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We investigate the evolution of three different types of discrete dynamical systems. In each

case simple local rules are shown to yield interesting collective global behavior.

(a) We introduce a mechanism for the evolution of growing small world networks. We

demonstrate that purely local connection rules, when coupled with network growth, can result in

short path lengths for the network as a whole.

(b) We consider the general character of the spatial distributions of populations that grow

through reproduction and subsequent local resettlement of new population members. Several

simple one and two-dimensional point placement models are presented to illustrate possible generic

behavior of these distributions. We show, both numerically and analytically, that all of the models

lead to multifractal spatial distributions of population.

(c) We present a discrete lattice model to investigate the segregation of three species granular

mixtures in horizontally rotating cylinders. We demonstrate that the simple local rules of the model

are able to reproduce many of the experimentally observed global phenomena.
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Chapter 1

Introduction

The study of complexity and complex systems has become increasingly popular in many scientific

disciplines. Complex systems are collections of interacting subunits, where the global behavior

of the whole is difficult to infer from the properties and interactions of the subunits. Thus com-

puters, neural networks, human societies and weather are all examples of complex systems. An

important realization and a unifying concept in the study of such systems is that complex global

behavior does not require complicated interactions between the individual subunits. In fact, it has

been repeatedly shown (e.g. cellular automata [1], agent based models [2]) that simple building

blocks can result in very complicated, often surprising and, perhaps most importantly, potentially

meaningful global behavior.

As a result, researchers in diverse fields such as sociology, computer science, biology and

physics, just to name a few, are modeling complexity with simply interacting simple subunits. This,

in turn, has led to a large amount of interdisciplinary research, where traditionally disconnected

fields find common ground under this new framework.

Discrete time/discrete state models (DTDSMs) can be very useful in describing a variety of

complex systems. A DTDSM is any model that has a discrete state space and which is updated at

discrete time steps. The prototypical examples of DTDSMs are cellular automata; however, there

are many other types of models that can be classified as DTDSMs (e.g., incrementally growing

models, discrete lattice models, etc.). One of the aspects that makes these models appealing is the

simplicity with which they can be simulated on a computer. Numerical solutions of complicated

continuum models will almost always involve some form of discretization procedures and, thus,

are approximate solutions to the specified continuous models. DTDSMs, on the other hand,

can be simulated exactly even for very intricate models. Additionally, since, as noted above,

complexity can emerge from a collection of simply interacting entities, the DTDSM describing a

complex system can be rather simple, sometimes even allowing for analytical approaches. In this

dissertation we present several DTDSMs applied to a number of complex systems.
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In Chapter 2 we introduce a simple mechanism for the evolution of small world networks.

Our model is a growing network in which all connections are made locally to geographically nearby

sites. Although connections are made purely locally, network growth leads to stretching of old con-

nections and to high clustering. Our results suggest that the abundance of small world networks

in geographically constrained systems is a natural consequence of system growth and local inter-

actions.

In Chapter 3 we consider the general character of the spatial distribution of a population

that grows through reproduction and subsequent local resettlement of new population members.

Several simple one and two-dimensional point placement models are presented to illustrate possible

generic behavior of these distributions. It is shown, numerically and analytically, that these models

all lead to multifractal spatial distributions of population. Additionally, we make qualitative

links between our models and the example of the Earth at Night image [3], showing the Earth’s

nighttime man-made lights as seen from space. The Earth at Night data suffer from saturation of

the sensing photodetectors at high brightness (‘clipping’), and we account for how this influences

the determined multifractal dimension spectrum of the light intensity distribution.

In Chapter 4 we investigate the segregation of three species granular mixtures in horizontally

rotating cylinders. We present a discrete lattice model based on the different frictional properties

of the three particle types and show that it yields results that are qualitatively similar to those of

the physical experiment.
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Chapter 2

Growing networks with geographical attachment preference: Emergence of small worlds

2.1 Introduction

Recently there has been considerable interest in the classification of physical systems according to

the topological properties of the networks to which they map (e.g., [4–13]), where the constituent

parts are modeled as nodes and links between nodes denote some type of interaction (for reviews see

[14–17]). This method of classification has the potential to shed light on underlying organizational

principles. In this spirit, we focus on the “small world” network topology introduced by Watts

and Strogatz [4].

Here we represent a network as an undirected graph: a collection of N points (nodes) with

connections (links) between some pairs of them. If two nodes are connected, we say that they are

neighbors. We call the number of connections to node i the degree of node i and we denote it ki.

Small world networks are characterized by two main properties. First, their characteristic

path length, L, grows as ln N or slower, similar to an Erdős-Rényi (ER) random network. The

characteristic path length is the smallest number of links connecting a pair of nodes, averaged

over all pairs of nodes. Second, the network has a high average clustering compared to an ER

random network of equal size and average node degree. The clustering Ci of node i is defined

by Ci = qi/[(1/2)ki(ki − 1)], where qi is the total number of links between the ki neighbors of

node i, and (1/2)ki(ki − 1) is the maximum number of links that could exist between ki nodes.

Networks exhibiting small world characteristics are found in many varied fields of research. Some

examples of such networks are the neuronal network of the worm C. elegans, the electric power grid

of southern California, and the friendship network of Madison Junior High School students [5].

The Watts and Strogatz model is the following prescription for creating a small world

network. The initial state has a fixed number of nodes equally spaced on the circumference of a

circle. Each node is linked to its m nearest neighbor nodes, where m is even and nearest here

refers to the distance along the circumference of the circle. In this way a regular network with a

large average clustering is created. Next, a proportion p of the links are chosen at random and
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“rewired” such that one end of the link is kept fixed and the other end is linked to a randomly

chosen node. These random links can serve as short cuts across the circle, drastically decreasing

the characteristic path length of the network. It was found [4] that, for a relatively small rewiring

probability p, the characteristic path length of the network becomes comparable to that of an ER

random network, while the network still maintains a high average clustering.

The network construction of the Watts and Strogatz model very nicely illustrates the small

world property, and, furthermore, it is probably a reasonable model for how some networks are

formed. However, the small world property is, of course, much more general than their particular

example, and it is useful to study other mechanisms for forming small world networks. In particular,

we will be interested in networks that grow in time from small size to large size by the successive

addition of new nodes (see [8, 14–17] for other models of growing networks).

Many networks have their topology influenced by geographical constraints. The nodes are

separated by some physical distance and thus their ability to know the complete state of all the

network nodes at a given time is restricted. Consequently, in our model we restrict the formation

of links between nodes to result from geographically local processes. That is, when a new node

appears, it forms links only to those preexisting nodes that are geographically close to it. In spite

of the link formation being exclusively local, long-range links will be shown to arise as a result of

network growth. This, in addition to the clustering induced by local connections, yields the small

world property.

We say that a growing network model has the small world property if it satisfies the following

three criteria as the number of nodes N → ∞:

a) Small average node degree, 〈k〉 = O(1);

b) Small characteristic path length, L ∼ lnN ;

c) High average clustering, 〈C〉 = O(1) (i.e., 〈C〉 does not decay with N).

Part (a) of the definition is included to ensure that highly connected networks that trivially satisfy

criteria (b) and (c) are not considered to be small world networks (e.g., if every node is connected

4



to every other node then L = 〈C〉 = 1 but 〈k〉 = N − 1).

2.2 Growing Network Model

Our model, as mentioned above, is a growing network. We begin with an initial state of m + 1

all-to-all connected nodes on the circumference of a circle (Fig. 2.1). (We take m to be even.)

We note that this initial state is chosen solely for convenience and it has no effect on the long

time network properties. At each subsequent discrete time step we grow the network according to

the following prescription: a) a new node is placed in a randomly chosen inter-node interval along

the circle circumference, where all intervals have the same probability of being chosen; b) the new

node makes m links to its m (previously existing) nearest neighbors. Nearest here refers to the

distance measured in number of intervals along the circumference of the circle.

These steps are repeated sequentially, creating a network with a temporally growing number

of nodes N . We note that, since the network size, N , is incremented by one with each discrete

time step, N can be used interchangeably as a system size or a time variable.

2.3 Degree Distribution

We now calculate the degree distribution for our network when N is large. We define Ĝ(k, N) as

the number of nodes with degree k when the system size (or time) is N . Since all new nodes are

initially created with k = m, and links can only be added to nodes, Ĝ(k, N) = 0 for k < m. At

time N , a node with degree k = m is added to the network, and if it links to a previously existing

node i, then ki → ki + 1. Each preexisting node is equally likely to be connected to the new node,

and therefore the probability that a given preexisting node has its degree increased by 1 is m/N .

We now take the average over all realizations of the possible random placements of the new

node. This yields the following evolution equation for the average of Ĝ, which we denote G:

G(k, N + 1) =
(

1 − m

N

)

G(k, N) +
m

N
G(k − 1, N) + δkm, (2.1)

where δkm is the Kronecker delta function. The first term on the right hand side is the expected

number of nodes with degree k at time N whose degrees remain the same at time N + 1. The
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Step (a)

Step (b)

Step (a)

Step (b)

Figure 2.1: Our growing network model, illustrated for m = 2. We begin with m + 1 completely

connected nodes on the circumference of a circle (top left). At each subsequent time step we: a)

add a new node in a randomly chosen inter-node interval along the circle circumference, with every

interval having equal probability of being chosen, and b) connect the new node to its m nearest

neighbors, with nearest here referring to distance along the circle circumference. Steps (a) and (b)

are repeated until the desired system size is reached.
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Figure 2.2: The open circles represent the degree distribution P (k) for a network grown according

to our model with N = 105 and the solid line is the analytically calculated ensemble averaged

degree distribution [Eq. (2.2)], both with m = 2.

second term is the expected number of nodes with degree k − 1 at time N whose degrees increase

to k at time N + 1. The third term represents the new node with degree m.

We let H(k, N) = G(k, N)/N be the fraction of nodes with degree k at time N , i.e., the de-

gree distribution. In Appendix A, we show that for large N , H(k, N) approaches an asymptotically

N invariant form H̄(k), given by

H̄(k) =
1

m + 1

(

m

m + 1

)k−m

(2.2)

for k ≥ m and H̄(k) = 0 for k < m.

In Fig. 2.2, the data points represent the degree distribution P (k) (i.e., the fraction of nodes

with degree k) for a single network realization randomly grown by our algorithm (illustrated in Fig.

7



2.1) for m = 2 at N = 105. The solid line is H̄(k) from Eq. (2.2), also with m = 2. We observe good

agreement between the analytical calculation for the ensemble average over realizations and the

simulation of a single realization, with both showing an exponentially decaying degree distribution.

This agreement illustrates that ‘self-averaging’ applies for large N .

In addition, we can calculate the average node degree at time N , 〈k〉, as N → ∞:

〈k〉
lim N→∞

=
∞
∑

k=m

kH̄(k) = 2m. (2.3)

This can be seen also by observing that each time N increases by 1, m new links are formed, and

since each link has two ends, the sum of the degrees of all nodes increases by 2m at each time step.

Thus our first criterion for a small world network (that 〈k〉 remains bounded as N → ∞) is met.

2.4 Clustering

For the particular case of m = 2 we can calculate the average clustering of the network exactly.

For this value of m, a new node joins the network with k = 2 and q = 1. Each subsequent addition

of a link to that node increments both k and q by one. Thus q = k − 1 for all nodes. Since, by

definition, Ci = 2qi/ki(ki − 1), the average clustering over all nodes in the m = 2 case is given by

〈C〉 = 2

〈

1

k

〉

= 2

∞
∑

k=2

1

k
H̄(k) =

3

2
ln 3 − 1 ≈ 0.648. (2.4)

The open circles in Fig. 2.3 are the node averaged clustering for a single network realization

randomly grown by our algorithm (illustrated in Fig. 2.1) versus the network size N for m = 2.

