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The current thesis includes two distinct projects. The first study involves the

development of a novel three-dimensional Spectral Boundary Element algorithm

for interfacial dynamics in Stokes flow. Our algorithm is the only available high-

order/high-accuracy methodology for the problem of droplet deformation in viscous

flows. By applying this algorithm to several interfacial problems, we find that our

results are in excellent agreement with experimental findings, analytical predictions

and previous numerical computations.

The second project studies viscous flows over a protuberance on the inner wall

of a solid microtube, a problem relevant to both physiological systems and microflu-

idic devices. The shear stress, drag and torque on the protuberance are determined

as functions of the spreading angle and the relative size of the protuberance which

may represent leukocytes, blood clots or endothelial cells on the microvessel wall.

This study facilitates the understanding of mechano-transduction phenomena as

well as cell adhesion in blood flow.
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Chapter 1

Introduction

The current thesis considers two distinct projects: (a) the development of a novel

Spectral Boundary Element algorithm for interfacial dynamics in Stokes flow, and

(b) the physical problem of Stokes flow over a hump/cell attached to a microtube

wall where for the first time a three-dimensional cylindrical model is employed.

1.1 Droplet deformation

A single droplet suspended in a host fluid deforms in response to an external flow.

As long as the shear rate of the external flow is below some critical value, the

deformation of the droplet reaches an equilibrium state. When the critical value in

shear rate is exceeded, the droplet breaks up into two or more smaller droplets.

This physical phenomenon is one of the building bricks for large-scale sim-

ulations of multi-phase fluids such as foams and emulsions which have numerous

applications including the tertiary oil recovery, environmental remediation, coating

and condensation processes. It also acts as a prototype for the deformation and

burst of artificial capsules and blood cells in micro-vessels which may give advice on

the design of biomedical devices.
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To facilitate the study of these systems, in the current thesis we develop a high-

order/high-accuracy Spectral Boundary Element algorithm for interfacial dynamics

in Stokes flow by combining our Spectral Boundary Element method for fixed sur-

faces with an explicit time-integration algorithm and a novel interfacial smoothing

scheme. The main attraction of this approach is that it exploits all the benefits of

the spectral methods (i.e., exponential convergence and numerical stability) and the

versatility of the finite element method (i.e., the ability to handle the most compli-

cated geometries). These properties result in a great computational efficiency which

facilitates the study of a wide range of problems involving interfaces in Stokes flow.

1.2 Stokes flow over a hump in a microtube

Viscous flows over protuberances on the inner wall of solid tubes commonly appear

in both physiological phenomena and microfluidic devices. In physiological systems,

the protuberance may stand for leukocytes (white blood cells), blood clots, or sep-

arated endothelial cells adhering to the inner surface of capillaries or venules. The

study of the shear stress exerted on the protuberance can facilitate the understand-

ing of the mechano-transduction phenomena since the endothelial cells send out

chemical signals in response to the hemodynamic shear force they received[14, 27].

The study of the fluid force on the protuberance is also important because biome-

chanical forces influence endothelial structure and function, such as the permeability

to macromolecules, lipoprotein accumulation and the repair near branch points[27].

The study of the total drag and torque on the protuberance may also be helpful in
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analyzing the leukocyte-endothelial cell adhesion in blood flow and the adhesion of

capsules or cells in microfluidic devices.

1.3 Literature survey: droplet deformation

The pioneering work of Taylor[34, 35] was the first experimental and theoretical

analysis on the deformation and orientation of droplets in shearing flows. Since then,

numerous theoretical and experimental studies have been conducted on this topic.

Summaries can be found in the two review papers by Rallison[26] and Stone[31].

This problem depends on two dimensionless parameters: (a) the ratio of the

viscosity of the fluid inside the drop to that of the external fluid λ, and (b) the

capillary number Ca = µGα/γ, where µ is the viscosity of the external fluid, G is

the shear rate of the flow outside, α is a characteristic length of the droplet, and γ

is the interfacial surface tension.

Taylor[35] compared his first-order theoretical results with his experimental

findings; good agreement was found for small deformations. A slender-body theory

was derived by Taylor[36] to investigate large deformations.

Numerous numerical methodologies have been employed for the study of de-

forming droplets. Youngren and Acrivos[37] were the first to develop a Boundary

Integral method and determine the equilibrium shape of a droplet for λ = 0 in an ax-

isymmetric extensional flow. Rallison and Acrivos[24], and Rallison[25] calculated

the case of λ > 0 for an extensional flow and λ = 1 for non-axisymmetric shear

flows. Navot[21] studied the critical dynamics of the droplet breakup under axisym-
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metric viscous flows for λ = 1. A two-dimensional droplet model was setup based

on an equi-distant partition of the interfacial curve. Roumeliotis and Fulford[30]

adopted cubic splines to represent the interfacial curve in the two-dimensional prob-

lem they studied. Besides numerical methods, complex variables were used by

Richardson[28, 29] to study the case of λ = 0 for two-dimensional droplets. Buck-

master and Flaherty[2] also studied a deforming two-dimensional droplet for λ = 1.

In order to fully understand the droplet deformation, three-dimensional mod-

els have been set up recently. The Boundary Integral algorithm is usually applied

which requires only the information on the interface and solves for the velocity

or the force on the boundary. Thus, it reduces the dimensionality of the prob-

lem by one, which facilitates considerably the computations. Zinchenko, Rother

and Davis[38] described a system of deformable droplets in a viscous medium at

low-Reynolds numbers, especially the interaction of two droplets and their buoy-

ancy driven motions. They employed a paraboloid fitting algorithm as the mesh

stabilization method to solve a curvatureless Boundary Integral equation. They

studied droplets with λ = 1 or λ → 0 in a buoyancy-driven flow for Ca = 0.723.

The interaction of droplets was also studied for Ca = 0.35 and λ = 0.2. Cristini,

Blawzdziewicz and Loewenberg[4] developed an adaptive discretization algorithm

to solve the three-dimensional Boundary Integral equations of the evolving droplet

surface. The deformation was studied under shear flows. Equilibrium shapes were

found for Ca = 1.43, λ = 3, and for Ca = 0.8, λ = 0.01. Feigl et al.[13] calculated

the deformation of a liquid drop suspended in a flow field ranging from shear flow to

uniaxial elongation flow. When λ = 1 or λ = 5 , the critical capillary number was

4



found to be a function of the flow types. Cunhua and Loewenberg[5] modified the

adaptive surface triangulation algorithm proposed by Cristini, Blawzdziewicz and

Loewenberg[4]. They computed the interaction between a pair of droplets suspended

in Stokes flow and compared their results with experimental findings for λ = 1.4

and Ca = 0.13. A nonsingular contour-integral representation of the layer potentials

was employed by Bazhlekov, Anderson and Meijer[1] to calculate the droplet defor-

mation. The authors employed a multiple-step time-integration scheme to calculate

the deformation as a function of time for λ = 1 and Ca = 0.05 in a 2D extensional

flow.

1.4 Literature survey: Stokes flow over a hump

Higdon[17] studied the problem of a viscous flow over a protuberance or depression

on a solid surface by a two-dimensional Boundary Element method. The stress

distribution and the streamline behavior were determined for various geometrical

configurations. Gaver and Kute[14] set up a two-dimensional geometry of a semi-

circle bulge on a channel within two parallel plates. A pressure-driven flow was

assumed and the lubrication theory was employed to validate the numerical results.

A wide ranges of cell sizes with respect to the channel size were studied. The stress,

force and torque exerted on the cell were analyzed. Regression relationships between

the size, flow rate and the force were established.

The adhesion of a biological cell onto a substrate, the interaction among ad-

hered cells and the influence of the fluid force on endothelial cells have been deter-
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mined mainly via three-dimensional computations. Pozrikidis[23] restated the prob-

lem by Gaver and Kute[14] in three dimensions for the case of 2D Hagen-Poiseuille

flow or a pure shear flow. Streamlines and shear stress distributions on the pro-

tuberance and the depression were determined. The torque and force coefficients

were found for various contact angles. Hazel and Pedley[16] numerically solved for

a three-dimensional protuberance in a large circular tube. The tube was simplified

into an infinite solid plane and a quasi-steady linear shear flow was assumed. This

is actually a three-dimensional model for the problem studied by Higdon[17]. The

hump was assumed to be ellipsoidal. Several combinations of the height, length and

the width of the hump were applied to determine the geometry which minimizes the

total force on the hump. Sugihara-Seki[32] compared the shear stress and pressure

distribution exerted on a spherical cell adhered to the microvessel wall in tube flow

and those in parallel-plate flow. Sugihara-Seki and Schmid-Schonbein[33] estimated

and compared the fluid shear stress on the attached cell (leukocyte) and the shear

stress on a free-suspended cell in a micro-vessels. Brooks and Tozeren[3] employed

a finite-difference scheme to analyze the laminar parallel-plate flow past an array of

uniformly distributed cells that were adherent to the bottom plate. The fluid forces

on the cell were computed under different cell conditions, i.e., different combina-

tions of the aspect ratio of the cell radius to the gap between the parallel plates and

contact angles of the spreading cell.
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1.5 Summary of current research

The current thesis includes two distinct projects. The first study involves the de-

velopment of a novel three-dimensional Spectral Boundary Element algorithm for

interfacial dynamics in Stokes flow. The main attraction of this approach is that it

exploits all the benefits of the spectral methods (i.e., exponential convergence and

numerical stability) with the versatility of the finite element method (i.e., the abil-

ity to handle the most complicated geometries). In addition, it is not affected by

the disadvantage of the spectral methods used in volume discretization; namely, the

requirement of deal with dense systems, because in boundary integral formulations

the resulting systems are always dense, independent of the form of the discretization.

