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ABSTRACT

Title of dissertation: SYNCHRONIZATION IN NETWORKS
OF COUPLED OSCILLATORS

Juan Gabriel Restrepo, Doctor of Philosophy, 2005

Dissertation directed by: Professors Edward Ott and Brian Hunt
Departments of Physics and Mathematics, respectively.

We study different aspects of synchronization in networfksooipled oscillators:

e We adapt a previous model and analysis methodrtaster stability functioyy extensively used for
studying the stability of the synchronous state of netwoffkidentical chaotic oscillators, to the case
of oscillators that are similar but not exactly identical.e Wfihd that bubbling induced desynchro-
nization bursts occur for some parameter values. Thesesthase spatial patterns, which can be
predicted from the network connectivity matrix and the ab# periodic orbits embedded in the at-
tractor. We test the analysis of bursts by comparison withemnical experiments. In the case that no
bursting occurs, we discuss the deviations from the exagtighronous state caused by the mismatch

between oscillators.

e We present a method to determine the relative parameteratiirm a collection of nearly identical
chaotic oscillators by measuring large deviations fromsjxechronized state. We demonstrate our
method with an ensemble of slightly different circle mapse @iscuss how to apply our method

when there is noise, and show an example where the noiseitytencomparable to the mismatch.

e We consider a ring of identical or near identical coupledqabc oscillators in which the connections
have randomly heterogeneous strength. We use the madiditysfainction method to determine
the possible patterns at the desynchronization transitiah occurs as the coupling strengths are
increased. We demonstrate Anderson localization of theesod instability, and show that such
localized instability generates waves of desynchrororathat spread to the whole array. Similar

results should apply to other networks with regular topglagd heterogeneous connection strengths.
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e We study the transition from incoherence to coherence gelaetworks of coupled phase oscilla-
tors. We present various approximations that describeehavior of an appropriately defined order
parameter past the transition, and generalize recentsdeukhe critical coupling strength. We find
that, under appropriate conditions, the coupling streagtkhich the transition occurs is determined
by the largest eigenvalue of the adjacency matrix. We shomy tith an additional assumption, a
mean field approximation recently proposed is recoverea foar results. We test our theory with
numerical simulations, and find that it describes the ttarsivhen our assumptions are satisfied. We
find that our theory describes the transition well in sitoasiin which the mean field approximation
fails. We study the finite size effects caused by nodes withllsthegree and find that they cause the

critical coupling strength to increase.
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Chapter 1

Introduction

In recent years, it has been recognized that many real wgstgisis can be represented by large complex
networks, and therefore the study of these networks hasfeeorapidly growing interdisciplinary field.
Some examples of systems that have been studied under tejzeptve are the Internet [1] the World
Wide Web [2], the electric power grid [3], protein networld,[and social networks [5]. Remarkably,
some common features have been found in all these netwarkesslbeen found, for example, that for
many different networks the distribution of the degrees (tbgree of a node in the network is the number
of other nodes connected to it) follows a power law [6]. Muekaarch has been done lately in order to
explain how networks evolve and acquire their particulaucttire. For a review of recent and ongoing
research on complex networks, see for example [7, 8, 9].

In this dissertation we consider the problem of synchrdioran complex networks. In this sce-
nario, the nodes of the network are dynamical systems arohitsbetween nodes correspond to dynamical
coupling. Many systems can be thought of as examples of itiiation; for example, coupled arrays of
lasers [10]-[12], electrical circuits [13], chemical réiaas [14], interacting cells [15]-[18], and even flash-
ing fireflies that interact by observing each other [19]. S&33,[[20], and [21] for more examples. Under
some circumstances, the coupled systems synchronizerra sases, the synchronization of the elements
is desirable (e.g., cells in the heart); in other cases,thelsonization can be harmful (e.g., simultaneous
firing of neurons in the brain is sometimes associated wiitegiic seizures). In any case, one would
like to be able to determine if synchronization is going towdn a given system, and whether or not the
synchronized state is stable.

In Chapter 2 we study the stability of the synchronous stateetworks of nearly identical coupled
chaotic oscillators. It is known that in some cases, wheretienoise or parameter mismatch, the syn-
chronized state can be interrupted by periods of large adsgnization, called desynchronization bursts

[22]-[24]. We studied the effect of the network structuretiois phenomenon, and found that the desynchro-



nization bursts present spatial patterns (i.e., some nadés network deviate more than others from the
average state). These patterns depend on the eigenvedtueswatrix describing the network connections,
and on the dynamics of the individual oscillators.

In Chapter 3 we apply the results of Chapter 2 to estimate dn@npeter mismatch in a collection
of nearly identical chaotic oscillators. When synchromggnearly identical oscillators, the small parameter
mismatch degrades the quality of synchronization. Knogasaf the mismatch characteristics can be useful
in order to minimize its effect by judiciously arranging tbenfiguration of the oscillators.

Usually, studies of coupled oscillators assume a regufariblition of coupling strengths between
different oscillators (e.g., constant coupling strengtta function of their distance on a lattice). In Chapter
4 we study the effect of random heterogeneous couplinggititenin an array of nearly identical coupled
periodic oscillators. It is found that, under some circuamses, as the coupling strength is increased,
the system desynchronizes in a localized region. From ég®n waves of desynchronization propagate,
eventually producing a highly ordered final state.

In Chapter 5 we consider the case of synchronization in aor&tef heterogeneous oscillators.
A simple model for interacting heterogeneous oscillatoas mtroduced by Kuramoto [25], who showed
that, in the case of all-to-all coupling, a transition to emdmce exists for a critical coupling strength that
depends on the distribution of the natural frequencies efitldividual oscillators. His model has been
studied extensively in the last decades and provides a guside how the characteristics of the individ-
ual oscillators (i.e., their frequencies) determine ttamsition to synchronization. Some generalizations
and further studies of this model include external nois§, [f28ite-size effects [27, 28], general coupling
functions [29], and delays [30]. For a review of the model andore comprehensive account of its gen-
eralizations and improvements see [31], Chapter 12 of RBapter 6 of [32], and references therein. As
discussed above, a network in which every node is conneotetidry other node does not realistically
represent many real world networks. In Chapter 5, we consieKuramoto model adapted to a general
network. The problem of studying the Kuramoto model on a gamestwork has recently started to attract
attention [33]-[35], and a mean field approach to study thidbfgem was proposed [36, 37]. We developed

a more general approach and found, among other things htbia is still a transition to coherent behavior



for a critical coupling strength, and this coupling strdnigt determined by the largest eigenvalue of the
adjacency matrix determining the connections of the networ
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Chapter 2
Spatial patterns of desynchronization bursts in netwofkearly identical coupled

oscillators

In this Chapter we study the synchronization of networksafpded chaotic units that are nearly, but not
exactly, identical. In particular, we will be concernediwihe spatial patterns of desynchronization bursts
that appear when this synchronization is present but iritem.

When two or more identical dynamical systems are couplesly tan synchronize under appro-
priate circumstances. The synchronization of chaoticsumiis been studied extensively [20, 38] and is
of significance in biology [15]-[18], laser physics [10]Zll and other areas [14, 39]. At the same time,
the importance of complex networks has been recently ajgtegl; and progress has been made towards
their understanding, including characteristics that miggip distinguish qualitatively different networks
[7]-[40]. The dynamics of a network of coupled oscillatoasd, in particular, its synchronization, has
therefore emerged as a subject of great interest.

There are different notions of synchronization, among thrase synchronizatiof1], general-
ized synchronizatiof42], lag synchronizatio43], andidentical synchronizatioil3]. The concept of
identical synchronization is useful when dealing with itiead coupled oscillators. Here we will consider
oscillators that are nearly the same, although not idenfidaus we will be concerned withear identical
synchronization, in which the states of the different urétsain close to each other as a function of time.

Pecora and Carroll [44] have proposed a model and analysisoahéhemaster stability function
for the study of the stability of the synchronous state ofwoeks of identical coupled chaotic units, and
this technique has recently been extensively applied [6bial study the synchronization properties of
different kinds of networks of identical noiseless chaatiits. These networks include small world [47]
and scale-free networks [6].

The analysis of network synchronization by use of the masttdyility function technique has so

far assumed all the units to be identical and noise-freehaban exact synchronized state is possible. In



practice, however, even if one strives to make the osciidtte same, they are still expected to have a small
amount of parameter mismatch, and a small amount of noiseaseapected to be present. Under such
circumstances, it is known that the synchronization cambarriupted by sporadic periods of desynchro-
nization (bursts). The bursts are typically caused by aopé@riorbit that is embedded in the synchronized
chaotic attractor and is unstable in a direction transvertiee synchronization manifold. This phenomenon
is commonly referred to dsubbling[22]-[24], and has been studied extensively for two coupledllators
[48, 49].

Our purpose in this Chapter is to study desynchronizatiastbun networks of coupled chaotic
nonidentical units. (Noise has a similar effect but will h& treated in this Chapter.) We will use the
master stability function approach and, in order to accdonthe possibility of bubbling, we will also
extend this approach to include the stability of embeddebgie orbits. In this case, the bursts have the
added feature of having spatial patterns on the networkwanéind that these patterns can be predicted
from the network connectivity matrix. We will show how thdagrsts affect different parts of the network
in different ways. In particular, we will see how adding centions in a ring can destabilize precisely those
nodes that are the most connected, leaving other parts ofetiwork substantially synchronized. (This a
somewhat counterintuitive effect related to the fact thmsome cases, increasing the coupling strength
destabilizes the synchronous state [44, 50].)

Arbitrarily small amounts of mismatch will eventually, tugh the bubbling mechanism, induce
desynchronization bursts. We will show that some of theiappatterns of this possibly microscopic mis-
match might get amplified to a macroscopic size in the buvseswill discuss how one can use knowledge
of the parameter mismatch of the dynamical units in the netwmdecrease the effective size of the mis-
match driving the bursts, thereby improving the robustiésise synchronization.

If synchronization is desired, the network and the parareetbould be constructed so that the
synchronous state for the identical oscillator system lmistly stable (this implies the absence of noise
or mismatch induced desynchronization bursts). Even tthensynchronization will not be perfect if the
oscillators have parameter mismatch. We will describe theracteristics of the deviations from exact

synchronization in terms of the mismatch and the masteilisgaanction.



This Chapter is organized as follows. In Section 2.1 we et master stability function approach
and apply it to the case of coupled Rdssler units. We alsmidssthe bubbling mechanism by including the
embedded periodic orbits in the master stability functioalgsis. In Section 2.2 we numerically consider
particular networks as examples and show the resultingsarsl their spatial patterns. The patterns we
obtain are long and short wavelength modes in a ring andimchbursts produced by strengthening of a
single connection in a ring. In Section 2.3 we study the é&ffetthe spatial patterns of the mismatch in the
development of the bursts. In Section 2.4 we study the dewisifrom the synchronous state caused by the
mismatch when the synchronous state of the identical asmilbystem is stable. In Section 2.5 we discuss

our results.

2.1 Master stability function and bubbling

We now briefly review the master stability function approathoduced in [44]. Consider a system &f
dynamical units, each one of which, when isolated, satisfies- F(X;, i), where: = 1,2,... N, and

X, is thed-dimensional state vector for unit In [44] the parameter vectoys are taken to be the same,
u; = p. Here, however, the parameter vectprsare in general different for each unit, but we assume
the difference, omismatch between them to be small. Generalizing the situationeckat Ref. [44] to
the case where the individual units are not identical (the,u; are not all equal), the system of coupled

dynamical units is taken to be of the form

N
Xi=F(Xi, i) — 9 Gi H(X;), (2.1)
j=1

where the coupling functioH is independent afand;, and the matrixG is a Laplacian matrixX:j Gij =
0) describing the topology of network connections. Fe# j, the entryG;; is zero if oscillatori is not
connected to oscillatoj and nonzero otherwise. The nondiagonal entrieg/adre determined by the
connections, and the diagonal elements are the negatihe @utm of the nondiagonal matrix elements in
their row. The coupling constaptdetermines the global strength of the coupling.

Assume first that all the dynamical units are identical, that; = p. We will refer to this situation

as theidealizedcase. In this case there is an exactly synchronized soliog Xy = --- = Xy = s(t)



whose time evolution is the same as the uncoupled dynamisiagle units = F(s, u). This convenient
result arises because the Pecora-Carroll model uses theupsarchoice of coupling in (2.1) that ensures
that the summation is identically zero when all of thig are equal. We will denote this synchronization
manifold, X; = X, = --- = Xy, by M. This manifold is ad - dimensional surface within th&d -
dimensional phase space of Eq. (2.1).

The stability of the synchronized state can be determired the variational equations obtained by

considering an infinitesimal perturbatienfrom the synchronous stat&, (t) = s(t) + €;(t),

N

j=1
Lete = [e1,€2,...,en] be thed x N matrix representing the deviation of the entire networkrfrthe

synchronized state. In matrix notation, Eq. (2.2) becomes

¢ = DF(s)e — gDH (s)eG™. (2.3)

While (2.3) allows for nonsymmetric coupling, we henceficissume the coupling matréx to be sym-
metric,G = GT. We write the symmetric matri& asG = LALT, whereA is the diagonal matrix of real
eigenvalues\i, A\s, ..., Ay of G andL is the orthogonal matrix whose columns are the correspgnéial
orthonormal eigenvectors ¢f (L7 L = I). Define thed x N matrixn = [11,72,...,7n5] by e = nLT.

Then Eq. (2.3) is equivalent to

7= DF(s)n — gDH(s)nA. (2.4)

Componentwise,

e = (DF(s) — gAkDH(s)) . (2.5)

The quantityy;, is the weight of the:" eigenvector of> in the perturbatior. The linear stability of each
‘spatial’ modek is determined by the stability of Eq. (2.5). As a consequerfitiee conditionzj G;ij =0,

there is a special eigenvalue= 0, whose eigenvector isy = [1,1,1,..., 1], corresponding to perturba-



tionsin the synchronization manifoldl/. Since these are not perturbations from the synchronotes ste
analysis is focused on the perturbations correspondingraero eigenvalues.
By introducing a scalar variable = g\, the set of equations given by (2.5) can be encapsulated in

the single equation,

7= (DF(s) —aDH(s))n. (2.6)

The master stability function? («) [44] is the largest Lyapunov exponent for this equation faycal
trajectory in the attractor. This function depends only le@ ¢oupling functiord and the chaotic dynam-
ics of an individual uncoupled element, but not on the nekwamnnectivity. The network connectivity
determines the eigenvalugg (independent of details of the dynamics of the chaotic Wnitsthe sense
of typical Lyapunov exponents, the stability of the synctized state of the network is determined by
U, = sup, U(gAx), where¥, > 0 indicates instability. Thus the Pecora-Carroll model olgdreaks the
stability problem into two components, one from the dynanjidbtaining? ()] and one from the network
(determining the eigenvalues).

In contrast to previous work using the master stability tiorctechnique, in this Chapter we are
interested in the dynamics of systems in which a small patemn@smatch is present. (Even though in this
Chapter our examples are restricted to the case of misma&gkmphasize that the same type of bursting
phenomenonis expected for identical oscillators if nag@éesent [22]-[24].) Although the synchronization
manifold M present in the dynamics of the idealized system is, in gémaginvariant for the system with
mismatch, it still may provide a useful approximation to thgamics in systems with small mismatch. If
M is stable for the idealized system, and the mismatch is ®nalligh, then trajectories near will tend to
stay neaM/, and we regard the vicinity a¥/ to be the “synchronized” state. However, stability\dfin the
idealized case of identical oscillators is not sufficiengtmrantee robust synchronization in a real system
where the oscillators are not identical[22]-[24]. Whiletire vicinity of the synchronization manifoldl/,

a typical trajectory will eventually follow very closely aepodic orbit embedded in the attractor of the
idealized system. Some of these periodic orbits may be biesta a direction transverse tof. When

in the vicinity of a transversally unstable periodic orbitismatch (or noise) will cause the trajectory to



have a component in the direction transversdfand hence to leave the vicinity of the synchronization
manifold M. If there are no other attractors, the trajectory will evetly return to the vicinity of\/, and
the process will repeat, the result being bursts of desymibation sporadically interrupting long intervals
of near synchronization. This type of dynamics is calledting [22].

