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In this thesis, an adaptive first order lowpass log domain filter and an adaptive 

second order log domain filter are presented with integrated learning rules for model 

reference estimation. Both systems are implemented using multiple input floating gate 

transistors to realize on-line learning of system parameters. Adaptive dynamical system 

theory is used to derive robust control laws in a system identification task for the 

parameters of both a first order lowpass filter and a second order tunable filter. The log 

domain filters adapt to estimate the parameters of the reference filters accurately and 

efficiently as the parameters are changed. Simulation results for both the first order and 

the second order adaptive filters are presented which demonstrate that adaptation occurs 

within milliseconds. Experimental results and mismatch analysis are described for the 

first order lowpass filter which demonstrates the success of our adaptive system design 

using this model-based learning method.  
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Chapter 1: Introduction 

 
 

1.1 Background and Motivation 

Adaptive signal conditioning is an important and well-established tool used widely 

in scientific and engineering disciplines such as communications, biomedical engineering 

and life science. Many complex and demanding applications require adaptive filtering to 

reject noise and improve signal performance dynamically. To achieve this, control laws 

must use limited information to adjust parameters of the adaptive system in directions 

that produce robust system adaptation. In this thesis, current-mode log domain filter 

architecture and floating gate MOSFETs are combined to realize accurate and stable 

learning rules for the system parameters of a first order lowpass filter and a second order 

bandpass filter.  

Several groups have described filtering applications based on floating gate MOS 

circuits. Hasler et al. [1] described the Auto-zeroing Floating Gate Amplifier (AFGA) 

and its use in bandpass filter structures with very low frequency response capability. 

Fernandez et al. [ 2 ] described a 1V micropower lowpass filter implemented using 

Floating Gate Metal Oxide Semiconductor (FGMOS) transistors. Rodriguez-Villegas et 

al. [3] designed a log domain integrator based on FGMOS transistors. Minch [4, 5, 6] 

developed circuits and synthesis techniques using Multiple Input Translinear Elements 

(MITEs) for a variety of signal processing applications.  

Other groups have reported current-mode filter implementations using transistors 

working in strong inversion mode. El-Masry and Gates [7] described a continuous-time 
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current-mode differentiator constructed using a capacitively coupled current mirror, 

which is simple, small in size and easily used in implementing higher order filters. Wu 

and El-Masry [8] described current-mode ladder filters using output current conveyors 

based on the simulation of the passive RLC ladder prototypes. The designs show that the 

multiple output current conveyor based circuits can reduce the number of active 

components by 50%. In contrast, we describe current-mode log domain filters using 

transistors working in weak inversion mode. Weak inversion mode is especially suitable 

for low power circuit design. The current flowing in a unit transistor working in weak 

inversion is below hundreds of nanoamperes, which is smaller than the values associated 

with strong inversion operation. The gate to source voltage drop of a transistor working 

in weak inversion is around or below the threshold voltage, which makes it possible to 

use low supply voltages and further reduce power consumption. In addition to the low 

power dissipation, the exponential transfer function in weak inversion also provides an 

extended dynamic range and easy tunability. 

Few groups have reported integrated analog adaptive filters.  Juan et al. [9] and 

Stanacevic and Cauwenberghs [10] have designed analog transversal Finite Impulse 

Response (FIR) filters that include adaptation of weights. Ferrara and Widrow [11] have 

designed a time-sequenced adaptive filter. The filter is an extension of the LMS adaptive 

filters which allow the weight vector to change freely in time in order to accommodate 

rapid changes in the statistics of a certain class of nonstationary signals, while allowing 

slow precise adaptation. All of these use Least Mean Square (LMS)-based adaptation 

algorithms. The output of the adaptive filter is defined by a weighted sum of input 

sequences. The Least Mean Square method is a steepest descent search algorithm which 
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adjusts weights iteratively in such a way as to move along the error surface towards the 

optimum value. The adaptive filters are digital filters composed of a tapped delay line and 

adjustable weights, whose impulse response is controlled by the adaptive algorithm. The 

individual weight values do not indicate any information or characteristics about the 

transfer function of the unknown system. The adaptation of the filter is input-dependent. 

Once the input signal varies, new values of weights are required to be calculated for 

adaptation. The method we present in this thesis is a model-based method. To estimate an 

unknown system, we first assume a transfer function model for it, and use another similar 

tunable structure as the estimator to track the operation of the unknown system. The 

output difference between the unknown system and the estimated system are used to 

derive adaptive laws of the variables which control the estimated system. The variables 

we select to adapt are parameters which control the characteristic of the filter transfer 

function. Once they are adapted using a certain input signal, the characteristic of the filter 

is determined. When the input signal changes, there is no further adaptation needed 

unless the transfer function of the unknown system changes. There is another point that 

LMS methods are well suited to implementations of FIR filters. In this thesis we present 

methods based on Lyapunov stability well suited for adaptive control of Infinite Impulse 

Response (IIR) filters. IIR filters offer the advantage of smaller filter structures and fewer 

filter coefficients than FIR filters in order to model plants of similar complexity.  

1.2 Multiple Input Translinear Element 

Multiple input translinear elements (MITEs) provide compact and elegant 

implementations of log domain filters. A MITE produces an output current that is an 

exponential function of the weighted sum of its input voltages. We can implement such  
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Figure 1.1: Circuit symbol for ideal N-input MITE. 
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devices using multiple input floating gate transistors operating in weak inversion. Figure 

1.1 is a circuit symbol for an ideal N-input MITE. The transfer function of this element is 

given by: 

[ ]TNN UVwVwVwII /)(exp 22110 +++= Lκ   (1.1) 

where I0 is a pre-exponential scaling current, 

κ

µ 2

0

2 Tox U
L

WC
I =      (1.2) 

Vi is the ith input voltage, and wi is the dimensionless positive weight of Vi. κ is the 

subthreshold slope factor which reflects the capacitive division between gate and substrate 

and is less than 1. UT  is the thermal voltage kT/q. The pre-exponential current 0I  depends 

on the carrier mobility µ , gate oxide capacitance oxC , width to length ratio LW , 

subtheshold slope factor κ and thermal voltage UT =kT/q. The advantage of using floating 

gate MOS transistors in weak inversion to implement MITEs is that they can be easily 

fabricated in standard CMOS processes. 

1.3 Organization of the thesis  

Chapter 2 describes the adaptation of first order lowpass filters. The learning rules for 

robust adaptation for the first order lowpass filter are derived using the Lyapunov method. 

MITE implementations of the circuits are described and simulation results verify proper 

operation of the design. Experimental results demonstrate successful adaptation. We 

investigate the adaptive behavior under the non-ideal condition of a current mirror ratio 

mismatch. Chapter 3 describes the adaptation of second order bandpass filters. The design 

of a second order filter is presented. The Lyapunov method is used to investigate the 
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stability and derive the learning rules for the second order filters. Circuit implementations 

of the learning rules and simulation results with HSPICE using BSIM3v3 models for a 

0.5µm technology are shown. Chapter 4 summarizes and draws conclusion from this work. 

1.4 Contributions 

My work in this project can be summarized as follows. 

1. Fabricate through MOSIS and test the adaptive first order lowpass filters 

2. Investigate the adaptive behavior under the non-ideal condition of a current mirror 

ratio mismatch. 

3. Design and simulate a second order bandpass filter 

4. Derive learning rules for adaptation of the second order filter topology 

5. Design and simulate the adaptive second order filters 
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Chapter 2: Adaptation of First Order Lowpass Filters 

 
 

Adaptive circuit designs [12] for log domain first order lowpass filters implemented 

by floating gate transistors are presented in this chapter. In section 2.1, learning rules for 

robust adaptation for the first order lowpass filter are derived. The Lyapunov method is 

used to investigate the stability of the adaptive system. In section 2.2, MITE 

implementations of the circuits are described. The log domain filter architecture is used to 

implement the filters. MITE circuits are used to compute and integrate the learning rules 

of the parameters of the first order lowpass filter, gain and time constant. Section 2.3 

presents simulation results with HSPICE using BSIM3v3 models for a 0.5µm technology. 

The gain and time constant parameters adapt quickly and stably, and the error between 

the outputs of the adaptive estimator and the unknown system approaches zero when 

adaptation is completed. Section 2.4 describes testing results and mismatch analysis for 

the system. Experimental results agree well with the simulation results and further verify 

the validity of the learning rules.  

