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schools with best values.
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Chapter 1

I ntroduction

In this chapter, we provide background information on data visualization and

describe the motivation and objectives of our research.

1.1  Motivation and the Problem of Interest

Data visualization is the process of “representing data as avisua image” (Latham,
1995) in which an image is created using a combination of points, lines, coordinate
systems, numbers, symbols, words, shadings, and colors to represent different measured
quantities (Tufte, 1983).

Data visualization is often used to make apparent any pattern in adata set that is
large in size or dimensionality. For example, analyzing increasing amounts of data, such
as customer data, to discover hidden patternsis amajor problem facing businesses and
organizationstoday. Visualization, together with other data mining techniques such as
clustering and classification, can be employed to generate a data map that serves as a
guide and provides the user with insights, i.e., detecting customer purchase patterns. The

ability to show patterns attracts decision makers to use data visualization as atool to get a



better understanding of the data set and then make better decisions. For example,
consider the problem facing each high-school senior: selecting an undergraduate
American university or college to pursue a bachelor’s degree. Students can consult
rankings in popular publications and reference books such as The Fiske Guide, which
provides information on 300 universities and colleges. The information contained in
these publications and books is not easy to assimilate. Condon et al. (2002) built a model
of American universities that enables a student to visualize the data. Information that
cannot be revealed in lists and tables, such as similarities between the universities, can be
directly quantified according to the distances between universities on visual maps. These
maps can assist students in identifying similar universities to consider.

As data visualization receives more and more attention, a variety of methods for
visualization have been proposed including self-organizing maps (SOM), multi-
dimensional scaling (MDS), and Sammon mapping (SM). These methods have been
widely used in data visualization, asthey are easy to implement and have modest
computational requirements. Our proposed work is closely related to the Sammon
mapping method, which we will describe in later chapters. SOM, MDS, and SM usually
deal with the problems that have symmetric structures, for example, symmetric distance
matrices. These methods take the table format of data sets asinput, where rows are
observations and columns are attributes. MDS and SM also accept a distance matrix as

input but they require a symmetric distance matrix.



A proximity matrix or asimilarity matrix contains the pairwise distances or
similarities between all pairs of dataitemsin adataset. In aproximity matrix, the
distances are usually assumed to be symmetric. However, in practice, there are many
interesting problems in which asymmetric proximities arise, especially in marketing or
human behavior surveys. Asymmetric proximity is one type of proximity in which the
pairwise distances are not symmetric. For example, in terms of teaching quality, the
president of university A thinks that university B is the most competitive rival, while the
president of university B thinks that the closest competitor is university C and not
university A, and the president of university C thinks that university A isthe closest
competitor. The corresponding proximity matrix is shownin Table 1.1. If school j isa
competitor of school i, then d; = 1, otherwise, d; = 0. Clearly, the matrix isasymmetric,
i.e.entry (i, ) = entry (j, i) for somei andj, i #].

Since visualization methods normally work on symmetric cases, a question that
needs to be answered is how to visualize asymmetric cases such as the matrix in Table
1.1. A visualization method that can handle asymmetry may need to be developed, or
some modification may need to be made to an existing visualization method. A simple
maodification could be made by averaging off-diagonal entries to create a symmetric
matrix. However, replacing asymmetric distances with an averaged distance atersthe
structure of the data set in away that may result in aless accurate representation.

In order to maintain the asymmetric information of the data set, Merino and
Munoz (2001) devel oped asymmetry coefficients. Mathematically, they defined an
asymmetry coefficient of a data observation as a summation of the standardized

similarities of the data observation to all of the other data observations (details such as



ompetitor A B C

School
A -- 1 0
B 0 - 1
C 1 0 --

Table 1.1 Asymmetric proximity matrix of schools A, B, and C.

transforming distances to similarities are described in the next chapter). Merino and
Munoz incorporated asymmetry coefficients into the MDS and SM objective functions
and corresponding search procedures. Their approach dealt with the symmetrized
distance matrix of data observations. Based on their computational results, Merino and
Munoz observed that data observations with large asymmetry coefficients were more
influential in determining the structure of amap. However, data observations that are
similar to many other data observations are usually dominant in forming the structure of a
visua map, regardless of whether asymmetry coefficients are introduced into the MDS or
SM methods. When most of the data observations have similar asymmetry coefficients,
thereislittle or no impact the coefficients have on influencing the structure of a map.

In order to visualize asymmetric cases, we can examine the upper triangular part
and the lower triangular part of the matrix simultaneously rather than study the
symmetrized distance matrix derived by averaging corresponding upper and lower entries
in the asymmetric distance matrix, or arithmetically calculate asymmetric coefficients.
We expect that the visual maps generated by taking into account the upper triangular part
and the lower triangular part of the matrix simultaneously are a better representation of

the asymmetric data, and hopefully produce more insight into the data sets. For example,



we apply our approach to asmall 3 x 3 asymmetric distance matrix givenin Table 1.2.
We use the GRG Solver, an optimization software developed by Frontline Systems
(www.solver. com), to solve the small problem in our proposed approach and in one of
the traditional approaches (i.e., the standard Sammon mapping approach which takes the
average values of asymmetric parts asinput) for comparison. Our approach seeks to
optimize a Sammon mapping objective function directly on the whole asymmetric
distance matrix. The common approach aimsto solve the same optimization problem on
the symmetrized distance matrix of the asymmetric data. The results show that our
proposed approach is better than the one in the common approach (detailed discussions
are given in Chapter 3) even in this tiny data set with only three data points. In addition,
an asymmetric case with ranking information will be analyzed to extend our research on
visualization of asymmetric problems.

Once an agorithm isimplemented, it is necessary to check that if the algorithm
works effectively as compared to other algorithms. Meanwhile, it is helpful to seeif the
algorithmisreliable on different data sets. We will apply our agorithm to twalata sets:
American college selection data and Canadian college data. The proximity matrix of
each data set is asymmetric. The American college selection data are gathered from the
Fiske Guidg1999). Canadian college data are collected from a survey that we
conducted. Detailed information about each data set will be given in later chapters.

Another part of our study focuses on applications of data visualization.
Clustering is such an application of data visualization that iswidely used to detect hidden

patterns



Asymm A B C
A 0 1 3
B 2 0 2
C 3 4 0

Table 1.2 Example of a3 x 3 asymmetric distance matrix.

that cannot be observed directly from enormous amounts of data. Severa SOM-based
software implementations for clustering are available either commercially or free of
charge, such as Som_Pak (1997) and Viscovery (2002). However, thereislittle
information indicating which implementation works better in practice. In our work, we
will evaluate the performance of four software implementations of SOM-based clustering
methods. Based on our evaluation, we will analyze several applications, such as
clustering a state murder data set (Harff, 2003) and finding out colleges with best values

(2003, 2004).

1.2  Summary of Objectives

A summary of the research work that has been done is asfollows.

Firstly, we devel oped a new visualization method that uses data with asymmetric
proximities.

Second, we implemented our visualization method using a gradient descent

algorithm.



Third, we applied our method to twalata sets: American college selection and
Canadian college selection and compared our results with the results generated by the
standard method and the Merino’s method.

Fourthly, we assessed four SOM-based clustering methods and analyzed

clustering applications: state-sponsored data and college data with the best values.

1.3 Dissertation Organization

In Chapter 2, an overview of the literature on data visualization, including
multidimensional scaling, Sammon mapping, and self-organizing maps, is provided. We
define asymmetric distances and discuss several techniques that are used to handle an
asymmetric distance matrix for visualization.

In Chapter 3, our modified Sammon mapping algorithm and its implementation
are described and evaluated.

In Chapter 4, our modified Sammon mapping method is applied to American
college selection data. We give the construction procedures of the data set. We discuss
the results and compare our results to results generated by the commonly used standard
SM method and Merino’s method.

In Chapter 5, problems with ranking information are introduced. An exampleis
given to show the process of constructing a distance matrix that incorporates ranking
information. Canadian college selection datais analyzed by using our modified SM

method. We discuss our preliminary results and provide insights gained from our work.



In Chapter 6, the performances of four SOM-based clustering software
implementations are evaluated. We analyze an application (i.e., state-sponsored data)
using Viscovery.

In Chapter 7, we apply Viscovery to public and private college datato find out
colleges with best values. The visua maps of the public college data and the private
college data are given and the results are discussed.

In Chapter 8, we summarize our research and point out our future work.



Chapter 2

Literature Review

Data visualization is one technique that can help researchers and business
decision makers discover patterns in adata set. Data visualization has received lots of
attention in the literature. Many methods (e.g., multidimensional scaling and Sammon
mapping) and systems have been proposed and implemented in research and business
areas like biomedical science, marketing, and financial services.

In this chapter, we provide an overview of the relevant literature in data
visualization. First, we survey the papers that pertain to data visualization. Second, we
examine papers on multidimensional scaling, Sammon mapping, and self-organizing

maps. Third, we discuss several approaches dealing with asymmetric proximity data.



21  Data Visualization

There are many visualization methods that have been proposed for illustrating
structures and multivariate relationships among dataitems. These methods can be
classified into two categories: linear visualization methods and nonlinear visualization
methods. In this section, we will discuss some of these methods.

Principle component analysis (PCA) (Hotelling, 1933) is a standard method in
dataanaysis. Principle components are a set of variables that define a projection that
encapsul ates the maximum amount of variation in a dataset and is orthogonal (and
therefore uncorrelated) to the previous principle component of the same (see Figure 2.1).
Projection pursuit (Friedman, 1987) tries to show the best visual representation that
reveals as much of the non-normally distributed structure of the data set as possible. A
neura network implementation of this method is given by Fyfe and Baddeley (1995).

PCA cannot take into account nonlinear structures and projection pursuit cannot
project the nonlinear structures onto alow-dimensional display if the data set has many
dimensions and is highly nonlinear. Several approaches have been proposed to project
nonlinear, high-dimensional structures onto alow-dimensional space. The most common
methods allocate each individual data point onto a lower dimensiona display and then
optimize the display so that the distances between the points are as close as possible to
the original distances. These methods differ in the selection of the objective function and
the optimization approach.

Multidimensional scaling (MDS) refersto a group of methods that use proximities
among data points to produce a representation of the data set (Kruskal, 1964a; Shepard,

1962). The representation consists of a geometric configuration of the points on amap

10



Figure2.1 Example using principle components analysis.

where each point corresponds to one of the dataitems. MDSiswidely used in
behavioral, economic, and socia sciences to analyze the pairwise proximities of the data
points (e.g., sSimilarity of brands in amarket survey). MDS is discussed in greater detail
in alater section.

Another nonlinear visualization method is Sammon mapping (Sammon, 1969).
Sammon mapping (SM) is closely related to MDS. It tries to optimize an objective
function in order to preserve the relative pairwise distance between data points. Details
on MDS and Sammon mapping are provided in Sections 2.2 and 2.3.

Principal curves are anonlinear generalization of PCA that projects a data set
onto anonlinear manifold after alinear manifold of the data set has been generated using

PCA. Here, amanifold (or surface) refersto atopological space on which every point

11



has a neighborhood sharing some essentia features of the data set (i.e., asphereisa
manifold). Principal curves were first defined as self-consistentsmooth curves (Hastie
and Stuetzle, 1989) that pass through the middle of ad-dimensional probability
distribution or data cloud (see Figure 2.2). Extensions of principal curves use
multidimensional base functions to construct a nonlinear manifold, such as adaptive
principal surfaces (LeBlanc and Tibshirani, 1994). Another popular approach isto use
variants of the self-organizing map (SOM) algorithm (e.g., apply self-organizing maps to
extract principa curves and extended principal curves from data (Der et al., 1998)). The
self-organizing map is an efficient tool for the visualization of high-dimensional data sets
(Vesanto, 1999).

Nonlinear visualization methods are computationally very intensive for large data
sets. The triangulation method (Lee et al., 1977) can be used to reduce the computational
complexity. Animportant property of the triangulation method is that the distancesto its
nearest two neighbors can be preserved exactly when inserting a new dataitem. Using
the triangul ation method, dataitems will be projected onto a map one by one and the
nearest neighbor distances can always be preserved, that is, the generated map is based on
asubset of distancesin the original space. The projection processis, thus, substantially
faster than nonlinear visualization methods. However, the generated map from the
triangul ation method may not be as accurate as the map from nonlinear visualization

methods since the projection preserves only a part of distances.

12



. Data Points .
= Principal Curve A

Figure 2.2 Illustration of aprincipa curve.

2.2  Multidimensional Scaling
2.2.1 Overview

Aswe mentioned in Section 2.1, multidimensional scaling is a collection of
visualization methods that project proximity data onto lower dimensional space. In
general, the goal of multidimensional scaling isto provide avisua representation of
proximities in a set of investigated objects. Proximity data are always represented as
distances. For example, in Table 2.1, each entry represents the pairwise distance between
two buildings.

To better illustrate the idea of MDS, consider an example that visualizes the
locations of 10 buildings. Given the symmetric matrix of distances among 10 buildings

(see Table 2.1), MDS produces the map given in Figure 2.3.
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Table 2.1 Matrix of distances among 10 buildings.

A B C D E F G H I J
A 0 145 14 1 125 175 12 115 165 12
B [145 O 1 145 7 95 55 5 95 115
C 14 1 0 14 6 85 45 4 85 115
D 1 145 14 0 125 175 12 115 165 12
E |125 7 6 125 O 9.5 3 2 95 105
F | 175 95 85 175 095 0 /75 /5 15 11
G 12 55 45 12 3 7.5 0 1 75 11
H | 115 5 4 115 2 7.5 1 0 75 11
I 165 95 85 165 95 15 75 75 0 105
J 12 115 115 12 105 11 11 11 105 O

12
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Figure 2.3 Example of multidimensional scaling.

14




In this example, the relationship between the origina distances among data points
and resulting distances shown on the map is positive, that is, the smaller the original
distance, the closer the resulting distance between points, and vice versa. If the original
proximity data had been represented as similarities, the relationship would have been
negative which means the smaller the similarity between two data items, the farther apart
in the map they would be. In our study, proximity data are represented as distances

among dataitems.

2.2.2 Problem definition and stress function

From a dlightly more technical point of view, for a set of observed distances
between every pair of N items, multidimensional scaling methods am to find a visual
representation of the items in lower dimensiona space such that the resulting distances
among items match the original distances as closely as possible. The metric version of
MDS aims to find configurations for data items where the resulting distances are as close
as possible to the original distances of dataitems. Nonmetric MDS tries to keep the rank
orders of the distances among data items as close as possible to the original rank orders.
We consider only nonmetric MDS in this dissertation.

The mathematical definition of MDS now follows. Given N items and a

corresponding distance matrix where entry d; is the pairwise distance between data items

i and j, MDS seeks o find vector configurations x. =[x; :k =1,..., p]and
x’; =[x} :k=1..,, p] for dataitemsi andj (i,j =1,...,N, i # ) in ap-dimensional space

(p < N—1), such that the Euclidian distance between x| and x;
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* _ * * _ p * * 2 * ~
dij _Hxi _XjH_\/Zkzl(Xik _Xjk) ) vi<jdij Ndij'

approximates the corresponding distance d. , for al pairs of dataitemsi and j.

ij 1
Since the proximity matrix is assumed to be symmetric, it is sufficient to take into
account each pair of dataitemsi and j just once. However, it may not be possible to
perfectly represent the original distances (Johnson and Wichern, 1998) in a given lower
dimensional space. Therefore, anumerical measure is needed to indicate the closeness
and the measure is called a stress function.
Kruska’s stress (Kruskal, 1964a), known as Stress formula 1 or Stress 1 for short,

measures the extent to which a representation deviates from a perfect match and is

defined as

Z(dij _di;)z

i<
L
i<
If the stress is zero, then the resulting pairwise distances are exactly the same as
the pairwise distances in the original distance matrix. However, in order to be useful, it
IS not necessary to require a zero stress value as long as a certain amount of distortion is
tolerable. Kruskal (1964a) provides guidelines for the amount of stress to tolerate (see
Table2.2).
Multidimensional scaling has been applied in many areas--the literature is vast
and dispersed over many periodicals and books. We will not attempt to give an overview
of the developmentsto date, and refer the reader elsewhere for details (Borg and

Groenen, 1997; Cox and Cox, 1994).
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Stress Goodness of fit
0.2 Poor

0.1 Fair

0.05 Good
0.025 Excellent

0 Perfect

Table 2.2 Stress guidelines suggested by Kruskal (1964a).

23  Sammon Mapping
231 Overview

Frequently, a Sammon map is used for data exploration. A practical area of
Sammon mapping isin the visualization of protein structures based on measures of
similarity between molecules. For example, Sammon maps have been used to analyze
protein sequence relationships (Agrafiotis, 1997).

Like other MDS visualization methods, SM deals with proximity data. We are
given distances between every pair of dataitems (we possibly have no direct accessto
any high-dimensional data but we do have access to a measure of distances between
every two dataitems). SM triesto reconstruct the origina data based solely on the given
distance matrix. For example, given the distances between two buildings, SM can be
used to construct amap for the coordinates of the building themselves. A demonstration

of SM is presented in Figure 2.4 using the distance matrix shown in Table 2.1.
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Figure 2.4 Sammon map of the 10 building.

2.3.2 SM algorithm

SM is an unsupervised nonlinear method that triesto preserve relative distances
(Lerner et a., 1998). Here “unsupervised” means no targeted information or outcome to
predict. To preserve the inherent structure, the algorithm that generates a Sammon map
employs a nonlinear transformation of the observed distances anong data items when
mapping data items from a high-dimensional space onto alow-dimensional space.

If we denote the distance (usually Euclidean distance) between two dataitemsi
andj,i#], intheorigina dimensional space by d; and the distance in the required

j » the error function of SM is given by

projected space by d
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In the error function E, the smaller the error value, the better the map we get.
However, in practice, we are often unlikely to obtain perfect maps especialy when the
data set islarge and in high-dimensional space. Therefore, approximate preservation is
the likely result when we project high-dimensional data onto alow-dimensional plane.
The error function of SM is similar to Kruskal’s S stress function (see Section
2.2.2) except that each squared difference of distancesis divided by the corresponding
input distance rather than the squared input distance. In other words, the only difference
between SM and MDS is that the errorsin distance preservation are normalized with the
distance in the original space. Because of the normalization, SM places greater emphasis

on smaller distances rather than on larger distances; thisis different from Kruskal’s MDS

which treats small and large distances roughly the same.

2.3.3 Implementation

SM can also be viewed as an optimization problem and its error function can be
minimized using severa available techniques. Sammon solved the minimization problem
using steepest gradient descent that is also referred to as pseudo-Newton minimization
(Becker and Le Cun, 1989). This optimization procedure can be achieved by iteratively
using the following rule

OE(t)
% (1)
82E(t)
0% (1)°

Xi'k (t+1) = Xi‘k t)-«
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Note that x, isthe K" coordinate of the position of dataitem i in the required

projected space, and a. is called “magic factor” which controls the step size of updating
coordinates.

We point out that Sammon (1969) suggested avalue of 0.3 to 0.4 for a. However,
since a is experimentally determined, the suggested value may not be optimal for all
problems. Therefore, multiple experiments are necessary in order to find an appropriate
value of o to minimize E.

Because a second derivative is used in the denominator, the update rule can be
unstable at some points where the second derivativeisvery small. To avoid the
instability, an alternative minimization technique, called normal gradient descent, has
been used, where

OE(t)
X (t)

X (t+) =x, ()-«a

When employing the gradient descent procedure to search for a minimum error
value, alocal minimum in the error surface could be obtained. Therefore, severa
experiments with different random initializations may be necessary. Another problemis
the computational requirement of SM is O(n®). The pairwise distances and the
derivatives have to be computed each iteration. Therefore, as the number of dataitems
increases, the computational time increases dramatically. To lower the computational
overhead, the Hamming metric has been used as a distance measure instead of the
Euclidean metric (White, 1972). This showed some improvement in the computational

efficiency, but the resulting maps could be distorted when the input space isthe

Euclidean space (Chien, 1978) and the interpretation becomes more complex.
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So far, al of the problems that we have discussed are assumed to have symmetric
proximity data, thet is, the distance between dataitemsi and j denoted by d; is exactly
same as the distance between dataitemsj and i denoted by d;. However, in practice,
there are lots of interesting problems that have asymmetric proximity data, which means
that the distance d; may be different from the distance dj.

To our knowledge, there are few papers that discuss the visualization of
asymmetric proximity data sets. One of our major research goalsisto develop a method
that visualizes asymmetric proximity data sets. Our objective function and search

procedure for implementing SM with asymmetric data are discussed in Chapter 3.
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24  Sdf-organizing Maps
241 Overview

The self-organizing map (SOM) invented by Kohonen in the early 1980s is atype
of neural network based on the idea of self-organized or unsupervised learning (K ohonen,
1995). This means that the algorithm has no targeted information or outcome to predict.
Consequently, SOMs are ideal for clustering where no requirement of output fieldsis
defined. However, SOM can also be employed to visualize high-dimensional data items
(Flexer, 1999).

Being a stable and flexible method for clustering and visualization, SOM has been
used for awide range of purposes, ranging from controlling industry processes to
anayzing gene data (Kaski et al., 2001). Many applications of SOM are given in the
survey by Ojaet al. (2003).

Anillustration of the mechanism of SOM is shown in Figure 2.5. The 3x3 map
consists of two layers: the input layer, and the output layer, which is often referred to as
the output map. All the input neurons are connected to all the output neurons, and

weights are assigned to each connection (not shown).
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Figure 2.5 lllustration of a self-organizing map.

24.2 SOM algorithm

The self-organizing map trains by locating data items, one by one, to the output
map. When an input dataitem is presented to an output neuron, its characteristics are
compared with those of all output neurons, which are given initial weights. The neuron
with the characteristics that are most similar to that of the input dataitem is chosen to
represent the input dataitem; at the same time, the surrounding neurons of this chosen
neuron are adjusted to be more similar to the chosen neuron in order to attract input data
items similar to the mapped dataitem. This chosen neuron has a better chance, as
compared to other neurons, of representing input data items that have similar patterns,
and its neighbors are gradually able to represent similar input dataitems.

Each input dataitem is attracted to one and only one neuron, while each neuron
can attract one or more dataitems. Each neuroni has areference vector m =[my, ...,

mi,], which is used to represent an input dataitem, where n is the dimensionality of the
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input space. When locating an input dataitem x on the output map, the neuron w is the

winner salected based on the minimum Euclidean distance, that is,

w= miin{ Ix—m| }, where || is Euclidean distance.

During the training process, the winning neuron, also called the best matching
unit, and its neighbors are alowed to modify their reference vectors as close to the

current input dataitem as possible. The general form of the modification is given by
m (t+1) = m (1) + a®h, OO -m O] ,
where «(t) isthelearning rate that controls the training speed and h,, (t) isthe

neighborhood function centered on the winning neuron w (this function indicates the
radius of neighborhood set) and x(t) istheinput at timet. Initialy, the neighborhood
function is set to alarge value; this value decreases monotonically with time, as does the

learning rate.

