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When shadow moiré is practiced in industry for the warpage of microelectronic 

devices, the required high basic measurement sensitivity limits a dynamic range due 

to the diffraction effect of the reference grating.  An extensive understanding of the 

contrast and intensity of shadow moiré fringes is required to achieve optical 

configurations for the measurements.  In Part I, an exact mathematical description for 

the contrast and intensity of shadow moiré fringe is developed using a diffraction 

theory for a monochromatic light source first.  The analysis is extended to study the 

effect of a broad spectrum light source on the contrast and intensity of shadow moiré 

fringes.  The effect of an aperture on the fringe contrast is defined to propose a 

complete expression for the contrast of shadow moiré fringe.  The mathematical 



  

analysis is exploited to define the systematic error from the non-sinusoidal intensity 

distribution of shadow moiré fringe when the displacement resolution is enhanced 

using the phase-shifting technique.  The results of the mathematical analysis provide 

a guideline for optimum optical configurations for the required basic measurement 

sensitivity, which results in a novel technique, called high sensitivity shadow moiré 

using non-zero Talbot distance (SM-NT).  The SM-NT increases the dynamic range 

substantially and allows the warpage measurements of high-end microelectronics 

devices, which is not possible with the conventional shadow moiré using the zero 

Talbot distance.  

 

In an achromatic moiré interferometry system, a compensator grating is translated to 

achieve phase-shifting.  The phase-shifting in the achromatic system cannot be 

explained by the existing theories of moiré interferometry based on the concept of 

optical path length.  In Part II, a diffraction theory is used to explain the phase 

shifting in the achromatic system.  The results reveal that the amount of translation of 

the compensator grating is proportional to the diffraction order and the frequency of 

the compensator grating.  The diffraction theory based the mathematical description is 

extended further to define the mini-order diffractions associated with a general 

deformations.  The discrete Fourier transform is employed to characterize the mini-

order from a generally deformed grating.  The results explain that the magnitude of 

strain is only parameter to control the angle of mini-order. 
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Part I: Shadow Moiré Using Non-zero Talbot Distance 

 

Chapter  1.   Background and Motivation 

1.1 Principle of Shadow Moiré  

Since Meadows et al. and Takasaki proposed the moiré topography technique in 1970 

[Meadows 1970, Takasaki 1970], shadow moiré has evolved as the moiré method 

most widely chosen for out-of-plane displacement measurements in the field of solid 

mechanics.   

 

In the method, an amplitude-type reference grating is located in front of a specimen.  

The amplitude grating is comprised of linear opaque and transparent bars on a flat 

glass plate.  As a light source illuminates the grating, the shadow of the reference 

grating behaves as a grating on the specimen.  The observer sees the shadow grating 

and the superimposed reference grating, which interact to form moiré fringes.  

 

Figure 1.1 illustrates the concept.  A linear reference grating of pitch, g, is placed 

adjacent to a specimen surface.  A light source illuminates the grating and the 

specimen at an angle α, and a camera receives light at an angle β, which is scattered 

in its direction by the specimen surface.  The specimen surface is usually prepared by 

spraying it with a thin film of matte white paint for uniform diffusion. 
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Figure 1.1 Illustration of rectilinear propagation of light in shadow moiré. 

 

Referring to Fig. 1.1, a position vector p  can be expressed as 

 ( ) ( )

( )

tan tan

tan tan

x z x z

x

p AS SB

z e ze z e ze

z e

α β

α β

= +

   = + + −   

= +

 (1.1) 

where z is the variable gap between the grating and the specimen, andx ze e  are the 

unit vectors in the x and z directions, respectively.  The shadow image interacts with 

the reference grating to form the moiré pattern viewed by the camera.  The fringe 

order N can be determined [Shield 1991] from the scalar product of the reference 

grating vector 1
= xG e

g
 and the position vector p , which yields 

 ( )tan tan= = +i zN G p
g

α β  (1.2) 

Equation 1.2 provides the relationship between z and fringe order N as 
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 ( , ) ( , )
tan tan

=
+
gz x y N x y

α β
 (1.3) 

where z and N apply to each x, y point in the field. 

 

Eq. 1.3 can provide constant sensitivity if tanα + tanβ is constant.  A shadow moiré 

scheme in Figure 1.2(a) achieves constant sensitivity by placing the light source and 

the observer at the same distance (L) away from the plane of the reference grating 

[Post 1994].  With this constraint, 

 tan tan constantD D
L z L

α β+ = ≈ =
+

 (1.4) 

Thus, the displacement is directly proportional to the moiré fringe order within the 

small displacement range.   

 

The most practical configuration is shown in Fig. 1.2(b).  An especially desirable 

feature of this configuration is normal viewing, which results in a distortion-free-view 

of the specimen.  In the normal viewing, the governing equation of the shadow moiré 

is  

 
tan

gz N
α

=  (1.5) 

It should be noted that the governing equations of shadow moiré, or Eqs. 1.3 and 1.5, 

are based on an assumption of rectilinear propagation of light.  The assumption is 
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reasonable only when the gap between the grating and the specimen is relatively 

small compared to the Talbot distance [Chiang 1989, Post 1994, Post 2000]. 

 

                   

(a) 

     

(b) 

 

Figure 1.2 Shadow moiré arrangements in which tan tan constantα β+ =  [Post 

1994]. 
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1.2 Talbot Distance 

Governing equations based on geometric optics, or Eqs. 1.3 and 1.5, imply that 

shadow moiré fringes are formed for any value of z.  In fact, the contrast of the moiré 

fringe pattern varies with z, such that the pattern disappears and reappears cyclically 

as z increases.  This is caused by the phenomenon known as the Talbot effect, also 

know as the grating self-imaging effect.  The Talbot effect is a consequence of 

diffraction from a periodic structure.  When an amplitude grating is illuminated by a 

monochromatic collimated light, the grating divides the light into a multiplicity of 

diffracted beams.  At preferred distances from the grating, the interference of the 

diffracted beams produces alternating dark and bright bars, repeating with the same 

frequency as the grating.  Talbot first observed this phenomenon, and the virtual 

grating was given a name, “Talbot images” [Talbot 1836].   

 

Rayleigh derived the mathematical formula expressing the distance between the 

Talbot images of a linear grating in the case of a monochromatic plane wave normal 

illumination [Rayleigh 1881].  Consider a grating of pitch g illuminated by a 

monochromatic collimated light of wavelength λ.  The Talbot, or self-imaging, 

distance at normal incidence 0
TD  is  

 
2

0 2
=T

gD
λ

 (1.6) 
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The intensity distribution of the shadow grating at planes located at the Talbot 

distance and the successive multiple of the Talbot distance is a duplicate of the 

intensity distribution of the reference grating, as illustrated in Figure 1.3.  The 

intensity distributions at planes that lie at distance other than the Talbot distance are 

not identical to those of the reference grating.   

 

 

Figure 1.3 Illustration of virtual images being produced at Talbot distance and its 

multiple distances from a grating that is normally illuminated by a collimated beam of 

light [Post 1994]. 

 

It was also known [Post 1994] that the complementary image of the grating appears at 

a half distance of the Talbot distance and the images of the grating disappear at a 

quarter and three quarters of the Talbot distance.  Figure 1.4 [Ackerman 2000] shows 

experimentally obtained Talbot images.  The images were obtained for a linear 

grating, also known as Ronchi ruling, from a normal illumination with a light source 

of λ = 661 nm and the pitch of the grating was 0.1 mm.  Figure 1.4(a) was captured 

on the surface of the grating glass.  Figures 1.4(b) and (d) represent the images at 
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planes 0 / 4TD  and 03 / 4TD , where the bright and dark bars of the projected grating 

disappeared.  Figure 1.4(e) shows the image of the grating at the 1st Talbot plane.  

Figure 1.4 (c) represents the complimentary grating image located midway between 

Talbot planes. 

 

 

 

 

 

 

    (a)                                             (b)                                           (c)  

 

 

 

                          (d)                                            (e) 

Figure 1.4 Talbot images of a Ronchi ruling for a normal illumination at z = (a) 0 0
TD , 

(b) 1/4 0
TD , (c) 1/2 0

TD , (d) 3/4 0
TD , and (e) 1 0

TD  [Ackerman 2000]. 

 

Shadow moiré uses an oblique illumination instead of the normal illumination.  The 

Talbot distance for the oblique illumination was determined by Testorf [Testorf 1996] 

and later verified experimentally by Ackerman [Ackerman 2000] as 

0 100 200 
Scale (µm) 
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2

32 cosT
gDα α
λ

=  (1.7) 

when a grating is illuminated at incident angle α by a monochromatic collimated 

beam of wavelength λ, as illustrated in Fig. 1.5.  In the same way of the normal 

illumination, the intensity at multiples of Talbot distance is a duplicate of the intensity 

distribution of the reference grating but shifted with amount of δx = ztanα in x-

direction.  The complimentary image of the grating appears at multiples of half the 

Talbot distance and the image of the grating disappear at a quarter and three quarters 

of the Talbot distance. 

 

   

Figure 1.5 Illustration of Talbot distance for an oblique illumination and virtual 

gratings of optimum contrast formed at preferred distances. 
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1.3 Motivation  

1.3.1 Conventional Application of Shadow Moiré  

Conventional applications of shadow moiré include measurement of surface 

topography [Meadows 1970, Takasaki 1970, Yoshizawa 1993, Mauvosin 1994, Jin 

2000], structure deformation from mechanical loading [Hahn 1992, Tuttle 1997 and 

1999, Maji 2000], road inspection [Guralnick 1996], impact deformation [Kokidko 

1997], and vibration mode [Hung 1977, Fujimoto 1982, Quan 2004, Tay 2004].   

 

In the conventional practice of shadow moiré, relatively coarse gratings have been 

used.  The pitch of grating used in those applications ranges from 0.5 to 2.0 mm and 

the corresponding Talbot distances, TDα , are 300 to 5000 mm.  With these 

configurations, a specimen can be positioned readily within a small fraction of Talbot 

distance from the reference grating.  Within the region, the assumption of rectilinear 

propagation of light is reasonable, and the virtual gratings and the corresponding 

shadow moiré fringes have reasonably high contrast.  Some examples of the case are 

shown in Fig. 1.6.  Fig. 1.6 (a) shows the shadow moiré fringe of a mannequin 

topography with the setup of a grating pitch of 1 mm and a contour interval of 4 mm 

per fringe, Fig. 1.6 (b) is for a scaled airplane model with the setup of a grating pitch 

of 1 mm and a contour interval of 5 mm per fringe, and Fig. 1.6 (c) shows the fringe 

of a buckled corrugated panel due to a mechanical loading with the setup of a grating 

pitch of 1.8 mm and a contour interval of 1 mm per fringe.  In the figures, the 

dynamic range, which is defined as maximum deformation that shadow moiré can 
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measure with good contrast of fringe, varies from 10 to 120 mm.  Generally, shadow 

moiré has a sufficient dynamic range in the conventional application. 

 

       

(a)                            (b) 

 

(c) 

Figure 1.6 Examples of conventional application of shadow moiré; (a) topography of 

a mannequin [Takasaki 1990], (b) scaled airplane model [Meadows 1990], and (c) 

buckling of corrugated panel [Hahn 1992]. 
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1.3.2 High Sensitivity Shadow Moiré and Limited Dynamic Range 

Shadow moiré has been also employed widely for the measurement of warpage of 

microelectronic devices under thermal or mechanical loading [Yeh 1991 and 1993, 

Han 1993 a, Guo 1995, Stiteler 1996, Wang 1997, Rao 1997, Verma 1998, 1999, and 

2001, Sutherlin 1998, Wu 1999, Petriccione 1999, Polsky 2000, Dang 2000, Dunne 

2002, Vrinceanu 2002, Zhang 2003, Chen 2004, Zwemer 2004]. 

 

When shadow moiré is practiced in industry for the warpage of microelectronic 

devices, higher sensitivity is required because of its smaller deformation.  For the 

higher sensitivity of shadow moiré, the reference grating with a finer pitch (25 µm to 

200 µm) is employed.  Because the Talbot distance is proportional to square of the 

grating pitch, as expressed in Eq. 1.7, the Talbot distance for the high sensitivity 

shadow moiré becomes much smaller than those used in the conventional applications.  

For example, for a shadow moiré setup with a contour interval of 50 µm per fringe, 

desirable parameters for normal viewing (β = 0) are g = 0.1 mm, tan α = 2 (or α = 

63.4°) and λ = 661 nm, whereby Talbot distance is only 2.7 mm.   

 

In such a case, it is difficult to have a sufficient dynamic range within a small fraction 

of Talbot distance from the reference grating.  This condition becomes exacerbated 

when the method is employed to document thermally or mechanically induced 

warpage because a gap between the reference grating and the specimen should be 

provided to accommodate the deformations.  Some examples of high sensitivity 

shadow moiré shown in Fig. 1.7 demonstrate the effect of the limited dynamic range 
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clearly.  Figure 1.7 (a) shows the fringe pattern of a deformed plastic ball grid array 

(PBGA) package with the setup of a grating pitch of 40 µm and a contour interval of 

40 µm per fringe and Fig. 1.7 (b) shows the fringe pattern of a deformed flip chip 

PBGA package with the setup of a grating pitch of 100 µm and a contour interval 50 

µm per fringe.  In the figures, the fringe disappears in some region due to the limited 

dynamic range of the high sensitivity shadow moiré caused by the Talbot effect.  A 

new approach is required to obtain a sufficient dynamic range of high sensitivity 

shadow moiré. 

 

     

(a)      (b) 

Figure 1.7 Examples of high sensitivity shadow moiré on electronic packaging; (a) 

warpage of PBGA with g = 40 µm and Γ = 40 µm/fringe [Rao 1997] and (b) warpage 

of FC-PBGA with g = 100 µm and Γ = 50 µm/fringe. 
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1.3.3 Sensitivity Enhancement by Phase-shifting and Systematic Error 

Phase-shifting technique is one of the most important techniques in interferometry.  

The method utilizes a series of phase-shifted patterns to determine fractional fringe 

orders.  The method is based on harmonic representation of the intensity of fringe 

patterns [Creath 1988].  The harmonic intensity distribution can be defined as 

 [ ]( , ) ( , ) ( , )cos ( , )m aI x y I x y I x y x yφ= +  (1.8) 

where 

( , )mI x y : the mean intensity 

( , )aI x y : the modulation of interference fringe 

( , )x yφ : the angular phase information of the fringe pattern, and (x,y) 

represents all the points in the x-y plane of the object and the pattern; 

φ represents the fringe order N at each point of the pattern by 

( , ) 2 ( , )x y N x yφ π=  where N is a fringe order. 

 

There are three unknowns in Eq. 1.8, namely Im, Ia, φ.  Three simultaneous equations 

are needed to evaluate the unknowns.  Experimentally, the three equations can be 

obtained by recording a series of intensity distributions with a known amount of a 

uniform change of phase or fringe order.  The three equations can be expressed as  
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

, , , cos ,

, , , cos ,

, , , cos ,

m a

m a

m a

I x y I x y I x y x y

I x y I x y I x y x y

I x y I x y I x y x y

φ δ

φ

φ δ

= + −  
= +   
= + +  

 (1.9) 

where Ii is the intensity distribution recorded with a phase change of −δ, 0 , +δ.  Then 

the phase φ(x, y) can be determined as 

 ( ) ( ) ( )
( ) ( ) ( )

1 3

2 1 3

, ,1 cos, arctan
sin 2 , , ,

I x y I x y
x y

I x y I x y I x y
δφ

δ
 −−

= ⋅ − − 
 (1.10) 

 

For a more accurate phase calculation, other algorithms using more than three phase-

shifted images have been developed.  The most widely used algorithm uses four 

phase-shifted images [Wang 2003].  The set of four images are  

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

4

, , , cos ,

, , , cos , / 2

, , , cos ,

, , , cos , 3 / 2

m a

m a

m a

m a

I x y I x y I x y x y

I x y I x y I x y x y

I x y I x y I x y x y

I x y I x y I x y x y

φ

φ π

φ π

φ π

= +   
= + +  
= + +  
= + +  

 (1.11) 

The phase at each point can be expressed in a simpler form as 

 ( ) ( ) ( )
( ) ( )

4 2

1 3

, ,
, arctan

, ,
I x y I x y

x y
I x y I x y

φ
 −

=  − 
 (1.12) 
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The phase-shifting method has been applied to shadow moiré to increase its 

sensitivity by numerous researchers [Liao 1993, Wang 1997, Petriccione 1999, Wu 

1999, Polsky 2000, Dang 2000, Dunne 2002, Vrinceanu 2002, Zhang 2003, Chen 

2004, Zwemer 2004].  Although it was realized that shadow moiré fringes have a 

complex intensity distribution, it was assumed in all the studies that shadow moiré 

fringes have a sinusoidal intensity distribution.  This assumption was inevitable to 

employ the existing phase-shifting algorithms.  The theoretical enhancement of 

measurement sensitivity was reported but a true net gain in measurement sensitivity 

was not discussed.  The errors induced by the sinusoidal assumption can be 

substantial and can offset the sensitivity enhancement offered by the phase-shifting 

technique.   

