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This work explores symbolic and numeric solutions to the Lyapunov matrix

equation as it applies to performance-based assessment of base-isolated structures

supplemented by modified bang-bang control. Traditional studies of this type rely on

numeric simulations alone. This study is the first to use symbolic analysis as a means

of identifying key “cause and effect” relationships existing between parameters of the

active control problem and the underlying differential equations of motion. We show

that symbolic representations are very lengthy, even for structures having a small

number of degrees of freedom. However, under certain simplifying assumptions,

symbolic solutions to the Lyapunov matrix equation assume a greatly simplified

form (thereby avoiding the need for computational solutions).
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Regarding the behavior of the bang-bang control strategy, further analysis

shows: (1) for a 1-DOF system, the actuator force acts very nearly in phase, but in

opposite direction to the velocity (90◦ out of phase and in opposite direction to the

displacement), and (2) for a wide range of 2-DOF nonlinear base-isolated models,

bang-bang control is insensitive to nonlinear deformations in the isolator devices.

Through nonlinear time-history analysis, we see that one- and two-DOF models are

good indicators of behavior in higher DOF models.

An analytical framework for system assessment through energy- and power-

balance analysis is formulated. Computational experiments on base-isolated systems

are conducted to identify and quantitatively evaluate situations when constant stiff-

ness bang-bang control can significantly enhance overall performance, compared to

base isolation alone, and assess the ability of present-day actuator technologies to

deliver actuator power requirements estimated through simulation.
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Chapter 1

Introduction

1.1 Background

The roots of structural control in civil engineering can be traced back to

aerospace-related problems of tracking and pointing of spacecraft and rockets. Start-

ing with the conceptual study by Yao [98] in 1972, the technology moved into the

field of civil engineering. The field continued to mature quickly, and in 1990,

“. . . in recognition of the growing worldwide awareness by civil engineers
of the potential of active protective systems for earthquake hazard mit-
igation . . . ” [33]

the U.S. Panel on Structural Control was formed. The panel sponsored the U.S.

National Workshop on Structural Control held at the University of Southern Cal-

ifornia in 1990. Subsequent meetings including the Japan National Workshop, the

U.S.-Italy Workshop in 1992, and an international workshop held in Hawaii in 1993.

One of the most significant events took place at the Tenth World Conference on

Earthquake Engineering in Madrid, Spain in 1992 where several technical sessions

were dedicated to structural control. The International Association for Structural

Control (IASC) was formed the next year. The efforts of this governing body led

to the First World Conference on Structural Control in 1994 where 337 participants

from 15 countries met to present and discuss the results of their research. Additional

activity in the area of structural control include the 10th and 11th World Confer-

ences on Earthquake Engineering, held in Madrid and Acapulco, respectively, the

First European Conference on Structural Control in Barcelona, Spain, the Second

1



International Workshop on Structural Control, which was held in Hong Kong in

1996, the Second World Conference on Structural Control held in Tokyo in 1998,

the Third World Conference on Structural Control held in Como, Italy in 2002.

According to Spencer and Nagarajaiah [68], as of July 2003, there have been over 40

buildings that have employed feedback control strategies (see table 2.2). The vast

majority of these have been hybrid control systems.

1.2 Motivation

To assist engineers in the design of base-isolated structures, recent AASHTO

and UBC design codes [1, 86] contain code provisions prescribing a series of standard

performance levels for design, together with acceptable levels of structural and non-

structural damage, and suggested methods of analysis for performance evaluation.

Under minor and moderate earthquake loadings, for example, base-isolated struc-

tures should suffer no structural damage. For design earthquakes corresponding to

the maximum credible ground motion for the site, the main structural members are

expected to remain essentially elastic, with nonlinear deformations (i.e., damage)

restricted to the isolation devices. Simplified methods of design for base-isolated

structures have been proposed by Turkington et al. [83, 82], Antriono and Carr

[3, 2], Mayes et al. [48], and Ghobarah and Ali [30], among others. While the

overall benefits of base isolation systems are well known [2, 3, 30, 48, 83, 82, 84],

there is a mounting body of evidence that base isolation may not always provide

adequate protection [99]. One concern is the possibility of localized buckling of the

isolator devices and/or collapse of the structure caused by truly excessive lateral

displacements of isolator elements (details on the appropriate analysis procedures

can be found in Naeim and Kelly [49]). A second area of concern, raised by John-

son et al. [36] and Spencer et al. [68], points to the inability of base isolation to
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protect structures against near-source, high-velocity, long-period pulse earthquakes.

In similar studies, Hall et al. [31] and Heaton et al. [32] express concerns about

excessively large base drifts caused by strong, near-fault ground motions.

Base isolation is one of the most successful methods for protecting structures

against seismic ground motion; however, due to the simplicity and passive nature of

base isolation mechanisms, coupled with the unpredictable nature of future ground

motions, base isolation is not a guaranteed means of effective protection during

a wide range of seismic events [99]. One complicating factor is the sensitivity of

“optimal designs” to localized site effects – an isolation system designed for a El

Centro-type earthquake typically will not be optimal for a Northridge-type earth-

quake. Due to the uncertainty in ground motion prediction, there is a need for an

isolation system that is adaptable. Johnson et al. [36] and Spencer et al. [68] point

out that recently there has been significant concern regarding the effectiveness of

base isolation to protect structures against near-source, high-velocity, long-period

pulse earthquakes. Such earthquake motions are difficult to accommodate. For ex-

ample, a base-isolated structure in one region of Los Angeles that may have readily

survived the 1994 Northridge earthquake, may have well been destroyed if it were

located elsewhere in the region [47]. Also, Housner et al. [33] and Reinhorn et

al. [58] observe that since base isolation generally reduces the interstory drift and

absolute acceleration of the structure at the expensive of large base displacement,

the combination of active control with base isolation is able to achieve both low

interstory drift, and at the same time, limit the maximum base displacement with

a single set of control forces. Also, base-isolated systems are limited in their ability

to adapt to changing demands for structural response reduction. By supplementing

base isolation with a active control mechanisms, the hope is that higher levels of

performance will be possible without a substantial increase in cost.
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In a first step toward addressing these issues (and potentially achieving a

higher level of performance), researchers have proposed systems where the main iso-

lation devices are supplemented by active control mechanisms [58, 33]. Bang-bang

control is a natural choice for the implementation of such a system. While numerical

algorithms exist for solving the Lyapunov matrix equation, systematic procedures

for modeling base-isolated structures, supplemented by bang-bang control are still

lacking [33]. Unresolved research questions include: What kinds of “performance

improvement” are possible with active components? Are there earthquakes whose

ground motion characteristics make isolation an unsuitable option for design? What

are the limitations of present-day active component technologies? Answers to these

questions are important because of their practical ramifications to design – base iso-

lation alone is capable of reducing both the interstory drift and absolute accelerations

structures at the expense of slight increases in base displacement. Looking ahead,

we foresee base isolation supplemented by active control being able to achieve simul-

taneously low interstory displacements, low absolute accelerations, and controlled

maximum base displacements [33, 68].

1.3 Equation of Motion

The well known general equation of motion for a multi-degree of freedom

system subject to an earthquake load and external active controlling forces is as

follows:

Mẍ(t) + Cẋ(t) + Kx(t) = Hu(t) − Mrẍg(t). (1.1)

In equation 1.1, x(t) is a n-dimensional vector representing the relative displace-

ments of the n degrees of freedom. M, C, and K are the mass, damping, and

stiffness n x n matrices, respectively. ẍg(t) represents the earthquake ground ac-
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celeration, H is an n x p matrix that designates the location of the controller(s),

while u(t) is a p-dimensional vector that represents the control force of p-number of

controllers.

The first-order differential equation, or state-space, form of equation 1.1 is

given by the following:

ż(t) = Az(t) + Bu(t) − Wẍg(t). (1.2)

In equation 1.2,

z(t) =

[

x(t)
ẋ(t)

]

; (1.3)

A =

[

0 1
−M−1K −M−1C

]

; (1.4)

B =

[

0
M−1H

]

; (1.5)

W =

[

0
r

]

. (1.6)

While most modern control makes use of the first-order differential equation 1.2, this

proposal will try wherever possible to use the more familiar second-order differential

equation of motion shown by equation 1.1. Using the second-order form of the

equation of motion has the following advantages:

1. Numerical iterative time-step methods for solving equation 1.1 are well estab-

lished. Numerical methods such as Newmark’s time step method have been

shown to be either conditionally stable or absolutely stable dependent on the

assumption of the behavior of acceleration between time steps.
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2. Several numerical algorithms exist for solving for the unknowns of the system in

the form of equation 1.1 that has a property (i.e., stiffness) nonlinearity. The

force-displacement behavior of base-isolated structures subjected to moderate

to severe ground motion loadings is expected to be nonlinear. We will use

existing numerical algorithms for solving for the time-history of base-isolated

structures subjected to earthquake loads.

3. The second-order form has a representation that is closely aligned to the physical

intuition of experienced structural designers. The second-order form facilitates

valuable insight as to how adding/modifying the active control force effects the

behavior of the structure.

1.4 Bang-Bang Control Law

One of the well-known control laws in optimal control theory is the bang-

bang control law [11, 92, 93]. The key characteristic of optimal bang-bang control

is a control force, u(t), that switches from one extreme to another (i.e., the control

force is always exerting its maximum force in either the positive or negative direc-

tion). Since the control force always takes on maximum values, the full capabilities

of the actuators can be exploited. Numerical simulation studies have shown that

bang-bang control can provide better control efficiency than the well-known Linear

Quadratic Regulator (LQR) Control Law [93].

Control Objective. The control objective for bang-bang control is to minimize:

J =
1

2

∫ tf

0

(

zT (t)Qz(t)
)

dt. (1.7)

where z(t) is a 2n x 1 state vector of system displacements and velocities (for

structural control, the state variables represent the displacements and velocities at
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the n-degrees of freedom), and Q is a positive semi-definite matrix whose content is

left for the designer to choose. The well known optimal control solution [11, 92, 93]

for a system in the form of equation 1.2 and which minimizes equation 1.7 is:

u(t) = −umaxsgn
[

BTλ(t)
]

; (1.8)

where λ(t) is known as the costate vector that is obtained by solving the following

differential equation:

λ̇(t) = −ATλ(t) − Qz(t); (1.9)

and umax is a scalar that represents the maximum actuator control force. The other

matrices in equations 1.8 and 1.9 are as previously defined. As part of the time

history calculation of base-isolated structures influenced by bang-bang active con-

trol, equation 1.9 must be solved at each time step. Numerically stable integration

algorithms such as the discrete implicit Runge-Kutta (DIRK2) method can be used

to accomplish this task. Theoretical considerations can guide the selection of initial

conditions for SDOF systems. However, for all other problems of practical impor-

tance, solutions to equation 1.9 are complicated by a lack of theoretical guidance

for choosing the differential equation’s initial conditions. An incorrect assumption

(on the initial conditions) will lead to a numerical solution with time-varying char-

acteristics that are correct, but is out of phase with the “correct optimal control

solution.” This may lead to an active controlled response that is worse than an

uncontrolled response! We also note that the computational effort needed to solve

1.9 may be unwarranted, especially when the considerable uncertainties associated

with the modeling of seismically-resistant structures (e.g., ability to predict details

of future ground motions, limitations of damping models) are taken into account.
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1.5 Modified Bang-Bang Control Law

To avoid solving equation 1.9 at each time step for the entire time history

response, a modified bang-bang control law is proposed by Wu and Soong [93].

Control Objective. Instead of minimizing equation 1.7, the objective of modified

bang-bang control is to minimize the derivative of the following generalized energy

function:

V [z(t)] = zT (t)Sz(t). (1.10)

Equation 1.10 is also referred to as the Lyapunov function, where the S matrix is

the solution to the following Lyapunov matrix equation:

ATS + SA = −Q. (1.11)

Taking the time derivative of equation 1.10 and substituting in the closed-loop state

equation leads to the following equation results [37, 93]:

V̇ [z(t)] = −zT (t)Qz(t) + 2uT (t)BTSz(t). (1.12)

Close inspection of equation 1.12 indicates that in order for this equation to be a

minimum for all possible state variables, z(t), the second term on the right-hand

side of equation 1.12 should result in a negative scalar for all possible z(t), and

moreover, u(t) must be set to a maximum, say umax. An appropriate choice for u(t)

that fulfills these two criteria is:

u(t) = −umaxsgn
[

BTSz(t)
]

. (1.13)

This selection of u(t) minimizes the derivative of the Lyapunov function at each
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time step, and hence, also minimizes the Lyapunov function itself (equation 1.12 at

each time step of the response).

Equation of Motion. The effect of modified bang-bang control on the second-

order differential equation of motion for a seismically-resistant structure is obtained

by substituting equation 1.3 into equation 1.13, and then substituting the resultant

equation into equation 1.1. The equation of motion is as follows:

Mẍ(t) + Cẋ(t) + Kx(t) = −Humaxsgn
[

BTS

(

x(t)
ẋ(t)

)]

− Mrẍg(t); (1.14)

where the matrix, S, is the 2n x 2n matrix solution to the Lyapunov matrix equation

given in equation 1.11 and B is a 2n x p matrix as defined by equation 1.5.

Reference to “Bang-Bang Control” in This Dissertation. For the remainder

of this dissertation, solutions to the Lyapunov equation for bang-bang control will

be simply referred to as bang-bang control.

Linear Properties of the Lyapunov Matrix Equation. The multi-objective

design of bang-bang control strategies is simplified by noting that for a given linear

system, matrix A is fixed and matrix S is linearly dependent on Q. In other words,

given two Lyapunov matrix equations:

ATS1 + S1A = Q1; (1.15)

and

ATS2 + S2A = Q2; (1.16)

linearity of the Lyapunov matrix equations with respect to S implies:
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AT (aS1 + bS2) + (aS1 + bS2)A = aQ1 + bQ2. (1.17)

where a and b are arbitrary coefficients. A proof of the linear matrix properties of

the Lyapunov matrix equation is given by Belanger [10].

Trade-offs between our two control objectives may be investigated by solving

equation 1.17 with a = 1 and b = 0 and with a = 0 and b = 1. The solution matrices

S1 and S2 may be scaled to obtained any desired combination of a and b.

Observation Regarding the BTS Matrix Product. Consider the matrix prod-

uct BTS for an n degree of freedom system. Since B has dimensions 2n x p and S

has dimensions 2n x 2n, the matrix product BTS has dimensions p x 2n. Since, by

definition, the upper half of the B matrix is a n x p matrix of zeros, at most, only

terms in rows n + 1 through 2n of S make any contribution to the matrix product

BTS. We will employ this observation in our symbolic analysis of the inner workings

for the bang-bang active control strategy.

1.6 Energy-Based Bang-Bang Control

From equations 1.11 and 1.13, it is evident that Q plays a central role in

the bang-bang control strategy. It is therefore somewhat surprising that state-of-

the-art procedures for structural control design tend to be ad hoc, letting iterative

“trail and error” procedures and mathematical convenience drive the selection of

terms in Q over first principles of engineering. While linear quadratic regulator

(LQR) control is used extensively in control systems designed for structural control

applications, the literature is scare in guidelines and justification for selection of

design parameters Q (or R). Kailath [37] (see page 219) states that the choice of

the quantities is more of an art than science and is being further investigated. Both
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Belanger [10] (see pg. 305) and Connor [21] (see pg. 603) refer to perturbing terms

in the weighing matrices until a desired result is obtained. Cai et al. [13] (see pg.

1653) uses the LQR method for comparison to their proposed sliding-mode bang-

bang control method. In the LQR formulation, Cai et al. [13] sets the diagonal,

elements of Q as relative, arbitrary values, and the off-diagonal terms simply to

zero.

A key tenet of our work is that the terms in Q should be selected so that

the bang-bang control strategy has a well defined physical meaning. Wu, Soong,

Gattulli, and Lin [94] suggest that under the LQR performance criteria, vibratory

energy within the structure may be minimized by choosing Q to be one of the

following options:

Q =

[

0 0
0 M

]

;Q =

[

K 0
0 0

]

;Q =

[

K 0
0 M

]

. (1.18)

For the design of base-isolated structures supplemented by active control, distribu-

tions of structural stiffness, together with system displacements, determine quan-

tities of internal energy present within portions of the structure. A complicating

factor is the heterogeneous role played by elements within the structure. While ele-

ments in the system superstructure are expected to remain essentially elastic (and,

therefore, undamaged), the base isolation elements are expected to protect the su-

perstructure by deforming well into the inelastic range without losing strength. To

capture this duality, Austin [5, 8, 9] and Takewaki [80] suggest that overall input en-

ergy be partitioned into two parts: (1) input energy directed to the main structural

system, and (2) input energy directed to the isolation devices. This energy-based

approach to bang-bang control is valid because for the design of base-isolated struc-

tures supplemented by active control, distributions of structural stiffness, together

with system displacements, determine quantities of internal energy present within
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portions of the structure. Internal energy increases in proportion to the square of

the displacements – hence, indirectly, internal energy is a measure of displacements,

which in turn, is related to peak displacements and the likelihood of non-structural

and structural damage. Models of structural performance need to capture force-

displacement nonlinearities in the isolation devices.

1.6.1 Minimization of Superstructure Internal Energy

Since the relative displacement of the endpoints of a structural element are

proportional to the square root of internal energy within the element, a reasonable

control objective is minimization of the internal energy in the superstructure (i.e.,

everything except the base isolation devices).

Example 1. Internal Energy for the Superstructure of a Two Story Shear

Structure. In mathematical terms, the internal energy in a single element of stiff-

ness k is given by the following equation:

Element I.E.(t) =
1

2
k (x2(t) − x1(t))

2 =
1

2

(

x1(t), x2(t)
)

[

k −k
−k k

](

x1(t)
x2(t)

)

;

(1.19)

where x1(t) and x2(t) represent the end displacements of nodes 1 and 2, respectively.

Now lets consider the 2-DOF system shown in Figure 1.1. The superstructure and
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base isolation systems have lateral stiffness k, and γk, respectively. Typically γ will

lie in the interval 0.0-0.15. The internal energy of the superstructure (element 2)

can be minimal by choosing Q as:

Q =











k −k 0 0
−k k 0 0
0 0 0 0
0 0 0 0











. (1.20)

Substituting equation 1.20 into equation 1.7 and rearranging terms gives the follow-

ing expression for J :

J =
1

2
k
∫ tf

0
(x1(t) − x2(t))

2 dt; (1.21)

which is simply the integral of the internal energy in element 2 over the time history

of the structure.

For bang-bang control, substituting equation 1.20 into equation 1.12 leads

to the following equation:

V̇ [z(t)] = k(x1(t) − x2(t))
2 + 2uT (t)BTSz(t). (1.22)

The first term on the right-hand side of equation 1.22 is an energy term correspond-

ing to double the amount of internal energy in element 2 at any time, t. Physical

considerations dictate that the second term on the right-hand side of equation 1.22

must also be in terms of energy. Since the actuator force, u(t), is present in equation

1.22, this term may be thought of as the work done by the actuator force(s) on the

structure at any time, t.

13



1.6.2 Base Isolator Internal Energy

Because base isolator elements are designed to exhibit nonlinear hysteretic

behavior without a loss of strength occurring [1, 59, 66], large base displacements are

expected during severe earthquake loadings. From a performance viewpoint, how-

ever, truly excessive lateral displacement of the isolator elements should be avoided

because they can lead to localized buckling of the isolator devices and/or collapse of

the structure (details on the appropriate analysis procedures can be found in Naeim

and Kelly [49]). Control of peak displacements must be balanced against a need for

the base isolators to yield during an earthquake event and, therefore, do plastic work

and dissipate energy. When the ground motions cease, ideally, permanent, plastic

deformation of the isolator devices will be close to zero – indeed, we hope that the

active control strategy and actuators will work towards this objective.

Example 2. Internal Base Isolator Energy for a Two Story Shear Struc-

ture. These performance criteria can be addressed indirectly through control of

internal energy in the base isolators. Assuming that base isolators will be firmly

attached to the ground (with full fixity), the internal energy is given by the following

equation:

Base Isolator Element Internal Energy(t) =
1

2
γkx1(t)

2; (1.23)

where γk is the lateral stiffness of the base isolator element and x1(t) represents the

base isolator element degree of freedom that undergoes a displacement relative to

the displacement of the ground. To minimize the internal energy in the base isolator

(element 1) of the system shown in Figure 1.1, an appropriate choice for Q is:
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Q =











γk 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0











. (1.24)

Substituting equation 1.24 into equation 1.7 gives an expression for J that is the

integral of the internal energy in the base isolator (element 1) over the time history

of the structure.

For the bang-bang control case, substituting equation 1.24 into equation

1.12 gives an expression for V̇ [z(t)] that represents the amount of internal energy in

the base isolator (element 1) and a second energy term that represents the amount

of work done on the structure by the actuator(s).

1.7 Research Objectives and Scope

Looking ahead, we envision performance-based design methods that will pro-

vide engineers with guidance in selecting appropriate control objectives and analysis

procedures for base isolated buildings and bridges supplemented by active control.

This vision is more likely to be realized if designers are provided with guidance on

the performance capabilities and cause-and-effect relationships governing the active

control. A key tenet of our work is that terms in the control design matrix (Q)

should have well defined physical meaning, thereby opening a pathway for iden-

tifying and understanding basic cause-and-effect mechanisms that might exist in

the implementation of passive/active base isolation systems. Wu, Soong, Gattulli,

and Lin [94] suggest, for example, designing Q so that energy is minimized in the

structure.

In a departure from previous research efforts [5, 59, 66, 83, 82, 93], and

in an attempt to bridge this gap, this dissertation explores three avenues of inves-
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tigation in the hope of better understanding the potential benefits of bang-bang

control mechanisms as a supplement to performance-based design of base-isolated

structures. We are particularly interested in the role that symbolic and numeric

analysis procedures associated with the Lyapunov equation can play. The research

avenues are as follows:

1. Symbolic Analysis For Single-Degree-of-Freedom Systems. We explore

the extent to which symbolic analysis can provide insight into the connection

between an appropriate selection of Q and the active control strategy that

follows through BTSz(t). First, we use Mathematica c© to compute symbolic

solutions to coefficients in BTS for systems having one and two degrees of

freedom. We will soon see that for structures having more than two-degrees

of-freedom, the symbolic expressions are computationally intractable, even for

Mathematica c©.

2. Symbolic Analysis For Multi-Degree-of-Freedom Systems. Starting

with relatively simple expressions for solutions to BTS, in a one degree of

freedom structure, we determine the restrictions on the structural model that

allow the solution to be scaled up to a n-DOF system.

3. Sensitivity Analysis. In the final part of this dissertation, we explore the

effect of bang-bang control strategies on the nonlinear base isolator deforma-

tions.

These research avenues lead to the formulation of simplified solutions to the Lya-

punov equation that result from active control strategies driven by potential, kinetic,

and total energy concerns. Key results and modeling assumptions that lead to sim-

plified solutions to the Lyapunov equation are given in section 3.2.3. Numerical

experiments were conducted to verify the predictions made during the analytical

phase of the dissertation.
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In the second half of the dissertation, we formulate energy- and power-

balance equations for a base-isolated structure supplemented with constant stiffness

bang-bang (CKBB) control. CKBB control is discussed in detail in section 4.4.