24.3 SOM software packages

In this section, we focus on two SOM software packages that are publicly
available: SOM_Pak and Viscovery SOMine.

SOM _Pak was developed at the Helsinki University of Technology. Itisa
command line program and the interface is not user friendly; for example, thereisno
simple option for executing repetitive commands and the user hasto type in each
command. SOM_Pak can be downloaded for free; see the Web site at http://www.cis.
hut.fi/research/som_pak/. A screenshot of SOM_Pak is shown in Figure 2.6.

Viscovery SOMine was developed by Eudaptics (www.eudaptics.com). An

important advantage of SOMineisthat it allows the user to visualize and analyze a data
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Figure 2.6  Sammon map of a distance matrix of 20 data items produced by SOM_Pak.

set without any prior statistical knowledge of the data set. The software provides
suggestions as to which data items should be grouped together. The user can use or
modify several parametersto control data processing. A screenshot of aViscovery

SOMine map is shown in Figure 2.7.
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Figure 2.7 Screenshot of Viscovery. Three groups (As, Bs, and Cs) are shown in the
map; the dark lines separate groups.
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25  Asymmetric Proximity
251 Overview
Proximity refers to the similarity (sometimes also refers to dissimilarity or

distance) between two dataitems. If the proximity between two dataitemsis measured

in Euclidean space (i.e., d; =d; :\/(xi -x;)*+(y; - y;)?), then the proximity is

symmetric. However, the proximity between dataitems or objects might not be
symmetric. When objects are compared from different perspectives, for example, object
aissaid similar to object b in terms of color closeness, while object bis said dissimilar to
object a because of their different shapes, the proximity relationship between these two
objectsis asymmetric, i.e., d, =#d,,.

Asymmetric proximity data arises in anumber of diverse research areas such as
marketing, psychology, sociology, and information retrieval. Asymmetric proximity data
can usualy be found in frequency matrices. For example, brand switching data has been
utilized in marketing to examine the structure of competition within a particular product
class. Anexample of car-switching dataisgivenin Table2.3. The rows represent cars
last owned and the columns reveal cars currently owned. Out of all customers, 40 who
last owned a Ford switch to aHonda. Other examples of asymmetric proximity data are
migration rates between countries, frequencies of journal citations, word relationshipsin
text documents, etc.

In the past, especialy from the late 1970s to the early 1990s, analysis of
asymmetry in proximity data had been one of the most provocative research topicsin
psychological research areas, in contrast to traditional MDS approaches. Researchers

realized the psychological relevance of asymmetry in proximity data.
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BMW Ford Honda Toyata GM
BMW 180 40 20 0 10
Ford 20 343 40 30 70
Honda 10 20 120 10 20
Toyata 30 20 30 70 10
GM 10 20 0 20 250

Table 2.3 An example of car switching data.

Not surprisingly, many approaches for asymmetric proximity data were proposed
in the psychological area. Tversky (1977) initialy challenged the validity of the
traditional spatial model (i.e., MDS model) regarding the observed violation of
symmetry, minimality, and triangle inequality conditions of the metric axiomsin actual
data. Krumhangl (1978) also discussed the problems of traditional spatial model and
proposed her distance-density model as an aternative to Tversky’s (1977) feature-
matching model. Other researchers proposed many different treatments of asymmetric
proximity data. However, there has not been found any model that is not only

mathematically sound but also practically applicable and easily interpretable.

2.5.2 Mathematical modeling for asymmetric proximity data

As many relationships areintrinsically asymmetric (Tversky, 1977) and
increasing attention has been paid to asymmetric proximity data, a number of approaches
have been developed to analyze asymmetry in proximity data. Most of these can be

classified into three categories.

28



Since traditional approaches represent rel ationships between data items
symmetrically, asymmetry is discarded as noise with respect to the symmetric part of the
proximity data. The symmetric part is extracted and the data are symmetrized. One

common approach to do thisis to average corresponding off-diagonal entries (Kruskal,

ij !

d +d.
1964b), i.e., substitute d; by d; ', where d; '= % and then apply the symmetric

model, i.e,, traditional MDS. For example, Tversky and Hutchinson (1986) analyzed 39
asymmetric proximity data by averaging. Another way of symmetrization is proposed by
Levin and Brown (1979) who derived row multiplicative constants from two least square
procedures to scale rows or columns of the asymmetric matrix to maximize symmetry.
However, symmetrization of asymmetric proximity data may ignore some important
information brought by asymmetry, and the symmetric solution found in the dimensional
spaces does not depict anything about the asymmetry.

Approaches in the second category aim to capture the information of asymmetry
in addition to the symmetric structure of the data. All major models in this category
involve a symmetric component and an asymmetric component. Krumhansl (1978)
specified a distance-density model in which object A and object B are represented in
projected low dimensional space, the similarity between A and B can be interpreted not
only by the interpoint distance but also the density of pointsin the surrounding
configuration. In other words, asymmetries are accounted for through points around A
and B. Saito (1986) developed an MDS approach in which estimated constants
considered as density constants are added to the symmetric configuration in relation to
the distance-density model. Different from the distance-density model, Constantine and

Gower proposed an approach partitioning an asymmetric matrix into two matrices. S
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(symmetric) and N (skew-symmetric; i.e., nj = —n;). A singular value decomposition of
N was performed to obtain aleast-squares fit to be plotted in low dimensional space (i.e.,
in two dimensions) and an interpretation of asymmetry was provided. Weeks and Bentler
(1982) specified amodel in which similarity is represented as distance, and traditional
additive constants are combined to reflect asymmetries. Description of other models for
asymmetric proximity data can be found in the paper of Zielman and Heiser (1996) in
which most of mentioned models for asymmetric proximity can be decomposed into a
symmetric part and a completely asymmetric part (i.e., skew-symmetry). These models
are mathematically elegant and the resulting dimensional configurations are interpretable.
However, these models assume an underlying symmetric component of the data but the
assumption might not fit every case. Besides, software for computing the model
parameters is not available (Zeilman and Heiser, 1996).

Another category of approaches for scaling asymmetric proximitiesis a graph-
theoretic representation of asymmetric proximity data (Cunningham, 1978; Hutchingson,
1989; Klauer, 1989). In these models, asymmetries are represented as directed distances.
These models do not require an underlying symmetric relationship. The differences
between these graphic models are the representation type, for example, Cunningham
(1978) employed directed trees as representations of proximities, and Hutchingson (1989)
used networks to represent proximities data. One disadvantage of a graph representation
isthat the representation is limited to small data sets. Graph representation of large data

sets seems messy because of alarge number of arcs.
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2.5.3 Other approaches of analyzing asymmetric proximity data

In addition to the above three categories of approaches of modeling asymmetric
proximity data, there are other approaches sharing some features of the second and the
third categories (Rodgers and Thompson, 1992; Merino and Munoz, 2001). Rodgers and
Thompson proposed an approach in which asymmetric proximity data have been
preprocessed using the idea of seriation before applying MDSto the data. Seriationisa
procedure that orders dataitems on a continuum in order to maximize the sum of the
elements above (or below) the main diagona (Baker and Hubert, 1977). Rodgers and
Thompson used the seriation algorithm and ordered the data items according to number
of dominances over other dataitems. They defined dominance as: if s; > s;;, then
dominatesj. The dataitems that consistently dominate other dataitems are placed lower
in the ordering, i.e., the dataitem that dominates all other dataitemsis placed on the
bottom row in the below diagonal triangular. MDS isfit to the ordered above diagonal or
below diagonal triangular that explicitly exhibits the dominance relationships of data
items and the resulting MDS configuration contains a directed distance.

Merino and Munoz (2001) introduced another approach to scaling asymmetry
proximity datain which asymmetry coefficients derived from the skew-symmetry matrix
are attached to MDS objective functions and MDS scaling was performed on the
symmetrized proximity data. An asymmetry coefficient is defined as a summation of the
standardized similarities of adataitem to al other dataitems. Intuitively, dataitems that
are similar to more dataitems will have larger asymmetry coefficients. In some sense,
asymmetry coefficients convey the dominance information of dataitems, and dataitems

with large asymmetry coefficients determine the structure of the configuration.
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Empirically, it shows that the most dominant data items have a tendency to be placed in
the center of a configuration, and this phenomenon may be interpreted as indirect
confirmation of the usefulness of the Euclidean space, which recognized the central role
of the dominant dataitems (Tversky and Hutchinson, 1986).

The approaches proposed by Rodgers & Thompson (1992), and Merino & Munoz
(2001) are more of an exploratory data analysis and |ess specific asymmetric models than
the methods described above. The approach by Rodgers & Thompson is flexible and
tractable, i.e., the ordered triangular of data items, and substantive information is more
accessible to data analysts. Merino and Munoz’ s approach suggests that it might be
worth incorporating asymmetry coefficients to improve the visual configuration (Merino
and Munoz, 2001). However, both approaches have some disadvantages. Since Rodgers
and Thompson only considered the maximized triangular part (i.e., below the diagonal),
some important information contained in the other triangular part would be lost,
especialy if the other triangular part contained many non-zero values. In Merino and
Munoz' s approach, the definition of asymmetry coefficient might not be suitablein every
case, for example, if most of the data items have approximately equal asymmetry
coefficients, i.e., defined as sum of row (or column) similarities, then the defined
coefficients may not reveal dominant information. In this case, it might be better to
define the coefficient as some function of dominanceto reveal the centrality status.
Details on centrality arein Tversky and Hutchinson’s paper (1986).

From avisualization perspective, the visual configurations generated from the
upper triangular and lower triangular parts of an asymmetric proximity matrix are

implicitly different. For example, there are two SM maps generated by using the upper
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triangular part (see Figure 2.8) and the lower triangular part (see Figure 2.9),
respectively, of the asymmetric distance matrix given in Table 2.4. It isnot convincing
that maps generated from the upper triangular part are better than maps generated from
the lower part, or vice versa. In addition, if there are no substantive reasons to assume
that the underlying relationships between data items are symmetric, a natural way to
visualize asymmetric proximity datais to simultaneously take into account the
asymmetric parts, i.e., the upper triangular part and the lower triangular part of the
proximity matrix. To assess the quality of maps, we can quantify the rank preservation
by comparing the generated map results with the order relationships of the originad
asymmetric dataset. Chapter 3 discusses our proposed modified SM method and

measures for quality assessment.
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Bl A2 A3 B4 A5 A6 A7 A8 A9 Ci10

Bl 0 9 8 1 5 15 4 3 13 4
A2 | 20 0 1 20 6 10 4 4 8 3
A3 | 20 1 0 20 5 9 3 3 7 3
B4 1 9 8 0 5 15 4 3 13 4
A5 | 20 8 7 20 0 14 3 2 12 1
A6 | 20 9 8 20 5 0 2 3 1 2
A7 | 20 7 6 20 3 13 0 1 11 2
A8 | 20 6 5 20 2 12 1 0 10 2
A9 | 20 11 10 20 7 2 4 5 0 1
Cl0 | 20 20 20 20 20 20 20 20 20 0

Table 2.4 Asymmetric distance matrix taken from the American college selection data
Set.
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Figure2.9 Sammon map of the lower triangular matrix.
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Chapter 3

Constructing Sammon M aps from Asymmetric Data

Sammon maps are one of the most widely used toolsin visualization and
clustering. Sammon mapping (SM) projects high-dimensional data onto a 2-dimensional
output map. A Sammon map is usually created for proximity data with a symmetric
distance matrix. However, there are many applications (e.g., American college selection
data) that have asymmetric distance matrices. In this chapter, we discuss the use of SM
to visualize asymmetric proximity data sets. We describe the objective function, the
associated update rule, and our implementation of SM for proximity data with an

asymmetric distance matrix.
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3.1 M odification of Sammon Mapping M ethod

SM tries to minimize the following objective function

E=

i
d i j;rl di,

]

(@

[Ly

M:H

n-:

2

i=1j

= (d; - di} )2

i+1
where d; denotes the input distance (usually Euclidean distance) between dataitemsi

andj,i#j,i,] =1, .., n,intheorigina space. di'j denotes the output distance between i

D
and j in the mapped D-dimensional spaceand d; = /Z[xik - X, ]? , where xi and x are
k=1

decisionvariables, i =1,...,n-1,j =i+1,..., n, k=1,..., D. Notethat only half of al
entriesin the distance matrix are taken into account because the distance matrix is
assumed to be symmetric.

To minimize the objective function E, Sammon used the steepest gradient descent
procedure to search for aminimum value of E. For convenience, the updating rule for his
procedure is shown again as

OE(t)
% (t)

O%E(t) @
0%, (t)°

% (t+1) =% () -«

where x, isthe K™ coordinate of the position of i in the mapped space and « is the “magic

factor” (Sammon, 1969). The magic factor is a parameter (Apostol and Szpankowski,
1999) that controls the step size for configuration update. Its value is determined
experimentally. It istreated as aconstant over al iterations.

The objective function (1) and the associated search procedure work well when

the distance matrix is symmetric. However, problems arise when the distance matrix is
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asymmetric. Since the objective function E assumes that the input distance matrix is
symmetric, it is inappropriate to use an asymmetric distance matrix astheinput. To
overcome this problem, one simple technique is to symmetrize asymmetric distances by
simply averaging, that is, replacing the entry d; with (d; + d;j)/2. Suppose that there are
three data points a, b, ¢ in an asymmetric distance matrix, and their pairwise distances
are: in the upper triangular part, d, > da ¢, and in the lower triangular part, dp 4 < dc a
Therefore, it is uncertain that the distance between a and b is greater or less than the
distance between aand c. Using symmetrized distances, the uncertainty of the order
relationships can be resolved. However, Sammon maps generated from symmetrized
distances will lose the asymmetry information (Merino and Munoz, 2001).

To generate maps that better represent and help visualize asymmetric proximity
datasets, it is natura to consider the original asymmetric distance matrix instead of the
symmetrized distance matrix in the objective function. We would like to account for the
upper triangular portion and the lower triangular portion of the asymmetric distance
matrix simultaneously in the optimization process.

The objective function that we propose has two parts denoted by U and L. The
first part (U) takes into account the upper triangular part, while the second part (L) deals
with the lower triangular part of the original asymmetric distance matrix. Our proposed

objective function, denoted by E,, is defined by

1
E,=—U+L) , 3
L=+ ®
n-1 n (d. _d 2
where u=3 34l
=1 j=i+1 dij
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L= Zn: S (dij - di} )2 ,
i=2 j=1 dij
2 2
dl] - Z[Xik Xjk]
k=1
and C=> 2.4 .
i=1 j=1, =i
constrainted by Xik, Xk = 0,1,] = 1,...,n, k=1,...,D.

Xik, Xk are decision variables and represent K" coordinates of dataitemsi andj in the
mapped D-dimensional space.

By using U and L, we seek to obtain a configuration of dataitems such that the
structures in the upper triangular part and the lower triangular part can be considered
separately. We will use the steepest gradient method as the search procedure.

Let E, (t) denote the error value at t"iteration and U (t) and L(t) denote the error
values of the upper triangular part and the lower triangular part, respectively. Let dij' )

denote the distance between i and j at the t™ iteration, that is,

di'j (t) = \/Z[Xik ) — %, (t)?

and D denotes the dimensionality of the mapped space (usualy D is 2). The new g
coordinate of dataitem p at iteration t+1is given by

O, (t)/ X, (t)
0°E, (1) /0%,e ()]

Xoq (t +2) = X, (1) — (MF)

where MF stands for “magic factor”, and the first derivativeis

OE, (t) _1ou) N 1 oL(t)
OXpq(t)  Cox,(t)  Cox,,(t)

(4)
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Note that in the update rule, no two points are allowed to be identical. This preventsthe
partial derivatives from “blowing up.”

The minimization problem in (3) is anonlinear optimization problem and is non-
convex (Klock and Buhmann, 1999). Therefore, we cannot guarantee finding the global
minimum. The best we can do isto obtain alocal minimum from each starting solution.
We use the GRG software (2004) to solve the small asymmetric distance matrix given in
Table 3.1 with our proposed objective function (3). Two sets of random starting
configurations are used asinitial coordinates for these three data points. Listed in Tables
3.2 and 3.3 are resulting configurations of three data points corresponding to two
different sets of random starting configurations. The resulting objective function values
aregivenin Tables 3.2 and 3.3. Meanwhile, we use GRG to solve the same asymmetric
problem in the common approach that takes symmetrized distances asinputs. In Tables

3.4 and 3.5, we show the results of configurations and objective function values obtained

40



in the common approach. Sinceit isan optimization problem seeking a minimum value

for the SM function, it is better to get smaller resulting objective function values. The

shown
Asymmetric A B C
A 0 1 3
B 2 0 2
C 3 4 0

Table 3.1 Asymmetric distance matrix of three data points.

Point X;-coordinate Xo-coordinate
A 0.270706143 0.159258481
B 0.812893328 1.377376338
C 3.26577432 0.331200098
Objective Function Vaue 0.066666667

Table 3.2 Results in our proposed approach with random starting point 1.

Point X;-coordinate Xo-coordinate
A 3.481685023 4.95005622
B 2.987622292 6.188468288
C 5.448716802 7.215177319
Objective Function Value 0.066666667

Table 3.3 Results in our proposed approach with random starting point 2.

Point X;-coordinate Xo-coordinate
A 0.331987222 0

B 0.289836968 1.499407704
C 3.214502644 0.831327182
Objective Function Value 0.075000006

Table 3.4 Results in the common approach with random starting point 1.
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Point X;-coordinate Xo-coordinate
A 3.505923937 4.963893963
B 2.008518266 5.052079549
C 2.927993608 7.907699703
Objective Function Vaue 0.075000012

Table 3.5 Results in the common approach with random starting point 2.

objective function values generated by our approach are smaller than those generated by
the common approach. This confirms our conjecture that our proposed approach
performs better than the common approach in visualizing asymmetric problems, at least

from the perspective of optimization.

3.2  Implementation of the Modified SM M ethod

In this section, we discuss the implementation procedures and provide small
examplesto illustrate them. We discuss problems that we encountered when
implementing the modified Sammon mapping method. Asillustrated in the previous
section, GRG can be used to solve asymmetric problems. However, as the size of the
asymmetric problem increases, it becomes burdensome to formulate the proposed
objective function and the computational time increases significantly. A good aternative
to GRG for solving asymmetric problemsis C/C++. C/C++ isacommonly used software
for coding. It is machine portable and requires only a small amount of changesto run on

other computers. Itisvery fast, aimost as fast as assembler. It alows structured
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programming and is very flexible. It issuited to large and complex problems. Therefore,
we implement the proposed modified SM method in C/C++.

We use random values as a starting configuration and employ the stegpest
gradient method as an optimization procedure to generate maps for an asymmetric
distance matrix. If thereisno improvement in the value of the objective function after a
certain number of iterations, then the algorithm is considered converged and the resulting
configuration is obtained to visualize the asymmetric distance matrix. Since the magic
factor is experimentally determined, multiple experiments are necessary to find an
appropriate value. We determined from the sensitivity analysis that the recommended
magic factor of 0.4 isagood choice in our study for updating the configuration. The
corresponding sensitivity analysisis discussed in the next chapter.

Weillustrate our procedure with asmall example. The data set denoted by 30A is
an asymmetric distance matrix for 30 schools taken from the American college selection
data set of 100 schools that was constructed using information provided in The Fiske
Guide (Condon et a., 2002). This data set contains pairwise distances between each pair
of 30 American colleges (see Table 3.6). For example, the distance between A5 and A19
IS not symmetric, that is, das a19 = 11 and da1g as = 6. In this data set, our resulting
Sammon map provides us with a visualization of the asymmetric data set (see Figure 3.1).
In Table 3.7, we give the symmetrized distances of this data set, for example, the entry of
das, a10 equals the entry of daig as, Which is the average value of these two entriesin the
asymmetric distance matrix. Figure 3.2 isa Sammon map generated by the standard
Sammon map with the symmetrized distances. It isobvious that there are some

differences between these two Sammon maps. For example, the distances between pairs
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Table 3.6 Asymmetric distance matrix of 30 American colleges.
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Table 3.7 Symmetrized distance matrix of 30 American colleges.
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A45
A24
AB1  ,aq
AT3  aog
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A20 Az4
A91 AT ag A27
AS50 Ags AB3
ABT
ATS
A28
ASE A5G
A94
A1 A93 ATE
A58
Al9
AT7

Figure3.1 Sammon map of the asymmetric distance matrix for data set 30A generated
by the modified SM method.

Ao A19

Ad1

Asg ATE
A93
A31
A26
A20 ABG Ag4
ABT
AS3
A78 AT pg AZ7 ATT
A91
A0 AZ98 AB2

A34 AB

A29
AT3

AB1

AB9

A4S
A24

Figure 3.2 Sammon map of the symmetrized distance matrix for data set 30A generated
by the standard SM method.
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of thetriplet A24, A45, and A89 are close to each other in the original asymmetric
distance matrix, where this relationship ideally need be visualized as an equilatera
triangular in the map. Thisrelationship is better represented in the map given by the
modified SM method than in the map given by the standard SM. In Chapter 4, we will
compare Sammon maps generated by different SM methods and discuss the differences

between them and give our tentative recommendation of choosing a better visualization

map.
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3.3  Performance M easurements of Sammon Maps

In order to assess the quality of maps produced from asymmetric distance data,
we introduce two performance measures. Thefirst isthe distance error that measures the
extent to which the pairwise distances projected on the map deviate from the original

pairwise distances. The distance error function, denoted by DE, is defined by

pe=y 49 ;__di} r
i

i#]
where d; isthe original distance and di} isthe projected distance. The smaller the value

of DE, the better the map.

The second measure is an order preservation coefficient that indicates how well a
map preserves the distance order relationships of the original asymmetric data. In Table
3.8, we give asmall asymmetric distance matrix. The pairwise distance between two
dataitems may be very different; for example, we see d,p = 1 while dya = 2. Since that
Jap < dac and dpa < dca, the distance between a and b is less than the distance between a
and c. If aSammon map A preserves more order relationships for an asymmetric distance
matrix than Sammon map B, then A is said to be more accurate than B. We are concerned
about amap’ s ability to preserve order relationships. Our proposed order preservation
measure, denoted by OP, is defined by,

op= number of relationships preserved
number of relationships of the asymmetric data

Note that the order relationship can be uncertain. In Table 3.8, we see that d,p <
deqand dps > dge. Therefore, it isincomparable if the distance between a and b is greater

than the distance between ¢ and d on the projected map.

48



o O T D

DO N OD
0 ~NO PR T
P O Fr NO
O wowa

Table 3.8 Asymmetric distance matrix of four data points.