 

The systematic error associated with the non-sinusoidal intensity distribution is 

demonstrated with two different basic measurement sensitivities.  The specimen was 

a 25 mm circular plano-convex lens with a focal length of 750 mm.  The concave 

surface was painted with a white matt paint and the surface was measured by shadow 

moiré.  The results are shown in Figs. 1.8 and 1.9 for the contour intervals of 100 and 

500 µm per fringe, respectively.  The four phase-shifted patterns are shown in (a)-(d) 

and the measured displacements are compared with the exact values of the lens 

geometry along the horizontal center line (AA’) in (e). 

 
For the case of the higher measurement sensitivity (Fig. 1.8), the measured values 

mach well with the exact values.  When a much lower measurement sensitivity is 

used (Fig. 1.9), however, a significant error is produced; the amount of the error is 



 

 16 
 

approximately 10 µm.  The error was caused by the non-sinusoidal intensity 

distribution and it would depend on the configuration of shadow moiré. 

 

 

          

(a)   (b)   (c)   (d) 

 

 

(e) 

Figure 1.8 Result of phase-shifting shadow moiré with a high measurement sensitivity 

(Γ = 100 µm /fringe); fringe patterns with phase-shifting amount of (a) 0, (b) π/4, (c) 

π/2, (d) 3π/4, and (e) the results are compared with the exact geometry. 

 

 

A A 
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(a)    (b)    (c)    (d) 

 

 

(e) 

Figure 1.9 Result of phase-shifting shadow moiré with a low measurement sensitivity 

(Γ = 500 µm /fringe); fringe patterns with phase-shifting amount of (a) 0, (b) π/4, (c) 

π/2, (d) 3π/4, and (e) the results are compared with the exact geometry. 

 

The enhancement of measurement sensitivity by combining the phase-shifting with 

shadow moiré requires the extensive analysis for the fringe intensity distribution of 

shadow moiré.  Arai et al. [Arai 1999] attempted to negate the effect of the sinusoidal 

assumption by considering the first and second order harmonic functions obtained 

A A 
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form the experimental results.  The results cannot be generalized for shadow moiré 

since the intensity distribution is a function of several experimental parameters.  

Asundi et al. [Asundi 1994] also attempted to calculate the errors associated the 

sinusoidal assumption using triangular, square and step-triangular wave intensity 

profiles.  The intensity profiles do not represent the true shadow moiré fringes and the 

results can be misleading.  

 

1.3.4 Problem Statement 

High measurement sensitivity is required for the application of shadow moiré to 

warpage measurement of microelectronic devices.  It can be achieved by either 

increasing the basic measurement sensitivity or employing the phase-shifting 

technique.  However, the upper limit of the basic sensitivity is limited by the 

diffraction effect and the phase-shifting technique is limited by the non-sinusoidal 

intensity distribution of shadow moiré fringes. 

 

In this study, I propose to utilize the non-zero Talbot distance to achieve the large 

dynamic range as well as high precision.  An attempt to measure warpage using the 

Talbot effect in shadow moiré was reported in the literature [Wei 1998], but the effect 

of inclined illumination and diffraction was not realized correctly and the suggested 

optical configuration was misleading.  The design of experiments for effective 

measurements at the non-zero Talbot distance requires detailed knowledge of fringe 

intensity and contrast as a function of the distance between the specimen and the 

reference grating.  Understanding the diffraction effect in shadow moiré becomes 
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essential for developing the fringe intensity function and optimizing the experimental 

results.  

 

The objective of part I is to provide a theoretical framework for shadow moiré with 

non-zero Talbot distance, to suggest a high sensitivity shadow moiré with non-zero 

Talbot distance, and to propose an optimal optical configurations of the system for the 

best fringe contrast.  The specific scope includes:  

 

1) Study the effect of diffraction on the intensity distribution and contrast of 

shadow moiré fringe for a monochromatic light source. 

2) Develop a complete expression for the contrast of shadow moiré fringes 

including the geometrical effect. 

3) Investigate the effect of a broad spectrum light source on the intensity 

distribution and contrast of shadow moiré fringes. 

4) Investigate the effect of non-sinusoidal shadow moiré fringe on the result of 

phase-shifting. 

5) Suggest and implement the shadow moiré using non-zero Talbot distance. 

6) Propose optical configurations for optimum fringe contrast for a given basic 

measurement sensitivity. 
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Chapter  2.   Diffraction Effect on Shadow Moiré Fringe  

2.1 Governing Equation of Shadow Moiré  from Diffraction Theory 

Using the approach of angular spectrum of plane waves [Edgar 1969], the complex 

field, E, of the light at a distance z from the grating can be expressed as [Patroski 

1989] 

 2( , ) exp sin cosn n n
n

E x z a i x zπ θ θ
λ

∞

=−∞

  = +   
∑  (2.1) 

where sin sin= +n n
g
λθ α  , and n is diffraction order 0, 1, 2, 3, ---. (2.2) 

 

Using the following parabolic approximation which is prevalent in the literature 

[Testorf 1996, Edgar 1969, Patroski 1989, Keren 1985] 

 

2

n 2

1 n n sincos cos 1 2
2 gcos g cos

λ λ αθ α
α α

     ≈ − +  
     

 (2.3) 

the approximated complex field Ep can be expressed in terms of the Talbot distance 

(Eq. 1.7) as 
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( )

2

2( , ) ( , ) exp sin cos *

exp 2 tan

p

n
n T

E x z E x z i x z

n n na i x z z
g g Dα

π α α
λ

π α
∞

=−∞

 ≈ = + 
 

   − −  
   

∑
 (2.4) 

The corresponding intensity distribution of the Talbot image Ip can be expressed as  

 2 2

( , ) ( , ) ( , )

tanexp 2 ( ) exp 2

p p p

n m
n m T

I x z E x z E x z

x z m na a i n m i z
g Dα

απ π
∞ ∞

=−∞ =−∞

= ⋅

   − − = −    
     

∑ ∑
 (2.5) 

 

It is worth noting that the intensity distribution of the Talbot image consists of two 

terms: for a given α, g and λ, the first term tan −
 
 

x z
g

α  (referred to as the 

“rectilinear term”) is a function of x and z, while the second term 
2 2 −

 
 T

m n z
Dα  

(referred to as the “diffraction term”) is a function of only z.  The rectilinear term 

defines the measurement sensitivity while the diffraction term controls the fringe 

contrast.  Equation 2.5 was evaluated numerically for an amplitude grating with the 

equal widths of bars and spaces.  The results are plotted in Fig. 2.1a.  The rectilinear 

term in Eq. 2.5 was also calculated and the results are plotted in Fig. 2.1b.  As the gap 

z increases, the Talbot image of the grating (i. e., the shadow of the grating) translates 

in the x direction by tanz α  due to the rectilinear term; if z increases by a fraction of 

tan
g

α
, the Talbot image translates by the same fraction of g.  The diffraction term 

does not contribute to the translation of the Talbot image.  Instead, it distorts the 
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intensity distribution of the Talbot image, which alters the intensity distribution of 

shadow moiré fringes.  It is to be noted that the complimentary image in Fig. 1.4 (c) is 

not a shifted image by the rectilinear term.  Instead, it is an image altered by the 

diffraction term. 

 

Referring again to Fig. 1.1, the specimen surface scatters light in all directions but 

only light that propagates rectilinearly can enter the camera.  An additional lateral 

shift of the Talbot image caused by the oblique viewing is tanz β .  The total lateral 

shift of the Talbot image that is seen by an observer then becomes ( )tan tan+z α β .  

The total lateral shift is directly related to the fringe order N by  

 ( )( , ) tan tan ( , )+ =z x y gN x yα β  (2.6) 

, which is identical to the governing equation based on rectilinear propagation of light 

(Eq. 1.3).   
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(a) 

 

(b) 

Figure 2.1 Intensity distribution of self-image of grating obtained from Eq. 2.5; (a) 

rectilinear and diffraction term, (b) rectilinear term only. 

 



 

 24 
 

2.2 Intensity Distribution of Shadow Moiré Fringe 

In the previous section, a parabolic approximation (Eq. 2.3) was used to derive the 

intensity distribution of Talbot images (Eq. 2.5).  Although it offers a physical insight 

for shadow moiré based on the diffraction theory, the aberration of the intensity 

distribution is not negligible for large incident angles*.  The exact intensity 

distribution I(x,z) of a Talbot image is required for an accurate expression of fringe 

contrast.   

 

From Eq. 2.1, the exact complex field can be written as  

 

2

2 2

2 2( , ) exp sin exp cos

2exp sin

2 sin 1exp cos 1 2
cos cos

n n n
n

n
n

E x z a i x i z

na i x
g

n ni z
g g

π πθ θ
λ λ

π λ α
λ

π λ α λα
λ α α

   =    
   
  

= + ×  
  

   − −  
   

∑

∑  (2.7) 

and the exact intensity distribution of a Talbot image can be expressed as  

 

                                                 
* The effect of parabolic approximation in inclined illumination will be discussed in a later section. 



 

 25 
 

 

( ) ( )

( )

2

2 2

2

2 2

( , ) ( , ) ( , )
2 2exp sin sin exp cos cos

2exp

2 sin 1exp cos 1 2
cos cos

sin 11 2
cos cos

n m n m n m
n m

n m
n m

I x z E x z E x z

a a i x i z

a a i x n m
g

n ni z
g g

m m
g g

π πθ θ θ θ
λ λ

π

π λ α λα
λ α α

λ α λ
α α

= ⋅

   = − −   
   
 

= − × 
 
   − −  
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∑∑

∑∑  (2.8) 

The self-image described by Eq. 2.8 interacts with the reference grating to form 

shadow moiré fringes.  Because of the diffraction term, the intensity distribution of 

shadow moiré does not produce the usual triangular distribution of geometric moiré 

fringes.  The following analysis is given to determine the intensity distribution of 

shadow moiré fringes. 

 

Assuming an imaging system with an extremely tiny aperture*, the intensity 

distribution of shadow moiré fringes, Is, can be determined by superposing a Talbot 

image on a reference grating; mathematically, using Eq. 2.8, Is can be expressed as 

[Keren 1985] 

                                                 
* A finite aperture alters the contrast of shadow moiré fringes significantly and this effect will be 

addressed in a later chapter. 
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 { }
g / 2

s g / 2

1I (z) I(x,0)I(x,z) dx
g −

= ∫  (2.9) 

The intensity distributions for a normalized gap with Talbot distance are plotted in 

Fig. 2.2, where α is 45° and g is (a) 0.1 mm, (b) 0.05 mm and (c) 0.025 mm, 

respectively.  As expected from Fig. 1.4, the intensity becomes zero at / 4Tz Dα=  and 

it returns to its maximum value at / 2Tz Dα= . The intensity distribution will repeat as 

z increases. 

 

 

 

(a) 
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(b) 

 

 

(c) 

 

Figure 2.2 Theoretical intensity distributions of shadow moiré fringes with α = 45°, λ 

= 661 nm, and g = (a) 0.1mm, (b) 0.05 mm, and (c) 0.025 mm. 
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2.3 Diffraction Effect on Fringe Contrast 

The contrast cannot be determined directly from Fig. 2.2 because the intensity 

changes continuously with z.  The maximum intensity and the minimum intensity of a 

shadow moiré fringe at a given distance z can be calculated numerically by altering 

Eq. 2.9.  Considering that the Talbot image translates by tanz α , the maximum and 

minimum intensity at z can be expressed as  

 
{ }

/ 2max

/ 2

/ 2min

/ 2

1( ) ( ,0) ( tan , )

1( ) ( ,0) ( tan , )
2

g

s g

g

s g

I z I x I x z z dx
g

gI z I x I x z z dx
g

α

α

−

−

= +

 = + + 
 

∫

∫
 (2.10) 

 

Then the contrast due to the Talbot effect CT , which will be referred to as Talbot 

contrast, can be defined as 

 
max min

max min
( ) ( )( )
( ) ( )

s s
T

s s

I z I zC z
I z I z

−
=

+
 (2.11) 

 

Figure 2.3 shows the theoretical contrast in case of g = 0.1, 0.05, and 0.025 mm with 

α = 45° and λ = 661 nm.  The contrast changes periodically with the normalized 

Talbot distance.  The distribution also changes with the pitch of the grating.  It is 

important to note that the contrast at multiples of half the Talbot distance does not 

return to its maximum value of “1”.  This is distinctively different from the results 

obtained for normal illumination, where the contrast at multiples of half the Talbot 

distance always has its maximum value of “1” regardless of z [Keren 1985].     
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Figure 2.3 Talbot contrast of shadow moiré fringe; α = 45° and λ = 661 nm. 
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2.4 Experiment Validation of Talbot Contrast 

An experiment was conducted to verify the validity of Eq. 2.11.  The experimental 

setup is illustrated schematically in Fig. 2.3.  A light source of laser diode (λ = 661 

nm) was employed as a light source.  The angle of incidence was 45° and the 

reference grating (Grating 1) was a Ronchi grating with pitch of 0.1 mm.   

 

In the setup, another Ronchi grating with the same pitch referred to as Grating 2 was 

inserted parallel to Grating 1.  A ground glass was attached to Grating 2 for viewing 

in such a way that the ground surface was in contact with the grating plane of Grating 

2.  The camera was focused on the contact plane, where the Talbot image of Grating 1 

and Grating 2 form a fringe pattern.  The distance between two gratings was adjusted 

by using a micrometer stage.   

 

If Gratings 1 and 2 were exactly parallel to each other, the intensity seen by the 

camera would be uniform.  Grating 2 was rotated slightly with respect to the z axis to 

produce a fringe pattern with rotational mismatch.  Then fringe patterns were 

recorded at discrete intervals of z.  

 

This setup offers two important features.  First, the setup negates the effect of 

aperture completely so that only the Talbot effect can be documented.  This is critical 

to a direct comparison of the experimental results with the theoretical prediction that 

assumes a theoretical pinhole aperture.  Another important feature is that the fringes, 

equivalent to shadow moiré fringes, can be formed by rotational mismatch.  
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Consequently, the maximum and minimum intensity can be determined 

simultaneously at a given distance z, which makes the contrast calculation easier and 

more accurate.  Representative fringe patterns obtained from the setup are shown in 

Fig. 2.5.  The maximum and minimum intensities were determined digitally from the 

patterns and the contrast was calculated using Eq. 2.11.   

 

The experimental results are plotted in Fig. 2.6, where the contrasts obtained from the 

experiment are compared with the theoretical (or predicted) values. It is to be noted 

that the contrast near z = 0 could not be measured because of the finite thickness of 

Grating 2.  The experimental data match the predicted values extremely well, which 

corroborates the validity the theoretical relationships.   

 

 

 

Figure 2.4 Experimental setup to measure the Talbot contrast of shadow moiré fringes. 
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(a)                                             (b) 

Figure 2.5 Fringe patterns with rotational mismatch at (a) z = 0.25 TDα  and (b) z = 

0.5 TDα . 

0 2 4 
Scale (mm) 
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Figure 2.6 Experimental results of the Talbot contrast are compared with theoretical 

prediction. 
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2.5 Effect of Parabolic Approximation on the Contrast 

The parabolic approximation used to derive Eq. 2.3 is reasonable when the angle of 

incidence is small.  The amount of aberration becomes significant as the angle 

increases.  The large aberration can alter the contrast significantly.   

 

The contrast of shadow moiré fringes was calculated by Eq. 2.11 using the 

approximated intensity (Eq. 2.5) first and it was compared with a subsequent 

calculation using the exact intensity (Eq. 2.8).  The contrast for incident angles of 0° 

(normal incidence) and 45° are plotted in Fig. 2.7, where the results obtained from 

Eqs. 2.5 and 2.8 are denoted by approx. and exact, respectively.  Other parameters 

used in the calculation are g = 0.1 mm and λ = 661 nm. 

 

For normal illumination, the approximated contrast is nearly identical to the exact 

contrast (Fig. 2.7 (a)); aberrations from the parabolic approximation are negligible.  

However, for the inclined illumination (α = 45°), the eact contrast is distinctively 

different from the approximated contrast (Fig. 2.7 (b)).  The shape and maximum 

value of the exact contrast for inclined illumination change as z increases.  More 

important, the exact contrast for inclined illumination at multiples of half the Talbot 

distance does not return to its maximum value attained at z = 0.   

 

The intensity distribution of Talbot images explains the discrepancy.  Figure 2.8 

shows the intensity distributions at the half and full Talbot distances for inclined 

illumination (α = 45°).  Solid lines and dashed lines in the figure are calculated from 
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Eqs. 2.8 and 2.5, respectively.  The intensity distribution obtained from the parabolic 

approximation (Eq. 2.5) is identical to the intensity distribution of the reference 

grating.  However, the exact intensity distributions obtained from Eq. 2.8 are irregular.  

The non-zero intensity in dark bars (x/g = 0 to 0.5) contributes to a decrease in the 

maximum contrast at multiples of half the Talbot distance.   
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(a) 

 

(b) 

Figure 2.7 Talbot contrast of shadow moiré fringes with and without parabolic 

approximation; (a) α = 0° and (b) α = 45°. 
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Figure 2.8 Intensity distributions of Talbot images at the half and full Talbot distances 

when α = 45°, g = 0.1, and λ = 661 nm. 
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Chapter  3.   Combined Contrast of Shadow Moiré Fringe 

3.1 Aperture Effect on Fringe Contrast of Shadow Moiré 

The contrast shown in Fig. 2.6 is valid only when a pinhole aperture is used.  In 

practice, however, the aperture of an imaging system has a finite width.  Figure 3.1 

illustrates the influence of the aperture on the contrast of shadow moiré fringes, first 

treated by Kafri and Keren [Kafri 1981] and later by Jassens [Jassens1985].   