Thus, in the presence of mismatch (or noise), to determi@edhustness of synchronization, it is
necessary to determine the transverse stability of the dddaeperiodic orbits for the noiseless system of
identical oscillators. For coupling as in (2.1), this arsidyis independent of the network, and such analyses
have been carried out before, e.g., for the analystsvofcoupled oscillators in Ref. [49]. Equation (2.6)
can be used as before to construct the master stabilityiumfdr each periodic orbit, if the appropriate
periodic trajectories are inserted fgft) in (2.3).

As an example, in this Chapter we work with the Rossler sygeel]:

y=x+ay,

Z2=b+ z(z —c).

In terms of our previous notatiod, = 3, u = [a,b,c]T, andX = [z,y,2]?. We choose the parameters

of the idealized system to he= b = 0.2, ¢ = 7. For these parameters, the system has a chaotic attractor
(see Fig. 2.1). We found the periodic orbits embedded indttriactor up to period five, and performed
the analysis described above on them. We found these osbit®king at the Poincare surface of section
{y =0,z < 0}. To agood approximation, in this surface of section the dyinais well described by a one
dimensional mag:,,+1 = f(z,), which we approximated using a polynomial fit. From this apg@mnation

to f, we determined periodic orbits of peripdoy using Newton’s method to find the roots:of= f?(x),
wheref? denotes the times composition of . We found one period orbit, one perio@ orbit, two period

3 orbits, three period orbits, and four period orbits. Using coupling through thecoordinate,
H([z,y,2]") = [x,0,0]", (2.8)

we obtained a stability functio («) for each orbit, the largest of which will determine if the sjino-



Period 1

Figure 2.1: Rossler attractor (projection onte y plane) and embedded peribarbit, displayed as a thick

white curve inside the attractor. The parametersiateb = 0.2, ¢ = 7.

nization is robust. Results are shown in Fig. 2.2. For allgalofa, we found that the master stability
function corresponding to the periadrbit (thick red dashed curve) is larger than that for a tgpahaotic
orbit (thick black continuous curve), as well as those ferdther periodic orbits we have found (several of
which are shown as orange thin curves).

Based on the discussion above, bubbling induced burstmgadlccur whenever the master stability
function for a typical chaotic orbit in the attractor is nége for « = g\, and all k, while the period
one orbit has positive master stability function fer= g\, for some value of. Denoting the master
stability function for a typical chaotic orbit b¥,(«) (Thick black continuous curve in Fig. 2.2) and for
the period one orbit by, («) (Thick red dashed curve in Fig. 2.2), thabbling regionof « corresponds
to Up(a) < 0, U1(a) > 0. In our example, this region correspond9dto6 < o < 0.48 0r3.8 < ar < 4.5.

The rangd).48 < a < 3.8 will be referred to as thstable regionand the remaining zone will be called

10



Figure 2.2: Master stability functiofr («) for a typical trajectory in the attractor (thick black cantbus
curve), for the period orbit (thick red dashed curve), and for periodic orbits upérsiod4 (thin orange

curves). The curves for the four peridarbits are similar to the latter and were left out for clarity

theunstable region

If a network of slightly mismatched chaotic systems couplecbrding to Eq. (2.1) is to be robustly
synchronizable without bursts of desynchronizatipx), must lie in the stable region for ail, where)\;, is
the kth eigenvalue otz. If g\, lies in the stable region for sonmieand in the bubbling region for othér

then bubbling will typically occur.

11



2.2 Examples

In this Section we provide examples of spatially patterngdting by considering different configurations
of the chaotic units. We will first work with the units connedtin a ring with each connection of equal

strength. The Laplacian matr&X for this arrangement is

2 -1 0 0 0 -1
-1 2 -1 0 0 0

G = 0o -1 2 -1 - 0 0 [ (2.9)
-1 0 0 0 -1 2

and its eigenvalues are given by = 4sin2(%k). Since)\, = Ay_k, €ach eigenvalue has multiplicity
two, with the exception ohy = 0, and, if N is even,/\% = 4. The matrixG is shift invariant that is, its
entries satisfy, moduld/, G; ; = Gy ;—;. Under these conditions, the diagonalization proceduseritmed
above corresponds to a discrete Fourier transform [50].th®eigenvalue\, we choose the eigenvector
wi given bywy, o [sin(Z2E)N, for 1 < k < &, and byw; o [cos(ZE)JI, for & < k < N. (Due

to the degeneracy of the eigenvalues in this case, therene adbitrariness in choosing the eigenvectors.)

Thus, the longest wavelength modes have the smallest eilyesy and viceversa.

2.2.1 Long wavelength burst

First we consider a case in which bursting of the longest \eaggh mode occurs. We considsr = 12
andg = 0.71. With these values, the longest wavelength mode corregord= g\; ~ 0.19. This value
is in the bubbling region, and all other modes are in the stedgion.

To introduce heterogeneity in the dynamical units, we imadgiat we have mismatch predominantly
in one of the parameters, sayWe simulate this mismatch by adding random perturbatiotiss parameter
a of each oscillator. These perturbations are uniformlyriisted within a4-0.5% range; i.e.q; is chosen
randomly in the interval0.995q, 1.005a], wherea is the parameter value of the unperturbed systers (

0.2). The parameterisandc were taken to be the same for each oscillatps b = 0.2, ¢; = ¢ = 7. How

12



a particular choice of the mismatch affects the bubblingess will be discussed in Section IV.
We solved thel2 coupled differential equations [Eq. (2.1)] with the init@nditions chosen near
the attractor in the synchronization manifold. In Fig. 2.8 plot the quantityr; — x¢ for 1000 < ¢ <

1600. Most of the time, this variable is close to zero, as expedtdlde oscillators are synchronized.

X, - Xg

2 - ]

- ]

. |

1000 1200 1400 1600
[

Figure 2.3:x; — x¢ as a function of time folV = 12 Rossler systems connected in a ring wjth- 0.71.

Note the desynchronization burst which starts @t 1380.

Approximately at the time¢ = 1380, this difference grows, reaching magnitudes closg.toBy time
t = 1500, the difference has decreased and is again close to zero.

To confirm the mediating role of the embedded unstable piermdbits in the development of the
desynchronization burst, we show in Fig. 2.4 a plotofversusy; from¢ = 1372 to ¢t = 1392, which is

near the start of the burst. During this time, the trajectdogely follows the period orbit, which is the

13



[t=1392 t=1372

4
o

Figure 2.4:x, versusy, for 1372 < t < 1392. During this period, which corresponds approximately ® th
starting point of the burst in Fig. 2.3, the trajectory faloclosely the transversally unstable perioarbit

embedded in the attractor (See Fig. 2.1).

most transversally unstable of the periodic orbits. Sinvlaservations have been previously reported for
two coupled chaotic systems [49].

Finally, in Fig. 2.5 we plotr; — z;_; as a function ofj, the oscillator index, fot = 1360 (open
triangles),t = 1385 (open circles), and = 1410 (open squares). The desynchronization burst can be
observed developing mainly at the longest possible wagéten

When subsequent bursts were studied in the same way, it wasl fihat the phase of the long
wavelength burst assumed only one value. This is due to digHat the mismatch is ‘frozen’, that is,
each oscillator has a given set of parameters which diffes given amount from the mean values. This
fixed spatial heterogeneity favors certain spatial pastexrer others. We will discuss this in more detail in

Section 2.3.
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Figure 2.5:z; — x;_1 versus the node indeifor t = 1360 (open triangles), = 1385 (open circles), and

t = 1410 (open squares). Note that the burst is absent first and grawswong wavelength pattern.

2.2.2 Short wavelength burst

Short wavelength bursting can be expected, for examplenwhe= 8 andg = 1.09. In this case the
value of \;, corresponding to the shortest wavelength mode yighds = 4.36, which is in the bubbling
region, while all the other modes are in the stable regionthis case the observation of the bursts is
more difficult, as the transversal instability of the orlzitsl the transversal stability of the attractor are less
pronounced [compan&(4.36) for this case vs¥(0.19) for the previous example in Fig. 2.2]. Accordingly,
the perturbations of the parametewere made larger, with perturbations randomly chosen wiifoum
density within at-6% range of the ideal values of the paramete(0.2). In principle this is not necessary,
as a burst will eventually occur after long enough time. lagtice, however, it is necessary to reduce the

waiting time to a reasonable value. As before, the coupledians were solved with an initial condition
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on the synchronization manifold. In Fig. 2.6 we shgw- y- as a function of time for one choice of initial

conditions. The differencg, — y- is usually positive and of magnitude closeltoThis asymmetry is not

VI

13000 15000 t17600 19000

Figure 2.6:y; — y2 as a function of time fo8 Rossler systems in a ring. The coupling strengitas1.09.
The desynchronization burst developg at 15000, although it is not as sharp due in part to the smaller

magnitude of the transversal Lyapunov expone#tst(36) in Fig. 2.2).

a surprise since the oscillators are slightly differentr the relatively large value of the mismatch used,
this is the “synchronized state”. It is seen in Fig. 2.6 thatdifference;; — y» increases rapidly at around

t ~ 15000, and soon reaches values closd @ It remains large for a longer time than in the case of the
long wavelength burst (see Fig. 2.3) and decays more sloswyedl. This is in qualitative agreement with
the smaller absolute values of the master stability fumstfor the short wavelength mode, both for typical

orbits on the attractor and for the periodic orbits.
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Figure 2.7:y; — y;—1 versus the node indeikfor ¢ = 15000 (open triangles)t = 15200 (open circles),

andt = 15400 (open squares). The desynchronization burst has a shoelevegth spatial pattern.

In Fig. 2.7 we ploty; — y,;_1 as a function ofj, the oscillator index, fot = 15000, t = 15200 and
t = 15400. As expected, the burst mainly affects the shortest wagétemode.
This can be assesed properly by doing a spatial Fouriefftnansin this case, the quantitieg [see

(2.5)] correspond to the Fourier coefficients, since themigctors of the matrix (2.9) are sinusoidal. The

N
21

correspond to the eigenvectarg [sin(%)]]\’

Fourier coefficients), andny_x, for1 < k < =1

and wy, o [cos(%)]jyzl, and have the same eigenvalig At this stage, we are only interested in
discriminating between modes with different eigenvalus. this reason, we will plot as a function of time
the quantitye? defined by¢x = {([nk,)? + ([nv—iy)?}2 for1 <k < & andéy = ’[n%]y‘, where[n],

is they component of the three dimensional vecigr Thus, the quantity, represents the weigth of the
modes associated to the eigenvalye

In Fig. 2.8, we plot as a function of time the quantitigsfor k£ = 1,2, 3,4. The short wavelength

mode ¢ = 4, upper curve) is dominant during the burst.
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A

Figure 2.8:¢7 as a function of time fok = 1,2, 3,4. The shortest wavelength component corresponds to

k = 4 (top curve). The curves correspondingie- 1, 2, 3 are close to the horizontal axis.

2.2.3 Localized burst

In the above examples all links had equal weights. As an elaoffa case with unequal link weights we
consider the case where the previous network is modified bpliw the strength of one of the links. Let

the link whose strength is doubled be the link that conneatkesp andp + 1. For example, fop = 4,

18



N = 8, this yields the Laplacian matrix

G = : (2.10)

-1 0 0 0 0 0o -1 2
Adopting the analysis technique of Ref. [52], we can showshah an enhanced connection has the

consequence that the largest eigenvalug obrresponds to an eigenfunction that is exponentiallylined

to the region near the strong connection. That is, for la¥géhe components of this eigenfunction decay

exponentially as the distance between the localized regimhthe node corresponding to a component

increases. Using the ideas of Ref. [52], we now provide th@dysis. The equations for the eigenveator

and eigenvalua are

—2Wpt1 — Wp—1 + 3wy = Awy, (2.12)
—Wpt2 — 2Wp + 3Wpt1 = AWp41,
—Wj_1 — W41 + 2w; = Awj,
for, respectively, nodes p + 1 and; different fromp or p + 1.
We consider solutions of 2.11 that are (anti-)symmetnig, 1, = *w,_x, and for Which%
is constant forj > 1, i.e.,w, 1+ o t* for k > 0 and some. This will be a good approximation if the

mode is localized (i.ej¢| < 1), and the network is big enough tﬂaﬁ < 1. In the antisymmetric case,

Wp+1+k = —Wp—k, EQS. (2.11) yield,

5—t=\ (2.12)

—t—tt42=2\
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which gives

=L a2l (2.13)

Compare this eigenvalue with the largest eigenvalue fongieork in which all links have equal strength,
which has a value of. The symmetric solutiony,414+r = wp—i, yieldst = 1 andA = 0, correspond-
ing to the eigenvectdi, 1, ...1] of perturbations in the synchronization manifold. The destlinonzero
eigenvalue remains unchanged.

As an example, we show the localized desynchronizatiortdpreduced by one of these strength-
ened connections for the cade = &, corresponding t@- given by (2.10) and the illustration in Fig. 2.9.

The parameters of the idealized system are again b = 0.2, andc = 7, with a coupling strength of

g = 0.79. It is remarkable that despite the small number of nodesatieal localized eigenvector and

4

/ o

strengthened
link

8

Figure 2.9: Arrangement of the dynamical units in a ring whité strength of the connection between nodes

4 and5 doubled. The matrixs corresponding to this network is in Eq. (2.10).
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eigenvalue agree well with (2.13) & 5.334 . .. andg—‘; =-0.334...).

In Fig. 2.10 we shows — x4 as a function of time. As in the short wavelength case, thsthsinot

XS-X4

T T T T T

SRR U il
2r |
4 a
8500 9%90 10500

Figure 2.10:z5 — x4 as a function of time forV = 8 Rdssler oscillators in a ring with the strength of the
connection between nodésaind5 doubled. The coupling strengthgs= 0.79. A desynchronization burst

starts approximately at=~ 9000.

very sharp due to the small magnitude of the transversalliyapexponents. Nevertheless, it can be seen
that the differences; — x4 increases approximatelyat 9000 and returns to a relatively small value after
reaching values considerably above the average.

In Fig. 2.11a we plot the difference between theoordinate of nodg and its mean over all nodes,
x; — T, wherez = % Zj-v:l xj, as a function of the oscillator index for t = 8750 (open triangles),

t = 9000 (open circles), and = 9250 (open squares). In Fig. 2.11b we show the localized eige¢ovet

21



the LaplaciarG found numerically. As discussed before, the desynchréinizéurst affects mainly nodes
4 and5 (those which share the strengthened connection) and thseaalj@cent to them. Nodés,7 ands,
however, maintain approximate synchronization duringhtinest.

In Fig. 2.12 we show the mode weights corresponding tortlo@ordinate as a function of time.
The top curve corresponds t9,]2 (for the localized mode), and the curves close to the hot@axis
to [nk)2, k # 4, for the other modes. (The degeneracy of the eigenvaluemieb by the strengthened
connection, so we do not combifg].. and [nn_x]. as before.) Confirming the qualitative similarity
between the eigenvector and the spatial pattern of the dbesynization burst observed in Fig. 2.11, the
weight corresponding to the localized eigenvector is sedrtdominant during the period of time in which

the burst occurs.