While quantitative measurements such as absolute roof acceleration are a good

indicator of damage to light internal equipment, occupant discomfort, and other

non-structural damage [40], energy- and power-balanced based metrics of system

performance provide a means for accurately estimating the capacity of a structure

to resist forces elastically and dissipate energy associated with damping and key

structural elements undergoing cyclic nonlinear deformations. In addition, since the

control objective of CKBB control is energy-based, analyzing the system response

from an energy point of view will help us to validate the CKBB control theoretical

formulation.

A second set of numerical experiments is conducted in which we employ

modeling techniques and a base-isolated building structure assembled from a variety

of previous research efforts. The parameters of the model are the same as used by

Ramallo et al. [57]. Nonlinear time-history analyses with energy- and power-balance

assessment are computed for a 6-DOF base-isolated building system. With this

computational framework in place, the specific research objectives of this second

numerical experiment is as follows:

1. From an energy-balance and base drift viewpoints, compare the performance of a

base-isolated building subjected to a variety of design criteria and earthquakes.

2. Compare demands on actuator power to the capabilities of actuator technology.

Experimental permutations in the design and ground motion excitations include:

(1) Base isolation alone (with no control); (2) Base isolation supplemented with

bang-bang control; (3) Moderate earthquakes; (4) Near-source, high-velocity, severe
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earthquakes. We demonstrate that when the model parameters/behavior do not

satisfy the assumptions needed to derive simplified representations for active control,

it seems that good performance can still result. We say “it seems” because our

modeling assumptions represent control under a “best case” scenario. As we move

toward modeling of full-scale structures, several modeling assumptions would need

to be reexamined: (1) A singular control-force requirement possible, (2) Availability

of state variables (i.e., displacements and velocities at all DOFs), (3) No time delay

between the measured displacements and velocities and the application of the control

forces, and (4) The presence of only one actuator that is located at the top of the

base isolator.

1.8 Dissertation Outline

The remainder of this dissertation is organized in the following manner:

Chapter 2 presents a literature survey of topics related to this research.

Chapter 3 presents a symbolic analysis of the bang-bang structural control problem.

Three research avenues use tractable 1- and 2-DOF models to understand the rela-

tionship between the bang-bang control algroithm and model parameters (stiffness,

damping, etc.) and model response (displacements and velocities).

Chapter 4 describes a numerical experiment that calculates the time history response

of a 5-DOF nonlinear mass-spring-damper system with and without bang-bang con-

trol. The results of this numerical experiment are compared to the relationships

obtained in Chapter 3.

Chapter 5 presents a theortical energy- and power-balance framework for estimating

demand on structural subsystems.
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Chapter 6 describes a numerical experiment that calculates the time history response

of a scaled 6-DOF nonlinear mass-spring-damper system with and without bang-

bang control. Using the framework presented in Chapter 5, the energy demand on

structural subsystems are calculated. Senarios are used to determine when bang-

bang control is most likely to be beneficial to base isolation. Senario parametrics

include base isolator/bang-bang control design and severity of earthquake.

Chapter 7 describes the intellectual contributions and conclusions of this disserta-

tion. It also identifies anticipated benefits of this research and gives suggestions for

future extension of the work described in this dissertation.
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Chapter 2

Related Research

2.1 Benchmark Studies in Structural Control

2.1.1 Benchmark Studies for Buildings

First Generation Benchmark Study for Buildings. In order to provide

a clear basis for the evaluation and efficiency of various structural control systems

in 1995, the American Society of Civil Engineers (ASCE) Committee on Structural

Control initiated a benchmark study in structural control. Two benchmark struc-

tures, both scale models of a three-story building, were employed. The difference

between these models is that one used an AMD controller while the other used an

active tendon controller. The control model consisted of a 20-state linear system

control model. The main variable for the designer was the type of control theory

which to implement. A comparison between the analytical (control designs which

were submitted to this benchmark study) and corresponding experimental results

are yet to be published. These benchmark problems are known as the “First Gen-

eration Building Benchmark Problems” [71].

Building on the foundation laid by the ASCE Committee on Structural Con-

trol in 1995, plans for the next generation of benchmark structural control studies

were initiated by the Working Group on building Control during the Second Inter-

national Workshop on Structural Control. The Working Group’s goal in this effort

is to develop benchmark models to provide systematic and standardized means by

which competing control strategies, including devices, algorithms, sensors, etc. may

be evaluated. While the First Generation Benchmark Problem provided a basis

20



for evaluation of the various structural control systems, the problem lacked the

complexity associated with full-scale applications. The goal of the next generation

benchmark problem is to take the structural control community another step to-

ward the realization and implementation of innovative control strategies for hazard

mitigation [71].

Second Generation Benchmark Study for Buildings. The second

generation building benchmark problems in structural control were more complex.

Two models were proposed — one for wind excitation and a second for earthquake

excitation. A high-fidelity, linear time-invariant state space control model was de-

veloped for each model.

Wind Model. The wind-excited model is based on a 76-story concrete tower pro-

posed for Melbourne, Australia. This reinforced concrete building consists of a

concrete core and concrete frame. The core is designed to resist the wind load

whereas the frame is designed to carry the gravitational loads and part of the wind

loads. Though all the structural members were designed, the building has not been

constructed [97].

The 76-story building is modeled as a vertical cantilever beam. The finite

element model has 76 rotational DOFs and 76 translational DOFs. Then, all the

76 rotational DOFs are removed by static condensation. By retaining the first 46

complex modes of the original system, the model is further reduced to 23 DOFs.

Also, simplifications concerning the wind loading are made to further reduce the

computational effort. It is the task of the designer/researcher to choose whether to

use an active, semi-active, or passive control system. In the case of active control

systems, either an active tuned mass damper (ATMD) or an AMD can be installed

on the top floor. In the case of passive or semi-active systems, such as viscous
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dampers, visco-elastic dampers, etc., control devices can be installed in any selected

story units. It is also up to the designer/researcher to choose the type of control

algorithm in which to use [97].

Earthquake Model. The earthquake-excited model is based on a 20-story building

typical of mid- to high-rise buildings designed for the Los Angeles region. Although

not actually constructed, the structure meets seismic code requirements for this

region. The building’s lateral load-resisting system is comprised of steel perimeter

moment-resisting frames (MRFs). The interior bays contain simple framing with

composite floors (i.e., concrete and steel) which provides diaphragm action (assumed

rigid in the horizontal plane). The benchmark study focuses on an in-plane (2-D)

analysis for one-half of the entire structure; the frame being considered is one of the

N-S MRFs (in the short direction of the building) [70].

Based on the physical description of the 20-story structure, an in-plane

finite element model of the N-S MRF is developed. The linear response of the

structure is shown to be a reasonable approximation that is used in this benchmark

study. The structure is modeled as plane-frame elements, and the mass and stiffness

matrices for the structure are determined. Guyan reduction is used to reduce the

number of DOFs to a more manageable size while still maintaining the important

dynamic characteristics of the full-model. This results in a 62 state control model.

Control implementation constraints and evaluation criteria are outlined. It is up to

the designer/researcher to choose a control algorithm, control device (either passive,

active, semi-active, or a combination thereof, may be considered), and the placement

of sensors and actuators [70].

Third Generation Benchmark Study for Buildings. At the First

World Conference on Structural Control in 1994, the necessity of taking into ac-
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count structural nonlinearity was identified. During the Second World Conference

on Structural Control in 1998 and as a result of the success of the second generation

benchmark study for buildings, it was decided that the nonlinear analysis for the

seismically excited buildings would be pursued. Also, at the Second World Confer-

ence on Structural Control, a third generation wind-excited benchmark model was

developed.

Earthquake Model. Three earthquake excited nonlinear building models were de-

veloped. Nonlinear evaluation models of 3-story, 9-story, and 20-story buildings

were developed that portrays the salient features of the structural system. The

task of each participant in this benchmark study was to define (including sensors

and control algorithms), evaluate and report on their proposed control strategies.

These 3-story, 9-story and 20-story nonlinear buildings were designed for the SAC

project for the Los Angeles, California region. The SAC project is a joint venture

between the Structural Engineers Association of California (SEAOC), the Applied

Technology Council (ATC), and Consortium of Universities for Research in Earth-

quake Engineering (CUREE). The members of each of these organizations realized

that they were uniquely qualified to investigate the damage to welded steel moment

frame buildings in the 1994 Northridge earthquake and developing repair techniques

and new design approaches to minimize damage to steel moment frame buildings in

future earthquakes.

Wind Model. Following the development of the wind model used in the second

generation benchmark study in December 1997, wind tunnel testing was been con-

ducted on a 1:400 scale model of the 76-story building to measure wind load time

history on different floors of the building. The response control performance cri-
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terion was been reformulated using experimentally measured wind loads from this

wind tunnel testing.

2.1.2 First Generation Benchmark Study for Bridges

At the Second International Workshop on Structural Control (December

18-20, 1996), the Working Group on Bridge Control developed plans for the First

Generation Bridge Benchmark Study. The bridge proposed for the benchmark study

was the Jindo Bridge in South Korea. In order for the finite element model of

the bridge to be created, it was necessary to increase the understanding of how

the complexities associated with modeling cable-stayed bridges, such as nonlinear

behavior and the participation of highly coupled, high order, vibration modes affect

the active control schemes. Additionally, computational considerations associated

with control analyses require the size of the model be significantly reduced without

the loss of important vibration characteristics of the bridge. The First Generation

Bridge Benchmark Study focuses on seismic response control [63].

Schemmann and Smith [61] studied the issues involved with modeling a

flexible bridge structure. Due to the cable elements and the geometric nonlinearity

associated with the Jindo Bridge, the following nonlinear issues were addressed in

creating the control model: (i) the axial force deformation relationship of the in-

clined cables caused by the dead weight induced sag; (ii) the axial force-bending

moment interaction of the towers and longitudinal girders (i.e., beam-column inter-

action); (iii) the geometry change due to large deformations; (iv) multiple support

excitation, caused by the exposure of the bridge towers to the spatially random seis-

mic excitation; and (v) the participation of coupled, high order, three-dimensional

vibration modes in the overall dynamic response. Material nonlinearities, which are

typically avoided in such large structures were not taken into account in the model.
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Also, three separate reduced-order modeling techniques for creating effective con-

trol models are studied: the IRS method, the internal balancing method, and a

modal reduction method. These methods are compared on their ability to capture

the complex dynamic response of cable-stayed bridges subjected to multiple-support

excitation and their ability to create viable state space models for control analyses.

The resulting three-dimensional finite element model (FEM) has 316 DOFs

(before model reduction). The deck is represented by a single central spine of space

frame elements with lumped masses attached. Rigid links are used to represent

the offset between the cables and the spine. Additionally, to induce coupling of the

torsional and transverse modes of the deck, rotary inertia of the masses is included at

the appropriate DOFs. The first twenty undamped natural frequencies of the FEM

are used in the study. For illustration, figure 2.1 displays the first order torsional

mode (7), fifth order vertical mode (8), fourth order lateral deck mode (20), and the

first longitudinal tower mode (18). Observe that the model has mode shapes which

span all three dimensions and that many modes are coupled—a three dimensional

model is clearly required and ground motion should have components in all three

orthogonal directions. The next step is a time-history analyses to obtain the modes

that participate most directly in the structure’s force response. The Northridge

accelerogram was used for the time-history analyses.

The study by Schemmann and Smith [61] shows the importance of multiple-

support excitation. Compared to uniform-support excitation, bending moments are

increased significantly at numerous locations and entirely different sets of modes are

excited. The drawback of time-history analysis is that different earthquakes with

different frequency content may excite other modes. Thus, time-history analyses

should be performed using a larger set of ground motions to obtain more general

results. Also, usually modes which cause the largest displacements also generate
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Figure 2.1: Finite Element Mode Shapes 7, 8, 18, 20 [61]

the largest forces; however, as it is shown here, higher order modes which do not

significantly participate in the displacement response, participate significantly in the

force response, the control algorithm will have to insure that the internal forces and

not just the displacements are reduced. The modal reduction technique proves to be

most promising in this area because of its ability to select only those modes which

cause the largest force and displacement response.

A companion study, also by Schemmann and Smith [62], considers the ap-

plication of active control to the model created in the above study. In this study,

LQR control theory is implemented. One of the central components to this control

theory is the performance index J . The second part of this paper by Schemmann

and Smith considers the problem of control through output feedback and use of

a Kalman filter. In both parts of this paper, different actuator configurations are

compared. Not only are the force responses considered, but the peak control force

put forth by the actuator should also be considered since this determines actuator

size.

Results from the companion study indicate that the high order modes do

not contribute significantly to the displacement response but do contribute signifi-

cantly to the force response for the case of uniform-support excitation. For the case
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multiple-support excitation, considerable attenuation of the force response can be

achieved by only controlling the first order modes. Controlling higher order modes

can reduce the force response, but not very significantly. In regard to full state

feedback versus output feedback using a Kalman filter, a comparison between the

displacement and force response of the model is presented implementing full state

feedback and output feedback control. The same control effort is exerted for output

feedback control as for state feedback control. As expected, full state feedback con-

trol outperforms output feedback control in all cases, but output feedback control

does perform reasonably well. Output feedback control with sensor noise usually

achieves approximately 90-97% of the force response attenuations obtained when

full state feedback control without sensor noise is considered.

2.2 Structural Control Algorithms

There are 6 main categories of control algorithms that are applicable to

structural systems. Each will be briefly described herein. However, as pointed out

by Housner et al. [33], research and development in the field of control algorithms

that are applicable to structural systems is still in its infancy. There is still no

answer to the simple question:

“. . . How does one design a controller to limit the peak stress (or displace-
ments) in the presence of an arbitrary earthquake motion of strength
X?. . . ” [33]

Optimal Control. Optimal control implies the “best” design. However, this is

somewhat misleading because every stabilizing controller is optimal by some cri-

terion. Optimal is good only if the function being minimized is truly meaningful

for the system. Housner et al. [33] that this is usually not the case. Indeed, in

most cases, quadratic functions of the shown in equation 1.7 usually do not have
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any physical significance but are used to weight two items that each have physical

significance. Bang-bang control falls into the area of optimal control. Other types of

optimal control are: Input Constraint Control (ICC) and Output Constraint Con-

trol (OCC) which are discussed by Zhu et al. [101], Linear Quadratic Regulator

(LQR) control which is discussed by Belanger [10], and Linear Quadratic Gaussian

(LQG) control which is discussed by Spencer et al. [76].

Stochastic Control. The application of stochastic control principles to civil engi-

neering structures is rather a natural given the acceptance of uncertainty of model-

ing and reliability methods in design. According to Housner et al. [33], stochastic

control addresses the following characteristics that are inherent to structures. Mod-

eling – there is uncertainty in both the inherent nature of the structure as well as

in the forces that it see. Second, there is measurement – the structures are not

completely observable from sensors located at a single point; the sensors are also

contaminated with noise. In the most general sense, stochastic control assumes that

the disturbances and measurement noise, and even perhaps the parameter varia-

tions are random processes, the system response will therefore also be a random

process. According to Stengel [78], the application of stochastic control to general

nonlinear systems is difficult and limited. The application of stochastic control is

mainly limited to LQG control and its frequency domain analog, H2 control. When

used with LQG control and H2 control, stochastic methods are mainly beneficial in

the areas of state estimation, covariance control, and robustness assessment. State

estimation using noisy acceleration measurements has been examined by Dyke et al.

[23]. Probabilistic stability robustness has been examined by Field et al. [29], and

Spencer et al. [74].

Adaptive Control. An adaptive controller is one with adjustable parameters, in-

corporating a mechanism for adjusting these parameters. Adaptive control methods
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generally are divided into: (1) direct; and (2) indirect methods. According to Hous-

ner et al. [33], in the direct methods, the controller parameters are adjusted directly

based on the error between the measured and desired outputs. In the indirect meth-

ods, the parameters of a model for the unknown plant are estimated online, and

the controller parameters are calculated as the solution of an underlying controller

design problem based on the estimated plant parameters. The direct model refer-

ence adaptive control (MRAC) method presented by Kaufman et al. [38] has several

properties that are attractive to our problem area and has been successfully applied

to structural control problems.

Sliding Mode Control. For sliding mode control, a hypersurface, called the slid-

ing surface, is defined in state space. Housner et al. [33] state that the error between

actual and desired response is zero when the state falls on the sliding surface. Ini-

tially, controls are applied such that a arbitrary initial state will be brought to the

sliding surface. Different controls are applied while the state is in different regions

of the state space. Once on the the sliding surface, the system is said to be in the

sliding mode, and controls are applied to keep the system in the sliding mode toward

the equilibrium point. Yang et al. [96] presented experimental results of controlling

a three-story building on a shaker table using sliding mode control.

Robust Control. Robust control focuses on the issues of performance and stability

in the presence of uncertainty, both in parameters of the system and inputs to

which it is subjected. According to Housner et al. [33], the development of robust

control theory was motivated by the inability of the LQG or H2 theories to directly

accommodate plant uncertainties. The need to address uncertainty in a systematic

way led to the development of the H∞ problem. The interested reader is referred

to Zhou et al. [100] for a description of the H∞ problem. H∞ control has been

applied to a number of civil engineering structures. For example, Spencer et al. [75]
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summarized a detailed comparison between H2 and H∞ control done by Suhardjo

[79].

Intelligent Control. Intelligent control uses techniques from the fields of artificial

intelligence, operations research, and automatic control to sense, reason, plan, and

act in an “intelligent” manner. Housner et al. [33] state that conventional control

techniques do not have the capabilities of intelligent control in dealing with qual-

itative, uncertain, and incomplete information. Two main technologies related to

intelligent control have been developed: (1) artificial neural networks, and (2) fuzzy

logic. Artificial neural networks were developed as a methodology for emulating the

biology of the human brain, resulting in systems that learn by experience. Fuzzy

logic is a means of processing imprecise and vague information. Fuzzy logic uses

imprecise data to reason and derive control actions. Casciati and Yao [15] give an

overview of fuzzy and neural techniques for the control of structures.

2.3 State of the Art of Actuator Technology

2.3.1 Background

Civil engineering structures generally require large control forces, on the

order of a meganewton, and for seismic excitations, response times on the order of

milliseconds. Moreover, the requirement for force coupled with the constraint on

energy demand is very difficult to achieve [21]. There are hydraulic, electromechan-

ical, and electromagnetic devices capable of delivering such a large force, but they

also have a high energy demand. Considerable research is underway to develop new,

large, controllable force capacity actuators that have a low energy demand. Semi-

active control devices have a lot of promise in addressing this actuator technology

challenge. Semiactive control devices offer the versatility and adaptability of active
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control devices without requiring the large power sources. In fact, many semiactive

control devices operate on battery power, which is critical during ground excitations

when the power source to the structure may fail. Spencer and Sain [69] note that

when implemented appropriately semiactive damping systems perform significantly

better than passive devices and have the potential to achieve, or even surpass, the

performance of fully active systems. Thus, semiactive control devices offer the pos-

sibility of effective response reduction during a wide array of ground excitations. In

this section, we review both active, and semiactive, including material-based actu-

ators, that are applicable to controlling civil engineering structures. A summary of

the characteristics of the actuators that we review is shown in Table 2.1.

2.3.2 Active Control System Actuators

An active control system is one in which an external source powers control

actuator(s) that apply forces to the structure in a prescribed manner. These forces

can be used to both add and dissipate energy in the structure. Since an active control

system can add mechanical energy to the structure, this type of system has the

possibility of destabilizing the structure. The energy stability theorem of bounded

energy input results in bounded energy output is violated. Examples of active

control system actuators fall into the categories of hydraulic, electromechanical,

and electromagnetic devices.

Hydraulic Actuators. Hydraulic mechanisms force fluid in or out of a cylinder

through an orifice to maintain a certain pressure on the face of a piston head.

Precise control movement and force can be achieved with a suitable control system.

Dorey and Moore [22] points out that hydraulic mechanisms can produce forces on

the order of meganewtons. However, the disadvantages of hydraulic mechanisms are

the requirements for fluid storage system, complex valves and pumps are required to
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regulate the fluid flow and pressure, and that seals require continuous maintenance.

Electromechanical Actuators. Electromechanical actuators generate force by

moving a piston with a gear mechanism that is driven by an electric motor. The

force is controlled by adjusting the power input to the motor. Response time is high,

on the order of tenths of seconds. Electric actuators rated for 600 kN of force are

commercial available. There are several manufacturers of linear electromechanical

actuators. One such manufacturer is Raco (www.raco.de). Connor [21] notes that

because electromechanical actuators are composed of many parts that are in contact

with each other, there is a high risk of breakdown.

2.3.3 Semiactive Control System Actuators

Semiactive control mechanisms have a low ratio of energy demand to force

output, and according to presently accepted definitions, a semiactive control device

is one that cannot inject mechanical energy into the controlled structural system,

i.e., semiactive devices act as energy dissipating mechanisms according to Spencer

and Sain [69]. Thus, unlike active control mechanisms, semiactive control mecha-

nisms do not have the potential to destabilize the structural system in a bounded

input/bounded output sense. Examples of semiactive control system actuators fall

into the categories of adaptive configuration-based actuators and controllable fluid-

based actuators. Adaptive configuration-based actuators have the characteristic of

being able to generate a large force by changing their physical makeup while con-

trollable fluid-based actuators contain a fluid that is characterized by it’s ability

to change to a semisolid in milliseconds. Examples of adaptive configuration-based

actuators include variable orifice dampers, variable stiffness devices, piezoelectric

actuators, and smart tuned mass dampers (STMDs). Examples of controllable fluid-

based actuators include electroheological (ER) and magnetorheological (MR) based
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actuators.

Electromagnetic Actuators. Electromagnetic force mechanisms are based on

the interaction between the magnetic field generated by the stationary field magnet

and the current in the driving coil. A driving coil is attached to the piston, which

translates with respect to the housing. Since electromagnetic actuators are driven

by magnetic forces, they do not require mechanical contact and are therefore the-

oretically more reliable than hydraulic or electromechanical actuators. According

to Connor [21], electromagnetic actuators with a force capacity up to several kilo-

newtons are commercially available and the force response time is on the order of

milliseconds. Research and development of larger capacity actuators is currently

underway. Connor [21] also points out that Chaniotakis et al. at the Massachusetts

Institute of Technology is currently developing a large-scale electromagnetic actua-

tor that may have full-scale applications. Disadvantages of electromagnetic actuator

technology is a commercially available product in the meganewton range is still in

the research and development phase and probably the voltage and current require-

ments for such a actuator can not be satisfied with conventional electrical power

supply technology.

Variable Orifice Dampers. Variable orifice dampers use a control valve to alter

the resistance to flow of a conventional hydraulic fluid damper. The valve opening

adjusts according to force demand that is determined by a feedback control algo-

rithm. Since the valve motion is perpendicular to the flow, the force required to

adjust the valve position is small and energy demand is low (usually on the order of

30-50 watts) according to Connor [21] and Spencer and Nagarajaiah [68]. Variable

orifice dampers were implemented by Kurata et al. [43] in a large-scale, three-story

frame structure and Sack and Patten [60] and Patten et al. [54] developed a vari-

able orifice damper and Patten et al. [55] installed a hydraulic actuator with a
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controllable orifice on a bridge in Oklahoma.

Variable Stiffness Devices. Kobori et al. [42] conceived of using a full-scale

variable orifice damper in on-off mode – a high stiffness device due to the lack of

compressibility of hydraulic fluid when the valve is closed or a device with no stiff-

ness when the valve is open – as a semiactive variable stiffness system. However,

this system was not able to vary stiffness continuously from one state to another.