 

In Fig. 3.1, the lateral shift of the shadow grating is half the pitch of the reference 

grating, which is supposed to produce a dark fringe.  With the configuration shown in 

Fig. 3.1 (a) where the aperture is reduced to a point (d ≈ 0), the light from bright bars 

cannot enter the camera regardless of the values of z; a uniformly dark fringe is 

produced.  For the case of the aperture shown in Fig. 3.1 (b), however, some of light 

scattered from bright bars can enter the camera.  More light can enter the camera as z 

increases.  The result is an increase of the intensity of dark fringes and thus a decrease 

in the contrast of moiré fringes.   

 

For the case of a circular aperture, the maximum intensity ( )max
AI  and minimum 

intensity ( )min
AI of the shadow moiré fringes can be determined by a geometric 

analysis as [Kafri 1981] and they can be expressed mathematically as 
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max
0

min
0

1 2( )
2 3

2( )
3

e
A

e
A

d zI z I
g

d zI z I
g

π

π

 
= − 

 
 

=  
 

 (3.1) 

where 0I  is the intensity of a light source and de is an effective aperture defined as 

the ratio between the diameter of the aperture d and the distance of the aperture L, i.e., 

d
L

.  As a geometric analysis based on rectilinear propagation of light was used to 

derive Eq. 3.1, the aperture effect is valid regardless of the Talbot distance.   

 

When z increases, the difference Imax – Imin decreases.  The contrast becomes zero 

when Imax = Imin.  The condition for complete washout of the fringe pattern Dw, or 

washout distance, can be expressed as 

 3
8w

e

gD
d
π

=  (3.2) 

Then the contrast attributed to the aperture effect CA, which will be referred to as 

aperture contrast, can be expressed as  

 
max min

max min

8( ) ( )( ) 1 1
( ) ( ) 3

eA A
A

A A w

d zI z I z zC z
I z I z g Dπ

−
= = − = −

+
    for 30

8
≤ ≤

e

gz
d
π  (3.3) 
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(a) 

 

 

 

(b) 

 

Figure 3.1 Illustration of the effect of aperture on the contrast of shadow moiré 

fringes; (a) pin-hole aperture and (b) finite aperture. 
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3.2 Combined Effect on Fringe Contrast of Shadow Moiré   

By combining Talbot contrast (Eq. 2.11) and aperture contrast (Eq. 3.3), the contrast 

of shadow moiré fringes is defined as 

 ( ) ( ) ( )= ×T AC z C z C z     for 30
8

≤ ≤
e

gz
d
π  (3.4) 

Equation 3.4 provides a complete expression for the contrast of shadow moiré fringes, 

considering the combined effect of the diffraction phenomenon and the effective 

aperture.  A practical shadow moiré setup was used to validate the combined effect 

experimentally.   

 

As illustrated in Fig. 3.2 (a), the specimen was illuminated obliquely at α = 63.4° by a 

laser diode (λ = 661 nm); the source width was essentially zero. The camera was 

positioned for normal viewing (β = 0).  The pitch of the reference grating was 0.2 mm.  

The effective aperture de was 0.0245 and the Talbot distance was 10.8 mm.  With this 

arrangement, the contour interval for out-of-plane displacement measurements was 

0.1 mm per fringe. 

 

The specimen was a 12 mm square flat glass plate coated with white paint, and it was 

mounted on a micrometer stage.  The specimen was tilted approximately by 1°, which 

produced two uniformly spaced fringes on the specimen.  Numerous fringe patterns 

were recorded, each for slightly different values of z.  Representative fringe patterns 

obtained at z = 0, 1/8 TDα , 1/ 4 TDα , 3/8 TDα , 1/ 4 TDα , and 5 /8 TDα  are shown in Fig. 3.2, 
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where the white curves represent the intensity distribution averaged along lines 

parallel to the fringes. 

 

Since a diverging beam was used in the setup, the illumination angle varied across the 

specimen.  However, with the source to specimen distance of 570 mm, the 

illumination angle varied only 0.3° across the one fringe interval, which had a 

negligible effect on the Talbot distance calculation.   

 

The contrasts calculated from the experimental data are plotted in Fig. 3.3 together 

with the theoretical predictions; the solid circles represent the contrasts obtained from 

the fringe patterns in Fig. 3.2.  The experimental results corroborate the validity of 

combined contrast defined by Eq. 3.4.  Note, too, that the maximum local fringe 

contrast occurs when the gap is slightly less than / 2TDα  for these experimental 

conditions.   

 

Obviously, greater fringe contrast will be achieved with smaller effective apertures.  

Figure 3.3 (b) shows the theoretical results for the same experimental parameters, 

except de = 0.005.   
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(a) 

     

(b)      (c) 

     

(d)      (e) 

    

(f)      (g) 

Figure 3.2 (a) Experimental setup to measure the contrast of shadow moiré fringes, 

and fringe pattern obtained as z = (b) 0, (c) 1/8 TDα  , (d) 1/4 TDα  , (e) 3/8 TDα , (f) 1/2 TDα , 

and (g) 5/8 TDα . 
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(a) 

 

(b) 

Figure 3.3 Combined contrast of shadow moiré fringe and its experimental 

verification with optical parameters α = 63.4°, λ = 661 nm, g= 0.2 mm, and (a) de = 

0.0245, (b) de = 0.005. 



 

 45 
 

Chapter  4.   Effect of Broad Spectrum Light on Shadow Moiré 

Fringe 

4.1 Introduction 

In the previous chapters, monochromatic light is assumed to derive the contrast and 

intensity function of shadow moiré fringe.  Shadow moiré is basically a geometric 

moiré and it does not require a monochromatic light source.  In fact, white light is 

preferred in practice to avoid noise caused by a coherent light source such as speckle 

and multiple reflections.  In this chapter, the effect of a broad spectrum light source 

on the shadow moiré fringe will be investigated. 

 

4.2 Effect of Parabolic Approximation on the Talbot Contrast 

The intensity of broad spectrum light can be determined by superposing the intensity 

of each wavelength [Post 1994].  The intensity of shadow images of Ronchi ruling 

then can be expressed as 

 
2

12

12 1

1 ( , ; )I I x z d
λ

λ
λ

λ λ
λ λ

=
− ∫  (4.1) 

where ( , ; )I x z λ is the intensity distribution of the Talbot image defined by Eq. 2.8, λ1 

and λ2 are the smallest and largest wavelength of the light source, respectively.  

 

Equations 4.1 can be evaluated numerically by  
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12

0

1 ( , ; )
k N

k
k

I I x zλ λ δλ
λ

=

=

≅
∆ ∑  (4.1b) 

where 2 1λ λ λ∆ = − , 1k
kλ λ δλ= + , ( )2 1 / Nδλ λ λ= − , and k = 0, 1, 2, 3, … N. 

 

Similar to the interference with a broad spectrum light [Post, 1994], it is expected that 

the high frequency peaks shown in the intensity distribution obtained by the exact 

solution (Fig. 2.7) will diminish as the spectral band width ( )λ∆ of the light source 

increases.  Consequently, the effect of the parabolic approximation would also 

decrease as ∆λ increases.  This speculation is verified numerically.   

 

The intensity distributions using the parabolic approximation, corresponding to Eqs. 

4.1 and 4.1b, can be expressed as  

 
2

12

1

1 ( , ; )p PI I x z d
λ

λ
λ

λ λ
λ

=
∆ ∫  (4.2) 

 
12

0

1 ( , ; )
k N

p p k
k

I I x zλ λ δλ
λ

=

=

≅
∆ ∑  (4.2b) 

where ( , ; )pI x z λ is the approximated intensity function defined at Eq. 2.5. 

 

Equations 4.1b and 4.2b were evaluated numerically using δλ of 0.1 nm.  The value 

of δλ was chosen after a series of calculations with different values of δλ to check the 

convergence; the numerical results remained virtually unchanged with δλ smaller 
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than 0.1 nm.  The intensity distributions at half the Talbot distance and the full Talbot 

distance were calculated for the configuration used to produce Fig. 2.8 (g = 0.1 mm 

and α = 45°).  The results are shown in Fig. 4.1, where the central wavelength 

2 1

2c
λ λλ + = 

 
 was 550 nm and λ∆  was (a) 0 nm (monochromatic light), (b) 50 nm, 

(c) 100 nm and (d) 300 nm (white light).  Note that the Talbot distance was calculated 

using cλ . 

 

The results indicate the effect of broad spectrum clearly; as the spectral band width 

increases, the difference between two intensity distributions diminishes.  The 

intensity distributions become virtually identical to each other when a white light 

source is used.  To assure the implications from the numerical analysis, numerous 

cases with different geometrical parameters were calculated.  Figures 4.2 and 4.3 

show the selected results from the calculations, where g = 0.1 mm and α = 63°, and g 

= 0.2 mm and α = 63°, respectively.  Again two intensity distributions are virtually 

the same at multiples of half the Talbot distance. 

 

The above numerical analysis provides a theoretical justification for using the 

parabolic approximation when a broad spectrum light source is used; the effect of 

parabolic approximation is negligible if 100 nmλ∆ > .  Consequently, the 

approximated intensity of Eq. 4.2 will be used in the following analysis using a broad 

spectrum light. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 4.1 Shape of intensities of g = 0.1 mm and α =45° at half Talbot distance and 

full Talbot distance with wavelength of (a) 550 nm, (b) 525 – 575 nm, (c) 500 – 600 

nm, and (d) 400 – 700 nm. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 4.2 Shape of intensities of g = 0.1 mm and α =63° at half Talbot distance and 

full Talbot distance with wavelength of (a) 550 nm, (b) 525 – 575 nm, (c) 500 – 600 

nm, and (d) 400 – 700 nm. 
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 4.3 Shape of intensities of g = 0.2 mm and α =63° at half Talbot distance and 

full Talbot distance with wavelength of (a) 550 nm, (b) 525 – 575 nm, (c) 500 – 600 

nm, and (d) 400 – 700 nm. 
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4.3 Intensity Distribution of Shadow Moiré Fringes Produced by Broad 

Spectrum Light Source  

From Eqs. 4.2b and 2.5, the intensity of Talbot image formed by a broad spectrum 

light source can be written as 
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λ
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 (4.3) 

 

The intensity distribution of shadow moiré fringes formed by a broad spectrum light, 

( )sI z , can be expressed as 

 { }12

/ 2

/ 2

1( ) ( ,0) ( , )
g

s pg
I z I x I x z dx

g λ−
= ∫  (4.4) 

By substituting Eq. 4.3 into Eq. 4.4, 
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For the Ronchi ruling, 
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Using Eq. 4.6, Eq. 4.5 can be written as  
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(where z ≠ 0) 

 

By adding up each term of Eq. 4.7,  
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(where z ≠ 0) 

 

The sinusoidal term in Eq. 4.8 can be converted into 
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where “Talbot distance” and “secondary Talbot distance” are defined, respectively, as 
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Using the relation of Eq. 4.9, Eq. 4.8 can be written as 
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where 
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The second term in sum of Eq. 4.10 can be extended as 
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Finally, Eq. 4.10 can be written as 
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Equation 4.12 expresses the intensity distribution of shadow moiré fringe formed by a 

broad spectrum light source.  In the equation, the first cosine term represents the 

effect of diffraction, the second term is similar to the rectilinear term in Eq. 2.5, and 

the third term of the sinc function shows the effect of the broad spectrum. 

 



 

 56 
 

4.4 Talbot  Contrast for Broad Spectrum Light Source 

The mathematical procedure used in Section 2.3 is repeated to determine the Talbot 

contrast of shadow moiré fringes produced by a broad spectrum light source.  Using 

Eq. 2.10, the maximum and minimum intensity can be expressed as 
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The Talbot contrast can be expressed as  
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               (where z ≠ 0)     

Sinusoidal term in the Eq. 4.14 can be converted into 
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Finally, the Talbot contrast can be written as 
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4.5 Experimental Validation of Talbot Contrast for Broad Spectrum Light 

Source 

An experiment was conducted to verify the validity of Eq. 4.16.  The test setup shown 

in Fig. 2.4 was used with a 250 W white light illuminator (Fiberoptic Systems, Inc. 

Model 1060-250).  The light source is coupled to a bundle of optical fiber, which 

forms a linear light source.   

 

Fringe patterns were obtained over several Talbot distances while moving the 

micrometer stage.  Representative fringe patterns obtained at quarter and half the first 

Talbot distance are shown in Fig. 4.4.  The maximum and minimum intensities were 

determined digitally from the patterns and the contrast was determined using Eq. 4.16.  

The experimental results are plotted in Fig. 4.5, where the contrasts obtained from the 

experiment are compared with the theoretical values (Eq. 4.16).  The results confirm 

that Eq. 4.16 faithfully defines the Talbot contrast with a broad spectrum light source. 
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(a)      (b) 

Figure 4.4 Fringe pattern with white light at  

(a) z = 0.25 TDα  and (b) z = 0.5 TDα . 

 

 

Figure 4.5 Experimental results of Talbot contrast with white light are compared with 

theoretical prediction. 

 

0 2 4 
Scale (mm) 
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4.6 Analysis of Talbot Contrast with Broad Spectrum Light Source 

It has been proven that Eq. 4.16 is valid if 100 nmλ∆ > .  It is to be noted that the 

Talbot contrast is a function of only three parameter; z (the distance between the 

grating and the specimen surface), TDα  (Talbot distance), and ,T secondaryDα  (secondary 

Talbot distance).   

 

The secondary Talbot distance can be written as 

 2 1
,

2 1 2
c

T secondary T TD D Dα α α λλ λ
λ λ λ

+
= =

− ∆
 (4.17) 

As can be seen from Eq. 4.17, the secondary Talbot distance increases as the spectral 

band width, λ∆ , decreases for a given central wavelength, cλ ; ,T secondaryDα  approaches 

infinity when a monochromatic light ( )0λ∆ =  is used. 

 

Figure 4.6 illustrates the effect of the secondary Talbot distance on the Talbot contrast.  

The Talbot contrast for a monochromatic light of λ = 550 nm (Eq. 2.11) is plotted in 

Fig. 4.6 (a), where g = 0.1 mm and α = 63°.  The corresponding Talbot contrast for a 

white light ( )550 nm and 300 nmcλ λ= ∆ =  is plotted in Fig. 4.6 (b) together with the 

absolute value of the sinc function (dotted line in the figure).  It is interesting to note 

that the final Talbot contrast for a white light is basically the Talbot contrast for a 

monochromatic light modulated by the sinc function.  The period of the sinc function 
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is secondary Talbot distance, ,T secondaryDα .  Consequently, the smaller ,T secondaryDα  is, the 

more rapidly the Talbot contrast decreases at higher Talbot distances. 

 

Figure 4.7 illustrates the effect of λ∆ on ,T secondaryDα  and thus the Talbot contrast.  In 

Fig. 4.7 (a), the absolute values of the sinc functions are plotted for three different 

values of λ∆  (100, 200 and 300 nm).  The corresponding Talbot contrast is plotted in 

Fig. 4.7 (b).  The plots clearly indicate the decrease in the secondary Talbot distance 

and the subsequent reduction of the Talbot contrast with the larger values of λ∆ .  It 

is important to note that the Talbot contrast at half the Talbot distance remains 

virtually unchanged regardless of the value of λ∆ ; the spectral band width of a light 

source does not affect the Talbot contrast significantly as long as the zero or half the 

Talbot distance is used in shadow moiré.  The above analysis provides a theoretical 

rationale for the optimum optical configurations of shadow moiré using non-zero 

Talbot distance proposed in a later chapter.  
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(a) 

 

(b) 

Figure 4.6 Illustration of broad spectrum effect on the Talbot contrast of shadow 

moiré with 10 lines/mm and 63° illuminations; (a) monochromatic light (550 nm) vs 

(b) white light (400 – 700 nm). 
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(a) 

 

(b) 

Figure 4.7 Illustration of effect of wavelength width of light source on the Talbot 

contrast: (a) absolute sinc function, (b) Talbot contrast. 
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Chapter  5.   High Sensitivity Shadow Moiré Using Non-zero Talbot 

Distance (SM-NT) 

5.1 Theoretical Limit of Measurement Sensitivity of Shadow Moiré 

5.1.1 Analysis of Phase-shifting Error in Shadow Moiré 

The previous chapters have contributed to the complete understanding of the intensity 

distribution of shadow moiré fringe.  In this chapter, the errors induced by the non-

sinusoidal intensity distribution will be quantified using shadow moiré fringe 

produced by a broad spectrum light source.   

