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Abstract 
 
We review multi-echelon inventory models for repairable items.  Such models have been 
widely applied to the management of critical spare parts for military equipment for 
around three decades, but the application to manufacturing and service industries seems 
to be much less documented. We feel that the appropriate use of models in the 
management of spare parts for heavily utilized equipment in industry can result in 
significant cost savings, in particular in those settings where repair facilities are resource 
constrained.  In our review, we provide a strategic framework for making these decisions, 
place the modeling problem in the broader context of inventory control, and review the 
prominent models in the literature under a unified setting, highlighting some key 
relationships.  We concentrate on describing those models which we feel are most 
applicable for practical application, revisiting in detail the Multi-Echelon Technique for 
Recoverable Item Control (METRIC) model and its variations, and then discussing a 
variety of more general queueing models.   We then discuss the components which we 
feel must be addressed in the models in order to apply them practically to industrial 
settings. 
                                                 
*  corresponding author; supported in part under NSF Grant D CDR-8803012.    
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Multi-Echelon Models for Repairable Items: A Review 
 
1. Introduction 
Inventories represent about one-third of all assets of a typical company in the United 
States, with the total value of capital tied up in inventories around $1.1 trillion in 1992, 
representing over 20% of the GNP (Economic Report of the President 1993). Of these 
inventories, repairable items — those items that can be repaired following a breakdown 
or failure — are of particular importance for manufacturing and service industries that are 
characterized by heavily utilized, relatively expensive, equipment.  Examples of these 
include continuous chemical or petrochemical processes, mass transit systems, and the 
military.  To insure continuity of operations, an ample supply of spare parts must be 
maintained; however, this must be traded off with the cost of tying up capital in non-
revenue-generating spare parts inventories.  In the context of standard inventory control, 
stockouts can lead to unavailability of equipment, translating to a loss of service or 
production capability, whereas spare parts inventories incur holding costs. The magnitude 
of these economical implications are such that in the United States military world alone, 
repairable items represented about $10 billion in 1976 (Nahmias 1981), and about $30 
billion in 1994 (O’Malley 1994).  
 Systems for repairable items usually assume the configuration depicted in Figure 1. 
Spare parts that can be economically repaired are stocked in locations known as bases, 
using military terminology. When a failure occurs, the defective part is removed, 
exchanged for a fresh part taken from the base stock (if such a spare part is available) and 
sent to a repair facility known as the depot, where it is repaired and held in stock, to be 
eventually sent down to the bases to cover another part used in a repair.  Parts are thus 
subject to cycles and not freshly brought from the outside (assuming that all items can be 
repaired). Base level is considered one echelon of inventory control, and depot level is 
considered another echelon, hence the term multi-echelon inventory control.  The basic 
model allows spare parts to be stocked at either echelon — with exchange of parts 
between echelons but not within the same echelon — and all repairs are done at the depot 
echelon.  Important practical variations of this basic model include allowing some of the 
following:  repairs at both echelons, lateral transshipment within an echelon (e.g., 
between bases), and total failures, modeled as a proportion of the failures being classified 
as non-repairable. 
 The objective of this paper is to provide a current review of multi-echelon inventory 
models for repairable items, with emphasis on the applicability of the models.  We are in 
particular motivated by resource-constrained industrial settings — either manufacturing 
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or service — which seems to have received much less attention in the literature than 
military applications, where repair resources are assumed to be plentiful.  We hope to 
target both practitioners with a vested interest in spare parts management and academics 
with little previous exposure to the area of multi-echelon repairable item inventory 
models.  To this end, we have included the following: 
 • a simple framework for establishing the relative importance of repairable items in 

a given manufacturing or service industry; 
 • a classification of multi-echelon inventory models for repairable items in the 

context of the general inventory control literature and terminology; 
 • a concise summary presentation of the key components and relationships involved 

in analyzing multi-echelon repairable item models; 
 • a detailed discussion of the Multi-Echelon Technique for Recoverable Item 

Control (METRIC) model, on which most of the prevailing models used in military 
practice are based;  

 • an overview of various queueing models and a discussion of their applicability; 
 • a more forward-looking discussion of the various model assumptions which can 

be critical in applications, such as the use of priority processing for repair and 
distribution, pointing the need for further research.   

We also view our paper as updating and complementing the two excellent older reviews 
on this subject by Clark (1972) and Nahmias (1981).  Also of note is the chapter by 
Axsäter (1993), which concentrates mainly on a more general multi-echelon setting — 
not specifically repairable items — and does not include queueing models.   Our attempt 
is to view all the repairable item inventory models, both METRIC and queueing-based, 
from a single perspective, instead of as disparate approaches to the same problem. 
 The rest of the paper is organized as follows. In Section 2, recognizing that the use of 
multi-echelon inventory models must be justified by potential gains in operations, we 
present an operations strategy framework for determining the relevance of repairable 
items in inventory control. In Section 3 we place multi-echelon repairable item inventory 
models in context by providing a broad overview and classification of inventory models 
in general. Section 4 is dedicated to reviewing the major classes of models for repairable 
items: the METRIC model and its various extensions and successors, and queueing 
network models. Through the use of a simple example, we introduce the key components 
required by any multi-echelon repairable item inventory model:  a characterization of 
queueing effects and two superposition of processes to determine backorders.  Section 5 
discusses the assumptions in the prevailing models deemed most critical to address for 
application to industrial settings, suggesting directions for further research. 



5

 
2. The Strategic Importance of Repairable Item Inventories 
In practice, the use of multi-echelon inventory models for the management of repairable 
item stock must be driven by a need to control the inventory costs of such items, i.e., if 
spare parts are extremely cheap and/or failures relatively infrequent, then there is 
probably little need to engage in any sophisticated form of inventory control, aside from 
bookkeeping.  In brief, the relative importance of repairable items depends on the 
manufacturing or service type of operation in which they are used. In this section, we 
outline two operations strategies frameworks, one for manufacturing and one for services, 
useful for determining across different industries the need for the various models 
contained in this review. 

 For manufacturing industries, we start with the well known product-process matrix, 
shown in Figure 2 (Hayes and Wheelright, 1986). As the manufacturing process moves 
down and to the right in the matrix, production equipment becomes more complex and 
heavily used, depending on maintenance for the continuity of operations and thus on the 
availability of spare parts.  The matrix identifies on the vertical axis five different types of 
processes, which are roughly correlated with variety (a continuous process, for example, 
is notably inflexible as it is designed to produce only one or at most a few products). The 
horizontal axis identifies the production volume (a jobbing operation, for example, has a 
limited production output). Production systems outside the diagonal are generally 
considered costly or inefficient.  Inventory implications for each of the categories in the 
matrix can be classified as shown in Table 1, where we have adapted a table in 
Schmenner (1981) to include a line for spare parts. 
 

 Project Shop Batch Line Continuos 

Raw materials Variable Variable Medium to low Medium to 
high 

Medium to 
high 

Work in process High High Very high Low Low 
Finished goods Low Low Variable High High 

Spare parts Medium Medium Medium High High 

Table 1. Inventory Implications for Spare Parts in the Product-Process Matrix 
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  Thus, in manufacturing, we feel that the management of spare parts inventory is fairly 
critical for all types of industries, but in particular for those with high equipment 
utilization and expensive machinery. 

