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Data visualization can be used to detect hidden structures and patterns in data sets 

that are found in data mining applications.  However, although efficient data visualization 

algorithms to handle data sets with asymmetric proximities have been proposed, we 

develop an improved algorithm in this dissertation.  

In the first part of the proposal, we develop a modified Sammon mapping 

approach that uses the upper triangular part and the lower triangular part of an 

asymmetric distance matrix simultaneously.  Our proposed approach is applied to two 

asymmetric data sets: an American college selection data set, and a Canadian college 

selection data set which contains rank information.  When compared to other approaches 

that are used in practice, our modified approach generates visual maps that have smaller 

distance errors and provide more reasonable representations of the data sets.  



In data visualization, self-organizing maps (SOM) have been used to cluster 

points.  In the second part of the proposal, we assess the performance of several software 

implementations of SOM-based methods.  Viscovery SOMine is found to be helpful in

determining the number of clusters and recovering the cluster structure of data sets.  A 

genocide and politicide data set is analyzed using Viscovery SOMine, followed by 

another analysis on the public and private college data sets with the goal to find out 

schools with best values.
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Chapter 1

Introduction

In this chapter, we provide background information on data visualization and 

describe the motivation and objectives of our research. 

1.1 Motivation and the Problem of Interest

Data visualization is the process of “representing data as a visual image” (Latham, 

1995) in which an image is created using a combination of points, lines, coordinate 

systems, numbers, symbols, words, shadings, and colors to represent different measured 

quantities (Tufte, 1983).  

Data visualization is often used to make apparent any pattern in a data set that is 

large in size or dimensionality.  For example, analyzing increasing amounts of data, such 

as customer data, to discover hidden patterns is a major problem facing businesses and 

organizations today.  Visualization, together with other data mining techniques such as 

clustering and classification, can be employed to generate a data map that serves as a 

guide and provides the user with insights, i.e., detecting customer purchase patterns.  The 

ability to show patterns attracts decision makers to use data visualization as a tool to get a 
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better understanding of the data set and then make better decisions.  For example, 

consider the problem facing each high-school senior: selecting an undergraduate 

American university or college to pursue a bachelor’s degree.  Students can consult 

rankings in popular publications and reference books such as The Fiske Guide, which 

provides information on 300 universities and colleges.  The information contained in 

these publications and books is not easy to assimilate.  Condon et al. (2002) built a model 

of American universities that enables a student to visualize the data.  Information that 

cannot be revealed in lists and tables, such as similarities between the universities, can be 

directly quantified according to the distances between universities on visual maps.  These 

maps can assist students in identifying similar universities to consider.  

As data visualization receives more and more attention, a variety of methods for 

visualization have been proposed including self-organizing maps (SOM), multi-

dimensional scaling (MDS), and Sammon mapping (SM).  These methods have been 

widely used in data visualization, as they are easy to implement and have modest 

computational requirements.  Our proposed work is closely related to the Sammon 

mapping method, which we will describe in later chapters.  SOM, MDS, and SM usually 

deal with the problems that have symmetric structures, for example, symmetric distance 

matrices.  These methods take the table format of data sets as input, where rows are 

observations and columns are attributes.  MDS and SM also accept a distance matrix as 

input but they require a symmetric distance matrix.  
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A proximity matrix or a similarity matrix contains the pairwise distances or 

similarities between all pairs of data items in a data set.  In a proximity matrix, the 

distances are usually assumed to be symmetric.  However, in practice, there are many 

interesting problems in which asymmetric proximities arise, especially in marketing or 

human behavior surveys. Asymmetric proximity is one type of proximity in which the 

pairwise distances are not symmetric.  For example, in terms of teaching quality, the 

president of university A thinks that university B is the most competitive rival, while the 

president of university B thinks that the closest competitor is university C and not 

university A, and the president of university C thinks that university A is the closest 

competitor.  The corresponding proximity matrix is shown in Table 1.1.  If school j is a 

competitor of school i, then dij  = 1, otherwise, dij  = 0.  Clearly, the matrix is asymmetric, 

i.e. entry (i, j) ≠ entry (j, i) for some i and j, i ≠ j.   

Since visualization methods normally work on symmetric cases, a question that 

needs to be answered is how to visualize asymmetric cases such as the matrix in Table 

1.1.   A visualization method that can handle asymmetry may need to be developed, or 

some modification may need to be made to an existing visualization method.  A simple 

modification could be made by averaging off-diagonal entries to create a symmetric 

matrix.  However, replacing asymmetric distances with an averaged distance alters the 

structure of the data set in a way that may result in a less accurate representation. 

In order to maintain the asymmetric information of the data set, Merino and 

Munoz (2001) developed asymmetry coefficients.  Mathematically, they defined an 

asymmetry coefficient of a data observation as a summation of the standardized 

similarities of the data observation to all of the other data observations (details such as 
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          Competitor
School A B C

A -- 1 0
B 0 -- 1
C 1 0 --

Table 1.1 Asymmetric proximity matrix of schools A, B, and C.

transforming distances to similarities are described in the next chapter).  Merino and 

Munoz incorporated asymmetry coefficients into the MDS and SM objective functions 

and corresponding search procedures.  Their approach dealt with the symmetrized 

distance matrix of data observations.  Based on their computational results, Merino and 

Munoz observed that data observations with large asymmetry coefficients were more 

influential in determining the structure of a map.  However, data observations that are 

similar to many other data observations are usually dominant in forming the structure of a 

visual map, regardless of whether asymmetry coefficients are introduced into the MDS or 

SM methods.  When most of the data observations have similar asymmetry coefficients, 

there is little or no impact the coefficients have on influencing the structure of a map.  

In order to visualize asymmetric cases, we can examine the upper triangular part 

and the lower triangular part of the matrix simultaneously rather than study the 

symmetrized distance matrix derived by averaging corresponding upper and lower entries 

in the asymmetric distance matrix, or arithmetically calculate asymmetric coefficients.  

We expect that the visual maps generated by taking into account the upper triangular part 

and the lower triangular part of the matrix simultaneously are a better representation of 

the asymmetric data, and hopefully produce more insight into the data sets.  For example, 
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we apply our approach to a small 3 × 3 asymmetric distance matrix given in Table 1.2.

We use the GRG Solver, an optimization software developed by Frontline Systems 

(www.solver. com), to solve the small problem in our proposed approach and in one of 

the traditional approaches (i.e., the standard Sammon mapping approach which takes the 

average values of asymmetric parts as input) for comparison.  Our approach seeks to 

optimize a Sammon mapping objective function directly on the whole asymmetric 

distance matrix.  The common approach aims to solve the same optimization problem on 

the symmetrized distance matrix of the asymmetric data.  The results show that our 

proposed approach is better than the one in the common approach (detailed discussions 

are given in Chapter 3) even in this tiny data set with only three data points.  In addition, 

an asymmetric case with ranking information will be analyzed to extend our research on 

visualization of asymmetric problems. 

Once an algorithm is implemented, it is necessary to check that if the algorithm 

works effectively as compared to other algorithms.  Meanwhile, it is helpful to see if the 

algorithm is reliable on different data sets.  We will apply our algorithm to two data sets: 

American college selection data and Canadian college data.  The proximity matrix of 

each data set is asymmetric.  The American college selection data are gathered from the 

Fiske Guide (1999).  Canadian college data are collected from a survey that we 

conducted.  Detailed information about each data set will be given in later chapters.

Another part of our study focuses on applications of data visualization.  

Clustering is such an application of data visualization that is widely used to detect hidden 

patterns 



6

Asymm A B C
A 0 1 3
B 2 0 2
C 3 4 0

Table 1.2 Example of a 3 × 3 asymmetric distance matrix.

that cannot be observed directly from enormous amounts of data.  Several SOM-based 

software implementations for clustering are available either commercially or free of 

charge, such as Som_Pak (1997) and Viscovery (2002).  However, there is little 

information indicating which implementation works better in practice.  In our work, we 

will evaluate the performance of four software implementations of SOM-based clustering 

methods.  Based on our evaluation, we will analyze several applications, such as 

clustering a state murder data set (Harff, 2003) and finding out colleges with best values

(2003, 2004).

1.2 Summary of Objectives

A summary of the research work that has been done is as follows.

Firstly, we developed a new visualization method that uses data with asymmetric 

proximities.

Second, we implemented our visualization method using a gradient descent 

algorithm.
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Third, we applied our method to two data sets: American college selection and 

Canadian college selection and compared our results with the results generated by the 

standard method and the Merino’s method.

Fourthly, we assessed  four SOM-based clustering methods and analyzed

clustering applications: state-sponsored data and college data with the best values.

1.3 Dissertation Organization

In Chapter 2, an overview of the literature on data visualization, including 

multidimensional scaling, Sammon mapping, and self-organizing maps, is provided.  We 

define asymmetric distances and discuss several techniques that are used to handle an 

asymmetric distance matrix for visualization.

In Chapter 3, our modified Sammon mapping algorithm and its implementation 

are described and evaluated.    

In Chapter 4, our modified Sammon mapping method is applied to American 

college selection data.  We give the construction procedures of the data set.  We discuss 

the results and compare our results to results generated by the commonly used standard 

SM method and Merino’s method.

In Chapter 5, problems with ranking information are introduced.  An example is 

given to show the process of constructing a distance matrix that incorporates ranking 

information.  Canadian college selection data is analyzed by using our modified SM 

method.  We discuss our preliminary results and provide insights gained from our work.     
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In Chapter 6, the performances of four SOM-based clustering software 

implementations are evaluated.  We analyze an application (i.e., state-sponsored data) 

using Viscovery.

In Chapter 7, we apply Viscovery to public and private college data to find out 

colleges with best values.  The visual maps of the public college data and the private 

college data are given and the results are discussed.

In Chapter 8, we summarize our research and point out our future work.
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Chapter 2

Literature Review

Data visualization is one technique that can help researchers and business 

decision makers discover patterns in a data set.  Data visualization has received lots of 

attention in the literature.  Many methods (e.g., multidimensional scaling and Sammon 

mapping) and systems have been proposed and implemented in research and business 

areas like biomedical science, marketing, and financial services.

In this chapter, we provide an overview of the relevant literature in data 

visualization.  First, we survey the papers that pertain to data visualization.  Second, we 

examine papers on multidimensional scaling, Sammon mapping, and self-organizing 

maps.  Third, we discuss several approaches dealing with asymmetric proximity data. 
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2.1 Data Visualization  

There are many visualization methods that have been proposed for illustrating 

structures and multivariate relationships among data items.  These methods can be 

classified into two categories: linear visualization methods and nonlinear visualization 

methods.  In this section, we will discuss some of these methods. 

Principle component analysis (PCA) (Hotelling, 1933) is a standard method in 

data analysis.  Principle components are a set of variables that define a projection that 

encapsulates the maximum amount of variation in a dataset and is orthogonal (and 

therefore uncorrelated) to the previous principle component of the same (see Figure 2.1).  

Projection pursuit (Friedman, 1987) tries to show the best visual representation that 

reveals as much of the non-normally distributed structure of the data set as possible.  A 

neural network implementation of this method is given by Fyfe and Baddeley (1995).  

PCA cannot take into account nonlinear structures and projection pursuit cannot 

project the nonlinear structures onto a low-dimensional display if the data set has many 

dimensions and is highly nonlinear.  Several approaches have been proposed to project 

nonlinear, high-dimensional structures onto a low-dimensional space.  The most common 

methods allocate each individual data point onto a lower dimensional display and then 

optimize the display so that the distances between the points are as close as possible to 

the original distances.  These methods differ in the selection of the objective function and 

the optimization approach.

Multidimensional scaling (MDS) refers to a group of methods that use proximities 

among data points to produce a representation of the data set (Kruskal, 1964a; Shepard,  

1962).  The representation consists of a geometric configuration of the points on a map
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Figure 2.1 Example using principle components analysis.

where each point corresponds to one of the data items.  MDS is widely used in 

behavioral, economic, and social sciences to analyze the pairwise proximities of the data 

points (e.g., similarity of brands in a market survey).  MDS is discussed in greater detail 

in a later section.  

Another nonlinear visualization method is Sammon mapping (Sammon, 1969).  

Sammon mapping (SM) is closely related to MDS.  It tries to optimize an objective 

function in order to preserve the relative pairwise distance between data points.  Details 

on MDS and Sammon mapping are provided in Sections 2.2 and 2.3.

Principal curves are a nonlinear generalization of PCA that projects a data set 

onto a nonlinear manifold after a linear manifold of the data set has been generated using 

PCA.  Here, a manifold (or surface) refers to a topological space on which every point 
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has a neighborhood sharing some essential features of the data set (i.e., a sphere is a 

manifold).  Principal curves were first defined as self-consistent smooth curves  (Hastie 

and Stuetzle, 1989) that pass through the middle of a d-dimensional probability 

distribution or data cloud (see Figure 2.2).  Extensions of principal curves use 

multidimensional base functions to construct a nonlinear manifold, such as adaptive 

principal surfaces (LeBlanc and Tibshirani, 1994).  Another popular approach is to use 

variants of the self-organizing map (SOM) algorithm (e.g., apply self-organizing maps to 

extract principal curves and extended principal curves from data (Der et al., 1998)).  The 

self-organizing map is an efficient tool for the visualization of high-dimensional data sets 

(Vesanto, 1999).  

Nonlinear visualization methods are computationally very intensive for large data 

sets.  The triangulation method (Lee et al., 1977) can be used to reduce the computational 

complexity.  An important property of the triangulation method is that the distances to its 

nearest two neighbors can be preserved exactly when inserting a new data item.  Using 

the triangulation method, data items will be projected onto a map one by one and the 

nearest neighbor distances can always be preserved, that is, the generated map is based on 

a subset of distances in the original space.  The projection process is, thus, substantially 

faster than nonlinear visualization methods.  However, the generated map from the 

triangulation method may not be as accurate as the map from nonlinear visualization 

methods since the projection preserves only a part of distances.
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Figure 2.2 Illustration of a principal curve.

2.2 Multidimensional Scaling

2.2.1 Overview

As we mentioned in Section 2.1, multidimensional scaling is a collection of 

visualization methods that project proximity data onto lower dimensional space.  In 

general, the goal of multidimensional scaling is to provide a visual representation of 

proximities in a set of investigated objects.  Proximity data are always represented as 

distances.  For example, in Table 2.1, each entry represents the pairwise distance between 

two buildings. 

To better illustrate the idea of MDS, consider an example that visualizes the 

locations of 10 buildings.  Given the symmetric matrix of distances among 10 buildings 

(see Table 2.1), MDS produces the map given in Figure 2.3.
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A B C D E F G H I J
A 0 14.5 14 1 12.5 17.5 12 11.5 16.5 12
B 14.5 0 1 14.5 7 9.5 5.5 5 9.5 11.5
C 14 1 0 14 6 8.5 4.5 4 8.5 11.5
D 1 14.5 14 0 12.5 17.5 12 11.5 16.5 12
E 12.5 7 6 12.5 0 9.5 3 2 9.5 10.5
F 17.5 9.5 8.5 17.5 9.5 0 7.5 7.5 1.5 11
G 12 5.5 4.5 12 3 7.5 0 1 7.5 11
H 11.5 5 4 11.5 2 7.5 1 0 7.5 11
I 16.5 9.5 8.5 16.5 9.5 1.5 7.5 7.5 0 10.5
J 12 11.5 11.5 12 10.5 11 11 11 10.5 0

Table 2.1 Matrix of distances among 10 buildings.

A

B C

D

E

F

GH

I

J

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

-8 -6 -4 -2 0 2 4 6 8 10

Figure 2.3 Example of multidimensional scaling.
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In this example, the relationship between the original distances among data points 

and resulting distances shown on the map is positive, that is, the smaller the original 

distance, the closer the resulting distance between points, and vice versa.  If the original 

proximity data had been represented as similarities, the relationship would have been 

negative which means the smaller the similarity between two data items, the farther apart 

in the map they would be.  In our study, proximity data are represented as distances 

among data items.

2.2.2 Problem definition and stress function

From a slightly more technical point of view, for a set of observed distances 

between every pair of N items, multidimensional scaling methods aim to find a visual 

representation of the items in lower dimensional space such that the resulting distances 

among items match the original distances as closely as possible.  The metric version of 

MDS aims to find configurations for data items where the resulting distances are as close 

as possible to the original distances of data items.  Nonmetric MDS tries to keep the rank 

orders of the distances among data items as close as possible to the original rank orders. 

We consider only nonmetric MDS in this dissertation.

The mathematical definition of MDS now follows. Given N items and a 

corresponding distance matrix where entry dij  is the pairwise distance between data items 

i and j, MDS seeks to find vector configurations ],...,1:[* pkxx iki == ∗ and 

],...,1:[* pkxx jkj == ∗  for data items i and j (i, j = 1,…,N, i ≠ j) in a p-dimensional space 

(p ≤ N – 1), such that the Euclidian distance between ∗
ix  and ∗

jx
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approximates the corresponding distance ijd , for all pairs of data items i and j. 

Since the proximity matrix is assumed to be symmetric, it is sufficient to take into 

account each pair of data items i and j just once.  However, it may not be possible to 

perfectly represent the original distances (Johnson and Wichern, 1998) in a given lower 

dimensional space.  Therefore, a numerical measure is needed to indicate the closeness 

and the measure is called a stress function.  

Kruskal’s stress (Kruskal, 1964a), known as Stress formula 1 or Stress 1 for short, 

measures the extent to which a representation deviates from a perfect match and is 

defined as

∑
∑

<

<

−

ji
ij

ji
ijij

d

dd

2

2* )(

  .

If the stress is zero, then the resulting pairwise distances are exactly the same as 

the pairwise distances in the original distance matrix.   However, in order to be useful, it 

is not necessary to require a zero stress value as long as a certain amount of distortion is 

tolerable.  Kruskal (1964a) provides guidelines for the amount of stress to tolerate (see 

Table 2.2).

Multidimensional scaling has been applied in many areas--the literature is vast 

and dispersed over many periodicals and books.  We will not attempt to give an overview 

of the developments to date, and refer the reader elsewhere for details (Borg and 

Groenen, 1997; Cox and Cox, 1994).
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Stress Goodness of fit

0.2 Poor

0.1 Fair

0.05 Good

0.025 Excellent

0 Perfect

Table 2.2 Stress guidelines suggested by Kruskal (1964a).

2.3 Sammon Mapping 

2.3.1 Overview

Frequently, a Sammon map is used for data exploration.  A practical area of 

Sammon mapping is in the visualization of protein structures based on measures of 

similarity between molecules.  For example, Sammon maps have been used to analyze 

protein sequence relationships (Agrafiotis, 1997).  

Like other MDS visualization methods, SM deals with proximity data.  We are 

given distances between every pair of data items (we possibly have no direct access to 

any high-dimensional data but we do have access to a measure of distances between 

every two data items).  SM tries to reconstruct the original data based solely on the given 

distance matrix.  For example, given the distances between two buildings, SM can be 

used to construct a map for the coordinates of the building themselves.  A demonstration 

of SM is presented in Figure 2.4 using the distance matrix shown in Table 2.1.  
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Figure 2.4  Sammon map of the 10 building.

2.3.2 SM algorithm

SM is an unsupervised nonlinear method that tries to preserve relative distances 

(Lerner et al., 1998).  Here “unsupervised” means no targeted information or outcome to 

predict.  To preserve the inherent structure, the algorithm that generates a Sammon map 

employs a nonlinear transformation of the observed distances among data items when 

mapping data items from a high-dimensional space onto a low-dimensional space. 

If we denote the distance (usually Euclidean distance) between two data items i

and j, i ≠ j, in the original dimensional space by ijd  and the distance in the required 

projected space by '
ijd , the error function of SM is given by



19

∑∑∑ ∑ = +=

= +=

−
=

n

i

n

ij ij

ijij

n

i

n

ij
ij

d

dd

d
E

1 1

2'

1 1

)(1
  .

In the error function E, the smaller the error value, the better the map we get.  

However, in practice, we are often unlikely to obtain perfect maps especially when the 

data set is large and in high-dimensional space.  Therefore, approximate preservation is 

the likely result when we project high-dimensional data onto a low-dimensional plane.    

The error function of SM is similar to Kruskal’s S stress function (see Section 

2.2.2) except that each squared difference of distances is divided by the corresponding 

input distance rather than the squared input distance.  In other words, the only difference 

between SM and MDS is that the errors in distance preservation are normalized with the 

distance in the original space.  Because of the normalization, SM places greater emphasis 

on smaller distances rather than on larger distances; this is different from Kruskal’s MDS 

which treats small and large distances roughly the same.  

2.3.3 Implementation

SM can also be viewed as an optimization problem and its error function can be 

minimized using several available techniques.  Sammon solved the minimization problem 

using steepest gradient descent that is also referred to as pseudo-Newton minimization 

(Becker and Le Cun, 1989).  This optimization procedure can be achieved by iteratively 

using the following rule

2'
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Note that '
ikx is the kth coordinate of the position of data item i in the required 

projected space, and α is called “magic factor” which controls the step size of updating 

coordinates.

We point out that Sammon (1969) suggested a value of 0.3 to 0.4 for α.  However, 

since α is experimentally determined, the suggested value may not be optimal for all 

problems.  Therefore, multiple experiments are necessary in order to find an appropriate 

value of α to minimize E.  

Because a second derivative is used in the denominator, the update rule can be 

unstable at some points where the second derivative is very small.  To avoid the 

instability, an alternative minimization technique, called normal gradient descent, has 

been used, where

)(

)(
)()1(

'
''

tx

tE
txtx

ik
ikik ∂

∂−=+ α   .

When employing the gradient descent procedure to search for a minimum error 

value, a local minimum in the error surface could be obtained.  Therefore, several 

experiments with different random initializations may be necessary.  Another problem is 

the computational requirement of SM is O(n2).  The pairwise distances and the 

derivatives have to be computed each iteration.  Therefore, as the number of data items 

increases, the computational time increases dramatically.  To lower the computational 

overhead, the Hamming metric has been used as a distance measure instead of the 

Euclidean metric (White, 1972).  This showed some improvement in the computational 

efficiency, but the resulting maps could be distorted when the input space is the 

Euclidean space (Chien, 1978) and the interpretation becomes more complex.  
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So far, all of the problems that we have discussed are assumed to have symmetric 

proximity data, that is, the distance between data items i and j denoted by dij  is exactly 

same as the distance between data items j and i denoted by dji .  However, in practice, 

there are lots of interesting problems that have asymmetric proximity data, which means 

that the distance dij  may be different from the distance dji .  

To our knowledge, there are few papers that discuss the visualization of 

asymmetric proximity data sets.  One of our major research goals is to develop a method 

that visualizes asymmetric proximity data sets.  Our objective function and search 

procedure for implementing SM with asymmetric data are discussed in Chapter 3.
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2.4 Self-organizing Maps

2.4.1 Overview

The self-organizing map (SOM) invented by Kohonen in the early 1980s is a type 

of neural network based on the idea of self-organized or unsupervised learning (Kohonen, 

1995).  This means that the algorithm has no targeted information or outcome to predict.  

Consequently, SOMs are ideal for clustering where no requirement of output fields is 

defined.  However, SOM can also be employed to visualize high-dimensional data items 

(Flexer, 1999).