2.3 Effects of the mismatch spatial patterns

In this section we will discuss the effects that the mismafudtial patterns have on the development of the
desynchronization bursts. For these purposes, it will beeoient to rewrite Eq. (2.1) in the form
N

Jj=1

WhereF(Xi) = F(Xz,ﬁ) with n = % Zjvzl iy andQl(Xl) = F(Xiaﬂi) - F(Xl) The term@;
represents the effect of the mismatch and is assumed to blé sAmbefore, we linearize around the
synchronous state to get

N
¢ = DF(s)ei =gy GigDH(s)e; + Qi(s), (2.15)

j=1

where we have discarded terms of ordgr. With the previous notation an@ = [Q1,Qo2, ... Qn], we

obtain after the diagonalization
i = (DF(s) — g\ DH(s)) i + (QL), (2.16)

where(QL)y, is thek'th column of thed x N matrix QL. In the ring with equal coupling along each link,
the diagonalization procedure corresponds to a Fouriasfioam. In this case, we see that the mismatch

affects the different modes according to the wei¢€hL.), of this particular mode in its Fourier expansion.
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In other cases, for example in the localized eigenvecterstiength of the mismatch affecting the localized
mode is proportional to the weigth of the localized eigetoemn the eigenvector decomposition of the

mismatch. We will now discuss two applications of theseltesu

2.3.1 Amplification of mismatch patterns when modes withshme eigenvalue burst

We have shown that the modes of the mismatch force the camdspy modes of the deviations from the
synchronous state. When bubbling induced bursting is @gdethe size of the mismatch determines the
average time between bursts [24]. Thus, the size of the nbii$n@mponent in modé determines the
average interburst time when that mode is in the bubblingmeg

When the spectrum of the matriX is degenerate, the spatial modes of the mismatch play aa extr
role. All the modes sharing the same eigenvalugave the same stability properties, and thus, when the
corresponding value\ is in the bubbling zone, all eigenvectors with this eigeneahre equally likely
to appear. The only difference between these modes is thegstr with which they are forced, which is
determined by the mismatch component in that mode as shotq.i(2.16) (or, if noise is present, by the
noise component in that mode).

An example of this situation is the ring with connections gfial strength in the long wavelength
bursting scenario. Since the ring is invariant with resgeabtations, the phase of the long wavelength
oscillations can not be determined only from the network dwdamics part of the problem. The two
modes with the longest wavelength (corresponding to sidasand cosinusoidal oscillations) have the
same eigenvalue. It is the mismatch that in this case detesthe phase of the long wavelength burst.

We will show how one can determine the phase of the long waggtedesynchronization burst in
the case of coupled Rodssler systems in a ring with equallic@ualong each link. For this system, the

mismatch vecto€); (X;) is given by

0

6bj — Zjé-Cj

whereda; = a; — @ und similarly foréb; anddc;. We defineFy (u) = Y0, uji¥, wherew? is the
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normalized;’th component of thé: eigenvector described at the beginning of Section 2.2. Withcon-

vention, the ternf@Q L), in equation 2.16) is given by

0
(QL)r = yFr(da) . (2.18)
Fi(0b) — zFi(dc)
Hereda = [dai,d2,...,dx] and similarly foréb, éc, andy, =z are the trajectories around which the lin-
earization was made.

We consider the case in which mismatch in one parameter isn@oim for example. The mismatch
in the parameters andc will be assumed negligible compared with thatinso thatd, éc < da. In this
case, only the second component of (2.18) is of relevances fiodes); andny_; are excited with a
strength proportional, respectively, #, (da) and Fy_1(da); see (2.16). The magnitude gf will be
proportional toF(da), and thus the excitation of the long wavelength mode (whscthé only one for

which perturbations grow) is proportional to

F1(da)sin (%) + Fn-1(da) cos (%) (2.19)
in (27 2.20
ocsm(w—i—(b), (2.20)

wheretan ¢ = Fy_1(da)/Fi(da).
We now show results of numerical simulations illustratihg above. The parametefksandg will
be as in the long wavelength example in the previous sedfienuse the same random set of perturbations
used in that example. As described above, we obtained treephaf the long wavelength component of
the vectorda;. In Fig. 2.13 we ploty; — y,_; for different times during a burst (filled symbols). In the
same Figure, we plot a scaled versions'mf(% + gb) — sin (w + gb) (open circles). The phase of
the desynchronization burst is in agreement with that ofdhg wavelength component of the mismatch.
When the mismatch affects predominantly one parametertassicase, the phase of the bursts can
be predicted as described above. When mismatch in diff@amaimeters is comparable, the phases of the
long wavelength modes of the different parameter mismatchepete and the bursts develop with one of

these phases or with a combination of them.
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It must be emphasized that this analysis is possible onlyninere is a degeneracy of the eigenval-
ues. For example, the location of the localized burst carbaatetermined in this way, as it is fixed in the
position of the strengthened link. In this case, the mismatmponent in the localized mode would only

affect the average time between bursts.

2.3.2 Artificial supression of unstable modes using knogteof the mismatch

We will now discuss another consequence of Eq. (2.16). Wejiimeaa situation where we are given a
number of nearly identical oscillators that we are to conive@ network which we desire to be in syn-
chronism as much as possible. Furthermore, we imaginetktitatigh measurements made individually on
each oscillator, we are aware of the amount of mismatch ih eacillator. The question we address is this:
Using our knowledge of the individual mismatches, how staué arrange the oscillators in the network
S0 as to best supress the frequency of desynchronism bursts@swer this question, we note that, ac-
cording to the previous discussion, we should reduce thmatish component in the mode which is in the
bubbling region. Since the size of the mismatch affects Weeaaye interburst time [24], reducing this com-
ponent is desirable if one wants to improve the quality ofsimechronization. This can be accomplished
by judiciously arranging the dynamical units so that i mode of the mismatch is minimized when
the corresponding valug)y, is in the bubbling region. For example, to supress long vemgth bursts,
one may arrange the units so that the parameter errorsatiestbove and below the mean. To supress the
localized bursting described in the previous section, agdcarrange the units so that those with the more
similar parameters are the ones in the region of the strengthconnection.

As a concrete example, we test this idea using simulatiarthéocase of short wavelength bursting
presented in the previous Section. We again assume forisityghat mismatch in the parameteris
dominant. We generate random perturbations in the parametithin a +6% range of the value = 0.2,
as explained in the previous section. With this set of pataragiven, we set up the dynamical units in the
ring using two different permutations of their positionsnedof them §,) has a smaller and the other )

a larger short wavelength componéht(a) than the original random sequence. The réfida;)/Fa(as)

is approximatelyi5. In Fig 2.14 we plotr; — x5 as a function of time for configuratian (top curve) and
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for configurationu; (bottom curve). The difference, — x5 is much smaller in the former case than in the
latter, roughly by a factor of5, as can be expected from the ratig(a;)/F4(as). This qualitative example

illustrates how one can use knowledge of the mismatch teessprndesired instabilities.

2.4 Spatial patterns of deviations from the stable synabuerstate

So far, we have concentrated in the case in which the valy@pfs in the bubbling regime for one mode
k and in the stable regime for the other modes, so that desynization bursts occur sporadically. As we
have seen, these bursts present spatial patterns on therketw

If synchronization is desired, one would might try to avdi@ tubbling regime by designing the
network and adjusting the coupling strength so that all tlel@s lie in the stable zone. One would also
strive to reduce the mismatch, but as mentioned befores #Hrerpractical limitations on how much one can
make the oscillators exactly the same.

If U'(g);) is negative for all modes (indicating transversal stapitit the synchronous state) one
can have, depending on the degree of transversal stalfdlitysynchronization even with relatively large
amounts of mismatch. If one is to operate under such comditibis important to know the characteristics
of the deviations from the synchronous state.

Thus we ask in this scenario: How large are the spatial pettef the deviations from the syn-
chronous state, and how does this depend on the mismatchahd degree of transversal stability?

The spatial modes of these deviations obey Eq. (2.16). lalisence of the terffQ L), the zero
solution is stable, and typical perturbations from it dedwying a negative Lyapunov exponent given by
hi = W(gAx). The first term in the right hand side of Eq. (2.16) can be thofigs a damping term with
a damping rate given by, and the second termi) L), as a forcing term. Since we are considering the
stable case, these two factors, on average, cancel eaah Byhaefinition, the Lyapunov exponent for the

B
%% where the angle brackets indicate time

system without mismatch is given iy, = (
average. Assuming a solutiep of the system with mismatch to yield the same value of thigtaverage,
we left multiply Eq. (2.16) by;! |n,€|_2 and average to obtain

L (QL)k
I

[(QL)x|
|7 |

hi| & ( )~ ); (2.21)
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where the angle brackets indicate time average. This leettietfollowing rough estimate,

(el ~ LEED (2.22)
|

(This is analogous to the result obtained for a linearly dagngquation with constant forcing in one dimen-
sion,n = —hn + ¢. In this case one has asymptoticajly— .)

As an example we consider Rossler units in a ring with allhemtions of equal strength. We choose
N = 8,9 = 0.6 [¥(g\r) < 0 for all values ofk]. Furthermore, we add a random perturbation to the
parameter of each oscillator chosen uniformly from withirdg0.1% range ofa = 0.2.

In Fig. 2.15 we show, fok = 1,...,7, the quantitieg|n|) (squares){|(QL)|) (triangles), and
W (circles). The magnitudes of the forcing term for the difiermodes (((QL)|)) span roughly
two orders of magnitude, and the magnitude of the respghgg)) looks roughly proportional to the latter.
When the forcing term is corrected by dividing it by the magde of the corresponding Lyapunov vector

||, the resulting quantity< (%Lljw) matches very well the observed response.

2.5 Discussion

We have studied the stability properties of the synchrah&tate in a network of coupled chaotic dynam-
ical units when these have a small heterogeneity. We hawerstitat when the dynamical units that are
coupled in a network are sligthly different, the synchrediztate can be interrupted by large infrequent
desynchronization bursts for some values of the parameldrs range of the parameters for which this
phenomenon is expected can be obtained by performing a nsaskdlity function analysis of the chaotic
attractor and of the periodic orbits embedded in it.

The desynchronization bursts are induced by the bubblimp@menon, and have spatial patterns
on the network. These spatial patterns can be predicted thersigenvectors of the Laplacian mat€ix
and the master stability functions mentioned above. We slogxamples illustrating the development
of bursts with spatial patterns. One of our examples shoWwatlthe strengthening of a single connec-
tion might destabilize the nodes near this connection,eneidving the rest of the network approximately

synchronized.
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Direct measurement of the parameter mismatch in the elenodrat network might prove useful.
We discussed how this knowledge could be used to reducegthedncy of bursts and to predict the relative
weights of different spatial patterns in a burst. We alseulsed how one could, from knowledge of the
mismatch and of the master stability function, describesthatial patterns and magnitude of the deviations
from the synchronized state when the synchronization oftineesponding identical unit system is robust.

We emphasize that although we did not discuss the effect®isEnthe phenomenon described
in this Chapter also occurs for noisy identical oscillatoDesynchronization bursts with spatial patterns
are expected for noisy, identical oscillators if one hasrtter noiseless, nonidentical oscillators. The
difference is that the parameter mismatch is always ‘froZzarthe sense that the mismatch is always the

same for each oscillator, whereas for noise this is not tee.ca
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Figure 2.11: a)y; — = for t = 8750 (open triangles), = 9000 (open circles), and = 9250 (open squares),
for the configuration in Fig. 2.9. The burst develops with spatial pattern of the localized eigenvector in

Fig. 2.11b. b) Localized eigenvector of matfixin Eq. (2.10).
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Figure 2.12:[n;]? as a function of time fok = 4 (top curve) corresponding to the localized mode, and
for k # 4 (bottom curves, close to zero), corresponding to other motiethe burst, the localized mode
is excited first and only after some time are the other modsessaimewhat excited. The localized mode is

dominant during the burst.
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Figure 2.13: y; — y;—1 for different times during a burst (filled symbols), and aledaversion of
sin (2% + qb) — sin (# + qb) with ¢ as given in the text (open circles). The phase of the burst

spatial pattern coincides with the phase of the long wagglecomponent of the mismatch.
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Figure 2.14:x; — x5 as a function of time for a configuration of oscillators withasge (top curve) and
with a small (curve closer to zero) short wavelength compboéthe mismatch. The quality of the syn-

chronization is much better in the second case.
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Figure 2.15:(|nx|) (open squares),|(QL)x|) (open triangles), an |(th)’“|> (open circles) forN = 8,
g=10.6,k=1,...,7. The forcing term (open triangles) roughly determines #sponse (open squares).

The corrected forcing term (open circles) matches well #sponse (open squares).
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Chapter 3

Parameter mismatch estimation using large deviations figmshronization

The study of networks of coupled dynamical systems is an itapbarea of research with applications in
diverse fields, ranging from biology to laser physics [1B)][ The synchronization of coupled oscillators
has been under extensive study in recent years and, inydartithe synchronization of identical oscillators
has received considerable interest [18, 20]. Since it ioBB{ble in practice to obtain identical oscillators,
the effect of the difference in the parameters of the ogoilta orparameter mismatghmight be relevant

in some applications. It might be desired to have dynamio#ékuas similar to each other as possible,
or to know the characteristics of the parameter mismatchdollection of nearly identical systems. In
this Chapter we propose a method to use deviations from sgnidation to extract information on the
parameter mismatch of the coupled dynamical units. Exjstiethods for parameter estimation (see, for
example, Refs. [53]-[56]) usually rely on knowledge of tlypitally small synchronization error. Our
method depends on relatively large deviations from thelssorized state, and might be useful in cases in
which the small synchronization error can not be measuredrately.

When a number of identical systems are appropriately couiplé network, a solution exists in
which the state of all oscillators at all times is the sameisThreferred to agdentical synchronization
[13]. This concept is useful only when the systems are idahtiVe will deal with systems that are nearly,
but not exactly, identical. We will refer to a situation in iwh the states of the systems are very close to
each other asearly identicakynchronization. A method to determine the stability ofsliechronous state
when the systems are identical, thaster stability functiorhas been proposed by Pecora and Carroll [44].

In the case of nearly identical chaotic systems, the negrlglwonized state might be interrupted by
relatively short periods of desynchronizatiate§ynchronization burgtsThese bursts develop with spatial
patterns on the network. As shown in Chapter 2, these spattdrns, and the parameters for which they
can be expected, can be predicted from the Laplacian masieribing the network connections, the master

stability function of the attractor, and the unstable pdidarbits embedded in it. The spatial patterns of
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the bursts depend on the parameter mismatch of the diffeystems. We use this fact to infer the relative
deviation of the parameters of the individual units withpest to their mean from the desynchronization
bursts. The proposed method is as follows. The oscillat@sannected in such a way that the parameter
mismatch determines the spatial patterns of the desynizatoon bursts. As we will see later, one such
way is all-to-all coupling. The system is set up in a paramegion in which desynchronization bursts are
expected. While a burst is developing, measurements aed takthe deviations of the different systems
from the synchronous state. From these observations, kgveedeviations of the parameters from the
mean are deduced. In order to apply our method, it is negessaonnect the oscillators in such a way
that all or most of the modes burst at the same time. We thereksume certain freedom in connecting the
oscillators. Our method is not intended to be used in a fixexb)psting network, but to use one in order to
determine the mismatch of the oscillators. After the misihas known, the oscillators can be connected
in any way, and the obtained knowledge of the mismatch carsée, dor example, in order to optimize the
configuration of the oscillators in this subsequent netWbj.

Some limitations of this method are the following. It is as®d that the dynamics of the sys-
tems is known accurately (except for the parameter misnadei that measurements can be taken with
enough precision such that the deviations from the synchusstate can be measured in the linear regime.
Although in some applications the dynamics is unknown,ahae important cases in which it is known
accurately (e.g., electrical circuits). Also, the pregentnoise affects the spatial patterns of the bursts.
Although we will describe how to deal with the noise, the efifeeness of the method decreases as the ratio
of noise to mismatch increases. It is also assumed that idedhle small differences in the way in which
the systems are connected to each other does not introdiféerartte between the systems which is of the
same order of magnitude or larger than the parameter misrbaing measured.