 For service operations,  Figure 3 gives an analogous matrix (Schmenner 1986), 
including the inventory implications annotated for each entry. The vertical axis identifies 
intensity of equipment use (defined as the value of the equipment divided by the yearly 
payroll), while the horizontal axis identifies the degree to which the service is adapted to 
the customer needs or wishes.  For service organizations that depend heavily on 
equipment utilization — the upper half region of the service matrix — maintenance and 
spare parts are critical. For example, in both the Caracas subway system in Venezuela and 
the United States Air Force, repairable items represent almost 2/3 of all inventory value.  
In addition, Schmenner (1986) identifies a trend of services to reduce costs by moving 
towards the upper left quadrant (service factories), where managing repairable item 
inventories is particularly critical. 

 In summary, there are many industries in both manufacturing and services where there 
are opportunities for cost savings by engaging in more efficient management of spare 
parts inventories, and the trend in both sectors is such that it is likely to become even 
more critical.  For example, in manufacturing, the reduction of product-related 
inventories (raw materials, work-in-process, and finished product) being undertaken in 
both just-in-time and traditional materials requirements planning (MRP) environments 
will require increased equipment reliability for continuity of operations.  
 
3. Classification of Inventory Models 
In this section, we provide a concise general taxonomy of the most commonly 
encountered inventory models in practice and in the inventory literature.  A summary of 
the classification is presented in Figure 4.   For historical background, classic books 
dedicated to inventory management include Arrow, Karlin, and Scarf (1958, 1962), 
Hadley and Whitin (1963), and Scarf, Gilford, and Shelley (1963).  Directly relevant to 
this review, the edited book by Schwarz (1981) contains a compendium of 16 state-of-
the-art (at that time) research papers on multi-level inventory models, including three on 
repairable items.  Foremost is Nahmias (1981), still the most comprehensive review 
published in this field, which discusses a two-step approach: first characterize the 
performance of the system using a measure such as expected backorders and then search 
systematically among combinations of spares at different levels until an optimal solution 
is found. Two other papers, by Clark (1981) and by Demmy and Presutti (1981) analyze 
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METRIC-like implementations in the military world.  Finally, the recent Handbooks in 
Operations Research, Volume 4, Logistics of Production and Inventory, edited by Graves 
et al. (1993) also contains a number of articles concerning multi-echelon inventory 
control, though not specifically for repairable items. 
 The first division in our classification is into single-location inventory models versus 
multi-echelon models.  Single-location models are primarily distinguished by their 
characterization of demand: independently driven versus dependent (external versus 
internal), deterministic versus random, stationary versus time-varying.  The models are 
generally formulated as a cost minimization problem, with a cost function comprising 
holding costs, ordering setup costs, and either explicit penalty costs or a specified service 
level constraint.  In fact, a common separation of models in the literature is made between 
backorder versus lost sales models, and in the case of the former, between cost versus 
service level requirements.  For stationary demand models, whether deterministic or 
random, inventory ordering policies are usually based on one or two operating 
parameters, and can be further classified as fixed quantity or fixed period models, 
depending on whether inventory is renewed in fixed quantities at variable intervals or in 
variable quantities at fixed intervals.  Fixed quantity models are dominated by  lot-
size/reorder-point  (Q, R)  models — which includes the well-known economic order 
quantity (EOQ) model, whereas fixed interval models are dominated by reorder-
point/order-up-to-level (s, S) models. Dependent-demand models, where the external 
demand is assumed to be given, are commonly used in production planning and 
scheduling, and they employ lot-sizing algorithms, ranging in sophistication from lot-for-
lot schedules typically found in materials requirements planning (MRP) systems to simple 
heuristics to more complicated dynamic programming formulations.    
 Multiple echelon models arise in many contexts, including production systems where 
an echelon corresponds to a production stage, distribution systems where echelons 
distinguish between retailers versus warehouses, and maintenance repair systems, where 
echelons correspond to repair and other stocking facilities. A multi-echelon inventory 
model implies the existence of a hierarchy of stocking locations, and the dependence and 
interactions between these inventories is what can complicate the inventory control 
problem. For example, in a distribution system with n retailers and a single warehouse, an 
item can exist at n+1 different locations, with external demands at the retailers and 
sometimes at the warehouse as well.  One fairly renowned commercial implementation of 
a multi-echelon inventory control system is IBM's Optimizer (cf. Cohen et al. 1990). 
 The first major distinction between types of multi-echelon models is the dichotomy 
between cyclic and acyclic models.  In acyclic models,  demand for parts or goods flows 
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in only one direction. These inventory items are sometimes referred to as consumable 
items, as opposed to repairable items.  Cyclic models are those in which inventory flows 
through the system as demanded by the different locations, so inventory is neither lost nor 
produced, though it may undergo some sort of transformation, as in repairs and failures in 
our context.  Thus, in repairable item multi-echelon models, failure and repair events 
drive the “demand” in the system.  We note that the distinction between acyclic and 
cyclic inventory models bears a strong resemblance to that of open and closed queueing 
networks. 
 Production and distribution models fall into the class of acyclic multi-echelon models.  
The first important work in this area was done by Clark and Scarf (1960, 1962). Acyclic 
models can be classified, as in the single-location case, as time-varying dependent or 
independent stationary demand models. Dependent-demand models obtain pyramidal 
requirements aggregating known demands at the different echelons in a hierarchical form, 
e.g., as in MRP systems for production systems or DRP (Distribution Resources 
Planning) for distribution; see also Muckstadt and Roundy (1993) for an updated 
summary. For independent demand models, there are two approaches. One obvious 
approach taken by many inventory models is to decompose the system by treating each 
location as independent and thereby applying techniques for the single-location model.  
Usually, such local optimization leads to a suboptimal solution for the entire system.  On 
the other hand, there is a lot of academic research tackling the more accurate approach, at 
the cost of complexity, that includes the interactions between echelons.  Some discussion 
of this can by found in Federgruen (1993). 
 In this review, we are concerned with the cyclic type of multi-echelon models, in 
particular models which include repairable item inventory.  Replenishment is usually 
either periodic or based on a re-order point.  Again, determination of the operating 
parameters could either be done based on local optimization or on a systemwide analysis.  
In addition, the operating policy itself could depend on only local information (e.g., only 
the stock variables at the location) or it could incorporate systemwide state variables. 
 The general replenishment problem would involve determining a batch replenishment 
policy, similar to either a (Q,R) policy or (s,S) policy in the single-location case.  
However, the focus of this review is on low-demand, high-cost, and relatively low order 
setup cost items, in which case one-for-one replenishment is assumed.  Intuitively, the 
EOQ tends to a size of one in this case.  Thus, a part is ordered every time it is used, and 
local inventory control is determined by a single value, the target base-stock level.  This 
is  
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sometimes written as a continuous review (S-1, S) policy, equivalent to the (Q,R) model 
with lot size Q=1 and R=S-1.  The advantages of multi-echelon models for low demand 
items over their single-location counterparts have been established by Muckstadt and 
Thomas (1980). The one-for-one replenishment policy considerably simplifies the 
models. The most influential model by far has been the Multi-Echelon Technique for 
Recoverable Item Control (METRIC), developed by Sherbrooke (1968) while working at 
the Rand Corporation, and extensively used in the military world.  Aside from the 
seminal Sherbrooke (1968) paper that introduces METRIC, other important advances 
include Feeney and Sherbrooke (1966) which shows that Palm's theorem still applies 
under compound Poisson demand, Simon (1971) which analyzes stationary properties for 
a simple two-echelon system, Muckstadt (1973) which introduces multi-indenture 
problems, Allen and d'Esopo (1968) which provides a (Q, R) formula for a system with 
Poisson failures and constant repair times, and Fox and Landi (1970) which introduces 
the use of Lagrangean multipliers in place of marginal analysis for optimization.   
 Sherbrooke's work is interesting from a practical perspective for two reasons. First, he 
proposes exchange curves of system availability versus investment value of spares, rather 
than offering a single “optimal value”. Availability values are obtained from the 
performance characterization of backorders at the bases via the METRIC model. 
Secondly, he allocates spare parts in the system on a global basis, since the METRIC 
model considers all locations simultaneously in the performance analysis. Muckstadt and 
Thomas (1980) show that even simple multi-echelon approaches like METRIC will yield 
better results than naive local optimization.  
 Probably the most important “extension” of the METRIC model is Graves (1985), 
who developed a simple, easy-to-understand framework that in some sense superseded 
METRIC, and included some approximations that outperformed METRIC.  The other 
class of models considered important in this review are queueing network models for 
repairable items, which were developed to relax some assumptions that may be unrealistic 
in application (for example, infinite repair channels and infinite working item population, 
assumed by METRIC), mainly by Gross et al. (1978, 1983, 1987, 1993) and by Albright 
et al. (1988, 1989, 1993). Finally, simulation can also be used to obtain results under 
more “real-life” conditions (e.g., Bier and Tjelle 1994). 
 To summarize by putting into the general inventory control context, this review 
focuses on multi-echelon inventory system models with the following characteristics: 
• cyclic inventory (repairable items); 
• stationary, random demand; 
• continuous review; 
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• full backlogging; 
• one-for-one replenishment ordering policy. 
In the next section, we will discuss the actual models, all under a common framework. 

