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We study different aspects of synchronization in networks of coupled oscillators:

• We adapt a previous model and analysis method (themaster stability function), extensively used for

studying the stability of the synchronous state of networksof identical chaotic oscillators, to the case

of oscillators that are similar but not exactly identical. We find that bubbling induced desynchro-

nization bursts occur for some parameter values. These bursts have spatial patterns, which can be

predicted from the network connectivity matrix and the unstable periodic orbits embedded in the at-

tractor. We test the analysis of bursts by comparison with numerical experiments. In the case that no

bursting occurs, we discuss the deviations from the exactlysynchronous state caused by the mismatch

between oscillators.

• We present a method to determine the relative parameter mismatch in a collection of nearly identical

chaotic oscillators by measuring large deviations from thesynchronized state. We demonstrate our

method with an ensemble of slightly different circle maps. We discuss how to apply our method

when there is noise, and show an example where the noise intensity is comparable to the mismatch.

• We consider a ring of identical or near identical coupled periodic oscillators in which the connections

have randomly heterogeneous strength. We use the master stability function method to determine

the possible patterns at the desynchronization transitionthat occurs as the coupling strengths are

increased. We demonstrate Anderson localization of the modes of instability, and show that such

localized instability generates waves of desynchronization that spread to the whole array. Similar

results should apply to other networks with regular topology and heterogeneous connection strengths.
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• We study the transition from incoherence to coherence in large networks of coupled phase oscilla-

tors. We present various approximations that describe the behavior of an appropriately defined order

parameter past the transition, and generalize recent results for the critical coupling strength. We find

that, under appropriate conditions, the coupling strengthat which the transition occurs is determined

by the largest eigenvalue of the adjacency matrix. We show how, with an additional assumption, a

mean field approximation recently proposed is recovered from our results. We test our theory with

numerical simulations, and find that it describes the transition when our assumptions are satisfied. We

find that our theory describes the transition well in situations in which the mean field approximation

fails. We study the finite size effects caused by nodes with small degree and find that they cause the

critical coupling strength to increase.
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Chapter 1

Introduction

In recent years, it has been recognized that many real world systems can be represented by large complex

networks, and therefore the study of these networks has become a rapidly growing interdisciplinary field.

Some examples of systems that have been studied under this perspective are the Internet [1] the World

Wide Web [2], the electric power grid [3], protein networks [4], and social networks [5]. Remarkably,

some common features have been found in all these networks. It has been found, for example, that for

many different networks the distribution of the degrees (the degree of a node in the network is the number

of other nodes connected to it) follows a power law [6]. Much research has been done lately in order to

explain how networks evolve and acquire their particular structure. For a review of recent and ongoing

research on complex networks, see for example [7, 8, 9].

In this dissertation we consider the problem of synchronization in complex networks. In this sce-

nario, the nodes of the network are dynamical systems and thelinks between nodes correspond to dynamical

coupling. Many systems can be thought of as examples of this situation; for example, coupled arrays of

lasers [10]-[12], electrical circuits [13], chemical reactions [14], interacting cells [15]-[18], and even flash-

ing fireflies that interact by observing each other [19]. See [18], [20], and [21] for more examples. Under

some circumstances, the coupled systems synchronize. In some cases, the synchronization of the elements

is desirable (e.g., cells in the heart); in other cases, the synchronization can be harmful (e.g., simultaneous

firing of neurons in the brain is sometimes associated with epileptic seizures). In any case, one would

like to be able to determine if synchronization is going to occur in a given system, and whether or not the

synchronized state is stable.

In Chapter 2 we study the stability of the synchronous state in networks of nearly identical coupled

chaotic oscillators. It is known that in some cases, when there is noise or parameter mismatch, the syn-

chronized state can be interrupted by periods of large desynchronization, called desynchronization bursts

[22]-[24]. We studied the effect of the network structure onthis phenomenon, and found that the desynchro-
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nization bursts present spatial patterns (i.e., some nodesin the network deviate more than others from the

average state). These patterns depend on the eigenvectors of the matrix describing the network connections,

and on the dynamics of the individual oscillators.

In Chapter 3 we apply the results of Chapter 2 to estimate the parameter mismatch in a collection

of nearly identical chaotic oscillators. When synchronizing nearly identical oscillators, the small parameter

mismatch degrades the quality of synchronization. Knowledge of the mismatch characteristics can be useful

in order to minimize its effect by judiciously arranging theconfiguration of the oscillators.

Usually, studies of coupled oscillators assume a regular distribution of coupling strengths between

different oscillators (e.g., constant coupling strength,or a function of their distance on a lattice). In Chapter

4 we study the effect of random heterogeneous coupling strenghts in an array of nearly identical coupled

periodic oscillators. It is found that, under some circumstances, as the coupling strength is increased,

the system desynchronizes in a localized region. From this region waves of desynchronization propagate,

eventually producing a highly ordered final state.

In Chapter 5 we consider the case of synchronization in a network of heterogeneous oscillators.

A simple model for interacting heterogeneous oscillators was introduced by Kuramoto [25], who showed

that, in the case of all-to-all coupling, a transition to coherence exists for a critical coupling strength that

depends on the distribution of the natural frequencies of the individual oscillators. His model has been

studied extensively in the last decades and provides a guideas to how the characteristics of the individ-

ual oscillators (i.e., their frequencies) determine the transition to synchronization. Some generalizations

and further studies of this model include external noise [26], finite-size effects [27, 28], general coupling

functions [29], and delays [30]. For a review of the model anda more comprehensive account of its gen-

eralizations and improvements see [31], Chapter 12 of [20],Chapter 6 of [32], and references therein. As

discussed above, a network in which every node is connected to every other node does not realistically

represent many real world networks. In Chapter 5, we consider the Kuramoto model adapted to a general

network. The problem of studying the Kuramoto model on a general network has recently started to attract

attention [33]-[35], and a mean field approach to study this problem was proposed [36, 37]. We developed

a more general approach and found, among other things, that there is still a transition to coherent behavior
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for a critical coupling strength, and this coupling strength is determined by the largest eigenvalue of the

adjacency matrix determining the connections of the network.

This dissertation is based on the following publications:

• Chapter 2:

Juan G. Restrepo, Brian R. Hunt, and Edward Ott,Spatial patterns of desynchronization bursts in

networks of coupled oscillators.Phys. Rev. E69 066215 (2004).

• Chapter 3:

Jupiter Bagaipo and Juan G. Restrepo,Parameter mismatch estimation using large deviations from

synchronization.nlin.CD/0412049, submitted to Phys. Rev. E.

• Chapter 4:

Juan G. Restrepo, Brian R. Hunt, and Edward Ott,Desynchronization waves and localized instabili-

ties in oscillator arrays.Phys. Rev. Lett.93 114101 (2004).

• Chapter 5:

Juan G. Restrepo, Brian R. Hunt, and Edward Ott,The onset of synchronization in large networks of

coupled oscillators.cond-mat/0411202, to appear in Phys. Rev. E.
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Chapter 2

Spatial patterns of desynchronization bursts in networks of nearly identical coupled

oscillators

In this Chapter we study the synchronization of networks of coupled chaotic units that are nearly, but not

exactly, identical. In particular, we will be concerned with the spatial patterns of desynchronization bursts

that appear when this synchronization is present but intermittent.

When two or more identical dynamical systems are coupled, they can synchronize under appro-

priate circumstances. The synchronization of chaotic units has been studied extensively [20, 38] and is

of significance in biology [15]-[18], laser physics [10]-[12], and other areas [14, 39]. At the same time,

the importance of complex networks has been recently appreciated, and progress has been made towards

their understanding, including characteristics that might help distinguish qualitatively different networks

[7]-[40]. The dynamics of a network of coupled oscillators,and, in particular, its synchronization, has

therefore emerged as a subject of great interest.

There are different notions of synchronization, among themphase synchronization[41], general-

ized synchronization[42], lag synchronization[43], and identical synchronization[13]. The concept of

identical synchronization is useful when dealing with identical coupled oscillators. Here we will consider

oscillators that are nearly the same, although not identical. Thus we will be concerned withnear identical

synchronization, in which the states of the different unitsremain close to each other as a function of time.

Pecora and Carroll [44] have proposed a model and analysis method (themaster stability function)

for the study of the stability of the synchronous state of networks of identicalcoupled chaotic units, and

this technique has recently been extensively applied [45, 46] to study the synchronization properties of

different kinds of networks of identical noiseless chaoticunits. These networks include small world [47]

and scale-free networks [6].

The analysis of network synchronization by use of the masterstability function technique has so

far assumed all the units to be identical and noise-free, so that an exact synchronized state is possible. In
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practice, however, even if one strives to make the oscillators the same, they are still expected to have a small

amount of parameter mismatch, and a small amount of noise is also expected to be present. Under such

circumstances, it is known that the synchronization can be interrupted by sporadic periods of desynchro-

nization (bursts). The bursts are typically caused by a periodic orbit that is embedded in the synchronized

chaotic attractor and is unstable in a direction transverseto the synchronization manifold. This phenomenon

is commonly referred to asbubbling[22]-[24], and has been studied extensively for two coupledoscillators

[48, 49].

Our purpose in this Chapter is to study desynchronization bursts in networks of coupled chaotic

nonidentical units. (Noise has a similar effect but will notbe treated in this Chapter.) We will use the

master stability function approach and, in order to accountfor the possibility of bubbling, we will also

extend this approach to include the stability of embedded periodic orbits. In this case, the bursts have the

added feature of having spatial patterns on the network, andwe find that these patterns can be predicted

from the network connectivity matrix. We will show how thesebursts affect different parts of the network

in different ways. In particular, we will see how adding connections in a ring can destabilize precisely those

nodes that are the most connected, leaving other parts of thenetwork substantially synchronized. (This a

somewhat counterintuitive effect related to the fact that,in some cases, increasing the coupling strength

destabilizes the synchronous state [44, 50].)

Arbitrarily small amounts of mismatch will eventually, through the bubbling mechanism, induce

desynchronization bursts. We will show that some of the spatial patterns of this possibly microscopic mis-

match might get amplified to a macroscopic size in the bursts.We will discuss how one can use knowledge

of the parameter mismatch of the dynamical units in the network to decrease the effective size of the mis-

match driving the bursts, thereby improving the robustnessof the synchronization.

If synchronization is desired, the network and the parameters should be constructed so that the

synchronous state for the identical oscillator system is robustly stable (this implies the absence of noise

or mismatch induced desynchronization bursts). Even then,the synchronization will not be perfect if the

oscillators have parameter mismatch. We will describe the characteristics of the deviations from exact

synchronization in terms of the mismatch and the master stability function.
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This Chapter is organized as follows. In Section 2.1 we review the master stability function approach

and apply it to the case of coupled Rössler units. We also discuss the bubbling mechanism by including the

embedded periodic orbits in the master stability function analysis. In Section 2.2 we numerically consider

particular networks as examples and show the resulting bursts and their spatial patterns. The patterns we

obtain are long and short wavelength modes in a ring and localized bursts produced by strengthening of a

single connection in a ring. In Section 2.3 we study the effects of the spatial patterns of the mismatch in the

development of the bursts. In Section 2.4 we study the deviations from the synchronous state caused by the

mismatch when the synchronous state of the identical oscillator system is stable. In Section 2.5 we discuss

our results.

2.1 Master stability function and bubbling

We now briefly review the master stability function approachintroduced in [44]. Consider a system ofN

dynamical units, each one of which, when isolated, satisfiesẊi = F (Xi, µi), wherei = 1, 2, . . .N , and

Xi is thed-dimensional state vector for uniti. In [44] the parameter vectorsµi are taken to be the same,

µi = µ. Here, however, the parameter vectorsµi are in general different for each unit, but we assume

the difference, ormismatch, between them to be small. Generalizing the situation treated in Ref. [44] to

the case where the individual units are not identical (i.e.,theµi are not all equal), the system of coupled

dynamical units is taken to be of the form

Ẋi = F (Xi, µi) − g

N
∑

j=1

GijH(Xj), (2.1)

where the coupling functionH is independent ofi andj, and the matrixG is a Laplacian matrix (
∑

j Gij =

0) describing the topology of network connections. Fori 6= j, the entryGij is zero if oscillatori is not

connected to oscillatorj and nonzero otherwise. The nondiagonal entries ofG are determined by the

connections, and the diagonal elements are the negative of the sum of the nondiagonal matrix elements in

their row. The coupling constantg determines the global strength of the coupling.

Assume first that all the dynamical units are identical, thatis,µi = µ. We will refer to this situation

as theidealizedcase. In this case there is an exactly synchronized solutionX1 = X2 = · · · = XN = s(t)
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whose time evolution is the same as the uncoupled dynamics ofa single unit,̇s = F (s, µ). This convenient

result arises because the Pecora-Carroll model uses the particular choice of coupling in (2.1) that ensures

that the summation is identically zero when all of theXj are equal. We will denote this synchronization

manifold,X1 = X2 = · · · = XN , by M . This manifold is ad - dimensional surface within theNd -

dimensional phase space of Eq. (2.1).

The stability of the synchronized state can be determined from the variational equations obtained by

considering an infinitesimal perturbationǫi from the synchronous state,Xi(t) = s(t) + ǫi(t),

ǫ̇i = DF (s)ǫi − g

N
∑

j=1

GijDH(s)ǫj . (2.2)

Let ǫ = [ǫ1, ǫ2, . . . , ǫN ] be thed × N matrix representing the deviation of the entire network from the

synchronized state. In matrix notation, Eq. (2.2) becomes

ǫ̇ = DF (s)ǫ− gDH(s)ǫGT . (2.3)

While (2.3) allows for nonsymmetric coupling, we henceforth assume the coupling matrixG to be sym-

metric,G = GT . We write the symmetric matrixG asG = LΛLT , whereΛ is the diagonal matrix of real

eigenvaluesλ1, λ2, . . . , λN of G andL is the orthogonal matrix whose columns are the corresponding real

orthonormal eigenvectors ofG (LTL = I). Define thed × N matrix η = [η1, η2, . . . , ηN ] by ǫ = ηLT .

Then Eq. (2.3) is equivalent to

η̇ = DF (s)η − gDH(s)ηΛ. (2.4)

Componentwise,

η̇k = (DF (s) − gλkDH(s)) ηk. (2.5)

The quantityηk is the weight of thekth eigenvector ofG in the perturbationǫ. The linear stability of each

‘spatial’ modek is determined by the stability of Eq. (2.5). As a consequenceof the condition
∑

j Gij = 0,

there is a special eigenvalue,λ = 0, whose eigenvector isǫN = [1, 1, 1, . . . , 1], corresponding to perturba-
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tions in the synchronization manifoldM . Since these are not perturbations from the synchronous state, the

analysis is focused on the perturbations corresponding to nonzero eigenvalues.

By introducing a scalar variableα = gλk, the set of equations given by (2.5) can be encapsulated in

the single equation,

η̇ = (DF (s) − αDH(s)) η. (2.6)

The master stability functionΨ(α) [44] is the largest Lyapunov exponent for this equation for atypical

trajectory in the attractor. This function depends only on the coupling functionH and the chaotic dynam-

ics of an individual uncoupled element, but not on the network connectivity. The network connectivity

determines the eigenvaluesλk (independent of details of the dynamics of the chaotic units). In the sense

of typical Lyapunov exponents, the stability of the synchronized state of the network is determined by

Ψ∗ = supk Ψ(gλk), whereΨ∗ > 0 indicates instability. Thus the Pecora-Carroll model cleanly breaks the

stability problem into two components, one from the dynamics [obtainingΨ(α)] and one from the network

(determining the eigenvaluesλk).

In contrast to previous work using the master stability function technique, in this Chapter we are

interested in the dynamics of systems in which a small parameter mismatch is present. (Even though in this

Chapter our examples are restricted to the case of mismatch,we emphasize that the same type of bursting

phenomenon is expected for identical oscillators if noise is present [22]-[24].) Although the synchronization

manifoldM present in the dynamics of the idealized system is, in general, not invariant for the system with

mismatch, it still may provide a useful approximation to thedynamics in systems with small mismatch. If

M is stable for the idealized system, and the mismatch is smallenough, then trajectories nearM will tend to

stay nearM , and we regard the vicinity ofM to be the “synchronized” state. However, stability ofM in the

idealized case of identical oscillators is not sufficient toguarantee robust synchronization in a real system

where the oscillators are not identical[22]-[24]. While inthe vicinity of the synchronization manifoldM ,

a typical trajectory will eventually follow very closely a periodic orbit embedded in the attractor of the

idealized system. Some of these periodic orbits may be unstable in a direction transverse toM . When

in the vicinity of a transversally unstable periodic orbit,mismatch (or noise) will cause the trajectory to

8



have a component in the direction transverse toM and hence to leave the vicinity of the synchronization

manifoldM . If there are no other attractors, the trajectory will eventually return to the vicinity ofM , and

the process will repeat, the result being bursts of desynchronization sporadically interrupting long intervals

of near synchronization. This type of dynamics is called bubbling [22].