As N grows, these data are observed to approach the ensemble averaged large N result given by

Eq. (2.4) (dashed line). In networks with larger values of m we also observe approach of 〈C〉 to

a constant asymptotic value as N increases (the asymptotic 〈C〉 grows with m; e.g., for m = 4,

〈C〉 ≃ 0.653).

The network maintains a high average clustering as N → ∞ and, therefore, the second

criterion for a small world network is met. This high clustering is expected due to the local nature

of the links made. A new link is inserted in a region that already has high interconnectivity,

assuring that the nodes with which the new connections are made have a high probability of
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Figure 2.3: Average clustering, 〈C〉, versus system size, N , for a simulated network with m = 2.

As N grows, the average clustering approaches the value (dashed line) predicted in Eq. (2.4).
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Figure 2.4: Semilogarithmic graph of the characteristic path length, L, versus the system size, N .

The data show the small world slow path length growth characteristic, L ∼ lnN . The straight line

is a fit to the data.

having connecting links to each other.

2.5 Characteristic Path Length

The open circles in Fig. 2.4 show L, the shortest path length between pairs of nodes averaged over

all node pairs of a single growing network realization, on a linear scale versus N on a logarithmic

scale. The data show a linear trend, demonstrating the desired slow growth of geodesic path

lengths with system size; i.e. L ∼ lnN . Thus the third, and final, small world network criterion is

also satisfied.

To see why L grows more slowly than N , consider the fact that, although the links made

10



C

A

B

A

BC

Figure 2.5: An illustration of network growth in our model for m = 2. The network starts off (left)

with three adjacent nodes, labeled by A, B, and C, connected to each other via links. When the

network reaches a network size of 100 nodes (right), the original three labeled nodes are no longer

adjacent, but have been “pushed apart” by the new nodes that were inserted between them. The

links connecting A, B, and C serve as short cuts (similar to the shortcuts in the Watts-Strogatz

model [4]), resulting in a small characteristic path length for the network.

by incoming nodes are always local, the network itself is growing. The older nodes that had once

been nearest neighbors along the circle (and therefore linked), are pushed apart as newer nodes

are inserted into the interval between them. Fig. 2.5 illustrates this for the case of m = 2. The

network begins as three nodes linked to each other. By the time the network reaches N = 100,

we see that the original nodes are not adjacent, but, rather, have a large number of newer nodes

between them. Thus, growth leads to long links between old nodes, and these long links are the

shortcuts responsible for a short characteristic path length.

To see why L ∼ lnN , imagine a network of size N ≫ 1 and characteristic path length

L. Now if we grow the network by adding N new nodes, these nodes will be roughly uniformly

distributed along the circle circumference. This means that, on average, a new node would be a

11



distance of O(1) from one of the first N nodes. Thus as N → 2N (i.e., ln N → lnN + O(1)), we

expect L to increase to L + O(1), resulting in L ∼ lnN .

2.6 Geography

The construction of our network allows for the tracking of the relative positions of the individual

nodes. This enables us to ask questions about quantities pertaining to the geographical separation

between nodes. By geographical separation we mean that we view our network as equally spaced

nodes on the circumference of a circle embedded in a two dimensional Euclidean space and this

allows us to define a physical separation between the nodes. For convenience, we consider the

distance between nodes as the distance measured along the circumference of the circle in units

of the inter-node spacing or, in other words, one plus the number of nodes found on the circle’s

circumference between the two nodes of interest1. (This is different from the graph theoretic notion

of the distance between two nodes defined as the minimum number of links connecting two nodes.)

Here we present some analytical results related to geographical distances in our network for

the case m = 2. Let Ŝ+(k, l, N) be the number of nodes at time N with degree k and with the

longest link to another node in the counter-clockwise (CCW) direction having the length l. (A

node i has its longest CCW link connected to the node j which was the nearest neighbor in the

CCW direction when node i was introduced into the network as a new node.) At each time step

a new node is added to the network and it connects to its two nearest neighbors which are, by

definition, one inter-node spacing away from the new node. Thus the new node will have k = 2 and

l = 1. As more nodes are added, the values of k and l for an existing node will change according

to the following scenarios. Figure 2.6 is an illustration of a section of our network, depicting the

possible scenarios for the node labeled B. Let node B have degree k and CCW longest link l. It

is clear that if a new node is introduced in region IV, neither k nor l is affected. If a new node is

placed anywhere in region III, defined as the region between the CCW nearest neighbor node C

and the farthest CCW linked node D, then l increases by one while k remains the same. A new

1We do not use the Euclidean distance between nodes, which would be the length of the chord connecting two

nodes on the circle’s circumference.
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counter-clockwise direction

l

BA DC

Figure 2.6: An illustration of the different regions associated with node B. Let node B have

degree k and longest CCW link l. A new node inserted in region IV will not affect either k or l.

A new node inserted in region III (between the CCW nearest neighbor C and the CCW farthest

connected node D) increases l by one but leaves k unchanged. A new node inserted in region II

(between nodes B and C) increases both k and l by one. Since region I (between nodes A and B)

is in the clockwise direction, a new node inserted here increases k by one but leaves l unchanged.

node inserted into region II increments both k and l by one. Finally, since we are only interested

in the longest CCW (as opposed to clockwise) link of node B, if a new node is inserted in region

I, k is incremented by one while l remains unchanged.

We now take the average over all realizations of the possible random placements of the new

node and write down the following evolution equation for the average of Ŝ+, which we denote S+:

S+(k, l, N + 1) =

(

1 − l + 1

N

)

S+(k, l, N) +
1

N
S+(k − 1, l, N) (2.5)

+
1

N
S+(k − 1, l − 1, N) +

l − 2

N
S+(k, l − 1, N) + δk2δl1.

The first term on the right hand side is associated with region IV and represents the expected

number of nodes with degree k and longest CCW link l at time N which will retain those values

13



at time N + 1. The second term is the expected number of nodes with degree k − 1 and longest

CCW link l that receive a new node in region I at time N and therefore increase their degree to

k while leaving l unchanged at time N + 1. The third term is the expected number of nodes with

degree k − 1 and longest CCW link l − 1 at time N which receive a node in region II. The fourth

term is the expected number of nodes with degree k and longest CCW link l− 1 at time N which

receive a node in region III. Note that region III is of length l − 2 in this case. The last term in

the equation accounts for the new node (k = 2, l = 1) that is introduced at time N .

Defining s+(k, l, N) = S+(k, l, N)/N to be the fraction of nodes with degree k and longest

CCW link l at time N , we can write down the evolution equation for s+ as,

(N + 1)s+(k, l, N + 1) = (N − (l + 1))s+(k, l, N) + s+(k − 1, l, N) (2.6)

+ s+(k − 1, l − 1, N) + (l − 2)s+(k, l − 1, N) + δk2δl1.

We define W (k, N) =
∑

l s
+(k, l, N) to be the fraction of nodes with degree k at time N . Thus

W (k, N) should coincide with H(k, N) for m = 2 (see Sec. 2.3). This is indeed the case, as

summing both sides of Eq. (2.6) over l recovers an evolution equation for W (k, N) identical to the

evolution equation for H(k, N) with m = 2 (i.e., Eq. (A.1) with m = 2). Hence, the stationary (N

independent) solution W̄ (k) of W (k, N) satisfies the recursion relation

W̄ (k) =
2

3
W̄ (k − 1) +

δk2

3
, (2.7)

with the solution

W̄ (k) =
1

3

(

2

3

)k−2

. (2.8)

We now introduce the quantity 〈l|k〉+N =
∑

l ls
+(k, l, N)/W (k, N), which is the average

longest CCW link for a node with degree k at time N . Returning to Eq. (2.6), we multiply both

sides by l and then sum over l, and obtain the following evolution equation:

(N + 1) 〈l|k〉+N+1 W (k, N + 1) = (N − 1) 〈l|k〉+N W (k, N)

+ 2 〈l|k − 1〉+N W (k − 1, N) (2.9)

+ W (k − 1, N) − W (k, N) + δk2.
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If we assume the stationary solutions 〈l|k〉+ and W̄ (k) for 〈l|k〉+N and W (k, N), respectively, we

are left with the recursion relation

W̄ (k)
(

2 〈l|k〉+ + 1
)

= W̄ (k − 1)
(

2 〈l|k − 1〉+ + 1
)

+ δk2, (2.10)

which, using the result in Eq. (2.7), can be solved to yield

〈l|k〉+ =

(

3

2

)k−1

− 1

2
(2.11)

for k ≥ 2 and 〈l|k〉+ = 0 for k < 2. Thus we see that the length of the longest CCW link of a

node (as well as its longest clockwise link, by symmetry) increases exponentially with its degree.

We show in Appendix B that the average longest link of a node also behaves in a similar manner.

Turning our attention to the distribution of the longest CCW link lengths, we define the

quantity T (l, N) =
∑

k s+(k, l, N), the fraction of nodes with longest CCW link l at time N .

Summing both sides of Eq. (2.6) over k we obtain the evolution equation

(n + 1)T (l, N + 1) = (N − l)T (l, N) + (l − 1)T (l − 1, N) + δl1. (2.12)

We define the stationary solution T̄ (l) of T (l, N), and from Eq. (2.12) obtain the recursion relation

T̄ (l) (l + 1) = T̄ (l − 1) (l − 1) + δl1 (2.13)

which we solve to yield

T̄ (l) =
1

(l + 1) l
(2.14)

for l ≥ 1 and T̄ (l) = 0 for l < 1.

We now define the quantity 〈k|l〉+N =
∑

k k s+(k, l, N)/T (l, N), the average degree for a

node with longest CCW link l. We multiply (2.6) by k and sum over k, obtaining the evolution

equation

(N + 1) 〈k|l〉+N+1 T (l, N + 1) = (N − l) 〈k|l〉+N T (l, N)

+ (l − 1) 〈k|l − 1〉+N T (l − 1, N) (2.15)

+ T (l, N) + T (l − 1, N) + 2δl1.

15



Assuming the stationary solutions 〈k|l〉+ and T̄ (l) for 〈k|l〉+N and T (l, N), respectively, we obtain

the recursion relation

T̄ (l)
(

(l + 1) 〈k|l〉+ − 1
)

= T̄ (l − 1)
(

(l − 1) 〈k|l − 1〉+ + 1
)

+ 2δl1, (2.16)

which, using the result in (2.13), is solved to yield

〈k|l〉+ =
5

2
+

l
∑

i=2

2i

i2 − 1
(2.17)

for l ≥ 1 and 〈k|l〉+ = 0 for l < 1. In particular, this implies that for large l, 〈k|l〉+ ∼ ln l.

2.7 Conclusion

We presented a small world network model that has only geographically local interactions. This

model provides a physically realistic mechanism by which growing physical systems that have

geographical constraints, and therefore limited global information available to each individual

node, can form networks with small world characteristics. Additionally, our results suggest that

small world networks in geographically constrained physical systems may be a natural consequence

of system growth and local interactions.
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Chapter 3

Formation of Multifractal Population Patterns from Reproductive Growth and Local

Resettlement

3.1 Introduction

Growing populations exist in many different areas of interest. Although the most obvious exam-

ples are biological in nature (e.g., bacterial cultures, the human population), one can also consider

the growth of technological development or the growth of urban infrastructure as more abstract

examples. While the specific details of these systems can be quite different, the examples stated

here all share the characteristic that their populations grow on some background space. A reason-

able question to ask then is what types of spatial distributions result in these growing systems.

Figure 3.1 is a version of the popular Earth at Night image (EaN) [3]. This is a composite image

taken by orbiting satellites that shows the Earth’s nighttime man-made lights as seen from space.