However, according to Spencer and Nagarajaiah [68], Nagarajaiah has developed

a semiactive variable-stiffness device (SAIVS) (U.S. Patient No. 6,098,969). Na-

garajaiah and Mate [50] has shown in a scaled structural model that SAIVS can

effectively smoothly vary the stiffness of a structure and produce a nonresonant

system.

Piezoelectric Actuators. Piezoelectric actuators are fabricated with piezoce-

ramic block-type elements or piezopolymer films. When a voltage is applied, these

piezoceramic/piezopolymer materials extend or contract. When these materials are

attached to a surface which restrains their motion and a voltage is applied, con-

tact forces between the object and the restraining medium are produced. Two

configurations are available. According to Connor [21], one configuration produced

by Kinetic Ceramics, Inc. (www.kineticceramics.com) used piezoceramic wafers

stacked vertically and produces a maximum force of 20 kN with a response time

of several milliseconds. A second configuration produced by Active Control Ex-

perts (www.acx.com) uses piezoceramic wafers distributed over an area in a regular

pattern produces a maximum force of 500 N at 200 volts with millisecond response.

Smart Tuned Mass Dampers (STMDs) Conventional tuned mass dampers

(TMDs) are not adaptable due to their fixed design. An alternative is the STMD

that continuously retunes its frequency due to real time control thus making it

robust to changes in building stiffness and damping. Nagarajaiah and Varadarajan
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[51] have shown the effectiveness of the SAIVS device to act as an integral part of the

STMD system by controlling a small-scale three story structural model. Varadarajan

and Nagarajaiah [88] studied the response control of an analytical model of a 76-

story concrete office tower. The SAIVS device was part of a 500 ton STMD system

that was demonstrated to substantially reduce the building when compared to a

TMD system and reduce a similar response to a active mass damper system (AMD)

system based on a LQG controller, but with a magnitude less power consumption.

comparable to active tuned mass dampers, but with a order of magnitude less power

consumption. STMD systems have also been proposed based on controllable tuned

sloshing dampers (CTSDs). Tuned sloshing dampers (TSDs) use the liquid sloshing

in a tank to add damping to the structure. Lou et al. [45] has proposed a semiactive

CTSD device in which the length of the sloshing tank is altered to change the

properties of the device.

Electrorheological (ER) and Magnetorheological (MR) Based Actuators.

The common characteristic of both ER and MR fluids is their ability to change from

free-flowing (in this state the fluid may be modeled as Newtonian) to a semisolid

with a controllable yield strength in milliseconds. However, only MR fluids have

been shown to be tractable for civil engineering applications according to Spencer

and Sain [69]. MR fluids typically consist of micronsized, magnetically polarizable

particles dispersed in a carrier medium such as mineral or silicone oil, and Spencer

and Nagarajaiah [68] that MR fluid actuators have been shown to be readily con-

trolled with low power (e.g. less than 50 W), low voltage (e.g. ∼12-24 V), and a

power supply only outputting ∼ 1-2 A. Simulations and laboratory model experi-

ments have shown that MR significantly outperform comparable passive damping

configurations and requires only a fraction of the input power needed by active con-

trollers (Spencer and Sain [69], Spencer et al. [72], Spencer [67], Dyke et al. [25, 26],

Xu et al. [95], Ramallo et al. [57], Madden et al. [46], and Yoshioka et al. [99]).
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Carlson and Spencer [14] and Spencer et al. [77] have studied a 200-kN capacity

MR damper which may be used for full-scale applications. Figure 2.2 [68] shows the

measured force-displacement loops for this damper.

Max Magnetic Field (2 amps)

No Magnetic Field (0 amps)

Figure 2.2: Hysteresis for 200-kN MR Damper [68]
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Actuator Type Peak Force Response Time Watts/Volts/Amps Required
Hydraulic meganewtons ∼10-100 ms high

Electromechanical ∼600 kNs tenths of secs high
Electromagnetic several kNs milliseconds low

Variable Orifice Dampers ∼10-30 kNs milliseconds ∼50W
Variable Stiffness Damper ∼8-10 kNs + milliseconds low
Piezoelectric Actuators ∼20 kNs milliseconds ∼1000 V

Smart TMDs ∼25 kNs + milliseconds low
MR Actuators ∼200 kNs + milliseconds ∼50W ∼12-24 V ∼1-2 A

Table 2.1: Summary of Characteristics of Active/Semiactive Control System Actuators
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2.4 Full Scale Applications of Structural Control

The first full-scale application of active control was completed in 1989 at

the Kyobahi Seiwa building in Tokyo, Japan. The control system consisted of two

active mass dampers (AMDs); a pictorial representation of an AMD control system

is in Figure 2.3. Since then, over 40 buildings and 10 bridges (during erection)

have employed feedback control strategies in full-scale implementations. Full-scale

building implementations are shown in table 2.2. For a list of full-scale bridge

implementations with structural control, the interested reader is referred to Spencer

and Nagarajaiah [68]. With the exception of one experimental system installed on a

bridge in Oklahoma, none of these full-scale active control installations are located

in the United States. According to Spencer and Nagarajaiah [68], there are many

possible reasons for this disparity. For instance, the civil engineering profession

and construction industry in the United States are conservative, and the absence of

verified and consensus-approved analysis, design, and testing procedures represents

addition impediments to the application of structural control technology.

Figure 2.3: Concept of the AMD Control System [73]
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Full-scale application of hybrid control systems, in particular hybrid mass

dampers (HMD), are the most common control device implemented. The popularity

of hybrid control stems from their ability address many of the challenges particular

to structural control. These challenges include: (i) reduction of capital cost and

maintenance, (ii) eliminating reliance on external power, (iii) increasing system

reliability and robustness, and (iv) gaining acceptance of nontraditional technology

[68]. Because multiple control devices are operating, hybrid control systems can

alleviate some of the limitations and restrictions that exist when each system is

acting alone. The resulting hybrid control system can be more reliable than a

fully active system because should a failure occur with the active system, protection

from the passive system is still in place. For these reasons, the majority of structural

control research has been concentrated in the area of hybrid control.
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Table 2.2: Summary of Controlled Buildings/Towers [68]

Full-Scale Location Scale of Control AMD/HMD Actuation
Structure Building System No. Mass Mechanism

(Year Completed) Employed (tons)

Kyobashi Seiwa Tokyo, Japan 33m, 400 ton, AMD 2 5 hydraulic
(1989) 11 stories

Kajima Research Tokyo, Japan 12m, 400 ton, Active Variable - - hydraulic
Institute KaTRI 3 stories Stiffness System

No. 21 Bldg. (1990) (6 devices)

Sendagays INTES Tokyo, Japan 58m, 3,280 ton AMD 2 72 hydraulic
(1992) 11 stories

Applause Tower Osaka, Japan 161m, 13,943 tons HMD 1 480 hydraulic
(1992) 34 stories

Kansai Int. Airport Osaka, Japan 161m, 2,570 tons HMD 2 10 servo motor
Control Tower (1992) 7 stories

Osaka Resort City 2000 Osaka, Japan 200m, 56,980 tons HMD 2 200 servo motor
(1992) 50 stories

Yokohama Land Yokohama, 296m, 260,610 tons HMD 2 340 servo motor
Mark Tower (1993) Japan 70 stories

Long Term Credit Toyko, Japan 129m, 40,000 tons HMD 1 195 hydraulic
Bank (1993) 21 stories

Ando Nishikicho Tokyo, Japan 54m, 2,600 tons HMD (DUOX) 1 22 servo motor
(1993) 14 stories

Hotel Nikko Kanazawa Kanazawa, 131m, 27,000 tons HMD 2 100 hydraulic
(1994) Japan 29 stories

Hiroshima Riehga Hiroshima, Japan 150m, 83,000 tons HMD 1 80 servo motor
Royal Hotel (1994) 35 stories

Shinjuku Park Toyko, Japan 227m, 130,000 tons HMD 3 330 servo motor
Tower (1994) 52 stories

continued on next page
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Table2.2 – continued

Full-Scale Location Scale of Control AMD/HMD Actuation
Structure Building System No. Mass Mechanism

(Year Completed) Employed tons

MHI Yokohama Yokohama, 152m, 61,800 tons HMD 1 60 servo motor
Building (1994) Japan 34 stories

Hamamatsu ACT Hamamatsu, 212m, 107,500 tons HMD 2 180 servo motor
Tower (1994) Japan 46 stories

Riverside Sumida Tokyo, Japan 134m, 52,000 tons AMD 2 30 servo motor
(1994) 33 stories

Hikarigaoka J-City Tokyo, Japan 110m, 29,300 tons HMD 2 44 servo motor
(1994) 26 stories

Miyazaki Phoenix Tokyo, Japan 154m, 83,650 tons HMD 2 240 servo motor
Hotel Ocean 45 (1994) 43 stories

Osaka WTC Bldg. Osaka, Japan 252m, 80,000 tons HMD 2 100 servo motor
(1994) 52 stories

Dowa Kasai Phoenix Osaka, Japan 145m, 26,000 tons HMD (DUOX) 2 84 servo motor
Tower (1995) 28 stories

Rinku Gate Tower Osaka, Japan 255m, 75,000 tons HMD 2 160 servo motor
North Building (1995) 56 stories

Hirobe Miyake Tokyo, Japan 31m, 273 tons HMD 1 2.1 servo motor
Building (1995) 9 stories

Plaza Ichihara Chiba, Japan 61m, 5,760 tons HMD 2 14 servo motor
(1995) 12 stories

Kaikyo Dream Yamaguchi, 190m, 5,400 tons HMD 1 10 servo motor
Tower (1996) Japan

Herbis Osaka Osaka, 153m, 62,450 tons HMD 2 320 hydraulic
(1997) Japan 40 stories

TC Tower Kao Hsung, Taiwan 85 stories HMD 2 350 servo motor
(1997)

continued on next page
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Table2.2 – continued

Full-Scale Location Scale of Control AMD/HMD Actuation
Structure Building System No. Mass Mechanism

(Year Completed) Employed tons

Itoyama Tokyo, 89m, 9,025 tons HMD 1 48 servo motor
Tower (1997) Japan 18 stories

Bunka Tokyo, 93m, 43,488 tons HMD 2 48 servo motor
Gakuen (1998) Japan 20 stories

Daiichi Ohita, 101m, 20,942 tons HMD 2 50 hydraulic
Hotel (1998) Japan 21 stories

Odakyu Southern Tokyo, 150m, 50,000 tons HMD 2 60 linear motor
Tower (1998) Japan 36 stories

Otis Shibayama Chiba, 154m, 6,877 tons HMD 1 61 hydraulic
Tower (1998) Japan 39 stories

Yokohama Yokohama, 115m, 33,000 tons HMD 2 122 servo motor
Sheraton (1998) Japan 27 stories

Kajima Shizuoka, 20m, 1,100 tons semiactive - - variable-orifice
Shizuoka (1998) Japan 5 stories

Century Park Tokyo, 170m, 124,540 tons HMD 4 440 servo motor
Tower (1999) Japan 54 stories

Laxa Nagoya, 115m, 33,000 tons semiactive TMD 2 330 variable-orifice
Osaka (1999) Japan 27 stories hydraulic damper

Nanjing Tower Nanjing, China 310m AMD 1 60 hydraulic
(1999)

Shin-Jei Taipei, 99m, 22 stories AMD 3 120 servo motor
Bldg. (1999) Taiwan

Shinagawa Intercity Tokyo, 144m, 50,000 tons, HMD 2 150 servo motor
(1999) Japan 22 stories

Incheon Airport Incheon, 100m HMD 2 12 servo motor
Control Tower (2000) Korea hydraulic

continued on next page
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Table2.2 – continued

Full-Scale Location Scale of Control AMD/HMD Actuation
Structure Building System No. Mass Mechanism

(Year Completed) Employed tons

Keio Univ. Engr. Tokyo, 29m, 25,460 tons, smart base - - variable-orifice
Bldg. (2000) Japan 9 stories isolation damper

Osaka Airport Osaka, 69m, 3,600 tons, HMD 2 10 servo motor
Control Tower (2001) Japan 5 stories

Dentsu Office Tokyo, 210m, 130,000 tons, HMD 2 440 servo motor
Bldg. (2002) Japan 48 stories

Hotel Nikko Osaka, 138m, 37,000 tons, HMD 2 124 servo motor
Osaka (2002) Japan 33 stories
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Chapter 3

Symbolic Analysis

In this chapter, we establish a theoretical foundation for the symbolic rep-

resentation and sensitivity analysis of bang-bang control strategies tailored toward

the nonlinear behavior and design of base-isolated structures. We note that a key

shortcoming in using numerical analysis packages to solve the Lyapunov equation

for matrix S, followed by the computation of BTSz(t), is that any potential insight

into the appropriate cause-and-effect relationships is buried inside the numerical

procedure. To mitigate this shortcoming, in this chapter we explore the extent to

which symbolic analysis procedures can provide insight into the connection between

an appropriate selection of Q and the active control strategy that follows through

BTSz(t).

3.1 Research Avenue 1. Symbolic Analysis of Single-Degree-of-Freedom

Systems

In this section, we use Mathematica c© to compute a symbolic solution to

coefficients in BTS for a one degree of freedom system. We then investigate the

circumstances under which the bang-bang control force will change sign, and prove

that under a damped steady state system response, the bang-bang control is neither

perfectly in phase with the displacements nor velocities.
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3.1.1 Symbolic Representation for 1-DOF Bang-Bang Control Strategy

Consider a 1-DOF system with stiffness, k, mass, m, and damping, c=

α · m + β · k. Assume that the 1-DOF system has an actuator acting on the DOF.

For the following general choice of Q,

Q =

[

k? 0
0 0

]

, (3.1)

where k? is a real, positive number, the symbolic representation for the BTS matrix

product, as determined by Mathematica c© is as follows:

BTS =
[

0 1
m

]





mk?

2(α·m+β·k)
+ (α·m+β·k)k?

2k
mk?

2k
mk?

2k
m2k?

2k(α·m+β·k)



 =
[

k?

2k
mk?

2k(α·m+β·k)

]

.

(3.2)

When the terms in Q are selected to minimize potential energy in the 1-DOF system

(i.e., k? = k), equation 3.2 simplifies to:

BTS =
[

0 1
m

]





mk
2(α·m+β·k)

+ α·m+β·k

2
m
2

m
2

m2

2(α·m+β·k)



 =
[

1
2

m
2(α·m+β·k)

]

. (3.3)

Similarly, when

Q =

[

0 0
0 m?

]

, (3.4)

where m? is a real, positive number, the BTS matrix product was calculated sym-

bolically using Mathematica c© as:

BTS =
[

0 1
m

]

[

m?k
2(α·m+β·k)

0

0 mm?

2(α·m+β·k)

]

=
[

0 m?

2(α·m+β·k)

]

. (3.5)
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If the kinetic energy, T (ẋ(t)), in this 1-DOF system is minimized, i.e., m? = m,

equation 3.5 becomes:

BTS =
[

0 1
m

]





mk
2(α·m+β·k)

0

0 m2

2(α·m+β·k)



 =
[

0 m
2(α·m+β·k)

]

. (3.6)

Due to the linear properties of the Lyapunov matrix equation, the BTS matrix

product that minimizes the total (potential + kinetic) energy of this 1-DOF system

is the sum of equations 3.3 and 3.6.

3.1.2 Effectiveness of Bang-Bang Control in a 1-DOF System

In this section we investigate the effectiveness of bang-bang control in the

situation of a linearly elastic 1-DOF system subject to a simplified ground motion.

Initially, we assume: (1) the ground motion can be modeled as a periodic forcing

function, and (2) steady state system response. Then in part two, we look at the

effectiveness of bang-bang control when the 1-DOF system is in transient free vibra-

tion. We prove that the actuator works neither perfectly in phase with displacements

nor perfectly in phase with velocities.

Note that when the variable β is used in the context of damping, it represents

the stiffness coefficient in the linear viscous damping model otherwise, β represents

the ratio of the applied loading frequency to the natural free vibration frequency.

Steady State Response

Let us assume that the forcing function due to ground accelerations is:

p(g, t) = Asin(gt) (3.7)
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where “g” matches the “most dominant” natural circular frequency for ground shak-

ing. If β = (g/w) then the steady-state displacement and velocity are [17]:

x(t) =
[

A

k

]

·
[

(1 − β2) sin(gt) − 2ξβ cos(gt)

(1 − β2)2 + (2ξβ)2

]

(3.8)

and

ẋ(t) =
[

Ag

k

]

·
[

(1 − β2) cos(gt) + 2ξβ sin(gt)

(1 − β2)2 + (2ξβ)2

]

(3.9)

Amplitude of Response. From the trigonometric identity,

sin(gt + φ) = sin(gt) · cos(φ) + cos(gt) · sin(φ) (3.10)

it follows that equation 3.8 can be written,

x(t) =
[

A

k

]

·
[

1

(1 − β2)2 + (2ξβ)2

]

· sin(gt + φ) (3.11)

where

tan(φ) =

[

−2ξβ

(1 − β2)

]

. (3.12)

The amplitude of the displacement vector is:

‖x(t)‖ =
[

A

k

]

·
[

1

(1 − β2)2 + (2ξβ)2

]

. (3.13)

Similarly, the amplitude of the velocity vector is:

‖ẋ(t)‖ =
[

Ag

k

]

·
[

1

(1 − β2)2 + (2ξβ)2

]

. (3.14)
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Bang-Bang Control Strategy. When the terms in Q are selected to minimize

potential energy in the 1-DOF system (i.e., k? = k), the matrix product BT S

simplifies to:

BTS =
[

0 1
m

]





mk
2(α·m+β·k)

+ α·m+β·k

2
m
2

m
2

m2

2(α·m+β·k)



 =
[

1
2

m
2(α·m+β·k)

]

. (3.15)

Substituting equations 3.8 and 3.9 into Z(t) = [x(t), ẋ(t)]T and pre-multiplying by

equation 3.15 gives:

BTSZ =
[

A

2k

]

·
[

(1 − β2) sin(gt) − 2ξβ cos(gt) + mg

c
(1 − β2) cos(gt) + 2mg

c
ξβ sin(gt)

(1 − β2)2 + (2ξβ)2

]

(3.16)

Amplitude of Displacement and Velocity Contributions. The amplitude of

displacement and velocity terms in equation 3.16 is:

‖ displacement component(t) ‖ =
[

A

2k

]

·
[

1

(1 − β2)2 + (2ξβ)2

]

(3.17)

and

‖ velocity component(t) ‖ =
[

Amg

2ck

]

·
[

1

(1 − β2)2 + (2ξβ)2

]

. (3.18)

Notice that as c → 0, the velocity component amplitude increases in size relative to

the amplitude of the displacement term.

Strategy for Switching Direction of the Actuator Force. From the viewpoint

of bang-bang control, we want to know in which direction the actuator will push as

a function of the displacement/velocity state variables, and how the strategy varies
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as a function of the problem parameters. The actuator will switch directions in the

force application when:

(1 − β2) sin(gt) − 2ξβ cos(gt) +
mg

c
(1 − β2) cos(gt) +

2mg

c
ξβ sin(gt) = 0. (3.19)

Collecting and rearranging common terms:

[

(1 − β2) +
2mg

c
ξβ
]

sin(gt) =
[

2ξβ − mg

c
(1 − β2)

]

cos(gt) (3.20)

gives:

tan(gt) =





[

2ξβ − mg

c
(1 − β2)

]

[

(1 − β2) + 2mg

c
ξβ
]



 (3.21)

Now recall that ξ = c/2mw and β = g/w. The expression,

2mg

c
ξβ simplifies to... β2, (3.22)

and

mg

c
(1 − β2) can be re-written as...

β

2ξ
· (1 − β2). (3.23)

Hence, equation 3.21 simplifies to:

tan(gt) =

[

2ξβ − β

2ξ
· (1 − β2)

]

(3.24)

Case 1. The actuator works perfectly in phase with displacements when a change

in actuator force and displacements occurs at the same time. From equation 3.8,

x(t) = 0 when:
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(1 − β2) sin(gt) − 2ξβ cos(gt) = 0. (3.25)

i.e.,

tan(gt) =

[

2ξβ

(1 − β2)

]

(3.26)

Case 2. The actuator works perfectly in phase with velocities – i.e., to oppose the

direction of motion – when ẋ(t) = 0. i.e.,

(1 − β2) cos(gt) + 2ξβ sin(gt) = 0. (3.27)

i.e.,

tan(gt) =

[

(β2 − 1)

2ξβ

]

(3.28)

Theorem 1. For values of β 6= 0, the actuator works neither perfectly in phase

with displacements nor perfectly in phase with velocities.

Proof. From equations 3.24 and 3.26 it is evident that in order for the actuator to

work perfectly in phase with displacements we require:

2ξβ

(1 − β2)
=

[

2ξβ − β

2ξ
· (1 − β2)

]

(3.29)

The trivial ... and not very useful ... solution is β = 0. Rearranging the remaining

terms gives,

ξ2 =

[

−(1 − β2)
2

4β2

]

. (3.30)

Physical considerations dictate that ξ must be greater than zero (i.e., we want the
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bang-bang control strategy and damping in the physical system to be well defined).

From equation 3.30 it is evident, however, that no value of β exists for which this will

occur. The left- and right-hand sides of equation 3.30 will be closest in value when

β = 1 and γ ≈ 0 (i.e., a very lightly damped system is forced near its resonance

frequency).

Similarly, in order for the actuator to work perfectly in phase with velocities we

require:

(β2 − 1)

2ξβ
=

[

2ξβ − β

2ξ
· (1 − β2)

]

(3.31)

Rearranging terms gives,

ξ2 =

[

(β2 − 1)(1 − β2)

4β2

]

=

[

−(1 − β2)2

4β2

]

. (3.32)

There are no values of β, including β = 0, which will make make the right-hand side

of equation 3.32 positive.

Plots of Phase Shift vs Beta

Figures 3.1 through 3.3 show the phase shift in displacements, velocities

and actuator force change as a function of β for contours of damping, ξ = 0.01, ξ

= 0.05 and ξ = 0.09, respectively. Notice that the contours of displacement and

velocity phase shift are separated by π/2 radians. Moreover, as predicted by the

theorem, phase shift for the bang-bang control is synchronized with displacement

phase shift at only two points – β = 0 and 1. What the mathematics doesn’t show

is that bang-bang control is “almost in phase” with velocities for β values covering

the interval 0.8 through 1.2.
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Figure 3.1: Actuator, Displacement, and Velocity Sign Change (ξ = 0.01)

Free Vibration Response

Now let us assume that the ground acceleration ceases and the structure enters a

free vibration response,

x(t) = e−ξwot [A cos(wdt) + B sin(wdt)] (3.33)

with initial displacement and velocity x(0) and ẋ(0), respectively. The time history

of displacement and velocity are,

x(t) = e−ξwot

[

x(0) cos(wdt) +
ẋ(0) + x(0)ξwo

wd

sin(wdt)

]

(3.34)

and
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ẋ(t) = e−ξwot

[

ẋ(0) cos(wdt) −
1√

1 − ξ2

(

ξẋ(0) + (ξ +
√

1 − ξ2)wox(0)
)

sin(wdt)

]

.