In Section 3.1 we briefly describe the master stability fimcimethod and its extension to deal with
nearly identical systems. In Section 3.2 we present anstiite our method with an example in the case
where the noise is negligible. In Section 3.3 we discuss lwogetl with the noise and show an example.

In Section 3.4 we present our conclusions to this Chapter.
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3.1 Background

For simplicity, we will use one dimensional maps for the dimanits. The results generalize to other
dynamical systems [44, 57]. We consider a model syster¥ diynamical units, each one of which, when

isolated, satisfieX | = F(X}

n

, 1ti), whereX ! is the value of unit at timen andy; is a parameter vector
for system.
The systems, when coupled, are taken to satisfy (e.g., [44])
N
Xiyy = F(X}, ) — g2 (Z Gin(Xj)) , (3.1)
j=1
whereZ is a function such thafZ (0) = 0, G is a symmetric Laplacian matri>§§j G;; = 0) describing
the network connections, anfd is a function independent afandj. [In our examples, we will take
Z(z) = sin(2wz).] The constany determines the strength of the coupling.
If the systems are identical (i.eu; = p for all 7), there is an exactly synchronized solution of
Egs. (3.1).X! = X2 = ... = XV = s, whose time evolution is the same as the uncoupled dynamics
of a single unit,s,,11 = F(s,), whereF(s) = F(s,u). The stability of the synchronized state can be
determined from the variational equations obtained by idenimg an infinitesimal perturbatia from the

synchronous stateX! = s, + d?,

N
8li1 = DF(sn)8}, — gZ'(0) > Gi; DH(s,)6). (3.2)

j=1
Leté = [§,6%,...,6"], and define the vectoy = [n',7%,...,7"N] by § = nLT, whereL is the or-
thogonal matrix whose columns are the corresponding réhboormal eigenvectors @; GL = LA,
A = diag(M, A2, ..., An), Where)\ is the eigenvalue ofr for eigenvectok. Then Egs. (3.2) are equiva-
lent to

Mhy1 = [DF(s0) — 9Z'(0)\DH (s0)] - 3.3)
The quantityn” is the weight of thesth eigenvector of7 in the perturbation. The linear stability of each
‘spatial’ modek is determined by the stability of the solution of Eq. (3.3y.iBtroducing a scalar variable
a = gZ'(0) )\, the set of equations given by Eq. (3.3) can be encapsulatheé isingle equation,
Mnt1 = [DF(sn) — aDH(s,)] n- (3.4)
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The master stability functio («) [44] is the largest Lyapunov exponent for this equation.sThinction
depends only on the coupling functidhand the dynamics of an individual uncoupled element, bubnot
the network connectivity. The network connectivity detares the eigenvalues, (independent of details
of the dynamics of the chaotic units). The stability of thedyronized state of the network is determined
by U, = sup,, U(gAx), where¥, > 0 indicates instability.

If the systems are slightly different, one gets instead «f. [£8.2) the equations

N
' 1= DF(s,)0, — gZ'(0) Y GiyDH(s)8}, + Q" (sn), (3.5)

j=1
whereF (X?) = F(X', 32N 4;/N), andQ?(X?) = F(X?, u;) — F(X") represents the effect of the mis-
match and is assumed to be small. Terms of o€glewere neglected. Defining

Q = [Q%(s1),Q%(sn), - .., QY (s,)], we obtain an equation analogous to Eq. (3.3),
M1 = [DF(sn) = 9Z'(0)A DH (sn)] myy + (QL)¥, (3.6)

where(QL)* is the kth element of the vect@}L. The Lyapunov exponent for the solution of Eq. (3.3) is
hi = W(gAr). Assuming a solution of Eq. (3.6) to have the same averaggitgnas that for Eqg. (3.3),

then, if by, is negative for all modes, the amplitudermgfcan be estimated as

k
(o) ~ G0 @)

(For example, if we model Eq. (3.6) by the simple sysigm; = e~ ", + ¢, thenn,, satisfies, as — oo,

n — 1—=. See [57].) The largest Lyapunov exponéntabove corresponds to a typical trajectory
in the chaotic attractor. However, the Lyapunov exponenuftstable periodic orbits embedded in the
attractor might be larger. Assume that one of these peridiits has a positive Lyapunov exponent and
the attractor has a negative Lyapunov exponent. In this casst of the time the amplitude of, will be
very small and given approximately by Eq. (3.7). Eventudiily trajectorys,, will get very close to this
transversally unstable periodic orbit. While it is closehis orbit,7 in Eq. (3.6) is no longer damped and
gets exponentially amplified with the Lyapunov exponenhefiinstable periodic orbit. The deviation from
the synchronized state becomes large, producing a desymizhtion burst. If there are no other attractors,

the system returns to the synchronized state and the proepsats. Desynchronization bursts can be
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expected when the master stability function for a typicgectory is negative for all modes, and there is an
embedded unstable periodic orbit which has a positive matability function for at least one mode (i.e.,
W(gAx) > 0 for somek, whereV is the master stability function of one of the embedded kgiorbits).

We will now use the fact that modes with the same eigenvalue tiee same stability. For simplicity,
assume that the coupling is all to all, so that all the modesgjet the mode in the synchronization manifold,
which has zero eigenvalue) have the same eigenvajue, N. Eqg. (3.7) implies that the coefficients in the
eigenvector decomposition of the deviations from synchigfi) are, on average, proportional to those for
the deviations of the mismatch parameters from their mé@d.[*]. It follows that the mismatch vector
@ is proportional to the vectaf,, while these approximations are valid. If the vectqris measured,
the deviations of the mismatch from its mean can be detedrapproximately up to an unknown scaling
factor.

For this method to work, the measurements need to be made tiwbeaystem is still in the linear
regime. Since it is assumed that there is a limitation in tleasarement accuraay, needs to be small
enough to guarantee linear behavior, but large enough todasuned. One can thus set up the system
so that desynchronization bursts are expected and makeireeants while a desynchronization burst is
developing. If the system allows continuous tuning of theplimg strength, one could also increase it so

that the synchronous state becomes unstable and take re@sus as the system desynchronizes.

3.2 Parameter mismatch estimation without noise
To illustrate our method, we use thicle map described by the equation
Ont1 = [0n +w+ £sin276,] mod1. (3.8)

We choose the parameters to be= \/52*1 andk = % These parameters produce a chaotic attractor

in 6 € [0.21,0.47]. We found the embedded periodic orbits up to period four. &enine the orbits of
periodp we used Newton’s method to find the rootdof f7(6), wheref(0) is described by Eqg. (3.8) and
/P denotes the times composition off. Eliminating all the orbits outside of the attractor, we fiduone

period 1 orbit, two period 2 orbits, and one period 4 orbit. sNew in Fig. 3.1 the master stability functions
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of the orbits found, and the master stability function of #itieactor. Herev = 2wg\x, where)\ is thekth

eigenvalue of the coupling matrix agds the global strength of the coupling.

— Afttractor

-0.4- '

0 - Period 1
Y -.=-= Period 2
0.8 ---- Period 4
0 3 35 4

Figure 3.1: Master stability functionl («), for a typical trajectory in the attractor (continuous aeirfor
the period 1 orbit (dotted curve), for the period 2 orbit (ued-dotted curve), and for the period 4 orbit

(dashed curve).

For definiteness, we assume a network that is cougdled all. This means that for a network of

systems, an element in the coupling mat#y is given by

N—-1 ifi=j;
Gij = (3.9)
-1 ifi#j.
This matrix has two distinct eigenvaluegs, = 0 and)\, = N fork = 1,2,..., N — 1. We ignore the 0

eigenvalue since this corresponds to a perturbation intwalicof the systems are displaced by the same

amount (thus they remain synchronized). Due to the lack lnérodlistinct eigenvalues, it is easy to pick
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anc that produces desynchrozination bursts. For our map thenreghere bubbling is expected is where
0.9 < 2wg); < 2.1 (note that for our examplg, = N is the same for alk # 0).

We now present an example of the method where noise is ngigligihe mismatch is chosen to be
in k since it has a more complicated effect than mismateh ifthe coupled systems can then be described

by the general equation
b = [0 +w + (k4 0k") sin 270}, — & ] mod1, (3.10)

wheredr® is the mismatch in system &, = gsin (271' Z;V:l Gijeg;), andi,j = 1,2,..., N are indices
representing théh and;th system in the network [cf. Eq. (3.1)]. The tef® represents the coupling of
oscillatori to other nodes in the network. We cha¥e= 5 systemsgx = [4,—1,2,—6,—2] x 1075,
andg so thata = 27rg/N = 1.5. It should, however, be noted that this method works for anyloer of
systems (withy being adjusted accordingly) and mismatch of any size, atthoif the mismatch becomes
small, the waiting time for a desynchronization burst beesharge. The waiting time can be adjusted by
changing the values df, g, anddx [24].

We define A’

n?

which is a measure of the deviations from the synchroncate sby A9! =
sin 27 (6%, —0,,), with 8, = & SN | 9% We plotAg;, versusz and look for desynchronization bursts in the
network. In Fig. 3.2 we show the time evolution &P near a desynchronization burst. Our interest is in
the vectol, wherel is the first time thatnaz;{6: } is in thesampling regiondefined a9.4 < |Af% | < 0.6
(see Fig. 3.2). This region is determined by the limitationsthe ability to accurately measuf®: and
the dynamics of the system considered. The latter existusethe master stability function method relies
on the systems being close to synchronization. During tlsgrdshronization burst, the difference in the
systems can be so large that the linearization used in thesimaf Sec. | no longer applies. We determined
that the upper bound to this region in the circle maj\g?,| ~ 0.6 or |6, — 6,,| ~ 0.10. The lower bound
was arbitrarily chosen as representing the accuracy of #ssorements, which we assume is not enough to
measure the mismatch directly. Generally the method besomege effective the smaller the lower bound
is.

According to the previous section, at timave should have approximatel§y — 6, oc §x° — dx,

wheredr = + SN 6x'. We can then obtain the relative deviations of the mismatutampetersgs’,

40



sampling region

/

-1.0! . .

1240 1250 1260 IZTE} IZEI{} 1290 ISD:U ISII[} 132ﬁ ISS{IJ !341&!
n

Figure 3.2: Plot ofA¢?, vs. n near a region of desynchronization burst. The arrow pomteeé maximum

of A¢ that is within the sampling region.

by measuring the much larger values#f- ;. In Fig. 3.3 we show a superimposed plot#f— ¢, and
a(8k' — 6r) versusi wherea, the scaling factor, minimizes ", [(0i — 6;) — a(dx* — 6x)]2. In Fig. 3.3
we calculatedn ~ 1.5 x 10* and this corresponds to the amplification of the mismatchshttuld be
noted that the sign of is undetermined unless we have knowledgéwf. We see from the figure that
a(6kt — 0K) ~ 0} — 0.

The definition of the sampling region is somewhat arbitrang it may occur that nonlinear effects
still play a role in the resulting spatial pattern of the tiuhs fact, in Fig. 3.3 we observe that there are still
small deviations from the real mismatch pattern. In ordéake this into account, we can take the average
over various bursts. In the next section, we will discuss tmappropriately take the average, and we will

also deal with the effects of noise.
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Figure 3.3: Superimposed plotefix’ — §«) (dashed line with square markers) a@td- 9, (solid line with

circle markers) versuswith a ~ 1.5 x 10%.

3.3 Parameter mismatch estimation with noise

After learning from the simpler model in Sec. I, we can nowalgae a more realistic situation. The method
proposed and explained in the previous section appliesitnilas network with noise, but there are a few

adjustments to be made. We use the same model described (8. Hy), except we modify it to
0! 11 = [0}, + w+ (k + 0k") sin 270, — D!, + €.,] mod1, (3.11)

wheredx?, !, are defined in the same way as before, gnid a random variable uncorrelated at different
andn simulating the noise. In our example, we chogseniformly from the interva[—10~°,10~5] (note
that the noise and mismaték are of comparable size).

As mentioned in the previous section, nonlinear effectshingoduce deviations from the simple
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relation9; — 6, = a(6x’ — k). We assume that the effects of the nonlinearity and the rwisebe
represented by a random variabfe such that! — 6, = a(6x’ — k) + o*. We furthermore assume that

o® has zero mean. Under these assumptions, the mismatch fistgyive

5mi—5ﬁ:<u>—<a—>, (3.12)
a a

where the brackets represent an average over realizatians®ecause of the definition of the sampling
region, the scaling factors for different samples will haireilar magnitude, but possibly different sign. We

thus get approximately, assuming the sigm @ independent of*,
Sk — 6k oc (sign(a) (0] — 6;)). (3.13)

Since the sign of is unknown, we use East-squares optimizatioo find the signs which minimize the
dispersion from the mean. More precisely, if we hdvesamples of);’s, we can define an average to be
0 =4 Zﬁf:l Bmbm, Where{s,,} is a sequence af's and—1’s and#,, is the vector§; — 6] for the
mth sample. Note tha® is an N-dimensional vector and that iith component is an average of tith

component of thé/ samples of);’s. If we then minimize the error, defined by

M
1 _
== [|Bmbm — O, 3.14
error > I8 I ( )

we can find an optimal sequenceld and—1's, which we shall call3*, that ensures most of tltg's are
oriented the same way.

To minimize the error we follow an algorithm starting with @adomly generate@ as described
next. At each iterate, we generate three rigsv The first,3;, is a new random sequeng®, is 5 altered
such that the signs of 1% of the sequence are changedisaisdiefined in a similar way but with 5% of
the signs changed. We can then compéres,, 55, and3 and determine which one has the smaller error
determined by Eq. (3.14). The one with the smallest errdrés redefined a8 and the process is repeated
until an approximation t@*, which we denote a8, is found. We can then defir, = ; M Bonm.

We show in Fig. 3.4 a superimposed plot®f — O, andA(Jx* — drx) versus whereA minimizes
SV (0% — 6.) — A(dk' — 6r)]2. To obtain®, we repeated the process of optimizatidli times for

M = 1000. According to the discussion above, we should have apprateily©’ — ©. x §x* — 5k where
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Figure 3.4: Superimposed plot df§x* — §«) (dashed line with square markers) adtl — O, (solid line

with circle markers) versuswith A ~ —5 x 103.

0. = £ 3N ol Indeed we see that(éx’ — éx) ~ O — O, even when the noise was comparable to

the mismatchqd ~ 0« in Eq. (3.11)].

3.4 Discussion

We have presented a method to use large deviations from gymizhtion in order to determine the char-
acteristics of the parameter mismatch in a collection oflgaedentical chaotic dynamical systems. It has
been noted that knowledge and manipulation of the mismaattenms can be advantageous in order to
improve the quality of the synchronization [57]. The maiwvaatage of our method is that it only requires
direct knowledge of the synchronization error when it ig&aenough to be measured. Furthermore, in

principle, there are no limitations on the number of systérman handle. On the other hand, the method
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only provides the relative deviations from the mean and lea$oybe extended to systems with comparable
mismatch in different parameters. However, there is at l@as important application in which our method
can yield important information, even if there are diffearparameters with comparable mismatch size. For
example, if it is desired to synchronize the dynamical systethe relevant mismatch is not that of each
individual parameter, but the effective mismatch repreeby (QL)* [see Egs. (3.6) and (3.7)], and that
is the quantity whose size we determine by our method. Systéth the less effective mismatch will yield
the synchronization with the best quality.