In Table 3.8, consider the four dataitems (a, b, ¢, d) and the twelve non-zero
distance entries (six entries are in the upper triangular part of the matrix and six entries
arein the lower triangular part of the matrix). The total number of relationshipsis 15,
which isgiven by 6(6-1)/2. In Table 3.9, we provide al of the order relationships of the
asymmetric distance matrix given in Table 3.8. If six order relationships are preserved in
a Sammon map, the order preservation coefficient equals 40% (that is, 6/15).

If a Sammon map exhibits greater accuracy than another, then it should have a
smaller distance error and alarger order preservation value. We use these two measures

to assess the quality of Sammon maps in our applications.
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OJap<dac and  Opa<Oca Distance(a, b) < Distance(a, )
Jap<Oag and  Opa < dya Distance(a, b) < Distance(a, d)
Jap=0pc but Opa<dcp Distance(a, b) < Distance(b, ¢)
Jap<Opg and Opa < dap Distance(a, b) < Distance(b, d)
OJap<deqg but  dpa> dyc Distance(a, b) ? Distance(c, d)
Jac<Oag and  Oca<dya Distance(a, ) < Distance(a, d)
Oac>Ope but  dea < dep Distance(a, ) ? Distance(b, ¢)
OJac<Opd and  deca < ddp Distance(a, €) < Distance(b, d)
Jac<deqg but  Oea> dyc Distance(a, €) ? Distance(c, d)
Jag> doc but  dga < dep Distance(a, d) ? Distance(b, ¢)
Jag<Obd and dga < dap Distance(a, d) < Distance(b, d)
Jag=0dcg but  Oga> dgc Distance(a, d) > Distance(c, d)
Obc<dpg and dep < dgp Distance(b, ¢) < Distance(b, d)
Opc<dcg but  dep> dgc Distance(b, c) ? Distance(c, d)
Op™> ded and  dgp > dyc Distance(b, d) > Distance(c, d)

Question mark (?) denotes that the relationship between the distances isincomparable.

Table 3.9 Order relationships.
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Chapter 4

Visualizing American College Selection Data

4.1  Description of the Data Set

The Fiske GuidéFiske, 1999) is awell-known publication that has been used for
nearly 20 years to help students and parents select the right college. 1n the 2000 edition
of The Fiske Guidanformation on tuition cost, SAT scores, social life, and quality of
life has been provided for over 300 colleges and universitiesin the United States. The
Fiske Guideaso lists a school’ s overlaps, that is, the major competitors to which
applicants are also applying in greatest numbers. The overlaps provide students and
parents with possible alternatives when selecting a school. For example, the overlaps of
the University of Pennsylvania are Harvard, Princeton, Yale, Cornell, and Brown.
Students who applied to the University of Pennsylvania aso applied to those five schools.
However, the overlaps of Harvard University -- Princeton, Y ale, Stanford, MIT, and
Brown -- do not include the University of Pennsylvania. The overlaps of two schools are
not necessarily symmetric.

The American college selection data set is derived from the overlap data of 100
schoolsin The Fiske GuideThis data set was constructed by Condon et al. (2002).

There were four steps involved in the construction process: building an adjacency matrix,
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constructing a directed graph, computing distance measures, and modifying the distance
matrix.

In the first step, Condon et al. created a 100x100 0-1 asymmetric adjacency
matrix Sfor 100 schools, where entry s; = 1 (row i and column j) indicates that school j is
an overlap of school i. For example, in Table 4.1, we show an 6x 6 adjacency matrix for
six universities (Brown, Cornell, Harvard, MIT, Penn, and Stanford). The entry in the
Penn row and the Harvard column is 1, that is, Harvard is an overlap of Penn. Inthe
second step, Condon et al. converted the adjacency matrix Sto a directed graph with 100
nodes (one node for each school) and a directed arc for each non-zero s; entry, wherei is
the start node, j is the end node, and the directed arc connectsi and j. In Figure4.1, we
converted the 6x 6 adjacency matrix, which is shown in Table 4.1, into adirected graph
with six nodes. We see that thereis adirected arc starting at the Penn node and ending at
the Harvard node.

In the third step, Condon et al. set the distance of an arc in the directed graph to
one and computed the all-pairs shortest path distance matrix T, where each entry t; is
calculated as the shortest distance from nodei to nodej. Inthefinal step, the authors
modified the distance matrix for disconnected nodes, thét is, they set each entry t;; for a
disconnected pair to avaueV that is greater than the longest distance in the matrix. Itis
necessary to carefully choose the value V -- alarge value of V will push the connected
points closer together so that it will be difficult to observethe inner relationships. A

small value of V will result in merging disconnected points.
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School Brown Corndll Harvard MIT Penn Stanford
Brown 0 1 1 0 0 1
Corndll 1 0 1 0 1 0
Harvard 1 0 0 1 0 1
MIT 0 1 1 0 0 1
Penn 1 1 1 0 0 0
Stanford 1 0 1 1 0 0

Table 4.1 Adjacency matrix for six schools.

Brown Corndll

Stanford O Penn

Ot——
MIT Harvard

Figure4.1 Directed graph generated from the adjacency matrix.

The American college selection data set generated by Condon et a. contains four
groups of schools denoted by A, B, C, and D (see Table 4.2). There are 74 schoolsin A,
11 schoolsin B (these are schools from the southern United States), 8 schoolsin C (six

schools are from the Ivy League), and 7 schoolsin D (all from California).
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Key School State
A2 Arizona State University AZ
A3 Arizona, University of AZ
A5 Barnard College (Columbia University) NY
A6 Bates College ME
A7 Boston College MA
A8 Boston University MA
A9 Bowdoin College ME
All Bryn Mawr College PA
Al12 Bucknell University PA
A19 Carleton College MN
A20 Carnegie Mellon University PA
A23 Colby College ME
A24 Colgate University NY
A25 Colorado College CO
A26 Colorado, University of—Boulder CO
A27 Connecticut, University of CT
A29 Delaware, University of DE
A30 Denver, University of CO
A31 Emory University GA
A34 George Mason University VA
A35 Georgetown University DC
A38 Grinnell College A
A40 lllinois, University of—Urbana-Champaign IL
A4l Indiana University IN
A42 lowa State University A
A43 lowa, University of 1A
Ad4 James Madison University VA
A45 Lafayette College PA
A46 Lehigh University PA
A47 Lewis and Clark College OR
A48 Macalester College MN
A49 Marquette University WI
AS0 Mary Washington College VA
A51 Maryland, University of—College Park MD
AS3 Massachusetts, University of—Amherst MA
A5 Michigan State University Ml
A56 Michigan, University of MI
A57 Middlebury College VT
A58 Minnesota, University of—Twin Cities MN

Table 4.2 One hundred schools selected from TheFiske Guiddor analysis.



A59 Mount Holyoke College MA
A60 New Hampshire, University of NH
A61 New Jersey, The College of NJ
A62 New York University NY
A63 |North Carolina State University NC
A64 North Carolina, University of—Chapel Hill NC
A65 |Northeastern University MA
A66 [Northwestern University IL
A67 [Notre Dame, University of IN
A68 |Oberlin College OH
A69 |Oregon State University OR
A 70 |Oregon, University of OR
A71 |Pennsylvania State University PA
A73 |Pittsburgh, University of PA
A75 |Puget Sound, University of WA
A76 [Purdue University IN
A77 |Reed College OR
A78 |Richmond, University of VA
A79 |Rutgers University NJ
A80 |Smith College MA
A85 [Tufts University MA
A86 |Vanderbilt University TN
A87 |Vassar College NY
A88 |Vermont, University of VT
A89 |Villanova University PA
A90 |Virginia Polytechnic Institute and State University VA
A9l \Virginia, University of VA
A92 Wake Forest University NC
A93 Washington University in St. Louis MO
A 94 Washington, University of WA
A95 Welldey College MA
A96 Whitman College WA
A97 Willamette University OR
A98 William and Mary, College of VA
A99 \Wisconsin, University of--Madison Wi
B1 |Alabama, University of --Tuscaloosa AL
B4 |Auburn University AL
B21 |Charleston, College of SC
B22 |Clemson University SC
B32 |Florida State University FL

Table 4.2 (Continued).
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B33 |Florida, University of FL
B36 |Georgialnstitute of Technology GA
B37 |Georgia, University of GA
B54 |Miami, University of FL
B81 |South Carolina, University of SC
B84 |Tennessee, University of--Knoxville TN
C10 |Brown University RI
C28 |Cornell University NY
C39 |Harvard University MA
C52 |Massachusetts Institute of Technology MA
C72 |Pennsylvania, University of PA
C74  |Princeton University NJ
C83 |Stanford University CA
C100 |YaeUniversity CT
D13 |Cdifornia, University of--Berkeley CA
D14 |Cdifornia, University of--Davis CA
D15 |Cdifornia, University of--lrvine CA
D16 |Cdifornia, University of--Los Angeles CA
D17 |Cdifornia, University of--San Diego CA
D18 |Cdifornia, University of--Santa Barbara CA
D82 |Southern California, University of CA

Table 4.2 (Continued).

Each of the four groups is a strongly connected component in the directed graph
of 300 schools given in The Fiske Guidelf agroup is strongly connected, then there
exists at least one directed path from any school in the group to any of the other schools
in the same group. In other words, any one school is considered to be a competitor to all
of the other schoolsin the group. The distance between each pair of schools measures
the magnitude of the competitiveness. The shorter the distance, the more competitive the
schools are. For example, if the distance between schools S and T is shorter than the

distance between schools S and R, then T ismore likely a competitor of Sthan R.
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4.2  Experimental Design

We implement our modified Sammon mapping method in C/C++. Our code reads
in an n x n asymmetric distance matrix and generates random starting coordinates for
each dataitemi (i = 1,...,n to be plotted in the mapped D-dimensiona (usualy, two
dimensional) space. We use the error function E; and the associated updating rule given
in Section 3.1 to adjust the coordinates iterativel y to minimize the value of the error
function. If no improvement isfound after a certain number of iterations, the modified
SM method is considered converged and the obtained configuration is the resulting
Sammon map. Currently, we employ the stegpest gradient method as the optimization
procedure when applying the modified SM method to the asymmetric distance matrix.

We redlize that the resulting configuration isalocal minimum, multiple
experiments with different random starts are necessary to ook for an approximate
solution. Meanwhile, we tested severa different magic factorsranging from 0.1t0 0.8in
our experiments. Tables 4.3 and 4.4 provide the sensitivity analysis of the magic factor.
The values listed in the two tables are average values of five experiments with different
random starts on each data set. The minimum average error measure(s) and the
maximum average order preservation coefficient(s) of each data set can be found in
boldfacein Tables 4.3 and 4.4 respectively. For example, on the data set of 100 schools,
the minimum error measure is 28829.5600 (see Table 4.3), which is associated with a
magic factor of 0.6. The error measure associated with a magic factor of 0.6 isthe
second minimum (28829.5600). Their corresponding average order preservation

coefficients aretied at the value of 0.4720, which is the maximum coefficient obtained
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Magic

Factor | 100Schools | 30Schools | ASchools | BSchools | CSchools | DSchools
0.1 28830.5200 | 773.6160 | 5688.3040 | 18.3131 6.1831 5.5503
0.2 28835.6200 | 773.3146 | 5688.1640 | 18.3131 6.0645 5.5502
0.3 28846.9600 | 773.9876 | 5688.6180 | 18.3131 6.0677 5.5490
0.4 28830.3200 | 773.0448 | 5688.3020 | 18.3131 6.0645 5.5490
0.5 28831.8400 | 773.0162 | 5706.6340 | 18.3131 6.0677 5.5490
0.6 28829.5600 | 773.9876 | 5709.3380 | 18.4980 6.1799 5.5369
0.7 28831.6200 | 773.9776 | 5815.3500 | 18.4980 6.0677 5.5490
0.8 28835.4400 | 773.0448 | 5760.8320 | 18.3131 6.0645 5.5490

Table 4.3 Average error measures obtained from the modified SM method.

Magic

Factor | 100Schools | 30Schools | Aschools | Bschools | Cschools | Dschools
0.1 0.4720 0.6065 0.5943 0.7562 0.5683 0.5552
0.2 0.4718 0.6064 0.5944 0.7562 0.5677 0.5533
0.3 0.4714 0.6065 0.5943 0.7562 0.5661 0.5524
0.4 0.4720 0.6065 0.5944 0.7562 0.5677 0.5524
0.5 0.4720 0.6065 0.5939 0.7562 0.5661 0.5524
0.6 0.4720 0.6065 0.5940 0.7539 0.5661 0.5524
0.7 0.4719 0.6065 0.5916 0.7539 0.5661 0.5524
0.8 0.4718 0.6065 0.5937 0.7565 0.5677 0.5524

Table 4.4 Average order preservation coefficients obtained from the modified SM

method.
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for the 100 school data. When considering the overall performance on all six datasetsin
terms of both error measures and order preservation coefficients, each tested magic factor
turnsto give either the best error measure or the best order preservation coefficient. In
other words, the experiments are not sensitive to the magic factors. Therefore, as
suggested by Sammon (1969), we use 0.4 as the step size to adjust the locations of data
items iteratively in the mapped space.

For each data set examined in the following sections, five experiments with
different random starts are performed. We choose the best maps in terms of error
measures and order preservation measures for comparison. Listed in the tables are
average values of five experiments on each data set.

We point out that the Sammon maps generated with different starting
configurations are usually similar, that is, the relative relationships among schools are
roughly the samein each map. In our experiments, we keep the substitute value of
infinity distance aswhat is used in Condon’s work, which is dightly larger than the
longest distance in the distance matrix.

We apply our modified Sammon mapping method to six data sets which are:
American college selection data set with 100 schools, each of the four strongly connected
groups (A, B, C, D), and 30 schools selected from A. We experiment with five different
starting configurations for each data set and then compare the average performance of our
modified SM method to that of the standard SM method and that of Merino’s method.
We use the typical resulting Sammon map of each data set to illustrate the similarities

and differences of the resulting maps generated by these three methods.
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In Figure 4.2, we show the map of all 100 colleges and universities that was
generated by the modified SM method. In Figures 4.3 and 4.4, we show the Sammon
maps of all 100 schools that were generated by the standard SM method and by Merino’s
method respectively with the standard error function (1) given in Section 3.1. In Figures
4.5 t0 4.19, we show Sammon maps generated by our modified procedure, the standard
procedure and Merino’s procedure for five data sets (A, 30 schoolsfrom A, B, C, and D).

We discuss the maps and results in the next section.

4.3  Discussion of the Results

Shown in Figures 4.2, 4.3, and 4.4 are Sammon maps of al 100 schools generated
by the modified, the standard, and Merino’s methods respectively. In Figure 4.2, the
group of B schools and group of D schools are separated from the group of A schools and
the group of C schools. Thisis consistent with the existing structure of the data set that
consists of four strongly connected groups of schools. The most interesting phenomenon
isthat the group of C schoolsislocated in the center of the map and is surrounded by
some schools of group A, e.g., Tufts University (A85), New Y ork University (A62),
Boston College (A7), Columbia University (A5) and Georgetown University (A35).
From our experimental results, it shows that the more chances a university is considered
as acompetitor by other universities, the more likely this university will be placed in the
center or near the center of the map. Boston College (A7) and New Y ork University
(A62) have more chances to be considered competitors by many other universities so that

they, we think they are popular, are placed in the center of the maps (see Figures 4.2, 4.3,
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Figure 4.2 Map of 100 schools generated by the modified SM method.
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Figure 4.3 Map of 100 schools generated by the standard SM method.
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Figure 4.4 Map of 100 schools generated by Merino’s method.

and 4.4). InFigure 4.2, the location of group C tells us that group C and some popular A
schools have some in common to some extents. For example, group C consists of Ivy

L eague schools which have high education quality and expensive tuition costs, etc., and
some A schools that surround group C (i.e., New Y ork University) provide qualified
education the same as or no worse than group C schools provide. This relationship
between group C and these schools of group A isreasonablein practice. However, this
relationship cannot be detected from the maps generated by the standard and Merino’s
methods, where there is no clue that schoolsin group C are competitors of schoolsin

group A.

62



In addition, in Figure 4.2, Group B is closer to group A than to other groups.
Group D isalso closer to group A than to other groups. In the maps generated by the
standard and Merino’s methods (Figures 4.3 and 4.4), we see that the four strongly
connected groups (As, Bs, Cs, Ds) of schools are separated from each other. It ishard to
determine which group(s) is (are) closer to another group; in other words, the
rel ationships between groups are not as clear asthey are in the map generated by the
modified SM method.

Besides, in terms of inner group relationship, schoolsin each group are pushed
close together in Figures 4.3 and 4.4 so that it becomes difficult to ascertain within-group
relationships from the maps. Most of relationships that can be seen in the maps generated
by the standard and Merino’s methods can aso be detected in the map generated by our
modified SM method. For example, in Figures 4.3 and 4.4, the University of Maryland
(A51) iscloseto schools A73 (University of Pittsburgh), A29 (University of Delaware),
and A34 (George Mason University). These relationships are still preserved in Figure
4.2.

However, the map generated by the modified SM method hasiits limitations. It
seems that the modified SM method might not represent some local structures as
precisely as other two SM methods. For example, although these four schools that are
considered close competitors by each other can still be thought of forming a cluster (see
Figure 4.2), A6, A23, A9 and A57 are not placed together in Figure 4.2 as closely as they
are, while in maps generated by the other two methods the relationship between these

four schoolsis represented more clearly.
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Regarding the differences between the maps generated by the standard and
Merino’s methods, there is no significant evidence that one outperformsthe other. This
observation is also confirmed in our performance measurements that are discussed later
in this section. The genera structures of the maps generated by these two methods are
similar and it is reasonable to see local differences due to different random starting
configurations and other factors such as stopping criterion etc.

Figures 4.5, 4.6 and 4.7 show the Sammon maps of group A generated by the
modified SM, the standard SM method, and Merino’s method, respectively. In Figures
4.8, 4.9 and 4.10, we show the Sammon maps of the subset of 30 schools from group A
generated by these three methods. As compared to groups B, C, and D, group A and the

30 schools from group A have arelatively large number of schools.
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Figure4.5 Map of group A generated by the modified SM method.
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Figure4.6 Map of group A generated by the standard SM method.
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Figure 4.7 Map of group A generated by the Merino’s method.

The Sammon map of group A generated by the modified SM method has roughly
similar structure as has the Sammon maps generated by the standard SM and Merino’'s
methods. For example, the locations of most A schools are roughly same in these three
maps (see Figures 4.5, 4.6 and 4.7). Grinnell College (A38), McAlester College (A48),
Carleton College (A19), and Oberlin College (A68) are close to each other and are
located in right middle/bottom of the maps away from the other A schools, so that they
can be considered acluster. Wellsley College (A95), Smith College (A80), Mount
Holyoke College (A59), and Bryn Mawr College (A11) can be considered another cluster

for the same reason. Bates College (A6), Colby College (A23), Bowdoin College (A9)
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and Middlebury College (A57) are athird cluster that is placed in |eft bottom of the
maps.

The within-group relationships of schools areillustrated similarly in the maps
generated by these three methods. For example, the order relationships between
Middlebury College (A57), Bowdoin College (A9), Colby College (A23) and Bates
College (A6) are obvious, i.e., Middlebury College and Bates College have the longest
pairwise distance of all pairwise distances of these four schools.

There are some local differences between the map generated by the modified
method and the other two methods. For example, the distance between Arizona State
University (A2) and University of Arizona (A3) is smaller than the distance between
Arizona State University and Colorado College (A25) because, in the asymmetric
distance matrix, dz < dys2 and do3 < dr25. INnFigure 4.5, it is clear that Arizona State
University is closer to University of Arizonathan it isto Colorado College, whilein the
map generated by Merino’s method (Figure 4.7), it appears that Arizona State University
is closer to Colorado College.

As another example to show local differences between these three maps. The
distance between Minnesota University (A58) and Marquette University (A49) seems
equal to the distance between Minnesota University and lowa State University (A42) in
the map generated by the modified method, while in the maps generated by the other two
methods Minnesota University is obviously closer to lowa State University. However, in
the original asymmetric distance matrix, dsg g < dsg 42, i.€. 1< 4, and dsgss > a2 58, 1.€.

5>1, so that the relationships are not as obvious as they are in maps.
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For the 30 schools from group A, the Sammon maps generated by the modified,
the standard SM and Merino’s methods are visually different (see Figures 4.8, 4.9 and
4.10). However, we can seethat A41, A76, A56, A93, A31, etc. are placed in the same
sequence in these three maps but in different direction, i.e., clockwise in Figures 4.8 and
4.10, and counter-clockwise in Figure 4.9. Therefore, the genera structures of the maps
generated by these three SM methods are actually similar. As another example, Reed
College (A77), Carleton College (A19), University of Washington (A94), Lafayette
College (A45), and Carnegie Mellon University (A20), which are located as outliersin
the map generated by the modified method, are still outliers and apart from other schools
of group A in the other two maps.

The maps generated by the modified SM method for groups B, C, and D have few
visual differences from the maps generated by the standard SM and Merino’ s methods.
In these three types of maps, schools are scattered about and the rel ative rel ationships
among schools are roughly the same. For example, in Figures4.11, 4.12 and 4.13,
Auburn University (B4) is about the same distance from University of Alabama (B1) and

University of Georgia (B37).
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Figure4.9 Map of 30 schools from group A generated by the standard SM method.

69



A19
A94

A26
A ATT
A27

AB2
A8

AS3

AT Ad41

AT8 AT6
A20 ABY A58

AS0  A98 RS

ase 1 A93

Age A31
A29

A1 AT3

AB9

Ang P45

Figure4.10 Map of 30 schools from group A generated by Merino’s method.

B54

B81

B33

B22
B32
B21

B37

B4
B1

B36

B84

Figure4.11 Map of group B generated by the modified SM method.
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Figure4.12 Map of group B generated by the standard SM method.
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Figure4.13 Map of group B generated by Merino’s method.
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There are some differences in the relative relationships among schoolsin the
maps generated by the modified SM method and the maps obtained by the standard SM
and Merino’s methods. For example, in the asymmetric data set of group C, Harvard
(C39) and Yale (C100) are considered competitors by all other schools so that it is
desired to place these two schools in the center of the maps and let other schools scatter
about. Only in the map (Figure 4.14) generated by the modified SM method Harvard and
Y ale are located near the center and surrounded by other schools. UPenn (C72), MIT
(C52), and Cornell (C28) that are lesslikely considered competitors by other schools are
located in the marginal area of the mapsin Figures 4.14, 4.15 and 4.16.

