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do have a σ-finite one. These examples satisfy two important properties. The

first property is topological, namely, the forward orbit of the critical point c is
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able to conclude that this measure is infinite on every non-trivial interval. In

the process, we show that we have the following dichotomy. Every absolutely
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CHAPTER 1

INTRODUCTION

Section 1.1. Overview

1.1.1. Let us first recollect some definitions. If

ϕ : I → I

is a C3 map on the closed interval I then the Schwarzian derivative at x is

given by

Sϕ(x) =
ϕ′′′(x)

ϕ′(x)
− 3

2

(
ϕ′′(x)

ϕ′(x)

)2

provided of course that x is not a critical point, i.e., ϕ′(x) 6= 0. We say that ϕ

has negative Schwarzian derivative when Sϕ(x) < 0 for all non-critical points

x, and we write Sϕ < 0. The map ϕ is called unimodal when the graph of ϕ has

one and only one turning point w = ϕ(c), which we will refer to as the critical

value and c as the critical point. A unimodal map with negative Schwarzian

derivative is called S-unimodal.

A unimodal map ϕ is said to be renormalizable if there exists a closed

proper sub-interval J ⊂ I that contains the critical point c and a positive

number n such that

ϕn(J) ⊂ J
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and the restriction

ϕn|J :J → J

is a unimodal map. A unimodal map ϕ is infinitely renormalizable if for every

interval J and iterate ϕn as above, the restriction

ϕn|J :J → J

is in turn renormalizable.

Remark 1.1.2. It is known, see [G-Jo], that if ϕ is infinitely renormalizable,

then we obtain a Sinai-Bowen-Ruelle (SBR) measure µ supported on the closure

of the forward orbit of the critical point which is an attracting Cantor set of

zero Lebesgue measure. Clearly, in this case, ϕ has no absolutely continuous

invariant measure, (abbreviated by a.c.i.m.).

The examples we give, are by construction, non-renormalizable. The topo-

logical behavior of such maps is easily described. The iterate of every point,

except the endpoints of I, eventually falls inside the interval I ′ bounded by

the critical value ϕ(c) and its image ϕ2(c), and ϕ restricted to this interval is

topologically mixing. In addition, ωϕ(x) coincides with I ′ for x belonging to a

residual subset B of I ′. As is customary, ωϕ(x) denotes the omega limit set of

points of the forward iterates ϕn(x).
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Much work has been done on the question of whether B has full measure in

I ′, and it was discovered that this is related to the limit behavior of the iterates

of the Lebesgue measure m; (See Remark 1.2.3 at the end of this chapter). We

often simply write | · | for m( · ). Note that for every ϕ-invariant measure µ,

the support of µ is necessarily contained in the set of non-wandering points of

ϕ. So, if the set of non-wandering points has zero Lebesgue measure, then ϕ

has no a.c.i.m. For example, if ϕ has an attracting periodic k-cycle

{x1, x2, . . . , xk} (ϕ(xi) = xi+1, ϕ
k(x1) = x1; i = 1, 2, . . . , k − 1 )

then every invariant measure is singular, and the forward iterates of Lebesgue

measure ϕn
∗dm converge weakly to the discrete invariant measure supported on

the above cycle.

Several interesting unsolved questions in the theory are related to metric

properties of maps with sensitive dependence on initial conditions. These maps

have the property that iterates of points belonging to a set of positive Lebesgue

measure diverge exponentially fast away from the iterates of nearby points.

F. Ledrappier [L] has shown that when ϕ: I → I admits a finite a.c.i.m. with

positive entropy then there exists a subset A ⊂ I of positive Lebesgue measure

such that if x ∈ A then the Lyapunov exponent

lim
n→∞

1

n
log |Dϕn(x)|
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exists and is a positive number. This implies that the map ϕ exhibits sensi-

tive dependence on initial conditions. However, sensitive dependence in itself

is not sufficient for the existence of a finite a.c.i.m. It was S. D. Johnson

who first showed the existence of such non-renormalizable maps with no finite

a.c.i.m. [Jo]. Then F. Hofbauer and G. Keller constructed examples where the

iterates of the Lebesgue measure do not converge [H-K1]. In [H-K1], [K1] [G-J]

a question about whether such maps have a σ-finite a.c.i.m. was formulated,

(this corresponds to having an almost everywhere finite density).

It turns out that for S-unimodal maps ϕ with sensitive dependence on

initial conditions, the omega limit set ωϕ(x) is the same for Lebesgue almost

every point x, in which case we refer to this set as the attractor, see [H-K2].

In [H-K2], Hofbauer and Keller, then proposed the following classification for

maps with sensitive dependence (recall that c denotes the critical point):

Type I The attractor is a Cantor set of zero Lebesgue measure and coincides

with ω(c).

Type II The attractor is a finite collection of intervals but ω(c) is still a Cantor

set.

Type III The attractor is a finite collection of intervals which coincide with

ω(c).
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Clearly Type I maps have no a.c.i.m. Among the results in [H-K2] is that maps

of Type II always have σ-finite a.c.i.m. and that there are examples of Type II

maps with no finite a.c.i.m.

1.1.3. In this dissertation, we construct new examples of Type III maps defined

on the interval I that admit no finite a.c.i.m. and for which ω(c) is actually

the whole interval I ′ = [ϕ2c, ϕ(c)]. We describe a method of construction that

enables us to control the forward orbit of the critical point and at the same time

lets us establish the existence of a σ-finite a.c.i.m. µ. We will show that if the

measure µ, which we define explicitly, is not finite, then no finite a.c.i.m. exists,

(Theorem 2.1.4). Furthermore, either µ is σ-finite or µ(B) = ∞ for every set

B of positive Lebesgue measure, (Theorem 2.2.2.). Our main result, which is

proved in a purely constructive manner, then concludes:

Main Theorem. There are Type III maps that admit no finite a.c.i.m. but

that have a σ-finite a.c.i.m. µ. Moreover, the µ-measure of every non-trivial

interval is infinite.

Our work uses the technique of induced hyperbolicity introduced by M.

Jakobson [J1] in which he proved that for one parameter families of interval

maps ϕt(x) = tϕ(x), e.g., the Quadratic family ϕt(x) = tx(1 − x), there exists

a set of parameter values t of positive Lebesgue measure such that ϕt admits a

unique ergodic absolutely continuous invariant probability measure µt.
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A main feature of this technique is that the critical point is, so to speak,

induced away in the following sense. One constructs a new transformation T ,

called the power map, which piecewise coincides with some iterate of ϕt. Then

the transformation T , thus constructed, satisfies the hypothesis of the Folklore

Theorem, as formulated in Chapter 5, and therefore has a finite a.c.i.m. ν that

is then pulled back to obtain a σ-finite a.c.i.m. µ for ϕt. Simultaneously, we

employ the technique of Johnson’s boxes [Jo], to ensure that µ is not finite. The

essential feature of our methods is the ability to control where the invariant

measure has infinite mass, so for example we can construct examples of maps

with σ-finite a.c.i.m. such that every interval has infinite Lebesgue measure.

A different method was used by Bruin, [Br]. He consecutively chooses the

parameter values so that the graphs of the central branches hn are almost

tangent to the diagonal line y = x, exhibiting almost saddle-node bifurcations.

For more detailed topological properties of S-unimodal maps we advise the

reader to consult [G] or [M]. For basic definitions in topological dynamics and

ergodic theory see for example, the book “Introduction to Dynamical Systems”

by M. Brin and G. Stuck [B-S].
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Section 1.2. The Quadratic Family and Associated Power Map

1.2.1. For ease of exposition we will construct our examples from the one-

parameter family {ϕt : t ∈ [0, 4] } of quadratic maps x 7→ tx(1 − x) on the

unit interval [0, 1]. We will describe how to select the parameter t so that the

corresponding map ϕt is of the desired type and admits a σ-finite a.c.i.m. µ. Our

procedures generalize to any full family of S-unimodal maps ϕt(x) = tϕ(x),

i.e., the topological entropy of ϕt depends continuously on the parameter t in

the C1 topology, and varies between 0 and log 2. Note that the critical point

x = c is fixed for all parameter values t. In the quadratic model given above

we have c = 1/2 for all t and the fact that these maps are symmetric about the

line x = c = 1/2 merely simplifies the notation as this allows us to represent ϕt

as an even function.

For any map ϕ belonging to the family {ϕt} we do the induced construction

described in [J-S]. We start by constructing the first return map G: I → I on

the interval I := [q−1, q] bounded by the fixed point q ∈ [1/2, 1] of ϕ and its

second preimage q−1 ∈ [0, 1/2], i.e., ϕ(q−1) = q. When t is close to 4, G has

many monotone branches Gi and a central parabolic (folding) branch h, (see

Section 2 of Chapter 3). The domains of these branches form a partition ξ̃0

of I, which we then refine to a partition ξ0 of I with desired properties. Then

we pull back ξ0 onto the domain of h and obtain new monotone and folding
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branches and a refined partition ξ1, and so on ad infinitum in accordance with

[J-S]. All our examples, in the terminology of [J-S], are expansion inducing .

This means that there exists a partition ξ of I into a countable union of non-

overlapping intervals ∆i and a complementary Cantor set of Lebesgue measure

zero such that every ∆i is mapped diffeomorphically onto I by some iterate

GNi . Moreover, the power map T defined almost everywhere on I by

T |∆i = GNi

satisfies the conditions of the Folklore Theorem [A] and therefore has a unique

ergodic invariant probability measure ν, which is absolutely continuous with

respect to Lebesgue measure | · |, and has a density bounded away from zero

and infinity. So that, ν is actually equivalent to Lebesgue measure, (ν ≡ | · |).

Since ν is ergodic, Birkhoff’s theorem yields

1

n

n−1∑

i=0

δT ix −→ ν a.e.

and for every continuous function ψ

1

n

n−1∑

i=0

ψ(T ix) −→
∫

ψdν a.e.

and hence ν is an SBR measure.

8



Remark 1.2.2. We remind that an invariant probability measure ν is called

SBR if for x belonging to a set of positive Lebesgue measure the time aver-

age 1
n

∑n−1
i=0 ψ(T ix) converges to the space average

∫
ψdν. Thus every ergodic

absolutely continuous invariant probability measure is SBR.

Remark 1.2.3. Applying the Birkhoff theorem to the Indicator function on

the attractor, we see that for Lebesgue almost every point

ωT (x) = I and ωϕt
(x) = [ϕ2(c), ϕ(c)]

so that the topological and measure theoretic notions of the attractor coincide,

(See [BKNS] for a thorough treatment of this subject).
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CHAPTER 2

TOWER CONSTRUCTION AND SIGMA-FINITE MEASURES

Section 2.1. Tower Construction

2.1.1. We follow the tower construction of [J1]. A similar construction ad-

justed for “Hofbauer’s tower” was used in [H-K1, K1] and also by Bruin in

[Br].

First, recall that the power map T was defined piecewise by

Ti = T |∆i = GNi

where each Ti is a monotone branch and G is the first return map induced by

ϕt on I. We construct the so-called tower as follows:

Let

Aij = Gj(∆i) (i = 0, 1, . . . ; j = 0, 1, . . . , Ni − 1)

and

H =

∞⋃

i=0

Ni−1⋃

j=0

Aij (disjoint)

We call the sets Aij (i fixed; j varies) the tower over ∆i. Define the projection

π:H → I by assigning to any u ∈ Aij its image under the natural inclusion

πu ∈ Gj∆i ⊂ I. Let

G(u) =







π−1 ◦G ◦ π (u) ∩Ai,j+1 if u ∈ Aij (j = 0, 1, . . . , Ni − 2);

π−1 ◦G ◦ π (u) ∩ (∪iAi,0) if u ∈ Ai,Ni−1.
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By construction, G ◦ π = π ◦ G. Define a measure ρ on H by

ρ(A) = ν(G−j(A)) when A ⊂ Aij .

Since ν is T -invariant, ρ is G-invariant. Notice that if we view I as the base of

the tower H then T is the first return map and ν = ρ|I.

Put µ = π∗ρ. Evidently µ is G-invariant and absolutely continuous with

respect to Lebesgue measure. In fact, it turns out that the two measures are

equivalent.

2.1.2. Our aim is to determine when the measure µ is σ-finite (and not finite).

An interesting fact is that this measure is the only possible candidate, in the

sense that if µ is not finite then no finite a.c.i.m. exists. First we prove a

summability criteria for the existence of a finite a.c.i.m.

Theorem 2.1.3. ϕ has a finite a.c.i.m. iff

∑

i

Ni|∆i| <∞. (1)

Proof.

(i) The convergence of the sum in (1) above is sufficient:

11



Suppose that µ = π∗ρ is given as above, then

µ(I) = ρ(H)

=
∑

i

Ni−1∑

j=0

ρ(Aij)

=
∑

i

Ni · ν(∆i)

<∞
where the last inequality follows from (1) because ν has a bounded density.

Thus ϕ admits a finite a.c.i.m.

(ii) The convergence of the sum in (1) above is necessary:

Assume there exits an absolutely continuous probability G-invariant measure

α on I. Then, by a theorem of G. Keller [K2] it lifts to a finite a.c.i.m., say β,

on the tower H such that

πβ = α.

Let β0 denote the measure β restricted to the zero level
⋃

iAi0 of the tower H.

By construction

I = π
( ⋃

i

Ai0

)

Since β is G-invariant, we have

β(Aij) = β0(Ai0) (j = 0, 1, . . . Ni − 1)

As β is finite this implies

∑

i

Niβ0(Ai0) <∞.

12



On the other hand, the tower construction implies that β is invariant under the

power map T . But, we know from the Folklore Theorem that the absolutely

continuous T -invariant probability measure ν on I is unique, therefore πβ =

const · ν, and since ∆i = π(Ai0), we obtain

∑

i

Niν(∆i) = const ·
∑

i

Niβ0(Ai0) <∞.

Now using that ν has a density bounded away from zero yields

∑

i

Ni|(∆i)| <∞

This concludes the proof of (ii) and the theorem as well.

As the measure on the tower is determined by its restriction to the zero

level and that restriction is unique by the Folklore Theorem, we get

Theorem 2.1.4. Up to a multiplicative constant, µ is the only possible finite

absolutely continuous G-invariant measure on I.

13



Section 2.2. A property of σ-finite a.c.i.m.

