
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 

ABSTRACT 
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Degree and year:    Masters of Science, 2004 
 
Thesis directed by: Professor Hani S. Mahmassani 
                                Department of Civil and Environmental Engineering 
 
 
 

The purpose of this study is to investigate the representation of driver behavior 

under extreme conditions, towards development of a micro-simulation modeling 

framework of traffic flow to support evaluation of management strategies and measures 

in emergency situations. To accomplish this objective, particular attention is given to 

understanding and representing so-called “panic behavior” of individuals and how this 

behavior may be translated into driver actions. Related background from psychology and 

sociology is examined to provide proper framing and a better understanding of the 

manifestation and implications of panic for driver behavior. 

Following a systematic review and synthesis of previous traffic models, and an 

assessment of their suitability and limitations vis a vis representation of driver behavior 

under extreme conditions, a model is selected as a starting point for modification towards 

the micro-simulation of traffic flow under such conditions.  The model is based on Gipps’ 



(1981) Car-Following Model, which is combined with a simple representation of the lane 

changing process. The modification seeks to capture the differences in driving patterns 

anticipated under certain extreme conditions, and to assess these differences with respect 

to other traffic models. To evaluate the proposed modification, a prototype 

implementation is proposed for the micro-simulation of traffic flow on a stretch of 

highway with simplified geometric features. The vehicle trajectories and aggregate traffic 

properties, such as volumes and densities, are evaluated with respect to different 

scenarios and population characteristics, such as the distribution of desired velocities 

across drivers, through a sensitivity analysis.  
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CHAPTER 1: EXTREME CONDITIONS 

 

1.1. Introduction 

 Recent increases in the frequency of both man-made and natural disasters 

have required driver and traveler behavior models to better account for the effects 

of extreme dynamic conditions in addition to normal static conditions. Man-made 

disasters and emergencies, such as terrorist activities, wild fires, and hazardous 

spills, occur due to human activity, while natural disasters, such as floods and 

hurricanes, occur without direct human intervention. The effects of extreme 

conditions are not exclusive to one domain of study, but have implications in a 

wide range of disciplines such as the biological and environmental sciences, 

psychology, urban and regional studies, and engineering. In transportation 

analysis, modeling and understanding driver behavior under extreme conditions is 

a relatively new concept and has received only limited attention, and has been 

insufficiently addressed in past research. 

 A similar and related line of research involving the escape behavior of 

individuals in panic situations has been addressed by several researchers. 

Particularly notable in this regard is the work of Helbing (2000), which describes 

a simulation of the escape panic behavior of individuals in a given room with 

exits. These individuals were conceptualized and modeled as a “self-driven many-

particle system,” with each particle having both physical and socio-psychological 

attributes. A generalized force model was adopted to describe particle or 

individual movement. One difference between the crowd evacuation context and 
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vehicular movement is that constraints must be imposed on the direction of 

movement in the latter.  

In this chapter, extreme conditions are defined and classified into different 

categories. This study focuses on extreme conditions that may cause panic 

behavior among drivers. Psychologists have no consensus on the exact definition 

of “panic”, and in most transportation studies involving panic behavior, an 

operational definition of panic is typically missing (Helbing 2000). In somewhat 

general terms, panic is associated with the uncoordinated motion of crowds. The 

next section discusses panic from a socio-psychological standpoint, in order to set 

the stage for defining panic behavior in the context of traffic and transportation. 

The objective of this thesis is to represent driver behavior under extreme 

conditions by constructing a micro-simulation model that aims to capture how 

panic behavior translates into driving actions. For that purpose, the following 

section presents a classification scheme for extreme conditions. Section 1.3 

briefly presents the psychological and social background of “panic” so that it can 

be related to the traffic characteristics and placed in the context of transportation 

in Section 1.4. Section 1.5 specifies the research objectives and the approach 

necessary to accomplish them. 

 

1.2. Classification of Extreme Conditions 

 As mentioned earlier, “extreme conditions” vary in type and magnitude, 

and can have different effects on transportation systems and their users.  Extreme 

conditions result from events that can be classified as either human-caused or 
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naturally occurring. Although these two categories may have some similarities, 

they also differ in terms of their degree of urgency, their predictability, and the 

extent to which they may be prevented or otherwise controlled. Naturally 

occurring extreme conditions include weather conditions and other natural 

disasters. Accidents, hazardous material releases, terrorist acts, and war are 

considered human-caused extreme conditions.  Additional examples of each 

category or type of extreme conditions are given in Tables 1.1 and 1.2. 

 

Nature-Caused Extreme Conditions 
Extreme Heat 
Extreme Cold 
Heavy Rain 
Heavy Snow 
Hurricanes 
Tornados 
Typhoons 

  Weather 

Floods 
Earthquakes 

Volcano Eruptions
Fires Other Natural 

Disasters Others (Tsunami 
Waves, Meteorites 

…etc) 
 

 

 

Tables 1.1 and 1.2: A Classification Scheme for Nature-Caused (left) and 
Human-Caused (right) Extreme Conditions 

 

Note that hurricanes, tornados, floods and typhoons are considered natural 

disasters as well as weather conditions. Additionally, war conditions can be seen 

as a combination of different sources of extreme conditions, such as bombing, 

Human-Caused Extreme Conditions 
Accidents 

Physical Materials 
(Oil: Slippery) 

Chemical 
Materials 
Biological 
Materials 

Hazardous 
Materials Spills 

Nuclear Materials 
(Dust, Wastes 

…etc) 
Involving above 

Hazardous 
Materials 
Bombing Terrorist Acts 

Other Disruptions 
(Fire, Electricity 

Cut, …etc)  
War Conditions 
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accidents, or nuclear material spills. Furthermore, certain conditions are 

undoubtedly more “extreme” than others; for example, extreme heat, extreme 

cold, heavy rain, and heavy snow may not pose the same level of threat as some 

of the other extreme conditions mentioned. Given this characterization, extreme 

conditions can be broadly defined as any abnormal high-impact conditions 

affecting the transportation system and its users. The degree to which conditions 

are deemed normal rather than extreme, such as weather conditions, may be 

relative to the particular geographic location.  

As mentioned earlier, extreme conditions differ in the degree of urgency 

with which an evacuation may be required, in the degree of predictability, and in 

the ability to prevent and or control the causing event and its consequences. In 

Table 1.2, the degree of urgency in evacuation is characterized as high, moderate 

or low. The urgency increases with the extent to which a given situation may be 

life-threatening. Control measures are characterized by the extent to which 

consequences can be contained and confined to a given bounded area, and by the 

availability of direct actions that may reduce negative impacts. For example, 

hurricanes cannot be or contained within a given area, and thus the control 

measures are given a “low” designation. Similarly, while heavy rain cannot be 

limited or confined within a given area, its effects can be mitigated by a number 

of measures like better draining and lighting roads for better visibility. However, 

this dimension for characterizing extreme conditions is admittedly problematic; 

for example, war may involve a wide range of destructive tools, from nuclear 
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weapons to conventional grenades, and is considered here as having only 

moderate control measures.   

Although most of the above descriptive factors can change with the 

severity of each condition, the factors used in Table 1.2 assume the worst case 

scenario with advanced technological resources. For example, a hurricane may be 

sufficiently weak that there is no real urgency of evacuation. However, under a 

worst case scenario, this urgency will be extremely high. On the other hand, with 

advanced technological resources, the predictability of hurricanes increases. It 

should be noted that accidents and hazardous physical spills are viewed as having 

low urgency of evacuation since they normally have limited influence areas.  

Finally, extreme conditions can occur both independently and jointly with 

each other. An extreme condition could be a direct or an indirect consequence of 

another extreme condition. For example, a traffic accident may cause a chemical 

hazardous spill if one of the vehicles involved is a trailer carrying dangerous 

chemical materials. Also, some extreme conditions can occur near-

simultaneously, such as floods and heavy rains. An extreme condition may also 

belong to two different categories, for example a flood caused by destroying a 

damn intentionally will be considered a terrorist act, whereas a flood caused by 

heavy rain is a natural disaster. Therefore, boundaries between these conditions 

should not be viewed as clear cut. 
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Extreme 
Condition 

Urgency of 
Evacuation 

Control 
Measures Predictability 

Extreme Heat Low Moderate Moderate 
Extreme Cold Low Moderate Moderate 
Heavy Rain Low Moderate Moderate 
Heavy Snow Moderate Moderate Moderate 

Floods High Low Low 
Hurricanes High Low High 
Tornados High Low Low 
Typhoons High Low High 

Fires High Moderate Low 
Earthquakes Moderate  Low Low 

Volcano Eruptions High Low Low 
Tsunami Waves High Low Low 

Meteorites High Low Low 
Accidents Low  High Low 

Hazardous Spills 
(Physical) Low High Low 

Hazardous Spills 
(Biological) High Low Low 

Hazardous Spills 
(Chemical) High Low Low 

Hazardous Spills 
(Nuclear) High Low Low 

Terrorist 
(Bombing) High High Low 

War High Moderate Moderate 
Table 1.3: Differences in Extreme Conditions: Urgency of Evacuation, 

Control Measures, and Predictability 
 

The focus of the present study is on extreme conditions that involve a high 

degree of threat to human life, and that require evacuation with a high degree of 

urgency. Accordingly, panic behavior is likely to be an essential element of these 

situations. The concept of “panic” is presented and discussed in the next section. 

Finally, extreme conditions could be studied in the context of different 

transportation modes, such as air, maritime, auto,  transit,  rail,  or bike/pedestrian. 

The focus of this study is on extreme conditions in the context of the highway and 

auto-driver mode. 
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1.3. Panic: Psychological Overview 

 The literature on panic is characterized by many ambiguities and “tenuous 

generalizations” (Schmidt and Warner, 2002). The word is often misused in the 

media and in our everyday language. For example, when reporting about 

earthquakes (Moore, 1999), train bombings (Jamieson, 2004), or fires (World 

News, 2004), the news media tend to refer to panic as a simple flight behavior 

that is the only rational way to respond to such conditions. 

 Historically, the word “panic” referred to sudden and unreasoning fear in 

Greek, French, and later English languages (Boulenger and Thomas, 1987). 

Today, the best description of panic is through the definition of a “panic attack” 

or “panic disorder” established by the Association of Panic and Anxiety. These 

definitions are found in DSM-IV (Diagnostic and Statistical Manual of Mental 

Disorders) with the following criteria (Schmidt and Warner, 2002): 

1- DSM-IV criteria for panic attack: 

A discrete period of intense fear or discomfort, in which four (or more) of the 

following symptoms developed abruptly and reached a peak within 10 

minutes: 

A- Palpitations, pounding heart, or accelerated heart rate  

B- Sweating 

C- Trembling or shaking 

D- Sensations of shortness of breath or smothering 

E- Feeling of shock 

F- Chest pain or discomfort 
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G- Nausea or abdominal distress 

H- Feeling dizzy, unsteady, lightheaded, or faint 

I- Derealization (feelings of unreality) or depersonalization (being 

detached from oneself) 

J- Fear of losing control or going crazy 

K- Fear of dying 

L- Paresthesias (numbness or tingling sensations) 

M- Chills or hot flushes 

2- DSM-IV criteria for panic disorder: 

a. Both (1) and (2): 

1- recurrent unexpected panic attacks 

2- at least one of the attacks has been followed by one 

month (or more) of the following: 

i- persistent concern about having additional attacks 

ii- worry about the implications of the attack or its 

consequences (e.g., losing control, having a heart 

attack, “going crazy”) 

iii- a significant change in behavior related to the 

attacks 

b. The panic attacks are not due to the direct physiological effects of 

a substance (e.g., a drug of abuse, a medication) or a general 

condition (e.g., hyperthyroidism). 
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c. The panic attacks are not better accounted for by another mental 

disorder, such as Social Phobia (e.g., on exposure to a feared social 

situations), Specific Phobia (e.g., on exposure to a specific phobic 

situation), Obsessive Compulsive Disorder (e.g., on exposure to 

dirt in someone with an obsession about contamination), Post-

traumatic Stress Disorder (e.g., in response to stimuli associated 

with sever stressor), or Separation Anxiety Disorder (e.g., in 

response to being away from home). 

The two previous definitions refer to panic as a mental disorder and not as a 

behavioral state. Historically, the association of panic and anxiety has been 

“variable and contingent from both a clinical and historical standpoint” (Clark, 

1995). Some experts argue that panic and anxiety represent two very different 

kinds of experience. In the National Comorbidity Survey, modeled on the 1990 

U.S. Census, panic ranked as the least frequent anxiety disorder (Schmidt and 

Warner, 2002). In this study, panic is seen as an extreme case of anxiety; panic 

attacks are extremely strong anxiety attacks with the same criteria explained in 

DSM –IV. Accordingly, the criteria are the same in type but different in degree. 

 Ambiguity and debate still remain about panic being a cognitive state, a 

physiological state, or a social state.  Panic is dependent on and correlated with an 

individual’s socio-economic environment. “Whatever panic behavior involve, it 

does represent the behavior of a socialized individual, perceiving and thinking in 

socially defined and supported ways, reacting to socially interpreted situations, 

and interacting with and giving meanings to the actions of still other social 
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beings” (Shultz, 1964). The first studies regarding panic were conducted from a 

purely cognitive standpoint. However, this kind of approach focuses on the 

cognitive aspect of panic, overlooking the fundamental roles played by bodily 

responses and sensations experienced. “The physiological arousals in a panic state 

both feed into and are fed by the cognitive assessment of a subject, as if body and 

mind are welded together” (Schmidt and Warner, 2002). More specifically, panic 

leads to more than a psychological state of mind, but also a physiological 

response.  

 Since the behavioral aspects of panic responses are not fully understood, 

Schmidt and Warner (2002) examined animal behavior under panic situations to 

clarify this issue. When an animal is faced by danger, it tends to have either an 

orienting or a defensive behavior. More specifically, the animal tends either to 

defend itself or to flee the scene. However, this may not solve the problem and the 

animal will be faced by what is called “perception of inescapability” (Schmidt and 

Warner, 2002). In this situation, panic feeling will be generated, representing a 

failure of the organism’s innate defensive structures to mobilize and thus allow 

the individual to escape threatening situations actively and successfully. However, 

when orienting and defensive behaviors are carried out smoothly and effectively, 

panic is not generated. In other words, when the normal orientation and defensive 

escape resources have failed to resolve a dangerous situation life hangs in the 

balance with non-directed flight, rage, freezing, or collapse. “Rage and terror-

panic are the secondary emotional anxiety states that are evoked when orientation 

and preparedness to flee are not successful.” (Schmidt and Warner, 2002) 
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Freezing is also called tonic immobility that is a heightened contraction of agonist 

and antagonist muscle group. It is the last resort when active escape is not 

possible. Defining the boundaries of panic from psychological and physiological 

points of view, panic is now better understood from an individual point of view. 

However, drivers are defined as an organized group that interacts with each other 

following some governmental or societal rules (traffic laws).  Accordingly, panic 

should be also seen from a collective point of view. 

 Among the first studies regarding panic in organized groups, the example 

taken was military groups. According to Freud, an army is a highly artificial 

grouping since some external force is required to keep it intact and to maintain its 

rigid structural integrity (Schultz, 1964). This integrity will help the army serve its 

purpose. Panic arises when this group disintegrates to the point where: (1) the 

orders of the superior are no longer attended to, and (2) each individual becomes 

concerned with his own welfare only and has no consideration for the other 

members. In other words, panic is considered to result from a “break-down in 

group structure” (Schultz, 1964). 

 To help identify more aspects of panic behavior, Quarantelli (1957) 

analyzed the behavior of people engaged in a panic flight. He based his analysis 

on tape-recorded interviews with around 1000 persons who were involved in 

minor or major disasters. The disasters were studied by the Disaster Team of the 

National Opinion Research Center of the University of Chicago. To help identify 

the persons subjected to panic, panic was considered here to be only that flight 
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behavior which is destructive to the group. The following observations were 

noted: 

1- Generally, a panicky person is an individual who has been fairly well 

divested of all or almost all of his socially acquired characteristics. He is 

thought of as behaving in a completely irresponsible or anti-social manner. 