Being a stable and flexible method for clustering and visualization, SOM has been 

used for a wide range of purposes, ranging from controlling industry processes to 

analyzing gene data (Kaski et al., 2001).  Many applications of SOM are given in the 

survey by Oja et al. (2003).

An illustration of the mechanism of SOM is shown in Figure 2.5.  The 33×  map 

consists of two layers: the input layer, and the output layer, which is often referred to as 

the output map.  All the input neurons are connected to all the output neurons, and 

weights are assigned to each connection (not shown). 
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Figure 2.5  Illustration of a self-organizing map.

2.4.2 SOM algorithm

The self-organizing map trains by locating data items, one by one, to the output 

map.  When an input data item is presented to an output neuron, its characteristics are 

compared with those of all output neurons, which are given initial weights.  The neuron 

with the characteristics that are most similar to that of the input data item is chosen to 

represent the input data item; at the same time, the surrounding neurons of this chosen 

neuron are adjusted to be more similar to the chosen neuron in order to attract input data 

items similar to the mapped data item.  This chosen neuron has a better chance, as 

compared to other neurons, of representing input data items that have similar patterns, 

and its neighbors are gradually able to represent similar input data items.  

Each input data item is attracted to one and only one neuron, while each neuron 

can attract one or more data items.  Each neuron i has a reference vector mi = [mi1, …, 

min], which is used to represent an input data item, where n is the dimensionality of the 

Input layer

Output layer
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input space.  When locating an input data item x on the output map, the neuron w is the 

winner selected based on the minimum Euclidean distance, that is,

{ }i
i

mxw −= min ,  where ..  is Euclidean distance.

During the training process, the winning neuron, also called the best matching 

unit, and its neighbors are allowed to modify their reference vectors as close to the 

current input data item as possible.  The general form of the modification is given by

)]()()[()()()1( tmtxthttmtm iwiii −+=+ α  , 

where )(tα  is the learning rate that controls the training speed and )(thwi  is the 

neighborhood function centered on the winning neuron w (this function indicates the 

radius of neighborhood set) and )(tx  is the input at time t.  Initially, the neighborhood 

function is set to a large value; this value decreases monotonically with time, as does the 

learning rate.  

2.4.3 SOM software packages

In this section, we focus on two SOM software packages that are publicly 

available: SOM_Pak and Viscovery SOMine.

SOM_Pak was developed at the Helsinki University of Technology.  It is a 

command line program and the interface is not user friendly; for example, there is no 

simple option for executing repetitive commands and the user has to type in each 

command.  SOM_Pak can be downloaded for free; see the Web site at http://www.cis. 

hut.fi/research/som_pak/.  A screenshot of SOM_Pak is shown in Figure 2.6. 

Viscovery SOMine was developed by Eudaptics (www.eudaptics.com).  An 

important advantage of SOMine is that it allows the user to visualize and analyze a data 
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Figure 2.6  Sammon map of a distance matrix of 20 data items produced by SOM_Pak.  

set without any prior statistical knowledge of the data set.  The software provides 

suggestions as to which data items should be grouped together.  The user can use or 

modify several parameters to control data processing.  A screenshot of a Viscovery 

SOMine map is shown in Figure 2.7.
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Figure 2.7  Screenshot of Viscovery.  Three groups (As, Bs, and Cs) are shown in the 
map; the dark lines separate groups.
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2.5 Asymmetric Proximity

2.5.1 Overview

Proximity refers to the similarity (sometimes also refers to dissimilarity or 

distance) between two data items.  If the proximity between two data items is measured 

in Euclidean space (i.e., 22 )()( jijijiij yyxxdd −+−== ), then the proximity is 

symmetric.  However, the proximity between data items or objects might not be 

symmetric.  When objects are compared from different perspectives, for example, object 

a is said similar to object b in terms of color closeness, while object b is said dissimilar to 

object a because of their different shapes, the proximity relationship between these two 

objects is asymmetric, i.e., baab dd ≠ .

Asymmetric proximity data arises in a number of diverse research areas such as 

marketing, psychology, sociology, and information retrieval.  Asymmetric proximity data 

can usually be found in frequency matrices.  For example, brand switching data has been 

utilized in marketing to examine the structure of competition within a particular product 

class.  An example of car-switching data is given in Table 2.3.  The rows represent cars 

last owned and the columns reveal cars currently owned.  Out of all customers, 40 who 

last owned a Ford switch to a Honda.  Other examples of asymmetric proximity data are 

migration rates between countries, frequencies of journal citations, word relationships in 

text documents, etc.  

In the past, especially from the late 1970s to the early 1990s, analysis of 

asymmetry in proximity data had been one of the most provocative research topics in 

psychological research areas, in contrast to traditional MDS approaches.  Researchers 

realized the psychological relevance of asymmetry in proximity data.  
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BMW Ford Honda Toyata GM
BMW 180 40 20 0 10
Ford 20 343 40 30 70

Honda 10 20 120 10 20
Toyata 30 20 30 70 10

GM 10 20 0 20 250

Table 2.3 An example of car switching data.

Not surprisingly, many approaches for asymmetric proximity data were proposed 

in the psychological area.  Tversky (1977) initially challenged the validity of the 

traditional spatial model (i.e., MDS model) regarding the observed violation of 

symmetry, minimality, and triangle inequality conditions of the metric axioms in actual 

data.  Krumhansl (1978) also discussed the problems of traditional spatial model and 

proposed her distance-density model as an alternative to Tversky’s (1977) feature-

matching model.  Other researchers proposed many different treatments of asymmetric 

proximity data.  However, there has not been found any model that is not only 

mathematically sound but also practically applicable and easily interpretable.

2.5.2 Mathematical modeling for asymmetric proximity data

As many relationships are intrinsically asymmetric (Tversky, 1977) and 

increasing attention has been paid to asymmetric proximity data, a number of approaches 

have been developed to analyze asymmetry in proximity data.  Most of these can be 

classified into three categories. 
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Since traditional approaches represent relationships between data items 

symmetrically, asymmetry is discarded as noise with respect to the symmetric part of the 

proximity data.  The symmetric part is extracted and the data are symmetrized.  One 

common approach to do this is to average corresponding off-diagonal entries (Kruskal, 

1964b), i.e., substitute ijd  by 'ijd , where 
2

' jiij
ij

dd
d

+
= , and then apply the symmetric 

model, i.e., traditional MDS.  For example, Tversky and Hutchinson (1986) analyzed 39 

asymmetric proximity data by averaging.  Another way of symmetrization is proposed by 

Levin and Brown (1979) who derived row multiplicative constants from two least square 

procedures to scale rows or columns of the asymmetric matrix to maximize symmetry.  

However, symmetrization of asymmetric proximity data may ignore some important 

information brought by asymmetry, and the symmetric solution found in the dimensional 

spaces does not depict anything about the asymmetry.  

Approaches in the second category aim to capture the information of asymmetry 

in addition to the symmetric structure of the data.  All major models in this category 

involve a symmetric component and an asymmetric component.  Krumhansl (1978) 

specified a distance-density model in which object A and object B are represented in 

projected low dimensional space, the similarity between A and B can be interpreted not 

only by the interpoint distance but also the density of points in the surrounding 

configuration.  In other words, asymmetries are accounted for through points around A

and B.  Saito (1986) developed an MDS approach in which estimated constants 

considered as density constants are added to the symmetric configuration in relation to 

the distance-density model.  Different from the distance-density model, Constantine and 

Gower proposed an approach partitioning an asymmetric matrix into two matrices: S
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(symmetric) and N (skew-symmetric; i.e., nij = − nji).  A singular value decomposition of 

N was performed to obtain a least-squares fit to be plotted in low dimensional space (i.e., 

in two dimensions) and an interpretation of asymmetry was provided.  Weeks and Bentler 

(1982) specified a model in which similarity is represented as distance, and traditional 

additive constants are combined to reflect asymmetries.  Description of other models for 

asymmetric proximity data can be found in the paper of Zielman and Heiser (1996) in 

which most of mentioned models for asymmetric proximity can be decomposed into a 

symmetric part and a completely asymmetric part (i.e., skew-symmetry).  These models 

are mathematically elegant and the resulting dimensional configurations are interpretable. 

However, these models assume an underlying symmetric component of the data but the 

assumption might not fit every case.  Besides, software for computing the model 

parameters is not available (Zeilman and Heiser, 1996).    

Another category of approaches for scaling asymmetric proximities is a graph-

theoretic representation of asymmetric proximity data (Cunningham, 1978; Hutchingson, 

1989; Klauer, 1989). In these models, asymmetries are represented as directed distances.  

These models do not require an underlying symmetric relationship.  The differences 

between these graphic models are the representation type, for example, Cunningham 

(1978) employed directed trees as representations of proximities, and Hutchingson (1989) 

used networks to represent proximities data.  One disadvantage of a graph representation 

is that the representation is limited to small data sets. Graph representation of large data 

sets seems messy because of a large number of arcs. 
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2.5.3 Other approaches of analyzing asymmetric proximity data

In addition to the above three categories of approaches of modeling asymmetric 

proximity data, there are other approaches sharing some features of the second and the 

third categories (Rodgers and Thompson, 1992; Merino and Munoz, 2001).  Rodgers and 

Thompson proposed an approach in which asymmetric proximity data have been 

preprocessed using the idea of seriation before applying MDS to the data.  Seriation is a 

procedure that orders data items on a continuum in order to maximize the sum of the 

elements above (or below) the main diagonal (Baker and Hubert, 1977).  Rodgers and 

Thompson used the seriation algorithm and ordered the data items according to number 

of dominances over other data items.  They defined dominance as: if sij > sji, then i

dominates j.  The data items that consistently dominate other data items are placed lower 

in the ordering, i.e., the data item that dominates all other data items is placed on the 

bottom row in the below diagonal triangular.  MDS is fit to the ordered above diagonal or 

below diagonal triangular that explicitly exhibits the dominance relationships of data 

items and the resulting MDS configuration contains a directed distance.  

Merino and Munoz (2001) introduced another approach to scaling asymmetry 

proximity data in which asymmetry coefficients derived from the skew-symmetry matrix 

are attached to MDS objective functions and MDS scaling was performed on the 

symmetrized proximity data.  An asymmetry coefficient is defined as a summation of the 

standardized similarities of a data item to all other data items.  Intuitively, data items that 

are similar to more data items will have larger asymmetry coefficients.  In some sense, 

asymmetry coefficients convey the dominance information of data items, and data items 

with large asymmetry coefficients determine the structure of the configuration.  
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Empirically, it shows that the most dominant data items have a tendency to be placed in 

the center of a configuration, and this phenomenon may be interpreted as indirect 

confirmation of the usefulness of the Euclidean space, which recognized the central role 

of the dominant data items (Tversky and Hutchinson, 1986).  

The approaches proposed by Rodgers & Thompson (1992), and Merino & Munoz 

(2001) are more of an exploratory data analysis and less specific asymmetric models than 

the methods described above.  The approach by Rodgers & Thompson is flexible and 

tractable, i.e., the ordered triangular of data items, and substantive information is more 

accessible to data analysts.  Merino and Munoz’s approach suggests that it might be 

worth incorporating asymmetry coefficients to improve the visual configuration (Merino 

and Munoz, 2001).  However, both approaches have some disadvantages.  Since Rodgers 

and Thompson only considered the maximized triangular part (i.e., below the diagonal), 

some important information contained in the other triangular part would be lost, 

especially if the other triangular part contained many non-zero values.  In Merino and 

Munoz’s approach, the definition of asymmetry coefficient might not be suitable in every 

case, for example, if most of the data items have approximately equal asymmetry 

coefficients, i.e., defined as sum of row (or column) similarities, then the defined 

coefficients may not reveal dominant information.  In this case, it might be better to

define the coefficient as some function of dominance to reveal the centrality status.  

Details on centrality are in Tversky and Hutchinson’s paper (1986). 

From a visualization perspective, the visual configurations generated from the 

upper triangular and lower triangular parts of an asymmetric proximity matrix are 

implicitly different.  For example, there are two SM maps generated by using the upper 
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triangular part (see Figure 2.8) and the lower triangular part (see Figure 2.9), 

respectively, of the asymmetric distance matrix given in Table 2.4.  It is not convincing 

that maps generated from the upper triangular part are better than maps generated from 

the lower part, or vice versa.  In addition, if there are no substantive reasons to assume 

that the underlying relationships between data items are symmetric, a natural way to 

visualize asymmetric proximity data is to simultaneously take into account the 

asymmetric parts, i.e., the upper triangular part and the lower triangular part of the 

proximity matrix.  To assess the quality of maps, we can quantify the rank preservation 

by comparing the generated map results with the order relationships of the original 

asymmetric dataset.  Chapter 3 discusses our proposed modified SM method and 

measures for quality assessment.
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B1 A2 A3 B4 A5 A6 A7 A8 A9 C10
B1 0 9 8 1 5 15 4 3 13 4
A2 20 0 1 20 6 10 4 4 8 3
A3 20 1 0 20 5 9 3 3 7 3
B4 1 9 8 0 5 15 4 3 13 4
A5 20 8 7 20 0 14 3 2 12 1
A6 20 9 8 20 5 0 2 3 1 2
A7 20 7 6 20 3 13 0 1 11 2
A8 20 6 5 20 2 12 1 0 10 2
A9 20 11 10 20 7 2 4 5 0 1
C10 20 20 20 20 20 20 20 20 20 0

Table 2.4 Asymmetric distance matrix taken from the American college selection data 
set.
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Figure 2.8  Sammon map of the upper triangular matrix.

Figure 2.9  Sammon map of the lower triangular matrix.
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Chapter 3

Constructing Sammon Maps from Asymmetric Data

Sammon maps are one of the most widely used tools in visualization and 

clustering.  Sammon mapping (SM) projects high-dimensional data onto a 2-dimensional 

output map.  A Sammon map is usually created for proximity data with a symmetric 

distance matrix.  However, there are many applications (e.g., American college selection 

data) that have asymmetric distance matrices.  In this chapter, we discuss the use of SM 

to visualize asymmetric proximity data sets.  We describe the objective function, the 

associated update rule, and our implementation of SM for proximity data with an 

asymmetric distance matrix.
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3.1 Modification of Sammon Mapping Method

SM tries to minimize the following objective function
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where ijd  denotes the input distance (usually Euclidean distance) between data items i

and j, i ≠ j, i, j = 1, ..., n, in the original space.  '
ijd  denotes the output distance between i

and j in the mapped D-dimensional space and ∑
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decision variables, i = 1,…, n−1, j = i+1,…, n, k = 1,…, D.  Note that only half of all 

entries in the distance matrix are taken into account because the distance matrix is 

assumed to be symmetric.

To minimize the objective function E, Sammon used the steepest gradient descent 

procedure to search for a minimum value of E.  For convenience, the updating rule for his 

procedure is shown again as  
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where ikx is the kth coordinate of the position of i in the mapped space and α is the “magic 

factor” (Sammon, 1969).  The magic factor is a parameter (Apostol and Szpankowski, 

1999) that controls the step size for configuration update.  Its value is determined 

experimentally.  It is treated as a constant over all iterations.

The objective function (1) and the associated search procedure work well when 

the distance matrix is symmetric.  However, problems arise when the distance matrix is 
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asymmetric.  Since the objective function E assumes that the input distance matrix is 

symmetric, it is inappropriate to use an asymmetric distance matrix as the input.  To 

overcome this problem, one simple technique is to symmetrize asymmetric distances by 

simply averaging, that is, replacing the entry dij with (dij  + dji)/2.  Suppose that there are 

three data points a, b, c in an asymmetric distance matrix, and their pairwise distances 

are: in the upper triangular part, da,b > da,c, and in the lower triangular part, db,a < dc,a.  

Therefore, it is uncertain that the distance between a and b is greater or less than the 

distance between a and c.  Using symmetrized distances, the uncertainty of the order 

relationships can be resolved.  However, Sammon maps generated from symmetrized 

distances will lose the asymmetry information (Merino and Munoz, 2001).  

To generate maps that better represent and help visualize asymmetric proximity 

data sets, it is natural to consider the original asymmetric distance matrix instead of the 

symmetrized distance matrix in the objective function.  We would like to account for the 

upper triangular portion and the lower triangular portion of the asymmetric distance 

matrix simultaneously in the optimization process.  

The objective function that we propose has two parts denoted by U and L.  The 

first part (U) takes into account the upper triangular part, while the second part (L) deals 

with the lower triangular part of the original asymmetric distance matrix.  Our proposed 

objective function, denoted by 1E , is defined by
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constrainted by xik, xjk ≠ 0, i, j = 1,…,n, k = 1,…,D.

xik, xjk are decision variables and represent kth coordinates of data items i and j in the 

mapped D-dimensional space.  

By using U and L, we seek to obtain a configuration of data items such that the 

structures in the upper triangular part and the lower triangular part can be considered 

separately.  We will use the steepest gradient method as the search procedure.

Let )(1 tE denote the error value at tth iteration and )(tU  and )(tL  denote the error 

values of the upper triangular part and the lower triangular part, respectively.   Let '
ijd (t) 

denote the distance between i and j at the tth iteration, that is, 
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where MF stands for “magic factor”, and the first derivative is
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Note that in the update rule, no two points are allowed to be identical.  This prevents the 

partial derivatives from “blowing up.”  

The minimization problem in (3) is a nonlinear optimization problem and is non-

convex (Klock and Buhmann, 1999).  Therefore, we cannot guarantee finding the global 

minimum.  The best we can do is to obtain a local minimum from each starting solution.  

We use the GRG software (2004) to solve the small asymmetric distance matrix given in 

Table 3.1 with our proposed objective function (3).  Two sets of random starting 

configurations are used as initial coordinates for these three data points.  Listed in Tables 

3.2 and 3.3 are resulting configurations of three data points corresponding to two 

different sets of random starting configurations.  The resulting objective function values 

are given in Tables 3.2 and 3.3.  Meanwhile, we use GRG to solve the same asymmetric 

problem in the common approach that takes symmetrized distances as inputs.  In Tables 

3.4 and 3.5, we show the results of configurations and objective function values obtained 
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in the common approach.  Since it is an optimization problem seeking a minimum value 

for the SM function, it is better to get smaller resulting objective function values.  The 

shown 

Asymmetric A B C
A 0 1 3
B 2 0 2
C 3 4 0

Table 3.1 Asymmetric distance matrix of three data points.

Point x1-coordinate x2-coordinate
A 0.270706143 0.159258481
B 0.812893328 1.377376338
C 3.26577432 0.331200098
Objective Function Value 0.066666667

Table 3.2 Results in our proposed approach with random starting point 1.

Point x1-coordinate x2-coordinate
A 3.481685023 4.95005622
B 2.987622292 6.188468288
C 5.448716802 7.215177319
Objective Function Value 0.066666667

Table 3.3 Results in our proposed approach with random starting point 2.

Point x1-coordinate x2-coordinate
A 0.331987222 0
B 0.289836968 1.499407704
C 3.214502644 0.831327182
Objective Function Value 0.075000006

Table 3.4 Results in the common approach with random starting point 1.
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Point x1-coordinate x2-coordinate
A 3.505923937 4.963893963
B 2.008518266 5.052079549
C 2.927993608 7.907699703
Objective Function Value 0.075000012

Table 3.5 Results in the common approach with random starting point 2.

objective function values generated by our approach are smaller than those generated by 

the common approach.  This confirms our conjecture that our proposed approach 

performs better than the common approach in visualizing asymmetric problems, at least 

from the perspective of optimization.

3.2 Implementation of the Modified SM Method

In this section, we discuss the implementation procedures and provide small 

examples to illustrate them.  We discuss problems that we encountered when 

implementing the modified Sammon mapping method.  As illustrated in the previous 

section, GRG can be used to solve asymmetric problems.  However, as the size of the 

asymmetric problem increases, it becomes burdensome to formulate the proposed 

objective function and the computational time increases significantly.  A good alternative 

to GRG for solving asymmetric problems is C/C++.  C/C++ is a commonly used software 

for coding. It is machine portable and requires only a small amount of changes to run on 

other computers.  It is very fast, almost as fast as assembler.  It allows structured 
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programming and is very flexible.  It is suited to large and complex problems.  Therefore, 

we implement the proposed modified SM method in C/C++.

We use random values as a starting configuration and employ the steepest 

gradient method as an optimization procedure to generate maps for an asymmetric 

distance matrix.  If there is no improvement in the value of the objective function after a 

certain number of iterations, then the algorithm is considered converged and the resulting 

configuration is obtained to visualize the asymmetric distance matrix.  Since the magic 

factor is experimentally determined, multiple experiments are necessary to find an 

appropriate value.  We determined from the sensitivity analysis that the recommended 

magic factor of 0.4 is a good choice in our study for updating the configuration.  The 

corresponding sensitivity analysis is discussed in the next chapter.

We illustrate our procedure with a small example.  The data set denoted by 30A is 

an asymmetric distance matrix for 30 schools taken from the American college selection 

data set of 100 schools that was constructed using information provided in The Fiske 

Guide (Condon et al., 2002).  This data set contains pairwise distances between each pair 

of 30 American colleges (see Table 3.6).  For example, the distance between A5 and A19 

is not symmetric, that is, dA5, A19 = 11 and dA19, A5 = 6.  In this data set, our resulting 

Sammon map provides us with a visualization of the asymmetric data set (see Figure 3.1).  

In Table 3.7, we give the symmetrized distances of this data set, for example, the entry of 

dA5, A19 equals the entry of dA19, A5, which is the average value of these two entries in the 

asymmetric distance matrix.  Figure 3.2 is a Sammon map generated by the standard 

Sammon map with the symmetrized distances.  It is obvious that there are some 

differences between these two Sammon maps.  For example, the distances between pairs 
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Table 3.6 Asymmetric distance matrix of 30 American colleges.



45

Table 3.7 Symmetrized distance matrix of 30 American colleges.
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Figure 3.1  Sammon map of the asymmetric distance matrix for data set 30A generated
by the modified SM method. 

Figure 3.2  Sammon map of the symmetrized distance matrix for data set 30A generated 
by the standard SM method.
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of the triplet A24, A45, and A89 are close to each other in the original asymmetric 

distance matrix, where this relationship ideally need be visualized as an equilateral 

triangular in the map.  This relationship is better represented in the map given by the 

modified SM method than in the map given by the standard SM.  In Chapter 4, we will 

compare Sammon maps generated by different SM methods and discuss the differences 

between them and give our tentative recommendation of choosing a better visualization 

map.
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3.3 Performance Measurements of Sammon Maps

In order to assess the quality of maps produced from asymmetric distance data, 

we introduce two performance measures.   The first is the distance error that measures the 

extent to which the pairwise distances projected on the map deviate from the original 

pairwise distances.   The distance error function, denoted by DE, is defined by

∑
≠

−
=

ji ij

ijij

d

dd
DE

2' )(
   ,

where ijd  is the original distance and '
ijd  is the projected distance.  The smaller the value 

of DE, the better the map.  

The second measure is an order preservation coefficient that indicates how well a 

map preserves the distance order relationships of the original asymmetric data.  In Table 

3.8, we give a small asymmetric distance matrix.  The pairwise distance between two 

data items may be very different; for example, we see dab = 1 while dba = 2.  Since that 

dab < dac and dba < dca, the distance between a and b is less than the distance between a

and c.  If a Sammon map A preserves more order relationships for an asymmetric distance 

matrix than Sammon map B, then A is said to be more accurate than B.  We are concerned 

about a map’s ability to preserve order relationships.  Our proposed order preservation 

measure, denoted by OP, is defined by,

dataasymmetric theofipsrelationshofnumber  

preservedipsrelationshofnumber  =OP    .