2.1 Derivation of Learning Rules 

We describe control laws for a tunable filter which address the classical problem 

of system identification, depicted in Figure 2.1: an input signal is applied to both an 

unknown system (plant) and to an adaptive estimator (model) system which estimates the 

parameters of the unknown plant. The difference between the plant and the model, the 

error, is used to adjust the parameters. We design the adaptive laws for adjusting the  
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Figure 2.1: The system identification problem: an input u is applied to both plant and 
model filters. The error 1e  is the difference of plant and model outputs ( )12 xx −  and is 
used to adapt the parameters of the model ( )BA, . 
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control parameters so as to ensure stability of the learning procedure. 

The unknown plant and the adaptive model filters are described by the state-

variable representation:  

ABuAxx +−= 11&  plant output  (2.1) 

uBAxAx +−= 22&  model output  (2.2) 

where 1x  is the output of the plant, A  is the reciprocal of the plant time constant, B  is the 

plant gain, u  is the input to both filters, 2x  is the output of the model, A  is the estimate 

of the reciprocal time constant, and B  is the estimate of the gain. 

In order to assess the performance and stability of the adaptation, we construct the 

error system as the differences between plant and model outputs, between estimated and 

true reciprocal time constant, and between estimated and true gain: 

121 xxe −=  output error   (2.3) 

AAe −=2  (1/time constant) error  (2.4) 

BBe −=3  gain error   (2.5) 

We are interested in adaptive laws controlling system parameters so that all errors tend 

towards zero with time. Thus we can focus on the essential features of the control 

problem by considering the dynamics of the error system: 

121 xxe &&& −=      (2.6) 

Ae && =2       (2.7) 

Be && =3       (2.8) 
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The dynamics of the output error are determined by the system, but we have the 

flexibility to specify the dynamics of the parameter errors so that the control laws drive 

the estimates stably to their true values. 

We employ the direct method of Lyapunov to investigate the stability of the 

adaptive system and to derive appropriate control laws [13]. We choose a suitable scalar 

function and examine the temporal derivative of this function along trajectories of the 

system. A Lyapunov function must satisfy the following three conditions: positive 

definite, negative definite time derivative, and radially unbounded. For system 

identification of the first order low-pass filter we consider the Lyapunov function: 

( )2
3

2
2

2
12

1)( eeeeV ++=    (2.9) 

This function satisfies the first and third conditions and has the following temporal 

derivative, evaluated in terms of the simple adaptive system described above: 

( ) ( )[ ]
( ) ( )( ) ( )[ ]

[ ]
( )

332231
2

21
2
1

332231221
2
1

3322132221

33221232221

3322121

332211)(

eeeeAuee
A
x

eeAe

eeeeAueeuBxeeAe

eeeeAeAueuBexee
eeeeABuexAueBeAxeAe

eeeeABuAxuBAxAe
eeeeeeeV

&&
&

&&

&&

&&

&&

&&&&

++++−=

++++−+−=

++−++−=

++−−+++++−=
+++−−+−=

++=

 (2.10) 

Note that the control laws for the time constant and gain errors ( 2e& and 3e&  respectively) 

remain unspecified, and we choose them to satisfy the second condition for the Lyapunov 

function. There are multiple solutions which provide such a negative time derivative: 

2
1)( AeeV −=&      (2.11) 

We choose the following pair of control laws: 
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A
xee 2

12
&

& −=      (2.12) 

Auee 13 −=&      (2.13) 

These rules may be simplified further since in current mode log domain filters, many 

system variables are strictly positive, including the estimate of the reciprocal time 

constant A , the true reciprocal time constant A , and the input u . Multiplying the rules 

by a positive scalar factor affects the rate of adaptation, but not the direction. Thus we 

can express the control laws simply: 

212 xee && −∝      (2.14) 

13 ee −∝&      (2.15) 

In our implementation the estimate of the reciprocal time constant is provided by 

integrating the product of the output error with the temporal derivative of the model 

output, and the estimate of the gain is provided by integrating the output error. 

We multiply two positive factors C  and D  to both learning rules and rewrite the 

new time derivative of the Lyapunov function as follows: 

( ) ( )

( )DAueeC
A

xeeAe

DeexCeeAuee
A
xeeAe

eeeeAuee
A
xeeAe

eeeeeeeV

−+





 −+−=

−+−+++−=

++++−=

++=

31212
2
1

1321231
2

21
2
1

332231
2

21
2
1

332211

1

)(

&

&
&

&&
&

&&&&

  (2.16)  

Even if A  and Au are not constants and we cannot tune C  and D  to cancel them 

exactly at all the time, we can at least ensure that the parameters are updated in the 

correct direction so that they approach the final desired adaptation state. The learning 
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procedure may not be optimal, but the estimator will eventually adapt to the unknown 

system since the learning rules are in the right direction.  

2.2 Circuit Implementation 

To demonstrate the learning rules we have derived using the Lyapunov method in 

the above section, we construct circuits implementing a first order lowpass filter model 

and integrating these learning rules for adaptation of the time constant and gain.  

2.2.1 MITE Implementation of Log Domain First Order Lowpass filters 

Log domain filters are a dynamic extension of classical static translinear circuits. 

They offer wide tuning range, large dynamic range, and low voltage / low power 

operation. The circuit in Figure 2.2(a) is the first order lowpass filter with cascode 

transistors used as an unknown plant and Figure 2.2(b) is the corresponding 

implementation for the adaptive model. 

In subthreshold operation the MITE current is an exponential function of the 

summed inputs: 

1 _( )
1 0

g refK V V
inI I e I+= =     (2.17) 

1 2( )
2 0

K V VI I e +=      (2.18) 

2 3( )
3 0

K V VI I e Iτ
+= =     (2.19) 

3( )
4 0

gainK V V
outI I e I+= =     (2.20) 

M1, M2, M3 and M4 form a translinear loop, so the current 2I  can be expressed as: 

)(
2

_ refggain VVK

out

in e
I

III −= τ     (2.21) 
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Figure 2.2: (a) Log domain MITE filter for a first order lowpass transfer function used as 
the unknown plant; (b) Log domain MITE implementation for adaptive model. 
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We apply Kirchoff’s Current Law (KCL) at the capacitive node to find the 

relationship between the MITE currents and the capacitive current: 

)(
222

_ refggain VVK

out

in e
I

IIVCIIVC −+==+ τ
τ

&&  (2.22) 

Since 2V  and 3V  together control a constant current 3I , their time derivatives are 

opposite in sign but equal in magnitude: 

233233 0)( VVVVKII &&&&& −=⇒=+⋅=   (2.23) 

We determine the transfer function for the output current outI  by differentiating it, 

then substituting our results from the KCL and MITE relationships above: 

            







−−=−== − )(

23
_1 refggain VVK

out

in
outoutoutout e

I
I

C
IKIVKIVKII τ&&&  

[ ])( _ refggain VVK
inoutout eII

C
KII −+−= τ&   (2.24) 

which is a first order low-pass transfer function with time constant ττ KIC /=  and gain 

)( _ refggain VVKe − . The time constant is the ratio between capacitance and bias current, easily 

tuned by adjusting the bias current. The gain is the exponential of the voltage difference 

between gainV  and refgV _ , easily tuned by adjusting the voltage gainV . 

2.2.2 MITE Implementation of Learning Rules 

The plant and model are first order lowpass filters, each with two adjustable 

parameters: gain and the reciprocal of the time constant. We have implemented learning 

rules derived using the Lyapunov method described in section 2.1. The inputs to the 

learning rules are the system output error and the temporal derivative of the model output. 
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The temporal derivative of the model output is computed using the circuit shown in 

Figure 2.3: A wide range OTA (Operational Transconductance Amplifier) operates as a 

voltage follower with a capacitor connected to the output, with current 21 ddd III −= . 