The pairwise distances between Berkeley (D13) and Los Angeles (D16) are the
same with the pairwise distances between Berkeley and San Diego (D17) in the
asymmetric distance matrix and we expect that Berkeley is equally away from school Los
Angeles and San Diego. InFigures4.17, 4.18 and 4.19, the distances from Berkeley to
Los Angeles and to San Diego are approximately equal. For data sets with small size, the
modified SM method yields results visually similar to those generated by the standard

and Merino’s methods.
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Figure4.14 Map of group C generated by the modified SM method.
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Figure4.15 Map of group C generated by the standard SM method.
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Figure4.16 Map of group C generated by Merino’s method.
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Figure4.19 Map of group D generated by Merino’s method.
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The standard and Merino’s methods take as inputs symmetrized distance matrices,
which are derived from original asymmetric distance matrices by averaging. The
modified SM method takes original asymmetric distance matrices as inputs directly. Two
performance measurements are employed to assess these three methods' capability of
representing origina asymmetric distance data. We use order preservation coefficient to
show how effectively a SM method preserves order relationships of origina data. We
use error measurement to indicate how precisely original distances between dataare
represented by a SM method. The represented order rel ationships among schools and the
resulting error measures are expected to be different in the maps generated by the three
SM methods because their input distances and rationales behind the methods are
different.

Asshown in Tables 4.5 and 4.6, the order preservation coefficients of maps
generated by the standard and Merino’s SM methods are very close. The error measures
of these two SM methods do not change dramatically (see Tables 4.7 and 4.8). These can
be explained by their taking the same symmetrized distance matrices. Another
explanation may be the asymmetry coefficients introduced in Merino’s method
(described in section 2.5). In these six data sets most of schools have similar chances to
be considered competitors by others and asymmetry coefficients of schoolsfall in a
narrow range of values. Introducing similar asymmetry coefficients will not make the
objective function better off and therefore asymmetry coefficients in these cases have
little impact on the optimization results.

By incorporating the upper triangular part and the lower triangular part of the

original asymmetric distance matrix into the objective function and the associated
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DataSet | StandardSM | ModifiedsM | 7 'mpro"e”,:/leggﬁ';ja”dard over
100 Schools | 0.482 0.472 2.10
30 Schools 0.619 0.607 1.97
A 0.605 0.594 171
B 0.759 0.756 0.34
C 0.580 0.568 214
D 0.567 0.552 2,59

Table 4.5 Order preservation coefficients for the six data sets (standard vs. modified).

DataSet | Merino'sSM | ModifiedSM | 7 'mpro"em,\ﬁgtdﬂfie'\ge” no's over
100 Schools | 0,475 0472 0.70
30 Schools 0.616 0.607 1.51
A 0.603 0.594 145
B 0.759 0.756 0.36
C 0.582 0.568 252
D 0.567 0.552 2,59

Table 4.6 Order preservation coefficients for the six data sets (Merino’s vs. modified).

updating rules, the search procedure of the modified SM method takes into account the

entire original distance matrix instead of the symmetrized distance matrix and looks for

an optimal configuration for the entire distance matrix. Therefore, the error measures of

maps generated by the modified SM method are significantly smaller than the error

measures of maps generated by the standard and Merino’s SM methods (see Tables 4.7

and 4.8). It seemsthat the modified SM method reduces the distance error measures
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Data Set Standard SM Modified SM % Improvement of Modified over
Standard
100 Schools 54906.620 28830.320 47.49
30 Schools 999.067 773.045 22.62
A 6926.616 5688.302 17.88
B 20.192 18.313 9.31
C 6.547 6.065 7.37
D 6.048 5.549 8.25

Table 4.7 Error measures for the six data sets (standard vs. modified).

DataSet | Merino'sSM | Modifiedsm | 70 mprovement of Modified over
Merino’'s
100 Schools | 59774640 |  28830.320 51.77
30Schools | 1024385 773.045 24,54
A 7096.426 5688.302 10.84
B 19.927 18.313 8.10
C 6.615 6.065 8.33
D 6.073 5,549 8.62

Table 4.8 Error measures for the six data sets (Merino’ s vs. modified).

proportionally to the size of data sets. For example, in 100-school data set, the modified
SM method reduced the error measure over the standard SM method by 47.49% (100 x
(54906.620 — 28830.320)/ 54906.620). In the remaining data sets, the improvements
range from 8.25% to 22.62%. We point out that the values given in the tables of
performance measures are averages from the five experiments on each data set.

The modified SM method produces slightly smaller order preservation

coefficients than the other two SM methods (large coefficients are better). This may be
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due to asymmetric distancesin original datasets. When the whole asymmetric distance
matrix istaken into account, the search procedure goes through the upper triangular part
and the lower triangular part separately to find an improved result. This adds more
constraints to the optimization process and introduces more difficulty to achieve a better
result because some constraints are conflict due to asymmetry.

Although the modified SM method did not do a better job than the standard SM
and Merino’s SM methods in preserving the order relationships in our American college
selection data, the maps generated by the modified SM method are still considered better
than the maps generated by the standard SM method and Merino’s method. The
modified SM method is capable of preserving order relationships with similar accuracy
and reducing the distance errors with significant improvement as compared to the
standard and Merino’s SM method. The maps generated by the modified SM method
show us the intra-group relationships, which were not reflected in the maps generated by
other two methods. For example, it isinteresting to see that schools of group C mixed
with several A schools in the maps generated by the modified SM method. In addition,
the generated maps by the modified method are more readable -- school s were not
squeezed as tightly in Figure 4.2 as they were in Figure 4.3.

In our study of analyzing American college selection data using different
Sammon mapping visualization techniques, currently, the modified SM method seems to
be able to generate visualization maps with higher quality as compared to the standard
and Merino’s methods. The modified method yields results that are with significantly

reduced distance errors and reasonably preserved order relationships compared to the
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results generated by the other two methods. We hope that our modified SM method can

be robust on other applications.

80



Chapter 5

Visualizing Canadian Ranked College Data

The modified SM method was shown to be good at recovering the structure of
American college data at least comparable to the standard and Merino’s methods. In
American college selection data, the overlaps of each school are not ordered so that there
isno indication of ranks among the overlaps. The generated visualization maps are
unable to provide students with further details such as which school among the overlaps
isthe closest competitor. If ranking information isincorporated into the data set,
decisions by students can be made more easily and effectively.

Data sets with ranking information can be collected in many fields. In marketing,
ranked data can be gathered from customers who give ranks of different brands of
products of the same category, i.e., car brands. Consider another examplein which a
survey is sent to gpartment managers in ametropolitan area. The survey asks the
managers to identify top 10 rival apartment buildings. The managers respond with atop
10 listing in which the first building is the most competitiverival, the second building is
next most competitive rival, and so on. For a person seeking an apartment, avisual map

of competitors can help narrow the search effectively and naturally.
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Our work in this chapter includes building avisual model of asymmetric data sets
that incorporate ranking information. The Canadian ranked college data set is the one
that has ranking information and will be analyzed in the following sections. The modified
SM method will be applied to this data set to seeif ranking information is represented
accurately. For comparison, the standard and Merino’s SM methods will also be applied

to the data set.

5.1  Description of Canadian Ranked College Data

Theidea of visualizing universities originates with the work of Yin (2002) and
Condon et a. (2002). Yin proposed ViSOM (visualization-induced SOM) to detect
clusters of universitiesin the United Kingdom. Condon et a. created visual maps of 100
American universities that can be used to view patterns and clusters and gain insights.

We collected data from surveys that were sent to the admission directors of
undergraduate programs in 52 Canadian universities. The directors were asked to list the
five most competitiverivalsin terms of overall education quality. We have received
responses from 44 universities and we list thesein Table 5.1. The competitors of each

Canadian university are given in Table 5.2.
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Key School

1 Acadia University

2 Bishop's University

3 Brandon University

4 Brock University

5 Carleton

6 Concordia University

7 Dalhousie University

8 Lakehead University

9 Laval University

10 McGill University

11 McMaster University

12 Memorial University of Newfoundland
13 Mount Saint Vincent University
14 Nipissing University

15 Queens University

16 Simon Fraser University

17 St. Francis Xavier University

18 Univeristy College of Cape Breton
19 Universite de Moncton

20 Universite de Sherbrooke

21 Universite du Quebec a Rimouski
22 Universite du Quebec en Outaouais
23 University of Alberta

24 University of British Columbia

25 University of Calgary

26 University of Guelph

27 University of Lethbridge

28 University of Manitoba

29 University of Montreal

30 University of New Brunswick

31 University of Ontario Institute of Technology
32 University of Ottowa

33 University of Prince Edward Island
34 University of Regina

35 University of Saskatchewan

36 University of Toronto

37 University of Victoria

38 University of Waterloo

Table 5.1 44 Canadian universities collected from surveys.
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39 University of Western Ontario
40 University of Windsor

41 Wilfrid Laurier

42 Laurentian University

43 University of St. Anne

44 Y ork University

Table 5.1 (continued).

Key |School 1 |2nd |39 [4n |5t
1 Acadia University 38 |36 (10 |15 |23
2 Bishop's University 1 41 |0 0 0
3 Brandon University 28 |25 (34 |35 |0
4 Brock University 11 |26 |41 |44 |39
5 Carleton 36 |32 |10 |15 |38
6 Concordia University 10 |29 |20 |7 0
7 Dahousie University 10 |36 |15 |24 |23
8 Lakehead University 26 |4 39 |38 |0
9 Laval University 29 |20 (10 |6 0
10 McGill University 36 (24 |15 |7 44
11 McMaster University 36 |15 (38 |39 |10
12 Memoria University of Newfoundland 7 30 |1 17 |13
13 Mount Saint Vincent University 1 17 |12 |0 0
14 Nipissing University 4 41 |8 0 0
15 Queens University 36 |24 (10 |26 |38
16 Simon Fraser University 24 |37 |38 |26 |36
17 St. Francis Xavier University 7 1 0 0 0
18 Univeristy College of Cape Breton 7 17 |13 |30 |0
19 Universite de Moncton 30 |9 32 |7 43
20 Universite de Sherbrooke 29 |9 2 0 0
21 Universite du Quebec a Rimouski 9 20 |0 0 0
22 Universite du Quebec en Outaouais 32 |20 |0 0 0
23 University of Alberta 36 |24 (10 |0 0
24 University of British Columbia 36 |10 (15 |23 |39
25 University of Calgary 36 |24 (15 |10 |23

Table 5.2 Competitors of 44 Canadian universities.




26 University of Guelph 11 |38 |15 |36 |39
27 University of Lethbridge 23 |25 |34 |35 |37
28 University of Manitoba 23 |35 (36 |15 |0
29 University of Montreal 36 |10 |32 (24 |23
30 University of New Brunswick 7 12 |1 0 0
31 University of Ontario Institute of Technology {39 |36 |15 |44 |38
32 University of Ottowa 11 |39 |15 |29 |7
33 University of Prince Edward Island 1 17 |30 |0 0
34 University of Regina 23 |24 |28 |0 0
35 University of Saskatchewan 34 |23 (25 |15 |24
36 University of Toronto 39 |24 |23 |15 |10
37 University of Victoria 24 116 |25 |23 |0
38 University of Waterloo 36 (39 (15 |41 |11
39 University of Western Ontario 36 |10 (15 (38 |11
40 University of Windsor 39 |11 |41 |36 |15
41 Wilfrid Laurier 39 |38 |26 |11 |36
42 Laurentian University 4 40 |8 32 |5
43 University of St. Anne 7 17 |30 |0 0
44 York University 36 |15 (39 |41 |0

Table 5.2 (continued).

5.2  Modeing Steps

In the Canadian university data set that we have collected, some universities
specified their competitors that were not on the list of the 44 universities. We did not
include universities that did not respond and yet were selected as rivals by other
universities. For example, Y ork University chose University of Toronto asits top
competitor, Ryerson University was the second, and Queens, Western Ontario, and
Wilfrid Laurier were third, fourth, and fifth, respectively. Ryerson University did not
respond to our survey, so it isnot onthelist. Therefore, intherival list of York

University, we excluded Ryerson and replaced it with Queens as the second most
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competitive school, and then moved Western Ontario and Wilfrid Laurier up one rank,
respectively.

In order to create avisua map of the Canadian college data set, we need to
generate a distance matrix from the data set and then input the distance matrix into the
modified SM method. Using procedures that are described in Chapter 4, we start by
creating a 44 x 44 0-1 adjacency matrix, whereentry s; = 1 (row i and column j) if
school j isacompetitor of school i. Next, we adjust the entries with the value of 1 to
reflect the ranking information. In terms of adjacency or distance, the more competitive
school j isto school i, the smaller the value of the s; entry is. The entry of the most
competitive school is 1 by default. We set the gap between entries of two consecutive
competitorsin ranking is 0.5, in other words, the entry of the second competitor is 1.5,
and the entry of the third competitor is 2, and so forth.

After adjusting the adjacency matrix, we construct the distance matrix using a
shortest path procedure and replace infinity entries with an appropriate value, i.e., 25%
larger than the longest distance. After the distance matrix is constructed, we apply the
modified SM method that is described in Chapter 3 to Canadian ranked college data

trying to detect some interesting rel ationships of Canadian schools.
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5.3  Discussion of the Results

The map shown in Figure 5.1 is generated by the modified SM method. The
distance gap, which is used to separate two consecutive competitors, is set to 0.5 and the
substitute value of infinity distanceis 10.5, which is 25% larger than the longest finite
distancei.e. 8.5. It provides uswith ageneral view of the structure of Canadian colleges.

Universities such as Toronto (36), Queens (15), and Western Ontario (39) that are
frequently considered competitors by other universities are located in the center of the
map. Other universities such as Waterloo (38) and British Columbia (24) with high
frequencies are also placed near the center. Therefore, the map tells us that universities
placed in or near the center are those that are considered popular. Besides, it showsin the
map roughly five clusters of universities—onein the center and the other four
surrounding the center.

The map generated by the modified SM method also reveals some ranking
information of competitors of aparticular school. For example, the top five competitors
of Queens University (15) are Toronto (36), British Columbia (24), McGill (10), Guelph
(26), and Waterloo (38), where Toronto is the most competitive school to Queens. In
Figure 5.1, among these five competitors, Toronto is the closest to Queens. Although
Waterloo is not the school farthest from Queens, it is the second farthest school among
these five competitors. Guelph is the school farthest from Queens, because the top rival
of GuelphisMcMaster and Queensisitsthird top. The asymmetric characteristic of a
data set makesit very difficult to generate a map that is a completely accurate
representation of the data set. A map that shows roughly similar structures of the data set

can be generated by visualization techniques.
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Figure5.1 Sammon map of the Canadian ranked college generated by the modified
method. Gapisset to 0.5.

Figures 5.2 and 5.3 show the maps generated by the standard and Merino
methods. Again the maps generated by these two methods are similar to each other due
to the same reasons that have been discussed in previous chapter. Universities|ocated in
the center of Figure 5.1 are till placed in the center of these two maps. Other
universities scatter about surrounding popular universities.

Differences between the map generated by the modified method and the maps
generated by the other two methods can be summarized as follows. Universities
surrounding the center are separated more evenly in the maps generated by latter two
methods. This makesit harder to detect clusters of universities. Universitiesin the
center of the maps generated by the latter two methods squeeze more tightly than they are

inthe
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Figure5.2 Sammon map of the Canadian ranked college generated by the standard
method. Gapisset to 0.5.
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Figure 5.3 Sammon map of the Canadian ranked college generated by Merino’s method.
Gap issetto 0.5.
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map generated by the modified method. Some interesting insights may be hidden in the
maps of Figures 5.2 and 5.3. For example, al five competitors of Dalhousie (7) are
located in the center of maps and therefore it is reasonable to place Dalhousie near the
center. However, most of the universities that consider Dalhousie a competitor are
located in the top middle area of the maps. It is expected that Dalhousie would be near
these universities while keeping near the center universities. Only in the map generated
by the modified SM map the location of Dalhousie reminds us of the relationships while
in other two mapsit is not clear that we can detect the relationships between Dalhousie
and these universities that choose Dalhousie as a competitor.

In terms of insights that possibly will be gained from visualization maps, the
modified SM method provides us with a more reasonable map. In terms of performance
measures, the modified SM method most of the time in our experiments does slightly
better than the standard and Merino’s methods in order relationship preservation (see
Tables 5.3 and 5.4) and always outperforms the other two methods in error measurement
(see Tables 5.5 and 5.6).

In order to seeif the gap value affects the performance of these three methods, we
experimented with three different gap values: 0.2, 0.5, and 1. 0.5istheonethat isusedin
Figures5.1, 5.2 and 5.3. Given five random starts, we used each gap value on the
Canadian college data. Tables 5.3 and 5.4 provide average order preservation measures
of these three methods, and Tables 5.5 and 5.6 provide average error measures of these
three methods. In Figures 5.4 and 5.5 are given generated maps by the modified method
with gap values of 0.2 and 1.0 respectively. Comparing these two figuresto Figure 5.1,

we can see that although there are some local differences between these three maps, the
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% Improvement of Modified over

Gap Vaue | Standard SM Modified SM Standard
Gap-0.2 0.555 0.560 0.99
Gap-0.5 0.546 0.548 0.46
Gap-1.0 0.537 0.542 0.89

Table 5.3 Order preservation measures of different gap values of Canadian ranked

college data (standard vs. modified).

% Improvement of Modified over

Gap Vaue | Merino'sSM Modified SM -
Merino’'s
Gap-0.2 0.559 0.560 0.14
Gap-0.5 0.543 0.548 0.88
Gap-1.0 0.545 0.542 -0.64

Table 5.4 Order preservation measures of different gap values of Canadian ranked

college data (Merino’ s vs. modified).

Gap Vaue

Standard SM

Modified SM

% Improvement of Modified over

Standard
Gap-0.2 2413.83 2100.84 12.97
Gap-0.5 3921.53 3336.99 14.91
Gap-1.0 7001.58 5414.63 22.67

Table 5.5 Error measures of different gap values of Canadian ranked college data
(standard vs. modified).
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5 —
Gap Vaue Merino’'s SM Modified SM % mprovem'\(/len etrifol,vISOd'f' ed over
Gap-0.2 2344.01 2100.84 10.37
Gap-0.5 3972.14 3336.99 15.99
Gap-1.0 6675.48 5414.63 18.89

Table 5.6 Error measures of different gap values of Canadian ranked college data
(Merino’s vs. modified).
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Figure 5.4 Sammon map of the Canadian ranked college generated by the modified
method. Gapissetto0.2.
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Figure5.5 Sammon map of the Canadian ranked college generated by the modified
method. Gapisset to 1.0.

general structure of the data set is kept similar in each of these maps, i.e., popular
universities in the center and surrounded by other clusters of universities. Different gap
values have effect on constructing maps especially on local details however the genera
structure of the data set is not changed dramatically.

To analyze Canadian ranked college data, the modified SM method seems better
than the standard and Merino’s methods. The modified method reduces distance errors
significantly and preserves the order relationships reasonably well compared to other two
methods. The modified method also helps gain some interesting insights that can hardly
be detected in maps generated by other two methods. We have done some sensitivity
analysis of gap values and it seemsto us that gap values do not dramatically affect the

general structure of the data set.
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So far, we have analyzed two visualization applications using the modified
Sammon mapping method. As compared to the modified SM method, the self-organizing
map, which is a neural-network based method, can also be employed to visualize and
analyze data sets. In the following chapters, we will discuss some applications using

SOMs.
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Chapter 6

Self-Organizing Maps. State Sponsored Murder Data Set

6.1  Introduction

As a neural-network based unsupervised method, self-organizing maps (SOMs)
are mainly used for clustering, which is one of activities of data analysisin data
visualization applications. In our previous applications, we used the Sammon mapping
method to visualize two college data sets and analyze intra-cluster and inter-cluster
relationships among clusters. In this chapter, we will use SOMs to analyze clustersin the
state sponsored murder data set and to analyze the sport records data in the next chapter.

For discovering clustering information hidden in data sets, there are afew
methods that have been proposed in the literature such as hierarchical clustering methods
(single linkage, average linkage, and complete linkage), K-means clustering, and
Kohonen’ s self-organizing maps (SOMs) (1995). Among these methods, Kohonen's
SOM has received increased attention in the literature in recent years. Some recently
proposed clustering methods such as ViSOM (Yin, 2002) are based on Kohonen’s SOM.
Severa software packages (i.e., Viscovery SOMine) with SOM-based clustering
procedures have been released. A natural question arises: How well do these software

packages perform? We want to make sure that we choose the right clustering procedure
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to analyze datasets. Therefore, in the first part of this chapter, we evaluate the
performance of four software implementations of SOM-based clustering methods and
determine the best SOM-based procedure to be used in our clustering analysis. Inthe
second part of this chapter, we apply the chosen SOM-procedure to the state sponsored

murder data set.

6.2  Evaluating SOM-based M ethods

Four clustering implementations are compared based on their performances: Ward
clustering, modified Ward clustering, single linkage clustering, and classic SOM. The
first three clustering methods are implemented in a commercial package, Viscovery
SOMine 4.0 from Eudaptics Software (www.eudaptics.com). These three SOM-based
clustering methods make use of the representation of the data set given by Kohonen's
SOM scheme. SOM-Ward clustering uses Ward'’ s classic minimum distance method
(Ward, 1963). In SOM-modified Ward clustering, the classic Ward method is modified
to use a different distance measure (Viscovery, 2002). SOM-single linkage uses an
adaptation of the classic single-linkage clustering algorithm (Viscovery, 2002). Classic
SOM clustering isimplemented in a research package, SOM_Pak from the Helsinki
University of Technology (SOM _Pak, 1997).

Mangiameli et al. (1996) conducted a comprehensive evaluation of seven
hierarchical clustering algorithms and the SOM network generated by the commercial
software package NeuralWorks. Our study can be viewed as an extension of their work.

We assess the clustering performance of four proceduresin two current SOM software
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packages. To our knowledge, the performance of these packages has not been reported in
the open literature.

The standard approach to studying the performance of a clustering procedureisto
apply the procedure to a problem for which the clusters are already known. This
approach alows the researcher to measure the method’ s success in assigning data points
to their correct clusters. We adopt this approach and eval uate the performance of the
clustering methods on 96 data sets that we construct. The clustering methods that we
evaluate are applied to data sets in which the clusters are well separated. Figure 6.1

presents a two-dimensional plot of afour-cluster data set.

6.2.1 Constructing data sets

Four experimental factors are used to characterize each data set: the number of
clusters (three, four, five, and six), number of dimensions (three and four), number of
data points (50, 100, 150, and 200), and amount of intra-cluster dispersion (low, medium,
and high). Using thisdesign, we construct 4 x 2 x 4 x 3 = 96 data sets, each of which
exhibits both external isolation and internal cohesion (see Cormack (1971), Mangiameli
et a. (1996), and Milligan (1980)). External isolation means that the members of one
cluster are separated from members of another cluster by empty space. Internal cohesion
means that members of the same cluster are similar (close) to each other.