We have demonstrated our method by determining the relptivameter mismatch in an ensem-
ble of 5 circle maps. By measuring the large deviations from the Isyortized state that occur during a
desynchronization burst, we were able to determine the sl relative differences in parameters (see
Fig. 3.3). We considered the presence of noise, and dedltitdly suitably averaging the measurements
taken for various desynchronization bursts. For a noisepesable to the mismatch we were able to deter-
mine the relative parameter mismatch by averagid@ realizations (see Fig. 3.4). For both situations, we
were able to determine the relative parameter mismatch ieasurable values even when the mismatch

itself was assumed to be immeasurable.
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Chapter 4
Localized instabilities and desyncronization waves iaysrof coupled periodic

oscillators

In this Chapter we discuss the synchronization of a largebmumof near-identical oscillators that are locally
coupled with connections of random strength. Synchroitimah networks of coupled oscillators has
recently received considerable interest [18, 20], andélasaince in fields like biology [15]-[18], chemistry
[14], lasers [10]-[12], and communications [39]. Usualhg networks studied have been assumed to have
connections of equal strength. In practice, the connesti@tween different oscillators may have different
strengths, and in some cases this strength could have aslargad (e.g., in biological systems). A model
and analysis method has been proposed by Pecora and Cédijath fystematically determine the stability
of the synchronized state in a network of identical coupledltators. This method, thenaster stability
function has been used to study the synchronization propertiesffefatit networks [45, 46]. Deng et
al. [58] have obtained, using the master stability functexhnique, conditions for the distribution of the
connection strengths that yield average stability of thechyonized state. Galias and Ogorzalek [59] have
studied the effect of adding small perturbations to the tingstrengths in relatively small arrays of coupled
chaotic oscillators. Denker et. al. [60] have studied ttHieatfof small coupling strength heterogeneity in
networks of pulse-coupled oscillators. Our approach is ®hapter will be different;. we consider the
coupling strengths to have a relatively large spread, afidliscuss phenomena that can be expected when
a large number of periodic oscillators are coupled in suchtevork. In particular, we will see that as the
coupling strength is increased, the oscillators desynthedn a localized region. The localization results
because the connection matrix has random components amig#me/ectors of this matrix are Anderson
localized [61, 62]. The effect of the localized instabiligreads as a wave throughout the array, eventually
resulting in an ordered state. Remarkably, in the case wherescillators are not identical the final state
of the locally unstable system was found to be, for the systermnonsidered, more ordered than in the case

where the system is stable.
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4.1 Localized instabilities in oscillator arrays

We consider a model system &f identical dynamical units, each one of which, when isolasadisfies
X, = F(X;),wherei =1,2,... N, andX; is thed-dimensional state vector for urit(The case of nearly
identical units is considered at the end of this Chapter.aBeChapter 2.) The oscillators, when coupled,
are taken to satisfy (e.qg., [44])

N

Xi=F(X;)—g»_ GyH(X)), (4.1)

j=1
where the coupling functiof is independent afandj, and the matridxG is a symmetric Laplacian matrix
(Zj G;; = 0) describing the network connections. The constadetermines the global strength of the
coupling.

There is an exactly synchronized solution of Egs. (4X),= X2 = --- = Xy = s(t), whose
time evolution is the same as the uncoupled dynamics of desimyt, § = F(s). In this Chapter we
will be concerned with the case where the synchronized &ateriodic s(t + T) = s(t). The stability
of the synchronized state can be determined from the vamnaltiequations obtained by considering an

infinitesimal perturbatiom; from the synchronous stat&;(t) = s(t) + €;(t),

N
éi = DF(S)EZ' - g Z GijDH(S)Ej. (42)

Jj=1

Lete = [e1, €2,...,exn], and define the x N matrixn = [n1,72,...,n5] by e = nLT, whereL
is the orthogonal matrix whose columns are the correspgnaial orthonormal eigenvectors 6f GL =
LA, A = diag(A1, A2, ..., An) Where), is the eigenvalue of? for eigenvectork. Then Eqgs. (4.2) are
equivalent to

e = (DF(s) — gArDH(s)) . (4.3)
The quantityy,, is the weight of the:*" eigenvector of7 in the perturbatior. The linear stability of each
‘spatial’ modek is determined by the stability of Eq. (4.3). By introducingaalar variablex = g\, the

set of equations given by (4.3) can be encapsulated in tiygesgguation,
7= (DF(s)— aDH(s))n. (4.4)

The master stability functionl («) [44] associated with Eq. (4.4) is its largest Lyapunov exgar(or

equivalently for our case of periodigt), the largest real part of its Floquet exponents). This fianct
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depends only on the coupling functidh and the chaotic dynamics of an individual uncoupled element
but not on the network connectivity. The network connettidietermines the eigenvalugs (independent

of details of the dynamics of the chaotic units). The stgbihf the synchronized state of the network is
determined byl = sup;, ¥(gAx), where¥, > 0 indicates instability.

As an illustrative example, we consider periodic Rosssailtators [51], obeying the equations

y=z+ 0.2y,

2=02+4 z(x —2.5).

In terms of our previous notatiod,= 3, andX = [z, y, z]7. The master stability function for this system
is shown in Fig. 4.1. As seen in this figur&(«) approaches zero from negative valuesvas: 07. This
is a general feature for systems where the individual, upleolunits are stable limit cycle oscillators. We
also see tha¥' («) crosses from negative (stable) values to positive (unstatsllues at a criticak value
(a = 4.15). The existence of such a transition is a robust featuredbpénds on the type of coupling and

oscillator. We now consider a network &f of these oscillators nearest-neighbor coupled in a ringh su

W) 0 M

-0.1

-0.2/

-0.3;

o 1 2 3 4 5 6 17
Figure 4.1: Master stability functiof («) versusx for Egs. (4.5).

that the strength of each individual link is random. The dimgpstrengths are obtained from an independent
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and identically distributed random sequereg}? ;. The matrixG is then

bl —ai 0 0 0 —an
—aq b2 —asg O e O O
G = 0 —as b3 —as - 0 0 ) (4.6)

—ay O 0 0 0 —an-1 by
whereb; = (a;—1 + a;) fori =1,..., N (we takeag = ay).

The eigenvectors of the matrix determine the possible desynchronization patterns. tigsva that
the eigenvectors of certain types of random matrices arerexptially localized (e.g., Anderson localization

[61, 62]). In our case, the eigenvectar; } ¥, with eigenvalue\ satisfies
tiy1 = a;ll(/\ +a; +ai+1 — Giti_l), 4.7)

wheret; = . Viewing Eq. (4.7) as a random dynamical systemzforve find numerically that in our

i1

case,

R
y = lim — log(ti) (4.8)
1=0

exists and is independent of the initial condition and noésdization. Eigenvectors of (4.6) tend to have
a localized amplitude peak at some locatigrand decay likgu;| o ¢71*~%| away from the peaky ! is
thus the localization length. (See [62].)

We choose the;’s to be uniformly distributed in0.1, 1) (note that any multiple of this would
lead to the same eigenvectors). (Singe> 0.1 we avoid the possibility;; < 1 that would effectively
disconnect the network.) The effects we will describe fas thetwork should be regarded as an example
of what could be expected in more general networks with remdoupling. In Fig. 4.2(a) we show the
eigenvector with largest eigenvalue for a realization eftatrixG using N = 500. Figure 4.2(b) shows
the localization lengthy—! as a function of\ calculated using Eqg. (4.8). The eigenvectors are seen to
be sharply localized for the largest eigenvalues, and bedess localized as the eigenvalues decrease.
As the coupling strength is increased, the eigenvectors with largest eigenvaluerheainstable. These

eigenvectors have the smallest localization length [sge &R (b)]. We will now describe what occurs
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Figure 4.2: (a) Eigenvectar; for the largest eigenvalue = 3.61 for a particular realization of the matrix

G in (4.6) with N = 500. (b) Localization lengthy~* calculated using Eq. (4.8).

in this situation. We fixed the same realization of the maf¥ixised in producing Fig. 4.2(a). The four
largest eigenvalues aB61, 3.41, 3.38, and3.30. Forg = 1.24 the eigenvector with largest eigenvalue is
unstable, and the next two eigenvectors are barely undtable4.47, 4.23 and4.19 in Fig. (4.1)]. We start
with initial conditions near the synchronized state anadtle the system evolve according to Egs. (4.1).
In Fig. 4.3 we show snapshots @f as a function of the site indexfor six successively increasing times.
Starting from a nearly synchronized state [Fig. 4.3(a), discillators desynchronize at the location [see
Fig. 4.2(a)] of the localized mode [Fig. 4.3(b)]. The dedyramization spreads as a wave to farther regions
of the array [Figs. 4.3(c)-(e)]. At the end, the domain of W&ve covers the entire array [Fig. 4.3(f)].
This process is dominated by the most unstable mode. The wtbdess unstable modes can be seen as
tiny defects at ~ 327, 402 in the otherwise smooth wave. (The effect of these less blestaodes is
most evident in Fig. 4.3(c). They also have a discernibtapaigh small, effect in the final state [arrows in

Fig. 4.3(f)].)
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Figure 4.3: Plots of the coordinate of oscillatot versus the site indei at times (a), (b) 1400, (c) 2800,

(d) 4200, () 5600, and (f)10000. All the plots have the same scale as (e).

4.2 Phase description of desynchronization waves

The final state and the process leading to it can be understoedns of the phase of the oscillators. Define
the phases(i,t) = 2r{n(i,t) + (t — t_(i,t))(t+(i,t) — t_(i,t)) "}, wheret_(i,t) = max{s : z;(s) =

0,2, > 0,8 < t}, t4(i,t) = min{s : x;(s) = 0,&; > 0,s > t}, andn(i,t) is an integer chosen so
that ¢ is a continuous function aof and that¢(i + 1,¢) is close tog(,¢) for all 5. Figure 4.4 shows two
snapshots of the coordinate and the phase as defined above as a functiofthefi origin was displaced

so that what happens opposite the location of the unstabiie man be observed clearly, and for each time
a constant was added #oso thatmax; ¢ = 0). As can be observed in the Figs. 4.4 (a) and (c), a region
with a constant phase gradient expands on both sides of gtehla mode. In the final state [Figs. 4.4(b)

and (d)] the phase has a minimum at the location of the urestabtle and increases linearly on both sides
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reaching a maximum at the opposite end of the ring. This ppiadée increases uniformly with time. The

Xjalrt
O.

4 (a) b
0 4 (b)

2T /
41 f Unstable mode
67 () () /

Figure 4.4: Plots (a) and (b) shows thecoordinate of oscillatof versus the site indekfor times3750
and9660. Plots (c) and (d) show the phase of oscillatat the same times as for (a) and (b) respectively.

Compare with Eq. (4.10)

cause of this phenomenon is that, as the oscillators in tiienef the unstable mode desynchronize, they
go to limit cycles that have a slightly lower frequency thaattof the original orbit. Oscillating at a slower
pace than the others, they drag the adjacent oscillatogsthese drag theirs in turn, continuing until an
equilibrium is reached. An equation describing approxeatyathe evolution of the phase of the oscillator
at location¢ and timet, ¢(&, t), in a chain of diffusively coupled oscillators is given iretbontinuous limit
by [25]

op  0%*¢ (8¢

2
S a_§> T w(e), (4.9)

wherew(¢) is the frequency of the oscillator at locatighanda andb are constants. If this frequency
is sufficiently smaller (larger) in a localized region ané negative (positive), the equation predicts the

development of waves that emanate from that region. Theepbiadile resulting from such forcing in a
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small region centered at the oridifg| < /) can be approximated for largeandt¢ as [25]
(b(gv t) = wot — maX(O, k(’Ut - |€|))a (410)

wherewy = w(§) for €] > [ andk andv depend orw andb andw(). For appropriaté: andwv, equation

(4.10) agrees well with Figs. 4.4 (c) and (d).

i e |
@ o @ 0

(c) (d) | (i) ()

X 4r

O.

o AW
o (e M ® ()
0 259 500
l

Figure 4.5: Each plot shows thecoordinate of oscillatoi as a function of the site index The time is0,
1400, 2800, 4200, 5600, and9970 for plots (a) to (f) and similarly for plots (g) to (I). A paragter mismatch
was introduced in the oscillators. (a)-(f): All the modes atable. (g)-(I): The pattern is organized by an

unstable mode as in Fig. 4.3(f). All the plots have the sarakests (e).

In the example presented above, the pattern created by shetlemode can be regarded as a more
disordered synchronization than that of the original idehtsynchronization. However, in realistic situa-
tions, an unstable mode can actually make synchronizatae orderly. In real systems, small differences
in the parameters or small noise are expected. Under thesarstances, the different oscillators will be
subject to small perturbations. The modes with eigenvatigese to zero have a master stability function

close to zero [see Fig. 4.1] and also are nearly unlocaliged Fig. 4.2(b)]. Thus, the phase of each os-
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cillator will be subject to perturbations whose projectanto the nearly unlocalized modes are only very
weakly damped. The identical synchronization of the arsathus spoiled by mismatch or noise. As an
illustration, we randomly perturb the parameters of théedént oscillators, so that they lie withih3%

of the original parameters. We then solved Eqgs. (4.1) with 1.1 andg = 1.24. Forg = 1.1, all the
modes are stable; in the cage= 1.24, three modes are stable as discussed above. In Figs. 4 \(&-
show snapshots of the cage= 1.1, and in Figs. 4.5 (g)-(l) we show the corresponding snastuotthe
caseg = 1.24. When all of the modes are stable, the system exhibits aistathich there is erratic slow
variation of thex; with i. When there is an unstable mode, however, a more organiatlistreached.

If one picks two different oscillatorg andk, they will satisfy asymptoticallyX; (¢t — 7) = X (t), where

7 is a simple function ofj andk [see Fig. 4.4 (d)]. Thus the oscillators are pairwise lagchyonized
[63]. In realistic large arrays of periodic oscillatorspitght be convenient to have one unstable mode. Our
results suggest that this mode could, despite its locatizddre, induce global organization of the system

(Fig. 4.5).

4.3 Discussion

In conclusion, we find that large arrays of periodic osailtatlocally coupled by connections of randomly
heterogeneous strength can experience a desynchroniz@isition characterized by the appearance of
unstable Anderson localized modes. Furthermore, we firtdihaat the transition, the localized mode might

play the key role in organizing the final global pattern of slggtem oscillations.
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Chapter 5

The onset of synchronization in large networks of coupletillasors

In recent years, the importance of networks in differentiiehas become increasingly clear [7, 8]. It
has been observed that many real world networks possedsgigxwhich introduce important effects on
the processes taking place on them. One of the most integesstid important of these processes is the
synchronization of coupled dynamical systems. Synchegtiua is found in fields ranging from physics to
biology [18, 20], and in many cases involves a large netwdrdtypamical systems. The structure of this
network plays a crucial role in determining the synchroti@raof the coupled elements.

Kuramoto [25] proposed and exactly solved a model for thelsyanization of all-to-all uniformly
coupled phase oscillators. His model and solution haverea guide as to how the coupling strength
and the properties of the oscillators (e.g., their natusgjdiencies) might affect their synchronization, and
generalizations of this basic model have been studied ffriaw, see [31], Chapter 12 of [20], and Chapter
6 of [32]). Some attempts to study the Kuramoto model withmoeks different from the all-to-all network
have been made [33]. Networks in which the interaction giftedepends on a distance have been studied,
and it has been numerically found that a transition from rerent to coherent behavior occurs at a critical
value of the coupling strength [34]. The Kuramoto model itwaeks without global coupling has recently
started to receive attention. It was numerically obserd&] fhat a transition is also present in scale free
networks. Very recently, a mean field theory to determindrduesition to synchronization in more general
networks has been proposed [36, 37]. The mean field theauit ie$hat the critical coupling strength,
is determined by the Kuramoto valuk,, rescaled appropriately by the first two moments of the degre

distribution of the nodes in the network;, s = ko(d)/(d?), where

N
(d7) = %ngg, (5.1)
n=1

the degree,, of noden is the number of connections between nadend other nodes of the network, and
N is the number of nodes in the network.