2.2.1. Consider the T -invariant measure ν (equivalent to Lebesgue measure)

and the measure ρ, which is defined on the tower as indicated above, with

µ = πρ. Let m denote normalized Lebesgue measure.

2.2.2. Theorem. Either µ is σ-finite or else µB = ∞ ∀B with mB > 0.

Proof. Assume µ ≪ m is not σ-finite and let µ(B) > 0. Then m(B) > 0. As

µ is G-invariant

µ(B) = µ(G−1B) = µ(G−2B) = · · ·

Let B0 = B and

Bn = G−n(B) −
(n−1⋃

i=0

Bi

)

(n = 1, 2, . . .)

Now, consider the set

A =
∞⋃

n=0

G−n(B)

=
∞⋃

n=0

Bn (2)

Clearly m(A) > 0. Now, if m(A) = 1 and µB <∞, then equality (2) gives us a

decomposition of I into a countable union of disjoint sets Bn of finite µ measure,

contradicting that µ is not σ-finite. On the other hand, if 0 < m(A) < 1, then

G−1(A) ⊂ (A)

14



implies that

T−1(A) ⊂ (A)

However, this contradicts that T is ergodic with respect to the invariant measure

ν equivalent to m.
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CHAPTER 3

Basic Structure and First Step of Induction.

Section 3.1. Introducing Some Properties of S-unimodal Maps.

3.1.1. The Schwarzian derivative Sϕ(x) of a C3 map ϕ(x) is defined for all

non-critical points x as:

Sϕ(x) =
ϕ′′′(x)

ϕ′(x)
− 3

2

(
ϕ′′(x)

ϕ′(x)

)2

.

When Sϕ(x) < 0 for all non-critical points x, then we write Sϕ < 0 and say that

the map ϕ has negative Schwarzian derivative. These maps have the following

useful properties that will be used throughout.

(i) Compositions of maps with negative Schwarzian derivative have negative

Schwarzian derivative. This follows from the chain rule for derivatives, which

yields

S(ψ ◦ ϕ)(x) = Sψ(ϕ(x))|ϕ′(x)|2 + Sϕ(x).

Furthermore, albeit with some calculation, we arrive at the formula for the

Schwarzian derivative of the iterates of ϕ:

Sϕn(x) =

n−1∑

i=0

Sϕ(ϕi(x))|Dϕi(x)|2.

16



(ii) Koebe distortion constant

Diffeomorphisms with negative Schwarzian derivative have bounded distortion

in the following sense: Let J, I, Î be intervals, with

Î = L ∪ I ∪R,

where L is the interval adjacent to the left of I and R to the right. Note that

L and R form a collar around I. Suppose

min

{ |L|
|I| ,

|R|
|I|

}

> τ

Let

F : Ĵ → Î

be a diffeomorphism with negative Schwarzian derivative and set J = F−1(I).

Then there exists a constant c = c(τ) > 1, independent of F , such that

1/c <

∣
∣
∣
∣

F ′(x)

F ′(y)

∣
∣
∣
∣
< c

for all x, y ∈ F−1(I).

We refer to c as the Koebe distortion constant , and say that a map has

small distortion, whenever c = 1 + ε, for very small ε. The important point

here is that the Koebe distortion constant c = c(τ) only depends on the range

of the map and is completely independent of the map F itself and its domain.

17



A very powerful and useful tool indeed. In addition, another fact about such

maps F is that if I contains the middle point of Î and the ratio r(I, Î) = |I|/|Î|

is very small then F has small distortion. More precisely, the uniform distortion

constant c = c(τ) depends on the ratio r = r(I, Î) as follows

c(τ) < exp
(
rκ(τ)

)

with

κ(τ) −→ 4 as r −→ 0

see [J-S].

(iii) The Minimum principle If F :J → R is an interval map with no critical

points in J then |F ′(x)| has no positive minimum in the interior of the interval J .

The proof of this statement is elementary. Indeed, if |F ′(x)| has a minimum at

a point x0, then x0 must be a critical point for F ′′, i.e., F ′′(x0) = 0. Therefore,

SF (x0) =
F ′′′(x0)

F ′(x0)
< 0

implies that F ′′′(x0) and F ′(x0) have opposite signs, which is impossible. Be-

cause, either F ′(x0) > 0 is a local minimum in which case F ′′′(x0) > 0, or

F ′(x0) < 0 is a local maximum and F ′′′(x0) < 0.

3.1.5. For the one parameter family {ϕt : t ∈ [0, 4] } of quadratic maps

x 7→ tx(1 − x)

on [0, 1], one clearly has Sϕt < 0.

18



Section 3.2. The First Return Map

3.2.1 For any fixed t close to 4, the quadratic map

ϕt: [0, 1] → [0, 1]

has two repelling fixed points 0 and q+t = 1 − 1/t. Let q−t = 1/t denote the

second preimage of q+t and consider the first return map Gt induced by ϕt on the

interval I := [q−t , q
+
t ], then Gt has 2K monotone branches (diffeomorphisms)

and one central parabolic branch. Since t ≈ 4, K is very large.

In general, we suppress the parameter t denote the monotone branches by

fi:∆
±
i → I,

where ∆−
i denotes the domain to the left of the critical point 1/2 and ∆+

i

denotes the symmetrical one to the right of 1/2 that has the same return time

i = 2, 3, . . .K + 1. The central parabolic branch is denoted by

h0: δ0 → I

which has return time K + 2. We denote the two boundary intervals of I by

∆l (l for left) and ∆r (r for right) which have return time equal to 2. The

next pair of intervals ∆±
3 , adjacent to ∆l and ∆r respectively, have return time

19



equal 3, and so on. More specifically, if we let ϕ = ϕt|[0, q], ϕ0 = ϕt|I, and

ϕ = ϕt|[q, 1], then G: I → I is given by:

fl = ϕ ◦ ϕ0|∆l

fr = ϕ ◦ ϕ0|∆r

f±i = ϕi−2 ◦ ϕ ◦ ϕ0|∆±
i (i = 3, 4, . . .K + 1)

h0 = ϕK ◦ ϕ ◦ ϕ0|δ0 (3)

Denote the resulting partition of I by ξ̃0.

3.2.2 In the sections that follow, we construct by induction a sequence of par-

titions ξn of I such that at each step n of induction, we obtain a transformation

T(n), which piecewise coincides with an iterate ofG, defined on a the partition ξn

of I modulo a Cantor set of zero Lebesgue measure. The elements of ξn consist

of one central domain δn of a (folding) parabolic branch denoted by hn with a

countable collection δ−k
i of diffeomorphic preimages G−k(δi) for i = 0, 1, . . . , n,

and a countable collection of non-overlapping domains of (strictly) monotone

branches denoted by f with lower indices such that fi maps ∆i onto I. The

central branch and preimages of central branches are called holes and are con-

tinuously filled in by a new central branch, by preimages of central branches and

by monotone branches. One of the primary charactarestics of the construction

20



is that monotone domains created at previous steps are never altered at later

steps and so they belong to ξn for all later inductive steps n.

Section 3.3. Pullback.

3.3.1. In this section we describe procedures which we use throughout our

construction. Let us first explain some of the notations we use. If fi and fj are

monotone maps then we write

fij = fj ◦ fi

to denote the composition restricted to the domain

∆ij = ∆i ∩ f−1
i ∆j .

This produces a new monotone branch

fij :∆ij → I.

Similarly for the monotone maps

fi1i2···ik
:∆i1i2···ik

→ I.

for every k.

21



3.3.2. Monotone Pullback

Suppose

f0:∆0 → I

is a monotone branch and let ξ denote a partition of I. Then we refer to f−1
0 (ξ)

as the monotone pullback of the partition ξ onto ∆0. This creates a partition

of ∆0 into domains of various types. For every domain J of the partition ξ

we have the corresponding domain f−1
0 (J) ⊂ ∆0. For example, if ∆i ∈ ξ is a

monotone domain then

f0i = fi ◦ f0:∆0i → I

is a monotone branch where ∆0i as indicated above is the monotone domain

∆0 ∩ f−1
0 (∆i).

3.3.3. Critical Pullback .

If

h: δ → I

is a central branch and ∆0 is contained in the image of h, but does not contain

the critical value h(1/2) then h−1(∆0) consists of two new monotone domains

inside the central domain δ, with branches

F− = f0 ◦ h0|(0, 1/2)
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and

F+ = f0 ◦ h0|(1/2, 1).

That is, the domain of F− is located in (0, 1/2) while ∆(F+) ⊂ (1/2, 1), but

both lie inside δ.

Section 3.4. Uniform Extendibility

3.4.1. Recall that monotone branches are diffeomorphisms

f :∆ → I.

The monotone domain ∆ is extendible when we can enlarge ∆ to a domain ∆̂

that is mapped diffeomorphically onto a larger interval Î, containing I, by a

map which we denote by f̂ . In our construction I = [q−1, q] is extended to

the interval Î := [a−, a+] where a− ∈ (0, q−1), and a+ ∈ (q, 1) are specified in

Lemma 3.5.2. For an extendible f :∆ → I we use the notation

f̂ : ∆̂ → Î

where

∆̂ = ∆L ∪ ∆ ∪ ∆R

and Î := [a−, a+] such that

f̂ :∆L → [a−, q−1], f̂ :∆R → [q, a+].
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When the collar Î − I remains the same for all branches, then we refer to

these extensions as uniform and the collar is said to be a Uniform Extendibility

Collar .

From the construction of the first return map, all extensions ∆̂ are con-

tained in I except for the extensions of the two boundary domains of I, ∆l and

∆r. Since the fixed point q is repelling it follows that the extensions of ∆l and

∆r are both contained in Î.

3.4.2. Now, suppose

fi:∆i → I

and

fj :∆i → I

are two monotone branches then

fij :∆ij → I

is an extendible monotone branch

fj ◦ fi:∆ij → I

where

∆ij := ∆i ∩ f−1(∆j)
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and its extension ∆̂ij lies within ∆i except for the two boundary intervals of

f−1
i (∆l(r)) whose extensions lie inside ∆̂i. Similarly for all compositions

fj1j2···jk

provided that each of the maps

fj1 , fj2 , · · · fjk

is an extendible monotone domain.

3.4.3. A critical branch has the form h = F ◦ Q, where F is a monotone

branch and Q is the restriction of the initial quadratic map

ϕt = tx(1 − x)

to a small interval δ around the critical point 1/2. A central branch h is said

to be extendible if F is extendible. In which case the extension ĥ = f̂ ◦Q is a

critical branch defined on δ̂ ⊃ δ whose image contains either [a−, q−1] or [q, a+].

In particular, the initial critical branch

h0: δ0 → I

of the first return map is extendible and its extension ĥ0 is given by equation

(3) in 3.2.1. Moreover, the image of the extension

ĥ0: δ̂ → Î
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contains [q, a+].

Preimages of central domains δ−k are mapped by diffeomorphisms

χ: δ−k → δ

which are iterates Gk|δ−k and are said to be extendible whenever they extend

up to the preimage of the extension δ̂ of the central domain δ.

Remark 3.4.4. As discussed above, all extensions ∆̂ are contained in I except

for the two boundary intervals of I, ∆r and ∆l whose extension lie inside Î.

A critical pullback of an extendible domain ∆ is extendible if that domain is

not too close to the critical value (this will be made more precise later) and its

extension lies within δ, except when ∆ is either one of of the preimages of the

boundary intervals ∆l(r), which are contained in δ̂.
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Section 3.5. Preliminary Construction

3.5.1. We shall refine the initial partition ξ̃0 induced by the first return map

G into a partition of the form:

ξ0: I = (∪i∆i) ∪ (∪kδ
−k
0 ) ∪ δ0

where ∆i denotes domains of uniformly extendible monotone branches, δ−k
0

denotes preimages of δ0 by extendible diffeomorphisms

χ = Gk|δ−k
0

and δ0 is the domain of an extendible parabolic branch h0.

Lemma 3.5.2. For every ε > 0 we can construct the partition ξ0 to have the

following properties:

(i) Each monotone domain has length less than ε.

(ii) The aggregate sum of lengths of the “holes” δ−k
0 is less than ε.

(iii) Extendibility Collar does not depend on ε.

Proof. When t approaches 4 the initial map ϕt approaches the map 4x(1− x)

which by a linear change of coordinates is the Chebyshev polynomial 1 − 2x2

and we say that ϕt approaches the Chebyshev polynomial. Let us consider

the relationship between parameter space and phase space. The parameter

interval consists of a sequence of adjacent subintervals [tj , tj + 1] such that
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when t ∈ (tj , tj+1), the first return map Gt has 2j monotone branches and a

central parabolic branch δ0. Then as t moves across each subinterval, t crosses

over the boundary point tj+1, the central domain δ0 splits into two (boundary)

monotone domains and a new central domain is born. One can check that when

t = 4, the size of each step of the staircase as we approach zero decreases as

1/4n. So for parameters t very close to 4, the parameter interval [tj , tj+1] is

of the order 1/4j . At the limiting case, when t = 4, we have ϕ4(1/2) = 1 and

ϕ2
4(1/2) = 0 is a fixed point. So j → ∞ as t → 4, and G4 has a countably

infinite number of monotone branches that converge toward the middle point

1/2 and has no central parabolic branch. On the other hand,

∂ϕt(x)

∂x

∣
∣
∣
∣
x=0

= t

It follows that there exists a constant c0, such that, for every j

|∆j | <
c0
2j

when the parameter interval is very close to 4.

Let us now suppose that Gt has 2K monotone branches and one central

branch parabolic branch, whereK is extremely large. Then choose a large index

j0 ≪ K such that

c0
2j0

< ε (4)
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and consider the initial partition ξ̃0 described in Section 2. Then for every

j ≥ j0, we have

|∆j | <
c0
2j

< ε (5)

Derivatives of all monotone branches fj besides possibly the two branches f±K

next to the middle central branch satisfy

∣
∣
∣
∣

dfj

dx

∣
∣
∣
∣
> c12

j (6)

In our construction, we can choose the position of the critical value h0(1/2) is

close to 1/2, so that the derivatives of f±K will also satisfy (6).