Our method also exploits all the benefits of the boundary element techniques, i.e.,

reduction of the problem dimensionality and great parallel scalability. Our algo-

rithm is the only available high-order/high-accuracy methodology for the problem

of droplet deformation in viscous flows. By applying this algorithm to several in-

terfacial problems in extensional and shear flows, we find that our results are in

excellent agreement with experimental findings, analytical predictions and previous

numerical computations. This algorithm can be employed to study a wide range of

interfacial problems in Stokes flow including the deformation of capsules and blood

cells in micro-vessels.

Our Spectral Boundary Element method is also employed to analyze the shear

stress, drag and torque exerted on a protuberance on the inner wall of a micro-tube.

In contrast to previous studies, a cylindrical tube is defined, and a three-dimensional
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Hagen-Poiseuille flow is considered. This feature enables the current model to apply

to both microfluidics and microcirculation where the curvature of the tube/vessel

can not be ignored due to the comparable size of the tube/vessel and the hump.

In physiological systems, the protuberance may represent leukocytes (white blood

cells), blood clots or endothelial cells attached to the inner surface of microvessels.

Therefore, our study facilitates the understanding of mechano-transduction phe-

nomena (which involve the relation between the hemodynamic shear force received

by endothelial cells and the chemical signals they send out) as well as the leuko-

cyte/endothelial cell adhesion in blood flow. The algorithm developed here will be

adopted for the study of the deformation of capsules and blood cells in constricted

geometries.

The first project, the development of a three-dimensional interfacial dynam-

ics Spectral Boundary Element algorithm, along with the relevant work by Jingtao

Wang in two dimensions, has been presented in both national and international

conferences (such as the 2004 AIChE Annual Meeting and the 5th Euromech Fluid

Mechanics Conference), and it will be submitted for publication in the near future.

The second project which studies the stress on a protuberance in microtubes has

been presented in the 2004 AIChE Annual Meeting and the 2004 Inaugural Sympo-

sium of the Burgers Program for Fluid Dynamics. It will also be presented in the

76th Annual Meeting of the Society of Rheology and be submitted for publication.
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Chapter 2

Mathematical Formulation

2.1 From Stokes equations to Boundary Integral equations

When the Reynolds number is sufficiently small, the inertial terms in the Navier-

Stokes equations are neglected and the flow is governed by Stokes equations

∇ · σ ≡ −∇p+ µ∇2u = 0 (2.1)

and the continuity equation

∇ · u = 0 (2.2)

where σ represents the stress tensor, p is the dynamic pressure, µ is the viscosity of

the fluid and u is the velocity vector.

By introducing the fundamental solutions Sij and Tijk for the three-dimensional

Stokes equation (2.1) and the continuity equation (2.2), and then integrating over

a volume of fluid bounded by a surface SB shown in figure 2.1(a), the velocity at

a point x0 on the surface is expressed as the following Boundary Integral equation

(BIE),

ui(x0) = −
1

4πµ

∫

SB

(Sij(x̂)fj(x)− µTijk(x̂)uj(x)nk(x)) dS (2.3)

This equation relates the velocity u at each point x0 along the boundary SB by the
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Figure 2.1: Illustrations for the geometry of the BIEs (2.3) and (2.6).

surface integral of the stress and velocity over all the points x on the same boundary.

The normal vector n points into the domain surrounded by the boundary SB while

the force vector f is defined by fj(x) = σjk(x)nk(x). The fundamental solution for

the velocity Sij and the corresponding stress Tijk are given by

Sij =
δij
r

+
x̂ix̂j

r3
(2.4)

Tijk = −6
x̂ix̂jx̂k

r5
(2.5)

A detailed derivation may be found in Pozrikidis[22].

Equation (2.3) can be named as the “inner” equation because it solves for the

fluid flow inside a specific boundary SB shown in figure 2.1(a). An “outer” equation

can be derived to express the flow field outside a boundary SB shown in figure 2.1(b).

It is given by

u(x0)− 2u∞(x0) = −
1

4πµ

∫

SB

(S · f − µT · u · n) dS (2.6)

10



where u∞ is the fluid velocity far from the surface boundary SB and the normal

vector n points into the flow (i.e., out of the boundary SB).

2.2 BIE for a free suspended drop

Consider the case of a droplet with density ρ1 and viscosity µ1 = λµ suspended in

an infinite fluid with density ρ2 and viscosity µ2 = µ, as illustrated in figure 2.2.

The interfacial tension γ is assumed to be constant while u∞ is the flow velocity far

from the droplet interface SB. The magnitude of the gravity acceleration is g. The

normal vector n points into the fluid outside the interface SB.

The interior fluid is driven to flow by the exterior flow. The “inner” and

“outer” equations (2.3) and (2.6) now apply to the interior and exterior domains,

respectively. The “inner” equation has to change sign due to the direction of the

normal vector. After subtracting equation (2.3) from equation (2.6), the velocity of

the point x0 on the interface SB is expressed as

(1 + λ)u(x0)− 2u∞(x0)

= −
1

4πµ

∫

SB

(S ·∆f − µ(1− λ)T · u ·n) dS (2.7)

where the velocity u and the jump of the interfacial stress ∆f come from the

interfacial boundary conditions:

u = u1 = u2 (2.8)

∆f ≡ f 2 − f1 = γ(∇ · n)n+ (ρ2 − ρ1)(g · x)n (2.9)

11
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Figure 2.2: Illustration of a droplet freely suspended in an infinite fluid.

where the subscripts “1” and “2” represent the internal and external flow, respec-

tively. If ∆f is known, equation (2.7) becomes a Fredholm integral equation of the

second kind in solving for the interfacial velocity u.

2.3 BIE for a drop in a confined domain

We can imagine two cases involving a drop in a confined domain. One is the situation

where a drop is suspended in an external fluid enclosed by an outer solid boundary

(figure 2.3). The other case involves a drop attached to a solid wall (figure 2.4).

Because the first case can be considered as a simplification of the second one, we

first discuss the construction of the Boundary Integral equations for the second case.

As shown in figure 2.4, a drop with viscosity λµ and density ρ1 is attached to

the internal surface of a cylindrical tube. The fluid external to the drop has viscosity

µ and density ρ2 while far from the droplet it shows undisturbed velocity u∞ and

12
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m, r2

S2

Figure 2.3: Illustration of a drop suspended in the fluid inside a cylindrical tube (S2).

stress f∞. We denote the interface between the drop and the external fluid as Γ,

the wetted area of the drop and the solid as S1, and the rest boundary surface as

S2, which is composed by Sf
2 and Sw

2 . S
f
2 is a fluid boundary and it is assumed to be

far away from the drop. Sw
2 refers to the rest solid boundary. The surface tension

on the interface Γ is γ and the magnitude of the gravity acceleration is g. We also

denote u1 and u2 as the flow velocity inside and outside of the drop, respectively.

The boundary conditions on surface S are

u1 = 0 on boundary S1 (2.10)

u2 = 0 on boundary Sw
2 (2.11)

u2 = u∞ or f 2 = f∞ on boundary Sf
2 (2.12)

The boundary conditions on Γ are given by equations (2.8) and (2.9).

By applying the governing equation (2.3) on the fluid flow both inside and

outside the drop, and then performing a subtraction between the two equations, a

13
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Figure 2.4: Illustration of a drop adherent to a solid cylindrical boundary.

general Boundary Integral equation for both flow regions can be derived as

Ωu(x0) = −
∫

S2

[S · f2 − µT · u2 · n] dS

+
∫

S1

[S · f 1 − λµT · u1 · n] dS

−
∫

Γ
[S ·∆f − (1− λ)µT · u · n] dS (2.13)

where the subscripts “1” and “2” refer to fluids inside and outside of the drop,

respectively. In the third term on the right-hand side, the velocity is u = u1 = u2.

For points on Γ, Ω = 4π(1 + λ)µ; for points on S1, Ω = 4πλµ; for points on S2,

Ω = 4πµ. A system of Fredholm integral equations of mixed kinds is formed due to

the different boundary conditions.

Another construction of the BIE can be set up by employing the disturbed

velocity uD and the disturbed force fD in the “inner” equation (2.3) for the flow

inside the tube but outside the drop, where uD = u − u∞ and fD = f − f∞.