(3.35)

Bang-Bang Control Strategy. Substituting equations 3.34 and 3.35 into Z(t) =

[x(t), ẋ(t)]T and pre-multiplying by equation 3.15 gives:

BTSZ =
[

1

2

]

x(t) +
[

m

2c

]

ẋ(t) =
[

1

2

]

[

x(t) +
1

2ξw
ẋ(t)

]

. (3.36)

Strategy for Switching Direction of the Actuator Force. The actuator will

switch directions in the force application when:

C cos(wdt) + D sin(wdt) = 0, (3.37)

where

C =
x(0)

2
+

ẋ(0)

4ξwo

(3.38)

and

D =
ẋ(0)

2
+

x(0)ξwo

2wo

√
1 − ξ2

− 1

4ξwo

√
1 − ξ2

(

ξẋ(0) + (ξ +
√

1 − ξ2)wox(0)
)

. (3.39)

Substituting equations 3.38 and 3.39 into equation 3.37 and collecting terms, we

have:

tan(ωdt) =

[

(2ξwox(0) + ẋ(0))
√

1 − ξ2

ξẋ(0) + (ξ +
√

1 − ξ2)wox(0)

]

(3.40)

Zero Displacements. The system displacements will change sign when,
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tan(wdt) =
−
√

1 − ξ2x(0)wo

ẋ(0) + x(0)woξ
. (3.41)

Zero Velocities. The system velocities will be zero when,

tan(wdt) =
ẋ(0)

√
1 − ξ2

ξẋ(0) + (ξ +
√

1 − ξ2)wox(0)
. (3.42)

Plots of “Phase of Bang-Bang Control” vs ξ.

Because the number of degrees of freedom in the model of free vibration

response is one fewer than the corresponding steady state model (i.e., β is a constant

value), one plot can display a complete picture of how the direction of control force

application changes as a function of the remaining problem parameters. We simplify

the problem by defining the dimensionless ratio,
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ρ =
x(0)wo

ẋ(0)
. (3.43)

Figures 3.4 through 3.6 are generated by solving equation 3.43 for x(0)wo and sub-

stituting into equations 3.40, 3.41, and 3.42 gives when the actuator, displacement

and velocity of the system are zero in terms of ρ and ξ.

During the free vibration response, switching of the actuator force direction

occurs almost in phase with the sign of velocity. This indicates that like the damping

model, active control works to oppose changes in system displacement. Moreover,

again notice that the displacement and velocity phase shifts are separated by π/2

radians. The “steady state” and “‘free vibration” phase shift models are consistent

if latter is viewed as a “steady state response” resulting from a very high forcing

frequency (i.e., β = g/w → ∞).

3.2 Research Avenue 2. Symbolic Analysis of Multi-Degree-of-Freedom

Systems

3.2.1 Symbolic Representation for 2-DOF Bang-Bang Control Strategy

In this section, we develop symbolic representation for the 2-DOF bang-

bang control strategy under three objectives: (1) Minimization of potential en-

ergy, (2) Minimization of kinetic energy, and (3) Minimization of total (poten-

tial+kinetic) energy. We will soon see that “general symbolic expressions” are huge

(even for a two degree of freedom structure) and computationally intractable (even

for Mathematica c©) for large problems.
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Minimizing Potential Energy

Recent research [9] suggests that overall “blanket minimization” of structure-

level energy (i.e., potential and kinetic energy) is an overly simplified view of desir-

able behavior. Instead, analysis procedures should allow for potential energy terms

in the system superstructure to be considered separately from potential energy in

the base isolation devices. For the 2-DOF mass-spring-damper system shown in

Figure 1.1, a suitable form for Q is:

Q =











aγk + bk −bk 0 0
−bk bk 0 0
0 0 0 0
0 0 0 0











. (3.44)

The parameter setting (a = 1, b = 0) corresponds to minimization of potential

energy in the isolation device alone. Conversely, the parameter setting (a = 0, b = 1)

corresponds to minimization of potential energy in the superstructure alone. The

analysis assumes linear viscous damping of the form C = α · M + β · K and that

actuators may be located at either or both DOFs (weight on minimizing the potential

energy in the first and second stories may be different).

Symbolic Solution. The symbolic solution to ATS + SA = −Q takes the form:

BTS(H,m, k, α, β, γ, a, b) = HT

[ f11

Den 1
f12

Den 1
f13

Den 2
f14

Den 2
f21

Den 1
f22

Den 1
f23

Den 2
f24

Den 2

]

. (3.45)

Terms in the denominator are:

Den 1 = 2(2β2γ(2 + γ)k2 + αβ(4 + 8γ + γ2)km + m((4 + γ2)k + 2α2(2 + γ)m)),

Den 2 = 2(β2γk2 + αβ(2 + γ)km + α2m2)(2β2γ(2 + γ)k2 + αβ(4 + 8γ + γ2)km
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+ m((4 + γ2)k + 2α2(2 + γ)m)).

And terms in the numerator are:

f11 = bm((1 + αβ)(2 + γ)k + 2α2m) + a(2β2γ(2 + γ)k2

+ αβ(2 + 7γ + γ2)km + m((2 − γ + γ2)k + 2α2(1 + γ)m)),

f12 = (a − b)m((1 + αβ)(2 + γ)k + 2α2m)

= −bm((1 + αβ)(2 + γ)k + 2α2m) + am((1 + αβ)(2 + γ)k + 2α2m),

f13 = m(bm(αm((2 + γ)k + 2α2m) + βk(2γk + 2α2m + α2γm))

+ a(2β3γ(2 + γ)k3 + αβ2(4 + 12γ + 3γ2)k2m + αm2((2 − γ + γ2)k

+ 2α2(1 + γ)m) + βkm((4 − 2γ + γ2)k + α2(6 + 9γ + γ2)m)))),

f14 = m(−bm(−βγ2k2 + α2β(2 + 3γ)km + 2α3m2

+ αk(β2γ(2 + γ)k − (−2 + γ)m)) + a(2β3γ(2 + γ)k3

+ 2αβ2(2 + 5γ + γ2)k2m + αm2(−(−2 + γ)k + 2α2m)

+ βkm(4k + α2(6 + 5γ)m)))),

f21 = (a − b)(2β2γ(2 + γ)k2 + αβ(2 + 5γ)km + m((2 − 3γ)k + 2α2m))

= −b(2β2γ(2 + γ)k2 + αβ(2 + 5γ)km + m((2 − 3γ)k + 2α2m))

+ a(2β2γ(2 + γ)k2 + αβ(2 + 5γ)km + m((2 − 3γ)k + 2α2m)),

f22 = am((1 + αβ)(2 + γ)k + 2α2m) + b(2β2γ(2 + γ)k2 + αβ(2 + 7γ + γ2)km

+ m((2 − γ + γ2)k + 2α2(1 + γ)m)),

f23 = f14,

f24 = m(b(2β3γ2(2 + γ)k3 + αβ2γ(8 + 10γ + γ2)k2m + βkm(2γk + γ3k + 2α2m

+ 11α2γm + 3α2γ2m) + αm2((2 − γ + γ2)k + 2α2(1 + γ)m)) + a(2β3γ(2 + γ)k3

+ αβ2(4 + 8γ + γ2)k2m + αm2((2 + γ)k + 2α2m) + βkm((4 + 2γ + γ2)k + 3α2(2 + γ)m))).
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Points to note are as follows:

1. This analysis demonstrates that symbolic representations for the BTS matrix

product are huge, even for a simple 2-DOF system.

2. There are only two symbolic expressions for the denominators of BTS, one for

the displacement coefficients, and a second for the velocity terms.

Special Cases

We have found that under a number of circumstances, the lengthy symbolic

expressions simplify significantly.

Minimize Potential Energy (k∗ = k). When Q contains the structural stiffness

matrix in the upper-left quadrant (i.e., a = b = 1), BTS simplifies to:

BTS =
[

HT

2
HTM(α·M+β·K)−1

2

]

. (3.46)

This result is consistent with the n-DOF model derived in the next section.

Perfect Isolation (γ = 0). For structures that are perfectly isolated (i.e., γ = 0),

the symbolic expressions simply to:

BTS(H,m, k, α, β, γ, a, b) = HT





a+b
4

a−b
4

a(2βk+αm)+bαm

4α(2βk+αm)
a(2βk+αm)−bαm

4α(2βk+αm)
a−b
4

a+b
4

a(2βk+αm)−bαm

4α(2βk+αm)
a(2βk+αm)+bαm

4α(2βk+αm)



 .

(3.47)

Two special cases exist. When a = b = 1, equation 3.47 simplifies further:

BTS(H,m, k, α, β, γ, 1, 1) = HT





1
2

0 βk+αm

2α(2βk+αm)
βk

2α(2βk+αm)

0 1
2

βk

2α(2βk+αm)
βk+αm

2α(2βk+αm)



 . (3.48)
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Notice that symbolic expressions for the coefficient denominators will be non-zero

as long as α 6= 0 (here we assume that m and k will never be zero) and hence,

generally, the bang-bang control strategy is well defined even for structures that are

perfectly isolated. The second special case occurs for a = 0 and b = 1 (i.e., we want

to minimize energy within the superstructure alone). Now equation 3.47 simplifies

to:

BTS(H,m, k, α, β, γ, 0, 1) = HT

[ 1
4

−1
4

αm
2α(2βk+αm)

− αm
2α(2βk+αm)

−1
4

1
4

− αm
2α(2βk+αm)

αm
2α(2βk+αm)

]

. (3.49)

In a typical base-isolated structure, the time history response will be dominated by

the first mode of vibration (i.e., x1(t) ≈ x2(t) and ẋ1(t) ≈ ẋ2(t)). We observe that

displacement and velocity pairs of this type will have little influence on the control

strategy. Rather, it will be dominated by second-mode displacements.

Minimizing Kinetic Energy

This exercise can be repeated for minimization of kinetic energy in the base

isolator and superstructure. For the 2-DOF mass-spring-damper system shown in

Figure 1.1, a suitable form for Q is:

Q =











0 0 0 0
0 0 0 0
0 0 cm 0
0 0 0 dm











, (3.50)

The symbols c and d in equation 3.50 represent relative amount of weight a designer

places on minimizing kinetic energy in the first and second stories of the structure,

respectively.

When c = d = 1, the symbolic representation of BTS simplifies to:
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BTS =
[

0 HTM(α·M+β·K)−1

2

]

. (3.51)

Minimizing Total (Potential+Kinetic) Energy

Notice that because solutions to the Lyapunov matrix equation are linear with

respect to S, BTS that minimizes the total (potential + kinetic) is simply the sum

of equations 3.46 and 3.51.

3.2.2 Limitations of Symbolic Analysis with Mathematica c©.

We attempted to compute symbolic expressions for systems having more

than two degrees of freedom, but Mathematica’s c© demands for storage space are

greater than what is available on standard workstations. Instead of returning sym-

bolic expressions, the Mathematica c© calculation either “times out” or aborts.

3.2.3 Symbolic Analysis of a N-DOF System

When we first obtained symbolic expressions for the matrix elements in BTS,

it was not immediately evident that when a = b = 1 and c = d, the lengthy formu-

las would simplify to the formats shown in equations 3.46 and 3.51. This surprising

result made us think about other possibilities. Specifically, “starting with relatively

simple expressions for solutions to BTS in a one degree of freedom structure, we

wondered if it would it be possible – perhaps under certain restrictions – to scale

this solution up to a N-DOF system?” This pathway of investigation has two key

benefits. Unlike numerical procedures for solution to the Lyapunov equation, sym-

bolic expressions provide physical insight into the inner workings of the bang-bang

control strategy. And second, when the matrix restrictions apply, symbolic expres-
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sions remove the need for nontrivial numerical solutions to the Lyapunov matrix

equation. We now present a summary of the key results and observations.

Minimizing Potential Energy

To minimize the potential energy in a n-DOF system, an appropriate choice

for the Q matrix would be:

Q =

[

K 0
0 0

]

; (3.52)

where K is the n x n structural stiffness matrix and 0 is a n x n matrix of zeros.

Substituting equation 3.52 into the Lyapunov matrix equation shown in equation

1.11 and solving results in the following BTS matrix product:

BTS =
[

HT

2
HTM(α·M+β·K)−1

2

]

; (3.53)

where H is a n by p matrix that designates the location of the controller(s). Ap-

pendix A shows the derivation of equation 3.53.

Requirements for Scalability. Equation 3.53 holds when: (1) the mass matrix M

is diagonal and uniform (i.e., m1 = m2 = ... = mn), and (2) linear viscous damping

is present in the form α · M + β · K. If the damping matrix sum α · M + β · K

becomes rank deficient, then a unique solution to BTS does not exist.

Remark. By substituting equation 3.53 into equation 1.12, the system parameters

that are being minimized by the bang-bang control objective results:

V̇ [x(t), ẋ(t)] = −xT (t)Kx(t) + uT (t)HT[Ix(t) + M(α · M + β · K)−1ẋ(t)]. (3.54)
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The first term on the right-hand side of equation 3.54 is an energy term that cor-

responds to double the amount of potential energy in the system at any time, t.

Physical considerations dictate that the second term on the right-hand side of equa-

tion 3.54 must also be in terms of energy. Since the actuator force, u(t), is present

in equation 3.54, this term may be thought of as being made up of displacement

and velocity terms that account for work that is done by the actuator force(s) at

any time, t.

Minimizing Kinetic Energy

The kinetic energy of a mass-spring system, T (t), may be represented by

the following equation:

T (ẋ(t)) =
m1ẋ1(t)

2

2
+

m2ẋ2(t)
2

2
+ ... +

mnẋn(t)2

2
. (3.55)

Minimizing the squares of the velocities of a system response may not seem like an

important parameter, but internal non-structural damage (e.g., to internal walls,

plumbing, etc.) is correlated to peak velocities within a structure [52]. Accordingly,

an appropriate choice for Q is as follows:

Q =

[

0 0
0 M

]

; (3.56)

where M is the n by n structural mass matrix and 0 is a n by n matrix of zeros.

Substituting equation 3.56 into the Lyapunov matrix equation results in the BTS

matrix product:

BTS =
[

0 HTM(α·M+β·K)−1

2

]

. (3.57)
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In equation 3.57, 0 is a p by n matrix of zeros and H is a n by p matrix that

designates the location of the controller(s). Appendix 2 shows the derivation of

equation 3.57.

Requirements for Scalability. Equation 3.57 has the same scalability require-

ments as equation 3.53.

Remark. By substituting equation 3.57 into equation 1.12 the system parameters

that are being minimized by the bang-bang control objective results:

V̇ [ẋ(t)] = −ẋT (t)Mẋ(t) + uT (t)HT[M(α · M + β · K)−1ẋ(t)]. (3.58)

In a manner analogous to the case for minimizing the potential energy in a n-DOF

system, the first term on the right-hand side of equation 3.58 is an energy term

corresponding to double the amount of kinetic energy in the system at any time, t.

Since the actuator force, u(t), is present in the second term on the right-hand side

of equation 3.58, this term may be thought of as being made up of only velocity

terms that account for work that is done by the actuator force(s) at any time, t. It

is noteworthy that by choosing the Q matrix as shown in equation 3.56, the bang-

bang control objective works toward minimizing system velocities, and not system

displacements.

Minimizing Total (Potential+Kinetic) Energy

The total energy in an n-DOF system can be minimized by setting Q to:

Q =

[

K 0
0 M

]

. (3.59)
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Solutions to the Lyapunov equation corresponding to equation 3.59 are given by the

sum of equations 3.52 and 3.56. In other words,

B
T
S =

[

H
T

2
H

T
M(α·M+β·K)−1

2

]

+
[

0
H

T
M(α·M+β·K)−1

2

]

=
[

H
T

2
HTM(α · M + β · K)−1

]

.

(3.60)

Remark. Substituting equation 3.60 into 1.12 gives the following equation:

V̇ [x(t), ẋ(t)] = −[xT (t)Kx(t) + ẋT (t)Mẋ(t)] + uT (t)HT[Ix(t) + 2M(α · M + β · K)−1ẋ(t)]. (3.61)

It is clear that equation 3.61 is equal to the sum of equations 3.54 and 3.58. The

first and second terms on the right-hand side of equation 3.61 are energy terms

corresponding to double the sum of potential and kinetic energy in the system at

any time, t. The third term on the right-hand side of equation 3.61 may be thought

of as being made up of displacement and velocity terms that account for work that

is done by the actuator force(s) at any time, t.

3.3 Research Avenue 3. Symbolic Analysis of the Effect of Nonlinear

Deformations to Bang-Bang Control

In this section, we explore the sensitivity of parameters in bang-bang control

to localized nonlinear deformations in the base isolation devices. A key observation is

that in a typical base-isolated structure, the initial stiffness of the base isolators will

be 10-20% of the stiffness of elements in the superstructure. After the isolators have

yielded, the tangent stiffness may drop to 2-10% of elements in the superstructure.

From a research perspective, the question of interest is “do these nonlinearities

have a significant impact on the control strategy that should be employed?” We
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address this concern by conducting a symbolic analysis of the control strategy for

minimization of potential energy; see equation 3.53.

3.3.1 Case Study Problem (2-DOF Mass-Spring System)

The case study problem is the 2-DOF system shown in Figure 1.1. When

controllers act on both degrees of freedom, H is as follows:

H =

[

1 0
0 1

]

. (3.62)

Substituting equation 3.62 into equation 3.53 gives:

BTS =

[

1
2

0 BT S(1, 3) BT S(1, 4)
0 1

2
BT S(2, 3) BT S(2, 4)

]

=
[

HT

2
HTM(α·M+β·K)−1

2

]

. (3.63)

In the bang-bang control strategy, coefficients on the left- and right-hand sides of

BTS are multiplied by the system displacements and velocities, respectively. The

terms BT S(1, 3) through BT S(2, 4) are elements of the matrix product HTM(α·M+β·K)−1

2
.

Due to symmetry of the mass and stiffness matrices, BT S(2, 3) = BT S(1, 4).

Our research goal is to identify conditions in the problem formulation where

coefficients for the system velocities will be either very large or, conversely, very

small, compared to the displacement coefficients. The former condition will lead

to control strategies heavily influenced by system velocities. The latter will lead to

control strategies dominated by system displacements.

3.3.2 Symbolic Expressions for Velocity Components of Bang-Bang Control

Let us assume that linear viscous damping is present in the form α · M +

β · K such that there is percentage, ξ, of critical damping of the first two modes of
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vibration. Since detailed information on the variation of damping with frequency

is seldom available, it is common practice for analysis procedures to assume equal

damping ratios to both frequencies [20] (i.e., ξ = ξ1 ≈ ξ2 where ξ1 and ξ2 represent

the damping ratios for the first two modes of vibration, respectively). The damping

matrix coefficients α and β are as follows:

α =
2ξω2ω1

ω2 + ω1

, (3.64)

and

β =
2ξ

ω2 + ω1

, (3.65)

where ω1 and ω2 are the first and second natural frequencies of the system, respec-

tively. From eigenvalue analysis, the natural frequencies of vibration are:

ω1(γ,m, k) =

√

k(γ + 2 −
√

γ2 + 4)

2m
, (3.66)

and

ω2(γ,m, k) =

√

k(γ + 2 +
√

γ2 + 4)

2m
. (3.67)

Symbolic expressions for BT S(1, 3), BT S(1, 4) and BT S(2, 4) in terms of ξ, γ, and

the simplifying notation τ = m/k (units of seconds2) are obtained in three steps.

First, equations 3.66 and 3.67 are substituted into 3.64 and 3.65. Equations 3.64

and 3.65 are then substituted into equation 3.63. Finally, we note that ω1ω2τ =
√

γ.

The latter observation provides a pathway for simplifying the symbolic expressions

to the point where key trends in the “velocity coefficients” can be identified. The

symbolic expressions are as follows:
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BT S(1, 3) =









√

τ/8
[

√

(γ + 2) −
√

γ2 + 4 +
√

(γ + 2) +
√

γ2 + 4
]

(1 +
√

γ)

√
γ ·
[

4 + 2γ + 4
√

γ
]

· ξ









(3.68)

BT S(1, 4) =









√

τ/8
[

√

(γ + 2) −
√

γ2 + 4 +
√

(γ + 2) +
√

γ2 + 4
]

√
γ ·
[

4 + 2γ + 4
√

γ
]

· ξ









(3.69)

BT S(2, 4) =









√

τ/8
[

√

(γ + 2) −
√

γ2 + 4 +
√

(γ + 2) +
√

γ2 + 4
]

(1 + γ +
√

γ)

√
γ ·
[

4 + 2γ + 4
√

γ
]

· ξ









(3.70)

Remark. We need to make sure that the parameter values τ and γ are selected

in such way that the natural periods of vibration are representative of systems that

occur in practice. The derivation is straightforward. From equations 3.66 and 3.67

we obtain:

T1 =
2π

w1

= 2π

√

√

√

√

2τ
(

γ + 2 −
√

γ2 + 4
) , (3.71)

and

T2 =
2π

w2

= 2π

√

√

√

√

2τ
(

γ + 2 +
√

γ2 + 4
) . (3.72)

Table 3.1 summarizes the first and second natural periods of vibration (i.e., T1 and

T2) for γ natural periods of vibration for γ covering the interval [ 0.0001, 0.15 ] at

various levels of τ .

Generally speaking, low values of τ (i.e., τ ≤ 0.0001 secs2) correspond
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τ = 0.0001 (sec2) γ = 0.001 γ = 0.005 γ = 0.01 γ = 0.05 γ = 0.10 γ = 0.15

T1 (sec) 2.8103 1.2574 0.8897 0.3999 0.2846 0.2338

T2 (sec) 0.0444 0.0444 0.0444 0.0442 0.0439 0.0436

τ = 0.0010 (sec2) γ = 0.001 γ = 0.005 γ = 0.01 γ = 0.05 γ = 0.10 γ = 0.15

T1 (sec) 8.8869 3.9763 2.8134 1.2646 0.8999 0.7395

T2 (sec) 0.1405 0.1404 0.1403 0.1396 0.1387 0.1378

τ = 0.010 (sec2) γ = 0.001 γ = 0.005 γ = 0.01 γ = 0.05 γ = 0.10 γ = 0.15

T1 (sec) 28.1028 12.5742 8.8969 3.9989 2.8457 2.3385

T2 (sec) 0.4442 0.4440 0.4437 0.4415 0.4387 0.4359

Table 3.1: First and Second Natural Periods of Vibration (i.e. T1 and T2) versus τ
and γ

to systems having a stiff superstructure. High values of τ (i.e., τ ≥ 0.01 secs2)

correspond to systems having a flexible superstructure. During a nonlinear time-

history response, instantaneous values of γ vary according to elastic/plastic states of

the systems. In contrast, values of τ remain constant. Hence, from an analysis and

design perspective, we need to explore sensitivity of parameters in the bang-bang

control strategy to systematic variations in γ while holding τ constant.

3.3.3 Sensitivity Analysis

In an effort to understand the relative importance of displacement and veloc-

ity terms in the bang-bang control strategy, we employ a combination of mathemat-

ics and graphics to identify and validate trends in the “system velocity coefficients”

versus ξ, γ and τ . First, notice that although each formula has many terms, the

relationship among these coefficients is simple:
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BT S(1, 3)

BT S(1, 4)
= 1 +

√
γ and

BT S(2, 4)

BT S(1, 4)
= 1 + γ +

√
γ. (3.73)

For large values of γ (e.g., γ = 0.15), the ratios BT S(1, 3)/BT S(1, 4) and BT S(2, 4)/BT S(1, 4)

are 1.38 and 1.53, respectively. For small values of γ (i.e., γ ∼ 0.00), the ratios

BT S(1, 3)/BT S(1, 4) and BT S(2, 4)/BT S(1, 4) approach 1. Hence, while the left-

hand side of BTS has coefficient values 1/2 along the diagonal elements and zeros

elsewhere, for small values of γ, values of the four system velocity components are

approximately the same. Moreover, we note that:

limitγ→0





√

(γ + 2) −
√

γ2 + 4 +
√

(γ + 2) +
√

γ2 + 4
[

4 + 2γ + 4
√

γ
]



 =
1

2
. (3.74)

Hence, for small values of γ, the velocity coefficients BT S(1, 3), BT S(1, 4) and

BT S(2, 4) increase in proportion to 1/
√

γ. Also, for a fixed value of γ, the ve-

locity coefficients increase in proportion to
√

τ and 1/ξ (the damping ratio of the

structure).