 

Substituting Eq. 4.12 into Eq. 1.11, the true intensity distribution of the four phase-

shifted patterns, ( )S
iI z , can be expressed as 

 ( ) ( )1   ,    = 0, 1, 2, 3
4 tan

S
i s

gI z I z i i
α

  = + −    
 (5.1) 

The corresponding intensity distribution based on the sinusoidal assumption, ( )R
iI z , 

can be expressed using a cosine function as 

 ( ) ( )21 cos 1   ,    = 0, 1, 2, 3
/ tan 4 tan

R
i

gI z z i i
g

π
α α

   = + + −   
   

 (5.2) 

 

By substituting Eq. 5.1 and 5.2 into Eq. 1.12, the phase values can be calculated as 
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 ( ) ( ) ( )
( ) ( )

4 2

1 3

, ,
, arctan

, ,

S S
S

S S

I x y I x y
x y

I x y I x y
φ

 −
=  − 

  (5.3) 

 ( ) ( ) ( )
( ) ( )

4 2

1 3

, ,
, arctan

, ,

R R
R

R R

I x y I x y
x y

I x y I x y
φ

 −
=  − 

 (5.4) 

The phase error from the sinusoidal assumption can be defined as 

 ( ) ( )Error , ,S Rx y x yφ φ= −  (5.5) 

The error in fractional fringe order, Ne , can be expressed as 

 ( ) ( )( )1 , ,
2

S R
Ne x y x yφ φ

π
= −  (5.6) 

 

The fractional fringe errors were determined numerically for two high sensitivity 

shadow moiré configurations; (Configuration 1) g = 0.1 mm, α = 63°, 

550 nm,cλ = 300 nmλ∆ =  and (Configuration 2) g = 0.2 mm, α = 45°, 

550 nm,cλ = 300 nmλ∆ = .  The results are plotted in Figs. 5.1 and 5.2 for the first 

and second configurations, respectively.  In each figure, the plots show the error over 

a small region near (a) the zero Talbot distance (z/ TDα = 0 – 0.2) and (b) half the 

Talbot distance (z/ TDα = 0.4 – 0.6), respectively.   

 

The errors change cyclically and its frequency is much larger than TDα .  It is worth 

noting that the amplitude does not change regardless of the optical configuration 
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although the frequency becomes higher with a configuration with higher sensitivity 

(Configuration 1).  The amplitude of the error is around ± 0.017 fringe near the zero 

Talbot distance and around ± 0.003 fringe near half the Talbot distance, which is only 

1/5 of the error near the zero Talbot distance. 

 



 

 67 
 

 

    

     (a)                (b) 

Figure 5.1 Phase-shifting error of shadow moiré fringe with g = 0.1, α = 63°, de = 0 

and λ = 400 – 700 nm for regions near (a) the zero Talbot distance (z/ TDα = 0 – 0.2) 

and (b) half the Talbot distance (z/ TDα = 0.4 – 0.6). 

 

     

     (a)                (b) 

Figure 5.2 Phase-shifting error of shadow moiré fringe with g = 0.2, α = 45°, de = 0 

and λ = 400 – 700 nm for regions near (a) the zero Talbot distance (z/ TDα = 0 – 0.2) 

and (b) half the Talbot distance (z/ TDα = 0.4 – 0.6). 
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The much reduced error near half the Talbot distance can be explained by further 

investigating the intensity function of Eq. 4.12.  The intensity function is plotted in 

Figure 5.3 for the optical setup of g = 0.1 mm, α = 63°, 550 nmcλ = and 

300 nmλ∆ = .  A pin-hole aperture was assumed.  The intensity is plotted over (a) 

one Talbot distance, (b) near the zero Talbot distance, and (c) near half the Talbot 

distance.  It is clear from (b) and (c) that the intensity distribution near the zero Talbot 

distance deviates from sinusoidal function more significantly than near half the 

Talbot distance. 

 

Each harmonic term in Eq. 4.12 contributes to the final intensity distribution.  The 

individual terms corresponding to n = 1, 2, and 3 in Eq. 4.12 are plotted in Fig. 5.4 (a), 

(b), and (c), respectively.  It is clear from the figures that the contributions of the 

higher order terms are localized only near the zero Talbot distance and diminished 

rapidly as z increase.  Near half the Talbot distance, the contribution of higher order 

terms is trivial because of the sinc function in Eq. 4.12, which is extremely sensitive 

to λ∆ . 
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(a) 

 
(b) 

 
(c) 

Figure 5.3 Intensity distribution of shadow moiré fringe for g = 0.1, α = 63°, and λ = 

400 – 700 nm with z/ TDα = (a) 0 – 1, (b) 0.0 – 0.1, and (c) 0.45 – 0.55. 
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(a) 

 
(b) 

 
(c) 

Figure 5.4 Contribution of each order (n) on the intensity function for the 

configuration of g = 0.1, α= 63°, and λ = 400 – 700 nm; n = (a) 1, (b) 2, and (c) 3. 
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It is instructive to analyze the case of a monochromatic light.  With a monochromatic 

light ( )0λ∆ = , the effect of sinc function diminishes completely and thus the 

reduction of the error at half the Talbot distance would not be possible.  The phase 

shift error was calculated for a monochromatic light, where Eqs. 2.8 and 2.9 were 

used to describe the intensity distribution and the same optical configuration used to 

produce Fig. 5.1 was used.  The results are shown in the Fig. 5.5.  As expected, the 

phase errors near half the Talbot distance are as significant as those near the zero 

Talbot distance. 

 

    
     (a)                (b) 

Figure 5.5 Phase-shifting error of shadow moiré fringe with monochromatic light (λ = 

550 nm), g = 0.1, α = 63°, and de = 0 for regions near (a) the zero Talbot distance 

(z/ TDα = 0 – 0.2) and (b) half the Talbot distance (z/ TDα = 0.4 – 0.6). 

 



 

 72 
 

5.1.2 Effect of Aperture on Phase-shifting Error  

In the previous chapter, the phase-shifting errors were determined with a pin-hole 

aperture.  Recalling that a finite aperture changes the fringe contrast, the aperture size 

can affect the phase-shifting errors.  

 

Janssens et al. [Janssens 1985] and Ladak et al. [Ladak 2000] analyzed the effect of 

aperture on the fringe contrast and associated phase-shifting errors.  Since the exact 

expression of shadow moiré fringes were not available, they assumed a sinusoidal 

function to represent shadow moiré fringes.  The similar approach is repeated here to 

analyze the effect of the aperture but using the true mathematical expression derived 

in the previous chapter.  The intensity distribution of shadow moiré with finite 

aperture can be written as 

 

2

2 2
1

2

,

1 2 8 2 (2 1)( ) 1 cos
4 (2 1) 3

2 (2 1) 2 (2 1)cos sinc
/ tan

e
s

n T

T secondary

d z z nI z
n g D

z n z n
g D

α

α

π
π π

π
α

∞

=

   −
= + − ×  −    

  − − 
   
    

∑
 (5.7) 

where the equation is valid only for 0 Wz D≤ ≤ .  Beyond the wash-out distance, the 

intensity remains a constant of 0.25.  After substituting Eq. 5.7 into Eq. 1.11, the 

procedure used to calculate the phase errors for the case of the pin-hole aperture was 

repeated.   

 

The effective aperture can be expressed in terms of f-number (f/#) and magnification 

as 
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 /( /#)
( 1) / ( 1)( /#)e

d f f Md
L f M M M f

= = =
+ +

 (5.8) 

where M is magnification factor and f is focal length of the imaging system.   

 

Numerical calculations were performed for the identical optical setup used in the 

previous chapter: g = 0.1 mm, α = 63°, 550 nmcλ = and 300 nm.λ∆ =   A 

magnification factor of 0.2 was assumed, which offers a viewing area of 50 mm when 

a 1” format CCD camera is used (sensing area of 10 mm).  The phase-shifting errors 

were determined for two effective apertures of 0.01 and 0.03; these two apertures 

correspond to f/# of 16 and 5.5 for the given magnification factor.   

 

The washout distances of the two apertures are 3.6 and 1.2 times of each TDα .  The 

results are shown at Fig. 5.6 and 5.7.  The results are very similar to Fig. 5.1.  More 

important, however, the phase errors remain virtually unchanged in spite of three time 

increase in the effective aperture.  It is clear from the results that the amplitude of the 

phase errors produced by the aperture effect is ignorable compared with that produced 

by the non-sinusoidal intensity. 
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     (a)                (b) 

Figure 5.6 Phase shifting error of shadow moiré fringe with g = 0.1, α = 63°, de = 

0.01 and λ = 400 – 700 nm for regions near (a) the zero Talbot distance (z/ TDα = 0 – 

0.2) and (b) half the Talbot distance (z/ TDα = 0.4 – 0.6). 

 

     

     (a)                (b) 

Figure 5.7 Phase shifting error of shadow moiré fringe with g = 0.1, α = 63°, de = 

0.03 and λ = 400 – 700 nm for regions near (a) the zero Talbot distance (z/ TDα = 0 – 

0.2) and (b) half the Talbot distance (z/ TDα = 0.4 – 0.6). 
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5.1.3 Experimental Verification of Phase-shifting Error 

The error defined by Eq. 5.6 was verified experimentally.  The optical setup used for 

verification is illustrated in Fig. 5.8a, where g = 1 mm and α = 45°.  The 250 W white 

light illuminator used in the previous experiment was employed as a light source.  

The setup produces a contour interval of 1 mm per fringe.  The magnitude of Ne  is 

independent of the contour interval, and thus the absolute displacement error, defined 

as Ne multiplied by the contour interval, increases as the contour interval increase, 

e.g., for 0.01Ne = ± , the errors in displacements are ±1 µm and ±10 µm for contour 

intervals of 100 µm and 1 mm, respectively.  The large contour interval helps 

distinguish the phase shifting error from the other experimental errors. 

 

An optical flat 58 mm × 58 mm with a surface accuracy of ¼ λ  was coated with 

white spray paint.  The optical flat provided an ideal flat surface to be used as a 

reference.  The optical flat was viewed by a high resolution CCD camera (Pulnix TM-

1040).  An adjustable circular aperture with diameter of 2 mm was inserted between 

the camera and the grating.  The focal length of the imaging lens was 40 mm.  The 

distance between the specimen and the aperture, L, was set to be 758 mm, which 

produced the effective aperture (de) of 0.003 and a magnification factor of 0.044.  

 

The optical flat was positioned initially at 0.01 TDα  (13 mm from the reference 

grating) and it was tilted slightly to produce rigid-body displacements.  The fringe 

pattern was captured by the camera and it is shown in Fig. 5.8b.  The pitch of the 

reference grating was coarse and its image was resolved by the camera, which 
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reduced fringe visibility significantly.  To cope with the problem, the reference 

grating was translated in its plane perpendicular to the direction of the grating lines 

during exposure [Post 1994].  Translation of the reference grating has no influence on 

the positions of moiré fringes but the grating bars are smeared and become invisible 

because of their motion faster than exposure time.  Desired translation was 

accomplished by using a precision ball-screw actuator (THK model KR2001A+100) 

controlled by a high precision stepper motor and controller (Parker Compumotor 

model zeta 6104).  The resultant fringe pattern is shown in Fig. 5.9 (a).  Improvement 

of fringe visibility is evident. 

 

        

(a)      (b) 

Figure 5.8 Experimental setup to verify the error from non-sinusodial intensity 

distribution; (a) optical setup of shadow moiré, (b) fringe papttern of the specimen. 
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The reference grating was also mounted to a high precision micrometer stage in such 

a way that the reference grating was translated normal to the optical flat.  The fringes 

obtained by a shifting interval of 0.25 mm are shown in Figs. 5.9(b)-(d). 

 

The fringe patterns were analyzed by a phase-shifting software.  The resultant 

unwrapped phase map is shown in (e).  The displacement along a line A-A is shown 

in (f).  The optical flat had only rigid-body-displacement, which would produce a 

linear change in displacements along A-A.  Deviation of the line in (f) from the 

straight line was caused by the non-sinusoidal intensity distribution. 

 

In order to visualize the errors more effectively, the rigid-body displacements were 

subtracted mathematically by adding a linear displacement function.  The errors are 

clearly seen in Fig. 5.9 (g).  The errors obtained from the experiment were compared 

with the numerical predictions in (h).  The magnitude and period of the experimental 

errors match well to the prediction, which confirms the validity of Eq. 5.6. 
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(a)   (b)   (c)   (d) 

        

(e)        (f) 

           

(g)        (h) 

Figure 5.9 Experimental results with a contour interval of 1 mm; (a) 0, (b) π/4, (c) π/2, 

(d) 3π/4 shifted image, (e) deformation plot, (f) displacement along A-A, (g) error 

plot, and (h) the error along A-A is compared with the theoretical value. 
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5.1.4 Maximum Phase-shifting Error  

The analysis in the previous section indicates that the maximum systematic error from 

the non-sinusoidal fringe intensity distribution of shadow moiré is approximately ± 

1.7 % of the contour interval, which provides a theoretical limit of the minimum 

fractional fringe order that can be determined by the phase-shifting method as 

1.7 1
100 60

≈ .  Figure 5.10 shows the maximum phase-shifting error as a function of 

contour interval.  The results clearly indicate that high basic measurement sensitivity 

is desired for high precision even when the phase-shifting is employed. 

 

 

Figure 5.10 Maximum phase-shifting errors as a function of contour interval. 
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5.2 Shadow Moiré Using Non-zero Talbot Distance (SM-NT) 

5.2.1 Extension of Theoretical Limit 

For the configuration of high sensitivity shadow moiré, the Talbot distance is so small 

that the contrast of fringe diminishes rapidly and thus the dynamic range of 

measurement is limited.   

 

The limited dynamic range is demonstrated in Fig. 5.11.  An optical setup of high 

sensitivity shadow moiré is shown in Fig. 5.11 (a), which provides a contour interval 

of 50 µm/fringe with g = 0.1 mm, α = 63°, and de = 0.01.  The Talbot distance of the 

setup is 3.25 mm.  An optical flat was tilted to produce a linearly varying 

displacement field.  The combined contrast function, or Eq. 4.16, is drawn in Fig. 

5.11 (b) and the obtained fringe pattern from the setup is shown in Fig. 5.11 (c).  Due 

to the Talbot effect, the fringe contrast reduces abruptly and becomes zero at the 

quarter Talbot distance.  The fringe contrast increases again until z reaches half the 

Talbot distance.   

 

The results clearly indicate that the dynamic range is limited by the Talbot distance.  

If the specimen is placed at 0.5 mm from the grating, only a few fringes can be visible 

in the zero Talbot area.  But if the specimen is placed in the half Talbot area, the 

dynamic range can be increased significantly.  This is one of the important 

motivations to propose shadow moiré using non-zero Talbot distance. 
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(a) 

 

(b) 

 

     

(c) 

Figure 5.11 Demonstration of the dynamic range in half the Talbot distance; (a) 

shadow moiré setup, (b) theoretical fringe contrast, and (c) the fringe pattern 

representing linearly varying displacements. 
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5.2.2 Maximum Talbot Distance and Critical Angle 

Repeated here, the Talbot distance ( TDα ) and the contour interval ( Γ ) of shadow 

moiré are defined as   

 2 cosT
gDα α
λ

=
2

3  (1.5) 

 
tan

g
α

Γ =  (3.5) 

where g is the grating pitch, λ is the wavelength, and α is the angle of illumination. 

 

A larger Talbot distance is desired for a larger dynamic range provided that an 

aperture effect is small.  From Eqs. 1.5 and 3.5, the Talbot distance is related to the 

contour interval as 

 
2

sin 2 sinTDα α α
λ
Γ

=  (5.9) 

The incident angle that provides the maximum Talbot distance for a given contour 

interval can be calculated by differentiating Eq. 5.9 as 

 ( ) ( )
2 2

2sin 2 sin
2sin 3cos 1 0TDα α α

α α
α λ α λ

∂∂ Γ Γ
= = − =

∂ ∂
 (5.10) 

The value of α that satisfies Eq. 5.10 is 54.7cα = , which will be referred to as 

critical angle.  Figure 5.12 shows the maximum Talbot distance and the 
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corresponding pitch of grating for the contour interval of (a) 100 µm/fringe and (b) 50 

µm/fringe.   

 

 

(a) 

 

 

(b) 

Figure 5.12 Maximum Talbot distance and grating pitch for the contour interval of (a) 

100 µm/fringe and (b) 50 µm/fringe. 
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5.2.3 Enhancement of Dynamic Range 

Enhancement of the dynamic range in the half Talbot area is demonstrated in Tables 

5.1 and 5.2.  The following criteria were used to determine the parameters in Table 

5.1.   

 

(1) Minimum gap between the specimen and the reference grating: 1 mm 

(2) Minimum dynamic range = 10 contour interval 

(3) Additional range for good contrast = 1 mm + 10 contour interval. 

(4) Required quarter Talbot distance = (1) + (2) + (3) 

 

The item (3) is needed to ensure reasonable contrast of all the fringes within the 

dynamic range.  It is to be noted that the quarter Talbot distance was calculated using 

the critical angle.  As can be seen from the table, the required quarter Talbot distance 

is greater than the maximum quarter Talbot distance except a contour interval of 200 

µm. 

 

The required half Talbot distance was also calculated for the half Talbot area.  In this 

case, the criteria become: 

(1) Minimum gap between the specimen and the reference grating: 1 mm 

(2) Minimum dynamic range = 10 contour interval 

(3) Additional range for good contrast = ±5 contour interval. 

(4) Required half Talbot distance = maximum((1) + (2)/2, (2) + (3)) 
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The results are shown in Table 5.2.  The required half Talbot distance is smaller than 

the maximum value even for the contour interval of 50 µm.   

