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Chapter 1: Introduction

1.1 Background and Motivation

Adaptive signal conditioning is an important and well-established tool used widely
in scientific and engineering disciplines such as communications, biomedical engineering
and life science. Many complex and demanding applications require adaptive filtering to
reject noise and improve signal performance dynamically. To achieve this, control laws
must use limited information to adjust parameters of the adaptive system in directions
that produce robust system adaptation. In this thesis, current-mode log domain filter
architecture and floating gate MOSFETs are combined to realize accurate and stable
learning rules for the system parameters of a first order lowpass filter and a second order
bandpass filter.

Several groups have described filtering applications based on floating gate MOS
circuits. Hasler et al. [1] described the Auto-zeroing Floating Gate Amplifier (AFGA)
and its use in bandpass filter structures with very low frequency response capability.
Fernandez et al. [2] described a 1V micropower lowpass filter implemented using
Floating Gate Metal Oxide Semiconductor (FGMOS) transistors. Rodriguez-Villegas et
al. [3] designed a log domain integrator based on FGMOS transistors. Minch [4, 5, 6]
developed circuits and synthesis techniques using Multiple Input Translinear Elements
(MITES) for a variety of signal processing applications.

Other groups have reported current-mode filter implementations using transistors

working in strong inversion mode. El-Masry and Gates [7] described a continuous-time



current-mode differentiator constructed using a capacitively coupled current mirror,
which is simple, small in size and easily used in implementing higher order filters. Wu
and El-Masry [8] described current-mode ladder filters using output current conveyors
based on the simulation of the passive RLC ladder prototypes. The designs show that the
multiple output current conveyor based circuits can reduce the number of active
components by 50%. In contrast, we describe current-mode log domain filters using
transistors working in weak inversion mode. Weak inversion mode is especially suitable
for low power circuit design. The current flowing in a unit transistor working in weak
inversion is below hundreds of nanoamperes, which is smaller than the values associated
with strong inversion operation. The gate to source voltage drop of a transistor working
in weak inversion is around or below the threshold voltage, which makes it possible to
use low supply voltages and further reduce power consumption. In addition to the low
power dissipation, the exponential transfer function in weak inversion also provides an
extended dynamic range and easy tunability.

Few groups have reported integrated analog adaptive filters. Juan et al. [9] and
Stanacevic and Cauwenberghs [10] have designed analog transversal Finite Impulse
Response (FIR) filters that include adaptation of weights. Ferrara and Widrow [11] have
designed a time-sequenced adaptive filter. The filter is an extension of the LMS adaptive
filters which allow the weight vector to change freely in time in order to accommodate
rapid changes in the statistics of a certain class of nonstationary signals, while allowing
slow precise adaptation. All of these use Least Mean Square (LMS)-based adaptation
algorithms. The output of the adaptive filter is defined by a weighted sum of input

sequences. The Least Mean Square method is a steepest descent search algorithm which



adjusts weights iteratively in such a way as to move along the error surface towards the
optimum value. The adaptive filters are digital filters composed of a tapped delay line and
adjustable weights, whose impulse response is controlled by the adaptive algorithm. The
individual weight values do not indicate any information or characteristics about the
transfer function of the unknown system. The adaptation of the filter is input-dependent.
Once the input signal varies, new values of weights are required to be calculated for
adaptation. The method we present in this thesis is a model-based method. To estimate an
unknown system, we first assume a transfer function model for it, and use another similar
tunable structure as the estimator to track the operation of the unknown system. The
output difference between the unknown system and the estimated system are used to
derive adaptive laws of the variables which control the estimated system. The variables
we select to adapt are parameters which control the characteristic of the filter transfer
function. Once they are adapted using a certain input signal, the characteristic of the filter
is determined. When the input signal changes, there is no further adaptation needed
unless the transfer function of the unknown system changes. There is another point that
LMS methods are well suited to implementations of FIR filters. In this thesis we present
methods based on Lyapunov stability well suited for adaptive control of Infinite Impulse
Response (IIR) filters. IIR filters offer the advantage of smaller filter structures and fewer

filter coefficients than FIR filters in order to model plants of similar complexity.

1.2 Multiple Input Translinear Element

Multiple input translinear elements (MITEs) provide compact and elegant
implementations of log domain filters. A MITE produces an output current that is an

exponential function of the weighted sum of its input voltages. We can implement such



Figure 1.1: Circuit symbol for ideal N-input MITE.



devices using multiple input floating gate transistors operating in weak inversion. Figure
1.1 is a circuit symbol for an ideal N-input MITE. The transfer function of this element is

given by:
I = I, explk(wV, + wV, +---+w V) /U,] (1.1)

where /j is a pre-exponential scaling current,

2uc, U

J=— L (1.2)
K

Vi is the ith input voltage, and w; is the dimensionless positive weight of V. x is the
subthreshold slope factor which reflects the capacitive division between gate and substrate

and is less than 1. Ur is the thermal voltage k7/q. The pre-exponential current /, depends

on the carrier mobility x, gate oxide capacitance C, , width to length ratio W/L ,

subtheshold slope factor x and thermal voltage Ur =kT/q. The advantage of using floating
gate MOS transistors in weak inversion to implement MITEs is that they can be easily

fabricated in standard CMOS processes.

1.3 Organization of the thesis

Chapter 2 describes the adaptation of first order lowpass filters. The learning rules for
robust adaptation for the first order lowpass filter are derived using the Lyapunov method.
MITE implementations of the circuits are described and simulation results verify proper
operation of the design. Experimental results demonstrate successful adaptation. We
investigate the adaptive behavior under the non-ideal condition of a current mirror ratio
mismatch. Chapter 3 describes the adaptation of second order bandpass filters. The design

of a second order filter is presented. The Lyapunov method is used to investigate the



stability and derive the learning rules for the second order filters. Circuit implementations
of the learning rules and simulation results with HSPICE using BSIM3v3 models for a

0.5um technology are shown. Chapter 4 summarizes and draws conclusion from this work.

1.4 Contributions

My work in this project can be summarized as follows.

1. Fabricate through MOSIS and test the adaptive first order lowpass filters

2. Investigate the adaptive behavior under the non-ideal condition of a current mirror

ratio mismatch.
3. Design and simulate a second order bandpass filter
4. Derive learning rules for adaptation of the second order filter topology

5. Design and simulate the adaptive second order filters



Chapter 2: Adaptation of First Order Lowpass Filters

Adaptive circuit designs [12] for log domain first order lowpass filters implemented
by floating gate transistors are presented in this chapter. In section 2.1, learning rules for
robust adaptation for the first order lowpass filter are derived. The Lyapunov method is
used to investigate the stability of the adaptive system. In section 2.2, MITE
implementations of the circuits are described. The log domain filter architecture is used to
implement the filters. MITE circuits are used to compute and integrate the learning rules
of the parameters of the first order lowpass filter, gain and time constant. Section 2.3
presents simulation results with HSPICE using BSIM3v3 models for a 0.5um technology.
The gain and time constant parameters adapt quickly and stably, and the error between
the outputs of the adaptive estimator and the unknown system approaches zero when
adaptation is completed. Section 2.4 describes testing results and mismatch analysis for
the system. Experimental results agree well with the simulation results and further verify

the validity of the learning rules.

