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Microshutter arrays, scheduled to be launched in 2011 as part of NASA’s James 

Webb Space Telescope (JWST), will be the first micro-scale optical devices in outer 

space using MEMS technology. As the microshutter arrays consist of electrical and 

mechanical components and must operate in a cryogenic environment reliably over a 10 

year mission lifetime, a fundamental challenge for the development of this device is to 

understand the mechanical behaviors of the micro-scale materials used and the possible 

failure mechanisms at 30 K.  

This thesis investigates the mechanical properties and reliability of low-stress 

LPCVD silicon nitride thin films, the structural materials of the microshutter arrays, at 

cryogenic temperatures. A helium-cooled cryogenic measurement setup installed inside a 

focused-ion-beam system is designed, implemented, and characterized to obtain a 



cryogenic environment down to 20 K. Resonating T-shaped cantilevers with different 

“milling masses” are used to measure the Young’s modulus of silicon nitride thin films, 

while the fracture strength is characterized by bending tests of these beams. A passive 

high-sensitivity microgauge sensor based on displacement amplification is introduced to 

measure residual stress and coefficients of thermal expansion, which are critical for the 

device performance. To achieve accelerated fatigue study of the microshutter arrays, a 

novel mechanical-amplifier actuator is designed, fabricated, and tested to emulate their 

torsional operating stress. Furthermore, nano-scale tensile fatigue tests are demonstrated 

using similar mechanical-amplifier actuators.  

The research results of this thesis provide important thin film material parameters for 

the design, fabrication, and characterization of the microshutter arrays. Moreover, the 

presented test devices and experimental techniques are not limited for space applications 

only but can be extended for characterization of other thin film materials used in MEMS 

and microsystems.   
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CHAPTER 1 

INTRODUCTION 

 
 

For centuries people were fascinated by the prospect of making mechanical devices 

smaller and smaller, while maintaining their functionality. Since 1960, the complexity 

and performance of microelectronic devices has increased by many orders of magnitude, 

whereas size, power consumption, and price have been reduced significantly. Meanwhile, 

the advance of microfabrication techniques in the semiconductor industry also provides 

an opportunity for researchers to develop versatile systems on the micro-scale, called 

microelectromechanical systems (MEMS). Basically, MEMS are microscale devices, 

which combine electrical and mechanical components, and are fabricated using integrated 

circuit batch-processing technologies. Various MEMS structures such as linear comb 

capacitors, micro-mirrors, micro-channels, cantilevers, and diaphragms have been 

successfully fabricated and widely used in accelerometers [1], pressure sensors [2], 

optical switches [3], and lab-on-chip platforms [4]. Key benefits of MEMS devices 

include miniature size, light weight, high resonant frequencies, short thermal time 

constant, and the capability to integrate with microelectronics.  

As the field of MEMS grows considerably, the advantages of smaller, less costly 

devices and systems have given impetus to develop MEMS devices for space applications. 

Micro-spacecrafts [5], miniature communication satellites [6], and meteorological 

instrumentation [7] based on utilization of MEMS technology have been proposed. 

However, one of the key challenges facing the design of these devices is reliability in the 

outer space environment. Despite the increasing popularity of MEMS in research and 
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industry, reliability is still a critical factor that hinders the commercialization of MEMS 

products. For space applications, failure of MEMS devices may cause not only enormous 

costs but also unpredictable disastrous results. Therefore, starting with the selection of 

materials in the design phase, a complete understanding of mechanical properties and 

reliability issues in the operational environment is crucial in the development of MEMS 

devices for space applications. 

 

1.1 Motivation and background 

The James Webb Space Telescope (JWST), scheduled to be launched in 2011, is 

currently being developed at NASA Goddard Space Flight Center to determine the 

origins of galaxies, clusters, and large-scale structures in the universe [8]. In order to 

observe galaxies in the peak of the merging and star-forming era, JWST operation 

requires a spectroscopic coverage in the near-infrared (NIR) wavelength region from 0.6 

to 5 µm. A Multi-Object Spectrometer (MOS) has been proposed for the JWST to fulfill 

the detection of the NIR wavelength region. For the operation of the MOS, an imaging 

mode and a spectrum mode can be interchanged by supporting a prism assembly, gratings, 

and a mirror in the system. In order to cover a required spectral band without overlap in 

the spectrum mode, a programmable aperture mask (PAM) utilized as an object selector 

which can operate over a broad spectral range and select objects at random positions is 

needed. The selection of a set of objects for spectroscopic observation is based on a prior 

image of the area of the sky taken in the imaging mode.  

A MEMS-based microshutter array (MSA) for application as the PAM on the JWST 

has been proposed at NASA Goddard Space Flight Center [9, 10]. The MSA design 
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consists of a 2 × 2 format mosaic of four 384 × 175 arrays placed in the JWST optical 

path at the focal plane. Each shutter element covers an area of 100 × 200 µm and is 

connected to a frame through a neck region and a torsion beam as shown in Figure 1.1 

[11]. A schematic cross-section of a single shutter element indicating the primary 

components is shown in Figure 1.2 [12]. Since the fracture strength of silicon nitride thin 

films is higher than that of silicon, the shutter and torsion spring are made of low-stress 

low pressure chemical vapor deposition  (LPCVD) silicon nitride with a thickness of 0.5 

µm [13]. The frame of the MSA is 100 µm thick single crystal silicon with frame widths 

of less than 8 µm between the shutters. Around the perimeter of the shutter element is an 

overhanging light shield. This shield blocks light from leaking through the gaps between 

the shutter, hinge and the array frame when the shutter is in the horizontal closed position. 

There are two sets of electrodes utilized for addressing the MSA. One set of electrodes 

covers the shutter surface and is connected in column arrangement via leads on the 

torsion hinge and array frame. The second set of electrodes covers the side wall of the 

silicon frames and is connected in rows via leads on the top of the frame. Deposited over 

the column electrode on the shutter is a region of magnetic cobalt/iron alloy.   

In the mechanism of actuation, a permanent tri-pole magnet aligned to the shutter 

rows is swept across the MSA along the columns [12]. As the magnet sweeps across the 

array, sequential rows of shutters are rotated from their horizontal closed position (Figure 

1.2 (a)) to a vertical open orientation (Figure 1.2 (b)) in contact with the vertical 

electrodes. The selective nature of the MSA is then achieved electrostatically using three 

voltage bias levels where the difference between any two voltages is sufficient to hold the 

shutters open in contact with the vertical electrodes against the mechanical restoring force 
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of the torsion hinge. All combinations of the open shutter elements can be obtained by 

appropriately choosing the voltage bias in each row and column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 1.1: Scanning electron micrographs of a 128 × 64 microshutter array: (a) front-
side view without light shields for clarity, and (b) back-side view.  

Figure 1.2: Schematic cross-section of a single shutter element: (a) at close state, 
and (b) at open state. 
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The scientific goal for the JWST is to detect extremely faint infrared photons coming 

from the farthest reaches of the universe. Temperature is an essential consideration since 

“heat” would create too much infrared background noise. To minimize thermal emissions 

into the Multi-Object Spectrometer, the JWST’s orbit will be at the second Lagrange 

Point (L2), located 940,000 miles from the Earth in the anti-Sun direction to provide a 

thermally stable environment [11]. This location is inaccessible to space shuttle re-

servicing missions. Thus, the MSA must operate in a cryogenic (~30 K) vacuum 

environment reliably over a 10 year mission lifetime without repair after launch.  

The challenges facing the MSA are to design and fabricate test structures and devices 

emulating the same operation condition and to develop characterization techniques for 

comprehensive tests. As MEMS is a relatively new technology, emphasis over the past 

dozen years has been on new materials, new manufacturing processes, and new micro-

devices. Limited mechanical property and reliability data of thin film materials utilized in 

MEMS devices is available, even for room temperature environment. Current state-of-

the-art techniques for mechanical property and reliability characterization focus mainly 

on scaled down setups that are used for macroscopic material analysis and most often are 

developed for measuring polysilicon thin films. Therefore, it is clear that to expand 

MEMS devices for space applications, new test devices and characterization techniques 

suitable for the cryogenic environment need to be developed.      
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1.2 Literature review 

1.2.1 Microelectromechanical systems technology 

A. Fabrication techniques for MEMS   

The evolution of microfabrication techniques to create precision three-dimensional 

micromachining structures in the last couple of decades has led to an exciting revolution 

in understanding and utilizing MEMS devices for different applications. The most 

common fabrication techniques for MEMS devices include bulk micromachining [14], 

surface micromachining [15], dissolved wafer process [16], LIGA (a German acronym 

for lithography, electroplating, and molding) [17], and micro-electro-discharge 

machining (EDM) [18]. A typical MEMS device can be realized by using any of these 

processes in their prevalent forms or several variants of these processes. In this research 

work, bulk micromachining and surface micromachining techniques are utilized to 

fabricate test devices and therefore are discussed in detail.  

Bulk micromachining is based on anisotropic etching of single-crystalline silicon to 

form micro mechanical structures from the bulk of the silicon wafer [14]. Strongly 

alkaline liquids such as potassium hydroxide (KOH) preferentially etch the {100} planes 

of single crystalline silicon in comparison to the {111} planes. The mechanism 

responsible for orientation dependent etching in silicon has been suggested [19] [20] to 

be the bond structure of the atoms that are revealed in different surface planes. {100} 

planes of single crystalline silicon have atoms with two dangling bonds. However, atoms 

in {111} planes have only one dangling bond on the surface. Hence, atoms in {111} 

planes are more tightly bound to the rest of the crystal and this may explain the observed 

lower etch rate in these planes.  
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The difference in these etch rates (typically 100 times smaller in {111} planes) can be 

utilized to create three-dimensional structures in silicon substrates using standard 

photolithography in conjunction with masking layers such as silicon nitride. Anisotropic 

etching can be used either from the front side of the wafer, backside of the wafer or from 

both sides to realize an array of micromechanical structures. Figure 1.3 is a schematic 

diagram of process steps to fabricate a silicon nitride membrane using this technique. 

Bulk micromachining is a proven high-volume production process and is routinely used 

to fabricate microstructures due to its simplicity. However, the alkaline-based solutions 

are not compatible with CMOS fabrication processes and the etch rate of silicon in these 

chemicals is relatively slow (~ 1 µm/min). In addition, bulk micromachining prevents 

efficient use of silicon “real estate” since large etch windows need to be defined even for 

realizing small micromechanical structures.  

 

 

 

 

 

 

 

Surface-micromachining, on the other hand, is based on sequential deposition and 

etching of thin films on the surface of a carrier substrate [15]. Freestanding structures can 

be released by etching away sacrificial layers under structural thin films. The basic 

fabrication process sequence is shown in Figure 1.4. As the polycrystalline silicon thin 

Silicon 

Silicon nitride 
(100) surface orientation  

(111) 

(a)  (b)  

Figure 1.3: Schematic diagram of process steps to fabricate silicon nitride 
membrane using bulk micromachining technique: (a) deposit and pattern silicon 
nitride, and (b) etch silicon in alkaline liquid to produce cavity.   
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film exhibits excellent mechanical properties (its Young’s modulus is near that of 

stainless steel and its fracture strength is close to the ultimate strength of nickel-iron) and 

in particular is known as one of the key materials for IC-derived processing, it has 

become the most common MEMS material, especially in surface micromachining 

technique. The early effort in the development of polycrystalline silicon micromechanical 

structures was to control the film stress after deposition. It has been found that the 

resonant frequency of a micromachined resonator is strongly related to the residual stress 

of the structural layer [21] and out-of-plane curvature of micromechanical structures is 

(a) 

(b) 

(c) 

(d) 

(e) 

Silicon Phosphosilicate 
glass 

Polysilicon 

Figure 1.4: Basic surface micromachining process sequence: (a) deposition of sacrificial 
layer, (b) patterning of sacrificial layer with mask, (c) deposition of structural layer, (d) 
patterning of structural layer with mask, and (e) etching of sacrificial layer to produce 
free-standing structure.  
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generated due to the stress gradient of this thin film. Several techniques can be used to 

control the initial stress of polycrystalline silicon thin films such as annealing at high 

temperatures between 900 °C and 1150 °C with nitrogen flow [22]. Micromechanical 

structures upon release in wet etchant usually suffer from stiction problems. This problem 

has been widely studied and complex CMOS-based micromachining processes using up 

to 3-layers of polysilicon have been demonstrated to fabricate complex micromechanical 

structures such as micro-gears, micro-motors, and micro-mirrors [23]. One advantage of 

surface micromachining is that a slightly modified CMOS process can be used for the 

realization of the MEMS device. However, due to the structural layers being limited in 

thickness to a few microns, the disadvantage of this technique leads to fabrication 

difficulty of micromechanical structures with large mass or dimensions.  

 

B. Integrated microsystems  

One of the main goals for the development of MEMS technologies is to integrate 

microelectronic circuitry along with micromachined three-dimensional structures through 

microengineering. Integrated micro-systems offer several advantages as compared to 

standalone sensors, actuators, or circuits. Systems level advantages include improved 

reliability and performance, low cost, and ease of use. Since the range of applications of 

micro-systems is virtually limitless, the associated problems and solutions in each design 

are almost always unique and depend upon the specific applications and the choice of the 

transduction technique. Microsystems can be implemented by using either monolithic 

integration techniques or hybrid integration techniques. In hybrid microsystems, the 

sensor/actuator structures are located on a separate chip(s) from the electronic circuit chip. 
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The obvious advantage of using hybrid techniques is large latitude in the choice of the 

fabrication processes and materials for each of the chips constituting the microsystem. 

The main disadvantages are that it generally degrades performance and often adds 

complexity to the packaging of the overall system. In the development of the 

microshutter array, a CMOS-based dynamic random access memory (DRAM) device is 

integrated with each array on the same chip and utilized as an addressing circuit [10]. 

Four individual chips are then attached to a multi-chip module (MCM) for assembly.    

In contrast, monolithic integration of microelectromechanical structures with 

microelectronic circuits can potentially create the most compact and versatile 

microsystems. However, the materials and processes for the micromechanical structures 

are constrained to be compatible with silicon and its processing techniques. Examples of 

commercialized monolithic microsystems are the digital micromirror array from Texas 

Instruments [24], the surface micromachined accelerometers from Analog Devices [25], 

and the room temperature bolometer infrared array from Honeywell [26].  

 

C. Packaging of MEMS devices  

As MEMS technology has evolved out of semiconductor processing technology, 

some of the packaging concepts have also developed from conventional semiconductor or 

IC packaging techniques. Even so, packaging of MEMS devices is more complex since in 

some cases it needs to provide protection from the environment while at other times it 

needs to allow access to the environment to measure or affect the direct physical or 

chemical parameters. Stresses and thermal effects, induced during the packaging and 

interconnection steps, can adversely affect the mechanical performance of MEMS 
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devices. Currently, it is estimated that MEMS packaging costs are in the range of 50% to 

75% of the component’s total cost [27].  

Very often MEMS packaging relies on wafer level packaging [28]. Since MEMS 

devices have movable structures on the surface of the wafer, addition of a cap wafer on 

the silicon substrate makes the device suitable for handling and assembly. A typical 

capping process involves bonding of the substrate with active devices to a second wafer 

either of the same material or of different material. The bond is obtained by using glass 

frit material or by using anodic bonding created by the application of electrical potential. 

Additionally, many MEMS devices such as accelerometers, RF filters, and digital 

micromirror displays require the moving parts to be enclosed in hermetically sealed 

cavities. The cavity pressure in this case determines the frequency response of the 

micromechanical structure due to viscous damping effects [29]. The high vacuum cavities 

can also be fabricated by using wafer level packaging techniques. However, even if the 

bonding process is performed in high vacuum environment, it is found that the pressure 

in the enclosed cavities is high. This is thought to be due to outgassing effects and the 

generation of gaseous by-products during the bonding reaction [30]. A more important 

problem concerns the maintenance of the high vacuum over the lifetime of the sensors. 

Even an extremely small leak rate from the cavities which is impossible to be measured 

using conventional leak-rate detection methods can influence the sensor performance 

dramatically. New solutions that use active gettering materials inside these enclosed 

cavities have been proposed [30].  

For packaging of the miroshutter arrays, the main challenge is the cryogenic 

operation of the whole system at outer space. Even a slight mismatch of the coefficient of 
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thermal expansion (CTE) could distort or damage the delicate shutter element. The 

current design adopts a silicon multi-chip module (MCM) approach where four 

individual shutter arrays (chips) are attached from the backside via indium bumps [31]. 

The electrical connections between the microshutter arrays and MCM bonding pads are 

obtained by wirebonding from the top side. The fully assembled microshutter array will 

consist of 16 individual microshutter chips, and each chip is approximately 6 cm square.       

 

1.2.2 Reliability and failure mechanisms of MEMS   

In recent years, enormous progress has been made in developing new design concepts, 

new processing techniques, and in identifying new applications for MEMS [32]. 

Widespread acceptance of such technologies, both for large-volume commercialization 

and for the use of a few components in critical applications, is dictated by their reliability. 

Identification of the mechanisms of failure, development of predictive models for such 

mechanisms, and finally, the inclusion of such models in computer-aided-design tools for 

MEMS form the goals of reliability engineering. 

In general, there are three kinds of failure mechanisms for MEMS devices: process 

related failure mechanisms, in-use failure mechanisms, and packaging related failure 

mechanisms [33]. Similar to IC development, early failures of MEMS devices are 

affected by defects from microfabrication. Particles, inter-metallic diffusion, under-

cutting, poor adhesion, and non-uniform step coverage all will lead to failure in operation. 

For surface micromachined MEMS devices, the release process to remove sacrificial 

layers usually causes permanent adhesion of microstructures to adjacent structures, which 

is the phenomenon called stiction. Carbon dioxide (CO2) super critical drying [34], 
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incorporation of dimples to minimize contact area [35], and monolayer surface coatings 

[36] have been widely studied and successfully demonstrated to avoid this release stiction.     

The fact that MEMS devices involve moving structures is the most obvious aspect in 

which they are different from conventional IC devices and this certainly introduces new 

in-use failure mechanisms. During the early stage of useful lifetime, the failures are 

mostly caused by external events, such as voltage excursion, vibration, shock loading, 

and electrostatic discharge (ESD). Stiction during the normal operation may also occur at 

this time due to capillary forces, electrostatic attraction, and chemical bonding. As 

MEMS devices are used continuously, mechanical failures (including fracture, fatigue, 

creep, and frictional wear), electrostatic charging (charge accumulation in dielectric 

layers), electromigration in electromagnets, and changes in morphology or geometry with 

temperature (bending or warping of components) start to deteriorate and render MEMS 

devices inoperative. These failure mechanisms are a function of operation time and are 

difficult to be characterized quantitatively.  

MEMS devices face more challenges when it comes to packaging as mentioned 

previously. In addition to the same packaging related failure mechanisms existing in IC 

devices, the requirement of environmental exposure for some MEMS devices accelerates 

corrosion of electrical leads and bonding pads as a result of incomplete encapsulation. 

Furthermore, hinged, cantilevered, and floating components utilized in MEMS devices 

are very vulnerable to the packaging process, whether from mechanical or thermal stress 

or from contamination. Even a small stress change in these structures may induce a 

significant shift in performance and lead to failure.  
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Currently, MEMS reliability appears to be a key limiting factor for technology 

exploitation and volume production [37]. Many of the MEMS failure mechanisms are not 

well understood. The lack of understanding presents a challenge in developing practical 

testing and qualification techniques for MEMS devices. On the near horizon, if these 

issues can be addressed and overcome, there is no doubt that MEMS technology will 

have a huge impact on our daily lives.  

 

1.3 Techniques for mechanical property and reliability characterizations of MEMS 

materials 

It is well known that mechanical properties of thin films are different from those of 

bulk materials [38]. This difference can be explained by the large surface-to-volume ratio, 

since the microstructure of the surface will have significant influence on the mechanical 

properties of thin films. Furthermore, defects and unique microstructures from the 

fabrication process in thin films also contribute to the variation of mechanical properties.  

Since the late 1980s, researchers have tried to determine mechanical properties of thin 

film materials experimentally. Measurement of specimens at microscale (or nanoscale) is 

demanding; not only it is difficult to handle them but there is also a series of new 

problems caused by the unusually small size. The challenges include the ability to 

measure the geometrical features of test structures and relative displacements (strain) 

accurately, to apply a small force (µN or mN range) to test structures, and to make a good 

alignment between applied forces and test structures. In addition, small imprecision in the 

setup, which has negligible consequences for macroscale measurement, can be a major 

source of systematic measurement error for microsamples. In previous work, significant 
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efforts were focused on improving the measurement techniques and sample preparation 

methods. Several main techniques for mechanical property and reliability measurements 

are summarized below: 

a) Beam-bending test: The test structure for beam-bending test is usually a simple 

cantilever beam with one end fixed. A small force is applied to the free end of the 

cantilever yielding a vertical deformation large enough to be measured using optical 

microscopy, as shown in Figure 1.5 [39]. A doubly clamped beam can also be utilized 

in the bending test. Compared to a cantilever, a doubly clamped beam is stiffer and 

more robust. A surface profilometer was used to trace the shapes of fixed-fixed beams 

at various load settings [40]. By comparison of measured traces and using a finite 

element analysis (FEA) of the structures, the Young’s modulus can be obtained. The 

advantages of the beam-bending test are that it is simple and is not affected by slight 

misalignments in the loading direction. Therefore, micromachined samples can be 

prepared without considering how to accommodate the loading. However, the 

difficulty of this method is the measurement of such a small applied force.  