The light intensities are brightest in areas that are known to be highly populated and developed,

and thus the image can be crudely thought of as representing the spatial distribution of some

combined measure of technological development and human population density. We see a very

heterogeneous distribution, with areas of very high intensities as well as areas of almost no light

at all.

A useful characterization of the heterogeneity of a distribution is the distribution’s dimension

spectrum Dq. A grid of hypercubes, or boxes, of a fixed size with edge length ǫ is used to cover the

distribution, where the dimension of the hypercubes corresponds to the dimension of the underlying

space (e.g., squares for two dimensions and line segments for one dimension). Dq is then calculated

via [18, 19]

Dq =
1

1 − q
lim
ǫ→0

ln I(q, ǫ)

ln(1/ǫ)
, (3.1)

where

I(q, ǫ) =

N(ǫ)
∑

i=1

µq
i . (3.2)

Here the sum is taken over N(ǫ) non-empty grid boxes and µi is the fraction of the particular

quantity of interest (assumed to be nonnegative, e.g., light intensity in Fig. 3.1) that is contained
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Figure 3.1: A version of the Earth at Night image [3]. This is a composite image created with

data from the Defense Meteorological Satellite Program of the Earth’s nighttime man-made lights

as seen from space. For the analysis, an 8-bit grayscale 2400x800 pixel image was used, where

light from the reflective landmasses found in the original image was removed with an appropriate

uniform background subtraction. The image pixels have intensity values ranging from 0 to 218.

in box i.

The parameter q (q ≥ 0 in this chapter) can be varied continuously to vary the influence of

high and low µi boxes, with larger values of q emphasizing the boxes with larger µi’s. In particular,

when q = 1 we have the information dimension D1 which, applying L’Hospital’s Rule to (3.1) and

(3.2), is given by

D1 = lim
ǫ→0

∑N(ǫ)
i=1 µi lnµi

ln ǫ
. (3.3)

A distribution is fractal if it possesses a fractional (non-integer) dimension (i.e., if Dq is not an

integer for some q). If Dq depends on q, then the distribution is said to be multifractal.

Generally, when measuring the dimension of a distribution of numerical and/or experimental

data, there is a maximum resolution observable. In the EaN image, for example, the image’s

individual pixels are the smallest boxes that can be used to cover the distribution in the calculation

of Dq. In such cases the ǫ → 0 limit cannot be considered; instead one looks for a scaling range of

ǫ where the quantity (1 − q)−1 ln I(q, ǫ) varies approximately linearly with ln(1/ǫ), from which a

dimension can be extracted as the slope of a straight line fitted to data in the ǫ scaling range. We

illustrate this process by calculating the information dimension D1 of the EaN image. Figure 3.2
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Figure 3.2: Plot for calculating the information dimension D1 [see Eq. (3.3)] for the Earth at Night

image. The quantity
∑N(ǫ)

i=1 µi lnµi is plotted versus ln ǫ (open circles), where ǫ is in units of pixels,

resulting in a linear scaling region, the slope of which is a finite-scale approximation of D1. The

solid line is a linear fit to the data with a slope of 1.60 ± 0.02.

shows a plot of
∑N(ǫ)

i=1 µi lnµi versus ln ǫ (with ǫ in units of pixels) for the image, where each µi

is the fraction of the total intensity in box i. The good evidence of linearity in this plot over a

scaling range in ǫ of order e6 indicates that a fractal description makes sense. The solid line in

Fig. 3.2 is a linear fit to the data with a slope of 1.60 ± 0.02, which we take as the value of D1.

Thus the light distribution in the EaN is fractal. In Sec. 3.3 we argue that it is also multifractal.

Yook et al. [20] have recently reported that the world’s human population, as well as the

population of internet routers and autonomous systems, are fractally distributed. Additionally,

several studies [21–23] have demonstrated various fractal properties of urban settlements. We
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were thus led to consider the possibility of common, underlying mechanisms shared by growing

populations that lead to fractal distributions.

One characteristic found in many growing populations is the existence of some generalized

reproduction process, where existing members of the population generate more members. In

addition to biological reproduction, in some non-biological systems concentrated populations can

encourage the creation of more members. For example, areas that are technologically highly

developed are likely to stimulate more development than areas that are not as technologically

developed.

Once the new members are generated, it is reasonable to expect some form of local reset-

tlement for a wide range of growing systems. The resettlement is necessary in populations where

individual members are unable to occupy the same physical space as other members.

In this chapter we demonstrate that these two ingredients, reproduction and local resettle-

ment, can lead to multifractal spatial distributions for growing populations. We present several

point placement models in one and two dimensions which implement these ideas and show, both

numerically and analytically, that they lead to multifractal distributions.

One might suspect that fractal population densities arise due to strong inhomogeneities of

the underlying space (e.g., inhomogeneities in the distribution of land fertility, natural resources,

etc.). Our models initially (Sec. 3.2) employ spaces that have no inhomogeneity, thus demon-

strating that fractal population distributions can occur without inhomogeneity. We also consider

generalizations to our models that include geographical inhomogeneities (Sec. 3.4) and demon-

strate that, for the particular forms of the inhomogeneities that we employ, the multifractality of

the distribution is unaffected.

In Sec. 3.2 we present our point placement models along with numerical results. (We

emphasize that the set of models we introduce in Sec. 3.2 is not exhaustive, and many other similar

models could be conceived.) Section 3.3 considers situations where a multifractal distribution is

sensed by an instrument that saturates at a maximum measurable value (clipping). We show that

such clipping occurs in the EaN data, affecting the determined Dq. In Section 3.4, we investigate
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the effect of adding geographical inhomogeneity to the underlying space of our models. In Sec. 3.5

we present analytical results for some of our models. We summarize our findings and conclude in

Sec. 3.6. Appendix C provides details and background on the analytical calculation of the spectra

of fractal dimensions for some of our models. Appendix D contains the proof of a theorem used in

Appendix C (this theorem should be of very general utility, not restricted to our specific models,

in analysis of the spectra of fractal dimensions).

3.2 Models and Results

3.2.1 1-D Random Interval (Model 1)

We begin with a very simple model that places points on the unit interval (0 ≤ x ≤ 1). Our initial

state is a single point at x = 0.5. At each subsequent discrete time step we place a new point

according to the following prescription: (a) a target point, or “parent”, is chosen from all of the

preexisting points with equal probability; (b) the new point, or “child”, is placed in the middle

of one of the two empty intervals adjacent to the target point with equal probability. Steps (a)

and (b) are repeated until the desired system size is reached. Several representative steps of this

construction are illustrated in Fig. 3.3.

In Step (a), by randomly choosing the target point from all available preexisting points

with equal probability, we allow every point to generate, attract, or reproduce new members at the

same rate. This also implies that areas with a high density of points are more likely to attract new

members than areas that are sparsely populated, creating a “rich get richer” phenomenon. We

will see that all the models presented in this chapter have this general characteristic, with most

of the models actually possessing the identical Step (a). Step (b), on the other hand, is the local

resettlement scheme that is particular to this model. It was chosen for its simplicity, and we will

show in Sec. 3.5.1 that analytical results can be obtained for it.

Figure 3.4 shows semilog plots of point location histograms with different bin sizes ∆x for

one realization of our point placement scheme. We observe a roughening of the plot as smaller

histogram bins are used, thus giving a sense of the heterogeneity of the distribution. To quantify
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Figure 3.3: Three representative steps of Models 1 and 3.

this heterogeneity, we calculate the dimension spectrum Dq of the distribution. We cover the

distribution of points with intervals of a fixed length ǫ and assign to each interval i a measure µi

equal to the fraction of the total points contained in i. Then, referring to Eq. (3.1), we plot the

quantity (1 − q)−1 ln I(q, ǫ) versus ln(1/ǫ) for a range of ǫ, so that the slope of the graph in the

scaling range gives us Dq.

For q ≥ 0.5 the plots exhibit a linear regime that allows for a relatively unambiguous

determination of the dimension. However, for the smaller q there tend to be shorter scaling

regions, which makes the extraction of a reliable Dq more ambiguous. This is due to the fact that

the distribution is made up of a finite collection of points. As the grid covering the distribution

is made finer, grid boxes in the more sparsely populated areas begin to contain either 0 or 1

points. Furthermore, if ǫ is made small enough, eventually all the points in the distribution are

covered by different boxes, and the dimension for the distribution is simply the dimension of a

collection of individual points, i.e., zero. Thus, in order to get a meaningful dimension out of a

finite distribution of points, a certain degree of coarseness of the covering grid is necessary. For

small values of q, Dq relies heavily on boxes containing small amounts of the measure. Therefore,
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Figure 3.4: Semilog plots of histograms of point locations on the unit interval for a 105 point

distribution generated by Model 1, for various bin sizes ∆x. a) ∆x = 1/16, b) ∆x = 1/32, c)

∆x = 1/64, d) ∆x = 1/128.
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as ǫ is decreased, a scale is quickly reached where points in sparsely populated areas are covered

by separate boxes, thereby destroying the overall scaling behavior. For larger q, the dense regions

have a large enough influence on Dq that the effects of the finiteness of the distribution are not

observed until very small scales are reached, allowing for a large scaling range.

Figure 3.5 is a plot of the numerically determined average Dq (open circles) for 20 realizations

of 106 point distributions generated by Model 1. The solid line represents the analytical result

for Dq derived in Sec. 3.5.1. Both the numerical and analytical results demonstrate that Model 1

generates multifractal distributions.

Notice that our analytical value for the box-counting dimension D0 is one. Unlike Dq for

q positive, D0 depends only on the limiting set of points and not their distribution. Our result

that D0 = 1 indicates that the set filled by the points in Model 1 as time t goes to infinity is not

fractal. In fact, the entire interval is filled with probability one, which we see as follows. At time t

there are t points, which divide the unit interval into t + 1 subintervals (see Fig. 3.3). Each of the

subintervals has probability 1/t of containing the next point, except for the two end subintervals,

which each have probability 1/(2t). Thus the probability that a given subinterval is not bisected at

time t is at most 1−1/(2t). Since the infinite product of these probabilities as t → ∞ is zero, each

subinterval is eventually bisected with probability one, and therefore no empty intervals remain

as t → ∞. One can similarly argue for the other models in this chapter that the limiting sets are

not fractal; the heterogeneous point distributions they yield are reflected by the fractional values

of Dq for q > 0.

3.2.2 2-D Random Square (Model 2)

Model 2 is a two dimensional analogue of Model 1, where points are placed on the unit square,

(0 ≤ x ≤ 1, 0 ≤ y ≤ 1), instead of the unit interval. We begin with a single point at (0.5, 0.5).

Imagining vertical and horizontal lines drawn through this point, we see that the point is at the

vertex of four neighboring squares. At the next step, we choose one of the squares at random, with

equal probability, and place a point in its middle. We then divide this chosen square into four

24



0 0.5 1 1.5 2

0.6

0.7

0.8

0.9

1

−11 −10 −9 −8 −7 −6 −5 −4 −3

−8

−7

−6

−5

−4

−3

−2

ln ε

Σ
 µ

i l
n
 µ
i

D
q

q

Figure 3.5: Plot of Dq for Model 1. The open circles are the numerical values calculated from the

slope of a line fit to (1 − q)−1 ln I(q, ǫ) versus ln(1/ǫ) [see Eq. (3.1)], averaged over 20 realizations

of 106 point distributions (except for q = 1, in which case the line is fit to
∑N(ǫ)

i=1 µi lnµi versus ln ǫ

[see Eq. (3.3)]), with the error bars indicating the sample standard deviation for each value. The

solid line is the analytical result of Eq. (3.14). As an example the inset shows the determination

of D1 for one point distribution.