Figures 3.7 through 3.9 validate these observations and show two important

trends. In these figures, the damping ratio, ξ = 0.05. First, we observe that τ

increases monotonically as one moves vertically along contours of constant γ. We

conclude from this trend that the influence of system velocities on bang-bang control

will increase as the superstructure becomes progressively more flexible. (Conversely,

bang-bang control will be most influenced by system displacements when the super-

structure is stiff.) Second, within the interval γ ∈ [0.05,0.15], the coefficient values

are relatively constant. We surmise from this observation that “bang-bang con-

trol strategies” will be insensitive to localized nonlinearities in the base isolation

devices, especially when γ(t) remains within the interval [0.05,0.15]. As such, sim-

plified design procedures might be justified. For design applications where post-yield
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Figure 3.7: Velocity coefficient BT S(1, 3) versus γ for contours of constant τ (ξ =
0.05)

stiffnesses are very low (i.e., min (γ(t)) ≈ 0), the bang-bang control strategy is likely

to switch between two modes: (1) a displacement driven strategy for pre-yield states,

and (2) a velocity driven strategy for post-yield states. At this point these observa-

tions are preliminary predictions. Numerical simulations are needed to validate the

accuracy of these observations.

3.3.4 Consistency Check

At a glance this result would seem to be at odds with the symbolic expres-

sions derived in Research Avenue 2. However, this isn’t the case. Unlike the analysis

in Section 3.2.1, the formulation here assumes that the damping matrix coefficients

α and β, i.e.,
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α =
2ξω2ω1

ω2 + ω1

and β =
2ξ

ω2 + ω1

, (3.75)

will vary according to ω1 and ω2, the first and second natural circular frequencies

of the system, respectively. As γ approaches zero, the natural periods of vibration

move toward infinity. Hence, it is evident from equation 3.75 that as ω1 and ω2

approach 0, β increases toward infinity. The case for α is less clear. We note that

w1 < w2 (generally) and rewrite the symbolic expression for α as

α =
2ξω1

[

1 + ω1

ω2

] . (3.76)

The denominator will evaluate to a small finite number as γ approaches zero. Hence,

α also approaches 0. Moreover, from equation 3.48 we see that as α approaches 0,

coefficients BT S(1, 3) and BT S(1, 4) increase in value toward infinity. Coefficients

BT S(1, 3) and BT S(1, 4) also approach each other in value. Therefore, these obser-

vations are completely consistent with the symbolic analysis in section 3.1.

Remark. Although Rayleigh damping models are not associated with single degree-

of-freedom systems, it can be easily shown that if w1 = w2 in equations 3.75, the

damping coefficient

c =
[

1

6λω

]

. (3.77)

Hence, even in the single degree-of-freedom case, the coupling of Rayleigh damping

models to the bang-bang control strategy forces the damping coefficient to increase

toward infinity as ω approaches zero.
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Figure 3.8: Velocity coefficient BT S(1, 4) versus γ for contours of constant τ (ξ =
0.05)
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Figure 3.9: Velocity coefficient BT S(2, 4) versus γ for contours of constant τ (ξ =
0.05)
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Chapter 4

Numerical Analysis: Effect of Bang-Bang Control Strategy

For a wide range of moderate-to-large ground motion events, base-isolated

structures are expected to exhibit nonlinear displacement behavior at the isolator

level, leaving the main structural system undamaged. In Section 3.3, we formulated

symbolic expressions for parameters in the bang-bang control strategy as a function

of localized nonlinear deformations in the isolator devices. Figures 3.7 through 3.9

indicate that over the interval γ ∈ [0.05, 0.15], the magnitude of velocity coefficients

in BTS will be insensitive to variations in γ. From a design perspective, however, we

need to know whether small variations in the magnitude of velocity coefficients will

lead to large perturbations in peak values of system response? To resolve this issue,

in this chapter we use the Aladdin scripting language [6, 7] to compute the time-

history response of a five-DOF actively controlled nonlinear mass-spring-damper

system subject to an ensemble of severe earthquake ground motions. The purposes

of this experiment are to: (1) Validate by experiment the theoretical formulation for

bang-bang control, (2) Demonstrate that localized nonlinear displacements in the

base isolation devices are insensitive to the bang-bang strategy used (the bang-bang

strategies considered are described in section 4.4), and (3) Show the characteristic

high frequency switching of the control force from one extreme to another after the

ground excitation ends. The latter points to the limitations of constant amplitude

bang-bang control, and the strong need for a time-varying adaptive strategy.
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Floor Stiffness (kN/m) Period (secs) Part. Factor (Γ)
DOF/Mode Mass (kg) Pre-yield Post-yield Pre-yield Post-yield Pre-yield Post-yield

1 160,000 27,000 4,500 1.20 2.70 1.11 1.02
2 160,000 150,000 150,000 0.31 0.33 0.15 0.03
3 160,000 150,000 150,000 0.17 0.17 0.04 0.01
4 160,000 150,000 150,000 0.13 0.13 0.02 0.00
5 160,000 150,000 150,000 0.11 0.11 0.01 0.00

Table 4.1: Properties of Five DOF Mass-Spring-Damper System

4.1 Actively Controlled Mass-Spring-Damper System

Figures 4.1 and 4.2 show elevation views of an idealized mass-spring-damper

base-isolated system. Within the superstructure (elements 2-5), five lumped masses

are connected via four linearly elastic springs. Element 1 is modeled with a bi-linear,

force-displacement relationship that follows the kinematic hardening rule. Element

1 is used by Lin [44] and is a model of a laminated rubber base-isolator with a lead

core. The purpose of element 1 is to isolate the superstructure from the inertia forces

generated by the ground displacements. The left-hand side of Table 4.1 contains a

summary of mass and stiffness properties for the structural model.

As shown on the right-hand side of Table 4.1, the first and second natural

periods of vibration are 1.2 and 0.31 seconds, respectively. When the base isolator

yields the first and second natural periods of vibration increase to 2.70 and 0.33

seconds. Also notice that in both the pre- and post-yield states, the modal partic-

ipation factors indicate that the overall system response should be dominated by

first mode displacements – this is particularly the case for post-yield displacements.

The yield force and displacement for element 1 are 350 kN and 13.0 mm,

respectively. Damping effects are accounted for through linear viscous damping. In

the equation C = αM + βK, the coefficients α and β are chosen so that there is

5% critical damping in the first two modes. Boundary conditions for our model are
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Figure 4.1: Elevation View of 5 DOF Linear/Nonlinear Mass-Spring-Damper System

full-fixity at the base, and full-fixity against vertical displacements and rotations at

nodes 2 through 5.

With respect to parameters in the symbolic analysis, the pre- and post-yield

values of γ are 0.18 and 0.03 and the value for τ is 0.00106 secs2. To see where these

parameters lie with respect to the two-DOF system in Table 3.1, we partition the

overall mass into two “roughly equivalent” masses. The ratio τ = 2.5m/k = 0.00265

secs2. These parameter settings: (1) put the pre-yield five-DOF between the bottom

right-hand corner and middle right-hand side of Table 3.1, and (2) indicate that the

study problem is consistent with the class of problems covered by the symbolic

analysis.

4.2 Actuator Placement and Characteristics

For the purposes of illustrating the potential benefits of active control, an

actuator is located at the top of the lead-rubber base isolator (degree of freedom
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Figure 4.2: Model of Mass-Spring-Damper System

1). Unfortunately, at this time there is a complete lack of guidance in the literature

on the selection of appropriate max/min forces in the actuator. Hence, in this

dissertation, we proceed under the assumption that the hybrid system will not add

value to the overall system performance unless the passive and active components

of control can work in concert. For the passive control system, stiffness and yield

force design parameters are selected so that the structure will have appropriate

natural periods of vibration and yield before excessive forces occur within the main

structural system. We observe that since the actuators will not affect the natural

periods of vibration, as a first cut, peak actuator forces should be balanced against
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the yield capacity of the isolators. Therefore, for this dissertation, the maximum

force that may be generated by the actuator matches the yield force of the base

isolator (i.e., umax = 1Fy = 350 kN).

4.3 Ground Excitation

The numerical experiments are based on 15 second segments of ground

motion recorded at San Fernando and Northridge, CA., Kobe, Japan, and Duzce,

Turkey (Source, Earthquake Engineering Research (PEER) Center Strong Motion

Database [27]). The details of each accelerogram are as follows:

1. 1971 San Fernando – 164◦ south-south-west component of the February 9, 1971,

San Fernando, CA. USA. earthquake (unscaled magnitude 6.6). Recorded at

the 279 Pacoima Dam substation (CDMG station #279). The closest distance

of the substation to the fault rupture is 2.8 kilometers.

2. 1994 Northridge – east-west component of the January 17, 1994, Northridge,

CA. USA. earthquake (unscaled magnitude 6.7). Recorded at the 24436

Tarzana, Cedar Hill substation (CDMG station 24436). The closest distance

of the substation to the fault rupture is 17.5 kilometers.

3. 1995 Kobe – north-south component of the January 16, 1995, Kobe, Japan

earthquake (unscaled magnitude 6.9). Recorded at the Kobe Japanese Mete-

orological Agency (KJMA). The closest distance of the substation to the fault

rupture is 0.6 kilometers.

4. 1999 Duzce – north-south component of the November 12, 1999, Duzce, Turkey

earthquake (unscaled magnitude 7.1). Recorded at the 375 Lamont Doherty

Earth Observatory substation. The closest distance of the substation to the

fault rupture is 8.2 kilometers.
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Time histories of ground acceleration vs time are shown in Figures 4.3 through

4.6. The ground motions are digitized at intervals of 0.02 seconds. Each record

was translated along the y-axis to remove residual velocity effects. Park and Otsuka

[53] have classified these earthquakes as being severe – therefore, expected structural

behavior is large plastic deformations in the isolators and essentially elastic behavior

in the system superstructure.

Frequency Content of Ground Motions. The Fourier transform is a frequency

domain analysis technique that is used to determine dominant frequency. Figures

4.7 through 4.10 show the frequency content of ground motion for the Kobe, San

Fernando, Northridge and Duzce accelerograms, respectively. Each plot is annotated

with the dominant frequency (Hz) and corresponding period (sec) of ground shaking

(i.e., 0.68, 0.21, 0.35 and 0.34 seconds). It is important to note that in all cases, the

base isolation design effectively separates the dominant period of vibration in the

ground shaking from the natural periods of the structure (T1 = 1.2 seconds). The

corresponding values of β = g/w are 1.76, 5.76, 3.44, and 3.52.

Ground Motion Scaling. Using peak ground acceleration (PGA) and Arias In-

tensity as metrics of ground shaking severity, the accelerograms were scaled so that

they have approximately the same potential for imparting damage to a structure.

Arias Intensity is a measure of energy in an accelerogram [4]. Kayen and Mitchell

[39] note that as a scaling parameter, Arias Intensity has two key advantages over

PGA, namely:

1. Arias Intensity is computed over the duration of the acceleration record. It

therefore incorporates all amplitude cycles that occur. PGA, in contrast, uti-

lizes a single amplitude that is independent of shaking duration, and
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Motion Arias
Earthquake Scale Factor Intensity (m/sec) PGA (g)

1971 San Fernando 1.186 12.07 1.451
1994 Northridge 0.779 12.07 1.388

1995 Kobe 1.205 12.07 0.989
1999 Duzce 1.131 12.07 1.073

Table 4.2: Severe EQ Scaled Components: Scaling Factor, Arias Intensity, PGA

Velocity (cm/sec) Fourier
Earthquake Min. Max. Peak (secs)

1971 San Fernando -30.69 181.30 0.21
1994 Northridge -104.30 44.08 0.35

1995 Kobe -100.30 90.27 0.68
1999 Duzce -44.34 32.76 0.34

Table 4.3: Severe EQ Scaled Components: Peak Velocity and Fourier Amplitude

2. Arias intensity incorporates the severity of motions over the full range of

recorded frequency, whereas, PGA is often associated only with high-frequency

motion.

The scaling procedure constrains each ground motion to have equal Arias Intensity

and adjusts the scaling factors so that the average peak ground acceleration has a

desired level. Mathematically, if ẍig(t) is the i-th ground motion acceleration, then

we seek scaling coefficients ki so that:

π

2g

∫ 10

0
k2

1ẍ
2
1g(τ)dτ =

π

2g

∫ 10

0
k2

2ẍ
2
2g(τ)dτ = · · · =

π

2g

∫ 10

0
k2

6ẍ
2
6g(τ)dτ = constant.

(4.1)

The Arias Intensity and average PGA for the scaled ground motion accelerograms

are 12.07 m/sec and 1.225g, respectively. Tables 4.2 and 4.3 show results of the scal-

ing procedures, including the ground motion scaling factor, Arias Intensity, PGA,

minimum and maximum ground velocities, and the period at which the peak Fourier
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transform occurs. The time variation in Arias Intensity for each of the four scaled

ground motions is shown in Figure 4.11.

4.4 Bang-Bang Control Strategies

The purpose of this section is to assess the impact of the control algorithm

strategy on nonlinear system-level behavior; for details on underlying behavior, see

equation 1.1. Time history analyses are computed for two control methodologies:

Control Methodology 1. Consists of an actively controlled, nonlinear, base-

isolated mass-spring-damper system with the same section, material, and ac-

tuator properties as previously described. This simplified approach to control

assumes that the structural system properties will remain constant throughout

the analyses – but, of course, they don’t. Prior to the commencement of time
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history computations, BTS is calculated using values of α, β, M, and K based

on the elastic stiffness of the base isolator. Herein, this control methodology

will be called constant stiffness (K) bang-bang (CKBB) control.

Control Methodology 2. Consists of an actively controlled, nonlinear, base-

isolated mass-spring-damper system with the same section, material, and ac-

tuator properties as previously described. The goals of this methodology are to

systematically refine the control algorithm based upon real-time values of the

system parameters (including nonlinear force-displacement behavior of the iso-

lation devices). A naive implementation would simply compute BTS at each

time-step. Instead, we note that at any point in time, the system can only be

in one of two states: (1) pre-yield (initial) structural stiffness, or (2) post-yield

(tangent) structural stiffness. BTS was calculated prior to the time history us-

ing the base isolator stiffness based on both the preyield and postyield states.

When the tangent stiffness of the base isolator is used to calculate BTS, equa-

tion 3.53 is not applicable. This is due to the fact that equation 3.53 was

derived based on the relationship between the damping and stiffness (and

mass) being C = αM + βK. However, since we are not varying the damping

as a function of time, the Lyapunov equation (1.11) must be solved. During

each time step of the analysis, an appropriate BTS was selected. Herein, this

control methodology will be called variable stiffness (K) bang-bang (VKBB)

control.

To benchmark the improvements in system response due to the presence of active

control, we compute a third time history response for base isolation alone. By

comparing contours of time history response for control methodologies 1 and 2,

we hope to determine if the simplifying assumptions in control methodology 1 are

sufficient for design purposes. And by comparing control methodologies 1 and 2
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to the ensemble of time history responses corresponding to base isolation alone, we

hope to assess the impact that active control can have as a supplement to base

isolation.

4.4.1 Constant Stiffness Bang-Bang Control (CKBB)

Before bang-bang control can be applied to equation of motion, 1.1, BTS

must first be calculated. For both the control methodologies, the potential energy

in the structure will be minimized (i.e., a = b = 1). Therefore, equation 4.2 is

applicable:

BTS =
[

HT

2
HTM(α·M+β·K)−1

2

]

. (4.2)

Equation 4.2 evaluates to a (1 × 10) matrix.

Equations 4.3 through 4.5 show the values for α, β, and the matrices H, M,

and K that are directly substituted into equation 4.2:

α = 0.4170 Hz; β = 0.0039 secs; H =

































1

0

0

0

0

































, (4.3)

M =

















160, 000 0 0 0 0
0 160, 000 0 0 0
0 0 160, 000 0 0
0 0 0 160, 000 0
0 0 0 0 160, 000

















kg, (4.4)
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K =

















177, 000 −150, 000 0 0 0
−150, 000 300, 000 −150, 000 0 0

0 −150, 000 300, 000 −150, 000 0
0 0 −150, 000 300, 000 −150, 000
0 0 0 −150, 000 150, 000

















kN/m, (4.5)

and equation 4.6 shows the resultant matrix:

BTS =
[

0.500 0 0 0 0 0.250s 0.186s 0.144s 0.119s 0.106s
]

. (4.6)

Matrix terms on the right-hand side of equation 4.6 are annotated with “s” indicating

that the velocity terms have their own units.

4.4.2 Variable Stiffness Bang-Bang Control (VKBB)

For both control methodologies, the application of VKBB control is only

slightly more difficult than CKBB control. Since the only nonlinearity present in

our numerical examples comes in the form of a bilinear base isolator stiffness, BTS

must be calculated exactly twice. Equation 4.7 shows the stiffness matrix, K that

is directly substituted into equation 4.2. H and M are as shown in equations 4.3

and 4.4:

K =

















154, 500 −150, 000 0 0 0
−150, 000 300, 000 −150, 000 0 0

0 −150, 000 300, 000 −150, 000 0
0 0 −150, 000 300, 000 −150, 000
0 0 0 −150, 000 150, 000

















kN/m. (4.7)

At each time step, the structural stiffness state must be determined and the cor-

responding BTS substituted in the equation of motion. It is important to note,

however, that when the post-yield tangent stiffness is employed in the BTS compu-
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base isolation plus variable stiffness bang-bang control (BI+VKBB).

tation, the relationship C = αM + βK no longer holds, and hence, equation 3.53 is

no longer valid. We circumvent this problem by computing a numerical solution to

the Lyapunov equation. The result is:

BTS =
[

0.619 −0.06 −0.035 −0.016 −0.008 0.293s 0.21s 0.157s 0.127s 0.113s
]

.

(4.8)

The matrix elements in equations 4.6 and 4.8 have similar numerical values. The left-

hand side of 4.8 evaluates to 0.619-0.06-0.035-0.016-0.008 = 0.5, which is identical

to element(1,1) in equation 4.6. In equation 4.6 the sum of elements (1,6) through

(1,10) is 0.805s. The same sum in 4.8 is 0.90s. The small increase in velocity

coefficient values, as γ decreases from 0.18 to 0.03, is completely consistent with

predictions made by the symbolic analysis.

90



4.4.3 Framework for Comparison of Control Strategies

In this section we present a simple framework for quantitatively evaluating

the similarity between components of response in the time-history analyses.

Scatter Diagram. Figure 4.12 is a symbolic representation of the relationship of

two random variables. This statistical evaluation considers the two time history

base isolator displacements, D1 and D2, when base isolation (BI) + CKBB and

BI+VKBB control is used, respectively. The probability mass density of (D1, D2)

response coordinates can be represented in a scatter diagram. The number of data

points in each quadrant of the scatter diagram is shown in Table 4.5.

Correlation Coefficients. The average values of the D1 and D2 are given by:

D1 =
1

N

i=N
∑

i=1

D1i, D2 =
1

N

i=N
∑

i=1

D2i, (4.9)

Measures of variance are given by [20]:

σ2
D1 =

1

N

i=N
∑

i=1

(

D1i − D1
)2

. (4.10)

σ2
D2 =

1

N

i=N
∑

i=1

(

D2i − D2
)2

. (4.11)

Measures of co-variance for displacements D1 and D2 are as follows:

µD1D2 =
1

N

i=N
∑

i=1

(

D1i − D1
)

·
(

D2i − D2
)

(4.12)

With equations 4.9 through 4.12 in place, the correlation coefficient for “D1 and

D2” is as follows:
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ρD1D2 =
µD1D2

σD1σD2

(4.13)

Because the mean square values are always positive, the correlation coefficient will

always lie in the interval [−1, 1] (i.e., −1 < ρD1D2 < 1). One special case occurs

when the variables D1 and D2 are statistically independent; µD1D2 = 0 and, hence,

ρD1D1 also equals 0. Based on our symbolic analysis of a simplified 2-DOF system,

we expect the displacements, D1 and D2 to be strongly correlated – hence, ρD1D2

should evaluate to a numerical value close to 1. The averages, standard deviations,

co-variances, and correlation coefficients are given in table 4.6.

4.5 Summary of Results

Time history analyses are computed for 20 seconds at discrete intervals of

0.02 seconds. For the time interval t ∈ [0, 15] seconds the structural system is

subject to ground motion excitations plus external actuator forces applied by the

control system. From t ∈ [15, 20] seconds, the dynamic vibration is determined by

the actuator forces alone.

Structural Drifts and Base Shear Forces. Figures 4.13 through 4.16 show

time histories of structural drifts at the base isolator (node 1) corresponding to the

scaled Kobe, San Fernando, Northridge, and Duzce ground motion inputs. Each

plot contains contours of displacement for the constant stiffness (i.e., base isolation

+ CKBB) and variable stiffness (i.e., base isolation + VKBB) control strategies. To

benchmark improvements in performance, a third contour for base isolation alone is

also shown. A summary of peak values in base drift, structural drift, and base shear

force for each of the three control cases is given in table 4.4. It is evident that, on

average, peak displacements for constant stiffness bang-bang control (CKBB) are
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21% smaller than those occurring for base isolation alone. With the sole exception

of the 1971 San Fernando earthquake, CKBB increases structural drift by a modest

amount. Thus, while active control works to decrease peak lateral displacements at

the top of the isolator, these improvements in system performance must be “traded

off” against a slight increase in internal forces and element-level displacements within

the main structural system.
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Base Structural Base
Drift (mm) Drift (mm) Shear (kN)

BI+ BI+ BI+ BI+ BI+ BI+
Earthquake BI CKBB VKBB BI CKBB VKBB BI CKBB VKBB

1971 San Fernando 447.60 368.90 368.90 12.38 12.29 12.29 2294.0 1940.0 1940.0
1994 Northridge 206.80 175.30 175.30 9.26 12.86 12.86 1210.0 1068.0 1068.0

1995 Kobe 260.70 203.00 203.00 8.31 10.15 10.15 1453.0 1193.0 1193.0
1999 Duzce 31.13 22.04 22.04 5.43 10.31 10.31 419.3 378.4 378.4

Table 4.4: Simulation Results: Peak Base/Structural Drifts and Base Shears

Earthquake Quad A Quad B Quad C Quad D Total
1971 San Fernando 0 198 0 802 1000
1994 Northridge 0 645 0 355 1000

1995 Kobe 0 222 0 778 1000
1999 Duzce 0 270 0 730 1000

Table 4.5: Data Points in Each Quadrant of Scatter Diagram

Earthquake Avg. D1 (mm) Avg. D2 (mm) Std. D1 (mm) Std. D2 (mm) Cov. D1,D2 (mm2) Corr. D1,D2
1971 San Fernando -4.58 -4.58 80.61 80.61 6498.00 1
1994 Northridge 4.19 4.19 24.83 24.83 616.60 1

1995 Kobe -6.13 -6.72 55.03 55.09 3031.00 0.9999
1999 Duzce -2.29 -2.29 6.01 6.01 36.05 1

Table 4.6: Statistical Comparison of Time-Histories of Displacement. Measures include average values, standard deviations,
covariances, and correlation coefficients
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The summary of statistical metrics in table 4.6 shows an exact correlation

in displacements (i.e., ρ = 1) generated by BI+CKBB and BI+VKBB for three

of the ground motion inputs, and an extremely strong correlation in displacements

generated by the 1995 Kobe earthquake.