 

 

 

 

 

 

 

 
Figure 1.5: A cantilever deflected out of plane by a stylus.  
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b) Indentation test: A probe-based nanoindentation system with a load and a 

displacement resolution better than 0.01 µN and 0.1 nm, respectively, has been 

extensively utilized to characterize the mechanical properties of thin film materials 

[41]. Basically, this system is a miniature and highly sensitive hardness tester. An 

indenter tip is brought in contact with the test structure, possibly damaging the test 

structure. Hardness and Young’s modulus are then calculated from the load-

displacement curve. The Young’s modulus measured by nanoindentation is usually 

higher than from other tests where the large pressure of the indentation tip is the 

probable cause [42]. Careful modeling regarding deformation of the indentation tip 

during measurement is required to obtain accurate measurement results.        

c) M-test: M-test is a widely used method to determine the Young’s modulus and 

residual stress of doubly clamped beams [43]. A voltage is applied between a 

conductive polysilicon beam and the substrate to pull the beam down as shown in 

Figure 1.6, where pull-in voltage is a measurement of its stiffness. The advantage of 

this method is that the measurements can be made entirely with electrical probing in a 

manner similar to that used to check microelectronic circuits. This provides the 

opportunity for process monitoring and quality control. The disadvantages are that 

Figure 1.6: Schematic cross-section of the M-test.  
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only conductive materials are suitable for this technique and the strict requirement of 

a flat beam before testing.  

d) Direct tension test: The concept of direct tension test is rather simple: a test structure 

is loaded in axial tension until it breaks. Direct tension test is an effective method to 

measure the mechanical properties and the measured data can be easily interpreted. 

However, the requirements for strain measurement and sample alignment are 

stringent. Atomic-force microscopes (AFM) [44], image-correlation methods [44], 

and optical interferometry [45] have been used to measure such a small displacement. 

On the other hand, the loading system is usually incorporated in the specimen 

preparation step to solve the alignment problem. An effective way of handling thin 

film specimens, which is a specimen suspended across a rectangular frame, was 

introduced [46]. The suspended specimen was released by etching of the backside of 

the wafer and can be handled easily to be placed into a test machine. A specimen 

fixed to the die at one end and gripped with an electrostatic probe at the other end is 

also adopted for sample holding [47] to meet the alignment requirement.  

e) Bulge test: A thin membrane fabricated by etching away the substrate is pressurized 

and the measured deflection can be used to determine the biaxial modulus. An 

advantage of this approach is that the tensile residual stress in the membrane can be 

measured. However, the value of the Poisson’s ratio must be assumed and an 

analytical model is required. The need to assume a value of the Poisson’s ratio was 

eliminated by testing rectangular silicon nitride films with different aspect ratios [48]. 

More recently, a similar approach to measure Young’s modulus and the Poisson’s 

ratio of polysilicon was developed [49].  
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f) Resonant test: The resonant structure concept was introduced in 1979 by fabricating 

arrays of thin, narrow cantilever beams of various lengths with composite structures 

extending over an anisotropically etched pit in the substrate [50]. The beams were 

excited by variable frequency electrostatic attraction between the substrates and the 

beams, and elastic properties of the composite structure can be determined from the 

measurement of the resonant frequency. The test structures used in resonant tests can 

be very small, which makes this approach suitable for on-chip testing with 

appropriate actuation designs. 

g) Fatigue test: Many fatigue tests have been done directly on MEMS devices, such as 

digital mirrors, instead of the more basic fatigue tests on the materials. Since MEMS 

devices are usually designed to reduce the stress intensity during operation, these tests 

only prove that they can operate for millions (or billions) of cycles but no information 

for fatigue properties of the materials is obtained. However, the fatigue property is 

one of the important parameters when designing MEMS devices, especially when 

reliability is emphasized. A circular comb drive actuator with a small notch [51] is 

one of the few test devices that have been reported to study fatigue mechanisms of 

polycrystalline silicon thin films as shown in Figure 1.7. This device consists of a 

notched specimen, a resonant mass (A in Figure 1.7), a capacitive displacement 

transducer (B in Figure 1.7), and an electromechanical load frame (C in Figure 1.7). 

Similar to M-test, this technique is only applicable to conductive materials. Therefore, 

it can not be used to study fatigue properties of silicon nitride thin films.      
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1.4 Research objectives and thesis organization 

From the literature review, no mechanical properties and reliability of MEMS-based 

thin film materials at cryogenic temperatures have been reported. Current techniques 

were developed for characterizing these materials in room-temperature or high-

temperature environments and the measurement data cannot be used in the design of 

MEMS devices for space applications.  

The objectives of this thesis are to develop new test devices and measurement 

techniques to characterize mechanical properties and reliability of MEMS-based thin film 

materials and devices at cryogenic temperatures. This thesis focuses on the study of 

LPCVD silicon nitride thin films, which are the structural materials utilized in the 

microshutter array (MSA) in the James Webb Space Telescope. The measurement results 

will provide not only a comprehensive understanding of mechanical behavior and 

reliability issues of MSA at room temperature and in the outer space environment, but 

also design guidelines of MEMS devices for other space and/or cryogenic applications.     

Figure 1.7: Scanning electron micrographs of a circular comb drive with a small 
notch for fatigue study.  
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This chapter has given an introduction to the goals of this research, and the relevant 

background technologies. The current developments of the MSA and techniques for 

mechanical property and reliability characterization were reviewed and emphasized to 

highlight the requirement of new technologies for understanding the mechanical 

behaviors of MEMS devices at cryogenic temperatures. The organization of the 

remaining chapters is as follows.  

Chapter 2 discusses the design and implementation of a cryogenic measurement setup 

to emulate the operational environment of outer space. This setup is installed inside a 

focused-ion-beam (FIB) system, which can provide several unique capabilities including 

ion milling, ion-induced metal deposition, and in situ scanning electron microscopy 

(SEM). The techniques to adjust and measure temperatures of this setup are also 

described.  

Chapter 3 starts with the design and fabrication of T-shaped cantilevers. Resonant and 

bending tests of T-shaped cantilevers are performed to characterize the Young’s modulus, 

the Poisson’s ratio, and the fracture strength of silicon nitride thin films. Experimental 

techniques, ANSYS finite element analysis (FEA) models, and the measurement results 

of the Young’s modulus, the Poisson’s ratio, and the fracture strength are presented.  

Chapter 4 focuses on a new test device – a microgauge sensor - to characterize 

residual stress and coefficients of thermal expansion (CTE) for silicon nitride thin films. 

Analytic models based on beam analysis theory are then developed, followed by the 

discussion of CTE values at cryogenic temperatures.                

In chapter 5, a novel test device – the so-called “mechanical-amplifier actuator” – is 

developed for fatigue study of silicon nitride thin films. An amplification mechanism for 
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mechanical movement is described in the design of mechanical-amplifier devices. 

Critical fabrication processes such as the creation of a vertical etch-through sidewall 

using deep reactive ion etching (DRIE) are then discussed. Experimental techniques and 

the fatigue test results are presented at the end of this chapter. 

In chapter 6, a modified mechanical-amplifier actuator is designed and fabricated to 

perform tensile test on nano-scale test samples. This design extends applications of 

mechanical-amplifier actuators to characterize nano-scale thin film materials and to 

understand the variation of mechanical properties in micro- and nano- dimensions.  

The primary test results and accomplishments of this thesis research are summarized 

in chapter 7.     

 

1.5 Contributions  

This thesis focuses on the study of mechanical properties and reliability of thin film 

materials at cryogenic temperatures. The most important and salient contributions of this 

research project include: 

a) Experimental setup: a cryogenic measurement setup emulating the environment of 

outer space is designed and implemented inside a FIB system. The combination of the 

FIB system with the setup provides several unique capabilities and they are listed 

below: 

• Precise temperature control down to 20 K , 

• Actuation capability to actuate test devices, 

• Measurement capability (SEM image, and secondary electron signal) to measure 

the response of test devices.  
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b) Experimental techniques: FIB-based experimental techniques are developed for the 

first time in this thesis that includes the following: 

• In-situ mechanical property measurement in a FIB system, 

• Use of secondary electron signal to measure vibration frequency of a test device, 

• A milling mass approach to determine effective thin film thickness, 

• Use of a micro-needle as a ground electrode to actuate a test device, 

• A post-fabrication micro-repair technique for MEMS devices.  

c) Device design, modeling, and fabrication: several unique test devices are developed 

to understand the mechanical behavior of thin film materials at cryogenic 

temperatures.  These include: 

• T-shaped cantilevers, 

• High-sensitivity microgauge sensors, 

• Mechanical-amplifier actuators, 

• Modified mechanical-amplifier actuators. 

d) Experimental results: we report the mechanical properties and reliability of LPCVD 

silicon nitride thin films at cryogenic temperatures for the first time. The 

measurement results provide important design parameters of MEMS devices for 

space and/or cryogenic applications, and they are summarized below: 

• Young’s modulus, Poisson’s ratio, fracture strength, coefficient of thermal 

expansion, and fatigue property at room and cryogenic temperatures, 

• Average and local value of residual stress after nitride deposition,  

• Amplification of tiny residual/thermal strain (~ 5µε) using the microgauge sensors, 

• Demonstration of the mechanical-amplifier actuators. 
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CHAPTER 2 

CRYOGENIC MEASUREMENT SETUP IN A FOCUSED-

ION-BEAM SYSTEM   

 
 

The word cryogenics is usually defined as the study of low-temperature phenomena; 

however the temperature level at which cryogenics begins is ambiguous. One definition 

given by the National Institute for Standards and Technology suggests that cryogenics 

covers temperatures below 123 K (-150 °C), since the normal boiling points of the so-

called permanent gases, such as helium, hydrogen, nitrogen, neon, and oxygen are lower 

than this temperature. As discussed in Chapter 1, the microshutter array in the James 

Webb Space Telescope must operate in a cryogenic vacuum environment reliably over a 

10 year mission life without repair after launch. Therefore, a cryogenic apparatus for 

testing the microshutter array is required to understand the device performance and 

reliability in the cryogenic operating environment. 

This chapter presents a cryogenic measurement setup installed inside a focused-ion-

beam (FIB) system to study mechanical properties and reliability of the microshutter 

array [52, 53]. The detailed design, realization, and characterization of each component 

utilized in this setup are described. A thin-film thermo-resistor with a meander structure, 

designed by Tomas Luger, is utilized as an integrated temperature sensor for temperature 

measurement. The capability to test MEMS materials and devices under vacuum at 

variable temperatures (from 298 K to 20 K) are demonstrated. At the end of this chapter, 

a micro-repair technique for the microshutter arrays and stress analysis of multilayer 

structures based on the entire measurement system are also discussed. 
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2.1 Requirement of a cryogenic measurement setup 

The goal of this research project is to understand the mechanical behavior and 

reliability of MEMS devices for space applications. Therefore, a cryogenic measurement 

setup to emulate the environment of outer space is needed. The design criteria for this 

setup are: (a) a cryogenic vacuum environment with temperatures less than 30 K; (b) a 

method to obtain accurate temperature measurement; (c) implementation of an actuation 

system; and (d) development of in-situ measurement techniques.  In addition, an 

electrical interface for signal connection and mounting of test chips in this setup should 

be simple. Since a FIB system provides several unique capabilities, the cryogenic 

measurement setup is designed to be installed inside this system.  

 

2.2 Introduction of a focused-ion-beam system 

 The FIB technique was mainly developed during the late 1970s and modern FIB 

systems are becoming widely used in semiconductor research and processing 

environments, as well as in failure analysis and chip-design centers. The technology 

enables localized milling and deposition of conductors and insulators with high precision; 

hence it can be utilized in device modification, mask repair, process control and failure 

analysis [54, 55] . Also, the preparation of specimens for transmission electron 

microscopy (TEM) [56] and the trimming of thin-film magnetoresistive heads for 

magnetic storage disks [57] are important applications of the FIB. Recently, the 

fabrication of microstructures of various geometries and prototype nano-scale devices [58] 

has been successfully demonstrated using FIB systems, which extends this technique into 

MEMS research.  
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The FEI 620 FIB system used in our experiment is a dual beam vacuum system, with 

ion and electron columns. When energetic ions coming from the ion column hit the 

surface of a solid sample, they lose energy to the electrons and atoms of the solid. Three 

important physical effects of incident ions on the substrate can be used for ion milling, 

ion imaging, and platinum deposition [59-61]. Sputtering of neutral and ionized substrate 

atoms enables mask-less substrate milling (or ion milling), and secondary electrons 

emitted from the substrate are collected on a biased detector or a multichannel plate 

(MCP) to form the image. In the FEI 620 FIB system, there is a fine needle with 

trimethyl platinum precursor gas, which can be sprayed and absorbed on the surface of 

the substrate. The incident ion beam decomposes the absorbed precursor gas; then the 

volatile reaction products desorb from the surface and are removed through the vacuum 

system, while platinum is deposited on the surface as a thin film. The principles of ion 

milling, ion imaging, and platinum deposition are shown in Figure 2.1 [54]. In addition, 

electron beams coming from the electron column of this system can provide in-situ 

scanning electron microscopy (SEM) function. The FEI 620 FIB system with the 

cryogenic measurement setup installed inside is shown in Figure 2.2.          

    

    
    

 

 
 
 
 
 
 
 

(a) (b) (c) 

Figure 2.1: Principles of a FIB system: (a) ion milling, (b) ion imaging, and (c) platinum 
deposition [54]. 
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2.3 Design and implementation of the cryogenic measurement setup 

The cooling process of the cryogenic measurement setup relies upon evaporation of a 

liquefied gas. Table 2.1 lists the boiling points of several liquefied gases at one 

atmosphere [62]. Since the desired temperature is 30 K and hydrogen requires more 

safety concerns during experiments, liquid helium (4He) was selected as the cooling 

source for this setup. A liquid helium feedthrough with an electrical connection interface 

was designed to fit the port of the FIB system. In order to transfer liquid helium between 

Figure 2.2: FIB system with a cryogenic measurement setup installed inside. The 
helium transfer tube connecting liquid helium feedthrough and liquid helium dewar 
is not shown in this figure.   
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the feedthrough and a helium dewar, a flexible helium transfer tube with multiple 

radiation shields and vacuum insulation were adopted [63].  

 

 

 3He 4He H2 N2 O2 C2H4 

Tbp (K) 3.20 4.22 20.39 77.35 90.30 169.50 

     

 
Figure 2.3 shows the configuration of the cryogenic measurement setup inside the 

FIB system. Liquid helium in combination with a commercial resistive thermal source 

[64] is used to control the temperature of the device stage by adjusting the flow rate of 

liquid helium (coarse tuning) and the electrical current flowing through the resistor (fine 

tuning). Since the cryogenic measurement setup operates at temperature levels much 

below ambient environment, heat transfer is the main concern when designing such a 

setup, and therefore, a thermally isolated device stage with cooling power is required. In 

our design, the cooling power is provided by a helium diffuser connected to a thermally 

isolated device stage (rotate-able and tilt-able) with a flexible wire providing a thermal 

path. As copper has high thermal conductivity and can be machined easily, the device 

stage, the helium diffuser and the thermal path are made from copper.  

One challenge for designing this setup is to obtain a thermally isolated device stage 

by minimizing heat transfer between the device stage and other components. Hence, the 

cryogenic heat transfer needs to be understood. The main heat transfer mechanisms at 30 

K are conduction, convection, and radiation [65]. In general, conduction heat transfer can 

be expressed by the Fourier rate equation: 

Table 2.1: The boiling points of common liquefied gases used in low-temperature experiments. 
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                                                   TAkQ t ∇⋅−=                                                  (2.1) 

where Q is heat transfer rate (W), kt is the thermal conductivity (W/m-K), A is the area 

(m2), and T is the temperature (K). Conduction heat transfer can be reduced by using 

thermal insulating materials (low thermal conductivity) with small contact area. In the 

realization of the thermally isolated device stage, three hollow G-10 (a continuous 

filament glass cloth material with an epoxy resin binder) standoffs were used as thermal 

insulators (thermal conductivity of 0.04 W/m·K at 30 K) to minimize conduction heat 

Aluminized Mylar 

(a) 

(b) (c) 

Figure 2.3: Configuration of the cryogenic measurement setup inside the FIB system: (a) 
schematic view, (b) photograph of the system without Mylar shield, and (c) photograph 
of the system with Mylar shield.   
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transfer between the device stage and the FIB chamber. Due to a high vacuum (<10-6 torr) 

inside the FIB system, convection heat transfer can be neglected.  

However, in most cryogenic setups, the primary mode of heat transfer is radiation 

heat transfer. The Stefan-Boltzman law indicating the total amount of heat radiated from 

a nonreflective emitting surface can be expressed as [66]  

                                                      4ATQ Tσε=                                               (2.2) 

where Q is the heat transfer rate (W), εT is the emissivity (dimensionless correction factor 

for how closely a given material approximates the characteristics of an ideal blackbody 

radiator), σ is the Stefan-Boltzman constant (5.67032 × 10-8 W/m2⋅K4), T is the 

temperature in K, and A is the area. In our design of the radiant shield, three layers of 

aluminized Mylar [62] enclosing the device stage were utilized to reduce radiation heat 

transfer because of the lower emissivity of aluminized Mylar compared with that of 

stainless steel/aluminum oxide chamber wall. Additionally, there is no thermal 

conduction path between the Mylar shield and the device stage.   

A diode temperature sensor [67] attached to the device stage, with thermal response 

time of 10 ms at 4.2 K and accuracy of 0.25 K at 30 K, was first utilized to measure the 

temperature of the chip. The temperature reading and calibration were obtained from a 

commercial temperature controller [68]. However, the temperature of a device chip may 

be different from the one measured by the diode temperature sensor as a result of thermal 

resistance between the device chip and the device stage. In addition, radiant heat transfer 

is not zero since the device stage is not wholly enclosed by aluminized Mylar layers. An 

opening must be used for the entrance of electron and ion beams. To obtain an accurate 

temperature measurement, a temperature sensor integrated on the device chip is required.  
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There are several techniques used to design temperature sensors, such as the 

measurement of thermo-electric effect, thermo-mechanical effect, temperature 

dependence of electrical conductivity, and voltage-current (V-I) behaviors of diodes and 

transistors [66]. In designing an integrated temperature sensor for our purpose, two issues 

need to be considered: First, the fabrication steps of this temperature sensor should be 

compatible with fabrication processes of the test devices. Second, the interconnection 

strategy should be simple. A thin-film thermo-resistor with a meander structure was 

designed as an integrated temperature sensor with test devices (Figure 2.4) due to its 

simplicity. In the material selection for the integrated temperature sensor, metal thin films 

are good candidates since the resistances of most metals decrease with temperatures and 

have a unique response. Here, chromium/gold metallization with the thickness of 5 nm 

and 50 nm, respectively, was utilized as the structural layer of this thin-film thermo-

resistor since these two metal layers were also used in the fabrication of test devices. In 

the dimension design of the integrated temperature sensor, the meander structure was 

used to increase resistance value and sensitivity. The overlap length of the conduction 

path is 102 mm with a line width of 25 µm (Figure 2.4). The expected variation of the 

resistance value from 298 K to 30 K is 1.5 kΩ if the resistivities of gold are assumed to 

be 2 × 10-8 Ω-m at 298 K and 7 × 10-10 Ω-m at 30 K [69], respectively. The 

interconnection was made using low-temperature conductive epoxy to connect the 

bonding pads of the integrated temperature sensor with manganin wires.  
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For actuating test devices, a lead-zirconate-titanate (PZT) translator, powered by a 

function generator and a DC voltage, was attached to a G-10 plate with a stycast epoxy 

[70]. The G-10 plate was then fixed on a 3-D stage controlled by three stepper motors. A 

small G-10 tube (10 mm in length, 3.5 mm in diameter, and 0.6 mm in wall thickness) 

with a thin metal layer at its inner surface was attached on the top surface of the PZT 

translator. A micro-needle was mounted to the metal part at the end of this tube, which 

can be positioned with high accuracy to a few nanometers by using the PZT translator 

and the 3-D stage. A flexible copper wire (thermal path) cooling the micro-needle was 

soldered to the metal part of the G-10 tube. This configuration prevents the PZT 

translator from malfunction as it remains warm during cryogenic operation of the micro-

needle.  

   

Figure 2.4: Layout design of an integrated temperature sensor in the 
center of a test chip. The area of the integrated temperature sensor is 5 
mm × 10mm.  

Temperature Sensor Device Area 
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2.4 System characterization 

A copper block attached to the helium diffuser inside the FIB chamber was designed 

and machined to calibrate the integrated temperature sensor, as shown in Figure 2.5. Both 

the diode temperature sensor and the integrated temperature sensor were placed next to 

each other in the copper block. Since copper is a good thermal conductor and the FIB is a 

high vacuum system, the temperature difference between these two sensors is assumed to 

be negligible. As the temperature decreased, the temperature was recorded from the diode 

temperature sensor, while resistance was determined from the integrated temperature 

sensor. Thus, the relationship between temperature and resistance was obtained (Figure 

2.6). From the measurement result, the resistance of the integrated temperature sensor 

decreases linearly when cooling down to 20 K with an average sensitivity of 7.85 Ω/K 

due to fewer collisions of conduction electrons with lattice phonons in the chromium/gold 

thin films at cryogenic temperatures. No hysteresis of resistance was observed during the 

cooling and warm-up cycles (the difference is less than 1Ω at a specific temperature). 

