be accessed. After a time period tRP from the

issuance of a precharge command, a different row access command can then be issued, and

time period tRCD after the row access command, the second read command labelled as read

1 can then proceed. Figure 4.13 illustrates that consecutive column read accesses to different

rows within the same bank could at best be scheduled with minimum timing of tBurst + tRP +

tRCD
*.

Worst Case Scenario:

Figure 4.13 illustrates the best case timing of two consecutive read commands to

different rows of the same bank. However, in the case that data from the current row had not

yet been restored to the DRAM cells, a precharge command cannot be issued until tRAS time

period after the previous row access command to the same bank. In contrast to the best case

*. The best case timing of a read command to a different row also depends on the internal prefetch data path of the
DRAM device. In a DDR2 SDRAM device, a burst of 8 is fetched with two separate fetches of burst of 4. In that case,
the precharge command cannot begin until at best tBurst/2 + tRP + tRCD time period has passed from the previous
column read command.

Figure 4.13: Consecutive column read commands to different rows of same bank:
best case scenario.

tRCD
(tCL)

tCMDtBurst + tRP + tRCD

cmd&addr
bank “ i” util.
rank “ m” util.
data bus

row x open

data burst
I/O gating

bank i precharge

tCAS tRP

row y open - data restore

data burst
I/O gating

row acc
data sense

read 0 read 1prec

time

85

timing shown in Figure 4.13, Figure 4.14 shows the worst case timing for two consecutive

read commands to different rows of the same bank where the first column command was

issued immediately after a row access command. In this case, the precharge command

cannot be issued immediately after the first column read command, but must wait until tRAS

time period after the previous row access command has elapsed. Then, tRP time period after

the precharge command, the second row access command could be issued, and tRCD time

period after that row access command, the second column read command completes this

sequence of commands.

Figure 4.13 illustrates the best case timing of two consecutive read commands to

different rows of the same bank and Figure 4.14 illustrates the worst case timing between

two column read command to different rows of the same bank. The difference between the

two different scenarios means that a DRAM memory controller must keep track of the

timing of a row access command and delay any row precharge command until the row

restoration requirement has been satisfied.

Figure 4.14: Consecutive column read commands to different rows of same bank:
worst case scenario.

tRAS + tRP

cmd&addr
bank “ i” util.
rank “ m” util.
data bus

row x open - data restore

data burst
I/O gating

bank i precharge

tRAS tRP

row y open - data restore

data burst
I/O gating

row acc
data sense

read 0 read 1prec

time

row acc
data sense

(tRAS + tRP) = tRC

86

 4.2.3 Consecutive Reads to Different Banks: Bank Conflict

The case of consecutive read commands to different rows of the same bank has been

examined in the previous section. This section examines the case of consecutive read

requests to different banks with the second request hitting a bank conflict against an active

row in that bank. The consecutive read request scenario with the second read request hitting

a bank conflict to a different bank has several different combinations of possible minimum

scheduling distances that depend on the state of the bank as well as the capability of the

DRAM controller to re-order commands between different transaction requests.

Without Command Re-Ordering

Figure 4.15 illustrates the timing and command sequence of two consecutive read

requests to different banks of the same rank, and the second read request is made to a row

that is different than the active row in the array of sense amplifiers of that bank. Figure 4.15

makes three implicit assumptions. The first assumption made in Figure 4.15 is that both

banks i and j are open, where bank i is different from bank j. The second read request is

made to bank j, but to different row than the row of data presently held in the array of sense

amplifiers of bank j. In this case, the precharge command to bank j can proceed concurrently

Figure 4.15: Consecutive DRAM read commands to different banks, bank conflict,
no command re-ordering.

tRCD

tCMDtCMD + tRP + tRCD

cmd&addr

bank “ j” of rank “ m”
rank “ m” util ization
data bus

bank i open

data burst
I/O gating

bank j precharge

tRP

row y open - data restore

data burst
I/O gating

row acc

data sense

read 0 read 1prec

time

bank “ i” of rank “ m”

i != j

row x open

87

with the column read access to a bank i. The second assumption made in Figure 4.15 is that

the tRAS requirement had been satisfied in bank j, and bank j can be immediately

precharged. The third and final assumption made in Figure 4.15 is that the DRAM controller

does not support command or transaction re-ordering between different transaction requests.

That is, all of the DRAM commands associated with the first request must be scheduled

before any DRAM commands associated with the second request can be scheduled.

Figure 4.15 shows that due to the bank conflict, the read request to bank j is translated

into a sequence of three DRAM commands. The first command in the sequence precharges

the sense amplifiers to bank j, the second command brings the selected row to the sense

amplifiers, and the last command in the sequence performs the actual read request and

returns data from the DRAM devices to the DRAM controller. Figure 4.15 illustrates that

consecutive read requests to different rows, with the second row hitting a bank conflict,

given that the DRAM command sequences cannot be dynamically re-ordered, then the two

requests can at best be scheduled with minimum timing distance of tCMD + tRP + tRCD.

With Command Re-Ordering

Figure 4.15 illustrates the timing of two requests to different banks with the second

request hitting a bank conflict; and the DRAM controller does not support command or

transaction re-ordering. In contrast, Figure 4.16 shows that the DRAM memory system can

obtain bandwidth utilization if the DRAM controller can interleave or re-order DRAM

commands from different transactions requests. Figure 4.16 shows the case where the

DRAM controller allows the precharge command for bank j to proceed ahead of the column

read command for the transaction request to bank i. In this case, the column read command

88

to bank i can proceed in parallel with the precharge command to bank j, since these two

commands utilize different resources in different banks. To obtain the better utilization of

the DRAM memory system, the DRAM controller must be designed with the capability to

re-order and interleave commands from different transaction requests. Figure 4.16 shows

that in the case the DRAM memory system can interleave and re-order DRAM commands

from different transaction requests, the two column read commands can be scheduled with

the timing of tRP + tRCD - tCMD. Figure 4.16 thus illustrates one way that a DRAM memory

systems can obtain better bandwidth utilization with advanced DRAM controller designs.

 4.2.4 Consecutive Read Requests to Different Ranks

Consecutive read commands to the open banks of the same rank of DRAM device can

be issued and pipelined consecutively. However, consecutive read commands to different

ranks of memory may not be issued and pipelined back to back depending on the system

level synchronization mechanism and the operating data rate of the memory system. In some

memory systems, consecutive read commands to different ranks of memory relies on system

level synchronization mechanisms that are non-trivial for multi-rank, high data rate memory

systems. In these systems, the data bus must idle for some period of time between data

bursts from different ranks on the shared data bus. Figure 4.17 illustrates the timing and

Figure 4.16: Consecutive DRAM read commands to different banks, bank conflict,
with command re-ordering.

tRCD

tCMD

cmd&addr

bank “ j” of rank “ m”
rank “ m” util ization
data bus

bank i open

data burst
I/O gating

bank j precharge

tRP

row y open - data restore

data burst
I/O gating

row acc

data sense

read 0 read 1prec

time

bank “ i” of rank “ m”

i != j

row x open

tRP + tRCD - tCMD

89

command sequence of two consecutive read commands to different ranks. In Figure 4.17,

the read-write data strobe re-synchronization time is labelled as tDQS. For relatively low

frequency SDRAM memory systems, data synchronization strobes are not used, and tDQS is

zero. For Direct RDRAM memory system, the use of the topology matched source

synchronous clocking scheme obviates the need for a separate strobe signal, and tDQS is also

zero. However, for DDR SDRAM, DDR2 and DDR3 SDRAM memory systems, the use of

a system level data strobe signal shared by all of the ranks means that the tDQS data strobe

re-synchronization penalty is non-zero.

 4.2.5 Consecutive Write Requests: Open Banks

Differing from the case of consecutive column read commands to different ranks of

DRAM devices, consecutive column write commands to different ranks of DRAM devices

can be pipelined consecutively in modern DRAM memory systems. The difference between

consecutive column write commands to different ranks of DRAM devices and consecutive

column read commands to different ranks of DRAM devices is that in case of consecutive

Figure 4.17: Back-to-back column read commands to different ranks.

addr & cmd

d
ec

o
d

e

data bus

d
ec

o
d

e

Rank n Rank m
n != m

tBursttCAS

cmd&addr

rank “ n” utilization
data bus data burst

tDQS

bank j open

data burst
I/O gating

sync

read 0 read 1

tBurst

tBurst + tDQS

bank “ i” of rank “ m”

rank “ m” utilization

bank i open

I/O gating
n != m bank “ j” of rank “ n”

i ? j

time

90

column read commands to different ranks of DRAM devices, one rank of DRAM devices

must first send data on the shared data bus, give up control of the shared data bus, then the

other rank of DRAM devices must then gain control of the shared data bus and send its data

to the DRAM controller. In the case of the consecutive column write commands to different

ranks of memory, the DRAM memory controller sends the data to both ranks of DRAM

devices without needing to give up control of the shared data bus to another bus master.

Figure 4.18 shows two write commands to different ranks, labelled as write 0 and write 1,

pipelined consecutively, and consecutive column write commands to open banks of memory

can occur every tBurst cycles without needing any idle time on the data bus.

 4.2.6 Consecutive Write Requests: Bank Conflicts

Similar to the case of the consecutive read requests to different rows of the same bank,

consecutive write requests to different rows of the same bank must also respect the timing

requirements of tRAS and tRP. Additionally, column write commands must also respective

the timing requirements of the write recovery time tWR. In case of write commands to

Figure 4.18: Consecutive write commands to different ranks.

tBursttCWD

cmd&addr

rank “ n” utilization
data bus data burst

data restore

data burst
I/O gating

write 0 write 1

tBurst

addr & cmd

d
ec

o
d

e

data bus

d
ec

o
d

e

Rank n Rank m

tBurst time

bank “ i” of rank “ m”

rank “ m” utilization

bank i access

I/O gating

n ? m
i ? j

bank “ j” of rank “ n”

Does not matter

91

different rows of the same bank, the write recovery time means that the precharge cannot

begin until the write recovery time has allowed data to move from the interface of the

DRAM devices through the sense amplifiers into the DRAM cells. Figure 4.18 shows two of

the best case timing of two consecutive write requests made to different rows in the same

bank. The minimum scheduling distance between two write commands to different rows of

the same bank is tCWD + tBurst + tWR + tRP + tRCD - tCMD.

Figure 4.18 also shows the case where consecutive write requests are issued to different

ranks of DRAM devices with the second write request results in a bank conflict. In this case,

the first write command proceeds, and assuming that bank j for rank n had previously

satisfied the tRAS timing requirement, the precharge command for a different bank or

different rank can be issued immediately. Similar to the case of the consecutive read requests

with bank conflicts to different banks, bank conflicts to different banks and different ranks

for consecutive write requests can also benefit from command re-ordering.

Figure 4.19: Consecutive write commands, bank conflict best cases.

tBursttCWD

cmd&addr

data bus data burst

data restore

data burst
I/O gating

write 0 prec

tRP

tCWD + tBurst + tWR + tRP + tRCD - tCMD

bank “ i” of rank “ m”
rank “ m” utilization

data restore
I/O gating

row acc write 1
array precharge data sense

tRCDtWR

time

cmd&addr

rank “ n” utilization
data bus data burst

data restore

data burst
I/O gating

write 0 prec
bank “ i” of rank “ m”

rank “ m” util ization

data restore

I/O gating
bank “ j” of rank “ n”

row acc write 1

array precharge data sense

tCWD tRP tRCD

tCMD + tRP + tRCD Bank Conflict to

Bank conflict to
same bank

different ranks

92

 4.2.7 Write Request Following Read Request: Open Banks

Similar to consecutive read commands and consecutive write commands, the

combination of a write command that immediately follows a read command can be

scheduled consecutively subject to the timing of the respective data bursts on the shared data

bus. Figure 4.20 illustrates a write command that follows a read command and shows that

the internal data movement of the write command does not conflict with the internal data

movement of the read command. As a result, a column write command can be issued into

the DRAM memory system after a column read command as long as the timing of data burst

returned by the DRAM device for the column read command does not conflict with the

timing of the data burst sent by the DRAM controller to the DRAM device. Figure 4.20

shows that the minimum scheduling distance between a read command that follows a read

command is tCAS + tBurst + tDQS - tCWD.

The minimum scheduling distance between a write request that follows a read request is

different for different memory access protocols. For example, in the SDRAM memory

system, tDQS and tCWD are both zero, and the minimum scheduling distance between a write

request that follows a read request is simply tCAS + tBurst.

Figure 4.20: Write command following read command to open banks.

tBursttCAS

cmd&addr

data bus data burst

data restore

data burst
I/O gating

read 0 write 1

tDQS time

bank “ i” of rank “ m”

rank “ m” utilization

row x open

I/O gating

i ? j : Does not matter

bank “ j” of rank “ m”

sync

tCWDtCAS + tBurst + tDQS - tCWD tWR

93

 4.2.8 Write Following Read: Same Bank, Conflict, Best Case

Figure 4.21 illustrates the best case scenario for a write request that follows a read

request to the same bank, but to different rows. In the best case scenario presented in Figure

4.21, data in the row accessed by the read request has already been restored to the DRAM

cells. That is, the tRAS timing requirement has already been satisfied for the row held by

bank “ i” before the read command illustrated in Figure 4.21 was issued into the DRAM

memory system. Figure 4.21 shows that under this condition, the precharge command can

be issued consecutively to the column read command. The row access command to the

different row in bank i can then be issued into the DRAM memory system after the DRAM

array in bank i is precharged. The column write command can then proceed after time tRCD

following the row access command. Figure 4.21 thus shows that a read request that follows

a read request to different rows of the same bank can at best occur with the minimum

scheduling distance of tBurst + tRP + tRCD - tCMD.

Figure 4.21 show the best case timing of the scenario where a read request that follows a

read request to different rows of the same bank. The best case scenario assumes that the tRAS

timing requirement has been satisfied for bank i. In worst case that the read command was in

fact issued immediately after the preceding row access command, the tRAS timing

requirement must be satisfied before the precharge command can be issued. In the worst

tRPtCAS

cmd&addr

data bus data burst

data restore

data burst
I/O gating

read 0 write 1

time

bank “ i” of rank “ m”
rank “ m” util ization

row x open
I/O gating

tBurst + tRP + tRCD - tCMD

prec
array precharge

row acc
data sense

tRCD

Figure 4.21: Write command following read command to same bank: bank conflict,
best case.

94

case scenario, the minimum scheduling distance between the column read command and the

column write command that follows it increases to a entire row cycle, tRC.

 4.2.9 Write Following Read: Different Banks, Conflict, Best Case

Figure 4.22 illustrates the case where a write request follows a read request to different

banks. Figure 4.22 shows that the column read command is issued to bank i, the column

write command is issued to bank j, and i is different from j. In the common case, the two

commands can be pipelined consecutively with the minimum scheduling distance shown in

Figure 4.20. However, the assumption given in Figure 4.22 is that the write command is a

write command to a different row than the row currently held in bank j. As a result, the

DRAM controller must first precharge bank j and issue a new row access command to bank

j before the column write command can be issued. In the best case scenario presented, the

row accessed by the write command in bank j had already been restored to the DRAM cells,

and more than tRAS time period had elapsed since row was initially accessed. Figure 4.22

shows that under this condition, the read command and the write command that follows it to

a different bank can best scheduled with the minimum scheduling distance of tCMD + tRP +

tRCD.

Figure 4.22 shows the case where the ordering between DRAM commands from

different requests is strictly observed. In this case, the precharge command sent to bank j is

tRP

cmd&addr

data bus data burst

bank j access

data burst
I/O gating

read 0 write 1

time

bank “ i” of rank “ m”

rank “ m” utilization

 row x open

I/O gating

i != j

bank “ j” of rank “ m”

tCMD + tRP + tRCD

prec

array precharge

row acc

data sense

tRCD

Figure 4.22: Write command following read command to different banks:
bank conflict, best case.

95

not constrained by the column read command to bank i. In a memory system with DRAM

controllers that support command re-ordering and interleaving DRAM commands from

different transaction requests, the efficiency of the DRAM memory system in scheduling a

write request with a bank conflict that follows a read request can be increased in the same

manner as illustrated for consecutive read requests in Figures 4.15 and 4.16.

 4.2.10 Read Following Write to Same Rank, Open Banks

Figure 4.23 shows the case for a column read command that follows a column write

command to open banks in the same rank of DRAM devices. The difference between a

column read command and a column write command is that the direction of data flow within

the selected DRAM devices is reversed with respect to each other. The importance in the

direction of data flow can be observed when a read command is scheduled after a write

command to the same rank of DRAM devices. Figure 4.23 shows that the difference in the

direction of data flow limits the minimum scheduling distance between the column write

command and the column read command that follows to the same rank of devices. Figure

4.23 shows that after the DRAM controller places the data onto the data bus, the DRAM

device must make use of the shared I/O gating resource in the DRAM device to move the

write data through the buffers into the proper columns of the selected bank. Since the I/O

Figure 4.23: Read following write to same rank of DRAM devices.

tBurst

cmd&addr

bank “ j” of rank “ m”
rank “ m” utilization
data bus

write 0

data burst
I/O gating

row x open

data burst
I/O gating

read 1

time tCWD tWR

tCWD + tBurst + tWR - tCMD tCMD

bank “ i” of rank “ m” data restore

96

gating resource is shares between all banks within a rank of DRAM devices, the sharing of

the I/O gating device means that a read command that follows a write command to the same

rank of DRAM devices must wait until the write command has been completed before the

read command can make use of the shared I/O gating resources regardless of the target or

destination bank ID’s of the respective column access commands. Figure 4.23 shows that the

minimum scheduling distance between a write command and a subsequent read command to

the same rank of memory is tCWD + tBurst + tWR - tCMD.

In order to alleviate the write-read turnaround time illustrated in Figure 4.23, some high

performance DRAM devices have been designed with write buffers so that as soon as data

have been written into the write buffers, the I/O gating resource can be used by another

command such as a column read command.

 4.2.11 Read Following Write to Different Ranks, Open Banks

Figure 4.24 shows a slightly different case for a column read command that follows a

column write command than the case illustrated in Figure 4.23. The combination of column

read command issued after a column write command illustrated in Figure 4.24 differs from

the combination of column read command issued after a column write command illustrated

in Figure 4.23 in that the column write command and the column read command are issued

tBurst

cmd&addr
bank “ i” of rank “ m”

rank “ n” utilization
data bus

write 0
data restore

data burst

rank m I/O gating
row x open

data burst

read 1

time tCWD tDQS

tCWD + tBurst + tDQS - tCAS

bank “ j” of rank “ n”
rank “ m” util ization

I/O gating
sync

Figure 4.24: Read following write to different ranks of DRAM devices.

97

to different ranks of memory. Since the data movements are to different ranks of memory,

the conflict in the directions of data movement inside of each rank of memory is irrelevant.

The timing constraint between the issuance of a read command after a write command to

different ranks is then reduced to the data bus synchronization overhead of tDQS, the burst

duration tBurst, and the relative timing differences between read and write command

latencies. The minimum time period between a write command and a read command to

different ranks of memory is thus tCWD + tBurst + tDQS - tCAS.

In an SDRAM memory system, tCWD and tDQS are both zero, and the minimum

scheduling distance between a column write command and a column read command that

follows it to a different rank of memory is tBurst - tCAS. In contrast, tCWD is one full cycle

less than tCAS in a DDR2 SDRAM memory system. If tDQS can be minimized to one full

cycle, tCWD + tDQS - tCAS would cancel to zero, and the minimum scheduling distance

between a read command that follows a write command to a different rank in DDR2

SDRAM memory system is simply tBurst.

 4.2.12 Read Following Write to Same Bank, Bank Conflict

Figure 4.25 illustrates the case where a read request follows a write request to different

rows of the same bank. In the best case scenario presented, the tRAS row restoration time

requirement for the previous row has already been satisfied. Figure 4.25 shows that under

tRPtCWD

cmd&addr

data bus data burst

 data restore

data burst
I/O gating

read 1write 0

time

bank “ i” of rank “ m”
rank “ m” utilization

row x open
I/O gating

tCWD + tBurst + tWR + tRP + tRCD - tCMD

prec
array precharge

row acc
data sense

tRCDtBurst tWR

Figure 4.25: Read following write to different rows of the same bank: best case.

98

this condition, the precharge command can be issued as soon as the data from the column

write command has been written into the DRAM cells. That is, the write recovery time tWR

must be respected before the precharge command can proceed to precharge the DRAM

array. Figure 4.25 shows that the best case minimum scheduling distance between a read

request that follows a write request to different rows of the same bank is tCWD + tBurst + tWR

+ tRP + tRCD - tCMD.

Figure 4.25 shows the command interaction of a read request that follows a write request

to different rows of the same bank on a DRAM device that does not have a write buffer. In

DRAM devices with write buffers, the data for the column write command is temporarily

stored in the write buffer. In case that a read request arrives after a write request to retrieve

data from a different row of the same bank, a separate commit-data command may have to

be issued by the DRAM controller to the DRAM devices and force the write buffer to

commit the data stored in the write buffer into the DRAM cells before the array can be

precharged for another row access.

 4.2.13 Read Following Write: Different Banks Same Rank, Conflict: Best Case

Finally, Figure 4.26 illustrates the case where a read request follows a write request to

different banks of the same rank of DRAM devices. However, the read request is sent to

bank j, and a different row is presently active in bank j than the row needed by the read

tRP

cmd&addr

data bus data burst

data restore

data burst
I/O gating

read 1write 0

time

bank “ i” of rank “ m”

rank “ m” util ization
row x open

I/O gating

tCMD + tRP + tRCD

prec

array precharge

row acc

data sense

tRCD

bank “ j” of rank “ m”

i != j

Figure 4.26: Read following write to different banks, bank conflict, best case.

99

request. Figure 4.26 assumes that the tRAS timing requirement has already been satisfied for

bank j, and the DRAM memory system does not support DRAM command re-ordering

between different memory transactions. Figure 4.26 shows that in this case, the precharge

command for the read request command is can be issued as soon as the write command is

issued. Figure 4.26 thus shows that the minimum scheduling distance in this case is tCMD +

tRP + tRCD.

Figure 4.26 also reveals several points of note. One obvious point is that the DRAM

command sequence illustrated in Figure 4.26 likely benefits from command re-ordering

between different memory transactions. A second, less obvious point illustrated in Figure

4.26 is that the computed minimum schduling distance depends on the relative duration of

the various timing parameters. That is, Figure 4.26 assumes that the precharge command can

be issued immediately after the write command and that tCMD + tRP + tRCD. is greater than

tCWD + tBurst + tWR. In case that tCMD + tRP + tRCD. is in fact less than tCWD + tBurst + tWR,

the use of the shared I/O gating resource becomes the bottleneck and the column read

command must wait until the write recovery phase of the column write command has

completed before the column read command can proceed. That is, the minimum schduling

distance between a write request and a read request to a different bank with a bank conflict is

in fact the larger of tCMD + tRP + tRCD. and tCWD + tBurst + tWR.

100

 4.3 Minimum Scheduling Distances

In previous sections, the resource usage model for DRAM devices was applied to basic

DRAM commands and minimum scheduling distances between different combinations of

DRAM commands were examined in detail. Table 4.3 summarizes the minimum scheduling

distances of read and write requests in an open-page DRAM memory system to a

combination of channels, ranks, banks and rows. Table 4.3 summarizes the minimum

scheduling distances between read and write requests rather than between row access,

column read, column write and precharge commands. In table 4.3, the letter “R” represents a

read request, the letter “W” represents a write request, the letter “s” means that the

consecutive requests are made to same channel, rank, bank or row, and “d” means that the

requests are made different channel, rank, bank or row. For example, the first row of the

table shows that consecutive DRAM read commands to open banks in the same channel,

rank, bank and row can be issued with a minimum timing of tBurst.

In case of a bank conflict between two consecutive requests to a DRAM memory

system, some degree of uncertainty exists as to the minimum scheduling distance between

those commands since the timing of the second request depends on the progress of the data

restoration phase of the previous row access. Table 4.3 shows both the best case and worst

case minimum scheduling distances for consecutive requests to an open-page DRAM

memory system that does not support command re-ordering. The best case scenario shows

the minimum scheduling distance given that the tRAS timing requirement of the row access

command had already been satisfied, and the worse case scenarios shows minimum

scheduling distance given that the tRAS timing requirement of the row access command had

not been satisfied*.

101

*. Some request combinations list tRC as the worst case minimum scheduling distance while other request combinations
list tRC - tBurst as the worst case minimum scheduling distance. The assumption used in table 4.3 is that a row access
is only issued in combination with a column access command. As a result, there must be at least one column access
command to an open row before another column access command to a different row arrives at the same bank, and the
minimum scheduling distance between two requests to different banks is tRC - tBurst rather than tRC. Table 4.3 in
essence shows the second and third request in a sequence of requests where the first request that conflicts with the
third request is inferred by the status of the open row.

p
r
e
v

n
e
x
t

r
a
n
k

b
a
n
k

r
o
w

Minimum scheduling distance
between DRAM commands
open-page
No Command Re-Ordering
Best Case

Minimum scheduling distance
between DRAM commands
Worst Case

R R s s o tBurst -

R R s s c tBurst + tRP + tRCD tRC

R R s d o tBurst -

R R s d c tCMD + tRP + tRCD tRC - tBurst

R R d - o tDQS + tBurst -

R R d - c tCMD + tRP + tRCD tRC - tBurst

R W s s o tCAS + tBurst + tDQS - tCWD -

R W s s c tBurst + tRP + tRCD - tCWD tRC

R W s d o tCAS + tBurst + tDQS - tCWD -

R W s d c tCMD + tRP + tRCD tRC - tBurst

R W d - o tCAS + tBurst + tDQS - tCWD -

R W d - c tCMD + tRP + tRCD tRC - tBurst

W R s s o tCWD + tBurst + tWR - tCMD -

W R s s c tCWD + tBurst + tWR + tRP + tRCD - tCMD tRC

W R s d o tCWD + tBurst + tWR - tCMD -

W R s d c tCMD + tRP + tRCD tRC - tBurst

W R d - o tCWD + tBurst + tDQS - tCAS -

W R d - c tCMD + tRP + tRCD tRC - tBurst

W W s s o tBurst -

W W s s c tCWD + tBurst + tWR + tRP + tRCD - tCMD tRC

W W s d o tBurst -

W W s d c tCWD + tRP + tRCD tRC - tBurst

W W d - o tBurst -

W W d - c tCMD + tRP + tRCD tRC - tBurst

TABLE 4.3: Minimum timing for consecutive read and write transactions:
open-page

R = Read
W = Write

Legend

s = same;
d = different
o = open
c = conflict;

102

 4.4 Additional Constraints: Power

In the previous sections, the resource contention model was used to construct the table of

minimum scheduling distances between DRAM commands. Unfortunately, constraints in

addition to the resource contention issue exist in modern DRAM memory systems and limits

bandwidth utilization of modern DRAM based memory systems. One such constraint is

related to the power consumption of DRAM devices. With continuing emphasis placed on

memory system performance, DRAM manufacturers are expected to push for ever higher

data transfer rates in each successive generation of DRAM devices. However, just as

increasing operating frequencies lead to higher activity rates and higher power consumption

in modern processors, increasing data rates for DRAM devices also increase the potential for

higher activity rates and higher power consumptions on DRAM devices. One solution

deployed to limit the power consumption of DRAM devices is to constrain the activity rate

of DRAM devices. Constraints on the activity rate of DRAM devices in turn limit the

capability of DRAM devices to move data, and limits the performance of DRAM memory

systems.

Figure 4.27: : Current Profile of a DRAM Read Cycle.

cmd&addr

bank “ i” util.
rank “ m” util.
data bus

row x open - data restore

data burst
I/O gating

bank i precharge

read 0
prec

time

row act

data sense
rank “ m” internal cmd

cu
rr

en
t

d
ra

w
 in

ab
st

ra
ct

 u
n

its
Quiescent
current draw
of active device

current draw
profile due to
device activity

103

In modern DRAM devices, each time a row is activated, thousands of bits are

discharged, sensed, then restored to the DRAM cells in parallel. As a result, the row

activation command is a relatively energy intensive operation. Figure 4.27 shows the

abstract current profile of a DRAM read cycle. Figure 4.27 shows that an active DRAM

device draws a relatively low and constant quiescent current level. The DRAM device then

draws additional current for each activity on the DRAM device. The total current draw of

the DRAM device is simply the summation of the quiescent current draw and the current

draw of each activity on the DRAM device.

The current profile shown in Figures 4.27 and 4.28 are described in terms of abstract

units rather than concrete values. The reason that the current profiles are shown in abstract

units in Figures 4.27 and 4.28 is that the magnitude of the current draw for the row

activation command depends on the number of bits in a row that are activated in parallel,

and the magnitude of the current draw for the data burst on the data bus depends on the data

bus width of the DRAM device. As a result, the current profile of each command on each

respective device depends not only on the type of the command, but also on the internal

organization and external configurations of the DRAM device.

All modern DRAM devices contain multiple banks of DRAM arrays that can be

pipelined to achieve high performance. Unfortunately, since the current profile of an DRAM

device is proportional to its activity rate, a high performance, highly pipelined DRAM

device can also draw a large amount of current. Figure 4.28 shows the individual

contributions to the current profile of two pipelined DRAM read cycles on the same device.

The total current profile of the pipelined DRAM device is not shown in Figure 4.28, but can

be computed by the summation of the quiescent current profile and the current profiles of

104

the two respective read cycles. The problem of power consumption for a high performance

DRAM device is that instead of only two pipelined read or write cycles, multiple read or

write cycles can be pipelined, and as many as tRC/tBurst number of read or write cycles can

be theoretically pipelined and in different phases in a single DRAM device. To limit the

maximum current draw of a given DRAM device and avoid the addition of heat removal

mechanisms such as heat spreaders and heatsinks, new timing parameters have been defined

in DDR2 and DDR3 devices to limit the activity rate and power consumption of DRAM

devices.

 4.4.1 tRRD: Row to Row (activation) Delay

In DDR2 SDRAM devices, the timing parameter tRRD has been defined to specify the

minimum time period between row activations on the same DRAM device. In the present

context, the acronym RRD stands for row-to-row activation delay. The timing parameter

tRRD is specified in terms of nanoseconds, and table 4.4 shows that by specifying tRDD in

terms of nanoseconds instead of number of cycles, a minimum spacing between row

activation is maintained regardless of operating datarates. For memory systems that

implement the close-page row buffer management policy, tRRD effectively limits the

Figure 4.28: : Current Profile of Two Pipelined DRAM Read Cycles.

timecu
rr

en
t

d
ra

w

ab
st

ra
ct

 u
n

its

cmd&addr

bank “ i” util.

rank “ m” util.
data bus

row x open - data restore

data burst
I/O gating

bank i precharge

data burst
I/O gating

read 0 read 1
prec

row act

data sense

prec

bank “ j” util. row z open - data restore bank j prechargedata sense

row act
rank “ m” internal cmd

Quiescent
current draw
of active device

current draw
profile due to
read cycle 0

current draw
profile due to
read cycle 1

105

maximum sustainable bandwidth of a memory system with a single rank of memory. In

memory systems with 2 or more ranks of memory, consecutive row activation commands

can be directed to different ranks to avoid the tRRD constraint.

Table 4.4 shows tRRD for different configurations of a 1 Gbit DDR2 SDRAM device

from Micron. Table 4.4 shows that the 1 Gbit DDR2 SDRAM device with the 16 bit wide

data bus is internally arranged as 8 banks of 8192 rows per bank and 16384 bits per row.

Comparatively, the 512 Mbit x 4 and 256 Mbit x 8 configuration of the 1 Gbit DDR2

SDRAM device are arranged internally as 8 banks of 16384 rows per bank and 8192 bits per

row. Table 4.4 thus shows that with the larger row size, each row activation on the 128 Mbit

x 16 configuration draws more current than a row activation on the 256 Mbit x 8 or 512

Mbit x 4 configuration, and the data sheet requires that the row activations must be spaced

farther apart in time.

 4.4.2 tFAW: Four Bank Activation Window

In DDR2 SDRAM devices, the timing parameter tFAW has been defined to specify a

rolling time frame in which a maximum of four row activations on the same DRAM device

may be engaged concurrently. The acronym FAW stands for Four bank Activation Window.

Device configuration 512 Mbit x 4 256 Mbit x 8 128 Mbit x 16

Data bus width 4 8 16

Number of banks 8 8 8

Number of rows 16384 16384 8192

Number of columns 2048 1024 1024

Row size (bits) 8192 8192 16384

tRRD (ns) 7.5 7.5 10

tFAW (ns) 37.5 37.5 50

TABLE 4.4: tRRD and tFAW for 1 Gbit DDR2 SDRAM device from Micron

106

Figure 4.29 shows a sequence of row activation requests to different banks on the same

DDR2 SDRAM device that respects both tRRD as well as tFAW. Figure 4.29 shows that the

row activation requests are spaced at least tRRD apart from each other, and that the fifth row

activation to a different bank is deferred until at least tFAW time period has passed since the

first row activation was initiated. For memory systems that implement the close-page row

buffer management system, tFAW places additional constraint on the maximum sustainable

bandwidth of a memory system with a single rank of memory regardless of operating

datarates.

The timing parameters tRRD and tFAW have been defined for DDR2 SDRAM devices

that are 1 Gbit or larger. These timing parameters will carry over to DDR3 and future DDRx

devices, and they are expected to increase in importance as future DRAM devices are

introduced with larger row sizes.

Figure 4.29: : Maximum of Four Row Activations in any tFAW time frame.

time

cu
rr

en
t

d
ra

w

ab
st

ra
ct

 u
n

its

cmd&addr
bank “ i” util.

row act
data sense

bank “ j” util. data sense

row act

tRRD

bank “ k” util.
bank “ l” util.
bank “ m” util.

data sense
data sense

data sense

row act row act row act

tRRD tRRD

tFAW

107

 4.5 DDR2 SDRAM Protocol

In previous sections, a generic DRAM access protocol was examined in detail. In this

section, the DDR2 SDRAM memory access protocol is described in detail. The goal of this

section is to illustrate by example of how the generic DRAM access protocol applies to a

specific DRAM memory system.