The situation is very similar to a wild chaotic stampede. 

2- The panic participant perceives a specific threat to physical survival. 

Moreover, he is aware of what he is afraid of. 

3- The panic participant is future-threat rather than past-danger oriented. His 

attention is focused on what may occur rather than on what has happened. 

Accordingly, panicky reactions will occur in situations involving no real 

threat simply because a threat is possible. 

4- The panic participant is acutely self-conscious and fearful. The more 

threatening he perceives the situation to be, the greater his awareness of 

himself. Moreover, he tends to give an overt expression of his fear if he 

becomes helpless and powerless to cope with a threat. 

5- The panic participant is aware of his activities. This may have some 

degree of conflict with the previous observation. But this suggests that 

some panic participants still rationalize their decisions to a certain degree. 

6- The panic participant is non-rational in his flight behavior. There is no 

involvement of the weighing of alternative courses of action. This is due 

to the participant’s focalization of his thought and consequent overt 

activity to remove himself from a threatening area.  
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7- The panicky participant is highly self-centered, thinking only of saving 

himself. In this sense, panic flight represents a very highly individualistic 

behavior. 

The above observations are helpful but still vague in terms of their applicability to 

and implications for drivers and their behavior. The next section discusses driver 

behavior in light of the above background on panic. 

 

1.4 Panic: A Driver Behavior Characteristic 

 Panic behavior can be studied in different contexts. In transportation, 

panic results from a life threatening situation during extreme conditions. 

However, as mentioned earlier, not all extreme conditions cause panic because 

they differ in type and degree. Some extreme conditions, such as extreme heat or 

cold, may only cause mild anxiety levels; panic is considered the strongest level 

of anxiety. 

  At the microscopic level, panic behavior may be distinguished from 

normative non-panic behavior according to the following dimensions: 

(a) Longitudinal driving: under extreme conditions a driver may accelerate 

at a high rate and reduce headways to pressure the driver ahead, who 

correspondingly might do nothing, switch lanes, or attempt to decrease his 

headway with his predecessor. The shorter headways contribute to 

increasing the volatility and danger level of the situation. Moreover, a 

driver may decelerate at a higher rate than needed to avoid collision with 
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the leading vehicle. This high deceleration rate may be the direct cause of 

a crash. 

(b) Lateral Behavior/Lane-Changing: 

In the case of increased aggressiveness, a driver would be willing to 

accept small gaps (headways), forcing the car upstream in the receiving 

lane to break strongly, possibly resulting in a crash. Steering errors and 

other kinds of control movements are also aspects of panic behavior, 

though those may be more difficult to describe and model at the 

microscopic level. 

The panic behavior of drivers can be seen as unpredictable and at times totally 

unmotivated. However, it is not altogether completely irrational behavior. Panic 

in driving does not mean total chaos. Panicky drivers have a logic that is not too 

different from that of other drivers. However, they are much more self-centered 

and may not have the same ability to identify and weigh alternative courses of 

action. Moreover, when modeling driver behavior under panicky conditions, it 

should be noted that not all drivers are necessarily in a “panic hysterical” state. It 

is sufficient for only some of the drivers to engage in “inappropriate” driving to 

affect the driving of others and cause serious problems in the traffic stream.  In 

some cases, aggressiveness of some drivers will cause an increase of 

aggressiveness shown by other drivers as a reaction. Accidents will be more 

frequent and for that, possibly resulting in greater panic.  If no control action or 

intervention is employed in this situation, the drivers could be stuck in a cycle of 

more aggressiveness that engenders greater panic. 
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 For further characterization of panic behavior, a parallel can be established 

between the panicky drivers’ possible way of thinking and the “animal theory” 

described in the previous section.  Drivers tend to think rationally when first 

subjected to a life threatening situation under extreme conditions. When they 

cannot find a solution that deals with the situation, they try to flee in an organized 

way. However, when it appears that there is little possibility to get rid of the panic 

source, the “perception of inescapability” sets in. Irrational responses are 

generated even when other possible coping strategies are still possible. This may 

cause unorganized fleeing even in the wrong direction. The more time elapses, the 

more likely are manifestations of non-rational behavior to appear. Drivers can 

become increasingly aggressive. However, some of the drivers may not even try 

to flee anymore. Freezing or slowing in velocity could be their response after 

being unable to cope with the situation. 

 To study panic in transportation from a collective point of view, drivers 

could be viewed as an organized group as described by Freud and Shultz 

previously. The organized group follows some societal rules (traffic laws) 

established by the “leader”: the law enforcement agencies or the government. This 

structure is necessary to allow the group to serve its purpose: mobility. Once 

panic situations are encountered, the whole structure starts to break. The authority 

of the government is seen to be collapsing and respect for traffic laws is 

progressively eroded. Each driver is now concerned about his/her welfare, 

possibly increasing the exposure of other individuals to harm. 
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To understand and define panic behavior, one should understand the 

nature of traffic networks and the relationship between network infrastructure, 

environment and drivers using this network. Based on the Next Generation 

Simulation (NGSIM) Report (FHWA, 2004), the two main components of a 

transportation network are a) the system that needs to support the traffic and b) 

the travelers using this system. The aggregate properties of traffic flow, such as 

Level of Service (LOS) and volume depends on these two components. Figure 1.1 

divides these two components (traveler and system) into different subcomponents. 

 
Figure 1.1: Traveler and System Characteristics 

(Selected from NGSIM Task E.1-1, 2004) 
 

The first component that is not considered in this thesis is the System 

Management Component since the control measures are typically not in operation 

during extreme conditions. As for the vehicle characteristics (length, steering 

capacity …etc), they are considered identical across all drivers. For that reason, 

they do not constitute a primary factor to be studied 

Traveler 
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Vehicle 
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Network 

System 
Management 

Environment 
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 In each of the traveler and system characteristics mentioned in Figure 1.1, 

there are some major aspects that would affect driver behavior. These aspects are 

listed in Table 1.4 (FHWA, 2004).  

Major Factor Aspects affecting Traveler Behavior 
Decision Making: 
1-Familiarity of drivers with network 
2-Driver aggressiveness 
3-Driver value of time 

Traveler Characteristics Compliance: 
1-Speed limits 
2-Traffic Signals 
3- Ramp Metering 
4-Lane Restrictions/usage 
5-Road type preference 
Link Geometry: 
1-Facility Type 
2-Grade&grade changes 
3-Auxiliary lanes 
4-Route restrictions/land use 
5-Sight restrictions 

Network 

Intersection Geometry: 
1-Angle between links 
2-Flared angles 
Incidents: 
1-System Effects (lane closures) 
2-Behavioral Effects (emergency braking, rubber-
necking) 
Work Zones: 
1-System Effects (variable/reduced speeds) 
2-Behavioral Effects (emergency braking, rubber-
necking) 

Environment 

Weather: 
1-System Effects (localized reduced visibility, 
systemwide reduced surface quality) 

Table 1.4: Influence Factors on Traveler’s Behavior 
(Selected from NGSIM Task E.1-1, 2004) 

 
 

Under extreme conditions, the compliance of drivers with traffic laws and 

information from management systems may be reduced. Drivers would be 

expected to ignore traffic laws instead of complying with them.  



 18

Finally, there is no single source describing driver panic behavior under 

extreme conditions. The characteristics of panic behavior are obtained from three 

types of resources. The first type is based on personal suggestion combined with 

media fliers related to aggressive driving. These fliers can be found in newspapers 

or in campaigns for safe driving (National Highway Traffic Safety 

Administration, U.S. Dept. of Transportation, 1998). The following 

characteristics come from this source: 

1- Tailgating (decrease of headways) to pressure a driver to go faster or get 

out of the way. 

2- Using the vehicle to retaliate by making sudden, threatening maneuvers. 

3- Sudden lane changing. 

4- Increase in the number of accidents leading to an increase of congestion. 

5- Emergency breaking and rubber-necking. 

 The second type of characteristics is deduced from psychological and social 

definitions of panic behavior presented in Section 1.2. For example, the disrespect 

of traffic signals and signs is based on Freud’s definition of panic behavior: the 

structure of the transportation system is seen to collapse without respecting the 

rules that holds it together. These characteristics are listed below: 

6- Increase in velocity for aggressive drivers, resulting in higher acceleration 

and deceleration rates. 

7- Decrease of critical allowable gaps. 

8- Tendency to disrespect traffic signs and signals. 



 19

9- Increase in intensity of panicky reactions (velocity, breaking rates, 

aggression …etc) with time as long as the source of panic is still present. 

Finally, characteristics were taken from various papers studying related 

subjects. The following characteristics are based on the features of escape panic 

for pedestrians (Helbing, 2000): 

10- Herding Behavior: many drivers are not normally aware of the possible 

network exits that allow them to escape from a given dangerous situation. 

In that case, they tend to follow the main stream of traffic hoping that it 

will lead them to these exits, generating a traffic pattern called mass or 

herding behavior. This mass behavior may cause congestion and 

bottlenecks during extreme conditions. 

11- Clogging at critical zones leading to longer queues. 

 The final characteristic is based both on psychological analysis of panic 

behavior and on the differential of velocities suggested by Daganzo (1999): 

12- Higher variance in velocities due to drivers freezing or slowing down for 

not being able to cope with a specific threat. 

 

There should be no confusion between a panic behavior and a result of a panic 

behavior. The 12 characteristics mentioned above are all panic behaviors except 

Characteristic 4 and Characteristic 11; an accident is not a behavior in itself but a 

consequence of the aggressiveness, lack of alertness, or disrespect of traffic laws 

shown by some drivers. On the other hand, clogging is an aggregate result of 

individual driving patterns in a given traffic situation. 
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1.5. Problem Statement 

 This thesis examines the effect of extreme conditions on drivers’ behavior 

and thus the affect on vehicle trajectories and aggregate traffic flow properties in 

a simplified transportation network. In analyzing extreme conditions, the 

definition and conditions of “panic behavior” requires attention. However, the 

ambiguities associated with the world “panic” have led to the absence of a 

consensus on a clear definition of this type of behavior. For that reason, no 

existing traffic simulation model adequately addresses driver behavior under 

extreme conditions. Thus, this thesis ultimately aims at defining individual panic 

behavior as it relates to extreme conditions and under this definition, examine 

driver behavior under extreme conditions. 

 Based on the above problem statement, the main objective of this study is 

to model individual panic behavior of drivers under extreme conditions. More 

specifically this thesis aims to: 

1. Formulate a micro-simulation model capable of capturing and accounting 

for driver behavior under extreme conditions. 

2.  Validate this model against real-life vehicle trajectory data. 

3. Conduct a sensitivity analysis to determine the range of applicability of 

the suggested model. 

In the previous two sections, the scope of panic behavior and extreme conditions 

was presented, analyzed, and defined. Accordingly, modeling driver behavior 

under extreme condition requires further effort and research. Extreme conditions 

give rise to different types of behaviors. The focus of the present study is 
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concerned with extreme conditions associated with panic behavior or high 

urgency for evacuation (Table 1.1).  

 Modeling the panic behavior of drivers is difficult. Section 1.2 helped 

define the scope of panic behavior and reduced it to specific behavioral attributes. 

The micro-simulation model aims to capture the largest possible number of the 

behavioral attributes mentioned in Section 1.4. 

 Chapter 2 aims to review different existing driver behavior models and 

their strengths and weaknesses. Each model is assessed and evaluated with respect 

to its suitability to model panic behavior. Accordingly, this will help in 

formulating and implementing a model of driver behavior in this thesis. This 

model will be presented and discussed in Chapter 3.  

 Additionally, since no data are available under extreme conditions, 

calibrating the model in this thesis is near impossible. Thus, this study is restricted 

to using numerical examples and a sensitivity analysis to illustrate different 

effects of panic behavior on driver behavior. This sensitivity analysis is presented 

in Chapter 4.  Finally, Chapter 5 presents some concluding remarks. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Introduction 

The models presented and discussed in this chapter capture drive behavior 

at the individual level decisions, collectively giving rise to aggregate traffic flows. 

Although this thesis aims to provide a model of driver behavior that can describe 

and capture panic behavior, as defined in Chapter One, this chapter will present 

and discuss existing micro and macro simulation traffic flow and driver behavior 

models that have applications beyond panic. An assessment and evaluation of 

these models will help identify shortcomings of existing models. 

Travel decisions occur at five different time horizons or levels: 

1- Pre-trip: consists of the decisions made before starting a trip (departure 

time choice, mode choice). 

2- Strategic en-route: involves the decisions that travelers make en-route, 

while executing a trip. These decisions usually impact the overall structure 

of the trip (route choice and switching).  

3- Tactical en-route: a consequence of small multi-part decisions that are 

made to complete a small but coordinated portion of a trip (lane-changing, 

overtaking).  

4- Operational driving: this is the main focus of this study. Operational 

driving behaviors represent decisions that a traveler make “on a near 

instantaneous basis,” typically to satisfy an immediate goal” (acceleration, 

gap acceptance).  
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5- Vehicle control: vehicle control decisions are made instantaneously and 

satisfy human-machine interaction needs. 

These five levels are shown below in Figure 2.1 in relation to the approximate 

time needed to execute decisions at each level.  

 

Figure 2.1: Classification of Traveler Behavioral Models 
(Selected from NGSIM Task E.1-1, 2004) 

 

Figure 2.1 above illustrates the time scales at which different behavioral models 

adopted in this chapter occur. Several models have been developed by various 
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researchers within each level. The table below lists the behavioral models that 

will be assessed: 

 
Existing Research Behavioral Model 

Category Major Moderate 

Operational Acceleration Gap Acceptance 

Tactical Lane Changing - 

Table 2.1: Driver Behavior Models Reviewed 
 

Note that models dealing with parking, transit, pedestrians are not mentioned here 

since they are not the object of interest in this study. The main issue to be 

analyzed is vehicular traffic on freeways. 

 

2.2. Operational Models 

 Operational driving decisions are defined in this thesis as the decisions 

that drivers make on a near instantaneous basis so as to satisfy an immediate goal 

of a given trip. Based on Figure 2.1, these decisions take less than five seconds to 

execute. Acceleration (car-following) models and gap acceptance models are 

discussed next. 

 

2.2.1. Acceleration (Car Following) Models 

 Acceleration models are at the core of operational behaviors. These 

models are still referred to as car-following models since early research focused 

exclusively on interactions between a lead and following vehicle. Fundamentally, 

car-following models aim at describing the trajectory of the nth vehicle in a traffic 
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lane given the trajectory of the (n-1)th vehicle in the same lane. Accordingly, the 

main assumption in these models is that a correlation exists between vehicles 

traveling on the same lane when inter-vehicle spacing is within a range, typically 

between 0 to 125 meters (Rothery, 1999). According to Boer (1999) modern 

acceleration models are structured to account for several factors such as i) task 

scheduling and attention management; ii) the use of perception rather than 

Newtonian variables; and iii) satisfy a performance evaluation strategy, rather 

than an optimal one. 

 Researches have employed many different approaches, such as physical, 

psycho-physical, fuzzy-logic, and agent-based cellular automata (give references 

for each of these approaches), towards building car-following models. Among the 

first proponents of the car-following concept was Pipes (1953). He developed 

“theoretical control-system expressions” for the accelerations applied by the 

follower given the leader’s behavior. Pipes assumes that the follower vehicle 

wishes to maintain a safe headway equal 1.02 seconds. However, this assumption 

is unrealistic under extreme conditions that lead to panic behavior. First under 

extreme conditions, drivers may not consider safety issues, and thus exhibit 

riskier behavior compared to normal conditions. Second, even if safe headways 

used, they most likely vary among locations, drivers, and traffic conditions. 