25



t = 1

t = 4t = 3

t = 2

Figure 3.6: Three representative steps of Models 2 and 4.

smaller squares by horizontal and vertical lines through the newly added point. Then we continue

this process: At each subsequent discrete time step we pick a target point (parent) according to

Step (a) of Model 1 (that is, all points are equally likely to be chosen) and add a new point (child)

to the center of one of the target point’s four adjacent squares, chosen with equal probability.

Several representative steps of this construction are illustrated in Fig. 3.6.

Figure 3.7 shows a distribution generated by this model’s point placement scheme, where

we have successively magnified dense regions of the distribution to illustrate the large differences

in densities that result at various length scales. Figure 3.8 is a plot of the average Dq of 20

independent distributions generated by this model, where the solid line is the analytical result

(3.28) derived in Sec. 3.5.2. Again, both the numerical and analytical results confirm that Model

2 generates multifractal distributions.
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Figure 3.7: A plot of a 4× 105 point distribution on the unit square generated by Model 2. Dense

regions are magnified to illustrate the heterogeneity of the point densities in the distribution at

different scales.
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Figure 3.8: Plot of Dq for Model 2. The open circles are the average numerical values of Dq

(see caption in Fig. 3.5) obtained from 20 realizations of 106 point distributions generated by this

model and the error bars are the sample standard deviations for each value. The solid line is the

analytical result of Eq. (3.28).
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3.2.3 1-D Larger Interval (Model 3)

Model 3 is a one dimensional point placement model similar to Model 1, but with a different local

resettlement rule. That is, the initial state and Step (a) are identical to those of Model 1, while

Step (b) is modified. Instead of a new point being randomly placed in one of the adjacent intervals

of the chosen target point with equal probability, the new point is placed in the larger of the two

intervals adjacent to the target point, and, if the two intervals are equal in size, one is chosen at

random.

In this way, the new points seek out more sparsely populated local intervals to settle within.

This strategy is reasonable in a context such as human resettlement, where the settlers may try

to combine the convenience of being close to others with the possible advantages associated with

more space. We expect this resettlement scheme to yield distributions that are more homogeneous

than those created by Model 1, and hence yield greater Dq.

We plot the point location histograms for one distribution generated by this model in

Fig. 3.9, once again varying the bin sizes used. Although the roughening of the plot as the bin size

is decreased is less pronounced than what was observed in Fig. 3.4 for Model 1, there still appear

to be significant fluctuations in the densities. We numerically obtain Dq and find the dimension

spectrum to be multifractal, having the same qualitative shape as the Dq for Model 1. However,

due to the more uniform nature of the distributions created by this model, the specific values of

Dq are larger at each q (e.g., D1 = 0.84 ± 0.01 [averaged over 20 distributions of 106 points] for

this model versus our analytical result D1 ≃ 0.72 for Model 1 [Eq. 3.15]).

3.2.4 2-D Sparse Square (Model 4)

Model 4 is a two dimensional analogue of Model 3. The initial state and Step (a) of its construction

are the same as in Model 2. Our aim is to extend Step (b) of Model 3, the choosing of the larger

interval for settlement, to two dimensions and for that purpose we make the following observation.

In the square-based two dimensional point placement scheme of Model 2, there are two different

types of squares which we refer to as type I and type II squares. A type I square only has one
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Figure 3.9: Semilog plots of histograms of point locations on the unit interval for a 105 point

distribution generated by Model 3, for various bin sizes ∆x. a) ∆x = 1/16, b) ∆x = 1/32, c)

∆x = 1/64, d) ∆x = 1/128.
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Figure 3.10: Illustration of type I (labeled I) and type II (labeled II) squares, where black dots

indicate populated vertices.

of its vertices occupied by a point, while a type II square has two opposite vertices occupied by

points. (See Fig. 3.10 for an illustration of type I and type II squares.) Thus a type I square can

be regarded as more sparsely populated than a type II square of equal size. With this in mind,

Step (b) for Model 4 is to place the new node in the middle of the largest square adjacent to the

target point. In case of a tie, choose a type I square over a type II square, with any subsequent

ties being resolved by an equal probability random choice from the remaining candidate squares.

We plot a distribution generated by this model in Fig. 3.11. We find this distribution to be

multifractal, with a Dq that is similar in shape to, but everywhere larger than, the Dq of Model 2

(except for q = 0 where the two coincide with D0 = 2). In particular, the information dimension

is D1 = 1.30 ± 0.02 (averaged over 20 distributions of 106 points), as compared to D1 ≃ 1.05 for
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Figure 3.11: A plot of a 105 point distribution on the unit square generated by Model 4.

Model 2 (Eq. 3.29).

3.2.5 2-D Unstructured (Model 5)

Looking at Fig. 3.7 (Model 2) and Fig. 3.11 (Model 4), we notice square shaped artifacts and

diagonal point formations that arise due to the structured, square-based nature of those point

placement schemes. Model 5 is a two dimensional point placement scheme that aims to avoid such

artifacts, while maintaining the two ingredients of reproduction and local resettlement. We begin

with a point at (0.5, 0.5) and assign to this point a child distance dc = 1/4. Step (a) is identical

to that used in Models 1-4. Once the target point is selected, Step (b) is to place the new point

at a random location on the circumference of a circle centered on the target point and with radius
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Figure 3.12: A plot of a 105 point distribution on the unit square generated by Model 5.

equal to the target point’s dc. A child distance equal to half the target point’s dc is assigned to

the new point.

A distribution generated by Model 5 is shown in Fig. 3.12. As intended, there are no grid-

type artifacts visible. The distributions generated by this model are found to be multifractal with

D1 = 1.36 ± 0.05 (averaged over 20 distributions of 106 points).

3.2.6 2-D Square (Model 6)

In this model we consider points to be located at the centers of squares. Beginning with a single

point in the center of a unit edge length square, we consider reproduction by a process mimicking
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Step (b)

chosen point

and its square

Figure 3.13: Illustration of Step (b) of Model 6.

cell division: In Step (b) a point that was randomly chosen in Step (a) divides into four points

(four-fold cell division), all of which then disperse to occupy (resettle) the centers of the four equal

size squares obtained by partitioning the original square; see Fig. 3.13.

Note that this construction can be specified without reference to points, but only to the

squares they occupy: We can consider Step (a) as randomly choosing a square with equal proba-

bility (independent of the size of the square), and Step (b) as dividing the chosen square into four

equal new squares. After many applications of this area partitioning procedure, the corresponding

population distribution can be produced by simply placing a point in the center of each square.

Figure 3.14 is a plot of the average Dq of 20 independent distributions generated by this

model, where the solid line is the analytical result (3.34) derived in Sec. 3.5.3. Both the numerical

and analytical results confirm that Model 6 generates multifractal distributions.

3.2.7 2-D Triangle (Model 7)

Model 7 is a slight variation of Model 6. Here triangles, as opposed to squares, are the basis of

the construction. We begin with a single equilateral triangle with unit edge length. At each time

step: (a) a target point (triangle) is chosen from all the preexisting points (triangles) with equal

probability; (b) the target point’s triangle is divided into four identical equilateral triangles with

edge length equal to half the edge length of the original triangle (see Fig. 3.15), with points placed

in their centers. We show in Sec. 3.5.3 that Model 7 has the identical analytical expression for Dq
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Figure 3.14: Plot of Dq for Model 6. The open circles are the average numerical values of Dq

(see caption in Fig. 3.5) obtained from 20 realizations of 106 point distributions generated by this

model and the error bars are the sample standard deviations for each value. The solid line is the

analytical result of Eq. (3.34).
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Step (b)

chosen point

and its triangle

Figure 3.15: Illustration of Step (b) of Model 7.

Table 3.1: A summary of numerical and theoretical results for the point placement models and the

Earth at Night image (Fig. 3.1).

Model Dimensionality of Space D1 Dq (theory)

1 1 1
2 ln 2 ≃ 0.72 Eq. (3.14)

2 2 8
11 ln 2 ≃ 1.05 Eq. (3.28)

3 1 0.84 ± 0.01 -

4 2 1.30 ± 0.02 -

5 2 1.36 ± 0.05 -

6,7 2 3
4 ln 2 ≃ 1.08 Eq. (3.34)

Earth at Night 2 1.60 ± 0.02 -

as Model 6, and thus also results in multifractal distributions.

Table 3.1 summarizes results for D1 for our models and for the Earth at Night. Table 3.2

summarizes metaphorical interpretations of the reproduction and local resettlement characteristics

of our seven models.

Our result that the different strategies of reproduction and local resettlement used in these

models (Table 3.2) all lead to multifractal spatial patterns of population density strongly sug-

gests that multifractality may be a generic feature in real situations in which processes involving

reproduction and local resettlement take place.
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Table 3.2: Summary of reproduction and local resettlement strategies employed in Models 1-7.

Model Reproduction Resettlement

1 parent has one child settles randomly chosen

child adjacent interval

2 parent has one child settles randomly chosen

child adjacent square

3 parent has one child settles largest

child adjacent interval

4 parent has one child settles largest and

child sparsest adjacent square

5 parent has one child settles

child in a random direction

6 parent reproduces offsprings share equally the

by four-fold original square area occupied by

cell division their parent

7 parent has parent remains in place;

three children offsprings settle equal shares

of parent’s triangular area

or

parent reproduces offsprings share equally the

by four-fold original triangular area occupied by

cell division their parent
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We emphasize that the spirit of our approach is very minimalist. In many real cases multiple

interacting complex processes undoubtedly influence the determination of population patterns. For

example, several likely candidates for the EaN image are geography (mountains, rivers, deserts,

etc.), politics, societal and cultural factors, economics, etc. Our models show that considerations

of complex spatially heterogeneous processes are not required for explaining the existence of frac-

tally heterogeneous distributions: even very simple dynamics incorporating reproduction and local

resettlement are sufficient.

3.3 The Effect of Clipped Data on Multifractality

We now revisit the Earth at Night image (Fig. 3.1) and analyze its fractal properties. Figure 3.16(a)

is a plot of Dq calculated from the measured light distribution, where the error bars indicate the

uncertainty involved in extracting the slopes of the various scaling regions. One feature that is

clear is that Dq appears to flatten out (i.e., there is very little variation with q) for q > 0.8, a

characteristic not found in the Dq plots of the models we have examined in Sec. 3.2. We now show

how this discrepancy can be resolved.

Figure 3.17 is a log-log plot of the histogram of pixel intensities. A spike is observed for

a range of intensity values near the maximum value. This suggests that some regions with high

light intensities caused some of the photoelectric cells of the satellites’ sensors to saturate, thereby

clipping the intensity values at a maximum allowable value. Additionally, it is known that when a

photoelectric cell is subjected to high intensities, it can trigger surrounding cells to register more

light, resulting in the so called “blooming” effect, which may account for the broadness of the

observed spike. We note that the pixels that are part of the spike account for roughly 3% of the

total number of non-zero intensity pixels and 10% of the total measured intensity (we consider any

pixel with intensity value greater than 209, out of a maximum intensity value of 218, to be part of

the spike).