 4.5.1 DDR2 SDRAM Memory System Basics

Figure 4.30 illustrates the progression of a column read command and a column write

command in a DDR2 SDRAM memory system. Figure 4.30 illustrates some important

aspects of the DDR2 SDRAM memory system:

• DRAM commands asserted on the command bus occupy a full clock cycle and straddle

clock boundaries.

• DDR, DDR2 and future DDRx SDRAM memory systems transport two beats of data in

each clock cycle, each beat equates to one column of data.

• Data for column commands are transported with respect to the timing of the source

synchronous differential data strobe signals, DQS and DQS#.

• Data for column read commands are sent by the DRAM devices and edge aligned to the data

strobe signal.

• Data for column write commands are sent by the DRAM controller and center aligned to the

data strobe signal.

Figure 4.30: A column read command and a column write command in DDR2 SDRAM system.

R

3

tCAS

Data Bus

DQS
DQS#

Clock
Clock #
Command

tBurst

3

W

tWL (tCWD)

108

 4.5.2 Typical Parameter Values

The timing parameters used to examine the DRAM access protocol were previously

described only in abstraction. Table 4.5 shows typical values for those timing parameters in

three different speed grades of DDR2 SDRAM devices. Table 4.5 shows that the timing

parameters tRAS, tRC, tRCD, tRP and tWR are naturally specified in terms of nanoseconds.

Table4.5 also lists the values of the various timing parameters in terms of the number of

cycles in specific DDR2 SDRAM devices. For example, in a DDR2 SDRAM device that

operates at 400 Mbps, each cycle is 5 ns in duration. To meet the tRAS timing requirement of

40 ns as illustrated, there must be at least 8 clock cycles between the time when a row is

opened for access and the time when a precharge command can be issued to the 400 Mbps

DDR2 SDRAM device.

DRAM Memory modules are now commonly offered for sale directly to consumers. To

reduce the complexity of the myriad of timing parameters, DRAM memory modules are

of cycles @

parameter value 400 Mbps 533 Mbps 667 Mbps

tCycle 5 ns 3.75 ns 3 ns

tBurst - 2, 4 2, 4 2, 4

tCAS - 3, 4 3, 4, 5 4, 5

tCMD - 1 1 1

tCWD(tWL) - 2, 3, 4 3, 4 3, 4

tDQS - 1 1 1, 2

tRAS 40 ns 8 11 14

tRC 55 ns 11 15 19

tRCD 15 ns 3 4 5

tRP 15 ns 3 4 5

tWR 15 ns 3 4 5

TABLE 4.5: Typical timing parameter values of DDR2 SDRAM Devices

109

sold on the basis of the latency values of tCAS, tRCD and tRP. That is, DRAM modules are

now offered for sale as PC2-4300 (3-4-4) where the CAS latency is 3 cycles, tRCD is 4

cycles and tRP is 4 cycles or PC2-4300 (4-5-5) where the CAS latency is 4 cycles, tRCD is 5

cycles and tRP is 5 cycles.

110

 4.6 Summary

In this chapter, a generic DRAM access protocol is described in some detail. The generic

DRAM access protocol is created from a basic resource usage model. That is, two DRAM

commands can be pipeline consecutively if they do not require the use of a shared resource

at the same instance in time. Additional constraints, such as power consumption limitations,

can further limit the issue rate of DRAM commands.

One popular question that is often asked, but not addressed by the description of the

generic DRAM access protocol, is in regards to what happens if the timing parameters are

not fully respected. For example, what happens when a precharge command is issued before

the tRAS data restoration timing parameter has been fully satisfied? Does the DRAM device

contain enough intelligence to delay the precharge command until tRAS has been satisfied?

The answer to questions such as these is that in general, DRAM devices contain very

little intelligence. The DRAM device manufacturers provide datasheets to specify the

minimum timing constraints for individual DRAM commands. To ensure that the DRAM

devices operate correctly, the DRAM controller must respect the minimum and maximum

timing parameters as defined in the datasheet. In the specific case of a precharge command

issued to a DRAM device before tRAS has been satisfied, the DRAM device may still

operate correctly, since the electrical charge in the DRAM cells may have already been

mostly restored by the time the precharge command was engaged. The issue of early

command issuance is thus analogous to that of the practice of processor overclocking. That

is, a processor manufacturer can specify that a processor will operate correctly within a

given frequency and supply voltage range, but an end user may increase the supply voltage

and operating frequency of the processor in hopes of obtaining better performance from the

111

processor. In such a case, the processor may well operate correctly from a functional

perspective. However, the parameters of operation is then outside of the bounds specified by

the processor manufacturer, and the functional correctness of the processor is no longer

guaranteed by the processor manufacturer. Similarly, in case that a DRAM command is

issued at a timing that is more aggressive than that specified by the DRAM device datasheet,

the DRAM device may still operate correctly, but the functional correctness of the DRAM

device is no longer guaranteed by the manufacturer of the DRAM device or memory

module.

Finally, the work in this chapter points out that modern DRAM memory systems such as

SDRAM, DDR SDRAM, DDR2 SDRAM, DDR3 SDRAM and even Direct RDRAM have

memory access protocols that are more similar to each other than different. The similarity of

the memory access protocols enables the definition of the generic DRAM access protocol,

and the performance analysis of the generic DRAM memory system can be broadly applied

to different memory systems. The work presented in this chapter creates a baseline DRAM

memory access protocol that can be used in a framework that abstractly analyzes DRAM

based memory systems. Specifically, the table summarized as table 4.3 contains the

minimum scheduling distance for any pair of DRAM commands to a single channel of a

DRAM memory system. The table thus enables the computation of DRAM memory system

bandwidth and latency characteristics in support of abstract analysis of DRAM memory

system performance characteristics.

112

CHAPTER 5 DRAM Memory Controller

 5.1 Primary Functions

In modern computer systems, the system controller acts as the glue logic that connects

processors, high speed input-output devices and the memory system to each other. The

system controller can exist as a separate device or as part of the processor and integrated into

the processor package; the function of the system controller remains essentially same in

either case. The primary function of the system controller is to manage the flow of data

between the processors, input-output devices and the memory system, correctly and

efficiently. Within the system controller, the function of the DRAM memory controller is to

manage the flow of data into and out of the DRAM devices. However, due to the complexity

of DRAM memory access protocols, the large number of timing parameters, the

innumerable combinations of memory system organizations, different workload

characteristics and different design goals, the design space of a DRAM memory controller

has as much freedom as the design space of a processor that implements a specific

instruction set architecture. In that sense, just as the instruction set architecture defines the

programming model of a processor, the DRAM access protocol and timing parameters

define the interface protocol of a DRAM memory controller. In both cases, the performance

characteristics of the respective devices depend on the implementation specifics of the

microarchitecture, rather than the superficial description of a programing model or the

interface protocol.

113

DRAM memory controllers can be designed to minimize die size, minimize power

consumption, maximize system performance, or simply a reasonably optimum combination

of various conflicting design goals. The goal in this chapter is to examine the various issues

important to the design and implementation of modern DRAM memory controllers.

Specifically, the following items are particularly important to the design and implementation

of a DRAM memory controller:

• Row-buffer Management Policy

• Address Mapping Scheme

• Memory Transaction and DRAM Command Ordering Scheme

Due to the increasing disparity in the operating frequency of modern processors and the

access latency to main memory, there is a large body of active and ongoing research in the

architectural community devoted to the optimization of the DRAM memory controller.

Specifically, Address Mapping Scheme designed to minimize bank address conflicts have

been studied by Lin et. al. and Zhang et. al[24,25,27]. DRAM Command and Memory

Transaction Ordering Schemes have been studied by Briggs et. al., Cuppu et. al., Hur et.

al., McKee et. al., and Rixner et. al[28,32,33,34,37,42,51]. Due to the sheer volume of

research into optimal DRAM controller designs for different types of DRAM memory

systems and workload characteristics, this chapter is not intended as a comprehensive

summary of all prior work. Rather, the text in this chapter proceeds to describe the basic

concepts of DRAM memory controller design in abstraction. Relevant research on specific

topics are then referenced as needed.

114

 5.2 Row-buffer Management Policy

Modern memory controllers typically use one of two policies to manage the operations

of sense amplifiers in the DRAM devices. In modern DRAM devices, arrays of sense

amplifiers also act as buffers that can provide temporary storage for an entire row of data. As

a result, policies that manage the operation of sense amplifiers are better known as row-

buffer management policies. The two primary row-buffer management policies are the

open-page policy and the close-page policy. Different row-buffer management policies

exist, including dynamic row-buffer management policies that use timers to keep a row

open for a limited period of time before closing it, or use the access history of the memory

access sequence to dynamically determine whether the controller should implement the

open-page or close-page policy. However, dynamic row-buffer management policies are

typically based on either the close-page policy or the open-page policy, and the examination

in this text is limited to open-page and closed-page policies.

 5.2.1 Open-Page Row-buffer Management Policy

In modern, commodity DRAM devices, data access to and from the data storage cells is

a two step process that requires a separate row access command and a column access

command. In cases where the memory access sequence has a high degree of spatial locality,

it makes sense to direct the memory access sequences to the same row of memory. The

Open-page row-buffer management policy is designed to favor memory accesses to the

same row of memory by keeping sense amplifiers open and holding an entire row of data for

ready access. In the Open-Page row-buffer management policy, the primary assumption is

that once a row of data is brought to the array of sense amplifiers, different columns of the

115

same row may be accessed again in the near future. Under this assumption, after a row is

activated, the sense amplifiers are kept active to await another memory access to the same

row. In the case another memory read access is made to the same row, that memory access

could occur with the minimal latency of tCAS, since the row is already active in the sense

amplifier and only a column access command is needed to move the data from the sense

amplifiers to the memory controller. However, in the case that the access is to a different row

of the same bank, the memory controller would have to first precharge the DRAM array,

perform another row access, then perform the column access. The minimum latency to

access data in the bank conflict case is tRP + tRCD + tCAS.

 5.2.2 Close-Page Row-Buffer Management Policy

In contrast to the open-page policy, the Close-page row-buffer management policy is

designed to favor random accesses to different rows of memory. The open-page row-buffer

management policy and closely related variant policies are typically deployed in memory

systems designed for low processor count general purpose computers. In contrast, the close-

page row-buffer management policy and closely related variants are typically deployed in

memory systems designed for large processor count multiprocessor systems or specialty

embedded systems. The reason that open-page row-buffer management policies are

deployed in memory systems of low processor count platforms while close-page row-buffer

management policies are deployed in the memory systems of larger processor count

platforms is that in a memory system that services memory requests from multiple

processors or multiple threaded contexts concurrently, the intermixing of memory request

sequences reduces the available spatial locality of the resulting memory access sequence* .

Moreover, each memory request in an open-page memory system translates to different

116

combinations of DRAM commands with different timings, and the resulting sequence is

more difficult to schedule consecutively as compared to the same memory access sequence

in a close-page memory system. The bottom line is that as the bandwidth demand to the

memory system increases with increasing processor count, the efficiency of the DRAM

system to schedule the resulting combinations of DRAM commands decreases, and the

throughput of the close-page system can exceed that of a comparable open-page system.

The definition of the row-buffer management policy forms the foundation for the design

of a DRAM memory controller. The row-buffer management policy directly or indirectly

impacts the selection of the address mapping scheme, the memory command re-ordering

mechanism, and the transaction re-ordering mechanism for DRAM memory controllers. In

the following sections, the address mapping scheme, the memory command re-ordering

mechanism, and the transaction re-ordering mechanism are explored in the context of the

row-buffer management policy used.

*. Some memory systems designed for large processor count platforms, such as Alpha EV7’s Direct RDRAM memory
system, use open-page policy to manage the sense amplifiers. A fully loaded Direct RDRAM memory system has 32
banks per rank and 32 ranks per channel. The large number of banks in the Direct RDRAM memory system means
that memory requests from different processors can be directed to different banks. More conventional memory
systems that use SDRAM and variants of DDRx SDRAM memory devices are limited to far fewer banks of DRAM
arrays per rank and fewer ranks as well. The result is that the number of bank conflicts grows rapidly for a large
processor count application.

117

 5.3 Address Mapping Scheme

Many factors collectively contribute to impact the latency and sustainable bandwidth

characteristics of a DRAM memory system. One factor that impacts the performance of a

memory system is the address mapping scheme. In a memory system with a poorly devised

scheme to suite the workload, multiple, consecutive memory accesses may be mapped to

different rows of the same bank, resulting in bank conflicts that impacts performance. On

the other hand, a well devised address mapping scheme could map the same memory access

sequence to different rows of different banks, where accesses to different banks can occur

with some degree of concurrency. The task of an address mapping scheme is to minimize

bank conflicts and maximize parallelism in the memory system. The process of devising and

examining address mapping schemes begins by examining the property of DRAM memory

channels, ranks, banks, rows and columns.

 5.3.1 System Organization Variable Definition

To facilitate the examination of address mapping schemes, variables are defined in this

section to abstractly denote the organization of memory systems. For the sake of simplicity,

a uniform memory system is assumed throughout this text. Specifically, the memory system

under examination is assumed to have K independent channels of memory, and each channel

consists of L ranks per channel, B banks per rank, R rows per bank, C columns per row, and

V bytes per column* , and the total size of physical memory in the system is simply K * L *

B * R * C * V. Furthermore, it is assumed that each memory access loads and stores memory

at the granularity of a cacheline. The length of a cacheline is defined as Z bytes, and the

*. The number of bytes per column may be provided by multiple devices in parallel.

118

number of cachelines per row is denoted as N. The number of cachelines per row is a

dependent variable and it can be computed by multiplying the number of columns per row

by the number of bytes per column and divided through by the number of bytes per

cacheline. That is, N = C * V / Z. The organization variables are summarized in table 5.1.

In general, the value of a given system configuration parameter can be any positive

integer. For example, a memory system can have 3 channels of memory with 6 ranks of

memory per channel. However, for the sake of simplicity, the values of parameters defined

for the system under study are assumed to be integer powers of 2, and the lower case letter of

the respective parameters are used to denote that power of two. For example, there are 2b =

B banks in each rank, and 2l = L ranks in each channel of memory. A memory system with

the size of K * L * B * R * C * V can then be indexed with k + l + b + r + c + v number of

address bits.

 5.3.2 Available Parallelism in DRAM System Organization

channel:

Independent channels possess the highest degrees of parallelism in the memory system.

There are no restrictions on requests to different channels controlled with independent

Symbol
Variable

Dependence
Description

K Independent Number of channels in system

L Independent Number of ranks per channel

B Independent Number of banks per rank

R Independent Number of rows per bank

C Independent Number of columns per row

V Independent Number of bytes per column

Z Independent Number of bytes per cacheline

N Dependent Number of cachelines per row

TABLE 5.1: Summary of System Configuration Variables

119

memory controllers. For a performance optimized design, consecutive cacheline accesses

should be mapped to different channels.*

rank:

Most DRAM accesses can proceed in parallel in different ranks, subject to the

availability of the shared address, command and data busses. However, rank-to-rank

switching penalties in high frequency, globally synchronous DRAM memory systems such

as DDRx SDRAM memory systems limit the desirability of sending consecutive DRAM

requests to different ranks.

bank:

Similar to the case of multiple DRAM accesses to multiple ranks, multiple DRAM

accesses can proceed in parallel in different banks of a given rank subject to the availability

of the shared address, command and data busses. Scheduling consecutive DRAM read

accesses to different banks within a given rank is more efficient than scheduling consecutive

read accesses to different ranks since idle cycles are not needed to re-synchronize the data

bus. However, consecutive DRAM read and writes are more efficiently performed to

different ranks of memory instead of different banks of the same rank. In modern systems,

read requests tend to have higher spatial locality than write requests due to the existence of

write back caches. The result is that in a high performance design, bank addresses should be

mapped lower than rank addresses to favor the extraction of spatial locality from

consecutive memory read accesses.

*. The exploration of parallelism in the memory system is an attempt to extract maximum performance. For low-power
targeted systems, different criteria may be needed to optimize the address mapping scheme.

120

row:

In a DRAM memory system, only one row per bank can be active in any time period,

provided that additional ESDRAM-like row-buffers are not present in the DRAM device.

The result of the forced serialization of accesses to different rows of the same bank means

that row addresses are typically mapped to higher order memory address ranges to lessen the

likelihood that spatially-close consecutive accesses would be made to different rows of the

same bank.

column:

In a memory system that implements open-page row-buffer management policy,

consecutive cachelines are mapped to the same row of memory, and a memory access

sequence that streams through memory would produce memory accesses to adjacent

locations of the same DRAM row. As a result, for a memory system that utilize the open-

page row-buffer management policy, adjacent columns should be mapped to the low address

range. In contrast, for a memory system that utilize the close-page row-buffer management

policy, consecutive cachelines should be mapped to different banks, then to different rows of

memory. Such a mapping scheme scatters consecutive memory access streams across

different banks, different ranks and different channels. The result is that in a memory system

that utilize the close-page row-buffer management policy, the low range of the column

address that denote the column offset within a cacheline is optimally mapped to the lowest

range of the address, but the remainder of the column addresses are best mapped to the high

address ranges comparable to the row addresses.

121

 5.3.3 Baseline Address Mapping Schemes

In a DRAM memory system that utilize the open-page row-buffer management policy,

consecutive read requests to the same row, bank, rank and channel can be pipelined

consecutively, whereas a similar combination of read requests to the same row, bank, rank

and channel in a memory system that utilize the close-page row-buffer management policy

incurs the same latency penalty as read requests to different rows of the same bank, rank and

channel. That is, in a memory system that utilize the close-page row-buffer management

policy, there is no difference between accesses to the same row or different rows of the same

bank, rank and channel. The difference in the access preferences means that optimal address

mapping schemes are different for memory systems that utilize open-page and close-page

row-buffer management policies.

In the previous section, the available parallelism of memory channels, ranks, banks,

rows and columns were examined in abstraction. In this section, two baseline address

mapping schemes are established. In the abstract memory system, the total size of memory

is simply K * L * B * R * C * V. The convention adopted in this work is that the colon, “ :” is

used to denote separation in the address ranges. As a result, k:l:b:r:c:v not only denotes the

size of the memory, but also the order of the respective address ranges in the address

mapping scheme. Finally, for the sake of simplicity, C * V can be replaced with N * Z in the

performance analysis. That is, instead of the number of bytes per column multiplied by the

number of columns per row, the number of bytes per cacheline multiplied by the number of

cachelines per row can be used equivalently. The size of the memory system is thus K * L *

B * R * N * Z, and the address mapping scheme can be denoted by k:l:b:r:n:z.

122

Open-page Baseline Address Mapping Scheme

In this section, a simple baseline address mapping scheme that is favorable for a memory

system that utilize the open-page row-buffer management policy is described. In a system

that utilize the open-page row-buffer management policy, consecutive cacheline addresses

should be placed into different channels, then adjacent cachelines should be mapped into the

same row, same bank, and same rank. The baseline address ordering is thus row, rank, bank,

cachelines per row, channel, and cacheline offset. Utilizing the previously described

convention, this baseline address mapping scheme for the open-page row-buffer

management policy is r:l:b:n:k:z.

Close-page Baseline Address Mapping Scheme

Similar to the baseline address mapping policy for a memory system that utilize the

open-page row-buffer management policy, consecutive cacheline addresses should be

mapped to different channels in the address mapping policy for a memory system that utilize

the close-page row-buffer management system. However, the central belief of the close-

page row-buffer management policy is that there is little spatial locality between temporally

adjacent memory accesses, so DRAM rows are precharged as soon as possible. In this case,

mapping consecutive cacheline addresses to the same bank, same rank and same channel of

memory results in a bank conflict and greatly reduces available memory bandwidth. In order

to minimize the chances of bank conflict, adjacent lines are mapped to different channels,

then to different banks, then to different ranks. The baseline ordering is thus row, cachelines

per row, rank, bank, channel and cacheline offset, and denoted as r:n:l:b:k:z.

123

 5.3.4 Parallelism versus Expansion Capability

In modern computing systems, one capability that system designers often must provide

to end users is to permit the end users to conFigure the memory capacity of the memory

system by adding or removing memory modules. In the context of the discussion of address

mapping schemes, adjustable memory expansion capability means that respective channel,

row, column, rank and bank address ranges must be flexibly adjusted depending on the

configuration of the DRAM modules inserted into the memory system by the end user. In

order to minimize the complexity of DRAM memory controllers, memory system

organization parameters that can be varied are typically mapped to the highest address

range. In this manner, the lower order address bits can remain unchanged regardless of the

number, capacity and configuration of the memory modules in the system. As an example,

in contemporary desktop personal computer systems, system memory capacity can be

adjusted by adding or removing ranks of DRAM devices. In these systems, rank indices are

mapped to the highest address range in the DRAM memory system. The result of such a

mapping scheme means that an application that utilizes only a subset of the memory address

space would typically make use of fewer ranks of memory than is available in the system.

The address mapping scheme optimized for expansion capability would thus present less

rank parallelism to memory accesses, or in the case where channel indices are mapped to the

high address ranges, parallelism presented by multiple channels may not be available to

individual applications.

In the respective baseline address mapping schemes described previously, the channel

and rank address ranges are mapped to low end of the address range. For a flexible, user

configurable memory system, the channel and rank indices may be moved to the highest

124

address ranges. The result is that the k:l:r:b:n:z address mapping scheme would be used in a

memory controller with an expandable memory system that implements an open-page row-

buffer management policy, and the k:l:r:n:b:z address mapping scheme would be used in a

memory controller with an expandable memory system that implements the close-page row-

buffer management policy. In these address mapping schemes geared toward memory

system expendability, some degrees of channel and rank parallelism are often lost to

workloads that use only a subset of the contiguous physical address space.

The loss of parallelism for single threaded workloads in memory systems designed for

configuration flexibility is less of a concern for memory systems designed for large multi-

processor systems. In such a system, concurrent memory accesses from different memory

access streams to different regions of the physical address space would make use of the

parallelism offered by multiple channel and multiple ranks. Moreover, the constraint on the

limited parallelism available to single threaded workloads can be alleviated in cases where

the virtual address mapping mechanism randomizes the address translation from the virtual

address space to the physical address space. Finally, some address mapping schemes have

been devised to make use of the available parallelism offered by multiple banks and ranks to

alleviate the issue of address aliasing in concurrent array accesses.

 5.3.5 Bank Address Aliasing (stride collision)

One additional problem in the consideration of an address mapping scheme is the

problem of bank address aliasing. Bank address aliasing occurs when workloads access

arrays whose respective sizes are powers-of-two concurrently. Concurrent accesses to arrays

that are powers-of-two can result in bank conflicts when the arrays are aligned to a given

address boundary and the paired accesses are made to different rows of the same bank.

125

To obtain the highest performance, an address mapping scheme should be devised so

that consecutive memory accesses to different DRAM rows are mapped to different banks,

different ranks or different channels of memory. The problem in a simple address mapping

scheme is that arrays whose sizes are power-of-two may have each element of the respective

array coincidentally mapped to different rows of the exact same channel, bank and rank. In

such a case, concurrent array accesses would result in bank conflicts for each pair of

memory accesses. The task then is to devise a scheme that avoids bank conflicts for

concurrent array accesses to arrays aligned on power-of-two address boundaries.

Proposed Solution to Alleviate Address Aliasing

The bank address aliasing problem has been respectively investigated by Lin et. al. [27]

and Zhang et. al.[24,25]. In Lin et. al., the proposed solution was applied to a Direct

RDRAM memory system with 32 banks per rank, 32 ranks per channel and 4 channels. In

this configuration, the rank address and 4 out of 5 bits of the bank address are bitwise

XOR’ed with the 9 bit row address. The resulting bank address was then placed in reverse

ordering in the address mapping scheme. Lin et. al. illustrated that this configuration

effectively rotated the bank and rank mapping so that there is no address boundary where

every pair of concurrent array accesses would result in bank conflicts. The address mapping

scheme proposed by Lin et. al. is shown as Figure 5.1.

row (9) bank [4] bank [3:0] rank (5)

XOR

channel (2) offset (4)column (7)

row (9) bank [0] bank [4:1] rank (5) channel (2) offset (4)column (7)

9
9

9

cache tag cache index

Figure 5.1: Address mapping scheme proposed by Lin et. al.

126

In the work by Zhang et. al., a similar approach in rotating bank addresses through the

use of bitwise XOR function is retained. In their work, Zhang et. al. applied the bank

rotation function to a more conventional DRAM memory system, simulating up to 32 banks,

and this scheme also showed varying degrees of improvement. The mapping scheme

described by Zhang et. al. is shown as Figure 5.2.

Problems with Proposed Solutions

The schemes proposed by Lin et. al. and Zhang et. al. are similar schemes applied to

different memory systems. The use of the Direct RDRAM memory system allowed Lin et.

al. a higher degree of bank parallelism in the form of 1024 banks DRAM arrays. The

generous level of bank parallelism allowed Lin et. al. to create a 1:1 mapping that permutes

the available number of banks through the address space in the system configuration

examined. In contrast, Zhang et. al. illustrated a more modest memory system where the

page index was larger than the bank index. The problem is that there are few banks in

contemporary SDRAM and DDR SDRAM variant memory systems, and for a DRAM

memory system with 2b banks, there are only 2b possible permutations in mapping the

physical address to memory address. In implementing the bank address permutation

scheme, the address aliasing problem is simply shifted to a larger granularity. That is,

without bank permutation, arrays aligned on address boundaries of 2(b+p) would cause a

XOR

page index new bank index page offset

b
b

b

Figure 5.2: Address mapping scheme proposed by Zhang et. al.

page index bank index page offset

p

127

bank conflict on every pair of concurrent array accesses. The act of permuting the bank

index means that arrays aligned on address boundaries of 2(b+p+b) would cause a bank

conflict on every pair of concurrent array accesses. Essentially, there are not enough banks

to rotate through the address space in a contemporary memory systems to completely avoid

the memory address aliasing problem, but the presence of more banks does defer the address

aliasing problem to larger arrays aligned on an exact power-of-two address boundaries.

An Address Aliasing Example: STREAM on a Desktop Personal Computer

The STREAM benchmark is designed to measure the maximum bandwidth available on

a given computer system[40]. The benchmark contains array access sequences that create

bank address aliasing problems in that the STREAM benchmark is specifically designed to

march through large arrays whose sizes may be statically defined as powers-of-two number

of bytes. As a result, the address boundaries of the arrays used in the benchmark are

naturally aligned to cause concurrent read and write streams of the accessed arrays to map to

the same DRAM bank. Fortunately, the addition of a simple offset to increase the size of the

respective arrays means that the statically allocated arrays are no longer proper powers-of-

two in size, and the address boundaries of the respective arrays are not aligned to the same

bank addresses.

As an example, the address mapping scheme utilized by the memory controller in Intel’s

875P system controller places the bank address range on physical address bits 14 and 15

when 256 Mbit DDR SDRAM devices are used to conFigure the memory system[41]. In

this configuration, arrays that are powers-of-two and larger than 216 bytes in size could have

all array indices mapped to the same bank if the static arrays are allocated consecutively.

The address aliasing problem can be alleviated in this specific system by increasing the size

128

of the respective arrays by 214 bytes. Table 5.2 summarizes the change in measured

bandwidth for the STREAM benchmark in a Dell PowerEdge 400SC computer system that

uses the Intel 875P system controller. The results show that the insertion of the 214 byte

array offset can alleviate bank conflicts on aligned address boundaries and improve effective

DRAM bandwidth by as much as 25%.

Copy Scale Add Triad

No Offset (MB/s) 2331 2473 2584 2496

With Offset (MB/s) 2448 2474 3164 3157

Difference (MB/s) 117 1 580 661

TABLE 5.2: : Measured STREAM Results: With and Without OFFSET

129

 5.4 Memory Transaction and DRAM Command

Ordering Schemes

The design space of a modern DRAM controller is incredibly large. A DRAM controller

can be fully protocol compliant for a given DRAM memory system, but implements the

most simplistic controller possible to minimize complexity and die size of the memory

controller. Alternatively, a highly complex, high performance memory controller can be

implemented to extract the maximum performance from a given memory system. The

performance characteristic of the DRAM memory controller depends on the DRAM

command and memory transaction ordering schemes have been studied by Briggs et. al.,

Cuppu et. al., Hur et. al., McKee et. al., Lin et. al, and Rixner et. al[27,28,32,33,34,37,42]. In

studies performed by Briggs et. al., Cuppu et. al., McKee et. al., Lin et. al., and Rixner et. al,

various DRAM-centric scheduling schemes are examined. In the study performed by Hur et.

al., the observation is noted that the ideal DRAM scheduling algorithm depends not only

only the optimality of scheduling to the DRAM memory system, but also depends on the

requirement of the application. In particular, the integration of DRAM memory controllers

with the processor core onto the same silicon die means that the processor core can interact

directly with the memory controller and provide direct feedback to select the optimal

DRAM scheduling algorithm.

The design of a high performance DRAM memory controller is further complicated by

the emergence of modern high performance multi-threaded processors and multi-core

processors. While the use of multi-threading have been promoted as a way to hide the effects

of memory access latency in modern computer systems[44,45], the net effect of multi-

130

threaded and multi-core processors on a DRAM memory system is that the intermixed

memory request stream from the multiple threaded contexts to the DRAM memory system

disrupts the row-locality of the request pattern and increases bank conflicts[50]. As a result,

an optimal DRAM controller design not only have to account for the idiosyncrasies of

specific DRAM memory systems, application specific requirements, but also the type and

number of processing elements in the system.

The large number of design factors that a design engineer must consider further

increases the complexity of a high-performance DRAM memory controller. Fortunately,

some basic strategies exist in common for the design of a high performance DRAM memory

controller. Specifically, the strategies of bank-centric organization, write caching, seniors-

first are common to many high-performance DRAM controllers, and specific adaptive

arbitration algorithms are unique specific DRAM controllers.

 5.4.1 Write Caching

One strategy deployed in many modern DRAM controllers is the strategy of write

caching. The basic idea for write caching is that write requests are typically non-critical in

terms of performance, but read requests may be critical. As a result, it is typically desirable

to cache write requests and allow read requests to proceed ahead. Furthermore, DRAM

devices are typically poorly designed to support back-to-back read and write requests.

Figure 5.3 repeats the illustration of a column read command that follows a write command

Figure 5.3: Write command following read command to open banks.
tBurst

cmd&addr

bank “ j” of rank “ m”
rank “ m” utilization
data bus

write 0

data burst
I/O gating

row x open

data burst
I/O gating

read 1

time

tCWD tWR

tCWD + tBurst + tWR - tCMD tCMD

bank “ i” of rank “ m” data restore

131

and shows that due to the differences in the direction of data flow between read and write

commands, significant overheads exist when column read and write commands are

pipelined back-to-back. The strategy of write caching allows read requests that may be

critical to application performance to proceed ahead of write requests, and the write caching

strategy can also reduce read-write overheads when it is combined with a strategy to send

multiple write requests to the memory system consecutively. One memory controller that

utilizes the write caching strategy is Intel’s 870 system controller which can buffer upwards

of 8 KB of write data to prioritize read requests over write requests[49].

 5.4.2 DRAM-Bank-Centric Request Queuing Organization

In modern DRAM controllers, before a data for a given memory transaction is stored or

retrieved from the DRAM devices, the transaction must be translated into a sequence of

DRAM commands. To facilitate the pipelined execution of commands in a DRAM memory

system, DRAM commands can be placed into a single queue or multiple queues. One

organization that can facilitate the pipelined execution of commands in a high performance

DRAM memory controller is a set of queues organized on a per bank basis* . In this manner,

DRAM commands from different transactions are directed to the same queue in the case that

they access the same bank. The per bank organization allows a memory controller to quickly

recognize requests that are directed to the same row or different rows of the same bank. In

the case that multiple pending requests are directed toward the same row in the same bank,

but interleaved with requests directed toward different rows of the same bank, the per-bank

queuing mechanism can easily facilitate transaction re-ordering to minimize the number of

*. The bank-centric request queuing construct is a conceptual construct. Memory controllers can util ize a unified queue
with sophisticated hardware to perform the transaction re-ordering and bank rotation described in this text, albeit with
greater difficulty.

132

bank conflicts. Moreover, the bank-centric organization also facilitates a bank-rotation

mechanism that can process concurrent requests to different banks and increase the

utilization of the memory system in between bank conflicts to a given same bank.

Figure 5.4 shows one organization of a set of request queues organized on a per-bank

basis. In the organization illustrated in Figure 5.4, memory transaction requests are

translated into memory addresses and directed into different request queues based on their

respective bank addresses. In this organization, multiple column commands can be issued

from a given request queue to a given bank if they are directed to the same open row. In the

case that a given request queue has exhausted all pending requests to the same open row and

the next ordered request in the queue is addressed to a row, the request queue can then issue

a precharge command and allow the next bank to issue commands into the memory system.

Figure 5.4 shows that the scheduling priority is passed from bank to bank in a round robin

fashion. In the round-robin bank-rotation command scheduling scheme, DRAM bank

conflict overhead to a given bank can be hidden by accesses to different banks if there are

sufficient numbers of pending requests to other banks that can be processed before the

scheduling priority rotates back to the same bank.

Figure 5.4: Per Bank Organization of DRAM Request Queues.

DRAM address mapping

ch
an

n
el 0

b
an

k 2
ran

k 0
ro

w
 0x7E

2
co

l 0x8E
ch

an
n

el 0
b

an
k 5

ran
k 0

ro
w

 0x19C
co

l 0x60

Bank 0
Bank 1
Bank 2

Bank n -1

round-robin
through n banks

row:column:bank:offset

queue depth

scheduling:CPU
Req.
stream

133

 5.4.3 Feedback Directed Scheduling

In modern computer systems, memory access is performed by the memory controller on

behalf of processors or intelligent I/O devices. Memory access requests are typically

encapsulated in the form of transaction requests that contains the type, address, and data for

the request in the case of write requests. However, in the majority of systems, the transaction

requests typically do not contain information that allows a memory controller to prioritize

the transactions. Instead, memory controllers typically rely on the type, access history, and

memory system state to schedule the memory transactions. In one recent study performed by

Hur and Lin, the use of a history based arbiter that selects among different scheduling

policies is examined in detail[51]. In this study, the memory access request history is used to

select from different arbitration policies dynamically, and speedups between 5 and 60

percent are observed on some benchmarks.