Note that the order relationship can be uncertain.  In Table 3.8, we see that dab< 

dcdand dba > ddc.  Therefore, it is incomparable if the distance between a and b is greater 

than the distance between c and d on the projected map.  
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a b c d
a 0 1 2 3
b 2 0 1 9
c 5 7 0 3
d 6 8 1 0

Table 3.8 Asymmetric distance matrix of four data points.

In Table 3.8, consider the four data items (a, b, c, d) and the twelve non-zero 

distance entries (six entries are in the upper triangular part of the matrix and six entries 

are in the lower triangular part of the matrix).  The total number of relationships is 15, 

which is given by 6(6-1)/2.  In Table 3.9, we provide all of the order relationships of the 

asymmetric distance matrix given in Table 3.8.  If six order relationships are preserved in 

a Sammon map, the order preservation coefficient equals 40% (that is, 6/15).  

If a Sammon map exhibits greater accuracy than another, then it should have a 

smaller distance error and a larger order preservation value.  We use these two measures 

to assess the quality of Sammon maps in our applications.
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dab < dac and dba < dca Distance(a, b) < Distance(a, c)
dab < dad and dba < dda Distance(a, b) < Distance(a, d)
dab= dbc but dba < dcb Distance(a, b) ≤ Distance(b, c)
dab< dbd and dba < ddb Distance(a, b) < Distance(b, d)
dab< dcd but dba > ddc Distance(a, b) ? Distance(c, d)
dac< dad and dca < dda Distance(a, c) < Distance(a, d)
dac > dbc but dca < dcb Distance(a, c) ? Distance(b, c)
dac< dbd and dca < ddb Distance(a, c) < Distance(b, d)
dac< dcd but dca > ddc Distance(a, c) ? Distance(c, d)
dad> dbc but dda < dcb Distance(a, d) ? Distance(b, c)
dad < dbd and dda < ddb Distance(a, d) < Distance(b, d)
dad= dcd but dda > ddc Distance(a, d) ≥ Distance(c, d)
dbc< dbd and dcb < ddb Distance(b, c) < Distance(b, d)
dbc< dcd but dcb > ddc Distance(b, c) ? Distance(c, d)
dbd> dcd and ddb > ddc Distance(b, d) > Distance(c, d)

Question mark (?) denotes that the relationship between the distances is incomparable.

Table 3.9 Order relationships.
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Chapter 4

Visualizing American College Selection Data

4.1 Description of the Data Set

The Fiske Guide (Fiske, 1999) is a well-known publication that has been used for 

nearly 20 years to help students and parents select the right college.  In the 2000 edition 

of The Fiske Guide, information on tuition cost, SAT scores, social life, and quality of 

life has been provided for over 300 colleges and universities in the United States.  The 

Fiske Guide also lists a school’s overlaps, that is, the major competitors to which 

applicants are also applying in greatest numbers.  The overlaps provide students and 

parents with possible alternatives when selecting a school.  For example, the overlaps of 

the University of Pennsylvania are Harvard, Princeton, Yale, Cornell, and Brown.  

Students who applied to the University of Pennsylvania also applied to those five schools.  

However, the overlaps of Harvard University -- Princeton, Yale, Stanford, MIT, and 

Brown -- do not include the University of Pennsylvania.  The overlaps of two schools are 

not necessarily symmetric. 

The American college selection data set is derived from the overlap data of 100 

schools in The Fiske Guide.  This data set was constructed by Condon et al. (2002).  

There were four steps involved in the construction process: building an adjacency matrix, 
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constructing a directed graph, computing distance measures, and modifying the distance 

matrix.  

In the first step, Condon et al. created a 100100 ×  0-1 asymmetric adjacency 

matrix S for 100 schools, where entry sij  = 1 (row i and column j) indicates that school j is 

an overlap of school i.  For example, in Table 4.1, we show an 66 ×  adjacency matrix for 

six universities (Brown, Cornell, Harvard, MIT, Penn, and Stanford).  The entry in the 

Penn row and the Harvard column is 1, that is, Harvard is an overlap of Penn.  In the 

second step, Condon et al. converted the adjacency matrix S to a directed graph with 100 

nodes (one node for each school) and a directed arc for each non-zero sij  entry, where i is 

the start node, j is the end node, and the directed arc connects i and j.  In Figure 4.1, we 

converted the 66 ×  adjacency matrix, which is shown in Table 4.1, into a directed graph 

with six nodes.  We see that there is a directed arc starting at the Penn node and ending at 

the Harvard node. 

In the third step, Condon et al. set the distance of an arc in the directed graph to 

one and computed the all-pairs shortest path distance matrix T, where each entry tij  is 

calculated as the shortest distance from node i to node j.  In the final step, the authors 

modified the distance matrix for disconnected nodes, that is, they set each entry tij  for a 

disconnected pair to a value V that is greater than the longest distance in the matrix.  It is 

necessary to carefully choose the value V -- a large value of V will push the connected 

points closer together so that it will be difficult to observe the inner relationships.  A 

small value of V will result in merging disconnected points.
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School Brown Cornell Harvard MIT Penn Stanford
Brown 0 1 1 0 0 1
Cornell 1 0 1 0 1 0
Harvard 1 0 0 1 0 1

MIT 0 1 1 0 0 1
Penn 1 1 1 0 0 0

Stanford 1 0 1 1 0 0

Table 4.1 Adjacency matrix for six schools.

Figure 4.1  Directed graph generated from the adjacency matrix.

The American college selection data set generated by Condon et al. contains four 

groups of schools denoted by A, B, C, and D (see Table 4.2).  There are 74 schools in A, 

11 schools in B (these are schools from the southern United States), 8 schools in C (six 

schools are from the Ivy League), and 7 schools in D (all from California).

Brown Cornell

 MIT

PennStanford

Harvard
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Key School State
A2 Arizona State University AZ
A3 Arizona, University of AZ
A5 Barnard College (Columbia University) NY
A6 Bates College ME
A7 Boston College MA
A8 Boston University MA
A9 Bowdoin College ME
A11 Bryn Mawr College PA
A12 Bucknell University PA
A19 Carleton College MN
A20 Carnegie Mellon University PA
A23 Colby College ME
A24 Colgate University NY
A25 Colorado College CO
A26 Colorado, University of—Boulder CO
A27 Connecticut, University of CT
A29 Delaware, University of DE
A30 Denver, University of CO
A31 Emory University GA
A34 George Mason University VA
A35 Georgetown University DC
A38 Grinnell College IA
A40 Illinois, University of—Urbana-Champaign IL
A41 Indiana University IN
A42 Iowa State University IA
A43 Iowa, University of IA
A44 James Madison University VA
A45 Lafayette College PA
A46 Lehigh University PA
A47 Lewis and Clark College OR
A48 Macalester College MN
A49 Marquette University WI
A50 Mary Washington College VA
A51 Maryland, University of—College Park MD
A53 Massachusetts, University of—Amherst MA
A55 Michigan State University MI
A56 Michigan, University of MI
A57 Middlebury College VT
A58 Minnesota, University of—Twin Cities MN

Table 4.2 One hundred schools selected from TheFiske Guide for analysis.
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A59 Mount Holyoke College MA
A60 New Hampshire, University of NH
A61 New Jersey, The College of NJ
A62 New York University NY
A63 North Carolina State University NC
A64 North Carolina, University of—Chapel Hill NC
A65 Northeastern University MA
A66 Northwestern University IL
A67 Notre Dame, University of IN
A68 Oberlin College OH
A69 Oregon State University OR
A70 Oregon, University of OR
A71 Pennsylvania State University PA
A73 Pittsburgh, University of PA
A75 Puget Sound, University of WA
A76 Purdue University IN
A77 Reed College OR
A78 Richmond, University of VA
A79 Rutgers University NJ
A80 Smith College MA
A85 Tufts University MA
A86 Vanderbilt University TN
A87 Vassar College NY
A88 Vermont, University of VT
A89 Villanova University PA
A90 Virginia Polytechnic Institute and State University VA
A91 Virginia, University of VA
A92 Wake Forest University NC
A93 Washington University in St. Louis MO
A94 Washington, University of WA
A95 Wellsley College MA
A96 Whitman College WA
A97 Willamette University OR
A98 William and Mary, College of VA
A99 Wisconsin, University of--Madison WI
B1 Alabama, University of --Tuscaloosa AL 
B4 Auburn University AL
B21 Charleston, College of SC
B22 Clemson University SC
B32 Florida State University FL

Table 4.2 (Continued).
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B33 Florida, University of FL
B36 Georgia Institute of Technology GA
B37 Georgia, University of GA
B54 Miami, University of FL
B81 South Carolina, University of SC
B84 Tennessee, University of--Knoxville TN
C10 Brown University RI
C28 Cornell University NY
C39 Harvard University MA
C52 Massachusetts Institute of Technology MA
C72 Pennsylvania, University of PA
C74 Princeton University NJ
C83 Stanford University CA
C100 Yale University CT
D13 California, University of--Berkeley CA
D14 California, University of--Davis CA
D15 California, University of--Irvine CA
D16 California, University of--Los Angeles CA
D17 California, University of--San Diego CA
D18 California, University of--Santa Barbara CA
D82 Southern California, University of CA

Table 4.2 (Continued).

Each of the four groups is a strongly connected component in the directed graph 

of 300 schools given in The Fiske Guide.  If a group is strongly connected, then there 

exists at least one directed path from any school in the group to any of the other schools 

in the same group.  In other words, any one school is considered to be a competitor to all 

of the other schools in the group.  The distance between each pair of schools measures 

the magnitude of the competitiveness.  The shorter the distance, the more competitive the 

schools are.  For example, if the distance between schools S and T is shorter than the 

distance between schools S and R, then T is more likely a competitor of S than R.  
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4.2 Experimental Design

We implement our modified Sammon mapping method in C/C++.  Our code reads 

in an n × n asymmetric distance matrix and generates random starting coordinates for 

each data item i (i = 1,…,n) to be plotted in the mapped D-dimensional (usually, two 

dimensional) space.  We use the error function E1 and the associated updating rule given 

in Section 3.1 to adjust the coordinates iteratively to minimize the value of the error 

function.  If no improvement is found after a certain number of iterations, the modified 

SM method is considered converged and the obtained configuration is the resulting 

Sammon map.  Currently, we employ the steepest gradient method as the optimization 

procedure when applying the modified SM method to the asymmetric distance matrix.  

We realize that the resulting configuration is a local minimum, multiple 

experiments with different random starts are necessary to look for an approximate 

solution.  Meanwhile, we tested several different magic factors ranging from 0.1 to 0.8 in 

our experiments.  Tables 4.3 and 4.4 provide the sensitivity analysis of the magic factor.  

The values listed in the two tables are average values of five experiments with different 

random starts on each data set.  The minimum average error measure(s) and the 

maximum average order preservation coefficient(s) of each data set can be found in 

boldface in Tables 4.3 and 4.4 respectively.  For example, on the data set of 100 schools, 

the minimum error measure is 28829.5600 (see Table 4.3), which is associated with a 

magic factor of 0.6.  The error measure associated with a magic factor of 0.6 is the 

second minimum (28829.5600).  Their corresponding average order preservation 

coefficients are tied at the value of 0.4720, which is the maximum coefficient obtained 
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Magic 
Factor 100Schools 30Schools ASchools BSchools CSchools DSchools

0.1 28830.5200 773.6160 5688.3040 18.3131 6.1831 5.5503
0.2 28835.6200 773.3146 5688.1640 18.3131 6.0645 5.5502
0.3 28846.9600 773.9876 5688.6180 18.3131 6.0677 5.5490
0.4 28830.3200 773.0448 5688.3020 18.3131 6.0645 5.5490
0.5 28831.8400 773.0162 5706.6340 18.3131 6.0677 5.5490
0.6 28829.5600 773.9876 5709.3380 18.4980 6.1799 5.5369
0.7 28831.6200 773.9776 5815.3500 18.4980 6.0677 5.5490
0.8 28835.4400 773.0448 5760.8320 18.3131 6.0645 5.5490

Table 4.3 Average error measures obtained from the modified SM method.

Magic 
Factor 100Schools 30Schools Aschools Bschools Cschools Dschools

0.1 0.4720 0.6065 0.5943 0.7562 0.5683 0.5552
0.2 0.4718 0.6064 0.5944 0.7562 0.5677 0.5533
0.3 0.4714 0.6065 0.5943 0.7562 0.5661 0.5524
0.4 0.4720 0.6065 0.5944 0.7562 0.5677 0.5524
0.5 0.4720 0.6065 0.5939 0.7562 0.5661 0.5524
0.6 0.4720 0.6065 0.5940 0.7539 0.5661 0.5524
0.7 0.4719 0.6065 0.5916 0.7539 0.5661 0.5524
0.8 0.4718 0.6065 0.5937 0.7565 0.5677 0.5524

Table 4.4 Average order preservation coefficients obtained from the modified SM 
method.



59

for the 100 school data.  When considering the overall performance on all six data sets in 

terms of both error measures and order preservation coefficients, each tested magic factor 

turns to give either the best error measure or the best order preservation coefficient.  In 

other words, the experiments are not sensitive to the magic factors.  Therefore, as 

suggested by Sammon (1969), we use 0.4 as the step size to adjust the locations of data 

items iteratively in the mapped space.  

For each data set examined in the following sections, five experiments with 

different random starts are performed.  We choose the best maps in terms of error 

measures and order preservation measures for comparison.  Listed in the tables are 

average values of five experiments on each data set. 

We point out that the Sammon maps generated with different starting 

configurations are usually similar, that is, the relative relationships among schools are 

roughly the same in each map.  In our experiments, we keep the substitute value of 

infinity distance as what is used in Condon’s work, which is slightly larger than the 

longest distance in the distance matrix.

We apply our modified Sammon mapping method to six data sets which are: 

American college selection data set with 100 schools, each of the four strongly connected 

groups (A, B, C, D), and 30 schools selected from A.  We experiment with five different 

starting configurations for each data set and then compare the average performance of our 

modified SM method to that of the standard SM method and that of Merino’s method.  

We use the typical resulting Sammon map of each data set to illustrate the similarities 

and differences of the resulting maps generated by these three methods.  
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In Figure 4.2, we show the map of all 100 colleges and universities that was 

generated by the modified SM method.  In Figures 4.3 and 4.4, we show the Sammon 

maps of all 100 schools that were generated by the standard SM method and by Merino’s 

method respectively with the standard error function (1) given in Section 3.1.  In Figures 

4.5 to 4.19, we show Sammon maps generated by our modified procedure, the standard 

procedure and Merino’s procedure for five data sets (A, 30 schools from A, B, C, and D).  

We discuss the maps and results in the next section.

4.3 Discussion of the Results

Shown in Figures 4.2, 4.3, and 4.4 are Sammon maps of all 100 schools generated 

by the modified, the standard, and Merino’s methods respectively.  In Figure 4.2, the 

group of B schools and group of D schools are separated from the group of A schools and 

the group of C schools.  This is consistent with the existing structure of the data set that 

consists of four strongly connected groups of schools.  The most interesting phenomenon 

is that the group of C schools is located in the center of the map and is surrounded by 

some schools of group A, e.g., Tufts University (A85), New York University (A62), 

Boston College (A7), Columbia University (A5) and Georgetown University (A35).  

From our experimental results, it shows that the more chances a university is considered 

as a competitor by other universities, the more likely this university will be placed in the 

center or near the center of the map.  Boston College (A7) and New York University 

(A62) have more chances to be considered competitors by many other universities so that 

they, we think they are popular, are placed in the center of the maps (see Figures 4.2, 4.3, 
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Figure 4.2  Map of 100 schools generated by the modified SM method.

Figure 4.3  Map of 100 schools generated by the standard SM method.
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Figure 4.4  Map of 100 schools generated by Merino’s method.

and 4.4).  In Figure 4.2, the location of group C tells us that group C and some popular A 

schools have some in common to some extents.  For example, group C consists of Ivy 

League schools which have high education quality and expensive tuition costs, etc., and 

some A schools that surround group C (i.e., New York University) provide qualified 

education the same as or no worse than group C schools provide.  This relationship 

between group C and these schools of group A is reasonable in practice.  However, this 

relationship cannot be detected from the maps generated by the standard and Merino’s 

methods, where there is no clue that schools in group C are competitors of schools in 

group A.
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In addition, in Figure 4.2, Group B is closer to group A than to other groups.  

Group D is also closer to group A than to other groups.  In the maps generated by the 

standard and Merino’s methods (Figures 4.3 and 4.4), we see that the four strongly 

connected groups (As, Bs, Cs, Ds) of schools are separated from each other.  It is hard to 

determine which group(s) is (are) closer to another group; in other words, the 

relationships between groups are not as clear as they are in the map generated by the 

modified SM method.  

Besides, in terms of inner group relationship, schools in each group are pushed 

close together in Figures 4.3 and 4.4 so that it becomes difficult to ascertain within-group 

relationships from the maps.  Most of relationships that can be seen in the maps generated 

by the standard and Merino’s methods can also be detected in the map generated by our 

modified SM method.  For example, in Figures 4.3 and 4.4, the University of Maryland 

(A51) is close to schools A73 (University of Pittsburgh), A29 (University of Delaware), 

and A34 (George Mason University).  These relationships are still preserved in Figure 

4.2.  

However, the map generated by the modified SM method has its limitations.  It 

seems that the modified SM method might not represent some local structures as 

precisely as other two SM methods.  For example, although these four schools that are 

considered close competitors by each other can still be thought of forming a cluster (see 

Figure 4.2), A6, A23, A9 and A57 are not placed together in Figure 4.2 as closely as they 

are, while in maps generated by the other two methods the relationship between these 

four schools is represented more clearly.  
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Regarding the differences between the maps generated by the standard and 

Merino’s methods, there is no significant evidence that one outperforms the other.  This 

observation is also confirmed in our performance measurements that are discussed later 

in this section.  The general structures of the maps generated by these two methods are 

similar and it is reasonable to see local differences due to different random starting 

configurations and other factors such as stopping criterion etc. 

Figures 4.5, 4.6 and 4.7 show the Sammon maps of group A generated by the 

modified SM, the standard SM method, and Merino’s method, respectively.  In Figures 

4.8, 4.9 and 4.10, we show the Sammon maps of the subset of 30 schools from group A 

generated by these three methods.  As compared to groups B, C, and D, group A and the 

30 schools from group A have a relatively large number of schools. 
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Figure 4.5  Map of group A generated by the modified SM method.

Figure 4.6  Map of group A generated by the standard SM method.



66

Figure 4.7  Map of group A generated by the Merino’s method.

The Sammon map of group A generated by the modified SM method has roughly 

similar structure as has the Sammon maps generated by the standard SM and Merino’s 

methods.  For example, the locations of most A schools are roughly same in these three 

maps (see Figures 4.5, 4.6 and 4.7).  Grinnell College (A38), McAlester College (A48), 

Carleton College (A19), and Oberlin College (A68) are close to each other and are 

located in right middle/bottom of the maps away from the other A schools, so that they 

can be considered a cluster.  Wellsley College (A95), Smith College (A80), Mount 

Holyoke College (A59), and Bryn Mawr College (A11) can be considered another cluster 

for the same reason.  Bates College (A6), Colby College (A23), Bowdoin College (A9) 
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and Middlebury College (A57) are a third cluster that is placed in left bottom of the 

maps.  

The within-group relationships of schools are illustrated similarly in the maps 

generated by these three methods.  For example, the order relationships between 

Middlebury College (A57), Bowdoin College (A9), Colby College (A23) and Bates 

College (A6) are obvious, i.e., Middlebury College and Bates College have the longest 

pairwise distance of all pairwise distances of these four schools.  

There are some local differences between the map generated by the modified 

method and the other two methods.  For example, the distance between Arizona State 

University (A2) and University of Arizona (A3) is smaller than the distance between 

Arizona State University and Colorado College (A25) because, in the asymmetric 

distance matrix, d3,2 < d25,2 and d2,3 < d2,25.  In Figure 4.5, it is clear that Arizona State 

University is closer to University of Arizona than it is to Colorado College, while in the 

map generated by Merino’s method (Figure 4.7), it appears that Arizona State University 

is closer to Colorado College.

As another example to show local differences between these three maps.  The 

distance between Minnesota University (A58) and Marquette University (A49) seems 

equal to the distance between Minnesota University and Iowa State University (A42) in 

the map generated by the modified method, while in the maps generated by the other two 

methods Minnesota University is obviously closer to Iowa State University.  However, in 

the original asymmetric distance matrix, d58,49 < d58,42, i.e. 1< 4, and d49,58 > d42,58, i.e. 

5>1, so that the relationships are not as obvious as they are in maps.
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For the 30 schools from group A, the Sammon maps generated by the modified, 

the standard SM and Merino’s methods are visually different (see Figures 4.8, 4.9 and 

4.10).  However, we can see that A41, A76, A56, A93, A31, etc. are placed in the same 

sequence in these three maps but in different direction, i.e., clockwise in Figures 4.8 and 

4.10, and counter-clockwise in Figure 4.9.  Therefore, the general structures of the maps 

generated by these three SM methods are actually similar.  As another example, Reed 

College (A77), Carleton College (A19), University of Washington (A94), Lafayette 

College (A45), and Carnegie Mellon University (A20), which are located as outliers in 

the map generated by the modified method, are still outliers and apart from other schools 

of group A in the other two maps. 

The maps generated by the modified SM method for groups B, C, and D have few 

visual differences from the maps generated by the standard SM and Merino’s methods.  

In these three types of maps, schools are scattered about and the relative relationships 

among schools are roughly the same.  For example, in Figures 4.11, 4.12 and 4.13, 

Auburn University (B4) is about the same distance from University of Alabama (B1) and 

University of Georgia (B37). 
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Figure 4.8  Map of 30 schools from group A generated by the modified SM method.

Figure 4.9  Map of 30 schools from group A generated by the standard SM method.
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Figure 4.10 Map of 30 schools from group A generated by Merino’s method.

Figure 4.11 Map of group B generated by the modified SM method.
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Figure 4.12 Map of group B generated by the standard SM method.

Figure 4.13 Map of group B generated by Merino’s method.
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There are some differences in the relative relationships among schools in the 

maps generated by the modified SM method and the maps obtained by the standard SM 

and Merino’s methods.  For example, in the asymmetric data set of group C, Harvard 

(C39) and Yale (C100) are considered competitors by all other schools so that it is 

desired to place these two schools in the center of the maps and let other schools scatter 

about.  Only in the map (Figure 4.14) generated by the modified SM method Harvard and 

Yale are located near the center and surrounded by other schools.  UPenn (C72), MIT 

(C52), and Cornell (C28) that are less likely considered competitors by other schools are 

located in the marginal area of the maps in Figures 4.14, 4.15 and 4.16.  

The pairwise distances between Berkeley (D13) and Los Angeles (D16) are the 

same with the pairwise distances between Berkeley and San Diego (D17) in the 

asymmetric distance matrix and we expect that Berkeley is equally away from school Los 

Angeles and San Diego.  In Figures 4.17, 4.18 and 4.19, the distances from Berkeley to 

Los Angeles and to San Diego are approximately equal.  For data sets with small size, the 

modified SM method yields results visually similar to those generated by the standard 

and Merino’s methods.
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Figure 4.14 Map of group C generated by the modified SM method.