According to the Next Generation Simulation (NGSIM) Report (FHWA, 2004), 

acceleration models can be classified into the following categories: i) stimulus-

response models; ii) desired measures models; iii) psycho-physical models; iv) 

multi-regime models; v) intelligent driver models; and vi) cellular-automata. 
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Stimulus-Response Models 

Herman et al. (1959) and Chandler developed several car-following 

models at the General Motors Research Laboratories. These researchers were the 

first to introduce the sensitivity-stimulus framework, under which driver 

acceleration behavior is a reaction to environmental stimuli. According to this 

framework, the response (acceleration/deceleration) is lagged to account for 

perception and reaction time (sensitivity). The GM models (also called Gaziz-

Herman-Rothery or GHR models) assume that stimulus is determined by the 

relative speed of the following vehicle with respect to the leader. However, this 

approach ignores important latent stimuli, such as visibility and weather, which 

are important especially in the context of extreme conditions. Moreover, this 

assumption does not account for uncongested free-flow conditions. 

Five generations of car-following models were developed by GM (May, 

1990). The simplest model is the linear car-following model (Chandler, et al., 

1958; Herman, et al., 1959). Gazis et al. (1959 and 1961) extended this model to 

overcome basic limitations. First, the steady-state equations derived from the 

linear car-following model were integrated to obtain a linear-flow-density 

relationship, accordingly identifying two car-following behaviors, one for 

congested and one for uncongested conditions (Ceder, 1976). Additionally, efforts 

have also been made to identify new parameter values that provide better fit to the 

available data (Brackstone and McDonald, 1999; Aron, 1988; Ozaki, 1993). After 

examining a number of macroscopic and microscopic models, May and Keller 

(1967) show that all the previously discussed models can be reduced to a general 
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car-following equation by selecting appropriate shape parameter values (m and l) 

from a range of values. However these parameters do not have intuitive or 

behavioral interpretations related to traffic flow. Additionally, they need to be 

calibrated each time to fit given traffic data. 

 

Desired Measures Models 

Desired measure models assume that the driver maintains a desired speed 

or headway measure, so as to minimize both the relative speed to the leader and 

the difference between the actual space headway and the desired one. These 

models address a deficiency of the GM model by allowing the spacing between 

two successive vehicles traveling at the same speed to take any value. One 

improvement over these desired measure models is the development of a four-

component model that attempts to explain acceleration behavior in standard car-

following, by incorporating the effects of gradient, acceleration from a standing 

queue, and acceleration in free-flow regimes (Xing, 1995). 

In an optimal velocity model the optimal speed is a function of the space 

headway with respect to the leader (Newell, 1961; Bando, et al., 1995). The 

acceleration the driver applies is proportional to the deviation of the actual speed 

from the desired one. However, in panic and extreme conditions aggressive 

drivers may not accelerate or decelerate proportional to headways. 
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Psycho-Physical Models 

Psycho-Physical models extend the GM models by addressing two 

assumptions. First, these models relax the assumption that the drivers follow their 

leader even when the distance between them is large. Second, the perception and 

reaction are not sensitive to small changes in stimulus (Michaels, 1963; Todisiev, 

1963). To address these two assumptions, the concept of perceptual thresholds is 

introduced to define a perceptual threshold that defines a stimulus range within 

which the driver of the following vehicle would not notice any change in his 

conditions and thus would maintain a constant acceleration. This plays an 

important role in modeling and describing panic behavior especially since the 

sensitivity (perceptual thresholds) of the drivers may decrease during extreme 

life-threatening conditions. 

The perceptual threshold is low for short headways and increases infinitely 

for large headways, representing an increase in driver alertness for small 

headways and the lack of explicit car-following behavior for large headways 

(May 1990). However, during panic situation car-following behavior may not 

strongly govern acceleration behavior even for small headways, since drivers tend 

to function as independent individuals and not as a collective group. Additionally, 

perceptual thresholds are different for acceleration and deceleration decisions. 
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Multi-Regime Models 

As mentioned earlier, car-following models aim at capturing and 

describing more general acceleration and deceleration behaviors of drivers. Multi-

regime models aim at capturing a wide range of acceleration/deceleration 

behaviors. Gipps (1981) developed the first car-following model that applies to 

both congested and free-flow conditions. He suggests that a maximum 

acceleration is determined based on two main constraints: i) the driver’s desired 

speed that may not be exceeded; ii) a minimum safe headway that the driver must 

keep. The safe headway is based on the minimum headway that allows a driver to 

avoid collision with its leader if the leader applies emergency braking. However, 

this assumption leads to a crash-free model that cannot be applied for extreme 

conditions. In a similar model developed by Benekohal and Treiterer (1988), the 

assumption of a safe headway is relaxed since headways can be reduced to shorter 

than safety limits due to driver aggressiveness or look-ahead behavior. 

Nonetheless, Gipps-type models, in their deterministic limit, are ill suited to 

capture traffic instabilities or hysteresis effects, which exist in the real world 

(Treiber, at al., 2002). 

 Another general acceleration model developed by Yang and Koutsopoulos 

(1996) assumes drivers change their behavioral patterns based on one of three 

regimes they follow: i) emergency; ii) car-following; iii) free-flowing. The 

emergency regime allows the driver to apply necessary deceleration to avoid 

collision with its leader. As mentioned earlier, this assumption does not 
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necessarily hold for panic behavior. A similar multi-regime acceleration model is 

based on the space headway instead of the time headway (Zhang, et al., 1998). 

 

Intelligent Driver Model (IDM) 

 A vehicle’s acceleration in the Intelligent Driver Model (IDM) is a 

continuous function of the vehicle’s current velocity, the ratio of the current 

spacing to the desired spacing, and the difference between the lead and the 

following vehicles’ velocities (Helbing, et al., 2002; Treiber, et al., 2002). In this 

model, the desired gap size is not a factor calibrated by the modeler. It is given by 

a dynamic equation which varies with the driver’s velocity and the rate of 

approach giving the driver more “intelligence.” Their ability to capture time-

varying characteristics allows IDM models to be more realistic.  

 

Cellular Automata (CA) 

 Cellular automata (CA) models use discrete space systems to represent all 

types of behaviors. However, the focus of most of the existing models is on car-

following behaviors, because of their role in traffic stability phases. However, 

rather than being considered a new and different behavioral model, CA systems 

are implemented as discretized versions of older car-following models. They 

provide a computationally efficient method for simulation of large scale networks 

since they are discrete dynamical systems: space, time, and properties of 

automaton have finite, countable number of states. The objective of CA is to not 

describe and model complex system with complex equations, but let the 
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complexity emerge by interaction of simple individuals following simple rules 

(Schatten, 1999). This is similar to an agent-based simulation framework where 

the complex behavior of the system emerges from the behaviors and interactions 

of individual agents. Two main properties of CA models are: i) a regular n-

dimensional lattice (n is in most cases of one or two dimensions), where each cell 

of this lattice has a discrete state; ii) dynamical behaviors described by so called 

rules. These rules describe the state of a cell for the next time step, depending on 

the states of the cells in the neighborhood of the cell. 

Cremer and Ludwig (1986) and Nagel and Schreckenberg (1992) were 

among the first researchers to develop CA models. The application of these 

models to traffic dynamics attracted many others, especially physicists. The aim is 

mainly to understand traffic instabilities that are the central cause for congestion 

(Helbing, 2001). However, CA models offers only crude estimates of the real 

dynamical behavior of an individual vehicle. Additionally interactions among 

drivers are difficult to relate to interaction between cells in CA models. 

 

Synthesis of Car-Following Models 

Gaziz-Herman-Rothery or GHR models were the first implemented 

models. However, the lack of conclusive evidence to the behavioral linkage of the 

GHR equation to the real driving behavior has led to its decline. Moreover, there 

is a lack of an obvious relationship between the GHR variables and the 

identifiable characteristics of drivers or vehicles (Gipps, 1981). 
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Desired stimulus models are easy to calibrate. This may be due to the 

estimated parameters which do not account for other influences such as lane 

geometry, weather conditions, or risk-taking behavior of the drivers. 

Psycho-physical models capture the interaction between driver-vehicle 

units with other driver-vehicles units based on the drivers’ perceptions of the 

relative motions of the other vehicle’s movements to its own. These models have 

multiple parameters and can be difficult to calibrate. 

Multi-regime acceleration models could fall into any of the previous three 

types with different equations applied to different regimes. Although they show 

realistic behavior, they rarely show traffic instabilities. The model by Zhang and 

Kim (2000) is the one of the few existing models claiming capability of modeling 

capacity drop and traffic hysteresis. 

IDM models are new and promising especially since the dynamic 

equations associated with the velocity characterizes realistic driver behavior. CA 

models require extensive calibration to be operational. 

Car-following models are both a type of model for driver behavior and a 

foundation for implementing predictive microscopic model. These models are the 

easiest to validate. The amount of variation in acceleration model validation is 

small (Wagner, et al., 2002) and few parameters require estimation. This is due to 

presence of rigid assumptions about the homogeneity of decisions made by each 

driver class. On the other hand, the main shortcomings in acceleration models 

concern the exclusion of direct environmental and system management effects. 

Weather is an influence on car-following models that has not been fully studied to 
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date. Finally, the applicability of car-following models to mixed traffic situations 

is an issue for future research. 

 

2.2.2. Gap Acceptance Models 

The concept of gap acceptance is mainly important for unsignalized and 

signalized behavioral models. “In general, there are two types of gap acceptance: 

i) crossing gap acceptance at intersections; and ii) gap acceptance during merging 

or lane changing maneuvers. The main interest for this thesis is the latter type. 

Two gaps (lead and lag) are considered by the prospective leading and following 

vehicles, respectively and all three vehicles (the leading, lagging, and vehicle of 

interest) are moving at speed. It was assumed originally that both merging and 

crossing maneuvers behave in the same way (Raff and Hart, 1950; Haight, 1963). 

Later on, researchers suggest that merging gap acceptance should be treated 

differently (Drew, et al. 1967). This section will focus on crossing gap acceptance 

models for vehicles at signalized and unsignalized intersections, with the main 

focus on critical gaps. Unlike in the Highway Capacity Manual (HCM, 2000), in 

micro-simulation models the critical gap is used to describe the threshold used by 

a particular driver to determine acceptability of a gap, which is better in terms of 

modeling gap acceptance under panic behavior. The empirical studies done by 

HCM were not based on data collected during extreme conditions. Moreover, the 

assumption that the critical gap is equal to the median of the distribution of gaps 

accepted by all drivers implausible since most likely it varies across drivers. 
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Deterministic/Distribution Gap Acceptance 

  Most of the gap acceptance models are formulated as a binary choice. 

Drivers either accept or reject a presented gap in the current time interval, relying 

on the comparison of the existing gap with the driver’s critical gap. The driver’s 

decision is assumed to be based upon perfect perception and information on the 

approach vehicles’ attributes, such as acceleration. Under extreme conditions, this 

assumption does not hold. Moreover, in deterministic approaches, a driver’s 

critical gap is assumed to be constant. In distribution gap acceptance, although 

critical gaps vary with drivers, it does not vary across time. However, gap 

acceptance is a situational decision that depends on a driver’s present conditions 

(Daganzo 1981). 

The random component in deterministic/distribution critical gap 

acceptance models has been formulated using critical gaps as random variables 

with various distribution forms.” Early research assumes that the value of the 

critical gap is between the value of accepted and rejected gaps (Raff and Hart, 

1950). Under the same concept, an exponential distribution of critical gaps 

between the two values was first assumed by Herman and Weiss (1961). Drew, at 

al. (1967) assumed a lognormal distribution. After conducting a review on nine 

critical gap estimation methodologies from the 1960s to the 1970s, Miller (1972) 

concluded that the maximum likelihood estimator gives the best estimation of the 

value of the critical gap. After different updates and improvements over the years, 

Troutbeck (1992) presented a more precise form. 
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The main framework to form gap acceptances methodologies to calculate 

capacity is founded on the research conducted by Siegloch (1973). This 

framework is only valid for saturated conditions and impractical for many other 

situations, such as uncongested situations and panic conditions. Briton, et al. 

(1999) later reviewed several gap acceptance methodologies and recommended 

the maximum likelihood estimator for the critical gap (Troutbeck, 1992) as the 

most appropriate for capacity estimation. 

The first maximum likelihood method started in 1968 (Miller and Pretty, 

1968) and it assumes that each driver d has two values: 1) rd or the largest rejected 

gap (in seconds), and 2) ad, or the accepted gap (seconds). The model determines 

the probability of critical gap tc, bounded by rd and ad. Typically tc is assumed 

lognormally distributed. However, the main issue in modeling gap acceptance is 

the priority/right-of-way rules that are typically inapplicable to extreme 

conditions. Moreover, some influencing factors, such as …, are not included in 

most of these studies and the parameters do not represent vehicle-driver 

characteristics related to panic behavior. These models are based on probabilistic-

economics theories more than they are based on direct traffic relationships. This 

same problem is to be discussed in the next sub-section. 

 

Deterministic/Distribution Gap Acceptance Parameters 

Most of the parameters of concern in the context of gap acceptance, such 

as type of maneuver, speeds, geometric characteristics, and sight distances, are 

presented for qualitative discussions, alternative model formulations, or 
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determining critical gap default values rather than a microscopic description of 

how individual driver decisions are made].  

One variation of standard gap acceptance maneuvers is the two-stage gap 

acceptance maneuver performed at intersections with medians and two-way left-

turn lanes (TWLTLs).  The near-side traffic is crossed first. Next the driver stops 

in the median area, while searching for a gap on the far-side of traffic. The HCM 

simplifies this maneuver by dividing it into two parts: the first part is the vehicle 

maneuver from the original travel lane into the TWLTL, and the second maneuver 

is performed between the TWLTL and the minor street. 

A second variation of gap acceptance is with U-turn maneuvers. This can 

be treated with the assumption that vehicles need to consider two different gaps: i) 

the crossing gap; ii) the gap required to execute the U-turn without excessively 

impeding the progress of oncoming vehicles. However, limited attention has been 

given to this concept of gap-acceptance with U-turns and no parameters specific 

to U-turns has been included. 

The final parameter discussed is the driver/vehicle waiting time. A given 

driver’s critical gap typically decreases over time as his patience becomes more 

limited. The decrease is strongly correlated to the time spent waiting at the 

intersection (Mahmassani and Sheffi, 1981). During extreme conditions, drivers 

may see the urgency of evacuating as a reason to accept shorter gaps and their 

impatience grows much stronger, but past studies have not addressed this issue. 
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Probabilistic Gap Acceptance 

The main shortcoming of deterministic/distribution gap acceptance 

methodologies is that they cover variation in critical gap values across drivers and 

situations, but given the same factors (major stream traffic volumes, maneuver 

type, waiting time) the same driver will choose the same gap. Probabilistic gap 

acceptance models are formulated to capture random variability in gap acceptance 

across individuals; there is some random error in the choices people make and 

that needs to be captured 

In 1981, driver-specific variation in critical gap was first introduced using 

a multinomial probit formulation of critical gaps (Daganzo, 1981). In this study 

the mean critical gap tc is a function of influencing factor variables and is 

modified by a random variable ε that is distributed Normal with a zero mean.. 

Each gap observed by a driver has a probability of either being accepted or 

rejected depending on the gap’s length.  Accordingly, this formulation requires a 

specific set of coefficients for each driver class or driver characteristic dimension 

to be estimated.  

Mahmassani and Sheffi (1981) allowed the mean of the distribution of 

critical gaps to be a function of influencing factors of a given function. Their main 

focus was on the driver’s wait time at intersection. The critical gaps were assumed 

to be normally distributed. The authors concluded that the number of rejected 

gaps by a given driver had a significant influence on the gap acceptance behavior 

of individuals. Accordingly, the value of time proved to be an important factor 

and in the case of panic behavior for gap acceptance, it should be equally as 
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important. Also at stop-controlled intersections, total queuing time was used 

instead of waiting time as to reflect the impatience factor in the reduction of the 

critical gap value (Madanat, et al., 1994). 

In addition to probit models, logit models were also used to formulate 

probabilistic gap acceptance. Cassidy, et al. (1995) applied a logit model for stop-

controlled T-intersections. In this study, initial lags are differentiated from 

subsequent gaps and gaps in the near lane are differentiated from gaps in the far 

lanes. This differentiation was done by introducing dummy variables to the logit 

model. 