4. Multi-echelon Models for Repairable Items 
In this section, we present the key relationships that form the basis for analyzing multi-
echelon models for repairable items, and then discuss actual models which allow one to 
determine the quantities in these relationships and hence calculate system performance 
measures of interest.  In particular, the overall analysis follows these basic steps: 
1) determine the distributions of the parts population throughout the various elements of 
the system; 
2) combine the distributions to determine appropriate backorder distributions; 
3) determine availability from the backorder distributions. 
Our concentration will be on the first two steps. 
4.1 The Basic Model and Key Relationships 
We will introduce the key components in the models for repairable items with a simple 
example. We consider a system comprising a single base and a single depot with a target 
level of s0 spares at the depot and a target level of s1 spares at the base. This system can be 
represented as a network of elements, as shown in Figure 5: 
• a set of working parts at the base “field” (e.g., in the factory or service operation), 
• a base-to-repair facility transportation pipeline of failed parts (the in-pipeline), 
• a repair facility of failed parts to be repaired, 
• a depot storage facility stocking spare parts, 
• a depot-to-base transportation pipeline of parts (the out-pipeline), 
• a base storage facility stocking spare parts. 

The repair facility and transportation pipelines are represented schematically by queues — 
as parts may experience delays in requests for repairs or transportation — and the depot 
and base by physical inventories. Part movement in the system occurs in three modes: 

(1) a part failure activates three movements: 

 (i) the failed part moves from the field to the base-to-repair transportation 
pipeline, (ii) a part, if one is available, moves from depot stock to the depot-to-
base transportation pipeline; if no part is available, a backorder is placed at the 
depot, and 
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 (iii) a part, if one is available, moves from base stock to the field; if no part is 
available, a backorder is placed at the base. 

(2) a part repair is completed — the part is moved from the repair facility to the depot 
storage. 

(3) transportation of a part is completed (two types): the part is   

 (i) placed into base stock, or 

 (ii) arrives at the repair facility. 

Thus, as described in the introduction, parts cycle through the system after a failure by 
being moved to the repair facility, repaired and then held in stock at the depot to be 
eventually sent to the base to cover a failure.  
 Let Ni(t) denote the number of parts in location i at time t, where i=0 represents the 
field operations, i=1 represents the in-pipeline, i=2 represents the repair facility, i=3 
represents the depot, i=4 represents the out-pipeline, and i=5 represents is the base. We 
allow Ni(t)<0 for i=0, i=3 and i=5, indicating a backordered condition in the field, at the 
depot, or at the base, respectively, i.e., N0(t), N3(t), and N5(t) can be thought of as the 
inventory levels in the usual inventory control parlance, which as we shall see are derived 
from the other three processes.  Recall that the variables s0 and si denote the target number 
of spares at the depot and the base, respectively.  In addition, we will explicitly define the 
quantities B0(t) and B1(t) to denote the backorder levels at the depot and base, 
respectively, i.e.,  
B0(t)=N3-(t) and B1(t)=N5-(t),  
where x-=max(0,–x) is the negative part of x.  Then, independent of any assumptions on 
the failure process, the repair process, or the transportation processes, we have the 
following key relationships (indicated in the sample path diagram of Figure 6): 
 N1(t)+N2(t)+N3(t) =s0 (1) 
 B0(t) = N3-(t) = [N1(t)+N2(t)-s0]+ (2) 
 N4(t)+N5(t)+B0(t) =s1 (3) 
 B1(t) = N5-(t) = [N4(t)+B0(t)-s1]+ (4) 
 N0(t)+B1(t) =N, (5) 
where x+=max(0,x) is the positive part of x, and N denotes the total nominal working 
population of parts.  METRIC assumes that N and hence N0(t) is essentially infinite.  
Under this infinite working parts population assumption the failure rate is a constant value 
(i.e., independent of the number of working parts), and the system acts essentially like an 
open network, i.e., we can “cut” the network in Figure 5 at the indicated place.  The 
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relationships above can be easily established by looking at the various part movement 
possibilities specified above, which result in the following changes: 

(1) (i) N1(t): +1, N3(t): -1,  

 (ii) N4(t) or B0(t) : +1, N5(t): -1,  

 (iii) N0(t) unchanged, or N0(t) : -1 and B1(t): +1, 

(2) N2(t): -1, N3(t): +1, 

(3) (i) N4(t): -1, N5(t): +1, 

 (ii) N1(t): -1, N2(t): +1. 
 We illustrate the progression with a simple sample path (trajectories) for the various 
processes Ni(t).  We will take the METRIC standard assumptions of an unlimited working 
parts population and an uncapacitated repair facility.  In this case, without loss of 
generality, we will assume that the base-to-depot transportation times are instantaneous, so 
that the in-pipeline will always be empty.  Essentially, the times can be subsumed in the 
repair times under the assumption of unlimited repair capacity.  We further assume that a 
failure occurs each unit of time, a repair take two units of time, and the depot-to-base 
delivery time is three units of time.  Stopping the generation of failures after the second 
failure takes place (noting that otherwise this system would be unstable in the long run), 
we have the following sequence of events, where the various trajectories are shown in 
Figure 7):    
_ At t=1, a part fails. The failed part is sent from base to repair; another part is sent from 