In this Chapter we go beyond the mean field approximatiorginistg a better estimate of the crit-
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ical coupling strength. We also describe the behavior ofitalsly defined order parameter past the tran-
sition. We show how our results reduce to those of the meath thelory when an additional assumption

is introduced, and present examples in different regimesfikd that in some regimes the mean field ap-
proximation does not provide an adequate description dfrémsition, whereas our more general estimate
does. We also show how our results explain observationsgfiovarks with distance dependent interaction
strength. We study finite size effects caused mainly by noflemall degree, and find that the transition

point is shifted to larger values of the coupling strengtlewkhese effects are taken into account.

This Chapter is organized as follows. In Section 5.1 we priesar theory and discuss the mean
field approach. In Section 5.2, we present numerical exasriptaifferent situations and test the different
approximations. In Section 5.3 we discuss the case of nksweith nonuniform coupling strength. In
Section 5.4, we present a linear analysis of the problem. elctién 5.5 we consider finite size effects
caused primarily by nodes with a small number of connectibirglly, we conclude in Section 5.6. Some

calculations were relegated to Appendices A, B, and C.

5.1 Self consistent analysis

As shown by Kuramoto [25], the dynamics of weakly coupledirheidentical limit cycle oscillators can,

under certain conditions, be approximated by an equatiothéophases,, of the form
On =wn+ > QO — 0,,), (5.2)

wherew,, is the natural frequency of the oscillatar N is the total number of oscillators arfdl,,,, is a
periodic function depending on the original equations ofioro The all-to-all Kuramoto model assumes
thatQ,,,, (6, — 6) = (k/N)sin(8,, — 6,,), wherek represents an overall coupling strength. In order to
incorporate the presence of a heterogeneous network, weasbat,,,,, (0., —0,) = kA, sin(6,,—6,),
whereA,,,,, are the elements of & x N adjacency matrix determining the connectivity of the network.

Therefore, we study the system

N
O =wn+k Y Apy sin(0 — 0,,). (5.3)

m=1

For specificity, we will primarily consider the case where th,,,, are eithe) (nodes: andm are
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not connected) ot (nodesn andm are connected, and all connections have equal strengthjpsgéieme
that the network is undirected, so th&f,, = A,.,. We assume also that, for eaghthe corresponding
wy, is independently chosen from a known oscillation frequgmopability distributiong(w). We assume
thatg(w) is symmetric about a single local maximum (cf. Sec 5.4), Whiithout loss of generality we can
take to be atv = 0. (If the mean frequency isy # 0, we make the change of coordinates that shifts each
wn, by wo and eaclt,, by wot.) In this case, synchronization will occur at frequefgy.e., d,, will remain
approximately constant for synchronized nodes.

We define a positive real valued local order parametdry
N
rneiwn = Z Anm<ei0nl>ta (5.4)
m=1
where(...); denotes a time average. In terms-gf Eq. (5.3) can be rewritten as
O = wy — kry sin(@, — ) — khy (1), (5.5)

where the ternh,, (¢) takes into account time fluctuations and is given by

hn = Im{e 3" Apm ((€?); — €')}, whereIm stands for the imaginary part. Since we regard
h, as a sum ofl,, approximately uncorrelated terms (whetgis the degree of node given byd,, =
>, Anm), We expect, to be of order/d,,. Substantially above the transition, due to the synchatitin

of the phases, the quantity ~ > Apm (e is O(d,). Thus, if we assume thaf, >> 1, substantially
above the transition the terfy, can be neglected with respectitp. However, just above the transition
to coherence, the number of oscillators that are phase doskemall (see below), and so the terinis
also small. We need the number of locked oscillators to lgelanough so that we can neglégt but, in
cases where we use perturbative methods, we also requirthéhaumber of locked oscillators be small
enough that the perturbative methods are still valid. Weetfoee do not expect the perturbative methods
to agree perfectly just at the transition point. [Indeechia tlassical Kuramoto (all-to-all) model a similar
reservation holds for finite networks, as there @@V —1'/2) fluctuations ofk Zfi:l e’ for k below

its critical transition value.] In Sec. 5.5 we will investitg the effects of the time fluctuating tery in

Eq. (5.5), but, for now, we neglect it.

With &,, neglected in Eq. (5.5), oscillators with,,| < kr,, become locked, i.e., for these oscillators
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0,, settles at a value for which
Sin(en - wn) = wn/(krn) (56)

(In general there are two suéh; the one closest t@,, is stable.) Then
N

Tn = Z Anm<ei(9m_wn)>t (57)

m=1

— Z Ay e Om—1m)

IUJnl ‘ < krm

+ Z Anm <ei(HM7,¢'n)>t-

|wm |>krm

In order to proceed further, we will introduce the followiagsumption:
Assumption % We assume the existence of solutions),, that are statistically independent of,.

This is a nontrivial assumption; however, it is reasonablaast of noden’s neighbors have reasonably
large degree, so that they are not strongly affected by theevat w,,. And, as we show below, such a
solution can be found in a self consistent manner. Using danitersion of Assumptiosk, we show in
Appendix A that the sum over the unlocked oscillators in Bg7) can be neglected. Therefore, only the
locked oscillators remain in the sum, and we get from Eq.)(Gsihg Eq. (5.6), since, is by definition
real,

rn = Re{ Z Anmei(emﬂ/’m)ei(wmﬂ/’")} (5.8)

|wim | <Ekrm,

2
- Z Anm COS(U)m - d}n) 1- (]:}r—r:;>

|wm | <kTp,

_ Z Anm Sin(wm - 1%) (I:;—T:l) ’

|wm | <kTp,
whereRe represents the real part. For the imaginary part of Eq. (&&)get
0= 5 Aumcostin — ) (12 (5.9)

kr
|wm | <kTm, m

2
w
Anm si m — ¥n 1 - — .
+\w z<:lcr i o) <krm>
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Using Assumptionk, the contribution of the last term in the real part equatB) can be neglected

because of the symmetry gfw) about0. We thus obtain the approximation

2
W
Ty = lwmgwm A €08(Um, — )t 1 — (m> . (5.10)
Since we are interested in the transition to coherence, wle flor the solution of Eq. (5.10) that
yields the smallest critical coupling. The smallest critical coupling is obtained when the cosine
Eq. (5.10) isl. (Note that both the number of terms in the sum and their sixgehses ak decreases.
Hence, a smallek corresponds to a larger value of the cosine.) We therefdtdogk for solutions for
which,, — ¢, = 0, i.e.,,, does not depend om, and without loss of generality, we will takg, = 0.
Note that this is a consistent condition in the sense thaintlaginary part equation (5.9) is satisfied: the
first term vanishes in the limit of a large number of connewiper node due to the symmetry arownof

g(w), and the second due to our assumed form¢hatloes not depend on

Equation (5.10) then reduces to

2
W
M=y Anmw/l—(—mm) (5.11)
|wim | <krm,

If the particular collection of frequencies, is known, this equation can be solved numerically. We will
refer to this approximation, based on neglecting the timetdlations in Eq. (5.5), as théne averaged

theory(TAT). We now define an order parametelny

N
r= # (5.12)
Zn:l dn
whered,, is the degree of node defined byd,, = > _| A,,,,,. Note that- = >-_ d,, (e?),/ S d,

coincides with the order parameter used in Refs. [36, 37].
If the number of connections per node is large, the parti@dlection of frequencies of the neigh-
bors of a given node will likely be a faithful sample of thedtency distributiory(w). Assuming this is

the case, and using Assumptig¢) we approximate the sum in Eq. (5.11) as

on 2
Ty = ZA’”” /lC glwir[1— (ﬁ) dw, (5.13)

or, introducingz = w/(krp,),

1
Ty = kZAanm/ g(zkrm)V'1 — 22dz (5.14)
— -1
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This equation is one of our main results. It is analogous to(E8) in Ref. [36] and Eq. (6) in Ref. [37],
but, as opposed to including only information of the degnegribution of the network, it depends on the
adjacency matrix, which completely describes the topologthe network. Equation (5.14) determines
implicitly the order parameter as a function of the networl,,,,,, the frequency distributiog(w), and
the coupling constarit. We will refer to this approximation as tHeequency distribution approximation
(FDA). As with the TAT approximation (5.11), nonlinear matequation (5.14) can be solved numerically
and the order parameteccomputed fromr,, using Eq. (5.12).

We will now study the implications of Eq. (5.14) by using apximation schemes in different

regimes in order to obtain explicit expressions for the opd@ameter and the critical coupling strength.

5.1.1 Perturbation Theory (PT)

From the discussion above, coherent behavior is charaetelly a nonzero value of,. We determine
the critical value oft by lettingr,, — 07. The first order approximatiog(zkr,,) ~ ¢g(0) in Eq. (5.14)
produces

k
o _ K (0)
) = koj;;fLmnTNI, (5.15)

whereko = 2/(mg(0)). Since we are interested in the transition to coherencesriralestk satisfying
Eq. (5.15) is of interest. We thus identify the critical tsétion value ofky /k with the largest eigenvalue
of the adjacency matrixd, obtaining

ke = —2. (5.16)

(In the cased,,.,, = 1 of all-to-all coupling,A = N — 1.) Also ri9 is proportional to thenth component

of the eigenvecton = [u1,us, ..., uy]’ associated with this eigenvalue. Note that this is consistéth
Assumptiony, sincer,, depends only on network properties (i.e., the mattjxand is thus independent
of w,,. Equation (5.16) is one of our main results. It determinesenviine transition to coherence occurs in
terms of the largest eigenvalueof the adjacency matriA.

In order to assess how the order parametgiven by Eq. (5.12) grows dsgrows fromk,.., we must

take into account that(zkr,,) in Eq. (5.14) is not constant. Fér,, small (see the discussion at the end of

60



Sec. 5.1.2), the second order approximation yields

o =k Anmrm (5.17)

></1 (g(O)—i—%g (ko) )Mdz

-1

Defininga = —mg”’(0)ko /16, we get

k
: > Anm (rm — ak®rd,) . (5.18)

We consider perturbations from the first order critical eslas follows:
vy =1 4 6. (5.19)

wheredr, < rY <« 1ask — k.. Inserting this into Eq. (5.18), and canceling terms of onci@, the

leading order terms remaining are

3
b — ZAnm<r£2>)3 (5.20)

ory, =

In order for Eq. (5.20) to have a solution fér,,, it must satisfy a solubility condition. This condition
can be obtained by multiplying byflo), summing ovem, using Eq. (5.15) and the assumed symmetry

Apm = A, o 0Obtain
Sk —k,
Sl okt

In terms ofu, the normalized eigenvector of associated with the eigenvalue the square of the order

(5.21)

parameter can be expressed as
-3
2 m k k
(Y2 (X 5.22
"= (k) (1) (2) 622

(w2
= N@ )

for k/k. > 1, where

(5.23)

Egs. (5.22) and (5.23) describe the behavior of the ordermpater near the transition in terms of

and its associated eigenvector. We will refer to them apénirbation theory(PT).
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The presence of the terfa*) in Eq. (5.23) suggests that the expansiom td second order might
fail when there are a few components of the eigenvectibrat are much larger than the rest. This occurs
when the degree distribution is highly heterogeneous. Wmaditate more precisely this constraint in the

discussion at the end of Sec. 5.1.2.

5.1.2 Mean field theory (MF)

In this section we describe an approximation that works mesoegimes and has the advantage of greater
analytical tractability. In this section we also recovemsoof the results in Refs. [36, 37]. Here we assume

thatr,, is proportional tad,,, r,, x d,,. The assumption consists in treating the average

N

Z Anm O

which depends on, as if it were a constant independentof Following Refs. [36, 37], we call this the

7’n

1
5.24
n d ) ( )

mean field MF) approximation. It is also equivalent, near the trdositto assuming that the eigenvector
associated with the largest eigenvalugatisfiesu,, « d,,. We will discuss later the range of validity of this
assumption. Note that this form fey, is again consistent with our Assumptigeathatr,, is independent of
wy. The ratior,, /d,, coincides under this approximation with the order parametiefined in Eq. (5.12).

Summing over and substituting,, = rd,, in Eq. (5.14), we obtain

N N
> dm =k dfn/ (zkrdy)V/1 — 22dz, (5.25)
m=1 m=1

which coincides with Eqg. (13) in Ref. [36]. As we approach ttamsition from above; — 01, the first
order approximation ig(zkrd,,) =~ ¢(0), from which we obtain

()

the main result of Ref. [36].
In the limit N — oo, we can replac&i?) as defined by Eq. (5.1) by
(@)oo = / d'p(d)dd, (5.27)

wherep(d) is the probability distribution function for the degree. td¢hat from Eq. (5.1)(d?) is always
well-defined for finiteN, but that Eq. (5.27) indicates that?) ., diverges for power law degree distribu-

tionsp(d) < d~7 if v < ¢+ 1. We also note that many real networks have approximate plawes(d)
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with v < 3 (see Ref. [7]). On the basis that?)../(d), = oo for 2 < ~ < 3, Ichinomiya [36] notes
that from Eq. (5.26%,,y — 0 asN — oc; i.e., predicts that in the limilV — oo there is no threshold for
coherent oscillations wheh < v < 3. As will become evident, our numerical experiments, altjtofor
N > 1, are often not well-approximated by thé — oo limit, in particular fory < 3.

The mean field approximation can be pushed further to secatet by expanding(zkrd,,) ~

9(0) + 39"(0)(zkrd,n)* in Eq. (5.25), obtaining, provideld-d,,, is small,

k T SN
1= — + k2 —g'(0)&=m=l"m (5.28)
kmf 16 Zgzl dm
so that
-3
2 (MmN (ko (A
= () (e 1) () 529
for k/k. > 1, where
_ (a@)?
o AN (5.30)

In expandingg to second order, it was assumed thdt, is small. The termd?*) in Eqg. (5.30) suggests
that the conditions under which the expansiom @ appropriate are those under whigi) . is finite. In

fact, Lee shows [37] that for a power law distribution of thegteesp(d) « d~7, the above expansion is
appropriate fory > 5. For3 < v < 5, he obtains in the limitV.— oo thatr scales near the transition

1/(v=3)
k 1) ! . A similar situation occurs in the perturbation theory [E(522) and (5.23)],

asr « (m -
which was also based on expandintp second order. According to the previous discussion, ieowiy
use the expression ferobtained from the perturbation theory for situations inethid*) .. is finite. The
critical coupling strength in Eq. (5.16), on the other hashmks not have this restriction.

The expressions in Egs. (5.23) and (5.30) can be shown teideinnder the approximatian,
d,. The treatment in Section 5.1.1 does not assumerthat, is independent of, and we will show in
Section 5.2 that there are significant cases where it giviésrivesults for the critical coupling strength than

the mean field approximation.

5.1.3 Summary of approximations and range of validity

In the previous sections, we developed different approtiona to find the critical coupling constant and

the behavior of the order parameter past the transitione Mer summarize the different approximations
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Approximation Abbreviation| Equation

Time averaged theory TAT (5.11)

Frequency distributior] FDA (5.14)

approximation

Perturbation theory PT (5.22,5.23)

Mean field theory MF (5.25)

Table 5.1: Approximations considered, their abbrevigtar their corresponding equations.

and the assumptions used in obtaining them. All the appratiins mentioned above assume that the
number of connections per node is very large. This allowedao®ng other things, to neglect the time
fluctuating termh,, (¢) in Eq. (5.5). We will discuss the effect of this term in Sent®5.