 Simple gap acceptance models for low volumes have a tendency to over-

estimate the capacity of flow in the direction with the right-of-way and to under-

estimate for high volumes. Probabilistic approaches aim to decrease this type of 

error. The main tradeoff in gap acceptance models concerns the gap acceptance 

parameters included to capture differences in gap acceptance across the driver 

population. Models with single, globally applicable parameters are easiest to 

estimate, but not likely to be appropriate for all conditions (extreme conditions, 

geometric conditions and others). Models with many parameters are more 

difficult to calibrate and estimate. 

Even with huge amounts of data, there is limited evidence that supports 

gap acceptance procedures. A critical gap that applies to all situations across all 

individuals is intuitively implausible. Moreover probabilistic gap acceptance 

models do not significantly affect the capacity and performance of the simulation 

packages.  Another problem is the quality of parameters used and not their 
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quantity. The question of how to include the influences factors explicitly rather 

than as a “proxy-effect” that must be configured by the user is still to be 

answered. For example, visibility is an important factor in weather extreme 

conditions, but is not directly presented in most gap acceptance models. Other 

issues are related to the unrealistic exact prediction of drivers to the speed, 

location, and gap size of each and every oncoming vehicle. Moreover, in micro-

simulation models, such as CORSIM and VISSIM, when a vehicle crosses in 

front of a driver, this driver tends not to react at all; this situation rarely occurs in 

real traffic conditions even at tight bumper-to-bumper tolerances. Finally, the 

assumption that all accepted gaps are safe gaps is the main limitation in these 

models. Under extreme conditions, drivers tend to force their gap. Drivers 

typically create an acceptable gap for themselves by assuming that the right-of-

way will react to avoid a collision. This will create many accidents that can not be 

captured by existing gap acceptance models. 

 

2.3. Tactical Models  

 Tactical behaviors are performed to achieve short term objectives in a 

given trip from origin A to destination B. They represent small, multi-part 

decisions to complete a small, but coordinated, portion of a driver’s trip plan. 

 

2.3.1. Lane Changing Models 

 Lane-changing can be considered an operational and a tactical behavior 

depending on its interpretation. Lane changing is simple physical act of changing 
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lanes during driving and can be considered an operational level decision. 

However, the logic behind the selection of the destination lanes is a much 

complicated task that should be studied at the tactical level. In the model 

discussed in Chapter 3, lane changing will be operational in nature especially 

since the boundary conditions of this model do not take into consideration more 

than two lanes or a complicated transportation network. 

Although it has not been as extensively studied as car-following models, 

interests in lane changing models have grown since the complexity of micro-

simulation models have also grown and the computational ability of present 

computers has increased. The first lane changing logic is seen in TEXAS (Rioux, 

1977; Lee, 1977) and in an earlier work by Fett (1974). It consisted of a simple 

decision to consider a lane-change or not; a choice of lane; a search of an 

acceptable gap to execute the lane change; and the selection of the trajectory for 

changing lanes. According to Gipps (1986), before executing a lane change, three 

major questions should be asked: 

• Is it possible to change lanes? 

• Is it necessary to change lanes? 

• Is it desirable to change lanes? 

 

Gipps Model 

Based on the work of Wiedman and Hoopshneider (1977), a clear 

illustration of the lane changing decision process was adopted in the Gipps Model 

(1986). The Gipps model covers different situations under which the lane 
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changing maneuvers are performed. Traffic signals, transit lanes, obstruction and 

presence of heavy vehicles are all taken into consideration. As mentioned above, 

the effects of three major factors are studied: i) necessity; ii) desirability; iii) 

safety in accepting tolerable lead and lag gaps. Moreover, the study assumed the 

motivation behind changing lanes is governed by: i) maintaining a desired speed; 

ii) being in the correct lane for an intended downstream turning maneuver. 

Under extreme conditions, the safety is not considered a main issue 

anymore. Drivers are willing to take greater risks since their main priority is to 

evacuate a given area regardless of the safety of the other drivers and their own. 

Drivers tend to realize and weigh future dangers, such as dying in an earthquake, 

more heavily than the present ones, crashing into another vehicle. This is one of 

the panic behavioral characteristic discussed in Chapter 1. Moreover, being in the 

correct lane for a downstream turning maneuver is not considered if driver 

behavior is to be modeled on a straight free-way with no exits (Chapter 3). 

However, in other conditions, the relative importance of considerations i and ii 

changes with the remaining distance to the intended turn. The Gipps model 

divides every link into three decision zones. In the first zone, the driver is far 

away and the turning direction has no effect on the behavior of the driver. The 

main stress will be on maintaining a given desired speed. In the second (middle) 

zone, the only lanes considered are the turning lanes or the lanes adjacent to the 

desired turning lane. If the driver is located in the third zone, he is very close to 

turning. Accordingly, the desired speed is almost ignored and the focus is on 

keeping the car in the correct lane to make the turn. Under extreme conditions, the 
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main focus may be on maintaining a desired speed, which will take precedence 

over being on the correct turning lanes. This further suggests that the length of the 

third zone should be decreased in favor of the first and the second zone lengths 

under extreme conditions. 

 The lengths of decision zones were first defined deterministically based on 

the physical link length. Variations across drivers were not considered. When 

more than one lane is acceptable based on the above conditions, the conflict is 

resolved by considering the following (in order of importance): i) locations of 

obstructions; ii) presence of heavy vehicles; iii) potential speed gain. 

Although the Gipps model accounts for many different situations, no 

known validation effort of the model’s parameters with field data has been 

conducted. The difficulty lies in the nature of these “abstract” parameters that do 

not represent or capture any considerable physical meaning and thus making the 

validation process harder. 

 

Mandatory and Discretionary Lane Change Models  

 CORSIM classifies lane-changes as either mandatory (MLC) or 

discretionary (DLC) (Halati, et al., 1997; FHWA, 2002). MLC is performed if the 

driver is leaving the current lane to exit to an off-ramp. DLC is seen when no 

requirement to meet such a downstream turning movement or to avoid a blockage 

is posed. The driver perceives that the lead vehicle is traveling at a speed below 

some percentage of the link’s free flow speed. A potential risk factor is computed 

for each potential lane-change. It is measured by the deceleration a driver will 
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have to apply if the leading vehicle brakes to a stop. The calculation of this risk 

factor applies to the subject vehicle with respect to the intended leader and to the 

intended follower with respect to the subject vehicle. The risk factor is compared 

to an acceptable risk factor, which depends on the type of lane-change to be 

performed and its urgency. During extreme conditions, the perceived degree of 

urgency in changing lanes is high and accordingly, the acceptable risk factor can 

be set higher than normal. One of the weak points found in CORSIM is the 

inability to model lane changing explicitly. Vehicles are only considered to be in 

one lane or another. However, it should be noted that in panic behavior, there is 

an abrupt lane changing decreasing the time needed to execute this maneuver. The 

variability across drivers is another issue. In DLC, this is dealt with using an 

aggressiveness factor represented by the intolerable speed under which a driver is 

willing to change lanes. DLC is also determined by a user-specific minimum 

potential headway and maximum potential headway in the target lanes. Driver 

types are motivated for DLC according to the headway value. Under extreme 

conditions, one of the possible modifications to this type of model is to change the 

velocity thresholds and the minimum and the maximum headways mentioned 

above. For example, aggressive panicky drivers tend to have higher velocities 

below which they intend to change lanes. Also, the minimum headway is lower 

since they have no problem in tailgating the leading vehicle. Moreover, they 

accept shorter gaps in the adjacent lane to perform their lane changing maneuver. 

In MLC, aggressive driving is related to an urgency factor. In this urgency 

factor, the following issues should be taken into consideration: 
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• The number of lanes required to reach the turning movement 

• The link free-flow speed 

• The driver aggressiveness factor 

• The distance to the downstream object that is causing the MLC 

The urgency threshold is specified, such that for urgency values up to the 

threshold, the vehicle will accept only normal deceleration to execute a lane 

change. For urgency values above this threshold, the acceptable deceleration rate 

is increased linearly to the maximum acceptable deceleration. The emergency 

breaking encountered under panic conditions could be imitated by decreasing 

these urgency thresholds, making higher deceleration rates are then more 

frequent. In ARTEMIS simulation package, a cooperative lane change is added 

(Hidas and Behbahanizadeh, 1999; Hidas, 2002). Under heavily congested traffic 

conditions a vehicle in an MLC situation may change lanes through cooperation 

with an intended follower. Cooperative behavior models are based on the logic 

that the follower will be willing to allow this lane changing based on his 

aggressiveness. However, they are not discussed in this thesis since little research 

is performed in that domain. Moreover, this kind of behavior is not representative 

of panic situations. Drivers are more individualistic and “selfish” with little or no 

cooperation expected. As with most other operational implementations, 

ARTEMIS does not model the exact lane changing maneuver explicitly. It 

represents it as an instantaneous movement after delay time representing the 

lateral motion from one lane to the other. As mentioned earlier, this delay is 

shorter under extreme conditions. 
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 A MLC/DLC distinction is introduced in INTEGRATION (Van Aerde, et 

al., 1996). Potential speeds in either adjacent lane are computed in the case of 

DLC. They are then compared to pre-specified bias distribution to stay in the 

current lane or to change lanes either to the left or to the right. As in CORSIM, 

the main constraint added is the inability to have a subsequent lane change for a 

specified time after the last change. This can be relaxed by: 

• Ensuring that the lane change occurs over a finite time period 

• Ensuring some lapse time between the end of one lane change and the start 

of another. 

During lane changing, both the lanes are considered occupied so the headway in 

the starting lane does not appear longer causing the next vehicle following in that 

lane to speed unrealistically. This same condition is added to TEXAS simulation 

package with the vehicle being on “both lanes during the lane change for the first 

approximately 60 percent of the change (Rioux, 1977; Lee, 1977). For that, the 

lateral position of the change maneuver is represented explicitly using a cosine 

curve from the initial trajectory in the staring lane to the final trajectory on the 

subsequent lane. It can be argued that in panic behavior, the vehicles will consider 

increasing their velocity even if knowing that a preceding vehicle is changing 

lanes. Accordingly, a vehicle occupying both lanes could be a safe modeling 

technique. 

 MITSIM also uses a MLC/DLC model (Yang and Koutsopoulos, 1996). 

MLC will be called by vehicles to connect to the next link on their path, bypass a 

downstream lane blockage, avoid entering a restricted-use lane, and respond to 
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lane use signs and variable message signs. The response to these signs is not a 

major issue under extreme conditions. The main difference with previous 

MLC/DLC models is that the conflicting goals are resolved probabilistically 

based on the utility theory models. The parameters related to the utility models are 

not explicit and can not be interpreted intuitively. When the speed of the leading 

vehicle is below the desired speed, a DLC is considered. 

 On the other hand, the MLC/DLC considered in HUTSIM is related to a 

traffic pressure function (Kosonen, 1999). The DLC is related to the desired speed 

of a vehicle to the speed of the leader vehicles in the current and target lanes. If 

the pressure is lower than a sensitivity threshold in either of the adjacent lanes, 

then the lane changing decision is activated. However, even if the sensitivity 

threshold can be modified under extreme conditions, the main drawback of this 

approach is not taking into consideration the follower vehicle and its influence on 

the lane changing decision. 

 In FLOWSIM, fuzzy relationships are introduced among the variables in 

an attempt to incorporate the uncertainty and imprecision of human decision-

making (McDonald, et al., 1997). Even if these models can provide more realistic 

type of behaviors, they can not explicitly be modified to imitate the twelve 

behavioral characteristics of panic discussed in chapter 1. 
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Integrated MLC/DLC 

The initial MITSIM model was improved by creating a general lane-changing 

model that captures both MLC and DLC situations (Ahmed, et al., 1996; Ahmed, 

1999). Three steps are introduced to imitate the lane-changing process: 

• A decision to consider a lane-change 

• Choice of a target lane 

• Acceptance of gaps in the target lane 

A discrete choice framework is used to model these decisions; “when a MLC does 

not apply or the driver chooses not to respond on it, a decision whether to choose 

a DLC is made”. A Logit is used to model this decision process in two steps. 

First, a driver sees if he is satisfied with the driving conditions in his current lane. 

This based on his velocity of the preceding vehicle, the presence of a heavy 

vehicle in from of him and the tailgating effect from the following vehicle. If the 

driver is not satisfied with these driving conditions, he will start to compare the 

utility of the current lane with that of the neighboring lanes. This latter utility 

depends on the speeds of the lead and the lag vehicles in these lanes and the 

current and desired speed of the subject vehicle. 

 

Adaptive Acceleration MLC/DLC 

 In all the lane changing models discussed before, the driver tends to 

maintain a given speed while accepting a particular gap. However, in many 

observations, drivers tend to change their acceleration so their speed will be 

acceptable while choosing a target gap. This kind of behavior is called adaptive 



 48

acceleration behavior (Zhang, et al., 1998; Toledo, 2003). The interesting point 

about these MLC/DLC models is that they include an additional probability of 

making the maneuver. This will reflect “the real-world behavior that many drivers 

do not always change lanes, even if it is more advantageous to do so”. In addition, 

the following factors are considered in the DLC decisions: 

• The intention of the leader in the current lane to change lanes or turn 

• The intention of the target lane leader to turn or change lanes 

• Whether or not the intended target lane leader is heavy vehicle 

• Whether or not the current leader is a heavy vehicle 

As for the adaptive acceleration behavior, the following cases are considered: 

• “No change in acceleration- The adjacent gap is acceptable as is. 

• The subject needs to accelerate – Either the total length of the adjacent gap 

is sufficient, but the lag gap is too small; or the total length of the adjacent 

gap is unacceptable, but the gap between the lead vehicle and its leader is 

acceptable. 

• The subjects need to decelerate- Either the total length of the adjacent gap 

is sufficient, but the lead gap is too small; or the total length of the 

adjacent gap is unacceptable, but the gap between the lag vehicle and its 

follower is acceptable”.  

 

Models for Autonomous Vehicle Control 

 In SHIVA, a situational awareness planner is implemented by including an 

effective navigation in traffic (SAPIENT) model for autonomous vehicle control 
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(Sukthankar, 1997). “SAPIENT contains several reasoning agents, which 

recommend actions based on their assigned element of situational awareness. 

Each recommended action will be then arbitrated based on the total votes received 

for each action and weighted by the reasoning agent’s influence weight” 

(Sukthankar, et al., 1997). As in MIXIC (Van Arem, et al., 2000), lane changing 

can be aborted in SAPIENT. The driver’s dissatisfaction with a speed lower than 

his desired speed is represented with a frustration function. Although 

revolutionary in its structure, models for autonomous vehicle control are not the 

best for implementing some panic behavioral characteristics at the operational 

level. The represent individualistic driver behavior but they are not based on 

parameters directly related to traffic conditions (for example, agents’ weights). 

 Having a robot car navigating the real-world was the main motivation for 

the PHAROS system project. A rule-based lane changing algorithm, ULYSSES, 

is included in that robot (Reece and Shafer, 1988; Reece and Shafer, 1993). This 

algorithm is based on MLC conditions with the DLC conditions to maintain 

desired speed. Both SAPIENT and ULYSSES make decisions based on 

observable features of the drivers environment rather than direct knowledge of 

unknown parameters. 

 The ability of the autonomous vehicle to proactively change lanes 

defensively in reaction to another lane changing vehicle was illustrated in the 

Bayesian Automated Taxi- BATmobile. This kind of behavior could be frequent 

under panic conditions. 



 50

 In summary, the main problem facing lane-changing models is calibration, 

due mostly to the nature of parameters used in these models. In the Gipps model, 

it is suggested that a 10 meters distance for the close “zone distance” gives good 

results for most simulations (Gipps 1986). However, this idea was extended by 

AIMSUM requiring a trial-and-error- iterative process to specify the length of the 

zones. In CORSIM, the calibrational difficulties are related to the urgency and 

risk values. These factors can not model cooperative driving and forced merging 

situations. 

 The models relying on utility-theory (for example, MITSIM) are based on 

many parameters that are not physical quantities. Their calibration needs an 

automated statistical procedure making the level of difficulty higher. As for the 

automated vehicles control, an additional complexity is added by the need to 

estimate the voting factors or the weights for particular agent components 

(SAPIENT).  