Suppose transistors M1 and M2 in Figure 2.3 are well matched and have the same 

transconductance mg . Since 1dI  and 2dI  are mirrored from the drain currents of M1 and 

M2 respectively, their difference can be expressed as  

( ) 22121 VCVVgIII dmddd
&=−=−=  

                12 V
sCg

gV
dm

m

+
=⇒   (2.25) 

md

d

dm

m
md gsC

VsCV
sCg

gVgI
/1
1

11 +
=








+

−=  (2.26) 

When dm sCg >> , the output current is approximately the derivative of the input 

voltage RISCVsCI fddd =≈ 1 . To make the transconductance mg  large, we operate the 

input devices near threshold. It is not necessary to explicitly convert the filter output 

current into voltage; we use intermediate node voltage V3_m of Figure 2.2(b) directly as 

input to the temporal derivative computation. This eliminates resistance R, so loading on 

the node V3 is minimal. Note that since 3VKII ff
&& = , the adaptation rule becomes 

fffp KIIIIe /)(2
&& −∝ . Input nodes nd1yank and nd2yank in Figure 2.3 control two 

NMOS transistors which subtract part of the currents from 1dI  and 2dI  respectively to 

compensate mismatch in the system. 1dI ′  and 2dI ′  are passed on to the next circuit stage. 
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Figure 2.3: Circuit for computing temporal derivative with mismatch controllers. 
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The time constant learning rule requires a four quadrant multiplication, also 

implemented using a MITE circuit shown in Figure 2.4 with inputs 1dI ′ , 2dI ′ , pI  and fI  

and outputs 1nmI  and 2nmI . Transistor groups (M1, M2, M4, M6), (M1, M2, M5, M7), 

(M1, M3, M4, M8) and (M1, M3, M5, M9) form four translinear loops which give: 

biasdf IIII /26 ′=     (2.27) 

biasdf IIII /17 ′=     (2.28) 

biasdp IIII /28 ′=     (2.29) 

biasdp IIII /19 ′=     (2.30) 

If we apply KCL at nodes 1nmI  and 2nmI , the difference between the currents flowing in 

the two nodes can be expressed as: 

( ) ( )
( ) ( )
( )( ) biasddfp

biasdpdfbiasdpdf

nmnm

IIIII

IIIIIIIIII
IIIIII

/

//

21

2112

879621

′−′−=

′+′−′+′=
+−+=−

 (2.31) 

The update direction for time constant of the first order lowpass filter 213 xee && −∝  is given 

by the current difference between 1nmI  and 2nmI .  

Schematics for the learning rules and summing nodes are shown in Figure 2.5: panel 

(a) shows the integrator for gain adaptation; panel (b) shows the integrator and 

differential pair for time constant adaptation. The cascode arrangement is used in all 

current mirrors to minimize early effect and increase trans-amp gain. 
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Figure 2.4: Circuit for four quadrant multiplication. 
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Figure 2.5: MITE implementation of learning rules for gain and time constant. 
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2.3 Simulation Results 

We simulate the circuit with HSPICE using BSIM3v3 models for a 0.5µm 

technology. We use the technique in [ 14 ] to avoid floating-node problems in the 

simulator. A schematic diagram illustrating this technique is shown in Figure 2.6. We add 

a voltage-dependent voltage source gatefloatingV _  from ground to the floating gate through a 

big resistor R. There is no current through R, because gatefloatingV _  tracks the floating gate 

voltage itself. This artificial DC path to ground aids numerical convergence in the 

HSPICE circuit simulator. We use a square wave (Figure 2.7), harmonic sine waves 

(Figure 2.8), and equally spaced sine wave frequencies (Figure 2.9) as inputs. 

Figure 2.7 shows adaptation with a kHz10  square wave.  The square wave pulses 

from nA20  to nA160 . Figure 2.7 (a) is the error eI  between the plant and filter outputs. 

Figure 2.7 (b) shows τV  and estV _τ . Figure 2.7 (c) shows gainV  and estgV _ . We 

intentionally vary the time constant of the plant (by a factor of 16) and the gain to see 

how well the filter adapts. The different τV  values correspond to τI  of nA40  

from ms2~0 , nA80  from ms5.3~2 , nA20  from ms5~5.3 , nA160  from ms5.6~5 , and 

nA10  from ms8~5.6 . The voltage gainV  is changed as 1.4V from ms1~0 , 1.5V from 

ms5.2~1 , 1.35V from ms4~5.2 , and linearly increases from 1.4V to 1.5V from 

ms5.5~4 , and linearly decreases from 1.5V to 1.45V from ms5.7~5.5 , and keeps 

constant at 1.45V from ms8~5.7 . For all changes in τV  and gainV , estV _τ  and estgV _  

accurately track the new values respectively. 0→eI  when ττ VV est →_  and 

estggain VV _→ . refgV _  is fixed at 1.5V. The adaptation rate depends on signal strength, 
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Figure 2.6: Technique used to avoid floating-node problems in the simulator.  

 
 

 

Figure 2.7: Adapting with a 10kHz square wave input. 
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Figure 2.8: Adapting with 4 harmonic sine waves. 

 
 

 
Figure 2.9: Adapting with 14 geometrically spaced sine waves from 5-97kHz. 
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currents gaI  and aIτ , and capacitors gC  and τC . 

Next, we show the adaptation when the signal is a mixture of sine waves. In Figure 

2.8 (a)-(c) we use a combination of sine waves equally weighted at kHz10 , kHz20 , 

kHz40 , and kHz80  as input. The input signal is biased at 90nA and has a 40nA peak to 

peak oscillation for each frequency. In Figure 2.9(a)-(c) the input is a summation of 14 

sine waves, whose frequency ratio is an irrational number 5/2π , spanning from kHz5  

to kHz97 . The input signal is also biased at 90nA and has a 10nA peak to peak oscillation 

for each frequency. For those two very different inputs, estV _τ  accurately tracks τV  

[Figure 2.8(b) and Figure 2.9(b)] and estgV _  tracks gainV  [Figure 2.8(c) and Figure 2.9(c)], 

and eI  approaches zero when adaptation is completed. 

2.4 Experimental Results  

We present measurements from a first order adaptive filter designed and fabricated 

in 0.5µm CMOS technology (AMI 0.5µm run T38O). The plant and the filter in Figure 

2.2 are implemented using transistors with a W/L ratio of 12/6. The input current and the 

output currents that flow in these parts of circuit have to be around or below nA100 , in 

order for all the transistors to operate in subthreshold. To implement these tiny currents, a 

100:1 current mirror is used in the input stage shown in Figure 2.10 to raise the input 

current of the chip up to Aµ10 . A Howland current source [15] with resistor values of 

Ω==== kRRRR 6.974321  shown in Figure 2.10 is used off-chip to convert the input 

voltages to input currents. There are no currents flowing into both the positive and 

negative nodes of the op-amp. The voltages of these two nodes are identical as follows if 

we assume infinite gain of the op-amp.  
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To apply KCL at the node −V , the input current to the chip can be expressed as: 
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If the relations among 1R , 2R , 3R  and 4R  satisfies  

1

4

2

3

R
R

R
R

=      (2.34) 

Equation (2.33) can be rewritten as: 

2R
VI in

in −=      (2.35) 

Thus, a linear relation between input voltage and the current is achieved. We can easily 

present input signals using a standard function generator or a PC-controlled DAC card. 

Two identical current conveyors with a 1390:6 current ratio as shown in Figure 2.10 are 

used in the output stage for the same reason. Two TL084 JFET-input operational 

amplifier are used with a Ωk100  resistor and a 100µF capacitor in parallel in the negative 

feedback path and bias the positive input node at 2.5V to convert the output currents to 

output voltages, which makes it easy to measure with an oscilloscope or appropriate data 

acquisition card. The capacitors are used to attenuate the high frequency noise for the 

output voltages. The relation between output voltages (V) and output currents (µA) can 

be expressed as: 

outfiltoutfilt

outpoutpl

IV

IV

__

__

1.05.2

1.05.2

⋅+≈

⋅+≈
   (2.36) 
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Figure 2.10: Testing setup for the adaptive first order lowpass filters including schematics 
of input voltage-current converter Howland current source, on-chip current conveyors, 
and output current-voltage converters.  
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We use a kHz10  square wave with amplitude of V2.0  and bias of V3.0  as the input 

voltage to the system, which is converted by the off-chip Howland current source and on-

chip current mirrors to an input current with peak to peak amplitude of nA80  and bias of 

nA60 . If the mismatch in the learning rules is adjusted appropriately using nd1yank and 

nd2yank, the error between the plant and model outputs does not exceed 4% of the plant 

output for fixed values of gain and time constant. We intentionally vary the gain and time 

constant of the plant to see how well the filter adapts. Figure 2.11(a) shows the error 

between the plant and model outputs. Figure 2.11(b) shows the gain control voltages gainV  

and estgV _  for plant and model. Figure 2.11(c) shows the time constant control voltages 

τV  and estV _τ . For all the changes in gainV  and τV , we observe accurate adaptation of 

estgV _  and estV _τ . The measured power consumption of the circuits is about 33µW. We 

observe a constant voltage difference of magnitude 0.07V between gainV  and estgV _ , 

which has been subtracted from the voltage gainV  shown in Figure 2.11(b). This constant 

voltage difference results from different amounts of stored charge on the floating gates in 

the plant and model filters. Figure 2.12 and Figure 2.13 show testing results for two 

different chips over a longer time period than Figure 2.11, which demonstrate the 

interaction between adaptation of gain and time constant. All the input conditions are as 

same as above. The constant voltage difference has not been subtracted for either case. 