To illustrate the effects that this type of clipping has on multifractal distributions, we apply

a scheme that mimics the clipping in the EaN image to a point distribution generated by one of our
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Figure 3.16: a) Plot of Dq for the Earth at Night image. b) Plot of Dq for a 106 point distribution

generated by Model 5 before the clipping procedure discussed in Section 3.3 is applied, and c) after

it is applied (note the different vertical scales). The error bars reflect the uncertainty involved in

determining the slopes of the scaling regions in the plots of the quantity (1 − q)−1 ln I(q, ǫ) versus

ln(1/ǫ) [see Eq. (3.1)].
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Figure 3.17: Histogram of individual pixel intensities for the Earth at Night image.
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models. For this purpose we choose a 106 point distribution generated by Model 5. (Similar results

are obtained using our other models.) First we match the smallest scale of our distribution to that

of the EaN image. Since the EaN image we analyzed is made up of 2400×800 pixels, we cover our

distribution with a fixed size grid of simulated pixels in which a simulated pixel corresponds to a

grid square with edge length of 1/1400 ≃ 1/
√

2400 × 800. Next, we choose the clipping value such

that the total number of clipped simulated pixels make up 3% of the total nonempty simulated

pixels. For this particular distribution, any simulated pixel containing more than 58 points has its

count reset to 58.

Figures 3.18(a) and 3.18(b) are histograms showing the distribution of the number of points

contained in individual simulated pixels before and after the clipping is applied, respectively.

We see that the clipped histogram is qualitatively similar to the histogram for the EaN image

(Fig. 3.17). Next, we calculate Dq for the point distribution before and after clipping (Fig. 3.16(b)

and Fig. 3.16(c), respectively). Noting the different vertical scales, we see that the clipping pro-

cedure transforms the Dq of Fig. 3.16(b) to a more gradual curve [Fig. 3.16(c)] with an apparent

constant tail for the larger q values, making it similar to the Dq for the EaN image [Fig. 3.16(a)].

Additionally, we note that the value of D1 is raised by the clipping (to approximately 1.61 from

approximately 1.39). Comparing Fig. 3.16(a) and Fig. 3.16(c), we are able to conclude that the

EaN image characteristics are consistent with a multifractal light intensity distribution sensed by

an instrument that saturates at a maximum measurable intensity value.

3.4 Inhomogeneity

Our models can be generalized to include geographical inhomogeneity. For example, one can

imagine that the underlying space is supplemented by a fertility field, and that reproduction is

more likely in regions of higher fertility. To investigate the effects of such inhomogeneities on the

Dq of a point distribution, we modify Step (a) of Model 6 by use of a fertility field F (x, y) which

we use to construct a space-dependent, parent node selection probability. If the location of node i

is (xi, yi), then the selection probability for this node is taken to be Pi = F (xi, yi)/
∑

j F (xj , yj).
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Figure 3.18: Histograms of the number of points in individual simulated pixels (boxes in an

ǫ = 1/1400 grid) used to cover a 106 point distribution generated by Model 5, a) for the original

distribution and b) after the original distribution was clipped by allowing a maximum of 58 points

in any simulated pixel.

We investigate two forms for the fertility field. First we use a smooth field

Fs(x, y) = 1 − 0.3 {cos(2πx) + sin(2πy)} (3.4)

on the unit square (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). We generate point distributions with this modified

version of Model 6 and find that, while the regions of larger Fs in the center of the square are much

more dense with points than the regions of smaller Fs near the corners, there is, nevertheless, no

discernible difference in Dq compared to the homogeneous case. That is, both the values of Dq, as

well as the quality and extent of the scaling ranges, remain unchanged.

Next, to explore whether the above result can be attributed to the local smoothness of Fs,

we consider a rough fertility field,

Fr(x, y) = 1 + 0.1 [fw(x) + fw(y)] , (3.5)

fw(z) ≡ −
∞
∑

j=0

α−j cos(2πβjz). (3.6)

with α = 1.5 and β = 3. For α < β, the function fw(z) is a ‘Weierstrass function’ (see Fig. 3.19); it

is rough in the sense that, although it is continuous, it is nondifferentiable, and the graph of fw(z)
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Figure 3.19: A plot of the Weierstrass function fw(z) [Eq. (3.6)]. In our numerical implementation

the infinite upper limit on the summation in Eq. (3.6) is replaced by jmax, where jmax is chosen

such that the smallest value of ǫ used in determining Dq is at least one order of magnitude larger

than the smallest scale of the roughness, 3−jmax .

versus z is a fractal curve (the fractal dimension of the curve is 2− (lnα)/(ln β) ≃ 1.63 [24]). With

α = 1.5, Fr has the same range of variation as Fs (i.e., 0.4 to 1.6). Applying this fertility field to

Model 6 results in the same values and scaling ranges for Dq as in the homogeneous case and the

smooth fertility field case [Eq. (3.4)]. This suggests that, while inhomogeneities of the underlying

space may dictate certain aspects of the distribution of a growing population, for example, where

the points are more likely to settle, its fractality can be due mainly to reproduction and local

resettlement processes.
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3.5 Theory

3.5.1 Model 1

Here we derive an analytical expression for the fractal dimension spectrum Dq of population

distributions generated by the one dimensional point placement scheme of Model 1. We begin

by making the following observation. Choosing a target interval by first selecting a target point

from all the preexisting points with equal probability and then selecting between the two adjacent

intervals of the target point with equal probability is equivalent to choosing a target interval out

of all the preexisting intervals with equal probability, up to the negligible effect (for large time)

of the edge intervals that are only bounded on one of their sides by a point. (Alternatively, one

could impose periodic boundary conditions on the unit interval, which would result in complete

equivalence of the two constructions.)

Having made this identification, we define N(k, t) to be the average (over different realiza-

tions of Model 1) number of intervals of length 2−k at time t, where at every integer value of t a

new point is added. The initial condition for this model (at t = 1) is a single point at x = 0.5 on

the unit interval (0 ≤ x ≤ 1). This defines two intervals of length 1/2 and thus N(k, 1) = 2δk1,

where δkj is the Kronecker delta. At each time t, the probability that an interval of length 2−k

is chosen is N(k, t)/
∑

j N(j, t). Then, in place of such a chosen interval, two intervals of length

2−(k+1) are created. Since we begin with two intervals at t = 1 and at each subsequent time step

an interval is destroyed while two are newly created, we see that
∑

j N(j, t) = t + 1. The discrete

time evolution equation for N is then

N(k, t + 1) =

(

1 − 1

t + 1

)

N(k, t) +
2

t + 1
N(k − 1, t), (3.7)

where 1/(t + 1) is the probability that a given interval is selected at time t, (t + 1)−1N(k, t) is

the average (over different realizations of Model 1) number of intervals of length 2−k destroyed at

time t + 1, and 2(t + 1)−1N(k− 1, t) is the average number of 2−k length intervals created at time

t + 1. Alternatively, in terms of n(k, t), the fraction of the total number of intervals at time t with
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length 2−k, given by n(k, t) = N(k, t)/(t + 1), the evolution equation is

n(k, t + 1) =

(

t

t + 2

)

n(k, t) +

(

2

t + 2

)

n(k − 1, t). (3.8)

In Appendix C, we introduce the partition function formalism for calculating Dq. We define

the quantity τ = (q − 1)Dq and derive the following expression for q(τ) for Model 1 [Eq. (C.10)]:

q(τ) = 1 + lim
t→∞

ln〈2kτ 〉t
ln t

, 〈2kτ 〉t =
∑

k

n(k, t)2kτ . (3.9)

Multiplying both sides of Eq. (3.8) by 2kτ and then summing over k, we obtain the recursion

relation,

〈2kτ 〉t+1 = 〈2kτ 〉t
(

1 +
2τ+1 − 2

t + 2

)

, (3.10)

which, since 〈2kτ 〉t=1 = 2τ , can be solve to yield,

〈2kτ 〉t =

t
∏

i=1

(

1 +
2τ+1 − 2

i + 1

)

. (3.11)

Substituting Eq. (3.11) into Eq. (3.9), we obtain

q = 2τ+1 − 1, (3.12)

where we have made use of the relationship

lim
t→∞

∑t

i=a ln
(

1 + x
i+y

)

ln t
= x, (3.13)

for x and y constants and a an integer such that a + y + x > 0 and a + y > 0. Then, since

Dq = τ(q)/(q − 1), we invert Eq. (3.12) for τ(q) and obtain the following result for Dq:

Dq =
log2(q + 1) − 1

q − 1
. (3.14)

In particular, using L’Hospital’s Rule,

D1 =
1

2 ln 2
≃ 0.72. (3.15)

3.5.2 Model 2

The calculation of Dq for Model 2 is based on the classification of squares into types I and II,

discussed in Sec. 3.2.4. We begin by defining N1(k, t) and N2(k, t) to be the average (over different
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realizations) number of type I and type II squares, respectively, with edge length 2−k at time t.

The initial state (t = 1) is a single point at (0.5, 0.5). The point divides the unit square into four

equal squares of edge length 1/2, with each square having one point on one of its vertices. Thus

N1(k, 1) = 4δk1, while N2(k, 1) = 0 for all k. At each time t, the new point is equally likely to

appear in each type I square, but is twice as likely to appear in each type II square, because there

are two parent points that can produce offspring in each type II square. In other words, a type

I square with edge length 2−k is chosen with probability N1(k, t)/
∑

j (N1(j, t) + 2N2(j, t)), while

a type II square of the same size is chosen with probability 2N2(k, t)/
∑

j (N1(j, t) + 2N2(j, t)).

When a type I square is chosen, the new point is placed in its center, destroying the original

square and creating three type I squares and one type II square, all with half the edge length of

the original square. On the other hand, when the new point is in a type II square, it is replaced by

two type I squares and two type II squares, all having half the edge length of the original square.

Notice that either way, the quantity
∑

j (N1(j, t) + 2N2(j, t)) increases by 4 between time t and

t + 1, so that
∑

j (N1(j, t) + 2N2(j, t)) = 4t.

The discrete time evolution equations for both types of squares are then

N1(k, t + 1) = N1(k, t)

(

1 − 1

4t

)

+ N1(k − 1, t)
3

4t
+ N2(k − 1, t)

4

4t
, (3.16)

N2(k, t + 1) = N2(k, t)

(

1 − 2

4t

)

+ N1(k − 1, t)
1

4t
+ N2(k − 1, t)

4

4t
. (3.17)

In Appendix C we show that for Model 2 [Eq. (C.12)],

q(τ) = lim
t→∞

ln (T1(t) + 2qT2(t))

ln t
, (3.18)

where Ti(t) =
∑

k 2kτNi(k, t). Multiplying Eqs. (3.16) and (3.17) by 2kτ and summing over k, we

obtain

T1(t + 1) = T1(t)

(

1 +
3 · 2τ − 1

4t

)

+ T2(t)
4 · 2τ

4t
, (3.19)

T2(t + 1) = T2(t)

(

1 +
4 · 2τ − 2

4t

)

+ T1(t)
2τ

4t
. (3.20)

At this point, we make the continuous time approximation Ti(t + 1) − Ti(t) ≈ dTi(t)/dt,

valid for large t, which allows us to represent Eqs. (3.19) and (3.20) as the matrix differential
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equation,

dT(s)

ds
= M ·T(s), (3.21)

where

T(s) =









T1(s)

T2(s)









, (3.22)

M =









3 · 2τ − 1 4 · 2τ

2τ 4 · 2τ − 2









(3.23)

and s = (1/4) ln t.