The exploration of a history-based DRAM transaction and command scheduling

algorithm is enabled by the fact that the Hur and Lin based the study on a POWER5

processor, a processors with an integrated DRAM controller. As more processors are

designed with integrated DRAM memory controllers, these processors can communicate

directly with the DRAM memory controllers and schedule DRAM commands based not

only on the availability of resources within the DRAM memory system, but also on the

DRAM command access history. In particular, as multi-threaded and multi-core processors

are integrated with DRAM memory controllers, these DRAM memory controller not only

have to be aware of the availability of resources within the DRAM memory system, but they

must also be aware of the state and access history of the respective threaded contexts on the

processor in order to achieve the highest performance possible.

134

CHAPTER 6 Performance Analysis
Methodology: Request
Access Distances:

 6.1 Motivation

In recent years, the importance of memory system performance as a limiter of computer

system performance has been widely recognized[52,53]. However, DRAM devices

specifically and memory systems as a whole are still designed by engineers whose

predominant concerns are those of cost minimization and functional correctness. Moreover,

the commodity nature of main stream SDRAM, DDR SDRAM and DDR2 SDRAM devices

means that DRAM design engineers are reluctant to add functionalities or to restructure

DRAM devices in such a way that would increase the die size overhead of these devices. As

a result, the topic of memory system performance analysis is important not only to system

architects, but it is also needed by DRAM design engineers to evaluate design trade-off

points between the die cost of various features against potential performance benefits of

those features.

135

 6.1.1 DRAM Device Scaling Considerations

Figure 6.1 shows general DRAM scaling trends from 1998 to 2004. Figure 6.1 shows

that while DRAM device datarate have doubled every three years in between 1998 and

2004, row cycle times have decreased by roughly 7% per year during the same period of

time. The difference in the scaling trends means that each generation of DRAM devices has

a different combination of datarate and row cycle time. Moreover, as each generation of

DRAM devices scale in size, the physical organization of the DRAM device directly

impacts timing parameters such as tRCD, tRAS, tFAW, tRRD and tRFC. Specifically, as DRAM

device density doubles with each generation, DRAM device design engineers can choose to

double the number of cells per row, double the number of rows in each bank, or double the

number of banks within a given DRAM device.

In the case that the number of storage cells are doubled for each row, the desire to keep

the electrical charge of the storage cell at the same level means that the energy consumed for

each row access roughly doubles. The increase in power consumption in turn means that

tFAW, tRRD and tRFC must be increased when the number of storage cells are doubled. In the

Figure 6.1: DRAM datarate and row cycle time scaling trends.

R
o

w
 C

yc
le

 T
im

e
(n

s)

time

10
20

30
40

50
70

60

1998 2000 2002 2004

Commodity DRAM Devices
SDRAM

DDR SDRAM

High-Performance DRAM Devices

RLDRAM / FCRAM

D
R

A
M

 D
ev

ic
e

D
at

ar
at

e

10
0

20
0

30
0

40
0

50
0

70
0

60
0

1998 2000 2002 2004

Commodity DRAM Devices

SDRAM

DDR SDRAM

(trend expected to continue)

(min burst:1)

(min burst:2)

DDR2 SDRAM
(min burst:4)

time

DRAM device datarate scaling trend DRAM row cycle time scaling trend

136

case that the number of rows are doubled, the number of storage cells per bitline segment or

the number of segments must increase appropriately. The increasing number of DRAM

storage cells per bitline then impacts tRCD, tRAS and tRC. Furthermore, the doubling of the

number of rows means that twice the number of refresh cycles are needed per unit time, and

memory system performance may be further degraded. Finally, the doubling of the number

of banks has the smallest impact on DRAM device timing parameters, but the increase in

bank count increases the complexity of the control logic, and the larger number of logic

transistors increases die size.

The different combinations of device datarates, row cycle times, and device organization

impact for each generation of DRAM devices lead to the situation that each generation of

DRAM devices must be re-examined in terms of performance characteristics in the context

of the larger memory system. Moreover, a suitable analytical framework must be used to

examine the performance characteristics so that a wide range of system configurations can

be considered while DRAM device timing parameters are varied.

 6.1.2 Execution Based Analytical Framework

Two types of analytical frameworks are typically used to evaluate the performance of

DRAM memory systems. In general, the two types of analytical frameworks can be

described as execution based and trace based analytical frameworks, respectively1.

Typically, memory system studies are based on closed-loop, execution based

simulations[28,32,33,34,37,42,46,51]. The use of execution based simulations means that

the performance of the memory system is impacted by the request rate of the processor or

1. Alternatively, closed-loop and open-loop systems. The open-loop system can be driven by address trace inputs or
random number generators. The fundamental concept remains the same.

137

processors, and the performance of the memory system is tightly coupled to the performance

of the processor or processors. For example, one study with a specific set of DRAM device

timing parameters, workloads and system configuration can reach one conclusion in regards

to the performance sensitivity of specific DRAM timing parameters, while a second study

with the same set of DRAM device timing parameters, workloads and system configuration

but different processor frequency or cache sizes can reach a different conclusion in regards

to performance sensitivity of specific DRAM timing parameters. In this manner, execution

based simulation frameworks can accurately measure system performance sensitivity to

DRAM device parameters for specific system configurations.

The accuracy of execution based simulations in measuring system performance

sensitivity to DRAM device parameters for specific system configurations ironically

presents a problem in that the overall system performance depends on both processor

performance and memory system performance. However, the individual contributions of

processor performance and memory system performance are difficult to separate out from

each other. Figure 6.2 abstractly illustrates the point that the idle times in the data bus of the

DRAM system are non-linear functions of processor frequency, protocol overhead and

DRAM row cycle times. The result is that the performance characteristic of a DRAM

memory system is a non-linear function of each individual parameter, even when other

parameters are held as constants.

Figure 6.2: Abstract illustration of DRAM system data bus activity.

data data data

idle time idle time
due to idle added due to

tRC or tFAWCPU
DRAM protocol
overhead

data

time

data

138

The complexity of system level interactions means that while execution based

simulation frameworks are highly accurate in reflecting the sensitivity of system level

performance to DRAM system configurations and timing parameters, the intermixing of

processor performance in the equation means that a different framework that can separate

out processor performance from DRAM memory system performance is required to analyze

DRAM memory system performance in isolation.

 6.1.3 Trace Based Analytical Framework

Trace based analytical frameworks differ from execution based analytical frameworks in

that trace-based analytical frameworks are open-loop systems, and memory system

performance can be separated from processor performance. In general, trace based

analytical frameworks are less suitable for use in the analysis of system level performance

characteristics. However, the use of an open-loop trace-based analytical framework means

that the input request rate can be independently controlled. In the extreme case, a trace-

based analytical framework can assume an infinitely fast processor, and memory requests

can be issued into the memory system at saturation rates. In the case that the trace input is

driven at saturation rates, all idle times in the DRAM memory system attributable to the

processor are eliminated. In this manner, a trace based analytical framework can measure the

limits of performance sensitivity to individual DRAM system configuration and timing

parameters, assuming ideal processors.

 6.1.4 Trace Based versus Execution Based Analytical Framework

The trace based methodology is deficient in some ways while it is advantageous in other

ways when it is compared to an execution driven analytical framework. The trace based

139

analytical framework is deficient in that memory address traces do not contain information

in regards to dependencies in the memory request stream. The result is that even inherently

dependent memory references can be collapsed entirely and the analytical framework can

compute a higher bandwidth efficiency than the theoretical bandwidth efficiency of the

workload running on an infinitely fast processor. In this manner, a trace based analytical

framework computes a bandwidth efficiency that represents the upper-bound of bandwidth

efficiency for any given single threaded workload, and the amount of deviation between the

efficiency computed by a trace based analytical framework and the efficiency obtained from

an execution based simulation is dependent on the number of dependent memory requests in

a given workload relative to the total number of memory requests in the workload.

The issue of trace based methodologies not respecting the dependency of memory

references can be resolved by using an execution based methodology that uses highly

accurate models of the processors and the memory system. However, an execution based

methodology is also problematic in that the processor state machine is dramatically more

complex than the memory system statemachine, and the vast majority of the simulation

cycles are used for processor state simulation. Moreover, that problem is exacerbated when

the goal of the simulation is to examine fundamental limitations of the DRAM memory

system. In the case that an infinitely fast processor is approximated by using an extreme

ratio of processor to memory system operating frequency, an execution based methodology

would be many orders of magnitude slower than a trace based methodology. In this work, a

trace based methodology is deployed so that a large design space of DRAM memory system

configuration and timing characteristics can be examined in detail. The trade off is the loss

of accuracy in that memory dependency in single threaded workloads is not respected.

140

 6.2 The Request Access Distance Framework

In this study, a trace-based analytical framework is used to evaluate the impact of

DRAM timing parameters and memory system configuration to memory system

performance. The analytical framework is based on the computation of memory system

bandwidth efficiency subjected to different combinations of configuration and timing

parameters including, but not limited to, DRAM device datarates, burst lengths, tRC, tFAW,

and tDQS. The maximum bandwidth efficiency of the DRAM memory system can be

computed by separately computing, then adding up the DRAM protocol overhead and

DRAM row cycle time constraints for each request. The trace-based analytical framework

described in this work is referred to as the Request Access Distance methodology for the

computation of DRAM memory system efficiency.

The process of computing DRAM memory system bandwidth efficiency begins with a

re-examination of memory system activity once the memory requests are driven at

saturation rates. Figure 6.3 illustrates that once DRAM memory system idle times due to

non-memory-intensive processor or processors are removed, all remaining idle times in the

DRAM memory system must be directly contributed by the overhead of the DRAM

protocol, DRAM row cycle times, or DRAM power constraints such as tFAW or tRRD.

Figure 6.3: Abstract illustration of DRAM system data bus activity.

data data data
idle time idle timedue to idle added due to

tRC or tFAW
CPU DRAM protocol

overhead

data

time

141

 6.2.1 Computing DRAM Protocol Overhead

One source of DRAM bandwidth inefficiency is attributable to the protocol

inefficiencies. In this regard, the previous work that formalized the description of the

abstract DRAM access protocol now enables the computation of DRAM protocol overhead

for any pair of memory references. Table 6.1 contains the entries of minimum DRAM

command scheduling distances converted to request access distance overhead. Essentially,

the DRAM protocol overhead between any pair of memory references can be computed by

subtracting out the data burst duration, tBurst, from the minimum scheduling distance, and

the protocol overhead is converted to units of tBurst by dividing through by tBurst. In this

work, the protocol overhead between a memory request j and the request that immediately

precedes it is denoted by Do(j).

p
r
e
v
i
o
u
s

n
e
x
t

c
h
a
n
n
e
l

r
a
n
k

b
a
n
k

Minimum scheduling
distance between
commands
Open-page
No command re-ordering
Best case

DRAM protocol overhead
between DRAM command
pairs. (unit: tBurst)

R R s s s tBurst 0

R R s s d tBurst 0

R R s d - tDQS + tBurst tDQS / tBurst

R W s s s tCAS + tBurst + tDQS - tCWD (tCAS + tDQS - tCWD) / tBurst

R W s s d tCAS + tBurst + tDQS - tCWD (tCAS + tDQS - tCWD) / tBurst

R W s d - tCAS + tBurst + tDQS - tCWD (tCAS + tDQS - tCWD) / tBurst

W R s s s tCWD + tBurst + tWR - tCMD (tCWD + tWR - tCMD) / tBurst

W R s s d tCWD + tBurst + tWR - tCMD (tCWD + tWR - tCMD) / tBurst

W R s d - tCWD + tBurst + tDQS - tCAS (tCWD + tDQS - tCAS) / tBurst

W W s s s tBurst 0

W W s s d tBurst 0

W W s d - tBurst 0

TABLE 6.1: Table of Request Access Distance Overhead

Legend
R = read; W = write;
s = same; d = different;
o = open; c = conflict;

142

 6.2.2 Computing Row Cycle Time Constraints

In this work, a request j is defined to have a request access distance, Dr(j), to a prior

request made to a different rows of the same bank as request j. The request access distance

Dr(j) describes the timing distance between it and the previous request to a different row of

the same bank. In the case that two request are made to different rows of the same bank and

the minimum constraints for row cycle times are not met, some idle time must be inserted

into the command and data busses of the DRAM memory system. The minimum request

access distance Dm is the number of requests that must be made to an open row of a given

bank, to different banks, or to different ranks, between two requests to the same bank that

requires a row cycle for that bank. The minimum access distance ensures that minimum

DRAM row cycle time requirements are satisfied for all requests in a request stream. In the

case that Dr(j) is less than Dm, some amount of idle time, Di(j), must be added so that the

total access distance for request j, Dt(j), is greater than or equal to Dm. The basic unit for the

minimum access distance statistic is the data bus utilization time for a single transaction

request, tBurst time period. In a close-page memory system with row cycle time of tRC and

access burst duration of tBurst, Dm is simply (tRC - tBurst) / tBurst.

The request access distance for request j in a close-page memory system is simply

defined as Dr(j). However, two different request distances are defined for each request j in an

open-page memory system: Dr-ff(j) and Dr-lf(j). Dr-ff(j) and Dr-lf(j) are need for request j if

and only if request j is the first column access of a given row access. If request j is not the

first column access of a row access to a given bank, then the respective row activation and

precharge time constraints do not apply, and Dr-ff(j) and Dr-lf(j) are not needed. The request

access distance Dr-ff(j) is the request access distance between request j and the first column

143

access of the previous row access to the same bank and the request access distance Dr-lf(j) is

the request access distance between request j and the last column access of the previous row

access to the same bank.

In an open-page memory system, a row is kept active at the sense amplifiers once it is

activated so subsequent column accesses to the same row can be issued without additional

row cycles. In case of a bank conflict in an open-page memory system between two requests

to different rows of the same bank, the second request may not need to wait for the entire

row cycle time before it can be issued. Figure 6.4 shows that in the best case, bank conflicts

between two different column access requests can be scheduled with the timing of tBurst +

tRP + tRCD if the row restoration time tRAS has already been satisfied for the previous row

access. In the best case scenario, the minimum scheduling distance between two column

commands in an open-page system to different rows of the same bank is (tRP + tRCD) / tBurst.

The best case scenario illustrated in Figure 6.4 shows that Dm is by itself insufficient to

describe the minimum access distances for an open-page system. In this work, two different

access distance distances, Dm-ff and Dm-lf, are separately defined for open-page memory

systems to represent the worst case and best case timing between column accesses to

different rows of the same bank, respectively. The variable Dm-ff denotes the minimum

request access distance between the first column access of a row access and the first column

Figure 6.4: Consecutive Read Commands to Same Bank: Bank Conflict.

tRCD

tCMDtBurst + tRP + tRCD

cmd&addr
bank “ i” of rank “ m”
rank “ m” utilization
data bus data burst

I/O gating
bank j precharge

tRP

row y open - data restore

data burst
I/O gating

row acc
data sense

read 0 read 1prec

time

row x open

tBurst

144

access to the previous row access of the same bank. The variable Dm-lf denotes the

minimum request access distance between the last column access to a row and the first

column access to the previous row access of the same bank. In a close-page memory system,

Dm-ff is same as Dm-lf and Dm-ff can be simplified as Dm. In an open-page memory system,

multiple column access commands can be issued to the same row while that row is active,

and both Dm-ff and Dm-lf are needed to account for the different timing conditions that exist

between different column accesses of different rows in an open-page memory system.

The total access distance for request j in a close-page memory system is defined as Dt(j).

Since two sets of request access distances are needed to ensure that minimum row cycle

timings are met in a DRAM memory system, two different total access distances are also

needed for each request in an open page memory system. The two total access distances are

Dt-ff(j) and Dt-lf(j). The total request distances Dt-ff(j) and Dt-lf(j) must be greater than Dm-ff

and Dm-lf for every request j that is the first column access of a row access to a given bank,

respectively. In cases where either Dr-ff(j) is less than Dm-ff or Dr-lf(j) is less than Dm-lf,

additional idling distance must be added. The required idling distance Di-ff(j) is needed to

satisfy the minimum request access distance of Dm-ff and Di-lf(j) is needed to satisfy the

minimum request access distance of Dm-lf. In a close-page memory system, Di-ff(j) is by

itself sufficient to account for the minimum idling distance needed by request j, and Di(j)

equals Di-ff(j). In an open-page memory system, Di(j) is equal to the larger value of Di-ff(j)

and Di-lf(j) for request j that is the first column access of a given row. In the case that a given

request j is not the first column access of a given row, Di(j) is zero.

The request access distance statistic is a first order model that examines DRAM

performance characteristics with varying ratios of tRC and device data rate. The use of tRP

145

and tRCD in the formal definition introduces additional variables into the first order model.

For the purposes of simplicity, (tRC - tBurst) / 2 can be used as an approximation for tRP +

tRCD. The various request access distance definitions are summarized in table 6.2.

The key element in the Request Access Distance statistic for the computation of DRAM

memory system bandwidth efficiency is the set of formulas used to compute the necessary

idling distances for each request in a request stream. The fundamental insight that enables

the creation of the Request Access Distance statistic is that idling distances added for Dr(j)

requests previous to request j must be counted toward the total access distance needed by

request j since these previous idling distances increases the effective access distance of

Notation Description Formula

Do(j) DRAM Protocol overhead for request j table 6.1

Dm Minimum access distance required for each request j (tRC - tBurst) / tBurst

Dr(j) Access distance for request j -

Di(j) Idling distance needed for request j to satisfy tRC Figure 6.5

Dt(j) Total access distance for request j -

Dm-ff
Minimum distance needed between first column
commands of different row accesses

(tRC - tBurst) / tBurst

Dm-lf Between last column and first column of different rows
Dm-lf = (tRP + tRCD) / tBurst ~=
(tRC - tBurst) / (2 * tBurst)

Dr-ff(j) Access distance for request j to first column of last row -

Dr-lf(j) Access distance for request j to last column of last row -

Di-ff(j) Idling distance needed by request j to satisfy tRC Figure 6.5

Di-ff(j) Idling distance needed by request j to satisfy tRP+ tRCD Figure 6.5

Di(j)
Idling distance needed by request j that is first column
access of a row access

Di(j) = max (Di-ff(j), Di-lf(j))

Di(j)
Idling distance needed by request j that is not the first
column access of a row access

0

Dt-ff(j) Total access distance for request j to satisfy tRC -

Dt-ff(j) Total access distance for request j to satisfy tRP+ tRCD -

TABLE 6.2: Request Access Distance Terminologies Defined

cl
o

se
-p

ag
e

sy
st

em
o

p
en

-p
ag

e
sy

st
em

146

request j. The formula for computing the additional idling distances needed by request j for

both open-page and close-page memory systems are illustrated in Figure 6.5.

The request access distance analysis computes the idling distances that are needed for

every request in a request stream to satisfy. The sum of the idling distances for the entire

sequence may be used to compute the bandwidth efficiency for a specific system

configuration and a given workload. The addition of the idling distance for request j enables

the total request distances Dt-lf(j) and Dt-ff(j) to satisfy Dm-lf and Dm-ff, respectively.

 6.2.3 Computing tFAW Constraints

In DDR2 and future generations of DRAM devices, operational restrictions on the

DRAM device are under active consideration by DRAM design engineers to ensure that a

given DRAM device does not exceed the defined limit for instantaneous power draw. The

restriction on peak power draw of DDRx DRAM devices is implemented in terms of the

number of banks that can be activated in a given period of time. Specifically, the timing

Di lf– j() MAX Do j() Dm lf– Dr lf– j() Di n()

n j Dr lf– j()–=

j 1–

�+

� �
� �
� �
� �
� �
� �

–,

� �
� �
� �
� �
� �
� �

=

Figure 6.5: Definition of Idling Distances for Request j.

Di ff– j() MAX Do j() Dm ff– Dr ff– j() Di n()

n j Dr ff– j()()–=

j 1–

�+

� �
� �
� �
� �
� �
� �

–,

� �
� �
� �
� �
� �
� �

=

Di j() MAX Do j() Dm Dr j() Di n()

n j Dr j()–=

j 1–

�+

� �
� �
� �
� �
� �
� �

–,

� �
� �
� �
� �
� �
� �

=

cl
o

se
-p

ag
e

sy
st

em

o
p

en
-p

ag
e

sy
st

em

147

parameter tFAW has been defined as the rolling window of time within which no more than 4

banks can be activated. In a close-page memory system, the rolling four bank activation

window equates to a rolling timing window within which a maximum of 4 column

commands can be issued. In an open-page memory system, the rolling four bank activation

window equates to a rolling timing window within which a maximum of four column

accesses that are the first column accesses of a row access can be issued.

The tFAW banking restriction can be incorporated into the Request Access Distance

statistic by limiting the number of column accesses that are the first request accesses for a

row access. The process of incorporating the tFAW banking restriction into the Request

Access Distance statistic begins by computing the number of row activations allowed in a

rolling tRC window. The equivalent number of banks that can be active in a rolling tRC

window is denoted as Amax in this study, and it can be obtained by taking the 4 banks that

may be active in a rolling tFAW window, multiplying by tRC and dividing through by tFAW.

The formula for computing Amax is shown in Figure 6.6.

The maximum number of row activations per rolling tRC window further constrains the

efficiency of a DRAM memory system in that there can at best be Amax number of column

accesses that are the first column accesses of each respective row activation in any rolling

tRC time frame. In case that there are more than Amax number of column accesses that are

the first column accesses of each respective row activation in any rolling tRC time frame,

additional idling distances needs to be added to the idling distance of request j. The

additional idling distances needed to satisfy the tFAW constraint is denoted as Di-xtra(j).

Figure 6.6: Formula for Maximum Number of Bank Activations per tRC window.

Maximum Row Activation (per rank, per tRC) : Amax = 4
tRC

tFAW
-------------×

148

The computation of Di-xtra(j) requires the definition of a new variable, Div(j,m), where m

is the rank id of request j, and Div(j,m) represents the idling value of request j. The basic idea

of the idling value of a given request is that in a multi-rank memory system, requests made

to different ranks means that a given rank can idle for that period of time. As a result, a

request j made to rank m means that request j has an idling value of 1 to all ranks other than

rank m, and it has an idling value of 0 to rank m. Figure 6.7 illustrates the formula for the

computation of additional idling distances required to satisfy the tFAW constraint.

Finally, Figure 6.8 shows the formula for Di-total(j), for the total number of idling

distance for request j that is the first column accesses of a row activation. The process of

computing bandwidth efficiency in a DRAM memory system constrained by tFAW, is then as

simple as replacing Di(j) with Di-total(j) in the formulas for computation of additional idling

distances in Figure 6.5.

Figure 6.7: Formula for Additional Idling Distance Di-xtra (j) for Request j.

Di xtra– j() MAX 0 Dm ff– Amax 1– Di n() Div n m,()+

n j Amax 1–()–=

j

�+

� �
� �
� �
� �
� �
� �
� �

–,

� �
� �
� �
� �
� �
� �
� �

=

Div j m,() 0=

Div j m,() 1=

for request n that is the first column access of a row activation to

for request n that is not the first column access of a row activation
a bank that is in the same rank as request j.

or if request n is not made to the same rank as request j.

Di total– j() Di j() Di xtra– j()+=

Figure 6.8: Definition of Idling Distance Di-total(j) for Request j - Constrained by tFAW.

149

 6.2.4 DRAM Memory System Bandwidth Efficiency Computation

Finally, Figure 6.9 illustrates that the bandwidth utilization efficiency of a DRAM

memory system can be obtained by dividing the number of requests in the request stream by

the sum of the number of requests in the request stream and the total number of idling

distances needed by the stream to satisfy the DRAM protocol overhead, the row cycle time

constraints and the tFAW bank activation constraint needed by the requests in the request

stream.

 6.2.5 System Configuration

The Request Access Distance methodology can be used to compute the bandwidth

efficiency of a given memory system. However, the bandwidth efficiency computed with the

Request Access Distance mythology is workload specific and sensitive to the organization

of the DRAM memory system. Figure 6.10 shows one system organization of a close-page

Efficiency
r

r Di total– n()

n 1=

r

�+

--=

Figure 6.9: Bandwidth Efficiency of Request Stream.

r = number of
requests in
request stream

Figure 6.10: Request Access Distance in a close-page system with per-bank queues
and round robin bank rotation.

0x1C
27F

E
2C

0x04E
E

F
16C

0x1C
27F

E
30

0x1900E
F

10
0x249B

1154
0x1C

27F
E

34

request stream
DRAM address

ch
an

n
el 0

b
an

k 2
ran

k 0
ro

w
 0x7E

2
co

l 0x8E
ch

an
n

el 0
b

an
k 5

ran
k 0

ro
w

 0x19C
co

l 0x60

Bank 0
Bank 1
Bank 2

Bank n -1
round robin

through n banks
per bank
queue of
depth D

request
access
distance
recorded

mapping

150

memory system where the request stream is subjected to an address mapping policy and

translated into DRAM channel, rank, bank, row and column addresses. The request stream is

then sent to each DRAM bank, and each DRAM bank simply records the number in

between each pair of accesses to that bank.

The request access distance statistic computes the number of idle distances that must be

inserted into a given request stream in order to meet all of the specified constraints.

However, a well designed DRAM memory system can substantially increase maximum

bandwidth efficiency by re-ordering the request stream to minimize the number of bank

conflicts. In Figure 6.10, requests from the request stream are placed into n separate queues,

one queue per bank in the memory system. Each queue has the depth of D, and the memory

system rotates through the n banks in a round robin fashion. In an idealized memory system

with infinitely deep queues, each queue will have some requests in queue waiting for access

to a given bank in the memory system. In the idealized case, the request access distance for

all requests will be n - 1, since the distance between accesses to any bank is n - 1. However,

in the case where the depth of the queues is shallow, or if the bank address distribution of the

access sequence is not sufficiently random, then at a given instance in time some queues

may be empty while other queues are filled to the maximum depth. In such a case, many idle

scheduling slots may need to be inserted to meet minimum DRAM row cycle time

requirements. Finally, In the extreme case where the depth D of the queue is 0, the memory

system does not re-order the request stream, and the memory references are executed in

strict order.

151

 6.3 Impact of Refresh

The Request Access Distance methodology for the computation of maximum DRAM

memory system bandwidth efficiency described in this chapter have thus far omitted any

mention of the impact of DRAM refresh on the bandwidth efficiency. The reason for the

omission is that the impact of refresh is somewhat difficult to formalize in the same manner

as the Request Access Distance methodology. In general, DRAM refresh commands are

injected into the memory system once for each row in the memory system every 64

milliseconds, and each refresh command refreshes one row in all banks concurrently. The

refresh action takes tRFC time, and the overhead of stopping and restarting the DRAM

command pipeline is one row cycle time.

In a close-page memory system, the impact of refresh is relatively easy to compute. The

impact of refresh commands can be presented as a bandwidth overhead of fixed percentage

value. The percentage value can be computed by multiplying the number of rows per bank

by the sum of tRFC and tRC, then dividing through by the overall refresh cycle time period,

typically 64 milliseconds.

In an open-page memory system, the impact of refresh can be approximated by the same

method described for the close-page memory system. However, the subtle difference

between the impact of a refresh command in an open-page memory system and the impact

of a refresh command in a close-page memory system is that the refresh command not only

presents itself as a bandwidth overhead, but it also closes all open rows in all banks. In this

manner, the impact of a refresh command in an open page memory system presents a second

order impact on DRAM memory system performance that is not captured by the simple

overhead computation. However, since the cost of re-opening a row is relatively less than

152

the refresh overhead of tRFC + tRC per refresh command, the impact of the second order

effect may be ignored in the overall performance computation. Moreover, in cases where

DRAM memory system performance characteristics are directly compared to each other

using the same set of workloads, the impact of the refresh overhead may be factored out

entirely, since refresh would have identical impact on systems with the same workload and

the same number of rows per bank. As a result, it is believed that the impact of refresh can

be ignored altogether in cases where systems of identical configurations are compared

directly to each other, and in cases where absolute values are desired, the impact of refresh

can be factored in by computing the overhead as a fixed percentage, using the formula

describe above.

153

 6.4 Applied Examples

Two simplified examples are shown in this section to illustrate how the Request Access

Distance analytical framework can be applied to a sample request stream to compute the

maximum bandwidth efficiency for a workload.

 6.4.1 Close-Page System Example

Figure 6.11 shows how maximum bandwidth efficiency can be computed for a request

stream in a close-page memory system. For the purpose of simplifying the example, Figure

6.11 assumes an idealized DRAM access protocol where the DRAM protocol overhead is

zero for all requests, the tFAW bank activation constraint does not apply, and only the row

cycle time determines the bandwidth efficiency of the request stream. In Figure 6.11, the

request stream has been simplified down to the sequence of bank ID’s, The access distances

for each request are then computed from the sequence of bank ID’s. The example illustrated

as Figure 6.11 specifies that a minimum of 8 requests need to be active at any given instance

in time in order to achieve full bandwidth utilization. In terms of access distances, there

must be 7 accesses to different banks in between memory accesses to a given bank. At the

beginning of the sequence in Figure 6.11, two requests are made to bank 0 with only 4 other

Figure 6.11: Efficiency Computation Example: Close-Page Dm = 7.

Bank id’s of accesses

0

Request Stream

2 3 5 27 10 276 7 07 43 63 47 31 746 7 10 53 65

(round robin re-ordered)

32 requests + 3 + 7 + 6 + 1 + 2 + 1 + 1 + 3 + 3 = 59 request slots

3

7 8 8 8

7

7

-4 40- 5 81 -6 7 44 412 135 5 812 78 7185 5

11

6

7 8

1

7 7

2

7 12

1

7 7 18 8

1

7

3

7

3

7 12 8 8 7 7

Bandwidth efficiency = 32 / 59 = 54.2% of peak

Dr(j)

Di(j)

Dt(j)

Dm = 7

154

requests to different banks in between them. As a result, an idling distance of 3 must be

added to the access sequence before the second request to bank 0 can proceed. Two requests

later, the request to bank 2 has an access distance of 5. However, idling distances added to

requests in between accesses to bank 2 also counts toward its effective total access distance.

The result is that the total access distance for the second access to bank 2 is 8, and no

additional idling distances ahead of the access to bank 2 are needed. Finally, after all idling

distances have been computed, the maximum bandwidth efficiency of the access sequence

can be computed by dividing the total number of requests by the sum of the total number of

requests and all of the idling distances. In the example shown as Figure 6.11, the maximum

sustained bandwidth efficiency is 54.2%.

 6.4.2 Open-Page System Example

In this section, an example is used to illustrate the process for obtaining maximum

sustainable bandwidth for different DRAM row cycle times and device data rates in an

open-page memory system. Figure 6.12 shows a request stream that has been simplified

Figure 6.12: Efficiency Computation Example: open-page, Dm-ff = 8, Dm-lf = 4.

Bank ID

Request Stream

2 6 5 23 10 356 5 03 52 53 46 31 334 3 10 53 60

32 requests + 3 + 2 + 2 + 1 + 1 + 3 + 7 + 4 + 2 = 57 request slots

-- 7-6 6 8- 57 - -8 712 --1 - 84 138 1275 -

Bandwidth efficiency = 32 / 57 = 56.1% of peak

Dr-ff(j)

Dt-ff(j)

Dm-ff = 8

Row ID

0x0E
8

0x12B

0x0C
3

0x2C
3

0x1E
8

0x22F

0x182
0x1A

1

0x1E
8

0x028

0x228

0x228

0x125
0x125

0x261

0x028

0x01B
0x01B

0x2A
1

0x182

0x2E
8

0x221
0x02B

0x02C

0x2E
8

0x2E
8

0x2E
8

0x1E
1

0x128

0x101
0x012

1st Col? y y y yy yy yny y yn yy nn yy yy nny n yy yy yy

-- 3-6 6 8- 47 - -8 612 --1 - 84 122 1275 -

-- 1-2 2 0- 31 - -0 10 --7 - 04 00 013 -

-- 1-0 0 0- 00 - -0 00 --3 - 00 02 000 -
-- 1-2 2 0- 31 - -0 00 --7 - 04 02 003 -
-- 8-8 8 8- 87 - -8 812 --8 - 88 1310 1288 -

Dr-lf(j)
Di-ff(j)
Di-lf(j)

Di(j)

- - - -

- - - -

- - - -

- - - -
- - - -
- - - -

Dm-lf = 4

Dt-lf(j) -- 4-6 6 8- 77 - -8 712 --8 - 88 124 1275 -- - - -

155

down to a sequence of the bank ID’s and row ID’s of the individual requests, and the access

distances are then computed from the sequence of bank ID’s and row ID’s. The example

illustrated as Figure 6.12 specifies that a minimum of 9 requests need to be active at any

given instance in time to achieve full bandwidth utilization, and there must be 8 requests

between row activations as well as 4 requests between bank conflicts. Figure 6.12 shows

that Di-ff(j) and Di-lf(j) are separately computed but the idling distance Di(j) is simply the

maximum of Di-ff(j) and Di-lf(j). After all idling distances have been computed, the

maximum bandwidth efficiency of the request sequence can be computed by dividing the

total number of requests by the sum of the total number of requests and all of the idling

distances. In the example shown as Figure 6.12, the maximum sustained bandwidth

efficiency is 56.1%.

156

CHAPTER 7 DRAM Memory System
Performance Analysis:
Results

 7.1 Introduction

In this chapter, the trace based Request Access Distance analytical framework is used to

examine the performance sensitivity of DRAM memory systems to different device and

system organizations, timing parameters, and workloads. To demonstrate the utility and

flexibility of the Request Access Distance analytical framework, systems with differing

organizations and timing parameters are used to study the impact of different row cycle

times, device datarates, data burst lengths, tFAW power constraints, tDQS rank-to-rank data

bus switching time, the number of banks and the number of ranks in the memory system.