 

 

 

 

 

 

 

 

 
Figure 2.5: Schematic view of the copper block for calibration 
of the integrated temperature sensor.  
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The accurate temperature measurement of the device chip can then be obtained by 

using the calibrated integrated temperature sensor. In order to characterize the cryogenic 

measurement setup, the integrated temperature sensor was attached on the device stage as 

the temperature decreased. The two diode temperature sensors mentioned previously 

were utilized to monitor the temperatures of the device stage and the helium diffuser, 

respectively. When the temperature of the integrated temperature sensor was set to 30 K 

by adjusting the flow rate of liquid helium, the temperatures of the device stage and the 

helium diffuser were measured to be 22.6 K and 4.2 K. The equivalent thermal model of 

the cryogenic measurement setup is presented in Figure 2.7. Here, the values of 0.015 

J/g⋅K at 25 K, 0.0025 J/g⋅K at 14.4 K, and 0.00015 J/g⋅K at 4.2 K [71] were used as the 

specific heat of copper in the calculation of heat capacity, defined as the quantity of heat 

required to raise the temperature of a substance one degree (K or °C). In addition, the 

Figure 2.6: Resistance-temperature curve of the integrated temperature sensor. The 
resistance of the integrated temperature sensor decreases linearly when cooling down to 
20 K with an average sensitivity of 7.85 Ω/K.   
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temperature of the copper cable is assumed to be 13.4 K, the average value of the device 

stage and the helium diffuser.  

From the thermal model shown in Figure 2.7, the temperature difference between the 

device chip and the device stage is only 7.4 K and it is mainly caused by a thermal 

resistance in between. The thermal capacity of the device stage is two orders of 

magnitude higher than that of the helium diffuser. Although the device stage with higher 

heat capacity requires longer time to cool down, it provides a more stable thermal 

environment once reaching the desired temperature.           

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.5 Two applications of the cryogenic measurement setup 

A. Micro-repair technique for the microshutter arrays 

As mentioned in Chapter 1, the microshutter arrays are currently being developed as 

programmable field selectors on NASA’s James Webb Space Telescope. Individual 

shutter elements consist of a shutter blade of low-stress LPCVD silicon nitride suspended 

Device 

Device 
Stage 

Copper 
Cable 

Helium 
Diffuser 

T = 30 K 
(from the integrated temperature sensor) 

T = 22.6 K (from the 
diode temperature sensor) 
C = 0.475 J/K 

T = 13.4 K 
C = 0.014 J/K 

T = 4.2 K (from the diode 
temperature sensor) 
C = 0.0044 J/K 

Heat Flow  

Liquid 
Helium 
Cooling

Rth 

Rth Rth 

Figure 2.7: Equivalent thermal model of the cryogenic measurement setup. Thermal 
capacity C and temperature T of each component are given at cryogenic temperatures. 
Rth represents thermal resistance.    
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from the shutter frame by a nitride torsion flexure. The key requirement of the 

microshutter array is to provide high on-to-off contrast ratio greater than 2000:1 at 30 K. 

However, the limitation of fabrication techniques makes this requirement difficult to 

achieve. Even though the microshutter array is fabricated using microfabrication 

techniques with a yield over 99%, in order to obtain such a high contrast ratio, broken 

elements in the array after fabrication must be blocked to keep them in the permanently 

closed state. 

A technique to block a broken microshutter window was developed using the 

cryogenic measurement setup and the FIB system. The experimental procedure of this 

technique is as follows: The micro-needle is brought into contact with an appropriate 

membrane which will be utilized to block the broken window. Here, the same shutter 

element is used as the membrane from a testing chip for this purpose and the microshutter 

devices on this testing chip were fabricated without light shields (see Chapter 1 for 

detail). Ion-induced platinum deposition is performed to weld the micro-needle to the 

membrane. Next, the micro-needle with the membrane is released as a free structure by 

using ion milling to separate the connection between the membrane and substrate. The 

micro-needle with the membrane is positioned to the light shield of a broken window, 

followed by ion-induced platinum deposition to weld the membrane to the light shield. 

Finally, the connection between the micro-needle and the membrane is removed by ion 

milling. In this experiment, the motorized 3-D stage and the PZT translator provide the 

freedom to move the micro-needle with high resolution (few nanometers). Figure 2.8 

shows the scanning electron micrographs summarizing the experimental steps.  

The optical test of the microshutter array with blocked windows is performed, which 
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shows promising results with one order of magnitude higher than the required contrast 

ratio. This demonstrates that the micro-repair technique is useful to increase the contrast 

ratio after fabrication. The only disadvantage is that this technique is a slow process and 

can be applied to only one element at a time.    

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) 

Figure 2.8: Micro-repair for blocking test of a microshutter array: (a) the micro-needle 
is placed into contact with a membrane utilized to block a broken shutter element. Ion-
induced platinum deposition is then performed to weld the micro-needle with the 
membrane. (b) the micro-needle with the membrane is released by ion milling the 
connecting part of the membrane to the substrate, (c) transport the membrane to the 
position of the broken shutter element, and (d) the membrane is welded with the 
broken shutter window using platinum deposition. Finally, the micro-needle is 
released from the membrane by ion milling.     

(a) (b) 

(c) 

Platinum 
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B. Stress analysis of multilayer structures  

The microshutter arrays are optical MEMS devices operating in outer space. In order 

to prevent leakage light at the closed state of shutter elements, these devices require flat 

surfaces. As the structural layers of microshutter devices are low-stress LPCVD silicon 

nitride, aluminum, and cobalt/iron, the surfaces curl up 12 µm at 30 K as shown in Figure 

2.9 according to the cooling test using the cryogenic measurement setup. The curvature is 

mainly caused by the mismatch of the coefficients of thermal expansion (CTE) among 

these three layers.  

Since the residual stress of thin film materials is sensitive to fabrication processes, 

one possible solution without dimensional modification of shutter elements is to tune 

parameters in microfabrication steps. The principle is to compensate the thermal stress at 

30 K with induced residual stress during fabrication. The sputtering process of cobalt/iron 

deposition has been varied to obtain compressive residual stress and to intentionally curl 

down the shutter blade at room temperature as shown in Figure 2.10. In this figure, the 

patterns of cobalt/iron are also modified as strip structures to prevent unwanted lateral 

movement of the shutter blades during magnetic actuation. However, when cooling down 

the microshutter arrays using the cryogenic measurement setup, the shutter elements still 

curl up 4.5 µm at 30 K as a result of insufficient thermal stress compensation.  

A high sensitivity microgauge sensor for residual stress and CTE measurement at 

cryogenic temperatures is developed and will be discussed later in Chapter 4. The values 

of the residual stress and the CTE for each layer of the microshutter arrays are acquired 

using the microgauge sensor. Further stress analysis based on these measurement results 

can lead to evaluate required compensated stress values, which can be achieved by 
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process tuning or utilizing additional layers to obtain stress balancing of these multilayer 

structures.  

 

    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
Figure 2.9: Scanning electron micrographs of a microshutter array at (a) 298 K and (b) 30 K. The 
surface of the shutter element curls up at 30 K due to the mismatch of the coefficients of thermal 
expansion of the structural layers.  

Curl up 

Figure 2.10: Scanning electron micrograph of a microshutter element with a curl-down surface at 
(a) 298 K and (b) 30 K. The shutter elements still curl up 4.5 µm at 30 K as a result of insufficient 
thermal stress compensation.   

Curl down Curl up 

(a) (b) 
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2.6 Summary 

A helium-cooled cryogenic measurement setup installed inside a FIB system is 

developed, which is capable of providing cryogenic temperatures down to 20 K. A thin-

film thermal resistor with a sensitivity of 7.85 Ω/K is fabricated with test devices as an 

integrated temperature sensor and a micro-needle attached on a PZT translator is utilized 

to actuate test devices and transport membranes. A micro-repair technique for the 

microshutter arrays and stress analysis of multilayer structures based on the designed 

setup are discussed. The following chapters are focused on the characterization of 

mechanical properties and reliability of LPCVD silicon nitride thin films using the 

developed cryogenic measurement setup.     
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CHAPTER 3 

MECHANICAL PROPERTY CHARACTERIZATION OF 

LPCVD SILICON NITRIDE THIN FILMS  

 
 

It is essential for MEMS designers to know mechanical properties of different 

materials at the micro-scale for the anticipated operating environment, as most 

mechanical properties are known to depend on specimen size [38] and temperature [72]. 

Mechanical properties of interest fall into three general categories: elastic, inelastic, and 

strength. Elastic properties allow designers to predict the amount of deflection from an 

applied force, or vice versa. If the material is ductile and the deformed structure does not 

return to its initial state, then the inelastic material behavior is necessary. The strength of 

the material must also be known so allowable operating limits can be set to avoid fracture.  

LPCVD silicon nitride thin films, previously functioning as oxidation masks and as 

gate dielectrics in combination with thermally growth SiO2 in the IC industry, have been 

utilized to fabricate plates, cantilevers, and membranes [73] for different MEMS 

applications due to their excellent mechanical, electrical, and thermal properties. 

However, the mechanical properties of this material are not fully understood, even at 

room temperature. Table 3.1 presents some mechanical property data of silicon nitride 

thin films published in the literature. Large variation of these data is observed and is 

mainly caused by different deposition methods of these thin films. Therefore, it is 

important to notice that the published mechanical property data can only be used as 

reference values for initial designs.  
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Young’s 
modulus 

(GPa) 

Fracture 
strength 
(GPa) 

Poisson’s 
ratio 

Coefficient of 
thermal expansion 

(µstrain/K) 

Residual 
stress 
(MPa) 

Comment / Reference

270 - 0.27 2.3 +1100 Stoichiometric / [32] 

270 - 0.27 2.3 -50 - +800 Silicon rich / [32] 

202.57 12.26 - - - Silicon rich / [74] 

194 - - - - [75] 

  

This chapter presents the characterization of Young’s modulus, Poisson’s ratio, and 

fracture strength for low-stress LPCVD silicon nitride thin films utilized in the 

microshutter arrays [76, 77]. By definition, Young’s modulus is the slope of the linear 

part of a stress-strain curve, Poisson’s ratio is a measure of the lateral contraction or 

expansion of a material when subjected to an axial stress within the elastic region, and 

fracture strength is the normal stress at the beginning of fracture [42]. In this study, new 

experimental techniques are developed to measure the Young’s modulus, Poisson’s ratio, 

and the fracture strength of silicon nitride thin films at cryogenic temperatures using the 

designed cryogenic measurement setup (discussed in Chapter 2). To increase the 

accuracy of the measurements, a “milling mass” approach to determine a thin-film 

thickness, which is a critical parameter of the developed method, has also been proposed 

and applied in the study of the Young’s modulus. Finally, the test results of Young’s 

modulus, Poisson’s ratio, and fracture strength are reported at room and cryogenic 

temperatures.        

 

Table 3.1 Mechanical property data of silicon nitride thin films.  
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3.1 Test device design: T-shaped cantilevers 

3.1.1 Young’s modulus of thin films 

In general, it is difficult to measure the Young’s modulus of thin films. In static-

loading methods, such as tension and bending tests, both the strain and load must be 

measured precisely. However, these values are extremely small, so accurate 

measurements require special apparatus, for instance - a laser interferometer. Instead of 

using the static-loading methods, a resonant technique of T-shaped cantilevers is 

developed to determine the Young’s modulus of silicon nitride thin films. Unlike 

conventional cantilevers, a mass mb is added to the end of a cantilever as shown in Figure 

3.1 to form a “spring-mass” system whose first resonant frequency can be measured and 

computed analytically. The advantage of this design is that the resonant frequency of this 

T-shaped cantilever can be reduced to a range that can be easily measured. From the 

beam theory, the first resonant frequency of a T-shaped cantilever is expressed as [78]  

                                                   3
1

1 3
2 ( )b a

EIf
L m c mπ

=
+

                                          (3.1) 

where c1ma (c1 is a constant and equal to 0.2357) is the effective mass of the cantilever 

beam in region A, mb is the added mass of region B, f is the first resonant frequency in 

Hz, L = La + Lb/2 is the effective cantilever length, and E is the Young’s modulus. The 

area moment of inertia I is equal to (wat3)/12, where wa is the width of region A, and t is 

the thickness of the cantilever. Here, T-shaped cantilevers are modeled as structures 

under uni-axial stress. This may violate the condition of bi-axial stress at the supporting 

boundary and lead to error in the expression of the resonant frequency. An ANSYS finite 

element analysis (FEA) model has been developed to examine this effect. The variation 

of Young’s modulus is found to be only 1.05 % even with the consideration of Poisson’s 
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ratio for the T-shaped cantilever. Therefore, this effect can be neglected.  

 

 

 

 

 

 

 

 

 
 
 
3.1.2 Poisson’s ratio of thin films 

The measurement of the Poisson’s ratio uses the same resonant technique as 

discussed in the previous section. However, the T-shaped cantilever (shown in Figure 3.1) 

is driven at the torsional resonant mode instead of the fundamental mode and this 

frequency can be expressed as [78] 
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Figure 3.1: Schematic diagram of a T-shaped cantilever for resonant tests. 
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where f is the torsional resonant frequency in Hz, L = La + Lb/2 is the effective cantilever 

beam, E is the Young’s modulus, v is the Poisson’s ratio, t is the thickness of the 

cantilever, ma is the mass of region A, and mb is the added mass of region B. Once the 

torsional resonant frequency is determined, the Poisson’s ratio from equation (3.2) is 

given by  
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3.1.3 Fracture strength of thin films       

For measuring the fracture strength of silicon nitride thin films, bending tests of T-

shaped cantilevers are performed. The dimensions of the T-shaped cantilevers used for 

bending tests (Figure 3.2) are different from those used in the resonant tests. The width 

and length in region B are selected to be larger than those in region A, such that region B 

is rigid relative to region A during the bending test. If a force F is applied to a cantilever 

at a distance Lf from the fixed end, the inclination θ of the end region A (at x = La) can be 

expressed as [78] 

                                                      
2(2 )
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f a aF L L L
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−
=                                               (3.8) 

where La is the length of region A, E is the Young’s modulus, and I is the moment of 

inertial of region A. Equation (3.8) is valid only when θ  is small. If Lf is assumed to be 
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nLa (Lf = nLa), the above equation can be rewritten as  

                                                        11
2

f aFL L
EI n

θ ⎛ ⎞= −⎜ ⎟
⎝ ⎠

                                                (3.9) 

Therefore, the maximum moment M about the fixed end of the beam is  
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In the experiment, the large blade of a cantilever (region B) is pushed by a micro-needle 

through a rotation angle θ. The peak stress occurs at the fixed end and is expressed as  

                                                    1(1 )
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Mc Ec
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                                               (3.11) 

where c is the half thickness of the cantilever. Since the accurate position and force of the 

micro-needle applied to the cantilever are difficult to measure, the stress determined from 

equation (3.11) has the advantage of being insensitive to the force position if n is large, 

and the value of the applied force is not needed. The maximum bending angle before 

failure is measured and the fracture strength of the silicon nitride thin film can be 

obtained.  

 

 

 

 

 

 Figure 3.2: Schematic diagram of a T-shaped cantilever for bending tests.
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3.2 Device preparation 

T-shaped cantilevers were fabricated using bulk micro-machining technique. The 

basic process flow is shown in Figure 3.3, and specific details are described below. A 

layer of low-stress LPCVD silicon nitride with an approximate thickness of 0.45 µm and 

residual stress of 200 MPa was first deposited on a 500 µm thick n-type silicon substrate. 

In this step, if a p-type silicon substrate is used, the concentration of boron doping can not 

exceed 5 × 1018 cm-3. Otherwise, the etch rate of silicon in alkaline liquids will reduce 

significantly [79]. A standard lithography process (Table 3.2) was then performed, and 

the patterned photoresist was used as a masking layer for silicon nitride etching. The 

silicon nitride thin film was etched in a reactive ion etcher (TrionTM Minilock RIE 

System) using CF4 and O2. The process parameters were P = 250 mTorr, flow rates of 50 

sccm and 5 sccm for CF4 and O2, respective, and a RF power of 100 W. The silicon 

nitride etch rate was 180 nm/min, and the photoresist etch rate was around 80 nm/min. 

After etching the silicon nitride, the photoresist was removed using a photoresist stripper 

(Baker Aleg – 625) heated to 45 °C.  

 
 

Step Recipe 

Photoresist coating 
Photoresist: AZ 9245 (ClarinetTM) 
Spin coating: 1750 rpm for 5 seconds, then 
                      3000 rpm for 40 seconds 
Soft bake: 110 °C for 90 seconds 

Exposure Dose: 300 mJ  
Contact aligner: QuintelTM Q4000 

Photoresist development Developer: AZ 400 K mixed with DI water 
                  (1:3) 
Developing time: 2 minutes 

 

Table 3.2: A standard lithography process used in this study.   
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Next, the wafer was placed into a 20%, 72 °C potassium hydroxide (KOH) solution 

[26] for 2.5 hours with uniform agitation to release the T-shaped cantilever structures. 

The etching apparatus sat inside a constant-temperature thermal bath (NESLAB GP-300) 

with a condenser to keep the concentration of KOH steady. A magnet positioned under 

the solution beaker along with a magnetic stirring bar in the KOH solution was used to 

produce uniform agitation (1000 rpm). The etch rate from the experiment was 0.79 

µm/min. The depth of the etched v-groove was 118.5 µm and the undercut of silicon 

(lateral etch) was 4 µm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Deposit 0.45 µm silicon nitride 
(LPCVD) 

(b) Pattern photoresist as a masking 
layer 

(c) Etch silicon nitride in a reactive 
ion etcher 

(d) Strip photoresist and etch silicon 
in KOH solution 

Figure 3.3: Process flow for T-shaped cantilever fabrication.  

Silicon  Silicon nitride Photoresist 
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The release of the T-shaped cantilevers relies partially on the difference in the etch 

rates of silicon between {111} and {100} planes in alkaline liquids, as discussed in 

Chapter 1. More important in this case, the undercut of convex corners formed in the 

masking layer is the main mechanism to release the cantilever beams. When the opening 

in the masking layer has a convex corner, the {111} planes that initiate from the edges 

making up that corner are rapidly etched away, undercutting the convex corners of the 

mask. A plausible explanation for this behavior is that only two of the surface-atom 

bonds are directed into the silicon at a convex corner where two {111} planes meet, 

similar to atoms in {100} planes. Atoms exactly at such a boundary must have two 

dangling bonds, and thus are etched away, exposing fast-etching planes [32].        

 

3.3 Young’s modulus determination 

3.3.1 Experimental techniques 

As mentioned earlier, the resonant technique was used to determine the Young’s 

modulus of silicon nitride thin films. To estimate the approximate resonant frequency, 

one cantilever was first pushed vertically with the micro-needle inside the focused-ion-

beam (FIB) system and then released. The approximate resonant frequency was measured 

by pointing the electron beam in a fixed position where the vibrating cantilever moved in 

and out of the electron beam path. This modulated the secondary electron detector signal 

with the frequency of vibration. This signal was acquired with an oscilloscope and the 

approximate resonant frequency was determined. Subsequently, the micro-needle driven 

by the PZT translator contacted the chip and vibrated the cantilever near the frequency 

determined previously. The frequency was swept over a small range and the response was 
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monitored to determine the exact resonant frequency and the quality factor (resonant 

frequency divided by the bandwidth of half-power points). Figure 3.4 shows the 

schematic mechanism of the resonant test and Figure 3.5 is a scanning electron 

micrograph illustrating that each cantilever vibrates only when the driving frequency of 

the PZT translator matches with its resonant frequency.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Schematic diagram of the mechanism for the resonant tests. 

Figure 3.5: SEM picture of a vibrating cantilever. Only the second one from 
top on the right column vibrates because the driving frequency of the PZT 
translator is near its first resonant mode.   
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Once the first resonant frequency was determined, the Young’s modulus from 

equation (3.1) was given by      

                                                
2 2 3

14 ( )
3

b af L m c mE
I

π +
=                                           (3.12) 

which was expanded in terms of thickness as follows 
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t w L L

π ρ
= +                                  (3.13) 

where ρ is the mass density. From equation (3.13), the dimensions of T-shaped 

cantilevers are critical parameters to calculate Young’s modulus. In general, the width 

and length of a cantilever are determined by layout design of the optical mask and can be 

measured directly inside the FIB system. On the other hand, the uncertainty of the thin 

film thickness is the primary source of error for the existing method. To solve this 

problem, previously the added mass method has been used to obtain the thickness of a 

cantilever [80, 81]. A small mass was added to a cantilever and the change in the resonant 

frequency due to an added mass was measured to calculate the thickness and Young’s 

modulus. The disadvantage of this method is the difficulty to obtain the accurate mass 

added to the cantilever. Furthermore, to manipulate a bead (mass) on the microscale or 

nanoscale cantilever is a challenging task.  

In contrast, the milling mass approach was introduced in our experiment. The area of 

the milling mass was determined precisely from the ion-milling pattern. The approximate 

thickness was estimated from the milling rate and the milling time, measured by the 

milling of test samples and End Point Detection (EDP) in the FIB system, respectively. If 

a mass mi was milled away from the end of a cantilever, the first resonant frequency can 

be expressed as        
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The resonant frequencies fi with different milling mass mi were measured and the relation 

between mi and 1/L3fi2 was plotted. Here, the change of the effective cantilever length L 

was calculated by the shift of the center of the mass in region B (see Figure 3.1) due to 

the milling mass mi. Consequently, the y-intercept yielded the effective mass (mb+c1ma) 

and thickness of this T-shaped cantilever, and the slope gave the Young’s modulus.     

 

3.3.2 Experimental results  

Since the KOH etching created an undercut of silicon (lateral etch), before the 

resonant test, ion milling was performed to obtain a fixed boundary of the cantilevers.  