2.1 Derivation of Learning Rules

We describe control laws for a tunable filter which address the classical problem
of system identification, depicted in Figure 2.1: an input signal is applied to both an
unknown system (plant) and to an adaptive estimator (model) system which estimates the
parameters of the unknown plant. The difference between the plant and the model, the

error, is used to adjust the parameters. We design the adaptive laws for adjusting the
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Figure 2.1: The system identification problem: an input « is applied to both plant and
model filters. The error e, is the difference of plant and model outputs (x, —x, ) and is

used to adapt the parameters of the model (Z ,B )



control parameters so as to ensure stability of the learning procedure.
The unknown plant and the adaptive model filters are described by the state-
variable representation:
X, =—Ax, + ABu plant output (2.1)
X, =—Ax, + ABu  model output (2.2)
where x, is the output of the plant, 4 is the reciprocal of the plant time constant, B is the

plant gain, u is the input to both filters, x, is the output of the model, 4 is the estimate

of the reciprocal time constant, and B is the estimate of the gain.
In order to assess the performance and stability of the adaptation, we construct the
error system as the differences between plant and model outputs, between estimated and

true reciprocal time constant, and between estimated and true gain:

e, =x, —x, outputerror (2.3)
e, = A—-A  (1/time constant) error 2.4)
e,=B—-B  gainerror (2.5)

We are interested in adaptive laws controlling system parameters so that all errors tend
towards zero with time. Thus we can focus on the essential features of the control

problem by considering the dynamics of the error system:

é =%, -, (2.6)
6, =A 2.7)
é,=B (2.8)



The dynamics of the output error are determined by the system, but we have the
flexibility to specify the dynamics of the parameter errors so that the control laws drive
the estimates stably to their true values.

We employ the direct method of Lyapunov to investigate the stability of the
adaptive system and to derive appropriate control laws [13]. We choose a suitable scalar
function and examine the temporal derivative of this function along trajectories of the
system. A Lyapunov function must satisfy the following three conditions: positive
definite, negative definite time derivative, and radially unbounded. For system

identification of the first order low-pass filter we consider the Lyapunov function:
V(e)= %(ef tel+el) (2.9)

This function satisfies the first and third conditions and has the following temporal

derivative, evaluated in terms of the simple adaptive system described above:

V(e) =eé, +e,é, +esé,
=e, [(— sz + Zl_?u)— (— Ax, + ABu)]+ e,6, + e,6,
= el[— (Ad+e,)x, +(A+e, B +e; Ju+ Alx, —61)—ABu]+ e,6, + e,6,
Zel[_ €%, +€2§u+e3Au—Ael]+ e,6, +e,6, (2.10)

=—Ade! +e,e, (— X, + Eu)+ ee,Au+e,e, +e.e,

X

2 . .

=—Ae’ +ee, > +ee. Au+e,e, +ee
1 1%¥2 [ 1¥3 2%2 3¥3

Note that the control laws for the time constant and gain errors (é,and é, respectively)

remain unspecified, and we choose them to satisfy the second condition for the Lyapunov

function. There are multiple solutions which provide such a negative time derivative:
V(e)=—Ae] (2.11)

We choose the following pair of control laws:

10



6, =—e, == (2.12)

e, =—eAu (2.13)

These rules may be simplified further since in current mode log domain filters, many
system variables are strictly positive, including the estimate of the reciprocal time
constant A , the true reciprocal time constant A4, and the input « . Multiplying the rules
by a positive scalar factor affects the rate of adaptation, but not the direction. Thus we
can express the control laws simply:

€, € —e X, (2.14)

é, oc —e, (2.15)

In our implementation the estimate of the reciprocal time constant is provided by
integrating the product of the output error with the temporal derivative of the model
output, and the estimate of the gain is provided by integrating the output error.
We multiply two positive factors C and D to both learning rules and rewrite the
new time derivative of the Lyapunov function as follows:
V(e)=eé +e,é, +eé,
=—Ade +ee, % +ee,Au+e,e, +e,e,

¢ 2.16
=—Ae] +ele2%+ele3Au +ez(—Cel)'c2)+e3(—Del) (2.16)

=—Ae] + ezelfcz(% - Cj +ee, (Au —D)

Even if 4 and Au are not constants and we cannot tune C and D to cancel them
exactly at all the time, we can at least ensure that the parameters are updated in the

correct direction so that they approach the final desired adaptation state. The learning

11



procedure may not be optimal, but the estimator will eventually adapt to the unknown

system since the learning rules are in the right direction.

2.2 Circuit Implementation

To demonstrate the learning rules we have derived using the Lyapunov method in
the above section, we construct circuits implementing a first order lowpass filter model

and integrating these learning rules for adaptation of the time constant and gain.

2.2.1 MITE Implementation of Log Domain First Order Lowpass filters

Log domain filters are a dynamic extension of classical static translinear circuits.
They offer wide tuning range, large dynamic range, and low voltage / low power
operation. The circuit in Figure 2.2(a) is the first order lowpass filter with cascode
transistors used as an unknown plant and Figure 2.2(b) is the corresponding
implementation for the adaptive model.

In subthreshold operation the MITE current is an exponential function of the

summed inputs:

I =1 = (2.17)
I, =1, " (2.18)
L=1e""" =1 (2.19)
I, =1 ") =1 (2.20)

M1, M2, M3 and M4 form a translinear loop, so the current /, can be expressed as:

1= _Ilf"] £t et r) (2.21)

out

12
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Figure 2.2: (a) Log domain MITE filter for a first order lowpass transfer function used as
the unknown plant; (b) Log domain MITE implementation for adaptive model.



We apply Kirchoff’s Current Law (KCL) at the capacitive node to find the

relationship between the MITE currents and the capacitive current:

. N .
CVy+ 1y =1, =CV, 4= etV e (2.22)

out

Since V, and V; together control a constant current /,, their time derivatives are

opposite in sign but equal in magnitude:
I,=1,-K(V,+V,)=0=>V, =V, (2.23)

We determine the transfer function for the output current 7, by differentiating it,

out

then substituting our results from the KCL and MITE relationships above:

- . - 1 I -
I()ut = [outKVS = _[outKVZ = _Klout — 1 - ieK(ng VL’J"/)
C [oul
. K1 v,
L= b L1, =4 (2.24)

which is a first order low-pass transfer function with time constant 7 =C/ K/, and gain

KV guin—Ve e . . . . . .
¢ "sn V) The time constant is the ratio between capacitance and bias current, easily

tuned by adjusting the bias current. The gain is the exponential of the voltage difference

between V

ain A0V, easily tuned by adjusting the voltage V,

_ref 2 gain *

2.2.2 MITE Implementation of Learning Rules

The plant and model are first order lowpass filters, each with two adjustable
parameters: gain and the reciprocal of the time constant. We have implemented learning
rules derived using the Lyapunov method described in section 2.1. The inputs to the

learning rules are the system output error and the temporal derivative of the model output.

14



The temporal derivative of the model output is computed using the circuit shown in
Figure 2.3: A wide range OTA (Operational Transconductance Amplifier) operates as a
voltage follower with a capacitor connected to the output, with current/, =17, —1,,.
Suppose transistors M1 and M2 in Figure 2.3 are well matched and have the same
transconductance g,, . Since /, and /,, are mirrored from the drain currents of M1 and
M2 respectively, their difference can be expressed as

l,=1,-1, :gm(Vl _Vz):Cde

8
= (2.25)
1d=gm(Vl— Lt Vlj= G (206)
g, +sC, 1+sC,/g,

When g, >>sC,, the output current is approximately the derivative of the input
voltage /, ~sC,V, =SC,I R . To make the transconductance g, large, we operate the

input devices near threshold. It is not necessary to explicitly convert the filter output
current into voltage; we use intermediate node voltage V3 ,, of Figure 2.2(b) directly as

input to the temporal derivative computation. This eliminates resistance R, so loading on

the node V3 is minimal. Note that since ['f =IfKV3 , the adaptation rule becomes
e,oc(l, -1 _f.)f_f./ KI, . Input nodes ndlyank and nd2yank in Figure 2.3 control two

NMOS transistors which subtract part of the currents from 7, and /,, respectively to

compensate mismatch in the system. /), and I, are passed on to the next circuit stage.