The cause-and-effect and sensitivity analysis predictions enabled by symbolic

analysis of the two-DOF system (for details, see section 3.3), correspond well to

numerical results from time history analysis of the five-DOF model. Readers should

note the dominance of first mode vibrations in both the elastic and inelastic states:

(Γ1 = 1.11 in the elastic state and Γ1 = 1.02 in the inelastic state). For a 2-DOF

model with γ varying between 0.03 ≤ γ ≤ 0.18 and τ = 0.00265 secs2, Figures 3.7

through 3.9 validate these observations show that there will be very little change in

the velocity coefficients of BTS.

Nonlinear Force-Displacement Response. Figures 4.17 through 4.20 show time

histories of force-displacement in the base isolator (node 1) generated by the scaled

Kobe, San Fernando, Northridge, and Duzce ground motion inputs. As expected,

peak overall displacements are dominated by the contribution of plastic deformations

of the base isolator. The tangent stiffness (i.e., slope of the force-displacement

curve) in the pre- and post-yield domains is consistent with the material and section

properties described in Section 4.1 and illustrated in Figure 4.2.

Internal Element and Actuator Forces. Figures 4.21 through 4.24 show time

histories of internal element forces and actuator forces for system responses gen-

erated by the scaled Kobe, San Fernando, Northridge, and Duzce ground motion

inputs. In our symbolic analysis for the bang-bang control of a one-degree of free-

dom system – see Figures 3.1 through 3.3 for the forced vibration case and Figures

3.4 through 3.6 for the free vibration case – we demonstrated that actuator force is

“almost in phase” with velocities and and “almost completely out of phase” (i.e.,
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Figure 4.13: CKBB/VKBB Control Comparison: Base Isolator Drift for 1995 Kobe
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Figure 4.14: CKBB/VKBB Control Comparison: Base Isolator Drift for 1971 San
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π/2 radians) with displacements. (This relationship between bang-bang control ac-

tuator forces and displacements and velocities is investigated further in a paper by

Sebastianelli and Austin [64]). Figures 4.21 and 4.22, in particular, validate this

prediction.

Notice, however, that at the end of the displacement-time histories for all the

earthquakes, the top of the base isolator oscillates around a zero displacement and

the actuator force switches between ±umax = 350 kN at a high frequency. During

the “post ground shaking” phase of the time-history response, the actuator adds

very little value in terms of reduced displacements and it should be turned off!
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Figure 4.21: Isolator/Actuator Force: 1995 Kobe
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Figure 4.22: Isolator/Actuator Force: 1971 San Fernando
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Figure 4.23: Isolator/Actuator Force: 1994 Northridge
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Chapter 5

Energy- and Power-Balance Analysis

5.1 Background

Ideas in energy-based design date back to Housner [34, 35] in the 1950s, and

have recently been revised by a number of researchers, including Powell and Alla-

habadi [56], Fajfar [28], and Bertero and co-workers [85, 89]. Generally speaking,

these papers fall into three categories: (1) proposals for empirical design methods

based upon energy ideas, (2) uses of energy in the performance assessment of en-

ergy dissipation devices and/or structural system configurations, and (3) analytical

procedures for energy-balance calculations. As a result of this work, it is now un-

derstood that use of energy concepts provides:

1. A theoretical framework for connecting estimates of seismic input energy to

spatial and temporal distributions of energy demand on structural subsystems

and elements. The energy capacity of a structure is represented by the elastic

capacity plus energy dissipation capacity associated with damping and key

structural elements undergoing cyclic nonlinear deformations.

2. A rational means for accurately estimating the capacity of a structure. For

example, it is now widely recognized that levels of damage caused by earth-

quakes do not depend on peak displacements alone. Instead, the cumulative

damage from numerous inelastic cycles should be taken into account [28, 56].

The use of energy concepts in seismic design and analysis is appealing because very

complex spatial and temporal distributions of linear/nonlinear deformations can
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be represented by mathematical scalars (i.e., simple mathematical models). From a

numerical analysis viewpoint, an energy balance check provides a means of validating

the computations are stable and accurate.

5.2 Formulation of Energy-Balance Equations

Equation of Motion.

The left-hand side of Figure 5.1 shows the coordinate scheme for dynamics

of a multi-degree of freedom structure subject to a horizontal time-varying base

motion (actuators not shown). With respect to an absolute coordinate scheme, the

equations of equilibrium, given in equation 1.1 may also be written as:

Mẍt(t) + F(ẋ(t), x(t)) = Hu(t) (5.1)

with initial conditions xt(0) and ẋt(0). Here xt(t) = [x1t(t), x2t(t) ... xnt(t)]
T is

a (n × 1) vector of absolute system displacements, M is a (n × n) mass matrix,

and F(ẋ(t), x(t)) is a (n × 1) vector of straining and damping forces depending on

displacements and velocities measured relative to the base motion. In other words,

F(ẋ(t), x(t)) = Fdamping(ẋ(t), x(t)) + Fstraining(ẋ(t), x(t)). As in section 1.3, H

is an n x p matrix that designates the location of the controller(s), while u(t) is a

p-dimensional vector that represents the control force of p-number of controllers.

The relationship between absolute and relative displacements is simply given by:

xt(t) = x(t) + rxg(t) (5.2)

where xg(t) is the horizontal ground displacement and r is a (n×1) vector describing

the movement in each of the structural degrees of freedom due to a unit ground

displacement, Substituting equation 5.2 into 5.1 and rearranging terms gives:
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Mẍ(t) + F(ẋ(t), x(t)) = Hu(t) − Mrẍg(t) (5.3)

The right-hand side of Equation 5.3 is a vector of equivalent external loads applied

at the nodal degrees of freedom caused by the earthquake ground motions plus,

actuator forces applied to the external degrees of freedom. As before, ẍg(t) is the

ground acceleration at time t. Note that in equation 1.1, F(ẋ(t), x(t)) is express as

the damping (Cẋ(t)) and stiffness (Kx(t)) of the structure.

In moving from equations 5.1 to 5.3 we are removing the effects of rigid-body

displacements from the problem formulation. From a computational standpoint, this

is desirable because matrix equations 5.3 may be written entirely in terms of relative

displacements (and ground displacements).
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Figure 5.1: Moving- and Equivalent-base Models of System Response (forces due to
active control not shown)

Energy-Balance Equations.
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Let R(ẋ(τ), x(τ)) be a force that depends on displacements x(τ) and veloci-

ties ẋ(τ). The work done by R(· · ·) over the time interval τ ∈ [0, t] is denoted W (t),

and is given by:

W(t) =
∫ t

0
ẋT (τ) · R(ẋ(τ), x(τ))dτ (5.4)

At the highest level of abstraction the energy balance equations can be written:

Wint(t) + T(t) = Wact(t) + Weq(t) = Wext(t), (5.5)

where W, without subscripts, represents work done and T represents kinetic energy.

Equation 5.5 states that the work done by external loads/forces is converted to

kinetic energy and/or internal energy. In this section we derive energy balance

equations for (1) the moving base formulation, and (2) the equivalent fixed-base

formulation. Energy balance equations have been formulated by Austin and Lin

[5] in both the moving- and fixed-base coordinate frames. These energy balance

equations are modified to account for the work done by the active control and used

in energy-balance assessment.

Concept of Positive Versus Negative Work. The work done by a force acting

on a body can by either positive or negative. Work done by a force is positive if the

applied force has a component in the direction of the displacement; hence, work done

by a force is negative if the applied force has a component in the direction opposite

of the displacement. For example, when a body is falling, the force of gravity

is acting in the downward direction. The displacement is also in the downward

direction. Thus the work done by the gravitational force on the body is positive.

Now consider the same body being lifted in a upward direction. In this case, the

force of gravity is still acting in a downward direction, but the displacement of the

body is in a upward direction. The work done by the force of gravity on the body
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is negative [81].

5.3 Energy-Balance Equations for Equivalent Fixed-Based (or Rela-

tive) System

Substituting equation 5.1 into 5.4 and rearranging terms gives:

∫ t

0
ẋT (τ)Mẍ(τ)dτ+

∫ t

0
ẋT (τ)F(ẋ(τ), x(τ))dτ =

∫ t

0
ẋT (τ)Hu(τ)dτ−

∫ t

0
ẋT (τ)Mrẍg(τ)dτ

(5.6)

The left-most term represents the work done by nodal inertia forces. The second

term represents the work done by internal forces – due to condensation of bound-

ary nodes, internal energy can be expressed in terms of relative displacements and

velocities alone. The first term on the right-hand side represents the work done by

the actuator forces Hu(t) moving through relative displacements x(t). The right-

most term represents work done by equivalent static lateral nodal forces -Mrẍg(t)

moving through relative displacements x(t). Integrating the left-most term by parts

gives the kinetic energy, T(x(t)), associated with relative displacements alone–it

equals the integral of work done by equivalent static lateral node forces over the

time interval [0, t].

5.4 Discrete Approximation for Energy-Balance Equations

Discrete approximation of the energy balance equations is necessary when

they are being used in a iterative, time-step analysis. Discrete approximation of the

energy balance equations for only the fixed-base (or relative) coordinate frame is

considered here.
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The internal work, Wint(t + ∆t), represents the work done by the internal

nodal forces moving through the degree of freedom displacements, and is given by

Wint(t + ∆t) = Wint(t) +
∫ (t+∆t)

t
Ẇint(τ)dτ. (5.7)

For damped systems, internal nodal forces, Fint, are the sum of damping and strain-

ing force components. The rate of internal work is given by:

Ẇint(t) = ẋ(t)TFint(t) = ẋ(t)T
[

Fstraining(t) + Fdamping(t)
]

. (5.8)

Substituting 5.8 into 5.7 and approximating the integral by the trapezoidal rule

gives

Wint(t + ∆t) = Wint(t) +
∆t

2
(ẋ(t)TFint(t) + ẋ(t + ∆t)TFint(t + ∆t)). (5.9)

The work done by externally applied nodal loads is given by

Wext(t + ∆t) = Wext(t) +
∫ (t+∆t)

t
Ẇext(τ)dτ. (5.10)

For the equivalent fixed-base formulation, the rate of work done by earthquake loads

is Ẇeq(t) = −ẋT (t)Mrüg(t). Approximating equation 5.10 by the trapezoidal rule

gives

Weq(t + ∆t) = Weq(t) +−∆t

2
(ẋ(t)TMrẍg(t) + ẋ(t + ∆t)TMrẍg(t + ∆t)). (5.11)

Similarly, the rate of work done by actuator forces is Ẇact(t) = ẋT (t)Hu(t). Ap-

proximating equation 5.10 by the trapezoidal rule gives
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Wact(t + ∆t) = Wact(t) +
∆t

2
(ẋ(t)THu(t) + ẋ(t + ∆t)THu(t + ∆t)). (5.12)

The kinetic energy at time t is given by:

∫ t

0
ẋT (τ)Mẍ(τ)dτ =

1

2

[

ẋT (τ)Mẋ(τ)
]t

0
= T(ẋ(t)). (5.13)
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Chapter 6

Control Concept Performance Assessment

6.1 Objectives and Scope

For a wide range of moderate-to-large ground motion events, base isolated

structures are expected to exhibit nonlinear displacement behavior at the isolator

level, leaving the main structural system undamaged. While quantitative measure-

ments such as peak values of velocity are a good indicator of non-structural damage

[40], energy- and power-balance metrics of system performance provide a means

for accurately estimating the capacity of a structure to resist forces elastically and

dissipate energy associated with damping and key structural elements undergoing

cyclic nonlinear deformations. Accordingly, in this chapter we exercise the theoreti-

cal framework for energy- and power-balance analysis by computing the time-history

response of a six-DOF nonlinear mass-spring-damper system subject to an ensem-

ble of moderate and severe ground excitations, plus constant stiffness bang-bang

(CKBB) control. The purposes of the numerical experiment are three-fold:

1. To calculate the work done by the base isolators, superstructure, and actuators,

2. To assess the ability of present-day actuator technologies to deliver actuator

power requirements estimated through simulation, and

3. To identify and quantitatively evaluate situations (e.g., moderate versus severe

earthquake; expected versus unexpected ground motions) when CKBB control

has the potential for adding significant value to overall performance, compared

to base isolation alone.
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Low damping 
base isolator 
(LDBI) design.
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Moderate and severe earthquake designs.

Counter−example designs

(HDBI) design.

Figure 6.1: Scope of Case Study and Counter-Example Designs covered by the
Numerical Experiments

Item 3 can be derived, in part, from the first two objectives and time histories of

base drift. The scope of this chapter is restricted to constant stiffness bang-bang

(CKBB) control; this decision is enabled by findings in section 3.3.

The numerical experiment covers the range of cases shown in figure 6.1. The

shaded boxes show the two case-study designs: (1) a low damping base isolation

(LDBI) system designed to withstand ground motions of moderate intensity, and

(2) a high damping base isolation (HDBI) system designed to withstand ground

motions of severe intensity. Details of the LDBI and HDBI design procedures will be

explained in section 6.2.2. The unfilled boxes show the two design counter-examples:

(1) the LDBI system is subject to a severe earthquake, and (2) the HDBI system

is subject to a moderate earthquake. The purpose of the counter-examples is to

see how well CKBB control works when seismic events of an unexpected size occur.

To quantify improvements in performance due to control, the actively controlled

time history responses are benchmarked against corresponding LDBI/HDBI systems

responses for base isolation alone. All numerical computations are implemented with
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the Aladdin scripting language [6, 7].

6.2 Actively Controlled Mass-Spring-Damper System

Figure 6.2 shows an elevation view of the six-DOF idealized mass-spring-

damper model. This model has previously been employed by Ramallo et al. [57],

which in turn can be traced to a five-story building model used by Kelly et al.

[41]. Tables 6.1 and 6.2 summarize the structural parameters for the low damping

base isolator (LDBI) design. For both the LDBI and HDBI designs the mass and

damping properties are as shown in table 6.1. Table 6.3 summarizes the structural

parameters for the high damping base isolator (HDBI) design. LDBI and HDBI

designs are discussed in section 6.2.2. Boundary conditions for the model are full-

fixity at the base and full-fixity against vertical displacements and rotations at nodes

2 through 6.
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Floor Damping Stiffness (kN/m)
DOF/Mode Mass (kg) (kN·s/m) Pre-yield Post-yield

1 6,800 3.74 1,392 232
2 5,897 67 33,732 33,732
3 5,897 58 29,093 29,093
4 5,897 57 28,621 28,621
5 5,897 50 24,954 24,954
6 5,897 38 19,059 19,059

Table 6.1: Mass, Damping and Stiffness Properties of Six-DOF Mass-Spring-Damper
Model with Low Damping Base Isolator (LDBI)

Period (secs) Part. Factor (Γ)
DOF/Mode Pre-yield Post-yield Pre-yield Post-yield

1 1.05 2.50 1.05 1.01
2 0.18 0.18 0.06 0.01
3 0.10 0.10 0.01 0.00
4 0.07 0.07 0.01 0.00
5 0.05 0.05 0.00 0.00
6 0.05 0.05 0.00 0.00

Table 6.2: Natural Periods of Vibration and Modal Participation Factors for Six-
DOF Mass-Spring-Damper Model: with Low Damping Base Isolator (LDBI)

Stiffness (kN/m) Period (secs) Part. Factor (Γ)
DOF/Mode Pre-yield Post-yield Pre-yield Post-yield Pre-yield Post-yield

1 2,320 232 0.83 2.50 1.08 1.01
2 33,732 33,732 0.18 0.18 0.09 0.01
3 29,093 29,093 0.10 0.10 0.02 0.00
4 28,621 28,621 0.07 0.07 0.01 0.00
5 24,954 24,954 0.05 0.05 0.01 0.00
6 19,059 19,059 0.05 0.05 0.00 0.00

Table 6.3: Properties of Six DOF Mass-Spring-Damper Model with High Damping
Base Isolator (HDBI)

6.2.1 Modeling Damping Mechanisms

In this dissertation, base isolation alone is considered the baseline damping

mechanism against which the performance of base isolation + CKBB control will be

evaluated. Modeling approaches for these two damping mechanisms are as follows:
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1. Base Isolation (BI) Alone. The BI element is modeled as a bilinear solid with

a force-displacement relationship that follows the kinematic hardening rule.

This element was used by Lin [44] and is a model of a laminated rubber BI with

a lead core. The initial and post-yield shear stiffnesses of the isolator are Kinitial

and Kyield, respectively. The latter is generated by the stiffness of the rubber,

and is fixed at (Kyield = 232 kN/m), as to give a 2.5 second fundamental post-

yield period. Pre-yield to post-yield ratios, as well as the isolator yield force,

Fy, are left as design parameters; the design details are discussed in section

6.2.2. The scope of this dissertation is restricted to two values that give good

performance for both moderate and severe ground motions. Viscous damping

from the rubber is assumed to be 2% critical damping.

2. Base Isolation (BI)+Constant Stiffness Bang-Bang (CKBB) Control.

In the second model, the BI mechanism is supplemented by a controllable

actuator that switches from one extreme to another (i.e., the control force is

always exerting its maximum force in either the positive or negative direc-

tion). Solutions to the CKBB control problem are based on energy-inspired

formulations of the Lyapunov equation, the details of which may be found in

section 1.6.

It is important to emphasize that the BI in each of these two systems is identical

(i.e., CKBB control supplements the BI damping mechanism). The only difference

between these two systems is that one only has a BI passive damping mechanism,

and the other has both a BI passive damping mechanism and a CKBB control active

damping mechanism.
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6.2.2 Base Isolator (BI) Design

Ramallo et al. [57] considers two parameters in the design of the BI, the total

yield force, Fy, which is expressed as a fraction of the total structural weight, and the

pre-yield to post-yield stiffness ratio of the BI, Kinitial/Kyield. To obtain a post-yield

fundamental period of 2.5 seconds, the post-yield stiffness is fixed at Kyield = 232

kN/m. The research supporting the low- and high-damping base isolator design

procedures is as follows:

1. Low Damping Base Isolator (LDBI). Skinner et al. [65] suggest that for

earthquakes having the “severity and character” of El Centro, typical values

of the yield force (Fy) should be around 5% of the total structural weight.

Park and Otsuka [53] recommend that Fy range from 4.3 to 5% of the total

structural weight for moderate earthquakes (peak ground acceleration (PGA)

of 0.35g). In a third study by Ramallo et al. [57], plots of base drift and

structural acceleration as a function of Fy for several values of the stiffness

ratio, Kinitial/Kyield were constructed for two- and six-DOF models. The latter

study suggests that in order to obtain moderate base drift and acceleration

reduction for a ground excitation with PGA=0.35g, use Fy = 5% of the total

structural weight and Kinitial/Kyield = 6. This low damping base isolation

system falls into the “Class (ii): lightly damped” category of Skinner et al.

[65].

2. High Damping Base Isolator (HDBI). For severe earthquake events, such

as the Kobe and Northridge earthquakes, Ramallo et al. [57] found that in

order to obtain significant reductions in base drift and moderate accelerations,

BI yield strengths and stiffness ratios need to be increased (relative to optimal

values for moderate ground motions). Similar observations are reported by

Park and Otsuka [53]. They found that for severe ground motion attacks (i.e.,
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PGA of 1.225g), system performance is best when Fy in the range 14 to 18%

of total structural weight.

Hence, in this dissertation, the low damping base isolation (LDBI) design has Fy =

14.46 kN (which is 5% of the building weight) and Kinitial/Kyield = 6. As noted by

Ramallo et al. [57], the LDBI design is typical of low damping isolation systems used

in engineering practice, is readily attainable using current technology, and follows

standard AASHTO code procedures [1]. The high damping base isolator (HDBI)

design has a yield force of Fy = 43.39 kN = 15% of the building weight and a

stiffness ratio of Kinitial/Kyield = 10. HDBI designs are not widely used in practice

at this time. This may change, however, since there is now significant concern

[31, 32, 68] that base isolated buildings may not be able to accommodate severe

near-fault earthquakes.

The results of this dissertation will evaluate under which conditions CKBB

control is most likely to be beneficial to base isolation. Based on four design-based

scenarios (a full description of these scenarios is given in section 6.4), we will compare

the performance of LDBI to LDBI+CKBB control damping mechanism. Likewise,

we compare the performance of HDBI to HDBI+CKBB.

6.2.3 Actuator Placement and Characteristics

This section describes issues associated with actuator placement and perfor-

mance (i.e., actuator force/reach and on/off characteristics).

Actuator Placement. Housner et al. [33] and Reinhorn et al. [58] state that

one potential reason for supplementing passive base-isolated structures with active

control is that the combination of active control with base isolation can potentially

achieve both low interstory drift, and at the same time, limit the maximum base
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displacement with a single set of control forces. Hence, in this dissertation, the effect

of CKBB control will be illustrated with a single actuator located at the top of the

BI (degree of freedom 1).

Duration of Performance. In section 4.5, it was shown that at the end of the

displacement-time histories for all the earthquakes used in the simulations, the top

of the base isolator oscillates around a zero displacement and the actuator force

switches between ±umax = 350 kN at a high frequency; this adds very little value

in terms of reduced displacements. Also, near the end of the ground excitation, the

actuator dominates the response of the structure and is likely injecting mechanical

energy into the structural system. This input of mechanical energy into the struc-

tural system has the potential to destabilize the system in a bounded input/bounded

output sense. It will be discussed in section 6.3 that moderate ground excitations

are constrained to the same Arias Intensity at the end of the time history; likewise,

the Arias Intensity is constrained for each accelerogram in the severe classification.

Since Arias Intensity accounts for energy characteristics of the accelerogram

throughout the entire duration of ground excitation, we will use this parametric to

limit the duration in which the actuator is on. Arias Intensity is described in section

4.3. In this dissertation, when the Arias Intensity for a particular accelerogram

reaches 90% of its constrained value (1.29 m/sec and 10.86 m/sec for moderate and

severe earthquakes, respectively), the actuator will be turned off. Figure 6.3 shows

the actuator being turned off when an Arias Intensity of 10.86 m/sec is reached for

the 1971 San Fernando earthquake. The 1971 San Fernando earthquake reaches an

Arias Intensity of 10.86 m/sec 6.62 seconds into the time history. This actuator force

time history is for a scenario in which a high damping base isolator supplemented

with CKBB control is subjected to the 1971 San Fernando earthquake. The scenarios

which we evaluate in this dissertation are discussed in section 6.4.
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Magnitude of Actuator Force. In order to provide for a fair comparison between

the performance of a passive BI damping mechanism and a hybrid LDBI/HDBI+CKBB

damping mechanism, the maximum force, umax, that the actuator can exert is lim-

ited. We proceed under the assumption that the LDBI/HDBI+CKBB will not add

value to the overall system performance unless the passive and active damping com-

ponents can work in concert. Skinner et al. [65], Wang and Liu [90], Park and

Otsuka [53], and Ramallo et al. [57] have shown that LDBI and HDBI perform well

for moderate and severe ground excitations with yield forces, Fy, equal to 5% and

15% of the total weight of the building, respectively. Thus, for a fair comparison,

when CKBB control is used, the magnitude of the actuator force will be associated

with the LDBI and HDBI as follows: for LDBI designs, umax =Fy = 14.46 kN,
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and for HDBI designs, umax =Fy = 43.39 kN. Furthermore, in this dissertation, the

actuator is assumed ideal, i.e., it can exert the required high-speed switching forces

that are required for CKBB control and it can exert these dissipative forces without

time delay or actuator dynamics.