depot to the out-pipeline.  
_ At t=2, a part fails. The failed part is sent from base to repair; another one is 

backordered at the depot. 
_ At t=3, a part repair is completed. The repaired part goes directly to the out-pipeline, as 

there are backorders at the depot.  
_ At t=4, a part repair is completed and a part shipment arrives at the base from the out-

pipeline. The repaired part is sent to the depot. 
_ At t=6, the remaining part in the out-pipeline arrives at the base. 
 The shaded areas at repair and in the out-pipeline in Figure 7 represent physical units 
at that location, while the shaded areas at the base and the depot represent units missing at 
that location, or outstanding parts, s0-N3(t) and s1-N5(t), respectively. A negative value at 
the base represents a “hole,” i.e., unavailability of a needed part in the field, while a 
negative value at the depot represents a unit demanded by a base but not satisfied, i.e., a 
backorder.  
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 The distribution of parts in repair and of outstanding parts at the depot (the shaded 
areas in Figure 8) are complementary, as reflected by Equation (1), and the backorder 
distribution at the depot is just the negative part of the distribution of outstanding parts at 
the depot (N3(t)), as reflected by Equation (2).  Figure 9 illustrates Equation (3), where the 
sum of parts at the pipeline (N4) plus the negative part of outstanding parts at the depot 
(B0(s0)) gives the outstanding parts at the base. This has a simple intuitive explanation:  As 
parts are not created or destroyed, when a part leaves the base, another is pulled from the 
depot and put into the pipeline; if no parts are available, a backorders occurs at the depot.  
Thus, we can see from Figures 8 and 9 how the multi-echelon problem for repairable items 
can be basically reduced to (i) finding the backorder distribution at the depot, for a given 
level of spare parts s0, and then (ii) combining this with the distribution of parts in the out-
pipeline.   
 We describe some straightforward extensions of this simple model.  For multiple 
bases, a form of Equations (1) and (3) with multiple in-pipelines still apply, but backorders 
at the depot must be appropriately apportioned to the bases to obtain the distribution of 
outstanding parts at the bases — corresponding to Equation (4) — and then from these the 
performance measures, such as fill rate or expected backorders.  If the superscripted i 
represents the corresponding quantities as defined before for base i, then our key equations 
become the following:  

 ΣΣΣΣ
i
Ni

1(t)+N2(t)+N3(t) =s0 (1’) 

 B0(t) = N3-(t) = [ΣΣΣΣ
i
Ni

1(t)+N2(t)-s0]+ (2) 

 Ni
4(t)+Ni

5(t)+B0(t) =si (3’) 
 Bi

1(t) = Ni
5-(t) = [iN4(t)+αiB0(t)-si]+ (4’) 

 N0(t)+ΣΣΣΣ
i
Bi

1(t) =N, (5’) 

where αi represents the apportioning of depot backorders to base i.  If the allocation of 
parts to the bases is done strictly on a first-come, first-served basis, the apportioning, αi, is 
simply proportional to each base demand.  In addition, an extension to local repairs can 
also be easily incorporated.   When a proportion of the repairs can take place locally at the 
base, the number of parts must also be convolved with the distribution of parts in the 
pipeline.  
 Referring to Figure 5, parts not in the field can be in the in-pipeline; being repaired or 
waiting in queue at the depot; in stock at the depot; in the out-pipeline; or in stock at the 
base, represented by N1, N2, N3, N4 and N5,  respectively, where we drop the time 
argument for convenience here, and later to indicate the corresponding steady-state 



14

quantities). The distribution of backordered parts at the depot is derived from the sum of 
N1 and N2, which can then be used to determine the distribution of backordered parts at 
the bases. In sum, to analyze performance of the system requires the analyses of three 
primary types of processes:  in-pipeline(s), repair, and out-pipeline(s), and then solving 
two sets of superpositions of processes, per Equations (1) and (3): the first to obtain the 
distribution of the depot stock inventory level (N3) from the distributions of in-pipeline 
parts (N1) and parts in repair (N2); and the second to obtain the distribution of the base 
stock inventory level (N5) from the depot backorder distribution derived from N3 and the 
distribution of out-pipeline parts (N4).  An infinite parts population assumption allows us 
to basically ignore Equation (5); otherwise, the failure process for N1 is determined 
through it.  Under the assumption of independence of the involved distributions, the 
superpositions reduce to calculating two convolutions.  In the case of multiple bases, the 
first convolution is obtained from the parts in all in-pipelines, while the second requires 
decomposing the distribution of backorders at the depot into the bases and then 
convolving with each base out-pipeline; or alternatively convolving the distribution of 
backorders with parts in all out-pipelines and then decomposing this into the bases 
(Graves 1985).   In general, the first superposition is treated as a convolution, because the 
model assumptions lead to independence of the steady-state random variables involved.  
In METRIC, the second superposition is also treated as a convolution, whereas Graves 
(1985) derives an exact expression under certain conditions and a better approximation 
than METRIC for the more general case.  The assumption of independent Poisson 
processes everywhere — as in METRIC— simplifies the analysis considerably, as the 
superposition of independent Poisson processes is again Poisson. 

4.2 The METRIC model 
We now explicitly describe METRIC in detail.  As discussed for the simple two-echelon 
system with a single depot and multiple bases, the critical assumptions for the METRIC 
model are the following: 
_ One-for-one replenishment; 
_ Poisson failure process; 
_ Large working parts population; 
_ Ample repair facilities. 
 or equivalently, repair times independent of the number of parts in repair.  
In inventory control terminology, the stocking policies at each echelon follow a 
continuous review base-stock policy with target level si, also known as an (S-1,S) policy 
where inventory position (on-hand plus on-order) is maintained at S=si. In queueing 
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theory terminology, the system is represented as an open queueing network decomposed 
as M/G/ / /  queues for nodes 1, 2, and 4 (using the Kendall notation for queueing 
models, where M stands for a Poisson arrival process, G for a general service distribution 
and  for the number of service channels or servers, the population capacity of the system 
and the size of the working parts population, respectively).  Because both 1 and 2 are 
M/G/  queues, we can combine them into a single node, which we did in the last section 
for the illustrative example, and is implicit in the METRIC formulation; thus, there is no 
N1 to consider. 