Figure 2.12(a) and Figure 2.13(a) show the gain control voltages gainV  and estgV _  for 

plant and model. Figure 2.12(b) and Figure 2.13(b) show the time constant control 

voltages τV  and estV _τ . In the following section we present a mismatch analysis which 

accounts for the small difference between τV  and estV _τ . 
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Figure 2.11: Testing results of adaptation process: (a) error of outputs of plant and model 
filters. (b) gain control voltages of plant and model filters. (c) time constant control 
voltages of plant and model filters. 
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Figure 2.12: Testing results of adaptation process: changes of gain voltages and time 
constant voltages to demonstrate condition 2 in mismatch analysis. 
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Figure 2.13: Testing results of adaptation process: changes of gain voltages and time 
constant voltages to demonstrate condition 3 in mismatch analysis. 
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2.5 Analysis of Current Mirror Ratio Mismatch and Compensation 

Consider the implementation of the time constant learning rule shown in Figure 

2.5(b). Ideally, without the mismatch compensation we have 

( )
( ) biasdfdp

biasdfdp

IIIIIcI

IIIIIcI

/

/

122

211

+=

+=
   (2.37) 

Suppose the mismatch of this circuit is limited to mismatch in the current mirror ration, 

so that the actual ratio is x:1 , where the ideal ratio is 1:1 and x  is a constant around 1. 

The non-ideal currents ′
1I  and ′

2I  correspond to the ideal currents 1I  and 2I  can be 

written as: 

( ) ( )[ ]
( ) ( )[ ] biasnydfnydp

biasnydfnydp

IIIIIIIcI

IIIIIIIcI

/

/

11222

22111

−+−′=′

−+−′=′
 (2.38) 

where 1nyI  is the current flowing in NMOS transistor M3 to ground and 2nyI  is the 

current flowing in NMOS transistor M4 to ground for the temporal derivative circuit 

shown in Figure 2.3. Since ′+′=+= 2121 IIIII aτ  is a constant shown in Figure 2.5(b), we 

obtain 

c
III

I
c

nynytaild

taild

21_

_

−−
=′    (2.39) 

21_ ddtaild III +=     (2.40) 

The current taildI _ , which is the sum of 1dI  and 2dI , is also a constant. If we further 

assume that the time required for the time for adaptation 0t  is the same in both cases, and 
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that the mismatch compensation provided by M3 and M4 works well enough to ensure 

that both cases converge to the same voltage integrated on the same capacitor, we obtain 

( ) ∫∫ ′−′=−
00

0
21

0
21 )(

tt

dtxIIdtII    (2.41) 

Since 1nyI  and 2nyI  are currents flowing in NMOS transistor from a higher voltage to 

ground, they cannot be negative. There are only four possible cases for them, outlined as 

follows: 

1. 00 21 == nyny II  

2. 00 21 >= nyny II  

3. 00 21 => nyny II  

4. 00 21 >> nyny II  

Case 1 is the ideal situation in which there is no mismatch in the system and no mismatch 

compensation is required. 

Case 2 has not been observed in testing any of the chips.  

Cases 3 and 4 are observed in all the chips tested thus far.  

For simplicity of analysis, we only consider Case 3: 00 21 => nyny II . Since 

)()()()( 12212211 nynyddnydnyd IIIIIIII −+−=−−−  is applied as the derivative in later 

stages, we can compensate for 02 >nyI  by increasing 1nyI . Substituting the currents of 

equations (2.37) and (2.38) into equation (2.41), we can calculate the current (for 

02 =nyI ) which can compensate the current mirror ratio mismatch of x:1  we assumed at 

the beginning. 
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Since aIτ  is a constant current, its integral 0
0

0

tIdtI a

t

a ττ =∫   is also a constant. The current 

difference ( )21 II −  controls the capacitor voltage, which controls the time constant of the 

first order low pass filter. Assuming the initial capacitor voltage is 0V, then  

( ) ττ _
0

21

0

c

t

VCdtII =−∫ , where τC  is the capacitance, and τ_cV  ,which is the voltage on the 

capacitor, controls the estimated time constant control voltage estV _τ  as shown in Figure 

2.5(b). estV _τ  will decrease as τ_cV  increases, and will increase as τ_cV  decreases.  
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If we approximate 0
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p == ∫∫  as a constant, we obtain 
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where X ,Y , and Z  are defined as 
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For the purpose of comparison between actual and ideal case offsets, the adaptation 

time 0t  can be taken to be fixed, then X ,Y  and Z  are constants which do not change 

with time. 

Thus we have derived the condition on 1nyI  required to balance the current mirror 

mismatch x:1 . We now investigate the mismatch tuning for different assumptions about 

the current mirror ratio x . 

In the case of a 1:1 current mirror ratio, ( )∫ −=
0

0
21_

1)(
t

c dtII
C

desiredV
τ

τ , which is the 

desired voltage value that causes estV _τ  to track τV . In the case of a x:1  current mirror, 

∫ 




 ′−′=

0

0
21_

1)(
t

c dtxII
C

realV
τ

τ , which is the real voltage including the effect of offset 

current 1nyI . When 
τ

τ

_

_
1

c

c
ny VZ

VY
XI

+

−
⋅= , the real voltage is equal to the desired voltage, 
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which compensates the current mirror mismatch accurately so that estV _τ  tracks τV  very 

well.  

Condition 1): 01 1 =⇒= nyIx  as we expect. 

Condition 2): ⇒> 1x 0>X , 0>Y , and 0>Z . 

In the above development, we have derived the value for 1nyI  which allows it to 

exactly cancel a current mirror mismatch. However, x  is unknown, and 1nyI  is an input 

to the circuit so it is likely that under some circumstances the value will not be correct for 

cancellation. We now examine the consequences of values for 1nyI  which do not provide 

such cancellation. 

Since 01 >nyI , we know that YVZ c <<− τ_ , so ( ) 0_ >+ τcVZ . 

Let us go back to equations (2.41) to (2.45). 
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τ

τ

_

_

c

c

VZ
VY

X
+

−
⋅ , the time 

constant control voltage estV _τ  will be lower than the desired value τV . 
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When the current 1nyI  is smaller than the compensating value 
τ
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⋅ , the time 

constant control voltage estV _τ  will be higher than the desired value τV . 
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These tuning relationships between 1nyI  and estV _τ have been observed in the 

experimental results of chip No.7. 

Next we consider the effect of the gain change on the time constant adaptation. In 

Figure 2.12 and Figure 2.13 we observe that the gain adaptation affects the estimated the 

time constant control voltage. In the adaptation process shown in Figure 2.12 and Figure 

2.13, 1nyI  does not change. If the DC bias of the input signal to both plant and model 

filters does not change, the DC bias bI  of the output currents pI  and fI  will increase as 

the gain increases, and will decrease as the gain decreases. Recall that the gain of the 

lowpass filter topology can be expressed as )( _ refggain VVKe − , so the gain will increase as gainV  

increases, and will decrease as gainV  decreases.  

Assume that estV _τ  tracks τV  accurately and has converged to τV , which implies 

1

1_

1

1
_

_

_
1

ny

nyc

ny

ny
c

c

c
ny IX

I
Z

V
IX
ZIXY

V
VZ
VY

XI
+

−=
∂

∂
⇒

+

−
=⇒

+

−
⋅= τ

τ
τ

τ . 