Thus, in the presence of mismatch (or noise), to determine the robustness of synchronization, it is

necessary to determine the transverse stability of the embedded periodic orbits for the noiseless system of

identical oscillators. For coupling as in (2.1), this analysis is independent of the network, and such analyses

have been carried out before, e.g., for the analysis oftwo coupled oscillators in Ref. [49]. Equation (2.6)

can be used as before to construct the master stability function for each periodic orbit, if the appropriate

periodic trajectories are inserted fors(t) in (2.3).

As an example, in this Chapter we work with the Rössler system [51]:

ẋ = −(y + z), (2.7)

ẏ = x+ ay,

ż = b+ z(x− c).

In terms of our previous notation,d = 3, µ = [a, b, c]T , andX = [x, y, z]T . We choose the parameters

of the idealized system to bea = b = 0.2, c = 7. For these parameters, the system has a chaotic attractor

(see Fig. 2.1). We found the periodic orbits embedded in thisattractor up to period five, and performed

the analysis described above on them. We found these orbits by looking at the Poincare surface of section

{y = 0, x < 0}. To a good approximation, in this surface of section the dynamics is well described by a one

dimensional mapxn+1 = f(xn), which we approximated using a polynomial fit. From this approximation

to f , we determined periodic orbits of periodp by using Newton’s method to find the roots ofx = fp(x),

wherefp denotes thep times composition off . We found one period1 orbit, one period2 orbit, two period

3 orbits, three period4 orbits, and four period5 orbits. Using coupling through thex coordinate,

H([x, y, z]T ) = [x, 0, 0]T , (2.8)

we obtained a stability functionΨ(α) for each orbit, the largest of which will determine if the synchro-

9



0 5 10

0

5

10

-5

-10

-5-10

Period 1
orbit

x

y

Figure 2.1: Rössler attractor (projection ontox−y plane) and embedded period1 orbit, displayed as a thick

white curve inside the attractor. The parameters area = b = 0.2, c = 7.

nization is robust. Results are shown in Fig. 2.2. For all values ofα, we found that the master stability

function corresponding to the period1 orbit (thick red dashed curve) is larger than that for a typical chaotic

orbit (thick black continuous curve), as well as those for the other periodic orbits we have found (several of

which are shown as orange thin curves).

Based on the discussion above, bubbling induced bursting should occur whenever the master stability

function for a typical chaotic orbit in the attractor is negative for α = gλk and allk, while the period

one orbit has positive master stability function forα = gλk for some value ofk. Denoting the master

stability function for a typical chaotic orbit byΨ0(α) (Thick black continuous curve in Fig. 2.2) and for

the period one orbit byΨ1(α) (Thick red dashed curve in Fig. 2.2), thebubbling regionof α corresponds

to Ψ0(α) < 0, Ψ1(α) > 0. In our example, this region corresponds to0.16 < α < 0.48 or 3.8 < α < 4.5.

The range0.48 < α < 3.8 will be referred to as thestable region, and the remaining zone will be called
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Figure 2.2: Master stability functionΨ(α) for a typical trajectory in the attractor (thick black continuous

curve), for the period1 orbit (thick red dashed curve), and for periodic orbits up toperiod4 (thin orange

curves). The curves for the four period5 orbits are similar to the latter and were left out for clarity.

theunstable region.

If a network of slightly mismatched chaotic systems coupledaccording to Eq. (2.1) is to be robustly

synchronizable without bursts of desynchronization,gλk must lie in the stable region for allk, whereλk is

thekth eigenvalue ofG. If gλk lies in the stable region for somek and in the bubbling region for otherk,

then bubbling will typically occur.
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2.2 Examples

In this Section we provide examples of spatially patterned bursting by considering different configurations

of the chaotic units. We will first work with the units connected in a ring with each connection of equal

strength. The Laplacian matrixG for this arrangement is

G =

































2 −1 0 0 · · · 0 −1

−1 2 −1 0 · · · 0 0

0 −1 2 −1 · · · 0 0

...
...

...
...

...
...

...

−1 0 · · · 0 0 −1 2

































, (2.9)

and its eigenvalues are given byλk = 4 sin2(πkN ). Sinceλk = λN−k, each eigenvalue has multiplicity

two, with the exception ofλN = 0, and, ifN is even,λN
2

= 4. The matrixG is shift invariant, that is, its

entries satisfy, moduloN ,Gi,j = G0,i−j . Under these conditions, the diagonalization procedure described

above corresponds to a discrete Fourier transform [50]. Forthe eigenvalueλk we choose the eigenvector

wk given bywk ∝ [sin(2πjk
N )]Nj=1 for 1 ≤ k < N

2 , and bywk ∝ [cos(2πjk
N )]Nj=1 for N

2 ≤ k ≤ N . (Due

to the degeneracy of the eigenvalues in this case, there is some arbitrariness in choosing the eigenvectors.)

Thus, the longest wavelength modes have the smallest eigenvalues, and viceversa.

2.2.1 Long wavelength burst

First we consider a case in which bursting of the longest wavelength mode occurs. We considerN = 12

andg = 0.71. With these values, the longest wavelength mode corresponds toα = gλ1 ≈ 0.19. This value

is in the bubbling region, and all other modes are in the stable region.

To introduce heterogeneity in the dynamical units, we imagine that we have mismatch predominantly

in one of the parameters, saya. We simulate this mismatch by adding random perturbations to the parameter

a of each oscillator. These perturbations are uniformly distributed within a±0.5% range; i.e.,ai is chosen

randomly in the interval[0.995a, 1.005a], wherea is the parameter value of the unperturbed system (a =

0.2). The parametersb andc were taken to be the same for each oscillator,bi = b = 0.2, ci = c = 7. How
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a particular choice of the mismatch affects the bubbling process will be discussed in Section IV.

We solved the12 coupled differential equations [Eq. (2.1)] with the initial conditions chosen near

the attractor in the synchronization manifold. In Fig. 2.3 we plot the quantityx1 − x6 for 1000 ≤ t ≤

1600. Most of the time, this variable is close to zero, as expectedif the oscillators are synchronized.

1000110012001300140015001600

x  - x1         6

t
1000 1200 1400 1600

0

1

2

-1

-2

Figure 2.3:x1 − x6 as a function of time forN = 12 Rössler systems connected in a ring withg = 0.71.

Note the desynchronization burst which starts att ≈ 1380.

Approximately at the timet = 1380, this difference grows, reaching magnitudes close to3. By time

t = 1500, the difference has decreased and is again close to zero.

To confirm the mediating role of the embedded unstable periodic orbits in the development of the

desynchronization burst, we show in Fig. 2.4 a plot ofx1 versusy1 from t = 1372 to t = 1392, which is

near the start of the burst. During this time, the trajectoryclosely follows the period1 orbit, which is the
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t = 1372t = 1392

Figure 2.4:x1 versusy1 for 1372 ≤ t ≤ 1392. During this period, which corresponds approximately to the

starting point of the burst in Fig. 2.3, the trajectory follows closely the transversally unstable period1 orbit

embedded in the attractor (See Fig. 2.1).

most transversally unstable of the periodic orbits. Similar observations have been previously reported for

two coupled chaotic systems [49].

Finally, in Fig. 2.5 we plotxj − xj−1 as a function ofj, the oscillator index, fort = 1360 (open

triangles),t = 1385 (open circles), andt = 1410 (open squares). The desynchronization burst can be

observed developing mainly at the longest possible wavelength.

When subsequent bursts were studied in the same way, it was found that the phase of the long

wavelength burst assumed only one value. This is due to the fact that the mismatch is ‘frozen’, that is,

each oscillator has a given set of parameters which differs by a given amount from the mean values. This

fixed spatial heterogeneity favors certain spatial patterns over others. We will discuss this in more detail in

Section 2.3.
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Figure 2.5:xj − xj−1 versus the node indexj for t = 1360 (open triangles),t = 1385 (open circles), and

t = 1410 (open squares). Note that the burst is absent first and grows with a long wavelength pattern.

2.2.2 Short wavelength burst

Short wavelength bursting can be expected, for example, when N = 8 andg = 1.09. In this case the

value ofλk corresponding to the shortest wavelength mode yieldsgλk = 4.36, which is in the bubbling

region, while all the other modes are in the stable region. Inthis case the observation of the bursts is

more difficult, as the transversal instability of the orbitsand the transversal stability of the attractor are less

pronounced [compareΨ(4.36) for this case vs.Ψ(0.19) for the previous example in Fig. 2.2]. Accordingly,

the perturbations of the parametera were made larger, with perturbations randomly chosen with uniform

density within a±6% range of the ideal values of the parameter (a = 0.2). In principle this is not necessary,

as a burst will eventually occur after long enough time. In practice, however, it is necessary to reduce the

waiting time to a reasonable value. As before, the coupled equations were solved with an initial condition
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on the synchronization manifold. In Fig. 2.6 we showy1 − y2 as a function of time for one choice of initial

conditions. The differencey1 − y2 is usually positive and of magnitude close to1. This asymmetry is not

t

1           2
y  - y

13000 15000 1900017000

8

12

4

Figure 2.6:y1 − y2 as a function of time for8 Rössler systems in a ring. The coupling strengthg was1.09.

The desynchronization burst develops att ≈ 15000, although it is not as sharp due in part to the smaller

magnitude of the transversal Lyapunov exponents (Ψ(4.36) in Fig. 2.2).

a surprise since the oscillators are slightly different. For the relatively large value of the mismatch used,

this is the “synchronized state”. It is seen in Fig. 2.6 that the differencey1 − y2 increases rapidly at around

t ≈ 15000, and soon reaches values close to10. It remains large for a longer time than in the case of the

long wavelength burst (see Fig. 2.3) and decays more slowly as well. This is in qualitative agreement with

the smaller absolute values of the master stability functions for the short wavelength mode, both for typical

orbits on the attractor and for the periodic orbits.
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Figure 2.7:yj − yj−1 versus the node indexj for t = 15000 (open triangles),t = 15200 (open circles),

andt = 15400 (open squares). The desynchronization burst has a short wavelength spatial pattern.

In Fig. 2.7 we plotyj − yj−1 as a function ofj, the oscillator index, fort = 15000, t = 15200 and

t = 15400. As expected, the burst mainly affects the shortest wavelength mode.

This can be assesed properly by doing a spatial Fourier transform. In this case, the quantitiesηk [see

(2.5)] correspond to the Fourier coefficients, since the eigenvectors of the matrix (2.9) are sinusoidal. The

Fourier coefficientsηk andηN−k, for 1 ≤ k < N
2 , correspond to the eigenvectorswk ∝ [sin(2πjk

N )]Nj=1

andwk ∝ [cos(2πjk
N )]Nj=1, and have the same eigenvalueλk. At this stage, we are only interested in

discriminating between modes with different eigenvalue. For this reason, we will plot as a function of time

the quantityξ2k defined byξk = {([ηk]y)2 + ([ηN−k]y)2}
1
2 for 1 ≤ k < N

2 andξN
2

=
∣

∣

∣[ηN
2
]y

∣

∣

∣, where[ηk]y

is they component of the three dimensional vectorηk. Thus, the quantityξk represents the weigth of the

modes associated to the eigenvalueλk.

In Fig. 2.8, we plot as a function of time the quantitiesξ2k for k = 1, 2, 3, 4. The short wavelength

mode (k = 4, upper curve) is dominant during the burst.
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Figure 2.8:ξ2k as a function of time fork = 1, 2, 3, 4. The shortest wavelength component corresponds to

k = 4 (top curve). The curves corresponding tok = 1, 2, 3 are close to the horizontal axis.

2.2.3 Localized burst

In the above examples all links had equal weights. As an example of a case with unequal link weights we

consider the case where the previous network is modified by doubling the strength of one of the links. Let

the link whose strength is doubled be the link that connects nodesp andp + 1. For example, forp = 4,
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N = 8, this yields the Laplacian matrix

G =

























































2 −1 0 0 0 0 0 −1

−1 2 −1 0 0 0 0 0

0 −1 2 −1 0 0 0 0

0 0 −1 3 −2 0 0 0

0 0 0 −2 3 −1 0 0

0 0 0 0 −1 2 −1 0

0 0 0 0 0 −1 2 −1

−1 0 0 0 0 0 −1 2

























































, (2.10)

Adopting the analysis technique of Ref. [52], we can show that such an enhanced connection has the

consequence that the largest eigenvalue ofG corresponds to an eigenfunction that is exponentially localized

to the region near the strong connection. That is, for largeN , the components of this eigenfunction decay

exponentially as the distance between the localized regionand the node corresponding to a component

increases. Using the ideas of Ref. [52], we now provide this analysis. The equations for the eigenvectorw

and eigenvalueλ are

−2wp+1 − wp−1 + 3wp = λwp, (2.11)

−wp+2 − 2wp + 3wp+1 = λwp+1,

−wj−1 − wj+1 + 2wj = λwj ,

for, respectively, nodesp, p+ 1 andj different fromp or p+ 1.

We consider solutions of 2.11 that are (anti-)symmetric,wp+1+k = ±wp−k, and for whichwp+1+j

wp+j

is constant forj ≥ 1, i.e.,wp+1+k ∝ tk for k ≥ 0 and somet. This will be a good approximation if the

mode is localized (i.e.,|t| < 1), and the network is big enough that|t|N
2 ≪ 1. In the antisymmetric case,

wp+1+k = −wp−k, Eqs. (2.11) yield,

5 − t = λ, (2.12)

−t− t−1 + 2 = λ
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which gives

t = −1

3
, λ =

16

3
. (2.13)

Compare this eigenvalue with the largest eigenvalue for thenetwork in which all links have equal strength,

which has a value of4. The symmetric solution,wp+1+k = wp−k, yieldst = 1 andλ = 0, correspond-

ing to the eigenvector[1, 1, . . .1] of perturbations in the synchronization manifold. The smallest nonzero

eigenvalue remains unchanged.

As an example, we show the localized desynchronization bursts produced by one of these strength-

ened connections for the caseN = 8, corresponding toG given by (2.10) and the illustration in Fig. 2.9.

The parameters of the idealized system are againa = b = 0.2, andc = 7, with a coupling strength of

g = 0.79. It is remarkable that despite the small number of nodes, theactual localized eigenvector and

4

53

2

1

6

7

8

strengthened

      link

Figure 2.9: Arrangement of the dynamical units in a ring withthe strength of the connection between nodes

4 and5 doubled. The matrixG corresponding to this network is in Eq. (2.10).
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eigenvalue agree well with (2.13) (λ = 5.334 . . . andw6

w5
= −0.334 . . . ).

In Fig. 2.10 we showx5 − x4 as a function of time. As in the short wavelength case, the burst is not

x  - x5         4

t
8500 9500 10500

4

2

0

-2

-4

Figure 2.10:x5 − x4 as a function of time forN = 8 Rössler oscillators in a ring with the strength of the

connection between nodes4 and5 doubled. The coupling strength isg = 0.79. A desynchronization burst

starts approximately att ≈ 9000.

very sharp due to the small magnitude of the transversal Lyapunov exponents. Nevertheless, it can be seen

that the differencex5 − x4 increases approximately att = 9000 and returns to a relatively small value after

reaching values considerably above the average.

In Fig. 2.11a we plot the difference between thex coordinate of nodej and its mean over all nodes,

xj − x, wherex = 1
N

∑N
j=1 xj , as a function of the oscillator indexj, for t = 8750 (open triangles),

t = 9000 (open circles), andt = 9250 (open squares). In Fig. 2.11b we show the localized eigenvector of
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the LaplacianG found numerically. As discussed before, the desynchronization burst affects mainly nodes

4 and5 (those which share the strengthened connection) and the ones adjacent to them. Nodes1,2,7 and8,

however, maintain approximate synchronization during theburst.

In Fig. 2.12 we show the mode weights corresponding to thex coordinate as a function of time.

The top curve corresponds to[η4]2x (for the localized mode), and the curves close to the horizontal axis

to [ηk]
2
x, k 6= 4, for the other modes. (The degeneracy of the eigenvalues is broken by the strengthened

connection, so we do not combine[ηk]x and [ηN−k]x as before.) Confirming the qualitative similarity

between the eigenvector and the spatial pattern of the desynchronization burst observed in Fig. 2.11, the

weight corresponding to the localized eigenvector is seen to be dominant during the period of time in which

the burst occurs.