Equation (3.21) is solved in terms of the eigenvalues λa, λb and the eigenvectors Ta,Tb of

the matrix M, giving

Ti ∼ eλis = t
λi

4 , (3.24)

for i = a, b, with λa, λb distinct and real and λa > λb. We can express the quantity (T1(t)+2qT2(t))

in Eq. (3.18) in terms of a linear combination of the components of these eigenvectors, whose long

time behavior is dominated by the behavior of Ta, the eigenvector associated with the larger

eigenvalue λa. Thus (3.18) gives us the simple result

q = λa/4. (3.25)

The eigenvalues of M are the roots of its characteristic polynomial,

λ2 + λ(3 − 7 · 2τ ) + 2 − 10 · 2τ + 8 · 22τ = 0. (3.26)

This equation is also quadratic in 2τ , allowing us to solve for τ(λ)

τ(λ) = log2

[

1

16

(

10 + 7λ ±
√

17λ2 + 44λ + 36
)

]

. (3.27)

We substitute the relationship from Eq. (3.25) into Eq. (3.27) and, since τ(q) = (q − 1)Dq, we

resolve the ambiguity of the ± sign by requiring that τ(q = 1) = 0. This results in

Dq =
1

q − 1
log2

[

1

8

(

5 + 14q −
√

68q2 + 44q + 9
)

]

(3.28)
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for the dimension spectrum of Model 2. In particular, applying L’Hospital’s Rule to (3.28), the

information dimension is

D1 =
8

11 ln 2
≃ 1.05. (3.29)

3.5.3 Models 6 and 7

Although Model 6 is a two dimensional point placement scheme, the fact that each square is equally

likely to be chosen at a given time allows the calculation of Dq to be very similar to that for the

one dimensional scheme of Model 1. We begin by defining N(k, t) to be the average number of

squares with edge length 2−k at time t. The initial state (at t = 1) is a single square with unit

edge length, giving us N(k, 1) = δk0. At each time t, a square with edge length 2−k is chosen

with probability N(k, t)/
∑

j N(j, t) and replaced by four equal squares with edge lengths 2−(k+1).

Since at each time step there is a net gain of three squares, we see that
∑

j N(j, t) = 3t − 2, and

obtain the following discrete time evolution equation for N :

N(k, t + 1) = N(k, t)

(

1 − 1

3t − 2

)

+ N(k − 1, t)
4

3t − 2
. (3.30)

In terms of the fraction n(k, t) = N(k, t)/(3t − 2) of squares with edge length 2−k, we have

n(k, t + 1) = n(k, t)
3t − 3

3t + 1
+ n(k − 1, t)

4

3t + 1
. (3.31)

Interchanging the squares in the above derivation with equilateral triangles, one can see that the

same evolution equations hold for the triangles in Model 7.

In Appendix C we show that Eq. (3.9), which allowed us to calculate q(τ) in terms of 〈2kτ 〉t

for Model 1, holds for Models 6 and 7 as well. Following the procedure in Section 3.5.1, we multiply

both sides of Eq. (3.31) by 2kτ and sum over k, solving the resulting recursion relation to obtain

〈2kτ 〉t =

t
∏

i=2

(

1 +
(2τ − 1) 4/3

i − 2/3

)

. (3.32)

Making use of the relationship in Eq. (3.13), we get

q(τ) = 1 +
4

3
(2τ − 1) . (3.33)
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This equation is inverted to solve for τ(q) which, when divided by (q−1), gives us the multifractal

dimension spectrum

Dq =
log2

(

(q − 1)3
4 + 1

)

q − 1
. (3.34)

The information dimension is

D1 =
3

4 log 2
≃ 1.08. (3.35)

3.6 Conclusion

The main conclusion of this chapter is that reproduction and local resettlement processes may lead

to multifractal spatial distributions for growing populations. We introduced a number of point

placement models in one and two dimensions and showed that the models resulted in multifractal

distributions. Furthermore, we have demonstrated qualitative similarity between the example of

the Earth at Night image and clipped versions of distributions generated by our models. We thus

suggest that the mechanism by which our models create multifractal distributions may be operative

in the growth of real systems.
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Chapter 4

Simulating the Segregation of Ternary Granular Mixtures in Long Rotating Cylinders

4.1 Introduction

An interesting property of granular systems is the tendency of mixtures of different types of ma-

terials to unmix (e.g., under vertical vibration [28] or during avalanching [29]). A binary mixture

of granular particles with different physical properties (e.g., different friction coefficients, sizes,

densities) is known to exhibit segregation in a half filled horizontal cylinder rotating about its axis,

a phenomenon of interest to the many areas of industry that use cylindrical rotating drums for

various processes such as mixing and grinding. Within the first few rotations the mixture segre-

gates radially, with the less mobile particles making up a core that extends in the axial direction

(along the cylinder axis of rotation), while the more mobile particles are pushed out radially to the

cylinder walls. Following radial segregation, if the proper conditions are met (rotational frequency,

particle properties, etc.), the particles can also segregate axially. When viewing the surface of

of the granular mixture one sees axial banding, alternating bands of regions rich in each of the

particle types, along the cylinder axis. Over long periods of time, the band structure is observed

to coarsen, with adjacent bands merging, until a final stable state is reached consisting of a smaller

number of axial bands. This type of segregation was first observed by Oyama in 1939 [30] for an

equal volume mixture of glass spheres of two different sizes, and was subsequently studied [31–41]

both experimentally and theoretically.

One of the earliest partial successes of understanding the mechanisms responsible for this

phenomenon was by Zik et al. [35, 36]. They observed axial segregation in a mixture of sand and

glass, particle types that differed in their frictional properties. This led to an analytical model

where axial segregation was driven by the difference in the dynamic angles of repose of two different

particles types. The dynamic angle of repose for a particle type is the angle of the incline created

by the continuously flowing granules. The authors posited that the axial segregation occurred

due to a sorting mechanism in the thin flowing layer that formed as the cylinder was rotated, and

represented the rotating granular material as a rigidly rotating bulk bottom with a thin top layer of
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Figure 4.1: The S-shaped profile of a flowing granular mixture in a rotating cylinder.

flowing particles. One of the central results derived from their model was a numerical solution for

the profile shape of the granular flow layer which successfully reproduced the characteristic S-shape

profile typical of rotating granular material (see Fig. (4.1)). More importantly, they were able to

show that instabilities leading to axial segregation could exist within their theoretical framework

and gave the conditions for which they would occur.

This approach, however, did not account for the radially segregated core, the precursor to

the axial segregation, which was later observed experimentally. Furthermore, using MRI imaging

of the bulk of rotating granular mixtures, Hill et al. [33,34] showed that, even when axial banding

is observed at the surface, a core structure existed in the rigidly rotating bulk, a remnant of the

earlier radially segregated state. Thus any real understanding of the axial segregation would have

to include radial segregation. This observation led to the conjecture that instabilities leading to

undulations in the radially segregated core are what eventually cause the axial segregation. Elperin

and Vikhansky [38] incorporated this idea into their model for axial segregation. Beginning with

an already radially segregated core and allowing for different dynamic angles of repose for the two

particle types they considered, they were able to analytically demonstrate the onset of instabilities

leading to axial segregation.
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In an effort to replicate experimental results, Puri and Hayakawa [40] developed a phe-

nomenological continuum model with which they were able to successfully simulate both the initial

radial segregation and the subsequent axial banding, as well as the long term coarsening of the

axial bands. The ability to reproduce the experimental results, however, did not shed light on

the microscopic processes that enabled the segregation to take place. Yanagita [41] was also able

to reproduce a similarly wide range of phenomena. He used a discrete three dimensional lattice

model where each granule occupied an individual lattice site. In a manner similar to [35], the

rotating mixture of granules was modeled as a rigidly moving bulk with a thin top flowing layer.

The favorable feature of Yanagita’s model is that the selection rule used to determine the motion

of the granules in the flowing layer is simple and relies only on a set of particle-species-dependent

generalized friction parameters. This gave rise to the idea that the difference in the flow properties

of the different particle types could play a central role in axial segregation.

Recently, Newey et al. [43] carried out experiments involving ternary mixtures of different

size glass particles in rotating cylinders. They found that their mixtures segregated into “bands

within bands” (see Fig. (4.2)). After the mixture segregated radially, with the largest particles

on the outside, followed by the medium sized ones and then the smallest ones making up the

innermost core, the large and medium sized particles formed axial bands, in a manner similar to

the binary mixture case. Then the small particles formed bands only within the medium particle

bands. This phenomenon pointed to, once again, an intimate relationship between the radial and

the axial segregation since the ordering of the axial bands mimicked the earlier radially segregated

core.

In an effort to understand these “bands within bands” and to further explore the role that

the radially segregated core plays in the eventual axial segregation, we developed a discrete three

dimensional simulation model, generalizing Yanagita’s model of binary mixture segregation [41] to

the case of three particle species. Our simulations duplicated many of the general features observed

in the ternary mixture experiment [43]. More importantly, the simplicity of our model allowed us

to isolate the surface flow properties of the various particle types as playing important roles in this
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Figure 4.2: Picture of the “bands within bands” structures observed by Newey et al. [43]. The

light blue particles are the largest, the dark blue particles are the intermediate sized ones and the

green particles are the smallest.

particular type of segregation phenomena.

In Sec. 4.2 we describe our model. We present data from simulation runs along with discus-

sion of the important features of the results in Sec. 4.3. Section 4.4 summarizes our findings.

4.2 The Model

The model, as mentioned above, generalizes a binary mixture model by Yanagita [41] to include

three types of particles. We employ a three dimensional square lattice, with discrete integer valued

coordinates (x, y, z), and load it with a mixture of three types of particles, where each particle

type occupies exactly one lattice site. Here x corresponds to the horizontal radial direction, y is

the axial direction (where we impose periodic boundary conditions), and z is the vertical direction.

Unlike the experiment of Newey et al. [43], where the particle types differed in size, the model uses

particles with different simulated frictional properties to simulate the differences in the surface

flows of the particles. Each site in the lattice is assigned a value σ(x, y, z) according to the particle

type that populates that site, given by

σ(x, y, z) = {0, 1, 2, 3} = {no particle, particle A, particle B, particle C}. (4.1)

The lattice is Nx sites in the x direction (x = 0, . . . Nx − 1), Ny sites in the y direction

(y = 0, . . .Ny − 1), and 2Nz in the z direction (z = 0, . . . 2Nz − 1). In general the simulations are

started by placing Nx ×Ny ×Nz particles in the lower half of the 2NxNyNz size lattice, in analogy
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Figure 4.3: Schematic diagram of the discrete rotation process. The lattice is separated into its

back (x < Nx/2) and front (x ≥ Nx/2) halves. The back half is raised one step and the bottom

slice of the front half is rotated and attached to the bottom of the back half. The front half is then

lowered one step.

with a half filled cylinder. The initial states used are usually randomly generated homogeneous

mixtures of particles A, B, and C with varying relative abundances, subject to a simulated gravity

acting in the negative z direction (i.e. no empty lattice site below any given particle).

The simulations carry out a large (> 105) number of discrete time steps. Each time step

involves two ingredients to mimic (a) the rotation of the cylinder and (b) a flow of the top granular

layer:

(a) We first create a height differential between the back (x < Nx/2) and the front (x ≥

Nx/2) of the lattice. This is done by raising the back half of the lattice one step in the positive

z direction (z → z + 1 for x < Nx/2). The bottom slice of the front half of the lattice (z = 0,

x ≥ Nx/2) is then reflected about the y-axis (x → Nx − x− 1) and placed below the bottom most

slice of the back half. The front half is then lowered one step in the negative z direction (z → z−1

for z ≥ 1 and x ≥ Nx/2). See Fig. 4.3. This step is meant to mimic rotation in the experimental

cylindrical geometry, but adapted to our rectangular simulation geometry.

(b) A particle on the surface h(x, y) =
∑Nz−1

z=0 Θ(σ(x, y, z)) is chosen at random [here Θ(σ) =

0 if σ = 0 (the site is unoccupied) and Θ(σ) = 1 if σ > 0 (the site is occupied)]. This particle will be

allowed to move from its position (x, y, h(x, y)− 1) to a position (x + 1, y + ∆y, h(x + 1, y + ∆y)),

with ∆y randomly chosen from the values {−1, 0, 1} (to simulate diffusion in the y direction),
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subject to a selection rule. The selection rule compares the difference in height at points (x, y) and

(x + 1, y + ∆y), namely h(x, y)− h(x + 1, y + ∆y), to a generalized friction F (x, y, h(x, y)− 1), or

resistance to motion in the positive x direction, that the particle experiences at its initial point.1

If the height difference is large enough to overcome this generalized friction then the particle is

allowed to make the move. We note that, since the particles that are at x = Nx − 1 are already

at the lattice edge, they are not allowed to flow in the x direction, and only move via the discrete

rotation mechanism [Step (a)].