Recall that X  and 1nyI  are positive, thus τ_cV&  and Z&  are opposite in sign, so τ_cV  

and Z  change in opposite directions. 

( ) ↑−≡↑⇒↑⇒↑⇒ 0
_ 1 tIx
CI

cI
ZIgainV b

tbias

taild
bgain  when 1>x .  

When the trimming current 1nyI  does not change, τ_cV  must decrease to compensate 

the increase in Z , then ↑↓⇒ estc VV __ ττ , which pushes estV _τ  higher as shown in Figure 

2.12 at the time marked by the symbol *.  

( ) ↓−≡↓⇒↓⇒↓⇒ 0
_ 1 tIx
CI

cI
ZIgainV b

tbias

taild
bgain  when 1>x .  
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When the trimming current 1nyI  does not change, τ_cV  must increase to compensate 

the decrease in Z , then ↓↑⇒ estc VV __ ττ , which drags estV _τ  lower as shown in Figure 

2.12 at the time marked by the symbol **.  

Finally, we consider the effect of the time constant change on the time constant 

adaptation. What happens if the time constant control voltage τV  of the plant changes? 

Should 1nyI  also change to accurately compensate the current mirror mismatch? Here we 

investigate this problem by differentiating equation (2.45). Assuming that the gain does 

not change, then X , Y  and Z  are all constants which gives 0=== ZYX &&&  

τ
ττ

ττττ
_2

_
2

_

____
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ny V
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&&
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+
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=
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=  
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ττ cc

ny
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ZYX

V
I
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=
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    (2.46) 

Recall that X , Y  and Z are all positive, thus 1nyI&  and τ_cV&  are opposite in sign, so 

1nyI  and τ_cV  change in opposite directions.  

If τV  increases, then in order for estV _τ  to track the change, τ_cV  must decrease, 

which implies that  1nyI  must increase.  

If τV  decreases, then in order for estV _τ  to track the change, τ_cV  must increase, 

which implies that  1nyI  must decrease.  

This tuning relationship between 1nyI  and τV  has been observed in the experimental 

results of chip No.7. 

Condition 3): ⇒<< 10 x 0<X , 0>Y , and 0<Z  
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We now examine the consequences of values for 1nyI  which do not provide the exact 

mismatch cancellation in the case of 10 << x .  

Since 01 >nyI , we know that either ZVc −<τ_  or YVc >τ_  

From equation (2.6), )( _τcVY −  was originally derived from ∫
0

0
2

t

tbias

dtI
CI

c , which is 

strictly positive. Thus we conclude that τ_cVY >  and ZVc −<τ_ , so 0_ <+ ZVc τ . 

Let us go back to equations (2.41) to (2.45). 
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When the current 1nyI  is larger than the compensating value 
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constant control voltage estV _τ  will be higher than the desired value τV . 
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When the current 1nyI  is smaller than the compensating value 
τ
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c

c
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X
+

−
⋅ , the time 

constant control voltage estV _τ  will be lower than the desired value τV . 

These tuning relationships between 1nyI  and estV _τ have been observed in the 

experimental results of chip No.9. 

Next, the effect of the gain change on the time constant adaptation is considered. 

Assume that estV _τ  tracks τV  accurately and has converged to τV , which implies 
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Recall that X  and Z are negative, and 000 ___ >−⇒<−⇒<+ τττ ccc VZZVZV . 
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1nyI  is also positive, τ_cV&  and Z&  are opposite in sign, so τ_cV  and Z  change in opposite 

directions. 

( ) ↓−≡↑⇒↑⇒↑⇒ 0
_ 1 tIx
CI

cI
ZIgainV b

tbias

taild
bgain  when 10 << x .  

When the trimming current 1nyI  does not change, τ_cV  must increase to compensate 

the decrease in Z , then ↓↑⇒ estc VV __ ττ , which drags estV _τ  lower as shown in Figure 

2.13 at the time marked by the symbol #.  

( ) ↑−≡↓⇒↓⇒↓⇒ 0
_ 1 tIx
CI

cI
ZIgainV b

tbias

taild
bgain  when 10 << x .  

When the trimming current 1nyI  does not change, τ_cV  must decrease to compensate 

the decrease in Z , then ↑↓⇒ estc VV __ ττ , which pushes estV _τ  higher as shown in Figure 

2.13 at the time marked by the symbol ##.  

Finally, we consider the effect of the time constant change on the time constant 

adaptation. Again we investigate this problem by differentiating equation (2.7). 

Assuming that the  gain does not change, then X , Y  and Z  are all constants which gives 
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Recall that X  and Z  are negative, and 0>+=− ZYZY , thus 1nyI&  and τ_cV&  have 

the same sign, so 1nyI  and τ_cV  change in the same directions.  

If τV  increases, then in order for estV _τ  to track the change, τ_cV  must increase, 

which implies that  1nyI  must decrease.  

If τV  decreases, then in order for estV _τ  to track the change, τ_cV  must decrease, 

which implies that  1nyI  must increase.  

These tuning relationships between 1nyI  and τV  have been observed in the 

experimental results of chip No.9 

Table 2.1 summarizes the results of the  mismatch analysis. In this table, 

τ

τ

_

_

c

c
comp VZ

VY
XI

+

−
⋅≡ . 

 1nyI  vs compI  gain  vs esttV _  τV  vs compI  

1>x  ττ VVII estcompny <⇒> _1  

ττ VVII estcompny >⇒< _1  

↑↑⇒ estVgain _τ  * 

↓↓⇒ estVgain _τ  ** 

↑↑⇒ compIVτ  

↓↓⇒ compIVτ  

10 << x  ττ VVII estcompny >⇒> _1  

ττ VVII estcompny <⇒< _1  

↓↑⇒ estVgain _τ  # 

↑↓⇒ estVgain _τ  ## 

↓↑⇒ compIVτ  

↑↓⇒ compIVτ  

Table 2.1: Results of the mismatch analysis.  



 

 40 
 

2.6 Summary 

We have described adaptive first order lowpass filters implemented using a log 

domain architecture and MITE circuits, along with MITE circuits which integrate the 

learning rules for system identification. We chose to implement adaptive filters using a 

log domain topology because log domain filters are compact current mode IIR filters that 

operate with low power, have wide tuning range, large dynamic range, and capability for 

high frequency operation. Further, we’ve developed robust learning rules based on 

Lyapunov stability. These learning rules are implemented using MITE structures, 

highlighting the elegance and symbiotic nature of the design methodology.  

Experimental results of the 0.5µm CMOS chip show stable adaptation under a 

variety of conditions, which demonstrates the success of our adaptive system design 

using this model-based learning method. 
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Chapter 3:  Adaptation of Second Order Filters 

 
 

Adaptive log domain first order lowpass filters have been considered in Chapter 2. 

The adaptation of second order filters is discussed in this chapter. 

The design of the second order filter [16] is presented in section 3.1. Learning rules 

for the second order filters [17] are derived in section 3.2 based on Lyapunov methods. 

MITE implementations of the learning rules are discussed in section 3.3. The derivative 

circuit and the four quadrant multiplication circuit discussed in Chapter 2 are used to 

implement the learning rules for the parameters, quality factor and time constant of the 

second order filter. Simulation results with HSPICE using BSIM3v3 models for a 0.5µm 

technology are shown in section 3.4. The quality factor and time constant parameters 

accurately and stably track the quality factor and time constant of the plant filter, and the 

output difference between the estimated filter and the plant filter approaches zero when 

adaptation is complete.  