The dimensions of these cantilevers were measured directly inside the FIB system using 

SEM capability. A T-shaped cantilever (cantilever 1) driven to its first resonant mode by 

the PZT translator is shown in Figure 3.6. The vibration amplitude of this cantilever near 

the resonant frequency was measured using the secondary electron detector and the 

resulting resonant spectrum is shown in Figure 3.7. The quality factor determined from 

the resonant spectrum is as high as 2050, which is expected due to the high vacuum 

inside the FIB system. Therefore, the damping effect for Young’s modulus extraction can 

be neglected (the error is less than 3×10-6 %). Different masses at the end of the 

cantilever were milled away by the ion-milling function of the FIB system as shown in 

Figure 3.8 and the corresponding resonant frequencies were measured as shown in Table 

3.3. Here, a density of ρ = 3000 kg/m3 for LPCVD silicon nitride thin films [32] was used 

to calculate the milling mass mi. The relation between mi and 1/L3fi
2 was plotted and the 

equation of a straight line for best fitting was found using Mathematica (version 4.2, 
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Wolfram Research Inc.) as shown in Figure 3.9. Hence, the extracted thickness and 

Young’s modulus were obtained from the y-intercept and the slope of this straight line, 

respectively. In our experiments, only one cantilever was milled away several times. For 

the other cantilevers, a single mass was milled away for the extraction of the thickness 

and Young’s modulus due to nice linearity found in Figure 3.9. Table 3.4 presents the 

values of the extracted thickness of the cantilever and the Young’s modulus of the 

LPCVD silicon nitride thin films.  

From Table 3.4, the average Young’s modulus of low-stress, LPCVD silicon nitride 

thin films at room temperature is 260.5 GPa with a standard deviation of 5.4 GPa. The 

Young’s modulus of bulk silicon nitride is known to be in the range of 207 to 310 GPa 

[82]. Schneider and Tucker reported a Young’s modulus of 230-265 GPa for 0.2-0.3 µm 

silicon nitride thin films [83], and Tabata et. al. obtained 290 GPa for 0.5 µm LPCVD 

silicon nitride thin films [84]. Therefore, the measured Young’s modulus is certainly 

within the range of the reported values.        

 

 

 

 

 

 

 

 

 Figure 3.6: SEM picture of cantilever 1 at the first resonant mode. 
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Figure 3.7: Resonant spectrum of cantilever 1. The insert is the close-up 
of the spectrum near the resonant frequency.  

Figure 3.8: SEM picture of cantilever 1 with 12.15 pg milling mass.  

Milling mass 
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Dimensions 
(µm) 

Milling Mass 
mi (pg) 

Effective Length 
L (µm) 

Resonant Frequency
fi (Hz) 

0 180 10250 
12.15 179.929 10268 
33.75 179.811 10301 
48.6 179.733 10324 

La = 155 
Wa = 20 
Lb = 50 
Wb= 60 

109.35 179.431 10409 

Table 3.3: Dimensions of cantilever 1 with effective length and measured 
resonant frequency.  

Figure 3.9: Linear plot of milling mass mi versus (L3fi
2)-1 for cantilever 1.  

Fitting quality factor R2 = 0.992 
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After room temperature tests were finished, all cantilevers were cooled down to 30 K 

in the cryogenic setup and the resonant frequencies of these cantilevers were measured 

again. The Young’s modulus calculated from (3.14) is shown in Table 3.5 and has an 

average of 266.6 GPa with a standard deviation of 4.1 GPa. Here, the value of 2.3×10-6 

(K-1) was used as the coefficient of thermal expansion (CTE) of silicon nitride for 

dimension modification. Although the reported values of CTE for silicon nitride varies 

from 1.67×10-6 to 2.3×10-6 (K-1) [32, 85] and is also a function of temperature, less than 

0.1% error was introduced in the calculation of the Young’s modulus if only a single 

value was used because of the small absolute change in dimensions. The exact CTE 

Cantilever 
Designation 

Dimensions 
(µm) 

Extracted 
Thickness 

t (µm) 

Extracted 
Young’s 
Modulus 
E (GPa) 

 1 La = 155    Wa = 20 
Lb = 50      Wb = 60 

0.4625 253.2 

2 La = 180    Wa = 10 
Lb = 20      W b= 40 

0.4867 268.8 

3 La = 149    Wa = 10 
Lb = 20      Wb = 40 

0.4951 262.9 

4 La = 229    Wa = 20 
Lb = 50    Wb = 100 

0.4800 265.4 

5 La = 178    Wa = 20 
Lb = 60      Wb = 80 

0.4849 255.7 

6 La = 178    Wa = 30 
Lb = 50      Wb = 75 

0.4572 258.9 

7 La = 129    Wa = 20 
Lb = 40      Wb = 50 

0.4508 263.2 

8 La = 104    Wa = 20 
Lb = 40      Wb = 60 

0.4491 256.2 

Table 3.4: Dimensions of cantilevers with extracted thickness and Young’s modulus.  
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values at cryogenic temperatures will be discussed in Chapter 4. However, the variation 

of temperature will introduce thermo-mechanical stress and may cause local spring 

hardening or softening at the supporting boundary. The thermo-mechanical stress can be 

expressed as [32] 

                                                 ( )
SiN SiSiN T T Tε α α= − ∆                                        (3.15) 

                                                    ( )
1SiN SiN

Eσ ε
ν

=
−

                                       (3.16) 

where εSiN is the thermal strain of silicon nitride, αT is the CTE, σSiN is the thermo-

mechanical stress of silicon nitride, and ν is Poisson’s ratio. If the value of 2.8×10-6 (K-1) 

was used for the CTE of silicon [32], this thermo-mechanical stress was found to be -46.4 

MPa at 30 K. Since the combination of this thermo-mechanical stress and the residual 

stress is still in a range of few hundred MPa, this effect can be ignored with negligible 

error.          

 

                                                   

 

 

Cantilever 
Designation 

Resonant 
Frequency at 
298 K (Hz) 

Young’s 
Modulus at 

298 K (GPa) 

Resonant 
Frequency at 

30 K (Hz) 

Young’s 
Modulus at 
30 K (GPa) 

1 10409 253.2 10569 261.6 
2 12781 268.8 12845 273.1 
3 17222 262.9 17332 268.4 
4 5096 265.4 5132 269.8 
5 7080 255.7 7168 262.5 
6 9006 258.9 9110 266.3 
7 16221 263.2 16352 268.6 
8 19945 256.2 20158 262.8 

Table 3.5: Resonant frequency and extracted Young’s modulus at 298 K and 30 K. 
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From our measurements, the Young’s modulus increases from 260.5 GPa at 298 K to 

266.6 GPa at 30 K. The student T test [86], a statistical method to compare two small sets 

of quantitative data, was performed on the measured Young’s modulus, which showed 

that there is a “actual” change of the Young’s modulus as temperature decreases (t = 

2.55). The increase of the Young’s modulus at low temperature can be explained by the 

fact that the distance of atom or ion separation decreases at low temperature (Figure 3.10) 

[87]. This distance is determined by the minimum potential energy, i.e. the first 

derivative of the potential energy is equal to zero. As temperature is decreased, inter-

atomic force (second derivative of the potential energy) tends to increase because of the 

decrease of atomic distance. Since elastic reaction is due to the action of this force, the 

Young’s modulus increases at lower temperatures.  

 

 

 

 

 

   

 

 

 

As discussed in Chapter 1, the operation of the microshutter array relies on “magnetic 

actuation” and “electrostatic hold” to open each microshutter element. The increase of the 

Young’s modulus for silicon nitride thin films at 30 K may lead to failure as a result of 
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Figure 3.10: Variation of the atomic potential energy and inter-atomic force at 
cryogenic temperatures. The slope of the curve for inter-atomic force increases at 
low temperatures, which leads to a higher Young’s modulus.   
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insufficient actuation and holding forces to turn on the microshutter element. Fortunately, 

the variation of the Young’s modulus is only 2.3%, which is still in the range of tolerance 

when designing the actuation mechanism.      

 

3.4 Poisson’s ratio determination 

The T-shaped cantilevers used for the Poisson’s ratio measurement follows the same 

testing procedure as described in the previous section. The dimensions of the cantilevers 

used here are slightly modified to further reduce the torsional resonant frequency, which 

is estimated from an ANSYS finite element analysis (FEA) model. The micro-needle 

driven by the PZT translator contacted the device chip and vibrated the cantilever near 

the estimated torsional resonant frequency. The frequency was swept over a small range 

and the response was monitored to determine the exact torsional resonant frequency. 

Figure 3.11 shows a T-shaped cantilever vibrating at its torsional resonant frequency. In 

this experiment, the vibration amplitude of the T-shaped cantilevers was observed smaller 

than that in the Young’s modulus measurement. This is due to the torsional motion of the 

T-shaped cantilever at the torsional resonant frequency, introducing smaller vertical 

movement (or displacement).  

The Poisson’s ratio of LPCVD silicon nitride thin films was calculated from equation 

(3.7) with the measured resonant frequency, and the measurement results are presented in 

Table 3.6. The average Poisson’s ratio of LPCVD silicon nitride at 298 K was found to 

be 0.25 with a standard deviation of 0.02. In previous work, Coles et al. reported a 

Poisson’s ratio of 0.23 [88] and Vlassak et al. obtained 0.28 [48]. The difference is 

mainly caused by different device preparation methods and testing techniques. Hence, the 
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measured Poisson’s ratio is still within the range compared with the reported values.  

      

 

 

 

 

 

 

 

 

  

 

 

Specimen A B C D E E 

Dimensions 
(µm) 

La = 365, 
Wa = 20, 
Lb = 100, 
Wb = 100 
t = 0.45 

La = 365, 
Wa = 15, 
Lb = 100, 
Wb = 100 
t = 0.45 

La = 365, 
Wa = 10, 
Lb = 100, 
Wb = 100, 
t = 0.45 

La = 365, 
Wa = 20, 
Lb = 100, 
Wb = 100 
t = 0.45 

La = 365, 
Wa = 15, 
Lb = 100, 
Wb = 100 
t = 0.45 

La = 365, 
Wa = 10, 
Lb = 100, 
Wb = 100, 
t = 0.45 

Test 
Temperature   

(K) 
298 K 298 K 298 K 30 K 30 K 30 K 

Measured 
Resonant 

Frequency 
(kHz) 

18.238 -
18.310 

15.828 -
15.880 

12.930 - 
12.885 

18.428 - 
18.487 

15.966 - 
16.015  

13.017 – 
12.966 

Number of 
Test Samples 16 16 16 16 16 16 

Average 
Poisson’s 

Ratio 
0.252 0.247 0.251 0.258 0.259 0.264 

Standard 
Deviation 0.02 0.02 0.03 0.03 0.02 0.03 

Figure 3.11: (a) SEM picture of a cantilever at the torsional resonant mode, and (b) 
close view of the cantilever.   

(a) (b) 

Table 3.6: Measurement results for Poisson’s ratio of LPCVD silicon nitride thin 
films at 298 K and 30 K.  
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The average Poisson’s ratio at 30 K was found using the same method to be 0.26 with 

a standard deviation of 0.03. The increase of the Poisson’s ratio at low temperature is 

related to the change of atomic bonding of the silicon nitride atoms and molecules, which 

requires further investigation to understand the real mechanism. For the design of the 

microshutter array, the maximum operation stress occurs at the fixed ends of the torsion 

bar, which can be considered as a doubly-clamped beam. Therefore, the influence of a 

slight increase of the Poisson’s ratio (less than 5%) at 30 K can be neglected.      

 

3.5 Fracture strength determination  

3.5.1 Experimental techniques   

For the fracture strength measurement, bending tests of T-shaped cantilevers were 

performed in our study. The device stage where a device chip was mounted inside the 

FIB system was first tilted with an angle α. The purpose of this arrangement was to 

observe the bending angle of T-shaped cantilevers during experiment using an electron 

beam. The micro-needle was then positioned to contact the cantilever and gently pushed 

the blade of the cantilever down. The bending angle was carefully recorded until fracture. 

From equation (3.11), the fracture strength of the silicon nitride thin film can be obtained.          

 

3.5.2 Experimental results  

A bending T-shaped cantilever before and after fracture is shown in Figure 3.12. In 

our experiments, T-shaped cantilevers with larger region B were fabricated to make 

region B relatively rigid to region A and to minimize the measurement error of Lf. 

Although the deflection at the tip of a cantilever caused by the stress gradient is 
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proportional to the square of the beam length, no obvious bending curvature was found 

even in the longest cantilever. The dimensions of conventional cantilevers used in 

bending tests can vary over a large range from mm to nm [89-91], mainly determined by 

the considerations of measurement setups and stress gradients of the beams.  

Several phenomena were observed in our bending tests. First, the cantilevers with La 

larger than 3 µm survived the bending force even when they reached the side walls of the 

v-grooves. Second, since the displacement of the cantilever was much larger than its 

thickness at the fracture point, in-plane stress cannot be neglected. Hence, equation (3.11) 

is not valid in this condition. Third, as mentioned in the section on device preparation, the 

boundary at the end of the cantilever was floating due to the undercut of silicon in the 

KOH solution. To accommodate these factors, an ANSYS finite element analysis (FEA) 

model was developed to obtain accurate fracture strength. In this model, the curvature of 

region A caused by the fabrication process was also measured and used to simulate the 

stress concentration of region A.       

Instead of measuring fracture angle θ at x = La, the displacement at x = Lt was 

determined and used as the input of the FEA model as shown in Figure 3.13. From the 

simulation results, the maximum stress occurs at the edge of region A.  Here, the Young’s 

moduli of 260.5 GPa and 266.6 GPa and the Poisson’s ratio of 0.25 and 0.26 were used 

for 298 K and 30 K respectively in this model. The fracture strengths of LPCVD silicon 

nitride at 298 K and 30 K are presented in Table 3.7. From this table, the average fracture 

strength at 298 K was found to be 6.9 GPa with a standard deviation of 0.6 GPa. In 

previous work, Yang et al. reported a fracture strength of 12.1 GPa [93] and Coles et al. 

obtained 6.4 GPa [88], both for LPCVD silicon nitride thin films. The difference is 



 62

mainly caused by different fabrication processes and testing techniques. Hence, the 

measured fracture strength is still within the range compared with the reported values.    

The average fracture strength at 30 K was found using the same method to be 7.9 GPa 

with a standard deviation of 0.7 GPa. The increase of the fracture strength at low 

temperature can be attributed to less thermal agitation. As the temperature is lowered, the 

atoms in the specimen vibrate less vigorously. A larger applied stress is required to 

initiate a crack to break the specimen, leading to a higher fracture strength. However, the 

above explanation is only valid for a defect-free material. For most brittle materials, the 

fracture strength is determined by stress concentrations from growth flaws, yet their 

variations at cryogenic temperatures are still not clear.  

The minimum observed fracture strength of silicon nitride thin films (5.7 GPa) from 

the bending tests was used to design the microshutter array, and the expected operating 

stress of each microshutter element is 2.5 GPa [94], which is much lower than the 

observed fracture strength. As the temperature decreases to 30 K, the higher fracture 

strength of silicon nitride thin films will further reduce the probability of fracture failure 

of the microshutter array during operation.    

 

 

 

 

 

 

 

(a) (b) 
Figure 3.12: SEM pictures of a cantilever (a) before and (b) after fracture during the 
bending test.  
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Specimen A B C D E 
Dimensions 

(µm) 
La = 1.0, Wa = 5.0 
Lb = 28, Wb = 28 
t = 0.45 

La = 1.3, Wa = 5.0 
Lb = 28, Wb = 28 
t = 0.45 

La = 1.5, Wa = 15 
Lb = 85, Wb = 85 
t = 0.45 

La = 1.0, Wa = 5.0 
Lb = 28, Wb = 28 
t = 0.45 

La = 1.5, Wa = 15 
Lb = 85, Wb = 85 
t = 0.45 

Test 
Temperature   

(K) 

 
298 K 

 
298 K 

 
298 K 

 
30 K 

 
30 K 

Average 
Fracture 
Strength 

(GPa) 

 
6.7 

 
7.2 

 
7.1 

 
7.9 

 
8.0 

Standard 
Deviation 

(GPa) 

 
0.7 

 
0.5 

 
0.6 

 
0.7 

 
0.6 

Number of 
test samples 20 10 20 20 20 

Fixed boundary 

Point load 
Maximum stress 

(a) (b) 
Figure 3.13: ANSYS finite element analysis model: (a) mesh of the test specimen using 
“ solid 187” element, and (b) the stress distribution.   

Table 3.7: Test results obtained using ANSYS FEA model with bending measurements as 
inputs at 298 K and 30 K.   
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3.6 Discussion 

From this study, the Young’s modulus and the Poisson’s ratio of LPCVD silicon 

nitride thin films increase by 2.3 % and 4 %, respectively, from 298 K to 30 K, while the 

fracture strength increases by 14.5%. Several uncertainties may cause errors in the 

extraction of these properties. First, even though the errors introduced from using a single 

value of CTE is small, the exact CTE values need to be measured at cryogenic 

temperatures to minimize these errors. Second, the cross sections of the test specimens 

are not perfectly rectangular due to the fabrication process, especially at the smaller 

widths. This will change the moment of inertia during the bending tests. This effect was 

not considered in the FEA model since the variation of the moment of inertia is negligible 

(less than 1%). Third, the end of the T-shaped cantilever beam was not perfectly clamped 

(fixed). Instead, in real structures, the beam supports tend to exhibit some compliance and 

the exact analysis of this effect is complicated. However, the influence of the support 

compliance is insignificant in the determination of the fracture strength since the 

maximum stress occurs at the end of region A, not at the end of the fixed boundary 

(Figure 3.13).     

For designing MEMS devices operating at cryogenic temperatures using LPCVD 

silicon nitride thin films, one can use the values of the Young’s modulus, the Poisson’s 

ratio and fracture strength at room temperature as the first design parameters. This 

method is conservative and safe for the first device demonstration. However, for 

composite structures, the stress caused by the mismatch of CTE at cryogenic 

temperatures is more pronounced than the change of the Young’s modulus, the Poisson’s 
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ratio, and fracture strength, especially for optical MEMS devices requiring flat surfaces 

as discussed in section 2.5.  

 

3.6 Summary 

In this chapter, a new test device, T-shaped cantilever beams, is introduced for 

Young’s modulus, Poisson’s ratio, and fracture strength measurement. The concept of 

using these T-shaped cantilevers instead of conventional ones is discussed and the test 

devices are fabricated by bulk micromachining technique, which is a relatively simple 

process. Resonant testing is carried out to obtain the Young’s modulus and the Poisson’s 

ratio of LPCVD silicon nitride thin films. To determine the thickness of the cantilever, 

the variation of resonant frequencies with different milling masses is recorded and an 

analytic model is developed to extract the thickness and Young’s modulus 

simultaneously. The fracture behavior of LPCVD silicon nitride is characterized using a 

bending test combined with an FEA model.  

From the experiment, the Young’s modulus of LPCVD silicon nitride thin films 

varies from 260.5 GPa at 298 K to 266.6 GPa at 30 K, and the Poisson’s ratio increases 

from 0.25 at 298 K to 0.26 at 30 K. In addition, the fracture strength ranges from 6.9 GPa 

at 298 K to 7.9 GPa at 30 K. The increase of the Young’s modulus and fracture strength 

is attributed to the decrease in thermal agitation between atoms at cryogenic 

temperatures. The coefficient of thermal expansion and fatigue property of LPCVD 

silicon nitride thin films at cryogenic temperatures will be discussed in Chapter 4 and 

Chapter 5 for further understanding of mechanical property behavior at cryogenic 

temperatures. 
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CHAPTER 4 

HIGH SENSITIVITY MICROGAUGE SENSORS FOR 

RESIDUAL STRESS AND COEFFICENTS OF THERMAL 

EXPANSION CHARACTERIZATION 

 

The design of mechanical structures in MEMS devices requires the characterization 

of the stress state in these structures under the combined influence of both loading and 

residual stresses. The values of residual stress are vital for accurately predicting 

maximum loads, resonant frequencies, and many other properties. Additionally, high 

residual stress may cause buckling, warpage, or dimensional variations. Therefore, 

knowledge about residual stress in deposited thin films is important for MEMS 

researchers. The microshutter arrays, as discussed in Chapter 1, consist of a 2 × 2 format 

mosaic of four 387 × 175 arrays and require a relatively large out-of-plane displacement 

during operation. To obtain reliable microshutter elements across the device, not only the 

values of the residual stress in silicon nitride thin films (the structural layers of the 

microshutter arrays) needs to be understood, but also the uniformity.       

Additionally, a linear coefficient of thermal expansion (CTE), defined as the 

fractional change in length of a material for a unit variation in temperature, is a critical 

mechanical property in the design of MEMS devices, integrated circuits, and electronics 

packaging. For example, the mismatch of CTEs between attached films introduces 

residual stress, which results in a high density of imperfections in the interface [95]. 

Some MEMS devices use the difference in CTE to their advantage, such as in bimorph or 
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thermal actuators [96, 97]. Although there are well-documented thermo-physical 

properties of bulk materials, however, these may not be directly applicable to thin films; 

the mechanical properties of thin films are strongly dependent on the fabrication 

processes such as film deposition methods and parameters [98]. For the operation of the 

microshutter arrays at 30 K, the mismatch of CTEs among the silicon nitride, aluminum, 

and cobalt/iron thin films will cause an out-of-plane curvature and increase leakage light, 

as discussed in Chapter 2. The thermal stresses of these thin films at 30 K must be 

balanced with the residual stresses to obtain a flat surface of each microshutter element in 

the outer space environment. Hence, a technique to measure the CTEs of these thin films 

at cryogenic temperatures is required.  

This chapter presents a new microgauge sensor for residual stress and CTE 

characterization with an expected resolution as high as 5 µε [99]. In this study, µε is used 

as a unit for differential deformation in length and is defined as 10-6 strain. The 

micrgauge sensor, made of the same silicon nitride thin film as the microshutter array, is 

fabricated using bulk micromachining technique. The residual stress of the silicon nitride 

thin film is studied by measuring the displacement of the microgauge sensor when the 

sensor is released from a substrate. To characterize the CTE of the silicon nitride thin 

film at cryogenic temperatures, the microgauge sensor is cooled down using the 

cryogenic measurement setup described earlier and the displacement of the sensor is 

measured again. In the experiments, all displacements are measured using the SEM 

function provided by the FIB system. An analytic model based on beam theory is 

developed to calculate the residual stress and CTE values from the measured 
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displacements. At the end of this chapter, the test results of the residual stress and CTE 

are reported for the low-stress silicon nitride thin film.  