 

Table 5.1 Utilizing the zero Talbot area for high sensitivity shadow moiré  

Contour interval 
(µm/fringe) 

Required 
Dynamic Range 

(mm)* 

Required Quarter 
Talbot Distance 

(mm)** 

Maximum Quarter 
Talbot Distance 

(mm)*** 

200 2 6 14 

100 1 4 3.5 

50 0.5 3 0.9 

* Required dynamic range = 10× contour interval 

** Required quarter Talbot distance = (1mm + dynamic range) × 2 

*** Quarter Talbot distance is calculated using the critical angle. 

 

Table 5.2 Utilizing the half Talbot area for high sensitivity shadow moiré 

Contour interval 
(mm/fringe) 

Required 
Dynamic Range 

(mm)* 

Required half 
Talbot Distance 

(mm)** 

Maximum Half 
Talbot Distance 

(mm)*** 

100 1 2 7 

50 0.5 1.25 1.8 

* Required dynamic range = 10× contour interval 

** Required half Talbot distance = maximum (1mm + dynamic range/2, dynamic 

range ×  2) 

*** Half Talbot distance is calculated using the critical angle. 
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Using the dynamic range defined in Tables 5.1 and 5.2, extension of shadow moiré 

into a higher sensitivity domain is illustrated graphically in Fig. 5.13.  In the figure, 

the dashed line represents the maximum possible Talbot distance for a given contour 

interval, the dashed-dot line represents the required Talbot distance when the zero 

Talbot area is utilized, and the solid line denotes the required Talbot distance when 

the half Talbot area is utilized.  In the conventional practice of shadow moiré where 

only the zero Talbot area is utilized, the required Talbot distance is greater than the 

maximum Talbot distance if a contour interval is lower than 110 µm per fringe.  

Utilizing the non-zero Talbot distance, however, the sensitivity of shadow moiré can 

be extended to 45 µm per fringe. 

 

 

Figure 5.13 Graphical representation of the extension of shadow moiré sensitivity by 

utilizing the non-zero Talbot distance. 
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5.2.4 Maximum Sensitivity of SM-NT 

The maximum basic measurement sensitivity of shadow moiré can be determined 

considering (1) the phase-shifting error from the non-sinusoidal fringe intensity 

distribution and (2) the limit from the Talbot distance requirement.  As shown in Fig. 

5.14, a SM-NT system with the contour interval of 50 µm per fringe satisfies the 

criterion of the dynamic range while providing the high measurement resolution less 

than ±1 µm. 

 

 

Figure 5.14 Sensitivity selection of shadow moiré using non-zero Talbot distance. 

 

Although it is possible to achieve a larger dynamic range by utilizing half the Talbot 

distance, the contrast of fringe may be sacrificed substantially due to the aperture 

effect.  An optimization process is required to maximize the dynamic range and the 

fringe contrast at half the Talbot distance. 
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5.3 Optical Configuration for Optimal Contrast for SM-NT  

From Eqs. 1.5, 3.2, and 3.5, the Talbot distance and the washout distance are related 

to the contour interval as 

 
2

sin 2 sinTDα α α
λ
Γ

=  (5.9) 

 3 tan
8W

e

D
d

π αΓ
=  (5.11) 

where Γ is the contour interval, λ is the wavelength of the light, α is the angle of 

illumination, and de is the relative aperture. 

 

Recalling the contrast defined in Chap 3,  

 ( ) ( ) ( )= ×T AC z C z C z  (3.4) 

 

The contrast of shadow moiré at half the Talbot distance can be expressed as 

 

( ) ( )

( )

( )

2

/ 2/ 2 / 2 1

sin 2 sin
2/ 2 1 3 tan

8

4/ 2 1 sin 2 cos
3

T
T T T

W

T T

e

e
T T

DC D C D
D

C D

d

dC D

α
α α

α

α

α α
λ

π α

α α
πλ

 
= × − 

 
 Γ
 

= × − 
Γ 

 
 

Γ = × − 
 

 (5.12) 
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Considering a practical application with white light, the Talbot contrast at half the 

Talbot distance, ( )/ 2T TC Dα , is 0.73 (Eq. 4.16).  Then Eq. 5.12 can be written as 

 ( ) 4/ 2 0.73 1 sin 2 cos
3

e
T

c

dC Dα α α
πλ

 Γ
= − 

 
 (5.13) 

where cλ  is the mean wavelength. 

 

5.3.1 Optimization with Finite Aperture 

Equation 5.13 is the objective function of the contrast optimization for a given 

contour interval.  The variables of the objective function are the angle of illumination, 

α, and the relative aperture, de.  The constraints for optimization are defined after 

considering the following practical parameters:  

1) Upper limit of the incident angle: tan 3 (or 72 )α α≤ ≤ °  

As the angle of incidence increases, the reflection from the reference grating 

increases significantly [Post 1994].  In addition, the distance between the light 

source and the specimen increases proportionally to tanα .  As a result, light 

utilization would be too poor to be practical.  Angle of 72°, which matches 

arctan (3), is set to the upper limit of α. 

2) Upper and lower bound of the effective aperture: de = 0.01 and 0.03  

3) Minimum half the Talbot distance: 1.25 mm for 50 µm and 2.0 mm for 100 

µm from Table 5.2. 
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(a) 

 

 

(b) 

Figure 5.15 Contrast curve at half the Talbot distance for the contour interval of (a) 

50 µm/fringe and (b) 100 µm/fringe. 
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Figure 5.15 shows the contrast at half the Talbot distance, or Eq. 5.13, using the 

constraints for two different contour intervals, (a) 50 µm and (b) 100 µm.  In the 

figures, solid black and gray lines represent the contrast for the effective apertures of 

0.01 and 0.03, respectively.  A dashed line shows half the Talbot distance and a 

dashed-dot line is obtained from the constraints of the required half Talbot distance; if 

the angle of illumination is either too large or too small, the required half Talbot 

distance can be larger than half the Talbot distance.  A double dots-dashed line 

indicates the constraints of illumination angle.   

 

The domain which is limited by any of the constraints is shaded in the figures.  By 

analyzing the non-shaded domain, the following general conclusions can be made: 

1) A larger angle of illumination provides a better contrast.   

2) The aperture is the most stringent limiting parameter.  For example, the non-

zero Talbot distance configuration cannot be employed for a configuration 

with a 100 µm contour interval if an angle of illumination is 45° and the 

effective aperture is 0.03. 
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5.4 Implementation of SM-NT  

An experiment was conducted to implement the optimized optical configuration.  The 

setup is shown in Fig. 5.16.  The specimen was the plano-convex lens (25.0 mm in 

diameter) and was placed at half the Talbot distance. 

 

 

Figure 5.16 Experimental setup to implement the optimization result. 

 

The results obtained for the 50 µm contour interval are plotted in Fig. 5.17 for two 

configurations; (a) α = 63°, g = 0.1 mm and (b)  α = 45°, g = 0.05 mm.  The effective 

aperture was 0.01 for both configurations.  The two configurations have the same 

contour interval but it is evident from the fringe patterns that the first configuration 

offers better contrast at half the Talbot distance.  The contrasts were calculated from 

the fringe patterns and they are compared with the prediction in (c).  The 

experimentally determined contrasts were 0.65 and 0.5, and the corresponding 

theoretical predictions were 0.64 and 0.53. 
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The same analysis was conducted for the 100 µm contour interval.  The two 

configurations for the same contour interval were (a) α = 63°, g = 0.2 mm and (b)  α 

= 45°, g = 0.1 mm.  The results are compared to the prediction in (c).  The 

experimentally determined contrasts were 0.54 and 0.35 and the corresponding 

theoretical predictions were 0.52 and 0.33. 

 

The experimental results match to the prediction well.  The analysis can be used for 

optimizing shadow moiré systems using non-zero Talbot distance.  
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(a)      (b) 

 

 

(c) 

Figure 5.17 Fringe patterns obtained at half the Talbot distance for the contour 

interval of 50 µm/fringe; (a) contrast = 0.65 with white light, α = 63°, g = 0.1 mm, 

and de = 0.01, (b) contrast = 0.5 with white light, α = 45°, g = 0.05 mm, and de = 0.01, 

and (c) comparison with the prediction. 
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(a)      (b) 

 

 

(c) 

Figure 5.18 Fringe patterns obtained at half the Talbot distance for the contour 

interval of 100 µm/fringe; (a) contrast = 0.54 with white light, α = 63°, g = 0.2 mm, 

and de = 0.01, (b) contrast = 0.35 with white light, α = 45°, g = 0.1 mm, and de = 0.01, 

and (c) comparison with the prediction. 
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5.5 Applications of SM-NT 

5.5.1 Warpage Measurement of FC-PBGA Package  

The optimized SM-NT system is implemented to measure the warpage of an 

electronic package.  The specimen is a flip-chip plastic ball grid array (FC-PBGA) 

package.  In the package, silicon chips are attached to an organic substrate through 

tiny solder bumps.  The gap between the chip and the substrate is filled with an epoxy 

underfill to help reduce the thermal stresses induced in the solder bumps.  As shown 

in Fig. 5.19, the size of the package is 54x60 mm2 and four flip-chips are mounted on 

the substrate. 

 

The warpage of a FC-PBGA package is attributed to a large mismatch of coefficient 

of thermal expansion (CTE) between the chip and substrate.  In the subsequent 

assembly process, electrical and mechanical connections are made by solder balls 

between the substrate and a printed circuit board (PCB).  If the bottom side of the 

substrate warps significantly at the solder reflow temperature, it yields an uneven 

height of solder interconnections, which could cause premature failure of the 

assembly.  Detailed knowledge of the out-of-plane deformation is essential to 

optimize design and process parameters for reliable assemblies. 

 

The optimal configuration using a white light source selected in Sec. 5.3 (g = 0.1 mm, 

α = 63°, de = 0.01) was employed to measure the warpage of the back surface of the 

FC-PBGA package.  The Talbot distance of the system was approximately 3.25 mm.  
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The predicted fringe contrast for the configuration is shown in Fig. 5.20.  The 

warpage of the specimen was measured at the zero Talbot area as well as the half 

Talbot area. 

 

 

     

(a)       (b) 

Figure 5.19 Four chips FC-PBGA package (a) top view and (b) bottom view. 

 

 

Figure 5.20 Contrast function of SM-NT with white light, g = 0.1mm, α = 63°, and de 

= 0.01. 

54 mm 

60 m
m
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Fringe patterns obtained at the zero Talbot area are shown in Fig. 5.21(a), where each 

pattern was obtained with an equal phase-shift of π/4.  The initial gap between the 

specimen and the reference grating was 0.5 mm.  As expected from the contrast plot 

of Fig. 5.20, the fringes were discernable only at the center and the boundary of the 

specimen; the fringes near the quarter Talbot distance washed out completely.  The 

unwrapped phase map and the corresponding 3-D plot are shown in (b) and (c), 

respectively.  As a result of the localized contrast loss, the patterns were distorted and 

could not represent the actual whole-field deformations.  

 

The corresponding results obtained at the half Talbot area are shown in Fig. 5.22.  

The maximum deformation between the center and the edge of the package was 

approximately 0.4 mm, which produced 8 fringes between them.  In spite of the large 

dynamic range required for the measurement, the SM-NT system documented the 

deformations faithfully as evidenced by the excellent contrast of individual fringes.  It 

is to be noted that the small circles on the images are not caused by optical noise.  

Instead they represent circular copper pads on the substrate. 
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(a) 

 

                

(b)          (c) 

Figure 5.21 Warpage of FC-PBGA package documented at the zero Talbot area: g = 

0.1 mm and α = 63°, and de = 0.01, (a) four phase-shifted images, (b) unwrapped 

phase map, and (c) 3D deformation plot. 
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(a) 

 

                 

(b)       (c) 

Figure 5.22 Warpage of FC-PBGA package documented at the half Talbot area: g = 

0.1 mm and α = 63°, and de = 0.01, (a) four phase-shifted images, (b) unwrapped 

phase map, and (c) 3D deformation plot. 
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5.5.2 Warpage Measurement of Non-coplanar Surfaces 

Another FC-PBGA package is shown in Fig. 5.23.  In the package, a silicon chip is 

attached to an organic substrate.  The size of the package is 37 x 37 mm2 and the gap 

between surface of chip and surface of substrate is 0.7 mm.  For high performance 

FC-PBGA packages, a heat sink is usually required to dissipate the excess of heat, as 

illustrated at Fig. 5.24.  Consequently, the warpage of the top surface becomes an 

important design parameter for an optimum thermal solution, especially when 

nonconductive interstitial materials between the heat sink and the silicon are 

employed [Verma 1999]. 

 

          

(a)      (b) 

Figure 5.23 FC-PBGA package (a) top view and (b) side view. 
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Figure 5.24 FC-PBGA with heat sink 

 

With the conventional practice of using the zero Talbot area, it is not possible to 

obtain fringes of the non-coplanar surfaces unless the Talbot distance is much greater 

than the distance between the surfaces.  As shown in Fig. 5.23 (b), the chip and 

substrate surfaces are separated by 0.7 mm.  For the high sensitivity shadow moiré 

with a contour interval of 50 µm, the quarter Talbot distance becomes only 0.8 mm 

and the contrast of fringes on both surfaces cannot be obtained simultaneously.  The 

contrast function of the two surfaces is illustrated in Fig. 5.25 (a) when the zero 

Talbot area is utilized.  The fringe pattern obtained by the setup of white light, g = 0.1 

mm, tan α = 2 and de = 0.01 (Γ = 50 µm/fringe) is shown in Fig. 5.25 (b).  The fringe 

pattern can be seen only on the silicon chip. 
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(a) 

 

 

(b) 

Figure 5.25 (a) Contrast function of shadow moiré fringe for the setup of white light, 

g = 0.1 mm, tan α = 2, and de = 0.01 (Γ = 50 µm/fringe) and (b) shadow moiré fringe 

of the top surface of the specimen using the zero Talbot area. 
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The non-Zero Talbot area (more specifically the half Talbot area) can be employed to 

measure the deformation of the two non-coplanar surfaces simultaneously.  In the 

first solution, the angle of incidence was adjusted until the substrate surface can be 

positioned near half the Talbot distance.  Considering the physical gap of 0.7 mm, the 

incident angle was set at 68.2° ( )tan 2.5α ≈  and its effect on the Talbot distance is 

illustrated in Fig. 5.26 (a).  Note that the contour interval of the new configuration is 

40 µm/fringe.  The fringe pattern obtained from this configuration is shown in Fig. 

5.26 (b).  It is important to note that the fringes of the chip surface were obtained at 

the zero Talbot area while the fringes of the substrate surface were obtained at the 

half Talbot area. 

 

Although it was implemented successfully for the specimen, this approach has a 

critical limitation.  The optical setup will be extremely case-sensitive; the angle of 

incidence and the grating pitch will have to be optimized and selected based on the 

gap between the two surfaces and, for some cases, a practical configuration may not 

be available. 

 

A more attractive solution is to utilize the half Talbot area by taking advantage of the 

large dynamic range.  This approach is illustrated in Fig. 5.27 (a).  The actual fringe 

pattern obtained from the optimized SM-NT setup is shown in (b).  Excellent contrast 

of the fringes on both surfaces is achieved. 
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(a) 

 

 

(b) 

Figure 5.26 (a) Contrast function of shadow moiré fringe for the setup of white light, 

g = 0.1 mm, tan α = 2.5, and de = 0.01 (Γ = 40 µm/fringe) and (b) shadow moiré 

fringe of the top surface of the specimen using the half Talbot area. 
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(a) 

 

 

(b) 

Figure 5.27 (a) Contrast function of shadow moiré fringe for the setup of white light, 

g = 0.1 mm, tan α = 2, and de = 0.01 (Γ = 50 µm/fringe) and (b) shadow moiré fringe 

of the top surface of the specimen using the half Talbot area. 
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Part II: Application of Diffraction Theory to Moiré Interferometry 

Chapter  6.   Phase-shifting in Achromatic System 

6.1 Basic Principles of Moiré Interferometry [Post 1994] 

Moiré interferometry is a whole-field technique to measure in-plane displacements.  It 

has been used extensively for deformation analyses in the various fields of mechanics 

[Guo 1993, Han 1996, 2000 and 2001, Cho, S. 2002, Cho, S.-M. 2002 and 2004, Ham 

2003, Stellrecht 2003].  The data are received as interference fringe patterns, or 

contour maps, of the displacement fields.  Because of the high sensitivity and 

abundance of data, reliable strain distributions—normal strains and shear strains—can 

be extracted from the patterns. 

 

The general scheme of moiré interferometry is illustrated in Fig. 6.1.  A high-

frequency cross-line grating on a specimen, initially of frequency fg, deforms together 

with the specimen.  A parallel (collimated) beam, A1, of laser light strikes the 

specimen and a portion is diffracted back, nominally perpendicular to the specimen, 

in the +mth order diffraction of the specimen grating.  Light from the mutually 

coherent collimated beam A2 is diffracted back in its −mth order.  Since the specimen 

grating is deformed as a result of the applied loads, these diffracted beams are no 

longer collimated.  Instead, they are beams with warped wave fronts, where the 

warpages are related to the deformation of the grating.  These two coherent beams 

interfere in the image plane of the camera lens, producing an interference pattern of 

dark and light bands, which is the Nx moiré pattern. 
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Similarly, mutually coherent collimated beams B1 and B2, centered in the vertical 

plane, are diffracted in +mth and −mth orders diffraction by the nominally horizontal 

lines of the deformed specimen grating.  These two diffracted beams interfere to 

produce the Ny moiré pattern.  In practice, beams A1 and A2 are blocked, so the Ny 

fringes are viewed alone.  Alternately, B1 and B2 are blocked to view the Nx fringes. 