We use a procedure that is similar to the method proposed by Milligan (1980,
1985) to construct data sets. The first step isto determine the cluster lengths and the

cluster boundaries for the first dimension of the variable space. For each cluster, the
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Cluster 2 H

Cluster 1

Figure6.1 Example of afour-cluster data set.

cluster length is selected randomly from the uniform distribution on the interval (10, 40).
In order to achieve externa isolation, the boundaries of adjacent clusters are separated by
an amount selected randomly from the uniform distribution on the interval (0.25, 0.75).
The mean of each cluster is taken to be the midpoint of the cluster’ s boundaries, and the
standard deviation of each cluster is set to 0.5.

The second step isto specify the characteristics of the clustersin the remaining
dimensions. We select the cluster lengths randomly from the uniform distribution on the
interval (10, 40) and then select the cluster boundaries randomly. This makesit possible
that cluster boundaries overlap with each other, unlike in the first dimension where
external isolation is guaranteed. The mean of each cluster istaken to be the midpoint of
the cluster’ sboundaries. Three levels of intra-cluster dispersion are used here: low,

medium, and high; these are the same levels specified in Mangiameli et a. (1996). At the
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low, medium, and high levels of dispersion, the standard deviation of the cluster is set
equal to 1/12, 1/6, and 1/3 times the cluster length, respectively. Thelevel of theintra
cluster dispersion indicates the density of data points around the cluster boundaries. The
higher the intra-cluster dispersion, the higher is the density of data points near the cluster
boundaries. Thus, interna cohesion decreases as the intra-cluster dispersion increases.
We generate data points in each cluster from a multivariate normal distribution
with mean vector given by the midpoints of the cluster boundaries. The diagonal
elements of the variance-covariance matrix are given by the squares of the standard
deviations, and all of the off-diagonal elements are equal to zero. We discard data points

that fall outside the cluster boundaries.

6.2.2 Measuring performance

In order to evauate the performance of a clustering procedure, we use two
measures: the cluster recovery rate and the Rand statistic. The cluster recovery rateis
defined to be the proportion of times a clustering procedure correctly recovers the cluster
structure, that is, the percentage of times a procedure correctly determines the cluster
membership of each data point. The Rand statistic (Rand, 1971) isawidely used
performance metric (Milligan, 1981). The definition of the Rand statistic can be
illustrated using the notation given in Table 6.1. Cell A isthe number of pairs of pointsin
the data set that are from the same cluster and are correctly assigned by a clustering
procedure to the same cluster. Cell B isthe number of pairs of pointsthat are from

different clusters and are correctly assigned by a clustering procedure to different
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Correct Solution

Clustering Procedure Pair in Same Cluster Pair Not in Same Cluster
Solution

Pair in Same Cluster A C

Pair Not in Same Cluster D B

Table 6.1 Pairwise classification notation.

clusters. In CellsC and D, clustering errors are counted. The Rand statistic provides the
proportion of correct pairwise classifications for the data set and is given by (A + B)/(A +
B + C + D). If the solution generated by a clustering procedure is correct, then the Rand
statistic equals one; if the generated solution is incorrect, then the value of the Rand
statistic will be lessthan one. Clearly, the larger the value of the Rand statistic, the better

the solution.

6.2.3 Comparison resultsand conclusions

We applied the three SOM-based clustering proceduresin Viscovery (Ward,
modified Ward, and single linkage, all with default settings), the classic SOM clustering
procedure in SOM_Pak (there are no default settings; for each run, we had to specify
values for several parameters found in the package), and the K-means algorithm in
Clementine from SPSS to each of our 96 data sets. We specified the number of clustersin
each data set as input to each procedure.

The cluster recovery rates for the five procedures are givenin Table 6.2. We see
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SOM- SOM-Single
SOM-Ward  Modified Ward Linkage SOM-Classic K-Means
92.7 91.7 82.3 14.6 80.2

Table 6.2 Cluster recovery rates (in %).

that two of Viscovery’s procedures, SOM-Ward and SOM-modified Ward, recover the
true clusters more than 90% of the time, while Viscovery’s SOM-single linkage and the
K-means algorithm recover the clusters about 80% of the time. SOM-classic performs
poorly, only recovering the clusters about 15% of the time.

In Table 6.3, we show the effect of intra-cluster dispersion on the cluster recovery
rates of the five procedures. Astheintra-cluster dispersion increases, thereby reducing
the internal cohesion of the clusters, we see that the cluster recovery rates decrease. At
al threelevels of dispersion, SOM-Ward performs the best, closely followed by SOM-
modified Ward.

In addition to the cluster recovery rate, we also examine the performance of the
five procedures by calculating the Rand statistic. The average value of the Rand statistic
isgivenin Table 6.4. We apply SOM-Ward to the eight data sets with low dispersion
and three clusters, calculate the Rand statistic for each data set, and then average over the
eight data sets (we see that the entry is 1). The average Rand statistic for SOM-Ward for
al 32 data sets with low dispersion is 1 (thisis the row average for SOM-Ward in the
first row of Table 6.4).

In Table 6.4, at the low and medium levels of dispersion, we see that all three of

Viscovery’s procedures perform better than SOM-classic and K-means. At the high level
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Level of Dispersion

Procedure Low Medium High
SOM-Ward 100 94 84
SOM-Modified Ward 100 91 84
SOM-Single Linkage 100 91 56
SOM-Classic 19 16 9
K-Means 88 78 75

Table 6.3 Cluster recovery rates (in %) by level of dispersion.

Number of Clusters Row
Clustering Procedure 3 4 5 6 Average

Low Intra-Cluster Dispersion

SOM-Ward 1.000 1.000 1.000 1.000 1.000
SOM-Modified Ward 1.000 1.000 1.000 1.000 1.000
SOM-Single Linkage 1.000 1.000 1.000 1.000 1.000
SOM-Classic 0.846 0899 0911 0.886  0.886
K-Means 1.000 1.000 0988 0965  0.988

Medium Intra-Cluster Dispersion

SOM-Ward 0994 0989 1.000 1.000  0.996
SOM-Modified Ward 099 0986 1000 0997  0.995
SOM-Single linkage 1.000 0999 1000 0.999  0.999
SOM-Classic 0898 0.878 0.893 0.893 0.890
K-Means 0.995 1.000 0988 0931 0.979

High Intra-Cluster Dispersion

SOM-Ward 0914 0954 0984 1000  0.963
SOM-Modified Ward 0951 0971 099% 1000 0.980
SOM-Single linkage 0946 0977 0992 0991 0977
SOM-Classic 0915 0931 0.876 0.898  0.905
K-Means 1.000 0960 0990 0.950 0.975

Table 6.4 Vaues of the Rand statistics.
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of dispersion, the three procedures in Viscovery and K-means perform nearly the same
and SOM-classic is close behind. It appears that as the level of dispersion increases and
when the number of clustersis small (three or four), the performance of each of the
Viscovery procedures deteriorates somewhat (the value of the average Rand statistic
decreases). We note that SOM-classic and K-means seem to be less affected than
Viscovery’sthree procedures by increases in intra-cluster dispersion.

Both SOM-classic and K-means require the user to specify the number of clusters
(that iswhy we input the number of clustersinto al five procedures). Viscovery,
however, does not have this requirement. After inputting the data set, Viscovery can
determine the number of clusters and the assignment of pointsto clusters. Thisisa
desirable feature of the package sincein practice a user usually does not know how many
clusters to specify in advance. We applied Viscovery to each of the 96 data sets and let it
determine the number of clusters. In Table 6.5, we give the cluster recovery rates for the
procedures. For each procedure, the recovery rate drops about 10 percentage points from
the recovery rate generated by Viscovery when cluster size was specified. These results
are still competitive with the recovery rate from K-means (80.2%) when K-means has the
advantage of knowing the true cluster size.

In this study, we assessed the performance of four SOM-based clustering
procedures that are implemented in commercial and research software. The three
procedures in Viscovery SOMine 4.0 performed generally well in clustering. We found
that Viscovery’s procedures performed slightly better than the K-means agorithm and
much better than the procedure in SOM_Pak. In addition, when clusters were well

separated (i.e., exhibited external isolation), the clustering proceduresin Viscovery were
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SOM-Ward SOM-Modified Ward SOM-Single Linkage
83.3 82.3 719

Table 6.5 Cluster recovery rates (in %) for Viscovery (number of clustersis not
specified).

fairly effective at determining the appropriate number of clustersin adataset. This
feature may help Viscovery users who are not sure of the number of clustersto

determine.

6.3  Sef-Organizing Maps: the State Sponsored Murder Data Set

Aswe discussed in the previous section, Viscovery has useful features such as
hel ping determine the number of clusters and recovering cluster structures of data sets.
In this section, we apply Viscovery SOM-Ward procedure to a state sponsored murder
(also called genocide and politicide) data set. Genocides and politicides refer to actions
committed by governing elites or, in the case of civil war, either of the contending
authorities that are intended to destroy a national, ethnical, racial, religious, or political
group (Harff, 2003).

The genocide and politicide data set examined in this section includes 28
historical cases of genocide and politicide that began between 1955 and 2002 in
independent countries with populations greater than 500,000. The genocide and
politicide data were originally studied for identifying independent variables (risk factors
or pre-conditions) to distinguish countries that have genocides and politicides from those

that do not (Harff, 2003). It consists of 25 countries that have or have no prior genocides
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and politicides and six variables that are identified as risk factors contributing to genocide
and politicide. The genocide and politicide data set under consideration is given in Table
6.6.

Among the six risk factors (variables) listed, upheaval in political context is
defined as an abrupt change in the political community resulted from the formation of a
state or regime through violent actions, defeat in international war, or rewriting of state
boundaries. Minority eliteis designed to reveal the information about interethnic
disputes over accessto political power. A positive value under the column of ‘Minority
Elite’ (i.e., ‘Yes) indicates that elite ethnicity is arecurring issue of political conflicts,
which possibly leads to genocide or politicide. Exclusionary ideology refers to a belief
system that establishes some cardinal principle that maintains efforts to restrict,
persecute, or eliminate certain categories of people. Elite with ‘exclusionary ideology’ is
more apt to eliminate groups. The type of regime is another risk factor that has vital
intervening effects to cause genocide and politicide. Elitein autocratical regimeis likely
to opt for restricting citizens' participation, especially political opponents’ participation.
The level of trade opennessis aso an indicator of genocide and politicide. Historical
records have shown that armed conflicts and adverse regime changes are more likely to
occur in poor countries, especially those countriesin Africaand Asia

Countriesin this data set are listed according to their number of positive risk
factors. If acountry has many positive risk factors (i.e., six or fiverisk factors), it will be
ranked high. For example, Irag isthe only country with six positive risk factors, which
indicates that Iraq has the greatest potentia to have future genocides and politicides and

therefore Irag islisted in thefirst place in the data set. By comparison,
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Prior

Country Name Geng::ldes Upheaval M :Enlﬁr;ty Eﬁ(ﬂ;;gg;lry Type of Regime Oggr?g;s

Politicides
Irag Yes High Yes Yes Autocracy \Very Low
Afghanistan
(2000) Yes VeryHigh | Yes Yes Autocracy Very Low
Afghanistan
(2002) Yes Very high No No No effective regime [Very Low
Burma Yes High No Yes Autocracy \Very Low
Burundi Yes Very High | Yes No Autocracy Low
Rwanda Yes High Yes No Autocracy Low
Congo-Kinshasa Yes Very High | Yes No No effective regime Medium
Somalia Yes Very High | No No No effective regime [Very Low
Sierra No Very High | Yes No No effective regime |Low
Ethiopia Yes High Yes No Autocracy Medium
Uganda Yes High No No Autocracy Low
Algeria Yes Very High | No Yes Autocracy Medium
Liberia No High No No Autocracy Low
Pakistan Yes Medium No No Autocracy Low
China Yes Medium No Yes Autocracy Medium
Sri Lanka Yes High No No Partial democracy  [High
Philippines Yes Very High | No No Democracy High
Colombia No Very High | No No Partial democracy  |Low
Turkey No High No Yes Partial democracy |[Medium
India No High No No Democracy Low
Israel No Very High | No Yes Democracy High
Indonesia Yes Medium No No Partial democracy |Medium
Russia Yes Low No No Partial democracy |[Medium
Nigeria No Low No No Partial democracy [High
Nepal No Medium No No Partial democracy |[Medium
Macedonia No None No No Partial democracy  [High

Table 6.6 Genocide and politicide data set from Harff (2003).

Macedoniais very unlikely to have future genocides and politicides according to

the fact that Macedonia has no positive risk factors.

We apply Viscovery to the genocide and politicide data set to detect clusters of

countries that have similar pre-conditions that may result in future genocides and

politicides. Viscovery needs numerical values as input, so that the categorical valuesin

106




the genocide and politicide data set need to be transformed to numerical values. We
transformed the categorical values using acommonly used approach that assigns sorted
numerical values to categorical values based on the description of the categorical values
(Ritter & Kohonen, 1989). Thetransformed data are given in Table 6.7. The notation for
the transformed genocide and politicide data set isgiven in Table 6.8. For example, in
the second column (prior genocides and politicides), ‘No’ isassigned by O and ‘Yes' is
assigned by 1.

We input the transformed values into Viscovery and used the software’ s default
settings. We obtained the map shown in Figure 6.2. This map has five clusters of
countries. These five clusters are formed based on six variables. For example,
Macedonia, Russia, Nigeria, Nepal, Indonesia, and Sri Lanka are grouped into the same
cluster. These six countries share several common characteristics. For example, they all
are partial democratic countries. Half of them (Macedonia, Nigeria, and Sri Lanka) have
ahigh level of trade openness. Countriesin this cluster have relatively infrequent
political upheavals except Sri Lanka. Half of this group (i.e., Russia, Indonesiaand Sri
Lanka) has prior genocides or politicides. Overal, this cluster can be viewed as a group
of countries where genocide and politicide is less likely to take place.

India, Colombia, Philippines, Israel and Turkey are clustered together. Countries
in this cluster amost have no prior genocides or politicides except that the Philippines
has one. Members of this cluster have frequent political upheavals, astheir levels of

political upheavals are either ‘High or Very High'.
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Country Name Prior G_enqcides or Upheaval M inprity Exclusionary Typ_e of | Trade
Paliticides Elite I deology Regime | Openness
Irag 1 3 1 1 1 0
Afghanistan (2000) 1 4 1 1 1 0
Afghanistan (2002) 1 4 0 0 0 0
Burma 1 3 0 1 1 0
Burundi 1 4 1 0 1 1
Rwanda 1 3 1 0 1 1
Congo-Kinshasa 1 4 1 0 0 2
Somalia 1 4 0 0 0 0
Sierra 0 4 1 0 0 1
Ethiopia 1 3 1 0 1 2
Uganda 1 3 0 0 1 1
Algeria 1 4 0 1 1 2
Liberia 0 3 0 0 1 1
Pakistan 1 2 0 0 1 1
China 1 2 0 1 1 2
Sri Lanka 1 3 0 0 2 3
Philippines 1 4 0 0 3 3
Colombia 0 4 0 0 2 1
Turkey 0 3 0 1 2 2
India 0 3 0 0 3 1
Israel 0 4 0 1 3 3
Indonesia 1 2 0 0 2 2
Russia 1 1 0 0 2 2
Nigeria 0 1 0 0 2 3
Nepd 0 2 0 0 2 2
Macedonia 0 0 0 0 2 3
Table 6.7 Transformed genocide and politicide data.
Prior
Genocides Minorit Exclusionar . Trade
or Upheaval Elite Y | deology ’ Type of Regime Openness

Politicides
0=No 0=None 0=No 0=No 0 = No effectiveregime | 0=Very low
1=Yes l1=Low 1=Yes 1=Yes 1 = Autocracy 1=Low

2 = Medium 2 = Partial democracy 2 = Medium

3 =High 3 = Democracy 3 =High

4 =Very high

Table 6.8 Notation for the transformed genocide and politicide data set.
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Figure 6.2 Resulting SOM map of the genocide and politicide data set.

The level of trade openness of this group of countriesis relatively high among the
five clusters: more than half of member countriesin this group have active trade
openness. In addition, countriesin this cluster are either democratic or partially
democratic. Summaries of the remaining clusters are given in Table 6.9.

The genocide and politicide data set we examine in this section includes the six
variables given in Table 6.6. Some researchers suggest including a country’s per capita
income, which they claim is the best predictor of the ethnic insurgencies and civil wars
and which underlies Harff’swork. We consider gross domestic product (GDP) per capita

and number of prior genocides and politicides. GDP per capitais a purchasing power

parity
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Prior

Country Name Genocidesor Upheaval Minority Exclusionary Type of Trade

Politicides Elite I deology Regime Openness
Cluster 1
Macedonia 0 0 0 0 2 3
Nigeria 0 1 0 0 2 3
Russia 1 1 0 0 2 2
Nepal 0 2 0 0 2 2
Indonesia 1 2 0 0 2 2
Sri Lanka 1 3 0 0 2 3
Cluster 2
Pakistan 1 2 0 0 1
Uganda 1 3 0 0 1 1
Somadlia 1 4 0 0 0 0
Afghanistan
(2002) 1 4 0 0 0 0
Liberia 3 0 0 1
Cluster 3
Sierra 0 4 1 0 0 1
Congo-Kinshasa 1 4 1 0 0 2
Ethiopia 1 3 1 0 1 2
Burundi 1 4 1 0 1 1
Rwanda 1 3 1 0 1 1
Cluster 4
India 0 3 0 0 3 1
Colombia 0 4 0 0 2 1
Philippines 1 4 0 0 3 3
Israel 0 4 0 1 3 3
Turkey 0 3 0 1 2 2
Cluster 5
China 1 2 0 1 1 2
Algeria 1 4 0 1 1 2
Burma 1 3 0 1 1 0
Irag 1 3 1 1 1 0
Afghanistan
(2000) 1 4 1 1 1 0

Table 6.9 Cluster profiles of the genocide and politicide data set.
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basis divided by population. In the modified data set M1 given in Table 6.10, we include
GDP per capita. In Table6.11, we give modified data set M2 that includes GDP per
capitaand number of prior genocides and politicides. The GDP per capita of each
country can be found at www.cia.gov. Of these 25 countries, Isragl has the highest GDP
per capita ($19000) while Somalia has the lowest GDP per capita ($550). Dueto large
differencesin GDP per capita among the countries, it is necessary to scale these values
and place them into severa categories. Each GDP valueis divided by the maximum
GDP value ($19000) and then classified into one of five categories according to its scaled
GDP value. The categoriesare givenin Table6.12. For example, the scaled GDP value
of Iraq is0.1263 (2400/19000), which is given 1 in the transformed modified genocide
and politicide data sets shown in Tables 6.13 and 6.14. The corresponding visua maps
generated by Viscovery are shown in Figures 6.3 and 6.4. The associated significance
values (or cluster indicators) are 62, 38, and 55 for data sets O, M1, and M2 respectively.
We point out that significance values are recommended by Viscovery to help determine
the appropriate number of clusters of adataset. The larger the significance values, the
better the choice of a particular number of clusters. The cluster profiles of the data sets

M1 and M2 are given in Tables 6.15 and 6.16.
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Prior GDP
Countr Genocides Minority |Exclusionar . Trade er
Namey or Upheaval Elite g I deology g Type of Regime Openness Cgpita
Politicides (US$)
Irag Yes High Yes Yes Autocracy Very Low | 2400
Afghanistan
(2000) Yes Very High | Yes Yes Autocracy \Very Low 700
Afghanistan No effective
(2002) Yes Very high | No No regime \Very Low 700
Burma Yes High No Yes Autocracy Very Low | 1660
Burundi Yes Very High | Yes No Autocracy Low 600
Rwanda Yes High Yes No Autocracy Low 1200
Congo- No effective
Kinshasa Yes Very High | Yes No regime Medium 610
No effective
Somalia Yes Very High | No No regime Very Low 550
No effective
Sierra No Very High | Yes No regime Low 580
Ethiopia Yes High Yes No Autocracy Medium 750
Uganda Yes High No No Autocracy Low 1260
Algeria Yes Very High | No Yes Autocracy Medium 5300
Liberia No High No No Autocracy Low 1100
Pakistan Yes Medium No No Autocracy Low 2100
China Yes Medium No Yes Autocracy Medium 4400
Partial
Sri Lanka Yes High No No democracy High 3700
Philippines Yes Very High | No No Democracy High 4200
Partial
Colombia No Very High | No No democracy Low 6500
Partial
Turkey No High No Yes democracy Medium 7000
India No High No No Democracy Low 2540
Israel No Very High | No Yes Democracy High 19000
Partial
Indonesia Yes Medium No No democracy Medium 3100
Partial
Russia Yes Low No No democracy Medium 9300
Partial
Nigeria No Low No No democracy High 875
Partial
Nepal No Medium No No democracy Medium 1400
Partial
Macedonia No None No No democracy High 5000

Table6.10 Modified genocide and politicide dataset 1 (M 1).
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Number of

Priqr Minority |[Exclusionary| Type of Trade GDPlper
Country Name Genocides | Upheaval . . Capita
Elite I deology Regime | Openness
or (US$)
Paliticides
Iraq 2 High Yes Yes Autocracy [Very Low 2400
Afghanistan 1
(2000) Very High | Yes Yes Autocracy  [Very Low 700
Afghanistan 1 No effective
(2002) Very high | No No regime \Very Low 700
Burma 1 High No Yes Autocracy [Very Low 1660
Burundi 3 Very High | Yes No Autocracy  |Low 600
Rwanda 2 High Yes No Autocracy  |Low 1200
Congo- 2 No effective
Kinshasa Very High | Yes No regime Medium 610
1 No effective
Somalia Very High | No No regime \Very Low 550
0 No effective
Sierra Very High | Yes No regime Low 580
Ethiopia 1 High Yes No Autocracy  [Medium 750
Uganda 2 High No No Autocracy  |Low 1260
Algeria 1 Very High | No Yes Autocracy  [Medium 5300
Liberia 0 High No No Autocracy  |Low 1100
Pakistan 2 Medium No No Autocracy  |Low 2100
China 3 Medium No Yes Autocracy  [Medium 4400
1 Partial
Sri Lanka High No No democracy |High 3700
Philippines 1 Very High | No No Democracy |High 4200
0 Partial
Colombia Very High | No No democracy |Low 6500
0 Partial
Turkey High No Yes democracy |Medium 7000
India 0 High No No Democracy |Low 2540
Israel 0 Very High | No Yes Democracy |High 19000
2 Partial
Indonesia Medium No No democracy |Medium 3100
2 Partial
Russia Low No No democracy |Medium 9300
0 Partial
Nigeria Low No No democracy |High 875
0 Partial
Nepal Medium No No democracy |Medium 1400
0 Partial
Macedonia None No No democracy |High 5000

Table6.11 Modified genocide and politicide data set 2 (M2).
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Prior Genocides or
Politicides