Next, we pullback the partition ξ̃0 onto all monotone domains with indices

smaller than j0, thus creating inside each of these monotone domains a copy of

the partition ξ̃0. Newly created domains have lengths either less than ε — for

example the domain ∆j0−1,j0 ⊂ ∆j0−1 one has

|∆j0−1,j0 | <
1

2j0−1

1

2j0
c1

—or else they are still larger than ε so we continue pulling back ξ̃0 onto such

domains.

A straightforward calculation shows that, for t sufficiently close to 4 the

expansion of all monotone branches fj for j < K is larger than 3. Therefore

the pullback of monotone domains ∆j , where K > j ≥ j0 must satisfy the
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inequality (5). Finally, for the pullbacks of the domains with indices j < j0

onto domains also with indices j < j0, we use the fact that the absolute value

of the derivatives of the monotone branches fj of the first return map Gt,

even the leftmost and the rightmost with return time 2, exceed 3. Then after

k0 := ⌈log3 2j0⌉ + 1 steps the absolute value of derivatives will be larger than

2j0 . Thus inequality (5) holds for these pullbacks as well. In addition pullbacks

δ−j
0 of the central domain δ0, (recall that |δ0| ≈ c0/2

K), are created and using

bounded distortion the total sum of their lengths is estimated by assuming that

we pullback a maximal number of times k0:

(total lengths of pullbacks δ−j
0 ) < 1 − (1 − c1|δ0|)k0

< k0 ·
(
c2
2K

)

by the binomial expansion

< j0 ·
(
c2
2K

)

because k0 < j0

<
1

2j0
by the choice of j0 ≪ K

< ε by definition

where c1 and c2 are constants that arise due to the approximation to linear

maps when we have bounded distortion. Finally, using that the quadratic map

ϕt for t close to the Chebyshev value 4 is mapping [0, 1] almost onto [0, 1],

we have that all monotone branches fj with the possible exception of the two
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monotone branches adjacent to the central branch δ0 extend up to the interval

Ĩ bounded by the two preimages of q−1
t , i.e.

Ĩ = [ã−, ã+]

where

ϕt(ã
−) = ϕt(ã

+) = q−1
t ã− ∈ [0, q−1

t ], ã+ ∈ [qt, 1].

It turns out that for future purposes we need the extendibility collar to be

smaller. Since qt is a repelling fixed point, we take a sequence of preimages

ã−k
+ := ϕ−k(ã+) ∈ [1/2, 1]

that spiral towards qt, we then fix a preimage

a+ := ã−k
+ ∈ [qt, 1]

when k is large enough. Then we set

a− := ϕt
−2(a+) ∈ [0, q−1

t ]

and I := [q−1
t , qt] extends uniformly to

Î := [a−, q−1
t ] ∪ [q−1

t , qt] ∪ [qt, a
+]

Then all branches of the first return map will be extendible up to Î = [a−, a+]

for these choices of a− and a+. Further, by construction, the compositions
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fi1i2...ik
extend uniformly up to the interval Î, the central domain δ0 of the first

return map is extendible, via equation (3) given in section 2, and we denote

its extension by δ̂0. In addition, all the preimages δ−k
0 are extendible to the

preimages of the extension δ̂0, which are denoted by δ̂−k
0 .

We thus obtain the partition:

ξ0: I = (∪i∆i) ∪ (∪kδ
−k
0 ) ∪ δ0 (7)

This partition satisfies the properties (i), (ii), (iii) of the Lemma.

Remark 3.5.3. By the choice of a+, (resp. a−), close to q (resp. q−1) the

right(left) extension of a monotone domain of the first return map is contained

within the respective adjacent domain. Thus, extensions of all elements of the

partition ξ0 are contained inside I, except for the extensions of the boundary

domains ∆r and ∆l which are contained in Î.

Remark 3.5.4. As mentioned above branches of the first return map are

expanding with derivative growing exponentially with the number of iterates,

except for the central branch h0 and possibly the two branches adjacent to h0.

Since the monotone branches decrease in size the closer they are to the central

domain, the size of these two monotone domain is very small compared with

the whole interval I as the number of monotone branches 2K becomes very

large. By choice of parameter, we may assume that that the image of h0(δ0)
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covers a fixed interval larger than some constant c. Then the extension of these

two branches covers [q−1, q] and an additional fixed interval surrounding [q−1, q]

that does not contain the critical value. Therefore, by the mean value theorem

the derivative at some point must be large and it follows by bounded distortion

that the derivative at any other point can be made larger than A0 for any given

A0 > 1, provided we take K sufficiently large. The same argument holds for

monotone branches

f :∆ → I

constructed at subsequent steps because their domains are created inside the

central domain δ0 or in the preimages δ−k
0 and since δ0 is small the monotone

domains inside them must also be small. In essence, as uniform extendibil-

ity ensures uniformly bounded distortion by the Koebe distortion principle,

the expansion of these monotone domains grows as the central branch and its

preimages decrease in size when K increases.
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Section 3.6. Basis of induction

3.6.1. Let us first recall the preliminary partition ξ0 of I that was constructed

in Lemma 3.5.2. That partition has the form

ξ0: I = (∪i∆i) ∪ (∪kδ
−k
0 ) ∪ δ0

where ∆i denotes domains of uniformly extendible monotone branches, δ−k
0

denotes preimages of δ0 by extendible diffeomorphisms

χk = Gk|δ−k
0 : δ−k

0 → δ0

and δ0 is the domain of an extendible parabolic branch h0. Then this partition

has the following geometrical properties.

Every monotone domain is adjacent to another monotone domain or to a

preimage of δ0 which at the next step of induction would be refined and this

refinement always creates two monotone domains that lie at the boundary of

this preimage. In other words, every monotone domain is adjacent to another

monotone domain or will be adjacent to another monotone domain at the next

step. This includes the two monotone domains adjacent to the central domain

δ0. The next property is that no two preimages of δ0 are adjacent, there are

always many monotone domains in between.

The construction of our examples proceeds by induction, namely given

the partition ξn−1 with certain properties we show how to construct the next
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partition ξn with the desired properties so that in the limit we have a partition

of I modulo a set of Lebesgue measure zero that consists of monotone domains

and satisfies the hypothesis of the Folklore Theorem of Adler as formulated in

Chapter 5 Theorem 5.2.3.

3.6.2. The Johnson Box

Let h0 be the folding parabolic branch of the initial first return map Gt. Note

that the first return map reverses orientation and consequently h0 has a mini-

mum at the critical point. By choice of parameter interval Λ0, we can arrange

that for t ∈ Λ0, h0(1/2) ∈ δ0 with h0(1/2) < 1/2 in order that the graph of h0

crosses the diagonal. In view of the fact that the boundary endpoints of the

interval δ0 are mapped by h0 onto q+, we see that the image of h0 contains

all the domains of ξ0 that are located to the right of δ0. Since the graph of h0

crosses the diagonal, we can define the Johnson’s box with bottom B0 bounded

by the points q0, q
−1
0 where q0 is one of the two fixed point of h0— the one

farther away from 1/2— and q−1
0 is its second preimage. Since we choose our

maps non-renormalizable, we place the critical value outside of [q−1
0 , q0]. We

call the part of the graph outside this box the hat and denote its base by H0.
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3.6.3. Constructing the First Step of the Staircase

Define

r0 = min { r : hr
0(1/2) /∈ δ0 }.

The first critical pullback h−1
0 (ξ0) creates inside δ0 a preimage of the right half

of the partition ξ0. That is, we create a pair of preimages of every element of

ξ0 that lies to the right side of δ0. This is because h′′(1/2) < 0. Since h0 is a

two to one map we create a pair of preimages to every element of ξ0 that is to

the right of 1/2. We call this collection the first step of the staircase, and we

denote it by

S1,left and S1,right

3.6.4. The Infinite Staircase Construction

We proceed by constructing the infinite staircase S = ∪j≥1Sj where each Sj

consists of two components Sj,left and Sj,right, symmetric about 1/2, each of

which contains the preimages

h−j
0 (∆), h−j

0 (δ−p
n−1) where ∆, δ−p

n−1 ∈ ξ0

All these preimages are outside Johnson’s box, in fact S = δ0 −B0.
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3.6.5. The Partition of δ0

Next, by the definition of r0, the critical value belongs to Sr0
so we fill the base

of the hat H0 by critical pullback

h−1
0

( ∞⋃

j=r0

Sj,left

)

thus creating new monotone branches inside H0 in addition to the critical

branch

h1 := f∗0 ◦ hr0

0

Here f∗0 is the monotone branch whose domain ∆∗
0 ∈ S1 contains the iterate

hr0

0 (1/2) of the critical point. Restricting h0 to the two symmetric intervals of

B0−H0, we obtain two monotone maps g1, g2. Since g1, g2 and all their iterates

are uniformly extendible branches of an S-unimodal map, they have uniformly

bounded distortion. This implies that almost every point of B0 − H0 under

the iterations of g1 and g2 eventually ‘escapes’ the box through H0. However,

for example, the set of endpoints of the interval H0 and their preimages under

the compositions of g1, g2 get eventually mapped onto q0 and are thus trapped

inside the box. This set is countable and therefore has Lebesgue measure zero.

In fact, we will show in section 3.6.8 - and 3.6.10 that the set of all points that

do not belong to the interior of the preimages of H0 under all compositions

gj1j2···jk
of the two branches g1 and g2, form a Cantor set of Lebesgue measure
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zero. Therefore, this partition of B0 (mod 0), adjoined with that of the staircase

S constitute the desired partition η0 of δ0:

η0 : δ0 = (∪∆) ∪ (∪δ−p
0 ) ∪ (∪δ−p

1 ) (mod 0).

3.6.6. The refinement ξ1 of ξ0

Now ξ1 is obtained by filling in the preimages δ−P
0 of δ0 by pulling back the

partition of δ0 we just created.

That is,

ξ1 : I = (∪i∆i) ∪ (∪i=0,1 ∪k δ
−k
i ) ∪ δ0

3.6.7. The Need for Boundary Refinement

In general, when we do the critical pullback we may encounter the following

situation. If the critical value falls inside the extension of a monotone domain

∆ then the critical pullback of ∆ is not extendible. In this case we need to

subdivide ∆ using the boundary refinement procedure which we shall describe

later on. However, we can avoid the need for this boundary refinement pro-

cedure at the first step of our construction, if the extendibility collar Î − I is

small enough. By choice of parameter, (which is explained in detail in the next

section), we arrange that the critical value falls in the middle of a monotone

domain ∆0. Then when we consider h0 and related staircases we obtain that

the preimages of all these elements are extendible.
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3.6.8. Cantor Sets

It is customary terminology to call perfect, nowhere dense subsets Cantor sets.

The standard Cantor middle third set C =
⋂

j Cj is constructed by removing a

ratio of 1/3 at each stage so that

|Cj | = (2/3)|Cj−1|

In general, we can remove a fixed ratio β = 1 − α to obtain the recursion

|Cj | = α · |Cj−1| = · · · = αj · |C0|

Thus |Cj | −→ 0 as j −→ ∞, and since C ⊂ Cj for all j it follows that |C| =

0. This construction can be further generalized by removing at each stage

a variable ratio βj as long as βj is bounded away from zero. In this case

αj = 1 − βj ≤ α for some uniform α < 1. Hence

|Cj | = αj · |Cj−1|

≤ α · |Cj | ≤ · · · ≤ αj · |C0| −→ 0 as j −→ ∞

So

|C| =
∣
∣

∞⋂

j=0

Cj

∣
∣

= lim
j→∞

|Cj | = 0

as before.

Remark 3.6.9. The condition that βj is bounded away from zero ensures that

the Cantor set has zero Lebesgue measure. However, in the the case when we
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remove a diminishing amount βj → 0 we can obtain a Cantor set of positive

Lebesgue measure, and actually this is the type of set that we will use in order

to construct maps that admit a σ-finite a.c.i.m.

3.6.10. Now returning to the branches g1 and g2. We note that these monotone

maps are uniformly extendible, although the extendibility collar may be very

small when the hat H0 is small relative to the base B0. However, this uniform

extendibility, implies that the distortion of all the compositions of g1 and g2

will remain uniformly bounded. Now, writing B = Bk, H = Hk, and using the

above notation we have
C0 = B −H

C1 = C0 −H−1

...

Cj = Cj−1 −H−j .

In view of bounded distortion, as we discussed above, the ratio |H−j |/|Cj−1| is

bounded away from zero by some uniform constant β = 1 − α. Therefore

|Cj | ≤ α · |Cj−1|

and so

lim
j→∞

|Cj | ≤ lim
j→∞

αj · |C0| = 0.

Hence, the discussion in 3.6.8 applied to
⋃∞

j=0H
−j
k shows that it has full mea-

sure in Bk as desired.
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CHAPTER 4

Construction of Partitions.

Section 4.1. Basic Step

4.1.1. The construction proceeds inductively through refining ξ0 by creating

a new central domain δ1 and filling in the preimages {δ−k
0 }k with monotone

domains and preimages {δ−k
1 }k. The main point is that monotone domains

created at a previous step remain unchanged, thus we only partition the central

domain and then its preimages accordingly. So, we assume by induction that

after step n− 1 we have the following partition of I

ξn−1 : I = (∪∆) ∪ (∪i ∪k δ
−k
i ) ∪ δn−1 ∪ Cn−1

where the collection {∆} are monotone domains mapped onto I by uniformly ex-

tendible diffeomorphisms, δn−1 is the domain of the extendible central parabolic

branch and each δ−k
i is a preimage of some δi (i = 0, 1, . . . , n − 1) by an ex-

tendible diffeomorphism χ. Here Cn−1 denotes a Cantor-like set with zero

Lebesgue measure and C0 = ∅. Recall that all maps consist of iterates of the

initial quadratic map ϕt and t belongs to a parameter interval Λn−1
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Let us now consider the location of the critical value hn−1(1/2). In accor-

dance with [J-S], if

hn−1(1/2) ∈ ∆∗
n−1, (∆n−1 ∈ ξn−1)

then we refer to this as a Basic step and we proceed with the construction of

the partition ξn using the procedures described below.