 

4.1 Design of microgauge sensor  

A variety of methods have been developed to measure residual stresses and CTE of 

thin films. A conventional approach to measure the average residual stress is using the 

Stoney’s equation [100]. This method requires knowledge of the curvature of a substrate 

after depositing a thin film, the biaxial elastic modulus of the substrate, and the thickness 

of the thin film and the substrate, which may introduce significant errors in the extraction 

of residual stress. Additionally, two main assumptions for this technique are that the film 

is very thin compared to the substrate, and the deformations are infinitesimally small. A 

detailed discussion of limits for the Stoney’s equation was described in the literature 

[101].  

In order to obtain local stress information, passive strain sensors using a buckling 

technique have been developed [102]. This approach is based on proof structures in 

which a beam’s maximum length remains unbuckled under a compressive strain. 

Previous efforts have modified these proof structures as ring or diamond structures for 

measuring tensile strain [103]. However, the disadvantages in using the buckling 

technique are that an entire array of the microstructures is needed, and the boundary 

condition (such as support compliance) can be a factor influencing the accuracy of strain 

measurement.  

Other types of passive strain sensors use only one microstructure. The so-called T-

shaped or H-shaped microstructures provide the displacement of a junction between wide 
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and narrow beams [104, 105]. However, such structures yield extremely small 

displacements, thereby making an accurate measurement difficult. Recently, an improved 

micro strain gauge with mechanical amplifier has been developed to magnify this small 

displacement of a long test beam through the use of a sloped beam [106]. The strain level 

in the test beam is deduced by measuring the free end movement of the third beam 

connecting to the sloped beam. Unfortunately, this technique is limited due to the out-of-

plane deformation. 

For CTE measurements, a conventional thermal-stress approach using optical beam 

techniques is widely adopted [107, 108]. The principle of this method is to measure the 

change in the curvature of a wafer induced by a deposited film using an optically levered 

laser beam technique in conjunction with a thermally-controlled hot stage. However, this 

technique requires knowledge of the exact physical values of thin films such as the 

biaxial elastic modulus, which may not be readily available.  

Presently, other approaches for CTE measurements using microstructures are being 

studied extensively. A buckling of clamped square plates has been reported to measure 

CTEs of thin films [109]. The buckling is investigated numerically using an energy 

minimization method and finite element simulations. Similar to the buckling technique 

for residual stress measurement, the disadvantage of this method is that it is extremely 

sensitive to the geometry and boundary conditions of the microstructures and exact 

analysis of these effects can be complicated. The micro strain gauge mentioned 

previously has also been utilized to measure the CTE of polysilicon thin films [110]. 

However, there are limits to this method. For example, it is only applicable to conductive 

thin films so that enough Joule heating can be generated at the microgauge. Besides, the 
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average temperature of the microgauge is determined from the experimental parameters 

such as measured current, applied voltages and the thermal conductivity of the 

microgauge, which may induce significant errors in the temperature measurement. 

   In our study, two types of new microgauge sensors with mechanical amplification 

are designed to characterize the residual stress and the CTE of silicon nitride thin films as 

shown in Figure 4.1(a). These two microgauge sensors are the same except the structures 

of vernier gauges. The design principle is to magnify the tiny displacement caused by the 

residual strain or the thermal strain between anchors. The shrinkage/expansion of the test 

beam due to the residual/thermal strain causes the slope beam to rotate slightly. The 

indicator beam magnifies the slope and a large displacement is generated at the site of the 

vernier gauge, which can be easily measured using a scanning electron microscope or an 

optical microscope. Figure 4.1(b) is a schematic diagram of the designed microgauge 

sensors under tensile residual/thermal strain. The significance of this design is that this 

microgauge sensor gives a strain reading which is independent of the thin film thickness 

(discussed in the next section), a key factor of error for other methods. In addition, this 

reading is independent of process variations, which may result in irregular beam cross 

section; for example, a trapezoidal shape. Therefore, this kind of process imperfection is 

not a problem for the strain gauge presented here. Moreover, the symmetry design of the 

microgauge sensor can minimize the influence of the out-of-plane curvature on the 

indicator beams.   
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Indicator beam 
Vernier gauge

Anchor 

Slope beam 
Test beam 

(Not to scale) 

Figure 4.1: Schematic diagram of the designed microgauge sensors: (a) without 
residual/thermal strain, and (b) with tensile residual/thermal strain. The dash lines 
represent the shrinkage of the test beams.   

(a) 

(Not to scale) 

(b) 
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4.2 Analytic model      

An analytic model for the microgauge sensors is developed based on beam theory. As 

shown in Figure 4.2 (a), the slope beam between two test beams is a doubly-clamped 

cantilever and can be theoretically modeled as two simple cantilever beams connected 

together (Figure 4.2(b)). Therefore, the maximum angular deflection θ at the midpoint of 

the slope beam in a small angle approximation can be expressed as [78] 

                                                       
EI
LF st

8
tan

2

=≈ θθ                                                (4.1) 

where Ft is the tangential force at the fixed boundary, Ls is the length of the slope beam, 

E is the Young’s modulus, and I is the moment of inertia. Also, the movement of the test 

beam δ is derived as [78]          

                                                               
EI
LF st

12

3

=δ                                                          (4.2) 

The maximum angular deflection θ can then be rewritten in terms of the movement of the 

(b) 

Indicator beam 

(a) 

δ 

0.5 δv 

θ 

Figure 4.2: Force and moment free body diagram of the slope beam: (a) the entire 
slope beam, and (b) a simple cantilever beam representing the right-half the entire 
beam.      
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test beam δ as follows 

                                                               
s

f

L
C

2
3δ

θ =                                                          (4.3) 

In equation (4.3), Cf is a correction factor due to the presence of the indicator beam and is 

derived as [106] 

                                                             3

2

1
1

d
dC f −

−
=                                                         (4.4) 

where d is the ratio of the width of the indicator beam Wi over the length of the slope 

beam Ls. If the measured displacement of the vernier gauge from one indicator beam is 

assumed to be 0.5 δv, the mechanical amplification by which the tiny movement of δ is 

magnified to a value of δv can be found as  

                                                              
s

fiv

L
CL3

=
δ
δ

                                                       (4.5) 

where Li is the length of the indicator beam. The residual/thermal strain ε, by definition, 

is the ratio of δ over double the length of the test beam (2 Lt) and can be represented as 
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ε =                                                        (4.6)   

Therefore, the residual stress σ is  
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and the coefficient of thermal expansion α is 
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where ∆T is the temperature variation during experiments. From (4.7) and (4.8), the 

measured residual stress and CTE are independent of the thin film thickness.  

In the design of the microgauge sensors, the stiffness of the slope beam Ks in the 

direction of displacement due to the residual stress in the test beam is not considered in 

the analytic model. This effect can be evaluated by the ratio of Ks to the stiffness Kt of the 

test beam in the direction of the displacement: 

                                                              
ts

st

t

s

WL
WL

K
K

3

3

=                                                       (4.9)       

where Lt and Wt are the length and width of the test beam, and Ls and Ws are the length 

and width of the slope beam. In the mask design of the microgauge sensors, the 

dimensions of these sensors (Table 4.1) are varied to measure different stress conditions 

with different mechanical amplifications defined in (4.5).  Since the ratio of (4.9) can be 

shown to be much less than one, this effect can be neglected.  

 

 

Test beam Slope beam Indicator beam 

Lt (µm) Wt (µm) Ls (µm) Ws (µm) Li (µm) Wi (µm) 

100 - 510 30 20 - 40 1.5 - 2 100 - 350 2 

 

A first-order error analysis can be carried out by examining (4.6) with an assumption 

that δv, the reading of the vernier gauge, is the only source of error while other 

dimensions have negligible error effects. The resolution of δv is mainly determined by the 

design of the vernier gauge. In our design of the vernier gauge, the minimum spacing 

Table 4.1: Dimensional design of the microgauge sensors.  
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between two vernier fingers with sharp tips is 1 µm. Therefore, it is fair to say that the 

maximum uncertainty of the measurement from the vernier gauge is 0.25 µm. The strain 

reading with error bound can be represented as  

                                                      )25.01(
6 vfti

vs

CLL
L

δ
δ

ε ±=                                            (4.10) 

and the best resolution in the strain measurement for the designed microgauge sensors 

listed in Table 4.1 is 5 µε, which has double sensitivity compared with the previous work 

[106].   

An ANSYS finite element model (Figure 4.3) was developed not only to perform 

strain-displacement analysis of the microgauge sensors, but also to check the analytical 

theories. Strain was introduced in the model by applying a uniform temperature change to 

the microgauge sensor with a specified coefficient of thermal expansion. Figure 4.4 

compares the displacement of the vernier gauge obtained by the analytic model with the 

ANSYS model. It is found that the theoretical model matches well with the ANSYS 

Symmetry 
boundary 

Fixed 
boundary 

Fixed 
boundary 

Figure 4.3: ANSYS finite element model for the microgauge sensor. Only half of 
the structure is used due to its symmetry. (Lt = 250 µm, Wt = 30 µm, Ls = 20 µm, 
Ws = 2 µm, Li = 150 µm, Wi = 2 µm, thickness = 0.5 µm)   
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simulation results and there is no nonlinear effect even with a high strain value of 0.0025, 

which corresponds to a large displacement of more than 25 µm. For the same movement 

at the vernier gauge, the theoretical model underestimates the real strain. However, the 

maximum discrepancy is only 3.1%. 

 

4.3 Device preparation 

The microgauge sensors have been fabricated using bulk micromachining technique. 

The fabrication processes are similar to those for the T-shaped cantilevers discussed in 

Chapter 3. First, a layer of LPCVD silicon nitride thin film with an approximate thickness 

of 0.5 µm was deposited on a 500 µm thick n-type silicon substrate. A standard 
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Figure 4.4: Comparison of the displacement obtained by the analytic model and 
the ANSYS simulation results.  
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lithography process was performed, and the patterned photoresist was used as a masking 

layer for silicon nitride etching. The silicon nitride thin film was etched in a reactive ion 

etcher (RIE). Next, the wafer was placed into a 20%, 72°C potassium hydroxide (KOH) 

solution for 2 hours with uniform agitation to release the microgauge sensors. The depth 

of etched v-groove was 95 µm. The detailed process parameters can be found in section 

3.2.  

After completing the fabrication processes, most devices were found to have 

“stiction” problems as shown in Figure 4.5. This is mainly caused by capillary forces 

arising as a result of the surface tension of the liquid-vapor interface during the rinsing 

and drying steps in the fabrication processes. A supercritical point CO2 dryer 

(TousimisTM, Model: Autosamdri®-815, series B) was used to solve the stiction problem. 

The supercritical CO2 drying makes use of the supercritical point of carbon dioxide in the 

phase diagram at TC = 31.1°C and PC = 72.8 atm [111]. At this point, both liquid and gas 

Figure 4.5: SEM picture of microgauge sensors after fabrication. All devices 
shown in the picture stick to the substrate.  
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properties exist simultaneously with no surface tension. The microgauge sensors released 

in this manner are shown in Figure 4.6. 

 

          

 4.4 Residual stress characterization 

Two LPCVD silicon nitride thin films were deposited on silicon substrates with 

different process parameters from two vendors and utilized as the structural layers of the 

microgauge sensors. The fabricated microgauge sensors were placed inside the FIB 

system (see Chapter 2). The displacement of the vernier gauge was then determined by 

using the SEM function provided by the FIB. Figure 4.7 and Figure 4.8 show the 

displacements of the vernier gauges for characterizing these two silicon nitride thin films. 

From equation (4.6), the strains for these two types of silicon nitride thin films are 708.1 

µε and -135.1 µε, respectively. The corresponding residual stresses are 184.5 MPa and -

35.3 MPa if the value of 260.5 GPa is used as the Young’s modulus (Chapter 3) for these 

Figure 4.6: SEM picture of microgauge sensors after supercritical CO2 drying. 
All devices shown in the picture are released from the substrate.  
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silicon nitride thin films. Here, a positive value represents a tensile residual stress, while 

a negative value means a compressive residual stress.   

Figure 4.7: SEM picture of the vernier gauges for characterizing the first silicon 
nitride thin film. (Measured displacement δv = 5.6 µm, dimensions: Lt = 265 µm, 
Wt = 30 µm, Ls = 20 µm, Ws = 2 µm, Li = 100 µm, Wi = 1.5 um, calculated residual 
strain = 708.1 µε)   

Figure 4.8: SEM picture of the vernier gauges for characterizing the second silicon 
nitride thin film. (Measured displacement δv = 2.5 µm, dimensions: Lt = 400 µm, 
Wt = 30 µm, Ls = 20 µm, Ws = 2 µm, Li = 150 µm, Wi = 2 um, calculated residual 
strain = -135.1 µε)   
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With the measurements of the microgauge sensors, a local knowledge of residual 

stress distribution is possible. Table 4.2 shows the measurement results of the entire 

wafers for these two silicon nitride thin films. The standard deviations of the residual 

stresses are 8.0% (Type A) and 9.6% (type B) of the average values, and the stresses at 

the edges of the wafers are found to have larger deviation than the centers. If the 

measured stress values on the edges, defined as the distances larger than 3 cm from the 

center of the wafers, are not considered, the standard deviations can be reduced to 3.9% 

(Type A) and 5.2% (Type B) of the average values. These variations are acceptable for 

the microshutter arrays since small changes of the stiffness of the microshutter devices 

across the whole array due to the residual stresses can be compensated with higher 

magnetic actuation forces.  

 

 

Type A B 

Number of tests 30 30 

Average residual stress (MPa) 183.4 -38.6 

Standard deviation (MPa) 14.7 -3.7 

       

 

However, the compressive residual stress may cause buckling on the torsion bars of 

the microshutter devices (Chapter 1). This effect can be examined by the Euler buckling 

limit, given by [32] 

                                                 2

22

3 L
Et

Euler
πσ −=                                                    (4.11) 

Table 4.2: Test results of residual stresses in different silicon nitride thin films. 
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where E is the Young’s modulus, t is the thickness, and L is the length of the doubly-

supported beam. The Euler buckling limit of the torsion bar can be found to be -5.4 MPa 

with the given Young’s modulus (260.5 GPa), thickness (0.5 µm), and beam length (200 

µm). This value is approximately seven times smaller than the residual stress of the 

second (type B) silicon nitride thin films, which will lead to buckling on the torsion bars. 

Therefore, the first silicon nitride thin films (type A) are used in the fabrication of the 

microshutter arrays.  

 

4.5 Coefficient of thermal expansion (CTE) characterization  

The CTEs of silicon nitride thin films at cryogenic temperatures were characterized 

with the microgauge sensors inside the FIB system. These sensors were cooled down 

using the designed cryogenic measurement setup mentioned in Chapter 2. The 

temperature of the devices was determined by an integrated resistive temperature sensor, 

and the displacement at the vernier gauge was measured by using the SEM function 

provided by the FIB. To prevent the charging effect on the silicon nitride thin films 

during experiment, electron beam of the FIB system was turned on for taking scanning 

micrograph only when the sensors reached desired temperatures.   

Since the microgauge sensors were fabricated on silicon substrates, it is inevitable 

that the contraction of silicon at cryogenic temperatures will influence the measurement 

results. The analytic model for CTE characterization can be modified with the 

consideration of this effect and expressed as  
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where αSiN is the CTE of the silicon nitride, and αSi is the CTE of the silicon. Hence, the 

measured thermal strain is caused by the difference of CTEs between the silicon nitride 

structural layer and the silicon substrate.  

Figure 4.9 and Figure 4.10 are SEM pictures of a vernier gauge at room temperature 

(298 K) and 20 K. The results for CTE measurements of the microgauge sensor are 

shown in Table 4.3. Here, the values of αSi at cryogenic temperatures are obtained from 

previous study [112], while the values of αSiN are determined by equation (4.12). The 

average CTE values of silicon nitride thin films from twenty measurements at cryogenic 

temperatures are shown in Figure 4.11. In comparison with the existing results, the CTEs 

of LPCVD silicon nitride thin films at room temperature, 1.6  × 10-6 K-1 [113] and 2.3  × 

10-6 K-1 [114], have been reported. The lower measured CTE value at cryogenic 

temperatures can be explained through a consideration of the intermolecular forces of a 

material [72]. The intermolecular potential-energy curve, as shown in Figure 4.12, is not 

symmetrical. Therefore, as the temperature of the molecules is decreased, its mean 

position relative to its neighbors becomes smaller; that is, the material contracts. The rate 

at which the mean spacing of the atoms decreases with temperature decreases as the 

temperature of the silicon nitride decreases; thus, the CTE decreases as the temperature 

decreases.  

To solve the curvature problem of the microshutter devices caused by the mismatch 

of CTEs, one possible solution is to tune parameters in microfabrication steps as 

discussed in Chapter 2. The principle is to compensate the thermal stress at 30 K with 

induced residual stress during fabrication. The other possible solution is to deposit a 

material with a similar CTE value  as  silicon  nitride as a  top layer  on  the  microshutter  
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Figure 4.9: SEM picture of a vernier gauge for CTE measurement at 298 K. 
(Dimensions: Lt = 510 µm, Wt = 30 µm, Ls = 20 µm, Ws = 2 µm, Li = 300 µm, Wi = 
2 µm)   

Reference line 

Reference line 

Figure 4.10: SEM picture of the same vernier gauge shown in Figure 4.9 at 20 K. 
(Measured displacement δv = 4.8 µm)   
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device, which will form a “sandwich” composite structure. Since the top layer and the 

bottom layer (silicon nitride) of the microshutter device have similar CTE values, it can 

keep flat surface at 30 K even though the CTEs of intermediate layers (aluminum and 

cobalt/iron) are different. One important criterion for the selection of this material is that 

it should be compatible with the fabrication processes of the microshutter device.                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T1 (K) T2 (K) T = (T1 + T2) /2 ∆T Displacement 
δv (µm) 

αSi (× 10-6 
K-1) 

αSiN (× 10-6 
K-1) 

298 200 249 98 -0.25 2.05 1.99 
200 100 150 100 2.55 0.53 1.09 
100 50 75 50 2.25 -0.52 0.47 
50 20 35 30 0.25 -0.04 0.14 

Table 4.3: CTE measurement results of silicon nitride thin films. (Lt = 510 µm, Wt = 
30 µm, Ls = 20 µm, Ws = 2 µm, Li = 300 µm, Wi = 2 µm)   
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Figure 4.11: Coefficients of thermal expansion of silicon nitride thin films at 
cryogenic temperatures.  
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4.6 Discussion 

The thickness of the thin film will not influence the measurement results as discussed 

in the design of the microgauge sensor. However, it has been found that the microgauge 

sensors with thickness less than 0.2 µm tend to break or stick to substrates even after 

supercritical drying. Apparently, these structures have small mechanical restoring forces 

to the disturbance of rinsing liquids, which produce relatively large surface-tension forces 

during the drying process.  

The lateral etching of silicon (undercut) in KOH solution during the fabrication 

processes will change the effective lengths of the test beams and induce measurement 

r0 

Equilibrium 
spacing 

Zero-point energy 
T = 0 K 

Energy at T1 

Energy  
at T2 > T1 

Intermolecular spacing

M
ol

ec
ul

ar
 in

te
rn

al
 e

ne
rg

y 

U0 

U1 

U2 

Figure 4.12: Variation of the intermolecular potential energy for a pair of molecules. 
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errors. The variations in the beam lengths depend on the etching time in KOH solution 

and are less than 10 µm in the fabricated microgauge sensors. To minimize this error, the 

effective lengths of the test beams utilized in the analytic model are measured directly by 

the SEM function. Even so, the undercut regions, unlike the beam structures of the 

microgauge sensors, will undergo biaxial stresses after release or during cryogenic tests. 

However, since the lengths of these undercut regions are much smaller compared with the 

designed lengths of the test beams, this effect is neglected.  

 

4.7 Summary 

A novel passive microgauge sensor based on the mechanical amplification technique 

is designed, fabricated, and characterized to measure the residual stress and the CTE for 

LPCVD silicon nitride thin films. Not only the average value but also a local knowledge 

of the residual stress can be obtained using the microgauge sensor. Furthermore, the 

measurement result is independent of thin-film thickness and process variations, which 

are key limiting factors for other techniques. An analytic model based on beam theory is 

developed to analyze the measurement results. Compared with ANSYS simulations, this 

model has negligible errors in a small strain region and only underestimates the real stress 

by 3.1% in a high strain region.  

The residual stresses of two LPCVD silicon nitride thin films are characterized to 

determine the appropriate one for the fabrication of the microshutter arrays. From the test 

results, even though the second type (type B) of the silicon nitride thin film demonstrates 

a lower stress value, buckling of the torsion bar on the microshutter device may occur due 

to its compressive residual stress. To solve the curvature problem of the microshutter 
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devices, the CTEs of the silicon nitride thin film at cryogenic temperatures are studied 

and reported for the first time. The measurement results can be used to understand the 

thermal stress of this silicon nitride thin film at 30 K, and strategies to compensate this 

thermal stress are also discussed in this chapter.     
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CHAPTER 5 

MECHANICAL-AMPLIFIER ACTUATORS FOR FATIGUE 

STUDY OF LPCVD SILICON NITRIDE THIN FILMS 

 

 
Due to the rapid innovation of MEMS technologies over the last few decades, a 

variety of novel micro-scale machines and sensors have been developed. Associated with 

these advances in design, fabrication, and packaging of microsystems is an expansion of 

the set of materials available to MEMS designers. In order to ensure performance and 

reliability of MEMS devices over long periods of time, it has become increasingly 

important to understand the time- and cycle-dependent degradation of MEMS materials 

in their operating environment.  