Figure 4.15 Map of group C generated by the standard SM method.
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Figure 4.16 Map of group C generated by Merino’s method.

Figure 4.17 Map of group D generated by the modified SM method.
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Figure 4.18 Map of group D generated by the standard SM method.

Figure 4.19 Map of group D generated by Merino’s method.
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The standard and Merino’s methods take as inputs symmetrized distance matrices, 

which are derived from original asymmetric distance matrices by averaging.  The 

modified SM method takes original asymmetric distance matrices as inputs directly.  Two 

performance measurements are employed to assess these three methods’ capability of 

representing original asymmetric distance data.  We use order preservation coefficient to 

show how effectively a SM method preserves order relationships of original data.  We 

use error measurement to indicate how precisely original distances between data are 

represented by a SM method.  The represented order relationships among schools and the 

resulting error measures are expected to be different in the maps generated by the three 

SM methods because their input distances and rationales behind the methods are 

different.  

As shown in Tables 4.5 and 4.6, the order preservation coefficients of maps 

generated by the standard and Merino’s SM methods are very close.  The error measures 

of these two SM methods do not change dramatically (see Tables 4.7 and 4.8).  These can 

be explained by their taking the same symmetrized distance matrices.  Another 

explanation may be the asymmetry coefficients introduced in Merino’s method 

(described in section 2.5).  In these six data sets most of schools have similar chances to

be considered competitors by others and asymmetry coefficients of schools fall in a 

narrow range of values.  Introducing similar asymmetry coefficients will not make the 

objective function better off and therefore asymmetry coefficients in these cases have 

little impact on the optimization results.

By incorporating the upper triangular part and the lower triangular part of the 

original asymmetric distance matrix into the objective function and the associated 
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Data Set Standard SM Modified SM
% Improvement of Standard over 

Modified
100 Schools 0.482 0.472 2.10
30 Schools 0.619 0.607 1.97

A 0.605 0.594 1.71

B 0.759 0.756 0.34

C 0.580 0.568 2.14

D 0.567 0.552 2.59

Table 4.5 Order preservation coefficients for the six data sets (standard vs. modified).

Data Set Merino’s SM Modified SM
% Improvement of Merino’s over 

Modified
100 Schools 0.475 0.472 0.70
30 Schools 0.616 0.607 1.51

A 0.603 0.594 1.45

B 0.759 0.756 0.36

C 0.582 0.568 2.52

D 0.567 0.552 2.59

Table 4.6 Order preservation coefficients for the six data sets (Merino’s vs. modified).

updating rules, the search procedure of the modified SM method takes into account the 

entire original distance matrix instead of the symmetrized distance matrix and looks for 

an optimal configuration for the entire distance matrix.  Therefore, the error measures of 

maps generated by the modified SM method are significantly smaller than the error 

measures of maps generated by the standard and Merino’s SM methods (see Tables 4.7 

and 4.8).  It seems that the modified SM method reduces the distance error measures 
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Data Set Standard SM Modified SM
% Improvement of Modified over 

Standard

100 Schools 54906.620 28830.320 47.49

30 Schools     999.067     773.045 22.62

A   6926.616   5688.302 17.88

B       20.192       18.313   9.31

C        6.547         6.065   7.37

D        6.048         5.549   8.25

Table 4.7 Error measures for the six data sets (standard vs. modified).

Data Set Merino’s SM Modified SM
% Improvement of Modified over 

Merino’s

100 Schools 59774.640 28830.320 51.77

30 Schools   1024.385     773.045 24.54

A   7096.426   5688.302 19.84

B       19.927       18.313   8.10

C         6.615 6.065   8.33

D         6.073         5.549   8.62

Table 4.8 Error measures for the six data sets (Merino’s vs. modified).

proportionally to the size of data sets.  For example, in 100-school data set, the modified 

SM method reduced the error measure over the standard SM method by 47.49% (100 ×

(54906.620 – 28830.320)/ 54906.620).  In the remaining data sets, the improvements 

range from 8.25% to 22.62%.  We point out that the values given in the tables of 

performance measures are averages from the five experiments on each data set.

The modified SM method produces slightly smaller order preservation 

coefficients than the other two SM methods (large coefficients are better).  This may be 
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due to asymmetric distances in original data sets.  When the whole asymmetric distance 

matrix is taken into account, the search procedure goes through the upper triangular part 

and the lower triangular part separately to find an improved result.  This adds more 

constraints to the optimization process and introduces more difficulty to achieve a better 

result because some constraints are conflict due to asymmetry.    

Although the modified SM method did not do a better job than the standard SM 

and Merino’s SM methods in preserving the order relationships in our American college 

selection data, the maps generated by the modified SM method are still considered better 

than the maps generated by the standard SM method and Merino’s method.  The 

modified SM method is capable of preserving order relationships with similar accuracy 

and reducing the distance errors with significant improvement as compared to the 

standard and Merino’s SM method.  The maps generated by the modified SM method 

show us the intra-group relationships, which were not reflected in the maps generated by 

other two methods.  For example, it is interesting to see that schools of group C mixed 

with several A schools in the maps generated by the modified SM method.  In addition, 

the generated maps by the modified method are more readable -- schools were not 

squeezed as tightly in Figure 4.2 as they were in Figure 4.3.  

In our study of analyzing American college selection data using different 

Sammon mapping visualization techniques, currently, the modified SM method seems to 

be able to generate visualization maps with higher quality as compared to the standard 

and Merino’s methods.  The modified method yields results that are with significantly 

reduced distance errors and reasonably preserved order relationships compared to the 
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results generated by the other two methods.  We hope that our modified SM method can 

be robust on other applications.  
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Chapter 5

Visualizing Canadian Ranked College Data  

The modified SM method was shown to be good at recovering the structure of 

American college data at least comparable to the standard and Merino’s methods.  In 

American college selection data, the overlaps of each school are not ordered so that there 

is no indication of ranks among the overlaps.  The generated visualization maps are 

unable to provide students with further details such as which school among the overlaps 

is the closest competitor.  If ranking information is incorporated into the data set, 

decisions by students can be made more easily and effectively.  

Data sets with ranking information can be collected in many fields.  In marketing, 

ranked data can be gathered from customers who give ranks of different brands of 

products of the same category, i.e., car brands.  Consider another example in which a 

survey is sent to apartment managers in a metropolitan area.  The survey asks the 

managers to identify top 10 rival apartment buildings.  The managers respond with a top 

10 listing in which the first building is the most competitive rival, the second building is 

next most competitive rival, and so on.  For a person seeking an apartment, a visual map 

of competitors can help narrow the search effectively and naturally.  
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Our work in this chapter includes building a visual model of asymmetric data sets 

that incorporate ranking information.  The Canadian ranked college data set is the one 

that has ranking information and will be analyzed in the following sections. The modified 

SM method will be applied to this data set to see if ranking information is represented 

accurately.  For comparison, the standard and Merino’s SM methods will also be applied 

to the data set.     

5.1 Description of Canadian Ranked College Data

The idea of visualizing universities originates with the work of Yin (2002) and 

Condon et al. (2002).  Yin proposed ViSOM (visualization-induced SOM) to detect 

clusters of universities in the United Kingdom.  Condon et al. created visual maps of 100 

American universities that can be used to view patterns and clusters and gain insights.  

We collected data from surveys that were sent to the admission directors of 

undergraduate programs in 52 Canadian universities.  The directors were asked to list the 

five most competitive rivals in terms of overall education quality.  We have received 

responses from 44 universities and we list these in Table 5.1.  The competitors of each 

Canadian university are given in Table 5.2.
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Key School
1 Acadia University
2 Bishop's University
3 Brandon University
4 Brock University
5 Carleton
6 Concordia University
7 Dalhousie University
8 Lakehead University
9 Laval University
10 McGill University
11 McMaster University
12 Memorial University of Newfoundland
13 Mount Saint Vincent University
14 Nipissing University
15 Queens University
16 Simon Fraser University
17 St. Francis Xavier University
18 Univeristy College of Cape Breton
19 Universite de Moncton
20 Universite de Sherbrooke
21 Universite du Quebec a Rimouski
22 Universite du Quebec en Outaouais
23 University of Alberta
24 University of British Columbia
25 University of Calgary
26 University of Guelph
27 University of Lethbridge
28 University of Manitoba
29 University of Montreal
30 University of New Brunswick
31 University of Ontario Institute of Technology
32 University of Ottowa
33 University of Prince Edward Island
34 University of Regina
35 University of Saskatchewan
36 University of Toronto
 37 University of Victoria
38 University of Waterloo

Table 5.1 44 Canadian universities collected from surveys.
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39 University of Western Ontario
40 University of Windsor
41 Wilfrid Laurier
42 Laurentian University
43 University of St. Anne
44 York University

Table 5.1 (continued).

Key School 1st 2nd 3rd 4th 5th 
1 Acadia University 38 36 10 15 23
2 Bishop's University 1 41 0 0 0
3 Brandon University 28 25 34 35 0
4 Brock University 11 26 41 44 39
5 Carleton 36 32 10 15 38
6 Concordia University 10 29 20 7 0
7 Dalhousie University 10 36 15 24 23
8 Lakehead University 26 4 39 38 0
9 Laval University 29 20 10 6 0
10 McGill University 36 24 15 7 44
11 McMaster University 36 15 38 39 10
12 Memorial University of Newfoundland 7 30 1 17 13
13 Mount Saint Vincent University 1 17 12 0 0
14 Nipissing University 4 41 8 0 0
15 Queens University 36 24 10 26 38
16 Simon Fraser University 24 37 38 26 36
17 St. Francis Xavier University 7 1 0 0 0
18 Univeristy College of Cape Breton 7 17 13 30 0
19 Universite de Moncton 30 9 32 7 43
20 Universite de Sherbrooke 29 9 2 0 0
21 Universite du Quebec a Rimouski 9 20 0 0 0
22 Universite du Quebec en Outaouais 32 20 0 0 0
23 University of Alberta 36 24 10 0 0
24 University of British Columbia 36 10 15 23 39
25 University of Calgary 36 24 15 10 23

Table 5.2 Competitors of 44 Canadian universities.
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26 University of Guelph 11 38 15 36 39
27 University of Lethbridge 23 25 34 35 37
28 University of Manitoba 23 35 36 15 0
29 University of Montreal 36 10 32 24 23
30 University of New Brunswick 7 12 1 0 0
31 University of Ontario Institute of Technology 39 36 15 44 38
32 University of Ottowa 11 39 15 29 7
33 University of Prince Edward Island 1 17 30 0 0
34 University of Regina 23 24 28 0 0
35 University of Saskatchewan 34 23 25 15 24
36 University of Toronto 39 24 23 15 10
37 University of Victoria 24 16 25 23 0
38 University of Waterloo 36 39 15 41 11
39 University of Western Ontario 36 10 15 38 11
40 University of Windsor 39 11 41 36 15
41 Wilfrid Laurier 39 38 26 11 36
42 Laurentian University 4 40 8 32 5
43 University of St. Anne 7 17 30 0 0
44 York University 36 15 39 41 0

Table 5.2  (continued).

5.2 Modeling Steps

In the Canadian university data set that we have collected, some universities 

specified their competitors that were not on the list of the 44 universities.  We did not 

include universities that did not respond and yet were selected as rivals by other 

universities.  For example, York University chose University of Toronto as its top 

competitor, Ryerson University was the second, and Queens, Western Ontario, and 

Wilfrid Laurier were third, fourth, and fifth, respectively.  Ryerson University did not 

respond to our survey, so it is not on the list.  Therefore, in the rival list of York 

University, we excluded Ryerson and replaced it with Queens as the second most 
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competitive school, and then moved Western Ontario and Wilfrid Laurier up one rank, 

respectively.    

In order to create a visual map of the Canadian college data set, we need to 

generate a distance matrix from the data set and then input the distance matrix into the 

modified SM method.  Using procedures that are described in Chapter 4, we start by 

creating a 4444 ×  0-1 adjacency matrix, where entry sij  = 1 (row i and column j) if 

school j is a competitor of school i.  Next, we adjust the entries with the value of 1 to 

reflect the ranking information.  In terms of adjacency or distance, the more competitive 

school j is to school i, the smaller the value of the sij  entry is.  The entry of the most 

competitive school is 1 by default.  We set the gap between entries of two consecutive 

competitors in ranking is 0.5, in other words, the entry of the second competitor is 1.5, 

and the entry of the third competitor is 2, and so forth. 

After adjusting the adjacency matrix, we construct the distance matrix using a 

shortest path procedure and replace infinity entries with an appropriate value, i.e., 25% 

larger than the longest distance.  After the distance matrix is constructed, we apply the 

modified SM method that is described in Chapter 3 to Canadian ranked college data 

trying to detect some interesting relationships of Canadian schools.
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5.3 Discussion of the Results

The map shown in Figure 5.1 is generated by the modified SM method.  The 

distance gap, which is used to separate two consecutive competitors, is set to 0.5 and the 

substitute value of infinity distance is 10.5, which is 25% larger than the longest finite 

distance i.e. 8.5.  It provides us with a general view of the structure of Canadian colleges.  

Universities such as Toronto (36), Queens (15), and Western Ontario (39) that are 

frequently considered competitors by other universities are located in the center of the 

map.  Other universities such as Waterloo (38) and British Columbia (24) with high 

frequencies are also placed near the center.  Therefore, the map tells us that universities 

placed in or near the center are those that are considered popular.  Besides, it shows in the 

map roughly five clusters of universities – one in the center and the other four 

surrounding the center.  

The map generated by the modified SM method also reveals some ranking 

information of competitors of a particular school.  For example, the top five competitors 

of Queens University (15) are Toronto (36), British Columbia (24), McGill (10), Guelph 

(26), and Waterloo (38), where Toronto is the most competitive school to Queens.  In 

Figure 5.1, among these five competitors, Toronto is the closest to Queens.  Although 

Waterloo is not the school farthest from Queens, it is the second farthest school among 

these five competitors.  Guelph is the school farthest from Queens, because the top rival 

of Guelph is McMaster and Queens is its third top.  The asymmetric characteristic of a 

data set makes it very difficult to generate a map that is a completely accurate 

representation of the data set.  A map that shows roughly similar structures of the data set 

can be generated by visualization techniques.  
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Figure 5.1  Sammon map of the Canadian ranked college generated by the modified 
method.  Gap is set to 0.5.

Figures 5.2 and 5.3 show the maps generated by the standard and Merino 

methods.  Again the maps generated by these two methods are similar to each other due 

to the same reasons that have been discussed in previous chapter.  Universities located in 

the center of Figure 5.1 are still placed in the center of these two maps.  Other 

universities scatter about surrounding popular universities.  

Differences between the map generated by the modified method and the maps 

generated by the other two methods can be summarized as follows.  Universities 

surrounding the center are separated more evenly in the maps generated by latter two 

methods.  This makes it harder to detect clusters of universities.  Universities in the 

center of the maps generated by the latter two methods squeeze more tightly than they are 

in the
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Figure 5.2  Sammon map of the Canadian ranked college generated by the standard 
method.  Gap is set to 0.5.

Figure 5.3  Sammon map of the Canadian ranked college generated by Merino’s method.  
Gap is set to 0.5.
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map generated by the modified method.  Some interesting insights may be hidden in the 

maps of Figures 5.2 and 5.3.  For example, all five competitors of Dalhousie (7) are 

located in the center of maps and therefore it is reasonable to place Dalhousie near the 

center.  However, most of the universities that consider Dalhousie a competitor are 

located in the top middle area of the maps.  It is expected that Dalhousie would be near 

these universities while keeping near the center universities.  Only in the map generated 

by the modified SM map the location of Dalhousie reminds us of the relationships while 

in other two maps it is not clear that we can detect the relationships between Dalhousie 

and these universities that choose Dalhousie as a competitor.

In terms of insights that possibly will be gained from visualization maps, the 

modified SM method provides us with a more reasonable map.  In terms of performance 

measures, the modified SM method most of the time in our experiments does slightly 

better than the standard and Merino’s methods in order relationship preservation (see 

Tables 5.3 and 5.4) and always outperforms the other two methods in error measurement 

(see Tables 5.5 and 5.6).

In order to see if the gap value affects the performance of these three methods, we 

experimented with three different gap values: 0.2, 0.5, and 1.  0.5 is the one that is used in 

Figures 5.1, 5.2 and 5.3.  Given five random starts, we used each gap value on the 

Canadian college data.  Tables 5.3 and 5.4 provide average order preservation measures 

of these three methods, and Tables 5.5 and 5.6 provide average error measures of these 

three methods.  In Figures 5.4 and 5.5 are given generated maps by the modified method 

with gap values of 0.2 and 1.0 respectively.  Comparing these two figures to Figure 5.1, 

we can see that although there are some local differences between these three maps, the 
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Gap Value Standard SM Modified SM
% Improvement of Modified over 

Standard
Gap-0.2 0.555 0.560 0.99
Gap-0.5 0.546 0.548 0.46
Gap-1.0 0.537 0.542 0.89

Table 5.3 Order preservation measures of different gap values of Canadian ranked 
college data (standard vs. modified).

Gap Value Merino’s SM Modified SM
% Improvement of Modified over 

Merino’s
Gap-0.2 0.559 0.560 0.14
Gap-0.5 0.543 0.548 0.88
Gap-1.0 0.545 0.542 -0.64

Table 5.4  Order preservation measures of different gap values of Canadian ranked 
college data (Merino’s vs. modified).

Gap Value Standard SM Modified SM
% Improvement of Modified over 

Standard
Gap-0.2 2413.83 2100.84 12.97
Gap-0.5 3921.53 3336.99 14.91
Gap-1.0 7001.58 5414.63 22.67

Table 5.5 Error measures of different gap values of Canadian ranked college data 
(standard vs. modified).
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Gap Value Merino’s SM Modified SM
% Improvement of Modified over 

Merino’s
Gap-0.2 2344.01 2100.84 10.37
Gap-0.5 3972.14 3336.99 15.99
Gap-1.0 6675.48 5414.63 18.89

Table 5.6 Error measures of different gap values of Canadian ranked college data 
(Merino’s vs. modified).

Figure 5.4  Sammon map of the Canadian ranked college generated by the modified 
method.  Gap is set to 0.2.
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Figure 5.5  Sammon map of the Canadian ranked college generated by the modified 
method.  Gap is set to 1.0.

general structure of the data set is kept similar in each of these maps, i.e., popular 

universities in the center and surrounded by other clusters of universities.  Different gap 

values have effect on constructing maps especially on local details however the general 

structure of the data set is not changed dramatically.  

To analyze Canadian ranked college data, the modified SM method seems better 

than the standard and Merino’s methods.  The modified method reduces distance errors 

significantly and preserves the order relationships reasonably well compared to other two 

methods.  The modified method also helps gain some interesting insights that can hardly 

be detected in maps generated by other two methods.  We have done some sensitivity 

analysis of gap values and it seems to us that gap values do not dramatically affect the 

general structure of the data set.  
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So far, we have analyzed two visualization applications using the modified 

Sammon mapping method.  As compared to the modified SM method, the self-organizing 

map, which is a neural-network based method, can also be employed to visualize and 

analyze data sets.  In the following chapters, we will discuss some applications using 

SOMs.
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Chapter 6

Self-Organizing Maps: State Sponsored Murder Data Set

6.1 Introduction

As a neural-network based unsupervised method, self-organizing maps (SOMs) 

are mainly used for clustering, which is one of activities of data analysis in data 

visualization applications.  In our previous applications, we used the Sammon mapping 

method to visualize two college data sets and analyze intra-cluster and inter-cluster 

relationships among clusters.  In this chapter, we will use SOMs to analyze clusters in the 

state sponsored murder data set and to analyze the sport records data in the next chapter.

For discovering clustering information hidden in data sets, there are a few 

methods that have been proposed in the literature such as hierarchical clustering methods 

(single linkage, average linkage, and complete linkage), K-means clustering, and 

Kohonen’s self-organizing maps (SOMs) (1995).  Among these methods, Kohonen’s 

SOM has received increased attention in the literature in recent years.  Some recently 

proposed clustering methods such as ViSOM (Yin, 2002) are based on Kohonen’s SOM.

Several software packages (i.e., Viscovery SOMine) with SOM-based clustering 

procedures have been released.  A natural question arises: How well do these software 

packages perform?  We want to make sure that we choose the right clustering procedure 
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to analyze datasets.  Therefore, in the first part of this chapter, we evaluate the 

performance of four software implementations of SOM-based clustering methods and 

determine the best SOM-based procedure to be used in our clustering analysis.  In the 

second part of this chapter, we apply the chosen SOM-procedure to the state sponsored 

murder data set. 

6.2 Evaluating SOM-based Methods

Four clustering implementations are compared based on their performances: Ward 

clustering, modified Ward clustering, single linkage clustering, and classic SOM.  The 

first three clustering methods are implemented in a commercial package, Viscovery 

SOMine 4.0 from Eudaptics Software (www.eudaptics.com).  These three SOM-based 

clustering methods make use of the representation of the data set given by Kohonen’s 

SOM scheme.  SOM-Ward clustering uses Ward’s classic minimum distance method 

(Ward, 1963).  In SOM-modified Ward clustering, the classic Ward method is modified 

to use a different distance measure (Viscovery, 2002).  SOM-single linkage uses an 

adaptation of the classic single-linkage clustering algorithm (Viscovery, 2002).  Classic 

SOM clustering is implemented in a research package, SOM_Pak from the Helsinki 

University of Technology (SOM_Pak, 1997).  

Mangiameli et al. (1996) conducted a comprehensive evaluation of seven 

hierarchical clustering algorithms and the SOM network generated by the commercial 

software package NeuralWorks.  Our study can be viewed as an extension of their work.  

We assess the clustering performance of four procedures in two current SOM software 
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packages. To our knowledge, the performance of these packages has not been reported in 

the open literature.  

The standard approach to studying the performance of a clustering procedure is to 

apply the procedure to a problem for which the clusters are already known.  This 

approach allows the researcher to measure the method’s success in assigning data points 

to their correct clusters.  We adopt this approach and evaluate the performance of the 

clustering methods on 96 data sets that we construct.  The clustering methods that we 

evaluate are applied to data sets in which the clusters are well separated.  Figure 6.1 

presents a two-dimensional plot of a four-cluster data set.  

6.2.1 Constructing data sets

Four experimental factors are used to characterize each data set: the number of 

clusters (three, four, five, and six), number of dimensions (three and four), number of 

data points (50, 100, 150, and 200), and amount of intra-cluster dispersion (low, medium, 

and high).  Using this design, we construct 4 × 2 × 4 × 3 = 96 data sets, each of which 

exhibits both external isolation and internal cohesion (see Cormack (1971), Mangiameli 

et al. (1996), and Milligan (1980)).  External isolation means that the members of one 

cluster are separated from members of another cluster by empty space.  Internal cohesion 

means that members of the same cluster are similar (close) to each other.

We use a procedure that is similar to the method proposed by Milligan (1980, 

1985) to construct data sets.  The first step is to determine the cluster lengths and the 

cluster boundaries for the first dimension of the variable space.  For each cluster, the 
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Figure 6.1  Example of a four-cluster data set.

cluster length is selected randomly from the uniform distribution on the interval (10, 40).  