Based on our assumption, uD and fD are zero on the fluid boundary Sf
2 , so that

14



the integration on Sf
2 disappears. Equation (2.3) is then transformed into

uD(x0) = −
1

4πµ

∫

Γ+Sw

2

(

S · fD − µT · uD · n
)

dS (2.14)

By applying the governing equation (2.3) on the flow inside the drop, changing its

sign (due to the direction of the normal vector on the boundary), and subtracting

it from equation (2.14), the BIE describing the system takes the form

Ωu(x0)− Ω0u
∞(x0) = −

∫

Γ
[S · (∆f − f∞)− µT · (u(1− λ)− u∞) · n] dS

−
∫

Sw

2

[S · (f 2 − f∞)− µT · (u2 − u∞) · n] dS

+
∫

S1

[S · f1 − λµT · u1 · n] dS (2.15)

where Ω = 4πµ(1+λ), 4πµλ and 4πµ for x0 on Γ, S1 and Sw
2 , respectively; Ω0 = 4πµ,

0, and 4πµ for x0 on Γ, S1 and Sw
2 respectively. The boundary conditions (2.8, 2.9,

2.10, and 2.11) are applied.

Although equations (2.13) and (2.15) are two different BIEs for a drop in a

confined domain, they result in similar solutions. Note that when the boundary S1

vanishes, i.e., the droplet is freely suspended (shown in figure 2.3), the integral over

S1 on the right-hand side of equation (2.13) and (2.15) disappears.

2.4 BIE for flow in a cylinder with a protuberance

If the protuberance in the cylindrical tube is assumed solid, the Boundary Integral

equation for the flow can simply take the form of the “inner” equation (2.3). There

are two kinds of boundaries: one is the solid wall, and the other is the fluid boundary
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Sf
2 (figure 2.4). Based on our assumption, the boundary conditions are

u = 0 on boundaries Sw
2 and Γ (2.16)

u = u∞ or f = f∞ on boundary Sf
2 (2.17)

The BIE can also be expressed with respect to the disturbed velocity uD and the

disturbed force fD. It takes the form of equation (2.14).

2.5 Spectral element formulation

The Boundary Integral equations are solved using the Spectral Boundary Element

method as described in Muldowney and Higdon [20]. Its accuracy, efficiency and

convergence have been demonstrated in applications involving rigid particles, de-

formable droplets and interacting particles. Higdon and Muldowney [18] applied

this method in the study of the resistance functions for Stokes flow past spherical

particles, droplets and bubbles in cylindrical tubes. Dimitrakopoulos and Higdon

employed both the 2D [7] and 3D [8, 10, 11, 12] Boundary Element methods in

studies on the displacement of droplet from solid surfaces in Stokes flows.

According to this method, the boundary is divided into a moderate number

NE of surface elements, each of which is mapped onto a two-dimensional domain

in terms of the parametric variables ξ and η. The variables are zeros of orthogonal

polynomials, such as Legendre, Chebyshev or Jacobi polynomials, on [−1, 1]. If NB

basis points are used, then the geometry x can be represented by

x(ξ, η) =
NB
∑

i=1

NB
∑

j=1

x(ξi, ηj)hj(η)hi(ξ) (2.18)

16



where hi(ξ) and hj(η) are the (NB − 1)-order Lagrangian interpolant polynomial.

The physical variables u and f are represented similarly.

The discretized expressions for the geometry and the physical variables are

substituted into the Boundary Integral equations, and it is required that the integral

equations be satisfied at the discrete set of basis points x0(ξi, ηj) (where i, j =

1, . . . , NB) on each spectral element. This yields a linear system of 3NE N2
B algebraic

equations

u = Af +Bu (2.19)

The system matrices A and B are defined as integrals of the kernels S and T (see

equations (2.4) and (2.5)) and the basis functions over the set of the surface elements.

The numerical integration is performed by Gauss-Legendre quadrature with the aid

of variable transformations. Owing to the singularity in the kernels, special care

must be taken to ensure the accurate numerical evaluation of these integrations as

described in Muldowney and Higdon[20].

The BIEs, combined with the boundary data at the NE N2
B basis points, yield,

for a known interface, a consistent set of 3NE N2
B equations in 3NE N2

B unknowns

which is solved using Gaussian elimination since the system matrix is dense.
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Chapter 3

Interfacial Dynamics in Stokes Flow

If the shear rate of the flow is below a certain critical value, the surface tension force

and the external viscous force on the drop interface can balance each other, and an

equilibrium state can be reached. Otherwise the drop bursts and produces two or

more daughter droplets. How much distortion is reached at equilibrium and how

the droplet deforms with time are among the principal goals of both experimental

and theoretical studies in this area.

In this chapter, we develop a novel three-dimensional Spectral Boundary El-

ement method for interfacial dynamics in Stokes flow. This algorithm is the only

available high-order/high-accuracy methodology for the problem of droplet defor-

mation in viscous flows. By applying this algorithm to several interfacial problems,

we find that our results are in excellent agreement with experimental findings, ana-

lytical predictions and previous numerical computations.
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3.1 Problem parameters and dimensionless analysis

The problem of interfacial dynamics in Stokes flow is governed by two dimensionless

numbers: the viscosity ratio λ and the capillary number Ca given by

λ =
µ1

µ
(3.1)

Ca =
µGα

γ
(3.2)

where µ1 is the viscosity of the fluid inside the drop, µ is the viscosity of the imposed

flow, and γ is the surface tension on the interface. The constant G designates the

shear rate of the external flow and α is the characteristic length of the droplet

defined from the drop volume V as

α =
(

3V

4π

)1/3

(3.3)

The capillary number Ca measures two competing forces: the viscous force and the

surface tension force. The viscous stress imposed on the interface by the exterior flow

induces the flow inside the drop and causes the interfacial deformation, while the

surface tension force resists the deformation. When an equilibrium state is reached,

the surface tension force balances the viscous force so that the droplet deformation

ceases. Figure 3.1 illustrates that a droplet of viscosity µ1 = λµ and density ρ1

deforms in an extensional flow of a fluid with viscosity µ and density ρ2 . (In this

study we assume that ρ1 = ρ2 .) The undisturbed velocity of the exterior fluid is

designated as u∞. The droplet deforms from an initially spherical shape at time t0

to an ellipsoid-like shape at time t1. The degree of deformation is measured via the
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Figure 3.1: Illustration for the deformation of a droplet in an extensional flow.

parameter D defined by

D =
L− S

L + S
(3.4)

where L is the length of the longest axis of the drop and S is that of the shortest

axis. We identify the characteristic length of the drop α as the length scale of the

problem, the velocity scale is Gα, and the time scale is 1/G. In this chapter we use

dimensionless variables thereafter.

3.2 Time-integration algorithm

We consider a three-dimensional droplet suspended in an infinite fluid undergo-

ing a low-Reynolds-number shearing flow. The governing equations are the Stokes

equations along with the continuity equation. Earlier in Chapter 2, we described

the corresponding Boundary Integral equation (2.7) and the boundary conditions

(2.8) and (2.9) for a freely suspended droplet. The drop interface is discretized into
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NE = 6 elements with NB × NB = 12 × 12 spectral basis points on each element.

These points are of Lobatto type, i.e., end points along with interior points, while

there is no connection between elements. The spectral element formulation has been

discussed in section 2.5. For a given droplet geometry, the velocity on the droplet in-

terface is obtained by the Spectral Boundary Element method described in Chapter

2.

In order to determine the shape of the drop as a function of time, a time-

integration algorithm is employed to solve the kinematic condition at the interface

dx

dt
= (u · n)n (3.5)

For this, we determine the interfacial velocity u of the known shape x(t) from BIE

(2.7), and then the discretized points of the droplet interface are advanced by a time

interval ∆t to obtain the shape x(t+∆t). An explicit Euler or Runge-Kutta method

is employed for the time-integration. The explicit Euler scheme can be written as

x(t +∆t) = x(t) + ∆t(u · n)n (3.6)

where n is the normal vector of the known shape x(t). We note that explicit

time-integration schemes have commonly been employed with various discretization

methods, e.g. Feigl, Kaufmann, Fischer and Windhab[13], Rallison and Acrivos[24],

Rallison[25], and Roumeliotis and Fulford[30].

If we apply the advancing scheme described above without any geometric con-

straints, the resulting algorithm is unstable even after only a small number of steps.

Geometrically, the instability is caused by the discontinuity at the edges of the spec-

tral elements and results in the breakup of the entire shape. Figure 3.2 shows the
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deformation of a suspended droplet in a 2D extensional flow at four different times,

for capillary number Ca = 0.2 and viscosity ratio λ = 0.01. The number of time

steps is denoted as Nst while un is the maximum normal velocity at the interface.

The discontinuity on the element edges can be witnessed in figure 3.2(d) and the

droplet interface breaks at the step Nst = 156, i.e., the time t = 0.312.

A first-order smoothing technique is derived to resolve this problem. In every

time step, the smoothing scheme adjusts the grid of each element so that the posi-

tion, the tangent and the normal vectors on the element edges are continuous across

the spectral elements. The next section describes our novel smoothing method in

detail.

3.3 First-order smoothing scheme

Our first-order smoothing scheme eliminates the discrepancies in the position, the

tangent and normal vectors at the element edges across the spectral elements which

are caused by the numerical advancing of the interface. In this section, we first

describe how we smooth the position, the tangent and normal vectors at the element

edges and then we explain how we update the position for all the points on each

spectral element by a two-dimensional Hermitian interpolation.