6.3 Ground Excitation

All of the accelerograms used in this dissertation were scaled from accelero-

grams obtained from the Pacific Earthquake Engineering Research (PEER) Cen-

ter Strong Motion Database [27]. Johnson et al. [36] and Spencer et al. [68]

point out the recent concern regarding the effectiveness of base isolation to protect

structures against near-source, high-velocity, severe earthquakes. Hence, the library

of earthquake records used in this dissertation are broken into two classifications,

namely, moderate and severe earthquakes. Figures 6.6 through 6.9 show the mod-

erate classification of earthquakes used here – the 1940 El Centro, 1979 El Centro,

and 1992 Landers earthquakes. The severe earthquakes used here are the same as

those used section 4.3 and shown in figures 4.3 through 4.6 – the 1971 San Fernando,

1994 Northridge, 1995 Kobe, and 1999 Duzce earthquakes. The same preprocessing

of earthquakes was followed here as in section 4.3. Specifically, the scaled design

ground motions were obtained by first isolating the worst fifteen second sample of

each record. Each record was then translated along the y-axis to remove residual

velocity effects. Moderate and severe earthquake records were then scaled in the

following manner:

Moderate Earthquake Events. The Arias Intensity [4] was constrained to the

same value at the end of each earthquake record. These earthquake records were then

scaled such that the average peak ground acceleration (PGA) is 0.35g. The resultant

Arias Intensity for these scaled earthquakes was 1.438 m/sec. Figures 6.4 and 6.5
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show the constrained Arias Intensity for the moderate and severe classifications of

earthquakes, respectively. Earthquakes used in this dissertation that fall into the

moderate category are:

• 1940 El Centro – north-south component of the May 19, 1940, Imperial Val-

ley, CA. USA. earthquake (unscaled magnitude 7.0). Recorded at the 117 El

Centro Array #9 substation (United States Geological Survey (USGS) sta-

tion 117). The closest distance of the substation to the fault rupture is 8.3

kilometers.

• 1979 El Centro – 3◦ north-north-west component of the October 15, 1979,

Imperial Valley, CA. USA. earthquake (unscaled magnitude 6.5). Recorded

at the 6618 Agrarias substation (Universidad Nacional Autonoma de Mexico

(UNAM)/ University of California San Diego (UCSD) station 6618). The

closest distance of the substation to the fault rupture is 12.9 kilometers.

• 1987 Whittier – 9◦ north-north-west component of the October 1, 1987, Whit-

tier, CA. USA. earthquake (unscaled magnitude 6.0). Recorded at the Arcadia

- Campus Drive substation (University of Southern California (USC) station

90093). The closest distance of the substation to the fault rupture is 12.2

kilometers.

• 1992 Landers – east-west component of the June 28, 1992, Landers, CA. USA.

earthquake (unscaled magnitude 7.3). Recorded at the 22170 Joshua Tree

substation (California Division of Mines and Geology (CDMG) station 22170).

The closest distance of the substation to the fault rupture is 11.6 kilometers.

The average distance to fault rupture is 11.2 kilometers.
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Motion Arias Intensity Time at Velocity (cm/sec) Period of
Earthquake Scaling Factor (AI) (m/sec) 90% AI (secs) PGA (g) Min. Max. Fourier Peak (secs)

1940 El Centro 1.031 1.43 10.52 0.323 -17.94 35.64 0.68
1979 El Centro 0.983 1.43 8.78 0.364 -33.60 24.08 0.58
1987 Whittier 1.296 1.43 2.54 0.388 -16.70 28.85 0.29
1992 Landers 1.140 1.43 12.78 0.324 -39.34 26.44 0.75

1971 San Fernando 1.186 12.07 6.62 1.451 -30.69 181.30 0.21
1994 Northridge 0.779 12.07 7.56 1.388 -104.30 44.08 0.35

1995 Kobe 1.205 12.07 6.04 0.989 -100.30 90.27 0.68
1999 Duzce 1.131 12.07 12.78 1.073 -44.34 32.76 0.34

Table 6.4: Scaled Components of Moderate Ground Motion Excitations

122



Severe Earthquake Events. As done in section 4.3, the Arias Intensity [4] was

constrained to the same value at the end of each earthquake record. These earth-

quake records were then scaled such that the average PGA is 1.225g. The resultant

Arias Intensity for these scaled earthquakes was 12.07 m/sec. The average distance

of the substation to fault rupture is 7.3 kilometers. Further detail regarding the

severe earthquake events used here may be found in section 4.3.

Average PGA of 0.35g (for the moderate earthquakes) and 1.225g (for the

severe earthquakes) corresponds well with the definitions of moderate and severe

earthquake events used by Park and Otsuka [53] and Ramallo et al. [57], respectively.

Table 6.4 summarizes the scaled ground motion scaling factor, Arias Intensity, PGA,

minimum and maximum ground velocities, and the period at which the peak Fourier

transform occurs for the moderate and severe classification of earthquakes used here.

Figures 4.7 through 4.10 show the Fourier spectras for the earthquakes in the severe

classification and figures 6.10 through 6.13 show the Fourier spectras for earthquakes

in the moderate classification.

6.4 Results

This section compares the performance of our scaled 6-DOF model with a

LDBI/HDBI to one with LDBI/HDBI+CKBB control. The results are categorized

into scenario points of view. Due to the probability-based nature of a structure being

subjected to its maximum capable earthquake, it is useful to consider in ascertaining

the full range of benefits of supplemental damping forces, such as CKBB control,

practical scenarios where a structure is subjected to magnitudes of earthquakes other

than its maximum capable earthquake. In this section, we consider the results of

our scaled 6-DOF model from the viewpoint of four practical scenarios:
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Figure 6.6: 1940 El Centro Accelerogram.

-3

-2

-1

 0

 1

 2

 3

 4

 0  2  4  6  8  10  12  14

A
cc

el
er

at
io

n 
(m

/s
/s

)

Time (secs)

Accelerogram of Earthquake - 1979-Elcentro-003

Accelerogram
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Figure 6.8: 1987 Whittier Accelerogram.
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1. A moderate severity BI/CKBB control design (LDBI and LDBI+CKBB) sub-

jected to a moderate ground excitation (a El Centro characteristic earthquake),

2. A moderate severity BI/CKBB control design (LDBI and LDBI+CKBB) sub-

jected to a severe ground excitation,

3. A high severity BI/CKBB control design (HDBI and HDBI+CKBB) subjected

to a moderate ground excitation, and

4. A high severity BI/CKBB design (HDBI and HDBI+CKBB) subjected to a a

severe ground excitation (a Northridge characteristic earthquake).

One and four cover the scenarios of expected ground motion attack. Two and three

are the scenario counter-examples.

Tables 6.5 through 6.8 show the peak base drifts, isolator work done, struc-

tural drifts, structural work done, actuator work done, and actuator power require-

ments for each of these scenarios. The objective is two-fold: (1) to assess when

CKBB control is most likely to be beneficial to base isolation, and (2) quantita-

tively determine the work done and power required by the actuator.

6.4.1 LDBI/LDBI+CKBB Control: Moderate Earthquakes

In this scenario, LDBI and LDBI+CKBB control damping mechanisms are

subjected to moderate ground excitations. Ramallo et al. [57] found that LDBI

was optimally designed to minimize base drift and structural acceleration for El

Centro (moderate, i.e., PGA ∼0.35g) characteristic ground excitations. Table 6.5

summarizes the peak value results for this scenario. Section B.1 in the appendix

contains figures showing the time histories of the base drifts, base isolator hysteresis,

base isolator work done, superstructure work done, actuator work done, and actuator
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power required for this scenario. For all earthquakes, the peak base drift was reduced

when LDBI+CKBB control versus LDBI alone was used; the average percentage of

this base drift reduction was 44%. This was associated with marginal increases in

the peak structural drift. For all earthquakes used, the peak amount of work done

by the base isolator decreased, and in 2 out of the 4 earthquakes, the work done by

the superstructure increased; though both increases and decreases in the work done

by the superstructure were minimal. The average work done and power required by

the actuator are 7.08 kJ and 5.63 kW, respectively.

6.4.2 LDBI/LDBI+CKBB Control: Severe Earthquakes

In this scenario, LDBI and LDBI+CKBB control damping mechanisms are

subjected to severe ground excitations (i.e., PGA ∼1.225g). This scenario represents

a base-isolated structure that is subjected to an unexpectedly severe, yet conceivable,

earthquake. Table 6.7 summarizes the peak value results for this scenario. Section

B.2 in the appendix contains figures showing the time histories of the base drifts,

base isolator hysteresis, base isolator work done, superstructure work done, actuator

work done, and actuator power required for this scenario. For all earthquakes except

the 1999 Duzce, the peak base drift was reduced when LDBI+CKBB control versus

LDBI alone was used; the average percentage of this base drift reduction was 11%.

The peak structural drift was virtually unchanged for all earthquakes except the

1999 Duzce which resulted in a tripling of its structural drift when LDBI+CKBB was

used. For all earthquakes used, the peak amount of work done by the base isolator

decreased, and in 3 out of 4 earthquakes, the work done by the superstructure

decreased when LDBI+CKBB control was used. The average work done and power

required by the actuator are 26.29 kJ and 15.55 kW, respectively.
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Base Structural Isolator Structural Actuator Actuator
Drift (mm) Drift (mm) Work (kJ) Work (kJ) Work (kJ) Power (kW)

LDBI+ LDBI+ LDBI+ LDBI+ LDBI+ LDBI+
Earthquake LDBI CKBB LDBI CKBB LDBI CKBB LDBI CKBB CKBB CKBB

1940 El Centro 79.82 45.89 0.77 1.88 10.44 6.91 2.33 2.42 8.46 5.68
1979 El Centro 155.80 68.03 1.22 1.74 14.28 4.34 4.43 2.37 4.19 5.45
1987 Whittier 72.58 33.50 0.74 1.64 2.35 1.48 1.32 2.12 2.90 4.70
1992 Landers 162.30 125.90 1.25 1.77 20.21 11.14 6.05 3.49 12.78 6.67

Table 6.5: 6-DOF Peak Values for LDBI & LDBI+CKBB: Moderate EQs

Base Structural Isolator Structural Actuator Actuator
Drift (mm) Drift (mm) Work (kJ) Work (kJ) Work (kJ) Power (kW)

LDBI+ LDBI+ LDBI+ LDBI+ LDBI+ LDBI+
Earthquake LDBI CKBB LDBI CKBB LDBI CKBB LDBI CKBB CKBB CKBB

1971 San Fernando 529.80 454.50 3.26 3.26 59.27 45.77 52.08 41.48 37.96 24.27
1994 Northridge 238.80 211.00 1.79 1.92 21.17 17.81 12.27 12.13 18.88 12.87

1995 Kobe 354.60 251.50 2.36 2.19 49.69 42.33 38.93 26.93 33.86 18.65
1999 Duzce 39.16 43.02 0.80 2.41 5.16 4.44 3.01 4.97 14.47 6.40

Table 6.6: 6-DOF Peak Values for LDBI & LDBI+CKBB: Severe EQs

130



6.4.3 HDBI/HDBI+CKBB Control: Moderate Earthquakes

In this scenario, HDBI and HDBI+CKBB control damping mechanisms are

subjected to moderate ground excitations. Since small and moderate earthquakes

are more frequent than severe earthquakes, the likelihood is greater for a struc-

ture to be subjected to a moderate earthquake than a severe earthquake. In fact,

the United States Geological Survey (USGS) tracks numerous earthquakes every-

day from around the world of magnitude>5.0 at its website [87]. This scenario

represents a base-isolated structure that is designed for a severe ground motion,

but is subjected to a more likely moderate earthquake. Table 6.7 summarizes the

peak value results for this scenario. Section B.3 in the appendix contains figures

showing the time histories of the base drifts, base isolator hysteresis, base isolator

work done, superstructure work done, actuator work done, and actuator power re-

quired for this scenario. For all earthquakes, the peak base drift was reduced when

HDBI+CKBB control versus HDBI alone was used; the average percentage of this

base drift reduction was 52%. However, this is associated with large increases in the

peak structural drift. For all earthquakes used, the peak amount of work done by

the base isolator decreased, and the amount of the work done by the superstructure

increased when HDBI+CKBB control was used. The average percentage increase of

peak superstructure work done when HDBI+CKBB control was used is 349%. The

average work done and power required by the actuator are 5.85 kJ and 11.54 kW,

respectively.

6.4.4 HDBI/HDBI+CKBB Control: Severe Earthquakes

In this scenario, HDBI and HDBI+CKBB control damping mechanisms are

subjected to severe ground excitations. Park and Otsuka [57] found that HDBI was

optimally designed to for Northridge characteristic ground excitations. This HDBI
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Base Structural Isolator Structural Actuator Actuator
Drift (mm) Drift (mm) Work (kJ) Work (kJ) Work (kJ) Power (kW)

HDBI+ HDBI+ HDBI+ HDBI+ HDBI+ HDBI+
Earthquake HDBI CKBB HDBI CKBB HDBI CKBB HDBI CKBB CKBB CKBB

1940 El Centro 71.09 30.83 1.74 5.16 22.06 1.46 4.07 14.03 5.43 9.37
1979 El Centro 74.57 23.17 1.57 4.40 11.35 0.86 1.70 12.69 8.36 7.43
1987 Whittier 56.28 28.16 1.74 4.86 6.96 3.49 4.02 4.02 4.51 18.77
1992 Landers 79.21 53.72 1.67 4.39 24.77 3.10 2.89 17.49 5.09 10.58

Table 6.7: 6-DOF Peak Values for HDBI & HDBI+CKBB: Moderate EQs

Base Structural Isolator Structural Actuator Actuator
Drift (mm) Drift (mm) Work (kJ) Work (kJ) Work (kJ) Power (kW)

HDBI+ HDBI+ HDBI+ HDBI+ HDBI+ HDBI+
Earthquake HDBI CKBB HDBI CKBB HDBI CKBB HDBI CKBB CKBB CKBB

1971 San Fernando 424.50 276.00 3.59 4.68 97.23 45.62 38.23 17.77 62.10 47.54
1994 Northridge 173.00 105.90 2.21 4.26 34.27 23.03 13.78 12.15 42.90 38.68

1995 Kobe 188.20 220.70 2.80 4.36 104.40 72.28 23.77 20.90 73.99 52.82
1999 Duzce 68.62 42.53 1.97 5.00 7.10 4.20 5.83 14.20 36.31 20.63

Table 6.8: 6-DOF Peak Values for HDBI & HDBI+CKBB: Severe EQs
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design is not common in practice, but due to the significant concern (for example,

Hall et al. [31], Heaton et al. [32], and Spencer et al. [68]) of base-isolated buildings

to accommodate severe near-fault earthquakes this alternative design is considered

in this dissertation. Table 6.7 summarizes the peak value results for this scenario.

Figures 6.14 through 6.18 show the time histories of the base drift, base isolator

hysteresis, base isolator work done, superstructure work done, actuator work done,

and actuator power required for 1971 San Fernando earthquake for this scenario.

Section B.4 in the appendix contains figures showing the time histories of the base

drifts, base isolator hysteresis, base isolator work done, superstructure work done,

actuator work done, and actuator power required for 1994 Northridge, 1995 Kobe,

and 1999 Duzce earthquakes. For all earthquakes except the 1995 Kobe, the peak

base drift was reduced when HDBI+CKBB control versus HDBI alone was used;

the average percentage of this base drift reduction was 24%. This reduction in peak

base drift was associated with modest increases in the peak structural drift. For

all earthquakes used, the peak amount of work done by the base isolator decreased,

and in 3 out of 4 earthquakes, the work done by the superstructure decreased when

HDBI+CKBB control was used. The average work done and power required by the

actuator are 53.83 kJ and 39.92 kW, respectively.

6.5 Summary

The objectives of this numerical evaluation of our control concept were

two-fold. First, to assess from a energy- and power-balance and base drift points

of view when CKBB control is most likely to be beneficial to base isolation, and

second to compare the demands on actuator power to actuator technology. We felt

that energy based metrics were useful because they provide a means for accurately

estimating the capacity of a structure to resist forces elastically and dissipate energy
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associated with damping and key structural elements undergoing cyclic nonlinear

deformations. Also, since the control objective of CKBB control is energy-based,

analyzing the system response from an energy point of view has helped us to validate

the CKBB control theoretical formulation.

We began by formulating the energy- and power-balance equations for a

base-isolated structure supplemented with constant stiffness bang-bang (CKBB)

control. For the numerical experiments, the structural properties (mass, stiffness and

damping matrices) of our 6-DOF scaled model are well referenced in the literature.

We employ two different base isolators and associated CKBB control designs: a low

damping base isolator (LDBI) with and without supplemental CKBB control, and a

high damping base isolator (HDBI) with and without supplemental CKBB control.

The maximum capable earthquake for the former is an earthquake of the size and

“characteristic” of the 1940 El Centro earthquake (PGA∼0.35g) while the maximum

capable earthquake for the latter is the 1994 Northridge earthquake (PGA∼1.225g).

The findings of our evaluation of our control concept are as follows:

1. There were trade-offs occurring between the amount of work being done by the

base isolator, superstructure, and actuator. The scenario in which HDBI+CKBB

control is subjected to moderate earthquakes results in the greatest average

percent reduction in work done by the base isolator (81%); it also results in

the greatest average percent increase in the work done by the superstructure

(349%). It appears that for this scenario the actuator with peak force equal

to 43.39 kN dominants the response of the structure and injects mechanical

energy in the system that must be dissipated by the superstructure. The sce-

nario in which HDBI+CKBB control is subjected to severe earthquakes results

in a significant, but not overwhelming, average percent reduction in isolator

work done (39%), but also in three of four time histories an average percent
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decrease in structural work done (26%). It appears that for this scenario, the

actuator with peak force again equal to 43.39 kN does work towards dissi-

pating the earthquake and base isolator energy and does not dominant the

response of the structure but rather absorbs some energy that would other-

wise be injected into the superstructure if only base isolation were used. This

conclusion leads to future work in the area of an adaptive bang-bang control

strategy that would optimally make these trade-offs between work done by the

base isolator, superstructure, and actuator based on earthquake energy input

into the structure.

2. In most, but not all of our time histories, the addition of CKBB control to

base isolation alone reduced the base drift. The percent change in base drift

when base isolation alone is compared to base isolation supplemented with

CKBB control ranged from a percent increase of 17% which occurred during

the scenario of HDBI+CKBB control subjected to severe earthquake to a

percent decrease of 69% which occurred during the scenario of HDBI+CKBB

control subjected to a moderate earthquake.

3. In general, CKBB control is most beneficial to base isolation when severe

ground motions are encountered. For the scenario when LDBI+CKBB con-

trol is subjected to severe earthquakes, the highest base drifts we calculated

are reduced in all but one time history when CKBB control was added. The

work done by the superstructure is likewise decreased in all but one time his-

tory when CKBB control was added. However, since the base drift is reduced

by an average of only 11%, an adaptive bang-bang control algorithm that ap-

propriately increases actuator force may improve performance. Base drifts,

structural work, and actuator work for the scenario when HDBI+CKBB con-

trol is subjected to severe earthquakes follow a similar pattern.
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4. For the scenarios where LDBI+CKBB control is subjected to moderate earth-

quakes and HDBI+CKBB control is subjected to severe earthquakes (design

case scenarios), the addition of CKBB control generally reduces the base drift

and reduces modestly the amount of work done by the structure. However, in

the case of LDBI+CKBB control being subjected to moderate earthquakes,

the value of these apparent pros seems questionable.

5. In all of our time histories, the addition of CKBB control to base isolation

alone reduced the amount of work done by the base isolator. This validates

the theoretical energy-based control objective formulation. Since our control

objective was to minimize the amount of total potential energy in the system,

we would expect the energy to be reduced in the element that is closest to the

actuator (i.e., the base isolator).

6. For our scaled model, actuators were modeled as having a maximum peak

force of 14.46 kN and 43.39 kN. For a similar full scale structure, depending

on the scaling factor, table 2.1 shows that several semiactive actuators that

are currently being produced that would be able to generate the required

force within milliseconds with very little power (some even operating with

batteries). In the event of a large scaling factor, the required actuator forces

can be generated with parallel configurations of dampers based on the current

technology shown in table 2.1.
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Chapter 7

Conclusions

7.1 Intellectual Contributions

The intellectual contributions of this dissertation are:

1. A closed-form solution (equation 3.53) to the structural bang-bang control

problem that may be directly substituted into the equation of motion for a

multi-degree of freedom system (equation 1.14). This solution is based on the

Lyapunov function (equation 1.10) and on a control objective of minimizing

the potential energy in the structural system. It is exact for structures with

a uniform mass (i.e., m1 = m2 = . . . =mn) and linear viscous damping of the

form C = α · M + β · K.

2. Developed an exact, closed-form equation expressing the forced, steady-state

and free vibration bang-bang control response for a 1-DOF system. For the

forced, steady-state and free vibration cases, see equations 3.24 and 3.40, re-

spectively. Showed for the case of a forced, steady-state and free vibration

response, the relationship between the behavior of bang-bang control and ve-

locity and displacement for a 1-DOF system (figures 3.1 through 3.5). Showed

through numerical experiments of a 5-DOF system (section 4.5) that these

equations are good representations of the relationship between the behavior of

bang-bang control and the velocity and displacement of the DOF where the

control force acts for higher DOF systems.

3. Developed closed-form equations expressing the relationship between the ve-

locity and displacement bang-bang control coefficients and base isolator stiff-
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ness for a 2-DOF system (equations 3.68 through 3.70); they are shown graph-

ical in figures 3.7 through 3.9). These equations are exact for structures with

a uniform mass (i.e., m1 = m2 = . . . =mn) and linear viscous damping of the

form C = α ·M+β ·K and are based on linear, elastic theory. Showed through

numerical experiments of a 5-DOF system (section 4.5) that these equations

are good representations of the relationship between velocity and displace-

ment bang-bang control coefficients and base isolator stiffness for higher DOF

systems.

4. Developed an understanding of when bang-bang control is likely to be bene-

ficial to base isolation (section 6.5). The numerical response of base isolated

structures supplemented with and without bang-bang control were compared.

For specific earthquake severities, base isolator designs were identified which

are likely to benefit from bang-bang control.

7.2 Conclusions

The objective of this dissertation has been to investigate the potential bene-

fits and opportunities for using bang-bang control as a supplement to base isolation.

We began by analyzing a control design matrix (Q) that gives the bang-bang control

objective (equation 1.10) well defined physical meaning. Wu et al. [94] give sev-

eral suggestions for Q (equation 1.18). Using these suggestions for Q, we employed

linear matrix algebra and symbolic analysis software to derive symbolic expressions

for bang-bang control, expressed in terms of solutions to the Lyapunov equation,

the system parameters (m, k, . . .) and state (i.e., displacements and velocities).