In order to achieve external isolation, the boundaries of adjacent clusters are separated by 

an amount selected randomly from the uniform distribution on the interval (0.25, 0.75).  

The mean of each cluster is taken to be the midpoint of the cluster’s boundaries, and the 

standard deviation of each cluster is set to 0.5.  

The second step is to specify the characteristics of the clusters in the remaining 

dimensions.  We select the cluster lengths randomly from the uniform distribution on the 

interval (10, 40) and then select the cluster boundaries randomly.  This makes it possible 

that cluster boundaries overlap with each other, unlike in the first dimension where 

external isolation is guaranteed.  The mean of each cluster is taken to be the midpoint of 

the cluster’s boundaries.  Three levels of intra-cluster dispersion are used here: low, 

medium, and high; these are the same levels specified in Mangiameli et al. (1996).  At the 

Cluster 1

Cluster 2

Cluster 3

Cluster 4
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low, medium, and high levels of dispersion, the standard deviation of the cluster is set 

equal to 1/12, 1/6, and 1/3 times the cluster length, respectively.  The level of the intra-

cluster dispersion indicates the density of data points around the cluster boundaries.  The 

higher the intra-cluster dispersion, the higher is the density of data points near the cluster 

boundaries.  Thus, internal cohesion decreases as the intra-cluster dispersion increases.

We generate data points in each cluster from a multivariate normal distribution 

with mean vector given by the midpoints of the cluster boundaries.  The diagonal 

elements of the variance-covariance matrix are given by the squares of the standard 

deviations, and all of the off-diagonal elements are equal to zero.  We discard data points 

that fall outside the cluster boundaries.

6.2.2   Measuring performance

In order to evaluate the performance of a clustering procedure, we use two 

measures: the cluster recovery rate and the Rand statistic.  The cluster recovery rate is 

defined to be the proportion of times a clustering procedure correctly recovers the cluster 

structure, that is, the percentage of times a procedure correctly determines the cluster 

membership of each data point.  The Rand statistic (Rand, 1971) is a widely used 

performance metric (Milligan, 1981).  The definition of the Rand statistic can be 

illustrated using the notation given in Table 6.1.  Cell A is the number of pairs of points in 

the data set that are from the same cluster and are correctly assigned by a clustering 

procedure to the same cluster.  Cell B is the number of pairs of points that are from 

different clusters and are correctly assigned by a clustering procedure to different 
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Table 6.1 Pairwise classification notation.

clusters.  In Cells C and D, clustering errors are counted.  The Rand statistic provides the 

proportion of correct pairwise classifications for the data set and is given by (A + B)/(A + 

B + C + D).  If the solution generated by a clustering procedure is correct, then the Rand 

statistic equals one; if the generated solution is incorrect, then the value of the Rand 

statistic will be less than one.  Clearly, the larger the value of the Rand statistic, the better 

the solution.

6.2.3 Comparison results and conclusions

We applied the three SOM-based clustering procedures in Viscovery (Ward, 

modified Ward, and single linkage, all with default settings), the classic SOM clustering 

procedure in SOM_Pak (there are no default settings; for each run, we had to specify 

values for several parameters found in the package), and the K-means algorithm in 

Clementine from SPSS to each of our 96 data sets. We specified the number of clusters in 

each data set as input to each procedure.

The cluster recovery rates for the five procedures are given in Table 6.2.  We see

Correct Solution
Clustering Procedure 
Solution

Pair in Same Cluster Pair Not in Same Cluster

Pair in Same Cluster A C
Pair Not in Same Cluster D B
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SOM-Ward
SOM-

Modified Ward  
SOM-Single 

Linkage SOM-Classic K-Means
92.7 91.7 82.3 14.6 80.2

Table 6.2 Cluster recovery rates (in %).

that two of Viscovery’s procedures, SOM-Ward and SOM-modified Ward, recover the 

true clusters more than 90% of the time, while Viscovery’s SOM-single linkage and the 

K-means algorithm recover the clusters about 80% of the time.  SOM-classic performs 

poorly, only recovering the clusters about 15% of the time.

In Table 6.3, we show the effect of intra-cluster dispersion on the cluster recovery 

rates of the five procedures.  As the intra-cluster dispersion increases, thereby reducing 

the internal cohesion of the clusters, we see that the cluster recovery rates decrease.  At 

all three levels of dispersion, SOM-Ward performs the best, closely followed by SOM-

modified Ward.

In addition to the cluster recovery rate, we also examine the performance of the 

five procedures by calculating the Rand statistic.  The average value of the Rand statistic 

is given in Table 6.4.  We apply SOM-Ward to the eight data sets with low dispersion 

and three clusters, calculate the Rand statistic for each data set, and then average over the 

eight data sets (we see that the entry is 1).  The average Rand statistic for SOM-Ward for 

all 32 data sets with low dispersion is 1 (this is the row average for SOM-Ward in the 

first row of Table 6.4). 

In Table 6.4, at the low and medium levels of dispersion, we see that all three of 

Viscovery’s procedures perform better than SOM-classic and K-means.  At the high level 



102

Level of Dispersion
Procedure Low Medium High
SOM-Ward 100   94 84
SOM-Modified Ward 100   91 84
SOM-Single Linkage 100   91 56
SOM-Classic 19   16 9
K-Means 88   78 75

Table 6.3 Cluster recovery rates (in %) by level of dispersion.

Number of Clusters    Row
Clustering Procedure 3 4 5 6 Average

Low Intra-Cluster Dispersion

SOM-Ward 1.000 1.000 1.000 1.000 1.000
SOM-Modified Ward  1.000 1.000 1.000 1.000 1.000
SOM-Single Linkage 1.000 1.000 1.000 1.000 1.000
SOM-Classic 0.846 0.899 0.911 0.886 0.886
K-Means 1.000 1.000 0.988 0.965 0.988

Medium Intra-Cluster Dispersion

SOM-Ward 0.994 0.989 1.000 1.000 0.996
SOM-Modified Ward  0.995 0.986 1.000 0.997 0.995
SOM-Single linkage 1.000 0.999 1.000 0.999 0.999
SOM-Classic 0.898 0.878 0.893 0.893 0.890
K-Means 0.995 1.000 0.988 0.931 0.979

High Intra-Cluster Dispersion

SOM-Ward 0.914 0.954 0.984 1.000 0.963
SOM-Modified Ward  0.951 0.971 0.996 1.000 0.980
SOM-Single linkage 0.946 0.977 0.992 0.991 0.977
SOM-Classic 0.915 0.931 0.876 0.898 0.905
K-Means 1.000 0.960 0.990 0.950 0.975

Table 6.4 Values of the Rand statistics.
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of dispersion, the three procedures in Viscovery and K-means perform nearly the same 

and SOM-classic is close behind.  It appears that as the level of dispersion increases and 

when the number of clusters is small (three or four), the performance of each of the 

Viscovery procedures deteriorates somewhat (the value of the average Rand statistic 

decreases).  We note that SOM-classic and K-means seem to be less affected than 

Viscovery’s three procedures by increases in intra-cluster dispersion.

Both SOM-classic and K-means require the user to specify the number of clusters 

(that is why we input the number of clusters into all five procedures).  Viscovery, 

however, does not have this requirement.  After inputting the data set, Viscovery can 

determine the number of clusters and the assignment of points to clusters.  This is a 

desirable feature of the package since in practice a user usually does not know how many 

clusters to specify in advance.  We applied Viscovery to each of the 96 data sets and let it 

determine the number of clusters.  In Table 6.5, we give the cluster recovery rates for the 

procedures.  For each procedure, the recovery rate drops about 10 percentage points from 

the recovery rate generated by Viscovery when cluster size was specified.  These results 

are still competitive with the recovery rate from K-means (80.2%) when K-means has the 

advantage of knowing the true cluster size.

In this study, we assessed the performance of four SOM-based clustering 

procedures that are implemented in commercial and research software.  The three 

procedures in Viscovery SOMine 4.0 performed generally well in clustering.  We found 

that Viscovery’s procedures performed slightly better than the K-means algorithm and 

much better than the procedure in SOM_Pak.  In addition, when clusters were well 

separated (i.e., exhibited external isolation), the clustering procedures in Viscovery were 
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SOM-Ward SOM-Modified Ward  SOM-Single Linkage
83.3 82.3 71.9

Table 6.5 Cluster recovery rates (in %) for Viscovery (number of clusters is not 
specified).

fairly effective at determining the appropriate number of clusters in a data set.  This 

feature may help Viscovery users who are not sure of the number of clusters to 

determine.

6.3 Self-Organizing Maps: the State Sponsored Murder Data Set

As we discussed in the previous section, Viscovery has useful features such as 

helping determine the number of clusters and recovering cluster structures of data sets.  

In this section, we apply Viscovery SOM-Ward procedure to a state sponsored murder 

(also called genocide and politicide) data set.  Genocides and politicides refer to actions 

committed by governing elites or, in the case of civil war, either of the contending 

authorities that are intended to destroy a national, ethnical, racial, religious, or political 

group (Harff, 2003).  

The genocide and politicide data set examined in this section includes 28 

historical cases of genocide and politicide that began between 1955 and 2002 in 

independent countries with populations greater than 500,000.  The genocide and 

politicide data were originally studied for identifying independent variables (risk factors 

or pre-conditions) to distinguish countries that have genocides and politicides from those 

that do not (Harff, 2003).  It consists of 25 countries that have or have no prior genocides 
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and politicides and six variables that are identified as risk factors contributing to genocide 

and politicide.  The genocide and politicide data set under consideration is given in Table 

6.6.  

Among the six risk factors (variables) listed, upheaval in political context is 

defined as an abrupt change in the political community resulted from the formation of a 

state or regime through violent actions, defeat in international war, or rewriting of state 

boundaries.  Minority elite is designed to reveal the information about interethnic 

disputes over access to political power.  A positive value under the column of ‘Minority 

Elite’ (i.e., ‘Yes’) indicates that elite ethnicity is a recurring issue of political conflicts, 

which possibly leads to genocide or politicide. Exclusionary ideology refers to a belief 

system that establishes some cardinal principle that maintains efforts to restrict, 

persecute, or eliminate certain categories of people.  Elite with ‘exclusionary ideology’ is 

more apt to eliminate groups.  The type of regime is another risk factor that has vital 

intervening effects to cause genocide and politicide.  Elite in autocratical regime is likely 

to opt for restricting citizens’ participation, especially political opponents’ participation.  

The level of trade openness is also an indicator of genocide and politicide.  Historical 

records have shown that armed conflicts and adverse regime changes are more likely to 

occur in poor countries, especially those countries in Africa and Asia.

Countries in this data set are listed according to their number of positive risk 

factors.  If a country has many positive risk factors (i.e., six or five risk factors), it will be 

ranked high.  For example, Iraq is the only country with six positive risk factors, which 

indicates that Iraq has the greatest potential to have future genocides and politicides and 

therefore Iraq is listed in the first place in the data set. By comparison, 
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Country Name

Prior 
Genocides 

or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of Regime

Trade 
Openness

Iraq Yes High Yes Yes Autocracy Very Low
Afghanistan 
(2000) Yes Very High Yes Yes Autocracy Very Low
Afghanistan 
(2002) Yes Very high No No No effective regime Very Low
Burma Yes High No Yes Autocracy Very Low
Burundi Yes Very High Yes No Autocracy Low
Rwanda Yes High Yes No Autocracy Low
Congo-Kinshasa Yes Very High Yes No No effective regime Medium
Somalia Yes Very High No No No effective regime Very Low
Sierra No Very High Yes No No effective regime Low
Ethiopia Yes High Yes No Autocracy Medium
Uganda Yes High No No Autocracy Low
Algeria Yes Very High No Yes Autocracy Medium
Liberia No High No No Autocracy Low
Pakistan Yes Medium No No Autocracy Low
China Yes Medium No Yes Autocracy Medium
Sri Lanka Yes High No No Partial democracy High
Philippines Yes Very High No No Democracy High
Colombia No Very High No No Partial democracy Low
Turkey No High No Yes Partial democracy Medium
India No High No No Democracy Low
Israel No Very High No Yes Democracy High
Indonesia Yes Medium No No Partial democracy Medium
Russia Yes Low No No Partial democracy Medium
Nigeria No Low No No Partial democracy High
Nepal No Medium No No Partial democracy Medium
Macedonia No None No No Partial democracy High

Table 6.6 Genocide and politicide data set from Harff (2003).

Macedonia is very unlikely to have future genocides and politicides according to 

the fact that Macedonia has no positive risk factors.

We apply Viscovery to the genocide and politicide data set to detect clusters of 

countries that have similar pre-conditions that may result in future genocides and 

politicides.  Viscovery needs numerical values as input, so that the categorical values in 
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the genocide and politicide data set need to be transformed to numerical values. We 

transformed the categorical values using a commonly used approach that assigns sorted 

numerical values to categorical values based on the description of the categorical values

(Ritter & Kohonen, 1989).  The transformed data are given in Table 6.7.  The notation for 

the transformed genocide and politicide data set is given in Table 6.8.  For example, in 

the second column (prior genocides and politicides), ‘No’ is assigned by 0 and ‘Yes’ is 

assigned by 1. 

We input the transformed values into Viscovery and used the software’s default 

settings. We obtained the map shown in Figure 6.2.  This map has five clusters of 

countries.  These five clusters are formed based on six variables.  For example, 

Macedonia, Russia, Nigeria, Nepal, Indonesia, and Sri Lanka are grouped into the same 

cluster.  These six countries share several common characteristics.  For example, they all 

are partial democratic countries.  Half of them (Macedonia, Nigeria, and Sri Lanka) have 

a high level of trade openness.  Countries in this cluster have relatively infrequent 

political upheavals except Sri Lanka.  Half of this group (i.e., Russia, Indonesia and Sri 

Lanka) has prior genocides or politicides.  Overall, this cluster can be viewed as a group 

of countries where genocide and politicide is less likely to take place.

India, Colombia, Philippines, Israel and Turkey are clustered together.  Countries 

in this cluster almost have no prior genocides or politicides except that the Philippines 

has one.  Members of this cluster have frequent political upheavals, as their levels of 

political upheavals are either ‘High or Very High’.
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Country Name Prior Genocides or 
Politicides

Upheaval Minority 
Elite

Exclusionary 
Ideology

Type of 
Regime

Trade 
Openness

Iraq 1 3 1 1 1 0
Afghanistan (2000) 1 4 1 1 1 0
Afghanistan (2002) 1 4 0 0 0 0
Burma 1 3 0 1 1 0
Burundi 1 4 1 0 1 1
Rwanda 1 3 1 0 1 1
Congo-Kinshasa 1 4 1 0 0 2
Somalia 1 4 0 0 0 0
Sierra 0 4 1 0 0 1
Ethiopia 1 3 1 0 1 2
Uganda 1 3 0 0 1 1
Algeria 1 4 0 1 1 2
Liberia 0 3 0 0 1 1
Pakistan 1 2 0 0 1 1
China 1 2 0 1 1 2
Sri Lanka 1 3 0 0 2 3
Philippines 1 4 0 0 3 3
Colombia 0 4 0 0 2 1
Turkey 0 3 0 1 2 2
India 0 3 0 0 3 1
Israel 0 4 0 1 3 3
Indonesia 1 2 0 0 2 2
Russia 1 1 0 0 2 2
Nigeria 0 1 0 0 2 3
Nepal 0 2 0 0 2 2
Macedonia 0 0 0 0 2 3

Table 6.7 Transformed genocide and politicide data. 

Prior 
Genocides 

or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of Regime

Trade 
Openness

0 = No
1 = Yes

0 = None 
1 = Low 
2 = Medium 
3 = High
4 = Very high

0 = No 
1 = Yes

0 = No 
1 = Yes

0 = No effective regime 
1 = Autocracy
2 = Partial democracy 
3 = Democracy

0 = Very low 
1 = Low 
2 = Medium 
3 = High

Table 6.8 Notation for the transformed genocide and politicide data set.
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Figure 6.2  Resulting SOM map of the genocide and politicide data set.

The level of trade openness of this group of countries is relatively high among the 

five clusters: more than half of member countries in this group have active trade 

openness.  In addition, countries in this cluster are either democratic or partially 

democratic.  Summaries of the remaining clusters are given in Table 6.9.

The genocide and politicide data set we examine in this section includes the six 

variables given in Table 6.6.  Some researchers suggest including a country’s per capita 

income, which they claim is the best predictor of the ethnic insurgencies and civil wars 

and which underlies Harff’s work.  We consider gross domestic product (GDP) per capita 

and number of prior genocides and politicides.  GDP per capita is a purchasing power 

parity 
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Country Name
Prior 

Genocides or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of 
Regime

Trade 
Openness

Cluster 1

Macedonia 0 0 0 0 2 3
Nigeria 0 1 0 0 2 3
Russia 1 1 0 0 2 2
Nepal 0 2 0 0 2 2
Indonesia 1 2 0 0 2 2
Sri Lanka 1 3 0 0 2 3

Cluster 2

Pakistan 1 2 0 0 1 1
Uganda 1 3 0 0 1 1
Somalia 1 4 0 0 0 0
Afghanistan 
(2002) 1 4 0 0 0 0
Liberia 0 3 0 0 1 1

Cluster 3

Sierra 0 4 1 0 0 1
Congo-Kinshasa 1 4 1 0 0 2
Ethiopia 1 3 1 0 1 2
Burundi 1 4 1 0 1 1
Rwanda 1 3 1 0 1 1

Cluster 4

India 0 3 0 0 3 1
Colombia 0 4 0 0 2 1
Philippines 1 4 0 0 3 3
Israel 0 4 0 1 3 3
Turkey 0 3 0 1 2 2

Cluster 5

China 1 2 0 1 1 2
Algeria 1 4 0 1 1 2
Burma 1 3 0 1 1 0
Iraq 1 3 1 1 1 0
Afghanistan 
(2000) 1 4 1 1 1 0

Table 6.9 Cluster profiles of the genocide and politicide data set.
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basis divided by population.  In the modified data set M1 given in Table 6.10, we include 

GDP per capita.  In Table 6.11, we give modified data set M2 that includes GDP per 

capita and number of prior genocides and politicides.  The GDP per capita of each 

country can be found at www.cia.gov.  Of these 25 countries, Israel has the highest GDP 

per capita ($19000) while Somalia has the lowest GDP per capita ($550).  Due to large 

differences in GDP per capita among the countries, it is necessary to scale these values 

and place them into several categories.  Each GDP value is divided by the maximum

GDP value ($19000) and then classified into one of five categories according to its scaled 

GDP value.  The categories are given in Table 6.12.  For example, the scaled GDP value 

of Iraq is 0.1263 (2400/19000), which is given 1 in the transformed modified genocide 

and politicide data sets shown in Tables 6.13 and 6.14.  The corresponding visual maps 

generated by Viscovery are shown in Figures 6.3 and 6.4.  The associated significance 

values (or cluster indicators) are 62, 38, and 55 for data sets O, M1, and M2 respectively.  

We point out that significance values are recommended by Viscovery to help determine 

the appropriate number of clusters of a data set.  The larger the significance values, the 

better the choice of a particular number of clusters.  The cluster profiles of the data sets 

M1 and M2 are given in Tables 6.15 and 6.16.
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Country 
Name

Prior 
Genocides 

or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of Regime

Trade 
Openness

GDP 
per

Capita 
(US$)

Iraq Yes High Yes Yes Autocracy Very Low 2400
Afghanistan 
(2000) Yes Very High Yes Yes Autocracy Very Low 700
Afghanistan 
(2002) Yes Very high No No

No effective 
regime Very Low 700

Burma Yes High No Yes Autocracy Very Low 1660
Burundi Yes Very High Yes No Autocracy Low 600
Rwanda Yes High Yes No Autocracy Low 1200
Congo-
Kinshasa Yes Very High Yes No

No effective 
regime Medium 610

Somalia Yes Very High No No
No effective 
regime Very Low 550

Sierra No Very High Yes No
No effective 
regime Low 580

Ethiopia Yes High Yes No Autocracy Medium 750
Uganda Yes High No No Autocracy Low 1260
Algeria Yes Very High No Yes Autocracy Medium 5300
Liberia No High No No Autocracy Low 1100
Pakistan Yes Medium No No Autocracy Low 2100
China Yes Medium No Yes Autocracy Medium 4400

Sri Lanka Yes High No No
Partial 
democracy High 3700

Philippines Yes Very High No No Democracy High 4200

Colombia No Very High No No
Partial 
democracy Low 6500

Turkey No High No Yes
Partial 
democracy Medium 7000

India No High No No Democracy Low 2540
Israel No Very High No Yes Democracy High 19000

Indonesia Yes Medium No No
Partial 
democracy Medium 3100

Russia Yes Low No No 
Partial 
democracy Medium 9300

Nigeria No Low No No
Partial 
democracy High 875

Nepal No Medium No No
Partial 
democracy Medium 1400

Macedonia No None No No
Partial 
democracy High 5000

Table 6.10 Modified genocide and politicide data set 1 (M1).
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Country Name

Number of 
Prior 

Genocides 
or 

Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of 
Regime

Trade 
Openness

GDP per
Capita 
(US$)

Iraq 2 High Yes Yes Autocracy Very Low 2400
Afghanistan 
(2000)

1
Very High Yes Yes Autocracy Very Low 700

Afghanistan 
(2002)

1
Very high No No

No effective 
regime Very Low 700

Burma 1 High No Yes Autocracy Very Low 1660
Burundi 3 Very High Yes No Autocracy Low 600
Rwanda 2 High Yes No Autocracy Low 1200
Congo-
Kinshasa

2
Very High Yes No

No effective 
regime Medium 610

Somalia
1

Very High No No
No effective 
regime Very Low 550

Sierra 
0

Very High Yes No
No effective 
regime Low 580

Ethiopia 1 High Yes No Autocracy Medium 750
Uganda 2 High No No Autocracy Low 1260
Algeria 1 Very High No Yes Autocracy Medium 5300
Liberia 0 High No No Autocracy Low 1100
Pakistan 2 Medium No No Autocracy Low 2100
China 3 Medium No Yes Autocracy Medium 4400

Sri Lanka
1

High No No
Partial 
democracy High 3700

Philippines 1 Very High No No Democracy High 4200

Colombia
0

Very High No No
Partial 
democracy Low 6500

Turkey
0

High No Yes
Partial 
democracy Medium 7000

India 0 High No No Democracy Low 2540
Israel 0 Very High No Yes Democracy High 19000

Indonesia
2

Medium No No
Partial 
democracy Medium 3100

Russia
2

Low No No
Partial 
democracy Medium 9300

Nigeria
0

Low No No
Partial 
democracy High 875

Nepal
0

Medium No No
Partial 
democracy Medium 1400

Macedonia
0

None No No
Partial 
democracy High 5000

Table 6.11 Modified genocide and politicide data set 2 (M2).
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Prior Genocides or 
Politicides

0 = No;  1 = Yes

Number of Prior 
Genocides or Politicides

Actual number of genocides or politicides

Upheaval 0 = None;  1 = Low;  2 = Medium;  3 = High;  4 = Very high
Minority Elite 0 = No;  1 = Yes
Exclusionary Ideology 0 = No;  1 = Yes

Type of Regime
0 = No effective regime;  1 = Autocracy;
2 = Partial democracy;  3 = Democracy

Trade Openness 0 = Very low;  1 = Low;  2 = Medium;  3 = High

GDP per Capita

0 = if the scaled value < 0.1;
1 = if the scaled value >0.1 and < 0.2;
2 = if the scaled value >0.2 and < 0.3;
3 = if the scaled value >0.3 and < 0.4;
4 = if the scaled value >0.4

Table 6.12 Notation of the transformed genocide and politicide data with added 
variables.
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Country Name
Prior 

Genocides or 
Politicides

Upheaval
Minority

Elite
Exclusionary

Ideology
Type of
Regime

Trade
Openness

GDP per 
Capita 
(US$)

Iraq 1 3 1 1 1 0 1
Afghanistan 
(2000) 1 4 1 1 1 0 0
Afghanistan 
(2002) 1 4 0 0 0 0 0
Burma 1 3 0 1 1 0 0
Burundi 1 4 1 0 1 1 0
Rwanda 1 3 1 0 1 1 0
Congo-Kinshasa 1 4 1 0 0 2 0
Somalia 1 4 0 0 0 0 0
Sierra 0 4 1 0 0 1 0
Ethiopia 1 3 1 0 1 2 0
Uganda 1 3 0 0 1 1 0
Algeria 1 4 0 1 1 2 2
Liberia 0 3 0 0 1 1 0
Pakistan 1 2 0 0 1 1 1
China 1 2 0 1 1 2 2
Sri Lanka 1 3 0 0 2 3 1
Philippines 1 4 0 0 3 3 2
Colombia 0 4 0 0 2 1 3
Turkey 0 3 0 1 2 2 3
India 0 3 0 0 3 1 1
Israel 0 4 0 1 3 3 4
Indonesia 1 2 0 0 2 2 1
Russia 1 1 0 0 2 2 4
Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0
Macedonia 0 0 0 0 2 3 2

Table 6.13 Transformed modified genocide and politicide data set 1 (M1).
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Country Name

Number of 
Prior 

Genocides or 
Politicides

Upheaval
Minority

Elite
Exclusionary

Ideology
Type of
Regime

Trade
Openness

GDP per
Capita 
(US$)

Iraq 2 3 1 1 1 0 1
Afghanistan 
(2000)

1 4 1 1 1 0
0

Afghanistan 
(2002)

1 4 0 0 0 0
0

Burma 1 3 0 1 1 0 0
Burundi 3 4 1 0 1 1 0
Rwanda 2 3 1 0 1 1 0
Congo-
Kinshasa 2 4 1 0 0 2 0
Somalia 1 4 0 0 0 0 0
Sierra 0 4 1 0 0 1 0
Ethiopia 1 3 1 0 1 2 0
Uganda 2 3 0 0 1 1 0
Algeria 1 4 0 1 1 2 2
Liberia 0 3 0 0 1 1 0
Pakistan 2 2 0 0 1 1 1
China 3 2 0 1 1 2 2
Sri Lanka 1 3 0 0 2 3 1
Philippines 1 4 0 0 3 3 2
Colombia 0 4 0 0 2 1 3
Turkey 0 3 0 1 2 2 3
India 0 3 0 0 3 1 1
Israel 0 4 0 1 3 3 4
Indonesia 2 2 0 0 2 2 1
Russia 2 1 0 0 2 2 4
Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0
Macedonia 0 0 0 0 2 3 2

Table 6.14 Transformed modified genocide and politicide data set 2 (M2).
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Figure 6.3  Resulting SOM map of the first modified data set (M1).