The Request Access Distance analytical framework formalizes the methodology for the

computation of maximum sustainable DRAM memory system bandwidth, subjected to

different configurations, timing parameters, and address traces. However, the use of the

Request Access Distance analytical framework does not reduce the complexity of analysis

in that the analytical framework does not reduce the number of independent variables that

impact the performance of a DRAM memory system, it simply identifies them. To reduce

the complexity of the task of analyzing the performance of DRAM memory systems, two

sets of studies are performed with slightly differing system assumptions in this work to

examine varying aspects of DRAM memory system performance sensitivity to different

configurations and timing parameters.

157

 7.1.1 Workloads

The performance characteristics of DRAM memory systems depend on workload-

specific characteristics of access rates and access patterns. In the Request Access Distance

analytical framework, input traces are driven at saturation rates so that the effects of

processor performance can be factored out from memory system performance. Despite the

fact that the workload traces are driven at saturation rate of the respective memory systems,

the workload-specific request access patterns remain important in the analysis of DRAM

memory system performance. To examine the range of workload-specific variances, a large

set of application traces are used in this study. From the SPEC CPU 2000 benchmark suite,

address traces from 164.gzip, 176.gcc, 197.parser, 255.vortex, 172.mgrid, 178.galgel,

179.art, 183.equake, and 188.ammp are used. The address traces from the SPEC CPU 2000

benchmark suite were captured through the of the MASE simulation framework with the L2

cache size of the simulated processor set to 256 KB[29]. In addition, processor bus traces

captured from a desktop personal computer system running various benchmarks and

applications such as JMark 2.0 CPU, JMark 2.0 Complex Mathematics, 3DWinbench CPU,

SETI@Home and Quake3, are added to the mix. The SPEC workload traces and desktop

computer application traces collectively form a rich set of diverse workloads that enable

generalized observations to be made about DRAM memory system performance

characteristics in this study, and detailed information on traces used in this study can be

found in appendix A.

158

 7.2 Close-page System Performance Analysis

To limit the number of independent variables that affect DRAM memory system

performance to a manageable subset, a single rank memory system that uses a close-page

row buffer management policy is used in the first set of studies to examine the performance

trade-off of a DRAM device with 8 banks versus 16 banks, tFAW limitations with tFAW set

equal to tRC and tRC/2, memory controller sophistication in terms of transaction re-ordering

capability, and data burst duration.

 7.2.1 System Configuration Assumptions

Figure 7.1 shows the system configuration used in the close-page memory system study.

Figure 7.1 shows that the analytical framework accepts transaction requests from a trace

input file, maps the request into the memory system, then places the request into one of N

queues in the system. The system is configured with a single channel and a single rank of

memory, with 16384 rows per bank and 1024 columns per row. The number of banks can be

set to 8 or 16 banks depending on the configuration, and there is one queue for each bank in

the memory system. In the analytical framework, one request per queue is selected from the

memory system on a round-robin basis and sent into the Request Access Distance

Figure 7.1: Close-page studies system configuration .

0x1C
27F

E
2C

0x04E
E

F
16C

0x1C
27F

E
30

0x1900E
F

10
0x249B

1154
0x1C

27F
E

34

request stream

DRAM address mapping

ch
an

n
el 0

b
an

k 2
ran

k 0
ro

w
 0x7E

2
co

l 0x8E
ch

an
n

el 0
b

an
k 5

ran
k 0

ro
w

 0x19C
co

l 0x60

Bank 0
Bank 1
Bank 2

Bank n -1

round-robin
through N banks

row:column:bank:offset

per bank
queue of
depth D

1 channel, 1 rank, 8/16 banks

16384 rows x 1024 columns

1 Rank

16K x 1024 each

stall
on full
queue

scheduling:

trace based

Close Page Policy***
Read Timing = Write Timing
No Refresh
No Rank-to-Rank Switch Overhead
No RW or WR Turnaround Overhead

Simplifying Assumptions

159

computation engine. Finally, in the analytical framework, each request moves data in the

granularity of a cacheline, and the contiguous movement data for a given request occupies

tBurst duration on the data bus.

Re-Ordering Queue Depth

In this study, the depth of the per-bank request queues used for memory request re-

ordering can be varied depending on configuration, and this depth is used to represent the

level of sophistication of the memory controller. Pending requests are selected from the

requests queues to maximize the temporal distance between any two requests from the same

bank. In the case that the queue depth D is very deep, the round-robin request selection

mechanism will likely have at least one pending entry in each queue each time it goes to the

queue to obtain a request. However, in the case that the queue depth is shallow, the round-

robin request selection mechanism will likely have to skip over many queues that do not

have any pending requests, and idling time may have to be added so that row cycle time

requirements can be met for any two requests to the same bank. In the extreme case where

the queue depth D is zero, transaction requests are sent into the Request Access Distance

computation engine in strict request order.

Finally, the memory request re-ordering performed in the analytical framework is based

on the address request stream from the captured traces, and this re-ordering may further

violate the natural memory ordering of a given workload. In this sense, the maximum

achievable bandwidth of a given workload computed by the trace based analytical

framework further deviates from the maximum achievable bandwidth of that specific

workload in a real system. However, the goal of this work is to examine the limits of DRAM

memory system configuration and timing parameter variations, and in that context, the

160

specific memory dependencies of a single threaded workload is not a critical consideration.

In particular, future high performance DRAM memory systems are expected to support

multi-threaded and multi-core processors. For these high performance DRAM memory

systems, the higher memory request rate from the multi-threaded and multi-core processors

means that more pending requests would be available in the request queue for re-ordering,

and more requests can be re-ordered for performance. In this sense, the workloads used in

this study represent realistic address request patterns found in various single-threaded

workloads, but the memory dependency assumptions are more applicable to current and

near-future high performance DRAM memory systems that support multi-threaded and

multi-core processors.

DRAM protocol overhead

For the close-page memory system study, a single rank memory system is used along

with a memory controller that performs various degrees of sophisticated memory request re-

ordering. As a result, the read-write turnaround overheads can be minimized and the rank-

to-rank switching overhead does not apply. As part of the effort to limit the number of

independent variables examined in each set of the overall study, the DRAM protocol is

assumed to be ideal and protocol overheads are set to zero for the close-page system study.

 7.2.2 Workload Characteristics: 164.gzip

In this work, memory address traces from various workloads are sent through the

Request Access Distance analytical framework so that the maximum bandwidth efficiency

of the address request pattern in the trace can be computed, given differing system

configurations and timing parameters. Figure 7.2 shows the bandwidth efficiency of the

161

memory system as address trace from 164.gzip is used to drive the analytical framework.

Essentially, the address trace from 164.gzip is subjected to varying conditions of the re-

ordering queue depth, number of banks in the memory system, tFAW constraints and

tRC/tBurst ratios. For each set of condition, a sustained bandwidth efficiency is computed and

plotted in Figure 7.2. Figure 7.2 shows that in cases where the address trace is not re-

ordered, the memory system is limited by the row cycle time and differences in the number

of banks or tFAW does not matter. However, when the 164.gzip address trace is subjected to

some amount of re-ordering, the efficiency of the DRAM memory system increases

dramatically. As the efficiency increases, the performance of the DRAM memory system

becomes more sensitive to the number of available banks and to the bandwidth limitations

imposed by tFAW at higher tRC/tBurst ratios.

Maximum Sustainable Bandwidth of 164.gzip Address Trace in Close-page Systems

Figure 7.2 shows the efficiency of the DRAM memory system subjected to the memory

request pattern of 164.gzip. However, the efficiency graph does not provide certain insight

into workload performance characteristics that can be observed when the data is plotted as a

Figure 7.2: 164.gzip bandwidth efficiency graph.

4
2
0 (FIFO)

Queue Depth Bank Count

Filled - 16 Banks
Outline - 8 Banks

Max Open Banks

Solid - 8 Banks
Dotted - 4 Banks

4 5 6 7 8 9 10
Ratio of Brow cycle time vs data burst duration: tRC / tBurst

0 0

20 20

40 40

60 60

80 80

100 100

B
an

dw
id

th
 E

ffi
ci

en
cy

: P
er

ce
nt

ag
e

for tFAW = tRC
maximum number
of open banks per
tRC period is 4.,
for tFAW = tRC/2, 8

162

function of sustained bandwidth. Figure 7.3 shows the same dataset as Figure 7.2, but in

place of the abstract tRC/tBurst ratio, Figure 7.3 assumes a specific system configuration

where tRC is 60ns, the data burst duration is 8 beats of data, and the width of the data bus is

8 bytes. Given specific DRAM device datarate and system configuration, the efficiency

graph shown in Figure 7.2 can be converted to a graph that shows the maximum sustainable

bandwidth of a given memory request sequence. In the bandwidth view, Figure 7.3 shows

that without transaction re-ordering, the maximum sustainable bandwidth of the DRAM

memory system increases very slowly with respect to increasing datarate of the memory

system. Figure 7.3 shows that for tFAW = tRC, the maximum number of open banks per

rolling tRC window is 4, and DRAM memory system can only sustain approximately 4 GB/s

of bandwidth for the 164.gzip address trace. However, in the case that tFAW = tRC/2, the

maximum number of open banks is 8, and the sustained bandwidth for 164.gzip continues to

increase until the datarate of the DRAM memory system reaches 1.07 Gbps. At the datarate

of 1.07 Gbps, the ratio of tRC/tBurst equals the maximum number of concurrently open

banks, and the maximum sustained bandwidth reaches a plateau for all test configuration.

Figure 7.3: 164.gzip maximum sustainable bandwidth: close-page.

4.3 5.3 6.4 7.5 8.5 Peak BW - GB/sec

tRC = 60ns

8B wide channel
Burst Length = 8

Same graph as
above, but applied
to specific system

datarate - Mbits/sec

4
2
0 (FIFO)

Queue Depth Bank Count

Filled - 16 Banks
Outline - 8 Banks

Max Open Banks

Solid - 8 Banks
Dotted - 4 Banks

9.6 10.7

Peak
 Band

widt
h

533.33 666.66 800 933.33 1066.7 1200 1333.3
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

M
ax

im
um

 S
us

ta
in

a
bl

e
B

a
nd

w
id

th
: G

B
/s

for tFAW = tRC
maximum number
of open banks per
tRC period is 4.,
for tFAW = tRC/2, 8

(8 byte wide channel)

DRAM device

163

Finally, Figures 7.2 and 7.3 both show the performance benefit from having 16 banks

compared to 8 banks in the DRAM memory system. Both Figures 7.2 and 7.3 show that at

low datarates, the performance benefit of having 16 banks is relatively small. However, the

performance benefit of 16 banks increases with increasing tRC/tBurst ratio.

 7.2.3 tFAW Limitations in Close-page Systems: All Workloads

In a close page memory system with a single rank of memory devices, tFAW limits the

number of banks that can be utilized in any rolling tRC time frame. The net effect is that tFAW

limits available bank bandwidth, and that impact is particularly damaging for close-page

memory systems operating with high ratios of tRC/tBurst. Figure 7.4 summarizes the impact

of tFAW by showing the respective average curves of the maximum sustainable bandwidth

for all address traces used in this study. The average curve of the respective maximum

sustainable bandwidth for all address traces with tFAW set equal to tRC is shown as a solid

black line, and the average curve for the case where tFAW set equal to half of tRC is shown as

a dashed red line. Figure 7.4 shows that larger tFAW limits DRAM bandwidth at all

Figure 7.4: tFAW impact: comparing tFAW = tRC versus tFAW = tRC/2.

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

0

1

2

3

4

5

6

7

8

9

M
ax

im
um

 S
us

ta
in

ab
le

 B
an

dw
id

th
: G

B
/s

average of all workloads tFAW = tRC

tRC = 60ns,

Peak Bandwidth

16 banks,
burst of eight

average of all workloads
tFAW = tRC/2

164

illustrated datarates, but the impact of tFAW can be deferred until higher datarates by

reducing tFAW. Figure 7.4 can thus be use as an illustration for memory system design

engineers to seek design alternatives to a close-page DRAM memory system with only one

rank of DRAM devices and high tFAW value.

 7.2.4 Bank Comparison: 8 versus 16: All Workloads

In all DRAM devices, a bank of DRAM arrays cannot be accessed while it is in the

process of being opened with a row activation command or closed with a precharge

command. In this sense, the row activation and precharge actions on a DRAM bank

represent the access overhead to that bank. This access overhead is particularly important in

a close-page memory system, since each column access incurs the access cost of the row

cycle time for a single bank. In modern DRAM devices, DRAM arrays are organized into

multiple banks to hide the row access overhead, and accesses to different banks can be

pipelined as long as there are enough banks in a DRAM system to service pending requests

to those banks.

Figure 7.5 shows the mean bandwidth improvement curves for the 8 banks to 16 banks

comparison for all address traces examined in this study with different system

configurations. Figure 7.5 illustrates two intriguing points about the importance of having

more banks in a high performance DRAM memory system. One intriguing point illustrated

by Figure 7.5 is that a system that supports moderate amounts of re-ordering shows a higher

degree of bandwidth improvement when compared to a system that supports a high degree

of memory transaction re-ordering in the range of relatively lower tRC/tBurst ratios. The

respective bandwidth improvement curves crossover and systems that support a high degree

of memory transaction re-ordering performs better when the tRC/tBurst ratio increases. One

165

explanation of the crossover phenomenon is that a sophisticated memory system with deep

re-ordering queues can readily extract available DRAM bandwidth, and as long as the

tRC/tBurst ratio is far less than the number of available banks, such a system can readily

extract near maximum bandwidth from a given DRAM memory system. In this case, the

highly sophisticated memory system would not benefit much from additional banks as long

as the ratio of tRC/tBurst is relatively low. In contrast, a memory system that performs only

moderate amounts of transaction re-ordering can readily make use of the additional banks at

lower tRC/tBurst ratios, thus showing a relatively higher degree of bandwidth improvement as

compared to the highly sophisticated memory system. However, as the tRC/tBurst ratio

continues to increase, the pressure to fully utilize available DRAM banks also increases. The

result is that at higher tRC/tBurst ratios, a highly intelligent memory system can benefit the

most from having additional banks.

A second intriguing point illustrated by Figure 7.5 is that as long as the DRAM device is

not constrained by tFAW, the benefit in the maximum sustainable bandwidth of having 16

Figure 7.5: Mean and median bandwidth improvements: 8 banks versus 16 banks.

tRC = 60ns
8B wide channel
Burst Length = 8

Symbol type

Queue Depth 4

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

4 5 6 7 8 9 10
0

5

10

15

20

Bank Overhead vs Payload Ratio: tRC/tBurst

4
2
0 (FIFO)

Queue Depth16 Banks improves performance
of system with moderate
re-ordering the most
(low tRC/tBurst ratio)

16 Banks improves performance of high re-ordering systems the most when
tRC/tBurst ratio increases.

tFAW = tRC /2
tFAW = tRC

Line style
B

an
d
w

id
th

 I
m

p
ro

ve
m

e
nt

: P
e
rc

en
ta

g
e

166

banks over 8 banks continues to increase with increasing tRC/tBurst ratio. In modern DRAM

devices with relatively constant tRC values and higher data rates in successive generations of

DRAM devices, the point illustrated by Figure 7.5 shows that as data rates increase, the

value of having more banks also increases. However, Figure 7.5 also illustrates that the

benefit of having more banks no longer increases with increasing tRC/tBurst ratio once tFAW

limits kick in to limit bank bandwidth.

Finally, Figure 7.5 shows that on average, maximum sustainable bandwidth for all

workloads increases by 2 to 6% in memory systems that do not re-order memory

transactions, and having 16 banks only minimally improves the sustainable bandwidth

characteristics for these systems. However, in memory systems that do re-order memory

transactions, having 16 banks improves the average bandwidth from 4% to 18%, depending

on specific system configurations and tRC/tBurst ratios.

 7.2.5 Burst Length Impact: SPEC Workloads

Aside from the examination of bank count and the impact of tFAW, the Request Access

Distance analytical framework can also be used to investigate interesting system

architecture issues. One issue that can be examined with the Request Access Distance

analytical framework is the cacheline size issue. In recent years, one strategy that has been

deployed by DRAM device design engineers to increase DRAM device datarate without

fundamentally changing DRAM circuits is to increase the internal prefetch bit width of the

DRAM device for each column access command. That is, in each successive generation of

DRAM devices, more and more bits are fetched in parallel internally in the DRAM device.

The wide parallel word is moved to the interface of the DRAM device and sent across a

167

narrow data bus at higher datarates. The internal N-bit fetch mechanism is commonly

referred to as the prefetch-n architecture, where N bits of data are fetched internally per bit

of external DRAM device data bus width. In these cases, the data bus is designed to operate

at N times the datarate of the DRAM core. For SDRAM devices, the prefetch width is 1. For

DDR SDRAM devices, the prefetch width is 2. For DDR2 SDRAM devices, the prefetch

width is 4. For DDR3 SDRAM devices, the prefetch width will be increased to 8.

The prefetch width of DRAM devices impacts system architecture in that it defines the

minimum data burst length in the DRAM memory system. The specification of a minimum

burst length in turn means that a minimum amount of data must be transferred for each

request. In the case that the length of the cacheline is smaller than the minimum amount of

data moved per column access command, the system design engineer may have no choice

but to increase the length of the cacheline. Fortunately, in the case where a given workload

makes use of a high percentage of data in each accessed cacheline, the longer cacheline and

longer data bursts from the DRAM memory system is more efficient in transporting data in

the memory system. However, in the case where a given workload only uses a small fraction

of each accessed cacheline, the transfer of longer cachelines becomes counter productive

and detrimental to the overall performance characteristic of the memory system.

Unfortunately, the complexity of the picture in regards to the burst length issue increases as

the ratio of tRC/tBurst changes, and tFAW limits the number of row activations per unit time.

That is, as the ratio of tRC/tBurst increases, the cost associated with moving a single cacheline

increases dramatically. In this case, the transport of long cachelines becomes more

economical, particularly in a close-page system.

168

Figure 7.6 shows the ratio of bandwidth throughput for two sets of address traces from

nine different workloads from the SPEC CPU 2000 benchmark suite. The first set of address

traces were captured with the cacheline size set to 128 bytes. The second set of address

traces were captured with the same set of workloads and the cacheline size set to 64 bytes.

In this study, the set of address traces captured with the cacheline size set to 128 bytes is

coupled with a DRAM memory system with a 16 byte wide data bus that transfers data in

bursts of eight beats, and the set of address traces captured with the cacheline size set to 64

bytes is coupled with the same DRAM memory system that provides data in bursts of four

beats. Then, the two sets of address traces are subjected to the Request Access Distance

bandwidth efficiency analysis. The respective bandwidth efficiencies are then converted into

runtimes by multiplying through the computed efficiency against the number of requests in

each trace. The ratios of the runtimes are then compares to each other in Figure 7.6. Figure

7.6 aims to illustrate the trade-off points between systems with different cacheline sizes

given different tRC/tBurst ratios and tFAW constraints of in a close-page memory system.

Figure 7.6: Ratio of request throughput: burst of four versus burst of eight.

0

1

2

3

64
B

 li
ne

 /
1

28
B

 li
ne

 th
ro

ug
hp

u
t r

at
io

tFAW = 30ns
tFAW = 20ns

tRC = 60ns,

No tFAWSPEC Benchmarks
533.33 666.66 800 933.33 1066.7 1200 1333.3

Datarate - Mbits/sec

181.ammp

255.vortex

(outlier: thrashes cache with long lines)

16 banks,
queue depth 4,

and 64B/128B

64 Byte lines &
burst of four
better

128 Byte lines &
burst of eight
better

recaptured
traces with
256K L2

lines, respectively

all others

176.gcc
& 197.parser

169

In Figure 7.6, the request throughput ratio of one means that the workload performs

equally well with a cacheline length of 128 bytes as it does with a cacheline length of 64

bytes. In the case that the request throughput ratio is greater than one, the system with the 64

byte cacheline performed better. Figure 7.6 shows that if the DRAM device is not

constrained by tFAW, then a processor with 64 byte cachelines and coupled to a DRAM

memory system with minimum burst duration of four beats of data has equal performance to

the processor with 128 byte cachelines and coupled to a DRAM memory system with

minimum burst duration of eight beats of data in five out of nine SPEC workloads.

Specifically, 164.gzip, 172.mgrid, 178.galgel, 179.art, and 183.equake, collectively labelled

as ‘all others” in Figure 7.6, show no performance advantage from shorter cachelines and

shorter DRAM transfers. In contrast, Figure 7.6 shows that the address trace from

181.ammp performed much better with shorter cachelines due to the fact that with longer

cachelines, fewer sets of cachelines are available to the application, and 181.ammp with 128

byte cacheline thrashed the small 256 KB L2 cache. In this scenario, the memory system

with 64 byte cachelines is unquestionably better. In contrast, address traces from 176,gcc,

197.parser and 255.vortex also show significant performance advantage for the system with

shorter cachelines and shorter DRAM transfers.

Finally, for the close-page memory system with 64 byte cachelines and 4-beat DRAM

data burst, tFAW limitations begin to constrain the top end bandwidth available in the DRAM

memory system. As a result, tFAW limitations unambiguously swing the performance

advantage to systems with longer cachelines and longer DRAM data transfers as the data

rate of the DRAM memory system increases.

170

 7.2.6 Queue Depth Analysis

Modern high performance DRAM memory systems utilize a range of techniques for

performance optimization. In this study of a close-page memory system, a unique queuing

structure was used to facilitate the implementation of a round-robin request re-ordering

mechanism and extract parallelism from available DRAM banks. The intent of the re-

ordering mechanism and the construction of the queuing structure in this study is not to

examine the benefit of the specific re-ordering mechanism described. Rather, the intent of

the re-ordering mechanism is to provide a basis for comparing the performance of DRAM

memory systems with differing levels of sophistication in the memory controller.

Figure 7.7 summarizes the performance characteristics of all workloads examined in this

study when subjected to differing re-ordering assumptions. The average curve of all

workloads subjected to a DRAM memory system that does not re-order memory requests

are set to black in color, and the average curve of workloads subjected to a DRAM memory

system that aggressively re-orders memory transactions are set to red in color.

Figure 7.7: Sustainable bandwidth: re-ordering versus FIFO.

tRC = 60ns

8B wide channel
Burst Length = 8

4.3 5.3 6.4 7.5 8.5 Peak BW - GB/sec
Datarate - Mbits/sec

9.6 10.7

Peak
 Bandw

idth

533.33 666.66 800 933.33 1066.7 1200 1333.3
0

1

2

3

4

5

6

7

8

9

M
ax

im
um

 S
us

ta
in

ab
le

 B
an

dw
id

th
: G

B
/s

Legend

Q Depth 4
Q Depth 0: FIFO

All Workloads Average:
Q Depth 4

All Workloads Average:
Q Depth 0

tFAW = 30ns

limited by tFAW

171

Figure 7.7 illustrates that a close-page DRAM memory system that does not re-order

memory requests is limited by tRC row cycle times. In such a case, the performance of the

DRAM memory system increases only minutely with increasing datarate. Figure 7.7 also

illustrates the point that with aggressive re-ordering, the tRC row cycle time constraint can be

alleviated, and such a DRAM memory system can sustain much higher DRAM bandwidth

as a DRAM memory system that does not re-order memory transactions. Finally, as the

datarate of the DRAM device climbs, tFAW begins to constrain available bandwidth, and

once tFAW limitation kicks in, no further bandwidth improvement can be observed with

increasing datarate.

172

 7.3 Open-page System Performance Analysis

In this section, a study that compares slightly different sets of system configuration and

timing parameters than the close-page memory system study is used to examine their

respective impact on an open-page memory system. Specifically, the performance trade-off

of a DRAM device with 8 banks versus 16 banks, a system configured with 1 rank or two

ranks of DRAM devices, tFAW limitations with tFAW set equal to tRC and tRC/2, and different

rank-to-rank switching time overheads are compared in this study.

 7.3.1 System Configuration Assumptions

Figure 7.8 shows the system configuration used in the open-page memory system study.

Figure 7.8 shows that the analytical framework accepts transaction requests from a trace

input file, maps the request into the memory system, then sends the request to the Request

Access Distance computation engine in strict ordering. The system is configured with a

single channel and a 1 or 2 ranks of memory, with 16384 rows per bank and 1024 columns

per row. The number of banks can be set to 8 or 16 depending on the configuration.

Figure 7.8: Open-page studies system configuration .

0x1C
27F

E
2C

0x04E
E

F
16C

0x1C
27F

E
30

0x1900E
F

10
0x249B

1154
0x1C

27F
E

34

request stream

DRAM address mapping

ch
an

n
el 0

b
an

k 2
ran

k 0
ro

w
 0x7E

2
co

l 0x8E
ch

an
n

el 0
b

an
k 5

ran
k 0

ro
w

 0x19C
co

l 0x60

row:column:bank:offset

1 channel, 1 or 2 rank, 8 or 16 banks

16384 rows x 1024 columns

FIFO

trace based

data data data
DRAM protocol tRC or tFAW

overhead constraint

Open Page Policy
Read Timing != Write Timing
No Refresh
DRAM protocol overhead examined

Simplifying Assumptions

173

DRAM protocol overhead

For the open-page memory system study, a one rank memory system is compared to a

two rank memory system. Also, the memory controller is assumed to perform no transaction

request re-ordering. As a result, the rank-to-rank switching overhead may be significant, and

read-write turnaround overheads may also impact the maximum sustainable bandwidth to a

non-trivial degree. As a result, the open-page memory systems study is designed to fully

accounts for the effects of the DRAM protocol, and the rank-to-rank turn around time, tDQS,

can be varied from 0 to 3 clock cycles (0~6 beats). The other timing parameters used, but not

varied independently in this study are: tCWD, set to 3 clock cycles, tCMD, set to 1 clock cycle,

tWR, set to 4 clock cycles, tBurst, set to 4 clock cycles, and tCAS, set to 4 clock cycles. Finally,

the performance impact of the refresh overhead, although non-trivial, is also ignored in the

open-page memory systems study due to the belief that the effects of effect can be factored

out in the comparison of two system configurations driven with the same workload, with the

same refresh cycle times and the same number of rows per bank to be refreshed.

 7.3.2 Address Mapping

In the open-page study, the address mapping scheme is designed so that consecutive

cacheline requests are directed to the same row of the same bank, and the rank ID is mapped

immediately above the range of the bank ID to take advantage of parallelism between

different ranks. Figure 7.9 shows the address mapping scheme used in the open-page study.

Figure 7.9: Open-page address mapping scheme.
Rank IDRow ID Bank ID Column ID

Physical Address Space
LSBMSB

174

 7.3.3 Average of All Workloads

Figure 7.10 shows the maximum sustainable bandwidth averaged across all workloads used in

the study. Figure 7.10 compares 4 different system configurations: a 1 rank 8 bank (1R8B) memory

system, a 1 rank 16 bank (1R16B) memory system. a 2 rank 8 bank (2R8B) memory system, and a 2

rank 16 bank memory system. The system configuration is varied with the timing parameter tFAW set

equal to tRC and tRC/2, and tDQS varied between 0 clock cycles and 3 clock cycles.

Figure 7.10 shows that for the open-page memory system, the high-degree of access locality

provided by the single threaded workloads enable it to achieve high bandwidth efficiency without the

benefit of sophisticated transaction request re-ordering mechanism.

Figure 7.10: Maximum bandwidth averages: all workloads.

Filled - tFAW = tRC/2

Outline - tFAW = tRC

tDQS
 solid line

Dashes
1 rank 16 banks

1 rank 8 banks

system configuration

2 ranks 8 banks
3 cycles (6 beats)

tFAW

0 cycles

2 ranks of 8 banks perform
same as 1 rank 16 banks if
tDQS = 0.

2 ranks of 8 banks perform
worse than 1 rank 16 banks
if tDQS = 3 clocks (6 beats).

bandwidth gap between
1 rank of 16 banks and
2 ranks of 8 banks are
minimal, even with

2 ranks of 8 banks with
separate tFAW limits on
each rank does not alleviate
tFAW impact.

tDQS minutely impacts
performance even with
only 1 rank of memory
due to R/W turnarounds

tDQS = 3 clks

2 ranks 16 banks

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

0

1

2

3

4

5

6

7

8

9
M

ax
im

um
 S

us
ta

in
ab

le
 B

an
dw

id
th

: G
B

/s

tRC = 60ns, burst of eight, 8B wide channel

175

Figure 7.10 also shows the following characteristics for the sustainable bandwidth graph of the

average of all workloads.

• The address mapping scheme effectively utilizes parallelism afforded by the multiple ranks,

and the performance of a 2R8B memory system is equal to that of a 1R16B memory system.

• The bandwidth degradation suffered by the 2R8B memory system compared to the 1R16B

memory system is relatively small, even with the rank-to-rank switching overhead of tDQS

set to 3 clock cycles (6 beats). The reason for this minimal impact is that the access locality

of the single-threaded workloads tended to keep accesses to within a given rank, and rank-

to-rank switching time penalties are relatively minor or largely hidden by row-cycle time

impacts.

• Interestingly, the difference of tDQS set to 3 clock cycles also impacted the sustainable

bandwidth of single-rank memory systems due to the fact that tDQS impacts read-write

turnaround times.

• The four bank activation window constraint, tFAW, negatively impacts the sustainable

bandwidth characteristic of a 2 rank memory system just as it does for a 1 rank memory

system. This surprising result can be explained with the observation that the address

mapping scheme, optimized to obtain bank parallelism for the open-page row buffer

management policy, tended to direct accesses to the same bank and the same rank. The result

is that bank conflicts are also directed onto the same rank, and multiple row cycles tended to

congregate in a given rank of memory, rather than distributed across two different ranks of

memory.

• The impact of tDQS is relatively constant across different datarates for systems that are not

impacted by tFAW. A close examination of the bandwidth curves for the 2R16B system

reveals that in systems impacted by tFAW limitations, the impact of tDQS is mitigated to some

extent. That is, idle cycles inserted into the memory system due to rank-to-rank switching

times also contributes to the idle time needed by the DRAM device to recover between

consecutive row-accesses. In that sense, the same idle cycles can be used for multiple

purposes, and the impact of these respective constraints are not additive.

176

 7.3.4 Workload Characteristics: 164.gzip

Figure 7.11 shows the maximum sustainable bandwidth characteristic of 164.gzip in open-page

memory systems. Figure 7.11 shows that 164.gzip is an outlier in the sense that the workload has

high degree of access locality, and most request are kept within the same rank of memory systems. In

the case that DRAM accesses are made to a different rank, a bank conflict also follows. As a result,

the impact of tDQS is not readily observable in any system configuration, and a 2 rank, 8 bank system

configuration performance identically to a 1R16B memory system. Also, the number bank conflicts

are relatively few and the impact of tFAW is minimal and not observable until datarates reach

significantly above 1 Gbps. Finally, the maximum sustainable bandwidth for 164.gzip scales nicely

with the total number of banks in the memory system, and the bandwidth advantage of a 2R16B

system over that of a 1 rank 16 bank system is nearly as great as the bandwidth advantage of the

1R16B system over that of a 1R8B system.

Figure 7.11: 164.gzip maximum sustainable bandwidth: open-page.

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

0

1

2

3

4

5

6

7

8

9

M
ax

im
um

 S
us

ta
in

ab
le

 B
an

dw
id

th
: G

B
/s

tRC = 60ns, burst of eight, 8B wide channel

tFAW impact minimal

2 ranks of 8 banks perform
same as 1 rank 16 banks

tDQS = 3 clocks (6 beats)
no discernible impact
on bandwidth

1 rank of 16 banks and
2 ranks of 8 banks
performs similarly

Filled - tFAW = tRC/2

Outline - tFAW = tRC

tDQS
 solid line

Dashes
1 rank 16 banks

1 rank 8 banks

system configuration

2 ranks 8 banks
3 cycles (6 beats)

tFAW

0 cycles
2 ranks 16 banks

177

 7.3.5 Workload Characteristics: 255.vortex

Figure 7.12 shows the maximum sustainable bandwidth characteristic of 255.vortex in open-

page memory systems. Figure 7.12 shows that similar to 164.gzip, 255.vortex is an outlier from the

set of average curves for all workloads shown in Figure 7.10. However, Figure 7.12 shows that in

contrast to 164.gzip, 255.vortex is an outlier that is not only sensitive to the system configuration in

terms of the number of ranks and banks, but it is also extremely sensitive to the impacts of tFAW and

tDQS. Figure 7.12 also shows that 255.vortex has a relatively lower degree of access locality, and

fewer column accesses are made to the same row than other workloads, resulting in a relatively

higher rate of bank conflicts. The bank conflicts also tended to be clustered to the same rank of

DRAM devices, even in 2 rank system configurations. The result is that the tFAW bank activation

constraint greatly impacted the maximum bandwidth of the DRAM memory system in all system

configurations.

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

0

1

2

3

4

5

6

7

8

9

M
ax

im
um

 S
us

ta
in

ab
le

 B
an

dw
id

th
: G

B
/s

Figure 7.12: 255.vortex maximum sustainable bandwidth: open-page.

tRC = 60ns, burst of eight, 8B wide channel

Filled - tFAW = tRC/2

Outline - tFAW = tRC

tDQS
 solid line

Dashes
1 rank 16 banks

1 rank 8 banks

system configuration

2 ranks 8 banks
3 cycles (6 beats)

tFAW

0 cycles
2 ranks 16 banks

2 ranks of 8 banks perform
same as 1 rank 16 banks if
tFAW = tRC/2 & tDQS = 0.

2 ranks of 8 banks perform
worse than 1 rank 16 banks
if tDQS = 3 clocks (6 beats).

Performance gap between
1 rank of 16 banks and
2 ranks of 8 banks closes
with higher data rates.
For systems limited by
tFAW,, gap closes faster

2 ranks of 8 banks with
separate tFAW limits on
each rank does not alleviate
tFAW impact much.

tDQS minutely impacts
performance even with
only 1 rank of memory
due to R/W turnarounds

2 ranks of 16 banks have
significant bandwidth
advantage over all others.

178

To summarize, Figure 7.12 shows the following characteristics for the sustainable bandwidth

characteristics of 255.vortex.

• 255.vortex is greatly impacted by the rank-to-rank switching overhead, tDQS, in system

configurations with 2 ranks of memory. The overhead is somewhat alleviated at higher data

rates, as other overheads become more significant. At higher datarates, the bandwidth

impact of tDQS remains, but the effects become less discernible as an independent source of

hindrance to data transport in a DRAM memory system.