The investigations included: (1) Symbolic analysis for 1 and 2 DOF systems, (2)

Symbolic analysis for n-DOF systems, and (3) Effect of bang-bang control strat-

egy on nonlinear deformations in base isolators. These investigations showed that
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a simplified closed-form symbolic solution (equation 3.53) to the Lyapunov equa-

tion is possible based on the control objective of minimizing the potential energy

in the structural system. This solution is exact for an n-DOF structure with uni-

form masses (i.e., m1 = m2 = . . . =mn) and linear viscous damping of the form

C = α · M + β · K. The simplified symbolic solution to the Lyapunov equation

derived in this dissertation allows for the identification of cause-and-effect relation-

ships between the control algorithm parameters and properties of the dynamical

system (e.g., damping matrices), which in turn affects the ensuing system response.

This provided a pathway for us to further analysis the behavior of bang-bang control

in relationship to displacement and velocity system response.

We showed that for the forced, steady-state and free vibration cases, a 1-

DOF system is very nearly in-phase but opposite in direction to the system velocities

(i.e., 90◦ out of phase and opposite in direction to the system displacements). This

relationship is shown in figures 3.1 through 3.6. In regard to the effect of localized,

nonlinear system displacements on the bang-bang velocity and control coefficients,

we showed that for a 2-DOF system with a mass/stiffness ratio (τ) of 0.0001 sec2 ≤

τ ≤ 0.010 sec2, and base isolator to superstructure stiffness ratio (γ) varying between

0.03 ≤ γ ≤ 0.18, the bang-bang velocity and displacement coefficients do not vary

significantly. VKBB control is more difficult to incorporate into the equation of

motion since the control algorithm is dependent on the linear or nonlinear state of

the structure. This observation along with a insignificant loss of accuracy while using

CKBB control provides justification for using the simpler CKBB control strategy.

Numerical studies (chapter 4) of a 5-DOF system verify these conclusions and show

their applicability to higher DOF systems.

In the second part of this dissertation, we assess from a energy- and power-

balance and base drift viewpoint, when CKBB control is most likely to be beneficial
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to base isolation. We felt that energy-based metrics were useful because they pro-

vide a means for accurately estimating the capacity of a structure to resist forces

elastically and dissipate energy associated with damping and key structural elements

undergoing cyclic nonlinear deformations. Also, since the control objective of CKBB

control is energy-based, analyzing the system response from an energy point-of-view

has helped us to validate the CKBB control theoretical formulation.

We began by formulating the energy- and power-balance equations for a

base-isolated structure supplemented with CKBB control (section 5.2 through 5.4).

Numerical studies used a scaled 6-DOF model that is well referenced in the litera-

ture and employed two different base isolator designs: a low damping base isolator

(LDBI) and a high damping base isolator (HDBI). The design used for the LDBI

is typical of that used for base isolators in practice. Our models were subjected to

both low (PGA∼0.35g) and high (PGA∼1.225g) severity ground excitations.

Our numerical studies showed that there are trade-offs occurring between the

work done by the base isolator, superstructure, and actuator. This is highlighted

when a HDBI+CKBB control design is considered and the only variable is the

severity of the ground motion. For a moderate ground motion, the actuator injects

mechanical energy into the superstructure and for a severe ground motion it doesn’t

(i.e., the actuator protects the superstructure). This points to a need for an adaptive

bang-bang control strategy that would optimally make trade-offs between the work

done by the base isolator, superstructure, and actuator based on the earthquake

energy input to the structure (for this scenario, reducing the actuator force may

have been beneficial). In general, the addition of CKBB control to base isolation

reduced the amount of base drift; however, sometimes at the expense of work done

by the superstructure. Also, CKBB control seems to be particularly beneficial to

base isolation when severe ground motions are encountered (section 6.4). However,
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for the case when a LDBI+CKBB control design is subjected to a severe ground

motion, an adaptive bang-bang control strategy that increased the actuator force

may have been beneficial. In all the time histories, the amount of work done by

the base isolator was reduced with the addition of CKBB control to base isolation.

This validates the theoretical energy-based control objective formulation. Table 2.1

shows that several semiactive actuators are currently capable of producing, within

milliseconds and with very little power, the actuator force required by a full-scale

structure.

Interesting Aside Regarding CKBB Control Being “Nearly” in Phase

With Velocity. We showed through symbolic analysis and numerical experiment

that bang-bang control is nearly in phase, but opposite in direction to the veloc-

ity. We thought that it would be interesting to see the effect of implementing the

following simple control algorithm (until the Arias Intensity = 90% maximum):

U =

{

umax if ẋ1(t) < 0
−umax otherwise

(7.1)

Figure 7.1 shows the displacement time histories of DOF 1 when the 6-DOF model

used in chapter 6 is subjected to the 1971 San Fernando earthquake. CKBB control

is used in one time history and the simple control algorithm expressed by equation

7.1 is used in the other. There is little difference between the two. This shows that

the complexity associated with bang-bang control (and even CKBB control) may

be unwarranted. This should be an area of future work.

7.3 Anticipated Benefits

Anticipated benefits of this dissertation are the following:
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1. Modern structural control algorithms obscure interpretation of the underlying

physical mechanisms and “cause-and-effect” relationships governing perfor-

mance. Our closed-form Lyapunov solution (see equation 3.53) to the struc-

tural bang-bang control problem allows one to analyze and understand the

mechanisms affecting the behavior of bang-bang control. Indeed, we have

already seen some of these benefits by being able to analysis our Lyapunov so-

lution to express relationships for a 1-DOF system between bang-bang control

and velocities and displacements of the DOF where the control force acts. It

is anticipated that this understanding will lead to a better acceptance of this

technology in the structural community.

2. Varying the bang-bang control algorithm dependent on the linear or nonlinear

state of the structure is difficult to incorporate into the equation of motion.
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This complexity is furthered if the base isolator is represented by a complicated

hysteresis model (i.e., the Bouc-Wen model; for further information on the

Bouc-Wen model, see Wen [91]). This dissertation shows that this complexity

is unwarranted in base-isolated structures in which the first mode dominates,

has a mass/stiffness ratio (τ) of 0.0001 sec2 ≤ τ ≤ 0.010 sec2, and base

isolator to superstructure stiffness ratio (γ) varies between 0.03 ≤ γ ≤ 0.18

(see section 4.5). In other words, the bang-bang control algorithm may use

linear properties of the structure throughout the entire time history without

significant loss of accuracy for base-isolated structures with the aforementioned

parameters.

3. Trade-offs occur between the amount of work being done by the base isolator,

superstructure, and actuator. For the scenario in which a high damping base

isolator with bang-bang control is subjected to a moderate earthquake (see sec-

tion 6.4.3), the actuator injects mechanical energy into the system (possibly

destabilizing it). When the same base isolator with bang-bang control is sub-

jected to a severe earthquake, the actuator does not inject mechanical energy

into the system, but dissipates the earthquake and base isolator energy that

would otherwise be injected into the superstructure. This research highlights

the need for an adaptive bang-bang control strategy. It is anticipated that

future research would use the understanding of the mechanisms affecting the

behavior of bang-bang control and the metrics (i.e., base and structural drift

and base, structural, and actuator work done) highlighted in this dissertation

to develop and assess this new adaptive control strategy.
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7.4 Directions for Future Work

The work described in this dissertation is simply one step in a long-term

research objective aimed at development of analytical procedures and general guide-

lines to help engineers design structures protected by hybrid passive/active control.

Throughout this dissertation we have employed simplifying assumptions

to facilitate insight into cause-and-effect relationships and numerical studies. One

simplifying assumption is that the magnitude of the control force is not allowed to

vary throughout the time history. We showed in section 6.4.3 that this potentially

may lead to the actuator injecting mechanical energy into the system (e.g., when

a HDBI supplemented with CKBB control is subjected to a moderate earthquake).

This may lead to the actuator destabilizing the structure. With this in mind, there is

a need for future work in the area of adaptive bang-bang control that would optimally

make trade-offs between the work done by the base isolator, superstructure, and

actuator based on the earthquake energy input to the structure.

In regard to moving from symbolic analysis and prototype-level numerical

studies to a full-scale experimental dissertation, several assumptions would need to

be re-examined. They include:

1. Singular Control-Force Delivery Requirement. Since bang-bang control

laws lead to a singular control-force delivery requirement, servo-hydraulic ac-

tuators are not suitable for this kind of control law due to high-speed switching

of control forces that are needed to meet this requirement. Therefore, mod-

ification is necessary for practical application of bang-bang control laws to

civil engineering structures. Wu and Soong [93] propose a method of approxi-

mating this singular control requirement using series of polynomial functions.

Therefore a discontinuous function, such as the control-force delivery require-
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ment for bang-bang control may be approximated as a series of polynomials

as proposed by Wu and Soong [93].

2. Availability of State Variables. In this dissertation, it is assumed that the

state variables i.e., the displacements and velocities at each degree of freedom

are readily measurable. The bang-bang control algorithm is dependent on the

availability of the state variables, (see equation 1.14). Dyke et. al. [24] points

out that accurate measurement of displacements and velocities is difficult to

achieve since during a seismic event the foundation of the structure is moving

with the ground. It is suggested that since accelerometers are readily avail-

able and an inexpensive measurement of accelerations at strategic points on

the structure is an ideal solution to this problem. Also, Chung et. al. [18]

point out that the error in the observability of these state variables along

with structural controllability issues and on-line computational errors tend to

accumulate rapidly and may degrade the structural performance seriously or

produce instability.

3. Time Delay. In the analyses presented in this dissertation, time delay is not

taken into account; however, time delay between the measured variables and

the application of the control forces can not be eliminated. Chung et. al.

[18] points out that time lag diminished control effects for a real system as

compared to an ideal one. Since phase lag is proportional to time delay and

modal frequency, the effect of time delay may be very serious for higher modes

even with small amounts of time delay. Chung et. al. [18, 19] developed a

phase shift method for SDOF systems which compensates for time delay in

the modal domain.

4. Actuator Location. In the derivations and numerical experiment in this dis-

sertation, a single actuator is located at the top of the base isolator (DOF 1).
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The reasoning for the location of this actuator is that for base-isolated struc-

tures the main potential benefit is believed to lie in the ability of active control

to limit the maximum base displacement while the base isolation limits inter-

story drift and absolute acceleration [33]. Brown, Ankireddi, and Yang [12],

studied the problem of actuator and sensor placement for multi-objective con-

trol. A linear quadratic Gaussian control algorithm that synthesizes Pareto

optimal trade-off curves was used to determine the optimal location of ac-

tuators and sensors in this parametric study. Cheng and Jiang [16] used a

statistical method for determining the optimal placement of control devices

and showed that optimal placement of control devices resulted in better per-

formance because less control force was required to reduce structural seismic

response to a given level.
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Appendix A

Scalability of Solutions to the Lyapunov Matrix Equation

The following matrix equations prove that when the total potential energy

and/or kinetic energy of a structure is minimized, under certain restrictions on the

form of the mass, damping, and stiffness matrices, the solution to the Lyapunov ma-

trix equation for a 1-DOF system is scalable to an n-DOF system. These restrictions

on the form of the mass, damping, and stiffness matrices are as follows:

1. The mass matrix, M, must be diagonal and uniform (i.e., m1 = m2 = ... = mn).

2. Linear viscous damping (in the form α · M + β · K) must be present in the

system.

3. The structural stiffness matrix, K, must be well-conditioned.

Consider a 1-DOF system with stiffness, k, mass, m, and linear viscous

damping, c= α · m + β · k. For the following general choice of Q,

Q =

[

k? 0
0 0

]

, (A.1)

where k? is a real, positive number, the solution to the Lyapunov matrix equation

for S is as follows:

S =





mk?

2(α·m+β·k)
+ (α·m+β·k)k?

2k
mk?

2k
mk?

2k
m2k?

2k(α·m+β·k)



 . (A.2)

Substituting equation 1.4 (the defination for A) into the matrix equation ATS + SA = −Q,

and noting that KT = K and MT = M, we have:
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ATS + SA =

[

0 −([K][M−1])
[I] −([C][M−1])

]

S + S

[

0 [I]
−([M−1][K]) −([M−1][C])

]

= −Q.

(A.3)

Now notice that the matrix elements of equation A.2 are symbolic expressions ex-

pressed as fractions. For the matrix counterpart of equation A.2, one can either pre-

or post-multiply the matrix expression appearing as the denuminator of each matrix

element. We investigate both scenarios to ascertain if, and under what conditions,

the symbolic form for the SDOF system will scale to a MDOF system.

A.1 Pre-Multiplication Matrix Strategy for S

Using pre-multiplication to calculate the matrix S (see equation A.2) and

substituting the analogous matrix equation of equation A.2 into equation A.3, gives

the following results:

A.1.1 Matrix Product ATS :

Element 1-1 = −1

2
[K−1][K][K?] = −1

2
[K?] (A.4)

Element 1-2 = −1

2
[K][M−1][K−1][C−1][M][M][K?] (A.5)

Element 2-1 =
1

2
[C−1][M][K?] +

1

2
[K−1][C][K?] − 1

2
[C][M−1][K−1][M][K?] (A.6)

Element 2-2 =
1

2
[K−1][M][K?] − 1

2
[C][M−1][K−1][C−1][M][M][K?] (A.7)
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A.1.2 Matrix Product SA :

Element 1-1 = −1

2
[K−1][M][K?][M−1][K] (A.8)

Element 1-2 =
1

2
[C−1][M][K?] +

1

2
[K−1][C][K?] − 1

2
[K−1][M][K?][C][M−1] (A.9)

Element 2-1 = −1

2
[K−1][C−1][M][M][K?][K][M−1] (A.10)

Element 2-2 =
1

2
[K−1][M][K?] − 1

2
[K−1][C−1][M][M][K?][C][M−1] (A.11)

It is easy to see that when [K?] = [K] and [M] is diagonal and uniform (i.e., m1 =

m2 = . . . = mn) equations A.4 through A.11 simplify. Substituting [K?] = [K] into

equations A.4 through A.11, assuming a diagonal and uniform mass matrix, [M],

and substituting this resultant into equation A.3 results in the following:

A
T
S + SA =





−[K] 0
(

1
2
[C−1][M][K] + 1

2
[K−1][C][K]

−
1
2
[C] − 1

2
[K−1][C−1][M][K][K]

) (

[K−1][M][K] − 1
2
[C][K−1][C−1][M][K]

−
1
2
[K−1][C−1][M][K][C]

)



 ,

(A.12)

Note the following equalities:

1. [K−1][C][K] = [C]

2. [K−1][C−1][M][K] = [C−1][M]

3. [C][K−1][C−1] = [K−1]

4. [C−1][M][K][C] = [M][K]

Substituting these equalities into equation A.12 and simplifying terms gives:
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ATS + SA =

[

−[K] 0
0 0

]

= −Q. (A.13)

A.2 Post-Multiplication Matrix Strategy for S

Using post-multiplication to calculate the matrix S (see equation A.2) and

substituting the analogous matrix equation of equation A.2 into equation A.3, gives

the following results:

A.2.1 Matrix Product ATS :

Element 1-1 = −1

2
[K][K?][K−1] (A.14)

Element 1-2 = −1

2
[K][M][K?][K−1][C−1] (A.15)

Element 2-1 =
1

2
[M][K?][C−1] (A.16)

Element 2-2 =
1

2
[M][K?][K−1] − 1

2
[C][M][K?][K−1][C−1] (A.17)

A.2.2 Matrix Product SA :

Element 1-1 = −1

2
[M][K?][K−1][M][K] (A.18)

Element 1-2 =
1

2
[M][K?][C−1]+

1

2
[C][K?][K−1]− 1

2
[M][K?][K−1][M−1][C] (A.19)
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Element 2-1 = −1

2
[M][M][K?][K−1][C−1][M−1][K] (A.20)

Element 2-2 =
1

2
[M][K?][K−1] − 1

2
[M][M][K?][K−1][C−1][M−1][C] (A.21)

As with the pre-multiplication strategy for calculating S, when [K?] = [K] and [M]

is diagonal and uniform (i.e., m1 = m2 = . . . = mn) equations A.14 through A.21

simplify. Substituting [K?] = [K] into equations A.14 through A.21, assuming a

diagonal and uniform mass matrix, [M], and substituting this resultant into equation

A.3 results in the following:

ATS + SA =

[

−[K] −1
2
[K][M][C−1] + 1

2
[M][K][C−1]

1
2
[M][K][C−1] − 1

2
[M][C−1][K] 1

2
[M] − 1

2
[C][M][C−1]

]

.

(A.22)

Note the following equalities:

1. [K][C−1] = ([K][C−1])T = [C]T[K]T = [C−1][K]

2. [C][M][C−1] = [M]

3. [K][M] = ([K][M])T = [M]T[K]T = [M][K]

Substituting these equalities into equation A.22 and simplifying terms gives:

ATS + SA =

[

−[K] 0
0 0

]

= −Q. (A.23)
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Appendix B

Figures: Chapter 6

B.1 LDBI and LDBI+CKBB Control: Moderate Earthquakes

Base Isolator Drift: LDBI/LDBI+CKBB Designs
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Figure B.1: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Hystersis Curves: LDBI+CKBB Design
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Figure B.2: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Comparison of Base Isolator Work Done : LDBI/LDBI+CKBB Designs
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Figure B.3: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Comparison of Superstructure Work Done : LDBI/LDBI+CKBB Designs
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Figure B.4: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Actuator Work Done/Power Required : LDBI+CKBB Design
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Figure B.5: Moderate EQs: 1940 El Centro and 1979 El Centro.
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Figure B.6: Moderate EQs: 1987 Whittier and 1992 Landers.
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B.2 LDBI and LDBI+CKBB Control: Severe Earthquakes

Base Isolator Drift: LDBI/LDBI+CKBB Designs
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Figure B.7: Severe EQs: 1971 San Fernando, 1994 Northridge, 1995 Kobe, 1999
Duzce.
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Hystersis Curves: LDBI+CKBB Design
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Figure B.8: Severe EQs: 1971 San Fernando, 1994 Northridge, 1995 Kobe, 1999
Duzce.
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Comparison of Base Isolator Work Done : LDBI/LDBI+CKBB Designs
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Figure B.9: Severe EQs: 1971 San Fernando, 1994 Northridge, 1995 Kobe, 1999
Duzce.
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Comparison of Superstructure Work Done : LDBI/LDBI+CKBB Designs
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Figure B.10: Severe EQs: 1971 San Fernando, 1994 Northridge, 1995 Kobe, 1999
Duzce.
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Actuator Work Done/Power Required : LDBI+CKBB Design
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Figure B.11: Severe EQs: 1971 San Fernando and 1994 Northridge.
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Figure B.12: Severe EQs: 1995 Kobe and 1999 Duzce.
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B.3 HDBI and HDBI+CKBB Control: Moderate Earthquakes

Base Isolator Drift: HDBI/HDBI+CKBB Designs

-60

-40

-20

 0

 20

 40

 60

 80

 0  5  10  15  20

D
O

F
 1

 D
is

pl
 (

m
m

)

Time (secs)

DOF 1 Displacement - 1940-Elcentro-NS

No Control
CKBB Control (Umax=1Fy)

-60

-40

-20

 0

 20

 40

 60

 80

 0  5  10  15  20

D
O

F
 1

 D
is

pl
 (

m
m

)

Time (secs)

DOF 1 Displacement - 1979-Elcentro-003

No Control
CKBB Control (Umax=1Fy)

-40

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

 0  5  10  15  20

D
O

F
 1

 D
is

pl
 (

m
m

)

Time (secs)

DOF 1 Displacement - 1987-whittier-009

No Control
CKBB Control (Umax=1Fy)

-80

-60

-40

-20

 0

 20

 40

 60

 0  5  10  15  20

D
O

F
 1

 D
is

pl
 (

m
m

)

Time (secs)

DOF 1 Displacement - 1992-landers-EW

No Control
CKBB Control (Umax=1Fy)

Figure B.13: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Hystersis Curves: HDBI+CKBB Design
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Figure B.14: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Comparison of Base Isolator Work Done : HDBI/HDBI+CKBB Designs
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Figure B.15: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Comparison of Superstructure Work Done : HDBI/HDBI+CKBB Designs
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Figure B.16: Moderate EQs: 1940 El Centro, 1979 El Centro, 1987 Whittier, 1992
Landers.
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Actuator Work Done/Power Required : HDBI+CKBB Design
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Figure B.17: Moderate EQs: 1940 El Centro and 1979 El Centro.
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Figure B.18: Moderate EQs: 1987 Whittier and 1992 Landers.

172



B.4 HDBI and HDBI+CKBB Control: Severe Earthquakes

Base Isolator Drift: HDBI/HDBI+CKBB Designs
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Figure B.19: Severe EQs: 1994 Northridge, 1995 Kobe, 1999 Duzce.
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Hystersis Curves: HDBI+CKBB Design
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Figure B.20: Severe EQs: 1994 Northridge, 1995 Kobe, 1999 Duzce.
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Comparison of Base Isolator Work Done : HDBI/HDBI+CKBB Designs
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Figure B.21: Severe EQs: 1994 Northridge, 1995 Kobe, 1999 Duzce.
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Comparison of Superstructure Work Done : HDBI/HDBI+CKBB Designs
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Figure B.22: Severe EQs: 1994 Northridge, 1995 Kobe, 1999 Duzce.
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Actuator Work Done/Power Required : HDBI+CKBB Design
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Figure B.23: Severe EQs: 1994 Northridge.
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Figure B.24: Severe EQs: 1995 Kobe and 1999 Duzce.
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Appendix C

Notation

The following symbols are used in this dissertation:

A = forcing function amplitude;

C = viscous damping matrix;

DOF = degree of freedom;

E = Young’s Modulus of Elasticity;

F(.) = (n × 1) vector of straining and damping forces;

Fy = yield force;

g = acceleration due to gravity;

I = moment of inertia;

J = energy (Joules);

K = global stiffness matrix;

k = element-level stiffness matrix;

M = mass matrix;

n = number of degrees of freedom in global structural model;

N = work (Newtons);

R(.) = (n × 1) vector of general forces, and, (n × 1) vector of residual forces in

(nonlinear) Newmark integration;
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r = (n × 1) vector describing the movement of each structural degree of freedom

due to a unit ground displacement;

Q = control design matrix variable;

S = solution matrix to Lyapunov equation;

T = kinetic energy, and, natural period of vibration;

z = vector of system displacements concatenated with system velocities;

t = time (sec);

x(t) = (n × 1) vector of displacements at structural degrees of freedom;

ẋ(t) = (n × 1) vector of velocities at structural degrees of freedom;

ẍ(t) = (n × 1) vector of accelerations at structural degrees of freedom;

W = work done by internal/external loads;

α = mass coefficient for damping;

β = stiffness coefficient for damping; ratio of forcing function frequency to system

natural, free-vibration frequency;

γ = base isolator stiffness scaling parameter;

λ = bang-bang control costate vector;

ξ = ratio of system damping to critical damping value;

ρ = ratio of initial system displacement × free-vibration frequency of undamped

system (x(0)ωo) to initial system velocity (ẋ(0)); statistical correlation coeffi-

cient;

τ = ratio of superstructure mass to superstructure stiffness for a 2-DOF system;
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ωd = free-vibration frequency of a damped system;

ωo = free-vibration frequency of a undamped system;

4t = time increment in Newmark integration.

Subscripts:

damping = damping forces;

e = elastic stiffness matrix;

eff = effective stiffness and effective mass;

ext = external loads;

g = ground motion;

int = internal loads;

straining = straining forces;

t = tangent stiffness matrix, and, total displacement, velocity, or acceleration;

1,2 = damping matrix coefficients.
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