15
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Figure 2.3: Circuit for computing temporal derivative with mismatch controllers.
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The time constant learning rule requires a four quadrant multiplication, also

implemented using a MITE circuit shown in Figure 2.4 with inputs 7, I,,, [, and I,
and outputs /, , and /, ,. Transistor groups (M1, M2, M4, M6), (M1, M2, M5, M7),

(M1, M3, M4, M8) and (M1, M3, M5, M9) form four translinear loops which give:

Iy=1,1,,/1,, (2.27)
L=1,001 1, (2.28)
Lo=1,00, /1, (2.29)
Ly=1,1,/1,, (2.30)

If we apply KCL at nodes /,,, and [, ,, the difference between the currents flowing in

nm2 >

the two nodes can be expressed as:

I ]nm2=(16+19)_(17+18)
= (Iflc,ﬁ +Ip1:11 )/Ibias _(Iflz;l +Ip1;2 )/1

:(Ip —If)(fén _1:12)/1171‘@

nml

(2.31)

bias

The update direction for time constant of the first order lowpass filter é; «c —e,x, 1s given
by the current difference between 7, and 7, ,.

Schematics for the learning rules and summing nodes are shown in Figure 2.5: panel
(a) shows the integrator for gain adaptation; panel (b) shows the integrator and

differential pair for time constant adaptation. The cascode arrangement is used in all

current mirrors to minimize early effect and increase trans-amp gain.

17
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2.3 Simulation Results

We simulate the circuit with HSPICE using BSIM3v3 models for a 0.5pum
technology. We use the technique in [14] to avoid floating-node problems in the
simulator. A schematic diagram illustrating this technique is shown in Figure 2.6. We add

a voltage-dependent voltage source V from ground to the floating gate through a

floating _ gate

big resistor R. There is no current through R, because V, tracks the floating gate

oating _ gate
voltage itself. This artificial DC path to ground aids numerical convergence in the
HSPICE circuit simulator. We use a square wave (Figure 2.7), harmonic sine waves

(Figure 2.8), and equally spaced sine wave frequencies (Figure 2.9) as inputs.

Figure 2.7 shows adaptation with a 10kHz square wave. The square wave pulses

from 20n4 to 160nA4 . Figure 2.7 (a) is the error /, between the plant and filter outputs.

Figure 2.7 (b) shows V. and V. ,, . Figure 2.7 (c) shows V.

T T _est gain

and Vg . We

_est
intentionally vary the time constant of the plant (by a factor of 16) and the gain to see

how well the filter adapts. The different V. values correspond to 7 of 40nA

T

fromO0 ~ 2ms, 80nA from?2 ~3.5ms, 20nA from3.5~5ms, 160nA from5~ 6.5ms , and

10n4 from 6.5 ~8ms . The voltage V.

gain

is changed as 1.4V from 0~1ms, 1.5V from

1~2.5ms, 1.35V from 2.5~4ms , and linearly increases from 1.4V to 1.5V from
4 ~5.5ms, and linearly decreases from 1.5V to 1.45V from 5.5~ 7.5ms, and keeps

constant at 1.45V from 7.5~8ms . For all changes in V. and V’ V and V,

T gain T _est _est

accurately track the new values respectively. I, -0 when V.

T _est

—V, and

4

gain

e

g_ref

>V is fixed at 1.5V. The adaptation rate depends on signal strength,

g _est®
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Figure 2.7: Adapting with a 10kHz square wave input.
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Figure 2.9: Adapting with 14 geometrically spaced sine waves from 5-97kHz.

22



currents /,, and /,,, and capacitors C, and C, .

Next, we show the adaptation when the signal is a mixture of sine waves. In Figure
2.8 (a)-(c) we use a combination of sine waves equally weighted at 10kHz , 20kHz ,
40kHz , and 80kHz as input. The input signal is biased at 90nA and has a 40nA peak to
peak oscillation for each frequency. In Figure 2.9(a)-(c) the input is a summation of 14
sine waves, whose frequency ratio is an irrational number 27 /5, spanning from S5kHz
to97kHz . The input signal is also biased at 90nA and has a 10nA peak to peak oscillation

for each frequency. For those two very different inputs, V. accurately tracks V,

T_est

[Figure 2.8(b) and Figure 2.9(b)] and V, , tracks V.

_est gain

[Figure 2.8(c) and Figure 2.9(c)],

and /, approaches zero when adaptation is completed.

2.4 Experimental Results

We present measurements from a first order adaptive filter designed and fabricated
in 0.5pum CMOS technology (AMI 0.5um run T380). The plant and the filter in Figure
2.2 are implemented using transistors with a W/L ratio of 12/6. The input current and the
output currents that flow in these parts of circuit have to be around or below 100n4, in
order for all the transistors to operate in subthreshold. To implement these tiny currents, a
100:1 current mirror is used in the input stage shown in Figure 2.10 to raise the input

current of the chip up to 1024. A Howland current source [15] with resistor values of
R, =R, =R, =R, =97.6k) shown in Figure 2.10 is used off-chip to convert the input

voltages to input currents. There are no currents flowing into both the positive and
negative nodes of the op-amp. The voltages of these two nodes are identical as follows if

we assume infinite gain of the op-amp.
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yooy =t R

=V, Vi v, (2.32)
R +R, R +R,

To apply KCL at the node V_, the input current to the chip can be expressed as:

o=V Y
in R R
’ ? (2.33)
_ 1 1_R2+R3‘ R, v R, +R, R, ‘
R, R, R+R,]™ RR, R+R, "
If the relations among R,, R,, R, and R, satisfies
R, R
==t (2.34)
RZ Rl
Equation (2.33) can be rewritten as:
V.
I, =——" (2.35)
R2

Thus, a linear relation between input voltage and the current is achieved. We can easily
present input signals using a standard function generator or a PC-controlled DAC card.
Two identical current conveyors with a 1390:6 current ratio as shown in Figure 2.10 are
used in the output stage for the same reason. Two TL084 JFET-input operational
amplifier are used with a 100kQ resistor and a 100uF capacitor in parallel in the negative
feedback path and bias the positive input node at 2.5V to convert the output currents to
output voltages, which makes it easy to measure with an oscilloscope or appropriate data
acquisition card. The capacitors are used to attenuate the high frequency noise for the
output voltages. The relation between output voltages (V) and output currents (LA) can
be expressed as:

V ~2.5+0.1-7

pl_out p_out (236)
V_ﬁltﬁout ~2.5+0.1- Iﬁltiout

24



Function
Generation

L
— 97.6k 97.6k

current mirror v

input: output = 100: 1

pl o

— PC controlled

Data Acquisition

Adaptive Filters Card

Vin_comeyor I
0

\%

till_out

I

fil_out

E J i :

current conveyor

on-chip

Figure 2.10: Testing setup for the adaptive first order lowpass filters including schematics
of input voltage-current converter Howland current source, on-chip current conveyors,
and output current-voltage converters.
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We use a 10kHz square wave with amplitude of 0.2} and bias of 0.3V as the input
voltage to the system, which is converted by the off-chip Howland current source and on-
chip current mirrors to an input current with peak to peak amplitude of 80n4 and bias of
60nA4 . If the mismatch in the learning rules is adjusted appropriately using nd1yank and
nd2yank, the error between the plant and model outputs does not exceed 4% of the plant
output for fixed values of gain and time constant. We intentionally vary the gain and time
constant of the plant to see how well the filter adapts. Figure 2.11(a) shows the error

between the plant and model outputs. Figure 2.11(b) shows the gain control voltages V,

gain

and V, ,, for plant and model. Figure 2.11(c) shows the time constant control voltages

_est

V_ and V, For all the changes in V,

T_est "’ gain

and V_, we observe accurate adaptation of

14 and V. The measured power consumption of the circuits is about 33uW. We

g _est T_est”®

observe a constant voltage difference of magnitude 0.07V between V, and V.

gain g _est?

which has been subtracted from the voltageV’

wain SHOWN 1n Figure 2.11(b). This constant
voltage difference results from different amounts of stored charge on the floating gates in
the plant and model filters. Figure 2.12 and Figure 2.13 show testing results for two
different chips over a longer time period than Figure 2.11, which demonstrate the
interaction between adaptation of gain and time constant. All the input conditions are as

same as above. The constant voltage difference has not been subtracted for either case.