Fatigue, the failure of a material at less than its ultimate strength after a number of 

cyclic loadings, is the most important and commonly encountered mode of failure in 

structural materials. Mechanisms for the fatigue of ductile and brittle materials at macro-

scale have been generally established after a century of research. However, the study of 

bulk materials in fatigue failure can not be directly applied to MEMS thin film structures 

[115-117].  

The characterization of fatigue properties on the micro-scale is challenging due to the 

small dimensions of test devices. In previous research, several test devices were designed 

and fabricated. Sharpe et al [118] developed a 3.5 µm thick and 50 µm wide tensile 

specimen under tensile cyclic loadings to study reliability of polycrystalline silicon. 

Similar micro-structures were adopted for tensile cyclic loadings of LIGA (a German 
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acronym for lithography, electroplating, and molding) nickel films [119]. Although the 

direct tension test is an effective method for fatigue characterization, the requirements for 

strain measurement and sample alignment are stringent. Another approach is to integrate 

test specimen and setups with electrostatic actuation on the same chip. Ballarini et al 

fabricated arrays of comb actuators with a notch, operating at their resonant modes during 

the test [120]. The deformation of the specimen, which would be converted into 

propagation of the crack at the notch, was recorded during the experiment. Their analysis 

was based on measured deformations and extensive finite-element-analysis (FEA) 

modeling. Van Arsdell and Brown used resonating circular comb drive actuators with a 

notch to detect damage under repeated loadings according to the same operation principle 

[121]. However, all these techniques mainly focused on conductive polycrystalline 

silicon thin films and are difficult to utilize in a cryogenic environment with their 

designed setups.   

The elements of the microshutter arrays are made of LPCVD silicon nitride thin films 

with suspended torsion beams, as discussed in Chapter 1. Since the microshutter arrays 

must operate in outer space (a cryogenic vacuum environment) reliably over a 10 year 

mission lifetime without repair after launch, it is critical to understand the fatigue failure 

of the silicon nitride thin films at cryogenic temperatures during expected operating 

cycles.  

This chapter presents a novel design of electrostatic MEMS devices (mechanical-

amplifier actuators) with dimensions similar to the elements of the microshutter arrays to 

emulate torsional operating stress for fatigue study of the silicon nitride thin films [122, 

123]. In order to obtain different stress levels without high applied voltage, mechanical 



 90

amplification of mechanical-amplifier actuators is achieved based on a resonant 

technique. The test devices are fabricated using surface micromachining technique in 

combination with deep reactive ion etching (DRIE). Additionally, all experiments are 

performed inside the focused-ion-beam (FIB) system with the cryogenic measurement 

setup as discussed in Chapter 2. In the end of this chapter, the fatigue test results of 

mechanical-amplifier actuators at room and cryogenic temperatures are reported, and 

followed by a discussion.  

 

5.1 Actuation mechanisms in MEMS devices 

In MEMS device, the forces required for mechanical movement can be obtained 

using electrostatic, thermal, magnetostatic, or piezoelectric actuation. To date, an 

electrostatic actuation is the most prevalent technique due to its virtually zero power 

consumption, possible small electrode size, and relatively short switching time. However, 

in many cases, it requires an actuation voltage of 30 – 80 V even to achieve a small 

movement distance (~ 1 µm). Conversely, thermal actuation relies on the thermal 

expansions of thin film materials at high temperatures. This design generally needs to 

consume relatively high power for Joule heating and the response is slow. The advantage 

of this actuation mechanism is the low required input voltage (3 – 5 V), which can be 

easily achieved using CMOS technology. For magnetostatic and piezoelectric actuations, 

the actuation voltages can be small (3 – 20 V) with relatively low power consumption. 

The only disadvantage is that the deposition of magnetic or piezoelectric materials may 

lead to complicated fabrication processes. Table 5.1 is a comparison of these actuation 

mechanisms.  
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5.2 Design of mechanical-amplifier actuator  

For most MEMS devices, the maximum stress level during operation is usually kept 

low to prevent fracture or fatigue failure at an early stage. However, to study fatigue 

properties of structural materials, the stress level must be large and controllable. Among 

different actuation mechanisms in MEMS devices, electrostatic actuation is utilized in 

this study since it can provide fast response and relatively simple fabrication processes. 

The use of electrostatic actuation to achieve high stress levels is challenging due to the 

limitation of applied voltage across a fixed gap. If the gap between two electrodes in a 

parallel-plate actuator (capacitor) is large, the actuation voltage becomes extremely high. 

On the other hand, if the gap is small, there is insufficient room for movement to 

introduce the required high stress levels on the structures.  

Thus, a new mechanical-amplifier actuator based on a resonant concept is proposed to 

study fatigue properties of the microshutter arrays. The design principles are to separate 

the location for applying electrostatic energy with the location for creating physical 

movement, and to utilize the maximum response in a physical system (mechanical, 

 
Voltage Current 

Power 

consumption 

Switching 

time 

Contact 

force 

Fabrication 

method 

Electrostatic 

Thermal 

Magnetostatic 

Piezoelectric 

High 

Low 

Low 

Medium 

Low (~zero) 

High 

High 

Low (~zero) 

Low (~zero) 

High 

High 

Low (~zero) 

Short 

Long 

Long 

Medium 

Medium 

Large 

Small 

Small 

Simple 

Simple 

Complex 

Complex 

Table 5.1: Comparison of actuation mechanisms in MEMS devices. 
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electrical, electromagnetic…) at its resonant frequency. In our device design, as shown in 

Figure 5.1, two resonators are connected serially with a common torsion bar. When 

operating, electrostatic energy is applied to resonator 1 using a small gap between two 

electrodes. This energy is transferred to resonator 2 via the common torsion bar. The 

vibration amplitude of resonator 2 is then amplified by its quality factor when the 

frequency of pumped energy matches its resonant frequency, inducing high stress levels 

on the torsion bar. Based on this operation principle, the vibration amplification and 

amplitude of resonator 2 can be controlled by the frequency and amplitude of the input 

electrostatic energy to resonator 1. In this design, fixed beam 1 is used to increase lateral 

stiffness to prevent non-torsional movement on the torsion bar without significant energy 

loss during operation, and the rotation of resonator 2 will cause a maximum torsional 

stress at the fixed end. The dimensions of the mechanical-amplifier actuators are 

presented in Table 5.2. 

 

 

 

            

       

 

 

 

 

 

Resonator 1 Resonator 2

Blade region 
Fixed beam 1 Neck region Torsion bar

Lt 

Lf 

Maximum stress region 

Figure 5.1: Schematic diagram of a mechanical-amplifier actuator for fatigue testing.  

Chromium/gold Silicon nitride
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An analytic model is developed to estimate the stress level on a mechanical-amplifier 

actuator. For a given torque T applied to a torsion bar, the maximum shear stress can be 

expressed as [124]  

               ])()(8023.1)(8865.06095.01[
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3 432
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where a is half the long edge of the rectangular section, and b is half the short edge. The 

torque T is related to the twist angle θ by  
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Here, L is the torsion bar length, and G is the modulus of rigidity. The above equations 

neglect the stress concentration at the end of the torsion bars, and are only applied to 

predict maximum shear stress of resonator 2 as shown in Figure 5.1. However, this 

model provides important guidelines for the design of the mechanical-amplifier actuator.     

 

5.3 Device preparation 

Fabrication of the mechanical-amplifier actuators began with a double-polished, thin 

silicon wafer (250µm) coated with 0.5 µm thermal oxide and 0.5 µm low-stress LPCVD 

Torsion bar 
(µm) 

Blade region 
(µm) 

Neck region 
(µm) 

Fixed-beam 
1 (µm) 

Thickness 
(µm) 

Lt  Wt  Lb  Wb  Ln  Wn  Lf Wf T 

108 2 95 35 15 5 40.5 0.8 0.5 

Table 5.2: Dimensions of mechanical-amplifier devices. 
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silicon nitride (residual stress of silicon nitride: 183.4 ± 14.7 MPa) on both sides. The 

basic process steps are shown in Figure 5.2, and specific details are described below. 

Prior to metal deposition, the wafer was cleaned two minutes in a sputtering chamber 

(AJATM ATC-1800) with flow rate of 20 sccm for argon gas, pressure of 28 mTorr, and 

RF power of 18 Watt. A layer of 100 Å chromium and a layer of 500 Å gold were then 

deposited using the sputtering system. The process parameters for chromium and gold 

deposition were flow rate of 20 sccm for argon gas, pressure of 5 mTorr, and DC power 

of 200 Watt. In this step, the wafer was rotated in the chamber to obtain better uniformity. 

The measured deposition rates were 2.0 Å/sec and 8.1 Å/sec for chromium and gold, 

respectively.     

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2: Basic process flow for mechanical-amplifier actuators. 

(b) Define the test structure on 
SiN using reactive ion etching
(second mask) 

(c) Pattern the backside and use 
DRIE to etch through thin silicon 
substrate (Third mask) 

(d) Remove the oxide layer (etch 
stop of DRIE) 

(a)Chromium/gold deposition and 
patterning for the electrodes of 
resonator 1 (first mask) 
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A standard lithography process (Table 3.2) was then performed, and the patterned 

photoresist with a thickness of 5.7 µm was used as a masking layer for chromium and 

gold etching. The chromium and gold layers were etched using TranseneTM TFD 

chromium etchant and TranseneTM TFA gold etchant with the etch rate of 25.0 Å/sec and 

57.5 Å/sec, respectively, to form the electrodes on resonator 1. After this step, the 

photoresist was removed using a photoresist stripper (Baker Aleg-625) heated to 45 °C.   

Next, the standard lithography process was performed again to form a masking layer 

for patterning the silicon nitride structural layer. The silicon nitride thin film was etched 

in a reactive ion etcher (TrionTM Minilock RIE system) using CF4 and O2. The process 

parameters were pressure of 250 mTorr, flow rates of 50 sccm and 5 sccm for CF4 and O2, 

respectively, and a RF power of 100 Watt. The silicon nitride etch rate was 180 nm/min, 

and the photoresist etch rate was around 80 nm/min. After etching the silicon nitride, the 

photoresist was kept to protect the underneath chromium/gold layers for further processes. 

Once the processes for the front side were finished, a thick photoresist (10 µm) was 

spun on the backside of the wafer, followed by a lithography step (Table 5.3) to pattern 

open windows on the photoresist for subsequent deep reactive ion etching (DRIE). In this 

process, front-to-back (wafer) alignment was performed using the feature of infrared (IR) 

backside alignment in the contact aligner (QuintelTM Q4000). The front side of the wafer 

was then bonded to a handle wafer using an adhesive (CrystalbondTM 555). The silicon 

nitride and the thermal oxide in the open windows on the backside were removed by the 

RIE system and buffered oxide etchant (J.T.BakerTM Buffered Oxide Etch), respectively.   
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The silicon substrate was etched through from the open windows on the backside 

using DRIE in Integrated Sensing Systems, Inc. (ISSYS). This step is critical due to the 

requirement of keeping vertical etching profiles in DRIE [125]. In principle, DRIE relies 

on generation of high plasma densities to achieve a high etch rate while operating at low 

pressure to increase ion directionality. When etching silicon trenches with depths in 

excess of 300 µm, the neutral flow conductance decreases drastically according to the 

standard vacuum theory [126, 127]. This impedes both the transport of etchant species to 

the surface bottom and the removal of etching byproducts. Therefore, as the depth of 

etched trenches increases, the trench profile (verticality) and silicon etching rate can 

deteriorate quickly. To alleviate this effect, a thin silicon substrate (250 µm) was used in 

the fabrication of the mechanical-amplifier actuators. A comprehensive study of DRIE 

processes parameters for anisotropy and profile control can be found in [125, 128, 129].    

During the DRIE step, the thermal oxide on the front side was used as an etch stop. 

The selectivity of silicon to silicon oxide is usually greater than 100. This oxide layer was 

then removed with buffered oxide etch (BOE) and the wafer was released from the 

handle wafer with de-ionized (DI) water heated to 60 °C. Finally, the photoresist on both 

Step Recipe 

Photoresist coating 
Photoresist: AZ 9245 (ClarinetTM) 
Spin coating: 300 rpm for 5 seconds, then 
                      1000 rpm for 40 seconds 
Soft bake: 110 °C for 120 seconds 

Exposure Dose: 720 mJ  
Contact aligner: QuintelTM Q4000 

Photoresist development Developer: AZ 400 K mixed with DI water 
                  (1:3) 
Developing time: 3 minutes 

Table 5.3: A lithography process for using thick photoresist.  
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sides of the wafer was stripped using acetone, followed by a methanol cleaning and 

drying process. The mechanical-amplifier actuator after fabrication is shown in Figure 

5.3.  

 

 

 

 

 

 

 

 

 

 

 

5.4 Experimental techniques 

5.4.1 FIB system with a cryogenic measurement setup 

In Chapter 2 and Chapter 3, a cryogenic measurement setup installed inside a FIB 

system was introduced to characterize the Young’s modulus and fracture strength of 

LPCVD silicon nitride thin films at room and cryogenic temperatures [76, 77]. The FIB 

system with the cryogenic measurement setup was also used in the study of the fatigue 

property of silicon nitride thin films and the key components of this system are briefly 

reviewed below. (The detail can be found in Chapter 2) The FEI 620 FIB used in our 

experiment is a dual beam system, with ion and electron columns, permitting ion milling 

Figure 5.3: Micrograph of a mechanical-amplifier actuator after fabrication.  
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and in situ scanning electron microscopy (SEM). This system also has the ability to 

deposit platinum (Pt) by ion-induced metal-organic-chemical-vapor deposition 

(MOCVD)[130].  

Figure 2.3 (in Chapter 2) shows the configuration of the measurement setup inside the 

FIB system. A lead-zirconate-titanate (PZT) translator powered by a DC voltage was 

attached on a 3-D stage controlled by three stepper motors. A micro-needle, for use as a 

ground electrode in actuating mechanical-amplifier actuators (discussed in the next 

section), was then mounted on the PZT translator with a copper wire as an electrical 

conduction path. The combination of the PZT translator and the 3-D stage provides the 

capability to manipulate the micro-needle. In addition, the device stage shown in Figure 

2.3 can be rotated and tilted. 

 

5.4.2 Vibration frequency determination 

In the FIB system, an SEM image is formed by collecting the secondary electron 

signal when a fine electron beam is scanned over the surface of a specimen. The collected 

secondary electron signal varies with the topography and composition of the specimen. 

As discussed in Chapter 3, this principle can be applied to measure vibrating frequencies 

of a mechanical-amplifier actuator. Instead of scanning over the whole surface, a point 

electron beam was placed in a fixed position where the vibrating blade of a mechanical-

amplifier actuator moved in and out of the electron beam path. This modulated the 

secondary electron signal with the frequency of vibration and this signal was acquired 

with an oscilloscope to determine the vibrating frequency. The mechanism of the 

vibration frequency determination inside the FIB system is shown in Figure 3.4.  
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5.4.3 Micro-needle ground electrode 

In the configuration of a mechanical-amplifier actuator, a ground electrode under or 

above the electrodes of resonator 1 is required to actuate this device. One possible 

solution to fabricate this ground electrode is to utilize the silicon substrate under 

resonator 1. In this case, the DRIE etching step mentioned in Figure 5.2 would only 

remove the silicon from under resonator 2. The thermal oxide under resonator 1 is 

utilized as a sacrificial layer and could be etched away using a surface micromachining 

technique to release the structure of resonator 1. However, the disadvantages of this 

method are a more complicated fabrication process (including sacrificial layer etching 

and supercritical drying for stiction release) and a fixed electrode gap.  

An alternative approach is to use a micro-needle ground electrode as shown in Figure 

5.4. The technique to make the micro-needle ground electrode is similar to the micro-

repair technique for the microshutter arrays mentioned in Chapter 2. The micro-needle 

was first positioned to contact with a silicon nitride membrane coated with a 

chromium/gold layer. The needle was then welded to the membrane using ion-induced 

platinum deposition. The micro-needle with membrane was released from a substrate by 

milling away the connecting parts of the membrane to the substrate to form a ground 

electrode. The advantages of this method are the freedom to move the ground electrode, 

which can prevent the pull-in phenomenon during operation, and a relatively simple 

fabrication process of the mechanical-amplifier actuators.        

  

 

 



 100

 

 

 

 

 

 

 

 
 

 

 
5.4.4 Testing procedure 

When testing a mechanical-amplifier actuator, the micro-needle ground electrode was 

positioned above resonator 1 with an appropriate height (approximately 5-8 µm) and 

connected to electrical ground as shown in Figure 5.5. Two AC voltages (sinusoidal 

waveforms) with 90° phase difference were applied to the electrodes on resonator 1, 

causing the blades of resonator 1 to alternately move up and down. The pumped 

electrostatic energy was then transferred to resonator 2 via the common torsion bar and 

driving resonator 2 at its first resonant mode. The first resonant mode was determined by 

sweeping a range of frequencies around the expected value and monitoring the vibrating 

amplitude of resonator 2. Once the resonant mode was obtained, the device was excited 

at this frequency with fixed input voltage amplitude for a set period of time. Afterwards, 

the frequency response was again evaluated by sweeping around the excitation frequency. 

Over time, this permitted measuring any change in resonant frequency due to the 

Figure 5.4: SEM picture of a micro-needle welded to a nitride membrane coated 
with a chromium/gold layer.  
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accumulation of fatigue damage. Since the vibrating amplitude of resonator 2 is large to 

introduce high stress level on the torsion bar, the relationship between the twist angle of 

the torsion bar and the blade displacement is not linear. In this region, the beam theory is 

not applicable. Therefore, the twist angle can not be obtained by measuring the blade 

displacement, leading to the equation (5.1) useless in determining the maximum shear 

stress. To solve this geometric nonlinearity, an ANSYS FEA model was built. Given the 

well-established properties (Young’s modulus, Poisson’s ratio, and density) of low-stress 

LPCVD silicon nitride thin films and the measured vibrating amplitude of resonator 2, 

the maximum stress on the structure can be determined from this model. Therefore, the 

relationship between fatigue life and stress was obtained.  

 

 

 

 

 

 

 

 

 

 

 

During the testing of the mechanical-amplifier actuator, resonator 1 did not operate at 

its first resonant mode since the first resonant frequencies of both resonators are not the 

same (the difference is from the metal layer patterns and process variations). Furthermore, 

Resonator 1 Resonator 2

Figure 5.5: Schematic diagram for actuation of a mechanical-amplifier actuator. 
The rectangular with a dashed line represents the micro-needle ground electrode 
positioned above resonator 1.   

Chromium/gold Silicon nitride 
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the up-and-down movements of the blades of resonator 1 can not match its resonant 

mode, which is a pure rotational movement. For a given twist angle θ of resonator 2, the 

maximum shear stress can be increased by varying the dimensions of a torsion bar as 

shown in (5.1). However, the mechanical-amplifier actuators were designed to emulate 

the operation of the microshutter devices with similar dimensions and without size effect 

[131]. Therefore, instead of having a short and thick torsion bar, a mechanical-amplifier 

actuator with a notch structure was adopted in this study to further increase the stress 

level (Figure 5.6). The notch structure used here was defined using ion milling with low 

ion energy of 5 KeV and small milling current of 4 pA.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 5.6: SEM picture of a mechanical-amplifier actuator with a notch on the 
torsion bar. 

Notch 
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5.5 Experimental results  

5.5.1 Room temperature measurements 

All devices were tested in a room-temperature environment (Pressure: 10-6 Torr, 

Temperature: 23 ± 1 °C) first with input voltages varied from 8.8 Vrms to 28.3 Vrms using 

the testing procedure described above, while the test duration ranged from 5 seconds to 

8.5 hours, or 105 to 109 cycles. Figure 5.7 shows a mechanical-amplifier actuator with 

resonator 2 at its first resonant mode. In this experiment, the input voltages to resonator 

1 were 10.6 Vrms and the resonant frequency of resonator 2 was found to be 33.258 KHz. 

The corresponding resonant spectrum of resonator 2 is presented in Figure 5.8. In 

addition, mechanical amplification between resonator 1 and resonator 2 is shown in 

Figure 5.9.  In this figure, small movement of resonator 1 introduces large vibration of 

resonator 2 based on the principle described previously. ANSYS FEA models (Figure 

Table 2. Element and parameters utilized in ANSYS FEA model 

Figure 5.7: SEM picture of a mechanical-amplifier actuator under testing at 
room temperature with resonator 2 at its first resonant mode.   
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5.10) with dimensions of the mechanical-amplifier actuator were built to calculate the 

maximum stress on a torsion bar for a given blade displacement, measured directly inside 

the FIB. The elements and parameters utilized in these models are presented in Table 5.4. 

Here, the stress concentration at the ends of a torsion bar with a radius of curvature r = 

1.5 µm was simulated. Similarly, the notch tip radius was measured using SEM function 

and represented by a radius of curvature r = 0.2 µm in the FEA model. Linear and 

nonlinear analyses with different mesh sizes were performed for each data point to verify 

that there is no geometric effect in these models. The simulation results showed a linear 

increase of stress amplitude at small displacement (within 12 µm) and both linear and 

nonlinear analyses gave the same results. At higher blade displacement, the stress 

amplitude from the nonlinear analysis is larger than that from the linear analysis, which is 

in agreement with the nonlinear stiffening effect. Figure 5.11 presents the maximum 

operating stress on a torsion bar for different blade displacements according to these 

ANSYS models. From this figure, the mechanical-amplifier actuator with a notched 

torsion bar shows higher stress amplitude as a result of the introduced notched stress 

concentration.             

 

 

 

 

Element Density 

(kg/m3) 

Young’s Modulus 

(GPa) 
Poisson’s ratio 

Residual stress 

(MPa) 

Solid–92/Solid-187 3000 [32] 260.5  0.25 183.4 

Table 5.4: Elements and parameters of the mechanical-amplifier actuator utilized in 
ANSYS FEA model. The Young’s modulus and the residual stress of the silicon 
nitride thin films are obtained from Chapter 3 and Chapter 4.    
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Figure 5.8: Resonant spectrum of resonator 2 shown in Figure 5.7.  