 The limited amount of trajectory data has made the validation of output 

components of lane changing models limited in its turn. This kind of data is even 

harder to get in panic conditions. On the other hand, there is no applicability of a 

particular model over a wide range of situations. This makes the validation 

problem harder to solve. 

 The key issue to be still studied in lane-changing models is their 

extensibility to include the effects of additional influencing factors such as 

weather conditions or heavy vehicle densities. This can be done by enhancing the 

mathematical forms in the mandatory/discretionary lane changing models. These 
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mathematical forms should improve “the set of nested if…then checks that 

determines when and how DLC and MLC actions are triggered and performed”. 

Still, this can not imitate the illegal and unsafe maneuvers to change lanes into the 

shoulder or median, especially high congestion situation. 

 

2.4. Summary 

 A literature review of existing traffic models presented in this section 

aided in identifying key aspects of exiting models that need to be addressed in the 

micro-simulation model formulated in Chapter 3. In most models reviewed in this 

chapter, such as the multi-regime and Gipps models, the main shortcoming is the 

assumption that drivers have safety limits or thresholds. During panic situations, 

drivers are willing take greater risks and consequently ignore safety constraints, 

potentially allowing accidents to occur and a higher level of congestion to follow. 

To relax this safety assumption, models needs to account for factors such as the 

allowable risk of driving maneuvers and the urgency of evacuation under a given 

extreme condition. Additionally, in lane-changing models both the lead and the 

lag values in the adjacent lane should be included into the decision process of a 

driver looking to execute a lane changing maneuver. Under extreme conditions 

the time required to change lanes and the delay between successive lane changes 

is typically small since sudden lane changes occur during extreme conditions. 

The second major shortcoming of models reviewed in this chapter is the 

parameters used. These parameters typically have no behavioral explanation or 

meaning to them. In the model formulated in Chapter 3, parameters corresponding 
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to driver’s and traffic characteristics that can be interpreted intuitively are 

introduced. Moreover, simply changing the values of these parameters during the 

is one way to capture some of the panic behaviors under extreme conditions. For 

example, the increase in the optimal velocity in the “desired measures” models 

can represent the increase of the velocities for aggressive drivers.   

It can be seen that most of above remarks are observed in the Multi-

Regime Models (Gipps, 1981) and in the Gipps Lane Changing Model (1986). 

Accordingly, the base model that is to be modified to account for drivers’ 

behavior under extreme condition is the Gipps Car-Following Model. The 

following figure clarifies the logic behind this idea. 
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CHAPTER 3: A MICRO-SIMULATION MODEL 

 

3.1. Introduction 

 In this chapter, modifications to the Gipps model mentioned in Chapter 2 

are proposed in an attempt to better represent certain aspects of driver behavior 

under extreme conditions. As mentioned previously, a range of extreme 

conditions, associated with different events, may be encountered; these may be 

different in nature and may elicit different responses depending on the specific 

situation. The type of extreme conditions presented and discussed in this chapter 

are those that impose a sense of urgency on the drivers. Accordingly, these drivers 

aim to evacuate a given area in a relatively small amount of time, which may 

cause chaos and disorder, and in turn impede the progress of the evacuation. 

Under these extreme conditions, drivers tend to be more aggressive, or they may 

lose focus and get lost in unfamiliar areas of the network. 

 Since the aim is to model and capture panic behavior at the individual 

driver level, microscopic models of driver behavior are considered. This chapter 

presents a static (time independent) microscopic model formulation of traffic flow 

that incorporates certain elements of driver behavior under extreme conditions. 

The next section presents and discusses the car-following component. The 

following section presents and discusses the lane-changing component. The final 

section provides concluding remarks. 

 

 



 54

3.2. Car-Following Model 

 The Gipps model (1981) is intended by its developer as a “general multi-

regime” car-following model. This model is selected as a starting point for 

modification to capture certain aspects of panic behavior of drivers under extreme 

conditions. This model was selected for three reasons. First, it can be applied to 

both car-following and free-flow conditions, and consequently could potentially 

capture panic behavior under both congested and uncongested traffic situations. 

Second, the model contains parameters, corresponding to characteristics of drivers 

and vehicles, that have relatively simple and intuitive behavioral interpretation. 

These parameters can be fairly easily modified to approximate the twelve driver 

panic behavioral characteristics listed in Chapter 1. Third, the Gipps model is an 

operational microscopic model, that can be readily implemented and incorporated 

in a flow simulation framework. Ultimately these behaviors can be then 

aggregated to see the effect of extreme conditions on a macroscopic level. 

 The Gipps model is modified to accommodate behavior under extreme 

conditions by (i) relaxing some constraints in the model, such as a safety 

threshold at the individual-driver level (which may then give rise to accidents or 

other types of incidents); (ii) altering the structure of the equations in the model 

(by either completely altering the structure of the equations or adding or removing 

variables); and (iii) changing the values of the input variables of the model, as a 

way of representing new traffic situations in different locations.  

 The model aims to capture panic behavior on a 2-lane straight freeway 

segment of length L. On this segment, N vehicles are loaded during an interval of 
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simulation time T.  The vehicles are all identical with the same vehicle length S. 

The main assumption made is that each driver has a desired velocity Vn that 

he/she tries to maintain. The variables included in the simulation model are listed 

and described below: 

1. an (m/s2): the maximum acceleration that the driver of vehicle n wishes to 

undertake. Under extreme conditions, drivers typically are willing to apply 

higher acceleration rates than under normal conditions, causing 

irregularities and possible instabilities in traffic flow patterns. . This 

variable is drawn from a truncated Gaussian-shaped (Normal) distribution 

with a given mean and variance. The truncation is performed through a 

range variable and it is based on the value of the mean chosen during the 

sensitivity analysis. The aim of this truncation is mainly to deal with 

negative values and the different ranges are presented in Chapter 4. 

Although drivers may act in a chaotic manner under extreme conditions, 

there may still exist a distribution describing the variation of this behavior 

across drivers. 

2. bn (m/s2) is the most severe braking that the driver of vehicle n wishes to 

undertake (bn < 0).  This increase in the braking rate relative to normal 

conditions is based on the hypothesis that under extreme conditions, 

drivers tend to have higher braking rates or increased use of emergency 

braking. This value is also drawn from a truncated normal distribution 

with a given mean, variance and range at the beginning of the simulation. 
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As mentioned earlier, the ranges of all the normal distributions are 

specified in Chapter 4. 

3. sn (m) is the effective size of vehicle n, which consists of its physical 

length plus a margin (headway) into which the following vehicle is not 

willing to intrude, even when at rest. This margin (headway) is all but 

ignored during aggressive driving; drivers tend to be tailgated by their 

followers. Thus in this study, sn is simply the vehicle size plus a minimal 

margin of about ten to twenty centimeters. The value of sn is assumed to 

be constant for all vehicles (S).  

4. Vn (m/s) is the speed at which the driver of vehicle n wishes to travel. The 

value is randomly chosen from a probabilistic mixture of two normal 

distributions. For the first distribution, the mean is higher than the 

suggested mean in the Gipps Model. For the second distribution, the mean 

is lower than the suggested Gipps mean. This differential in means 

suggests that some aggressive drivers seek to increase their desired 

velocity under panic conditions, hoping to evacuate the area affected. 

However, other drivers tend to slow down. They are either not panicking 

yet, or they may be lost or quasi-paralyzed with little knowledge of what 

to do. This choice is consistent with an illustration by Daganzo (1999) of 

the disruptions and the irregularities in traffic flow resulting from velocity 

differentials (idealized as two classes of drivers, so-called “slugs” versus 

“rabbits”). It should be noted that the relative composition of the driver 

population into each of the two types is itself a parameter reflecting a 
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particular panic situation, and is a worthwhile subject of investigation.  

Furthermore, the two-class representation is only a simplified 

representation of a richer population mix with many underlying classes. 

5. xn(t) (m) is the location of the front of vehicle n at time t of the simulation. 

6. vn(t) (m/s) is the speed of vehicle n at time t. 

7. τn (s) is the apparent reaction time. It is also drawn from a truncated 

normal distribution. The increase in the number of moving stimuli, such as 

flying debris during fire accidents or moving trees during hurricanes, will 

likely cause a decrease of sensitivity to the main stimulus. Drivers will 

lose some of their focus on the surrounding vehicles. Accordingly, their 

reaction time will increase and so does the mean of the normal distribution 

adopted. (Evans and Rothery, 1977).  

8. Dn (m) represents the distance a driver is willing to travel beyond the 

safety threshold. The safety threshold indicates the distance between the 

driver and the leading vehicle at which the driver would start decelerating 

so that his vehicle can come to a complete stop before hitting the 

preceding vehicle. This value is added to the model to allow potential 

accidents to be generated. It reflects the willingness of a driver to take a 

risk. The value of Dn for each vehicle n is drawn from a truncated normal 

distribution. When this value is positive, the driver is willing to take risk 

and this may increase the probability of causing an accident. If this value 

is negative, the driver prefers to stay within the safety margin so he/she 

can come to a stop without hitting any other vehicle. 
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Two main conditions need to be satisfied in this model. The first 

condition, which concerns the acceleration-deceleration of individual drivers, 

requires that a vehicle n not exceed its driver’s desired speed; its “free” 

acceleration should first increase with speed as engine torque increases, then 

decrease to zero as the vehicle approaches the desired speed. This condition is 

purely descriptive and emulates driver behavior or vehicular movement under 

free-flow situations. This condition is expressed in the relationship below: 
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The above expression has two important behavioral implications.  The first 

implication is reflected by the term )
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n− .  This term is equal to zero when 

the actual velocity of the driver is equal to his desired velocity.  Accordingly, 

vn(t+ τn)  =  vn(t); the velocity at time t+ τn is to remain the same. The second 

implication is based on the term )
V
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n+ ½ .  This term ensures that the 

change between vn(t) and vn(t+ τn) is not linear over time with the introduction of 

the power term ½. Since at free flow conditions, and according to the main 

assumption of the model, drivers always tend to accelerate and increase their 

velocity to their desired speed, the deceleration term bn is not found in Expression 

(1). Only an and τn are involved. The constant parameters (2.5 and 0.025) are the 

result of an envelope to a plot of instantaneous speeds and accelerations obtained 

from an instrumented car traveling down an arterial road in moderate traffic 
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(Gipps, 1981). These parameters are not modified in the present study,  because 

panic behavior is reflected only through the vehicle-related parameters. 

The second condition is related to congested traffic situations. It initially 

states that the driver of vehicle n must ensure that x’n-1 – sn-1 exceeds x’n, where 

x’n-1 is the location of the preceding vehicle n-1 when it comes to rest after it starts 

braking as hard as desirable;  

sn-1 is the length of this vehicle with its minimal margin; and 

x’n is the location of the vehicle of interest when it comes to rest after reacting at 

time t+ τn, where τn is the reaction time.  

Specifically, the expression x’n-1 – sn-1 > x’n  indicates that when a driver starts 

decelerating so his vehicle will stop at a given location x’n-1, the following vehicle 

will decelerate and come to rest before hitting the rear end of the preceding 

vehicle. This condition satisfies safety regulations, and accordingly will prevent 

accidents. However, in extreme conditions, with more aggressive driving patterns, 

some drivers are willing to take greater risk and are hence more prone to 

accidents/crashes. For that purpose, the term Dn is subtracted from x’n-1 – sn-1. In 

this case, even if x’n-1 – sn-1 - Dn > x’n, the distance between two vehicles can be 

negative and an accident may be generated. 

If the safety regulations are to be kept, the following relations are to be respected: 
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n1-n1-n x'sx' ≥−                      (4) 

 

After introducing Dn, the new equation will be: 
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 Combining (1) and (5), the final expression for the velocity of vehicle n at 

time t+ τn is: 
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 It should be noted that the initial equation of the (unmodified) Gipps 

Model is: 
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 The second term in the equation allows for higher velocities. This is due to the 

safety margin θ taking a value of (τ /2), as introduced in equation (5). The above 

expressions show that in the original Gipps model, the apparent reaction time τ is 

taken as constant for all vehicles, and that the safety margin θ would allow the 
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driver a margin of error making or possible additional delay during which he will 

be traveling at vn(t+ τ), before reacting to the vehicle ahead. Taking this delay into 

account, drivers can travel at higher velocities with greater spacing between them 

and the preceding vehicle. Equation (5) in the original Gipps Model is: 
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Under extreme conditions, the term θ is removed since drivers do not allow for 

this margin of safety, and errors would be more frequent. This will result in lower 

velocities and accordingly, more congested situations. 

The above model still faces several limitations in its ability to represent 

car following behavior under all possible situations. The main advantage over 

other models is that it allows for the occurrence of accidents because it is not 

arbitrarily constrained by the safe-headway concept. This is captured primarily 

through the factor Dn included in the model. To deal with this issue, every time 

the headway between two vehicles is less than zero, the speed of both vehicles 

will be set to zero. However, this will limit the accident occurrence to one lane 

only.     

The above car following model is aimed to capture the highest number of 

the twelve panic behavioral characteristics discussed in chapter 1. Table 3.1 

shows the intended characteristics and how they are covered.  

The above model only captures one dimension of the driving task on a 

multi-lane highway.  The only possible maneuver is either to increase or decrease 
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a driver’s speed.  Another critical dimension is the ability to change lanes.  The 

next section discusses a possible model of lane-changing behavior. 

 

Panic Behavioral Characteristic Model Modification 
Decrease in the effective vehicle size sn Tailgating, decrease in headways 

Removing safety margin θ 
Increase in velocity when possible Increase in desired velocity Vn for 

aggressive drivers (mean in normal 
distribution) 

higher acceleration without smooth 
velocity change 

Increase in acceleration rate parameter 
an 

Higher Deceleration rate and 
emergency braking 

Increase in deceleration rate parameter 
bn (in absolute value) 

Higher Velocity Variance due to the 
presence of aggressive drivers and 

drivers being lost or still rationalizing 
their decisions 

Drawing Velocities from two normal 
distributions with higher variance 

Increase in accidents number Introduction of the parameter Dn 
Table 3.1: Model Modifications Accounting for Panic Behavioral 

Characteristics 
  

3.3. Lane-Changing Model 

 In addition to the car-following model, Gipps offers another model that 

explains the structure of lane-changing decisions. Although well detailed, his 

model discusses complex objectives behind lane changing behavior that do not 

apply to the basic situation of this study (Gipps, 1984). Moreover, lane changing 

is based on the gaps offered by traffic in the adjacent lanes. Accordingly, 

accepting these gaps will be related to the relative speed and acceleration of both 

the leading and the lagging vehicle in the adjacent lane.  Gipps’ model takes into 

account only the properties of the leading vehicle. 

 In this study, driver’s logic to change lanes is based on the answer to the 

three following questions: 
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- Is it desirable to change lanes? 

- Is it possible to change lanes? 

- Is it necessary to change lanes? 

Lane-changing decisions are strongly related to the desirable speed at 

which a driver wishes to travel. A driver traveling at a speed less than his 

desirable speed will seek to increase his speed in the same lane. If another vehicle 

is in the way (space headway between the two vehicles is less than 5 meters, 

which is the average length of a car), the following driver will consider changing 

lanes. However, the driver must check first if this maneuver is possible with the 

gaps offered in the adjacent lane. Checking these gaps is a procedure to be 

specified as part of the lane changing model. Figure 3.1 clarifies the logic behind 

combining the lane changing model and the car following model together. 

On the other hand, it was found that the average lead or lag times for all 

traffic conditions are almost equal (FHWA, 1969). Accordingly, it may be 

suggested that neither the lead nor the lag dominates the gap-acceptance decision 

in lane-changing. Therefore, both the leading and the lagging vehicles in an 

adjacent lane are objects of interest in this study. 
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                       Figure 3.1: Logic for combining Car Following and Lane 
Changing Models 

 

The theoretical estimate of the minimum safe lead value based an assumed 

desirable deceleration rate and an average braking perception/reaction time is 

given by the following equation: 
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where: 

m= subscript for a leading vehicle in destination lane 

L1 = safe “lead” distance for lane changing (m) 

vn(t+ τn) = speed of lane-changing vehicle n (m/sec) 

vm(t+ τm) = speed of leading vehicle m in destination lane (m/sec) 

bn = deceleration rate vehicle n can sustain (m/sec2) 

bm = deceleration rate vehicle m can sustain (m/sec2) 

τn = apparent reaction time for vehicle n(braking perception/reaction time) (sec) 

τm = apparent reaction time for vehicle m(braking perception/reaction time) (sec). 