Figure 6.4  Resulting SOM amp of the second modified data set (M2).
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Country Name

Prior 
Genocides 

or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of 
Regime

Trade 
Openness

GDP per 
Capita 

US$

Cluster 1

Israel 0 4 0 1 3 3 4
Turkey 0 3 0 1 2 2 3

Colombia 0 4 0 0 2 1 3

Cluster 2

Indonesia 1 2 0 0 2 2 1
Russia 1 1 0 0 2 2 4
Sri Lanka 1 3 0 0 2 3 1

Philippines 1 4 0 0 3 3 2

Cluster 3

Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0
Macedonia 0 0 0 0 2 3 2
India 0 3 0 0 3 1 1

Liberia 0 3 0 0 1 1 0

Cluster 4

Pakistan 1 2 0 0 1 1 1
Uganda 1 3 0 0 1 1 0
Afghanistan (2002) 1 4 0 0 0 0 0

Somalia 1 4 0 0 0 0 0

Cluster 5

Algeria 1 4 0 1 1 2 2
China 1 2 0 1 1 2 2
Burma 1 3 0 1 1 0 0
Iraq 1 3 1 1 1 0 1

Afghanistan (2000) 1 4 1 1 1 0 0

Cluster 6

Rwanda 1 3 1 0 1 1 0
Burundi 1 4 1 0 1 1 0
Ethiopia 1 3 1 0 1 2 0
Congo-Kinshasa 1 4 1 0 0 2 0

Sierra 0 4 1 0 0 1 0

Table 6.15 Cluster profiles of the first modified data set (M1).
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Country Name
Number of Prior 

Genocides or 
Politicides

Upheaval
Minority 

Elite
Exclusionary 

Ideology
Type of 
Regime

Trade 
Openness

GDP per 
Capita 

US$

Cluster 1

Russia 2 1 0 0 2 2 4
Nigeria 0 1 0 0 2 3 0
Nepal 0 2 0 0 2 2 0

Macedonia 0 0 0 0 2 3 2

Cluster 2

Colombia 0 4 0 0 2 1 3
Israel 0 4 0 1 3 3 4
Turkey 0 3 0 1 2 2 3
India 0 3 0 0 3 1 1
Sri Lanka 1 3 0 0 2 3 1

Philippines 1 4 0 0 3 3 2

Cluster 3

Algeria 1 4 0 1 1 2 2
Iraq 2 3 1 1 1 0 1
Afghanistan 
(2000) 1 4 1 1 1 0 0
Burma 1 3 0 1 1 0 0

China 3 2 0 1 1 2 2

Cluster 4

Burundi 3 4 1 0 1 1 0
Rwanda 2 3 1 0 1 1 0
Congo-Kinshasa 2 4 1 0 0 2 0
Sierra 0 4 1 0 0 1 0

Ethiopia 1 3 1 0 1 2 0

Cluster 5

Indonesia 2 2 0 0 2 2 1
Pakistan 2 2 0 0 1 1 1
Uganda 2 3 0 0 1 1 0
Afghanistan 
(2002) 1 4 0 0 0 0 0
Liberia 0 3 0 0 1 1 0

Somalia 1 4 0 0 0 0 0

Table 6.16 Cluster profiles of the second modified data set (M2).
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The number of clusters in each map is either five or six, and the corresponding 

significance values are large.  This suggests that five or six clusters may be good enough 

to represent the actual cluster structure in the data sets.  Although visual maps (Figures 

6.3 and 6.4) of the two modified data sets (M1, and M2) are different from the map in

Figure 6.2 of the original data set (O), they still have some elements in common.

The cluster made up of China, Algeria, Burma, Iraq, and Afghanistan (2002) 

appears in all three maps, as does the cluster of Sierra, Congo, Ethiopia, Burundi, and 

Rwanda.  Cluster membership of other countries is to some extent similar in these 

clustering results.  It indicates that the two new variables do not significantly affect the 

clustering structure of observed countries.  This is possibly due to the small size of the 

genocide and politicide data set.  The six variables listed in Harff’s work may be enough 

to determine the clustering structure of the data set and may also be sufficient to forecast 

the future genocides or politicides.

However, in Harff’s listing, Iraq was the country most likely to have future 

genocides, or politicides, and followed by Afghanistan, Burma, Burundi, Rwanda, Congo 

and Somalia.  Algeria and China were not close to Iraq in the list, while in our clustering 

results these two countries are always in the same cluster with Iraq and countries such as 

Afghanistan and Burma. If from the perspective of clustering, Algeria and China would 

be ranked close to Iraq, Burma, and Afghanistan, rather than several ranks down from

them in the list.  

There might be several factors causing differences between our clustering results 

and Harff’s results.  One could be the weight assigned to each variable during
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preprocessing, where all variables are equally weighted.  Another reason might be lack of 

further domain knowledge.   

Comparing our clustering results with Harff’s work, we conclude that countries 

in the same cluster are equally likely to have future genocides or politicides.  This is 

different from what we see in Tables 6.6 and 6.7, which has the forecasted ordering of 

countries for possible future genocides or politicides (Harff, 2003).  

Our current result might be helpful to future genocide and politicide research.  

The variables ‘GDP per capital’ and ‘number of prior genocides and politicides’ have 

been shown to be of little influence in determining the clustering structures of the data 

sets, though possibly due to the small size of the data sets.  This is not in favor of other 

scholars’ suggestion that per capita income is the best indicator of genocides and 

politicides, and therefore somehow reinforces Harff’s conclusion regarding identification 

of risks factors.  Moreover, the listing differences may raise research questions such as if 

clustering offers a reasonable alternative view of the genocide and politicide data set, and 

to what extent will clustering contribute to forecasting countries’ genocides and 

politicides in the coming years.
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Chapter 7

Self-Organizing Maps: Best Values in Colleges

The prospect of graduating with a lot of debt may be one of the many worries that 

concern new college students.  It becomes necessary for those college applicants and their 

parents to critically screen colleges to see which colleges give students the best value for 

their money.  Kiplinger’s Personal Finance gave a best value list of 100 public colleges 

(Kiplinger, 2003) and a best value list of 100 private colleges (Kiplinger, 2004) that 

combine great academics and reasonable costs.  In each list, the colleges judged to be the 

best value is ranked number one with lower rank values preferred.    

As we discussed in previous chapters, SOMs are capable of discovering the 

hidden structures to help a decision maker understand a data set.  SOMs have been 

widely used to cluster data and gain insight into data sets using visual maps.  In this 

chapter we will apply Viscovery SOMine (2002) to analyze public and private colleges to 

determine which colleges are the best values and compare our rankings to those given by 

Kiplinger.  
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7.1 Data Description and Preprocessing

We used two data sets from Kiplinger’s Personal Finance (2003 and 2004): a 

public college data set and a private college data set.  The public college data set contains 

the top 100 public colleges considered to be the best values.  Similarly, the private 

college data set contains the top 100 private colleges considered to be the best values.  A 

total of 11 variables are included in each data set and seven of them are common to both 

data sets.  The seven common variables are listed in Table 7.1.  The four additional 

variables are listed in Table 7.2. 

Except for the variable Enrollment, other variables in the two data sets indicate 

either the academic quality or the financial cost of a school.  Typically, college applicants 

look for suitable colleges in terms of both academic quality and financial cost.  The 

variable Enrollment tells us the number of students who were enrolled in the current 

academic year.  College applicants can get a rough idea of how many students may be 

admitted by each college.  However, the variable Enrollment does not provide us the 

percentage of applicants who may be admitted – which is known as Admission Rate.  The 

variable Admission Rate reflects a school’s academic quality and it affects applicants’ 

decisions.  Typically, a low admission rate implies a high academic quality.  Compared to 

the variable Enrollment, the variable Admission Rate speaks about schools’ academic 

quality more directly.  Therefore, we included the variable Admission Rate in our 

datasets and didn’t include the variable Enrollment.  In addition, we did not include the 

variable Aid from Grants and Cost after Non-need-based Aid in the private college data.  

Values in the Aid from Grants variable tell us that at least 70% students in 83 out of 100 

private colleges were awarded aid from grants, and at least 50% students were awarded in 
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Variable Description
Enrollment Number of full-time and part-time undergraduates enrolled at the 

college during 2002-2003 academic year
Admission Rate Percentage of applicants who were offered admission

SAT or ACT
Percentage of the 2002-03 freshman class that scored above 600 
on the verbal and math parts, separated by slash, or the 
percentage that scored above 24 on the ACT

Student/Faculty 
Ratio

Average number of students for each faculty member

4-yr. Graduate Rate
Percentage of 1996-97 freshmen who earned a bachelor’s degree 
in four years or fewer

6-yr. Graduate Rate
Percentage of 1996-97 freshmen who earned a bachelor’s degree 
within six years 

Average Debt at 
Graduation 

Average debt a student accumulates before graduation

Table 7.1 Seven common variables in Kiplinger’s public and private data sets.

Data Set Variable Description
In-State Total 
Costs

Overall cost for residents

In-State Costs 
After Aid

Overall cost for residents after subtracting 
average need-based award

Total Out-of-State 
Costs

Overall cost for out-of-state students

Public 
College 

Out-of-State Costs 
after Aid

Overall cost for out-of-state students after 
subtracting average need-based award

Total Cost Overall cost for college students
Cost After Need-
based Aid

Total cost in 2003-04 academic year after 
subtracting the average need-based award

Aid from Grants
Percentage of the average aid package that came 
from grants or scholarships

Private 
College

Cost after Non-
need-based Aid

2003-04 cost for a student after subtracting non-
need-based award 

Table 7.2 Four additional variables in Kiplinger’s public and private data sets.
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98% private colleges.  These statistics indicate that the majority of private schools are 

able to support many of their students.  Therefore, the variable Aid from Grants may not 

help discover private colleges that are the best values.  We did not include the variable 

Cost after Non-need-based Aid in the private college dataset because the Cost after Non-

need-based Aid is not available in more than 25% of 100 schools in the data set.  Other 

variables such as Total Cost and Cost after Need-based Aid provide applicants financial 

cost information.    

After selecting appropriate variables for each data set, we show the public and 

private college data in Tables 7.3 and 7.4, respectively.  
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Rank School Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total
Costs 
($)

In-State 
Costs 
After 
Aid ($)

Total 
Out-of-
State 
Costs ($)

Out-of-
State 
Costs 
After 
Aid ($)

Avg. 
Debt at 
Grad. 
($)

1
University of North 
Carolina at Chapel Hill 65/76 35 14 65 79 11,290 6,673 23,138 16,465 11,156

2 University of Virginia 77/84 39 16 81 91 12,640 8,737 28,610 19,873 13,536

3
College of William 
and Mary 83/85 35 12 80 89 13,024 6,668 27,724 21,056 19,762

4 University of Georgia 54/59 65 13 46 66 10,534 5,245 21,310 16,065 12,906

5 University of Florida 58/67 58 21 49 77 10,611 6,125 21,639 15,514 14,449

6
New College of 
Florida 93/74 65 11 47 72 10,947 5,613 24,185 18,572 16,645

7
Georgia Institute of 
Technology 75/95 59 14 18 69 11,340 6,022 23,266 17,244 17,221

8
University of Illinois 
at Urbana, Champaign 79 60 13 52 76 14,410 8,045 25,446 17,401 14,791

9
Truman State 
University 82 79 15 39 62 10,609 7,604 14,409 6,805 14,382

10

Virginia Polytechnic 
Institute and State 
University 39/52 65 15 36 72 10,122 5,613 20,006 14,393 16,229

11
North Carolina State 
University 39/60 59 15 25 60 10,688 5,508 22,536 17,028 15,476

12
University of 
Delaware 41/53 48 12 54 72 13,416 7,666 22,946 15,280 13,610

13
University of 
Wisconsin, Madison 86 71 14 41 77 13,391 7,842 27,401 19,559 15,904

14
University of 
Michigan, Ann Arbor 83 49 15 61 82 16,671 8,661 33,473 25,463 16,825

15
University of 
California, San Diego 47/73 41 19 43 78 16,000 9,043 24,105 17,148 13,275

16
University of 
California, Berkeley 65/78 25 17 48 83 17,265 8,982 25,584 17,301 14,990

17
University of 
Washington 42/54 68 11 40 70 13,835 6,926 24,991 18,082 14,500

18

New Mexico Institute 
of Mining and 
Technology 75 63 13 12 40 9,714 2,708 16,151 9,145 9,500

19
University of 
Wisconsin, La Crosse 60 65 21 23 58 10,425 7,327 20,102 12,775 14,306

20
University of Texas at 
Austin 51/65 61 19 39 71 14,391 9,111 20,999 11,888 16,400

21
University of 
Oklahoma 69 89 21 19 51 10,139 6,618 16,652 10,034 16,886

22 University of Kansas 55 67 19 26 55 9,673 6,266 17,149 10,883 17,347

23
University of North 
Carolina at Asheville 48/40 67 14 31 48 8,929 6,308 17,754 11,446 14,547

24

State University of 
New York at 
Binghamton 51/73 42 19 69 80 13,587 9,214 19,537 10,323 13,915

25
Colorado School of 
Mines 89 67 12 31 61 13,780 8,532 26,970 18,438 17,500

26 Auburn University 51 83 16 40 68 10,276 7,308 18,736 11,428 18,585

Table 7.3 Kiplinger’s (2003) public college data.
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27
Colorado State 
University 56 77 17 29 62 10,689 6,700 21,161 14,461 16,042

28 College of New Jersey 61/71 48 12 59 80 16,686 13,915 21,261 7,346 5,490

29
Michigan State 
University 57 67 18 31 66 12,743 8,670 22,703 14,033 18,663

30
Appalachian State 
University 26/30 64 19 31 60 7,913 4,785 16,834 12,049 13,000

31

Iowa State University 
of Science and 
Technology 58 89 16 24 62 11,588 8,736 20,930 12,194 17,119

32

State University of 
New York College at 
Geneseo 65/73 49 19 67 79 12,840 10,840 18,790 7,950 15,000

33
Texas A&M 
University 36/49 68 21 27 69 11,899 7,057 18,979 11,922 15,670

34
University of Texas at 
Dallas 45/59 53 20 30 53 12,075 7,787 19,155 11,368 NA

35

University of North 
Carolina at 
Wilmington 18/26 55 16 34 60 9,715 6,375 19,290 12,915 13,583

36

University of 
Maryland, College 
Park 64/77 43 13 33 63 16,304 12,223 22,881 10,658 15,566

37

University of 
California, Los 
Angeles 62/75 24 17 40 81 17,616 9,975 26,006 16,031 12,775

38

Louisiana State 
University and 
Agricultural and 
Mechanical College 53 77 21 23 58 10,126 7,406 15,426 8,020 17,569

39
University of 
Tennessee 49 58 18 24 56 11,681 6,706 20,763 14,057 21,689

40 University of Iowa 59 84 15 34 64 11,763 9,460 22,055 12,595 15,335

41

Rutgers, The State 
University of New 
Jersey, New 
Brunswick 39/55 55 14 44 72 16,519 10,044 23,033 12,989 15,270

42 Clemson University 44/61 52 16 35 69 14,618 11,121 22,216 11,095 14,347

43
University of Colorado 
at Boulder 65 80 16 38 64 11,937 7,877 28,253 20,376 16,737

44
University of 
Kentucky 54 82 17 27 58 9,432 5,594 16,112 10,518 NA

45 University of Arkansas 59 86 17 20 45 10,706 7,144 17,456 13,894 14,029

46
Mary Washington 
College 62/49 60 17 65 75 12,287 9,033 20,035 11,002 13,100

47
Oklahoma State 
University 49 92 19 22 56 10,677 7,478 16,623 9,145 15,580

48
Kansas State 
University 49 58 20 18 45 9,626 7,104 16,990 9,886 17,000

49
University of Northern 
Iowa 39 80 16 30 64 10,634 7,632 17,592 9,960 15,786

50
University of 
Mississippi 46 80 19 29 48 11,257 6,607 16,167 9,560 14,459

51
James Madison 
University 33/40 58 17 59 78 13,145 9,320 21,367 12,047 11,786

52
University of 
California, Davis 42/62 63 19 28 75 16,521 10,334 23,814 13,480 13,507

Table 7.3 (Continued).
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53 Miami University 84 77 17 61 80 15,833 12,467 25,603 13,136 17,579

54 Purdue University 29/46 76 16 28 64 14,691 8,723 26,311 17,588 15,677

55
Mississippi State 
University 50 74 16 19 48 11,130 8,174 16,036 7,862 15,081

56
University of 
Nebraska, Lincoln 55 90 19 15 51 10,687 7,277 18,269 10,992 15,682

57
Florida State 
University 34/39 70 22 38 64 10,994 7,035 22,022 14,987 16,372

58
University of 
California, Irvine 24/55 57 18 34 72 15,635 8,507 22,450 13,944 12,513

59
University of 
Missouri, Columbia 68 88 18 32 65 13,208 8,138 22,655 14,517 17,137

60
University of 
Minnesota, Morris 61 82 14 50 76 13,477 8,427 13,477 5,050 9,208

61 University of Alabama 46 85 18 31 61 11,197 8,136 18,357 10,221 18,978

62
University of South 
Carolina 29/36 70 17 31 58 11,795 8,794 21,133 12,339 15,260

63
St. Mary's College of 
Maryland 67/60 59 12 58 67 16,908 12,908 23,228 10,320 17,125

64

Michigan 
Technological 
University 68 92 11 22 63 14,135 9,339 25,025 15,686 15,711

65

University of 
California, Santa 
Barbara 38/55 51 19 44 73 16,154 10,231 24,246 14,015 NA

66

University of 
Minnesota, Twin 
Cities Campus 64 74 15 17 53 13,910 7,902 25,540 17,638 NA

67
Mississippi University 
for Women 56 65 13 21 43 8,649 8,649 13,316 4,667 13,500

68

California Polytechnic 
State University, San 
Luis Obispo 39/64 39 19 17 66 11,781 10,429 15,268 4,839 12,842

69
University of 
Wyoming 42 95 15 22 54 10,863 6,833 16,713 9,880 18,311

70
George Mason 
University 26/29 66 16 25 48 11,602 7,597 21,442 13,845 14,143

71
University of Central 
Florida 30/36 62 24 25 49 10,839 8,353 21,867 13,514 14,927

72 Ohio State University 69 74 14 25 59 15,249 11,315 25,113 13,798 15,011

73
Illinois State 
University 47 81 19 28 55 12,971 7,199 17,441 10,242 13,921

74

University at Buffalo, 
The State University 
of New York 28/41 61 14 32 56 13,422 9,956 19,372 9,416 16,255

75 Salisbury University 26/35 50 17 50 68 12,895 9,506 19,783 10,277 14,773

76

University of 
Massachusetts 
Amherst 32/38 58 19 41 61 14,480 9,714 23,333 13,619 15,321

77 University of Vermont 35/38 71 14 48 67 17,116 8,258 30,168 21,910 22,425

78 College of Charleston 47/47 60 14 32 52 14,008 11,214 21,270 10,056 15,135

79
Indiana University 
Bloomington 27/33 81 20 40 65 13,129 8,704 24,164 15,460 16,930

80

Pennsylvania State 
University University 
Park Campus 40/60 57 17 43 80 17,017 12,872 26,639 13,767 17,900

Table 7.3 (Continued).
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81
State University of 
New York at Albany 26/35 56 21 52 66 13,574 9,599 19,524 9,925 15,108

82 University of Arizona 27/33 86 19 29 55 11,163 8,506 19,933 11,427 17,340

83 Towson University 18/26 58 19 30 56 12,776 8,651 20,422 11,771 15,530

84

Rutgers, The State 
University of New 
Jersey, Camden 19/24 54 11 21 60 16,189 10,111 22,703 12,592 15,223

85

University of 
Maryland, Baltimore 
County 46/63 63 17 28 53 16,516 12,946 23,368 10,422 14,500

86
University of 
Connecticut 33/42 62 17 23 70 14,413 9,141 25,197 16,056 16,093

87
University of 
Pittsburgh 48/56 55 17 35 60 17,025 12,723 26,337 13,614 20,154

88

State University of 
New York College at 
Fredonia 22/25 53 18 47 66 11,782 8,961 17,732 8,771 12,430