The generalized friction for a particle is given by:

F (x, y, z) =
∑

(δx,δy,δz)

f(σ(x, y, z) σ(x + δx, y + δy, z + δz)) (4.2)

where the values of δx, δy and δz are chosen such that only the four “touching” lattice sites adjacent

to the site (x, y, z) are included in the summation (see Fig. 4.4); i.e.,

(δx, δy, δz) = {(0, 1, 0), (0,−1, 0), (−1, 0, 0), (0, 0,−1)}. (4.3)

Here f is the mapping

f : {0, 1, 2, 3, 4, 6, 9}→ {0, FAA, FAB , FAC , FBB, FBC , FCC}, (4.4)

where Fij is the friction parameter value between particle type i and particle type j. In our

simulations we set

FCC > FBB > FAA

FBB > FAB > FAA

FCC > FBC > FBB

FCC > FAC > FAA

(4.5)

The first relation in (4.5) sets the C particles as those which experience the largest resistance to

motion in the positive x direction, followed by B particles and then A particles. The final three

1This resistance to motion can be thought of as resulting from the actual frictional properties of the particles,

or from other particle retarding effects. One example of such a retarding effect occurs in the case of particles of

different sizes. Smaller particles are more prone than larger particles to fall through or be caught in interstitial

spaces, making their progress down the inclined slope more difficult.
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Figure 4.4: An illustration of the adjacent lattice sites, represented by gray cubes, which are

included in the summation for calculating the generalized friction F (see Eq. (4.2)) experienced

by a particle (white cube).

relations in (4.5) require the friction between different particle types to be some value between

their respective “pure” values, as one would expect on physical grounds. The actual values of

these generalized friction parameters are adjusted to obtain simulation outcomes most closely

resembling experimental results.

The application of Step (b) is carried out R times before the lattice is discretely rotated

again (Step (a)). The inverse of R is then analogous to the angular frequency of a rotating cylinder,

ω ∼ 1/R.

4.3 Simulation Results and Discussion

For our simulations we use a lattice with dimensions of 200 lattice sites in the axial direction

(Ny = 200), 80 lattice sites in the vertical direction (Nz = 40), and 10 lattice sites in the horizontal

direction (Nx = 10), resulting in 1.6 × 105 total lattice sites. We load the lattice with 8 × 104

particles, corresponding to a half-filled cylinder, and the relative abundances of the particle types

are varied as needed.

Here we present results from simulations run with the following friction parameter values:

FAA = 0.4, FAB = 0.44, FBB = 1.0, FAC = 0.9, FBC = 1.5, and FCC = 2.4. While these

particular values were found to be optimal, in the sense that, of the friction parameters we tried,
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they produced simulation results most closely resembling the experiment, the same qualitative

behavior was also seen for a wide range of parameter values, e.g., within a range of at least plus

or minus 10% of the chosen values. We found that setting the value of R, the number of times

that Step (b) is executed in each discrete time step, to R = 2.5× 104 gave good results. Since our

lattice has Ny × Nx = 2000 surface particles, this implies that each surface particle experienced

12.5 potential moves on average per rotation time step.

The simulations successfully reproduced a wide range of the experimentally observed phe-

nomena. Beginning with a uniformly mixed state (with equal proportions of each particle type),

Fig. 4.5(a) shows the lattice after 2× 105 time steps. Particles A are colored black, particles B are

yellow and particles C are red. The axial end of the lattice shows evidence of an ordered radial core

while the surface layer appears to suggest some form of axial segregation. It is important to note

here that the view of the lattice surface is analogous to taking cross sections of granular mixtures

in physical cylinders. This is because the lattice is viewed right after we execute R applications

of Step (b) (i.e., the particle flow step), and right before the discrete rotation, Step (a), is made.

Thus, unlike the experimental situation, there is no flowing top layer obscuring the underlying

mixture. Fig. 4.5(b) shows the profile of the mixture surface for various axial (y) positions. The

profiles qualitatively reproduce the experimentally observed granular flow profiles (cf. Fig. 4.1).

As is expected, regions exhibiting a high concentration of C particles, the particle type associated

with the largest friction parameters, also have the steepest slopes.

The view of our lattice most closely resembling a laboratory view of the rotating granular

mixture is the view of the rear slice (i.e., x = 0), shown in Fig. 4.6(a). The “bands within bands”

structures observed in [43] are clearly visible, with the red particles mainly found within bands of

yellow particles, which are themselves mostly within black particle regions. An advantage of our

simulation over the experiment is the fact that we have access to the full three dimensional structure

of the granular mixture. This allows us to determine the relative abundance φ of each particle type

in each two dimensional axial slice and we plot the result in Fig. 4.6(b). The interesting feature

here is that, while particles A and C vary in concentration between regions of great abundance
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Figure 4.5: a) View of the three dimensional lattice after 2 × 105 time steps. Initially the lattice

is loaded with a uniformly mixed state of particles A, B and C (colored red, yellow and black,

respectively), with equal proportions. b) Profiles of the particle mixture surface at three different

axial (y) positions. [FAA = 0.4, FAB = 0.44, FBB = 1.0, FAC = 0.9, FBC = 1.5, FCC = 2.4,

R = 2.5 × 104]
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Figure 4.6: a) View from the rear (x = 0) of the lattice in Fig. 4.5(a), showing the “bands within

bands” structures. This perspective most closely resembles the laboratory view of the surface of a

rotating granular mixture (cf. Fig. 4.2). b) The relative abundance φ of each of the particle types

for two dimensional slices (0 ≤ x < Nx and 0 ≤ z < 2Nz) at each axial position y. [Black signifies

particles A, yellow signifies particles B and red signifies particles C.]

and extreme scarcity, particles B are found throughout the axial direction, becoming the dominant

particle type only between regions rich in particles A and those rich in particles C.

Fig. 4.7(a) is a space-time plot of a simulation run with 25% A particles, 30% B particles

and 45% C particles. In each time step, the rear slice of the lattice is vertically averaged such that

the most abundant particle type at each axial position y (the vertical column defined by x = 0 and

0 ≤ z < 2Nz) is assigned to that axial position. Here the black areas correspond to A particles, the

yellow areas to B particles, and the red areas to C particles. The initial formation of yellow bands

followed by the appearance of red bands exclusively within the yellow regions is clearly observed.

One can also see the coarsening of the bands via merging.

Figures 4.7(b-e) show top views of the lattice at four different time steps where the arrow

from each image indicates the corresponding time in the space-time plot, Fig. 4.7(a). [(b) t = 0
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Figure 4.7: a) Spacetime plot of the our simulation for a total of 5 × 105 timesteps. In each time

step, the most abundant particle type in the rear (x = 0) slice of the lattice is picked for each axial

(y) position. The black, yellow, and red regions correspond to particles A, B, and C respectively.

The relative abundances of the particles are 25% A particles, 30% B particles and 45% C particles.

b)-e) Top views of the lattice corresponding to different times in the space-time plot. [(b) t = 0

(c) t = 2 × 104, (d) t = 2 × 105, (e) t = 5 × 105]
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(c) t = 2×104, (d) t = 2×105, (e) t = 5×105] As was indicated earlier, these images can be regarded

as corresponding to the axial cross sections of an actual rotating granular mixture. The cross

sections reveal (b) an initial homogeneous mixed state followed by (c) a radially segregated state,

with the low friction particles A forming the outer layer, followed by particles B, and then particles

C forming the innermost core. There are visible undulations in the core structure; however,

Fig. 4.7(a) indicates that there is no discernible axial banding at this point. By the time of

Fig. 4.7(d) the instabilities of the core grow, with the C particles pushing the B particles to the

lattice walls (x = 0, x = Nx −1) in certain locations. In the space-time plot this manifests itself as

mostly yellow bands in a black background with a minimal amount of red regions seen within the

yellow bands. Finally, Fig. 4.7(e) reveals a large central bulge of C particles, the result of the two

central bands seen in Fig. 4.7(d) merging. The C particles are able to push more of the B particles

aside, resulting in the clearly visible red band within the central yellow band in the space-time

plot. The axial core structure, consisting of C and B particles, persists throughout the lattice. A

similar structure was observed in the rotating drum experiments reported in Ref. [43] through the

use of a partially transparent sample and back illumination. We also note that band merging, as

occurs in the transition between Fig. 4.7(d) and Fig. 4.7(e), is also observed in the experiment of

Ref. [43].

The bulk motion Step a), treats all particles the same, and differing frictional properties of

the model particles only matter in the surface flow Step b). Thus, in the model, all segregation,

both radial or axial, is due to differing surface flow properties of the three particle types, suggesting

that differences in the surface flow properties of the particles in the physical system can play an

important role in the experimentally observed segregation.

4.4 Conclusion

We have extended the model used by Yanagita [41] for binary granular mixture segregation in a

rotating cylinder to allow for three particle species. This was done in an effort to model the exper-

iment of Newey, et al. [43] who observed an axial segregation structure consisting of “bands within
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bands” for ternary granular mixtures. The simulation indicates that a model with even a thin

flowing layer of particles can exhibit the radial segregation and subsequent axial segregation that

were experimentally observed, and that differences in frictional properties suffice to qualitatively

model the segregation patterns and the sequences in which they appear. That such a simple sim-

ulation, paramaterized only by friction, can accurately reproduce the experimental results shows

the basic robustness of the physical phenomena.
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Appendix A

Calculation of H̄(k)

We substitute H(k, N) = G(k, N)/N , the fraction of nodes with degree k at time N , into Eq.

(2.1), obtaining,

(N + 1)H(k, N + 1) = (N − m)H(k, N) + mH(k − 1, N) + δkm. (A.1)

We define H̄(k) to be the N independent solution to (A.1). Substituting into (A.1) and

rearranging terms we get

H̄(k) =
m

m + 1
H̄(k − 1) +

δkm

m + 1
. (A.2)

This recursion relation is solved to yield

H̄(k) =
1

m + 1

(

m

m + 1

)k−m

(A.3)

for k ≥ m and H̄(k) = 0 for k < m.

Now we show that as N → ∞, H(k, N) approaches H̄(k). Dividing (A.1) by N + 1 and

subtracting from this the same equation but with H̄(k) inserted, we obtain after some algebra

H(k, N + 1) − H̄(k) =
N − m

N + 1

[

H(k, N) − H̄(k)
]

+
m

N + 1

[

H(k − 1, N) − H̄(k − 1)
]

. (A.4)

Letting F (k, N) =
(

N
m+1

) [

H(k, N) − H̄(k)
]

, we find that (A.4) is equivalent to

F (k, N + 1) = F (k, N) +
m

N − m
F (k − 1, N). (A.5)

Our goal is to show that F (k, N)
/

(

N
m+1

)

→ 0 as N → ∞.

Consider first the case k = m. Since F (m − 1, N) = 0, (A.5) implies that F (m, N) = C for

some constant C independent of N . Thus, in particular,

H(m, N) − H̄(m) =
C

(

N
m+1

) , (A.6)

and H(m, N) → H̄(m) as N → ∞. Then when k = m + 1, (A.5) becomes

F (m + 1, N + 1) = F (m + 1, N) +
m

N − m
C (A.7)
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and hence

F (m + 1, N) = F (m + 1, m + 1) + C
N−1
∑

N ′=m+1

m

N ′ − m
∼ lnN (A.8)

for large N .