Figure 2.12(a) and Figure 2.13(a) show the gain control voltages V.

gain

and Vg for

_est
plant and model. Figure 2.12(b) and Figure 2.13(b) show the time constant control

voltages V_ and V, In the following section we present a mismatch analysis which

T _est”*

accounts for the small difference between ¥, and V’

T _est”®
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Figure 2.11: Testing results of adaptation process: (a) error of outputs of plant and model
filters. (b) gain control voltages of plant and model filters. (c) time constant control
voltages of plant and model filters.
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2.5 Analysis of Current Mirror Ratio Mismatch and Compensation

Consider the implementation of the time constant learning rule shown in Figure
2.5(b). Ideally, without the mismatch compensation we have

=l 1, + 1,0, )1

bias

(2.37)
=t 1, +1,1, )1

bias
Suppose the mismatch of this circuit is limited to mismatch in the current mirror ration,

so that the actual ratio is 1: x, where the ideal ratio is 1:1 and x is a constant around 1.

! !

The non-ideal currents /, and I, correspond to the ideal currents /, and /, can be

written as:
]1 == C'[Ip (Idl - ]nyl )+ If (Id2 - Iny2 )]/Ibias
, (2.38)
L= (L =1,,)+ 1,1 =1, )V
where 7, is the current flowing in NMOS transistor M3 to ground and /,, is the

current flowing in NMOS transistor M4 to ground for the temporal derivative circuit

! ’

shown in Figure 2.3. Since /_ =1,+1, =1, +1, is a constant shown in Figure 2.5(b), we

obtain

I, .
¢ = d_tal ¢ (2.39)
]djm'/ -1 1 -1

ny ny2

Ly s =Ly gy (2.40)
The current 7, ,,, which is the sum of /7, and /,,, is also a constant. If we further

assume that the time required for the time for adaptation ¢, is the same in both cases, and
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that the mismatch compensation provided by M3 and M4 works well enough to ensure

that both cases converge to the same voltage integrated on the same capacitor, we obtain

jo(l1 1)t = j (1, —xI, )t 2.41)

0

Since /,, and [, , are currents flowing in NMOS transistor from a higher voltage to

ground, they cannot be negative. There are only four possible cases for them, outlined as

follows:

3.1,,>0 I.,=0

nyl ny

4.1 . >0 [

nyl ny2
Case 1 is the ideal situation in which there is no mismatch in the system and no mismatch
compensation is required.

Case 2 has not been observed in testing any of the chips.

Cases 3 and 4 are observed in all the chips tested thus far.

For simplicity of analysis, we only consider Case 3: [/, , >0 [ ,=0. Since

nyl ny

Upy—-1,)-Up-1,,)=U,; —1,)+,,—1,,) 1s applied as the derivative in later

stages, we can compensate for /,, >0 by increasing [, ,. Substituting the currents of

ny2
equations (2.37) and (2.38) into equation (2.41), we can calculate the current (for

1, =0) which can compensate the current mirror ratio mismatch of 1: x we assumed at

ny2

the beginning.

31



ty

(Idimil _Inyl )J.(]pldl +1f]d2 _1p1d2 _Ifldl)dt
. ° (2.42)
=Ly [ 2 =11+ 10y =X 1y —XI 1, 41,1, Nt

nyl
0

fy

Iy | = WE Ly + 1 L e =1, 1, j (1, -1 )dt+j Iy~ 1,)de | (243)

0 0

fy

1, tazlJ‘(x 1)(1 Iy, +1, Idl)dt

fy ty
Idftail_[(xlf _Ip)dt+_[(1p _]fxldl _Idz)dt
0 0

I =

nyl

fy

Ly i J-(x - 1) Izjcbias dt

= (2.44)

I, j — 1) i+ j Ihis gy

0

Iditaillhzas {[1 dt_ljl(l —1 )d}

0

fy

CId_tailI(x[/' -1, )dt+1bias.|.(]1 _]2)dt
0

0

fy

Since /,, is a constant current, its integral I] «dt =1,t, 1is also a constant. The current

difference (I, — I, ) controls the capacitor voltage, which controls the time constant of the

first order low pass filter. Assuming the initial capacitor voltage is 0V, then

Ly
I(I = 1)dt = C.V, ., where C, is the capacitance, and V, . ,which is the voltage on the
0

capacitor, controls the estimated time constant control voltage V, as shown in Figure

T_est

2.5(b).V

T _est

will decrease as V, _ increases, and will increase as V, _ decreases.
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to to
If we approximate I[ Lt = I I,dt =1,t, as a constant, we obtain
0 0

Iz'atO -V
(=114 C, o Y-V, .
I, = 5 —. 7 =X-Z Vﬁ (2.45)
ey, B
[biasCt N
-1)7, . I c, .
where X ,Y,and Z are defined as X = (x ) d_tal y = wlo 7 =4 ( —l)lbto,
CI [biasct
and
Y—|Z| _ 1.1, _ cjd_tail[bto | _1| _ CId_tail 21t _ CId_taz‘IIth |x—l| _ dd_zaﬂ]bto (2—|x—l|) >0
Ct bias Ct I bias Ct I bias Ct I bias Ct

For the purpose of comparison between actual and ideal case offsets, the adaptation

time ¢, can be taken to be fixed, then X ,Y and Z are constants which do not change

with time.

Thus we have derived the condition on /,, required to balance the current mirror

mismatch 1:x. We now investigate the mismatch tuning for different assumptions about

the current mirror ratio x.

. . 14 .
In the case of a 1:1 current mirror ratio, V, _(desired) = i I (I =1, )dt , which is the
70

desired voltage value that causes V, ,, to track V,. In the case of a 1: x current mirror,

T_est

fy ' '
V, .(real) ZCL I ([1 —xI, jdt, which is the real voltage including the effect of offset

T 0

current /,,. When /, | = X -———==, the real voltage is equal to the desired voltage,
’ Z+V,

c. T
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which compensates the current mirror mismatch accurately so that V. , tracks V, very

T _est
well.
Condition 1): x=1=1, , =0 as we expect.
Condition2): x>1= X >0, Y>0,and Z >0.

In the above development, we have derived the value for 7/, , which allows it to

nyl
exactly cancel a current mirror mismatch. However, x is unknown, and 7, is an input
to the circuit so it is likely that under some circumstances the value will not be correct for
cancellation. We now examine the consequences of values for 7, , which do not provide
such cancellation.

Since 7, >0, we know that —Z <V, <Y, so0 (Z+VCJ)>O.

Let us go back to equations (2.41) to (2.45).

_ V ty ty ’ ’
I,>X ——= J‘(I1 —1,)dt < J(Il —xl, )a’t =V, (desired) <V, (real)
Z+ Vcﬁr 0 0
=V, =V, (desired)>V_  (real)
When the current 7, is larger than the compensating value X # , the time
+ c_ T

constant control voltage V. ,, will be lower than the desired value V, .

T _est

-V ty ty ’ ’
I, < X-TVC—’: .[(11 —1,)dt > I(]l —xI, )a’t =V, .(desired)>V, (real)
c. T 0 0

=V, =V, (desired) <V, ,, (real)

T T

When the current /,, is smaller than the compensating value X Z—VLJ , the time
+

c_ 7

constant control voltage V_ ,, will be higher than the desired value V.

T_est
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These tuning relationships between /,, and V, ,, have been observed in the

r_est
experimental results of chip No.7.

Next we consider the effect of the gain change on the time constant adaptation. In
Figure 2.12 and Figure 2.13 we observe that the gain adaptation affects the estimated the
time constant control voltage. In the adaptation process shown in Figure 2.12 and Figure

2.13, I, , does not change. If the DC bias of the input signal to both plant and model

nyl
filters does not change, the DC bias I, of the output currents /, and /, will increase as

the gain increases, and will decrease as the gain decreases. Recall that the gain of the

Vein=Ve 1o . oy .
Vi) 50 the gain will increase as V'

gain

lowpass filter topology can be expressed as et

increases, and will decrease as V_ . decreases.

gain

Assume that V. tracks V_ accurately and has converged to V,, which implies

T_est T

Y_I/c T XY—ZInyl GVL T Inyl
]nyl = : — = I/cir = == ‘
Z+V, . X+1,, oz X+1,,

Recall that X and /,, are positive, thus V't

ny

and Z are opposite in sign, so V. .