Let the non-smoothed interfacial shape at time t + ∆t, derived by the time

integration of equation (3.5) above, be identified as x(ξ,η) where ξ and η are the

two parametric variables describing the interface. We also define a local Cartesian

coordinate system xL at each point with the xL
1 - and xL

2 -axes in the tangent plane
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(a) Nst = 0, time t = 0.000,

D= 0.000D+00, un= 0.159D+01

(b) Nst = 30, time t = 0.060,

D= 0.877D-01, un= 0.133D+01

(c) Nst = 90, time t = 0.180,

D=0.206D+00, un=0.890D+00

(d) Nst = 140, time t = 0.280,

D= 0.268D+00, un= -0.281D+03

Figure 3.2: The time evolution of a drop deforming in a 2D extensional flow for

Ca = 0.2 and λ = 0.01. A 4th-order Runge-Kutta (RK4) method without interfacial

smoothing is employed with NE = 6, NB = 12 and ∆t = 2× 10−3.
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Figure 3.3: Illustration for the curvilinear coordinates (ξ, η) and the local Cartesian

coordinates (xL
1 , x

L
2 ). Two neighbor elements A and B are displayed. The points a

and b are two coincident points belonging to elements A and B, respectively, and

should overlap after the interfacial smoothing.

and the xL
3 -axis parallel to the normal vector n. As shown in figure 3.3, the points

a and b are two coincident points belonging to the consecutive elements A and B,

respectively. The solid arrows represent the curvilinear coordinates (ξ, η) and the

dashed arrows the local Cartesian coordinates (xL
1 , x

L
2 ). The normal vector n and

the third local Cartesian coordinate xL
3 are not plotted. In the situation illustrated,

the parametric variable η at the point a coincides with the variable ξ at the point b

and they both point at the same direction. In fact, due to the surface discretization,

other combinations are possible, e.g. ξ at the point a coincides with ξ at the point

b in the opposite direction.

To perform the interfacial smoothing, we first average the position x of the
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edge points across neighbor elements

xnew
a = xnew

b = 0.5 (xold
a + xold

b ) (3.7)

and then we calculate the geometric properties of the updated shape xnew. In this

way, for our specific example the derivatives (∂x/∂η)a and (∂x/∂ξ)b are identical.

We next calculate the unit tangent vector

(tL1 )a =

(

∂x
∂η

)

a
× va

∣

∣

∣

(

∂x
∂η

)

a
× va

∣

∣

∣

(3.8)

where va is the non-unit normal at point a, va = (∂x/∂ξ)a × (∂x/∂η)a. The unit

tangent (tL2 )b is found in a similar way. Note that the tangent vectors (tL1 )a and

(tL2 )b lie on the xL
1 -axis at the point a and the xL

2 -axis at the point b, respectively.

In order to achieve continuity in this tangent direction, we average the unit tangent

vectors,

(tL1 )
new
a = −(tL2 )

new
b = 0.5

[

(tL1 )
old
a − (tL2 )

old
b

]

(3.9)

where the minus sign appears due to the specific geometry shown in figure 3.3.

At this point, both the position and the tangent vectors at the edge points

are continuous. The next goal is to determine the updated first-order derivatives

(∂x/∂ξ)newa and (∂x/∂η)newb . From the tangent vectors, we calculate the unit normal

vectors

nnew
a =

(tL1 )
new
a ×

(

∂x
∂η

)

a
∣

∣

∣(tL1 )
new
a ×

(

∂x
∂η

)

a

∣

∣

∣

(3.10)

nnew
b =

(

∂x
∂ξ

)

b
× (tL2 )

new
b

∣

∣

∣

(

∂x
∂ξ

)

b
× (tL2 )

new
b

∣

∣

∣

(3.11)

Note that nnew
a and nnew

b are identical now due to the interfacial smoothing we have

performed. In order to calculate the updated derivative (∂x/∂ξ)newa , the following
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relations for the point a are applied

nnew
a ·

(

∂x

∂ξ

)new

a

= 0 (3.12)

(

∂x

∂ξ

)new

a

·

(

∂x

∂η

)

a

=

(

∂x

∂ξ

)old

a

·

(

∂x

∂η

)

a

(3.13)

∣

∣

∣

∣

∣

(

∂x

∂ξ

)new

a

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(

∂x

∂ξ

)old

a

∣

∣

∣

∣

∣

∣

(3.14)

The new derivative (∂x/∂η)newb can be found in a similar way.

So far, we have smoothed the position x and the first derivatives, (∂x/∂ξ)

and (∂x/∂η), at the edge points across the spectral elements. We want to employ

this updated information of the edge points to derive a smoothed interfacial shape.

For this, we generate (NB − 4)× (NB − 4) interior Jacobi points from the NB ×NB

Lobatto points (i.e., end and interior points) on each spectral element. By combining

these Jacobi points with the smoothed position x and the first-order derivatives

(∂x/∂ξ) and (∂x/∂η) at the edge points, a two-dimensional Hermitian interpolation

is employed to produce a new set of NB ×NB Lobatto points which represents the

final smoothed interfacial shape at time t + ∆t. The two-dimensional Hermitian

interpolation involves two nested one-dimensional Hermitian interpolations. The

specific one-dimensional Hermitian interpolation was derived in Dimitrakopoulos[6]
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and it is given by

f(x) = (x2 − 1)2
M
∑

i=1

1

(x2
i − 1)2

M
∏

j 6=i

(

x− xj

xi − xj

)

f(xi) +

M
∏

j=1

(

x− xj

−1− xj

)

(x− 1)2

4
(x+ 1)f ′(−1) +

M
∏

j=1

(

x− xj

1− xj

)

(x+ 1)2

4
(x− 1)f ′(+1) +

M
∏

j=1

(

x− xj

−1− xj

)

(x− 1)2

4
[1 + b(−1)(x + 1)]f(−1) +

M
∏

j=1

(

x− xj

1− xj

)

(x+ 1)2

4
[1− b(+1)(x− 1)]f(+1) (3.15)

The function values f(−1) and f(+1) correspond to the refreshed position x of

the edge points while the derivatives f ′(−1) and f ′(+1) correspond to the updated

(∂x/∂ξ) or (∂x/∂η) of the edge points. The coefficients b(−1) and b(+1) are chosen

to yield zero slope at the element edges,

b(−1) = −





M
∑

j=1

(

1

x− xj

)

+
2

x− 1





x=−1

=
M
∑

j=1

(

1

1 + xj

)

+ 1 (3.16)

b(+1) = +





M
∑

j=1

(

1

x− xj

)

+
2

x+ 1





x=+1

=
M
∑

j=1

(

1

1− xj

)

+ 1 (3.17)

We emphasize that, for each one-dimensional Hermitian interpolation, the

position and the first derivative at the two edges count for 4 degrees of freedom

which, combined with the (NB − 4) degrees of freedom of the interior Jacobi points,

produce the same total number of degrees of freedom as the Lobatto points NB.

As a summary, the procedure of our first-order smoothing technique is:

• By employing the governing BIE (2.7) and a time integration scheme for equa-

tion (3.5), a temporary shape at time t+∆t is generated at NB ×NB Lobatto

points. The corresponding tangent and normal vectors are calculated.
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• By averaging the positions and the local tangent vectors of the edge points with

those of their coincident points on the neighbor elements, smoothed normal

vectors n and first-order derivatives, (∂x/∂ξ) and (∂x/∂η), are achieved.

• A set of (NB − 4) × (NB − 4) interior Jacobi points are interpolated from

the Lobatto points. By employing the 2D Hermitian interpolation with the

smoothed position x and the derivatives (∂x/∂ξ) and (∂x/∂η) at the element

edges along with the interior Jacobi points, a new set of NB × NB Lobatto

points is determined.

• This new geometry has continuous position, tangent and normal vectors across

the interfacial elements and constitutes the interfacial shape at time t+∆t.

We emphasize that by employing our first-order smoothing scheme, we for-

mally achieve the continuity of the position and the tangent/normal vectors at

the edges of the spectral elements. However, for the problems we have studied in

this thesis, our results show that this technique also achieves the continuity of the

curvature at the element edges, i.e., the second-order derivative of the interfacial

geometry.

Figure 3.4 shows that, by applying the smoothing scheme, the continuity of

the droplet interface is preserved. The capillary number and the viscosity ratio are

the same with those in figure 3.2, i.e., Ca = 0.2 and λ = 0.01. In contrast to

figure 3.2, at time t = 0.280, the elements on the droplet interface smoothly connect

with each other and the drop doesn’t breakup even until time t = 7.07 where we

stop our computations.
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(a) Nst = 0, time t = 0.000,

D= 0.000D+00, un= 0.159D+01

(b) Nst = 30, time t = 0.060,

D= 0.877D-01, un= 0.133D+01

(c) Nst = 90, time t = 0.180,

D= 0.206D+00, un= 0.901D+00

(d) Nst = 140, time t = 0.280,

D =0.267D+00, un= 0.663D+00

Figure 3.4: The time evolution of a drop deforming in a 2D extensional flow for

Ca = 0.2 and λ = 0.01. An RK4 method with the 1st-order smoothing scheme is

employed with NE = 6, NB = 12 and ∆t = 2× 10−3.
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3.4 Results and discussion

By combining the Spectral Boundary Element method described in Chapter 2, an

explicit time-integration scheme for equation (3.5) above, and the first-order smooth-

ing technique described in section 3.2, we are able to calculate the transient droplet

deformation for a wide array of interfacial problems. In this section, we consider the

shape of the droplet during its course of deformation in a 2D extensional flow and a

simple shear flow. In both cases, we investigate both small and large deformations

as well as deformations for super-critical capillary numbers. We then examine the

equilibrium state of the drop deformation for both flows. Comparisons are made

with other numerical, theoretical or experimental results. All the results presented

in this section are based on a 4th-order Runge-Kutta (RK4) time-integration algo-

rithm combined with our 1st-order smoothing scheme.