2.3 Effects of the mismatch spatial patterns

In this section we will discuss the effects that the mismatchspatial patterns have on the development of the

desynchronization bursts. For these purposes, it will be convenient to rewrite Eq. (2.1) in the form

Ẋi = F (Xi) − g

N
∑

j=1

GijH(Xj) +Qi(Xi), (2.14)

whereF (Xi) = F (Xi, µ) with µ = 1
N

∑N
j=1 µj , andQi(Xi) = F (Xi, µi) − F (Xi). The termQi

represents the effect of the mismatch and is assumed to be small. As before, we linearize around the

synchronous state to get

ǫ̇i = DF (s)ǫi − g
N
∑

j=1

GijDH(s)ǫj +Qi(s), (2.15)

where we have discarded terms of orderQǫ. With the previous notation andQ = [Q1, Q2, . . .QN ], we

obtain after the diagonalization

η̇k =
(

DF (s) − gλkDH(s)
)

ηk + (QL)k, (2.16)

where(QL)k is thek’th column of thed×N matrixQL. In the ring with equal coupling along each link,

the diagonalization procedure corresponds to a Fourier transform. In this case, we see that the mismatch

affects the different modes according to the weigth,(QL)k, of this particular mode in its Fourier expansion.
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In other cases, for example in the localized eigenvector, the strength of the mismatch affecting the localized

mode is proportional to the weigth of the localized eigenvector in the eigenvector decomposition of the

mismatch. We will now discuss two applications of these results.

2.3.1 Amplification of mismatch patterns when modes with thesame eigenvalue burst

We have shown that the modes of the mismatch force the corresponding modes of the deviations from the

synchronous state. When bubbling induced bursting is expected, the size of the mismatch determines the

average time between bursts [24]. Thus, the size of the mismatch component in modek determines the

average interburst time when that mode is in the bubbling regime.

When the spectrum of the matrixG is degenerate, the spatial modes of the mismatch play an extra

role. All the modes sharing the same eigenvalueλ have the same stability properties, and thus, when the

corresponding valuegλ is in the bubbling zone, all eigenvectors with this eigenvalue are equally likely

to appear. The only difference between these modes is the strength with which they are forced, which is

determined by the mismatch component in that mode as shown inEq. (2.16) (or, if noise is present, by the

noise component in that mode).

An example of this situation is the ring with connections of equal strength in the long wavelength

bursting scenario. Since the ring is invariant with respectto rotations, the phase of the long wavelength

oscillations can not be determined only from the network anddynamics part of the problem. The two

modes with the longest wavelength (corresponding to sinusoidal and cosinusoidal oscillations) have the

same eigenvalue. It is the mismatch that in this case determines the phase of the long wavelength burst.

We will show how one can determine the phase of the long wavelength desynchronization burst in

the case of coupled Rössler systems in a ring with equal coupling along each link. For this system, the

mismatch vectorQj(Xj) is given by

Qj([xj , yj, zj ]
T ) =

















0

yjδaj

δbj − zjδcj

















, (2.17)

whereδaj = aj − a und similarly forδbj andδcj . We defineFk(u) =
∑N

j=1 ujŵ
k
j , whereŵkj is the
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normalizedj’th component of thek eigenvector described at the beginning of Section 2.2. Withthis con-

vention, the term(QL)k in equation (2.16) is given by

(QL)k =

















0

yFk(δa)

Fk(δb) − zFk(δc)

















. (2.18)

Hereδa = [δa1, δ2, . . . , δN ] and similarly forδb, δc, andy, z are the trajectories around which the lin-

earization was made.

We consider the case in which mismatch in one parameter is dominant, for examplea. The mismatch

in the parametersb andc will be assumed negligible compared with that ina, so thatδb, δc ≪ δa. In this

case, only the second component of (2.18) is of relevance. Thus modesη1 andηN−1 are excited with a

strength proportional, respectively, toF1(δa) andFN−1(δa); see (2.16). The magnitude ofηk will be

proportional toFk(δa), and thus the excitation of the long wavelength mode (which is the only one for

which perturbations grow) is proportional to

F1(δa) sin

(

2πj

N

)

+ FN−1(δa) cos

(

2πj

N

)

(2.19)

∝ sin

(

2πj

N
+ φ

)

, (2.20)

wheretanφ = FN−1(δa)/F1(δa).

We now show results of numerical simulations illustrating the above. The parametersN andg will

be as in the long wavelength example in the previous section.We use the same random set of perturbations

used in that example. As described above, we obtained the phaseφ of the long wavelength component of

the vectorδai. In Fig. 2.13 we plotyj − yj−1 for different times during a burst (filled symbols). In the

same Figure, we plot a scaled version ofsin
(

2πj
12 + φ

)

− sin
(

2π(j−1)
12 + φ

)

(open circles). The phase of

the desynchronization burst is in agreement with that of thelong wavelength component of the mismatch.

When the mismatch affects predominantly one parameter as inthis case, the phase of the bursts can

be predicted as described above. When mismatch in differentparameters is comparable, the phases of the

long wavelength modes of the different parameter mismatches compete and the bursts develop with one of

these phases or with a combination of them.
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It must be emphasized that this analysis is possible only when there is a degeneracy of the eigenval-

ues. For example, the location of the localized burst can notbe determined in this way, as it is fixed in the

position of the strengthened link. In this case, the mismatch component in the localized mode would only

affect the average time between bursts.

2.3.2 Artificial supression of unstable modes using knowledge of the mismatch

We will now discuss another consequence of Eq. (2.16). We imagine a situation where we are given a

number of nearly identical oscillators that we are to connect in a network which we desire to be in syn-

chronism as much as possible. Furthermore, we imagine that,through measurements made individually on

each oscillator, we are aware of the amount of mismatch in each oscillator. The question we address is this:

Using our knowledge of the individual mismatches, how should we arrange the oscillators in the network

so as to best supress the frequency of desynchronism bursts?To answer this question, we note that, ac-

cording to the previous discussion, we should reduce the mismatch component in the mode which is in the

bubbling region. Since the size of the mismatch affects the average interburst time [24], reducing this com-

ponent is desirable if one wants to improve the quality of thesynchronization. This can be accomplished

by judiciously arranging the dynamical units so that thek’th mode of the mismatch is minimized when

the corresponding valuegλk is in the bubbling region. For example, to supress long wavelength bursts,

one may arrange the units so that the parameter errors alternate above and below the mean. To supress the

localized bursting described in the previous section, one could arrange the units so that those with the more

similar parameters are the ones in the region of the strengthened connection.

As a concrete example, we test this idea using simulations for the case of short wavelength bursting

presented in the previous Section. We again assume for simplicity that mismatch in the parametera is

dominant. We generate random perturbations in the parameter a within a±6% range of the valuea = 0.2,

as explained in the previous section. With this set of parameters given, we set up the dynamical units in the

ring using two different permutations of their positions. One of them (as) has a smaller and the other (al)

a larger short wavelength componentF4(a) than the original random sequence. The ratioF4(al)/F4(as)

is approximately15. In Fig 2.14 we plotx1 − x2 as a function of time for configurational (top curve) and
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for configurationas (bottom curve). The differencex1 − x2 is much smaller in the former case than in the

latter, roughly by a factor of15, as can be expected from the ratioF4(al)/F4(as). This qualitative example

illustrates how one can use knowledge of the mismatch to supress undesired instabilities.

2.4 Spatial patterns of deviations from the stable synchronous state

So far, we have concentrated in the case in which the value ofgλk is in the bubbling regime for one mode

k and in the stable regime for the other modes, so that desynchronization bursts occur sporadically. As we

have seen, these bursts present spatial patterns on the network.

If synchronization is desired, one would might try to avoid the bubbling regime by designing the

network and adjusting the coupling strength so that all the modes lie in the stable zone. One would also

strive to reduce the mismatch, but as mentioned before, there are practical limitations on how much one can

make the oscillators exactly the same.

If Ψ(gλk) is negative for all modes (indicating transversal stability of the synchronous state) one

can have, depending on the degree of transversal stability,fair synchronization even with relatively large

amounts of mismatch. If one is to operate under such conditions, it is important to know the characteristics

of the deviations from the synchronous state.

Thus we ask in this scenario: How large are the spatial patterns of the deviations from the syn-

chronous state, and how does this depend on the mismatch and on the degree of transversal stability?

The spatial modes of these deviations obey Eq. (2.16). In theabsence of the term(QL)k, the zero

solution is stable, and typical perturbations from it decay, having a negative Lyapunov exponent given by

hk ≡ Ψ(gλk). The first term in the right hand side of Eq. (2.16) can be thougt of as a damping term with

a damping rate given byhk, and the second term,(QL)k, as a forcing term. Since we are considering the

stable case, these two factors, on average, cancel each other. By definition, the Lyapunov exponent for the

system without mismatch is given byhk = 〈η
T
k (DF−gλkDH)ηk

|ηk|2 〉, where the angle brackets indicate time

average. Assuming a solutionηk of the system with mismatch to yield the same value of this time average,

we left multiply Eq. (2.16) byηTk |ηk|−2 and average to obtain

|hk| ≈ 〈η
T
k (QL)k

|ηk|2
〉 ∼ 〈 |(QL)k|

|ηk|
〉, (2.21)
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where the angle brackets indicate time average. This leads to the following rough estimate,

〈|ηk|〉 ∼
〈|(QL)k|〉

|hk|
. (2.22)

(This is analogous to the result obtained for a linearly damped equation with constant forcing in one dimen-

sion,η̇ = −hη + q. In this case one has asymptoticallyη → q
h .)

As an example we consider Rössler units in a ring with all connections of equal strength. We choose

N = 8, g = 0.6 [Ψ(gλk) < 0 for all values ofk]. Furthermore, we add a random perturbation to the

parametera of each oscillator chosen uniformly from within a±0.1% range ofa = 0.2.

In Fig. 2.15 we show, fork = 1, . . . , 7, the quantities〈|ηk|〉 (squares),〈|(QL)k|〉 (triangles), and

〈|(QL)k|〉
|hk| (circles). The magnitudes of the forcing term for the different modes (〈|(QL)k|〉) span roughly

two orders of magnitude, and the magnitude of the response (〈|ηk|〉) looks roughly proportional to the latter.

When the forcing term is corrected by dividing it by the magnitude of the corresponding Lyapunov vector

|hk|, the resulting quantity (〈|(QL)k|〉
|hk| ) matches very well the observed response.

2.5 Discussion

We have studied the stability properties of the synchronized state in a network of coupled chaotic dynam-

ical units when these have a small heterogeneity. We have shown that when the dynamical units that are

coupled in a network are sligthly different, the synchronized state can be interrupted by large infrequent

desynchronization bursts for some values of the parameters. The range of the parameters for which this

phenomenon is expected can be obtained by performing a master stability function analysis of the chaotic

attractor and of the periodic orbits embedded in it.

The desynchronization bursts are induced by the bubbling phenomenon, and have spatial patterns

on the network. These spatial patterns can be predicted fromthe eigenvectors of the Laplacian matrixG

and the master stability functions mentioned above. We showed examples illustrating the development

of bursts with spatial patterns. One of our examples showed that the strengthening of a single connec-

tion might destabilize the nodes near this connection, while leaving the rest of the network approximately

synchronized.
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Direct measurement of the parameter mismatch in the elements of a network might prove useful.

We discussed how this knowledge could be used to reduce the frequency of bursts and to predict the relative

weights of different spatial patterns in a burst. We also discussed how one could, from knowledge of the

mismatch and of the master stability function, describe thespatial patterns and magnitude of the deviations

from the synchronized state when the synchronization of thecorresponding identical unit system is robust.

We emphasize that although we did not discuss the effects of noise, the phenomenon described

in this Chapter also occurs for noisy identical oscillators. Desynchronization bursts with spatial patterns

are expected for noisy, identical oscillators if one has them for noiseless, nonidentical oscillators. The

difference is that the parameter mismatch is always ‘frozen’, in the sense that the mismatch is always the

same for each oscillator, whereas for noise this is not the case.
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Figure 2.11: a)xj −x for t = 8750 (open triangles),t = 9000 (open circles), andt = 9250 (open squares),

for the configuration in Fig. 2.9. The burst develops with thespatial pattern of the localized eigenvector in

Fig. 2.11b. b) Localized eigenvector of matrixG in Eq. (2.10).
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Figure 2.12:[ηk]2x as a function of time fork = 4 (top curve) corresponding to the localized mode, and

for k 6= 4 (bottom curves, close to zero), corresponding to other modes. In the burst, the localized mode

is excited first and only after some time are the other modes also somewhat excited. The localized mode is

dominant during the burst.
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with φ as given in the text (open circles). The phase of the burst

spatial pattern coincides with the phase of the long wavelength component of the mismatch.
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Figure 2.14:x1 − x2 as a function of time for a configuration of oscillators with alarge (top curve) and

with a small (curve closer to zero) short wavelength component of the mismatch. The quality of the syn-

chronization is much better in the second case.
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Figure 2.15:〈|ηk|〉 (open squares),〈|(QL)k|〉 (open triangles), and〈|(QL)k|〉
hk

(open circles) forN = 8,

g = 0.6, k = 1, . . . , 7. The forcing term (open triangles) roughly determines the response (open squares).

The corrected forcing term (open circles) matches well the response (open squares).
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Chapter 3

Parameter mismatch estimation using large deviations fromsynchronization

The study of networks of coupled dynamical systems is an important area of research with applications in

diverse fields, ranging from biology to laser physics [10]-[20]. The synchronization of coupled oscillators

has been under extensive study in recent years and, in particular, the synchronization of identical oscillators

has received considerable interest [18, 20]. Since it is impossible in practice to obtain identical oscillators,

the effect of the difference in the parameters of the oscillators, orparameter mismatch, might be relevant

in some applications. It might be desired to have dynamical units as similar to each other as possible,

or to know the characteristics of the parameter mismatch in acollection of nearly identical systems. In

this Chapter we propose a method to use deviations from synchronization to extract information on the

parameter mismatch of the coupled dynamical units. Existing methods for parameter estimation (see, for

example, Refs. [53]-[56]) usually rely on knowledge of the typically small synchronization error. Our

method depends on relatively large deviations from the synchronized state, and might be useful in cases in

which the small synchronization error can not be measured accurately.

When a number of identical systems are appropriately coupled in a network, a solution exists in

which the state of all oscillators at all times is the same. This is referred to asidentical synchronization

[13]. This concept is useful only when the systems are identical. We will deal with systems that are nearly,

but not exactly, identical. We will refer to a situation in which the states of the systems are very close to

each other asnearly identicalsynchronization. A method to determine the stability of thesynchronous state

when the systems are identical, themaster stability function, has been proposed by Pecora and Carroll [44].

In the case of nearly identical chaotic systems, the nearly synchronized state might be interrupted by

relatively short periods of desynchronization (desynchronization bursts). These bursts develop with spatial

patterns on the network. As shown in Chapter 2, these spatialpatterns, and the parameters for which they

can be expected, can be predicted from the Laplacian matrix describing the network connections, the master

stability function of the attractor, and the unstable periodic orbits embedded in it. The spatial patterns of
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the bursts depend on the parameter mismatch of the differentsystems. We use this fact to infer the relative

deviation of the parameters of the individual units with respect to their mean from the desynchronization

bursts. The proposed method is as follows. The oscillators are connected in such a way that the parameter

mismatch determines the spatial patterns of the desynchronization bursts. As we will see later, one such

way is all-to-all coupling. The system is set up in a parameter region in which desynchronization bursts are

expected. While a burst is developing, measurements are taken of the deviations of the different systems

from the synchronous state. From these observations, the relative deviations of the parameters from the

mean are deduced. In order to apply our method, it is necessary to connect the oscillators in such a way

that all or most of the modes burst at the same time. We therefore assume certain freedom in connecting the

oscillators. Our method is not intended to be used in a fixed, preexisting network, but to use one in order to

determine the mismatch of the oscillators. After the mismatch is known, the oscillators can be connected

in any way, and the obtained knowledge of the mismatch can be used, for example, in order to optimize the

configuration of the oscillators in this subsequent network[57].

Some limitations of this method are the following. It is assumed that the dynamics of the sys-

tems is known accurately (except for the parameter mismatch), and that measurements can be taken with

enough precision such that the deviations from the synchronous state can be measured in the linear regime.

Although in some applications the dynamics is unknown, there are important cases in which it is known

accurately (e.g., electrical circuits). Also, the presence of noise affects the spatial patterns of the bursts.

Although we will describe how to deal with the noise, the effectiveness of the method decreases as the ratio

of noise to mismatch increases. It is also assumed that unavoidable small differences in the way in which

the systems are connected to each other does not introduce a difference between the systems which is of the

same order of magnitude or larger than the parameter mismatch being measured.

In Section 3.1 we briefly describe the master stability function method and its extension to deal with

nearly identical systems. In Section 3.2 we present and illustrate our method with an example in the case

where the noise is negligible. In Section 3.3 we discuss how to deal with the noise and show an example.