T

and Z change in opposite directions.

cly i
V ain = gainT=1,T= 2 E]d——’é”(x—l)lbto T when x> 1.
t

bias

When the trimming current /,, does not change, ¥, . must decrease to compensate

nyl c_ T

the increase in Z, then V, | I=v__, T, which pushes V.

T_est T _est

higher as shown in Figure

2.12 at the time marked by the symbol *.

c, .
Vean Y= gain v= 1, =7 Eld—*gl(x—l)lbto ! when x> 1.

bias 't
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When the trimming current /,, does not change, V., . must increase to compensate

nyl T

{, which drags V. _, lower as shown in Figure

T _est

the decrease in Z, then V, | =7

T _est

2.12 at the time marked by the symbol **.
Finally, we consider the effect of the time constant change on the time constant

adaptation. What happens if the time constant control voltage V. of the plant changes?
Should 7, , also change to accurately compensate the current mirror mismatch? Here we

investigate this problem by differentiating equation (2.45). Assuming that the gain does

not change, then X', Y and Z are all constants which gives X=Y=7Z=0

[' _X_Vcir(Z-i_Vci‘r)_Ikcir(Y_I/cir) __X(Y+Z) :
™ (Z+V,.) Z+v, )

ol -X(Y+7)

- 2.46
.. (Z+V. ) (240

Recall that X', Y and Z are all positive, thus jﬂyl and VCJ are opposite in sign, so

I,,and V,_

n change in opposite directions.

T

If V_ increases, then in order for V. must decrease,

T_est

to track the change, V,

which implies that /,, must increase.

If ¥, decreases, then in order for V/ to track the change, V, | must increase,

T_est T

which implies that 7/ , must decrease.

nyl

This tuning relationship between 7, and V, has been observed in the experimental

results of chip No.7.

Condition 3): 0<x<1= X <0, Y>0,and Z<0
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We now examine the consequences of values for 7, ; which do not provide the exact

mismatch cancellation in the case of 0 < x < 1.
Since 1,,, >0, we know that either V,  <-Z or V, . >Y
ty

[ 1,dt, which is

bias ~t 0

c

From equation (2.6), (Y -V, ) was originally derived from

strictly positive. Thus we conclude that Y >V, ~and V,  <-Z,s0 V, . +Z <0.

T

Let us go back to equations (2.41) to (2.45).

Y-v o e '
1 > X = .[(11 —1,)dt > .[(11 —-xl, ja’t =V, .(desired)>V, (real)
Z+V, . 7
=>V. =V, . (desired) < Ve (real)
. : V.. .
When the current 7, is larger than the compensating value X -————, the time

Z+V

c_ 7

constant control voltage V_ ,, will be higher than the desired value V.

T_est

Y — V 1y 1y

<X Vc_f = J.(Il -1, )dt < J'(]l’ _sz’jdt =V, (desired) <V, (real)
c. T 0 0

W 7+

=V =V, (desired)>V_, (real)

T_est T_est

When the current /,, is smaller than the compensating value X Z_—VLJ , the time
+

c_ 7

constant control voltage V. ,, will be lower than the desired value V.

T _est

These tuning relationships between [, , and V, , have been observed in the

T _est
experimental results of chip No.9.
Next, the effect of the gain change on the time constant adaptation is considered.

Assume that V. tracks V_ accurately and has converged to V,, which implies

T_est
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[ nyl

Y-V, . Xy-z,, o, I
= - = =

Inyl s, c_ T
Z+V, - X+1

oz X+1,,°

nyl

Recall that X and Z are negative, and V, . +Z<0=V, | —|Z| < O:>|Z|—ch >0.

Y_I/c T Inl .
—=——->1=171,,+X>0. Since
\z|-V, -X

c_T

Recall that Y -|Z|>0=Y -V, . >|Z|-V, .=

I, 1s also positive, ch and Z are opposite in sign, so V. . and Z change in opposite

T T

directions.

cly
Ve 1=> gain T= 1, T:Zsld—-’é’l(x—l)lhto 4 when 0<x<1.
t

bias

When the trimming current /,,, does not change, V, . must increase to compensate

T

the decrease in Z, then V, | T=wv. _, L, which drags V. _, lower as shown in Figure

T_est T_est

2.13 at the time marked by the symbol #.

c, ..
Ve Y= gaind= I, 1= Z = Id——fé”(x—l)lbto T when 0<x<1.

bias 't

When the trimming current /,, does not change, ¥, , must decrease to compensate

T

the decrease in Z, then V, | d=V_ T, which pushes V. _ higher as shown in Figure

¢ _est v _est
2.13 at the time marked by the symbol ##.

Finally, we consider the effect of the time constant change on the time constant
adaptation. Again we investigate this problem by differentiating equation (2.7).
Assuming that the gain does not change, then X', Y and Z are all constants which gives
X=Y=7=0.

: ~V, (Z+V. )=V, Y-V, - :
Inyl =X Cir( cir) c}r( 671) _ X(Y—i—ZZ)V; )
(Z+Vcir) (Z+Vciz') -
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o, -XY+2)
ov, (Z+V, )

c_7

(2.46)

Recall that X and Z are negative, and ¥ —|Z| =Y+Z>0, thus / 1 and ch have

the same sign, so /,,, and V, , change in the same directions.

T

If V_ increases, then in order for V. to track the change, V,

T _est

must increase,

T

which implies that 7/, must decrease.

nyl

If V, decreases, then in order for V, ,, to track the change, V,

T _est

must decrease,

T

which implies that 7, , must increase.

These tuning relationships between [, , and V. have been observed in the

ny
experimental results of chip No.9

Table 2.1 summarizes the results of the mismatch analysis. In this table,

Y-V, ,
Icomp EX.—7'
Z+V,

Iny1 VS [wmp gain vs Vtim V_vs Iwmp
x>1 Ly > 1, =V, o <V, gainT=v, T * V=1, 7T
Ly <d oy =V oa > V- gaind=V, L ** V=1, 3
0<x<l1 Ly > 1, =V, o>V, gainT=v, L # V=1, 3
Ly <1y =V o0 <V: gain = Ve e T V.= 1o )

Table 2.1: Results of the mismatch analysis.
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2.6 Summary

We have described adaptive first order lowpass filters implemented using a log
domain architecture and MITE circuits, along with MITE circuits which integrate the
learning rules for system identification. We chose to implement adaptive filters using a
log domain topology because log domain filters are compact current mode IIR filters that
operate with low power, have wide tuning range, large dynamic range, and capability for
high frequency operation. Further, we’ve developed robust learning rules based on
Lyapunov stability. These learning rules are implemented using MITE structures,

highlighting the elegance and symbiotic nature of the design methodology.

Experimental results of the 0.5um CMOS chip show stable adaptation under a
variety of conditions, which demonstrates the success of our adaptive system design

using this model-based learning method.
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Chapter 3: Adaptation of Second Order Filters

Adaptive log domain first order lowpass filters have been considered in Chapter 2.
The adaptation of second order filters is discussed in this chapter.

The design of the second order filter [16] is presented in section 3.1. Learning rules
for the second order filters [17] are derived in section 3.2 based on Lyapunov methods.
MITE implementations of the learning rules are discussed in section 3.3. The derivative
circuit and the four quadrant multiplication circuit discussed in Chapter 2 are used to
implement the learning rules for the parameters, quality factor and time constant of the
second order filter. Simulation results with HSPICE using BSIM3v3 models for a 0.5um
technology are shown in section 3.4. The quality factor and time constant parameters
accurately and stably track the quality factor and time constant of the plant filter, and the
output difference between the estimated filter and the plant filter approaches zero when

adaptation is complete.