 We begin by defining some notation for the model. Let 
L0 = average repair time at the depot , 
λ0 = demand rate at the depot (sum of demands at bases, Σλi),  
W0 = delay due to stockouts at the depot, 
s0 = spares target level at the depot, 
N2 = number of parts at repair in the depot, 
E(B0) = expected number of backorders at the depot. 
 Under the METRIC assumption of ample repair facilities and Poisson demand, N2 
also follows a Poisson distribution, with mean λ0L0, so we have 

                               E(B0)= E[(N2-s0)+]=ΣΣΣΣ
n>s0 

 (n-s0)(λ0L0)exp(-λ0L0)/n!,   (6) 
and thus the expected delay came be found from Little's law, 
                                  E(W0)=E(B0)/λ0   (7)

 

 

   
 Note that the expected backorder level, and not fill rate — the proportion of demand 
filled from depot stock, given by P(N2<s) — is used to evaluate performance in METRIC. 
The rationale for this is that fill rate (the percent of demand filled from on-hand stock) 
doesn't take into account the time that the item is unavailable, whereas this time is 
implicit in the average level of backorders.   
 We can now define, analogous to the depot, the following quantities for the bases: 
Li= replenishment time (depot to base i), 
Wi = delay due to stockouts at base i, 
si = spares target level at base i, 
E(Bi)= expected number of backorders at base i. 
 Replenishment times for base i are correlated, as they depend on the inventory 
situation at the depot. However, METRIC assumes that these leadtimes are independent, 
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in order to use the average replenishment times for base i, so that Palm's theorem can 
again be applied to estimate E(Bi) and E(Wi), in analogy to the formulas for the depot, (1) 
and (2). 
 The process is repeated for possible combinations of s0 and si to obtain E(Bi(s0,si)). 
Searching systematically using optimization techniques, like marginal analysis originally 
used by Sherbrooke, expected backorders vs. investment trade-off curves can be obtained, 
allowing managers to make strategic decisions. Given a position on this curve, the system 
will provide as its output the necessary level of spares for each item at each location. 
Further, it is possible to express expected backorders in terms of availability (defined as 
the probability of finding the system “up,” or in working condition) by modeling the 
operation of the entire system as a function of the individual parts in the system. For 
example, the simplest model is a series representation in which any part backorder will 
cause an unavailability. More complex relationships can be incorporated by using 
standard reliability modeling techniques. 
 We provide a simple example to illustrate the basic ideas underlying METRIC 
(adapted from Axsäter 1993). Assume we have a depot and two identical bases. Demand 
at each of the bases is Poisson with mean 4.8 per week, the mean repair time at the depot 
(L0, which includes transit time from base to depot) is 0.25 weeks and the transit time 
from depot to the bases (Li) is 0.1 weeks. METRIC starts by calculating the expected 
backorders at the depot with no spares (s0=0), which is just the expected number of units 
in repair, or expected demand that goes to the depot over the average repair time, 
L0Σ(λi)=2.4. With this, the distribution of expected backorders as a function of spares at 
the depot can be calculated using a Poisson distribution and expression (6), or the 
recursive expression: 

                               E[B0(s0)]= E[B0(s0-1)]-(1-ΣΣΣΣ
n<s0 

 (n-s0)(λ0L0)exp(-λ0L0)/n!).   (8) 
 This results in the following table:  

s0 0 1 2 3 4 5 
E[B0(s0)] 2.4 1.491 0.799 0.369 0.148 0.052 

 Now the expected backorders at the bases, E[Bi(s0, si)], is calculated, starting with the 
expected backorders when there are no spares at the base (si=0), E[Bi (s0, 0)], which is the 
sum of the number of parts in the pipeline and a fraction of the expected backorders at the 
depot proportional to the base demand (assuming first-come, first-served replenishment), 
or  

E[Bi(s0,0)]= λi[Li+E[B0(s0)/λ]        (9) 
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 Thus, for zero spares at the depot and zero spares at the bases, the expected backorder 
level at the bases is 1.68. E[Bi(s0, si)] for si>0 are calculated exactly as we did at the 
depot. Repeating the process for combinations of s0 and si, results in the following 
E[Bi(s0, si)]:  

si\ s0 0 1 2 3 4 5 
0 1.68 1.225 0.88 0.664 0.554 0.506 
1 0.866 0.519 0.294 0.179 0.129 0.109 
2 0.366 0.173 0.075 0.036 0.022 0.017 

 When a proportion of failures can be repaired locally at the bases, the model can be 
easily modified as follows: E[B0(s0=0)]=[Σ(λi(1-pi))]L0 and E[Bi(s0,0)]= λi{piri+(1-pi) 
[Li+E[Bo(s0)/λ0]}, where pi is the probability of a local repair at base i, ri is the average 
local repair time at that base and λ0 the total demand at the depot, or Σ(λi (1-pi)).     

4.3 Extensions to METRIC 

 METRIC is really an approximation, as it assumes that successive replenishments at 
the bases are independent processes, which leads to a Poisson distribution (this also 
implies a FCFS discipline in sending parts to the bases when there are backorders at the 
depot). Graves (1985) proposes a different approximation that uses the two-parameter 
negative binomial distribution to fit the distribution of the backorders at the bases. This 
approximation requires calculating the variance of the backorders at the depot. In the 
example, the variance of Bo(s0) can be easily calculated with the recursive expression : 
           V[Bo(s)]=V[Bo(s-1)]-E[Bo(s)]-E[Bo(s-1)]- E[Bo(s)]2 + E[Bo(s-1)]2  (10) 

and the fact that when s=0, the distribution of backorders is the same as the distribution of 
parts at repair (Poisson), so E[Bo(s0=0)]=V[Bo(s0=0)]. To calculate E[Bi(s0, si)] a 
negative binomial distribution is used, estimating the variance by the following:  
           V[Bi (s0, 0)] = (λi /λ)2 V[Bo(so)]+ (λi /λ)(1−λi /λ) E[Bo(so)]+λiLi, (11) 
where λi /λ represents the proportion of total demand that comes from base i. For our 
example, we get the following numerical results, where for the special case s=0, the 
model behaves the same as METRIC.  
 

s0 0 1 2 3 4 5 
E[Bo(s0)] 2.4 1.491 0.799 0.369 0.148 0.052 
V[Bo(s0)] 2.4 2.047 1.341 0.675 0.273 0.093 

 
si\ s0 0 1 2 3 4 5 

0 1.68 1.225 0.88 0.664 0.554 0.506 
1 0.866 0.538 0.321 0.198 0.137 0.112 
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2 0.366 0.196 0.098 0.048 0.027 0.018 
 Graves (1985) conduced extensive testing and found that METRIC underestimates 
expected backorders, while his negative binomial approximation overestimates them. The 
negative binomial approximation gave mistaken allocation of spares in less than 1% of 
the cases, while METRIC errs in almost 11% of the cases. Note that obtaining the exact 
distributions is intensive in calculations, as the convolutions must be solve for every value 
of s0 and the base decomposition done separately for each base. Also, total demand over 
pipelines must be separately calculated for each base when the pipeline lengths are 
different, and then convolute into global demand. This is admittedly trivial for Poisson 
distributions, but still time consuming. The negative binomial approximation seems a 
better compromise, as it yields good results while being computationally very efficient. 
Other documented applications of negative binomial distributions, can be found in 
O’Malley (1983) and Slay (1984) in military applications, and in a retail setting in 
Svoronos and Zipkin (1991).  