• The rank-to-rank switching overhead, tDQS, also impacts the maximum sustainable

bandwidth characteristic of single rank DRAM memory systems due to its impact on the

read-write turnaround time.

• Like 164.gzip, 255.vortex also benefits greatly from a system configuration with 2 ranks of

devices, each with 16 banks internally.

• Unlike 164.gzip, 255.vortex is extremely sensitive to tFAW, and the two rank memory system

organization only minimally alleviate the impact of tFAW. Figure 7.12 shows that at high

datarates, a tFAW limited 2R8B memory system does achieve higher bandwidth utilization

compared to a similar tFAW limited 1R16B memory system despite the impact of a 3 cycle

tDQS rank-to-rank switching overhead.

• Finally, the impact of tFAW on 255.vortex is reminiscent to that of all benchmarks in a close-

page memory system where the simulation assumption of tFAW = tRC/2 completely limits

sustainable bandwidth for all system configurations beyond a certain datarate. In this case,

all tFAW limited memory systems reach a plateau in terms of the maximum sustainable

bandwidth at roughly 800 Mbps. At datarates higher than 800 Mbps, no further

improvements in maximum sustainable bandwidth can be observed for 255.vortex in all

tFAW limited memory systems.

179

 7.3.6 tFAW Limitations in Open-page System: All Workloads

Figure 7.4 shows that tFAW is particularly detrimental to the sustainable bandwidth

characteristic for close-page memory systems operating with high ratios of tRC/tBurst. Figure

7.13 shows that tFAW can similarly impact an open-page memory system, although to a

lesser degree. Figure 7.13 shows the impact of tFAW in a 1 rank 16 bank memory system in

terms of the percentage of bandwidth differential between the case where tFAW = tRC and the

case where tFAW = tRC/2. The bandwidth advantage curves for different workloads used in

the simulation are drawn separate lines in Figure 7.13, illustrating the wide variance in

workload sensitivity to the limitation presented by a restrictive tFAW parameter. One

workload worthy of note is the previously examined 255.vortex, where bandwidth impact

for the case where tFAW = tRC can impact bandwidth by upwards of 40~50%. However, on

average, a workload running on a memory system where tFAW = tRC suffers a bandwidth

loss on the order of 0~12% compared to the same system with a more restrictive tFAW value

where tFAW = tRC/2.

Figure 7.13: Comparing tFAW = tRC/2 versus tFAW = tRC in open-page system.

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

tRC = 60ns, 1 rank, 16 banks, burst of eight

tFAW = 30ns vs. tFAW = 60ns

0

20

40

B
a
nd

w
id

th
 Im

p
ro

ve
m

e
nt

 P
e
rc

en
ta

g
e

outlier: 255.vortex

average performance delta 0~12%

180

 7.3.7 Configuration Comparison: 1R8B vs. 2R8B vs. 1R16B vs. 2R16B

Figure 7.14 shows three sets of cross comparisons for the sustainable bandwidth characteristics

of four different system configurations: 1R16B versus 1R8B, 2R8B versus 1R8B, and 2R16B versus

2R8B. Figure 7.14 shows that the bandwidth advantage of a 2R8B memory system over that of a

1R8B memory system is roughly comparable as the bandwidth advantage of a 1R16B memory

system over that of a 1R8B memory system. Figure 7.14 also illustrates the point that in case of a

memory system configuration with relatively lower datarates and high rank-to-rank switching time

penalty, the 1R16B memory system has some advantage over that of a 2R8B memory system.

However, as data rate increases, the impact of tFAW becomes more important. In such a case, the

2R8B configuration begins to outperform the 1R16B configuration, albeit minutely. Finally, the

bandwidth advantage of a 2R16B memory system over that of a 1R16B memory system is roughly

half of the bandwidth advantage presented by the 1R16B memory system over that of the 1R8B

memory system.

Figure 7.14: All workloads mean sustainable bandwidth: cross comparisons.

Filled - tFAW = tRC/2

Outline - tFAW = tRC

tRTRS

 solid line

Dashes

1 ra
nk 1

6 banks
vs

1 ra
nk 8

 banks

2 ra
nk 8

 banks
vs

1 ra
nk 8

 banks

3 cycles (6 beats)

tFAW

0 cycles

2 rank 8 banks nearly as good as 1 rank 16 banks.
(Assume memory system maps rank ID to obtain bank parallelism)
(High performance embedded systems only)

2 rank 16 banks vs 2 rank 8 banks

0

5

10

15

20

25

R
el

at
iv

e
B

an
dw

id
th

 Im
pr

ov
em

en
t:

P
er

ce
nt

ag
e

~11%

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

181

Mean Bandwidth Improvements: Open-page and Close-page.

Figure 7.15 shows the mean bandwidth improvement curves for the 1R16B to 1R8B comparison

for the open-page memory system and the close-page memory system with per-bank re-ordering

queue depth of 4. Figure 7.15 shows that despite the differences in the row buffer management

policy and the differences in the re-ordering mechanism, the bandwidth advantage of a 1R16B

memory system over that of a 1R8B memory system correlates nicely between the open-page

memory system and the close-page memory system. In both cases, the bandwidth advantage of

having more banks in the DRAM device scales at roughly the same rate with respect to increasing

datarate and constant row cycle time. In both memory systems, the bandwidth advantage of the

1R16B memory system over that of the 1R8B memory system reaches approximately 18% at 1.067

Gbps.

Figure 7.15: Mean bandwidth improvements: close-page and open-page.

tRC = 60ns
8B wide channel
Burst Length = 8

Symbol type

Queue Depth 4

533.33 666.66 800 933.33 1066.7 1200 1333.3
Datarate - Mbits/sec

4 5 6 7 8 9 10
0

5

10

15

20

close page

open-page

Bank Overhead vs Payload Ratio: tRC/tBurst

1R16B vs 1R8B
2R8B vs 1R8B

Queue Depth

tDQS = 0 Clks
tDQS = 3 Clks

Line color

Line style

B
a
nd

w
id

th
 I
m

pr
o
ve

m
e
n
t:

P
er

ce
n
ta

ge

Filled - tFAW = tRC/2

Outline - tFAW = tRC

1 ra
nk 1

6 banks
vs 1 ra

nk 8
 banks

: open-page

2 ra
nk 8

 banks
vs

1 ra
nk 8 banks : o

pen-page

tFAW

1 ra
nk 1

6 banks vs 1
 ra

nk 8
 banks

: close-page

re-order q
ueue depth 4

tFAW = tRC, tFAW limited.

tFAW = tRC/2,
tFAW limited.

182

 7.4 DRAM Performance Analysis Summary

An extensive study of DRAM memory system performance characteristics is performed

in this chapter. As examined in this work, the performance of DRAM memory systems

depends on workload-specific characteristics. However, some observations about the

performance of DRAM memory systems can be made in general:

• The benefit of having a 16 bank device over an 8 bank device in a one rank memory system

configuration increases with datarate. The performance benefit increases to approximately

18% at 1 Gbps for both open-page as well as close-page memory systems. While some

workloads may only see minimal benefits, others will benefit greatly. Embedded systems

that are limited in the number of workloads should examine the bank count issue carefully.

• Single threaded workloads have high degrees of access locality, and sustainable bandwidth

characteristics of an open-page memory system for a single threaded workload is similar to

that of a close-page memory system that performs relatively sophisticated transaction re-

ordering.

• The increase in DRAM internal bit-prefetch depth means a loss of randomness in memory

access and an increase in minimum burst length for each access. The increase in minimum

burst length may dictate the design of longer cachelines in some systems, depending on

system configuration. For some embedded processors with relatively small cache sizes, the

increase in data burst length may have a significant performance impact, particularly if the

application does not use the additional data moved with longer burst lengths, and the longer

burst lengths lead to cache thrashing.

• The tFAW activation window constraint will greatly limit close-page memory systems

without sophisticated re-ordering mechanisms. The impact of tFAW is relatively less in open-

page memory systems, but some workloads, such as 255.vortex, exhibit relatively less

spatial locality, and their performance characteristics are similar to that for all workloads in

close-page memory systems. In this study, even a two-rank memory system did not alleviate

the impact of tFAW on the memory system. Consequently, a DRAM scheduling algorithm

that takes the impact of tFAW into consideration is needed for the next generation DRAM

controller.

183

CHAPTER 8 Power-Constrained DDRx
Scheduling Algorithm

 8.1 Introduction

The primary goal in the design of high performance memory systems is to obtain a

design that can obtain maximum bandwidth with low request access latencies. However,

constraints such as data bus synchronization overhead in DDRx1 SDRAM memory systems

and mechanisms that limit peak power in DDR2 and DDR3 memory systems will

significantly impact sustainable bandwidth in high performance DDRx SDRAM memory

systems. Moreover, while DRAM device datarate increases with each new generation of

DDRx SDRAM devices at the rate of 100% every three years, DRAM row cycle times are

only decreasing at a rate of 7% per year[22]. Collectively, these trends increase the difficulty

of achieving maximum sustainable bandwidth from each successive generation of higher

datarate DDRx SDRAM devices by increasing the ratio of DRAM row cycle time to data

transport time. Previous studies have recognized and examined the importance of DRAM

access scheduling but do not address the issue of data bus synchronization and power

limiting constraints in DDRx SDRAM memory systems[34,37,42,43,48]. Recent work by

Rixner examines the impact of data bus synchronization overhead and row-to-row activation

time, but does not address the four-bank-activation window limitation of tFAW, nor specific

algorithms to deal with the conflicting requirements of these different overheads.[46] To

design a high performance DDRx SDRAM memory controller, the issue of memory access

1. DDRx denotes DDR, DDR2, DDR3 and future DDR SDRAM variant memory systems.

184

scheduling is re-visited in this chapter to address the constraints imposed on DDR2 and

DDR3 SDRAM memory systems by the data bus synchronization overhead of tDQS and

peak power limiting timing parameters tFAW and tRRD. In this work, we propose a memory

transaction and DRAM command scheduling algorithm that enables a two rank DDRx

SDRAM memory system to achieve optimal bandwidth utilization while fully respecting the

timing constraints imposed on the DDRx SDRAM memory system by tFAW, tRRD and tDQS.

The proposed DRAM transaction and command ordering algorithm selects pending memory

transactions based on DRAM bank and rank addresses, then sequences the DRAM row

activation and column access commands in a specific ordering to minimize the bandwidth

impact imposed on the DRAM memory system.

In a 1 Gbit DDR3 SDRAM memory system examined in this study, the proposed

DRAM transaction and command ordering algorithm increases the maximum sustainable

bandwidth by 41% above a moderately intelligent memory system that implements a round

robin bank rotation scheduling algorithm. Simulations show that the aggressive DRAM

transaction and command ordering algorithm increases the performance of bandwidth

intensive workloads by roughly 40% when compared against a round-robin bank-rotation

scheduling algorithm that does not account for the bandwidth impact of tFAW, tRRD and

tDQS. In this chapter, the proposed DRAM transaction and command scheduling algorithm

is described, and the maximum sustainable bandwidth of the proposed algorithm is

illustrated. The simulation framework and the workloads used in this study as well as

implementation requirements that enable the unique rank hopping scheduling algorithm is

also described in detail. Finally, the results and analysis and impact of the proposed

scheduling algorithm on scaling trends is discussed in the concluding section.

185

 8.2 Background Information

 8.2.1 Row Buffer Management Policy

Previous trace based studies have shown that single threaded-workloads benefit well

from a open-page row buffer management policy and that tFAW impacts are relatively minor

compared to that of a close-page memory system. However, the impact of tFAW grows worse

with relatively constant row cycle times and increasing datarates in both open-page and

close-page systems and tFAW greatly limits the performance of close-page memory systems.

In this study, the goal is to examine a scheduling algorithm that facilitates the extraction of

maximum bandwidth in tFAW limited, close-page memory systems. The rationale for the

focus on close-page memory systems in this work is that the impact of tFAW on close-page

memory systems is immediate and extreme. As a result, the scheduling algorithm examined

in this work is specifically targeted for close-page memory systems to alleviate the impact of

the tFAW bank activation window in DDRx SDRAM memory systems. The extension of the

algorithm and study to the less-affected open-page memory systems is deferred to a future

study.

186

 8.2.2 Timing Parameters

The timing parameters used in this part of the study and the projected values for a 1

Gbps (500 Mhz) DDR3 SDRAM memory system are summarized in table 8.11.

 8.2.3 Bank Activation Window Limited Memory System

To ensure that a commodity DDRx SDRAM device does not exceed a specified

maximum power draw, timing parameters have been introduced to limit the power

consumption characteristics. In DDRx SDRAM devices, tRRD and tFAW have been defined

to specify the minimum time periods for row (bank) activations on a given DRAM device.

The acronym RRD stands for row-to-row activation delay, and FAW stands for four bank

1. 1 Gbps DDR3 SDRAM devices are currently under development at the time of this study. The timing parameters
illustrated in table 8.1 are projected from 667 Mbps (333 MHz, dual data rate) DDR2 SDRAM devices subjected to
current scaling trends in DRAM devices.

Parameter Description Value

tBurst
Data Burst duration. Time period that data burst occupies on the data bus. Typically 4 or 8
beats of data. In DDR SDRAM, 4 beats of data occupies 2 full cycles. Also known as tBL.

8 ns

tCAS
Column Access Strobe latency. Time interval between column access command and data
return by DRAM device(s). Also known as tCL.

10 ns

tCMD
Command transport duration. Time period that a command occupies on the command bus
as it is transported from the DRAM controller to the DRAM devices.

2 ns

tCWD
Column Write Delay. Time interval between issuance of column write command and
placement of data on data bus by the DRAM controller.

8 ns

tDQS
Data Strobe turnaround. Used in DDR and DDR2 SDRAM memory systems. Not used in
SDRAM or Direct RDRAM memory systems. 1 full cycle in DDR SDRAM systems.

4 ns

tFAW
Four bank Activation Window. A rolling time frame in which a maximum of four bank
activation may be engaged. Limits peak current profile.

48 ns

tRAS
Row Access Strobe. Time interval between row access command and data restoration in
DRAM array. After tRAS, DRAM bank could be precharged.

40 ns

tRC
Row Cycle. Time interval between accesses to different rows in same bank
tRC = tRAS + tRP

50 ns

tRCD
Row to Column command Delay. Time interval between row access command and data
ready at sense amplifiers.

10 ns

tRRD
Row activation to Row activation Delay. Minimum time interval between two row activation
commands to same DRAM device. Limits peak current profile.

10 ns

tRP
Row Precharge. Time interval that it takes for a DRAM array to be precharged and readied
for another row access.

10 ns

tWR
Write Recovery time. Minimum time interval between end of write data burst and the start
of a precharge command. Allows sense amplifiers to restore data to cells

10 ns

TABLE 8.1: Summary of timing parameters

187

activation window. The timing parameters tRRD and tFAW are specified in terms of

nanoseconds, and Figure 8.1 shows that by specifying tRDD and tFAW in terms of

nanoseconds instead of the number of cycles, the minimum spacing between row activation

is maintained regardless of operating datarates: on a given DRAM device, row activations

must be scheduled at least tRRD apart from each other, and within any tFAW time period, at

most four row activations can be engaged1. For close-page memory systems, tRRD and tFAW

effectively limit the maximum sustainable bandwidth to each rank of memory, irrespective

of the device datarate. In this case, the maximum bandwidth efficiency of a single rank, tFAW

limited close-page DRAM memory system is (4 * tBurst) / tFAW.

 8.2.4 Consecutive Commands to Different Ranks: Data Bus Synchronization

In all modern DRAM memory systems, consecutive column-read commands to the

same open row of the same bank or to different open rows of different banks of the same

rank can be issued and pipelined consecutively. However, consecutive column-read

commands to different ranks of memory cannot be pipelined consecutively in DDR, DDR2

1. Precharge commands are not shown in the heavily pipelined timing diagrams of Figures 8.1, 8.2, and 8.3 in order to
simplify the timing diagrams. In these Figures, the precharge command is assumed to be issued separately or via a
column-read/write and precharge command. Since command bandwidth is not a constraint for the memory system
examined in this study, leaving the illustration of the precharge command out of the timing diagrams does not impact
statements made in the study. The timing and usage of the precharge command is accurately simulated in the
simulation framework.

Figure 8.1: Maximum of Four Row Activations in any tFAW time frame.
timecu

rr
en

t
d

ra
w

ab

st
ra

ct
 u

n
its

tRRD tFAW

cmd

data

Row Activation Command Column Read Command

internal cmd

R C C C R RRR CCCC C

C C CC CC C

RR R

CR

data data data data data data data

overlapping
current
profiles

188

and DDR3 SDRAM memory systems due to insertion of idle cycles on the data bus to

ensure proper transfer of control of the source synchronous data strobe signals from one

rank of DRAM devices to another1. In this study, a 2 cycle, 4 ns switching time is specified

for a DDR3 SDRAM memory system that operates at 1 Gbps (500 MHz).

Figure 8.2 illustrates the timing and command sequence of consecutive close-page read

cycles to alternate ranks of DRAM devices. In Figure 8.2, each DRAM access is translated

to a row-activation command and a column-access command. Figure 8.2 illustrates that the

minimum spacing of tDQS, the read-write data-strobe re-synchronization time, is needed in

between each pair of column-read commands to allow one rank of DRAM devices to release

control of data strobe synchronization signals and for a different rank of DRAM devices to

gain control of them. In this case, each column-read access incurs the rank switching

overhead of tDQS, and the maximum sustainable bandwidth efficiency of a close-page

memory system that alternates memory requests between two different ranks is tBurst / (tBurst

+ tDQS). The compound effect of tDQS and tFAW is that neither a one-rank-at-a-time nor a

simple alternate-rank hopping algorithm can sustain high bandwidth with ideally pipelined

DRAM commands. In these cases, either the peak power limiting timing parameters or the

rank-to-rank switching time will significantly impact maximum sustainable bandwidth in

traditionally designed DDRx SDRAM memory systems.

1. Future high frequency memory systems will be limited to at most two ranks of memory on a multidrop bus.

Figure 8.2: Consecutive Read Command to Alternate Ranks in DDR3 SDRAM (@ 1 Gbps).

Row Activation Command to Rank 0

Column Read Command to Rank 0

Row Activation Command to Rank 1

Column Read Command to Rank 1

Clock

Cmd Bus

Internal Cmd

Data Bus
tDQS

C CC

C

CR RR R

C C CC C

C CC C

C

R R RR

R

C

R

C

data data data data data data data data

189

Figure 8.3: : Paired Row and Column Command Scheduling Algorithm @ 1 Gbps.

tCL = 10 ns = 5 cycles = 10 beats
tRCD = 10 ns = 5 cycles = 10 beats
tRP = 10 ns = 5 cycles = 10 beats
tRRD = 10 ns = 5 cycles = 10 beats

tRAS = 40 ns = 20 cycles = 40 beats
tburst = 8 ns = 4 cycles = 8 beats
tFAW = 50 ns = 25 cycles = 50 beats
tDQS = 4 ns = 2 cycles = 4 beats

Row Activation Command to Rank 0

Column Read/Write Command to Rank 0

Row Activation Command to Rank 1

Column Read/Write Command to Rank 1

R

C

R

C

Row Act Cmd Rank 1

tRRD tFAW

Col Cmd Rank 1

Row Act Cmd Rank 0

Col Cmd Rank 0

R C R CR C

R

CR C

R

CR

C

R

C

R

C

R C

R

C

R C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

R

C

C R RC R C

R

C

R

C

R

C

RC

R

C

R

C R

C

R

C R

C

R

C

R

CRC

R

C

R

C

R

C

clock

command bus

data bus

constructing
command
sequences
in each bank

190

 8.3 Proposed Rank Hopping Scheduling Algorithm

In the previous section, respective maximum sustainable bandwidth efficiencies for a

single rank DDRx memory system and a dual rank DDRx memory system that alternates

memory accesses between the two ranks of memory were computed as (4 * tBurst) / tFAW and

tBurst / (tBurst + tDQS), respectively. Substituting in the projected values for timing

parameters for the 1 Gbps DDR3 SDRAM device specified in table 8.1, the maximum

bandwidth efficiencies is 66.7% for both cases1. In contrast, the proposed DRAM

transaction and command scheduling algorithm amortizes the rank switching overhead and

increases the maximum bandwidth efficiency for a dual rank memory system to B * tBurst /

(B * tBurst + tDQS), where B denotes the number of banks in a given rank of DRAM devices

in this study2. Substituting in the projected values for timing parameters as specified in table

8.1, the proposed scheduling algorithm increases the maximum sustainable bandwidth

efficiency from 66.7% to 94%. The maximum bandwidth efficiency of 94% represents

increases of 41% of additional bandwidth over the maximum bandwidth efficiencies of the

baseline memory systems.

The key to increasing the bandwidth efficiency of a two-rank DDRx SDRAM memory

system can be found through a fundamental examination of the causes of the respective

constraints imposed on a DDRx SDRAM memory system by tDQS, tRRD and tFAW. In a high

frequency DDRx SDRAM memory system with a single rank of memory, row activations

cannot be scheduled closely to each another, and a dual rank DDRx SDRAM memory

1. Without accounting for refresh. DRAM refresh cycles are assumed as a constant bandwidth overhead for all systems
compared in this study. As a constant overhead in all systems, it can be factored out and safely ignored as a
simplifying assumption.

2. DDR2 devices larger than 1 Gbit and all DDR3 devices have 8 banks internally. B is equal to 8 for these devices. The
bank count may be further increased in future DDRx devices

191

system that alternates read cycles between different ranks incurs the rank switching

overhead of tDQS for each access. To minimize the bandwidth impact of tDQS, tRRD and

tFAW, a high performance DDRx SDRAM memory system must schedule row accesses to

alternate ranks of memory to avoid the constraints of tRRD and tFAW. In contrast, to minimize

the bandwidth impact of tDQS, a high performance DDRx SDRAM memory system must

group schedule column-read commands to the same rank of memory for as long as possible.

The solution to the bandwidth constraints imposed by tDQS, tRRD and tFAW in a high datarate

DDRx SDRAM memory system is then a scheduling algorithm that de-couples row access

commands from column access commands, distributes row-access commands to different

ranks of memory to avoid incurring the constraints of tRRD and tFAW, and group schedules

column-read commands to a given rank of memory for as long as possible, thus amortizing

the rank switching overhead of tDQS.

In this work, the command-pair rank hopping (CPRH) memory transaction re-ordering

and DRAM command scheduling algorithm is described that alleviates the impacts of tFAW

and tDQS simultaneously. The CPRH memory scheduling approach rely on the basic

principle of round robin access rotation through all of the banks in a two rank memory

system. The CPRH algorithm superficially resembles the simpler alternating rank

scheduling illustrated in Figure 8.2 in that each row activation command is followed

immediately by a column access command. However, unlike the alternating rank scheduling

where each column command is a posted CAS command that immediately follows the row

activation command to the same bank, the column command issued in the command pair

algorithm is issued to a different bank of DRAM arrays. In essence, the command pair

algorithm further de-couples the row-activation command and the column-access

192

commands to create the regular scheduling pair of row and column commands that mimic

the command pairs found in basic DDRx SDRAM command scheduling algorithms.

The command ordering sequence for the CPRH scheduling algorithm can be constructed

from the basis of a round robin rotation through the banks. That is, DRAM column accesses

are scheduled to bank 0, bank 1, bank 2, and rotated through sequentially to the (B-1)th bank

of a given rank of memory. The algorithm then switches to bank 0 of the alternate rank of

memory and the process repeats itself in rotating through all banks in a two rank memory

system. Then, working backwards from the respective column access commands, the row

access commands are scheduled to each rank in alternate ordering. Figure 8.3 illustrates the

construction and timing of the CPRH algorithm for a memory system with two ranks of 1

Gbps DDR3 SDRAM devices. Figure 8.3 shows that the CPRH algorithm achieves high

bandwidth in a two rank DDR3 SDRAM memory system despite the constraints imposed on

the memory system by tRRD, tFAW and tDQS.

The DRAM command sequence for the command pair scheduling algorithm is

summarizes as Figure 8.4. Figure 8.4 shows that while the column access commands are

group-scheduled successively to each bank in a given rank of memory, the row-activation

commands are alternately scheduled to different ranks of memory. In the DRAM command

sequence shown in Figures 8.3 and 8.4, the command pair algorithm amortizes the rank

switching cost of tDQS and achieves the theoretical maximum sustainable bandwidth.

Figure 8.4: Row and Column Command Sequences in Rank Hopping Algorithm.

Row Activation to Rank 0 Column Read to Rank 0 Row Activation to Rank 1 Column Read to Rank 1

rank ID
bank ID

R RC

0 1

C

3 7
0 0
4 0

R RC

1 0

C

0 1
0 0
5 2

R RC

1 0

C

1 3
0 0
6 4

R RC

1 0

C

2 5
0 0
7 6

R RC

1 0

C

3 7
1 1
4 0

R RC

0 1

C

0 1
1 1
5 2

R RC

0 1

C

1 3
1 1
6 4

R RC

0 1

C

2 5
1 1
7 6

R C

R C

0 1
3 7

R C

Pattern repeatscolumn access
rank switch

column access
rank switch

row activations
to alternate ranks

193

Finally, Figures 8.3 and 8.4 also reveal a subtle optimization to the command pair algorithm

in that row activations need not strictly alternate between different ranks. Figure 8.4 shows a

sequence that begins with a column access rank switch overlapped with two row activations

to the same rank. In this case, the rank-switching overhead of tDQS increases the minimum

scheduling distance between two row activation commands, and the tRRD row activation

constraint does not expose additional latency in the scheduling of DRAM commands in the

memory system.

 8.4 Experimental Methodology

 8.4.1 Simulation Framework

MASE, the micro architecture simulation environment, is part of SimpleScalar version

4.0, and it is used as the simulation framework for this study[22]. MASE is used as the basis

of the simulation framework due to the fact that it has been designed to interact with an

event-driven variable-memory-access-latency DRAM memory system. That is, memory

access latencies are not pre-computed at the instance in time when memory requests are

initiated. Rather, the simulator uses the event-driven memory system to simulate each

memory access independently, then returns the status of the memory access to the functional

unit that initiated the memory reference when the memory transaction is serviced and

marked as COMPLETED by the DRAM memory system simulator. In this simulation

framework, multiple memory transactions exist in the memory system concurrently, and the

event driven simulation allows the latency of a memory request to be affected by a request

194

that happens later in time. This framework allows memory write requests to be deferred in

favor of memory read requests, and it also allows for the implementation of prioritization of

read transactions, instruction fetch transactions and prefetch transactions. The transaction

request ordering mechanism is a necessary element that enables the study of memory access

ordering algorithms examined in this study.

In Figure 8.5a, we show that the processor core of MASE consists of three basic blocks,

each block representing a different portion of a high performance out of order processor: the

instruction fetch and decode front end, the out-of-order execution engine, and the retirement

unit. These three basic blocks of the processor are then simulated by three sets of simulation

code: mase-fe, mase-exec, and mase-commit, respectively. In MASE, each portion of the

processor can independently access memory through the cache hierarchy. In the case of a

memory access that misses the on chip cache hierarchy, a memory transaction request is

created and sent to the bus interface unit (BIU)1. Mase-fe, the front end of the processor,

would stall completely in the case of an instruction cache miss, but mase-exec could

generate multiple outstanding memory references concurrently and continue simulation of

the out of order execution core as long as it has instructions not dependent on the data from

an outstanding memory request. Similarly, mase-commit, the in-order backend of the

1. In this role, the BIU is functionally equivalent to a data structure of miss status handling registers (MSHRs)

mase-fe mase-exec mase-commit

BIU: bus interface unit

status rid start_time address access_type

D Read
D Write

I Fetch
Invalid

Valid
Valid

Valid

Invalid
Invalid

0 36

0

-1

-1
-1

-1
14

54 0xXXXX

0xXXXX
0xXXXX

Figure 8.5: MASE Simulator Structure. Figure 8.5b: Bus Interface Unit Data Structure

sim-mase

195

processor could generate memory write requests independently from mase-fe and mase-

exec. In this manner, MASE provides the framework for a workload to generate and sustain

multiple, concurrent memory transactions to the memory system.

In MASE, pending memory references are tracked through the BIU that keeps track of

the state of all active memory transactions in the system. An abbreviated view of the internal

data structure of the BIU is shown as Figure 8.5b. For each transaction, the bus interface

data structure keeps track of the requesting functional unit, the requesting processor (in case

of multiple processors), the request time, the address of the request, and the type of the

request. When a memory transaction is generated, the processor places the request into the

bus interface data structure. The DRAM memory system is assumed to exist in a separate

timing domain but operates concurrently with the processor. The DRAM memory system

simulator then selects transactions from the BIU and simulate the transaction through the

DRAM memory system on a cycle by cycle basis. The DRAM memory system simulates

the progress of every memory transaction, then updates the status of the memory transaction

request in the BIU as it completes the simulation of the given transaction. In this manner, the

processor simulation is completely de-coupled from the DRAM memory system simulation.

The MASE simulation code described here has been enhanced to include a realistic,

cycle accurate, and user configurable DRAM memory system. The DRAM memory system

simulator simulates the timing of memory transactions subject to the type, speed,

configuration, and the state of the memory system. The DRAM memory system in our

simulation framework consists of a bus interface unit (BIU), one or more transaction-driven

196

memory controllers, and one or more command-driven memory systems. In Figure 8.6, we

illustrate a symbolic representation of the simulation framework in this study. In this

simulation framework, the processor or processors generate memory references that are then

held in the BIU as transactions. The memory system then selects pending memory

transactions for processing based on a transaction ordering policy. Each memory transaction

is then converted to a sequence of DRAM commands and simulated based on the

configuration, state, and timing of the DRAM memory system. The DRAM simulator

models SDRAM, DDR SDRAM DDR2 and DDR3 SDRAM memory systems. In this

simulation framework, all DRAM timing parameters summarized in table 8.1including

tCAS, tRAS, tRP, tDQS and tFAW are accurately simulated according to the DRAM access

protocols specified in respective DRAM device datasheets[38]. Furthermore, the DRAM

timing parameters can be easily adjusted through the use of a configuration file. The same

configuration file also specifies the column, row, bank, rank and channel configuration of

the memory system that the simulator need to generate the proper DRAM command

sequences and accurately simulates timing of the DRAM commands.

Figure 8.6: : Memory System Enhancement to MASE.

transaction

Memory
Controller

Memory
Controller

DDRx SDRAM

DDRx SDRAM

DRAM Memory System

sim-mase

BIU
Processor

System
queueController

197

 8.4.2 System Configuration

In this study, processor and memory system configurations are kept as constants. The

only two variables that differentiates between the various systems are the DRAM

transaction ordering policy and the DRAM-command-scheduling algorithm. In all

configurations, the L2 cache size of the processor is configured as 256 KB, and the

processor frequency is set to 5 GHz. The memory system consists of a single 8 byte wide

channel of 1 Gbps DDR3 SDRAM devices, and the peak bandwidth of this memory system

is 8 GB/s. The DRAM memory system consists of 2 ranks of memory devices, each rank

consists of 8 separate 1 Gbit DDR3 SDRAM devices connected in parallel, and there are 8

banks per rank, 16384 rows per bank and 1024 columns per row. Collectively, the two

ranks of DDR3 SDRAM devices form a memory system with 2 GB of memory that is

accessible by a 31 bit physical address space.

 8.4.3 Address Mapping and Row Buffer Management Policy

The importance of address mapping has been examined some detail in previous

literature [24,25,27,47,48]. In a memory system that implements the open-page row buffer

management policy, the role of the address mapping scheme is to optimize the temporal and

spatial locality of the address request stream and direct memory accesses to an open DRAM

row (bank) and minimize DRAM bank conflicts. However, in a memory system that

implements the close-page row-buffer management policy, the goal of the address mapping

scheme is to minimize temporal and spatial locality to any given bank and instead distribute

memory accesses throughout different banks in the memory system. In this manner, the

DRAM memory system can avoid memory accesses to the same bank of memory and

instead focus on transaction and DRAM command ordering algorithms that rotates through

198

all available DRAM banks to achieve maximum DRAM bandwidth. In this study, a simple

address mapping scheme optimized for close-page memory systems is used, and the address

mapping scheme is summarized in Figure 8.7. In the address mapping scheme illustrated in

Figure 8.7, the three lowest bits in a physical address is translated as the byte offset in the

8 byte wide channel, and the next three lowest address bits denote the three lowest bits of

the column address. In essence, these three bits also represents the cacheline offset, since

the size of the cacheline used in the system is 64 bytes. Address bits 6~8 then denote the

bank ID of the memory address, and the 9th address bit then denotes the rank ID. In this

manner, an application that streams through a large array will have consecutive cachelines

that reside in different banks, and the memory system can optimally pipeline the

consecutive memory accesses to different banks with maximum bandwidth efficiency.

 8.4.4 Structural Enhancement to Bus Interface Unit

The DRAM memory system enhancement in MASE has been previously described to

contain the BIU, one or more transaction driven memory controllers and one or more

command driven memory systems. In this simulation framework, a memory access that

misses the cache is sent to the BIU, and the BIU can hold up to 256 memory references to

the memory system. The pending memory references are then sent to the transaction queue

count range

channel 1 0

rank 2 1

bank 8 3

row 16384 14

column 1024 10

0210161730

31 bit physical address range (byte addressable)

rank
ID

bank
ID

column
ID low

row
ID

byte
offset

35689

column
ID high

Figure 8.7: Close-page-optimal address mapping for 2 GB DDR3 SDRAM memory system.

199

according to the transaction ordering policy specified. However, in a traditional system

topology, the BIU is a separate structure that resides separately from the memory controller

and the address mapping stage that converts physical addresses to DRAM addresses occurs

after the memory transaction is moved into the transaction queue in the memory controller.

As a result, the BIU in a traditional system topology is not aware of the memory addresses

of pending transactions, and it cannot prioritize memory references based on the rank or

bank address of pending transactions. In this work, we assume that the memory controller is

integrated with the processor (a common practice in modern processors), and the memory

address mapping stage can be moved into the BIU. In this scheme, the BIU contains a copy

of the address range registers and it is aware of the configuration of the DRAM memory

system. In this scheme, as a memory transaction is placed into the BIU, the physical address

is immediately translated into respective memory addresses. With the respective memory

addresses, the BIU can then prioritize memory transactions based on the type as well as the

memory addresses of pending transactions in the system.