3.1 Second Order Filter Design

We synthesize higher-order log domain filters by factoring the desired transfer
function into first order equations which are simple to implement. We illustrate the

method by designing a second order bandpass filter.
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Figure 3.1: MITE implementation for first order lowpass filter
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3.1.1 First Order Lowpass filter structure

Figure 3.1 shows a first order lowpass filter structure implemented using multiple
input floating gate transistors. Suppose that the input voltages of the floating gate
transistors are equally weighted. In subthreshold operation FGMOS current is an

exponential function of the summed inputs:

1, =1,V — (3.1)
12 _ IOeK(I/l+V2)/2UT (3.2)
I =T, — (3.3)
14 = IOeK(VSJrVg )/ZUT = I{)ut (34)

We apply Kirchoff’s Current Law (KCL) at the capacitive node to find relationship

between the MITE currents and the capacitive current:

. A
CVy 1 =1,=CV, + 222 verleor (35

out

Since ¥, and V; together control a constant current 7, their time derivatives are opposite

in sign but equal in magnitude:

. K . . . .
13:13-W(V2+V3):0:>V3:—V2 (3.6)

T

We determine the output current 7/, by differentiating it.

K K

=I,—V,=—1,,—V
out out 2UT 3 out 2UT 2
=i, =t |1~ Ly v, )ous (3.7)
2U,C 1,,

v, -, )2u
out e ¢ '

I, (1,/1,)+(U,C/x,)s
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If 1, =1,, we obtain a first order lowpass transfer function with time constant 2U,C /I,

. V,-V,)2U
and gain ek(" 2 "

3.1.2 Second Order Bandpass Filter structure

We synthesize higher-order log domain filters by factoring the desired transfer
function into first order equations [18] which can be directly implemented using the
simple block shown in Figure 3.1. We illustrate the method by designing a second order

bandpass filter. We first specify the desired bandpass transfer function:

L. _ g TS
I, 1+1/Q)-t-s+7°-5°

mn

(3.8)

This describes a bandpass filter with gain of g, quality factor of Q and time constant

of 7. Note that the bandpass function eliminates DC components of the input signal,
whereas currents in log domain filters are positive. An output bias must be added to ensure
that MITE currents are strictly positive.

For simplicity of implementation, we add a DC current term divided by the
denominator of the bandpass transfer function. The filter performs a second-order low
pass filtering operation on the DC component, which does not affect the output bias at low
frequencies. To further simplify the implementation, we synthesize the second order filter

without gain and incorporate it later.

g-(t-s-I,+1)

= 3.9
1+ (1/Q)-Tos+T S’ (39)
We consider intermediate currents /, and /',
[(lmt = ]out /g (310)
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1, —A/Q+7-8)]
Y 1+1/Q)-res+1t ST

(3.11)

The above function can be easily factored into two simple first order lowpass transfer
functions:

Low 1

I, —I. 1/Q+7-s

m

(3.12)

, L 1 (3.13)

out_IDC z-s

In order to implement these two transfer functions using the structure in section 3.1.1,
we need to ensure that the input signal remains positive. Since the numerators of both
functions are unity, we do not need to consider the difference between V. and V, in Figure
3.1 and simply connect them together.

To implement equation (3.12), a straightforward adaptation of the lowpass structure
is shown in Figure 3.2(a), where we take /,=I3/Q and the time constant is t=2U;C/kI3.
However, the first order filter structure requires the input signal to be positive, and 7;,-/;
can be negative. A solution to this problem is shown in the equivalent circuit of Figure

3.2(b). The translinear loop equations for Figure 3.2(a) and (b) can be written as:
([in_lx)[B:(IB/Q_[C)I;MI (314)

1,1, =(I,/0+I' 1) (3.15)

out

If we set the dependent current source to be I'.=I.I3/l'y,, equations (3.14) and (3.15)
are equivalent. Thus we introduce a dependent current source at the capacitive node in
order to resolve the potential problem of negative inputs. We can implement equation

(3.13) using the same method, with the resulting circuits shown in Figure 3.3. Here the
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Figure 3.2: Circuit for implementing Equation (3.12): (a) a straightforward idea which is
unrealizable; (b) equivalent implementation.
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Figure 3.3: Circuit for implementing Equation (3.13): (a) a straightforward idea which is
unrealizable; (b) equivalent implementation.
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dependent source is I'pc=Ipclp/I;.

We cascade the circuits in Figure 3.2(b) and Figure 3.3(b) to realize the second order
transfer function for /'y, as shown in Figure 3.4. The final issue is implementation of the
two dependent current sources /', and I'pc.

MITE transistors M4, M5, M6 and M7 form a translinear loop which gives an elegant
expression: /', /p=I,I. Using this expression, the dependent current sources can be written

as:

I =11,/I, =1/, (3.16)

out

Ipe=Ipcdy /1, = 1000, /1, (3.17)

Thus, both dependent current sources are expressed in terms of /, instead of /,, and
transistors M6 and M7 inside the dotted box in Figure 3.4 which generate /. are not
necessary. The two dependent current sources are implemented using translinear loops as
shown in Figure 3.5. MITE transistors M4, M5, M8 and M9 form a translinear loop to
realize I'pc=Ipcl,/I'ou, Which is sourced into the second capacitive node. MITE transistors
M6, M7, M5 and M3 form another translinear loop to implement / ’x=132/[y, which is
sourced into the first capacitive node. Thus we complete the realization of the dependent
current sources. The quality factor Q is implemented by using Vg rather than Vdd as the
source voltage for PMOS transistor M11. Since all the transistors are working in
subthreshold, current can be expressed as the exponential of the control voltage.
Neglecting the body effect, we have

V|V Ur

1,/0=1¢"" (3.18)

]B :]Oe(Vdd*VB*‘Vrhp‘)/UT (319)
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Figure 3.4: Circuit for second order filter with dependent current sources.

Figure 3.5: Complete circuit for the second order filter.
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Figure 3.6: Complete circuit for the second order bandpass filter.
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So the quality factor Q can be expressed as:
Q — e(Vdd_VQ)/UT (320)

M10 shares the input voltage V,,, with M4, and has a different input voltage V,, which

k(Vy=V,) 12Uz

implements the gain g =e and produces the final output current /Z,,, =g/l s

This output current exhibits the second order transfer characteristic:

_ g-(z-s-1,+1p)
N+ 1/Q)-Tos+T -8

(3.9)

In order to implement a truly bandpass characteristic we use a similar structure
M11-M19 shown in Figure 3.6 which shares the same constant current biases and
removes the DC bias of the output. The output current is obtained by taking the

difference (1,, —1,,,.) between the outputs of two similar structures. One is driven by
the positive input signal 7/, and the other is driven by the DC bias 7, ,. of the input

signal 7, .

3.1.3 Simulation Results

We simulate the circuit with HSPICE using BSIM3v3 models for a 0.5um
commercially available technology. The technique in [14] is used to avoid floating-node
problems in the simulator. The filter is powered using a voltage supply of 1.5V and the
bias of the output current is set at 100nA. We initialize all the floating gate nodes and
drain nodes of the transistors to half of the power supply (0.75V) to ensure to maximum
operating range and accuracy of simulation. Transient simulation results of a sinusoidal
input signal show that the output of the filter does not vary sinusoidally initially, but as the

internal node voltages equilibrate, it eventually behaves as expected. The initial time
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required for startup may be minimized if we can tune the initial voltage of every node in
the circuit perfectly. But for different time constant currents or different quality factor
control voltages, the perfectly-tuned initial voltage of every node varies from one
condition to another. Thus it is not safe to use AC simulation to determine the transfer
function under those different initial conditions. Instead, we simulate the filter transiently
at different frequencies, and plot all the output current amplitudes with respect to the

frequencies for each condition.

First we sweep the time constant current /z linearly from 20nA to 60nA. The central
frequency is proportional to the reciprocal of the time constant, and the current /p is
proportional to the reciprocal of the time constant. So the central frequency varies
linearly with the current /z as shown in Figure 3.7. For these simulations, V,=V,;,=0.75V,
and Vp=1.45V.

Next we sweep the quality factor Q by varying the voltage Vg from 1.43V to 1.47V
linearly. According to equation (3.5) the quality factor Q is swept exponentially as shown
in Figure 3.8. For these simulations, V,=V4.,=0.75V, and Iz=40nA.