 For deterministic transit times (times in the pipelines), an exact analysis was also 
provided by Graves (1985).  He finds the distribution of total outstanding orders for all 
bases by solving the convolution of the backorders distribution at the depot and the total 
demand over the length of the pipeline from depot to base. More specifically, let Qi(t) be 
the outstanding orders at epoch t at base i, Q(t) the total amount of outstanding orders at 
epoch t, and D(t, t+T) the demand in the interval [t, t+T].   Then, for a fixed depot-to-base 
transportation time T, Q(t+T)=ΣQi(t+T)=B(t|s0)+D(t, t+T), since in the interval [t, t+T], 
any items in transit from the depot to the bases must have arrived, but any backorders at t 
could not have arrived yet.  Since the demand in interval [t,t+T] is independent of 
backorders, an exact expression for Q(t+T) can be obtained from the convolution of 
B(t|s0) and D(t, t+T).   If demand is Poisson, then Q (t) is Poisson, since backorders are 
Poisson. Once this convolution is solved, Q(t) must be decomposed into the Qi(t) 
components using a binomial distribution (under first-come, first-served base 
replenishment): 

           P(Qi(t) =j) = ΣΣΣΣ
k   >j 

P(Q(t) =k) k!/((k-j)!j!)  (λi /λ)j (λ−λi /λ)k-j. (11) 
 If, as in our simple example, we also include a base-to-depot transportation pipeline, 
which is necessary if the repair times are not assumed to be independent of the number of 
parts in repair, then there is an additional superposition that must be considered, and the 
analysis is more complicated.  Approximation methods to handle the case where repair 
facilities are resource constrained are introduced in Díaz and Fu (1995). 
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 Assumptions that have been relaxed in the basic METRIC model include the 
following:  
• inclusion of compound Poisson demand (Feeney and Sherbrooke 1966), 
• lateral resupply between bases (Sherbrooke, 1992, Axsäter 1990),  
• non-repairable failures,  
• inclusion of multi-indenture components (Muckstadt 1973),  
• cannibalization of parts, 
• commonalty of parts (Sherbrooke 1992, O’Malley 1983). 
 The compound Poisson distribution has the advantages of allowing for coefficients of 
variation in demand larger than one, observed in real life but not possible under pure 
Poisson demands.  Lateral resupply allows for interaction between locations of the same 
echelon, as in emergency situations in the military.  Non-repairable failures means that the 
system may no longer be completely cyclic, as some parts must leave the system and 
others must be ordered from the outside.  If this is done completely on a one-to-one basis, 
then the system still essentially acts as a cyclic system, with the outside supplier included.  
Multi-indenture models model the hierarchy of parts in the working condition of the end 
unit piece of equipment, and will be discussed further in the next paragraph.  
Cannibalization is the use of a downed piece of equipment as a possible additional source 
of spare parts, again a common practice in extreme situations.  Commonalty of parts 
refers to the situation where the same part is used a number of different systems. 
 In multi-indenture models we assume each system to be composed of main 
components, or Line Repairable Units (LRU), and these of subcomponents or Shop-
Replaceable Units (SRU). When an LRU fails, it is exchanged for a spare unit, taken 
from the base, or backordered if none are in stock. In both cases the LRU is repaired at 
the base or at the depot according to the type of failure. At the repair place, the faulty 
SRU is identified and substituted for a spare, or backordered if none is available.  The 
original formulation of the multi-indenture problem, called MOD-METRIC, is due to 
Muckstadt (1973). Sherbrooke (1986) also analyzes the multi-indenture case under a 
negative-binomial distribution.  This problem is more interesting from an implementation 
point of view, as the system formulation can be quite complex. From a model point of 
view, however, it is an extension of the non-indentured case, which is the preferred 
vehicle in the literature for the analysis of new or existing models. 

 Other alternatives to the basic METRIC model not discussed here but used in the 
military include Simple Simon (Kruse and Kaplan 1973) and TWOPT (Kaplan 1980). 

4.4 Spare Parts Allocation 
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 Here, we discuss some of the allocation techniques that have been used once a 
performance characterization technique has been adopted via one of the models already 
described or some other means such as a simulation model.  As the focus of this review is 
on the models and not on the allocation/optimization schemes, the discussion will be very 
brief.  In METRIC’s original method, allocation was accomplished via the simple 
procedure of marginal analysis. This approach follows a “more bang per buck” approach, 
as the spare parts with the greatest marginal contribution of (E[B(s)]-E[B(s-1)) per item 
cost are progressively added. Sherbrooke showed that the approach was optimal for single 
echelon cases by proving convexity of the objective function. However, the literature has 
noted the inefficiencies of the marginal approach in general and has proposed 
alternatives, such as mathematical programming procedures based on Lagrangean 
multipliers. Assume we have a budget B that we want use to buy spares of different types. 
This budget allocation problem can be expressed (Demmy and Presutti 1981) as the 
minimization of the sum of backorders at all bases for all types, subject to the cost of the 
required spares (all types at all bases and the depot) not exceeding a given budget B. Fox 
and Landi (1970) observed that the use of Lagrangean procedures could be more efficient 
that marginal analysis. If φ is a Lagrange multiplier associated with the budget limitation 
B, the constraint can be incorporated into the objective function. This can then be 
separated into single-item optimization problems. For a given level of parts at the depot 
(s0), Bi(si) is convex with respect to si, so that for a given value of s0 the optimal si can be 
calculated by obtaining the smallest si that satisfies B(si+1)-B(si)_φci, where Bi(si) is the 
level of backorders at base i given s spares at that base, and ci is the cost of each part of 
type i.  To find the φ associated with a given B, Fox and Landi suggest a binary search 
procedure, noting that bounds for its optimal value could be obtained from experience.  
The program SESAME (Kaplan 1980) implements a version of this approach for the 
United States Army. 

4.5. Queueing Models 
As is evident by the representation of Figure 5, a multi-echelon system for repairable 
items can be viewed as a network of queues, as queues are formed at every repair facility 
and the pipelines can also be represented as queues.  Queueing models allow for the 
relaxation of assumptions in METRIC-based models such as an infinite parts population 
and an uncapacitated repair facility.  However, the fact that the depot and bases are 
stocking facilities complicates the possibility of modeling using conventional queueing 
network models.  Thus, in the literature, queueing-related analysis falls into two main 
types: 
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• decomposition into individual queues; 
• Markov chain representation of the entire system. 
In the first approach, after the queueing analysis is applied, the key relationships (1)-(4) 
can then be used to calculate the important measures of performance such as expected 
backorders.  For example, in the simplest version of our model, queueing theory would be 
used to find the distributions for  to determine N1, N2, and N4.  In the second approach, 
the measures of performance are usually calculated directly from the derived probability 
distribution.  A disadvantage of these Markov Chain models, probably inhibiting their 
propagation, is that even for small problems the state space can be large and solution 
procedures time consuming.  The remainder of this section will first provide an overview 
of queueing network models — which we feel still have potential unexplored 
applicability, and then discuss applications of queueing models and more general Markov 
Chain analyses to repairable item inventory systems. 