 8.4.5 Write Sweeping

In this work, considerable effort is devoted toward the optimization of DRAM

bandwidth utilization in a DDRx SDRAM memory system. Various schemes have been

devised and timing diagrams have been shown that maximize DRAM memory bandwidth.

Implicit in the various schemes and timing diagrams is the assumption that the illustrated

access sequences consist purely of memory read transactions. The reason that the various

schemes and timing diagrams consist of purely memory read transactions is that in DDRx

SDRAM memory systems, the bandwidth overheads for read-write turnarounds are even

greater than the overhead imposed on DRAM memory system by tDQS, tRRD and tFAW
1.

200

Figure 8.8 illustrates the case where a column-read command follows a column write

command to the same rank of DRAM devices and shows that this combination of DRAM

commands can at best be scheduled with the minimum timing of tCWD + tBurst + tWR - tCMD.

In this case, the data bus can utilized for tBurst time period by the write command, so the

overhead for a read command that follows a write command to the same rank of memory is

tCWD + tWR - tCMD. Using timing parameters values specified in table 8.1, the bandwidth

overhead for write-read turnaround is 16 ns. The value of 16 ns for the write-read turnaround

is greater than other bandwidth overheads examined in this study. To alleviate the bandwidth

overhead of read-write and write-read turnarounds in the DRAM memory system, some

transaction ordering policies in this study utilize the technique of write sweeping. That is,

the BIU acts as a write buffer for pending memory write transactions, and as much as

possible, DRAM write requests are scheduled consecutively to the memory system. In this

manner, pending write transactions are occasionally swept as a group into the memory

system, and the number of read-write turnarounds are minimized.

1. Direct RDRAM devices have write buffers designed to alleviate the read-write turnaround overhead in high datarate
memory systems. Data for column write commands are temporarily stored in the write buffer then retired into the
DRAM array via a separate command. The write buffer minimizes but does not completely eliminate the read-write
turnaround overhead.

Figure 8.8: : Read Command following Write Command to Same Rank.

tBurst

cmd&addr
bank “ i” of rank “ m”
rank “ m” util ization
data bus

write 0
data restore

data burst
I/O gating

row x open

data burst
I/O gating

read 1

time tCWD tWR

tCWD + tBurst + tWR - tCMD tCMD

201

 8.4.6 Transaction Ordering Policy

To keep the DRAM memory system optimally saturated with DRAM commands to the

appropriate banks and ranks, a transaction ordering policy must select the appropriate

transactions with the proper rank and bank addresses from the BIU to send to the transaction

queue. As a result, the transaction ordering policies should match the DRAM command

scheduling algorithm to keep the memory system operating at maximum efficiency. Three

different DRAM transaction ordering policies and the associated DRAM command

scheduling algorithm are compared against each other in this study: First Come First Serve,

Bank Round Robin, and Command Pair Rank Hopping.

In the First Come First Serve transaction ordering policy, hereafter referred to as the

FCFS transaction ordering policy, the BIU buffers all memory transactions, but sends

transactions to the DRAM memory system in the order of arrival regardless of the address or

type of the memory transaction request. The DRAM memory system simulator allows

different DRAM commands from different transactions to be pipelined, but DRAM

commands of the same type cannot be re-ordered in the transaction queue. That is, while the

column-read command from a prior memory transaction is still waiting in the transaction

queue for a row to be opened, a separate row activation command from a subsequent

transaction can be engaged, subject to the constraints of tRRD and tFAW. However, the

column access command of the subsequent transaction cannot be scheduled ahead of the

column access command of the prior transaction in this scheduling algorithm.

In the Bank Round Robin transaction ordering policy, hereafter referred to as the BRR

transaction ordering policy, the BIU buffers all transactions, and memory read transactions

are given priority and scheduled to the DRAM memory system according to the type and

202

bank address of the pending request. Figure 8.9 shows the address sequence for the BRR

transaction ordering policy where the bus interface unit schedules transaction to the memory

system by selecting the oldest memory transactions with specific rank and bank addresses.

In case that there are no pending memory read transactions in the BIU or in case that nearly

all 256 entries of the BIU are filled with pending transactions, write sweeping is triggered to

move pending write transactions to the DRAM devices. In the BRR transaction ordering

policy, DRAM commands are also scheduled in strict ordering, and DRAM commands of

the same type from different transactions are not re-ordered in the transaction queue.

In the Command Pair Rank Hopping transaction ordering policy, hereafter referred to as

the CPRH transaction ordering policy, the BIU also buffers all transactions, and memory

read transactions are given priority and scheduled to the DRAM memory system according

to the bank address of the pending request. However, in order to enable the DRAM

command sequence and timing diagram as illustrated in Figure 8.3 and Figure 8.4, the

CPRH transaction ordering policy must send a stream of memory transactions whose

address sequence is not readily intuitive from the BIU to the transaction queue. Figure 8.10

shows the address sequence for the CPRH transaction ordering policy where the BIU

schedules transaction to the transaction queue by selecting the earliest pending memory

Figure 8.9: : Address Sequence for Bank Round Robin Transaction Ordering Policy.

rank ID
bank ID

0
0

0
1

0
2

0
3

0
4

0
5

0
6

0
7

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

Schedule Order

Figure 8.10: : Address Sequence for Rank Hopping Transaction Ordering Policy.

Schedule Order
rank ID
bank ID

0
3

0
4

1
0

0
5

1
1

0
6

1
2

0
7

1
3

1
4

0
0

1
5

0
1

1
6

0
2

1
7

0
3

203

transaction of the appropriate type with specific rank and bank addresses. Similar to the

BRR transaction ordering policies, in case that there are no pending memory read

transactions in the BIU or in case that nearly all 256 entries of the BIU are filled with

pending transactions, a burst of write sweeping is triggered. In this study, the CPRH

transaction ordering policy is paired with the CPRH DRAM scheduling algorithm, and the

DRAM command sequence is as previously described in Figure 8.4.

 8.4.7 Workloads

In this study, a random sampling of workloads from the SPEC CPU 2000 benchmark

suite are used to validate the proposed design. A range of different applications that exhibit

different memory bandwidth utilization rates are used to characterize the impact of the

transaction reordering algorithm on different memory request patterns and request rates.

Table 8.2 summarizes the workloads used in this study.

Workload Name Description

164.gzip popular data compression program written by Jean-Loup Gailly for the project. CPU 2000 INT

176.gcc C compiler program. CPU 2000 INT

255.vortex single user object oriented database transaction benchmark. CPU 2000 INT

256.bzip2 another compression program. CPU 2000 INT

172.mgrid multigrid solver of 3D potential field CPU 2000 FP

173.applu Partiall differntial equation algorithm CPU 2000 FP

177.mesa graphic routine, creating a 3D object from a 2D scalar field. CPU 2000 FP

178.galgel computational fluid dynamics. CPU 2000 FP

179.art neural networks-object recognition CPU 2000 FP

183.equake quake simulation algorithm CPU 2000 FP

188.ammp computational chemistry. CPU 2000 FP

300.twolf VLSI placement and routing algorithm CPU 2000 INT

TABLE 8.2: SPEC CPU 2000 workloads used in study

204

 8.5 Simulation Results

In this work, all of the workloads are simulated through the execution of two billion

instructions. Each workload is simulated with three different sets of memory systems that

are identical in terms of the paging policy, address mapping scheme, the DRAM memory

system configuration. The only difference that exists between the different memory systems

is the memory transaction and DRAM command scheduling algorithms described in

previous sections.

 8.5.1 Improvement in Sustained Bandwidth

In this work, different algorithms that impact the maximum sustainable bandwidth of the

DRAM memory system are examined. We expect that the performance impact of the

respective algorithms on each workload will depend on the bandwidth utilization of the

workload, so we present the average sustained bandwidth of the each workload through the

simulated execution of 2 billion instructions in Figure 8.11. The average sustained

Figure 8.11: : Average Sustained Bandwidth through 2 Billion Instructions.

Increasing Bandwidth Utilization

tw
ol

f

gz
ip

ga
lg

el

m
es

a

vo
rte

x

gc
c

eq
ua

ke

bz
ip

2

m
gr

id

ap
plu

am
mp

art

0

1

2

3

4

5

S
us

ta
in

ed
 B

an
dw

id
th

 (
G

B
/s

)

FCFS
BRR
CPRH

205

bandwidth for each workload is obtained by counting the total number of memory

transactions processed through the simulation of 2 billion instructions, multiplying through

by the number of bytes per transaction and the simulated processor frequency, then dividing

through by the number of simulated processor cycles. Figure 8.11 shows that the average

sustained bandwidth for workloads used in this study ranges from 0.5 GB/s to 4.5 GB/s.

Figure 8.11 also shows that three workloads with the greatest improvements in bandwidth

utilization from the CPRH scheduling algorithm are among the five workloads that already

utilize high memory bandwidth. Finally, Figure 8.11 also shows that not all bandwidth

intensive workloads benefit greatly from the CPRH scheduling algorithm.

 8.5.2 Workload Speedups

Figure 8.12 shows the IPC speedups of the BRR and CPRH scheduling algorithms with

respect to the in-order FCFS scheduling algorithm. The workloads are arranged by the order

of their respective bandwidth utilization. In three workloads, 300.twolf, 164.gzip and

177.mesa, the BRR scheduling algorithm showed no appreciable speedup relative to the

Figure 8.12: : IPC Speedup of BRR and CPRH Scheduling Relative to FCFS Scheduling .

IP
C

 S
pe

ed
up

 R
el

at
iv

e
to

 F
C

F
S
 S

ch
ed

ul
in

g

negligible speedup

Increasing Bandwidth Utilization

tw
ol

f

gz
ip

ga
lge

l

mes
a

vo
rte

x

gc
c

eq
ua

ke

bz
ip2

mgr
id

ap
pl

u

am
mp ar

t

1

1.2

1.4

1.6

1.8

BRR
CPRH

206

FCFS scheduling algorithm. On the other hand, 179.art showed an 80% speedup for the

CPRH scheduling algorithm relative to the FCFS scheduling algorithm.

Figure 8.13 shows the IPC speedup of the CPRH scheduling algorithm compared to the

moderately intelligent BRR scheduling algorithm. The maximum bandwidth advantage of

the CPRH scheduling algorithm compared to the BRR scheduling algorithm has been

previously computed to be 47%. In Figure 8.13, 179.art shows a 44% speedup in IPC in

using the CPRH algorithm compared to the BRR algorithm, and 188.ammp as well as

300.twolf report negligible speedups for the CPRH scheduling algorithm over the BRR

algorithm.

 8.5.3 Memory Access Latency Distribution

In modern uni-processor and multi-processor systems, multiple memory transactions

may be sent to the memory system concurrently. In case that the memory system is not

immediately available to service a memory transaction, or if a memory transaction is

deferred to allow a later transaction to proceed ahead of it, the latency of the later transaction

will decrease at the expense of the increased latency of the prior memory transaction.

However, if the transaction or DRAM command re-ordering algorithm results in a more

1

1.2

1.4

IP
C

 S
pe

ed
up

 R
el

at
iv

e
to

 B
R

R Increasing Bandwidth Utilization

tw
ol
f

gz
ip

ga
lge

l

mes
a

vo
rte

x

gc
c

eq
ua

ke

bz
ip2

m
gr
id

ap
pl
u

am
mp ar
t

BRR

Figure 8.13: : IPC Speedup of CPRH Scheduling Relative to BRR Scheduling .

negligible speedup

207

efficient utilization of the memory system, then the average memory access latency for all

memory transactions will decrease. Figure 8.14 shows the impact of the CPRH scheduling

algorithm on the memory access latency distribution for the 179.art through 2 billion

instructions. The memory access latency distribution illustrated in Figure 8.14 is obtained by

a mechanism that records the access latency for each memory transaction in the BIU. In the

simulation framework, each time a memory transaction is sent to the BIU, the start time of

the transaction is recorded by the BIU. Upon completion of the memory transaction, the BIU

simply computes the latency and keeps track of the number of transactions for each a

specific latency value.

In the simulated memory system, the minimum latency of a memory transaction is

simply the delay through the BIU added to the delay of the memory controller and the

minimum DRAM latencies of tRCD + tCAS. In the simulated memory system, the delays

through the BIU and memory controller is set to 10 ns, and the minimum access latency is

approximately 30 ns for the set of timing values used in this study and illustrated in Figure

8.14. Figure 8.14 shows that the CPRH scheduling algorithm greatly decreases the queueing

delay for many pending memory transactions in 179.art, and the number of transactions with

Figure 8.14: : Impact of Scheduling Policy on Memory Access Latency Distribution: 179.art.

0 200 400 600 800
Memory Access Latency (ns)

1

100

10000

1e+06

1e+08
N

um
be

r
of

 A
cc

es
se

s
at

 G
iv

en
 L

at
en

cy
 V

al
ue

0 200 400 600 800
1

100

10000

1e+06

1e+08

N
um

be
r

of
 A

cc
es

se
s

at
 G

iv
en

 L
at

en
cy

 V
al

ue

Memory Access Latency (ns)

CPRHFCFS179.art 179.art

208

memory access latency greater than 400 ns is significantly less than the same workload

operating with the FCFS scheduling algorithm.

In Figure 8.14, the memory access latency distribution curve graphically illustrates the

benefits of the CPRH algorithm for 179.art. However, just as the memory access latency

distribution curve can be used to illustrate the benefit of the CPRH scheduling algorithm, it

can also be used to illustrate possible problems with the CPRH scheduling algorithm for

other workloads. Figure 8.15 shows the latency distribution curve for 188.ammp, and

188.ammp was one workload that points to possible issues withe the CPRH algorithm. That

is, Figure 8.11 shows that 188.ammp was the second most bandwidth intensive workload

with the FCFS scheduling algorithm, but aside from the non-bandwidth intensive 300.twolf,

188.ammp also saw the smallest speedup for all workloads with the CPRH scheduling

algorithm. Figure 8.15 shows that the CPRH scheduling algorithm resulted in longer

latencies for a number of transactions, and the number of transactions with memory access

latency greater than 400 ns actually increased. Figure 8.15 also shows that the increase of

the small number of transactions with memory access latency greater than 400 ns is offset by

the reduction of the number of transactions with memory transaction latency around 200 ns

and the increase of the number of transactions with memory access latency less than 100 ns.

Figure 8.15: Impact of Scheduling Policy on Memory Access Latency Distribution: 188.ammp.

0 200 400 600 800
Memory Access Latency (ns)

1

100

10000

1e+06

1e+08

N
um

be
r
of

 A
cc

es
se

s
at

 G
iv

en
 L

at
en

cy
 V

al
ue

0 200 400 600 800
1

100

10000

1e+06

1e+08

N
um

be
r
of

 A
cc

es
se

s
at

 G
iv

en
 L

at
en

cy
 V

al
ue

Memory Access Latency (ns)

FCFS CPRH188.ammp 188.ammp

209

In other words, the CPRH scheduling algorithm redistributed the memory access latency

curve so that most memory transactions received a modest reduction in access latency, but a

few memory transaction suffered a substantial increase in access latency. The net result is

that the changes in access latency cancelled each other out, and 188.ammp only shows a

minor speedup for the CPRH algorithm over the FCFS or the BRR algorithm.

210

 8.6 Quick Summary of the Rank Hopping Algorithm

Power consumption and heat dissipation considerations are constraining high

performance DRAM memory systems just as they are constraining high performance

processors. The combination of power limitation and data bus synchronization constraints

limits available memory bandwidth in DDR2 and future DDR3 SDRAM memory systems

that do not adequately account for these bandwidth constraints. This work presented a

unique memory transaction ordering policy and DRAM command-scheduling algorithm

that maximizes sustainable bandwidth of the memory system while operating within power

and system synchronization constraints of DDR2 and DDR3 SDRAM devices. In a 1 Gbit

DDR3 SDRAM memory system used as the baseline in this study, the resulting DRAM

command ordering algorithm increases the maximum sustainable bandwidth by more than

41% compared to a moderately intelligent memory system. Simulations with the projected

timing parameters show that the proposed algorithm increases IPC by 40~80% on a

bandwidth intensive workload, 179.art, over a baseline of an unintelligent memory system,

and over 40% with the baseline of the moderately intelligent memory system. Moreover,

two different scaling trends means that the scheduling algorithm proposed in this work will

become even more important as process scaling continues in the future. The first trend that

favors the proposed scaling algorithm is that as processor frequencies and DRAM device

data rates increase, the power limitation constraints will likely remain in place or increase at

a much lower rate. The result is that row activations must be scheduled farther apart from

each other in terms of number of cycles, and the proposed scheduling algorithm allows the

row activation commands to be scheduled farther apart in a given rank without impacting

the scalability of maximum bandwidth efficiency as long as tRRD does not exceed 2 * tBurst,

211

or tFAW does not exceed 8 * tBurst. The second trend that favors the proposed scheduling

algorithm is that as transistor budgets continue to grow, the trend toward multi-threaded

cores and chip-level multiprocessors appears to be inevitable. Memory request streams from

these processors will have higher access rates and less spatial locality compared to memory

request streams from traditional uniprocessors. The higher access rate will require more

bandwidth per pin from the memory system, and the decreased spatial locality property

means an increase in the number of row cycles per transaction, even in open-page DRAM

memory systems. Both effects of the multi-threaded and multi-processor system increase the

importance of a close-page, bandwidth optimized DRAM transaction and command

scheduling algorithms such as the one proposed in this work.

212

CHAPTER 9 Concluding Remarks

The work performed in this dissertation is devoted to answering questions that are

fundamental to understanding the performance of modern DRAM memory systems. In

particular, the following questions were asked and answered in this work:

• How do changes in system configuration impact the performance of DRAM memory

systems?

• How would the performance characteristic of the DRAM memory system change in relation

to scaling trends of DRAM device datarates and row cycle times?

• What can be done to alleviate constraints that limit the efficiency of modern DRAM

memory systems, such as tFAW and tDQS?

Throughout the text of this dissertation, answers to each of these questions have been

gradually revealed. In this final chapter, the answers to these questions are summarized, the

significance of the work is highlighted, related work is addressed, and directions of future

research are sketched out.

 9.1 Summary and Contributions

In this dissertation, the foundation to facilitate future research into DRAM memory

systems performance analysis is laid. The definition of the abstract and generic DRAM

access protocol that is common to SDRAM, DDR SDRAM, DDR2 SDRAM, and future

213

DDRx SDRAM variants means that DRAM performance analysis performed for each

generation of DRAM devices can be compared directly to each other, subjected to the

scaling considerations of changing datarates and row cycle times.

The definition of the generic DRAM access protocol in turn enables the description of

high level analytical frameworks that can be used for performance analysis of DRAM

memory systems. In this work, the Request Access Distance methodology for the

computation of sustainable memory bandwidth is described in detail. The Request Access

Distance methodology is then used to extensively analyze the performance characteristics of

modern DRAM memory systems that will operate at datarates of 1 Gbps and above. This

work advances the state of the art in terms of an analytical method that can be applied to a

DRAM memory system to understand its performance characteristics, and it supports that

work with extensive studies that aid in the understanding of modern DRAM memory

systems. In particular, we show that the addition of more banks in DRAM memory systems

can improve performance by an average of 18% for both close-page and open-page memory

systems. We also show that the tFAW bank activation constraint is critical for close-page

memory systems, and less so for open-page systems, although its impact does grow with

increasing datarate.

Finally, this work presents a novel DRAM command scheduling algorithm that

amortizes the overhead costs of rank-switching time and schedules around the tFAW bank

activation constraint. We show that the scheduling algorithm can improve maximum

bandwidth by 41%, and it can improve performance by as much as 40% for some specific

workloads.

214

 9.2 Limitations

The ultimate metric of DRAM memory system performance is related to how fast it can

service critical requests from processors. However, the focus of this work is to characterize

and improve sustainable bandwidth of a DRAM memory system, not to identify and service

critical requests. The rationale used to justify the focus of this work is that by improving the

sustainable bandwidth of the DRAM memory system, the average request service time can

be reduced. The study performed in chapter 8 shows that while this strategy does benefit

most workloads, it does not benefit all workloads. The transaction re-ordering policy used

by the rank-hopping algorithm, designed to improve sustainable bandwidth of the DRAM

memory system, unintentionally deferred some critically needed requests at the expense of

non-critical requests. The result is that the net performance improvement was negligible

despite the improvement of available bandwidth from the DRAM memory system.

The study of the rank-hopping algorithm points out that an ideal DRAM memory

scheduling algorithm must be coupled with the identification of critical loads within request

sequences. In the case that the DRAM memory system is given that information, it can then

dynamically adjust the scheduling algorithm to further improve system performance

depending on the request pattern. In a recent study, an adaptive feedback memory system

that dynamically adjusted DRAM memory scheduling algorithm based on processor request

pattern is described[51]. However, that study utilizes a relatively simplified model of a

multi-rank DDR SDRAM memory system. We believe that future DRAM memory systems

study should proceed along parallel paths, so that the needs of the processor is accounted for

while scheduling around DRAM hazards such as row cycle times, tFAW bank activation

constraints, and tDQS rank-switching overheads.

215

 9.3 Related Work

The traced-based Request Access Distance analytical framework is a unique

methodology in analyzing DRAM memory system performance in terms of citations that

can be traced in previously published literatures. However, a comparable framework may

exist in work performed independently by Pawlowski and presented in a tutorial session at

HPCA in 2005[54]. In the tutorial session, simulation results were presented that compared

the bandwidth efficiency of various existing memory systems subjected to randomly

generated sequences of read and write access patterns. It can be speculated from the

presented results that the fundamental methodology shares fundamental similarities with the

Request Access Distance methodology described in this work. However, due to the fact that

the underlying framework for the results presented in the tutorial was not disclosed, a direct

comparison against the Request Access Distance analytical framework was not possible.

This work also presented a unique DRAM scheduling algorithm that performs memory

access sequences in specific ordering to maximize available DRAM bandwidth. Although

the scheduling algorithm is itself unique, much work already exist in the field of DRAM

memory scheduling algorithm. In particular, works by Briggs et. al., Cuppu et. al., Hur et.

al., McKee et. al., and Rixner et. al are particularly instrumental in advancing the state of the

art in DRAM memory scheduling algorithms[28,32,33,34,37,42,51]. This work advances

the state of the art by proposing a scheduling algorithm that is unique to high performance,

high datarate, short channel DDRx SDRAM memory systems.

216

 9.4 Future Work

The studies performed in this work can be extended in many different directions. In

particular, the following directions are particularly interesting and they are currently under

consideration for specific future research directions.

• Extend the abstract protocol to cover high performance DRAM devices such as FCRAM,

RLDRAM and XDR DRAM. The extension of the abstract protocol in turn will enable the

computation of the table of DRAM protocol overheads. The creation of the table in turn

enables the extension of the Request Access Distance analytical framework to those

memory systems.

• Explore adaptive DRAM memory scheduling algorithms that simultaneously account for the

effects of DRAM system inefficiencies as well as processor request priority. In particular, a

study of adaptive scheduling algorithms for a processor that can send along priority

information to aid the DRAM controller in selecting amongst transaction re-ordering

algorithms that are not based solely on recent request access histories.

• The Request Access Distance method reports the sustainable DRAM bandwidth in terms of

in-efficiency. As described in this text, the inefficiencies are computed in terms of the idle

times that must be added to fully account for DRAM protocol overhead, DRAM row cycle

time constraints and DRAM device power constraints. A future version of the simulation

framework may be developed to keep track of the each set of causes of bandwidth loss

separately so that the dominant causes can be identified and analyzed specifically.

• In this work, DRAM memory system performance is studied based on use of traces from

single-threaded workloads. While the study does not lose relevance with the onset of multi-

threaded (MT) and chip multiprocessors (CMP), the explicit examination of DRAM

memory system performance characteristics subjected to MT and CMP processors will gain

increasing relevance as these processors become mainstream.

• Finally, the development of the rank-hopping algorithm for MT and CMP processors should

be coupled with further enhancements, such as a pseudo-open-page optimized address

mapping scheme and a distributed refresh mechanism to minimize the impact of refresh.

217

APPENDIX A Workload Descriptions

 A.1 Trace Fundamentals

The performance analysis performed in this study relies on trace based workloads. This

section summaries the traces used this study and provides a cursory examination into the

characteristics of workloads used in this work. There are two types of traces used in this

work. One type of traces consists of memory request sequences logged by using the M icro-

Architectural Simulation Environment (MASE) from the University of Michigan [29]. The

second type of traces used in this text consists of processor bus traces captured with a digital

logic analyzer during the execution of workloads on a test computer system. Figure A.1

shows trace segments from both types of traces.

Figure A.1: Sample Memory Request Trace Segments.

0x404361C0 IFETCH 2007226645
0x200261C0 IFETCH 2007226645
0x404374C0 IFETCH 2007226720
0x200274C0 IFETCH 2007226720
0x404438C0 READ 2007226819
0x400038C0 READ 2007226819
0x40435700 IFETCH 2007228119
0x20025700 IFETCH 2007228119
0x40439FC0 READ 2007228279
0x40009FC0 READ 2007228279
0x200276C0 IFETCH 2007228521
0x404438D0 READ 2007228766
0x400038D0 READ 2007228911
0x4E435A70 WRITE 2007229102
0x4002E7E0 WRITE 2007229292
0x40439FE0 READ 2007229382

0x01495F78 P_FETCH 54.782,500 us
0x01495F70 P_FETCH 54.792,500 us
0x01495F68 P_FETCH 54.802,500 us
0x01495F60 P_FETCH 54.812,500 us
0x01FC84E0 P_MEM_RD 54.942,000 us
0x01FC84E8 P_MEM_RD 54.952,000 us
0x01FC84F0 P_MEM_RD 54.962,000 us
0x01FC84F8 P_MEM_RD 54.972,000 us
0x01C2B290 P_MEM_RD 55.241,500 us
0x01C2B298 P_MEM_RD 55.251,500 us
0x01C2B280 P_MEM_RD 55.261,500 us
0x01C2B288 P_MEM_RD 55.271,500 us
0x01F7B2A0 P_MEM_WR 55.311,500 us
0x01F7B2A8 P_MEM_WR 55.321,000 us
0x01F7B2B0 P_MEM_WR 55.331,000 us
0x01F7B2B8 P_MEM_WR 55.341,000 us

Address Request Type Time Stamp Address Request Type Time Stamp

Mase simulator address trace Logic analyzer: processor bus trace

218

Figure A.1 shows two trace segments from the two types of traces used in this study.

Figure A.1 shows that each trace logged the address, type, and timestamp for each trace. In

the address trace captured from MASE, each transaction request is recorded as a single

event, and the time stamp for each request is recorded in the form of CPU cycle count. In the

address trace captured by the digital logic analyzer on a processor bus, each entry of the

trace segment represents an active cycle on the processor bus. In the test system, each

cacheline is 32 bytes in length and each cacheline transaction occupies four bus clock cycles

on the processor bus, and the cacheline transfer appears as four separate events in Figure

A.11. The timestamp logged by the digital logic analyzer also differs from the timestamp

logged by the architectural simulator in that the digital logic analyzer records timestamp in

terms of microseconds, and since the processor bus of the test system operates at 100 MHz,

the timestamp increments with the minimum granularity of 10 nanoseconds for each event

in the processor bus trace. Finally, one last difference between the two different types of

traces is that traces created by the architectural simulator record virtual addresses as

generated by the simulated workloads, whereas the processor bus traces record physical

addresses as they appear on the processor bus. In the context of the performance analysis

based on these traces, traces with virtual addresses may be subjected to additional virtual to

physical address page mapping considerations whereas traces recorded with physical

addresses need not deal with virtual to physical address mapping considerations.

1. Some I/O transactions seen in the bus trace captured by the digital logic analyzer only occupies a single bus clock
cycle, so not all transactions go through four bus clock cycles.

219

 A.2 Description of Workloads

In this work, address traces from nine different SPEC benchmarks and four sets of

processor bus traces were used. The address traces for the SPEC benchmarks were

generated by MASE, and the processor bus traces were captured on a personal computer

with an AMD K6-III processor while four different applications were running on the host

system. Restricted by the relatively shallow memory buffer depth of the digital logic

analyzer, traces captured through the use of the logic analyzer are relatively short trace

segments. Each trace segment consists of approximately four million active processor bus

cycles that represents approximately one million transaction requests. To ensure that the

captured traces adequately represent the performance characteristics of the workload,

multiple trace segments for each workload were captured for each workload. Rather than

merging the independent trace segments into one large trace for a given workload, the

results for each trace segment are presented individually to illustrate the degree of variance

within each workload. The traces used in this study are as follows:

MASE Traces (SPEC CPU 2000 Benchmarks)

164.gzip, 176.gcc, 197.parser, 255.vortex.

MASE Traces (SPEC CPU 2000 FP Benchmarks)

172.mgrid, 178.galgel, 179.art, 183.equake, 188.ammp.

AMD K6 Processor Bus Traces

JMark 2.0 - CPU, AWT, Complex Mathematics: 3 Segments, 3DWinbench CPU: 1

Segment, SETI@Home: 3 Segments, Quake 3: 5 Segments.

220

 A.2.1 164.gzip: C Compression

164.gzip is a benchmark in the SPEC CPU 2000 integer suite. 164.gzip is a popular data

compression program written by Jean-Loup Gailly for the GNU project. 164.gzip uses

Lempel-Ziv coding (LZ77) as its compression algorithm. In the captured trace for

164.gzip, four billion simulated instructions were executed by the simulator over two

billion simulated processor cycles, and 2.87 million memory requests were captured in the

trace. Figure A.2 shows that 164.gzip undergoes a short duration of program initialization,

then quickly enters into a repetitive loop. Figure A.2 shows the memory system activity of

164.gzip through the first 1.8 billion processor cycles. Figure A.2 also shows that 164.gzip is

typically not memory intensive, since it averages less than one memory reference per

thousand instructions. Moreover, in the time periods when 164.gzip fills the memory system

with transaction requests, the transaction requests appear to be bursts of memory write

requests.

Figure A.2: : 164.Gzip trace overview.

Initialization One execution loop

221

 A.2.2 176.gcc: C Programming Language Compiler

176.gcc is a benchmark in the SPEC CPU 2000 Integer suite that tests compiler

performance. 176.gcc is based on gcc version 2.7.2.2 and generates code for a Motorola

88100 processor. In the captured trace for 176.gcc, 1.5 billion simulated instructions were

executed by the simulator over 1.63 billion simulated processor cycles, and 4.62 million

memory requests were captured in the trace. Unlike 164.gzip, 176.gcc does not enters into a

discernible and repetitive loop behavior within the first 1.5 billion instructions. Figure A.3

shows the memory system activity of 176.gcc through the first 1.4 billion processor cycles.

Figure A.3 shows that 176.gcc, like 164.gzip, is typically not memory intensive, although it

does averages more than three memory references per thousand instructions. Moreover, in

the time frame illustrated in Figure A.3, 176.gcc shows a heavy component of memory

access due to instruction fetch requests, and relatively fewer memory write requests. The

reason that the trace in Figure A.3 shows a high percentage of instruction fetch requests is

that the trace was captured with the L2 cache of the simulated processor set to 256 KB.

Figure A.3: : 176.gcc trace overview.

222

 A.2.3 197.parser: C Word Processing

197.parser is a benchmark in the SPEC CPU 2000 integer suite that performs syntactic

parsing of English, based on link grammar. In the captured trace for 197.parser, 4 billion

simulated instructions were executed by the simulator over 6.7 billion simulated processor

cycles, and 31.2 million requests were captured in the trace. Similar to 164.gzip, 197.gzip

undergoes a short duration of program initialization, then quickly enters into a repetitive

loop. However, 197.gzip enters into loops that are relatively short in duration and is difficult

to observe in an overview. Figure A.4 shows the memory system activity of 197.parser

through the first 6.7 billion processor cycles. Figure A.4 shows that 197.parser is moderately

memory intensive, since it averages approximately eight memory references per thousand

instructions. Figure A.5 shows that each loop lasts for approximately 6 million CPU cycles

and the number of reads and write request are roughly equal.

Figure A.4: : 197.parser trace overview.

Figure A.5: : 197.parser trace view closeup.

Initialization One execution loop

223

 A.2.4 255.vortex: C Object-oriented Database

255. vortex is a benchmark in the SPEC CPU 2000 Integer suite. In the captured trace

for 255.vortex, 4 billion simulated instructions were executed by the simulator over 3.3

billion simulated processor cycles, and 7.2 million requests were captured in the trace. In

the first 3.3 billion processor cycles, 255.vortex goes through several distinct patterns of

behavior. However, after a 1.5 billion cycle initialization phase, 255.vortext appears to settle

into execution loops that lasts for 700 million processor cycles each, and each loop appears

to be dominated by instruction fetch and memory read requests with relatively fewer

memory write requests. Figure A.6 shows the memory system activity of 255.vortex through

the first 3.3 billion processor cycles. Figure A.6 also shows that 255.vortex is typically not

memory intensive, since it averages less than two memory reference per thousand

instructions.

Figure A.6: : 255.vortex Overview.

224

 A.2.5 172.mgrid: Fortran 77 Multi-grid Solver: 3D Potential Field

172.mgrid is a benchmark that demonstrates the capabilities of a very simple multigrid

solver in computing a three dimensional potential field. It was adapted by SPEC from the

NAS Parallel Benchmarks with modifications for portability and a different workload. In

the captured trace for 172.mgrid, 4 billion simulated instructions were executed by the

simulator over 9 billion simulated processor cycles, and 47.5 million requests were

captured in the trace. 172.mgrid is moderately memory intensive, as it generates nearly

twelve memory requests per thousand instructions. Figure A.7 shows that after a short

initialization period, 172.mgrid settles into a repetitive and predictable loop behavior. The

loops are dominated by memory read requests, and memory write requests are relatively

fewer.

Figure A.7: : 172.mgrid trace overview.