In Section 3.4 we present our conclusions to this Chapter.
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3.1 Background

For simplicity, we will use one dimensional maps for the chaotic units. The results generalize to other

dynamical systems [44, 57]. We consider a model system ofN dynamical units, each one of which, when

isolated, satisfiesX i
n+1 = F (X i

n, µi), whereX i
n is the value of uniti at timen andµi is a parameter vector

for systemi.

The systems, when coupled, are taken to satisfy (e.g., [44])

X i
n+1 = F (X i

n, µi) − gZ





N
∑

j=1

GijH(Xj)



 , (3.1)

whereZ is a function such thatZ(0) = 0, G is a symmetric Laplacian matrix (
∑

j Gij = 0) describing

the network connections, andH is a function independent ofi and j. [In our examples, we will take

Z(x) = sin(2πx).] The constantg determines the strength of the coupling.

If the systems are identical (i.e.,µi = µ for all i), there is an exactly synchronized solution of

Eqs. (3.1),X1
n ≡ X2

n ≡ · · · ≡ XN
n = sn, whose time evolution is the same as the uncoupled dynamics

of a single unit,sn+1 = F (sn), whereF (s) = F (s, µ). The stability of the synchronized state can be

determined from the variational equations obtained by considering an infinitesimal perturbationδi from the

synchronous state,X i
n = sn + δin,

δin+1 = DF (sn)δ
i
n − gZ ′(0)

N
∑

j=1

GijDH(sn)δ
j
n. (3.2)

Let δ = [δ1, δ2, . . . , δN ], and define the vectorη = [η1, η2, . . . , ηN ] by δ = ηLT , whereL is the or-

thogonal matrix whose columns are the corresponding real orthonormal eigenvectors ofG; GL = LΛ,

Λ = diag(λ1, λ2, . . . , λN ), whereλk is the eigenvalue ofG for eigenvectork. Then Eqs. (3.2) are equiva-

lent to

ηkn+1 = [DF (sn) − gZ ′(0)λkDH(sn)] η
k
n. (3.3)

The quantityηk is the weight of thekth eigenvector ofG in the perturbationδ. The linear stability of each

‘spatial’ modek is determined by the stability of the solution of Eq. (3.3). By introducing a scalar variable

α = gZ ′(0)λk, the set of equations given by Eq. (3.3) can be encapsulated in the single equation,

ηn+1 = [DF (sn) − αDH(sn)] ηn. (3.4)
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The master stability functionΨ(α) [44] is the largest Lyapunov exponent for this equation. This function

depends only on the coupling functionH and the dynamics of an individual uncoupled element, but noton

the network connectivity. The network connectivity determines the eigenvaluesλk (independent of details

of the dynamics of the chaotic units). The stability of the synchronized state of the network is determined

by Ψ∗ = supk Ψ(gλk), whereΨ∗ > 0 indicates instability.

If the systems are slightly different, one gets instead of Eqs. (3.2) the equations

δin+1 = DF (sn)δ
i
n − gZ ′(0)

N
∑

j=1

GijDH(s)δjn +Qi(sn), (3.5)

whereF (X i) ≡ F (X i,
∑N

i µi/N), andQi(X i) ≡ F (X i, µi) − F (X i) represents the effect of the mis-

match and is assumed to be small. Terms of orderQδ were neglected. Defining

Q = [Q1(sn), Q2(sn), . . . , Q
N (sn)], we obtain an equation analogous to Eq. (3.3),

ηkn+1 = [DF (sn) − gZ ′(0)λkDH(sn)] η
k
n + (QL)k, (3.6)

where(QL)k is the kth element of the vectorQL. The Lyapunov exponent for the solution of Eq. (3.3) is

hk = Ψ(gλk). Assuming a solution of Eq. (3.6) to have the same average damping as that for Eq. (3.3),

then, ifhk is negative for all modes, the amplitude ofηk can be estimated as

〈
∣

∣ηk
∣

∣〉 ∼ 〈
∣

∣(QL)k
∣

∣〉
1 − e−|hk| . (3.7)

(For example, if we model Eq. (3.6) by the simple systemηn+1 = e−hηn + q, thenηn satisfies, asn→ ∞,

η → q
1−e−h . See [57].) The largest Lyapunov exponenthk above corresponds to a typical trajectory

in the chaotic attractor. However, the Lyapunov exponent for unstable periodic orbits embedded in the

attractor might be larger. Assume that one of these periodicorbits has a positive Lyapunov exponent and

the attractor has a negative Lyapunov exponent. In this case, most of the time the amplitude ofηk will be

very small and given approximately by Eq. (3.7). Eventuallythe trajectorysn will get very close to this

transversally unstable periodic orbit. While it is close tothis orbit,η in Eq. (3.6) is no longer damped and

gets exponentially amplified with the Lyapunov exponent of the unstable periodic orbit. The deviation from

the synchronized state becomes large, producing a desynchronization burst. If there are no other attractors,

the system returns to the synchronized state and the processrepeats. Desynchronization bursts can be
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expected when the master stability function for a typical trajectory is negative for all modes, and there is an

embedded unstable periodic orbit which has a positive master stability function for at least one mode (i.e.,

Ψ(gλk) > 0 for somek, whereΨ is the master stability function of one of the embedded periodic orbits).

We will now use the fact that modes with the same eigenvalue have the same stability. For simplicity,

assume that the coupling is all to all, so that all the modes (except the mode in the synchronization manifold,

which has zero eigenvalue) have the same eigenvalue,λk = N . Eq. (3.7) implies that the coefficients in the

eigenvector decomposition of the deviations from synchrony (ηk) are, on average, proportional to those for

the deviations of the mismatch parameters from their mean [(QL)k]. It follows that the mismatch vector

Q is proportional to the vectorδn while these approximations are valid. If the vectorδn is measured,

the deviations of the mismatch from its mean can be determined approximately up to an unknown scaling

factor.

For this method to work, the measurements need to be made whenthe system is still in the linear

regime. Since it is assumed that there is a limitation in the measurement accuracy,δn needs to be small

enough to guarantee linear behavior, but large enough to be measured. One can thus set up the system

so that desynchronization bursts are expected and make measurements while a desynchronization burst is

developing. If the system allows continuous tuning of the coupling strength, one could also increase it so

that the synchronous state becomes unstable and take measurements as the system desynchronizes.

3.2 Parameter mismatch estimation without noise

To illustrate our method, we use thecircle map, described by the equation

θn+1 = [θn + ω + κ sin 2πθn] mod1. (3.8)

We choose the parameters to beω =
√

5−1
2 andκ = 1√

3
. These parameters produce a chaotic attractor

in θ ∈ [0.21, 0.47]. We found the embedded periodic orbits up to period four. To determine the orbits of

periodp we used Newton’s method to find the roots ofθ = fp(θ), wheref(θ) is described by Eq. (3.8) and

fp denotes thep times composition off . Eliminating all the orbits outside of the attractor, we found one

period 1 orbit, two period 2 orbits, and one period 4 orbit. Weshow in Fig. 3.1 the master stability functions
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of the orbits found, and the master stability function of theattractor. Hereα = 2πgλk, whereλk is thekth

eigenvalue of the coupling matrix andg is the global strength of the coupling.

Figure 3.1: Master stability function,Ψ(α), for a typical trajectory in the attractor (continuous curve), for

the period 1 orbit (dotted curve), for the period 2 orbit (dashed-dotted curve), and for the period 4 orbit

(dashed curve).

For definiteness, we assume a network that is coupledall to all. This means that for a network ofN

systems, an element in the coupling matrixGij is given by

Gij =















N − 1 if i = j;

−1 if i 6= j.

(3.9)

This matrix has two distinct eigenvalues,λ0 = 0 andλk = N for k = 1, 2, . . . , N − 1. We ignore the 0

eigenvalue since this corresponds to a perturbation in which all of the systems are displaced by the same

amount (thus they remain synchronized). Due to the lack of other distinct eigenvalues, it is easy to pick
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anα that produces desynchrozination bursts. For our map the region where bubbling is expected is where

0.9 < 2πgλk < 2.1 (note that for our exampleλk = N is the same for allk 6= 0).

We now present an example of the method where noise is negligible. The mismatch is chosen to be

in κ since it has a more complicated effect than mismatch inω. The coupled systems can then be described

by the general equation

θin+1 = [θin + ω + (κ+ δκi) sin 2πθin − Φin] mod1, (3.10)

whereδκi is the mismatch in systemi, Φin = g sin
(

2π
∑N
j=1Gijθ

j
n

)

, andi, j = 1, 2, . . . , N are indices

representing theith andjth system in the network [cf. Eq. (3.1)]. The termΦi represents the coupling of

oscillator i to other nodes in the network. We choseN = 5 systems,δκ = [4,−1, 2,−6,−2] × 10−6,

andg so thatα = 2πg/N = 1.5. It should, however, be noted that this method works for any number of

systems (withg being adjusted accordingly) and mismatch of any size, although, if the mismatch becomes

small, the waiting time for a desynchronization burst becomes large. The waiting time can be adjusted by

changing the values ofN , g, andδκ [24].

We define∆θin, which is a measure of the deviations from the synchronous state, by∆θin =

sin 2π(θin− θ̄n), with θ̄n = 1
N

∑N
i=1 θ

i
n. We plot∆θin versusn and look for desynchronization bursts in the

network. In Fig. 3.2 we show the time evolution of∆θin near a desynchronization burst. Our interest is in

the vectorθl wherel is the first time thatmaxi{θin} is in thesampling region, defined as0.4 < |∆θin| < 0.6

(see Fig. 3.2). This region is determined by the limitationson the ability to accurately measure∆θin and

the dynamics of the system considered. The latter exists because the master stability function method relies

on the systems being close to synchronization. During the desynchronization burst, the difference in the

systems can be so large that the linearization used in the analysis of Sec. I no longer applies. We determined

that the upper bound to this region in the circle map is|∆θin| ≈ 0.6 or |θin − θ̄n| ≈ 0.10. The lower bound

was arbitrarily chosen as representing the accuracy of the measurements, which we assume is not enough to

measure the mismatch directly. Generally the method becomes more effective the smaller the lower bound

is.

According to the previous section, at timel we should have approximatelyθil − θ̄l ∝ δκi − δ̄κ,

whereδ̄κ = 1
N

∑N
i=1 δκ

i. We can then obtain the relative deviations of the mismatch parameters,δκi,
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Figure 3.2: Plot of∆θin vs. n near a region of desynchronization burst. The arrow points to the maximum

of ∆θin that is within the sampling region.

by measuring the much larger values ofθil − θ̄l. In Fig. 3.3 we show a superimposed plot ofθil − θ̄l and

a(δκi − δ̄κ) versusi wherea, the scaling factor, minimizes
∑N

i=1[(θ
i
l − θ̄l) − a(δκi − δ̄κ)]2. In Fig. 3.3

we calculateda ≈ 1.5 × 104 and this corresponds to the amplification of the mismatch. Itshould be

noted that the sign ofa is undetermined unless we have knowledge ofδκi. We see from the figure that

a(δκi − δ̄κ) ≈ θil − θ̄l.

The definition of the sampling region is somewhat arbitrary,and it may occur that nonlinear effects

still play a role in the resulting spatial pattern of the burst. In fact, in Fig. 3.3 we observe that there are still

small deviations from the real mismatch pattern. In order totake this into account, we can take the average

over various bursts. In the next section, we will discuss howto appropriately take the average, and we will

also deal with the effects of noise.
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Figure 3.3: Superimposed plot ofa(δκi− δ̄κ) (dashed line with square markers) andθil − θ̄l (solid line with

circle markers) versusi with a ≈ 1.5 × 104.

3.3 Parameter mismatch estimation with noise

After learning from the simpler model in Sec. II, we can now analyze a more realistic situation. The method

proposed and explained in the previous section applies to a similar network with noise, but there are a few

adjustments to be made. We use the same model described by Eq.(3.10), except we modify it to

θin+1 = [θin + ω + (κ+ δκi) sin 2πθin − Φin + ǫin] mod1, (3.11)

whereδκi, Φin are defined in the same way as before, andǫin is a random variable uncorrelated at differenti

andn simulating the noise. In our example, we chooseǫin uniformly from the interval[−10−5, 10−5] (note

that the noise and mismatchδκ are of comparable size).

As mentioned in the previous section, nonlinear effects might produce deviations from the simple
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relation θil − θ̄l = a(δκi − δ̄κ). We assume that the effects of the nonlinearity and the noisecan be

represented by a random variableσi, such thatθil − θ̄l = a(δκi − δ̄κ) + σi. We furthermore assume that

σi has zero mean. Under these assumptions, the mismatch is given by

δκi − δ̄κ =

〈

θil − θ̄l
a

〉

−
〈

σi

a

〉

, (3.12)

where the brackets represent an average over realizations of σ. Because of the definition of the sampling

region, the scaling factors for different samples will havesimilar magnitude, but possibly different sign. We

thus get approximately, assuming the sign ofa is independent ofσi,

δκi − δ̄κ ∝ 〈sign(a)(θil − θ̄l)〉. (3.13)

Since the sign ofa is unknown, we use aleast-squares optimizationto find the signs which minimize the

dispersion from the mean. More precisely, if we haveM samples ofθl’s, we can define an average to be

Θ̄ = 1
M

∑M
m=1 βmθm, where{βm} is a sequence of1’s and−1’s andθm is the vector[θil − θ̄l] for the

mth sample. Note that̄Θ is anN -dimensional vector and that itsith component is an average of theith

component of theM samples ofθl’s. If we then minimize the error, defined by

error=
1

M

M
∑

m=1

‖βmθm − Θ̄‖2, (3.14)

we can find an optimal sequence of1’s and−1’s, which we shall callβ∗, that ensures most of theθl’s are

oriented the same way.

To minimize the error we follow an algorithm starting with a randomly generatedβ as described

next. At each iterate, we generate three newβ’s. The first,β1, is a new random sequence,β2 is β altered

such that the signs of 1% of the sequence are changed, andβ3 is defined in a similar way but with 5% of

the signs changed. We can then compareβ1, β2, β3, andβ and determine which one has the smaller error

determined by Eq. (3.14). The one with the smallest error is then redefined asβ and the process is repeated

until an approximation toβ∗, which we denote as̄β, is found. We can then defineΘ∗ = 1
M

∑M
m=1 β̄mθm.

We show in Fig. 3.4 a superimposed plot ofΘi
∗ − Θ̄∗ andA(δκi − δ̄κ) versusi whereA minimizes

∑N
i=1[(Θ

i
∗ − Θ̄∗) − A(δκi − δ̄κ)]2. To obtainΘ∗ we repeated the process of optimization106 times for

M = 1000. According to the discussion above, we should have approximatelyΘi
∗− Θ̄∗ ∝ δκi− δ̄κ where
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Figure 3.4: Superimposed plot ofA(δκi − δ̄κ) (dashed line with square markers) andΘi
∗ − Θ̄∗ (solid line

with circle markers) versusi with A ≈ −5 × 103.

Θ̄∗ = 1
N

∑N
i=1 Θi

∗. Indeed we see thatA(δκi − δ̄κ) ≈ Θi
∗ − Θ̄∗ even when the noise was comparable to

the mismatch [ǫ ≈ δκ in Eq. (3.11)].

3.4 Discussion

We have presented a method to use large deviations from synchronization in order to determine the char-

acteristics of the parameter mismatch in a collection of nearly identical chaotic dynamical systems. It has

been noted that knowledge and manipulation of the mismatch patterns can be advantageous in order to

improve the quality of the synchronization [57]. The main advantage of our method is that it only requires

direct knowledge of the synchronization error when it is large enough to be measured. Furthermore, in

principle, there are no limitations on the number of systemsit can handle. On the other hand, the method
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only provides the relative deviations from the mean and has yet to be extended to systems with comparable

mismatch in different parameters. However, there is at least one important application in which our method

can yield important information, even if there are different parameters with comparable mismatch size. For

example, if it is desired to synchronize the dynamical systems, the relevant mismatch is not that of each

individual parameter, but the effective mismatch represented by(QL)k [see Eqs. (3.6) and (3.7)], and that

is the quantity whose size we determine by our method. Systems with the less effective mismatch will yield

the synchronization with the best quality.