(1) Grow up procedure:

If the image of the central branch (hn−1(δn−1)) is contained in the rightmost

or leftmost boundary domain of the initial partition ξ0, which we denote by ∆l

and ∆r respectively then no refinement is done. Rather, we perform iterations

of fl if the critical value falls in ∆l, and if the critical value falls in ∆r then we

need to apply fr once and then, if necessary, follow it by the required iterations

of fl (because at this point the central branch becomes concave down) image of

the central branch contains more than the boundary interval. More specifically,

we choose the smallest m such that the image

fm
l ◦ hn−1(δn−1)

or

fm−1
l ◦ fr ◦ hn−1(δn−1)
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covers more than just the boundary interval, in which case we replace the central

branch

fl ◦ hn−1 or fr ◦ hn−1

respectively, by

fm
l ◦ hn−1 or fm−1

l ◦ fr ◦ hn−1

respectively, which is again redenoted by hn−1. In our construction, we will

have m ≤ 2n−1, (see 5.1.1 in Chapter 5).

(2) Extra Pullback Procedure:

In our estimates on the measure of holes in Chapter 5 we use that ratio

|δn|/|δn−1| is small. In Lemma 3.5.2 we showed that given any ε we are able to

arrange that all elements belonging to the preliminary partition are of length

less than ε. If the image of the central branch hn−1 covers more than half the

length of I then

|δn|
|δn−1|

≤ c

√

2|∆∗
n−1|
|I|

is small, (here c denotes the Koebe distortion constant). However, if the image

of hn−1 does not cover that much, then the length of ∆∗
n−1 may be comparable

to the height of that image. This may happen, for example, if ∆∗
n−1 is the

domain adjacent to one of the boundary domains ∆l(r). Therefore, we introduce

the following rule of “Extra Pullback”.
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If

|Im(hn−1)| <
1

2
|I|

then we do one extra monotone pullback of ξ0 onto ∆∗
n−1 which ensures that

after critical pullback the ratio

|δn|
|δn−1|

≤ c1
√
ε (8)

is arbitrarily small, depending on our choice of ε. Here c1 is a uniform constant

(3) Boundary Refinement Procedure:

Suppose F :∆ → I is an extendable monotone branch, where ∆ ∈ ξn−1, ∆ ⊂

hn−1(δn−1), and hn−1(1/2) /∈ ∆. If ∆ is too close to hn−1(1/2) then when

we do critical pullback onto δn−1, we may create monotone domains h−1
n−1(∆)

which are not extendible. In which case, we perform the boundary refinement

procedure as follows.

Consider the initial partition

ξ0 : I = (∪i∆i) ∪ (∪δ−k
0 ) ∪ δ0.

It contains the boundary rightmost monotone branch fr:∆r → I which has a

repelling fixed point q+ = 1 − 1/t. We refine ∆r by monotone pullback, thus

creating the partition f−1
r (ξ0). Then

q ∈ f−1
r (∆r)

def
= ∆rr.
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We refine ∆rr by monotone pullback of ξ0 by f−2
r and so on. The kth step

refinement creates a copy of ξ0 on

∆rr . . . r
︸ ︷︷ ︸

k

contracted approximately by |f ′r(q)|−k. We call the resulting partition the kth

right boundary refinement of ξ0 and is denoted by ξ0,k. After constructing such

a partition on ∆r, we pull back ξ0,k−1 by fl onto the leftmost boundary interval

∆l of ξ0 to create the kth left boundary refinement of ξ0 denoted by ξk,0. Both

refinements have the following properties:

(i) The sizes of the elements of ξ0,k, (resp. ξk,0) in

∆rr . . . r
︸ ︷︷ ︸

p

(resp. ∆lrr . . . r
︸ ︷︷ ︸

p

) (p ≤ k)

are up to a uniform constant, |f ′r(q)|−p times smaller their images in ξ0.

(ii) For any element A of the partition ξ0,k (ξk,0) except for the rightmost

(leftmost) boundary interval

∆rr . . . r
︸ ︷︷ ︸

k

(resp. ∆lrr . . . r
︸ ︷︷ ︸

k

)

the ratio

|A|
dist(A, q)

(

resp.
|A|

dist(q−,A)

)

is uniformly bounded.
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(iii) Monotone branches from elements ∆ ∈ ξ0,k (reps). ξk,0) onto I are uni-

formly extendible up to the interval Î = IL∪I ∪IR. Also, diffeomorphisms

χ: δ−m
0 → δ0 are uniformly extendable up to δ̂0 = δ0l ∪ δ0 ∪ δ0r.

(iv) All extended elements

∆̂ 7→ Î

and

δ̂−m
0 7→ δ̂0

are contained in I except the for the extensions of the leftmost and right-

most boundary domains which are contained in Î because q is a repelling

fixed point.

Then, the Koebe distortion property implies

Lemma 4.1.2. Let fi:∆i → I be any extendible monotone branch, with

f̂i: ∆̂i → Î its extension. Denote the pullback f−1
i (∆r) by ∆ir ⊂ ∆i and

its extension f̂ir: ∆̂ir → Î. Then

|∆ir|
|∆i|

< c1 · |Dfr(q)|−1,

where c1 is a uniform (distortion) constant independent of i. Since

∆irr = f−1
i (∆rr) ⊂ ∆ir, . . .
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we have

|∆i rr . . . r
︸ ︷︷ ︸

k

|/|∆i| < c2 · |Dfr(q)|−k,

for some other uniform constant c2.

Remarks 4.1.3:

(i) We may pullback onto ∆rr...r any partition ξn created at later stages of

our construction. Properties (i) through (iv) above will still hold for these

versions of refinement and consequently the above corollary as well.

(ii) The above corollary applies to the left boundary refinement procedure so

that

|∆i lrr . . . r
︸ ︷︷ ︸

k

|/|∆i| < c′2 · |Dfr(q)|−k.

Now coming back to ∆ ⊂ Im(hn−1) which is too close to the critical value

hn−1(1/2), and assume that the right boundary point of ∆ is closest to that

critical value so that the reason for the non-extendibility of h−1
n−1(∆) is that

the extension of ∆ to the right is not contained in Im(hn−1), (the case when

the problem is with the left-side extension we us the left boundary refinement),

then we pullback onto ∆ the refinement ξ0,k with k sufficiently large so that

the preimage of

∆rr . . . r
︸ ︷︷ ︸

k
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which we denote by

∆−1
rr . . . r
︸ ︷︷ ︸

k

and is closest to hn−1(1/2) is contained in Im(hn−1) together with its extension

∆̂−1
rr . . . r
︸ ︷︷ ︸

k

.

Then the critical pullback by h−1
n−1 of that refinement of ∆ creates a partition

on h−1
n−1(∆) with uniformly extendable elements. It’s important to realize that

∆ remains unchanged its refinement was done so as the critical pullback onto

hn−1(∆) ⊂ δn−1 creates uniformly extendable monotone domains.

Remark 4.1.4. By the choice of parameter, as we will show later on, the

critical value hn−1(1/2) always belongs to a monotone domain and moreover,

if a preimage δ−k
j is contained in the image of the central critical branch hn−1,

then the whole extension δ̂−k
j of that preimage is also contained in the preimage

of that critical branch. This means that the pullbacks onto these preimages will

not need any boundary refinement.

(4) Critical Pullback :

Let us denote by ξ′n−1 the new partition in which all elements that needed

boundary refinement were refined. We then induce on δn−1 the partition
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h−1
n−1(ξ

′
n−1) thus creating preimages of all the elements of ξn−1 that are con-

tained in the image of hn−1. This gives us domains inside δn−1 of extendible

branches of the following type:

• Two new monotone branches f ◦ hn−1 for each monotone domain ∆(f)

which lies wholly inside Im(hn−1). In view of the grow up procedure this

includes either fl ◦ hn−1, or fr ◦ hn−1.

• A central parabolic branch hn := f∗n ◦ hn−1, where f∗n:∆∗
n → I is the

monotone branch containing the critical value hn−1(1/2).

• We also obtain the diffeomorphisms χ ◦ hn−1 from the corresponding dif-

feomorphisms χ: δ−k
i → δi of ξn−1. Observe that if Im(hn−1) contains the

central domain δn−1, then we have two primary preimages of δn−1.

Denote the resulting partition of δn−1 by

ηn−1 : δn−1 = δn ∪ (∪∆) ∪ (∪i ∪p δ
−p
i ) (mod 0).

Notice that by construction at every step i = 0, 1, . . . , n− 1, similar parti-

tions ξi−1 and ηi−1 are defined. This is reflected by the appearance of preimages

of central domains δ−p
i in the partition ηn−1 above.
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(5) Filling-in :

We fill each preimage

δ−k
j = χ−1(δj) j = 0, 1, . . . , n− 1

with the pullback χ−1(ηj). In this way we get a ‘copy’ of the elements of ηj

inside each δ−k
j . This includes the new partition of δn−1 created at this step.

Thus, ξn now has the form

ξn = (
⋃

∆) ∪ (
⋃

j≤n

⋃

p>0

δ−p
j ) ∪ δn (10)

where all the monotone domains ∆ are uniformly extendible, as well as, the

preimages δ−k
j for all j ≤ n.
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Section 4.2. Enlargements

4.2.1 When constructing the partitions ξn we emphasized that the critical

value hn(1/2) falls in a monotone domain. So, clearly that excludes hn(1/2)

from being inside a hole δ−k
n . However, we will require slightly more freedom,

namely, we will add the assumption that the critical value does not belong to

an enlargement of δ−k
n which we will define below.

The procedures we follow in Chapter 4 to construct the sequence of parti-

tions ξn have the property that holes are never adjacent, but are separated by

monotone domains. At each step n of induction, we have the central branch

hn−1 : δn−1 → I.

Then after critical pullback we create the next central domain δn. In the John-

son box situation, we create multiple preimages of δn inside the box. After one

step of filling in a primary domain, say δ−p
i , that domain breaks up into several

disjoint primary domains.

At the start, when we construct the partition ξ0, we choose a− and a+

to define the extension Î := [a−, a+] of the interval I = [q−1, q] so that all

monotone branches

fi:∆i → I
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where the domain ∆i ∈ ξ0, can be extended as a diffeomorphism over a larger

domain ∆̂i. That is, we have the extended diffeomorphism

f̂i: ∆̂i → Î .

As for the central domain δ0 the extension is contained in the union

∆−
K ∪ δ0 ∪ ∆K

where ∆±
K are the monotone domains that are adjacent to δ0, with ∆−

K is to

the left of δ0 while ∆+
K is located to the right. However, to ensures that all

diffeomorphisms

ξ: δ−k
0 → δ0

have uniformly bounded small distortion we need to enlarge this extension fur-

ther. to contain many initial adjacent domains. Let us define the set W as

W =

K⋃

m=2j0

(
∆±

m ∪ δ0
)

where ∆±
K are the monotone domains that are adjacent to δ0, with ∆−

K is to

the left of δ0 while ∆+
K is located to the right, and ∆±

K−1 is adjacent to ∆±
K and

so on, for ∆±
m (m = 2j0, 2j0 + 1, . . . ,K), where j0 is defined by the inequality

(4) of Lemma 3.5.2. We now adopt the following notation.

Notation 4.2.2. Let us first define the enlargement δ̃0 of the central domain δ0

as the set W given above. Then, for all subsequent central domains we define

52



the enlargement of δi to be δ̃i = δi−1. When we apply the critical pullback

procedure, we make sure that the critical value does not belong to the union of

enlargements

⋃

δ̃i.

In this way, we have the property that for any hole δ−k
i its enlargement δ̃−k

i is

well defined. Also, if δ−k
i is obtained by filling in of δ−p

j then δ̃−k
i ⊂ δ−p

j . So,

by construction, the enlargement of every δ−k
i is defined and denoted by δ̃−k

i .

That is,

δ̃−k
i := δ−k

i−1.

4.2.3. Now, when we construct a new central domain δn, its extension is the

critical pullback of the extension ∆̂∗ of the monotone domain ∆∗ which contains

the critical value

hn(1/2) ∈ ∆∗.

In view of the grow up procedure ∆̂∗ ⊂ I and therefore

h−1
n (∆∗) ⊂ δn−1.

As a result

δ̂n ⊂ δn−1 = δ̃n

which can be formulated simply as: Extension is a subset of enlargement .
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For all monotone domains constructed inside δn−1 at step n, their enlarge-

ments are inside δn−1 as well, except for the boundary elements h−1
n−1(∆l) and

h−1
n−1(∆r). In particular, all enlargements δ̃−k

i of δ−k
i belong to δn−1 = δ̃n.

Clearly, similarly to holes, enlargements are either disjoint or one of them con-

tains the other.

Since we know that the total measure of holes |Hn| decreases at least

by a constant factor θ < 1, the same clearly applies to their enlargements.

After all, enlargements were previously holes at one step back in our inductive

construction of the sequence of partitions ξn.

4.2.4. In view of equation (8) in section 4.1, we have

|δn+1|
|δn|

≤ ε1

for some small ε1 determined by our construction of the preliminary partition

ξ0. As all maps

δ−k
i 7→ δi

are extendible up to

δ−k
i−1 7→ δi−1

we obtain from the Koebe distortion property that all diffeomorphisms

χ: δ−k
i → δi
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have small distortion. Recall that we say that a map has small distortion when

the Koebe distortion constant is close to 1, see property (ii) in 3.1.1.

Section 4.3. Delayed Basic Step.

4.3.1. Now consider the case hn−1(1/2) ∈ δn−1, such that 1/2 belongs to

Im(hn−1). In this case, we stipulate that an iterate of hn−1(1/2) falls in a

monotone domain belonging to the partition ξn−1. This situation is best de-

scribed as a delayed basic step, because even though the critical value falls inside

the central domain which leads to the box construction, it is still essentially a

basic step since after the trajectory of the critical point is delayed in Johnson’s

box, the critical value eventually “escapes and falls in a preimage of a monotone

domain on the staircase and not in a preimage of a central domain, as is the

case in the so called box situation described in [J-S]. For historical reasons, we

also refer to this step as a Johnson step and proceed with the construction as

follows.

4.3.2. For each delayed basic step n = nk, we define

rk = min { r : hr
n−1(1/2) /∈ δn−1 }.