0=No; 1=Yes

Number of Prior
Genocides or Politicides

Actual number of genocides or paliticides

Upheaval

0=None; 1=Low; 2=Medium; 3=High; 4=Very high

Minority Elite

0=No; 1=Yes

Exclusionary | deology

0=No; 1=Yes

Type of Regime

0 = No effective regime; 1 = Autocracy;
2 = Partial democracy; 3 = Democracy

Trade Openness

0=Verylow; 1=Low; 2=Medium; 3 =High

GDP per Capita

0= if thescaled value< 0.1;

1 =if the scaled value >0.1 and < 0.2;
2 = if the scaled value >0.2 and < 0.3;
3 =if the scaled value >0.3 and < 0.4;
4 = if the scaled value >0.4

Table6.12 Notation of the transformed genocide and politicide data with added

variables.
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Country Name

Prior
Genocides or
Politicides

Upheaval

Minority
Elite

Exclusionary
I deology

Type of
Regime

Trade
Openness

GDP per
Capita
(US$)

Irag

1

3

1

1

Afghanistan
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=

I

=

=

(=Y

o

o

Afghanistan
(2002)

Burma

Burundi

Rwanda
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Somalia
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Ethiopia

Uganda

Algeria

Liberia

Pakistan

China

Sri Lanka

Philippines

Colombia

Turkey

India

|srael

Indonesia

Russia

Nigeria

Nepal

Macedonia
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Table 6.13 Transformed modified genocide and politicide dataset 1 (M1).
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Country Name

Number of
Prior
Genocides or
Politicides

Upheaval

Minority
Elite

Exclusionary
I deology

Type of
Regime

Trade
Openness

GDP per
Capita
(US$)

Irag

2

1

1

o

Afghanistan
(2000)

1

1

1

o

Afghanistan
(2002)

1

0

0

Burma

[N

w

o

[N

[N

o

Burundi
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Rwanda
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Congo-
Kinshasa

Somalia
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Ethiopia

Uganda

Algeria

Liberia

Pakistan

China

Sri Lanka

Philippines

Colombia

Turkey

India

Israel

Indonesia

Russia

Nigeria

Nepal

Macedonia
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Table 6.14 Transformed modified genocide and politicide data set 2 (M 2).
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Figure 6.3 Resulting SOM map of the first modified data set (M1).
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Figure 6.4 Resulting SOM amp of the second modified data set (M2).
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Prior

Country Name Genocides Upheaval Minprity Exclusionary Typ_eof Trade GC?aT)iFt):r
or Elite Ideology  Regime Openness USS
Paliticides

Cluster 1

Israel 0 4 0 1 3 3 4
Turkey 0 3 0 1 2 2 3
Colombia 0 4 0 0 2 1 3
Cluster 2

Indonesia 1 2 0 0 2 2 1
Russia 1 1 0 0 2 2 4
Sri Lanka 1 3 0 0 2 3 1
Philippines 1 4 0 0 3 3 2
Cluster 3

Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0
Macedonia 0 0 0 0 2 3 2
India 0 3 0 0 3 1 1
Liberia 0 3 0 0 1 1 0
Cluster 4

Pakistan 1 2 0 0 1 1 1
Uganda 1 3 0 0 1 1 0
Afghanistan (2002) 1 4 0 0 0 0 0
Somalia 1 4 0 0 0 0 0
Cluster 5

Algeria 1 4 0 1 1 2 2
China 1 2 0 1 1 2 2
Burma 1 3 0 1 1 0 0
Irag 1 3 1 1 1 0 1
Afghanistan (2000) 1 4 1 1 1 0 0
Cluster 6

Rwanda 1 3 1 0 1 1 0
Burundi 1 4 1 0 1 1 0
Ethiopia 1 3 1 0 1 2 0
Congo-Kinshasa 1 4 1 0 0 2 0
Sierra 0 4 1 0 0 1 0

Table6.15 Cluster profiles of the first modified data set (M1).
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Number_of Prior Minority Exclusionary Typeof Trade GDP_per

Country Name Genqqdesor Upheaval Elite Ideology ~ Regime Openness Capita
Politicides uUss

Cluster 1
Russia 2 1 0 0 2 2 4
Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0
Macedonia 0 0 0 0 2 3 2
Cluster 2
Colombia 0 4 0 0 2 1 3
Israel 0 4 0 1 3 3 4
Turkey 0 3 0 1 2 2 3
India 0 3 0 0 3 1 1
Sri Lanka 1 3 0 0 2 3 1
Philippines 1 4 0 0 3 3 2
Cluster 3
Algeria 1 4 0 1 1 2 2
Iraq 2 3 1 1 1 0 1
Afghanistan
(2000) 1 4 1 1 1 0 0
Burma 1 3 0 1 1 0 0
China 3 2 0 1 1 2 2
Cluster 4
Burundi 3 4 1 0 1 1 0
Rwanda 2 3 1 0 1 1 0
Congo-Kinshasa 2 4 1 0 0 2 0
Sierra 0 4 1 0 0 1 0
Ethiopia 1 3 1 0 1 2 0
Cluster 5
Indonesia 2 2 0 0 2 2 1
Pakistan 2 2 0 0 1 1 1
Uganda 2 3 0 0 1 1 0
Afghanistan
(2002) 1 4 0 0 0 0 0
Liberia 0 3 0 0 1 1 0
Somalia 1 4 0 0 0 0 0

Table6.16 Cluster profiles of the second modified data set (M2).
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The number of clustersin each map is either five or six, and the corresponding
significance values arelarge. This suggests that five or six clusters may be good enough
to represent the actual cluster structure in the data sets. Although visual maps (Figures
6.3 and 6.4) of the two modified data sets (M1, and M2) are different from themap in
Figure 6.2 of the original data set (O), they still have some elementsin common.

The cluster made up of China, Algeria, Burma, Irag, and Afghanistan (2002)
appearsin al three maps, as does the cluster of Sierra, Congo, Ethiopia, Burundi, and
Rwanda. Cluster membership of other countriesis to some extent similar in these
clustering results. It indicates that the two new variables do not significantly affect the
clustering structure of observed countries. Thisis possibly dueto the small size of the
genocide and politicide data set. The six variables listed in Harff’s work may be enough
to determine the clustering structure of the data set and may also be sufficient to forecast
the future genocides or politicides.

However, in Harff’ slisting, Iraq was the country most likely to have future
genocides, or politicides, and followed by Afghanistan, Burma, Burundi, Rwanda, Congo
and Somalia. Algeriaand Chinawere not closeto Irag in thelist, whilein our clustering
results these two countries are always in the same cluster with Irag and countries such as
Afghanistan and Burma. If from the perspective of clustering, Algeriaand Chinawould
be ranked close to Irag, Burma, and Afghanistan, rather than several ranks down from
them in thelist.

There might be several factors causing differences between our clustering results

and Harff’sresults. One could be the weight assigned to each variable during
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preprocessing, where all variables are equally weighted. Another reason might be lack of
further domain knowledge.

Comparing our clustering results with Harff’ s work, we conclude that countries
in the same cluster are equally likely to have future genocides or politicides. Thisis
different from what we seein Tables 6.6 and 6.7, which has the forecasted ordering of
countries for possible future genocides or politicides (Harff, 2003).

Our current result might be helpful to future genocide and politicide research.
The variables ‘' GDP per capital’ and ‘ number of prior genocides and politicides have
been shown to be of little influence in determining the clustering structures of the data
sets, though possibly due to the small size of the data sets. Thisisnot in favor of other
scholars suggestion that per capitaincomeis the best indicator of genocides and
politicides, and therefore somehow reinforces Harff’ s conclusion regarding identification
of risks factors. Moreover, the listing differences may raise research questions such asif
clustering offers areasonable alternative view of the genocide and politicide data set, and
to what extent will clustering contribute to forecasting countries’ genocides and

politicides in the coming years.
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Chapter 7

Self-Organizing Maps. Best Valuesin Colleges

The prospect of graduating with alot of debt may be one of the many worries that
concern new college students. It becomes necessary for those college applicants and their
parents to critically screen colleges to see which colleges give students the best value for
their money. Kiplinger's Personal Financgave a best value list of 100 public colleges
(Kiplinger, 2003) and a best value list of 100 private colleges (Kiplinger, 2004) that
combine great academics and reasonable costs. 1n each list, the colleges judged to be the
best value is ranked number one with lower rank values preferred.

Aswe discussed in previous chapters, SOMs are capable of discovering the
hidden structures to help a decision maker understand a data set. SOMs have been
widely used to cluster data and gain insight into data sets using visual maps. In this
chapter we will apply Viscovery SOMine (2002) to analyze public and private colleges to
determine which colleges are the best values and compare our rankings to those given by

Kiplinger.
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7.1  Data Description and Preprocessing

We used two data sets from Kiplinger' s Personal Financ€2003 and 2004): a
public college data set and a private college data set. The public college data set contains
the top 100 public colleges considered to be the best values. Similarly, the private
college data set contains the top 100 private colleges considered to be the best values. A
total of 11 variables are included in each data set and seven of them are common to both
data sets. The seven common variables are listed in Table 7.1. The four additional
variablesarelisted in Table 7.2.

Except for the variable Enrollment, other variablesin the two data sets indicate
either the academic quality or the financial cost of aschool. Typically, college applicants
look for suitable colleges in terms of both academic quality and financial cost. The
variable Enrollment tells us the number of students who were enrolled in the current
academic year. College applicants can get arough idea of how many students may be
admitted by each college. However, the variable Enrollment does not provide us the
percentage of applicants who may be admitted — which is known as Admission Rate. The
variable Admission Rate reflects a school’ s academic quality and it affects applicants
decisions. Typicaly, alow admission rate implies a high academic quality. Compared to
the variable Enrollment, the variable Admission Rate speaks about schools academic
quality more directly. Therefore, we included the variable Admission Rate in our
datasets and didn’t include the variable Enrollment. In addition, we did not include the
variable Aid from Grants and Cost after Non-need-based Aid in the private college data.
Valuesin the Aid from Grants variable tell usthat at least 70% students in 83 out of 100

private colleges were awarded aid from grants, and at least 50% students were awarded in
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Variable

Description

Enrollment

Number of full-time and part-time undergraduates enrolled at the
college during 2002-2003 academic year

Admission Rate

Percentage of applicants who were offered admission

Percentage of the 2002-03 freshman class that scored above 600

SAT or ACT on the verbal and math parts, separated by slash, or the
percentage that scored above 24 onthe ACT
gt:t?(;ent/Faculty Average number of students for each faculty member

4-yr. Graduate Rate

Percentage of 1996-97 freshmen who earned a bachelor’ s degree
in four years or fewer

6-yr. Graduate Rate

Percentage of 1996-97 freshmen who earned a bachelor’s degree
within six years

Average Debt at
Graduation

Average debt a student accumulates before graduation

Table 7.1 Seven common variables in Kiplinger’ s public and private data sets.

Data Set Variable Description
Public In-State Total Overall cost for residents
College Costs
In-State Costs Overall cost for residents after subtracting
After Aid average need-based award
(T:gngOUt'Of'State Overall cost for out-of-state students
Out-of-State Costs | Overall cost for out-of-state students after
after Aid subtracting average need-based award
Private Total Cost Overall cost for college students
College Cost After Need- | Total cost in 2003-04 academic year after
based Aid subtracting the average need-based award
Aid from Grants Percentage of the averageal d package that came
from grants or scholarships
Cost after Non- 2003-04 cost for a student after subtracting non-
need-based Aid need-based award

Table 7.2 Four additional variablesin Kiplinger’s public and private data sets.
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98% private colleges. These statistics indicate that the mgjority of private schools are
able to support many of their students. Therefore, the variable Aid from Grants may not
help discover private colleges that are the best values. We did not include the variable
Cost after Non-need-based Aid in the private college dataset because the Cost after Non-
need-based Aid is not available in more than 25% of 100 schools in the data set. Other
variables such as Total Cost and Cost after Need-based Aid provide applicants financial
cost information.

After selecting appropriate variables for each data set, we show the public and

private college datain Tables 7.3 and 7.4, respectively.
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In-

Out-of-

4-Year 6-Year State In-State Total State Avg.
SAT or Student/ Grad. Grad. Total Costs Out-of- Costs Debt at
ACT Admis. faculty Rate Rate Costs After State After Grad.

Rank School Name (%) Rate Ratio (%) (%) (¥ Aid($) Costs($) Aid() (9
University of North
Carolinaat Chapel Hill 65/76 35 14 65 79 11,290 6,673 23,138 16,465 11,156

2 University of Virginia 77/84 39 16 81 91 12,640 8,737 28,610 19,873 13,536
College of William

3 and Mary 83/85 35 12 80 89 13,024 6,668 27,724 21,056 19,762
University of Georgia 54/59 65 13 46 66 10,534 5,245 21,310 16,065 12,906
University of Florida 58/67 58 21 49 77 10,611 6,125 21,639 15514 14,449
New College of

6 Florida 93/74 65 11 47 72 10,947 5,613 24185 18572 16,645
Georgia Institute of

7 Technology 75/95 59 14 18 69 11,340 6,022 23,266 17,244 17,221
University of Illinois

8 at Urbana, Champaigh 79 60 13 52 76 14,410 8,045 25446 17,401 14,791
Truman State

9 University 82 79 15 39 62 10,609 7,604 14,409 6,805 14,382
Virginia Polytechnic
Institute and State

10 University 39/52 65 15 36 72 10,122 5,613 20,006 14,393 16,229
North Carolina State

11 University 39/60 59 15 25 60 10,688 5,508 22536 17,028 15476
University of

12 Delaware 41/53 48 12 54 72 13,416 7,666 22946 15280 13,610
University of

13 Wisconsin, Madison 86 71 14 41 77 13,391 7,842 27,401 19559 15,904
University of

14 Michigan, Ann Arbor 83 49 15 61 82 16,671 8,661 33,473 25,463 16,825
University of

15 Cdlifornia, San Diego 47/73 41 19 43 78 16,000 9,043 24105 17,148 13,275
University of

16 Cdlifornia, Berkeley 65/78 25 17 48 83 17,265 8,982 25584 17,301 14,990
University of

17 Washington 42/54 68 11 40 70 13,835 6,926 24991 18,082 14,500
New Mexico Institute
of Mining and

18 Technology 75 63 13 12 40 9,714 2,708 16,151 9,145 9,500
University of

19 Wisconsin, LaCrosse 60 65 21 23 58 10,425 7,327 20,102 12,775 14,306
University of Texas at

20 Austin 51/65 61 19 39 71 14,391 9,111 20,999 11,888 16,400
University of

21 Oklahoma 69 89 21 19 51 10,139 6,618 16,652 10,034 16,886

22 University of Kansas 55 67 19 26 55 9,673 6,266 17,149 10,883 17,347
University of North

23 Carolinaat Asheville 48/40 67 14 31 48 8,929 6,308 17,754 11,446 14,547
State University of
New York at

24 Binghamton 51/73 42 19 69 80 13,587 9,214 19,537 10,323 13,915
Colorado School of

25 Mines 89 67 12 31 61 13,780 8,532 26,970 18,438 17,500

26 Auburn University 51 83 16 40 68 10,276 7,308 18,736 11,428 18,585

Table 7.3 Kiplinger's (2003) public college data.
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Colorado State

27 University 56 77 17 29 62 10,689 6,700 21,161 14461 16,042

28 College of New Jersey 61/71 48 12 59 80 16,686 13,915 21,261 7,346 5,490
Michigan State

29 University 57 67 18 31 66 12,743 8,670 22,703 14,033 18,663
Appalachian State

30 University 26/30 64 19 31 60 7,913 4,785 16,834 12,049 13,000
lowa State University
of Science and

31 Technology 58 89 16 24 62 11,588 8,736 20,930 12,194 17,119
State University of
New York College at

32 Geneseo 65/73 49 19 67 79 12,840 10,840 18,790 7,950 15,000
Texas A&M

33 University 36/49 68 21 27 69 11,899 7,057 18,979 11,922 15,670
University of Texas at

34 Dallas 45/59 53 20 30 53 12,075 7,787 19,155 11,368 NA
University of North
Carolina at

35 Wilmington 18/26 55 16 34 60 9,715 6,375 19,290 12915 13,583
University of
Maryland, College

36 Park 64/77 43 13 33 63 16,304 12,223 22,881 10,658 15,566
University of
Cdlifornia, Los

37 Angeles 62/75 24 17 40 81 17,616 9,975 26,006 16,031 12,775
Louisiana State
University and
Agricultura and

38 Mechanical College 53 77 21 23 58 10,126 7,406 15426 8,020 17,569
University of

39 Tennessee 49 58 18 24 56 11,681 6,706 20,763 14,057 21,689

40 University of lowa 59 84 15 34 64 11,763 9,460 22,055 12595 15,335
Rutgers, The State
University of New
Jersey, New

41 Brunswick 39/55 55 14 44 72 16,519 10,044 23,033 12,989 15270

42 Clemson University  44/61 52 16 35 69 14618 11,121 22216 11,095 14,347
University of Colorado

43 at Boulder 65 80 16 38 64 11,937 7,877 28,253 20,376 16,737
University of

44 Kentucky 54 82 17 27 58 9,432 5594 16,112 10,518 NA

45 University of Arkansas 59 86 17 20 45 10,706 7,144 17456 13,894 14,029
Mary Washington

46 College 62/49 60 17 65 75 12,287 9,033 20,035 11,002 13,100
Oklahoma State

47 University 49 92 19 22 56 10,677 7,478 16,623 9,145 15,580
Kansas State

48 University 49 58 20 18 45 9,626 7,104 16,990 9,886 17,000
University of Northern

49 lowa 39 80 16 30 64 10,634 7,632 17592 9,960 15,786
University of

50 Mississippi 46 80 19 29 48 11,257 6,607 16,167 9,560 14,459
James Madison

51 University 33/40 58 17 59 78 13,145 9,320 21,367 12,047 11,786
University of

52 California, Davis 42/62 63 19 28 75 16,521 10,334 23814 13480 13507

Table 7.3 (Continued).
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53 Miami University 84 77 17 61 80 15,833 12467 25603 13,136 17,579

54 Purdue University 29/46 76 16 28 64 14,691 8,723 26,311 17,588 15,677
Mississippi State

55 University 50 74 16 19 48 11,130 8,174 16,036 7,862 15,081
University of

56 Nebraska, Lincoln 55 90 19 15 51 10,687 7,277 18,269 10,992 15,682
Florida State

57 University 34/39 70 22 38 64 10,994 7,035 22,022 14987 16,372
University of

58 California, Irvine 24/55 57 18 34 72 15,635 8,507 22450 13944 12513
University of

59 Missouri, Columbia 68 88 18 32 65 13,208 8,138 22,655 14517 17,137
University of

60 Minnesota, Morris 61 82 14 50 76 13,477 8,427 13,477 5,050 9,208

61 University of Alabama 46 85 18 31 61 11,197 8,136 18,357 10,221 18,978
University of South

62 Carolina 29/36 70 17 31 58 11,795 8,794 21,133 12,339 15,260
St. Mary's College of

63 Maryland 67/60 59 12 58 67 16,908 12,908 23228 10,320 17,125
Michigan
Technological

64 University 68 92 11 22 63 14,135 9,339 25025 15686 15,711
University of
Cdlifornia, Santa

65 Barbara 38/55 51 19 44 73 16,154 10,231 24,246 14015 NA
University of
Minnesota, Twin

66 Cities Campus 64 74 15 17 53 13,910 7,902 25540 17,638 NA
Mississippi University

67 for Women 56 65 13 21 43 8,649 8,649 13,316 4,667 13,500
California Polytechnic
State University, San

68 Luis Obispo 39/64 39 19 17 66 11,781 10429 15268 4,839 12,842
University of

69 Wyoming 42 95 15 22 54 10,863 6,833 16,713 9,880 18,311
George Mason

70 University 26/29 66 16 25 48 11,602 7,597 21,442 13845 14,143
University of Central

71 Florida 30/36 62 24 25 49 10,839 8,353 21,867 13514 14,927

72 Ohio State University 69 74 14 25 59 15249 11,315 25113 13,798 15011
[llinois State

73 University 47 81 19 28 55 12,971 7,199 17,441 10,242 13,921
University at Buffalo,
The State University

74 of New York 28/41 61 14 32 56 13,422 9,956 19,372 9,416 16,255

75 Salisbury University 26/35 50 17 50 68 12,895 9,506 19,783 10,277 14,773
University of
Massachusetts

76 Amherst 32/38 58 19 41 61 14,480 9,714 23,333 13,619 15321

77 University of Vermont 35/38 71 14 48 67 17,116 8,258 30,168 21,910 22,425

78 College of Charleston 47/47 60 14 32 52 14,008 11,214 21270 10,056 15,135
Indiana University

79 Bloomington 27/33 81 20 40 65 13,129 8,704 24,164 15460 16,930
Pennsylvania State
University University

80 Park Campus 40/60 57 17 43 80 17,017 12872 26,639 13,767 17,900

Table 7.3 (Continued).
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State University of

81 New York at Albany 26/35 56 21 52 66 13,574 9,599 19,524 9,925 15,108
82 University of Arizona 27/33 86 19 29 55 11,163 8,506 19,933 11,427 17,340
83 Towson University  18/26 58 19 30 56 12,776 8,651 20422 11,771 15,530
Rutgers, The State
University of New
84 Jersey, Camden 19/24 54 11 21 60 16,189 10,111 22,703 12,592 15,223
University of
Maryland, Baltimore
85 County 46/63 63 17 28 53 16,516 12,946 23,368 10422 14,500
University of
86 Connecticut 33/42 62 17 23 70 14,413 9,141 25,197 16,056 16,093
University of
87 Pittsburgh 48/56 55 17 35 60 17,025 12,723 26,337 13,614 20,154
State University of
New York College at
88 Fredonia 22/25 53 18 47 66 11,782 8,961 17,732 8,771 12,430
Stony Brook
University, State
University of New
89 York 25/50 54 18 30 51 13,645 9,704 19595 9,891 15,747
State University of
New York at New
90 Paltz 30/29 40 17 21 52 11,276 8,276 16,176 7,900 15,000
91 University of Maine  22/29 79 15 29 56 12,780 8,162 21,480 13,318 17,917
University of New
92 Hampshire 25/32 77 14 48 71 15779 13,693 26,139 12446 20,700
University of
93 Missouri, Rolla 83 92 14 10 52 14,326 9,416 23,144 13,728 17,991
University of
94 California, SantaCruz 37/39 80 19 40 64 16,877 9,309 24250 14,941 13,282
95 Rowan University 22/33 44 14 37 63 15416 10,632 20,812 10,180 NA
University of Illinois
96 at Chicago 43 63 15 9 37 14,299 6,399 23,995 17,596 17,000
97 University of Oregon  30/31 86 18 36 59 12,795 9,586 24231 14,645 22,783
98 Texas Tech University 23/29 69 20 22 51 12,968 9,878 20,048 10,170 13,805
99 Ohio University 49 75 20 43 70 16,514 13,102 24,737 11,635 15,285
100 UCRIiverside 16/34 86 19 39 64 16,751 9,932 24530 17,711 13,226
Table 7.3 (Continued).
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Cost After Average