 

 

Figure 6.1 Schematic illustration of four-beam moiré interferometry to record the Nx 

and Ny fringe patterns, which depict the U and V displacement fields [Post 1994]. 

 



 

 109 
 

These moiré patterns are contour maps of the U and V displacement fields, i.e., the 

displacements in the x and y directions, respectively, of each point in the specimen 

grating.  The relationships, for every x, y point in the field of view, are [Post 1994] 

 

1 1( , ) ( , ) ( , )
2

1 1( , ) ( , ) ( , )
2

x x
g

y y
g

U x y N x y N x y
mf f

V x y N x y N x y
mf f

= =

= =
 (6.1) 

In routine practice of moiré interferometry, fg = 1200 lines/mm (30,480 lines/inch) 

and m = 1.  In the fringe patterns, the contour interval becomes 1/2fg, which is 0.417 

µm displacement per fringe order.  The sensitivity is its reciprocal, 2.4 fringes per µm 

displacement.   

 

When strains need to be extracted from the measured displacement fields, they can be 

determined by the small-strain relationships as 

 1 x
x

U N
x f x

ε ∂ ∂
= =

∂ ∂
 (6.2a) 

 1 y
y

NV
y f y

ε
∂∂

= =
∂ ∂

 (6.2b) 

 1 yx
xy

NU V N
y x f y x

γ
∂ ∂ ∂ ∂

= + = + ∂ ∂ ∂ ∂ 
 (6.2c) 
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6.2 Mathematical Explanation of Principle based on Geometrical Approach 

Dai [Dai 1990] explained the principle of moiré interferometry based on a 

geometrical approach, or optical path length (OPL) and it is briefly reviewed here.  

Consider any point P on an undeformed specimen grating of Fig. 6.2.  Beams A1 and 

A2 have an initial phase difference from the source to P that differ by φ.  The 

diffraction order is governed by the following relationship 

  sin sinm gm fθ α λ= +  (6.3)  

where θm is the angle of the mth order diffraction and λ is the wavelength of the beam.  

To achieve the null field condition where a pair of diffracted beams emerges normal 

to the specimen grating, the incident angle should satisfy the following relationship.  

 0 sin gm fα λ= +  (6.4) 

 

In Fig. 6.2, the two diffracted beams are represented by the wave fronts     ′ w 1 and   ′ w 2 .  

With the specimen still undeformed, the diffracted wave fronts   ′ w 1 and     ′ w 2  are plane 

and parallel.  Thus, their phase difference is constant as φ, equal at every x, y point in 

the field and equal to the phase difference at P.  The interference pattern seen in the 

camera image plane is a null field, with the same intensity at every x, y point.   
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Figure 6.2 Changes of optical path lengths when deformation causes point P to move 

to P’ [Post 1994]. 

 

When the specimen is deformed, point P moves to a new location P', where U and V 

are the in-plane components of the displacement and W is the out-of-plane component.  

Coordinate y and displacement V lie perpendicular to the plane of the diagram.  In 

general, the pitch and slope of the grating surrounding P' will differ from the initial 

condition at P.   

 

In the figure, w1 is a plane wave front in incident Beam A1; it extends as a plane 

normal to the diagram.  The distance between the source and w1 is the same for every 
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ray in the incident beam.  The same explanation applies for plane wave front w2.  

Furthermore, P'B lies in the object plane, so the optical path length (OPL) from P' 

and B through the camera lens to the image plane is the same.  Therefore, the changes 

of OPLs between the source and the image plane reduce to the changes of OPLs 

between w1 and P'B and between w2 and P'B.  

 

The changes of OPLs are analyzed in the figure, with the result  

 

( )
( )

1

2

( , ) ( , ) 1 cos ( , )sin

( , ) ( , ) 1 cos ( , )sin

∆ = + +

∆ = + −

OPL x y W x y U x y

OPL x y W x y U x y

α α

α α  (6.5) 

Observe that any V component of displacement does not change the distance between 

wave front w1 and P', nor the distance between w2 and P'.  Therefore, the changes of 

OPLs are independent of V.  Using Eq. 6.5, the relative OPL difference, S, between 

two beams at P' can be expressed as 

 

1 2( , ) ( , ) ( , )
2

2 ( , )
2g

S x y OPL x y OPL x y

m f U x y

φλ
π

φλλ
π

= ∆ − ∆ +

= +
 (6.6) 

The intensity resulting from the interference of two beams is 

 ( )
1 2 1 2

1 2 1 2

( , )( , ) ( , ) ( , ) 2 ( , ) ( , ) cos 2

( , ) ( , ) 2 ( , ) ( , ) cos 2 2 ( , )g

S x yI x y I x y I x y I x y I x y

I x y I x y I x y I x y m f U x y

π
λ

π φ

 = + +  
 

= + + +
 (6.7) 
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where I1 and I2 are the intensity of Beams A1 and A2, respectively.  The OPL 

difference represents the fringe order N at each point of the pattern by 

( , )( , ) =x
S x yN x y

λ
.  Accordingly, the displacement is determined from the 

interference pattern by  

 1( , ) ( , )
2 2x

g

U x y N x y
mf

φ
π

 = − 
 

 (6.8) 

The constant 
2
φ
π

 is equivalent to a uniform displacement throughout the field, or a 

rigid body translation.  When studying deformations we are not interested in rigid 

body motions.  We can disregard the constant and interpret the pattern by  

 1 1( , ) ( , ) ( , )
2 x x

g

U x y N x y N x y
mf f

= =   

which is identical to Eq. 6.1.  U(x, y) represents the displacement of every x, y point 

relative to an arbitrarily selected reference point of Nx = 0. 
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6.3 Phase-shifting in Achromatic System 

The phase-shifting technique has been adopted for moiré interferometry to increase 

the measurement sensitivity since the early 1990s [Salbut 1990, Kujawinska 1991, 

Han 1993 b and c, He 1998, Miller 1999, Liu 2003 and 2004].   

 

A concept of phase shifting is illustrated in Fig. 6.3. For the system, the phase-

shifting was explained by the concept of OPL [Han 1999].  The incident beam is 

separated into Beam 1 and Beam 2 by a beam splitter.  They meet at a point P on the 

specimen.  The OPL difference determines the state of constructive or destructive 

interference at P.  If all the optical elements are translated with respect to the 

specimen grating by the same distance ∆, as illustrated in Fig. 6.3, the Beam 2 

reflected by the beam-splitter hits the same point P on the specimen without any 

change of the OPL.  However, the transmitted Beam 1 reaches point P with an OPL 

change of  

 2 sinδ α= ∆  (6.9) 

The fringe shifts by δ
λ

 and the corresponding phase shift is 2 δπ
λ

.   
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Figure 6.3 Phase-shifting in moiré interferometry. 

 

The achromatic moiré interferometry system was originally developed to relax 

coherent length requirement of the light source [Post 1994].  As illustrated in Fig. 6.4, 

a grating, called compensator grating, is used in the system instead of a beam splitter.  

The compensator grating allows variation of and α λ  in precise harmony in such a 

way that the condition of Eq. 6.4 is always satisfied.  It has been know that the phase-

shifting can be accomplished by translating the compensator grating by a fraction of 

its pitch as illustrated in Fig. 6.4 [Post 1994].   

 

The phase-shifting mechanism shown in Fig. 6.3 was explained clearly by using the 

concept of OPL.  However the phase-shifting mechanism of the achromatic system 

cannot be explained by the same concept; the translation of the compensator grating 

does not change the OPL.  The phase information of the diffracted beam is required to 

explain the mechanism in the achromatic system.   
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Figure 6.4 Illustration of an achromatic system and phase-shifting. 
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6.4 Analysis of Phase-shifting in Achromatic System 

6.4.1 Mathematical Analysis of Phase Change in Diffracted Beam 

The rigorous grating theory based on the laws of electromagnetism [Maystre 1984] is 

used to define the phase of the diffracted beam with respect to the relative position to 

the compensator grating.   

 

 

Figure 6.5 Incident and diffracted beams on a linear grating with a pitch of g and a 

profile of f(x). 

 

Complex field of an incident beam of unit amplitude at an angle of incidence, α, is 

defined as 

 ( )2exp sin cosiE i x yπ α α
λ

 = − 
 

 (6.10) 
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The incidence beam illuminates a linear grating with a pitch of g and a profile of f(x) 

in Oxy coordinate as illustrated at Fig. 6.5. 

 

From the rigorous grating theory, it was shown that the complex field of the 

diffracted beam from the grating is governed by [Maystre 1984] 

 2 2 0E k E∇ + =  (6.11) 

and solution of Eq. 6.11 is derived as [Maystre 1984] 

 
( )

( , ) ( , ) ( , )

2exp sin cos

m m m
m m

m m m
m

E x y E x y B x y

B i x yπ θ θ
λ

= = Φ

 = + 
 

∑ ∑

∑
 (6.12) 

where sin sin /m m gθ θ λ= +  and m stands for the order of diffraction.  Each term of 

mE  in Eq. 6.12 represents a diffraction order.  The 2-D function ( , )m x yΦ , defines 

the phase of each diffracted beam and the coefficient Bm, defines the amplitude of the 

diffraction order.   

 

The coefficient can be evaluated for the case of transverse polarization, where the 

complex field remains normal to Oxy plane.  For the transverse polarization, the 

condition as following should be met on the boundary of the grating [Maystre 1984] 

 ( )2exp sin ( )cosiE E i x f xπ α α
λ

 = − = − − 
 

 (6.13) 

With the boundary condition, the coefficient is represented by [Maystre 1984] 



 

 119 
 

 
( )

( )
0

1/ 22

2exp sin ( )cos
4 cos

( )1 '( )

g

m m m
m

i

B i x f x
i g

d E Ef x dx
dn

λ π θ θ
π θ λ

 = − + 
 

+
+

∫
 (6.14) 

As the coefficient Bm in Eq. 6.14 includes the complex field itself, the explicit form of 

solution for the coefficient cannot be obtained.  Numerical approach is inevitable to 

evaluate the coefficient.  There are several numerical methods to determine Bm; the 

Rayleigh method, the Waterman method, the integral method, and the differential 

method.  In this study, Point Matching Method (PMM), which is one of the Rayleigh 

methods, is used for simplicity.  In the method, the boundary condition is written as 

[Maystre 1984] 

 ( , ( )) ( , ( )) 0m m i
m

B x f x F x f xΦ + =∑  (6.15) 

The only unknown in Eq. 6.15 is a set of complex coefficient Bm.  Eq. 6.15 can be 

changed into a system of 2N+1 linear equation with 2N+1 unknowns as 

 ( ) ( , ( )) ( , ( )) 0
N

N
m m i

m N

B x f x E x f x
+

=−

Φ + =∑  (6.16) 

Eq. 6.16 can be solved by selecting 2N+1 points in the profile.  More information 

about the method can be found in the reference [Maystre 1984].   
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Figure 6.6 Translation of compensator grating and phase change at a point P(0, 0) of 

a diffracted beam. 

 

As illustrated in Fig. 6.6, phase change in a point with the translation of compensator 

grating in the achromatic system is analyzed using the point matching method.  The 

profile of the compensator grating is defined as a sinusoidal function as 

 ( )( )( ) cos 2
2 2c
h hf x f xπ= − ∆ −  (6.17) 

where h is the depth of groove, fc is the frequency of the compensator grating, and ∆ 

is the amount of translation of the compensator grating.  As the compensator grating 

is translated ∆, the change of phase in a diffracted beam at point P(0, 0) is calculated.  

For the calculation, the compensator grating of fc = 1200 lines/mm and h = 0.1 µm is 

selected in practical consideration.  The wavelength of the incident beam is assumed 

as 350 nm to investigate the diffraction up to the second order.  The Matlab code used 

in the numerical calculation can be found in Appendix A.  As the phase is calculated 

at P(0, 0), the phase is only decided by the coefficient Bm.  It is important to note that 
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the constant Bm is a complex number depending on the boundary condition.  If the 

coefficient is a real number, which corresponds to any scalar diffraction theory, the 

change of phase in the diffracted beam with the translation of the compensator grating 

cannot be reflected.   

 

The calculated phase is shown at Fig. 6.7.  Figure 6.7 (a) represents the results of the 

first order diffraction.  As the compensator grating translates from 0 to one period of 

the grating, the phase at P(0, 0) changes linearly from 0 to 2π.  In the second order 

diffraction, the phase changes two times faster as shown in Fig. 6.7 (b).   

 

 

 

(a) 
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(b) 

Figure 6.7 Result of the rigorous grating theory analysis for the relation phase-

shifting and the translation of the compensator grating: (a) first and (b) second order 

of diffraction beam. 

 

The relation between the translation of the compensator grating ∆, and the phase 

change in the diffracted beam φ, can be summarized as 

 2 cnfφ π= ∆   (6.18) 

where n is the order of diffraction and fc is the frequency of the compensator grating. 
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6.4.2 Physical Explanation of Phase Change in Diffracted Beam 

Based on the mathematical analysis, the plane wave fronts of the first and second 

order beams diffracted from a compensator grating are illustrated in Fig. 6.8 (a) and 

(b).  The phase of the diffracted beams changes cyclically from 0 to 2π as the wave 

fronts propagate in the diffraction direction.  In the figures, a series of solid grid lines 

represents the phase of multiples of 2π in the diffracted beams and the distance 

between two adjacent lines is the wavelength of incident beam.   

 

The diffraction equation with the normal illumination can be written as 

 sin n cn fα λ=  (6.19) 

where n represents the diffraction order from the compensator grating and αn is the 

diffraction angle.  Equation 6.19 defines the amount of phase change within one pitch 

of the compensator and it is illustrated graphically in Figs. 6.8 (c) and (d).  With the 

first order diffraction (Fig. 6.8(c)), the phase change within one pitch is 2π, while the 

phase change of the second order within one pitch increased by a factor of 2 (Fig. 6.8 

(d)). 
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(a)       (b) 

 

      

(c)       (d) 

Figure 6.8 Illustration of the phase of diffracted beam from the compensator grating: 

(a) first and (b) second order of diffraction.  Geometrical relations between the 

diffraction orders and the phase change within a pitch of grating are shown in (c) and 

(d). 
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Since the phase of the diffracted beam is defined as the relative position to the grating, 

the phase should change together with the translation of the grating coordinate.  

Consequently, the phase should be shifted linearly when the compensator grating is 

translated.  The phase shifting of the diffracted beams is illustrated in Figs. 6.9 (a) and 

(b), where the compensator grating is translated along the x direction by a distance of 

∆.  Further details are presented in Figs. 6.9 (c) and (d), where the relationship 

between the phase shift, φ, and the amount of translation, ∆ for the two different 

diffraction orders.  The relationship for the nth order can be written again as 

 2 cnfφ π= ∆  (6.18) 

The amount of phase change is proportional to the amount of translation of the 

compensator grating.  The constant of the proportionality is the product of the 

diffraction order and the frequency of the compensator grating.   

 

   

(a)      (b) 
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(c)       (d) 

 

Figure 6.9 Translation of compensator grating (∆) and the corresponding phase-

shifting of diffracted beams (φ) for the first (a), and second (b) order diffraction.  

More detailed geometrical relationship is given in (c) and (d). 
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6.4.3 Phase-shifting in Fringe of Achromatic System  

 

 

Figure 6.10 Two diffracted beams in an achromatic system and the direction of phase 

shifting on the beams after the compensator grating is shifted. 

 

Figure 6.10 shows the two diffracted beams from an achromatic system; one (Beam 

1)  is -nth order and the other (Beam 2) is +nth order.  The complex field of each beam 

is written as 

 ( )1 1
2exp sin cosn n n n

E B i x yπ α α φ
λ− −

  = − + +    
 (6.20a) 

 ( )2 2
2exp sin cosn n n n

E B i x yπ α α φ
λ

  = + +    
 (6.20b) 
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From Eq. 6.18, the phase shift of each beam is 

 1 2 cn
nfφ π

−
= − ∆   (6.21a) 

 2 2 cn
nfφ π= ∆  (6.21b) 

Translating the compensator grating in the positive x-direction causes the phase of the 

two beams to shift in the same positive x-direction as illustrated in Fig. 6.10.  

 

By plugging the phase shift of Eq. 6.21 into the governing equation of moiré 

interferometry in Eq. 6.7, the phase shift in the fringe of moiré interferometry due to 

the translation of the compensator grating can be written as 

 

{ }

{ }

( ){ }

1 2 1 2 1 2

1 2 1 2

1 2 1 2

2 cos 2 2 ( )

2 cos 2 2 ( ) 4

2 cos 2 2 ( ) 2

g

g c

g c

I I I I I mf U x

I I I mf U x nf

I I I mf U x nf

π φ φ

π π

π

= + + + −

= + + − ∆

= + + − ∆

 (6.22) 

Equation 6.22 says that the required amount of compensator grating translation to get 

the 2π phase-shifting in the fringe of moiré interferometry, ∆2π, is 

 2
1

2 cnfπ∆ =  (6.23) 

 

 



 

 129 
 

Two examples of an achromatic system are shown in Fig. 6.11.  The system in Fig. 