Then, as in the first step of our construction in 3.6.3 and 3.6.4, we partition

δn−1 using the so-called staircases. Recall that the graph of hn−1 crosses the
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diagonal, so we can define Johnson’s box with bottom Bk bounded by the points

qk, q
−1
k where qk is one of the two fixed point of hk — the one farther away

from 1/2 — and q−1
k is its second preimage where with out loss of generality we

assume for definitiveness that h′n−1(qk) > 0, so that qk ∈ [0, 1/2]. We call the

part of the graph outside this box the hat and denote its base by Hn−1. Then

we continue as in the first step by constructing an infinite staircase S = ∪j≥1Sj

where each Sj consists of two components Sj,left and Sj,right, symmetric about

1/2, each of which contains the preimages

h−j
n−1(∆), h−j

n−1(δ
−p
n−1) where ∆, δ−p

n−1 ∈ ξn−1

Then we fill the base of the hat Hk by critical pullback, thus creating new

monotone branches inside Hk in addition to the critical branch

hn := f∗n ◦ hrn−1

n−1

here f∗n is the monotone branch whose domain ∆∗
n ∈ Srk

contains the critical

value hn−1(1/2). Restricting hn−1 to the two symmetric intervals of Bk −Hk,

we obtain two monotone maps g1 and g2. So, as before almost every point of

Bk −Hk under the iterations of g1 and g2 eventually ‘escapes’ the box through

Hk. The preimages of the partition of Hk under the two monotone branches g1

and g2 generates a partition of Bk −Hk (modulo a Cantor set of zero Lebesgue
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measure). This partition of Bk adjoined with that of the staircase S constitute

the desired partition ηn−1 of δn−1:

ηn−1 : δn−1 = δn ∪ (∪∆) ∪ (∪j ∪p δ
−p
j ) (mod 0).

Finally, the partition

ξn : I = (
⋃

∆) ∪ (
⋃

j≤n

⋃

k>0

δ−k
j ) ∪ δn

having the same form as (10) in section 4.1 is obtained by filling in the preimages

of δn−1 as in the basic situation.
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Section 4.4. The Limit Partition

4.4.1 Let

Hn−1 =
⋃

j<n;p≥0

δ−p
j

denote the collection of holes. Then we observe that at each step of induction we

construct domains of monotone branches which are not changed anymore, do-

mains δ−k
i which are filled-in at the next steps and Cantor sets of zero measure.

This implies

Proposition 4.4.2. Suppose that at each step n of our construction the rel-

ative measure of Hn−1 within δn is less than a uniform constant θ < 1. Then

as n → ∞ we obtain a limiting partition ξ = ξ∞ of I consisting of a count-

ably infinite number of uniformly extendible domains ∆i of monotone branches

fi:∆i → I and a Cantor set of Lebesgue measure zero.

Further, since by construction, all maps fi are extendible then in view of Remark

3.5.4 in chapter 3 we have

Corollary 4.4.3. Under the conditions of proposition 4.1 above, we obtain

that all monotone branches fi are expanding and have uniformly bounded dis-

tortion.

58



CHAPTER 5

PROOF OF THE MAIN THEOREM

Section 5.1. Preliminary Definitions and Terminology

5.1.1 In the course of our construction we need to keep track of certain quan-

tities associated with the successive partitions ξn. Recall that after completing

step n of our inductive construction, we obtain the partition

ξn =
(⋃

∆
)
∪

( ⋃

j≤n

⋃

p>0

δ−p
j

)
∪ δn

as described previously in chapter 4.

Associated with each partition ξn we have the following:

(i) Holes

Let

Hn :=
⋃

j≤n

⋃

p>0

δ−p
j

denote the union of holes δ−p
j , consisting of preimages of central domains δj ,

where j = 0, 1, 2, . . . , n. We then let αn = |Hn| denote the total Lebesgue

measure of these holes.

(ii) If ∆ is a proper subset of the image of the central domain and is too close

to the critical value w = hn(1/2), then the critical pullback hn−1(∆) consisting

of the two preimages {∆−,∆+ } of ∆ may create non-extendible domains. In
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which case, we will need to do the boundary refinement procedure described in

Chapter 4. For future estimates, in this situation, we define Rn(∆) to be the

number of boundary refinements needed so that all the intervals created inside

both intervals ∆± are extendible. Clearly, Rn(∆) depends on the length |∆|

and the distance from the critical value to nearest endpoint of the interval ∆.

We will prove below that Rn(∆) is bounded as ∆ ranges over all the domains

except for the domain ∆adj, which lies inside the image of the central branch

and is adjacent to the monotone domain ∆∗
n that contains the critical value

w. In this case, Rn(∆) depends on the location of w within ∆∗
n and tends to

infinity as w approaches the boundary of ∆adj. (See the boundary refinement

Lemma later on in this chapter).

(iii) If n = nk is a delayed basic step and we have the box Bk and the base of

the hat Hk we will have the ratio

|Hk|/|Bk| ≤ βk.

where βk, to be specified later, is chosen in advance to be small enough in order

that the a.c.i.m. µ is on the one hand infinite and on the other hand σ-finite.

This an important aspect of our proof, namely, the ratio βk being small has

the dual effect of ensuring both that the measure µ is infinite and yet, it is also

σ-finite.
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(iv) If hn(1/2) falls in one of the boundary intervals of I, namely ∆l or ∆r,

but the image of hn contains no other intervals, then we need to perform the

Grow-up procedure described in Chapter 4. More explicitly, the central branch

hn = f∗n−1 ◦ hn−1

is replaced by either

fm
l ◦ hn

or

fm−1
l ◦ fr ◦ hn

until it’s image covers more than just a boundary interval. We then re-denote

the central domain by hn keeping in mind that the power N(hn) is increased by

m iterates of hn. However, by using the parameter choice Lemma 5.3.2 below,

we can arrange that the position of the critical value hn(1/2) at step n such

that m does not exceed 2n.
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Section 5.2. Strategy of The Construction

5.2.1. The examples we give are constructed by giving a decreasing sequence

of nested parameter intervals Λn such that for all t ∈ Λn the map ϕt admits the

partition ξn as described previously in Chapter 4. In addition, we will arrange

that ξn satisfies certain conditions specified below, so that for t = ∩nΛn, ϕt is

of type III and has a non-integrable invariant density. The main topological

ingredient of the inductive construction of Chapter 4 is that at each step either

hn(1/2) falls in a monotone domain created at a previous step, denoted by

∆∗
n and belongs to ξn (Basic Case); Or hn(1/2) is “delayed” in δn and falls

instead in a preimage of the monotone domain ∆∗
n belonging to ξn, so that

hrn
n (1/2) ∈ ∆∗

n, (delayed basic case). Notice that in the latter case hn(1/2) still

falls in a monotone domain, except that this monotone domain is created at

the current step, that is, it belongs to the partition ξn+1.

Thus, in either situation, the critical value falls in a domain which is

mapped onto I by a monotone branch. It follows from the monotonicity of

the kneading invariant, (see Graczyk and Swiatek [G-S]), that if the critical

value enters a certain domain ∆ = [a1, a2], say through a1 when the parameter

t = t1, then it remains inside ∆ until the parameter reaches t = t2 when it then

leaves ∆ through a2. Therefore, by varying the parameter, we can arrange that
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the new critical value

hn+1(1/2) = f∗n ◦ hn(1/2)

at a basic step, or

hn+1(1/2) = f∗n ◦ hrn
n (1/2)

at a delayed basic step, is mapped anywhere in I. In this way, we can ensure

that the forward G-orbit of the critical point is dense, i.e., ωG(1/2) = I and

hence ωϕt
(1/2) = [ϕ2

t (1/2), ϕt(1/2)], so that ϕt is of Type III.

Moreover, every time the critical value hn(1/2) is delayed in the box, the

level of the staircase, rn, which contains hn(1/2), and as a consequence, the size

of the hat can be chosen independent of the topological requirements on the

critical orbit because each level of the infinite staircase consists of the preimage

of the previous level.

5.2.2. Let us recall some definitions. Every monotone branch

fi : ∆i → I

is by construction a composition of iterates of the first return map G. Accord-

ingly fi = GNi |∆i and we call Ni the power of fi. Every critical branch hn can

be factored into hn = Fn ◦h0, where Fn is a composition of monotone branches

and h0 is the central parabolic branch of the first return map G restricted to

a small neighborhood of the critical point x = 1/2. In this case, we define the
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power of hn as 1 plus the sum of powers of each of the monotone branches in

the composition Fn. Notice that in this sense, the power of all branches of the

first return map G is 1, and all monotone branches can be factored into com-

positions of branches of G. In terms of the Tower Construction of Chapter 2,

Ni corresponds to the number of domains in the tower over ∆i and thus may

be referred to as the height of ∆i. In fact, N(∆i) = Ni defines a step function

N :∪i∆i → N by

N(x) =
∑

i

Ni I∆i
(x).

Here I denotes the usual characteristic or indicator function.

In accordance with [J-S], a map T is called expansion inducing when there

exists a partition ξ of I (mod 0) into a countable union of non-overlapping

intervals {∆i}i, where each ∆i is the domain of the monotone branch

fi := GNi |∆i:∆i → I

and the transformation T : I → I defined piecewise by

T |∆i = fi : ∆i → I

is expanding with uniformly bounded distortion for all branches fi. In which

case, T will satisfy the hypothesis of the so-called Folklore Theorem as formu-

lated below, see [A].
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The Folklore Theorem 5.2.3. Assume we are given a C2 map T defined

on a countable collection {∆i} of disjoint open intervals with the following

properties:

1. The Lebesgue measure of I − ∪i∆i is zero.

2. Every interval ∆i is the domain of an expanding diffeomorphism fi:∆i → I

such that |f ′i | > L > 1 for a uniform constant L independent of i.

3. There exists a uniform upper bound M such that for every branch fi,

|f ′′i (x)|
|f ′i(x)|2

< M for all x ∈ ∆i

Then T has an ergodic a.c.i.m. ν with a density function that is continuous and

bounded away from zero and infinity.

5.2.4. Using the Tower Construction from chapter 2, we obtain the G-invariant

measure µ on I given by the formula

µ(E) =
∑

i

Ni−1∑

j=0

ν(∆i ∩G−jE)

for every measurable set E ⊂ I. Since G is a smooth map we have µ ≪ ν. By

transitivity, µ is absolutely continuous:

µ≪ ν, ν ≪ | · | ⇒ µ≪ | · |
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Since ν has a bounded density, µE is finite if and only if

∑

i

Ni−1∑

j=0

∣
∣(∆i ∩G−jE)

∣
∣ (11)

converges, and µ is finite if and only if

∑

i

Ni|∆i| <∞. (12)

Our aim is to construct the map T in such a way so that:

(A) The convergence of the sum in (12) does not hold.

(B) There exists a set E with positive Lebesgue measure for which the sum in

(11) converges.

We will also have

(C) The µ-measure of every interval is infinite.

Theorem 2.1.3 of Chapter 2, implies by property (B) that the measure µ is

σ-finite.
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Section 5.3. Parameter Choice Lemma

5.3.1. Let us assume, as in Lemma 3.5.2 of Chapter 3, that the first return

map

G: I → I

induced by ϕt has 2K monotone branches for all parameter values t inside a

fixed interval denoted by (tK , tK+1). Then when t = tK+1 the critical branch

splits into two new monotone branches and a new critical branch is born in

between. This follows from the implicit function theorem, see for example [J2].

So, our first parameter interval is given by Λ0 = [tK , tK+1] and for all

parameter values in the interior of Λ0, a partition

ξ0 : I = (∪∆) ∪ (δ−k
0 ) ∪ δ0

is defined and its elements vary continuously with t. In the course of our

construction we determine a nested sequence of closed parameter intervals Λn ⊂

Λn−1 such that for all parameter values t ∈ Λn, ϕt induces the partition ξn with

desired properties. Then for τ = ∩∞
i Λi we obtain the limit partition ξ∞ and

the expansion inducing map ϕτ . In order to do this, we will use what we refer

to as the
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Parameter Choice Lemma 5.3.2. At each step n, there exists a parameter

interval Λn ⊂ Λn−1, such that as t varies in the interior of Λn, the following

two properties hold:

(i)n All intervals of the partition ξn vary continuously, in particular none of

them disappear and no new ones appear.

(ii)n The critical value hn(1/2) moves continuously across the whole interval I.

Proof. As we pointed out above, we start with the parameter interval Λ0

that the first return map G induced by ϕt for t ∈ Λ0 has exactly 2K + 1

branches. Then as t varies in the interior of Λ0, the lengths of these branches

varies continuously with t and the critical value h0(1/2) moves all the way

across the whole interval I. Assume by induction that the two properties (i)j

and (ii)j hold for all j ≤ n. Then by monotonicity of the kneading invariant

([G-S]), we get that given a prescribed monotone domain ∆, there exists a

parameter subinterval Λn+1 ⊂ Λn such that when t ∈ Λn+1, hn(1/2) moves all

the way through ∆ without leaving ∆. According to our inductive construction

of Chapter 4, the next central branch is

hn+1 = Fn ◦ hn,

where Fn = f∗n at a basic step, and Fn = f∗n ◦ hrn
n at a delayed basic step.

Since, in both cases, Fn maps ∆ onto the whole interval I, it follows that
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hn+1(1/2) satisfies (ii)n+1 as hn(1/2) moves across the interval ∆. Next, since

hn(1/2) depends continuously on the parameter t and stays inside the domain

∆ when t ∈ Λn+1, the new partition of δn which we had denoted by ηn in our

construction in chapter 4 will satisfy (i)n+1. Moreover, the new branches of the

partition ξn+1 constructed outside δn are compositions of branches of ξn with

those branches inside δn. As both vary continuously, all new branches satisfy

(i)n+1.

Section 5.4. Generating Partitions

5.4.1. In this section, we define an additional sequence of partitions which al-

lows us to ensure that the forward orbit of the critical point is dense in I. Using

the sequence of partitions constructed in Chapter 4, we define a subordinate

partition Pn as follows:

Let P0 = ξ0 — the preliminary partition constructed in Chapter 4. Con-

struct the refinement P1 as follows: P1 agrees with ξ1 on the partitions of

δ−k
0 ∈ ξ0, (k ≥ 0). On the other hand, each ∆i ∈ P0 is mapped 1-1 and onto I

by the monotone branch fi, so we can pull back the partition ξ1 thus subdividing

each ∆i ∈ ξ0 into good intervals ∆ij which are mapped onto I by fij = fj ◦ fi,

and “holes” f−1
i (δ−k

0 ), (k ≥ 0). Continuing in the same manner and using the
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partition ξn, we can construct the refinement Pn ≺ Pn−1 as follows. First, we

consider the holes

{ δ−k
m : m = 0, 1, . . . , n− 1 } (k ≥ 0)

coming from the partition ξn−1. These are refined by the filling in procedure

of the general construction of the partition ξn. Consequently, this creates new

monotone domains and holes all of which are elements of ξn, and as such, are

refined later when constructing Pn+1. So, we have that the refinement Pn

coincides with ξn on the holes

δk
m ∈ ξn−1 (m = 0, 1, . . . , n− 1).