Initialization One execution loop

225

 A.2.6 178.galgel: Fortran 90 Computational Fluid Dynamics

In the captured trace for 178.galgel, 4 billion simulated instructions were executed by

the simulator over 2.2 billion simulated processor cycles, and 3.1 million requests were

captured in the trace. Relatively, 178.galgel is not memory intensive, as it generates less

than one memory requests per thousand instructions. Figure A.8 shows that after a short

initialization period, 178.galgel settles into a repetitive and predictable loop behavior. The

loops iterations are bursty and goes through several different phases.

Figure A.8: : 178.galgel trace overview.

Initialization
One execution loop

226

 A.2.7 179.art (SPEC CPU 2000 FP Suite)

179.art is a benchmark derived from an application that emulates a neural network and

attempts to recognize objects in a thermal image. In the captured trace for 179.art, 450

million simulated instructions were executed by the simulator over 14.2 billion simulated

processor cycles, and 90 million requests were captured in the trace. 179.art is extremely

memory intensive, and it generates almost two hundred memory requests per thousand

instructions. Figure A.9 shows that 179.art is dominated entirely by memory read

transactions.

Figure A.9: : 179.art trace overview.

227

 A.2.8 183.equake: C Seismic Wave Propagation Simulation

183.equake simulates the propagation of elastic waves in large, highly heterogeneous

valleys. Computations are performed on an unstructured mesh that locally resolves

wavelengths, using a finite element method. In the captured trace for 183.quake, 1.4

billion simulated instructions were executed by the simulator over 1.8 billion simulated

processor cycles, and 7.9 million requests were captured in the trace. Figure A.7 shows

that after a long initialization period, 183.equake settles into a repetitive and predictable loop

behavior. The loops are dominated by memory read requests, and memory write requests are

relatively fewer outside of the initialization phase. 183.equake is moderately memory

intensive, as it generates almost six memory references per thousand instructions.

Figure A.10: : 172.mgrid trace overview.

Initialization One execution loop

228

 A.2.9 188.ammp: C Computational Chemistry

188.ammp is benchmark in the SPEC CPU 2000 FP suite that runs molecular

dynamics on a protein-inhibitor complex embedded in water. unstructured mesh that

locally resolves wavelengths, using a finite element method. In the captured trace for

188.ammp, 4 billion simulated instructions were executed by the simulator over 10.5

billion simulated processor cycles, and 60 million requests were captured in the trace.

Figure A.11 shows that 188.ammp is moderately memory intensive. It generates

approximately 15 memory references per thousand instructions. 188.ammp is somewhat

unique in that the rate of memory requests appears to follow a pattern, yet that pattern is

not readily discernible in the trace that captures 10.5 billion processor cycles of execution

time.

Figure A.11: : 188.ammp trace overview.

Initialization

Asymmetric Execution Loops

229

 A.2.10 JMark 2.0 - AWT, CPU and Complex Arithmetic

JMark 2.0 is a suite of benchmarks designed to test the performance of Java virtual

machine implementations. The CPU, AWT and Complex Mathematics benchmarks are

independent benchmarks in this suite of benchmarks. Compared to other workloads

examined in this work, the benchmarks in JMark 2.0 accesses memory only very

infrequently. Ordinarily, the relatively low access rate of these benchmarks would exclude

them as workloads of importance in a study of memory system performance characteristics.

However, the benchmarks in JMark 2.0 exhibit an interesting behavior in access memory in

that they repeatedly access memory with locked reads and locked write requests at the exact

same location. As a result, they are included for completeness to illustrate a type of

workload that performs poorly in DRAM memory systems regardless of system

configuration. Figure A.12 shows an overview of a trace segment from the Abstract

Windowing Toolkit (AWT) benchmark trace.

Figure A.12: : JMark Abstract Windowing Toolkit Benchmark trace overview.

230

 A.2.11 3DWinbench - CPU

3D Winbench is another suite of benchmarks that is designed to test 3D graphics

capability of a system. The CPU component tests the processor capability and it is

moderately memory intensive. Figure A.13 shows an overview of the 3D Winbench trace.

Figure A.13 shows that 3D Winbench achieves sustained peak rate of approximately 5

transactions per microsecond during short bursts, and it sustains at least 1 transactions per

microsecond throughout the trace.

Figure A.13: : 3D Winbench trace overview.

231

 A.2.12 SETI@Home - 3 Segments

SETI@Home is a popular program that allows the SETI institute to make use of spare

processing power on idle personal computers to search for signs of extraterrestrial

intelligence. The SETI@HOME application performs a series of fast fourier transforms on

captured electronic signals to look for existence of extraterrestrial intelligence. The series of

FFT’s are performed on successively larger portions of the signal file. As a result, the size of

the working set for the program changes as it proceeds through execution. Figure A.14

shows a portion of the SETI@HOME trace, and in this segment, the read and write

transactions have an approximate 1:1 ratio, and the memory reference rate is approximately

0.2 requests per microsecond. Figure A.15 shows a different portions of the SETI@HOME

Figure A.14: : Portions of SETI@HOME Workload. Medium Memory Access Rate.

Figure A.15: : Portions of SETI@HOME Workload. Very High Memory Access Rate.

System Context Switch: Every 10 ms.

232

workload. In this segment, the memory reference rate increases to approximately 12~14

transactions per microsecond. The workload also alternates between read to write

transaction ratios of 1:1 and 2:1. Finally, the effects of the disruption caused by the system

context switch can be seen in this trace segment.

 A.2.13 Quake 3 - 5 Segments

Quake 3 is a popular game for the personal computer. It is also relatively memory

intensive. Figure A.16 shows a short segment of the Quake 3 processor bus trace, randomly

captured as the quake 3 game progressed on a personal computer system. Figure A.16 shows

that the processor bus activity of the game is very bursty. However, a cyclic behavior

appears in the trace with a frequency of approximately once every 70 milliseconds.

Interestingly, the frequency of the cyclic behavior coincides with the frame rate of the

Quake3 game on the host system.

Figure A.16: Quake 3: Random trace segment.

233

Figure A.17 shows another short segment of the Quake 3 game labelled as segment 4. In

Figure A.17 the cyclic pattern of bursts of instruction fetches remain, but the level of activity

on the processor bus is significantly higher than shown in segment 0. In Figure A.17, the

level of I/O transactions are also significantly higher. In this work, a total of 5 segments of

Quake 3 traces are used to examine the overall behavior of the workload.

Figure A.17: : Quake 3: Random Segment 4.

234

APPENDIX B Glossary of Terminology

BRR: Acronym Bank Round Robin; A scheduling algorithm that rotates scheduling priority

around different banks in a close-page memory system to optimize for maximum

temporal distance between accesses to the same bank. See page 188.

CAS: Column Access Strobe; Command to move a column of data in a DRAM memory

system. See page 71.

Close-Page policy: A row buffer management policy designed to optimize DRAM memory

bandwidth in a memory system, and typically supports applications that access data

in DRAM memory systems with very little spatial and temporal locality. The sense

amplifier is immediately precharged after the column access command is processed.

See page 115.

CPRH: Command Pair Rank Hopping; a scheduling algorithm that alternately schedules

row activates to different ranks of DRAM devices and group schedules column

accesses to the same rank of memory to maximize DRAM bandwidth. See page 191.

DDR: Dual Data Rate SDRAM device. See page 107.

DDR2: Second Generation Dual Data Rate SDRAM device. See page 107.

DDR3: Third Generation Dual Data Rate SDRAM device. See page 107.

DDRx: Denotes DDR SDRAM, DDR2 SDRAM, DDR3 DRAM and future DDR SDRAM

variant devices.

235

Differential Sense Amplifiers: Circuitry in DRAM devices that senses, amplifies a row of

data. Also referred to as a row buffer since it can hold the resolved row of data for a

lengthy period of time, until the next refresh command is issued. See page 15.

DIMM: Dual Inline Memory Module. See page 56.

Precharge: Command to prepare a given DRAM array for a row access. See page 19.

Open Page Policy: A row buffer management policy designed to optimize DRAM memory

bandwidth in a memory system, and typically supports applications that access data

in DRAM memory systems with high degrees of spatial and temporal locality. The

sense amplifier is kept active for as long as possible. See page 114.

Rank: One or more DRAM devices that act as a single entity in reponse to a given DRAM

command. In essence, it is a “bank” of DRAM devices. However, since the

terminology of “bank” denotes separate DRAM arrays inside of a given DRAM

devices, a “bank of DRAM devices” is now referred to as a rank of memory. See

page 48.

RAS: Row Access Strobe; Command to activate a row of DRAM cells in a memory system.

See page 70.

Row Cycle Time: The amount of time it takes to access a row in a given bank of DRAM

array and restore the data to the DRAM array so that another row in the same bank

can be accessed. See table 4.1 on page 69.

Row Buffer : See Differential Sense Amplifiers, page 15.

SDRAM: Synchronous DRAM device. See page 34.

Sense Amplifiers: See Differential Sense Amplifiers, page 15.

SIMM: Single Inline Memory Module. See page 55.

236

Bibliography

 [1] W. Wakamiya, T. Timori, H. Ozaki, H. Itoh, K. Fujiwara, T. Shibano, H. Miyatake, A. Fujii, T. Tsutsumi, S. Satoh, T.
Katoh, "Fully planarized 0.5 µm technologies for 16M DRAM", International Electron Devices Meeting (IEDM)
Technical Digest, 1988.

 [2] H. Yamauchi, T. Yabu, T. Yamada, “A Circuit Design to Suppress Asymmetrical Characteristics in High-Density
DRAM Sense Amplifiers” , IEEE Journal of Solid State Circuits, Vol. 25, No. 1, Feb. 1990.

 [3] G. Bronner, H. Aochi, M. Gall, J. Gambino, S. Gernhardt, E. Hammerl, H. Ho, J. Iba, H. Ishiuchi, M. Jaso, R.
Kleinhenz, T. Mii, M. Narita, L. Nesbit, W. Neumueller, A. Nitayama, T. Ohiwa, S. Parke, J. Ryan, T. Sato, H. Takato,
S. Yoshikawa, “A fully planarized 0.25 µm CMOS technology for 256 Mbit DRAM and beyond” , 1995 Symposium
on VLSI Technology.

 [4] H. Geib, W. Raab, D. Schmitt-Landsiedel, “Block-Decoded Sense-Amplifier Driver for High-Speed Sensing in
DRAM’s”, IEEE Journal of Solid State Circuits, Vol. 27, No. 9, Sept. 1992.

 [5] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos H. Muhlfeld, C. Montrose, “Cosmic Ray Soft Error Rates of
16-Mb DRAM Memory Chips”, IEEE Journal of Solid State Circuits, Vol. 33, No. 2, Feb. 1998.

 [6] J. Amon, A. Kieslich, L. Heineck, T. Schuster, J. Faul, J. Luetzen, C. Fan, C. Huang, B. Fischer, G. Enders, S. Kudelka,
U. Schroeder, K. Kuesters, G. Lange, J. Alsmeier, “A Highly Manufacturable Deep Trench based DRAM Cell Layout
with a Planar Array Device in a 70nm Technology“, International Electron Devices Meeting Technical Digest, 2004.

 [7] S. Kuge, T. Kato, K. Furutani, S. Kikuda, K. Mitsui, T. Hamamoto, J. Setogawa, K. Hamade, Y. Komiya, S. Kawasaki,
T. Kono, T. Amano, T. Kubo, M. Haraguchi, Z. Kawaguchi, Y. Nakaoka, M. Akiyama, Y. Konishi, H. Ozaki, “A 0.18
µm 256 Mb DDR-SDRAM with low-cost post-mold-tuning method for DLL replica”, International Solid State Circuits
Conference (ISSCC) Technical Digest, Feb. 2000.

 [8] C. Radens, S. Kudelka, L. Nesbit, R. Malik, T. Dyer, C. Dubuc, T. Joseph, M. Seitz, L. Clevenger, N. Arnold, J.
Mandelman, R. Divakaruni, D. Casarotto, D. Lea, V. Jaiprakash, J. Sim, J. Faltermeier, K. Low, J. Strane, S. Halle,
Q. Ye, S. Bukofsky, U. Gruening, T. Schloesser, G. Bronner, “An orthogonal 6F2 trench-sidewall vertical device cell
for 4 Gb/16 Gb DRAM” , International Electron Devices Meeting Technical Digest, 2000.

 [9] H. Jeong, W. Yang, Y. Hwang, C. Cho, S. Park, S. Ahn, Y. Chun, S. Shin, S. Song, J. Lee, S. Jang, C. Lee, J. Jeong,
M. Cho, J. Lee, K. Kinam, “Highly manufacturable 4 Gb DRAM using using 0.11 µm DRAM technology”,
International Electron Devices Meeting Technical Digest, 2000.

 [10] Y. Kim, S. Lee, S. Choi, H. Park, Y. Seo, K. Chin, D. Kim, J. Lim, W. Kim, K. Nam, M. Cho, K. Hwang Y. Kim, S.
Kim, Y. Park, J. Moon, S. Lee, M. Lee, “Novel capacitor technology for high density stand-alone and embedded
DRAMs“, International Electron Devices Meeting Technical Digest, 2000.

 [11] J. Sim, H. Lee, K. Lim, J. Lee, N. Kim, K. Kim, S. Byun, W. Yang, C. Choi, H. Jeong, J. Yoo, D. Seo, K. Kim, B. Ryu,
H. Yoon, C. Hwang, K. Kim, “A 4Gb DDR SDRAM with Gain-Controlled Pre-Sensing and Reference Bitline
Calibration Schemes in the Twisted Open Bitline Architecture”, International Solid State Circuits Conference (ISSCC)
Technical Digest, Feb. 2001.

 [12] T. Kirihata, G. Mueller, M. Clinton, S. Loeffler, B. Ji, H. Terletzki, D. Hanson, C. Hwang, G. Lehmann, D. Storaska,
G. Daniel, L. Hsu, O. Weinfurtner, T. Boehler, J. Schnell, G. Frankowsky, D. Netis, J. Ross, A. Reith, O. Kiehl, and
M. Wordeman, “A 113µm2 600Mb/s/pin 512Mb DDR2 SDRAM with Vertically-Folded Bitl ine Architecture,”
International Solid State Circuits Conference, Digest of Technical Papers, 2001, pp. 382–383.

 [13] T. Takahashi, T. Sekiguchi, R. Takemura, S. Narui, H. Fujisawa, S. Miyatake, M. Morino, K. Arai, S. Yamada, S.
Shukuri, M. Nakamura, Y. Tadaki, K. Kajigaya, K. Kimura, K. Itoh, “A Multigigabit DRAM Technology with 6F2
Open-Bitl ine Cell, Distributed Overdriven Sensing and Stacked-Flash Fuse”, IEEE Journal of Solid State Circuits,
Vol. 36, No. 11, Nov. 2001.

 [14] T. Kirihata, G. Mueller, B. Ji, G. Frankowsky, J. Ross, H. Terletzki, D. Netis, O. Weinfurtner, D. Hanson, G. Daniel,
L. Hsu, D. Storaska, A. Reith, M. Hug, K. Guay, M. Selz, P. Poechmueller, H. Hoenigschmid, M. Wordeman, “A 390
mm2 16-bank 1 Gb DDR SDRAM with Hybrid Bitline Architecture“ , IEEE Journal of Solid State Circuits, Vol. 34,
No. 11, Nov. 1999.

 [15] R. Smith, J. Chlipala, J. Bindels R. Nelson, F. Fischer, T. Mantz, “Laser Programmable Redundancy and Yield
Improvement in a 64K DRAM”, IEEE Journal of Solid-State Circuits, Vol. SC-16, No. 5, Oct 1981.

 [16] “Construction Analysis: Samsung KM44C4000J-7 16 Megabit DRAM”, Integrated Circuit Engineering Technical
Report, No. SCA 9311-3001.

 [17] “Construction Analysis: Hitachi 5165805A 64 Mbit (8 Mb x 8) Dynamic RAM”, Integrated Circuit Engineering
Technical Report, No. SCA 9712-565.

 [18] “Construction Analysis: Mitsubishi M5M465405AJ 64Mbit DRAM (16M x 4 bit)” , Integrated Circuit Engineering
Technical Report, No. SCA 9712-566.

 [19] J. Mandelman, R. Dennard, G. Bronner, J. DeBrosse, R. Divakaruni, Y. Li, and C. Radens, “Challenges and future
directions for the scaling of dynamic random-access memory”, IBM Journal of Research and Development, vol. 46,
No. 2, Mar. 2002.

 [20] J. Barth, J. Dreibelbis, E. Nelson, D. Anand, G. Pomichter, P. Jakobsen, M. Nelms, J. Leach, and G. Belansek,
“Embedded DRAM design and architecture for the IBM 0.11-µm ASIC offering” , IBM Journal of Research and
Development, vol. 46, No. 6, 2002.

237

 [21] E. Adler, J. DeBrosse, S. Geissler, S. Holmes, M. Jaffe, J. Johnson, C. Koburger, J. Lasky, B. Lloyd, G. Miles, J.
Nakos, W. Noble, S. Voldman, M. Armacost, R. Ferguson, “The Evolution of IBM CMOS DRAM Technology,”
IBM Journal of Research and Development, vol. 39, p167–188, 1995.

 [22] C. Kim, “Memory World in the Next Decade” , Memory Devision, Device Solution Network Business, Samsung.
Seminar presentation to Po-hang University of Science and Technology (POSTECH), Kyungpook, Korea. May 2003.

 [23] J. Lee, Y. Ahn, Y. Park, M. Kim, D. Lee, K. Lee, C. Cho, T. Chung, K. Kim, “Robust Memory Cell Capacitor using
Multi-Stack Sotarge Node for High performance in 90nm Technology and Beyond”, Proceedings of the 2003
Symposium on VLSI Technology.

 [24] Z. Zhang, Z. Zhu, X. Zhang, “Breaking Address Mapping Symmetry at Multi-levels of Memory Hierarchy to Reduce
DRAM Row-buffer Conflicts” , The Journal of Instruction-Level Parallelism, Vol. 3, 2002.

 [25] Z. Zhang, Z. Zhu, X. Zhang, “A Permutation-based Page Interleaving Scheme to Reduce Row-buffer Conflicts and
Exploit Data Locality” , Proceedings of the 33rd IEEE/ACM International Symposium on Microarchitecture, Dec.
2000. pp32-41.

 [26] Z. Zhu, Z. Zhang, X. Zhang, "Fine-grain Priority Scheduling on Multi-channel Memory Systems". Proceedings of the
8th International Symposium on High Performance Computer Architecture, Feb. 2002.

 [27] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an Integrated Memory Hierarchy Design”.
Proceedings of the 7th International Symposium on High-Performance Computer Architecture, Jan. 2001.

 [28] V. Cuppu, B. Jacob, “Organization Design Trade-offs at the DRAM, Memory Bus and Memory Controller Level:
Initial Results” , University of Maryland Systems and Computer Architecture Group Technical Report UMD-SCA-TR-
1999-2, Nov. 1999.

 [29] E. Larson, S Chatterjee, T. Austin “MASE: A Novel Infrastructure for Detailed Microarchitectural Modeling”,
International Symposium on Performance Analysis of Systems and Software, 2001

 [30] J. Janzen, “Calculating Memory System Power for DDR SDRAM”, Micron Designline Vol. 10, issue 2, 2Q01.
 [31] J. Janzen, “Calculating Memory System Power for DDR2”, Micron Designline Vol. 13, issue 1, 1Q04.
 [32] S. Rixner, W Dally, U. Kapasi, P. Mattson, J. Owens, “Memory Access Scheduling” , Proceedings of the 27th

International Symposium on Computer Architecture, June 2000.
 [33] V. Cuppu, B. Jacob, "Concurrency, latency, or system overhead: Which has the largest impact on uniprocessor

DRAM-system performance?", Proceedings of 28th International Symposium on Computer Architecture, June 2001
 [34] S. McKee, "Dynamic Access Ordering: Bounds on Memory Bandwidth, " Univ. of Virginia, Technical Report CS-94-

38, Oct. 1994.
 [35] M. Franklin, G. Sohi, “ARB: A Hardware Mechanism for Dynamic Reordering of Memory References”. IEEE

Transactions on Computers. Vol. 45, No. 5, 1996.
 [36] S. Sair, M. Charney, “Memory Behavior of the SPEC 2000 Benchmark Suite”, IBM Research Report. October, 2000.
 [37] S. Hong, S. McKee, M. Salinas, R Klenke, J Aylor, W. Wulf, “Access Order and Effective Bandwidth for Stream on a

Direct Rambus Memory” , The 5th International Symposium on High-Performance Computer Architecture. Jan. 1999.
 [38] 1 Gbit DDR2 SDRAM device datasheet, Micron Inc.
 [39] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M. Irwin, “Hardware and Software Techniques

for Controlling DRAM Power Modes” , Seventh International Symposium on High-Performance Computer
Architecture (HPCA'01), Jan. 2001.

 [40] J. McCalpin, “STREAM: Sustainable Bandwidth in High Performance Computers”,
http://www.cs.virginia.edu/stream/ .

 [41] “ Intel 875P Chipset: Intel 82875P Memory Controller Hub (MCH) Datasheet” , http://www.intel.com .
 [42] C. Zhang, S McKee, “Hardware-Only Stream Prefetching and Dynamic Access Ordering”, Proceedings of the 14th

international conference on Supercomputing, 2000.
 [43] J. Alakarhu, “A Comparison of Precharge Policies with Modern DRAM Architectures” , Proceedings of the 9th

International Conference on Eletronics, Circuits and Systems, Vol. 2, pp. 823-826, Sept 2002.
 [44] K. Hiraki, T. Shimada, S. Sekiguchi, “Empiracle study of latency hiding on fine-grain parallel processor” , Proceedings

of the 7th International Conference on Supercomputing, pp. 220-229, 1993.
 [45] D. Tullsen, S. Eggers, and H. Levy, "Simultaneous Multithreading: Maximizing On-Chip Parallelism", Proceedings

of the 22nd International Symposium on Computer Architecture, June 1995.
 [46] S. Rixner, “Memory Controller Optimizations for Web Servers”, Proceedings of the 37th International Symposium

on Microarchitecture. Dec. 2004.
 [47] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter, W. Hsieh, S. McKee, “The Impulse Memory

Controller” , IEEE Transactions on Computers Vol. 50 , Issue 11, Nov. 2001.
 [48] C. Natarajan, B. Christenson, F. Briggs, “A Study of Performance Impact of Memory Controller Features in Multi-

Processor Server Environment” , Proceedings of the 3rd Workshop on Memory Performance Issues (WMPI-2004)
 [49] F. Briggs, M. Cekleov, K. Creta, M. Khare, S. Kulick, A. Kumar, L. Looi, C. Natarajan, S. Radhakrishnan, L. Rankin,

“ Intel 870: A Building Block for Cost-Effective, Scalable Servers” , IEEE Micro, ,Vol. 22, No. 2, Mar. 2002.
 [50] Z. Zhu, Z. Zhang, “A Performance Comparison of DRAM Memory System Optimizations for SMT Processors”.

Proceedings of the 11th International Symposium on High-Performance Computer Architecture, Feb. 2005.
 [51] I. Hur, C. Lin, “Adaptive History-Based Memory Schedulers”, Proceedings of the 37th International Symposium on

Microarchitecture. Dec. 2004.

238

 [52] S. Leibson, “Jesse Lipcon: Interview with a pioneer”, Microprocessor Reports, Volume 14, Archive 12, December,
2000.

 [53] K Krewell, “Alpha EV7 Processor: A High Performance Tradition Continues”, Compaq EV7 Whitepaper, Reed
Electronics Group. In-stat MDR, April 2002.

 [54] J. Pawlowski, “Memory Performance Tutorial” , Tutorial given at the 11th International Symposium on High-
Performance Computer Architecture, Feb. 2005.

	ToCTitle - Table of Contents
	ChapterTitleTOC - CHAPTER 1 Introduction 1
	Heading1TOC - 1.1 Problem Description 2
	Heading1TOC - 1.2 Contributions and Significance 4
	Heading1TOC - 1.3 Organization of Dissertation 6

	ChapterTitleTOC - CHAPTER 2 DRAM Device: Basic Circuits and Architecture 7
	Heading1TOC - 2.1 Introduction: 7
	Heading1TOC - 2.2 DRAM Device Organization 8
	Heading1TOC - 2.3 DRAM Storage Cells 11
	Heading2TOC - 2.3.1 Cell capacitance, Leakage and Refresh 11

	Heading1TOC - 2.4 DRAM Array Structures 13
	Heading1TOC - 2.5 Differential Sense Amplifier 15
	Heading2TOC - 2.5.1 Functionality of Sense Amplifiers in DRAM Devices 15
	Heading2TOC - 2.5.2 Circuit Diagram of a Basic Sense Amplifier 16
	Heading2TOC - 2.5.3 Basic Sense Amplifier Operation 18
	Heading2TOC - 2.5.4 Voltage Waveform of Basic Sense Amplifier Operation 20
	Heading2TOC - 2.5.5 Writing into DRAM Array 22

	Heading1TOC - 2.6 DRAM Device Control Logic 23
	Heading2TOC - 2.6.1 Mode Register Based Programmability 25

	Heading1TOC - 2.7 DRAM Device Configuration 26
	Heading2TOC - 2.7.1 Device Configuration Trade-offs 27

	Heading1TOC - 2.8 Data I/O 29
	Heading2TOC - 2.8.1 Burst Lengths and Burst Ordering 29
	Heading2TOC - 2.8.2 N-bit Prefetch 30

	Heading1TOC - 2.9 DRAM Device Packaging 32
	Heading1TOC - 2.10 A 256 Mbit SDRAM Device 34
	Heading2TOC - 2.10.1 SDRAM Device Block Diagram 34
	Heading2TOC - 2.10.2 Pin Assignment and Functionality 35

	Heading1TOC - 2.11 Process Technology and Scaling Considerations 37
	Heading2TOC - 2.11.1 Cost Considerations 37
	Heading2TOC - 2.11.2 DRAM-versus-Logic Optimized Process Technologies 38

	ChapterTitleTOC - CHAPTER 3 DRAM Memory System Organization 41
	Heading1TOC - 3.1 Conventional Memory system 41
	Heading1TOC - 3.2 Basic Nomenclature 43
	Heading2TOC - 3.2.1 Channel 44
	Heading2TOC - 3.2.2 Rank 48
	Heading2TOC - 3.2.3 Bank 49
	Heading2TOC - 3.2.4 Row 50
	Heading2TOC - 3.2.5 Column 51
	Heading2TOC - 3.2.6 Memory System Organization: An Example 52

	Heading1TOC - 3.3 Memory Modules 53
	Heading2TOC - 3.3.1 Single In-line Memory Module (SIMM) 55
	Heading2TOC - 3.3.2 Dual In-line Memory Module (DIMM) 56
	Heading2TOC - 3.3.3 Registered Memory Module 57
	Heading2TOC - 3.3.4 Memory Module Organization 59
	Heading2TOC - 3.3.5 Serial Presence Detect (SPD) 60

	Heading1TOC - 3.4 Memory System Topology 61
	Heading2TOC - 3.4.1 Direct RDRAM System Topology 62

	ChapterTitleTOC - CHAPTER 4 DRAM Memory Access Protocol 64
	Heading1TOC - 4.1 Basic DRAM Commands: 65
	Heading2TOC - 4.1.1 Generic DRAM Command Format 67
	Heading2TOC - 4.1.2 Summary of Timing Parameters 69
	Heading2TOC - 4.1.3 Row Access Command 70
	Heading2TOC - 4.1.4 Column Read Command 71
	Heading2TOC - 4.1.5 Column Write Command 72
	Heading2TOC - 4.1.6 Precharge Command 73
	Heading2TOC - 4.1.7 Refresh Command 74
	Heading2TOC - 4.1.8 A Read Cycle 77
	Heading2TOC - 4.1.9 Complex Commands 78

	Heading1TOC - 4.2 DRAM Command Interactions 81
	Heading2TOC - 4.2.1 Consecutive Reads to Same Rank 82
	Heading2TOC - 4.2.2 Consecutive Reads to Different Rows of Same Bank 83
	Heading2TOC - 4.2.3 Consecutive Reads to Different Banks: Bank Conflict 86
	Heading2TOC - 4.2.4 Consecutive Read Requests to Different Ranks 88
	Heading2TOC - 4.2.5 Consecutive Write Requests: Open Banks 89
	Heading2TOC - 4.2.6 Consecutive Write Requests: Bank Conflicts 90
	Heading2TOC - 4.2.7 Write Request Following Read Request: Open Banks 92
	Heading2TOC - 4.2.8 Write Following Read: Same Bank, Conflict, Best Case 93
	Heading2TOC - 4.2.9 Write Following Read: Different Banks, Conflict, Best Case 94
	Heading2TOC - 4.2.10 Read Following Write to Same Rank, Open Banks 95
	Heading2TOC - 4.2.11 Read Following Write to Different Ranks, Open Banks 96
	Heading2TOC - 4.2.12 Read Following Write to Same Bank, Bank Conflict 97
	Heading2TOC - 4.2.13 Read Following Write: Different Banks Same Rank, Conflict: Best Case 98

	Heading1TOC - 4.3 Minimum Scheduling Distances 100
	Heading1TOC - 4.4 Additional Constraints: Power 102
	Heading2TOC - 4.4.1 tRRD: Row to Row (activation) Delay 104
	Heading2TOC - 4.4.2 tFAW: Four Bank Activation Window 105

	Heading1TOC - 4.5 DDR2 SDRAM Protocol 107
	Heading2TOC - 4.5.1 DDR2 SDRAM Memory System Basics 107
	Heading2TOC - 4.5.2 Typical Parameter Values 108

	Heading1TOC - 4.6 Summary 110

	ChapterTitleTOC - CHAPTER 5 DRAM Memory Controller 112
	Heading1TOC - 5.1 Primary Functions 112
	Heading1TOC - 5.2 Row-buffer Management Policy 114
	Heading2TOC - 5.2.1 Open-Page Row-buffer Management Policy 114
	Heading2TOC - 5.2.2 Close-Page Row-Buffer Management Policy 115

	Heading1TOC - 5.3 Address Mapping Scheme 117
	Heading2TOC - 5.3.1 System Organization Variable Definition 117
	Heading2TOC - 5.3.2 Available Parallelism in DRAM System Organization 118
	Heading2TOC - 5.3.3 Baseline Address Mapping Schemes 121
	Heading2TOC - 5.3.4 Parallelism versus Expansion Capability 123
	Heading2TOC - 5.3.5 Bank Address Aliasing (stride collision) 124

	Heading1TOC - 5.4 Memory Transaction and DRAM Command Ordering Schemes 129
	Heading2TOC - 5.4.1 Write Caching 130
	Heading2TOC - 5.4.2 DRAM-Bank-Centric Request Queuing Organization 131
	Heading2TOC - 5.4.3 Feedback Directed Scheduling 133

	ChapterTitleTOC - CHAPTER 6 Performance Analysis Methodology: Request Access Distances: 134
	Heading1TOC - 6.1 Motivation 134
	Heading2TOC - 6.1.1 DRAM Device Scaling Considerations 135
	Heading2TOC - 6.1.2 Execution Based Analytical Framework 136
	Heading2TOC - 6.1.3 Trace Based Analytical Framework 138
	Heading2TOC - 6.1.4 Trace Based versus Execution Based Analytical Framework 138

	Heading1TOC - 6.2 The Request Access Distance Framework 140
	Heading2TOC - 6.2.1 Computing DRAM Protocol Overhead 141
	Heading2TOC - 6.2.2 Computing Row Cycle Time Constraints 142
	Heading2TOC - 6.2.3 Computing tFAW Constraints 146
	Heading2TOC - 6.2.4 DRAM Memory System Bandwidth Efficiency Computation 149
	Heading2TOC - 6.2.5 System Configuration 149

	Heading1TOC - 6.3 Impact of Refresh 151
	Heading1TOC - 6.4 Applied Examples 153
	Heading2TOC - 6.4.1 Close-Page System Example 153
	Heading2TOC - 6.4.2 Open-Page System Example 154

	ChapterTitleTOC - CHAPTER 7 DRAM Memory System Performance Analysis: Results 156
	Heading1TOC - 7.1 Introduction 156
	Heading2TOC - 7.1.1 Workloads 157

	Heading1TOC - 7.2 Close-page System Performance Analysis 158
	Heading2TOC - 7.2.1 System Configuration Assumptions 158
	Heading2TOC - 7.2.2 Workload Characteristics: 164.gzip 160
	Heading2TOC - 7.2.3 tFAW Limitations in Close-page Systems: All Workloads 163
	Heading2TOC - 7.2.4 Bank Comparison: 8 versus 16: All Workloads 164
	Heading2TOC - 7.2.5 Burst Length Impact: SPEC Workloads 166
	Heading2TOC - 7.2.6 Queue Depth Analysis 170

	Heading1TOC - 7.3 Open-page System Performance Analysis 172
	Heading2TOC - 7.3.1 System Configuration Assumptions 172
	Heading2TOC - 7.3.2 Address Mapping 173
	Heading2TOC - 7.3.3 Average of All Workloads 174
	Heading2TOC - 7.3.4 Workload Characteristics: 164.gzip 176
	Heading2TOC - 7.3.5 Workload Characteristics: 255.vortex 177
	Heading2TOC - 7.3.6 tFAW Limitations in Open-page System: All Workloads 179
	Heading2TOC - 7.3.7 Configuration Comparison: 1R8B vs. 2R8B vs. 1R16B vs. 2R16B 180

	Heading1TOC - 7.4 DRAM Performance Analysis Summary 182

	ChapterTitleTOC - CHAPTER 8 Power-Constrained DDRx Scheduling Algorithm 183
	Heading1TOC - 8.1 Introduction 183
	Heading1TOC - 8.2 Background Information 185
	Heading2TOC - 8.2.1 Row Buffer Management Policy 185
	Heading2TOC - 8.2.2 Timing Parameters 186
	Heading2TOC - 8.2.3 Bank Activation Window Limited Memory System 186
	Heading2TOC - 8.2.4 Consecutive Commands to Different Ranks: Data Bus Synchronization 187

	Heading1TOC - 8.3 Proposed Rank Hopping Scheduling Algorithm 190
	Heading1TOC - 8.4 Experimental Methodology 193
	Heading2TOC - 8.4.1 Simulation Framework 193
	Heading2TOC - 8.4.2 System Configuration 197
	Heading2TOC - 8.4.3 Address Mapping and Row Buffer Management Policy 197
	Heading2TOC - 8.4.4 Structural Enhancement to Bus Interface Unit 198
	Heading2TOC - 8.4.5 Write Sweeping 199
	Heading2TOC - 8.4.6 Transaction Ordering Policy 201
	Heading2TOC - 8.4.7 Workloads 203

	Heading1TOC - 8.5 Simulation Results 204
	Heading2TOC - 8.5.1 Improvement in Sustained Bandwidth 204
	Heading2TOC - 8.5.2 Workload Speedups 205
	Heading2TOC - 8.5.3 Memory Access Latency Distribution 206

	Heading1TOC - 8.6 Quick Summary of the Rank Hopping Algorithm 210

	ChapterTitleTOC - CHAPTER 9 Concluding Remarks 212
	Heading1TOC - 9.1 Summary and Contributions 212
	Heading1TOC - 9.2 Limitations 214
	Heading1TOC - 9.3 Related Work 215
	Heading1TOC - 9.4 Future Work 216

	ChapterTitleTOC - APPENDIX A Workload Descriptions 217
	Heading1TOC - A.1 Trace Fundamentals 217
	Heading1TOC - A.2 Description of Workloads 219
	Heading2TOC - A.2.1 164.gzip: C Compression 220
	Heading2TOC - A.2.2 176.gcc: C Programming Language Compiler 221
	Heading2TOC - A.2.3 197.parser: C Word Processing 222
	Heading2TOC - A.2.4 255.vortex: C Object-oriented Database 223
	Heading2TOC - A.2.5 172.mgrid: Fortran 77 Multi-grid Solver: 3D Potential Field 224
	Heading2TOC - A.2.6 178.galgel: Fortran 90 Computational Fluid Dynamics 225
	Heading2TOC - A.2.7 179.art (SPEC CPU 2000 FP Suite) 226
	Heading2TOC - A.2.8 183.equake: C Seismic Wave Propagation Simulation 227
	Heading2TOC - A.2.9 188.ammp: C Computational Chemistry 228
	Heading2TOC - A.2.10 JMark 2.0 - AWT, CPU and Complex Arithmetic 229
	Heading2TOC - A.2.11 3DWinbench - CPU 230
	Heading2TOC - A.2.12 SETI@Home - 3 Segments 231
	Heading2TOC - A.2.13 Quake 3 - 5 Segments 232

	ChapterTitleTOC - APPENDIX B Glossary of Terminology 234
	ChapterTitleTOC - Bibliography 236

	ChapterTitle - CHAPTER 1 Introduction
	Heading1 - 1.1 Problem Description
	Heading1 - 1.2 Contributions and Significance
	Heading1 - 1.3 Organization of Dissertation

	ChapterTitle - CHAPTER 2 DRAM Device: Basic Circuits and Architecture
	Heading1 - 2.1 Introduction:
	Heading1 - 2.2 DRAM Device Organization
	Figure - Figure 2.1: 64 Mbit Fast Page Mode DRAM Device (4096 x 1024 x 16)

	Heading1 - 2.3 DRAM Storage Cells
	Figure - Figure 2.2: Basic 1T1C DRAM Cell Structure
	Heading2 - 2.3.1 Cell capacitance, Leakage and Refresh

	Heading1 - 2.4 DRAM Array Structures
	Figure - Figure 2.3: Top Down view of DRAM array.