3.4.1 Imposed planar extensional flow

For the droplet deformation in a 2D extensional flow with a shear rateG, the velocity

far from the droplet is

u∞ = G





















1 0 0

0 −1 0

0 0 0





















x = G (x,−y, 0) (3.18)

while the lengths L and S of the droplet in equation (3.4) coincide with the major

and minor axes on the intersection of the droplet and the XY plane, as shown in

figure 3.5.
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Figure 3.5: Illustration of a deforming drop in a 2D extensional flow.

In our computations, the drop starts to deform from the undisturbed spherical

shape. One of the criteria to determine the equilibrium state in our computations

is that the deformation D remains constant to at least six significant figures from

one time step to the next one. Another criterion is that the magnitude of the

normal velocity un in the final step should be small enough comparing to that of the

undisturbed shape. In this study, the maximum normal velocity un of the final shape

is at least O(10−3) of the normal velocity of the undisturbed shape. This criterion

even makes the deformation D remain constant at eight or more significant digits.

The time evolution of a drop in a 2D extensional flow with Ca = 0.05 and

λ = 20 is shown in figure 3.6. The drop deforms fast at the beginning and then

slows down until the deformation is stopped at the equilibrium. In contrast to the

small deformation shown in figure 3.6, figure 3.7 shows a large deformation with

Ca = 0.1 and λ = 0.1. The deformation achieves its equilibrium near time t = 1.
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If the capillary number Ca exceeds the critical number for a specific viscosity ratio

λ, the droplet follows an unsteady deformation until breakup. Figure 3.8 shows a

large deformation with a super-critical capillary number Ca = 0.2 at a viscosity

ratio λ = 1.0. In this case, there is no equilibrium state and the droplet breaks near

time t = 1.15.

To validate our method, we compare the transient behavior of the deformation

D from our computations with that from the nonsingular contour-integral method

developed by Bazhlekov, Anderson and Meijer[1]. An excellent agreement is found,

as shown in figure 3.9 where the deformation of a droplet in a 2D extensional flow

is presented for Ca = 0.05 and λ = 1.0.

Dimitrakopoulos[9] derived a novel Newton iteration scheme for directly deter-

mining the interfacial equilibrium shape under flow conditions. The Newton method

has shown its accuracy, efficiency and stability in numerous studies concerning the

interfacial dynamics of droplets[7, 8, 9, 10, 11, 12]. In order to validate the accuracy

of our transient method in predicting the equilibrium deformation DE, a comparison

of the transient method with the Newton method has been made in table 3.1. For a

2D extensional flow with λ = 0.9, the relative difference between the two methods

is O(10−5); for λ = 20, the relative difference is O(10−3).

A first-order analytical estimation of the equilibrium deformation DE of a

droplet in an imposed 2D extensional flow was derived by Taylor[34],

D = 2Ca
19λ+ 16

16λ+ 16
(3.19)

We emphasize that this relation is valid for small deformations only. The numerical
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.112D+00

(b) Nst= 100, time t= 0.010,

D= 0.111D-01, un= 0.103D+00

(c) Nst= 300, time t= 0.030,

D= 0.302D-01, un= 0.869D-01

(d)Nst= 500, time t= 0.050,

D= 0.459D-01, un= 0.733D-01

Figure 3.6: The time evolution of a drop deforming in a 2D extensional flow for

Ca = 0.05 and λ = 20. The RK4 method is employed with NE = 6, NB = 12 and

∆t = 1×10−4. The number of steps and the maximum normal velocity are denoted

as Nst and un, respectively.
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(a)Nst= 1000, time t= 0.100,

D= 0.742D-01, un= 0.482D-01

(b)Nst= 3000, time t= 0.300,

D= 0.115D+00, un= 0.990D-02

(c) Nst= 5000, time t= 0.500,

D= 0.122D+00, un= 0.222D-02

(d)Nst= 7000, time t= 0.700,

D= 0.124D+00, un= 0.516D-03

Figure 3.6: (continued) The time evolution of a drop deforming in a 2D extensional

flow for Ca = 0.05 and λ = 20. The RK4 method is employed with NE = 6,

NB = 12 and ∆t = 1× 10−4.
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.154D+01

(b) Nst= 30, time t= 0.060,

D= 0.749D-01, un= 0.107D+01

(c) Nst= 50, time t= 0.100,

D= 0.109D+00, un= 0.831D+00

(d) Nst= 100, time t= 0.200,

D= 0.159D+00, un= 0.458D+00

Figure 3.7: The time evolution of a drop deforming in a 2D extensional flow for

Ca = 0.1 and λ = 0.1. The RK4 method is employed with NE = 16, NB = 12 and

∆t = 2× 10−3.
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(a) Nst= 300, time t= 0.600,

D= 0.207D+00, un= 0.576D-01

(b) Nst= 500, time t= 1.000,

D= 0.213D+00, un= 0.851D-02

(c) Nst= 700, time t= 1.400,

D= 0.213D+00, un= 0.129D-02

(d) Nst= 1000, time t= 2.000,

D= 0.214D+00, un= 0.106D-02

Figure 3.7: (continued) The time evolution of a drop deforming in a 2D extensional

flow for Ca = 0.1 and λ = 0.1. The RK4 method is employed with NE = 16,

NB = 12 and ∆t = 2× 10−3.
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.997D+00

(b) Nst= 20, time t= 0.040,

D= 0.382D-01, un= 0.950D+00

(c) Nst= 50, time t= 0.100,

D= 0.892D-01, un= 0.882D+00

(d) Nst= 100, time t= 0.200,

D= 0.160D+00, un= 0.786D+00

Figure 3.8: The time evolution of a drop deforming in a 2D extensional flow for

Ca = 0.2 and λ = 1.0. The RK4 method is employed with NE = 16, NB = 12 and

∆t = 2× 10−3.
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(a) Nst= 200, time t= 0.400,

D= 0.262D+00, un= 0.657D+00

(b) Nst= 300, time t= 0.600,

D= 0.333D+00, un= 0.595D+00

(c) Nst= 400, time t= 0.800,

D= 0.388D+00, un= 0.599D+00

(d) Nst= 500, time t= 1.000,

D= 0.438D+00, un= 0.702D+00

Figure 3.8: (continued) The time evolution of a drop deforming in a 2D extensional

flow for Ca = 0.2 and λ = 1.0. The RK4 method is employed with NE = 16,

NB = 12 and ∆t = 2× 10−3.
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Figure 3.9: Comparison of our RK4 method with the contour-integral method from

Ref.[1]: the drop deformation D versus time t for Ca = 0.05 and λ = 1.0. The

boxes are taken from the figure 8 in Bazhlekov et al.[1]. The parameters in our

computations are: NE = 6, NB = 13 and ∆t = 2.5× 10−4.

results of our study are compared with Taylor’s predictions in table 3.2.

3.4.2 Imposed simple shear flow

For the droplet deformation in a simple shear flow with a shear rate G, the velocity

far from the droplet is

u∞ = G





















0 1 0

0 0 0

0 0 0





















x = G (y, 0, 0) (3.20)
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2D extensional flow λ = 0.9

Ca DNewton
E DRK4

E un Rel. Diff.

0.005 0.010891003 0.010890065 1.00D-04 8.61D-05

0.010 0.021799502 0.021797891 1.00D-04 7.39D-05

0.020 0.043740559 0.043738263 1.00D-04 5.25D-05

0.050 0.112028426 0.112033595 3.44D-04 4.61D-05

2D extensional flow λ = 20

Ca DNewton
E DRK4

E un Rel. Diff.

0.005 0.011791166 0.011759178 3.38D-04 2.71D-03

0.010 0.023615590 0.023590620 1.43D-04 1.06D-03

0.020 0.047501627 0.047469273 1.00D-04 6.81D-04

0.050 0.124066113 0.123623951 5.16D-04 3.56D-03

Table 3.1: Comparison of the equilibrium deformation calculated by the Newton

method DNewton
E and the 4th-order Runge-Kutta (RK4) method DRK4

E for a deform-

ing droplet in a 2D extensional flow. The maximum normal velocity on the drop

interface for the final step in the RK4 method is designated as un.
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2D extensional flow λ = 0.9

Ca DTaylor
E DRK4

E un Rel. Diff.

0.005 0.010888157 0.010890065 1.00D-04 1.75D-04

0.010 0.021776315 0.021797891 1.00D-04 9.91D-04

0.020 0.043552631 0.043738263 1.00D-04 4.26D-03

0.050 0.108881578 0.112033595 3.44D-04 2.89D-02

2D extensional flow λ = 20

Ca DTaylor
E DRK4

E un Rel. Diff.