We have demonstrated our method by determining the relativeparameter mismatch in an ensem-

ble of 5 circle maps. By measuring the large deviations from the synchronized state that occur during a

desynchronization burst, we were able to determine the verysmall relative differences in parameters (see

Fig. 3.3). We considered the presence of noise, and dealt with it by suitably averaging the measurements

taken for various desynchronization bursts. For a noise comparable to the mismatch we were able to deter-

mine the relative parameter mismatch by averaging1000 realizations (see Fig. 3.4). For both situations, we

were able to determine the relative parameter mismatch frommeasurable values even when the mismatch

itself was assumed to be immeasurable.
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Chapter 4

Localized instabilities and desyncronization waves in arrays of coupled periodic

oscillators

In this Chapter we discuss the synchronization of a large number of near-identical oscillators that are locally

coupled with connections of random strength. Synchronization in networks of coupled oscillators has

recently received considerable interest [18, 20], and has relevance in fields like biology [15]-[18], chemistry

[14], lasers [10]-[12], and communications [39]. Usually,the networks studied have been assumed to have

connections of equal strength. In practice, the connections between different oscillators may have different

strengths, and in some cases this strength could have a largespread (e.g., in biological systems). A model

and analysis method has been proposed by Pecora and Carroll [44] to systematically determine the stability

of the synchronized state in a network of identical coupled oscillators. This method, themaster stability

function, has been used to study the synchronization properties of different networks [45, 46]. Deng et

al. [58] have obtained, using the master stability functiontechnique, conditions for the distribution of the

connection strengths that yield average stability of the synchronized state. Galias and Ogorzalek [59] have

studied the effect of adding small perturbations to the coupling strengths in relatively small arrays of coupled

chaotic oscillators. Denker et. al. [60] have studied the effect of small coupling strength heterogeneity in

networks of pulse-coupled oscillators. Our approach in this Chapter will be different: we consider the

coupling strengths to have a relatively large spread, and will discuss phenomena that can be expected when

a large number of periodic oscillators are coupled in such a network. In particular, we will see that as the

coupling strength is increased, the oscillators desynchronize in a localized region. The localization results

because the connection matrix has random components and theeigenvectors of this matrix are Anderson

localized [61, 62]. The effect of the localized instabilityspreads as a wave throughout the array, eventually

resulting in an ordered state. Remarkably, in the case wherethe oscillators are not identical the final state

of the locally unstable system was found to be, for the systemwe considered, more ordered than in the case

where the system is stable.
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4.1 Localized instabilities in oscillator arrays

We consider a model system ofN identical dynamical units, each one of which, when isolated, satisfies

Ẋi = F (Xi), wherei = 1, 2, . . .N , andXi is thed-dimensional state vector for uniti. (The case of nearly

identical units is considered at the end of this Chapter. Seealso Chapter 2.) The oscillators, when coupled,

are taken to satisfy (e.g., [44])

Ẋi = F (Xi) − g
N
∑

j=1

GijH(Xj), (4.1)

where the coupling functionH is independent ofi andj, and the matrixG is a symmetric Laplacian matrix

(
∑

j Gij = 0) describing the network connections. The constantg determines the global strength of the

coupling.

There is an exactly synchronized solution of Eqs. (4.1),X1 = X2 = · · · = XN = s(t), whose

time evolution is the same as the uncoupled dynamics of a single unit, ṡ = F (s). In this Chapter we

will be concerned with the case where the synchronized stateis periodic, s(t + T ) = s(t). The stability

of the synchronized state can be determined from the variational equations obtained by considering an

infinitesimal perturbationǫi from the synchronous state,Xi(t) = s(t) + ǫi(t),

ǫ̇i = DF (s)ǫi − g

N
∑

j=1

GijDH(s)ǫj . (4.2)

Let ǫ = [ǫ1, ǫ2, . . . , ǫN ], and define thed × N matrix η = [η1, η2, . . . , ηN ] by ǫ = ηLT , whereL

is the orthogonal matrix whose columns are the corresponding real orthonormal eigenvectors ofG; GL =

LΛ, Λ = diag(λ1, λ2, . . . , λN ) whereλk is the eigenvalue ofG for eigenvectork. Then Eqs. (4.2) are

equivalent to

η̇k = (DF (s) − gλkDH(s)) ηk. (4.3)

The quantityηk is the weight of thekth eigenvector ofG in the perturbationǫ. The linear stability of each

‘spatial’ modek is determined by the stability of Eq. (4.3). By introducing ascalar variableα = gλk, the

set of equations given by (4.3) can be encapsulated in the single equation,

η̇ = (DF (s) − αDH(s)) η. (4.4)

The master stability functionΨ(α) [44] associated with Eq. (4.4) is its largest Lyapunov exponent (or

equivalently for our case of periodics(t), the largest real part of its Floquet exponents). This function
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depends only on the coupling functionH and the chaotic dynamics of an individual uncoupled element,

but not on the network connectivity. The network connectivity determines the eigenvaluesλk (independent

of details of the dynamics of the chaotic units). The stability of the synchronized state of the network is

determined byΨ∗ = supk Ψ(gλk), whereΨ∗ > 0 indicates instability.

As an illustrative example, we consider periodic Rössler oscillators [51], obeying the equations

ẋ = −(y + z), (4.5)

ẏ = x+ 0.2y,

ż = 0.2 + z(x− 2.5).

In terms of our previous notation,d = 3, andX = [x, y, z]T . The master stability function for this system

is shown in Fig. 4.1. As seen in this figure,Ψ(α) approaches zero from negative values asα → 0+. This

is a general feature for systems where the individual, uncoupled units are stable limit cycle oscillators. We

also see thatΨ(α) crosses from negative (stable) values to positive (unstable) values at a criticalα value

(α ≈ 4.15). The existence of such a transition is a robust feature thatdepends on the type of coupling and

oscillator. We now consider a network ofN of these oscillators nearest-neighbor coupled in a ring, such

0 1 2 3 4 5 6 7

-0.3

-0.2

-0.1

0Ψ(α)

α

Figure 4.1: Master stability functionΨ(α) versusα for Eqs. (4.5).

that the strength of each individual link is random. The coupling strengths are obtained from an independent
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and identically distributed random sequence{ai}Ni=1. The matrixG is then

G =

































b1 −a1 0 0 · · · 0 −aN

−a1 b2 −a2 0 · · · 0 0

0 −a2 b3 −a3 · · · 0 0

...
...

...
...

...
...

...

−aN 0 0 0 0 −aN−1 bN

































, (4.6)

wherebi = (ai−1 + ai) for i = 1, . . . , N (we takea0 ≡ aN ).

The eigenvectors of the matrixG determine the possible desynchronization patterns. It is known that

the eigenvectors of certain types of random matrices are exponentially localized (e.g., Anderson localization

[61, 62]). In our case, the eigenvector{ui}Ni=1 with eigenvalueλ satisfies

ti+1 = a−1
i+1(λ+ ai + ai+1 − ait

−1
i ), (4.7)

whereti ≡ ui

ui−1
. Viewing Eq. (4.7) as a random dynamical system forti, we find numerically that in our

case,

γ = lim
n→∞

1

n

n
∑

i=0

log(|ti|). (4.8)

exists and is independent of the initial condition and noiserealization. Eigenvectors of (4.6) tend to have

a localized amplitude peak at some locationi0 and decay like|ui| ∝ eγ|i−i0| away from the peak;γ−1 is

thus the localization length. (See [62].)

We choose theai’s to be uniformly distributed in(0.1, 1) (note that any multiple of this would

lead to the same eigenvectors). (Sinceai ≥ 0.1 we avoid the possibilityai ≪ 1 that would effectively

disconnect the network.) The effects we will describe for this network should be regarded as an example

of what could be expected in more general networks with random coupling. In Fig. 4.2(a) we show the

eigenvector with largest eigenvalue for a realization of the matrixG usingN = 500. Figure 4.2(b) shows

the localization lengthγ−1 as a function ofλ calculated using Eq. (4.8). The eigenvectors are seen to

be sharply localized for the largest eigenvalues, and become less localized as the eigenvalues decrease.

As the coupling strengthg is increased, the eigenvectors with largest eigenvalue become unstable. These

eigenvectors have the smallest localization length [see Fig. 4.2 (b)]. We will now describe what occurs
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Figure 4.2: (a) Eigenvectorui for the largest eigenvalueλ = 3.61 for a particular realization of the matrix

G in (4.6) withN = 500. (b) Localization lengthγ−1 calculated using Eq. (4.8).

in this situation. We fixed the same realization of the matrixG used in producing Fig. 4.2(a). The four

largest eigenvalues are3.61, 3.41, 3.38, and3.30. Forg = 1.24 the eigenvector with largest eigenvalue is

unstable, and the next two eigenvectors are barely unstable[α = 4.47, 4.23 and4.19 in Fig. (4.1)]. We start

with initial conditions near the synchronized state and then let the system evolve according to Eqs. (4.1).

In Fig. 4.3 we show snapshots ofxi as a function of the site indexi for six successively increasing times.

Starting from a nearly synchronized state [Fig. 4.3(a)], the oscillators desynchronize at the location [see

Fig. 4.2(a)] of the localized mode [Fig. 4.3(b)]. The desynchronization spreads as a wave to farther regions

of the array [Figs. 4.3(c)-(e)]. At the end, the domain of thewave covers the entire array [Fig. 4.3(f)].

This process is dominated by the most unstable mode. The other two less unstable modes can be seen as

tiny defects ati ≈ 327, 402 in the otherwise smooth wave. (The effect of these less unstable modes is

most evident in Fig. 4.3(c). They also have a discernible, although small, effect in the final state [arrows in

Fig. 4.3(f)].)
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Figure 4.3: Plots of thex coordinate of oscillatori versus the site indexi, at times (a)0, (b)1400, (c)2800,

(d) 4200, (e)5600, and (f)10000. All the plots have the same scale as (e).

4.2 Phase description of desynchronization waves

The final state and the process leading to it can be understoodin terms of the phase of the oscillators. Define

the phaseφ(i, t) ≡ 2π{n(i, t) + (t− t−(i, t))(t+(i, t) − t−(i, t))−1}, wheret−(i, t) = max{s : xi(s) =

0, ẋi > 0, s ≤ t}, t+(i, t) = min{s : xi(s) = 0, ẋi > 0, s > t}, andn(i, t) is an integer chosen so

thatφ is a continuous function oft and thatφ(i + 1, t) is close toφ(i, t) for all i. Figure 4.4 shows two

snapshots of thex coordinate and the phase as defined above as a function ofi (thei origin was displaced

so that what happens opposite the location of the unstable mode can be observed clearly, and for each time

a constant was added toφ so thatmaxi φ = 0). As can be observed in the Figs. 4.4 (a) and (c), a region

with a constant phase gradient expands on both sides of the unstable mode. In the final state [Figs. 4.4(b)

and (d)] the phase has a minimum at the location of the unstable mode and increases linearly on both sides
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reaching a maximum at the opposite end of the ring. This phaseprofile increases uniformly with time. The

0
-2 π
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246 246496 496i

xi

i

φ
i

(a) (b)

(c) (d)

Unstable mode

Figure 4.4: Plots (a) and (b) shows thex coordinate of oscillatori versus the site indexi for times3750

and9660. Plots (c) and (d) show the phase of oscillatori at the same times as for (a) and (b) respectively.

Compare with Eq. (4.10)

cause of this phenomenon is that, as the oscillators in the region of the unstable mode desynchronize, they

go to limit cycles that have a slightly lower frequency than that of the original orbit. Oscillating at a slower

pace than the others, they drag the adjacent oscillators, and these drag theirs in turn, continuing until an

equilibrium is reached. An equation describing approximately the evolution of the phase of the oscillator

at locationξ and timet, φ(ξ, t), in a chain of diffusively coupled oscillators is given in the continuous limit

by [25]

∂φ

∂t
= a

∂2φ

∂ξ2
+ b

(

∂φ

∂ξ

)2

+ w(ξ), (4.9)

wherew(ξ) is the frequency of the oscillator at locationξ, anda andb are constants. If this frequency

is sufficiently smaller (larger) in a localized region andb is negative (positive), the equation predicts the

development of waves that emanate from that region. The phase profile resulting from such forcing in a
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small region centered at the origin(|ξ| < l) can be approximated for largeξ andt as [25]

φ(ξ, t) = w0t− max(0, k(vt− |ξ|)), (4.10)

wherew0 = w(ξ) for |ξ| > l andk andv depend ona andb andw(ξ). For appropriatek andv, equation

(4.10) agrees well with Figs. 4.4 (c) and (d).

5000

0
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(a) (b)

(c) (d)

(e) (f)
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(i) (j)

(k) (l)

Figure 4.5: Each plot shows thex coordinate of oscillatori as a function of the site indexi. The time is0,

1400, 2800, 4200, 5600, and9970 for plots (a) to (f) and similarly for plots (g) to (l). A parameter mismatch

was introduced in the oscillators. (a)-(f): All the modes are stable. (g)-(l): The pattern is organized by an

unstable mode as in Fig. 4.3(f). All the plots have the same scale as (e).

In the example presented above, the pattern created by the unstable mode can be regarded as a more

disordered synchronization than that of the original identical synchronization. However, in realistic situa-

tions, an unstable mode can actually make synchronization more orderly. In real systems, small differences

in the parameters or small noise are expected. Under these circumstances, the different oscillators will be

subject to small perturbations. The modes with eigenvaluesclose to zero have a master stability function

close to zero [see Fig. 4.1] and also are nearly unlocalized [see Fig. 4.2(b)]. Thus, the phase of each os-
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cillator will be subject to perturbations whose projectiononto the nearly unlocalized modes are only very

weakly damped. The identical synchronization of the array is thus spoiled by mismatch or noise. As an

illustration, we randomly perturb the parameters of the different oscillators, so that they lie within±3%

of the original parameters. We then solved Eqs. (4.1) withg = 1.1 andg = 1.24. For g = 1.1, all the

modes are stable; in the caseg = 1.24, three modes are stable as discussed above. In Figs. 4.5 (a)-(f) we

show snapshots of the caseg = 1.1, and in Figs. 4.5 (g)-(l) we show the corresponding snapshots for the

caseg = 1.24. When all of the modes are stable, the system exhibits a statein which there is erratic slow

variation of thexi with i. When there is an unstable mode, however, a more organized state is reached.

If one picks two different oscillatorsj andk, they will satisfy asymptoticallyXj(t − τ) = Xk(t), where

τ is a simple function ofj andk [see Fig. 4.4 (d)]. Thus the oscillators are pairwise lag synchronized

[63]. In realistic large arrays of periodic oscillators, itmight be convenient to have one unstable mode. Our

results suggest that this mode could, despite its localizednature, induce global organization of the system

(Fig. 4.5).

4.3 Discussion

In conclusion, we find that large arrays of periodic oscillators locally coupled by connections of randomly

heterogeneous strength can experience a desynchronization transition characterized by the appearance of

unstable Anderson localized modes. Furthermore, we find that, past the transition, the localized mode might

play the key role in organizing the final global pattern of thesystem oscillations.
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Chapter 5

The onset of synchronization in large networks of coupled oscillators

In recent years, the importance of networks in different fields has become increasingly clear [7, 8]. It

has been observed that many real world networks possess topologies which introduce important effects on

the processes taking place on them. One of the most interesting and important of these processes is the

synchronization of coupled dynamical systems. Synchronization is found in fields ranging from physics to

biology [18, 20], and in many cases involves a large network of dynamical systems. The structure of this

network plays a crucial role in determining the synchronization of the coupled elements.

Kuramoto [25] proposed and exactly solved a model for the synchronization of all-to-all uniformly

coupled phase oscillators. His model and solution have become a guide as to how the coupling strength

and the properties of the oscillators (e.g., their natural frequencies) might affect their synchronization, and

generalizations of this basic model have been studied (for areview, see [31], Chapter 12 of [20], and Chapter

6 of [32]). Some attempts to study the Kuramoto model with networks different from the all-to-all network

have been made [33]. Networks in which the interaction strength depends on a distance have been studied,

and it has been numerically found that a transition from incoherent to coherent behavior occurs at a critical

value of the coupling strength [34]. The Kuramoto model in networks without global coupling has recently

started to receive attention. It was numerically observed [35] that a transition is also present in scale free

networks. Very recently, a mean field theory to determine thetransition to synchronization in more general

networks has been proposed [36, 37]. The mean field theory result is that the critical coupling strengthkmf

is determined by the Kuramoto value,k0, rescaled appropriately by the first two moments of the degree

distribution of the nodes in the network:kmf = k0〈d〉/〈d2〉, where

〈dq〉 =
1

N

N
∑

n=1

dqn, (5.1)

the degreedn of noden is the number of connections between noden and other nodes of the network, and

N is the number of nodes in the network.

In this Chapter we go beyond the mean field approximation, obtaining a better estimate of the crit-
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ical coupling strength. We also describe the behavior of a suitably defined order parameter past the tran-

sition. We show how our results reduce to those of the mean field theory when an additional assumption

is introduced, and present examples in different regimes. We find that in some regimes the mean field ap-

proximation does not provide an adequate description of thetransition, whereas our more general estimate

does. We also show how our results explain observations for networks with distance dependent interaction

strength. We study finite size effects caused mainly by nodesof small degree, and find that the transition

point is shifted to larger values of the coupling strength when these effects are taken into account.