However every monotone domain of ξn that has length greater than 3−n is

refined by monotone pullback of the partition ξn. In this way we create new

good intervals of the form ∆ij and holes f−1
i (δ−k

m ) where ∆i ∈ ξn−1 − ξn−2,

∆j ∈ ξn and m = 0, 1, . . . , n − 1. Since every good interval ∆ of Pn−1 has the

representation ∆ij···k and is mapped onto I by an expanding diffeomorphism

F := fij···k we can continue in the same manner by performing the monotone

pullback F−1(ξn) until every good interval ∆ has length at most 3−n. Indeed,

we have shown that under the conditions of Proposition 4.4.2 in Chapter 4,

mes (holes in ξn)

|I| −→ 0 as n −→ ∞
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and so after each monotone pullback the ratio

mes (holes in ∆)

|∆|

decreases in view of the fact that the monotone map F is not only expanding

but has bounded distortion as well. Therefore we obtain

Lemma 5.4.2. The sum of lengths of all the holes |δ−k
m | belonging to the

refinement Pn tends to zero as n→ ∞, and every good interval that belongs to

Pn has length at most 3−n.

As a result we have

Proposition 5.4.3. The collection of good intervals, as defined above, form a

basis for the standard topology on the set of Real numbers R restricted to the

interval I.

Proof. Given any open set U ⊂ I there exists an n such that the partition

Pn contains a good interval ∆ ⊂ U . It follows immediately that the countable

collection of all good intervals form a basis and therefore generates the standard

topology of R restricted to I.
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Section 5.5. Positioning the critical value at Johnson’s step

5.5.1. In this section we describe how to determine the parameter intervals

Λn to achieve the following two properties.

(i) We want the trajectory of the critical point to be dense, which involves

visiting a certain number of good intervals between two consecutive delayed

basic steps.

(ii) Second, given a sequence of numbers γk we will want to arrange that at

each delayed basic step n = nk the hat is small enough in order that the

ratio |Hk|/|Bk| < γk.

We may start the construction of Chapter 4 with a delayed basic step, that

is

h0(1/2) ∈ δ0, . . . , h
r0−1
0 (1/2) ∈ δ0

and

hr0

0 (1/2) ∈ I − δ0.

Thus, h0(1/2) ∈ Sr0
— the rth

0 level of the staircase S, and hr0−1
0 (1/2) falls

in the first level S1. Let ∆∗
0 ∈ ξ0 denote the monotone domain that contains

hr0

0 (1/2).

The idea is to look ahead. Since hr0

0 (1/2) falls in a monotone domain

∆∗
0 that is mapped onto the whole interval I, the location of h0(1/2) may be

chosen (it actually is a priori determined) so as for every finite collection of
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good intervals ∆ of P0 there corresponds a basic step such that hj(1/2) ∈ ∆.

This determines a sequence of basic steps j = 1, 2, . . . , n1 − 1 and then the

following step is delayed basic: hn1
(1/2) ∈ δn1

. For each of these basic steps

we let f∗j denote the monotone branch whose domain ∆∗
j contains the critical

value hj(1/2). Then hj+1 = f∗j ◦ hj , and it follows that

hn1
= f∗n1−1 ◦ f∗n1−2 ◦ · · · ◦ f∗0 ◦ hr0

0 .

Therefore the above requirement on the critical value for steps n = 1, 2, . . . , n1

is that the collection of domains

∆∗
1,∆

∗
2, . . . ,∆

∗
n1−1

includes a given collection of good intervals of P0. Notice that this requirement

is independent of the value of r0 which is chosen to be sufficiently large in

order that |H0|/|B0| < γ0 for any prescribed γ0. Using the Parameter Choice

Lemma for each of the steps n = 1, 2, . . . , n1, we obtain a sequence of parameter

intervals

Λ0 ⊃ Λ1 ⊃ · · · ⊃ Λn1

such that for t ∈ Λn1
, ϕt induces the partition ξn1

with the properties described

above. Observe that Λn1
contains a subinterval such that when the parameter

runs through this subinterval, hn1
(1/2) moves across the staircase S = ∪jSj
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belonging to δn1
. Now, hr1

n1
(1/2) falls in a monotone domain ∆∗

n1
∈ ξn1

, and so

the location of the critical value hn1
(1/2) may be chosen so that for the next

series of basic steps, the critical value hj(1/2), (j = n1 + 1, n1 + 2, . . . , n2 − 1),

falls in a prescribed collection of good intervals in P1. Then follows a delayed

basic step: hn2
(1/2) ∈ δn2

and hr2
n2

(1/2) is the smallest iterate of hn2
(1/2)

outside the central domain δn2
. This requirement on the critical orbit at step

n = n1 + 1 determines the location of hr1
n1

(1/2) within ∆∗
n1

, however, the level

of the staircase Sr1
which contains the critical value hn1

(1/2) is completely

independent of the aforementioned requirement, and so the choice of r1 can be

done after determining the critical orbits for the steps n = n1+2, n1+3, . . . , n2.

We arrange that r1 is sufficiently large so as the ratio |H1|/|B1| < γ1. Again, we

use the parameter choice lemma successively to obtain a sequence of parameter

intervals

Λn1
⊃ · · · ⊃ Λn2

for which ϕt induces the construction above. We continue in the same fashion,

hn2
is a delayed basic step with |H2|/|B2| < γ2, and for j = n2 + 1, n2 +

2, . . . , n3 − 1, the critical value hj(1/2) visits a prescribed collection of good

intervals of P2, then hn3
is delayed basic with |H3|/|B3| < γ3, and so on. In

this way, we may select a sequence of nested parameter intervals Λnk
such that

for t = ∩Λnk
, the orbit of 1/2 under Gt is εk-dense, where εk ↓ 0. It follows
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that for t ∈ ∩kΛnk
(= ∩nΛn), ϕt has ωG(1/2) = I. Moreover, ϕt induces

the sequence of partitions ξn, and in the construction of ξn, the critical value

hn(1/2) falls in a monotone domain belonging to ξn when n 6= nk — basic step,

and in a preimage of such a domain when n = nk — delayed basic step. In the

latter situation, we have the box Bk and hat Hk with the ratio |Hk|/|Bk| < γk.

Section 5.6. The Proof that the a.c.i.m. µ is infinite

5.6.1. We will show below that if the sequence of partitions ξn includes an

infinite number of partitions ξnk
such that the critical value is “delayed” inside

the Johnson box Bk, then the invariant measure µ will accumulate enough mass

forcing the divergence of the sum

∑

i

Ni|∆i|.

Using the same notation as in the end of the previous section, we assume that

at step n = nk, the central branch

hn: δn → I

falls in the delayed basic situation and we construct the box B = Bk with hat

H = Hk. Set

H−j = h−j
n (H),
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i.e., if g1 and g2 denote the two monotone branches of hn|(B − H) then H−j

consists of the collection of 2j intervals that are mapped onto H by the compo-

sitions gi1···ij
of g1 and g2 for all possible arrangements i1 · · · ij of the numbers

1 and 2. These intervals are called preimages of the hat of order j. Let s be

the smallest integer larger than 1/|B|. The next lemma says that if the base

hat is small enough, then the intervals of order larger than s constitute more

than half of the box (cf. [Jo]):

Lemma 5.6.2. There exists a = a(k) such that if |H|/|B| < a then

|H| + · · · + |H−s| < 1

2
|B|

Proof. Obvious by continuity.

This leads to

Proposition 5.6.3. Assume that in the construction of ξ there are infinitely

many delayed basic steps n = nk such that |Hk|/|Bk| < ak, where the ak are

given by the above Lemma, then the measure µ is infinite.

Proof. We only need to show that the sum

Σ =
∑

i

Ni|∆i|

diverges. For each step n = nk, we have by the previous Lemma

∣
∣
∣
∣

{

x ∈ Bk : N(x) ≥ 1

|Bk|

}∣
∣
∣
∣
>

1

2
|Bk|.
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Therefore the contribution to the sum Σ at each step n = nk exceeds

1

|Bk|
·
∣
∣
∣
∣

{

x ∈ Bk : N(x) ≥ 1

|Bk|

}∣
∣
∣
∣
>

1

2
.

Since we have infinitely many such steps n = nk, the sum Σ in diverges and µ

is not finite.

This satisfies condition (A) given in section 5.1.1.

Section 5.7. Construction of the set E

5.7.1. Recall from Section 5.1.1. that we wish to construct a set E with non-

zero Lebesgue measure for which the sum in (11) converges. From the previous

section we see that we need to exclude the intervals that go back and forth

within Johnson’s box. With this in mind, we construct the set E by defining a

sequence of open sets Uk, such that their union U =
⋃

k Uk does not have full

measure in I, then E := I − U has strictly positive measure. Take

U0 =
⋃

k≥0

δ−k
0

We define Uk inductively by using the partition ξnk
as follows. At each delayed

basic step n = nk we have hn(1/2) ∈ δn and the box construction with related

staircases is preformed. Let N denote the power of hn, and let

R = h−1
n (δn).
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We define Uk as the union of the collection of N iterates

G(R), G2(R), . . . , GN (R) = δn ∩ Im(hn).

We wish to emphasize that Uk consists of the whole G-orbit of h−1
nk

(δnk
) all the

way up to δnk
∩ Im(hnk

). Again let B = Bk denote the associated Johnson box

with hat H = Hk. We will show below that if at each delayed basic step the

hat is sufficiently small then we have |U | < I and so |E| > 0.

Proposition 5.7.2. There exists a sequence bk such that if at each delayed

basic case |Hk| < bk then |E| > 0.

Proof. Let n = nk and m = nk−1 be two consecutive delayed basic steps. In

our construction we will have many basic steps in between. So

hn = f∗n−1 ◦ f∗n−2 ◦ · · · ◦ f∗m ◦ hrm
m ,

where the branches f∗i for i = m,m + 1, . . . , n − 1 are chosen in order to visit

prescribed intervals of the generating partition Pm, thus ensuring that orbit

of the critical point is everywhere dense. By construction hrm
m (1/2) is the first

iterate of hm(1/2) that falls outside δm, i.e., hm(1/2) ∈ Srm
(δm) — the rthm

level of the staircase construction belonging to δm. Let

R = h−1
n (δn)
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and let Nn be the power of hn. Set S = hrm−1
m (R) ∈ S1(δm) — the first level

of the staircase belonging to δm. Then we decompose the orbit

Uk = R ∪G(R) ∪ · · · ∪ (GNn(R) = δn ∩ Imhn)

into two blocks

B1 = R ∪G(R) ∪ · · · ∪ S

B2 = G(S) ∪G2(S) ∪ · · · ∪ (δn ∩ Imhn).

Clearly R ⊂ h−1
m δm since δn ⊂ δm because n > m. Consequently, B1 ⊂ Uk−1

and

|Uk − Uk−1| ≤ |B2|.

The key point now, is that the number of iterates of S which make up the union

in the second block B2 is independent of rm, (remember that by construction

hrm
m (S) ⊂ ∆∗

m, irrespective of rm). So if M denotes the power of hm, then B2

consists of a union of

M +N(∆∗
m) +N(∆∗

m+1) + · · · +N(∆∗
n−1)

G-iterates of S. It follows, by continuity that B2 can be made arbitrarily small

provided δn ⊂ Hk−1 is small enough, which in turn can be arranged by choosing

rm sufficiently large. Therefore at each delayed basic step, we can determine

in advance the level of the staircase because the series of basic steps and the
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following Johnson box depends only on the location of hrm
m (1/2) within ∆∗

m and

not on rm. Consequently, there exists a sequence bk such that if |Hk| < bk then

|U | < |I| and |E| > 0.

Let

γn = min {ak, bk}

be the sequence of numbers for which to carry out the construction as specified

in Section 5.5. Then

|Hk| < |Hk|/|Bk| < γk,

so that the hypotheses of Propositions 5.6.2 and 5.7.2 are both satisfied.

Our next step is to show that µE is finite to conclude that µ is σ-finite.

5.7.3 The power of a branch through E

In Chapter 4 we have shown, following [J-S], that if at every step n our map is

basic or delayed basic, then ϕ is expansion inducing. That means that there ex-

ists a partition of I into a countable union of disjoint open intervals {∆i}i such

that the map f defined piecewise by fi = GNi |∆i which maps ∆i diffeomorphi-

cally onto I and satisfies the conditions of the Folklore Theorem. That is, fi is

expanding and has bounded distortion. Consequently f has an a.c.i.m. ν with
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density bounded away from zero and infinity. Using the Tower construction in

Chapter 3 we obtain the G-invariant measure µ given by the formula

µ(E) =
∑

i

Ni−1∑

j=0

ν(∆i ∩G−jE)

Evidently, µ is absolutely continuous w.r.t. Lebesgue Measure. Since ν has a

bounded density, µ(E) is finite iff

Σ :=
∑

i

Ni−1∑

j=0

∣
∣∆i ∩G−jE

∣
∣ (13)

converges, and µ is finite iff

∑

i

Ni|∆i| <∞. (14)

We have already shown above that the series in (14) diverges so that the

measure µ is infinite satisfying condition (A) from Section 5.2.4. Next we need

to show that the second condition (B) from 5.2.4 is satisfied to ensure that µ is

σ-finite. Recalling that condition , we will now prove:

(B) There exists a set E with positive Lebesgue Measure for which the sum in

(13) converges.

Then by Theorem 2.2.2 in Chapter 2, property (B) implies the measure µ is

σ-finite.