4.5.1 An Overview of Queueing Network Models 
Networks of queues, based in the work of Jackson (1963) and Gordon and Newell (1967), 
can be divided into open, closed and mixed queueing networks; see also Walrand (1988) 
and Suri et al. (1993).  An open network is a system in which every part that enters the 
system eventually leaves the system, i.e., there are arrival processes to and departure 
process from the various nodes in the network.  In closed networks, on the other hand, the 
number of parts in the system is fixed.  Thus, open networks correspond roughly to 
acyclic inventory systems, whereas closed networks correspond to cyclic inventory 
systems.  A priori, it would seem, that only closed network models apply to repairable 
item inventory.  However, if the parts population is large enough, it is often advantageous 
to model the system as an open network, which is what METRIC essentially does 
(unbeknownst at the time it was introduced), as illustrated in the last section. 
 The most useful types of queueing network models are the product-form networks, so 
named because the joint probability of queue-lengths at each of the nodes in the system 
can be expressed as a product of terms based only on each individual node in the network 
and a normalizing constant, e.g., for a network with two nodes: 
P(N1=n1,N2=n2)=G(N1,N2)P(N1=n1)P(N2=n2), 
where G represents the normalizing constant.  The classic paper on this is Baskett et al. 
(1975).  For open networks, the normalizing constant is also a product of individual node 
terms, so the analysis decomposes into individual queueing analyses at each of the nodes.  
For closed networks, the normalizing constant is dependent on all the nodes 
simultaneously, which is the source of computational complexity for analyzing these 
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types of networks, even using a simple recursive algorithm for calculating the 
normalizing constant, the convolution algorithm of Buzen (1973).  Thus, if the parts 
population is large enough, it is often advantageous to model the system as an open 
network, as the corresponding infinite state space is much easier to analyze (and 
computationally much more efficient) than a large finite state space. 
  Product-form networks require certain assumptions such as an infinite number of 
servers at a node or exponential service time distribution, in addition to Poisson arrival 
processes for open networks.  For this reason, an important topic of research has been the 
development of useful approximations which can be implemented easily.  For open 
networks, the main approach has been a decomposition of the network into individual 
nodes, which are then analyzed separately, paralleling the product-form results.  This 
requires a characterization of departure processes and arrival processes, along with the 
superposition and splitting of these processes. Models along this line include the 
Queueing Network Analyzer of Whitt (1983).  For closed queueing networks, a promising 
technique is Mean Value Analysis (MVA), which is a simple iterative procedure that does 
not grow combinatorially (and is exact for the product-form special cases); c.f., e.g., 
Reiser (1981). 

4.5.2 Applications to Repairable Item Inventory 
One of the earliest use of queueing models for repairable item inventory systems is the 
classic machine repairmen problem found in the queueing chapter of almost every 
introductory operations research textbook.  The key benefits in applying this model is that 
it allows for finite repair capacity and a population-dependent failure rate; see also 
Nahmias (1981) for further discussion. 
 More involved queueing models have been proposed by Daryanani and Miller (1992), 
who use a multiple-source, single server queueing system and backorders evaluation built 
upon taboo structure of invariant measures; and Jung (1993), who propose a simple 
analytical solution to a recoverable inventory problem in which the demand is subject to a 
non stationary failure process. Another paper by Balana et al. (1989) analyzes the 
problem under non-stationary conditions, arguably interesting in time-varying conditions 
like war. 
 Gross et al. (1978, 1983) solves a one base model using a closed Jackson network. 
The optimization is done with an algorithm by Lawler and Bell (1966). Proof of 
convergence and some application examples are also provided. This method suffer the 
disadvantage, on top of size restrictions, of being inapplicable in circumstances in which 
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the routing is dependent on the state of the system (e.g., backorders at the bases are filled 
not on a FCFS basis, but on a priority basis) and of not allowing for spares at the depot. 

4.5.3 Applications of More General Markov Chain Models 
Markov Chain methods are simple enough to apply for very small problems and the 
repairmen example is commonly used in applied probability textbooks. The first network 
queueing model in the literature, due to Mirasol (1963), was solved via a birth-and-death 
model, a Markov Chain with the special structure of allowing only transitions between 
adjacent states. It is interesting because it precedes METRIC and uses multi-indenture 
concepts and the idea of unavailability to measure performance. 
 The use of Markov chain modeling can be illustrated with a simple example, similar 
in structure to the scenario used by Gross et al. in various papers (1987, 1993).  At a base, 
an items is either being locally repaired, in operation, or stocked as a spare part. 
Operating items fail with failure rates λb (repairable at base) or λd (repairable at depot) 
and are repaired with rates µb and µd (corresponding to base and depot, respectively), all 
according to an exponential distribution.  Similarly, an item in the depot is either being 
repaired or available as a spare part. Spares are sent from the depot to the bases only in 
the event of the arrival of a failed part from the base (but not when the failed part is 
repaired locally at the base). In the Markov chain representation, the state of the system is 
represented by a multi-dimensional variable, where for base i, Ri is the number of items 
being locally repaired, O is the number of items in operation, Si is the number of spare 
parts available, and for the depot, R0 is the number of parts in repair and S0 is the number 
of spare parts available.  Figure 10(a) gives the schematic representation for a single base 
and one part, a depot with one spare, and no transportation pipelines (zero transit time 
between base and depot). Figure 10(b) gives the state transition rate diagram for the 
Markov chain model, which has five states.  For example, a transition from state 1 (one 
working part at the base and one spare part at the depot ) to state 2 (one working part at 
the base and one part in repair at the depot ) represents a failure which must be repaired at 
the depot, in which case the depot sends its spare to the base, the part arriving 
immediately under the assumption of zero transit times.   
 This problem can be solved via the usual flow balance equations. Although a problem 
of this size can be solved easily by hand or through the use of specialized software, the 
number of states grows combinatorially as the formulation becomes more realistic. For 
one depot, two bases and one part per base the number of states is still a manageable 13, 
but for one depot, three bases and 40 items per base, the number of states is over 630 
million! (see Albright 1989). Two ways of reducing the size of this problem have been 
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explored in the literature, iterative procedures and decomposition methods. The iterative 
procedures, reviewed in a recent paper by Gross et al. (1993), provide methods for the 
solution of large linear matrix equations of the general form Ax=b. Specifically, 
separating A into upper, lower and diagonal matrices, U, L, and D, respectively, we have 
x=D-1 b-D-1 (L+U)x.   This simplifies the inversion but makes the solution implicit, 
which then requires iteration. Methods for carrying out the iteration include Jacobi 
iteration, Gauss-Seidel and the bi-conjugate gradient, the last being a decomposition 
method applied to the transition matrix. 

Another approach involves reducing the size of the state space using approximate 
decomposition techniques.  Gross et al. (1987) have proposed a decomposition of the 
network into overlapping subnetworks. The papers by Albright and Soni (1988), Albright 
(1989), Gupta and Albright (1992), and Albright and Gupta (1993) also take the 
decomposition approach. Both Gross and the first Albright models decompose the 
problem by fixing the number of items owed by the depot to the bases (backorders) and 
then solving each base as a one-dimensional birth-and-death process (only transitions to 
and from the local repair facility remain). The depot is also solved via a birth-and-death 
model, but the problem here is n-dimensional as the state is defined by the vector of items 
owed to each base (note that no spares are held at the depot in these formulations). The 
resulting depot matrix is however sparse, so approximations can be used (Gauss-Seidel in 
both cases). Having obtained both probability matrices, the product will approximate the 
global probability matrix. Albright improves on this idea by reducing the depot case to a 
uni-dimensional birth and death (1989) and also by extending the problem to the multi-
indenture case (1992). A related paper assumes that different modules are repaired by 
different servers. 
 Overall, the queueing models discussed suffer the disadvantage of additional 
complexity, of being limited to first-come, first-served service to the bases, and of 
assuming Poisson failure and repair processes. Another important disadvantage of these 
methods is that they almost all assume a single class problem (e.g., the servers are 
dedicated to repair one type of failure only and are not shared among different items or 
failure modes), although a multi-class problem has was recently considered in Gupta and 
Albright (1993). General Markov chain modeling does allow for more realistic modeling 
(other than the Poisson assumptions, which must be retained), but suffers from 
combinatorial state space explosion.  In conclusion, to our knowledge, implementation of 
these queueing methods for spare parts management in industrial practice is rare, in 
contrast to the widespread use of METRIC-based models in the military world. 
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5. Directions for Further Research 

In this section, we discuss the following key components in multi-echelon repairable item 
models which we believe must be addressed in order to make the models applicable to 
industrial application of spare parts management, as opposed to their present prevalent 
use in military settings: 

• repair classes and parts dispatching policies; 

• resource constrained repair facilities and size of parts population; 

• batching. 