0.005 0.011785714 0.011759178 3.38D-04 2.25D-03

0.010 0.023571428 0.023590620 1.43D-04 1.06D-03

0.020 0.047142857 0.047469273 1.00D-04 6.92D-03

0.050 0.117857142 0.123623951 5.16D-04 4.89D-02

Table 3.2: Comparison of the equilibrium deformation calculated by Taylor’s method

DTaylor
E and the RK4 method DRK4

E for a deforming droplet in a 2D extensional flow.

The maximum normal velocity on the drop interface for the final step in the RK4

method is designated as un.
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Figure 3.10: Illustration of a deforming drop in a simple shear flow.

while the lengths L in equation (3.4) form an angle φL with the x-axis when the

droplet is deformed, as shown in figure 3.10.

The course of a small deformation (Ca = 0.05 and λ = 20) of the droplet in

a simple shear flow is shown in figure 3.11. A larger deformation (Ca = 0.24 and

λ = 1.4) is also demonstrated in figure 3.12. Figure 3.13 shows a large deformation

with a super-critical capillary number Ca = 1.0 at a viscosity ratio λ = 0.9. For

deformations in a simple shear flow, the droplet, which was first oriented at φL = 45◦,

tends to rotate towards the x-axis as the deformation proceeds.

Experimental data for a large deformation in a simple shear flow with Ca =

0.24 and λ = 1.4 were made available by Guido and Villone[15]. Figure 3.14 shows

a very good agreement between the experimental data and our computations.

A first-order analytical estimation of the equilibrium deformation DE of a
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.578D-01

(b) Nst= 100, time t= 0.100,

D= 0.553D-02, un= 0.527D-01,

φL= 43.6◦

(c) Nst= 300, time t= 0.300,

D= 0.150D-01, un= 0.438D-01,

φL= 40.9◦

(d) Nst= 500, time t= 0.500,

D= 0.227D-01, un= 0.362D-01,

φL= 38.5◦

Figure 3.11: The time evolution of a drop deforming in a simple shear flow for

Ca = 0.05 and λ = 20. The RK4 method is employed with NE = 6, NB = 12 and

∆t = 1 × 10−3. The orientation of the deformed drop is described by φL shown in

figure 3.10.
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(a)Nst= 1000, time t= 1.000,

D= 0.356D-01, un= 0.226D-01,

φL= 33.2◦

(b)Nst= 1500, time t= 1.500,

D= 0.420D-01, un= 0.137D-02,

φL= 29.2◦

(c)Nst= 2000, time t= 2.000,

D= 0.446D-01, un= 0.809D-02,

φL= 26.4◦

(d)Nst= 2500, time t= 2.500,

D=0.450D-01, un= 0.472D-02,

φL= 24.5◦

Figure 3.11: (continued) The time evolution of a drop deforming in a simple shear

flow for Ca = 0.05 and λ = 20. The RK4 method is employed with NE = 6,

NB = 12 and ∆t = 1× 10−3.
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.428D+00

(b) Nst= 100, time t= 0.100,

D= 0.398D-01, un= 0.381D+00,

φL= 43.6◦

(c) Nst= 300, time t= 0.300,

D= 0.102D+00, un= 0.302D+00,

φL= 41.1◦

(d) Nst= 500, time t= 0.500,

D= 0.146D+00, un= 0.240D+00,

φL= 38.9◦

Figure 3.12: The time evolution of a drop deforming in a simple shear flow for

Ca = 0.24 and λ = 1.4. The RK4 method is employed with NE = 6, NB = 12 and

∆t = 1× 10−3.
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(a) Nst = 1000, time t = 1.000,

D= 0.211D+00, un= 0.142D+00,

φL= 34.8◦

(b) Nst = 1500, time t = 1.500,

D= 0.240D+00, un= 0.814D-01,

φL= 32.2◦

(c) Nst = 2000, time t = 2.000,

D= 0.254D+00, un= 0.473D-01,

φL= 30.6◦

(d) Nst = 2500, time t = 2.500,

D= 0.261D+00, un= 0.270D-01,

φL= 29.7◦

Figure 3.12: (continued) The time evolution of a drop deforming in a simple shear

flow for Ca = 0.24 and λ = 1.4. The RK4 method is employed with NE = 6,

NB = 12 and ∆t = 1× 10−3.
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(a) Nst= 0, time t= 0.000,

D= 0.000D+00, un= 0.518D+00

(b) Nst= 50, time t= 0.050,

D= 0.257D-01, un= 0.518D+00,

φL= 44.3◦

(c) Nst= 100, time t= 0.100,

D= 0.508D-01, un= 0.519D+00,

φL= 42.2◦

(d) Nst= 200, time t= 0.200,

D= 0.989D-01, un= 0.517D+00,

φL= 42.2◦

Figure 3.13: The time evolution of a drop deforming in a simple shear flow for

Ca = 1.0 and λ = 0.9. The RK4 method is employed with NE = 6, NB = 12 and

∆t = 1× 10−3.
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(a) Nst= 400, time t= 0.400,

D= 0.186D+00, un= 0.521D+00,

φL= 39.5◦

(b) Nst= 600, time t= 0.600,

D= 0.263D+00, un= 0.515D+00,

φL= 37.2◦

(c) Nst= 800, time t= 0.800,

D= 0.328D+00, un= 0.488D+00,

φL= 35.2◦

(d) Nst= 1000, time t=1.000,

D= 0.384D+00, un= 0.447D+00,

φL= 33.2◦

Figure 3.13: (continued) The time evolution of a drop deforming in a simple shear

flow for Ca = 1.0 and λ = 0.9. The RK4 method is employed with NE = 6, NB = 12

and ∆t = 1× 10−3.
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Figure 3.14: Comparison of our RK4 method with experimental results from

Ref.[15]: the drop deformation D versus time t for Ca = 0.24 and λ = 1.4. The

boxes are taken from the figure 6 in Guido and Villone[15]. The parameters in our

computations are: NE = 6, NB = 12 and ∆t = 1.0× 10−3.

droplet in an imposed simple shear flow was first derived by Taylor[34],

D = Ca
19λ+ 16

16λ+ 16
(3.21)

This relation is valid for small deformations only. The numerical results of our study

are compared with Taylor’s predictions in table 3.3.
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Simple shear flow λ = 0.9

Ca DTaylor
E DRK4

E un Rel. Diff.

0.005 0.005444079 0.00544311368 1.01D-04 1.73D-04

0.010 0.010888158 0.01088672207 1.00D-04 1.31D-04

0.020 0.021776312 0.02177716906 1.00D-04 3.94D-05

0.050 0.054440789 0.05450853227 1.68D-04 1.24D-03

Table 3.3: Comparison of the equilibrium deformation calculated by Taylor’s method

DTaylor
E and our RK4 method DRK4

E for a deforming droplet in a simple shear flow.

The maximum normal velocity on the interface of the drop for the final step in the

RK4 method is designated as un.

3.5 Selection of the time step

In order to maintain the stability of numerical calculations for any explicit time-

integration algorithm, a small enough time step has to be selected. Table 3.4 demon-

strates various criteria for the selection of the time step from different studies.

The current study quantitatively investigates the maximum time step ∆tmax

under which the stability of our numerical scheme is maintained. Table 3.5 lists

∆tmax for different capillary numbers Ca and viscosity ratios λ, for the number of

basis points NB varying from 9 to 13 when NE = 6. We conclude that for a given

viscosity ratio λ and a fixed number of elements NE, the maximum time step is

given by

∆tmax ∼ Ca∆x (3.22)
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Authors ∆t Notes

Zinchenko[38] 0.1
G

Initial ∆t varies

Navot[21] ∼ ∆x

Rallison[25] ≤ K∆x K = constant of O(1)

Loewenberg[19] ≤ K∆x K = constant of O(1)

Bazhlekov[1] < O(Ca ·min(∆x))

Cristini[4] < µ∆xmin

γ

Roumeliotis[30] = ∆xmax

maxi|υ(ξi)|
υ(ξi): velocity of node ξi

Table 3.4: Summary of the time step criteria used in different studies.

where ∆x is the grid size. All the computations conducted in this chapter satisfy

this criterion.

3.6 Convergence with decreasing grid size

To determine the convergence of our method, the droplet deformation has been

calculated for different grid sizes by changing the number of basis points NB on each

spectral element for several physical problems. These tests show similar behavior

with the one presented in table 3.6 for a 2D extensional flow with Ca = 0.05 and

λ = 20. These tests show that with increasing NB, i.e., decreasing grid size, the

calculated droplet deformationD achieves an spectral (i.e., exponential) convergence

and verify that our method is a high-order/high-accuracy method.
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λ = 0.9 λ = 20

NB Ca = 0.05 Ca = 0.005 Ca = 0.05 Ca = 0.005

9 0.8D-02 0.8D-03 0.9D-01 0.9D-02

10 0.5D-02 0.4D-03 0.5D-01 0.6D-02

11 0.3D-02 0.3D-03 0.3D-01 0.4D-02

12 0.2D-02 0.2D-03 0.2D-01 0.3D-02

13 0.1D-02 0.1D-03 0.1D-01 0.2D-02

Table 3.5: The maximum time step ∆tmax for different λ, Ca and NB found by

employing our RK4 algorithm.