SAT or Student/ 4-Year 6-Year Need- Debt at
Admission ACT faculty Grad. Grad. Total Based Aid Graduation
Rank School Name Rate (%) (%) Ratio  Rate(%) Rate(%) Costs($) ($)
California Institute of
1 Technology 21 99/100 3 71 85 32,682 10,981 10,244
2 Rice University 24 89/92 5 68 89 28,350 14,779 12,705
3 Williams College 23 93/93 8 89 94 36,550 14,737 12,316
4 Swarthmore College 24 94/98 8 86 92 38,676 17,386 12,759
5 Amherst College 18 94/92 9 84 94 38,492 14,453 11,544
6 Webb Institute 42 100/100 7 79 83 8,079 5,579 5,700
7 Yale University 8 96/97 7 88 95 38,432 15,729 19,228
Washington and Lee
8 University 31 89/89 11 86 89 30,225 15,452 15,634
9 Harvard University 11  90*/90* 8 86 97 38,831 17,456 10,465
10 Stanford University 13 93/95 7 77 93 38,875 17,746 15,782
11 Princeton University 11 95/97 5 91 97 40,169 18,325 12,000
Massachusetts
Institute of
12 Technology 16  95/100 6 82 91 39,213 19,609 22,855
13 Pomona College 23 98/97 9 83 88 38,130 17,411 15,600
14 Emory University 42 89/94 7 82 87 37,272 19,657 17,675
15 Columbia University 12 91/93 7 83 93 39,493 17,778 15,331
16 Duke University 25 91/94 11 88 93 40,080 19,996 20,025
17 Davidson College 34 86/89 10 89 91 34,706 21,455 13,697
18 Wellesley College 47 88/89 9 84 88 37,419 17,526 15,697
19 Vassar College 31 93/89 9 81 87 37,870 19,404 17,170
20 Haverford College 32 89/90 8 89 92 38,928 17,826 15,253
Northwestern
21 University 33 88/92 7 83 92 38,817 20,376 14,551
22 Bowdoin College 25 87/92 10 83 90 38,663 17,773 15,307
University of
23 Pennsylvania 21 91/96 6 83 91 39,040 20,596 20,247
Johns Hopkins
24 University 35 85/93 8 81 88 39,188 19,142 13,600
25 Cooper Union 14 81/83 7 57 78 14,652 11,167 9,250
Washington
26 University 24 93/98 7 75 86 39,253 20,700 NA
27 Dartmouth College 23 92/96 9 87 95 38,898 19,546 NA
Claremont McKenna
28 College 28 89/95 7 82 86 37,730 17,988 16,914
University of Notre
29 Dame 34 83/91 12 88 95 35,392 18,011 25,595
30 Colgate University 34 80/86 10 85 89 38,820 18,856 12,984
31 The Colorado College 53 66/70 9 72 79 35,275 16,516 13,500
University of
32 Richmond 41 74/83 10 79 84 31,679 17,588 16,115
Georgetown
33 University 21 87/89 11 86 91 39,182 24,382 20,000
34 Brown University 17 86/90 8 79 94 40,248 20,838 21,700
35 Carleton College 35 88/89 9 82 86 35,288 21,677 14,543
36 L afayette College 36 63/78 11 79 84 35,713 15,147 17,380

Table 7.4 Kiplingers' (2004) private college data.
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37 Middlebury College 27 93/96 11 81 87 39,532 18,288 21,751
38 Grinnell College 65 87/85 10 78 84 31,460 16,585 13,854
11linois Wesleyan
39 University 48 96 12 76 81 30,780 18,858 17,722
40 Bates College 28 90/91 10 82 87 38,932 18,258 17,045
41 Cornell University 29 85/92 9 82 90 38,974 23,122 15,587
42 Wesleyan University 28 89/92 9 76 81 39,127 21,401 23,753
43 Colby College 33 84/89 11 85 88 38,699 18,168 17,270
44 Bucknell University 39 72/84 12 83 87 36,165 19,165 16,000
45 Kenyon College 52 87/81 9 80 84 36,273 17,905 20,850
46 Centre College 78 89 11 71 73 28,529 15,842 14,300
47 Rhodes College 70 95 11 71 73 30,080 18,899 15,100
48 Macalester College 44 87/88 10 71 77 32,847 16,394 NA
49 Barnard College 34 88/88 10 72 84 37,940 17,826 14,030
50 Brandeis University 42 88/88 8 79 85 39,101 22,257 NA
College of the Holy
51 Cross 43 71/76 11 88 90 36,851 23,846 16,063
52 Harvey Mudd College 37  97/100 9 75 83 38,880 22,041 20,219
Wake Forest
53 University 41 79/86 10 77 87 36,079 21,196 24,769
54 Bryn Mawr College 50 86/75 9 76 80 37,890 18,609 NA
54 Wheaton College 54 84/83 11 70 84 27,076 17,341 15,864
55 Tufts University 27 81/90 9 81 88 39,173 20,115 15,499
56 Oberlin College 33 87/80 10 63 76 37,688 21,081 13,926
Mount Holyoke
57 College 52 80/70 10 75 79 38,668 19,268 14,200
58 Furman University 58 65/70 11 74 81 29,430 16,296 17,741
59 St. Olaf College 73 84 13 71 75 29,879 17,458 18,806
Brigham Y oung
60 University 73 86 18 31 73 9,663 7,621 11,000
61 Lehigh University 44 59/85 11 70 84 35,670 19,123 16,972
62 Smith College 53 72/66 9 76 80 37,937 18,466 19,911
63 Beloit College 70 82 11 60 72 30,264 17,452 14,942
64 Taylor University 78 74 15 71 75 24,723 15,678 15,117
65 Union College 45 56/71 11 75 80 36,455 18,431 15,725
66 Hamilton College 35 77/82 10 79 84 38,463 19,474 16,856
67 DePauw University 61 55/60 11 75 79 32,150 15,531 14,481
68 Hillsdale College 82 74 11 53 71 23,353 13,853 14,500
69 Knox College 72 72 12 67 74 30,894 15,494 16,920
University of Southern
70 California 30 79/91 10 51 73 37,968 21,606 20,619
71 Trinity College 36 73/79 9 77 83 38,890 19,667 17,000
72 Trinity University 69 71/80 11 65 75 27,086 16,706 NA
Gustavus Adolphus
73 College 77 70 13 72 75 27,820 17,609 17,400
74 Vanderbilt University 46 83/90 9 78 84 38,847 20,971 24,023
75 Whitman College 50 80/81 10 60 71 33,776 21,176 15,000
76 Scripps College 58 85/78 12 63 68 36,500 17,984 12,941
Franklin and Marshall
77 College 62 62/71 11 78 83 36,580 20,925 19,656

Table 7.4 (Continued).
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78 Saint Louis University 72 72 12 52 67 29,983 16,902 14,989

Carnegie Mellon
79 University 38 75/95 11 61 77 38,460 24,689 19,195
80 Lawrence University 68 83 11 58 68 32,875 17,882 18,311
81 Connecticut College 35 83/84 11 75 81 37,057 16,930 17,250
Case Western Reserve
82 University 78 74/85 8 49 75 32,802 18,323 21,830
84 Dickinson College 51 65/64 13 74 78 36,600 19,753 17,586
85 Kalamazoo College 73 91 12 60 69 30,917 17,947 20,000
Saint John's
86 University 87 66 13 67 74 27,272 19,544 20,680
87 Boston College 34 78/85 13 0 86 37,745 24,470 16,732
88 Reed College 55 95/86 10 45 67 37,900 18,804 16,758
89 Bard College 36 85/67 9 59 71 38,282 20,558 15,400
University of
90 Rochester 50 79/87 12 65 76 37,246 20,297 NA
91 New York University 28 87/86 11 65 74 40,105 28,282 21,495
92 Villanova University 47 57/74 13 79 84 36,560 26,463 28,217
93 Skidmore College 46 70/69 11 71 75 38,838 21,023 15,560
Rose-Hulman Institute
94 of Technology 65 62/91 13 58 71 32,625 28,677 27,000
95 St. John's College 71 95/75 8 63 71 36,635 21,940 20,753
96 Babson College 48 50/77 13 77 81 38,443 21,316 NA
Rhode Island School
97 of Design 32 49/55 11 0 87 34,472 26,447 21,125
Rensselaer
98 Polytechnic Institute 70 68/92 17 48 75 39,200 22,360 24,590
Sarah Lawrence
99 College 40 79/44 6 51 66 42,121 22,847 14,864
The George
Washington
100  University 40 68/72 14 62 73 40,240 25,866 NA
Table 7.4 (Continued).

Asshown in Tables 7.3 and 7.4, there are some missing values, denoted by NA or
“0", inthe Average Debt columns. For example, there are five NAs in the Average Debt
column in the public college data and nine “0”s in the same column in the private college
data Vauesinthe SAT or ACT fields are inconsistent with valuesin other fields
because of their value format. For example, the SAT or ACT value for George
Washington University in the private college data (see Table 7.4) is 68/72, which isnot a

single value needed for a SOM method.
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To meet the numerical input requirements of an SOM method, the data sets have
to be preprocessed. In the Average Debt column, we used the average value of the
column to replace the missing values. For example, we replaced the missing values with
the average value of 15480 in the public college data. The average value of 16957 was
used to replace the missing values in the private college data. Inthe SAT or ACT
column, many entries that are not in asingle value format (i.e., percentages above 600 on
the verbal and math parts of SAT are separated by a slash). We used the average
percentage instead of the two individual percentages asinput. For example, for George
Washington University, the average percentage value of 70 for the two individual
percentages, that is, 68 and 72, in the SAT or ACT column was used asinput. After
preprocessing datain the two data sets, we applied Viscovery on the public and private

college data sets to see which groups of colleges are real bargains.

7.2  Discussion of Results

The Viscovery SOM map of the public college datais givenin Figure7.1. There
are three clusters separated by solid lines. The summary of the clustersis given in Table
7.5. Cluster membership of each public collegeis givenin Table 7.6.

Cluster A has 18 schools. The average SAT or ACT percentage of schoolsin
cluster A is 70%, which is the highest among three clusters, indicating that these schools
have a good academic atmosphere. Other academic quality variables provide the same
insight. For example, schoolsin cluster A have the lowest average admission rate (53%),

the highest average student/faculty ratio (15), the highest average 4-year and 6-year
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Figure 7.1 Map for the public college data set.

SAT 4-Year 6-Year In-State
or Student/ Grad. Grad. In-State Costs Total Out- Out-of-State Avg. Debt
ACT Admis. faculty Rate Rate  Total After Aid of-State CostsAfter at Grad.
Cluster (%) Rate Ratio (%) (%) Costs($) %) Costs ($) Aid ($) (%)
A 70 53 15 49 75 13,657 7,605 25,845 18,432 15,500
B 48 62 16 43 69 15,238 10,682 22,737 12,158 14,915
C 47 72 17 27 57 11,469 7,737 19,384 11,634 15,798

Table 7.5 Summary of clusters of the public colleges.
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In-

Out-of-

SAT 4-Year 6-Year State In-State  Total State  Avg.
or Student/  Grad. Grad. Total Costs Out-of- Costs Debt at
School ACT Admis. faculty Rate Rate Costs After Aid  State After  Grad.
Rank Name (%) Rate Ratio (%) (%) &) (% Costs($) Aid ($) ($)
Cluster A
University of
North Carolina
1 at Chapd Hill 71 35 14 65 79 11,290 6,673 23,138 16,465 11,156
University of
2 Virginia 81 39 16 81 91 12,640 8,737 28,610 19,873 13,536
College of
William and
3 Mary 84 35 12 80 89 13,024 6,668 27,724 21,056 1962
University of
4 Georgia 57 65 13 46 66 10,534 5245 21,310 16,065 12,906
University of
5 Florida 63 58 21 49 77 10,611 6,125 21,639 15,514 14,449
New College
6 of Florida 84 65 11 47 72 10,947 5613 24,185 18,572 16,645
Georgia
Institute of
7 Technology 85 59 14 18 69 11,340 6,022 23,266 17,244 17,221
University of
lllinois at
Urbana,
8 Champaign 79 60 13 52 76 14,410 8,045 25446 17,401 14,791
University of
12 Deaware 47 48 12 54 72 13,416 7,666 22946 15280 13,610
University of
Wisconsin,
13 Madison 86 71 14 41 77 13,391 7,842 27401 19,559 15,904
University of
Michigan, Ann
14 Arbor 83 49 15 61 82 16,671 8,661 33,473 25,463 16,825
University of
California, San
15 Diego 60 41 19 43 78 16,000 9,043 24,105 17,148 13,275
University of
California,
16 Berkeley 72 25 17 48 83 17,265 8,982 25584 17,301 14,990
University of
17 Washington 48 68 11 40 70 13,835 6,926 24,991 18,082 14,500
Colorado
School of
25 Mines 89 67 12 31 61 13,780 8532 26970 18,438 17,500
University of
California, Los
37 Angeles 69 24 17 40 81 17,616 9,975 26,006 16,031 12,775
University of
Colorado at
43 Boulder 65 80 16 38 64 11,937 7,877 28,253 20,376 16,737
University of
77 Vermont 37 71 14 48 67 17,116 8,258 30,168 21,910 22425
Average 70 53 15 49 75 13,657 7,605 25845 18432 15500

Table 7.6 Cluster profiles of the public colleges.
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Rank

School
Name

SAT or

ACT Admis.

(%)

Rate

Student/
faculty
Ratio

4-Year

Grad.
Rate
(%)

In-

6-Year State

Grad.
Rate
(%)

Total
Costs

%)

In-State
Costs
After Aid

)

Total
Out-of -
State
Costs ($)

Out-of -
State
Costs
After

Aid ($)

Avg.
Debt at
Grad.

6]

Cluster B

20

University of
Texas at
Austin

58

61

19

39

71

14,391

9,111

20,999

11,888

16,400

24

State
University of
New York at
Binghamton

62

42

19

69

80

13,587

9,214

19,537

10,323

13,915

28

College of
New Jersey

66

12

59

80

16,686

13,915

21,261

7,346

5,490

32

State
University of
New Y ork
College at
Geneseo

69

49

19

67

79

12,840

10,840

18,790

7,950

15,000

36

University of
Maryland,
College Park

71

13

33

63

16,304

12,223

22,881

10,658

15,566

41

Rutgers, The
State
University of
New Jersey,
New
Brunswick

47

55

14

72

16,519

10,044

23,033

12,989

15,270

42

Clemson
University

53

52

16

35

69

14,618

11,121

22,216

11,095

14,347

46

Mary
Washington
College

56

60

17

65

75

12,287

9,033

20,035

11,002

13,100

51

James
Madison
University

37

58

17

59

78

13,145

9,320

21,367

12,047

11,786

52

University of
Cadlifornia,
Davis

52

63

19

28

75

16,521

10,334

23,814

13,480

13,507

53

Miami
University

84

77

17

61

80

15,833

12,467

25,603

13,136

17,579

54

Purdue
University

38

76

16

28

14,691

8,723

26,311

17,588

15,677

58

University of
Cadlifornia,
Irvine

40

57

18

72

15,635

8,507

22,450

13,944

12,513

60

University of
Minnesota,
Morris

61

82

14

50

76

13,477

8,427

13,477

5,050

9,208

63

St Mary's
College of
Maryland

64

59

12

58

67

16,908

12,908

23,228

10,320

17,125

65

University of
Cdlifornia,
Santa Barbara

47

51

19

73

16,154

10,231

24,246

14,015

15,480

74

University at
Buffalo, The
State
University of
New York

35

61

14

32

56

13,422

9,956

19,372

9,416

16,255

Table 7.6 (Continued).
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In-

Out-of -

4-Year 6-Year State In-State  Total State  Avg.
SAT or Student/  Grad. Grad. Total Costs Out-of- Costs Debt at
School ACT Admis. faculty Rate Rate Costs After Aid  State After  Grad.
Rank Name (%) Rate Ratio (%) (%) % (% Costs($)  Aid ($) ($)
Cluster B (Continued)
University of
M assachusetts
76 Amherst 35 58 19 11 61 14,480 9,714 23333 13619 15321
College of
78 Charleston 47 60 14 32 52 14,008 11214 21,270 10,056 15,135
Indiana
University
79 Bloomington 30 81 20 40 65 13,129 8,704 24164 15460 16,930
Pennsylvania
State
University
University
80 Park Campus 50 57 17 43 80 17,017 12,872 26,639 13,767 17,900
Rutgers, The
State
University of
New Jersey,
84 Camden 22 54 11 21 60 16,189 10,111 22,703 12,592 15,223
University of
Maryland,
Baltimore
85 County 55 63 17 28 53 16,516 12,946 23,368 10,422 14,500
University of
86 Connecticut 38 62 17 23 70 14,413 9141 25197 16,056 16,093
University of
87 Pittsburgh 52 55 17 35 60 17,025 12,723 26,337 13614 20,154
University of
New
92 Hampshire 29 77 14 48 71 15,779 13,693 26,139 12,446 20,700
University of
Cdlifornia,
94 SantaCruz 38 80 19 40 64 16,877 9,309 24250 14,941 13,282
Rowan
95 University 28 44 14 37 63 15,416 10,632 20,812 10,180 15,480
Ohio
99 University 49 75 20 43 70 16,514 13102 24,737 11,635 15,285
100 UCRIiverside 25 86 19 39 64 16,751 9932 24530 17,711 13,226
Average 48 62 16 43 69 15,238 10,682 22,737 12,158 14,915

Table 7.6 (Continued).
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Rank

School
Name

SAT or

ACT Admis.

(%)

Rate

Student/
faculty
Ratio

4-Year

Grad.
Rate
(%)

In-

6-Year State

Grad.
Rate
(%)

Total
Costs

()

In-State

Costs

After Aid

(%)

Total
Out-of -
State
Costs ($)

Out-of -
State
Costs
After

Aid ($)

Avg.
Debt at
Grad.

6]

Cluster C

Truman State
University

82

79

15

39

62

10,609

7,604

14,409

6,805

14,382

10

Virginia
Polytechnic
Institute and
State
University

46

65

15

36

72

10,122

5,613

20,006

14,393

16,229

11

North
Carolina State
University

50

59

15

25

60

10,688

5,508

22,536

17,028

15,476

18

New Mexico
Institute of
Mining and
Technology

75

63

13

12

40

9,714

2,708

16,151

9,145

9,500

19

University of
Wisconsin, La
Crosse

60

65

21

23

58

10,425

7,327

20,102

12,775

14,306

21

University of
Oklahoma

69

89

21

19

51

10,139

6,618

16,652

10,034

16,886

22

University of
Kansas

55

67

19

26

55

9,673

6,266

17,149

10,883

17,347

23

University of
North
Carolinaat
Asheville

67

14

31

48

8,929

6,308

17,754

11,446

14,547

26

Auburn
University

51

83

16

40

68

10,276

7,308

18,736

11,428

18,585

27

Colorado
State
University

56

77

17

29

62

10,689

6,700

21,161

14,461

16,042

29

Michigan
State
University

57

67

18

31

66

12,743

8,670

22,703

14,033

18,663

30

Appalachian
State
University

28

19

31

60

7,913

4,785

16,834

12,049

13,000

31

lowa State
University of
Science and
Technology

58

89

16

24

62

11,588

8,736

20,930

12,194

17,119

33

TexasA&M
University

43

68

21

27

69

11,899

7,057

18,979

11,922

15,670

34

University of
Texas at
Dallas

52

53

20

30

53

12,075

7,787

19,155

11,368

15,480

35

University of
North
Carolina at
Wilmington

22

55

16

60

9,715

6,375

19,290

12,915

13,583

Table 7.6 (Continued).
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Rank

School
Name

SAT or
ACT Admis.
Rate

(%)

Student/
faculty
Ratio

4-Year

Grad.
Rate
(%)

In-

6-Year State

Grad.
Rate
(%)

Total
Costs

()

In-State
Costs
After Aid

(%)

Total
Out-of -
State
Costs ($)

Out-of -
State
Costs
After

Aid ($)

Avg.
Debt at
Grad.

6]

Cluster C

(Continued)

38

Louisiana
State
University and
Agricultura
and
Mechanical
College

53

77

21

23

58

10,126

7,406

15,426

8,020

17,569

39

University of
Tennessee

49

58

18

24

56

11,681

6,706

20,763

14,057

21,689

University of
lowa

59

15

11,763

9,460

22,055

12,595

15,335

University of
Kentucky

82

17

27

58

9,432

5,594

16,112

10,518

15,480

45

University of
Arkansas

59

86

17

20

45

10,706

7,144

17,456

13,894

14,029

47

Oklahoma
State
University

49

92

19

22

56

10,677

7,478

16,623

9,145

15,580

Kansas State
University

49

58

20

18

45

9,626

7,104

16,990

9,886

17,000

49

University of
Northern lowa

39

80

16

30

10,634

7,632

17,592

9,960

15,786

50

University of
M i ssissippi

46

80

19

29

48

11,257

6,607

16,167

9,560

14,459

55

Mississippi
State
University

50

74

16

19

48

11,130

8,174

16,036

7,862

15,081

56

University of
Nebraska,
Lincoln

55

90

19

15

51

10,687

7,277

18,269

10,992

15,682

57

Florida State
University

37

70

22

38

10,994

7,035

22,022

14,987

16,372

59

University of
Missouri,
Columbia

68

88

18

32

65

13,208

8,138

22,655

14,517

17,137

61

University of
Alabama

46

85

18

31

61

11,197

8,136

18,357

10,221

18,978

62

University of
South
Carolina

33

70

17

31

58

11,795

8,794

21,133

12,339

15,260

64

Michigan
Technological
University

68

92

11

22

63

14,135

9,339

25,025

15,686

15,711

66

University of
Minnesota,
Twin Cities
Campus

64

74

15

17

53

13,910

7,902

25,540

17,638

15,480

67

Mississippi
University for
Women

56

65

13

21

8,649

8,649

13,316

4,667

13,500

68

California
Polytechnic
State
University,
San Luis
Obispo

52

39

19

17

66

11,781

10,429

15,268

4,839

12,842

Table 7.6 (Continued).
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Rank

School
Name

SAT or

ACT Admis.

(%)

Rate

Student/
faculty
Ratio

4-Year

Grad.
Rate
(%)

In-

6-Year State

Grad.
Rate
(%)

Total
Costs

%)

In-State
Costs
After Aid

)

Total
Out-of -
State
Costs ($)

Out-of -
State
Costs
After

Aid ($)

Avg.
Debt at
Grad.