6.11 (a) uses a 1200 lines/mm reflection-type compensator grating with ±1 

diffraction order and the same frequency of specimen grating, which is replicated on a 

specimen [Post 1994, He 1998].  From Eq. 6.23, the compensator grating is translated 

by 1/2nfc = 0.417 µm to get a 2π fringe shift.   

 

The system shown in Fig. 6.11 (b) utilized the same compensator grating of 1200 

lines/mm but the 2400 lines/mm of specimen grating was selected to take advantage 

of the concept of an immersion interferometer [Han 1992 a and b].  Also, to achieve 

the extremely high magnification factor of imaging system, a replica of the deformed 

grating, which is a transmission-type specimen grating, is utilized [Han, C. 2003].  

The sensitivity of the system is 4800 fringes/mm, doubling the sensitivity of the 

system in Fig. 6.11 (a).  However, by Eq. 6.23, the required amount of compensator 

grating translation remains the same at 0.417 µm.   

 

Utilizing the result that the phase-shifting in an achromatic system is only dependent 

on the frequency and diffraction order of the compensator grating, it is possible to 

select an optimal frequency of compensator grating for the best response of PZT 

regardless of the sensitivity of the system. 
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(a)      (b) 

Figure 6.11 Examples of an achromatic system (a) reflection type, (b) transmission 

type with immersion interferometer. 
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Chapter  7.   Characteristics of the Diffracted Wave Front 

7.1 Decomposition of Wave Front 

In an important paper [McKelvie, 1990] on moiré interferometry, McKelvie 

explained the fringe formation of moiré interferometry by decomposing the diffracted 

beams into a series of mini-orders.  His derivation was based on a scalar diffraction 

theory using a sinusoidal type strain distribution.  The following discussion 

summarizes a part of his analysis. 

 

The profile of an undeformed holographic grating is given by 

 ( )sin 2
2i g
h f xφ π=  (7.1) 

where h is the depth of the grating groove and fg is the frequency of the grating.  The 

grating is illuminated by a monochromatic collimated beam of unit amplitude at an 

angle of incidence, α.  The incident beam is represented by 

 2exp siniE i xπ α
λ

 =  
 

 (7.2) 

The diffracted beam on the grating has its flat phase disturbed by 2φi, and its 

representation is  
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( )2exp sin sin(2

2 2exp sin exp sin(2 )

d g

g

iE x h f x

i i hx f x

π α π
λ
π πα π

λ λ

 = + 
 
   =    
   

 (7.3) 

The perfect conduction of the grating surface is assumed in Eq. 7.3 and consequently 

the total energy will be preserved.  This assumption will be held for all of the 

following analysis.   

 

The second exponential in Eq. 7.3 can be decomposed by Jacobi-Anger expansion 

into a series, which leads to  

 
( )2 2exp sin exp 2

2 2exp (sin )

d m g
m

m g
m

i hE x J im f x

h i xJ m f

π πα π
λ λ

π π α λ
λ λ

∞

=−∞

∞

=−∞

   =    
   

   = +   
   

∑

∑
 (7.4) 

where Jm( ) is the mth order first kind Bessel function.  Equation 7.4 represents the 

diffracted beams on a uniform grating.  The angle of diffraction is governed by the 

grating equation and the amplitude of beam is defined by a Bessel function.  Figure 

7.1 (a) illustrates the mth order of Eq. 7.4, which is diffracted normal to the 

undeformed grating. 

 

When the specimen is subjected to a sinusoidal strain distribution of  

 ( ) cos2 sx b f xε π=  (7.5) 

, the deformed grating becomes 
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 sin 2 sin(2 )
2

g
g s

s

bfh f x f x
f

φ π π
 

= − 
 

 (7.6) 

Then, the diffracted beam from the incident beam of Eq. 7.2 is expressed as  

 2exp sin sin 2 sin(2 )g
d g s

s

bfiE x h f x f x
f

π α π π
λ

   
= + −       

 (7.7) 

Equation 7.7 can be also decomposed by Jacobi-Anger expansion into  

 
( )

( )

2 2exp sin exp 2 sin(2 )

2 2exp sin exp 2

exp 2

2 2exp sin

g
d m g s

m s

m g
m

g
r s

r s

g
m r

r s

bfi hE x J im f x f x
f

i hx J im f x

mbf
J ir f x

f

mbfh i xJ J
f

π πα π π
λ λ

π πα π
λ λ

π

π π α
λ λ

∞

=−∞

∞

=−∞

∞

=−∞

∞

=−∞

     = −     
      
   =    
   

 
×  

 
  =   

   

∑

∑

∑

∑ ( )g s
m

m f r fλ λ
∞

=−∞

 + + 
 

∑

 (7.8) 

The mth order diffraction beam is written from Eq. 7.8 as 

 ( )2 2exp sing
d m r g sm

r s

mbfh i xE J J m f r f
f

π π α λ λ
λ λ

∞

=−∞

    = + +    
    

∑  (7.9) 

Note that the mth order diffraction beam consists of a series of plane beams, called 

mini-orders.  Mini-orders carry the information on strain variations.  Figure 7.1 (b) 

illustrates the mth order and its mini-order, which is produced by the deformed grating 

with the sinusoidal strain distribution.  Although numerical examples were not 

presented in the McKelvie’s paper [McKelvie, 1990], it is clear from Eq. 7.9 that the 
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magnitudes of the mini-orders are very small compared to that of the main diffraction 

order. 

 

 

(a) 

 

 

(b) 

Figure 7.1 (a) Diffracted beam of an undeformed grating and (b) diffracted beam and 

its mini-order of a deformed grating. 
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7.2 Extension to General Strain Distribution  

 

 

Figure 7.2 Trapezoid-shaped strain distribution. 

 

The sinusoidal strain distribution used in the previous section is not realistic; it was 

chosen for the original analysis just for mathematical convenience.  A more general 

case of strain distribution is considered.  As illustrated in Fig. 7.2, a trapezoid-shaped 

strain distribution makes a parametric study possible to investigate the effect of 

various parameters on the magnitude and angle of the min-orders; the parameters 

include the ratio of strain width (a and b), the strain level (c and d), the strain gradient 

((d-c)/(a-b)), and the period of strain (L).  The trapezoid-shaped strain distribution in 

Fig. 7.2 can be represented by a Fourier series as 
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 [ ]

( )

0
1

0

2

2( ) cos

1where ( ) ( )

2 2and cos cos

k
k

k

kx a a x
L

a d a b c L a b
L
c d L k b k aa
b a L Lk

πε

π π
π

∞

=

 = +  
 

= + + − −

−     = −    −     

∑

 (7.10) 

The deformed grating profile for the strain distribution of Eq. 7.10 can be written as  

 0
1

2sin 2 sin
2 2

k
g

k

h a L kf x a x x
k L

πφ π
π

∞

=

   = − −      
∑  (7.11) 

Then the diffracted beam from the deformed grating becomes 

 0
1

2 2exp sin sin 2 sin
2

k
d g

k

i a p kE x h f x a x x
k L

π πα π
λ π

∞

=

    = + − −        
∑  (7.12) 

By applying Jacobi-Anger expansion, Eq. 7.12 is transformed into  

 

0
1

0
1

2exp sin

2 2exp sin 2 sin
2

2exp sin

2 2exp 2 sin
2

d

k
g

k

k
m g

m k

iE x

i h a L kf x a x x
k L

i x

h a L kJ im f x a x x
k L

π α
λ

π ππ
λ π

π α
λ

π ππ
λ π

∞

=

∞ ∞

=−∞ =

 = × 
 
   − −      

 = × 
 

     − −          

∑

∑ ∑

 (7.13) 

The second exponential term in Eq. 7.13 can be also decomposed by Jacobi-Anger 

expansion as  
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( )( )

( )

0
1

0

1 2

2exp sin

2 2exp 2 1 exp sin

2 2exp sin 1

2 2exp sin exp sin
1/ /1 2 /

d

k
m g g

m k

m g
m

g g

iE x

h a L kJ im f a x imf x
k L

h i xJ m f a

mf a mf a
i x i

L L L

π α
λ

π ππ
λ

π π α λ
λ λ

π π

∞ ∞

=−∞ =

∞

=−∞

 = × 
 

     − −          

    = + − ×       
  − −    

∑ ∑

∑

( )

3

1 2 3

0

/ 2

2exp sin
3/ / 3

2
1/ 2 / 3/

2exp sin 1 / 2 / 3 /

g

g g g
m r s t

m r s t

g

x
L

mf a
i x

L L

mf a mf a mf ahJ J J J
L L L

i x m f a r L s L t L

π

π
λ

π α λ λ λ λ
λ

∞ ∞ ∞ ∞

=−∞ =−∞ =−∞ =−∞

   ×    
  −     

      = − − − ×              
  + − + + +   

∑ ∑ ∑ ∑

 (7.14) 

 

A graphical representation of Eq. 7.14 is shown in Fig. 7.3.  It is to be noted that more 

mini orders appear due to the more general representation of strain distribution using 

the trapezoid.  
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Figure 7.3 Diffracted beam and its mini-order of a grating by trapezoid-shaped strain 

distribution. 

 

For the general cases of strain distribution, there are infinite numbers of the 

summation indices for mini-orders.  This makes the parametric study mathematically 

complicated.  A more efficient approach is desired to handle the mini-orders 

effectively. 
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7.3  Fourier Transform of Diffraction Field 

The Fourier transform of f(x) in one dimension is defined as 

 ( ( )) ( ) ( )exp( 2 )f x F s f x i sx dxπ
∞

−∞
ℑ = = −∫  (7.15) 

where ( )ℑ represents the Fourier transform and s is a spatial coordinate.  The Fourier 

transform of the complex field distribution across the aperture can evaluate the 

diffraction pattern in the spatial-frequency spectrum with the Fraunhofer 

approximation [Goodman 1968, Hecht 1998]. 

 

 

Figure 7.4 Diffraction and Fourier transform [Goodman 1968]. 

 

An aperture is illuminated by a monochromatic light, the diffracted field E at z 

distance from the aperture plane (Fig. 7.4) can be expressed by the Fraunhofer 

diffraction theory as [Goodman 1968] 
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 ( )
( )

( )

2
2

2
2 2 1 1 1 1

exp exp
2

exp 2

xikz ik
z xE x E x i x dx

i z z
π

λ λ
∞

−∞

 
 

  = − 
 ∫  (7.16) 

where λ is the wavelength of the light and k is the wave number defined as 2π /λ.  

Note that Eq. 7.16 was derived for the 1-dimensional space but an extension to the 2-

dimensional space is straightforward.  Apart from the multiplication term preceding 

the integral, Eq. 7.16 is simply the Fourier transform of the complex field at the 

aperture plane, which can be evaluated at a spatial frequency, s, defined as 

 2 1 tanxs
z

θ
λ λ

= =  (7.17) 

 

As an example of this Fourier transform, the case of the sinusoidal strain distribution, 

(Eq. 7.5) is considered again.  The complex field of the mth order diffraction beam 

across the deformed grating is written here again from Eq. 7.9  

 ( )2 2exp sing
d m r g sm

r s

mbfh i xE J J m f r f
f

π π α λ λ
λ λ

∞

=−∞

    = + +    
    

∑  (7.9) 

With the condition of Eq. 6.4, Eq. 7.9 can be written as 

 ( )( )2 exp 2g
d m r sm

r s

mbfhE J J i x rf
f

π π
λ

∞

=−∞

  =   
   

∑  (7.18) 

The Fourier transform of Eq. 7.18 is 
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( ) ( )( )( )

( )

2 exp 2

2

g
d m r sm

r s

g
m r s

r s

mbfhE J J i x rf
f

mbfhJ J s rf
f

π π
λ

π δ
λ

∞

=−∞

∞

=−∞

  ℑ = ℑ  
   

  = −  
   

∑

∑
 (7.19) 

where ( )sδ  is the Dirac delta function. 

 

To illustrate Eq. 7.19, the following case of moiré interferometry practice was 

considered; h (groove depth) = 200 nm, λ (wavelength) = 633 nm, fg (grating 

frequency) = 1200 lines/mm, m (diffraction order) = 1, fs (strain cycle) = 0.1 

cycles/mm, and b (peak strain) = 0.1 %.  Figure 7.5 plots the result.  The value on the 

abscissa represents the spatial frequency multiplied by the wavelength, which 

becomes the angle of the mini-order in degrees when the angles are small; i.e., 

tansλ θ θ= ≈
θ
λ

.  The value on the ordinate represents the magnitude of the mini-

order, or 2 g
m r

s

mbfhJ J
f

π
λ

  
  

   
. 
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Figure 7.5 Example of Fourier transform for a deformed grating with a sinusoidal-

strain distribution. 

 

Figure 7.5 clearly demonstrates that the characteristics of the mini-orders can be 

analyzed effectively using the Fourier transform.  It is extended to the general strain 

distribution.  From Eq. 7.14, the complex field of the mth order diffraction from the 

deformed grating with the trapezoid-shaped strain distribution can be written as  

 
( )( )0

1

2exp sin

2 2exp 2 1 exp sin

d m

k
m g g

k

iE x

h a L kJ im f a x imf x
k L

π α
λ

π ππ
λ

∞

=

 = × 
 

     − −          
∑

 (7.20) 

The Fourier transform of Eq. 7.20 is analytically possible after decomposing it into 

infinite series using Jacobi-Anger expansion but the Fourier transform will have an 

infinite series of functions, which makes the parametric study impractical.  In the 
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following section, discrete Fourier transform is introduced to obtain the Fourier 

transform numerically. 
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7.4 Numerical Approach Using Discrete Fourier Transform 

The discrete Fourier transform is an approximation of the continuous Fourier 

transform developed to calculate the transform of digital data.  Figure 7.6 (a) 

illustrates the example function h(t) and its continuous Fourier transform H( f ).  It is 

required to modify this Fourier transform pair in such a manner that the pair is 

amenable to digital computation.  This modified pair, termed the discrete Fourier 

transform, is to closely approximate the continuous Fourier transform.   

 

To determine the Fourier transform of h(t) by means of digital technique, the initial 

step is to sample h(t) in discrete points.  Sampling is accomplished by multiplying 

h(t) by the sampling function, as illustrated in Fig. 7.6 (b), where the sample interval 

is T.  The sampled function and its Fourier transform are illustrated in Fig. 7.6 (c).  

The Fourier transform of the sampled function is conducted through convolution 

theory, which is denoted by ‘*’ in the figure.  Note that the modified transform pair 

differs from the original transform pair only by the aliasing effect that results from 

sampling.  If the spatial spectrum of function h(x) is band-limited, faster sampling can 

eliminate aliasing [Brigham 1974].  

 

Because only a finite number of points can be calculated by digital computation, it is 

necessary to truncate the sampled function h(t) so that only a finite number of points, 

say N, can be considered.  The truncation function and its Fourier transform are 

illustrated in Fig. 7.6 (d).  The product of the infinite sequence of impulse functions 

representing h(t) and the truncation function yields the finite length time function as 
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shown in Fig. 7.6 (e).  Truncation introduces the second modification to the original 

Fourier transform of pair; this effect is to convolve the aliased frequency transform of 

Fig. 7.6 (c) with the Fourier transform of the truncation function in Fig. 7.6 (d).  As 

shown in Fig. 7.6 (e), the frequency transform has a ripple on it.  If the function h(t) is 

periodic and the size of truncation T0 is exactly one period of h(t), the rippling can be 

eliminated [Brigham 1974]. 

 

                   

(a) 

 

                    

(b) 

 

                   

(c) 

( )ℑ

( )ℑ

( )ℑ
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(d) 

 

                   

(e) 

Figure 7.6 Relation of Fourier transform and discrete Fourier transform [Brigham 

1974]. 

 

The formation of the discrete Fourier transform for function f(x) can be written as 

[Brigham 1974] 

 ( ) ( )
1

0

exp 2 / , 0, 1, 1
N

k

nf f kT i nk N n N
NT

π
−

=

  ℑ = − = −    
∑  (7.21) 

where T is the sampling interval and N is the total number of samples.   

 

The difference between the two transforms, Eqs. 7.15 and 7.21, arises due to the 

discrete transform requirement for sampling and truncation.  Equivalence of the two 

transforms requires that the following conditions must be met [Brigham 1974]; 

( )ℑ

( )ℑ
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1) From the sampling theory, the function f(x) should be sampled at a frequency 

of as least twice the largest frequency component of f(x) not to lose 

information as a result of sampling. 

2) The Fourier transform of f(x) must be band-limited to avoid aliasing. 

3) f(x) must be periodic. 

4) The size of truncation must be one period (or integer multiple period) of f(x). 