With the same logic, the theoretical estimate of the safe lag value is: 
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where: 

m+1 = subscript for a lagging vehicle in destination lane 

L2 = safe “lag” distance for lane changing (m) 

Vn(t+ τn) = speed of lane-changing vehicle n (m/sec) 

vm+1(t+ τm+1) = Speed of lagging vehicle m+1 in destination lane (m/sec) 

bn = deceleration rate vehicle n can sustain (m/sec2) 

bm+1 = deceleration rate vehicle m can sustain (m/sec2) 

τn = apparent reaction time for vehicle n(braking perception/reaction time) (sec) 

τm+1 = apparent reaction time for vehicle m+1(braking perception/reaction time) 

(sec). 
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 However, it is suggested that both lag and lead distances are over-

estimated (FHWA, 1969). The use of different parameters during extreme 

conditions will help deal with this subject. First, the higher deceleration rates in 

absolute value will decrease the safe leads and lags to be accepted. This is 

expected during panic behavior especially on the part of aggressive drivers, since 

their patience is limited and they tend to accept shorter gaps as mentioned in 

Chapter 1. For clarification purposes, Figure 3.2 is presented. 

  

Figure 3.2: Lane Changing Decision concept 
 
 It should be noted that accidents will be still possible in this lane changing 

model due to the duration required for the lane-changing maneuver. This will be 

discussed in the implementation section in chapter 4. The general idea is that if 
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the lane-changing maneuver is seen as possible, the respective locations of 

vehicles n, m, and m+1 are computed in the target lane after a given lane 

changing time. This time is also drawn from a normal distribution varying from 

one driver to another.  Moreover, to capture sudden lane changing, lane changing 

time is reduced to have a mean of 2 seconds, a value that is further studied in the 

sensitivity analysis.  If  xm (t) – xm+1 (t) – sm   is less than or equal to sn, the 

respective velocities of the three vehicles are set to be equal to zero, indicating the 

occurrence of an accident in that lane.  It may be suggested that accidents due to 

lane changing may block both lanes of travel. However, in panic situations, 

drivers tend to use shoulders, even pedestrian sidewalks to escape this kind of 

accident. 

 

3.4. Summary 

 The above model represents an attempt to modify Gipps’ Car - Following 

Model to capture certain aspects of driver behavior under panic conditions. It is 

complemented with a lane changing model for a more complete elementary 

representation of traffic interactions in a simple two-lane highway section. This 

model relies primarily on the modification of existing parameters of the Gipps’ 

model formulation and the introduction of a new risk-based parameter Dn. The 

next chapter presents extensive sensitivity analysis of the model and of traffic 

performance vis a vis these parameters; of particular concern is the instability 

introduced in the traffic system due to the possible presence of accidents. 
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 As noted, this model represents a first attempt to deal with several of the 

panic factors discussed in the previous chapters, but not all of them. A 

comprehensive treatment of all panic factors requires capturing behavior under all 

sorts of extreme conditions, even those that does not involve urgency issues, such 

as heavy weather situations.  Such a degree of completeness remains beyond the 

ambition of the present study.  
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CHAPTER 4:  MODEL IMPLEMENTATION AND  

SIMULATION RESULTS 

 

4.1. Introduction 

 Setting the theoretical background of a traffic model differs from building 

and testing this model. This task requires a considerable amount of coding effort 

with an understanding of the qualitative effect of the different parameters 

introduced in chapter 3 on the drivers’ behavior and the resulting aggregate traffic 

characteristics. 

 In Chapter 4, the first section describes the procedures followed to 

implement the model. Before studying the output results, the model is partially 

validated using actual data collected for the US Federal Highway 

Administration’s Next Generation Simulation (NG-SIM) project conducted by 

Cambridge Sysematics, Inc.. Once validated, the different results obtained are 

analyzed and linked to the different parameter values used as input. For that 

purpose, a micro and a macro sensitivity analysis are presented to discuss the 

possible panic behavioral characteristics captured by the modified model. 

 

4.2. Model Implementation   

 In this study, the C++ language was adopted to code and implement the 

modified Gipps model discussed in Chapter 3. After defining the necessary 

simulation “Libraries”, the different functions and variables used in the program 

are declared. Some of the functions and variables are only related to the graphical 
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output and sensitivity analysis properties. However, the only ones discussed in 

this section are those related to the core of the simulation model. From this 

family, the main function declared is the function “normal ( )” that returns a 

normal distribution of a given variable after providing it a mean, a standard 

deviation and a range. The “range” is a variable that restricts (truncates) the 

generated distribution to [Mean-Factor/2; Mean+Factor/2]. This allows greater 

control on the normally distributed parameters, especially when dealing with 

boundary conditions. For example, “range” will not allow negative velocities 

when declaring the two distributions of the drivers’ desired velocities. On the 

other hand, the variables used in the core simulation model are either 

input/generated variables or output/computed variables. The input variables can 

be either kept as default values or they can be changed by the user. The main 

variables used in the simulation are presented in Tables 4.1 and 4.2. 

Variable Type Symbol Description 
Double (double) headway Space Separation Between Car n and Car n-1 (m) 
Double (double) x Location of front vehicle n (m) 
Double (double) v Velocity of vehicle n (m/s) 

Integer (int) crash Binary Variable Indicating the Presence of a Crash

- - Density at each Time Step per Km Segment per 
Lane (veh/km/lane) 

Array of Integer 
(int) QL0[i] Flow per Simulation Time at Lane 0 at the End of 

Km i of the road length (veh/simulation time/lane) 
Array of Integer 

(int) QL1[i] Flow per Simulation Time at Lane 1 at the End of 
Km i of the road length (veh/simulation time/lane) 

Array of Double 
(double) UL0[i] Cumulative Space Mean Speed at Lane 0 on Km i 

of the road length (m/s) 
Array of Double 

(double) UL1[i] Cumulative Space Mean Speed at Lane 1 on Km i 
of the road length (m/s) 

Array of Integer 
(int) UL0c[i] Counter of Vehicles involved in the space mean 

speed calculation at Lane 0 on Km i 
Array of Integer 

(int) UL1c[i] Counter of Vehicles involved in the space mean 
speed calculation at Lane 0 on Km i 

Table 4.1: Output/Computed Variables Used in the Simulation Program 
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Variable Type Symbol Description 
Integer (int) T Total Number of Time Steps (multiple  of 0.1s) 
Integer (int) Time Current Time Step 
Integer (int) N Total Number of Cars 

Double (double) L Total Road Length (m) 
Double (double) meanacc Mean of the Acceleration Distribution (m/s2) 
Double (double) stdacc Standard Deviation of the Acceleration Distribution 
Double (double) rangeacc Range of the Acceleration Distribution 
Double (double) meandecc Mean of the Deceleration Distribution (m/s2) 
Double (double) stddecc Standard Deviation of the Deceleration Distribution 
Double (double) rangedecc Range of the Deceleration Distribution 
Double (double) meanVd_1 Mean of the Low “Slugs” Desired Velocity (m/s) 
Double (double) stdVd_1 Standard Deviation of the “Slugs” Desired Velocity 
Double (double) rangeVd_1 Range of the “Slugs” Desired Velocity 

Integer (int) percentVd_1 Percent of “Slug” Among the Drivers 
Double (double) meanVd_2 Mean of the High “Rabbits” Desired Velocity (m/s) 
Double (double) stdVd_2 Standard Deviation of the “Rabbits” Desired Velocity 
Double (double) rangeVd_2 Range of the “Rabbits” Desired Velocity 

Integer (int) percentVd_2 Percent of “Rabbits” Among the Drivers 
Double (double) meanrisk Mean of the Risk Factor Dn (m) 
Double (double) stdrisk Standard Deviation of the Risk Factor Dn 
Double (double) rangerisk Range of the Risk Factor Dn 
Double (double) meanRT Mean of the Reaction Time τn (s) 
Double (double) stdRT Standard Deviation of the Reaction Time τn 
Double (double) rangeRT Range of the Reaction Time τn 
Double (double) meanLCT Mean of the Lane Changing Time LCT (s) 
Double (double) stdLCT Standard Deviation of the Lane Changing Time LCT 
Double (double) rangeLCT Range of the Lane Changing Time LCT 
Double (double) StartV Starting Velocity When Vehicle Enters Simulation (s) 

Integer (int) departure Departure Time of Entering Vehicle (s) 
Integer (int) carID ID car of the car entering the simulation 
Integer (int) lane Binary Variable indicating in which the vehicle exists 

Double (double) s Vehicle effective lengh (m) 
Table 4.2: Input/Generated Variables Used in the Simulation Program 

 
It should be noted that the densities are calculated through general purpose 

variables that are directly printed into output files. Moreover, some variables are 

used in association with other variables and are not mentioned in the previous 

tables. For example, the variable “reaction” (integer) is not described in Table 4.2. 
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It is only used to map the variable RT to the corresponding time step (multiple of 

10).  The default values of the input parameters are given in Table 4.3. 

Variable Default Value 
T 2000 Time Steps (200 s) 
N 50 vehicles 
L 2000 m 

meanacc 2 m/s2 
stdacc 0.3 m/s2 

rangeacc 2 m/s2 
meandecc -3 m/s2 
stddecc 0.3 m/s2 

rangedecc 2 m/s2 
meanVd_1 13.33 m/s 
stdVd_1 3.2 m/s 

rangeVd_1 18 m/s 
percentVd_1 10 % 
meanVd_2 35.55 m/s 
stdVd_2 4 m/s 

rangeVd_2 52 m/s 
percentVd_2 90% 

meanrsik 15 m 
stdrisk 5 m 

rangerisk 20 m 
meanRT 1 s 
stdRT 0.4 s 

rangeRT 1.4 s 
meanLCT 2.5 s 
stdLCT 0.5 s 

rangeLCT 1 s 
StartV 17.77 m/s 

Table 4.3: Default Values for Input Parameters 
 

The user of the program can choose between generating a totally new 

simulation with newly produced values of the random variables, or between 

loading an existing file to re-simulate. This is offered for sensitivity analysis 

purposes so the user can study the effect of the change in a particular variable 

keeping the other randomly distributed variables constant. If the user chooses to 

generate a new simulation, the default values of the input parameters presented in 
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Table 4.3 could be changed.  The user could also save the simulation file before 

loading it. On the other hand, in sensitivity analysis mode, to the user has the 

option of loading one of the saved files and changing any of the desired 

parameters presented in Table 4.3. The new file can be resaved and loaded for 

simulation. The only variable that cannot be changed in the sensitivity analysis 

mode is the number of cars N.  This is due to the fact that the memory allocation 

for a specific number of “classes” is already pre-specified in the saved files. In 

other words, in the simulation code, each vehicle is a class “car”. This class is 

associated with the needed vehicle-specific characteristics described previously. 

Moreover, it is associated with two pointers: 

1- Car*previous pointing to the leading car in the same lane 

2- Car*next pointing to the lagging car in the same lane 

During the simulation, the flow on a given lane is represented by a doubly 

linked list. In both “sensitivity analysis mode” and “new simulation mode”, the 

user should specify the type of data output desired before running the simulation. 

If the user chooses “micro” mode, two types of output files are obtained:  The 

“CRASH.txt” file gives the location of every crash, the lane in which it occurred, 

and the cars involved; the “CARS.txt” file gives the location, the velocity, the 

headway and the lane in which the vehicle is, at every time step and for every 

vehicle.  If the user chooses the “macro” mode, three different files are generated.  

The first one is “CRASH.txt”. The other two files are “LANE0.txt” and 

“LANE1.txt”. For each lane, these provide the space mean speed and the flow on 
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every Km of the road length. Moreover, they include the density at every time 

step for each of the 1 Km segments. 

 The “main” component of the simulation code is divided into the 

following categories: 

a- Declare and Initialize: 

In this part of the simulation, three types of doubly linked lists are used. The 

first type is a departure list in which the vehicles are ordered by increasing 

departure time. The second type consists of two lane lists that are 

representative of the vehicles on each lane while they are still within the 

specified road length L. These vehicles are only part of the lane lists as long as 

their departure time is reached and the total simulation time is not over. 

Finally, the two queue lists are created to store the vehicles to the next time 

step as long as the preceding one did not fully enter the road segment. It 

should be noted that the departure times of the vehicles are uniformly 

distributed across the total simulation time. 

b- Graphics: 

An INTRO provides the front page set up. A LOAD FILE presents the code 

necessary to load existing files to simulate. The SENSITIVITY ANALYSIS 

and the NEW SIMULATION are the two procedural modes of the program.  

c- Initialize Cars: 

In this part, all the vehicle-specific characteristics are initialized as presented 

in Table 4.4. 
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Vehicle-specific parameter Initial Value 
s 5 m 
x 0 m 
v 17.78 m/s (=startV) 
l 0 

headway “blank character” 
crash 0 

Table 4.4: Initial Values for Vehicle-Specific Parameters 
 

The “carID” is assigned in increasing order from 1 to N while generating the 

vehicles. As for the other characteristics, their value is randomly generated 

from the corresponding truncated normal distribution.  

d- Save and Launch Simulation 

e- File Initialization: 

The file Initialization is the part in which all the output files mentioned before 

are fully defined so the corresponding output values are imprinted in them. 

f- Begin Simulation: 

In this section, the operations are repeated inside an incremental loop. The 

following steps are followed: 

1- Screen Display 

2- Feed New Car Entering: 

According to the departure list, the cars are fed into the two lane lists L0 and 

L1. The appropriate lane is chosen based on the binary value l that is 

randomly generated based on the rand() function. If the preceding vehicle did 

not fully enter the lane when the departure time of the following vehicle 

occurs, this vehicle will wait in the queue list (L0q or L1q) until the preceding 

car is fully inside the road segment L. 
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3- Car Following Decision: 

The Car Following Decision discussed in chapter 3 is implemented in this 

section. 

4- Lane Changing Decision: 

As in the Car Following Decision section, the logic of the Lane Changing 

discussed in chapter 3 is implemented here. On the other hand, it should be 

noted that the lane changing maneuver is not executed until LCT*10 time 

steps pass. 

5- Remove Entering Vehicles: 

This operation is executed if the car position exceeds the total road length. If 

the simulation time is over, the last output values computed are saved in the 

corresponding output files. 

6- Headway and Crash Detection: 

In this section, at every time step, the vehicle headway is computed after 

updating its location. Moreover, if a vehicle’s headway is less than 5 meter, a 

crash is detected. The crash parameter is 1 instead of zero and the vehicle 

specific parameters are frozen. The vehicle’s velocity is dropped to zero 

following a deceleration rate of -6 m/s2. 

7- Save Data: 

As the incremental loop continues, the output variables are saved to temporary 

files. 
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g- Output Data: 

The Data saved in the temporary files are imprinted into the pre-specified 

output files. 

 

At the end of the simulation all the functions declared at the beginning are 

defined. The normal function (normal ()) is based on the polar method improved 

from the Box and Muller method by Atkinson and Pearce (1976). Figure 4.1 

summarizes the steps adopted to implement model. 
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Figure 4.1: Model Implementation 
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 Once implemented, the model should be tested against real-life data before 

being assessed for its ability to model driver behavior under extreme conditions. 

The next section aims to compare the output results obtained from a specific set of 

input parameters with available data. 

 

4.3. Validation 

 The data used for validating the modified Gipps model are provided 

through the US FHWA’s Next Generation Simulation (NGSIM) project 

conducted by Cambridge Systematics, Inc.. The data set includes trajectory data 

for 4733 vehicles over one-half hour (2:35 p.m. – 3:05 p.m.) on December 3, 

2003. The data are collected on Interstate 80 in Emeryville, California, USA by 

researchers at the University of California, Berkeley. The study area is a straight 

2950 feet freeway section consisting of six lanes (lane 1 through lane 6) with an 

on-ramp (lane 7) at the beginning of the section and an off-ramp (lane 8) at the 

end. Figure 4.2 illustrates the study area more clearly. The x and y coordinate 

location is captured every 1/15th second. These data are also processed so 

aggregate traffic measures such as flows and space-mean speeds are calculated 

over the time period of the study. Table 4.5 and 4.6 show these results. 