3.1 Second Order Filter Design 

We synthesize higher-order log domain filters by factoring the desired transfer 

function into first order equations which are simple to implement. We illustrate the 

method by designing a second order bandpass filter.  
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Figure 3.1: MITE implementation for first order lowpass filter 
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3.1.1 First Order Lowpass filter structure 

Figure 3.1 shows a first order lowpass filter structure implemented using multiple 

input floating gate transistors. Suppose that the input voltages of the floating gate 

transistors are equally weighted. In subthreshold operation FGMOS current is an 

exponential function of the summed inputs: 

( )
in

UVV IeII Tr == + 2/
01

1κ    (3.1) 

( ) TUVVeII 2/
02

21+= κ     (3.2) 

( )
B

UVV IeII T == + 2/
03

32κ    (3.3) 

( )
out

UVV IeII Tg == + 2/
04

3κ    (3.4) 

We apply Kirchoff’s Current Law (KCL) at the capacitive node to find relationship 

between the MITE currents and the capacitive current: 

( ) Trg UVV

out

Bin
A e

I
IIVCIIVC 2/

222
−+==+ κ&&  (3.5) 

Since 2V  and 3V  together control a constant current 3I , their time derivatives are opposite 

in sign but equal in magnitude: 

( ) 233233 0
2

VVVV
U

II
T

&&&&& −=⇒=+⋅=
κ   (3.6) 

We determine the output current outI  by differentiating it. 
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T
out

T
outout
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κ
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If BA II = , we obtain a first order lowpass transfer function with time constant BT ICU κ/2  

and gain ( ) Trg UVVe 2/−κ .  

3.1.2 Second Order Bandpass Filter structure 

We synthesize higher-order log domain filters by factoring the desired transfer 

function into first order equations [18] which can be directly implemented using the 

simple block shown in Figure 3.1. We illustrate the method by designing a second order 

bandpass filter. We first specify the desired bandpass transfer function: 

22)/1(1 ssQ
sg

I
I

in

out

⋅+⋅⋅+
⋅⋅

=
ττ

τ
   (3.8) 

This describes a bandpass filter with gain of g , quality factor of Q  and time constant 

of τ . Note that the bandpass function eliminates DC components of the input signal, 

whereas currents in log domain filters are positive. An output bias must be added to ensure 

that MITE currents are strictly positive.  

For simplicity of implementation, we add a DC current term divided by the 

denominator of the bandpass transfer function. The filter performs a second-order low 

pass filtering operation on the DC component, which does not affect the output bias at low 

frequencies. To further simplify the implementation, we synthesize the second order filter 

without gain and incorporate it later.  

22)/1(1
)(
ssQ

IIsgI DCin
out ⋅+⋅⋅+

+⋅⋅⋅
=

ττ
τ

   (3.9) 

We consider intermediate currents Ix and I′out,  

gII outout /=′      (3.10) 
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22)/1(1
)/1(

ssQ
IsQII DCin

x ⋅+⋅⋅+
⋅+−

=
ττ

τ    (3.11) 

The above function can be easily factored into two simple first order lowpass transfer 

functions: 

sQII
I

xin

out

⋅+
=

−
′

τ/1
1     (3.12) 

sII
I

DCout

x

⋅
=

−′ τ
1     (3.13) 

In order to implement these two transfer functions using the structure in section 3.1.1, 

we need to ensure that the input signal remains positive. Since the numerators of both 

functions are unity, we do not need to consider the difference between Vr and Vg in Figure 

3.1 and simply connect them together.  

To implement equation (3.12), a straightforward adaptation of the lowpass structure 

is shown in Figure 3.2(a), where we take IA=IB/Q and the time constant is τ=2UTC/κIB. 

However, the first order filter structure requires the input signal to be positive, and Iin-Ix 

can be negative. A solution to this problem is shown in the equivalent circuit of Figure 

3.2(b). The translinear loop equations for Figure 3.2(a) and (b) can be written as: 

( ) ( / )in x B B C outI I I I Q I I ′− = −    (3.14) 

outCxBBin IIIQIII ′−′+= )/(    (3.15) 

If we set the dependent current source to be I′x=IxIB/I′out, equations (3.14) and (3.15) 

are equivalent. Thus we introduce a dependent current source at the capacitive node in 

order to resolve the potential problem of negative inputs. We can implement equation 

(3.13) using the same method, with the resulting circuits shown in Figure 3.3. Here the 
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Figure 3.2: Circuit for implementing Equation (3.12): (a) a straightforward idea which is 
unrealizable; (b) equivalent implementation. 

 
 
 
 

 

Figure 3.3: Circuit for implementing Equation (3.13): (a) a straightforward idea which is 
unrealizable; (b) equivalent implementation. 
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dependent source is I′DC=IDCIB/Ix.  

We cascade the circuits in Figure 3.2(b) and Figure 3.3(b) to realize the second order 

transfer function for I′out as shown in Figure 3.4. The final issue is implementation of the 

two dependent current sources I′x and I′DC. 

MITE transistors M4, M5, M6 and M7 form a translinear loop which gives an elegant 

expression: I′outIB=IyIx. Using this expression, the dependent current sources can be written  

as: 

yBoutBxx IIIIII // 2=′=′    (3.16) 

outyDCxBDCDC IIIIIII ′==′ //    (3.17) 

Thus, both dependent current sources are expressed in terms of Iy instead of Ix, and 

transistors M6 and M7 inside the dotted box in Figure 3.4 which generate Ix are not 

necessary. The two dependent current sources are implemented using translinear loops as 

shown in Figure 3.5. MITE transistors M4, M5, M8 and M9 form a translinear loop to 

realize I′DC=IDCIy/I′out, which is sourced into the second capacitive node. MITE transistors 

M6, M7, M5 and M3 form another translinear loop to implement I′x=IB
2/Iy, which is 

sourced into the first capacitive node. Thus we complete the realization of the dependent 

current sources. The quality factor Q is implemented by using VQ rather than Vdd as the 

source voltage for PMOS transistor M11. Since all the transistors are working in 

subthreshold, current can be expressed as the exponential of the control voltage. 

Neglecting the body effect, we have  

TthpBQ UVVV
B eIQI /)(

0/ −−=    (3.18) 

TthpBdd UVVV
B eII /)(

0
−−=     (3.19) 
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Figure 3.4: Circuit for second order filter with dependent current sources. 

 

 

 

Figure 3.5: Complete circuit for the second order filter.  
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Figure 3.6: Complete circuit for the second order bandpass filter. 
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So the quality factor Q can be expressed as: 

TQdd UVVeQ /)( −=     (3.20) 

M10 shares the input voltage Vout with M4, and has a different input voltage Vg, which 

implements the gain Trg UVVeg 2/)( −= κ  and produces the final output current Iout=gI′out. 

This output current exhibits the second order transfer characteristic: 

22)/1(1
)(
ssQ

IIsgI DCin
out ⋅+⋅⋅+

+⋅⋅⋅
=

ττ
τ

   (3.9) 

In order to implement a truly bandpass characteristic we use a similar structure 

M11-M19 shown in Figure 3.6 which shares the same constant current biases and 

removes the DC bias of the output. The output current is obtained by taking the 

difference ( )outDCout II −  between the outputs of two similar structures. One is driven by 

the positive input signal inI  and the other is driven by the DC bias inDCI  of the input 

signal inI .  

3.1.3 Simulation Results 

We simulate the circuit with HSPICE using BSIM3v3 models for a 0.5µm 

commercially available technology. The technique in [14] is used to avoid floating-node 

problems in the simulator. The filter is powered using a voltage supply of 1.5V and the 

bias of the output current is set at 100nA. We initialize all the floating gate nodes and 

drain nodes of the transistors to half of the power supply (0.75V) to ensure to maximum 

operating range and accuracy of simulation. Transient simulation results of a sinusoidal 

input signal show that the output of the filter does not vary sinusoidally initially, but as the 

internal node voltages equilibrate, it eventually behaves as expected. The initial time 
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required for startup may be minimized if we can tune the initial voltage of every node in 

the circuit perfectly. But for different time constant currents or different quality factor 

control voltages, the perfectly-tuned initial voltage of every node varies from one 

condition to another. Thus it is not safe to use AC simulation to determine the transfer 

function under those different initial conditions. Instead, we simulate the filter transiently 

at different frequencies, and plot all the output current amplitudes with respect to the 

frequencies for each condition. 

First we sweep the time constant current IB linearly from 20nA to 60nA. The central 

frequency is proportional to the reciprocal of the time constant, and the current IB is 

proportional to the reciprocal of the time constant. So the central frequency varies 

linearly with the current IB as shown in Figure 3.7. For these simulations, Vr=Vgain=0.75V, 

and VQ=1.45V.  

Next we sweep the quality factor Q by varying the voltage VQ from 1.43V to 1.47V 

linearly. According to equation (3.5) the quality factor Q is swept exponentially as shown 

in Figure 3.8. For these simulations, Vr=Vgain=0.75V, and IB=40nA. 