 

The spatial spectrum of the diffracted complex field lies within a very small angular 

bandwidth.   The defined strain distribution in Sec. 7.2 is periodic and the size of 

truncation can be chosen as the period of the strain distribution.  Consequently, the 

discrete Fourier transform of the diffracted complex field will be equivalent to its 

continuous Fourier transform as long as the sampling rate is sufficiently large. 
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7.5 Parametric Study to Characterize the Mini-order 

A numerical study was conducted to characterize the mini-orders for the trapezoid-

shaped strain distribution.  With the condition of Eq. 6.4 in moiré interferometry, Eq. 

7.20 can be rewritten as 

 0
1

2 2exp 2 sin
2

k
d m gm

k

h a L kE J i mf a x x
k L

π ππ
λ π

∞

=

     = − +          
∑  (7.22) 

where a0 and ak are defined in Eq. 7.10.  Discrete Fourier transform of Eq. 7.22 was 

conducted through the FFT algorithm available in Matlab.  The Matlab code used in 

the analysis can be found in Appendix B. 

 

7.5.1 Convergence Check of FFT 

As discussed in the previous section, the discrete Fourier transform of the diffracted 

complex field of Eq. 7.21 is equivalent to the continuous Fourier transform only when 

the sampling rate is sufficiently large.  In order to determine a proper sampling rate, 

convergence has been tested for the case of c = 0.5 %, d = 0.2 %, L = 5 mm, a = 1 

mm, and b = 1.5 mm; other parameters include fg = 1200 lines/mm, m = 1, h = 200 

nm, and λ = 633 nm.  Figure 7.7 (a) illustrates the strain distribution and the 

corresponding displacement distribution and fringe pattern are shown in (b) and (c), 

respectively.  Note that only half of a period is shown in Fig. 7.7 due to the symmetry. 
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(a)       (b) 

 

(c)  

Figure 7.7 Deformation field used for convergence test; (a) strain distribution, (b) 

displacement distribution, and (c) theoretical fringe pattern. 

 

The FFT results are shown in Fig. 7.8, where sampling numbers of 50, 100, 200, 500, 

and 1,000 were used.  The value on the abscissa represents the angle of the mini-order 

in degrees and the value on the ordinate represents the magnitude of the mini-order.  

It is clear from the figure that the angle and the magnitude converge as the sampling 

number, N, increases.   

 

The convergence study is summarized in Fig. 7.9.  In the figure, the x-coordinate 

represents the sampling number on a log scale and the y-coordinate represents the 

0  2.5 (mm)  
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amount of deviation of the each transform from the results of N = 1,000.  If the 

sampling number is larger than 200, the deviation is almost negligible.  The sampling 

number of 1,000 was used for the subsequent parametric study.  

 

 

  

(a)      (b) 

  

(c)      (d) 
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(e) 

Figure 7.8 Results of the FFT for the diffracted complex field for the trapezoid-

shaped strain with N = (a) 50, (b) 100, (c) 200, (d) 500, and (e) 1,000.  The 

parameters to define the strain field are c = 0.5 %, d = 0.2 %, L = 5 mm, a = 1 mm, 

and b = 1.5 mm.  Other parameters include fg = 1200 lines/mm, m = 1, h = 200 nm, λ 

= 633 nm.  

 

 

Figure 7.9 Results of convergence test. 
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7.5.2 Parametric Study: Period of Strain  

The trapezoid-shaped strain distribution has a period of L.  The period was introduced 

for the mathematical purpose.  By making the period approach to infinite, a local 

strain variation can be emulated.  The effect of the period on the mini-orders is 

studied here.   

 

Figure 7.10 illustrates various periods of strain used in the analysis; L is (a) 5 mm, (b) 

10 mm, (c) 20 mm, and (d) 40 mm.  The maximum and minimum strains are 0.5% 

and 0.2%, respectively (c = 0.5 % and d = 0.2 %) and the width (b-a) between the 

strain is selected as 0.5 mm.   Note that the plots in Fig. 7.10 are made only for half of 

the period due to the symmetry and that the scales of x in the figure are all different, 

depending on L.  Figure 7.11 shows the FFT results for the different strain periods. 
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(a)       (b) 

     

(c)       (d) 

Figure 7.10 Strain distributions for the parametric study; b - a = 0.5 mm, c = 0.5%, d 

= 0.2%, and L = (a) 5 mm, (b) 10 mm, (c) 20 mm, and (d) 40 mm. 
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(a)       (b) 

  

(c)       (d) 

Figure 7.11 Results of the parametric study; b - a = 0.5 mm, c = 0.5%, d = 0.2%, and 

L = (a) 5 mm, (b) 10 mm, (c) 20 mm, and (d) 40 mm. 

 

As the period increases, the shapes of mini-order are changing but the maximum 

magnitudes of mini-order are located around 0.09° and 0.22° for all the cases.  The 

magnitude ratio between the maximum and other mini-orders increases with the 

period of strain.  It is important to note that the range of effective mini-order, which 

eventually contributes the formation of the fringes in moiré interferometry, remains 

unchanged regardless of the strain period. 
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7.5.3 Parametric Study: Strain Gradient 

Figure 7.12 shows the strain distributions with different gradients used in the 

parametric study; c = 0.5 %, d = 0.2 %, and L = 40 mm, but the width (b-a) between 

the strain varies from (a) 0, (b) L/10, (c) L/4 to (d) L/2.  The FFT results of the 

different strain gradients are shown in Fig. 7.13. 

 

     

(a)       (b) 

       

(c)       (d) 

Figure 7.12 Strain distributions for the parametric study; L = 40 mm, c = 0.5%, d = 

0.2%, (a +b)/2 = L/4, and the width between the strain = (a) 0, (b) L/10, (c) L/4, and 

(d) L/2. 
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(a)       (b) 

  

(c)       (d) 

Figure 7.13 Results of the parametric study; L = 40 mm, c = 0.5%, d = 0.2%, (a +b)/2 

= L/4, and the width between the strain = (a) 0, (b) L/10, (c) L/4, and (d) L/2. 

 

As the strain gradient decreases (Fig. 7.12 (a) to (d)), the magnitudes at the two 

maximum mini-orders, which occur around 0.09° and 0.22°, decrease but the 

magnitudes of the mini-orders between them increase.  For the case of a linearly 

varying strain (Fig. 7.12(d)), the magnitudes of the mini-orders become nearly the 

same.  It is worth noting that the strain gradient does not alter the range of effective 

mini-orders (approximately 0.05° to 0.25° for this case) even though it affects the 

ratio between the magnitudes of mini-orders.   
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7.5.4 Parametric Study: Ratio of Strain Width 

Figure 7.14 shows the strain distributions with four different values of width; c = 

0.5%, d = 0.2 %, b – a = 4 mm, and L = 40 mm.  However the ratio between the 

widths of the maximum and minimum strains (c and d) varies from (a) 3, (b) 1, (c) 

1/3 to (d) 0.  The FFT results for the different strain width ratios are shown in Fig. 

7.15. 

 

     

(a)       (b) 

 

(c)      (d) 

Figure 7.14 Strain distributions for the parametric study on the ratio of strain width; L 

= 40 mm, c = 0.5%, d = 0.2%, b - a = 4 mm, and a = (a) 4 mm, (b) 8 mm, (c) 12 mm, 

and (d) 16 mm. 
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(a)       (b) 

 

(c)       (d) 

Figure 7.15 Results of the parametric study on the ratio of strain width; L = 40 mm, c 

= 0.5%, d = 0.2%, b - a = 4 mm, and a = (a) 4 mm, (b) 8 mm, (c) 12 mm, and (d) 16 

mm. 

 

The results of Fig. 7.15 indicate that only the ratio between the magnitudes of the two 

maximum mini-orders changes proportionally as the ratio between the widths of the 

maximum and minimum strains change.   
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7.5.5 Parametric Study: Magnitude of Strain  

Finally, the effect of strain magnitude on the mini-order is investigated.  Figure 7.16 

shows the four different strain distributions.  All of them have the same L of 40 mm, 

the ramp (b - a) of 4 mm, and the strain width ratio of 1, but (a) c = 0.5 % and d = 

0.2 %, (b) c = 0.2 % and d = 0.5 %, (c) c = 1.0 % and d = 0.2 %, and (d) c = 0.5 % 

and d = 0.1 %.  The FFT results of these four cases are shown in Fig. 7.17. 

   

      

(a)       (b) 

      

 (c)       (d) 

Figure 7.16 Strain distributions for the parametric study on the strain magnitude; L = 

40 mm, a = 8 mm, b = 12 mm with (a) c = 0.5 % and d = 0.2 %, (b) c = 0.2 % and d = 

0.5 %, (c) c = 1.0 % and d = 0.2 %, and (d) c = 0.5 % and d = 0.1 %. 
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(a)      (b) 

   

(c)      (d) 

Figure 7.17 Results of the parametric study on the strain magnitude; L = 40 mm, a = 8 

mm, b = 12 mm with (a) c = 0.5 % and d = 0.2 %, (b) c = 0.2 % and d = 0.5 %, (c) c = 

1.0 % and d = 0.2 %, and (d) c = 0.5 % and d = 0.1 %. 

 

Figure 7.17 (a) and (b) represent the mini-order for two cases where the magnitudes 

of the maximum and minimum strains are opposite; (a) c = 0.5 % and d = 0.2 %, (b) c 

= 0.2 % and d = 0.5 %.  The results are nearly identical.  The effect of different strain 

magnitudes are shown in (c) and (d); (c) c = 1.0 % and d = 0.2 %, and (d) c = 0.5 % 

and d = 0.1 %.  The range of the mini-orders, which is defined as the difference 
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between the angles of two peak mini-orders, is linearly proportional to the difference 

between the maximum and minimum strain magnitudes. 

 

From the results of the parametric studies using a trapezoid-shaped strain distribution, 

the following observations were made; 

1) The period of strain, the strain gradient, and the ratio of strain width affect the 

magnitudes of mini-orders, but not the range of mini-orders. 

2) Only the strain magnitude controls the range of mini-orders 

 

The range of min-orders is directly related to the fringe formation since the aperture 

of the imaging system in moiré interferometry is finite.  This effect is discussed in the 

following section. 
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7.6 Numerical Aperture and Measurable Maximum Strain  

From the parametric studies, the angle of mini-order can be defined as 

 mosin gm f bθ λ=  (7.23) 

where θmo is the angle of the mini-order, m is the diffraction order, λ is the 

wavelength, fg is the frequency of the specimen grating, and b is the strain magnitude.   

 

Numerical aperture (N.A.) of an imaging system is defined as 

 max. . sinN A θ=  (7.24) 

where θmax is the maximum angle of emerging beam that the imaging system can 

capture [Hecht 1998]. 

 

By combining Eqs. 7.23 and 7.24, the maximum measurable strain, bmax, can be 

expressed as 

 max
. .

g

N Ab
m fλ

=  (7.25) 

In routine practice of moiré interferometry, m =1, fg = 1200 line/mm, and λ = 633 nm.  

The maximum measurable strain as a function of N.A. is plotted in Fig. 7.19.  It is 

clear from the results that more than ±10% of strain can be readily measured with 

only N.A. of 0.1.   
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Figure 7.18 Maximum measurable strain as a function of the numerical aperture of an 

imaging system, where m =1, fg = 1200 line/mm, and λ = 633 nm. 
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Chapter  8.   Conclusions 

In Part I, an extensive study for the contrast and intensity of shadow moiré fringe was 

conducted.  The results were utilized to develop high sensitivity shadow moiré using 

the non-zero Talbot distance (SM-NT). 

 

In Part II, the diffraction grating theory and Fourier optics were applied to moiré 

interferometry to explain the phase-shifting in an achromatic system.  The theory was 

extended to characterize the mini-order for a general strain distribution in this 

dissertation. 

 

The major contributions made in this dissertation include: 

1) Developed an exact solution of the contrast and intensity distribution of 

shadow moiré fringe for a monochromatic light source based on a diffraction 

theory 

2) Conducted an experiment to validate the Talbot contrast of shadow moiré 

fringe.  

3) Evaluated the effect of a broad spectrum light source on the Talbot contrast of 

shadow moiré fringes.   

4) Developed and experimentally validated a complete expression for the 

contrast of shadow moiré fringes.   

5) Developed the intensity function of shadow moiré fringe for a broad spectrum.   

6) Evaluated the systematic error of the phase-shifting technique, caused by the 

non-sinusoidal intensity distribution of shadow moiré. 
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7) Developed high sensitivity shadow moiré using non-zero Talbot distance 

(SM-NT) system.   

8) Suggested the optical configurations of SM-NT for the optimum fringe 

contrast and applied them to the warpage measurement of FC-PBGA.   

9) Explained the phase-shifting in an achromatic system of moiré interferometry 

using the diffraction grating theory and Fourier optics.   

10) Developed a mathematical model to analyze the mini-orders for a general 

strain distribution, where the discrete Fourier transform was employed to 

characterize the mini-orders. 
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Appendices 

Appendix A. Matlab Program to Calculate the Phase Change in Achromatic 

System 

 
clear all; 
 
H=0.1;    %H: Depth of Gloove (micro meter) 
d=1/1.2;   %d: pitch of grating(micro meter): 1200 lines/mm 
hc=pi*H/d   %hc: should be less than 0.447743 
 
lambda=.35   %lambda: wavelength of beam 
theta=0    % theta : incidence angle 
 
k=2*pi/lambda; 
alpha=k*sin(theta); 
betta=k*cos(theta); 
 
N=30 %Number of n 
 
x=linspace(0,d,2*N+1); 
 
shift=0; 
e=-H/2; 
 
A=zeros(2*N+1); 
for m=-N:N 
    for l=-N:N 
        
A(m+N+1,l+N+1)=exp(i*alpha_n(k,theta,l,d)*x(m+N+1)+i*betta_n(k,theta,l,d)*(H/2*cos(2*pi/d*
(x(m+N+1)-shift))+e)); 
        %Phi(k,theta,l,d,H,x(m+N+1));         
    end 
end 
 
 
C=zeros(2*N+1,1);  
for m=-N:N 
        C(m+N+1)=-exp(i*alpha*x(m+N+1)-i*betta*(H/2*cos(2*pi/d*(x(m+N+1)-shift))+e)); 
end 
 
B=inv(A)*C;  %Coefficient  
 
theta_n=zeros(2*N+1,1); 
for n=-N:N 
    theta_n(n+N+1)=asin(sin(theta)+n*lambda/d); 
end 
theta_n*180/pi %Show in degrees 
 
%Efficiency 
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E= B.*conj(B).*cos(theta_n)/cos(theta); 
 
%---------------------------------------------------------------------------- 
%Plot Mode 
x=linspace(0,3*d); 
y=linspace(H/2+e,3*lambda); 
 
Order=input('Order?') 
%Order=100; 
while Order ~= 100 
    figure    
    BG=B(Order+N+1) 
    alphaG=alpha_n(k,theta,Order,d) 
    bettaG=betta_n(k,theta,Order,d) 
 
 for l=1:length(x) 
        for m=1:length(y) 
            z(m,l)=real(BG*exp(i*alphaG*x(l)+i*bettaG*y(m))); 
        end 
 end 
  
    phase=angle(BG)*180/pi 
    %figure 
 hold on 
 plot(x,H/2*cos(2*pi/d*(x-shift))+e,'k','LineWidth',2) 
  
  
 contourf(x,y,z) 

colormap(gray);    
 axis equal 
    xlabel('x') 
    ylabel('y') 
    title(['Order : ',int2str(Order),'. Grating shift : d/4']) 
 hold off 
    Order=input('Order?') 
end 
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Appendix B. Matlab Program to Evaluate the Mini-order Using FFT 

clear 
 
order=1;              % diffraction order of beam 1 
fg=1200;             % frequency of specimen grating (lines/mm) 
h=200e-6;            % groove depth of grating (mm) 
lambda=633e-6;       % wavelength (mm): He-Ne 633nm 
 
a=1;                  % strain point 1 (mm) 
b=1.5;                % strain point 2 (mm) 
L=5;                  % pitch of periodic strain (mm) 
 
c=0.005;              % maximum strain 
d=0.002;             % minimum strain 
 
T=L/10000            % Sampling Rate 
n=0:(L/T)-1;           % sampling index 
N=length(n)          % Number of sampling 
 
B=zeros(size(n));    % For diffraction complex field 
 
a0=((d-c)*(b+a)+L*c)/L; 
 
for k=1:500 
    if a==b       % if a = b, or step function 
        B=B+2*(d-c)/(k*pi)*sin(2*k*pi*b/L)*L/2/k/pi*sin(2*k*pi/L*n*T); 
    else          % Trapezoidal case 
        B=B+(c-d)/(b-a)*L/(k*pi)^2*(cos(2*k*pi*b/L)-cos(2*k*pi*a/L))* ... 
             L/2/k/pi*sin(2*k*pi/L*n*T); 
    end 
end 
 
% Complex Amplitude 
CA=besselj(order, 2*pi*h/lambda)*exp(i*2*pi* order*fg *(a0*n*T+B));  
F_CA=fft(CA);       % FFT  
 
stem(atan(n/(T*N)*lambda)*180/pi,1/N*abs(F_CA),'filled') 
set(GCA,'fontsize',14) 
set(GCA,'FontName','Arial') 
xlabel('angle(degree)') 
ylabel(‘Magnitude') 
grid on 
axis([0,0.5,0,0.3]) 
title(['FFT with No of points =',num2str(N),' and sampling rate =', num2str(T)]) 
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