This Chapter is organized as follows. In Section 5.1 we present our theory and discuss the mean

field approach. In Section 5.2, we present numerical examples for different situations and test the different

approximations. In Section 5.3 we discuss the case of networks with nonuniform coupling strength. In

Section 5.4, we present a linear analysis of the problem. In Section 5.5 we consider finite size effects

caused primarily by nodes with a small number of connections. Finally, we conclude in Section 5.6. Some

calculations were relegated to Appendices A, B, and C.

5.1 Self consistent analysis

As shown by Kuramoto [25], the dynamics of weakly coupled, nearly identical limit cycle oscillators can,

under certain conditions, be approximated by an equation for the phasesθn of the form

θ̇n = ωn +

N
∑

m=1

Ωnm(θm − θn), (5.2)

whereωn is the natural frequency of the oscillatorn, N is the total number of oscillators andΩnm is a

periodic function depending on the original equations of motion. The all-to-all Kuramoto model assumes

thatΩnm(θm − θn) = (k/N) sin(θm − θn), wherek represents an overall coupling strength. In order to

incorporate the presence of a heterogeneous network, we assume thatΩnm(θm−θn) = kAnm sin(θm−θn),

whereAnm are the elements of aN ×N adjacency matrixA determining the connectivity of the network.

Therefore, we study the system

θ̇n = ωn + k

N
∑

m=1

Anm sin(θm − θn). (5.3)

For specificity, we will primarily consider the case where theAnm are either0 (nodesn andm are
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not connected) or1 (nodesn andm are connected, and all connections have equal strength). Weassume

that the network is undirected, so thatAnm = Amn. We assume also that, for eachn, the corresponding

ωn is independently chosen from a known oscillation frequencyprobability distributiong(ω). We assume

thatg(ω) is symmetric about a single local maximum (cf. Sec 5.4), which without loss of generality we can

take to be atω = 0. (If the mean frequency isω0 6= 0, we make the change of coordinates that shifts each

ωn by ω0 and eachθn by ω0t.) In this case, synchronization will occur at frequency0, i.e.,θn will remain

approximately constant for synchronized nodes.

We define a positive real valued local order parameterrn by

rne
iψn ≡

N
∑

m=1

Anm〈eiθm〉t, (5.4)

where〈. . . 〉t denotes a time average. In terms ofrn, Eq. (5.3) can be rewritten as

θ̇n = ωn − krn sin(θn − ψn) − khn(t), (5.5)

where the termhn(t) takes into account time fluctuations and is given by

hn = Im{e−iθn
∑

mAnm
(

〈eiθm〉t − eiθm
)

}, whereIm stands for the imaginary part. Since we regard

hn as a sum ofdn approximately uncorrelated terms (wheredn is the degree of noden given bydn =

∑

mAnm), we expecthn to be of order
√
dn. Substantially above the transition, due to the synchronization

of the phases, the quantityrn ≈∑mAnm〈eiθm〉t isO(dn). Thus, if we assume thatdn ≫ 1, substantially

above the transition the termhn can be neglected with respect torn. However, just above the transition

to coherence, the number of oscillators that are phase locked is small (see below), and so the termrn is

also small. We need the number of locked oscillators to be large enough so that we can neglecthn, but, in

cases where we use perturbative methods, we also require that the number of locked oscillators be small

enough that the perturbative methods are still valid. We therefore do not expect the perturbative methods

to agree perfectly just at the transition point. [Indeed in the classical Kuramoto (all-to-all) model a similar

reservation holds for finite networks, as there areO(N−1/2) fluctuations ofk
∑N

m=1 e
iθm for k below

its critical transition value.] In Sec. 5.5 we will investigate the effects of the time fluctuating termhn in

Eq. (5.5), but, for now, we neglect it.

With hn neglected in Eq. (5.5), oscillators with|ωn| ≤ krn become locked, i.e., for these oscillators
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θn settles at a value for which

sin(θn − ψn) = ωn/(krn). (5.6)

(In general there are two suchθn; the one closest toψn is stable.) Then

rn =

N
∑

m=1

Anm〈ei(θm−ψn)〉t (5.7)

=
∑

|ωm|≤krm

Anme
i(θm−ψn)

+
∑

|ωm|>krm

Anm〈ei(θm−ψn)〉t.

In order to proceed further, we will introduce the followingassumption:

Assumption ⋆ We assume the existence of solutionsrn, ψn that are statistically independent ofωn.

This is a nontrivial assumption; however, it is reasonable if most of noden’s neighbors have reasonably

large degree, so that they are not strongly affected by the value of ωn. And, as we show below, such a

solution can be found in a self consistent manner. Using a milder version of Assumption⋆, we show in

Appendix A that the sum over the unlocked oscillators in Eq. (5.7) can be neglected. Therefore, only the

locked oscillators remain in the sum, and we get from Eq. (5.7) using Eq. (5.6), sincern is by definition

real,

rn = Re{
∑

|ωm|≤krm

Anme
i(θm−ψm)ei(ψm−ψn)} (5.8)

=
∑

|ωm|≤krm

Anm cos(ψm − ψn)

√

1 −
(

ωm
krm

)2

−
∑

|ωm|≤krm

Anm sin(ψm − ψn)

(

ωm
krm

)

,

whereRe represents the real part. For the imaginary part of Eq. (5.7), we get

0 =
∑

|ωm|≤krm

Anm cos(ψm − ψn)

(

ωm
krm

)

(5.9)

+
∑

|ωm|≤krm

Anm sin(ψm − ψn)

√

1 −
(

ωm
krm

)2

.
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Using Assumption⋆, the contribution of the last term in the real part equation (5.8) can be neglected

because of the symmetry ofg(ω) about0. We thus obtain the approximation

rn =
∑

|ωm|≤krm

Anm cos(ψm − ψn)

√

1 −
(

ωm
krm

)2

. (5.10)

Since we are interested in the transition to coherence, we look for the solution of Eq. (5.10) that

yields the smallest critical couplingk. The smallest critical coupling is obtained when the cosinein

Eq. (5.10) is1. (Note that both the number of terms in the sum and their size decreases ask decreases.

Hence, a smallerk corresponds to a larger value of the cosine.) We therefore will look for solutions for

whichψn − ψm = 0, i.e.,ψn does not depend onn, and without loss of generality, we will takeψn ≡ 0.

Note that this is a consistent condition in the sense that theimaginary part equation (5.9) is satisfied: the

first term vanishes in the limit of a large number of connections per node due to the symmetry around0 of

g(ω), and the second due to our assumed form thatψn does not depend onn.

Equation (5.10) then reduces to

rn =
∑

|ωm|≤krm

Anm

√

1 −
(

ωm
krm

)2

. (5.11)

If the particular collection of frequenciesωn is known, this equation can be solved numerically. We will

refer to this approximation, based on neglecting the time fluctuations in Eq. (5.5), as thetime averaged

theory(TAT). We now define an order parameterr by

r =

∑N
n=1 rn

∑N
n=1 dn

, (5.12)

wheredn is the degree of noden defined bydn =
∑N

m=1Anm. Note thatr =
∑N

n=1 dn〈eiθn〉t/
∑N
n=1 dn

coincides with the order parameter used in Refs. [36, 37].

If the number of connections per node is large, the particular collection of frequencies of the neigh-

bors of a given node will likely be a faithful sample of the frequency distributiong(ω). Assuming this is

the case, and using Assumption⋆, we approximate the sum in Eq. (5.11) as

rn =
∑

m

Anm

∫ krm

−krm

g(ω)

√

1 −
(

ω

krm

)2

dω, (5.13)

or, introducingz ≡ ω/(krm),

rn = k
∑

m

Anmrm

∫ 1

−1

g(zkrm)
√

1 − z2dz (5.14)
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This equation is one of our main results. It is analogous to Eq. (13) in Ref. [36] and Eq. (6) in Ref. [37],

but, as opposed to including only information of the degree distribution of the network, it depends on the

adjacency matrix, which completely describes the topologyof the network. Equation (5.14) determines

implicitly the order parameterr as a function of the networkAnm, the frequency distributiong(ω), and

the coupling constantk. We will refer to this approximation as thefrequency distribution approximation

(FDA). As with the TAT approximation (5.11), nonlinear matrix equation (5.14) can be solved numerically

and the order parameterr computed fromrn using Eq. (5.12).

We will now study the implications of Eq. (5.14) by using approximation schemes in different

regimes in order to obtain explicit expressions for the order parameter and the critical coupling strength.

5.1.1 Perturbation Theory (PT)

From the discussion above, coherent behavior is characterized by a nonzero value ofrn. We determine

the critical value ofk by letting rn → 0+. The first order approximationg(zkrm) ≈ g(0) in Eq. (5.14)

produces

r(0)n =
k

k0

∑

m

Anmr
(0)
m , (5.15)

wherek0 ≡ 2/(πg(0)). Since we are interested in the transition to coherence, thesmallestk satisfying

Eq. (5.15) is of interest. We thus identify the critical transition value ofk0/k with the largest eigenvalueλ

of the adjacency matrixA, obtaining

kc =
k0

λ
. (5.16)

(In the caseAnm ≡ 1 of all-to-all coupling,λ = N − 1.) Also r(0)m is proportional to themth component

of the eigenvectoru = [u1, u2, . . . , uN ]T associated with this eigenvalue. Note that this is consistent with

Assumption⋆, sincern depends only on network properties (i.e., the matrixA) and is thus independent

of ωn. Equation (5.16) is one of our main results. It determines when the transition to coherence occurs in

terms of the largest eigenvalueλ of the adjacency matrixA.

In order to assess how the order parameterr given by Eq. (5.12) grows ask grows fromkc, we must

take into account thatg(zkrm) in Eq. (5.14) is not constant. Forkrn small (see the discussion at the end of
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Sec. 5.1.2), the second order approximation yields

rn = k
∑

m

Anmrm (5.17)

×
∫ 1

−1

(

g(0) +
1

2
g′′(0)(zkrm)2

)

√

1 − z2dz.

Definingα ≡ −πg′′(0)k0/16, we get

rn =
k

kcλ

∑

m

Anm
(

rm − αk2r3m
)

. (5.18)

We consider perturbations from the first order critical values as follows:

rn = r(0)n + δrn, (5.19)

whereδrn ≪ r
(0)
n ≪ 1 ask → kc. Inserting this into Eq. (5.18), and canceling terms of order r(0)n , the

leading order terms remaining are

δrn =
k

kcλ

∑

m

Anmδrm − αk3

kcλ

∑

m

Anm(r(0)m )3 (5.20)

+
k − kc
kcλ

∑

m

Anmr
(0)
m .

In order for Eq. (5.20) to have a solution forδrn, it must satisfy a solubility condition. This condition

can be obtained by multiplying byr(0)n , summing overn, using Eq. (5.15) and the assumed symmetry

Anm = Amn, to obtain
∑

m(r
(0)
m )4

∑

m(r
(0)
m )2

=
k − kc
αk3

. (5.21)

In terms ofu, the normalized eigenvector ofA associated with the eigenvalueλ, the square of the order

parameterr can be expressed as

r2 =

(

η1
αk2

0

)(

k

kc
− 1

)(

k

kc

)−3

(5.22)

for k/kc > 1, where

η1 ≡ 〈u〉2λ2

N〈d〉2〈u4〉 . (5.23)

Eqs. (5.22) and (5.23) describe the behavior of the order parameter near the transition in terms ofλ

and its associated eigenvector. We will refer to them as theperturbation theory(PT).
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The presence of the term〈u4〉 in Eq. (5.23) suggests that the expansion ofg to second order might

fail when there are a few components of the eigenvectoru that are much larger than the rest. This occurs

when the degree distribution is highly heterogeneous. We formulate more precisely this constraint in the

discussion at the end of Sec. 5.1.2.

5.1.2 Mean field theory (MF)

In this section we describe an approximation that works in some regimes and has the advantage of greater

analytical tractability. In this section we also recover some of the results in Refs. [36, 37]. Here we assume

thatrn is proportional todn, rn ∝ dn. The assumption consists in treating the average

rn
dn

=
1

dn

∣

∣

∣

∣

∣

N
∑

m=1

Anm〈eiθm〉t

∣

∣

∣

∣

∣

, (5.24)

which depends onn, as if it were a constant independent ofn. Following Refs. [36, 37], we call this the

mean field(MF) approximation. It is also equivalent, near the transition, to assuming that the eigenvector

associated with the largest eigenvalueλ satisfiesun ∝ dn. We will discuss later the range of validity of this

assumption. Note that this form forrn is again consistent with our Assumption⋆ thatrn is independent of

ωn. The ratiorn/dn coincides under this approximation with the order parameter r defined in Eq. (5.12).

Summing overn and substitutingrn = rdn in Eq. (5.14), we obtain

N
∑

m=1

dm = k
N
∑

m=1

d2
m

∫ 1

−1

g(zkrdm)
√

1 − z2dz, (5.25)

which coincides with Eq. (13) in Ref. [36]. As we approach thetransition from above,r → 0+, the first

order approximation isg(zkrdm) ≈ g(0), from which we obtain

k ≡ kmf = k0
〈d〉
〈d2〉 , (5.26)

the main result of Ref. [36].

In the limitN → ∞, we can replace〈dq〉 as defined by Eq. (5.1) by

〈dq〉∞ =

∫

dqp(d)dd, (5.27)

wherep(d) is the probability distribution function for the degree. Note that from Eq. (5.1),〈dq〉 is always

well-defined for finiteN , but that Eq. (5.27) indicates that〈dq〉∞ diverges for power law degree distribu-

tionsp(d) ∝ d−γ if γ ≤ q + 1. We also note that many real networks have approximate powerlaw p(d)
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with γ < 3 (see Ref. [7]). On the basis that〈d2〉∞/〈d〉∞ = ∞ for 2 ≤ γ ≤ 3, Ichinomiya [36] notes

that from Eq. (5.26)kmf → 0 asN → ∞; i.e., predicts that in the limitN → ∞ there is no threshold for

coherent oscillations when2 ≤ γ ≤ 3. As will become evident, our numerical experiments, although for

N ≫ 1, are often not well-approximated by theN → ∞ limit, in particular forγ < 3.

The mean field approximation can be pushed further to second order by expandingg(zkrdm) ≈

g(0) + 1
2g

′′(0)(zkrdm)2 in Eq. (5.25), obtaining, providedkrdm is small,

1 =
k

kmf
+ k3r2

π

16
g′′(0)

∑N
m=1 d

4
m

∑N
m=1 dm

, (5.28)

so that

r2 =

(

η2
αk2

0

)(

k

kmf
− 1

)(

k

kmf

)−3

(5.29)

for k/kc > 1, where

η2 ≡ 〈d2〉3
〈d4〉〈d〉2 . (5.30)

In expandingg to second order, it was assumed thatkdm is small. The term〈d4〉 in Eq. (5.30) suggests

that the conditions under which the expansion ofg is appropriate are those under which〈d4〉∞ is finite. In

fact, Lee shows [37] that for a power law distribution of the degrees,p(d) ∝ d−γ , the above expansion is

appropriate forγ > 5. For 3 ≤ γ ≤ 5, he obtains in the limitN → ∞ thatr scales near the transition

asr ∝
(

k
kmf

− 1
)1/(γ−3)

. A similar situation occurs in the perturbation theory [Eqs. (5.22) and (5.23)],

which was also based on expandingg to second order. According to the previous discussion, we will only

use the expression forr obtained from the perturbation theory for situations in which 〈d4〉∞ is finite. The

critical coupling strength in Eq. (5.16), on the other hand,does not have this restriction.

The expressions in Eqs. (5.23) and (5.30) can be shown to coincide under the approximationun ∝

dn. The treatment in Section 5.1.1 does not assume thatrn/dn is independent ofn, and we will show in

Section 5.2 that there are significant cases where it gives better results for the critical coupling strength than

the mean field approximation.

5.1.3 Summary of approximations and range of validity

In the previous sections, we developed different approximations to find the critical coupling constant and

the behavior of the order parameter past the transition. Here we summarize the different approximations
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Approximation Abbreviation Equation

Time averaged theory TAT (5.11)

Frequency distribution FDA (5.14)

approximation

Perturbation theory PT (5.22,5.23)

Mean field theory MF (5.25)

Table 5.1: Approximations considered, their abbreviation, and their corresponding equations.

and the assumptions used in obtaining them. All the approximations mentioned above assume that the

number of connections per node is very large. This allowed us, among other things, to neglect the time

fluctuating termhn(t) in Eq. (5.5). We will discuss the effect of this term in Section 5.5.