NB D Error

8 0.1107075548D-01 2.0D-06

10 0.1107273956D-01 4.9D-08

12 0.1107278740D-01 1.3D-10

14 0.1107278872D-01 0

Table 3.6: Exponential convergence in deformation D by increasing the number

of basis points NB. The droplet deforms in a 2D extensional flow for Ca = 0.05

and λ = 20. The deformation D is shown for time t = 0.1. The time step is

∆t = 1× 10−4. The number of elements is NE = 6.
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Chapter 4

Stokes Flow Over a Hump in a Microtube

As described in Chapter 1, the study on the flow over a hump in microtubes is in-

terested in many areas. In physiological systems, the shear stress distribution, total

force and torque exerted on the cell surface play a pivotal role in the mechano-

transduction phenomena (which involve the relation between the hemodynamic

shear force received by endothelial cells and the chemical signals they send out)

as well as the leukocyte/endothelial cell adhesion in blood flow[14]. From the view-

point of industrial applications such as coating and deposition, the shear stress

on the protuberance in a micro-channel may affect the the mass transfer near the

protuberance[17]. In this chapter, we investigate the behavior of the shear stress,

total force and torque on the protuberance/cell attached to a cylindrical microtube

wall. This is the first time that a three-dimensional cylindrical model is employed.

4.1 Configuration of the geometry

The Boundary Element Method described in Chapter 2 has demonstrated its ro-

bustness, stability and accuracy earlier in numerous applications by Muldowney and

Higdon[18, 20], and Dimitrakopoulos and Higdon[7, 8, 10, 11, 12]. In this study, the
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method is employed in the analysis of the fluid force exerted on the protuberance

in a microtube.

The geometry of the tube is illustrated in figure 4.1. The spherical cap rep-

resents a spreading cell or a protuberance attached to the inner wall of the tube.

The protuberance is assumed to be a part of a sphere with radius a. The radius of

the cylindrical tube is denoted as R, and the half length of the tube is designated

as L. The angle θ controls the degree of which the hump blocks the flow in the

tube. If the hump represents a spreading cell, the angle θ can also be interpreted as

the contact angle. In contrast to the spherical protuberance on a flat surface, the

angle θ along the contact line of the hump on a cylindrical surface is a function of

the azimuthal angle φ, as shown in figure 4.2. The contact angle θ always shows a

maximum at φ = 90◦. For a given aspect ratio a/R, the relationship between the

contact angle θ and the azimuthal angle φ is determined by the contact angle θ0 at

φ = 0◦.

The surface of the tube and the protuberance is composed of NE = 39 elements

with NB × NB spectral points (for details, see section 2.5). A global view of the

discretization of the cylinder body and the hump is shown in figure 4.3(a). The

discretization of the end lids of the cylinder is displayed in figure 4.3(b). Figure 4.3(c)

shows the bottom view of the system. The surface area on the protuberance is

labeled as S1. It is composed of 5 elements generated by a cube projection when

the contact angle θ0 is less than 90◦. If the contact angle θ0 > 90◦, 9 elements are

employed. The immediate vicinity of the hump on the cylinder (area S2) experiences

an acute jump in the shear stress. In order to achieve a sufficient accuracy in this
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Figure 4.1: Illustration for the geometry.

area, 16 elements are applied. The area S2 has a width d = 0.5r0, where r0 is defined

as half the distance between the intersection of the hump and the cylinder in XZ

plane. The cylinder surface above the hump is designated as S3. The cylindrical

body (area S4) is divided into three rows (L1, L2 and L3) shown in figure 4.3(c). In

order to capture the change in shear stress on the cylinder surface near the hump

and to maintain the accuracy of the solution, the length of the first row L1 is set to

be equal to r0 and the length of the second row L2 is set to be 2r0. The length of

the third row L3 is decided by the length L which will be discussed later.

In figure 4.4, the division of the entire geometry into elements is illustrated by

projecting onto the XY plane. The elements 1 to 5 belong to the hump (S1), the
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Figure 4.2: The contact angle θ is plotted against the azimuthal angle φ for a/R =

0.3, 0.5, 0.7. The initial contact angle θ0 = 40◦, 65◦, 90◦.

elements 6 to 21 distribute on the immediate vicinity of the hump on the cylinder

(S2), the elements 22 to 35 represent the rest area (S3 and S4) on the cylinder body,

and the elements 36 to 39 are the four elements on the circular lids of the cylinder

shown in figure 4.3(b). They finalize the entire model as a closed system to facilitate

applying the governing BIE (2.3). The two lids are fluid boundaries with a velocity

profile of a Poiseuille flow.

In order to determine a sufficient number of basis points NB on each element

and to test the validity of the element distribution on the boundary surface, a
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Figure 4.3: Configuration of geometry: (a) overall illustration of the system; (b)

configuration of the circular “lids” at the end of the cylindrical tube; (c) bottom

view for of the entire system.
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a/R = 0.25 a/R = 0.33

NB θ0 = 90◦ θ0 = 70◦ θ0 = 90◦ θ0 = 70◦

6 0.032 0.030 0.049 0.044

7 0.0016 0.0014 0.0019 0.0014

8 0.0014 0.0013 0.0018 0.0018

9 0.00016 0.00015 0.00021 0.00021

10 0.00013 0.00012 0.00017 0.00015

11 0.000021 0.000018 0.000027 0.000023

Table 4.1: Maximum quadrature error with increasing number of basis points NB.

quadrature test of an imaginary fluid boundary in an undisturbed Poiseuille flow

has been performed. Four combinations of geometric parameters have been tested:

a/R = 0.25, 0.33 and θ0 = 90◦, 70◦. The number of polynomial basis points NB

ranges from 6 to 11 and an exponential decay of the maximum error is witnessed, as

shown in table 4.1. Based on these results, NB=9 is chosen as the number of basis

points, which produces a maximum error in the order of 10−4. Tests for the actual

physical variables were also conducted and a similar convergence was found.

It is assumed that there is no disturbance on the fluid boundary of the circular

lids of the tube if they are far enough from the hump. Practically, a finite tube length

has to be chosen in our numerical method. To determine the sufficient length, we

calculate the total force Fx exerted on the surface of the hump with the half length

of the cylinder L varying from 3 to 35 times the radius of the cylinder R. As shown
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Figure 4.5: The asymptotic relationship for the force exerted on the hump with

respect to the half length L of the cylinder: (a) the relative error in Fx versus

the length L; (b) the aspect ratio Fx/F
L
x versus the length L, where Fx is the x-

component of the force exerted on the protuberance and F L
x is the same quantity

for L = 35R.

in figure 4.5, when the tube length increases, the total force Fx on the protuberance

increases and reaches an asymptotic limit Fx/F
L
x = 1.0, where F L

x is the total force

on the protuberance for L = 35R and is assumed to be the “exact” value of the

force. The result shows that the aspect ratio L/R = 23 is sufficient to produce

a relative error of 5 × 10−4 in the force. Additional tests on the maximum shear

stress and the torque on the hump have been performed with similar results. As

a consequence, the aspect ratio L/R = 23 is chosen for the computations in this

study.
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4.2 Physical variables and dimensionless analysis

The shear stress τ , the total force Fx and the torque Ty on the protuberance are the

physical variables we study in this work. They are defined by

τ =
√

(fL
x )

2 + (fL
y )

2 (4.1)

Fx =
∫

hump
fx dS (4.2)

Ty =
∫

hump
(l× f)y dS (4.3)

where f is the force vector calculated from the governing BIE (2.3), while fL
x and fL

y

are the two tangent components of the force. The vector l is the distance between

the attachment center of the hump and the hump surface. Due to the symmetry, the

rest components of the total force and the torque, Fy, Fz, Tx and Tz, are identically

zero.

We use the shear stress on the tube wall far from the protuberance τ∞
wall as the

scale for the shear stress τ . It is given by

τ∞wall = τrx|r=R =
2µu∞

max

R
(4.4)

where µ is the viscosity of the fluid and u∞
max is the maximum velocity far from the

hump. The tube radius R is used as the length scale. The maximum velocity u∞
max

is also the scale for the flow velocity. The ratio τ/τ∞
wall physically demonstrates the

amplification in the shear stress caused by the protuberance. From equation (4.2),

Fx ∼ R2f ∼ R2 τ∞wall. From equation (4.3), Ty ∼ R3f ∼ R3 τ∞wall. As a summary,

in this chapter we choose R, u∞
max, τ

∞
wall, R

2 τ∞wall and R3 τ∞wall as the scales for the

length, flow velocity, shear stress, force and torque, respectively.
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4.3 Results and discussion

In this section we investigate the stress field on the protuberance and its vicinity

area influenced by the flow in the microtube. We first describe the two geometric

parameters in our system: the characteristic length of the hump ã and the contact

angle θ0. We then examine the distribution of the shear stress over the hump and the

maximum shear stress which is always located on the peak of the hump. Finally, we

determine the total force and torque on the hump and demonstrate their behavior

as functions of the two geometric parameters.