Figure 5.9: SEM picture of a mechanical-amplifier actuator to demonstrate 
mechanical amplification. Resonator 1 (left) has small vibration while 
resonator 2 vibrates largely at its first resonant mode.  
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Fixed boundary 

Fixed 
boundary 

Figure 5.10: ANSYS FEA model used to calculate maximum stress on a 
torsion bar for a given blade displacement. Circles in this figure represent a 
fixed boundary.   
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Figure 5.11: Maximum operating stress of the mechanical-amplifier actuator 
(MA) with different blade displacements at 298 K from ANSYS FEA model and 
analytic model. 
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Results from the stress-life testing of low-stress LPCVD silicon nitride are shown in 

Figure 5.12. When testing at the maximum operating stress over 6.6 GPa, the 

mechanical-amplifier devices exhibited time-delay failure. On the other hand, the 

mechanical-amplifier devices survived cyclic loadings even up to 109 cycles at lower 

operating stress. The resonant frequencies of these devices (at lower stress amplitude) 

were used to monitor variation of stiffness but no deviation of these frequencies was 

observed during experiment. Therefore, when subjected to sinusoidal, cyclic stress with 

amplitude below 5.8 GPa and a load ratio of 0.03, the low-stress LPCVD silicon nitride 

thin films did not display time-dependent degradation or failure up to 109 cycles in the 

testing environment.  
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Figure 5.12: Stress-life testing data for low-stress LPCVD silicon nitride at 298 K. 
When testing at high stress level, test devices exhibited time-delayed failure.
Conversely, the circle with a horizontal arrow indicates devices that did not fail 
under cyclic loadings up to 109 cycles when testing at lower stress amplitude.  
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The microstructure of a fatigue specimen (Figure 5.13) using low voltage SEM was 

used to establish the mode of crack advance without altering the surface by coating with 

conductive layers. The crack was observed to initiate at the notch tip and propagate along 

the remaining ligament of the notched torsion bar. Layer structures parallel to the 

direction of crack propagation and unidentified debris were found on the fracture surface, 

which are the proof of cyclic damage. An additional thin silicon dioxide layer was 

observed at the bottom of the cross-section due to incomplete etching of the etch stop 

after DRIE process.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13: (a) Micrograph of a notched torsion bar that failed after ~6 million 
cyclic loadings at stress amplitude of 6.8 GPa. (b) Micrograph of the fracture 
surface. The arrow (white color) indicates the direction of crack propagation.   

Notch surface

Fracture surface 

1 µm
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5.5.2 Cryogenic temperature measurements 

After room temperature experiments were finished, the mechanical-amplifier 

actuators were cooled down to 30 K with the cryogenic measurement setup. Due to the 

mismatch of CTEs among silicon nitride, chromium, and gold layers, the blades of the 

mechanical-amplifier actuator curled up at cryogenic temperatures as shown in Figure 

5.14. The micro-needle ground electrode was then carefully positioned above resonator 1 

with an appropriate gap to prevent contact between the ground electrode and the blades. 

In addition, a copper wire connecting to the helium exhausted tube (Figure 2.3) was used 

as a thermal path to cool down the micro-needle ground electrode. 

 

 

 

 

 

 

 

 

 

 

 

The cryogenic fatigue tests of the mechanical-amplifier actuators follow the same 

testing procedure as discussed in the previous sections, and all devices were tested in a 

cryogenic-temperature environment (Pressure: 10-8 Torr, Temperature: 30 ± 3 K) inside 

Figure 5.14: Micrograph of a mechanical-amplifier actuator cooled down 
to 30 K. The blades curl up due to the mismatch of CTEs among silicon 
nitride, chromium, and gold layers.  
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the FIB system. In order to maintain constant helium flow during experiments, the test 

duration for each device ranged from 5 seconds to 50 minutes, or 105 to 108 cycles. A 

testing mechanical-amplifier actuator at 30 K with resonator 2 at its first resonant mode 

is shown in Figure 5.15. In this experiment, the input voltages to resonator 1 were 13.4 

Vrms and the resonant frequency of resonator 2 was found to be 35.156 KHz. Compared 

to the testing results at room temperature, the resonant frequency of resonator 2 is 

increased at 30 K as a result of a higher value of the Young’s modulus for silicon nitride 

thin films at cryogenic temperatures. The maximum operating stress on the torsion bar 

was determined from ANSYS FEA nonlinear models with a measured blade 

displacement. These analyses were based on the model in Figure 5.10 but also included 

thermal stress due to different CTE values of the composite structures on the torsion bar. 

The elements and parameters utilized in these models are presented in Table 5.5, and the 

simulation results are shown in Figure 5.16. In this figure, there is an existing pre-stress 

on the torsion bar even without any blade displacement. This pre-stress is mainly caused 

by the residual stress and the thermal stress of silicon nitride thin films at cryogenic 

temperatures.        

    

 

 CTE value (K-1) Young’s modulus 
(GPa) 

Residual stress 
(MPa) Element 

Silicon 1.30 × 10-6 [112] 125 [42] 0 

Silicon nitride 0.84 × 10-6 266.6 183.4 

Chromium 3.74 × 10-6 [132] 279 [133]  - 

Gold 12.13 × 10-6 
[132]  70 [42] - 

Solid-92 / Solid-187 

Table 5.5: Elements and parameters of the mechanical-amplifier actuator utilized in 
ANSYS FEA model at 30 K. The properties of the silicon nitride thin films are 
obtained from the previous chapters.   
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Figure 5.15: Micrograph of a mechanical-amplifier actuator under testing 
at 30 K with resonator 2 at its first resonant mode.   
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Figure 5.16: Maximum operating stress of the mechanical-amplifier actuator 
(MA) with different blade displacements at 30 K from ANSYS FEA model.  
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The stress-life testing results of the mechanical-amplifier actuators at cryogenic 

temperatures are shown in Figure 5.17. From these results, the specimen exhibited fatigue 

failure when testing at stress amplitude over 5.6 GPa at 30 K, and the lifetime of the 

silicon nitride thin films was found to increase monotonically with decreasing stress 

amplitude. With a 25% reduction in stress amplitude, the lifetime of the test devices can 

increase three orders in magnitude. Conversely, when testing at operating stress lower 

than 5.0 GPa with a load ratio of 0.11, the mechanical-amplifier actuators survived the 

cyclic loadings up to 108
 cycles.  
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Figure 5.17: Stress-life testing data for low-stress LPCVD silicon nitride at 30 K. 
When testing at high stress level, test devices showed fatigue failure. On the other 
hand, the circle with a horizontal arrow indicates devices that did not fail under 
cyclic loadings up to 108 cycles at lower operating stress amplitude.  
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The resonant frequency of the test device was used to monitor the stiffness variation 

during cyclic loadings in the controlled cryogenic environment, and was observed to 

decrease monotonically before the device finally failed as shown in Figure 5.18. The 

change in resonant frequency means that the torsion bar of the mechanical-amplifier 

actuator becomes more compliant during the test. This behavior strongly suggests that the 

failure of silicon nitride thin films occurs as a result of damage accumulation.         

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.6 Discussion 

According to the design of the mechanical-amplifier actuators, the vibration of 

resonator 2 can be controlled by the frequency and amplitude of the applied electrostatic 

energy. However, the maximum blade displacement of resonator 2 was found to be 32 
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Figure 5.18: Variation of resonant frequency with time for a mechanical-amplifier 
actuator during cryogenic fatigue testing (Test cycles: 108 cycles at stress 
amplitude 6.2 GPa).  
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µm during experiment. The limitation was caused by pull-in energy loss and intrinsic 

material damping. For high input voltages, the blades of resonator 1 tried to pull in with 

the micro-needle ground electrode. Instead of making torsional motion on a torsion bar, 

most energy was used to create up-and-down movement which was compensated by 

fixed-beam 1 and became ineffective in actuating resonator 2.  

Several uncertainties may cause errors in the determination of maximum operating 

stress from the ANSYS FEA models. First, the cross sections of torsion bars are not 

perfectly rectangular due to the fabrication process. The curvature of these bars is 

difficult to measure, especially for thin film materials. Second, the small variation of 

curvature at the notch tip during each ion milling process, and the residual stress of 

chromium/gold thin films were not considered in these models. Third, resonator 1 was 

neglected in the FEA model for simplicity due to its relatively small movement. In 

addition, the applied voltages to the test devices disturbed electron beam signals and 

caused distortion of scanning electron micrographs. This may introduce errors in the 

measurements of blade displacements. However, based on the current design of the 

mechanical-amplifier device, resonator 2 vibrates only when the frequency of the applied 

voltages is close to its resonant mode. This mechanism can be utilized as a calibration 

method by measuring the blade displacement of a static resonator 2 with the same 

applied voltages (but not at the resonant frequency). Furthermore, the test devices were 

titled with an angle (52°) for better observation of vibration amplitude during 

experiments. The corresponding error in stress measurement due to the distorted images 

is estimated to be less than 0.4 GPa.  
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The fracture strength of silicon nitride thin films varies from 6.9 GPa at 298 K to 7.9 

GPa at 30 K as discussed in Chapter 3. However, no fracture failure was observed even 

when the devices were tested at stress amplitude higher than the fracture strength. This 

can be explained by the increase of the fracture strength of the silicon nitride composite 

structure (silicon nitride coated with chromium and gold) due to incorporation of surface 

damage into coating layers and crack healing effects during deposition process [134]. The 

usage of low ion energy and chromium or gold protective layers during ion milling 

process has been demonstrated to minimize FIB-induced damage [135, 136]. Even so, it 

is inevitable to introduce gallium implantation and surface damage on the notched torsion 

bars, which may decrease fatigue resistance at high operating stress. However, the test 

results in our study can provide conservative stress amplitude for reliability design of a 

microstructure using silicon nitride thin films in a vacuum environment.   

From this work, the mechanical-amplifier actuators displayed time-delayed failure in 

a vacuum environment at both room temperature and cryogenic temperatures. In previous 

study, the fatigue failure of polycrystalline silicon in ambient air was observed [137], and 

it is attributed to a mechanism involving the environmentally-assisted cracking of the 

surface oxide film. Although similar phenomena may exist for premature failure of 

silicon nitride materials, this mechanism is not applicable to our work since our 

experiments were performed inside a vacuum chamber. As the surface condition of test 

structures is a critical factor to induce premature failure, the observed damage on the 

notched torsion bar after ion milling can increase local stress amplitude and initiate a 

crack, which may explain the short lifetime of the test devices.  
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Comparing the test results at room temperature and cryogenic temperatures, the 

mechanical-amplifier actuators exhibit lower fatigue resistance at 30 K. Several 

mechanisms may be involved for this phenomenon. First, a non-zero pre-stress on the 

torsion bar at 30 K increases the mean stress, an average of the minimum and maximum 

operating stress, during the tests. Fatigue life has been demonstrated to decrease with 

high mean stress value, and can be estimated by several analytic models [138, 139]. 

Second, the tensile pre-stress and torsional operating stress form complex strain states 

during cyclic loadings. These multi-axial cyclic loadings also decrease fatigue life 

according to the previous experimental studies and modeling [140, 141]. Third, the 

residual gas inside the FIB chamber condensates on the test devices when these devices 

are cooled down to 30 K. The vacuum gauge of the FIB system indicates that the 

chamber pressure decreases two orders in magnitude when reducing temperatures from 

298 K to 30 K. The condensated residual gas may initiate corrosion-fatigue failure of the 

mechanical-amplifier actuators during cyclic loadings. Further analysis and examination 

must be performed to understand this mechanism.  

The number of cycles expected in the lifetime of the JWST microshutter arrays is 105 

[142], three orders of magnitude less than our test cycles, and the maximum operating 

stress of the microshutter arrays is less than 3.5 GPa based on the current dimensional 

design [94]. From this study, even though the FIB-induced damage may reduce fatigue 

lifetime, the mechanical-amplifier devices with notch structures still survived 108 cyclic 

loadings at a maximum operating stress of 5.0 GPa. Therefore, the microshutter devices 

are not expected to display fatigue failure during their operation. However, the 

mechanical-amplifier actuators were fabricated separately from the micro-shutter arrays 
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using similar fabrication processes. To eliminate the influence of process variations to the 

fatigue life, an integrated mechanical-amplifier actuator has been fabricated with the 

micro-shutter arrays as shown in Figure 5.19. In this device, two electrodes above 

resonator 1 were included to avoid usage of the micro-needle ground electrode. In 

addition, a thin cobalt/iron layer was deposited on the blades of resonator 2 to perform 

static fracture tests with an external magnetic field. The asymmetric torsion bar of 

resonator 2 used here was to increase the maximum operating stress without the notch 

structure. Furthermore, two bonding pads were utilized to monitor the variation of 

resistivity of aluminum interconnection on the torsion bar during the cyclic cryogenic 

fatigue tests. This device is currently being tested to verify the previous test results.           

 

   

   

Figure 5.19: Micrograph of a mechanical-amplifier actuator fabricated with the 
micro-shutter arrays. This device includes two electrodes above resonator 1, a 
cobalt/iron thin layer on the blades of resonator 2, and an asymmetric torsion bar.   
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5.7 Summary 

In this chapter, a novel test device, the so-called mechanical-amplifier actuator, is 

designed, fabricated, and tested to study fatigue properties of silicon nitride thin films at 

room temperature and at 30 K. In the device design, the mechanical-amplifier actuator 

has dimensions similar to the microshutter elements to emulate their torsional operating 

stress. A mechanical amplification based on a resonant technique is introduced to achieve 

high, controllable stress amplitude without high actuation voltages. The designed 

mechanical-amplifier actuator is fabricated using surface micromachining technique in 

combination with deep reactive ion etching (DRIE). All experiments are performed inside 

the FIB system with the cryogenic measurement setup and the micro-needle ground 

electrode.  

From the experiment, the mechanical-amplifier actuators display fatigue failure when 

testing in a vacuum environment at both room temperature and cryogenic temperatures. 

However, the fatigue life for a given operating stress is found to decrease at cryogenic 

temperatures, which is attributed to a non-zero pre-stress, multi-axial cyclic loadings, and 

condensation of residual gas inside the FIB chamber. Based on the test results, the current 

microshutter array design will not suffer fatigue failure during its operation lifetime of 

105 cycles at outer space.     
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CHAPTER 6 

NANO-SCALE TENSILE TESTS USING MECHANICAL-

AMPLIFIER ACTUATORS  

 

Along with rapid development of microelectronics technologies into the submicron 

regime, nanoelectromechanical systems (NEMS) have attracted much interest due to their 

unique capabilities, such as: extremely high resonant frequencies, ultra-fine detection 

resolution, ultra-low power consumption, and extremely high mechanical compliance. 

Current reported applications include VHF (very high frequency) mechanical resonators 

[143], mechanical electrometers yielding sensitivity below a single electron charge [144], 

measurement of the quantum of thermal conductance [145], and nanorobots [146]. 

However, the extremely high surface-to-volume ratios and the unconventional operation 

conditions have become the critical issues to realize the full potential of NEMS 

applications since the fundamental material behaviors on a nano-scale will be determined 

by atomistic properties. Therefore, they may be completely different from the theories for 

bulk materials.  

Understanding mechanical properties of materials on a nano-scale is important for the 

design of electronic devices and NEMS, as these devices may suffer thermal or 

mechanical stress during operation. Tests of MEMS materials (on a micro-scale) have 

been carried out for evaluating their mechanical properties since 1990 [147, 148], though 

the values for some materials are still not available. Conversely, characterization of 

mechanical properties on a nano-scale is challenging and the reported data are extremely 
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limited due to difficulties in making nano-scale test specimens and problems associated 

with measuring ultra-small physical phenomena during experiments.  

This chapter presents a nano-scale tensile test with a modified mechanical-amplifier 

actuator to study the fatigue properties of LPCVD silicon nitride thin films [149]. In 

order to obtain tensile stress on the nano-scale test specimens, the mechanical-amplifier 

actuator is different from the one used previously for fatigue study of the microshutter 

array (Chapter 5). Here, the modified mechanical-amplifier actuator consists of two 

torsion bars (instead of one) and three suspended supporting beams to convert torsional 

stress into tensile stress. This device is fabricated using the same process flows discussed 

in Chapter 5, with an extra ion-milling step to obtain nano-scale test samples. All 

experiments were performed inside the focused-ion-beam (FIB) system with the micro-

needle ground electrode (Chapter 5). At the end of this chapter, the test results of fatigue 

properties for nano-scale LPCVD silicon nitride thin films are reported.  

 

6.1 Device design  

In previous studies, nano-scale single-crystal silicon and silicon dioxide doubly-

clamped beams, with the smallest dimension of 200 nm, were fabricated by field-

enhanced anodization with an atomic force microscope (AFM) [150-153]. Bending tests 

for these beams were performed using the AFM with a diamond tip mounted on a 

stainless steel rectangular cantilever to obtain Young’s modulus, fracture strength, and 

fatigue properties. This technique utilizes the high-resolution capability of an AFM in 

combination with a laser reflection setup to measurement the deflection of the bent 

stainless steel cantilever. However, preparation of the test specimens using this technique 
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is only suitable for single-crystal silicon and silicon dioxide, and the high facture strength 

of nano-scale thin films may introduce significant deformation on the diamond tip, which 

is not considered in their analytic model.  

A novel electrostatic mechanical-amplifier actuator with dimensions similar to the 

microshutter array is proposed to study the fatigue properties of LPCVD silicon nitride 

thin films; the test results at room temperature (298 K) and at 30 K are discussed in 

Chapter 5. According to the same operation principle, this device can be used for nano-

scale tensile tests with appropriate modifications. A schematic diagram of the modified 

mechanical-amplifier actuator is shown in Figure 6.1.              

 

 

 

 

 

 

 

 

 

 

In this device design, two resonators are connected serially with two common torsion 

bars to solve the limitation of limited displacement amplitude with electrostatic actuation 

at limited applied voltages, as discussed in chapter 5. When operating, electrostatic 

energy is applied to resonator 1 and this energy is transferred to resonator 2 via the 

Figure 6.1: Schematic diagram of a mechanical-amplifier actuator for nano-scale 
tensile tests.  
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common torsion bars.  The vibration of resonator 2 is then amplified by its quality factor 

when the frequency of pumped energy matches its resonant frequency. Based on this 

operation principle, the vibration amplification and amplitude of resonator 2 can be 

controlled by the frequency and amplitude of the input electrostatic energy, respectively. 

In order to prevent non-torsional movement on the torsion bars without significant energy 

loss during operation, fixed-beam 1 (three suspended beams) is utilized to increase lateral 

stiffness.   

Compared with the mechanical-amplifier actuator used in Chapter 5, this device 

consists of two torsion bars and fixed-beam 2 (three suspended beams) to achieve high 

axial stress on tensile samples. The design principles of the torsion bars and fixed-beam 2 

are discussed as follows. Consider a circular bar subjected to a pure torque T as shown in 

Figure 6.2. The bar twists and each section rotates about the longitudinal axis, which 

induces a shear stress at any point on the plane of the section. The magnitude of this 

stress is proportional to the distance from the center of the section, and its direction is 

perpendicular to the radius drawn through the point.   

 

 

 

 

 

 

 

 
Figure 6.2: A circular bar with left end fixed subjected to a pure torque T. The free 
end twists through an angle θ with point B on the surface moving to B’, which 
introduces a shear strain γ.    

θ 
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In addition to the shear stress, it has been proved that there is also longitudinal strain 

and stress and a solid circular cylinder tends to lengthen at the free end under twist [154]. 

For most applications of circular bars, neither longitudinal deformation nor stress is likely 

to be large enough to have engineering significance. However, in the case of a bar with a 

rectangular cross section, this longitudinal stress may become large (depending on the 

dimensions), and the stresses in the bar have components normal to the axis of rotation 

after twisting, which increases the torsional resistance and causes a “stiffening” effect. 

The maximum tensile stress σt and the total applied torque T for a twisted bar can be 

expressed as [124]  
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where a is half the long edge of the rectangular section, b is half the short edge, E is the 

Young’s modulus, G is the modulus of rigidity, and θ is the twist angle. In these 

equations, τmax is the maximum shear stress as discussed in (5.1), while K is a factor 

representing the effective polar moment of inertia and shown in (5.3). The first term on 

the right side of (6.2) represents the applied torque T resisted by torsional shear stress and 

the second term represents the resistance by the tensile stress. It can be seen that the 

stiffening effect due to the tensile stress is negligible for small twist angle but increases 

rapidly as θ/L increases.  

The torsion bar used in the mechanical-amplifier actuator has a rectangular cross 

section with a fixed thickness of 0.5 µm after fabrication. The width of the torsion bar 

can be designed to increase the maximum tensile stress σt with an appropriate twist angle 
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θ for a given torque T. From the equations (5.1), (5.3), and (6.1), the relationship between 

σt and a, and the relationship between K and a, can be plotted in Figure 6.3 and Figure 

6.4, respectively. The maximum tensile stress σt of the torsion bar is found to increase 

with a larger dimension in width (i.e. a in (6.1)) for a given torque T. However, a larger 

width also increases rotational stiffness significantly due to the higher values of K and a 

on the right side of (6.2) and leads to a small twist angle θ, which is difficult to measure 

during experiments. 

To increase the maximum tensile stress σt of the torsion bar and the twist angle θ 

simultaneously, a dual-bar configuration is utilized in the design of the mechanical-

amplifier actuator as shown in Figure 6.1. Two torsion bars are connected parallel via 

small cross-members. The width and the length of each cross-member are 2 µm and 4 µm, 

respectively, with a separation distance of 17 µm. This configuration increases the 

effective value of a in (6.1), while reducing the effective rotational stiffness since there is 

less material between these torsion bars to be twisted.        