The most fundamental approximation is given by Eq. (5.11). This equation can be solved numeri-

cally if the frequency of each oscillator and the adjacency matrix is known. This is the time averaged theory

(TAT). Assuming that the local mean fieldrn is statistically independent of the frequencyωn, the frequency

distribution approximation (FDA) given by Eq. (5.14) is obtained. This equation can also be solved nu-

merically, but only knowledge of the probability distribution for the frequencies and the adjacency matrix

is required. Obtained by expanding the FDA approximation near the transition point, the perturbation the-

ory (PT) describes the behavior of the order parameter in terms of the largest eigenvalue of the adjacency

matrix and its associated eigenvector in networks where thedegree distribution is relatively homogeneous,

more precisely when〈d4〉∞ is finite. Takingrn in the FDA approximation to be proportional to the degree,

rn ∝ dn, leads to the mean field theory (MF). Table 5.1 summarizes thedifferent approximations, their

abbreviations and their corresponding equations. The diagram in Fig. 5.1 indicates the assumptions leading

to each approximation.

The mean field theory requires only knowledge of the frequency distribution and the degree dis-

tribution of the network, and thus it requires less information than the other approximations. However,

it can produce misleading results if not used carefully. Themean field approximation has the added as-

sumption that the eigenvectoru of A associated with the largest eigenvalueλ satisfiesun ∝ dn (since,
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TAT   Eq. (11)

FDA   Eq. (14)

PT   Eqs. (22,23) MF   Eq. (25)

r   ∝ d nn

ω   distributed as g(ω)
independently of r

n

n

k ≈ k   , C

<d  > finite 
4

Figure 5.1: Different approximations and the assumptions leading to them. See text for details.

close to the transition,rn ≈ un). While correlations might exist [64], these two quantities are in general

not proportional. Further, the mean field approximation implies thatλ ≈ 〈d2〉/〈d〉, a result that, although

a good approximation in some cases, is not always true. Asymptotic forms for the largest eigenvalue in

random networks with given degree distributions are discussed and a sufficient condition forλ ≈ 〈d2〉/〈d〉

to be valid is presented in [65] as follows. Letdmax be the maximum expected degree of the network. If

〈d2〉/〈d〉 >
√
dmax logN , thenλ ≈ 〈d2〉/〈d〉 almost surely asN → ∞. We note also that, if the degree

distribution is tightly distributed around its mean, so that
√

〈d2〉 ∼ 〈d〉 ∼ dmax ≫ (logN)2, the condition

for the validity ofλ ≈ 〈d2〉/〈d〉 is satisfied. If instead
√
dmax > (〈d2〉/〈d〉)(logN)2, then almost surely

the largest eigenvalue isλ ≈
√
dmax asN → ∞ [65]. We will show that, indeed, to the extent that the

approximationλ ≈ 〈d2〉/〈d〉 does not hold, the results from the numerical simulation of Eq. (5.3) agree

with the critical coupling strength as determined by the eigenvalue of the adjacency matrix, rather than by

the quantity〈d2〉/〈d〉.

The asymptotic regimes described in [65] are not available with the relatively small networks (N ∼
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5000) we are restricted to study due to limited computational resources (see the end of Appendix B).

Also, finite but large networks are also interesting from an applied point of view. Thus, we numerically

compare both approximations in order to illustrate the possible discrepancies between them in particular

cases. Figure 5.2 was obtained using (for eachγ) a single random realization of a network where the degrees

dn are drawn from a power law degree distribution with power lawexponentγ (with dn ≥ d0 = 20) and

with N = 5000 nodes (see Sec. 5.2 for details on how the networks are generated). We plot〈d2〉/〈d〉 andλ

as a function ofγ. For the parameters used in the plot,〈d2〉/〈d〉 coincides with the largest eigenvalueλ for

1.5 2 2.5 3 3.5 4 4.5

200

400

600

800

λ

< d  >/<d>
2

γ

Figure 5.2: Largest eigenvalueλ (diamonds) and〈d2〉/〈d〉 (stars) as a function ofγ for N = 5000 and

d0 = 20.

values ofγ greater than3. This suggests that the mean field result for the critical coupling strengthkmf is

valid forN = 5000 andγ > 3. This is consistent with our numerical experiments in Sec. 5.2. We show in

Appendix B, however, that the mean field approximation〈d2〉/〈d〉 underestimatesλ for sufficiently large

N (too large for us to simulate). In fact, asN → ∞, λ diverges while〈d2〉/〈d〉 remains finite. Thus, the

critical coupling constant obtained from our theory approaches zero asN → ∞, while the one obtained

from the mean field theory remains constant. This suggests that the few nodes with high degree are able, for
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large enoughN , to synchronize the network, and that these nodes are not taken into account by the mean

field theory.

For γ < 3, we observe from Fig. 5.2 thatλ is less than〈d2〉/〈d〉 whenN = 5000. Thus, in this

range, the mean field theory predicts a transition for a coupling constant that issmallerthan that predicted

by the perturbative approach. In the next section we will show, for a numerical example in this regime, that

the transition occurs for a larger coupling than that predicted by the mean field theory.

5.2 Examples

In order to test the results in Sec. 5.1, we choose a distribution for the natural frequencies given byg(ω) =

(3/4)(1 − ω2) for −1 < ω < 1 andg(ω) = 0 otherwise. In order to generate the network, we specify a

degree distribution and we use the “configuration” model (e.g., Sec. 4.2.1 of Ref. [7] and references therein)

to generate a random network realization with the specified degree distribution: (i) we first generate adegree

sequenceby assigning a degreedn to each noden according to the given distribution; (ii) imagining that

each noden is givendn spokes sticking out of it, we choose pairs of spoke ends at random, and connect

them.

We consider a fixed number of nodes,N = 2000, and the following networks with uniform coupling

strength (i.e.,Anm = 1 or 0) (i) the degrees are uniformly distributed between50 and149, and (ii) the

probability of having a degreed is given byp(d) ∝ d−γ if 50 ≤ d ≤ 2000 andp(d) = 0 otherwise,

whereγ is taken to be2, 2.5, 3 and4. [Our choicep(d) = 0 for d < 50 insures that there are no nodes of

small degree, and suggests that our approximation of neglecting the noise-like, fluctuating quantityhn in

Eq. (5.5) is valid. We return to this issue in Section 5.5.]

The initial conditions for Eq. (5.3) are chosen randomly in the interval[0, 2π] and Eq. (5.3) is

integrated forward in time until a stationary state is reached (stationary state here means stationary in a

statistical sense, i.e. the solution might be time dependent but its statistical properties remain constant

in time). From the values ofθn(t) obtained for a givenk, the order parameterr is estimated asr ≈
∣

∣

∣

∑N
m=1 dm〈eiθm〉t/

∑N
m=1 dm

∣

∣

∣, where the time average is taken after the system reaches thestationary

state. (Close to the transition, the time needed to reach thestationary state is very long, so that it is difficult
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to estimate the real value ofr. This problem also exists in the classical Kuramoto all-to-all model.) The

value ofk is then increased and the system is allowed to relax to a stationary state, and the process is

repeated for increasing values ofk.

10.5 2

0.6

0.4

0.2

0.8

1.0
Simulation

TAT

PT

MF
 r  2

k / kc

1.5

Figure 5.3: Order parameterr2 obtained from numerical solution of Eq. (5.3) (triangles),time averaged

theory (solid line), mean field theory (long-dashed line), and perturbation theory (short-dashed line) as a

function ofk/kc for network (i), with the degree of the nodes uniformly distributed in{50, . . . , 149}. All

curves are obtained using the same single random network realization.

In Fig. 5.3 we show the results for the network with a uniform degree distribution as described above

[network (i)]. We plotr2 from numerical solution the full system in Eq. (5.3) (triangles), the theoretical

prediction from the time averaged theory (solid line), the prediction from the mean field theory (long-dashed

line), and from the perturbation theory (short-dashed line) (see Table 5.1) as a function ofk/kc, wherekc

is given by Eq. (5.16). The frequency distribution approximation agrees with the time averaged theory, so

we do not include it in the plot. In this case, all the theoretical predictions provide good approximations

to the observed numerical results. The time averaged theoryreproduces remarkably well the numerical
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observations. Even the irregular behavior near the transition is taken into account by the time averaged

theory. The mean field theory is in this case a good approximation, providing a fair description of the order

parameter past the transition. The perturbation theory is valid in this case up tok/kc ≈ 1.3.

The results for the networks with power law degree distributions [networks (ii)] are shown in

Figs. 5.4 (a), (b), (c) and (d) forγ = 2, 2.5, 3, and4, respectively. The order parameterr2 from numeri-

cal solution of the full system in Eq. (5.3) (triangles), thetime averaged theory (solid line), the frequency

distribution approximation (stars), and the mean field theory (long-dashed line) are plotted as a function of

k/kc. We do not show the perturbation theory since in all these casesγ < 5 and so we do not expect the

perturbative theory to be valid asN → ∞.

The time averaged theory agrees best with the numerical simulations in all cases. The frequency

distribution approximation also agrees well in all cases; though it predicts a sharper transition than actually

occurs. The mean field approximation agrees closely with thefrequency distribution approximation for

γ = 4 and, away from the transition, forγ = 3. However, forγ = 2 andγ = 2.5, it deviates greatly from

the other approximations and from the numerical simulation. The critical coupling strengths predicted by

the mean field theory and by the perturbation theory are very close forγ = 4, but the mean field theory

predicts a transition at about10% smaller coupling forγ = 3, about20% smaller forγ = 2.5, and about

40% smaller forγ = 2. Since the transition in the numerical simulation is not so well-defined, both

approximations are reasonable forγ = 3, but forγ = 2 andγ = 2.5 the critical coupling strength predicted

by the mean field approximation is clearly too small.

In the past years, it has been discovered that many real worldnetworks have degree distributions

which are power laws with exponents between2 and3.5 [7, 8, 66]. In order to accurately predict the

critical coupling strength across this range of exponents,the critical coupling constant given bykc = k0/λ

determined by the largest eigenvalue of the adjacency matrix should be used. The behavior of the order

parameter can be estimated using the time averaged theory orthe frequency distribution approximation.

These two approximations were found to be consistently accurate for the range of exponents and values of

the coupling constant studied. For the value ofN used, the mean field theory works well in predicting the

critical coupling strength and the behavior of the order parameter if one is interested in values ofγ larger
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than3.

Tables 5.2 and 5.3 present the results of comparing the theoretical predictions with the numerical

integration of Eq. (5.3) for different networks. Table 5.2 compares the observed critical coupling strength

with the theoretical estimate. If both are close, the entry is “G”, and otherwise “NG”. Table 5.3 compares

the predicted behavior of the order parameter past the transition with the observed one. If the corresponding

entry in Table 5.2 is “NG”, no comparison is attempted. The entries are the range ofk/kc over which the

corresponding theoretical prediction agrees with the numerical simulation.

5.3 Nonuniform coupling strength

So far, our examples have assumed that the coupling strengthis uniform (i.e., all the entries of the adjacency

matrix A have been taken to be0 or 1). However, considering that the degree of a node is defined as

dn ≡ ∑

mAnm, our results carry through to the more general case of non uniform coupling. As an

example of this situation, we apply our results to the case treated in Refs. [34] of a distance dependent

interaction strength. Assume that the nodesn are equidistantly located on a circle and the matrix elements

are given by

Anm = f(|n−m|), (5.31)

where|n−m| represents distance moduloN (e.g.|1 −N | = 1), f(0) = 0, andf ≥ 0. Then each row ofA

has the same sumλ =
∑

mAnm, and[1, 1, . . . , 1]T is an eigenvector with eigenvalueλ. By the Gershgorin

circle theorem [67] (each eigenvalueσ of A satisfies, for somen, |σ −Ann| ≤
∑

m 6=n |Anm|), this is the

largest eigenvalue (sinceAnn = 0), and thus determines the transition to synchrony as described in the

previous section. This scaling factor has been proposed before, by analogy to spin systems, to determine

the transition to coherence in the case of a power law decaying interaction strengthf(x) = x−γ [34].

5.4 Linear stability approach

Partly as a precursor to the next section (Sec. 5.5), in this section we discuss another approach that has

the advantage of providing information on the dynamics of the system. We study the linear stability of the

incoherent state by a method similar to that used in Ref. [28]. We assume that in the incoherent state the
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Degree distribution TAT FDA MF PT

p(d) uniform in{50, . . . , 149} G G G G

p(d) ∝ d−γ , γ = 2 G G NG -

p(d) ∝ d−γ , γ = 2.5 G G NG -

p(d) ∝ d−γ , γ = 3 G G G -

p(d) ∝ d−γ , γ = 4 G G G -

Table 5.2: Comparison of the predicted critical coupling strength versus the observed one for the different

approximations (columns) and different networks (rows). If the critical coupling strength is predicted by

a given approximation for a certain network, the corresponding entry is marked “G”. Otherwise, “NG” is

entered. A “-” is entered when the perturbation theory is inapplicable (γ < 5), see Sec. 5.1.2.

Degree distribution TAT FDA MF PT

p(d) uniform in{50, . . . , 149} 0.5+ 0.5+ 0.5+ 0.3

p(d) ∝ d−γ , γ = 2 0.7+ 0.7+ - -

p(d) ∝ d−γ , γ = 2.5 0.5+ 0.5+ - -

p(d) ∝ d−γ , γ = 3 0.7+ 0.7+ 0.7+ -

p(d) ∝ d−γ , γ = 4 0.7+ 0.7+ 0.7+ -

Table 5.3: Comparison of the predicted behavior of the orderparameter versus the observed one for the

different approximations (columns) and different networks (rows). If the behavior is correctly predicted

by a given approximation for a certain network, the corresponding entry contains the range ofk/kc after

k/kc = 1 for which the approximation works well. A “+” indicates that the agreement possibly persists

for larger values ofk. When “NG” appears in the corresponding entry in table 5.2, no comparison is

attempted and a “-” is entered. A “-” is also entered when the perturbation theory is inapplicable (γ < 5),

see Sec. 5.1.2.
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solution to Eq. (5.3) is given approximately by

θ0n = ωnt+ φn, (5.32)

whereφn is a random initial condition. We introduce infinitesimal perturbations to this state by

θn = θ0n + δn. (5.33)

In Appendix C, we assume that the perturbations grow as a function of time asest, and obtain the eigenvalue

equation

bn =
k

2

N
∑

m=1

Anmbm
s− iωm

. (5.34)

We look for solutionsbn of this equation that are independent of the frequenciesωn (similar to Assump-

tion ⋆). Under this assumption, replacing(s− iωn)
−1 in Eq. (5.34) with its expected value, we get

bn =
k

2

〈

1

s− iω

〉 N
∑

m=1

Anmbm, (5.35)

where
〈

1

s− iω

〉

=

∫ ∞

−∞

g(ω)dω

s− iω
(5.36)

and the integration contour is defined in the causal sense [i.e., forRe(s) > 0 it is along the real axis, and

for Re(s) ≤ 0 it passes above the poleω = −is]. We thus obtain the dispersion relation

1 =
kλ

2

∫

g(ω)dω

s− iω
, (5.37)

where, as in Sec. 5.1,λ is the largest eigenvalue of the adjacency matrixA. Except for the presence of the

eigenvalueλ, this is the known dispersion relation for the stability of the incoherent state of the Kuramoto

model [31]. Under our assumption thatg(ω) is even and decreases monotonically away from0 (Sec. 5.1),

an unstable [Re(s) > 0] solution of Eq. (5.37) is real [68] (note that, sinceA is symmetric,λ is real).

In order to find the critical coupling, we lets → 0+, (s − iω)−1 → iP (1/ω) + πδ(ω). Sinceg(ω) is

symmetric,
〈

(s− iω)−1
〉

→ πg(0). According to Eq. (5.35), the critical coupling is then given by

kc =
k0

λ
, (5.38)

in agreement with the nonlinear approach. [We note, however, that, if g(ω) has multiple maxima, then the

first instability can occur atIm(s) 6= 0 at a value ofk below that given by Eq. (5.38). This is why we have

assumed thatg(ω) decreases monotonically away fromω = 0.]
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5.5 Effect of fluctuations

So far we have neglected the effect of the small fluctuations due to the finite number of connections per

node. In our examples, we have presented networks that do nothave nodes with small degree. However, in

many networks there is a large fraction of the nodes with small degree; in all our examples in Sec. 5.2 there

were no nodes with degree less than50 [p(d) = 0 for d < 50]. For example, scale free networks generated

using the Barabási-Albert method [8] sometimes have parameters so that〈d〉 = 6.

In developing our theory, we neglected the time variations in Eq. (5.5), and worked thereafter with

the average value of the phase of the locked oscillators. In order to gain insight into the effect of these

fluctuations, we will treat the time fluctuations as a noise term.

The theory we present is heuristic and may be thought of as an expansion giving a small lowest order

correction to the linear stability approach of Sec. 5.4 for large but finite〈d〉. On the other hand, later in this

section, we will apply this theory to numerical examples where the finite size effect is not small, and we

will find that the theory is still useful in that it correctly indicates the trend of the numerical observations.