89

Stony Brook 
University, State 
University of New 
York 25/50 54 18 30 51 13,645 9,704 19,595 9,891 15,747

90

State University of 
New York at New 
Paltz 30/29 40 17 21 52 11,276 8,276 16,176 7,900 15,000

91 University of Maine 22/29 79 15 29 56 12,780 8,162 21,480 13,318 17,917

92
University of New 
Hampshire 25/32 77 14 48 71 15,779 13,693 26,139 12,446 20,700

93
University of 
Missouri, Rolla 83 92 14 10 52 14,326 9,416 23,144 13,728 17,991

94
University of 
California, Santa Cruz 37/39 80 19 40 64 16,877 9,309 24,250 14,941 13,282

95 Rowan University 22/33 44 14 37 63 15,416 10,632 20,812 10,180 NA

96
University of Illinois 
at Chicago 43 63 15 9 37 14,299 6,399 23,995 17,596 17,000

97 University of Oregon 30/31 86 18 36 59 12,795 9,586 24,231 14,645 22,783

98 Texas Tech University 23/29 69 20 22 51 12,968 9,878 20,048 10,170 13,805

99 Ohio University 49 75 20 43 70 16,514 13,102 24,737 11,635 15,285

100 UC Riverside 16/34 86 19 39 64 16,751 9,932 24,530 17,711 13,226

Table 7.3 (Continued).
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Rank School Name
Admission 
Rate (%)

SAT or 
ACT 
(%)

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate (%)

6-Year
Grad. 
Rate (%)

Total 
Costs ($)

Cost After 
Need-
Based Aid 
($)

Average 
Debt at 
Graduation 
($)

1
California Institute of 
Technology 21 99/100 3 71 85 32,682 10,981 10,244

2 Rice University 24 89/92 5 68 89 28,350 14,779 12,705

3 Williams College 23 93/93 8 89 94 36,550 14,737 12,316

4 Swarthmore College 24 94/98 8 86 92 38,676 17,386 12,759

5 Amherst College 18 94/92 9 84 94 38,492 14,453 11,544

6 Webb Institute 42 100/100 7 79 83 8,079 5,579 5,700

7 Yale University 8 96/97 7 88 95 38,432 15,729 19,228

8
Washington and Lee 
University 31 89/89 11 86 89 30,225 15,452 15,634

9 Harvard University 11 90*/90* 8 86 97 38,831 17,456 10,465

10 Stanford University 13 93/95 7 77 93 38,875 17,746 15,782

11 Princeton University 11 95/97 5 91 97 40,169 18,325 12,000

12

Massachusetts 
Institute of 
Technology 16 95/100 6 82 91 39,213 19,609 22,855

13 Pomona College 23 98/97 9 83 88 38,130 17,411 15,600

14 Emory University 42 89/94 7 82 87 37,272 19,657 17,675

15 Columbia University 12 91/93 7 83 93 39,493 17,778 15,331

16 Duke University 25 91/94 11 88 93 40,080 19,996 20,025

17 Davidson College 34 86/89 10 89 91 34,706 21,455 13,697

18 Wellesley College 47 88/89 9 84 88 37,419 17,526 15,697

19 Vassar College 31 93/89 9 81 87 37,870 19,404 17,170

20 Haverford College 32 89/90 8 89 92 38,928 17,826 15,253

21
Northwestern 
University 33 88/92 7 83 92 38,817 20,376 14,551

22 Bowdoin College 25 87/92 10 83 90 38,663 17,773 15,307

23
University of 
Pennsylvania 21 91/96 6 83 91 39,040 20,596 20,247

24
Johns Hopkins 
University 35 85/93 8 81 88 39,188 19,142 13,600

25 Cooper Union 14 81/83 7 57 78 14,652 11,167 9,250

26
Washington 
University 24 93/98 7 75 86 39,253 20,700 NA

27 Dartmouth College 23 92/96 9 87 95 38,898 19,546 NA

28
Claremont McKenna 
College 28 89/95 7 82 86 37,730 17,988 16,914

29
University of Notre 
Dame 34 83/91  12 88 95 35,392 18,011 25,595

30 Colgate University 34 80/86  10 85 89 38,820 18,856 12,984

31 The Colorado College 53 66/70  9 72 79 35,275 16,516 13,500

32
University of 
Richmond 41 74/83  10 79 84 31,679 17,588 16,115

33
Georgetown 
University 21 87/89  11 86 91 39,182 24,382 20,000

34 Brown University 17 86/90  8 79 94 40,248 20,838 21,700

35 Carleton College 35 88/89  9 82 86 35,288 21,677 14,543

36 Lafayette College 36 63/78  11 79 84 35,713 15,147 17,380

Table 7.4 Kiplingers’ (2004) private college data.
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37 Middlebury College 27 93/96  11 81 87 39,532 18,288 21,751

38 Grinnell College 65 87/85  10 78 84 31,460 16,585 13,854

39
Illinois Wesleyan 
University 48 96 12 76 81 30,780 18,858 17,722

40 Bates College 28 90/91  10 82 87 38,932 18,258 17,045

41 Cornell University 29 85/92  9 82 90 38,974 23,122 15,587

42 Wesleyan University 28 89/92  9 76 81 39,127 21,401 23,753

43 Colby College 33 84/89  11 85 88 38,699 18,168 17,270

44 Bucknell University 39 72/84  12 83 87 36,165 19,165 16,000

45 Kenyon College 52 87/81  9 80 84 36,273 17,905 20,850

46 Centre College 78 89 11 71 73 28,529 15,842 14,300

47 Rhodes College 70 95 11 71 73 30,080 18,899 15,100

48 Macalester College 44 87/88  10 71 77 32,847 16,394 NA

49 Barnard College 34 88/88  10 72 84 37,940 17,826 14,030

50 Brandeis University 42 88/88  8 79 85 39,101 22,257 NA

51
College of the Holy 
Cross 43 71/76  11 88 90 36,851 23,846 16,063

52 Harvey Mudd College 37 97/100  9 75 83 38,880 22,041 20,219

53
Wake Forest 
University 41 79/86  10 77 87 36,079 21,196 24,769

54 Bryn Mawr College 50 86/75  9 76 80 37,890 18,609 NA

54 Wheaton College 54 84/83  11 70 84 27,076 17,341 15,864

55 Tufts University 27 81/90  9 81 88 39,173 20,115 15,499

56 Oberlin College 33 87/80  10 63 76 37,688 21,081 13,926

57
Mount Holyoke 
College 52 80/70  10 75 79 38,668 19,268 14,200

58 Furman University 58 65/70  11 74 81 29,430 16,296 17,741

59 St. Olaf College 73 84 13 71 75 29,879 17,458 18,806

60
Brigham Young 
University 73 86 18 31 73 9,663 7,621 11,000

61 Lehigh University 44 59/85  11 70 84 35,670 19,123 16,972

62 Smith College 53 72/66  9 76 80 37,937 18,466 19,911

63 Beloit College 70 82 11 60 72 30,264 17,452 14,942

64 Taylor University 78 74 15 71 75 24,723 15,678 15,117

65 Union College 45 56/71  11 75 80 36,455 18,431 15,725

66 Hamilton College 35 77/82  10 79 84 38,463 19,474 16,856

67 DePauw University 61 55/60  11 75 79 32,150 15,531 14,481

68 Hillsdale College 82 74 11 53 71 23,353 13,853 14,500

69 Knox College 72 72 12 67 74 30,894 15,494 16,920

70
University of Southern 
California 30 79/91  10 51 73 37,968 21,606 20,619

71 Trinity College 36 73/79  9 77 83 38,890 19,667 17,000

72 Trinity University 69 71/80  11 65 75 27,086 16,706 NA

73
Gustavus Adolphus 
College 77 70 13 72 75 27,820 17,609 17,400

74 Vanderbilt University 46 83/90  9 78 84 38,847 20,971 24,023

75 Whitman College 50 80/81  10 60 71 33,776 21,176 15,000

76 Scripps College 58 85/78  12 63 68 36,500 17,984 12,941

77
Franklin and Marshall 
College 62 62/71  11 78 83 36,580 20,925 19,656

Table 7.4 (Continued).
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78 Saint Louis University 72 72 12 52 67 29,983 16,902 14,989

79
Carnegie Mellon 
University 38 75/95  11 61 77 38,460 24,689 19,195

80 Lawrence University 68 83 11 58 68 32,875 17,882 18,311

81 Connecticut College 35 83/84  11 75 81 37,057 16,930 17,250

82
Case Western Reserve 
University 78 74/85  8 49 75 32,802 18,323 21,830

84 Dickinson College 51 65/64  13 74 78 36,600 19,753 17,586

85 Kalamazoo College 73 91 12 60 69 30,917 17,947 20,000

86
Saint John's 
University 87 66 13 67 74 27,272 19,544 20,680

87 Boston College 34 78/85  13 0 86 37,745 24,470 16,732

88 Reed College 55 95/86  10 45 67 37,900 18,804 16,758

89 Bard College 36 85/67  9 59 71 38,282 20,558 15,400

90
University of 
Rochester 50 79/87  12 65 76 37,246 20,297 NA

91 New York University 28 87/86  11 65 74 40,105 28,282 21,495

92 Villanova University 47 57/74  13 79 84 36,560 26,463 28,217

93 Skidmore College 46 70/69  11 71 75 38,838 21,023 15,560

94
Rose-Hulman Institute 
of Technology 65 62/91  13 58 71 32,625 28,677 27,000

95 St. John's College 71 95/75  8 63 71 36,635 21,940 20,753

96 Babson College 48 50/77  13 77 81 38,443 21,316 NA

97
Rhode Island School 
of Design 32 49/55  11 0 87 34,472 26,447 21,125

98
Rensselaer 
Polytechnic Institute 70 68/92  17 48 75 39,200 22,360 24,590

99
Sarah Lawrence 
College 40 79/44  6 51 66 42,121 22,847 14,864

100

The George 
Washington 
University 40 68/72  14 62 73 40,240 25,866 NA

Table 7.4 (Continued).

As shown in Tables 7.3 and 7.4, there are some missing values, denoted by NA or 

“0”, in the Average Debt columns.  For example, there are five NAs in the Average Debt 

column in the public college data and nine “0”s in the same column in the private college 

data.  Values in the SAT or ACT fields are inconsistent with values in other fields 

because of their value format.  For example, the SAT or ACT value for George 

Washington University in the private college data (see Table 7.4) is 68/72, which is not a 

single value needed for a SOM method.  
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To meet the numerical input requirements of an SOM method, the data sets have 

to be preprocessed.  In the Average Debt column, we used the average value of the 

column to replace the missing values.  For example, we replaced the missing values with 

the average value of 15480 in the public college data.  The average value of 16957 was 

used to replace the missing values in the private college data.  In the SAT or ACT 

column, many entries that are not in a single value format (i.e., percentages above 600 on 

the verbal and math parts of SAT are separated by a slash).  We used the average 

percentage instead of the two individual percentages as input.  For example, for George 

Washington University, the average percentage value of 70 for the two individual 

percentages, that is, 68 and 72, in the SAT or ACT column was used as input.  After 

preprocessing data in the two data sets, we applied Viscovery on the public and private 

college data sets to see which groups of colleges are real bargains.  

7.2 Discussion of Results

The Viscovery SOM map of the public college data is given in Figure 7.1.  There 

are three clusters separated by solid lines. The summary of the clusters is given in Table 

7.5.  Cluster membership of each public college is given in Table 7.6.

Cluster A has 18 schools.  The average SAT or ACT percentage of schools in 

cluster A is 70%, which is the highest among three clusters, indicating that these schools 

have a good academic atmosphere.  Other academic quality variables provide the same 

insight.  For example, schools in cluster A have the lowest average admission rate (53%), 

the highest average student/faculty ratio (15), the highest average 4-year and 6-year 
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Figure 7.1  Map for the public college data set.

Cluster

SAT 
or     

ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-State 
Total 

Costs ($)

In-State 
Costs 

After Aid 
($)

Total Out-
of-State 
Costs ($)

Out-of-State 
Costs After 

Aid ($)

Avg. Debt 
at Grad. 

($)

A 70 53 15 49 75 13,657 7,605 25,845 18,432 15,500

B 48 62 16 43 69 15,238 10,682 22,737 12,158 14,915

C 47 72 17 27 57 11,469 7,737 19,384 11,634 15,798

Table 7.5 Summary of clusters of the public colleges.
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Rank
School 
Name

SAT 
or 

ACT 
(%)

Admis..
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster A

1

University of 
North Carolina 
at Chapel Hill 71 35 14 65 79 11,290 6,673 23,138 16,465 11,156

2
University of 
Virginia 81 39 16 81 91 12,640 8,737 28,610 19,873 13,536

3

College of 
William and 
Mary 84 35 12 80 89 13,024 6,668 27,724 21,056 19,762

4
University of 
Georgia 57 65 13 46 66 10,534 5,245 21,310 16,065 12,906

5
University of 
Florida 63 58 21 49 77 10,611 6,125 21,639 15,514 14,449

6
New College 
of Florida 84 65 11 47 72 10,947 5,613 24,185 18,572 16,645

7

Georgia 
Institute of 
Technology 85 59 14 18 69 11,340 6,022 23,266 17,244 17,221

8

University of 
Illinois at 
Urbana, 
Champaign 79 60 13 52 76 14,410 8,045 25,446 17,401 14,791

12
University of 
Delaware 47 48 12 54 72 13,416 7,666 22,946 15,280 13,610

13

University of 
Wisconsin,
Madison 86 71 14 41 77 13,391 7,842 27,401 19,559 15,904

14

University of 
Michigan, Ann 
Arbor 83 49 15 61 82 16,671 8,661 33,473 25,463 16,825

15

University of 
California, San 
Diego 60 41 19 43 78 16,000 9,043 24,105 17,148 13,275

16

University of 
California, 
Berkeley 72 25 17 48 83 17,265 8,982 25,584 17,301 14,990

17
University of 
Washington 48 68 11 40 70 13,835 6,926 24,991 18,082 14,500

25

Colorado 
School of 
Mines 89 67 12 31 61 13,780 8,532 26,970 18,438 17,500

37

University of 
California, Los 
Angeles 69 24 17 40 81 17,616 9,975 26,006 16,031 12,775

43

University of 
Colorado at 
Boulder 65 80 16 38 64 11,937 7,877 28,253 20,376 16,737

77
University of 
Vermont 37 71 14 48 67 17,116 8,258 30,168 21,910 22,425

Average 70 53 15 49 75 13,657 7,605 25,845 18,432 15,500

Table 7.6 Cluster profiles of the public colleges.
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Rank
School 
Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster B

20

University of 
Texas at 
Austin 58 61 19 39 71 14,391 9,111 20,999 11,888 16,400

24

State 
University of 
New York at 
Binghamton 62 42 19 69 80 13,587 9,214 19,537 10,323 13,915

28
College of 
New Jersey 66 48 12 59 80 16,686 13,915 21,261 7,346 5,490

32

State 
University of 
New York 
College at 
Geneseo 69 49 19 67 79 12,840 10,840 18,790 7,950 15,000

36

University of 
Maryland, 
College Park 71 43 13 33 63 16,304 12,223 22,881 10,658 15,566

41

Rutgers, The 
State 
University of 
New Jersey, 
New 
Brunswick 47 55 14 44 72 16,519 10,044 23,033 12,989 15,270

42
Clemson 
University 53 52 16 35 69 14,618 11,121 22,216 11,095 14,347

46

Mary 
Washington 
College 56 60 17 65 75 12,287 9,033 20,035 11,002 13,100

51

James 
Madison 
University 37 58 17 59 78 13,145 9,320 21,367 12,047 11,786

52

University of 
California, 
Davis 52 63 19 28 75 16,521 10,334 23,814 13,480 13,507

53
Miami 
University 84 77 17 61 80 15,833 12,467 25,603 13,136 17,579

54
Purdue 
University 38 76 16 28 64 14,691 8,723 26,311 17,588 15,677

58

University of 
California, 
Irvine 40 57 18 34 72 15,635 8,507 22,450 13,944 12,513

60

University of 
Minnesota, 
Morris 61 82 14 50 76 13,477 8,427 13,477 5,050 9,208

63

St. Mary's 
College of 
Maryland 64 59 12 58 67 16,908 12,908 23,228 10,320 17,125

65

University of 
California, 
Santa Barbara 47 51 19 44 73 16,154 10,231 24,246 14,015 15,480

74

University at 
Buffalo, The 
State 
University of 
New York 35 61 14 32 56 13,422 9,956 19,372 9,416 16,255

Table 7.6 (Continued).
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Rank
School 
Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster B (Continued)

76

University of 
Massachusetts 
Amherst 35 58 19 41 61 14,480 9,714 23,333 13,619 15,321

78
College of 
Charleston 47 60 14 32 52 14,008 11,214 21,270 10,056 15,135

79

Indiana 
University 
Bloomington 30 81 20 40 65 13,129 8,704 24,164 15,460 16,930

80

Pennsylvania 
State 
University 
University 
Park Campus 50 57 17 43 80 17,017 12,872 26,639 13,767 17,900

84

Rutgers, The 
State 
University of 
New Jersey, 
Camden 22 54 11 21 60 16,189 10,111 22,703 12,592 15,223

85

University of 
Maryland, 
Baltimore 
County 55 63 17 28 53 16,516 12,946 23,368 10,422 14,500

86
University of 
Connecticut 38 62 17 23 70 14,413 9,141 25,197 16,056 16,093

87
University of 
Pittsburgh 52 55 17 35 60 17,025 12,723 26,337 13,614 20,154

92

University of 
New 
Hampshire 29 77 14 48 71 15,779 13,693 26,139 12,446 20,700

94

University of 
California, 
Santa Cruz 38 80 19 40 64 16,877 9,309 24,250 14,941 13,282

95
Rowan 
University 28 44 14 37 63 15,416 10,632 20,812 10,180 15,480

99
Ohio 
University 49 75 20 43 70 16,514 13,102 24,737 11,635 15,285

100 UC Riverside 25 86 19 39 64 16,751 9,932 24,530 17,711 13,226

Average 48 62 16 43 69 15,238 10,682 22,737 12,158 14,915

Table 7.6 (Continued).
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Rank
School 
Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster C

9
Truman State 
University 82 79 15 39 62 10,609 7,604 14,409 6,805 14,382

10

Virginia 
Polytechnic 
Institute and 
State 
University 46 65 15 36 72 10,122 5,613 20,006 14,393 16,229

11

North 
Carolina State 
University 50 59 15 25 60 10,688 5,508 22,536 17,028 15,476

18

New Mexico 
Institute of 
Mining and 
Technology 75 63 13 12 40 9,714 2,708 16,151 9,145 9,500

19

University of 
Wisconsin, La 
Crosse 60 65 21 23 58 10,425 7,327 20,102 12,775 14,306

21
University of 
Oklahoma 69 89 21 19 51 10,139 6,618 16,652 10,034 16,886

22
University of 
Kansas 55 67 19 26 55 9,673 6,266 17,149 10,883 17,347

23

University of 
North 
Carolina at 
Asheville 44 67 14 31 48 8,929 6,308 17,754 11,446 14,547

26
Auburn 
University 51 83 16 40 68 10,276 7,308 18,736 11,428 18,585

27

Colorado 
State 
University 56 77 17 29 62 10,689 6,700 21,161 14,461 16,042

29

Michigan 
State 
University 57 67 18 31 66 12,743 8,670 22,703 14,033 18,663

30

Appalachian 
State 
University 28 64 19 31 60 7,913 4,785 16,834 12,049 13,000

31

Iowa State 
University of 
Science and 
Technology 58 89 16 24 62 11,588 8,736 20,930 12,194 17,119

33
Texas A&M 
University 43 68 21 27 69 11,899 7,057 18,979 11,922 15,670

34

University of 
Texas at 
Dallas 52 53 20 30 53 12,075 7,787 19,155 11,368 15,480

35

University of 
North 
Carolina at 
Wilmington 22 55 16 34 60 9,715 6,375 19,290 12,915 13,583

Table 7.6 (Continued).
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Rank
School 
Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster C (Continued)

38

Louisiana 
State 
University and 
Agricultural 
and 
Mechanical 
College 53 77 21 23 58 10,126 7,406 15,426 8,020 17,569

39
University of 
Tennessee 49 58 18 24 56 11,681 6,706 20,763 14,057 21,689

40
University of 
Iowa 59 84 15 34 64 11,763 9,460 22,055 12,595 15,335

44
University of 
Kentucky 54 82 17 27 58 9,432 5,594 16,112 10,518 15,480

45
University of 
Arkansas 59 86 17 20 45 10,706 7,144 17,456 13,894 14,029

47

Oklahoma 
State 
University 49 92 19 22 56 10,677 7,478 16,623 9,145 15,580

48
Kansas State 
University 49 58 20 18 45 9,626 7,104 16,990 9,886 17,000

49
University of 
Northern Iowa 39 80 16 30 64 10,634 7,632 17,592 9,960 15,786

50
University of 
Mississippi 46 80 19 29 48 11,257 6,607 16,167 9,560 14,459

55

Mississippi 
State 
University 50 74 16 19 48 11,130 8,174 16,036 7,862 15,081

56

University of 
Nebraska, 
Lincoln 55 90 19 15 51 10,687 7,277 18,269 10,992 15,682

57
Florida State 
University 37 70 22 38 64 10,994 7,035 22,022 14,987 16,372

59

University of 
Missouri, 
Columbia 68 88 18 32 65 13,208 8,138 22,655 14,517 17,137

61
University of 
Alabama 46 85 18 31 61 11,197 8,136 18,357 10,221 18,978

62

University of 
South 
Carolina 33 70 17 31 58 11,795 8,794 21,133 12,339 15,260

64

Michigan 
Technological 
University 68 92 11 22 63 14,135 9,339 25,025 15,686 15,711

66

University of 
Minnesota, 
Twin Cities 
Campus 64 74 15 17 53 13,910 7,902 25,540 17,638 15,480

67

Mississippi 
University for 
Women 56 65 13 21 43 8,649 8,649 13,316 4,667 13,500

68

California 
Polytechnic 
State 
University, 
San Luis 
Obispo 52 39 19 17 66 11,781 10,429 15,268 4,839 12,842

Table 7.6 (Continued).
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Rank
School 
Name

SAT or     
ACT 
(%)

Admis. 
Rate

Student/ 
faculty 
Ratio

4-Year 
Grad. 
Rate 
(%)

6-Year 
Grad. 
Rate 
(%)

In-
State 
Total 
Costs 

($)

In-State 
Costs 

After Aid 
($)

Total 
Out-of-
State 

Costs ($)

Out-of-
State 
Costs 
After 

Aid ($)

Avg. 
Debt at 
Grad. 