Finally we show the gain dependence on gain control voltage V,. With the constant
voltage V. at 0.75V, we vary V, linearly from 0.65V to 0.85V. The gain is proportional to
the exponential of the voltage V,. Figure 3.9 depicts the linearity of the gain (dB) change
with the gain control voltage V,. For these simulations, /z=40nA and Vy=1.45V. The
input signal is a 10kHz sine wave.

From Figure 3.7, the operating point /3=40nA corresponds to a central frequency
around 20kHz, which gives the time constant as:

2af  27m-2x10°

(3.21)
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Figure 3.7: Time constant T tuning with time constant current swept from 20nA to 60nA
linearly with V,=Vg,;,=0.75V and Vp=1.45V
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Figure 3.8: Quality factor Q tuning with voltage Vo swept from 1.43V to 1.47V linearly
with V,=V44is=0.75V and Iz=40nA.
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Figure 3.9: Gain dependence on gain control voltage V, with /3=40nA and V,=1.45V.
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According to simulation results, Vo =1.45V corresponds to O=4.31. At a frequency
of 10kHz with V;=0.75V which gives s as:
s=2nfj=27-1x10"j (3.22)
so that

1

TT-4LX

TS
the gain can be calculated as

| 0.55 |__
\1+0.5j/4.31+(0‘5j)2 ‘ =-3.6dB (3.24)

2010g10| £ |

=20lo
|l+r-s/Q+z'2s2| S0

which agrees well with the simulation result of -3.3dB in Figure 3.9 indicated by the

symbol X.

3.2 Derivation of Learning Rules

We describe a second order adaptive filter which addresses the classical problem of
system identification depicted in Figure 3.10. A tunable second order filter is used as the
model to identify an unknown system. An input signal is applied to both an unknown
system (plant) and an adaptive estimator (model) system. Control laws are designed using
observable outputs to adjust the parameters of the estimator so as to ensure stability of the

learning procedure.
The second order filter is described by the following equation:

T-S 1
Inut(s):Iin(s)' 1 +]DC. 1 (325)

1+ z-s+77-5° I+ -r-s+77-5°
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Figure 3.10: The system identification problem.
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While the bandpass function eliminates DC components from the input, log domain filters
are inherently current mode circuits with strictly positive currents. Thus we must introduce
an output bias, denoted here as a constant current Ipc, which is independent of the input

signal.

We describe the unknown plant and adaptive model filter using the state-variable

representation:
¥ =—B’x,— ABx, + Bii+ B’D plant (3.26)
X, =-B’x,—~ ABx,+Bi+B’D  model (3.27)

where x, and x, are the plant and model outputs, 4 and A are the reciprocals of plant

and model quality factors, B and B are the reciprocals of plant and model time constants,

u 1is the input to both filters, and D is the output bias of both outputs.

An error system is constructed in order to evaluate the performance and stability of

the adaptation.

e, =Xx,—X, outputerror (3.28)
e,=A-A (l/quality factor) error (3.29)
e, =B —B (l/time constant) error (3.30)

We seek control laws which drive all errors toward zero with time. Thus the

dynamics of the error system should also be considered:

é =%, — ¥, (3.31)
6 =%, ¥, (3.32)
6, =4 (3.33)
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&, =B (3.34)

We cannot control the dynamics of the output error since that depends on the
unknown input u, but we can derive adaptive laws that specify the dynamics of the

parameter errors so that the estimator learns the behavior of unknown system.

The direct Lyapunov method is employed to derive appropriate learning rules [13].
We must find a scalar function which satisfies three conditions: positive definite, negative
definite time derivative and radially unbounded. For the adaptation of the second order

filter we consider the candidate Lyapunov function:
_ l(., 22 2 2
Vie)= 5 é +Be +e; +e (3.35)

This function satisfies the first and third conditions. To evaluate the second condition,

we evaluate the temporal derivative of the candidate function:
V(e)=¢é¢é +B’eé, +ee, +eé, (3.36)

This temporal derivative is a function of the second derivative of the output

difference, so we compute it as follows:

% =(-B’x, - AB%, + Bii+ B*D)- (- B’x, - AB, + Bii+ B’D)
=—(e; + BV x, + B*(x, —¢,)— (e, + A)e, + B)x, + AB(x, — &, )+ Bii— Bii +(¢? + 2¢,B)D
( e; + 2e3B)x ~B’e, - (6263 + Ae; + Be, )x2 ABeé, +eju+e, (e3 +2B)D
=—e,(e, +2B)x, —e, (62 + A)x, +eyii — Be,x, — B’e, — ABé, + e, (e, + 2B)D
=e,|(- Bx, — 4%, +ii+ BD)- Bx,+BD]- Be,x, - B*¢, — AB¢,

_x2

= e{%— (x, —D)}—Bezxz — B¢, - AB¢,

(3.37)
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Next we substitute the expression for the second derivative into the temporal derivative of

the candidate Lyapunov function:

Vie)=ée, + Bzelé1 +e,6, +e,6,

- e'l{e3 [%— B(x, - D)} —Be,x, - B’e, - ABél}+ Beé, +e,é, +e,é,

=—ABé +e,(— Béx, +¢é, )+ 63{6'1 [%2— B(x, —D)} + é3}

(3.38)

By choosing the following control laws:
é, = Béx, (3.39)
é =6 [B(x2 -D)- %2} (3.40)

we ensure that the candidate Lyapunov function has a negative time derivative:
V(e)=-4Beé} (3.41)

Assume that the output signal varies as a sinusoidal function x, = D + Esin(wz),
where the frequency w is low and D is the output bias. We can express (x2 —D) and X,

as follows:

x, — D = Esin(wt) (3.42)
X, = —Ew” sin(wt) (3.43)

By substituting these expressions into the learning rule for the of time constant, we find

that the update is the product of two signed quantities, ¢, and (x2 —D), and a positive

2
term (B + %) that depends on the signal frequency.
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2 2

é, =6 [BE sin(wr)+ Eg sin(wt)} =6 (B + %]E sin(wr)

=¢, (B + %ZJ(xz - D)

(3.44)
The learning rule for time constant and quality factor may be simplified further since
in current mode log domain filters the quality factors and time constants are positive. The
positive scalars in the rules affect the rates of the adaptation, but not the direction. Thus

the rules above can be simplified:
€, x éx, (3.45)
éyocé,(x,— D) (3.46)

We estimate the reciprocal quality factor by integrating the product of the output
error derivative and model output derivative and estimate the reciprocal time constant by

integrating the product of the output error derivative and model output without bias.
3.3 Circuit Implementation

3.3.1 Implementation of Log Domain Second Order Filters

We implement the log domain bandpass filter using dynamic MITE networks. The
circuit in Figure 3.11(a) is used for the unknown plant and Figure 3.11(b) is used for the
estimated model. In subthreshold operation MITE current is an exponential function of

the summed inputs.

I, =1, =1, (3.47)

mn

1, =1, (3.48)
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I, =1,e""" (3.49)

1, =1, =1, (3.50)
I, =17 =1 (3.51)
I, =1, (3.52)
I, =1, ") (3.53)
I, = 1,e" " (3.54)
I,=1,e""") =1, (3.55)

Kirchoff’s Current Law (KCL) is applied at the capacitive nodes to obtain the

following relationships:
I./0+1,=1,+CV, (3.56)
I,=1,+CV, (3.57)

M6, M7, M8 and M9 form a translinear loop:

Iy =11,./1, (3.58)

I, =11, /1,-CV, (3.59)
M3, M4, M7 and M5 form a translinear loop:

IL=1/1, (3.60)
M1, M2, M5 and M6 form a translinear loop:

L=11/1=1/0+1,-CV,=1./]Q+1*/1,+CI,/KI, (3.61)

So the input current can be expressed as

I,=1,/Q+I11,/I,+CI /KI, (3.62)
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Figure 3.11: (a) Log domain MITE network for a second order filter used for plant; (b)
Log domain MITE implementation for filter.
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Let us consider an intermediate current / :

I,=11,/1,=1¢""" (3.63)
I, =-1KV, (3.64)
/1, =1,/1, (3.65)

If we substitute equation (3.59) for 7,,
1.1 = Ix(]7IDC ar _CV4): ]x(IrIDC /1, +ij /le)
Ci,/K=1(I,~1,.) (3.67)

I, =KI(I,~1,.)/sC (3.68)

(3.66)

and further substitute the new expression for /, into equation (3.62), we obtain

I, =1,/0+KI (I, ~1,.)/sC+sCI,/KI,
1, (sC/KI)+1 .
1+(sC/KI,)/ Q+(sC/KI,)

=1, =

which is a second order transfer function with quality factor Q and time constant t=C/K1,.
We can easily tune the bias current /; and bias voltage V) to change the time constant and

quality factor respectively, thus changing the central frequency and shape of the filter.