6]

Cluster C

(Continued)

69

University of
Wyoming

42

95

15

22

10,863

6,833

16,713

9,880

18,311

70

George
Mason
University

28

66

16

25

48

11,602

7,597

21,442

13,845

14,143

71

University of
Central
Florida

33

62

24

25

49

10,839

8,353

21,867

13,514

14,927

72

Ohio State
University

69

74

14

25

59

15,249

11,315

25,113

13,798

15,011

73

Illinois State
University

47

81

19

28

55

12,971

7,199

17,441

10,242

13,921

75

Salisbury
University

31

50

17

50

68

12,895

9,506

19,783

10,277

14,773

81

State
University of
New York at
Albany

31

56

21

52

66

13,574

9,599

19,524

9,925

15,108

82

University of
Arizona

30

86

19

29

55

11,163

8,506

19,933

11,427

17,340

83

Towson
University

22

58

19

30

56

1276

8,651

20,422

11,771

15,530

88

State
University of
New York
College at
Fredonia

24

53

18

47

66

11,782

8,961

17,732

8,771

12,430

89

Stony Brook
University,
State
University of
New York

38

54

18

30

51

13,645

9,704

19,595

9,891

15,747

90

State
University of
New York at
New Paltz

30

40

17

21

52

11,276

8,276

16,176

7,900

15,000

91

University of
Maine

26

79

15

29

56

12,780

8,162

21,480

13,318

17,917

93

University of
Missouri,
Rolla

83

92

14

10

52

14,326

9,416

23,144

13,728

17,991

96

University of
lllinois at
Chicago

43

63

15

37

14,299

6,399

23,995

17,596

17,000

97

University of
Oregon

31

86

18

36

59

12,795

9,586

24,231

14,645

22,783

98

Texas Tech
University

26

69

20

22

51

12,968

9,878

20,048

10,170

13,805

Average

47

72

17

27

57

11,469

7,737

19,384

11,634

15,798

Table 7.6 (Continued).
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graduation rates (49% and 75%) among three clusters. The financial cost is another
important concern for students as to choosing schools of the best values. Although the
average total costs for out-of-state students of cluster A schools (i.e., Total Out-of-State
Cost and Out-of-State Costs after Aid) are the highest, when cluster A schools are
compared to cluster B schools and cluster C schools, the average In-State Total Costs
($13657) is the second highest and the average In-State Costs after Aid ($7605) isthe
lowest. For cluster A, average of the variable Average Debt at Graduation ($15500) is
the second highest and it is only about $600 greater than the lowest average debt
($14915) of cluster B schools. Therefore, cluster A schools are the group of schools that
not only have excellent education quality but also are financially comparable for students.
Perhaps those in-state students who have excellent academic performance are more
willing to consider cluster A schools because of the lowest average In-State Costs after
Aid.

Cluster C has 52 schools. The overall academic quality of schoolsin this cluster
isworse than schools in the other two clusters. For example, the average SAT or ACT
percentage of 47% is the lowest, the 4-year and 6-year graduation rates are the lowest,
i.e.,, 27% and 57% respectively, and the Student/faculty Ratio of 17 is the highest.
However, the average total costs for both residents and non-residents are the lowest
among the three groups. The average In-State Total Costsis $11469, which is about
$2200 less than cluster A schools.

The average Out-of-State Total Costs for cluster B schoolsis $19384, whichis

about $6500 less than that of schoolsin cluster A. The average total costs after aid for in-
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state and out-of -state students are a'so low. It tellsthat cluster C schools may be good
choices for those students who care more about financial costs.

Cluster B has 30 colleges that have good academic quality, i.e., the second highest
average valuesin SAT/ACT percentage, Admission Rate, Student/faculty Ratio, 4-year
Graduation Rate, and 6-year Graduation Rate. This cluster of schools has the highest
average costs ($15238) for in-state students, the second highest average costs ($22737)
for non-resident students, and the lowest Average Debt at Graduation ($14915). Schools
in the cluster B may be considered as alternatives to schoolsin cluster A and schoolsin
cluster C because they are comparable to cluster A schools in terms of good education
quality and similar to cluster C schoolsin terms of less expensive financial costs.

We did not include the Kiplinger’ s rank variable to generate our SOM maps. The
Rank variable is used as school labelsin the maps. Fifteen schoolsin cluster A are from
the top 25 public schoolsin Kiplinger’ s list, such as University of North Carolina at
Chapel Hill, University of Virginia, College of William & Mary, University of Georgia
(Table 7.6). Two (i.e., UCLA and University of Colorado-Boulder) of the rest schools
come from the middle range, which is between N0.26 and No.75, and the last one
(University of Vermont) isranked No.77. Cluster A schools have the highest education
quality and require reasonable financial expenditures. Cluster B schools have better
academic quality and higher financial expenditures for students than cluster C schools.

When looking at individual schools, we found some schools belonging to the
same cluster have different ranksin Kiplinger’slist. For example, University of
Colorado at Boulder and Colorado School of Mines arein the same cluster A. They have

comparable education quality and the financial costsin these two schools are close. In
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Kiplinger’ s ranking, University of Colorado ranks No.43, which is 18 places |ower than
Colorado school of Mines whose rank isNo0.25. Additional examples can be found in
cluster B schools and cluster C schools. For example, University of California at
Riverside and University of Clemson are members of cluster B. However, UC Riverside
isranked No0.100 and Clemson is ranked No.42. Although there are some differences
between them, most of their educational and financial measures are close. For example,
their 4-year and 6-year graduation rates and Average Debt at Graduation are close.
Therefore University of Clemson and UC Riverside should have close rankings. In
cluster C, University of Maine and lowa State University have the same situation. Maine
isranked No.31 while lowa State is ranked No0.91 despite their close educational and
financial qualities as shown in Table 7.6.

The Viscovery SOM map for the private collegesis given in Figure 7.2. There
arefive clusters and the summary of the clustersisgivenin Table 7.7. Cluster
memberships of colleges are provided in Table 7.8.

Cluster A has two member colleges. Webb Institute (6) and Copper Union (25).
Both colleges have excellent educational qualities: the lowest average Student/faculty
Ratio (7), the highest average SAT or ACT percentage (91%) among the five clusters,
and the highest average 4-year and 6-year graduation rates (68% and 81% respectively)
aswell. In addition, the financial costsin both colleges are very low. The average total
cost of both schoolsis $11366, less than half of the second lowest average total cost
($31335) of cluster E schools. The average total cost after need-based aid is the lowest

($8373) among five clusters. The average debt at graduation is the lowest ($7475), which
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Figure 7.2 Map for the private college data set.

SAT or Student/  4-Year 6-Year Total Costs after
Admisson ACT faculty Grad.Rate Grad. Rate Total Costs Need-based Aid Avg. Debt at
Cluster Rate(%) (%) Ratio (%) (%) (%) %) Grad. (%)
A 28 91 7 68 81 11,366 8,373 7,475
B 27 91 8 82 90 38,051 18,949 16,914
C 46 77 11 77 82 35,574 18,567 16,608
D 43 76 13 47 78 37,486 25,429 21,770
E 65 78 11 61 73 31,115 17,749 16,387

Table 7.7 Summary of clusters of the public colleges.

144



Student/  4-Year  6-Year Cost After
Admiss.  SAT or faculty Grad. Grad. Total Need- Based Average
Rank School Name Rate (%) ACT % Ratio Rate% Rate%  Costs Aid Debt
Cluster A
6 Webb Institute 42 100 7 79 83 8,079 5,579 5,700
25 Cooper Union 14 82 7 57 78 14,652 11,167 9,250
Average 28 91 7 68 81 11366 8373 7475
Cluster B
Cdlifornia Institute of
1 Technology 21 100 3 71 85 32,682 10,981 10,244
2 Rice University 24 91 5 68 89 28,350 14,779 12,705
3 Williams College 23 93 8 89 94 36,550 14,737 12,316
4 Swarthmore College 24 96 8 86 92 38,676 17,386 12,759
5 Amherst College 18 93 9 84 94 38,492 14,453 11,544
7 Yale University 8 97 7 88 95 38,432 15,729 19,228
9 Harvard University 11 90 8 86 97 38,831 17,456 10,465
10 Stanford University 13 94 7 77 93 38,875 17,746 15,782
11 Princeton University 11 96 5 91 97 40,169 18,325 12,000
Massachusetts Institute
12 of Technology 16 98 6 82 91 39,213 19,609 22,855
13 Pomona College 23 98 9 83 88 38,130 17,411 15,600
14 Emory University 42 92 7 82 87 37,272 19,657 17,675
15 Columbia University 12 92 7 83 93 39,493 17,778 15,331
16 Duke University 25 93 11 88 93 40,080 19,996 20,025
17 Davidson College 34 88 10 89 91 34,706 21,455 13,697
18 Wellesley College 47 89 9 84 88 37,419 17,526 15,697
19 Vassar College 31 91 81 87 37,870 19,404 17,170
20 Haverford College 32 90 8 89 92 38,928 17,826 15,253
21 Northwestern University 33 90 7 83 92 38,817 20,376 14,551
22 Bowdoin College 25 90 10 83 90 38,663 17,773 15,307
University of
23 Pennsylvania 21 94 6 83 91 39,040 20,596 20,247
Johns Hopkins
24 University 35 89 8 81 88 39,188 19,142 13,600
26 Washington University 24 96 75 86 39,253 20,700 16,957
27 Dartmouth College 23 94 9 87 95 38,898 19,546 16,957
Claremont McKenna
28 College 28 92 7 82 86 37,730 17,988 16,914
University of Notre
29 Dame 34 87 12 88 95 35,392 18,011 25,595
30 Colgate University 34 83 10 85 89 38,820 18,856 12,984
33 Georgetown University 21 88 11 86 91 39,182 24,382 20,000
34 Brown University 17 88 79 94 40,248 20,838 21,700
35 Carleton College 35 89 9 82 86 35,288 21,677 14,543

Table 7.8 Cluster profiles of the private college data.
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Student/  4-Year  6-Year Cost After
Admiss.  SAT or faculty Grad. Grad. Total Need- Based Average

Rank School Name Rate (%) ACT % Ratio Rate% Rate%  Costs Aid Debt
Cluster B (Continued)
37 Middlebury College 27 95 11 81 87 39,532 18,288 21,751
40 Bates College 28 91 10 82 87 38,932 18,258 17,045
41 Cornell University 29 89 9 82 90 38,974 23,122 15,587
42 Wesleyan University 28 91 9 76 81 39,127 21,401 23,753
43 Colby College 33 87 11 85 88 38,699 18,168 17,270
50 Brandeis University 42 88 8 79 85 39,101 22,257 16,957
52 Harvey Mudd College 37 99 9 75 83 38,880 22,041 20,219
53 Wake Forest University 41 83 10 77 87 36,079 21,196 24,769
56 Tufts University 27 86 9 81 88 39,173 20,115 15,499
75 Vanderbilt University 46 87 9 78 84 38,847 20,971 24,023
Average 27 91 8 82 90 38,051 18,949 16,914
Cluster C
Washington and Lee
8 University 31 89 11 86 89 30,225 15,452 15,634
31 The Colorado College 53 68 9 72 79 35,275 16,516 13,500
32 University of Richmond 41 79 10 79 84 31,679 17,588 16,115
36 Lafayette College 36 71 11 79 84 35,713 15,147 17,380
38 Grinnell College 65 86 10 78 84 31,460 16,585 13,854
I1linois Wesleyan
39 University 48 96 12 76 81 30,780 18,858 17,722
44 Bucknell University 39 78 12 83 87 36,165 19,165 16,000
45 Kenyon College 52 84 9 80 84 36,273 17,905 20,850
48 Macalester College 44 88 10 71 77 32,847 16,394 16,957
49 Barnard College 34 88 10 72 84 37,940 17,826 14,030
College of the Holy
51 Cross 43 74 11 88 90 36,851 23,846 16,063
54 Bryn Mawr College 50 81 9 76 80 37,890 18,609 16,957
55 Wheaton College 54 84 11 70 84 27,076 17,341 15,864
58 Mount Holyoke College 52 75 10 75 79 38,668 19,268 14,200
62 Lehigh University 44 72 11 70 84 35,670 19,123 16,972
63 Smith College 53 69 9 76 80 37,937 18,466 19,911
66 Union College 45 64 11 75 80 36,455 18,431 15,725
67 Hamilton College 35 80 10 79 84 38,463 19,474 16,856
72 Trinity College 36 76 9 77 83 38,890 19,667 17,000
Franklin and Marshall
78 College 62 67 11 78 83 36,580 20,925 19,656
82 Connecticut College 35 84 11 75 81 37,057 16,930 17,250
84 Dickinson College 51 65 13 74 78 36,600 19,753 17,586
93 Skidmore College 46 70 11 71 75 38,838 21,023 15,560
96 Babson College 48 64 13 77 81 38,443 21,316 16,957
Average 46 77 11 77 82 35,574 18,567 16,608
Table 7.8 (Continued).
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Student/  4-Year  6-Year Cost After
Admiss.  SAT or faculty Grad. Grad. Total Need- Based Average

Rank School Name Rate (%) ACT % Ratio Rate% Rate%  Costs Aid Debt
Cluster D
University of Southern
71 Cadifornia 30 85 10 51 73 37,968 21,606 20,619
Carnegie Méellon
80 University 38 85 11 61 77 38,460 24,689 19,195
87 Boston College 34 82 13 0 86 37,745 24,470 16,732
91 New York University 28 87 11 65 74 40,105 28,282 21,495
92 Villanova University 47 66 13 79 84 36,560 26163 28,217
Rose-Hulman Institute of
94  Technology 65 77 13 58 71 32,625 28,677 27,000
Rhode Island School of
97 Design 32 52 11 0 87 34,472 26,447 21,125
Rensselaer Polytechnic
98 Institute 70 80 17 48 75 39,200 22,360 24,590
The George Washington
100 University 40 70 14 62 73 40,240 25,866 16,957
Average 43 76 13 47 78 37,486 25,429 21,770
Table 7.8 (Continued).
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Student/  4-Year  6-Year Cost After
Admiss.  SAT or faculty Grad. Grad. Total Need- Based Average
Rank School Name Rate (%) ACT % Ratio Rate% Rate%  Costs Aid Debt
Cluster E

46 Centre College 78 89 11 71 73 28,529 15,842 14,300
47 Rhodes College 70 95 11 71 73 30,080 18,899 15,100
57 Oberlin College 33 84 10 63 76 37,688 21,081 13,926
59 Furman University 58 68 11 74 81 29,430 16,296 17,741
60 St Olaf College 73 84 13 71 75 29,879 17,458 18,806

Brigham Y oung
61 University 73 86 18 31 73 9,663 7,621 11,000
64 Beloit College 70 82 11 60 72 30,264 17,452 14,942
65 Taylor University 78 74 15 71 75 24,723 15,678 15,117
68 DePauw University 61 58 11 75 79 32,150 15,531 14,481
69 Hillsdale College 82 74 11 53 71 23,353 13,853 14,500
70 Knox College 72 72 12 67 74 30,894 15,494 16,920
73 Trinity University 69 76 11 65 75 27,086 16,706 16,957

Gustavus Adolphus
74 College 77 70 13 72 75 27,820 17,609 17,400
76 Whitman College 50 81 10 60 71 33,776 21,176 15,000
77 Scripps College 58 82 12 63 68 36,500 17,984 12,941
79 Saint Louis University 72 72 12 52 67 29,983 16,902 14,989
81 Lawrence University 68 83 11 58 68 3875 17,882 18,311

Case Western Reserve
83 University 78 80 8 49 75 32,802 18,323 21,830
85 Kalamazoo College 73 91 12 60 69 30,917 17,947 20,000
86 Saint John's University 87 66 13 67 74 27,272 19,544 20,680
88 Reed College 55 91 10 45 67 37,900 18,804 16,758
89 Bard College 36 76 9 59 71 38,282 20,558 15,400
90 University of Rochester 50 83 12 65 76 37,246 20,297 16,957
95 St John's College 71 85 8 63 71 36,635 21,940 20,753
99 Sarah Lawrence College 40 62 6 51 66 42,121 22,847 14,864

Average 65 78 11 61 73 31,115 17,749 16,387

Table 7.8 (Continued).
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is nearly $9000 less than the second lowest average debt at graduation ($16387) of the
cluster E. Therefore, cluster A schools can be considered as schools of great value.

Cluster B has 40 schools. From the average Admission Rate, the average SAT or
ACT, and other academic-related variables (i.e., SAT/ACT, Student/Faculty Ratio, 4-year
and 6-year Graduation Rates), we see that most of schoolsin cluster B have excellent
education quality. All of Ivy League schools areincluded. Most of them are financially
expensive, which is shown by the highest average Total Costs ($38051) (see Table 7.7)
among the five clusters. However, if the need-based aid is taken into account, the
average total cost is reduced to $18949 and the average Average Debt at Graduation is
$16914, which makes cluster B schools comparable to schoolsin clusters C, D, and E. If
students care more about educational quality, then schoolsin cluster B are worthwhile.

There are 24 collegesin cluster C. Compared to cluster B schools, schoolsin
cluster C are financially less expensive. For example, the average Total Cost ($35574) is
about $2400 less than that of cluster B schools. However, the education quality of
schoolsin this cluster is not as exceptional as schoolsin cluster B. For example, in
cluster C, the average SAT or ACT percentage is less than the average SAT or ACT
percentage of cluster B by 14 points. In addition, the Student/faculty Ratio and, the 4-
year and 6-year graduation rates, are al lower than those of cluster B. Therefore, cluster
C schools provide relatively good academic quality and ask for reasonable financial
sacrifice.

There are nine schoolsin cluster D. The overal academic quality of these schools
isnot as good as the overall academic quality of schoolsin Cluster C, while the financia

costs of cluster D schools are much higher than the financia costs of cluster C. As
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shown in Table 7.7, the average academic-related measures are dlightly lower than those
of cluster C schools. For example, the average 6-year graduation rate of cluster D (78%)
isalittle worse than the average 6-year graduation of cluster C (82%). The average
financia costsin cluster D are the highest among the five clusters. For example, the
average Cost after Need-based Aid of this cluster is $25429 which is about $6500 higher
than the second highest of cluster B ($18949). In terms of educational quality and
financia consideration, schoolsin cluster D might be considered |ess competitive than
schoolsin clusters A, B, and C.

Cluster E has 25 colleges. Compared to the other four clusters, the academic
quality of schoolsin this cluster isnot as good as schoolsin other four clusters. The
average 4-year and 6-year graduation rates are the lowest among five clusters. However,
the average financia cost of schoolsin cluster E isthe second lowest. Since the
academic quality of cluster E is close to or dightly worse than that of cluster D and the
financial cost of cluster E is much lower than that of cluster D, schoolsin cluster E might
be considered aternatives of schoolsin cluster D for students who have financial
concerns.

Although our analysis of cluster structures agrees with Kiplinger’slist in most
cases, there are some discrepancies, especially when examining individual schools within
each cluster. For example, in cluster B, Vanderbilt University has similar academic and
financial measures as Wake Forest (53) and Wesleyan (42). Vanderbilt isranked No. 75
in Kiplinger'slist, where Vanderbilt’ s Kiplinger rank is 23 places and 32 places lower
than Wake Forest and Wesleyan, respectively. Barnard College (49) and Connecticut

College (82) in cluster C is another example. These two schools have comparable
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academic measures and close financial measures (see Table 7.8). However, the
difference between their Kiplinger'sranksis 47. Thiskind of information can not be
discovered on Kiplinger’slist. With the help of the SOM visual maps, alternatives can
easily be found by examining a school’ s neighbors.

Our results of the public and private college data sets have shown that
Viscovery’s SOM map helps identify alternatives of a particular school, which may not
be detected from Kiplingers' rankings. For example, Figure 7.1 gives us a visual map of
the hidden cluster structure of the public college data. On this map, three clusters are
clearly visible, where alternatives of a school can be easily recognized. Colorado State
(27) has six neighbors: Virginia Polytechnic Institute and State University (10), North
Carolina State University (11), Auburn University (26), Michigan State University (29),
lowa State University (31), and University of Missouri at Columbia (59). If welook for
Colorado State' s alternatives solely on the Kiplinger'slist, we are very likely to think
about schools with close ranksto Colorado State asits aternatives. However, not every
alternative has a close rank to Colorado State, such as North Caroline State. Therefore,
Viscovery can help college students identify alternatives, gain more insights from the
data, and facilitate them to make a better decision.

The differences between our results and Kiplinger’ s list do not mean that the
Kiplinger'slist is of no value, although our analysis shows that the Kiplinger’slist can be
misleading. If we could combine the results obtained from our maps and Kiplinger's

rankings, we might have better way to analyze and explain the data set to help students.
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Chapter 8

Summary and Future Work

In order to visualize a data set with an asymmetric distance matrix, the standard
SM method takes as inputs the symmetrized distance matrix by averaging entriesin the
asymmetric distance matrix. This approach isthe simplest way to represent asymmetric
data onto a 2-dimentional map. However, some interesting information hidden in
asymmetric data may be ignored due to averaging. Merino et a.’s method introduces
into the standard SM method an asymmetry coefficient that is expected to reflect
asymmetric information. However, when the data set under consideration is not very
asymmetric, the asymmetry coefficient defined by Merino et a. has little influence on the
resulting map. The map obtained from Merino’s method is very similar to the one
obtained from the standard SM method. Our modified SM method takes into account the
upper triangular part and the lower triangular part of an asymmetric distance matrix
simultaneously. It isreasonable to expect that the modified SM method may outperform
the standard and Merino’s method to some extents.

We applied the modified method to two asymmetric data sets: American college
selection data and Canadian ranked college data. From the results obtained on these two

data sets, we found that the modified SM method always did afairly good job at reducing
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distance errors and performed reasonably well at preserving order relationships at least
comparable to the standard and Merino’s methods. Since asymmetric proximity data
arise in other research areas such as marketing, psychology, sociology, etc, one research
problem could be how to use our modified SM method to visualize these data sets. If
such maps could be generated with reasonable interpretability, they might be used to
discover relationships between data items that may hardly be detected by other methods,
and therefore assist the analysis of the asymmetric data sets in different research and
business disciplines.

In terms of helping detect hidden structures, clustering has been widely used in
the applications of datavisuaization. We have found that the clustering procedures in
Viscovery outperformed the K-means clustering method and the classic SOM method.
We have applied Viscovery to the state-sponsored murder data set and got some
interesting results. Meanwhile, through analyzing 200 public and private colleges with
Viscovery, we have generated several clusters for the public college data set and the
private college data set, respectively. These college clustering results are not quite
similar to Kiplinger’sresults. In practice, there are lots of ranking liststrying to give
readers the idea of which is the best/worst or which is most likely to happen. However,
the ranking lists such as Kiplinger’ s list do not include alternative information that
readers want to look for. Maybe in addition to their origina ranking lists, SOM maps
showing the clustering information should be included as well to better deliver useful

information to readers to help make their decisions.
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