($)

Cluster C (Continued)

69
University of 
Wyoming 42 95 15 22 54 10,863 6,833 16,713 9,880 18,311

70

George 
Mason 
University 28 66 16 25 48 11,602 7,597 21,442 13,845 14,143

71

University of 
Central 
Florida 33 62 24 25 49 10,839 8,353 21,867 13,514 14,927

72
Ohio State 
University 69 74 14 25 59 15,249 11,315 25,113 13,798 15,011

73
Illinois State 
University 47 81 19 28 55 12,971 7,199 17,441 10,242 13,921

75
Salisbury 
University 31 50 17 50 68 12,895 9,506 19,783 10,277 14,773

81

State 
University of 
New York at 
Albany 31 56 21 52 66 13,574 9,599 19,524 9,925 15,108

82
University of 
Arizona 30 86 19 29 55 11,163 8,506 19,933 11,427 17,340

83
Towson 
University 22 58 19 30 56 12,776 8,651 20,422 11,771 15,530

88

State 
University of 
New York 
College at 
Fredonia 24 53 18 47 66 11,782 8,961 17,732 8,771 12,430

89

Stony Brook 
University, 
State 
University of 
New York 38 54 18 30 51 13,645 9,704 19,595 9,891 15,747

90

State 
University of 
New York at 
New Paltz 30 40 17 21 52 11,276 8,276 16,176 7,900 15,000

91
University of 
Maine 26 79 15 29 56 12,780 8,162 21,480 13,318 17,917

93

University of 
Missouri, 
Rolla 83 92 14 10 52 14,326 9,416 23,144 13,728 17,991

96

University of 
Illinois at 
Chicago 43 63 15 9 37 14,299 6,399 23,995 17,596 17,000

97
University of 
Oregon 31 86 18 36 59 12,795 9,586 24,231 14,645 22,783

98
Texas Tech 
University 26 69 20 22 51 12,968 9,878 20,048 10,170 13,805

Average 47 72 17 27 57 11,469 7,737 19,384 11,634 15,798

Table 7.6 (Continued).
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graduation rates (49% and 75%) among three clusters.  The financial cost is another 

important concern for students as to choosing schools of the best values.  Although the 

average total costs for out-of-state students of cluster A schools  (i.e., Total Out-of-State 

Cost and Out-of-State Costs after Aid) are the highest, when cluster A schools are 

compared to cluster B schools and cluster C schools, the average In-State Total Costs 

($13657) is the second highest and the average In-State Costs after Aid ($7605) is the 

lowest.  For cluster A, average of the variable Average Debt at Graduation ($15500) is 

the second highest and it is only about $600 greater than the lowest average debt 

($14915) of cluster B schools.  Therefore, cluster A schools are the group of schools that 

not only have excellent education quality but also are financially comparable for students.   

Perhaps those in-state students who have excellent academic performance are more 

willing to consider cluster A schools because of the lowest average In-State Costs after 

Aid.  

Cluster C has 52 schools.  The overall academic quality of schools in this cluster 

is worse than schools in the other two clusters.  For example, the average SAT or ACT 

percentage of 47% is the lowest, the 4-year and 6-year graduation rates are the lowest, 

i.e., 27% and 57% respectively, and the Student/faculty Ratio of 17 is the highest.  

However, the average total costs for both residents and non-residents are the lowest 

among the three groups.  The average In-State Total Costs is $11469, which is about 

$2200 less than cluster A schools.  

The average Out-of-State Total Costs for cluster B schools is $19384, which is 

about $6500 less than that of schools in cluster A.  The average total costs after aid for in-
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state and out-of-state students are also low.  It tells that cluster C schools may be good 

choices for those students who care more about financial costs.

Cluster B has 30 colleges that have good academic quality, i.e., the second highest 

average values in SAT/ACT percentage, Admission Rate, Student/faculty Ratio, 4-year 

Graduation Rate, and 6-year Graduation Rate.  This cluster of schools has the highest 

average costs ($15238) for in-state students, the second highest average costs ($22737) 

for non-resident students, and the lowest Average Debt at Graduation ($14915).  Schools 

in the cluster B may be considered as alternatives to schools in cluster A and schools in 

cluster C because they are comparable to cluster A schools in terms of good education 

quality and similar to cluster C schools in terms of less expensive financial costs.

We did not include the Kiplinger’s rank variable to generate our SOM maps.  The 

Rank variable is used as school labels in the maps.  Fifteen schools in cluster A are from 

the top 25 public schools in Kiplinger’s list, such as University of North Carolina at 

Chapel Hill, University of Virginia, College of William & Mary, University of Georgia 

(Table 7.6).  Two (i.e., UCLA and University of Colorado-Boulder) of the rest schools 

come from the middle range, which is between No.26 and No.75, and the last one 

(University of Vermont) is ranked No.77.  Cluster A schools have the highest education 

quality and require reasonable financial expenditures.  Cluster B schools have better 

academic quality and higher financial expenditures for students than cluster C schools.  

When looking at individual schools, we found some schools belonging to the 

same cluster have different ranks in Kiplinger’s list.  For example, University of 

Colorado at Boulder and Colorado School of Mines are in the same cluster A.  They have 

comparable education quality and the financial costs in these two schools are close.  In 
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Kiplinger’s ranking, University of Colorado ranks No.43, which is 18 places lower than 

Colorado school of Mines whose rank is No.25.  Additional examples can be found in 

cluster B schools and cluster C schools.  For example, University of California at 

Riverside and University of Clemson are members of cluster B.  However, UC Riverside 

is ranked No.100 and Clemson is ranked No.42.  Although there are some differences 

between them, most of their educational and financial measures are close.  For example, 

their 4-year and 6-year graduation rates and Average Debt at Graduation are close.  

Therefore University of Clemson and UC Riverside should have close rankings.  In 

cluster C, University of Maine and Iowa State University have the same situation.  Maine 

is ranked No.31 while Iowa State is ranked No.91 despite their close educational and 

financial qualities as shown in Table 7.6.

The Viscovery SOM map for the private colleges is given in Figure 7.2.  There 

are five clusters and the summary of the clusters is given in Table 7.7.  Cluster 

memberships of colleges are provided in Table 7.8.     

Cluster A has two member colleges: Webb Institute (6) and Copper Union (25).  

Both colleges have excellent educational qualities: the lowest average Student/faculty 

Ratio (7), the highest average SAT or ACT percentage (91%) among the five clusters, 

and the highest average 4-year and 6-year graduation rates (68% and 81% respectively) 

as well.  In addition, the financial costs in both colleges are very low.  The average total 

cost of both schools is $11366, less than half of the second lowest average total cost 

($31335) of cluster E schools.  The average total cost after need-based aid is the lowest 

($8373) among five clusters.  The average debt at graduation is the lowest ($7475), which
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Figure 7.2  Map for the private college data set.

Cluster
Admission
Rate (%)

SAT or     
ACT 
(%)

Student/ 
faculty 
Ratio

4-Year 
Grad. Rate 

(%)

6-Year 
Grad. Rate 

(%)
Total Costs 

($)

Total Costs after 
Need-based Aid 

($)
Avg. Debt at 

Grad. ($)

A 28 91 7 68 81 11,366 8,373 7,475

B 27 91 8 82 90 38,051 18,949 16,914

C 46 77 11 77 82 35,574 18,567 16,608

D 43 76 13 47 78 37,486 25,429 21,770

E 65 78 11 61 73 31,115 17,749 16,387

Table 7.7 Summary of clusters of the public colleges.
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Rank School Name
Admiss.

Rate (%)
SAT or 
ACT %

Student/ 
faculty 
Ratio

4-Year 
Grad. 

Rate %

6-Year 
Grad. 

Rate %
Total 
Costs

Cost After 
Need- Based 

Aid
Average 

Debt

Cluster A

6 Webb Institute 42 100 7 79 83 8,079 5,579 5,700

25 Cooper Union 14 82 7 57 78 14,652 11,167 9,250

Average 28 91 7 68 81 11366 8373 7475

Cluster B

1
California Institute of 
Technology 21 100 3 71 85 32,682 10,981 10,244

2 Rice University 24 91 5 68 89 28,350 14,779 12,705

3 Williams College 23 93 8 89 94 36,550 14,737 12,316

4 Swarthmore College 24 96 8 86 92 38,676 17,386 12,759

5 Amherst College 18 93 9 84 94 38,492 14,453 11,544

7 Yale University 8 97 7 88 95 38,432 15,729 19,228

9 Harvard University 11 90 8 86 97 38,831 17,456 10,465

10 Stanford University 13 94 7 77 93 38,875 17,746 15,782

11 Princeton University 11 96 5 91 97 40,169 18,325 12,000

12
Massachusetts Institute 
of Technology 16 98 6 82 91 39,213 19,609 22,855

13 Pomona College 23 98 9 83 88 38,130 17,411 15,600

14 Emory University 42 92 7 82 87 37,272 19,657 17,675

15 Columbia University 12 92 7 83 93 39,493 17,778 15,331

16 Duke University 25 93 11 88 93 40,080 19,996 20,025

17 Davidson College 34 88 10 89 91 34,706 21,455 13,697

18 Wellesley College 47 89 9 84 88 37,419 17,526 15,697

19 Vassar College 31 91 9 81 87 37,870 19,404 17,170

20 Haverford College 32 90 8 89 92 38,928 17,826 15,253

21 Northwestern University 33 90 7 83 92 38,817 20,376 14,551

22 Bowdoin College 25 90 10 83 90 38,663 17,773 15,307

23
University of 
Pennsylvania 21 94 6 83 91 39,040 20,596 20,247

24
Johns Hopkins 
University 35 89 8 81 88 39,188 19,142 13,600

26 Washington University 24 96 7 75 86 39,253 20,700 16,957

27 Dartmouth College 23 94 9 87 95 38,898 19,546 16,957

28
Claremont McKenna 
College 28 92 7 82 86 37,730 17,988 16,914

29
University of Notre 
Dame 34 87 12 88 95 35,392 18,011 25,595

30 Colgate University 34 83 10 85 89 38,820 18,856 12,984

33 Georgetown University 21 88 11 86 91 39,182 24,382 20,000

34 Brown University 17 88 8 79 94 40,248 20,838 21,700

35 Carleton College 35 89 9 82 86 35,288 21,677 14,543

Table 7.8 Cluster profiles of the private college data.



146

Rank School Name
Admiss.

Rate (%)
SAT or 
ACT %

Student/ 
faculty 
Ratio

4-Year 
Grad. 

Rate %

6-Year 
Grad. 

Rate %
Total 
Costs

Cost After 
Need- Based 

Aid
Average 

Debt

Cluster B  (Continued)

37 Middlebury College 27 95 11 81 87 39,532 18,288 21,751

40 Bates College 28 91 10 82 87 38,932 18,258 17,045

41 Cornell University 29 89 9 82 90 38,974 23,122 15,587

42 Wesleyan University 28 91 9 76 81 39,127 21,401 23,753

43 Colby College 33 87 11 85 88 38,699 18,168 17,270

50 Brandeis University 42 88 8 79 85 39,101 22,257 16,957

52 Harvey Mudd College 37 99 9 75 83 38,880 22,041 20,219

53 Wake Forest University 41 83 10 77 87 36,079 21,196 24,769

56 Tufts University 27 86 9 81 88 39,173 20,115 15,499

75 Vanderbilt University 46 87 9 78 84 38,847 20,971 24,023

Average 27 91 8 82 90 38,051 18,949 16,914

Cluster C

8
Washington and Lee 
University 31 89 11 86 89 30,225 15,452 15,634

31 The Colorado College 53 68 9 72 79 35,275 16,516 13,500

32 University of Richmond 41 79 10 79 84 31,679 17,588 16,115

36 Lafayette College 36 71 11 79 84 35,713 15,147 17,380

38 Grinnell College 65 86 10 78 84 31,460 16,585 13,854

39
Illinois Wesleyan 
University 48 96 12 76 81 30,780 18,858 17,722

44 Bucknell University 39 78 12 83 87 36,165 19,165 16,000

45 Kenyon College 52 84 9 80 84 36,273 17,905 20,850

48 Macalester College 44 88 10 71 77 32,847 16,394 16,957

49 Barnard College 34 88 10 72 84 37,940 17,826 14,030

51
College of the Holy 
Cross 43 74 11 88 90 36,851 23,846 16,063

54 Bryn Mawr College 50 81 9 76 80 37,890 18,609 16,957

55 Wheaton College 54 84 11 70 84 27,076 17,341 15,864

58 Mount Holyoke College 52 75 10 75 79 38,668 19,268 14,200

62 Lehigh University 44 72 11 70 84 35,670 19,123 16,972

63 Smith College 53 69 9 76 80 37,937 18,466 19,911

66 Union College 45 64 11 75 80 36,455 18,431 15,725

67 Hamilton College 35 80 10 79 84 38,463 19,474 16,856

72 Trinity College 36 76 9 77 83 38,890 19,667 17,000

78
Franklin and Marshall 
College 62 67 11 78 83 36,580 20,925 19,656

82 Connecticut College 35 84 11 75 81 37,057 16,930 17,250

84 Dickinson College 51 65 13 74 78 36,600 19,753 17,586

93 Skidmore College 46 70 11 71 75 38,838 21,023 15,560

96 Babson College 48 64 13 77 81 38,443 21,316 16,957

Average 46 77 11 77 82 35,574 18,567 16,608

Table 7.8 (Continued).
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Rank School Name
Admiss.

Rate (%)
SAT or 
ACT %

Student/ 
faculty 
Ratio

4-Year 
Grad. 

Rate %

6-Year 
Grad. 

Rate %
Total 
Costs

Cost After 
Need- Based 

Aid
Average 

Debt

Cluster D

71
University of Southern 
California 30 85 10 51 73 37,968 21,606 20,619

80
Carnegie Mellon 
University 38 85 11 61 77 38,460 24,689 19,195

87 Boston College 34 82 13 0 86 37,745 24,470 16,732

91 New York University 28 87 11 65 74 40,105 28,282 21,495

92 Villanova University 47 66 13 79 84 36,560 26,463 28,217

94
Rose-Hulman Institute of 
Technology 65 77 13 58 71 32,625 28,677 27,000

97
Rhode Island School of 
Design 32 52 11 0 87 34,472 26,447 21,125

98
Rensselaer Polytechnic 
Institute 70 80 17 48 75 39,200 22,360 24,590

100
The George Washington
University 40 70 14 62 73 40,240 25,866 16,957

Average 43 76 13 47 78 37,486 25,429 21,770

Table 7.8 (Continued).



148

Rank School Name
Admiss.

Rate (%)
SAT or 
ACT %

Student/ 
faculty 
Ratio

4-Year 
Grad. 

Rate %

6-Year 
Grad. 

Rate %
Total 
Costs

Cost After 
Need- Based 

Aid
Average 

Debt

Cluster E

46 Centre College 78 89 11 71 73 28,529 15,842 14,300

47 Rhodes College 70 95 11 71 73 30,080 18,899 15,100

57 Oberlin College 33 84 10 63 76 37,688 21,081 13,926

59 Furman University 58 68 11 74 81 29,430 16,296 17,741

60 St. Olaf College 73 84 13 71 75 29,879 17,458 18,806

61
Brigham Young 
University 73 86 18 31 73 9,663 7,621 11,000

64 Beloit College 70 82 11 60 72 30,264 17,452 14,942

65 Taylor University 78 74 15 71 75 24,723 15,678 15,117

68 DePauw University 61 58 11 75 79 32,150 15,531 14,481

69 Hillsdale College 82 74 11 53 71 23,353 13,853 14,500

70 Knox College 72 72 12 67 74 30,894 15,494 16,920

73 Trinity University 69 76 11 65 75 27,086 16,706 16,957

74
Gustavus Adolphus 
College 77 70 13 72 75 27,820 17,609 17,400

76 Whitman College 50 81 10 60 71 33,776 21,176 15,000

77 Scripps College 58 82 12 63 68 36,500 17,984 12,941

79 Saint Louis University 72 72 12 52 67 29,983 16,902 14,989

81 Lawrence University 68 83 11 58 68 32,875 17,882 18,311

83
Case Western Reserve 
University 78 80 8 49 75 32,802 18,323 21,830

85 Kalamazoo College 73 91 12 60 69 30,917 17,947 20,000

86 Saint John's University 87 66 13 67 74 27,272 19,544 20,680

88 Reed College 55 91 10 45 67 37,900 18,804 16,758

89 Bard College 36 76 9 59 71 38,282 20,558 15,400

90 University of Rochester 50 83 12 65 76 37,246 20,297 16,957

95 St. John's College 71 85 8 63 71 36,635 21,940 20,753

99 Sarah Lawrence College 40 62 6 51 66 42,121 22,847 14,864

Average 65 78 11 61 73 31,115 17,749 16,387

Table 7.8 (Continued). 
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is nearly $9000 less than the second lowest average debt at graduation ($16387) of the 

cluster E.  Therefore, cluster A schools can be considered as schools of great value.  

Cluster B has 40 schools.  From the average Admission Rate, the average SAT or 

ACT, and other academic-related variables (i.e., SAT/ACT, Student/Faculty Ratio, 4-year 

and 6-year Graduation Rates), we see that most of schools in cluster B have excellent 

education quality.  All of Ivy League schools are included.  Most of them are financially 

expensive, which is shown by the highest average Total Costs ($38051) (see Table 7.7) 

among the five clusters.  However, if the need-based aid is taken into account, the 

average total cost is reduced to $18949 and the average Average Debt at Graduation is 

$16914, which makes cluster B schools comparable to schools in clusters C, D, and E.  If 

students care more about educational quality, then schools in cluster B are worthwhile. 

There are 24 colleges in cluster C.  Compared to cluster B schools, schools in 

cluster C are financially less expensive.  For example, the average Total Cost ($35574) is 

about $2400 less than that of cluster B schools.  However, the education quality of 

schools in this cluster is not as exceptional as schools in cluster B.  For example, in 

cluster C, the average SAT or ACT percentage is less than the average SAT or ACT 

percentage of cluster B by 14 points.  In addition, the Student/faculty Ratio and, the 4-

year and 6-year graduation rates, are all lower than those of cluster B.  Therefore, cluster 

C schools provide relatively good academic quality and ask for reasonable financial 

sacrifice. 

There are nine schools in cluster D.  The overall academic quality of these schools 

is not as good as the overall academic quality of schools in Cluster C, while the financial 

costs of cluster D schools are much higher than the financial costs of cluster C.  As 
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shown in Table 7.7, the average academic-related measures are slightly lower than those 

of cluster C schools.  For example, the average 6-year graduation rate of cluster D (78%) 

is a little worse than the average 6-year graduation of cluster C (82%).  The average 

financial costs in cluster D are the highest among the five clusters.  For example, the 

average Cost after Need-based Aid of this cluster is $25429 which is about $6500 higher 

than the second highest of cluster B ($18949).  In terms of educational quality and 

financial consideration, schools in cluster D might be considered less competitive than 

schools in clusters A, B, and C.

Cluster E has 25 colleges.  Compared to the other four clusters, the academic 

quality of schools in this cluster is not as good as schools in other four clusters.  The 

average 4-year and 6-year graduation rates are the lowest among five clusters.  However, 

the average financial cost of schools in cluster E is the second lowest.  Since the 

academic quality of cluster E is close to or slightly worse than that of cluster D and the 

financial cost of cluster E is much lower than that of cluster D, schools in cluster E might 

be considered alternatives of schools in cluster D for students who have financial 

concerns.

Although our analysis of cluster structures agrees with Kiplinger’s list in most 

cases, there are some discrepancies, especially when examining individual schools within 

each cluster.  For example, in cluster B, Vanderbilt University has similar academic and 

financial measures as Wake Forest (53) and Wesleyan (42).  Vanderbilt is ranked No. 75 

in Kiplinger’s list, where Vanderbilt’s Kiplinger rank is 23 places and 32 places lower 

than Wake Forest and Wesleyan, respectively.  Barnard College (49) and Connecticut 

College (82) in cluster C is another example.  These two schools have comparable 
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academic measures and close financial measures (see Table 7.8).  However, the 

difference between their Kiplinger’s ranks is 47.  This kind of information can not be 

discovered on Kiplinger’s list.  With the help of the SOM visual maps, alternatives can 

easily be found by examining a school’s neighbors.

Our results of the public and private college data sets have shown that 

Viscovery’s SOM map helps identify alternatives of a particular school, which may not 

be detected from Kiplingers’ rankings.  For example, Figure 7.1 gives us a visual map of 

the hidden cluster structure of the public college data.  On this map, three clusters are 

clearly visible, where alternatives of a school can be easily recognized.  Colorado State 

(27) has six neighbors: Virginia Polytechnic Institute and State University (10), North 

Carolina State University (11), Auburn University (26), Michigan State University (29), 

Iowa State University (31), and University of Missouri at Columbia (59).  If we look for 

Colorado State’s alternatives solely on the Kiplinger’s list, we are very likely to think 

about schools with close ranks to Colorado State as its alternatives.  However, not every 

alternative has a close rank to Colorado State, such as North Caroline State.  Therefore, 

Viscovery can help college students identify alternatives, gain more insights from the 

data, and facilitate them to make a better decision.

The differences between our results and Kiplinger’s list do not mean that the 

Kiplinger’s list is of no value, although our analysis shows that the Kiplinger’s list can be 

misleading.  If we could combine the results obtained from our maps and Kiplinger’s 

rankings, we might have better way to analyze and explain the data set to help students.   
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Chapter 8

Summary and Future Work

In order to visualize a data set with an asymmetric distance matrix, the standard 

SM method takes as inputs the symmetrized distance matrix by averaging entries in the 

asymmetric distance matrix.  This approach is the simplest way to represent asymmetric 

data onto a 2-dimentional map.  However, some interesting information hidden in 

asymmetric data may be ignored due to averaging.  Merino et al.’s method introduces 

into the standard SM method an asymmetry coefficient that is expected to reflect 

asymmetric information.  However, when the data set under consideration is not very 

asymmetric, the asymmetry coefficient defined by Merino et al. has little influence on the 

resulting map.  The map obtained from Merino’s method is very similar to the one 

obtained from the standard SM method.  Our modified SM method takes into account the 

upper triangular part and the lower triangular part of an asymmetric distance matrix 

simultaneously.  It is reasonable to expect that the modified SM method may outperform 

the standard and Merino’s method to some extents.  

We applied the modified method to two asymmetric data sets: American college 

selection data and Canadian ranked college data.  From the results obtained on these two 

data sets, we found that the modified SM method always did a fairly good job at reducing 
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distance errors and performed reasonably well at preserving order relationships at least 

comparable to the standard and Merino’s methods.  Since asymmetric proximity data 

arise in other research areas such as marketing, psychology, sociology, etc, one research 

problem could be how to use our modified SM method to visualize these data sets.  If 

such maps could be generated with reasonable interpretability, they might be used to 

discover relationships between data items that may hardly be detected by other methods, 

and therefore assist the analysis of the asymmetric data sets in different research and 

business disciplines.    

In terms of helping detect hidden structures, clustering has been widely used in 

the applications of data visualization.  We have found that the clustering procedures in 

Viscovery outperformed the K-means clustering method and the classic SOM method.    

We have applied Viscovery to the state-sponsored murder data set and got some 

interesting results.  Meanwhile, through analyzing 200 public and private colleges with 

Viscovery, we have generated several clusters for the public college data set and the 

private college data set, respectively.  These college clustering results are not quite 

similar to Kiplinger’s results.  In practice, there are lots of ranking lists trying to give 

readers the idea of which is the best/worst or which is most likely to happen.  However, 

the ranking lists such as Kiplinger’s list do not include alternative information that 

readers want to look for.  Maybe in addition to their original ranking lists, SOM maps 

showing the clustering information should be included as well to better deliver useful 

information to readers to help make their decisions.
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