We define the characteristic length of the protuberance ã by

ã =
(

3V

4π

)1/3

(4.5)

where V is the volume of the protuberance/cell attached on the cylindrical wall.

Thus, the length ã reflects the volume of protuberance blocking the tube flow. In

addition, the other independent geometric parameter, the contact angle θ0, describes

the way the protuberance/cell spreads on the tube surface. If the length ã (or the

volume V ) of the hump varies with a fixed contact angle θ0, this is equivalent to

changing the radius a of the spherical cap, as shown in figure 4.6(a). On the other

hand, varying the contact angle θ0 with a fixed volume is a combination of varying

θ0 and a, as shown in figure 4.6(b).

The shear stress over the hump and its nearby area is shown in figure 4.7. This

figure demonstrates the shear stress as arrows starting from each discretized point

on the surface. The length of the arrows shows the magnitude of the shear stress.

Figure 4.8 shows the distribution of the shear stress τ as a function of the arc
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Figure 4.6: Description of the variation of two geometric parameters of the current

problem: (a) increase the hump volume V while θ0 is constant; (b) increase the

contact angle θ0 while the volume V is constant.

length s along the intersection of the hump surface with the XZ plane (y = 0) for

different hump volumes. The contact angle θ0 is fixed to be 90◦. The original point

of the arc length s is set at the center of the hump surface. The arc length is also

normalized as s̃ = s/(aπ), where aπ is half the circumference of the circle shown in

figure 4.1. Figure 4.9 shows the relationship between the shear stress and the arc

length along the intersection of the hump surface with the YZ plane (x = 0).

These results show that the shear stress distribution has been greatly influ-

enced by the existence of the hump. The stress on the upper part of the hump is

much larger than that on the cylinder wall. This is due to the redistribution of

the flow field when the tube suddenly shrinks because of the hump. The maximum
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Figure 4.7: A three-dimensional arrow plot for the shear stress on the hump and its

nearby area. The aspect ratio ã/R = 0.38 and the contact angle θ0 = 90◦.

shear stress always appears at the peak of the hump due to symmetry. On the

lower part of the hump and its neighbor area on the cylinder wall, the shear stress

is found to be smaller than the shear stress exerted on the cylinder wall far away

and even approaches zero at a certain position. As explained in Higdon[17] and

Pozrikidis[23], this phenomenon is caused by the presence of the Moffat eddies (i.e.,

a weak recirculating flow) near the corner where the bump and the cylinder meet.

The influence of the hump ranges from the center of the cell to several hump radii

(i.e., s ≈ 1.5 aπ).

Figure 4.8 and figure 4.9 also indicate that for small hump volumes, an increase
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ã/R = 0.38

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

τ
/τ

∞ w
a
ll

sxz/(aπ)

(b)
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Figure 4.8: The shear stress distribution on the surface of a hump spreading ax-

isymmetrically on the inner surface of a cylindrical tube. The shear stress is plotted

as a function of the arc length sxz/(aπ) at the intersection of the hump surface

with the XZ plane. The contact angle θ0 = 90◦. (a) The values of ã/R shown

correspond to a/R = 0.02, 0.1, 0.3, 0.5. (b) The values of ã/R shown correspond to

a/R = 0.5, 0.7, 0.8, 0.9. The wall shear stress far from the hump is denoted as τ∞
wall.
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Figure 4.9: The shear stress distribution on the surface of a hump spreading ax-

isymmetrically on the inner surface of a cylindrical tube. The shear stress is plotted

as a function of the arc length syz/(aπ) at the intersection of the hump surface

with the YZ plane. The contact angle θ0 = 90◦. (a) The values of ã/R shown

correspond to a/R = 0.02, 0.1, 0.3, 0.5. (b) The values of ã/R shown correspond to

a/R = 0.5, 0.7, 0.8, 0.9. The wall shear stress far from the hump is denoted as τ∞
wall.

66



in the hump volume results in a decreasing maximum shear stress, while for large

hump volumes, the maximum shear stress increases with the hump volume. Thus,

the maximum shear stress reaches a minimum at ã/R ≈ 0.38. A more comprehensive

plot, figure 4.10, demonstrates the change of the maximum shear stress with the

hump characteristic length ã for the contact angle θ0 varying from 30◦ to 120◦. This

figure shows that for a given angle θ0 the shear stress at the hump peak reaches a

minimum at ã/R ≈ 0.38. For large hump volumes, the maximum shear stress τmax

increases with the hump volume; this increase is more dramatic for large angles θ0.

For small humps, τmax slightly decreases as the hump volume increases. When the

hump volume is constant, the maximum shear stress increases monotonically with

the contact angle θ0.

The angle θ0 also influences the shear stress distribution over the entire hump

and its nearby region. Figure 4.11 demonstrates the behavior of the shear stress

τ/τ∞wall as a function of the arc length s/(aπ) for different contact angles θ0 on the

intersections of the hump with the XZ and YZ plane. The characteristic length of the

hump is ã/R = 0.30. This figure shows that by increasing the contact angle θ0, the

shear stress is greatly increased everywhere on the hump due to the corresponding

increase of the blocking.

We now consider the extreme case when the aspect ratio ã/R is as small as

0.016, i.e., the radius of the cylinder is much larger than the size of the protuberance.

Due to the extremely small size of the hump, the parabolic flow inside the tube can

be considered as a simple shear flow near the hump, while the curvature of the

cylindrical tube can be neglected. Therefore, the results of our computations are
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Figure 4.10: Maximum shear stress τmax versus the characteristic length of the

hump ã. The contact angle θ0 varies from 30◦ to 120◦ while the curves are plotted

for every 10◦.

expected to be similar to the results by modeling the large tube as a solid plane.

Our results are in excellent agreement with the computations by Pozrikidis[23] for

the shear stress on a three-dimensional protuberance on a solid plane under simple

shear flow, as shown in figure 4.12. In addition, both studies agree on the fact

that the maximum shear stress ratio τmax/τ∞wall ≈ 4.0. Nevertheless, discrepancy

still occurs on the surface of the cylinder near the hump. On the other hand, for a

protuberance/cell having a comparable size with the radius of the cylindrical tube,

i.e., ã/R ∼ O(1), we have to establish a three-dimensional cylinder to accurately
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Figure 4.11: The influence of the contact angle θ0 on the shear stress distribution

on the hump. The shear stress τ is plotted as a function of the arc length s at the

intersections of the hump surface with (a) the XZ plane and (b) the YZ plane. For

both plots, the hump volume is ã/R = 0.30, while the contact angle θ0 = 30◦, 60◦,

90◦, 120◦.
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Figure 4.12: Comparison of the shear stress on the hump in a cylindrical tube with

ã/R = 0.016 and that on a plane. The solid curve describes the distribution of the

shear stress τ on the hump in the cylindrical tube along the intersection of the hump

surface with the XZ plane. The dashed curve represents the same quantity for the

YZ plane. The solid diamonds and the open squares are the corresponding stress

for the case of a hump on a plane taken from Ref.[23].

describe the stress exerted on the protuberance.

Finally, we investigate the total force and torque exerted on the hump by

the tube flow. These two physical variables play a pivotal role in the cell adhesion

process. The total force and torque are balanced by the receptor-ligand binding force

on the surface of the cell[14]. Figure 4.13 and 4.14 demonstrate the magnitudes of the

total force Fx and torque Ty exerted on the hump as functions of the characteristic

length of the hump ã and the angle θ0. For a constant hump volume V , both Fx
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Figure 4.13: The total force Fx exerted on the hump versus the characteristic length

of the hump ã. The contact angle θ0 varies from 30◦ to 120◦ while the curves are

plotted for every 10◦.

and Ty show a monotonic increase with the angle θ0 due to the corresponding higher

blocking. For a constant angle θ0, both Fx and Ty demonstrate an increase with the

hump volume V (i.e., the characteristic length ã); the increase is more pronounced

for large angles θ0.

By comparing figure 4.13 with figure 4.10, we note that the maximum shear

stress shows a minimum as the hump volume increases, while the total force Fx

increases with the hump volume monotonically. As the volume V increases, the

total force Fx experiences a more pronounced increase than the maximum shear
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Figure 4.14: The torque Ty exerted on the hump versus the characteristic length

of the hump ã. The contact angle θ0 varies from 30◦ to 120◦ while the curves are

plotted for every 10◦.

stress τmax. To understand this phenomenon, we have to realize that the total force

Fx has two components: the x-component of the shear stress τ x and that of the

normal force fx
n . The x-component of the normal force f x

n increases monotonically

with the volume V as shown in figure 4.15 for a constant angle θ0 = 90◦. Thus, the

monotonic increase of Fx with the hump volume V results from the corresponding

increase of fx
n .
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Figure 4.15: The x-component of the normal force f x
n on the surface of a hump

spreading axisymmetrically on the inner surface of a cylindrical tube. The normal

force fx
n is plotted as a function of the arc length sxz at the intersection of the hump

surface with the XZ plane. The contact angle θ0 = 90◦. The values of ã/R shown

correspond to a/R = 0.1, 0.5, 0.7, 0.9. The wall shear stress far from the hump is

denoted as τ∞wall.
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