Like in Sec. 5.4, we consider perturbations to the incoherent state described by Eq. (5.32). As

an approximation, we regard the coupling term in Eq. (5.3),fn(t) ≡ k
∑N

m=1Anm sin(θm − θn), as a

noise term. In addition to growing linearly with time, the phase of the oscillatorn will diffuse under the

influence of this noise. We assume thatθn(t) = φn + ωnt+Wn(t), whereWn(t) is a random walk such

that 〈Wn(t)〉 = 0 and〈Wm(t)Wn(t)〉 = 2Dnmt, andφn is an initial condition, which we assume to be

randomly drawn from[0, 2π). (In this section, by〈. . . 〉 we mean an expected value, i.e. and ensemble

average, rather than an average overt or n.)

By using the linear approach of Section 5.4, the diffusion coefficientsDnm will give us information

on how the critical coupling strength differs from Eq. (5.38). The diffusion coefficientsDnm are given by

Dnm =

∫ ∞

0

〈fn(t+ τ/2)fm(t− τ/2)〉dτ (5.39)

=

∫ ∞

0

∑

j,k

Anj〈sin(θ+j − θ+n )Amk sin(θ−k − θ−m)〉dτ,

where+ (respectively−) indicates evaluation att + τ/2 (respectivelyt − τ/2). Consider first the case

n 6= m. The contribution of the terms with{j, n} 6= {k,m} vanishes after the integration, and we obtain,
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using the symmetry ofA,

Dnm =
k2

2
A2
nm〈sin(θ+m − θ+n ) sin(θ−n − θ−m)〉. (5.41)

We now introduce our aforementioned assumption thatθn(t) − ωnt is a random walk plus a random initial

condition,θn(t) = φn + ωnt + Wn(t). Using the identitysin(x) sin(y) = [cos(x − y) − cos(x + y)]/2

and averaging over the initial phasesφn we get

Dnm = −k
2

2

∫ ∞

0

A2
nm〈cos(∆Wm − ∆Wn + ωmnτ)〉dτ, (5.42)

where∆Wn ≡ W+
n − W−

n andωmn ≡ ωm − ωn. We now use the fact that for a Gaussian random

variablex with varianceσ2 we have〈cos(x)〉 = Re〈eix〉 = Re(ei〈x〉−σ
2/2). In our case,〈x〉 = ωmnτ and

σ2 = 〈(∆Wm − ∆Wn)
2〉 = 2(Dn +Dm − 2Dnm)τ , whereDn ≡ Dnn. After using this to compute the

expected value, and performing the integration, we obtain forn 6= m

Dnm = −k
2

2
A2
nm

Dn +Dm − 2Dnm

(Dn +Dm − 2Dnm)2 + ω2
mn

. (5.43)

If n = m, the calculation proceeds along the same lines, but the nonvanishing terms in Eq. (5.39) are those

for whichk = j. Together with Eq. (5.43), this results in

Dn = −
∑

m 6=n
Dnm. (5.44)

In principle, Eqs. (5.43) and (5.44) can be solved forDn as a function ofk if the frequencies and

the adjacency matrix are known.

In order to relate the diffusion coefficients to the criticalcoupling constant, we resort to the linear

analysis of Sec. 5.4. When noise is introduced in the linear approach, Equation (5.34) for the growth rates

generalizes, as shown at the end of Appendix C, to

bn =
k

2

N
∑

m=1

Anmbm
s+Dm − iωm

. (5.45)

SinceRe(s) > 0 corresponds to instability of the incoherent state, it is expected that the effect of the noise

as reflected by positiveDm is to shift the transition point so that the critical coupling constant is larger.

In order to solve for the growth rates for a given value ofk, we rewrite Eq. (5.45) as

b =
k

2
D(s)Ab, (5.46)
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whereb is the vector with components{bn},D(s) is the diagonal matrixD(s) ≡ diag{(s+Dm−iωm)−1},

andA is the adjacency matrix. The characteristic equation is

det

(

k

2
D(s)A− I

)

= 0, (5.47)

whereI is theN ×N identity matrix. This implies

det

(

k

2
A−D(s)−1

)

= 0, (5.48)

or

det

(

k

2
A− diag{Dm − iωm} − sI

)

= 0, (5.49)

that is, the growth rates is an eigenvalue of the matrixM(k) ≡ (k/2)A− diag{Dm − iωm}.

For a given value ofk, Eqs. (5.43) and (5.44) can be solved iteratively. We have found that, by start-

ing from an initial guess for the values ofDnm and repeatedly evaluating the right hand side of Eq. (5.43)

in order to get the next approximation to the values ofDnm, convergence is achieved to a solution that is

independent of the initial guess if the conditionDn > 0 is imposed. When the values ofDnm have been

found for a given value ofk, the relevant growth rate is calculated as the largest real part of the eigenvalues

of the matrixM(k) defined above.

As an example, we consider three networks with the degree of all nodesd given byd = 100 in the

first, d = 50 in the second andd = 20 in the third one. In order to solve numerically the coupled equations,

we work with a small number of nodes,N = 500. In Fig. 5.5 we show the results for a realization of the

three networks. The order parameterr2 obtained from numerical solution of Eq. (5.3) (solid lines)and the

growth rate obtained from Eqs. (5.43), (5.44) and (5.49) (dashed lines) are plotted as a function ofk/kc.

The arrows indicate which network corresponds to the given curve. We observe that, as the connections

per node are decreased, the transition point shifts to larger values of the coupling constant. This trend is

reproduced by the growth rate curves, which are displaced tothe right for smaller values of the degree.

We emphasize that the theory we described above is applicable to networks for which〈d〉 is large

but finite. However, in Fig. 5.5 we applied the theory to casesin which 〈d〉 is not very large. Although we

do not expect the theory to be valid in this case, we find that itcorrectly describes the trend present in the
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numerical observations, i.e., a shifting of the transitionto coherence to larger values of the critical coupling

as nodes of small degree become important.

5.6 Discussion

A transition to coherence in large networks of coupled oscillators should be expected at a critical value of the

coupling strength which is determined by the largest eigenvalue of the adjacency matrix of the network and

its associated eigenvector. In the all-to-all case, the largest eigenvalue isN−1 ≈ N and thus the Kuramoto

resultkc = k0/N is recovered. The largest eigenvalue of the adjacency matrix of a network is of both

theoretical and practical importance, and thus its properties have been studied in some detail [64, 65, 69].

We remark that our analysis allows the case of nonuniform interaction strengths by introducing continuous

values in the entries of the adjacency matrixA.

We developed different approximations in order to describethe transition to coherence in terms of

an appropriately defined order parameter which generalizesthe parameter used in the classical Kuramoto

model [36]. See Table 5.1 and Figure 5.1 for a summary of the approximations and assumptions. The

time averaged theory (TAT) provided the most accurate description of the behavior of the order parameter,

and assumes knowledge of the adjacency matrixAnm and the individual frequenciesωn. The frequency

distribution approximation (FDA) also provides a good approximation but does not require knowledge of

the individual frequencies. These approximations yield equations that have to be solved numerically. The

time required to numerically solve these equations is, however, much less than that required to numerically

integrate the original differential equations. The perturbation theory (PT) yields analytic expressions for

the order parameter when close to the transition in terms of the largest eigenvalue of the adjacency matrix

and its associated eigenvector, but is limited to networks with a relatively homogeneous degree distribution.

The mean field theory (MF) [36] is obtained by introducing theadditional assumption that the components

of the eigenvector associated with the largest eigenvalue are proportional to the degree of the corresponding

node. This does not necessarily have to be the case when closeto the transition, and because of this extra

assumption, we expect the other approximations to more generally accurately describe the transition than

the mean field theory. Figs. 5.4(a) and (b) show that for the particular case of scale free networks with
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N = 2000, γ = 2 andγ = 2.5 this is the case. In general, we observed that for low values of the exponent

γ (see Fig. 5.4) the mean field approximation and the perturbative approximation yield different critical

coupling strengths. The mean field theory has the advantage that analytic expressions can be computed

without the need of solving the eigenvalue problem for the adjacency matrix, and could be useful when

only limited information is available about the network. However, in general, our results suggest that one

of the other approximations mentioned above should be used.

We remark that even though the time averaged theory, the frequency distribution approximation

and the perturbation theory require in principle knowledgeof the full matrixA, knowledge of the degree

distribution may be enough in some cases. As in our examples,an adjacency matrixA can be generated

randomly with a given degree distribution. Our results indicate that even this limited reconstruction of the

original network might improve the mean field results (see Sec. 5.2).

Our assumptions restrict the class of networks for which theresults apply. We assumed that suffi-

ciently near the onset of synchronization each node is coupled to manylockedoscillators. In practice this

implies that most nodes should have a high degree. This is an important restriction for our theory. In Sec. 5.2

we used networks with a minimum degree of50. As mentioned before, we observed that in networks with

small average degree (about20), the observed critical coupling was larger than the one predicted by our

theory. By including the previously neglected time fluctuations, we developed a heuristic theory in Sec. 5.5

which correctly predicts the trend observed in the numerical simulations. As the nodes with small degree

become important, both our theory and the numerical observations indicate that the transition to synchrony

occurs at larger values of the coupling strength.

In conclusion, we have developed a theory predicting the critical coupling for the transition from

incoherence to coherence in large networks of coupled oscillators. We found that for a large class of

networks, a transition to coherence should be expected at a critical value of the coupling strength which is

determined by the largest eigenvalue of the adjacency matrix of the network. We developed and compared

various approximations to the order parameter past the transition, and studied the effect of the fluctuations

caused by finite size effects.
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Figure 5.4: Order parameterr2 obtained from numerical solution of Eq. (5.3) (triangles),time averaged

theory (solid line), frequency distribution approximation (stars), and mean field theory (long-dashed line)

as a function ofk/kc for degree distributions given byp(d) ∝ d−γ if 50 ≤ d ≤ 2000 andp(d) = 0

otherwise, with (a)γ = 2, (b) γ = 2.5, (c) γ = 3, and (d)γ = 4. All curves in each figure are obtained

using the same single random network realization.
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Appendix A

Analysis of the contribution of the non locked oscillators to the mean field

In this Appendix we show that, using Assumption⋆, we can neglect the sum over the unlocked oscillators

in Eq. (5.7),
N
∑

|ωm|>krm

Anm〈eiθm〉t. (A.1)

We will follow to some extent Chapter12 of Ref. [20]. The time average is given by

〈eiθm〉t =

∫ π

−π
eiθpm(θ)dθ. (A.2)

wherepm(θ)dθ is, given the connections of nodem and its natural frequencyωm, the probability that its

phaseθm lies in the interval[θ, θ + dθ). It satisfiespm(θ) ∝ 1/
∣

∣

∣θ̇
∣

∣

∣. Including the normalization we have,

neglecting the termhm in Eq. (5.5),

pm(θ) =

√

ω2
m − k2r2m

2π |ωm − krm sin(θ − ψm)| . (A.3)

The sum in Eq. (A.1) can be written as

N
∑

|ωm|>krm

Anm〈eiθm〉t =
N
∑

|ωm|>krm

Anm
√

ω2
m − kr2msign(ωm)

1

2π

∫ π

−π

eiθ(ωm + krm sin(θ − ψm))dθ

ω2
m − k2r2m sin2(θ − ψm)

.

(A.4)

The integral of the first term vanishes since the2π-periodic integrand changes sign under the transformation

θ → θ + π. We are left with

N
∑

|ωm|>krm

Anm〈eiθm〉t =

N
∑

|ωm|>krm

Anm
√

ω2
m − kr2mkrmsign(ωm)

1

2π

∫ π

−π

eiθ sin(θ − ψm)dθ

ω2
m − k2r2m sin2(θ − ψm)

.

(A.5)

In this sum,sign(ωm) is independent ofω2
m and, using Assumption⋆, it is independent ofrn andψn as

well. If there are many terms in the sum, it will be then of order
√
dn due to the symmetry of the frequency

distribution, and thus will be small compared with the sum over the locked oscillators, which is of orderdn

[see Eq. (5.11)]. Note that we did not use here the full strength of Assumption⋆, since we only required

the sign ofωm to be independent ofrm andψm.
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Appendix B

Failure of the mean field approximation asN → ∞

Here we show that for sufficiently largeN and a power law degree distribution of the degrees,p(d) ∝ d−γ ,

the mean field approximation〈d2〉/〈d〉 underestimatesλ for γ > 3. We base our argument in the results of

Ref. [65]: if for a random graph
√
dmax > 〈d2〉/〈d〉(logN)2, thenλ ∼

√
dmax almost surely asN → ∞,

wheredmax is the largest expected degree.

In the case under consideration (γ > 3), 〈d2〉/〈d〉 converges to the finite value〈d2〉∞/〈d〉∞ [〈. . . 〉∞

is defined by Eq. (5.27)], whiledmax diverges asN1/(γ−1) [7]. Thus, for large enoughN , the conditions

for λ ∼
√
dmax will be satisfied, sinceN1/(γ−1)/(logN)4 → ∞ asN → ∞. While λ ∼

√
dmax → ∞

asN → ∞, the mean field approximation〈d2〉/〈d〉 remains finite.

We can estimate an upper bound on how largeN needs to be for this discrepancy to be observed.

For largeN , 〈d2〉/〈d〉 ∼ d0, whered0 is the minimum degree [p(d) = 0 for d < d0]. The maximum

degree is approximately given bydmax ∼ d0N
1/(γ−1) [7]. Inserting these estimates in the condition

√
dmax ∼ 〈d2〉/〈d〉(logN)2 we obtain

N ∼ dγ−1
0 (logN)4(γ−1). (B.1)

As an example, forγ = 4 andd0 = 20, the upper bound is approximatelyN ∼ 1025, a far larger system

than we can simulate.
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Appendix C

Linear stability of the incoherent state

In this Appendix we study the linear stability of the incoherent state by a method similar to that presented

in Ref. [28]. As described in Section 5.4, we assume that in the incoherent state the solution to Eq. (5.3) is

given approximately by

θ0n(t) ≈ ωnt+ φn, (C.1)

whereφn is an initial condition. We introduce infinitesimal perturbations to this state by

θn = θ0n + δn. (C.2)

Linearizing Eq. (5.3), we get

δ̇n = k

N
∑

m=1

Anm cos(θ0m − θ0n)δm + µn − νnδn, (C.3)

whereµn = k
∑N

m=1Anm sin(θ0m − θ0n) andνn = k
∑N

m=1Anm cos(θ0m − θ0n). As before, we assume

that the number of links to noden is so large that, due to the incoherence, we may neglect the termsµn and

νn. With this simplification, Eq. (C.3) can be recast as an integral equation as follows:

δn(t) = k

∫ t

−∞
dt′

N
∑

m=1

Anmδm(t′) cos[θ0m(t′) − θ0n(t
′)] (C.4)

=
k

2

∫ t

−∞
dt′e−iθ

0
n(t′)

(

N
∑

m=1

Anme
iθ0m(t′)δm(t′) +

N
∑

m=1

Anme
i[2θ0n(t′)−θ0m(t′)]δm(t′)

)

.

Multiplying by Ajneiθ
0
n(t), summing overn and definingBn(t) ≡

∑N
m=1Anmδm(t)eiθ

0
m(t), we get

Bj(t) =
k

2

∫ t

−∞
dt′

N
∑

n=1

Ajne
i[θ0n(t)−θ0n(t′)]

(

Bn(t
′) + e2iθ

0
n(t′)B∗

n(t′)
)

. (C.5)

We assume that the quantitiesBn grow exponentially with time asBn(t) = bne
st, whereRe(s) > 0.

Inserting this ansatz in Eq. (C.5), and performing the integration we get

bj =
k

2

N
∑

n=1

Ajnbn
s− iωn

+
k

2
e2iIm(s)t

N
∑

n=1

Ajnb
∗
ne

2iθ0n(t)

s∗ + iωn
. (C.6)
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The second sum is very small due to the incoherence of theθ0n’s. So, changing indices, we are left with the

eigenvalue equation

bn =
k

2

N
∑

m=1

Anmbm
s− iωm

, (C.7)

as claimed in Section 5.4.

If, as proposed in Section 5.5, there are fluctuations in the values ofθ0n(t) such thatθ0n(t) = ωnt+

φn +Wn(t), whereWn(t) is a random walk such that〈Wn(t)〉 = 0 and〈Wn(t)
2〉 = 2Dnt, we take the

expected value of Eq. (C.5). We use the fact that for a Gaussian random variablex with varianceσ2 we

have〈eix〉 = ei〈x〉−σ
2/2. In this case,x = ωm(t′ − t) andσ2 = 2Dm(t− t′). We obtain after performing

the integration

bn =
k

2

N
∑

m=1

Amnbm
s+Dm − iωm

. (C.8)
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[69] D. M. Cvetković, M. Dobb, and H. Sachs,Spectra of Graphs, Theory and Application, (Academic

Press, New York, 1979).

87