Finally we show the gain dependence on gain control voltage Vg. With the constant 

voltage Vr at 0.75V, we vary Vg linearly from 0.65V to 0.85V. The gain is proportional to 

the exponential of the voltage Vg. Figure 3.9 depicts the linearity of the gain (dB) change 

with the gain control voltage Vg. For these simulations, IB=40nA and VQ=1.45V. The 

input signal is a 10kHz sine wave.  

From Figure 3.7, the operating point IB=40nA corresponds to a central frequency 

around 20kHz, which gives the time constant as: 

41022
1

2
1

×⋅
==

ππ
τ

f
   (3.21) 
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Figure 3.7: Time constant τ tuning with time constant current swept from 20nA to 60nA 
linearly with Vr=Vgain=0.75V and VQ=1.45V 

 
 

 

Figure 3.8: Quality factor Q tuning with voltage VQ swept from 1.43V to 1.47V linearly 
with Vr=Vgain=0.75V and IB=40nA. 
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Figure 3.9: Gain dependence on gain control voltage Vg with IB=40nA and VQ=1.45V. 



 

 54 
 

According to simulation results, VQ =1.45V corresponds to Q=4.31. At a frequency 

of 10kHz with Vg=0.75V which gives s as: 

jjfs 410122 ×⋅=⋅= ππ    (3.22) 

so that  

jjs 5.01012
1022

1 4
4 =×⋅⋅

×⋅
=⋅ π

π
τ  (3.23) 

the gain can be calculated as  

( )
dB

jj
j

sQs
s 6.3

5.031.4/5.01
5.0log20

/1
log20 2102210 −=

++
=

+⋅+
⋅

ττ
τ  (3.24) 

which agrees well with the simulation result of -3.3dB in Figure 3.9 indicated by the 

symbol X. 

3.2 Derivation of Learning Rules 

We describe a second order adaptive filter which addresses the classical problem of 

system identification depicted in Figure 3.10. A tunable second order filter is used as the 

model to identify an unknown system. An input signal is applied to both an unknown 

system (plant) and an adaptive estimator (model) system. Control laws are designed using 

observable outputs to adjust the parameters of the estimator so as to ensure stability of the 

learning procedure. 

The second order filter is described by the following equation:  

2222 11

1
11

)()(
ss

Q

I
ss

Q

ssIsI DCinout

⋅+⋅⋅+
⋅+

⋅+⋅⋅+

⋅
⋅=

ττττ

τ
 (3.25) 



 

 55 
 

 

Figure 3.10: The system identification problem. 
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While the bandpass function eliminates DC components from the input, log domain filters 

are inherently current mode circuits with strictly positive currents. Thus we must introduce 

an output bias, denoted here as a constant current IDC, which is independent of the input 

signal.  

We describe the unknown plant and adaptive model filter using the state-variable 

representation: 

DBuBxABxBx 2
11

2
1 ++−−= &&&&  plant    (3.26) 

DBuBxBAxBx 2
22

2
2 ++−−= &&&&  model    (3.27) 

where 1x  and 2x  are the plant and model outputs, A  and A  are the reciprocals of plant 

and model quality factors, B  and B  are the reciprocals of plant and model time constants, 

u  is the input to both filters, and D  is the output bias of both outputs. 

An error system is constructed in order to evaluate the performance and stability of 

the adaptation.  

121 xxe −=      output error   (3.28) 

AAe −=2      (1/quality factor) error  (3.29) 

BBe −=3      (1/time constant) error  (3.30) 

We seek control laws which drive all errors toward zero with time. Thus the 

dynamics of the error system should also be considered: 

121 xxe &&& −=      (3.31) 

121 xxe &&&&&& −=      (3.32) 

Ae && =2       (3.33) 
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Be && =3       (3.34) 

We cannot control the dynamics of the output error since that depends on the 

unknown input u, but we can derive adaptive laws that specify the dynamics of the 

parameter errors so that the estimator learns the behavior of unknown system.  

The direct Lyapunov method is employed to derive appropriate learning rules [13]. 

We must find a scalar function which satisfies three conditions: positive definite, negative 

definite time derivative and radially unbounded. For the adaptation of the second order 

filter we consider the candidate Lyapunov function: 

( )2
3

2
2

2
1

22
12

1)( eeeBeeV +++= &    (3.35) 

This function satisfies the first and third conditions. To evaluate the second condition, 

we evaluate the temporal derivative of the candidate function: 

332211
2

11)( eeeeeeBeeeV &&&&&&& +++=   (3.36) 

This temporal derivative is a function of the second derivative of the output 

difference, so we compute it as follows: 
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 58 
 

Next we substitute the expression for the second derivative into the temporal derivative of 

the candidate Lyapunov function:  
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      (3.38) 

By choosing the following control laws: 

212 xeBe &&& =      (3.39) 

( ) 



 −−=

B
xDxBee 2

213
&&

&&    (3.40) 

we ensure that the candidate Lyapunov function has a negative time derivative: 

( ) 2
1eABeV && −=      (3.41) 

Assume that the output signal varies as a sinusoidal function ( )wtEDx sin2 += , 

where the frequency w  is low and D  is the output bias. We can express ( )Dx −2  and 2x&&  

as follows:  

( )wtEDx sin2 =−     (3.42) 

( )wtEwx sin2
2 −=&&     (3.43) 

By substituting these expressions into the learning rule for the of time constant, we find 

that the update is the product of two signed quantities, 1e&  and ( )Dx −2 , and a positive 

term 







+

B
wB

2

 that depends on the signal frequency. 
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      (3.44) 

The learning rule for time constant and quality factor may be simplified further since 

in current mode log domain filters the quality factors and time constants are positive. The 

positive scalars in the rules affect the rates of the adaptation, but not the direction. Thus 

the rules above can be simplified: 

212 xee &&& ∝      (3.45) 

( )Dxee −∝ 213 &&     (3.46) 

We estimate the reciprocal quality factor by integrating the product of the output 

error derivative and model output derivative and estimate the reciprocal time constant by 

integrating the product of the output error derivative and model output without bias.  

3.3 Circuit Implementation 

3.3.1 Implementation of Log Domain Second Order Filters 

We implement the log domain bandpass filter using dynamic MITE networks. The 

circuit in Figure 3.11(a) is used for the unknown plant and Figure 3.11(b) is used for the 

estimated model. In subthreshold operation MITE current is an exponential function of 

the summed inputs. 

in
VVK IeII r == + )(

01
1     (3.47) 

)(
02

21 VVKeII +=      (3.48) 
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)(
03

32 VVKeII +=      (3.49) 

τIeII VVK == + )(
04

43     (3.50) 

τIeII VVK == + )(
05

52     (3.51) 

)(
06

5 rVVKeII +=     (3.52) 

)(
07

54 VVKeII +=     (3.53) 

)(
08

64 VVKeII +=     (3.54) 

DC
VVK IeII r == + )(

09
6     (3.55) 

Kirchoff’s Current Law (KCL) is applied at the capacitive nodes to obtain the 

following relationships: 

223/ VCIIQI &+=+τ     (3.56) 

478 VCII &+=      (3.57) 

M6, M7, M8 and M9 form a translinear loop: 

4678 / IIII DC=     (3.58) 

4677 / VCIIII DC
&−=     (3.59) 

M3, M4, M7 and M5 form a translinear loop: 

7
2

3 / III τ=      (3.60) 

M1, M2, M5 and M6 form a translinear loop: 

667
2

2362 ///// KIICIIQIVCIQIIIII in
&& ++=−+== ττττ   (3.61) 

So the input current can be expressed as  

ττ KIICIIIQIIin /// 6766
&++=   (3.62) 
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Figure 3.11: (a) Log domain MITE network for a second order filter used for plant; (b) 
Log domain MITE implementation for filter. 
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Let us consider an intermediate current xI : 

)(
76

4/ VVK
x

reIIIII −== ττ    (3.63) 

4VKII xx
&& −=      (3.64) 

67 // IIII x =τ      (3.65) 

If we substitute equation (3.59) for 7I , 

( ) ( )xxxDCxDCx KIICIIIIVCIIIIII /// 4676
&& +=−= ττ   (3.66) 

( )DCx IIIKIC −= 6/ τ
&     (3.67) 

( ) sCIIKII DCx /6 −= τ    (3.68) 

and further substitute the new expression for Ix into equation (3.62), we obtain 

( )
( )

( ) ( )26

666

///1
/

///

ττ

τ

ττ

KIsCQKIsC
IKIsCI

I

KIsCIsCIIKIQII

DCin

DCin

++

+
=⇒

+−+=
    (3.69) 

which is a second order transfer function with quality factor Q and time constant τ=C/KIτ. 