5.7.4. At each step n of induction when we construct ξn this involves creating

new monotone domains inside the central domain δn−1 and its preimages ∪δ−k
n−1,
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while the previous monotone domains remain unchanged. This means that we

can calculate the contribution of the monotone domains to the sum in (11) as

they are created at each step n. Now the contribution of a monotone domain

∆i is at most Ni|∆i|. By construction, Ni = N(∆i) is the number of intervals

in the tower over ∆i and for k = 1, 2, . . . , Ni − 1 each iterate Gk(∆i) falls in

some monotone domain created at a previous stage. In order to estimate the

sum in (11) we calculate the contribution of each monotone domain ∆i to the

sum Σ given in formula (11). The maximum contribution of each monotone

domain ∆i is:

N(∆i)|∆i|

Note that, since we performed the Tower construction, using the first return

map G we have that the power associated with one iterate of G is 1. That is, if

G|∆i:∆i → I where G|∆i = GNi

Then N(∆i) = Ni.

5.7.5. From the definition of the exceptional set E in 5.8.1, it follows that if

we only count the intervals Gk(∆i) that intersect E and denote their number

by NE(∆i) we get that the sum Σ given by the formula (13) is majorized by

∑

i

NE(∆i)|∆i| (15)
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Terminology : Recall that in terms of the tower construction, NE(∆i) denotes

the number of levels of the tower over ∆i that intersect the set E. Let us

consider the preliminary partition ξ0. Since this partition consists of a finite

number of intervals we can set

N0 = max {N(J) : J ∈ ξ0 }

In this sense then, we define the power through E of hn as

N(hn) := 1 +N∗
0 +N∗

1 + · · · +N∗
n−1 (N(h0) = 1)

where N∗
i = NE(∆∗

i ) is the height through E of the monotone domain that con-

tains the critical value hi(1/2). Recall that after each basic step i of induction

the new central branch

hi+1: δi+1 → I

is given by the composition

hi+1 = f∗i ◦ hi

and in the delayed basic situation

hi+1 = f∗i ◦ hri

i .
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5.7.6. The essential feature of our construction, is that all new monotone

domains at step n+1 are created inside the central domain δn and all (disjoint)

preimages

{δ−p
i } where (i = 0, 1, . . . , n+ 1) and (p ≥ 0)

Then the additional contribution at step n+ 1 cannot exceed

N(ξn)
∣
∣
∣

⋃

i,p

δ−p
i

∣
∣
∣

where NE(ξn) is given by

NE(ξn) = max
ξn

{NE(J) }

= max{NE(J) : J ∈ ξn }
.

In the next section we determine the effect of boundary refinement on the

growth of quantity NE(ξn).

Remark 5.7.7. The maximum height NE(J) is taken over all domains of

J ∈ ξn, so in particular it applies to J = δn. This means that

NE(δn) = NE(hn) ≤ NE(ξn)

84



Section 5.8. Properties of Boundary Refinement

5.8.1. As indicated in Section 5.3 we use the Parameter Choice Lemma 5.3.2

to enable us to control the trajectory of the critical point. By construction,

all delayed basic steps lead to the construction of the Johnson box and related

staircases. So assume for now, that we are dealing with two consecutive Johnson

steps n = nk with box Bk and hat Hk and m = nk+1 with box Bk+1 and hat

Hk+1. Remember that by choice of parameter, we can ensure that no boundary

refinement is needed at Johnson steps, however we will usually have many basic

steps

j = n+ 1, n+ 2, . . . ,m− 1.

in between that may create non-extendible monotone domains and so will re-

quire boundary refinement.

Let us first notice that it is still possible to carry out the construction of

the main partitions ξn (and associated refinements used), even if we add the

restriction that the maximum number of boundary refinements needed to make

all elements of ξn extendible does not exceed, say, 2n. Let us call the two

intervals ∆
(n)
∗ and ∆

(m)
∗ that contain the critical values hn(1/2) and hm(1/2)

as the initial landing element and the final landing element respectively. To

achieve the bound 2n we will use the following argument.
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Assume at step n according to our itinerary we must visit certain domains,

but it involves more than M > 2n refinements. Then we interrupt our itinerary

and just pullback ξ0 consecutively without doing any boundary refinement.

More explicitly, The first monotone pullback of ξ0 is onto ∆
(m)
∗ , then the fol-

lowing pullback is onto the preimage of the element of ξ0 inside the landing

element ∆
(n)
∗ that contains the critical value. By parameter choice, we make

sure that the critical value belongs to a preimage of a monotone domain. We do

this procedure k-times, where k > log2m. After that we return to our original

predetermined itinerary that ends with the critical value in the final landing

element ∆
(n)
∗ .

5.8.2. The following argument shows that any choice for a position of the

critical value at step n that is compatible with our rules for the Parameter

Choice Lemma (see section 3), will still alow us to impose the bound 2n on the

maximal number of boundary refinements needed for any monotone domain

belonging to ξn. Let us first define the following notations.

Notation 5.8.3.

(i) Suppose ∆, ∆0 ∈ ξn are monotone domains and ∆0 contains the critical

value x0 = hn(1/2). Then we let Rn(∆,∆0, x0) denote the minimum

number of boundary refinements needed for ∆ in order that the monotone

domains h−1
n (∆) ∈ ξn+1 are uniformly extendible.
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(ii) Let

Rn(∆0, x0) = max
∆∈ξn

{Rn(∆,∆0, x0) }

(iii) Let

ξ0 ≺ ξ1 ≺ · · · ≺ ξ∞

be the partitions constructed in the course of our induction. Then

ξ∞ = lim
n→∞

ξn

denotes the limit partition.

Remarks 5.8.4.

(i) If F is a diffeomorphism then

Rn(F−1∆, F−1∆0, F
−1x0) = Rn(∆,∆0, x0)

since extensions of preimages are preimages of extensions.

(ii) By the construction of enlargements in section 5, each hole δ−k belonging

to a given partition ξ has an enlargement δ̃−k such that for all elements

constructed as a result of filling in δ−k, their extensions are totally inside

δ̃−k. In other words, every preimage δ−k ∈ ξ has an extension δ̂−k that

is mapped onto the extension of the central domain δ̂ by the same diffeo-

morphism χ: δ−k → δ. Furthermore, extensions of all elements obtained

by the filling in of δ−k are properly contained inside δ̃−k.
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(iii) As a consequence of remark 2 above we obtain that for any fixed x0 ∈ ∆0,

where

∆0 ⊂ (I −
⋃

δ̃−k)

we have, for all elements ∆ ⊂ ∪δ−k, Rn(∆,∆0, x0) = 0 for all n.

(iv) Because of the choice of parameter, we have the property that for all i

and k, δ̃−k
i ∩ ∆0 = ∅. This means that the interval ∆0 that contains

the critical value is never adjacent to a preimage δ−k. Rather, all such

monotone domains are adjacent to other monotone domains ∆. In fact, if

∆0 is adjacent to the enlargement δ̃−k
i then ∆0 must be adjacent to either

∆−k
r or ∆−k

l which are the preimages of the two boundary intervals of δi−1.

Note that when i = 0 then ∆0 would be in this case adjacent to one of the

preimages of the two monotone domains ∆±
K surrounding δ0.

5.8.5. We now prove what we refer to as the Boundary Refinement Lemma.

To simplify notation, we may assume I = [0, 1].

The Boundary Refinement Lemma 5.8.6. Suppose f : [a, b] → [0, 1] is an

extendible monotone branch with f(b) = 1 and let J = [b, d] be an interval

that is adjacent to [a, b]. Let us consider the refinements of [a, b] and let ζk

be the boundary interval of the kth refinement which is adjacent to b. Then
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there exists k0 = k0(|J |) such that the extension of the boundary interval ζk0

is contained in J .

Proof. By construction, since f |[a, b] is extendible, there exists an extension

[b, c] such that f |([a, b] ∪ [b, c] = [0, 1 + α] where α is a fixed uniform constant.

Indeed, f([b, c]) = [1, 1 + α] and refinements of [a, b] are refinements of [0, 1]

by previously created partitions which are pulled back. Let ∆k denote the

boundary interval of the kth partition which we pulled back, then its extension

has the form (1, 1 + xk] and their lengths decrease exponentially with k as we

showed when we explained the boundary refinement procedure in chapter 4. So

the intervals ζk are the preimages f−1(∆k). Let ζu
k denote the upper extension

of ζk then ζu
k = f−1([1, xk]). Now, if the extension of [a, b] is actually contained

in J then we can set k0 = 0. Otherwise we have two possibilities:

(1) If f(J) ⊃ [1, 1 + α
2 ], then f(J) ⊃ [1, xk1

] for some fixed k1. So, we can set

k0 = k1 in this case.

(2) If f(J) ⊂ [1, 1+α
2 ], then f |([a, b]∪J) is uniformly extendible since the image

of the extension of f |[a, b] contains [1, 1 + α]. Consequently, f |([a, b] ∪ J)

has uniformly bounded distortion. As f([a, b]) = [0, 1], there exists some

constant c0 = c0(|J |) such that |f(J)| > c0. Therefore, f(J) ⊃ [1, xk2
] for

some fixed k2 = k2(|J |) and we can set k0 = k2 in this case.

This concludes the proof of the Lemma.
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Suppose ξ is a partition with the critical value x0 = h(1/2) contained in

∆0 ∈ ξ. Also assume

∆a ⊂ Image (h)

is the monotone domain adjacent to ∆0. Then, using the boundary refinement

lemma we get the following corollary:

Corollary 5.8.7. If ∆ 6= ∆a belongs to ξ and requires boundary refinement,

then we will need no more than k0|∆a| steps of boundary refinements.

In view of Remark (iv) in 5.8.4 we have

Lemma 5.8.8. If ∆0 ∈ ξn and x0 ∈ ∆0 as above then

max
∆∈ξ∞

{Rn(∆,∆0, x0) } = max
∆∈ξn+1

{Rn(∆,∆0, x0) }

Proof. It suffices to observe that all monotone domains created after step n

are inside the holes of ξn+1.

Using that

|
⋃

∆∈ξ∞

∆| = 1

we can now prove
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Proposition 5.8.9. Let m > 0 be fixed. Then

lim
n

|{x0 ∈ ∆0 : Rm(∆0, x0) < n }| = 1.

Proof. For a given ∆0 ∈ ξm we have

Rm(∆,∆0, x0) < k0(∆a)

for all ∆ non-adjacent to ∆0. As for the adjacent interval ∆a the number of

boundary refinements is finite for any fixed x0 inside the interior of ∆0 and goes

to ∞ as x0 approaches the common boundary between ∆0 and ∆a. However,

lim
n→∞

|{x0 : Rm(∆a,∆0, x0) > n }
|∆0|

= 0

Hence, for every finite union U of intervals ∆0 and every union V of open

subintervals of ∆0 that is separated from the boundary points of ∆0 and has

relative measure (in U) close to 1, there exists an n such that

max
∆0,x0∈V

Rm(∆0, x0) < n,

proving the proposition.
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Section 5.9. Growth of the NE

5.9.1. We remind the reader that after the construction of the limit partition

ξ = ξ∞ of I = ∪∆i (mod 0) where each ∆i is the monotone domain for the

branch

fi = GNi |∆i

mapping ∆i onto I, we showed in a previous section that hypothesis of the

Folklore Theorem were satisfied, which produced an invariant measure ν for

the power map T . Then the desired G-invariant measure µ was defined by the

formula

∑

i

Ni−1∑

j=0

ν(∆i ∩G−jE)

for any measurable set E. However, as we showed in Theorem 2.2.2, the measure

µ is σ-finite if there is a particular set E with nonzero measure that has finite

µ-measure. Since the density of ν is bounded away from zero and infinity, the

sum above representing the µ measure of E is finite iff

∑

i

Ni−1∑

j=0

∣
∣(∆i ∩G−jE)

∣
∣ <∞ (16)

The fact that |E| > 0 was shown previously in Proposition 5.7.2, so in this

section we show that µE is finite by proving that the condition in (16) holds.

5.9.2. Let us start with the preliminary partition constructed at step zero.

Recall that we used the partition induced by the first return map G on I. We
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chose a parameter interval very close to the Chebychev value 4 which ensured

that δ0 was as small as desired. Then we performed monotone pullback on each

monotone domain until all sizes became less than an arbitrary given ε. This

finite refinement was denoted by ξ0:

ξ0 : I = (∪i∆i) ∪ (∪kδ
−k
0 ) ∪ δ0

where all elements have sizes less than an arbitrary given ε, in fact, the whole

union of preimages |∪k δ
−k
0 | < ε. So, we can assume that the measure of ∪kδ

−k
0

is less than c|δ0| for some constant c independent of δ0. At a basic step, we

first construct by critical pullback the partition of δn−1 with the new central

domain δn located in the middle of δn−1.

5.9.3. At a delayed basic step n = nk, we have the infinite staircase construc-

tion and the Johnson box. If we only count the holes that intersect the set E,

we need to consider just the intervals inside the first step of the staircase S1.

All other iterates are in “deleted” intervals, whose union was denoted by Uk in

5.7.1, and E ⊂ (I − Uk).

Let us recall the sum in (16) converges provided

∑

∆∈ξn

NE(∆)|∆| <∞ (17)

Since the refinements ξn have the property that once a uniformly extendible

monotone domain is created it is never changed, it follows that all new monotone
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domains come from the critical pullback into the central domain and then from

the subsequent filling in procedure. So to calculate the sum in (17) we will

estimate the contribution at each step n due to the these procedures.

5.9.4. Let

NE(ξn) = max
J∈ξn

NE(J)

As we previously noted in Remark 5.8.7, the maximum is taken over all elements

J of $ξn including δn so

NE(Hn) := NE(δn) ≤ NE(ξn)

Since the preliminary partition ξ0 is a finite partition, we set

N0 = NE(ξ0)

(see lemma 3.5.2 in chapter 3). Then

Proposition 5.9.5.

(a)n NE(ξn) < N05
n

Proof. Clearly (a)0 holds. Now, assume by induction that (a)n and let us

consider the partition ξn+1. As

hn+1 = f∗n ◦ hn
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we have by critical pullback

NE(hn+1) ≤ NE(hn) +NE(ξn)

< N05
n +N05

n (18)

Consequently, for new elements ∆ and δ−p
i of the partition ξn+1 created inside

δn by critical pullback, we have

max
J∈δn

NE(J) < 2N05
n + 2n +N0 (19)

The number 2n represents the maximum number of boundary refinements

needed to make all new elements of ξn+1 extendible, as well as the maximum

number of grow-up steps that may be needed if the critical value falls in one of

the boundary domains ∆l(r) of ξ0 during a basic step, (see 5.8.2). We also added

an extra term N0 in estimate (19) to take into account that during a Johnson

step we may need to insert an extra pullback of ξ0 to ensure that |δn|/|Hn| is

small as desired. Similarly, at a basic step, to ensure that the ratio

|δn+1|
|δn|

≤ ε1

is small, we may need to perform one Extra Pullback Procedure, as explained

in the basic construction in Section 4.1. Finally, when we do the filling-in
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procedure, we add one more term NE(ξn) due to the orbit from δ−p
i to δi to

obtain from (19)
NE(ξn+1) ≤ 3N05

n + 2n+1 +N0

< N05
n+1

which proves (a)n+1 as required.