Time Period Flow (vph) Space Mean Speed (m/s) 
2:35 p.m. - 3:05 p.m. 9466 25.62804 

Table 4.5: Aggregate Results Summary for the Entire Section 

  Lane 
Measure 1 2 3 4 5 6 Average 

Flow (vph) 1744 1764 1406 1540 1506 1506 1578 
Space-Mean Speed 29.97134 24.95984 24.5949 24.75938 24.5692 25.02666 25.62804

Table 4.6: Aggregate Results for Each Lane 
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Figure 4.2: Schematic of the Study Area 
(Selected from NGSIM BHL Data Analysis, Summary Report (2004)) 
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The trajectories of the first 50 vehicles entering the freeway section are 

mapped on the time space diagram shown in Figure 4.3. 
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Figure 4.3: Time-Space Diagram of the First 50 Vehicles Entering the Study 

Area 
 

The velocity distribution of the same vehicles is shown below. 
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Figure 4.4: Velocity Distribution of the First 50 Vehicles Entering the Study 

Area 



 82

 To pursue this validation effort, some of the limitations of the 

implemented simulation program should be addressed. The first limitation is 

related to the memory constraints faced in the particular version of the C++ 

language (Borland) used in this initial implementation. The maximum number of 

vehicles that can be handled in the simulation program is 600. Choosing a 

simulation scenario with 450 vehicles (N), the total simulation time should be 514 

seconds; the ratio of 4733 vehicles over a 30 minutes data recording time is 

conserved. This ratio matching takes into account the second limitation to be 

faced. This limitation is associated with the number of lanes that can be handled 

by the suggested model. As mentioned earlier, the study area is a 6-lane freeway 

section, an on-ramp, and an off-ramp. However, the implemented simulation 

program only considers a two-lane highway section with simplified features. For 

that reason, the model validation will be based on the average data collected over 

the total number of lanes and the lane specific results. 

 The input parameters used for validating the suggested model are 

summarized in Table 4.7. These parameters assume normal conditions. The initial 

Gipps model is then used with the assumption that there is only one velocity 

distribution Vd_1 that occurs 100% of the time. Moreover, the accidents are 

eliminated by assigning a zero risk factor. The rest of the parameter values are the 

same as those suggested by the original Gipps car-following model (1981). 
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Input Parameter Value 
T 5140 Time Steps (514 s) 
N 450 vehicles 
L 1000 m 

meanacc 1.7 m/s2 
stdacc 0.3 m/s2 

rangeacc 0.6 m/s2 
meandecc -3.4 m/s2 
stddecc 0.4 m/s2 

rangedecc 0.8 m/s2 
meanVd_1 28 m/s 
stdVd_1 5 m/s 

rangeVd_1 20 m/s 
percentVd_1 100 % 
meanVd_2 35.55 m/s 
stdVd_2 4 m/s 

rangeVd_2 52 m/s 
percentVd_2 0 % 

meanrsik 0 m 
stdrisk 0 m 

rangerisk 0 m 
meanRT 0.7 s 
stdRT 0.3 s 

rangeRT 0.4 s 
meanLCT 3 s 
stdLCT 1 s 

rangeLCT 2 s 
StartV 28 m/s 

Table 4.7: Input Parameters Used in the Model Validation 

 After running the simulation in both the micro and the macro mode, the 

time-space diagram of the vehicles with the smallest 50 departure times is shown 

in Figure 4.5. The corresponding velocity distribution is shown in Figure 4.6.  
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Figure 4.5: Time-Space Diagram of the First 50 Vehicles Entering the 

Simulation 
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Figure 4.6: Velocity Distribution of the First 50 Vehicles Entering the 

Simulation 
 
 Based on Figure 4.5, the vehicles follow the same traffic pattern observed 

in Figure 4.3. No major traffic disruption is encountered. Although congested, the 

traffic is moving smoothly. The average slopes of the trajectory lines are close to 
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each other. However, the main difference between the two figures is the density 

of the trajectory lines. This difference is not caused by a logic error implemented 

in the simulation program. It is caused by the difference in the number of lanes 

studied. The vehicles observed in Figure 4.3 are traveling on 6 lanes. Those 

observed in Figure 4.5 are loaded on two lanes only. Since more vehicles can be 

loaded on a 6-lane highway, the range of departure times in Figure 4.5 is much 

higher than the one seen in Figure 4.3. For that reason, Figure 4.3 shows a denser 

time-space diagram. As for the velocity distribution, the range of velocities in 

Figure 4.4 and 4.6 is mostly between 15 and 35 m/s. Since the first vehicles 

entering the simulation are loaded on an empty highway section, the velocity 

distributions at the beginning of the simulation time are smoother than the one 

shown in Figure 4.4. However, this smoothness is not encountered at the end of 

the simulation. 

 As for the aggregate traffic properties, Table 4.7 shows the results 

obtained from the simulation program versus the data collected. 

  Lane Number Flow 
(vph) 

Space-Mean Speed 
(m/s) 

Lane 1 1744 29.97134 
Lane 2 1764 24.95984 
Lane 3 1406 24.5949 
Lane 4 1540 24.75938 
Lane 5 1506 24.5692 
Lane 6 1506 25.02666 

NGSIM 
Data 

Average 1578 25.62804 
Lane 1 1527 22.97 
Lane 2 1408 22.79 Simulation 

Average 1467.5 22.88 
Table 4.8: Aggregate Characteristics Obtained by NGSIM Project and the 

Simulation Program 
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The main difference in the results is associated with the data observed in 

lane 1 and lane 2. These lanes show higher flow values than the rest of the lanes. 

The space mean speed in these lanes is also greater. However, for the rest of the 

lanes, the results are remarkably close to each other showing that the suggested 

model can be applied during “normal” driving conditions. The next task is to test 

the model for its ability to capture panic behavior under extreme conditions. This 

can be accomplished by conducting the sensitivity analysis discussed in the next 

two sections. 

 

4.4. Micro-Sensitivity Analysis 

 Any model attempting to capture panic behavior will be faced with the 

problem of the limited availability of trajectory data under panic conditions. In 

general, models with qualitative or speculative validation encounter difficulties in 

being applied to a wide range of regions and situations. However, since no 

detailed panic data is available, sensitivity analysis is performed in this and the 

next sections to test the performance of the modified Gipps model (1981) and the 

panic characteristics that it can capture. Two kinds of sensitivity are presented. A 

micro-sensitivity analysis will study the effect of input parameters on the 

microscopic outputs such as the relative location, headway, velocity and lane 

changing instances of every vehicle at every time step. On the other hand, the 

macro-sensitivity considers overall traffic stream behavior in terms of aggregated 

descriptors such as flow, density and space-mean speed. 
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In this section, the results obtained under 9 different scenarios are 

compared with the results of a base-case scenario. The difference in results is then 

analyzed with respect to the change in the input parameters and their effect. In the 

base-case scenario, the simulation time is 100 seconds and 50 vehicles are loaded 

on a 1 kilometer two-lane freeway section. Table 4.9 shows the different values 

assigned to the driver characteristics in this scenario compared to the other 9 

scenarios. 

 

Micro-
Sensitivity Input Parameters Considered 

Different 
Scenarios 

T 
(s) 

N 
(veh.) 

L 
(m) 

Meanacc 
(m/s2) 

Meandecc 
(m/s2) 

MeanVd_1 
(m/s) 

MeanVd_2 
(m/s) 

percentVd_1 
(%) 

Dn 
(m) 

MeanRT 
(s) 

MeanLCT 
(s) 

Base-
Case 100 50 1000 2 -3.2 13.3 35.5 10 0 1 2 

Scenario 2 100 50 1000 2 -3.2 13.3 35.5 10 15 1 2 
Scenario 3 100 50 1000 2 -3.2 13.3 35.5 40 15 1 2 
Scenario 4 100 50 1000 1.7 -3.2 13.3 35.5 40 15 1 2 
Scenario 5 100 50 1000 2 -3.2 13.3 35.5 10 15 1 3 
Scenario 6 200 50 2000 2 -3.2 13.3 35.5 10 0 1 2 
Scenario 7 200 50 2000 2 -3.2 13.3 35.5 10 15 1 2 
Scenario 8 200 50 2000 2 -3.2 13.3 35.5 40 10 1 2 
Scenario 9 200 50 2000 2 -3.2 13.3 35.5 40 15 1 2 
Scenario 

10 200 50 2000 2 -3.2 13.3 35.5 10 15 0.7 2 

Table 4.9: Input Parameters in the Scenarios Considered for Micro-
Sensitivity 

 
The time-space diagram of the 50 cars is shown in Figure 4.7.  Two driving 

patterns are observed where the two distributions of the desirable speeds can be 

seen from the two slope values: the slugs and the rabbits. Any intersection 

between two lines indicates a passing maneuver that is executed onto the adjacent 

lane. 
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Time-Space Diagram
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Figure 4.7: Time-Space Diagram of the Base-Case Scenario (Micro-

Sensitivity) 
 

For a clearer view, the velocity distribution of the 50 vehicles across time is 

shown in Figure 4.8. The rabbit velocities vary around 35.5 m/s and the slug 

velocities vary around 13.3 m/s, as indicated in Table 4.9. All the vehicles start 

accelerating from a zero initial velocity. The resulting separations are observed in 

Figure 4.9. These separations can reach a value of 200 meters. The base-case 

scenario reflects light traffic conditions with low densities. Accordingly, no lane 

changes need to be performed. With a risk value of zero, no crashes are observed 

in this scenario. 
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Velocity Distribution
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Figure 4.8: Velocity Distribution in the Base-Case Scenario (Micro-

Sensitivity) 
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Figure 4.9: Headway Distribution in the Base-Case Scenario (Micro-

Sensitivity) 
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After studying the base-case scenario, all the factors but the “Meanrisk” 

are kept the same. The risk is increased to 15 meters under Scenario 2.  The 

resulting time space diagram under Scenario 2 is observed in Figure 4.10.  Based 

on the slope, a “slug” vehicle is seen to block some of the other vehicles that 

departed after it. Their position is kept at around 270 meters; a crash has occurred. 

As seen in Figure 4.11, there is a slight decrease in the headways compared to the 

base-case scenario. The increase of the risk value to 15 meters allows drivers to 

decrease the separation between them and the leading vehicles, ignoring the fact 

that a rear-end collision may occur. When the separation reaches zero, an accident 

has occurred. Sometimes, the separation can be less than 5 meters, increasing the 

necessity for lane changing as indicated in Chapter 3. In this scenario, two lane-

changes are observed.  
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Figure 4.10: Time-Space Diagram of Scenario 2 
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Headway Distribution
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Figure 4.11: Headway Distribution in Scenario 2 

 

The crash distribution along the road length is shown in Figure 4.12. 

Chain effect crashing is clearly observed in lane 0; one crash leads to a series of 

crashes since the following vehicles did not have the chance to decelerate in 

sufficient time to avoid collision. 
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Figure 4.12: Crash Space Distribution in Scenario 2 
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To study the influence of the “slug” drivers on the traffic, the percent of 

these drivers is increased to 40%. A value of 15 meters is assigned to “Meanrisk”. 

The rest of the parameters are kept the same as they were in the base-case 

scenario. Scenario 3 is then obtained. As shown in Figure 4.13, increasing the 

number of slow drivers tends to cause more accidents: aggressive drivers 

traveling at high speed will experience difficulty avoiding a rear-end collision into 

the slow-moving leaders. The number of accidents not only increases due to the 

chain-effect mentioned earlier; the accidents are also more evenly distributed 

along the road length. 
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Figure 4.13: Crash Space Distribution in Scenario 3 

 

A higher number of slow drivers on a freeway section causes more 

tailgating to pressure these drivers to either increase their velocity or move out of 

the way. This kind of behavior is reflected in the decrease of headways observed 

in Figure 4.14, when compared to the headways obtained in Scenario 3. As 
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mentioned earlier, these smaller headways will make drivers more willing to 

change lanes. Seven lane changes are observed in Figure 4.15 compared to two in 

Scenario 2. 
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Figure 4.14: Headway Distribution in Scenario 3 
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Lane Changing Pattern
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Figure 4.15: Lane Changing Pattern in Scenario 3 

 

 When the “Meanacc” is decreased to 1.7 m/s2, and keeping the risk factor 

equal to 15 meters, Scenario 4 is obtained. Based on Figure 4.16, the lower 

acceleration rates applied by different vehicles will increase the number of 

possible locations where crashes could occur; after slowing down, drivers will 

have greater difficulty to accelerate again. The vehicle coming from behind at 

high speed will have greater difficulty avoiding a rear-end collision. With the 

increase in the number of accidents distributed along the freeway section, five 

lane changes are observed. 
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Crash Space Distribution
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Figure 4.16: Crash Space Distribution in Scenario 4 

 

 Compared with Scenario 2, Scenario 5 has a “Meanrisk” of 15 meters. The 

only other difference with the base-case scenario is that the lane changing time 

LCT is increased from 2 to 3 seconds. In this case, the likelihood of accident 

occurrence also increases because there is no intermediate check between the time 

at which a vehicle assesses the safety of the lead and the lag in adjacent lanes and 

the time it executes the lane changing maneuver. The more time passes without 

this check, the possibility that the safety condition will not be satisfied will 

increase. It should be noted that these accidents are not chain effect accidents. The 

chain effect is primarily encountered with the higher values of the risk factor. 

Figure 4.17 clarifies this phenomenon. 
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Crash Space Distribution
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Figure 4.17: Crash Space Distribution in Scenario 5 

 

After considering a simulation time of 100 seconds for the previous five 

scenarios, the following scenarios differ from the base-case scenario in having a 

simulation time of 200 seconds on a freeway section length of 2000 meters. 

Scenario 6 keeps the other drivers’ characteristics the same as in the base-case 

scenario. Since the simulation duration is greater and the departure time is 

uniformly distributed across this duration, the departure times of different 

vehicles at the beginning of the simulation will not be so close to each other. The 

space-headway (separation) is then expected to increase. This increase is reflected 

in the increase of the vertical distance between lines presented in the time-space 

diagram of Figure 4.18. Moreover, this figure shows that some of the “rabbit” 

vehicles depart after some slug vehicles and therefore get blocked later on behind 

them. 
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Time-Space Diagram
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Figure 4.18: Time-Space Diagram of Scenario 6 

 

With a more spacious road section and less congestion due to the wider 

range of departure times, vehicles have greater freedom to reach their desired 

velocity in a smoother manner. The increase of the road length has no direct effect 

on the driver’s behavior. It may just allow space-headways to reach higher values 

near the boundary, as observed in Figure 4.19. There are no accidents observed in 

this scenario due to a zero risk factor. There is no need for lane changing either. 
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Figure 4.19: Headway Distribution in Scenario 6 

 

 Scenario 7 is defined by only changing the risk factor to 15 meters, while 

keeping the other parameters at the same level as in Scenario 6.  As shown in 

Figure 4.20, a slight decrease in headways will cause six lane changes instead of 

zero lane changes in Scenario 6. This increase in risk taking creates some 

accidents.  However, these accidents are not as numerous as observed in scenario 

2 with the same risk factor but with a simulation time of 100 seconds and a 

freeways section of 100 meters; it is less likely to encounter accidents over a more 

spacious road with larger headways for the same risk value. Figure 4.21 illustrates 

this phenomenon. 
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Lane Changing Pattern
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Figure 4.20: Lane Changing Pattern in Scenario 7 
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Figure 4.21: Crash Space Distribution in Scenario 7 

 

Relative to Scenario 7, Scenario 8 consists of decreasing the risk factor 

from 15 to 10 meters, and increasing the percentage of “slug” drivers to 40%.  