The function of fixed-beam 2 is to “convert” torsional stress into tensile stress to 

tensile samples as shown in Figure 6.1. The principle is to increase the rotational stiffness 

for twisted motion but lower the longitudinal stiffness (in x-direction) for tensile stress. 

The rotational stiffness of fixed-beam 2 is complicated since the motion of fixed-beam 2 

is a combination of elongation/contraction (in y-direction) and bending movement during 

the twist of the torsion bars. Even so, the “efficiency” of fixed-beam 2 can still be 

evaluated by assuming that most of the rotational stiffness is from the 

elongation/contraction of the fixed beams and expressed as  
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Figure 6.3: The relationship between σt and a from the equations (5.1) and (6.1). 
In this figure, the applied torque T is assumed to be 0.01 N⋅m and the value of b
is equal to 0.25 µm.   
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Figure 6.4: The relationship between K and a from the equation (5.3). Here, the 
value of b is equal to 0.25 µm.   
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where Ktensile is the longitudinal stiffness, Krotational is the rotational stiffness, Wf is the 

width of fixed-beam 2, and Lf is the length of fixed-beam 2. The ratio of (6.3) can be 

found to be 9.8 × 10-5 with the dimensions of the mechanical-amplifier actuator presented 

in Table 6.1. Therefore, the torsional component can be filtered out with fixed-beam 2, 

and only tensile stress is expected to be applied to the tensile samples.                   

 

   

Torsion bar 
(µm) 

Blade region 
(µm) 

Neck region 
(µm) 

Fixed-beam 1&2 
(µm) 

Tensile sample 
(µm) 

Thickness 
(µm) 

Lt Wt Lb Wb Ln Wn Lf Wf Ls Ws T 

108 2 95 35 25 4 40.5 0.8 8 0.2 0.5 

           

 

6.2 Device preparation 

In section 5.3, the fabrication processes of the mechanical-amplifier actuator for the 

fatigue study of the microshutter array was discussed. In principle, the mechanical-

amplifier actuator used for nano-scale tensile tests follows the same fabrication process, 

with an extra nanomachining step for tensile sample preparation.  

  The nanomachining of the tensile samples was carried out using the FIB system. In 

recent years, FIB instruments have become more prevalent for specimen preparation and 

inspection in microelectronics and MEMS fabrication.  This is mainly because the FIB 

instruments permit microscopic inspection of the sample under consideration before, 

during, or after the ion-milling process via scanning ion microscopy (SIM) or scanning 

Table 6.1: Dimensions of mechanical-amplifier actuators for nano-scale tensile tests.
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electron microscopy (SEM). The direct write capability of FIB milling allows nano-scale 

fabrication without the requirement of an etch mask [155, 156].  

The FEI 620 FIB system used in our experiment is a dual beam system with ion and 

electron columns as discussed in Chapter 2. This system uses a scanning 5-30 KV 

Gallium (Ga) ion beam for milling and imaging, with a current varying from 1 pA to 

1150 pA and a spot size ranging from 8 nm to 500 nm. The tensile samples shown in 

Figure 6.1 are 1.6 µm in widths after microfabrication. A milling pattern with a desired 

width of 200 nm on the tensile samples was defined using a computer-generated 

machining template in the FIB software. The nanomachining was carried out at the ion-

beam current of 11 pA with a nominal spot size of 15 nm. The milling depth was 0.5 µm. 

The mechanical-amplifier actuator after fabrication is shown in Figure 6.5, and close 

views of the tensile samples are shown in Figure 6.6 and Figure 6.7.  

     

 

 

 

 

 

 

 

 

 

 
Figure 6.5: Micrograph of a mechanical-amplifier actuator for nano-scale tensile 
tests after fabrication.  
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Figure 6.6: Close view of the tensile samples after ion milling. The milling current 
was 11 pA with a nominal spot size of 15 nm.   

Figure 6.7: Close view of a tensile sample after ion milling. The milling current was 
11 pA with a nominal spot size of 15 nm.   
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6.3 ANSYS finite-element-analysis model 

The analytic model presented in section 6.1 is valid only for a single torsion bar under 

a pure torque. However, the configuration of the mechanical-amplifier actuator contains 

two torsion bars and fixed-beam 2 to convert torsional stress into tensile stress. Therefore, 

an ANSYS finite-element-analysis (FEA) model is required to determine the stress 

amplitude of the tensile samples during experiments.  

   The ANSYS nonlinear models created for this work are shown in Figure 6.8 and 

Figure 6.9. The first model simulates the stress distribution of the device for a given 

blade displacement with only one suspended beam as fixed-beam 2, while the second 

model uses three suspended beams as fixed-beam 2. The elements and parameters utilized 

in these models are presented in Table 6.2. Here, the stress concentrations at the ends of 

the torsion bars and tensile samples were simulated with a radius of curvature r = 2.5 µm, 

which was measured using the SEM function provided by the FIB system. Figure 6.10 

presents the maximum operating stress on the tensile samples for different blade 

displacements according to these ANSYS models.  From this figure, the tensile samples 

can be considered as structures under only axial stress and less than 1% of stress on these 

samples is not tensile even at high stress amplitude. Additionally, the stress amplitude on 

the tensile samples increases if one suspended beam is used as fixed-beam 2.   

 

 

Element Density 

(kg/m3) 

Young’s Modulus 

(GPa) 
Poisson’s ratio 

Residual stress 

(MPa) 

Solid–92/Solid-187 3000 [32] 260.5  0.25  183.4 

Table 6.2: Elements and parameters of the mechanical-amplifier actuator utilized in 
ANSYS FEA model. The Young’s modulus and the residual stress of the silicon 
nitride thin films are obtained from Chapter 3 and Chapter 4.    
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Figure 6.8: ANSYS FEA model used to calculate maximum stress on tensile 
samples with one suspended beam as fixed-beam 2 for a given blade 
displacement. Circles in this figure represent a fixed boundary.   
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Figure 6.9: ANSYS FEA model used to calculate maximum stress on tensile 
samples with three suspended beams as fixed-beam 2 for a given blade 
displacement. Circles in this figure represent a fixed boundary.   
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One important phenomenon shown in Figure 6.10 is that the tensile samples are under 

longitudinal stress even without any blade displacement. This behavior can be explained 

by the balance of residual stress/force on asymmetric structures after release. A 

simplified analytic model can be established for further understanding. Figure 6.11 

illustrates an asymmetric structure with a wider strip connected with two narrow necks. 

Once the structure is released from a substrate, the forces due to residual tensile stress are 

not equal at the interface of these two widths and the wide suspended strip (width W1) 

will pull on the thinner necks (total width W2), resulting in a deflection δ to the left. The 

Figure 6.10: Maximum operating stress of the mechanical-amplifier actuator 
(MA) on the tensile samples with different blade displacements from ANSYS 
FEA models. MA_1 represents the MA with one suspended beam as fixed-beam 
2 and MA_2 is the MA with three suspended beams as fixed-beam 2. Stress 
intensity in the legend is the total stress applied to the tensile samples, while 
tensile stress includes only the longitudinal stress.      
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tensile stress σt on the neck regions can be calculated based on the balance of the forces 

after the deflection δ on the structures and expressed as  
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where W1 and L1 are the width and length of the wide strip, W2 and L2 are the width and 

length of the narrow neck, and σ is the residual tensile stress. One assumption in this 

model is that it neglects the influence of the Poisson’s ratio on the wide strip, which may 

not be valid for the structure with dimensions similar in width and length.                 

 

 

 

 

 

 

 

 

 

 

6.4 Experimental results  

Before testing the mechanical-amplifier actuator, ion milling was performed to 

remove two suspended beams and keeping only one as fixed-beam 2 (Figure 6.12) since 

this configuration can increase stress amplitude on the tensile samples. The mechanical-

amplifier actuator used in this chapter follows the same testing procedures; the detailed 

L1 L2 

W1 
W2/2 

δ 

Figure 6.11: Asymmetric structure with a wider strip on the left side and two narrow 
necks on the right side.   
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experimental techniques can be found in Chapter 5. Figure 6.13 shows a mechanical-

amplifier actuator with resonator 2 at its first resonant mode. In this experiment, the input 

voltages to resonator 1 were 14.1 Vrms and the resonant frequency of resonator 2 was 

found to be 38.09 KHz. The experimental results from the stress-life testing are shown in 

Figure 6.14. When the maximum operating stress exceeded 4.3 GPa, the mechanical-

amplifier actuators exhibited time-delayed failure. On the other hand, tensile samples 

with testing stress amplitude below 3.8 GPa survived cyclic loadings up to 108 cycles. An 

example of broken tensile samples after cyclic loadings is shown in Figure 6.15. A crack 

initiated at the center of the upper tensile sample in this figure. Once the upper tensile 

sample was broken, all axial stress was applied to the lower tensile sample and broke it 

immediately. The curl-down broken tensile sample is due to release of residual stress, 

causing a non-zero axial stress before testing as discussed in the last section.   

 

Figure 6.12: Micrograph of a mechanical-amplifier actuator for nano-scale 
tensile tests with one suspended beam as fixed-beam 2.  
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Figure 6.13: Micrograph of a mechanical-amplifier actuator for nano-scale 
tensile tests with resonator 2 at its first resonant mode.  
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Figure 6.14: Stress-life testing data for nano-scale tensile samples. The circle with a 
horizontal arrow indicates devices that did not fail under cyclic loading up to 108

cycles. 
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The resonant frequency of the mechanical-amplifier actuator was used to monitor the 

stiffness of the tensile samples during cyclic loadings, and was observed to decrease 

monotonically with test time as shown in Figure 6.16. The change in resonant frequency 

indicates that the tensile samples become more compliant during the test. This behavior 

strongly suggests that the failure of the tensile samples occurs as a result of the 

progressive accumulation of damage. In addition, a significant decrease of the resonant 

frequency was found at the time of failure due to decrease of the effective spring constant 

of resonator 2.  

 

 

 

 

 

Figure 6.15: Micrograph of tensile samples after cyclic loading. 
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6.5 Discussion 

The mechanical-amplifier actuators used in this chapter were tested in the same 

condition (Pressure: 10-6 Torr, Temperature: 23 ± 1 °C) as the ones utilized in Chapter 5. 

Comparing both test results, the nano-scale tensile samples displayed lower fatigue 

resistance. However, it is difficult to conclude any size effect on the fatigue property at 

this point since the difference of pre-stress status, loading mechanisms, and surface 

conditions between these two devices can have a significant effect on the test results.  

The residual tensile stress of the silicon nitride thin films induced a 1.85 GPa tensile 

stress on the nano-scale tensile samples before any blade displacement. The existing pre-

stress enhances the average stress amplitude and the tensile samples did not return to 

zero-stress state during experiments. Two analytic models proposed by Gerber and 
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Figure 6.16: Variation of resonant frequency with time for a mechanical-amplifier 
actuator during fatigue testing (Test cycle: 108 cycles at stress amplitude 4.4 GPa).  
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Goodman [78, 124] point out that the fatigue strength can be reduced significantly due to 

a nonzero mean stress. In addition, different loading (torsional versus axial) mechanisms 

may also change the fatigue life of the test structures. The surface condition of test 

structures is another critical factor that has been demonstrated to induce premature failure 

[138]. Different device preparation methods will change the surface roughness, which 

can locally increase the stress amplitude. This situation becomes severe on a nano-meter 

scale since the test structure in this region has higher surface-to-volume ratio. As the 

nano-scale tensile samples in this study were fabricated using ion milling instead of 

microfabrication, damages and gallium implantation on the surfaces and the sidewalls of 

the tensile samples are inevitable. Therefore, the fatigue life testing results in this chapter 

may not represent the natural behavior of nano-scale silicon nitride thin films. Further 

study on the size effect can be performed using the modified mechanical-amplifier 

actuators prepared by micro-/nano-fabrication with tensile samples ranging from micro-

meter scales to nano-meter scales to eliminate these factors.      

 

 

6.6 Summary   

The chapter presents the design, fabrication, and testing of a modified mechanical-

amplifier actuator for fatigue study of LPCVD silicon nitride thin films on a nano-meter 

scale. The design principle is to utilize a longitudinal stress produced from two rotated 

torsion bars. The dual-bar configuration used here can increase the longitudinal stress 

while reducing the rotation stiffness at the same time. To obtain tensile stress on the 

tensile samples, one suspended beam (fixed-beam 2) is connected between the torsion 
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bars and the tensile samples. The high rotational spring constant of this beam can then be 

used to eliminate the torsional stress. Therefore, only tensile stress is applied to the 

tensile samples, and the amplitude of this stress can be controlled by the frequency and 

the amplitude of the input electrostatic energy.   

The modified mechanical-amplifier device is tested inside the FIB system and a time-

delayed failure is observed on the tensile samples with stress amplitude over 4.3 GPa. 

Comparing the experimental results on the nano-meter and micro-meter scales, the lower 

fatigue resistance of the nano-scale tensile samples is attributed to a higher pre-stress and 

FIB-induced damage on the test structures.  

The advance of MEMS and NEMS technologies has given impetus for researchers to 

develop new devices and systems for different applications. Unfortunately, the earlier 

success of these technologies has led the designers to a misconception that the most 

important failure mode for design is based on the fracture behavior of structural materials. 

Due to this effect, all kinds of reliability problems have been recognized during the 

operation of these devices, and become an important factor that hinders the 

commercialization of MEMS/NEMS products.  Design for reliability, actually, is a 

critical concern that needs to be considered at the early stage of MEMS/NEMS designs. 

From the studies of Chapter 5 and Chapter 6, operating environment, device preparation 

methods, pre-stress status, and loading conditions are found to have considerable 

influence on the time-dependence degradation of structural materials. Clearly, the 

availability of stress-life fatigue data and an understanding of fatigue mechanisms at 

different testing conditions remain important to improving the performance of these 
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devices and to evaluating their long-term durability. More research work for different 

MEMS/NEMS materials is expected to be done to address this problem. 
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CHAPTER 7 

CONCLUSIONS  

 

 

 
7.1 Summary of current research 

This thesis presents new test devices (T-shaped cantilevers, microgauge sensors, and 

mechanical-amplifier actuators) to characterize mechanical properties and reliability of 

silicon nitride thin film materials at room and cryogenic temperatures using FIB-based 

measurement techniques for the first time. This research includes design, modeling, 

fabrication, and (electrostatic, mechanical, and thermal) testing of these devices. 

Furthermore, a helium-cooled cryogenic measurement setup installed inside a FIB system 

is developed to provide cryogenic temperatures down to 20 K. As the uncertainty of 

mechanical properties and reliability of MEMS-based thin film materials is still a critical 

factor that hinders the commercialization of MEMS products, the research results of this 

thesis are crucial not only for the development of MEMS devices in space applications 

but also for other MEMS devices operating in both room-temperature and low-

temperature environments. 

This thesis research can be summarized and significant contributions of each chapter 

are described accordingly. A comprehensive review of MEMS technologies is presented 

in Chapter 1 with emphasis on the development of microshutter arrays, reliability and 

failure mechanisms in MEMS devices, as well as the current techniques for mechanical 

property characterization. Based upon information available in the literature, this thesis 



 141

provides a new methodology for understanding mechanical behaviors of MEMS devices 

at cryogenic temperatures where the objectives of this research are stated.  

A cryogenic measurement setup installed inside a FIB system, which can provide 

cryogenic temperatures down to 20 K, is discussed in Chapter 2. To obtain accurate 

temperature measurement, a thin-film thermal resistor with a sensitivity of 7.85 Ω/K is 

fabricated with the test devices as an integrated temperature sensor, and an equivalent 

thermal model is established according to the temperature measurement and thermal 

capacity of each component utilized in this setup.  Combined with the unique capabilities 

of the FIB system, a micro-repair technique for the microshutter arrays and stress analysis 

of multilayer structures are also demonstrated.  

In Chapter 3, a new test device, T-shaped cantilever beam, is introduced for Young’s 

modulus, Poisson’s ratio, and fracture strength measurement at room temperature and at 

30 K. Resonant frequencies of the T-shaped cantilever with different “milling masses” 

are measured to obtain the Young’s modulus and the beam thickness simultaneously. The 

“milling-mass” approach used here improves the accuracy for measuring the thin-film 

thickness, which is a critical parameter for such a resonant technique. The fracture 

behavior of silicon nitride thin films is characterized using a bending test combined with 

a finite-element-analysis model.  

Chapter 4 presents a passive microgauge sensor to characterize residual stress and 

coefficients of thermal expansion (CTE) for silicon nitride thin films. Based on the 

mechanism of displacement amplification, this sensor can enhance the capability for 

measuring tiny residual/thermal strains. Both the average value and a local knowledge of 

the residual stress and CTE can be obtained using the microgauge sensor. Furthermore, 
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the measurement result is independent of thin-film thickness and process variations, 

which are key limiting factors for other measurement methods and techniques reported 

previously.  

Chapter 5 presents a novel electrostatic actuator, the so-called mechanical-amplifier 

actuator, with dimensions similar to the microshutter element to understand the fatigue 

property of the microshutter array. This device is operated based on the mechanism of 

vibration amplification to avoid high actuation voltages. The stress level on the test 

device can be easily controlled by the frequency and amplitude of the input voltages. 

Furthermore, unlike the slow magnetic actuation of the microshutter arrays, an 

accelerated fatigue test can be performed due to the relatively high resonant frequency of 

the mechanical-amplifier actuator.    

In Chapter 6, the mechanical-amplifier actuator is modified to perform direct tensile 

tests on nano-scale silicon nitride test structures. The design principle is to utilize a 

longitudinal stress produced from two rotated torsion bars. The dual-bar configuration 

used here is to increase the longitudinal stress while reducing the rotation stiffness at the 

same time. In addition, one suspended beam (fixed-beam 2) is connected between the 

torsion bars and the tensile samples, which can eliminate the torsional stress on the 

tensile samples.  

The microshutter array, a programmable aperture mask on NASA’s James Webb 

Space Telescope, will be the first MEMS device operating in outer space, and require 

reliable cryogenic operation at 30 K over a 10 year mission lifetime without repair after 

launch. Therefore, the challenges facing the development of the microshutter array are to 

understand the mechanical behaviors and the possible failure mechanisms at this reduced 
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temperature. This thesis investigates the mechanical properties and reliability of low-

stress LPCVD silicon nitride thin films, the structural materials of the microshutter arrays, 

at cryogenic temperatures. The research results provide important parameters for the 

design, fabrication, and characterization of the microshutter array. The presented device 

design and experimental techniques in this thesis are suitable for measurement in a large 

range of temperatures (from room to 20 K) and can be easily extended to characterize a 

series of MEMS-based thin film materials.  

 

7.2 Future work 

The current study focuses on the development of new test devices and experimental 

techniques for mechanical property and reliability characterization. Further investigations 

on fundamental material properties, such as defect distributions in thin films, are required 

to understand their influence on the measurement results. Moreover, statistical modeling 

providing a prediction of probability on mechanical properties needs to be developed. In 

Chapter 6, we present a test device (modified mechanical-amplifier actuator) to perform 

direct tensile tests on nano-scale silicon nitride test structures at room temperature. This 

device can also be used to study the fatigue properties of nano-scale silicon nitride thin 

films at cryogenic temperatures. For the testing of the mechanical-amplifier actuator, the 

usage of the micro-needle ground electrode limits its applications to other researchers. A 

new test device with an integrated ground electrode was designed and fabricated as 

shown in Figure 5.19. Further research effort can made to include a sensing mechanism 

in this device to measure the displacement of resonator 2.           
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Based on this research, fracture and fatigue failures of the torsion bar on the 

microshutter array are not expected to occur during its mission lifetime. From the 

magnetic actuation testing of the microshutter array conducted at NASA Goddard Space 

Flight Center, the dominant failure mode was found to be the missing of the shutter 

blades from the neck regions, where the maximum stress is not anticipated for the 

designed actuation movement (pure rotation of the shutter blades). Figure 7.1 is a 

micrograph showing the microshutter elements before actuation. This failure has been 

recognized as a result of in-plane twisted motion of the shutter blades during the 

magnetic actuation. Further analysis of the direction of magnetic field on the cobalt/iron 

thin films is required to eliminate unwanted non-torsional movement. Stiction between 

the shutter blades and the side-wall vertical electrodes was another observed failure 

mechanism, which leads to the shutter elements in a permanent-open status. Dielectric 

charging of the silicon nitride thin films and residual magnetic field on the cobalt/iron 

materials may be the causes of such “failed closed” cases. Process-related failures and 

packaging-related failures definitely still need to be carefully monitored through the 

whole process. Extensive testing and failure analysis will be performed before the final 

deployment of the microshutter array to outer space.  

For the mechanical property and reliability characterization of thin film materials, 

several testing apparatuses and techniques have been proposed. However, there are no 

standard testing methods that can provide accurate and easy measurements yet. In 

addition, the influence of fabrication processes, size effect, and stress/loading conditions 

to the mechanical properties of test structures is not clear. Current solution to address 

these uncertainties is to conduct the measurement on test devices with similar fabrication 



 145

processes, element sizes, and stress conditions to the proposed MEMS devices. As a 

result, the measurement data is only valid for the development of a specific device and is 

difficult to be applied for other designs in most cases. To understand the influence of 

these factors, more experimental works need to be done with careful design of test 

devices to eliminate other unknown properties. Standard testing methods, which may 

integrate MEMS sensors and actuators with test devices to form a complete system, must 

be developed. Through standardized testing procedures, measured data can be shared and 

advances in MEMS applications will thereby be accelerated.           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.1: Micrograph of microshutter elements. From the magnetic actuation 
testing results of this device, the dominant failure mode is the missing shutter 
blades from the neck regions. 

Neck region 

Shutter blade 
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