	Heading1 - 2.5 Differential Sense Amplifier
	Heading2 - 2.5.1 Functionality of Sense Amplifiers in DRAM Devices
	Heading2 - 2.5.2 Circuit Diagram of a Basic Sense Amplifier
	Figure - Figure 2.4: Basic sense amplifier circuit diagram

	Heading2 - 2.5.3 Basic Sense Amplifier Operation
	Figure - Figure 2.5: Illustrated diagrams of sense amplifier operation. Read(1) example

	Heading2 - 2.5.4 Voltage Waveform of Basic Sense Amplifier Operation
	Figure - Figure 2.6: Simplified sense amplifier voltage waveform. Read(1) example

	Heading2 - 2.5.5 Writing into DRAM Array
	Figure - Figure 2.7: Row activation followed by column write into DRAM array

	Heading1 - 2.6 DRAM Device Control Logic
	Figure - Figure 2.8: Control logic for 32 Mbit FPM DRAM device
	Heading2 - 2.6.1 Mode Register Based Programmability
	Figure - Figure 2.9: Programmable mode register in an SDRAM device

	Heading1 - 2.7 DRAM Device Configuration
	TableTitle - TABLE 2.1: Three different configurations of 256 Mbit SDRAM device
	Heading2 - 2.7.1 Device Configuration Trade-offs
	TableTitle - TABLE 2.2: Three different configurations of 1 Gbit DDR2 SDRAM device

	Heading1 - 2.8 Data I/O
	Heading2 - 2.8.1 Burst Lengths and Burst Ordering
	Figure - Figure 2.10: Burst lengths in DRAM devices

	Heading2 - 2.8.2 N-bit Prefetch
	Figure - Figure 2.11: Data I/O in DDR SDRAM device illustrating 2-bit prefetch

	Heading1 - 2.9 DRAM Device Packaging
	TableTitle - TABLE 2.3: ITRS roadmap projections for package pin count and costs
	Figure - Figure 2.12: DRAM device packages

	Heading1 - 2.10 A 256 Mbit SDRAM Device
	Figure - Figure 2.13: 256 Mbit SDRAM device from Micron
	Heading2 - 2.10.1 SDRAM Device Block Diagram
	Figure - Figure 2.14: SDRAM Device Architecture with 4 Banks

	Heading2 - 2.10.2 Pin Assignment and Functionality
	TableTitle - TABLE 2.4: SDRAM commands

	Heading1 - 2.11 Process Technology and Scaling Considerations
	Heading2 - 2.11.1 Cost Considerations
	Heading2 - 2.11.2 DRAM-versus-Logic Optimized Process Technologies
	Figure - Figure 2.15: Comparison of DRAM Optimized Process versus Logic Optimized Process

	ChapterTitle - CHAPTER 3 DRAM Memory System Organization
	Heading1 - 3.1 Conventional Memory system
	Figure - Figure 3.1: Multiple DRAM devices connected to a processor through a memory controller

	Heading1 - 3.2 Basic Nomenclature
	Heading2 - 3.2.1 Channel
	Figure - Figure 3.2: Systems with single memory controller and different data bus widths
	Figure - Figure 3.3: Systems with two independent memory controllers and two logical channels
	Figure - Figure 3.4: High performance DMC with 4 channels of interleaved FPM DRAM devices

	Heading2 - 3.2.2 Rank
	Figure - Figure 3.5: Memory System with 2 ranks of DRAM devices

	Heading2 - 3.2.3 Bank
	Figure - Figure 3.6: SDRAM device with 4 banks of DRAM arrays internally

	Heading2 - 3.2.4 Row
	Figure - Figure 3.7: DRAM devices with 4 banks, 8192 rows per bank, 512 columns per row, and 16 b...

	Heading2 - 3.2.5 Column
	Figure - Figure 3.8: Classical DRAM system topology, width of data bus equals column size

	Heading2 - 3.2.6 Memory System Organization: An Example
	Figure - Figure 3.9: Location of data in a DRAM memory system

	Heading1 - 3.3 Memory Modules
	Figure - Figure 3.10: An 80386sx system board with sockets for dual in-line package DRAM devices
	Heading2 - 3.3.1 Single In-line Memory Module (SIMM)
	Figure - Figure 3.11: A one megabyte 30 pin SIMM

	Heading2 - 3.3.2 Dual In-line Memory Module (DIMM)
	Figure - Figure 3.12: A 128 MB PC3200 ECC DDR SDRAM Dual In-line Memory Module

	Heading2 - 3.3.3 Registered Memory Module
	Figure - Figure 3.13: Edge view of a registered DIMM stacked with 2 ranks of DRAM devices in TSOP...
	Figure - Figure 3.14: Registered latches buffer the address and command. Also introduces addition...

	Heading2 - 3.3.4 Memory Module Organization
	TableTitle - TABLE 3.1: Four different configurations for a 128 MB SDRAM memory module

	Heading2 - 3.3.5 Serial Presence Detect (SPD)
	Figure - Figure 3.15: The SPD stores memory module configuration information

	Heading1 - 3.4 Memory System Topology
	Figure - Figure 3.16: Topology of a generic DRAM memory system
	Heading2 - 3.4.1 Direct RDRAM System Topology
	Figure - Figure 3.17: Topology of a generic Direct RDRAM memory system

	ChapterTitle - CHAPTER 4 DRAM Memory Access Protocol
	Heading1 - 4.1 Basic DRAM Commands:
	Figure - Figure 4.1: Command and data movement on generic SDRAM device
	Heading2 - 4.1.1 Generic DRAM Command Format
	Figure - Figure 4.2: Different phase of an abstract DRAM commands in a generic DRAM device

	Heading2 - 4.1.2 Summary of Timing Parameters
	TableTitle - TABLE 4.1: Summary of timing parameters used in generic DRAM access protocol

	Heading2 - 4.1.3 Row Access Command
	Figure - Figure 4.3: Row Access command and timing

	Heading2 - 4.1.4 Column Read Command
	Figure - Figure 4.4: Column Read command and timing

	Heading2 - 4.1.5 Column Write Command
	Figure - Figure 4.5: Column Write command and timing for SDRAM, DDR SDRAM and DDR2 SDRAM
	Figure - Figure 4.6: Row precharge command and timing

	Heading2 - 4.1.6 Precharge Command
	Figure - Figure 4.7: Row refresh timing

	Heading2 - 4.1.7 Refresh Command
	TableTitle - TABLE 4.2: Refresh cycle times of DDR2 SDRAM devices

	Heading2 - 4.1.8 A Read Cycle
	Figure - Figure 4.8: One read cycle in a “close-page” memory system

	Heading2 - 4.1.9 Complex Commands
	Figure - Figure 4.9: One “read cycle” with single column read and precharge command.
	Figure - Figure 4.10: One “read cycle” with single do-it-all read command.
	Figure - Figure 4.11: Delayed column read command with posted CAS

	Heading1 - 4.2 DRAM Command Interactions
	Heading2 - 4.2.1 Consecutive Reads to Same Rank
	Figure - Figure 4.12: Consecutive column read commands to same bank, rank and channel

	Heading2 - 4.2.2 Consecutive Reads to Different Rows of Same Bank
	Heading3 - Best Case Scenario:
	Figure - Figure 4.13: Consecutive column read commands to different rows of same bank: best case ...

	Heading3 - Worst Case Scenario:
	Figure - Figure 4.14: Consecutive column read commands to different rows of same bank: worst case...

	Heading2 - 4.2.3 Consecutive Reads to Different Banks: Bank Conflict
	Heading3 - Without Command Re-Ordering
	Figure - Figure 4.15: Consecutive DRAM read commands to different banks, bank conflict, no comman...

	Heading3 - With Command Re-Ordering
	Figure - Figure 4.16: Consecutive DRAM read commands to different banks, bank conflict, with comm...

	Heading2 - 4.2.4 Consecutive Read Requests to Different Ranks
	Figure - Figure 4.17: Back-to-back column read commands to different ranks

	Heading2 - 4.2.5 Consecutive Write Requests: Open Banks
	Figure - Figure 4.18: Consecutive write commands to different ranks

	Heading2 - 4.2.6 Consecutive Write Requests: Bank Conflicts
	Figure - Figure 4.19: Consecutive write commands, bank conflict best cases

	Heading2 - 4.2.7 Write Request Following Read Request: Open Banks
	Figure - Figure 4.20: Write command following read command to open banks

	Heading2 - 4.2.8 Write Following Read: Same Bank, Conflict, Best Case
	Figure - Figure 4.21: Write command following read command to same bank: bank conflict, best case

	Heading2 - 4.2.9 Write Following Read: Different Banks, Conflict, Best Case
	Figure - Figure 4.22: Write command following read command to different banks: bank conflict, bes...

	Heading2 - 4.2.10 Read Following Write to Same Rank, Open Banks
	Figure - Figure 4.23: Read following write to same rank of DRAM devices

	Heading2 - 4.2.11 Read Following Write to Different Ranks, Open Banks
	Figure - Figure 4.24: Read following write to different ranks of DRAM devices

	Heading2 - 4.2.12 Read Following Write to Same Bank, Bank Conflict
	Figure - Figure 4.25: Read following write to different rows of the same bank: best case

	Heading2 - 4.2.13 Read Following Write: Different Banks Same Rank, Conflict: Best Case
	Figure - Figure 4.26: Read following write to different banks, bank conflict, best case

	Heading1 - 4.3 Minimum Scheduling Distances
	TableTitle - TABLE 4.3: Minimum timing for consecutive read and write transactions: open-page

	Heading1 - 4.4 Additional Constraints: Power
	Figure - Figure 4.27: : Current Profile of a DRAM Read Cycle
	Figure - Figure 4.28: : Current Profile of Two Pipelined DRAM Read Cycles
	Heading2 - 4.4.1 tRRD: Row to Row (activation) Delay
	TableTitle - TABLE 4.4: tRRD and tFAW for 1 Gbit DDR2 SDRAM device from Micron

	Heading2 - 4.4.2 tFAW: Four Bank Activation Window
	Figure - Figure 4.29: : Maximum of Four Row Activations in any tFAW time frame

	Heading1 - 4.5 DDR2 SDRAM Protocol
	Figure - Figure 4.30: A column read command and a column write command in DDR2 SDRAM system
	Heading2 - 4.5.1 DDR2 SDRAM Memory System Basics
	Heading2 - 4.5.2 Typical Parameter Values
	TableTitle - TABLE 4.5: Typical timing parameter values of DDR2 SDRAM Devices

	Heading1 - 4.6 Summary

	ChapterTitle - CHAPTER 5 DRAM Memory Controller
	Heading1 - 5.1 Primary Functions
	Heading1 - 5.2 Row-buffer Management Policy
	Heading2 - 5.2.1 Open-Page Row-buffer Management Policy
	Heading2 - 5.2.2 Close-Page Row-Buffer Management Policy

	Heading1 - 5.3 Address Mapping Scheme
	Heading2 - 5.3.1 System Organization Variable Definition
	TableTitle - TABLE 5.1: Summary of System Configuration Variables

	Heading2 - 5.3.2 Available Parallelism in DRAM System Organization
	Heading3 - channel:
	Heading3 - rank:
	Heading3 - bank:
	Heading3 - row:
	Heading3 - column:

	Heading2 - 5.3.3 Baseline Address Mapping Schemes
	Heading3 - Open-page Baseline Address Mapping Scheme
	Heading3 - Close-page Baseline Address Mapping Scheme

	Heading2 - 5.3.4 Parallelism versus Expansion Capability
	Heading2 - 5.3.5 Bank Address Aliasing (stride collision)
	Heading3 - Proposed Solution to Alleviate Address Aliasing
	Figure - Figure 5.1: Address mapping scheme proposed by Lin et. al.
	Figure - Figure 5.2: Address mapping scheme proposed by Zhang et. al.

	Heading3 - Problems with Proposed Solutions
	Heading3 - An Address Aliasing Example: STREAM on a Desktop Personal Computer
	TableTitle - TABLE 5.2: : Measured STREAM Results: With and Without OFFSET

	Heading1 - 5.4 Memory Transaction and DRAM Command Ordering Schemes
	Heading2 - 5.4.1 Write Caching
	Figure - Figure 5.3: Write command following read command to open banks

	Heading2 - 5.4.2 DRAM-Bank-Centric Request Queuing Organization
	Figure - Figure 5.4: Per Bank Organization of DRAM Request Queues

	Heading2 - 5.4.3 Feedback Directed Scheduling

	ChapterTitle - CHAPTER 6 Performance Analysis Methodology: Request Access Distances:
	Heading1 - 6.1 Motivation
	Heading2 - 6.1.1 DRAM Device Scaling Considerations
	Figure - Figure 6.1: DRAM datarate and row cycle time scaling trends

	Heading2 - 6.1.2 Execution Based Analytical Framework
	Figure - Figure 6.2: Abstract illustration of DRAM system data bus activity

	Heading2 - 6.1.3 Trace Based Analytical Framework
	Heading2 - 6.1.4 Trace Based versus Execution Based Analytical Framework

	Heading1 - 6.2 The Request Access Distance Framework
	Figure - Figure 6.3: Abstract illustration of DRAM system data bus activity
	Heading2 - 6.2.1 Computing DRAM Protocol Overhead
	TableTitle - TABLE 6.1: Table of Request Access Distance Overhead

	Heading2 - 6.2.2 Computing Row Cycle Time Constraints
	Figure - Figure 6.4: Consecutive Read Commands to Same Bank: Bank Conflict
	TableTitle - TABLE 6.2: Request Access Distance Terminologies Defined
	Figure - Figure 6.5: Definition of Idling Distances for Request j

	Heading2 - 6.2.3 Computing tFAW Constraints
	Figure - Figure 6.6: Formula for Maximum Number of Bank Activations per tRC window
	Figure - Figure 6.7: Formula for Additional Idling Distance Di-xtra (j) for Request j
	Figure - Figure 6.8: Definition of Idling Distance Di-total(j) for Request j - Constrained by tFAW

	Heading2 - 6.2.4 DRAM Memory System Bandwidth Efficiency Computation
	Figure - Figure 6.9: Bandwidth Efficiency of Request Stream

	Heading2 - 6.2.5 System Configuration
	Figure - Figure 6.10: Request Access Distance in a close-page system with per-bank queues and rou...

	Heading1 - 6.3 Impact of Refresh
	Heading1 - 6.4 Applied Examples
	Heading2 - 6.4.1 Close-Page System Example
	Figure - Figure 6.11: Efficiency Computation Example: Close-Page Dm = 7

	Heading2 - 6.4.2 Open-Page System Example
	Figure - Figure 6.12: Efficiency Computation Example: open-page, Dm-ff = 8, Dm-lf = 4

	ChapterTitle - CHAPTER 7 DRAM Memory System Performance Analysis: Results
	Heading1 - 7.1 Introduction
	Heading2 - 7.1.1 Workloads

	Heading1 - 7.2 Close-page System Performance Analysis
	Heading2 - 7.2.1 System Configuration Assumptions
	Figure - Figure 7.1: Close-page studies system configuration
	Heading3 - Re-Ordering Queue Depth
	Heading3 - DRAM protocol overhead

	Heading2 - 7.2.2 Workload Characteristics: 164.gzip
	Figure - Figure 7.2: 164.gzip bandwidth efficiency graph
	Heading3 - Maximum Sustainable Bandwidth of 164.gzip Address Trace in Close-page Systems
	Figure - Figure 7.3: 164.gzip maximum sustainable bandwidth: close-page

	Heading2 - 7.2.3 tFAW Limitations in Close-page Systems: All Workloads
	Figure - Figure 7.4: tFAW impact: comparing tFAW = tRC versus tFAW = tRC/2

	Heading2 - 7.2.4 Bank Comparison: 8 versus 16: All Workloads
	Figure - Figure 7.5: Mean and median bandwidth improvements: 8 banks versus 16 banks

	Heading2 - 7.2.5 Burst Length Impact: SPEC Workloads
	Figure - Figure 7.6: Ratio of request throughput: burst of four versus burst of eight

	Heading2 - 7.2.6 Queue Depth Analysis
	Figure - Figure 7.7: Sustainable bandwidth: re-ordering versus FIFO

	Heading1 - 7.3 Open-page System Performance Analysis
	Heading2 - 7.3.1 System Configuration Assumptions
	Figure - Figure 7.8: Open-page studies system configuration
	Heading3 - DRAM protocol overhead

	Heading2 - 7.3.2 Address Mapping
	Figure - Figure 7.9: Open-page address mapping scheme

	Heading2 - 7.3.3 Average of All Workloads
	Figure - Figure 7.10: Maximum bandwidth averages: all workloads

	Heading2 - 7.3.4 Workload Characteristics: 164.gzip
	Figure - Figure 7.11: 164.gzip maximum sustainable bandwidth: open-page

	Heading2 - 7.3.5 Workload Characteristics: 255.vortex
	Figure - Figure 7.12: 255.vortex maximum sustainable bandwidth: open-page

	Heading2 - 7.3.6 tFAW Limitations in Open-page System: All Workloads
	Figure - Figure 7.13: Comparing tFAW = tRC/2 versus tFAW = tRC in open-page system

	Heading2 - 7.3.7 Configuration Comparison: 1R8B vs. 2R8B vs. 1R16B vs. 2R16B
	Figure - Figure 7.14: All workloads mean sustainable bandwidth: cross comparisons
	Heading3 - Mean Bandwidth Improvements: Open-page and Close-page.
	Figure - Figure 7.15: Mean bandwidth improvements: close-page and open-page

	Heading1 - 7.4 DRAM Performance Analysis Summary

	ChapterTitle - CHAPTER 8 Power-Constrained DDRx Scheduling Algorithm
	Heading1 - 8.1 Introduction
	Heading1 - 8.2 Background Information
	Heading2 - 8.2.1 Row Buffer Management Policy
	Heading2 - 8.2.2 Timing Parameters
	TableTitle - TABLE 8.1: Summary of timing parameters

	Heading2 - 8.2.3 Bank Activation Window Limited Memory System
	Figure - Figure 8.1: Maximum of Four Row Activations in any tFAW time frame

	Heading2 - 8.2.4 Consecutive Commands to Different Ranks: Data Bus Synchronization
	Figure - Figure 8.2: Consecutive Read Command to Alternate Ranks in DDR3 SDRAM (@ 1 Gbps)
	Figure - Figure 8.3: : Paired Row and Column Command Scheduling Algorithm @ 1 Gbps

	Heading1 - 8.3 Proposed Rank Hopping Scheduling Algorithm
	Figure - Figure 8.4: Row and Column Command Sequences in Rank Hopping Algorithm

	Heading1 - 8.4 Experimental Methodology
	Heading2 - 8.4.1 Simulation Framework
	Figure - Figure 8.5: MASE Simulator Structure
	Figure - Figure 8.6: : Memory System Enhancement to MASE

	Heading2 - 8.4.2 System Configuration
	Heading2 - 8.4.3 Address Mapping and Row Buffer Management Policy
	Figure - Figure 8.7: Close-page-optimal address mapping for 2 GB DDR3 SDRAM memory system

	Heading2 - 8.4.4 Structural Enhancement to Bus Interface Unit
	Heading2 - 8.4.5 Write Sweeping
	Figure - Figure 8.8: : Read Command following Write Command to Same Rank

	Heading2 - 8.4.6 Transaction Ordering Policy
	Figure - Figure 8.9: : Address Sequence for Bank Round Robin Transaction Ordering Policy
	Figure - Figure 8.10: : Address Sequence for Rank Hopping Transaction Ordering Policy

	Heading2 - 8.4.7 Workloads
	TableTitle - TABLE 8.2: SPEC CPU 2000 workloads used in study

	Heading1 - 8.5 Simulation Results
	Heading2 - 8.5.1 Improvement in Sustained Bandwidth
	Figure - Figure 8.11: : Average Sustained Bandwidth through 2 Billion Instructions

	Heading2 - 8.5.2 Workload Speedups
	Figure - Figure 8.12: : IPC Speedup of BRR and CPRH Scheduling Relative to FCFS Scheduling
	Figure - Figure 8.13: : IPC Speedup of CPRH Scheduling Relative to BRR Scheduling

	Heading2 - 8.5.3 Memory Access Latency Distribution
	Figure - Figure 8.14: : Impact of Scheduling Policy on Memory Access Latency Distribution: 179.art
	Figure - Figure 8.15: Impact of Scheduling Policy on Memory Access Latency Distribution: 188.ammp

	Heading1 - 8.6 Quick Summary of the Rank Hopping Algorithm

	ChapterTitle - CHAPTER 9 Concluding Remarks
	Heading1 - 9.1 Summary and Contributions
	Heading1 - 9.2 Limitations
	Heading1 - 9.3 Related Work
	Heading1 - 9.4 Future Work

	ChapterTitle - APPENDIX A Workload Descriptions
	Heading1 - A.1 Trace Fundamentals
	Figure - Figure A.1: Sample Memory Request Trace Segments

	Heading1 - A.2 Description of Workloads
	Heading3 - MASE Traces (SPEC CPU 2000 Benchmarks)
	Heading3 - MASE Traces (SPEC CPU 2000 FP Benchmarks)
	Heading3 - AMD K6 Processor Bus Traces
	Heading2 - A.2.1 164.gzip: C Compression
	Figure - Figure A.2: : 164.Gzip trace overview

	Heading2 - A.2.2 176.gcc: C Programming Language Compiler
	Figure - Figure A.3: : 176.gcc trace overview

	Heading2 - A.2.3 197.parser: C Word Processing
	Figure - Figure A.4: : 197.parser trace overview
	Figure - Figure A.5: : 197.parser trace view closeup

	Heading2 - A.2.4 255.vortex: C Object-oriented Database
	Figure - Figure A.6: : 255.vortex Overview

	Heading2 - A.2.5 172.mgrid: Fortran 77 Multi-grid Solver: 3D Potential Field
	Figure - Figure A.7: : 172.mgrid trace overview

	Heading2 - A.2.6 178.galgel: Fortran 90 Computational Fluid Dynamics
	Figure - Figure A.8: : 178.galgel trace overview

	Heading2 - A.2.7 179.art (SPEC CPU 2000 FP Suite)
	Figure - Figure A.9: : 179.art trace overview

	Heading2 - A.2.8 183.equake: C Seismic Wave Propagation Simulation
	Figure - Figure A.10: : 172.mgrid trace overview

	Heading2 - A.2.9 188.ammp: C Computational Chemistry
	Figure - Figure A.11: : 188.ammp trace overview

	Heading2 - A.2.10 JMark 2.0 - AWT, CPU and Complex Arithmetic
	Figure - Figure A.12: : JMark Abstract Windowing Toolkit Benchmark trace overview

	Heading2 - A.2.11 3DWinbench - CPU
	Figure - Figure A.13: : 3D Winbench trace overview

	Heading2 - A.2.12 SETI@Home - 3 Segments
	Figure - Figure A.14: : Portions of SETI@HOME Workload. Medium Memory Access Rate
	Figure - Figure A.15: : Portions of SETI@HOME Workload. Very High Memory Access Rate

	Heading2 - A.2.13 Quake 3 - 5 Segments
	Figure - Figure A.16: Quake 3: Random trace segment
	Figure - Figure A.17: : Quake 3: Random Segment 4

	ChapterTitle - APPENDIX B Glossary of Terminology
	Biblio - [1] W. Wakamiya, T. Timori, H. Ozaki, H. Itoh, K. Fujiwara, T. Shibano, H. Miyatake, A. ...
	Biblio - [2] H. Yamauchi, T. Yabu, T. Yamada, “A Circuit Design to Suppress Asymmetrical Characte...
	Biblio - [3] G. Bronner, H. Aochi, M. Gall, J. Gambino, S. Gernhardt, E. Hammerl, H. Ho, J. Iba, ...
	Biblio - [4] H. Geib, W. Raab, D. Schmitt-Landsiedel, “Block-Decoded Sense-Amplifier Driver for H...
	Biblio - [5] J. Ziegler, M. Nelson, J. Shell, R. Peterson, C. Gelderloos H. Muhlfeld, C. Montrose...
	Biblio - [6] J. Amon, A. Kieslich, L. Heineck, T. Schuster, J. Faul, J. Luetzen, C. Fan, C. Huang...
	Biblio - [7] S. Kuge, T. Kato, K. Furutani, S. Kikuda, K. Mitsui, T. Hamamoto, J. Setogawa, K. Ha...
	Biblio - [8] C. Radens, S. Kudelka, L. Nesbit, R. Malik, T. Dyer, C. Dubuc, T. Joseph, M. Seitz, ...
	Biblio - [9] H. Jeong, W. Yang, Y. Hwang, C. Cho, S. Park, S. Ahn, Y. Chun, S. Shin, S. Song, J. ...
	Biblio - [10] Y. Kim, S. Lee, S. Choi, H. Park, Y. Seo, K. Chin, D. Kim, J. Lim, W. Kim, K. Nam, ...
	Biblio - [11] J. Sim, H. Lee, K. Lim, J. Lee, N. Kim, K. Kim, S. Byun, W. Yang, C. Choi, H. Jeong...
	Biblio - [12] T. Kirihata, G. Mueller, M. Clinton, S. Loeffler, B. Ji, H. Terletzki, D. Hanson, C...
	Biblio - [13] T. Takahashi, T. Sekiguchi, R. Takemura, S. Narui, H. Fujisawa, S. Miyatake, M. Mor...
	Biblio - [14] T. Kirihata, G. Mueller, B. Ji, G. Frankowsky, J. Ross, H. Terletzki, D. Netis, O. ...
	Biblio - [15] R. Smith, J. Chlipala, J. Bindels R. Nelson, F. Fischer, T. Mantz, “Laser Programma...
	Biblio - [16] “Construction Analysis: Samsung KM44C4000J-7 16 Megabit DRAM”, Integrated Circuit E...
	Biblio - [17] “Construction Analysis: Hitachi 5165805A 64 Mbit (8 Mb x 8) Dynamic RAM”, Integrate...
	Biblio - [18] “Construction Analysis: Mitsubishi M5M465405AJ 64Mbit DRAM (16M x 4 bit)”, Integrat...
	Biblio - [19] J. Mandelman, R. Dennard, G. Bronner, J. DeBrosse, R. Divakaruni, Y. Li, and C. Rad...
	Biblio - [20] J. Barth, J. Dreibelbis, E. Nelson, D. Anand, G. Pomichter, P. Jakobsen, M. Nelms, ...
	Biblio - [21] E. Adler, J. DeBrosse, S. Geissler, S. Holmes, M. Jaffe, J. Johnson, C. Koburger, J...
	Biblio - [22] C. Kim, “Memory World in the Next Decade”, Memory Devision, Device Solution Network...
	Biblio - [23] J. Lee, Y. Ahn, Y. Park, M. Kim, D. Lee, K. Lee, C. Cho, T. Chung, K. Kim, “Robust ...
	Biblio - [24] Z. Zhang, Z. Zhu, X. Zhang, “Breaking Address Mapping Symmetry at Multi-levels of M...
	Biblio - [25] Z. Zhang, Z. Zhu, X. Zhang, “A Permutation-based Page Interleaving Scheme to Reduce...
	Biblio - [26] Z. Zhu, Z. Zhang, X. Zhang, "Fine-grain Priority Scheduling on Multi-channel Memory...
	Biblio - [27] W. Lin, S. Reinhardt, D. Burger, “Reducing DRAM Latencies with an Integrated Memory...
	Biblio - [28] V. Cuppu, B. Jacob, “Organization Design Trade-offs at the DRAM, Memory Bus and Mem...
	Biblio - [29] E. Larson, S Chatterjee, T. Austin “MASE: A Novel Infrastructure for Detailed Micro...
	Biblio - [30] J. Janzen, “Calculating Memory System Power for DDR SDRAM”, Micron Designline Vol. ...
	Biblio - [31] J. Janzen, “Calculating Memory System Power for DDR2”, Micron Designline Vol. 13, i...
	Biblio - [32] S. Rixner, W Dally, U. Kapasi, P. Mattson, J. Owens, “Memory Access Scheduling”, Pr...
	Biblio - [33] V. Cuppu, B. Jacob, "Concurrency, latency, or system overhead: Which has the larges...
	Biblio - [34] S. McKee, "Dynamic Access Ordering: Bounds on Memory Bandwidth, " Univ. of Virginia...
	Biblio - [35] M. Franklin, G. Sohi, “ARB: A Hardware Mechanism for Dynamic Reordering of Memory R...
	Biblio - [36] S. Sair, M. Charney, “Memory Behavior of the SPEC 2000 Benchmark Suite”, IBM Resear...
	Biblio - [37] S. Hong, S. McKee, M. Salinas, R Klenke, J Aylor, W. Wulf, “Access Order and Effect...
	Biblio - [38] 1 Gbit DDR2 SDRAM device datasheet, Micron Inc.
	Biblio - [39] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam, M. Irwin, “Hardware ...
	Biblio - [40] J. McCalpin, “STREAM: Sustainable Bandwidth in High Performance Computers”, http://...
	Biblio - [41] “Intel 875P Chipset: Intel 82875P Memory Controller Hub (MCH) Datasheet”, http://ww...
	Biblio - [42] C. Zhang, S McKee, “Hardware-Only Stream Prefetching and Dynamic Access Ordering”, ...
	Biblio - [43] J. Alakarhu, “A Comparison of Precharge Policies with Modern DRAM Architectures”, P...
	Biblio - [44] K. Hiraki, T. Shimada, S. Sekiguchi, “Empiracle study of latency hiding on fine-gra...
	Biblio - [45] D. Tullsen, S. Eggers, and H. Levy, "Simultaneous Multithreading: Maximizing On-Chi...
	Biblio - [46] S. Rixner, “Memory Controller Optimizations for Web Servers”, Proceedings of the 37...
	Biblio - [47] L. Zhang, Z. Fang, M. Parker, B. Mathew, L. Schaelicke, J. Carter, W. Hsieh, S. McK...
	Biblio - [48] C. Natarajan, B. Christenson, F. Briggs, “A Study of Performance Impact of Memory C...
	Biblio - [49] F. Briggs, M. Cekleov, K. Creta, M. Khare, S. Kulick, A. Kumar, L. Looi, C. Nataraj...
	Biblio - [50] Z. Zhu, Z. Zhang, “A Performance Comparison of DRAM Memory System Optimizations for...
	Biblio - [51] I. Hur, C. Lin, “Adaptive History-Based Memory Schedulers”, Proceedings of the 37th...
	Biblio - [52] S. Leibson, “Jesse Lipcon: Interview with a pioneer”, Microprocessor Reports, Volum...
	Biblio - [53] K Krewell, “Alpha EV7 Processor: A High Performance Tradition Continues”, Compaq EV...
	Biblio - [54] J. Pawlowski, “Memory Performance Tutorial”, Tutorial given at the 11th Internation...