Even with lower risk value, the larger proportion of “slugs” in the population 
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increases the number of accidents in an evenly distributed manner.  The accidents 

shown in Figure 4.22 are positively correlated with the general “push down” of 

space headways shown in Figure 4.24. This will in turn increase the frequency of 

lane changing maneuvers (Figure 4.23).  
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Figure 4.22: Crash Space Distribution in Scenario 8 
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Figure 4.23: Lane Changing Pattern in Scenario 8 
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As already explained in conjunction with Scenario 3, the considerable 

decrease in the headways captures the tailgating performed by the aggressive 

drivers of the slow vehicles blocking the way. 
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Figure 4.24: Headway Distribution in Scenario 8 

 

 Scenario 9 differs from Scenario 8 in that the risk factor is increased from 

10 back to 15 meters. The higher risk factor will further push down the headways 

between vehicles, exacerbating the tailgating phenomenon (Figure 4.25). 

Moreover, Figure 4.26 shows that the chain-type accidents increase in frequency. 

However, the accident locations are similar to those obtained in the previous 

scenario. 
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Figure 4.25: Headway Distribution in Scenario 9 
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Figure 4.26: Crash Space Distribution in Scenario 9 

 

 Scenario 10 aims to study the effect of the driver’s reaction time on 

the other microscopic output results. The reaction time (MeanRT) is decreased to 

0.7 seconds and the other parameters are kept the same as in Scenario 7. The 
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lower reaction time reflects heightened alertness on the part of the drivers, which 

produces a slight increase in the space-headways and results in a lower number of 

accident locations. Figures 4.27 and 4.28 illustrate this finding. 
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Figure 4.27: Headway Distribution in Scenario 10 
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Figure 4.28: Crash Space Distribution in Scenario 10 
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 Other runs were conducted for additional testing purposes. The 

principal finding from those pertains to the effect of the deceleration rates 

(Meandecc). Lower allowable deceleration rates increase the frequency of chain-

type accidents; once an accident occurs, the following drivers will not be able to 

slow down in sufficient time to avoid the crash. 

 The micro-simulation sensitivity analysis has generally confirmed 

that the modified Gipps model (1981) produces the intended phenomena, and 

provides a reasonable model representation of several important characteristics of 

panic behavior under extreme conditions. For a complete assessment, the 

macroscopic output results are next investigated with respect to the different input 

parameters discussed earlier. 

 

 4.5. Macro-Sensitivity Analysis 

 This section shows the effect of selected input parameters on the aggregate 

traffic characteristics such as flow, density and space mean speed. The same 

procedure adopted in Section 4.4 is adopted here: the base-case scenario considers 

a total number of 200 vehicles loaded on a 3 km highway section for 514 seconds. 

These values assume normal traffic conditions with a unimodal velocity 

distribution and zero risk factor. Four other scenarios are studied in the macro-

sensitivity analysis where the input parameters changes are shown in Table 4.10. 
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Macro-
Sensitivity Input Parameters Considered 

Different 
Scenarios 

T 
(s) 

N 
(veh.) 

L 
(m) 

Meanacc 
(m/s2) 

Meandecc 
(m/s2) 

MeanVd_1 
(m/s) 

MeanVd_2 
(m/s) 

percentVd_1 
(%) 

Dn 
(m) 

MeanRT 
(s) 

MeanLCT 
(s) 

Base-
Case 514 200 3000 1.7 -3.2 27 27 0 0 0.7 3 

Scenario 
11 514 200 3000 1.7 -3.2 27 27 0 5 0.7 3 

Scenario 
12 514 200 3000 1.7 -3.2 27 27 0 10 0.7 3 

Scenario 
13 514 200 3000 1.7 -3.2 13.3 35.5 40 5 0.7 3 

Scenario 
14 514 200 3000 1.7 -3.2 13.3 35.5 40 5 1 3 

Table 4.10: Input Parameters in the Scenarios Considered for Macro-
Sensitivity 

 
 

With zero accidents observed in the base-case scenario, the flows and the space-

mean speeds on the different lanes are shown in Tables 4.11 and 4.12 

respectively. 

 

Flow (vph) Lane 
Km Section Lane 1 Lane 2 

Average

Km 1 630.36 644.36 637.36 
Km 2 602.34 623.34 612.84 
Km 3 539.3 595.34 567.32 

Table 4.11: Flows Observed in Base- Case Scenario (Macro-Sensitivity) 

Space Mean Speed (m/s) Lane 
Km Section Lane 1 Lane 2 

Average 

Km 1 25.68 25.12 25.4 
Km 2 25.03 24.31 24.67 
Km 3 24.31 23.99 24.15 

Table 4.12: Space-Mean Speeds Observed in Base-Case Scenario (Macro-
Sensitivity) 

 

The flow values observed in Table 4.11 suggests that low-density traffic is 

encountered in this scenario. This traffic is moving smoothly at an average 

velocity of 24.74 m/s. The variation of the density in lane 1 and lane 2 over time 
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is presented in Figures 4.29 and 4.30. In each of the two figures, it can be seen 

how the “density change” is propagating from one Km section to another. The 

maximum density values in this Scenario are 17 vehicles per Km per lane on lane 

1 and 14 vehicles per Km per lane on Lane 2. 
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Figure 4.29: Density Change on Lane 1 during Base-Case Scenario (Macro-

Sensitivity) 
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Figure 4.30: Density Change on Lane 2 during Base-Case Scenario (Macro-

Sensitivity) 
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 Scenario 11 is obtained by increasing the risk factor to 5 meters and 

keeping the other parameters the same as in the above base-case scenario. The 

accident distribution is shown in the Figure 4.31. 
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Figure 4.31: Crash Space Distribution in Scenario 11 

 

Due to these accidents, the mobility of traffic is slowed down. The flow 

values decrease systematically on the different lanes. This decrease can be 

observed by comparing Table 4.11 to Table 4.13. 

 

Flow (vph) Lane 
Km Section Lane 1 Lane 2 

Average

Km 1 630.36 630.36 630.36 
Km 2 602.34 532.3 567.32 
Km 3 483.26 427.24 455.25 

Table 4.13: Flows Observed in Scenario 11 

 

Another phenomenon observed is the variation of these flows as one 

travels downstream along the highway length. Due to the increase in the number 
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of vehicles involved in accidents in the previous road segments, the flows 

decrease until reaching a minimum value in the last kilometer. 

 Scenario 12 is obtained by further increasing the risk value to 10 meters. 

The other parameters are left unchanged. This change leads to an increase in the 

number accidents and thus, a further decrease in the flow values. Table 4.14 and 

Figure 4.32 illustrate the results. 

 

Flow (vph) Lane 
Km Section Lane 1 Lane 2 

Average

Km 1 616.34 623.34 619.84 
Km 2 532.3 497.28 514.79 
Km 3 413.22 364.2 388.71 

Table 4.14: Flows Observed in Scenario 12 
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Figure 4.32: Crash Space Distribution in Scenario 12 

 

As shown in the micro-sensitivity analysis, the increase in the number of 

“slug” drivers has a considerable influence on the microscopic output results. To 

study this influence on the macroscopic aggregate traffic characteristics, the 

desired velocity distribution with a mean of 17 m/s is replaced by a 40-60% 
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probability mixture of two desired velocity distributions with respective means 

13.3 m/s (slugs, 40%) and 35.5 m/s (rabbits, 60%).  The risk factor is 5 meters 

and the rest of the input parameters are kept the same as in Table 4.10.  These 

parameter values define Scenario 13. Even with a lower risk factor than in 

Scenario 12, the increase in the number of slug drivers causes a considerable 

increase in the number of accidents (Figure 4.33). The flows are even lower than 

those observed with a risk factor of 10 meters. The decrease in flows can be 

observed by comparing Table 4.15 with Table 4.14. 

 

Flow (vph) Lane 
Km Section Lane 1 Lane 2 

Average

Km 1 504.28 511.28 507.78 
Km 2 315.18 336.18 325.68 
Km 3 231.12 280.16 255.64 

Table 4.15: Flows Observed in Scenario 13 
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Figure 4.33: Crash Space Distribution in Scenario 13 

 

Due to the increase in the number of “chain-effect” accidents at the 

beginning of the highway length, the space-mean speeds in the first “1 Km 
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sections” are slightly less than in the last ones (Table 4.16). Once a vehicle 

overcomes the accidents concentrated at the beginning, it will be able to travel 

more freely. This situation may not apply in real life applications, especially that 

the number of vehicles in these situations is not limited as it is in this scenario. 

Moreover, the “chain-effect” mentioned above increases the density values in the 

sections where the accidents occur.  

 

Space Mean Speed (m/s) Lane 
Km Section Lane 1 Lane 2 

Average 

Km 1 16.33 16.29 16.31 
Km 2 16.94 18.27 17.605 
Km 3 16.48 35.28 25.88 

Table 4.16: Space-Mean Speeds Observed in Scenario 13 

The final conclusion from this scenario is related to the traffic disruption 

observed with the increase of the number of slug drivers. As shown in Figures 

4.34 and 4.35, the change of the densities over time is less smooth than was 

observed under normal conditions (Figures 4.29 and 4.30). The drivers travel in 

discontinuous platoons following the “slugs” who are blocking the road. 
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Figure 4.34: Density Change on Lane 1 during Scenario 13 
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Density Change for Lane 2
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Figure 4.35: Density Change on Lane 2 during Scenario 13 

 

The final scenario discussed in this chapter is Scenario 14, which consists 

of keeping all the input parameters of Scenario 13 and increasing the reaction 

time to 1 second. This increase in the reaction time does not have a significant 

effect on the number of accidents, but rather on the way they are distributed. 

Figure 4.36 shows that these accidents are more evenly distributed over the entire 

highway section, resulting in a decrease of the space-mean speeds throughout, 

compared to a decrease in the first sections only in Scenario 13. This can be 

illustrated by comparing Table 4.17 to Table 4.16. 

 

Space Mean Speed (m/s) Lane 
Km Section Lane 1 Lane 2 

Average 

Km 1 14.52 13.63 14.075 
Km 2 14.5 14.65 14.575 
Km 3 19.62 17.15 18.385 

Table 4.17: Space-Mean Speeds Observed in Scenario 14 
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Figure 4.36: Crash Space Distribution in Scenario 14 

 

 Even though their influence is investigated in the micro-sensitivity 

analysis, other factors, such as the lane changing time, the acceleration rates, and 

the deceleration rates, appear to have minimal effect on the aggregate traffic 

characteristics. The risk factor, the velocity distribution and the reaction times are 

the dominant input parameters that need to be addressed in the macroscopic 

sensitivity analysis. 

 

4.6. Summary 

 The modified Gipps model proposed in Chapter 3 is implemented in a 

simulation program coded in the C++ language.  Due to the unavailability of 

traffic data under panic conditions, this model was partially validated using 

“normal” data collected under the US Federal Highway Administration’s Next 

Generation Simulation (NGSIM) Project managed by Cambridge Systematics, 
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Inc. (2004). Testing the model using a micro-sensitivity analysis, the model could 

capture the following panic behavioral characteristics: 

1- Tailgating and decrease of headways 

2- Increase of velocities for aggressive drivers 

6- Increase in number of accidents  

The emergency breaking and the higher acceleration rates are suggested to 

be modeled directly by decreasing the “meandecc” value and increasing the 

“meandecc” value respectively. Moreover, sudden lane changing is captured by 

the decrease of the lane changing time (LCT) factor. The increase of the risk 

factor combined with a higher percentage of “slug drivers” is the major source of 

accidents. The majority of these accidents are “chain-type” accidents that mostly 

occur when aggressive drivers are not able to apply the necessary deceleration 

rate to avoid a rear-end collision with a leading slug driver. On the other hand, the 

increase in reaction time is a reflection of the decrease of drivers’ alertness under 

extreme conditions due to the increasing number of surrounding moving stimuli. 

This lack of alertness is a direct cause of distributing the accidents more 

uniformly along the road length instead of being concentrated at a particular 

location due to the “chain effect”. 

  On the other hand, the only input parameters that have a significant 

influence on the aggregate driver characteristics are the risk factor, the velocity 

distributions and the reaction time. The increase in the number of slug drivers 

causes a non-smooth change of density over time. The sudden increase or 

decrease of densities is due to the fact that drivers travel in discontinuous platoons 
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following a given “slug driver”. This effect, combined with an increasing risk 

factor, decreases the flows and the space-mean speeds on the first sections of the 

highway, where most of the accidents are concentrated.  However, the increase of 

the reaction time distributes the accidents more uniformly and thus, causes a 

general decrease of the flows and the space-mean speeds. The only significant 

increase of the densities is encountered when chain-type accidents occupy a 

considerable length of a highway section. 
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CHAPTER 5:  SUMMARY AND CONCLUSIONS 

 

5.1. Introduction  

This chapter presents a summary of the major findings of this study and 

addresses future research needs in the area of modeling driver behavior under 

extreme conditions. The first section provides the summary of key findings and a 

discussion of their implications. In addition, improvements to the model 

developed in this study are mentioned. The second section suggests some 

directions for further investigation in modeling panic behavior under extreme 

conditions.  

 

5.2. Summary 

This study addresses the influence of extreme conditions on drivers’ 

behavior, and presents an approach for representing this behavior in the context of 

an operational traffic simulation capability.  Since panic is a key factor in life-

threatening extreme conditions, a micro-simulation model that aims to represent 

driver behavior under panic conditions is developed. After studying several 

existing traffic models, the main purpose for adopting a microscopic approach 

was to relate the effect of behavioral changes at the individual driver level to the 

resulting aggregate traffic characteristics. The individual behavioral changes 

proposed were derived primarily through inference and synthesis of the body of 

psychological studies conducted on panic. 
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Gipps’ (1981) car-following model was modified and implemented in 

computer code. The model is able to address the following driving characteristics: 

1- Tailgating and decrease of headways 

2- Increase of velocities for aggressive drivers 

3- Higher acceleration rates with non-smooth change of velocities 

4- Higher deceleration rates and emergency braking 

5- Higher Velocity Variance due to the presence of aggressive drivers 

(rabbits) and slow drivers (slugs) who are either lost or still rationalizing their 

decisions  

6- Increase in the number of accidents.  

Several major conclusions and insights can be drawn from the various 

runs conducted under different scenarios. First, most of the accidents observed are 

chain-type accidents, caused by sudden stops or crashes in which leading vehicles 

are involved. It can be also concluded that the increase of reaction time under 

panic situations is one of reasons for the increase in the number of crashes 

observed. As for the macroscopic aggregate traffic characteristics, the main three 

influence factors consist of the following: (1) a risk factor reflecting spatial 

tolerance for accidents, (2) the percent of slow drivers encountered, and (3) the 

reaction time distribution across drivers. As the risk factor and the percent of slow 

drivers increase, the number of accidents increases as well. These accidents are 

better distributed over the road length due to the lower alertness of the drivers 

reflected by the increase of the reaction time. This will cause an increase of the 

densities and a decrease of the flows and the speeds. However, vehicles escaping 
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accidents at the beginning of the highway will travel at higher speeds on the final 

stretches of the road as they encounter lower traffic densities. 

While the simple model proposed in this study appears to generate 

plausible behavior under various situations that are of particular relevance to 

extreme conditions, many improvements to the model are possible. For instance, 

the model still assumes that every driver keeps the same characteristics across the 

simulation time. The variance of reaction times, acceleration and deceleration 

rates, and desired velocities is only considered across drivers. Moreover, lateral 

movement is not captured in this study. Accordingly, lane changing maneuvers 

are not modeled explicitly. 

 

5.3. Future Research Needs 

 This study is only addressing driver behavior on a two-lane freeway 

section. The individual characteristics are only affecting aggregate traffic 

properties on this section. The next step would be to implement the model on a 

more developed transportation network. Intersections and interchanges should be 

added. Additionally, a more extensive study can be conducted on the change of 

the flow-density-speed relationships under panic conditions. 

On the other hand, the output generated by the proposed microscopic 

model is only compared with NG-SIM data collected under normal peak hour 

traffic situation. Data collected under panic situations like earthquakes is not 

available. For this reason, a full validation of the model remains an important goal 

that future research should seek to achieve.  
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