The most fundamental approximation is given by Eq. (5.1hisBquation can be solved numeri-
cally if the frequency of each oscillator and the adjacenayrixis known. This is the time averaged theory
(TAT). Assuming that the local mean fielq is statistically independent of the frequengy, the frequency
distribution approximation (FDA) given by Eq. (5.14) is abted. This equation can also be solved nu-
merically, but only knowledge of the probability distrilbert for the frequencies and the adjacency matrix
is required. Obtained by expanding the FDA approximaticar iiee transition point, the perturbation the-
ory (PT) describes the behavior of the order parameter mgaf the largest eigenvalue of the adjacency
matrix and its associated eigenvector in networks wheredigeee distribution is relatively homogeneous,
more precisely whexd?) ., is finite. Takingr, in the FDA approximation to be proportional to the degree,
r, « dy, leads to the mean field theory (MF). Table 5.1 summarizeglififierent approximations, their
abbreviations and their corresponding equations. Theamdn Fig. 5.1 indicates the assumptions leading
to each approximation.

The mean field theory requires only knowledge of the frequetistribution and the degree dis-
tribution of the network, and thus it requires less inforimatthan the other approximations. However,
it can produce misleading results if not used carefully. Trean field approximation has the added as-

sumption that the eigenvectorof A associated with the largest eigenvalugatisfiesu,, « d,, (since,
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TAT Eq.(11)

, distributed as g(m)
independently of r |

FDA Eq. (14)

k = kc s r n < dn
<d*> finite
PT Egs. (22,23) MF Eq. (25)

Figure 5.1: Different approximations and the assumptieading to them. See text for details.

close to the transition;, ~ u,). While correlations might exist [64], these two quanstare in general
not proportional. Further, the mean field approximationliegpthat\ ~ (d?)/(d), a result that, although
a good approximation in some cases, is not always true. Astingorms for the largest eigenvalue in
random networks with given degree distributions are disedsnd a sufficient condition for= (d?)/(d)

to be valid is presented in [65] as follows. L&}, be the maximum expected degree of the network. If
(d?)/{d) > \/dmazlog N, then) = (d?)/(d) almost surely asv — oo. We note also that, if the degree
distribution is tightly distributed around its mean, sotth&d2) ~ (d) ~ dyas > (log N)2, the condition
for the validity of A ~ (d?)/(d) is satisfied. If instead/d, ... > ({d?)/(d))(log N)?, then almost surely
the largest eigenvalue ¥ ~ v/d,,.; aSN — oo [65]. We will show that, indeed, to the extent that the
approximation\ ~ (d?)/(d) does not hold, the results from the numerical simulation af 5.3) agree
with the critical coupling strength as determined by theeriglue of the adjacency matrix, rather than by
the quantity(d?) /(d).

The asymptotic regimes described in [65] are not availalitle the relatively small networks\( ~
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5000) we are restricted to study due to limited computationabueses (see the end of Appendix B).
Also, finite but large networks are also interesting from ppligd point of view. Thus, we numerically
compare both approximations in order to illustrate the dssliscrepancies between them in particular
cases. Figure 5.2 was obtained using (for egansingle random realization of a network where the degrees
d,, are drawn from a power law degree distribution with power &gponenty (with d,, > dy = 20) and

with N = 5000 nodes (see Sec. 5.2 for details on how the networks are gedgrive plot(d?)/(d) and\

as a function ofy. For the parameters used in the pl@E)/(d) coincides with the largest eigenvalydor

T T T T T T

A

8007

600+ 5
<d >/<d>

4007

200¢

Figure 5.2: Largest eigenvalue(diamonds) andd?)/(d) (stars) as a function of for N = 5000 and

do = 20.

values ofy greater thar3. This suggests that the mean field result for the criticaptiog strength,,, ¢ is
valid for N = 5000 and~y > 3. This is consistent with our numerical experiments in Sez. ¥/e show in
Appendix B, however, that the mean field approximatidf) /(d) underestimates for sufficiently large
N (too large for us to simulate). In fact, @& — oo, A diverges while(d?)/(d) remains finite. Thus, the
critical coupling constant obtained from our theory apphes zero agv — oo, while the one obtained

from the mean field theory remains constant. This suggeststta few nodes with high degree are able, for
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large enoughV, to synchronize the network, and that these nodes are nen iako account by the mean
field theory.

For~ < 3, we observe from Fig. 5.2 thatis less thand?)/(d) when N = 5000. Thus, in this
range, the mean field theory predicts a transition for a dogmonstant that ismallerthan that predicted
by the perturbative approach. In the next section we willxgtior a numerical example in this regime, that

the transition occurs for a larger coupling than that preedidy the mean field theory.

5.2 Examples

In order to test the results in Sec. 5.1, we choose a disimibér the natural frequencies given hyw) =
(3/4)(1 — w?) for -1 < w < 1 andg(w) = 0 otherwise. In order to generate the network, we specify a
degree distribution and we use the “configuration” modej.(&ec. 4.2.1 of Ref. [7] and references therein)
to generate a random network realization with the specifégglek distribution: (i) we first generatdegree
sequencéy assigning a degreg, to each node: according to the given distribution; (ii) imagining that
each node is givend,, spokes sticking out of it, we choose pairs of spoke ends alomnand connect
them.

We consider a fixed number of nodéé,= 2000, and the following networks with uniform coupling
strength (i.e. A,..,, = 1 or0) (i) the degrees are uniformly distributed betwégnand 149, and (ii) the
probability of having a degreé is given byp(d) o« d=7 if 50 < d < 2000 andp(d) = 0 otherwise,
where~ is taken to be, 2.5, 3 and4. [Our choicep(d) = 0 for d < 50 insures that there are no nodes of
small degree, and suggests that our approximation of riaggethe noise-like, fluctuating quantity, in
Eq. (5.5) is valid. We return to this issue in Section 5.5.]

The initial conditions for Eq. (5.3) are chosen randomly lie interval[0, 27r] and Eq. (5.3) is
integrated forward in time until a stationary state is reat(stationary state here means stationary in a
statistical sense, i.e. the solution might be time depenbenits statistical properties remain constant
in time). From the values of,,(¢t) obtained for a giverk, the order parameter is estimated as ~

Zfi:l dm (€™, / Zﬁi:l dm |, where the time average is taken after the system reachesatienary

state. (Close to the transition, the time needed to reactéttienary state is very long, so that it is difficult
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to estimate the real value of This problem also exists in the classical Kuramoto alkionodel.) The
value ofk is then increased and the system is allowed to relax to aostaiy state, and the process is

repeated for increasing valuesiof

1.0
0.8/
r2 0.6
0.4
0.2|

A Simulation

Figure 5.3: Order parametef obtained from numerical solution of Eq. (5.3) (triangle#he averaged
theory (solid line), mean field theory (long-dashed ling)d @erturbation theory (short-dashed line) as a
function ofk/ k. for network (i), with the degree of the nodes uniformly diatited in{50, ..., 149}. All

curves are obtained using the same single random netwdikatian.

In Fig. 5.3 we show the results for the network with a uniforegee distribution as described above
[network (i)]. We plotr? from numerical solution the full system in Eq. (5.3) (trides), the theoretical
prediction from the time averaged theory (solid line), thediction from the mean field theory (long-dashed
line), and from the perturbation theory (short-dashed)l{see Table 5.1) as a function bf k., wherek,
is given by Eq. (5.16). The frequency distribution approaiion agrees with the time averaged theory, so
we do not include it in the plot. In this case, all the theaatpredictions provide good approximations

to the observed numerical results. The time averaged thepnpduces remarkably well the numerical
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observations. Even the irregular behavior near the tiansis taken into account by the time averaged
theory. The mean field theory is in this case a good approiamgiroviding a fair description of the order
parameter past the transition. The perturbation theorglid in this case up té/k. ~ 1.3.

The results for the networks with power law degree distidng [networks (ii)] are shown in
Figs. 5.4 (a), (b), (c) and (d) foy = 2, 2.5, 3, and4, respectively. The order parametérfrom numeri-
cal solution of the full system in Eq. (5.3) (triangles), tirae averaged theory (solid line), the frequency
distribution approximation (stars), and the mean field thélmng-dashed line) are plotted as a function of
k/k.. We do not show the perturbation theory since in all thesexas< 5 and so we do not expect the
perturbative theory to be valid 86 — oc.

The time averaged theory agrees best with the numericalaiimos in all cases. The frequency
distribution approximation also agrees well in all caskeugh it predicts a sharper transition than actually
occurs. The mean field approximation agrees closely withfréguency distribution approximation for
~ = 4 and, away from the transition, for = 3. However, fory = 2 and~ = 2.5, it deviates greatly from
the other approximations and from the numerical simulatibime critical coupling strengths predicted by
the mean field theory and by the perturbation theory are viesedor~ = 4, but the mean field theory
predicts a transition at aboti®0% smaller coupling fory = 3, about20% smaller fory = 2.5, and about
40% smaller fory = 2. Since the transition in the numerical simulation is not sell\defined, both
approximations are reasonable fo&= 3, but fory = 2 andy = 2.5 the critical coupling strength predicted
by the mean field approximation is clearly too small.

In the past years, it has been discovered that many real wetldorks have degree distributions
which are power laws with exponents betweeand 3.5 [7, 8, 66]. In order to accurately predict the
critical coupling strength across this range of exponehéscritical coupling constant given liy = ko /A
determined by the largest eigenvalue of the adjacency xnsttiould be used. The behavior of the order
parameter can be estimated using the time averaged theding drequency distribution approximation.
These two approximations were found to be consistentlyratedor the range of exponents and values of
the coupling constant studied. For the value\bfised, the mean field theory works well in predicting the

critical coupling strength and the behavior of the ordeapater if one is interested in values-pfarger
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than3.

Tables 5.2 and 5.3 present the results of comparing thedhiealrpredictions with the numerical
integration of Eq. (5.3) for different networks. Table 5@hpares the observed critical coupling strength
with the theoretical estimate. If both are close, the erg{G”, and otherwise “NG”. Table 5.3 compares
the predicted behavior of the order parameter past theti@nwith the observed one. If the corresponding
entry in Table 5.2 is “NG”, no comparison is attempted. Theies are the range df/k. over which the

corresponding theoretical prediction agrees with the rigaksimulation.

5.3 Nonuniform coupling strength

So far, our examples have assumed that the coupling strengpiiform (i.e., all the entries of the adjacency
matrix A have been taken to beor 1). However, considering that the degree of a node is defined as
dn = ), Anm, Our results carry through to the more general case of noformicoupling. As an
example of this situation, we apply our results to the casatéd in Refs. [34] of a distance dependent
interaction strength. Assume that the nodesre equidistantly located on a circle and the matrix element
are given by

Apm = f(In —m]), (5.31)

where|n — m| represents distance moduib(e.g.|1 — N| = 1), f(0) = 0,andf > 0. Then each row ofl
has the same sum= > A,,,, and[1,1,...,1]" is an eigenvector with eigenvalue By the Gershgorin
circle theorem [67] (each eigenvalueof A satisfies, for some, |0 — A, < 37, ., [Anml), thisis the
largest eigenvalue (sincé,,, = 0), and thus determines the transition to synchrony as destin the
previous section. This scaling factor has been proposeatddby analogy to spin systems, to determine

the transition to coherence in the case of a power law degagtaraction strengtlfi(x) = = ~7 [34].

5.4 Linear stability approach

Partly as a precursor to the next section (Sec. 5.5), in #G8@ we discuss another approach that has
the advantage of providing information on the dynamics efdfistem. We study the linear stability of the

incoherent state by a method similar to that used in Ref.. [¥& assume that in the incoherent state the
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Degree distribution TAT | FDA | MF | PT

p(d) uniformin {50,...,149} | G G G| G

p(d) x d™7, vy =2 G G |NG| -
p(d) xd=7,y =25 G G NG | -
p(d) xd 7, v=3 G G G | -
p(d) xd™7,v=4 G G G -

Table 5.2: Comparison of the predicted critical couplingmsgith versus the observed one for the different
approximations (columns) and different networks (row$)hé critical coupling strength is predicted by
a given approximation for a certain network, the corresjrogeéntry is marked “G”. Otherwise, “NG” is

entered. A “-" is entered when the perturbation theory ippieable ¢ < 5), see Sec. 5.1.2.

Degree distribution TAT | FDA | MF | PT

p(d) uniformin {50, ...,149} | 0.5+ | 0.5+ | 0.5+ | 0.3

p(d) ocd™, v =2 0.7+ | 0.7+ | - )
p(d) xd™7, v =25 0.5+ | 0.54+ | - ]
p(d)oxd™,v=3 0.7+ | 0.7+ | 0.7+ | -
p(d) occd™,y =4 0.7+ | 0.7+ | 0.7+ | -

Table 5.3: Comparison of the predicted behavior of the opdeameter versus the observed one for the
different approximations (columns) and different netwso(kows). If the behavior is correctly predicted
by a given approximation for a certain network, the corresiiog entry contains the range bfk. after
k/k. = 1 for which the approximation works well. A" indicates that the agreement possibly persists
for larger values ofc. When “NG” appears in the corresponding entry in table 5@ camparison is
attempted and a “-" is entered. A “-" is also entered when thebation theory is inapplicable (< 5),

see Sec. 5.1.2.
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solution to Eg. (5.3) is given approximately by

0° = wnt + én, (5.32)
whereg,, is a random initial condition. We introduce infinitesimalpgbations to this state by

0, = 6° +6,,. (5.33)

In Appendix C, we assume that the perturbations grow as difumaf time asz?, and obtain the eigenvalue

equation

by =

o |

N
Anmbm
o e (5.34)
S — W
m=1
We look for solutiong,, of this equation that are independent of the frequencjeésimilar to Assump-

tion %). Under this assumption, replacifig— iw,,) ! in Eq. (5.34) with its expected value, we get

k/ 1 al
by, = 3 <S — > m§:1 Apmbm, (5.35)
where
< L > = / glw)de (5.36)
s — 1w oo ST W

and the integration contour is defined in the causal seresefior Re(s) > 0 it is along the real axis, and

for Re(s) < 0 it passes above the pale= —is]. We thus obtain the dispersion relation

1= @/9(“’)‘“, (5.37)

2 § —iw
where, as in Sec. 5.1\ is the largest eigenvalue of the adjacency matriXExcept for the presence of the
eigenvalue\, this is the known dispersion relation for the stability loé incoherent state of the Kuramoto
model [31]. Under our assumption thgtv) is even and decreases monotonically away ffofSec. 5.1),
an unstable Re(s) > 0] solution of Eq. (5.37) is real [68] (note that, singeis symmetric,\ is real).
In order to find the critical coupling, we lat — 0%, (s — iw)™! — iP(1/w) + 76(w). Sinceg(w) is

symmetric,{(s — iw)_1> — 7g(0). According to Eq. (5.35), the critical coupling is then givey
k, = -0 (5.38)

in agreement with the nonlinear approach. [We note, howévat, if g(w) has multiple maxima, then the
first instability can occur atm(s) # 0 at a value of below that given by Eq. (5.38). This is why we have

assumed thaj(w) decreases monotonically away fram= 0.]
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5.5 Effect of fluctuations

So far we have neglected the effect of the small fluctuatiarestd the finite number of connections per
node. In our examples, we have presented networks that dwmetnodes with small degree. However, in
many networks there is a large fraction of the nodes with kdegree; in all our examples in Sec. 5.2 there
were no nodes with degree less tli@{p(d) = 0 for d < 50]. For example, scale free networks generated
using the Barabasi-Albert method [8] sometimes have patars so thatd) = 6.