3.3.2 Implementation of Learning Rules

The behavior of plant and model filters is controlled by two parameters: quality
factor and time constant. We have derived learning rules for the reciprocals of these
parameters in section 3.2. The inputs to the learning rules are the temporal derivative of
the output difference, the temporal derivative of the model output and the model output

excluding bias. Figure 3.12(b) and Figure 3.12(c) are circuits for computing temporal

62
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derivative. We use the circuit of Figure 3.12(b) to implement the derivative of the model
output and the circuit of Figure 3.12(c) to implement the derivative of the current output
difference.

The structure of the derivative circuit is simply a wide range OTA that operates as a
voltage follower with a capacitor connected to the output as shown in Figure 3.12(a). The
output current is /;=I;3-14 in Figure 3.12(b). The larger the gain, the more accurate the
calculation. So we operate the input devices near threshold to maximize transconductance.

We use the circuit of Figure 3.12(c) to compute the filter output error e, and convert it to

a voltage, then realize the derivative 1, —1,, océ,. The function of V. in Figure 3.12(c)

bias
is to ensure that the input voltage of the derivative circuit remains at an common mode
voltage for the differential pair. We also use the intermediate node voltage Vs of the

model filter in Figure 3.11(b) as the input in Figure 3.12(b) in order to compute

I,-1,, ox,,since [ ,=1,K V, and I , 18 a positive current which only affects the rate

of adaptation. Note that we use a different voltage source V.. for the derivative circuit
because the voltage source Vy, for the filter circuits in Figure 3.11 is only 1.5V, which is
not high enough for the transistors in the derivative circuit to operate in the saturation
region.

Both the learning rules for quality factor and time constant require a four quadrant
multiplication, and as implemented using the MITE circuits shown in Figure 3.13(a).
Circuits for the integrating the learning rules are shown in Figure 3.13(b) and (c), note that

Vo can be higher than V,, so the voltage V. in Figure 3.13(b) is higher than V.
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Figure 3.12: (a) and (b) are circuits for computing temporal derivative of voltage; (c) is
the circuit for computing temporal derivative of the current output difference.
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Figure 3.13: (a) Circuit for computing four quadrant multiplication for quality factor
adaptation; (b) Integrator circuit for quality factor adaptation; (c) Circuit for computing
four quadrant multiplication for time constant adaptation; (d) Integrator circuit for time
constant adaptation.
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3.4 Simulation Results

The circuit is simulated with HSPICE using BSIM3v3 model for a commercially
available 0.5um technology. The technique in [14] is used to avoid floating-node problems
in the simulation. The diagram is shown in Figure 3.14. We add a voltage-dependent

voltage source V' from ground to the floating gate through a big resistor R. There

floating _ gate

is no current through R, because tracks the floating gate voltage itself. This

floating _ gate
artificial DC path to ground aids numerical convergence in HSPICE simulator. The
voltage source V4, for both filters is 1.5V and the voltage sources V. and V,, required for
adaptation are both 2.5V. We use a sine wave (Figure 3.15) and superposition of sine

waves (Figure 3.16 and Figure 3.17) as inputs.

Figure 3.15 shows adaptation with a 10kHz sine wave. The sine wave is biased at
100nA with a peak to peak variation of 120nA. Figure 3.15(a) shows Vp and Vp . Vo is
varied as 1.47V from 0-2ms, 1.45V from 2-6ms and 1.46V from 6-10ms. Figure 3.15(b)
shows V; and V; ... The different V; values correspond to different values of /.. I; is varied
as 40nA from 0-4ms, 45nA from 4-8ms, and 35nA from 8-10ms. Figure 3.15(c) is the
error between the plant and filter output. For all changes in Vp and V;, Vo o and V; oy
track the new values accurately. The error converges to zero when Vp . converges to Vp
and V; .y converges to V. The adaptation rate depends on signal strength, currents /p, and

I, and capacitances Cgp and C..

Next we show adaptation when the input signal is a mixture of sine waves. In Figure
3.16, the input signal is a combination of equally weighted sine waves at 10kHz, 20kHz,

40kHz and 80kHz as input. The DC current is also 100nA and each of the sine waves has
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Figure 3.15: 10kHz sine wave input signal: (a) Quality factor adaptation. (b) Time
constant adaptation. (c) Output error.
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Figure 3.16: Four harmonic sine waves input signal: (a) Quality factor adaptation. (b)
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Figure 3.17: Six geometrically spaced sine waves from 10-96kHz input signal: (a)
Quality factor adaptation. (b) Time constant adaptation. (c) Output error.
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a peak to peak variation of 30nA. In Figure 3.17, the input signal is a summation of 6
equally weighted sine waves, whose frequency ratio is an irrational number 7/2 ,
spanning from 10kHz to 96kHz.The sine wave is also biased at 100nA and each of the
sine waves has a peak to peak variation of 20nA. In each case, V' ., accurately tracks Vp
as shown in Figure 3.16(a) and Figure 3.17(a) and V; . tracks V;, as shown in Figure
3.16(b) and Figure 3.17(b) and the output error shown in Figure 3.16(c) and Figure 3.17(c)

approaches zero when adaptation is finished.

3.5 Summary

A circuit design approach has been developed for log domain adaptive filters that
extends earlier work from adaptation of first order lowpass filters to a second order
structure. A novel structure has been designed for a second order filter using a log domain
topology which has wide tuning range and large dynamic range and capability for high
frequency operation. Further, robust learning rules have been developed for system
identification based on the direct Lyapunov method for the second order filter. These
learning rules have been implemented using MITE structures, which are compact and
elegant, although necessarily more complex than the design of the adaptive first order
lowpass filter. Simulation results demonstrate the validity of the learning rules. Future
work will focus on fabricating these circuits, experimentally validating these results and

extending this work to more comprehensive adaptive filter structures.
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Chapter 4: Conclusions and Future work

In this thesis, we have developed two circuit design approaches for log domain
adaptive filters. One is an adaptive first order lowpass filter, the other is an adaptive
second order tunable filter. Both of them utilize log domain filters implemented with
MITE circuits to integrate learning rules for system identification. The second order filter
is a novel structure using a log domain topology to implement compact current mode IR
filters that operate with low power, have wide tuning range and large dynamic range and
capability for high frequency operation. Further, robust learning rules for the parameters
of the two adaptive systems are derived based on Lyapunov stability. These learning rules
are implemented using MITE structures, highlighting the elegance and symbiotic nature
of the design methodology.

Simulation results with HSPICE using BSIM3v3 models are presented for both the
first order lowpass filter and the second order bandpass filter with a tunable bias current.
The log domain filters adapt to estimate the parameters of the reference filters accurately
and efficiently as the parameters are changed. The output difference between the
estimated system and the reference system approaches zero when adaptation is complete.

The first order lowpass adaptive filter has been designed and fabricated in a
commercially available 0.5um CMOS technology. Experimental results for the first order
lowpass filter show stable adaptation under a variety of conditions, which proves the
success of the adaptive system using this model-based learning method. The measured

power consumption is only 33uW which justifies low power operation of MITE structures.
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Future work will focus on fabricating the circuits of the adaptive second order log
domain filters, experimentally validating these results and extending this work to more

comprehensive adaptive filter structures.
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