Section 5.10. Contribution of Holes at step n + 1

5.10.1. As in the previous section we start with the preliminary partition at

step zero

ξ0 : I = (∪i∆i) ∪ (∪kδ
−k
0 ) ∪ δ0

where we know that the total Lebesgue measure of all the holes is at most

| ∪k δ
−k
0 | ≤ ε

where ε > 0 is chosen at will when we construct the preliminary partition in

accordance with lemma 3.5.2 of chapter 3. In addition, clearly

|δ0 < | ∪k δ
−k
0 | ≤ ε

Let us consider the central domain δi, for i = 1, 2, ldots, n. If we consider

δi as a hole without any partition, then its contribution to the sum in (17) at

step i+ 1 is at most

N(ξi+1)|δi| ≤ N05
i+1|δi| (20)
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by proposition 5.9.5.

5.10.2. Let us now estimate the contribution to (17) from the elements con-

structed inside the preimages δ−p
i created by the filling in procedure. Suppose

∆, δ−k
j ⊂ δ−p

i are elements obtained by filling in δ−p
i . Then we can subdivide

the orbit of these elements into two segments. The first segment consists of the

trajectory of δ−p
i until they reach δi, the second segment then follows the orbit

of the elements inside δi that are constructed at step i+ 1. Since we accounted

for the first segment at step n, because we counted the contribution of the hole

δ−p
i without any partition, we need to account for the second segment of that

orbit. That contribution does not exceed

NE(ξi+1)
( ∑

δ−p

i
∈ξn

|δ−p
i |

)

(21)

Since i ≤ n, we get from Proposition 5.9.5

NE(ξi+1) ≤ N05
n+1

and consequently estimate (21) is at most

N05
n+1

( ∑

δ−p

i
∈ξn

|δ−p
i |

)

(22)

Now we just note that adding (20) and (22) can be done by simply including

δi in the enclosed sum of (22). Therefore, the total contribution to the sum in

(17) at step n + 1 due the preimages δ−k
i for i = 0, 1, 2. . . . , n and p ≥ 0 does

not exceed the estimate in (22). In the next section we will prove
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Proposition 5.10.3.

∑

δ−p

i
∈ξn

|δ−p
i | < aibns0 (23)

where a = a(δ0), b = b(δ0) and s0 = s0(δ0) all tend to zero with δ0.

Then we obtain

∞∑

i=0

aibns0 ≤ 1

1 − a
s0b

n

≤ 6−n (24)

provided a, b and s0 are sufficiently small. Combining equations (22) and

(24) proves the convergence of the sum of the new contributions added and

respectively the sum in formula (17).
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Section 5.11. Estimating the measure of holes ∪δ−k

i
inside ξn

5.11.1. In our general construction of the refinements ξn the central branch

h: δ → I can be written as a composition

h(x) = F ◦Q(x)

where Q(x) is the standard quadratic map and F is a composition of monotone

domains with uniformly bounded distortion. For the quadratic map Q(x) we

know that, if J ⊂ δ are both symmetric intervals containing the critical point,

then

|J |
|δ| =

√

|Q(J)|
|Q(δ)| .

Since F has bounded distortion we obtain for similar intervals J and δ

|J | < c|δ|
√

|h(J)|
|h(δ)|

Notice that, in view of the grow up procedure, the image of the central branch

covers at least a constant length I0. So we may write

|J | < c|δ|
√

|h(J)| (25)

where c is another uniform constant.
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5.11.2 Let the total measure of the holes ∪δ−k
i that belong to ξn be denoted

by

α
(n)
i =

∣
∣
∣
∣

⋃

ξn

δ−k
i

∣
∣
∣
∣

(26)

We note that the measure of this union is the sum of its respective disjoint

elements which are created after we complete step n and the partition ξn has

been constructed. To estimate the relative measure of the holes created inside

δn as a result of the critical pullback procedure, we assume the worst position of

these holes. By that, we mean that we assume that all the holes are contiguous

with one end being bounded by the critical value w = hn(1/2). Let M
(n+1)
i

denote the measure of the union of all preimages of δi created inside δn at step

n+ 1. For i < n+ 1 by the inequality (25) we have the following estimate

M
(n+1)
i

|δn|
< c

√

α
(n)
i (27)

with c being another uniform constant. This obviously gives us the worst (max-

imum) estimate on their relative measure inside δn.

For i = n+ 1 we get in the basic case

M
(n+1)
n+1 = δn+1 < βδn (28)

where β is a small constant depending on the maximal size of elements in ξ0.
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5.11.3. We get estimates (27), (28) at basic steps. At a Johnson step, the es-

timate (27) still holds for preimages created along the first step of the staircase.

For subsequent preimages we prove

Lemma 5.11.4. All preimages located inside all other steps of the staircase

together with the box, which are all inside δn, have total measure less than

c1|δn|3/2.

Proof. Let hn = F ◦Q, where Q is the initial quadratic map. Write

J = δn − S1 (29)

Then by construction hn(J) = δn, and as we argued in Section 5.11.1 we have

|J |
|δn|

=

√

|Q(J)|
|Q(δn)| (30)

As F has uniformly bounded distortion we obtain that

|J | < c|δn|
√

|hn(J)|
|hn(δn)| (31)

for a uniform distortion constant c. Using that hn(δn) covers more than 1/2

the length of I and hn(J) = δn we obtain

|J | < c1|δn|3/2 (32)

for some other uniform constant c2 as desired.
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By a similar argument at Johnson step

M
(n+1)
n+1 < c1|δn|3/2 (33)

because all new preimages of δn+1 are inside the box contained in δn − S1. In

fact, the preimages of δn+1 are all contained in the box and since the tip of the

hat can be chosen arbitrarily small,

|hn(B)| = |B|(1 + ε)

for arbitrarily small ε. Therefore, taking J = B in (31) we obtain

|B| < c|δn|
√

|h(B)|
|h(δ)|

< c|δn|
√

|B|(1 + ε)

which shows that the box is of order |δn|2. Therefore, instead of (33) we have

the stronger estimate

M
(n+1)
n+1 < c1|δn|2 (34)

So, in Johnson’s case, we get (33) (or even (34)) when i = n + 1, and for

i ≤ n the measure of the union of all preimages of δi created inside δn at step

n+ 1 is at most

M
(n+1)
i < c|δn|

√

α
(n)
i + c1|δn|3/2

≤ c|δn|
√

α
(n)
i (1 +

c1
c
|δn|1/2)

< c2|δn|
√

α
(n)
i (35)

102



since

(1 +
c1
c
|δn|1/2) ≤ c2

for some uniform constant c2 because

|δn| ≤ βn|δ0| < ε

So (27) holds in all cases with some uniform constant. We keep the same

notation c for this constant as well.

5.11.5. When doing filling in of a hole δ−p
j we pullback the structure of δj

that was created by critical pullback at step j + 1. So we handle this at step

j + 1 as we did above at step n+ 1, i.e., we get

M
(j+1)
i < c|δj |

√

α
(j)
i (36).

Then we pullback with small distortion onto the preimage δ−p
j and obtain inside

each preimage δ−p
j new preimages δ−k

i with measure less than

c|δ−p
j |

√

α
(j)
i (37)

Notice that we consider j ≥ i − 1 because preimages of δi can only appear

at steps i, i + 1, . . . , n + 1. Taking the union over all preimages δ−p
j for j =
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i− 1, i, . . . , n we get that at step n+ 1 the total measure of all preimages δ−r
i

appearing after filling in all preimages δ−k
m , (m = i, i+ 1, . . . , n), is at most

c

n∑

m=i

α(n)
m

√

α
(m)
i (38)

While when m = i− 1 (which occurs only at a Johnson step) we get from (33)

a much smaller estimate than (28) which holds at a basic step. We note that

when we pullback δi−1 onto its preimage then

|δi|
|δi−1|

≤ β

so that the ratio of preimages

|δ−k
i |

|δ−k
i−1|

≤ (1 + ε)β

for a very small ε because the process of enlargements implies that the diffeo-

morphisms

χ : δ−k
i−1 → δi−1

have small distortion. So we may use the same factor β for these preimages as

well. Therefore, we conclude from (27) (28) and (38) that at step n + 1, we

obtain

α
(n+1)
i < βαn

i−1 + c1(|δn|
√

α
(n)
i +

n∑

j=i

α
(n)
j

√

α
(j)
i ) (39)

for a some small constant β and another uniform constant which we may keep

denoting as c1.
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5.11.6. Now, we prove a restatement of Proposition 5.10.3

Proposition 5.11.7. There exists small positive constants s0, a and b, such

that for all ≥ 0 and all i ≤ n we have

Γ(i,n) α
(n)
i < aibns0

Moreover, one can choose s0, a and b that tend to zero as |δ0| → 0.

Proof. We may assume that δ0 is small enough — to be specified below. Recall

that by 4.2.4 we have

|δi+1|
|δi|

< β

where β is small because its size is determined by the choice of parameter

when constructing the preliminary partition, and according to Lemma 3.5.2

the elements of the preliminary partition ξ0 can be as small as desired. Also,

as we noted before in (34), we have

|δi+1| < c|δi|2

when i is a delayed basic step. We assume |δ0| ≪ β, then the estimate

|δi+1|/|δi| < β holds for all i ≤ n at every step n of our construction. Conse-

quently, in our estimates below, we use that

|δi| ≤ βi|δ0| (40)
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and

α
(i)
i ≤ δi

≤ cβi|δ0| (41)

Since δ0 can be chosen as small as desired. We choose s0 such that |δ0| ≪ s0, say

|δ0| < s20. In addition , we choose small constants a = βx and b = βy for some

positive exponents x, y < 1/2 such that ab > 3β and b3 < a Thus, combining

all the above, we will use in our estimates below the following inequalities

|δ0| < s20

b3 < a

β <
1

3
ab, βn < b2n, βi < a2i (42)

In order to check the basis of induction we note that the union of preim-

ages δ−k
0 contained in the preliminary partition ξ0 has measure less than c|δ0|,

therfore by (42)

α
(0)
0 < c|δ0| < cs20

Let us first check when i = 0, in this case (39) becomes

α
(n+1)
0 < c1

(

|δ0|βn√s0bn/2 +
n−1∑

m=0

s0a
mbn

√
s0b

m/2
)

< c1
√
s0

[

δ0b
n/2βn + s0

(
bn(1 + ab1/2 + a2b+ . . .)

)]

(43)
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If a and b are small then the sum of geometric progression

1 + ab1/2 + a2b+ . . .

is close to 1, and we then have

α
(n+1)
0 ≤ c1

√
s0

[
δ0b

n/2βn + (1 + ε1)s0b
n
]

(44)

where c1 does not depend on δ0 nor on β. Also, we can arrange that the

elements of the initial partition are small enough (as shown in the construction

of the preliminary partition) to ensure that

c1
√
s0 < b/10 ≪ 1 (45)

Then, by using βn ≤ b2n in (42), the estimate in (44) then becomes

α
(n+1)
0 ≤ 1

10

(

|δ0|bn/2b2n+1 + (1 + ε1)s0b
n+1

)

< s0b
n+1/5

which proves formula Γ(0,n+1).

Now we assume by induction that Γ(i,n) holds for all i ≤ n. Then for all

i = 1, 2, . . . , n we get from (39), using β < 1
3ab and βn < b2n from (42), we get

α
(n+1)
i < βai−1bns0 + c1

[

|δ0|βn√s0ai/2bn/2 +
n∑

j=i

s0a
jbn

√
s0a

i/2bj/2
]

≤ 1

3
s0a

ibn+1 + s0a
i
2 bn

[

c1s0b
3n
2 + c1

√
s0

( n∑

j=i

ajbj/2
)]

(46)
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now let us consider the term in the square brackets, it consists of the sum of

c1s0b
3n
2 (47)

and

c1a
ib

i
2

√
s0

(
1

1 − ab
1
2

)

(48)

For the term in (47), we have

c1s0b
3n
2 ≤ 1

3
a

i
2 b (49)

for all i ≤ n since by (45)

c1
√
s0 < b/10

and by (42) b3 < a.

As for the term in (48), we again use c1
√
s0 < b/10 given in (45) to obtain

the estimate

c1a
ib

i
2

√
s0

(
1

1 − ab
1
2

)

≤ a
i
2 b

[
1

10

( a
i
2 b

i
2

1 − ab
1
2

)]

≤ 1

3
a

i
2 b (50)

because clearly

1

10

( a
i
2 b

i
2

1 − ab
1
2

)

≤ 1

3

Therefore, combining (49) and (50), the estimate in (46) becomes

α
(n+1)
i ≤ 1

3
s0a

ibn+1 +
1

3
s0a

ibn+1 +
1

3
s0a

ibn+1

≤ s0a
ibn+1

proving formula Γ(i,n+1) for all i ≤ n+ 1.
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Remark 5.11.8. When i = 0 we have the strongest restrictions on the small-

ness of s0 and δ0.

As shown in (24) at the end of 12.2, this Proposition implies

∞∑

i=0

aibns0 <
1

1 − a
s0b

n < 6−n

which when combined with (22) shows that the sum Σ converges and µ is

therefore a σ-finite a.c.i.m. Moreover, the density of the orbit of the critical

point, forces every interval to have infinite µ-measure:

Main Theorem. There are maps from among the family ϕt that admit no

finite a.c.i.m. but that have a σ-finite a.c.i.m. measure that is infinite on every

interval.

Proof. It remains to show the last assertion. Let J be any interval in I, by

construction there is an n such that hn(c) passes through J and hence there is a

k0 such that the box Bk0
passes through J . This implies that the contribution

of the intervals created inside Bk to the summation formula corresponding to

µ(J) exceeds 1/2 for every k ≥ k0. So the sum corresponding to µ(J) diverges

and µ(J) = ∞.
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