In developing our theory, we neglected the time variationgq. (5.5), and worked thereafter with
the average value of the phase of the locked oscillators.rderdo gain insight into the effect of these
fluctuations, we will treat the time fluctuations as a noismte

The theory we presentis heuristic and may be thought of asansion giving a small lowest order
correction to the linear stability approach of Sec. 5.4 &ogé but finite{d). On the other hand, later in this
section, we will apply this theory to numerical examples rehibe finite size effect is not small, and we
will find that the theory is still useful in that it correctlpdicates the trend of the numerical observations.

Like in Sec. 5.4, we consider perturbations to the incohtestate described by Eq. (5.32). As
an approximation, we regard the coupling term in Eq. (5f3)¢) = kZi\izl Apm sin(6,, — 6,,), as a
noise term. In addition to growing linearly with time, thegse of the oscillaton will diffuse under the
influence of this noise. We assume thatt) = ¢, + w,t + W, (t), whereW,,(t) is a random walk such
that (W,,(t)) = 0 and(W,,,(t)W,(t)) = 2D,nt, andg, is an initial condition, which we assume to be
randomly drawn fron0, 2x). (In this section, by...) we mean an expected value, i.e. and ensemble
average, rather than an average ovarn.)

By using the linear approach of Section 5.4, the diffusioeficients D,,,,, will give us information

on how the critical coupling strength differs from Eq. (5.38he diffusion coefficient®,,,,, are given by

Du = [ ult /2 ot = 7/2)dr (5.39)
0
= / Z Anj<sin(6’;r —0,5) A sin(0;, — 6,,))dr,
0 ik ’
where+ (respectively—) indicates evaluation dt+ 7/2 (respectivelyt — 7/2). Consider first the case

n # m. The contribution of the terms withy, n} # {k, m} vanishes after the integration, and we obtain,
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using the symmetry ofl,
k2
Drm = - Ann (sin (055, — 0,7 sin (67, — 07,)). (5.41)

We now introduce our aforementioned assumption@hét) — w,t is a random walk plus a random initial
condition,f,,(t) = ¢, + wst + W, (t). Using the identityin(z) sin(y) = [cos(z — y) — cos(z + y)]/2

and averaging over the initial phasgs we get
k2 [
D=5 / A2 (cos(AWy — AW, + wrn )V, (5.42)
0

where AW,, = W,;F — W, andwy, = wm — w,. We now use the fact that for a Gaussian random
variablez with variances2 we have(cos(z)) = Re(e™®) = Re(e*)=2°/2). In our case(z) = w7 and

o? = ((AW,, — AW,)?) = 2(D,, + Dy, — 2D,,,,,)T, WhereD,, = D,,,,. After using this to compute the
expected value, and performing the integration, we obt@in £ m

) Dy + Dy, — 2Dy
" (Dyy + Dy — 2Dy )? + w2,

k2
Dpm = _?A (5.43)

If n = m, the calculation proceeds along the same lines, but theamistving terms in Eq. (5.39) are those

for whichk = j. Together with Eq. (5.43), this results in

Dp== Dum. (5.44)

m#n

In principle, Egs. (5.43) and (5.44) can be solved £y as a function of; if the frequencies and
the adjacency matrix are known.

In order to relate the diffusion coefficients to the criticalupling constant, we resort to the linear
analysis of Sec. 5.4. When noise is introduced in the linppra@ach, Equation (5.34) for the growth rate

generalizes, as shown at the end of Appendix C, to
N
b, = k Z _ Awmbm (5.45)

2m:15+Dm—iwm'

SinceRe(s) > 0 corresponds to instability of the incoherent state, it isemted that the effect of the noise
as reflected by positiv®,,, is to shift the transition point so that the critical coupliconstant is larger.

In order to solve for the growth ratefor a given value ok, we rewrite Eq. (5.45) as

b= gD(s)Ab, (5.46)
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whereb is the vector with componen{s$,, }, D(s) is the diagonal matrio(s) = diag{(s+ Dy, —iwm) '},

and A is the adjacency matrix. The characteristic equation is
k
det (ED(S)A — I> =0, (5.47)
wherel is the N x N identity matrix. This implies
k -1
det 5A — D(s) =0, (5.48)

or

det (gA — diag{ Dy, — iwm} — SI> =0, (5.49)

that is, the growth rate is an eigenvalue of the matrid (k) = (k/2)A — diag{ D, — iwn, }.

For a given value of, Eqgs. (5.43) and (5.44) can be solved iteratively. We hauaddhat, by start-
ing from an initial guess for the values 6%,,,, and repeatedly evaluating the right hand side of Eq. (5.43)
in order to get the next approximation to the valuedXf,,, convergence is achieved to a solution that is
independent of the initial guess if the conditidh, > 0 is imposed. When the values 6f,,,, have been
found for a given value of, the relevant growth rate is calculated as the largest arabbthe eigenvalues
of the matrixM (k) defined above.

As an example, we consider three networks with the degrel wbdesd given byd = 100 in the
first,d = 50 in the second and = 20 in the third one. In order to solve numerically the coupleda@pns,
we work with a small number of noded] = 500. In Fig. 5.5 we show the results for a realization of the
three networks. The order parametéobtained from numerical solution of Eq. (5.3) (solid linesid the
growth rate obtained from Egs. (5.43), (5.44) and (5.49%lfdd lines) are plotted as a functionigfk..
The arrows indicate which network corresponds to the givemez We observe that, as the connections
per node are decreased, the transition point shifts todarjaes of the coupling constant. This trend is
reproduced by the growth rate curves, which are displac#dtetaght for smaller values of the degree.

We emphasize that the theory we described above is ap@italletworks for whicHd) is large
but finite. However, in Fig. 5.5 we applied the theory to cdseshich (d) is not very large. Although we

do not expect the theory to be valid in this case, we find thatritectly describes the trend present in the
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numerical observations, i.e., a shifting of the transitmnoherence to larger values of the critical coupling

as nodes of small degree become important.

5.6 Discussion

A transition to coherence in large networks of coupled tecits should be expected at a critical value of the
coupling strength which is determined by the largest eigkra/of the adjacency matrix of the network and
its associated eigenvector. In the all-to-all case, ttgelstreigenvalue i — 1 ~ N and thus the Kuramoto
resultk, = ko/N is recovered. The largest eigenvalue of the adjacency xnaeftr@ network is of both
theoretical and practical importance, and thus its praggehave been studied in some detail [64, 65, 69].
We remark that our analysis allows the case of nonuniforeraution strengths by introducing continuous
values in the entries of the adjacency mattix

We developed different approximations in order to desdtileetransition to coherence in terms of
an appropriately defined order parameter which generdlimeparameter used in the classical Kuramoto
model [36]. See Table 5.1 and Figure 5.1 for a summary of thecimations and assumptions. The
time averaged theory (TAT) provided the most accurate dgegmn of the behavior of the order parameter,
and assumes knowledge of the adjacency matrix, and the individual frequencies,. The frequency
distribution approximation (FDA) also provides a good apqimation but does not require knowledge of
the individual frequencies. These approximations yieldagigns that have to be solved numerically. The
time required to numerically solve these equations is, wewenuch less than that required to numerically
integrate the original differential equations. The pdraiion theory (PT) yields analytic expressions for
the order parameter when close to the transition in termseofargest eigenvalue of the adjacency matrix
and its associated eigenvector, but is limited to networiikis arelatively homogeneous degree distribution.
The mean field theory (MF) [36] is obtained by introducing #ulitional assumption that the components
of the eigenvector associated with the largest eigenvakipraportional to the degree of the corresponding
node. This does not necessarily have to be the case whentaltdsetransition, and because of this extra
assumption, we expect the other approximations to morergiyaccurately describe the transition than

the mean field theory. Figs. 5.4(a) and (b) show that for théiquéar case of scale free networks with
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N = 2000, v = 2 andy = 2.5 this is the case. In general, we observed that for low valfi#gecexponent

~ (see Fig. 5.4) the mean field approximation and the pertubapproximation yield different critical
coupling strengths. The mean field theory has the advantegeahalytic expressions can be computed
without the need of solving the eigenvalue problem for th@ehcy matrix, and could be useful when
only limited information is available about the network. Wwiver, in general, our results suggest that one
of the other approximations mentioned above should be used.

We remark that even though the time averaged theory, theidrery distribution approximation
and the perturbation theory require in principle knowled§éne full matrix A, knowledge of the degree
distribution may be enough in some cases. As in our examaieadjacency matrid can be generated
randomly with a given degree distribution. Our results ¢adie that even this limited reconstruction of the
original network might improve the mean field results (see. Se2).

Our assumptions restrict the class of networks for whichrésalts apply. We assumed that suffi-
ciently near the onset of synchronization each node is ealjol manylockedoscillators. In practice this
implies that most nodes should have a high degree. This imjpartant restriction for our theory. In Sec. 5.2
we used networks with a minimum degree>0f As mentioned before, we observed that in networks with
small average degree (abAf), the observed critical coupling was larger than the ondipted by our
theory. By including the previously neglected time fluctoas, we developed a heuristic theory in Sec. 5.5
which correctly predicts the trend observed in the numeésicaulations. As the nodes with small degree
become important, both our theory and the numerical obensindicate that the transition to synchrony
occurs at larger values of the coupling strength.

In conclusion, we have developed a theory predicting thiécaticoupling for the transition from
incoherence to coherence in large networks of coupledlasunis. We found that for a large class of
networks, a transition to coherence should be expectedréicakvalue of the coupling strength which is
determined by the largest eigenvalue of the adjacency xatthe network. We developed and compared
various approximations to the order parameter past theitiam, and studied the effect of the fluctuations

caused by finite size effects.
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Figure 5.4: Order parametef obtained from numerical solution of Eq. (5.3) (triangle@)e averaged
theory (solid line), frequency distribution approximati¢stars), and mean field theory (long-dashed line)
as a function of/k. for degree distributions given by(d) « d=7 if 50 < d < 2000 andp(d) = 0
otherwise, with (a)y = 2, (b) v = 2.5, (¢)y = 3, and (d)y = 4. All curves in each figure are obtained

using the same single random network realization.
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1 12 14 16 5
C

Figure 5.5: Order parametet obtained from numerical solution of Eq. (5.3) (solid lines)d growth rate
Re(s) (dashed lines) for a network with the degree of all nodes 20, d = 50 andd = 100 as a function

of k/k.. The arrows indicate which network corresponds to the gitewme.
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Appendix A

Analysis of the contribution of the non locked oscillataygtie mean field
In this Appendix we show that, using Assumptigd) we can neglect the sum over the unlocked oscillators
in Eq. (5.7),

N .
ST Apmle®), (A1)

|wm |>krm

We will follow to some extent Chaptér of Ref. [20]. The time average is given by

@onyi= [ @i (A2)

wherep,, (0)d#f is, given the connections of node and its natural frequenay,,,, the probability that its
phased,, lies in the interval6, 6 + df). It satisfiesp,,,(6) o< 1/ ‘9‘ Including the normalization we have,

neglecting the term,,, in Eq. (5.5),

2 _kQ 2
V&m — ¥ T (A.3)

pm(6) = 27 |wp, — Kk sin(0 — )|

The sum in Eq. (A.1) can be written as

N N T 0 i _
o A= Y A \/mzsign(wm)zi / ¢ (Wi & ko sin(§ = Ym))df
v

—r w2, — k22, sin2(9 — Ym)

(A.4)

|wWm |>krm |wm |>krm

The integral of the first term vanishes since 2reperiodic integrand changes sign under the transformation

0 — 0 + 7. We are left with

- a m W0
ST Aunle® = S Aun /a2 — R krmsign(m) — / ¢ sin(0) — 1y,)d0

2w ;w2 — k22, sin?(0 — )

(A.5)

‘Wm|>kr7n |w7n|>k}’l‘m

In this sum,sign(wy,) is independent b2, and, using Assumptiosk, it is independent of,, andz,, as
well. If there are many terms in the sum, it will be then of arg&l,, due to the symmetry of the frequency
distribution, and thus will be small compared with the surerthe locked oscillators, which is of ordéy
[see Eq. (5.11)]. Note that we did not use here the full stiren§ Assumptionk, since we only required

the sign ofw,, to be independent of,, and,,.
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Appendix B

Failure of the mean field approximation &s— oo
Here we show that for sufficiently largeé and a power law degree distribution of the degreés) o« d=7,
the mean field approximatiofa?)/(d) underestimates for v > 3. We base our argument in the results of
Ref. [65]: if for a random grapk/dna. > (d?)/(d)(log N)?, then\ ~ \/d,, . almost surely a&V — oo,
whered,,.... is the largest expected degree.

In the case under consideration$ 3), (d?)/(d) converges to the finite valuy@?) .. / (d) oo [{. - - Yoo
is defined by Eq. (5.27)], whilé,,.. diverges asV/(?—1 [7]. Thus, for large enoughV, the conditions
for A\ ~ \/dnae Will be satisfied, sinceV/ ("= /(log N)* — oo asN — oo. While A ~ /dpaw — 00
asN — oo, the mean field approximatigi?)/(d) remains finite.

We can estimate an upper bound on how laig@eeds to be for this discrepancy to be observed.
For largeN, (d?)/{d) ~ do, wheredy is the minimum degreep[d) = 0 for d < dy]. The maximum
degree is approximately given b,.. ~ doN'/0—1 [7]. Inserting these estimates in the condition

Vdmaz ~ (d?)/{d)(log N)? we obtain
N ~dj ™ (log N)* =1, (B.1)

As an example, fory = 4 anddy = 20, the upper bound is approximately ~ 1025, a far larger system

than we can simulate.
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Appendix C

Linear stability of the incoherent state

In this Appendix we study the linear stability of the incobmet state by a method similar to that presented
in Ref. [28]. As described in Section 5.4, we assume thatdrirthoherent state the solution to Eq. (5.3) is
given approximately by

00(t) ~ wat + b, (1)

whereg,, is an initial condition. We introduce infinitesimal pertathons to this state by

O, = 6° + 6,,. (C.2)
Linearizing Eq. (5.3), we get
on =k Z Ay cos(6 90)5 + n — VnOp, (C.3)
wherepu, = kaiZl nm sin(00, — 09) andv,, = kZ Apm cos(09, — 09). As before, we assume

that the number of links to nodeis so large that, due to the incoherence, we may neglecttimste, and

vy With this simplification, Eq. (C.3) can be recast as an irgbgquation as follows:
t
5(t) = k / ' ZAWS Neos[ (1) — 0 (#Y]  (C.4)

t N
_ E/ gt o100t (ZA GO, (1) + Z A, 208055 (t’)).
2
-0 m=1

Multiplying by A;,, (), summing over. and definingB,, (t) = SN _| Ay b ()0, we get
k t N 0 0 0
ok / A109.(6) 60 (¢')] 1 2009 () k(g7
B;(t) = ) [m dt 7;:114]"8 (Bn(t )+e B (t )) . (C.5)

We assume that the quantitié&s, grow exponentially with time a®,,(t) = b,e®!, where Re(s) > 0.
Inserting this ansatz in Eq. (C.5), and performing the iragn we get

b* 2300 (t)

al k:
Z bn 211m(s)t Z (CG)

s* 4+ 1wy,

l\Dl??‘
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The second sum is very small due to the incoherence afise So, changing indices, we are left with the
eigenvalue equation

by =

o |

N
> ©n
as claimed in Section 5.4.

If, as proposed in Section 5.5, there are fluctuations in éhees off® (¢) such that? (t) = w,t +
én + Wh(t), whereW,,(t) is a random walk such thdtV,,(¢)) = 0 and (W, (t)?) = 2D,t, we take the
expected value of Eq. (C.5). We use the fact that for a Gausaiadom variable: with variances? we
have(ei) = ¢i(®)=2*/2_In this caseg = wy, (t' — t) ando? = 2D,,(¢ — '). We obtain after performing
the integration

N
bu = 3 y o (C.8)

s+ D, —iwm
m=1
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