We then conclude the review by briefly mentioning the use of simulation, which we have 
a feeling is the most commonly used method in industry at present. 

5.1. Repair classes and dispatching policies  

 In a multiclass environment, characterized by different classes of items sharing 
common repair and transportation facilities, complexities arise in determining 
priorities/policies for  

(i)  repairing parts that arrive at the repair facilities and must queue, and 

(ii) dispatching repaired parts when multiple bases have outstanding backorders.   

The decision on the first item, which parts to repair next, is avoided in the METRIC-like 
models, where the repair facilities are assumed unconstrained (infinite), but this is 
unlikely to be realistic in industrial practice.  The most likely scenarios would be either 
first-come, first-served (FCFS) or a priority-based scene, either fixed (as in certain parts 
always have a higher priority) and/or dynamic (as in one base is in an “emergency” 
situation).  Most of the queueing models for the repair facility in the literature assume 
FCFS, so more work to apply models based on priorities (which do exist in the queueing 
literature for other applications) is needed. 

 The second item involves priorities on depot dispatching among competing demands 
from the bases, especially in a backordered situation.  Possible policies include FCFS, 
fixed proportional routing, priority dispatching, and state-dependent dispatching.  Up 
until now, all the analytical models, with the exception of the Markov chain models, have 
assumed FCFS dispatching for parts from the depot.  Under FCFS, parts from the depot 
are pulled into the bases as demand occurs. If there is a backorder situation at the depot, 
parts are sent to the bases, as repairs are concluded, in the order in which they were 
demanded. This is an underlying assumption of METRIC. Other non-METRIC models 
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that utilize this discipline are the Markovian models of Albright (19989, 1993). An 
argument given in the literature to support this assumption is that it is easier to control, as 
the depot doesn’t have to know the state of the bases at all times. Another common 
argument is that this method is ‘fair’ (Axsäter 1993). 
 Under fixed proportional routing, parts are sent to the bases on a fixed ratio basis, i.e., 
a fixed proportion of the parts, pi, is sent to base i. This assumption allows to model the 
system using closed queueing network methods, although it does not adjust dynamically 
to the changing conditions of the system (e.g., if a base start having an “epidemic”, or 
burst of failures, more parts should go to that base). This discipline is implicit in queueing 
network models such as  Gross (1983), or in methods such as Mean Value Analysis 
(Reiser 1981) for closed queueing networks and decomposition approaches for open 
queueing networks (Whitt 1983). 
 Under state-dependent dispatching priorities, parts will be sent according to 
centralized information on backorders at the bases.  For example, the depot might choose 
to send a repaired part to the base with the worst availability (or backorder) situation. 
Otherwise this policy is similar to a FCFS and we should expect both disciplines to show 
similar results when the expected backorders at the depot is small. As mentioned already, 
Markov chain models can support these disciplines (i.e., see Gross 1987, 1992), but 
usually at the cost of intractability for systems of practical size.  This can also be 
combined with some fixed priority scheme, such as those examined by Dada (1992), 
Cohen et al. (1992) and Pyke (1990), where return priorities are assigned to different 
classes, either on a predetermined or ad-hoc basis. Critical parts are expedited through the 
system with a shorter pipeline, at a higher cost. If some classes of parts are to be 
expedited when distributed, it seems logical that they should also be expedited in the 
repair process. As there are few analytical results for this type of multiclass problem, 
Pyke (1990) has used simulation to analyze the effect of priorities on both repair and 
distribution policies, and he states that “the distribution rule at the depot has little effect 
for all but a small subset of parameters” and that repair priority disciplines only have a 
significant effect in cases of high utilization of the repair facility (ρ>0.9) and in these 
cases, the effect is lost unless a priority discipline is also used for the distribution process.  
However, we feel that there is more that can be done here. 

5.2. Constrained Repair Facilities and Finite Parts Population 
We mentioned how most documented implementations of multi-echelon models for 
repairable items are METRIC-like military applications. While two important 
assumptions of METRIC, infinite calling population and repair capacity can be acceptable 
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in military environments, they seem more restrictive in industrial applications, where both 
the calling population and the repair capacity are likely to be limited.  It is interesting to 
note that apart from the Muckstadt and Gross investigations mentioned earlier, little 
research has been conducted on studying how restrictive these constraints are for 
industrial applications.  Queueing approaches, originally developed to overcome these 
shortcomings, at present generally result in complex models of limited practical appeal. 
Some work along this line can be found in Díaz (1995) and Díaz and Fu (1995), where 
simple approximations based on Whitt (1993) are employed.  For high repair facility 
utilization, the improvement over METRIC-like models is very significant.     

5.3. Batching 
In industry, it is likely that batching of parts sent between bases and depot would be 
likely, so that the operating policies would involve two parameters at each stocking 
location.  Models to handle batching are thus critical.   Axsäter (1993) notes that 
analytical results are available only for a few special cases which are not likely to be 
representative of situations found in industry: only a single base, or batching only at the 
depot.  In addition, Poisson failure processes must be assumed.  Cohen et al. (1992) is one 
attempt to tackle the more general problem, but this topic is definitely a fertile area for 
further research. 

 5.4. Simulation 
 Finally, we conclude by noting that both Nahmias (1981) and Gross (1993) call for 
the use of hybrid models that involve simulation. Discrete event stochastic simulation is 
commonly used for benchmarking purposes and is in principle a perfectly flexible tool in 
that almost any real life conditions can be modeled.  Its use for multi-echelon inventory 
models dates at least as far back as Clark (1960).  Its main drawback is its computational 
expense, and it is rarely used to do any sort of real optimization beyond naive trial and 
error of a few policies. In practice, we believe that most spare parts management is done 
by a series of ad hoc “seat-of-the-pants” approaches.  For example, in a case study 
discussed in Fu and Díaz (1995), the industry user simply follows the supplier's 
recommendations for spare parts target levels which are based on “experience” of the 
supplier.  At best, once the target levels are set, simulation is then used to do performance 
analysis of the system, but  not optimization, per se.  There are of course exceptions, such 
as the one documented by Bier and Tjelle (1994), who describe spares inventory planning 
in the Boeing aircraft company, employing experimental design techniques in conjunction 
with their simulation model.  Our feeling echoes that of Nahmias (1981) and Gross 
(1993), specifically by suggesting that sequential improvement algorithms such as 
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Response Surface Methodology (RSM) and gradient-based procedures based on 
stochastic approximation can be employed fruitfully (see, e.g., Fu 1994 for an overview 
of techniques for optimization via simulation) in conjunction with analytical techniques, 
for example by finding an initial feasible solution with approximate methods (like 
METRIC) in order to reduce the size of the search space.  Moreover, advances in the use 
of parallel computing will help to make this approach more computationally feasible.  
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