Furthermore, it is possible to show by induction on k that

|F (k, N)| ≤ C(k)(m lnN)k−m (A.9)

for some C(k) independent of N . In other words,

∣

∣H(k, N) − H̄(k)
∣

∣ ≤ C(k)
(m lnN)k−m

(

N
m+1

) (A.10)

which approaches 0 as N → ∞.
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Appendix B

Behavior of 〈l|k〉

Here we show that 〈l|k〉+ ≤ 〈l|k〉 < 2〈l|k〉+, where 〈l|k〉+ and 〈l|k〉 are the average longest counter-

clockwise (CCW) link length and the average longest link length, respectively, for a node with

degree k. For simplicity we work exclusively with quantities that are N (time) independent.

Let X(k, l, l′) be the fraction of nodes that have degree k, longest CCW link length l and

longest clockwise (CW) link length l′. Then 〈l|k〉 can be written as

〈l|k〉 =

∑

l l
(

∑

l′≤l X(k, l, l′) +
∑

l′<l X(k, l′, l)
)

∑

l,l′ X(k, l, l′)
. (B.1)

The numerator in (B.1) satisfies the following inequality:

∑

l

l





∑

l′≤l

X(k, l, l′) +
∑

l′<l

X(k, l′, l)



 =
∑

l

l





∑

l′≤l

X(k, l, l′) +
∑

l′<l

X(k, l, l′)





= 2
∑

l

l
∑

l′≤l

X(k, l, l′) −
∑

l

lX(k, l, l)

< 2
∑

l

l
∑

l′≤l

X(k, l, l′)

≤ 2
∑

l

l
∑

l′

X(k, l, l′), (B.2)

where we have used the fact that X(k, l, l′) = X(k, l′, l) due to the CCW/CW symmetry in our

model. Noting that
∑

l l
∑

l′ X(k, l, l′)
∑

l,l′ X(k, l, l′)
= 〈l|k〉+, (B.3)

we have that 〈l|k〉 < 2〈l|k〉+. In addition, it is clear that the longest link of a node is at least the

length of the longest CCW link. Thus, 〈l|k〉+ ≤ 〈l|k〉 and we have our desired result. In particular,

this implies that in our model the average longest link for a node, in addition to the average longest

CCW (or CW) link, increases exponentially with the node’s degree.
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Appendix C

Calculation of Model Dimension Spectra

C.1 The Partition Function Formalism

The partition function formalism [25,26] is an alternative to the fixed sized grid method of Eq. (3.1)

for calculating a dimension spectrum of a measure. We demonstrate here how it allows us to relate

the various interval and square size distribution functions found in Models 1, 2, 6 and 7 to the

dimensions of the point distributions generated by them.

We cover the measure of interest with a disjoint covering {Si}, i = 1, 2...N , where each

element Si of the covering set has a diameter ǫi less than or equal to δ. (The diameter ǫi is the

largest possible distance between two points in Si.) The partition function is defined as

Γq(τ, {Si}, δ) =

N
∑

i=1

µq
i /ǫτ

i , (C.1)

where µi is the measure of Si. For a given δ the covering {Si} is now chosen such that Eq. (C.1)

is maximized (for q > 1) or minimized (for q < 1), which defines

Γq(τ, δ) =















supSi
Γq(τ, {Si}, δ), for q > 1

infSi
Γq(τ, {Si}, δ), for q < 1 .

(C.2)

Then, letting δ → 0, we define

Γq(τ) = lim
δ→0

Γq(τ, δ). (C.3)

The quantity Γq(τ) experiences a jump from 0 to +∞, as τ is increased, at a critical value that

we denote τ(q). The dimension D̃q of the measure is then defined as

D̃q = τ(q)/(q − 1). (C.4)

In practice, it is difficult to determine whether a particular covering {Si} is optimal in the

sense of Eq. (C.2). However, one can often compute the correct dimension by considering specific

coverings, in the following sense. Consider a sequence of disjoint coverings {S(m)
i } where covering

m of the sequence has maximum diameter δ(m) (ǫ
(m)
i < δ(m) for every component i of covering m),

and δ(m) converges to zero as m approaches infinity. If the limit

Γ̂q(τ) = lim
m→∞

Γq(τ, {S(m)
i }, δ(m)) (C.5)
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exists, then like Γq(τ) it experiences a jump from 0 to +∞, as τ increases, at a critical value

τ = τ̂ (q). In terms of the sequence {S(m)
i } of coverings (not necessarily optimal), we can then

compute a dimension spectrum

D̂q = τ̂ (q)/(q − 1), (C.6)

Since the sequence of coverings used to compute D̂q may be suboptimal, we have τ̂(q) ≥ τ(q)

for q > 1, and τ̂ (q) ≤ τ(q) for q < 1. Thus D̂q ≥ D̃q in each case. Assuming the limit in Eq. (3.1)

that defines Dq to exist, then Dq can be computed by the partition function formalism above

using equal size coverings (ǫ
(m)
i = δ(m) for every i and m). Thus Dq ≥ D̃q as well. While there do

exist examples for which D̃q 6= Dq for q < 1 1 the two dimensions are typically found to coincide

in analytical examples with physical bases. Furthermore, for q > 1 the two dimensions always

coincide:

Theorem: For every probability measure µ for which the limit in Eq. (3.1) exists, D̃q = Dq

for all q > 1. (If one defines Dq as a liminf, then this equality holds for all µ.)

We prove this theorem in Appendix D.

The theorem demonstrates that, for q > 1 at least, the dimension spectrum computed

according to the partition function formalism from a particular sequence of coverings is not that

sensitive to the type of covering; equal size coverings yield the same spectrum as a sequence

of coverings that is optimal in the sense of Eq. (C.2). While it may be possible to compute a

different value of D̂q from a sufficiently suboptimal sequence of coverings, we conjecture that for

the coverings we consider below,

D̂q = D̃q = Dq. (C.7)

1As a simple example, we consider the set, 1, 1/2, 1/3, · · · , n−1, · · ·, and q = 0. For this set it can be shown that

Eqs. (C.1)-(C.4), yield D̃0 = 0, which is intuitively reasonable for a set that is a countable collection of points. In

contrast, Eqs. (3.1) and (3.2) yield D0 = 1/2. To see this we first note that, for q = 0, (3.1) and (3.2) give the

well-known result D0 = limǫ→0{[lnN(ǫ)] /[ln(1/ǫ)]}, where N(ǫ) is the number of ǫ-intervals needed to cover the

set. Next we observe that the distance between 1/n and 1/(n + 1) is approximately 1/n2 for large n. Thus setting

ǫ = 1/n2, we need n intervals to cover the first n elements of the set, one interval for each such element. To cover

the remaining elements we must cover the interval (1/(n + 1), 0). This requires (1/ǫ)[1/(n + 1)] = n2/(n + 1) ≃ n

intervals. Thus N(ǫ) ≃ 2n = 2/ǫ1/2, yielding D0 = 1/2.
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Furthermore, we conjecture that Eq. (C.7) holds not only for q > 1, but for all q ≥ 0.

For our purposes, the application of Eq. (C.7) for q ≤ 1 is supported by the following

reasoning. In all of the cases below, the formula we obtain for D̂q is a complex analytic funtion of

q. If D̂q = Dq for q > 1, it follows that if Dq is continuous at q = 1, then D̂1 = D1. Furthermore,

if Dq is complex analytic, then D̂q = Dq for q < 1 as well.

C.2 Application to the Models

The practical implication of Eq. (C.7) for us is significant. It means that we can choose any

sequence of coverings whose maximum diameter converges to zero, and this choice can be made in

a manner that facilitates analytic computations. The result will be the same as that for an equal

cube size covering [Eq. (3.1)] or an optimal covering [Eq. (C.2)].

For Model 1, we choose the intervals between the points as the covering for the distribution.

We regard each interval as covering the equivalent of one point since it contains two half points at

each of its ends. Hence µi = (
∑

k N(k, t))−1 = 1/t for all i, and Eq. (C.5) becomes

Γ̂q(τ) = lim
t→∞

(1/t)q

t
∑

i=1

ǫ−τ
i , (C.8)

where the δ → 0 limit is replaced by t → ∞, since, as t increases the size of the largest interval

decreases to zero. Since ln Γ̂q(τ) = −∞ for τ < τ̂ (q) and ln Γ̂q(τ) = ∞ for τ > τ̂ (q), we equate

ln Γ̂q(τ) to zero and obtain q as a function of the transition value τ̂ ,

q(τ̂ ) = lim
t→∞

ln
∑t

i=1 ǫ−τ̂
i

ln t
. (C.9)

In terms of n(k, t), the fraction of the total number of intervals at time t with length 2−k, we then

have [see Eq. (3.9)]

q(τ̂ ) = 1 + lim
t→∞

ln〈2kτ̂ 〉t
ln t

. (C.10)

For Model 2 we use the two types of squares (type I and II) to cover the distribution. A

type I square has one point on one of its vertices and hence covers the equivalent of a quarter of a

point, while a type II square, with two points on its vertices, covers the equivalent of half a point.
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Thus at time t, the measure contained in a type I square is 1/4t, while that contained in a type II

square is 1/2t. Thus Eq. (C.5) becomes

Γ̂q(τ) = lim
t→∞

1

(4t)q

(

N1
∑

i=1

ǫ−τ
i + 2q

N2
∑

i=1

ǫ−τ
i

)

, (C.11)

where the first summation is over all type I squares and the second is over all type II squares.

Taking the logarithm of this expression and equating it to zero, we obtain

q(τ̂ ) = lim
t→∞

ln (T1(t) + 2qT2(t))

ln t
, (C.12)

where Ti(t) =
∑

k 2kτ̂Ni(k, t).

Each square in Model 6 and triangle in Model 7 contains (
∑

k N(k, t))−1 = 1/(3t−2) of the

total measure. Thus, Eq. (C.5) becomes

Γ̂q(τ) = lim
t→∞

1

(3t − 2)q

3t−2
∑

i=1

ǫ−τ
i . (C.13)

We see that this yields an expression for q(τ̂ ) identical to that for Model 1 [Eq. (C.10)].
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Appendix D

Proof of Theorem from Appendix C

As we noted in Appendix C, D̃q ≤ Dq for all q ≥ 0, so we now show that also D̃q ≥ Dq for q > 1.

Our proof is based on the theorem in [27] that for q > 1, the quantity

Iq(s) =

∫ (∫

dµ(y)

|x − y|s
)q−1

dµ(x) (D.1)

is finite for s < Dq and infinite for s > Dq. To see that D̃q ≥ Dq, we show that D̃q ≥ s whenever

Iq(s) is finite. Let {Si} be a disjoint covering of µ, as in Appendix C, and recall that µi is the

measure of Si and ǫi is its diameter. Then considering only the contribution to Iq(s) from points

x and y that are in the same Si, we have

Iq(s) ≥
N
∑

i=1

∫

Si

(
∫

Si

dµ(y)

|x − y|s
)q−1

dµ(x)

≥
N
∑

i=1

∫

Si

(∫

Si

dµ(y)

ǫs
i

)q−1

dµ(x)

=

N
∑

i=1

µi

(

µi

ǫs
i

)q−1

=
N
∑

i=1

µq
i

/

ǫi
(q−1)s

= Γq ((q − 1)s, {Si}, δ)

by (C.1). This implies that Γq ((q − 1)s, δ) ≤ Iq(s) by (C.2), since q > 1, and hence Γq ((q − 1)s) ≤

Iq(s) by (C.3). Therefore if Iq(s) is finite, then Γq ((q − 1)s) is finite, whence τ(q) ≥ (q − 1)s, and

finally D̃q ≥ s by (C.4).
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