We can easily tune the bias current Iτ and bias voltage VQ to change the time constant and 

quality factor respectively, thus changing the central frequency and shape of the filter. 

3.3.2 Implementation of Learning Rules 

The behavior of plant and model filters is controlled by two parameters: quality 

factor and time constant. We have derived learning rules for the reciprocals of these 

parameters in section 3.2. The inputs to the learning rules are the temporal derivative of 

the output difference, the temporal derivative of the model output and the model output 

excluding bias. Figure 3.12(b) and Figure 3.12(c) are circuits for computing temporal 
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derivative. We use the circuit of Figure 3.12(b) to implement the derivative of the model 

output and the circuit of Figure 3.12(c) to implement the derivative of the current output 

difference.  

The structure of the derivative circuit is simply a wide range OTA that operates as a 

voltage follower with a capacitor connected to the output as shown in Figure 3.12(a). The 

output current is Id=Id3-Id4 in Figure 3.12(b). The larger the gain, the more accurate the 

calculation. So we operate the input devices near threshold to maximize transconductance. 

We use the circuit of Figure 3.12(c) to compute the filter output error 1e and convert it to 

a voltage, then realize the derivative 121 eII dd &∝− . The function of biasV  in Figure 3.12(c) 

is to ensure that the input voltage of the derivative circuit remains at an common mode 

voltage for the differential pair. We also use the intermediate node voltage V5 of the 

model filter in Figure 3.11(b) as the input in Figure 3.12(b) in order to compute 

243 xII dd &∝− , since 5VKII ff
&& =  and fI  is a positive current which only affects the rate 

of adaptation. Note that we use a different voltage source Vcc for the derivative circuit 

because the voltage source Vdd for the filter circuits in Figure 3.11 is only 1.5V,  which is 

not high enough for the transistors in the derivative circuit to operate in the saturation 

region.  

Both the learning rules for quality factor and time constant require a four quadrant 

multiplication, and as implemented using the MITE circuits shown in Figure 3.13(a). 

Circuits for the integrating the learning rules are shown in Figure 3.13(b) and (c), note that 

VQ can be higher than Vdd, so the voltage Vee in Figure 3.13(b) is higher than Vdd. 
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Figure 3.12: (a) and (b) are circuits for computing temporal derivative of voltage; (c) is 
the circuit for computing temporal derivative of the current output difference.  
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Figure 3.13: (a) Circuit for computing four quadrant multiplication for quality factor 
adaptation; (b) Integrator circuit for quality factor adaptation; (c) Circuit for computing 
four quadrant multiplication for time constant adaptation; (d) Integrator circuit for time 
constant adaptation. 



 

 66 
 

3.4 Simulation Results 

The circuit is simulated with HSPICE using BSIM3v3 model for a commercially 

available 0.5µm technology. The technique in [14] is used to avoid floating-node problems 

in the simulation. The diagram is shown in Figure 3.14. We add a voltage-dependent 

voltage source gatefloatingV _  from ground to the floating gate through a big resistor R. There 

is no current through R, because gatefloatingV _  tracks the floating gate voltage itself. This 

artificial DC path to ground aids numerical convergence in HSPICE simulator. The 

voltage source Vdd for both filters is 1.5V and the voltage sources Vcc and Vee required for 

adaptation are both 2.5V. We use a sine wave (Figure 3.15) and superposition of sine 

waves (Figure 3.16 and Figure 3.17) as inputs. 

Figure 3.15 shows adaptation with a 10kHz sine wave. The sine wave is biased at 

100nA with a peak to peak variation of 120nA. Figure 3.15(a) shows VQ and VQ_est. VQ is 

varied as 1.47V from 0-2ms, 1.45V from 2-6ms and 1.46V from 6-10ms. Figure 3.15(b) 

shows Vτ and Vτ_est. The different Vτ values correspond to different values of Iτ. Iτ is varied 

as 40nA from 0-4ms, 45nA from 4-8ms, and 35nA from 8-10ms. Figure 3.15(c) is the 

error between the plant and filter output. For all changes in VQ and Vτ, VQ_est and Vτ_est 

track the new values accurately. The error converges to zero when VQ_est converges to VQ 

and Vτ_est converges to Vτ. The adaptation rate depends on signal strength, currents IQa and 

Iτa, and capacitances CQ and Cτ. 

Next we show adaptation when the input signal is a mixture of sine waves. In Figure 

3.16, the input signal is a combination of equally weighted sine waves at 10kHz, 20kHz, 

40kHz and 80kHz as input. The DC current is also 100nA and each of the sine waves has  
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Figure 3.14 Technique used to avoid floating-node problems in the simulator.  

 
 

 

Figure 3.15: 10kHz sine wave input signal: (a) Quality factor adaptation. (b) Time 
constant adaptation. (c) Output error. 
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Figure 3.16: Four harmonic sine waves input signal: (a) Quality factor adaptation. (b) 
Time constant adaptation. (c) Output error. 

 
 

 
Figure 3.17: Six geometrically spaced sine waves from 10-96kHz input signal: (a) 
Quality factor adaptation. (b) Time constant adaptation. (c) Output error. 
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a peak to peak variation of 30nA. In Figure 3.17, the input signal is a summation of 6 

equally weighted sine waves, whose frequency ratio is an irrational number 2/π , 

spanning from 10kHz to 96kHz.The sine wave is also biased at 100nA and each of the 

sine waves has a peak to peak variation of 20nA.  In each case, VQ_est accurately tracks VQ 

as shown in Figure 3.16(a) and Figure 3.17(a) and Vτ_est tracks Vτ, as shown in Figure 

3.16(b) and Figure 3.17(b) and the output error shown in Figure 3.16(c) and Figure 3.17(c) 

approaches zero when adaptation is finished. 

3.5 Summary 

A circuit design approach has been developed for log domain adaptive filters that 

extends earlier work from adaptation of first order lowpass filters to a second order 

structure. A novel structure has been designed for a second order filter using a log domain 

topology which has wide tuning range and large dynamic range and capability for high 

frequency operation. Further, robust learning rules have been developed for system 

identification based on the direct Lyapunov method for the second order filter. These 

learning rules have been implemented using MITE structures, which are compact and 

elegant, although necessarily more complex than the design of the adaptive first order 

lowpass filter. Simulation results demonstrate the validity of the learning rules. Future 

work will focus on fabricating these circuits, experimentally validating these results and 

extending this work to more comprehensive adaptive filter structures. 
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Chapter 4:  Conclusions and Future work 

 
 

In this thesis, we have developed two circuit design approaches for log domain 

adaptive filters. One is an adaptive first order lowpass filter, the other is an adaptive 

second order tunable filter. Both of them utilize log domain filters implemented with 

MITE circuits to integrate learning rules for system identification. The second order filter 

is a novel structure using a log domain topology to implement compact current mode IIR 

filters that operate with low power, have wide tuning range and large dynamic range and 

capability for high frequency operation. Further, robust learning rules for the parameters 

of the two adaptive systems are derived based on Lyapunov stability. These learning rules 

are implemented using MITE structures, highlighting the elegance and symbiotic nature 

of the design methodology.  

Simulation results with HSPICE using BSIM3v3 models are presented for both the 

first order lowpass filter and the second order bandpass filter with a tunable bias current. 

The log domain filters adapt to estimate the parameters of the reference filters accurately 

and efficiently as the parameters are changed. The output difference between the 

estimated system and the reference system approaches zero when adaptation is complete.  

The first order lowpass adaptive filter has been designed and fabricated in a 

commercially available 0.5µm CMOS technology. Experimental results for the first order 

lowpass filter show stable adaptation under a variety of conditions, which proves the 

success of the adaptive system using this model-based learning method. The measured 

power consumption is only 33µW which justifies low power operation of MITE structures.  
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Future work will focus on fabricating the circuits of the adaptive second order log 

domain filters, experimentally validating these results and extending this work to more 

comprehensive adaptive filter structures. 
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